




ریاضی علوم دانشکده

عددی آنالیز دکتری رساله

برای فازی سيستم های از كسریكاربردهايی جبری ديفرانسيل معادلات وابستهحل مسائل و
مرتضایی مرضیه نگارنده:

راهنما استادان

قوتمند مهدی ناظمیدکتر علیرضا دکتر

١۴٠٠ اسفند
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آ඼່ید ଒ ਪی ೯دا ଘ ৎقد৤م
را ࠙࡭ق را، ग़ࡁभජࢌ را، ع࢙م را، ࠟ࢞ل را، اিسان را، गھان

دঃید؛ وओودم భ را ࠙ࡰࡺشان ଒ ইسا਩ی ଘ ৎقد৤م و
یൊتا ୓  ଘ඼ඹূی ৳مام و رণیدن എࠝ࢟ت ऒواಶඋن، ࣻسارت داಶඌিن، ହور و ঁذت রودن، باور ฬب ॺࡗظات ଒ گا਩ی ശত඼່ ඼ෙय़بان

آ৩ھا॥ت؛ ධසز ઒अور ॠد৘ون ز৯دজ࣓م، زশبای و
রوده ا৯د؛ ୀا৤م ಺ൕ഍ॡن و ख़حࢇم ௵਩ی و کار तدا و دॼ࡬وز یاوری ঙࢤواره ز৯دਛی دॴوار ی  ୓ی و ୓  یਠ൏। భ ଒ ඼ෙय़باৣم و ୍ସ భما و ৮در

ا॥ت. ૼن آراज़ش ଢما બفاীشان و মࡑش شادی وओودشان ଒ ऒواଽم و భاୀ

ز





ণپاس ච໋اری...

ච໋اردن را او ऑق ঈوতندگان، و ষند ৯دا او ೸৑࢟ت  ୓ی ඼෻ॷدن ॷمار৯دگان، و ৲ماষند او ਬࣥودن భ ।ੂࣨوران، ଒ را ی ೯دا ণپاس
৑ࡶଌජن و ا॥ت؛ وओودشان ر واॠدا وओودمان ଒ آฬن কم ग़࠳ઍوم، طاଽان او، پاک ن خا৯دا و ೺ख़مّد ୀ دورد و سلام و ಪࣥواষند.

رণتاඵෆز… روز ห اীشان دേॷنان ୀ ૛ণ஋ه
৔ฬوان، د॥ت و ඪ༚ر زبان با او، شا૚঵ه ਟی زॐمات از दدردا਩ی ग़قام భ ଒ ا॥ت آن از اऋّل ग़ع࢙م، පෂزॻࢌ ໚ ঴دون

மر৤م. ඵ෇زی
را اماষࢌ  ਪ୓ی سلاक़ت و ਗی  ঍ند ಻ඖหن را آඔ඼່ࣁش غاশࢌ و গدف ଒ ا॥ت اিسا਩ی از ণپاس ग़ع࢙م، از ূجൎࣱل ଒ آ৅جاਪی از اما

ऋلّ»: و ସّ ا္ ඟشࢁী ॿم اॿࢠخ࢖و಻౵ن ૼن اਾॿ࣡ࢲم ඟشࢁী ॿم «ૼن باب از و و૑ࣣಮه ࣹࡣب ୀ ಻ൕഌৈن؛ ا৯د، ඳසرده دඋࢾش ଘ ଒
ࠠف࢑ࢌ  ৤୓م ঍نار از ଡما৷ඟ໊ و ইുیده ࠟࡼو ق࢙م ૼن، ਠতభی و ঈوਘหی ୀ ঙࢤواره ଒ ୁرদوارم… ग़ع࢙م دو اଌن ସ୍م… భما و از৮در

ا৯د؛ রوده ૼن ୀای دا८ت ࣼ࡫م ਟی یاوری و یار ز৯دਛی ୓      ଏଷی ৳مام భ و ا৯د থذ૛তه
඼່وਣ঺ی، و خ࢖ق ૮ࣹن با صدر، ૐॣه ෼ل భ ଒ ਖઃฬی دන඿ر آ༚ی পناب و लو৳േند دන඿ر آ༚ی পناب شا૛ീীه؛ و ෼لات با اسا঺ید از

௅ඟ໋؛ ࠱ھده ୀ را ଔرسا اଌن راঘ࣒ماਪی زॐ࢟ت و ষ࣒ࢤود৯د ৒భغ ૼن ୀ ଏଷ اଌن భ ঊمਔی ஑ از
دارم. را दدردا਩ی و ඟ়شࢁ ෼ل

৶ما৤م. दدردا਩ی ඼෻ঙاਘی  ী୓شان و ୓  ساࠛدتज़ ජໍخا      ଘ ਠশی গدا خاৣم ໆرکار ඼ෙय़باৣم کلاਉی ঙم و دو॥ت از و ਗی  داৣم لازم ঙࢠ಻ൾ൒ن
দوید. ণپاس را آฬن زॐمات از মࡑ਌ی ඟ໕دଌୃن، اଌن ଒ با॰د

ط





نامه تعهد
ریاضی علوم دانشکده کاربردی ریاضی رشته دکتری دانشجوی مرتضایی مرضیه اینجانب
حل برای فازی سيستم های از كاربردهايی عنوان با پایان نامه نویسنده شاهرود، دانشگاه
و قوتمند مهدی راهنمایی تحت ، وابسته مسائل و كسری جبری ديفرانسيل معادلات

می شوم: متعهد ناظمی علیرضا
برخوردار اصالت و صحت از و است شده انجام اینجانب توسط پایان نامه این در تحقیقات •

است.
شده استناد استفاده مورد مرجع به پژوهش گران، دیگر پژوهش های نتایج از استفاده در •

است.
مدرک نوع هیچ دریافت برای دیگری فرد یا خود، توسط کنون تا پایان نامه، این مطالب •

است. نشده ارایه هیچ جا در امتیازی یا
نام با مستخرج مقالات و دارد، تعلق شاهرود صنعتی دانشگاه به اثر، این معنوی حقوق •
خواهد چاپ به “ Shahrood University of Technology “ یا “ شاهرود صنعتی دانشگاه “

رسید.
بوده اند، تاثیرگذار پایان نامه اصلی نتایج آوردن به دست در که افرادی تمام معنوی حقوق •

می گردد. رعایت پایان نامه از مستخرج مقالات در
آنها) بافت های (یا زنده موجود از که مواردی در پایان نامه، این انجام مراحل تمام در •

است. شده رعایت اخلاقی اصول و ضوابط است، شده استفاده
افراد شخصی اطلاعات حوزه به که مواردی در پایان نامه، این انجام مراحل تمام در •
شده رعایت انسانی اخلاق اصول و رازداری اصل است)، شده استفاده (یا یافته دسترسی

است.
مرتضایی مرضیه
١۴٠٠ اسفند

نشر حق و نتایج مالکیت
برنامه های کتاب، مستخرج، ( مقالات آن محصولات و اثر این معنوی حقوق تمام •
شاهرود صنعتی دانشگاه به متعلق شده) ساخته تجهیزات و نرم افزارها رایانه ای،

شود. ذکر مربوطه علمی تولیدات در مقتضی، نحو به باید مطلب این می باشد.
نمی باشد. مجاز منبع ذکر بدون پایان نامه این در موجود نتایج و اطلاعات از استفاده •

ک





چکیده
برای فازی سيستم های از كاربردهايی بررسی حاضر، دکتری رساله بنیادی و مهم موضوع
و فیزیکی قوانین از برخی است. وابسته مسائل و كسری جبری ديفرانسيل معادلات حل
دستگاه های مدل سازی برای نیستند. بیان قابل معمولی دینامیکی سیستم های با دینامیکی
از استفاده هستند؛ ذره بینی مقیاس در دینامیکی ذرات که هنگامی یا و پیچیده دینامیکی
تحلیلی جواب های به دست آوردن معمولا˟ می رسد. به نظر ضروری کسری مرتبه سیستم های
این در می شود. ارائه آن ها حل برای عددی روش های بنابراین است. دشوار مسائل این برای
مسائل و متغیر مرتبه كسری جبری ديفرانسيل معادلات حل برای فازی سیستم های از رساله،
که است مصنوعی هوش های تکنیک از یکی فازی سیستم است. شده استفاده بهینه کنترل
داده ها درمورد استدلال برای قوانین و فازی عضویت توابع از مجموعه ای از بولی منطق به جای
عصبی، شبکه مانند رایج، تقریبی روش های با مقایسه در فازی سیستم های می کند. استفاده
سیستم های در مزیت این وجود می دهند. ارائه مطالعه مورد سیستم از را شفاف تری نمایش
زننده تقریب فازی سیستم  که آن جا از است. قوانین قالب در زبانی تفسیر امکان دلیل به فازی،
میشود. استفاده کاربردها از ای گسترده طیف در محاسباتی، هوش رویکرد این است عمومی

متغیر، مرتبه كسری جبری ديفرانسيل معادلات کسری، دیفرانسیل معادلات کلیدی: کلمات
فازی سیستم های مصنوعی، هوش کسری، بهینه کنترل

م





پایان نامه از مستخرج مقالات لیست

1. M. Mortezaee, M. Ghovatmand, A.R. Nazemi, (2020), Solving variable-order frac-

tional differential algebraic equations via generalized fuzzy hyperbolic model with

application in electric circuit modeling, Soft Computing, DOI:10.1007/s00500-020-

04969-7.

2. M. Mortezaee, M. Ghovatmand, A.R. Nazemi, (2020), An Application of General-

ized Fuzzy Hyperbolic Model for Solving Fractional Optimal Control Problems with

Caputo–Fabrizio Derivative, Neural Processing Letters, DOI: 10.1007/s11063-020-

10334-4.

3. M. Mortezaee, M. Ghovatmand, A.R. Nazemi, Solving variable-order fractional de-

lay differential algebraic equations via fuzzy systems with application in delay op-

timal control problems, submitted.

4. M. Mortezaee, M. Ghovatmand, A.R. Nazemi, An application of a fuzzy system

for solving time delay fractional optimal control problems with Atangana-Baleanu

derivative, submitted.
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مطالب فهرست
ق تصاویر فهرست
ث جداول فهرست
١ فازی سیستم های ١
١ . . . . . . . . . . . . . . . . فازی ریاضیات مفاهیم از برخی بر مروری ١. ١
٢ . . . . . . . . . . . . . . فازی مجموعه های روی بر عملیات ١. ١. ١
۵ . . . . . . . . . . . . . . . . . . فازی استدلال و فازی قواعد ١. ١. ٢
٨ . . . . . . . . . . . . . . . . . . . . . فازی اگر‐آنگاه قواعد ١. ١. ٣
٩ . . . . . . . . . . . . . . . . تقریبی استدلال و فازی منطق ۴ .١. ١
١٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . فازی سیستم های ١. ٢
١۴ . . . . . . . . . . . . . . . . . . . . فازی سیستم های انواع ١. ٢. ١
١۶ . . . . . . . . عمومی تقریب گرهای به عنوان فازی سیستم های ١. ٢. ٢

١٩ کسری حسابان ٢
١٩ . . . . . . . . . مقدماتی تعاریف و کسری محاسبات برتاریخچه مروری ٢. ١
٢٠ . . . . . . . . . . . . . . . . . . . . . . . . کسری انتگرال ٢. ١. ١
٢١ . . . . . . . . . . . . . . . . . ریمان‐لیوویل کسری مشتق ٢. ١. ٢
٢٢ . . . . . . . . . . . . . . . . . . . . . کاپوتو کسری مشتق ٢. ١. ٣
٢٣ . . . . . . . . . . . . . . . . . کاپوتو‐فابریزیو کسری مشتق ۴ .٢. ١
٢۴ . . . . . . . . . . . . . آتانگانا‐بالینو کسری انتگرال و مشتق ۵ .٢. ١
٢۵ . . . . . . . . . . . . . . . . . . متغیر مرتبه کسری حسابان ۶ .٢. ١
٢۶ . . . . . . . . . . . . . . . . . . . کسری جبری دیفرانسیل معادلات ٢. ٢
٢٧ . . . . . . . . . . . . بهینگی لازم شرایط و کسری بهینه کنترل مسئله ٢. ٣

سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ٣
٢٩ فازی

ف



مطالب فهرست ص
٣٠ مسئله حل روش و متغیر مرتبه کسری جبری دیفرانسیل معادلات معرفی ٣. ١
٣٣ . . . . . . . . . . يافته تعميم فازی هايپربوليک مدل آموزش ٣. ١. ١
٣۶ . . . . . . . . . . فازی های سیستم با کسری بهینه کنترل مسئله حل ٣. ٢
٣٧ کاپوتو‐فابریزیو مشتق با کسری بهینه کنترل مسئله فرمول بندی ٣. ٢. ١

تعمیم فازی هایپربولیک مدل با کسری بهینه کنترل مسئله حل ٣. ٢. ٢
٣٩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . یافته
۴٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . عددی مثال های ٣. ٣

مرتبه کسری تأخیری جبری دیفرانسیل معادلات حل برای فازی سیستم کاربرد ۴
۵٩ متغیر

حل روش و متغیر مرتبه کسری تأخیری جبری دیفرانسیل معادلات معرفی ١ .۴
۶٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . مسئله
۶٣ . . فازی سیستم با متغیر مرتبه کسری تأخیری بهینه کنترل مسئله حل ٢ .۴
۶۴ . . متغیر مرتبه کسری تأخیری بهینه کنترل مسئله فرمول بندی ٢. ١ .۴
۶٧ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . عددی مثال ٣ .۴

٧٧ مراجع



تصاویر فهرست
١١ . . . . . . . . . . . . . . . . . . . . فازی. سیستم های اصلی ساختار ١. ١
٣۵ . . . . . . . . . . . . . . . . . . . . . . یادگیری. الگوریتم فلوچارت ٣. ١
۴٢ . . . . . . .٣. ٣. ١ مثال در α(t) مختلف مقادیر برای x(t) تقریبی جواب ٣. ٢
۴٢ . . . . . . . . . . . . . . . . . . . . . . . . . . α(t) = ٠٫٩٩ (آ)
۴٢ . . . . . . . . . . . . . . . . . . . . . . . . α(t) = ١١+exp(−t)

(ب)
۴٢ . . . . . . . . . . . . . . . . . . . . . . α(t) = ١ − exp(t) cos(t)١٠ (ج)
۴٢ . . . . . . . . . . . . . . . . . . . . . . . . α(t) = ١ − ٠٫۵t (د)
۴٣ . . . . . . . .٣. ٣. ١ مثال در α(t) مختلف مقادیر برای y(t) تقریبی جواب ٣. ٣
۴٣ . . . . . . . . . . . . . . . . . . . . . . . . . . α(t) = ٠٫٩٩ (آ)
۴٣ . . . . . . . . . . . . . . . . . . . . . . . . α(t) = ١١+exp(−t)

(ب)
۴٣ . . . . . . . . . . . . . . . . . . . . . . α(t) = ١ − exp(t) cos(t)١٠ (ج)
۴٣ . . . . . . . . . . . . . . . . . . . . . . . . α(t) = ١ − ٠٫۵t (د)
۴٣ . . . . . . . . . . . .α(t) مختلف مقادیر برای y(t) و x(t) مطلق خطای ۴ .٣
۴٣ . . . . . . . . . . . . . . . . . . . . . . . x(t) مطلق خطای (آ)
۴٣ . . . . . . . . . . . . . . . . . . . . . . . y(t) مطلق خطای (ب)
۴۴ .٣. ٣. ٢ مثال برای α(t) مختلف مقادیر ازای به y(t) و x(t) تقریبی جواب های ۵ .٣
۴۵ .٣. ٣. ٣ مثال برای α(t) مختلف مقادیر ازای به y(t) و x(t) تقریبی جواب های ۶ .٣
۴۶ مثال٣. ٣. ۴. برای α(t) مختلف مقادیر ازای به z(t) و y(t) ،x(t) تقریبی جواب های ٣. ٧
۴٨ مثال٣. ٣. ۵. برای α(t) مختلف مقادیر ازای به z(t) و y(t) ،x(t) تقریبی جواب های ٣. ٨
۴٨ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .RLC مدار ٣. ٩
۵٠ . . .۶ .٣. ٣ مثال برای α(t) مختلف مقادیر ازای به X(t) تقریبی جواب های ٣. ١٠
۵٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VC (آ)
۵٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VL (ب)
۵٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VR (ج)
۵٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iL (د)

ق



تصاویر فهرست ر
۵٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iE (ه)
۵٣ .٣. ٣. ٧ مثال برای α = ٠٫٩, ٠٫٨, ٠٫٧, ٠٫۶ با x(t) تقریبی جواب و دقیق جواب ٣. ١١
۵٣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = ٠٫٩ (آ)
۵٣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = ٠٫٨ (ب)
۵٣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = ٠٫٧ (ج)
۵٣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = ٠٫۶ (د)
۵۴ .٣. ٣. ٧ مثال برای α = ٠٫٩, ٠٫٨, ٠٫٧, ٠٫۶ با u(t) تقریبی جواب و دقیق جواب ٣. ١٢
۵۴ . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = ٠٫٩ (آ)
۵۴ . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = ٠٫٨ (ب)
۵۴ . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = ٠٫٧ (ج)
۵۴ . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = ٠٫۶ (د)
۵۴ . . .٣. ٣. ٧ مثال برای α مختلف مقادیر ازای به u(t) و x(t) مطلق خطای ٣. ١٣
۵۴ . . . . . . . . . . . . . . . . . . . . . . . x(t) مطلق خطای (آ)
۵۴ . . . . . . . . . . . . . . . . . . . . . . . u(t) مطلق خطای (ب)
۵۵ .٣. ٣. ٨ مثال برای α مختلف مقادیر ازای به u(t) و x(t) تقریبی جواب های ١۴ .٣
۵۶ .٣. ٣. ٩ مثال برای α مختلف مقادیر ازای به u(t) و x(t) تقریبی جواب های ١۵ .٣

مثال برای α مختلف مقادیر ازای به u(t) و x٢(t) ،x١(t) تقریبی جواب های ١۶ .٣
۵٨ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .٣. ٣. ١٠
۶٨ . . . . .٣. ١ .۴ مثال برای α(t) مختلف مقادیر در x١(t) تقریبی جواب های ١ .۴
۶٨ . . . . . . . . . . . . . . . . . . . . . . . . α١(t) = ١١+exp(−t)

(آ)
۶٨ . . . . . . . . . . . . . . . . . . . α٢(t) = ٠٫٧ + ٠٫٠۵ sin( t١٠) (ب)
۶٨ . . . . . . . . . . . . . . . . . . . . . . α٣(t) = tanh(t+ ١) (ج)
۶٨ . . . . . . . . . . . . . . . . . . . . . . . . . . α۴(t) = ٠٫۶ (د)
۶٩ . . . . .٣. ١ .۴ مثال برای α(t) مختلف مقادیر در x٢(t) تقریبی جواب های ٢ .۴
۶٩ . . . . . . . . . . . . . . . . . . . . . . . . α١(t) = ١١+exp(−t)

(آ)
۶٩ . . . . . . . . . . . . . . . . . . . α٢(t) = ٠٫٧ + ٠٫٠۵ sin( t١٠) (ب)
۶٩ . . . . . . . . . . . . . . . . . . . . . . α٣(t) = tanh(t+ ١) (ج)
۶٩ . . . . . . . . . . . . . . . . . . . . . . . . . . α۴(t) = ٠٫۶ (د)
٧٠ . . .٣. ١ .۴ مثال برای α(t) مختلف مقادیر در x٢(t) و x١(t) مطلق خطای ٣ .۴
٧٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (آ)
٧٠ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (ب)
٧٠ .٣. ٢ .۴ مثال برای α(t) مختلف مقادیر در x٢(t) و x١(t) تقریبی جواب های ۴ .۴
٧٣ . .٣. ٣ .۴ مثال برای α(t) مختلف مقادیر در u(t) و x(t) تقریبی جواب های ۵ .۴



ش تصاویر فهرست
مثال برای α(t) مختلف مقادیر در x۴(t) و x١(t), x٢(t) تقریبی جواب های ۶ .۴

٧۴ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .۴ .٣ .۴





جداول فهرست
۴١ . . . . . . . . . . . . . . . . . .٣. ٣. ١ مثال در E(Φ) خطا تابع مقادیر ٣. ١
۴۴ . . . . . . . . . . . . . . . . .٣. ٣. ٢ مثال برای E(Φ) خطا مقادیرتابع ٣. ٢
۴۵ . . . . . . . . . . . . . . . .٣. ٣. ٣ مثال برای E(Φ) خطا تابع مقادیر ٣. ٣
۴٧ . . . . . . . . . . . . . . . .۴ .٣. ٣ مثال برای E(Φ) خطا تابع مقادیر ۴ .٣
۴٧ . . . . . . . . . . . . . . . .۵ .٣. ٣ مثال برای E(Φ) خطا تابع مقادیر ۵ .٣
۴٩ . . . . . . . . . . . . . . . .۶ .٣. ٣ مثال برای E(Φ) خطا تابع مقادیر ۶ .٣
۵٢ . . . . . . . .α = ٠٫۶, ٠٫٧, ٠٫٨, ٠٫٩ برای u(t) و x(t) مطلق خطا بیشینه ٣. ٧
۵٢ . . . . . . . . . . . . . . . .٣. ٣. ٧ مثال برای E(Φ) خطا تابع مقادیر ٣. ٨
۵۵ . . . . . . . . . . . . . . . .٣. ٣. ٨ مثال برای E(Φ) خطا تابع مقادیر ٣. ٩
۵۶ . . . . . . . . . . . . . . . .٣. ٣. ٩ مثال برای E(Φ) خطا تابع مقادیر ٣. ١٠
۵٧ . . . . . . . . . . . . . . . .٣. ٣. ١٠ مثال برای E(Φ) خطا تابع مقادیر ٣. ١١
۶٩ .٣. ١ .۴ مثال در α(t) مختلف مقادیر برای اجرا زمان و E(Φ) خطا تابع مقادیر ١ .۴
٧١ . . . . . . . . . . . . .٣. ٢ .۴ مثال برای α(t) = ١ در x(t) مطلق خطای ٢ .۴
٧١ .٣. ٢ .۴ مثال در α(t) مختلف مقادیر برای اجرا زمان و E(Φ) خطا تابع مقادیر ٣ .۴
٧٢ . . . . . . . . . . . . .٣. ٣ .۴ مثال برای α(t) مختلف مقادیر در J نتایج ۴ .۴
٧٣ .٣. ٣ .۴ مثال در α(t) مختلف مقادیر برای اجرا زمان و E(Φ) خطا تابع مقادیر ۵ .۴
٧۵ . . . . . . . . . . . . .۴ .٣ .۴ مثال برای α(t) مختلف مقادیر در J نتایج ۶ .۴
٧۵ .۴ .٣ .۴ مثال در α(t) مختلف مقادیر برای اجرا زمان و E(Φ) خطا تابع مقادیر ٧ .۴

ث





١ فصل
فازی سیستم های

آغاز نقطه می کند. فراهم توابع تقریب در فازی سیستم های از استفاده برای مقدمه ای فصل این
جایگزینی با ریاضی اصول آن در که است فازی ریاضیات فازی، سیستم های برای اصلی زبان و
مطالب است. کرده پیدا گسترش کلاسیک، ریاضیات مجموعه های به جای فازی مجموعه های

است. شده گرفته [۴] و [٣] ،[١] از فصل این

فازی ریاضیات مفاهیم از برخی بر مروری ١. ١
به صورت X در A فازی١ مجموعه باشد، عناصر از مجموعه ای X کنید فرض .١. ١. ١ تعریف

مرتب زوج
A = {(x, µA(x))|x ∈ X},

مقدار به را X از عنصر هر و است A مجموعه عضویت٢ تابع µA(x) که می شود، داده نمایش
می نگارد. است یک و صفر بین عددی که تعلق

مجموعه آن گاه کند، اختیار را ١ و ٠ مقدار دو فقط µA(x) عضویت تابع اگر که است واضح
بنابراین می یابد. کاهش مشخصه تابع به µA(x) عضویت تابع و کلاسیک مجموعه به A

1Fuzzy Set
2Membership Function



فازی سیستم های ٢
مجموعه های درباره را مهم نکته سه هستند. کلاسیک مجموعه های از تعمیمی فازی مجموعه های

کرد استنباط می توان فازی
می کند استفاده عضوها کردن مشخص برای فازی مجموعه یک که ویژگی هایی و خواص •
ریاضی توابع بلکه نیستند، فازی خودشان عضویت توابع حال این با هستند فازی معمولا˟

هستند. دقیق
کنیم. استفاده یکسان مشخصه یک توصیف برای مختلف عضویت توابع از می توانیم ما •
راه حل اولین دارد. وجود مناسب عضویت تابع یک تعیین برای راه حل دو کلی به طور
و ساده فرمول یک می تواند فقط راه حل این معمولا˟ است. خبره انسان دانش از استفاده
دوم راه حل در کرد. تنظیم آن را باید استفاده برای و بدهد ما به عضویت توابع برای خام
براساس را عضویت توابع پارامتر های سپس کرده، تعیین را عضویت توابع ساختار ابتدا

می کنیم. تنظیم دقیق به طور شده جمع آوری داده های
یک می گوییم وقتی دارد. خود عضویت تابع با یک به یک تناظر یک فازی مجموعه هر •
و دارد وجود آن با متناظر (یکتا) منحصر   به فرد عضویت تابع یک فقط فازی، مجموعه
را فازی مجموعه یک عضویت تابع این می دهیم، را عضویت تابع یک وقتی بالعکس
معادل هم با عضویت توابع و فازی مجموعه های نظر، این از پس می دهد. نمایش

هستند.
که است فازی غیر مجموعه یک U جهانی فضای در A فازی مجموعه تکیه گاه .١. ١. ٢ تعریف

یعنی می شود، U صفر غیر عضوهای تمامی شامل
Supp(A) = {x ∈ U |µA(x) > ٠}.

