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عددی آنالیز ‐ کاربردی ریاضی دکتری رساله

عددی حل برای بدون شبکه انتگرو‐دیفرانسیلروش های معادلات از دوبعدیرده ای
عسگری مرتضی نگارنده:
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ناظمی علیرضا دکتر

١٣٩٩ اسفند



به: تقدیم
آرمان دلبندم فرزند و عزیزم همسر

ز



سپاس گزاری...

آغاز در آراست. عقل زیور به را آدم خود، بی کران لطف با که را حکیم خداوندگار سپاس
مس فروش علی دکتر آقای جناب خود، راهنمای استاد زحمات از می دانم خود وظیفه
که نمایم قدردانی و تشکر صمیمانه ناظمی علیرضا دکتر آقای جناب مشاور، استاد و
جناب از نمی رسید. انجام به مجموعه این ایشان ارزنده ی راهنمایی های بدون قطعاً
تشکر تحقیق مورد موضوع مورد در ارزنده راهنمایی های بابت میرزایی داود دکتر آقای

می نمایم.
وجودشان، امیدبخش گرمای و سرشار عاطفه پاس به آرمان فرزندم و عزیزم همسر از

دارم. دوستشان صمیمانه و سپاسگزارم بوده من پشتیبان بهترین که
بدرقه همیشه آنها، خیر دعای که خانم مادر و خانم پدر و دلسوزم و مهربان مادر از

می کنم. قدردانی و تشکر بوده، من راه

عسگری مرتضی
١٣٩٩ اسفند
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نامه تعهد
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حل برای بدون شبکه روش های عنوان با رساله نویسنده شاهرود، دانشگاه ریاضی علوم
فروش مس علی راهنمایی تحت ، دوبعدی انتگرو‐دیفرانسیل معادلات از رده ای عددی

می شوم: متعهد
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یا مدرک نوع هیچ دریافت برای دیگری فرد یا خود، توسط کنون تا رساله، این مطالب •

است. نشده ارایه هیچ جا در امتیازی
نام با مستخرج مقالات و دارد، تعلق شاهرود صنعتی دانشگاه به اثر، این معنوی حقوق •
خواهد چاپ به “ Shahrood University of Technology “ یا “ شاهرود صنعتی دانشگاه “

رسید.
در بوده اند، تاثیرگذار رساله اصلی نتایج آوردن به دست در که افرادی تمام معنوی حقوق •

می گردد. رعایت رساله از مستخرج مقالات
استفاده آنها) بافت های (یا زنده موجود از که مواردی در رساله، این انجام مراحل تمام در •

است. شده رعایت اخلاقی اصول و ضوابط است، شده
دسترسی افراد شخصی اطلاعات حوزه به که مواردی در رساله، این انجام مراحل تمام در •

است. شده رعایت انسانی اخلاق اصول و رازداری اصل است)، شده استفاده (یا یافته
عسگری مرتضی
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نشر حق و نتایج مالکیت
برنامه های کتاب، مستخرج، ( مقالات آن محصولات و اثر این معنوی حقوق تمام •
شاهرود صنعتی دانشگاه به متعلق شده) ساخته تجهیزات و نرم افزارها رایانه ای،

شود. ذکر مربوطه علمی تولیدات در مقتضی، نحو به باید مطلب این می باشد.
نمی باشد. مجاز منبع ذکر بدون رساله این در موجود نتایج و اطلاعات از استفاده •

ط



چکیده
حاضر حال در و می كند ايفا فناوری در مهمی نقش همواره علوم، زبان به عنوان ریاضیات،
پردازش کامپیوتری، گرافیک مصنوعی، هوش پزشکي، بهینه سازی، اقتصادي، مسایل در
مي رود. بکار مهندسی و مکانیک نظری، فیزیک عصبی، شبکه های سیگنال ، پردازش تصاویر،
جزيی ديفرانسيل معادلات يا معمولي ديفرانسيل معادلات از استفاده با مسایل، از بسیاری
با انتگرو‐دیفرانسيل يا و انتگرال معادلات به می توانيم را آنها اغلب می شوند. مدل بندی
نیاز عددی روش های به معادلات این حل برای نماييم. تبديل مرزي شرایط يا اولیه شرایط
متناهی المان های روش به تقریب کلی، نواحی روی متغیره چند تقریب روش های از یکی داریم.
عددی، روش های از بسیاری پاپه روش، این می گیرد. انجام ناحیه شبکه بندی به کمک که است
وجود دیگری متفاوت روش است. جزئی مشتقات با دیفرانسیل معادلات حل در به خصوص
به عنوان ناحیه شبکه بندی از روش ها این در موسومند. بدون شبکه روش های به که دارد
با که نقاط از مجموعه ای اساس بر تقریب آن بجای و نمی شود استفاده متناهی المان های
روش های برتری های از یکی می شود. نوشته شده   اند پراکنده ناحیه درون مناسب کیفیت
بالاتر ابعاد به آنها کم هزینه تر و ساده تر تعمیم متناهی، المان های روش به نسبت شبکه بدون
متحرک مربعات کمترین و متحرک مربعات کمترین بدون شبکه روش  دو رساله، این در است.
غیر خطی انتگرو‐دیفرانسیل معادلات و انتگرال معادلات از رده ای عددی حل برای درونیاب

می دهیم. قرار مطالعه مورد را

هار، فضای ولترا‐فردهلم، انتگرو‐دیفرانسیل معادلات انتگرال، معادلات کلیدی: کلمات
درونیاب متحرک مربعات کمترین روش و متحرک مربعات کمترین روش

ک



رساله از مستخرج مقالات لیست

1. The numerical approximation for the solution of linear and non linear integral equa-

tions of the second kind by interpolating moving least squares

2. The numerical method for solving Volterra-Fredholm integro-differential equations

of the second kind based on the meshless method

م
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پیشگفتار
مهندسی علوم و فیزیک در زیادی کاربردهای که است ریاضیات از شاخه ای انتگرال معادلات
یک یا انتگرال معادله  یک به مهندسی و فیزیکی پدیده های از بسیاری ریاضی مدل سازی دارد.
خازن، ولتاژ منبع یک شامل الکتریکی مدار .[۵ ،۴] می شود منجر انتگرو‐دیفرانسیل معادله 
KVL از استفاده با آن بر حاکم معادله  که است مثالی ساده ترین خودالقا و الکتریکی مقاومت

می شود. مدل سازی دیفرانسیل انتگرو‐ معادله  به صورت ١
معادلات روی ميلادی ١٩٠٣‐ ١٩٠٠ سالهای حدود در ٢ ولترا بنام ایتالیایی مشهور ریاضیدان
و مشهور کارهای ٣ فردهلم بنام سوئدی مشهور ریاضیدان زمان همان در کرد. کار انتگرال
معادله  به منجر که کرد ارائه ۴ دیریکله مساله حل برای جدید روش یک روی را خود جالب
تر پیچیده و موجود مسایل تنوع به توجه با حاضر، عصر تا بعد به زمان آن از گردید. انتگرال
تحقیقات موضوع انتگرال معادلات آنها، بیان برای انتگرال معادلات توانایی و سیستم ها شدن
می کنند. برخورد جالبی و جدید مسایل با پیوسته بطور آنها زیرا است بوده زیادی ریاضیدانان
برای لذا است نشدنی موارد اکثر در و مشکل خیلی معادلات این تحلیلی جواب کردن پیدا چون
نقش تقریب، مفهوم بنابر این می شود. استفاده آنها جواب تقریب برای عددی روش های از حل،
تقریب بهترین دنبال که است طبیعی این می کند. بازی کاربردی ریاضیات در مهمی بسیار

باشیم. معادلات نوع این جواب برای
تقریب می باشند. بدون شبکه روش های کرد استفاده می توان تقریب برای که روش هایی جمله از
هشتاد دهه در بار اولین برای بدون شبکه روش های از یکی به عنوان متحرک مربعات کمترین
تبدیل شده ای شناخته روش به بتدریج و شد مطرح چندبعدی رویه های تقریب برای میلادی
خود به را مهندسی و ریاضی رشته های در محققین توجه اخیر دهه  دو در تقریب این شده است.
جزیی، دیفرانسیل معادلات حل در به خصوص عددی روش های از بسیاری اساس و کرده جلب
برای موضعی شعاعی پایه توابع بدون  شبکه روش است. انتگرو‐دیفرانسیل و انتگرال معادلات
تعمیم یافته متحرک کمترین بدون  شبکه روش از کاربردی و [۶] در فردهلم انتگرال معادله حل
المان های به عنوان ناحیه شبکه بندی از بدون  شبکه روش های در است. شده ارائه [٨ ،٧] در

1Kirchoff’s Voltage Law
2Volterra
3Fredholm
4P. G. L. Dirichlet

ش



پیشگفتار ت
مناسب کیفیت با که نقاط از مجموعه ای اساس بر تقریب آن به جای و نمی شود استفاده متناهی
مربعات کمترین شبکه بدون روش رساله، این در می شود. نوشته شده   اند پراکنده ناحیه درون
و انتگرال معادلات از رده ای عددی حل برای درونیاب، متحرک مربعات کمترین و متحرک

می دهیم. قرار مطالعه مورد را غیر خطی انتگرو‐دیفرانسیل معادلات
انتگرال، معادلات از مقدماتی مفاهیم و تعاریف اول فصل در است. فصل چهار شامل رساله این
توابع نرم های و فضاها انتگرال، معادله جواب یکتایی قضیه های انتگرو‐دیفرانسیل، معادلات
روش های خاص، به طور و بدون شبکه روش های با تقریب چگونگی دوم فصل در آورده شده است.
از استفاده با انتگرال معادلات عددی حل سوم فصل در کرده ایم. بیان را IMLS و MLS

ارائه را پیشنهادی روش خطای آنالیز و درونیاب متحرک مربعات کمترین بدون شبکه روش
به صورت را ولترا‐فردهلم انتگرو‐دیفرانسیل معادلات چهارم فصل در همچنین می دهیم.
نشان روش کارایی و خطا و آنالیز کرده حل متحرک مربعات کمترین بدون شبکه روش  با عددی

داده ایم.



١ فصل
اولیه مفاهیم و تعاریف

از بسیاری در غیر خطی انتگرو‐دیفرانسیل معادلات و انتگرال معادلات دیفرانسیل، معادلات
جامد، حالت فیزیک سیالات، دینامیک مانند علوم مختلف شاخه های مسایل ریاضی مدل های
و انتگرال معادلات می شوند. ظاهر نظری فیزیک و شناسی زیست پلاسما، حالت فیزیک
اختصاص خود به را مطالعات از وسیعی حجم اخیر، سال های در انتگرو‐دیفرانسیل معادلات
معادلات و انتگرال معادلات بیشتر برای تحلیلی جواب کردن پیدا امکان چون است. داده
آنها، حل برای لذا است نشدنی موارد اکثر در و مشکل خیلی غیرخطی انتگرو‐دیفرانسیل
قضایای از برخی و اولیه تعاریف بخش این در می گیرد. قرار بحث مورد مختلفی عددی روشهای
و [٣٣ ،۵ ،۴ ،٣ ،٢] دیفرانسیل انتگرو‐ معادلات و انتگرال معادلات جواب یکتایی و وجود

می دهیم. توضیح اختصار به را نیاز مورد فضاها از برخی

انتگرو‐دیفرانسیل و انتگرال معادلات ١. ١
به شکل معادله هر .١. ١. ١ تعریف

u(x) = f(x) + λ

∫ β(x)

α(x)
K(x, t, u(t)) dt

و β(x) ، α(x) و معلوم عدد λ آن  در که گویند غیرخطی یک بعدی انتگرال معادله یک را
تابع کردن پیدا معادله این حل از منظور است. مجهول تابع u(x) و هستند معلوم توابع f(x)

کند. صدق آن در که است u(x) مجهول



اولیه مفاهیم و تعاریف ٢
به شکل هرمعادله .١. ١. ٢ تعریف

u(x, y) = f(x, y) + λ

∫ β١(x)

α١(x)

∫ β٢(y)

α٢(y)
K(x, y, s, t, u(s, t)) dsdt

αi(x), βi(x), i = ١,٢ و معلوم عدد λ آن در که گویند غیرخطی دوبعدی انتگرال معادله یک را
کردن پیدا معادله این حل از منظور است. مجهول تابع u(x, y) و هستند معلوم توابع f(x, y) و

کند. صدق آن در که است u(x, y) مجهول تابع
u مجهول) (متغیر وابسته متغیر به نسبت معادله که گویند خطی را معادله ای .١. ١. ٣ تعریف

گویند. غیرخطی را آن صورت این غیر در باشد. خطی آن مشتقات و
حدود به توجه با شده تعریف دوبعدی و یک بعدی انتگرو‐دیفرایسیل و انتگرال معادلات
موجود متغیرهای نوع همچنین و F,K, f توابع ویژگیهای و αi(x), βi(x), i = ١,٢ انتگرال 

می شوند. دسته بندی مختلف رده های به معادلات در تصادفی) و (قطعی

فردهلم انتگرال معادله ١. ١. ١
به طور می نامند. ١ فردهلم انتگرال معادله را آن باشد، ثابت انتگرال حدود انتگرال معادله در اگر

به شکل یک بعدی خطی فردهلم انتگرال معادله کلی

h(x)y(x)− λ

∫ b

a
k(x, t)y(t) dt = f(x), x ∈ [a, b],

معلوم تابع f(x) و انتگرال معادله هسته k(x, t) معلوم، اعداد a و b ،λ آن در که است
نوع ، h(x) = ٠ صورتی که در و گویند دوم نوع را فوق معادله باشد، h(x) = ١ اگر هستند.
است حساس خیلی f(x) تغییرات به اول نوع معادلات در جواب تابع معمولا˟ می نامند. اول
بد مسایل این و می شود جواب تابع در زیاد تغییرات باعث آن در جزئی تغییرات دیگر، بیان به
معادله باشد f(x) = ٠ هرگاه .[۵ ،۴] می طلبند حل برای را خاصی روش های که هستند حالت
و ویژه مقدار مسأله را همگن معادله می گویند. غیرهمگن آن را این صورت غیر در همگن، را
را مرزی مقدار مسایل که است ذکر به لازم .[۴] می گویند نیز انتگرال عملگر ویژه تابع را y(x)

نمود. تبدیل یکسان جواب با فردهلم انتگرال معادله به می توان

یکتا جواب غیرهمگن خطی فردهلم انتگرال معادله فردهلم). متناوب (قضیه ١. ١. ١ قضیه
باشد. داشته بدیهی جواب فقط آن نظیر همگن فردهلم انتگرال معادله اگر تنها و اگر دارد

کنید. رجوع [۵] به اثبات مشاهده برای برهان.
1Fredholm



٣ انتگرو‐دیفرانسیل و انتگرال معادلات
مربعی ناحیه در دوم نوع خطی فردهلم انتگرال معادله در k(x, t) هرگاه .١. ١. ٢ قضیه

D = {(x, t)| a ≤ x, t ≤ b},

D در k(x, t) تابع بالای کران M آن در که باشد |λ| < ١
M(b−a) و باشند پیوسته [a, b] در f(x) و

دارد. یکتا جواب خطی فردهلم انتگرال معادله آنگاه است،
کنید. رجوع [۵] ، [۴] به اثبات مشاهده برای برهان.

به شکل معادله هر
y(x)− λ

∫ b

a
F
(
x, t, y(t)

)
dt = f(x). (١. ١)

فرم به T عملگر تعریف با گویند. یک بعدی غیرخطی فردهلم انتگرال معادله را
T (y) = f(x) + λ

∫ b

a
F (x, t, y(t)) dt,

انتگرال معادله عملگری شکل را آن که نوشت y(x) = T (y) به شکل را (١. ١) معادله می توان
می گویند. غیرخطی فردهلم

هرگاه می کند صدق شیتز لیپ شرط در y(t) متغیر به نسبت F (x, t, y(t)) تابع .۴ .١. ١ تعریف
(x, t, a(t)), (x, t, b(t)) ∈ DF هر برای به طوریکه باشد موجود ( شیتز لیپ ثابت ) L مثبت عدد

باشیم داشته
|F (x, t, a(t))− F (x, t, b(t))| ≤ L|a(t)− b(t)|,

آن در که
DF = {(x, t, y(t)) : x, t ∈ [a, b], y(t) ∈ [c, d]}.

را x٠ ∈ M نقطه باشد، عملگر یک T : M → M اگر عملگر). یک ثابت (نقطه ۵ .١. ١ تعریف
T (x٠) = x٠ اگر می گوییم T عملگر ثابت نقطه

عدد اگر می گوییم انقباضی عملگر را T : M → M عملگر انقباضی). (عملگر ۶ .١. ١ تعریف
داشته x١, x٢ ∈ M هر برای به طوریکه باشد موجود ٠ ≤ α < ١ که α مانند نامنفی و حقیقی

باشیم،
|T (x١)− T (x٢)| ≤ α|x١ − x٢|,

دارای T آنگاه باشد انقباضی عملگر T :M →M اگر .(١ باناخ ثابت نقطه (قضیه ١. ١. ٣ قضیه
است. یکتا ثابت نقطه

کنید. رجوع [۵] به اثبات مشاهده برای برهان.
1Banach



اولیه مفاهیم و تعاریف ۴
شیتز لیپ شرط در ، (١. ١) غیرخطی فردهلم انتگرال معادله نظیر ،T عملگر اگر .۴ .١. ١ قضیه
y(x) = Ty(x) معادله آنگاه است T شیتز لیپ ثابت L عدد آن در که |λ| < ١

L(b− a)
و کند صدق

دارد. یکتا جواب
کنید. رجوع [۵] به اثبات مشاهده برای برهان.

ولترا انتگرال معادله ١. ١. ٢
می نامند. ١ ولترا انتگرال معادله را آن باشد متغیر انتگرال معادله در انتگرال حدود از یکی اگر

به شکل، یک بعدی، خطی ولترا انتگرال معادله کلی طور به

h(x)y(x)− λ

∫ x

a
k(x, t)y(t) dt = f(x), x ∈ [a, b],

معلوم تابع f(x) و انتگرال معادله هسته به نام k(x, t) معلوم، اعداد a و b ،λ آن در که است
می گویند. اول نوع آن را ،h(x) = ٠ هرگاه و دوم نوع آن را ،h(x) = ١ هرگاه بالا معادله در هستند.
به اولیه مقدار مساله می گویند. ناهمگن آنرا این صورت غیر در همگن آن را ،f(x) = ٠ هرگاه
و k(x, x) ̸= ٠ اینکه فرض با .[۵] است تبدیل قابل جواب همان با ولترا انتگرال معادله یک

اول نوع خطی ولترای انتگرال معادله باشد، مشتق پذیر x به نسبت k(x, t)
f(x) = λ

∫ x

٠ k(x, t)y(t) dt, x ∈ [٠, b],
دوم نوع خطی ولترای انتگرال معادله به می توان را

y(x)−
∫ x

٠ H(x, t)y(t) dt = g(x), x ∈ [٠, b],

.[٩] می باشد H(x, t) =
−١

k(x, x)

∂k(x, t)

∂x
،g(x) = ١

λk(x, x)

df

dx
آن در که نمود تبدیل

به صورت آن هسته که گرفت نظر در فردهلم معادله یک می توان را ولترا انتگرال معادله هر

k(x, t) =

 k(x, t), t ≤ x,

٠, t > x.

.[٩] است ولترا انتگرال معادله هسته همان اول ضابطه در موجود k(x, t) آن در که است
ولترا انتگرال معادله در اگر .۵ .١. ١ قضیه

y(x)− λ

∫ x

a
k(x, t)y(t) dt = f(x), x ∈ [a, b],

باشند، پیوسته D = {(x, t)|a ≤ x ≤ b, a ≤ t ≤ b} مربعی ناحیه در k(x, t) و [a, b] در f(x) تابع
. [۵] است پیوسته [a, b] در که دارد یکتا جواب بالا، معادله آنگاه

1Volterra



۵ انتگرو‐دیفرانسیل و انتگرال معادلات
نمایش نیز (I − T )y(x) = ٠ به صورت می توان را ولترا انتگرال معادله که است ذکر به لازم

آن، در که داد
Ty(x) = f(x) + λ

∫ x

a
k(x, t)y(t) dt.

به صورت یک بعدی غیرخطی ولترای انتگرال معادله
y(x)− λ

∫ x

a
F (x, t, y(t)) dt = f(x), x ∈ [a, b],

هر به نسبت F (x, t, y(t)) و پیوسته [a, b] در f(x) زمانی که آن، جواب یکتایی و وجود که است
ناحیه در y(t), t, x متغیر سه

D = {(x, t, y(t)) : a ≤ x ≤ b, a ≤ t ≤ b, c ≤ y(t) ≤ d}.

اثبات [۵] مرجع در کند. صدق شیتز لیپ شرط در y(t) به نسبت F (x, t, y(t)) و باشد پیوسته
است. مشکل بسیار کلی حالت در غیرخطی انتگرال معادلات تحلیلی حل که است شده

ولترا‐فردهلم انتگرال معادله ١. ١. ٣
حاصل، معادله شود، ظاهر فردهلم انتگرال هم و ولترا انتگرال هم انتگرال، معادله در اگر
و ولترا انتگرال گرفتن قرار چگونگی به بسته می شود. نامیده ولترا‐فردهلم انتگرال معادله
معرفی ولترا‐فردهلم انتگرال معادله از مختلف نوع دو انتگرال، معادله در فردهلم انتگرال

می شوند.
شده ظاهر هم از جدا به صورت فردهلم انتگرال و ولترا انتگرال انتگرال، معادله در اگر .١

می شود. نامیده هم از جدا ولترا‐فردهلم انتگرال، معادله باشند
u(x) = f(x) + λ١

∫ x

a
k١(x, t)u(t) dt+ λ٢

∫ b

a
k٢(x, t)u(t) dt.

