

بنام خداوند بخشنده مهربان

دانشکده مهندسی مکانیک

پایان نامه کارشناسی ارشد

محاسبه خواص ترمودینامیکی گاز طبیعی با استفاده از

معادله حالت AGA8

دانشجو : حميد رضا رهبري

استاد راهنما :

آقاي دکتر محمود فرزانه گرد

استاد مشاور :

آقای دکتر شهرام هاشمی مرغزار

بهمن ۱۳۸۹

تشکر و سپاس

بدینوسیله بر خود لازم می دانم از زحمات بی دریغ و راهنمایی های دلسوزانه استاد ارجمند جناب آقای دکتر محمود فرزانه گرد که در انجام مراحل مختلف این پایان نامه همواره حقیر را مورد لطف و راهنمایی قرار دادند، تشکر و قدردانی نمایم.

این پایان نامه از حمایت مالی شرکت گاز استان سمنان برخوردار بوده است که بدینوسیله محقق مراتب تشکر و قدرانی خود را ابراز می دارد. در تحقیق حاضر، خواص ترمودینامیکی گاز طبیعی با استفاده از معادله حالت AGA8، محاسبه شده است. گاز طبیعی ترکیبی از چندین هیدروکربن و عنصر گازی می باشد. بنابراین خواص ترمودینامیکی گاز طبیعی، وابسته به خواص ترمودینامیکی اجزای تشکیل دهنده آن بوده و با تغییر ترکیب گاز طبیعی، خواص ترمودینامیکی آن نیز تغییر می کنند. برای اینکه خواص ترمودینامیکی گاز طبیعی را محاسبه نماییم، نیاز به معادله حالتی داریم که خواص ترمودینامیکی گاز طبیعی را با توجه به اجزای آن، محاسبه نماید. معادله حالتی داریم که توسط انجمن گاز آمریکا ارائه شده، با درنظر گرفتن خواص متقابلی اجزای گاز طبیعی در ترکیب مدل بسیار دقیقی برای محاسبه ضریب تراکم پذیری گاز طبیعی، ارائه کرده است.

در این تحقیق، با مبنا قرار دادن معادله حالت AGA8 و با استفاده از روابط ترمودینامیکی مشخصی که بین اجزای یک ترکیب گازی برقرار است، خواص ترمودینامیکی گاز طبیعی محاسبه شده است. محاسبات با داده های آزمایشگاهی معتبرسازی شده است. معتبرسازی محاسبات نشان می دهد که معادله حالت AGA8 از دقت قابل قبولی برای محاسبه خواص ترمودینامیکی گاز طبیعی، برخوردار می باشد.

خواص ترمودینامیکی برای مناطق مختلف گازی ایران و تاثیر ترکیب گاز طبیعی بر روی خواص ترمودینامیکی بررسی شده است. همچنین، بعضی از فرآیندهای گاز طبیعی با استفاده از معادله حالت AGA8، شبیه سازی شده و تاثیر ترکیب گاز بر روی این فرآیندها، مورد تجزیه و تحلیل قرار گرفته است.

در نهایت نرم افزاری جهت محاسبه خواص ترمودینامیکی گاز طبیعی، ارائه شده است. با مشخص بودن دما، فشار و کسر مولی اجزای گاز طبیعی در مخلوط گاز، می توان با استفاده از نرم افزار طراحی شده، خواص ترمودینامیکی گاز طبیعی را محاسبه نمود.

كلمات كليدى:

چکیدہ

گاز طبيعى- خواص ترموديناميكى - معادله حالت AGA8 - روابط ترموديناميكى

ليست مقالات مستخرج از پايان نامه

۱- محمود فرزانه گرد، حمید رضا رهبری ، بررسی عوامل موثر بر میزان پیمایش خودروهای گازسوز،
 مجله علمی - ترویجی مهندسی مکانیک، انجمن مهندسی مکانیک ایران.

۲- محمود فرزانه گرد، حمید رضا رهبری ، تاثیر ترکیب گاز طبیعی بر روی کار خالص خروجی در ایستگاههای تقلیل فشار گاز طبیعی، اولین کنفرانس علوم حرارتی ایران، ۱۹ و۲۰ بهمن ۱۳۸۹ ، مشهد.

۳- محمود فرزانه گرد، حمید رضا رهبری ، بررسی تاثیر ترکیب گاز طبیعی مناطق مختلف ایران بر روی میزان پیمایش خودروهای گازسوز، اولین کنفرانس مدیریت و بهینه سازی انرژی، ۲و۳ مرداد ۱۳۸۹، تهران

۴- محمود فرزانه گرد، حمید رضا رهبری ، تاثیر شرایط ترمودینامیکی گاز طبیعی ذخیره شده درمخزن خودرو بر روی میزان پیمایش خودروهای گازسوز ، سومین کنفرانس و نمایشگاه بین المللی CNG، ۲۷و۲۹ شهریور ۱۳۸۹، تهران

مطالب	فهرست	

نحه	عنوان صف
	فصل اول : مقدمه
۱	۱-۱- اهمیت گاز طبیعی
۳	۱-۲- خواص ترمودینامیکی
۴	۱-۳- مروری بر تحقیقات گذشته معادلات حالت
۵	۱–۳–۱– معادلات حالت درجه سه
۵	۱–۳–۱– معادله حالت واندروالس
۶	-۲-۱-۳-۱ معادله حالت RK و RK
۷	PR معادله حالت PR
۷	-۳-۱-۴- معادله حالت VPT
۹	۲-۳-۱ معادلات حالت نظیر به نظیر
۱۰	-۳-۳-۱ معادلات حالت GERG
۱۰	۱-۳-۴- معادلات حالت دیگر
۱۱.	۱–۴– هدف پایان نامه
	فصل دوم : معادله حالت AGA8 و محاسبه خواص ترموديناميكي
١٢	۱-۲ معادله حالت AGA8
١٢	۱–۱–۲ مقدمه
۱۳	۲-۱-۲ شرح و بسط روش AGA8
۱۵	۲-۱-۲- عدم قطعیت

ان	عنو
----	-----

۱۵	D.C.M
18	۲−۲−۳ −۲- عدم قطعیت روش G.C.M
18	۲-۱-۴- محاسبه ضریب تراکم پذیری با استفاده از D.C.M
18	۲-۱-۴-۱- روابط ریاضی و معادلات مربوط به روش D.C.M
۱٩	۲-۱-۴-۲ روش حل معادلات مربوط به روش D.C.M
۲.	۲-۲- بدست آوردن خواص ترمودینامیکی گاز طبیعی
٢٠	۲–۲–۱ مقدمه
22	۲-۲-۲ محاسبه خواص ترمودینامیکی
22	۲-۲-۲-۱ محاسبه ظرفیت گرمایی مولار در حجم ثابت
79	۲-۲-۲-۲ محاسبه ظرفیت گرمایی مولار در فشار ثابت
۲۸	۲-۲-۲-۳ محاسبه توان آیزنتروپیک
٣٠	۲-۲-۲-۴- محاسبه ضریب ژول- تامسون
٣٢	۲-۲-۲-۵- محاسبه سرعت صوت
٣۴	۲-۲-۲-۹- محاسبه آنتالپی
۳۸	۲-۲-۲-۷- محاسبه انرژی داخلی
٣٩	۲-۲-۲-۸- محاسبه آنتروپی
41	۲-۲-۲-۹- محاسبه ارزش های حرارتی
47	۲-۲-۲-۹-۱- محاسبه ارزش حرارتی اجزای گاز طبیعی
44	۲-۲-۲-۴-۱ ارزش حرارتی بالای گاز طبیعی

ان	عنو
----	-----

44	۲-۲-۲-۹-۳- ارزش حرارتی پایین گاز طبیعی
44.	۲-۲-۲-۹-۴-۱رزش حرارتی حجمی
44	۲-۲-۲-۹-۵- چگالی نسبی گاز طبیعی
۴۵	۲-۲-۲-۹-۹- شاخص وبی
40	۲-۲-۲-۹-۷- محاسبه ارزش حرارتی مولار گاز طبیعی
۴۵	۲-۲-۲-۹-۸- محاسبه ارزش حرارتی جرمی گاز طبیعی
49.	۲-۲-۲-۹-۹- محاسبه ارزش حرارتی حجمی گاز طبیعی
49 .	۲-۲-۲-۹-۱۰ - محاسبه چگالی نسبی
49.	۲-۲-۲-۹-۱۱- محاسبه شاخص وبی
	فصل سوم : هیدراتهای گازی
۴۷.	۳–۱– مقدمه
۴۸	۳-۲- تاريخچه
49	۳-۳- ساختارهای کریستالی هیدراتهای گازی
۵١.	۲-۳-۱ ساختار نوع I
۵۲	٣-٣-٢- ساختار نوع Π
۵۳	۳-۳-۳- ساختار نوع H
۵۴	۳-۴- مشخصات شبکه هیدرات
۵٨	٣-٥- مفهوم تعادل
۵٨	۳–۵–۱ – قانون فاز

حه	عنوان صف
۵۹	۳-۵-۲- شرط تعادل
۶.	۳-۵-۳- فوگاسیته و ضریب فوگاسیته
۶١	۳-۶- محاسبات تعادل فازی در سیستم های حاوی هیدرات گازی
۶١	۳–۶–۲ فاز گاز (G)
۶١	۳-۶-۲ فاز مایع غنی از آب (L _W)
۶۱	۳-۶-۳ فاز مایع غنی از هیدرو کربن (L _H)
87	۴-۶-۳- فاز جامد (H)
۶۲	۳–۶–۵– فاز یخ (I)
۶٢	۳-۷- مدل های پیش بینی شرایط تشکیل کریستال هیدرات
97	۳-۷-۱ روش های تجربی
۶٢	۳-۷-۲ مدل های ترمودینامیکی
۶٣	۳-۸- محاسبه فوگاسیته اجزاء در فاز بخار و مایع
94	۳-۸-۱ معادله حالت برای مخلوط های گازی
66	۲-۸-۳ محاسبه فوگاسیته
۶٨	۳-۹- محاسبه فوگاسیته اجزاء در فاز هیدرات
۷١	۳-۱۰- محاسبه تبخیر ناگهانی
۷٣	۲۱۱۳ نحوه محاسبه فشار تعادلی
	فصل چهارم : نتایج

۷۵	۴-۱-۱- معتبرسازی محاسبات ضریب تراکم پذیری گاز طبیعی
۷۵	۴-۱-۱-۱- محاسبات ضریب تراکم پذیری Mix1
۷۷	۲-۱-۱-۴ محاسبات ضریب تراکم پذیری Mix2
٨٠	۴-۱-۴- معتبرسازی محاسبات چگالی گاز طبیعی
٨٠	۲-۱-۲-۴- محاسبه چگالی برای گاز طبیعی NG1
۸١	۲-۲-۲-۴ محاسبه چگالی برای گاز طبیعی NG2
٨٢	۲-۲-۲-۴ محاسبه چگالی برای گاز طبیعی NG3
٨۴	۴-۲-۱-۴ محاسبه چگالی برای گاز طبیعی NG4
٨۴	۲-۱-۴- محاسبه چگالی برای گاز طبیعی NG5
۸۵	۴-۲-۱-۴- محاسبه چگالی برای گاز طبیعی NG6
٨٧	۴-۱-۳- معتبرسازی محاسبات ظرفیت گرمایی در فشار ثابت
٨٧	۴-۱-۳-۱- محاسبه ظرفیت گرمایی در فشار ثابت برای متان خالص
٨٨	۴-۱-۳-۲- محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix3
٨٩	۴-۱-۳-۳- محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix4
٩٠	۴-۲-۳-۴- محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix5
٩٢	۴-۱-۴- معتبرسازی محاسبات ضریب ژول- تامسون
٩٢	۴-۱-۴- محاسبه ضریب ژول - تامسون برای متان خالص
٩٣	۲-۴-۲-۴ محاسبه ضریب ژول - تامسون برای مخلوط Mix3
٩۴	۳-۴-۱-۴ محاسبه ضریب ژول - تامسون برای مخلوط Mix4

ان	عنوا
----	------

۹۶	۴–۱–۵– معتبرسازی محاسبات ظرفیت گرمایی در حجم ثابت
۹۷	۴-۱-۴- معتبرسازی محاسبات سرعت صوت
۹۸	۴-۱-۶-۱- محاسبه سرعت صوت برای متان خالص
۹۸	۴-۱-۶-۲- محاسبه سرعت صوت برای مخلوط Mix6
٩٩	۴-۱-۶-۳- محاسبه سرعت صوت برای مخلوط Mix7
۱۰۱	۴-۱-۶-۴- محاسبه سرعت صوت برای مخلوط Mix8 و Mix9
1.4	۴-۱-۶-۵- محاسبه سرعت صوت برای مخلوط Mix10
۱۰۶	۴-۱-۲- معتبرسازی محاسبات آنتالپی
۱۰۶	۴–۱–۷–۱ فزایش آنتالپی در فرآیند فشار ثابت
١٠٧	۴-۱-۷-۱-۱-۱ افزایش آنتالپی برای متان خالص
۱۰۸	۴-۱-۷-۱-۲- افزایش آنتالپی برای مخلوط دوتایی متان- اتان
۱۰۸	۴-۱-۷-۱-۳- افزایش آنتالپی برای مخلوط شبیه گاز طبیعی
۱۱۰.	۴–۱–۷–۲– افت دما در فرآیند آنتالپی ثابت فشارشکنی
۱۱۰	۴–۱–۷–۲–۱– افت دما در فرآیند آنتالپی ثابت فشارشکنی برای متان خالص
,	۴–۱–۷–۲–۲– افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوط دوتایی متان – اتان
117	
114	۴–۱–۸- معتبرسازی محاسبات انرژی داخلی
۱۱۸	۴-۱-۴- معتبرسازی محاسبات آنتروپی
١٢١	۴–۱۰–۱۰ معتبرسازی محاسبات هیدرات های گازی

ان	عنو
----	-----

174	۲-۴- محاسبه خواص ترمودینامیکی مناطق گازی ایران
170	۴-۲-۴- محاسبه سرعت صوت مناطق گازی ایران
۱۲۸	۴-۲-۲- محاسبه آنتالپی مناطق گازی ایران
۱۳.	۴-۲-۴- محاسبه انرژی داخلی مناطق گازی ایران
۱۳۲	۴-۲-۴- محاسبه آنتروپی مناطق گازی ایران
184	۴-۲-۵- محاسبه ارزش های حرارتی مناطق گازی ایران
134	۴-۲-۵-۱- ارزش حرارتی مولار مناطق مختلف
۱۳۵	۴-۲-۵-۲- ارزش حرارتی جرمی مناطق مختلف
۱۳۷	۴–۲–۵–۳– ارزش حرارتی حجمی مناطق مختلف
۱۳۸	۴–۲–۵–۴– چگالی نسبی مناطق مختلف
۱۳۹	۴-۲-۵-۵- شاخص وبی مناطق مختلف
141	۴-۳- معادلات استخراج شده برای محاسبه خواص ترمودینامیکی
	فصل پنجم : نتیجه گیری و پیشنهادات
144	۵–۱– نتیجه گیری
149	۵-۲- پیشنهاداتی برای تحقیقات آینده
	پیوست الف : طراحی نرم افزار و کاربردها
147	الف-۱- طراحي نرم افزار
۱۵۳	الف-۲- كاربرد ها
۱۵۳	الف-۲-۱- میزان پیمایش خودروهای گازسوز

181	۲-۲- قابلیت کاردهی و کار خالص خروجی در ایستگاه های تقلیل فشار	الف
188	ع	مراج

فهرست شکل ها و نمودارها

فحه	عنوان
۲	شکل (۱-۱)- گاز طبیعی منبعی از انرژی برای کاربردهای مختلف
۵	شکل (۱-۲)- ضریب تراکم پذیری برای گازهای مختلف
۱۵	شکل (۲-۱)- محدوده خطا برای محاسبه ضریب تراکم پذیری با استفاده از روش AGA8
47	شکل (۲-۱)- شماتیکی از تعریف ارزش حرارتی و فرآیندهای مربوط به آن
43	نمودار (۲-۱)- ارزش حرارتی مولار برای اجزای گاز طبیعی در دمای C [°] 25
۴۸	شکل (۳-۱)- شبکه کریستالی هیدرات گازی
49	شکل(۳-۲)- مسدود شدن خطوط انتقال گاز به علت تشکیل هیدرات
۵۰	شکل(۳-۳)- مولکول آب و تشکیل پیوند هیدروژنی
۵١	شکل(۳-۴)- دوازده وجهی منتظم متشکل از مولکول های آب
۵۲	شکل (۳-۵)- ساختار نوع I متشکل از دوازده وجه پنج ضلعی و دو وجه شش ضلعی
۵۲	شکل (۳-۶)- ساختار نوع I کریستال هیدرات
۵۳	شکل (۳-۷)- ساختار نوع П متشکل از دوازده پنج ضلعی و چهار شش ضلعی
۵۳	شکل (۳–۸)- ساختار نوع П کریستال هیدرات
54	شکل (۳–۹)- واحدهای سازنده ساختار نوع H
۵۴	شکل (۳-۱۰)- ساختار کریستالی هیدراتهای نوع H

۵۵	شکل(۳–۱۱)- ساختار های مختلف کریستالی هیدرات و حفره های آنها
۵۷	شکل (۳–۱۲)- اندازه مولکولهای مهمان مختلف و ساختار هیدرات تولیدی
۶٩	شكل (۳–۱۳)- شماتيك مدل واندروالس- پلاتيو
۷٣	شکل (۳-۱۴)- روند محاسبه فشار تعادلی هیدرات های گازی
ابت ۷۶	نمودار (۴–۱)- ضریب تراکم پذیری برای مخلوط Mix1 برحسب فشار و برای حالتهای دما ث محاسبه شده به صورت آزمایشگاهی و معادله حالت AGA8
۷۷	نمودار (۲-۴)- درصد خطا برای محاسبه ضریب تراکم پذیری مخلوط Mix1
ابت ۷۸	نمودار (۴–۳)- ضریب تراکم پذیری برای مخلوط Mix2 برحسب فشار و برای حالتهای دما ثا محاسبه شده به صورت آزمایشگاهی و معادله حالت AGA8
۷٩	نمودار (۴-۴)- درصد خطا برای محاسبه ضریب تراکم پذیری مخلوط Mix2
٨١	نمودار (۴–۵)- درصد خطا برای محاسبه چگالی گاز طبیعی NG1
٨٢	نمودار (۴-۴)- درصد خطا برای محاسبه چگالی گاز طبیعی NG2
، به ۸۳	نمودار (۴-۷) - چگالی گاز طبیعی NG3 بر حسب فشار و برای حالتهای دما ثابت محاسبه شده صورت آزمایشگاهی و معادله حالت AGA8
۸۳	نمودار (۴–۸)- درصد خطا برای محاسبه چگالی گاز طبیعی NG3
٨۴	نمودار (۴-۹)- درصد خطا برای محاسبه چگالی گاز طبیعی NG4
٨۵	نمودار (۴–۱۰)- درصد خطا برای محاسبه چگالی گاز طبیعی NG5
٨۶	نمودار (۴–۱۱)- درصد خطا برای محاسبه چگالی گاز طبیعی NG6
٨٨	نمودار (۴–۱۲)- درصد خطا برای محاسبه ظرفیت گرمایی در فشار ثابت برای متان خالص
٨٩	نمودار (۴–۱۳)- درصد خطا برای محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix3

نمودار (۴–۱۴)- درصد خطا برای محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix4 ۹۰
نمودار (۴–۱۵)- درصد خطا برای محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix5 ۹۱
نمودار (۴–۱۶)- درصد خطا در محاسبه ضریب ژول - تامسون برای متان خالص
نمودار (۴–۱۷)- درصد خطا در محاسبه ضریب ژول - تامسون برای مخلوط Mix3 ۹۴
نمودار (۴–۱۸)- درصد خطا در محاسبه ضریب ژول - تامسون برای مخلوط Mix4
نمودار (۴–۱۹)- درصد خطا در محاسبه ظرفیت گرمایی در حجم ثابت برای مخلوط متان – اتان۹۷
نمودار (۴–۲۰)- درصد خطا در محاسبه سرعت صوت برای متان خالص
نمودار (۴–۲۱)- درصد خطا در محاسبه سرعت صوت مخلوط Mix6
نمودار (۴–۲۲) – سرعت صوت برای مخلوط Mix7 محاسبه شده از معادله حالت AGA8 و داده های آزمایشگاهی
نمودار (۴–۲۳) - درصد خطا برای محاسبه سرعت صوت مخلوط Mix7
نمودار (۴–۲۴) - سرعت صوت برای مخلوط Mix8 محاسبه شده از روش AGA8 و دادههای آزمایشگاهی
نمودار (۴–۲۵) - سرعت صوت برای مخلوط Mix8 محاسبه شده از روش AGA8 و دادههای آزمایشگاهی
نمودار (۴–۲۶) - درصد خطا برای محاسبه سرعت صوت مخلوط Mix8
نمودار (۴–۲۷) - سرعت صوت برای مخلوط Mix9 محاسبه شده از روش AGA8 و دادههای آزمایشگاهی
نمودار (۴–۲۸) - سرعت صوت برای مخلوط Mix9 محاسبه شده از روش AGA8 و دادههای آزمایشگاهی
نمودار (۴–۲۹) - درصد خطا برای محاسبه سرعت صوت مخلوط Mix9

نمودار (۴–۳۰) - سرعت صوت برای مخلوط Mix10 محاسبه شده از روش AGA8 و داده های ۱۰۵
نمودار (۴–۳۱) - درصد خطا برای محاسبه سرعت صوت مخلوط Mix10
نمودار (۴–۳۲) - درصد خطا در محاسبه افزایش آنتالپی در فرآیند فشار ثابت برای متان خالص
برحسب دمای ورودی
نمودار (۴–۳۳) - درصد خطا در محاسبه افزایش آنتالپی در فرآیند فشار ثابت برای مخلوطهای متان -
اتان برحسب دمای ورودی ۱۰۸
نمودار (۳۴-۴) - درصد خطا در محاسبه افزایش آنتالپی در فرآیند فشار ثابت برای مخلوط Mix11
برحسب فسار
نمودار (۴–۳۵) - افت دما در فرآیند آنتالپی ثابت برای متان خالص برحسب دمای ورودی ۱۱۱
نمودار (۴–۳۶)- درصد خطا در محاسبه افت دما در فرآیند آنتالپی ثابت برای متان خالص برحسب
دمای ورودی
نمودار (۴–۳۷) – افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان– اتان ۱۱۳
نمودار (۴–۳۷) – افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان– اتان ۱۱۳
نمودار (۴–۳۷) – افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان– اتان ۱۱۳ نمودار (۴–۳۸) – درصد خطا در محاسبه افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای
نمودار (۴–۳۷) – افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان– اتان
نمودار (۴–۳۷) – افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان– اتان ۱۱۳ نمودار (۴–۳۸) – درصد خطا در محاسبه افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان – اتان برحسب دمای ورودی
نمودار (۴–۳۷) – افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان– اتان ۱۱۳
نمودار (۴–۳۷) – افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان– اتان ۱۱۳
نمودار (۴–۳۷) – افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان– اتان ۱۱۳
نمودار (۴–۳۷) – افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوطهای دوتایی متان– اتان ۱۱۳

نمودار (۴–۴۵) - آنتروپی برای متان خالص بر حسب فشار و برای حالتهای دما ثابت
نمودار (۴-۴۶) - درصد خطا در محاسبات آنتروپی برای متان خالص
نمودار (۴-۴۷)- نمودار تعادلی دما- فشار برای متان خالص
نمودار (۴–۴۸)- نمودار تعادلی دما- فشار برای مخلوط های متان- اتان
نمودار (۴۹-۴۹)- نمودار تعادلی دما- فشار برای مخلوط های متان- پروپان
نمودار (۴–۵۰)- نمودار تعادلی دما- فشار برای مخلوط متان- نیتروژن
شکل (۴–۵۱)- وزن مولکولی برای گازهای طبیعی مناطق مختلف ایران
نمودار (۴–۵۲)- سرعت صوت برای گاز طبیعی پالایشگاه خانگیران برای حالتهای دما ثابت و بر حسب فشار
نمودار (۴–۵۳)- سرعت صوت برای گاز طبیعی منطقه گشو برای حالتهای دما ثابت و بر حسب فشار
نمودار (۴–۵۴)- سرعت صوت برای گاز طبیعی مناطق مختلف بر حسب فشار و در دمای ثابت ۲۵۰ کلوین
نمودار (۴–۵۵)- سرعت صوت برای گاز طبیعی مناطق مختلف بر حسب فشار و در دمای ثابت ۳۵۰ کلوین
نمودار (۴–۵۶)- آنتالپی گاز طبیعی بر حسب فشار در برای حالتهای دما ثابت برای حوزه گازی کنگان ۱۲۸
نمودار (۴–۵۷)- آنتالپی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۲۵۰ کلوین
بالمراجع المراجع المراجع المناجع المناجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع

عنوان

نمودار (۴–۵۸) – آنتالپی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۳۵۰ کلوین ۱۲۹

نمودار (۴–۵۹)- انرژی داخلی گاز طبیعی بر حسب فشار در برای حالتهای دما ثابت برای حوزه گازی کنگان
نمودار (۴–۶۰)- انرژی داخلی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۲۵۰
كلوين
نمودار (۴–۶۱)- انرژی داخلی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۳۵۰
كلوين
نمودار (۴–۶۲)- آنتروپی گاز طبیعی بر حسب فشار در حالتهای دما ثابت برای حوزه گازی کنگان
۱۳۲
نمودار (۴–۶۳)- آنترویی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۲۵۰ کلوین
نمودار (۴–۶۴)- آنتروپی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۳۵۰ کلوین
144
نمودار (۴–۶۵)- ارزش حرارتی بالای مولار برای گازهای طبیعی مناطق مختلف ایران
نمودار (۴–۶۶)- ارزش حرارتی پایین مولار برای گازهای طبیعی مناطق مختلف ایران ۱۳۵
نمودار (۴–۶۷) - ارزش حرارتی بالای جرمی برای گازهای طبیعی مناطق مختلف ایران ۱۳۶
نمودار (۴–۶۸)- ارزش حرارتی پایین جرمی برای گازهای طبیعی مناطق مختلف ایران ۱۳۶
نمودار (۴–۶۹)- ارزش حرارتی بالای حجمی برای گازهای طبیعی مناطق مختلف ایران ۱۳۷
نمودار (۴–۷۰)- ارزش حرارتی پایین حجمی برای گازهای طبیعی مناطق مختلف ایران ۱۳۸
نمودار (۴–۷۱)- چگالی نسبی برای گاز طبیعی مناطق مختلف ایران
نمودار (۴–۷۲)- شاخص وبی (بالا) برای گازهای طبیعی مناطق مختلف ایران
نمودار (۴–۷۳)- شاخص وبی (پایین) برای گازهای طبیعی مناطق مختلف ایران

شکل (الف-۱)- شماتیکی از ورودی ها و خروجی های نرم افزار محاسبه خواص ترمودینامیکی گاز
طبيعى
شکل (الف-۲)- ورودی کسر مولی اجزای گاز طبیعی در نرم افزار طراحی شده
شکل (الف-۳)- ورودی دما و فشار و محاسبه خواص ترمودینامیکی گاز طبیعی در نرم افزار طراحی
شده
شکل (الف-۴)- محاسبه ارزش های حرارتی گاز طبیعی و خواص وابسته به آنها در نرم افزار طراحی شده
شکل (الف-۵)- محاسبه فشار تعادلی هیدرات های گاز طبیعی در نرم افزار طراحی شده ۱۵۲
شکل (الف-۶)- شکل شماتیکی از میزان پیمایش یک خودرو گازسوز
شكل (الف-۷) - سيكل حركت MVEG-95
نمودار (الف-۱)- ارزش حرارتی جرمی گاز طبیعی مناطق مختلف ایران برای محاسبه میزان پیمایش ۱۵۸
نمودار (الف-۲)- مقدار جرم سوخت مورد نیاز برای ۱۰۰ کیلومتر پیمایش و برای گاز طبیعی مناطق
مختلف
نمودار (الف-۳)- مقدار جرم گاز طبیعی ذخیره شده در مخزن خودرو و برای مناطق مختلف ۱۶۰
نمودار (الف-۴)- میزان پیمایش خودرو برای گاز طبیعی مناطق مختلف ایران
شکل (الف-۸)- فرآیندهای انجام شده در یک ایستگاه تقلیل فشار با شیر اختناق
شکل (الف-۹)- فرآیندهای انجام شده در یک ایستگاه تقلیل فشار با توربین انبساطی
يتعدد (الف-٨)- دماء بيشگر كرد كان طبيع بر حسي فشل مردم به استكام تقال فشل با
تموه، (الف ٢) المالي پيس كرم كردن كار طبيعي بر حسب كسار ورودي به ايستكاه تقليل كسار با

ب فشار ورودی به ایستگاه و برای گاز طبیعی مناطق	نمودار (الف-۶)- اگزرژی گاز طبیعی بر حس
188	مختلف (دبی جرمی واحد)
گرم کردن گاز طبیعی در ایستگاه تقلیل فشار با توربین	شکل (الف-۱۰)- نمودار محاسبه دمای پیش ً
188	انبساطى
فشار ورودى به ايستگاه تقليل فشار با توربين انبساطي	نمودار (الف-۸)- کار خالص خروجی بر حسب
واحد)	و برای گاز طبیعی مناطق مختلف (دبی جرمی
بیعی بر حسب فشار ورودی به ایستگاه تقلیل فشار با	نمودار (الف-۷)- دمای پیش گرم کردن گاز ط
تلف	توربین انبساطی و برای گاز طبیعی مناطق مخ

فهرست جداول

جدول (۱-۱)- میزان منابع و درصد کل ذخایر گاز طبیعی پنج کشور اول دنیا
جدول (۱-۲)- ضرایب مربوط به معادله حالت VPT ۸
جدول (۲-۱) - محدوده مجاز مورد استفاده برای روش AGA8 AGA8 محدوده مجاز مورد استفاده برای روش
جدول (۳–۱)- مشخصات شبکه های مختلف کریستالی هیدرات
جدول (۳–۲)- نسبت اندازه مولکول های مهمان به اندازه حفره ها در ساختارهای I ، I و H ۵۶
جدول (۴–۱)- درصدمولی ترکیبات مورد استفاده در محاسبات ضریب تراکم پذیری ۷۵
جدول (۴-۲)- درصد انحراف مطلق میانگین (AAPD) در محاسبات ضریب تراکم پذیری ۷۹
جدول (۴–۳) - درصد مولی ترکیبات مورد استفاده در محاسبات چگالی گاز طبیعی
جدول (۴-۴)- درصد انحراف مطلق میانگین (AAPD) در محاسبات چگالی ۸۶
جدول (۴–۵) - درصد مولی ترکیبات مورد استفاده در محاسبات ظرفیت گرمایی در فشار ثابت ۸۷

جدول (۴–۴)- درصد انحراف مطلق میانگین (AAPD) در محاسبات ظرفیت گرمایی در فشار ثابت
۹۲
جدول (۴-۷)- درصد انحراف مطلق میانگین (AAPD) در محاسبات ضریب ژول - تامسون ۹۵
جدول (۴–۸)- نوع ترکیب و درصد انحراف مطلق میانگین (AAPD) در محاسبات ظرفیت گرمایی در
حجم ثابت
جدول (۴–۹)- درصد مولی ترکیبات بکار رفته در محاسبات سرعت صوت
جدول (۴-۱۰)- درصد انحراف مطلق میانگین (AAPD) در محاسبات سرعت صوت
جدول (۴–۱۱) - درصد انحراف مطلق میانگین (AAPD) برای محاسبات افزایش آنتالپی در فرآیند
فشار ثابت
جدول (۴-۱۲)- درصد انحراف مطلق میانگین (AAPD) برای محاسبات افت دما در فرآیند آنتالپی
ثابت فشارشكنى
جدول (۴-۱۳)- درصد انحراف مطلق میانگین (AAPD) برای محاسبات انرژی داخلی برای متان
جدول (۴–۱۴)- درصد انحراف مطلق میانگین (AAPD) برای محاسبات آنتروپی برای متان خالص
119
جدول (۴–۱۵)- درصد انحراف مطلق میانگین (AAPD) در محاسبات تعادلی هیدرات ۱۲۴
جدول (۴–۱۶)- درصد مولی اجزای گاز طبیعی مناطق مختلف ایران
جدول (۴–۱۷)- درصد انحراف مطلق میانگین محاسبات چگالی با استفاده از روابط ارائه شده ۱۴۲
جدول (۴–۱۸)- درصد انحراف مطلق میانگین محاسبات آنتالپی با استفاده از روابط ارائه شده ۱۴۲
جدول (۴–۱۹)- درصد انحراف مطلق میانگین محاسبات انرژی داخلی با استفاده از روابط ارائه شده سعر
111

صفحه	عنوان
۱۵۷	جدول (الف-۱)- مشخصات خودرو مورد بررسی
مناطق مختلف ایران برای محاسبه میزان پیمایش	جدول (الف-۲)- درصد مولی اجزای گاز طبیعی
۱۵۸	

ضريب دوم ويريال= B H =ارزش حرارتی جرمی $\mathcal{C}_P =$ ظرفیت حرارتی در فشار ثابت $H_m =$ ارزش حرارتی مولار $C_v =$ ظرفیت حرارتی در حجم ثابت $H_v = -$ ارزش حرارتی حجمی ثابت وبی = Wobbe Index آنتاليي = h فوگاسيته = f K = یار امتر اندازه $K_{ii} = K_{ii}$ پارامتر برهمکنش اجزاء $\varphi =$ ضريب فوگاسيته $M_w =$ وزن مولکولی $\mu_{JT} =$ فريب ژول – تامسون درصد انحراف مطلق ميانگين =AAPD تعداد اجزای گاز طبیعی = N تعداد داده های آزمایشگاهی = *n* معادله حالت =EOS فشار = P انجمن گاز آمریکا، گزارش شماره ۸ =AGA8 ثابت جهانی گازها = R آنتروپي = s T =دما سرعت صوت = Sos u =انرژی داخلی کسر مولی اجزاء = x Z = ضریب تراکم پذیری ho_m = دانسيته مولار ho_r = دانسیته کاهیده $\gamma = _{\gamma}$ وزن نسبی $\gamma = \gamma$

 v_m = حجم مخصوص مولار

فصل اول

مقدمه

۱-۱- اهمیت گاز طبیعی

گاز طبیعی یکی از انواع سوخت ها می باشد که به طور کاملاً طبیعی و از منابع مشخص بدست می آید. این گاز، ترکیبی از چندین ماده آلی و غیر آلی می باشد که معمولاً درصد مواد غیر آلی در اجزای گاز طبیعی کمتر از مواد آلی می باشند. دسترس پذیری آسان و از همه مهمتر پاک بودن و انتشار پایین گازهای گلخانه ای در هنگام سوختن، گاز طبیعی را به عنوان یک سوخت جایگزین در دنیا مطرح کرده که استفاده از آن به سرعت در حال گسترش می باشد.

گاز طبیعی به عنوان یک منبع انرژی، کاربردهای گوناگونی دارد. این کاربردها شامل: مصارف تجاری، صنعتی، اقتصادی، حمل و نقل و صنایع همگانی می باشد. شکل(۱–۱)، کاربرد گاز طبیعی را در مصارف مختلف دنیا تا پایان سال ۲۰۰۸ میلادی نشان می دهد [۱]. با توجه به شکل (۱–۱)، بیشترین مصرف گاز طبیعی در کاربردهای صنعتی بوده و کمترین استفاده از آن به صنایع حمل و نقل مربوط می باشد.

شکل (۱-۱)- گاز طبیعی منبعی از انرژی برای کاربرد های مختلف

کشور عزیزمان ایران، با داشتن منابع عظیم گاز طبیعی، حدوداً دارای ۱۶٪ از کل ذخایر گاز طبیعی دنیا را دارا می باشد. ایران از این حیث دومین کشور از لحاظ داشتن منابع گاز طبیعی دنیا می باشد. جدول (۱–۱)، سهم ۵ کشور اول دنیا را از نظر ذخایر گاز طبیعی و میزان منابع گاز طبیعی در دنیا نشان می دهد. با توجه به غنی بودن منابع گاز طبیعی در کشورمان ایران، استفاده از گاز طبیعی در کاربردهای مختلف گسترش چشمگیری داشته است. گشترش استفاده از گاز طبیعی در بخش حمل و نقل، مصارف خانگی و صنعتی، بسیار چشمگیر بوده است. با توجه به توضیحات داده شده، لزوم مطالعه و تحقیق در زمینه گاز طبیعی امری لازم و غیر قابل اجتناب می باشد.

درصد جهانی	تريليون فوت مكعب	كشور
·/. TD/T	۱۵۲۶/۸	روسيه
·/. ١۵/Υ	۹۸۱/۸	ايران
·/. 14/4	٩٠۴/١	قطر
'/. F	۲۵۳	عربستان سعودي
·/. ٣/۴	510/1	امارت متحده عربي
·/. ۶۳	۳۹۳۰/۷	جمع ۵ کشور اول دنیا
·/. \••	8787/7	کل جهان

جدول (۱-۱)- میزان منابع و درصد کل ذخایر گاز طبیعی پنج کشور اول دنیا

۲-۱- خواص ترمودینامیکی

برای آنکه فرآیندهای تولید و انتقال گاز طبیعی را تجزیه و تحلیل کنیم نیازمند خواصی از گاز طبیعی هستیم که به خواص ترمودینامیکی^۱ معروف هستند. خواص ترمودینامیکی نشان دهنده حالت یک سیستم در یک فرآیند ترمودینامیکی می باشند. در حالت کلی و برای یک ماده خالص با مشخص بودن دو خاصیت ترمودینامیکی مستقل از هم، می توان حالت ماده مورد نظر را مشخص کرد. برای ترکیباتی مانند گاز طبیعی علاوه بر مشخص بودن دو خاصیت ترمودینامیکی مستقل از هم، به ترکیب گاز طبیعی یا به عبارتی درصد مولی اجزای تشکیل دهنده گاز طبیعی در مخلوط گاز، برای مشخص شدن حالت ترکیب مورد نظر و محاسبه خواص ترمودینامیکی، نیاز داریم.

گاز طبیعی مخلوطی از چندین گاز مختلف با خواص متفاوت می باشد. بنابراین خواص ترمودینامیکی گاز طبیعی به شدت وابسته به خواص اجزای تشکیل دهنده آن، می باشد. بنابراین، با تغییر ترکیب گاز طبیعی، خواص ترمودینامیکی گاز طبیعی نیز تغییر می کنند. ترکیب گاز طبیعی، با توجه به منطقه مورد نظر، شرایط آب و هوایی و عوامل دیگر، تغییر می کند. بنابراین ممکن است در یک کشور، گازهای طبیعی دارای ترکیبات مختلفی باشند.

با توجه مطالب گفته شده، نمی توان برای گاز طبیعی مانند مواد خالص جدولی از خواص ترمودینامیکی ارائه کرده و در صورت لزوم از آنها استفاده کرد. برای گاز طبیعی باید دنبال راهکاری باشیم که بتوان خواص ترمودینامیکی گاز طبیعی را با توجه به ترکیب آن و برای ترکیبات گوناگون، محاسبه نماییم.

برای محاسبه خواص ترمودینامیکی گاز طبیعی، دو روش اصلی وجود دارد : ۱ – استفاده از روش های آزمایشگاهی، ۲ – استفاده از معادلات حالت. روش های آزمایشگاهی برای محاسبه خواص ترمودینامیکی از دقت بالایی بر خوردار می باشند. اما تعدادی از خواص ترمودینامیکی مانند: آنتروپی^۲, آنتالپی^۲ و انرژی داخلی¹، قابل اندازه گیری نبوده و بنابراین با استفاده از روش های آزمایشگاهی نمی توان آنها را محاسبه نمود. همچنین هزینه بالا و دشواری نصب و تجهیز وسایل برای آزمایش، از دیگر عوامل برای محدود بودن استفاده از روش های آزمایشگاهی برای محاسبه خواص ترمودینامیکی،

⁴- Internal energy

¹-Themrodynamics properties

²- Entropy

³- Enthalpy

با استفاده از معادلات حالت، می توان تمامی خواص ترمودینامیکی گاز طبیعی را با دقت قابل قبول و با صرف هزینه ناچیز و وقت اندک، محاسبه نمود. بنابراین، استفاده از معادلات حالت برای محاسبه خواص ترمودینامیکی گاز طبیعی، در طی سالیان اخیر گسترش چشمگیری داشته است.

1-۳- مروری بر تحقیقات گذشته معادلات حالت

معادله حالت، رابطه بین دما، فشار و حجم را برای یک ماده دلخواه، بیان می کند. ساده ترین معادله حالت، معادله حالت، معادله حالت گاز ایده آل بوده که به صورت زیر تعریف می شود:

$$Pv_m = RT \tag{1-1}$$

جائیکه در معادله (۱–۱)، P فشار، v_m حجم مخصوص مولار، T دما و R ثابت جهانی گازها، می باشند. معادله حالت گاز ایده آل برای مواقعی که گاز طبیعی در فشارهای پایین و دماهای بالا قرار دارد، تطابق خوبی با داده های آزمایشگاهی داشته و می توان از آن استفاده کرد. معادله حالت گاز ایده ال به خاطر سادگی بسیار پرکاربرد می باشد. از این معادله حالت، در فشارهای بالا و دماهای پایین، به علت خطای بالا محاسبات نمی توان استفاده کرد. یکی از سوال های اصلی محققان در زمینه معادلات حالت، پیدا کردن معادله ای بود که بتوان در دماهای پایین و مخصوصاً در فشارهای بالا، از آن استفاده نمود. در سال ۱۸۷۳ میلادی واندروالس، برای اولین بار ضریب تراکم پذیری⁶ را تعریف نمود. با توجه به مطالعات واندوالس، ضریب ترکم پذیری به صورت زیر تعریف شده است:

$$Z = \frac{V_{Real}}{V_{Ideal}} \tag{(Y-1)}$$

در رابطه (۱–۲)، Z ضریب تراکم پذیری، V_{Real} حجم گاز در حالت واقعی و V_{Ideal} حجم گاز در حالت ایده آل بدست آمده از رابطه (۱–۱)، می باشند [۲]. رابطه (۱–۲) را می توان به صورت زیر هم نوشت:

$$Z = \frac{P v_m}{RT} \tag{(-1)}$$

⁵- Compression factor

با توجه به رابطه (۱–۳) برای ضریب تراکم پذیری، این ضریب برای گازهای ایده آل مساوی یک و برای گازهای واقعی می تواند مقادیر کوچکتر و یا بزرگتر از یک را نیز، اختیار کند. شکل (۱–۲)، ضریب تراکم پذیری را برای گازهای مختلف، نشان می دهد.

Pressure

شکل (۱-۲)- ضریب تراکم پذیری برای گازهای مختلف

با توجه به اصلاحات و تصحیحات واندروالس بر روی معادله حالت گاز ایده آل و معرفی ضریب تراکم پذیری، مطالعات فراوانی بر روی معادلات حالت انجام شده و روش های مختلفی برای محاسبه ضریب تراکم پذیری، ارائه گردیده است.

۱-۳-۱ معادلات حالت درجه سه

بخش مهمی از معادلات حالت ارائه شده در زمینه محاسبه ضریب تراکم پذیری موسوم به معادلات حالت درجه سه²، می باشند. در این معادلات برای محاسبه ضریب تراکم پذیری نیازمند، حل یک معادله درجه سه از ضریب تراکم پذیری، می باشیم.

1-7-1- معادله حالت واندروالس

اولين معادله حالت درجه سه توسط واندوالس، به صورت زير ارائه گرديده است [۲]:

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT \tag{(f-1)}$$

⁶ -Cubic Equation of State (EOS)

جائیکه در رابطه (۱-۴)، ضرایب a و b ، نماینده جاذبه و دافعه بین مولکولهای گاز می باشند. این دو ثابت با استفاده از اعمال شرایط نقطه بحرانی^۷، محاسبه می شوند:

$$\left(\frac{\partial P}{\partial \nu}\right)_T = \left(\frac{\partial^2 P}{\partial \nu^2}\right)_T = 0 \tag{(\Delta-1)}$$

با اعمال شرایط نقطه بحرانی بر روی رابطه (۱–۴)، ضرایب a و b ، به صورت زیر تعیین می گردند:

$$a = \frac{27R^2 T_c^2}{64P_c}$$
(9-1)

$$b = \frac{RT_C}{8P_C} \tag{Y-1}$$

در معادلات (۱–۶) و (۱–۷)، T_c دمای نفطه بحرانی و P_c فشار نقطه بحرانی می باشند.

