

دانشکده: فیزیک

گروہ: حالت جامد

رشد و مشخصه یابی لایه های نازک اکسید کادمیوم ایندیوم

دانشجو: محمود زاهدی

اساتيد راهنما:

دکتر مرتضی ایزدی فرد

دكتر محمد ابراهيم قاضى

استاد مشاور:

دكتر بهرام بهراميان

پایان نامه ارشد جهت اخذ درجه کارشناسی ارشد

شهريور ۱۳۹۰

پیوست شمارہ ۲

دانشگاه صنعتی شاهرود

دانشکده :فیزیک

پایان نامه ارشد محمود زاهدی

تحت عنوان:

رشد و مشخصه یابی لایه های نازک CdIn₂O₄

در تاریخ ۹۰/۶/۳۱ توسط کمیته تخصصی زیر جهت اخذ مدرک کارشناسی ارشد مورد ارزیابی و با

درجهٔ سیار درجهٔ سیارش مورد پذیرش قرار گرفت.

ت

به نام متى بخش زيباوزيا بخش متى

حد خدانی راکه اوّل بمه آثار بهتی اوست و قعب از او اوّبی نبوده، و آخر است بی آنکه پس از او آخری باشد.

به نام خداوندی که پدر وماد. رامنت و نعمت قرار دادو بر سر فرزندانشان ارزانی داشت،

به پاس تعبیر عظیم وانسانی ثان از کلمه ایثار واز خودکد منتگی، به پاس عاطفه سرشار و کرمای امید خش وجود ثان که در این سردترین روز کاران به سرین پشیبان است، به پاس قلب بلی

بزرگشان که فریادرس است و به پاس ^{محب} ی<mark>می بی در یغشان که حرکز فروکش نمی کن</mark>د،

این مجموعه را به مدر وماد عزیز م تقدیم می کنم . این مجموعه را به مدر وماد عزیز م تقدیم می کنم .

وتقديم به بمسر جمربانم كه بمواره حامى من بوده است وياريكرى صبور دكنارم .

تقدیر و تشکر

نگارنده بر خود میداند از تلاشهای بیوقفه و راهنماییهای ارزشمند اساتید گرامی جناب آقای دکتر مرتضی ایزدی فرد و جناب آقای دکتر محمد ابراهیم قاضی و همچنین استاد مشاور جناب آقای دکتر بهرام بهرامیان در راستای انجام این پایان نامه، تشکر و قدردانی نماید. از همه اساتید بزرگواری که در این سالهای پر مشقت از محضرشان فیض برده و همچنین از اساتید ارجمند جناب آقای دکتر رحمانی و دکتر حسامی که داوری این پایان نامه را تقبل نموده اند صمیمانه تشکر می نمایم. وقدردان همه دوستانی که مرا یاری نموده اند می باشم.

از درگاه خداوند منان برای همه این عزیزان عاقبت به خیری و عافیت، مسئلت دارم.

٥

تعهد نامه

اینجانب محمود زاهدی دانشجوی دوره کارشناسی ارشد رشته فیزیک-حالت جامد دانشکده فیزیک دانشگاه صنعتی شاهرود نویسنده پایان نامه:. رشد و مشخصه یابی لایه های نازک اکسید کادمیوم ایندیوم تحت راهنمائی دکتر مرتضی ایزدی فرد و دکتر محمد ابراهیم قاضی و مشاوره دکتر بهرام بهرامیان متعهد می شوم:

- تحقیقات در این پایان نامه توسط اینجانب انجام شده است و از صحت و اصالت برخوردار است .
 - در استفاده از نتایج پژوهشهای محققان دیگر به مرجع مورد استفاده استناد شده است .
- مطالب مندرج در پایان نامه تاکنون توسط خود یا فرد دیگری برای دریافت هیچ نوع مدرک یا امتیازی در هـیچ جـا ارائـه نـشده است .
- کلیه حقوق معنوی این اثر متعلق به دانشگاه صنعتی شاهرود می باشد و مقالات مستخرج با نام « دانشگاه صنعتی شاهرود » و
 یا « Shahrood University of Technology » به چاپ خواهد رسید .
- · حقوق معنوی تمام افرادی که در به دست آمدن نتایح اصلی پایان نامه تأثیر گذار بوده اند در مقالات مستخرج از پایان نامه رعایت می گردد.
- · در کلیه مراحل انجام این پایان نامه ، در مواردی که از موجود زنده (یا بافتهای آنها) استفاده شده است ضوابط و اصول اخلاقی رعایت شده است .
- در کلیه مراحل انجام این پایان نامه، در مواردی که به حوزه اطلاعات شخصی افراد دسترسی یافته یا استفاده شده است اصل رازداری ، ضوابط و اصول اخلاق انسانی رعایت شده است .

تاريخ

امضای دانشجو

مالکیت نتایج و حق نشر

- کلیه حقوق معنوی این اثر و محصولات آن (مقالات مستخرج ، کتاب ، برنامه های رایانه ای ، نرم افزار ها و تجهیزات ساخته شده است) متعلق به دانشگاه صنعتی شاهرود می باشد . این مطلب باید به نحو مقتضی در تولیدات علمی مربوطه ذکر شود .
 - استفاده از اطلاعات و نتایج موجود در پایان نامه بدون ذکر مرجع مجاز نمی باشد.

در این تحقیق تجربی لایه های نازک اکسید کادمیوم ایندیوم(CdIn₂O₄) برروی زیرلایه های شیشه ای، به روش سل-ژل و با تکنیکهای غوطه وری و چرخشی و نیز با روش تجزیه گرمایی افشانه ای تهیه شده و همچنین نمونه های پودری به روش سل-ژل تهیه شدند. خواص اپتیکی و ساختاری لایه های نازک ونمونه های پودری اکسید کادمیوم ایندیوم مورد بررسی قرار گرفت. برای آنالیز لایه ها و پودرهای به دست آمده از اندازه گیری پراش پرتو ایکس، بیناب نمایی نوری فرابنفش – مرئی و میکروسکوپ الکترونی روبشی گسیل میدان استفاده گردید.

لایه های نازک تهیه شده با تکنیکهای غوطه وری و چرخشی با تعداد دفعات متفاوت لایه نشانی تهیه و در دماهای مختلف C⁰ ۲۰۰ تا C⁰ ۴۵۰ به مدت یک ساعت تحت عملیات بازپخت قرار گرفتند. برای تهیه نمونه های پودری به روش سل-ژل نیز، عملیات بازپخت در دماهای C⁰ ۲۰۰ تا C⁰ ۲۰۰ برای مدت ۲ ساعت انجام پذیرفت. همچنین برای نمونه های رشد داده شده به روش تجزیه گرمایی افشانه ای، اثر دمای بازپخت در دماهای متفاوت C⁰ ۴۵۰ الی C⁰ ۴۵۰ و اثر غلظت محلول مورد بررسی قرار گرفت. با استفاده از طیف پراش اشعه ایکس، برای همه نمونه ها تشکیل ساختار بلوری مکعبی با راستای ترجیحی استفاده از علیف پراش اشعه ایکس، برای همه نمونه ها تشکیل ساختار بلوری مکعبی با راستای ترجیحی افزایش میزان عبور را نشان داد و با افزایش غلظت میزان عبور کاهش یافته است. همچنین عبور متوسط نمونه های خشک سازی شده توسط لامپ IR اندکی بیشتر از نمونه های خشک سازی شده با کوره الکتریکی بوده است. تصاویر ثبت شده از FESEM نشان داد که برای لایه های نازک رشد داده شده و نمونه های پودری ، در دمای بهینه بلورینگی بهتر و نمونه یکنواخت تر میباشد.

کلید واژه ها: اکسید کادمیوم ایندیوم(CdIn₂O₄)، لایه نازک، پودر، سل-ژل، تجزیه گرمایی افشانه ای.

لیست مقالات مستخرج از پایان نامه

 محمود زاهدی، مرتضی ایزدی فرد، محمدابراهیم قاضی، بهرام بهرامیان "بررسی اثر دمای بازپخت برروی خواص ساختاری و اپتیکی لایه های نازک اکسید کادمیوم ایندیوم رشد داده شده به روش سل – ژل" نوزدهمین همایش بلورشناسی وکانی شناسی ایران، دانشگاه گلستان(گرگان)، سال ۱۳۹۰

فهرست مطالب

صفحه	فهرست عنوان
	فصل اول: معرفی لایه نشانی به روش سل ــ ژل و کاربردهای آن
٢	۱–۱– مقدمه
٢	۱-۲- مراحل تشکیل یک لایه نازک
f	۱–۲–۱ رشد لایه به لایه
۴	۱-۲-۲- هسته بندی سه بعدی، تشکیل، رشد و به هم پیوستن جزیره ها
۴	۱-۲-۳- جذب سطحی تک لایه و بسته بندی بعدی روی این لایه
۵	۱–۳- روش های ساخت لای های نازک
γ	۱–۴– مقدمه ای بر روش سل ــ ژل
٨	۱–۵– مفاهیم اساسی در روش سل ــ ژل
١١	۱–۵–۱– ژلاسیون
14	۱–۵–۲ طول عمر سل
14	۱–۵–۳- خشک سازی
۱۵	۱-۶- تکنیک های مختلف روش سل ـ ژل
۱۵	۱–۶–۱– تکنیک غوطه وری
١٨	۱–۶–۲ تکنیک چرخشی
۲.	۱–۶–۳ تکنیک اسپری
T 1	۱-۶-۴- تکنیک روان شدگی (آبشاری)
٢١	۱-۶-۵ لایه نشانی با کمک تکنیک مویینگی
22	۱–۶–۶– تکنیک چاپی
۲۳	۱–۶–۷– تکنیک الکتروفورز
24	۱–۶–۸– تکنیک ترموفورز
24	۱–۷– کاربردهای روش سل ــ ژل
	فصل دوم: روشهای آنالیز و مشخصه یابی نمونه ها
78	۲–۱– مقدمه
78	۲-۲- مشخصه یابی ساختاری
78	۲-۲-۲ طرح پراش اشعه ایکس (XRD)
29	۲-۳- مشخصه یابی اپتیکی
29	۲–۳–۱ مقدمه
٣٠	۲-۳-۲ روش توزین

٢٢	۳-۴- بررسی خواص ساختاری و اپتیکی اکسید کادمیوم ایندیوم
٢٢	۲-۴-۳ بررسی طیف های XRD در نمونه های CdIn ₂ O ₄
٨٠	۲-۴-۳ بررسی تصاویر SEM در لایه های CdIn ₂ O ₄
۸۴	۲−۴−۳ بررسی خواص اپتیکی لایه های CdIn ₂ O₄
	فصل چهارم: بررسی خواص فیزیکی نمونه های سنتز شده اکسید کادمیوم ایندیوم
٩٠	۴-۱- مقدمه
٩٠	۲-۴- رشد لایه های نازک اکسید کادمیوم ایندیوم (CdIn ₂ O4)
٩٠	۴-۲-۱ نقش زیرلایه در تهیه لایه های نازک و نحوه آماده سازی آن
٩٢	۴-۲-۲- نحوه محلول سازی و تهیه سل اولیه
٩٣	۴–۲–۳ روش تهیه لایه های نازک اکسید کادمیوم ایندیوم (CdIn ₂ O4)
94	۴–۳- مطالعه خواص فیزیکی لایه های نازک CdIn ₂ O4 تهیه شده به روش چرخشی
94	۴–۳–۱– بررسی خواص ساختاری
٩۶	۴–۳–۲ مورفولوژی نمونه ها
٩٨	۴–۳–۳ بررسی خواص اپتیکی نمونه ها
	۴-۴- مطالعه خواص فیزیکی اثر بازپخت در دماهای متفاوت لایه های نازک CdIn ₂ O ₄ تهیه شده
۱۰۳	به روش چرخشی
۱۰۳	۴–۴–۱– بررسی خواص ساختاری لایه ها
1.8	۴–۴–۲– بررسی مورفولوژی نمونه ها
۱۰۸	۴–۴–۳ بررسی خواص اپتیکی
117	۴–۵− مطالعه خواص فیزیکی لایه های نازک CdIn ₂ O₄ تهیه شده به روش غوطه وری
117	۴–۵–۱– بررسی خواص ساختاری لایه ها
114	۴–۵–۲– بررسی خواص اپتیکی نمونه ها
	۴–۶- مطالعه خواص فیزیکی اثر بازپخت در دماهای متفاوت لایه های نازک CdIn ₂ O ₄ تهیه شده
117	به روش غوطه وری
117	۴-۶-۱ بررسی خواص ساختاری نمونه ها
۱۱۹	۴–۶–۲– بررسی خواص اپتیکی نمونه ها
177	۷-۴- بررسی اثر فرآیند خشک سازی بر کیفیت اپتیکی و مورفولوژی نمونه ها
180	۴–۸− چگونگی تهیه پودرهای اکسید کادمیوم ایندیوم (4CdIn2O)
178	۴–۸–۱ بررسی خواص ساختاری پودرهای اکسید کادمیوم ایندیوم (CdIn ₂ O ₄)
177	۴–۸–۲ بررسی مورفولوژی پودرهای تهیه شده به روش سل ـ ژل
179	۴-۹- تهیه لایه های نازک اکسید کادمیوم ایندیوم (CdIn2O4) به روش تجزیه گرمای افشانه ای

صفحه	فهرست عنوان
٣	شکل (۱–۱) — موقعیت های مختلف اتمها بر روی سطح
٣	شکل (۱–۲) – تغییرات انرژی برهمکنشی اتمها در سطح
۴	شکل (۱–۳) – رشد لایه به لایه
۴	شکل (۱–۴) – رشد جزیره ای
۴	شکل (۱-۵) – جذب سطحی تک لایه و هسته بندی بعدی روی این لایه
۶	شکل (۱-۵-۱) – تقسیم بندی روش های لایه نشانی براساس ضخامت
٩	شکل (۱-۶) – (الف) ژل کلوئیدی، (ب) ژل پلیمری
11	شکل (۱-۷) – طرح شماتیک فرایند سل-ژل
١٢	شکل (۱–۸) – واکنش هیدرولیز
١٣	شکل (۱–۹) – واکنش چگالش
18	شکل (۱۰-۱۰) – نمایی کلی از مراحل مختلف تکنیک غوطه وری
١٧	شکل (۱–۱۱) – حالت پایدار مراحل رسوب گذاری
١٨	شکل (۱–۱۲)- نمایی از روش غوطه وری زاویه ای
۲.	شکل (۱-۱۳) – مراحل مختلف تکنیک چرخشی
۲.	شکل (۱–۱۴) – نمایی از لایه نشانی با کمک اسپری
۲۱	شکل (۱۵–۱۵) – نمایی از لایه نشانی به کمک تکنیک روان شدگی (آبشاری)
22	شکل (۱-۱۶) – نمایی از لایه نشانی به کمک تکنیک مویینگی
۲۳	شکل (۱–۱۷) – نمایی از لایه نشانی به کمک تکنیک چاپی
۲۳	شکل (۱–۱۸) – طرح شماتیکی از سیستم لایه نشانی به روش الکتروفورز
۲۷	شکل (۲-۱) – نمای شماتیک از طرح پراش
۲۸	شکل (۲–۲) – عکسی از دستگاه پراش پرتو X مدل B8-advance Bruker axs
٣٢	شکل (۲-۳) – نمایی از روش کار دستگاه مربوط به آنالیز بیضی سنجی
۳۵	شکل (۲-۴) – رابطه بین میدان های تابش و عبوری برای یک قطبیگر خطی
378	شکل (۲-۵) – بردارهای موج برای نور تابشی بر مرز جدایی دو محیط نوری متفاوت
38	شکل (۲-۶) – دستگاه مختصات برای تحلیل بازتابش و شکست در یک مرز تخت
۳۸	شکل (۲-۷الف) – بردارهای موج و میدان های مربوطه برای قطبش TE
۳۸	شکل (۲-۷ب) – بردارهای موج و میدان های مربوطه برای قطبش TM
4.	شکل (۲–۸) – پرتو های عبوری و بازتابی از یک تیغه قرار گرفته در هوا
47	شکل (۲–۹) – پرتو های عبوری و بازتابی از سیستم لایه – زیرلایه
۵۲	شکل (۲-۱۰) – سیستم یک فیلم نازک جاذب روی یک زیر لایه شفاف متناهی ضخیم

٨۶

۳۰۰°C به مدت ۱۵ دقیقه

فهرست جداول

صفحه	فهرست عنوان
	جدول (۴–۱)- اندازه بلورکها و کرنش در نمونه ها که با استفاده از رابطه ویلیامسون-هال
٩۶	محاسه شده است.
	جدول (۴-۲)- ثابت شبکه نمونه ها با استفاده از روابط (۲-۱) و (۲-۲⊣لف) محاسبه شده
٩۶	است.
٩٩	جدول (۴–۳)- مقدار ضخامت t برای نمونه ها
	جدول (۴–۴)- اندازه بلور کها و کرنش با استفاده از رابطه ویلیامسون- هال برای نمونه
١٠۵	های بازپ <i>خت</i> شده
	جدول (۴–۵)- اندازه بلور کها با استفاده از رابطه دبای شرر برای قله ناشی از پراش
۱۱۳	صفحات (۳۱۱) برای نمونه ها
	جدول (۴–۶)- اندازه متوسط بلورکها و میزان کرنش با استفاده از رابطه ویلیامسون- هال
	برای نمونه های بازپخت شده در دماهای ۳۰۰، ۳۵۰ ۴۰۰۰ و ۴۵۰ درجه
١١٩	سانتی گراد
	جدول (۴–۷)- میزان ضخامت نمونه های تهیه شده به روش تجزیه گرمایی افشانه ای
۱۳۳	پس از بازپخت
	جدول (۴–۸)- مقادیر استات کادمیوم و استات ایندیوم با غلظت های متفاوت در محلول
۱۳۵	$CdIn_2O_4$
۱۳۹	جدول (۴–۹) – ضخامت نمونه های بازپخت شده با غلظت های متفاوت

فصل اول

معرفي لايه نشاني به روش سل - ژل و کاربرد يې آن

۱ – ۱ – مقدمه

به پوششی از یک ماده که بر روی یک زیر لایه سبب ایجاد خواص فیزیکی، مکانیکی و الکتریکی جدیدی می گردد، لایه گفته می شود. این خصوصیات به ماده حجمی تشکیل دهنده لایه و زیر لایه مربوط نمی شود [۱]. اگر لایه نازکی از یک ماده را در نظربگیریم، با وضعی مواجه هستیم که در آن دو سطح آنقدر به هم نزدیکند که این می تواند تأثیر به سـزایی روی خـواص فیزیکی ماده داشـته باشدکه آنرا کاملاً از حالت کپه ای این ماده متمایز کند، لایه هـارامی تـوان بـر اساس ویژگی هـای فیزیکی، مکانیکی والکتریکی خود دسته بندی کرد، به عنوان مثال براساس میـزان رسانندگی، لایـه های نازک را می توان به سه دسته عمده تقسیم کرد [۱]، لایه های رسانا، لایه هـای نیمرسانا ولایـه های عایق. از ابتدای این قرن ویژگی های الکتریکی لایه های نازک، از اندازه گیری رسانایی گرفته تـا مطالعه ابررسانایی و همچنین گسیل الکترون از آنها مورد بررسی قرار گرفته است[۱]، این پژوهش ها

> همچنین بر اساس ضخامت، می توان لایه هارا به سه گروه تقسیم نمود [۱]: الف)لایه های ضخیم که ضخامتی درحدود میلیمتر دارند. ب)لایه های نازک که ضخامتی درحدود میکرون دارند. ج)لایه های خیلی نازک که ضخامت آنها درحدود هزارم میکرون است.

۲-۱- مراحل تشکیل یک لایه نازک

به منظور تشکیل یک لایه نازک در ابتدا باید اتم ها و یا مولکولهای ماده مورد نظر به طریقی از چشمه به زیر لایه منتقل شوند. همانطورکه در شکل (۱–۱) بطورشماتیک نشان داده شده است. این اتم ها ممکن است روی زیرلایه در موقعیت های مختلفی قرار گیرند این اتم ها می توانند توسط سطح جذب شوند، در این حالت، ابتدا اتم ها مدتی بر روی سطح حرکت می کنند تا انرژی خود را به سطح داده و نهایتاً در مکانی متوقف شوند. همچنین می توانند پس از برخورد با سطح از روی سطح جدا شوند. اتم هایی که روی سطح مستقر شده اند با یکدیگر تشکیل خوشه های بزرگتری را می دهند که البته این خوشه ها با بزرگتر شدن می توانند منجر به تشکیل هسته های پایداری شوند. در مرحله بعد هسته ها رشد کرده و جزایر را تشکیل می دهند [۱].

شکل(۱-۱)- موقعیت های مختلف اتمها بر روی سطح.

به طور کلی تغییرات انرژی برهمکنشی اتم ها درسطح را به صورت زیر می توان نشان داد[۱]:

$$\Delta G_{\text{interface}} \propto \gamma_{BV} - \gamma_{AV} + \gamma_{AB} \tag{1-1}$$

که در آن γ_{AV} کشش سطحی زیرلایه، γ_{AB} کشش سطحی لایه و زیرلایه و γ_{BV} کشش سطحی لایه می باشد.

عمدتاً سازوکارهای مختلف چگالش لایه نازک بستگی به شدت برهمکنش بین اتم های لایه های در حال رشد و بین اتم های لایه و زیرلایه دارد.

۱-۲-۱ رشدلایه به لایه

در این حالت برهمکنش بین اتم های زیرلایه و اتم های لایه بسیار قوی تر از اتم های لایـه مـی باشد [۲]، یعنی:

شکل(۱-۳)- رشد لایه به لایه.

۱-۲-۲- هسته بندی سه بعدی، تشکیل، رشد و به هم پیوستن جزیره ها

اگر انرژی برهم کنش بین اتم های لایه بزرگتر از انرژی بر هم کنش بین اتم های زیرلایه و لایـه باشد رشد جزیره ای شکل می گیرد [۲]، یعنی:

(٣-1)

 $\gamma_{AV} \langle \gamma_{BV} + \gamma_{AB}$

۱-۲-۳ جذب سطحی تک لایه و هسته بندی بعدی روی این لایه

دراین مدل ابتدا یک یا چند تک لایه تکمیل شده و سپس نوع رشد تغییر می کند و جزایر بر

روی تک لایه های قبلی شروع به رشد می کنند [7].

شکل(۱-۵) - جذب سطحی تک لایه و هسته بندی بعدی روی این لایه

شکل(۱–۴)- رشد جزیره ای.

رشد یک لایه را می توان به سه مرحله مشخص تقسیم کرد [۱]. این مراحل عبارتند از:

الف) هسته بندی، که در طی آن هسته های کوچک تشکیل می شوند و به طور تصادفی بـر روی سطح زیر لایه توزیع می شوند.

ب) رشد هسته ها و تشکیل جزیره های بزرگتر که اغلب شکل خرده بلورکها را دارند.

ج) به هم پیوستن جزیره ها و تشکیل شبکه ای کم و بیش متصل که دارای کانالهای خالی است. فرایند هسته بندی و رشد و به هم پیوستن جزیره های مجزا، اهمیت بنیادی در تشکیل ساختار یک لایه یعنی اندازه بلورکها، جهت آنها و غیره دارند.

۱-۳- روش های ساخت لایه های نازک

تکنیکهای متعددی جهت رشد لایه های نازک وجود دارد. درهر روش ریزساختارها و خواص و حتی ناخالصیهای متفاوتی را خواهیم داشت که همین مطلب خواص متفاوتی را برای لایه مورد نظر ایجاد می کند. با توجه به تکنیک لایه نشانی، نوع زیر لایه می تواند تأثیر بسیار مهمی در خواص لایه های انباشت شده داشته باشد.

دریک نوع دسته بندی ، روشهای انباشت را می توان به سه دسته کلی تقسیم کرد[۳]: الف)روشهای فیزیکی:

لایه نشانی فیزیکی بخار (PVD)^۱
 روش لایه نشانی به کمک باریکه یونی^۲
 روآراستی با پرتو مولکولی(MBE)^۳
 لایه نشانی توسط پالس لیزر (PLD)⁴

¹ Physical Vapor Deposition

² Ion Assisted Beam Deposition

³ Molecular Beam epitaxy

⁴Pulsed Laser Deposition

درمراجع [۴] و [۵] هر یک از این روشها به طور مبسوط تشریح شده اند.

در دسته بندی دیگری می توان روشهای مختلف لایه نشانی را بر اساس ضخامت لایه های تولید

¹Chemical Vapor Deposition

- ²Chemical Bath Deposition
- ³Metal Oxide Deposition
- ⁴Sol-Gel

⁵Spray pyrolysis

در این میان به بررسی روش سل- ژل می پردازیم.

۱– ۴– مقدمه ای بر روش سل– ژل

اولین گزارش از فرایند سل- ژل در سال ۱۸۴۶ از هیدرولیز و چگالش اکسید سیلیکا بود [۶]. پس از آن در سال ۱۹۳۹ لایه های SiO2 تهیه و در سال ۱۹۵۳جهت استفاده در شیشه های اتومبیل به تولید رسیدند. پوشش های غیر انعکاسی نیز در سال ۱۹۶۴ ساخته شدند. اولین تلاش سودمند جهت تشکیل لایه های منظم و یکپارچه و ثابت سازی آنها با کمک روش سل-ژل در سال ۱۹۸۴ توسط دیوید لوی^۱ ودیوید آونیر^۲ انجام پذیرفت [۲]. این مسئله مقدمه ای برای مطالعات وسیع تر، جهت دستیابی به یک مکانیزم پیشرفته در تولید مواد مرکب و گسترش کابردهای آن در بسیاری از جهت دستیابی به یک مکانیزم پیشرفته در تولید مواد مرکب و گسترش کابردهای آن در بسیاری از زمینه ها را فراهم کرد. از دهه ۸۰ تا به حال پیشرفت های قابل توجهی در زمینه سل-ژل و تولید پوشش های سرامیکی صورت گرفته است. سل-ژل یک تکنیک چند کاربردی فوق العاده برای ساختن مواد است. در این روش رفتارهای شیمیایی و فیزیکی مواد مورد تجزیه و تحلیل قرار می گیرد. این تکنیک به دانشمندان اجازه می دهد که موقعیت و ساختار مواد را در مقیاس نانومتری تغییر داده و خواص فیزیکی مواد را کنترل کنند. در مجموع به کمک این فرایند می توان پیش ماده های ^۳ سل-ژل را به فرم های مختلفی مثل پودرهای کروی، لایه های نازک، فیبرهای سرامیکی، پوسته های غیر آلی متخلخل، سرامیکی هی¹ وشیشه های یکپارچه تغییر داد.

از جمله علل مورد توجه قرار گرفتن روش سل- ژل می توان به موارد زیر اشاره کرد [۸]:

۱ – این روش بطور قابل توجهی نیاز به دستگاه ها و تجهیزات کمتر و بالقوه کم خرج تر دارد و
 یک روش بسیار ساده است.

¹David levy ²David avnir ³Precursor ⁴Monolithic ۲- انواع ترکیبات را می توان با خلوص بسیار بالا لایه نشانی کرد. احتمال اینکه ناخالصی نیز روی زیرلایه بنشیند بسیار کم است ، چون طی واکنشهای شیمیایی با هم ترکیب می شوند و احتمال اینکه وارد واکنش شوند بسیار پایین است.

۳- توانایی کنترل دقیق و اساسی ریز ساختارهای لایه های انباشت شده مانند اندازه و حجم ، مساحت بیرونی و وجود دارد.

۴- اشکال مختلط و سطوح بزرگ را می توان با این روش لایه نشانی کرد و نیازی به دما های بسیار بالا نمی باشد.

۵- لایه هایی با یکنواختی قابل توجه را با این روش می توان بدست آورد.
معایب روش سل- ژل نیز عبارتند از:
۱- دورریز این روش زیاد است.
۲- هزینه مواد خام مورد استفاده و همچنین زمانهای انجام فرایند بالا است.
۳- منافذ بسیار ریزی بر روی لایه تشکیل شده باقی می ماند.
۴- انقباض بیشتری در طول فرایند وجود دارد.

۵–۱– مفاهیم اساسی در روش سل-ژل

در شیمی سل-ژل، پیش ماده های مولکولی به ذراتی با ابعاد نانو متری تبدیل می شوند. این فرم سوسپانسیون کلوئیدی یا سل، منجر به تشکیل شبکه های ژل می شود. ژل به کمک تکنیک های متنوع خشک سازی، تبدیل به مواد مختلفی با خواص متفاوت می شود. پیش ماده، ماده ابتدایی برای تهیه سل است که معمولاً به صورت نمک های غیر آلی فلزی یا ترکیبات آلی فلزی؛ مانند آلکوکساید های^۱ فلزی می باشد. با تغییر فاز محلول اولیه، سل تهیه می شود.

¹Alkoxide

شکل(۱-۶)- (الف) ژل کلوئیدی, (ب) ژل پلیمری [۹].

در حقیقت سل ها ذرات کلوئیدی ریزی (در ابعاد نانو متری) می باشند که در داخل سیال معلق بوده و دارای حرکت براونی^۱ می باشند. ژل فرم نیمه جامدی است که از تغلیظ و هیدرولیز ذرات کلوئیدی سل حاصل می شود. یک ساختار معمولی ژل، به طور مشخص یکنواخت و متخلخل است. بنابراین دارای مساحت سطحی بزرگی می باشد [۹].

تغییر فازصورت گرفته برای تبدیل محلول اولیه به سل و سپس به ژل، بیشتر به صورت تغییرات فیزیکی مانند افزایش ابعاد ذرات می باشد. به طور کلی سل ها دارای دو فرم کلوئیدی و ماکرومولکولی (پلیمری) می باشند. سل های کلوئیدی شامل ذرات معلق کلوئیدی در سیستم های آبی هستند که در نتیجه رشد خطی ذرات حاصل می شوند. در سل های پلیمری، تشکیل دهنده ها غالباً شاخه های معلق پلیمری در سیستم های آبی می باشند. هنگامی که ژلاسیون رخ می دهد، این ذرات به شکل پلیمرهای خطی رشد می کنند. این سل ها از اثر واکنش الکوکساید ها با آب به وجود می آیند.

¹ Brownian

۱ - حالت حجمی: در این حالت، رفتار لازم برای تغییر فاز از سل به ژل،هفته ها و شاید ماه ها طول می کشد.

۲- حالت لایه: رفتار لازم برای تغییر فاز در این حالت، کوتاه است (درحدود چند ثانیـه تـا چنـد دقیقه).

زمانی که ژل در فاز مایع است آن را هیدروژل می نامند. پس از عملیات خشک سازی در شرایط متفاوت، ساختارهای متنوعی ایجاد می شوند که عبارتند از [۱۰]:

ایروژل^۱ : اگر مایع در یک ژل خیس، تحت شرایط فوق بحرانی از بین برود، یک ماده متخلخل(میزان تخلخل۹۹٫۹٪) با چگالی فوق العاده پایین به نام ایروژل به دست می آید. در حقیقت وزن یک ایروژل حدود یک میلی گرم در سانتیمتر مکعب است. بسیاری از مواد مفید ازاین فرم ساخته می شوند.

زیروژل^۲ : این نام از واژه یونانی Xeros به معنای خشک و بی آب گرفته شده است. اگر ژل ها به آرامی در یک فرایند تبخیرسیال قرار بگیرند، ساختار شبکه ای ژل ها فرو پاشیده و سبب تولید ماده ای با چگالی بالا و غیر متخلخل می شود. این خشک سازی تدریجی مانع از ترک خوردگی های شبکه جامد می شود.