ظاهر دوگانه انتگرال به صورت فردهلم انتگرال و ولترا انتگرال انتگرال، معادله در اگر .٢
می شود. نامیده مرکب ولترا‐فردهلم انتگرال، معادله باشند شده

u(x, y) = f(x, y) + λ

∫ y

c

∫ b

a
k(x, y, s, t)u(s, t) dsdt,

آن در که
−∞ < a ≤ x ≤ b < +∞ , −∞ < c ≤ y ≤ d < +∞,

نواحی، روی به ترتیب که هستند معلوم توابعی k(x, y, s, t) و f(x, y) توابع و بوده

S = {(x, y, s, t) : a ≤ x, s ≤ b, c ≤ y, t ≤ d} , D = [a, b]× [c, d] .

می باشد. مجهول تابع u(x, y) و شده تعریف



اولیه مفاهیم و تعاریف ۶
معادلات .١. ١. ١ مثال

u(x) = −٢ − ٢x+ ٢ex +
∫ x

٠ (x− t)u(t) dt+

∫ ١
٠ xu(t) dt,

و
u(x, y) +

∫ y

−١
∫ ١
−١ −xys

٢t٢yu(s, t) dsdt = x٢ +
١٣
١۵xy −

٢
١۵xy۴.

می باشند. ولترا‐فردهلم انتگرال معادلات از مثال هایی

منفرد انتگرال معادله ۴ .١. ١
یا یک در انتگرال هسته یا باشند، بی  نهایت انتگرال کران دو هر یا یک انتگرال معادله در اگر
برای می  شود. نامیده ١ منفرد انتگرال، معادله آن شود بی  کران انتگرال گیری بازه در نقطه چند

است. منفرد انتگرال معادله یک می شود تعریف زیر به صورت که ٢ آبل انتگرال معادله مثال
f(x) =

∫ x

٠
١√

(x− t)
u(t) dt.

انتگرو‐دیفرانسیل معادله ۵ .١. ١
مطالعه در ولترا شدند. معرفی ولترا توسط ١٩٠٠ سال اوایل در انتگرو‐دیفرانسیل معادلات
مواردی در معادلات نوع این کرد. برخورد معادلات نوع این با جمعیت رشد وراثت تأثیر پدیده

.[٩] دارند کاربرد نوترون پخش و انتشار پدیده گرما، انتقال مانند

مجهول تابع مشتق شامل هم و مجهول تابع انتگرال شامل هم که معادله  ای .١. ١. ٧ تعریف
یک بعدی انتگرو‐دیفرانسیل معادلات کلی فرم می نامند. انتگرو‐ دیفرانسیل معادله را باشد

باشند، می زیر به ترتیب دوبعدی و
F (x, u, u′, ..., u(n)) = f(x) + λ

∫ β١(x)

α١(x)
K(x, t, u(t), u′(t), ..., u(n)(t)) dt,

و
F (x, y, u, ux, uy, uxx, uxy, ...) = f(x, y)+λ

∫ β١(x)

α١(x)

∫ β٢(y)

α٢(y)
K(x, y, s, t, u, ut, us, utt, uts, ...) dsdt.

انتگرو‐ معادلات هستند. دیفرانسیلی بخش و انتگرالی بخش شامل معادلات نوع این
مشتقات به همراه مستقل متغیر چند یا یک بر حسب مجهول تابع که این به توجه با دیفرانسیل
یا یک   بعدی انتگرو‐دیفرانسیل معادلات به باشد داشته شرکت متغیرها آن به نسبت تابع
انواع به انتگرال، معادلات مانند انتگرو‐دیفرانسیل معادلات می شوند. تقسیم چند بعدی

می شوند. تقسیم غیر خطی یا خطی و ولترا‐فردهلم ولترا، فردهلم،
1Singular
2Abel



٧ توابع نرم های و فضاها
معادله .١. ١. ٢ مثال

u′(x) = xe−x٢ − x+ ١١۶ +
∫ x٠ ٢txe−u٢(t) dt−

∫ ١٠ (١ + t)u(t) dt,

u(٠) = ٠.
هم، از جدا غیرخطی ولترا‐فردهلم انتگرو‐دیفرانسیل معادله یک


∂u(x,y)

∂x −
∫ y٠
∫ ١٠ ysu(s, t) dsdt = ٢x− ١۴y٢ + ١۶y۴.

u(٠, y) = −y٢,

مرکب، ولترا‐فردهلم انتگرو‐دیفرانسیل معادله یک
∂٢u(x, t)
∂x٢ +

∂٢u(x, t)
∂t٢ − u(x, t)−

∫ ١
−١
∫ ١

٠ (xy + tz)u(y, z) dy dz

= ٢ex − ٧
٣x− ۵

٣ t, x ∈ [٠, ١], t ∈ [−١, ١].
و فردهلم دوبعدی انتگرو‐دیفرانسیل معادله یک

∂٢u(x, t)
∂x٢ +

∂٢u(x, t)
∂t٢ −

∫ t

٠
∫ x

٠ (ey + z)u(y, z) dy dz

= ex − ١
٢ te٢x − xtex + tex − ١

۴x٢t٢ +
١
٣xt٣ − ١

٢ , x, t ∈ [٠, ١].
است. ولترا دوبعدی انتگرو‐دیفرانسیل معادلۀ یک

توابع نرم های و فضاها ١. ٢
جواب فضاست. هر به مربوط نرم های و فضاها با آشنایی آنالیز عددی، در پیش نیازها از یکی
ساختاری دارای و دیگر فضایی در معمولا˟ آن تقریب و فضا یک از عضوی مسأله، یک دقیق
مورد مسأله جواب برای ساده تر ساختاری با تقریبی یافتن دنبال به اغلب یعنی است. ساده تر
بنابراین باشد، نزدیک  تر مسأله دقیق جواب به که است ارزشمندتر تقریبی قطعاً هستیم. نظر
ما فضاهای باید لذا نیازمندیم، متر یک به دقیق جواب به تقریب نزدیکی میزان بررسی برای

متریک اند. فضاهای از خاصی حالت نرم دار فضاهای باشند. متریک
نمایش C[a, b] نماد با را [a, b] بازه  روی پیوسته حقیقی توابع تمام مجموعه ی .١. ٢. ١ تعریف
است پیوسته [a, b] بازه  روی آن ها m مرتبه مشتق که توابعی مجموعه ی همچنین می دهیم.
همواری رده از f می گوییم اصطلاحاً باشد f ∈ Cm اگر و می دهیم نمایش Cm[a, b] نماد با را

.C٠[a, b] ≡ C[a, b] نماد گذاری این با است. Cm



اولیه مفاهیم و تعاریف ٨
یک C[a, b] داد نشان می توان به آسانی است. C[a, b] فضای توابع، فضای پرکاربردترین
نرم فضا، این روی نرم ها شناخته شده ترین از یکی نیست. متناهی البعد اما است، فضای خطی
می شود. تعریف زیر به صورت f ∈ C[a, b] هر به زای که است (١ چبیشف یا بینهایت(یکنواخت

∥f∥∞ := max
x∈[a,b]

|f(x)|,

اهمیت از است باناخ فضای یک چون اما است، نرم دار فضای خطی یک (C[a, b], ∥.∥∞) دوتایی
آورده شده است. زیر در باناخ فضای تعریف است. برخوردار بیشتری

دنباله  هر هرگاه است، کامل V می گوییم بگیرید. نظر در را (V, ∥.∥) فضای .١. ٢. ٢ تعریف
باشد. همگرا آن در کوشی

توابع از کوشی دنباله  هر زیرا است، باناخ فضای یک (C[a, b], ∥.∥∞) نمود ثابت می توان
فضای باناخ، فضاهای از دیگری مثال همگراست. پیوسته تابعی به بینهایت، نرم در پیوسته

نرم یکنواخت، با Cℓ[a, b]

∥f∥∞ :=

ℓ∑
k=٠

max
x∈[a,b]

∣∣∣f (k)(x)∣∣∣ ,
گرفته نظر در چپ و راست مشتقات ترتیب به b و a نقاط در مشتقات این جا در می باشد.

می شوند.
داشته x ∈ (a, b) هر برای اگر گوییم وزن تابع را w : (a, b) → R پیوسته تابع .١. ٢. ٣ تعریف
لازم باز بازه  روی فقط پیوستگی که کنید توجه .٠ <

∫ b
a w(x) dx < ∞ و w(x) > ٠ باشیم،

است.
به ازای زیر شرایط هرگاه نامیم داخلی ضرب یک را ⟨·, ·⟩ : V × V → C نگاشت .۴ .١. ٢ تعریف

باشند، برقرار α ∈ C هر و f, g, h ∈ V هر
.⟨f + g, h⟩ = ⟨f, h⟩+ ⟨g, h⟩ بودن)، (خطی .١

.⟨αf, g⟩ = α⟨f, g⟩ بودن)، (همگن .٢
.⟨f, g⟩ = ⟨g, f⟩ بودن)، (متقارن .٣

.⟨f, f⟩ > ٠ داشته باشیم f ̸= ٠ هر به ازای بودن)، (مثبت .۴
ضرب خواص به توجه با همچنین .⟨f, αg⟩ = ᾱ⟨f, g⟩ می شود نتیجه ٣ و ٢ خواص از

نمود، تعریف زیر بهصورت V روی نرم یک میتوان داخلی،
∥f∥ := ⟨f, f⟩

١٢ .

کوشی‐ نامساوی از مثلث نامساوی بررسی برای برقرارند. به وضوح نرم دوم و اول شرط های
می شود. استفاده زیر شوارتز

1Chebyshev



٩ توابع نرم های و فضاها
داریم، f, g ∈ V هر برای کوشی‐شوارتز). (نامساوی ١. ٢. ١ لم

|⟨f, g⟩| ≤ ∥f∥∥g∥. (١. ٢)
کنید. رجوع [١] به اثبات مشاهده برای برهان.

ضرب یک با آن نرم که است فضای خطی نرم داری ، ١ پیش ‐هیلبرت فضای .۵ .١. ٢ تعریف
می نامند. هیلبرت فضای باشد، باناخ فضای یک که پیش ‐هیلبرتی فضای و شود، القا داخلی
توسط  ∥.∥٢ زیرا است، پیش‐ هیلبرت فضای یک (Cd, ∥.∥٢

فضای( مثال به عنوان .١. ٢. ١ مثال
می شود. القا می شود، تعریف x, y ∈ Cd بردار دو روی که ⟨x, y⟩ :=

∑
xkyk داخلی ضرب

فضای یک (Cd, ∥.∥٢
) بنابراین است. کامل فضای یک فضا، این نمود ثابت می توان همچنین

است. هیلبرت

دو) نرم در (تقریب پیش‐ هیلبرت فضاهای در تقریب ١. ٢. ١
از می کند. بازی ریاضیات کاربردی در به ویژه ریاضیات، در مهمی بسیار نقش تقریب مفهوم
بررسی همچنین هستند. آنالیزعددی در موضوعات اساسی ترین از یکی تقریب روش های این رو
بررسی این است. عددی روش های در نیاز مورد مسایل پرکاربردترین از یکی نرم دو، در تقریب
گاهی را دو نرم در تقریب بهترین ساخت. خواهد رهنمون نیز متعامد توابع ساختار به را ما
فضای خطی زیر یک در تقریب بهترین به دنبال بخش این در می نامند. مربعات کمترین تقریب
یک را U ⊂ V و پیش‐ هیلبرت فضای یک را V بعد به این از بود. خواهیم متناهی بعد با
در v ∈ V برای تقریب بهترین یافتن درصدد و گرفته نظر در آن از متناهی بعد با زیرفضای خطی
کاملا́ دو نرم در تقریب بهترین ساختار خوشبختانه بود. خواهیم ∥v∥٢ := ⟨v, v⟩

١٢ به نسبت U
آورد. به دست را تقریب بهترین v عضو هر برای می توان زیر قضیه  طبق است. مشخص

آن از متناهی بعد با زیرفضای یک U و پیش ‐هیلبرت فضای یک V کنید فرض .١. ٢. ١ قضیه
u ∈ U هر برای اگر فقط و اگر است دو نرم به نسبت U در v ∈ V تقریب بهترین u∗ باشد.

باشیم داشته
⟨v − u∗, u⟩ = ٠.

کنید. رجوع [١] به اثبات مشاهده برای برهان.
عمود U زیرفضای بر v − u∗ خطای اگر فقط و اگر است تقریب بهترین u∗ می گوید قضیه 

برای قضیه این از هندسی تعبیر ١. ١ شکل در باشد.
V = R٣, U = {u ∈ R٣ : u = (u١, u٢, ٠)},

وقتی u∗ و v اقلیدسی فاصله می کنید مشاهده که همان گونه آورده شده است. اقلیدسی نرم با
باشد. عمود U صفحه بر v − u∗ بردار که است کمترین

1per-Hilbert



اولیه مفاهیم و تعاریف ١٠

دو نرم در تقریب بهترین از نمایی :١. ١ شکل

نرمال معادلات ١. ٢. ٢
v ∈ V تقریب بهترین u∗ = α٠u٠ +α١u١ + . . .+αnun و U := span{u٠, u١, . . . , un} کنید فرض
طبق است. α = (α٠, α١, . . . , αn)

T بهینه بردار یافتن معادل u∗ تقریب بهترین یافتن باشد.
داریم، ١. ٢. ١ 〉قضیه

v −
n∑

j=٠
αjuj , u

〉
= ٠, ∀u ∈ U .

است، زیر رابطه  با معادل بالا رابطه  که داد نشان می توان 〉به سادگی
v −

n∑
j=٠

αjuj , uk

〉
= ٠; k = ٠, ١, . . . , n,

می شود، ١. ٣ به منجر که
n∑

j=٠
αj⟨uj , uk⟩ = ⟨v, uk⟩; k = ٠, ١, . . . , n, (١. ٣)

به ترتیب bk = ⟨v, uk⟩ و αkj = ⟨uj , uk⟩ درایه های با Aα = b خطی معادلات دستگاه ١. ٣ روابط
اینکه به توجه با می گویند. نرمال معادلات دستگاه آن به که می دهد تشکیل را b و A برای
یک کمک به که است α یکتای جواب دارای دستگاه این یکتاست، و موجود تقریب بهترین
به دست نیز را تقریب خطای می توان ١. ٢. ١ قضیه از می شود. محاسبه به سادگی عددی روش

آورد.
آنگاه باشد v تقریب بهترین u∗ اگر .١. ٢. ١ نتیجه

∥v − u∗∥٢٢ = ∥v∥٢٢ − ∥u∗∥٢٢ = ∥v∥٢٢ −
n∑

j=٠
αj⟨v, uj⟩.

کنید. رجوع [١] به اثبات مشاهده برای برهان.



١١ توابع نرم های و فضاها
∥f∥٢٢ =

∫ b
a ω(x)|f(x)|

٢ dx نرم با فضای نرمدار یک V = L٢
ω[a, b] کنیم فرض .١. ٢. ٢ مثال

ماتریس درایه های آنگاه ،U = Pn = span{١, x, . . . , xn} و ω(x) = ١ ،[a, b] = [٠, ١] اگر باشد.
از عبارتند b بردار و A

αkj =
〈
xj , xk

〉
=

∫ ١
٠ xk+j dx =

١
k + j + ١ ; k, j = ٠, ١, . . . , n,

bk =
〈
f, xk

〉
=

∫ ١
٠ xkf(x) dx; k = ٠, ١, . . . , n.

می شود بدوضع سرعت به n افزایش با که است هیلبرت ماتریس یک A ماتریس حالت این در
ساده تر را نهایی دستگاه حل که U زیرفضای برای مناسب پایه ای آوردن به دست بنابراین .[١]

است. ضروری کند

یکه متعامد دستگاه ١. ٢. ٣
تشکیل یکه متعامد دستگاه یک که شوند انتخاب به گونه ای {u٠, u١, . . . , un} پایه  اعضای اگر
داشته اگر یعنی است، حل قابل ممکن شکل ساده ترین به نرمال معادلات دستگاه آنگاه دهند،

باشیم

⟨uk, uj⟩ = δkj =


١, k = j,

٠, k ̸= j,

(١. ٣) نرمال معادلات دستگاه جواب و است همانی ماتریس یک ، A ماتریس حالت، این در
با به طور صریح

αk = ⟨v, uk⟩, k = ٠, ١, . . . , n, (۴ .١)
شود، فرض ثابت ابتدا از (n + ١) یعنی زیرفضا بعد که نیست نیازی همچنین می آید. به دست
مناسب تقریبی آوردن بهدست برای بنابراین است. k < ℓ برای αk از مستقل αℓ محاسبه ی زیرا
بدون داد، افزایش است نیاز مورد که آن جا تا را U بعد می توان شده) تعیین پیش از خطای (با

باشد. قبلی محاسبات تکرار به نیازی این که
باشیم، داشته j و k هر برای اگر

⟨uk, uj⟩ =


ck ̸= ٠, k = j,

٠, k ̸= j,

زیرفضای برای متعامد پایه ای اگر که است واضح است. متعامد دستگاه گوییم ، ck = ∥uk∥٢٢ که
با، تقریب بهترین ضرایب گیریم، نظر در U

αk =
⟨v, uk⟩
∥uk∥٢٢

, k = ٠, ١, . . . , n,



اولیه مفاهیم و تعاریف ١٢
می توان همواره ، {u٠, u١, . . . , un} مانند خطی مستقل خانواده یک داشتن با می شوند. تعیین
uk عضو هر تقسیم با همچنین نمود، تولید ١ گرام‐اشمیت الگوریتم توسط متعامد پایه  یک

آورد. به دست یکه متعامد دستگاه یک می توان متعامد دستگاه روی از √ck بر
می دهد، نشان است شده بیان (١. ٢. ١) نتیجه در ∥v − u∗∥٢ خطای برای که دستوری

n∑
j=٠

αj⟨v, uj⟩ ≤ ∥v∥٢٢.

به توجه با نامعادله این دهند تشکیل یکه متعامد دستگاه یک un و . . . ،u١ ،u٠ اگر حالت این در
متعامد دستگاه وقتی نامساوی، این می شود. n∑تبدیل

j=٠ α٢
j ≤ ∥v∥٢٢ نامعادله به (۴ .١) رابطه 

همچنان شود داده توسعه نامتناهی بعد با یکه متعامد دستگاه یک به {u٠, u١, . . . , un} یکه
، [١] داریم واقع در بود خواهد برقرار

∞∑
j=٠

α٢
j ≤ ∥v∥٢٢, (۵ .١)

اختلاف می توان هنگامی چه که است این پرسش حال است. معروف ٢ بسل نامساوی به که
تعریف پرسش این به پاسخ برای کرد؟ کوچک دلخواه اندازه  به n افزایش با را v و u∗ تقریب بین

می دهیم. ارائه را زیر
یک اعضای از {u٠, u١, . . .} نامتناهی) یا (متناهی یکه متعامد دستگاه یک .۶ .١. ٢ تعریف
با {vn}n∈N دنباله  یک v ∈ V هر برای اگر گویند کامل V در را V پیش ‐هیلبرت فضای

به طوری که، داشته باشد وجود vn ∈ span{u٠, u١, . . . , un}

lim
n→∞

∥v − vn∥٢ = ٠,
آن بعد اگر و است متناهی نیز آن از یکه متعامد دستگاه هر باشد، متناهی بعد با V اگر
شرطی یکه متعامد دستگاه یک بودن کامل است. کامل دستگاه باشد، یکی V بعد با دستگاه
به دست نظر مورد دقت هر با را عضو یک تقریب بهترین می توان آن کمک به که است لازم

آورد.
v ∈ V هر برای تعریف طبق باشد. کامل و یکه متعامد دستگاه یک {u٠, u١, . . .} کنید فرض

به طوری که، دارد وجود vn ∈ span{u٠, u١, . . . , un} آن در که {vn}n∈N دنباله 
lim
n→

∥v − vn∥٢ = ٠.
آنگاه باشد، Un = span{u٠, u١, . . . , un} در v تقریب بهترین u∗n دلخواه n هر برای کنیم فرض

داریم، (١. ٢. ١) طبق و ∥v − u∗n∥٢ ≤ ∥v − vn∥٢ ،n هر برای
∥v − u∗n∥٢٢ = ∥v∥٢٢ −

n∑
k=٠

α٢
k ,

1Gram-Schmite
2Bessel



١٣ مایرهوبر‐کورتیس قضیه و هار فضای
این و limn→∞ ∥v − u∗n∥٢ = ٠ داریم، limn→∞ ∥v − vn∥٢ = ٠ این که، به توجه با این صورت در

که، می کند ایجاب امر
∞∑
j=٠

α٢
j = ∥v∥٢٢, (۶ .١)

می کند، ایجاب پارسوال رابطه  برقراری طرفی از است. مشهور ١ پارسوال تساوی به که
lim
n→∞

∥v − u∗n∥٢ = ٠,
می دهد. نشان را {u٠, u١, . . .} یکه متعامد دستگاه بودن کامل که

پارسوال تساوی اگر فقط و اگر است کامل {u٠, u١, . . .} یکه متعامد دستگاه یک .١. ٢. ٢ نتیجه
باشد. برقرار (۶ .١)

