




ری  اض  ی ع  ل  وم دان  ش  ک  ده

ج  ب  ر گ  رای  ش م  ح  ض، ری  اض  ی رش  ت  ه
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م  ه  رب  ان  م م  ادر پ  اك روح و ج  ان  م از ع  زی  زت  ر پ  در ب  ه ت  ق  دی  م
آم  وخ  ت  م، آن چ  ه از ف  رات  ر آم  وخ  ت  ن راه اب  ت  داي در ای  ن  ک م  ن

ع  ش  ق، م  ق  دس ن  ام ب  ه م  ی خ  ورم س  وگ  ن  د
م  ادر، ص  ب  ر خ  ام  وش ل  ح  ظ  ه ه  اي ب  ه س  وگ  ن  د

پ  در، اس  ت  وار دس  ت  ان گ  رم  ی ب  ه س  وگ  ن  د
ص  ب  ر و ع  ش  ق را ن  ام  ش ه  رچ  ه ب  ا ک  ه ان  دوخ  ت  ه ای  س  ت ک  م  ت  ری  ن ای  س  ت  اده ام ب  راب  رش در ام  روز آن چ  ه

م  ی ک  ن  م. ت  ق  دی  م م  ادر ت  و ب  ه و پ  در ت  و ب  ه م  ی ن  ام  ن  د، اس  ت  واري و
در را ن  ور از س  ه  م  ی ت  ا ب  خ  ش  ی  دن  د ب  ی دری  غ خ  ود ع  ل  م وج  ودي س  رم  ای  ه  از ک  ه ک  س  ان  ی ب  ه ت  ق  دی  م و

... ن  ه  ن  د ج  اي خ  ود

اس  ت.)) م  ن راه پ  ن  اه ((ن  ف  س ه  ای  ت  ان

ز



س  پ  اس گ  زاري...

اس  ت گ  ش  اده ک  ه دس  ت  ی
م  ی ب  رد،

م  ی آورد،
م  ی ش  ود ره  ن  م  ون  ت

ک  ه خ  ان  ه ئ  ی ب  ه
اس  ت. ب  خ  ش گ  رم  ی  دل  چ  س  ب  ش ن  ور

ن  ب  اش  د. آخ  ري و اس  ت آخ  ر و ن  ب  وده اول  ی او از پ  ی  ش و اس  ت اول ک  ه را خ  دای  ی س  پ  اس
اس  ت ش  ده م  ح  ق  ق ک  ه اک  ن  ون ف  رم  ود. ع  ط  ا را ع  ل  م وادي ب  ه راه ی  اب  ی ت  وف  ی  ق ک  ه اس  ت م  ن ب  ر ع  زوج  ل خ  داي م  ن  ت
روش  ن  گ  ر وج  ودش  ان ش  م  ع آورده ه  اي ک  ه را ب  زرگ  ان  ی ن  ه  م ارج ک  ه م  ی دان  م واج  ب خ  ود ب  ر ف  ص  ل، س  ر پ  ای  ان ب  ه رس  ی  دن

اس  ت. راه  م
ک  ه ه  اش  م  ی اب  راه  ی  م دک  ت  ر آق  اي ج  ن  اب ارج  م  ن  دم اس  ت  اد م  ح  ض  ر ب  ه م  ی دارم ت  ق  دی  م را خ  ود ب  ی ش  ائ  ب  ه ي س  پ  اس
از خ  ال  ص  ان  ه و ص  ب  وران  ه دوره ای  ن ط  ی در ای  ش  ان اس  ت. ب  وده ع  ل  م  ی ام م  ش  ک  لات ی  اري ده  ن  ده ره  ن  م  وده  ای  ش  ان ه  م  واره

م  ی ب  اش  د. زدن  ی م  ث  ال  م  س  ئ  ول  ی  ت پ  ذی  ری  ش  ان و ن  ک  ردن  د دری  غ ح  م  ای  ت  ی ه  ی  چ
ن  ک  ات ه  م  واره ک  ه م  ی دارم اب  راز ص  م  ی  م  ان  ه آل ه  وز ع  ب  دال  ل  ه دک  ت  ر آق  اي ج  ن  اب م  ش  اور اس  ت  اد از را خ  ود ت  ش  ک  ر و ت  ق  دی  ر

ب  ود. م  س  ی  ر ای  ن گ  ره ه  اي راه  گ  ش  اي ای  ش  ان ب  ی  ان  ات و
و ج  ع  ف  ري ح  ی  در س  ی  د دک  ت  ر آق  اي ج  ن  اب م  وس  وي، اح  م  د س  ی  د دک  ت  ر آق  اي ج  ن  اب گ  رام  ی، داوران از ه  م  چ  ن  ی  ن،
س  پ  اس  گ  زارم. داش  ت  ن  د ب  رع  ه  ده را رس  ال  ه ای  ن ت  ص  ح  ی  ح و داوري زح  م  ت ک  ه خ  ورس  ن  دي رض  ا م  ه  دي دک  ت  ر آق  اي ج  ن  اب

دارم. را ت  ش  ک  ر ک  م  ال ع  زی  زم ب  رادر و م  ه  رب  ان  م م  ادر و پ  در از پ  ای  ان در
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ن  ام  ه ت  ع  ه  د
ش  اه  رود، ص  ن  ع  ت  ی دان  ش  گ  اه ری  اض  ی ع  ل  وم دان  ش  ک  ده م  ح  ض ری  اض  ی رش  ت  ه دک  ت  ري دان  ش  ج  وي زاده ح  م  ی  دي م  ری  م ای  ن  ج  ان  ب
راه  ن  م  ای  ی ت  ح  ت ، ن  اج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي از ت  وس  ی  ع ه  ای  ی در م  ن  ظ  م ع  ن  اص  ر س  اخ  ت  ار ب  ررس  ی ع  ن  وان ب  ا رس  ال  ه ن  وی  س  ن  ده

م  ی ش  وم: م  ت  ع  ه  د ه  اش  م  ی دک  ت  راب  راه  ی  م

اس  ت. ب  رخ  وردار اص  ال  ت و ص  ح  ت از و اس  ت ش  ده ان  ج  ام ای  ن  ج  ان  ب ت  وس  ط رس  ال  ه ای  ن در ت  ح  ق  ی  ق  ات �

اس  ت. ش  ده اس  ت  ن  اد اس  ت  ف  اده م  ورد م  رج  ع ب  ه پ  ژوه  ش گ  ران، دی  گ  ر پ  ژوه  ش ه  اي ن  ت  ای  ج از اس  ت  ف  اده در �

ارای  ه ه  ی  چ ج  ا در ام  ت  ی  ازي ی  ا م  درك ن  وع ه  ی  چ دری  اف  ت ب  راي دی  گ  ري ف  رد ی  ا خ  ود، ت  وس  ط ک  ن  ون ت  ا رس  ال  ه، ای  ن م  ط  ال  ب �
اس  ت. ن  ش  ده

ص  ن  ع  ت  ی دان  ش  گ  اه “ ن  ام ب  ا م  س  ت  خ  رج م  ق  الات و دارد، ت  ع  ل  ق ش  اه  رود ص  ن  ع  ت  ی دان  ش  گ  اه ب  ه اث  ر، ای  ن م  ع  ن  وي ح  ق  وق �
رس  ی  د. خ  واه  د چ  اپ ب  ه “ Shahrood University of Technology “ ی  ا “ ش  اه  رود

از م  س  ت  خ  رج م  ق  الات در ب  وده ان  د، ت  اث  ی  رگ  ذار رس  ال  ه اص  ل  ی ن  ت  ای  ج آوردن ب  ه دس  ت در ک  ه اف  رادي ت  م  ام م  ع  ن  وي ح  ق  وق �
م  ی گ  ردد. رع  ای  ت رس  ال  ه

و ض  واب  ط اس  ت، ش  ده اس  ت  ف  اده آن  ه  ا) ب  اف  ت ه  اي (ی  ا زن  ده م  وج  ود از ک  ه م  واردي در رس  ال  ه، ای  ن ان  ج  ام م  راح  ل ت  م  ام در �
اس  ت. ش  ده رع  ای  ت اخ  لاق  ی اص  ول

ش  ده اس  ت  ف  اده (ی  ا ی  اف  ت  ه دس  ت  رس  ی اف  راد ش  خ  ص  ی اط  لاع  ات ح  وزه ب  ه ک  ه م  واردي در رس  ال  ه، ای  ن ان  ج  ام م  راح  ل ت  م  ام در �
اس  ت. ش  ده رع  ای  ت ان  س  ان  ی اخ  لاق اص  ول و رازداري اص  ل اس  ت)،

زاده ح  م  ی  دي م  ری  م
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ن  ش  ر ح  ق و ن  ت  ای  ج م  ال  ک  ی  ت
و ن  رم اف  زاره  ا رای  ان  ه اي، ب  رن  ام  ه ه  اي ک  ت  اب، م  س  ت  خ  رج، ( م  ق  الات آن م  ح  ص  ولات و اث  ر ای  ن م  ع  ن  وي ح  ق  وق ت  م  ام �
در م  ق  ت  ض  ی، ن  ح  و ب  ه ب  ای  د م  ط  ل  ب ای  ن م  ی ب  اش  د. ش  اه  رود ص  ن  ع  ت  ی دان  ش  گ  اه ب  ه م  ت  ع  ل  ق ش  ده) س  اخ  ت  ه ت  ج  ه  ی  زات

ش  ود. ذک  ر م  رب  وط  ه ع  ل  م  ی ت  ول  ی  دات

ن  م  ی ب  اش  د. م  ج  از م  ن  ب  ع ذک  ر ب  دون رس  ال  ه ای  ن در م  وج  ود ن  ت  ای  ج و اط  لاع  ات از اس  ت  ف  اده �

ط





چ  ک  ی  ده

و راس  ت دوئ  و ،IFP خ  اص  ی  ت آب  ل  ی، م  ان  ن  د ح  ل  ق  ه ه  ای  ی از اس  ت  ف  اده ب  ا ارُ، ت  وس  ی  ع ه  اي س  اخ  ت  ار م  ط  ال  ع  ه ض  م  ن رس  ال  ه ای  ن در
ب  ه وی  ژگ  ی ه  ا ای  ن از اس  ت  ف  اده ب  ا ک  ن  ی  م. ب  ررس  ی ن  اج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي روي را ت  وج  ه ق  اب  ل ن  ت  ای  ج از ب  رخ  ی ب  رگ  ش  ت پ  ذی  ر
ه  م  چ  ن  ی  ن، م  ی گ  وی  ن  د. ج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي پ  س  رع  م  وه  اي آن ه  ا ب  ه دل  ی  ل ه  م  ی  ن ب  ه و م  ی ش  وی  م ن  زدی  ک ج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي
چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي در را ت  م  ی  ز و π-م  ن  ظ  م ن  ی  وم  ان، ف  ن م  وض  ع  ی ن  ی  وم  ان، ف  ن م  ن  ظ  م خ  ودت  وان، وارون پ  ذی  ر، ع  ن  اص  ر
اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي و R[x, x−1;α] اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ،R[x;α, δ] اری  ب
م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي در رادی  ک  ال ن  ظ  ري خ  واص ب  ررس  ی ض  م  ن ادام  ه در م  ی ن  م  ائ  ی  م. م  ش  خ  ص R((x−1;α, δ))

م  ی ن  م  ائ  ی  م. ت  ع  ی  ی  ن ن  ی  ز را آن ه  ا ج  ی  ک  ب  س  ون رادی  ک  ال ،R((x−1;α, δ)) اری  ب

ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي اری  ب؛ چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ب  رگ  ش  ت پ  ذی  ر؛ ح  ل  ق  ه ي آب  ل  ی؛ ح  ل  ق  ه ي ک  ل  ی  دي: ک  ل  م  ات
π-م  ن  ظ  م؛ ع  ن  اص  ر ج  ی  ک  ب  س  ون؛ IFP؛رادی  ک  ال خ  اص  ی  ت اری  ب؛ م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي راس  ت؛ دوئ  و ح  ل  ق  ه ي اری  ب؛

وارون پ  ذی  ر. ع  ن  اص  ر ن  ی  وم  ان؛ ف  ن م  وض  ع  ی ع  ن  اص  ر ن  ی  وم  ان؛ ف  ن م  ن  ظ  م ع  ن  اص  ر خ  ودت  وان؛ ع  ن  اص  ر ت  م  ی  ز؛ ع  ن  اص  ر

. 16U60 ،16U99 ث  ان  وی  ه: 16W60؛ ،16N40 ،16N20 ،16S15 ،16S36 اول  ی  ه: ری  اض  ی  ات: م  وض  وع  ی رده ب  ن  دي

ك
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١ ف  ص  ل

پ  ی  ش  گ  ف  ت  ار

اب  ت  دا در ش  د. م  ع  رف  ی 1933 س  ال در ار1ُ ن  روژي ری  اض  ی  دان ت  وس  ط ب  ار اول  ی  ن ارُ) (ت  وس  ی  ع ه  اي ارُ چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي
م  ورد در ک  ه س  والات  ی گ  رف  ت. ق  رار ب  ررس  ی م  ورد ب  ود، ک  وان  ت  وم م  ک  ان  ی  ک ری  اض  ی  ات  ی زی  رب  ن  اي ک  ه دی  ف  ران  س  ی  ل  ی ع  م  ل  گ  ر ح  ل  ق  ه ه  اي
و ارُ ت  وس  ی  ع ه  اي روي ب  ی  ش  ت  ر ت  ح  ق  ی  ق ب  راي دل  ی  ل  ی ب  ود، ب  رق  رار ب  ع  د ن  ظ  ری  ه ي و س  ازي م  وض  ع  ی ن  ظ  ری  ه ي ک  وان  ت  وم  ی، گ  روه
(ک  ه ی  اف  ت  ه ت  ع  م  ی  م دی  ف  ران  س  ی  ل  ی ت  وس  ی  ع ه  اي و ی  اف  ت  ه ت  ع  م  ی  م دوري ج  ب  ره  اي س  اخ  ت  اره  اي در اُر ت  وس  ی  ع ه  اي ش  د. آن ای  ده آل ه  اي

دارن  د. ف  راوان  ی ک  ارب  رد ه  س  ت  ن  د) دی  ف  ران  س  ی  ل  ی ع  م  ل  گ  ر ح  ل  ق  ه ه  اي اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ه  م  ان
پ  ل  ی ک  اه  ش  ی7 و ب  رگ  ش  ت پ  ذی  ر6 راس  ت5، دوئ  و ،4IFP خ  اص  ی  ت آب  ل  ی3، 2 -اول  ی  ه2، م  ان  ن  د ح  ل  ق  ه ه  ا م  خ  ت  ل  ف وی  ژگ  ی ه  اي
اه  م  ی  ت داد. ت  ع  م  ی  م را ج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي م  ی ت  وان خ  واص ای  ن ب  ا و م  ی ک  ن  ن  د ای  ج  اد ن  اج  اب  ه ج  ای  ی و ج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي ب  ی  ن
پ  وچ ی  ک ط  رف  ه ای  ده آل ه  ر آی  ا ک  ه م  ی ب  اش  د ک  وت  ه8 ح  دس ن  اج  اب  ه ج  ای  ی، ح  ل  ق  ه ه  اي ن  ظ  ری  ه ي در ح  ل  ق  ه ه  ا از رده ای  ن م  ط  ال  ع  ه ي
ب  رآورده را ح  دس ش  رای  ط ح  ل  ق  ه ه  ا ای  ن ک  ه داد ن  ش  ان ،[7] م  رج  ع در ب  ل9 م  ی ب  اش  د. پ  وچ دوط  رف  ه ای  ده آل ی  ک در م  ش  م  ول

م  ی ک  ن  ن  د.
ن  اج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي ن  ظ  ری  ه در م  ه  م  ی ن  ق  ش خ  ودت  وان و وارون پ  ذی  ر ع  ن  اص  ر م  ان  ن  د ح  ل  ق  ه اي ع  ن  اص  ر از ب  رخ  ی

1Ore
22-Primal
3Abelian
4Insertion-of-factors-property
5Right Duo
6Reversible
7Reduced
8Köthe’s conjecture
9Bell
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f(x) =
∑n

i=0 aix
i ∈ R[x] چ  ن  دج  م  ل  ه اي ،R ج  اب  ه ج  ای  ی ح  ل  ق  ه ي در م  ی دان  ی  م ک  ه ه  م  ان ط  ور م  ی ک  ن  ن  د. ای  ف  ا

ع  ن  اص  ر س  اخ  ت  ار ،[10] م  رج  ع در چ  ن10 .ai ∈ Nil(R) ،i ≥ 1 ه  ر ب  راي و a0 ∈ U(R) اگ  ر وت  ن  ه  ا اگ  ر اس  ت وارون پ  ذی  ر
آن گ  اه ب  اش  د، α-س  ازگ  ار و ب  رگ  ش  ت پ  ذی  ر R ح  ل  ق  ه ي اگ  ر ک  ه ک  رد ث  اب  ت او آورد. ب  ه دس  ت را R[x;α] ح  ل  ق  ه ي وارون پ  ذی  ر

.ai ∈ Nil(R) ،i ≥ 1 ه  ر ب  راي و a0 ∈ U(R) اگ  ر ت  ن  ه  ا و اگ  ر اس  ت وارون پ  ذی  ر f(x) = ∑n
i=0 aix

i ∈ R[x, α]

آن گ  اه ب  اش  د، ج  اب  ه ج  ای  ی ح  ل  ق  ه ي R اگ  ر ک  ه دادن  د ن  ش  ان ،[3 . 1 ل  م ،4] م  رج  ع در ب  داوي12 و ان  درس  ون11
خ  ودت  وان ه  اي ،[7 ن  ت  ی  ج  ه ،27] م  رج  ع در ک  واك15 و ک  ی  م14 ه  ن  گ13، ه  م  چ  ن  ی  ن، .Idem(R[x]) = Idem(R)

و ب  اش  د α-ص  ل  ب ح  ل  ق  ه ي R اگ  ر ک  ه ک  ردن  د ث  اب  ت آن  ه  ا آوردن  د. ب  ه دس  ت خ  اص  ی ش  رای  ط ت  ح  ت را R[x;α, δ] ح  ل  ق  ه ي
.e = e0 آن گ  اه ،e2 = e = e0 + e1x+ · · ·+ enx

n ∈ R[x;α, δ]

ف  ن م  ن  ظ  م را R ح  ل  ق  ه ي ش  د. ارائ  ه ن  وی  م  ان16 ف  ن ج  ان ت  وس  ط 1936 س  ال در ح  ل  ق  ه ه  ا، در ن  ی  وم  ان ف  ن م  ن  ظ  م م  ف  ه  وم
ه  م  چ  ن  ی  ن، .a = aba ک  ه ب  ه ط  وري ب  اش  د م  وج  ود b ∈ R م  ان  ن  د ع  ن  ص  ري ،a ∈ R ع  ن  ص  ر ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م ن  ی  وم  ان17
ب  راي ک  ه ب  ه ط  وري ب  اش  د م  وج  ود b ∈ R م  ان  ن  د ع  ن  ص  ري ،a ∈ R ع  ن  ص  ر ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م π-م  ن  ظ  م18 را R ح  ل  ق  ه ي
آب  ل  ی و π-م  ن  ظ  م ح  ل  ق  ه ه  اي م  ورد در م  ه  م  ی ن  ت  ای  ج ب  ه ،[6] م  رج  ع در ب  داوي .an = anban ب  اش  ی  م داش  ت  ه ،n ≥ 1 ب  رخ  ی
دوط  رف  ه ای  ده آل Nil(R) اگ  ر ت  ن  ه  ا و اگ  ر اس  ت آب  ل  ی و π-م  ن  ظ  م ،R دل  خ  واه ح  ل  ق  ه ي ک  ه ک  رد ث  اب  ت او ک  رد. پ  ی  دا دس  ت
ک  ه ب  ه ط  وري ب  اش  ن  د م  وج  ود w ∈ Nil(R) و u ∈ U(R) ،e ∈ Idem(R) ع  ن  اص  ر ،x ∈ R ه  ر ب  راي و ب  اش  د R از

.x = eu+ w

آن ه  ا دادن  د. ق  رار م  ط  ال  ع  ه م  ورد ج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي در را ت  م  ی  ز19 و م  ن  ظ  م ع  ن  اص  ر ،[4] م  رج  ع در ب  داوي و ان  درس  ون
a ∈ R ع  ن  ص  ر ک  ه ک  ردن  د ث  اب  ت و ب  ررس  ی را ن  ی  وم  ان ف  ن م  ن  ظ  م ع  ن  اص  ر و وارون پ  ذی  ر و خ  ودت  وان ع  ن  اص  ر ب  ی  ن راب  ط  ه ي اب  ت  دا
.a = ue ب  اش  ی  م داش  ت  ه e ∈ Idem(R) و u ∈ U(R) ع  ن  اص  ر از ب  رخ  ی ب  راي اگ  ر وت  ن  ه  ا اگ  ر اس  ت م  ن  ظ  م ن  ی  وم  ان ف  ن
ی  ا ص  ف  ر ب  ع  د ب  ا R اگ  ر ت  ن  ه  ا و اگ  ر اس  ت پ  وچ ت  وان ی  ا ن  ی  وم  ان ف  ن م  ن  ظ  م ،R ح  ل  ق  ه ي از ع  ن  ص  ر ه  ر دادن  د ن  ش  ان آن ه  ا ه  م  چ  ن  ی  ن،
ت  م  ام اگ  ر ت  ن  ه  ا و اگ  ر اس  ت (ب  ول  ی) ن  ی  وم  ان ف  ن م  ن  ظ  م ،R غ  ی  ردام  ن  ه ح  ل  ق  ه ي ی  ک ه  م  چ  ن  ی  ن، و ب  اش  د ش  ب  ه م  وض  ع  ی ی  ا و ک  اه  ش  ی
ح  ل  ق  ه ي در را ت  م  ی  ز و م  ن  ظ  م ع  ن  اص  ر م  رج  ع ای  ن در ن  وی  س  ن  دگ  ان ب  اش  ن  د. (ب  ول  ی) ن  ی  وم  ان ف  ن م  ن  ظ  م آن ص  ف  ر م  ق  س  وم ع  ل  ی  ه ه  اي