SRK و RK معادله حالت RK و

این معادلات حالت درجه سه، شکل بهبود یافته ای از معادله حالت واندروالس می باشند. در سال Redlich میلادی، Rkong و Rwong، ضریب جاذبه را در معادله واندروالس بهبود دادند [۳]. همچنین در سال ۱۹۴۹ میلادی، Soave ثابت جاذبه را در معادله RK ، تابعی از دما کرده و معادله Rk را بهبود بخشید. این معادله به RKS ، معروف گردیده است [۴]. شکل کلی این معادلات به صورت زیر می باشد:

$$\left(P + \frac{a(T)}{v(v+b)}\right)(v-b) = RT \tag{A-1}$$

ضریب a(T) در رابطه (۸–۱)، به صورت زیر تعریف می شود:

 $a(T) = a_e \alpha(T) \tag{9-1}$

ضریب a_e در رابطه (۱–۱۰)، برای هر دو معادله حالت RK و RKS یکسان و به صورت زیر تعریف شده است.

$$a_e = 0.42748 \frac{R^2 T_c^2}{P_c} \tag{1.-1}$$

⁷ -Critical point conditions

ضریب (T) در رابطه (۱۰–۱۰)، برای هر دو معادله حالت RK و RKS، به صورت زیر تعریف شده $\alpha(T)$

$$\alpha(T) = \frac{1}{\sqrt{T}} \quad For \ RK \ EOS \tag{11-1}$$

$$\alpha(T) = \left[1 + m\left(1 - \left(\frac{T}{T_c}\right)^{0.5}\right)\right]^2 \quad For RKS EOS \tag{117-1}$$

جائیکه در رابطه (۱-۱۲)، m تابعی از آسنتریک فاکتور ^، بوده که به صورت زیر تعریف شده است:

$$m = 0.48 + 1.574\omega - 0.175\omega^2 \tag{17-1}$$

در رابطه (۱-۱۳)، ۵ آسنتریک فاکتور می باشد.

PR معادله حالت

در سال ۱۹۷۶ میلادی، Peng و Robinson، شکل بهبود یافته ای از معادله حالت RK را ارائه کردند[۵]. آنها پارامتر جاذبه را در معادله حالت بهبود داده و معادله ای خود را به صورت زیر ارائه کردند:

$$\left(P + \frac{a(T)}{(v^2 + 2bv - b^2)}\right)(v - b) = RT$$
(14-1)

با اعمال شرایط نقطه بحرانی، ضرایب a و b ، به صورت زیر تعیین می گردند:

$$a = 0.45724 \frac{R^2 T_c^2}{P_c} \tag{10-1}$$

$$b = 0.0778 \frac{RT_C}{P_C} \tag{19-1}$$

VPT معادله حالت VPT

در سال ۱۹۹۰ میلادی، Valderrama شکلی کلی را برای یکی از معادلات حالت درجه سه، که توسط Patel و Teja ارائه شده بود، بسط و گسترش داد. این معادله حالت به معادله حالت VPT، معروف

⁸- Acentric factor

$$P = \frac{RT}{v-b} - \frac{a}{v^2 + Uv + W} \tag{1Y-1}$$

ضرایب رابطه (۱–۱۷)، در جدول (۱–۲) آورده شده اند.

Equation	Valvue
U	b+c
W	- <i>bc</i>
Ω_a	$0.66121 - 0.79105Z_C$
Ω_b	$0.02207 + 0.20868Z_C$
Ω_c	$0.57765 - 1.8708Z_{C}$
$\alpha(T)$	$\left[1+m\left(1-\left(\frac{T}{T_{c}}\right)^{0.5}\right)\right]^{2}$
m	$0.46283 + 3.5823(\omega Z_C) + 8.1941Z_C(\omega Z_C)^2$

جدول (۱-۲)- ضرایب مربوط به معادله حالت VPT

در جدول (۲-۱)، Z_c ضریب تراکم پذیری در نقطه بحرانی می باشد. همچنین ضرایب *a و c و c* ، با استفاده از روابط زیر محاسبه می شوند[۶]:

$$a = \Omega_a \frac{R^2 T_c^2}{P_c} \alpha(T) \tag{1A-1}$$

$$b = \Omega_b \frac{RT_C}{P_C} \tag{19-1}$$

$$c = \Omega_c \frac{RT_c}{P_c} \tag{(Y - 1)}$$

معادلات درجه سه، به طور گسترده در صنایع گاز طبیعی استفاده می شوند. یکی از دلایل استفاده از معادلات حالت سه، آسان بودن شکل معادله برای محاسبه ضریب تراکم پذیری می باشد. اما، به علت دقت پایین در محاسبه خواص ترمودینامیکی، کاربرد معادلات حالت درجه سه برای مخلوط های پیچیده مانند گاز طبیعی، کاهش پیدا کرده است.

1-۳-۲ معادلات حالت نظیر به نظیر

معادلات حالت نظیر به نظیر^۹ در حالت کلی بر مبنای شرایط حالت نظیر به نظیر که بین دو سیال وجود دارد، ارائه شده است [۷]. شکل کلی این نوع معادلات که موسوم به ECS می باشند، به صورت زیر ارائه شده است:

$$Z^{r} = \frac{Pv}{RT} - 1 = F(V^{*}, T^{*})$$
(Y 1-1)

در رابطه (۱-۲۱)، Z^r تابع انحراف ضریب تراکم پذیری^{۰۰}، V حجم بی بعد و T* دمای بی بعد، می باشند. جزئیات مربوط به این روش در مرجع [۷]، آورده شده است.

Kecarthy [۷]، با استفاده از معادلات حالت Ecs، خواص ترمودینامیکی را برای مخلوط محاسبه کرده است. او خواص ترمودینامیکی دو مخلوط دوتایی، متان- نیتروژن و متان- اتان را با استفاده از این مدل پیش بینی کرده است. Estela-Uribe و Trusler [۸]، با استفاده از معادله حالت ECS، خواص ترمودینامیکی را برای مخلوط های مختلف محاسبه کرده اند. آنها با در نظر گرفتن اینکه گاز طبیعی ترکیبی از ۱۲ ترکیب عمده دو تایی می باشد، ضریب تراکم پذیری و سرعت صوت^{۱۱} را برای گاز طبیعی، محاسبه کرده اند. درصد خطای محاسبات آنها نسب به داده های تجربی بین ۲۰۳۰ ± ٪، گزارش شده است. Estela-Uribe و همکاران[۹]، با مبنا قرار دادن معادله حالت ECS، دو روش بهینه برای محدوده های متفاوتی از دما و فشار ارائه کرده اند. آنها چگالی و سرعت صوت را با استفاده از دو مدل ارائه شده برای ۱۹ ترکیب دوتایی محاسبات سرعت صوت را با استفاده از دو مدل ارائه شده برای ۱۹ ترکیب دوتایی محاسبات سرعت صوت را با استفاده از دو آنها برای چگالی ۲۰/۳ ٪ و ۲/۱۰ ٪ و برای محاسبات سرعت صوت ۲۰/۰ ٪، نسبت به داده مدل ارائه شده برای ۱۹ ترکیب دوتایی محاسبات سرعت صوت ۱۶/۰ ٪ و ۳/۰۰ ٪، نسبت به داده مدل ارائه شده برای ۱۹ ترکیب دوتایی محاسبات سرعت صوت ۱۶/۰ ٪ و ۳/۰۰ ٪، نسبت به داده آنها برای چگالی ۲۰/۳ ٪ و ۲/۱۰ ٪ و برای محاسبات سرعت صوت ۲۰/۰ ٪ و ۳/۰۰ ٪، نسبت به داده مدل ارائه سده برای ۱۹ ترکیب دوتایی محاسبات سرعت صوت ۲۰/۰ ٪ و ۳/۰۰ ٪، نسبت به داده مدل ارائه شده برای و ۲۱/۰ ٪ و برای محاسبات سرعت صوت ۲۰/۰ ٪ و ۳/۰۰ ٪، نسبت به داده ترکیبات دوتایی، بسار مفید هستند. به همین دلیل، معمولاً از آنها برای محاسبه خواص ترمودینامیکی ترکیباتی پیچیده ای مانند گاز طبیعی با کسرهای مولی بالا، استفاده نمی شود.

⁹- Extended Corresponding States (ECS)

¹⁰-Residual compression factor function

¹¹ -Speed of Sound

¹² -Average Absolute Percent Deviation(AAPD)

GERG -۳-۳-۱ معادلات حالت

Jaeschke و همکاران [۱۰]، در سال ۱۹۸۹ میلادی، معادله حالتی را برای محاسبه ضریب تراکم پذیری گاز طبیعی برای موسسه GERG، ارائه کردند. این معادله حالت برای محاسبه ضریب تراکم پذیری مخلوط گاز طبیعی در مصارف انتقال، کاربرد فراوانی داشت. Kunz و همکاران [۱۱]، در سال ۲۰۰۴ میلادی، معادله حالتی را در محدوده گسترده ای از دما و فشار برای گاز طبیعی و به سفارش موسسه GERG ارائه کرده اند. معادله آنها به شکل تابعی از انرژی هلمهولتز^{۱۳}، می باشد. این مدل، به صورت بسیار گسترده برای مبردها و گاز طبیعی، کاربرد دارد.

1-۳-۴ معادلات حالت دیگر

در سال ۱۹۹۹ میلادی، Neubauer و همکاران [۱۲]، با استفاده از شبیه سازی مونت کارلو و با استفاده از اثر جمع پذیری NPT ، رابطه ای برای محاسبه حجم مخصوص مولار و ضریب تراکم پذیری برای مخلوط های هیدروکربنی مانند گاز طبیعی، ارائه کردند. مقایسه مطالعات و روش پیشنهادی آنها با داده های آزمایشگاهی، نشان داد که دقت مدل آنها مانند دقت معادلات حالت درجه سه PR، می باشد.

Elsharkawy و همکاران [۱۳]، در سال ۲۰۰۱ میلادی، مدل جدیدی برای محاسبه ضریب تراکم پذیری گاز طبیعی ارائه کردند. مدل آنها بر اساس آنالیز ۱۲۰۰ جزء گازی، ارائه شده بود. در ادامه همین تحقیقات، Elsharkawy [۱۴]، در سال ۲۰۰۴ میلادی، مدل کارآمدی را برای محاسبه چگالی، ضریب تراکم پذیری و چگالی گاز طبیعی ارائه کرد. این مدل مدلی مبتنی بر داده های آزمایشگاهی بوده و با استفاده از ۲۴۰۰ داده آزمایشگاهی، ارائه شده است.

در سال ۲۰۰۴ میلادی، Wendland و همکاران [۱۵]، معادله حالتی را تحت عنوان BACKONE ، ارائه کردند. آنها با استفاده از این معادله حالت خواص ترمودینامیکی گاز طبیعی را با دقت بالایی محاسبه کرده و از آن برای بهبود بخشیدن شبیه سازی فرآیندهای مرتبط با گاز طبیعی استفاده نمودند. معادله حالت BACKONE، قادر به محاسبه خواص ترمودینامیکی مواد خالص و از همه مهمتر مخلوط گاز طبیعی می باشد. مقایسه محاسبات این معادله حالت با داده های آزمایشگاهی، نشان دهنده دقت بسیار بالای این معادله حالت می باشد. کاربرد این معادله حالت در زمینه

¹³⁻ Helmholtz energy

فرآیندهای مایع سازی گاز طبیعی^{۱۰} بسیار پر کاربرد می باشد. در سال ۲۰۰۶ میلادی Nasrifar و یک Bolland [۱۶]، خواص ترمودینامیکی گاز طبیعی را با استفاده از ۱۰ معادله حالت درجه سه و یک معادله حالت درجه سه دو پارامتری، محاسبه کردهاند. آنها خواص ترمودینامیکی متفاوتی از گاز طبیعی را با استفاده از این معادلات حالت محاسبه کردهاند. مقایسه محاسبات آنها با داده های آزمایشگاهی، نشان دهنده AAPD معادل ۱۴/۲ ٪، برای محاسبه ضریب تراکم پذیری و AAPD معادل ۲/۲ ٪، برای محاسبات سرعت صوت، می باشد. Zomm و Hall [۱۷]، در سال ۲۰۰۶ معادل ۲/۲ ٪، برای محاسبات سرعت صوت، می باشد. معادله حالت درجه سه، محاسبه کردهاند. میلادی، خواص ترمودینامیکی گاز طبیعی را با تلفیق دو معادله حالت درجه سه، محاسبه کردهاند. معادله حالت آنها تحت عنوان RK-PR ، برای محاسبه چگالی، ضریب فوگاسیته^{۱۵} و تعادلهای مایع – معادله حالت آنها تحت عنوان RK-PR ، برای محاسبه چگالی، ضریب فوگاسیته^{۱۵} و تعادلهای مایع – معادله حالت آنها تحت عنوان معادسه محاسبات آنها با استفاده از داده های آزمایشگاهی نشان دهنده بخار^{۹۲}، استفاده شده است. مقایسه محاسبات آنها با استفاده از داده های آزمایشگاهی نشان دهنده می باشد.

۱-۴- هدف پایان نامه

در این پایان نامه هدف، محاسبه خواص ترمودینامیکی گاز طبیعی با استفاده از معادله حالت AGA8 می باشد. معادله حالت AGA8 [۸۸] و [۱۹]، مدل بسار دقیقی برای محاسبه ضریب تراکم پذیری گاز طبیعی، ارائه می کند. این معادله حالت تلفیقی از یک معادله حالت ویریال، برای محاسبه چگالی در فشارهای پایین و یک تابع نمایی برای فشارهای بالا، می باشد. معادله حالت BAGA8، با در نظر گرفتن اثرات متقابلی اجزاء در مخلوط گاز طبیعی، و با استفاده از ضرایب برهمکنش اجزاء در داخل مخلوط گاز، مدل بسیار دقیقی برائه کرده است. در این تحقیق، با مبنا قرار اثرات متقابلی اجزاء در مخلوط گاز طبیعی، و با استفاده از ضرایب برهمکنش اجزاء در داخل مخلوط گاز، مدل بسیار دقیقی برای محاسبه ضریب تراکم پذیری ارائه کرده است. در این تحقیق، با مبنا قرار دادن معادله حالت BAGA8، خواص ترمودینامیکی گاز طبیعی محاسبه شده و نرم افزاری برای محاسبه خواص ترمودینامیکی از طبیعی محاسبه شده و نرم افزاری برای محاسبه فرآیندهای ترمودینامیکی ارائه شده است. همچنین، با استفاده از نرم افزار طراحی شده، بعضی از فرآیندهای ترمودینامیکی مربوط به گاز طبیعی، مورد تجزیه و تحلیل قرار گرفته و تاثیر ترکیب گاز طبیعی بر روی این فرار یرای محاسبه شده و ترم افزاری برای محاسبه فرآیندهای ترمودینامیکی گاز طبیعی محاسبه شده و ترم افزاری برای محاسبه فرآیندهای ترمودینامیکی ارائه شده است. همچنین، با استفاده از نرم افزار طراحی شده، بعضی از فرآیندهای ترمودینامیکی مربوط به گاز طبیعی، مورد تجزیه و تحلیل قرار گرفته و تاثیر ترکیب گاز

¹⁴ - Natural gas liquefaction

¹⁵- Fugacity coefficient

¹⁶- Vapor-Liquid Equilibrium (VLE)

فصل دوم

معادله حالت AGA8 و محاسبه خواص ترموديناميكي

AGA8 معادله حالت

۲-۱-۱- مقدمه

تحقیقات انجام گرفته زیر نظر آقای هوارد در سالهای ۱۹۲۸ تا ۱۹۲۹ منجر به تدوین روش استانداردی برای محاسبه ضریب تراکم پذیری گاز طبیعی تا فشار ۴ مگاپاسکال در دایره تحقیقات استاندارد گاز طبیعی آمریکا، گردید. اما تا سال ۱۹۵۴ که آقای پروفسر ساموئل.ر. در دانشگاه اوهایو گزارش از تحقیقات انجام گرفته اش بر روی ضریب تراکم پذیری گاز طبیعی بر مبنای مطالعات پیشین آقای هوارد را منتشر کرد، این تحقیقات انتشار پیدار نکرده بود [۱۸]. ضریب تراکم پذیری گاز طبیعی و همچنین معادله حالتی بر مبنای تحقیقات آقای زیمرمن ، بین سالهای ۱۹۵۶ تا ۱۹۶۶ در دانشگاه
اوهایو ، توسعه داده و منتشر گردید. نتایج این تحقیق توسط انجمن گاز آمریکا^{۱۷} (AGA) تحت عنوان "دستورالعملی برای محاسبه ضریب تراکم پذیری گاز طبیعی" در سال ۱۹۶۲ منتشر گردید. در ادامه در سال ۱۹۸۵ رساله ای جهت محاسبه دقیق ضریب تراکم پذیری گاز طبیعی با در نظر گرفتن اثرات دما و فشار و گستره اجزای تشکیل دهنده گاز، به سرپرستی پرفسور کنت.ای. در دانشگاه اوکلاهاما انتشار یافت. نتایج در سال ۱۹۸۴ برای محاسبات گاز طبیعی در خطوط انتقال کامل گشته و این گزارش پایه و اساسی برای گزارش کامل در سال ۱۹۸۵ گردید. تحقیقات اولیه بین سالهای ۱۹۸۱ تا مریب تراکم پذیری را محاسبه می نمود. اما در بین سالهای ۱۹۸۵ تا یه در نظر گرفتن تایج به صورت ضریب تراکم پذیری را محاسبه می نمود. اما در بین سالهای ۱۹۸۵ تا مارهای نزدیک به ۶ مگاپاسکال چشمگیری توسط موسسه GERG انتشار یافته شده بود ، برای فشارهای نزدیک به ۶ مگاپاسکال بین سالهای ۱۹۸۱ تا ۱۹۸۴ نیاز به بازبینی دارند. همچنین، اطلاعات مربوط به سرعت صوت که در بین سالهای ۱۹۸۱ تا ۱۹۸۴ توسط موسسه IGRG تا داده ند نتایج جدید نشان می داد که نتایج منتشر شده معادله حالت جدید برای محاسبه ضریب تراکم پذیری گاز طبیعی توسط موسسات برای رازهای غنی و در جریان های بحرانی از دقت کافی برخوردار نیستند. پس از بازبینی های انجام شده، معادله حالت جدید برای محاسبه ضریب تراکم پذیری گاز طبیعی توسط موسسات IGR و GERG رازه گردید. همچنین روش بازبینی شده با استفاده از داده های آزمایشگاهی و تحلیلی، توسط پرفسر ریچارد جاکوبسن تکمیل گردید[۸].

۲-۱-۲ شرح و بسط روش AGA8

با استفاده از این روش می توان، ضریب تراکم پذیری گاز طبیعی و چگالی گاز طبیعی را محاسبه نمود. با توجه به اینکه گاز طبیعی مخلوطی از چندین گاز می باشد، در این روش فرض بر آن است که گاز طبیعی مخلوطی از ۲۱ عنصر بوده که محدوده کسر مولی هر جزء در مخلوط گاز طبیعی مشخص می باشد. جدول (۲–۱) ، محدوده مجاز برای استفاده از این روش را نشان می دهد [۱۸].

¹⁷- American Gas Association

Quantity	Normal Range	Expanded Range
Relative Density	0.554 to 0.87	0.07 to 1.52
Gross Heating Value	477 to 115 Btu/scf	0 to 1800 Btu/scf
Gross Heating Value	18.7 to 45.1 Mj/m^3	0 to 66 Mj/m^3
Mole Percent Methane	45 to 100	0 to 100
Mole Percent Nitrogen	0 to 50	0 to 100
Mole Percent Carbon Dioxide	0 to 30	0 to 100
Mole Percent Ethane	0 to 10	0 to 100
Mole Percent Propane	0 to 4	0 to 12
Mole Percent Total Butanes	0 to 1	0 to 6
Mole Percent Total Pentanes	0 to 0.3	0 to 4
Mole Percent Hexanes Plus	0 to 0.2	0 to Dew Point
Mole Percent Helium	0 to 0.2	0 to 3
Mole Percent Hydrogen	0 to 10	0 to 100
Mole Percent Carbon Monoxide	0 to 3	0 to 3
Mole Percent Argon	0	0 to 1
Mole Percent Oxygen	0	0 to 21
Mole Percent Water	0 to 0.05	0 to Dew Point
Mole Percent Hydrogen Sulfide	0 to 0.02	0 to 100

جدول (۲-۱) - محدوده مجاز مورد استفاده برای روش AGA8

با توجه به داده های جدول (۲–۱)، از معادله حالت AGA8، تنها برای گاز طبیعی با درصد مشخص شده، می توان استفاده کرد. دو روش برای محاسبه ضریب تراکم پذیری گاز طبیعی با استفاده از استاندارد ارائه شده، وجود داشته که به شرح زیر می باشند [۱۸]:

روش اول که (Gross Characterization Method (G.C.M) نامیده می شود که با استفاده از ارزش حرارتی و چگالی نسبی گاز طبیعی، ضریب تراکم پذیری گاز طبیعی را محاسبه می کند. دقت جوابهای بدست آمده با استفاده از این روش در محدوده دما و فشارهای پایین قابل قبول می باشد. این مسئله باعث می شود که در دماهای بالا، استفاده از این روش خطایی را وارد محاسبات مربوط به ضریب تراکم پذیری نماید.

روش دوم که (Detail Characterization Method (D.C.M) نامیده می شود، در محدوده وسیعتری از دما، فشار و چگالی گاز طبیعی کاربرد دارد. با استفاده از این روش محاسبه ضریب تراکم پذیری در محدوده دمایی ۱۳۰- درجه سانتیگراد تا ۴۰۰ درجه سانتیگراد و فشارهای بالای ۲۸۰ مگاپاسکال، با دقت قابل قبولی امکان پذیر می باشد. با توجه به محدوده نسبتاً وسیع دما و فشار در این روش، محاسبات ضریب تراکم پذیری با استفاده از روش D.C.M انجام می گیرد. با استفاده از این روش، خطای محاسبات ضریب تراکم پذیری و چگالی گاز طبیعی، برای ترکیبات گازی که درصد مولی هگزان و هیدروکربن های سنگین بیش از ۱٪ را کاهش می دهد.

۲-۱-۳ عدم قطعیت

عدم قطعیت مربوط به محاسبات ضریب تراکم پذیری با استفاده از هر دو روش D.C.M و G.C.M به ترکیبات گاز طبیعی و محدوده دما و فشار محاسبات بستگی دارد. خطای محاسبات انجام شده با استفاده از این دو روش با جداول اطلاعاتی GRI و GERG مقایسه شده و نتایج قابل قبولی بدست آمده است.

D.C.M -1-1-1 عدم قطعیت روش

در حالت کلی عدم قطعیت این روش برای گاز طبیعی با درصد مولی ترکیبات گاز که در محدوده نرمال جدول (۲-۱) ، قرار می گیرند ، مطابق با شکل (۲-۱) می باشد. برای گاز طبیعی با درصد مولی در محدوده گسترده در جدول (۲-۱)، این روش خطای متوسطی داشته و برای مقادیر خارج از ناحیه ۱ شکل (۲-۱)، این خطا بزرگ می باشد. جداول اطلاعاتی GRI و GERG درستی این روش را برای ناحیه ۱ و بخشی از نواحی ۲، ۳ و ۴ تایید کرده است [۱۸].

شکل (۲-۱)- محدوده خطا برای محاسبه ضریب تراکم پذیری با استفاده از روش AGA8

G.C.M -۱-۲ عدم قطعیت روش

عدم قطعیت مورد نظر برای این روش برای محدوده نرمال ترکیب گاز طبیعی در جدول (۲–۱)، در داخل ناحیه ۱ از شکل (۲–۱)، قرار می گیرد. جداول اطلاعاتی GRI و GERG درستی این روش را برای ناحیه ۱ از شکل (۲–۱)، تایید کرده اند. برای خارج از این محدوده این معادلات کاربرد نداشته و نباید مورد استفاده قرار بگیرند [۱۸].

D.C.M محاسبه ضریب تراکم پذیری با استفاده از

برای محاسبه ضریب تراکم پذیری گاز طبیعی و چگالی گاز طبیعی ابتدا به شرح و بسط روابط ریاضی و معادلات مربوط به روش D.C.M ، پرداخته سپس روش حل معادلات توضیح داده می شود.

D.C.M -1-۴-1- روابط ریاضی و معادلات مربوط به روش

در این روش مدلی برای محاسبه ضریب تراکم پذیری گاز طبیعی ارائه می شود. ضریب تراکم پذیری Z ، به صورت زیر تعریف می شود [۱۸]:

$$PV = nZRT \tag{1-Y}$$

که در معادله (۲–۱) ، *P* فشار ، *V حج*م ، *n* تعداد مولها ، *T* دما و *R* ثابت جهانی گازها می باشند. می توان معادله (۲–۱) را به صورت زیر نیز نوشت:

$$P = Z\rho_m RT \tag{(Y-Y)}$$

که در آن ho_m دانسیته مولار بوده که به صورت زیر تعریف می شود:

$$\rho_m = \frac{n}{V} \tag{(-7)}$$

$$\rho = \rho_m \cdot M_w \tag{(f-r)}$$

که در آن ho دانسیته جرمی و M_w وزن مولکولی بوده که به صورت زیر محاسبه می شود:

$$M_w = \sum_{i=1}^N x_i \ M_{w,i} \tag{\Delta-T}$$

که در رابطه (۲–۵)، x_i کسر مولی جزء i ام از مخلوط گاز، $M_{w,i}$ وزن مولکولی جزء i ام و N تعداد اجزای تشکیل دهنده گاز می باشند.

معادله مربوط به ضریب تراکم پذیری Z در روش D.C.M به صورت زیر ارائه شده است [۱۸]:

$$Z = 1 + B\rho_m - \rho_r \sum_{n=13}^{18} C_n^* + \sum_{n=13}^{58} C_n^* D_n^*$$
(9-7)

 $D_n^* \in C_n^*$ در معادله (۲-۶)، Z ضریب تراکم پذیری، B ضریب دوم ویریال، ρ_r دانسیته کاهیده، $C_n^* \in C_n^*$ و σ_r

دانسیته کاهیده به صورت زیر با دانسیته مولار ارتباط پیدا می کند [۱۸]: ho_r

$$\rho_r = K^3 \rho_m \tag{Y-Y}$$

جائیکه K پارامتر سایز مخلوط بوده و با استفاده از رابطه (۲–۸) تعریف شده و از مشخصه های مربوط به ساختار شیمیایی اجزای مخلوط می باشد [۱۸].

$$K^{5} = \left(\sum_{i=1}^{N} x_{i} K_{i}^{\frac{5}{2}}\right)^{2} + 2 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_{i} x_{j} \left(K_{ij}^{5} - 1\right) \left(K_{i} K_{j}\right)^{\frac{5}{2}}$$
(A-Y)

که در رابطه (۲–۸) ، *x_i کسر مولی جزء i در مخلوط،K_i پارامتر سایز مربوط به جزء i و K_{ij} پارامتر سایز برهمکنش اجزای i و <i>j* می باشند که مقادیر آنها وابسته به ترکیب گاز و اجزای مختلف گازهای تشکیل دهنده گاز طبیعی در مخلوط بوده و در مرجع [۱۸]، آورده شده اند.

در معادله (۲–۶) ، B ضریب دوم ویریال بوده که به صورت زیر تعریف می شود[۱۸]:

$$B = \sum_{n=1}^{18} a_n T^{-u_n} \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j B^*_{ijk} E^{u_n}_{ij} (K_i K_j)^{\frac{3}{2}}$$
(9-Y)

$$B_{ijk}^{*} = (G_{ij} + 1 - g_n)^{g_n} (Q_i Q_j + 1 - q_n)^{q_n} \times (F_i^{1/2} F_j^{1/2} + f_n)^{f_n} (S_i S_j + 1 - s_n)^{s_n} (W_i W_j + 1 - w_n)^{w_n}$$
(1.-7)

پارامترهای دودوئی E_{ij} و G_{ij} به ترتیب پارامترهای انرژی برهمکنشی ضریب دوم ویریال و پارامتر دودوئی موقعیت یا جهت ذرات نامیده می شوند که توسط روابط (۲–۱۱) و (۲–۱۲) تعریف می شوند.

$$E_{ij} = E_{ij}^* (E_i E_j)^{1/2} \tag{11-T}$$

$$G_{ij} = \frac{G_{ij}^* (G_i + G_j)}{2} \tag{11-1}$$

در معادلات (۲–۹) تا (۲–۱۲) ، T دما ، N تعداد اجزای ترکیب گاز طبیعی، x_i کسر مولی جزء x_i معادلات در معادلات یا ضرایب مشخصه دودوئی مربوط به اجزای w_n ، u_n s_n q_n , g_n , f_n [۱۸] w_n ، u_n s_n q_n , g_n , f_n [۱۸] تشکیل دهنده گاز طبیعی در مخلوط بوده که بسته به حالتهای مختلف مقادیر آنها در مرجع [N] آورده شده است . گاز طبیعی در مخلوط بوده که بسته به حالتهای مختلف مقادیر آنها در مرجع [N] آورده شده است . گاز طبیعی در مخلوط بوده که بسته به حالتهای مختلف مقادیر آنها در مرجع [N] آورده شده است . گاز طبیعی در مخلوط بوده که بسته به مالتهای مختلف مقادیر آنها در مرجع [N] آورده شده است . گاز طبیعی در مخلوط بوده که بسته به مالتهای مختلف مقادیر آنها در مرجع [N] آورده شده است . گاز طبیعی در مخلوط بوده که بسته به مالتهای مشخصه متناظر بوده که در حالتهای مختلف مقادیر آنها در مرجع [N] آورده شده است . گاز آبها در مرجع [N] و تراه آورده شده است . گاز آبها در مرجع [N] و تراه آورده شده است . گاز آبها در مرجع [N] و آر] آورده شده است . گاز آبها در مرجع آبها گاز مقادیر آنها ثابت می باشند. [N] و i_i آورده شده است . گاز آبها ثابت می باشند. i_i آورده آبها برهمکنش ذرات نسبت به یکدیگر در مخلوط گاز، مقادیر آنها ثابت می باشند. j و j آورده زمان دودویی برخورد اجزای i و j هستند که برای یک موقعیت یا یک جهت خاص دو جزء j و j در مخلوط گاز می باشند. مقادیر این دو پارامتر برای حالتهای مختلف ترکیبات مخلوط نسبت به یکدیگر در مرجع [N] آورده شده است.

در معادله (۲–۶) ضریب
$$C_n^*$$
 تابعی از ترکیب اجزای تشکیل دهنده گاز طبیعی و دمای گاز بوده که توسط رابطه (۲–۱۳) تعریف می شود [۱۸]:

$$C_n^* = a_n (G + 1 - g_n)^{g_n} (Q^2 + 1 - q_n)^{q_n} (F + 1 - f_n)^{f_n} U^{u_n} T^{-u_n}$$
(17-7)

در معادله (۲–۱۳) ، F ، Q ، G و U به ترتیب، پارامترهای موقعیت، کوادراتیو، دما بالای مخلوط و انرژی بوده که به صورت زیر تعریف می شوند [۱۸]:

$$U^{5} = \left(\sum_{i=1}^{N} x_{i} E_{i}^{\frac{5}{2}}\right)^{2} + 2 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_{i} x_{j} \left(U_{ij}^{5} - 1\right) (E_{i} E_{j})^{\frac{5}{2}}$$
(14-7)

$$G = \sum_{i=1}^{N} x_i G_i + 2 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_i x_j \left(G_{ij}^* - 1 \right) \left(G_i + G_j \right)$$
(10-7)

$$Q = \sum_{i=1}^{N} x_i Q_i \tag{19-T}$$

$$F = \sum_{i=1}^{N} x_i^2 F_i \tag{1Y-T}$$

در معادله (۲–۱۴)،
$$U_{ij}$$
 پارامتر برهمکنش دودویی برای انرژی مخلوط می باشد.
در معادله (۲–۴)، D_n^* به صورت زیر تعریف می شود [۱۸]:

$$D_n^* = (b_n - c_n k_n \rho_r^{k_n}) \rho_r^{b_n} \exp(-c_n \rho_r^{k_n})$$
(1A-Y)

ضرایب معادله (۲–۱۸) در مرجع [۱۸] آورده شده اند.

D.C.M -1-4-1- روش حل معادلات مربوط به روش

با توجه به رابطه (۲-۶) برای ضریب تراکم پذیری و با جایگذاری این رابطه در رابطه (۲-۲)، و با توجه به رابطه دانسیته مولار و دانسیته کاهیده یعنی رابطه (۲-۷) و جایگذاری این رابطه در رابطه (۲-۶) ، رابطه زیر بدست می آید:

$$P = \left(1 + B\rho_m - K^3\rho_m \sum_{n=13}^{18} C_n^* + \sum_{n=13}^{58} C_n^* D_n^*\right)\rho_m RT$$
(19-7)

با توجه به مشخص بودن دما و فشار مطلق گاز طبیعی و مشخص بودن درصد مولی اجزای تشکیل دهنده گاز طبیعی در مخلوط گاز، تنها مجهول در رابطه (۲–۱۹) دانسیته مولار یا ρ_m می باشد. رابطه (۲–۱۹) را می توان به صورت زیر نیز نوشت :

$$P - \left(1 + B\rho_m - K^3\rho_m \sum_{n=13}^{18} C_n^* + \sum_{n=13}^{58} C_n^* D_n^*\right)\rho_m RT = 0$$
 (Y - Y)

با معلوم بودن دما و فشار مطلق گاز طبیعی رابطه (۲-۲۰) یک معادله غیر خطی بر حسب دانسیته مولار بوده که با استفاده از روش نیوتن – رفسون^{۱۸} می توان آن را با یک روش تکرار ساده حل کرده و

¹⁸-Newton–Raphson Method

مقدار دانسیته مولار
$$\rho_m$$
 را بدست آورد [۲۰]. پس از محاسبه دانسیته مولار با استفاده از رابطه (۲۰-۲) ، مقدار ضریب تراکم پذیری گاز طبیعی به صورت زیر محاسبه می شود:

$$Z = \frac{P}{\rho_m RT} \tag{(1-1)}$$

۲-۲- بدست آوردن خواص ترموديناميكي گاز طبيعي

۲-۲-۱ مقدمه

خواص ترمودینامیکی، خواصی هستند با استفاده از آنها می توان حالت یک ماده را در یک سیستم ترمودینامیکی مشخص کرد. اگر ماده مورد نظر خالص باشد با داشتن دو خاصیت ترمودینامیکی مستقل از هم می توان حالت ماده مورد نظر را مشخص کرده و بقیه خواص ترمودینامیکی را محاسبه کرد. اگر ماده مورد نظر ترکیبی از چندین ماده خالص باشد ، آنگاه برای مشخص کردن حالت مخلوط موردنظر علاوه بر داشتن دو خاصیت ترمودینامیکی مستقل ، به درصد مولی یا کسر مولی اجزاء در مخلوط نیز ، نیاز خواهیم داشت. گاز طبیعی یکی از مخلوط های مهم بوده که کاربردهای فراوان صنعتی و خانگی دارد. از آنجائیکه گاز طبیعی مخلوطی از چندین گاز مختلف می باشد ، خواص ترمودینامیکی گاز طبیعی نیز وابسته به خواص ترمودینامیکی اجزای گاز طبیعی می باشد . در این بخش با استفاده از معادله حالت AGA8 و روابط ترمودینامیکی اجزای گاز طبیعی می باشد. در این دهنده یک مخلوط گازی وجود دارد ، خواص ترمودینامیکی گاز طبیعی را محاسبه می کنیم. خواص ترمودینامیکی بدست آمده در این بخش عبارتند از : ظرفیت گرمایی مولار^{۲۰} در حجم ثابت و فشار ثابت، توان آیزنتروپیک^{۲۰}, ضریب ژول – تامسون^{۲۰}, آنتالپی^{۳۲}, انرژی داخلی^{۴۳}, آنتروپی^{۲۵} و ارزش های حرارتی^{۹۲}.

- ¹⁹- Thermodynamic Relationships
- ²⁰- Molar Heat Capacity
- ²¹- Isentropic Exponent
- ²²- Joule Thomson Coefficient
- ²³ -Enthalpy
- ²⁴-Internal energy
- ²⁵- Entropy
- ²⁶ Heating value

در حالت کلی اگر هر خاصیت ترمودینامیکی، تابعی از دو پارامتر باشد، برای هر خاصیت ترمودینامیکی خواهیم داشت [۲۱]:

$$z = z(x, y) \Longrightarrow dz = \left(\frac{\partial z}{\partial x}\right)_y dx + \left(\frac{\partial z}{\partial y}\right)_x dy$$
 (YY-Y)

در رابطه (۲–۲۲)، *z* معرف یک خاصیت ترمودینامیکی می باشد. در حقیقت با توجه به رابطه (۲–۲۲)، فرض بر این است که هر خاصیت ترمودینامیکی، تابع دیفرانسیل کامل می باشد. با تعریف $M = \left(\frac{\partial z}{\partial x}\right)_{y}$ و $M = \left(\frac{\partial z}{\partial y}\right)_{x}$ رابطه (۲–۲۲) را می توان به صورت زیر نوشت:

$$dz = Mdx + Ndy \tag{(YT-Y)}$$

با توجه به قانون پیوستگی که بین مشتقات جزئی برقرار است، خواهیم داشت:

$$\left(\frac{\partial M}{\partial y}\right)_x = \left(\frac{\partial N}{\partial x}\right)_y \tag{(74-7)}$$

روابط (۲-۲۲) و (۲–۲۴)، در محاسبه خواص ترمودینامیکی بسیار مورد استفاده قرار می گیرند. روابط مهم دیگری که در محاسبه خواص ترمودینامیکی، بسیار کاربرد دارند، روابطی موسوم به روابط ماکسول ^{۲۷} می باشند. روابط ماکسول با توجه به رابطه ای که بین خواص مختلف ترمودینامیکی وجود دارد، با استفاده از روابط (۲–۲۸) و (۲–۲۴)، محاسبه شده اند. روابط (۲–۲۵) تا (۲–۲۸)، روابط ماکسول را نشان می دهند[۲۱].

$$\left(\frac{\partial T}{\partial v}\right)_{s} = -\left(\frac{\partial P}{\partial s}\right)_{v} \tag{Y} \Delta - Y$$

$$\left(\frac{\partial P}{\partial T}\right)_{v} = \left(\frac{\partial s}{\partial v}\right)_{T} \tag{(79-7)}$$

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial v}{\partial S}\right)_{P} \tag{(Y-Y)}$$

$$\left(\frac{\partial v}{\partial T}\right)_{s} = -\left(\frac{\partial s}{\partial P}\right)_{T} \tag{7A-T}$$

در روابط (۲–۲۵) تا (۲–۲۸)، P فشار، T دما، v حجم مخصوص و s آنتروپی، می باشند.

²⁷- Maxwell Relationships

۲-۲-۲ محاسبه خواص ترموديناميكي

$$\begin{aligned} \mathbf{T} - \mathbf{T} - \mathbf{T} - \mathbf{I} - \mathbf{a}$$
 معالی مولار در حجم ثابت با استفاده از رابطه (۲ – ۲) تعریف می شود [۲۱]:

$$\begin{aligned} \dot{\mathbf{d}}_{(d; \mathbf{r})} & \mathbf{c}_{m,v} & \left(\frac{\partial u_m}{\partial T}\right)_{v_m} & \mathbf{c}_{m,v} & \mathbf{c}_{(r+1)} & \mathbf{r}_{v_m} & \mathbf{c}_{(r+1)} & \mathbf{c}_{m,v} & \mathbf{c}_{m,v} & \mathbf{c}_{(r+1)} & \mathbf{c}_{m,v} & \mathbf{c}_{m,v} & \mathbf{c}_{m,v} & \mathbf{c}_{(r+1)} & \mathbf{c}_{m,v} & \mathbf{c}_{m$$

²⁸- Molar Internal Energy
²⁹- Molar Entropy

با جایگذاری رابطه (۲-۳۳) در رابطه (۲-۳۲) ، خواهیم داشت:

$$\left(\frac{\partial C_{m,v}}{\partial v_m}\right)_T = T \left(\frac{\partial^2 P}{\partial T^2}\right)_{v_m} \tag{TF-T}$$

پس از انتگرال گیری از رابطه (۲-۳۴)، رابطه (۲-۳۵) برای محاسبه ظرفیت گرمایی مولار در حجم ثابت بدست می آید:

$$C_{m,v} = C_{m,vI} + T \int_{v_m I \to \infty}^{v_m} \left(\frac{\partial^2 P}{\partial T^2} \right)_{v_m} dv_m \tag{action}$$

جائیکه در رابطه (۲–۳۵)، $v_m U$ ظرفیت گرمایی مولار ایده آل در حجم ثابت، $v_m I$ حجم مخصوص مولار در حالت گاز ایده آل و v_m حجم مخصوص مولار در حالت گاز واقعی، می باشند. گازهای حقیقی رفتاری شبیه رفتار گازهای ایده آل در فشارهای نزدیک صفر یا هنگامی که $\infty - I_m$ می کند، خواهند داشت. با جایگذاری $P = \rho_m ZRT$ و $m = 1/\rho_m$ در رابطه (۲–۳۵)، داریم [۲۲]:

$$C_{m,v} = C_{m,vI} - RT \int_{\rho_m I \to 0}^{\rho_m} \frac{1}{(T = const)} \frac{1}{\rho_m} \left[T \left(\frac{\partial^2 Z}{\partial T^2} \right)_{\rho_m} + 2 \left(\frac{\partial Z}{\partial T} \right)_{\rho_m} \right] d\rho_m \qquad (\Upsilon \mathcal{F} - \Upsilon)$$

در رابطه (۲–۳۶) ، Z ضریب تراکم پذیری، ρ_m دانسیته مولار در حالت گاز واقعی، $\rho_m I$ دانسیته مولار در حالت گاز ایده آل، R ثابت جهانی گازها و T دما می باشند. برای گازهای ایده آل رابطه (۲–۳۷) بین ظرفیت گرمایی مولار در فشار ثابت و ظرفیت گرمایی مولار در حجم ثابت وجود دارد :

$$C_{m,\nu I} = C_{m,\rho I} - R \tag{(\Upsilon V-\Upsilon)}$$

جائیکه در رابطه (۲–۳۷) ، *C_{m,PI}* ظرفیت گرمایی مولار در فشار ثابت برای گاز ایده آل می باشد. با جایگذاری رابطه (۲–۳۷) در رابطه (۲–۳۶) ، خواهیم داشت [۲۲]:

$$C_{m,\nu} = C_{m,pI} - R - RT \int_{\rho_m I \to 0}^{\rho_m} \frac{1}{(T = const)} \frac{1}{\rho_m} \left[T \left(\frac{\partial^2 Z}{\partial T^2} \right)_{\rho_m} + 2 \left(\frac{\partial Z}{\partial T} \right)_{\rho_m} \right] d\rho_m \quad (\Upsilon \wedge -\Upsilon)$$

برای بدست اوردن پارامترهای موجود در رابطه (۲–۳۸) به صورت زیر عمل کرده ایم:

ظرفیت گرمایی مولار در فشار ثابت برای گاز ایده آل در رابطه (۲–۳۸) ، با استفاده از رابطه (۲–۳۹) محاسبه می شود

$$C_{m,pI} = \sum_{j=1}^{N} x_j C_{m,pi}^j \tag{49-7}$$

در معادله (۲–۳۹) ، x_j کسر مولی جزء j در مخلوط گاز و $C_{m,Pi}^{j}$ ظرفیت حرارتی مولار فشار ثابت در حالت ایده آل برای همان جزء می باشند. ظرفیت حرارتی مولار فشار ثابت برای اجزای مخلوط گاز ایده آل به صورت زیر بیان شده است [۲۳]:

$$C_{m,pi}^{j} = a_{j} + b_{j} \left(\frac{\frac{c_{j}}{T}}{\sinh\left(\frac{c_{j}}{T}\right)}\right)^{2} + d_{j} \left(\frac{\frac{e_{j}}{T}}{\cosh\left(\frac{e_{j}}{T}\right)}\right)^{2}$$
($\mathfrak{f} \cdot -\mathfrak{f}$)

در رابطه (۲-۴۰) ،
$$C^j_{m,pi}$$
 ظرفیت حرارتی مولار فشار ثابت در حالت ایده آل برای جزء j در مخلوط
گاز، ضرایب a_j ، c_j ، b_j ، a_j و e_j ثابت های مربوط به همان جزء و T دما می باشند.