فیبر^۳:ژل های فشرده شده ای که از محلول سل به دست می آیند را فیبر می نامنـد. فیبرهـا بـه آسانی می توانند به زیروژل ها تبدیل شوند که با کلوخه سازی^۴ بیشتر آن ها مـی تـوان شیـشه هـای پیوسته و فیبرهای سرامیکی را تولید کرد.

مونولیت ها^ه :ژل های توده ای با ابعادی بزرگ تر از یک میلی متر هستند که در دمای اتاق شکل گرفته و در دماها ی خیلی پایین تر ادغام می شوند.

> ¹Aerogel ²Xerogel

³Fiber ⁴Sintering ⁵Monolith

کریوژل^۱ : این مواد معمولاً از انجماد سریع ژل ها و خشک سازی آن ها در خلاء حاصل می شوند. معمولاً موادی که آب دوست هستند ممکن است به سرعت با آب واکنش داده و مجدداً به حالت اولیه خود یعنی قبل از مرحله انجماد و خشک سازی بازگردند. درشکل(۱-۷) فرایند سل-ژل و عملیات خشک سازی به طور شماتیک نشان داده شده است.

شکل(۱-۷)- طرح شماتیک فرایند سل-ژل [۱۰].

تهیه ایروژل ها و زیروژل ها به طور مستقل به شرایط ژلاسیون، عمرسل و خشک سازی و برای مواد غیر متخلخل به شرایط ادغام وابسته است که در ذیل به تشریح این مراحل می پردازیم [۱۰]:

1-0-1 ژلاسیون

سل ها معمولاً با استفاده از آلکوکسایدهای فلزی تهیه می شوند. با توجه به اینکه ارگانیک های فلزی^۲ غیر قابل حل در آب هستند، آلکوکسایدها در الکل بدون آب حل می شوند. با اضافه کردن آب به سل، واکنش های پلی مریزاسیون آغاز می شود.

¹Cryoegel

² Metal organics

این فرایند به وسیله دو واکنش عمده هیدرولیز وچگالش انجام می شود. این واکنش هـا عبارتنـد از:

$$M - O - R + H_2O \to M - OH + R - OH$$
 (۴-۱) واکنش هیدرولیز
 $M - OH + HO - M \to M - O - M + H_2O$ (۵-۱) واکنش های چگالش
 $M - O - R + HO - M \to M - O - M + R - OH$
 $M - O - R + HO - M \to M - O - M + R - OH$
در واکنش های فوق M فلز و R از گروه آلکیل ها مانند متیل، اتیل، پروپیل و... می باشد.

۱) واکنش هیدرولیز:

این واکنش با اضافه کردن آب به سل اتفاق می افتد. در طی این فرایند، گروه های آلکوکساید (OR) مرحله به مرحله به وسیله گروه های هیدروکسیل جایگزین می شوند. در اینجا، نسبت هیدرولیز به چندین فاکتور بستگی دارد. در واقع واکنش می تواند به طور موفقیت آمیزی با افزایش در چگالی بار فلز، تعداد یون های فلزی متصل شده هیدروکسو- لیگاند واندازه گروه های آلکیل به وجود بیاید. بر عکس زمانی که تعداد هیدروکسو – لیگاند، با هماهنگ کردن M افزایش می یابد یا زمانی که Hq، دما یا غلظت آب وحلال به تسهیل واکنش کمک می کنند، می توان از واکنش جلوگیری کرد.

شكل(۱-۸)- واكنش هيدروليز

۲) واکنش چگالش

این واکنش شامل گروه های هیدروکسیل ونتایج به هم پیوستگی های M-O-M است که به ترتیب یک شبکه سه بعدی (ژل) وافزایش درجه اتصال عرضی (را نتیجه می دهد.سپس حالت ژل، به صورت یک ماده کشسان چسبنده، که ترکیبی از فازهای جامد و مایع است تبدیل می شود. این ساختار به طور قوی به میزان آب سیستم و اسید یا بازی که به عنوان کاتالیزور در سیستم به کار رفته است بستگی دارد. به طور کلی واکنش چگالش در حضور آب یا الکل انجام می شود.

شکل(۱–۹)- واکنش چگالش

مورفولوژی ژل متأثر از دما، نسبت آب والکل و مقدار اسید و بازی است که به عنوان کاتالیزور در سیستم به کار رفته است [۱۱].

کاتالیزورهای اسیدی ژل هایی با اتصال عرضی ضعیف ایجاد می کنند که به آسانی تحت عملیات خشک سازی، متراکم شده و به ساختار زیروژل قابل انعطافی با تخلخل پائین تبدیل می شوند.

در شرایط pH خنثی و بعد از خشک سازی، زیروژل های نسبتاً متخلخلی که بـه صـورت خوشـه های انعطاف ناپذیری در ابعاد کمتر از نانومتر هستند ایجاد می شوند.

تحت شرایطی با کاتالیزور های بازی و اسیدی- بازی، ژل ها ساختارطبقه ای و شبکهٔ پیچیده ای خواهند داشت.

¹Cross linking degree

۱-۵-۲- طول عمرسل

طول عمرسل یک پیشروی در مرحله ژلاسیون است که شبکه ژل در طی پلیمریزاسیون بیشتر، تثبیت می شود. دفع حلال ها به دلیل جمع شدگی ژل در این زمان رخ می دهد[۱۰].

۱–۵–۳– خشک سازی^۲

فرایند خشک سازی شامل جداسازی آب از سیستم ژل است که همزمان با فروپاشی ساختار ژل می باشد. این فرایند تحت شرایطی که دما، فشار و رطوبت ثابت است انجام می پذیرد[۱۰]. به هر حال ژل آخرین ماده تهیه شده نیست. برای بدست آوردن پوششها، پودر های سرامیکی و یا نمونه های یکپارچه، ژل آمورف بایستی خشک شده و در دماهای بالا بصورت بلوری در بیاید. بیشترین دشواری ها در مرحله خشک کردن ایجاد می شود و عمدتاً بوسیله جابجایی مقادیر زیادی از حلال در شبکه پلیمری بوجود می آید. در واقع ژل برای انقباض در یک مقدار بزرگ آماده می شود و نیروهای مویین^۳ موجب تشکیل شکستگی ها می شوند. برای کم کردن این تاثیرات، ژل ها بط ور طبیعی بوسیله تبخیر آرام خشک می شوند. مراحل تهیه یک لایه نازک با روش سل- ژل بصورت زیـر می باشد:

۱-رقیق کردن پیش ماده هایی که بصورت پودر هستند با الکل ها و استفاده از یک کاتالیزور مناسب برای تهیه سل.

۲-عملیات پوشش زیرلایه ها با تکنیک های مختلف سل- ژل و تهیه لایه خیس. ۳- عملیات خشک کردن لایه خیس به منظور بدست آوردن لایه های نازک مورد نیاز. پارامترهای موثر در روش سل- ژل را می توان به دو دسته تقسیم بندی کرد: الف- پارامترهای فیزیکی مانند روش انباشت کردن، ویژگی سطح زیرلایه، چسبندگی، دمای خشک سازی و دمای عملیات بازپخت.

² Drying

³ Capillary

ب- پارامترهای شیمیایی مانند تغییر در نسبت الکل ، تغییر در نسبت آب و الکل، گرمای واکنش و اسیدی که بعنوان کاتالیزور بکار می رود.

۱-۶- تکنیک های مختلف روش سل -ژل

این تکنیک ها عبارتند از:

۱–۶–۱– تکنیک غوطه وری

(الف) غوطه وری مستقیم: در این روش زیرلایه به آرامی به داخل ظرف شامل سل غوط و ر شده و با یک سرعت یکنواخت ، تحت دما و شرایط جوی کنترل شده از آن بیرون کشیده می شود[۱۲]. اسکریون^۱ این فرایند را مطابق شکل(۱-۱۰) به پنج مرحله تقسیم بندی کرده است که عبارتند از:

۱- مرحله غوطه ور شدگی^۲ یا فرو بردن زیرلایه به داخل سل. دراین قسمت سرعت فرو بردن اهمیتی ندارد.

۲- مرحله شروع بالا آوردن زیرلایه از داخل سل^۳.

۳- مرحله رسوب گذاری، مرحله شروع انباشت است. در این مرحله سل به آرامی بر روی زیرلایه ته نشین می شود.

۴- مرحله فروکشی[†]، مرحله است که در آن زیرلایه بطور کامل از داخل سل بیرون کـشیده مـی شود.

۵- مرحله تبخیر، برای از بین بردن مایعات (سل های) اضافی است.

لازم به ذکر است که عمل تبخیر از مرحله سه آغاز می گردد و باعث خشک شدن لایـه بـر روی زیر لایه می گردد.

> ¹Scriven ²Immersion ³Start-up ⁴Drainage

شكل(۱-۱۰)- نمايي كلى از مراحل مختلف تكنيك غوطه ورى [۱۲].

زمانی که زیرلایه از درون محلول پوششی بیرون کشیده می شود یک سطح مرزی، لایه قرار گرفته بر روی زیرلایه را به دو بخش تقسیم می کند. یکی از این لایه ها به زیر لایه چسبیده و لایه دیگر به طرف پایین حرکت می کند و به محلول پوششی اضافه می شود. بنابراین ضخامت لایه متناسب با موقعیت حد فاصل بین لایه های حرکت کننده به طرف بالا و پایین می باشد. در مرحله رسوب گذاری، نیروهای اساسی ای که ضخامت لایه را تحت تاثیر قرار می دهند عبارتند از: ۱- نیروی چسبندگی به طرف بالا بر روی مایع که ناشی از حرکت زیرلایه است. ۲- نیروی گرانش که به طرف بالا بر روی مایع که ناشی از حرکت زیرلایه است. ۴- نیروی لایند بین کشش سطحی و حالت مویینگی که به طرف پایین است. ۴- نیروی لخت لایه مرزی مایع به وجود آمده در ناحیه رسوب گذاری. ۶- فشار ترکیب کننده یا پراکننده که برای لایه هایی به ضخامت کمتر از(۱۹س۱) اهمیت دارد. با به کارگیری تمام این نیروها به رابطه تجربی زیر می رسیم. این رابطه برای حالتی است که چسبندگی و سرعت زیرلایه به اندازه کافی زیاد باشد [۱۲].

$$h = c_1 \left(\frac{\eta V}{\rho g}\right)^{\frac{1}{2}} \tag{9-1}$$

در این رابطه h ضخامت، C₁ ثابت تناسب (در حدود ۸/۰ برای مایعات نیوتنی)، $\eta = 0$ شرعت در کت سرعت بالابری زیرلایه، $\rho = 0$ چگالی محلول(مایع) و g شتاب گرانشی می باشد. زمانی که سرعت حرکت زیرلایه و چسبندگی مایع به اندازه کافی زیاد نباشد، به طوری که اغلب در فرایندهای سل-ژل اتفاق می افتد، تعادل موجود بین نیروها به وسیله میزان مقاومت چسبندگی و تنش سطحی بین مایع و بخار یعنی γ_{LV} تغییر می کند. بر این اساس رابطه زیر که توسط لاندائو¹ و لویچ⁷ [۱۲] به دست آمـده است ، استفاده می شود:

$$h = 0.94 \frac{(\eta V)^{\frac{1}{3}}}{\gamma_{L_V}^{\frac{1}{6}} (\rho g)^{\frac{1}{2}}}$$
(Y-1)

این رابطه به قانون توان دوسوم ضخامت مشهور است، همچنین اندازه و وسعت پیش ماده های محلول قبل از رسوب گذاری لایه و میزان نسبی تبخیر و تراکم در طول رسوب گذاری لایه، می توانند باعث کنترل حجم و اندازه منافذ و سطح بیرونی لایه نهایی شوند. شکل(۱–۱۱) حالت پایدار مراحل رسوب گذاری را در فرایند غوطه وری نشان می دهد.

شکل(۱۱–۱۱)- حالت پایدار مراحل رسوب گذاری [۷].

مواد رقیق، غیر برهمکنشی و پلیمـری محلـول سـل-ژل بـر روی زیرلایـه، بـه وسـیله فروکـشی گرانشی، تبخیر و واکنش های پرچگال متراکم می شوند. مطابق شکل فروکشی گرانشی و تبخیر آب و

> ¹Landau ²Levich

الکل در طرفین وجود دارد. یکبار که لایه به طور کامل فروریزش می کند، لایه نازک متراکم باقی می ماند. این فرایند غلظت را افزایش داده و ذرات کلوئیدی را به حرکت در می آورد. در نتیجه چسبندگی به علت افزایش غلظت ذرات کلوئیدی و پیوستگی واکنشهای چگالش، افزایش می یابد.

(ب) غوطه وری زاویه ای: در این روش، فرو بردن زیر لایه به درون محلول و نیز بیرون کشیدن آن، در زاویه ای خاص (غیر از حالت عمود) رخ می دهد. امتیاز این روش هم، امکان بیشتر برای کنترل ضخامت لایه است که به کمک آن می توان خواص اپتیکی لایه ها را به راحتی کنترل کرد. در شکل(۱–۱۲)هم می توان نمایی از تکنیک غوطه وری زاویه ای را مشاهده کرد.

شکل(۱-۱۲)- نمایی از روش غوطه وری زاویه ای [۷].

۱-۶-۲- تکنیک چرخشی

در این روش مقدار مشخصی از محلول پلیمری بر روی زیرلایه قرار می گیرد و سپس زیرلایه م شروع به چرخش می کند. برونساید و همکارانش [۱۳] این فرایند را به چهار مرحله تقسیم بندی کرده اندکه عبارتند از:

۱ - مرحله رسوب گذاری: در این مرحله، سل مورد نظر با روشهای مختلف (بسته به ماده مورد نظر) روی زیرلایه ته نشین می شود. در این مرحله اگر سل دارای خاصیت چرخشی^۲ باشد، کار ساده است.

¹ Brown side

²Spinable

۲- مرحله شروع چرخش ^۱: در این مرحله سل به صورت شعاعی با نیروی مرکزگرا به طرف بیرون شارش پیدا می کند. تا زمانی که به سرعت دلخواه برسیم، تغییرات سرعت داریم.

۳- مرحله پایان چرخش^۲: حالتی است که به سرعت حدی مورد نظر رسیده ایم و در آن سرعت ، لایه را پوشش می دهیم. رفته رفته به حالتی می رسیم که ضخامت بسیار نازک بدست آید، ولی باز هم قطراتی وجود دارد. مایع اضافی بطرف اطراف جاری شده و افت پیدا می کند.

۴- مرحله تبخیر: در این مرحله دیگر قطراتی از مایع بیرون نمی ریزد. البته امکان دارد که مرحله تبخیر همزمان با شروع مرحله دوم نیز شروع شود. پس از این مرحله، بایستی مرحله خشک شدن نیز انجام شود. کلیه مراحل فوق در کمتر از چند دقیقه رخ می دهد. ضخامت های به دست آمده توسط این روش در گستره ای از چندین هزار نانومتر تا حدود ۱۰ میکرومتر متغیر است. مایرهوفر^۳ ضخامت نهایی یک لایه تهیه شده با کمک تکنیک چرخشی را به وسیله رابطه زیر شرح داد:

$$h = (1 - \frac{\rho_A}{\rho_{A_0}}) \cdot (\frac{3\eta \cdot m}{2\rho_{A_0} \cdot \omega^2})^{\frac{1}{2}}$$

$$(\Lambda - 1)$$

$$\gamma \quad \lambda \in \mathcal{A}, \quad \lambda \in \mathcal$$

چسبندگی مایع، ϖ سرعت زاویه ای چرخش زیرلایه و m هـم سـرعت تبخیـر حـلال مـی باشـند. از آنجایی که m به طور تجربی تعییــن می شود، می توان فرمول بالا را به شکل ساده زیر هم نوشت:

$$h = A.\omega^{-B} \tag{(9-1)}$$

که در این رابطه، A و B ثابت هایی تجربی هستند که باید به طریق تجربی تعیین شوند.

¹ Spin-up

² Spin-off

³ Meyerhuffer

شکل(۱-۱۳)- مراحل مختلف تکنیک چرخشی [۱۴].

۱-۶-۳- تکنیک اسپری

برای لایه نشانی زیرلایه های دارای اشکال نامنظم، لامپ ها و ظروف شیشه ای، تکنیک اسپری روشی قابل استفاده است. کمپانی فیلیپس^۲ برای لایه نشانی صفحات تلویزیون های تولیدی خود، از روش سل-ژل و ترکیب دو تکنیک چرخشی و اسپری استفاده کرده است [۱۵]. البتـه ایـن روش اسپری در ابعاد صنعتی، برای پوشش دادن سطوحی که به عنوان پوشش اپتیکی به کار برده خواهنـد شد و باید تغییرات ضخامتی در سرتاسر آن کمتر از ۵٪ باشد، کاربرد ندارد.

شکل(۱–۱۴): نمایی از لایه نشانی با کمک تکنیک اسپری [۱۵].

¹Spray technique

²Philips company

۱-۶-۴- تکنیک روان شدگی (آبشاری)

همانطور که در شکل(۱–۱۵) هم دیده می شود، اساس کار در این تکنیک، ایجاد یک جریان روان از سل روی زیرلایه مورد نظر است. در این روش، با قرار دادن زیر لایه به صورت زاویه دار و ریختن محلول سل به روی آن، عمل لایه نشانی صورت می پذیرد. این روش برای پوشش دادن سطوح بزرگ، بسیار مؤثر و کاربردی می باشد.

شکل(۱–۱۵)- نمایی از لایه نشانی با کمک تکنیک روان شدگی (آبشاری) [۷]. عواملی که بر ضخامت لایه های به دست آمده در این روش موثر می باشند عبارتند از: زاویه شیب زیرلایه، میزان چسبندگی مایع سل و نیز سرعت تبخیر حلال ها هستند. این تکنیک در حال حاضر برای مجهز کردن شیشه پنجره اتومبیل ها به وسیله پلی کربنات ها بسیار به کار می رود. امتیاز مهم این روش قابلیت بالای آن برای پوشش دهی سطوح بزرگ و غیر مسطح است. یکی از راه کارهای به کار رفته در این روش برای ایجاد لایه های با ضخامت های همگن تر، چرخاندن زیرلایه بلافاصله پس از عمل لایه نشانی است. اگر عمل چرخش را انجام ندهیم، ضخامت لایه ایجاد شده از بالای زیرلایه تا پایین آن کاهش خواهد یافت.

۱-۶-۵- لایه نشانی باکمک تکنیک مویینگی^۲

یکی از مشخصه های بارز تکنیک های اسپری و چرخشی این است که در ایـن دو روش، مـواد پوششی را نمی توان کاملاً بر روی زیرلایه آورد. در این دو روش مقدار زیادی از سل، هدر می رود. در

¹Flow coating technique

² Capillary coating technique

مورد دو تکنیک غوطه وری و روان شدگی هم این موضوع صادق است. برای برطرف کردن این مشکل از تکنیکی به نام تکنیک موئینگی استفاده می شود که در آن واحد هم امکان دستیابی به پوشش هایی با کیفیت اپتیکی بالا و هم استفاده از تمام سل را برای ما فراهم می کند. در شکل (۱-۱۶) می توان نمایی از این روش را مشاهده کرد.

شکل(۱-۱۶)- نمایی از یک لایه نشانی با کمک تکنیک مویینگی [۷] روش لایه نشانی هم به این صورت است که لوله توزیع کننده بدون هیچ تماس فیزیکی در زیـر زیرلایه چرخیده و مایع پوششی را در قسمت زیرین زیرلایه می نشاند.

۱-۶-۶- تکنیک چاپی

رایج ترین کاربرد این روش در زمینهٔ شیشه های دکوری و نیز چاپ بر روی پارچه های سیلک و صنعت خودرو سازی است. ضخامت لایه هایی که با کمک این روش تولید می شوند، در گستره ای از چند ده نانومتر تا چند صد نانومتر است. در شکل(۱–۱۷) هم نمایی از روش لایه نشانی با کمک تکنیک چاپی[۱۶] را می توان مشاهده کرد.

¹Printing technique

شکل(۱–۱۷)- نمایی از لایه نشانی به کمک تکنیک چاپی [۷].

۱-۶-۷- تکنیک الکترو فورز'

در این تکنیک عمل لایه نشانی با کمک حرکت ذرات باردار از بین مایع تحت تاثیر یک میدان الکتریکی خارجی به کار رفته در امتداد تعلیق انجام می شود. ذرات یا پلیمرها بسته به نوع بار الکتریکی شان در جهت مخالف یا موازی جریان خارجی حرکت می کنند و روی آند یا کاتد لایه نشانی می شوند. پس واضح است که روش الکتروفورز تنها محدود به زیرلایه های رسانا است که قادر به ایفای نقش آند و کاتد می باشد. اما این روش توانایی پوشش دهی سطوح با شکل هندسی پیچیده و غیر مسطح را دارد. بر خلاف تکنیک غوط ه وری، در روش الکتروفورز ذرات در مسیرهای خطی حرکت کرده و با حداکثر سرعت با سطح زیرلایه که در حال سکون است، برخورد می کنند، که البت ه مقدار این سرعت وابسته به میدان الکتریکی خارجی به کار رفته و نیز بار الکتریکی ذرات است[۱۷]. در شکل(۱–۱۸) نمایی از تکنیک الکتروفورز را ملاحظه می کنیم.

شکل(۱-۱۸)- طرح شماتیکی از سیستم لایه نشانی به روش الکتروفورز [۱۸].

¹Electrophoresis technique

۱–۶–۸– تکنیک ترموفورز'

این تکنیک، لایه نشانی به کمک حرکت ذرات لایه از میان سل با استفاده از یک گرادیان حرارتی است. گرادیان حرارتی سبب می شود تا ذرات متحمل یک نیروی شبکه در جهت کاهش دما بشوند. و در نهایت و در اثر همین حرکت روی زیرلایه لایه نشانی می شوند. ویژگی اساسی لایه های به دست آمده در این روش، چگالتر بودن آنها نسبت به لایه هایی است که در تکنیک غوط وری تولید می شوند[۱۷].

۱-۷- کاربرد های روش سل-ژل

کاربردهای روش سل-ژل، مستقیماً وابسته به شکل های خاص و متنوع به دست آمده از حالت ژل است. اما پاره ای از مهمترین کاربردهای روش سل-ژل عبارتند از [۱۹]:

- ۱ پوشش های اپتیکی ۲- لایه های الکترونیکی ۳- لایه های محافظتی ۴- لایه های متخلخل ۵- مونولیت ها ۶- پودر ها و دانه ها ۷- فیبرها
 - ۸- کامپوزیت ها

¹Thermophoresis technique

روشهای آنالنرومشخصه مایی نمونه کا

۲ – ۱ – مقدمه

بررسی مشخصات وخواص مواد مورد مطالعه از جمله موارد مهمی است که برای این امر به ابزارهای شناسایی وآنالیز نتایج احتیاج میباشد. دراین بخش به معرفی برخی دستگاه ها و نحوه آنالیز ، مشخصه یابی و اصول اولیه محاسبات مربوط به آنالیز آنها می پردازیم.

۲-۲- مشخصه یابی ساختاری:

۲-۲-۱- طرح پراش اشعه ایکس (¹XRD)

با استفاده از پراش اشعه ایکس که در اثر برخورد فوتون با ماده مورد مطالعه ، طرح پراش حاصل می گردد می توان با بررسی آن طرح، ساختار بلوری و نوع آن (با توجه به موقعیت قله ها و مقایسه آن با کارتهای استاندارد JCPDS²)، ابعاد بلورکها و فازهای تشکیل شده در ماده و ثابتهای شبکه را مشخص نمود.

درپراش اشعه X، پرتوفرودی، ماده مورد مطالعه و آشکارساز دریک وضعیت هندسی خاصی نسبت به هم قرار می گیرند، بطوریکه پرتو فرودی که بازاویه Θ به ماده برخورد می کند با پرتو پراشیده شده از ماده زاویه Θ بسازد، تا این پرتو پراش مستقیماً وارد آشکار ساز شود و با داشتن طول موج اشعه ایکس (Λ) و زاویه پراش (Θ) و با استفاده از رابطه(۲–۱) که به رابطه براگ معروف است میتوان فاصله بین صفحات شبکه بلوری (d_{hkl}) را محاسبه نمود[۲۰].

 $2d_{hkl}\sin\Theta = n\lambda \tag{1-7}$

¹ X-Ray Diffraction

² Joint Committee of Powder Diffraction

که در این رابطه n مرتبه پراش، λ طول موج اشعه ایکس θ، زاویه پراش، d امله این صفحات مجاور در شبکه در راستای hkl (شکل ۲–۱) میباشند.

شکل (۲-۱)-نمای شماتیک از طرح پراش[۱۸]

حال با داشتن d_{hkl} و اندیس های میلر قله مشاهده شده می وان ثابتهای شبکه را با استفاده از روابط زیر (۲-۲) محاسبه نمود[۲۱].

$$\frac{1}{d_{hkl}^2} = \left(\frac{h^2 + K^2 + l^2}{a^2}\right)$$
 : ساختار مکعبی (۲-۲)

$$\frac{1}{d_{hkl}^2} = \frac{4}{3} \left(\frac{h^2 + hk + l^2}{a^2} \right) + \frac{l^2}{c^2}$$
: ساختار شش گوشی

$$\beta \cos \Theta = \frac{k\lambda}{D} + 2\varepsilon \sin \Theta \tag{(V-Y)}$$

¹ Williamson- Hall

که در آن D اندازه بلورکها، β پهنای قله مورد نظر در نصف ماکزیمم (FWHM)، ϵ کرنش، λ طول موج اشعه ایکس و X ثابت شرر که بین ۱و γ ، می باشد ، می باشد. در این جا با رسم بهترین خط گذرنده از مجموعه نقاط منحنی β cos θ بر حسب $2\epsilon \sin \theta$ مربوط به هر نمونه می توان با محاسبه شیب (٤) و عرض از مبدا (K λ / D) مقادیر متوسط کرنش و اندازه متوسط بلورکها را برای هر نمونه بدست آورد.

X طیف پراش اشعه ایکس نمونه های سنتز شده در این پایان نامه با استفاده از دستگاه پراش پرتو مده مدل شعه ایکس نمونه های سنتز شده در این پایان نامه با استفاده از دستگاه $\lambda=1/2$ ۴۰۶ Å مدل CuKa با طول موج B8-advance Bruker axs است که در شکل (۲-۲) نشان داده شده است.

شکل (۲-۲)-عکسی ازدستگاه پراش پرتو X مدل B8-advance Bruker axs.

¹ Full Width at Half Maximum

۲–۳– مشخصه یابی اپتیکی

۲-۳-۱ مقدمه

دستگاه های طیف سنج عبور اپتیکی بر اساس مقایسه امواج عبوری از نمونه و زیر لایه به عنوان شاهد، طیف ترا گسیل مربوط به ماده مورد نظر را می دهد. از طریق طیف تراگسیل لایه های نازک و روابط فیزیکی مربوط، می توان ضریب خاموشی ، ضریب جذب، گاف نواری، دنباله نواری و نیز ضخامت نمونه رامحاسبه نمود که در زیر به روشهای تعیین این ثوابت می پردازیم.

یکی از مهمترین پارامترهای لایه نازک ضخامت است، زیرا عمدتاً خواص لایه ها خیلی وابسته به ضخامت می باشد. بنابراین می توانند برای اندازه گیری ضخامت به کار روند. ضخامت واقعی لایه به روش اندازه گیری بستگی دارد یا به طور دقیق تر، روش های مختلف اندازه گیری ممکن است نتایج متفاوتی را به دست دهند و در نتیجه ضخامت های مختلفی برای یک لایه اندازه گیری شوند [۲۳]. معمولاً یک لایه نازک کاملاً صاف نیست و بنابراین در مکان های مختلف ضخامت های مختلفی خواهد داشت. اگر روشی که به کار می بریم جرم در واحد سطح را اندازه گیری کند، که از آن میانگین ضخامت را با استفاده از چگالی جرمی محاسبه می کنند، آن گاه ضخامت به دست آمده را ضخامت جرمی مینامیم. بعضی از روش ها را تنها میتوان برای لایه های انباشت شده استفاده کرد، در حالی که روش های دیگر را می توان برای اندازه گیری ضخامت لایه در خلال فرایند واقعی تشکیل لایه به کار برد. روش های اندازه گیری روش های بسیار ارزشمندی هستند، زیرا تهیه لایه های نازک را با ضخامت های معین ممکن می سازند. علاوه بر این، با استفاده از این روش ها می توان با اندازه گیری افزایش ضخامت در واحد زمان، آهنگ رونشانی را اندازه گیری کرد. روش های اندازه گیری ضخامت را می توان به چند گروه تقسیم کرد که شامل روش های توزین اپتیکی، الکتریکی و روش های دیگر (مثلاً روش هایی که بر گسیل و جذب پرتو، تحلیل شیمیایی و غیره) پایه ریزی شده اند. روش های اندازه گیری ضخامت و آهنگ رونشانی لایه های نازک عبارتند از:

۲-۳-۲ روش های توزین

این روشها عبارتند از روش میکرو ترازو و روش کوارتز ارتعاشی [۲۳].

۲-۳-۳ روش های الکتریکی

این روشها عبارتند از: ۱)اندازه گیری مقاومت الکتریکی، ۲) اندازه گیری ظرفیت، ۳) اندازه گیری تغییر عامل Q، ۴) روش های یونشی[۲۳].

۲-۳-۴ روش های اپتیکی

این روشها عبارتند از:

۲-۳-۴-۱- روش های مبتنی بر اندازه گیری ضریب جذب نور

اگر نور ناشی از چشمه ای به شدت I_o از لایه نازکی که نور را جذب می کند عبور کند، شدت نور عبوری I طبق رابطه زیر[۲۳] کاهش می یابد:

 $I=I_0 \exp(-\alpha t) \qquad \qquad \alpha = -1/t \ln(I/I_0) \qquad \qquad (\pounds - \xi)$

که در آن t ضخامت لایه، α ضریب جذب لایه برای پرتو تابیده شده است وچون ضریب عبور، T، برابر I/I_0 است با نسبت بین پرتو گسیل یافته به پرتو فرودی بنابراین دررابطه (۲–۴) می توان Tراکه بجای I/I_0 است با نسبت بین پرتو گسیل یافته به پرتو فرودی بنابراین دررابطه (۲–۴) می توان Tراکه بجای I/I_0 است با نسبت بین پرتو گسیل یافته به پرتو فرودی بنابراین دررابطه (۲–۴) می توان Tراکه بجای I/I_0

۲-۳-۴-۲ روش های تداخلی

برای اندازه گیری ضخامت لایه های نازک روش های اپتیکی بسیاری که مبتنی بر تداخل نور در لایه های نازک هستند، وجود دارند. نور مرئی یک موج الکترومغناطیسی با طول موج هایی در گستره تقریباً ۴۰۰ تا ۸۰۰ نانومتر است بعضی از آرایشهایی که برای اندازه گیری ضخامت به کار می روند عیارتند از [۲۳]:

> الف) اندازه گیری ضخامت با استفاده از رنگ های تداخلی ب) روش هایی که از تداخل فریزهایی با ضخامت های برابر استفاده می کنند. ج) روش های تداخلی با استفاده ازمیکروسکوپ تداخلی

۲-۳-۴-۳- روش قطبش سنجی (بیضی سنجی)

یک لایهٔ نازک تقریباً یا کاملاً شفاف روی تیغه فلزی صیقل شده، بیضویت نور بازتابیده را متأثر می سازد. این روش مبتنی بر اندازه گیری نسبت دامنه نور بازتابیدهٔ قطبیده در امتداد صفحه فرودی به دامنه نور بازتابیدهٔ قطبیده در امتداد عمود بر صفحه فرودی و اختلاف فاز آنها در زاویه های نسبتاً بزرگ فرودی که به طور قطری با معادله های فرنل توصیف می شود. با این روش امکان تعیین ضخامت و یا ثابت های اپتیکی لایه های نازک همسانگرد همگن جاذب و ناجاذب، بر روی زیرلایه های جاذب و ناجاذب وجود دارد. ضخامت را می توان به کمک معادلات نسبتاً پیچیده ریاضی که از نظریه الکترومغناطیس نور نتیجه می شوند، حساب کرد. این روش تنها روش عملی برای بررسی لایه های شفاف فرا نازک که بر روی سطوح فلزی رونشانی می شوند، می باشد. البته این روش بسیار پر زحمت بوده و معمولاً برای اندازه گیری ضخامت در حین تشکیل لایه مورد استفاده قرار نمی گید[۲۳].