ک  ردن  د. م  ش  خ  ص ن  ی  ز R[x] چ  ن  دج  م  ل  ه اي
اه  م  ی  ت ح  ائ  ز ت  وان  ی س  ري ه  اي و چ  ن  دج  م  ل  ه اي ه  ا ت  وس  ی  ع در ب  ه وی  ژه، ح  ل  ق  ه ه  ا ج  ی  ک  ب  س  ون20 رادی  ک  ال ت  ع  ی  ی  ن
چ  پ ای  ده آل ه  اي ه  م  ه ي اش  ت  راك ب  ا ک  ه م  ی ده  ن  د ن  ش  ان J(R) ن  م  اد ب  ا را R ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال م  ی ب  اش  د.
ه  م  چ  ن  ی  ن، اس  ت. ب  راب  ر R م  اک  س  ی  م  ال راس  ت ای  ده آل ه  اي ه  م  ه ي اش  ت  راك ب  ا م  ع  ادل ب  ه ط  ور ی  ا اس  ت، ب  راب  ر R م  اک  س  ی  م  ال

10Chen
11Anderson
12Badawi
13Hong
14Kim
15Kwak
16John Von Neumann
17Von Neumann regular
18π-regular
19Clean
20Jacobson radical
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ک  ه داد ن  ش  ان ،[3] م  رج  ع در آم  ی  ت  س  ور23 .J(R) = 0 ه  رگ  اه م  ی ن  ام  ی  م J-ن  ی  م س  اده22 ی  ا ن  ی  م اب  ت  دائ  ی21 را R ح  ل  ق  ه ي
ح  ل  ق  ه ي آن گ  اه ب  اش  د، ن  داش  ت  ه ن  اص  ف  ر پ  وچ ای  ده آل R اگ  ر ک  ه ک  رد ث  اب  ت او ه  م  چ  ن  ی  ن، .J(R[x]) =

(
J(R[x]) ∩R

)
[x]

ت  وس  ی  ع ج  ی  ک  ب  س  ون رادی  ک  ال ب  ررس  ی زم  ی  ن  ه  در زی  ادي ک  اره  اي ک  ه اس  ت ذک  ر ق  اب  ل اس  ت. ن  ی  م اب  ت  دائ  ی R[x] چ  ن  دج  م  ل  ه اي
اس  ت. ش  ده ان  ج  ام ح  ل  ق  ه ه  ا

داد ن  ش  ان او آورد. ب  ه دس  ت را R((x)) ل  وران25 س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال ،[55] م  رج  ع در ت  وگ  ان  ب  ائ  ف24
ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال آن گ  اه ک  ن  د، ص  دق J(R)a ⊆ aR ش  رط در ،a ∈ J(R) ه  ر ب  راي R ح  ل  ق  ه ي اگ  ر ک  ه
در م  ی ب  اش  د. R ح  ل  ق  ه ي اول رادی  ک  ال P (R) ک  ه ب  ه ط  وري ب  ود خ  واه  د P (R)((x)) ب  ا ب  راب  ر R((x)) ل  وران س  ري ه  اي
ل  وران س  ري ه  اي ح  ل  ق  ه ي آن گ  اه ب  اش  د، 2 -اول  ی  ه ،R ح  ل  ق  ه ي اگ  ر ک  ه ک  ردن  د ث  اب  ت زی  م  ب  وس  ک  ی27 و ژو26 ،[57] م  رج  ع
ب  راي ک  ه دادن  د ن  ش  ان آن ه  ا ب  ه ع  لاوه، ب  اش  د. پ  وچ J(R) ب  ا ن  ی  م م  ن  ظ  م28 ح  ل  ق  ه ي R اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ت  م  ی  ز R((x))

و اگ  ر ب  اش  د ن  ی  م م  ن  ظ  م R((x)) اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ن  ی  م ک  ام  ل29 R((x)) ل  وران س  ري ه  اي ح  ل  ق  ه ي ،R 2 -اول  ی  ه ح  ل  ق  ه ي
ب  اش  د. پ  وچ J(R) ب  ا ن  ی  م ک  ام  ل R اگ  ر ت  ن  ه  ا

α ک  ه ه  ن  گ  ام  ی را R((x;α)) اری  ب ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال ت  وان  س  ت ،[53] م  رج  ع در ت  وگ  ان  ب  ائ  ف
راس  ت31 گ  ل  دي R/P (R) ح  ل  ق  ه ي و پ  وچ ت  وان30 P (R) اگ  ر ک  ه ک  رد ث  اب  ت او آورد. ب  ه دس  ت اس  ت، R از خ  ودری  خ  ت  ی
اگ  ر ک  ه داد ن  ش  ان او ه  م  چ  ن  ی  ن، اس  ت. P (R)((x;α)) ب  ا ب  راب  ر و پ  وچ ت  وان R((x;α)) ج  ی  ک  ب  س  ون رادی  ک  ال آن گ  اه ب  اش  د،
ب  ا ب  راب  ر R((x)) ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال آن گ  اه ب  اش  د، ک  ران دار32 ان  دی  س ب  ا ح  ل  ق  ه ا ي R/P (R)

ب  ود. خ  واه  د P (R)((x))

اس  ت. ش  ده م  ش  خ  ص R((x−1; δ)) دی  ف  ران  س  ی  ل33 ش  ب  ه ع  م  ل  گ  ر ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال ،[36] م  رج  ع در
ب  اش  ی  م داش  ت  ه ،k ≥ 0 و a ∈ J(R) ه  ر ب  راي و ب  اش  د δ-ای  ده آل ی  ک J(R) اگ  ر ک  ه ک  ردن  د ث  اب  ت ن  وی  س  ن  دگ  ان

.J(R((x−1; δ))
)
= P (R)((x−1; δ)) آن گ  اه ،J(R)δk(a) ⊆ aR

ع  لاق  ه م  ن  د ک  ه م  ح  ق  ق  ان  ی از ب  س  ی  اري ت  وس  ط ،R((x−1;α, δ)) اری  ب34 م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ن  ظ  ري خ  واص
[55] و [54] ،[16] ،[2] ،[1] م  راج  ع ب  ه ب  ی  ش  ت  ر م  ط  ال  ع  ه ب  راي اس  ت. گ  رف  ت  ه ق  رار ب  ررس  ی م  ورد ه  س  ت  ن  د، ح  ل  ق  ه ه  ا ن  ظ  ری  ه ب  ه
در ب  اش  د، ه  م  ان  ی ن  گ  اش  ت α ک  ه ه  ن  گ  ام  ی دی  گ  ر ب  رخ  ی و δ = 0 گ  رف  ت  ن ن  ظ  ر در ب  ا پ  ژوه  ش  گ  ران ای  ن از ب  ع  ض  ی ش  ود. رج  وع
ب  ه اری  ب م  ع  ک  وس ل  وران س  ري ه  اي م  ورد در ف  وق ش  ده ب  ی  ان ح  ال  ت ه  اي از ک  ه ه  ن  گ  ام  ی ک  ردن  د. ت  ح  ق  ی  ق ح  ل  ق  ه ه  ا ای  ن م  ورد
ح  ال  ت م  ط  ال  ع  ه ي ش  د. خ  واه  ی  م روب  ه رو ب  زرگ  ت  ري چ  ال  ش ب  ا ک  ن  ی  م، ح  رک  ت δ α-م  ش  ت  ق، ت  اب  ع و α خ  ودری  خ  ت  ی ب  ا ک  ل  ی ح  ال  ت

21Semiprimitive
22J-Semisimple
23Amitsur
24Tuganbaev
25Laurent series ring
26Zhou
27Ziembowski
28Semiregular
29Semiperfect
30Nilpotent
31Right Goldie
32Bounded index
33Pseudo-differential operator
34Skew inverse Laurent series ring



پ  ی  ش  گ  ف  ت  ار 4

اس  ت. گ  رف  ت  ه ق  رار ت  وج  ه م  ورد ب  س  ی  ار اری  ب ل  وران س  ري ه  اي ح  ل  ق  ه ي ک  ل  ی
م  ی ب  اش  د: زی  ر ب  ه ص  ورت اص  ل  ی ف  ص  ل چ  ه  ار ش  ام  ل رس  ال  ه ای  ن

در ک  ه ح  ل  ق  ه اي ع  ن  اص  ر و ح  ل  ق  ه ه  ا وی  ژگ  ی ه  اي درب  اره ي م  ق  دم  ات  ی م  ف  اه  ی  م از ب  رخ  ی ب  ی  ان ب  ه اب  ت  دا در اول، ف  ص  ل در
ح  ل  ق  ه ي اری  ب، چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي دوم، ب  خ  ش در س  پ  س م  ی پ  ردازی  م. م  ی گ  ی  رن  د، ق  رار اس  ت  ف  اده م  ورد رس  ال  ه ای  ن
درب  اره ي را اول ب  خ  ش م  ف  اه  ی  م از ب  رخ  ی و م  ع  رف  ی را اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي و اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي

م  ی ک  ن  ی  م. ب  ررس  ی ش  ده، ذک  ر ح  ل  ق  ه ه  اي
اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ع  ن  اص  ر ث  اب  ت ح  اص  ل  ض  رب ه  اي ب  ه م  رب  وط ک  ه ن  ت  ای  ج  ی از ب  رخ  ی اب  ت  دا دوم، ف  ص  ل در
از ک  ارب  ردي ب  ه ع  ن  وان م  ی ک  ن  ی  م. ث  اب  ت را م  ی ب  اش  د ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ک  ه ه  ن  گ  ام  ی اس  ت R[x;α, δ]

ح  ل  ق  ه ي خ  ودت  وان ه  اي دوم، ب  خ  ش در م  ی ک  ن  ی  م. م  ش  خ  ص را R[x;α, δ] اری  ب ت  وس  ی  ع ح  ل  ق  ه ي وارون پ  ذی  ر ع  ن  اص  ر ف  وق، ن  ت  ای  ج
ج  ردن ت  وس  ی  ع و R ح  ل  ق  ه ي خ  واص ب  ی  ن رواب  ط س  وم، ب  خ  ش در م  ی ک  ن  ی  م. ت  ع  ی  ی  ن ش  ده، ذک  ر ش  رای  ط ت  ح  ت را R[x;α, δ]

م  ف  ی  د اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ت  م  ی  ز و م  ن  ظ  م ع  ن  اص  ر ب  ررس  ی ب  راي ک  ه ن  ت  ای  ج  ی م  ی ک  ن  ی  م. م  ط  ال  ع  ه را A(R,α)

ب  ا و م  ی ده  ی  م ت  ع  م  ی  م را اول ب  خ  ش در ث  اب  ت ح  اص  ل  ض  رب ه  اي ب  ه م  رب  وط ن  ت  ای  ج ف  ص  ل، ای  ن پ  ای  ان  ی ب  خ  ش در ب  ود. خ  واه  ن  د
اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي خ  ودت  وان و وارون پ  ذی  ر ع  ن  اص  ر س  وم، و دوم ب  خ  ش در ش  ده ی  اف  ت  ه رواب  ط از اس  ت  ف  اده

م  ی ک  ن  ی  م. ب  ررس  ی اس  ت، α-ص  ل  ب ،R ح  ل  ق  ه ي ک  ه ح  ال  ت  ی در را R[x, x−1;α]

ه  ن  گ  ام  ی ن  ی  وم  ان ف  ن م  ن  ظ  م ع  ن  اص  ر و وارون پ  ذی  ر و خ  ودت  وان ع  ن  اص  ر ب  ی  ن رواب  ط م  ورد در ن  ت  ای  ج  ی اب  ت  دا در س  وم، ف  ص  ل در
ح  ل  ق  ه ي ن  ی  وم  ان ف  ن م  وض  ع  ی و ن  ی  وم  ان ف  ن م  ن  ظ  م ع  ن  اص  ر ن  ت  ای  ج ای  ن از اس  ت  ف  اده ب  ا و م  ی ک  ن  ی  م ب  ی  ان اس  ت، آب  ل  ی R ح  ل  ق  ه ي ک  ه
م  ی ده  ی  م ن  ش  ان ه  م  چ  ن  ی  ن، م  ی ک  ن  ی  م. ب  ررس  ی اس  ت، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و R ح  ل  ق  ه ي ک  ه ح  ال  ت  ی در را R[x;α, δ]

ی  ا ن  ی  وم  ان ف  ن م  ن  ظ  م R اگ  ر ت  ن  ه  ا و اگ  ر R = vnr(R) ∪Nli(R) آن گ  اه ب  اش  د، داش  ت  ه IFP خ  اص  ی  ت R ح  ل  ق  ه ي اگ  ر ک  ه
R آب  ل  ی ح  ل  ق  ه ي ت  م  ی  ز و π-م  ن  ظ  م ع  ن  اص  ر درم  ورد را ن  ت  ای  ج  ی دوم، ب  خ  ش در ب  اش  د. Nil(R) م  اک  س  ی  م  ال ای  ده آل ب  ا م  وض  ع  ی
ح  ل  ق  ه ي ت  م  ی  ز و π-م  ن  ظ  م ع  ن  اص  ر س  پ  س گ  رف  ت. خ  واه  ن  د ق  رار اس  ت  ف  اده م  ورد ب  خ  ش ای  ن ادام  ه در ک  ه م  ی آوری  م ب  ه دس  ت
و م  ن  ظ  م ع  ن  اص  ر اب  ت  دا آخ  ر، ب  خ  ش در م  ی ک  ن  ی  م. ب  ررس  ی اس  ت، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و R ک  ه ه  ن  گ  ام  ی را R[x;α, δ]

م  ش  خ  ص اس  ت، R از ت  ک ری  خ  ت  ی α و ب  اش  د IFP خ  اص  ی  ت داراي R ک  ه ه  ن  گ  ام  ی را A(R,α) = A ح  ل  ق  ه ي ت  م  ی  ز
α-ص  ل  ب ح  ل  ق  ه ي ب  راي را R[x, x−1;α] اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ت  م  ی  ز و م  ن  ظ  م ع  ن  اص  ر ادام  ه در و م  ی ک  ن  ی  م

ک  رد. خ  واه  ی  م ت  ع  ی  ی  ن ،R
م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي و R ح  ل  ق  ه ي وارون پ  ذی  ر ع  ن  اص  ر از ب  رخ  ی ب  ی  ن راب  ط  ه ي ب  ررس  ی ب  ه چ  ه  ارم، ف  ص  ل در
اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال اول، ب  خ  ش ادام  ه در م  ی پ  ردازی  م. R((x−1;α, δ)) اری  ب
ش  رط در ک  ه ح  ل  ق  ه ه  ای  ی از م  ث  ال  ی و م  ی ک  ن  ی  م م  ش  خ  ص ،R ح  ل  ق  ه ي روي (JC) ش  رط م  ع  رف  ی ب  ا را R((x−1;α, δ))

ل  وران س  ري ه  اي ح  ل  ق  ه ي رادی  ک  ال ن  ظ  ري خ  واص از ب  رخ  ی دوم، ب  خ  ش در داد. خ  واه  ی  م ارائ  ه م  ی ک  ن  ن  د، ص  دق (JC)

ه  ر و 2 -اول  ی  ه ح  ل  ق  ه ي R اگ  ر ک  ه ک  رد خ  واه  ی  م ث  اب  ت م  ی ده  ی  م. ق  رار م  ط  ال  ع  ه م  ورد را R((x−1;α, δ)) اری  ب م  ع  ک  وس
اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال آن گ  اه ب  اش  د، ,α)-ای  ده آل δ) ،R از م  ی  ن  ی  م  ال اول ای  ده آل
ب  خ  ش، ای  ن در آم  ده ب  ه دس  ت ن  ت  ای  ج از ک  ارب  ردي ع  ن  وان ب  ه ب  ود. خ  واه  د P (R)((x−1;α, δ)) ب  ا ب  راب  ر R((x−1;α, δ))

ح  ق  ی  ق  ت، در ک  ن  ی  م. ش  ن  اس  ای  ی م  ی ک  ن  ن  د، ص  دق ک  وت  ه م  ش  ه  ور ح  دس در ک  ه ح  ل  ق  ه ه  ای  ی از ج  دی  دي رده ه  اي ب  ود خ  واه  ی  م ق  ادر
ب  ه ع  لاوه، و اس  ت α-م  ش  ت  ق ت  اب  ع ی  ک δ و R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د 2 -اول  ی  ه ح  ل  ق  ه ي R اگ  ر ک  ه م  ی ده  ی  م ن  ش  ان
ل  وران س  ري ه  اي ح  ل  ق  ه ي آن گ  اه ب  اش  د، پ  وچ ت  وان م  وض  ع  اً ش  م  ارا Nil(R) و ,α)-ای  ده آل δ) ،R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر
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ح  ل  ق  ه ي ن  ی  م ک  ام  ل و ت  م  ی  ز خ  واص آخ  ر، ب  خ  ش در ک  رد. خ  واه  د ص  دق ک  وت  ه ح  دس در R((x−1;α, δ)) اری  ب م  ع  ک  وس
و لازم ش  رای  ط از ب  رخ  ی واق  ع، در م  ی گ  ی  رد. ق  رار ب  ررس  ی و م  ط  ال  ع  ه م  ورد R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي
داد. خ  واه  ی  م ارائ  ه را ب  اش  د، ن  ی  م ک  ام  ل ی  ا ت  م  ی  ز R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ای  ن ک  ه ب  راي ک  اف  ی





٢ ف  ص  ل

م  ق  دم  ات  ی م  ف  اه  ی  م و ت  ع  اری  ف

را R ح  ل  ق  ه ي اول ای  ده آل ه  اي ت  م  ام اش  ت  راك ب  اش  د. ش  رک  ت پ  ذی  ر و ی  ک  دار ح  ل  ق  ه ي R م  ی ک  ن  ی  م ف  رض ن  وش  ت  ار ای  ن س  راس  ر در
ب  ا ک  ه را ب  الای  ی پ  وچ رادی  ک  ال ه  م  چ  ن  ی  ن، م  ی ده  ی  م. ن  ش  ان P (R) ن  م  اد ب  ا و م  ی ن  ام  ی  م پ  ای  ی  ن  ی) پ  وچ رادی  ک  ال (ی  ا اول رادی  ک  ال
ن  م  اده  اي ،R ح  ل  ق  ه ي ب  راي م  ی ب  اش  د. R ح  ل  ق  ه ي پ  وچ ای  ده آل ه  اي ت  م  ام م  ج  م  وع ب  ا ب  راب  ر م  ی ده  ی  م ن  م  ای  ش Nil∗(R)

،R ح  ل  ق  ه ي روي n× n م  ات  ری  س ه  اي ح  ل  ق  ه ي ،R وارون پ  ذی  ر ع  ن  اص  ر ن  م  ای  ش  گ  ر ب  ه ت  رت  ی  ب eij و Tn(R) ،Mn(R) ،U(R)

،⟨X⟩ℓ آن گ  اه ،X ⊆ R اگ  ر ه  س  ت  ن  د. ه  م  ان  ی م  ات  ری  س ه  اي و R ح  ل  ق  ه ي روي n× n م  ث  ل  ث  ی ب  الا م  ات  ری  س ه  اي ح  ل  ق  ه ي
ت  ول  ی  د ای  ده آل و X ت  وس  ط ش  ده ت  ول  ی  د راس  ت ای  ده آل ،X ت  وس  ط ش  ده ت  ول  ی  ده چ  پ ای  ده آل ن  م  ای  ان گ  ر ب  ه ت  رت  ی  ب ⟨X⟩ و ⟨X⟩r

م  ی ب  اش  ن  د. X ت  وس  ط ش  ده
م  ی پ  ردازی  م. م  ی گ  ی  رن  د، ق  رار اس  ت  ف  اده م  ورد رس  ال  ه ای  ن در ک  ه اط  لاع  ات  ی و م  ف  اه  ی  م م  ع  رف  ی ب  ه ف  ص  ل، ای  ن در

ح  ل  ق  ه اي وی  ژگ  ی ه  اي از ن  ی  از م  ورد م  ف  اه  ی  م 1 . 2
ک  ه ب  ه ط  وري ب  اش  د داش  ت  ه وج  ود n م  ث  ب  ت ص  ح  ی  ح ع  دد ه  رگ  اه م  ی ن  ام  ی  م پ  وچ ت  وان را R ح  ل  ق  ه ي از a ع  ن  ص  ر .1 . 1 . 2 ت  ع  ری  ف

م  ی ده  ی  م. ن  م  ای  ش Nil(R) ن  م  اد ب  ا را R پ  وچ ت  وان ع  ن  اص  ر ت  م  ام م  ج  م  وع  ه ي .an = 0

ب  اش  د. ن  داش  ت  ه ن  اص  ف  ر پ  وچ ت  وان ع  ن  ص  ر ه  رگ  اه م  ی ن  ام  ی  م، ک  اه  ش  ی را R ح  ل  ق  ه ي .2 . 1 . 2 ت  ع  ری  ف
Nil(R) اگ  ر ک  ه م  ی ک  ن  ی  م ت  وج  ه م  ی ب  اش  د. ک  اه  ش  ی ح  ل  ق  ه ي م  ی  دان روي چ  ن  دج  م  ل  ه اي ه  ا ح  ل  ق  ه ي م  ث  ال، ع  ن  وان ب  ه

اس  ت. ک  اه  ش  ی R/Nil(R) ح  ل  ق  ه ي آن گ  اه ب  اش  د، R از ای  ده آل  ی
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.bac = 0 ش  ود ن  ت  ی  ج  ه ،abc = 0 از ،a, b, c ∈ R ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م، م  ت  ق  ارن1 را R ح  ل  ق  ه ي .3 . 1 . 2 ت  ع  ری  ف

.ba = 0 ش  ود ن  ت  ی  ج  ه ab = 0 از a, b ∈ R ب  راي ه  رگ  اه م  ی ن  ام  ی  م، ب  رگ  ش  ت پ  ذی  ر را R ح  ل  ق  ه ي .4 . 1 . 2 ت  ع  ری  ف
ب  رگ  ش  ت پ  ذی  رن  د. ج  اب  ه ج  ای  ی، و ک  اه  ش  ی ح  ل  ق  ه ه  اي م  ث  ال، ب  ه ع  ن  وان

.aRb = 0 ش  ود ن  ت  ی  ج  ه ،ab = 0 از ،a, b ∈ R ه  ر ب  راي ه  رگ  اه دارد IFP خ  اص  ی  ت R ح  ل  ق  ه ي گ  وی  ی  م .5 . 1 . 2 ت  ع  ری  ف
ه  س  ت  ن  د. IFP خ  اص  ی  ت داراي ب  رگ  ش  ت پ  ذی  ر، ح  ل  ق  ه ه  اي م  ث  ال، ب  ه ع  ن  وان

از دوط  رف  ه ای  ده آل  ی Nil(R) ای  ن ص  ورت، در ب  اش  د. داش  ت  ه IFP خ  اص  ی  ت R ح  ل  ق  ه ي ف  رض ک  ن  ی  م [3 . 1 ل  م ،42] .6 . 1 . 2 ل  م
م  ی ب  اش  د. R