با توجه به مشخص بودن معادله حالت AGA8 برای محاسبه ضریب تراکم پذیری که در فصل بخش (۲-۱)، مفصلاً شرح داده شد، مشتق اول ضریب تراکم پذیری نسبت به دما که در رابطه (۲–۳۸) وجود دارد، به صورت زیر محاسبه می شود [۲۲]:

$$\left(\frac{\partial Z}{\partial T}\right)_{\rho_m} = \left(B' - K^3 \sum_{n=13}^{18} C_n^{*'}\right) \rho_m + \sum_{n=13}^{58} C_n^{*'} D_n^*$$
(*1-7)

در رابطه (۲–۴۱) ، B' و C_n^* به ترتیب مشتق اول پارامترهای B و C_n^* (روابط (۲–۹) و (۲–۱۳)) نسبت به دما می باشند [۲۲]:

$$B' = \sum_{n=1}^{18} -a_n u_n T^{-u_n-1} \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j B^*_{ijk} E^{u_n}_{ij} (K_i K_j)^{\frac{3}{2}}$$
(*Y-Y)

$$C_n^{*'} = -u_n a_n (G+1-g_n)^{g_n} (Q^2+1-q_n)^{q_n} (F+1-f_n)^{f_n} U^{u_n} T^{-u_n-1}$$
(FT-T)

$$C_n^{*\prime} = -u_n \frac{C_n^*}{T} \tag{(FF-T)}$$

مشتق دوم ضریب تراکم پذیری نسبت به دما که در رابطه (۲-۳۸) وجود دارد، به صورت زیر محاسبه می شود [۲۲]:

$$\left(\frac{\partial^2 Z}{\partial T^2}\right)_{\rho_m} = \left(B^{\prime\prime} - K^3 \sum_{n=13}^{18} C_n^{*\prime\prime}\right) \rho_m + \sum_{n=13}^{58} C_n^{*\prime\prime} D_n^* \tag{$\Delta-$``}$$

در رابطه (۲–۴۵)، "B و C_n^{*} به ترتیب مشتق دوم پارامترهای B و C_n^{*} (روابط (۲–۹) و (۲–۱۳)) نسبت به دما می باشند [۲۲]:

$$B'' = \sum_{n=1}^{18} a_n u_n (u_n + 1) T^{-u_n - 2} \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j B_{ijk}^* E_{ij}^{u_n} (K_i K_j)^{\frac{3}{2}}$$
(*9-7)

$$C_n^{*''} = u_n(u_n+1)a_n(G+1-g_n)^{g_n}(Q^2+1) -q_n)^{q_n}(F+1-f_n)^{f_n}U^{u_n}T^{-u_n-2}$$
(YV-Y)

با توجه به تعریف
$$\mathcal{C}_n^*$$
 در رابطه (۲–۱۳)، رابطه (۲–۴۷) را می توان به صورت زیر خلاصه کرد:

$$C_n^{*\prime\prime} = -(u_n+1) \frac{C_n^{*\prime}}{T} \tag{$\hbar-$$}$$

$$C_{m,v} = C_{m,pI} - R - RT[\rho_m(2Z_0 + TZ_1) + (2Z_2 + TZ_3)]$$
(*A-Y)

جائیکه در رابطه (۲-۴۸)، داریم [۲۲]:

$$Z_0 = B' - K^3 \sum_{n=13}^{18} C_n^{*'}$$
 (f9-T)

$$Z_1 = B'' - K^3 \sum_{n=13}^{18} C_n^{*''}$$
 ($\Delta \cdot - \Upsilon$)

$$Z_{2} = \sum_{n=13}^{58} C_{n}^{*'} \rho_{r}^{b_{n}} exp(-c_{n}\rho_{r}^{k_{n}})$$
 (۵1-۲)

$$Z_{3} = \sum_{n=13}^{58} C_{n}^{*''} \rho_{r}^{b_{n}} exp(-c_{n} \rho_{r}^{k_{n}})$$
 ($\Delta \Upsilon - \Upsilon$)

با مشخص بودن دما، فشار و کسر مولی اجزای تشکیل دهنده گاز طبیعی، با استفاده از رابطه (۲-۴۸) می توان ظرفیت گرمایی مولار در حجم ثابت را محاسبه نمود .

۲-۲-۲-۲ محاسبه ظرفیت گرمایی مولار در فشار ثابت

ظرفیت گرمایی مولار در فشار ثابت با استفاده از رابطه (۲–۵۳) تعریف می شود [۲۱]:

$$C_{m,p} = \left(\frac{\partial h_m}{\partial T}\right)_P \tag{\Delta T-T}$$

در رابطه (۲–۵۳)، $C_{m,p}$ ظرفیت گرمایی مولار در فشار ثابت، h_m آنتالپی مولار P فشار و T دما می باشند.

$$C_{m,p} = \left(\frac{\partial h_m}{\partial s_m}\right)_p \left(\frac{\partial s_m}{\partial T}\right)_p \tag{\Delta F-T}$$

با استفاده از یکی از روابط ترمودینامیکی، می دانیم که
$$T = \left(\frac{\partial h_m}{\partial s_m}
ight)_P = T$$
، بنابراین رابطه (۲–۵۴) به
صورت زیر خلاصه می شود[۲۱]:

$$C_{m,p} = T \left(\frac{\partial s_m}{\partial T}\right)_P \tag{(\Delta\Delta-\Upsilon)}$$

$$s_m = s_m(T, v_m) \tag{$\Delta P-T$}$$

همانطور که گفته شد، آنتروپی مولار یک تابع دیفرانسیل کامل باشد آنگاه خواهیم داشت:

$$ds_m = \left(\frac{\partial s_m}{\partial T}\right)_{v_m} dT + \left(\frac{\partial s_m}{\partial v_m}\right)_T dv_m \tag{\Delta Y-Y}$$

$$ds_m = \frac{C_{m,\nu}}{T} dT + \left(\frac{\partial P}{\partial T}\right)_{\nu_m} d\nu_m \tag{(\Delta A-Y)}$$

³⁰- Molar Enthalpy

$$s_m = s_m(T, P) \tag{dq-r}$$

با توجه به اینکه، آنتروپی مولار یک تابع دیفرانسیل کامل باشد، آنگاه خواهیم داشت:

$$ds_m = \left(\frac{\partial s_m}{\partial T}\right)_P dT + \left(\frac{\partial s_m}{\partial P}\right)_T dP \tag{(7.-7)}$$

با استفاده از یکی از روابط ماکسول، رابطه (۲-۲۸) برپایه مولار، داریم [۲۱]:

$$\left(\frac{\partial s_m}{\partial P}\right)_T = -\left(\frac{\partial v_m}{\partial T}\right)_P \tag{(71-7)}$$

حال با توجه به رابطه (۲-۵۵) و رابطه (۲-۶۱) ، رابطه (۲-۶۱) به صورت زیر تبدیل می شود:

$$ds_m = \frac{C_{m,p}}{T} dT - \left(\frac{\partial v_m}{\partial T}\right)_P dP \tag{FY-T}$$

با کم کردن رابطه (۲-۶۲) از رابطه (۲-۵۸)، رابطه (۲-۶۳) برای محاسبه ظرفیت گرمایی مولار در فشار ثابت بدست می آید.

$$C_{m,p} = C_{m,v} + T \left(\frac{\partial v_m}{\partial T}\right)_P \left(\frac{\partial P}{\partial T}\right)_{v_m}$$
(97-7)

برای محاسبه ظرفیت گرمایی مولار در فشار ثابت با توجه به رابطه (۲-۶۳)، نیاز به محاسبه ظرفیت گرمایی مولار در حجم ثابت می باشد که با استفاده از رابطه (۲-۴۸) محاسبه می شود. مشتقات جزئی موجود در رابطه (۲-۶۳) ، به صورت زیر محاسبه می شوند [۲۲]:

$$\left(\frac{\partial P}{\partial T}\right)_{\nu_m} = R\rho_m \left[Z + T\left(\frac{\partial Z}{\partial T}\right)_{\nu_m}\right] \tag{$9^{-}T$}$$

با استفاده از رابطه (۲-۴۱)، رابطه (۲-۶۴) را می توان به فرم ساده زیر تبدیل کرد:

$$\left(\frac{\partial P}{\partial T}\right)_{\nu_m} = R\rho_m [Z + T(\rho_m Z_0 + Z_4)] \tag{6.17}$$

جائیکه در رابطه (۲–۶۵)، Z_0 از رابطه (۲–۴۹) و Z_4 از رابطه (۲–۶۶) محاسبه می شوند:

$$Z_4 = \sum_{n=13}^{58} C_n^{*'} D_n^*$$
 (99-7)

عبارت مشتق جزئی دوم در رابطه (۲-۶۳) ، به صورت زیر محاسبه می شود [۲۲] :

$$\left(\frac{\partial v_m}{\partial T}\right)_P = \frac{R}{P} \left[Z + T \left(\frac{\partial Z}{\partial T}\right)_P \right] \tag{$Y-Y$}$$

جائیکه در رابطه (۲-۶۷) داریم [۲۲]:

$$\begin{pmatrix} \frac{\partial Z}{\partial T} \end{pmatrix}_{p} = \rho_{m}' \left(B - K^{3} \sum_{n=13}^{18} C_{n}^{*} + \sum_{n=13}^{58} C_{n}^{*} D_{1n} \right) + \left(B' - K^{3} \sum_{n=13}^{18} C_{n}^{*'} \right) \rho_{m}$$

$$+ \sum_{n=13}^{58} C_{n}^{*'} D_{n}^{*}$$
(FA-Y)

در رابطه (۲–۶۸)، ρ_m' مشتق ρ_m نسبت به دما و D_{1n} مشتق D_n^* نسبت به دما بوده که به صورت زیر تعریف می شوند [۲۲]:

$$\rho_{m}' = -\frac{P}{R} \times \frac{Z + T\left(\frac{\partial Z}{\partial T}\right)_{P}}{(TZ)^{2}}$$
(F9-T)

$$D_{1n} = K^3 [b_n^2 - c_n k_n (2b_n + k_n - c_n k_n \rho_r^{k_n}) \rho_r^{k_n}] \rho_r^{b_n - 1} e^{-c_n \rho_r^{k_n}}$$
(Y - T)

حال با جایگذاری روابط (۲–۶۹)، (۲–۷۰) و رابطه
$$\rho_m = \frac{P}{ZRT}$$
 در رابطه (۲–۶۸)، خواهیم داشت:

$$\left(\frac{\partial Z}{\partial T}\right)_{P} = \frac{R(TZ)^{2} \sum_{n=13}^{58} C_{n}^{*'} D_{n}^{*} + PZ(TZ_{0} - Z_{5})}{R(TZ)^{2} + PTZ_{5}}$$
(Y1-Y)

جائیکه در رابطه (۲–۷۱) Z_0 از رابطه (۲–۴۹) و D_n^* از رابطه (۲–۱۸) ، محاسبه و برای Z_5 داریم:

$$Z_5 = B - K^3 \sum_{n=13}^{18} C_n^* + \sum_{n=13}^{58} C_n^* D_{1n}$$
(YY-Y)

۲-۲-۲-۳- محاسبه توان آیزنتروپیک

هنگامی که گاز طبیعی فرآیندی را به صورت آدیاباتیک و برگشت پذیر یا به عبارتی آیزنتروپیک طی می کند، رابطه بین حجم مخصوص مولار و فشار به صورت زیر تعریف می شود:

$$Pv_m^k = cte$$

در رابطه (۲–۷۳) ،
$$k$$
 توان آیزنتروپیک، P فشار و v_m حجم مخصوص مولار می باشند.
رابطه (۲–۷۳) را می توان به صورت زیر نیز بازنویسی کرد [۲۴]:

$$\frac{P_2}{P_1} = \left(\frac{v_{m1}}{v_{m2}}\right)^k = \left(\frac{\rho_{m2}}{\rho_{m1}}\right)^k \tag{YF-T}$$

در رابطه (۲–۷۴) ، $P_2 \, e_{m2} \, e_{m2} \, e_{m2}$ به ترتیب فشار، حجم مخصوص مولار و دانسیته مولار برای جریان پایین دست و v_{m1} ، P_1 و v_{m1} ، ρ_{m1} به ترتیب فشار، حجم مخصوص مولار و دانسیته مولار برای جریان پایین دست می باشند. برای محاسبه توان آیزنتروپیک از رابطه (۲–۷۵) استفاده خواهیم کرد [۲۴] :

$$k = -\frac{C_{m,p}}{C_{m,v}} \left(\frac{\partial P}{\partial v_m}\right)_T \left(\frac{v_m}{P}\right) = -\frac{C_{m,p}}{C_{m,v}P\rho_m} \left(\frac{\partial P}{\partial v_m}\right)_T \tag{V\Delta-T}$$

جائیکه در رابطه (۲–۷۵) ، $C_{m,p}$ از رابطه (۲–۶۳) ، $C_{m,v}$ از رابطه (۲–۴۸)، محاسبه می شوند. همچنین در رابطه (۲–۷۵) داریم [۲۴] :

$$\left(\frac{\partial P}{\partial v_m}\right)_T = \left(\frac{\partial P}{\partial \rho_m}\right)_T \left(\frac{\partial \rho_m}{\partial v_m}\right)_T = -RT\rho_m^2 \left[Z + \rho_m \left(\frac{\partial Z}{\partial \rho_m}\right)_T\right]$$
(V9-Y)

جائیکه در رابطه (۲-۷۶) خواهیم داشت [۲۴] :

$$\left(\frac{\partial Z}{\partial \rho_m}\right)_T = Z_5 = B - K^3 \sum_{n=13}^{18} C_n^* + \sum_{n=13}^{58} C_n^* D_{1n}$$
(YY-Y)

با جایگذاری رابطه (۲-۷۷) در رابطه (۲-۷۶)، خواهیم داشت [۲۴] :

$$\left(\frac{\partial P}{\partial v_m}\right)_T = -RT\rho_m^2 \left[Z + \rho_m Z_5\right] \tag{YA-Y}$$

حال با جایگذاری رابطه (۲-۷۸) در رابطه (۲-۴۷)، رابطه (۲-۷۹) برای محاسبه توان آیزنتروپیک بدست می آید:

$$k = \frac{C_{m,p}}{C_{m,v}P\rho_m} \times (RT\rho_m^2 \ [Z + \rho_m \ Z_5]) \tag{Y9-T}$$

۲-۲-۲-۴ محاسبه ضریب ژول- تامسون

هنگامی که سیال فرآیند افت فشاری را طی کرده و فشار آن کاهش پیدا می کند ، ممکن است دمای سیال در حین فرآیند افت فشار کاهش ، افزایش و یا تغییری نکند . معیار اینکه دما در حین یک فرآیند افت فشار چگونه تغییر می کند ضریب ژول – تامسون می باشد. بر طبق تعریف ، ضریب ژول – تامسون عبارت است از : افت دما در حین فرآیند آنتالپی ثابت افت فشار. از نظر ریاضی ضریب ژول – تامسون به صورت زیر تعریف می شود [۲۵]:

$$\mu_{JT} = \left(\frac{\partial T}{\partial P}\right)_{h_m}$$
 (۸۰-۲)
در رابطه (۲-۸۰)، μ_{JT} ضریب ژول – تامسون، *T* دما، *P* فشار و h_m آنتالپی مولار می باشند.
فرآیند محاسبه ضریب ژول – تامسون با استفاده از معادله حالت AGA8 ، به صورت زیر می باشد:
اگر فرض کنیم آنتالپی مولار تابعی از دما و فشار بوده ، خواهیم داشت :

$$h_m = h_m(T, P) \tag{A1-T}$$

اگر آنتالپی مولار یک تابع از نوع دیفرانسیل کامل باشد آنگاه خواهیم داشت :

$$dh_m = \left(\frac{\partial h_m}{\partial T}\right)_P dT + \left(\frac{\partial h_m}{\partial P}\right)_T dP \tag{AT-T}$$

در رابطه (۲–۸۲) ، مشتق جزئی اول در سمت راست تساوی، ظرفیت گرمایی مولار در فشار ثابت بوده که قبلاً توسط رابطه (۲–۶۲) توضیح داده شده است. مشتق جزئی دوم در سمت راست تساوی رابطه (۲–۸۲) به صورت زیر محاسبه می شود :

قانون دوم ترمودینامیک به صورت دیفرانسیلی عبارت است از :

$$dh_m = Tds_m + v_m dP \tag{AT-T}$$

در رابطه (۲–۸۳)، h_m آنتالپی مولار، s_m آنتروپی مولار، v_m حجم مخصوص مولار، T دما و P فشار می باشند . اگر از رابطه (۲–۸۳) نسبت به فشار در دمای ثابت مشتق بگیریم، خواهیم داشت :

$$\left(\frac{\partial h_m}{\partial P}\right)_T = T \left(\frac{\partial s_m}{\partial P}\right)_T + \nu_m \tag{AF-T}$$

با استفاده از روابط ماکسول، رابطه (۲-۲۸)، داریم [۲۱]:

$$\left(\frac{\partial s_m}{\partial P}\right)_T = -\left(\frac{\partial v_m}{\partial T}\right)_P \tag{A\Delta-T}$$

با جایگذاری رابطه (۲-۸۵) در رابطه (۲-۸۴)، رابطه (۲-۸۴) به صورت زیر تبدیل خواهد شد:

$$\left(\frac{\partial h_m}{\partial P}\right)_T = v_m - T \left(\frac{\partial v_m}{\partial T}\right)_P \tag{A9-7}$$

با جایگذاری رابطه (۲-۵۳) و رابطه (۲-۸۶) در رابطه (۲-۸۲) ، این رابطه به صورت زیر تبدیل می شود :

$$dh_m = C_{m,p}dT + \left[v_m - T\left(\frac{\partial v_m}{\partial T}\right)_p\right]dP \tag{AV-T}$$

از آنجائیکه فرآیند افت فشار یک فرآیند آنتالپی ثابت می باشد بنابراین $dh_m = 0$ و رابطه (۲-۸۷) را می توان به صورت زیر نوشت :

$$\mu_{JT} = \left(\frac{\partial T}{\partial P}\right)_{h_m} = \frac{\left[T\left(\frac{\partial v_m}{\partial T}\right)_P - v_m\right]}{C_{m,p}} \tag{AA-T}$$

در حقیقت با استفاده از رابطه (۲–۸۸) می توان ضریب ژول – تامسون را محاسبه نمود. در رابطه (۲– ۸۸)، داریم [۱]:

$$\left(\frac{\partial v_m}{\partial T}\right)_P = \frac{R}{P} \left[Z + T \left(\frac{\partial Z}{\partial T}\right)_P \right] \tag{A9-T}$$

با جایگذاری رابطه (۲–۸۹) در رابطه (۲–۸۸) و با توجه به تعریف $v_m = ZRT/P$ ، رابطه (۲–۸۸) به صورت زیر تبدیل می شود [۲۵] :

$$\mu_{JT} = \frac{RT^2}{PC_{m,p}} \left(\frac{\partial Z}{\partial T}\right)_P \tag{9.-1}$$

در رابطه (۲–۹۰)، R ثابت جهانی گازها، P فشار و T دما، می باشند. $C_{m,p}$ ظرفیت گرمایی مولار در فشار ثابت بوده که با استفاده از رابطه (۲–۹۲) محاسبه شده و $_{q}\left(\frac{\delta Z}{\partial T}\right)_{p}$ با استفاده از رابطه (۲–۷۱) محاسبه شده و می توان می شود. با مشخص بودن دما ، فشار و کسر مولی اجزای گاز طبیعی در مخلوط می توان ضریب ژول – تامسون را با استفاده از رابطه (۲–۹۰) محاسبه نمود.

۲-۲-۲-۵ محاسبه سرعت صوت

یکی دیگر از خواص ترمودینامیکی گاز طبیعی سرعت صوت می باشد. سرعت صوت عبارت است از فاصله ای که موج صوتی در داخل یک محیط الاستیک و در واحد زمان، طی می کند. در حالت کلی سرعت صوت، با استفاده از رابطه زیر تعریف می شود:

$$Sos = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{s}} \tag{91-T}$$

که در آن Sos سرعت صوت، P فشار، ρ چگالی و s آنتروپی می باشند. رابطه سرعت صوت در گازهای ایده آل رابطه ساده تری بوده و با استفاده از رابطه زیر تعریف می شود :

$$Sos = \sqrt{RT \frac{C_P}{C_v}}$$
(9Y-Y)

که در آن R ثابت جهانی گازها، T دما، C_p ظرفیت گرمایی در فشار ثابت و c_v ظرفیت گرمایی در حجم ثابت می باشند. سرعت صوت یک خاصیت ترمودینامیکی مخصوص به ماده مورد نظر بوده که نقش آن در سرعت های مافوق صوت^{۲۲} بسیار پررنگ می باشد. سرعت صوت در گاز طبیعی، کاربردهای فراوانی داشته که می توان از جمله آنها به کاربرد در وسایل اندازه گیری مافوق صوت^{۲۲} و کاربردهای فراوانی داشته که می توان از جمله آنها به کاربرد در وسایل اندازه گیری مافوق صوت^{۲۳} و کاربرد ها فرای اندازه گیری مافوق صوت^{۲۲} و خطوط انتقال گاز طبیعی برای محاسبه انرژی و مقدار دبی جریان اشاره کرد[۱]. تاکنون برای محاسبه کاربرد موت عروت انتال گاز طبیعی برای محاسبه انرژی و مقدار دبی جریان اشاره کرد[۱]. تاکنون برای محاسبه در مرعت صوت با استفاده از معادلات حالت مطالعات اندکی صورت گرفته است. اکنون برای محاسبه کرده اند. آنها نشان دادند که در محاسبه سرعت صوت را برای مخلوط گاز طبیعی محاسبه کرده موجود، دارند. BACKONE و همکاران[۱۵] نیز با استفاده از معادله حالت درجه سه، سرعت صوت را برای مخلوط گاز طبیعی محاسبه کرده موجود، دارند. BACKONE و همکاران[۱۵] نیز با استفاده از معادله حالت درجه سه، سرعت صوت را برای مخلوط گاز طبیعی محاسبه کرده موجود، دارند. BACKONE و همکاران[۱۵] نیز با استفاده از معادله حالت درجه سه، سرعت صوت را برای مخلوط گاز طبیعی محاسبه درده موجود، دارند. BACKONE و محالیی معادله از معادله حالت کاری و محالی یان از داده های آزمایشگاهی در ایرای متان خالص و مخلوط دوتایی متان – اتان محاسبه کرده اند. محاسبات آنها درصد خطایی بین را برای متان خالص و مخلوط دوتایی متان – اتان محاسبه کرده اند. محاسبات آنها درصد خطایی بین داده است.

³¹- Ultrasonic

³²- Ultrasonic Flowmeter

با توجه به رابطه (۲–۹۱) برای محاسبه سرعت صوت باید تغییرات فشار نسبت به چگالی را در یک فرآیند آنتروپی ثابت محاسبه کنیم. برای این منظور از معادلات قانون دوم ترمودینامیک کمک می گیریم [۲۱]:

$$Tds = dh - vdP \tag{97-7}$$

$$Tds = du + Pdv \tag{9.4}$$

که در آنها s آنتروپی، h آنتالپی، u انرژی داخلی، P فشار، v حجم مخصوص و T دما، می باشند. با استفاده از روابط ترمودینامیکی و روابط ماکسول، رابطه (۲–۹۳) و (۲–۹۴) به صورت زیر تبدیل خواهند شد:

$$Tds = C_{Pm}dT - T\left(\frac{\partial v_m}{\partial T}\right)_P dP$$
(9Δ-٢)

$$Tds = C_{vm}dT + T\left(\frac{\partial P}{\partial T}\right)_{v_m} dv_m \tag{97-T}$$

جائیکه C_{Pm} ظرفیت گرمایی مولار در فشار ثابت، C_{vm} ظرفیت گرمایی مولار در حجم ثابت و v_m مخصوص مولار می باشند. رابطه (۲–۹۱) را می توان به صورت زیر بازنویسی کرد:

$$Sos^{2} = \frac{1}{M_{w}} \left(\frac{\partial P}{\partial \rho_{m}}\right)_{s} \tag{9V-T}$$

جائیکه در آن M_w وزن مولکولی و ho_m دانسیته مولار می باشند.

از آنجائیکه سرعت صوت در طی یک فرآیند آنتروپی ثابت رخ می دهد، بنابراین ds = 0و روابط (۲–۹۶) را می توان به شکل زیر نوشت:

$$\left(\frac{\partial P}{\partial T}\right)_{s} = \frac{C_{Pm}}{T\left(\frac{\partial v_{m}}{\partial T}\right)_{P}} \tag{9A-T}$$

با استفاده از رابطه بین حجم مخصوص مولار و دانسیته مولار، $v_m = 1/
ho_m$ ، رابطه (۲–۹۵) به صورت زیر تبدیل می شود:

$$Tds = Cv_m dT - T \left(\frac{\partial P}{\partial T}\right)_{\rho_m} \frac{d\rho_m}{\rho_m^2}$$
(99-7)

و با فرض فرآیند آنتروپی ثابت، خواهیم داشت:

$$\left(\frac{\partial \rho_m}{\partial T}\right)_s = C v_m \frac{\rho_m^2}{T \left(\frac{\partial P}{\partial T}\right)_{\rho_m}} \tag{1...T}$$

رابطه (۲-۹۷) را می توان به صورت زیر ساده کرد:

$$Sos^{2} = \frac{1}{M_{w}} \frac{\left(\frac{\partial P}{\partial T}\right)_{s}}{\left(\frac{\partial \rho_{m}}{\partial T}\right)_{s}} \tag{1.1-7}$$

با جایگذاری رابطه (۷) و (۹) در رابطه (۱۰) ، رابطه (۱۱) برای محاسبه سرعت صوت بدست می آید :

$$Sos^{2} = \frac{1}{M_{w}} \times \frac{Cp_{m}}{Cv_{m}\rho_{m}^{2}} \frac{\left(\frac{\partial P}{\partial T}\right)_{\rho_{m}}}{\left(\frac{\partial v_{m}}{\partial T}\right)_{P}}$$
(1.1-7)

با توجه به رابطه (۲–۱۰۱)، برای محاسبه سرعت صوت ابتدا باید ظرفیت گرمایی مولار در فشار و حجم ثابت ، محاسبه شوند که در با استفاده از روابط (۲–۶۳) و (۲–۴۸) محاسبه شده اند. مشتقات جزئی در رابطه (۲–۱۰۱)، با استفاده از روابط (۲–۶۴) و (۲–۶۷)، محاسبه خواهند گردید. بنابراین با مشخص بودن دما، فشار و کسر مولی اجزای گاز طبیعی در ترکیب گاز و با استفاده از معادله (۲–۱۰۱)، سرعت صوت برای گاز طبیعی محاسبه خواهد شد.

۲–۲–۲–۶– محاسبه آنتالپی

یکی از مهمترین خواص ترمودینامکی گاز طبیعی آنتالپی بوده که تاکنون مطالعه دقیقی برای بدست آوردن آن انجام نشده است. آنتالپی معیاری از محتوای انرژی مواد در فرآیندها بوده که انواع و اقسام فرآیندهای ترمودینامیکی، کاربرد دارد. از مهمترین کاربردهای آنتالپی می توان به محاسبه کار خالص ورودی به کمپرسور ها^{۳۳} و کار خالص خروجی از توربین ها^{۳۴}، اشاره کرد. مطالعات انجام شده برای محاسبه آنتالپی گاز طبیعی بسیار اندک بوده و در زمینه مطالعات آزمایشگاهی نیز، کارهای اندکی انجام شده است.

³³ -Compressor
 ³⁴ Turbine

Barry و همکاران با استفاده از معادلات حالت درجه سه RK و BWR آنتالپی را برای مخلوط سه تایی متان – دی اکسید کربن – هیدروژن محاسبه کردند [۲۶] . Ashton و همکاران افزایش آنتالپی را برای مخلوطهایی شبیه گاز طبیعی با استفاده از آزمایش محاسبه کرده و با استفاده از نتایج آزمایشات ضرایب برهمکنش دودویی اجزاء را برای معادله حالت BWR ، محاسبه کردند[۲۷] . Grini و همکاران فزایش آنتالپی را برای مخلوطهایی دوتایی در فرآیند فشار ثابت و افت دما در فرآیند آنتالپی ثابت فشارشکنی را برای مخلوطهای دوتایی و سه تایی را برای معادله حالت BWR ، محاسبه کردند[۲۷] . Grini و همکاران نزایش آنتالپی در فرآیند فشار ثابت و افت دما در فرآیند آنتالپی ثابت فشارشکنی را برای مخلوطهای دوتایی و سه تایی را با درصد ترکیب خواص دلخواه با استفاده از آزمایش محاسبه کرده ، محربی مقایسه محربی نبا استفاده از معادله حالت BRC نیز محاسبات را انجام داده و با داده های تجربی مقایسه محرده ، کرده اند که درصد انحراف مطلق میانگین محاسبات آنها از داده های تجربی زیر ۵ ٪ بوده است[۲۸] . Wendlad و همکاران با استفاده از معادله حالت BRC نیز محاسبات را انجام داده و با داده های تجربی مقایسه کرده ، کرده اند که درصد انحراف مطلق میانگین محاسبات آنها از داده های تجربی زیر ۵ ٪ بوده است[۲۸] . Wendlad و همکاران با استفاده از معادله حالت BACKONE افزایش آنتالپی در فرآیند فشار ثابت کرده اند که درصد انحراف مطلق میانگین محاسبات آنها از داده های تجربی زیر ۵ ٪ بوده است[۲۸] . استفاده از داده های تجربی در فرآیند فشار ثابت و درمان خالص و مخلوط دوتایی متان – اتان محاسبه کرده اند. معتبرسازی محاسبات آنها با استفاده از داده های تجربی زیر ۶ ٪ را مخلوط دوتایی متان – اتان محاسبه کرده اند. معتبرسازی محاسبات آنها با استفاده از داده های تجربی درصد خطای زیر ۱۵ ٪ را برای متان و درصد خطای زیر ۶ ٪ را مخلوط دوتایی محاسبات آنها با استفاده از داده های تجربی درصد خطای زیر ۶ ٪ را مخلوط دوتایی متان – اتان ، نشان می داد [۱۵] .

برای محاسبه آنتالپی گاز طبیعی، ابتدا پارامتری به عنوان آنتالپی ویژه به صورت زیر تعریف می کنیم

Specific Enthalpy(T, P) =
$$h_m(T, P) - h_m(T_{Ref}, P_{Ref})$$
 (1.7-7)

که در آن
$$h_m(T,P)$$
 آنتالپی مولار در فشار و دمای مورد نظر و $h_m(T_{Ref},P_{Ref})$ آنتالپی مولار در
فشار و دمای مرجع، می باشند. جائیکه $T_{Ref} = 25$ و $P_{Ref} = 101.325 Kpa$ می باشند.

رابطه بین آنتالپی مولار، انرژی داخلی مولار، فشار و حجم مخصوص مولار، به صورت زیر تعریف می شود [۲۱]:

$$h_m = u_m + P v_m \tag{1 \cdot \mathcal{V}_- \mathcal{Y}}$$

که در آن h_m آنتالپی مولار، u_m انرژی داخلی مولار و v_m حجم مخصوص مولار می باشند. اگر از معادله (۲–۱۰۳) نسبت به v_m و با فرض دمای ثابت، مشتق بگیریم خواهیم داشت:

$$\left(\frac{\partial h_m}{\partial v_m}\right)_T = \left(\frac{\partial u_m}{\partial v_m}\right)_T + \left(\frac{\partial (Pv_m)}{\partial v_m}\right)_T \tag{1.4}$$

با فرض اینکه s_m آنتروپی مولار تابع دما و حجم مخصوص مولار بوده و با فرض اینکه آنتروپی مولار یک تابع دیفرانسیل کامل باشد، خواهیم داشت داریم :

$$ds_m = \left(\frac{\partial s_m}{\partial T}\right)_{v_m} dT + \left(\frac{\partial s_m}{\partial v_m}\right)_T dv_m \tag{1.2}$$

$$Tds_m = C_{m,\nu}dT + T\left(\frac{\partial P}{\partial T}\right)_{\nu_m} d\nu_m \tag{1.9-1}$$

حال با فرض اینکه انرژی داخلی مولار u_m ، تابعی از دما و حجم مخصوص مولار باشد، داریم:

$$u_m = u_m(T, v_m) \tag{1.7}$$

اگر u_m يک تابع ديفرانسيل کامل باشد، خواهيم داشت:

$$du_m = \left(\frac{\partial u_m}{\partial T}\right)_{\nu_m} dT + \left(\frac{\partial u_m}{\partial \nu_m}\right)_T d\nu_m \tag{1.4-1}$$

با توجه به قانون دوم ترموديناميک مي دانيم که:

$$du_m = Tds_m - Pdv_m \tag{1.9-1}$$

با جایگذاری رابطه (۲-۱۰۶) در رابطه (۲-۱۰۹)، خواهیم داشت:

$$du_m = C_{m,\nu}dT + \left[T\left(\frac{\partial P}{\partial T}\right)_{\nu_m} - P\right]d\nu_m \tag{11.-1}$$

با مقایسه روابط (۲–۱۰۸) و (۲–۱۱۰)، خواهیم داشت:

$$\left(\frac{\partial u_m}{\partial v_m}\right)_T = \left[T\left(\frac{\partial P}{\partial T}\right)_{v_m} - P\right] \tag{111-T}$$

با جایگذاری $v_m = rac{ZRT}{P}$ در ترم دوم سمت راست رابطه (۲–۱۰۴)، خواهیم داشت:

$$\left(\frac{\partial(Pv_m)}{\partial v_m}\right)_T = \left(\frac{\partial(ZRT)}{\partial v_m}\right)_T = RT \left(\frac{\partial Z}{\partial v_m}\right)_T$$
(1)17-7)

حال با جایگذاری روابط (۲–۱۱۱) و (۲–۱۱۲) در رابطه (۲–۱۰۴)، این رابطه به صورت رابطه (۲– ۱۱۳) نوشته خواهد شد:

$$\left(\frac{\partial h_m}{\partial v_m}\right)_T = \left[T\left(\frac{\partial P}{\partial T}\right)_{v_m} - P\right] + RT\left(\frac{\partial Z}{\partial v_m}\right)_T \tag{117-7}$$

حال اگر از طرفین رابطه (۲–۱۱۳) نسبت به حجم مخصوص مولار v_m انتگرال بگیریم، خواهیم داشت:

$$\int_{h_{m,I}}^{h_m} dh_m = \int_{v_{m,I} \to \infty}^{v_m} \left[T\left(\frac{\partial P}{\partial T}\right)_{v_m} - P \right] dv_m + \int_{v_{m,I} \to \infty}^{v_m} RT\left(\frac{\partial Z}{\partial v_m}\right)_T dv_m \tag{114-T}$$

در رابطه (۲–۱۱۴)، $h_{m,I} e^{N_{m,I}} e^{N_{m,I}}$ به ترتیب آنتالپی مولار و حجم مخصوص مولار، در حالت گاز ایده آل می باشند. مشتق جزئی موجود در رابطه (۲–۱۱۴)، یعنی رابطه $\left(\frac{\partial P}{\partial T}\right)_{v_m}$ ، با استفاده از رابطه (۳–۲)، محاسبه شده است. با جایگذاری رابطه (۲–۶۴) در رابطه (۲–۱۱۴) و با تغییر متغییر از v_m به p_m داریم:

$$\int_{h_{m,l}}^{h_m} dh_m = \int_{\rho_{m,l} \to 0}^{\rho_m} \rho_m RT^2 \left(\frac{\partial Z}{\partial T}\right)_{\rho_m} \frac{d\rho_m}{-\rho_m^2} + \int_{\rho_{m,l} \to 0}^{\rho_m} RT \left(\frac{\partial Z}{\partial \rho_m}\right)_T d\rho_m \tag{110-T}$$

در رابطه (۲–۱۱۵) ، $\rho_{m,I}$ چگالی مولار در حالت گاز ایده آل، می باشد. پس از ساده سازی، رابطه (۲–۱۱۵) به صورت زیر تبذیل خواهد شد:

$$h_m = h_{m,I} - RT^2 \int_0^{\rho_m} \left(\frac{\partial Z}{\partial T}\right)_{\rho_m} \frac{d\rho_m}{\rho_m} + RT \int_0^1 dZ \tag{119-T}$$

در رابطه (۲–۱۱۶)، h_{m,I} آنتالپی مولار در حالت گاز ایده آل بوده که به صورت زیر محاسبه شده است

$$h_{m,I} = \sum_{j=1}^{N} x_j h_{m,i}^j \tag{11V-T}$$

در رابطه (۲–۱۱۷)، $h^j_{m,i}$ آنتالپی مولار در حالت گاز ایده آل برای جزء j در مخلوط گاز و x_j کسر مولی مربوط به همان جزء می باشند.

$$h_{m,i}{}^{j} = h_{m,i0}{}^{j} + a_{j}T + b_{j}c_{j}\coth\left(\frac{c_{j}}{T}\right) - d_{j}e_{j}\tanh\left(\frac{e_{j}}{T}\right)$$
(11A-T)

جائیکه $h_{m,i0}{}^j$ آنتالپی مولار گاز ایده آل جزء j در مخلوط گاز در دمای مرجع می باشد. ضرایب a_j a_j $h_{m,i0}{}^j$ و $h_{m,i0}{}^j$ آورده شده اند. $d_j \cdot c_j \cdot b_j$ و $d_j \cdot c_j \cdot c_j$ ، برای اجزای تشکیل دهنده گاز طبیعی در مرجع [۲۳]، آورده شده اند.

با استفاده از روابط (۲–۴۹) و (۲–۵۱)، رابطه زیر برای محاسبه آنتالپی مولار برای گاز طبیعی، ارائه شده است:

$$h_m = h_{m,I} - RT^2 [\rho_m Z_0 + Z_2] + RT(Z - 1)$$
(119-7)

برای محاسبه آنتالپی ویژه، آنتالپی مولار در دما و فشار سیستم و آنتالپی مولار در دما و فشار مرجع، با استفاده از رابطه (۲–۱۱۹)، محاسبه خواهند شد.

۲-۲-۲-۷- محاسبه انرژی داخلی

انرژی داخلی نیز یکی از خواص ترمودینامیکی گاز طبیعی بوده که مانند آنتالپی، معیاری از محتوای انرژی گاز طبیعی، در فرآیندهای ترمودینامیکی می باشد. کاربرد انرژی داخلی بیشتر در سیستمهای بسته ترمودینامیکی^{۳۵} و فرآیندهای حالت گذرا – جریان گذرا^{۳۶}، مربوط به پرشدن مخازن گاز طبیعی، بوده و در تحلیل این نوع فرآیندها استفاده فراوانی دارد.

برای محاسبه انرژی داخلی گاز طبیعی، ابتدا پارامتری به عنوان انرژی داخلی ویژه به صورت زیر تعریف می کنیم:

Specific Internal energy(T, P) =
$$u_m(T, P) - u_m(T_{Ref}, P_{Ref})$$
 (17.-7)

که در آن $u_m(T,P)$ انرژی داخلی مولار در فشار و دمای مورد نظر و $u_m(T_{Ref},P_{Ref})$ انرژی داخلی مولار در فشار و دمای مرجع، می باشند. جائیکه $T_{Ref}=25~
m c$ و $P_{Ref}=101.325 Kpa$ می باشند.

مشتق جزئی مورد استفاده برای محاسبه انرژی داخلی، در رابطه (۲–۱۱۱)، تعریف شده است. اگر از طرفین رابطه (۲–۱۱۱)، نسبت به حجم مخصوص مولار انتگرال بگیریم، خواهیم داشت:

حال اگر از طرفین رابطه (۲–۱۱۳) نسبت به حجم مخصوص مولار v_m انتگرال بگیریم، خواهیم داشت:

$$\int_{u_{m,I}}^{u_m} du_m = \int_{v_{m,I} \to \infty}^{v_m} \left[T\left(\frac{\partial P}{\partial T}\right)_{v_m} - P \right] dv_m \tag{171-7}$$

در رابطه (۲–۱۱۴)، $u_{m,I}$ انرژی داخلی مولار در حالت گاز ایده آل می باشند. مشتق جزئی موجود در رابطه (۲–۱۲۴)، یعنی رابطه $\left(\frac{\partial P}{\partial T}\right)_{v_m}$ ، با استفاده از رابطه (۲–۶۴)، محاسبه شده است. با جایگذاری رابطه (۲–۶۴)، در رابطه (۲–۱۲۱) و با تغییر متغییر از v_m به p_m ، داریم:

$$\int_{u_{m,l}}^{u_m} du_m = \int_{\rho_{m,l} \to 0}^{\rho_m} \rho_m R T^2 \left(\frac{\partial Z}{\partial T}\right)_{\rho_m} \frac{d\rho_m}{-\rho_m^2}$$
(177-7)

پس از ساده سازی، رابطه (۲-۱۲۲) به صورت زیر تبدیل خواهد شد:

³⁵- Close system

³⁶-Uniform State – Uniform Flow (USUF)

$$u_m = u_{m,I} - RT^2 \int_0^{\rho_m} \left(\frac{\partial Z}{\partial T}\right)_{\rho_m} \frac{d\rho_m}{\rho_m} \tag{177-7}$$

در رابطه (۲–۱۲۳)، $u_{m,I}$ انرژی داخلی مولار در حالت گاز ایده آل بوده که به صورت زیر محاسبه شده است .

$$u_{m,I} = h_{m,I} - Pv_m = h_{m,I} - RT \tag{114-T}$$

جائيکه در رابطه (۲–۱۲۴)، $h_{m,I}$ آنتاليي مولار در حالت گاز ايده آل بوده که از رابطه (۲–۱۱۷)، محاسبه شده است.

با استفاده از روابط (۲–۴۹) و (۲–۵۱)، رابطه زیر برای محاسبه انرژی داخلی مولار برای گاز طبیعی، ارائه شده است:

$$u_m = u_{m,I} - RT^2 [\rho_m Z_0 + Z_2]$$
(17Δ-7)

برای محاسبه انرژی داخلی ویژه، انرژی داخلی مولار در دما و فشار سیستم و انرژی داخلی مولار در دما و فشار مرجع، با استفاده از رابطه (۲–۱۲۵)، محاسبه خواهند شد.