می شود، تعریف نیز دیگری به صورت یکه متعامد دستگاه یک بودن کامل گاهی .١. ٢. ١ ملاحظه
دستگاه اعضای تمام بر که باشد عضوی تنها صفر عضو اگر است کامل یکه متعامد دستگاه یک

است. عمود

مایرهوبر‐کورتیس قضیه و هار فضای ١. ٣
فضای V ⊂ C(Ω) اگر باشد. نقطه n حداقل شامل ناحیه ای Ω ⊂ Rd کنیم فرض .١. ٣. ١ تعریف
برای هر گاه می شود، نامیده Ω روی n‐بعدی هار فضای یک V باشد. Ω روی n‐بعدی برداری
f١ , f٢ , · · · , fn ∈ R دلخواه مقادیر و x١,x٢, · · · ,xn ∈ Ω دلخواه متمایز نقاط از مجموعه هر
رابطه k = ١ ,٢ , · · · , n هر برای به طوریکه باشد داشته وجود s ∈ V تابع یک وتنها یک

باشد. برقرار s(xk) = fk

در می باشد نقطه n شامل که باشد R از دلخواهی زیرمجموعه یک Ω کنید فرض .١. ٣. ١ مثال
است. Ω روی n‐بعدی هار فضای یک ، V = Pn−١(R) فضای اینصورت

.[١٠] هم ارزند زیر گزاره های .١. ٣. ١ قضیه
است. n‐بعدی هار فضای یک V .١

دارد. ریشه (n− ١) uحداکثر ∈ V\ {٠} هر .٢
داریم: V از u١ , u٢ , · · · , un پایه هر و x١ , x٢ , · · · , xn ∈ Ω نقاط از مجموعه هر برای .٣
نقاط روی شده انتخاب پایه بر مبتنی واندرموند ماتریس [uj(xk)] که det [uj(xk)] ̸= ٠

می باشد. شده فرض
1Parseval



اولیه مفاهیم و تعاریف ١۴
سرراست پاسخ دارد؟ وجود هار فضای نیز بالاتر ابعاد در آیا که است این مهم پرسش اما

است. شده ارائه بعد قضیه در پرسش این
حداقل شامل Ω ⊂ Rd مجموعه ،d ⩾ ٢ برای کنید فرض (مایرهوبر‐کورتیس). ١. ٣. ٢ قضیه

.[١٠] ندارد وجود Ω روی nبعدی ⩾ ٢ هار فضای هیچ آنگاه باشد درونی نقطه ی یک

متغیره چند چند جمله ای ها ی ۴ .١
کار در می دهیم. نشان Pq(Rd) نماد با را Rd روی q حداکثر درجه از چندجمله ا ی ها یی فضا ی
می شوند، تعریف زیر به صورت اندیسه ها چند و چند تا یی ها متغیره، چند چندجمله ا ی ها ی با
α = (α١, α٢, · · · , αd) ∈ Nd٠ و xj ∈ R آن، در که x = (x١, x٢, · · · , xd) یعنی x ∈ Rd کنیم، فرض

می کنیم، تعریف این صورت در باشد اندیسه چند یک
xα = x

α١١ x
α٢٢ · · ·xαd

d , |α| = α١ + α٢ + · · ·+ αd , α! = α١!× α٢!× · · · × αd!,

αi < βi باشیم، داشته ١ ≤ i ≤ d هر برای α،اگر < β گوییم، ، β و α اندیسه های چند برای و
نشان Dαf نماد f هموار کافی به اندازه  تابع برای می شود). تعریف شکل همین به ،≤ (رابطه

می شود، تعریف زیر به صورت که است f جزئی مشتقات دهنده
Dαf =

∂|α|f

∂x
α١١ · · · ∂xαd

d

.

فضای یک نمی توانند متغیره، چند چند جمله ا ی ها ی فضای مایرهوبر‐کورتیس قضیه بنابر
بنابر این دارد. وجود امکان این یک متغیره چند جمله ای های در حالی  که در دهند تشکیل هار
با m = dimPq(Rd) که X = {x١ ,x٢ , · · · , xm} نقاط از دلخواه مجموعه هر روی درونیابی
نقش چند جمله ا ی درونیابی وجود این با نیست. پذیر امکان P(Rd) فضای چند جمله ای ها ی
برای که کنیم نقاط از مجموعه ا ی به محدود را خود چه اگر می کند، بازی بالاتر ابعاد در مهمی

باشد. امکان پذیر درونیابی آن ها
:[١٠] .١ .۴ .١ قضیه

خطی اند. مستقل α ∈ Nd٠ و x ∈ Rd که xα تک جمله ای های .١
dimPq(Rd) =

(
d+q
d

) .٢
Pq(Rd)‐یکتا را ،n ≥ dimPq(Rd) با X = {x١,x٢, · · · ,xn} ⊂ Rd مجموعه .١ .۴ .١ تعریف
xjها تمام روی که باشد Pq(Rd) چندجمله ا ی تنها صفر، چندجمله ا ی اگر گوییم، ١ حل کننده

است. صفر
1Unisolvent



١۵ کوچک اُوی و بزرگ اُوی نمادهای
، x٢ = (−١,٣) ، x١ = (١,٢) نقاط شامل R٢ مجموعه زیر X کنید فرض .١ .۴ .١ مثال
تابع چون نیست. حل کننده یکتا ‐P١(R٢) مجموعه یک X اینصورت در باشد. x٣ = (۵, ٠)
مجموعه نقاط تمام در آن مقدار که دارد وجود P١(R٢) فضای از f(x, y) = x+٢y−۵ صفر، غیر

باشد. می صفر ، X
نامساوی x ∈ Rd هر برای هرگاه می شود، نامیده معین مثبت A متقارن ماتریس .٢ .۴ .١ تعریف
xTAx ≥ نامساوی x ∈ Rd برای هرگاه می شود نامیده نیمه معین مثبت و باشد بر قرار xTAx > ٠

باشد. بر قرار ٠
می باشد. مثبت معین ماتریس یک مثبت، قطری درایه های با قطری ماتریس هر .٢ .۴ .١ مثال
هم مرتبه B ماتریس یک اگر گوییم، (غیرتکین) ١ غیرمنفرد را A مربعی ماتریس .٣ .۴ .١ تعریف
اگر فقط و اگر است غیرتکین A مربعی ماتریس .AB = BA = I به طوریکه، باشد موجود آن با

.detA ̸= ٠

کوچک اُوی و بزرگ اُوی نمادهای ۵ .١
می شود. استفاده مشخص مقدار یک به تابع دو کردن میل سرعت مقایسه برای نمادها این از
این در گوییم شده اند. تعریف x٠ نقطه همسایگی در g و f مقدار حقیقی توابع کنیم فرض

نویسیم، می و است g بزرگ اُوی از f همسایگی
f(x) = O(g(x)), (x→ x٠),

باشیم، داشته x ∈ I هر برای بطوریکه باشد داشته وجود C ثابت یک اگر
|f(x)| ≤ C|g(x)|. (١. ٧)

همسایگی در f(x) گوییم می طرفی از مرتبه اند. هم x٠ همسایگی در g و f گوییم اینصورت در
نویسیم، می و است g(x) کوچک اُوی از I

f(x) = o(g(x)), (x→ x٠),

باشیم، داشته حد وجود صورت در اگر
lim
x→x٠

f(x)

g(x)
= ٠.

می کنند میل نظر مورد مقدار به تقریباً سرعت با g و f که معناست این به f = O(g) واقع در
g همگرایی سرعت از بیشتر بسیار صفر، به f همگرایی سرعت که معناست این به f = o(g) و

. [١] است صفر به
1Nonsigular



اولیه مفاهیم و تعاریف ١۶
قرار n هر ازای به باشد. p به همگرا اعداد از دنباله ای {pn} که کنید فرض .١ .۵ .١ تعریف

می دهیم،
en = pn − p,

طوریکه، به باشند موجود λ و α مثبت اعداد اگر
lim

x→x∞

|en+١|
|en|

= λ.

مجانبی خطای ثابت مقدار را λ و می باشد α مرتبه از p عدد به همگرا {pn} دنباله  گوییم
می گوییم.



٢ فصل
شبکه بدون روش های با تقریب

مقدمه ٢. ١
درونیابی روش های دارند. وجود متغیره چند توابع تقریب و درونیابی برای متفاوتی روش های
روی درونیابی تانسوری، ضرب فضای در تقریب دو بعدی)، حالت مستطیلی(در ناحیه روی
یکی می باشند. روش ها این جمله از اسپلاین توابع توسط تقریب و دو بعدی) حالت مثلث(در
است این مکعبی) یا مستطیلی لزوما کلی(نه نواحی روی متغیره چند توابع تقریب ازروش های
یا هرم ها مستطیل ها، مثلث ها، مانند ناحیه های  منظم زیر از اجتماعی با را تقریب ناحیه که
در و به دست آوریم را زیرناحیه  ها این روی موضعی تقریب  های سپس بزنیم، تقریب مکعب ها
عناصر روش همان این که بسازیم ناحیه کل روی معین همواری درجه از سراسری تقریب آخر
دارند وجود نیز دیگری روش های می شود. انجام ناحیه شبکه بندی کمک به که است متناهی

می شوند. نامیده بدون شبکه روش که
هوش بهینه سازی، مهندسی، در بلکه است توجه مورد ریاضیات در نه  تنها بدون شبکه روش های
مورد عصبی شبکه های و سیگنال  پردازش تصاویر، پردازش کامپیوتری، گرافیک مصنوعی،
استفاده متناهی عناصر مفهوم به ناحیه شبکه بندی از روش ها این در می گیرند. قرار استفاده
ناحیه درون مناسب به صورت که نقاط از مجموعه ای اساس بر تقریب آن، بجای و نمی شود
را روش دو در تقریب چگونگی تفاوت ٢. ٢ و ٢. ١ شکل های می شوند. نوشته شده اند پراکنده

می دهد. نشان



شبکه بدون روش های با تقریب ١٨

R مثلثی سازی و R چندضلعی با Ω تقریب :٢. ١ شکل

شبکه بدون تقریب های در استفاده مورد پراکنده ی نقاط از کلی تصویری :٢. ٢ شکل

می زنند. تقریب پراکنده نقاط در تابع مقادیر بر حسب را مفروض تابع بدون شبکه، روش های
باید گاهی مایرهوبر‐کورتیس قضیه به توجه با اما باشد، دلخواه می تواند نقاط این توزیع

شود. یکتا تقریب که باشد حاکم نقاط روی شرایطی
هندسی شکل به که است این متناهی عناصر روش های به نسبت بدون شبکه روش های برتری
به تقریب دارند.برای بالاتر ابعاد به هزینه تری کم و ساده تر تعمیم و نیستند وابسته دامنه
دیفرانسیل، معادلات حل برای که است آمده به وجود متنوعی روش های بدون شبکه، روش
به می توان آنها بین از که است رفته به کار انتگرو‐دیفرانسیل معادلات و انتگرال معادلات
طیفی، شبه شعاعی پایه توابع ،روش ١RBF اختصار به شعاعی، پایه توابع روش مانند مواردی
کمترین روش و ٣ MLPG اختصار به و پترو‐گالرکین موضعی بدون شبکه روش ، ٢RBF-PS یا
مربعات کمترین روش و متحرک مربعات کمترین روش دو ادامه در کرد. اشاره متحرک مربعات

1Radial Basis Functions
2RBF-Pseudo Spectral
3Meshless Local Petrov-Galerkin



١٩ متحرک مربعات کمترین تقریب روش
می شوند. معرفی اختصار به درونیاب متحرک

متحرک مربعات کمترین تقریب روش ٢. ٢
١٩٨١ سال در بار اولین برای ١MLS اختصار به و متحرک مربعات کمترین تقریب روش
رویه های برای ، [١١] ١٩۶٨ سال شپارد۴در مقاله از الهام با لنکستر٣و سالکائوسکاس٢و توسط
معادلات و دیفرانسیل معادلات حل برای گسترده به طور آن از پس ، [١٢] شد معرفی چندبعدی

گرفت. قرار استفاده مورد انتگرال
می شود. بنا مساله، دامنه روی پراکنده نقاط از دسته ای روی متحرک مربعات کمترین روش
را X = {x١,x٢, ...,xN} ⊂ Ω مانند پراکنده نقاط از مجموعه ای باشد. Ω ⊂ Rd کنیم فرض
شوند. پراکنده مساله، دامنه در تصادفی یا منظم به طور می توانند نقاط این می گیریم، در نظر
گسسته مربعات کمترین مساله یک ، x ∈ Ω نقطه هر در u تابع مقدار تقریب برای MLS روش

است. دو نرم در تقریبات بهترین مساله همان که می کند حل را موضعی وزن دار
نقطه ای به وابسته وزن این که می گیریم در نظر wj وزن گره، نقطه هر برای MLS روش در
مرتبط وزن ، xj ∈ Ω برای مثال، برای بزنیم. تقریب آن در را تابع مقدار می خواهیم که است

متحرک). وزن همان دهیم(یعنی می نمایش wj(x) به صورت را x نقطه در xj گره با
در را u(x) می خواهیم باشد. شده داده xj نقاط در u تابع مقادیر {uj}Nj=١ می کنیم فرض حال

.(q ≪ N) بزنیم تقریب (Pq(Rd)) q درجه از حداکثر چند جمله ای های فضای
می گیریم. در نظر Pq(Rd) فضای برای پایه ای به عنوان را P = {p١(x), p٢(x), ..., pm(x)} مجموعه
نشان uh(x) نماد با ، x ∈ Ω دلخواه نقطه هر در را u متحرک مربعات کمترین روش به تقریب

می گیریم، در نظر ٢. ١ رابطه به صورت را u تابع از uh(x) ∈ Pq(Rd) تقریب و می دهیم
uh (x) :=

m∑
k=١

ak(x)pk(x), (٢. ١)

می شود، بیان (٢. ٢) به صورت x ∈ Ω هر برای (٢. ١) رابطه ماتریسی شکل
uh(x) = PT (x)a(x), (٢. ٢)

می شود، داده نمایش زیر به صورت و بوده ضرایب بردار a(x) آن، در که
a (x) = [a١(x) a٢(x) · · · am(x)]T ,

باشد، می زیر شکل به پایه بردار ، PT (x) و
PT (x) = [p١(x) p٢(x) · · · pm(x)] ,

1Moving Least Square
2Salkauskas
3Lancaster
4Shepard



شبکه بدون روش های با تقریب ٢٠
نرم به نسبت u(x) تابع تقریب بهترین uh(x) که می کنیم پیدا طوری را a(x) ضرایب بردار
را aj(x) ضرایب است کافی منظور این به باشد. Pq(Rd) اعضای بین از وزن دار گسسته مربعی

شود. کمینه است، شده تعریف (٢. ٣) به شکل که J(x) تابع آن ازای به که بیابیم طوری

J(x) =
n∑

j=١
wj(x)

(
PT (xj)a(x)− uj

)٢
, (٢. ٣)

.wj(x) > ٠ که به طوری است Ω در گره هایی تعداد n و jام گره با مرتبط وزن wj(x) آن در که
نوشت. (۴ .٢) ماتریسی شکل به می توان را (٢. ٣) رابطه

J(x) = [Pa(x)−U]T W [Pa(x)−U] , (۴ .٢)
آن، در که

P =


PT (x١)
PT (x٢)...
PT (xn)


n×m

, W =


w١(x) ٠ · · · ٠

٠ w٢(x) · · · ٠
... ... ... ...
٠ ٠ · · · wn(x)


n×n

, U =


u١
u٢...
un

 ,

که معنا این به ، ∇aJ = ٠ باید شود کمینه J(x) آن ازای به که a(x) ضرایب تعیین برای
P TW (Pa(x)−U) = ٠,

می گردد. (۵ .٢) رابطه به منجر
P TWPa(x) = P TWU, (۵ .٢)

فرض با
A(x) := P TWP =

n∑
j=١

wj(x)P(xj)P
T (xj),

B(x) := P TW =
[
w١(x)P(x١) w٢(x)P(x٢) · · · wn(x)P(xn)

]
,

نامیده لحظه ماتریس Am×m ماتریس آن در که می شود نوشته (۶ .٢) به صورت (۵ .٢) رابطه  
می شود.

A(x)a(x) = B(x)U, (۶ .٢)
ماتریس معادل طور به یا باشد نامنفرد A ماتریس که است تعریف خوش زمانی MLS تقریب

داریم، (۶ .٢) رابطه بنابر باشد. m مرتبه از ستونی کامل رتبه دارای P
a(x) = A−١(x)B(x)U, (٢. ٧)



٢١ متحرک مربعات کمترین تقریب روش
داریم، x ∈ Ω هر برای (٢. ٢) در (٢. ٧) جایگذاری با

uh(x) = ΦT (x)U =

n∑
j=١

ϕj(x)uj , (٢. ٨)

آن، در که
ΦT (x) = PT (x)A−١(x)B(x), (٢. ٩)

هر ΦT (x) تعریف و (٢. ٩) به توجه با .ΦT (x) = [ϕ١(x) ϕ٢(x) · · · ϕn(x)] آن، در که
است. نمایش قابل (٢. ١٠) به صورت ΦT (x) عنصر

ϕj(x) =
m∑
k=١

pk(x)
[
A−١(x)B(x)

]
kj
, (٢. ١٠)

می شوند. نامیده xj گره با متناظر MLS تقریب ساختار١ توابع ها، ϕj(x) که
باشیم، داشته k = ١,٢, · · · ,m برای و wj(x) ∈ Cr(Ω) باشیم، داشته j = ١,٢, · · · , n برای اگر
ساختار توابع جزئی مشتق .[١٣] ϕj(x) ∈ Cmin(r,s) که، کرد ثابت می توان آنگاه pk(x) ∈ Cs(Ω)

.[١۴] می آید به دست زیر به صورت ϕj(x)
ϕj,k(x) =

m∑
i=١

[
pi,k

(
A−١(x)B(x)

)
ij
+ pi

(
A−١

,k (x)B(x) +A−١(x)B,k(x)
)
ij

]
, (٢. ١١)

به دست زیر به صورت که می باشد xk به نسبت A معکوس مشتق A−١
,k =

(
A−١)

,k
آن، در که

می آید.
A−١

,k = −A−١A,kA
−١, (٢. ١٢)

است. ∂( )
∂xk

بیانگر، (( ),k

) کاما، نماد که
گاوس٢می باشد وزنی تابع می گیرد، قرار استفاده مورد MLS تقریب در که وزنی توابع از نوع یک

می شود، تعریف زیر به شکل که

wj(x) =



exp

(
−
(
dj
α

)٢)
− exp

(
−
(
hj
α

)٢)

١ − exp

(
−
(
hj
α

)٢) , ٠ ≤ dj ≤ hj ,

٠, dj > hj ,

(٢. ١٣)

کنترل ثابت که است آزاد پارامتر یک α ، (xj و x بین اقلیدسی (فاصله dj = ∥x−xj∥ آن، در که
در تابع این می باشد. xj گره با متناظر پشتیبان٣ دامنه اندازه hj و بوده wj وزن تابع ساختار

است. C٠ رده ی
1Shape Functions
2Gaussian Weight Function
3Support Domain



شبکه بدون روش های با تقریب ٢٢

وزن تابع انتخاب ٢. ٢. ١
هموار به ، uh(x) همواری آن تبع به و می باشند MLS ساختار توابع که ها ϕj(x) بودن هموار
تقریب در را مهمی نقش وزن توابع بنابر این هستند. وابسته وزن تابع و پایه توابع بودن
از چه هر که می کنیم انتخاب طوری را وزن تابع رو این از دارند. متحرک مربعات کمترین
یک از که نقاطی وزن و شوند کمتر و کمتر نقاط وزن ، شویم دورتر تقریب) (نقطه x نقطه
این به نشوند. گرفته بکار x نقطه در تابع تقریب برای و شود صفر دورترند، معین فاصله
نقاط مجموعه X = {x١,x٢, · · · ,xN } ⊂ Ω̄ و Rd در کراندار باز ناحیه Ω می کنیم فرض منظور،
می گیریم در نظر ، xj مرکز به Λj گوی ، xj پراکنده نقاط از یک هر برای حال باشد. پراکنده ای

که، به طوری
Ω̄ ⊂

N⋃
j=١

Λj ,

یک IN := {Λj}Nj=١ این صورت در می کنیم. تعریف hj = max
x∈∂Λj

{∥x− xj∥} با را Λj شعاع و
می شود. نامیده Ω̄ از متناهی باز پوشش

IN باز پوشش برای واحد١ توابع از افراز یک W := {wj}Nj=١ توابع از رده ای .٢. ٢. ١ تعریف
باشد، زیر خواص دارای هرگاه می شود، نامیده
wj ∈ Cs٠(Rd), s > ٠ or s = ∞ .١

supp(wj) ⊆ Λ̄j .٢
wj(x) > ٠, ∀x ∈ Λj .٣

.
∑N

j=١wj(x) = ١, ∀x ∈ Ω̄ .۴

معمول روش یک دارد، وجود گوناگونی روش های واحد، توابع از افراز یک ساخت برای
ϕ : [٠,+∞) −→ R یک   متغیره، تابع برای یعنی می باشد ٢ پایا ‐ انتقال وزن ازتابع استفاده

داد، قرار می توان
w (xj ,x) = ϕ(r), r =

∥x− xj∥٢
δ

,

صفر آن خارج و مثبت [٠, ١] بازه روی که است پیوسته ای نزولی تابع ϕ و مقیاس پارامتر δ که
w(xj ,x) مقدار باشد δ از بیشتر xj از آنها اقلیدسی فاصله که x نقاط برای بنابر این می باشد.
I(x) = {j : ∥x− xj∥٢ ≤ δ} های اندیس فقط ، x نقطه هر برای رو این از است. صفر برابر

هستند. فعال ، x در تابع تقریب برای
1Partition Of Unity Subordinated
2Translation-Invariant Weight Function



٢٣ متحرک مربعات کمترین تقریب روش
(٢. ١٣) گاوسی وزن توابع می گیرند، قرار استفاده مورد MLS تقریب در که وزنی توابع جمله از

می شوند[١۵]. داده نمایش (١۴ .٢) صورت به که می باشند اسپلاینی توابع و

wj(x) =


١ − ۶

(
dj
δ

)٢
+ ٨

(
dj
δ

)٣
− ٣

(
dj
δ

)۴
, ٠ ≤ dj ≤ δ,

٠, dj > δ.