فازی مجموعه به می نامند. تهی فازی مجموعه آن را باشد، تهی فازی مجموعه یک تکیه گاه اگر
می گویند. فازی منفرد باشد، U در واحد نقطه یک آن تکیه گاه که

ارتفاع اگر است. آن عضویت تابع مقدار بزرگترین فازی، مجموعه یک ارتفاع .١. ١. ٣ تعریف
می نامند. طبیعی فازی مجموعه آن را آن صورت در باشد، ١ با برابر فازی مجموعه یک

فازی مجموعه های روی بر عملیات ١. ١. ١
متناظر هستند. کلاسیک مجموعه های عملگرهای اساسی ترین از مکمل و اشتراک اجتماع،
اولین فازی مجموعه های برای مشابه عملگرهای کلاسیک، مجموعه های در عملگرها این با
مجموعه زیر مفهوم عملگر، سه این معرفی از قبل شده است. معرفی [۵] در زاده١ توسط بار
تعریف از تعمیمی تعریف، این که است بدیهی می دهیم. ارائه فازی مجموعه های در را بودن

1zadeh



٣ فازی ریاضیات مفاهیم از برخی بر مروری
فازی مجموعه های B و A کنید فرض است. کلاسیک مجموعه های در بودن مجموعه زیر

شده اند. تعریف یکسان جهانی مجموعه یک در که هستند
µA(x) ≤ ،x ∈ U مقادیر تمامی برای هرگاه است B مجموعه زیر A مجموعه .۴ .١. ١ تعریف

باشد. µB(x)
آن عضویت تابع که است U در Ā فازی مجموعه A فازی مجموعه مکمل .۵ .١. ١ تعریف

می شود تعریف زیر به صورت
µĀ(x) = ١ − µA(x). (١. ١)

A ∪ B با که است U در فازی مجموعه یک B و A فازی مجموعه دو اجتماع .۶ .١. ١ تعریف
می شود تعریف زیر صورت به آن عضویت تابع و شده داده نشان

µA∪B(x) = max[µA, µB]. (١. ٢)
نشان A∩B با که است U در فازی مجموعه یک B و A فازی مجموعه اشتراک .١. ١. ٧ تعریف

می شود تعریف زیر صورت به آن عضویت تابع و شده داده
µA∩B(x) = min[µA, µB]. (١. ٣)

برای ممکن عملگرهای تنها (١. ٣)‐(١. ١) عملگرهای کلاسیک مجموعه های برخلاف
تعدادی براساس که دارند وجود نیز دیگری جدید عملگرهای نیستند. فازی مجموعه های
و اجتماع مکمل، مورد در موضوعه اصل چند معرفی به ادامه در می شوند. معرفی فرضیه

می پردازیم. اشتراک
باشند B و A فازی مجموعه دو عضویت توابع نشان دهنده b و a کنید فرض .١. ١. ٨ تعریف
صدق کند، زیر شرایط در که N : [٠, ١] → [٠, ١] پیوسته تابع به ،b = µB(x), a = µA(x) یعنی

می گویند فازی مکمل عملگر
،N(١) = ٠, N(٠) = ١ مرزی: شرط •

.N(a) ≥ N(b) آن گاه a ≤ b اگر بودن: نزولی شرط •
می شود تعریف زیر به صورت که است سوگنو١ کلاس فازی، مکمل های از کلاس یک

Nλ(a) =
١ − a

١ + λa
, λ ∈ (−١,∞).

مکمل λ = ٠ که کنید توجه می آید. به دست خاص فازی مکمل یک ،λ پارامتر مقدار هر برای
می دهد. نتیجه را (١. ١) رابطه یعنی اولیه فازی

1Sugeno Class



فازی سیستم های ۴
T‐نرم یک کند، صدق زیر شرایط در که T : [٠, ١] × [٠, ١] → [٠, ١] تابع هر .١. ١. ٩ تعریف

می شود. نامیده
T (٠, ٠) = ٠, T (a, ١) = T (١, a) = a, مرزی: شرط •

T (a, b) = T (b, a), جابجایی: شرط •
،T (a, b) ≤ T (á, b́) آن گاه b ≤ b́ و a ≤ á اگر بودن: صعودی شرط •

.T [T (a, b), c] = T [a, T (b, c)] شرکت پذیری: شرط •
همچنین است. T‐نرم یک (١. ٣) رابطه min تابع کرد ثابت می توان به سادگی مثال به عنوان

جبری: ضرب
Tap(a, b) = ab, (۴ .١)

: کران دار ضرب
Tbp(a, b) = ٠ ∨ (a+ b− ١), (۵ .١)

دراستیک: ضرب

Tdp(a, b) =


a, b = ١,
b, a = ١,
٠, a, b < ١

(۶ .١)

هستند. کتاب ها در رایج T‐نرم سه
S‐نرم یک کند، صدق زیر شرایط در که S : [٠, ١] × [٠, ١] → [٠, ١] تابع هر .١. ١. ١٠ تعریف

می شود. نامیده
S(١, ١) = ١, S(٠, a) = S(a, ٠) = a, مرزی: شرط •

S(a, b) = S(b, a), جابجایی: شرط •
،S(a, b) ≤ S(á, b́) آن گاه b ≤ b́ و a ≤ á اگر بودن: صعودی شرط •

.S[S(a, b), c] = S[a, S(b, c)] شرکت پذیری: شرط •
T‐نرم های با متناظر بنابراین بالعکس. و دارد وجود متناظر T‐نرم یک S‐نرم هر برای

S‐نرم های ،(۶ .١)‐(۴ .١) و (١. ٣)
(١. ٢) رابطه مطابق ماکسیمم:

S(a, b) = max(a, b), (١. ٧)



۵ فازی ریاضیات مفاهیم از برخی بر مروری
جبری: جمع

Sap(a, b) = a+ b− ab, (١. ٨)
: کران دار جمع

Sbp(a, b) = ١ ∧ (a+ b), (١. ٩)
دراستیک: جمع

Tdp(a, b) =


a, b = ٠,
b, a = ٠,
١, a, b > ٠,

(١. ١٠)

هستند. مقالات و کتاب ها در رایج S‐نرم های

فازی استدلال و فازی قواعد ١. ١. ٢
توسعه اصل ابتدا اینجا در هستند. فازی سیستم های اصلی ستون فازی استدلال و فازی قواعد
می دهند گسترش را فازی مجموعه های کاربرد و مفاهیم که می کنیم، معرفی را فازی رابطه و

هستند. فازی استدلال پیش زمینه و
باشد V قطعی مجموعه به U قطعی مجموعه از تابعی f : U → V کنید فرض .١. ١. ١١ تعریف
به صورت V در B = f(A) فازی مجموعه عضویت تابع آنگاه باشد U در فازی مجموعه یک A و

می شود تعریف زیر
µB(y) = max

x∈f−١(y)
µA(x), y ∈ V, (١. ١١)

معادله .f(x) = y که به نحوی بوده، x ∈ U نقاط تمامی مجموعه نشان دهنده f−١(y) که
می شود. نامیده توسعه اصل (١. ١١)

فازی رابطه باشند. دلخواه کلاسیک مجموعه های U١, U٢, . . . , Un کنید فرض .١. ١. ١٢ تعریف
برداری حاصلضرب فضای در فازی مجموعه یک ،U١, U٢, . . . , Un بین R

U١ × U٢ × . . .× Un = {(u١, u٢, . . . , un)|u١ ∈ U١, u٢ ∈ U٢, . . . , un ∈ Un}, (١. ١٢)
عضویت تابع با و

µR : U١ × U٢ × . . .× Un → [٠, ١], (١. ١٣)
است.



فازی سیستم های ۶
می شود داده نمایش زیر فازیRبه صورت رابطه فازی، مجموعه های نمایش نحوه به توجه با

R = {((u١, u٢, . . . , un), µR)|(u١, u٢, . . . , un) ∈ U١ × U٢ × . . .× Un}. (١۴ .١)
که است U ×W در فازی رابطه یک Q(V,W ) و P (U, V ) فازی روابط ترکیب .١. ١. ١٣ تعریف

می شود تعریف زیر به صورت آن عضویت تابع
µPoQ(x, z) = max

y∈V
T [µP (x, y), µQ(y, z)], (x, z) ∈ V ×W, (١۵ .١)

است. T‐نرم یک T آن در که
که می آید به دست متفاوتی ترکیب های مختلف، T‐نرم های به توجه با که است بدیهی
استفاده مورد ترکیب های مهم ترین از ماکسیمم‐حاصلضرب ترکیب و ماکسیمم‐مینیمم ترکیب
شده اند. تعریف V ×W و U×V روی به ترتیب که باشند فازی روابط Q و P کنید فرض هستند.
فازی مجموعه Q(V,Wیک ) و P (U, V ) فازی روابط ماکسیمم‐مینیمم ترکیب .١۴ .١. ١ تعریف

می شود تعریف زیر به صورت که است U ×W در
PoQ = {[(x,w),max

v
min(µp(u, v), µQ(v, w)]|u ∈ U, v ∈ V,w ∈W}. (١۶ .١)

مجموعه یک Q(V,W ) و P (U, V ) فازی روابط ماکسیمم‐حاصلضرب ترکیب .١۵ .١. ١ تعریف
می شود تعریف زیر به صورت که است U ×W در فازی

PoQ = {[(x,w),max
v

(µp(u, v)µQ(v, w)]|u ∈ U, v ∈ V,w ∈W}. (١. ١٧)
ماکسیمم‐حاصلضرب و ماکسیمم‐مینیمم ترکیب های که می شود مشاهده که همان طور

می کنند. استفاده (١۵ .١) در جبری ضرب و مینیمم T‐نرم های از به ترتیب
متغیر به عنوان را طبیعی زبان از واژه هایی که است متغیری زبانی متغیر .١۶ .١. ١ تعریف

که می شود مشخص (X,T, U,M) پارامتر چهار به وسیله زبانی متغیر یک می پذیرد.
است. زبانی متغیر نام X •

می کند. اختیار X که است زبانی مقادیر مجموعه T •
اختیار را خود عددی مقادیر ،X زبانی متغیر آن در که است واقعی فیزیکی دامنه U •

می کند.
مرتبط U در فازی مجموعه یک به را T در زبانی مقدار هر که است لغوی قاعده یک M •

می سازد.



٧ فازی ریاضیات مفاهیم از برخی بر مروری
است زیر به شرح T (X) واژه مجموعه باشد، زبانی متغیر سن، اگر مثال به عنوان

T (X) = جوان,جوان} نه جوان, جوان,خیلی خیلی ,نه . . . میانسال,میانسال, ,نه . . . ,
,پیر پیر ,نه پیر ,خیلی پیر بیش یا ,کم پیر خیلی ,نه . . . ,
پیر خیلی نه و جوان خیلی نه , . . .},

می کند. تعریف را T مجموعه زبانی مقدار هر عضویت تابع لغوی، قاعده .U = [٠, ١٠٠]
که رویکردی می دهد ارائه انسانی تفکر مدل سازی برای دیگری رویکرد زبانی متغیر مفهوم
می کند. بیان محدود اعداد به جای فازی مجموعه برحسب را آن و می کند خلاصه را اطلاعات
را طبیعی زبان  در نامعلوم و مبهم توصیف های بود خواهیم قادر زبانی متغیرهای از استفاده با

کنیم. فرموله دقیق ریاضی گزاره های با
(جوان، ابتدایی واژه چندین شامل زبانی مقادیر مجموعه که دید می توان قبلی مثال از
حدی تا کاملا́، بیش، یا کم خیلی، ) قیدها یا و (نه) سازي منفی با که می شود پیر) سال، میان
می شوند. متصل هم به و... «یا» و «و» مثل ربط حروف با سپس و می شود اصلاح غیره) و

می پردازیم. بیش» یا «کم و «خیلی» پرکاربرد قید دو معرفی به حال
در فازی مجموعه یک A خیلی باشد، U در فازی مجموعه یک A کنید فرض .١. ١. ١٧ تعریف

می شود تعریف زیر عضویت تابع با که است U
µveryA(x) = [µA(x)]

٢, (١. ١٨)
می شود معرفی زیر عضویت تابع با فازی مجموعه یک به صورت «A بیش یا «کم و

µmore or lessA(x) = [µA(x)]
١٢ . (١. ١٩)

تعاریف از استفاده با و می شوند گرفته درنظر مرکب فازی روابط به عنوان مرکب فازی عبارات
x کنید فرض تعبیر کنیم زیر به صورت را or و and ربط حرف و not عملگر می توانیم شده ارائه
باشند، V و U در فازی مجموعه دو B و A و V و U فیزیکی دامنه های در زبانی متغیرهای y و

یعنی می شود، جایگزین فازی مکمل های با نه، ساز منفی آنگاه
not(A) = Ā,

فازی مرکب عبارت یعنی می شود، جایگزین فازی اشتراک های با And فازی رابط
است، B ،y و است A ،x

عضویت تابع با U × V در A ∩B فازی اشتراک رابطه به صورت
µA∩B(x, y) = T [µA(x), µB(y)], (١. ٢٠)



فازی سیستم های ٨
اجتماع با or فازی رابط است. دلخواه T‐نرم یک T : [٠, ١]× [٠, ١] → [٠, ١] که می شود تفسیر

فازی مرکب عبارت یعنی ، می شود جایگزین فازی
است، B ،y یا است A ،x

عضویت تابع با U × V در A ∪B فازی رابطه به صورت
µA∪B(x, y) = S[µA(x), µB(y)], (١. ٢١)

است. دلخواه S‐نرم یک S : [٠, ١]× [٠, ١] → [٠, ١] که می شود تفسیر

فازی اگر‐آنگاه قواعد ١. ١. ٣
است زیر به صورت فازی) شرطی (بیان فازی اگر‐آنگاه قاعده .١. ١. ١٨ تعریف

است، B ،y آنگاه، است، A ،x اگر
A ،x» اغلب هستند. Y و X جهانی فازی مجموعه های با شده تعریف زبانی مقادیر B و A که
مثال های می شود. نامیده تالی یا نتیجه است» B ،y » درحالی که می شود نامیده مقدم است»

زیر موارد مثل است. پراکنده ما زبان شناسی روزمره عبارات در آنگاه اگر‐ فازی قواعد
است. کم حجم باشد، زیاد فشار اگر •

است. خطرناک رانندگی باشد، لغزنده جاده اگر •
است. کم ترمز کاربرد باشد، زیاد سرعت اگر •

بریم، به کار سیستم تحلیل و مدل سازی برای را آنگاه ‐ اگر قواعد بتوانیم این که از قبل
جدید ریاضیات در می شوند. تفسیر و تعبیر چگونه فازی اگر‐آنگاه قواعد که بدانیم باید ابتدا
باشند، قطعی گزاره های q و p که هنگامی  می شود. نوشته p→ q شکل به q آنگاه p اگر عبارت

با معادل که است کلی استلزام یک p→ q

p̄ ∨ q, (١. ٢٢)
و

(p ∧ q) ∨ p̄, (١. ٢٣)
بود، خواهد محلی یا جزئی استلزام یک p→ q باشند، فازی گزاره های q و p هنگامی که است.
این در داشت. خواهد زیادی حالت های تعداد p → q ،q و p مقادیر تعدد به توجه با که چرا

معادل p→ q حالت،
(p ∧ q), (٢۴ .١)



٩ فازی ریاضیات مفاهیم از برخی بر مروری
منطقی عملیات نشان دهنده که ∧ و ∨، ‐ جایگزینی با را فازی قواعد می توانیم بنابراین است.
چند وجود به دلیل نماییم. تفسیر فازی اشتراک و اجتماع مکمل، با هستند، and و or ،not
ارائه فازی اگر‐آنگاه قواعد برای متعددی تفسیرهای اشتراک، و اجتماع مکمل، عملگر نوع
به صورت را فازی اگر‐آنگاه قاعده کنید فرض می کنیم. فهرست را آن ها از تعدادی که می شود
فرض همچنین هستند. فازی عبارت های Fq و Fp که دهیم نمایش IF ⟨Fp⟩THEN ⟨Fq⟩

V = V١ × . . .× Vm در فازی رابطه یک Fq و U = U١ × . . .× Un در فازی رابطه یک Fp کنید
باشند. V و U در زبانی متغیرهای به ترتیب y و x و باشد

فازی مکمل با (١. ٢٢) رابطه در ∧ و ∨، ‐ منطقی عملگرهای اگر دینس‐رشر: استلزام •
نتیجه دینس‐رشر استلزام کنیم جایگزین ،(١. ٢) اولیه فازی اجتماع و (١. ١) اولیه
U × V در Q فازی رابطه یک شکل به IF ⟨Fp⟩THEN ⟨Fq⟩ فازی قاعده یعنی می شود،

می شود تفسیر زیر عضویت تابع با
µQD

(x, y) = max[١ − µFp(x), µFq(y)]. (٢۵ .١)

کنیم جایگزین جبری ضرب و min با را (٢۴ .١) در ∧ منطقی عملگر اگر ممدانی: استلزام •
رابطه شکل به IF ⟨Fp⟩THEN ⟨Fq⟩ فازی قاعده یعنی می شود، نتیجه ممدانی استلزام

می شود تفسیر زیر عضویت تابع با U × V در QMP یا QMM فازی
µQMM

(x, y) = min[µFp(x), µFq(y)], (٢۶ .١)
µQMP

(x, y) = µFp(x)µFq(y). (١. ٢٧)

تقریبی استدلال و فازی منطق ۴ .١. ١
گزاره ها آوردن به دست معنای به استدلال و است استدلال اصول و روش ها مطالعه منطق،
مقداری دو کلاسیک منطق فازی، منطق است. موجود عبارت های و گزاره ها از جدید ونتایج
باشد، داشته [٠, ١] محدوده در مقداری هر می تواند آن ها درستی مقدار که گزاره هایی به را
فازی منطق نهایی هدف می دهد. ما به را تقریبی استدلال امکان تعمیم این می دهد. تعمیم
بنیان هایی اصولی، ابزار یک به عنوان فازی مجموعه های تئوری از استفاده با که است این
قاعده سه هدف این به دستیابی برای کند. فراهم نادقیق گزاره های با تقریبی استدلال برای
یافته تعمیم فرضی قیاس و یافته تعمیم تولنس مودس یافته، تعمیم پوننس مودس استنتاج
فازی دوگزاره که می گوید یافته تعمیم پوننس مودس قاعده مثال به عنوان شده اند. معرفی
فازی جدید گزاره یک باید است» B ،y آن گاه است، A ،x «اگر و است» Á ،x » شده داده
نزدیکتر B به B́ باشد نزدکتر A به Á هرچه که به نحوی  دهد نتیجه را است» B́ ،y» به صورت

که معنی  بدین هستند. فازی مجموعه های B́ و B ،Á ،A که است
است. Á ،x :١ مقدمه



فازی سیستم های ١٠
است. B ،y آن گاه است، A ،x اگر :٢ مقدمه

است. B́ ،y نتیجه:
استنتاج ترکیبی قاعده مقدمه، عضویت توابع از استفاده با نتیجه عضویت توابع تعیین برای

می شود تعریف زیر به صورت
باشد U × V در فازی رابطه یک  Q و U در فازی مجموعه یک Á کنید فرض .١. ١. ١٩ تعریف

رابطه باشند. شده داده µQ(x, y) و µÁ و
µB́(y) = sup

x∈U
[µÁ(x) ∗ µQ(x, y)], (١. ٢٨)

می شود. نامیده sup− star ترکیب یا استنتاج ترکیبی قاعده است، T‐نرم عملگر نماد * که
به دست ترتیب بدین یافته تعمیم پوننس مودس نتیجه محاسبه دقیق روابط خلاصه به طور

می آید
(که U × V در A → B فازی رابطه و است) Á ،x مقدمه نشان دهنده (که Á فازی مجموعه
 V در B́ فازی مجموعه شده است. داده است) B ،y آن گاه است، A ،x اگر مقدمه نشان دهنده

می شود نتیجه زیر به صورت است B́ ،y نتیجه نشان دهنده که
µB́(y) = sup

x∈U
T [µÁ(x), µA→B(x, y)]. (١. ٢٩)

به دست متفاوتی نتایج مختلف، استلزام قواعد و T‐نرم ها از استفاده با که داشت توجه باید
آمد. خواهد

فازی سیستم های ١. ٢
چنین باشد. ١. ١ شکل در داده شده نمایش به صورت می تواند فازی سیستم یک کلی ساختار
فازی٢، استنتاج موتور فازی١، قواعد پایگاه است: شده تشکیل اصلی بخش چهار از سیستمی
فازی داده های یا قطعی داده های می تواند فازی سیستم ورودی غیرفازی ساز۴. و فازی ساز٣
را مناسب فازی مجموعه فازی ساز ابتدا باشند قطعی داده های فازی سیستم ورودی اگر باشد.
متغیرهای مقادیر می شود. آغاز استنتاج فرایند سپس می دهد اختصاص فازی غیر ورودی به
مجموعه ای از استفاده با و استنتاج) (موتور تقریبی استدلال مناسب روش یک به وسیله ورودی
نگاشته است، زبانی متغیر یک که خروجی متغیر به فازی) قواعد (پایگاه فازی اگر‐آنگاه قواعد از
فازی سیستم خروجی به عنوان قطعی داده های است ممکن زبانی، مقادیر بر علاوه می شود.
داده های تا می شود استفاده مناسب نافازی ساز یک از مواردی چنین در باشند. نیاز مورد

1Fuzzy Rule Base
2Fuzzy Inference Engine
3Fuzzifier
4Defuzzifier



١١ فازی سیستم های

فازی. سیستم های اصلی ساختار :١. ١ شکل

اصلی بخش چهار ادامه در شوند. تعیین هستند خروجی فازی مجموعه نماینده که قطعی
می کنیم. معرفی را فازی سیستم

است فازی اگر‐آنگاه قواعد از مجموعه ای شامل فازی قواعد پایگاه فازی: قواعد الف)پایگاه
پایگاه یک مشخص به طور می آید. به دست بررسی مورد حوزه دانش یا ماهر افراد دانش از که

است زیر به صورت قاعده M با داده
است، Bl ،y آنگاه است، Al

n ،xn …و و Al١ ،x١ اگر :Rl (١. ٣٠)
x = (x١, . . . , xn)T ∈ و V ⊂ R و Ui ⊂ R در فازی مجموعه های Blبه ترتیب Alو

i ،١ ≤ l ≤M که
خوش تعریف فازی قواعد پایگاه هستند. فازی سیستم خروجی و ورودی به ترتیب y ∈ V و U