۲-۲-۲-۸ محاسبه آنترویی

یکی از خواص ترمودینامیکی مهم گاز طبیعی آنتروپی می باشد. در قانون دوم ترمودینامیک آنترویی نقش مهمی ایفا کرده به طوری که از آنتروپی به عنوان معیاری برای بی نظمی سیستم ترمودینامیکی یاد شده و قابل انجام شدن یک فرآیند ترمودینامیکی بستگی به علامت تولید آنتروپی ^{۳۷}سیستم و محیط دارد. یکی دیگر از کاربردهای آنتروپی، در محاسبه قابلیت کاردهی یا اگزرژی^{۳۸} یک سیستم ترموديناميكي مي باشد. با استفاده از آنترويي در محاسبه اگزرژي، مي توان مشخص كرد كه يک سیستم ترمودینامیکی در یک حالت مشخص، چه میزان قابلیت کاردهی دارد اگر، از دما و فشار سیستم، به دما فشار حالت مرده^{۳۹} برود، به طوریکه تمامی فرآیندهای انجام شده، برگشت پذیر باشند. از آنجائیکه آنتروپی یک خاصیت غیرقابل اندازه گیری می باشد ،مطالعاتی در این باره برای آن انجام نشده است. بنابراین برای محاسبه آنتروپی از معادلات حالت استفاده می شود. برای محاسبه آنتروپی اجزای گاز طبیعی تاکنون معادلات متعددی ارائه شده است که از مهمترین آنها می توان به معادله حالت Setzmann و Wagner اشاره کرد [۲۹]. برای محاسبه آنترویی گاز طبیعی، با فرض متان خالص به عنوان نماینده گاز طبیعی، محققان از این معادله حالت بسیار استفاده کرده اند. در این

 ³⁷ -Entropy generation
 ³⁸ - Exergy

³⁹ -Death state

قسمت، با استفاده از معادله حالت AGA8 و با کمک روابط ترمودینامیکی، روشی برای محاسبه آنتروپی گاز طبیعی، ارائه شده است. برای محاسبه آنتروپی گاز طبیعی، ابتدا پارامتری به عنوان آنتروپی ویژه به صورت زیر تعریف می کنیم

Specific Entropy(T, P) =
$$s_m(T, P) - s_m(T_{Ref}, P_{Ref})$$
 (179-7)

که در آن $S_m(T,P)$ آنتروپی مولار در فشار و دمای مورد نظر و $S_m(T_{Ref}, P_{Ref})$ آنتروپی مولار در فشار و دمای مرجع، می باشند. جائیکه $2^\circ Z_{Ref} = 25$ و $P_{Ref} = 101.325 K pa$ می باشند. برای محاسبه آنتروپی از یکی از روابط ماکسول استفاده شده است. اگر از طرفین رابطه ماکسول مورد نظر یعنی رابطه (۲-۲۶)، بر حسب حجم مخصوص مولار انتگرال بگیریم، خواهیم داشت:

$$\int_{s_{m,I}}^{s_m} ds_m = \int_{v_{m,I}\to\infty}^{v_m} \left(\frac{\partial P}{\partial T}\right)_{v_m} dv_m$$
 (۱۲۷-۲)
جائیکه در رابطه (۲–۱۲۷)، S_{m,I} آنتالپی مولار در حالت گاز ایده آل می باشد. با جایگذاری رابطه
(۲–۶۴) برای مشتق جزئی موجود در رابطه (۲–۱۲۷) و با توجه به رابطه بین حجم مخصوص مولار و
دانسیته مولار و تغییر متغییر از حجم مخصوص مولار به دانسیته مولار، رابطه (۲–۱۲۷)، به شکل زیر
تبدیل خواهد شد:

$$s_m = s_{m,l} - R \int_0^{\rho_m} \left[Z + T \left(\frac{\partial Z}{\partial T} \right)_{\rho_m} \right] \frac{d\rho_m}{\rho_m} \tag{17A-7}$$

در رابطه (۲–۱۲۸)
$$S_{m,I}$$
 آنتروپی مولار در حالت گاز ایده آل، R ثابت جهانی گازها، Z ضریب تراکم
پذیری گاز طبیعی و ho_m دانسیته مولار، می باشند.
آنتروپی مولار در حالت گاز ایده آل، به صورت زیر تعریف می شود :
۸

$$s_{m,I} = \sum_{j=1}^{n} x_j s_{m,I}^{j}$$
 (179-7)

جائیکه در رابطه (۲–۱۲۹)، *x* کسر مولی جزء *j* در ترکیب گاز و *s_{m,I} آ*نتروپی مولار در حالت گاز ایده آل برای همان جزء می باشد. آنتروپی برای گازهای ایده آل، تابعی از دما و فشار می باشد. در حالیکه آنتالپی و انرژی داخلی برای گازهای ایده آل، فقط تابعی از دما، می باشند. آنتروپی مولار جزء *j* در ترکیب گاز و در مخلوط گاز طبیعی، به صورت زیر محاسبه خواهد شد:

$$s_{m,I}{}^{j}(T,P) = s_{m,I0}{}^{j} + s_{m,I}{}^{j}(T) - RLn(x_{j}P)$$
 (۱۳۰-۲)
جائیکه در رابطه (۲–۱۳۰)، (T)، ($S_{m,I}{}^{j}(T)$ آنتروپی مولار تابع دما در دمای موردنظر، $s_{m,I0}{}^{j}$ آنتروپی مولار
گاز ایده آل جزء *j* در مخلوط گاز، در دما و فشار مرجع می باشد. آنتروپی مولار تابع دما به صورت زیر
ارائه شده است:

$$S_{m,I}{}^{j}(T) = a_{j}Ln(T) + b_{j}\left[\left(\frac{c_{j}}{T}\right) \operatorname{coth}\left(\frac{c_{j}}{T}\right) - Ln\left(\sinh\left(\frac{c_{j}}{T}\right)\right)\right] - d_{j}\left[\left(\frac{e_{j}}{T}\right) tanh\left(\frac{e_{j}}{T}\right) - Ln\left(\cosh\left(\frac{e_{j}}{T}\right)\right)\right]$$
(171-7)

با جایگذاری روابط (۲-۶) و (۲-۴۱)، در رابطه (۲-۱۲۸) و محاسبه انتگرال ها، رابطه زیر برای محاسبه آنتروپی مولار ارائه می شود:

$$s_m = s_{m,I} - RT(\rho_m Z_0 + Z_2) - R(\rho_m Z_{00} + Z_{11}) + RLn(Z)$$
(1877-7)

جائیکه در رابطه (۲-۱۳۲)، Z₀ از رابطه (۲-۴۹) و Z₂ از رابطه (۲-۵۱)، محاسبه شده اند. دیگر ضرایب رابطه (۲-۱۳۲)، به صورت زیر تعریف گردیده اند:

$$Z_{00} = B - K^3 \sum_{n=13}^{18} C_n^*$$
 (1377-7)

$$Z_{11} = \sum_{n=13}^{58} C_n^* \rho_r^{b_n} \exp(-c_n \rho_r^{k_n})$$
(184-7)

حال با داشتن آنتروپی مولار در دما و فشار مشخص و آنتروپی مولار در دما و فشار مرجع، می توان رابطه آنتروپی ویژه را محاسبه نمود.

۲-۲-۲-۹ محاسبه ارزش های حرارتی

ارزش حرارتی، یک پارامتر مهم در میزان انرژی آزاد شده توسط گاز طبیعی بوده و در حقیقت نشان دهنده میزان انرژی است که در گاز طبیعی نهفته می باشد. از آنجائیکه گاز طبیعی به عنوان سوخت کاربردهای فرآوانی در مصارف خانگی و صنعتی دارد، لزوم محاسبه دقیق ارزش حرارتی گاز طبیعی بسیار لازم و ضروری می باشد. در این تحقیق، ارزش حرارتی گاز طبیعی با استفاده از استاندارد ISO 6976 و با استفاده از معادله حالت AGA8، محاسبه شده است. برای بدست آوردن ارزش حرارتی گاز طبیعی با توجه به مشخص بودن اجزای تشکیل دهنده گاز طبیعی روشهای متعددی وجود دارند. از جمله روشهایی که از استاندارهای پذیرفته شده جهانی می باشند، می توان به روشهای ارائه شده توسط استاندارد ISO 6976 [۳۰] و استاندارد ANSI/ASTM [۳۱]، اشاره کرد.

شکل (۲-۱)، شماتیکی ار ارزش های حرارتی برای گاز طبیعی و فرآیندهای مربوط به آن را نشان می دهد [۳۰].

شکل (۲-۱)- شماتیکی از تعریف ارزش حرارتی و فرآیندهای مربوط به آن

۲-۲-۲-۹-۱- محاسبه ارزش حرارتی اجزای گاز طبیعی برای محاسبه ارزش حرارتی مخلوط گاز طبیعی، ابتدا لازم است تا ارزش حرارتی اجزای تشکیل دهنده گاز طبیعی را محاسبه نماییم. در حالت کلی معادله احتراق برای یکی از اجزای گاز طبیعی به صورت زیر تعریف می شود [۳۰] :

$$C_{a}H_{b}O_{c}N_{d}S_{e} + \left(a + \frac{b}{4} - \frac{c}{2} + e\right)O_{2} = aCO_{2} + \frac{b}{2}H_{2}O + \frac{d}{2}N_{2} + eSO_{2}$$
 (۱۳۵-۲)
جایکه در آن C کربن، H هیدروژن، O اکسیژن، N نیتروژن و S گوگرد می باشند. ضرایب
a,b,c,d,e، همگی مثبت و می توانند تحت شرایط واکنش و بسته به نوع ماده مورد نظر صفر نیز
باشند. ارزش حرارتی برای هر یک از اجزای گاز طبیعی در دمای مرجع ۲۵ درجه سانتیگراد با استفاده
از رابطه زیر محاسبه می شود:
 $H_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C) = 10^{\circ}$
 $H_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C) - h_{p,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C) = h_{r,j}(T_{1} = 25^{\circ}C)$
 $h_{m,j}(T_{1} = 25^{\circ}C)$

$$H_{m,j}(T_1) = H_{m,j}(25^{\circ}\text{C}) - \sum_k v_k [h_{m,k}(T_1) - h_{m,k}(25^{\circ}\text{C})]$$
(1774-7)

جائیکه در رابطه (۲–۱۳۷)، (T_1)، (T_1) ارزش حرارتی ارزش حرارتی مولار برای جزء j در ترکیب گاز و در دمای و در دمای T_1 (T_1)، $H_{m,j}(T_1)$ ارزش حرارتی مولار برای جزء j در ترکیب گاز در دمای ۲۵ درجه سانتیگراد، v_k ضرایب استکیومتری معادله احتراق برای جزء k شرکت کننده در احتراق (T_1 محصولات و واکنش دهندها)، ($h_{m,k}(T_1)$ آنتالپی مولار جزء k شرکت کننده در احتراق و در دمای T_1 محصولات و در احتراق و در دمای ۲۰ آنتالپی مولار جزء k شرکت کننده در احتراق و در دمای ارو (T_1) محصولات و ماکنش دهندها)، ($h_{m,k}(T_1)$ آنتالپی مولار جزء k شرکت کنده در احتراق و در دمای ارو (T_1) محصولات و مای ۲۵ (T_1) آنتالپی مولار جزء k شرکت کنده در احتراق و در دمای ارو (T_1) آنتالپی مولار جزء k شرکت کنده در احتراق و در دمای ارو (T_1) آنتالپی مولار جزء k شرکت کنده در احتراق و در دمای ارو (T_1) آنتالپی مولار جزء k شرکت کنده در احتراق و در دمای ارو (T_1) آنتالپی مولار جزء k شرکت کنده در احتراق و در دمای ارو (T_1)

نمودار (۲–۱)، ارزش حرارتی مولار را برای اجزای گاز طبیعی در دمای 2°25، نشان می دهد. ارزش حرارتی موجود شامل ارزش حرارتی بالا و پایین اجزای گاز طبیعی می باشد. با توجه به نمودار (۲–۱)،هیدروکربن ها با تعداد کربن بیشتر، از ارزش حرارتی بیشتری برخوردار می باشند. همچنین برای آب تنها ارزش حرارتی بالا لحاظ شده است. علت این امر به گرمای نهان آب برای رسیدن از حالت بخار به حالت مایع در محصولات احتراق، می باشد.

LHV HHV

نمودار (۲-۱)- ارزش حرارتی مولار برای اجزای گاز طبیعی در دمای C°25

۲-۲-۲-۹-۲- ارزش حرارتی بالای گاز طبیعی

ارزش حرارتی بالا T برای گاز طبیعی در فشار P_1 و دمای T_1 عبارت است از: مقدار انرژی آزاد شده بوسیله احتراق کامل مخلوط گاز طبیعی و هوا در حالتی که فرآیند احتراق در فشار ثابت P_1 انجام شده و همه محصولات احتراق در فاز گازی بوده به جز آب که به حالت مایع در دمای T_1 ، فشرده یا چگالیده شده است.

۲-۲-۲-۹-۳- ارزش حرارتی پایین گاز طبیعی

ارزش حرارتی پایین ^{۲۱} برای گاز طبیعی در فشار P_1 و دمای T_1 عبارت است از: مقدار انرژی آزاد شده بوسیله احتراق کامل مخلوط گاز طبیعی و هوا در حالتی که فرآیند احتراق در فشار ثابت P_1 انجام شده و همه محصولات احتراق در دای T_1 باشند. در این حالت، همه محصولات احتراق در فاز گازی می باشند.

۲-۲-۲-۹-۴-۱ ارزش حرارتی حجمی

^{fr} ارزش حرارتی حجمی fr ، ارزش حرارتی گاز طبیعی در دمای T_1 و فشار P_1 و در شرایط مرجع fr (اندازه گیری) با دمای T_2 و فشار P_2 ، می باشد.

۲-۲-۲-۹-۵- چگالی نسبی گاز طبیعی

چگالی نسبی^{۴۴} عبارت است از نسبت چگالی گاز طبیعی بر مبنای مولی یا جرمی به چگالی ماده مرجع که در اینجا هوای خشک^{۴۵}، در نظر گرفته شده است. اگر چگالی نسبی کمتر از یک باشد یعنی ماده مورد نظر نسبت به ماده مرجع از تراکم و غلظت کمتری برخوردار می باشد. اگر چگالی

- ⁴³-Reference (metering) conditions
- ⁴⁴-Relative density

⁴⁰ -Superior calorific value

⁴¹ -Inferior calorific value

⁴²- Calorific value on volumetric basis

⁴⁵-Dry air

نسبی بیشتر از یک باشد یعنی ماده مورد نظر نسبت به ماده مرجع از تراکم و غلظت بیشتری برخوردار می باشد. در نهایت اگر چگالی نسبی برابر با یک باشد، نشان دهنده آن است که چگالی آنها با یکدیگر برابر بوده یا به عبارت دیگر برای حجمهای یکسان، جرم یکسانی دارند [۳۰].

۲-۲-۲-۹-۶- شاخص وبی

شاخص وبی^{۴۶} یا عدد وبی^{۴۷} ، شاخصی برای قابلیت تبادل سوخت های گازی از جمله گاز طبیعی و گاز مایع می باشد. شاخص وبی اکثراً به عنوان خصوصیات و مشخصات، تامین و انتقال گاز طبیعی کاربرد دارد. کاربرد دیگری از این شاخص، مقایسه مقدار انرژی آزاد شده حاصل از احتراق گازها با ترکیبات مختلف، می باشد. دو نوع گاز طبیعی با ترکیبات متفاوت اما با مقدار برابر شاخص وبی، می توانند با یکدیگر تعویض شده و در حالت کلی مقدار انرژی یکسانی را آزاد می کنند. بنا به تعریف شاخص وبی، عبارت است از نسبت ارزش حرارتی حجمی بر جذر چگالی نسبی [۳۰].

۲-۲-۲-۹-۷- محاسبه ارزش حرارتی مولار گاز طبیعی ارزش حرارتی مولار برای گاز طبیعی (بالا یا پایین) در دمای *T*₁، با توجه به مشخص بودن اجزای گاز طبیعی، به صورت زیر محاسبه می شود [۳۰]: ۸

$$H_m(T_1) = \sum_{j=0} x_j H_{m,j}(T_1)$$
 (۱۳۸-۲)
که در آن $H_m(T_1)$ ارزش حرارتی مولار گاز طبیعی در دمای x_j ، T_1 کسر مولی مربوط به جزء j در
مخلوط گاز طبیعی و $H_{m,j}(T_1)$ ارزش حرارتی مولار جزء j در ترکیب گاز و در دمای T_1 ، می
باشند. دمای T_1 می تواند شامل مقادیر 0° ، 0° ، 15° و 25° یاشد.

۲-۲-۲-۹-۸- محاسبه ارزش حرارتی جرمی گاز طبیعی ارزش حرارتی جرمی برای گاز طبیعی (بالا یا پایین) در دمای T₁، با توجه به مشخص بودن اجزای گاز طبیعی به صورت زیر محاسبه می شود [۳۰]:

⁴⁶-Wobbe Index

⁴⁷-Wobbe number

$$H(T_1) = rac{H_m(T_1)}{M_w}$$
 (۱۳۹-۲)
که در آن $H(T_1)$ ارزش حرارتی جرمی گاز طبیعی در دمای T_1 ، $H_m(T_1)$ ارزش حرارتی مولار گاز
طبیعی در دمای T_1 و M_w وزن مولکولی گاز طبیعی می باشند.

$$H_{v}[T_{1}, V(T_{2}, P_{2})] = \frac{H_{m}(T_{1}).\frac{P_{2}}{RT_{2}}}{Z} = H_{m}(T_{1}).\rho_{m}$$
 (۱۴۰-۲)
که در آن ($H_{m}(T_{1})$ ارزش حرارتی مولار در دمای T_{1} ، P_{2} فشار، R ثابت جهانی گازها، Z ضریب تراکم
پذیری گاز طبیعی و ρ_{m} دانسیته مولار گاز طبیعی، می باشند. ارزش حرارتی مولار از رابطه (۲–۱۳۸)
و برای محاسبه چگالی مولار از معادله حالت AGA8، استفاده شده است.

Relative Density
$$(T,P) = \frac{Z_{air}(T,P)}{Z(T,P)} \times \frac{M_w}{M_{w,air}}$$
 (۱۴۱-۲)
در رابطه (۲–۱۴۱)، (Relative Density (T,P) دانسیته نسبی در دما و فشار مورد نظر، Z_{air} ضریب
تراکم پذیری هوا در دما و فشار مورد نظر، Z ضریب تراکم پذیری گاز طبیعی در دما و فشار مورد
نظر، M_w وزن مولکولی گاز طبیعی و $M_{w,air}$ وزن مولکولی هوا، می باشند. برای محاسبه ضریب
تراکم پذیری گاز طبیعی از معادله حالت AGA8، استفاده شده است.

فصل سوم

هیدراتهای گازی

۳–۱– مقدمه

هیدرتهای گاز طبیعی^{۴۸}، جامدهای کریستالی بوده که از مولکولهای گاز و آب تشکیل می شوند. مولکول گاز به عنوان مهمان ، در حفرهای آب به عنوان میزبان که از پیوند هیدروژنی مولکولهای آب تشکیل می شوند ، به دام می افتند. معمولیترین مولکولهای گاز طبیعی شامل متان، اتان، پروپان، نیتروژن و دی اکسید کربن، تشکیل هیدراتهای گازی می دهند. هنگامی که یک مخلوط شامل گاز طبیعی و آب در شرایط مشخصی بویژه در فشارهای بالا و دماهای پایین قرار بگیرد ، هیدراتهای گازی تشکیل می شوند.

⁴⁸- Natural Gas Hydrates

شکل (۳–۱)- شبکه کریستالی هیدرات گازی

۲-۳- تاريخچه

تاریخچه هیدراتهای گازی به سه دوره اصلی تقسیم می شود:

دوره اول: این دوره از زمان کشف هیدراتهای گازی توسط سر همفری دیوی^{۴۹} در سال ۱۸۱۰ میلادی، هنگام تولید حبابهای گاز کلر در آب سرد به روش آزمایشگاهی، شروع شده و تا به حال ادامه دارد [۳۲]. این دوره مربوط به جالب بودن پدیده تشکیل هیدراتهای گازی از نظر علمی می باشد. چرا که تجمع آب و گاز در یک فاز جامد (هیدرات)، از نظر علمی پدیده قابل توجهی است.

دوره دوم : تقریباً از سال ۱۹۳۴ میلادی با بیان اینکه تشکیل هیدراتها باعث مسدود شدن خطوط انتقال گاز طبیعی می باشند ، شروع شده و تاکنون ادامه دارد. پس از کشف هامر اشمیت ^{۵۰}، در مورد علت بسته شدن خطوط انتقال گاز [۳۳]، اولین کسانی که آزمایشات تجربی روی شرایط تشکیل هیدراتها را انجام داده و داده هایی از آن گزارش کردند، دیاتون و فراست ^{۵۱}، بودند [۳۴]. متعاقب این پدیده، روش های جلوگیری از تشکیل این ماده در خطوط انتقال گاز ابداع شدند. در سال ۱۹۵۹ برای اولین بار مبانی ترمودینامیکی هیدرات گازی توسط واندروالس و پلاتیو^{۹۲} مورد مطالعه قرار گرفت [۳۵]. در این دوره، هیدراتهای گازی عمدتاً به عنوان مشکلی برای تولید کنندگان و انتقال دهندگان گاز طبیعی در نظر گرفته می شود. به عبارت دیگر این بخش از تاریخچه هیدراتهای گازی به ساخت

⁴⁹- Sir Humphery Davy

⁵⁰-Hammer Schmidt

⁵¹- Deaton and Frost

⁵² -Van der Waals & Platteeuw
صنایع و مشکلات ناشی از آن اختصاص دارد. شکل (۳–۲)، شماتیکی از مسدود شدن خط وط انتقال گاز به علت تشکیل هیدراتهای گازی را نشان می دهد.

reservoir -→ gas processing hydrate blockage

شکل(۳-۲)- مسدود شدن خطوط انتقال گاز به علت تشکیل هیدرات

دوره سوم : این دوره با کشف این حقیقت که طبیعت میلیونها سال پیش از بشر ، هیدراتهای گازی را تولید نموده ، از اواسط دهه ۲۰ میلادی آغاز و تاکنون ادامه دارد. این هیدراتها در نواحی یخچالی اقیانوس های عمیق و همچنین خارج از جو زمین در سیارت دیگری نظیر مریخ وجود دارند. به عنوان نتیجه ، عصر حاضر محل تلاقی هرسه دوره تاریخچه هیدرات می باشد.

برای جلوگیری از بروز مشکلات ناشی از ایجاد کریستال هیدرات در صنعت نفت و گاز مطالعات فراوانی انجام شده و به راه حل هایی اشاره شده است که به طور خلاصه عبارتند از: ۱- جداسازی کامل آب از نفت و گاز. ۲- افزایش دمای گاز به نحوی که دمای آن بالاتر از دمای لازم برای تشکیل هیدرات در یک فشار مشخص باشد. ۳- کاهش فشار گاز به نحوی که فشار آن پایین تر از فشار لازم برای تشکیل هیدرات در یک دمای مشخص باشد.

۴- جا به جایی منحنی تعادلی گاز- آب توسط افزودن مواد نظیر متانول، گلایکول و یا الکترولیت ها.

۳-۳- ساختارهای کریستالی هیدراتهای گازی

نخستین بار خصوصیات شبکه کریستالی هیدرات توسط Muller مطالعه شد و بر اساس نظر وی دو نوع ساختار کریستالی I (sI) و IT (sI) شناخته شد [۳۶]. در ادامه Ripmeester با کشف ساختار H (Hs) کریستال هیدرات نشان داد مولکول های بزرگتر از نرمال بوتان مانند متیل سیکلو هگزان که به علت بزرگی اندازه نمی توانند در حفره های ایجاد شده به وسیله ساختار I و Π قرار گیرند، با همراهی یک مولکول کوچک نظیر متان که گاز کمکی^{۳۵} نامیده می شوند، می توانند ساختار هیدرات نوع H را تولید کنند [۳۷]. هر ساختار در نتیجه پیوند هیدروژنی بین اتم های اکسیژن در مولکول آب با اتم های هیدروژن در مولکول آب دیگر، به وجود می آید. اتم اکسیژن دارای چهار الکترون در مدار آخر خود بوده که از این تعداد دو الکترون را با دو اتم هیدروژن به اشتراک گذاشته و پیوند هیدروژنی تشکیل می دهد. شکل (۳–۳)، پیوند هیدروژنی بین مولکول های آب را نشان می دهد. اگر حلقه های تشکیل شده ناشی از پیوند هیدروژنی شامل پنج مولکول آب باشند، تعداد دوازده تا از این حلقه های یک دوازده وجهی منتظم را بوجود می آورند که به صورت ¹⁵ نمایش داده می شود. این حفره که شامل بر ۱۲ وجه پنج ضلعی^{۴۵} می باشد، به عنوان واحد اصلی سازنده تمامی ساختارها محسوب می شود. شکل(۳–۴)، دوازده وجهی منتظم متشکل از مولکول های آب را نشان می دهد.

پایداری کریستال هیدرات در نتیجه پیوند هیدروژنی بین مولکول های آب و نیروهای واندروالس بین مولکول های آب و نیروهای واندروالس بین مولکول های گاز و آب در شبکه ساختار هیدرات است. هر ساختار هیدرات دارای تعداد متفاوتی از مولکول های گاز و آب است که نسبت تعداد مولکول های آب به تعداد مولکول های گاز در هر ساختار را عدد هیدرات^{۵۵} می نامند.

شکل(۳-۳)- مولکول آب و تشکیل پیوند هیدروژنی (a- بین دو مولکول آب ، b- بین چهار مولکول آب)

⁵³-Help gas

⁵⁴ - Pentagonal Dodecahedron

⁵⁵ - Hydrate Number

شکل(۳-۴)- دوازده وجهی منتظم متشکل از مولکول های آب

I – ۳–۱– ساختار نوع I

این ساختار ساده ترین نوع ساختار کریستالی هیدرات محسوب می شود. چنان چه یک دوازده وجهی با سطوح پنج ضلعی از طریق به اشتراک گذاشتن اضلاع در فضا تکرار شود، ساختار نوع I، ایجاد خواهد شد. در نتیجه تشکیل این ساختار یک حفره 26 ¹⁶ ، به وجود می آید که در واقع یک ساختار چهارده وجهی⁴⁶ با دوازده وجه پنج ضلعی و دو وجه شش ضلعی است. شکل (۳–۵)، ساختار نوع I متشکل از دوازده وجه پنج ضلعی و دو وجه شش ضلعی را نشان می دهد. شکل (۳–۹)، ساختار متشکل از دوازده وجه پنج ضلعی و دو وجه شش ضلعی را نشان می دهد. شکل (۳–۶)، ساختار می می از دوازده وجه پنج ضلعی و دو وجه شش ضلعی را نشان می دهد. شکل (۳–۶)، ساختار می باشد، می توانند در این حفره ها قرار گیرند. گازهای تشکیل دهنده کریستال هیدارت نوع I شامل می باشد، می توانند در این حفره ها قرار گیرند. گازهای تشکیل دهنده کریستال هیدارت نوع I شامل

⁵⁶ - Tetra Kaidecahedron

شکل (۵–۵)- ساختار نوع I متشکل از دوازده وجه پنج ضلعی و دو وجه شش ضلعی

شکل (۳–(-7)) ساختار نوع I کریستال هیدرات

Π-۳-۲- ساختار نوع Π

 هستند. شکل (۳–۷)، ساختار نوع Π متشکل از دوازده پنج ضلعی و چهار شش ضلعی را نشان می دهد. همچنین شکل (۳–۸)، ساختار کریستالی هیدرات نوع Π را نشان می دهد [۳۴].

شکل (۳–۷)- ساختار نوع Π متشکل از دوازده پنج ضلعی و چهار شش ضلعی

شکل (۳–۸)- ساختار نوع Π کریستال هیدرات

H -۳-۳- ساختار نوع H

در ساختار نوع H علاوه به حفره 5^{12} ، دو حفره دیگر نیز وجود دارد که شکل تمامی آن ها در شکل (-9)، نشان داده شده است. این ساختار شامل ۳۴ مولکول آب است که از کنار هم قرار گرفتن سه حفره 5^{12} ، دو حفره 5^{12} ، ویک حفره 5^{12} و بوجود می آید [۳۴].

شکل (۳–۹)- واحدهای سازنده ساختار نوع H

شکل (۳–۱۰)، ساختار کریستالی هیدراتهای نوع H را نشان می دهد.

شکل (۳-۱۰)- ساختار کریستالی هیدراتهای نوع H

۳-۴- مشخصات شبکه هیدرات

در این قسمت مشخصاتی و خصوصیاتی از شبکه هیدرات های گازی برای ساختارهای مختلف ارائه شده است. شکل(۳–۱۱)، ساختار های مختلف کریستالی هیدرات های نوع I، نوع I و نوع H را به همراه ساختار کریستالی و تعداد حفره های آنها، نشان می دهد. همچنین مولکوهای مهمانی که می توانند در هریک از ساختارهای مورد بحث قرار بگیرند، در شکل (۳–۱۱)، نشان داده شده است.

همچنین جدول (۳-۱)، مشخصات شبکه های مختلف ساختارهای هیدرات های گازی را نشان می دهد [۳۴].

شکل(۳–۱۱)- ساختار های مختلف کریستالی هیدرات و حفره های آنها

ساختار H			ساختار П		ساختار I		ساختار هيدرات	
حفره	حفره	حفره	حفره	حفره	حفره	حفره		
بزرگ	متوسط	کوچک	بزرگ	کوچک	بزرگ	کوچک	نوع حفره	
5 ¹² 6 ⁸	4 ³ 5 ⁶ 6 ³	5 ¹²	5 ¹² 6 ⁴	5 ¹²	5 ¹² 6 ²	5 ¹²		
5.71	4.06	3.91	4.73	3.91	4.33	3.95	شعاع متوسط حفره (آنگستروم)	
1	2	3	8	16	6	2	تعداد حفره موجود در ساختار	
36	20	20	28	20	24	20	عدد همسایگی*	
34			136		46		تعداد مولكول آب	
HEXAGONAL			CUBIC		CUBIC		نوع شبکه کریستالی	
a=12.26 & c=17.1			a=17.3		a=12		$\left(A^{\circ} ight)$ ثابت شبکه	

جدول (۳–۱)- مشخصات شبکه های مختلف کریستالی هیدرات

*عدد همسایگی : تعداد اتم های اکسیژن موجود در هر حفره

جدول (۳–۲)، نسبت اندازه مولکولهای میزبان به اندازه حفره ها را برای مولکولهای مهمان مختلف و برای ساختارهای هیدرات نوع Π و نوع H، نشان می دهد. همچنین شکل (۳–۱۲)، اندازه مولکولهای مهمان مختلف و ساختار هیدراتی که می توانند تولید کنند را نشان می دهد [۳۴].

 H و H و I ، I دسبت اندازه مولکول های مهمان به اندازه حفره ها در ساختارهای I و

Molecule	Diameter (A°)	Structure I		Structure П		Structure H		
		5 ¹²	5 ¹² 6 ²	5 ¹²	5 ¹² 6 ⁴	5 ¹²	4 ³ 5 ⁶ 6 ³	5 ¹² 6 ⁸
N ₂	4.1	0.804	0.700	0.817	0.616	0.817	0.771	0.476
CH ₄	4.36	0.855	0.744	0.868	0.655	0.869	0.820	0.506
<i>CO</i> ₂	5.12	1.00	0.834	1.02	0.769	1.02	0.962	0.594
C_2H_6	5.5	1.08	0.939	1.10	0.826	1.10	1.03	0.638
C_3H_8	6.28	1.23	1.07	1.25	0.943	1.25	1.18	0.729
$i - C_4 H_{10}$	6.5	1.27	1.11	1.29	0.976	1.29	1.22	0.754
$n - C_4 H_{10}$	7.1	1.39	1.21	1.41	1.07	1.41	1.33	0.824

شکل (۳-۱۲)- اندازه مولکولهای مهمان مختلف و ساختار هیدرات تولیدی

۳-۵- مفهوم تعادل

تعادل شرطی از سکون است که در آن هیچ تغییری در خواص ماکروسکوپیک یک سیستم با زمان رخ نمی دهد و این دلالت بر موازنه بین همه عواملی دارد که ممکن است موجب تغییر شوند. با صرف نظر از آثار نیروهای کشش سطحی، شتاب و تغییر وضعیت در میدان خارجی مانند میدان جاذبه ای و الکترومغناطیسی و با فرض انجام نگرفتن واکنش شیمیایی و هسته ای، تعادل داخلی را می توان نسبت به سه فرآیند زیر مورد بررسی قرار داد :

۱ - انتقال حرارت بین هر دو فازی که در سیستم ناهمگن وجود دارد

۲- جابجایی مرز فازی

۳- انتقال جرم هر جزء سیستم از مرز فازی

یتانسیل های حاکم بر دو فرآیند اول به ترتیب اختلاف درجه حرارت و فشار هستند و پتانسیل حاکم بر فرآیند سوم که در ترمودینامیک تعادل فازی مورد بررسی قرار می گیرد، پتانسیل شیمیایی نام دارد.

۳-۵-۱ قانون فاز ^{۵۷}

فاز همگن در حالت تعادل به صورت ناحیه ای در فضا که خواص شدتی^{۸۸} آن در همه جا یکسان است، تعريف می شود. خواص شدتی خواصی مستقل از جرم، اندازه يا شكل فاز هستند. بر اساس قانون فاز گیبس، تعداد خواص شدتی که برای تعیین دقیق حالت تعادل باید مشخص باشند، از رابطه زیر محاسبه می شود[۳۴]:

$$F = NC + 2 - NP - r - s \tag{1-7}$$

که در رابطه (۳–۱)، F تعداد خواص شدتی مستقل (درجه آزادی^{۵۹})، NC تعداد اجزای موجود، NP : تعداد فازهای موجود، r تعداد واکنش های شیمیایی مستقل و s تعداد محدودیت ها، می باشند. همان طور که می دانیم در تشکیل هیدرات، واکنش شیمیایی صورت نمی گیرد و تنها نیروهای جاذبه

⁵⁷ - Phase Rule
⁵⁸ - Intensive Properties

⁵⁹ - Degree of Freedom

واندروالس بین اجزاء وجود دارد، بنابراین r صفر است. با توجه به این که محدودیتی هم در این حالت وجود ندارد، (نظیر وجود نقطه آزئوتروپ)، s هم صفر است. بنابراین قانون فاز گیبس به صورت زیر بیان می شود.

$$F = NC + 2 - NP \tag{(7-7)}$$

۳–۵–۲– شرط تعادل

حالت تعادل برای یک سیستم بسته (بدون تبادل جرم با محیط) هنگامی است که انرژی آزاد کل سیستم یعنی G_t در فشار و درجه حرارت ثابت و معین، کمینه شود، بنابراین خواهیم داشت [۳۴]:

$$(dG_t)_{T,P} = 0 \tag{(-7)}$$

چنان چه یک سیستم بسته شامل دو فاز β , α ،در تماس با یکدیگر باشد، با توجه به وجود انتقال جرم بین دو فاز، هر فاز به عنوان یک سیستم باز محسوب می شود.

برای هر یک از فاز ها می توان نوشت [۳۴]:

$$d[nG]^{\alpha} = -(ns)^{\alpha}dT + (nv)^{\alpha}dP + \sum_{i=1}^{NC} \mu_i^{\alpha} dn_i^{\alpha}$$
(f-r)

$$d[nG]^{\beta} = -(ns)^{\beta} dT + (nv)^{\beta} dP + \sum_{i=1}^{NC} \mu_i^{\beta} dn_i^{\beta}$$
 (\$\Delta-\$\mathcal{T}\$)

i در روابط (۳–۴) و (۳–۵)، n تعداد مول، v حجم مولی، NC تعداد کل اجزاء و μ_i پتانسیل شیمایی i امین جزء است که از رابطه زیر محاسبه می شود[۳۴]:

$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,P} \tag{F-T}$$

در درجه حررات و فشار ثابت، تغییرات انرژی آزاد کل سیستم عبارت است از :

$$d(G_t)_{T,P} = \sum_{i=1}^{NC} \mu_i^{\alpha} \, dn_i^{\alpha} + \sum_{i=1}^{NC} \mu_i^{\beta} \, dn_i^{\beta} = 0 \tag{Y-T}$$

در صورتی که تبادل جرم بین سیستم و محیط وجود نداشته باشد و واکنش شیمایی رخ ندهد با نوشتن یک موازنه جرم خواهیم داشت:

$$dn_i^{\alpha} = -dn_i^{\beta} \tag{A-T}$$

$$\sum_{i=1}^{NC} \left(\mu_i^{\alpha} - \mu_i^{\beta} \right) \, dn_i^{\alpha} = 0 \tag{9-7}$$

با توجه به اینکه dn_i ها غیر صفر هستند، داریم:

$$\mu_i^{\alpha} = \mu_i^{\beta} \tag{1.-7}$$

رابطه بالا برای NC جزء و NP فاز به شکل زیر بیان می شود:

$$\mu_i^{\alpha} = \mu_i^{\beta} = \dots = \mu_i^{NP} \qquad i = 1, 2, \dots, NC \tag{11-T}$$

$$d\mu_i = RTdLn(f_i) \tag{17-7}$$

در رابطه (۲–۱۲)، f فوگاسیته i امین جزء می باشد. با انتگرال گیری از رابطه (۳–۱۲) خواهیم داشت:

$$\mu_i = RTLn(f_i) + \mu_i^{C} \tag{17-7}$$

که²µثابت انتگرال گیری محسوب می شود و تنها تابع درجه حرارت است. با در نظر گرفتن شرط درجه حرارت ثابت برای همه فازها، خواهیم داشت [۳۴]:

$$f_i^{\alpha} = f_i^{\beta} = \dots = f_i^{NP} \qquad i = 1, 2, \dots, NC$$
(14-7)

۳-۵-۳- فوگاسیته و ضریب فوگاسیته

فوگاسیته هر جزء در هر فاز تحت تأثیر میزان حضور آن جزء در آن فاز است. اگر x_i کسر مولی جزء i باشد، بین فوگاسیته و ضریب فوگاسیته رابطه زیر برقرار است [۲]:

$$f_i = x_i \varphi_i P$$
 (۱۵–۳)
در رابطه (۳–۱۵)، P فشار کل و φ_i ضریب فوگاسیته i امین جزء هستند. φ_i برای گاز ایده آل برابر

$$RTln(\varphi_i) = \int_{V}^{\infty} \left[\left(\frac{\partial P}{\partial n_i} \right)_{T,V,n_{i \neq n_j}} - \frac{RT}{V} \right] dV - RTln(Z)$$
(19-7)

رابطه (۳-۱۶) را می توان به صورت زیر بازنویسی نمود:

$$RTln(\varphi_i) = \int_{0}^{P} \left[\left(\frac{\partial V}{\partial n_i} \right)_{T,V,n_{i \neq n_j}} - \frac{RT}{P} \right] dP$$
(1V-T)

۳-۶- محاسبات تعادل فازی در سیستم های حاوی هیدرات گازی

برای بررسی ترمودینامیک و انجام محاسبات تعادل فازی تشکیل کریستال هیدرات، داشتن دانش دقیق از تعداد و نوع فازهای پایدار در حال تعادل، الزامی است. فازهایی که در سیستم های حاوی کریستال هیدرات احتمال تشکیل آن ها وجود دارد، به شرح زیر هستند.

(G) فاز گاز (G)

فاز گاز حاوی گازهایی است که ممکن است بتوانند کریستال هیدرات را تشکیل داده و یا نتوانند در شبکه کریستالی شرکت کنند. به علت لزوم وجود آب (به صورت مایع- جامد)، بخار آب در فاز گاز حضور دارد اما ممکن است با توجه به شرایط دما و فشار مقدار آن ناچیز باشد.

(L_W) از مایع غنی از آب (L_W)

فاز مایع غنی از آب عمدتاً حاوی آب به صورت مایع است که مقدار کمی از سایر اجزاء موجود در فاز گاز به صورت محلول در آن، وجود دارند.

*L_H) اج-۳– ف*از مایع غنی از هیدرو کربن

فاز مایع غنی از هیدروکربن حاوی ترکیبات هیدروکربنی به صورت مایع است که مقدار کمی آب نیز به صورت محلول در آن وجود دارد.

(H) فاز جامد (H)

فاز جامد حاوی کریستال های هیدرات است که از محبوس شدن مولکول های گاز در نقش مولکول های مهمان در شبکه مولکول های آب در نقش مولکول های میزبان، به وجود می آیند.

(I) فاز يخ (I)

فاز یخ حاوی مولکول های آب به صورت جامد است که امکان تشکیل آن به همراه سایر فازها در سیستم وجود دارد.

۳–۷– مدل های پیش بینی شرایط تشکیل کریستال هیدرات

پیش بینی شرایط تشکیل کریستال هیدرات عموماً به دو روش زیر انجام می شود.

۳–۷–۱– روش های تجربی روش های تجربی عمدتاً صنعتی بوده و شامل موارد زیر می باشند: ۱– روش استفاده از منحنی های وزن نسبی گاز^{.۶} ۲– روش استفاده از ضرائب توزیع^{۴۱}

۳-۷-۲- مدل های ترمودینامیکی

با توجه به مشکلات ناشی از به وجود آمدن هیدرات، مطالعات زیادی در زمینه پیش بینی شرایط تشکیل کریستال هیدرات و پایداری آن صورت گرفته است که نخستین بار مبانی ترمودینامیکی

⁶⁰ - Gas Gravity Charts

^{61 -} Distribution Coefficient

⁶² - Ostergaard Experimental Relation

هیدرات گازی توسط واندروالس و پلاتیو [۳۵] مورد مطالعه و بررسی قرار گرفت. در مقایسه با روش های تجربی، مدل های ترمودینامیکی از پایه های قوی نظری برخوردار هستند.

۸-۳- محاسبه فوگاسیته اجزاء در فاز بخار و مایع

برای محاسبه فوگاسیته اجزاء در فاز بخا و مایع، نیازمند معادله حالتی هستیم که بتواند فازهای مربوطه را پوشش دهد. برای این منظور از معادله حالت VPT که در بخش (۱–۳–۱-۴)، توضیح داده شده است، استفاده کرده ایم.

ضریب تراکم پذیری برای معادله حالت VPT، به فرم زیر ارائه شده است [۶]:

$$f(Z) = Z^{3} + (U^{*} - B^{*} - 1)Z^{2} + (A^{*} + W^{*} - U^{*}(B^{*} + 1))Z + (-W^{*}(B^{*} - 1) - A^{*}B^{*}) = 0$$
(1A-T)

جائیکه ضرایب رابطه (۳-۱۸)، از روابط زیر محاسبه می گردند [۶]:

$$A^* = \frac{aP}{R^2 T^2} \tag{19-7}$$

$$B^* = \frac{bP}{RT} \tag{(Y - Y)}$$

$$C^* = \frac{cP}{RT} \tag{(Y1-Y)}$$

$$U^* = \frac{uP}{RT} \tag{77-7}$$

$$W^* = \frac{wP^2}{R^2 T^2} \tag{(YT-T)}$$

$f(Z) = F_3 Z^3 + F_2 Z^2 + F_1 Z + F_0 = 0$ (Yf-T)

جائیکه در رابطه (۳–۲۴)، داریم:

$$F_0 = -W^*(B^* - 1) - A^*B^*$$
 (Y\Delta-\mathcal{V})

$$F_1 = A^* + W^* - U^*(B^* + 1) \tag{(Y9-Y)}$$

$$F_2 = U^* - B^* - 1 \tag{(Y-T)}$$

$$F_3 = 1 \tag{(Y - Y)}$$

با توجه به این که یک معادله درجه سوم لزوماً سه ریشه حقیقی و یا یک ریشه حقیقی و دو ریشه مختلط دارد، به منظور تعیین نقاط کمینه و بیشینه از رابطه (۳–۲۴) مشتق گرفته می شود.

$$f'(Z) = 3F_3Z^2 + 2F_2Z + F_1 = 0 \tag{19-7}$$

برای تعیین تعداد ریشه ها، باید دلتای معادله بالا را محاسبه نمود.

$$\Delta = 4F_2^2 - 12F_1F_3 = 0 \tag{(\mathbf{T} - \mathbf{T})}$$

اگر دلتا مثبت باشد، معادله سه ریشه و اگر منفی باشد، معادله تنها یک ریشه خواهد داشت. در صورتی که معادله دارای یک ریشه باشد از همان ریشه برای ادامه محاسبات استفاده می کنیم، اما اگر معادله دارای سه ریشه باشد آنگاه خواهیم داشت:

$$Z = 0 < Z_{Liquid} < Z_{min} \tag{(1-7)}$$

$$Z_{max} < Z_{gas} < Z = 2 \tag{(TT-T)}$$

در هر دو حالت فوق ریشه ای که بینZ_{min} و Z_{max} قرار می گیرد، از لحاظ ترمودینامیکی فاقد ارزش است.