(١۴ .٢)

از رساله این در شده ارائه عددی برنامه های در هستند. C٢ همواری رده ی در توابع این که
شده است. استفاده گاوسی وزن تابع

و باشد حل کننده Pq(Rd)‐یکتا مجموعه یک X = {x١,x٢, · · · ,xn} اگر .٢. ٢. ١ لم
{p١(x), p٢(x), · · · , pm(x)} ,

ماتریس آنگاه باشد Pq(Rd) برای پایه ای

P =


p١(x١) p٢(x١) · · · pm(x١)
p١(x٢) p٢(x٢) · · · pm(x٢)... ... ... ...
p١(xn) p٢(xn) · · · pm(xn)

 .

. [١] است کامل١ رتبه از
از غیر عضوی هیچ پس است حل کننده یکتا ‐ Pq(Rd)، X = {x١,x٢, · · · ,xn} چون برهان.
که می کنیم فرض حال شود. صفر X نقاط تمام در که ندارد وجود Pq(Rd) از صفر   چندجمله ای
نوشت بقیه از خطی ترکیب به صورت رامی توان Pj مانند ستون یک پس نباشد کامل رتبه از P

که دارند وجود گونه ای به R متعلق α١, α٢, · · · , αm مقادیر یعنی
α١P١ + · · ·+ αj−١Pj−١ + αj+١Pj+١ + · · ·+ αmPm = Pj ,

می باشد. کامل رتبه P نتیجه در دارد تناقض {p١(x), p٢(x), · · · , pm(x)} بودن پایه با که
MLS روش بودن تعریف خوش شرط متحرک، مربعات کمترین تقریب روند به توجه با

باشد. پذیر معکوس A(x) یعنی لحظه ماتریس که است این
مجموعه که است این A(x) معکوس پذیری برای کافی و لازم شرط :[١٠] .٢. ٢. ١ قضیه

باشد. حل کننده یکتا ‐ Pq(Rd) {xj ∈ X : j ∈ I(x)}

نشان باشد. حل کننده یکتا ‐Pq(Rd) ، {xj ∈ X : j ∈ I(x)} مجموعه کنیم فرض برهان.
متحرک، مربعات کمترین روش در W ماتریس به توجه با است. مثبت معین A(x) که می دهیم

1Full Rank



شبکه بدون روش های با تقریب ٢۴
اصلی قطر روی عناصر برای پس هستند مثبت اکیدا اصلی قطر روی وزن توابع که می دانیم

داریم، x ∈ Rd هر برای هستند، wj(x) صورت به که
xTA(x)x = xT

(
P TWP

)
x =

(
xTP T

√
W
)(√

WPx
)
,

=
(√

WPx
)T (√

WPx
)
= ∥

√
WPx∥٢ ≥ ٠,

این، بنابر است مثبت اکیدا W طرفی از می باشد، مثبت معین نیمه A(x) اینجا تا پس
xT
(
P TWP

)
x = ٠, ⇒ ∥

√
WPx∥٢ = ٠, ⇒ Px = ٠, (١۵ .٢)

هستند، خطی مستقل P ماتریس ستون های حل کنندگی، یکتا شرط به توجه با نتیجه در
است مثبت معین A(x) ماتریس پس دارد، x = ٠ جواب فقط (١۵ .٢) همگن دستگاه بنابر این
رتبه از P پس است نامنفرد W چون باشد منفرد A(x) اگر برعکس، است. نامنفرد نتیجه در و

دارد. تناقض حل کنندگی یکتا شرط با این و نیست کامل

است لازم باشد حل کننده یکتا ‐ Pq(Rd) مجموعه یک {xj ∈ X : j ∈ I(x)} اینکه برای
کافی و است لازم شرط یک تنها این اما .( Pq(Rd) بعد اندازه باشد(به نقطه m شامل حداقل
محمل در لازم نقطه تعداد این که کرد اختیار بزرگ آنقدر را δ باید x هر برای بنابر این نیست.
گرفته در نظر نقاط فاصله ماکزیمم از ضریبی δ معمولا خاطر همین به گیرد. قرار وزن تابع
درون طوری را آن بتوان که باشد گوی ای بزرگترین شعاع h = hX,Ω کنیم فرض می شود.

می کنیم، تعریف ریاضی به طور نباشد. xj نقطه هیچ شامل که داد قرار ناحیه
h = hX,Ω := max

x∈Ω
min١≤j≤N

∥x− xj∥٢,

را c وضریب δ = ch می دهیم قرار معمولا صورت این در می گوییم. X تراکم١ اندازه را آن و
گیرد. وزن)قرار (تابع ω محمل در نقطه m حداقل که می کنیم تعیین طوری

نماد با را انفصال٢ فاصله ،X = {x١,x٢, · · · ,xN} پراکنده نقاط مجموعه برای .٢. ٢. ٢ تعریف
می کنیم. تعریف زیر به صورت و داده نشان qX

qX :=
١
٢min

i ̸=j
∥xi − xj∥٢,

اگر، می نامیم c ثابت به نسبت شبه‐یکنواخت٣ Xرا مجموعه همچنین
qX ≤ hX,Ω ≤ cqX .

1Fill Distance
2Sepration Distance
3Quasi-Uniform



٢۵ متحرک مربعات کمترین تقریب روش
از دور Ω کلی ناحیه ی یک برای حل کنندگی یکتا شرط آوردن به دست نظری، بحث در
می کنند، صدق داخلی مخروط شرط در که ناحیه هایی به را خود باید این رو از است، دسترس

کرد. محدود
زاویه اگر می شود، نامیده داخلی١ مخروط شرایط دارای Ω ⊆ Rd مجموعه .٢. ٢. ٣ تعریف
باشد موجود ξ(x) واحد بردار ، x ∈ Ω هر برای که شود یافت r > ٠ شعاع و θ ∈

(٠, π٢
)

مخروط، به  طوریکه
C (x, ξ(x), θ, r) =

{
x+ λy : y ∈ Rd, ∥y∥٢ = ١,yT ξ(x) ≥ cos(θ), λ ∈ [٠, r]} ,

باشد. شده محاط Ω در
روی حل کنندگی یکتا به و آورده به دست مخروط روی را حل کنندگی یکتا شرط حقیقت در
نقطه  هر و مرکز بین واصل خط که می شود استفاده خاصیت این از بین این در می رسیم. Ω

به را متغیره چند چندجمله ای های سپس دارد. قرار آن درون کاملا́ مخروط، درون دیگر
یکتا شرط مارکوف نامساوی کمک به و داده کاهش خط این روی متغیره یک چندجمله ای

می کنیم. بررسی را حل کنندگی
به همچنین و xj نقاط پراکندگی کیفیت به MLS تقریب همگرایی مرتبه .٢. ٢. ١ ملاحظه
یکنواخت X نقاط ندارد لزومی چه اگر دارد. بستگی q یعنی ، پایه چندجمله ای های درجه

داریم. را زیر همگرایی قضیه حال باشند. شبه‐یکنواخت حداقل است بهتر اما باشند،
θ زاویه با داخلی مخروط شرایط با فشرده مجموعه ای Ω ⊆ Rd کنید فرض .٢. ٢. ٢ قضیه
مجموعه یک X و ⋃

x∈Ω
B
(
x,٢τh٠

) بستار Ω∗ که می کنیم فرض همچنین باشد. r شعاع و
آن، در که باشد hX,Ω ≤ h٠ تراکم اندازه با شبه‐یکنواخت

h٠ =
r

τ
, τ =

١۶(١ + sin θ)٢q٢
٣ sin٢ θ ,

داریم، u ∈ Cq+١(Ω∗) هر برای به طوریکه دارد وجود c ≥ ٠ ثابت −u∥∥∥آنگاه uh
∥∥∥
L∞(Ω)

≤ chq+١
X,Ωmax

x∈Ω∗
∥Dαu(x)∥L∞(Ω∗) , |α| = q + ١,

.[١٠] بود خواهد O
(
hq+١) همگرایی مرتبه باشد هموار کافی اندازه به u اگر یعنی

که شود حل جداگانه دستگاه یک باید x نقطه هر در u تقریب برای که می کنیم یادآوری
است. برابر Pq(Rd) پایه اعضای تعداد با که m برابر A(x) ماتریس بعد اما است، هزینه پر کاری
بعد یعنی می کند. استفاده را پایین درجه از چند جمله ای های از پایه یک MLS تقریب معمولا
روش (مانند بزرگ معادلات دستگاه یک حل بجای MLS وتقریب است کوچک A ماتریس
محاسباتی لحاظ از که می کند حل کوچک بعد با معادلات دستگاه چندین شعاعی)، پایه توابع

است. کاراتر
1Interior Cone Condition



شبکه بدون روش های با تقریب ٢۶
برای {xβ

}
٠≤β≤q

پایه معمولا، متحرک مربعات کمترین روش به تقریب در .٢. ٢. ٢ ملاحظه
استفاده

{
(x− y)β

h|β|

}
٠≤β≤q

, شده مقیاس و یافته انتقال پایه از اگر اما شود. می استفاده Pq(Rd)

تشکیل در پایه این که است ذکر به لازم می شود. پایدار تر چشمگیری به طور MLS تقریب شود،
پذیرد، صورت تقریب آن در است قرار که نقطه ای و x بجای xj این بنابر می رود. کار P ماتریس
و A(x) ماتریس وضعیت ضریب در پایه نوع این انتخاب تاثیر [١۶] در می گیرد. قرار ،y بجای

است. شده بررسی کامل جزئیات با الگوریتم پایداری

درونیاب متحرک مربعات کمترین تقریب روش ٢. ٣
توابع .[١٢] شد ارائه سالکائوسکاس و لنکستر توسط درونیاب متحرک مربعات کمترین روش
در متحرک مربعات کمترین روش خلاف بر درونیاب متحرک مربعات کمترین روش شکل
مرزی شرایط می توان ویژگی این از استفاده با بنابراین می کنند، صدق کرونکر دلتای خاصیت
اعمال مستقیم به صورت انتگرو‐دیفرانسیل معادلات یا دیفرانسیل معادلات حل در را اساسی

کرد.
تعداد N که باشد Ω ⊂ Rn کراندار دامنه در نقاط از مجموعه ای X = {x١,x٢, . . . ,xN} فرض
دامنه دهند. می نشان را اقلیدسی نرم ∥·∥ و ،xI نقطه تاثیر دامنه شعاع ρI پارامتر است. نقاط

می شود. تعریف ΩI = {x : ∥x− xI∥ ≤ ρI , x ∈ Ω} به شکل xI نقطه تاثیر
τx = اندیس مجموعه ، x ∈ Ω شده داده نقطه برای باشد. ρ = maxxI∈X {ρI} کنید فرض

می کنیم. تعریف را {I| ∥x− xI∥ ≤ ρI ,x ∈ X}

می داده نمایش uh(x) نماد با u(x) تقریب تابع باشد. Ω در میدان متغیر از تابعی u(x) فرض
خاصیت در درونیاب متحرک مربعات کمترین روش در uh(x) تقریب اینکه منظور به شود.

می کنیم، تعریف زیر به شکل را منفردی وزن تابع کند. صدق درونیابی

w(x,xI) = w(x− xI) =


∥x−xI

ρI
∥−α, ∥x− xI∥ ≤ ρI ,

٠, ,سایر
(١۶ .٢)

است. زوج صحیح عدد یک α پارامتر که
به صورت، را داخلی ضرب

⟨f, g⟩x =
∑
I∈τx

w(x,xI)f(xI)g(xI), ∀f, g ∈ C٠(Ω), (٢. ١٧)

است، زیر به شکل نیز x در متناظر نرم می کند. مشخص را Ω در نقطه یک x که می کنیم تعریف

∥f∥x =

[∑
I∈τx

w(x,xI)f
٢(xI)

] ١٢
. (٢. ١٨)



٢٧ درونیاب متحرک مربعات کمترین تقریب روش
مشخص را پایه ای توابع تعداد m̄+١ که باشند پایه ای توابع p٠(x) ≡ ١, p١(x), . . . , pm̄(x) فرض
نرمال را p٠(x) ابتدا می سازیم. پایه ای توابع این از استفاده با را جدیدی پایه ای توابع می کند.

می کنیم، فرض و می کنیم
p̃٠(x; x̄) = ١[∑

I∈τx w(x,xI)
] ١٢
. (٢. ١٩)

می سازیم، زیر به صورت p̃٠(x; x̄) بر عمود را جدید پایه ای توابع پس
p̃i(x; x̄) = pi(x̄)− Spi(x), i = ١,٢, . . . , m̄. (٢. ٢٠)

می شود، تعریف زیر به صورت که است خطی اپراتور یک Spi که
Spi(x) =

∑
I∈τx

v(x,xI)pi(xI), (٢. ٢١)
و

v(x,xI) =
w(x,xI)∑

J∈τx w(x,xJ)
. (٢. ٢٢)

.[١٢] است. زیر خاصیت های دارای v(x,xI) تابع
و v(x,xI) ∈ C∞(Ω̄), آنگاه شود، استفاده (١۶ .٢) وزن تابع اگر .٢. ٣. ١ لم

v(xI ,xJ) = δIJ , ∀I, J ∈ τx, .١
∑

I∈τx v(x,xI) = ١, ∀x ∈ Ω, .٢
∀x ∈ Ω, ٠ ≤ v(x,xI) ≤ ١, و v(x,xI) = ٠ اگر فقط و اگر x = xJ , J ̸= I, .٣

∂v(xI ,xJ )
∂x = ٠, ∀I, J ∈ τx. .۴

و لنکستر کند، صدق درونیابی خاصیت در که uh(x) تقریب تابع فرم آوردن بدست برای
کردند، تعریف زیر به صورت را محلی تقریب [١٢] سالکائوسکاس

uh(x, x̄) = p̃٠(x; x̄)a٠(x) +
m̄∑
i=١

p̃i(x; x̄)ai(x), (٢. ٢٣)

پایه ای توابع مجهول ضرایب ،ai(x), i = ١,٢, . . . , m̄ و است x تاثیر دامنه در نقطه یک x̄ که
روش با u(x̄) وتابع uh(x, x̄) محلی تقریب تابع بین تفاضل شده، داده x یک برای هستند.
زیر به صورت را وزنی گسسته L٢ نرم منظور به این می شود. کمینه سازی وزنی مربعات کمترین

می کنیم، تعریف
J(x) =

∑
I∈τx

w(x,xI)
[
uh(x,xI)− uI

]٢
, (٢۴ .٢)



شبکه بدون روش های با تقریب ٢٨
I ∈ τx هر برای xI و شده داده نمایش (١۶ .٢) در که است فشرده محمل با وزنی تابع ،w(x,xI)

L٢ نرم کمینه سازی با می باشد. uI = u(xI) و دارد قرار آنها تاثیر دامنه در x که هستند نقاطی
داریم، (٢۴ .٢) در شده داده نمایش وزنی گسسته

⟨u(·)− uh(x, ·), p̃٠⟩x = ٠, (٢۵ .٢)
⟨u(·)− uh(x, ·), p̃i⟩x = ٠, i = ١,٢, . . . , m̄. (٢۶ .٢)

نوشت، زیر به صورت می توان را (٢۶ .٢) و (٢۵ .٢) تعامد، دلیل به
a٠(x) = ⟨u, p̃٠⟩x, (٢. ٢٧)

a٠(x)⟨p̃٠, p̃j⟩x +

m̄∑
i=١

ai(x)⟨p̃i, p̃j⟩x = ⟨u, p̃j⟩x, j = ١,٢, . . . , m̄. (٢. ٢٨)

داریم، داخلی، ضرب تعریف و (٢. ١٩) به توجه با
p̃٠(x; x̄)a٠(x) = ١[∑

I∈τx w(x,xI)
] ١٢

⟨u, p̃٠⟩x =
∑
I∈τx

v(x,xI)uI = Su. (٢. ٢٩)

می شود، نوشته زیر به شکل (٢. ٢٨) بنابراین

m̄∑
i=١

ai(x)⟨p̃i, p̃j⟩x = ⟨u− Su, p̃j⟩x, j = ١,٢, . . . , m̄. (٢. ٣٠)

کرد. ساده می توان را (٢. ٣٠) زیر، لم به توجه با
داریم، x ∈ Ω هر برای شود، استفاده (١۶ .٢) وزن تابع اگر .٢. ٣. ٢ لم

⟨Su, p̃i⟩x = ٠, i = ١,٢, . . . , m̄. (٢. ٣١)
کنید. رجوع [١٧] به اثبات مشاهده  برای برهان.

کرد، ساده زیر به شکل می توان را (٢. ٣٠) ،(٢. ٣. ٢) لم به توجه با
m̄∑
i=١

ai(x)⟨p̃i, p̃j⟩x = ⟨u, p̃j⟩x, j = ١,٢, . . . , m̄. (٢. ٣٢)

نوشت، زیر به شکل می توان را (٢. ٣٢)
A(x)a(x) = Fw(x)u, (٢. ٣٣)

که
aT (x) = (a١(x), a٢(x) . . . , am̄(x)), (٣۴ .٢)



٢٩ درونیاب متحرک مربعات کمترین تقریب روش
uT = (u١, u٢, . . . , uN ), (٣۵ .٢)

A(x) = Fw(x)F
T (x), (٣۶ .٢)

F(x) =


p̃١(x;x١) p̃١(x;x٢) . . . p̃١(x;xN )

p̃٢(x;x١) p̃٢(x;x٢) . . . p̃٢(x;xN )

... ... ... ...
p̃m̄(x;x١) p̃m̄(x;x٢) . . . p̃m̄(x;xN )

 , (٢. ٣٧)

و است m̄×N ماتریس یک Fw(x) = ω̄kJ(x)m̄×N و

ω̄kJ(x) =



w(x,xJ)p̃k(x;xJ), x ̸= xJ ,

∑
I∈τx,I ̸=J

w(xJ ,xI) [pk(xJ)− pk(xI)] , x = xJ .