ب  ا را R خ  ودت  وان ع  ن  اص  ر ت  م  ام م  ج  م  وع  ه ي .a2 = a ه  رگ  اه م  ی ن  ام  ی  م، خ  ودت  وان2 را R ح  ل  ق  ه ي از a ع  ن  ص  ر .7 . 1 . 2 ت  ع  ری  ف
م  ی ده  ی  م. ن  ش  ان Idem(R) ن  م  اد

ب  اش  ن  د. م  رک  زي3 R خ  ودت  وان ع  ن  اص  ر ت  م  ام ه  رگ  اه م  ی ن  ام  ی  م، آب  ل  ی را R ح  ل  ق  ه  ي .8 . 1 . 2 ت  ع  ری  ف

ه  س  ت  ن  د. آب  ل  ی ، IFP خ  اص  ی  ت داراي و ب  رگ  ش  ت پ  ذی  ر ح  ل  ق  ه ه  اي م  ث  ال، ب  ه ع  ن  وان

ت  وج  ه .ba = 1 آن گ  اه ،ab = 1 اگ  ر ،a, b ∈ R ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م، ددک  ی  ن  د-م  ت  ن  اه  ی4 را R ح  ل  ق  ه ي .9 . 1 . 2 ت  ع  ری  ف
داری  م: آن گ  اه ،ab = 1 اگ  ر چ  ون اس  ت، ددک  ی  ن  د-م  ت  ن  اه  ی آب  ل  ی، ح  ل  ق  ه ي ه  ر ک  ه م  ی ک  ن  ی  م

(ba)2 = (ba)(ba) = b(ab)a = ba,

ن  ت  ی  ج  ه در و

1 = (ab)2 = a(ba)b = (ba)ab = ba,

اس  ت. آب  ل  ی R زی  را

ای  ده آل ه  اي ه  م  ه ي اش  ت  راك م  ع  ادل ط  ور ب  ه ی  ا R ح  ل  ق  ه ي م  اک  س  ی  م  ال چ  پ ای  ده آل ه  اي ه  م  ه ي اش  ت  راك .10 . 1 . 2 ت  ع  ری  ف
م  ی ده  ی  م. ن  م  ای  ش J(R) ن  م  اد ب  ا و م  ی ن  ام  ی  م ج  ی  ک  ب  س  ون رادی  ک  ال را R م  اک  س  ی  م  ال راس  ت

م  ع  ادل  ن  د: زی  ر گ  زاره ه  اي ای  ن ص  ورت، در ب  اش  د. دل  خ  واه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [19 . 1 ق  ض  ی  ه ،39] .11 . 1 . 2 ق  ض  ی  ه

دارد. م  اک  س  ی  م  ال چ  پ ای  ده آل ی  ک ف  ق  ط R (1)

دارد. م  اک  س  ی  م  ال راس  ت ای  ده آل ی  ک ف  ق  ط R (2)

اس  ت. ت  ق  س  ی  م ح  ل  ق  ه ي ی  ک R/J(R) (3)

اس  ت. R ای  ده آل R \ U(R) (4)

م  ی ده  د. ت  ش  ک  ی  ل گ  روه ج  م  ع، ع  م  ل ب  ا R \ U(R) (5)

ک  ن  د. ص  دق ،11 . 1 . 2 ق  ض  ی  ه ش  رای  ط از ی  ک  ی در ه  رگ  اه م  ی ن  ام  ی  م م  وض  ع  ی5 را R ح  ل  ق  ه ي .12 . 1 . 2 ت  ع  ری  ف
1Symmetric
2Idempotent
3Central
4Dedekind-finite
5Local
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ای  ن ص  ورت، در ب  اش  د. م  وض  ع  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [19 . 2 گ  زاره ،39] .13 . 1 . 2 گ  زاره

دارد. م  اک  س  ی  م  ال ای  ده آل ی  ک ف  ق  ط R (1)

اس  ت. ددک  ی  ن  د-م  ت  ن  اه  ی R ح  ل  ق  ه ي (2)

.(Idem(R) = {0, 1}) ن  دارد غ  ی  رب  دی  ه  ی خ  ودت  وان ع  ن  ص  ر R ح  ل  ق  ه ي (3)

ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از خ  ودت  وان ع  ن  ص  ري e ف  رض ک  ن  ی  م [21 . 10 ق  ض  ی  ه ،39] .14 . 1 . 2 ق  ض  ی  ه
در e ت  ص  وی  ر ē ک  ه ب  ه ط  وري eRe/J(eRe) ∼= ēR̄ē داری  م ب  ه ع  لاوه، .J(eRe) = J(R) ∩ J(eRe) = eJ(R)e

اس  ت. R̄ = R/J(R)

ه  م  واره ن  ی  م اب  ت  دائ  ی ح  ل  ق  ه ه  اي ب  راي .J(R) = 0 ه  رگ  اه م  ی ن  ام  ی  م J-ن  ی  م س  اده ی  ا ن  ی  م اب  ت  دائ  ی را R ح  ل  ق  ه ي .15 . 1 . 2 ت  ع  ری  ف
اس  ت: ب  رق  رار زی  ر گ  زاره

ن  ی  م س  اده =⇒ ن  ی  م اب  ت  دائ  ی ⇒ ن  ی  م اول

آن گ  اه ،ab ∈ P اگ  ر ،a, b ∈ R ب  راي ه  رگ  اه م  ی ن  ام  ی  م اول6 ک  ام  لاً را R ح  ل  ق  ه ي از P م  ح  ض ای  ده آل .16 . 1 . 2 ت  ع  ری  ف
م  ی ب  اش  د. اول اول، ک  ام  لاً ای  ده آل ه  ر ک  ه اس  ت واض  ح .b ∈ P ی  ا a ∈ P

.P (R) = Nil(R) ه  رگ  اه م  ی ن  ام  ی  م 2 -اول  ی  ه را R ح  ل  ق  ه ي .17 . 1 . 2 ت  ع  ری  ف
م  ی ب  اش  د. 2 -اول  ی  ه ک  اه  ش  ی، ح  ل  ق  ه ي ه  ر

م  رج  ع در ش  ی  ن7 ه  س  ت  ن  د. 2 -اول  ی  ه ح  ل  ق  ه ه  اي ن  اج  اب  ه ج  ای  ی، ح  ل  ق  ه ه  اي ن  ظ  ری  ه ي در ح  ل  ق  ه ه  ا رده ه  اي م  ه  م  ت  ری  ن از ی  ک  ی
اول ک  ام  لاً ،R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر اگ  ر وت  ن  ه  ا اگ  ر اس  ت 2 -اول  ی  ه ،R ک  ه ک  رد ث  اب  ت R دل  خ  واه ح  ل  ق  ه ي ب  راي ،[51]
ح  ق  ی  ق  ت، در ش  د. ب  ی  ان 2 -اول  ی  ه ح  ل  ق  ه ه  اي م  ورد در ک  ه ب  ود ن  ت  ای  ج  ی اول  ی  ن از ی  ک  ی ن  ت  ی  ج  ه، ای  ن ب  اش  د). دام  ن  ه R/P ) ب  اش  د

ش  د. م  ع  رف  ی چ  پ ش  ب  ه ح  ل  ق  ه ه  اي ب  ا ارت  ب  اط در ،[8] م  رج  ع در ل  ی10 و ه  درل  ی9 ب  رک  ن  م  ی  ر8، ت  وس  ط ب  ار اول  ی  ن 2 -اول  ی  ه واژه

م  ت  ن  اه  ی زی  رم  ج  م  وع  ه ي ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م، پ  وچ ت  وان11 م  وض  ع  اً را R ح  ل  ق  ه ي از I ای  ده آل .18 . 1 . 2 ت  ع  ری  ف
{s1, . . . , sn} از ع  ن  ص  ر k ه  ر ح  اص  ل  ض  رب ب  ه ط  وري ک  ه ب  اش  د داش  ت  ه وج  ود k م  ث  ب  ت ص  ح  ی  ح ع  دد ،{s1, . . . , sn} ⊆ I

اس  ت. پ  وچ ت  وان م  وض  ع  اً ای  ده آل ی  ک ،R از پ  وچ ت  وان ای  ده آل ه  ر م  ث  ال، ب  ه ع  ن  وان ب  اش  د. ص  ف  ر
L− rad(R) ب  ا را آن و م  ی ن  ام  ی  م R ل  وی  ت  س  ک  ی12 رادی  ک  ال را R ح  ل  ق  ه ي پ  وچ ت  وان م  وض  ع  اً ای  ده آل ه  اي ه  م  ه ي م  ج  م  وع

اس  ت. R ح  ل  ق  ه ي پ  وچ ت  وان م  وض  ع  اً ای  ده آل ب  زرگ  ت  ری  ن L− rad(R) ب  ن  اب  رای  ن م  ی ده  ی  م. ن  ش  ان
6Completely prime
7Shin
8Birkenmeier
9Heatherly
10Lee
11Locally nilpotent
12Levitzki radical
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.Nil(R) = L− rad(R) ه  رگ  اه م  ی ن  ام  ی  م، ض  ع  ی  ف13 2 -اول  ی  ه را R ح  ل  ق  ه ي .19 . 1 . 2 ت  ع  ری  ف
اس  ت. ض  ع  ی  ف 2 -اول  ی  ه 2 -اول  ی  ه، ح  ل  ق  ه ي ه  ر اس  ت ب  دی  ه  ی

.Nil(R) = Nil∗(R) ه  رگ  اه ن  ام  ی  م، NI را R ح  ل  ق  ه ي .20 . 1 . 2 ت  ع  ری  ف
اس  ت. NI ض  ع  ی  ف، 2 -اول  ی  ه ح  ل  ق  ه ي ه  ر ک  ه داری  م ت  وج  ه

م  ی ب  اش  د: زی  ر ب  ه ص  ورت ش  ده ان  د، م  ع  رف  ی ت  اک  ن  ون ک  ه ح  ل  ق  ه ه  ای  ی ارت  ب  اط

ج  اب  ه ج  ای  ی
↓

م  ت  ق  ارن −→ ب  رگ  ش  ت پ  ذی  ر −→ IFP خ  اص  ی  ت −→ 2 -اول  ی  ه −→ ض  ع  ی  ف 2 -اول  ی  ه
↑

ک  اه  ش  ی

ب  اش  د. دوط  رف  ه ای  ده آل ی  ک ،R از (چ  پ) راس  ت ای  ده آل ه  ر ه  رگ  اه م  ی ن  ام  ی  م (چ  پ) راس  ت دوئ  و را R ح  ل  ق  ه ي .21 . 1 . 2 ت  ع  ری  ف
م  ی ن  ام  ی  م. دوئ  و را آن ب  اش  د چ  پ دوئ  و ه  م و راس  ت دوئ  و ه  م ح  ل  ق  ه اي اگ  ر

ه  س  ت  ن  د. IFP خ  اص  ی  ت داراي (چ  پ)، راس  ت دوئ  و ح  ل  ق  ه ه  اي ک  ه داد ن  ش  ان م  ی ت  وان س  اده، م  ح  اس  ب  ه ي ب  ا

ب  ه را R راس  ت15 ص  ف  ر م  ق  س  وم ع  ل  ی  ه ه  اي و چ  پ14 ص  ف  ر م  ق  س  وم ع  ل  ی  ه ه  اي م  ج  م  وع  ه ي ،R ح  ل  ق  ه ي ب  راي .22 . 1 . 2 ت  ع  ری  ف
م  ی ک  ن  ی  م: ت  ع  ری  ف زی  ر ب  ه ص  ورت، و م  ی ده  ی  م ن  م  ای  ش Zr(R) و Zℓ(R) ن  م  اده  اي ب  ا ت  رت  ی  ب

Zℓ(R) = {a ∈ R | ab = 0, ∃b ∈ R∗}

و

Zr(R) = {a ∈ R | ba = 0, ∃b ∈ R∗}.

م  ی ن  ام  ی  م. R ص  ف  ر م  ق  س  وم ع  ل  ی  ه ه  اي ت  م  ام م  ج  م  وع  ه ي را Z(R) = Zℓ(R) ∪ Zr(R) ه  م  چ  ن  ی  ن،

ب  اش  ی  م داش  ت  ه ک  ه ب  ه ط  وري ب  اش  د م  وج  ود x ∈ R ع  ن  ص  ر ه  رگ  اه م  ی ن  ام  ی  م ن  ی  وم  ان ف  ن م  ن  ظ  م را a ∈ R ع  ن  ص  ر .23 . 1 . 2 ت  ع  ری  ف
اگ  ر ب  ه ع  لاوه، م  ی ده  ی  م. ن  م  ای  ش vnr(R) ن  م  اد ب  ا را R ح  ل  ق  ه ي ن  ی  وم  ان ف  ن م  ن  ظ  م ع  ن  اص  ر ت  م  ام م  ج  م  وع  ه ي .a = axa

م  ی ن  ام  ی  م. ن  ی  وم  ان ف  ن م  ن  ظ  م را R آن گ  اه ،vnr(R) = R

م  ی ب  اش  د. ن  ی  وم  ان ف  ن م  ن  ظ  م ن  ی  م س  اده، ح  ل  ق  ه ي ه  ر ه  م  چ  ن  ی  ن، .Idem(R) ⊆ vnr(R) ک  ه داری  م ت  وج  ه

ای  ده آل ه  اي زن  ج  ی  ره ت  م  ام ط  ول س  وپ  ری  م  م ب  ا ب  راب  ر ج  اب  ه ج  ای  ی ح  ل  ق  ه ي ی  ک ک  رول16 ب  ع  د ج  اب  ه ج  ای  ی، ج  ب  ر در .24 . 1 . 2 ت  ع  ری  ف
م  ی ب  اش  د. ح  ل  ق  ه آن اول

م  ع  ادل  ن  د: زی  ر گ  زاره ه  اي R ج  اب  ه ج  ای  ی ح  ل  ق  ه ي ب  راي [4 . 15 ت  م  ری  ن ،40] .25 . 1 . 2 ل  م
13Weakly 2-primal
14Left zero divisor
15Right zero divisor
16Krull dimension
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م  ی ب  اش  د. 0 ک  رول ب  ع  د داراي R ح  ل  ق  ه ي (1)

م  ی ب  اش  د. ن  ی  وم  ان ف  ن م  ن  ظ  م R/J(R) و اس  ت پ  وچ J(R) (2)

م  ی ش  ود. م  ت  وق  ف Ra ⊇ Ra2 ⊇ · · · ک  اه  ش  ی زن  ج  ی  ر ،a ∈ R ه  ر ب  راي (3)

م  ی ب  اش  د. ن  ی  وم  ان ف  ن م  ن  ظ  م an ک  ه ب  ه ط  وري اس  ت م  وج  ود n ≥ 1 ،a ∈ R ه  ر ب  راي (4)

.an = anxan ب  اش  ی  م داش  ت  ه ،n ≥ 1 و x ∈ R ب  رخ  ی ب  راي ه  رگ  اه ن  ام  ی  م π-م  ن  ظ  م را a ∈ R ع  ن  ص  ر .26 . 1 . 2 ت  ع  ری  ف
،π − r(R) = R اگ  ر ب  ه ع  لاوه، م  ی ده  ی  م. ن  ش  ان π − r(R) ن  م  اد ب  ا را R ح  ل  ق  ه ي π-م  ن  ظ  م ع  ن  اص  ر ت  م  ام م  ج  م  وع  ه ي

.vnr(R) ⊆ π − r(R) اس  ت ب  دی  ه  ی م  ی ن  ام  ی  م. π-م  ن  ظ  م را R ح  ل  ق  ه ي آن گ  اه

زی  ر گ  زاره ه  اي ،a ∈ R ه  ر ب  راي ای  ن ص  ورت، در ب  اش  د. ح  ل  ق  ه ي ج  اب  ه ج  ای  ی R ف  رض ک  ن  ی  م [4 . 2 ق  ض  ی  ه ،4] .27 . 1 . 2 ق  ض  ی  ه
م  ع  ادل  ن  د:

.a ∈ π − r(R) (1)

.an ∈ vnr(R) ،n ≥ 1 ب  رخ  ی ب  راي (2)

.an = ue داری  م ،n ≥ 1 و e ∈ Idem(R) ،u ∈ U(R) ب  رخ  ی ب  راي (3)

.a = b+ w ب  ه ط  وري ک  ه دارن  د وج  ود w ∈ Nil(R) و b ∈ vnr(R) ع  ن  اص  ر (4)

.a = ue+ w ب  ه ط  وري ک  ه م  وج  ودن  د w ∈ Nil(R) و e ∈ Idem(R) ،u ∈ U(R) ع  ن  اص  ر (5)

.a+Nil(R) ∈ vnr(R/Nil(R)) (6)

.an + b ∈ U(R) و anb = 0 ب  ه ط  وري ک  ه دارن  د وج  ود n ≥ 1 و b ∈ R ع  ن  اص  ر (7)

.a+ b ∈ U(R) و ab ∈ Nil(R) ب  ه ط  وري ک  ه اس  ت م  وج  ود b ∈ R ع  ن  ص  ر (8)

ب  اش  ن  د، م  رک  زي ،R ح  ل  ق  ه ي خ  ودت  وان ع  ن  اص  ر اگ  ر ت  ن  ه  ا و اگ  ر اس  ت π-م  ن  ظ  م و آب  ل  ی R ح  ل  ق  ه ي [1 ن  ت  ی  ج  ه ،6] .28 . 1 . 2 ن  ت  ی  ج  ه
w ∈ Nil(R) و e ∈ Idem(R) ،u ∈ U(R) ع  ن  اص  ر ،x ∈ R ه  ر ب  راي و ب  اش  د R از دوط  رف  ه ای  ده آل  ی Nil(R)

.x = eu+ w ط  وري ک  ه ب  ه ب  اش  ن  د داش  ت  ه وج  ود

اگ  ر ت  ن  ه  ا و اگ  ر اس  ت π-م  ن  ظ  م ،R ای  ن ص  ورت، در ب  اش  د. آب  ل  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [3 ق  ض  ی  ه ،6] .29 . 1 . 2 ق  ض  ی  ه
ب  اش  د. ن  ی  وم  ان ف  ن م  ن  ظ  م ح  ل  ق  ه ي R/Nil(R) و R از دوط  رف  ه ای  ده آل Nil(R)

اگ  ر ت  ن  ه  ا و اگ  ر اس  ت π-م  ن  ظ  م ،R ای  ن ص  ورت، در ب  اش  د. آب  ل  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [2 ن  ت  ی  ج  ه ،6] .30 . 1 . 2 ن  ت  ی  ج  ه
ب  اش  د. π-م  ن  ظ  م ،R/N(R)

ح  ل  ق  ه ي ه  ر ک  ه م  ی ک  ن  ی  م ت  وج  ه .Idem(R) = R ب  اش  ی  م داش  ت  ه ه  رگ  اه م  ی ن  ام  ی  م ب  ول  ی17 را R ح  ل  ق  ه ي .31 . 1 . 2 ت  ع  ری  ف
اس  ت. ن  ی  وم  ان ف  ن م  ن  ظ  م ب  ول  ی،

17Boolean
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.1− a ∈ vnr(R) ی  ا a ∈ vnr(R) ه  رگ  اه م  ی ن  ام  ی  م ن  ی  وم  ان18 ف  ن م  وض  ع  ی را a ∈ R ع  ن  ص  ر [13] .32 . 1 . 2 ت  ع  ری  ف
،vnl(R) = R اگ  ر ب  ه ع  لاوه، م  ی ده  ی  م. ن  م  ای  ش vnl(R) ن  م  اد ب  ا را R ح  ل  ق  ه ي ن  ی  وم  ان ف  ن م  وض  ع  ی ع  ن  اص  ر ت  م  ام م  ج  م  وع  ه ي

م  ی ن  ام  ی  م. ن  ی  وم  ان ف  ن م  وض  ع  ی ح  ل  ق  ه ي را R آن گ  اه

ح  ل  ق  ه ي ه  م  چ  ن  ی  ن، ب  اش  د. ن  ی  م س  اده R/J(R) ه  رگ  اه م  ی ن  ام  ی  م، ن  ی  م م  وض  ع  ی19 را R ح  ل  ق  ه ي [39] .33 . 1 . 2 ت  ع  ری  ف
ع  ن  ص  ر اگ  ر (ی  ع  ن  ی م  ی آی  ن  د ب  الا J(R) پ  ی  م  ان  ه ب  ه خ  ودت  وان ه  ا و ب  اش  د ن  ی  م م  وض  ع  ی R ه  رگ  اه اس  ت، ن  ی  م ک  ام  ل R

.(a+ J(R) = e+ J(R) ک  ه دارد وج  ود e ∈ R خ  ودت  وان ع  ن  ص  ر آن گ  اه ب  اش  د، خ  ودت  وان a+ J(R) ∈ R/J(R)

ب  اش  ن  د: ب  رق  رار زی  ر گ  زاره ه  اي ه  رگ  اه م  ی ن  ام  ی  م ت  ب  ادل  ی20 ح  ل  ق  ه ي را R ح  ل  ق  ه ي [56] .34 . 1 . 2 ت  ع  ری  ف
−1؛ e ∈ (1− a)R ک  ه ب  ه ط  وري اس  ت م  وج  ود e ∈ aR خ  ودت  وان ،a ∈ R ع  ن  ص  ر ه  ر ب  راي (1)

−1؛ e ∈ R(1− a) ک  ه ب  ه ط  وري دارد وج  ود e ∈ Ra خ  ودت  وان ،a ∈ R ع  ن  ص  ر ه  ر ب  راي (2)
م  س  ت  ق  ی  م ت  ج  زی  ه ه  ر و X م  دول ه  ر ب  راي (3)

X = M ⊕ Y =
⊕
i∈I

Xi,

ک  ه: ب  ه ط  وري دارن  د وج  ود (i ∈ I) X ′
i ⊆ Xi زی  رم  دول ه  اي ،M ∼= RR ک  ه

X = M ⊕
(⊕

i∈I
X ′

i

)
.