۳-۸-۱ معادله حالت برای مخلوط های گازی

یکی از مزایای بزرگ معادلات حالت انجام محاسبات تعادل فازی شامل مخلوط ها است. در صورتی که یک روش رضایت بخش برای محاسبه ضرایب مخلوط در دسترس باشد، می توان از همان معادلات حالت استفاده شده در سیالات خالص، در مخلوط ها نیز استفاده کرد. عموماً این مطلب با استفاده از

روابط بیان شده بر اساس دو پارامتر a,b می باشند که این دو ضریب به صورت رایج در بسیاری از معادلات حالت استفاده می شوند [۶].

$$a_{mix} = \sum_{i=1}^{NC} \sum_{j=1}^{NC} x_i x_j a_{ij}$$
(٣٣-٣)

جائیکه در رابطه (۳–۳۳)، داریم:

$$a_{ij} = \left(a_i a_j\right)^{0.5} \tag{(TF-T)}$$

$$b_{mix} = \sum_{i=1}^{NC} x_i b_i \tag{70-7}$$

با توجه به این که a_{mix} نمی تواند به خوبی نشان دهنده نیروهای بین مولکولی باشد، بنابراین از ضریب تصحیح کننده ای که باعث بهبود جواب ها می شود استفاده شده و رابطه (۳–۳۳) به صورت زیر اصلاح می شود:

$$a_{mix} = \sum_{i=1}^{NC} \sum_{j=1}^{NC} x_i x_j a_{ij} (1 - K_{ij})$$
; $K_{ii} = 0, K_{ij} = K_{ji}$ (۳۶-۳)
اصلاح در معادله حالت VPT، به صورت زیر انجام شده است:
تعریف (T_r) برای مولکول آب به صورت زیر بیان می شود [۳۸]:
 $\alpha(T_r) = [1 + 0.72318(1 - T_r^{0.52084})]^2$ (۳۷-۳)
با توجه به این که قواعد اختلاط کلاسیک برای توصیف فازهای حاوی مولکول های قطبی از دقت
کافی برخوردار نیستند، بنابراین ضریب *a* به صورت زیر تصحیح می شود [۳۸]:

$$a = a^{c} + a^{A} \tag{(TA-T)}$$

⁶³- Mixing Rules

⁶⁴- Combining Rules

$$a^{A} = \sum_{p=1}^{NPolar} x_{p}^{2} \sum_{i=1}^{NC} x_{i} a_{pi} l_{pi}$$
(٣٩-٣)

در رابطه بالا p اندیس ماده قطبی است و $a_{Pi} = (a_P a_i)^{0.5}$ است. l_{pi} ضریب تصحیح کننده ای است که بین مولکول i و مولکول قطبی p به کار می رود و از رابطه زیر محاسبه می شود.

$$l_{pi} = l_{pi}^{0} - l_{pi}^{1} (T - T_{0})$$
(*-*)

.
$$l_{ii}=0, l_{ij}=l_{ji}$$
 نقطه انجماد آب بر حسب درجه کلوین است و در رابطه (۳–۴۰)، داریم: $l_{ii}=0, l_{ij}=0, l_{ij}=0$

۳–۸–۲– محاسبه فوگاسیته

با توجه به رابطه (۳–۱۶) برای محاسبه ضریب فوگاسیته و استفاده از معادله حالت درجه سه VPT خواهیم داشت [۶]:

$$Ln(\varphi_{i}) = -Ln(Z - B^{*}) + \frac{B_{1i}^{*}}{Z - B^{*}} + \left[\frac{A_{1i}^{*}}{Q} + \frac{A^{*}}{Q \cdot S}(U_{1i}^{*}U^{*} - 2W_{1i}^{*})\right] \left(Ln\left(\frac{2Z + U^{*} - Q}{2Z + U^{*} + Q}\right)\right) + \left(\frac{A^{*}}{S \cdot D}\right) [Z(U_{1i}^{*}U^{*} - 2W_{1i}^{*}) + (2W^{*}U_{1i}^{*} - W_{1i}^{*}U^{*})]$$
(f)- \mathcal{V})

جائیکه ضرایب رابطه (۳-۴۱)، عبارتند از [۶]:

$$Q = \sqrt{U^{*2} - 4W^*} \tag{ft-t}$$

$$S = -\left(U^{*2} - 4W^*\right) \tag{$7-$\%$}$$

$$D = Z + U^* Z + W^* \tag{(ff-r)}$$

$$A_{1i}^* = \frac{1}{n} \left(\frac{\partial (n^2 a)}{\partial n_i} \right)_{T,V,n_i} \left(\frac{P}{R^2 T^2} \right) \tag{Φ-$$$$$$$$$$$

$$B_{1i}^* = \left(\frac{\partial(nb)}{\partial n_i}\right)_{T,V,n_i} \left(\frac{P}{RT}\right) \tag{$\mathbf{F}-\mathbf{\hat{v}}$}$$

$$U_{1i}^* = \left(\frac{\partial(nu)}{\partial n_i}\right)_{T,V,n_i} \left(\frac{P}{RT}\right) \tag{$\mathbf{Y}-\mathbf{Y}$}$$

$$W_{1i}^* = \frac{1}{n} \left(\frac{\partial (n^2 w)}{\partial n_i} \right)_{T, V, n_i} \left(\frac{P}{R^2 T^2} \right) \tag{$f$$$$$$$$$$$$$$$$($f$$$$$$$$$$$$$$$$-$")}$$

$$a = a^{c} + a^{A} \Longrightarrow A^{*} = A^{c'} + A^{A'} \tag{(fq-r)}$$

 $b = b \Longrightarrow B^* = B^* \tag{(\Delta \cdot - \tilde{r})}$

$$u = b + c \Longrightarrow U^* = B^* + C^* \tag{(a)-r)}$$

$$w = -bc \Longrightarrow W^* = -B^*C^* \tag{(\Delta \Upsilon - \Upsilon)}$$

ضریب
$$A_{1i}^*$$
 با استفاده از روابط زیر محاسبه شده است:
با توجه به این که ضریب a از دو قسمت تشکیل شده است، خواهیم داشت [۶].

$$A_{1i}^* = \frac{1}{n} \left(\frac{\partial (n^2 (a^c + a^A))}{\partial n_i} \right)_{T,V,n_i} \left(\frac{P}{R^2 T^2} \right) \tag{\Delta V-V}$$

$$A_{1i}^* = \frac{1}{n} \left(\frac{\partial (n^2 a^c)}{\partial n_i} \right)_{T,V,n_i} = 2 \sum_{j=1}^{NC} x_j a_{ij} \left(1 - K_{ij} \right) \tag{def-r}$$

$$A_{1i}^* = \frac{1}{n} \left(\frac{\partial (n^2 a^A)}{\partial n_i} \right)_{T,V,n_i} = x_w^2 \left(a_w l_{wi} - \sum_{j=1}^{NC} x_j a_{wj} l_{wj} \right) \text{ if } i \neq w \qquad (\Delta \Delta - \Upsilon)$$

$$A_{1i}^* = \frac{1}{n} \left(\frac{\partial (n^2 a^A)}{\partial n_i} \right)_{T,V,n_i} = (2x_w - x_w^2) \left(\sum_{j=1}^{NC} x_j a_{wj} l_{wj} \right) \text{ if } i = w \qquad (\Delta \mathcal{P} - \mathcal{V})$$

:[8] با استفاده از رابطه زیر محاسبه شده است B^*_{1i}

$$B_{1i}^* = \left(\frac{\partial(nb)}{\partial n_i}\right)_{T,V,n_i} \left(\frac{P}{RT}\right) = B_i^* = \left(\frac{P}{RT}\right) b_i \tag{\Delta V-T}$$

ضریب U_{1i}^{*} ، با استفاده از رابطه زیر محاسبه می شود $[\mathcal{F}]$:

$$U_{1i}^* = \left(\frac{\partial(nu)}{\partial n_i}\right)_{T,V,n_i} \left(\frac{P}{RT}\right) = \left(\frac{P}{RT}\right)(b_i + c_i) = B_i^* + C_i^* \tag{(\Delta A-T)}$$

جائیکه در رابطه (۵۸–۳)،
$$c_i^* = \left(rac{P}{RT}
ight) c_i$$
، می باشد.

$$W_{1i}^{*} = \frac{1}{n} \left(\frac{\partial (n^{2}w)}{\partial n_{i}} \right)_{T,V,n_{i}} \left(\frac{P}{R^{2}T^{2}} \right) = -\left(\frac{P}{R^{2}T^{2}} \right) (b_{i}c + c_{i}b) = -(C^{*}B_{i}^{*} + B^{*}C_{i}^{*}) \quad (\Delta 9 - \Upsilon)$$

۹-۹- محاسبه فوگاسیته اجزاء در فاز هیدرات

برای محاسبه خواص فاز هیدرات عموماً از مدل اصلاح شده واندروالس – پلاتیو استفاده می شود [۳۵]. بر اساس این مدل تشکیل هیدرات مشابه فرآیند جذب هم دما^{۶۵} است. فرضیات مدل واندروالس – پلاتیو به شرح زیر است:

۳- نیروهای بین مولکول های مهمان و مولکول های آب بر اساس یک تابع پتانسیل بیان می شود و هر حفره اساساً کروی در نظر گرفته می شود.

۴- از نیروهای بین مولکول های مهمان موجود در شبکه، صرف نظر می شود.

۵- فقط بین مولکول های مهمان موجود در حفره و مولکول های آب که آن را احاطه کرده اند نیرویی وجود دارد.

⁶⁵ - Isothermal Adsorption

⁶⁶ - Ideal Gas Partition Function

۶- توزیع انرژی آزاد مولکول های آب مستقل از نحوه اشغال شبکه کریستالی به وسیله مولکول ها می باشد.

در این مدل تشکیل هیدرات، دو مرحله ای در نظر گرفته شده است. در مرحله نخست قفس های خالی هیدرات (هیدرات استاندارد)، توسط آب خالص تشکیل می گردد (مرحله فرضی). مرحله دوه در واقع پر شدن ساختار قفسی هیدرات توسط مولکول های مهمان، می باشد. در مدل واندروالس – پلاتو، به هیدرات تهی همانند مواد جاذب نگریسته می شود که مولکول های مهمان را در قفس های خود جذب می کنند. بدین منظور از تئوری جذب لانگمور استفاده شده است. از ترمودینامیک آماری برای محاسبه پتانسیل شیمیایی آب در ساختار هیدرات پر و از ترمودینامیک کلاسیک برای محاسبه پتانسیل شیمیایی آب در ساختار هیدرات استاندارد، استفاده شده است. شکل (۳–۱۳)، شماتیکی از مدل واندروالس – پلاتو را نشان می دهد.

شكل (۳-۱۳)- شماتيك مدل واندروالس- پلاتيو

شرایط تعادل در مدل واندروالس - پلاتو، از برابری پتانسیل شیمیایی آب در فاز هیدرات با فازهای آب مایع و یخ، تعریف می شود. بنابراین خواهیم داشت [۳۵]:

$$\Delta \mu_w^{\ H} = \mu_w^{\ \beta} - \mu_w^{\ H} = \mu_w^{\ \beta} - \mu_w^{\ \pi} = \Delta \mu_w^{\ \pi} \tag{($.-$``)}$$

جائیکه در رابطه (۳–۶۰)، ^۵µ^w پتانسیل شیمیایی هیدرات خالی بوده که فازی فرضی، می باشد. اختلاف پتانسیل شیمیایی آب در هیدرات خالی و هیدرات پر (واقعی)، از رابطه زیر محاسبه می شود [۳۵]:

$$\Delta \mu_w^H(T,P) = -RT \sum_m v_m Ln\left(1 - \sum_j \theta_{mj}\right)$$
(F)-\vec{v})

جائیکه در رابطه (۳–۶۱)، v_m تعداد حفره های نوع m بر تعداد مولکولهای آب در شبکه هیدرات، می باشند. کسری از مولکول های مهمان j که در حفره های نوع m ، واقع می شوند، از رابطه زیر محاسبه می شود [۳۵]:

$$\theta_{mj} = \frac{C_{mj}(T)f_j(T,P)}{1 + \sum_j C_{mj}(T)f_j(T,P)}$$
(FY-T)

در رابطه (۳–۶۲)، $(f_j(T, P))$ فوگاسیته مهمان j و C_{mj} ثابت لانگمور بوده که به صورت زیر تعریف می شود:

$$C_{mj}(T) = \frac{4\pi}{kT} \int_0^{R(cell)-a} exp\left[\frac{-w(r)}{kT}\right] r^2 dr$$
(97-7)

در رابطه بالا کران بالای انتگرال را می توان به صورت $r = R(cell) - a - \xi$ نیز در نظر گرفت که پارامترغ عددی بسیار کوچک است [۳۵].

$$C_{mj}(T) = \frac{A_{mj}}{T} exp\left(\frac{B_{mj}}{T}\right); m: index of cavity, j = index of component \quad (\mathcal{F}^{-})$$

به جای برابری پتانسیل شیمیایی آب در فازها، می توان از برابری فوگاسیته آب در فازها، برای برقراری شرط تعادل استفاده نمود. این شرایط که اولین بار توسط Klauda و ۴۰]، ارائه شده که به صورت زیر می باشد:

$$f_w^{\ H}(T,P) = f_w^{\ \pi}(T,P) \tag{$$\sigma \Delta - $$$}) \tag{$$$$$$$$$$$$

در رابطه (۳–۶۵)، فوگاسیته آب در فاز هیدرات، از رابطه زیر محاسبه می شود [۴۰]:

$$f_w^{\ H}(T,P) = f_w^{\ \beta}(T,P) \exp\left(\frac{-\Delta\mu_w^{\ H}(T,P)}{RT}\right)$$
(99-7)

در رابطه (۳–۶۴)، $f_w^{\pi}(T,P)$ فوگاسیته آب در حالت فاز بخار یا مایع می باشد که با استفاده از محاسبات تبخیر ناگهانی f_w^{γ} ، محاسبه خواهد شد.

۳-۱۰- محاسبه تبخیر ناگهانی

در محاسبات تبخیر ناگهانی دو فازی بخار – مایع، یک خوراک که می تواند چند جزئی هم باشد، در شرایط خاص دما و فشار به دو فاز بخار و مایع در حال تعادل و با ترکیبی متفاوت از ترکیب خوراک تبدیل می شود. سیستمی را در نظر می گیریم که در آن:

- ت مقدار مول خوراک F
- L: مقدار مول فاز مايع
- *V*: مقدار مول فاز بخار
- کسر مولی i امین جزء در خوراک : z_i
- کسر مولی i امین جزء در فاز مایع x_i
- کسر مولی i امین جزء در فاز بخار: y_i
 - NC: تعداد کل اجزاء در خوراک

(8/-5)

هستند. برای انجام محاسبات تبخیر ناگهانی در دما و فشار مشخص مقدار فازها و کسر مولی اجزاء به نحوی محاسبه می شوند که شرط برابری پتانسیل شیمیایی i امین جزء در هر فاز برقرار شود.

برای سیستمی شامل یک مول خوراک با ترکیب z، موازنه جرم کلی به صورت زیر بیان می شود [۴۱].

- $1 = L + V \tag{9V-W}$
 - با نوشتن موازنه جرم جزئی برای *i* امین جزء خواهیم داشت [۴۱].

 $z_i = x_i L + y_i V \ i = 1, ..., NC$

⁶⁷-Flash Calculation

شرط برابری فوگاسیته اجزاء در کل فاز ها با استفاده از رابطه زیر بیان می شود [۴۱].
$$f_{i1} = f_{i2} = \dots = f_{iNP} \,\,\, i = 1, \dots, NC$$

برای حل روابط بالا، در ابتدا با داشتن حدس اولیه، کسر مولی در فاز بخار و مایع، ضریب توزیع با استفاده از رابطه زیر محاسبه می شود [۴۱].

$$k_i = \frac{y_i}{x_i} \tag{Y} \cdot - \mathfrak{Y})$$

با توجه به این که حاصل جمع کسر مولی ها در فاز های مختلف برابر یک است، بنابراین خواهیم داشت:

$$\sum_{i=1}^{NC} x_i = \sum_{i=1}^{NC} y_i = 1 ; i = 1, ..., NC$$
(Y)-T)

با استفاده از روابط (۳–۶۸) و (۳–۷۰)، خواهیم داشت:

$$\sum_{i=1}^{NC} \frac{z_i(k_i - 1)}{1 + V(k_i - 1)} = 0 ; i = 1, ..., NC$$
(YY-Y)

با حل معادله بالا به روش نیوتن – رافسون، مقدار V محاسبه می شود و در ادامه می توان مقادیر جدید x_i و y_i با استفاده از روابط زیر محاسبه نمود [۴۱].

$$x_i = \frac{z_i}{1 + V(k_i - 1)} \tag{YT-T}$$

$$y_i = k_i x_i \tag{Yf-T}$$

با انتخاب یک مدل ترمودینامیکی مناسب مقادیر فوگاسیته ها در فاز ها محاسبه شده و شرط تعادل با استفاده از رابطه زیر بررسی می شود [۴۱]:

$$\sum_{i=1}^{NC} \left(\frac{f_i^L}{f_i^V} - 1 \right)^2 < 10^{-6} \tag{VQ-T}$$

اگر شرط برابری فوگاسیته ها برقرار نباشد، مقادیر جدید ضرائب توزیع با استفاده از رابطه زیر محاسبه می شوند [۴۱]:

$$k_i^{t+1} = \frac{f_i^L}{f_i^V} k_i^t \tag{VF-T}$$

جائیکه بالانویس t ، معرف دفعات تکرار محاسبات، می باشد.

۳–۱۱– نحوه محاسبه فشار تعادلی

شکل (۳–۱۴)، روند محاسبه فشار تعادلی هیدرات های گازی را با مشخص بودن دما، نشان می دهد.

شکل (۳–۱۴)- روند محاسبه فشار تعادلی هیدرات های گازی

فصل چهارم

نتايج

۴–۱– معتبرسازی محاسبات

در این قسمت برای اینکه به درستی روابط و همچنین معتبر بودن روش های ارائه شده برای محاسبه خواص ترمودینامیکی گاز طبیعی پی ببریم، محاسبات را با داده های آزمایشگاهی موجود مقایسه کرده ایم. محاسبات برای متان خالص، مخلوطهایی شبیه گاز طبیعی و گازهای طبیعی، انجام شده اند. در نهایت خطای محاسبات را نسبت به داده های آزمایشگاهی محاسبه گردیده است.

قبل از اینکه به محاسبه خواص ترمودینامیکی بپردازیم، لازم است دو پارامتر مهم در معتبرسازی محاسبات را به صورت زیر تعریف کنیم.

درصد خطا که با استفاده از رابطه (۴–۱)، محاسبه می شود:

$$Error(\%) = \frac{Property_{Cal} - Property_{Exp}}{Property_{Exp}} * 100$$
(1-f)

جائیکه در رابطه (۴–۱)، Error درصد خطا، Property_{cal} خاصیت ترمودینامیکی محاسبه شده با استفاده از معادله حالت AGA8 و Property_{Exp} خاصیت ترمودینامیکی محاسبه شده از آزمایش (بدست آمده از داده های آزمایشگاهی)، می باشند.

درصد انحراف مطلق میانگین (AAPD)، نیز با استفاده ا رابطه (۴-۲)، تعریف شده است:

$$AAPD(\%) = \frac{1}{n} \left| \frac{Property_{Cal} - Property_{Exp}}{Property_{Exp}} * 100 \right|$$
(Y-Y)

در رابطه (۲-۴)، n بیانگرتعداد داده های آزمایشگاهی، می باشد.

از دو پارامتر درصد خطا و درصد انحراف مطلق میانگین (AAPD)، به طور گسترده در طول این فصل استفاده شده است.

۴-۱-۱- معتبرسازی محاسبات ضریب تراکم پذیری گاز طبیعی

در این قسمت ضریب تراکم پذیری برای دو مخلوط شبیه گاز طبیعی با استفاده از معادله حالت AGA8، محاسبه شده است. محاسبات با داده های آزمایشگاهی مقایسه شده و درصد خطا و درصد انحراف مطلق میانگین (AAPD)، محاسبات نسبت به داده های آزمایشگاهی محاسبه شده است. جدول (۴–۲)، درصد مولی ترکیبات دو مخلوط مورد استفاده در محاسبات ضریب تراکم پذیری را نشان می دهد.

Component	Mix1	Mix2
CH ₄	98.61	62.65
<i>N</i> ₂	1.09	12.09
<i>CO</i> ₂	0.3	-
C_2H_6	-	25.26

جدول (۴–۱)- درصدمولی ترکیبات مورد استفاده در محاسبات ضریب تراکم پذیری

Mix1 -۱-۱-۱-۱ محاسبات ضریب تراکم پذیری

مخلوط Mix1، ترکیبی از متان، نیتروژن و دی اکسید کربن، می باشد. این مخلوط شبیه گاز طبیعی بوده و درصد مولی اجزای موجود در ترکیب در جدول (۴–۱)، آورده شده اند. ضریب تراکم پذیری برای فشار ۱ تا ۱۲ مگاپاسکال و برای چهار حالت دما ثابت ۳۰۳ کلوین، ۳۱۳ کلوین، ۳۲۳ کلوین و ۳۳۳ کلوین محاسبه شده است. نمودار (۴–۱) ، ضریب تراکم پذیری را برای مخلوط Mixl، بر حسب فشار و برای حالتهای دما ثابت، بدست آمده از آزمایش و محاسبه شده توسط روش AGA8، نشان می دهد. در نمودار (۴–۱)، خطوط نشان دهنده محاسبات با استفاده از روش AGA8 بوده و شکل ها داده های آزمایشگاهی می باشند.

نمودار (۴–۲)، درصد خطا محاسبات ضریب تراکم پذیری را برای مخلوط Mixl، نسبت به داده های آزمایشگاهی نشان می دهد. با توجه به نمودار (۴–۲) ، بیشترین درصد خطا برای دمای ۳۰۳ کلوین ۳۰۳ کلوین ۳۰۳ مرای دمای ۳۳۳ کلوین ۲/۳۰ ٪، برای دمای ۳۳۳ کلوین ۲/۳۰ ٪ و برای دمای ۳۳۳ کلوین ۲/۳۰ مرای دمای ۳۳۳ مرای دمای محاسبات، در کلوین ۴/۰۰ ٪، قرار گرفته اند.

نمودار (۴–۱)- ضریب تراکم پذیری برای مخلوط Mix1 برحسب فشار و برای حالتهای دما ثابت محاسبه شده به صورت آزمایشگاهی و معادله حالت AGA8 (داده های آزمایشگاهی مرجع [۴۲])

نمودار (۲-۴)- درصد خطا برای محاسبه ضریب تراکم پذیری مخلوط Mix1

Mix2 محاسبات ضریب تراکم پذیری Mix2

مخلوط Mix2، ترکیبی از متان، نیتروژن و اتان، می باشد. این مخلوط شبیه گاز طبیعی بوده و درصد مولی اجزای موجود در ترکیب در جدول (۴–۱)، آورده شده اند. ضریب تراکم پذیری برای فشارهای تا ۶۰ مگاپاسکال و برای سه حالت دما ثابت ۲۷۵ کلوین، ۳۱۰ کلوین، ۳۴۵ کلوین محاسبه شده است. نمودار (۴–۳)، ضریب تراکم پذیری را برای مخلوط Mix2، بر حسب فشار و برای حالتهای دما ثابت، بدست آمده از آزمایش و محاسبه شده توسط روش AGA8، نشان می دهد. در نمودار (۴–۳)، خطوط نشان دهنده محاسبات با استفاده از روش AGA8 بوده و شکل ها داده های آزمایشگاهی می باشند.

نمودار (۴–۳)- ضریب تراکم پذیری برای مخلوط Mix2 برحسب فشار و برای حالتهای دما ثابت محاسبه شده به صورت آزمایشگاهی و معادله حالت AGA8 (داده های آزمایشگاهی مرجع [۴۳])

نمودار (۴–۴)، درصد خطا در محاسبه ضریب تراکم پذیری برای مخلوط Mix2 را برحسب فشار و برای دماهای ثابت، نشان می دهد. با توجه به نمودار (۴–۴)، بیشترین درصد خطا برای دمای ۲۷۵ کلوین دماهای ثابت، نشان می دهد. با توجه به نمودار (۴–۴)، بیشترین درصد خطا برای دمای ۲۷۵ کلوین ۲۰۵۷ و ۰/۵۰۰ ٪, برای دمای ۲۷۵ کلوین ۴۰۵ کلوین ۴۰۵ کلوین ۶۰۷ کلوین ۲۰۵۶ کرون . با توجه به نمودار (۴–۴)، برای دمای ۲۷۵ کلوین و کلیه فشارها، درصد خطا مقدار بسیار کم و کمتر از ۵/۰ ٪, یا ۵/۰۰ ٪, می باشند. با توجه به نمودار (۴–۴)، برای دماهای ثابت ۲۷۵ و ۳۱۰ کلوین و کلیه فشارها، درصد خطا مقدار بسیار کم و کمتر از ۵/۰ ٪ یا ۵/۰ – ٪، می باشند. در حالی که برای دمای ۳۴۵ کلوین با افزایش فشار درصد خطا نیز افزایش پیدا می کند. دلیل این امر این است که، در دمای ۳۴۵ کلوین و فشارهای بالاتر از ۱۷ مگاپاسکال ما در ناحیه ۳ در شکل (۲–۱) مربوط به عدم قطعیت قرار گرفته و نسبت به فشارهای پایین، محاسبات خطای بیشتری خواهند داشت.

نمودار (۴-۴)- درصد خطا برای محاسبه ضریب تراکم پذیری مخلوط Mix2

جدول (۴–۲)، درصد انحراف مطلق میانگین (AAPD)، را برای محاسبات ضریب تراکم پذیری نشان می دهد. با توجه به داده های جدول (۴–۲)، درصد انحراف محاسبات ضریب تراکم پذیری برای مخلوط Mix1، کمتر از ۱/۱۴ ٪ و برای مخلوط Mix2، کمتر از ۲/۰ ٪ می باشند. درنهایت درصد انحراف مطلق میانگین (AAPD)، برای ۱۴۵ داده آزمایشگاهی کمتر از ۰/۱۸ ٪ بوده که نشان دهنده دقت بالای روش ارائه شده برای محاسبه ضریب تراکم پذیری گاز طبیعی می باشد.

Mixture	Ref	Number	T Range	P Range	AAPD (%)
		of Data	[K]	[MPa]	
Mix1	McElroy et al [42]	44	303-333	1-12	0.138
Mix2	Staby and Mollerup' [43]	101	275-345	0.2-60.5	0.194
Sum		145			0.177

جدول (۲-۴)- درصد انحراف مطلق میانگین (AAPD) در محاسبات ضریب تراکم پذیری

۴–۱–۲– معتبرسازی محاسبات چگالی گاز طبیعی

در این قسمت چگالی گاز طبیعی با استفاده از روش AGA8 و برای شش ترکیب مختلف از گاز طبیعی محاسبه شده و محاسبات با داده های آزمایشگاهی مقایسه شده و خطای محاسبات و انحراف محاسبات از داده های تجربی محاسبه شده اند. جدول (۴–۳)، درصد مولی ترکیبات گاز طبیعی را برای این شش ترکیب گاز طبیعی نشان می دهد.

Component	NG1	NG2	NG3	NG4	NG5	NG6
CH ₄	98.352	92.436	90.991	90.362	81.299	85.898
N ₂	0.841	5.751	2.031	1.474	13.575	1.007
<i>CO</i> ₂	0.066	0.052	0.403	0.676	0.994	1.498
C_2H_6	0.511	1.285	2.949	5.708	3.294	8.499
C_3H_8	0.153	0.345	1.513	1.124	0.637	2.296
02	-	-	-	0.011	-	-
Не	-	-	-	0.015	-	-
$i - C_4 H_{10}$	0.021	0.041	0.755	0.301	0.101	0.351
$n - C_4 H_{10}$	0.031	0.046	0.755	0.169	0.1	0.347
$i - C_5 H_{12}$	0.008	0.015	0.299	0.059	-	0.051
$n - C_5 H_{12}$	0.011	0.014	0.304	0.029	-	0.053
$n - C_6 H_{14}$	0.005	0.012	-	0.058	-	-
$n - C_7 H_{16}$	0.001	-	-	0.035	-	-
$n - C_8 H_{18}$	0.0003	-	-	0.008	-	-

جدول (۴–۳) - درصد مولی ترکیبات مورد استفاده در محاسبات چگالی گاز طبیعی

NG1 محاسبه چگالی برای گاز طبیعی

برای گاز طبیعی NG1، با درصد مولی مشخص در جدول (۴–۳)، چگالی گاز طبیعی برای فشارهای تا ۱۵ مگاپاسکال و برای حالتهای دما ثابت ۲۵۳/۱۵ کلوین، ۲۷۳/۱۵ کلوین، ۲۹۳/۱۵ کلوین و NG1 کلوین، محاسبه شده است. نمودار (۴–۵)، درصد خطای محاسبات چگالی گاز طبیعی NG1 را نسبت به داده های آزمایشگاهی، بر حسب فشار و برای حالتهای دما ثابت نشان می دهد.

با توجه به نمودار (۴–۵) ، بیشترین درصد خطا برای حالت دما ثابت ۲۵۳/۱۵ کلوین برابر با ۰/۰۳– ٪، برای حالت دما ثابت ۲۷۳/۱۵ کلوین برابر با ۰/۰۲۳ ٪، برای حالت دما ثابت ۲۹۳/۱۵ کلوین برابر با ۰/۰۰۶۸ ٪ و برای حالت دما ثابت ۳۲۳/۱۵ کلوین برابر با ۰/۰۱۱ ٪، می باشند.

◆ T=253.15 K ■ T=273.15 K ▲ T=293.15 K ● T=323.15 K

نمودار (۴-۵)- درصد خطا برای محاسبه چگالی گاز طبیعی NG1 (داده های آزمایشگاهی مرجع [۴۴])

NG2 محاسبه چگالی برای گاز طبیعی

برای گاز طبیعی NG2، با درصد مولی مشخص در جدول (۴–۳)، چگالی گاز طبیعی برای فشارهای تا ۱۵ مگاپاسکال و برای حالتهای دما ثابت ۲۵۳/۱۵ کلوین، ۲۷۳/۱۵ کلوین، ۲۹۳/۱۵ کلوین و ۳۲۳/۱۵ کلوین، محاسبه شده است. نمودار (۴–۶)، درصد خطای محاسبات چگالی گاز طبیعی NG2 را نسبت به داده های آزمایشگاهی، بر حسب فشار و برای حالتهای دما ثابت نشان می دهد. با توجه به نمودار (۴–۶)، بیشترین درصد خطا برای حالت دما ثابت ۵۳/۱۵ کلوین برابر با ۲۲۲/۰ ٪، برای حالت دما ثابت ۲۷۳/۱۵ کلوین برابر با ۲/۰۰ ٪، برای حالت دما ثابت ۵۳/۱۵ کلوین برابر با ۲۲۲/۰ ٪، برای حالت دما

نمودار (۴-۶)- درصد خطا برای محاسبه چگالی گاز طبیعی NG2 (داده های آزمایشگاهی مرجع [۴۴])

NG3 محاسبه چگالی برای گاز طبیعی

برای گاز طبیعی NG3 ، با درصد مولی ترکیبات مشخص شده در جدول (۴–۳)، چگالی گاز طبیعی برای فشارهای تا ۳۵ مگاپاسکال و برای حالتهای دما ثابت ۲۷۰ کلوین، ۲۹۰ کلوین، ۳۰۵ کلوین و ۳۴۰ کلوین، محاسبه شده است. نمودار (۴–۷)، چگالی گاز طبیعی NG3 را برحسب فشار و برای حالتهای دما ثابت، بدست آمده از داده های آزمایشگاهی و محاسبه شده با استفاده از معادله حالت AGA8 را نشان می دهد. در نمودار (۴–۷)، اشکال، چگالی گاز طبیعی بدست آمده از آزمایش و خطوط، چگالی گاز طبیعی بدست آمده از معادله حالت AGA8، می باشند .

نمودار (۴–۸)، درصد خطای محاسبات چگالی را برای گاز طبیعی NG3 بر حسب فشار و برای حالتهای دما ثابت نشان می دهد. با توجه به نمودار (۴–۸)، بیشترین درصد خطا برای حالت دما ثابت ۲۹۰ کلوین برابر با ۴۶/۰– ٪، برای حالت دما ثابت ۲۹۰ کلوین برابر با ۴۶/۰– ٪، برای حالت دما ثابت ۲۹۰ کلوین برابر با ۲۰/۴ /۰۰– ٪، می باشند. با توجه به نمودار (۴–۸) کلوین برابر با ۱۰/۰۰ ٪، می باشند. با توجه به نمودار (۴–۸)، با افزایش دما، درصد خطای محاسبات نسبت به داده های آزمایشگاهی، کاهش پیدا می کند.

نمودار (۴-۷) - چگالی گاز طبیعی NG3 بر حسب فشار و برای حالتهای دما ثابت محاسبه شده به صورت آزمایشگاهی و معادله حالت AGA8 (داده های آزمایشگاهی مرجع [۴۵]) .

نمودار (۴-۸)- درصد خطا برای محاسبه چگالی گاز طبیعی NG3

NG4 محاسبه چگالی برای گاز طبیعی

برای گاز طبیعی NG4، با درصد مولی مشخص در جدول (۴–۳)، چگالی گاز طبیعی برای فشارهای تا ۱۵ مگاپاسکال و برای حالتهای دما ثابت ۲۵۳/۱۵ کلوین، ۲۷۳/۱۵ کلوین، ۲۹۳/۱۵ کلوین و ۳۲۳/۱۵ کلوین، محاسبه شده است. نمودار (۴–۹)، درصد خطای محاسبات مربوط به چگالی گاز طبیعی NG4 را نسبت به داده های آزمایشگاهی نشان می دهد. با توجه به نمودار (۴–۹)، بیشترین درصد خطا برای حالت دما ثابت ۲۵۳/۱۵ کلوین برابر با ۲/۰– ٪، برای حالت دما ثابت ۲۷۳/۱۵ کلوین برابر با ۲۹۳/۰ ٪، برای حالت دما ثابت ۲۵۳/۱۵ کلوین برابر با ۲۰/۰ ٪ و برای حالت دما ثابت ۲۵۳/۱۵ کلوین برابر با ۲۰۷۳ ۲۰ ٪، می باشند.

نمودار (۴-۹)- درصد خطا برای محاسبه چگالی گاز طبیعی NG4 (داده های آزمایشگاهی مرجع [۴۴]) .

NG5 محاسبه چگالی برای گاز طبیعی

برای گاز طبیعی NG5، با درصد مولی مشخص در جدول (۴–۳)، چگالی گاز طبیعی برای فشارهای تا ۱۱ مگاپاسکال و برای حالتهای دما ثابت ۲۵۰ کلوین، ۲۷۵ کلوین، ۳۰۰ کلوین و ۳۲۵ کلوین، محاسبه شده است. نمودار (۴–۱۰)، درصد خطای محاسبات مربوط به چگالی گاز طبیعی NG5 را نسبت به داده های آزمایشگاهی نشان می دهد. با توجه به نمودار (۴–۱۰)، بیشترین درصد خطا برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲/۴–٪، برای حالت دما ثابت ۲۷۵ کلوین برابر با ۲/۲۷٪، برای
حالت دما ثابت ۳۰۰ کلوین برابر با ۰/۲۵ ٪ و برای حالت دما ثابت ۳۲۵ کلوین برابر با ۰/۱۶ ٪، می باشند.

نمودار (۴–۱۰)- درصد خطا برای محاسبه چگالی گاز طبیعی NG5 (داده های آزمایشگاهی مرجع [۴۶]) .

NG6 محاسبه چگالی برای گاز طبیعی

برای گاز طبیعی NG6، با درصد مولی مشخص در جدول (۴–۳)، چگالی گاز طبیعی برای فشارهای تا ۱۱ مگاپاسکال و برای حالتهای دما ثابت ۲۷۵ کلوین، ۳۰۰ کلوین و ۳۲۵ کلوین، محاسبه شده است. نمودار (۴–۱۱)، درصد خطای محاسبات مربوط به چگالی گاز طبیعی NG6 را نسبت به داده های آزمایشگاهی نشان می دهد. با توجه به نمودار (۴–۱۱)، بیشترین درصد خطا برای حالت دما ثابت ۳۲۵ کلوین برابر با ۲/۱۰۶ ٪، برای حالت دما ثابت ۳۰۰ کلوین برابر با ۱۰/۶۰ ٪، برای حالت دما ثابت ۳۲۵ کلوین برابر با ۱۹۲۷ ٪، می باشند.

Mixture	Ref	Number of	T Range	P Range	AAPD
		Data	[K]	[MPa]	(%)
NG1	Capla et al [44]	28	253.15-323.15	1-15	0.0084
NG2	Capla et al [44]	28	253.15-323.15	1-15	0.064
NG3	Patil et al [45]	30	270-340	2-35	0.216
NG4	Capla et al [44]	28	253.15-323.15	1-15	0.06013
NG5	Hwang et al [46]	77	250-325	0.2-10.5	0.0997
NG6	Hwang et al [46]	60	275-325	0.2-10.5	0.0533
Sum		251			0.0831

جدول (۴-۴)- درصد انحراف مطلق میانگین (AAPD) در محاسبات چگالی

نمودار (۴–۱۱)- درصد خطا برای محاسبه چگالی گاز طبیعی NG6 (داده های آزمایشگاهی مرجع [۴۶]) .

برای اینکه معیار دقیقی از معتبرسازی محاسبات انجام شده برای چگالی توسط معادله حالت AGA8 داشته باشیم، درصد انحراف مطلق میانگین (AAPD)، محاسبات مربوط به چگالی را محاسبه کرده ایم. جدول (۴-۴)، درصد انحراف مطلق میانگین (AAPD) را برای محاسبات شش نوع گاز طبیعی، نشان می دهد. با توجه به جدول (۴-۴)، درصد انحراف مطلق میانگین (AAPD) محاسبات، برای تعداد ۲۵۱ داده آزمایشگاهی برابر با ۲۰۸۳۱ ٪، می باشد. با توجه جدول (۴-۴)، دقت محاسبات چگالی کمتر از ۲۰۱۹ ٪ بوده که نشان دهنده دقت بسیار بالای معادله حالت AGA8 در محاسبه چگالی گاز طبیعی برای ترکیبات متفاوت گاز طبیعی با تعداد اجزای بالا در ترکیب گاز، می باشد. ۴–۱–۳– معتبرسازی محاسبات ظرفیت گرمایی در فشار ثابت

در این قسمت ظرفیت گرمایی در فشار ثابت، برای متان خالص و سه نوع ترکیب متفاوت شبیه گاز طبیعی با استفاده از روش AGA8 محاسبه شده است. در نهایت محاسبات با استفاده از داده های آزمایشگاهی مقایسه شده ، خطای محاسبات و درصد انحراف مطلق میانگین (AAPD) محاسبات نسبت به داده های آزمایشگاهی، محاسبه شده اند. جدول (۴–۵)، درصد مولی ترکیبات مورد استفاده در محاسبات ظرفیت گرمایی در فشار ثابت را نشان می دهد.

Component	Pure Methane	Mix3	Mix4	Mix5
CH_4	100	85	79.942	89.569
N_2	-	-	9.939	0.494
<i>CO</i> ₂	-	-	2.09	-
C_2H_6	-	15	5.029	8.348
C_3H_8	-	-	3	1.197
$i - C_4 H_{10}$	-	-	-	0.149

جدول (۴–۵) - درصد مولی ترکیبات مورد استفاده در محاسبات ظرفیت گرمایی در فشار ثابت

۴–۱–۳–۱– محاسبه ظرفیت گرمایی در فشار ثابت برای متان خالص

در این حالت ظرفیت گرمایی در فشار ثابت برای متان خالص، برای فشارهای تا ۳۰ مگاپاسکال و برای حالتهای دما ثابت ۲۵۰ کلوین، ۲۷۵ کلوین، ۳۰۰ کلوین و ۳۵۰ کلوین، با استفاده از معادله حالت AGA8 محاسبه شده و محاسبات نهایت با داده های آزمایشگاهی مقایسه گردیده اند. نمودار (۴–۱۲)، درصد خطا در محاسبه ظرفیت گرمایی در فشار ثابت برای متان خالص را بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴–۱۲)، بیشترین درصد خطا برای حالت دما ثابت دما ثابت برای متان خالص را بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴–۱۲)، بیشترین درصد خطا برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲/۰۰ ٪، برای حالت دما ثابت ۲۵۰ کلوین برابر با ۸۵/۰ ٪، برای حالت دما ثابت ۲۰۰ کلوین برابر با ۱۲/۰ – ٪، می باشند. با ثابت ۲۰۰ کلوین برابر با ۲/۱۶ – ٪، می باشند. با توجه به نمودار (۴–۲۲)، در حالت دما ثابت ۲۵۰ کلوین برابر با ۲/۰ – ٪، می باشند. با ثابت ۲۰۰ کلوین برابر با ۲/۱۶ – ٪، می باشند. با توجه به نمودار (۴–۲۲)، در حالت دما ثابت ۲۵۰ کلوین برابر با ۲/۰ – ٪، می باشند. با ثابت ۲۰۰ کلوین برابر با ۱۲/۰ – ٪ و برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲/۱۶ – ٪، می باشند. با توجه به نمودار (۴–۲۲)، در حالت دما ثابت ۲۵۰ کلوین برابر با ۲/۱۶ – ٪، می باشند. با توجه به نمودار (۴–۲۱)، در حالت دما ثابت ۲۵۰ کلوین با افزایش فشار، درصد خطا افزایش پیدا توجه به نمودار (۴–۱۲)، در حالت دما ثابت ۲۵۰ کلوین با افزایش فشار، درصد خطا افزایش پیدا توجه به نمودار (۴–۱۲)، در حالت دما ثابت ۲۵۰ کلوین با افزایش فشار، درصد خطا افزایش پیدا توجه به می کند. علت افزایش خطا به این خاطر است که در این حالت، محاسبات در ناحیه ۲ و ۳ در شکل می کند. علت افزایش خطا به این خاطر است که در این حالت، محاسبات در ناحیه ۲ و ۳ در شکل خواهند داشت.

نمودار (۴–۱۲)- درصد خطا برای محاسبه ظرفیت گرمایی در فشار ثابت برای متان خالص (داده های آزمایشگاهی مرجع [۴۷]).

Mix3 -۲-۳-۲ محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط

در این حالت ظرفیت گرمایی در فشار ثابت برای مخلوط Mix3 با درصد مولی مشخص در جدول (۵–۵)، برای فشارهای تا ۳۰ مگاپاسکال و برای حالتهای دما ثابت ۲۵۰ کلوین، ۲۷۵ کلوین، ۳۰۰ کلوین و ۳۵۰ کلوین، با استفاده از معادله حالت AGA8 محاسبه شده و در نهایت محاسبات با داده کلوین و ۳۵۰ کلوین، با استفاده از معادله حالت AGA8 محاسبه شده و در نهایت محاسبات با داده های آزمایشگاهی مقایسه گردیده اند. نمودار (۴–۳۱)، درصد خطا در محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط ۲۵۵ محاسبه شده و در نهایت محاسبات با داده مای آزمایشگاهی مقایسه گردیده اند. نمودار (۴–۳۱)، درصد خطا در محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Xiv را بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴–۳۱)، بیشترین درصد خطا برای حالت دما ثابت ۲۵۰ کلوین برابر با ۸۸/۰- ٪، برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲۸/۰- ٪، برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲۸/۰- ٪، برای حالت دما ثابت دما ثابت ماه کلوین برابر با ۲۵/۰- ٪، برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲۵/۰- ٪، برای حالت دما ثابت دما ثابت ماه کلوین برابر با ۲۵/۰- ٪، برای حالت دما ثابت ۲۰۰ کلوین برابر با ۲۵/۰- ٪، برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲۵/۰- ٪، برای حالت دما ثابت ۲۰۰ کلوین برابر با ۲۵/۰- ٪، برای حالت دما ثابت ۲۰۰ کلوین برابر با ۲۵/۰- ٪، برای حالت دما ثابت ۲۰۰ کلوین برابر با ۲۵/۰- ٪، برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲۵/۱- ٪، می باشند. با توجه به نمودار (۴–۱۳)، مانند نمودار (۴–۱۲)، در حالت دما ثابت ۲۵۰ کلوین برابر با ۲۵/۱- ٪، می باشند. با توجه به نمودار (۴–۱۳)، مانند نمودار (۴–۱۲)، در حالت دما ثابت ۲۰۵ کلوین برابر با ۲۵/۱- ٪، می باشند. با توجه به نمودار (۴–۱۳)، مانند نمودار (۴–۱۲)، در حالت دما ثابت ۲۰۵ کلوین برابر با ۲۵ (-۱۰)، مانند نمودار را ۲۵ (-۱۲)، در حالت در ثاری کند. علت افزایش خطا به این خاط شایت که در این حالت محاسبات در ناحیه ۲ و ۳ در شکل (۲–۱) مربوط به عدم قطعیت قرار گرفته و نسبت به فشارهای پایین، محاسبات خطای بیشتری خواهند داشت. برای فشارهای کمتر از ۵۰ مای یسبت داشت. برای کلیه دماها، درصد خطا در بازه ۲/۰± ٪ قرار گرفته است.

بنابراین برای کاربردهای مهندسی، روش ارائه شده برای محاسبه ظرفیت گرمایی در فشار ثابت از دقت قابل قبولی برخوردار می باشد.

Mix3 نمودار (۴–۱۳)- درصد خطا برای محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix3 (داده های آزمایشگاهی مرجع [۴۷])

Mix4 محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix4

در این حالت ظرفیت گرمایی در فشار ثابت برای مخلوط Mix4 با درصد مولی مشخص در جدول (۴–۵)، برای فشارهای تا ۳۰ مگاپاسکال و برای حالتهای دما ثابت ۲۵۰ کلوین، ۲۷۵ کلوین، ۳۰۰ کلوین و ۳۵۰ کلوین، با استفاده از معادله حالت AGA8 محاسبه شده و در نهایت محاسبات با داده های آزمایشگاهی مقایسه گردیده اند. نمودار (۴–۱۴)، درصد خطا در محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix4 را بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴–۱۴) ، بیشترین درصد خطا برای حالت دما ثابت ۲۵۰ کلوین برابر با ۱۸/۶– ٪، برای حالت دما ثابت ۲۷۵ کلوین برابر با ۸۸/۰– ٪، برای حالت دما ثابت ۳۰۰ کلوین برابر با ۱۸/۶– ٪ و برای حالت دما دما ثابت ۲۵۰ کلوین برابر با ۶–۸ می باشند. با توجه به نمودار (۴–۱۴) ، برای حالتهای دما ثابت ۲۵۰ دما ثابت ۲۵۰ کلوین برابر با ۶–۸ می باشند. با توجه به نمودار (۴–۱۴) ، برای حالتهای دما ثابت ۲۵۰ در این حالتهای دماین خاطر است که نسبت به فشارهای پایین، محاسبات خطای بیشتری خواهند داشت. برای فشارهای کمتر از ۱۵ مگاپاسکال و برای کلیه دماها، درصد خطا کمتر از ۱/۵٪، قرار گرفته است. این عدد نشان دهنده دقت قابل قبول روش ارائه شده برای محاسبه ظرفیت گرمایی در فشار ثابت، در کاربردهای مهندسی می باشد.