(٢. ٣٨)

کنیم، محاسبه زیر به شکل را مجهول ضرایب می توانیم پس
a(x) = A−١(x)Fw(x)u. (٢. ٣٩)
آورد، بدست زیر به شکل می توان را محلی تقریب تابع آنگاه

uh(x, x̄) = Su+

m̄∑
i=١

ai(x)p̃i(x; x̄). (۴٢. ٠)

می آید، بدست زیر به صورت u(x) تابع سراسری درونیاب تقریب تابع بنابراین

uh(x) = Su+
m̄∑
i=١

ai(x)gi(x) ≡ Φ(x)u =
N∑
I=١

ϕI(x)u(xI), (۴٢. ١)

است. شکل توابع از ماتریسی Φ(x) که
Φ(x) = (ϕ١(x), ϕ٢(x), . . . , ϕN (x)) = vT + pT (x)A−١(x)Fw(x), (۴٢. ٢)

آن در که
vT = (v(x,x١), v(x,x٢), . . . , v(x,xN )), (۴٢. ٣)

pT (x) = (g١(x), g٢(x), . . . , gm̄(x)), (۴۴ .٢)

gi(x) = pi(x)− Spi(x). (۴۵ .٢)



شبکه بدون روش های با تقریب ٣٠
زیر به شکل درونیاب متحرک مربعات کمترین روش شکل توابع اول مرتبه جزئی مشتق آنگاه

هستند، محاسبه قابل
ϕ,i(x) = vT

,i +pT
,i (x)A

−١(x)Fw(x)+pT (x)A−١(x)Fw,i(x)+pT (x)A−١
,i (x)Fw(x), (۴۶ .٢)

که
Fw,i(x) = ω̄kJ,i(x)m̄×N , (۴٢. ٧)

ω̄kJ,i(x) =


w,i(x,xJ)p̃k(x;xJ) + w(x,xJ)p̃k,i(x;xJ)(x), x ̸= xJ ,∑
I∈τx,I ̸=J

w,i (x,xI) [pk (xJ)− pk (xI)] , x = xJ ,
(۴٢. ٨)

A−١
,i (x) = −A−١(x)A,i(x)A

−١(x). (۴٢. ٩)
مربعات کمترین روش در آن مشتق و تقریب تابع سپس و آنها مشتق و شکل توابع بنابراین

می شوند. محاسبه بالا به شکل درونیاب متحرک
m̄× m̄ مرتبه  از ماتریس یک A(x) ماتریس درونیاب، متحرک مربعات کمترین روش در
A(x) ماتریس رتبه  اگر دارد یکتا جواب (٢. ٣٣) رابطه  می کند. ایفا را مهمی نقش که می باشد

باشد. m̄ برابر
x ∈ Ω هر برای می کنیم فرض درونیاب، متحرک مربعات کمترین روش بکارگیری در این بنابر
Pq(Rd) مجموعه  یک {xI ∈ X, I ∈ τx} مجموعه  دیگر، بیان به است وارون پذیر A(x) ماتریس

باشد. حل کننده یکتا ‐
مربعات کمترین روش های با x نقطه هر در u تابع مقدار تقریب برای که می کنیم یادآوری
پر نظر به که شود حل جداگانه دستگاه یک باید درونیاب، متحرک مربعات کمترین و متحرک
معمولا می باشد. Pq(Rd) یعنی تقریب فضای اعضای تعداد بˀعد از A(x) ماتریس اما است، هزینه
پایه یک درونیاب، متحرک مربعات کمترین و متحرک مربعات کمترین روش های با تقریب در
است کوچک A(x) ماتریس بˀعد این بنابر می شود. استفاده پایین درجه از چندجمله ایها از
شعاعی)، پایع تابع بدون شبکه روش بزرگ(مانند معادلات دستگاه یک حل بجای تقریب و

است. کاراتر محاسباتی لحاظ از که می کند حل کوچک بˀعد با معادلات دستگاه چندین
در درونیاب متحرک مربعات کمترین و متحرک مربعات کمترین روش های معرفی به توجه با

کرد. اشاره می توان زیر موارد به روش دو این تفاوت های با رابطه
نیست. اینطور MLS روش در ولی است منفرد وزن تابع IMLS روش در .١

MLS روش در ولی می کنند صدق کرونکر دلتای خاصیت در IMLS روش شکل توابع .٢
نیست. اینطور



٣١ درونیاب متحرک مربعات کمترین تقریب روش
می باشد. درونیاب روش یک MLS روش خلاف بر IMLS روش .٣

روش به x = ٠٫۴ نقطه در [٠, ١] بازه روی u(x) = ex تابع تقریب مثال این در .٢. ٣. ١ مثال
زیر پراکنده نقاط مجموعه است. مدنظر دو درجه پایه چندجمله ای با متحرک مربعات کمترین

می گیریم، نظر در [٠, ١] بازه روی را
X = {٠, ٠٫٢۵, ٠٫۵, ٠٫٧۵, ١}

نظر در c = ۵٫١ آن در که δ = c × h انتخاب با می باشد. N = ۵ و h = ٠٫٠١٢۵ آن در که
نتیجه در δ از کمتر x = ٠٫۴ تقریب نقطه از پراکنده نقاط همه فاصله چون است. شده گرفته
حالت در تقریب فضای برای دو درجه از پایه همچنین هستند. موثر تقریب برای در آنها همه

می باشد، زیر صورت به }یک بعدی
p١(x) = ١, p٢(x) = x, p٣(x) = x٢} ,

این، بنابر
PT (x) =

[١ x x٢] ,
همچنین،

P =



PT (٠)
PT (٠٫٢۵)
PT (٠٫۵)
PT (٠٫٧۵)
PT (١)


۵×٣

=



١ ٠ ٠
١ ٠٫٢۵ ٠٫٠۶٢۵
١ ٠٫۵ ٠٫٢۵
١ ٠٫٧۵ ٠٫۵۶٢۵
١ ١ ١


, U =



١
١٫٢٨۴٠
١٫۶۴٨٧
٢٫١١٧٠
٢٫٧١٨٣


,

و

W =



w١(٠٫۴) ٠ ٠ ٠ ٠
٠ w٢(٠٫۴) ٠ ٠ ٠
٠ ٠ w٣(٠٫۴) ٠ ٠
٠ ٠ ٠ w۴(٠٫۴) ٠
٠ ٠ ٠ ٠ w۵(٠٫۴)


,

نتیجه، در

W =



٠٫۶٠٠٣ ٠ ٠ ٠ ٠
٠ ٠٫٩۴٣٣ ٠ ٠ ٠
٠ ٠ ٠٫٩٧۴٨ ٠ ٠
٠ ٠ ٠ ٠٫۶٩٣٢ ٠
٠ ٠ ٠ ٠ ٠٫١١١۶


,



شبکه بدون روش های با تقریب ٣٢
داریم، نظر مورد تقریب نقطه برای B(x) = P TW و A(x) = P TWP به توجه با

A =


٠٫۴٧٨۴ −١٫٢۵٠۵ −١٫۴٣٣٨
−١٫٢۵٠۵ −١٫۴٣٣٨ −١٫۴۶٨۵
−١٫۴٣٣٨ −١٫۴۶٨۵ −١٫۴۶٢٩

 ,

و

B =


١ ٠٫٨۴٢٩ ٠٫٣٧٨٩ −٠٫٣٧٠٨ −١٫٣٧٢۶
٠ ٠٫٢١٠٧ ٠٫١٨٩۴ −٠٫٢٧٨١ −١٫٣٧٢۶
٠ ٠٫٠۵٢٧ ٠٫٠٩۴٧ −٠٫٢٠٨۶ −١٫٣٧٢۶

 ,

متحرک مربعات کمترین روش شکل توابع ، ΦT (x) = PT (x)A−١(x)B(x) رابطه از استفاده با
می شود، مشخص x = ٠٫۴ نقطه در

ΦT =
[
−٠٫٣۵٢٠ ٠٫٩٩٢٩ ٠٫۶۵٣٣ −٠٫۴٧٧۴ ٠٫١٨٣١] ,

این، بنابر
uh(٠٫۴) = ΦT (٠٫۴)U =

۵∑
j=١

ϕj(x)uj = ١٫۴٨٧٣,
می باشد. u(٠٫۴) = ١٫۴٩١٨ دقیق مقدار که

در u مقدار عددی تقریب بگیرد. نظر در [٠, ١] بازه روی را u(x) = sin(πx) تابع .٢. ٣. ٢ مثال
درجه پایه چندجمله ای با درونیاب متحرک مربعات کمترین روش از استفاده با x = ٠٫۴ نقطه

می گیریم، نظر در [٠, ١] بازه روی را زیر پراکنده نقاط مجموعه است. مدنظر دو
X = {٠, ٠٫٢۵, ٠٫۵, ٠٫٧۵, ١},

با، است برابر پراکنده نقاط در u تابع مقادیر ماتریس همچنین می باشد. N = ۵ آن در که

U =



٠
٠٫٧٠٧١

١
٠٫٧٠٧١

٠


.

تقریب نقطه تا x۵ = ١ پراکنده نقطه فاصله چون می کنیم. انتخاب ρ = ٠٫۵ تاثیر، دامنه شعاع
مؤثر درونیاب متحرک مربعات کمترین روش به u(٠٫۴) تقریب در بنابراین است. ρ از بیشتر

نتیجه، در نمی باشد.
τx = {١,٢,٣,۴},



٣٣ درونیاب متحرک مربعات کمترین تقریب روش
می باشد، زیر صورت به (x = x) یک بعدی حالت در تقریب فضای برای دو درجه از پایه }همچنین

p٠(x) = ١, p١(x) = x, p٢(x) = x٢} ,
داریم، تقریب نقطه و منفرد وزن تابع ضابطه به توجه با

w(x, xI) = w(٠٫۴, xI) = |٠٫۴ − xI |,

پس،

W =



۶٫٢۵ ٠ ٠ ٠ ٠
٠ ۴۴٫۴۴۴۴ ٠ ٠ ٠
٠ ٠ ١٠٠ ٠ ٠
٠ ٠ ٠ ٨٫١۶٣٣ ٠
٠ ٠ ٠ ٠ ٠


,

می کنیم، نرمال p٠(x) ابتدا

p̃٠(x; x̄) = ١[∑
I∈τx w(x, xI)

] ١٢
= ٠٫٠٠۶٣,

می سازیم، را متعامد پایه های حال

p̃i(x; x̄) = pi(x̄)−
∑
I∈τx

w(x, xI)pi(x)∑
J∈τx w(x, xJ)

, i = ١,٢,
دیگر، عبارت به

p̃٠٫)١۴; x̄) = x̄− w١x١ + w٢x٢ + w٣x٣ + w۴x۴ + w۵x۵
w١ + w٢ + w٣ + w۴ + w۵

,

و

p̃٠٫)٢۴; x̄) = x̄٢ − w١x١٢ + w٢x٢٢ + w٣x٣٢ + w۴x۴٢ + w۵x۵٢
w١ + w٢ + w٣ + w۴ + w۵

,

، (٢. ٣٧) رابطه به توجه با

F(x) =

p̃١(x;x١) p̃١(x;x٢) p̃١(x;x٣) p̃١(x;x۴) p̃١(x;x۵)
p̃٢(x;x١) p̃٢(x;x٢) p̃٢(x;x٣) p̃٢(x;x۴) p̃٢(x;x۵)

 ,
پس،

F(٠٫۴) =
−٠٫۴٢٣٢ −٠٫١٧٣١ ٠٫٠٧۶٨ ٠٫٣٢۶٨ ٠٫۵٧۶٨
−٠٫٢٠٣٨ −٠٫١۴١٣ ٠٫۴٠۶٢ ٠٫٣٨٨٧ ٠٫٧٩۶٢

 .



شبکه بدون روش های با تقریب ٣۴
، (۴۴ .٢) رابطه گرفتن نظر در با

pT (x) =
[
g١(x) g٢(x)

]
,

، (۴۵ .٢) رابطه و

pT (x) =
[
p̃١(x;x) p̃٢(x;x)

]
,

نتیجه، در

pT (٠٫۴) = [−٠٫٠٢٣٢ −٠٫۴٣٨] ,
، (۴٢. ٣) و (٢. ٢٢) رابطه های از استفاده با

vT =
[٠٫٠٣٩٣ ٠٫٢٧٩٨ ٠٫۶٢٩۵ ٠٫٠۵١۴ ٠] ,

داریم، (٢. ٣٨) رابطه از استفاده با Fw ماتریس تعیین برای

FT
w =



w(٠٫۴, x١)p̃١(٠٫۴;x١) w(٠٫۴, x١)p̃٢(٠٫۴;x١)
w(٠٫۴, x٢)p̃١(٠٫۴;x١) w(٠٫۴, x٢)p̃٢(٠٫۴;x٢)
w(٠٫۴, x٣)p̃١(٠٫۴;x٣) (٠٫۴, x٣)p̃٢(٠٫۴;x٣)
w(٠٫۴, x۴)p̃١(٠٫۴;x۴) (٠٫۴, x۴)p̃٢(٠٫۴;x۴)
w(٠٫۴, x۵)p̃١(٠٫۴;x۵) (٠٫۴, x۵)p̃٢(٠٫۴;x۵)


,

نتیجه، در

Fw =

−٢٫۶۴۵٢ −٧٫۶٩٩٢ ٧٫۶٧۶٩ ٢٫۶۶٧۵ ٠
−١٫٢٧٣۵ −۶٫٢٧٨۴ ۴٫۶٢٣۵ ٢٫٩٢٨۵ ٠

 ,
، (٣۶ .٢) رابطه به بنا

A(٠٫۴) =
٣٫٩١۴٣ ٢٫٩٣٨۵

٢٫٩٣٨۵ ٢٫۴١٠٧
 ,

، می شود مشخص (۴٢. ٢) رابطه به توجه با شکل توابع ماتریس همچنین

Φ =
[
−٠٫٠٣۶۵ ٠٣٨٩۶ ٠٫٧٣٠۴ −٠٫٠٨٣۵ ٠] ,

این، بنابر
uh(٠٫۴) = ΦU = ٠٫٩۴۶٩

می باشد. u(٠٫۴) = ٠٫٩۵١١ دقیق مقدار که



٣ فصل
انتگرال معادلات عددی حل

IMLS روش به ولترا‐فردهلم

مقدمه ٣. ١
انتگرال معادلات است. کاربردی ریاضیات در مهمی موضوع انتگرال معادلات کاربرد و تئوری
مانند موارد از بسیاری در می شوند. ظاهر مهندسی و علوم مختلف زمینه های از بسیاری در
ولترا‐ انتگرال معادله یک به می تواند عصبی سلسه  مسایل به وابسته دیفرانسیل معادلات
لذا است نشدنی یا مشکل معادلات نوع این تحلیلی حل .[٢١] شود تبدیل غیر خطی فردهلم
این جواب تقریب برای متفاوتی تکنیک های می شود. استفاده عددی روش های از آنها حل برای
[٢٣] در لاگرانژ چند جمله ای های روش و [٢٢] در تیلور سری روش دارند. وجود معادلات نوع
ارائه مرکب ولترا‐فردهلم انتگرال معادلات حل برای ١ متغیر تکرار روش [٢۴] در است. آمده
اساس بر متحرک مربعات کمترین روش با ولترا‐فردهلم انتگرال معادلات حل است. شده
و سالکائوسکاس است. آمده [٢۶] در مثلثی توابع روش و [٢۵] در چبیشف چندجمله ای های
روش بخش این در که کردند معرفی را درونیاب متحرک مربعات کمترین روش [١٢] لنکاستر
خطای تحلیل همچنین می گیریم. به کار ولترا‐فردهلم انتگرال معادلات حل برای را IMLS

مقایسه و انتگرال معادله چندین جواب محاسبه با سرانجام و کرده ارائه را پیشنهادی روش
1Variational iteration



IMLS روش به ولترا‐فردهلم انتگرال معادلات عددی حل ٣۶
داد. خواهیم نمایش را آن کارایی مساله، دقیق جواب با آنها

پیشنهادی روش شرح ٣. ٢
می گیریم، نظر در را زیر ولترا‐فردهلم انتگرال معادله

u(x) = F
(
x,

∫ b

a
K١(x, t, u(t)) dt,

∫ x

a
K٢(x, t, u(t)) dt

)
, (٣. ١)

می شوند. نامیده هسته) کرنل( توابع K٢ و K١ حقیقی، اعداد b و a مجهول، تابع u آن در که
هستند پیوسته ای معلوم توابع K١,K٢ : R × R × Cp → Cp و F : R × Cp × Cp → Cp توابع

می کنند، صدق زیر شرایط در که
∥F(x, u١, u٢)−F(x, v١, v٢)∥ ⩽ β١∥u١ − v١∥+ β٢∥u٢ − v٢∥, ∀u١, u٢, v١, v٢ ∈ Cp,

(٣. ٢)
∥K١(x, u(x), θ١)−K١(x, u(x), θ٢)∥ ⩽ γ١∥θ١ − θ٢∥, ∀θ١, θ٢ ∈ Cp, (٣. ٣)
∥K٢(x, u(x), θ١)−K٢(x, u(x), θ٢)∥ ⩽ γ٢∥θ١ − θ٢∥, ∀θ١, θ٢ ∈ Cp, (۴ .٣)
∥K١(x, u(x), θ)∥ ⩽ c١∥θ∥, ∀θ ∈ Cp, (۵ .٣)
∥K٢(x, u(x), θ)∥ ⩽ c٢∥θ∥, ∀θ ∈ Cp, (۶ .٣)

می باشند. ثابتی حقیقی اعداد c٢ و c١ ،γ٢ ،γ١ ،β٢ ،β١ آنها در که
بازه  در X = {x١, x٢, x٣, · · · , xN} ارزیابی نقاط مجموعه ابتدا در ، IMLS روش اعمال برای

باشیم، داشته که می کنیم انتخاب طوری را [a, b]

a = x١ ≤ x٢ ≤ · · · ≤ xN = b.

شوند. انتخاب تصادفی یا منظم به صورت می توانند نقاط البته
زیر معادله  به (٣. ١) معادله  بنابراین می دهیم. قرار u جای به را uh(x) =∑n

i=١ ϕi(x)ui سپس
می شود، تبدیل

uh(x) =F
(
x,

∫ b

a
K١(x, t, uh(t)) dt,

∫ x

a
K٢(x, t, uh(t)) dt

)
, (٣. ٧)
معادل، به طور یا

n∑
i=١

ϕi(x)ui=F

x,∫ b

a
K١(x, t,

n∑
i=١

ϕi(t)ui) dt,

∫ x

a
K٢(x, t,

n∑
i=١

ϕi(t)ui) dt

 . (٣. ٨)

از آن انجام برای که کنیم تبدیل [a, b] ثابت بازه به [a, x] بازه  از را انتگرال حدود باید اکنون
می کنیم، استفاده زیر متغیر تغییر

ξ(x,θ) =
x− a

b− a
θ +

b− x

b− a
a. (٣. ٩)



٣٧ خطا آنالیز
می شود، تبدیل زیر معادله  به (٣. ٨) معادله  این بنابر

(٣. ١٠)
n∑

i=١
ϕi(x)ui = F

x,∫ b

a
K١(x, t,

n∑
i=١

ϕi(t)ui) dt ,

∫ b

a
KT٢ (x, ξ(x, θ),

n∑
i=١

ϕi(ξ(x, θ))ui) dθ

 ,

معادل طور به یا
(٣. ١١)

n∑
i=١

ϕi(x)ui = F

x,∫ b

a
K١(x, θ,

n∑
i=١

ϕi(θ)ui) dθ ,

∫ b

a
KT٢ (x, ξ(x, θ),

n∑
i=١

ϕi(ξ(x, θ))ui) dθ

 ,

می شود، تعریف زیر به صورت KT٢ آن در که
KT٢ :=

x− a

b− a
K٢. (٣. ١٢)

معادلات دستگاه ،(٣. ١١) معادله  در xجای به xn و · · · ، x٢ ، x١ ارزیابی نقاط دادن قرار با حال
می آید، به دست زیر

(٣. ١٣)
n∑

i=١
ϕi(xj)ui = F

(
xj ,

∫ b

a

K١(xj , θ,
n∑

i=١
ϕi(θ)ui) dθ ,

∫ b

a

KT٢ (xj , ξ(xj , θ),

n∑
i=١

ϕi(ξ(xj , θ))ui) dθ

)
,

j = ١,٢, . . . , n.
بازه  در {ωk} وزنهای و {θk} ضرایب با نقطه ای m١ عددی انتگرال گیری روش یک از استفاده با

داریم، (٣. ١٣) معادله  از [a, b]
(١۴ .٣)

n∑
i=١

ϕi(xj)ûi = F

(
xj ,

m١∑
k=١

ωkK١(xj , θk,
n∑

i=١
ϕi(θk)ûi) ,

m١∑
k=١

ωkK
T٢ (xj , ξ(xj , θk),

n∑
i=١

ϕi(ξ(xj , θk))ûi)

)

j = ١,٢, . . . , n,
برای مناسب عددی روش یک انتخاب با نهایت در که می باشند ui برای تقریبی ها ûi اینجا، در
u(x) مقدار می توان (١۵ .٣) رابطه  در جایگذاری با سپس می آیند. دست به (١۴ .٣) دستگاه حل

کرد، محاسبه

u(x) ≃ uh(x) =
n∑

i=١
ϕi(x)ûi, ∀x ∈ [a, b] . (١۵ .٣)

خطا آنالیز ٣. ٣
پیشنهادی روش خطای برآورد چون می کنیم. بررسی را پیشنهادی روش همگرایی بخش این در
برآورد از نیاز مورد مطالب از مختصری ابتدا در لذا است مرتبط IMLS روش خطای برآورد با



IMLS روش به ولترا‐فردهلم انتگرال معادلات عددی حل ٣٨
یک بعدی حالت  برای [١٧] و [١٢] مراجع مطالب پایه  بر که می شود بیان IMLS روش خطای

گوی، x ∈ Ω هر برای می باشد.
Bx(y) = {y| |y − x| ⩽ µρ, y ∈ Ω ⊂ R},

به عنوان را H مجموعه  می باشد. ثابت مقداری ١ < µ < ٢ آن در که می گیریم نظر در را
به عدد می کنیم. تعریف H = {I|xI ∈ X, xI ∈ Bx(y)} به صورت x زیرنویس های مجموعه 
این صورت در باشند. τx+h ⊂ H و τx ⊂ H که، می گیریم نظر در طوری را h کوچک کافی اندازه 
روش در باشد. ∣∣∣dβw(x,xI)

dxβ

∣∣∣ ⩽ cβ

ρβI
که، به طوری دارد وجود cβ ثابت w(x, xI) ̸= ٠ و x /∈ X وقتی

به صورت، را پایه ای توابع پیشنهادی،
p٠(x) = ١, p١(x) = x, . . . , pm(x) = xm,

می گیریم. نظر در را زیر مفروضات همچنین و
ρ ⩽ cIρI و ρ ⩽ cεε در ترتیب به که طوری به دارند وجود cI و cε مانند ثابت هایی .٣. ٣. ١ فرض
دامنه ی در که پراکنده ای نقاط تعداد x ∈ Ω برای که است این بیانگر فرض این می کنند. صدق

است. متناهی دارند قرار x موثر
همچنین باشد داشته عضو m + ١ حداقل τx ∩ τx+h مجموعه  x ∈ Ω هر برای .٣. ٣. ٢ فرض
d آن در که باشد Ω روی d مرتبه ی از مشتق پذیر و پیوسته توابعی همه مجموعه  بیانگر Cd(Ω)

داریم، را زیر قضیه اکنون می باشد. مثبت صحیح عدد یک
هر برای آنگاه باشند برقرار (٣. ٣. ٢) و (٣. ٣. ١) فرض های و u ∈ Cm+١(Ω̄) اگر .٣. ٣. ١ قضیه

به طوریکه، دارد وجود C مانند ρ از مستقل ثابتی x ∈ Ω

|uh(x, y)− u(y)| ⩽ C∥u(m+١)∥L∞(Ω)ρ
m+١, ∀y ∈ Bx(y),

داریم، y = x خاص حالت در و
∥uh(x)− u(x)∥L∞(Ω) ⩽ C∥u(m+١)∥L∞(Ω)ρ

m+١. (١۶ .٣)
نمایید. مراجعه [١٧] مرجع به اثبات مشاهده برای برهان.