باشد. پیوسته و سازگار کامل، باید
قاعده یک حداقل x ∈ U هر برای اگر می شود نامیده کامل فازی قواعد پایگاه .١. ٢. ١ تعریف

باشد. داشته وجود فازی قواعد پایگاه در
اگر بخش های که نشوند یافت قواعدی اگر است سازگار فازی قواعد پایگاه .١. ٢. ٢ تعریف

باشند. داشته متفاوت آن گاه بخش های و یکسان
نداشته وجود همسایه ای قواعد اگر می شود نامیده پیوسته فازی قواعد پایگاه .١. ٢. ٣ تعریف

باشد. تهی آن ها آن گاه بخش فازی مجموعه های اشتراک که باشند
می گیرد به کار را فازی قواعد پایگاه قواعد فازی، استنتاج موتور فازی: استنتاج موتور ب)
فضای در فازی مجموعه های به U ورودی فضای در فازی مجموعه های از را نگاشت یک تا
وجود قاعده مجموعه یک روی از نتیجه گیری برای روش دو کلی به طور کند. تعیین V خروجی

دارد
تمامی از ترکیبی ابتدا که ،( استنتاج سپس و جمع (ابتدا قواعد ترکیب بر مبتنی استنتاج •
ترکیب از استفاده با استنباط سپس و می شود، ساخته فازی قواعد پایگاه در موجود قواعد

می شود. انجام sup− star



فازی سیستم های ١٢
استنتاج ابتدا آن در که جمع)، سپس و استنتاج (ابتدا جداگانه قواعد بر مبتنی استنتاج •
و می شود انجام جداگانه به صورت قواعد از یک هر برای sup− star ترکیب از استفاده با

می آید. به دست استنتاج نتایج ترکیب از نهایی خروجی سپس
در استنتاج نتایج ترکیب همچنین و قواعد ترکیب بر مبتنی استنتاج در قواعد ترکیب فرایند
مقدار M برای تجمیع عملگر می شود. نامیده تجمیع١ جداگانه، قواعد بر مبتنی استنتاج

نگاشت با x١, x٢, . . . , xM ∈ [٠, ١]
⊕ : [٠, ١]M =⇒ [٠, ١],
x = ⊕M

i=١xi = ⊕(x١, x٢, . . . , xM ),

معرفی S‐نرم یک به وسیله که اجتماع با می توان را تجمیع عملگر می شود. داده نمایش
گودال)، (ترکیب می شود معرفی T‐نرم یک به وسیله که اشتراک با یا ممدانی) (ترکیب می شود
باشد. استنتاج موتور ورودی و U در دلخواه فازی مجموعه یک Á اگر بنابراین کرد. تعریف

به صورت قواعد ترکیب بر مبتنی فازی استنتاج موتور خروجی
µB́FATI

(y) = sup
x∈U

T [µÁ,⊕
M
i=١µRi(x, y)], (١. ٣١)

به صورت جداگانه قواعد بر مبتنی فازی استنتاج موتور خروجی و
µB́FITA

(y) = ⊕M
i=١ sup

x∈U
T [µÁ, µRi(x, y)], (١. ٣٢)

می آید. به دست
است زیر به ترتیب جداگانه قواعد بر مبتنی استنتاج محاسباتی روال

زیر رابطه با مطابق را µAl١×...×Al
n
(x١, . . . , xn) عضویت توابع فازی قاعده M برای اول: گام

کنید معین
µAl١×...×Al

n
(x١, . . . , xn) = µAl١(x١) ∗ . . . ∗ µAl

n
(xn), l = ١,٢, . . . ,M, (١. ٣٣)

است. T‐نرم عملگر یک ∗ که
معرفی استلزام های از یکی در نتیجه عنوان به را Bl و مقدمه عنوان به را Al١×. . .×Al

n دوم: گام
l = ١,٢, . . . ,M برای را µRl(x١, . . . , xn, y) = µAl١×...×Al

n→B(x١, . . . , xn, y) و گرفته نظر در شده
کنید. تعیین استلزام ها این از یکی با مطابق

هرقاعده برای  V در B́l فازی مجموعه خروجی ،U در Á داده شده فازی مجموعه برای سوم: گام
می شود محاسبه زیر به صورت Rl جداگانه

µB́l
(y) = supTx∈U [µÁ, µRl(x, y)], ١ ≤ l ≤M, (٣۴ .١)

1Aggregation



١٣ فازی سیستم های
بود. خواهد {B́١, . . . , B́M} فازی M خروجی ترکیب فازی، استنتاج موتور خروجی چهارم: گام

اجتماع به صورت ترکیب این
µB́(y) = µB́١(y)+̇ . . . +̇µB́M

(y), (٣۵ .١)
اشتراک به صورت یا

µB́(y) = µB́١(y) ∗ . . . ∗ µB́M
(y), (٣۶ .١)

مثال عنوان به هستند. T‐نرم و S‐نرم عملگرهای نشان دهنده به ترتیب ∗ و +̇ که است
استلزام اجتماع، ترکیب با جداگانه قواعد بر مبتنی استنتاج از حاصل ضرب، استنتاج موتور
می آید. به دست S‐نرم ها برای max و T‐نرم ها برای جبری ضرب ممدانی، حاصل ضرب
زیر، رابطه مطابق حاصل ضرب استنتاج موتور ،U در Á فازی مجموعه  داشتن با بنابراین

می دهد V در را B́ فازی مجموعه
µB́(y) =

M
max
l=١ [sup

x∈U
(µÁ(x)

n∏
i=١

µAl
i
(xi)µBl(y))]. (١. ٣٧)

قطعی داده های فازی سیستم های ورودی کاربردی مسائل از بسیاری در فازی سازها: ج)
فازی ساز باشد. فازی مجموعه یک باید فازی استنتاج موتور ورودی صورتی که در هستند
مثال به عنوان است. U در Á فازی مجموعه یک به x∗ ∈ U ⊂ Rn حقیقی مقادیر از نگاشتی
مقدار که می نگارد U در Á فازی منفرد یک به را حقیقی مقدار با x∗ ∈ U نقطه منفرد فازی ساز

یعنی است، ٠ برابر U نقاط سایر در و ١ برابر x∗ نقطه در تعلق

µÁ(x) =


١, x = x∗,

٠, این صورت غیر .در
(١. ٣٨)

در درحالی که است فازی مجموعه یک فازی استنتاج موتور خروجی سازها: غیرفازی د)
از نگاشتی به عنوان غیرفازی ساز داریم. قطعی خروجی یک به نیاز کاربردی مسائل از بسیاری
y∗ ∈ V قطعی نقطه به است) فازی استنتاج موتور خروجی (که V ⊂ R در B́ فازی مجموعه
مجموعه نماینده بهترین که می کند مشخص را نقطه ای غیرفازی ساز واقع در می شود. تعریف
y∗ نقطه که است فازی سازها غیر متداول ترین از یکی ثقل مرکز غیرفازی ساز باشد. B́ فازی
می کند. معرفی شده، داده پوشش µB́(y) عضویت تابع به وسیله که ناحیه ای مرکز به عنوان را

یعنی
y∗ =

∫
v yµB́(y)dy∫
v µB́(y)dy

. (١. ٣٩)

به وسیله مراکز میانگین غیرفازی ساز است. آن محاسبات پیچیدگی در غیرفازی ساز این اشکال
مجموعه مرکز ،ȳl کنید فرض می کند. رفع را اشکال این ساده تر فرمول با (١. ٣٩) رابطه تقریب



فازی سیستم های ١۴
تعریف ترتیب بدین را y∗ مراکز، میانگین غیرفازی ساز باشد، آن ارتفاع درجه wl و lام فازی

می کند
y∗ =

∑M
l=١ ȳlwl∑M
l=١wl

. (۴١. ٠)

فازی سیستم های انواع ١. ٢. ١
وجود فازی سیستم های از مختلفی انواع ممکن، کاربردهای از گسترده ای طیف به توجه با
همراه که جدیدی سیستم های آوردن به دست اما شده اند. ارائه کتاب ها و مقالات در که دارد
از زبانی تفسیر در بیشتر سهولت یا و سازی مدل کیفیت بهبود محاسبات، پیچیدگی کاهش با
شده پیشنهاد مدل است. محققان از بسیاری تحقیق موضوع هم هنوز باشند، استنتاج نتایج
آن را می توان که است مقالات در شده ارائه فازی سیستم اولین [۶] اصیلیان و ممدانی توسط
نوع سه ادامه، در گرفت. نظر در اگر ‐آن گاه قوانین بر مبتنی فازی مدل های اساس و پایه
سه این بین تفاوت می روند. به کار مختلفی، کاربردهای در که می کنیم معرفی را فازی سیستم

است. استنتاج نحوه و فازی قواعد تالی بخش در فازی سیستم
ممدانی١ فازی مدل های الف)

مجموعه یک به وسیله بخار موتور کنترل برای تلاش اولین به عنوان ممدانی فازی سیستم
قواعد مدل این در است. شده ارائه آمده، به دست باتجربه افراد توسط که زبانی قواعد از
S‐نرم، و T‐نرم به عنوان به ترتیب max و min عملگرهای از و هستند (١. ٣٠) به صورت فازی
مبتنی استنتاج از مدل این در است. شده استفاده ثقل مرکز غیرفازی ساز و منفرد فازی ساز
مدل استنتاج موتور خروجی (١. ٣٢) به توجه با بنابراین است شده  استفاده جداگانه قواعد بر

است زیر به صورت ممدانی
µB́(y) =

M
max
i=١ sup

x∈U
min[µAi(x), µBi(y)],

که
µAi(x) = min[µAi١(x), µAi٢(x), . . . , µAi

n
(x)].

به صورت ممدانی فازی سیستم خروجی ثقل مرکز غیرفازی ساز از  استفاده با
y∗ =

∫
v yµB́(y)dy∫
v µB́(y)dy

,

به دست فازی سیستم های از دیگری انواع متفاوت S‐نرم و T‐نرم انتخاب با می شود. تعیین
حسابی میانگین و T‐نرم برای جبری ضرب از لارسن، فازی سیستم در مثال به عنوان می آید.
ممدانی، فازی سیستم کردن مشخص برای بنابراین می شود. استفاده تجمیع، عملگر برای

شود تعیین زیر عملگرهای از یک هر تابع باید
1Mamdani Fuzzy Models



١۵ فازی سیستم های
.AND مقدم با قانون یک شلیک ماکزیمم قدرت محاسبه برای T‐نرم عملگر •

. OR مقدم با قانون یک شلیک قدرت محاسبه برای S‐نرم عملگر •
.sup− star ترکیب محاسبه برای T‐نرم عملگر •

تجمیع. برای S‐نرم عملگر •
سوگنو١ فازی مدل های ب)

برای نظام مند رویکردی ارائه هدف با کانگ۴ و سوگنو٣ تاکاگی٢، توسط سوگنو فازی سیستم
در فازی قواعد است. شده پیشنهاد ورودی، خروجی‐ داده مجموعه از فازی قوانین ایجاد

است زیر شکل دارای سوگنو فازی مدل
،yl = f(x) آن گاه است، C l

n ،xn و . . . و C l١ ،x١ اگر :Rl (۴١. ١)
وقتی باشد. تابعی هر تواند می f(x) و x = (x١, . . . , xn)T ∈ U ⊂ Rn فازی، مجموعه های C l

i که
دارد نام سوگنو یک درجه فازی مدل حاصل، فازی سیستم است، اول درجه چندجمله ای  f(x)

داریم را سوگنو صفر درجه فازی مدل است ثابت f(x) وقتی است. شده معرفی [٨] و [٧] در که
به صورت سوگنو، سیستم خروجی است. یکسان ممدانی فازی سیستم از خاصی نوع با که

یعنی می شود، محاسبه (۴١. ١) رابطه ylهای شده دار وزن متوسط

y∗ =

∑M
l=١ ylwl∑M
l=١wl

,

می شوند محاسبه زیر رابطه از wl وزن های که

wl =

n∏
i=١

µCl
i
(xi). (۴١. ٢)

تسوکاموتو۵ فازی مدل های ج)
است زیر شکل دارای تسوکاموتو فازی مدل در فازی قواعد

،yl = f−١
l (F l(x)) آن گاه است، C l

n ،xn و . . . و C l١ ،x١ اگر :Rl (۴١. ٣)
و است یکنوا تابع یک f(y) که

F l(x) = T [µAl١ , µAl٢ , . . . , µAl
n
],

1Sugeno Fuzzy Models
2Takagi
3Sugeno
4Kang
5Tsukamoto Fuzzy Models



فازی سیستم های ١۶
،F l(x) شلیک قدرت با قانون هر برای آمده به دست خروجی است. l قانون شلیک قدرت

است زیر به صورت
µB́l(y) =


F l(x), y = yl

٠, y ̸= yl,

هر خروجی وزنی میانگین به عنوان سیستم خروجی .F l(x) = fl(y
l) و yl = f−١

l (F l(x)) که
یعنی هستند، قواعد شلیک قدرت وزن ها که می شود گرفته نظر در قانون

y∗ =

∑M
i=١ F i(x)yl∑M
i=١ F i(x)

. (۴۴ .١)

واضح سوگنو یا ممدانی فازی مدل های اندازه به زیرا نمی گیرد قرار استفاده مورد اغلب مدل این
نیست.

عمومی تقریب گرهای به عنوان فازی سیستم های ١. ٢. ٢
قواعد از مجموعه ای به وسیله که بوده قواعد بر مبتنی سیستم های یکسو از فازی سیستم های
که هستند غیرخطی نگاشت هایی فازی سیستم های دیگر سویی از می شوند ساخته زبانی

داد. نمایش ریاضی دقیق روابط به وسیله را آن ها می توان
دقیق فرمول باشد. طبیعی مجموعه یک ȳl مرکز با Bl فازی مجموعه کنید فرض .١. ٢. ١ لم
غیر و منفرد فازی ساز حاصل ضرب، استنتاج موتور ،(١. ٣٠) قواعد پایگاه با فازی سیستم های

است زیر به صورت مراکز میانگین فازی ساز

f(x) =

∑M
l=١ ȳl(

∏n
i=١ µAl

i
(xi))∑M

l=١(
∏n

i=١ µAl
i
(xi))

, (۴۵ .١)

است. فازی سیستم خروجی f(x) ∈ V ⊂ R و فازی سیستم ورودی x ∈ U ⊂ Rn که
به x ∈ U ⊂ Rn از غیرخطی نگاشت یک فازی سیستم که می دهد نشان (١. ٢. ١) لم
سیستم های می دهد. را نگاشت این دقیق فرمول (۴۵ .١) رابطه که f(x)بوده ∈ V ⊂ R

متداول ترین از و هستند یکسان سوگنو صفر مرتبه فازی سیستم های با (۴۵ .١) شکل به فازی
زیر µBl و µAl

i
برای مختلف عضویت توابع انتخاب با اند. استفاده مورد فازی سیستم های

عضویت توابع از اگر مثال به عنوان آورد. به دست  می توان را سیستم های از مختلفی کلاس های
کنیم استفاده µBl و µAl

i
برای زیر گوسین

µAl
i
(xi) = ali exp[−(

xi − x̄li
σli

)٢],

µBl(y) = exp[−(y − ȳl)٢],



١٧ فازی سیستم های
آن گاه هستند، حقیقی مقادیر با پارامترهایی x̄li, ȳl ∈ R و σli ∈ (٠,∞) ،ali ∈ (٠, ١] که

می آیند در شکل بدین (۴۵ .١) فازی سیستم های

f(x) =

∑M
l=١ ȳl[

∏n
i=١ ali exp(−(

xi − x̄li
σli

)٢)]
∑M

l=١[
∏n

i=١ ali exp(−(
xi − x̄li
σli

)٢)]
. (۴۶ .١)

اهمیتی بنابراین هستند، غیرخطی توابع از خاصی نوع فازی سیستم های که می شود مشاهده
هرنوع یا سیگنال پردازشگر یا گیرنده تصمیم یا شوند استفاده کنترل کننده به عنوان که ندارد
تقریب تابع یک نظر نقطه از فازی سیستم های قابلیت دانستن جالب موضوع دیگر، سیستم
دهند نشان می توانند را غیرخطی توابع از نوع کدام فازی، سیستم های مثال به عنوان است.
توابع از مشخصی انواع بتوانند فقط فازی سیستم های اگر دقتی؟ چه با و بزنند تقریب آن را یا
زیاد عمومی و کلی کاربردهای در آن گاه محدودی، دقت با آن هم بزنند، تقریب را غیرخطی
دقت هر با را غیرخطی تابع هر بتوانند فازی سیستم های اگر ولی بود. نخواهند مناسب
خواهند مفید بسیار مختلف، کاربردهای از گسترده ای طیف در آن گاه بزنند تقریب دلخواهی
مشخص، به طور دارند. را عمومی تقریب قابلیت فازی سیستم های از مشخصی کلاس های بود.

داریم را زیر اصلی قضیه
مجموعه یک U مرجع مجموعه ورودی، که کنید فرض عمومی) تقریب گر (قضیه .١. ٢. ١ قضیه
سیستم یک دلخواه، ε > ٠ و U در g(x) داده شده حقیقی تابع هر برای آنگاه باشد، Rn در بسته

که به نحوی دارد وجود (۴۶ .١) رابطه به شکل f(x) فازی
sup
x∈U

|f(x)− g(x)| < ε.

میانگین غیرفازی ساز منفرد، فازی ساز ضرب، استنتاج موتور با فازی سیستم های بنابراین
هستند. عمومی تقریب گر صفر مرتبه سوگنو فازی سیستم های یا گوسین عضویت توابع و مراکز

است. زیر قضیه اساس بر قضیه این اثبات
در پیوسته، توابع از مجموعه ای  Z کنید فرض استون‐ویراشتراس) (قضیه .١. ٢. ٢ قضیه

اگر باشد. U بسته مجموعه
باشد، بسته اسکالر ضرب و ضرب، جمع، عمل تحت که معنا بدین باشد، جبر یک  Z (١

دارد وجود f ∈ Z یک  x, y ∈ U و x ̸= y هر برای یعنی باشد، U نقاط کننده Z متمایز (٢
،f(x) ̸= f(y) که به نحوی

وجود  f ∈ Z یک ،x ∈ U هر برای که معنی بدین نشود، صفر U از نقطه ای هیچ در Z (٣
،f(x) ̸= ٠ که به نحوی دارد



فازی سیستم های ١٨
دارد وجود  f ∈ Z یک دلخواه، ε > ٠ و U روی بر g(x) پیوسته حقیقی تابع هر برای آن گاه

که به طوری
sup
x∈U

|f(x)− g(x)| < ε.



٢ فصل
کسری حسابان

مقدماتی تعاریف و کسری محاسبات برتاریخچه مروری ٢. ١
مربوط نظریه های بیشترین و آمد به وجود معمولی حسابان زمان همان از کسری حسابان ایده
هوپیتال٢ و لایب نیتز١ را موضوع این بار نخستین یافت. گسترش بیستم قرن از قبل تا آن به
درباره را او نظر و نوشت نامه هوپیتال به لایب نیتز زمان آن در کردند. مطرح ١۶٩۵ سال در
افراد به بعد آن از شد باعث لایب نیتز توسط شده طرح سوال شد. جویا ١٢ صحیح غیر مشتق
نمود. جلب خود به را اویلر٣ توجه موضوع این ١٧٣٠ سال در کنند. دنبال را موضوع این زیادی
dnP کسر باشد. x از تابعی P و مثبت صحیح عدد یک n اگر که کرد بیان اویلر زمان آن در
عملگر برای را زیر قاعده ی لاگرانژ۴ ،١٧٧٢ در کرد. بیان جبری به صورت می توان را dxn به

داد توسعه صحیح مرتبه از دیفرانسیلی
dm

dxm
dn

dxn
=

dm+n

dxm+n
, (٢. ١)

کسری مشتق یک لاپلاس۵ ١٨١٢ در کرد. کمک کسری حسابان به مستقیم غیر به طور و
توسط دلخواه مرتبه از مشتق نماد اولین ١٨١٩ سال در و کرد تعریف انتگرال مفهوم توسط

1Leibniz
2Hopital
3Euler
4Lagrange
5Laplace



کسری حسابان ٢٠
تابع انتگرالی تابع نمایش با را کسری عملگرهای ١٨٢٢ در فوریه٢ سپس شد. معرفی لاکروا١

کرد معرفی زیر به صورت f(x)
f(x) =

١
٢π

∫ ∞

−∞
f(u)du

∫ ∞

−∞
cos(t(x− u))dt,

dn

dxn
f(x) =

١
٢π

∫ ∞

−∞
f(u)du

∫ ∞

−∞
tn cos(t(x− u) +

١
٢nπ)dt,

تابع هر برای کسری مشتق از مناسب تعریف اولین این باشد. منفی یا مثبت می تواند n که
اما دادند، ارائه را کسری عملگر مفهوم زیادی محققان و دانشمندان اگرچه بود. تعریف خوش
این از استفاده با او داد. ارائه کسری عملگر از کاربردی ١٨٢٣ سال در که بود کسی اولین آبل٣
حسابان کاربردهای بیان جهت در اساسی گامی و پرداخت تاتوکرون۴ مسئله حل به جدید ابزار
لیوویل۵ توسط ١٨٣٢ سال در کسرى حسابان روی جدی مطالعه اولین برداشت. کسری
١٨۶٧ سال در کند. حل را کسری مشتق با دیفرانسیل معادلات کرد تلاش وی گرفت صورت
زمان در را کسرى انتگرال گیرى تئورى ریمان کرد. کار کسرى مرتبه اپراتورهاى روى گرانوالد۶
کروگ٧ و گرانوالد کرد. منتشر ١٨٩٢ سال در را خود مقاله اولین و داد گسترش تحصیلش
به نام را مشتقی و انتگرال و کرده یکسان سازی را لیوویل و ریمان توسط آمده به دست نتایج
تلاش هایی ریس١٠ و واتانابه٩ مارچاد٨، بیستم قرن اوایل در کردند. معرفی را ریمان‐لیوویل
از استفاده با کاپوتو به نام شخصی دادند. انجام کسری حسابان تعمیم و تعریف زمینه در را
از کاپوتو مشتق نام با امروزه که نمود معرفی را جدیدی مشتق ریمان‐لیوویل فرمول بازنویسی
تعاریف کسری حسابان از مختلفی کاربردهای پیدایش و زمان گذشت با می شود. استفاده آن
نیمه تا شد. بیان بودند فیزیکی مدل های با متناسب که کسری انتگرال و مشتق از متعددی
فقط ١٩٧۴ سال در کنفرانس اولین که کرد پیدا رشد حدی تا کسری حسابان بیستم قرن

شد. برگزار کسری حسابان کاربردهای و نظریات به مربوط

کسری انتگرال ٢. ١. ١
شده است. گرفته صحیح مرتبه انتگرال  محاسبه برای کشی فرمول از کسری انتگرال تعریف ایده

باشد t > a و a, t ∈ R و n ∈ N کنید فرض
aI

n
t (f(t)) =

∫ t

a

∫ τ١

a
. . .

∫ τn−١

a
f(τ)dτ . . . dτ٢dτ١ =

١
(n− ١)!

∫ t

a
f(τ)(t− τ)n−١dτ. (٢. ٢)

1Lacroix
2Fourier
3Abel
4Tautochrone
5Liouville
6Grünwald
7Krug
8Marchaud
9Watanabe

10Riesz



٢١ مقدماتی تعاریف و کسری محاسبات برتاریخچه مروری
به دست زیر به صورت کسری انتگرال فرمول شود، جایگزین α حقیقی و مثبت عدد با n اگر

می آید
aI

αf(t) =
١

Γ(α)

∫ t

a
(t− τ)α−١f(τ)dτ, (٢. ٣)

tI
α
b f(t) =

١
Γ(α)

∫ b

t
(τ − t)α−١f(τ)dτ, (۴ .٢)

می شود تعریف زیر به صورت و است فاکتوریل تابع تعمیم Γ(α) که
Γ(α) =

∫ ∞

٠ e−ttα−١dt. (۵ .٢)
برای .[٩] می شوند نامیده ریمان‐لیوویل راست و چپ انتگرال های به ترتیب انتگرال ها این
در نیستند. منطبق برهم کلی حالت در که دارند وجود متعددی عملگرهای کسری مشتق

می کنیم. معرفی را کاپوتو و ریمان‐لیوویل یعنی معروف مشتق عملگر دو ادامه

ریمان‐لیوویل کسری مشتق ٢. ١. ٢
مشتق و دارد پیوسته مشتق −n)ام ١) مرتبه تا [a, b] بازه روی f)f ∈ ACn([a, b]) کنید فرض
به صورت ریمان‐لیوویل راست و چپ مشتقات .n−١ < α < n و است) پیوسته مطلقاً آن nام

می شوند تعریف زیر
aD

α
t f(t) = (

d

dt
)n(aI

n−α
t f(t)) (۶ .٢)

=
١

Γ(n− α)
(
d

dt
)n

∫ t

a
(t− τ)n−α−١f(τ)dτ, (t > a),

tD
α
b f(t) = (

d

dt
)n(tI

n−α
b f(t)) (٢. ٧)

=
١

Γ(n− α)
(
−d
dt

)n
∫ b

t
(τ − t)n−α−١f(τ)dτ, (b > t).