ع  ن  ص  ر ی  ک و خ  ودت  وان ع  ن  ص  ر ی  ک م  ج  م  وع ف  رم ب  ه ب  ت  وان را a ه  رگ  اه م  ی ن  ام  ی  م ت  م  ی  ز را a ∈ R ع  ن  ص  ر [47] .35 . 1 . 2 ت  ع  ری  ف
،cln(R) = R اگ  ر ب  ه ع  لاوه، م  ی ده  ی  م. ن  م  ای  ش cln(R) ن  م  اد ب  ا را R ت  م  ی  ز ع  ن  اص  ر ت  م  ام م  ج  م  وع  ه ي ب  ن  وی  س  ی  م. وارون پ  ذی  ر

م  ی ن  ام  ی  م. ت  م  ی  ز ح  ل  ق  ه ي را R آن گ  اه
ب  اش  د. ت  م  ی  ز 1− a اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ت  م  ی  ز a ع  ن  ص  ر و ه  س  ت  ن  د ت  م  ی  ز خ  ودت  وان، و وارون پ  ذی  ر ع  ن  اص  ر ک  ه اس  ت ب  دی  ه  ی

اس  ت. ت  م  ی  ز م  وض  ع  ی، ح  ل  ق  ه ي ه  ر ل  ذا

ه  ر ک  ه ک  رد ث  اب  ت او گ  ردی  د. م  ط  رح ت  ب  ادل  ی ح  ل  ق  ه ه  اي ب  ا راب  ط  ه در ،[47] م  رج  ع در ن  ی  ک  ل  س  ون21 ت  وس  ط ت  م  ی  ز ح  ل  ق  ه ه  اي م  ف  ه  وم
ک  لاس ب  اش  ن  د. م  رک  زي ح  ل  ق  ه خ  ودت  وان ه  اي ت  م  ام ک  ه اس  ت ب  رق  رار ه  ن  گ  ام  ی آن ع  ک  س و اس  ت ت  ب  ادل  ی ح  ل  ق  ه ي ت  م  ی  ز، ح  ل  ق  ه ي
،[9 ق  ض  ی  ه ،9] م  رج  ع در ی  و23 و ک  ام  ی  ل  و22 اس  ت. ن  ی  م ک  ام  ل ح  ل  ق  ه ه  اي ش  ام  ل م  ث  ال ب  راي و اس  ت وس  ی  ع ک  ام  لاً ت  م  ی  ز ح  ل  ق  ه ه  اي
خ  ودت  وان ه  اي از ن  ام  ت  ن  اه  ی خ  ان  واده ي ه  ی  چ ش  ام  ل و ب  اش  د ت  م  ی  ز اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ن  ی  م ک  ام  ل ح  ل  ق  ه، ی  ک ک  ه دادن  د ن  ش  ان
ب  راي اس  ت. ت  م  ی  ز م  ن  ظ  م-وارون پ  ذی  ر25، ع  ن  ص  ر ه  ر ک  ه دادن  د ن  ش  ان ،[5 ق  ض  ی  ه ،9] م  رج  ع در آن  ه  ا ب  ه ع  لاوه، ن  ب  اش  د. م  ت  ع  ام  د24
[48] و [33] م  رج  ع ب  ه چ  ن  دج  م  ل  ه اي ح  ل  ق  ه ه  اي در ت  م  ی  ز ع  ن  اص  ر ت  وص  ی  ف ب  راي ه  م  چ  ن  ی  ن و ح  ل  ق  ه ه  ا ای  ن اب  ت  دای  ی خ  واص

م  ی ده  ی  م. ارج  اع
18Von Neumann local
19Semilocal
20Exchange
21Nicholson
22Camillo
23Yu
24Orthogonal idempotent
25Unit-regular
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ea(1− e) ک  ه ب  ه ط  وري e2 = e ∈ R و ب  اش  د R ح  ل  ق  ه ي از دل  خ  واه ع  ن  ص  ر ی  ک a ف  رض ک  ن  ی  م [2 . 3 ل  م ،57] .36 . 1 . 2 ل  م
و eRe ح  ل  ق  ه ه  اي از ت  م  ی  ز ع  ن  اص  ري ت  رت  ی  ب ب  ه ،(1− e)a(1− e) و eae اگ  ر ه  س  ت  ن  د. J(R) در م  ش  م  ول (1− e)ae و

ب  ود. خ  واه  د R از ت  م  ی  ز ع  ن  ص  ري a آن گ  اه ب  اش  ن  د، (1− e)R(1− e)

R/J(R) اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ت  م  ی  ز R ای  ن ص  ورت، در ب  اش  د. دل  خ  واه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [7 گ  زاره ،9] .37 . 1 . 2 گ  زاره
م  ی آی  ن  د. ب  الا J(R) پ  ی  م  ان  ه ب  ه خ  ودت  وان ه  ا و ب  اش  د ت  م  ی  ز

ت  اب  ع را δ : R −→ R ج  م  ع  ی ت  اب  ع ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از درون ری  خ  ت  ی α ف  رض ک  ن  ی  م .38 . 1 . 2 ت  ع  ری  ف
.δ(ab) = δ(a)b+ α(a)δ(b) ب  اش  ی  م داش  ت  ه ،a, b ∈ R ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م α-م  ش  ت  ق

را I ای  ن ص  ورت، در ب  اش  د. R از ای  ده آل  ی I و R ح  ل  ق  ه ي روي α-م  ش  ت  ق ت  اب  ع ی  ک δ ف  رض ک  ن  ی  م .39 . 1 . 2 ت  ع  ری  ف
α-ای  ده آل ه  م I اگ  ر .δ(I) ⊆ I ه  رگ  اه م  ی ن  ام  ی  م، δ-ای  ده آل را I ه  م  چ  ن  ی  ن، .α(I) ⊆ I ه  رگ  اه م  ی ن  ام  ی  م، α-ای  ده آل

م  ی ن  ام  ی  م. ,α)-ای  ده آل δ) را I آن گ  اه ب  اش  د، δ-ای  ده آل ه  م و

ن  گ  اش  ت آن گ  اه ب  اش  د، R از ,α)-ای  ده آل δ) ی  ک I اگ  ر ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ ف  رض ک  ن  ی  م .40 . 1 . 2 ت  ذک  ر
ض  اب  ط  ه ب  ا δ : R/I −→ R/I و اس  ت درون ری  خ  ت  ی ی  ک α(a + I) = α(a) + I ض  اب  ط  ه ب  ا α : R/I −→ R/I

اس  ت. α-م  ش  ت  ق ت  اب  ع ی  ک δ(a+ I) = δ(a) + I

ب  ه ط  وري ک  ه ب  اش  د داش  ت  ه وج  ود α : R −→ R درون ری  خ  ت  ی ه  رگ  اه م  ی ن  ام  ی  م، α-ص  ل  ب26 را R ح  ل  ق  ه ي .41 . 1 . 2 ت  ع  ری  ف
.a = 0 ش  ود ن  ت  ی  ج  ه ،aα(a) = 0 از ،a ∈ R ه  ر ب  راي

آن گ  اه ،a2 = 0 اگ  ر زی  را اس  ت، ی  ک ب  ه ی  ک α و ک  اه  ش  ی R آن گ  اه ب  اش  د، α-ص  ل  ب ح  ل  ق  ه ي R اگ  ر
.a = 0 ن  ت  ی  ج  ه در و ،aα(a) = 0 آن گ  اه ،α(a) = 0 اگ  ر ه  م  چ  ن  ی  ن، .a = 0 ل  ذا و (aα(a))α(aα(a)) = 0

از α ص  ل  ب درون ری  خ  ت  ی ،[38] م  رج  ع در ک  رم  پ  ا28 ه  س  ت  ن  د. ک  اه  ش  ی ح  ل  ق  ه ه  اي از خ  اص  ی رده α-ص  ل  ب27 ح  ل  ق  ه ه  اي
ه  ر دادن  د ن  ش  ان و ک  ردن  د م  ع  رف  ی را α-ص  ل  ب ح  ل  ق  ه ه  اي ،[27] م  رج  ع در ک  واك و ک  ی  م ه  ن  گ29، ک  رد. ت  ع  ری  ف را R ح  ل  ق  ه ي

م  ی ب  اش  د. ک  اه  ش  ی α-ص  ل  ب، ح  ل  ق  ه ي
ح  ل  ق  ه ي از α-ص  ل  ب ای  ده آل ه  اي ب  ی  ن رواب  ط α-ص  ل  ب، ای  ده آل ه  اي م  ع  رف  ی ب  ا ،[28] م  رج  ع در رزوي30 و ک  واك ه  ن  گ،

دادن  د. ق  رار ب  ررس  ی م  ورد را ح  ل  ق  ه اي ت  وس  ی  ع ه  اي از ب  رخ  ی و R
ک  ردن  د. ت  ع  ری  ف α-س  ازگ  ار ب  ه ن  ام را α-ص  ل  ب ح  ل  ق  ه ه  اي از ت  ع  م  ی  م  ی ،[24] م  رج  ع در م  وس  وي32 و ه  اش  م  ی31

ک  رد. م  ع  رف  ی ه  س  ت  ن  د، α-ص  ل  ب ای  ده آل ه  اي از ت  وس  ی  ع  ی ک  ه را α-س  ازگ  ار ای  ده آل ه  اي ،[23] م  رج  ع در ه  اش  م  ی ه  م  چ  ن  ی  ن،
α-س  ازگ  ار33 را R ح  ل  ق  ه ي ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي روي α-م  ش  ت  ق ت  اب  ع ی  ک δ ف  رض ک  ن  ی  م .42 . 1 . 2 ت  ع  ری  ف
م  ی ن  ام  ی  م، δ-س  ازگ  ار34 را R ح  ل  ق  ه ي .aα(b) = 0 اگ  ر ت  ن  ه  ا و اگ  ر ab = 0 آن گ  اه ،a, b ∈ R ه  رگ  اه م  ی ن  ام  ی  م،

26Rigid
27α-Rigid
28Krempa
29Hong
30Rizvi
31Hashemi
32Moussavi
33α-Compatible
34δ-Compatible
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را R آن گ  اه ب  اش  د، δ-س  ازگ  ار ه  م و α-س  ازگ  ار ه  م R اگ  ر .aδ(b) = 0 آن گ  اه ،ab = 0 و a, b ∈ R ه  رگ  اه
م  ی ن  ام  ی  م. ,α)-س  ازگ  ار35 δ)

و ک  اه  ش  ی R ح  ل  ق  ه ي ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي روي α-م  ش  ت  ق ت  اب  ع ی  ک δ ف  رض ک  ن  ی  م [2 . 2 ل  م ،24] .43 . 1 . 2 ل  م
ب  اش  د. α-ص  ل  ب اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ,α)-س  ازگ  ار δ)

ح  ل  ق  ه  اي ک  ه م  ی ده  د ن  ش  ان ب  ع  د م  ث  ال ام  ا اس  ت، ,α)-س  ازگ  ار δ) ح  ل  ق  ه  اي α-ص  ل  ب، ح  ل  ق  ه ي ه  ر ،43 . 1 . 2 ل  م ب  ن  اب  ه
ن  م  ی ب  اش  د. α-ص  ل  ب ول  ی اس  ت ,α)-س  ازگ  ار δ) ک  ه دارد وج  ود

و ب  اش  د R α-ص  ل  ب ح  ل  ق  ه ي روي α-م  ش  ت  ق ت  اب  ع ی  ک δ ف  رض ک  ن  ی  م .44 . 1 . 2 م  ث  ال

درون ری  خ  ت  ی ب  ه م  ی ت  وان را α درون ری  خ  ت  ی ای  ن ص  ورت، در .T3(R) =



a b c

0 a d

0 0 a


∣∣∣∣∣a, b, c ∈ R


ه  م  چ  ن  ی  ن، داد. ت  وس  ی  ع α((aij)) = (α(aij)) ض  اب  ط  ه ب  ا α : T3(R) −→ T3(R)

ن  ش  ان اس  ت. T3(R) ب  ر α-م  ش  ت  ق ت  اب  ع ی  ک δ((aij)) = (δ(aij)) ض  اب  ط  ه ب  ا δ : T3(R) −→ T3(R)

ن  م  ی ب  اش  د. α-ص  ل  ب ک  ه اس  ت ,α)-س  ازگ  ار δ) ح  ل  ق  ه ي T3(R) م  ی ده  ی  م

آن گ  اه ،


a1 b1 c1

0 a1 d1

0 0 a1

α



a2 b2 c2

0 a2 d2

0 0 a2


 = 0 اگ  ر

(1) a1α(a2) = 0

(2) a1α(b2) + b1α(a2) = 0

(3) a1α(c2) + b1α(d2) + c1α(a2) = 0

(4) a1α(d2) + d1α(a2) = 0.

آن گ  اه ک  ن  ی  م، ض  رب (2) در چ  پ از را α(a2) اگ  ر .α(a2)a1 = 0 م  ی  گ  ی  ری  م ن  ت  ی  ج  ه (1) از اس  ت، ک  اه  ش  ی R چ  ون
ک  ن  ی  م، ض  رب (3) در چ  پ از را α(a2) اگ  ر .a1α(b2) = α(b2)a1 = 0 ن  ت  ی  ج  ه در و ،b1α(a2) = α(a2)b1 = 0

ب  ه ص  ورت (3) پ  س .c1α(a2) = α(a2)c1 = 0 آن گ  اه

(5) a1α(c2) + b1α(d2) = 0

و a1α(d2) = α(d2)a1 = 0 آن گ  اه ک  ن  ی  م، ض  رب (4) در چ  پ از را α(a2) اگ  ر م  ی ش  ود. ت  ب  دی  ل
و b1α(d2) = α(d2)b1 = 0 آن گ  اه ک  ن  ی  م، ض  رب (5) در راس  ت از را a1 اگ  ر .d1α(a2) = α(a2)d1 = 0

ل  ذا .a1α(c2) = α(c2)a1 = 0

a1a2 = a1b2 = a1c2 = a1d2 = b1a2 = b1d2 = c1a2 = d1a2 = 0.

ب  ن  اب  رای  ن

35(α, δ)-Compatible
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
a1 b1 c1

0 a1 d1

0 0 a1



a2 b2 c2

0 a2 d2

0 0 a2

 = 0. (∗)

داد ن  ش  ان م  ی ت  وان ق  ب  ل پ  اراگ  راف م  ش  اب  ه اس  ت  دلال  ی ب  ا اس  ت، α-ص  ل  ب ح  ل  ق  ه ي R چ  ون ب  اش  د. ب  رق  رار (∗) ف  رض ک  ن  ی  م ح  ال
ک  ه

a1α(a2) = a1α(b2) = b1α(a2) = c1α(a2) = d1α(a2) = a1α(d2) = a1α(c2) = b1α(d2) = 0,

اس  ت. α-س  ازگ  ار ح  ل  ق  ه ي T3(R) ب  ن  اب  رای  ن .


a1 b1 c1

0 a1 d1

0 0 a1

α



a2 b2 c2

0 a2 d2

0 0 a2


 = 0 ن  ت  ی  ج  ه در و

ن  ت  ی  ج  ه در ب  اش  د. ب  رق  رار (∗) ف  رض ک  ن  ی  م

a1a2 = a1b2 = a1c2 = a1d2 = b1a2 = b1d2 = c1a2 = d1a2 = 0.

ل  ذا اس  ت، α-ص  ل  ب ح  ل  ق  ه ي R چ  ون

a1δ(a2) = a1δ(b2) = a1δ(c2) = a1δ(d2) = b1δ(a2) = b1δ(d2) = c1δ(a2) = d1δ(a2) = 0.

از اس  ت. δ-س  ازگ  ار ح  ل  ق  ه ي T3(R) م  ی ده  د ن  ش  ان ک  ه ،


a1 b1 c1

0 a1 d1

0 0 a1

 δ



a2 b2 c2

0 a2 d2

0 0 a2


 = 0 ب  ن  اب  رای  ن

ن  م  ی ب  اش  د. α-ص  ل  ب پ  س ن  ی  س  ت، ک  اه  ش  ی T3(R) چ  ون ط  رف  ی،

ای  ده آل را I درای  ن ص  ورت، ب  اش  د. R از ای  ده آل ی  ک I و R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ ف  رض ک  ن  ی  م .45 . 1 . 2 ت  ع  ری  ف
را I ه  م  چ  ن  ی  ن، .aα(b) ∈ I اگ  ر ت  ن  ه  ا و اگ  ر ab ∈ I ب  اش  ی  م داش  ت  ه ،a, b ∈ R ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م، R از α-س  ازگ  ار
ه  م I اگ  ر ب  ه ع  لاوه، .aδ(b) ∈ I ش  ود ن  ت  ی  ج  ه ab ∈ I از ،a, b ∈ R ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م، R از δ-س  ازگ  ار ای  ده آل

م  ی ن  ام  ی  م. ,α)-س  ازگ  ار δ) ای  ده آل را I آن گ  اه ب  اش  د، δ-س  ازگ  ار ه  م و α-س  ازگ  ار

م  ع  ادل  ن  د: زی  ر ش  رای  ط ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از ای  ده آل  ی I ف  رض ک  ن  ی  م [2 . 1 گ  زاره ،23] .46 . 1 . 2 گ  زاره

اس  ت. R از ,α)-س  ازگ  ار δ) ای  ده آل ی  ک I (1)

اس  ت. ,α)-س  ازگ  ار δ) ح  ل  ق  ه ي R/I (2)

ب  ه ط  وري ب  اش  د م  وج  ود n م  ث  ب  ت ص  ح  ی  ح ع  دد ه  رگ  اه م  ی ن  ام  ی  م n ح  داک  ث  ر36 ان  دی  س ب  ا را R ح  ل  ق  ه ي [52] .47 . 1 . 2 ت  ع  ری  ف
ه  رگ  اه م  ی ن  ام  ی  م ک  ران دار ان  دی  س ب  ا را R ح  ل  ق  ه ي ه  م  چ  ن  ی  ن، .an = 0 ب  اش  ی  م داش  ت  ه ،a ∈ R پ  وچ ت  وان ع  ن  ص  ر ه  ر ب  راي ک  ه

ب  اش  د. n ح  داک  ث  ر ان  دی  س ب  ا R ،n م  ث  ب  ت ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي
36Index at most
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ای  ده آل ه  ر ای  ن ص  ورت، در ب  اش  د. n ح  داک  ث  ر ان  دی  س ب  ا و اول ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [14 . 5(6) گ  زاره ،52] .48 . 1 . 2 گ  زاره
ن  م  ی ب  اش  د. ص  ف  ر م  ق  س  وم ع  ل  ی  ه a ک  ه ب  ه ط  وري اس  ت R از a م  ان  ن  د ع  ن  ص  ري ش  ام  ل R از ن  اص  ف  ر

E(A) از Ei ت  ج  زی  ه غ  ی  رق  اب  ل زی  رم  دول ه  اي ه  رگ  اه اس  ت م  ت  ن  اه  ی گ  ل  دي ب  ع  دي داراي A م  دول گ  وئ  ی  م .49 . 1 . 2 ت  ع  ری  ف
.E(A) = E1

⊕
E2

⊕
· · ·

⊕
En ک  ه ب  ه ط  وري ب  اش  د داش  ت  ه وج  ود (A ان  ژک  ت  ی  و (پ  وش

زی  رم  دول ه  اي از ن  ام  ت  ن  اه  ی م  س  ت  ق  ی  م م  ج  م  وع ه  ی  چ اگ  ر ت  ن  ه  ا و اگ  ر اس  ت م  ت  ن  اه  ی گ  ل  دي ب  ع  د داراي A م  دول .50 . 1 . 2 ق  ض  ی  ه
ب  اش  د. ن  داش  ت  ه وج  ود A ن  اص  ف  ر

اف  زای  ش  ی37 زن  ج  ی  ر ش  رط و ب  اش  د م  ت  ن  اه  ی گ  ل  دي ب  ع  د داراي RR ه  رگ  اه م  ی ن  ام  ی  م راس  ت گ  ل  دي را R ح  ل  ق  ه ي .51 . 1 . 2 ت  ع  ری  ف
ب  اش  د. ب  رق  رار R ح  ل  ق  ه  راس  ت پ  وچ س  ازه  اي روي

ن  اص  ف  ر ع  ن  ص  ر آن گ  اه ب  اش  د، R از ن  اص  ف  ري ای  ده آل B و راس  ت گ  ل  دي و ن  ی  م اول ح  ل  ق  ه ي R اگ  ر [1 . 2 ل  م ،53] .52 . 1 . 2 ل  م
.bb′ ̸= 0 داری  م ،b′ ∈ B ن  اص  ف  ر ع  ن  ص  ر ه  ر ب  راي ک  ه ب  ه ط  وري اس  ت م  وج  ود b ∈ B

،x ∈ R ع  ن  ص  ر ب  راي زی  ر ش  رای  ط ای  ن ص  ورت، در ب  اش  د. دل  خ  واه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [1 . 1 گ  زاره ،47] .53 . 1 . 2 گ  زاره
م  ع  ادل  ن  د:

.e− x ∈ R(x− x2) ک  ه ب  ه ط  وري دارد وج  ود e2 = e ∈ R ع  ن  ص  ر (1)

.(1− e)− c(1− x) ∈ J(R) ک  ه ب  ه ط  وري م  وج  ودن  د c ∈ R و e2 = e ∈ Rx ع  ن  اص  ر (2)

.R = Re+R(1− x) ک  ه ب  ه ط  وري دارد وج  ود e2 = e ∈ Rx ع  ن  ص  ر (3)

.1− e ∈ R(1− x) ک  ه ب  ه ط  وري دارد وج  ود e2 = e ∈ Rx ع  ن  ص  ر (4)

ک  ن  د. ص  دق ،53 . 1 . 2 گ  زاره ش  رای  ط در R از ع  ن  ص  ر ه  ر ه  رگ  اه م  ی ن  ام  ی  م م  ن  اس  ب38 را R ح  ل  ق  ه ي [47] .54 . 1 . 2 ت  ع  ری  ف

M روي درون ری  خ  ت  ی ه  ا ح  ل  ق  ه ي را M روي ه  م  ری  خ  ت  ی ه  ا ت  م  ام م  ج  م  وع  ه ي ،M چ  پ R-م  دول ب  راي .55 . 1 . 2 ت  ع  ری  ف
م  ی ده  ی  م. ن  ش  ان End(M) ن  م  اد ب  ا و م  ی ن  ام  ی  م

اس  ت ت  ب  ادل  ی39 خ  اص  ی  ت داراي M م  ی گ  وئ  ی  م ای  ن ص  ورت، در ب  اش  د. چ  پ R-م  دول ،M ف  رض ک  ن  ی  م [47] .56 . 1 . 2 ت  ع  ری  ف
م  س  ت  ق  ی  م ت  ج  زی  ه ه  ر و X م  دول ه  ر ب  راي ه  رگ  اه

X = M ′ ⊕ Y =
⊕
i∈I

Ni

ک  ه: ب  ه ط  وري ب  اش  ن  د داش  ت  ه وج  ود (i ∈ I) N ′
i ⊆ Ni زی  رم  دول ه  اي ،M ≃ M ′ ک  ه

X = M ′ ⊕
(⊕

N ′
i

)
.