مشاهده  برای که کند صدق زیر خاصیت در عددی انتگرال گیری که می کنیم فرض همچنین
نمایید. مراجعه [١٨] مرجع به بیشتر جزئیات

وجود η مانند شبکه اندازه و i از مستقل و کوچک کافی اندازه  به عدد .٣. ٣. ١ QA ویژگی
کند، صدق زیر رابطه  در به طوریکه باشد ∫∣∣∣∣داشته

ω
Q dx−

∫ ∗

ω
Q dx

∣∣∣∣ ⩽ η |ω| ∥Q∥L∞(ω), (٣. ١٧)



٣٩ خطا آنالیز
خطای برای بالا کران یک η ثابت مقدار و عددی انتگرال گیری بیانگر ∫ ∗

(, ) نماد آن در که
می باشد. عددی انتگرال گیری

همچنین و می گیریم نظر در (٣. ٢)‐(٣. ٣) شرایط با را (٣. ١) ولترا‐فردهلم انتگرال معادله
باشد. برقرار (b− a)(β١γ١ + β٢γ٢) ∈ [٠, ١) که می کنیم فرض

می کنیم، تعریف زیر به شکل Cp باناخ فضای در را £(u(x)) انتگرالی عملگر

£(u(x)) = F
(
x,

∫ b

a
K١(x, t, u(t)) dt,

∫ x

a
K٢(x, t, u(t)) dt

)
, (٣. ١٨)

ولترا‐ انتگرال معادله  (٣. ٢)‐(٣. ٣) شرایط تحت که می کند تضمین باناخ ثابت نقطه  قضیه
می باشد. یکتا جواب دارای (٣. ١) فردهلم

جواب uh∗(x) و (١۴ .٣) معادله  جواب uh(x) ، (٣. ١) معادله  جواب u(x) که می کنیم فرض
و مطرح را (٣. ١) کلی فرم به معادله هایی برای را زیر قضیه حال باشد. (١۴ .٣) معادله ی

می کنیم. اثبات را آن سپس

F و باشد R از کرانداری مجموعه  زیر Ω آن، در که u ∈ Cm+١(Ω̄) کنید فرض .٣. ٣. ٢ قضیه
فرض های و [a, x] ⊆ Ω = [a, b] همچنین و کنند صدق (٣. ١) معادله  شرایط در K٢ و K١ ،
داریم، این صورت در کند. صدق (٣. ١٧) رابطه  در عددی انتگرال و برقرار (٣. ٣. ٢) و (٣. ٣. ١)

∥£(u(x))−£(uh∗(x))∥L∞(Ω) ⩽ C١∥u∥L∞(Ω) + C٢∥u(m+١)∥L∞(Ω) (٣. ١٩)

داریم، نتیجه در

∥u− uh∗∥L∞(Ω) ⩽ C١∥u∥L∞(Ω) + C٢∥u(m+١)∥L∞(Ω) (٣. ٢٠)

آن، در که

C١ = (b− a)(β١c١ + β٢c٢)η
و

C٢ = (b− a) ((β١c١ + β٢c٢)η + (β١γ١ + β٢γ٢)) Cρm+١

نوشت، می توان £ عملگر تعریف به توجه با برهان.
(٣. ٢١)

∥£(u(x))−£(uh∗(x))∥L∞(Ω) ⩽ ∥£(u(x))−£(uh(x))∥L∞(Ω) + ∥£(uh(x))−£(uh∗(x))∥L∞(Ω)

شرایط و (٣. ٣. ١) قضیه کار گیری به با که می باشد بخش دو شامل (٣. ٢١) رابطه  راست سمت



IMLS روش به ولترا‐فردهلم انتگرال معادلات عددی حل ۴٠
داریم، بخش هر برای (٣. ٢)‐(٣. ٣)

∥£(u(x))−£(uh(x))∥L∞(Ω) =

∥∥∥∥F (x, ∫ b

a
K١(x, t, u(t)) dt,

∫ x

a
K٢(x, t, u(t)) dt

)
−F

(
x,

∫ b

a
K١(x, t, uh(t)) dt,

∫ x

a
K٢(x, t, uh(t)) dt

)∥∥∥∥
L∞(Ω)

⩽ β١
∥∥∥∥∫ b

a
K١(x, t, u(t)) dt−

∫ b

a
K١(x, t, uh(t)) dt

∥∥∥∥
L∞(Ω)

+ β٢
∥∥∥∥∫ x

a
K٢(x, t, u(t)) dt−

∫ x

a
K٢(x, t, uh(t)) dt

∥∥∥∥
L∞(Ω)

⩽ β١(b− a)
∥∥∥K١(x, t, u(t))−K١(x, t, uh(t))

∥∥∥
L∞(Ω)

+ β٢(b− a)
∥∥∥K٢(x, t, u(t))−K٢(x, t, uh(t))

∥∥∥
L∞(Ω)

⩽ (b− a)β١γ١∥u(t)− uh(t)∥L∞(Ω) + (b− a)β٢γ٢∥u(t)− uh(t)∥L∞(Ω)

= (b− a) (β١γ١ + β٢γ٢) ∥u(t)− uh(t)∥L∞(Ω)

⩽ (b− a) (β١γ١ + β٢γ٢) Cρm+١∥u(m+١)∥L∞(Ω),

داریم، همچنین و

∥£(uh(x))−£(uh∗(x))∥L∞(Ω) =

∥∥∥∥F (x,∫ b

a
K١(x, t, uh(t)) dt,

∫ x

a
K٢(x, t, uh(t)) dt

)
−F

(
x,

∫ b∗

a
K١(x, t, uh(t)) dt,

∫ x∗

a
K٢(x, t, uh(t)) dt

)∥∥∥∥
L∞(Ω)

⩽ β١
∥∥∥∥∫ b

a
K١(x, t, uh(t)) dt−

∫ b∗

a
K١(x, t, uh(t)) dt

∥∥∥∥
L∞(Ω)

+ β٢
∥∥∥∥∫ x

a
K٢(x, t, uh(t)) dt−

∫ x∗

a
K٢(x, t, uh(t)) dt

∥∥∥∥
L∞(Ω)

⩽ β١(b− a)η
∥∥∥K١(x, t, uh(t))

∥∥∥
L∞(Ω)

+ β٢(b− a)η
∥∥∥K٢(x, t, uh(t))

∥∥∥
L∞(Ω)

⩽ (b− a) (β١c١ + β٢c٢) η∥uh∥L∞(Ω)

= (b− a) (β١c١ + β٢c٢) η
(
∥u∥L∞(Ω) + ∥u− uh∥L∞(Ω)

)
⩽ (b− a) (β١c١ + β٢c٢) η

(
∥u∥L∞(Ω) + Cρm+١∥u(m+١)∥L∞(Ω)

)
,



۴١ عددی نتایج
داریم، (٣. ٢١) رابطه  و قبل نامساوی دو به توجه با

∥£(u(x))−£(uh∗(x))∥L∞(Ω) ⩽ ∥£(u(x))−£(uh(x))∥L∞(Ω) + ∥£(uh(x))−£(uh∗(x))∥L∞(Ω)

⩽ (b− a) (β١γ١ + β٢γ٢) Cρm+١∥u(m+١)∥L∞(Ω)

+ (b− a) (β١c١ + β٢c٢) η
(
∥u∥L∞(Ω) + Cρm+١∥u(m+١)∥L∞(Ω)

)
,

⩽ (b− a) (β١c١ + β٢c٢) η∥u∥L∞(Ω)

+ (b− a)Cρm+١ ((β١c١ + β٢c٢)η + (β١γ١ + β٢γ٢)) ∥u(m+١)∥L∞(Ω)

= C١∥u∥L∞(Ω) + C٢∥u(m+١)∥L∞(Ω)

نوشت، می توان uh∗ و u ثابت نقطه  خاصیت بکارگیری با نتیجه در
∥u− uh∗∥L∞(Ω) = ∥£(u(x))−£(uh∗(x))∥L∞(Ω)

⩽ (b− a) (β١c١ + β٢c٢) η∥u∥L∞(Ω)

+ (b− a)Cρm+١ ((β١c١ + β٢c٢)η + (β١γ١ + β٢γ٢)) ∥u(m+١)∥L∞(Ω)

= C١∥u∥L∞(Ω) + C٢∥u(m+١)∥L∞(Ω)

عددی نتایج ۴ .٣
شده ارائه تقریب، در شده پیشنهاد روش قدرت دادن نشان برای مثال چندین بخش، این در

است، شده محاسبه زیر به صورت خطا ماکزیمم روش، دقت اندازه گیری برای است.
Maximum error : ∥e∥∞ = max|u(j)− uexact(j)|.

کرده  ایم، استفاده زیر فرمول از جدید، روش همگرایی سرعت دادن نشان برای همچنین
Ratio =

∥eN−١∥∞
∥eN∥∞

.

شعاع و شده گرفته نظر در منظم طور به پراکنده نقاط بخش، این عددی محاسبات تمام در
می باشد مثبت عدد یک dmax آن در که می شود تعیین زیر به صورت xi نقطه  برای مؤثر دامنه

باشد. وارون پذیر IMLS روش در شده معرفی A(x) ماتریس که می شود انتخاب طوری و
ρI = dmax

∣∣XI −XI−١
∣∣ .

است، شده گرفته نظر در زیر به فرم وزن تابع مثال ها تمام در

w(x,xI) = w(x− xI) =


∥x− xI∥−α, ∥x− xI∥ ≤ ρI ,

٠, .سایر
(٣. ٢٢)



IMLS روش به ولترا‐فردهلم انتگرال معادلات عددی حل ۴٢
و شده استفاده نقطه ای ٧ یا ۵ گاوس‐لژاندر عددی روش از انتگرال محاسبه  در همچنین

است. پذیرفته صورت متلب افزار نرم با عددی محاسبات تمام
می گیریم، نظر در [١٩] از را زیر فردهلم انتگرال معادله .١ .۴ .٣ مثال

λu(x)−
∫ ١

٠ u(x) dx = x٢√x− ٢
٣۵ , ٠ ≤ x ≤ ١,

و روش از حاصل نتایج می باشد. u(x) = x٢√x برابر معادله این تحلیلی جواب λ = ۵ برای که
شکل و ٣. ١ جدول در دو درجه  و خطی حالت برای می توان را دقیق جواب با آن پاسخ مقایسه 

نمود. مشاهده ٣. ١

١ .۴ .٣ مثال متفاوت های N و m برای عددی نتایج :٣. ١ جدول

m = ٢ m = ١ N
Time Ratio ∥e∥∞ Time Ratio ∥e∥∞

١٫٧٠ − ٧٫۴٩ × ١٠−۵ ١٫۶۴ − ١٫١٠ × ٣−١٠ ۵
١٫٧١ ٣٫۵٧ ٢٫١٠ × ١٠−۵ ١٫۶۶ ١٫۵٢ ٧٫٢۴ × ١٠−۴ ٩
١٫٧٧ ٩٫٨۶ ٢٫١٣ × ١٠−۶ ١٫٧۴ ٢٫٩٨ ٢٫۴٣ × ١٠−۴ ١٧
١٫٩٢ ۴٫۵٣ ۴٫٧٠ × ٧−١٠ ١٫٨٣ ٢٫۶٨ ٩٫٠٧ × ١٠−۵ ٣٣
٢٫١٧ ١٫۵۶ ٣٫٠٢ × ٧−١٠ ٢٫١۵ ٩٫٠٧ ١٫٠٠ × ١٠−۵ ۶۵
٢٫٨٠ ٠٫٩۶ ٣٫١۴ × ٧−١٠ ٢٫٧٣ ٢٫٢۴ ۴٫۴٧ × ١٠−۶ ١٢٩
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١ .۴ .٣ مثال نقطه ۶۵ با ٢ درجه  از عددی تقریب :٣. ١ شکل



۴٣ عددی نتایج
١ .۴ .٣ بدون شبکه روش دو عددی تقریب مقایسه نتایج :٣. ٢ جدول

m = ١(MLS) m = ١(IMLS) N
∥e∥∞ ∥e∥∞

١٫٠۴ × ٢−١٠ ١٫١٠ × ٣−١٠ ۵
٢٫٨٩ × ٣−١٠ ٧٫٢۴ × ١٠−۴ ٩
٧٫۶١ × ١٠−۴ ٢٫۴٣ × ١٠−۴ ١٧
١٫٨٨ × ١٠−۴ ٩٫٠٧ × ١٠−۵ ٣٣
۵٫٠١ × ١٠−۵ ١٫٠٠ × ١٠−۵ ۶۵
١٫٢٩ × ١٠−۵ ۴٫۴٧ × ١٠−۶ ١٢٩

مربعات کمترین روش دو با معادله این جواب عددی تقریب از حاصل نتایج مقایسه جدول
نمود. مشاهد ٣. ٢ جدول در می توان را درونیاب متحرک مربعات کمترین روش و متحرک
می گیریم، نظر در را زیر ولترا‐فردهلم انتگرال معادله  دوم، مثال عنوان به .٢ .۴ .٣ مثال

u(x)=ex − ١ − x+

∫ x

٠ u(t) dt+

∫ ١
٠ xu(t) dt,

نقطه ای ٧ گاوس‐لژاندر با عددی انتگرال می باشد. u(x) = x ex برابر معادله این دقیق جواب
مقدار مقایسه و ٣. ٣ جدول در متفاوت N و m برای روش از حاصل نتایج است. شده محاسبه
می توان را نقطه N = ٢٠١ و m = ٢ برای خطا قدرمطلق و معادله جواب تحلیلی مقدار با عددی

نمود. مشاهده ٣. ٢ شکل در

غیرخطی معادله  [٢۵] .٣ .۴ .٣ مثال

u(x) = f(x) +
١
۴
∫ x

٠ (x− t)u٢(t) dt+
∫ ١

٠ (١ + t)u(t) dt,

آن در که بگیرید نظر در را
f(x) =x٢ sinx− ١

٢۴٠x۶ − ١
۶۴
((٢x۴ − ١٨x٢ + ١۵) cos٢x

+
(
−٨x٣ + ٢۴x) sin٢x− ١۵)− ۶ cos ١ + sin ١ + ٢,

ماکزیمم و عددی روش حاصل نتایج می باشد. u(x) = x٢ sinx برابر معادله این تحلیلی جواب و
است. شده ارائه ۴ .٣ جدول در N و m متفاوت مقادیر برای خطا



IMLS روش به ولترا‐فردهلم انتگرال معادلات عددی حل ۴۴
٢ .۴ .٣ مثال متفاوت های N و m برای عددی نتایج :٣. ٣ جدول

m = ٢ m = ١ N
Time Ratio ∥e∥∞ Time Ratio ∥e∥∞

١٫٨۵ − ٧٫٩٠ × ٣−١٠ ١٫٨٠ − ٣٫۵٣ × ١−١٠ ۵
١٫٩٨ ١۵٫١۶ ۵٫٢١ × ١٠−۴ ١٫٨٨ ۶٫۵٢ ۵٫۴١ × ٢−١٠ ١١
٢٫٠٧ ۵٫١١ ١٫٠٢ × ١٠−۴ ٢٫٠٧ ٣٫۴۵ ١٫۵٧ × ٢−١٠ ٢١
٢٫۴١ ٢٫٣٢ ۴٫۴٠ × ١٠−۵ ٢٫٢٨ ۵٫٠۶ ٣٫١٠ × ٣−١٠ ۵١
٣٫٠۵ ١٨٠٫٣٣ ٢٫۴۴ × ٧−١٠ ٢٫٩۴ ۵٫۵٨ ۵٫۵۶ × ١٠−۴ ١٠١
۴٫٧١ ٢۶٫۶۴ ٩٫١۶ × ٩−١٠ ۴٫۶١ ٣٫٩٧ ١٫۴٠ × ١٠−۴ ٢٠١
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٢ .۴ .٣ مثال برای خطا قدرمطلق و نقطه ٢٠١ با ٢ درجه  از عددی تقریب :٣. ٢ شکل



۴۵ عددی نتایج
٣ .۴ .٣ مثال متفاوت های N و m برای عددی نتایج :۴ .٣ جدول

m = ٢ m = ١ N
Time Ratio ∥e∥∞ Time Ratio ∥e∥∞

١٫٩٨ − ١٫١۴ × ٣−١٠ ١٫٩۶ − ١٫٣۴ × ٢−١٠ ۵
٢٫٠١ ٣٫٧٢ ٣٫٧۶ × ١٠−۴ ٢٫٠٠ ١٫۶٣ ٨٫٢٠ × ٣−١٠ ٩
٢٫٠۵ ٣٫١۶ ١٫١٩ × ١٠−۴ ٢٫٠۴ ١٫٧۴ ۴٫٧٠ × ٣−١٠ ١٣
٢٫١٧ ٢١٫١٠ ۵٫۶۴ × ١٠−۶ ٢٫١۶ ١٫۵۵ ٣٫٠۴ × ١٠−۴ ٢٣
٢٫۴٨ ۴٫۴٨ ١٫٢۶ × ١٠−۶ ٢٫۴٢ ١٫٧٨ ١٫٧١ × ١٠−۴ ۴۵
٢٫٧٧ ٣٫۴٨ ٣٫۶٢ × ٧−١٠ ٢٫٧۴ ١٫۵٣ ١٫١٢ × ١٠−۴ ۶۵

بگیرید، نظر در را زیر معادله  .۴ .۴ .٣ مثال
u(x) = ١ −

∫ x

٠ (x− t)u(t) dt+

∫ π

٠ u(t) dt,

شده ارائه ۵ .٣ جدول در عددی نتایج می باشد. u(x) = cosx برابر معادله این تحلیلی جواب
است.

۴ .۴ .٣ مثال متفاوت های N و m برای عددی نتایج :۵ .٣ جدول

m = ٢ m = ١ N
Time Ratio ∥e∥∞ Time Ratio ∥e∥∞

١٫٩۵ − ۵٫١٠ × ٣−١٠ ١٫٨۶ − ٣٫٧۵ × ٢−١٠ ٧
١٫٩٨ ٣٫١٩ ١٫۶٠ × ٣−١٠ ١٫٨٧ ١٫۶٢ ٢٫٣٢ × ٢−١٠ ١١
٢٫٠٠ ١١٫٧۶ ١٫٣۶ × ١٠−۴ ١٫٨٨ ۴٫٣٠ ۵٫۴٠ × ٣−١٠ ٢١
٢٫٠۶ ٧٫۴٧ ١٫٨٢ × ١٠−۵ ١٫٩٧ ٣٫٨۶ ١٫۴٠ × ٣−١٠ ۴١
٢٫١١ ١٫٠۴ ١٫٧۵ × ١٠−۵ ١٫٩٩ ١٫۴٠ ١٫٠٠ × ٣−١٠ ۵١
٢٫۵٨ ٩٫٧٢ ١٫٨٠ × ١٠−۶ ٢٫٣۶ ٢٫٧٢ ٣٫۶٨ × ١٠−۴ ١٠١

می گیریم، نظر در را زیر غیرخطی ولترا انتگرال معادله  آخر مثال به عنوان .۵ .۴ .٣ مثال
u(x) = ٢x e−x(x+ ١)− ٢x+

√
x+

∫ x

٠ ٢txe−u٢(t) dt,



IMLS روش به ولترا‐فردهلم انتگرال معادلات عددی حل ۴۶
در متفاوت N و m برای روش از حاصل نتایج می باشد. u(x) =

√
x برابر آن تحلیلی جواب

m = ٢ برای خطا قدرمطلق و معادله جواب تحلیلی مقدار با عددی مقدار مقایسه و ۶ .٣ جدول
نمود. مشاهده ٣. ٣ شکل در می توان را نقطه N = ۴٠١ و

۵ .۴ .٣ مثال متفاوت های N و m برای عددی نتایج :۶ .٣ جدول

m = ٢ m = ١ N
Time Ratio ∥e∥∞ Time Ratio ∥e∥∞

٢٫٠۶ − ٧٫٩٠ × ١٠−۴ ٢٫٠١ − ۴٫٩٠ × ٣−١٠ ۵
٢٫٠٨ ٢٫٢۶ ٣٫۵٠ × ١٠−۴ ٢٫٠٢ ٢٫٧٢ ١٫٨٠ × ٣−١٠ ٩
٢٫٢٧ ١۵٫٠٢ ٢٫٣٣ × ١٠−۵ ٢٫١٩ ٨٫٨٧ ٢٫٠٣ × ١٠−۴ ٢١
٢٫۶۵ ۶٫٢٨ ٣٫٧١ × ١٠−۶ ٢٫۵۵ ۶٫٠١ ٣٫٣٨ × ١٠−۵ ۵١
٣٫٣٢ ١۴٫٩۶ ٢٫۴٨ × ٧−١٠ ٣٫۴۵ ٣٫٣١ ١٫٠٢ × ١٠−۵ ١٠١
۵٫۵٨ ٢٫٧٣ ٩٫٠٧ × ٨−١٠ ۵٫٧٣ ۴٫٠٢ ٢٫۵۴ × ١٠−۶ ٢٠١
٣٠٫٣۶ ٣٧٫۴٨ ٢٫۴٢ × ٩−١٠ ٢٩٫۵۴ ۴٫١۴ ۶٫١۴ × ٧−١٠ ۴٠١