است زیر به صورت ریمان‐لیوویل چپ مشتق مهم خواص از برخی
• aD

α
t (λf(t) + γg(t)) = λaD

α
t f(t) + γaD

α
t g(t).

• aD
α
t (aI

−α
t f(t)) = f(t).

• aI
−α
t (aD

α
t f(t)) = f(t)−

∑n
j=١[aDα−j

t f(t)]t=a
(t− a)α−j

Γ(α− j + ١) .

• aD
α
t (x− a)β =

Γ(β + ١)
Γ(β − α+ ١)(x− a)β−α.

• aD
α
t (aI

−β
t f(t)) = aD

α−β
t f(t).

• aI
−β
t (aD

α
t f(t)) = aD

α−β
t f(t)−

∑n
j=١[aDα−j

t f(t)]t=a
(t− a)β−j

Γ(β − j + ١) .
است. برقرار نیز ریمان‐لیوویل راست مشتق برای بالا خواص مشابه به طور



کسری حسابان ٢٢

کاپوتو کسری مشتق ٢. ١. ٣
داشته کسری حسابان توسعه در مهمی نقش ریمان‐لیوویل کسری انتگرال و مشتق تعریف
مشتقات با اولیه شرایط به ریمان‐لیوویل کسری مشتقات با معادلات حل برای چون اما است.
داشته چندانی رشد کسری معادلات حل در به ویژه کاربرد در نتوانست است، نیاز کسری
درمدل سازی کسری مشتقات از کاربردهایی یافتن و علوم جدید پیشرفت های به توجه با باشد.
و کند مدل بندی را پدیده ها بهتر بتواند که بود نیاز کسری مشتق از تعریف یک به پدیده ها،
کسری مشتق ١٩٧۶ سال در کاپوتو این رو از .[٢] باشد سازگار نیز مسئله ها اولیه شرایط با
،n − ١ < α < n و f(t) ∈ ACn[a, b] کنید فرض کرد. معرفی کاپوتو١ مشتق به نام را جدیدی

می شوند تعریف زیر عبارات با به ترتیب کاپوتو راست و چپ کسری مشتقات
C
aD

α
t f(t) =

١
Γ(n− α)

∫ t

a
(t− τ)n−α−١f (n)(τ)dτ, (٢. ٨)

C
t D

α
b f(t) =

(−١)n
Γ(n− α)

∫ b

t
(τ − t)n−α−١f (n)(τ)dτ. (٢. ٩)

است زیر به صورت کاپوتو و ریمان‐لیوویل کسری مشتق رابطه

RL
a Dα

t f(t) =
C
aD

α
t f(t) +

n−١∑
k=٠

f (k)(a)(t− a)k−α

Γ(k + ١ − α)
. (٢. ١٠)

آن گاه ،f (k)(a) = ٠ باشیم داشته k = ٠, ١, . . . , n− ١ برای اگر که می شود نتیجه فوق رابطه از
است. شده کاپوتو  ذکر مشتق خواص برخی زیر در می شوند. برابر هم با مشتق تعریف دو

• CDα
t (λf(t) + γg(t)) = λCDα

t f(t) + γCDα
t g(t).

• CDαc = ٠,
است. ثابت c آن در که

• CDβ[CDαf(t)] = CDβ+αf(t).

• CDα[Iαf(t)] = f(t).

• aI
α
T [

C
aD

α
t f(t)] = f(t)−

∑n−١
k=٠

f (k)(a)

k!
(t− a)k.

• tI
α
b [

C
t D

α
b f(t)] = f(t)−

∑n−١
k=٠

(−١)kf (k)(b)
k!

(b− t)k.

1Caputo Derivative



٢٣ مقدماتی تعاریف و کسری محاسبات برتاریخچه مروری

کاپوتو‐فابریزیو کسری مشتق ۴ .٢. ١
اصلی ضعف نقطه حال این با است. کسری عملگرهای رایج ترین از یکی کاپوتو کسری مشتق
کاپوتو مشتقات از استفاده با دینامیک ها از برخی این رو از و است آن تکین هسته عملگر این
مشتق [١٠] در فابریزیو و کاپوتو مشکل این رفع برای شوند. مدل سازی به درستی نمی توانند
این است. تکین نقطه بدون آن هسته که دادند ارائه کاپوتو‐فابریزیو١ مشتق به نام را جدیدی
با ١

Γ(١ − α)
و exp(− α

١ − α
(t − τ)) تابع با (٢. ٨) در (t − τ)−α هسته تغییر با کسری مشتق

،a < b و یک مرتبه سوبولوف٢ فضای H١ که f ∈ H١(a, b) کنید فرض می آید. به دست Mα(α)١ − αبه صورت کاپوتو مفهوم با α ∈ (٠, ١) مرتبه از کاپوتو‐فابریزیو راست و چپ کسری مشتق
CF
a Dα

t f(t) =
Mα(α)١ − α

∫ t

a
exp(− α

١ − α
(t− τ))ḟ(τ)dτ, (٢. ١١)

CF
t Dα

b f(t) = −Mα(α)١ − α

∫ b

t
exp(− α

١ − α
(τ − t))ḟ(τ)dτ. (٢. ١٢)

.Mα(٠) =Mα(١) = ١ به طوری که است نرمال سازی تابع Mα(α) که می شوند تعریف
ریمان‐لیویل مفهوم با α ∈ (٠, ١) مرتبه از کاپوتو‐فابریزیو راست و چپ کسری مشتقات

می شوند تعریف زیر به صورت
CFR
a Dα

t f(t) =
Mα(α)١ − α

d

dt

∫ t

a
exp(− α

١ − α
(t− τ))f(τ)dτ, (٢. ١٣)

CFR
t Dα

b f(t) = −Mα(α)١ − α

d

dt

∫ b

t
exp(− α

١ − α
(τ − t))f(τ)dτ. (١۴ .٢)

.CFDαf = ٠ باشد ثابتی تابع f اگر کاپوتو، کسری مشتق مشابه .٢. ١. ١ ملاحظه
ارائه کاپوتو‐فابریزیو کسری مشتق برای را جزء به جزء انتگرال گیری فرمول زیر تعریف

دارد. کسری تغییرات حساب به مربوط مسائل اثبات در مهمی نقش که می کند
اول مرتبه (مشتق f ∈ ACloc[a, b] کنید فرض جزء) به جزء (انتگرال گیری [١١] .٢. ١. ١ تعریف
کسری مشتق جزء به جزء انتگرال گیری فرمول .α ∈ (٠, ١) و باشد) پذیر انتگرال [a, b] روی f

است زیر به صورت ∫کاپوتو‐فابریزیو b

a
f(t) CF

a Dα
t g(t)dt =

∫ b

a
g(t) CF

t Dα
b f(t)dt

+ f(b)

∫ b

a
g(τ)φα(b− τ)dτ − g(a)

∫ b

a
f(τ)φα(τ)dτ,

.φα(t) =
١

١ − α
exp(− α

١ − α
t) که

1Caputo-Fabrizio Derivative
2Sobolev



کسری حسابان ٢۴

آتانگانا‐بالینو کسری انتگرال و مشتق ۵ .٢. ١
بدون آن هسته که آتانگانا‐بالینو١ کسری مشتق ،α ∈ (٠, ١) و f ∈ H١(a, b), a < b کنید فرض

به صورت کاپوتو مفهوم با است تکین نقطه
ABC
a Dα

t f(t) =
Mα(α)١ − α

∫ t

a
Eα(−

α

١ − α
(t− τ)α)ḟ(τ)dτ, (١۵ .٢)
به صورت ریمان ‐لیویل مفهوم با و

ABR
a Dα

t f(t) =
Mα(α)١ − α

d

dt

∫ t

a
Eα(−

α

١ − α
(t− τ)α)f(τ)dτ, (١۶ .٢)

مشتق همچنین است. میتاگ‐لفلر تابع ،Eα(t) =
∑∞

k=٠
tk

Γ(αk + ١) که می شود تعریف
به صورت کاپوتو مفهوم با آتانگانا‐بالینو راست کسری

ABC
t Dα

b f(t) = −Mα(α)١ − α

∫ b

t
Eα(−

α

١ − α
(τ − t)α)ḟ(τ)dτ, (٢. ١٧)
به صورت ریمان‐لیویل مفهوم با و

ABR
t Dα

b f(t) = −Mα(α)١ − α

d

dt

∫ b

t
Eα(−

α

١ − α
(τ − t)α)f(τ)dτ, (٢. ١٨)

می شود. تعریف
می شوند تعریف زیر عبارات با به ترتیب آتانگانا‐بالینو راست و چپ کسری انتگرال

aI
α
t f(t) =

١ − α

Mα(α)
f(t) +

α

Mα(α)Γ(α)

∫ t

a
(t− τ)α−١f(τ)dτ, (٢. ١٩)

tI
α
b f(t) =

١ − α

Mα(α)
f(t) +

α

Mα(α)Γ(α)

∫ b

t
(τ − t)α−١f(τ)dτ. (٢. ٢٠)

کاپوتو مفهوم با آتانگانا‐بالینو راست و چپ کسری مشتقات بین مفید روابط برخی زیر در
می شود بیان متناظر کسری انتگرال های و ریمان‐لیویل بامفهوم آتانگانا‐بالینو و

• aI
α
t

{
ABR
a Dα

t f(t)
}
= tI

α
b

{
ABR
t Dα

b f(t)
}
= f(t).

• aI
α
t

{
ABC
a Dα

t f(t)
}
= f(t)− f(a).

• tI
α
b

{
ABC
t Dα

b f(t)
}
= f(t)− f(b).

شود. مراجعه [١٣] و [١٢] به بیشتر جزئیات برای
1Atangana-Baleanu Fractional Derivative



٢۵ مقدماتی تعاریف و کسری محاسبات برتاریخچه مروری

متغیر مرتبه کسری حسابان ۶ .٢. ١
هستند مسائلی است شده توجه آن به زیاد اخیراً که کسری حسابان نظریه از جالب تعمیم یک
مشتق ها این مرتبه یعنی هستند، مکان یا زمان به وابسته کسری مرتبه مشتق ها ی شامل که
وقتی فیزیک، در پدیده ها بعضی که دریافتند نویسندگان از بسیاری .[١۵]‐[١۴] نیست ثابت
در انتشار فرآیندهای از بعضی رفتار مانند می شوند توصیف بهتر نباشد ثابت کسری مرتبه عملگر
محیط در تغییرات که فرآیندهایی یا ناهمگن محیط یک در انتشار فرآیند دما، تغییرات به پاسخ
با متغیر، مرتبه عملگر پیش گامانه کارهای .[١٨]‐[١۶] می شود ذرات دینامیک تغییر باعث
١٩٩٣ سال در همکاران و سامکو توسط متغیر، مرتبه ریمان‐لیویل مشتق و انتگرال معرفی
مرتبه با مختلفی عملگرهای متغیر، مرتبه کسری حساب توسعه با .[٢٠]‐[١٩] شده اند ارائه
شده است. گزارش [٢١] در متغیر مرتبه با کسری مشتقات از رده یک شده اند. معرفی متغیر
فرض می کنیم. معرفی را α(t) ∈ (٠, ١) متغیر مرتبه با آتانگانا‐بالینو کسری مشتقات ادامه در

باشد. نرمال ساز تابع M(α(t)) و f ∈ H٠)١, T ), T > ٠ کنید
به صورت کاپوتو مفهوم با آتانگانا‐بالینو متغیر مرتبه چپ کسری مشتق [٢٢] .٢. ١. ٢ تعریف

ABC٠ D
α(t)
t f(t) =

M(α(t))

١ − α(t)

∫ t

٠ Eα(t)(−
α(t)

١ − α(t)
(t− τ)α(t))ḟ(τ)dτ, (٢. ٢١)

به صورت ریمان‐لیویل مفهوم با و
ABR٠ D

α(t)
t f(t) =

M(α(t))

١ − α(t)

d

dt

∫ t

٠ Eα(t)(−
α(t)

١ − α(t)
(t− τ)α(t))f(τ)dτ, (٢. ٢٢)

می شود. تعریف
به صورت کاپوتو مفهوم با متغیر مرتبه آتانگانا‐بالینو راست مشتق [٢٢] .٢. ١. ٣ تعریف

ABC
t D

α(t)
T f(t) = −M(α(t))

١ − α(t)

∫ T

t
Eα(t)(−

α(t)

١ − α(t)
(τ − t)α(t))ḟ(τ)dτ, (٢. ٢٣)
به صورت ریمان‐لیویل مفهوم با و

ABR
t D

α(t)
T f(t) = −M(α(t))

١ − α(t)

d

dt

∫ T

t
Eα(t)(−

α(t)

١ − α(t)
(τ − t)α(t))f(τ)dτ. (٢۴ .٢)

می شود. تعریف
ریمان‐لیوویل مفهوم در آتانگانا‐بالینو راست و چپ کسری مشتقات بین روابط از برخی

می شود. تعریف زیر به صورت کاپوتو مفهوم با آتانگانا‐بالینو و
کاپوتو مفهوم با ریمان‐لیوویل مفهوم در آتانگانا‐بالینو چپ کسری مشتق بین رابطه •

ABC٠ D
α(t)
t f(t) = ABR٠ D

α(t)
t f(t)− M(α(t))

١ − α(t)
f(٠)Eα(t)(−

α(t)

١ − α(t)
tα(t)), (٢۵ .٢)



کسری حسابان ٢۶
کاپوتو مفهوم با ریمان‐لیوویل مفهوم در آتانگانا‐بالینو راست کسری مشتق بین رابطه •
ABC
t D

α(t)
T f(t) = ABR

t D
α(t)
T f(t)−M(α(t))

١ − α(t)
f(T )Eα(t)(−

α(t)

١ − α(t)
(T −t)α(t)). (٢۶ .٢)

جزء به جزء انتگرال گیری •∫ T

٠
ABC٠ D

α(t)
t f(t)g(t)dt =

∫ T

٠ f(t)ABR
t D

α(t)
T g(t)dt+

M(α(t))

١ − α(t)
f(t)(e١

α(t),١, −α(t)١−α(t)
,T−g)(t)|

T٠ ,

(٢. ٢٧)
Eγ

ρ,µ(z) = همچنین و (eγρ,µ,ω,b−φ)(x) =
∫ b
x (t−x)

µ−١Eγ
ρ,µ[ω(t−x)ρ]φ(t)dt, x < b, که

.∑∞
k=٠

(γ)kz
k

Γ(ρk + µ)k!

شود. مراجعه [٢٢] به بیشتر جزئیات برای

کسری جبری دیفرانسیل معادلات ٢. ٢
فرآیند کنترل بهینه، کنترل شیمیایی، سینتیک مکاترونیک، در فیزیکی پدیده های از بسیاری
تولید فرآیندهای و قدرت سیستمهای الکتریکی، مدار طراحی مولکولی، دینامیک شیمیایی،
فرم .[٢۴]‐[٢٣] می شوند مدل سازی جبری١ دیفرانسیل معادلات از استفاده با غیره و صنعتی

است زیر به صورت دیفرانسیل معادله کلی
F (t, y, ẏ) = ٠, (٢. ٢٨)

و آن ها مشتقات و وابسته متغیرهای زمان، از برداری تابع یک F وابسته، متغیرهای بردار y که
کاربردهای در غالباً که ،(٢. ٢٨) در جبری دیفرانسیل معادلات از خاصی شکل است. منفرد ∂F

∂ẏبا معمولی دیفرانسیل معادله یا صریح٢ نیمه جبری دیفرانسیل معادله می شود، ظاهر عملی
می شود تعریف زیر به صورت که است جبری محدودیت های

ẏ = F (t, y, z), (٢. ٢٩)
٠ = g(t, y, z). (٢. ٣٠)

غیر ماهیت شود. مراجع [٢۶]‐[٢۵] به جبری دیفرانسیل معادلات درباره بیشتر مطالعه برای
مرتبه مشتقات با پدیده ها این از بسیاری که می شود باعث کسری مرتبه مشتقات موضعی٣
بهینه کنترل گر طراحی الکتروشیمیایی، فرآیندهای مثال به عنوان شوند توصیف بهتر کسری
جبری‐کسری دیفرانسیل معادلات با ... و پیچیده بیوشیمیایی فرآیندهای صحیح، عدد غیر

.[٢۴] می شوند توصیف دقیق تر
دیفرانسیل معادلات از تعمیمی کسری۴ جبری دیفرانسیل معادلات [٢٧] .٢. ٢. ١ تعریف

1Differential Algebraic Equation
2Semi-explicit Differential Algebraic Equation
3Non-local
4Fractional Differential Algebraic Equations



٢٧ بهینگی لازم شرایط و کسری بهینه کنترل مسئله
می شود گرفته نظر در کسری مرتبه با دیفرانسیل معادلات آن در که است صحیح مرتبه جبری
کسری دیفرانسیل معادلات از مجموعه ای کسری جبری دیفرانسیل معادلات دیگر به عبارت

می شود داده نمایش زیر به صورت و است اضافی جبری محدودیت های همراه
∗Dαy = F (t, y, z), (٢. ٣١)

٠ = g(t, y, z). (٢. ٣٢)
است. کسری مشتق عملگر یک ∗Dα که

بهینگی لازم شرایط و کسری بهینه کنترل مسئله ٢. ٣
است. کسری١ بهینه کنترل مسئله کسری سیستم های در توجه مورد و جالب موضوعات از یکی
دینامیکی سیستم های آن در که است کلاسیک بهینه کنترل از تعمیمی کسری بهینه کنترل
کسری مشتق های به نسبت می تواند کسری بهینه کنترل مسئله است. کسری مشتقات شامل
مسئله کلی فرم ابتدا است. کاپاتو کسری مشتق  آن ها مهم ترین از یکی که شود تعریف مختلفی

می شود. بیان بهینگی شرایط قضایای سپس و می کنیم تعریف را کسری بهینه کنترل
Minimize J(u) = ψ(T, x(T )) +

∫ T

٠ f(t, x(t), u(t))dt (٢. ٣٣)
subject to

Mẋ(t) +N٠Dα
t x(t) = g(t, x(t), u(t)), ٠ < t ≤ T, (٣۴ .٢)

x(٠) = x٠, (٣۵ .٢)
و هستند (M,N) ̸= ٠ و M,N ∈ Rp ،x٠ ∈ Rp ،α ∈ (٠, ١] آن در که

f : R× Rp × Rq → R, g : R× Rp × Rq → Rp, ψ : R× Rp → R,

در ٠Dα
t و هستند کنترل و وضعیت متغیرهای به ترتیب u(.) و x(.) هستند. مشتق پذیر توابع

و ثابت می توانند x(T ) و T ،(٣۵ .٢)‐(٢. ٣٣) مسئله در است. کسری مشتق عملگر (٣۴ .٢)
داشت. خواهیم را کلاسیک بهینه کنترل مسئله باشد N = ٠ اگر باشند. آزاد یا

تابع ابتدا کاپاتو مشتق با (٣۵ .٢)‐(٢. ٣٣) مسئله بهینگی شرایط آوردن به دست برای
[٢٨] می کنیم تعریف زیر به صورت λ(.) لاگرانژ ضریب از استفاده با را H همیلتونی

H(x(t), u(t), λ(t), t) = f(x(t), u(t), t) + λT g(x(t), u(t), t). (٣۶ .٢)
پیوسته تابع هر ازای به و باشد پیوسته تابع g : [٠, T ] → R کنید فرض [٢٨] .٢. ٣. ١ لم

باشیم داشته η : [٠, T ] → R∫ T

٠ η(t)g(t)dt = ٠,
1Fractional Optimal Control Problem



کسری حسابان ٢٨
.g(t) = ٠ داریم t ∈ [٠, T ] هر ازای به این صورت در

در باشد. (٣۵ .٢)‐(٢. ٣٣) مسئله بهینه جواب (x, u, T ) کنید فرض [٢٨] .٢. ٣. ١ قضیه
می کند صدق زیر شرایط در (x, u, λ) سه تایی به طوری که دارد وجود λ(.) تابع این صورت

همیلتونی دستگاه (الف)

− ∂H(t, x, u, λ)

∂x
=Mλ̇(t)−NC

t D
α
Tλ(t), t ∈ [٠, T ], (٢. ٣٧)

∂H(t, x, u, λ)

∂λ
=Mẋ(t) +NC٠ Dα

t x(t), t ∈ [٠, T ], (٢. ٣٨)

ایستایی شرایط (ب)
∂H(t, x, u, λ)

∂u
= ٠, t ∈ [٠, T ], (٢. ٣٩)

تراگردی شرایط ](ج)
H(t, x, u, λ)−Nλ(t)C٠ Dα

t x(t) +Nẋ(t)tI
١−α
T λ(t) +

∂ψ

∂t
(t, x(t))

]
t=T

= ٠, (۴٢. ٠)[
Mλ(t) +N tI

١−α
T λ(t)− ∂ψ

∂t
(t, x(t))

]
t=T

= ٠, (۴٢. ١)
شده است. تعریف (٣۶ .٢) در H همیلتونی که



٣ فصل
کسری جبری دیفرانسیل معادلات حل
سیستم های از استفاده با متغیر مرتبه

فازی

معادلات شامل که می شوند توصیف دینامیکی سیستم های توسط طبیعی پدیده های از بسیاری
کسری مشتق کسری، حساب تحولات به توجه با اخیر، قرن در است. دیفرانسیل و جبری
کاربردهای پیدایش با است. شده معرفی طبیعی پدیده های مدل سازی در مهم ابزار یک به عنوان
که پیچیده دینامیکی سیستم های ظهور علم، شاخه های همه تقریباً و فیزیک در کسری حساب
پدیده های از بسیاری است. ناپذیر اجتناب هستند، جبری معادلات و کسری مشتقات شامل
جبری دیفرانسیل معادلات به عنوان که پیچیده ای سیستم های از استفاده با می توان را فیزیکی
دیفرانسیل معادلات بیشتر که آنجا از .[٣٠ ،٢٩ ،٢٧] کرد مدل سازی می شوند، شناخته کسری
تقریبی جواب های آوردن به دست برای عددی روش های ندارند، دقیقی جواب کسری جبری
جبری دیفرانسیل معادلات مفهوم هستند. مفید و ضروری کسری جبری دیفرانسیل معادلات
آن ها حل برای محدودی رویکردهای تعداد این رو از است، ریاضیات در جدیدی موضوع کسری
پیشنهاد توانی سری های بر مبتنی عددی روش یک [٣١] در مثال به عنوان شده است. ارائه
داده بسط [٣٢] در کسری جبری دیفرانسیل معادلات حل برای هار موجک توابع است. شده
دیفرانسیل معادلات تبدیل برای را لغزشی حالت کنترل نظریه نویسندگان ،[٣٣] در شده اند.