که درشکل(۲-۳) نمایی ازروش کار این دستگاه رانشان می دهد[۲۴].

شکل(۲-۳) - نمایی ازروش کاردستگاه مربوط به آنالیز بیضی سنجی

۲-۳- ۵- اندازه گیری آهنگ رونشانی با استفاده از انتقال تکانه

خاصیتی که در این حالت برای اندازه گیری به کار می رود، تکانه ذره های برخورد کننده بر روی یک قطعهٔ متحرک است که جا به جایی آن ثبت می شود. در صورت دیگری از این روش باریکه مولکولی به صفحه ای که به سیستم چرخشی دستگاه اندازه گیری دپرز^۱ متصل است، برخورد می کند. [۲۳]

۲-۳-۶-روش های مخصوص اندازه گیری ضخامت

این روشها عبارتند از [۲۳]:

۱) روش سوزن گرامافون، ۲) روش های جذب و گسیل تابش، ۳) روش تعیین تابع کار از میان تمامی روش های مختلف تعیین ضخامت و سایر ثوابت اپتیکی، در این پایان نامه ازیک روش اپتیکی جهت تعیین ثوابت اپتیکی استفاده گردید. لذا بر آن شدیم که در این فصل پاره ای از قواعد فیزیکی حاکم بر آن را تشریح نموده و به توضیحات جامعی پیرامون این بحث بپردازیم.

۲-۳-۲- پدیده های بنیادی دانش نور [۲۶و۳۰]

نیوتن در مقاله ای درباره اپتیک نوشته است: پرتوهای نور اجسام کوچکی هستند که از مواد نورانی می تابند. به خاطر این حقیقت که در یک محیط همگن معین، نور در مسیرهایی به خط راست حرکت می کند، نیوتن ترجیح می داد نور را به صورت ذره ای درنظر بگیرد. این پدیده به قانون انتشار

¹Deprez

مستقیم نور مرسوم است. از طرف دیگر، کریستین هویگنس از نظریه دیگری حمایت می کرد که بر طبق آن، نور حرکتی موجی است که از یک منبع در تمام جهات پخش می شود. حقایق اپتیکی که بوسیله تصویر موجی به خوبی قابل توضیح هستند، پدیده های تداخل نظیر تشکیل نوارهای تاریک و روشن بوسیله بازتاب نور از لایه های نازک و پراش نور از لبه های موانع می باشند. امروزه می دانیم که نور مرئی صرفاً شکلی از انرژی الکترومعناطیسی است که معمولاً به عنوان امواج الکترومعناطیسی توصیف می شوند. طیف کامل چنین امواجی شامل امواج رادیوئی، اشعه مادون قرمز، طیف مرئی رنگ های قرمز تا بنفش، اشعه ماوراء بنفش، اشعه ایکس و اشعه گاما می باشد که آن را مدیون جیمز کلارک ماکسول می باشیم. نظریه ماکسول، انتشار نور را مورد بحث قرار می دهد در صورتیکه نظریه کوانتومی برهم کنش نور و ماده یا جذب و تابش نور را توصیف می کند.

حالت الکترومعناطیسی خلاء در هر نقطه از فضای خالی با دو بردار میدان الکتریکی \overline{E} و میدان میدان میدان الکترومعناطیسی \overline{H} مشخص می شود. در حالت ایستائی یعنی وقتی که دو میدان با زمان تغییر نمی مغناطیسی \overline{H} مشخص می شود. در حالت ایستائی یعنی وقتی که دو میدان با زمان تغییر نمی مخند. کنند، \overline{E} از یکدیگر مستقل بوده و به ترتیب با توزیع بار و جریان در تمام فضا تعیین می شوند. با وجود این در حالت دینامیکی، میدان ها مستقل نمی باشند و مشتق زمانی و مکانی آنها بصورت زیر به هم مربوط می شود:

$$\nabla \times \vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$$

$$\vec{\nabla} \times \vec{H} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$
(\(\Delta-\T)\)
$$(\(\Delta-\T)\)$$

شرایط واگرائی زیر دلالت بر عدم حضور بار در نقطه موردبحث می کند:

- $\vec{\nabla}_{\cdot}\vec{E} = 0 \tag{V-T}$
- $\vec{\nabla} \cdot \vec{H} = 0 \tag{A-Y}$

این معادلات در هردو حالت ایستا و دینامیکی صادق هستند.می توان میدانهای $ar{E}$ و $ar{H}$ را بااستفاده از معادلات زیر جدا نمود:

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} \tag{1.17}$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{H}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \vec{H}}{\partial t^2} \tag{9-1}$$

به علاوه بااستفاده از شرایط واگرائی(۲-۷) و(۲-۸)، روابط زیر را بدست می آوریم:

$$\nabla^{2}\vec{E} = \frac{1}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} \tag{11-T}$$

$$\nabla^2 \vec{H} = \frac{1}{c^2} \frac{\partial^2 \vec{H}}{\partial t^2}$$
(17-7)

یک موج هماهنگ تخت الکترومغناطیسی را با میدانهای $ar{E}$ و $ar{H}$ که با عبارات زیر مشخص می شوند، در نظر می گیریم:

$$\vec{E} = \vec{E}_0 \exp[i(\vec{k}.\vec{r} - \omega t)]$$
(17-7)

$$\vec{H} = \vec{H}_0 \exp[i(\vec{k}.\vec{r} - \omega t)] \tag{14-7}$$

که در آن بردار مکان $ec{r}$ و بردار انتشار(بردار موج) $ec{k}$ به صورتهای زیر می باشند:

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \tag{10-T}$$

$$\vec{k} = k_x \hat{i} + k_y \hat{j} + k_z \hat{k}$$
(19-Y)

اگر دامنه های $ar{E}_0$ و $ar{H}_0$ ، بردارهای حقیقی ثابتی باشند، موج قطبی شدهٔ خطی یا قطبی شده مسطح نامیده می شود. می دانیم که میدانهای $ar{E}$ و $ar{H}$ دو به دو بر یکدیگر عمودند. در دانش نور مرسوم است که راستای میدان الکتریکی را به عنوان راستای قطبش اختیار کنند. در مورد نور طبیعی یا به اصطلاح نور غیر قطبیده، قطبش لحظه ای دارای افت وخیز سریع میباشد. بردار الکتریکی \vec{E} لحظه ای را می توان مطابق شکل (۲–۴) به دو مولفه عمود برهم $\vec{E}_1 \ e_2$ تجزیه نمود. با فرض اینکه \vec{E}_1 در را می توان مطابق شکل (۲–۴) به دو مولفه عمود برهم $\vec{E}_1 \ e_2$ تجزیه نمود. با فرض اینکه را در را می را می توان مطابق شکل (۲–۴) به دو مولفه عمود برهم می از ویه می سازد، اندازه میدان عبور کرده برابر راستای محور انتقال قطبیگر قرار دارد و با محور انتقال زاویه θ می سازد، اندازه میدان عبور کرده برابر است با: $\theta = I \cos \theta$ می از رابطه $\theta = I \cos \theta$ بدست است با: $\theta = I \cos \theta$ می از رابطه $\theta = I \cos \theta$ می آید که در آن I، شدت عبوری اله است.

شکل (۲-۴)- رابطه بین میدانهای تابش و عبوری برای یک قطبیگر خطی.

مطابق شکل(۲–۵)، یک موج تخت هماهنگ را درنظر بگیرید که به یک مرز تخت که دو محیط نوری متفاوت را از یکدیگر جدا می کند، میتابد. درنتیجه یک موج بازتابیده و یک موج عبوری وجود خواهد داشت. وابستگی فضا- زمانی این سه موج، غیر از ضرایب دامنه ای ثابت، با عبارات مختلط زیر بدست می آیند:

exp[$i(\vec{k}.\vec{r} - \omega t)$] (موج تابشی) exp[$i(\vec{k}'.\vec{r} - \omega t)$] (موج بازتابی) exp[$i(\vec{k}''.\vec{r} - \omega t)$] (موج عبوری)

شکل (۲-۶) - دستگاه مختصات برای تحلیل بازتابش شکل (۲-۵) - بردارهای موج برای نورتابشی برمرز و شکست در یک مرز تخت. جدائی دومحیط نوری متفاوت.

اینک برای آنکه یک رابطهٔ ساده بتواند برای تمام نقاط مرز و برای تمام مقادیر وجود داشته باشد، لازم است که شناسهٔ این سه تابع نمایی در مرز برابر باشند. بدین ترتیب چون عوامل زمان یکسان هستند، باید در مرز داشته باشیم:

$$\vec{k}.\vec{r} = \vec{k}'.\vec{r} = \vec{k}''.\vec{r}$$
(1Y-Y)

این معادلات براین دلالت دارند که سه بردار موج \bar{k} و \bar{k} ، همگی در یک صفحه قرار دارند و تصویر هر سه بردار در روی صفحه مرز برابر هستند. این امر را با انتخاب یک دستگاه مختصات Oxyz، نظیر شکل(۲-۶)، به طریقی که یکی از صفحات مختصات مثلاً صفحه xx همان مرز باشد و همچنین به نحوی که بردار \bar{k} در صفحه xy بنام صفحه تابش قرار بگیرد، می توان مورد بحث قرار داد. زوایای بین خط عمود برمحور y (مرز) و بردارهای موج مطابق شکل با θ ، θ و ϕ داده می شوند، بنابر این معادله (۲–۱۷) بصورت زیر در می آید:

$$k\sin\theta = k'\sin\theta' = k''\sin\theta'' \tag{1}$$

چون در فضای امواج تابش و بازتابش($0 \ge y \ge 0$) ، دو موج در یک محیط حرکت می کنند، از این رو بردارهای موج دارای دامنه های یکسان هستند، یعنی k = k'. پس اولین معادله به قانون آشنای بازتابش تبدیل می شود:

$$\theta = \theta' \tag{19-T}$$

با محاسبه نسبت ثابتهای انتشار امواج عبوری و بازتابشی داریم:

$$\frac{k''}{k} = \frac{\omega_{u''}}{\omega_{u}} = \frac{c_{u''}}{c_{u}} = \frac{n_2}{n_1} = n \tag{(Y \cdot -Y)}$$

۲-۳-۷-۱- دامنه های امواج بازتابش و تراگسیل:

فرض کنید \vec{E} دامنه بردار الکتریکی یک موج تخت هماهنگ را نشان می دهد که بر مرز تخـــت جدائی بین دو محیط می تابد و \vec{E} و " \vec{E} ، به ترتیب دامنه های امواج بازتابش و عبوری را نشان میدهند. از معادلات تاو ماکسول که به امواج هماهنگ اعمال شده است، معلوم می شود که دامنه های بردار های مغناطیسی مربوطه از روابط زیر بدست می آیند:

$$\vec{H} = \frac{1}{\mu\omega} \vec{k} \times \vec{E} \tag{(1-1)}$$

$$\vec{H}' = \frac{1}{\mu\omega}\vec{k}' \times \vec{E}' \tag{(17-7)}$$

$$\vec{H}'' = \frac{1}{\mu\omega} \vec{k}'' \times \vec{E}'' \tag{(YT-T)}$$

در اینجا مناسب است که دو حالت مختلف را بررسی کنیم. حالت اول این است که درآن بردار الکتریکی موج تابش با صفحه مرزی موازی (عمود بر سطح تابش) است. به این حالت، قطبش الکتریکی عرضی یا قطبش TE گفته می شود. مورد دوم آن است که در آن، بردار مغناطیسی موج تابش با صفحه مرزی موازی می باشد. به این حالت، قطبش مغناطیسی عرضی (قطبش TM) اتلاق می شود. راستاهای بردارهای الکتریکی و مغناطیسی مربوط، دراشکال(۲-۷ الف و ب) نشان داده شده اند.

شکل(۲-۷-): بک بردارهای موج و میدانهای

مربوطه برای قطبش TM

شکل(۲-۷الف): بردارهای موج و میدانهای

مربوطه برای قطبش TE

همان طوری که دراین اشکال دیده می شود، مرز همان سطح xy درنظر گرفته می شود بطوریکه محور y بر مرز عمود است و صفحه xy ، صفحه تابش می باشد. اکنون شرایط مرزی را بکار می بریم که در آن لازم است که مولفه های مماسی میدانهای الکتریکی و مغناطیسی ضمن عبور از مرز، پیوسته باشند. نتایج بصورت زیر می باشد:

$$E + E' = E''$$

$$-H\cos\theta + H'\cos\theta = -H''\cos\phi$$

$$-kE\cos\theta + k'E'\cos\theta = -k''E''\cos\phi$$
(YF-Y)

$$H - H' = H''$$

$$kE - k'E' = k''E''$$

$$E\cos\theta + E'\cos\theta = E''\cos\phi$$
(YΔ-Y)

در اینجا با توجه به اعمال معادلات فوق، هر دامنه میدان مغناطیسی H'، Hو H'' به ترتیب با H''، k'' E''' متناسب است. ضرایب بازتابش r_s و r_p و ضرایب عبور t_s و t_p بصورت نسبت دامنه ها تعریف می شوند:

$$r_{s} = \left[\frac{E'}{E}\right]_{TE} \qquad r_{p} = \left[\frac{E'}{E}\right]_{TM} \qquad (\Upsilon \mathcal{P} - \Upsilon)$$

$$t_{s} = \left[\frac{E''}{E}\right]_{TE} \qquad t_{p} = \left[\frac{E''}{E}\right]_{TM}$$

$$u$$
 با حذف $n = \frac{c}{u} = \frac{ck}{\omega}$ از معادلات (۲–۲۴) و (۲۵–۲۵) و استفاده از رابطهٔ $m = \frac{c}{\omega} = \frac{ck}{\omega}$ که در آن سرعت فاز u با حذف $u = \frac{\omega}{k}$ است، روابط زیر را برای نسبتهای دامنه های بازتابش به دامنه های تابش بدست می آوریم:

$$r_{s} = \frac{\cos\theta - n\cos\phi}{\cos\theta + n\cos\phi} \tag{YV-Y}$$

$$r_{p} = \frac{-n\cos\theta + \cos\phi}{n\cos\theta + \cos\phi}$$
(YA-Y)

نسبت دامنه های عبوری را نیز می توان با حذف 'Eدر دو حالت بدست آورد. با استفاده از قانون اسنل $n = \frac{\sin \theta}{\sin \phi}$)، می توان معادلات مربوط به دامنه های امواج بازتابش و شکست را بصورت زیر بیان کرد که به معادلات فرنل مرسوم هستند:

$$r_{s} = -\frac{\sin(\theta - \phi)}{\sin(\theta + \phi)}$$
(79-7)

$$t_{s} = \frac{2\cos\theta\sin\phi}{\sin(\theta+\phi)} \tag{(7.-7)}$$

$$r_{p} = -\frac{\tan(\theta - \phi)}{\tan(\theta + \phi)} \tag{(1-1)}$$

$$t_{p} = \frac{2\cos\theta\sin\phi}{\sin(\theta+\phi)\cos(\theta-\phi)}$$
(٣٢-٢)

روش دیگر برای بیان نسبت دامنه های نور بازتابنده، عبارت از آن است که بااستفاده از قانون اسنل، متغیر ¢رادر معادلات (۲–۲۷) و (۲–۲۸) حذف کرد. نتیجه عبارتست از:

$$r_{s} = \frac{\cos\theta - \sqrt{n^{2} - \sin^{2}\theta}}{\cos\theta + \sqrt{n^{2} - \sin^{2}\theta}}$$
(77-7)

$$r_{p} = \frac{-n^{2}\cos\theta + \sqrt{n^{2} - \sin^{2}\theta}}{n^{2}\cos\theta + \sqrt{n^{2} - \sin^{2}\theta}}$$
(٣۴-٢)

ضریب بازتاب بصورت کسری از انرژی نور تابشی که "بازتابیده شده" تعریف می شود و برای حالت TE حالت TE و TMبترتیب با نمادهای $R_s = R_g$ نشان داده می شود. چون انرژی با مربع قدر مطلق دامنه میدان متناسب است برای تابش عمودی ($\theta = 0$) در می یابیم که $R_s = R_g$ به یک مقدار یکسان تبدیل می شوند:

$$R_s = R_P = \left(\frac{n-1}{n+1}\right)^2 \tag{TD-T}$$

۲-۳-۸ ضرایب عبور و بازتاب یک تیغه در هوا [۳۱و۳۲]

مطابق شکل فرض کنید، تیغه ای به ضخامت d در محیط هوا قرار گرفته است. ضریب جذب تیغه α و بازتاب سطحی آن R است.

شکل(۲-۸): پرتوهای عبوری و بازتابی از یک تیغه قرار گرفته در هوا [۳۱].

اگر ضخامت تیغه در مقابل طول موج فرودی بزرگ باشد ($\lambda << \lambda$) آنگاه تداخل نور نخواهیم داشت. در این صورت شدت نور بازتاب یافته(I_R) عبارتست از مجموع پرتوهای بازتابی که از مجموع بازتابهای چندگا نه درون تیغه حاصل شده است.

$$I_{R} = R_{\circ}I_{\circ} + R_{\circ}I_{\circ}(1 - R_{\circ})^{2}e^{-2\alpha d} + R_{\circ}^{3}(1 - R_{\circ})^{2}I_{\circ}e^{-4\alpha d} + R_{\circ}^{5}(1 - R_{\circ})^{2}I_{\circ}e^{-6\alpha d} + \dots$$
(3.4)

$$I_{R} = R_{\circ}I_{\circ} + R_{\circ}I_{\circ}(1 - R_{\circ})^{2}e^{-2\alpha d}(1 + R_{\circ}^{2}e^{-2\alpha d} + R_{\circ}^{4}e^{-4\alpha d} + \dots)$$
(YV-Y)

با حل مجموع داخل پرانتز خواهیم داشت:

$$I_{R} = R_{\circ}I_{\circ} + \frac{R_{\circ}I_{\circ}(1-R_{\circ})^{2}e^{-2\alpha d}}{1-R_{\circ}^{2}e^{-2\alpha d}}$$
(٣٨-٢)

نهایتاً ضریب بازتاب عبارت است از نسبت بین شدت نور بازتاب شده و شدت نور پرتوی فرودی

$$R = \frac{I_R}{I_{\circ}} = R_{\circ} + \frac{R_{\circ} \left(1 - R_{\circ}\right)^2 e^{-2\alpha d}}{1 - R_{\circ}^2 e^{-2\alpha d}}$$
(٣٩-٢)

به همین ترتیب مجموع پرتوهای عبور یافته را به عنوان شدت پرتو عبور یافته بدست می آوریم.

$$I_T = \left(1 - R_{\circ}\right)^2 I_{\circ} e^{-\alpha d} + R_{\circ}^2 \left(1 - R_{\circ}\right)^2 I_{\circ} e^{-3\alpha d} + R_{\circ}^4 \left(1 - R_{\circ}\right)^2 I_{\circ} e^{-5\alpha d} + \dots$$
 (f • - Y)

$$I_{T} = \left(1 - R_{\circ} \right)^{2} I_{\circ} e^{-\alpha d} \left(1 + R_{\circ}^{2} e^{-2\alpha d} + R_{\circ}^{4} e^{-4\alpha d} + \dots \right)$$
(*1-*)

$$I_{T} = \frac{(1 - R_{\circ})^{2} e^{-\alpha d}}{1 - R_{\circ}^{2} e^{-2\alpha d}}$$
(47-7)

ضریب عبور برابر است با نسبت بین پرتو گسیل یافته به پرتو فرودی،

$$T = \frac{I_T}{I_{\circ}} = \frac{(1 - R_{\circ})^2 e^{-\alpha d}}{1 - R_{\circ}^2 e^{-2\alpha d}}$$
(FT-T)

ضریب جذب (lpha) نیز به کمک ضرایب عبور $T(\lambda)$ و بازتاب $R(\lambda)$ بصورت زیر محاسبه می شود.

$$\alpha(\lambda) = \frac{1}{d} \times Ln \left[\frac{1 - R(\lambda)}{T(\lambda)} \right]$$
(FF-T)

۲-۳-۹ تعیین ضرایب عبور و بازتاب سیستم لایه نازک - تیغه

این سیستم ترکیبی از لایه انباشت شده روی زیرلایه (تیغه) **[۳۲]** می باشد. مشخصات زیر لایه مشخص است که بیشتر از زیر لایه های کوراتز، کرنینگ و اسلاید های شیشه ای استفاده می کنند. شکل کلی چنین سیستمی مطابق شکل(۲–۹) است.

این سیستم، از لایه نازکی با ضریب شکست مختلط (N = n + ik) و یک زیر لایه شفاف با ضریب شکست معلوم (s) تشکیل شده است که در محیط هوا قرار دارد(هوا / زیر لایه / لایه نازک / هوا = سیستم). چندین حالت برای تعیین ضرایب عبور و بازتاب همچنین ثابت های اپتیکی ممکن است

۱- پرتو فرودی عبور کرده از لایه نازک در داخل زیرلایه باعث ایجاد بازتاب های چندگانه در سیستم خواهد شد اگر در این حالت ضخامت زیرلایه در مقایسه با طول موج پرتو فرودی، بزرگ باشد ($\lambda < < b$) در این حالت اثرات تداخلی حاصل نخواهد شد و محاسبه ظرایب عبور و بازتاب مطابق روش ارائه شده قبلی خواهد بود.

پیش آید.

۲- اگر لایه نازک ضخامتی قابل قیاس با طول موج پرتو فرودی داشته باشد در این حالت دو امکان وجود دارد. الف لایه نازک انباشت شده بر روی زیر لایه بدلیل داشتن ضخامت زیاد، قادر به برآورده کردن شرط تداخل است که در این حالت در نمودار تراگسیلی نمونه گرفته شده، نقاط اکسترمم مشاهده خواهد شد، که با استفاده از این نقاط اکسترمم و با روش سوان پول'، می توان ثابت های اپتیکی لایه های نازک را بدست آورد.

ب- لایه نازک انباشت شده بدلیل داشتن ضخامت کم قادر به برآورده کردن شرط تداخل نیست. در نتیجه در نمودار تراگسیلی نمونه گرفته شده هیچ نقطه اکسترممی مشاهده نخواهد شد و دیگر نمی توان از روش های ذکر شده در قسمت (الف) استفاده کرد. محاسبه ثابت های اپتیکی چنین لایه هایی، اولین بار توسط چامبولیرون^۲ ارائه شد که در طی این چند سال اخیرمرجع مقالاتی است که محاسبه ثابت های اپتیکی را انجام داده اند.

۲–۳–۱۰– روشهای تعیین ثوابت اپتیکی لایه های نازک با استفاده از اندازه گیری های تراگسیل [۳۳]

شناخت مقادیر درست و وابستگی ضریب شکست مختلط به طول موج لایه های نازک جامد، هم از دیدگاه بنیادی و هم از دیدگاه تکنولوژیکی مهم است. این شناخت، اطلاعات اساسی را از گاف انرژی اپتیکی(برای نیمه رساناها و عایق ها)، فرکانسهای پلاسما و فونونی و غیره نتیجه می دهد. به هر حال ضریب شکست برای طراحی و مدل سازی اجزاء اپتیکی و پوشش های اپتیکی مانند فیلتر های اختلال⁷، لازم است. اگر مدل یک لایه نازک ایزوتروپ و همگن اختیار شود، قسمتهای حقیقی و موهومی ضریب شکست در هر طول موجی بطور کلی می توانند خواص اپتیکی فیلم را تعیین کنند. بنابراین دو اندازه گیری غیر مستقل، در هر طول موجی، به منظور تعیین $(\Lambda)n(e(\Lambda))$ ی نا معلوم

¹Swane pole

²Chambouleyron

³Interference filters

های ناصاف)، در بیشتر حالت ممکن است مدل فوق برای تعیین خواص اپتیکی لایه نازک غیر ایده آل مناسب باشد. روشهای متعددی برای تعیین ضریب شکست لایه های نازک وجود دارد که در زیر به برخی از این روشها اشاره می شود.

۲-۳-۱۰-۱-استفاده از دو اندازه گیری مستقل

چندین سال است که از ترکیب یک اندازه گیری عبور تابش عمودی و یک اندازه گیری بازتاب تابش تقریباً عمودی یا روش (Rو T) برای تعیین (nو k)استفاده می شود. این روش دارای چندین نقص می باشد که عبارتند از:

الف- این روش برای بدست آوردن داده های یک بازتاب متقارن مناسب، بسیار مشکل است. از طرف دیگر این روش احتیاج به یک آئینه مدرج دارد که هم بسیار گران قیمت است و هم اینکه محدودیت زمانی دارد.

ب- معمولاً این روش برای اندازه گیری عبور و بازتاب، دقیقاً در نقطه یکسانی روی لایه، غیر ممکن است. اگر لایه از نظر ضخامت و ترکیب یکنواخت نباشد، دقت کلی این روش پائین می آید.

ج- هیچ راهی برای اندازه گیری بازتاب تابش عمودی وجود ندارد.

د- تعیین (ne)از طریق (Re R)، بر پایه یک وارونه سازی عددی استوار است. مقالات متعددی در باره روشهای مختلف وارونه سازی و حدود درستی این روش ارائه شده ولی معمولاً منبعی از خطا ها در آنها وجود دارد.

۲-۳-۱۰-۲ برازش روابط پراکندگی

این روش که موارد استفاده فراوانی دارد، عبارتست از در نظر گرفتن یک معادلهٔ ویژهٔ پراکندگی تجربی برای ضریب شکست مختلط وابسته به طول موج. این روش، در چندین بسته نرم افزاری تجاری برای طراحی اپتیکی فیلم های نازک و آنالیز آنها مورد استفاده قرار می گیرد. معادلاتی که اغلب مورد استفاده قرار می گیرند عبارتند از:

الف- معادلات كوشي ([٣٣]

$$n(\lambda) = A_n + \frac{B_n}{\lambda^2} + \frac{C_n}{\lambda^4} + \dots$$

$$k(\lambda) = A_k + \frac{B_k}{\lambda^2} + \frac{C_k}{\lambda^4} + \dots$$
(FA-T)
(FA-T)

در روابط فوق، ضرائب B_n ، A_n ، در روابط فوق، ضرائب می باشند.

این فرمول ها برای اولین بار توسط سلمیر^۲ در سال ۱۸۷۱ بیان شده و برای مواد شفاف (همانند معادلات کوشی) و همچنین در مورد نیمرسانا ها(GaAs، Ge، Si و غیره) در ناحیه فروسرخ کاربرد دارد. این معادلات، حالت تعمیم یافته معادلات کوشی هستند. رابطه اصلی این فرمول ها در مورد مواد کاملاً شفاف (k = 0)استفاده می شود. به هر حال این معادلات گاهی اوقات برای پوشش ناحیه جذب، با بکارگیری یک فرمول کلی برای ($k(\lambda)$ گسترش پیدا می کند[۳۳]:

$$n(\lambda) = (A_n + \frac{B_n \lambda^2}{\lambda^2 - C_n^2})^{\frac{1}{2}}$$
(4.7)

¹Cauchy

²Sellmeier

 $.B_{3}$ پارامترهای برازش در این حالت عبارتند از: B_{n} ، A_{n} ، B_{1} ، B_{2} ، B_{1} ، B_{n} ، A_{n} : پارامترهای برازش در این

معادلات اساسی در این مدل عبارتند از [۳۳]:

$$n^{2} - k^{2} = 1 + \frac{A\lambda^{2}}{\lambda^{2} - \lambda_{0}^{2} + g\lambda^{2}/(\lambda^{2} - \lambda_{0}^{2})}$$
(۴۹-۲)

$$2nk = \frac{A\sqrt{g\lambda^3}}{(\lambda^2 - \lambda_0^2)^2 + g\lambda^2}$$
 ($\Delta \cdot - \Upsilon$)

در روابط اخیر، $_{0}A_{0}$ موج مرکزی نوسانگر، Aقدرت نوسانگر و g فاکتور میرائی می باشد. در فرمول(۲–۴۷)، قسمت سمت راست، نشانگر تابع دی الکتریک در انرژی بی نهایت (طول موج صفر) است. برای اهداف بیشتر، بهتر است که آن را با یک پارامتر برازش $_{0}a$ که بیانگر تابع دی الکتریک در طول موج صفر) و طول موج صفر) معاد بیشتر، بهتر است که آن را با یک پارامتر برازش $_{0}a$ که بیانگر تابع دی الکتریک در طول موج های خیلی کوچکتر از مقدار اندازه گیری شده است، جایگزین کنیم. معاد لات (۲–۴۹) و(۲–40) مول موج های خیلی کوچکتر از مقدار اندازه گیری شده است، جایگزین کنیم. معاد لات (۲–40) و(۲–40) به آسانی برای $n_{0}k$ قابل حل هستند، اما نمی توانند عبارات صریحی را نتیجه دهند. یکی از فواید این معاد لات نسبت به معاد لات دیگر(که در بالا اشاره شدند) این است که قادرند یک مجموعه جواب را برای $n_{0}k$ ارائه دهند که سازگار با معاد لات کرامرز – کرونیک^۲ است.

د- معادلات پراكندگي فروهي- بلومر "

این معادلات برای مدل سازی ضریب شکست مختلط نیمه رساناهای بلوری نارساناها، برپایه دقت زیادی، گسترش یافته است[۳۳].

¹Lorentz

²Kramers-Kronig

³Foroohi-Bloomer

$$k(E) = \sum_{i=1}^{q} \frac{A_i (E - E_g)^2}{E^2 - B_i E + C_i}$$
(2)-7)

$$n(E) = n(\infty) + \sum_{i=1}^{q} \frac{B_{0i}E + C_{0i}}{E^2 - B_iE + C_i}$$
(\DeltaY-\T)

$$B_{0i} = \frac{A_i}{Q_i} \left(-\frac{B_i^2}{2} + E_g B_i - E_g^2 + C_i \right)$$
 (2T-T)

$$C_{0i} = \frac{A_i}{Q_i} ((E_g^2 + C_i) \frac{B_i}{2} - 2E_g C_i)$$
 (24-7)

$$Q_{i} = \frac{1}{2} (4C_{i} - B_{i}^{2})^{\frac{1}{2}}$$
 (\Delta - \Text{T})

ح- مدل درود'

برای فلزات، تابع دی الکتریک توسط حامل های آزاد کنترل می شود. اگر ω_p ، فرکانس پلاسما $(\omega_p)^2 = 4\pi n e^2 / m)$ پلاسما $(\omega_p)^2 = 4\pi n e^2 / m)$ معادله زیر داده می شود

$$\mathcal{E}(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\upsilon)} \tag{49-1}$$

معمولا پارامترها در معادلات پراکندگی با بکارگیری حداقل یک شیوه برازش مربعی، محاسبه از طریق (*k*و *n*)، بدست می آیند و برای تراگسیل یک فیلم نازک جذبی، معادلات مفیدی می باشند. همانند معادلات فروهی- بلومر، اگر لازم باشد معادلات پراکندگی سلمیر و نوسانگر لورنتز می توانند در مورد نوسانگرهای چندگانه بسط داده شوند. برای بعضی از مواد، ترکیب یک معادله پراکندگی نوسانگر نوعی با مدل درود لازم و ضروری است.