۴٧ عددی نتایج
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۵ .۴ .٣ مثال برای خطا قدرمطلق و نقطه ۴٠١ با ٢ درجه  از عددی تقریب :٣. ٣ شکل





۴ فصل
حل در شبکه بدون روش های کاربرد

انتگرو‐دیفرانسیل معادلات

مقدمه ١ .۴
دسترسی قابل سادگی به آن انداز چشم که است به گونه ای ایده ها موفق اجرای و پذیرش امروزه
می دانیم می باشد. ضروری امری نظر، مورد موضوع ریاضی مدل سازی به نیاز این بنابر نیست.
به علوم مختلف زمینه های در مسایل از بسیاری ریاضی مدلسازی از حاصل معادلات حل که
معادلات عددی حل بنابر این .[٣۵ ،٣۴ ،٣٣] می شود منجر انتگرو‐دیفرانسیل معادلات حل
علاقمندان برای جدید عددی روش ارائه و تحقیق برای مناسبی زمینه انتگرو‐دیفرانسیل
انتگرو‐ معادلات از گونه ای حل برای تیلور چند جمله ای های [٣٨ ،٣٧ ،٣۶] در می باشد.
گسسته گالرکین روش ، [٣٩] در آدمیان تجزیه ی روش همچنین است. شده بیان دیفرانسیل
معادله عددی حل برای متحرک مربعات کمترین روش و IRBF روش [۴١] در ، [۴٠] در
انتگرو‐ معادلات از رده یک است. شده ارائه [۴٢] در یک بعدی فردهلم انتگرو‐دیفرانسیل

.[۴٣] می باشد زیر به شکل کرد مطرح می توان که دوبعدی دیفرانسیل
به شکل، (m+ n) مرتبه از دوبعدی غیرخطی ولترا انتگرو‐دیفرانسیل معادله

f

(
x, y, u, ux, uy, ...,

∂m+nu(x, y)

∂xm∂yn

)
+ λ

∫ x

x٠

∫ y

y٠
k(x, y, t, s, u(t, s)) dtds = ٠, (١ .۴)



انتگرو‐دیفرانسیل معادلات حل در شبکه بدون روش های کاربرد ۵٠
دامنه در مجهول تابعی u : Ω ⊂ R٢ → R و معلوم توابعی k و f آن در که

Ω = {(x, y) ∈ R٢ : ٠ ≤ x ≤ X, ٠ ≤ y ≤ Y }

دوبعدی غیرخطی ولترا انتگرو‐دیفرانسیل معادله از کلی شکل لذا می باشد.
g(x, y) =

m∑
r=٠

n∑
s=٠

frs(x, y)u
jrs(x, y)

∂r+su(x, y)

∂xr∂ys

+ λ

∫ x

x٠

∫ y

y٠
k(x, y)v(t, s)up(t, s) dt ds, p, jrs ∈ Z+

(٢ .۴)

توابع و مجهول تابع u(x, y) و r = ٠, ١, ...,m; s = ٠, ١, ..., n آن در که بگیرید نظر در را
اولیه شرایط دارای معادله این تحلیلی اند. و معلوم توابعی v(x, y) و g(x, y), frs(x, y), k(x, y)

به شکل، مناسبی مرزی و

اولیه شرایط :


∂iu(x,y)

∂xi |(x,٠) = ϕi(x)

∂ju(x,y)
∂yj

|(٠,y) = ψj(y)
(٣ .۴)

مرزی شرط : u(x, y)|∂Ω = α (۴ .۴)
بدون شبکه روش یک ادامه در هستند. معلومی تحلیلی توابع α و ϕi, ψj به طوریکه می باشد
بیان را روش خطای آنالیز و می دهیم ارائه انتگرو‐دیفرانسیل معادلات از رده ای حل برای
دوبعدی حالت در مثال چند برای را آن معرفی شده، روش برتری خاطر به پایان در می کنیم.

می بریم. به کار نیز

فردهلم ولترا‐ انتگرو‐دیفرانسیل معادلات حل ٢ .۴
MLS روش به

ولترا‐ انتگرو‐دیفرانسیل معادلات حل برای را متحرک مربعات کمترین روش بخش این در
می دهیم، ارائه را زیر کلی به شکل فردهلم

u′(x) = F
(
x, u(x),

∫ x
a K١(x, t, u(t)) dt,

∫ b
a K٢(x, t, u(t)) dt

)
,

u(a) = u٠,
(۵ .۴)

می شوند. نامیده هسته K٢ و K١ توابع و بوده حقیقی اعداد b ، a مجهول، تابع u آن در که
پیوسته نگاشت های K١,K٢ : R × R × Cp → Cp و F : R × Cp × Cp × Cp → Cp همچنین

می کنند، صدق زیر شرایط در که هستند شده ای داده
∥F(x, u١, u٢, u٣)−F(x, v١, v٢, v٣)∥ ⩽ β١∥u١ − v١∥+ β٢∥u٢ − v٢∥+ β٣∥u٣ − v٣∥,
∀u١, u٢, u٣, v١, v٢, v٣ ∈ Cp,

(۶ .۴)



۵١ MLS روش به فردهلم ولترا‐ انتگرو‐دیفرانسیل معادلات حل

∥K١(x, u(x), θ١)−K١(x, u(x), θ٢)∥ ⩽ γ١∥θ١ − θ٢∥, ∀θ١, θ٢ ∈ Cp, (٧ .۴)
∥K٢(x, u(x), θ١)−K٢(x, u(x), θ٢)∥ ⩽ γ٢∥θ١ − θ٢∥, ∀θ١, θ٢ ∈ Cp, (٨ .۴)
∥K١(x, u(x), θ)∥ ⩽ c١∥θ∥, ∀θ ∈ Cp, (٩ .۴)
∥K٢(x, u(x), θ)∥ ⩽ c٢∥θ∥, ∀θ ∈ Cp, (١٠ .۴)

MLS روش به کار گیری برای حال هستند. ثابتی حقیقی مقادیر c٢ و c١،γ٢ ،γ١،β٣ ،β٢،β١ که
مانند، [a, b] بازه  از گره  ای نقطه  n ،

a = x١ ≤ x٢ ≤ · · · ≤ xn = b

شوند. پراکنده مساله، دامنه در تصادفی یا منظم به طور می توانند نقاط این می گیریم، نظر در
تقریب های از ترتیب به u′ و u جای به می توان دو، فصل در MLS روش معرفی به توجه با

uh(x) =
n∑

j=١
ϕj(x)uj , u′

h
(x) =

n∑
j=١

ϕj,x(x)uj (١١ .۴)

یعنی، کرد استفاده (۵ .۴) رابطه  در
u′

h
(x) = F

(
x, uh(x),

∫ x

a
K١(x, t, uh(t)) dt,

∫ b

a
K٢(x, t, uh(t)) dt

)
, (١٢ .۴)

داریم، (١٢ .۴) در (١١ .۴) از u′h و uh جایگذاری، با
(١٣ .۴)

n∑
j=١

ϕj,x(x)uj = F

x, n∑
j=١

ϕj(x)uj ,

∫ x

a

K١(x, t,
n∑

j=١
ϕj(t)uj ) dt,

∫ b

a

K٢(x, t,
n∑

j=١
ϕj(t)uj ) dt

 ,

مناسب متغیر تغییر از منظور این برای شود. تبدیل [a, b] بازه  به [a, x] بازه  از انتگرال حدود باید حال
می کنیم، استفاده زیر

ξ(x،θ) = x− a

b− a
θ +

b− x

b− a
a. (١۴ .۴)

می شود، تبدیل زیر به شکل (١٣ .۴) رابطه  تبدیل، این اعمال با
n∑

j=١
ϕj,x(x)uj =F

x, n∑
j=١

ϕj(x)uj ,

∫ b

a

KT١ (x, ξ(x, θ),

n∑
i=١

ϕi(ξ(x, θ))ui) dθ,

∫ b

a

K٢(x, θ,
n∑

j=١
ϕj(θ)uj ) dθ

 ,

(١۵ .۴)

آن، در که
KT١ =

x− a

b− a
K١. (١۶ .۴)



انتگرو‐دیفرانسیل معادلات حل در شبکه بدون روش های کاربرد ۵٢
زیر معادلات دستگاه (١۵ .۴) معادله  در x جای به xn و · · · ، x٢ ، x١ ارزیابی نقاط دادن قرار با حال

می آید، به دست
n∑

j=١
ϕj,x(xi)uj =F

xi, n∑
j=١

ϕj(xi)uj ,

∫ b

a

KT١ (xi, ξ(xi, θ),

n∑
i=١

ϕi(ξ(xi, θ))ui) dθ,

∫ b

a

K٢(xi, θ,
n∑

j=١
ϕj(θ)uj ) dθ

 , i = ١,٢, . . . , n.
(١٧ .۴)

ûi کنیم فرض کرد. تقریب می توان را (١٧ .۴) رابطه انتگرال های عددی، انتگرال گیری روش یک با
یک از استفاده با این صورت در باشد. عددی انتگرال گیری روش به کارگیری، به واسطه ui برای تقریبی
(١٨ .۴) رابطه (١٧ .۴) از ، [a, b] بازه  در {ωk} وزن های و {θk} ضرایب با نقطه ای m١ انتگرال گیری روش

می شود، نتیجه
n∑

j=١
ϕj,x(xi)ûj =F

xi, n∑
j=١

ϕj(xi)ûj ,

m١∑
k=١

ωkK
T١ (xi, ξ(xi, θk),

n∑
i=١

ϕi(ξ(xi, θk))ûi),

m١∑
k=١

ωkK٢(xi, θk,
n∑

j=١
ϕj(θk)ûj )

 , i = ١,٢, . . . , n,
(١٨ .۴)

متناظر ماتریس از سطر یک جای به و نوشته را u(a) = u٠ اولیه  شرط با مرتبط ماتریسی شکل اکنون
مقادیر (١٨ .۴) غیرخطی دستگاه حل برای عدی روش یک به کارگیری با می دهیم. قرار (١٨ .۴) دستگاه
کرد. محاسبه را u(x) مقدار می توان ، (١٩ .۴) در مقادیر این جایگذاری با سپس می گردند. مشخص ûj

u(x) ≃ uh(x) =

n∑
j=١

ϕj(x)ûj , ∀x ∈ [a, b] . (١٩ .۴)

خطا آنالیز ٣ .۴
را MLS روش خطای برآورد ابتدا آن، بررسی برای لذا می پردازیم. روش خطای آنالیز به بخش این در
N بعد در تحلیلی تابع یک برای خاص وزن تابع یک با را روش خطای ،[٢٧] در ١ لوین می کنیم. بیان
برای را بینهایت نرم در خطا تقریب ٣ دورن و ٢ آرمنتانو [٢٨] در است. نموده بررسی یکنواخت نرم در و
بینهایت نرم در خطا تقریب آرمنتانو [٢٩] در آورده اند. به دست یک بعدی حالت در مشتقاتش و تابع
تقریب برای خطا تقریب ۴ زوپا [٣٠] در و آورده به دست بالاتر ابعاد و یک بعدی حالت برای را دو نرم و
بخش این در شده ارائه مطالب که است. آورده به دست نرم بینهایت در آن را دوم و اول مشتقات و تابع

می باشد. [٣٠] و [١٩] مراجع مطالب پایه  بر
xj ∈ Ω̄ نقطه  N از دلخواه مجموعه یک QN و Rd در کراندار باز مجموعه  یک Ω کنید فرض همچنین

کرد، خواهیم اشاره آنها به گره به عنوان که باشد
QN = {x١,x٢, . . . ,xN}, xj ∈ Ω̄.

1Levin
2Armentano
3Durn
4Zuppa



۵٣ خطا آنالیز
Λj و xj ∈ Λj به طوریکه، است Λj ابر N شامل Ω̄ از متناهی باز پوشش یک IN := {Λj}Nj=١ کنید فرض

و است xj مرکز به پوششی نوعی به
Ω̄ ⊂

N⋃
j=١

Λj

می کنیم، تعریف زیر به صورت را Λj از hj شعاع
hj = max

x∈∂Λj

{∥x− xj∥} .

از آن Dku جزئی مشتقات و بوده Ω̄ در Cq رده  از u اگر فقط و اگر می نامیم Cq,١ رده  از Ω̄ در را u تابع
، [٣٠] می شود تعریف زیر به صورت |.|q,١ شبه ‐ نرم باشد. Ω̄ در ١ شیتز لیب پیوسته  (|k| = q) q مرتبه 

|u|q,١ = sup

{
|Dku(x)−Dku(y)|

∥x− y∥
: x,y ∈ Ω̄,x ̸= y, |k| = q

}
.

دارای x ∈ Ω̄ هر به ازای کمینه سازی مسأله که داریم نیاز شود، تعریف به خوبی MLS تقریب این که برای
با خطا برآورد [٣٠] در باشد. غیرتکین A(x) ماتریس این که با است معادل این و باشد یکتا جوابی

است. آمده به دست [QN ,WN ] وزن توابع و نقاط دستگاه برای زیر ویژگی
است. غیرتکین MLS تقریب در شده تعریف A(x) ماتریس ،Ω̄ به متعلق x هر به ازای .٣. ١ .۴ ویژگی

باشد غیرتکین A(x) ماتریس x ∈ Ω̄ هر به ازای این که برای لازم شرط ([٣١ ،٣٠]) .٣. ١ .۴ قضیه
این است که،

n = card(ST (x)) ⩾ card(Pq) = m+ ١,
می شود، تعریف زیر به صورت ST (x) مجموعه  آن در که

ST (x) := {j : wj(x) ̸= ٠},
تعریف زیر به صورت ST (c) مش اندازه  آنگاه ،ST (c) = {j١, j٢, . . . , jk} اگر ،c ∈ Ω̄ برای مثال به عنوان

می شود،
h(ST (c)) := max{hj١, hj٢, . . . , hjk.}

می گیریم، نظر در پارامترها مورد در را زیر مفروضات حال
ابرها، هم پوشانی از بالا کران یک .٣. ١ .۴ فرض

M = sup
c∈Ω̄

{card(ST (c))} .

شرط، عدد بالای کرانهای .٣. ٢ .۴ فرض
CBq = sup

c∈Ω̄

{CN q(ST (c))} , q = ١,٢,

شده تعریف [٣٠] در ٧ قضیه  در که هستند ST (c) کیفیت نمایش برای مقادیری CN q(ST (c)) اعداد که
هستند. محاسبه قابل و

1Lipschitz



انتگرو‐دیفرانسیل معادلات حل در شبکه بدون روش های کاربرد ۵۴
ستاره ها، شبکه اندازه  از بالا کران یک .٣. ٣ .۴ فرض

R = sup
c∈Ω̄

{h(ST (c))} .

به طوری که، ،{wj} مشتقات از یکنواخت کران یک .۴ .٣ .۴ فرض
∥Dµwj∥ ⩽ Gq

R|µ| , ١ ⩽ |µ| ⩽ q,

می باشد. (q = ١,٢) ، Gq > ٠ ثابت آن در که
انعطاف قابل منحنی یک با  را x,y ∈ Ω̄ نقطه دو هر که دارد وجود λ ⩾ ٠ چون عددی .۵ .٣ .۴ فرض

به طوری که، می سازد مرتبط به هم Γ ∈ Ω̄ مانند
|Γ| ⩽ λ∥x− y∥.

داریم، را (٣. ٢ .۴) قضیه اکنون شده است. تایید زوپا توسط [٣٠] در شرایط این همه
مانند، (q = ١,٢) ،Cq ثابت های .٣. ٢ .۴ قضیه

C١ = C١(γ, d,M, G١, CB١),

C٢ = C٢(γ, d,M, G٢, CB١, CB٢),

داریم، u ∈ Cq,١(Ω̄) هر برای به طوری که دارند وجود
∥Dµu−Dµuh∥L∞(Ω) ⩽ CqRq+١−|µ||u|q,١, ٠ ⩽ |µ| ⩽ q. (٢٠ .۴)

بسیار مرزی نقاط نزدیکی در می تواند CN q(ST (c)) عدد شده، مشخص [٣٠] در که همان طور
ادامه برای همچنین شد. خواهد رفع تقریباً q = ٢ با، کلی خطای تقریب در مشکل این شود. بزرگ

،[٣٢] کند صدق زیر ویژگی در عددی انتگرال گیری که می کنیم ∫∣∣∣∣فرض
ω

Q dx−
∫ ∗

ω

Q dx

∣∣∣∣ ⩽ η |ω| ∥Q∥L∞(ω), (٢١ .۴)
عملگر می گیریم. نظر در را (٢ .۴)‐(۶ .۴) شرایط با را (۵ .۴) ولترا‐فردهلم انتگرو‐دیفرانسیل معادله

می کنیم، تعریف زیر به شکل ، [a, x] ⊆ [a, b] برای Cp باناخ فضای در را £(u(x)) انتگرالی
£(u(x)) = u(a) +

∫ x

a

F

(
t, u(t),

∫ t

a

K١(t, s, u(s)) ds,
∫ b

a

K٢(t, s, u(s)) ds
)

dt, (٢٢ .۴)
(۵ .۴) انتگرو‐دیفرانسیل معادله (٢ .۴)‐(۶ .۴) شرایط تحت که می کند تضمین باناخ ثابت نقطه  قضیه

می باشد. یکتا جواب دارای
(١٨ .۴) معادله  جواب uh∗(x) و (١٢ .۴) معادله  جواب uh(x) ، (۵ .۴) معادله  جواب u(x) که می کنیم فرض

می کنیم. اثبات را آن سپس و مطرح (۵ .۴) کلی به شکل معادله هایی برای را زیر قضیه حال باشد.

K٢ و K١ ، F و باشد R از کراندار مجموعه  زیر Ω آن در که u ∈ Cq,١(Ω̄) کنید فرض .٣. ٣ .۴ قضیه
(٢١ .۴) رابطه  در عددی انتگرال و [a, x] ⊆ Ω = [a, b] همچنین و کنند صدق (۵ .۴) معادله  شرایط در

داریم، اینصورت در کند. صدق
∥£(u(x))−£(uh∗(x))∥L∞(Ω) ⩽ M١|u|q,١ +M٢∥u∥L∞(Ω), (٢٣ .۴)



۵۵ خطا آنالیز
داریم، نتیجه در

∥u− uh∗∥L∞(Ω) ⩽ M١|u|q,١ +M٢∥u∥L∞(Ω), (٢۴ .۴)

آن، در که

M١ =
(
(b− a)β١ + (b− a)٢(γ١β٢ + γ٢β٣) + (b− a)٢η(c١β٢ + c٢β٣)

)
CqRq+١,

و
M٢ = (b− a)٢η(c١β٢ + c٢β٣),

نوشت، می توان £ عملگر تعریف به توجه با برهان.