٢٩



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ٣٠
پیش بینی کننده‐ روش از سپس کرده اند، معرفی کسری دیفرانسیل معادلات به کسری جبری
آنالیز روش کرده اند. استفاده حاصل کسری دیفرانسیل معادلات حل برای کننده تصحیح
همچنین است شده گرفته بکار [٣۴] در کسری جبری دیفرانسیل معادلات حل برای هموتوپی
در است. شده مقایسه آدومین تجزیه روش مانند دیگر عددی روش های نتایج با روش این
دیفرانسیل معادلات از کلاس یک عددی حل برای گالرکین ژاکوبی یافته تعمیم روش ،[٣۵]
برای را بزیه١ منحنی روش نویسنده ،[٣۶] در است. شده داده توسعه غیرخطی کسری جبری

است. داده گسترش کسری جبری دیفرانسیل معادلات حل
مرتبه کسری جبری دیفرانسیل معادلات کسری، جبری دیفرانسیل معادلات از تعمیمی
هستند. متغیر مرتبه با کسری مشتقات به صورت دیفرانسیل معادلات آن  در که است متغیر
این در است. نگرفته قرار بررسی مورد کنون تا کسری جبری دیفرانسیل معادلات از تعمیم این
فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل به فصل
به کسری بهینه کنترل مسائل برای بهینگی لازم شرایط می دهیم نشان همچنین می پردازیم.
کاربرد یک به عنوان فصل این در بنابراین هستند. کسری جبری دیفرانسل معادلات صورت
حل پیشنهادی فازی مدل با نیز کسری بهینه کنترل مسئله کسری، جبری دیفرانسل معادلات

می شود.

متغیر مرتبه کسری جبری دیفرانسیل معادلات معرفی ٣. ١
مسئله حل روش و

زیر به صورت آتانگانا‐بالینو کسری مشتقات با متغیر مرتبه کسری جبری دیفرانسیل معادلات
می شود تعریف

ABC٠ D
αi(t)
t xi(t) =fi(t, x١, x٢, . . . , xn, ẋ١, ẋ٢, . . . , ẋn), αi(t) ∈ (٠, ١), (٣. ١)

٠ =g(t, x١, x٢, . . . , xn), i = ١,٢, . . . , n− ١, t ≥ ٠, (٣. ٢)
اولیه شرط با

xi(٠) = ai, i = ١,٢, . . . , n. (٣. ٣)
فازی هايپربوليک مدل نام به را جدیدی فازی سیستم همکاران و ژانگ٢ ،٢٠٠۴ سال در
شده شناخته غيرخطی توابع تقريب برای موفق ابزاری به عنوان كه دادند ارائه يافته٣ تعميم
مثال، به عنوان است. شده استفاده مختلف مسائل حل برای فازی مدل این از .[٣٧] است
از کلاس یک برای يافته تعميم فازی هايپربوليک مدل اساس بر تطبیقی کنترل کننده یک

1Bezier Curves Method
2Zhang
3Generalized Fuzzy Hyperbolic Model



٣١ مسئله حل روش و متغیر مرتبه کسری جبری دیفرانسیل معادلات معرفی
با غیرخطی سیستم های برای ،[٣٩] در است. شده طراحی [٣٨] در غیرخطی سیستم های
[۴٠] در است. شده ایجاد فازی مدل این بر مبتنی تطبیقی کنترل الگوریتم یک قطعیت، عدم
غیرخطی پویا سیستم های کننده تعیین به عنوان يافته تعميم فازی هايپربوليک مدل از ،[۴١] و
هايپربوليک مدل اساس بر آشوب١ از جلوگیری برای جدید کنترل گر یک است. شده استفاده
مبتنی بهینه کنترل طراحی روش یک [۴٣] در است. شده طراحی [۴٢] در يافته تعميم فازی
سیستم این ادامه در است. شده ارائه پیوسته زمان غیرخطی سیستم های برای مدل این بر

کنید. مراجعه [۴٠] و [٣٧] به بیشتر جزئیات برای می کنیم. معرفی مختصر به طور را فازی
تعریف زیر به صورت یافته تعمیم متغیرهای ،x = [x١(t), . . . , xn(t)]T هر برای .٣. ١. ١ تعریف

می شوند
yβs+j = xs − dsj , j = ١,٢, . . . , ws, s = ١,٢, . . . , n, (۴ .٣)

ثابت j = ١,٢, . . . , ws, s = ١,٢, . . . , n dsjها، و βs =
∑s−١

i=٠ wi, w٠ = ٠, m =
∑n

i=١wi که
هستند.

است زیر شرایط دارای يافته تعميم فازی هايپربوليک مدل فازی قواعد پایگاه
است زیر به صورت قاعده هر .١

و است Fx٢١ ،(x٢ − d٢١) و است Fx١w١ ،(x١ − d١w١) و . . . و است Fx١١ ،(x١ − d١١) اگر
Y = CF١١ + . . .+ آن گاه است، Fxnwn

، (xn − dnwn) …و و است Fxn١ ،(xn − dn١) …و
،CF١w١ + CF٢١ + . . .+ CFn١ + . . .+ CFnwn

(مثبت) Px زیرمجموعه های با فازی مجموعه های Fxsj (s = ١, . . . , n j = ١ . . . , ws) که
هستند. (منفی) Nx و

بخش در Fxsj اگر یعنی است، اگر بخش در Fxsj با متناطر آن گاه، بخش در CFsj ثابت .٢
آن گاه بخش در CFsj این صورت غیر در شود ظاهر آن گاه بخش در باید CFsj باشد، اگر

می شود. داده نمایش CNi با C−
Fsj

و CPi با C+
Fsj

باشد. نباید
بدین است، ٢m(m =

∑n
i=١wi) فازی قواعد پایگاه خروجی متغیر برای فازی قواعد تعداد .٣

و اگر بخش در ورودی متغیرهای Nx و Px ممکن ترکیبات تمام قواعد پایگاه که معنی
می گیرد. دربر را آن گاه بخش در ثابت ها خطی ترکیبات تمام

(Nx) منفی و (Px) مثبت فازی مجموعه نوع دو شامل يافته تعميم فازی هايپربوليک مدل
به صورت آن ها عضویت تابع که است

µPx(xs) = exp(− ١
٢(xs − ks)

٢), µNx(xs) = exp(− ١
٢(xs + ks)

٢), ks > ٠, (۵ .٣)
1Chaos



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ٣٢
استفاده ورودی متغیرهای نمایش برای فازی مجموعه دو از فقط بنابراین می شود. تعریف
فضای تمام بزرگ، کافی اندازه به ws انتخاب و یافته تعمیم متغیر از استفاده با می شود.

داد. پوشش می توان را ورودی
پایگاه گرفتن نظر در با ،f(x) خروجی متغیر یک و ورودی متغیر n با سیستم برای .٣. ١. ١ لم
توابع تعریف ،٣. ١. ١ یافته تعمیم ورودی متغیرهای و یافته تعمیم هایپربولیک فازی قواعد
به صورت يافته تعميم فازی هايپربوليک مدل ،(۵ .٣) با Nx و Px فازی مجموعه برای عضویت

است زیر

f(x١, x٢, . . . , xn) =
m∑
i=١

Cpi exp(kiyi) + CNi exp(−kiyi)
exp(kiyi) + exp(−kiyi)

(۶ .٣)

=
m∑
i=١

pi +
m∑
i=١

qi
exp(kiyi)− exp(−kiyi)
exp(kiyi) + exp(−kiyi)

= p+QT tanh(Kyy),

و Q ∈ Rm ،pi =
Cpi + CNi٢ , qi =

Cpi − CNi٢ , p =
∑m

i=١ pi ،f : U ⊂ Rn −→ R که
.Ky = diag(k١, k٢, . . . , km)

مجموعه یک U مرجع مجموعه ورودی، که کنید فرض عمومی) تقریب گر (قضیه .٣. ١. ١ قضیه
سیستم یک دلخواه، ε > ٠ و U در g(x) داده شده حقیقی تابع هر برای آنگاه باشد، Rn در فشرده

که به نحوی دارد وجود (۶ .٣) رابطه به شکل f(x) فازی
sup
x∈U

|f(x)− g(x)| < ε.

هر می تواند و است عمومی زننده تقریب یک يافته تعميم فازی هايپربوليک مدل بنابراین
جبری دیفرانسیل معادلات حل برای بزند. تقریب U فشرده مجموعه در را غیرخطی تابع
جواب های از کدام هر يافته تعميم فازی هايپربوليک مدل از استفاده با متغیر مرتبه کسری
و می گیریم نظر در فازی مدل یک به عنوان را (٣. ٣) مرزی شرایط با (٣. ٢) و (٣. ١) مسئله

می کنیم تعریف زیر به صورت را فازی جواب های

Gxi = pxi +QT
xi
tanh(Kyxi

yxi). (٣. ٧)
به صورت می توان را (٣. ٣)‐(٣. ١) مسئله فازی جواب های (٣. ٣) اولیه شرایط به توجه با

نوشت زیر
xiG(Φxi , t) = ai + tGxi , i = ١,٢, . . . , n, (٣. ٨)

است. xiG فازی جواب تنظیم قابل پارامترهای بردار Φxi , i = ١,٢, . . . , n, که
پارامتر هیچ شامل اول بخش می آید. به دست بخش دو مجموع از فازی جواب هر بنابراین،
هايپربوليک مدل یک شامل دوم بخش و می کند برآورده را اولیه شرایط و نیست تنظیمی قابل

است. تنظیم قابل پارامترهای با يافته تعميم فازی



٣٣ مسئله حل روش و متغیر مرتبه کسری جبری دیفرانسیل معادلات معرفی

يافته تعميم فازی هايپربوليک مدل آموزش ٣. ١. ١
به دست یادگیری فرآیند یک طریق از عموماً يافته تعميم فازی هايپربوليک مدل پارامترهای
معمولا˟ که است عملکرد شاخص یا هزینه تابع یک رساندن حداقل به شامل آموزش می آیند.
بدون روش به مدل است، ناشناخته پیش از xiG عملکرد که آن جایی از است. خطا از معیاری
عملکرد شاخص عنوان به خطا١ مربعات میانگین این جا در می شود. داده آموزش نظارت
(٣. ١) مسئله در (٣. ٨) فازی جواب های کردن جایگزین با منظور این برای می شود. انتخاب

داریم (٣. ٢) و
ABC٠ D

αi(t)
t xiG(t) =f(t, x

١
G, x

٢
G, . . . , x

n
G, ẋ

١
G, ẋ

٢
G, . . . , ẋ

n
G), αi(t) ∈ (٠, ١), (٣. ٩)

٠ =g(t, x١
G, x

٢
G, . . . , x

n
G), i = ١,٢, . . . , n− ١, t ≥ ٠. (٣. ١٠)
می کنیم تعریف را زیر تقریبی خطای توابع حال

Ei(Φ, tj) =
ABC٠ D

αi(tj)
tj

xiG(tj)− f(tj , x
١
G, x

٢
G, . . . , x

n
G, ẋ

١
G, ẋ

٢
G, . . . , ẋ

n
G), i = ١, . . . , n− ١,

(٣. ١١)
En(Φ, tj) = g(tj , x

١
G, x

٢
G, . . . , x

n
G), (٣. ١٢)

و (٣. ٨) فازی جواب های در تنظیم قابل پارامترهای تمام بردار Φ = (Φx١ ,Φx٢ , . . . ,Φxn) که
به (٣. ١٠) و (٣. ٩) مسئله درنتیجه، است. (٠, T ] بازه در کالوکیشن نقاط tj , j = ١,٢, ..., J

می شود تبدیل زیر نامقید بهینه سازی مسئله

Minimize
J∑

j=١

n−١∑
i=١

[Ei(Φ, tj)]
٢ +

J∑
j=١

[En(Φ, tj)]
٢. (٣. ١٣)

داد نمایش زیر به  صورت می توان را (٣. ١٣) بهینه سازی مسئله
Minimize E(Φ) =

١
٢ ∥ η(Φ) ∥٢٢, (١۴ .٣)

.η(Φ) = [E١(Φ, t١), E١(Φ, t٢), . . . , En−١(Φ, tJ), En(Φ, t١), En(Φ, t٢), . . . , En(Φ, tJ)]
T که

تا است Φ صحیح پارامترهای یافتن معنای به يافته تعميم فازی هايپربوليک مدل آموزش
گرادیان نیوتن، شبه نیوتن، مانند متعددی بهینه سازی الگوریتم های از شود. کمینه E(Φ)

روش ها، ساده ترین از یکی .[۴٧]‐[۴۴] کرد استفاده (١۴ .٣) حل برای می توان غیره و مزدوج
می شوند اولیه مقداردهی تصادفی به صورت وزن ها روش این در است. کاهشی گرادیان روش

می شود اعمال زیر تغییر الگوریتم سپس و
Φi(j + ١) = Φi(j)− κ

∂E(Φ)

∂Φi
, (١۵ .٣)

1Mean Square Error



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ٣۴
پارامترهای تمام Φi, i = ١,٢, . . . , n(٣m+١) است، تکرار گام j است، یادگیری نرخ κ آن در  که
برای است. یافته تعمیم ورودی متغیرهای تعداد m و (٣. ٨) فازی جواب های تنظیم قابل

می شود به روز زیر به  صورت x١
G تنظیم قابل پارامترهای مثال،

px١(j + ١) = px١(j)− κ
∂E(Φ)

∂px١
, (١۶ .٣)

qix١(j + ١) = qix١(j)− κ
∂E(Φ)

∂qix١
, i = ١,٢, . . . ,m, (٣. ١٧)

kix١(j + ١) = kix١(j)− κ
∂E(Φ)

∂kix١
, i = ١,٢, . . . ,m, (٣. ١٨)

dix١(j + ١) = dix١(j)− κ
∂E(Φ)

∂dix١
, i = ١,٢, . . . ,m. (٣. ١٩)

(٣. ١٩)‐(١۶ .٣) از استفاده با xsG, s = ٢, . . . , n تنظیم قابل پارامترهای سایر مشابه، به طور
است. شده داده توضیح یادگیری الگوریتم زیر مراحل در می شوند. بهینه سازی

تصادفی طور به را Φi, i = ١,٢, . . . , n(٣m+ ١) فازی جواب های پارامترهای اولیه مقادیر :١ مرحله
کنید. انتخاب را L تکرار تعداد و ε > ٠ خطا کران همچنین کنید انتخاب

کنید. مقداردهی را t = (t١, t٢, . . . , tJ) ورودی بردار :٢ مرحله
کنید. محاسبه را xsG, s = ١,٢, . . . , n خروجی مقادیر :٣ مرحله

کنید. محاسبه (١۴ .٣) از استفاده با را E(Φ) خطای تابع :۴ مرحله
کنید به روز زیر تغییر الگوریتم از استفاده با را پارامترها :۵ مرحله

Φi(j + ١) = Φi(j)− κ
∂E(Φ)

∂Φi
.

بروید. ٢ مرحله به صورت این غیر در بروید ٧ مرحله به ،j + ١ > L یا E(Φ) ≤ ε اگر :۶ مرحله
کنید. ذخیره را نهایی پارامترهای یادگیری، الگوریتم تکمیل از پس :٧ مرحله

همگرایی زیر قضیه از استفاده با است. شده داده نشان ٣. ١ شکل در یادگیری الگوریتم فلوچارت
می دهیم. نشان را شده ارائه یادگیری الگوریتم

و کران دار {Φj | E(Φj) ≤ E(Φ٠))} تراز مجموعه پیوسته، E(Φj) کنید فرض .٣. ١. ٢ قضیه
.j −→ ∞ هنگامی که E(Φj) −→ ٠ آن گاه باشد. △E(Φj) = E(Φj+١)− E(Φj) < ٠

تنظیم قابل پارامترهای که آن جایی از و E(Φ) ≥ ٠ ،(١۴ .٣) در E(Φj) تعریف به توجه با برهان.
E(Φj) بنابراین شده اند بهینه سازی کاهشی گرادیان الگوریتم توسط پیشنهادی فازی سیستم
تابع .E(Φj) −→ L∞ ̸= ٠ ،j −→ ∞ کنید فرض است. نزولی {Φj , j = ١,٢, . . .} امتداد در
در Φj ∈ {Φ|L∞ ⩽ E(Φ) ⩽ E(Φ٠)} تمام برای را W (Φj) = △E(Φ(j)) = E(Φj+١) − E(Φj)



٣۵ مسئله حل روش و متغیر مرتبه کسری جبری دیفرانسیل معادلات معرفی

یادگیری. الگوریتم فلوچارت :٣. ١ شکل



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ٣۶
بیشینه بنابراین .[۴٨] است فشرده نتیجه در و کران دار و بسته مجموعه این بگیرید. نظر
در −θ را W (Φ) مقدار بیشترین آید. می به دست فشرده مجموعه این در و دارد وجود W (Φ)

است. L∞ ̸= ٠ و W (Φj) = △E(Φj) < ٠ زیرا است صفر مخالف θ که است بدیهی بگیرید. نظر
داریم

E(ΦN ) = ΣN−١٠ ∆E(Φj) + E(Φ٠) ≤ −Nθ + E(Φ٠).

برای E(Φ) بودن نا منفی با که .N → ∞ که هنگامی E(ΦN ) → −∞ که معناست بدان این
.L∞ = ٠ نتیجه در است. درتناقض N مقادیر تمام

های سیستم با کسری بهینه کنترل مسئله حل ٣. ٢
فازی

شد. مطرح [۵٠]‐[۴٩] ریو١ آثار با ١٩٩۶ سال در که است جدیدی موضوع کسری بهینه کنترل
کسری مشتق دارای دینامیک ها از یکی حداقل یا هدف تابع آن در که را بهینه ای کنترل مسئله
بهینه کنترل از تعمیمی واقع در کسری بهینه کنترل می نامند. کسری بهینه کنترل است،
روش های صحیح، مرتبه بهینه کنترل مانند بنابراین است. دلخواه مرتبه با صحیح، مرتبه
براساس غیرمستقیم روش های می شوند. تقسیم غیرمستقیم و مستقیم دسته دو به آن حل
آن جواب های و است استوار کسری بهینه کنترل برای یافته تعمیم پونتریاگین کمینه اصل
کسری بهینه کنترل بهینگی لازم شرایط از که کسری همیلتونی مرزی مقدار مسئله حل از
به را کسری بهینه کنترل مستقیم روش های دیگر، طرف از می آیند. به دست می شود، حاصل
،٢NLP حل کننده یک با حاصل مسئله سپس می کنند. تبدیل غیرخطی برنامه ریزی مسئله
به دست تقریبی جواب های بالای اعتبار غیرمستقیم روش های مزایای از یکی می شود. حل
حساب از که بهینگی لازم شرایط در جواب ها این کردن صدق پایه بر مزیت این است. آمده
روش های روی اولیه کارهای از یکی است. می شوند، ناشی پونتریاگین کمینه اصل و تغییرات
از آگراول٣ [۵١] در است. شده ارائه [۵١] در کسری بهینه کنترل مسئله حل برای عددی
کسری بهینه کنترل مسائل از کلاس یک برای را بهینگی لازم شرایط و کرد استفاده ریو نتایج
توسعه کسری بهینه کنترل مسئله حل برای را عددی روش های محققان آن از پس داد. ارائه
‐[۵٢] لژاندر متعامد چندجمله ای بر مبتنی عددی روش های به می توان مثال، برای دادند.
عددی ادغام و طیفی شبه روش ،[۵٩]‐[۵٧] برنولی چندجمله ای بر مبتنی روش های ،[۵۶]
،[۶۴] چبیشف‐لژاندر عملگر روش ،[۶٣]‐[۶١] سازی گسسته بر مبتنی روشهای ،[۶٠]
مبتنی روش های ،[۶٧] ریتز طیفی روش ،[۶۶]‐[۶۵] ژاکوبی چندجمله ای بر مبتنی روش

1Riewe
2NLP-solver
3Agrawal



٣٧ فازی های سیستم با کسری بهینه کنترل مسئله حل
روش ،[٧٠] کسری انتگرال رابطه های بر مبتنی مستقیم روش های ،[۶٩]‐[۶٨] موجک ها بر
روش ،[٧٢] تقریب روش های ،[٧١] کسری مرتبه لاگرانژ جمله ای چند اساس بر کالوکیشن
شبه روش و [٧۴] اپسیلون جریمه روش ،[٧٣] تعمیم یافته چبیشف چندجمله ای بر مبتنی
کسری بهینه کنترل مسائل از برخی بخش این در کرد. اشاره [٧۵] مونتس‐لژاندر طیفی
مشتق با کسری بهینه کنترل مسئله که می دهیم نشان خاص، به طور می کنیم. بررسی را
فرموله مجدداً همیلتونی کسری جبری دیفرانسیل معادلات به عنوان می توان را کاپوتو‐فابریزیو
توانایی از استفاده با می توان را شده مشتق کسری جبری دیفرانسیل معادلات سپس کرد.

کرد. حل غیرخطی توابع تقریب برای شده ارائه فازی سیستم های

کاپوتو‐ مشتق با کسری بهینه کنترل مسئله فرمول بندی ٣. ٢. ١
فابریزیو

به صورت را کاپوتو‐فابریزیو مشتق با کسری بهینه کنترل مسائل از کلاس یک بخش، این در
می گیریم نظر در زیر

Minimize J(x, u) =

∫ T

٠ F (t, x(t), u(t))dt (٣. ٢٠)
subject to

Mẋ(t) +NCF٠ Dα
t x(t) = G(t, x(t), u(t)), ٠ < t ≤ T, (٣. ٢١)

x(٠) = x٠, (٣. ٢٢)

F ∈ R کنید فرض است. کنترل متغیر u ∈ Rm و وضعیت متغیر x ∈ Rn ،(M,N) ̸= (٠, ٠) که
G ∈ Rn همچنین است. مؤلفه هایش تمام به نسبت دوم و اول مرتبه جزئی مشتقات دارای
شرایط ،(٣. ٢٢)‐(٣. ٢٠) جواب های آوردن به دست برای است. ثابت T و شیتز لیپ پیوسته
تابع منظور این برای می دهیم. ارائه را کسری بهینه کنترل مسئله این با متناظر بهینگی لازم

می کنیم تعریف زیر به صورت را H همیلتونی

H(x(t), u(t), λ(t), t) = F (x(t), u(t), t) + λTG(x(t), u(t), t), (٣. ٢٣)

بیان (٣. ٢٢)‐(٣. ٢٠) برای را بهینگی لازم شرایط زیر قضیه است. لاگرانژ ضریب λ ∈ Rn که
می کند.

(٣. ٢٢)‐(٣. ٢٠) بهینه جواب های u(t) و λ(t) ،x(t) اگر ،λ(T ) = ٠ کنید فرض .٣. ٢. ١ قضیه



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ٣٨
می کنند صدق زیر شرایط در آنگاه باشند،

−∂H(x, u, λ, t)

∂x
=Mλ̇(t)−NCF

t Dα
Tλ(t),

∂H(x, u, λ, t)

∂λ
=Mẋ(t) +NCF٠ Dα

t x(t), x(٠) = x٠,
∂H(x, u, λ, t)

∂u
= ٠.

(٢۴ .٣)

می کنیم تبدیل زیر مسئله به را اولیه مسئله ابتدا برهان.
J (x, u, λ) =

∫ T

٠
(
H(x, u, λ, t)− λ

(
Mẋ(t) +NCF٠ Dα

t x(t)
))
dt. (٢۵ .٣)

می کنیم تعریف زیر به شکل متغیرهایی سپس،
x+ δx, u+ δu, λ+ δλ,

اولین کمینه سازی روند در .δx(٠) = ٠ که می گیریم نتیجه ،(٣۵ .٢) اولیه شرط به توجه با
داریم بنابراین باشد صفر باید J تغییر

٠ =

∫ T

٠ [
∂H

∂x
δx+

∂H

∂u
δu+

∂H

∂λ
δλ− δλ

(
Mẋ(t) +NCF٠ Dα

t x(t)
)

− λ(t)
(
M ˙δx(t) +NCF٠ Dα

t δx(t)
)
]dt.

داریم را زیر روابط جزء به جزء انتگرال گیری ∫از T

٠ λ ˙δx(t)dt = −
∫ T

٠ δx(t)λ̇(t)dt,

∫و T

٠ λ CF٠ Dα
t δx(t) =

∫ T

٠ δx(t)CF
t Dα

Tλ(t)dt

+ λ(T )︸ ︷︷ ︸
=٠

∫ T

٠ δx(τ)φα(T − τ)dτ − δx(٠)︸ ︷︷ ︸
=٠

∫ T

٠ λ(τ)φα(τ)dτ

=

∫ T

٠ δx(t)CF
t Dα

Tλ(t)dt.

نتیجه ∫در T

٠ [δx(t)

(
∂H

∂x
+Mλ̇−NCF

t Dα
Tλ(t)

)
+ δu(t)

∂H

∂u

+ δλ(t)

(
∂H

∂λ
−Mẋ(t)−NCF٠ Dα

t x(t)

)
]dt = ٠.