Mix4 نمودار (۴–۱۴)- درصد خطا برای محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix4 (داده های آزمایشگاهی مرجع [۴۷])

Mix5 محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix5

در این حالت ظرفیت گرمایی در فشار ثابت برای مخلوط Mix5 با درصد مولی مشخص در جدول (۴-۵)، برای محدوده دمایی ۳۰۰ تا ۴۲۰ کلوین و برای حالتهای فشار ثابت ۱۴/۹۲، ۱۹/۹۵، ۲۹/۹۵، ۲۹/۹۷، ۳۵ و ۲۰/۰۴ مگاپاسکال، با استفاده از معادله حالت AGA8 محاسبه شده و در نهایت محاسبات با داده های آزمایشگاهی مقایسه گردیده اند. نمودار (۴–۱۵)، درصد خطا در محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix5 را بر حسب دما و برای حالتهای فشار ثابت، نشان می دهد. با توجه به نمودار (۴–۱۵)، بیشترین درصد خطا برای حالت دما فشار ثابت ۲۴/۹۲ مگاپاسکال برابر با ۲/۷ ٪، برای حالت فشار ثابت ۱۹/۹۵ مگاپاسکال برابر با ۲/۳ ٪، برای حالت فشار ثابت ۱۴/۹۵ مگاپاسکال برابر با ۱۶/۶ ٪، برای حالت فشار ثابت ۱۹/۹۲ مگاپاسکال برابر با ۱۳٫۰۰۰ مگاپاسکال برابر با ۱۹/۶ ٪، مرای حالت فشار ثابت ۱۹/۹۲ مگاپاسکال برابر با شابت ۳۵ مگاپاسکال برابر با ۱۹/۶ ٪ و برای فشار ثابت ۲۰/۹۲ مگاپاسکال برابر با ۲/۶ ٪، قرار گرفته است که نشان دهنده دقت قابل قبول روش ارائه شده برای محاسبه ظرفیت گرمایی در فشار ثابت می باشد.

Mix5 نمودار (۴–۱۵)- درصد خطا برای محاسبه ظرفیت گرمایی در فشار ثابت برای مخلوط Mix5 (داده های آزمایشگاهی مرجع [۴۸])

جدول (۴–۶)، درصد انحراف مطلق میانگین (AAPD) را برای محاسبات ظرفیت گرمایی در فشار ثابت، نشان می دهد. با توجه به جدول (۴–۶)، درصد انحراف مطلق میانگین (AAPD) محاسبات برای تعداد ۱۹۵ داده آزمایشگاهی برابر با ۲۷۵۶ ٪، می باشد. با توجه جدول (۴–۶)، دقت محاسبات ظرفیت گرمایی در فشار ثابت کمتر از ۸/۱ ٪ بوده که نشان دهنده دقت بالای معادله حالت AGA8 در محاسبه ظرفیت گرمایی در فشار ثابت برای گاز طبیعی، می باشد. درصد انحراف مطلق میانگین (AAPD)، برای مخلوط های Mix4 های را بر ای ۲۰ ۲ داده آزمایشگاهی برابر با ۲۸/۰ ٪ می باشد. در مطالعه Tifar و Mix3 و ۲۰۱۸ ، برای ۱۹۰ داده آزمایشگاهی برابر با ۲۸/۰ ٪ می باشد. در مطالعه Tifar و Mix3 و ۲۰۱۵ ، برای معادل مطلق میانگین مخلوط نامبرده شده و برای تعداد داده آزمایشگاهی یکسان، برابر با ۲۶/۱ ٪، گزارش شده است. بابند. این مطالعات صورت در گرفته در این تحقیق، خطای محاسبات ظرفیت گرمایی در فشار ثابت به اندازه ۱۹۵۹ ٪ بهبود داشته است. همچنین می توان نتیجه گرفت که محاسبه ظرفیت گرمایی در فشار ثابت با استفاده از معادله حالت AGA8، نسبت به معادلات حالت درجه سه، از دقت بسیار بالاتری برخوردار می باشد.

Mixture	Ref	Number of	T Range	P Range	AAPD
		Data	[K]	[MPa]	(%)
Pure Methane	Ernst et al [47]	55	250-350	1-30	0.471
Mix3	Ernst et al [47]	56	250-350	0.6-30	0.5066
Mix4	Ernst et al [47]	54	250-350	0.6-30	1.122
Mix5	Barreau et al [48]	30	307-406	14.92-40.03	1.088
Sum		195			0.756

جدول (۴-۶)- درصد انحراف مطلق میانگین (AAPD) در محاسبات ظرفیت گرمایی در فشار ثابت

۴-۱-۴- معتبرسازی محاسبات ضریب ژول - تامسون

در این قسمت ضریب ژول – تامسون، برای متان خالص و دو مخلوط Mix3 و Mix4 با درصد مولی مشخص شده در جدول (۴–۵)، با استفاده از معادله حالت AGA8 محاسبه شده اند. در نهایت محاسبات با استفاده از داده های آزمایشگاهی مقایسه شده و خطای محاسبات، محاسبه گردیده است .

۴-۱-۴-۱- محاسبه ضریب ژول - تامسون برای متان خالص

در این حالت ضریب ژول – تامسون برای متان خالص و برای فشارهای تا ۳۰ مگاپاسکال و برای حالتهای دما ثابت ۲۵۰ کلوین، ۲۷۵ کلوین، ۳۰۰ کلوین و ۳۵۰ کلوین، با استفاده از معادله حالت AGA8 محاسبه شده و در نهایت محاسبات با داده های آزمایشگاهی مقایسه گردیده اند. نمودار (۲-۱۶)، درصد خطا را در محاسبه ضریب ژول – تامسون برای متان خالص، بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد.

(داده های آزمایشگاهی مرجع [۴۷])

با توجه به نمودار (۴–۱۶)، بیشترین درصد خطا برای حالت دما ثابت ۲۵۰ کلوین برابر با ۳/۹۵ ٪، برای حالت دما ثابت ۲۷۵ کلوین برابر با ۷/۹۷ ٪، برای حالت دما ثابت ۳۰۰ کلوین برابر با ۷/۴۲ ٪ و برای حالت دما ثابت ۳۵۰ کلوین برابر با ۵/۳ ٪، می باشند. با توجه به نمودار (۴–۱۶) ، برای کلیه حالتهای دما ثابت و برای فشار های تا ۱۲ مگاپاسکال درصد خطا در محدوده ۲± ٪ بوده اما با افزایش فشار، درصد خطا نیز افزایش پیدا می کند.

Mix3 –۲–۴–۲ محاسبه ضریب ژول – تامسون برای مخلوط

در این حالت ضریب ژول – تامسون برای مخلوط Mix3 با درصد مولی مشخص در جدول (۴–۵)، برای فشارهای تا ۳۰ مگاپاسکال و برای حالتهای دما ثابت ۲۵۰ کلوین، ۲۷۵ کلوین، ۳۰۰ کلوین و ۳۵۰ کلوین، با استفاده از معادله حالت AGA8 محاسبه شده و در نهایت محاسبات با داده های آزمایشگاهی مقایسه گردیده اند. نمودار (۴–۱۷)، درصد خطا را در محاسبه ضریب ژول – تامسون برای مخلوط Mix3، بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴–۱۷) ، بیشترین درصد خطا برای حالت دما ثابت ۲۵۰ کلوینبرابر با ۲/۹۷ – ٪، برای حالت دما ثابت ۲۷۵ کلوین برابر با ۲۱۹ ٪، برای حالت دما ثابت ۳۰۰ کلوین برابر با ۱۳– ٪ و برای حالت دما ثابت ۳۵۰ کلوین برابر با ۵/۲۳ ٪، می باشند. با توجه به نمودار (۴–۱۷) ، برای فشارهای کمتر از ۲۰ مگاپاسکال، درصد خطای محاسبات در محدوده ۵± ٪، قرار دارند.

Mix3 نمودار (۴–۱۷)- درصد خطا در محاسبه ضریب ژول - تامسون برای مخلوط Mix3 (داده های آزمایشگاهی مرجع [۴۷])

Mix4 – ۲–۴–۳ محاسبه ضریب ژول – تامسون برای مخلوط

در این حالت ضریب ژول – تامسون برای مخلوط Mix4 با درصد مولی مشخص در جدول (۴–۵)، برای فشارهای تا ۳۰ مگاپاسکال و برای حالتهای دما ثابت ۲۵۰ کلوین، ۲۷۵ کلوین، ۳۰۰ کلوین و ۳۵۰ کلوین، با استفاده از معادله حالت AGA8 محاسبه شده و در نهایت محاسبات با داده های آزمایشگاهی مقایسه گردیده اند. نمودار (۴–۱۸)، درصد خطا را در محاسبه ضریب ژول – تامسون برای مخلوط Mix4، بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴–۱۸)، بیشترین درصد خطا برای حالت دما ثابت ۲۵۰ کلوین برابر با ۱۶ ٪، برای حالت دما ثابت ۲۷۵ کلوین برابر با ۱۰/۹۵ ٪، می باشند. با توجه به نمودار (۴–۱۸) ، برای فشارهای کمتر از ۲۰ مگاپاسکال، درصد خطای محاسبات در محدوده ۴± ٪، قرار دارند.

جدول (۴-۷)، درصد انحراف مطلق میانگین (AAPD) را برای محاسبات ضریب ژول – تامسون، نشان می دهد. با توجه به جدول (۴-۷)، درصد انحراف مطلق میانگین (AAPD) محاسبات، برای تعداد ۱۳۶ داده آزمایشگاهی برابر با ۲/۰۰۵ ٪، می باشد. با توجه جدول (۴-۷)، ضریب ژول – تامسون تقریباً برابر با ۲ ٪ بوده که نشان دهنده دقت قابل قبول معادله حالت AGA8 در ضریب ژول – تامسون برای گاز طبیعی، می باشد. درصد انحراف مطلق میانگین (AAPD)، برای مخلوط ۸یما، برای ۳۹ داده آزمایشگاهی برابر با ۲/۱۸۸ ٪ می باشد. در مطالعه Sifar و اکما، برای مخلوط ۸یما، برای ۳۹ داده آزمایشگاهی برابر با ۲/۱۸۸ ٪ می باشد. در مطالعه Nasrifar و اکما، برای مخلوط ۸یما، برای ۳۹ داده آزمایشگاهی برابر با ۲/۱۸۸ ٪ می باشد. در مطالعه Nasrifar و اکما)، برای محلوط ۲۰۱۸، برای ۸۰ میانگین (AAPD)، برای مخلوط ۸یما و برای تعداد داده آزمایشگاهی یکسان، برابر با ۲۰/۵ ٪، گزارش شده است. بنابراین با مطالعات صورت در گرفته در این تحقیق، خطای محاسبات ضریب ژول – تامسون به اندازه ۲۸۴۲ ٪ برای این مخلوط، بهبود داشته است. همچنین می توان نتیجه گرفت که محاسبه ضریب ژول – تامسون با استفاده از معادله حالت AGA8، نسبت به معادلات حالت درجه سه،

Mixture	Ref	Number of	T Range	P Range	AAPD
		Data	[K]	[MPa]	(%)
Pure Methane	Ernst et al [27]	49	250-350	0.5-30	2.14
Mix3	Ernst et al [27]	48	250-350	0.5-30	1.718
Mix4	Ernst et al [27]	39	250-350	0.5-30	2.188
Sum		136			2.005

جدول (۲-۴)- درصد انحراف مطلق میانگین (AAPD) در محاسبات ضریب ژول - تامسون

۴–۱–۵– معتبرسازی محاسبات ظرفیت گرمایی در حجم ثابت

در این قسمت ظرفیت گرمایی در حجم ثابت برای مخلوط دوتایی متان – اتان با درصد مولی مشخص در جدول (۴–۸)، برای حالتهای دانسیته مولار ثابت، محاسبه شده است. محدوده دما بین ۲۵۰ تا ۳۲۳ کلوین قرار داشته و محاسبات برای فشارهای کمتر از ۳۵ مگاپاسکال انجام شده است.

جدول (۸-۴)- نوع ترکیب و درصد انحراف مطلق میانگین (AAPD) در محاسبات ظرفیت گرمایی در حجم ثابت

Mixture	Ref	Number of Data	T Range [K]	P Range [MPa]	AAPD (%)
$0.6853CH_4 + 0.3147C_2H_6$	Mayrath and Magee [49]	66	250-323	6.9-35.68	1.13

نمودار (۴–۱۹)، درصد خطا در محاسبه ظرفیت گرمایی در حجم ثابت برای مخلوط دوتایی متان – اتان، بر حسب دما و برای حالتهای دانسیته مولار ثابت ۱۶، ۱۵، ۱۱، ۷/۷و ۲/۵ کیلومول بر مترمکعب، نشان می دهد. با توجه به نمودار (۴–۱۹)، بیشترین درصد خطا برای حالت دانسیته مولار ثابت ۱۶ کیلومول بر مترمکعب برابر با ۲– ٪، برای حالت دانسیته مولار ثابت ۱۵ کیلومول بر مترمکعب برابر با ۲/۶۲– ٪، برای حالت دانسیته مولار ثابت ۱۱ کیلومول بر مترمکعب برابر با ۱/۵– ٪، برای حالت دانسیته مولار ثابت ۷/۷ کیلومول بر مترمکعب برابر با ۴– ٪ و برای حالت دانسیته مولار ثابت ۱۵ کیلومول بر مترمکعب برابر با ۲۲/ ٪، می باشند. با توجه به جدول (۴–۷)، درصد انحراف مطلق میانگین (AAPD) محاسبات ظرفیت گرمایی در حجم ثابت برای ۶۶ داده آزمایشگاهی برابر با ۱/۱٪ می باشد. با توجه به جدول (۴–۷)، درصد انحراف مطلق میانگین (AAPD) محاسبات ظرفیت گرمایی در حجم ثابت کمتر از ۲/۱ ٪ بوده که نشان دهنده دقت قابل قبول معادله حالت AGA8 در محاسبه ظرفیت گرمایی در حجم ثابت، می باشد.

نمودار (۴–۱۹)- درصد خطا در محاسبه ظرفیت گرمایی در حجم ثابت برای مخلوط متان – اتان (داده های آزمایشگاهی مرجع [۴۹])

۴–۱–۶– معتبرسازی محاسبات سرعت صوت

در این قسمت محاسبات سرعت صوت برای متان خالص و پنج ترکیب مختلف، با استفاده از معادله حالت AGA8 محاسبه شده و محاسبات با داده های آزمایشگاهی، مقایسه شده و درصد خطا و درصد انحراف مطلق میانگین (AAPD) محاسبات از داده های آزمایشگاهی محاسبه شده است. جدول (۴-۹)، درصد مولی ترکیبات بکار رفته در محاسبات سرعت صوت را نشان می دهد.

Component	Pure Methane	Mix6	Mix7	Mix8	Mix9	Mix10
CH ₄	100	80	85	90	80	80
<i>N</i> ₂	-	-	-	10	20	10
<i>CO</i> ₂	-	-	-	-	-	2
C_2H_6	-	20	15	-	-	5
C_3H_8	-	-	-	-	-	3

جدول (۴-۹)- درصد مولی ترکیبات بکار رفته در محاسبات سرعت صوت

۴–۱–۹–۱– محاسبه سرعت صوت برای متان خالص

در این قسمت سرعت صوت برای متان خالص با استفاده از معادله حالت AGA8 محاسبه شده است. محاسبات برای حالتهای دما ثابت، ۱۲۵، ۱۵۰، ۱۷۵، ۲۰۰، ۲۵۵ و ۲۵۰ کلوین و برای فشارهای کمتر از ۱/۶ مگاپاسکال انجام شده اند. نمودار (۴–۲۰)، درصد خطا در محاسبات سرعت صوت برای متان خالص را بر حسب فشار و برای حالتهای دما ثابت نشان می دهد. با توجه به نمودار (۴–۲۰)، بیشترین درصد خطا برای حالت دما ثابت ۱۲۵ کلوین برابر با ۱۳۸۰ ٪، برای حالت دما ثابت کلوین برابر با ۱۳۲۵ ٪، برای حالت دما ثابت ۱۲۵ کلوین برابر با ۱۸۴۰ ٪، برای حالت دما ثابت ۲۰۰ کلوین برابر با ۱۳۲۵ ٪، برای حالت دما ثابت ۲۵۵ کلوین برابر با ۱۸۴۰ ٪، برای حالت دما ثابت ۲۰۰ کلوین برابر با ۱۳۶۱ ٪، برای حالت دما ثابت ۲۵۵ کلوین برابر با ۱۸۴۰ ٪، برای حالت دما ثابت ۲۰۰ کلوین برابر

نمودار (۴–۲۰)- درصد خطا در محاسبه سرعت صوت برای متان خالص (داده های آزمایشگاهی مرجع [۵۰])

Mix6 -۲-۶-۲- محاسبه سرعت صوت برای مخلوط

در این قسمت سرعت صوت برای مخلوط Mix6 با درصد مولی مشخص در جدول (۴–۹)، محاسبه شده است. محاسبات برای محدوده دمایی ۲۰۰ تا ۳۷۵ کلوین و برای فشارهای تا ۱۴ مگاپاسکال، انجام شده اند. در نهایت درصد خطای محاسبات سرعت صوت نسبت به داده های آزمایشگاهی، محاسبه شده است. نمودار (۴–۲۱)، درصد خطا در محاسبات سرعت صوت را برای مخلوط Mix6 بر

حسب فشار و برای حالتهای دما ثابت نشان می دهد. با توجه به نمودار (۴–۲۱)، درصد خطای محاسبات در حالت کلی در محدوده ۲۰/۲± ٪، قرار گرفته اند. این عدد نشان دهنده دقت بالای محاسبات سرعت صوت برای مخلوط مورد نظر، می باشد.

◇ T=200 K ○ T=225 K ▲ T=250 K ◆ T=275 K ■ T=300 K ● T=325 K ※ T=350 K × T=375 K

نمودار (۴–۲۱)- درصد خطا در محاسبه سرعت صوت مخلوط Mix6 (داده های آزمایشگاهی مرجع [۵۱])

Mix7 - ۹-۹-۳ محاسبه سرعت صوت برای مخلوط

در این قسمت سرعت صوت برای مخلوط Mix7، مخلوط دوتایی متان – اتان با درصد مولی مشخص در جدول (۴–۹)، محاسبه شده و با استفاده از داده های آزمایشگاهی خطای محاسبات و انحراف محاسبات از داده های آزمایشگاهی محاسبه شده اند. محاسبات برای چهار حالت دما ثابت و برای فشارهای تا ۲۰ مگاپاسکال انجام شده است. نمودار (۴–۲۲)، سرعت صوت را برای مخلوط Mix7، برای حالتهای دما ثابت و بر حسب فشار، بدست آمده از آزمایش و محاسبه شده از معادله حالت مرای حالتهای دما ثابت و بر حسب فشار، بدست آمده از آزمایش و محاسبه شده از معادله حالت محمعت صوت بدست آمده از آزمایش و محاسبه شده از آزمایش و خطوط، سرعت صوت بدست آمده از معادله حالت AGA8، می باشند. نمودار (۴–۲۲)، درصد خطای محاسبات سرعت صوت برای مخلوط 7x17 را نسبت به داده های آزمایشگاهی، نشان می دهد. با توجه به نمودار (۴–۳۲)، بیشترین درصد خطا برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲/۱۶–٪، برای حالت دما ثابت ۲۷۵ کلوین برابر با ۲۰/۰۴–٪، برای حالت دما ثابت ۳۰۰ کلوین برابر با ۲/۱۶–٪، و برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲۰/۰۰–٪، می باشند.

نمودار (۴–۲۲) - سرعت صوت برای مخلوط Mix7 محاسبه شده از معادله حالت AGA8 و داده های آزمایشگاهی (داده های آزمایشگاهی مرجع [۵۲])

نمودار (۴-۲۳) - درصد خطا برای محاسبه سرعت صوت مخلوط Mix7

Mix9 و Mix8 و Mix8 و Mix9 و Mix9 و Mix9

در این قسمت سرعت صوت برای مخلوط Mix8 و Mix9، که مخلوط های دوتایی متان – نیتروژن می باشند، محاسبه شده است. درصد مولی اجزای این دو مخلوط در جدول (۴–۹)، نشان داده شده است. در نهایت با استفاده از داده های آزمایشگاهی خطای محاسبات و انحراف محاسبات از داده های آزمایشگاهی خطای محاسبات و انحراف محاسبات از داده های آزمایشگاهی محاسبات از داده های آزمایشگاهی محاسبه شده است. محاسبات برای شش حالت دما ثابت در محدوده ۲۰۰ تا ۴۰۰ کلوین و برای فشارهای تا ۳۰ مگاپاسکال انجام شده است. نمودارهای (۴–۴۲) و (۴–۲۵)، سرعت صوت را برای مخلوط هشارهای تا ۳۰ مگاپاسکال انجام شده است. نمودارهای (۴–۴۲) و (۴–۲۵)، سرعت صوت را برای مخلوط هنارهای تا ۳۰ مگاپاسکال انجام شده است. نمودارهای (۴–۴۲) و (۴–۲۵)، سرعت صوت را برای مخلوط هنارهای تا ۳۰ مگاپاسکال انجام شده است. نمودارهای (۴–۲۴) و (۴–۲۵)، سرعت صوت را برای مخلوط های ایر محسب فشار و برای حالتهای دما ثابت، بدست آمده از آزمایش و محاسبه شده از معادله حالت Mix8 محاسبات سرعت صوت برای مخلوط های ای معادله حالت ۵۹۸۶ را نشان می دهند. نمودار (۴–۲۶)، درصد خطای محاسبات سرعت صوت برای مخلوط های محاسبات سرعت صوت برای مخلوط محالی محاسبات سرعت صوت برای محلوط ی محالی محاسبات سرعت صوت برای مخلوط محاسبات سرعت صوت برای مخلوط محاسبات سرعت صوت برای محلوط ۱۹۵۸، اکثراً در محدوده 1/+± //، قرار داشته که نشان می دهند. دقت بالای روش ارائه شده برای محاسبه سرعت صوت با استفاده از معادله حالت ۵۹۵۸، در مدوده مراحات (۰۲–۲۲)، درصد محالی محاسبات سرعت صوت برای محاسبات سرعت صوت برای محاسبه مدوده مراحات (۰۲–۲۲)، می دهند. با سرعان می دهد. با توجه به نمودار (۰۲–۲۶)، درصد محالی محاسبات سرعت صوت برای محاسبات سرعت صوت برای محدوده ۲/۰± //، قرار داشته که نشان می دهنده دقت بالای روش ارائه شده برای محاسبه سرعت صوت با استفاده از معادله حالت ۵۵۵۸، درصد محالی می باشد.

نمودار (۴–۲۴) - سرعت صوت برای مخلوط Mix8 محاسبه شده از روش AGA8 و داده های آزمایشگاهی (داده های آزمایشگاهی مرجع [۵۳])

نمودار (۴–۲۵) - سرعت صوت برای مخلوط Mix8 محاسبه شده از روش AGA8 و داده های آزمایشگاهی (داده های آزمایشگاهی مرجع [۵۳])

نمودار (۴-۲۶) - درصد خطا برای محاسبه سرعت صوت مخلوط Mix8

نمودارهای (۴–۲۷) و (۴–۲۸)، سرعت صوت را برای مخلوط Mix9 بر حسب فشار و برای حالتهای دما ثابت، بدست آمده از آزمایش و محاسبه شده از معادله حالت AGA8 را نشان می دهند. نمودار (۴–۲۹)، درصد خطای محاسبات سرعت صوت برای مخلوط Mix9 را نسبت به داده های آزمایشگاهی، نشان می دهد. با توجه به نمودار (۴–۲۹)، درصد خطای محاسبات سرعت صوت برای مخلوط Mix9

برای کلیه حالتهای دما ثابت بجز حالت دما ثابت ۲۲۰ کلوین، در محدوده 1.4 ± 1.5 قرار داشته که نشان دهنده دقت بالای روش ارائه شده برای محاسبه سرعت صوت با استفاده از معادله حالت AGA8، می باشد. در حالت دما ثابت ۲۲۰ کلوین و در فشارهای بالاتر از ۱۵ مگاپاسکال، درصد خطا از 10^{-1} . افزایش پیدا کرده که این امر به عدم قطعیت روش AGA8، که در شکل (1-1)، توضیح داده شده است، بر می گردد.

نمودار (۴–۲۷) - سرعت صوت برای مخلوط Mix9 محاسبه شده از روش AGA8 و داده های آزمایشگاهی (داده های آزمایشگاهی مرجع [۵۳])

نمودار (۴–۲۸) - سرعت صوت برای مخلوط Mix9 محاسبه شده از روش AGA8 و داده های آزمایشگاهی (داده های آزمایشگاهی مرجع [۵۳])

نمودار (۲۹-۴) - درصد خطا برای محاسبه سرعت صوت مخلوط Mix9

Mix10 - ۵-۶-۵- محاسبه سرعت صوت برای مخلوط Mix10

در این قسمت سرعت صوت برای مخلوط Mix10 که شبیه گاز طبیعی می باشد، محاسبه شده و با استفاده از داده های آزمایشگاهی خطای محاسبات و انحراف محاسبات از داده های آزمایشگاهی برای این مخلوط، محاسبه شده اند. درصد مولی ترکیبات این مخلوط در جدول (۴–۹)، آورده شده است. محاسبات برای چهار حالت دما ثابت و برای فشارهای تا ۲۰ مگاپاسکال انجام شده است. نمودار (۴–۳۰)، سرعت صوت را برای مخلوط Mix10، برای حالتهای دما ثابت و بر حسب فشار، بدست آمده از آزمایش و محاسبه شده از معادله حالت AGA8 را نشان می دهد. نمودار (۴–۳۱)، درصد خطای محاسبات سرعت صوت برای مخلوط Mix10 را نسبت به داده های آزمایشگاهی، نشان می دهد. با توجه به نمودار (۴–۳۱)، بیشترین درصد خطا برای حالت دما ثابت ۲۰۰ کلوین برابر با ۱/۴۲–٪، برای حالت دما ثابت ۲۵۰ کلوین برابر با ۲۰/۴–٪، برای حالت دما ثابت ۲۰۰ کلوین برابر با ۱/۶۰–٪ و برای

نمودار (۴–۳۰) - سرعت صوت برای مخلوط Mix10 محاسبه شده از روش AGA8 و داده های آزمایشگاهی (داده های آزمایشگاهی مرجع [۵۲])

نمودار (۳۱-۴) - درصد خطا برای محاسبه سرعت صوت مخلوط Mix10

جدول (۴–۱۰)، درصد انحراف مطلق میانگین (AAPD) محاسبات سرعت صوت برای مخلوطهای مورد بحث را نشان می دهد. با توجه به داده های جدول (۴–۱۰)، درصد انحراف مطلق میانگین (AAPD)، برای ۳۹۱ داده آزمایشگاهی برابر با ۰/۱۲۶ ٪ می باشد. بنابراین محاسبات سرعت صوت با استفاده از معادله حالت AGA8، دارای درصد انحرافی کمتر از ۰/۱۳ نسبت به داده های آزمایشگاهی

می باشد که نشان دهنده دقت بالای روش ارائه شده برای محاسبه سرعت صوت دارد. درصد انحراف مطلق میانگین (AAPD) محاسبات Nasrifar و Bolland [۱۶]، در محاسبات سرعت صوت برای ۳۷۱ داده آزمایشگاهی، برابر با ۰/۷ ٪ گزارش شده است. این عدد در مقایسه با محاسبات ارائه شده در این تحقیق، نشان دهنده دقت بالای محاسبات سرعت صوت با استفاده از معادله حالت AGA8، نسبت به محاسبات سرعت صوت با محاسبات سرعت می باشد.

Mixture	Ref	Number	T Range	P Range	AAPD
		of Data	[K]	[MPa]	(%)
Pure Methane	Trusler and Zarari [50]	64	125-250	0.02-1.6	0.09
Mix6	Trusler [51]	47	200-375	0.1-14	0.063
Mix7	Costa Gomes and Trusler [52]	36	250-350	0.5-21	0.18
Mix8	Estela-Uribe et al [53]	100	220-400	0.1-30	0.09
Mix9	Estela-Uribe et al [53]	109	220-400	0.1-30	0.16
Mix10	Costa Gomes and Trusler [52]	35	250-350	0.51-20	0.23
Sum		391			0.126

جدول (۴-۱۰)- درصد انحراف مطلق میانگین (AAPD) در محاسبات سرعت صوت

۴-۱-۷ معتبرسازی محاسبات آنتالپی

در این قسمت، با استفاده از روش گفته شده برای محاسبه آنتالپی، افزایش آنتالپی در فرآیند فشار ثابت و افت دمای ایجاد شده در طی فرآیند آنتالپی ثابت فشارشکنی، محاسبه شده و در نهایت محاسبات با داده های آزمایشگاهی مقایسه شده و خطای محاسبات و انحراف محاسبات از داده های آزمایشگاهی محاسبه شده است.

۴-۱-۷-۱ افزایش آنتالپی در فرآیند فشار ثابت

در این قسمت افزایش آنتالپی در یک فرآیند فشار ثابت برای متان خالص، دو ترکیب دو تایی متان – اتان و یک مخلوط شبیه گاز طبیعی، با استفاده از معادله حالت AGA8، محاسبه شده است. محاسبات با داده های آزمایشگاهی مقایسه شده و درصد خطا و درصد انحراف مطلق میانگین محاسبات نسبت به داده های آزمایشگاهی، محاسبه شده است. روند محاسبات بدین گونه است که، در نقطه ۱ با معلوم بودن دما، فشار و کسر مولی اجزاء، آنتالپی محاسبه شده است. سپس در نقطه ۲ با معلوم بودن دما، کسر مولی اجزاء و با توجه برابر بودن فشار نقطه ۲ با فشار نقطه ۱، آنتالپی محاسبه شده است. در نهایت افزایش آنتالپی از رابطه (۴–۳) محاسبه می شود :

$$\Delta H_m(1 \to 2) = h_m(T_2, P) - h_m(T_1, P) \tag{(7-4)}$$

در معادله (۴–۳)، ΔH_m افزایش آنتالپی بر مبنای مولار طی فرآیند فشار ثابت P از دمای T_1 به دمای T_2 می باشد.

۴–۱–۷–۱–۱ افزایش آنتالپی برای متان خالص

در این قسمت افزایش آنتالپی در فرآیند فشار ثابت برای متان خالص برای دو حالت فشار ثابت ۳ و ۷ مگاپاسکال با استفاده از معادله حالت AGA8، بدست آمده و درصد خطای محاسبات نسبت به داده های آزمایشگاهی محاسبه شده است. محدوده دمای ورودی T_1 بین ۳۰۰ تا ۵۵۰ کلوین و محدوده دمای خروجی T_2 بین ۳۲۰ تا ۵۳۵ کلوین می باشند. نمودار (۴–۳۲)، درصد خطا برای افزایش آنتالپی در فرآیند فشار ثابت برای متان خالص را در دو حالت فشار ثابت ۳ و ۷ مگاپاسکال بر حسب دمای ورودی نشان می دهد. با توجه به نمودار (۴–۳۲)، درصد خطای محاسبات نسبت به داده های آزمایشگاهی بین ۱/۵ ± ٪، می باشند.

نمودار (۴–۳۲) - درصد خطا در محاسبه افزایش آنتالپی در فرآیند فشار ثابت برای متان خالص برحسب دمای ورودی (داده های آزمایشگاهی مرجع [۵۴])

۴-۱-۷-۱-۲ افزایش آنتالپی برای مخلوط دوتایی متان- اتان

در این قسمت افزایش آنتالپی در فرآیند فشار ثابت برای دو مخلوط دوتایی متان – اتان، برای حالت فشار ثابت ۷ مگاپاسکال با استفاده از معادله حالت AGA8، بدست آمده و درصد خطای محاسبات نسبت به داده های آزمایشگاهی محاسبه شده است. محدوده دمای ورودی T_1 بین ۳۵۰ تا ۵۰۰ کلوین و محدوده دمای خروجی T_2 بین ۳۹۰ تا ۵۲۵ کلوین می باشند. نمودار (۴–۳۳)، درصد خطا برای افزایش آنتالپی در فرآیند فشار ثابت برای دو مخلوط دوتایی متان – اتان را در حالت فشار ثابت ۷ مگاپاسکال و بر حسب دمای ورودی نشان می دهد. با توجه به نمودار (۴–۳۳)، درصد خطای محاسبات نسبت به داده های آزمایشگاهی زیر ۴–٪، می باشند.

نمودار (۴–۳۳) – درصد خطا در محاسبه افزایش آنتالپی در فرآیند فشار ثابت برای مخلوطهای متان – اتان برحسب دمای ورودی (داده های آزمایشگاهی مرجع [۵۴])

۴-۱-۷-۱-۳ افزایش آنتالپی برای مخلوط شبیه گاز طبیعی

در این قسمت افزایش آنتالپی در فرایند فشار ثابت برای مخلوطی شبیه گاز طبیعی و برای فشارهای مختلف، محاسبه شده است. این مخلوط شامل متان، اتان، پروپان، نیتروژن، ایزو بوتان و نرمال بوتان با درصدهای مختلف می باشد. محدوده درصد مولی اجزای تشکیل دهنده این مخلوط عبارت است از: متان بین ۸۹ تا ۹۲ ٪، اتان بین ۲/۳۱ تا ۲/۳۳ ٪، پروپان بین ۲/۴ تا ۰/۴۸ ٪، نیتروژن بین ۴/۴۵ تا ۸ /. ایزو بوتان بین /. تا /... و نرمال بوتان بین 1... تا 1... محدوده دمای ورودی T_1 ، بین /... ایزو بوتان بین /... محدوده دمای خروجی T_2 ، بین 1... تا 10... کلوین می باشند. نمودار (-...)/... درصد خطای محاسبات برای افزایش آنتالپی را برای این مخلوط (مخلوط (مخلوط (امایش))، بر حسب فشار ثابت. با توجه به این شکل درصد خطای محاسبات نسبت به داده های آزمایشگاهی بین 1... و 1... می باشند.

نمودار (۴-۴) - درصد خطا در محاسبه افزایش آنتالپی در فرآیند فشار ثابت برای مخلوط Mix11 برحسب فشار (داده های آزمایشگاهی مرجع [۲۷])

جدول (۴–۱۱)، درصد انحراف مطلق میانگین (AAPD) را برای محاسبات افزایش آنتالپی در فرآیند فشار ثابت، نشان می دهد. با توجه به داده های جدول (۴–۱۱)، درصد انحراف مطلق میانگین (AAPD) برای محاسبات افزایش آنتالپی در فرآیند فشار ثابت برای ۱۵۶ داده آزمایشگاهی برابر با ۱/۰۳ ٪ بوده که نشان دهنده دقت قابل قبول محاسبات آنتالپی با استفاده از معادله حالت AGA8، می باشد.

	Ref	Number	$T_1[K]$	Constant	AAPD
		of Data	1. 3	P [MPa]	(%)
Pure CH ₄	Day et al [54]	51	304-525	3	0.474
Pure CH ₄	Day et al [54]	40	313-513	7	0.468
$0.89CH_4 + 0.11C_2H_6$	Day et al [54]	21	376-474	7	1.72
$0.75CH_4 + 0.25C_2H_6$	Day et al [54]	20	375-428	7	1.44
Mix11	Ashton and Haselden	24	361-367	13-55	2.211
	[27]				
Sum		156			1.03

جدول (۴-۱۱) - درصد انحراف مطلق میانگین (AAPD) برای محاسبات افزایش آنتالپی در فرآیند فشار ثابت

۴-۱-۲-۲ افت دما در فرآیند آنتالپی ثابت فشارشکنی

در این قسمت افت دما در حین فرآیند آنتالپی ثابت فشارشکنی در یک شیر اختناق، برای متان خالص و دو ترکیب دوتایی متان – اتان، با استفاده از روش معرفی برای محاسبه آنتالپی با استفاده از معادله حالت AGA8، محاسبه شده است. روند محاسبات بدین ترتیب است که، در نقطه ۱ با مشخص بودن دما، فشار و کسر مولی اجزاء، آنتالپی محاسبه شده است. با توجه به اینکه فرآیند فشارشکنی فرآیندی آنتالپی ثابت می باشد، آنتالپی در نقطه ۲ با آنتالپی در نقطه ۱ برابر می باشد. در نهایت در نقطه ۲، با مشخص بودن فشار، کسر مولی اجزاء و آنتالپی، با استفاده از روش سعی و خطا، دمای نقطه ۲ محاسبه شده و از آنجا افت دما محاسبه شده است. رابطه (۴–۴)، روند محاسبات را نشان می دهد.

$$h_m(T_2, P_2) = h_m(T_1, P_1) \implies T_2 = Calculated, \Delta T = T_2 - T_1$$
(f-f)

۴–۱–۷–۲–۱– افت دما در فرآیند آنتالپی ثابت فشارشکنی برای متان خالص

در این قسمت افت دما در فرآیند آنتالپی ثابت فشارشکنی برای متان خالص با استفاده از معادله حالت AGA8، محاسبه شده است. محاسبات برای دو فرآیند فشار شکنی با فشار ورودی T و Y مگاپاسکال T فشار خروجی Y/Y مگاپاسکال انجام شده است. در نهایت، درصد خطای محاسبات نسبت به داده های آزمایشگاهی محاسبه شده است. محدوده دمای ورودی T_1 بین T بین Y کلوین و محدوده است دما آزمایشگاهی محاسبه شده است. می باشند. نمودار (۴–۵۵)، افت دما در حین فرآیند آنتالپی ثابت فشار شکنی را بر حسب دمای ورودی و محدوده دمای ورودی می با فشار کلوین و محدوده دمای ورودی می با فشار می در می فرآیند آنتالپی ثابت فشار فرایند را بر حسب دمای ورودی و برای متان خالص نشان می دهد. در نمودار (۴–۳۵)، شکل ها

داده های آزمایشگاهی و خطوط محاسبات با استفاده از معادله حالت AGA8، می باشند. نمودار (۴–۳۶)، درصد خطا برای محاسبات افت دما در فرآیند آنتالپی ثابت فشارشکنی برای متان خالص را در دو حالت افت فشار از ۳ و ۷ مگاپاسکال تا ۱/۱۰ مگاپاسکال بر حسب دمای ورودی، نشان می دهد. با توجه به نمودار (۴–۳۶)، درصد خطای محاسبات نسبت به داده های آزمایشگاهی بین ۲ ٪ و ۷– ٪ می باشند. با توجه به نمودار (۴–۳۶)، درصد خطای محاسبات اکثراً در محدوده ۳± ٪، قرار گرفته است. این عدد نشان دهنده دقت قابل قبول محاسبات، افت دما با استفاده از آنتالپی و معادله حالت AGA8، می باشد.

(داده های آزمایشگاهی مرجع [۵۴])

نمودار (۴–۳۶)- درصد خطا در محاسبه افت دما در فرآیند آنتالپی ثابت برای متان خالص برحسب دمای ورودی (داده های آزمایشگاهی مرجع [۵۴])

۴-۱-۷-۲-۲-۱ افت دما در فرآیند آنتالپی ثابت فشارشکنی برای مخلوط دوتایی متان -اتان

در این قسمت افت دما در فرآیند آنتالپی ثابت فشارشکنی برای دو مخلوط دوتایی متان – اتان، با استفاده از معادله حالت AGA8، محاسبه شده است. محاسبات برای فرآیند فشار شکنی با فشار ورودی ۲ مگاپاسکال تا فشار خروجی ۲/۱۷ مگاپاسکال انجام شده است. در نهایت درصد خطای محاسبات نسبت به داده های تجربی محاسبه شده است. محدوده دمای ورودی T_1 بین ۳۷۰ تا ۵۳۰ کلوین و محدوده افت دما ΔT بین ۲ تا ۲۴ کلوین می باشند. نمودار (۴–۳۷)، افت دما را بر حسب دمای ورودی در فرآیند آنتالپی ثابت فشارشکنی نشان می دهد. در این نمودار افت دما برای دو مخلوط دوتایی متان – اتان با درصد مولی متفاوت، محاسبه شده است. شکل ها، افت دما برای دو از داده های آزمایشگاهی و خطوط افت دما محاسبه شده توسط معادله حالت AGA8 را نشان می دهند. نمودار (۴–۳۸)، درصد خطا برای افت دما در فرآیند آنتالپی ثابت برای دو مخلوط شبیه گاز می دهند. نمودار (۴–۳۸)، درصد خطا برای افت دما در فرآیند آنتالپی ثابت برای دو مخلوط شبیه گاز می دهند. نمودار (۴–۳۸)، درصد خطا برای افت دما در از میند آنتالپی ثابت برای دو مخلوط شبیه گاز می دهد. با توجه به نمودار (۴–۳۸)، درصد خطای محاسبات نسبت به داده های آزمایشگاهی در حالت می دهد. با توجه به نمودار (۴–۳۸)، درصد خطای محاسبات نسبت به داده های آزمایشگاهی در حالت

دار (۱۰، ۱۰) می والا می در می می در در ایند المالی کابک مسرستانی برای محوطهای دودیی منار اتان برحسب دمای ورودی (داده های آزمایشگاهی مرجع [۵۴])

جدول (۴–۱۲)، درصد انحراف مطلق میانگین (AAPD) را برای محاسبات افت دما در فرآیند آنتالپی ثابت فشارشکنی، نشان می دهد. با توجه به داده های جدول (۴–۱۲)، درصد انحراف مطلق میانگین (AAPD) برای محاسبات افت دما برای ۷۴ داده آزمایشگاهی برابر با ۱/۱۲ ٪ بوده که نشان دهنده دقت قابل قبول محاسبات با استفاده از معادله حالت AGA8 می باشد.

	Number of	Inlet	Pressure Drop	AAPD
	Data	Temperature	[MPa]	(%)
		[K]		
Pure CH_4	23	304-557	3-0.17	1.54
Pure CH_4	21	313-535	7-0.17	1.32
$0.89CH_4 + 0.11C_2H_6$	15	376-524	7-0.17	0.62
$0.75CH_4 + 0.25C_2H_6$	15	375-488	7-0.17	0.7
Sum	74			1.12

جدول (۴–۱۲)- درصد انحراف مطلق میانگین (AAPD) برای محاسبات افت دما در فرآیند آنتالپی ثابت فشارشکنی

۴–۱–۸– معتبرسازی محاسبات انرژی داخلی

در این قسمت محاسبات مربوط به انرژی داخلی برای متان خالص انجام گرفته است. به علت کمبود داده های آز مایشگاهی موجود برای انرژی داخلی مخلوط ها، محاسبات را برای متان خالص انجام داده ایم و در نهایت محاسبات را با داده های NIST، که استاندادری معتبر برای محاسبه خواص ترمودینامیکی مواد خالص می باشد، مقایسه کرده و درصد خطا و درصد انحراف محاسبات را مقایسه کرده ایم. نمودار (۴–۳۹)، انرژی داخلی مولار را برای متان خالص و برای چهار حالت دما ثابت و برای فشارهای تا ۱۲ مگاپاسکال نشان می دهد. در نمودار (۴–۳۹)، خطوط محاسبات انرژی داخلی با استفاده از معادله حالت AGA8 بوده و اشکال، انرژی داخلی بدست آمده از داده های NIST می باشند. در این حالت محدوده دما بین ۲۶۳ تا ۲۳۸ کلوین، می باشد. نمودار (۴–۴۰)، درصد خطا می باشند. در این حالت محدوده دما بین تاکم تا مرح تا انرژی داخلی بدست آمده از داده های دادا می باشد. در این حالت محدوده دما بین تاکه تا ۲۳۸ کلوین، می باشد. نمودار (۴–۴۰)، درصد خطا می باشد. در این حالت محدوده دما بین تاکه تا ۲۶۳ کلوین، می باشد. نمودار (۴–۴۰)، درصد خطا می باشد. در این حالت محدوده دما بین تاکه تا ماته کلوین، می باشد. مودار (۴–۴۰)، درصد خطا می در محاسبات انرژی داخلی برای متان خالص را بر حسب فشار و برای حالتهای دما ثابت ، نشان می دهد. با توجه به نمودار (۴–۴۰)، درصد خطای محاسبات انرژی داخلی برای متان خالص، در محدوده ۴/۰± ٪، قرار داشته که نشان دهنده دقت قابل قبول معادله حالت AGA8 برای محاسبه انرژی داخلی، می باشد.

نمودار (۴–۳۹) - انرزی داخلی برای متان خالص بر حسب فشار و برای حالتهای دما ثابت (داده های آزمایشگاهی مرجع [۵۵])

نمودار (۴–۴۱)، انرژی داخلی مولار را برای متان خالص و برای سه حالت دما ثابت، ۲۵۰، ۳۵۰ و ۳۵۰ کلوین و برای فشارهای تا ۶۰ مگاپاسکال، نشان می دهد. در نمودار (۴–۴۱)، خطوط محاسبات انرژی داخلی با استفاده از معادله حالت AGA8 بوده و اشکال، انرژی داخلی بدست آمده از داده های NIST، می باشند.