هرکدام از معادلات پراکندگی می توانند نتایج خیلی خوبی را برای تعداد زیادی از مواد و در سراسر یک ناحیه طول موجی خیلی بلند بدست آورند. اگر یک برازش خوب میان طیف تراگسیل

¹Drude

تجربی و طیفی که از طریق معادلات پراکندگی نتیجه میشوند، وجود داشته باشد، قابلیت استفاده از این معادلات تضمین می شود. تمامی معادلات پراکندگی اشاره شده، توابع متغیری از طول موج هستند و هیچ مفهومی برای بدست آوردن یک برازش خوب در ناحیه طول موج بلند، با بکارگیری یک مجموعه داده اشتباه (Aen)، وجود ندارد. محدودیت های فیزیکی عمومی بیشتری بر روی ضریب شکست مختلط، بدون درنظرگرفتن یک رابطه خاص، صراحتا بوسیله چامبولیرون وهمکاران(که بطور خلاصه در بخش ۲–۳–۱۲ آورده شده است) ، برای دستیابی به یک تقریب بهینه سازی به منظور استخراج ne از داده های تراگسیل به کار رفته است. این محققین محدودیت های فیزیکی زیر را،

 $k(\lambda) \ge 0$ و $n(\lambda) \ge 1$ الف- برای تمام λ ها: $1 \ge n(\lambda)$

 $\mu(\lambda)$ ب- $n(\lambda)$ و $k(\lambda)$ ، برحسب λ توابع نزولی هستند.

ج- $n(\lambda)$ ، محدب است(که به $n''(\lambda)$ تبدیل می شود).

، $\lambda < \lambda_{
m inf}$ و اگر اگر $\lambda \geq \lambda_{
m inf}$ ، $\lambda \geq \lambda_{
m inf}$ محدب است و اگر $\lambda_{
m inf}$ ، $\lambda = \lambda_{
m inf}$ ، محدب است و اگر ، $\lambda = \lambda_{
m inf}$ ، مقعر .

در نتیجه یک روش نقطه ای بهینه سازی برای حداقل برازش مربعی طیف های تراگسیل تجربی در برابر طیف هائی که از طریق محاسبه $(\lambda)ne(\lambda)$ بدست میآیند، صراحتاً برای ایجاد این محدودیت های صحیح گسترش یافته است. تحقیق اینکه معادلات پراکندگی فوق چگونه با تبعیت از مجموعه محدودیتهای فیزیکی فوق با ارزش می شوند، حیاتی است:

۱- معادلات کوشی از سه محدودیت اول تبعیت می کند، بشرط آنکه تمام ثابت های برازش، مثبت باشند. برای برقراری آخرین محدودیت، لازم است که ضریب C_k، منفی باشد. ۲- معادله سلمیر برای $n(\lambda)$ با سه محدودیت اول- در طول موج های خیلی بالاتر از طول موج - معادله سلمیر برای $n(\lambda)$ ، با سه محدودیت ها، وابسته به ضرائب برازش، می توانند برقرار با شند.

۳- مدل نوسانگر لورنتز، در صورتیکه طول موج به اندازه کافی از طول موج نوسانگر بزرگتر باشد، بطور ذاتی با محدودیت ها سازگار است.

۴- مدل درود که تنها در مورد فلزات کاربرد دارد بطور واضح با این محدودیت ها سازگار نمی باشد. ۵- با توجه به اینکه معادلات فروهر - بلومر برای توصیف پراکندگی ضریب شکست مواد در انرژی های بالاتر از گاف نواری ارائه می شوند، این محدودیت ها بطور ذاتی برقرار نیستند.

۲-۳-۱۰-۳ استفاده از اندازه گیری های مجازی

این روش ها عبارتند از:

الف) روش پوشی:

در سال ۱۹۷۶، منیفیسر^۱ و همکاران، روش مناسبی را برای توصیف طیف های تراگسیل اپتیکی و استخراج (k و n) ارائه کردند. این روش بعدا بوسیله سوان پول گسترش یافت و یک روش نرم افزاری برای فیلم های نازک تجاری بدست آمد. تلاش هائی برای محاسبه دقت روش پوشی و خودداری از حل های چند گانه انجام شده است. اخیرا، تاثیر جذب زیرلایه نیز به این روش اضافه شده است. برخی از خصوصیات این روش عبارتند از:

۱- هیچ روش درستی برای ایجاد پوش ها میان اکسترمم های تداخلی وجود ندارد. معمولا آنها با استفاده از درون یابی سهموی ایجاد می شوند، ولی در حقیقت این کار یک انتخاب قراردادی است.
 ۲- پوش ها بایستی بطور ایده آل از طریق نقاط مماس، در اثر برخورد با منحنی های تراگسیل ایجاد می شوند، نه از طریق اکسترمم های تداخلی.

¹Manifaicier

براساس معادلات کرامرز - کرونیک، گذار یک ماده و تغییر فاز در تراگسیل با استفاده از معادله زیر داده می شود[۳۳]:

$$\varphi(\lambda_0) = \frac{2\lambda_0}{\pi} P_0^{\infty} \frac{\ln t_f(\lambda)}{\lambda_0^2 - \lambda^2} d\lambda - \frac{2\pi d}{\lambda_0}$$
 (۵۷-۲)
که درآن R ، قسمت حقیقی انتگرال و t_f ، تراگسیل داخلی فیلم میباشند. معادله فوق اشاره می
کند که تغییر فاز متناسب، می تواند محاسبه شود و سپس تراگسیل و تغییر فاز می توانند بصورت
دو متغیر مستقل، با محاسبه $n_e \, A$ ی مواد در هر طول موجی به کار روند. به منظور حل انتگرال فوق،
نیلسون (روش برون یابی زیر را ارائه داد. با استفاده از قضیه مقدار میانگین می توان نوشت [۳۳]:

$$\varphi(\lambda_0) = A(\lambda_0) \ln \left| \frac{\lambda_l + \lambda_0}{\lambda_l - \lambda_0} \right| + \frac{2\lambda_0}{\pi} P \int_{\lambda_l}^{\lambda_H} \frac{\ln t_f(\lambda)}{\lambda_0^2 - \lambda^2} d\lambda + B(\lambda_0) \ln \left| \frac{\lambda_H + \lambda_0}{\lambda_H - \lambda_0} \right| - \frac{2\pi d}{\lambda_0}$$
($\Delta \lambda - \Upsilon$)

که درآن $\lambda_{H} \, e_{H} \, A_{H}$ بترتیب بالاترین و پائین ترین حد طول موج هستند. بعنوان یک تقریب فرض می شود که $A_{e} \, a_{H}$ و B ثابت هستند. اگر ضریب شکست مختلط فیلم برای دو طول موج داده شود، تغییر فاز معاد که می تواند تعیین شود و در نتیجه با استفاده از انتگرال فوق، $A_{e} \, a_{H}$ می توان تعیین کرد. با

¹Nilsson

اینکه استفاده از معادلات کرامرز – کرونیک برای آنالیزهای طیف های تراگسیلی، بطور تجربی برازنده است، اما برای اجرا بصورت آنالیزهای مناسب، تا اندازه ای دچار مشکل می شود: الف با معادلات داده شده، برای تعیین طیف های(n e k)، به دو طول موج کاملا متفاوت نیاز است. ب – در انتهای بازه انتگرال گیری $[A_1, A_H]$ ، خطائی که به علت تقریبی بودن ثابت های A e B بوجود می آید، نسبتا بزرگ می باشد. محاسبه این خطا در اکثر موارد عادی، ساده نیست.

۲-۳-۱۱ تعیین ثوابت اپتیکی لایه های نازک بااستفاده از روش پوش منحنی (سوان پول)

بیان دقیق تراگسیلندگی یک فیلم نازک جاذب، رسوبی روی یک زیرلایه شفاف، بصورت نتایج و فرمول هائی برای ضریب شکست و ضریب جذب تنظیم شده است[۳۴]. سوان پول در این روش با استفاده از فریزهای تداخلی طیف تراگسیل توانسته است ضخامت و ثوابت اپتیکی فیلم های نازک را محاسبه کند. معمولاً ضریب شکست و ضریب جذب با استفاده از روشهای پیچیده کامپیوتری و با بکارگیری هر دو طیف تراگسیل و بازتاب تعیین می شوند. روش سوان پول برای تعیین $(\Lambda)ne(\Lambda)$ ، با استفاده از یکسری محاسبات ساده و راحت و بکارگیری تنها طیف تراگسیل، برقرار است. موقعیت عملی برای یک فیلم نازک، روی زیرلایه شفاف در شکل(۲–۸) نشان داده شده است. فیلم دارای ضریب شکست مختلط (n-ik) و ضخامت b است که در آن n، ضریب شکست و k، ضریب خاموشی می باشند بطوریکه:

$$k = \frac{\alpha \lambda}{4\pi} \tag{(dq-t)}$$

زیرلایه شفاف دارای ضخامت بزرگتر از b، ضریب شکست sو ضریب جذب $\alpha_s = 0$ است. ضریب شکست محیط فراگیر(هوا) عبارت است از $n_0 = 1$. در این آنالیزها، تمام بازتابهای چندگانه در فصل مشترک سه تائی، در هنگام محاسبه T در نظر گرفته می شود.

شکل(۲-۱۰)- سیستم یک فیلم نازک جاذب روی یک زیرلایه شفاف متناهی ضخیم [۳۴].

اگر ضخامت d یکنواخت نباشد، تمام اثرات تداخل از بین می روند و تراگسیل، یک منحنی آرام است و طیف می تواند به ۴ ناحیه تقسیم شود که عبارتند از:

الف- در ناحیه شفاف، $0 = \alpha$ و تراگسیل بوسیله nو sو بواسطه بازتابهای چندگانه تعیین می شوند. ب- در ناحیه جذب ضعیف، α مقدار کوچکی دارد و شروع به کاهش عبور می کند. ج- در ناحیه جذب متوسط، α مقدار بزرگی است و عبور عمدتاً به علت تاثیر α ، کاهش می یابد. د- در ناحیه جذب قوی، عبور به علت تاثیر α به شدت کاهش می یابد.

در این حالت منحنی آرام تراگسیل، برای تعیین $\alpha(\lambda)$ در نواحی اپتیکی به کار میرود.اگر ضخامت b یکنواخت باشد، در این صورت منحنی تراگسیلندگی ناشی از آن دارای چندین ماکزیمم و مینیمم میشود(اثرات تداخل در اینجا وجود دارد)واین فریزها می توانند برای محاسبه ثوابت اپتیکی فیلم ها بکار روند. با درنظر گرفتن تنها زیرلایه ضخیم در غیاب فیلم، تراگسیل تداخل آزاد با شکل آشنای زیر داده می شود:

$$T_s = \frac{(1-R)^2}{1-R^2} \tag{F-T}$$

$$R = [(s-1)/(s+1)]^2$$
 (91-7)

$$T_s = \frac{2s}{s^2 + 1} \tag{FT-T}$$

$$s = \frac{1}{T_s} + \left(\frac{1}{T_s^2} - 1\right)^{\frac{1}{2}}$$
(9Y-Y)

معادله پایه برای فریزهای تداخلی عبارتست از:

$$2nd = m\lambda$$
 (۶۴-۲)

که در آن m برای حالت ماکزیمم، عدد صحیح و برای حالت مینیمم، عدد نیم صحیح است. معادله فوق در برگیرنده اطلاعات لازم در مورد حاصلضرب n_e b است و بطور مجزا راهی برای بدست آوردن اطلاعات در مورد n_e b، با بکارگیری تنها این معادله وجود ندارد. همانطوریکه می دانیم طیف تراگسیل T در حالت کلی یک تابع ترکیبی است و بصورت (π, x, n, d, α) می باشد. اگر π معلوم باشد، نوشتن معادله فوق در بخش هائی از $(\pi)n_e$ جذب (π) بسیار راحت است.یک تقریب معتبر در اینجا، با قرار دادن n = k در معادلات حاصل می شود(چون kدر مقایسه با ضرائب شکست n_e π_e g

$$T = \frac{Ax}{B - Cx \cos \varphi + Dx^2}$$
(۶۵-۲)
که در آن:

$$A = 16n^2s \tag{4}$$

$$B = (n+1)^{3}(n+s^{2})$$
 (--99-7)

$$C = 2(n^2 - 1)(n^2 - s^2)$$
 (7-99-5)

$$D = (n-1)^{3}(n-s^{2})$$
 (3-99-Y)

$$\varphi = 4\pi nd/\lambda \tag{(-99-T)}$$

$$x = \exp(-\alpha d) \tag{6}$$

در این صورت اکسترمم های فریزهای تداخلی می توانند به صورت زیر نوشته شوند:

$$T_{M} = \frac{Ax}{B - Cx + Dx^{2}} \qquad (\cos \varphi = 1)$$
(\$Y-Y)

$$T_m = \frac{Ax}{B + Cx + Dx^2} \qquad (\cos \varphi = -1)$$
(\$\mathcal{F}_m\$-\$\mathcal{T}_m\$-})

برای تجزیه و تحلیل بهتر فرض می کنیم T_M و T_m توابع پیوسته ای از λ باشند، در این صورت برای هر λ ، یک T_M و یک T_m خواهیم داشت، یعنی $(\lambda)n(\lambda)$ نیز توابع پیوسته ای از λ هستند. با توجه به طیف ناشی از پرتو عبوری که در شکل۲–۱۱ دیده می شود، این طیف را می توان به چهار ناحیه متفاوت تقسیم کرد:

الف) ناحيه شفاف:

در این ناحیه،
$$0 = \alpha$$
 یا $1 = x$. با جایگذاری معادلات (۲–۶۶) در (۲–۶۷) داریم [۳۴].

$$T_{M} = \frac{2s}{s^{2} + 1}$$
 (29-7)

معادله اخیر با معادله (۲–۶۲) یکسان است و ماکزیمم فریزهای تداخلی، تنها تابعی از *s* می باشند. با جایگـــذاری معادلات(۲–۶۶) در(۲–۶۷) برای حالت *x* = 1 داریم:

$$T_m = \frac{4n^2s}{n^4 + n^2(s^2 + 1) + s^2}$$
(Y·-Y)

$$n = \left[M + (M^2 - s^2)^{\frac{1}{2}}\right]^{\frac{1}{2}}$$
(YI-Y)

$$M = \frac{2s}{T_m} - \frac{s^2 + 1}{2}$$
 (YY-Y)

یس T_m تابعی از nو s است و در نتیجه n را می توان با استفاده از T_m و معادله (۲–۶۴) محاسبه کرد.

ب و ج) ناحیه جذب ضعیف و متوسط:

در این ناحیه، $0 \neq \alpha$ و 1 > x. با تفریق معکوس معادله(۲–۶۹) از معکوس معادله (۲–۶۸) حالتی حاصل می شود که مستقل از x می باشد:

 $\frac{1}{T_m} - \frac{1}{T_M} = \frac{2C}{A} \tag{YT-T}$

با قرار دادن معادلات(۲-۶۶) در(۲–۷۳) می توان بترتیب معادلات زیر را بدست آورد:

$$n = \left[N + (N^2 - s^2)^{\frac{1}{2}} \right]^{\frac{1}{2}}$$
(YF-T)

$$N = 2s \frac{T_M - T_m}{T_M T_m} + \frac{s^2 + 1}{2}$$
(Ya-Y)

معادله(۲–۷۳) می تواند برای محاسبه (λ) از $T_m g T_M$ به کار رود. با معلوم بودن $(\lambda)n$ ، تمام ثوابت در معادلات(۲–۶۵) معلوم می شوند و x را نیز می توان ازراه دیگری محاسبه کرد. باحل معادله(۲– (۶۷) داریم:
$$x = \frac{E_M - \left[E_M^2 - (n^2 - 1)^3 (n^2 - s^4)\right]^{\frac{1}{2}}}{(n-1)^3 (n-s^2)}$$
(Y9-T)

که در آن

$$E_{M} = \frac{8n^{2}s}{T_{M}} + (n^{2} - 1)(n^{2} - s^{2})$$
(YY-Y)

$$x = \frac{E_m - \left[E_m - (n^2 - 1)^3 (n^2 - s^4)\right]^{\frac{1}{2}}}{(n - 1)^3 (n - s^2)}$$
(YA-Y)
که در آن

$$E_m = \frac{8n^2s}{T_m} - (n^2 - 1)(n^2 - s^2)$$
(Y9-T)

$$\frac{2T_M T_m}{T_M + T_m} = \frac{Ax}{B + Dx^2} \tag{(A \cdot -Y)}$$

با حل این معادله بر حسب
$$x$$
 داریم:

$$x = \frac{F - \left[F^2 - (n^2 - 1)^3(n^2 - s^4)\right]^{\frac{1}{2}}}{(n - 1)^3(n - s^2)}$$
(A1-7)

که در آن

$$F = \frac{8n^2s}{T_i} \tag{AT-T}$$

$$T_i = \frac{2T_M T_m}{T_M + T_m} \tag{AV-Y}$$

از معادلات (۲–۸۳) و (۲–۶۵) می توان دید که
$$T_i$$
، منحنی است که از میان نقاط فریزها عبور می
کند. تراگسیلندگی بدون تداخل T_{α} را می توان از طریق فریزهای تداخلی و با انتگرال گیری از
معادله(۲–۷۱) در فاصله بین دو ماکزیمم و مینیمم متوالی بدست آورد:

$$T_{\alpha} = \frac{1}{\pi} \int_{0}^{\pi} \frac{Ax}{B - Cx \cos \varphi + Dx^{2}} d\varphi$$
 (AF-Y)

با فرض یک ناحیه محدود انتگرال گیری و ثابت بودن تمام پارامترها، حاصل انتگرال فوق عبارت است از:

$$T_{\alpha} = \frac{Ax}{\left[(B - Cx + Dx^{2})(B + Cx + Dx^{2}) \right]^{\frac{1}{2}}}$$
(AΔ-Y)

با مقایسه رابطه فوق با معادلات (۲-۶۷) و(۲-۶۸) می توان نوشت:

$$T_{\alpha} = \sqrt{T_M T_m} \tag{A9-Y}$$

پس $_{lpha} T_{lpha}$ ، تنها یک میانگین هندسی از $T_{_M}$ و $T_{_m}$ است. باحل معادله(۲–۸۵) برای x داریم:

$$x = \frac{\{G - [G^2 - (n^2 - 1)^6 (n^2 - s^4)]^{\frac{1}{2}}\}^{\frac{1}{2}}}{(n - 1)^3 (n - s^2)}$$
(AV-T)

$$G = \frac{128n^4s^2}{T_{\alpha}^2} + n^2(n^2 - 1)^2(s^2 - 1)^2 + (n^2 - 1)^2(n^2 - s^2)^2$$
 (AA-Y)

د) ناحیه جذب قوی:

در این ناحیه، با توجه به اینکه جذب قوی است، فریزهای تداخلی ظاهر نمی شوند (آثار تداخلی بطور کلی از بین می روند) و راهی برای محاسبه nو x بطور مستقل در این ناحیه با استفاده تنها از طیف تراگسیل وجود ندارد. مقادیر n را می توان با استفاده از مقادیر بدست آمده در سه ناحیه قبلی تخمین زد و مقدار x را از روی روابط مربوط به آنها بدست آورد. در حالتی که α خیلی بزرگ باشد، چهار منحنی T_{α} ، T_{α} ، T_{α} ، T_{α} بر هم منطبق می شوند که آنرا با T_{0} نمایش می دهیم. اگر اثرات تداخلی نادیده فرض شوند، معادله (۲–۶۶) با شرط 1>>x، به صورت روابط زیر در می آید:

$$T_0 \approx \frac{Ax}{B} \tag{A9-T}$$

$$x \approx \frac{(n+1)^3(n+s^2)}{16n^2s} T_0$$
(9.-7)

ه) تعیین ضریب شکست:

ضریب شکست زیرلایه را می توان با اندازه گیری طیف تراگسیل تک زیرلایه تمیز و با استفاده از معادله (۲–۶۲) برای محاسبه s، تعیین کرد. برای تعیین ضریب شکست در ناحیه جذب ضعیف و متوسط، بایستی مقادیر $T_m g_m T$ در Λ های مختلف تعیین شود. به ازاء هر ماکزیمم، یک مینیمم و بالعکس خواهیم داشت، چون فرض کرده ایم که $T_m g_m$ ، منحنی های پیوسته ای هستند. دقت بکار رفته در تعیین در تعیین Λ ، به مقادیر تراگسیل که میزود. به ازاء هر ماکزیمم، یک مینیمم و العکس خواهیم داشت، چون فرض کرده ایم که $T_m g_m$ ، منحنی های پیوسته ای هستند. دقت بکار رفته در تعوین در تعیین Λ ، به مقیاس به کار برده شده در نمودار تراگسیلندگی بستگی دارد. بایستی اشاره شود که مقادیر تراگسیل باید از منحنی های M منحنی های پیوسته ای هستند. دقت بکار منته در تعیین در تعیین Λ ، به مقیاس به کار برده شده در نمودار تراگسیلندگی بستگی دارد. بایستی اشاره شود که مقادیر تراگسیل باید از منحنی های M و مرحی، خوانده شوند نه از اشاره شود که مقادیر تراگسیل باید از منحنی های M و مرحا (۲–۲) مورد مولی موجی، خوانده شوند نه از اشاره شود که مقادیر تراگسیل باید از منحنی های مرده مواد (۲–۲) مورد مولی موجی، خوانده شوند نه از استفاده می کنیم. در اینجا، مقادیر بدست آمده، تفاوت چندانی با مقادیر حقیقی ندارند.

و) تعيين ضخامت:

اگر $n_2 e_2 n_1$ ضرائب شکست مربوط به دو ماکزیمم (مینیمم) متوالی در $\lambda_2 e_2 \lambda_1$ باشند، با استفاده از معادله(۲–۶۴) داریم[۳۴]:

$$d_1 = \frac{\lambda_1 \lambda_2}{2(\lambda_1 n_2 - \lambda_2 n_1)} \tag{91-T}$$

رابطه فوق، نسبت به خطاهای n حساسیت زیادی دارد و رابطه دقیقی محسوب نمی شود.

به عنوان یک قاعده کلی، دو اکسترمم آخر طیف را در رابطهٔ اخیر قرار نمیدهیم. برای رسیدن به یک مقدار دقیق، بایستی $\overline{d_1}$ ، میانگین ضخامتهای d_1 ، را محاسبه کنیم. از طریق $\overline{d_1}$ و n_2 ، و همچنین معادله (۲–۶۴)، جهت بدست آوردن مقادیر m استفاده می کنیم. با فرض مقادیر صحیح یا نیم صحیح برای هر m با ازاء هر Λ و محاسبه ضخامت d_2 از طریق معادله(۲–۶۴)، که کمی با مقادیر d_1 اختلاف برای هر m با ازاء هر Λ و محاسبه ضخامت d_2 از طریق معادله(۲–۶۴)، که کمی با مقادیر d_1 اختلاف برای هر m با ازاء هر Λ و محاسبه ضخامت d_2 از طریق معادله(۲–۶۴)، که کمی با مقادیر d_1 اختلاف برای هر m با ازاء هر Λ و محاسبه ضخامت d_2 از طریق معادله(۲–۶۴)، که کمی با مقادیر d_1 اختلاف دارند، میانگین ضخامت های d_2 یعنی $2\overline{d_2}$ را محاسبه می کنیم. مقادیر $\overline{d_2}$ بدست آمده، دارای دقت بهتری نسبت به مقادیر $\overline{d_1}$ می باشند، چون پراکندگی آنها کمتر است. حال با استفاده از مقادیر $2\overline{d_2}$ و مقادیر دقیق m و با استفاده از معادله (۲–۶۴)، مقادیر مربوط به d_1 می باشند، وز یا کندگی آنها کمتر است. حال با استفاده از مقادیر $2\overline{d_2}$ و مقادیر دقیق m و با استفاده از معادله (۲–۶۴)، مقادیر میوط به d_1 می باشند، وز یکندگی آنها کمتر است. حال با استفاده از مقادی d_2 و مقادیر دقیق m و میا استفاده از معادله (۲–۶۴)، مقادیر مربوط به d_1 می بدست آمده و از معادی از معادله (۲–۶۴)، مقادیر مربوط به d_1 و میا استفاده از معادی d_2 می بیان مقادیر مربوط به d_2 و می مقادیر دقیق m و می استفاده از معادله (۲–۶۴)، مقادیر مربوط به d_2 و می می آوریم. مقادی d_2 بدست آمده، به مقادیر واقعی بسیار نزدیکند. با برازش مقادیر بدست آمده d_2 و عملیات برون یابی، می توان ضرائب شکست مربوط به طول موج های کوتاه تر را نیز تعیین کرد.

: k ز) محاسبه ضریب جذب lpha و ضریب خاموشی (

بعد از محاسبه (λ) ، $n(\lambda)$ را نیز می توان با استفاده از هریک از منحنی های T_{α} , T_{α} , T_{α} , T_{α} σ و T_{α} , T_{α} ,

$$k = \alpha \lambda / 4\pi \tag{97-7}$$

با این کار محاسبه ثوابت اپتیکی تکمیل می شود.

۲-۳-۱۲ روش بهینه سازی چامبولیرون [۳۵-۳۷]

همانطوری که اشاره شد روش پوش منحنی (سوان پول) تنها زمانی قابل اجرا است که طیفهای تراگسیل بدست آمده از فیلمها دارای نقاط اکسترمم (ماکزیمم و مینیمم های متوالی) باشند. در واقع اساس کار این روش بر پایه همین نقاط استوار است. در صورتیکه طیف بدست آمده از فیلم دارای چنین نقاط اکسترممی نباشد، بایستی از روش دیگری برای تعیین ثوابت اپتیکی فیلم نازک استفاده شود. روشهای برازشی از جمله این موارد می باشند که در بخش ۲-۳-۱۰-۲- به برخی از آنها اشاره گردید. از جمله مدل های دیگری که می توان در صورت عدم وجود نقاط اکسترمم در طیف تراگسیل فیلم، به منظور استخراج ثوابت اپتیکی یک فیلم نازک، مورد استفاده قرار داد، روش بهینه سازی است که توسط چامبولیرون و همکارانش، با در نظر گرفتن برخی محدودیت های فیزیکی که در مورد نیمه هادی ها و عایق ها در ناحیه پراکندگی معتبر است، ارائه شده است. بنابراین یک روش بهینه سازی نقطه ای برای حداقل برازش مربعی طیف های تراگسیل تجربی در برابر طیف هائی که از طریق محاسبه $n(\lambda)$ و $k(\lambda)$ بدست می آیند، صراحتاً برای ایجاد این محدودیت های صحیح گسترش یافته است. اساس کلی این روش بر این پایه استوار است که با توجه به محدوده تغییراتی که برای ثوابت اپتیکی n و k و k و جود دارد، برای هر طول موج خاصی، یک جواب خاص با استفاده از معادله بدست می آید که بصورت $T(\lambda_i, n_i, s, d)$ در نظر می گیریم. سپس با در نظر $T_M = \frac{Ax}{R - Cr + Dr^2}$ گرفتن برخی از مدل های برازشی (مانند مدل کوشی، سلمیر و غیره)، مجموعه جوابهائی را که به ازاء آنها، عبارت $\sum_{i=1}^{N} [T_i - T(\lambda_i, n_i, s, d)]^2$ کمترین مقدار را داشته باشد، انتخاب می شوند. در عبارت اخیر ، T_i مقدار تجربی تراگسیل مربوط به i امین طول موج است.

خوشبختانه نرم افزاری تحت عنوان نرم افزار پوما^۱ وجود دارد که می توان از آن برای مشخصه یابی فیلم ها استفاده کرد. این نرم افزار کاری از ایوان چامبولیرون و همکاران^۲ از دانشگاه کمپیناس برزیل می باشد.

۲-۴- مورفولوژی

۲-۴-۲ میکروسکوپ های الکترونی

یکی از تجهیزات بزرگ علمی میکروسکوپ الکترونی است که براساس قوانین نوری کار میکند دراین دستگاه شار الکترون پر انرژی از یک منبع الکترون خارج شده وتحت شتاب به طرف هدف میرود. دو نوع گسترده از میکروسکوپ های الکترونی که به میکروسکوپ های الکترونی عبوری (TEM³) و میکروسکوپهای الکترونی روبشی (SEM⁴) معروف هستند را معرفی می کنیم. اساس کار هر دو آنها مبنی بر پرتاب الکترون به سمت فلز می باشد، اما در نوع عبوری الکترون از فلز عبور میکند ولی در نوع روبشی از فلز عبور نمی کند، و اساس تشکیل تصویر در آنها به مقدار الکترونهای بازتابیده شده و عبور کرده بستگی دارد حال به تشریح گسترده در مورد آنها می پردازیم.

۲-۴-۲-۱ میکروسکوپ های الکترونی عبوری

اصول کار آن مشابه با میکروسکوپهای نوری (میکروسکوپهای فوتونی) است اما در پرتو های مورد استفاده به جای فوتونها از الکترونهایی که طول موج آنها در حد آنگسترم است استفاده می شود. الکترونها به وسیله اختلاف پتانسیلی بین ۶۰ KV الی ۱۰۰ لولت دارای شتاب می شوند، دسته الکترونی به وسیله دو میدان مغناطیسی کانونی می شود.

¹Puma

² Ivan chambouleyron and et al.

³Transmission Electron Microscope

⁴ Scanning Electron Microscopy

تصویر بر روی پرده ی فلوئورسان تشکیل شده و با یک ذره بین دو چشمی تنظیم می گردد. تصویر بر روی صفحات عکاسی که زیر پرده فلوئورسانت قرار دارد ثبت می شود. نمونه بر روی حامل قرار گرفته و داخل لوله ای که خلاء است وارد می شود. ساختمان این میکروسکوپها شامل یک لوله بزرگ که طول آن ۰/۷۵ تا ۱/۵ متر و قطر آن ۳۰ تا ۴۰ سانتی متر است و از جنس فولاد است که با سرب داخل آن را پوشش داده اند تا بتواند الکترونها را به خود جذب کند و مانع از بیرون رفتن آن شود.