37Ascending chain condition
38Suitable
39Exchange property
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(ی  ا ب  اش  د م  ت  ن  اه  ی I م  ج  م  وع  ه ي ف  وق ش  رط در ه  رگ  اه اس  ت م  ت  ن  اه  ی40 ت  ب  ادل  ی خ  اص  ی  ت داراي M م  دول م  ی گ  وئ  ی  م ه  م  چ  ن  ی  ن،
.(|I| = 2 م  ع  ادل ب  ه ط  ور

م  ع  ادل  ن  د: M چ  پ R-م  دول ب  راي زی  ر گ  زاره ه  اي [2 . 1 ق  ض  ی  ه ،47] .57 . 1 . 2 ق  ض  ی  ه

اس  ت. راس  ت م  ن  اس  ب End(M) (1)

اس  ت. م  ت  ن  اه  ی ت  ب  ادل  ی خ  اص  ی  ت داراي M (2)

اس  ت. چ  پ م  ن  اس  ب End(M) (3)

ب  ال  ع  ک  س. و اس  ت راس  ت م  ن  اس  ب چ  پ، م  ن  اس  ب ح  ل  ق  ه ي ه  ر ،57 . 1 . 2 ق  ض  ی  ه ب  ن  اب  ه ک  ه م  ی ک  ن  ی  م ت  وج  ه

ت  ن  ه  ا و اگ  ر اس  ت م  ن  اس  ب ح  ل  ق  ه ي R ای  ن ص  ورت، در ب  اش  د. دل  خ  واه ح  ل  ق  ه ي R ک  ن  ی  م ف  رض [1 . 3 ن  ت  ی  ج  ه ،47] .58 . 1 . 2 ن  ت  ی  ج  ه
ب  الا آی  ن  د. چ  پ ای  ده آل ه  ر پ  ی  م  ان  ه ب  ه خ  ودت  وان ه  ا اگ  ر

ای  ن ص  ورت، در ب  اش  د. دل  خ  واه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [1 . 8 گ  زاره ،47] .59 . 1 . 2 گ  زاره

اس  ت. م  ن  اس  ب R آن گ  اه ب  اش  د، ت  م  ی  ز R ح  ل  ق  ه ي اگ  ر (1)

ب  اش  د. م  ن  اس  ب R اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ت  م  ی  ز R آن گ  اه ب  اش  ن  د، م  رک  زي R ح  ل  ق  ه ي خ  ودت  وان ه  اي ت  م  ام اگ  ر (2)

م  ع  ادل  ن  د: زی  ر ش  رای  ط ای  ن ص  ورت، در ب  اش  د. م  ن  ظ  م ح  ل  ق  ه ي R ف  رض ک  ن  ی  م 16 .ب] ق  ض  ی  ه ،49] .60 . 1 . 2 ق  ض  ی  ه

اس  ت. ن  ی  م س  اده آرت  ی  ن  ی R (1)

م  ی ب  اش  د. ش  ده ت  ول  ی  د م  ت  ن  اه  ی  اً چ  پ) (ی  ا راس  ت ای  ده آل ه  اي روي ک  اه  ش  ی زن  ج  ی  ر ش  رط داراي R (2)

اس  ت. چ  پ) ی  ا (راس  ت ن  وت  ري R (3)

اس  ت. ک  رول ب  ع  د داراي R (4)

ن  دارد. وج  ود R ح  ل  ق  ه ي در م  ت  ع  ام  د دوب  ه دو خ  ودت  وان ه  اي از ن  ام  ت  ن  اه  ی زی  رم  ج  م  وع  ه ي ه  ی  چ (5)

ح  ل  ق  ه ه  ا اری  ب ت  وس  ی  ع ه  اي از ن  ی  از م  ورد م  ف  اه  ی  م 2 . 2
م  ع  رف  ی را اری  ب م  ع  ک  وس ل  وران س  ري ه  اي و اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي اری  ب، چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ه  اي ب  خ  ش، ای  ن در

م  ی ک  ن  ی  م. ب  ی  ان را ح  ل  ق  ه ه  ا ای  ن وی  ژگ  ی ه  اي از ب  رخ  ی و
40Finite exchange property
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چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ب  اش  د. R ح  ل  ق  ه ي از α-م  ش  ت  ق ت  اب  ع ی  ک δ و درون ری  خ  ت  ی ی  ک α ف  رض ک  ن  ی  م .1 . 2 . 2 ت  ع  ری  ف
ai ∈ R ک  ه ه  س  ت  ن  د ∑n

i=0 aix
i چ  ن  دج  م  ل  ه اي ه  اي آن ع  ن  اص  ر م  ی ده  ی  م. ن  م  ای  ش R[x;α, δ] ب  ا را R روي اری  ب41

،a ∈ R ه  ر ب  راي ب  ه ط  وري ک  ه م  ی ش  ون  د ت  ع  ری  ف ط  ب  ی  ع  ی ب  ه ط  ور R[x;α, δ] روي ض  رب و ج  م  ع ع  م  ل دو .n ≥ 0 و
ح  ل  ق  ه ي را آن  و م  ی ده  ی  م ن  ش  ان R[x; δ] ب  ا را R[x;α, δ] آن گ  اه ب  اش  د، ه  م  ان  ی ت  اب  ع α اگ  ر .xa = α(a)x + δ(a)

م  ی ک  ن  ی  م. اس  ت  ف  اده R[x;α] از R[x;α, δ] ب  ه ج  اي ،δ = 0 ه  رگ  اه م  ی ن  ام  ی  م. R روي م  ش  ت  ق چ  ن  دج  م  ل  ه اي ه  اي

در ب  اش  ن  د. ص  ح  ی  ح اع  داد j ≥ i ≥ 0 و R روي α-م  ش  ت  ق ت  اب  ع  ی δ دل  خ  واه، ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .2 . 2 . 2 ت  ذک  ر
را ب  اش  ن  د ش  ده ظ  اه  ر δ ب  ار j − i و α ب  ار i آن ه  ا در ب  ه ط  وري ک  ه δ و α ح  س  ب ب  ر ع  ب  ارت ه  اي ه  م  ه ي م  ج  م  وع  ه ي ای  ن ص  ورت،

.f j
j−1 = {αj−1δ, αj−2δα, . . . , δαj−1} و f j

0 = {δj} ،f j
j = {αj} م  ث  ال، ع  ن  وان ب  ه  م  ی ده  ی  م. ن  ش  ان f j

i ب  ا

ن  ش  ان deg(f(x)) ن  م  اد ب  ا را f(x) درج  ه ي م  ی گ  ی  ری  م. ن  ظ  ر در را R ح  ل  ق  ه ي روي f(x) چ  ن  دج  م  ل  ه اي .3 . 2 . 2 ت  ذک  ر
م  ی ده  ی  م.

و f(x) = ∑n
i=0 aix

i ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. α-ص  ل  ب ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [6 گ  زاره ،27] .4 . 2 . 2 گ  زاره
ه  ر ب  راي اگ  ر وت  ن  ه  ا اگ  ر fg = 0 ای  ن ص  ورت، در ب  اش  ن  د. R[x;α, δ] ح  ل  ق  ه ي از ع  ن  اص  ري g(x) = ∑m

j=0 bjx
j

.aibj = 0 ب  اش  ی  م داش  ت  ه ،0 ≤ j ≤ m و 0 ≤ i ≤ n

م  ع  ادل  ن  د: زی  ر ش  رای  ط ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) ح  ل  ق  ه ي ی  ک R ف  رض ک  ن  ی  م [2 . 11 ن  ت  ی  ج  ه ،45] .5 . 2 . 2 ن  ت  ی  ج  ه

اس  ت. 2 -اول  ی  ه ،R (1)

اس  ت. 2 -اول  ی  ه ،R[x;α, δ] (2)

.Nil(R) = P (R;α, δ) (3)

.Nil(R)[x;α, δ] = P (R[x;α, δ]) (4)

.Nil(R)[x;α, δ] = Nil(R[x;α, δ]) داری  م و اس  ت 2 -اول  ی  ه ،R (5)

اس  ت. اول ک  ام  لاً ،R از م  ی  ن  ی  م  ال اول ,α)-ای  ده آل δ) ه  ر (6)

ب  ه ط  وري ب  اش  د ه  ا x−jrxi از م  ت  ن  اه  ی م  ج  م  وع ه  اي ت  م  ام م  ج  م  وع  ه ي ن  م  ای  ان گ  ر R[x, x−1;α] ف  رض ک  ن  ی  م .6 . 2 . 2 ت  ع  ری  ف
ب  ه ط  ور R[x, x−1;α] روي ض  رب و ج  م  ع ع  م  ل دو .r ∈ R و i, j ≥ 0 و ب  اش  د ت  ک ری  خ  ت  ی ی  ک α : R → R  ک  ه
م  ج  م  وع  ه ي م  ی ک  ن  د. ت  ب  ع  ی  ت rx−1 = x−1α(r) و xr = α(r)x ق  وان  ی  ن از ض  رب ب  ه ط  وري ک  ه م  ی ش  ون  د ت  ع  ری  ف ط  ب  ی  ع  ی

م  ی ن  ام  ی  م. اری  ب42 ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي آن را ک  ه م  ی ده  د ح  ل  ق  ه ت  ش  ک  ی  ل ف  وق ع  م  ل دو ب  ا R[x, x−1;α]

ت  ع  ری  ف زی  ر ب  ه ص  ورت م  ی ش  ود، داده ن  ش  ان A(R,α) ی  ا A ن  م  اد ب  ا ک  ه را R ح  ل  ق  ه ي ج  ردن43 ت  وس  ی  ع .7 . 2 . 2 ت  ع  ری  ف
م  ی ک  ن  ی  م:

41Skew polynomial ring
42Skew Laurent polynomial ring
43Jordan’s extension
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A = {x−irxi | r ∈ R, i ≥ 0}.

:i, j ≥ 0 و r, s ∈ R ه  ر ب  راي ای  ن رو از و x−irxi = x−(i+j)αj(r)x(i+j) آن گ  اه ،j ≥ 0 ه  رگ  اه

x−irxi + x−jsxj = x−(i+j)
(
αj(r) + αi(s)

)
x(i+j)

(x−irxi)(x−jsxj) = x−(i+j)αj(r)αi(s)x(i+j),

ازاي ب  ه م  ی ک  ن  د. ال  ق  ا A از خ  ودری  خ  ت  ی زی  ر، ت  ع  ری  ف ب  ا α ک  ه م  ی ک  ن  ی  م ت  وج  ه اس  ت. R[x, x−1;α] از زی  رح  ل  ق  ه اي A ب  ن  اب  رای  ن
،i ≥ 0 و r ∈ R ه  ر

α(x−irxi) = x−iα(r)xi.

ک  ل  ی ح  ال  ت در ه  م  چ  ن  ی  ن، و R = A آن گ  اه ب  اش  د، R از خ  ودری  خ  ت  ی α اگ  ر ک  ه داد ن  ش  ان ،[31] م  رج  ع در ج  ردن44
.R[x, x−1;α] ∼= A[x, x−1;α]

ت  ن  ه  ا و اگ  ر اس  ت α-س  ازگ  ار ،R ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از ت  ک ری  خ  ت  ی α ف  رض ک  ن  ی  م [3 . 11 ل  م ،24] .8 . 2 . 2 ل  م
ب  اش  د. α-س  ازگ  ار ،A اگ  ر

اری  ب45 آرم  ن  داری  ز را R ح  ل  ق  ه ي ب  اش  د. R ح  ل  ق  ه ي از درون ری  خ  ت  ی α ف  رض ک  ن  ی  م [2 . 1 ت  ع  ری  ف ،46] .9 . 2 . 2 ت  ع  ری  ف
از g = b0 + b1x + · · · + bmxm و f = a0 + a1x + · · · + anx

n چ  ن  دج  م  ل  ه اي ه  اي ب  راي ه  رگ  اه م  ی ن  ام  ی  م،
.aibj = 0 ب  اش  ی  م داش  ت  ه ،0 ≤ j ≤ m و 0 ≤ i ≤ n ه  ر ب  راي اگ  ر ت  ن  ه  ا و اگ  ر fg = 0 ،R[x;α] ح  ل  ق  ه ي

ح  ل  ق  ه ي R اگ  ر ت  ن  ه  ا اگ  ر اس  ت α-ص  ل  ب ،R آن گ  اه ب  اش  د، R از درون ری  خ  ت  ی α اگ  ر [2 . 3 گ  زاره ،46] .10 . 2 . 2 گ  زاره
ب  اش  د. اری  ب آرم  ن  داری  ز و ک  اه  ش  ی

م  ع  ادل  ن  د: زی  ر گ  زاره ه  اي ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از ت  ک  ری  خ  ت  ی α ف  رض ک  ن  ی  م [5 . 1 ق  ض  ی  ه ،46] .11 . 2 . 2 ق  ض  ی  ه

م  ی ب  اش  د. α-ص  ل  ب ،R (1)

اس  ت. اری  ب آرم  ن  داری  ز و ک  اه  ش  ی R (2)

اس  ت. ک  اه  ش  ی R[x;α] (3)

اس  ت. ک  اه  ش  ی R[x, x−1;α] (4)

Cf ن  م  اد ب  ا را R در f(x) ض  رای  ب م  ج  م  وع  ه ي م  ی گ  ی  ری  م. ن  ظ  ر در را R ح  ل  ق  ه ي روي f(x) چ  ن  دج  م  ل  ه اي .12 . 2 . 2 ت  ذک  ر
م  ی ده  ی  م. ن  م  ای  ش

44Jordan
45Skew-Armendariz
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ب  راي ای  ن ص  ورت، در ب  اش  د. R از ت  ک ری  خ  ت  ی α و اری  ب آرم  ن  داری  ز ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [3 . 1 گ  زاره ،46] .13 . 2 . 2 گ  زاره
.ab = 0 ب  اش  ی  م داش  ت  ه b ∈ Cg ه  ر و a ∈ Cf ه  ر ب  راي اگ  ر ت  ن  ه  ا و اگ  ر fg = 0 ،f, g ∈ A[x, x−1;α] ه  ر

ب  راي ای  ن ص  ورت، در ب  اش  د. R از ت  ک ری  خ  ت  ی α و اری  ب آرم  ن  داری  ز ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [3 . 2 گ  زاره ،46] .14 . 2 . 2 گ  زاره
.ab = 0 ب  اش  ی  م داش  ت  ه b ∈ Cg ه  ر و a ∈ Cf ه  ر ب  راي اگ  ر ت  ن  ه  ا و اگ  ر fg = 0 ،f, g ∈ R[x, x−1;α] ه  ر

ب  راي اگ  ر ب  اش  د. R از ت  ک ری  خ  ت  ی α و اری  ب آرم  ن  داری  ز ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [3 . 3 گ  زاره ،46] .15 . 2 . 2 گ  زاره
،i ه  ر ب  راي ک  ه ب  ه ط  وري a1a2 · · · an = 0 آن گ  اه ،f1 · · · fn = 0 ب  اش  ی  م داش  ت  ه ،f1, · · · , fn ∈ R[x, x−1;α]

.ai ∈ Cfi

ن  م  اد ب  ا را اری  ب46 ل  وران س  ري ه  اي ح  ل  ق  ه ي آن گ  اه ب  اش  د، R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α اگ  ر [53] .16 . 2 . 2 ت  ع  ری  ف
ع  دد k م  ت  غ  ی  ر، x ک  ه ب  ه ط  وري م  ی ب  اش  د f =

∑+∞
i=k fix

i ش  ک  ل ب  ه ح  ل  ق  ه ای  ن از ع  ن  ص  ر ه  ر م  ی ده  ی  م. ن  م  ای  ش R((x, α))

،a ∈ R ه  ر ب  راي و م  ی ش  ون  د ت  ع  ری  ف ط  ب  ی  ع  ی ب  ه ص  ورت ض  رب و ج  م  ع ،R((x, α)) ح  ل  ق  ه ي در .fi ∈ R و اس  ت ص  ح  ی  ح
را آن و م  ی ده  ی  م ن  ش  ان R((x)) ب  ا را R((x, α)) آن گ  اه ،α = 1R اگ  ر م  ی ک  ن  د. ت  ب  ع  ی  ت xa = α(a)x ق  ان  ون از ض  رب

م  ی ن  ام  ی  م. ل  وران س  ري ه  اي ح  ل  ق  ه ي

ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، .S = R((x, α)) و ب  اش  د R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م [1 . 4 ل  م ،53] .17 . 2 . 2 ل  م
J(S) در م  ش  م  ول س  ري ه  اي ن  اص  ف  ر ض  رای  ب ک  وچ  ک ت  ری  ن ت  م  ام ت  وس  ط ش  ده ت  ول  ی  د R از ن  اص  ف  ر ای  ده آل B و J(S) ̸= 0

.bb′ = b′′b = 0 ب  ه ط  وري ک  ه م  وج  ودن  د b′, b′′ ∈ B ن  اص  ف  ر ع  ن  اص  ر ،B از b ن  اص  ف  ر ع  ن  ص  ر ه  ر ب  راي ای  ن ص  ورت، در ب  اش  د.

ل  وران س  ري ه  اي ح  ل  ق  ه ي ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .18 . 2 . 2 ت  ع  ری  ف
f(x) =

∑n
i=−∞ aix

i ف  رم ب  ه ح  ل  ق  ه ای  ن از ع  ن  ص  ر ه  ر م  ی ده  ی  م. ن  ش  ان R((x−1;α, δ)) ن  م  اد ب  ا را اری  ب47 م  ع  ک  وس
ح  ل  ق  ه ي روي ض  رب و ج  م  ع ع  م  ل دو .ai ∈ R و اس  ت ص  ح  ی  ح ع  دد ی  ک n و م  ت  غ  ی  ر x ک  ه ب  ه ط  وري م  ی ب  اش  د

م  ی ک  ن  د: ت  ب  ع  ی  ت زی  ر رواب  ط از ض  رب ک  ه ب  ه ط  وري م  ی ش  ون  د ت  ع  ری  ف ط  ب  ی  ع  ی ب  ه ط  ور R((x−1;α, δ))

xa = α(a)x+ δ(a)

و

x−1a =
∑∞

i=1 α
−1(−δα−1)i−1(a)x−i.

ح  ل  ق  ه ي را R ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ،δ و R از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م [1] .19 . 2 . 2 ت  ع  ری  ف
,α)-آرم  ن  داری  ز δ) م  خ  ت  ص  ر (ب  ه ط  ور م  ی ن  ام  ی  م اری  ب48 م  ع  ک  وس ل  وران س  ري ه  اي ن  وع از اری  ب ,α)-آرم  ن  داری  ز δ)
و ب  اش  ن  د R((x−1;α, δ)) ح  ل  ق  ه ي از ع  ن  اص  ري g(x) = ∑n

j=−∞ bjx
j و f(x) = ∑m

i=−∞ aix
i ه  رگ  اه س  ل  م  ا)،

.aixibjxj = 0 ،j ≤ n و i ≤ m ه  ر ب  راي آن گ  اه ،f(x)g(x) = 0

ای  ن ص  ورت، در ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م [2 . 6 ق  ض  ی  ه ،1] .20 . 2 . 2 ق  ض  ی  ه
اس  ت. س  ل  م  ا ,α)-آرم  ن  داری  ز δ) α-ص  ل  ب، ح  ل  ق  ه ي ه  ر

46Skew Laurent series ring
47Skew inverse Laurent series ring
48(α, δ)-Skew Armendariz ring of skew inverse Laurent series type
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زی  ر گ  زاره ه  اي ای  ن ص  ورت، در ب  اش  د. س  ل  م  ا ,α)-آرم  ن  داری  ز δ) ح  ل  ق  ه ي R ف  رض ک  ن  ی  م [2 . 9 گ  زاره ،1] .21 . 2 . 2 گ  زاره
ب  رق  رارن  د:

.δ(e) = 0 و α(e) = e داری  م ،e2 = e ∈ R ه  ر ب  راي (1)

.e ∈ R آن گ  اه ،e2 = e ∈ R((x−1;α, δ)) اگ  ر (2)

اس  ت. آب  ل  ی R ح  ل  ق  ه ي (3)

م  ی ب  اش  د. آب  ل  ی R((x−1;α, δ)) ح  ل  ق  ه ي (4)





٣ ف  ص  ل

ح  ل  ق  ه ي خ  ودت  وان و وارون پ  ذی  ر ع  ن  اص  ر ب  ررس  ی
چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي و اری  ب چ  ن  دج  م  ل  ه اي ه  اي

اری  ب ل  وران

دارن  د. ن  اج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي ن  ظ  ری  ه ي در ب  رج  س  ت  ه اي ن  ق  ش خ  ودت  وان و وارون پ  ذی  ر ع  ن  اص  ر م  ان  ن  د ح  ل  ق  ه ع  ن  اص  ر از ب  رخ  ی
R[x;α, δ] اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي خ  ودت  وان و وارون پ  ذی  ر ع  ن  اص  ر ب  ررس  ی ب  ه ف  ص  ل ای  ن دوم و اول ب  خ  ش در
ق  رار م  ط  ال  ع  ه م  ورد را A(R,α) ج  ردن ت  وس  ی  ع و R ح  ل  ق  ه ي ب  ی  ن وی  ژگ  ی ه  اي از ب  رخ  ی س  وم ب  خ  ش در س  پ  س م  ی پ  ردازی  م.
اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي خ  ودت  وان و وارون پ  ذی  ر ع  ن  اص  ر چ  ه  ارم ب  خ  ش در خ  واص، ای  ن وس  ی  ل  ه ب  ه و م  ی ده  ی  م

م  ی ک  ن  ی  م. م  ش  خ  ص را R[x, x−1;α]

م  ی ب  اش  د. [20] و [19] م  راج  ع از ب  رگ  رف  ت  ه ف  ص  ل ای  ن م  ط  ال  ب

اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي وارون پ  ذی  ر ع  ن  اص  ر ب  ررس  ی 1 . 3
دوئ  و ه  اي ح  ل  ق  ه روي اری  ب ه  اي اي ج  م  ل  ه چ  ن  د ح  ل  ق  ه ع  ن  اص  ر ث  اب  ت ح  اص  ل  ض  رب خ  ص  وص در ن  ت  ای  ج  ی اب  ت  دا ب  خ  ش، ای  ن در
را R[x;α, δ] ح  ل  ق  ه ي و R ح  ل  ق  ه ي وارون پ  ذی  ر ع  ن  اص  ر ب  ی  ن رواب  ط ن  ت  ی  ج  ه گ  ی  ري، ع  ن  وان ب  ه س  پ  س ک  ن  ی  م. م  ی ب  ی  ان را راس  ت