نمودار (۴–۴۱) - انرزی داخلی برای متان خالص بر حسب فشار و برای حالتهای دما ثابت (داده های آزمایشگاهی مرجع [۵۵])

نمودار (۴-۴۲)، درصد خطای محاسبات انرژی داخلی را بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴-۴۲)، درصد خطای محاسبات انرژی داخلی با استفاده از معادله حالت AGA8، در حالت کلی در محدوده ۴/۰± ٪، قرار دارد. برای دماهای بالا و فشارهای در محدوده ۱۰ تا ۲۰ مگاپاسکال، خطا افزایش پیدا کرده ولی این افزایش مقدار چشمگیری ندارد.

(داده های آزمایشگاهی مرجع [۵۵])

جدول (۴–۱۳)، درصد انحراف مطلق میانگین (AAPD) را برای محاسبات انرژی داخلی برای متان خالص، نشان می دهد. با توجه به داده های جدول (۴–۱۳)، درصد انحراف مطلق میانگین (AAPD) برای محاسبات انرژی داخلی برای ۲۹۹ داده آزمایشگاهی برابر با ۰/۰۷۸ ٪ بوده که نشان دهنده دقت بسیار بالای محاسبات انرژی داخلی با استفاده از معادله حالت AGA8، می باشد.

جدول (۴–۱۳)- درصد انحراف مطلق میانگین (AAPD) ا برای محاسبات انرژی داخلی برای متان خالص

	Ref	Number of	T Range	P Range	AAPD
		Data	[K]	[MPa]	(%)
Pure CH4	NIST Data	299	250-350	1-60	0.078
	[56]				

۴-۱-۹- معتبرسازی محاسبات آنتروپی

در این قسمت محاسبات مربوط به آنتروپی برای متان خالص انجام گرفته است. به علت کمبود داده های آزمایشگاهی موجود برای آنتروپی مخلوط ها، محاسبات را برای متان خالص انجام داده ایم و در نهایت محاسبات را با داده های IST، که استاندادری معتبر در محاسبه خواص ترمودینامیکی مواد خالص می باشد، مقایسه کرده و درصد خطا و درصد انحراف محاسبات را مقایسه کرده ایم. نمودار (۴–۴۳)، آنتروپی مولار را برای متان خالص و برای چهار حالت دما ثابت و برای فشارهای تا ۲۱ مکال مگرفته است معایسه کرده ایم. نمودار معایس می باشد، مقایسه کرده و درصد خطا و درصد انحراف محاسبات را مقایسه کرده ایم. نمودار (۴–۴۳)، آنتروپی مولار را برای متان خالص و برای چهار حالت دما ثابت و برای فشارهای تا ۲۱ مگاپاسکال نشان می دهد. در نمودار (۴–۴۳)، خطوط محاسبات آنتروپی با استفاده از معادله حالت معاوم دما مگاپاسکال نشان می دهد. در نمودار (۴–۴۴)، خطوط محاسبات آنتروپی با استفاده از معادله حالت بین ۳۶۳ تا ۳۳۸ کلوین، می باشد. نمودار (۴–۴۴)، درصد خطا در محاسبات آنتروپی برای متان خالص را بر حسب فشار و برای حالت می دهد. با توجه به نمودار (۴–۴۴)، درصد خطا در محاسبات آنتروپی برای متان خالص را برای متان معادم محاسبات آنتروپی با استفاده از معادله حالت معاوم مرا می این در محدوده دما محاسبات آنتروپی برای متان محدوده دما می باشند. در این حالت محدوده دما بین ۳۶۳ تا ۳۳۸ کلوین، می باشد. نمودار (۴–۴۴)، درصد خطا در محاسبات آنتروپی برای متان خالص را بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴–۴۴)، درصد خطای محاسبات آنرژی داخلی برای متان خالص، در محدوده ۲۰/۰± ٪، قرار داشته که نشان دهنده خطای محاسبات انرژی داخلی مایای محاسبه آنتروپی، می باشد.

نمودار (۴–۴۳) - آنتروپی برای متان خالص بر حسب فشار و برای حالتهای دما ثابت (داده های آزمایشگاهی مرجع [۵۵])

نمودار (۴–۴۵)، آنتروپی مولار را برای متان خالص و برای سه حالت دما ثابت، ۲۵۰، ۳۰۰ و ۳۵۰ کلوین و برای فشارهای تا ۶۰ مگاپاسکال، نشان می دهد. در نمودار (۴–۴۵)، خطوط محاسبات آنتروپی با استفاده از معادله حالت AGA8 بوده و اشکال، آنتروپی بدست آمده از داده های NIST، می باشند. نمودار (۴–۴۶)، درصد خطای محاسبات آنتروپی را بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴–۴۶)، درصد خطای محاسبات آنتروپی با استفاده از معادله حالت AGA8، در حالت کلی در محدوده ۲۰/۰± ٪، قرار دارد. جدول (۴–۱۴)، درصد انحراف مطلق میانگین (۴– AGA8) را برای محاسبات آنتروپی برای متان خالص، نشان می دهد. با توجه به داده های جدول (۴– ۱۳)، درصد انحراف مطلق میانگین (AAPD) برای محاسبات آنتروپی برای ۳۰۰ داده آزمایشگاهی برابر با ۲۰۱۳ / بوده که نشان دهنده دقت بسیار بالای محاسبات آنتروپی با استفاده از معادله حالت مرابر با AGA8، می باشد.

	Ref	Number of Data	T Range [K]	P Range [MPa]	AAPD (%)
Pure CH4	NIST Data [56]	300	250-350	1-60	0.0133

جدول (۴-۱۴)- درصد انحراف مطلق میانگین (AAPD) ا برای محاسبات آنتروپی برای متان خالص

نمودار (۴–۴۵) - آنتروپی برای متان خالص بر حسب فشار و برای حالتهای دما ثابت (داده های آزمایشگاهی مرجع [۵۵])

نمودار (۴–۴۶) - درصد خطا در محاسبات آنتروپی برای متان خالص (داده های آزمایشگاهی مرجع [۵۵])
۴–۱۰–۱۰ معتبرسازی محاسبات هیدرات های گازی

در این قسمت، محاسبات مربوط به تعادل هیدرات های گازی با استفاده از داده ای آزمایشگاهی، معتبرسازی شده است. محاسبات برای متان خالص و سه ترکیب دوتایی شامل: متان – اتان، متان – پروپان و متان– نیتروژن،انجام شده است. محاسبات با استفاده از روش گفته شده در فصل ۳، انجام شده و در نهایت درصد انحراف مطلق میانگین محاسبات نسبت به داده های آزمایشگاهی محاسبه شده است.

نمودار (۴–۴۷)، نمودار تعادلی دما – فشار را برای متان خالص، نشان می دهد. در نمودار (۴–۴۷)، شکل ها، داده های آزمایشگاهی و خطوط، محاسبات می باشند. محاسبات تعادلی شامل فاز های -I-H Lw و LW-H-Lw، می باشند.

نمودار (۱۰–۱۱)- نمودار نفادتی دما- فسار برای منان خانص (داده های آزمایشگاهی مرجع [۳۴])

با توجه به نمودار (۴–۴۷)، در فشارها دماهای بالا، محاسبات نسبت به دادههای آزمایشگاهی دارای خطای بیشتری می باشند. علت این امر را می توان به مدل محاسبه فوگاسیته در فاز هیدرات در فاز، جستجو کرد. یکی دیگر از علتهای اختلاف به معادله حالت VPT برمی گردد که در فشارهای بالا توانایی لازم را برای محاسبه ضریب ترکم پذیری و فوگاسیته اجزاء در فاز مایع و بخار، ندارد. نمودار (۴–۴۸)، نمودار تعادلی دما – فشار را برای مخلوط های دوتایی متان – اتان با درصد مولی متفاوت را نشان می دهد. محاسبات تعادلی شامل فاز V-H-Lw، می باشد. با توجه به نمودار (۴–۴۸)، با کاهش درصد متان در مخلوط، در یک دمای مشخص، فشار تعادلی هیدرات کاهش پیدا می کند. لازم به توضیح است که مخلوط های دوتایی متان – اتان، ساختار نوع I هیدرات را تشکیل می دهند.

نمودار (۴–۴۸)- نمودار تعادلی دما- فشار برای مخلوط های متان- اتان (داده های آزمایشگاهی مرجع [۳۴])

نمودار (۴۹–۴۹)، نمودار تعادلی دما – فشار را برای مخلوط های دوتایی متان – پروپان با درصد مولی متفاوت را نشان می دهد. محاسبات تعادلی شامل فاز V-H-Lw، می باشد. با توجه به نمودار (۴–۴۹)، متفاوت را نشان می دهد. محاسبات می دمای شامل فاز V-H-Lw، می باشد. با توجه به نمودار (۴–۴۹)، با کاهش درصد متان در مخلوط، در یک دمای مشخص، فشار تعادلی هیدرات کاهش پیدا می کند. با کاهش درصد متان در مخلوط های دوتایی متان – پروپان، ساختار نوع Π هیدرات را تشکیل می دهند.

نمودار (۴–۵۰)، نمودار تعادلی دما – فشار را برای مخلوط دوتایی متان – نیتروژن، نشان می دهد. محاسبات تعادلی شامل فاز V-H-Lw، می باشد. لازم به توضیح است که مخلوط دوتایی متان – نیتروژن، ساختار نوع I هیدرات را تشکیل می دهند.

(داده های آزمایشگاهی مرجع [۳۴])

جدول (۴–۱۵)، درصد انحراف مطلق میانگین (AAPD) را در محاسبات تعادلی هیدرات های گازی نشان می دهد. با توجه به داده های جدول (۴–۱۵)، درصد انحراف مطلق میانگین (AAPD) محاسبات نسبت به داده های آزمایشگاهی برای ۵۸ داده، برابر با ۲/۶ ٪ می باشد.

	Ref	Number of Data	AAPD (%)
Pure Methane	Solan [34]	31	2.98
Methane-Ethane	Solan [34]	11	1.69
Methane-Propane	Solan [34]	8	2.76
Methane-Nitrogen	Solan [34]	8	2.115
Sum	Solan [34]	58	2.6

جدول (۴–۱۵)- درصد انحراف مطلق میانگین (AAPD) در محاسبات تعادلی هیدرات

۲-۴- محاسبه خواص ترمودینامیکی مناطق گازی ایران

در این قسمت، خواص ترمودینامیکی برای چند حوزه گازی ایران، محاسبه شده و تاثیر ترکیب گاز طبیعی بر روی خواص مهم ترمودینامیکی، بررسی شده است. جدول (۴–۱۶)، درصد مولی ترکیبات گاز طبیعی مناطق مختلف ایران را نشان می دهد [۵۶].

Component	Mole Fraction (%)				
	Khangiran	Turkman Gas	Kangan	Pars	Gasho
CH ₄	98.6	94.21	90.04	87	79.08
C_2H_6	0.59	2.25	3.69	5.4	0.91
C_3H_8	0.09	0.53	0.93	1.7	0.36
$iso - C_4 H_{10}$	0.02	0.63	0.2	0.3	0.09
$n - C_4 H_{10}$	0.04	-	0.29	0.45	0.18
$iso - C_5 H_{12}$	0.02	0.26	0.14	0.13	0.08
$n - C_5 H_{12}$	0.02	-	0.08	0.11	0.07
$n - C_6 H_{14}$	0.07	0.17	0.14	0.07	0.69
C_7^+	-	0.18	0.01	0.03	-
N ₂	0.56	1.9	4.48	3.1	5.14
<i>CO</i> ₂	-	0.14	-	1.85	7.08
H_2S	-	-	-	-	6.32

جدول (۴-۱۶)- درصد مولی اجزای گاز طبیعی مناطق مختلف ایران

نمودار (۴–۵۱)، وزن مولکولی گازهای مناطق مختلف ایران را نشان می دهد.

۴–۲–۱– محاسبه سرعت صوت مناطق گازی ایران

نمودارهای (۴–۵۲) و (۴–۵۳)، سرعت صوت را برای مناطق خانگیران و قشو، بر حسب فشار و برای حالت های دما ثابت، نشان می دهد. محاسبات برای ۵ حالت دما ثابت و برای فشارهای تا ۶۰ مگاپاسکال انجام شده است. با دقت در نمودارهای (۴–۵۲) و (۴–۵۳)، متوجه می شویم که با افزایش دما سرعت صوت برای حوزه گازی گشو با درصد کمتر متان در اجزای گاز طبیعی نسبت به پالایشگاه خانگیران ، بیشتر می باشد.

نمودار (۴-۵۲)- سرعت صوت برای گاز طبیعی پالایشگاه خانگیران برای حالتهای دما ثابت و بر حسب فشار

نمودار (۴–۵۳)- سرعت صوت برای گاز طبیعی منطقه گشو برای حالتهای دما ثابت و بر حسب فشار

نمودارهای (۴–۵۴) و (۴–۵۵)، سرعت صوت را برای مناطق خانگیران، کنگان و قشو بر حسب فشار و برای دو حالت دما ثابت ۲۵۰ کلوین و ۳۵۰ کلوین نشان می دهند. با توجه به نمودار (۴–۵۴)، با کاهش درصد متان در اجزای گاز طبیعی سرعت صوت برای فشارهای زیر ۱۳ مگاپاسکال کاهش و برای فشارهای بالاتر از ۱۳ مگاپاسکال سرعت صوت افزایش پیدا می کند. افزایش در سرعت صوت گاز طبیعی، تاثیر چندانی در سرعت صوت نخواهد داشت. با توجه به نمودار (۴–۵۵)، سرعت صوت با کاهش درصد متان در اجزای گاز طبیعی برای کلیه فشارها کاهش یافته است. این کاهش سرعت از طبیعی، تاثیر چندانی در سرعت صوت نخواهد داشت. با توجه به نمودار (۴–۵۵)، سرعت صوت با موت حدوداً ۱۱ ٪ بوده که مقدار قابل توجه ای می باشد. به عنوان یک اصل کلی برای دماهای بالاتر از ۲۵۰ کلوین سرعت صوت با کاهش درصد متان، کاهش پیدا می کند. برای دمای کلوین و کمتر بسته به فشار گاز طبیعی، سرعت صوت با کاهش درصد متان می تواند افزایش یا کاهش پیدا کند.

نمودار (۴-۵۴)- سرعت صوت برای گاز طبیعی مناطق مختلف بر حسب فشار و در دمای ثابت ۲۵۰ کلوین

نمودار (۴–۵۵)- سرعت صوت برای گاز طبیعی مناطق مختلف بر حسب فشار و در دمای ثابت ۳۵۰ کلوین

۴–۲–۲– محاسبه آنتالپی مناطق گازی ایران

در این قسمت، آنتالپی مولار برای گاز طبیعی منطقه کنگان بر حسب فشار و برای حالتهای دما ثابت، محاسبه شده است. آنتالپی مولار برای فشارهای تا ۶۰ مگاپاسکال و برای پنج حالت دما ثابت ۲۵۰، ۲۷۵، ۲۷۵، ۳۰۰، ۳۵۵ و ۳۵۰ کلوین، محاسبه شده است. نمودار (۴–۵۶)، آنتالپی مولار گاز طبیعی منطقه کنگان را بر حسب فشار و برای حالتهای دما ثابت، نشان می دهد. با توجه به نمودار (۴–۵۶)، با افزایش دما، آنتالپی گاز طبیعی افزایش پیدا خواهد کرد. با افزایش فشار در یک دمای خاص، آنتالپی ابتدا و تا فشارهای ۲۵ مگاپاسکال کاهش پیدا کرده و بعد از این فشار تاثیر چندانی در آنتالپی مشاهده نمی شود.

نمودار (۴-۵۶)- آنتالپی گاز طبیعی بر حسب فشار در برای حالتهای دما ثابت برای حوزه گازی کنگان

نمودار (۴–۵۷) و (۴–۵۸)، آنتالپی گاز طبیعی مناطق خانگیران، کنگان و قشو را بر حسب فشار و برای دو حالت دما ثابت ۲۵۰ و ۳۵۰ کلوین، نشان می دهند. با توجه به این نمودارها، با کاهش درصد متان در اجزای گاز طبیعی، آنتالپی گاز طبیعی، کاهش یافته است. این کاهش در آنتالپی تقریباً در همه دماها، اتفاق می افتد با این تفاوت که در دماهای پایینتر مانند ۲۵۰ کلوین، اختلاف آنتالپی همواره مقدار ثابتی می باشد. در دماهای بالاتر مانند ۳۵۰ کلوین با افزایش فشار، اختلاف بین آنتالپی گاز طبیعی مناطق مختلف بیشتر می گردد.

نمودار (۴-۵۷)- آنتالپی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۲۵۰ کلوین

نمودار (۴–۵۸) – آنتالپی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۳۵۰ کلوین

۴-۲-۴ محاسبه انرژی داخلی مناطق گازی ایران

در این قسمت، انرژی داخلی مولار برای گاز طبیعی منطقه کنگان بر حسب فشار و برای حالت های دما ثابت، محاسبه شده است. انرژی داخلی مولار برای فشارهای تا ۶۰ مگاپاسکال و برای پنج حالت دما ثابت ۲۵۰، ۲۷۵، ۳۰۰، ۳۲۵ و ۳۵۰ کلوین، محاسبه شده است. نمودار (۴–۵۹)، انرژی داخلی مولار گاز طبیعی منطقه کنگان را بر حسب فشار و برای حالت های دما ثابت، نشان می دهد. با توجه به نمودار (۴–۵۹)، با افزایش دما، انرژی داخلی گاز طبیعی افزایش پیدا خواهد کرد. با افزایش فشار در یک دمای خاص، انرژی داخلی همواره کاهش پیدا می کند. شیب کاهش انرژی داخلی، با افزایش فشار کاهش پیدا می کند.

-T=250 K 🗕 T=275 K 📥 T=300 K 🗯 T=325 K 🔶 T=350 K

نمودار (۴-۵۹)- انرژی داخلی گاز طبیعی بر حسب فشار در برای حالتهای دما ثابت برای حوزه گازی کنگان

نمودار (۴–۶۰) و (۴–۶۱)، انرژی داخلی گاز طبیعی مناطق خانگیران، کنگان و قشو را بر حسب فشار و برای دو حالت دما ثابت ۲۵۰ و ۳۵۰ کلوین، نشان می دهند. با توجه به این نمودارها، با کاهش درصد متان در اجزای گاز طبیعی، انرژی داخلی گاز طبیعی، کاهش یافته است. این کاهش در انرژی داخلی تقریباً در همه دماها، اتفاق می افتد با این تفاوت که در دماهای پایینتر مانند ۲۵۰ کلوین،

اختلاف انرژی داخلی همواره مقدار ثابتی می باشد. در دماهای بالاتر مانند ۳۵۰ کلوین با افزایش فشار، اختلاف بین انرژی داخلی گاز طبیعی مناطق مختلف بیشتر می گردد.

نمودار (۴-۴۰)- انرژی داخلی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۲۵۰ کلوین

نمودار (۴–۶۱)- انرژی داخلی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۳۵۰ کلوین

۴-۲-۴- محاسبه آنتروپی مناطق گازی ایران

در این قسمت، آنتروپی مولار برای گاز طبیعی منطقه کنگان بر حسب فشار و برای حالت های دما ثابت، محاسبه شده است. آنتروپی مولار برای فشارهای تا ۶۰ مگاپاسکال و برای پنج حالت دما ثابت ۲۵۰، ۲۷۵، ۳۰۰، ۳۲۵ و ۳۵۰ کلوین، محاسبه شده است. نمودار (۴–۶۲)، آنتروپی مولار گاز طبیعی منطقه کنگان را بر حسب فشار و برای حالت های دما ثابت، نشان می دهد. با توجه به نمودار (۴–۶۲)، با افزایش دما، آنتروپی گاز طبیعی افزایش پیدا خواهد کرد. با افزایش فشار در یک دمای خاص، آنتروپی همواره کاهش پیدا می کند.

🔶 T=250 K 🛑 T=275 K 📥 T=300 K 픘 T=325 K 🛑 T=350 K

نمودار (۴-۴۲)- آنتروپی گاز طبیعی بر حسب فشار در حالتهای دما ثابت برای حوزه گازی کنگان

نمودارهای (۴–۹۳) و (۴–۶۴)، آنتروپی مولار برای گاز طبیعی مناطق خانگیران، کنگان و گشو بر حسب فشار و برای حالت های دما ثابت ۲۵۰ و ۳۵۰ کلوین، نشان می دهند. با توجه به نمودارهای (۴–۶۳) و (۴–۶۴)، با کاهش درصد متان در اجزای گاز طبیعی، آنتروپی افزایش پیدا خواهد نمود. این افزایش در دماهای پایین، در فشارهای بالا اتفاق می افتد. اما در دماهای بالا، این افزایش همواره و در تمامی فشارها اتفاق افتاده و با افزایش فشار، بیشتر می گردد.

نمودار (۴–۶۴)- آنتروپی گاز طبیعی مناطق مختلف بر حسب فشار و در حالت دما ثابت ۳۵۰ کلوین

۴-۲-۵- محاسبه ارزش های حرارتی مناطق گازی ایران

در این قسمت، ارزش های حرارتی گازهای طبیعی مناطق مختلف، با توجه به مطالب گفته شده در فصل دوم، محاسبه شده است. ارزش های حرارتی بالا و پایین برای مناطق مختلف گاز طبیعی محاسبه شده و تاثیر ترکیب گاز طبیعی بر روی ارزش های حرارتی و برای گازهای مناطق مختلف، بررسی و مقایسه گردیده است.

۲-۴-۵-۱-۱ ارزش حرارتی مولار مناطق مختلف

نمودارهای (۴–۶۵) و (۴–۶۹)، به ترتیب، ارزش حرارتی بالا و پایین مولار برای گازهای طبیعی مناطق مختلف ایران را در دمای C°25 و فشار 101.325Kpa نشان می دهند. با توجه به نمودارهای (۴–۶۵) و (۴–۶۶)، گاز طبیعی منطقه پارس دارای بیشترین و گاز طبیعی منطقه قشو دارای کمترین، میزان ارزش حرارتی مولار را دارا می باشند. علت بالا بودن ارزش حرارتی گاز طبیعی منطقه، نسبت به گاز طبیعی بودن درصد مولی هیدروکربن های سنگین در ترکیب گاز طبیعی این منطقه، نسبت به گاز طبیعی مناطق دیگر مربوط می باشد.

نمودار (۴-۶۵)- ارزش حرارتی بالای مولار برای گازهای طبیعی مناطق مختلف ایران

نمودار (۴-۶۶)- ارزش حرارتی پایین مولار برای گازهای طبیعی مناطق مختلف ایران

۲-۲-۵-۲- ارزش حرارتی جرمی مناطق مختلف

نمودارهای (۴–۶۷) و (۴–۶۸)، به ترتیب، ارزش حرارتی جرمی بالا و پایین گاز طبیعی مناطق مختلف ایران را در دمای 2°25 و فشار 101.325Kpa نشان می دهند. با توجه به نمودارهای (۴–۶۷) و (۴–۶۸)، گاز طبیعی منطقه خانگیران دارای بیشترین و گاز طبیعی منطقه قشو دارای کمترین، میزان ارزش حرارتی جرمی را دارا می باشند. علت بالا بودن ارزش حرارتی جرمی گاز طبیعی منطقه خانگیران به پایین بودن وزن مولکولی گاز طبیعی این منطقه مربوط می شود. بنابراین گازهای طبیعی با وزن های مولکولی کمتر از ارزش حرارتی جرمی بیشتری برخوردار می باشند. اختلاف بین بیشترین و کمترین ارزش حرارتی جرمی بین ۱۴ تا ۱۶ مگاژول برای هر کیلوگرم می باشد که نشان دهنده تاثیر بسیار بالای ترکیب گاز طبیعی بر روی میزان انرژی آزاد شده توسط گاز طبیعی، می باشد.

نمودار (۴-۶۷) - ارزش حرارتی بالای جرمی برای گازهای طبیعی مناطق مختلف ایران

نمودار (۴-۶۸)- ارزش حرارتی پایین جرمی برای گازهای طبیعی مناطق مختلف ایران

۲-۴-۵-۳- ارزش حرارتی حجمی مناطق مختلف

نمودارهای (۴–۶۹) و (۴–۷۰)، به ترتیب، ارزش حرارتی حجمی بالا و پایین گاز طبیعی مناطق مختلف ایران را در دمای 2°25 و فشار 101.325Kpa و در شرایط مرجع (اندازه گیری) با دمای 2°0 و فشار 101.325Kpa، نشان می دهند. ارزش حرارتی حجمی وابسته به چگالی و ارزش حرارتی مولار گاز طبیعی، می باشد. با توجه به نمودارهای (۴–۶۹) و (۴–۷۰)، ارزش حرارتی مناطق پارس و ترکمن گاز نسبت به سایر مناطق از ارزش حرارتی حجمی بیشتری برخوردار می باشند. دلیل بالا بودن ارزش حرارتی حجمی این مناطق، به بیشتر بودن ارزش حرارتی مولار گاز طبیعی این مناطق برمی گردد. اختلاف بین بیشترین و کمترین مقدار ارزش حرارتی حجمی بین ۵ تا ۶ مگاژول برای هر متر مکعب گاز طبیعی بوده که مقدار قابل توجهی می باشد.

نمودار (۴–۶۹)- ارزش حرارتی بالای حجمی برای گازهای طبیعی مناطق مختلف ایران

نمودار (۴-۷۰)- ارزش حرارتی پایین حجمی برای گازهای طبیعی مناطق مختلف ایران

۴-۲-۵-۴- چگالی نسبی مناطق مختلف

نمودار (۴–۷۱)، چگالی نسبی را برای گاز طبیعی مناطق مختلف ایران و در شرایط مرجع (اندازه گیری) با دمای C°0 و فشار 101.325Kpa، نشان می دهد. با توجه به نمودار (۴–۷۱)، گاز طبیعی منطقه قشو دارای بیشترین و گاز طبیعی منطقه خانگیران دارای کمترین، میزان چگالی نسبی، می باشند. علت این امر، بالا بودن وزن مولکولی گاز طبیعی منطقه قشو می باشد. در حالت کلی با افزایش وزن مولکولی، چگالی نسبی گاز طبیعی افزایش پیدا خواهد کرد. با توجه به نمودار (۴–۷۱)، با افزایش وزن مولکولی به اندازه ۲۵٪، چگالی نسبی به اندازه ۲۸٪ افزایش پیدا کرده است.

نمودار (۴-۷۱)- چگالی نسبی برای گاز طبیعی مناطق مختلف ایران

۲-۴-۵-۵-۵ شاخص وبي مناطق مختلف

نمودارهای (۴–۷۲) و (۴–۷۲)، به ترتیب، شاخص وبی بالا و پایین گاز طبیعی مناطق مختلف ایران را در دمای 2°25 و فشار 101.325Kpa و در شرایط مرجع (اندازه گیری) با دمای 2°0 و فشار طبیعی، می باشد. با توجه به نمودارهای (۴–۷۲) و (۴–۷۲)، مناطق خانگیران و ترکمن گاز نسبت به طبیعی، می باشد. با توجه به نمودارهای (۴–۷۲) و (۴–۷۲)، مناطق خانگیران و ترکمن گاز نسبت به سایر مناطق از میزان شاخص وبی بیشتری برخوردار می باشند. دلیل بالا بودن شاخص وبی این مناطق، به بیشتر بودن ارزش حرارتی حجمی و کمتر بودن چگالی نسبی گاز مربوط می شود. اختلاف بین بیشترین و کمترین مقدار شاخص وبی بین ۱۰ تا ۱۸ مگاژول برای هر متر مکعب گاز طبیعی مناطق خانگیران و درصد مولی می باشد. همچنین گاز طبیعی مناطق خانگیران و ترکمن گاز، تقریباً از شاخص وبی یکسانی برخودار می باشند در حالیکه دارای ترکیب و درصد مولی متفاوتی هستند. بنابراین می توان گفت این دو گاز از نظر معیار ارزش حرارتی با یکدیگر برابر بوده و می توان آنها را در صورت لزوم با یکدیگر تعویض کرد. مطلب فوق را می توان برای گاز طبیعی مناطق کنگان و پارس نیز تعمیم داد.

نمودار (۴–۷۲)- شاخص وبی (بالا) برای گازهای طبیعی مناطق مختلف ایران

نمودار (۴–۷۲)- شاخص وبی (پایین) برای گازهای طبیعی مناطق مختلف ایران

۴-۳- معادلات استخراج شده برای محاسبه خواص ترمودینامیکی

در این قسمت، با استفاده از محاسبه خواص ترمودینامیکی گاز طبیعی مناطق مختلف ایران، معادلاتی برای محاسبه بعضی از خواص ترمودینامیکی از جمله: چگالی، آنتالپی و انرژی داخلی، بدست آمده است. برای محاسبه معادلات فرض بر این است که هر خاصیت ترمودینامیکی، تابعی از سه خاصیت قابل اندازه گیری می باشد. این سه خاصیت عبارتند از: ۱- دما، ۲- فشار و ۳- وزن نسبی گاز.

وزن نسبی گاز تابعی از ترکیب گاز بوده و در حالت کلی با استفاده از رابطه زیر تعریف می شود:

$$\gamma = \frac{Molecular Weight of Natural Gas}{Molecular Weight of Air} = \frac{M_w}{28.966}$$
 (\$\Delta-\$)

جائیکه در رابطه (۴–۵)، γ وزن نسبی می باشد.

محدوده دما، فشار، وزن مولکولی یا وزن نسبی برای معادلات ارائه شده به شرح زیر می باشد:

$$1 \le P(MPa) \le 25; 250 \le T(kelvin) \le 350 \tag{$\mathcal{P}-\mathcal{F}$})$$

$$16.3164 \le M_w \left(\frac{Kg}{Kmol}\right) \le 20.68875 \ Or \ 0.5633 \le \gamma \le 0.7142 \tag{V-f}$$

معادله ارائه شده در حالت کلی به شل زیر می باشد:

Properties(T', P',
$$\gamma'$$
)
= $A_1(T', \gamma')P'^4 + A_2(T', \gamma')P'^3 + A_3(T', \gamma')P'^2 + A_4(T', \gamma')P'$
+ $A_5(T', \gamma')$ (Λ - \mathfrak{F})

در رابطه (۸–۴)، $A_i(T',\gamma'); i = 1,..,5$ ، به صورت زیر تعریف می شود:

$$A(T',\gamma') = B_1(T')\gamma'^2 + B_2(T')\gamma' + B_3(T')$$
(9-4)

در رابطه (۴–۹)، 1,2,3 $B_j(T'); j = 1,2,3$ ، به صورت زیر تعریف می شود:

$$B(T') = C_1 T'^2 + C_2 T' + C_3 \tag{1.-f}$$

پارامترهای T', P', γ' ، نیز به صورت زیر تعریف شده اند:

$$P' = \frac{P - 13}{7.3598}; \ T' = \frac{T - 300}{50}; \ \gamma' = \frac{\gamma - 0.62541}{0.07894}$$
(11-f)

با مشخص بودن دما، فشار و کسر مولی اجزاء و محاسبه وزن مولکولی و وزن نسبی، با استفاده از روابط (۴–۸) تا (۴–۱۱) می توان خواص ترمودینامیکی را برای گاز طبیعی محاسبه نمود.

جدول (۴–۱۷)، درصد انحراف مطلق میانگین چگالی گاز طبیعی مناطق مختلف ایران، محاسبه شده با استفاده از روابط ارائه شده را نشان می دهد. درصد انحراف نسبت به محاسبات معادله حالت AGA8، محاسبه شده است.

	Number of Data	AAPD (%)
Khangiran	125	1.2559
Kangan	125	1.3684
Pars	125	2.9786
Gasho	125	1.909
Sum	500	1.8779

جدول (۴–۱۷)- درصد انحراف مطلق میانگین محاسبات چگالی با استفاده از روابط ارائه شده

با توجه به داده های جدول (۴–۱۷)، درصد انحراف مطلق میانگین برای کل داده ها، کمتر از ۲٪ بوده که دقتی قابل قبول برای کاربردهای مهندسی می باشد.

جدول (۴–۱۸)، درصد انحراف مطلق میانگین آنتالپی گاز طبیعی مناطق مختلف ایران، محاسبه شده با استفاده از روابط ارائه شده را نشان می دهد. درصد انحراف نسبت به محاسبات معادله حالت AGA8، محاسبه شده است.

	Number of Data	AAPD (%)
Khangiran	123	1.21
Kangan	125	1.7571
Pars	123	3.32
Gasho	124	1.4
Sum	495	1.92

جدول (۴–۱۸)- درصد انحراف مطلق میانگین محاسبات آنتالپی با استفاده از روابط ارائه شده

با توجه به داده های جدول (۴–۱۸)، درصد انحراف مطلق میانگین برای تعداد ۴۹۵ داده، کمتر از ۲٪ بوده که دقتی قابل قبول برای کاربردهای مهندسی می باشد. لازم به تذکر است که درصد انحراف برای تک تک گازهای طبیعی محاسبه شده است و درصد انحراف برای کل داده ها، مورد بررسی قرار گرفته است. جدول (۴–۱۹)، درصد انحراف مطلق میانگین انرژی داخلی گاز طبیعی مناطق مختلف ایران، محاسبه شده با استفاده از روابط ارائه شده را نشان می دهد. درصد انحراف نسبت به محاسبات معادله حالت AGA8، محاسبه شده است.

	Number of Data	AAPD (%)
Khangiran	125	2.1
Kangan	125	1.9207
Pars	122	2.566
Gasho	124	1.43
Sum	496	2.002

جدول (۴–۱۹)- درصد انحراف مطلق میانگین محاسبات انرژی داخلی با استفاده از روابط ارائه شده

با توجه به داده های جدول (۴–۱۹)، درصد انحراف مطلق میانگین برای تعداد ۴۹۶ داده، تقریباً برابر با ۲٪ بوده که دقتی قابل قبول برای کاربردهای مهندسی می باشد.

فصل ينجم

نتیجه گیری و پیشنهادات

در این قسمت، با توجه به نتایج بدست آمده که به طور مفصل در فصل چهارم، مورد بررسی قرار گرفت، نتایجی را به عنوان نتیجه کار این پایان نامه ارائه خواهیم کرد.

۵–۱– نتیجه گیری

در این پایان نامه، خواص ترمودینامیکی گاز طبیعی با استفاده از یک معادله حالت معتبر در زمینه گاز طبیعی به نام معادله حالت AGA8، محاسبه شده است. معتبرسازی محاسبات نسبت به داده های آزمایشگاهی نشان دهنده دقت قابل قبول روش مورد نظر و معادله حالت AGA8، برای محاسبه خواص ترمودینامیکی گاز طبیعی می باشند. در نهایت و با استفاده از روش گفته شده برای محاسبه خواص ترمودینامیکی و با مبنا قرار دادن معادله حالت AGA8، نرم افزاری برای تعیین خواص ترمودینامیکی گاز طبیعی، ارائه شده است. در نهایت، با استفاده از نرم افزار و معادله حالت AGA8، بعضی از کاربردهای مورد نظر در صنعت گاز طبیعی مورد مطالعه قرار گرفته و فرآیندهای ذکر شده در آن به طور دقیق مورد بررسی قرار گرفته است. در معتبرسازی محاسبات نسبت به داده های آزمایشگاهی موجود و محاسبه درصد خطا و درصد انحراف مطلق میانگین (AAPD)، نتایج جالب توجهی بدست آمده که به شرح زیر می باشند:

۱- درصد انحراف مطلق میانگین (AAPD) برای محاسبه چگالی و ضریب تراکم پذیری نسبت به داده های آزمایشگاهی کمتر از ۲/۰ ٪ می باشد. بنابراین معادله حالت AGA8 دقت بالایی برای محاسبه این دو خاصیت مهم، دارد. لزوماً هدف از ارائه معادله حالت AGA8، محاسبه چگالی و ضریب تراکم پذیری بوده است.

۲- در محاسبه خواص ترمودینامیکی مانند ظرفیت های گرمایی در فشار و حجم ثابت و سرعت صوت گاز طبیعی، روش ارائه شده بر مبنای معادله حالت AGA8، دقتی کمتر از ۱٪ را برای محاسبات نشان می دهند. بنابراین برای محاسبه این خواص معادله حالت AGA8، از دقت بالایی برخوردار می باشد.

۳- در محاسبه ضریب ژول – تامسون، دقت معادله حالت AGA8، نزدیک به ۲ ٪ می باشد. این عدد برای فشارهای تا ۳۰ مگاپاسکال بدست آمده است. در فشارهای پایین تر و در محدوده کاربرد مهندسی دقت محاسبات ضریب ژول – تامسون، به کمتر از ۱ ٪ نیز خواهند رسید. البته لازم به تذکر است که در محاسبه ضریب ژول – تامسون با استفاده از معادلات حالت درجه سه خطا در بهترین حالت برابر با ۵ ٪ گزارش شده است. این عدد نشان دهنده دقت بالای دقت معادله حالت AGA8 در محاسبه ضریب ژول – تامسون، نمان دهنده دقت بالای دقت معادله حالت محاسبه می باشد. محاسبه معادلات حالت درجه سه، می باشد.

۴- در محاسبه خواص مهم ترمودینامیکی گاز طبیعی مانند آنتالپی، آنتروپی و انرژی داخلی، دقت محاسبات برابر با ۱ ٪ می باشند. بنابراین می توان نتیجه گرفت که این سه خاصیت را می توان با دقت قابل قبول با استفاده از معادله حالت AGA8، محاسبه نمود.

۵- یکی از معایب اصلی معادله حالت AGA8، این است که این معادله حالت قادر به توانایی پوشش فازهای دیگر از جمله فاز مایع را نداشته و تنها در محدوده فاز گاز از دقت بالایی برخوردار می باشد. با توجه به این امر، برای محاسبه هیدراتهای گازی و شرایط تشکیل آنها از معادلات حالت درجه سه ، معادله حالت VPT، استفاده شده است.

۶- با شبیه سازی بعضی از فرآیندهای مربوط به گاز طبیعی، این نتیجه بدست آمده است که: خواص ترمودینامیکی گاز طبیعی علاوه بر دما و فشار ، بسیار وابسته به ترکیب گاز طبیعی می باشند و با تغییر در ترکیب گاز طبیعی، خواص ترمودینامیکی با تغییر قابل توجهی مواجه خواهد شد. در مطالعات گذشته معمولاً گاز طبیعی به صورت ایده آل یا در صورت گاز واقعی از متان به عنوان نماینده گاز طبیعی، در شبیه سازی فرآیندها استفاده شده است. با استفاده از نرم افزار طراحی شده و معادله حالت AGA8، می توان گاز طبیعی با هر ترکیب دلخواه را مورد بررسی قرار داده و در فرآیندها رفتار واقعی گاز طبیعی را مورد بررسی قرار دهیم.

۵-۲- پیشنهاداتی برای تحقیقات آینده

با توجه به اینکه در یک مدت زمان محدود نمی توان هیچ مسئله ای را به طور کامل، تجزیه و تحلیل نمود، بنابراین پیشنهاداتی برای تحقیقات آینده در این قسمت ارائه شده تا در صورت لزوم محققان بعدی با استفاده از آن بتوانند موضوع مورد بحث را از زوایای دیگری مورد بحث و بررسی قرار بدهند.

در محاسبه خواص ترمودینامیکی گاز طبیعی، فرض بر آن است که دما، فشار و کسر مولی اجزاء به عنوان ورودی به نرم افزار داده شوند و خاصیت ترمودینامیکی محاسبه شود. در اکتر فرآیندهای ترمودینامیکی برای گاز طبیعی وضعیت به گونه دیگری می باشد. به عبارت دیگر ممکن است یک خاصیت ترمودینامیکی مثلاً آنتالپی، در دمای مشخص موجود بوده و مجهول مسئله، فشار گاز طبیعی در فرآیند باشد. در این صورت باید از روش های سعی و خطا استفاده نمود. به عبارت دیگر با مشخص بودن کسر مولی اجزاء و دو خاصیت دلخواه بتوان تمامی خواص ترمودینامیکی را محاسبه نمود. برای محاسبه چنین حالتی نیاز به یک حدس اولیه برای خواص ترمودینامیکی، داریم. این سعی اولیه می تواند محاسبات متان خالص باشد که با استفاده از نرم افزار طراحی شده در این تحقیق، می تواند به راحتی محاسبه گردد.

ييوست الف

طراحی نرم افزار و کاربردها

الف-1- طراحي نرم افزار

در این فصل توضیحاتی مربوط به طراحی نرم افزار مورد استفاده برای محاسبه خواص ترمودینامیکی گاز طبیعی، آورده شده است. نرم افزار محاسبه خواص ترمودینامیکی گاز طبیعی با استفاده از نرم افزار Microsoft Visual Basic 2005 Express Edition، نوشته شده است. یکی از دلایل استفاده از نرم افزار نامبرده شده برای طراحی نرم افزار محاسبه خواص ترمودینامیکی گاز طبیعی، سرعت بالای این نرم افزار در اجرا و صرفه جویی در وقت می باشد.

ورودی های نرم افزار شامل: دما، فشار و کسر مولی ترکیبات گاز طبیعی در مخلوط گاز شامل ۲۱ عنصر گازی، می باشند. خروجی ها عبارتند از: ضریب تراکم پذیری، چگالی، ظرفیت های گرمایی در فشار و حجم ثابت، ضریب ژول – تامسون، توان آیزنتروپیک، سرعت صوت، آنتالپی، انرژی داخلی، آنتروپی، ارزش های حرارتی و خواص وابسته به آن و فشار تعادلی هیدرات های گازی. شکل (الف-۱)، شکل شماتیکی از ورودی ها و خروجی های نرم افزار مورد بحث را نشان می دهد. هر خاصیت ترمودینامیکی به صورت یک تابع^{۶۸}، نوشته شده است. برای محاسبه هر خاصیت ترمودینامیکی نیاز به دما، فشار و کسر مولی اجزای گاز طبیعی، می باشد.

با استفاده از نرم افزار طراحی شده برای محاسبه خواص، می توان با سرعت بسیار بالا و دقت قابل قبول، خواص ترمودینامیکی مخلوط گاز طبیعی را با ترکیب های مختلف، محاسبه نمود.

شکل (الف-۱)- شماتیکی از ورودی ها و خروجی های نرم افزار محاسبه خواص ترمودینامیکی گاز طبیعی

شکل (الف-۲)، صفحه ورودی کسر مولی اجزای گاز طبیعی را نشان می دهد. در این قسمت کسر مولی اجزاء شامل ۲۱ عنصر، وارد نرم افزار می شود. از آنجائیکه جمع کسر مولی اجزاء در ترکیب گاز

⁶⁸- Function

باید برابر با یک باشد، ابتدا نرم افزار این شرط را چک کرده و در صورتی که مجموع کسر مولی کمتر از یک یا بیشتر از یک باشد، آنرا نرمال می کند. شکل (الف-۳)، صفحه ای است که اطلاعات مربوط به دما و فشار، وارد نرم افزار می شود. بعد از ورود اطلاعات اولیه دما، فشار و کسر مولی اجزاء، خواص ترمودینامیکی گاز طبیعی، محاسبه می شوند. شکل (الف-۴) و شکل (الف-۵)، به ترتیب، ارزش های حرارتی گاز طبیعی و فشار تعادلی هیدرات های گازی را محاسبه می کنند. شکل های (الف-۲) تا (الف-۵) در صفحات آینده آمده است.

🖷 Natural Gas Thermodynamics Properties : AGA8 EOS					
Input Mole Fractions	Termodynam	ics Properties He	eating Value	e And Other	Propertie 🔸
Methane	1	n-B	utane	0	
Nitrogen	0	i-Pe	entane	0	
Carbon Dioxide	0	n-Pe	entane	0	
Ethane	0	n-H	exane	0	
Propane	0	n-H	eptane	0	
Water	0	n-O	ctane	0	
Hydrogen Sulfide	0	n-N	onane	0	
Hydrogen	0	n-D	ecane	0	
Carbon Monoxide	0	Hel	ium	0	
Oxygen	0	Arg	on	0	
i-Butane	0				
		Normalize			
Molecular Weigt	th (Kg/Kmol)				

شکل (الف-۲)- ورودی کسر مولی اجزای گاز طبیعی در نرم افزار طراحی شده

🖳 Natural Gas Thermodynamics Properties : AGA8 EOS				
Input Mole Fractions Termodynamics Properties Heating Value And Other Propertie				
Pressure (Mpa) 2 Temperature (Kelvin) 300				
Common Properties Compression Factor	Important Properties			
Molar Density (kmol/m^3)	Tref (Kelvin) 298.15			
Mass Density (Kg/m^3)	Pref (MPa) 0.101325			
Cv,m (Kj/Kmol.K)	Internal Energy (Kj/Kmol)			
Cp,m (Kj/Kmol.K)	Enthalpy (Kj/Kmol)			
Isentropic Exponet	Entropy (Kj/Kmol.K)			
JT coefficient (K/Mpa)				
Speed Of Sound (m/s)]			

شکل (الف-۳)- ورودی دما و فشار و محاسبه خواص ترمودینامیکی گاز طبیعی در نرم افزار طراحی شده

🖷 Natural Gas Thermodynamics Propertie	es : AGA8 EOS			
Termodynamics Properties Heating	Value And Oth	er Properties	Gas Hvdrate	< >
Lowering Heating Value	🗖 Hiak	Heating Value	-	
		rieaung valu	5	
Ph (MPa)	0.101325			
Th (C)	~			
Th1 (C)	~			
	Calculations			
Heating Value		Other Prope	rties	
Molar Heating Value (Kj/Mol)				
		Relative Der	sity	
Mass Heating Valvue (Mj/Kg)				
		Wobbe Index	c (Mj/m^3)	
Volumetric Heating Value (Mj/m^3)				

شکل (الف-۴)- محاسبه ارزش های حرارتی گاز طبیعی و خواص وابسته به آنها در نرم افزار طراحی شده

🖳 Natural Gas Thermodynamics Properties : AGA8 EOS	- 🗆 🗙
Termodynamics Properties Heating Value And Other Properties Gas Hydrate	< >
Gas Hydrate Pressure	
Gas Hydrate Former	
CH4 1 C3H8 0	
C2H6 0 N2 0	
Temperature (Kelvin) 275	
Pressure Caclculations	
Pressure (MPa)	

شکل (الف-۵)- محاسبه فشار تعادلی هیدرات های گاز طبیعی در نرم افزار طراحی شده

الف-۲- كاربردها

در این قسمت بعضی از کاربردهای معادله حالت AGA8، آورده شده است. این کاربردها شامل: میزان پیمایش خودروهای گازسوز، میزان قابلیت کاردهی در ایستگاه های تقلیل فشار گاز طبیعی و کار خالص خروجی در این ایستگاه ها، می باشد.