تفنگ الکترونی این میکروسکوپ ها با استفاده از گرم کردن فیلمان تنگستن صورت میگیرد و در نتیجه از خود الکترونهای با موج کوتاه منتشر می کنند که نور قابل توجهی دارد و این کار در محیط خلاء صورت میگیرد و بعد توسط یک ترانسفورماتور شتاب میگیرد و برای افزایش شتاب آن از اختلاف پتانسیل بین کاتد و آند استفاده میشود. مثلاً به آند ولتاژی معادل بر ۱۰۰KV ولت و به کاتد ولتاژی برابر ۲ ولت میدهند تا الکترونها با سرعت خیلی بالا خود را به سمت آند پرتاب میکنند و چون محیط آن تحت خلاء است سرعت چندین برابر می شود حال اگر صفحه آندی سوراخ دار باشد از مرکز آن وارد لوله میکروسکوپ میشود. اخیرا به جای فیلمانهای تنگستنی از لانتانیوم هگزا بوراید

۲-۴-۲-میکروسکوپ های الکترونی روبشی

در این نوع میکروسکوپ الکترونی، الکترونهای اولیه که از یک کاتد کنده می شوند در لوله میکروسکوپ در خلاء پیش می روند و در مسیر خود به سطح نمونه مورد مطالعه میرسند و الکترونهای سطح نمونه را تحریک و پر انرژی کرده و آنها را جاروب می کنند و از مجموع الکترونهای پراش یافته و الکترونهای جاروب شده از سطح نمونه (الکترونهای ثانویه)پس از عبورشان از دستگاه های تشدید کننده (آمپلی فایر)و لامپ کاتدی (تبدیل به جریان الکتریکی) و تابش به صفحه تلویزیونی، تصویر ایجاد می شود. این میکروسکوپ که برای بررسی نمونه های بزرگ مورد استفاده قرار میگیرد دارای قدرت تفکیک ۱۸ Å ۱۰ است، پرتوهای الکترونی توسط یک، دو یا سه عدسی همگرا و کانونی می شوند. هرچه دسته پرتو الکترونی افزایش یابد موجب کاهش قدرت تفکیک و افزایش جریان و لذا افزایش کیفیت تصویر می شود و کاهش جریان باعث افزایش قدرت تفکیک و افزایش نویز و لذا کاهش کیفیت تصویر میشود، جریان الکترنی توسط افزایش جریان در فیلمان که از وانادیم یا تنگستن ساخته می شود انجام می شود و موجب کاهش عمر فیلمان میشود در کل سطح مقطع پرتو الکترونی عامل اساسی در قدرت تفکیک می باشد.برای جلوگیری از انباشته شدن الکترونها بر روی سطح یک لایه فلز هادی الکتریسیته مثل طلا کشیده می شود و بعد زیر میکروسکوپ قرار می گیرد همچنین نمونههای ریز (نظیر پودرها) باید روی یک فیلم هادی نظیر آلومینیوم، پخش شده و کاملاً خشک شوند. علاوه بر این، نمونهها بایستی عاری از مایعاتی با فشار بخار بالا نظیر آب، محلولهای پاک کننده آلی و فیلمهای روغنی باقیمانده باشند[۵۷].

در میکروسکوپ الکترونی روبشی گسیل میدان (FESEM) که از بزرگنمایی بهتری برخودار است پرتو الکترونی با چشمه ای که به نام چشمه سرد معروف است تولید می شود. در این روش یک سوزن باریک و نازک تنگستن در مقابل یک کاتد و سپس یک آند قرار داده شده است. باریکه الکترونی با عبور از ولتاژ بالای بین کاتد و آند حدود ۱۰۰۰ برابر نسبت به میکروسکوپ های معمولی باریکتر می شود و بنابراین تصویر بهتری را از سطح نمونه می گیرد. در اثر برخورد این پرتوهای الکترونی به نمونه، الکترونهای ماده برانگیخته میشوند و در هنگام بازگشت به حالت پایه به شکل پرتو الکترونی از سطح نمونه منتشر شده و توسط یک آشکارساز جمعآوری و آنالیز میشوند. این پرتوهای برگشتی از نمونه،برای مشخصهیابی خواص مختلفی از ماده از قبیل: ترکیب شیمیایی، پستی و بلندی سطح، خواص الکتریکی و مغناطیسی و... به کار میروند. ستون حرکت الکترونها و نیز محفظه نگهدارندهی نمونه در MES همیشه باید در خلأ باشد زیرا اگر نمونه در محیط پر از گاز قرار گیرد، به دلیل

¹Field Emission Scanning Electron Microscopy

ناپایداری بالای پرتو، امکان تولید یا القای پرتو الکترونی وجود ندارد. درخشندگی و وضوح هر نقطه از تصویر SEM، بستگی به شدت الکترونهای بازگشتی از سطح نمونه دارد، که آن نیز شدیداً وابسته به کیفیت موضعی سطح است. بدین ترتیب، میتوان معیاری از پستی و بلندی سطح به دست آورد. در تصاویر به دست آمده، نقاط روشن نشان دهندهسطح برجسته و نقاط تیرهتر تصویر، نشان دهنده سوراخها و فرورفتگیهای سطحی است[۵۷].

میکروسکوپهای SEM اطلاعات زیر را درخصوص نمونه دراختیار می گذارد:

توپوگرافی نمونه(خصوصیات سطوح) و مورفولوژی(شکل ، اندازه و نحوه قرارگیری ذرات در سطح جسم) و ترکیب(در صورتی که دستگاه به آشکار سازهای پرتو ایکس مجهز باشد می توان با ثبت پرتو ایکس ساطع شده از عناصر موجود در نمونه درصد هر یک از عناصر موجود را اندازه گیری نمود).شکل (۲-۱۲-الف) میکروسکوپ FESEM موجود در دانشکده فنی دانشگاه تهران و شکل (۲-۱۲-ب) نمایی ازاجزاء داخلی مسیر عبور باریکه الکترونی تا محل نمونه را نشان می دهد .

شکل (۲–۱۲–الف) - نمایی از میکروسکوپ FESEM موجود در دانشکده فنی دانشگاه تهران و ب) - نمایی ازاجزاء داخلی مسیر عبور باریکه الکترونی تا محل نمونه

SEM و TEM و یژگیهای میکروسکوپ های الکترونی TEM و

نمونه در TEM باید خیلی نازک باشد ولی در SEM این طور نیست و فقط آن را با لایه نازکی از طلا روکش می کنند و این عیب بزرگی در مقابل میکروسکوپ های SEM می باشد. دیگر این که اختلاف پتانسیل در TEM بیشتر از SEM است و لذا باعث نفوذ بیشتر به قطعه می شود، در نوع TEM لوله میکروسکوپ بلندتر از SEM می باشد ، اتاق جسم TEM نسبت به SEM کوچکتر است ، تصویر نهایی بدست آمده از SEM به صورت سه بعدی است ولی در TEM به صورت دوبعدی است قدرت تفکیک SEM ز میکروسکوپ های نوری بیشتر و از TEM کمتر است.

شکل (۲–۱۳– الف) شماتیک کار میکروسکوپ الکترونی SEM و (۲–۱۳– ب) شماتیک کار میکروسکوپ الکترونی TEM رانشان میدهد[۳۹].

شكل(۲-۱۳-۱) شماتيك كار ميكروسكوپ الكتروني شكل(۲-۱۳-ب) شماتيك كار ميكروسكوپ الكتروني

TEM

SEM

فصل سوم

بررسی خواص اکسد کادمیوم ایندیوم •

۳-۱- مقدمه

اکسید کادمیوم ایندیوم یا اکسید کادمیوم ایندیت یک ترکیب سه تایی با فرمول شیمیایی CdIn₂O₄ و جرم مولی ¹-CdIn₂O تشکیل شده از ۱۵/۷۶۱ درصد اکسیژن ۵۶/۵۵۴ درصد ایندیوم و ۲۷/۶۸۴ درصد کادمیوم میباشد. این ترکیب سه تایی از نیمرساناهای نوع n و دارای گاف نواری مستقیم پهن در حدود ۳ ev می باشد [۶].

۹۰ و a=b=c=۰/۹۱۶ nm ساختار بلوری این ماده، مکعبی مرکز وجهی با ثابت های شبکه $\alpha=\beta=r=$ و $\alpha=\beta=\gamma=$ با شبکه بلوری متقارن چرخان می باشد، گروه فضایی ای که این ماده درآن جای دارد Fd3m می باشد[۳۸].

اکسید کادمیوم ایندیوم که معمولا از ترکیب دو محلول اکسید کادمیوم (CdO) و اکسید ایندیوم (In₂O₃) و اکسید ایندیوم (In₂O₃) حاصل می شود. دارای مقاومت ویژه پایین و در حدودΩm) حاصل می شود. دارای مقاومت ویژه پایین و در حدود In₂O ^{*-} ۱۰^{-۲۰} بوده و در حالتی که هیچ آلایشی روی آن صورت نگرفته باشد تراکم بار حاملهای آن زیاد و در حدود ³⁻ ۱۰^{۲۰} cm میباشد.

شکل (۳-۱) نمای CdIn₂O₄ را به صورت شماتیک نشان میدهد.

شکل (۳–۱) نمای شماتیک اکسید کادمیوم ایندیوم($CdIn_2O_4$))

۲−۳ آشنایی باپیش ماده های اصلی CdIn₂O₄

در این پایان نامه اکسید کادمیوم ایندیوم از ترکیب دو پیش ماده اکسید کادمیوم و اکسید ایندیوم بدست می آیدکه در ذیل به طور اجمال این پیش ماده ها معرفی می شوند.

۳-۲-۱ کادمیوم و اکسید کادمیوم

کادمیوم، عنصری فلزی نرم به رنگ خاکستری نقره ای متالیک و غیرقابل اشتعال بوده، دارای Ω عدد اتمی ۴۸ و جرم اتمی ۱۱۲/۴میباشد. این ماده از مقاومت الکتریکی بسیار پایین در حدود Ω عدد اتمی ۴۸ و جرم اتمی ۱۱۲/۴میباشد. این ماده از مقاومت الکتریکی بسیار پایین در حدود Λ^{-1} - $\Lambda^{-1} \times 10^{-1}$ برخوردار بوده و یکی از مواد اصلی تشکیل دهنده ترکیبات اکسید کادمیوم میباشد. اکسید کادمیوم یک ترکیب معدنی با ساختار مکعبی از گروه فضایی Fm3m و اندازه ثابت شبکه آن Å اکسید کادمیوم می باشد. قرمز باشد. این اکسید می تواند به صورت پودر بی شکل و بی رنگ و یا بلورهای قهوه ای یا قرمز باشد. اکسید کادمیوم نیمرسانای نوع n با پهنای گاف نواری ۲۰ ۲/۱۶ در دمای اتاق میباشد [۲]. این اکسید دارای جرم مولکولی ¹⁻

۲-۲-۲-ایندیوم و اکسید ایندیوم

ایندیوم عنصری فلزی، نرم و چکش خوار است. به رنگ سفید نقره ای و براق می باشد. عدد اتمی آن ۴۹ و جرم اتمی آن، ۱۱۴/۸۲ میباشد. این عنصر ماده اصلی ترکیبات اکسید ایندیوم است. این اکسید یک ترکیب شیمیایی دارای شبکه مکعبی و به صورت دو شکل فیزیکی آمورف و بلوری بوده که شکل آمورف آن سفید مایل به خاکستری است و در آب به سختی حل میشود. این اکسید در حالت بلوری به رنگ زرد مایل به سبز بوده، در آب و حتی اسید ها نامحلول است.این اکسید یک gr نیمرسانای نوع n با پهنای گاف نواری ev ۳/۲ در دمای اتاق میباشد [۶۲]. جرم مولکولی آن $^{-1}$

۳-۳- کاربردهای اکسید کادمیوم ایندیوم

لایه های نازک از اکسید های رسانای شفاف(TCO^۱) امروزه کاربردهای فراوانی در صنایع مختلف از جمله در اپتوالکترونیک، میکروالکترونیک، ساختمان و انرژی پیدا کرده اند، از آنها در ساخت بسیاری از قطعات الکترونیکی و اپتو الکترونیکی نظیر حسگرهای گازی، سلولهای خورشیدی و صفحات نمایشگر استفاده می شود. اکسیدهای رسانای شفاف ترکیبات ویژه ای هستند که از نظر فیزیکی دارای خواص منحصر به فردی میباشند، که از جمله آنها می توان به شفافیت اپتیکی زیاد در ناحیه مرئی و رسانندگی الکتریکی بالا اشاره نمود. بنابراین این مواد می توانند دارای شفافیت اپتیکی دی الکتریک ها باشند در حالی که رسانندگی الکتریکی نیز از خود نشان میدهند. به دلیل خواص بسیار جالب الکتروکرومیکی، الکتروشیمیایی، اپتیکی و الکتریکی اکسید کادمیوم ایندیوم به عنوان رسانای شفاف یکی ازجالب ترین مواد در صنایع مختلف میباشد. درسالهای اخیر جهت استفاده در الکترودهای مربوط به باتریهای الکتروشیمیایی، لوازم الکتروکرومیکی، سلولهای خورشیدی و صفحات نمایش تخت این ماده مورد توجه واقع شده است.

برخی از کاربردهای این ماده عبارتند از:

۳-۳-۱- سلولهای خورشیدی

سلول خورشیدی یک قطعه الکترونیکی حالت جامد است که انرژی نور خورشید را مستقیما توسط اثر فوتوولتاییک به الکتریسیته تبدیل می کند[۴۰].

¹Transparent Conducting Oxide

با اتصال یک نیمه هادی نوع p به یک نیمه هادی نوع n، الکترونها از ناحیه n به ناحیه p و حفرهها از ناحيه p به ناحيه n منتقل مي شوند. با انتقال هر الكترون به ناحيه p، يك يون مثبت در ناحيه n و با انتقال هر حفره به ناحیه n، یک یون منفی در ناحیه p باقی می ماند. یون های مثبت ومنفی میدان الکتریکی داخلی ایجاد میکنند که جهت آن از ناحیه n به ناحیه p است. این میدان با انتقال بیشتر باربرها (الكترونها و حفرهها)، قوى تر و قوى تر شده تا جايى كه انتقال خالص باربرها به صفر مىرسد. در این شرایط ترازهای فرمی دو ناحیه با یکدیگر هم سطح شدهاند و یک میدان الکتریکی داخلی نیز شکل گرفتهاست. اگر در چنین شرایطی، نور خورشید به پیوند بتابد، فوتونهایی که انرژی آنها از انرژی شکاف نیمه هادی بیشتر است، زوج الکترون- حفره تولید کرده و زوجهایی که در ناحیه تهی یا حوالی آن تولید شدهاند شانس زیادی دارند که قبل از بازترکیب، توسط میدان داخلی پیوند از هم جدا شوند . ميدان الكتريكي، الكترونها را به ناحيه n و حفرهها را به ناحيه p سوق ميدهد. به اين ترتيب تراکم بار منفی در ناحیه n و تراکم بار مثبت در ناحیه p زیاد می شود. این تراکم بار، به شکل ولتاژی در دو سر پیوند قابل اندازه گیری است. اگر دو سر پیوند با یک سیم، به یکدیگر اتصال کوتاه شود، الکترونهای اضافی ناحیه n، از طریق سیم به ناحیه p رفته و جریان اتصال کوتاهی را شکل میدهند. اگر به جای سیم از یک مصرف کننده استفاده شود، عبور جریان از مصرف کننده، به آن انرژی میدهد. به این ترتیب انرژی فوتونهای نور خورشید به انرژی الکتریکی تبدیل می شود. هر چه میدان الکتریکی درون پیوند قوی تر باشد، ولتاژ مدار باز بزرگتری بدست میآید. برای دست یافتن به یک میدان الکتریکی بزرگ، باید اختلاف ترازهای فرمی دو ماده p و n از یکدیگر زیاد باشد . برای این منظور باید انرژی شکاف نیمه هادی بزرگ انتخاب شود. بنابراین ولتاژ مدار باز یک سلول خورشیدی با انرژی شکاف آن افزایش مییابد . اما افزایش انرژی شکاف سبب میشود، فوتونهای کمتری توانایی توليد زوج الكترون- حفره داشته باشند و بنابراين جريان اتصال كوتاه كمترى نيز توليد شود. بنابراين افزایش انرژی شکاف، روی ولتاژ مدار باز و جریان اتصال کوتاه سلول دو اثر متفاوت دارد. سلولهای فتوولتائیک که غالباً از نوع نیمرساناهای سیلیکونی هستند، با جذب فوتون فرودی و آزاد کردن الکترون(باتوجه به توضیحات بالا) مستقیماً تابش فرودی را به جریان الکتریکی تبدیل میکنند. لایه های نازک اکسید کادمیوم ایندیوم به دلیل جذب بالا و بازتاب کم در محدوده نور فرابنفش به عنوان پوششهای شفاف و ضد بازتاب در فرایند سلولهای خورشیدی سیلیکونی می توانند مورد استفاده واقع شوند [۴۰].

۳-۳-۲-پنجره های اپتیکی

شیشه های فتوکرومیک بر اثر تابش نورهای الکترومغناطیسی در نزدیکی نورفرابنفش طیف عبوری خود را تغییر میدهد. یعنی تاثیر نور فرابنفش بر روی یک شیشه اپتیکی آنرا تیره میکند و درجه عبور آن کم می شود و وقتی که مجددا در مجاورت نور مرئی قرار گرفت دوباره تغییر رنگ میدهد. اکسید کادمیوم ایندیوم به دلیل عبور بالا در ناحیه مرئی و جذب تابشهای در ناحیه فرابنفش به عنوان قطعه سوئیچینگ اپتیکی الکتروکرومیک در پنجره های اپتیکی [۲۹و۴۲] به کارمیروند. این پنجره ها علاوه بر داشتن چشم انداز، به دلیل شفافیت در ناحیه مرئی، می توانند انرژی خورشیدی و تابش های فرابنفش را جذب کرده و در مصرف انرژی صرفه جویی نمایند.

۳–۳–۳– حسگرهای گازی

در محیط زندگی ما ممکن است آلاینده ها و گازهای بسیاری وجود داشته باشند که در نهایت منجر به تخریب محیط زیست، ایجاد بارانهای اسیدی ، اثرات گلخانه ای، تخریب لایه ازن و مسمومیتهای خطرناک در افراد شود . برای تشخیص این گازها و موادشیمیایی به ابزاری نیازمندیم که بتوانیم آنها را تشخیص دهیم ، مدتها است که مواد نیمرسانایی که مقاومت سطحی آنها دراثر واکنش با یک گاز فعال تغییر میکند، مورد مطالعه قرار گرفته اند. در این مواد جذب شیمیایی گاز فعال درسطح ماده باعث تغییردر رسانایی الکتریکی آن می گردد بدین ترتیب ازاین مواد نیمرسانا می توان به عنوان حسگرهای گازی استفاده نمود[۶۰]، که دراین میان لایه های نازک اکسید کادمیوم ایندیوم به عنوان نیمرسانای اکسیدی می توانند حسگرهای خوبی برای برخی از گازها یی همچون هیدروژن و… باشند.

۴-۳- بررسی خواص ساختاری واپتیکی اکسید کادمیوم ایندیوم

CdIn₂O₄ -۱-۴-۳ در نمونه های XRD در نمونه های

میندوزا ^۱و همکارانش در سال ۲۰۱۰ لایه های نازک CdIn₂O₄ را به روش سل ژل تهیه کردند [۴۳]. این لایه ها به شیوه غوطه وری و برروی زیرلایه شیشه تهیه شدند. در این گزارش از ترکیب دو پیش ماده اکسید کادمیوم و اکسید ایندیوم با تغییر مقدار ایندیوم در محلول نهایی از ۵۵٪ تا ۲۹٪ با نرخ ۴٪ استفاده شده است که نمونه های بدست آمده دردمای C^o ۲۰۰ خشک سازی و سپس در شرایط زیر بازپخت شده اند؛

> ۱) در دمای C[°] ۶۰۰ درحالت خلاء به مدت یک ساعت ۲) در دمای C[°] ۳۵۰ تحت اثر گازهای H₂ / H₂ (۹۶/۴) به مدت یک ساعت ۳) در دمای C[°] ۳۵۰ تحت اثر گاز هیدروژن به مدت یک ساعت

که در این گزارش ضخامت نمونه ها توسط یک پروفایل متر^۲ (Sloan DektakII) اندازه گیری شد و مقدار آن به طور متوسط حدود ۳۸۰ nm تخمین زده شد.

شکل (۳-۲) نمودار XRD نمونه های تهیه شده بر روی زیر لایه های شیشه ای را نشان میدهد.

¹ M.A.Flores Mendozma

² profiloetemr

(الف)

(ب)

شکل (۲-۳) طرح پراش پرتو X برای نمونه های CdIn₂O₄ (الف) بدون بازپخت و (ب) بازپخت شده [۴۳].

در این گزارش نمونه های بازپخت نشده با مقدار ۶۷٪ ایندیوم و یا کمتر (x = 1/90 + $In_2O_3 + CdIn_2O_4$ بلوری که ساختار بلوری شامل In₂O₃ + CdIn₂O₄ مشاهده شد و به طور آشکار اثری از ساختار CdO در آن مشاهده نشد و وقتی نمونه ها در حالت خلا مشاهده شد و به طور آشکار اثری از ساختار CdO در آن مشاهده نشد و وقتی نمونه ها در حالت خلا و در دمای 2 ۰۰۶ و به مدت ۶۰ دقیقه بازپخت شدند تغییرات ساختاری مشاهده گردید، بطوریکه ساختار اکسید ایندیوم برای همه لایه ها با درصد های متفاوت از مقدار ایندیوم مشاهده شد و پس از این امر اندازه دانه ها برای CdIn₂O₄ مقدار ۲۱ nm تا ۲۸ nm و برای In₂O₃ مقدر ۱۸nm تا ۲۶nm محاسبه شد.

طرح پراش پرتو X برای نمونه های بازپخت شده تحت گاز های N_2 / H_2 و تحت گاز هیدروژن با دمای بازپخت C° ۲۰۰ شبیه به نمونه های بدون بازپخت بوده است که در این گزارش نشان داده نشده است.

در گزارش دیگری یانگ ^۱و همکارانش در سال ۲۰۰۶ نمونه های نازک CdIn₂O₄ را به روش پاشندگی مغناطیسی تهیه کردند [۴۴] . شکل (۳–۳) نمودار XRD مربوط به لایه های نازک CdIn₂O₄ را در حالی نشان می دهد که مقدار اکسیژن ۴/۲۹٪ و دمای زیر لایه 2° ۰۵۰ بوده و سپس لایه های تهیه شده تحت گاز **۲**^N در دمای 2° ۰۰۰ برای مدت ۶۰ دقیقه بازپخت شده اند. آنالیز مربوط به XRD حاکی از آن است نمونه ها به طور واضح ساختار بلوریداشته وعلی الخصوص شامل فاز ۵/۹ CdIn و In₂O₃ می باشد. با استفاده از فرمول دبای شرر ($D=k\lambda/\beta cos$) اندازه دانه ها به طور متوسط برای ۲۵/۹۲ می باشد. با استفاده از فرمول دبای شرر ($D=k\lambda/\beta cos$) مقدار Mr

شکل (۳-۳) طرح پراش پرتو X لایه های نازک $CdIn_2O_4$ بازپخت شده در دمای C ۴۰۰ برای مدت ۶۰ دقیقه

[44]

¹ F.F.Yang

در گزارش دیگری واک کاد ^۱ [۴۵] و همکارانش در سال ۲۰۰۷ نمونه های نازک_X(CdD)₋₁-(CdO)_x) (CdO)_y) (x= -//۰۰۰۵/۰۰۱/۰۱۵/۲۰) را به روش تبخیر باریکه یونی تهیه کردند [۴۵]. شکل (۳-۴) نمودار XRD مربوط به نمونه های تهیه شده با مقادیر متفاوت x و در حضور فازهای مختلف آن می باشد که نشان می دهد با C=x هیچ فاز ی از CdIn₂O₄ تشکیل نشده است و تماماً مربوط به فاز می باشد که نشان می دهد با CdIn می جاز ی از CdIn₂O₄ تشکیل نشده است و تماماً مربوط به فاز می باشد که نشان می دهد با CdIn و (۲۰۰) و (۲۰۰) می باشد و برای مقادیر دیگر x فاز 40 CdIn₂O₄ نیز با

شکل (۳-۴) طیف پراش پرتو X نمونه های_X (In₂O₃) با مقادیر X متفاوت [۴۵]

¹ M.M.Wakkad

شکل (۳–۵) نمودار XRD مربوط به نمونه های تهیه شده توسط همان گروه قبل با همان روش با شرایط ۲/۱–۲ و بازپخت در دماها و با زمان های مختلف می باشد [۴۵]. طرح پراش نشان می دهد که نمونه ها بصورت بلوری با ساختار مکعبی می باشند و با افزایش دما و زمان بازپخت فازاصلی کو CdIn₂O4 می باشد و نیم پهنای ماکزیمم با افزایش دما و زمان کاهش پیدا می کند و این نشان دهنده این است که با افزایش دمای بازپخت اندازه دانه ها افزایش می یابند.

شکل (۵–۵) طیف پراش پرتو X نمونه های $CdIn_2O_4$ با $x = \cdot/1$ بازپخت شده در دماها و زمان های مختلف

[40]

در گزارش دیگری یانگ و همکارانش در سال ۲۰۰۸ نمونه های ناز ک CdIn₂O₄ را به روش پاشندگی مغناطیسی تهیه کردند [۴۶]. این لایه ها در دمای^C ۴۰۰ تحت گاز N₂ به مدت ۶۰ دقیقه بازپخت شدند. شکل (۳–۶) نمودار مربوط به نمونه های CdIn₂O₄ قبل و بعد از بازپخت میباشد.

شکل (۳–۶) طیف پراش پرتو X نمونه های بدون بازپخت و بازپخت شده (الف) با دمای زیر لایه $C^{\circ}C$ (ب) با دمای زیر لایه C° ۱۶۰ [۶۶] .

شکل (۳- ۶ – الف) که مربوط به لایه هایی با دمای زیر لایه C° ۲۵۰ ،ساختار بلوری را نشان میدهد که شامل فاز اصلی $C_{12}O_{4}$ و فاز $In_{2}O_{3}$ در هر دو حالت قبل و بعد از بازپخت میباشند و شکل(۳-۶–۰) مربوط به لایه هایی با دمای زیر لایه C° ۱۶۰ است که در حالت قبل از بازپخت فقط فاز

In₂O₃ با راستای ترجیحی (۲۲۲) را نشان میدهد و هیچ فازی از CdIn₂O₄ در آن وجود ندارد و این امر نشان میدهد که برای تشکیل فاز CdIn₂O₄ دمای زیر لایه امری ضروری است . با توجه به هر دو شکل شدت قله ها پس از بازپخت افزایش یافته و نیم پهنای ماکزیمم باریکتر شد. بنابراین میانگین اندازه دانه ها با محاسبه برطبق فرمول دبای شرر بزرگتر شده است و از طرفی نیز قله های دیگر CdIn₂O₄ اندازه دانه ها با محاسبه برطبق فرمول دبای شرر بزرگتر شده است و از طرفی نیز قله های دیگر OdIn₂O₄ و برای CdIn₂O₄ در حالت (الف) برابر با مرام میدازه دانه و برای حالت (ب) ظاهر شده است و مقدار ثابت شبکه برای CdIn₂O₄ در حالت (الف) برابر با OdIn₂O₄ و برای حالت (بای حالت (الف) برابر با معادیک¹) مطابقت دارد.

در گزارش دیگری زی یانگ دونگ⁷ و همکارانش پودر $CdIn_2O_4$ را به روش سل – ژل تهیه کردند [۴۷]. آنها نیترات کادمیوم ۴ آبه و نیترات ایندیوم ۴/۵ آبه را با نسبت مولی ۱ به ۲ در آب دوبار یونیزه حل کردند و سپس اسید سیتریک ۲/۰مول را با نسبت[2/2]= [Cd+In)/Citric Acid] به محلول اضافه نمودند و سل حاصل را ابتدا در حمام آب با دمای C ۸۰ و سپس برای تشکیل زیروژل آنرا در دمای C ۲۰۱ قرار دادند و سپس آن را در دمای ⁶ ۲۰۰ به مدت ۴ ساعت به آهستگی خشک نمودند و در انتها در دماهای C ۲۰۰ تا C ۲۰۰ برای ۴ ساعت بازیخت کردند. شکل (۳–۲) طرح پراش اشعه ایکس از پودر $CdIn_2O_4$ تهیه شده توسط گروه بالا را نشان میدهد.

¹ Joint Committee on Powder Diffraction Standards

² Xian Gdong Lou

شکل (۲-۷) - طرح پراش اشعه ایکس از پودر CdIn₂O₄ باز پخت شده در دماهای متفاوت [۴۷].

در گزارش دیگری تینگ ^۱و همکارانش از ترکیب پودر CdO و پودر In₂O₃ با نسبت مولار کادمیوم به ایندیوم یک به یک ،پودر CdIn₂O₄ تهیه نمودند و سپس در دماهای مختلف به مدت ۲ ساعت در معرض هوا خشک سازی نمودند [۴۸].

¹ Ting Chen

شکل(۳–۸) طرح پراش پرتو X ماده را قبل و بعد از خشک سازی در دماهای مختلف نشان می دهد. با توجه به شکل مشخص است که در دماهای زیر C ۸۵۰ علاوه بر فاز CdIn₂O₄ ، فاز CdO و In₂O₄ نیز وجود دارد و د ردمای C ۸۵۰ تنها فاز موجود CdIn₂O₄ بوده است.

شکل (۳- ۸) - طیف XRD ترکیب اکسید کادمیوم با اکسید ایندیوم پس از بازپخت در دماهای متفاوت به مدت ۲ ساعت.

CdIn₂O₄ − ۲− ۴− ۳ در لایه ها یSEM در ا

شکل (۳–۹) تصاویر مربوط به سطح نمونه های تهیه شده توسط زی یانگ دونگ و همکارانش می باشد [۴۷]. این تصاویر برای همه نمونه ها سطحی متخلخل و سوراخ دار را نشان می دهد که با افزایش دما تخلخل ها نیز افزایش مییابد و ذرات روی سطح مربوط به نمونه (C ۶۰۰ ۹) CdIn₂O₄ بزرگتر از ذرات روی سطح نمونه (C ۲۰۰ ۹) CdIn₂O₄ بوده و روی سطح نمونه های (C ۹۰۰ و بزرگتر از درات روی سطح نمونه کلوخه و بهم فشرده می باشد.

شکل (۳- ۹) تصاویر SEM سطح نمونه های بازپخت شده در دماهای ۶۰۰ ، ۷۰۰ ، ۸۰۰ و ۹۰۰درجه سانتی گراد [۴۷].

تصاویر SEM مربوط به گزارش تینگ و همکارانش در شکل (۳–۱۰) نشان داده شده است [۴۸]. این تصاویر مربوط به پودر های CdIn₂O₄ بدست آمده از ترکیب پودر CdO و پودر In₂O₃ قبل و بعد از خشک سازی در دماهای C ۶۵۰ و C ۷۰۰۰و C ۸۵۰ میباشد.

شکل (۳- ۱۰) – تصاویر SEM پودر CdO آمیخته با پودر In₂O₃ (الف) قبل از خشک سازی و بعد از خشک سازی در دماهای (ب) C ۶۵۰ و (ج) ۲۰۰ C (د) ۸۵۰ مازی در دماهای (ب)

ساختار موفولوژیکی نشان می دهد که اندازه دانه ها با افزایش دمای خشک سازی افزایش می یابند و این اندازه در بازه ۱۰۰ تا ۵۰۰ نانومتر می باشد. زیر دمای بحرانی ۲۰۰ ذرات بصورت آبدار و تودهی هستند. برای نمونه ها ی خشک سازی شده در ۲۰ ۸۵۰ ذرات بصورت کروی و در اندازه متحدالشکل بوده و خوب پراکنده شده اند.

دووکات ^۱و همکارانش در سال ۲۰۱۰ لایه نازک CdIn₂O₄ را به روش اسپری پایرولیزیز تهیه کردند [۴۹]. ۱۰۰ سی سی محلول حاصل شامل نسبت حجمی ۱ به ۲ استات کادمیوم به استات ایندیوم با حلال آب تهیه شده و برروی زیر لایه شیشه با دمای C

¹ R.J.Deokate

نازل تا زیر لایه به عنوان پارامتر مقدماتی بین ۲۶ سانتی متر تا ۳۲ سانتی متر انتخاب شده است . تصاویر (۳–۱۱–الف) و (۳–۱۱–ب) تصاویر SEM مربوط به نمونه های قبل و بعد از بازیخت در دمای ۴۰۰ – ۲ به مدت ۲ ساعت را نشان می دهد.

(۳–۱۱- الف) تصاویر SEM نمونه های بودن بازپخت شده (۳–۱۱- ب)تصاویر SEM نمونه های بازپخت شده با فاصله نازل تا زیر لایه (الف) ۲۶ cm (ب) ۲۸ cm (ج) ۳۰ cm (د) ۳۳ cm.