م  ی ک  ن  ی  م. ت  ع  ی  ی  ن اس  ت، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و R ح  ل  ق  ه ي ک  ه ه  ن  گ  ام  ی
ب  ود. خ  واه  د م  ف  ی  د م  ا اص  ل  ی ن  ت  ای  ج در ک  ه م  ی ک  ن  ی  م ش  روع زی  ر س  اده ل  م ب  ا اب  ت  دا
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ای  ن ص  ورت، در .a, b ∈ R و ب  اش  د ,α)-س  ازگ  ار δ) ،R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .1 . 1 . 3 ل  م

.aαn(b) = 0 = αn(a)b داری  م ،n ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ه  ر ب  راي آن گ  اه ،ab = 0 اگ  ر (1)

.ab = 0 آن گ  اه ،αk(a)b = 0 ب  اش  ی  م داش  ت  ه k ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ب  راي اگ  ر (2)

.δm(a)αn(b) = 0 = αm(a)δn(b) داری  م ،n و m ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ه  ر ب  راي آن گ  اه ،ab = 0 اگ  ر (3)

.α(a)α(b) = 0 = δ(a)δ(b) آن گ  اه ،ab = 0 اگ  ر (4)

.(α(a))n = 0 = (δ(a))n داری  م ،n م  ث  ب  ت ص  ح  ی  ح ع  دد ه  ر ب  راي آن گ  اه ،an = 0 اگ  ر (5)

.axmb = 0 داری  م R[x;α, δ] ح  ل  ق  ه ي در ،m م  ث  ب  ت ص  ح  ی  ح ع  دد ه  ر ب  راي آن گ  اه ،ab = 0 اگ  ر (6)

.ab = 0 آن گ  اه ،axmb = 0 ب  اش  ی  م داش  ت  ه R[x;α, δ] ح  ل  ق  ه ي در ،m م  ث  ب  ت ص  ح  ی  ح ع  دد ب  راي اگ  ر (7)

م  ی گ  ی  ری  م ن  ت  ی  ج  ه اس  ت α-س  ازگ  ار ح  ل  ق  ه ي R ای  ن ک  ه از .αn(a)αn(b) = 0 آن گ  اه ،ab = 0 اگ  ر (1) ب  ره  ان.
.αn(a)b = 0

ل  ذا اس  ت، α-س  ازگ  ار ح  ل  ق  ه ي R چ  ون .αk(a)b = 0 ک  ه ب  اش  د داش  ت  ه وج  ود k م  ث  ب  ت ص  ح  ی  ح ع  دد ک  ن  ی  م ف  رض (2)
.ab = 0 اس  ت، ی  ک ب  ه ی  ک α چ  ون و αk(ab) = αk(a)αk(b) = 0

ن  ت  ی  ج  ه R δ-س  ازگ  اري خ  اص  ی  ت و (1) از اس  ت  ف  اده ب  ا ،ab = 0 چ  ون .δ(a)α(b) = 0 ده  ی  م ن  ش  ان اس  ت ک  اف  ی (3)
.δ(a)α(b) = 0 ل  ذا و δ(a)b = δ(ab)− α(a)δ(b) = 0 ب  ن  اب  رای  ن .α(a)δ(b) = 0 م  ی گ  ی  ری  م

,α)-س  ازگ  ار δ) ح  ل  ق  ه ي R چ  ون .α(a)b = 0 = δ(a)b داری  م (3) و (1) از اس  ت  ف  اده ب  ا آن گ  اه ،ab = 0 اگ  ر (4)
.α(a)α(b) = 0 = δ(a)δ(b) ل  ذا اس  ت،

م  ی آی  د. دس  ت ب  ه (1) و (3) ،(4) از اس  ت  ف  اده ب  ا ت  رت  ی  ب ب  ه (7) ت  ا (5) ق  س  م  ت ه  اي

در .c, r ∈ R و f(x) = ∑n
i=0 aix

i ∈ R[x;α, δ] ب  اش  د، ,α)-س  ازگ  ار δ) ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .2 . 1 . 3 ل  م
.air = 0 ب  اش  ی  م داش  ت  ه ،1 ≤ i ≤ n ه  ر ب  راي و a0r = c اگ  ر ت  ن  ه  ا و اگ  ر f(x)r = c ای  ن ص  ورت،

چ  ون .n ≥ 1 ف  رض ک  ن  ی  م ح  ال اس  ت. واض  ح n = 0 ب  راي ای  ن ص  ورت، در .f(x)r = c ف  رض ک  ن  ی  م اب  ت  دا ب  ره  ان.
ل  م ب  ن  اب  ه ل  ذا .anr = 0 ب  ن  اب  رای  ن اس  ت، α-س  ازگ  ار ح  ل  ق  ه ي R آن ج  ای  ی ک  ه از .anαn(r) = 0 ن  ت  ی  ج  ه در ،f(x)r = c

و air = 0 م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،i ≥ 1 ه  ر ب  راي ،n روي اس  ت  ق  را از اس  ت  ف  اده ب  ا ح  ال .anxnr = 0 داش  ت خ  واه  ی  م ،(6)1 . 1 . 3
.aixir = 0 ل  ذا

م  ی ش  ود. ن  ت  ی  ج  ه راح  ت  ی ب  ه 1 . 1 . 3 ل  م ب  ه ب  ن  ا ب  ال  ع  ک  س،

و f(x) =
∑n

i=0 aix
i ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. α-ص  ل  ب ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .3 . 1 . 3 ل  م

ای  ن ص  ورت، در .f(x)g(x) = c ∈ R ک  ه ب  ه ط  وري ب  اش  ن  د R[x;α, δ] ح  ل  ق  ه ي از ن  اص  ف  ر ع  ن  اص  ر g(x) = ∑m
j=0 bjx

j

.aibj = 0 آن گ  اه ،i+ j ≥ 1 اگ  ر ،i, j ه  ر ب  راي و a0b0 = c

و m = deg(f(x)) ف  رض ک  ن  ی  م م  ی ک  ن  ی  م. اث  ب  ات را ح  ک  م deg(f(x)) + deg(g(x)) روي اس  ت  ق  را ب  ا ب  ره  ان.
ف  رض ح  ال م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ،2 . 1 . 3 ل  م از اس  ت  ف  اده ب  ا آن گ  اه ،n = 0 ی  ا m = 0 اگ  ر .n = deg(g(x))
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م  ع  ادل  ه ي در پ  ی  ش  رو ض  رای  ب ب  ه ت  وج  ه ب  ا ب  اش  د. درس  ت m + n از ک  م  ت  ر م  ق  ادی  ر ت  م  ام ب  راي ح  ک  م و m,n ≥ 1  ک  ن  ی  م
اس  ت. ک  اه  ش  ی و α-س  ازگ  ار ،R چ  ون ،anbm = 0 = bman ل  ذا و anαn(bm) = 0 م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،f(x)g(x) = c

ف  رض ب  ن  اب  ه .bmc = bmf(x)g(x) = (bma0 + bma1x+ · · ·+ bman−1x
n−1)g(x) = f1(x)g(x) ب  ن  اب  رای  ن

.deg(f1(x)) + deg(g(x)) ≤ m+ n− 1 زی  را ،bma0bm = . . . = bman−1bm = 0 داش  ت خ  واه  ی  م اس  ت  ق  را
پ  س اس  ت. ک  اه  ش  ی R چ  ون ،a0bm = . . . = an−1bm = 0 ن  ت  ی  ج  ه در

c = f(x)g(x) = f(x)(b0 + b1x+ · · ·+ bm−1x
m−1) = f(x)g1(x).

ه  ر ب  راي و ،a0b0 = c م  ی گ  ی  ری  م ن  ت  ی  ج  ه اس  ت  ق  را ف  رض از اس  ت  ف  اده ب  ا ،deg(f(x)) + deg(g1(x)) ≤ m+ n− 1 چ  ون
،1 ≤ i+ j ≤ m+ n ه  ر ب  راي و a0b0 = c ب  ن  اب  رای  ن .aibj = 0 داری  م ،j ≤ m− 1 و 1 ≤ i+ j ≤ m+ n− 1

اس  ت. ح  اص  ل ن  ت  ی  ج  ه ل  ذا و ،aibj = 0

ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. ,α)-س  ازگ  ار δ) و IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .4 . 1 . 3 ل  م
ک  ه ب  ه ط  وري ب  اش  ن  د R[x;α, δ] ح  ل  ق  ه ي از ن  اص  ف  ر ع  ن  اص  ر g(x) =

∑m
j=0 bjx

j و f(x) =
∑n

i=0 aix
i

.f(x)btm = 0 ک  ه ب  ه ط  وري دارد وج  ود t ≥ 1 آن گ  اه ،m ≥ 1 اگ  ر .an ̸= 0 ̸= bm و f(x)g(x) = c ∈ R

،j ≥ 1 ه  ر ب  راي ن  ت  ی  ج  ه در .f(x)g(x) = c چ  ون ،a0b0 = c ل  ذا و f(x) = a0 آن گ  اه ،n = 0 اگ  ر ب  ره  ان.
ای  ن ص  ورت، در ،f(x)g(x) = c چ  ون .n ≥ 1 ف  رض  ک  ن  ی  م ح  ال .f(x)bm = 0 ب  ن  اب  رای  ن .a0bj = 0

ب  ودن IFP خ  اص  ی  ت و 1 . 1 . 3 ل  م از اس  ت  ف  اده ب  ا .anbm = 0 ،1 . 1 . 3 ل  م ب  ن  اب  ه ل  ذا و ،anαn(bm) = 0

ب  ن  اب  رای  ن .anf j
i (b)f

s
r (bm) = 0 داش  ت خ  واه  ی  م ،b ∈ R و 0 ≤ r ≤ s ،0 ≤ i ≤ j ه  ر ب  راي ،R

م  ی گ  ی  ری  م: ن  ظ  ر در را زی  ر ح  ال  ت دو .cbm = f(x)g(x)bm = (a0 + a1x+ · · ·+ an−1x
n−1)g(x)bm

.f(x)b2m = 0 ل  ذا و b2m = 0 آن گ  اه ،bmαm(bm) = 0 اگ  ر . 1 ح  ال  ت
وج  ود r1 ≥ 1 اس  ت  ق  را، ف  رض از اس  ت  ف  اده ب  ا ب  ن  اب  رای  ن و g(x)bm ̸= 0 آن گ  اه ،bmαm(bm) ̸= 0 اگ  ر . 2 ح  ال  ت
و f(x)(bmαm(bm))r1 = 0 پ  س .(a0 + a1x + · · · + an−1x

n−1)(bmαm(bm))r1 = 0 ک  ه ب  ه ط  وري دارد
م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ای  ن رو از و t = 2r1 ح  ال  ت ای  ن در .f(x)b2r1m = 0 ،2 . 1 . 3 ل  م ب  ن  اب  ه ل  ذا

ک  رد. ث  اب  ت را زی  ر ل  م م  ی ت  وان ،4 . 1 . 3 ل  م ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا

f(x) =
∑n

i=0 aix
i ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. ,α)-س  ازگ  ار δ) و IFP ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .5 . 1 . 3 ل  م

و f(x)g(x) = c ∈ R ک  ه ب  ه ط  وري ب  اش  ن  د R[x;α, δ] ح  ل  ق  ه ي از ن  اص  ف  ر ع  ن  اص  ر g(x) =
∑m

j=0 bjx
j و

.atng(x) = 0 ک  ه ب  ه ط  وري دارد وج  ود t ≥ 1 آن گ  اه ،n ≥ 1 اگ  ر .an ̸= 0 ̸= bm

ن  م  اد ب  ا را R ح  ل  ق  ه ي از g(x) ∈ R[x;α, δ] ن  اص  ف  ر اری  ب چ  ن  دج  م  ل  ه اي ض  رای  ب ت  وس  ط ش  ده ت  ول  ی  د راس  ت ای  ده آل
م  ی ک  ن  ی  م. ب  ی  ان را ب  خ  ش ای  ن ق  ض  ای  اي اص  ل  ی ت  ری  ن از ی  ک  ی ادام  ه در م  ی ده  ی  م. ن  م  ای  ش Ig(x)

f(x) =
∑n

i=0 aix
i ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .6 . 1 . 3 ق  ض  ی  ه

ای  ن ص  ورت، در .f(x)g(x) = c ∈ R ک  ه ب  ه ط  وري ب  اش  ن  د R[x;α, δ] ح  ل  ق  ه ي از ن  اص  ف  ر ع  ن  اص  ر g(x) = ∑m
j=0 bjx

j و
ب  اش  د، R از وارون پ  ذی  ر ع  ن  ص  ر ی  ک b0 اگ  ر ب  ه ع  لاوه، .f(x)r = ca ب  ه ط  وري ک  ه دارن  د وج  ود a ∈ R و 0 ̸= r ∈ Ig(x)

.a1, a2, . . . , an ∈ Nil(R) آن گ  اه
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ح  ال  ت، ای  ن در .a0bj = 0 ،j ≥ 1 ه  ر ب  راي و a0b0 = c ل  ذا .a0g(x) = c آن گ  اه ،deg(f(x)) = 0 اگ  ر ب  ره  ان.
ای  ن ص  ورت، در .deg(f(x)) = n ≥ 1 ف  رض ک  ن  ی  م ح  ال اس  ت. ح  اص  ل ن  ت  ی  ج  ه a = 1 و r = b0 ف  رض ب  ا
آن ج  ای  ی ک  ه از .g(x) = b0 ̸= 0 آن گ  اه ،m = 0 اگ  ر م  ی ک  ن  ی  م. ث  اب  ت را ح  ک  م ،deg(f(x)) روي اس  ت  ق  را ب  ا
در .aib0 = 0 ،i ≥ 1 ه  ر ب  راي و a0b0 = c ،2 . 1 . 3 ل  م ب  ه ب  ن  ا ،f(x)g(x) = (a0 + a1x+ · · ·+ anx

n)b0 = c

چ  ن  دج  م  ل  ه اي ه  اي ت  م  ام ب  راي ح  ک  م و m ≥ 1 ف  رض ک  ن  ی  م ح  ال اس  ت. ح  اص  ل ن  ت  ی  ج  ه a = 1 و r = b0 ف  رض ب  ا ح  ال  ت ای  ن
دو .f(x)g(x) = c ،n درج  ه از f(x) چ  ن  دج  م  ل  ه اي ب  راي ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. درس  ت n از ک  م  ت  ر درج  ه از

م  ی گ  ی  ری  م: ن  ظ  ر در را زی  ر ح  ال  ت
ل  ذا و anbj = 0 داری  م ،0 ≤ j ≤ m ه  ر ب  راي ،2 . 1 . 3 ل  م ب  ن  اب  ه آن گ  اه ،anxng(x) = 0 اگ  ر . 1 ح  ال  ت
و 0 ̸= r1 ∈ Ig(x) ن  ت  ی  ج  ه در و ،c = f(x)g(x) = (a0 + a1x+ · · ·+ an−1x

n−1)g(x) پ  س .anIg(x) = 0

زی  را ،f(x)r1 = ca1 ب  ن  اب  رای  ن .(a0 + a1x + · · · + an−1x
n−1)r1 = ca1 ب  ه ط  وري ک  ه دارن  د وج  ود a1 ∈ R

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ای  ن رو از و a1 = a و r = r1 ل  ذا .anxnr1 = 0

anbj ̸= 0 ک  ه ب  ه ط  وري دارد وج  ود 0 ≤ j < m ای  ن ص  ورت، در .anxng(x) ̸= 0 م  ی ک  ن  ی  م ف  رض . 2 ح  ال  ت
ل  ذا .at−1

n bj ̸= 0 ام  ا ،atnbj = 0 ک  ه ب  ه ط  وري دارد وج  ود t ≥ 2 ،5 . 1 . 3 ل  م ب  ن  اب  ه اس  ت). ب  زرگ  ت  ری  ن j)
آن گ  اه ،g1(x) = g(x)b اگ  ر اس  ت. راس  ت دوئ  و R چ  ون ،at−1

n bj = bjb ک  ه ب  ه ط  وري دارد وج  ود b ∈ R

ص  ف  ر را n-ام ت  ا j-ام از g1(x) ض  رای  ب anx
n پ  س .(0) ̸= Ig1(x) ⊆ Ig(x) و f(x)g1(x) = f(x)g(x)b = cb

r1 ∈ R و 0 ̸= h(x) ∈ R[x;α, δ] ب  راي ک  ه داد ن  ش  ان م  ی ت  وان م  ت  ن  اه  ی، دف  ع  ات ت  ع  داد ب  ه رون  د ای  ن ادام  ه ب  ا م  ی ک  ن  د.
م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ،(1) ح  ال  ت ب  ن  اب  ه ب  ن  اب  رای  ن .anxnh(x) = 0 و f(x)h(x) = cr1 داش  ت خ  واه  ی  م

چ  ون .a1, a2, . . . , an ∈ Nil(R) داد خ  واه  ی  م ن  ش  ان ب  اش  د. R در وارون پ  ذی  ري ع  ن  ص  ر b0 م  ی ک  ن  ی  م ف  رض ح  ال
ح  ل  ق  ه ي از ای  ده آل  ی Nil(R) ،6 . 1 . 2 ل  م ب  ن  اب  ه پ  س اس  ت. IFP خ  اص  ی  ت داراي R ل  ذا اس  ت، راس  ت دوئ  و ح  ل  ق  ه ي R

,α)-س  ازگ  ار δ) ای  ده آل ی  ک Nil(R) ،1 . 1 . 3 ل  م ب  ن  اب  ه اس  ت. ک  اه  ش  ی ح  ل  ق  ه ي R = R/Nil(R) پ  س م  ی ب  اش  د. R
م  ی ب  اش  د. α-ص  ل  ب ح  ل  ق  ه ي R ،43 . 1 . 2 ل  م و 46 . 1 . 2 گ  زاره ب  ن  اب  ه ای  ن رو از اس  ت. ,α)-س  ازگ  ار δ) ح  ل  ق  ه ي R زی  را م  ی ب  اش  د،
ه  ر ب  راي و a0b0 = c ،3 . 1 . 3 ل  م ب  ن  اب  ه پ  س .f(x)g(x) = c ∈ R[x;α, δ] داری  م ل  ذا ،f(x)g(x) = c ∈ R چ  ون
ai ،i ≥ 1 ه  ر ب  راي ب  ن  اب  رای  ن اس  ت. وارون پ  ذی  ر ع  ن  ص  ري b0 زی  را ،ai = 0 ،i ≥ 1 ه  ر ب  راي ل  ذا .aibj = 0 ،i+ j ≥ 1

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ل  ذا و اس  ت پ  وچ ت  وان ع  ن  ص  ري

داری  م ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .7 . 1 . 3 گ  زاره
.Nil(R)[x;α, δ] = L− rad(R[x;α, δ]) = Nil(R[x;α, δ])

،5 . 2 . 2 ن  ت  ی  ج  ه ب  ن  اب  ه ل  ذا اس  ت. 2 -اول  ی  ه ،R ح  ل  ق  ه ي م  ی ب  اش  د، راس  ت دوئ  و R آن ج  ای  ی ک  ه از ب  ره  ان.
ض  ع  ی  ف 2 -اول  ی  ه ح  ل  ق  ه ي ی  ک 2 -اول  ی  ه، ح  ل  ق  ه ي ه  ر ط  رف  ی، از اس  ت. 2 -اول  ی  ه ن  ی  ز R[x;α, δ] ح  ل  ق  ه ي
داری  م ،5 . 2 . 2 ن  ت  ی  ج  ه ب  ن  اب  ه ه  م  چ  ن  ی  ن .L − rad(R[x;α, δ]) = Nil(R[x;α, δ]) ن  ت  ی  ج  ه در م  ی ب  اش  د،
ب  ن  اب  رای  ن م  ی ب  اش  د. ,α)-س  ازگ  ار δ) و 2 -اول  ی  ه ح  ل  ق  ه ي ی  ک R زی  را ،Nil(R)[x;α, δ] = Nil(R[x;α, δ])

.Nil(R)[x;α, δ] = L− rad(R[x;α, δ])

و راس  ت دوئ  و ح  ل  ق  ه ي R ح  ال  ت  ی ک  ه در را R[x;α, δ] و R ح  ل  ق  ه ه  اي وارون پ  ذی  ر ع  ن  اص  ر ب  ی  ن راب  ط  ه ي ح  ال
م  ی ک  ن  ی  م. ب  ررس  ی ب  اش  د، ,α)-س  ازگ  ار δ)
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ع  ن  ص  ر f(x) = ∑n
i=0 aix

i ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .8 . 1 . 3 ق  ض  ی  ه
.a1, a2, . . . , an ∈ Nil(R) و a0 ∈ U(R) اگ  ر ت  ن  ه  ا و اگ  ر اس  ت R[x;α, δ] ح  ل  ق  ه ي از وارون پ  ذی  ر

م  ی ب  اش  د. α-ص  ل  ب ح  ل  ق  ه ي ی  ک R ،43 . 1 . 2 ل  م ب  ن  اب  ه ای  ن ص  ورت، در .R = R/Nil(R) ف  رض ک  ن  ی  م ب  ره  ان.
R[x;α, δ] ح  ل  ق  ه ي از وارون پ  ذی  ر ع  ن  ص  ر ی  ک f(x) = ∑n

i=0 aix
i ف  رض ک  ن  ی  م اب  ت  دا اس  ت. راس  ت دوئ  و ،R ب  ه وض  وح

.f(x)g(x) = 1 = g(x)f(x) ب  ه ط  وري ک  ه دارد وج  ود g(x) = ∑m
i=0 bjx

j ∈ R[x;α, δ] ای  ن ص  ورت، در ب  اش  د.
،6 . 1 . 3 ن  ت  ی  ج  ه ب  ن  اب  ه ل  ذا و م  ی ب  اش  د R از وارون پ  ذی  ر ع  ن  ص  ري a0 ،3 . 1 . 3 ل  م ب  ن  اب  ه ل  ذا .f(x)g(x) = 1 پ  س
ب  ن  اب  رای  ن ،Nil(R) ⊆ J(R) داری  م اس  ت، 2 -اول  ی  ه ح  ل  ق  ه ي R چ  ون ط  رف  ی، از .a1, a2, . . . , an ∈ Nil(R)

م  ی ب  اش  د. R از وارون پ  ذی  ري ع  ن  ص  ر a0 چ  ون ،a0 ∈ U(R)

،7 . 1 . 3 گ  زاره ب  ن  اب  ه ای  ن ص  ورت، در .a1, a2, . . . , an ∈ Nil(R) و a0 ∈ U(R) ف  رض ک  ن  ی  م ب  ال  ع  ک  س،
،[10 . 32 ل  م ،39] ب  ن  اب  ه ه  م  چ  ن  ی  ن، .a1x + · · · + anx

n ∈ Nil(R)[x;α, δ] = L − rad(R[x;α, δ])

ب  ن  اب  رای  ن .a1x + · · · + anx
n ∈ J(R[x;α, δ]) پ  س .L − rad(R[x;α, δ]) ⊆ J(R[x;α, δ]) داری  م

اس  ت. R[x;α, δ] ح  ل  ق  ه ي از وارون پ  ذی  ر ع  ن  ص  ري f(x) = a0 + a1x+ · · ·+ anx
n

داری  م ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .9 . 1 . 3 ن  ت  ی  ج  ه

U(R[x;α, δ]) = U(R) +Nil(R[x;α, δ])x = U(R) + (Nil(R)[x;α, δ])x.