∥£(u(x))−£(uh∗(x))∥L∞(Ω) ⩽ ∥£(u(x))−£(uh(x))∥L∞(Ω)+∥£(uh(x))−£(uh∗(x))∥L∞(Ω) (٢۵ .۴)

‐(٨ .۴) شرایط و (٣. ٢ .۴) قضیه به کار گیری با که است بخش دو شامل (٢۵ .۴) رابطه  راست سمت
داریم، بخش هر برای (٢ .۴)

∥£(u(x))−£(uh(x))∥L∞(Ω)

=

∥∥∥∥∥
∫ x

a

F

(
t, u(t),

∫ t

a

K١(t, s, u(s)) ds,
∫ b

a

K٢(t, s, u(s)) ds
)

dt

−
∫ x

a

F

(
t, uh(t),

∫ t

a

K١(t, s, uh(s)) ds,
∫ b

a

K٢(t, s, uh(s)) ds
)

dt

∥∥∥∥∥
L∞(Ω)

⩽ (b− a)

∥∥∥∥∥F
(
t, u(t),

∫ t

a

K١(t, s, u(s)) ds,
∫ b

a

K٢(t, s, u(s)) ds
)

−F

(
t, uh(t),

∫ t

a

K١(t, s, uh(s)) ds,
∫ b

a

K٢(t, s, uh(s)) ds
)∥∥∥∥∥

L∞(Ω)

⩽ (b− a)

(
β١∥u(t)− uh(t)∥L∞(Ω) + β٢

∥∥∥∥∫ t

a

K١(t, s, u(s)) ds−
∫ t

a

K١(t, s, uh(s)) ds
∥∥∥∥
L∞(Ω)

+β٣
∥∥∥∥∥
∫ b

a

K٢(t, s, u(s)) ds−
∫ b

a

K٢(t, s, uh(s)) ds
∥∥∥∥∥
L∞(Ω)


⩽ (b− a)

(
β١∥u(t)− uh(t)∥L∞(Ω) + β٢(b− a)

∥∥K١(t, s, u(s))−K١(t, s, uh(s))
∥∥
L∞(Ω)

+β٣(b− a)
∥∥K٢(t, s, u(s))−K٢(t, s, uh(s))

∥∥
L∞(Ω)

)
⩽ (b− a)

(
β١∥u(t)− uh(t)∥L∞(Ω) + β٢(b− a)γ١∥u(t)− uh(t)∥L∞(Ω) + β٣(b− a)γ٢∥u(t)− uh(t)∥L∞(Ω)

)
= (b− a) (β١ + β٢γ١(b− a) + β٣γ٢(b− a)) ∥u(t)− uh(t)∥L∞(Ω)

⩽ (b− a) (β١ + β٢γ١(b− a) + β٣γ٢(b− a)) CqRq+١|u|q,١,
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داریم، همچنین و

∥£(uh(x))−£(uh∗(x))∥L∞(Ω)

=

∥∥∥∥∥
∫ x

a

F

(
t, uh(t),

∫ t

a

K١(t, s, uh(s)) ds,
∫ b

a

K٢(t, s, uh(s)) ds
)

dt

−
∫ x

a

F

(
t, uh(t),

∫ t∗

a

K١(t, s, uh(s)) ds,
∫ b∗

a

K٢(t, s, uh(s)) ds
)

dt

∥∥∥∥∥
L∞(Ω)

⩽ (b− a)

∥∥∥∥∥F
(
t, uh(t),

∫ t

a

K١(t, s, uh(s)) ds,
∫ b

a

K٢(t, s, uh(s)) ds
)

−F

(
t, uh(t),

∫ t∗

a

K١(t, s, uh(s)) ds,
∫ b∗

a

K٢(t, s, uh(s)) ds
)∥∥∥∥∥

L∞(Ω)

⩽ (b− a)

(
β٢
∥∥∥∥∫ t

a

K١(t, s, uh(s)) ds−
∫ t∗

a

K١(t, s, uh(s)) ds
∥∥∥∥
L∞(Ω)

+β٣
∥∥∥∥∥
∫ b

a

K٢(t, s, uh(s)) ds−
∫ b∗

a

K٢(t, s, uh(s)) ds
∥∥∥∥∥
L∞(Ω)


⩽ (b− a)

(
β٢(b− a)η

∥∥K١(t, s, uh(s))
∥∥
L∞(Ω)

+ β٣(b− a)η
∥∥K٢(t, s, uh(s))

∥∥
L∞(Ω)

)
⩽ (b− a)

(
c١β٢(b− a)η

∥∥uh∥∥
L∞(Ω)

+ c٢β٣(b− a)η
∥∥uh∥∥

L∞(Ω)

)
⩽ (b− a)٢η (c١β٢ + c٢β٣)

∥∥uh∥∥
L∞(Ω)

⩽ (b− a)٢η (c١β٢ + c٢β٣)
(
∥u∥L∞(Ω) +

∥∥u− uh
∥∥
L∞(Ω)

)
⩽ (b− a)٢η (c١β٢ + c٢β٣)

(
∥u∥L∞(Ω) + CqRq+١ |u|q,١

)
داریم، (٢۵ .۴) رابطه  و قبل نامساوی دو به توجه با

∥£(u(x))−£(uh∗(x))∥L∞(Ω) ⩽ ∥£(u(x))−£(uh(x))∥L∞(Ω) + ∥£(uh(x))−£(uh∗(x))∥L∞(Ω)

⩽ (b− a) (β١ + β٢γ١(b− a) + β٣γ٢(b− a)) CqRq+١|u|L∞(Ω)

+ (b− a)٢η (c١β٢ + c٢β٣)
(
∥u∥L∞(Ω) + CqRq+١ |u|q,١

)
=
(
(b− a)β١ + (β٢γ١ + β٣γ٢)(b− a)٢ + (b− a)٢η(c١β٢ + c٢β٣)

)
CqRq+١|u|q,١

+ (b− a)٢η(c١β٢ + c٢β٣)∥u∥L∞(Ω)

= M١|u|q,١ +M٢∥u∥L∞(Ω)

نوشت، می توان uh∗ و u ثابت نقطه  خاصیت به کارگیری با نتیجه در
∥u− uh∗∥L∞(Ω) = ∥£(u(x))−£(uh∗(x))∥L∞(Ω)

⩽
(
(b− a)β١ + (β٢γ١ + β٣γ٢)(b− a)٢ + (b− a)٢η(c١β٢ + c٢β٣)

)
CqRq+١|u|q,١

+ (b− a)٢η(c١β٢ + c٢β٣)∥u∥L∞(Ω)

= M١|u|q,١ +M٢∥u∥L∞(Ω)



۵٧ عددی نتایج

عددی نتایج ۴ .۴
روش با را انتگرو‐دیفرانسیل معادله  چند شده، معرفی روش کارایی دادن نشان برای بخش، این در

می نماییم. حل شده بیان
می گیریم. نظر در را زیر ولترا‐فردهلم انتگرو‐دیفرانسیل معادله .١ .۴ .۴ uمثال

′(x) = ٢ex − ٢ +
∫ x

٠ u(t) dt+
∫ ١

٠ u(t) dt,
u(٠) = ٠,

برای را پیشنهادی روش مراحل ابتدا در می باشد. u(x) = xex برابر معادله این تحلیلی جواب که
چند جمله ای با [٠, ١] بازه  در پراکنده نقطه  سه با x = ٠٫٣۵ تست نقطه  در معادله این جواب تقریب
سپس می دهیم. نشان نقطه ای سه گاوس‐لژاندر عددی انتگرال گیری انتخاب و درجه یک از پایه ای
ارائه ١ .۴ جدول در متفاوت پراکنده  نقاط تعداد با را پیشنهادی عددی روش به کارگیری از حاصل نتایج

نمود. مشاهده ١ .۴ شکل  در می توان را m = ٣ و N = ۵١ برای خطا قدرمطلق همچنین می هیم.
می گیریم، نظر در را زیر پراکنده  نقاط مجموعه

X = {٠, ٠٫۵, ١} := {x١, x٢, x٣},

گرفتن، نظر در با
uh(x) =

٣∑
j=١

ϕj(x)uj , u′
h
(x) =

٣∑
j=١

ϕj,x(x)uj ,

داریم، انتگرو‐دیفرانسیل معادله  در جایگزینی با حال
٣∑

j=١

(
ϕj,x(x)−

∫ x

٠
ϕj(t) dt−

∫ ١
٠
ϕj(t) dt

)
uj = ٢ex − ٢,

ادغام با و می کنیم تبدیل فردهولم به را ولترا انتگرال s ∈ [٠, ١] و t ∈ [٠, x] که t = xs متغیر تغییر با
داریم، انتگرال ها،

٣∑
j=١

(
ϕj,x(x)−

∫ ١
٠
(xϕj(xs) + ϕj(s)) ds

)
uj = ٢ex − ٢

این، بنابر کنند صدق بالا تساوی در پراکنده نقاط چون
∑٣

j=١
(
ϕj,x(xi)−

∫ ١
٠ (xiϕj(xis) + ϕj(s)) ds

)
uj = ٢exi − ٢,

i = ١,٢,٣,
وزن های، و گره نقاط با نقطه ای  سه گاوس‐لژاندر عددی انتگرال گیری به کارگیری با حال

[θk] :=


−٧٫٧۴۶٠ × ١−١٠

٠
٧٫٧۴۶٠ × ١−١٠

 , [ωk] :=


۵٫۵۵۵۶ × ١−١٠
٨٫٨٨٨٩ × ١−١٠
۵٫۵۵۵۶ × ١−١٠

 , k = ١,٢,٣,
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داریم،

∑٣
j=١
(
ϕj,x(xi) +

∑٣
k=١

(
− ١٢xiϕj(xiθk)− ١٢ϕj(θk)

)
ωk

)
uj = ٢exi − ٢,

i = ١,٢,٣,
(٢۶ .۴)

داریم، پیشنهادی روش در نیاز مورد ماتریس های محاسبه  و (٢۶ .۴) به توجه با
با، است برابر j = ١,٢,٣ برای تست نقطه  در ساختار توابع ماتریس

A := [ϕj(٠٫٣۵)] = [۴٫٨٨٣٣ × ١−١٠ ٣٫٣٣٣٣ × ١−١٠ ١٫٨٣٣٣ × ١−١٠] ,
است، زیر به شکل i, j = ١,٢,٣ برای پراکنده نقاط در ساختار توابع ماتریس

AA := [ϕj(xi)]i,j =


١ ٠ ٠

٣٫٣٣٣٣ × ١−١٠ ٣٫٣٣٣٣ × ١−١٠ ٣٫٣٣٣٣ × ١−١٠
٠ ٠ ١

 ,

است، زیر به شکل i, j = ١,٢,٣ برای پراکنده نقاط در ساختار توابع مشتق ماتریس

Ax = A,١ := [ϕj,x(xi)]i,j =


−٢ ٢ ٠
−١ ٠ ١
٠ −٢ ٢

 ,

است، زیر به شکل j, k = ١,٢,٣ برای گاوس‐لژاندر نقاط در ساختار توابع ماتریس

[ϕj(θk)]k,j :=


٢٫٧۶٩٨ × ١−١٠ ٣٫٣٣٣٣ × ١−١٠ ٣٫٨٩۶٨ × ١−١٠

٠ ۵٫٠٠٠٠ × ١−١٠ ۵٫٠٠٠٠ × ١−١٠
٠ ١٫١٢٧٠ × ١−١٠ ٨٫٨٧٣٠ × ١−١٠

 ,

,GK(iبه علاوه، j) :=
∑٣

k=١
(
− ١٢xiϕj(xiθk)− ١٢ϕj(θk)

)
ωk,

i, j = ١,٢,٣,

GK =


−٣٫٢۶٩۴ × ١−١٠ −٣٫۴۶١٢ × ١−١٠ −٣٫٢۶٩۴ × ١−١٠
−۶٫٢٩٠٢ × ١−١٠ −۴٫٩١٩۵ × ١−١٠ −٣٫٧٩٠٢ × ١−١٠
−۶٫۵٣٨٨ × ١−١٠ −۶٫٩٢٢۴ × ١−١٠ −۶٫۵٣٨٨ × ١−١٠

 ,

و
F (i, j) := ϕj,x(xi) +GK(i, j), i, j = ١,٢,٣,
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آن، در که

F =


١ ٠ ٠

−١٫۶٢٩٠ −۴٫٩١٩۵ × ١−١٠ ۶٫٢٠٩٨ × ١−١٠
−۶٫۵٣٨٨ × ١−١٠ −٢٫۶٩٢٢ × ١−١٠ ١٫٣۴۶١

 ,

داریم، نظر مورد انتگرو‐دیفرانسیل معادله  ناهمگن بخش به توجه با

f(x) := ٢ex − ٢, fi :=


f(x١)
f(x٢)
f(x٣)

 =


٠

١٫٢٩٧۴
٣٫۴٣۶۶

 ,

این، بنابر

U :=


û١
û٢
û٣

 , U = F−١ × fi =


−١٫٧٠٣٨ × ١٧−١٠
−٣٫٨٣٨٣ × ١−١٠

١٫٧٨۵٣

 ,

درجه یک از پایه چندجمله ای و پراکنده نقطه  سه با u(٠٫٣۵) خطای قدرمطلق و تقریبی مقدار نتیجه در
با، است برابر

u(٠٫٣۵) ≃ uh(٠٫٣۵) =
٣∑

j=١
ϕj(٠٫٣۵)ûj = A× U = ١٫٩٩٣۶ × ١−١٠,

و
خطا =قدرمطلق |u(٠٫٣۵)− uh(٠٫٣۵)| = ٢٫٩٧٣٣ × ١−١٠,

١ .۴ .۴ مثال برای عددی نتایج :١ .۴ جدول

m = ٣ m = ٢ m = ١ N

∥e∥∞ ∥e∥∞ ∥e∥∞

١٫١٠ × ٣−١٠ ۶٫٧٨ × ٢−١٠ ٣٫٢٩ × ٢−١٠ ١١
٢٫٨٩ × ١٠−۴ ٢٫٩٣ × ٢−١٠ ١٫٠٠ × ٢−١٠ ١٧
١٫٣١ × ١٠−۶ ۵٫٧٠ × ٣−١٠ ٨٫١٩ × ١٠−۴ ۵١
۴٫٨۵ × ٨−١٠ ٧٫٧٣ × ١٠−۴ ٣٫۶۵ × ١٠−۴ ١٠١

می گیریم، نظر در از را زیر غیرخطی ولترا‐فردهلم انتگرو‐دیفرانسیل معادله .٢ .۴ .۴ مثال
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١ .۴ .۴ مثال نقطه ۵١ با ٣ درجه از تقریب برای خطا قدرمطلق :١ .۴ شکل

u
′(x) = xe−x٢ − x+ ١١۶ +

∫ x

٠ ٢txe−u٢(t) dt−
∫ ١

٠ (١ + t)u(t) dt,

u(٠) = ٠,
N و m برای روش از حاصل خطای میزان می باشد. u(x) = x برابر معادله این تحلیلی جواب که
قدرمطلق و معادله جواب تحلیلی مقدار با عددی مقدار مقایسه است. آمده ٢ .۴ جدول در متفاوت های

است. شده ارائه ٢ .۴ شکل در خطا

٢ .۴ .۴ مثال برای عددی نتایج :٢ .۴ جدول

m = ٢ m = ١ N

∥e∥∞ ∥e∥∞

٣٫٨٣ × ١−١٠۵ ١٫١١ × ١−١٠۵ ٣
٣٫١١ × ١−١٠۵ ٨٫٨٨ × ١−١٠۶ ۵
٣٫١١ × ١−١٠۵ ٣٫٣٣ × ١−١٠۶ ١١

غیرخطی ولترا‐فردهلم انتگرو‐دیفرانسیل معادله .٣ .۴ .۴ uمثال
′(x) = f(x) + ١۴

∫ x

٠ (x− t)u٢(t) dt+ ∫ ١
٠ tu(t) dt,

u(٠) = ٠,
آن، در که بگیرید نظر در را

f(x) =x٢ cosx+ ٢x sinx− ١
٢۴٠x۶ − ١

۶۴
((٢x۴ − ١٨x٢ + ١۵) cos٢x

+
(
−٨x٣ + ٢۴x) sin٢x− ١۵)− ۵ cos ١ + ٣ sin ١,
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٢ .۴ .۴ مثال برای خطا قدرمطلق و نقطه ١١ با ٢ درجه  از عددی تقریب :٢ .۴ شکل

ماکزیمم و عددی روش حاصل نتایج می باشد. u(x) = x٢ sinx برابر معادله این تحلیلی جواب و
است. شده ارائه ٣ .۴ جدول در N و m متفاوت مقادیر برای خطا

٣ .۴ .۴ مثال برای عددی نتایج :٣ .۴ جدول

m = ٣ m = ٢ m = ١ N

∥e∥∞ ∥e∥∞ ∥e∥∞

٩٫٧٠ × ٣−١٠ ٢٫٠٢ × ١−١٠ ۵٫۶١ × ٢−١٠ ۵
١٫١٠ × ٣−١٠ ۴٫١١ × ٢−١٠ ١٫۶٨ × ٢−١٠ ٩
٢٫٩٣ × ١٠−۵ ۴٫٨٠ × ٣−١٠ ٢٫٢٠ × ٣−١٠ ٢١
١٫٨١ × ١٠−۶ ١٫١٠ × ٣−١٠ ٣٫٨٠ × ١٠−۴ ۵١
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٣ .۴ .۴ مثال برای خطا قدرمطلق و نقطه ۵١ با ٣ درجه  از عددی تقریب :٣ .۴ شکل

می گیریم، نظر در را زیر انتگرو‐دیفرانسیل معادله .۴ .۴ .۴ مثال
u

′(x) = ٢ − ۵x− ٣x٢ + ٢٠x٣ − x۵ +
∫ x

٠ u(t) dt+
∫ ١
−١)١ + xt)u(t) dt,

u(٠) = ١,
تحلیلی مقدار با عددی مقدار مقایسه می باشد. u(x) = ١+۶x+۵x۴ برابر معادله این تحلیلی جواب که

است. شده ارائه ۴ .۴ شکل در خطا قدرمطلق و معادله جواب
انتگرو‐دیفرانسیل معادلات از رده ای عددی حل در پیشنهادی روش کارایی دادن نشان برای

می دهیم. اختصاص معادلات نوع این به را پایانی مثال های دو بعدی،
می گیریم، نظر در را زیر مرکب ولترا‐فردهلم انتگرو‐دیفرانسیل معادله .۵ .۴ .۴ مثال


∂u(x,y)

∂x −
∫ y

٠
∫ ١

٠ ysu(s, t) dsdt = ٢x− ١۴y٢ + ١۶y۴,
u(٠, y) = −y٢,



۶٣ عددی نتایج
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۴ .۴ .۴ مثال برای خطا قدرمطلق و نقطه ١٧ با ۴ درجه  از عددی تقریب :۴ .۴ شکل

برای روش از حاصل خطای میزان می باشد. u(x, y) = x٢ − y٢ برابر معادله این تحلیلی جواب که
m = ٢ و N = ٢١ × ٢١ برای خطا قدرمطلق همچنین است. آمده ۴ .۴ جدول در متفاوت های N و m

است. شده ارائه ۵ .۴ شکل در

می گیریم، نظر در را زیر دو بعدی ولترا انتگرو‐دیفرانسیل معادله مثال، آخرین عنوان به .۶ .۴ .۴ مثال

ϕ(x, y) + ψ(x, y) = f(x, y), ٠ ⩽ x, y ⩽ ١,
آن، در که

ϕ(x, y) =
∂u(x, y)

∂x
+
∂u(x, y)

∂y
, ψ(x, y) = −

∫ x

٠

∫ y

٠
u(s, t) dtds,

f(x, y) = −١ + ex + ey + ex+y,



انتگرو‐دیفرانسیل معادلات حل در شبکه بدون روش های کاربرد ۶۴
۵ .۴ .۴ مثال برای عددی نتایج :۴ .۴ جدول

m = ٢ m = ١ N

∥e∥∞ ∥e∥∞

٢٫٣٩ × ١−١٠۴ ١٫۴٢ × ١−١٠ ٣ × ٣
١٫١۴ × ١−١٠۴ ١٫۶٨ × ٢−١٠ ۵ × ۵
١٫٢۵ × ١−١٠۴ ۴٫٧٠ × ٣−١٠ ١١ × ١١
٢٫١۵ × ١−١٠۴ ۵٫۶۶ × ١٠−۴ ٢١ × ٢١
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۵ .۴ .۴ مثال نقطه ٢١ × ٢١ با ٢ درجه از تقریب برای خطا قدرمطلق :۵ .۴ شکل

می باشد، زیر به صورت معادله اولیه شرایط و
u(x, ٠) = ex,

u(٠, y) = ey,

N و m برای روش از حاصل خطای میزان می باشد. u(x, y) = ex+y برابر معادله این تحلیلی جواب که
در m = ٣ و N = ٣٣ × ٣٣ برای خطا قدرمطلق همچنین است. آمده ۵ .۴ جدول در متفاوت های

است. شده ارائه ۶ .۴ شکل



۶۵ عددی نتایج
۶ .۴ .۴ مثال برای عددی نتایج :۵ .۴ جدول

m = ٣ m = ٢ m = ١ N
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١٫٨٠ × ٣−١٠ ١٫٢٣ × ٢−١٠ ١٫٠۶ × ٢−١٠ ١١ × ١١
٣٫٢۴ × ١٠−۵ ٩٫۵٠ × ٣−١٠ ۶٫١٠ × ٣−١٠ ٢١ × ٢١
١٫۴٢ × ١٠−۵ ۴٫٢٠ × ٣−١٠ ٢٫۴٠ × ٣−١٠ ٣٣ × ٣٣
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۶ .۴ .۴ مثال نقطه ٣٣ × ٣٣ با ٣ درجه از تقریب برای خطا قدرمطلق :۶ .۴ شکل



انتگرو‐دیفرانسیل معادلات حل در شبکه بدون روش های کاربرد ۶۶

آتی کارهای برای پیشنهاد و نتیجه گیری
بدون شبکه، روش های که، برسیم نتیجه این به می توانیم رساله، این در شده مطرح مباحث مجموعه از
نسبت روش ها این برتری و می زنند تقریب پراکنده نقاط در تابع مقادیر حسب بر را مفروض تابع
و ساده تر تعمیم و نیستند وابسته دامنه هندسی شکل به که است این متناهی عناصر روش های به
مربعات کمترین و متحرک مربعات کمترین بدون شبکه روش های دارند. بالاتر ابعاد به کم هزینه تر
و انتگرال معادلات مختلف انواع قادرند که هستند زیبایی عددی روش های جمله از درونیاب، متحرک
و خطی ولترا‐فردهلم انتگرو‐دیفرانسیل و انتگرال معادلات بخصوص دیفرانسیل انتگرو‐ معادلات
روش های با انتگرو‐دیفرانسیل معادلات و انتگرال معادلات حل از حاصل نتایج کنند. حل غیرخطی
تحلیلی جواب به نزدیک و دقیق بسیار روش های این با عددی تقریب که است این بیانگر پیشنهادی
انتگرو‐ معادلات حل است شده آغاز آنها روی بر کار که آتی، تحقیقاتی کار عنوان به می باشد. معادله
درونیاب متحرک مربعات کمترین روش به انتگرو‐دیفرانسیل معادلات دستگاه حل و دیفرانسیل

می باشد.
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Aabstract

Many problems are modeled with ordinary differential equations or partial differential equa-

tions, we can transform most of them to integral or integro-differential equations with initial or

boundary conditions. In order to solve these equations we require numeric methods, one of the

methods of multi-variable approximation on global domains is approximation with the finite ele-

ment method which takes place by meshing of the domain, this method is the base of many numeric

methods particularly in solving partial differential equations.

There is another methods known as the meshfree methods, in these approachs meshing of the

domain as finite elements is not used and instead of it the approximation is implemented based on

a set of points which have been distributed in the region.

Easier generalization to higher dimensions is one of the advantages of the meshfree methods

compared to the finite element method,in this thesis we study the meshfree methods of moving least

squares and interpolating moving least squares to numerically solve some integral and nonlinear

integro-differential equations.

Keywoards: Integral equations, Volterra-Fredholm integro-differential equations, Harr space,

moving least square .
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