می شود. ثابت قضیه ،δu(t) ̸= ٠ و δλ(t) ̸= ٠ ،δx(t) ̸= ٠ آنجاکه از
‐(٣. ٢٠) جواب های بهینگی برای لازم شرایط شامل (٢۴ .٣) کسری سیستم .٣. ٢. ١ ملاحظه
شرایط (٢۴ .٣) سیستم باشند، محدب u و x حسب بر G(t, x, u) و F (t, x, u) اگر است (٣. ٢٢)

می دهد. ارائه u∗ و x∗ جواب های بهینگی برای را کافی و لازم



٣٩ فازی های سیستم با کسری بهینه کنترل مسئله حل
هستند. متعارف همیلتونی معادلات دوم ، و اول معادله (٢۴ .٣) سیستم در .٣. ٢. ٢ ملاحظه
(٢۴ .٣) سیستم بنابراین گرفت. نظر در جبری محدودیت یک به عنوان می توان را سوم معادله

می نامند. همیلتونی جبری دیفرانسیل معادله را

فازی هایپربولیک مدل با کسری بهینه کنترل مسئله حل ٣. ٢. ٢
یافته تعمیم

به صورت کسری بهینه کنترل مسائل برای بهینگی لازم شرایط شد، داده نشان که همان طور
فازی هایپربولیک مدل توانایی از بخش این در هستند. کسری جبری دیفرانسل معادلات
و لاگرانژ ضرایب وضعیت، توابع از هرکدام و می کنیم استفاده توابع تقریب در یافته تعمیم

می گیریم درنظر فازی سیستم یک به صورت را کنترل

Gx = px +QT
x tanh(Kyxyx), (٢۶ .٣)

Gλ = pλ +QT
λ tanh(Kyλyλ), (٣. ٢٧)

Gu = pu +QT
u tanh(Kyuyu). (٣. ٢٨)

می شوند تعریف زیر به صورت فازی جواب های مرزی، و اولیه شرایط به توجه با

xG(Φx, t) = tGx, (٣. ٢٩)
λG(Φλ, t) = (T − t)Gλ, (٣. ٣٠)
uG(Φu, t) = Gu, (٣. ٣١)

هستند. uG و λG ،xG فازی جواب های تنظیم قابل پارامترهای به ترتیب Φu و Φλ ،Φx که
متفاوت می تواند یافته تعمیم فازی هایپربولیک مدل های از هرکدام برای فازی قوانین تعداد
برای است. شده گرفته نظر در x(٠) = ٠ اولیه شرط (٣. ٣١)‐(٣. ٢٩) در همچنین باشد.
به دست برای حال کرد. تعریف مناسب فازی جواب های می توان اولیه و مرزی شرایط سایر
استفاده قبل بخش در شده ارائه یادگیری الگوریتم از می توان تنظیم قابل پارامترهای آوردن

می شود. عمل زیر صورت به مناسب تقریبی خطای توابع معرفی و منظور این برای کرد.
بنابراین کنند. صدق (٢۴ .٣) شرایط در باید (٣. ٣١)‐(٣. ٢٩) فازی جواب های که می دانیم



−∂HG

∂xG
=Mλ̇G −NCF

t Dα
TλG,

∂HG

∂λG
=MẋG +NCF٠ Dα

t xG,

∂HG

∂uG
= ٠,

(٣. ٣٢)



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ۴٠
می کنیم تعریف زیر به صورت را خطا توابع .HG = H(xG, uG, λG, t) که

E١(Φ, tj) =
(
Mλ̇G(Φλ, tj)−NCF

ti Dα
TλG(Φλ, tj) +

∂HG(Φ, tj)

∂xG(Φx, tj)

)٢
, j = ١,٢, ..., J,

E٢(Φ, tj) =
(
MẋG(Φx, tj) +NCF٠ Dα

tjxG(Φx, tj)−
∂HG(Φ, tj)

∂λG(Φλ, tj)

)٢
, j = ١,٢, ..., J,

E٣(Φ, tj) =
(
∂HG(Φ, tj)

∂uG(Φu, tj)

)٢
, j = ١,٢, ..., J,

(٣. ٣١)‐(٣. ٢٩) فازی جواب های در تنظیم قابل پارامترهای تمام بردار Φ = (Φx,Φλ,Φu) که
مربعات میانگین مسئله درنتیجه، است. (٠, T ) بازه در کالوکیشن نقاط tj , (j = ١,٢, ..., J) و

داریم را زیر خطا
min
Φ
E(Φ) =

١
٢ ∥ η(Φ) ∥٢٢, (٣. ٣٣)

است. ti نقاط در خطا توابع بردار η(Φ) = [E١(Φ, t١), E١(Φ, t٢), . . . , E٣(Φ, tJ)]T که

عددی مثال های ٣. ٣
در می دهیم. ارائه متنوع مثال چند شده، پیشنهاد روش کارآیی دادن نشان برای بخش این در
استفاده یافته تعمیم فازی هایپربولیک مدل هر برای (m = ۵) فازی قانون ٣٢ از مثال ها، همه
که کرد تأیید می توان ،٠ < α(t) < ١ مختلف مقادیر برای خطا جدول به توجه با می کنیم.

هستند. دقیق آمده، به دست جواب های

متغیر مرتبه کسری جبری دیفرانسیل معادلات اول، مثال عنوان به .٣. ٣. ١ مثال
ABC٠ D

α(t)
t x(t) = −٢x(t) + y(t) + f(t), (٣۴ .٣)

٠ = x(t) + y(t)− t٢ − exp(−t), (٣۵ .٣)
جواب که است به گونه ای f(t) تابع بگیرید. نظر در y(٠) = ١ و x(٠) = ٠ اولیه شرایط با را

است زیر به صورت ،٠ < α(t) < ١ هر ازای به مسئله x∗(t)دقیق
y∗(t)

 =

 t٢
exp(−t)

 .
به صورت خطا توابع و فازی جواب های ،y(٠) = ١ و x(٠) = ٠ اولیه شرایط گرفتن نظر در با

هستند زیر

xG = tGx,

yG = ١ + tGy.



۴١ عددی مثال های

E١(Φ, tj) = ABC٠ D

α(t)
t xG(t) + ٢xG(tj)− yG(tj)− f(tj)),

E٢(Φ, tj) = xG(tj) + yG(tj)− t٢j − exp(−tj), j = ١,٢, . . . , ١٠.
داریم را زیر نامقید بهینه سازی مسئله نتیجه در

Minimize

١٠∑
j=١

[E١(Φ, tj)٢ + E٢(Φ, tj)٢].

به دست α(t) مختلف مقادیر برای ،J = ١٠ با تقریبی جواب شده، ارائه روش از استفاده با
شده پیشنهاد روش برای y(t) و x(t) تقریبی جواب های ٣. ٣ و ٣. ٢ درشکل های است. آمده
نشان ۴ .٣ شکل در y(t) و x(t) برای مطلق خطای شده است. مقایسه دقیق جواب های با
ارائه α(t) مختلف مرتبه های ازای به E(Φ) خطا تابع مقادیر ٣. ١ جدول در است. داده شده
را یافته تعمیم فازی هایپربولیک مدل کارآیی ٣. ١ جدول و ۴ .٣ ‐ ٣. ٢ شکل های است. شده

می دهند. نشان مسئله دقیق جواب های تقریب برای
.٣. ٣. ١ مثال در E(Φ) خطا تابع مقادیر :٣. ١ جدول
α(t) E(Φ)

α١(t) = ٠٫٩٩ ١٫٠۵٨٨ × ١٠−۶

α٢(t) = ١١+exp(−t)
١٫١٠۵٣ × ١٠−۶

α٣(t) = ١ − exp(t) cos(t)١٠ ١٫٠٧٢٠ × ١٠−۶

α۴(t) = ١ − ٠٫۵t ٨٫۵١٩٢ × ٧−١٠

بگیرید نظر در را زیر متغیر مرتبه کسری جبری دیفرانسیل معادله .٣. ٣. ٢ مثال
ABC٠ D

α(t)
t x(t) = tẏ − x(t) + (١ + t)y(t), (٣۶ .٣)

٠ = y(t)− sin(t), (٣. ٣٧)
زیر به صورت α = ١ برای مسئله دقیق جواب [٣۶] از .y(٠) = ٠ و x(٠) = ١ اولیه شرایط با

x∗(t)است
y∗(t)

 =

exp(−t) + t sin(t)

sin(t)

 .
۵ .٣ شکل در α(t) مختلف مقادیر برای y(t) و x(t) تقریبی جواب و α = ١ در دقیق جواب
نمایش متفاوت α(t)های ازای به را E(Φ) خطا تابع مقادیر ٣. ٢ جدول است. شده داده نمایش

می دهد.



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ۴٢
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فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ۴۴
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.٣. ٣. ٢ مثال برای α(t) مختلف مقادیر ازای به y(t) و x(t) تقریبی جواب های :۵ .٣ شکل

.٣. ٣. ٢ مثال برای E(Φ) خطا مقادیرتابع :٣. ٢ جدول
α(t) E(Φ)

α١(t) = ٠٫٩٩ ١٫۴٠١٨٠٠ × ٨−١٠

α٢(t) = ١ − ٠٫۵١+exp(−t)
٢٫٨٩٣۴۶٩ × ٩−١٠

α٣(t) = ١ − exp(t) cos(t)١٠ ٢٫۴۶۵٧٣٨ × ٩−١٠

α۴(t) = tanh(t+ ١) ٨٫٠٨۶۶٢۶ × ٩−١٠

α۵(t) = ١ − cos(t)٢
٢ ٢٫٢۶٨۶۶۶ × ٨−١٠

α۶(t) = ٠٫٧ ٣٫١٠٧۶٧۵ × ٩−١٠

α٧(t) = ٠٫۵ ٣٫۶٢٣۵۵۵ × ٩−١٠

بگیرید نظر در را زیر مسئله .٣. ٣. ٣ مثال
ABC٠ D

α(t)
t x(t) = −x(t) + y(t)− sin(t), (٣. ٣٨)

٠ = −x(t)− y(t) + exp(−t) + sin(t), (٣. ٣٩)

.y(٠) = ٠ و x(٠) = ١ اولیه شرایط با
است زیر به صورت α = ١ برای مسئله این دقیق جواب [٣٢] از

x∗(t)
y∗(t)

 =

exp(−t)
sin(t)

 .
۶ .٣ شکل در مختلف α(t)های برای مسئله این تقریبی جواب های و α = ١ در دقیق جواب

می دهد. نشان α(t) ازای به E(Φ) مقادیر ٣. ٣ جدول است. شده داده نمایش



۴۵ عددی مثال های
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.٣. ٣. ٣ مثال برای α(t) مختلف مقادیر ازای به y(t) و x(t) تقریبی جواب های :۶ .٣ شکل

.٣. ٣. ٣ مثال برای E(Φ) خطا تابع مقادیر :٣. ٣ جدول
α(t) E(Φ)

α١(t) = ٠٫٩٩ ٢٫۴١۴٩٢۶ × ٨−١٠

α٢(t) = ١١+exp(−t)
۶٫٠٩۵١۶٧ × ٨−١٠

α٣(t) = ٠٫٩٧ − ٠٫٠٣ cos( t١٠) ٣٫۵٠٠٣٨٩ × ٨−١٠

α۴(t) = ١ − cos(t)٢
٣ ۴٫١۴٠٩٧۴ × ٨−١٠

α۵(t) = ٠٫٨۵ − ٠٫٠١ exp(t) ٣٫۶٧٣٠٠٢ × ٨−١٠

بگیرید نظر در را زیر متغیر مرتبه کسری جبری دیفرانسیل معادله .۴ .٣. ٣ مثال
ABC٠ D

α(t)
t x(t) =tẏ(t)− t٢ż(t)− x(t) + (١ + t)y(t)− (t٢ + ٢t)z(t), (۴٣. ٠)

ABC٠ D
α(t)
t y(t) =tż(t) + y(t)− (t− ١)z(t), (۴٣. ١)

٠ =z(t)− sin(t), (۴٣. ٢)

.z(٠) = ٠ و x(٠) = y(٠) = ١ اولیه شرایط با
است زیر به صورت α = ١ برای دقیق جواب [٣١] از


x∗(t)

y∗(t)

z∗(t)

 =


exp(−t) + t exp(t)

exp(t) + t sin(t)

sin(t)

 .

α(t)های در را (۴٣. ٢)‐(۴٣. ٠) مسئله تقریبی جواب های و α = ١ در دقیق جواب ٣. ٧ شکل
شده ارائه E(Φ) خطا تابع مقادیر ۴ .٣ جدول در می دهد. نشان z(t) و y(t) ،x(t) برای مختلف

است.
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مثال٣. ٣. ۴. برای α(t) مختلف مقادیر ازای به z(t) و y(t) ،x(t) تقریبی جواب های :٣. ٧ شکل



۴٧ عددی مثال های
.۴ .٣. ٣ مثال برای E(Φ) خطا تابع مقادیر :۴ .٣ جدول

α(t) E(Φ)

α١(t) = ٠٫٩٩ ۶٫٢٣٩۵۴۴ × ٨−١٠

α٢(t) = ١ − cos(t)٣
۵٠ ۶٫٠١٨٩۶٢ × ٧−١٠

α٣(t) = tanh(t+ ٢) ١٫٨٣٨٠۶٨ × ٧−١٠

α۴(t) = ١ − ٠٫٠٠٠۴ exp(t٣) ٢٫۴۵۴٨٢٣ × ٧−١٠

بگیرید نظر در را زیر مسئله .۵ .٣. ٣ مثال
ABC٠ D

α(t)
t x(t) =١ + x(t)− x(t)z(t), (۴٣. ٣)

ABC٠ D
α(t)
t z(t) =y(t)− x٢(t)− z(t), (۴۴ .٣)

٠ =y(t)− x٢(t), (۴۵ .٣)
.x(٠) = y(٠) = z(٠) = ١ اولیه شرایط با

است زیر به صورت α = ١ برای دقیق جواب [٣١] از
x∗(t)

y∗(t)

z∗(t)

 =


exp(t)

exp(٢t)
exp(−t)

 .

α(t)های در را (۴۵ .٣)‐(۴٣. ٣) مسئله تقریبی جواب های و α = ١ در دقیق جواب ٣. ٨ شکل
شده ارائه E(Φ) خطا تابع مقادیر ۵ .٣ جدول در می دهد. نشان z(t) و y(t) ،x(t) برای مختلف

است.
.۵ .٣. ٣ مثال برای E(Φ) خطا تابع مقادیر :۵ .٣ جدول
α(t) E(Φ)

α١(t) = ٠٫٩٩ ۶٫۶٣١٧۶٧ × ٨−١٠

α٢(t) = ١ − ٠٫٠٢ exp(t) ٣٫٣۵٠٧۴١ × ١٠−۶

α٣(t) = ١ − exp(t) cos(t)٣٠ ٨٫٨٨٢٧۵٧ × ١٠−۶

α۴(t) = tanh(t+ ٢) ١٫٩۴٩٩۶٨ × ١٠−۶

در متغیر مرتبه کسری جبری دیفرانسیل معادلات از کاربرد یک مثال این در .۶ .٣. ٣ مثال
ضریب ،V (t) ولتاژ منبع با را RLC مدار یک ٣. ٩ شکل است. شده ارائه RLC مدار مدل سازی
کیرشهف١، ولتاژ و جریان قانون می دهد. نشان C > ٠ ظرفیت با خازن و R مقاومت ،L القا



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ۴٨

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

1

2

3

4

5

6

7

8

9

10

11

 y
(t

)

Exact for =1
 

1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

1

1.5

2

2.5

3

3.5

 x
(t

)

Exact for =1
 

1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 z
(t

)

Exact for =1
 

1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

مثال٣. ٣. ۵. برای α(t) مختلف مقادیر ازای به z(t) و y(t) ،x(t) تقریبی جواب های :٣. ٨ شکل

.RLC مدار :٣. ٩ شکل



۴٩ عددی مثال های
می دهد نتیجه را زیر متغیر مرتبه کسری جبری دیفرانسیل معادله

ABC٠ D
α(t)
t X(t) =AX(t), (۴۶ .٣)

BX(t) +GVE =٠, (۴٣. ٧)

که

X(t) = [VC(t), VL(t), VR(t), iL(t), iE(t)]
T ,

VE = (
١
C

+
١
L
)(cos(t)− ١) +R sin(t),

A =



٠ ٠ ٠ ١
C ٠

٠ ٠ ٠ ١
L ٠

٠ ٠ ٠ ٠ ٠
٠ ٠ ٠ ٠ ٠
٠ ٠ ٠ ٠ ٠


, B =


٠ ٠ ١ ٠ R

١ ١ ١ ٠ ٠
٠ ٠ ٠ ١ −١

 , G =


٠
١
٠

 ,

.X(٠) = ٠ اولیه شرط با و
است زیر به صورت α = ١ برای (۴٣. ٧) و (۴۶ .٣) مسئله دقیق جواب [٣۵] از

VC(t) =
١
C
(١ − cos(t)), VL(t) =

١
L
(١ − cos(t)), VR(t) = −R sin(t),

iL(t) = iE(t) = sin(t).

مختلف مقادیر ازای به را X(t) تقریبی جواب های و α = ١ در را مسئله دقیق جواب  ٣. ١٠ شکل
خطا تابع مقادیر همچنین می دهد. نشان ،C = ٢ و L = ٠٫۴ ،R = ۴ ورودی داده های با α(t)

است. شده ارائه ۶ .٣ جدول در E(Φ)

.۶ .٣. ٣ مثال برای E(Φ) خطا تابع مقادیر :۶ .٣ جدول
α(t) E(Φ)

α١(t) = ٠٫٩٩ ١٫٢١۶۶۶۵ × ٧−١٠

α٢(t) = ١ − exp(t) cos(t)١٠ ٧٫۵۶٨٧۶١ × ٨−١٠

α٣(t) = ١ − ٠٫٠٣ exp(t) ١٫٣٣٨٣٩۶٧١٣٣ × ٨−١٠

α۴(t) = tanh(t+ ١) ۵٫٠١٢٧۵٨٣٣١١ × ٧−١٠

1Kirchhoff’s current and Voltage



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ۵٠

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

0

0.5

1

1.5

2

2.5

 V
L
(t

)

Exact for =1
 

1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

VL (ب)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 V
C

(t
)

Exact for =1
 

1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

VC (آ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

0

0.2

0.4

0.6

0.8

1

1.2

 i
L
(t

)

Exact for =1
 

1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

iL (د)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

 V
R

(t
)

Exact for =1
 

1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

VR (ج)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

0

0.2

0.4

0.6

0.8

1

1.2

 i
E
(t

)

Exact for =1
 

1
(t)

 
2
(t)

 
3
(t)

 
4
(t)

iE (ه)
.۶ .٣. ٣ مثال برای α(t) مختلف مقادیر ازای به X(t) تقریبی جواب های :٣. ١٠ شکل



۵١ عددی مثال های
بگیرید نظر در را زیر بهینه کنترل مسئله .٣. ٣. ٧ مثال

Minimize J(x, u) =
١
٢
∫ ١

٠ ((x(t)− xd(t))
٢ + u٢(t))dt (۴٣. ٨)

subject to

CF٠ Dα
t x(t) = −x(t) + f(t) + u(t), ٠ < t ≤ ١, (۴٣. ٩)

x(٠) = ٢, (۵٣. ٠)
که

xd(t) =
(Mα)

(٢α− ١)
(
exp(

−(αt− ٢α+ ١)
(α− ١) )− exp(t)

)
+ exp(−٢t)− exp(t) + exp(١) + ١,

f(t) =
٢Mα exp(−٢t)

(٣α− ٢)
(
exp(

t(٣α− ٢)
(α− ١) )− ١

)
+ exp(−٢t) + exp(t)− exp(١) + ١.

[٧۶] است زیر به صورت مسئله تحلیلی x∗(t)جواب
u∗(t)

 =

 ١ + exp(−٢t)
− exp(t) + exp(١)

 .
می شود تعریف زیر به صورت همیلتونی تابع

H(x(t), u(t), λ(t), t) =
١
٢((x(t)− xd(t))

٢ + u٢(t)) + λ(−x(t) + f(t) + u(t)).

داریم (٢۴ .٣) شرایط اعمال با
CF
t Dα١λ(t) = x(t)− xd(t)− λ(t), λ(١) = ٠, ٠ ≤ t < ١,
CF٠ Dα

t x(t) = −x(t) + u(t) + f(t), x(٠) = ٢, ٠ < t ≤ ١,
u(t) + λ(t) = ٠.

می شوند انتخاب زیر به صورت فازی جواب های ،λ(١) = ٠ و x(٠) = ٢ شرایط به توجه با
xG = ٢ + tGx,

λG = (١ − t)Gλ,

uG = Gu.

به دست تقریبی جواب های با کنترل و مسیر توابع تحلیلی جواب های ٣. ١٢ و ٣. ١١ شکل های در
است. شده  داده نمایش α = ٠٫۶, ٠٫٧, ٠٫٨, ٠٫٩ برای J = ٩ با شده پیشنهاد روش از آمده
شکل در α مختلف مقادیر و J = ٩ با u(t) کنترل تابع و x(t) وضعیت تابع مطلق خطای
روش از آمده به دست u(t) و x(t) مطلق خطای بیشینه مثال این در است. شده رسم ٣. ١٣
از ،[٧۶] در است. شده مقایسه [٧۶] در شده ارائه روش با آمده به دست مقادیر با پیشنهادی



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ۵٢
برای قبول قابل نتایج اما است، شده استفاده گسسته سازی نقطه J = ۵٠, ١٠٠,٢٠٠,۴٠٠,٨٠٠
بیشینه ٣. ١ جدول است. آمده به دست J بزرگ مقادیر انتخاب با u(t) و x(t) تقریبی جواب های
در پیشنهادی روش و J = ٩ با شده پیشنهاد روش از آمده به دست u(t) و x(t) مطلق خطای
٣. ٨ جدول در E(Φ) خطا تابع مقادیر می دهد. نشان مختلف، αهای برای را J = ٨٠٠ با [٧۶]
فازی هایپربولیک مدل کارآیی ٣. ٨ و ٣. ٧ جداول و ٣. ١٣ ‐ ٣. ١١ شکل های شده است. ارائه

می دهند. نشان مسئله دقیق جواب های تقریب برای را یافته تعمیم
.α = ٠٫۶, ٠٫٧, ٠٫٨, ٠٫٩ برای u(t) و x(t) مطلق خطا بیشینه :٣. ٧ جدول

شده ارائه روش [٧۶] در پیشنهادی روش
ex eu ex eu

α = ٠٫۶ ٨٫٣۶۶٩ × ١٠−۴ ٢٫٩١١١ × ١٠−۴ ۵٫۵٧ × ١٠−۴ ٠٫٠٠١۵
α = ٠٫٧ ٣٫٠١۵٩ × ١٠−۴ ١٫٧٣۵٧ × ١٠−۴ ۵٫٣۴ × ١٠−۴ ٠٫٠٠٢۶
α = ٠٫٨ ٣٫٣٢١٠ × ١٠−۴ ٠٫٠٠١٧ ٨٫٩١ × ١٠−۴ ٠٫٠٠۴٧
α = ٠٫٩ ٣٫۴٩٠٠ × ١٠−۴ ۴٫١١٨۴ × ١٠−۴ ٠٫٠٠٣٢ ٠٫٠١١۶

.٣. ٣. ٧ مثال برای E(Φ) خطا تابع مقادیر :٣. ٨ جدول
α ٠٫۶ ٠٫٧ ٠٫٨ ٠٫٩
E ١٫۵۶٠٧١ × ١٠−١٠ ٢٫۴۵١٩٩ × ١٠−١٠ ۵٫۶٨٧٢۴ × ١٠−١٠ ١٫٢۴۴٩ × ١٠−١٠

بگیرید نظر در را زیر کسری بهینه کنترل مسئله .٣. ٣. ٨ مثال
Minimize J(x, u) =

١
٢
∫ ١

٠ (x٢(t) + u٢(t))dt (۵٣. ١)
subject to

CF٠ Dα
t x(t) = −x(t) + u(t), ٠ < t ≤ ١, (۵٣. ٢)

x(٠) = ١. (۵٣. ٣)
[٧۶] است زیر به صورت مسئله دقیق جواب ،α = ١ برای

x∗(t)
u∗(t)

 =

 cosh(
√٢t) + βsinh(

√٢t)
(β

√٢ + ١)cosh(√٢t) + (β +
√٢)sinh(√٢t)

 ,
که

β = −
√٢sinh(√٢) + cosh(

√٢)
sinh(

√٢) +√٢cosh(√٢) .