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ،8 . 1 . 3 ق  ض  ی  ه و 7 . 1 . 3 گ  زاره ب  ن  اب  ه ب  ره  ان.

اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي خ  ودت  وان ع  ن  اص  ر ب  ررس  ی 2 . 3
م  ی ک  ن  ن  د ای  ف  ا ج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي م  ط  ال  ع  ه ب  ه ن  س  ب  ت را ب  رج  س  ت  ه ت  ري ن  ق  ش ن  اج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي م  ط  ال  ع  ه در خ  ودت  وان ه  ا
و R ح  ل  ق  ه ه  اي خ  ودت  وان ع  ن  اص  ر ب  ی  ن رواب  ط ب  خ  ش، ای  ن در ش  ود). رج  وع [39] و [32] م  راج  ع ب  ه ب  ی  ش  ت  ر م  ث  ال ه  اي (ب  راي

م  ی ک  ن  ی  م. م  ش  خ  ص ب  اش  د، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و R ح  ل  ق  ه ي ک  ه ه  ن  گ  ام  ی R[x;α, δ] اری  ب ت  وس  ی  ع

ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، .(I ⊆ J(R) (ل  ذا ب  اش  د R ح  ل  ق  ه ي از پ  وچ ای  ده آل I ف  رض ک  ن  ی  م [21 . 28 ق  ض  ی  ه ،39] .1 . 2 . 3 ل  م
وج  ود e ∈ aR خ  ودت  وان ع  ن  ص  ر ای  ن ص  ورت، در اس  ت. خ  ودت  وان ع  ن  ص  ري a ∈ R := R/I ک  ه ب  ه گ  ون  ه اي ب  اش  د a ∈ R

.e = a ∈ R ک  ه ب  ه ط  وري دارد

f(x) =
∑n

i=0 aix
i ف  رض  ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .2 . 2 . 3 ل  م

خ  ودت  وان ع  ن  ص  ر و ai ∈ Nil(R) ،1 ≤ i ≤ n ه  ر ب  راي ای  ن ص  ورت، در ب  اش  د. R[x;α, δ] ح  ل  ق  ه ي از خ  ودت  وان ع  ن  ص  ري
.a0 = e ∈ R/Nil(R) ک  ه ب  ه ط  وري دارد وج  ود e ∈ R

R ح  ل  ق  ه ي از ,α)-س  ازگ  ار δ) ای  ده آل  ی Nil(R) ن  ت  ی  ج  ه در اس  ت، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R چ  ون ب  ره  ان.
م  ی ت  وان آس  ان  ی ب  ه ،4 . 2 . 2 گ  زاره از اس  ت  ف  اده ب  ا ل  ذا اس  ت. α-ص  ل  ب ح  ل  ق  ه ي R/Nil(R) ،43 . 1 . 2 ل  م ب  ن  اب  ه پ  س م  ی ب  اش  د.
.f2

= f ∈ R/Nil(R)[x;α, δ] زی  را ،ai = 0 ،1 ≤ i ≤ n ه  ر ب  راي و f = a0 ∈ R/Nil(R) ک  ه داد ن  ش  ان
.a0 = e ∈ R/Nil(R) ک  ه دارد وج  ود e ∈ R خ  ودت  وان ،1 . 2 . 3 ل  م ب  ن  اب  ه ب  ن  اب  رای  ن
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f(x) =
∑n

i=0 aix
i ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .3 . 2 . 3 ق  ض  ی  ه

.f = a0 ای  ن ص  ورت، در ب  اش  د. R[x;α, δ] ح  ل  ق  ه ي از خ  ودت  وان ع  ن  ص  ري

ب  ن  اب  ه ای  ن ص  ورت، در ب  اش  د. R[x;α, δ] ح  ل  ق  ه ي از خ  ودت  وان ع  ن  ص  ري f(x) = ∑n
i=0 aix

i ف  رض  ک  ن  ی  م ب  ره  ان.
دارن  د وج  ود b ∈ R پ  وچ ت  وان و e ∈ R خ  ودت  وان ع  ن  اص  ر و ai ∈ Nil(R) ،1 ≤ i ≤ n ه  ر ب  راي ،2 . 2 . 3 گ  زاره
چ  ون .f = e + f1 ای  ن ص  ورت، در .f1 = b + a1x + · · · + anx

n ف  رض ک  ن  ی  م ح  ال .a0 = e + b ک  ه ب  ه ط  وري
.Nil(R)[x;α, δ] = Nil(R[x;α, δ]) داری  م ،7 . 1 . 3 گ  زاره ب  ن  اب  ه اس  ت، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R

وج  ود m ≥ 2 آن گ  اه ،f1 ̸= 0 اگ  ر .f1 = 0 ک  ه ده  ی  م ن  ش  ان اس  ت ک  اف  ی .f1 ∈ Nil(R[x;α, δ]) ن  ت  ی  ج  ه در
و آب  ل  ی ح  ل  ق  ه ي R و اس  ت R ح  ل  ق  ه ي از خ  ودت  وان ع  ن  ص  ري e چ  ون .fm

1 = 0 ̸= fm−1
1 ک  ه ب  ه ط  وري دارد

در اس  ت. آب  ل  ی ح  ل  ق  ه ي R زی  را ،f1e = ef1 پ  س .α(e) = e و δ(e) = 0 داری  م ل  ذا م  ی ب  اش  د، ,α)-س  ازگ  ار δ)
.f2 = f چ  ون ،0 = (e + f1)(1 − e − f1) = −ef1 + f1 − f1e − f2

1 = f1 − 2f1e − f2
1 داری  م ن  ت  ی  ج  ه

آن گ  اه ک  ن  ی  م، ض  رب f2
1 = (1 − 2e)f1 م  ع  ادل  ه در راس  ت س  م  ت از را fm−2

1 اگ  ر ح  ال .f2
1 = (1 − 2e)f1 پ  س

ت  ن  اق  ض ی  ک ک  ه ،fm−1
1 = 0 داری  م ل  ذا م  ی ب  اش  د، وارون پ  ذی  ر ع  ن  ص  ري 1 − 2e چ  ون .0 = fm

1 = (1 − 2e)fm−1
1

.f = a0 ن  ت  ی  ج  ه در و f1 = 0 ب  ن  اب  رای  ن اس  ت.

و راس  ت دوئ  و ح  ل  ق  ه ي R ه  ن  گ  ام  ی ک  ه را R[x;α, δ] و R ح  ل  ق  ه ه  اي خ  ودت  وان ع  ن  اص  ر ب  ی  ن راب  ط  ه ي ح  ال
م  ی ک  ن  ی  م. ب  ی  ان ب  اش  د، ,α)-س  ازگ  ار δ)

داری  م ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .4 . 2 . 3 ن  ت  ی  ج  ه
.Idem(R[x;α, δ]) = Idem(R)

اس  ت. آب  ل  ی ح  ل  ق  ه ي R[x;α, δ] ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .5 . 2 . 3 ن  ت  ی  ج  ه

ج  ردن ت  وس  ی  ع ح  ل  ق  ه ي و R ح  ل  ق  ه ي ب  ی  ن وی  ژگ  ی ه  اي از ب  رخ  ی ب  ررس  ی 3 . 3
A(R,α)

α ک  ه ه  ن  گ  ام  ی را (A م  خ  ت  ص  ر ب  ه ط  ور (ی  ا A(R,α) ح  ل  ق  ه ي ج  ردن س  اخ  ت  ار و R ح  ل  ق  ه ي ب  ی  ن رواب  ط از ب  رخ  ی ب  خ  ش، ای  ن در
م  ی ده  ی  م. ق  رار ب  ررس  ی م  ورد م  ی ب  اش  د، R از ت  ک ری  خ  ت  ی

م  ی ک  ن  ی  م. ش  روع ب  ود، خ  واه  د ن  ی  از م  ورد ب  خ  ش ای  ن ادام  ه در ک  ه زی  ر س  اده ل  م ب  ا اب  ت  دا

ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از ت  ک ری  خ  ت  ی α ف  رض ک  ن  ی  م .1 . 3 . 3 ل  م

.Idem(A) = {x−irxi | r ∈ Idem(R) و i ≥ 0} (1)

.U(A) = {x−irxi | r ∈ R, i ≥ 0 و αn(r) ∈ U(R), n ≥ 0 ب  رخ  ی ب  راي } (2)

.Nil(A) = {x−iaxi ∈ A | a ∈ Nil(R) و i ≥ 0} (3)
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اس  ت. ش  ده ث  اب  ت ،[(1)3 . 1 گ  زاره ،31] در (2) و ه  س  ت  ن  د واض  ح (3) و (1) ب  ره  ان.

آن گ  اه ،α(e) = e ب  اش  ی  م داش  ت  ه ،e ∈ R خ  ودت  وان ع  ن  ص  ر ه  ر ب  راي و ب  اش  د R ح  ل  ق  ه ي از ت  ک ری  خ  ت  ی α اگ  ر .2 . 3 . 3 ت  ذک  ر
.Idem(A) = Idem(R) داری  م ،(1)1 . 3 . 3 ل  م ب  ن  اب  ه

ک  ن  ی  م. ب  ررس  ی را A و R ح  ل  ق  ه ه  اي ب  ی  ن رواب  ط از ب  رخ  ی م  ی ت  وان  ی  م ،1 . 3 . 3 ل  م از اس  ت  ف  اده ب  ا ح  ال

ب  رق  رارن  د: زی  ر گ  زاره ه  اي ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از ت  ک ری  خ  ت  ی α ف  رض ک  ن  ی  م .3 . 3 . 3 ل  م

ب  اش  د. آب  ل  ی R ح  ل  ق  ه ي اگ  ر ت  ن  ه  ا و اگ  ر اس  ت آب  ل  ی A ح  ل  ق  ه ي (1)

ب  اش  د. IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي اگ  ر ت  ن  ه  ا و اگ  ر اس  ت IFP خ  اص  ی  ت داراي A ح  ل  ق  ه ي (2)

ب  اش  د. ب  رگ  ش  ت پ  ذی  ر R ح  ل  ق  ه ي اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ب  رگ  ش  ت پ  ذی  ر A ح  ل  ق  ه ي (3)

ب  اش  د. ک  اه  ش  ی R ح  ل  ق  ه ي اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ک  اه  ش  ی A ح  ل  ق  ه ي (4)

ب  اش  ی  م داش  ت  ه ،i ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد و r ∈ R ب  راي و ب  اش  د آب  ل  ی R ح  ل  ق  ه ي ف  رض ک  ن  ی  م اب  ت  دا (1) ب  ره  ان.
،x−jsxj ∈ A ه  ر ب  راي ط  رف  ی از .r ∈ Idem(R) داری  م ،1 . 3 . 3 ل  م ب  ن  اب  ه ای  ن ص  ورت، در .x−irxi ∈ Idem(A)

و اس  ت R ح  ل  ق  ه ي از خ  ودت  وان ع  ن  ص  ري α(r) چ  ون .(x−irxi)(x−jsxj) = x−(i+j)αj(r)αi(s)xi+j داری  م
A ب  ن  اب  رای  ن .(x−irxi)(x−jsxj) = x−(j+i)αi(s)αj(r)xj+i = (x−jsxj)(x−irxi) ل  ذا م  ی ب  اش  د، آب  ل  ی R

اس  ت. آب  ل  ی ح  ل  ق  ه ي
اس  ت. واض  ح ب  ال  ع  ک  س،

ب  اش  ی  م داش  ت  ه ،i ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد و r, s ∈ R ب  رخ  ی ب  راي و ب  اش  د داش  ت  ه IFP خ  اص  ی  ت R ح  ل  ق  ه ي ف  رض ک  ن  ی  م (2)
پ  س .αj(r)αi(s) = 0 ن  ت  ی  ج  ه در و ،x−(i+j)αj(r)αi(s)xi+j = 0 ای  ن ص  ورت، در .(x−irxi)(x−jsxj) = 0

k ≥ 0 ه  ر ب  راي ای  ن رو از اس  ت، IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي چ  ون .αj+t(r)αi+t(s) = 0 داری  م ،t ≥ 0 ه  ر ب  راي
در و ،x−(i+k+j)αj+k(r)αj+i(b)αi+k(s)xi+k+j = 0 ل  ذا .αj+k(r)αi+j(b)αi+k(s) = 0 داری  م ،b ∈ R و
خ  اص  ی  ت A ح  ل  ق  ه ي ب  ن  اب  رای  ن .(x−irxi)(x−kbxk)(x−jsxj) = 0 داش  ت خ  واه  ی  م ،k ≥ 0 و b ∈ R ه  ر ب  راي ن  ت  ی  ج  ه

دارد. IFP

م  ی ب  اش  د. واض  ح ب  ال  ع  ک  س،
ک  رد. اث  ب  ات م  ی ت  وان ب  رگ  ش  ت پ  ذی  ر، ح  ل  ق  ه ه  اي ت  ع  ری  ف از اس  ت  ف  اده ب  ا و (2) ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا (3)

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ،1 . 3 . 3 ل  م ب  ن  اب  ه (4)

ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي خ  ودت  وان و وارون پ  ذی  ر ع  ن  اص  ر ب  ررس  ی 4 . 3
اری  ب

R[x, x−1;α] اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي و R ح  ل  ق  ه ي وارون پ  ذی  ر و خ  ودت  وان ع  ن  اص  ر ب  ی  ن راب  ط  ه ب  خ  ش، ای  ن در
آن گ  اه ب  اش  د، R از خ  ودری  خ  ت  ی α اگ  ر ک  ه ک  ن  ی  د ت  وج  ه م  ی ک  ن  ی  م. م  ش  خ  ص م  ی ب  اش  د، R از ص  ل  ب خ  ودری  خ  ت  ی α ک  ه ه  ن  گ  ام  ی را
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اس  ت، ص  ح  ی  ح ع  دد ی  ک n ک  ه ب  ه ط  وري ب  ود خ  واه  د f =
∑m

i=0 aix
i+n ص  ورت ب  ه f ∈ R[x, x−1;α] ع  ن  ص  ر ه  ر

.ai ∈ R و m ≥ 0

،R اگ  ر ت  ن  ه  ا و اگ  ر اس  ت α-س  ازگ  ار ،R ح  ل  ق  ه ي ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ک  ن  ی  م ف  رض .1 . 4 . 3 ل  م
ب  اش  د. α−1-س  ازگ  ار

ای  ن ص  ورت، در .ab = 0 ،a, b ∈ R ب  رخ  ی ب  راي و ب  اش  د α-س  ازگ  ار ،R ف  رض ک  ن  ی  م اب  ت  دا ب  ره  ان.

ab = 0 ⇔ aα(α−1(b)) = 0 ⇔ aα−1(b) = 0.

اس  ت. α−1-س  ازگ  ار ،R ب  ن  اب  رای  ن
α-س  ازگ  ار = (α−1)−1 ،R ق  ب  ل ح  ال  ت ب  ه ب  ن  اب  ه ای  ن ص  ورت، در ب  اش  د. α−1-س  ازگ  ار ،R ف  رض ک  ن  ی  م ح  ال

م  ی ب  اش  د.

ب  رق  رارن  د: زی  ر گ  زاره ه  اي ای  ن ص  ورت، در .a, b ∈ R و ب  اش  د R ح  ل  ق  ه ي از س  ازگ  اري خ  ودری  خ  ت  ی ،α ف  رض ک  ن  ی  م .2 . 4 . 3 ل  م

.aαn(b) = 0 = αn(a)b ،n ص  ح  ی  ح ع  دد ه  ر ب  راي آن گ  اه ،ab = 0 ه  رگ  اه (1)

.ab = 0 آن گ  اه ،αk(a)b = 0 ،k ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي ه  رگ  اه (2)

.αn(a)αm(b) = 0 ،m,n ∈ Z ه  ر ب  راي آن گ  اه ،ab = 0 ه  رگ  اه (3)

.axmb = 0 داری  م R[x, x−1;α] در m ص  ح  ی  ح ع  دد ه  ر ب  راي آن گ  اه ،ab = 0 ه  رگ  اه (4)

.ab = 0 آن گ  اه ،axmb = 0 ،R[x, x−1;α] در m ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي ه  رگ  اه (5)

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ،1 . 1 . 3 و 1 . 4 . 3 ل  م ه  اي ب  ن  اب  ه ب  ره  ان.

ای  ن ص  ورت، در ب  اش  د. R از س  ازگ  اري خ  ودری  خ  ت  ی α و IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .3 . 4 . 3 گ  زاره

Nil(R[x, x−1;α]) = Nil(R)[x, x−1;α].

ب  ن  اب  ه پ  س م  ی ب  اش  د، R از α-س  ازگ  ار دوط  رف  ه ای  ده آل Nil(R) ل  ذا اس  ت، α-س  ازگ  ار ح  ل  ق  ه ي R چ  ون ب  ره  ان.
.f =

∑m
i=0 aix

i+n ∈ Nil(R[x, x−1;α]) ف  رض ک  ن  ی  م اس  ت. α-ص  ل  ب ،R = R/Nil(R) ،43 . 1 . 2 ل  م
ک  ه ب  ه ط  وري (f)k = 0 پ  س .fk = 0 داری  م ،k م  ث  ب  ت ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي ای  ن ص  ورت، در
آرم  ن  داری  ز R ،11 . 2 . 2 ق  ض  ی  ه ب  ن  اب  ه ط  رف  ی از .f =

∑m
i=0 aix

i+n ∈ R/Nil(R)[x, x−1;α] = R[x, x−1;α]

ه  ر ب  راي ن  ت  ی  ج  ه در ،(ai)k = 0 داری  م ،0 ≤ i ≤ m ه  ر ب  راي ،15 . 2 . 2 و 13 . 2 . 2 گ  زاره ه  اي ب  ن  اب  ه ل  ذا و اس  ت اری  ب
م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و f ∈ Nil(R)[x, x−1;α] ب  ن  اب  رای  ن .ai ∈ Nil(R) داش  ت خ  واه  ی  م ،0 ≤ i ≤ m

،0 ≤ i ≤ m ه  ر ب  راي ای  ن ص  ورت، در .f =
∑m

i=0 aix
i+n ∈ Nil(R)[x, x−1;α] ف  رض ک  ن  ی  م ب  ال  ع  ک  س،

.Nil(R) = L− rad(R) ای  ن رو از م  ی ب  اش  د. ض  ع  ی  ف 2 -اول  ی  ه ،R ل  ذا دارد، IFP خ  اص  ی  ت R چ  ون .ai ∈ Nil(R)

و fk = 0 داری  م ،2 . 4 . 3 ل  م از اس  ت  ف  اده ب  ا .{a0, a1, . . . , am}k = 0 ک  ه ب  ه ط  وري دارد وج  ود k م  ث  ب  ت ص  ح  ی  ح ع  دد پ  س
م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و f ∈ Nil(R[x, x−1;α]) ب  ن  اب  رای  ن
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.n ≤ 0 آن گ  اه ب  اش  د، R[x, x−1;α] ح  ل  ق  ه ي از خ  ودت  وان  ی ع  ن  ص  ر f =
∑m

i=0 aix
i+n اگ  ر ک  ه م  ی ک  ن  ی  م ت  وج  ه

ف  رض ه  م  چ  ن  ی  ن، ب  اش  د. R از س  ازگ  اري خ  ودری  خ  ت  ی α و IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .4 . 4 . 3 گ  زاره
ک  ه 0 ≤ i ≤ m ه  ر ب  راي ای  ن ص  ورت، در ب  اش  د. R[x, x−1;α] ح  ل  ق  ه ي از خ  ودت  وان  ی ع  ن  ص  ر f =

∑m
i=0 aix

i+n  ک  ن  ی  م
.a−n = e ∈ R/Nil(R) ک  ه ب  ه ط  وري دارد وج  ود e ∈ R خ  ودت  وان ع  ن  ص  ر و ai ∈ Nil(R) ،i ̸= −n

R از α-س  ازگ  ار دوط  رف  ه ای  ده آل Nil(R) ل  ذا اس  ت، α-س  ازگ  ار و IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي چ  ون ب  ره  ان.
R ،11 . 2 . 2 ق  ض  ی  ه ب  ن  اب  ه ای  ن رو از و اس  ت α-ص  ل  ب ح  ل  ق  ه ي R = R/Nil(R) ،43 . 1 . 2 ل  م ب  ن  اب  ه پ  س م  ی ب  اش  د.
ن  ش  ان م  ی ت  وان ،14 . 2 . 2 گ  زاره از اس  ت  ف  اده ب  ا ل  ذا ،f2

= f ∈ R/Nil(R)[x, x−1;α] چ  ون م  ی ب  اش  د. اری  ب آرم  ن  داری  ز
ع  ن  اص  ر ب  رخ  ی ب  راي ،1 . 2 . 3 ق  ض  ی  ه ب  ن  اب  ه ای  ن ص  ورت، در .ai = 0 ،i ̸= −n ه  ر ب  راي و f = a−n ∈ R/Nil(R) داد

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و a−n = e ∈ R/Nil(R) داری  م ،e ∈ R خ  ودت  وان

خ  ودری  خ  ت  ی α و IFP ، R ه  ن  گ  ام  ی ک  ه را R[x, x−1;α] و R ح  ل  ق  ه ه  اي خ  ودت  وان ع  ن  اص  ر ب  ی  ن راب  ط  ه ي ادام  ه در
م  ی ن  م  ائ  ی  م. م  ش  خ  ص اس  ت، R از س  ازگ  اري

ای  ن ص  ورت، در ب  اش  د. R از س  ازگ  اري خ  ودری  خ  ت  ی α و IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .5 . 4 . 3 ق  ض  ی  ه
.Idem(R[x, x−1;α]) = Idem(R)

ب  راي ،4 . 4 . 3 گ  زاره ب  ن  اب  ه ب  اش  د. R[x, x−1;α] ح  ل  ق  ه ي از خ  ودت  وان ع  ن  ص  ري f =
∑m

i=0 aix
i+n ف  رض ک  ن  ی  م ب  ره  ان.