با فاصله نازل تا زیر لایه (الف) ۲۶ cm (ب) ۲۸ cm (ج) ۳۰ cm (د) ۳۳ cm.

شکل (الف) وابستگی فاصله نازل از زیر لایه را با رفتار دمایی به خوبی نشان می دهد.

هرگاه فاصله افزایش می یابد بلورینگی نیز در شرایط بهینه افزایش می یابد. برای نمونه ای که فاصله نازل تا زیر لایه ۲۶ cm است. نمونه (الف) از شکل (۳–۱۱⊣لف) سطح نسبتاً صاف و همواری را با اندازه دانه های ریزی که بطور یکنواخت روی تمام سطح توزیع شده اند نشان می دهد. برای نمونه نمونه (ب) از شکل (۳–۱۱–الف) رشد خوب اندازه دانه ها مشاهده می شود و نمونه (ج) از شکل (۳– ۱۱–الف) ساختار کاملاً بلوری و یکنواختی را نشان می دهد. مجدداً برای نمونه ای که فاصله نازل تا زیر لایه ۲۰ cm است ودر دمای ۲ ۴۰۰ به مدت ۲ ساعت بازپخت شده است. نمونه (ج) از شکل (۳–۱۱–ب) بعد از بازپخت سطح نسبتاً خلل و فرج دار مشاهده شده است . نمونه های نمونه (د) از شکل (۳–۱۱–الف) و نمونه (د) از شکل (۳–۱۱–ب) سطح مورفولوژیکی نسبتاً ناهموار و پر خلل و فرجی را نشان میدهند.

CdIn₂O₄ - ۳-۴-۳ بررسی خواص اپتیکی لایه های

شکل (۳–۱۲) از گزارش مربوط به واک کاد و همکارانش گرفته شده است [۴۵]. نمودار عبور بر حسب طول موج ذره در بازه۲۰۰۳ تا۲۵۰۰ تا۲۵۰۰ برای در صد های مختلف ایندیوم در محلول و نمودار داخلی آن میانگین عبور برای نور مرئی و فرابنفش را نشان میدهد.

شکل (۳–۱۲) – طیف تراگسیل نمونه های _X(In₂O₃)_{X-1}(CdO)با X های متفاوت (در شکل ضمیمه میانگین عبور در ناحیه نور مرئی و مادون قرمز نشان داده شده است [۴۵].

مشاهده می شود که همه لایه ها عبور اپتیکی ناچیزی را در ناحیه مرئی یا نزدیک ناحیه فرابفش نشان میدهند و همچنین شکل داخل نشان میدهند با افزایش مقدار درصد ایندیوم از x=۰/۱ به بعد میزان عبور کاهش مییابد.

شکل (۳–۱۳) میزان عبور برحسب طول موج برای لایه های با نسبت ایندیوم ۱/۰بازپخت شده در ۱۵ دقیقه و دماهای مختلف را نشان می دهد . به نظر می رسد که میزان عبور به طور معنی داری بهبود یافته است . بعد از بازپخت لبه جذب به طول موجهای پایین تر شیب پیدا می کند. برای لایه های بازپخت شده در دمای ۳۰۰ و یا بالاتر به مدت ۱۵ دقیقه ، میانگین عبور در حدود ۳۴٪ در ناحیه مرئی افزایش مییابد.

شکل (۳–۱۳)- طیف تراگسیل اپتیکی نمونه های اکسید کادمیوم ایندیوم بازپخت شده

شکل (۳–۱۴) میزان عبور برحسب طول موج برای لایه های با نسبت ایندیوم ۰/۰۱ بازپخت شده در دمای C°۳۰ و زمانهای مختلف را نشان میدهد و در این شکل به وضوح دیده می شود که با افزایش زمان بازپخت میزان عبور در ناحیه نور مرئی و فرابنفش به طور چشمگیری زیاد می شود و

در دماهای متفاوت به مدت ۱۵ دقیقه [۴۵].

مقدار افزایش برای ناحیه مرئی تا ۸۲٪ و برای ناحیه فرابنفش تا ۹۲٪ میباشد و این عبور بالا در ناحیه نور مرئی امکان استفاده این لایه ها را به عنوان مواد لعاب دار براق^۱ فراهم میکند.

شکل (۳-۱۴) - طیف تراگسیل اپتیکی نمونه های اکسید کادمیوم ایندیوم بازپخت شده

در دمای C[°]C به مدت ۱۵ دقیقه [۴۵].

در گزارش مندوزا و همکارانش [۴۳] شکل (۳–۱۵) انشان میدهد که لایه ها از میزان عبور بالایی برخودارند و برای لایه های بازپخت شده در خلاء لبه جذب به سمت انرژی های بالاتر شیب ییدا می کند که با محاسبه گاف نواری ایتیکی مستقیم این امر بدیهی می باشد.

1 Glazing materials

شکل (۳–۱۵) - طیف عبور نمونه های اکسید کادمیوم ایندیوم بدون بازپخت (NA) و بازپخت شده در خلأ (VA)

[4٣]

شکل (۳–۱۶) میزان عبور بر حسب طول موج مربوط به گزارش دووکات و همکارانش [۴۹] که برای لایه های بازپخت شده میباشد آنها در این کار به بررسی تغییر فاصله نازل تا زیر لایه پرداخته اند که در شکل(۳–۱۶) مربوط به لایه های بازپخت شده میباشد.

شکل (۳–۱۶) - منحنی های میزان عبور بر حسب طول موج نمونه های تهیه شده با فاصله های متفاوت نازل از زیر لایه [۴۹].

نتایج مربوط به آن نشان می دهد که با افزایش فاصله نازل تا زیر لایه عبور مربوط به نور مرئی اندکی تغییر می کند. میانگین میزان عبور در طول موج nm ۵۵۰ در حدود ۵۶٪ تا ۷۳٪ میباشد.

فصل جہارم چ

بررسی نواص فنریکی نمونه کامی سنتر شده اکسد کادمیوم ایندیوم

۴-۱ – مقدمه

در این پایان نامه به منظور تهیه لایه های نازک اکسید کادمیوم ایندیوم (CdIn₂O4) به روش سل – ژل از تکنیک بهینه سازی گام به گام^۱ در ساخت سل اولیه استفاده گردید. به این ترتیب کـه بـرای بدست آوردن دقیق تر مواد بکار رفته در پیش مادههای اصلی برای تهیه سل مورد نظر، ابتدا اندازه یک ماده را متغیر و سایر مواد را ثابت فرض می کنیم تا شکل ظاهری محلول حاصل بـه صورت محلـول معرفی شده در مقالات و گزارشات موجود باشد. این عمل را برای سایر مواد بکار رفته در پـیش ماده اصلی نیز تکرار کردیم. این روش به عنوان یکی از تکنیکهای نـسبتاً مناسب در تهیه محلـولهـای شیمیایی معرفی شده است[۷]. در این پایان نامه این روش در تهیه محلول (CdO)و (CdO) کـه بـه عنوان پیش مادههای اصلی می باشند اجرا شد و سپس تأثیر پارامترهای فیزیکی در خواص ساختاری و اپتیکی لایه ها مورد بررسی قرار گرفت.

۲-۴- رشد لایه های نازک اکسید کادمیوم ایندیوم(CdIn₂O₄)

۲-۴-۱ نقش زیرلایه در تهیه لایه های نازک و نحوه آماده سازی آن

از زیرلایه لایه های نازک انتظاراتی داریم که ناشی از کاربردهای آن است. زیرلایه در کاربردهای الکترونیکی معمولا نقش عایق را نیز داراست. نیاز به پایداری طولانی مدت زیرلایه های لایه نازک ایجاب می کند که هیچ نوع واکنش شیمیایی که قادر به تغییر خواص لایه نازک باشد اتفاق نیفتد. بنابراین زیرلایه باید مقاومت مکانیکی کافی داشته و نه تنها در دمای عادی بلکه در خلال تغییرات نسبتاً زیاد دما نیز چسبندگی خود را به لایه حفظ نماید. علاوه براین برای تهیه لایههایی با پارامتر های قابل باز تولید و مشخص الکتریکی و غیر الکتریکی سطح زیرلایه باید تخت و صاف باشد. در برخی از کاربردها حتی وزن زیرلایه نیز عامل مهمی است. البته در همه موارد عدم حضور آلودگی و

¹ step by step optimization

چربی امری ضروری است. در واقع برای ثابت بودن خواص لایه و چسبندگی مناسب لایهها لازم است که سطح زیرلایه مطلقاً تمیز و عاری از هرگونه آلودگی باشد. این شرط برای سطوح تک بلورهایی که در خلا تهیه می شوند، قابل تحقق است، اما در موارد دیگر نمی توان به آسانی به آن دست یافت. سطح شیشه پس از شسته شدن نسبتاً تمیز است اما امکان دستیابی به درجه مطلق تمیزی پس از آلوده شدن شیشه وجود ندارد (به جز ذوب کردن مجدد آن که اساس صیقلی کردن آتشی شیشه است).

در این پایان نامه یک فرایند ۵ مرحله ای به شرح ذیل جهت تمیز کردن زیرلایه های شیشه مورد استفاده قرار گرفت.

مرحله اول: به منظور از بین بردن چربی ها و ناخالصی های اولیه زیرلایه شیشه ای توسط آب و مواد شوینده (مایع ظرفشویی) کاملاً شسته شدند.

مرحله دوم: زیرلایه ها در مخلوطی از آب و مواد شوینده به مدت ۲۰ دقیقه قرار داده شدند به طوریکه با افزایش تدریجی دما (برای جلوگیری از شوک حرارتی) محلول فوق به جوش آید.

مرحله سوم: زیرلایه ها را داخل بشر حاوی آب مقطر با دمای کمتر از دمای جوش (تقریباً ۴۰ یا ۵۰ درجه سانتی گراد) قرار میدهیم و پس از ۱۰ دقیقه آنرا به درون بشری که شامل آب مقطر در دمای اتاق است منتقل میکنیم.

مرحله چهارم: زیرلایه ها را درون محلول حاوی آب و استون قرار داده و به مدت حدود ۲۰ دقیقه در دستگاه تمیز کننده مافوق صوت^۱ قرار میدهیم.

¹ Ulterasonic
مرحله پنجم: زیرلایه ها را ابتدا توسط سشوار و سپس با یک پارچه نرم خشک کرده و در صورت وجود پرز بر روی زیرلایه ها، آنها را با استفاده از گاز ازت تمیز میکنیم.

۲-۲-۴ نحوه محلول سازی و تهیه سل اولیه

برای تهیه سل مورد نظر از ترکیب محلول اکسید کادمیوم (CdO) و محلول اکسید ایندیوم (In₂O₃) که هر کدام در دمای اتاق از طریق پیش ماده های مشخص تهیه شدهاند ، استفاده شد. عملیات لایه نشانی پس از گذشت ۲۴ ساعت از تهیه سل مناسب انجام پذیرفت.

الف) تهيه محلول اكسيد كادميوم (CdO):

برای تهیه محلول اکسید کادمیوم (CdO) از پیش مادههای استات کادمیوم ، متانول ^۲، گلیسیرول^۳ و تری اتیل آمین^۴ استفاده کردیم. در این فرایند ابتدا استات کادمیوم را در نیمی از متانول در حالی اضافه کردیم که این محلول با سرعت ثابت توسط همزن مغناطیسی هم میخورد تا زمانی که کاملاً شفاف شد. سپس گلیسیرول به محلول اضافه شد و این محلول با محلولی که شامل ترکیب تری اتیل آمین و متانول بود آمیخته شد.

ب) تهيه محلول اكسيد اينديوم (In2O3) :

برای تهیه محلول اکسید ایندیوم (In₂O₃) از پیش ماده های استات ایندیوم⁶ ، اسید لاکتیک⁵ ، ۱-پروپانول^۷ و آب دوبار یونیزه[^] استفاده کردیم. در این فرایند ابتدا اسید لاکتیک به استات ایندیوم اضافه شد و سپس آنها به محلولی که شامل ۱- پروپانول و آب دوبار یونیزه بود اضافه شدند و ایـن عمـل در

¹Cadmium acetate ($Cd(CH_3CO_2)_3$)

²Methanol (CH₃COOH)

³Glycerol Wasserfrei (C₃H₈O₃)

⁴Triethylamin

⁵Indium acetate (In (CH_3CO_2)₃)

⁶ Lactic acid

⁷1-Propanol

⁸ Diagnosed Water

حالی صورت گرفت که این محلول در دمای اتاق توسط یک همزن مغناطیسی به طور یکنواخت برای مدت ۳ ساعت هم می خورد تا اینکه محلولی شفاف حاصل شد.

CdIn₂O₄) -۳-۲-۴ روش تهیه لایه های نازک اکسید کادمیوم ایندیوم (

روش های متفاوتی جهت رشد لایه های نازک وجود دارد که در این میان برخی از ایـن روشـها مرسوم تر بوده و کاربردهای گسترده تری نسبت به بقیه دارند. از آنجایی کـه کلیـه خـواص لایـههـای نازک اعم از خواص ساختاری و اپتیکی و غیره وابسته به نوع ساختار ماده و میزان ناخالصی موجود در آن و حتی ضخامت لایه ها می باشد، لذا هر تکنیک لایه نشانی به همراه پـارامترهـای وابـسته بـه آن، خواص متفاوتی را در لایه ها می باشد، لذا هر تکنیک لایه نشانی به همراه پـارامترهـای وابـسته بـه آن، خواص متفاوتی را در لایه ها ایجاد می کند. از این رو مـا در آزمایـشگاه رشـد بلـور واقـع در دانـشگاه صنعتی شاهرود و به کمک روشهای سل-ژل با تکنیک چرخشی و غوطه وری به شرح ذیل اقدام بـه تولید و آنالیز لایه های نازک اکسید کادمیوم ایندیوم (CdIn₂O₄) کردیم. در روش سل-ژل با تکنیک چرخشی ابتدا یک قطره از سل تهیه شده در بخش(۴–۲–۲) را روی زیر لایه شیشه چکانیده و سپس آن را تحت چرخش با سرعت ۲۰۰۰RPM به مدت ۲۰ ثانیه قرار داده ایم . به دلیل وجود نیروی گریز از مرکز سل مورد نظر به طور یکنواخت بر روی زیر لایه پخش میشود و چون دارای ویسکوزیته بوده

سپس نمونه تهیه شده را تحت عملیات خشک سازی و سپس بازپخت قرار میده یم.در روش سل-ژل با تکنیک غوطه وری، زیرلایه را با سرعت ۱۰ سانتی متر بر دقیقه به درون سل تهیه شده در بخش(۴–۲–۲) منتقل کرده و سپس آن را با همین سرعت به بیرون میکشیم، سرعت انتقال زیر لایه به درون سل و بیرون کشیدن آن روی ضخامت و در نتیجه روی خواص لایه تأثیر بسزایی دارد.

سپس نمونه تهیه شده را تحت عملیات خشک سازی و سپس بازپخت قرار میدهیم.

برای کسب اطلاعات بیشتر در مورد دو تکنیک چرخشی و غوطه وری میتوان به بخش های (۱-۸-۱) و (۱-۸-۲) مراجعه نمود.

۴–۳- مطالعه خواص فیزیکی لایه های نازک CdIn₂O₄ تهیه شـده بـه روش چرخشی

۴-۳-۴ بررسی خواص ساختاری

شکل (۴–۱) طیف پراش پرتو ایکس مربوط به سه نمونه از لایه های ناز ک CdIn₂O₄ و CdIn₂O تهیه شده به روش سل-ژل با تکنیک چرخشی را نشان میدهد که آنها را با 3S400 و SS400 و 7S400 و ۵ و ۷ بار کردیم. تعداد دفعات لایه نشانی برای نمونه های 3S400 و SS400 و 7S400 به ترتیب ۳ و ۵ و ۷ بار بوده است. هرسه نمونه مطالعه شده درهر بار لایه نشانی باسرعت RPM ۲۰۰۰ و به مدت ۲۰ ثانیه چرخانده شدند. قابل ذکر است که پس از هر بار لایه نشانی، عملیات خشک سازی نمونه ها در دمای °C مای درمای تمانی تمام می شد و در انتها پس از پایان لایه نشانی تمام نمونه ها در دمای °C

شكل (۴-۱)- طيف هاى پراش پرتو ايكس نمونه هاى 38400 ، 58400 و 78400.

الگوهای پراش ثبت شده برای تمام نمونه ها تشکیل یک ساختار مکعبی مرکز وجهی (FCC) چند بلوری با قله های پراش متعدد را نشان میدهند. در تمامی نمونه ها شدت قله ناشی از پراش از صفحات (۳۱۱) از سایر صفحات بیشتر است که این میتواند معرف راستای ترجیحی تشکیل بلور باشد. علت سمتگیری در این راستا میتواند به پایین تر بودن انرژی سطح در این راستا در مقایسه با دیگر راستاها مربوط باشد. زیرا اکثر اتمها در حین لایه نشانی برروی سطحی که از کمترین انرژی آزاد برخوردار باشند، پخش می گردند.

مقایسه طیف های XRD این سه نمونه نشان میدهد تعداد دفعات لایه نشانی در روش چرخشی بر روی شدت قله ماکزیمم اثر داشته است به طوریکه برای نمونه 58400 در راستای ترجیحی (۳۱۱) از بیشترین شدت برخوردار است. سایر قله ها نیز در نمونه های 38400 و 78400 نسبت به نمونه 58400 از شدت کمتری برخوردار می باشند که این میتواند به خاطر بیشتر بودن انرژی آزاد سطح در این نمونه ها نسبت به نمونه 58400 باشد.

اندازه متوسط بلورکها و کرنش در نمونه ها با استفاده از رابط ویلیام سون – هال (رابط ه ۲ – ۳) محاسبه شدهاند. بر اساس این رابطه بایستی بهترین خط گذرانده از نقاط مربوط به β cosα بر حسب 2Sinθ ترسیم شده (شکل ۴ – ۲) و با استفاده از شیب خط و عرض از مبدأ آن مقادیر اندازه بلورکها و کرنش در نمونه ها قابل تخمین میباشد. این نتایج در جدول ۴ – ۱ گزارش شده است.

نمونه	اندازه متوسط بلورک(nm)	مقداركرنش
3\$400	١٧	•/•• \V&
5\$400	١٩	•/•• ١٩٢
78400	١٩	•/••٢٣۵

جدول (۴-۱)- اندازه بلورکها و کرنش در نمونه ها که با استفاده از رابطهٔ ویلیامسون- هال محاسبه شده است.

همان طور که این مقادیر نشان می دهد اندازه بلور کها و مقدار کرنش با افزایش تعداد دفعات اسپین و در نتیجه افزایش ضخامت اندکی افزایش یافته است. می توان ثابت شبکه نمونه ها را با توجه به فرمول براگ (۲–۱) و رابطه (۲–۲–الف) محاسبه نمود. نتایج این محاسبه در جدول (۴–۲) ذکر شده است. مقادیر بدست آمده برای نمونه ها با مقادیر گزارش شده در کارتهای استاندارد (JCPDS) (۱۶۱ nm) در تطابق می باشد.

جدول(۴-۲)- ثابت شبکه نمونه هاکه با استفائه از روابط (۲-۱) و (۲-۲-الف) محاسبه شده است.

نمونه	38400	58400	7S400
a (nm)	۹/۲۰۰	٩/١۴١	۹/۱۱۳

۴–۲–۲ مورفولوژی نمونه ها

مورفولوژی سطح هر لایه نازکی متأثر از عوامل مختلفی میباشد که به روش لایه نـشانی وابـسته است . برای مثال در روش سل-ژل به عواملی مانند نوع زیرلایه ، غلظت، طول عمر سل، مـدت زمـان بازپخت و یا دمای بازپخت و غیره بستگی دارد. پس برای هر نمونه ای بررسی مورفولوژی سطح از اهمیت ویژه ای برخوردار است.

شکل (۴–۳) تصاویر FESEM مربوط به این نمونه ها را نشان میدهد. همان طور که این شکل نشان میدهد، نمونه 55400 از یکنواختی بهتری نسبت به دو نمونه دیگر برخوردار است. همچنین تشکیل بلورکهایی با اندازه متوسطی در حدود nm ۲۵ درمقیاس FESEM مربوط به نمونه 55400 کاملاَمشهود میباشد. تصویر FESEM گرفته شده از ازنمونه 75400 نشان میدهد که یکنواختی این نمونه از دو نمونه دیگر کمتراست، این نتیجه با نتایج حاصل ازاندازه گیری طیف تراگسیل نمونه ها در توافق میباشد.

(شکل ۴–۳)- تصاویر FESEM نمونه ها.

۴-۳-۳ بررسی خواص اپتیکی نمونه ها

شکل (۴–۴) طیف تراگسیل اپتیکی نمونه ها دربازه طول موجی ۳۵۰ تا ۱۱۰۰ نانومتر را نـشان میدهد.

(شکل۴–۴)- طیف تراگسیل اپتیکی نمونه ها دربازه طول موجی ۳۵۰ تا ۱۱۰۰ نانومتر

روند کلی تغییرات کاهش عبور با افزایش تعداد دفعات لایه نشانی میباشد. مثلاً برای طول موج ۵۵۰ نانومتر مقدار عبور متوسط از ۷۰٪ برای نمونه 3S400 به ۵۵٪ برای نمونه 7S400 کاهش می یابد. با توجه به اندازه بلور کها (جدول۴–۱) با افزایش دفعات لایه نشانی اندازه بلور کها نیز افزایش یافته است بنابراین علت کاهش عبور بایستی مربوط به افزایش ضخامت نمونه هاکه منطقی نیز هست، باشد.

برای بدست آوردن ضریب جذب نمونه ها (α) با توجه به معادله (۲-۴) به طیف عبور و ضخامت نمونه ها احتیاج است که ضخامت نمونه ها با توجه به طیف عبور و با استفاده از نرم افزار پوما برای نمونه های 38400 ، 58400 ، 78400 درجدول(۴-۳) ذکرشده است.

جدول(۴-۳)-مقدارضخامت (t) برای نمونه ها.

نمونه	38400	58400	7S400
t (nm)	11.	١٢٣	١٢٨

شکل (
$$^{+0}$$
) نمودار ضریب جذب (α) برحسب طول موج (λ) را نشان میدهد.

شکل(۴-۵)- ضریب جذب برای نمونه ها.

با توجه به شکل با افزایش تعداد دفعات لایه نشانی منحنی جذب به مقدار اندکی رو به بالا منتقل شده است و لبه جذب نیز به طرف طول موجهای بلندتر جابجا شده است.

حال با داشتن ضریب جذب و با توجه به رابطه زیر [۵۴ و ۵۸]

 $(\alpha hv)^{r} = A (hv-E_{g})$ (Y-Y)

که در آن hv انرژی فوتون فرودی، E_g گاف نواری نمونه و A یک مقدار ثابت بین ¹⁻(Cmev) که در آن hv انرژی فوتون فرودی، E_g گاف نواری نمونه مورد نظر مستقیم تا ¹⁻ (Cmev) که گاف نواری نمونه مورد نظر مستقیم

باشد r = ۲ و اگر غیر مستقیم باشد r =۰/۵ خواهد بود، میتوان اندازه گاف نواری اپتیکی نمونه هارا بدست آورد.

از آنجایی که گاف نواری اکسید کادمیوم ایندیوم مستقیم است مقدار r = ۲ انتخاب می شود [۵۳٬۵۰]، برای بدست آوردن گاف نواری ابتدا نمودار ²(αhv) را بر حسب انرژی رسم کرده و سپس قسمت خطی نمودار در طول موج های بلند را برونیابی کرده و نقطه تلاقی آن با محور ۰۰ hv همان مقدار g خواهد بود.

شکل (۴–۶) نمودار ² (αhv) بر حسب hv و مقادیر گاف نواری برونیابی شده برای نمونه های 3S400 ، 3S400 ، 7S400 را نشان میدهد که مقادیر گاف نواری با گزارشات بابو¹و همکارانش [۵۹] و نیز گروه واک کاد [۴۵] در توافق است. با توجه به مقادیر بدست آمده مشاهده می شود که با افزایش تعداد دفعات لایه نشانی مقدار گاف نواری از حدود ۳/۱۷ev به مقدار ۲/۹۰ev (حدود ۲/۱۰)کاهش یافته است، همانطور که نتایج اندازه گیری های XRD نشان دادند با افزایش دفعات لایه نشانی اندازه متوسط بلور کها افزایش می یابد، لذا کاهش گاف نواری مشاهده شده در اندازه گیریهای طیف تراگسیل با آن در توافق است.

¹ P.Mohan Babu

شکل(۴-۶)- تغییرات گاف نواری برحسب انرژی فوتون برای نمونه های 58400،38400 و 78400.

با استفاده از نرم افزار پوما علاوه بر ضخامت لایه ها می توان ضریب شکست آنها را نیز محاسبه کرد.

مىدھد.

شکل (۴-۲)- نمودار تغییرات ضریب شکست بر حسب طول موج مربوط به نمونه های 58400،38400 و 78400.

با توجه به شکل همان طور که انتظارداریم مشاهده می گردد با افزایش طول موج مقدار ضریب شکست کاهش می یابد تا اینکه تقریباً درحدود مقدار ۲ ثابت می شود. می توان به کمک نتایج مربوط به ضریب جذب و فرمول (۲–۵۹) ضریب خاموشی لایه های تهیه شده را پیدا کرد.

در شکل (۴–۸) تغییرات ضریب خاموشی بر حسب طول موج برای نمونه های 38400 و در شکل (۴–۸) تغییرات ضریب خاموشی (۲–۵۹) مشاهده 78400 رسم شده است. با توجه به رابطه ضریب بین ضریب جذب و ضریب خاموشی (۲–۵۹) مشاهده می شود که مانند روندتغییرات ضریب جذب با افزایش طول موج ضریب خاموشی ابتدا کاهش یافتـه (تا حدود طول موج سام در بازه طول موجی ۱۱۰۳–۵۰۰ برای تمام نمونه ها تقریباً ثابت می شود.

شکل (۴–۸)- تغییرات ضریب خاموشی بر حسب طول موج برای نمونه های 38400 ، 58400 ، 78400.

۴-۴- مطالعه خواص فیزیکی اثر بازپخت در دماهای متفاوت لایه های نـازک CdIn2O4 تهیه شده به روش چرخشی

۴-۴-۱-بررسی خواص ساختاری لایه ها

چون در مرحله قبلی مشخص گردید که ساختار بلوری نمونه 58400 از کیفیت بهتری برخوردار است لذا تأثیر عملیات بازپخت روی این نمونه در بازه دمایی C°۳۰۰ تا C°۴۵۰ بررسی شده است. نمونه بازپخت شده با نمادهای 58300 ، 58350 ، 58400 و 58450 نامگذاری شده است که عدد سمت راست این نماد، نشان دهنده دمای بازپخت نمونه میباشد. شکل (۴–۹) طیف پراش پرتو ایکس نمونه های بدون بازپخت و بازپخت شده در دماهای C°۳۰۰ C°۳۰۰ و C°۴۵۰ را نشان میدهد.

ب)

(شکل ۴-۹)- طیف های پراش پرتو ایکس نمونه های(الف) بدون بازپخت و(ب) بازپخت شده.

همان طور که در این شکل دیده می شود نمونه ای که باز پخت روی آن صورت نگرفته است از لحاظ ساختاری تقریباً آمورف است و در حالی که نمونه هایی که تحت عملیات باز پخت در دما های مختلف قرار گرفته اند همگی دارای ساختار چند بلوری می باشند. برای این نمونه ها قله های ناشی از پراش از صفحات مربوط به ساختار بلوری مکعبی مرکز وجهی (FCC) اکسید کادمیوم ایندیوم با اندیس های میلر مشخص شدهاند. این نشان میدهد که ساختار بلوری تنها پس از عملیات بازپخت ایجاد شده است. برای نمونه 5S300 که در دمای C°۳۰ بازپخت شده است، تشکیل یک ساختار بلوری به خوبی روی طیف XRD قابل مشاهده است. حضور قله های نسبتاً ضعیف که با علامت * مشخص شدهاند میتواند نشانگر تشکیل فازهای ثانویه مربوط به حضور ناخالصی ها در لایه انباشت شده باشد.

با افزایش دمای بازپخت تا ℃[°]۰۰ ، شدت وابسته به قله های ساختار اکسید کادمیوم ایندیوم افزایش می یابند و سپس با افزایش بیشتر دمای بازپخت تا ℃[°]۰۵ مجدداً شدت قله ها علی الخصوص قله مربوط به راستای ترجیحی کاهش می یابد. این امر میتواند نشانگر این واقعیت باشد که دمای بهینه بازپخت برای بهبود ساختار بلوری این ترکیب دمای ℃[°]۰۰ است. با استفاده از رابطه ویلیامسون – هال (رابطه ۲-۳) مقادیر اندازه متوسط بلورکها و کرنش نمونه ها، برای نمونه های بازپخت شده در دماهای متفاوت بدست آمده اند و در جدول (۴-۴) گزارش شدهاند. این مقادیر نشان می دهند که با افزایش دمای بازپخت تا ℃[°]۰۰ اندازه متوسط بلورکها قدری افزایش مییابد و سپس

(جدول ۴-۴)- اندازه بلورکها و کرنش با استفاده از رابطهٔ ویلیامسون- هال برای نمونه های بازپخت شده.

نمونه	5S300	58350	58400	58450
اندازه بلورک (nm)	٨	18	١٩	۱۵
مقدار کرنش	•/••۵•۴	•/••1۵٩	•/••197	•/••731

¹ Face Center Cubic

۴-۴-۲ بررسی مورفولوژی نمونه ها

به منظور بررسی بیشترخواص ساختاری نمونه ها تصاویر FESEM آنها ثبت شده وبا یکدیگر مقایسه شدهاند شکل (۴–۱۰) تصاویر FESEM ثبت شده ازنمونه ها رانشان میدهد. دراین تصاویر مراحل تشکیل ساختار بلوری اکسید کادمیوم ایندیوم (CdIn₂O4) بخوبی دیده میشود.

در نمونه بازیخت نشده هیچ نظم بلوری مشخصی دیده نمیشود و در واقع به نظر می رسد که این نمونه آمورف باشد چنانچه تصاویر مربوط به پراش پرتوایکس نیز مؤید این واقعیت بود. اما برای نمونه بازیخت شده در دمای C°۳۰، هرچند که هنوز فاز خالص از اکسید کادمیوم ایندیوم تشکیل نشده و ذرات موجود برروی سطح به هم چسبیده بوده و قابل تفکیک نمی باشند ولی به نظر می رسد ساختار بلوری در حال شکل گرفتن است. با افزایش دمای بازیخت تا C°۳۵۰ مشاهده میشود که ساختار بلوری تقریباً شکل گرفتن است. با افزایش دمای بازیخت تا C°۳۵۰ مشاهده می شود که مشخصی بین ذرات آن وجود ندارد. با ادامه افزایش دمای بازیخت تا C°۳۰۰ مشاهده می گردد که اندازه دانه ها قدری بزرگتر و یکنواخت است و مرز بین دانه ها نیز به خوبی قابل تشخیص است. با اندازه دانه ها قدری بزرگتر و یکنواخت تر شده و مرز بین دانه ها نیز به خوبی قابل تشخیص است. با افزایش دمای بازیخت تا C°۴۰۰ مشاهده می گردد که یکنواختی لایه حفظ شده ولی اندازه دانه ها نسبت به نمونه بازیخت شده در دمای C°۴۰۰ کوچکتر میشود. این مشاهدات با نتایج حاصل از طیف پراش پرتو X (جدول ۴–۴) کاملاً در توافق میباشد.

(شکل ۴-۱۰)- تصاویر FESEM نمونه های بازپخت نشده(unannealed) و بازپخت شده در دماهای متفاوت.