۵٣ عددی مثال های
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.٣. ٣. ٧ مثال برای α = ٠٫٩, ٠٫٨, ٠٫٧, ٠٫۶ با x(t) تقریبی جواب و دقیق جواب :٣. ١١ شکل



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ۵۴
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.٣. ٣. ٧ مثال برای α = ٠٫٩, ٠٫٨, ٠٫٧, ٠٫۶ با u(t) تقریبی جواب و دقیق جواب :٣. ١٢ شکل
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.٣. ٣. ٧ مثال برای α مختلف مقادیر ازای به u(t) و x(t) مطلق خطای :٣. ١٣ شکل



۵۵ عددی مثال های
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.٣. ٣. ٨ مثال برای α مختلف مقادیر ازای به u(t) و x(t) تقریبی جواب های :١۴ .٣ شکل

داریم (٢۴ .٣) گرفتن نظر در با


CF
t Dα١λ(t) = x(t)− λ(t), λ(١) = ٠, ٠ ≤ t < ١,
CF٠ Dα

t x(t) = −x(t) + u(t), x(٠) = ١, ٠ < t ≤ ١,
u(t) + λ(t) = ٠.

در α مختلف مقادیر برای J = ٩ با u(t) و x(t) تقریبی جواب و α = ١ برای دقیق جواب
می کند، میل ١ به α وقتی که می دهد نشان ١۴ .٣ شکل است. شده داده نمایش ١۴ .٣ شکل
٣. ٩ جدول می شوند. نزدیک α = ١ با سیستم جواب به α ازای به آمده به دست جواب  های

می دهد. نشان مختلف αهای برای را E(Φ) خطا تابع مقادیر

.٣. ٣. ٨ مثال برای E(Φ) خطا تابع مقادیر :٣. ٩ جدول
α ٠٫١ ٠٫٣ ٠٫۵ ٠٫٧ ٠٫٩٩
E ۶٫٣٩۶ × ٨−١٠ ٧٫٠٧٨ × ٨−١٠ ۴٫٩٩١ × ٨−١٠ ٨٫۵٢٨ × ٨−١٠ ٣٫٧۵۵ × ٩−١٠

بگیرید نظر در را زیر کسری بهینه کنترل مسئله .٣. ٣. ٩ مثال

Minimize J(x, u) =
١
٢
∫ ١

٠ ((x(t)− t٢(٢ + (u(t)− t+ ٢(١)dt (۵۴ .٣)
subject to

CF٠ Dα
t x(t) =

Γ(٣)
Γ(٢)(x(t)− tu(t)), ٠ < t ≤ ١, (۵۵ .٣)

x(٠) = ٠. (۵۶ .٣)



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ۵۶

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

 u
(t

)

Exact for =1
 =0.99
 =0.9
 =0.7
 =0.5
 =0.3
 =0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 x
(t

)

Exact for =1
 =0.99
 =0.9
 =0.7
 =0.5
 =0.3
 =0.1

.٣. ٣. ٩ مثال برای α مختلف مقادیر ازای به u(t) و x(t) تقریبی جواب های :١۵ .٣ شکل

[٧٧] است زیر به صورت α = ١ برای دقیق x∗(t)جواب
u∗(t)

 =

 t٢
t− ١

 .
داریم (٢۴ .٣) بهینگی شرایط به توجه با



CF
t Dα١λ(t) = x(t)− t٢ +

Γ(٣)
Γ(٢)λ(t), λ(١) = ٠, ٠ ≤ t < ١,

CF٠ Dα
t x(t) =

Γ(٣)
Γ(٢)(x(t)− tu(t)), x(٠) = ٠, ٠ < t ≤ ١,

u(t)− Γ(٣)
Γ(٢) tλ(t)− t+ ١ = ٠.

مقادیر برای J = ٩ با u(t) و x(t) تقریبی جواب های و α = ١ برای دقیق جواب ١۵ .٣ شکل در
است. شده ارائه ٣. ١٠ جدول در E(Φ) مقادیر همچنین است. شده داده نمایش α مختلف

.٣. ٣. ٩ مثال برای E(Φ) خطا تابع مقادیر :٣. ١٠ جدول
α ٠٫٢ ٠٫۴ ٠٫۶ ٠٫٨ ٠٫٩٩
E ٣٫٨٨٢ × ١٠−۶ ٢٫٨۵۴ × ١٠−۶ ٢٫٠١٧ × ١٠−۵ ٨٫٧۵٣ × ٩−١٠ ٨٫٧١۶ × ٨−١٠

است شده گرفته نظر در زیر بهینه کنترل مسئله مثال، این در .٣. ٣. ١٠ مثال
Minimize J(x, u) =

١
٢
∫ ١

٠
(
x٢١ (t) + x٢٢(t) + u٢(t)

)
dt (۵٣. ٧)

subject to

CF٠ Dα
t x١(t) = −x١(t) + x٢(t) + u(t), ٠ < t ≤ ١, (۵٣. ٨)

CF٠ Dα
t x٢(t) = −٢x٢(t), ٠ < t ≤ ١, (۵٣. ٩)

x(٠)١ = ١, x(٠)٢ = ١. (۶٣. ٠)



۵٧ عددی مثال های
است زیر به صورت مسئله این بهینگی لازم شرایط

CF
t Dα١λ١(t) = x١(t)− λ١(t), λ(١)١ = ٠, ٠ ≤ t < ١,
CF
t Dα١λ٢(t) = x٢(t) + λ١(t)− ٢λ٢(t), λ(١)٢ = ٠, ٠ ≤ t < ١,
CF٠ Dα

t x١(t) = −x١(t) + x٢(t) + u(t), x(٠)١ = ١, ٠ < t ≤ ١,
CF٠ Dα

t x٢(t) = −٢x٢(t), x(٠)٢ = ١, ٠ < t ≤ ١,
u(t) + λ١(t) = ٠.

[٧٨] است زیر به صورت α = ١ برای مسئله این دقیق جواب
x∗١(t)
x∗٢(t)
u∗(t)

 =


٠٫٠١٨٣۵٢ exp(

√٢t) + ٢٫۴٨١۶۵ exp(−
√٢t)− ١٫۵ exp(−٢t)

exp(−٢t)
٠٫٠۴۴٣٠۵ exp(

√٢t)− ١٫٠٢٧٩٣٢٢ exp(−
√٢t) + ٠٫۵ exp(−٢t)

 .
برای J = ٩ با u(t) و x٢(t) ،x(t) تقریبی جواب های و α = ١ برای دقیق جواب ١۶ .٣ شکل در
شده ارائه ٣. ١١ جدول در E(Φ) مقادیر همچنین است. شده داده نمایش α مختلف مقادیر

است.
.٣. ٣. ١٠ مثال برای E(Φ) خطا تابع مقادیر :٣. ١١ جدول

α ٠٫١ ٠٫۴ ٠٫٧ ٠٫٩ ٠٫٩٩
E ٧٫۵٨۴ × ٨−١٠ ١٫۴٨۴ × ١٠−۴ ۵٫۶٣۶ × ١٠−۵ ٧٫١٩٩ × ٨−١٠ ۵٫٧٣١ × ٨−١٠



فازی سیستم های از استفاده با متغیر مرتبه کسری جبری دیفرانسیل معادلات حل ۵٨
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.٣. ٣. ١٠ مثال برای α مختلف مقادیر ازای به u(t) و x٢(t) ،x١(t) تقریبی جواب های :١۶ .٣ شکل



۴ فصل
معادلات حل برای فازی سیستم کاربرد

کسری تأخیری جبری دیفرانسیل
متغیر مرتبه

معادلات و جبری دیفرانسیل معادلات از ترکیبی تأخیری جبری دیفرانسیل معادلات کلی به طور
جبری دیفرانسیل سیستم های کاربردهای وسیع گستره به توجه با هستند. تأخیری دیفرانسیل
مدل سازی در مهمی نقش معادلات این که است واضح زمانی، تأخیر طبیعی فیزیکی معنای و
معادلات مفهوم که آن جایی از دارند. مهندسی و علوم مختلف مسائل نظری درک و فیزیکی
موجود رویکردهای تعداد است، ریاضیات در جدیدی موضوع کسری تأخیری جبری دیفرانسیل
آرام عددی روش از [٧٩] در کرد. اشاره [٧٩] به می توان فقط و است محدود آن ها حل برای
در است. شده استفاده کسری تأخیری جبری دیفرانسیل معادلات حل برای موج١ سازی
معرفی را متغیر مرتبه کسری تأخیری جبری دیفرانسیل معادلات کلی صورت ابتدا فصل این
معادلات از دسته این حل برای فازی سیستم های مبنای بر عددی روش یک سپس می کنیم.
تأخیری بهینه کنترل مسائل از خاصی دسته می دهیم نشان فصل انتهای در می کنیم. پیشنهاد
از استفاده با را مسائل این و هستند کسری تأخیری جبری دیفرانسیل معادلات به تبدیل قابل

می کنیم. حل شده ارائه روش
1Waveform Relaxation Method

۵٩



مرتبه کسری تأخیری جبری دیفرانسیل معادلات حل برای فازی سیستم کاربرد متغیر۶٠
کسری تأخیری جبری دیفرانسیل معادلات معرفی ١ .۴

مسئله حل روش و متغیر مرتبه
جبری دیفرانسیل معادلات از تعمیمی متغیر مرتبه کسری تأخیری جبری دیفرانسیل معادلات

می شوند تعریف زیر به صورت و هستند دلخواه مرتبه با صحیح، مرتبه تأخیری
EABC٠ D

α(t)
t x(t) = Ax(t) + Bx(t− τ) + F(t), ٠ < t ≤ T, (١ .۴)

x(t) = ϕ(t), − τ ≤ t ≤ ٠, (٢ .۴)
ثابت تأخیرهای از برداری τ ∈ R+n و F : [٠, T ] → Rn ،det(E) = ٠ ،E,A,B ∈ Rn×n که

است.
فازی ساز ضرب، استنتاج موتور با فازی سیستم های شد اشاره ١ فصل در که همان طور
مرتبه سوگنو فازی سیستم های یا گوسین عضویت توابع و مراکز میانگین غیرفازی ساز منفرد،
و t ∈ [٠, T ] ورودی متغیر یک با فازی سیستم از بخش این در هستند. عمومی تقریب گر صفر

می کنیم استفاده زیر به صورت f(t) ∈ R خروجی متغیر

f(t) =
m∑
i=١

ci
µi∑m
i=١ µi

= CTΨ, (٣ .۴)

µi, i = ١,٢, . . . ,m و ψi =
µi∑m
i=١ µi

،Ψ = [ψ١, ψ٢, . . . , ψm]T ،C = [c١, c٢, . . . , cm]T آن در که
می شوند تعریف زیر به صورت و هستند گوسین عضویت توابع
µi = exp(− ١

٢(
t− ai
σi

)٢), (۴ .۴)
تعیین زیر به صورت پارامترها این هستند. معیار انحراف و میانگین مقادیر به ترتیب σi و ai که

می شوند

ai = (i− ١) T

m− ١ , (۵ .۴)

σi =
T

m− ١ , (۶ .۴)
است. فازی قوانین تعداد m > ١ که

که می  شود باعث ویژگی این است. C∞ در غیرخطی تابعی گوسین١، تابع .١. ١ .۴ ملاحظه
باشند. C∞ در مشتق پذیر و پیوسته هموار، ،(٢ .۴)‐(١ .۴) تقریبی جواب های

1Gaussian function



۶١ مسئله حل روش و متغیر مرتبه کسری تأخیری جبری دیفرانسیل معادلات معرفی
بینهایت عضویت توابع تعداد هنگامی که فهمید می توان به راحتی (۶ .۴) از .١. ٢ .۴ ملاحظه
بینهایت به m هنگامی که بنابراین، .limm→∞ σi = ٠ یعنی می کند، میل صفر به σi باشد

می شود. تبدیل منفرد به گوسی حالت از (۴ .۴) در عضویت تابع می شود، نزدیک

به وسیله می توان را g(t) ∈ [٠, T ] پیوسته تابع هر که می شود اثبات ،١. ٢. ١ قضیه براساس
بالای کران یک ادامه در زد. تقریب مناسب، فازی قوانین تعداد با شده ارائه فازی سیستم
همه که زمانی یعنی ،m→ ∞ برای را همگرایی سپس می آوریم. به دست تقریب این برای خطا

می کنیم. بررسی شوند، گرفته نظر در [٠, T ] دامنه در t نقاط

پارامترها از مجموعه ای و باشد پذیر مشتق پیوسته به طور g(t) تابع کنید فرض .١. ١ .۴ قضیه
آن گاه باشد. موجود m→ ∞ هنگامی که ci = g(ti) به صورت

|g(t)− f(t)| ≤ ٠٫٨٣۴۵٢gs∆t +maxi |ei|, الف)
.gs = supt∈[٠,T ] |

dg(t)

dt
| و ei = g(ti)− ci ،∆t =

T

m− ١ که
.limm→∞ f(t) = g(t) ب)

الف) برهان.

|g(t)− f(t)| = |g(t)−
m∑
i=١

ci
µi∑m
i=١ µi

|

= |
m∑
i=١

(g(t)− ci)
µi∑m
i=١ µi

|

≤
m∑
i=١

|(g(t)− ci)|
µi∑m
i=١ µi

.

(٧ .۴)

طرفی از

|g(t)− ci| = |g(t)− g(ti) + g(ti)− ci|

= |g(t)− g(ti) + ei|

≤ |g(t)− g(ti)|+ |ei|.

داریم میانگین مقدار قضیه از

|g(t)− ci| ≤
∣∣∣∣dg(t)dt

|t̂i(t− ti)

∣∣∣∣+ |ei|

≤
∣∣∣∣dg(t)dt

|t̂i

∣∣∣∣ |(t− ti)|+ |ei|

≤ gs|(t− ti)|+ |ei|,

(٨ .۴)
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داریم (٧ .۴) در (٨ .۴) جای گذاری با هستند. ti و t بین مقادیری t̂i که

|g(t)− f(t)| ≤
∑m

i=١ gs|(t− ti)|µi∑m
i=١ µi

+

∑m
i=١ |ei|µi∑m
i=١ µi

≤
∑m

i=١ gs|(t− ti)|µi∑m
i=١ µi

+

∑m
i=١ maxi |ei|µi∑m

i=١ µi
≤

∑m
i=١ gs|(t− ti)|µi∑m

i=١ µi
+max

i
|ei|.

(٩ .۴)

نوشت زیر به صورت می توان را (٩ .۴) راست سمت در عبارت اولین
θ := gs

∑m
i=١ |(t− ti)|µi∑m

i=١ µi
,

که
µi = exp(− ١

٢(
t− ti
∆t

)٢), ti = (i− ١)∆t i = ١,٢, . . . ,m.
سپس ،t = (j − ١)∆t, j ∈ [١,m] دهید قرار

θ = gs∆t

∑m
i=١ |(j − i)| exp(− ١

٢(j − i)٢)∑m
i=١ exp(−

١
٢(j − i)٢)

.

m ≥ ٢ و j ∈ [١,m] برای که داد نشان می توان
∑m

i=١ |(j − i)| exp(− ١
٢(j − i)٢)∑m

i=١ exp(−
١
٢(j − i)٢)

≤ ٠٫٨٣۴۵٩.

این رو از
θ ≤ ٠٫٨٣۴۵٢gs∆t. (١٠ .۴)

می شود. اثبات (الف) نتیجه در
ب)

به صورت می توان را شده ارائه فازی جواب و دقیق جواب بین تقریب بالای کران (الف)، از
کرد توصیف زیر

|g(t)− f(t)| ≤ ٠٫٨٣۴۵٢gs∆t +max
i

|ei|. (١١ .۴)
gs این که به توجه با و می شود بینهایت به نزدیک m زمانی که (١١ .۴) طرف دو از گرفتن حد با

داریم ،∆t → ٠ و است کران دار
|g(t)− lim

m→∞
f(t)| ≤ lim

m→∞
max

i
|ei|. (١٢ .۴)
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(١٢ .۴) و ١. ٢ .۴ ملاحظه از

|g(t)− lim
m→∞

f(t)| = ٠, (١٣ .۴)
.g(t) = limm→∞ f(t) یعنی،

جواب های از هریک توابع، تقریب برای (٣ .۴) فازی سیستم  عالی توانایی به توجه با بنابراین
سیستم خروجی به عنوان را متغیر مرتبه کسری تأخیری جبری دیفرانسیل معادلات مجهول
می شوند. نوشته بخش دو مجموع به صورت فازی جواب های این می گیریم. نظر در مرتبط فازی
بخش می کند. صدق مرزی و اولیه شرایط در و نیست تنظیم قابل پارامترهای شامل اول بخش
زیر فازی مدل های نتیجه، در است. تنظیم قابل پارامترهای با فازی سیستم یک شامل دوم

می کنیم معرفی زیر به شرح (٢ .۴) و (١ .۴) اولیه مقدار مسئله جواب های تقریب برای را

xdFS
(Cxd

, t) = ϕ(٠) + tFSxd
, d = ١,٢, . . . , n, (١۴ .۴)

در (١۴ .۴) فازی جواب های جای گذاری با است. (٣ .۴) در شده تعریف فازی سیستم FS که
داریم (٢ .۴) و (١ .۴) اولیه مقدار مسئله

EABC٠ D
α(t)
t xFS(t) = AxFS(t) + BxFS(t− τ) + F(t), ٠ < t ≤ T, (١۵ .۴)

قابل پارامترهای تمام بردار Υ = [Cx١ , Cx٢ , . . . , Cxn ]
T و xFS = [x١FS

, x٢FS
, . . . , xnFS ]

T که
فرآیند از تنظیم قابل پارامترهای آموزش برای حال است. (١۴ .۴) فازی جواب های تنظیم

می کنیم. استفاده ٣ فصل یادگیری

متغیر مرتبه کسری تأخیری بهینه کنترل مسئله حل ٢ .۴
فازی سیستم با

مرتبه کسری بهینه کنترل مسائل از دسته ای متغیر مرتبه کسری تأخیری بهینه کنترل مسائل
بسیاری مدل سازی در مسائل این می شوند. شامل را زمانی تأخیر دستگاه های که هستند متغیر
به عنوان گرفته اند. قرار بررسی مورد محققان توسط این رو، از دارند، کاربرد واقعی پدیده های از
کسری عملیاتی ماتریس های و متعامد جمله ای های چند بر مبتنی روش های به می توان مثال
نویسندگان همچنین کرد. اشاره [٩٢]‐[٩١] گسسته سازی بر مبتنی روش های و [٩٠]‐[٨٠]
مسائل انواع از برخی حل برای عصبی شبکه روش های توانایی از کرده اند سعی [٩۵]‐[٩٣] در
هیچ هنوز فازی، سیستم های مزایای وجود با کنند. استفاده کسری تأخیری بهینه کنترل

است. نشده ارائه آن ها با کسری تأخیری بهینه کنترل مسائل حل برای مطالعه ای
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متغیر مرتبه کسری تأخیری بهینه کنترل مسائل حل برای عددی روش های کلی، به طور
با را مسائل این مستقیم روش های می شوند. تقسیم مستقیم و مستقیم غیر روش های به
ساخت بر مبتنی غیرمستقیم روش های که حالی در می کنند، حل کنترل و حالت توابع تقریب
نشان بخش، این هستند.در حاصل مرزی مقدار مسائل حل سپس و همیلتونی دستگاه یک
همیلتونی دستگاه متغیر، مرتبه کسری تأخیری بهینه کنترل مسائل برخی در که می دهیم
کسری تأخیری جبری دیفرانسیل معادلات به عنوان می توان را غیرمستقیم روش های از حاصل

گرفت. نظر در

متغیر مرتبه کسری تأخیری بهینه کنترل مسئله فرمول بندی ٢. ١ .۴

می گیریم نظر در را متغیر مرتبه کسری تأخیری بهینه کنترل مسئله بخش، این در
Minimize J(x, u) =

∫ T

٠ F (t, x(t), u(t))dt (١۶ .۴)
subject to

Mẋ(t) +NABC٠ D
α(t)
t x(t) = G(t, x(t), u(t), x(t− τx), u(t− τu)), ٠ < t ≤ T,

(١٧ .۴)
x(t) = ϕ(t), − τx ≤ t ≤ ٠, (١٨ .۴)
u(t) = φ(t), − τu ≤ t ≤ ٠, (١٩ .۴)

u ∈ Rm و ثابت تاخیرهای از برداری τ ∈ R+n وضعیت، بردار x ∈ Rn (M,N ) ̸= (٠, ٠), که
و ثابت T همچنین است. پیوسته G ∈ Rn و پذیر مشتق و پیوسته F ∈ R کنترل، بردار

هستند. پیوسته توابعی ϕ(t), φ(t)
جبری دیفرانسیل معادلات به عنوان (١٩ .۴)‐(١۶ .۴) مسئله مجدد فرمول بندی منظور به
با شروع، برای می آوریم. به دست را مسئله این با متناظر بهینگی لازم شرایط کسری تأخیری

می کنیم تعریف زیر به صورت را H همیلتونی تابع ،(١٩ .۴)‐(١۶ .۴) مسئله به توجه

H(t, x(t), u(t), x(t− τx), u(t− τu), λ(t)) = F (t, x(t), u(t)) (٢٠ .۴)
+ λTG(t, x(t), x(t− τx), u(t), u(t− τu)),

(١٩ .۴)‐(١۶ .۴) مسئله بهینگی لازم شرایط زیر قضیه است. لاگرانژ ضرایب بردار λ ∈ Rn که
می کند. بیان را

در آنگاه باشند (١٩ .۴)‐(١۶ .۴) مسئله بهینه جواب های u(t) و λ(t) ،x(t) اگر .٢. ١ .۴ قضیه
می کنند صدق زیر شرایط



۶۵ فازی سیستم با متغیر مرتبه کسری تأخیری بهینه کنترل مسئله حل



Mẋ(t) +NABC٠ D
α(t)
t x(t) =

∂H

∂λ(t)
, ٠ < t ≤ T,

Mλ̇(t)−NABC
t D

α(t)
T λ(t) = − ∂H

∂x(t)
− χ[٠,T−τx]Hx(t+ τx), ٠ ≤ t < T,

∂H

∂u(t)
+ χ[٠,T−τu]Hu(t+ τu) = ٠, ٠ ≤ t ≤ T,

x(t) = ϕ(t), − τx ≤ t ≤ ٠,
u(t) = φ(t), − τu ≤ t ≤ ٠,
λ(T ) = ٠,

(٢١ .۴)

.Hu(t) =
∂H

∂u(t− τu)
و Hx(t) =

∂H

∂x(t− τx)
که

کنید تبدیل زیر مسئله به را اولیه مسئله برهان.
J (u) =

∫ T

٠
(
H(t, x(t), u(t), x(t− τx), u(t− τu), λ(t))− λ

(
Mẋ(t) +NABC٠ D

α(t)
t x(t)

))
dt.

به شکل متغیرهایی سپس
x(t)+δx(t), u(t)+δu(t), λ(t)+δλ(t), x(t−τx)+δx(t−τx), u(t−τu)+δu(t−τu)

کنید تعریف زیر شدنی شرایط با و
δx(t) = ٠, −τx ≤ t ≤ ٠,
δu(t) = ٠, −τu ≤ t ≤ ٠.

داریم بنابراین باشد صفر باید J تغییر اولین سازی کمینه روند در

٠ =

∫ T

٠ { ∂H

∂x(t)
δx(t) +

∂H

∂x(t− τx)
δx(t− τx) +

∂H

∂u(t)
δu(t) +

∂H

∂u(t− τu)
δu(t− τu)

+
∂H

∂λ(t)
δλ(t)− δλ(t)

(
Mẋ(t) +NABC٠ D

α(t)
t x(t)

)
− λ(t)

(
M ˙δx(t) +NABC٠ D

α(t)
t δx(t)

)
}dt.