الف-۲-۱- میزان پیمایش خودرو های گازسوز

استفاده از خودورهای گازسوز، برای اولین بار در اواسط سال ۱۹۳۰ میلادی در ایتالیا آغاز شد. بطور خاص بعد از بحران انرژی در سال ۱۹۷۰، خودروهای گازسوز به سرعت توسط دولتهای کشورهای توسعه یافته و در حال توسعه، گسترش و توسعه یافتند. امروزه بیش از ۵/۱ میلیون خودروی گازسوز و نزدیک به ۹۰۰۰ جایگاه سوخت گیری در کل جهان وجود دارد[۵۷]. گاز طبیعی به عنوان سوخت در خودروهای مختلفی استفاده می شود که عبارتند از : خودروهای شخصی،کامیون های مخصوص کار سنگین،کامیون حمل زباله و اتوبوس ها. در ایران و در سال ۱۹۷۵ میلادی پروژه خودروهای گازسوز با تبدیل ۱۲۰۰ تاکسی و خودروی شخصی به این نوع خودروها آغاز شد. تا اواخر سال ۲۰۰۷ میلادی تعداد خودروهای گازسوز در ایران هزار دستگاه بوده است. تعداد این خودروها در ایران تا پایان سال ۲۰۰۸ میلادی یک میلیون و تا پایان سال ۲۰۰۹ میلادی ۱/۵ میلیون خودرو بوده است [۵۸]. از مزایای خودروهای گازسوز میتوان به: آلودگی کمتر محیط زیست نسبت به دیگر خودروها، هزینه سوخت کمتر نسبت به بنزین، عدد اکتان بالا و افزایش عمر مفید خودرو، اشاره کرد. همچنین معایب خودروهای گازسوز عبارتند از: هزینه بر بودن و پیچیدگی راه اندازی ایستگاههای سوختگیری گاز طبیعی، توان و گشتاور پایین تر نسبت به خودروهای بنزینی و میزان پیمایش کمتر بعد از هر بار سوختگیری نسبت به خودروهای بنزینی. یکی از مهمترین عوامل منفی در رشد و توسعه خودروهای گازسوز ، میزان پیمایش پایین این خودروها بعد از هر بار سوختگیری بوده که صنایع گاز طبیعی درصد رفع این عیب مهم می باشند.

دو پارامتر بیشترین تاثیر را بر روی میزان پیمایش خودروهای گازسوز دارند: ۱- جرم گاز طبیعی ذخیره شده در مخزن خودرو، ۲- ارزش حرارتی گاز طبیعی.

جرم گاز طبیعی ذخیره شده در مخزن خودرو به عنوان یک پارامتر تاثیرگذار بر روی پیمایش خودرو بوده که برای محاسبه و بررسی شرایط ترمودینامکی گاز طبیعی بر روی آن، از معادله حالت AGA8 استفاده شده است. ارزش حرارتی سوخت نیز یک پارامتر مهم در میزان انرژی آزاد شده توسط سوخت بوده که اثر مستقیم بر روی میزان پیمایش خودرو دارد.

شرایط ترمودینامیکی گاز طبیعی ذخیره شده در مخزن خودرو (دما و فشار نهایی گاز طبیعی بعد از سوختگیری) و ترکیب گاز طبیعی، از عوامل مهم و تاثیر گذار بر روی جرم و ارزش حرارتی گاز طبیعی بعد از بوده، بنابراین تاثیر بسزایی بر روی میزان پیمایش خودروهای گازسوز دارند. شکل (الف-۶)، شماتیکی از تعریف میزان پیمایش را نشان می دهد.

شکل (الف-۶)- شکل شماتیکی از میزان پیمایش یک خودرو گازسوز

برای محاسبه مقدار جرم سوخت مورد نیاز خودرو برای مقدار معینی پیمایش، ابتدا مقدار انرژی مکانیکی مورد نیاز محاسبه شده و سپس با توجه به این انرژی مکانیکی و در نظر گرفتن مقادیر معقولی بازده برای سیستم انتقال قدرت، میزان انرژی که موتور خودرو باید تامین کند، محاسبه خواهد گردید. سپس با توجه به نمودار تجربی بازده تبدیل سوخت موتور مورد بررسی، میزان انرژی سوخت مورد نیاز محاسبه خواهد گردید. با محاسبه ارزش حرارتی سوخت در انتها، می توان میزان جرم سوخت مصرفی را محاسبه نمود.

برای محاسبه مقدار انرژی مکانیکی مورد نیاز خودرو از سیکل های آزمایشی استفاده می شود. این سیکل ها متشکل از پروفیل های استاندارد شده سرعت و ارتفاع از سطح دریا، بوده که برای مقایسه مقدار آلودگی خودروهای مختلف مورد استفاده قرار می گیرند. علاوه بر کاربرد اشاره شده، سیکل های مشابه ای برای محاسبه مصرف سوخت خودروها وجود دارند. در عمل، با استفاده از دینامومتری که بر روی شاسی خودرو قرار گرفته و با شبیه سازی شرایط اولیه برای خودرو، پروفیل سرعت خودرو بدست می آید [۵۹]. سیکل های آزمایشی مختلفی وجود دارند که از معمولی ترین این نوع سیکل ها می توان به سیکل های مورد استفاده در ایالات متحده (FTP-75) و سیکل های آزمایشی مورد استفاده در قاره اروپا (ECE) اشاره کرد [۵۹]. در سال 1995 ، با ترکیب سیکل حرکت شهری (ECE) و سیکل حرکت خارج از شهر (EUDC) خودروهای اروپا، سیکل حرکت 20-MVEG ، توسط کمپانی و سیکل حرکت خارج از شهر (Motor Vehicle Expert Group) برایه شد[۵۹]. شکل (الف-۷)، سیکل حرکت 5.25 می ارائه شد[۵۹] و در حالت کلی 11.4 د سرعت متوسط خودرو در داخل شهر ۶.12m/s ، خارج شهر ۱8.14m/s و در حالت کلی 9.72m/s ، می باشند. هم چنین اثر تغییر ارتفاع از سطح آزاد دریا برای این سیکل محاسبه نشده است.

شكل (الف-۷) - سيكل حركت MVEG-95

مقدار انرژی مکانیکی مورد نیاز خودرو در حین حرکت، صرف غلبه بر سه نیروی مقاوم در حرکت خودرو می شود. این نیروها عبارتند از: ۱- نیروی اصطکاک آیرودینامیکی ۲- نیروی اصطکاک چرخ ها و ۳- نیروی مقاومت شتاب خودرو. برای اکثر سیکل های آزمایشی می توان رابطه ای تقریبی برای انرژی مورد نیاز خودرو در طی یک فاصله دلخواه بدست آورد. برای سیکل حرکت MVEG-95 رابطه زیر برای مقدار انرژی مکانیکی خودرو در طی مسافت Km 100 ارائه شده است [۵۹]:

$$E \approx A_f. C_d. 19 + m_v. C_r. 0.84 + m_v. 0.011 \left(\frac{Mj}{100Km}\right)$$
(1-i)

که در آن E مقدار انرژی مکانیکی مورد نیاز خودرو، A_f مساحت جلوی خودرو، C_a ضریب درگ خودرو، m_v میاشند. با استفاده از رابطه (الف-۱)، انرژی مکانیکی خودرو m_v وزن خودرو در طی فاصله ۱۰۰ کیلومتر محاسبه شده، سپس با مشخص بودن سرعت متوسط

خودرو در حین حرکت (سیکل MVEG-95)، می توان توان و نیروی مورد نیاز خودرو در طی این فاصله دلخواه را محاسبه نمود.

برای بدست آوردن مقدار جرم سوخت مورد نیاز خودرو، ابتدا لازم است تلفات خودرو در حین حرکت در نظر گرفته شوند. این تلفات عبارتند از: ۱- تلفات ایجاد شده در گیربکس ۲- تلفات ایجاد شده در کلاچ و وسائل کمکی (برای تبدیل انرژی الکتریکی و غیره) و ۳- تلفات ایجاد شده در موتور احتراق داخلی. برای هریک از تلفات نامبرده شده مقدار قابل قبولی بازده یا توان اتلافی در نظر گرفته شده است.

برای در نظر گرفتن بازده موتور احتراق داخلی، از اطلاعات موتور احتراق داخلی پایه گازسوز EF7 ، استفاده شده است. موتور احتراق داخلی پایه گازسوز EF7 ، موتور ملی ایران بوده که با همکاری شرکت ایران خودرو IKCO و شرکت آلمانی FEV در سال ۲۰۰۵ میلادی توسعه وبسط داده شده است.

با در نظر گرفتن اتلافات نامبرده بر روی توان مورد نیاز برای ۱۰۰ کیلومتر، با استفاده از سیکل MVEG-95 ، توان سوخت مورد نیاز برای ۱۰۰ کیلومتر پیمایش محاسبه می شود. دبی جرمی سوخت مورد نیاز برای ۱۰۰ کیلومتر پیمایش از رابطه (الف-۲) محاسبه می شود:

$$\dot{m}_f = \frac{P_f}{LHV(T_1 = 25^{\circ}\text{C})} \tag{1-1}$$

که در آن *P_f* توان سوخت مورد نیاز و *LHV* ارزش حرارتی پایین سوخت می باشند. با مشخص دبی سوخت و با دانستن سرعت متوسط خودرو، جرم سوخت مورد نیاز برای ۱۰۰ کیلومتر پیمایش، از رابطه (الف–۳)، محاسبه می شود.

$$m_f = \frac{\dot{m}_f}{\bar{V}} * 10^5 \left(\frac{Kg}{100Km}\right) \tag{(7-1)}$$

که در آن m_f جرم سوخت مورد نیاز در ۱۰۰ کیلومتر پیمایش و \overline{V} سرعت متوسط خودرو می باشند. ارزش حرارتی گاز طبیعی تابعی از ترکیب اجزای گاز بوده که با استفاده از روابط گفته شده در فصل دوم، محاسبه شده است.

جرم گاز طبیعی ذخیره شده در مخزن خودرو تابعی از شرایط ترمودینامیکی گاز طبیعی (دما و فشار نهایی) بعد از اتمام فرآیند سوختگیری و ترکیب گاز طبیعی می باشد . با مشخص بودن دما و فشار
نهایی گاز طبیعی، چگالی گاز طبیعی با استفاده از معادله حالت AGA8 محاسبه می شود. سپس با فرض اینکه حجم مخزن سوخت خودرو ۷۰ لیتر می باشد، جرم گاز طبیعی ذخیره شده در مخزن از حاصلضرب چگالی گاز طبیعی و حجم مخزن محاسبه می شود.

در نهایت با مشخص بودن جرم گاز طبیعی ذخیره شده در مخزن خودرو و مقدار سوخت مورد نیاز برای ۱۰۰ کیلومتر پیمایش، میزان پیمایش خودرو بعد از هر بار سوختگیری از رابطه (الف-۴) محاسبه می شود:

Driving Range(Km) =
$$\frac{m}{m_f} * 100$$
 (۴-الف)

که در آن *m* جرم گاز طبیعی ذخیره شده در مخزن و *m_f ج*رم سوخت مورد نیاز در ۱۰۰ کیلومتر پیمایش، می باشند.

جدول (الف-۱)، مشخصات خودرو مورد بررسی را نشان می دهد. با فرض اینکه خودرو مورد نظر دارای وزن ۱۲۰۰ کیلوگرم بوده و با فرض داشتن چهار سرنشین با وزن تقریبی ۷۵ کیلوگرم برای هر سرنشین، در مجموع وزن خودرو برابر ۱۵۰۰ کیلوگرم در نظر گرفته شده است. همچنین اطلاعات مربوط به ضریب درگ، مساحت جلوی خودرو و ضریب اصطکاک جاده نیز در جدول (الف-۱)، آورده شده است. با توجه به خودروهای موجود در ایران، این مقادیر با توجه به مشخصات خودروی سمند انتخاب گردیده است.

Parameter	$m_v(Kg)$	$A_f. C_d (m^2)$	C _r	$E\left(\frac{Mj}{100Km}\right)$
Value	1500	0.8	0.013	48

جدول (الف-۱)- مشخصات خودرو مورد بررسی

جدول (الف-۲)، درصد مولی اجزای گاز طبیعی مناطق مختلف ایران برای محاسبه میزان پیمایش، را نشان می دهد. میزان پیمایش خودرو برای گازهای طبیعی با ترکیبات آورده شده در جدول(۵–۲)، محاسبه شده و تاثیر ترکیب گاز بر روی میزان پیمایش خودرو، بررسی شده است.

Component	Mole Fraction (%)				
_	Khangiran	Kangan	Pars	Bidboland	
CH_4	98.6	90.04	87	85.01	
C_2H_6	0.59	3.69	5.4	9.38	
C_3H_8	0.09	0.93	1.7	3.49	
$iso - C_4 H_{10}$	0.02	0.2	0.3	0.34	
$n - C_4 H_{10}$	0.04	0.29	0.45	0.65	
$iso - C_5 H_{12}$	0.02	0.14	0.13	0.1	
$n - C_5 H_{12}$	0.02	0.08	0.11	0.09	
$n - C_6 H_{14}$	0.07	0.14	0.07	0.09	
C_7^+	0	0.01	0.03	0	
N ₂	0.56	4.48	3.1	0.44	
<i>CO</i> ₂	0	0	1.85	0.41	

جدول (الف-٢)- درصد مولى اجزاى گاز طبيعي مناطق مختلف ايران براى محاسبه ميزان پيمايش

نمودار (الف-۱)، ارزش حرارتی پایین جرمی گاز طبیعی مناطق مختلف ایران را در دما و فشار مرجع (دمای ۲۵ درجه سانتیگراد و فشار یک اتمسفر) نشان می دهد. با دقت در نمودار (الف-۱)، متوجه می شویم که گاز پالایشگاه خانگیران دارای بیشترین و گاز منطقه پارس دارای کمترین ارزش حرارتی جرمی می باشند.

نمودار (الف-۱)- ارزش حرارتی جرمی گاز طبیعی مناطق مختلف ایران برای محاسبه میزان پیمایش

نمودار (الف-۲)، مقدار جرم مورد نیاز خودرو مورد بحث را در ۱۰۰ کیلومتر پیمایش و برای گازهای مناطق مختلف ایران، نشان می دهند. در نمودار (الف-۲) ، حالت کلی و سرعت متوسط خودرو 35Km/h یا 35Km/s می باشد. چنانچه مشاهده می شود گاز منطقه پارس دارای بیشترین و گاز پالایشگاه خانگیران دارای کمترین مقدار جرم مورد نیاز برای ۱۰۰ کیلومتر پیمایش در هر حالتی می باشند. این بدان دلیل است که گاز منطقه پارس دارای کمترین و گاز منطقه خانگیران دارای بیشترین ارزش حرارتی می باشند

نمودار (الف-۲)- مقدار جرم سوخت مورد نیاز برای ۱۰۰ کیلومتر پیمایش و برای گاز طبیعی مناطق مختلف

نمودار (الف-۳)، جرم گاز طبیعی را برای شرایط ترمودینامیکی مبنا (دمای ۳۴۰ کلوین و فشار ۲۰ مگاپاسکال) و برای گازهای طبیعی مناطق مختلف ایران نشان می دهد. با توجه به نمودار (الف-۳)، خودرویی که با گاز منطقه بیدبلند اقدام به پرکردن مخزن نماید، بیشترین مقدار جرم گاز را در مخزن ذخیره خواهد نمود در صورتی که با گاز منطقه خانگیران کمترین دریافتی سوخت را خواهد داشت. اختلاف این دو بیشتر از ۲۰٪ بوده که قابل ملاحظه می باشد.

نمودار (الف-۳)- مقدار جرم گاز طبیعی ذخیره شده در مخزن خودرو و برای مناطق مختلف

با مشخص بودن جرم گاز طبیعی ذخیره شده در مخزن و جرم مورد نیاز خودرو در ۱۰۰ کیلومتر پیمایش، میزان پیمایش خودرو بعد از هر بار سوختگیری محاسبه می شود. نمودار (الف-۴)، میزان پیمایش بعد از هر بار سوختگیری برای خودرو مورد بحث و برای گازهای طبیعی مناطق مختلف ایران نشان می دهد. در نمودار (الف-۴)، سرعت متوسط خودرو ASKm/h یا 35Km/، می باشد. با توجه به نمودار (الف-۴)، گاز منطقه بید بلند دارای بیشترین مقدار پیمایش و گاز منطقه خانگیران دارای کمترین مقدار پیمایش بعد از هر بار سوخت گیری می باشند. اختلاف میزان پیمایش بین بیشترین و کمترین منطقه، ۵۲ کیلومتر بوده که مقدار قابل ملاحظه ای می باشند. علت افزایش میزان پیمایش برای گاز منطقه بیدبلند به بیشتر بودن جرم گاز طبیعی ذخیره شده در مخزن آن بر می گردد.

نمودار (الف-۴)- میزان پیمایش خودرو برای گاز طبیعی مناطق مختلف ایران

الف-۲-۲- قابلیت کاردهی و کار خالص خروجی در ایستگاه های تقلیل فشار

گاز طبیعی در خطوط انتقال دارای فشار نسبتاً بالایی بین ۵ تا ۷ مگاپاسکال می باشد. برای اینکه گاز طبیعی به دست مصرف کننده برسد، فشار آن باید کاهش پیدا کند. اولین مرحله از فرآیند فشارشکنی در ایستگاههای تقلیل فشار برون شهری انجام شده و فشار گاز طبیعی تا حدود ۱/۵ تا ۲ مگاپاسکال کاهش پیدا می کند. سپس فشار گاز طبیعی در ایستگاههای تقلیل فشار درون شهری حدوداً تا فشار ۲/۴ مگاپاسکال کاهش پیدا می کند. گاز طبیعی در هنگام ورود به ایستگاه در فشار بالا دارای قابلیت کاردهی بالایی می باشد اما در حین فرآیند فشارشکنی در شیر اختناق عملاً کار مفیدی انجام نشده و تمامی این قابلیت کاردهی از بین می رود. یکی از راههای تولید کار خالص در ایستگاههای تقلیل فشار، استفاده از توربینهای انبساطی می باشد. با استفاده از توربین انبساطی علاوه بر اینکه فشار گاز طبیعی کاهش پیدا می کند، مقدار قابل توجهی کار خالص نیز تولید می شود.

در این قسمت، ابتدا میزان قابلیت کاردهی یا نرخ نابودی اگزرژی در ایستگاه های تقلیل فشار بررسی شده است. سپس با استفاده از توربین های انبساطی کار خالص تولید شده در ایستگاه های تقلیل فشار گاز طبیعی محاسبه شده است. در نهایت تاثیر ترکیب گاز طبیعی بر روی قابلیت کاردهی و میزان کار خالص خروجی در ایستگاه های تقلیل فشار گاز طبیعی، مورد بررسی قرار گرفته است. شکل (الف-۸)، فرآیندهای صورت گرفته در یک ایستگاه تقلیل فشار گاز طبیعی با شیر اختناق را نشان می دهد. گاز طبیعی در دمای محیط و با فشار بالا وارد ایستگاه شده (نقطه ۱)، سپس در فرایند فشار ثابت پیش گرم شده و دمای آن افزایش پیدا می کند (نقطه ۲). هدف از پیش گرم کردن گاز ورودی به شیر اختناق جلوگیری از تشکیل هیدارت های گازی است که باعث تشکیل رسوب در خطوط انتقال گاز و مسدود شدن آنها می شود. در نهایت فشار گاز طبیعی با عبور از شیر اختناق کاهش یافته و از ایستگاه خارج می شود.

شکل (الف-۸)- فرایندهای انجام شده در یک ایستگاه تقلیل فشار با شیر اختناق

قانون اول و دوم ترمودینامیک برای فرآیند SSSF، فشارشکنی درشیر اختناق به صورت زیر نوشته می شوند:

$$\dot{Q} - \dot{W} = \dot{m} \left(h_2 + \frac{{V_2}^2}{2} + gz_2 \right) - \dot{m} \left(h_3 + \frac{{V_3}^2}{2} + gz_3 \right)$$
(9-الف-

$$\dot{S}_{gen} = \dot{m}s_3 - \dot{m}s_2 \ge 0 \tag{14}$$

جائیکه در رابطه (الف-۹)، \dot{Q} گرما، \dot{W} کار، h آنتالپی، \dot{m} دبی جرمی، V سرعت وz ارتفاع می باشند. با صرف نظر از انرژی جنبشی و پتانسیل و با توجه به اینکه کار خالصی صورت نگرفته و در فرآیند فشارشکنی گرمایی به سیستم وارد یا از آن خارج نشده است، قانون اول به شکل ساده زیر در می آید:

$$h_2 = h_3$$
 (الف-۱۱)

$$ex = h - h_0 - T_0(s - s_0)$$
 (الف-۲)

پانویس 0 ، برای حالت مرجع بوده که شرایط دما و فشار آن به صورت زیر فرض شده است:

$$T_0 = 25^{\circ}$$
C , $P_0 = 101.325 \ Kpa$ (الف-۱۳)

$$W_{rev} = \dot{m}(ex_2 - ex_3) \tag{14-1}$$

با استفاده از رابطه (الف-۱۱) و با توجه به تعریف اگزرژی در رابطه (الف-۱۳)، ماکزیمم کار مفید در فرآیند فشارشکنی در شیر اختناق به صورت زیر محاسبه می شود:

$$W_{rev} = \dot{m} \left(-T_0 (s_2 - s_3) \right) \tag{10-1}$$

شکل (الف-۹)، فرآیندهای صورت گرفته در یک ایستگاه تقلیل فشار گاز طبیعی با استفاده از توربین انبساطی را برای تولید کار خالص در حین فرآیند فشارشکنی، نشان می دهد.

شکل (الف-۹)- فرایندهای انجام شده در یک ایستگاه تقلیل فشار با توربین انبساطی

قانون اول برای فرآیند SSSF ، فشارشکنی درتوربین انبساطی مانند رابطه (الف-۹) میباشد. با صرفنظر از انرژی جنبشی و پتانسیل و با فرض آیاباتیک بودن فرآیند انجام شده در توربین، قانون اول به شکل ساده زیر در می آید :

$$\dot{W}_{net} = \dot{m}(h_2 - h_3)$$
 (الف-۱۶)

با استفاده از رابطه (الف-۱۶)، کار خالص انجام شده ضمن فرآیند فشارشکنی محاسبه می شود. می توان توربین انبساطی را به صورت آیزنتروپیک فرض کرده یا برای آن بازده آیزنتروپیک تعریف کرد. بازده آیزنتروپیک (بازده قانون دوم) توربین های انبساطی معمولاً بین ۸۴ تا ۸۶ ٪ می باشند که در اینجا، ۸۵ ٪ در نظر گرفته شده است. بازده آیزنتروپیک توربین انبساطی، به صورت زیر تعریف می شود:

$$\eta_{TEx} = \frac{h_2 - h_3}{h_2 - h_{3s}} \tag{1V-1}$$

در ایستگاههای تقلیل فشار گاز طبیعی در ایران گاز در فشاری بین (3.74-6.8MPa) 550-1000 Psi (قریر اختناق و در دمای محیط وارد ایستگاه می شود. سپس گاز طبیعی پیش گرم شده و با عبور از شیر اختناق فشار آن تا (1.7MPa) 250 Psi (250 Psi (قریر اختناق معمولاً ۵ درجه بیشتر از دمای هیدراته شدن گاز طبیعی در شرایط خروجی از شیر اختناق می باشد. با توجه به شکل های (۸–۸) و (۸–۹)، شرایط ترمودینامیکی گاز طبیعی در نقاط مختلف ایستگاه به صورت زیر می باشد:

Pointe 1: $\begin{cases} P_1 = 3.74 - 6.8 MPa \\ T_1 = Ambient Temperature \end{cases}$ Pointe 2: $\begin{cases} P_1 = 3.74 - 6.8 MPa \\ T_2 = ? \end{cases}$

Pointe 3: $\begin{cases} P_3 = 1.7 MPa \\ T_3 = T_{Hydrate} + 5 \end{cases}$ Pointe 3: $\begin{cases} P_3 = 1.7 MPa \\ T_3 = T_{Hydrate} + 5 \end{cases}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$

Pointe 3: $\{ T_3 = T_{Hydrate} + 5 \}$ Pointe 3: $\{ T_3 =$

برای محاسبه اگزرژی گاز طبیعی در فرآیند فشارشکنی در شیر اختناق ابتدا باید دمای پیش گرم کردن گاز طبیعی را محاسبه کنیم. در این حالت با مشخص بودن دما، فشار و کسر مولی اجزای گاز طبیعی در خروجی ایستگاه یعنی نقطه ۳، با استفاده از معادله حالت AGA8، آنتالپی محاسبه می شود. از طرفی با توجه به رابطه (الف-۱۱)، فرآیند فشارشکنی در شیر اختناق یک فرآیند آنتالپی ثابت می باشد. بنابراین در نقطه ۲، فشار، کسر مولی اجزاء و آنتالپی موجود می باشند و با استفاده از سعی و خطا دمای نقطه ۲ محاسبه می گردد:

 $h_m(T_2, P_2) = h_m(T_3, P_3) \Longrightarrow T_2 = Calculated$

با مشخص شدن دما در نقطه ۲، با استفاده از معادله حالت AGA8، آنتروپی برای نقاط ۲ و ۳ محاسبه می شود. در نهایت اگزرژی گاز طبیعی با استفاده از معادله (الف-۱۵) محاسبه شده است. نمودار (الف-۵)، دمای پیش گرم کردن گاز طبیعی ورودی به ایستگاه را بر حسب فشار ورودی به ایستگاه و برای گاز طبیعی مناطق مختلف ایران نشان می دهد. با توجه به نمودار (الف-۵)، با کاهش درصد متان در اجزای گاز طبیعی، دمای پیش گرم کردن افزایش می یابد. اختلاف دمای پیش گرم کردن برای گاز طبیعی با درصد متان ۲۹٪ بین ۱۴ تا ۱۵ درجه بیشتر از گاز طبیعی با درصد متان ۹۸ ٪ بوده که نشان دهنده تاثیر بسیار بالای ترکیب گاز طبیعی در محاسبات، می باشد. همچنین با افزایش فشار ورودی به ایستگاه نیز دمای پیش گرم کردن افزایش پیدا کرده که این افزایش برای گازهای مختلف روند یکسانی دارد.

نمودار (الف-۶)، اگزرژی گاز طبیعی را برای فرآیند فشارشکنی درشیر اختناق بر حسب فشار ورودی به ایستگاه و برای گاز طبیعی مناطق مختلف نشان می دهد. با توجه به نمودار (الف-۶)، با کاهش درصد متان در اجزای گاز طبیعی، اگزرژی گاز طبیعی کاهش پیدا می کند. همچنین با افزایش فشار، اگزرژی افزایش پیدا کرده که برای گاز طبیعی مناطق مختلف تاثیر یکسانی دارد. با توجه به نمودار (الف-۶)، برای دبی جرمی واحد (IKg/s)، اختلاف بین اگزرژی گاز طبیعی بین گاز منطقه خانگیران با درصد متان ۸۹٪ و گاز طبیعی منطقه قشو با درصد متان ۲۹٪ بین ۲۲ تا ۲۲ کیلو وات می باشد. به عبارت دیگر با کاهش ۱۹ ٪ متان در اجزای گاز طبیعی، اگزرژی بین ۲۲ تا ۲۲ کیلو وات می باشد.

نمودار (الف-۵)- دمای پیش گرم کردن گاز طبیعی بر حسب فشار ورودی به ایستگاه تقلیل فشار با شیر اختناق و برای گاز طبیعی مناطق مختلف

نمودار (الف-۶)- اگزرژی گاز طبیعی بر حسب فشار ورودی به ایستگاه و برای گاز طبیعی مناطق مختلف (دبی جرمی واحد)

برای محاسبه کار خالص خروجی، ابتدا باید دمای پیش گرم کردن گاز طبیعی یا دمای ورودی به توربین انبساطی، محاسبه شود. شکل (الف-۱۰)، روند محاسبه دمای پیش گرم کردن گاز طبیعی را نشان میدهد:

شکل (الف-۱۰)- نمودار محاسبه دمای پیش گرم کردن گاز طبیعی در ایستگاه تقلیل فشار با توربین انبساطی

بعد از محاسبه دمای پیش گرم کردن (نقطه ۲)، با استفاده از رابطه (الف-۱۶)، کار خالص خروجی در ایستگاه تقلیل فشار محاسبه می گردد. نمودار (الف-۲)، دمای پیش گرم کردن گاز طبیعی در ایستگاه تقلیل فشار با توربین انبساطی را بر حسب فشار ورودی به ایستگاه و برای گاز طبیعی مناطق مختلف نشان می دهد. با توجه به نمودار (الف-۲)، با کاهش درصد متان، دمای پیش گرم کردن گاز طبیعی افزایش پیدا کرده است. با کاهش ۱۹ ٪ متان در اجزای گاز طبیعی دمای پیش گرم کردن گاز طبیعی بین ۱۴/۵ تا ۱۵ درجه افزایش پیدا کرده است. همچنین برای دستیابی به کار خالص خروجی، گاز طبیعی باید تا درجه حرارت بالاتری نسبت به حالتی که از شیر اختناق برای فشارشکنی استفاده می کنیم، گرم شود. این افزایش حرارتی بسته به نوع گاز طبیعی و فشار ورودی، بین ۱۹ درجه می باشد.

نمودار (الف-۷)- دمای پیش گرم کردن گاز طبیعی بر حسب فشار ورودی به ایستگاه تقلیل فشار با توربین انبساطی و برای گاز طبیعی مناطق مختلف

نمودار (الف-۸)، کار خالص خروجی بدست آمده از توربین انبساطی را بر حسب فشار ورودی به ایستگاه و برای گاز طبیعی مناطق مختلف نشان می دهد. با توجه به نمودار (الف-۸)، با کاهش درصد متان در اجزای گاز طبیعی، کار خالص خروجی نیز کاهش پیدا کرده است. بطوریکه با کاهش ۱۹٪ متان در اجزای گاز طبیعی کار خالص بین ۱۷ تا ۱۸٪ کاهش پیدا می کند. همچنین با افزایش فشار ورودی به ایستگاه، کار خالص خروجی افزایش پیدا می کند. این افزایش برای گازهای طبیعی مختلف روند یکسانی دارد.

مراجع

[1] Gallagher James E. *Natural gas measurement handbook*. Copyright by Gulf Publishing Company, Houston, Texas, 2006.

[2] Sengers J.V., Kayser R.F., Perers C.J., White H.J. *Equations of State for Fluids and Fluid Mixtures*. ELSEVIER, 2000.

[3] Redlich, O., Kwong, J.N.S. On the thermodynamics of solutions: V. An equation of state: Fugacities of gaseous solutions. Chem. Rev. 1949, 44, 233–244.

[4] Soave, G. *Equilibrium constants from a modified Redlich–Kwong equation of state*. Chem. Eng. Sci. 1972, 27, 1197–1203.

[5] Peng, D.-Y., Robinson, D.B. *A new two-constant equation of state*. Ind. Eng. Chem. Fundam, 1976, 15, 59–64.

[6] Valderrama J. O. *A generalized Patel-Teja equation of state for polar and non-polar fluids and their mixtures* J. Chem. Eng. Japan 23, 1990, 87-91.

[7] McCarty. R. D. *Extended Corresponding States as a Tool for the Prediction of the Thermodynamic Properties of Mixtures*. International Journal of Thermophysics, Vol. 7, No. 4, 1986.

[8] Estela-Uribe J.F., Trusler J.P.M. *Extended corresponding states equation of state for natural gas systems*. Fluid Phase Equilibria 183–184 (2001) 21–29.

[9] Estela-Uribe J.F., De Mendozaa A., Trusler J.P.M. *Extended corresponding states model for fluids and fluid mixtures II. Application to mixtures and natural gas systems.* Fluid Phase Equilibria 216 (2004) 59–84.

[10] Jaeschke, M., Audibert, S., van Caneghem, P., Humphreys, A.E., Janssen-van Rosmalen, R., Pellei, Q., Michels, J.P., Schouten, J.A., ten Seldam, C.A., *MGERG-88*. *High accuracy compressibility factor for natural gases and similar mixtures by use of a truncated virial equation*. GERG Technical Monograph, vol. TM2. 1989.

[11] Kunz, O.; Klimeck, R.; Wagner, W.; Jaeschke, M. *The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures.*; Fortschritt-Berichte VDI, Reihe 6, No. 557; VDI Verlag.

[12] Neubauer B., Tavitian B., Boutin A., Ungerer P. *Molecular simulations on volumetric properties of natural gas.* Fluid Phase Equilibria 161,1999. 45–62.

[13] Elsharkawy A.D, Yousef S. Kh. Hashem S., and Alikhan A.A. *Compressibility Factor for Gas Condensates*. Energy & Fuels 2001, 15, 807-816.

[14] Elsharkawy A.M. *Efficient methods for calculations of compressibility, density and viscosity of natural gases*. Fluid Phase Equilibria 218,2004, 1–13.

[15] Wendland, M.; Saleh, B.; Fischer, J. Accurate Thermodynamic Properties from the BACKONE Equation for the Processing of Natural Gas. Energy Fuels, 2004, 18, 938-951.

[16] Nasrifar Kh., Bolland O. *Prediction of thermodynamic properties of natural gas mixtures using 10 equations of state including a new cubic two-constant equation of state.* Journal of Petroleum Science and Engineering 51 (2006) 253–266.

[17] Martinez S. A., Hall R. K., *Thermodynamic Properties of Light Synthetic Natural Gas Mixtures Using the RK-PR Cubic Equation of State.* Ind. Eng. Chem. Res. 2006, 45, 3684-3692.

[18] AGA8-DC92 EoS. Compressibility and super compressibility for natural gas and other hydrocarbon gases, Transmission Measurement Committee Report No. 8, AGA Catalog No. XQ 1285, Arlington, VA, 1992.

[19] ISO-12213-2. *Natural gas- Calculation of compression factor-Part 2: Calculation using molar-composition analysis*, ISO, Ref. No. ISO- 12213-2:1997(E).

[20] Steven. C., Chapra, Raymond. P. *Numerical method for engineers*. McGraw -Hill, 2005.

[21] Winterbone D. E. *Advanced Thermodynamics for Engineers*. A member of the Hodder Headline Group ,1997.

[22] Mari'c I'. A procedure for the calculation of the natural gas molar heat capacity, the isentropic exponent, and the Joule–Thomson coefficient. Flow Measurement and Instrumentation 18 (2007) 18–26.

[23] DIPPR® 801.*Evaluated standard thermophysical property values*.Design Institute for Physical Properties. Sponsored by AIChE. 2004.

[24] Mari'c I, Galovi'c A, Šmuc T. *Calculation of natural gas isentropic exponent*. Flow Measurement and Instrumentation 2005;16(1):13–20.

[25] Mari'c I. *The Joule–Thomson effect in natural gas flow-rate measurements*. Flow Measurement and Instrumentation 2005;16:387–95.

[26] Barry Alpha O., Kallagulne Serge C., Ramalho Rubens S., *Ternary System Methane-Carbon Dioxide-Hydrogen Sulfide.Excess Enthalpy Data by Flow Calorimetry*. J. Chem. Eng. Data 1983, 28, 375-381.

[27] Ashton G.J., Haselden G.G. *Measurements of enthalpy and phase equilibrium for simulated natural gas mixtures and correlation of the results by a modified Starling equation*, CRYOGENICS. JANUARY 1980,41-47.

[28] Grini Per G., Owren Geir A., Mæhlum Harald. *Isobaric enthalpy increment and isenthalpic Joule–Thomson effect measurements on synthetic gas containing binary, or ternary mixtures of methane, ethane, propane, and nitrogen.* J. Chem. Thermodynamics 1998, 30, 1011-1027.

[29] Setzmann, U., Wagner W. *A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa.*. J. Phys. Chem. Ref. Data, 1991, 20(6), pp. 1061-1155.

[30] ISO 6976 International Standard.*Natural gas – Calculation of calorific values, density, relative density and Wobbe index from composition,* 1997.

[31] ASTM D 3588-89. *Calculating heat value, compressibility factor, relative density (specific gravity) of gaseous fuels*. Am. Soc. Test. Mater., Philadelphia, PA, 1989.

[32] Davy, H. The Bakerian Lecture, On Some of the Combinations of Oxymuriatic Gas & Oxygen, and on the Chemical Relations of these Principles to Inflammable Bodies .Philos. Trans. R. Soc. London, 101, part I, 1-35, 1811.

[33] Hammerschmidt, E. G. Formation of Gas Hydarte in Natural Gas Transmission Lines, Ind. Eng. Chem. 26(8), pp.851-855, 1934.

[34] Sloan, E. D. *Clarhrate Hydrate of Natural Gases*, 2nd edition, Marcel Dekker, Inc. 1998.

[35] Van der Waals, J. H., and Platteeuw, J.C. *Clathrate Solutions*, Adv. Chem. Phys., 2, pp. 1-57, 1959.

[36] Muller, H. R. Von Stackelberg, M. Naturwiss, 39, 20, 1954.

[37] Ripmeester, J. A. Tse, J. A. Ratcliffe, C. I., Powell, B. M., Nature, 325, 135, 1987.

[38] Avlonitis, D. Danesh, A. & Todd, A. C. *Prediction of VL & VLL Equilibria of Mixture Containing Petroleum Reservoir Fluids & Methanol with a Cubic EOS*. Fluid Phase Equilibria, vol. 94, pp. 181-216, 1994.

[39] Parish, W. R., Prausnitz, *Dissociation Pressure of Gas Hydrate Formed by Gas Mixture*. Ind. Eng. Chem. Process. Des. Develop., vol. 11, no. 1, 1972.

[40] Klauda Jeffery B., Sandler Stanley I. *A Fugacity Model for Gas Hydrate Phase Equilibria*, Ind. Eng. Chem. Res. 2000, *39*, 3377-3386.

[41] Whitson Curtis H., *PHASE BEHAVIOR*, First Printing Henry L. Doherty Memorial Fund of AIME Society of Petroleum Engineers Inc. Richardson, Texas 2000.

[42] MCELROY P. J., BATTIN R., DOWD M. K. Compression-factor measurements on methane, carbon dioxide, and (methane+ carbon dioxide) using a weighing method. J. C'hem. Thermodynamics 1989, 21, 1287-1300.

[43] Staby A., Mollerup Jorgen M. *Measurement of the Volumetric Properties of a Nitrogen-Methane-Ethane Mixture at 275, 310, and 345 K at Pressures to 60 MPa. J.* Chem. Eng. Data 1991, 36, 09-91.

[44] Capla L., Buryan P., Jedelsk'y J., Rottner M., Rottner M., Linek J. *Isothermal PVT measurements on gas hydrocarbon mixtures using a vibrating-tube apparatus*. J. Chem. Thermodynamics 2002, 34, 657–667.

[45] Patil P., Ejaz S., Atilhan M., Cristancho D., Holste J., R. Hall K. *Accurate density measurements for a 91% methane natural gas-like mixture*. J. Chem. Thermodynamics 39 (2007) 1157–1163.

[46] Hwang C.-A., Simon P. P., Hou H., Hall K. R., J. C. Holste and K. N. Marsh. *Burnett and pycnometric (p,V,T) measurements for natural gas mixtures.* J. Chem. Thermodynamics 1997, 29, 1455-1472.

[47] Ernst G., Keil B, Wirbser H., JaeschkeM. *Flow-calorimetric results for the massic heat capacity cp and the Joule–Thomson coefficient of CH4, of .0.85 CH4+0.15 C2H6, and of a mixture similar to natural gas.* J. Chem. Thermodynamics 2001, 33, 601–613.

[48] Barreau A., Janneteau P., Gaillard K. *Isobaric heat capacity of natural gases.Measurements and modeling.* Fluid Phase Equilibria 127, 1997, 155-171.

[49] MAYRATH J. E., MAGEE J. W. *Measurements of molar heat capacity at constant volume: Cvm{xCH6+(l-x)C2H6}*. J Chem. Thermodynamics 1989, 21. 499-5 I3.

[50] Trusler, J.P.M., Zarari, M.P,1995. Second and third acoustic virial coefficients of methane at temperatures between 125 K and 375 K. J. Chem. Thermodynamics, 16, PP. 660-667.

[51] Trusler J. P. M. *The speed of sound in (0.8CH4+0.2C2H6) at temperature between 200 K and 375 K.* J. Chem. Thermodynamics, 1994, 26, pp. 751-763

[52] Costa Gomes M. F., Trusler J. P. M. *The speed of sound in two methane-rich gas mixtures at temperatures between 250K and 350K and at pressures up to 20 MPa*. J. Chem. Thermodynamics 1998, 30, 1121-1129.

[53] Estela-Uribe J.F, Trusler J.P.M, Chamorro C.R., Segovia J.J., Martin M.C., Villamanan M.A. Speeds of sound in $\{(1 \ x)CH4 + xN2\}$ with x = (0.10001, 0.19999, and 0.5422) at temperatures between 170 K and 400 K and pressures up to 30 MPa. J. Chem. Thermodynamics 38, 2006, 929–937.

[54] Day C., Stephan M., Oellrich L. R., *A new flow calorimeter for the measurement of the isobaric enthalpy increment and the insenthalpic Joule_Thomson effect Results for methane and "methane-ethane*, J. Chem. Thermodynamics ,1997,29,949-971.

[55] National Institute of Standards and Technology (NIST).available at: http://www.nist.gov

[56] National Iran Gas Company website available at: http://www.NIGC.ir

[57] IANGV, 2006a. Latest International NGV Statistics: http://www.iangv.org/content/view/17/35/.

[58] IANGV, Iran – Natural Gas Vehicle Country Report Update Sept 2006, Written by Iranian Fuel Conservation Organization (IFCO), http://www.iangv.org/tools-resources/ngvs-by-country/iran.html

[59] Guzzella, L., Sciarretta, A. Vehicle propulsion systems modeling and optimization .2nd.Ed,SpringerVerlag(2007).

Abstract

In this study, thermodynamic properties of natural gas have been calculated using AGA8 Equation of State (EOS). Natural gas is a mixture of different gases with various properties, natural gas properties strongly influence properties of its component. Therefore, as composition of natural gas changing, natural gas thermodynamic properties are changed as well. In order to calculate the thermodynamic properties of natural gas according to its components. AGA8 EOS presented by the America Gas Association, by considering the interaction properties of natural gas component in the gas mixture, has been offered very accurate models for calculating natural gas compression factor. In this research, using AGA8 EOS and using certain thermodynamic properties have been calculated. Calculations have been validated with experimental data. Validations showed AGA8 EOS has high accuracy in calculation thermodynamic properties of natural gas.

Thermodynamic properties calculated for different regions of Iran's gas fields and effect of natural gas compositions on the thermodynamic properties have been investigated. Also, effect of natural gas composition on these processes has been analysis.

Finally, software for calculation thermodynamic properties of natural gas has been presented. With known of the temperature, pressure and mole fraction of natural gas components in the gas mixtures, the thermodynamic properties of natural gas can be calculated using designed software.

Keywords:

Natural Gas – Thermodynamic Properties – AGA8 Equation of State – Thermodynamic Relationship

In The Name of God

Shahrood University of Technology

Faculty of Mechanical Engineering

Calculation Thermodynamic Properties of Natural Gas Using AGA8 Equation of State

Hamid Reza Rahbari

Supervisor: Dr. Mahmood Farzaneh Gord

January 2011