۴-۴-۳- بررسی خواص اپتیکی

شکل (۴–۱۱) طیف تراگسیل اپتیکی نمونه های تهیه شده را نشان میدهد.

شکل(۴–۱۱)- طیف تراگسیل اپتیکی نمونه های بازپخت شده

همان طور که در شکل دیده می شود درصد عبور در نمونه باز پخت شده در $^{\circ}C$ ۳ از همه نمونه ها بیشتر است و نمونه ها کمتر است و درصد عبور در نمونه باز پخت شده در $^{\circ}C$ ۴۵۰ از همه نمونه ها بیشتر است و لبه جذب در همه نمونه های باز پخت شده به سمت طول موجهای کوچکتر جابجا شده اند. که بانتایج تحقیق واک کادوهمکار انش درراستای روند افزایش عبور با افزایش دمای باز پخت همخوانی دارد [۴۵].

این نتیجه با نتایج حاصل از اندازه گیری XRD در توافق است. باتوجه به اینکه همه نمونه ها به تعداد مساوی لایه نشانی شدهاند لذا ضخامت آنها یکسان می باشد اما همانطور که طیف XRD این نمونه ها نشان داده اند با افزایش دمای باز پخت ساختار بلوری بهبود می یابد و اندازه متوسط بلور کها افزایش می یابد لذا با افزایش اندازه بلورکها پراکندگی از مرز دانه ها کاهش یافته بنابراین عبور افزایش می یابد.

 $^{\circ}$ ضخامت لایه ها برای نمونه های بازپخت شده در دماهای $^{\circ}$ ۳۰۰ $^{\circ}$ و $^{\circ}$ ۳۵۰ و $^{\circ}$ ۴۰۰ و $^{\circ}$ ۴۰۰ و $^{\circ}$

با داشتن مقادیر مربوط به ضخامت و با استفاده از رابطه (۲-۴) می توان ضریب جذب α این نمونه ها را پیدا کرد . شکل (۴–۱۲) نمودار ضریب جذب این نمونه ها را بر حسب طول موج نشان می دهد.

شکل (۴–۱۲) نمودار ضریب جذب نمونه های بازپخت شده

همان طور که در شکل (۴–۱۲) دیده می شود با افزایش دمای باز پخت لبه جذب به سمت انرژیهای بیشتر (طول موجهای کمتر) جابجا شده است.

برای تخمین اندازه گاف نواری اپتیکی نیز می توان از رابطه (۴–۲) و استفاده نمود. نتایج محاسبه در شکل (۴–۱۲) نشان داده شده است.

شکل(۴-۱۳)- تغییرات ومقادیر گاف نواری برحسب انرژی فوتون برای نمونه های بازپخت شده

همان طور که در این شکل گزارش شده است به طور کلی با افزایش دمای بازپخت گاف نـواری اپتیکی از مقدار حدود ۲/۸ ev به مقدار حدود ۳/۱ ev افزایش می یابد که این افزایش ممکـن اسـت بخاطر کاهش تراکم حاملها باشد مطابق با گزارشی ازتحقیق گروه واک کاد وهمکارانش [۴۵].

در شکل (۴–۱۴) که نشانگر چگونگی رفتار ضریب شکست بر حسب طول موج برای نمونه های 58300 ، 58300 و 58400 میباشد ، مشاهده می گردد که با افزایش طول موج ،ضریب شکست کاهش یافته و سپس ثابت شده است که یک رفتار کاملاً طبیعی است. لیکن مقدار ضریب شکست برای نمونه های مختلف بین ۱/۷۵ تا ۲/۲۵متغیر است و همان طور که قبلاً بیان شد نمونه شکست برای نمونه های مختلف بین ۱/۷۵ تا ۲/۲۵متغیر است و همان طور که قبلاً بیان شد نمونه شکست برای نمونه های مختلف بین ۱/۷۵ تا ۲۰۲۵متغیر است و مین طور که قبلاً بیان شد نمونه شکست برای نمونه های مختلف بین ۱/۷۵ تا مونه باید دارای ضریب شکست کمتری نسبت به بقیه نمونه ها باشد که درشکل(۴–۱۴) در محدوده طول موج مرئی این نمونه کمترین مقدار ضریب شکست (درحدود/۱)رادارا میباشد.

شکل(۴-۱۴)- تغییرات ضریب شکست برای نمونه های 58300 ، 58400 و 58450.

همچنین رفتار ضریب خاموشی برای این نمونه ها بررسی شده است و نتایج ان در شکل (۴–۱۵) امده است. همان طور که در این شکل دیده می شود با افزایش دمای باز پخت ضریب خاموشی نمونه ها کاهش می یابد و این مسأله می تواند ناشی از کاهش میزان جذب با افزایش دمای باز پخت باشد.

شكل(۴-۱۵)- ميزان تغييرات ضريب خاموشي نمونه ها ي 58300 ، 58350 ، 58400 و 58450.

۴-۵- مطالعه خواص فیزیکی لایه های نازک CdIn2O4 تهیـه شـده بـه روش غوطه وری

نمونه های مطالعه شده در این قسمت با روش سل-ژل و تکنیک غوطه وری آماده شدند. ابتدا سل مورد نیاز به روش اشاره شده در بخش (۴–۲–۲) تهیه شد و سپس سه نمونه با تعدا دفعات لایـه نشانی متفاوت آماده شدند. نمونه ها پس از هربار لایه نشانی بـه مـدت ۱۰ دقیقـه در دمای $^\circ$ ۱۱۰ تحت عملیات خشک سازی قرار گرفتند. نمونه با شماره 3D400 با سه بار غوطه وری و نمونه با شماره 5D400 با پنج بار غوطه وری و نمونه با شماره 7D400 با هفت بار غوطه وری تهیه شدند. تمامی نمونه ها در دمای $^\circ$ ۴۰۰ به مدت یک ساعت تحت عملیات بازپخت قرار گرفتند.

۴-۵-۱- بررسی خواص ساختاری لایه ها

برای بررسی خواص ساختاری نمونه ها، اندازه گیری XRD سری آنها انجام شد. طیف پراش اشعه ایکس این نمونه ها در شکل (۴-۱۶) نشان داده شده است.

شکل(۴–۱۶)- طیف های پراش پرتو ایکس نمونه های 5D400، 3D400 و 7D400.

همان طور که در این شکل دیده می شود نمونه شماره 5D400 دارای بیشترین تعداد قله پراش می باشد که شدت قله های آن نسبت به دو نمونه دیگر بیشتر و همچنین در تمامی نمونه ها شدت قله ناشی از پراش از صفحات (۳۱۱) از سایر صفحات بیشتر است. بنابراین می توان این راستا را به عنوان راستای ترجیحی تشکیل بلور در نظر گفت. برای این نمونه ها اندازه بلور کها را با استفاده از رابطه دبای شرر برای قله ناشی از پراش صفحات (۳۱۱) (که پارامترهای آن دربخش ۲-۲-۱ معرفی شده اند) بدست آورده ایم [۵۰].

 $\beta \cos = k\lambda / D$ (f-f)

نتایج بدست آمده در جدول (۴–۵) گزارش شده است.

جدول (۴–۵)- اندازه بلورکها با استفاده از رابطه دبای شرر برای قله ناشی از پراش صفحات (۳۱۱)برای نمونه ها

نمونه	3D400	5D400	7D400
اندازہ بلورک (nm)	١۵	١٩	١٧

همان طور که این نتایج نشان میدهد با افزایش تعداد دفعات غوطه وری از سه بار به پنج بار، اندازه بلورکها افزایش می یابد و سپس برای نمونه ای که تحت هفت بار عمل لایه نشانی قرار گرفته است دوباره قدری کاهش یافته است. این نتایج نشان میدهد که نمونه 5D400 از نظر ساختاری نسبت به دو نمونه دیگر از کیفیت بهتری برخوردار است.

با استفاده از فرمول براگ (۲–۱) و رابطه (۲–۲–الف) ثابتهای شبکه این نمونه ها را می توان محاسبه نمود. این محاسبه نشان میدهد که که مقدار متوسط ثابت شبکه نمونه ها a= ۹/۱۱۵ nm است که در توافق بسیار خوبی با مقادیر گزارش شده از کارتهای استاندارد JCPDS (mm) JCPD (می باشد. می باشد.

۲-۵-۴ بررسی خواص اپتیکی نمونه ها

برای بررسی خواص اپتیکی نمونه ها ، ابتدا طیف تراگسیل اپتیکی نمونه های مورد نظر در بازه

طول موجی ۳۰۰ nm تا ۱۱۰۰ اندازه گیری شد که در شکل (۴–۱۷) نشان داده شده است.

شکل (۴–۱۷)- طیف تراگسیل اپتیکی نمونه های 5D400،3D400 و 7D400.

همان طور که در این شکل مشاهده می شود با افزایش تعداد دفعات غوطه وری میزان عبور کاهش یافته (حدوداً به میزان ۱۷٪) و لبه جذب به سمت انرژی های کمتر جابجا می شود. چون افزایش دفعات غوطه وری می تواند منجر به افزایش ضخامت لایه های انباشت شده گردد، لذا کاهش میزان طیف تراگسیل ممکن است ناشی از افزایش ضخامت لایه باشد. از سوی دیگر همان طور که نتایج اندازه گیری های XRD نشان داد اندازه بلورکهای نمونه 5D400 از سایر نمونه ها اندکی بزرگتر است، بنابراین انتظار داریم برای این نمونه پراکندگی موج الکترومغناطیسی از سایر نمونه ها بی شتر بوده و بنابراین درصد عبور برای آن نیز بیشتر شود.

با استفاده از داده های عبور ، ضریب جذب و ضریب خاموشی برای این نمونه ها بدست آمده است و نتایج آن در شکل های (۴–۱۸) و (۴–۱۹) نشان داده شده است.

شکل(۴–۱۸)-ضریب جذب لایه های انباشت شده به روش غوطه وری باتعداددفعات متفاوت.

شکل(۴-۱۹)- ضریب خاموشی لایه های انباشت شده به روش غوطه وری باتعداددفعات متفاوت.

همچنین با استفاده از مقادیر ضریب جذب نمونه ها، گاف نواری نمونه ها با استفاده از برون یابی خطی منحنی ²(αhv) بر حسب انرژی تخمین زده شده است که مقادیر بدست آمده با گاف نواری گزارش شده در مقالات [۵۹و۵۹] در توافق است. همان طور که نتایج اندازه گیری های طیف پراش پرتو X نشان داد اندازه بلورکها برای نمونه 5D400 اندکی بزرگتر بود و در نتیجه انتظار داریم گاف نواری اپتیکی آن نسبت به دو نمونه دیگر نیز قدری کوچکتر باشد.

شکل (۴-۲۰)-مقادیر گاف نواری لایه های انباشت شده به روش غوطه وری باتعداددفعات متفاوت.

۴-۶- مطالعه خواص فیزیکی اثر بازپخت در دماهای متفاوت لایه های نـازک CdIn₂O₄ تهیه شده به روش غوطه وری

در این قسمت ابتدا چهار نمونه به روش اشاره شده در قسمت قبل (۴–۵) تهیه شدند . تعداد دفعات غوطه وری در این نمونه ها ۵ بار بوده است و سپس هر کدام از این نمونه ها در دماهای °C (5D300)۳۰۰ (5D30050) ۴۰۰°C، (5D30050) و °C ۴۵۰ (5D450) تحت عملیات بازپخت قرار گرفته اند و خواص ساختاری و اپتیکی آنها مورد بررسی قرار گرفته است.

۴-۶-۱- بررسی خواص ساختاری نمونه ها

برای بررسی خواص ساختاری نمونه ها طیف های پراش پرتو ایکس آنها در بازه ۲۰-۲۰ درجه ثبت گردید و نتایج آن در شکل(۴-۲۱) نشان داده شده است.

شکل ۴-۲۱- طیف پراش پرتو ایکس برای نمونه های بازپخت شده در دماهای C، ۳۰۰°C، ۳۵۰°، C، ۴۰۰° و C° ۴۵۰

همان گونه که در این شکل مشاهده میشود، تمامی نمونه های بازپخت شده دارای ساختار چند بلوری می باشند و راستای ترجیحی تشکیل بلورها ، راستای(۳۱۱) است . طیف XRD ثبت شده برای نمونه بازپخت 5D300 نشانگر تشکیل فازهای ناخالصی در این نمونه است که روی طیف پراش اشعه ایکس ، آنها را با علامت * مشخص کرده ایم. الگوی طیف XRD نمونه ها نشان میدهد که ابتدا با افزایش دمای بازپخت تا 2°۴۰۰ ساختار بلوری دارای کیفیت بهتری نسبت به نمونه های بازپخت شده در دماهای 2°۰۰۰ و 2°۲۰۰ دارد. همن طور که در شکل (۴–۲۱) دیده میشود با افزایش بیشتر دمای بازپخت تا 2°۴۰۰ حادرد. همن طور که در شکل (۴–۲۱) دیده میشود با افزایش میدهد که تشکیل ساختار بلوری کاملاً به عملیات بازپخت و نیز دمای بازپخت وابسته است. اندازه میدهد که تشکیل ساختار بلوری کاملاً به عملیات بازپخت و نیز دمای بازپخت وابسته است. اندازه متوسط بلورکها و همچنین مقادیر کرنش مربوط به این نمونه ها را با استفاده از رابطه ویلیامسون–هال افزایش دمای بازپخت تا $^\circ C$ ۴۰۰ اندازه متوسط بلور کها و کرنش موجود در لایه ها افزایش و سپس با افزایش دما تا $^\circ C$ ۴۵۰ این مقادیر کاهش یافته می یابند.

جدول (۴-۶)- اندازه متوسط بلورکها و میزان کرنش با استفاده از رابطهٔ ویلیامسون- هال برای نمونه های بازپخت شده دردماهای ۳۰۰، ۴۰۰۰۴و۴۵۰۹درجه سانتی ئگراد.

نمونه	اندازه متوسط بلورک (nm)	مقداركرنش
5D300	۱۵	•/•• ١٨٨
5D350	١٧	•/••١٩٣
5D400	۲۰	•/••۴١۶
5D450	١٩	•/••744

۴-۶-۲-بررسی خواص اپتیکی نمونه ها

شکل (۴-۲۲) طیف تراگسیل اپتیکی نمونه ها را پس از عملیات باز پخت نشان میدهد.

شكل(۴-۲۲)- طيف تراگسيل اپتيكي نمونه هاي 5D450.5D400.5D350.5D300.

همان طور که مشاهده می گردد عبور متوسط نمونه ها در ناحیه طول موجی ۳۳ ۵۰۰ تا ۳۳ همان طور که مشاهده می گردد عبور متوسط نمونه بازپخت شده در دمای C°۳۰۰ از همه کمتر و برای نمونه بازپخت شده در دمای C°۳۰۰ از همه بیشتر است. این نتیجه با نتایج حاصل از اندازه گیری های لیونه بازپخت شده در دمای C°۲۰۰ از همه بیشتر است. این نتیجه با نتایج حاصل از اندازه گیری های TRD در توافق میباشد. همچنین منحنی های طیف تراگسیل نشان می دهند که با افزایش دمای بازپخت لبه جذب به سمت انرژی های بیشتر جابجا شده است از سوی دیگر کاهش با افزایش دمای بازپخت در دمای C°۰۰ ممکن است بیانگر افزایش زبری سطح این نمونه نیز باشد که باشد که برای بررسی بیشتر آن نیاز به مقادیر مربوط به AFM میباشد.

با استفاده از داده های عبور، ضریب جذب نمونه ها نیز محاسبه گردید و از آنجا گاف نواری نمونه ها بدست آمد. شکل (۴–۲۳–الف) نمودار ضریب جذب بر حسب طول موج و شکل(۴–۲۳–ب) نمودار تغییرات^۲(αhv) را برحسب انرژی فوتون فرودی برای مقادیر مختلف دمای بازپخت نمونه های مذکور همراه با مقادیر گاف نواری نشان می دهد.

شكل(۴-۲۳ -الف)- ضريب جذب بر حسب طول موج نمونه هاى 5D450.5D400.5D350.5D300

شکل(۴-۲۳ -ب)- ^۲(ahv) بر حسب انرژی نمونه های 350،5D300،5D300 (ahv)

همان طور که از شکل (۴–۲۳-الف) پیداست لبه جذب برای دماهای C°۳۰۰ تا C°۴۰۰ به مقدار اندکی به سمت طول موجهای کمتر جابجا شده واین امر باعث کاهش دراندازه گاف نواری می شود ولی ازدمای ۴۵۰تا ۴۵۰ گاف نواری افزایش یافته است واین امر شاید به دلیل کاهش تراکم حاملها باشد،ذکراین دلیل بنا به گزارش گروه واک کاد وهمکارانش[۴۵] می باشد.

شکل (۴–۲۴) که رفتار ضریب شکست بر حسب طول موج را برای نمونه های 5D300، 5D300، 5D300 5D400، 5D450 نشان میدهد، حاکی از آن است که در بازه طول موجی ۸۰۰ m تا ۱۱۰۰ تا نمونه 5D400که از ساختار بهتری نسبت به دیگر نمونه ها برخوردار است، ضریب شکست کمتری داشته و در این بازه طول موجی ، مقدار ثابت تقریباً برابر ۱/۸۰ =n را دارا میباشد.

شکل(۴-۲۴)- منحنی ضریب شکست بر حسب طول موج برای نمونه های 5D450.5D400.5D350.5D300

۴-۷- بررسی اثر فرایند خشک سازی برکیفیت اپتیکی ومورفولوژی نمونه ها

یکی از مهمترین فرایند های حاکم در روش سل-ژل عملیات خشک سازی است . پس از هر بار لایه نشانی به منظور شکل گیری ساختار بلوری یک لایه و عملیات لایه نشانی بعدی، فرایند خشک سازی انجام می گیرد. در واقع اگر لایه ابتدائی به طور کامل خشک نشود، دومین لایه، لایه بعدی را به سمت پایین کشیده و سب کاهش ضخامت میشود و یا ممکن است باعث از بین رفتن یکنواختی لایه ها گردد. همچنین در مرحله خشک سازی، بسیاری از پیش ماده ها، تبخیر می شوند. حتی در این مرحله آب و بخشی از حلال ها نیز تا حدودی از بین می روند؛ بنابراین در حین عملیات بازپخت، ناخالصی کمتری در لایه وجود داشته و این مسأله باعث میشود که لایه یکنواختی خود را حفظ کند زیرا اگر ناخالصی ها در طی فرایند خشک سازی کمتر نشده باشند، در حین عملیات بازپخت ممکن که وجود این حفره ها ممکن است موجب تغییر در خواص لایه ها گردد. بنابراین فرایند خشک سازی یکی از عواملی است که در بالا بردن کیفیت لایه ها موثر است.

لذا در این قسمت به بررسی خواص اپتیکی نمونه هایی می پردازیم که با دو روش کوره الکتریکی و لامپ IR تحت عملیات خشک سازی واقع شدهاند.

به منظور بررسی اثر فرایند خشک سازی روی خواص اپتیکی نمونه ها ، طیف های تراگسیل آنها را در بازه طول موجی ۳۵۰ nm تا ۱۱۰۰ ثبت شده است و نتایج آن در شکل (۴–۲۴) نـشان داده شده است .

شکل(۴–۲۵)- طیف تراگسیل عبوری مربوط به دو نمونه خشک سازی شده به روش لامپ IRو کوره

همان طور که در این شکل(۴–۲۵) دیده می شود میزان عبور در نمونه ای که با لامپ IR خـ شک سازی شده است نسبت به نمونه ای که از طریق کوره خشک سازی شده است، اندکی افـزایش یافتـه است. این امر ممکن است به دلیل بهتر بودن فرایند خشک سازی با لامـپ IR در مقایـسه بـا خـ شک سازی در کوره الکتریکی باشد زیرا ممکن است در حین انتقـال لایـه هـا بـه محـل کـوره الکتریکی، ناخالصی های موجود در اتمسفرجو روی سطح لایه چسبیده و این امر باعث افزایش زبری سطح نمونه گردد و در نتیجه پراکندگی نور از سطح آن افزایش یافته ودرنتیجه عبور قدری کاهش می یابد. همچنین لبه جذب برای نمونه خشک شده با لامپ IR اندکی به سمت طول موجهای کوچکتر جابجا شده است.

ضخامت نمونه ها که از طریق نرم افزار پوما و طیف عبور محاسبه گردید برای نمونه خشک سازی شده به روش لامپ IR مقدارمتوسط ۸۰ nm و برای نمونه 5S400 مقدار متوسط ۱۳۳۸را تخمین زده است.

در شکل (۴–۲۶) گاف نواری اپتیکی با برون یابی خط موجود در طول موجهای بلنـد در منحنـی ^۲(αhv) بر حسب hv در محل hv=0 بدست آمده است.که مشابه گزارشی در مقالـه[۴۴]مـیباشـد. گاف نواری اپتیکی در روش خشک سازی توسط لامـپ IR بـه میـزان تقریبـی (۴۰mev) بیـشتر از حالتی شده است که توسط کوره خشک سازی صورت گرفته است.

شکل(۴-۲۶)- مقادیر گاف نواری نمونه های خشک سازی شده باروش لامپ IRوکوره الکتریکی

همچنین به منظور بررسی ساختار این نمونه ها تصاویر FESEM از آنها تهیه شده است که در

شکل (۴–۲۴) این نشان داده شده است. همانطور که دراین دوشکل دیده میشود هردونمونه دارای ساختاردانه ای یکنواختی بوده که اندازه متوسط این دانه ها درحدود ۳۰nm میباشد. این دانه ها درحدود تار می باشد. این دانه ها درحدود ۳۰nm میباشد. این دانه ها درمدون می باشند که درسراسر سطح زیرلایه به طور یکنواخت واحت توزیع شدهاند. برای بززسی راستای تشکیل این بلورکها اندازه گیریهای TRD موردنیاز میباشد که متاسفانه فرصت انجام آن میسر نشده است.

شکل(۴–۲۷)- تصاویر FESEM مربوط به نمونه های خشک سازی شده باروش لامپ IRوکوره الکتریکی. درادامه برای بررسی بیشتر اکسیدکادمیوم ایندیوم(CdIn₂ O₄) اقدام به تهیه پودرهای این اکسید نموده ایم.

۸-۴- چگونگی تهیه پودرهای اکسید کادمیوم ایندیوم (CdIn₂ O₄)

به منظور تهیه پودر، سل مورد نظر را که در بخش (۴–۲–۲) چگونگی تهیه آن بیان شده است. جهت تبدیل سل به ژل برای مدت دو ماه در دمای اتاق در محیط آزمایشگاه قرارداده ایم. در این هنگام سل به آرامی به یک ماده ژلاتینی نیمه جامد که ژل نامیده میشود تبدیل شد. سپس ژل حاصل را در دمای² ۱۱۰ درون کوره الکتریکی قرارداده ایم تااینکه ماده ای جامد متخلخل با خلل و فرج زیاد و چگالی بسیار پایین به نام آیروژل ایجاد شد. سپس آنرا برای مدت ۴ساعت دردمای[°] ۴۰۰ تحت عملیات خشک سازی قرار دادیم. سپس پودرهای تهیه شده، در دماهای ۷۰۰ ، ۸۰۰ و ۹۰۰ درجه سانتی گراد بازپخت شدند که درادامه خواص ساختاری پودرهای تهیه شده مورد بررسی قرارگرفته است.

۴–۸−۴– بررسی خواص ساختاری پودرهای اکسید کادمیوم ایندیوم (CdIn₂ O₄))

جهت بررسی خواص ساختاری نمونه های پودری، طیف پراش پرتو ایکس آنها ثبت شده است. در شکل (۴–۲۹) طیف های نوعی ثبت شده برای سه نمونه پودری اشاره شده نـشان داده شـده اسـت.. وجود قله های پراش متعدد در این طیفها گویای چند بلوری بودن نمونه ها است. همانطور که در این شکل دیده می شود، دردمای[°]۲۰۰ بجـز دو قلـه ضـعیف در راسـتاهای (۳۳۳) و (۶۲۰)، هـیچ قلـه دیگری که مربوط به راستای چند بلوری (CdIn2O4) باشد، مشاهده نمی شود و قله های پراش مربوط به تشکیل فازهای ثانوی قابل رویت هستند. اگرچه بـا افـزایش دمـای بازیخـت تـا C °۸۰۰ ، سـاختار مکعبی اکسید کادمیوم ایندیوم (CdIn2O4)، باراستای ترجیحی (۳۱۱) شکل می گیرد لیکن هنوز قله های مربوط به فازهای ناخالص قابل رویت است که فازهای ناخالصی روی الگوی پراش با علامت * نشان داده شدهاند. با افزایش بیشتر دمای بازپخت تاC°۹۰۰ مشاهده مے،شود که قله های یراش مربوط به ساختار مکعبی (CdIn₂O4) کاملاً آشکار شده و فازهای ثانوی که تا پیش از ایـن دمـا قابـل رویت بودند، ناپدید می شوند. در واقع مشاهده می شود که با افزایش دمای بازپخت شدت قله های پراش وابسته به ساختار چند بلوری اکسید کادمیوم ایندیوم به طور قابل توجهی افزایش یافته است و در نتیجه پهنای قله های حاصل از پراش پرتو ایکس درنیمه ماکزیمم علی الخصوص در راستای ترجیحی تشکیل بلور کاهش یافته است که این امر با توجه به رابطه دیای - شرر (۴-۴) می تواند بيانگر افزايش اندازه بلوركها ودر نتيجه افزايش كيفيت ساختاري ماده باشد. مقادیر مربوط به اندازه بلورکها برای راستای ارجح (۳۱۱) باتوجه به رابطه دبای – شرر برای پودر $^{\circ}C$ مقادیر مربوط به اندازه بلورکها برای راستای ارجح (۳۱۱) باتوجه به رابطه دبای – شرر برای پودر $^{\circ}C$ بازپخت شده دردمای $^{\circ}C$ و برای پودر بازپخت شده دردمای $^{\circ}C$ بازپخت شده برای آی مقدار برابر D=۳۷/۹۴۷ nm تخمین زده شده است. با توجه به روابط (۲–۱)و(۲–۲–الف) مقدار ثابت شبکه برای آن دو نمونه به ترتیب برابر a=۹/۲۱۸nm و ۹/۱۳۴nm و محاسبه گردید.

شکل(۴−۲۹)- طیف های پراش پرتو ایکس نمونه های پودری بازپخت شده دردماهای ^C ۲۰۰٬ ^C ۲۰۰٬ و ^C ۹۰۰۰ و C

۴-۸-۴ بررسی مورفولوژی پودرهای تهیه شده به روش سل-ژل

برای بررسی بیشتر ساختار نمونه های بازپخت شده از آنها تصاویر FESEM تهیه شد. این تصاویر برای نمونه های بازپخت شده دردماهای ۲۰۰،۸۰۰ و ۹۰۰ درجه سانتی گراد در شکل(۴–۳۰) نشان داده شده است. همانطور که در این تصاویر دیده میشود، در نمونه بازپخت شده در دمای C° نشان داده شده است. هانطور که در این تصاویر دیده میشود، در نمونه بازپخت شده در دمای T* FESEM انجام شده، اندازه ه متوسط این رذات بین حدود ۸۰ تا ۲۰۰ نانومتر می باشد که غالباً
مربوط به تشکیل فازهای ثانویه می باشد. با افزایش دمای بازپخت تا $C^{*} \cdot T^{=}$ ، کیفیت تصویر کاملاً تغییر کرده و ذرات نسبتاً کروی شکل و منظمی سراسر منطقه تصویر برداری شده را در بر گرفته اند. اندازه متوسط این دانه ها در حدود mn ۶۵ می باشد. البته در لابلای این دانه ها هنوز ذرات غیر یکنواخت نیز مشاهده می شود که مربوط به تشکیل فازهای ثانویه دیگری غیر از اکسید کادمیوم ایندیوم (نظیر اکسید کادمیوم و اکسید ایندیوم) می باشند. در تصاویر بین ذرات حفره هایی نیز قابل مشاهده هستند. باافزایش بیشتر دمای بازپخت تا $C^{*} - 9$ رشد دانه ها کاملاً قابل مشاهده می باشد. در این تصاویر دانه های به هم چسبیده با اندازه های متوسطی در حدود ۲۰۰m می باشد. در این تصاویر دانه های به هم چسبیده با اندازه های متوسطی در حدود ۲۰۰m می باشد. در این تصاویر دانه های به هم چسبیده با اندازه های متوسطی در حدود ۲۰۰m می باشد. در این تصاویر دانه های به هم چسبیده با اندازه های متوسطی در حدود ۲۰۰m می باشد. در این تصاویر دانه های به هم چسبیده با اندازه های متوسطی در حدود ۲۰۰m شود با نتایج حاصل از اندازه گیری های طیف پراش اشعه X کاملاً در توافق میباشد.

شکل(۴-۳۰)-تصاویر FESEM نمونه های پودری بازپخت شده دردماهای C ،۷۰۰[°]C و ۹۰۰[°].

۴-۹-تهیه لایه های نازک اکسید کـادمیوم اینـدیوم (CdIn2 O4) بـه روش تجزیـه گرمای افشانه ای

با توجه به اینکه روش رشد نمونه یکی از مواردی است که میتواند روی کیفیت و در نتیجه خواص فیزیکی آن تأثیر قابل توجهی داشته باشد، لذا در این پایان نامه بر آن شدیم که علاوه بر رشد لایه های اکسید کادمیوم ایندیوم به روش سل-ژل، نمونه هایی نیز به روش تجزیه گرمایی افشانه ای رشد داده و سپس خواص فیزیکی آنها را بررسی و مقایسه نماییم. در این روش برای تهیه محلول اولیه، ابتدا مقدار gr/mo1 ۲۶۶/۵۲ را استات کادمیوم (۲۰۲۵۰ مولار) با جرم مولی ۲۶۶/۵۲ gr/mo1 را در Im ۵ آب دوبار یونیزه حل شد تا کاملاً شفاف شد و سپس آن، با محلول دیگری که از حل gr gr ما ۸۰ آب دوبار یونیزه حل شد تا کاملاً شفاف شد و سپس آن، با محلول دیگری که از حل gr gr/no1 در Im ۵ آب دوبار یونیزه حل شد تا کاملاً شفاف شد و سپس آن، با محلول دیگری که از حل gr gr ما ۸۰ آب دوبار یونیزه حل شد تا کاملاً شفاف شد و سپس آن، با محلول دیگری که از حل gr gr ما ۲۹۱/۹۰ استات ایندیوم (۲۰۲۵۰ مولار) با جرم مولی ۲۹۱/۹۵ و در Im ۱۰۰ آب دو بار یونیزه بدست آمد ، مخلوط گردید. محلول حاصل به مدت ۴ ساعت توسط همزن مغناطیسی هم زده شد تا اینکه کاملاً شفاف شد. قبل از عمل لایه نشانی پارامتر های مربوط به دستگاه اسپری نیز تنظیم شد تا اینکه کاملاً شفاف شد. در سنتز نمونه های تهیه شده به این روش ، فاصله نازل تا زیـر لایـه ma منز تنظیم صفحه داغ دستگاه اسپری ۱۰ دور بر دقیقه، آهنگ اسپری ۵ میلی لیتر بر دقیقه، فشار گاز حامـل (مفحه داغ دستگاه اسپری ای و مرای گار ۲۹ سایت توسط همزن مغناطیسی هم زده محد تا اینکه کاملاً شفاف شد. قبل از عمل لایه نشانی پارامتر های مربوط به دستگاه اسپری نیز تنظیم موجد داغ دستگاه اسپری ۱۰ دور بر دقیقه، آهنگ اسپری ۵ میلی لیتر بر دقیقه، فشار گاز حامـل (مخحه داغ دستگاه اسپری ۱۰ دور بر دقیقه، آهنگ اسپری ۵ میلی لیتر بر دقیقه، فشار گاز حامـل (موجه داغ دستگاه اسپری ۱۰ دور بر دقیقه، آهنگ اسپری ۵ میلی لیتر بر دقیقه، فشار گاز حامـل (موج) ۲/۸ بار و دمای زیرلایه ۲

سپس نمونه های تهیه شده در دماهای مختلف C °۳۵۰ ، C °۴۰۰ ، C ۴۵۰ برای مدت ۲ ساعت تحت عملیات بازپخت قرار گرفتند و سپس در ادامه خواص ساختاری و اپتیکی نمونه ها با استفاده از اندازه گیری های طیف تراگسیل و تصاویر FESEM ثبت شده مورد بررسی قرار گرفته است.