داریم جزء به جزء انتگرال گیری ∫از T

٠ λ ˙δx(t)dt = −
∫ T

٠ δx(t)λ̇(t)dt+ λ(T )δx(T ),

∫و T

٠ λABC٠ D
α(t)
t δx(t) =

∫ T

٠ δx(t)ABR
t D

α(t)
T λ(t)dt.
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(٢۶ .٢) از استفاده با .δx(٠) = ٠ داریم است، مشخص x(٠) که آن جا از

∫ T

٠ δx(t)ABR
t D

α(t)
T λ(t)dt

=

∫ T

٠ δx(t)ABC
t D

α(t)
T λ(t)dt+ λ(T )

M(α(t))

١ − α(t)

∫ T

٠ δx(t)Eα(t)(
−α(t)

١ − α(t)
(T − t)α(t))dt.

همچنین
∫ T

٠
∂H

∂x(t− τx)
δx(t− τx)dt =

∫ T

٠ Hx(t)δx(t− τx)dt

=

∫ T

τx

Hx(t)δx(t− τx)dt =

∫ T−τx

٠ Hx(t+ τx)δx(t)dt

=

∫ T

٠ Hx(t+ τx)δx(t)dt,

و
∫ T

٠
∂H

∂u(t− τu)
δx(t− τu)dt =

∫ T

٠ Hu(t)δu(t− τu)dt

=

∫ T

τu

Hu(t)δu(t− τu)dt =

∫ T−τu

٠ Hu(t+ τu)δu(t)dt

=

∫ T

٠ Hu(t+ τu)δu(t)dt,

.t ≥ T برای Hx = Hu = ٠ و δu(t) = ٠,−τu ≤ t ≤ ٠ ،δx(t) = ٠,−τx ≤ t ≤ ٠ که آن جا از
می گیریم نتیجه را زیر رابطه بنابراین،

− λ(T )

(
NM(α(t))

١ − α(t)

∫ T

٠ δx(t)Eα(t)(
−α(t)

١ − α(t)
(T − t)α(t))dt+Mδx(T )

)
+

∫ T

٠ {δx(t)
(
∂H

∂x
+Hx +Mλ̇−NABC

t D
α(t)
T λ(t)

)
+ δu(t)(

∂H

∂u
+Hu) + δλ(t)

(
∂H

∂λ
−Mẋ(t)−NABC٠ D

α(t)
t x(t)

)
}dt = ٠.

توابع که آن جایی از و NM(α(t))

١ − α(t)

∫ T٠ δx(t)Eα(t)(
−α(t)

١ − α(t)
(T − t)α(t))dt ̸= −Mδx(T ) فرض با

است. کامل قضیه اثبات پس شده اند، انتخاب دلخواه به طور تغییرات

را سوم معادله هستند. همیلتون متعارف معادلات (٢١ .۴) در اول معادله دو .٢. ١ .۴ ملاحظه
دیفرانسیل معادلات را (٢١ .۴) بنابراین گرفت. نظر در جبری محدودیت یک عنوان به توان می

می نامیم. همیلتونی کسری تأخیری جبری



۶٧ عددی مثال

عددی مثال ٣ .۴
است. شده ارائه پیشنهادی روش اعتبار و کارایی دادن نشان برای مثال چندین بخش، این در
حسب (بر مرکزی١ پردازش واحد شده سپری زمان و E(Φ) خطا تابع مقادیر مثال ها، همه برای
کامپیوتر از استفاده با عددی نتایج تمام شده است. فهرست α(t) مختلف مقادیر برای ثانیه)
ویندوز عامل سیستم و گیگابایت ۶ رم و هسته ای ٧ اینتل گیگاهرتز ٢٫۶٠ پردازنده با شخصی

است. آمده به دست
بگیرید نظر در را زیر متغیر مرتبه کسری تاخیری جبری دیفرانسیل معادلات .٣. ١ .۴ ١مثال ٠

٠ ٠
ABC٠ D

α(t)
t x(t) =

١ ٠
٠ ١

x(t) +
 x١(t− ١)
x٢(t− ٠٫۶)

+

 ٠
f(t)

 , ٠ ≤ t ≤ ٢, (٢٢ .۴)

x(t) =

exp(٠٫۵t)
sin(πt)

 , t ≤ ٠, (٢٣ .۴)

باشد زیر به صورت مسئله دقیق جواب که است به گونه ای f(t)

x∗(t) =

exp(٠٫۵t)
sin(πt)

 .
می شوند انتخاب زیر به صورت فازی جواب های x(٠)٢ = ٠ و x(٠)١ = ١ شرایط به توجه با

x١FS
= ١ + tFSx١ ,

x٢FS
= tFSx٢ .

از تعدادی برای m = ١١ با را x٢(t) و x١(t) تقریبی و دقیق مقادیر ٢ .۴ و ١ .۴ شکل های
مقادیر برای m = ١١ با x٢(t) و x١(t) مطلق خطاهای می دهند. نشان α(t) مختلف مرتبه های
(بر اجرا زمان و E(Φ) خطای تابع مقادیر شده است. داده نشان ٣ .۴ شکل در α(t) مختلف
‐ ١ .۴ شکل های از است. شده فهرست ١ .۴ جدول در α(t) مختلف مقادیر برای ثانیه) حسب
از خوبی تقریب های به منجر پیشنهادی روش از استفاده که است واضح ،١ .۴ جدول و ٣ .۴

می شود. دقیق جواب های
بگیرید نظر در را زیر متغیر مرتبه کسری تأخیری جبری دیفرانسیل معادلات .٣. ٢ .۴ ٠مثال ١

٠ ٠
ABC٠ D

α(t)
t x(t) =

١ ٠
٠ ١

x(t) +
١ ٠

٠ ١
x(t− ١)

+

١ − exp(t)− exp(t− ١)
١ − ٢t

 , ٠ ≤ t ≤ ٢, (٢۴ .۴)
1CPU



مرتبه کسری تأخیری جبری دیفرانسیل معادلات حل برای فازی سیستم کاربرد متغیر۶٨
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.٣. ١ .۴ مثال برای α(t) مختلف مقادیر در x١(t) تقریبی جواب های :١ .۴ شکل



۶٩ عددی مثال
.٣. ١ .۴ مثال در α(t) مختلف مقادیر برای اجرا زمان و E(Φ) خطا تابع مقادیر :١ .۴ جدول

α(t) E(Φ) اجرا زمان
α١(t) = ١١+exp(−t)

۴٫۴٧۵٠ × ٢٠−١٠ ٠٫٣۴۴
α٢(t) = ٠٫٧ + ٠٫٠۵ sin( t١٠) ٣٫٠۵٨۶ × ٢٠−١٠ ٠٫۴٣٧
α٣(t) = tanh(t+ ١) ١٫۵٩۵٢ × ١−١٠۶ ٠٫۵٩۴
α۴(t) = ٠٫۶ ١٫٢٨٧۴ × ١٩−١٠ ٠٫٣۶٠
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α٣(t) = tanh(t+ ١) (ج)
.٣. ١ .۴ مثال برای α(t) مختلف مقادیر در x٢(t) تقریبی جواب های :٢ .۴ شکل

x(t) =

exp(t)
t

 , t ≤ ٠, (٢۵ .۴)

است زیر به صورت α(t) = ١ برای مسئله دقیق جواب

x(t) =

exp(t)
t

 .



مرتبه کسری تأخیری جبری دیفرانسیل معادلات حل برای فازی سیستم کاربرد متغیر٧٠
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.٣. ١ .۴ مثال برای α(t) مختلف مقادیر در x٢(t) و x١(t) مطلق خطای :٣ .۴ شکل
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.٣. ٢ .۴ مثال برای α(t) مختلف مقادیر در x٢(t) و x١(t) تقریبی جواب های :۴ .۴ شکل

نظر در با می شود. استفاده (٢۵ .۴)‐(٢۴ .۴) مسئله حل برای پیشنهادی روش از این جا، در
(m = ١١) فازی قانون ١١ با را فازی جواب های می توانیم ،x(٠)٢ = ٠ و x(٠)١ = ١ شرایط گرفتن

کنیم انتخاب زیر به صورت

x١FS
= ١ + tFSx١ ,

x٢FS
= tFSx٢ .

۴ .۴ شکل در α(t) مختلف مقادیر برای x٢(t) و x١(t) عددی جواب های و α(t) = ١ دقیق جواب
شده است. داده نشان α(t) = ١ برای x(t) مطلق خطاهای ،٢ .۴ جدول در است. شده ارائه
برای را ثانیه) (برحسب شده سپری زمان و E(Φ) خطای تابع مقادیر ٣ .۴ جدول همچنین،
نتایج که است واضح ،٣ .۴ و ٢ .۴ جداول و ۴ .۴ شکل از می دهد. نشان α(t) مختلف مقادیر

می آید. به دست فازی قوانین از کمی تعداد با شده ارائه روش از استفاده با خوبی تقریبی

نظر در زیر به صورت را حالت متغیر در تأخیر دارای کسری بهینه کنترل مسئله .٣. ٣ .۴ مثال



٧١ عددی مثال
.٣. ٢ .۴ مثال برای α(t) = ١ در x(t) مطلق خطای :٢ .۴ جدول

t x١(t) مطلق خطای x٢(t) مطلق خطای
٠٫٢ ١٫٧۶۵ × ١٠−۴ ۴٫٧٠۶ × ١١−١٠

٠٫۴ ١٫٢٨٠ × ١٠−۴ ١٫٠۵٧ × ١٠−١٠

٠٫۶ ١٫٠٠٣ × ١٠−۴ ١٫۶۴٩ × ١٠−١٠

٠٫٨ ٧٫٧١۴ × ١٠−۵ ١٫٢٨۵ × ١٠−١٠

١ ۵٫٧۵٧ × ١٠−۵ ١٫٨۶۶ × ١١−١٠

١٫٢ ٢٫١٨۴ × ١٠−۴ ۴٫٧٩٠ × ١١−١٠

١٫۴ ١٫۵٨٢ × ١٠−۴ ۴٫٠٧٨ × ١١−١٠

١٫۶ ١٫٢٢۴ × ١٠−۴ ١٫٠١٠ × ١٠−١٠

١٫٨ ٩٫۵۵٣ × ١٠−۵ ١٫۴٨١ × ١٠−١٠

٢ ٨٫٣٩۴ × ١٠−۵ ٣٫١١٩ × ١٠−١٠

.٣. ٢ .۴ مثال در α(t) مختلف مقادیر برای اجرا زمان و E(Φ) خطا تابع مقادیر :٣ .۴ جدول
α(t) E(Φ) اجرا زمان
α١(t) = ١ ٢٫۵۴١٠ × ٢١−١٠ ٠٫١٢۵
α٢(t) = ٠٫٨ + ٠٫٠٣ sin( t١٠) ۴٫٣٣۴٣ × ٢٢−١٠ ٠٫۴٢٢
α٣(t) = ٠٫۶ ٨٫٧١۶٩ × ٢٢−١٠ ٠٫٣٩٠
α۴(t) = ٠٫١ + ٠٫۴t ١٫٠۵٣٧ × ٢٢−١٠ ٠٫۴٨۵
α۵(t) = ٠٫٩ − ٠٫۴t ٣٫۵٣۶٣ × ٢٢−١٠ ٠٫٣٩١

بگیرید

Minimize J(x, u) =
١
٢
∫ ٢

٠ (x٢(t) + u٢(t))dt (٢۶ .۴)
subject to

ABC٠ D
α(t)
t x(t) = tx(t− ١) + u(t), ٠ < t ≤ ٢, (٢٧ .۴)

x(t) = ١, −١ ≤ t ≤ ٠. (٢٨ .۴)
تابع می شود. استفاده (٢٨ .۴)‐(٢۶ .۴) مسئله حل برای پیشنهادی روش از این جا، در

است زیر به صورت مسئله این در همیلتونی

H(x(t), x(t− ١), u(t), λ(t), t) = ١
٢(x٢(t) + u٢(t)) + λ(t)(tx(t− ١) + u(t)).



مرتبه کسری تأخیری جبری دیفرانسیل معادلات حل برای فازی سیستم کاربرد متغیر٧٢
داریم را زیر بهینگی شرایط بنابراین



ABC
t D

α(t)

٢ λ(t) = x(t) + χ[٠,١](t+ ١)λ(t+ ١), ٠ ≤ t < ٢,
ABC٠ D

α(t)
t x(t) = tx(t− ١) + u(t), ٠ < t ≤ ٢,

u(t) + λ(t) = ٠,
x(t) = ١, −١ ≤ t ≤ ٠.
λ(٢) = ٠.

به صورت فازی جواب های λ(٢) = ٠ و x(٠) = ١ شرایط به توجه با

xFS = ١ + tFSx,

λFS = (٢ − t)FSλ,

uFS = FSu,

تقریب از به دست آمده هدف تابع مقادیر بین مقایسه ای ،۴ .۴ جدول در می شوند. انتخاب
است. شده انجام α(t) مختلف مقادیر برای ارائه شده، روش و ،[٩١] گرونوالد‐لتنیکوف١
۵ .۴ شکل در α(t) مختلف مقادیر در u(t) کنترل متغیر و x(t) حالت متغیر عددی جواب های
حسب (بر شده سپری زمان و E(Φ) خطا تابع مقادیر ۵ .۴ جدول همچنین، است. شده ارائه

می دهد. نشان α(t) مختلف مقادیر برای را ثانیه)

.٣. ٣ .۴ مثال برای α(t) مختلف مقادیر در J نتایج :۴ .۴ جدول
α(t) پیشنهادی روش [٩١] روش

١ ١٫١٠٣٣ ١٫٢٠١٨
٠٫٩ ١٫٠٨٣۶ ١٫٢٢٣٢
٠٫٨ ١٫٠٢١١ ١٫٢۵۴۶

١ − cos(t)٢
٣ ٠٫٨۶۵٩ ‐

١ − ٠٫۵١+exp(−t)
١٫٠٩٨۵ ‐

tanh(t+ ١) ٠٫٩٣۵۶ ‐

1Grunwald-Letnikov



٧٣ عددی مثال
.٣. ٣ .۴ مثال در α(t) مختلف مقادیر برای اجرا زمان و E(Φ) خطا تابع مقادیر :۵ .۴ جدول

α(t) E(Φ) اجرا زمان
α١(t) = ١ ١٫۵٣٣١٩ × ٢٣−١٠ ٠٫٢۵۶
α٢(t) = ٠٫٩ ١٫٧١٩٩٧ × ٢٠−١٠ ٠٫۴۶٨
α٣(t) = ١ − cos(t)٢

٣ ١٫۴٠۴١ × ٢٢−١٠ ٠٫۶٧٢
α۴(t) = ١ − ٠٫۵١+exp(−t)

۴٫۶٩٨۶ × ٢٣−١٠ ٠٫۶۵۶
α۵(t) = tanh(t+ ١) ١٫٧۴٢٢ × ٢٣−١٠ ٠٫۵٩۴
α۶(t) = ٠٫٨ ۶٫٠٩٨۶ × ٢٠−١٠ ٠٫۴۶٩
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.٣. ٣ .۴ مثال برای α(t) مختلف مقادیر در u(t) و x(t) تقریبی جواب های :۵ .۴ شکل

بگیرید نظر در را زیر متغیر مرتبه با کسری تأخیری بهینه کنترل مسئله .۴ .٣ .۴ مثال

Minimize J(x, u) =
١
٢
∫ ١

٠ ((x١(t) + x٢(t))٢ + u٢(t))dt (٢٩ .۴)
subject to

ABC٠ D
α(t)
t x١(t) = tx١(t) + x٢(t−

١
۴), ٠ < t ≤ ١, (٣٠ .۴)

ABC٠ D
α(t)
t x٢(t) = t٢x٢(t)− ۵x١(t−

١
۴)− x٢(t−

١
۴) + u(t), ٠ < t ≤ ١,

(٣١ .۴)
x١(t) = x٢(t) = ١, −١

۴ ≤ t ≤ ٠. (٣٢ .۴)



مرتبه کسری تأخیری جبری دیفرانسیل معادلات حل برای فازی سیستم کاربرد متغیر٧۴
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.۴ .٣ .۴ مثال برای α(t) مختلف مقادیر در x۴(t) و x١(t), x٢(t) تقریبی جواب های :۶ .۴ شکل

داریم را زیر بهینگی شرایط

ABC
t D

α(t)

١ λ١(t) = x١(t) + x٢(t) + tλ١(t)− χ
[٠, ٣۴ ]

۵λ٢(t+ ١۴), ٠ ≤ t < ١,
ABC
t D

α(t)

١ λ٢(t) = x١(t) + x٢(t) + t٢λ٢(t) + χ
[٠, ٣۴ ]

λ١(t+ ١۴)− χ
[٠, ٣۴ ]

λ٢(t+ ١۴), ٠ ≤ t < ١,
ABC٠ D

α(t)
t x١(t) = tx١(t) + x٢(t− ١۴), ٠ < t ≤ ١,

ABC٠ D
α(t)
t x٢(t) = t٢x٢(t)− ۵x١(t− ١۴)− x٢(t− ١۴) + u(t), ٠ < t ≤ ١,

u(t) + λ٢(t) = ٠, ٠ ≤ t ≤ ١,
x١(t) = x٢(t) = ١, −١۴ ≤ t ≤ ٠,
λ(١)١ = λ(١)٢ = ٠.

شده است. ارائه ۶ .۴ شکل در α(t) مختلف مقادیر برای u(t) و x١(t), x٢(t) تقریبی جواب های
عددی نتایج و [٩١] گرونوالد‐لتنیکوف تقریب با آمده به دست J تقریبی مقادیر ،۶ .۴ جدول در
مقادیر ٧ .۴ جدول این، بر علاوه شده است. فهرست α(t) مختلف مقادیر برای پیشنهادی روش
نشان α(t) مختلف مقادیر برای m = ٢١ با را ثانیه) (برحسب اجرا زمان و E(Φ) خطای تابع

می دهد.



٧۵ عددی مثال

.۴ .٣ .۴ مثال برای α(t) مختلف مقادیر در J نتایج :۶ .۴ جدول
α(t) پیشنهادی روش [٩١] روش

١ ٢٫١٢٢٢ ١٫٧۵۴٨
٠٫٩ ٢٫٢١٧٨ ٢٫٢٣٩٢
٠٫٨ ٣٫١٠٨٢ ٢٫٧٩٩٨

٠٫٩ + ٠٫٠١ exp(t) ١٫۵٠٠٢ ‐
tanh(٣٢(t+ ١)) ٣٫٢٧١٠ ‐
cos( (t+١)π

١٨ ) ٢٫۵۶١٢ ‐

.۴ .٣ .۴ مثال در α(t) مختلف مقادیر برای اجرا زمان و E(Φ) خطا تابع مقادیر :٧ .۴ جدول
α(t) E(Φ) اجرا زمان
α١(t) = ١ ١٫١۴٠٨۶ × ٢٣−١٠ ٠٫٣۵٩
α٢(t) = ٠٫٩ + ٠٫٠١ exp(t) ١٫۵١٢٠ × ٢٣−١٠ ١٫١٨١
α٣(t) = tanh(٣٢(t+ ١)) ١٫٢۶٧٨ × ١٨−١٠ ١٫٢۵
α۴(t) = ٠٫٩ ۵٫۶٨٧٢۴ × ٢٣−١٠ ٠٫٨٧۵
α۵(t) = cos( (t+١)π

١٨ ) ۴٫٠٧۵٠ × ٢٢−١٠ ١٫١۴١
α۶(t) = ٠٫٨ ۵٫٨١١۶۵ × ٢٣−١٠ ٠٫٩٣٨



مرتبه کسری تأخیری جبری دیفرانسیل معادلات حل برای فازی سیستم کاربرد متغیر٧۶

پیشنهادات و نتیجه گیری
قرار بررسی مورد را وابسته مسائل و کسری جبری دیفرانسیل معادلات از رده ای رساله این در
سیستم های پایه بر کسری جبری دیفرانسیل معادلات عددی جواب آوردن به دست برای دادیم.
مرتبه کسری جبری دیفرانسیل معادلات ٣ فصل در دادیم. پیشنهاد را فازی مدل دو فازی
شد. استفاده يافته تعميم فازی هايپربوليک مدل از آن ها حل برای و کردیم معرفی را متغیر
دیفرانسیل معادلات به عنوان می توان را کسری بهینه کنترل مسئله که دادیم نشان همچنین
معادلات عددی جواب شده ارائه فازی مدل از استفاده با سپس کرد. فرمول بندی کسری جبری
جبری دیفرانسیل معادلات ۴ فصل در آوردیم. به دست را حاصل کسری جبری دیفرانسیل
تأخیری جبری دیفرانسیل معادلات حل برای کردیم. معرفی را متغیر مرتبه کسری تأخیری
کمک سوگونو فازی سیستم از کسری تأخیری بهینه کنترل مسائل و متغیر مرتبه کسری
پیشنهادی فازی جواب های و دقیق جواب های بین خطای بالای کران یک همچنین گرفتیم.
نشان را پیشنهادی فازی سیستم همگرایی و آوردیم به دست فازی قوانین تعداد به توجه با
الگوریتم یک پیشنهادی مدل های تمام پارامترهای کردن به هنگام و آموزش برای دادیم.

کردیم. ارائه نظارت بدون آموزش پایه بر یادگیری
مقایسه در فازی سیستم های از استفاده مزایای می آید. پیش منطقی سوال یک اکنون
برای چیست؟ کسری جبری دیفرانسیل معادلات مسائل حل برای موجود روش های دیگر با
بیان خلاصه به طور پیشنهادی فازی سیستم های روش مزیت های از بعضی سوال این به پاسخ

می شود.
جواب های یا ندارند تحلیلی جواب های که مسائلی حل برای پیشنهادی فازی سیستم های از (١

می شود. استفاده نیست محاسبه قابل راحتی به آن ها تحلیلی
در است. پیوسته مسئله دامنه تمام در فازی سیستم های از استفاده با آمده به دست جواب  (٢
و می آورند به دست شده گسسته سازی نقاط در تنها را جواب ها عددی روش های اکثر حالی که

آید. به دست درونیابی طریق از باید نقاط این بین جواب
روش های از برخی نمی کنند. استفاده عملگر ماتریس از فازی سیستم های پایه بر روش ها (٣
سخت معمولا˟ عملگر ماتریس کردن پیدا می کنند. استفاده حل برای عملگر ماتریس از عددی
شد. خواهند نیز محاسباتی پیچیدگی باعث بالاتر مرتبه های در عملگر ماتریس های این و است

است. تحلیلی جواب به نزدیک مسئله تقریبی جواب (۴
با مسائلی یا غیرخطی مسائل حل برای فازی سیستم های روش از می توان راحتی به (۵

کرد. استفاده بالاتر مرتبه های
واقعی کاربردهای در پارامترها از کمی تعداد با و سریع طور به می توان را مسئله جواب (۶

زد. تخمین
با کسری سیستم های با مسائلی روی را روش ها این که می شود پیشنهاد آتی کارهای برای

کرد. سازی پیاده ... و انتگرال معادلات کسری، جزئی مشتقات با مسائلی متغیر، تأخیر
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Aabstract

The main topic of this thesis is studying the applications of fuzzy systems to solve frac-

tional differential algebraic equations and related problems. Some dynamic and physical

laws are not expressed in general dynamical systems. For modelling complex systems or

when the particles are in microscopic scales, the use of fractional order systems seems to be

essential. Obtaining analytical solutions for such problems is usually difficult.Therefore,

numerical methods for obtaining the approximate solutions of these equations, have been

proposed. In this thesis, fuzzy system is used for the numerical solution of variable-order

fractional differential algebraic equations and fractional optimal control problem. Fuzzy

logic system is an artificial intelligent technique that uses a collection of fuzzy membership

functions and rules, instead of Boolean logic, to reason about data. Fuzzy systems can

provide a more transparent representation of the studied system, comparing with the pop-

ular approximation methods such as artificial neural networks. Existence of this merit in

fuzzy systems, is due to the possible linguistic interpretation in the form of rules. Since the

fuzzy system is universal approximator, this approach of the computational intelligence

has been used for a wide variety of applications.

Keywords: fractional differential equations; variable-order fractional differential algebraic

equations; fractional optimal control problems; artificial intelligent; fuzzy system
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