FESEM بررسی خواص ساختاری نمونه ها با استفاده از تصاویر FESEM

جهت بررسی ساختار نمونه ها از تصاویر FESEM ثبت شده استفاده شد، که نتایج آن در شکل (۲۰–۳۱) نشان داده شده است. همان طور که در این تصاویر دیده می شود، شکل و ابعاد دانـه هـا بـه طور محسوسی تحت تأثیر دمای بازپخت قرار می گیرند. مثلاً برای نمونه بازپخت شـده در دمـای C° ۳۵۰ دانه هایی تقریباً هم شکل با مقطع دایروی و اندازه متوسط در حدود nm ۱۵ قابل رویت اسـت

شکل(۴-۳۱) تصاویر FESEM نمونه های بازپخت شده در دماهای متفاوت.

۴–۹–۲–۲–بررسی خواص اپتیکی نمونه ها

برای بررسی خواص اپتیکی نمونه ها ، طیف ترا گسیل آنها در بازه طول موجی ۳۰۰ تا ۱۱۰۰ نانومتر اندازه گیری شد. شکل (۴–۳۲) طیف تراگسیل اپتیکی نمونه های بازپخت شده در دماهای[°] ۴۰۰۰ و [°]۴۵۰ را نشان می دهد.

شکل(۴-۳۲)-طیف تراگسیل نمونه های تهیه شده به روش تجزیه گرمایی افشانه ای پس ازبازپخت.

همان گونه که این نتایج نشان میدهد، عبور متوسط این نمونه ها حدود ۸۰٪ میباشد و عملیات بازپخت باعث افزایش اندکی (حدود ۵٪)در میزان عبور در ناحیه اندازه گیری طیف تراگسیل شده است. بنا بر این از نظر اپتیکی درصد عبور نمونه ها قابل توجه میباشد. این نتیجه با نتایج گروه دووکات برای نمونه بازپخت شده که با همین روش تهیه شده بود مطابقت داشت [۵۰]. همچنین نتایج حاصل کار میندوزا و همکارانش [۴۳] و گروه واک کاد [۴۵] با این نتیجه مطابقت می کن . میزان عبور از ۸۷٪ در نمونه بازپخت شده در دمای ۲ °۰۵ تا ۸۳٪ برای نمونه بازپخت شده در دمای °۴۵۰ تغییر می کند. ممکن است به دلیل تفاوت ضخامت لایـه هـای مطالعـه شـده باشـد. مقـادیر تخمین ضخامت لایه که با استفاده از نرم افزار پوما تعیین شده است در جدول (۴–۷) آمده است.

با توجه به شکل (۴=۳۲) به نظر می رسد لبه جذب نیز برای همه نمونه ها در نزدیکی طول موج حدود ۳۸۰ nm رخ می دهد.

جدول(۴-۷)-میزان ضخامت نمونه های تهیه شده به روش تجزیه گرمایی افشانه ای پس ازبازپخت.

40.	4	۳۵۰	دما (درجه سانتی گراد)
170	13.	14.	ضخامت (nm)

در ادامه با استفاده از داده های طیف تراگسیل ضریب جذب نمونه ها به کمک رابطه (۲-۴) تعیین شده است که نتایج آن در شکل (۴–۳۳) نشان داده شده است.

شکل(۴-۳۳)- ضریب جذب نمونه های تهیه شده به روش تجزیه گرمایی افشانه ای پس ازبازپخت.

همان طور که در این شکل دیده میشود جذب در نزدیکی لبه جذب به طور ناگهانی کاهش می یابد و در انرژی های کوچکتر از لبه جذب برای تمام نمونه ها به حداقل رسیده و ثابت میشود.

با استفاده از داده های جذب و رابطه (۴–۲) مقادیر گاف نواری مستقیم نمونه ها بدست آمده است. تغییرات گاف نواری با تغییر دمای بازپخت حدود ۸۰ mev میباشد. گاف نواری بدست آمده برای این نمونه ها (نزدیک ev ۴) با گزارشات گروه سان و همکارانش [۵۴] همخوانی دارد. کاهش گاف نواری با افزایش دمای بازپخت ممکن است به دلیل افزایش اندازه بلورک ها باشد . شکل (۴–۳۴) مقدار گاف نواری برای این نمونه ها را نشان می دهد.

شکل(۴-۴)-منحنی ²(ahv) برحسب انرژی و مقادیر گاف نواری نمونه های تهیه شده

به روش تجزیه گرمایی افشانه ای پس ازباز پخت.

۴-۹-۴- بررسی اثر تغییر غلظت بر خواص لایه های نازک اکسید کادمیوم ایندیوم

که در آن η ویسکوزیته، ρ چگالی و t زمان گرانروی^۱ است. با توجه به این رابطه با افزایش غلظت (چگالی همان جرم واحد حجم است که معادل با غلظت می باشد) افزایش ویسکوزیته را خواهیم داشت. به این ترتیب با افزایش ویسکوزیته افزایش چسبندگی و در نتیجه افزایش ضخامت را در نمونه ها خواهیم داشت. علی رغم رابطه فوق که نشان دهنده تغییرات غلظت با گرانروی است، ساختار پلیمری سل ها نیز در افزایش گرانروی بسیار موثر می باشند. با افزایش غلظت طول زنجیره های پلیمری بلندتر شده و در نتیجه گرانروی نیز افزایش می یابد. بنابراین درایان بخش به بررسی اثر غلظت پرداخته ایم.

دراین قسمت محلول مورد استفاده به همان روشی که در بخش (۴–۹) ذکر شد در حجم ۳۵ ۲۵ تهیه گردید. به منظور این بررسی با تغییر غلظت استات کادمیوم واستات ایندیوم به طور یکسان در محلول نهایی، به بررسی اثر تغییر پارامتر غلظت پرداختیم. نسبت های به کار گرفته شده در این آنالیز عبارت بودند از : غلظت M محلول نهایی، به نما موجود مقادیر استات کادمیوم واستات ایندیوم به طور یکسان در محلول نهایی، به بررسی اثر تغییر پارامتر غلظت پرداختیم. نسبت های به کار گرفته شده در این آنالیز عبارت بودند از : غلظت M کادمیوم واستات ایندیوم به طور یک محلول نهایی، به بررسی اثر تغییر پارامتر غلظت پرداختیم. نسبت های مای به کار گرفته شده در این آنالیز عبارت بودند از : غلظت M کادمیوم واستات ایندیوم به طور یک محلول نهایی، به بررسی اثر تغییر پارامتر علظت پرداختیم. نسبت های موجود مقادیر استات

نمونه	مقداراستات كادميوم(gr)	مقداراستات كادميوم(gr)
$r = \cdot / \cdot \cdot \tau \Delta$	۰/۰۸۳	•/184
$r = \cdot / \cdot \tau \Delta$	•/\۶٧	۰/۳۶۵
$r = \cdot / \cdot \Delta \cdot$	• /٣٣٣	•/٧٢٩

جدول(۴-۸)-مقادیر استات کادمیوم واستات ایندیوم باغلظتهای متفاوت درمحلول CdIn₂ O₊.

¹ Viscosity time

۴-۹-۲-۱ مورفولوژی سطح لایه ها

جهت بررسی مورفولوژی نمونه ها تصاویر FESEM آنها ثبت گردید که در شکل (۴–۳۵) نشان داده شدهاند. در نمونه ۲=۰/۰۱۲۵ تصاویر حکایت از تشکیل مجموعه دانه هایی با حدود ابعاد ۸۸ nm دارد که به هم چسبیده اند و توده های را بوجود آورده اند. در این تصاویر مشخص است که سح زیرلایه پوشانیده شده و فضاهای خالی بین آنها وجود دارد . تصاویر ESEM نمونه های با ۲۰۰۲۵ نشان میدهد که این نمونه در پس زمینه خود نشانگر تشکیل دانه هایی است که اندازه دانه متوسط آنها حدود ۸۳ ۲۰ است که به طور غیر یکنواخت سطح زیرلایه را پوشانیده اند. تصاویر مربوط به نمونه ۲۰۰۱۵ است که به طور غیر یکنواخت سطح زیرلایه را پوشانیده اند. تصاویر مربوط به نمونه ۲۰۰۱۵ است که به طور غیر یکنواخت و یک شکل با ابعاد متوسط در حدود ۲۱ مویاشد که به طور یکنواخت سراسر سطح زیرلایه توزیع شدهاند. مقایسه این تصاویر نشان میدهد که نمونه آماده شده با غلظت ۲۰۵۰۲۲ از نظر ساختاری کیفیت بهتری نسبت به نمونه های دیگر داشته باشد. این تصاویر میتواند حاکی از تشکیل یک ساختار چند بلوری مربوط به ترکیب (CdIn₂O4) باشد. این تصاویر میتواند حاکی از تشکیل یک ساختار چند بلوری مربوط به ترکیب (CdIn₂O4)

شکل (۴–۳۵)- تصاویر FESEM نمونه ها پس از بازپخت با غلظتهای مختلف

۴-۹-۲-۲- بررسی خواص اپتیکی نمونه ها

شکل (۴–۳۶) طیف تراگسیل نمونه های بازپخت شده را نشان می دهد.

شکل(۴–۳۶)-طیف تراگسیل نمونه های تهیه شده به روش تجزیه گرمایی افشانه ای

باغلظتهای متفاوت پس ازباز پخت.

همان طور که در شکل دیده می شود پس از بازپخت نمونه ها ،با افزایش غلطت، عبور در بازه طول موج نور از ۳۰۰ ۳۳۰ ۱۱۰۰ کاهش یافته وبه طور کل عبور متوسط در حدود ۸۰٪ می باشد و این امر بخاطر افزایش ضخامت در اثر افزایش غلظت (همانطور که درجدول (۴–۹) ذکر شد) است که نتیجه آن کاهش عبور ازنمونه ها رادر بر می گیرد.

در ادامه با توجه به طیف تراگسیل اپتیکی نمونه های با غلظت متفاوت پس از بازپخت و استفاده از نرم افزار پوما ضخامت آنها به شرح جدول (۴–۹) محاسبه گردیده است.

جدول (۴–۹) – ضخامت نمونه های بازپخت شده ا غلظت های متفاوت.

r=•/•&•	r=•/•۲۵	r=•/•17۵	غلظت
14.	١٣٠	17.	ضخامت (nm)

مشاهده می گردد که با افزایش غلظت ، ضخامت لایه ها افزایش یافته و با توجه به اینکه محلول موجود دارای ساختار کلوئیدی می باشد، این افزایش ضخامت همانطور که درابتدای بخش (۴–۹–۲) توضیح داده شد، می تواند به دلیل بالا رفتن ویسکوزیته و همچنین رشد ذرات کلوئیدی سل باشد.

با داشتن مقادیر عبور و ضخامت هر لایه ضریب جذب بنا به (۲–۵۲) قابل محاسبه است. شکل (۴–۳۷) منحنی تغییرات ضریب جذب نمونه ها را بر حسب طول موج نشان می دهد. آنچه در شکل مشاهده می گردد این است که با افزایش میزان غلظت لبه جذب به سمت انرژیهای کمتر جابجا شده و همه منحنی های جذب نیز با افزایش غلظت به سمت بالا کشیده شده و این امر نشان می دهد که با افزایش غلظت ، جذب بیشتر شده است و علت آن اثر غلظت برضخامت ودرنتیجه برج ذب ویاعبور نمونه دارد.

شکل(۴–۳۷)- ضریب جذب نمونه های تهیه شده به روش تجزیه گرمایی افشانه ای

با غلظتهای r=۰/۰۲۵ ، r=۰/۰۱۲۵ و r=۰/۰۵ .

تغییرات گاف نواری اپتیکی این نمونه ها در شکل (۴–۳۸) نشان داده شده است . همان طور که می دانیم به دلیل تغییر پارامتر شیمیایی غلظت، تغییر در گاف نواری امری بدیهی به نظر می رسد و این مسأله به خوبی توسط عدم روی هم افتادگی طیف تراگسیل نمونه ها در ناحیه جذب قـوی قابـل توضیح است.

شکل (۴–۳۸)- میزان تغییرات گاف نواری درنمونه ها ی تهیه شده به روش تجزیه گرمایی افشانه ای

با غلظتهای r=۰/۰۵۵۵ ، r=۰/۰۱۲۵ و r=۰/۰۵ .

۴–۱۰– نتیجه گیری

در این پایان نامه به منظور تهیه لایه های نازک اکسید کادمیوم ایندیوم (CdIn₂O₄) از روش شیمیایی فیزیکی سل-ژل و تجزیه گرمایی افشانه ای و برای تهیه پودر این ماده از روش سل-ژل استفاده گردید. در تهیه لایه های نازک به روش سل-ژل از ترکیب اکسید کادمیوم و اکسید ایندیوم به عنوان محلولهای اولیه استفاده شد. در تهیه لایه های نازک به روش سل-ژل از دو تکنیک غوطه وری و چرخشی بر روی زیر لایه شیشه استفاده شد. در سنتز نمونه ها در این دو تکنیک پارامتر های فیزیکی تعداد دفعات انباشت و به تبع آن تغییر در ضخامت لایه ها و نیز دمای بازپخت نمونه ها و فرایند روش خشک سازی مورد بررسی قرار گرفته و اثر آنها بر خواص ساختاری و اپتیکی لایه های اکسید کادمیوم ایندیوم تحقیق شد. طرح پراش پرتو X ثبت شده از نمونه هایی که با تکنیک چرخشی و با تعداد دفعات متفاوت تهیه شده و سپس دردمای ⁹۰۰۰ بازپخت شدند، یک ساختار مکعبی مرکز وجهی چند بلوری با قله های پراش متعدد را نشان داد که در تمامی نمونه ها شدت قله ناشی از پراش از صفحات (۳۱۱) از سایر صفحات بیشتر است و همچنین شدت قله از صفحات (۳۱۱) در نمونه ای که

با ثبت تصاویر FESEM مشاهده شد که نمونه 55400 از یکنواختی بهتری نسبت به دو نمونه دیگر برخوردار است. روند کلی طیف تراگسیل نمونه در تغییرات کاهش عبور با افزایش تعداد دفعات لایه نشانی میباشد و این میزان در طول موج nm ۵۵۰ از ۲۰٪ برای نمونه 55400 به ۵۵٪ برای نمونه 7S400 میباشد. همچنین منحنی ضریب جذب نمونه ها بر حسب طول موج اندکی به سمت بالا و لبه جذب به سمت طول موجهای بلند تر جابجا می شوند. در لبه جذب، تغییرات ضریب شکست زیاد بوده و به طور ناگهانی کاهش می یابد تا اینکه در حدود مقدار ۲ ثابت می شود. چون نمونه 55400 از کیفیت بهتری برخوردار بود لذا تاثیر عملیات حرارتی بازپخت روی این نمونه در بازه دمایی ۲۰ تا ۲[°] ۴۵۰ بررسی شد. طیف پراش پرتو X نشان داد نمونه بازپخت نشده از لحاظ ساختاری تقریبا آمورف بوده در حالی که نمونه های بازپخت شده همگی دارای ساختار چند بلوری میباشند. با آنکه نمونه 5S300 یک ساختار بلوری را نشان می دهد ولی حضور قله هایی که نشانگر تشکیل فازهای ثانویه می باشد در آن رویت می شود که این ناخالصی در هیچکدام از نمونه های دیگر مشاهده نشد. با توجه به تصاویر FESEM می شود که این ناخالصی در هیچکدام از نمونه های دیگر مشاهده نشد. با توجه به تصاویر fesee ثبت شده، مراحل تشکیل ساختار بلوری نمونه ها با افزایش دمای بازپخت به خوبی نشان داده می شود. طیف تراگسیل اپتیکی نمونه ها با افزایش دمای بازپخت افزایش یافته است. با توجه به اینکه همه نمونه های بازپخت شده به تعداد مساوی لایه نشانی شده اند لذا ضخامت آنها تقریباً یکسان بوده، بنابراین افزایش عبور بدلیل افزایش اندازه بلورکها می باشد. لبه جذب در این نمونه ها به سمت انرژی های بیشتر جابجا شده و به طور کلی گاف نواری اپتیکی نمونه ها از حدود vo ۲/۸ به vo ۲/۸ افزایش مییابد و همچنین ضریب شکست نمونه های مذکور برای طول موجهای m ۴۵۰ به بالا ، بین ۲/۲۵

درادامه جهت مقایسه بین روشهای لایه نشانی همان پارامتر های مورد بررسی در تکنیک چرخشی را برای تکنیک غوطه وری نیز بررسی نمودیم. نتایج حاصل از مشخصه یابی نمونه ها در طیف پراش پرتو X آنها نشان داد که در همه موارد شدت قله ناشی از پراش از صفحات (۳۱۱) از سایر صفحات بیشتر است و در این میان نمونه 5D400 دارای بیشترین تعداد قله پراش بوده و شدت قله هایش از بقیه بیشتر بوده است. بررسی طیف ترگسیل اپتیکی نمونه ها نشان داد با افزایش تعداد دفعات غوطه وری، میزان عبور در حدود ۱۷٪ کاهش یافته و نمونه 5D400 از بیشترین درصدعبور برخوردار است و گاف نواری قدری کوچکتر می شود. ضریب شکست محاسبه شده برای نمونه ها برای نمونه 1000 در بازه طول موجی ۲۰۰۳ تا ۱۱۰۰ کمترین بوده و نشان می دهد که این نمونه از کیفیت ساختاری بهتری برخوردار است.

یکی از پارامتر های مهم در رشد لایه های نازک فرایند خشک سازی میباشد. با بررسی روش خشک سازی بر روی نمونه های تهیه شده، نشان داده شد که میزان عبور در نمونه خشک سازی شده با لامپ IR نسبت به نمونه ای که توسط کوره الکتریکی خشک شد، اندکی افزایش یافته و لبه جذب در منحنی آن به سمت طول موجهای کوچکتر جابجا شده است. ضخامت برای این نمونه ها به ترتیب تقریباً ۸۰ nm و ۱۲۳ nm محاسبه شده است. گاف نواری آن نیز به میزان تقریبی ۴۰ mev بیشتر بوده است. با بررسی تصاویر ثبت شده FESEM این دو نمونه مشاهده شد هر دو دارای ساختار دانه ای یکنواخت بوده و اندازه متوسط دانه ها حدود ۳۰ nm می باشد.

نمونه های پودری اکسید کادمیوم ایندیوم که در دماهای ۷۰۰ الی ۹۰۰ بازپخت شده اند نیز مورد بررسی قرار گرفتند. وجود قله های پراش متعدد در طیف XRD این نمونه ها گویای چند بلوری بودن این نمونه هاست. نمونه بازپخت شده در ۷۰۰ تقریباً عاری از قله CdIn₂O₄ بوده و بیشترین قله های پراش مربوط به فازهای ثانوی ناخالصی بودند.

نمونه بازیخت شده در ۸۰۰ نیز همچنان دارای فاز ثانوی بوده، ولی در این دما ساختار مکعبی CdIn₂O₄ با رشد در جهت [۳۱۱] مشاهده گردید و نمونه بازیخت شده در دمای ۹۰۰ تقریباً هیچ فاز ناخالصی را نشان نداده است و از بیشترین مقدار شدت قله ها با کمترین پهنا نسبت به نمونه های دیگر برخوردار بوده است و این امر نشان دهنده افزایش اندازه بلورکها و در نتیجه افزایش کیفیت ساختاری ماده می باشد.

از روش تجزیه گرمایی افشانه ای نیز به عنوان یک روش شیمیایی فیزیکی برای تهیه لایه های نازک اکسیدکادمیوم ایندیوم استفاده گردید. تصاویر FESEM ثبت شده برای این نمونه ها نشان داد که شکل و ابعاد دانه ها به طور محسوس تحت ثأثیر دمای بازپخت و غلظت محلول قرار می گیرد. در این بررسی، نمونه بازپخت شده در دمای ۴۵۰ از ساختار خالص ری نسبت به بقیه نمونه ها بر خودار بوده به طوری که نمونه شامل دانه های یکنواختی به اندازه تقریبی ۳۰۰۳ می باشد. همچنین نمونه ای که از محلول با بیشترین غلظت تهیه شده است از لحاظ ساختاری بهترین کیفیت را نسبت به بقیه داشته است. طیف عبور برای نمونه های بازپخت شده نشان داد تقریباً برای تمام نمونه ها عبور متوسط ۸۰٪ می باشد و عملیات بازپخت باعث افزایش اندکی در حدود ۵٪ در میزان عبور شده است. تغییرات گاف نواری با تغییر دمای بازپخت حدود ۸۰ mev می باشد. برای نمونه های با غلظت محلول متفاوت عبور اپتیکی با افزایش غلظت در بازه طول موجی ۳۰۰ تا ۶۰۰ نانومتر کاهش و در بازه ۶۰۰ تا ۱۱۰۰ نانومتردر مقدار تقریبی متوسط ۸۰٪ ثابت می باشد. لبه جذب نیز به سمت انرژیهای کمتر جابجا شده و مقادیر جذب افزایش یافته است و این امر باعث کاهش در گاف نواری شده است، میزان کاهش در حدود ۹۰ mev می باشد. [۱]کاووس میرعباس زاده، تکنولوژی ساخت لایه های نازک و کاربردهای آن، انتشارات دانشگاه امیر کبیر،(۱۳۸۱)

[2] www.uccs.edu/.../549lectures/optical cher.html

[۳]علی معتمد اکتسابی، روش های نوین در تکنولوژی ساخت لایه ها، انتشارات سازمان انرژی اتمی،(۱۳۷۴)

[4] <u>www.goalfinder.com</u>

[5]B.Godbole, N.Badera, S.B.Shrivastav and V.Ganesan, Jl.of Instrum. Soc. of India, 39(2009).

[6] <u>www.en.wikipedia.org</u>

[7] http://www.solgel.com/articles/Nov00/mennig.htm

[8] J. Brinker and G. W. Scherer, Sol-Gel Science, the physics and chemistry of sol-gel

processing, chapter 13, Academic Press; (1990)

[9] Antonio. A, S. Alfaya, E. Lauro and T. Kubota, Quim.Nova. 25, 835-841; (2002)

[10] <u>http://www.llnl.gov/str/May05/Satcher.html</u>

[11] http://www.chemistry.wustl.edu/~gelb/solgel.html

[12].L. E. Scriven in Better Ceramics Through Chemistry III,

eds.Mat.Res.Soc.

Pittsburgh, Pa, PP.717-729; (1988)

[13] D. E. Bornside, C. W. Macosko and L. E. Scriven, J. Imaging Tech. 13, 122-129; (1987)

[14] http://ssg.epfl.ch/dev-prep.html

[15] N. J. Arfsten, A. Eberle, J. Otto, A. Reich, J. Sol-Gl Science and Technology. **8**, 1099;(1997)

[16] H. G. Floch, F. Belleville, J. J. Priotton, Am. Ceram. Soc. Bull.74, 60-63; (1995)

[17] H. Dislich, "Sol-Gel Technology for Thin Films, Fiber, Performs,

Electronics and Specially Shapes", Noyes, Park Ridge, N.J; (1988)

[18] <u>www.topac.com/electrophorsis TV.html</u>.

[19] J. Brinker and G. W. Scherer, Sol-Gel Science, the physics and chemistry of sol-gel processing, chapter 14, Academic Press; (1990)[20]Brent Fultz and James How, Transmission Electron Microscopy and Difractometry of Materials, springer(2007)

[۲۱]کریستوفرهاموند،مترجمین رضا ثابت داریانی، اسماعیل نامور،"مقدمه ای بربلورشناسی"،دانشگاه الزهراء، (۱۳۸۱)

[22] S. Quadri, E. Skelton, D. Hsu, A. Dinsmore, J. Yang, H. Gray, B. Ratna, Phys. Rev., B 60 (1999) 9191.

[۲۳] لودمیلا اکراتوا، " فیزیک لایه های نازک "، مرکز نشر دانشگاهی، (۱۳۸۶)

[24] <u>http://www.tcd.ie/Physics/Surfaces/ellipsometry2.php</u>

[25] http://www.eng.odu.edu/arc/files/electricalandopticaltesting.shtml

[26] F. L. Pedrotti ,L. S. Pedrotti," Introductio to Optics sedond Edition " ,Prentice Hall; (1993)

[29] J. D. Jackson, "Classical Electrodynamics", John Wiley and sons; (1999)

[۳۰] یوجین هشت، آلفرد زایاک، نور شناخت، مرکز نشر دانشگاهی، (۱۳۷۸)

[31] F. Abeles, Optical Society of America – Journal, 47, 473; (1957)

[32] R. Swanepoel, J. Phys.E:Sci.Instrum.16, 1214; (1983)

[33] D. Poelman, P. F. Smet, Methods for the determination of the optical constants of thin films rom single transmission measurements, J. Phys. D:Appl. Phys .36, 1850-1857; (2003)

[34] V. Dimitrova, J. Tate, Thin Solid Films. 365, 134-138; (2000)

[35] I. Chambouleyron, J. M. Martinez , A. C. Moretti, M. Mulato. Applied physics. 36, 8238-8247; (1997)

[36] E. G. Birgin, I. Chambouleyron, J. M. Martínez, and S. D. Ventura, Estimation of optical parameters of very thin films, Applied Numerical Mathematics. 47, 109-119; (2003)

[37] E. G. Birgin, I. Chambouleyron, and J. M. Martínez, Estimation of optical constants of thin films using unconstrained optimization, Journal of Computational Physics. 151, 862-880; (1999)

[38]<u>http://ngdir.ir</u>

[39]<u>http://infohost.nmt.edu</u>

[40]<u>http://Fa.wikipedia.org</u>

[41]<u>www.civlica.com/paper_cmco8_109_html</u>

[42] J. M. Khoshman, M. E. Kordesch, Thin Solid Films 515 (2007) 7393– 7399.

[43] M.A. Flores Mendoza, R. Castanedo Perez, G. Torres Delgado, O. Zelaya Angel ,solar energy materials & solar cells 94(20010)80-84.

[44] F.F Yang, L. Fang, S.F Zhang, K.J Liao, G.B Liu, J.X Dong, L. Li, G.Z Fu, journal of crystal growth 297 (2006) 411-418.

[45] H.M Ali , H.A Mohamed , M.M Wakkad , M.F Hasaneen , thin solid films 515 (2007) 3024-3029.

[46] F.F Yang , L. Fang , S.F Zhang , J.S Sun , Q.T Xu , S.Y Wu , J.X Dong , C.Y Kong , Applied surface science 254 (2008) 5481-5486.

[47] Xiangdong Lou , Dongyang Shi , Shuping Lio , Chuanyun Peng , sensors and actuators B 123 (2007) 114-119.

[48] Ting Chen, Zhenlai Zhou, Yude Wang, sensors and actuators B 135 (2008) 219-223.

[49] R.J Deokate , A.V Moholkar , G.L Agawane , S.M Pawar , J.H Kim , K.Y Rajpure , Applied surface science 256 (2010) 3522-3530.

[50] R.J Deokate , C.H Bhosale , K.Y Rajpure , journal of alloyes and compounds 473(2009) L20-L24.

[51] R. Ashi , A.Wang , J.R Bobcock , N.L Edleman , A.W Metz , M.A Lane , V.P Dravid , C.R Kannewurf , A.J Freeman , T.J Marks , thin solid films 411(2002) 101-105.

[52] M.A. Flores Mendoza, R. Castanedo Perez, G. Torres Delgado, O. Zelaya Angel, thin solid films xxx (2009) xxx-xxx.

[53]p.Mohan Babu , G.Venkata Rao , P.Sreedhara Reddy, S.Uthanna , Materials Letters 60(2006)274-279.

[54] J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York, 1974.

[55] M. Dutta, S. Mridha, D. Basak, Applied Surface Science 254 (2008) 2743–2747.

[56] Haisheng San, Bin Li, Boxu Feng, Yuyang He, Chong Chen, , thin solid films 483 (2005) 245-250.

[۵۷] مرعشی، پیروز کاویانی، سعید سرپولکی، علیرضا حسین ذولفقاری، اصول و کاربرد میکروسکوپهای الکترونی و روشهای نوین آنالیز، ابزار شناسایی دنیای نانو، تهران، چاپ اول،۱۳۸۳. [58] M.A. Flores Mendoza , R. Castanedo Perez , G. Torres Delgado , S.A. Tomas , J.G. Mendoza-Alvarez , O. Zelaya Angel , journal of luminescence 130 (2010) 2500-2504.

[59] P. Mohan Babu , G. Vankata Rao , P. Sreedhara Reddy , S. Uthanna , materials letters 60 (2006) 274-279.

[60] http://elec.blogfa.com/post_11_aspx

[61]T. L. Chu and Shirley S. Chu (1990). "Degenerate cadmium oxide films for electronic devices". *Journal of Electronic Materials* 19 (9): 1003– 1005.

[62] Aron Walsh, Juarez L. Da Silva, Su-Huai Wei, C. Körber, A. Klein, L. F. Piper, Alex DeMasi, Kevin E. Smith, G. Panaccione, P. Torelli, D. J.

Payne, A. Bourlange, and R. G. Egdell, "Nature of the Band Gap of In₂O₃

Revealed by First-Principles Calculations and X-Ray Spectroscopy", Phys. Rev. Lett. 100, 167402 (2008)

Abstract

In this experimental research, cadmium indate $(CdIn_2O_4)$ thin films have been prepared on the glass substrates by sol-gel dip-coating, sol-gel spin-coating and spray pyrolysis techniques. And powder samples have been prepared by sol-gel method.

Structural and optical properties of CdIn₂O₄ thin films and for characterization of thin films and powder samples by X-Ray Diffraction (XRD), UV-Visible spectrophotometer and Field Emission Scanning Electron Microscope (FESEM) measurements have been characterized.

Thin films prepared by sol-gel dip-coating and spin-coating methods were annealed at different temperatures form 300 to 450° C for 1 hour. Powder samples by sol-gel methods, were annealed at various temperatures (700-900 °C) for 2 hours. Also for as grown samples prepared by spray pyrolysis technique. The effects of the annealing temperatures (350-400 °C) and solution consentration were studied.

XRD results show that all layers have a polycrystalline cubic structure with (311) preferred orientation. The transmittance of samples is consistent with the annealing temperature, and also it is clear that with increasing solution consentration of samples has reduced. Also average transmittance of the dried samples by IR lamp was haier than those by electrical oven. FESEM images showed that for grown thin films and powder samples, at the optimum temperature, crystalline and uniformity of the thin films and powder samples improved.

Key words: Cadmium indate (CdIn₂O₄), Thin films, Powder, Sol-gel, Spray pyrolysis

Master of Science Thesis

Growth and characterization of CdIn₂O₄

By: **Mahmood Zahedi**

Supervisors: Dr. M. Izadifard Dr. M. E. Ghazi

Advisor: **Dr. B. Bahramian**

September 2011