ک  ه ب  ه ط  وري دارن  د وج  ود w ∈ R پ  وچ ت  وان و e ∈ R خ  ودت  وان ع  ن  اص  ر و ai ∈ Nil(R) ،i ̸= −n ک  ه 0 ≤ i ≤ m ه  ر
،3 . 4 . 3 گ  زاره ب  ن  اب  ه .f = f ′ + e ای  ن ص  ورت، در .f ′ = w+

∑m
i=0,i ̸=−n aix

i+n ف  رض ک  ن  ی  م ح  ال .a−n = e+w

ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا .f ′ ∈ Nil(R[x, x−1;α]) ل  ذا .Nil(R[x, x−1;α]) = Nil(R)[x, x−1;α] داری  م
م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و f = a−n ∈ Idem(R) ب  ن  اب  رای  ن .f ′ = 0 ده  ی  م ن  ش  ان م  ی ت  وان  ی  م ،3 . 2 . 3 ق  ض  ی  ه

ای  ن ص  ورت، در ب  اش  د. R از س  ازگ  اري خ  ودری  خ  ت  ی α و IFP خ  اص  ی  ت  داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .6 . 4 . 3 ن  ت  ی  ج  ه
اس  ت. آب  ل  ی ح  ل  ق  ه ي R[x, x−1;α]

ن  ت  ی  ج  ه ،5 . 4 . 3 ق  ض  ی  ه ب  ن  اب  ه ح  ال .α(e) = e داری  م ،e ∈ R خ  ودت  وان ع  ن  ص  ر ه  ر ب  راي اس  ت، α-س  ازگ  ار ،R چ  ون ب  ره  ان.
م  ی ش  ود. ح  اص  ل

چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي وارون پ  ذی  ر ع  ن  اص  ر ی  اف  ت  ن ب  راي ک  ه ک  ن  ی  م اث  ب  ات را م  ه  م  ی ل  م ادام  ه، در داری  م ق  ص  د اک  ن  ون
م  ی ب  اش  د. م  ف  ی  د اری  ب ل  وران

.α(t) ∈ U(R) آن گ  اه ،t ∈ U(R) و ب  اش  د R ح  ل  ق  ه ي از ت  ک ری  خ  ت  ی α اگ  ر ب  ه وض  وح، .7 . 4 . 3 ت  ذک  ر

و f = a0 + a1x + · · · + anx
n ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. α-ص  ل  ب ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .8 . 4 . 3 ل  م

و k ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي ک  ه ب  ه ط  وري ب  اش  ن  د R[x;α] از ن  اص  ف  ر ع  ن  اص  ر g = b0 + b1x+ · · ·+ bmxm

.aibj = 0 داری  م ،i+ j ̸= k ه  ر ب  راي و ∑i+j=k aiα
i(bj) = c ای  ن ص  ورت، در .fg = cxk ،c ∈ R
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م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ،3 . 1 . 3 ل  م ب  ن  اب  ه آن گ  اه ،k = 0 اگ  ر م  ی ک  ن  ی  م. اث  ب  ات k روي اس  ت  ق  را ب  ا ب  ره  ان.
ن  ت  ی  ج  ه در .fg = cxk ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. ب  رق  رار k از ک  م  ت  ر م  ق  ادی  ر ب  راي ن  ت  ی  ج  ه و k ≥ 1 ف  رض ک  ن  ی  م ح  ال

ل  ذا و ،a0b0 = 0 = b0a0

b0cx
k = b0fg

= (b0a1 + b0a2x+ · · ·+ b0anx
n−1)x(b0 + b1x+ · · ·+ bmxm)

= (b0a1 + b0a2x+ · · ·+ b0anx
n−1)(α(b0) + α(b1)x+ · · ·+ α(bm)xm)x. (1 . 3)

.g′ = α(b0) + α(b1)x + · · · + α(bm)xm و a′i = b0ai+1 آن در ک  ه f ′ =
∑n−1

i=0 a′ix
i م  ی ده  ی  م ق  رار

داری  م ،i ̸= k − 1 ه  ر ب  راي اس  ت  ق  را ف  رض ب  ن  اب  ه .f ′g′ = b0cx
k−1 ،1 . 3 م  ع  ادل  ه ي ب  ه ب  ن  اب  ه ای  ن ص  ورت، در

ه  ر ب  راي ل  ذا اس  ت، ک  اه  ش  ی و α-س  ازگ  ار ،R چ  ون .b0aiα(b0) = 0 ،i ̸= k ه  ر ب  راي ای  ن رو از ،a′iα(b0) = 0

ن  ت  ی  ج  ه در ،cxk = fg = akα
k(b0)x

k + f(b1x + · · · + bmxm) پ  س .aib0 = 0 = aiα(b0) ،i ̸= k

ب  ن  اب  رای  ن و ،f(b1x+ · · ·+ bmxm) = (c− akα
k(b0))x

k

f(b1 + b2x+ · · ·+ bmxm−1) = (c− akα
k(b0))x

k−1.

داری  م اس  ت  ق  را ف  رض از اس  ت  ف  اده ب  ا .b′j = bj+1 ک  ه ب  ه ط  وري g′′ =
∑m−1

j=0 b′jx
j م  ی ده  ی  م ق  رار

ب  راي پ  س ،aib′j = 0 ،i+ j ̸= k−1 ه  ر ب  راي و ∑i+j=k−1 aiα
i(b′j) =

∑
i+j=k aiα

i(bj) = c−akα
k(b0)

،a0bk+a1α(bk−1)+a2α
2(bk−2)+ · · ·+ak−1α

k−1(b1)+akα
k(b0) = c ل  ذا .aibj = 0 ،i+j ̸= k ه  ر

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و

خ  ودری  خ  ت  ی α و ب  رگ  ش  ت پ  ذی  ر R ه  ن  گ  ام  ی ک  ه را R[x, x−1;α] و R ح  ل  ق  ه ه  اي وارون پ  ذی  ر ع  ن  اص  ر ب  ی  ن راب  ط  ه ي ح  ال
م  ی ک  ن  ی  م. ت  ع  ی  ی  ن م  ی ب  اش  د، R از س  ازگ  اري

ای  ن ص  ورت، در ب  اش  د. R از س  ازگ  اري خ  ودری  خ  ت  ی α و ب  رگ  ش  ت پ  ذی  ر ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .9 . 4 . 3 گ  زاره
داش  ت  ه وج  ود g =

∑s
j=0 bjx

j+r ∈ R[x, x−1;α] اگ  ر ت  ن  ه  ا و اگ  ر f =
∑m

i=0 aix
i+n ∈ U(R[x, x−1;α])

و aibj ∈ Nil(R) ،i+ j ̸= −(r + n) ه  ر ب  راي ک  ه ب  ه ط  وري ب  اش  د
∑

i+j=−(r+n) aiα
i+n(bj),

∑
i+j=−(r+n) bjα

j+r(ai) ∈ U(R).

g =
∑s

j=0 bjx
j+r ∈ ای  ن ص  ورت، در .f =

∑m
i=0 aix

i+n ∈ U(R[x, x−1;α]) ف  رض ک  ن  ی  م اب  ت  دا ب  ره  ان.
ل  ذا .fg = gf = 1 ک  ه ب  ه ط  وري دارد وج  ود R[x, x−1;α]

(a0 + a1x+ · · ·+ amxm)xn(b0 + b1x+ · · ·+ bsx
s)xr = f1x

ng1x
r = 1,

،f1, g2 ∈ R[x;α] چ  ون .f1(αn(b0) + αn(b1)x + · · · + αn(bs)x
s) = f1g2 = x−(r+n) ن  ت  ی  ج  ه در

ای  ن ص  ورت، در .R = R/Nil(R) و −(r + n) = p م  ی ده  ی  م ق  رار .n + r ≤ 0 داش  ت خ  واه  ی  م پ  س
و ∑i+j=p aiα

i+n(bj) = 1 ،8 . 4 . 3 ل  م ب  ن  اب  ه ای  ن رو از اس  ت، α-ص  ل  ب ،R ،43 . 1 . 2 ل  م ب  ن  اب  ه .f1 g2 = xp

ن  ت  ی  ج  ه در و ،∑i+j=p aiα
i+n(bj) − 1 ∈ Nil(R) ⊆ J(R) ل  ذا .aiαn(bj) = 0 ،i + j ̸= p ه  ر ب  راي
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ه  ر ب  راي و اس  ت R ح  ل  ق  ه ي از α-س  ازگ  ار دوط  رف  ه ي ای  ده آل Nil(R) چ  ون .∑i+j=p aiα
i+n(bj) ∈ U(R)

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه و ،aibj ∈ Nil(R) ،i+ j ̸= p ه  ر ب  راي پ  س ،aiαn(bj) ∈ Nil(R) ،i+ j ̸= p

.∑i+j=p bjα
j+r(ai) ∈ U(R) داد ن  ش  ان م  ی ت  وان ق  ب  ل، پ  اراگ  راف م  ش  اب  ه اس  ت  دلال  ی ب  ردن ب  ه ک  ار ب  ا ،gf = 1 چ  ون

ک  ه ب  ه ط  وري دارد وج  ود g =
∑s

j=0 bjx
j+r ∈ R[x, x−1;α] ک  ن  ی  م ف  رض ب  ال  ع  ک  س،

،i + j ̸= −(r + n) ه  ر ب  راي و ∑
i+j=−(r+n) aiα

i+n(bj),
∑

i+j=−(r+n) bjα
j+r(ai) ∈ U(R)

داری  م ای  ن ص  ورت، در .p = −(r + n) م  ی ده  ی  م ق  رار .aibj ∈ Nil(R)

fg = (a0 + a1x+ · · ·+ amxm)(αn(b0) + αn(b1)x+ · · ·+ αn(bs)x
s)x−p.

ای  ده آل Nil(R) چ  ون .fg = (
∑

i+j=p aiα
n+i(bj)) + (

∑
k ̸=p(

∑
i+j=k aiα

n+i(bj))x
k)x−p ب  ن  اب  رای  ن

،∑i+j ̸=p aiα
n+i(bj) ∈ Nil(R) پ  س ،aibj ∈ Nil(R) ،i+ j ̸= p ه  ر ب  راي و اس  ت R از α-س  ازگ  ار دوط  رف  ه ي

ن  ت  ی  ج  ه در و
(∑

k ̸=p

∑
i+j=k aiα

n+i(bj)x
k
)
x−p ∈ Nil(R)[x, x−1;α].

داری  م ،3 . 4 . 3 گ  زاره ب  ن  اب  ه ل  ذا
(∑

k ̸=p

∑
i+j=k aiα

n+i(bj)x
k
)
x−p ∈ Nil(R[x, x−1;α]).

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه و ،fg ∈ U(R[x, x−1;α]) پ  س ،(∑i+j=p aiα
n+i(bj)) ∈ U(R) چ  ون ح  ال

ب  ن  اب  رای  ن .gf ∈ U(R[x, x−1;α]) ده  ی  م ن  ش  ان م  ی ت  وان  ی  م ق  ب  ل، پ  اراگ  راف م  ش  اب  ه اس  ت  دلال  ی ب  ردن ب  ه ک  ار ب  ا
م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و f ∈ U(R[x, x−1;α])

اگ  ر ب  اش  د. R از س  ازگ  اري خ  ودری  خ  ت  ی α و ب  رگ  ش  ت پ  ذی  ر ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .10 . 4 . 3 ن  ت  ی  ج  ه
.aiaj ∈ Nil(R) داری  م ،i ̸= j ه  ر ب  راي آن گ  اه ،f =

∑m
i=0 aix

i+n ∈ U(R[x, x−1;α])

g =
∑s

j=0 bjx
j+r ∈ ،9 . 4 . 3 گ  زاره ب  ن  اب  ه ،f =

∑m
i=0 aix

i+n ∈ U(R[x, x−1;α]) چ  ون ب  ره  ان.
،i + j ̸= −(r + n) ه  ر ب  راي و ∑i+j=−(r+n) aiα

i+n(bj) ∈ U(R) ک  ه ب  ه ط  وري دارد وج  ود R[x, x−1;α]

داری  م ،c ∈ R ب  رخ  ی ب  راي ای  ن ص  ورت، در .p = −(r + n) م  ی ده  ی  م ق  رار .aibj ∈ Nil(R)

ب  راي م  ی ده  ی  م ق  رار .∑i+j=p aiα
i+n(bjα

1−(i+n)(c)) = 1 ن  ت  ی  ج  ه در و ،∑i+j=p aiα
i+n(bj)α(c) = 1

ای  ده آل Nil(R) چ  ون .∑i+j=p aiα
i+n(b′j) = 1 ای  ن ص  ورت، در .bjα1−(i+n)(c) = b′j ،i + j = p ه  ر

،i + j ̸= p ه  ر ب  راي ای  ن رو از ،aibj ∈ Nil(R) داری  م ،i + j ̸= p ه  ر ب  راي و اس  ت R از α-س  ازگ  ار دوط  رف  ه ي
.a20αn(b′p)− a0 ∈ Nil(R) ل  ذا ،a0(

∑
i+j=p aiα

i+n(b′j)− 1) ∈ Nil(R) آن ج  ای  ی ک  ه از .aib′j ∈ Nil(R)

ب  ه ک  ارب  ردن ب  ا .a0a1 ∈ Nil(R) ب  ن  اب  رای  ن و ،a21αn+1(b′p−1) − a1 ∈ Nil(R) داش  ت خ  واه  ی  م م  ش  اب  ه، ب  ه ط  ور
م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و ،aiaj ∈ Nil(R) ،i ̸= j ه  ر ب  راي ده  ی  م ن  ش  ان م  ی ت  وان  ی  م ب  الا، م  ش  اب  ه اس  ت  دلال  ی

آن گ  اه ،f =
∑m

i=0 aix
i+n ∈ U(R[x, x−1;α]) اگ  ر ب  اش  د. R از ص  ل  ب خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .11 . 4 . 3 ن  ت  ی  ج  ه
.aicj ∈ Idem(R) داش  ت خ  واه  ی  م ،i+ j = m ه  ر ب  راي ک  ه ب  ه ط  وري دارد وج  ود cj ∈ R
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g =
∑s

j=0 bjx
j+r ∈ ،9 . 4 . 3 گ  زاره ب  ن  اب  ه پ  س ،f =

∑m
i=0 aix

i+n ∈ U(R[x, x−1;α]) چ  ون ب  ره  ان.
.p = −(r + n) م  ی ده  ی  م ق  رار .∑i+j=−(r+n) aiα

i+n(bj) ∈ U(R) ک  ه ب  ه ط  وري دارد وج  ود R[x, x−1;α]

ل  ذا .∑i+j=p aiα
i+n(bj)α(z) = 1 ،z ∈ R ب  رخ  ی ب  راي ای  ن ص  ورت، در اس  ت، خ  ودری  خ  ت  ی α چ  ون

.αi+n(bjα
1−(i+n)(z)) = cj ،i+ j = p ه  ر ب  راي ف  رض ک  ن  ی  م ح  ال .∑i+j=p aiα

i+n(bjα
1−(i+n)(z)) = 1

ای  ن رو از

a0cp + a1cp−1 + · · ·+ apc0 = 1. (2 . 3)

ب  ا ،i ≥ p+ 1 ه  ر ب  راي پ  س .aiaj = 0 داری  م ،i ̸= j ه  ر ب  راي ،10 . 4 . 3 ن  ت  ی  ج  ه ب  ن  اب  ه اس  ت، ک  اه  ش  ی R آن ج  ای  ی ک  ه از
را aicj ،i+ j = m ه  ر ب  راي اگ  ر .p = m ل  ذا .ai = 0 م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،2 . 3 م  ع  ادل  ه در چ  پ س  م  ت از ai ک  ردن ض  رب

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ب  ن  اب  رای  ن .aicj ∈ Idem(R) داش  ت خ  واه  ی  م آن گ  اه ک  ن  ی  م، ض  رب 2 . 3 م  ع  ادل  ه در چ  پ از

خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ک  ن  ی  م ب  ی  ان س  اده ت  ر م  ی ت  وان  ی  م را 9 . 4 . 3 3 . 4 . 11،گ  زاره و 10 . 4 . 3 ن  ت  ای  ج از اس  ت  ف  اده ب  ا ح  ال
ب  اش  د. R ح  ل  ق  ه ي از ص  ل  ب

ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. R ح  ل  ق  ه ي از ص  ل  ب خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .12 . 4 . 3 ق  ض  ی  ه
اگ  ر f ∈ U(R[x, x−1;α]) ای  ن ص  ورت، در .a0 ̸= 0 ̸= am ک  ه ب  ه ط  وري f =

∑m
i=0 aix

i+n ∈ R[x, x−1;α]

ه  ر ب  راي و ∑i+j=m aidj =
∑

i+j=m djai = 1 ک  ه ب  ه ط  وري ب  اش  ن  د داش  ت  ه وج  ود d0, . . . , dm اگ  ر ت  ن  ه  ا و
.aidj = 0 ،i+ j ̸= m

گ  زاره ب  ن  اب  ه ای  ن ص  ورت، در ب  اش  د. R[x, x−1;α] ح  ل  ق  ه ي از وارون پ  ذی  ر ع  ن  ص  ر f =
∑m

i=0 aix
i+n ف  رض ک  ن  ی  م ب  ره  ان.

ک  ه ب  ه ط  وري دارد وج  ود g =
∑s

j=0 bjx
j+r ∈ R[x, x−1;α] ،9 . 4 . 3∑

i+j=−(r+n) aiα
i+n(bj),

∑
i+j=−(r+n) bjα

j+r(ai) ∈ U(R)

ب  راي ل  ذا اس  ت، R از خ  ودری  خ  ت  ی α چ  ون .p = −(r + n) م  ی ده  ی  م ق  رار .aibj = 0 ،i+ j ̸= −(r + n) ه  ر ب  راي و
ک  ه ب  ه ط  وري دارن  د وج  ود b′j , b′′j ∈ R ،0 ≤ j ≤ p

a0α
n(b′p) + a1α

n+1(b′p−1) + · · ·+ apα
n+p(b′0) = 1 (3 . 3)

و

b′′0α
r(ap) + b′′1α

r+1(ap−1) + · · ·+ b′′pα
r+p(a0) = 1. (4 . 3)

ب  ا ،i ≥ p+ 1 ه  ر ب  راي ای  ن ص  ورت، در .aiaj = 0 داری  م ،i ̸= j ه  ر ب  راي ،10 . 4 . 3 ن  ت  ی  ج  ه ب  ن  اب  ه اس  ت، ک  اه  ش  ی R چ  ون
داد ن  ش  ان م  ی ت  وان م  ش  اب  ه اس  ت  دلال  ی ب  ا .p = m پ  س .ai = 0 م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،3 . 3 م  ع  ادل  ه در چ  پ س  م  ت از ai ض  رب

.p = s

.αn+i(b′j)ai ∈ Idem(R) ،i+ j = m ه  ر ب  راي . 1 ادع  ا
ک  رد. ث  اب  ت م  ی ت  وان ،11 . 4 . 3 ن  ت  ی  ج  ه ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا . 1 ادع  ا اث  ب  ات
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.αn+i(b′j)ai = aiα
n+i(b′j) ،i+ j = m ه  ر ب  راي . 2 ادع  ا

ای  ن رو از ،αn+i(b′j)ai, aiα
n+i(b′j) ∈ Idem(R) ،i+ j = m ه  ر ب  راي و اس  ت آب  ل  ی R چ  ون . 2 ادع  ا اث  ب  ات

ک  اه  ش  ی R زی  را ،aiαn+i(b′j) = αn+i(b′j)ai ،i + j = m ه  ر ب  راي ل  ذا .(αn+i(b′j)ai − aiα
n+i(b′j))

2 = 0

اس  ت.
.⟨α(ai)⟩ = ⟨ai⟩ و ⟨α(ai)⟩r = ⟨ai⟩r ،⟨α(ai)⟩ℓ = ⟨ai⟩ℓ ،0 ≤ i ≤ m ه  ر ب  راي . 3 ادع  ا

ن  ت  ی  ج  ه ب  ن  اب  ه اس  ت، IFP خ  اص  ی  ت داراي R چ  ون .⟨α(ai)⟩ℓ = ⟨ai⟩ℓ م  ی ده  ی  م ن  ش  ان اب  ت  دا . 3 ادع  ا اث  ب  ات
پ  س .aiαn+i(b′j)ai = ai ،i + j = m ه  ر ب  راي م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،3 . 3 م  ع  ادل  ه در راس  ت از ai ض  رب ب  ا ،10 . 4 . 3
از .α(1) = 1 و اس  ت α-س  ازگ  ار ،R زی  را ،ai[αn+i+1(b′j)α(ai) − 1] = 0 ل  ذا و ai[αn+i(b′j)ai − 1] = 0

داش  ت: خ  واه  ی  م ،i+ j = m ه  ر ب  راي ای  ن رو

aiα
n+i+1(b′j)α(ai) = ai, (5 . 3)

.⟨ai⟩ℓ ⊆ ⟨α(ai)⟩ℓ ب  ن  اب  رای  ن .ai ∈ ⟨α(ai)⟩ℓ پ  س
ب  راي ن  ت  ی  ج  ه در .α(ai)[αn+i(b′j)ai − 1] = 0 ،i+ j = m ه  ر ب  راي داد ن  ش  ان م  ی ت  وان ب  الا، م  ش  اب  ه اس  ت  دلال  ی ب  ا

داری  م ،i+ j = m ه  ر

α(ai)α
n+i(b′j)ai = α(ai), (6 . 3)

.⟨α(ai)⟩ℓ = ⟨ai⟩ℓ ن  ت  ی  ج  ه در .⟨α(ai)⟩ℓ ⊆ ⟨ai⟩ℓ ل  ذا و α(ai) ∈ ⟨ai⟩ℓ پ  س
.⟨ai⟩ = ⟨α(ai)⟩ ب  ن  اب  رای  ن .⟨ai⟩r = ⟨α(ai)⟩r داد ن  ش  ان م  ی ت  وان ب  الا، م  ش  اب  ه اس  ت  دلال  ی ب  ا

.⟨ai⟩ = ⟨α−1(ai)⟩ ،0 ≤ i ≤ m ه  ر ب  راي . 4 ادع  ا
داری  م ،5 . 3 م  ع  ادل  ه ب  ن  اب  ه .⟨α−1(ai)⟩ℓ = ⟨ai⟩ℓ م  ی ک  ن  ی  م ث  اب  ت اب  ت  دا . 4 ادع  ا اث  ب  ات
م  ع  ادل  ه ب  ن  اب  ه ه  م  چ  ن  ی  ن .⟨α−1(ai)⟩ℓ ⊆ ⟨ai⟩ℓ پ  س ،α−1(ai) ∈ ⟨ai⟩ℓ ل  ذا و ،α−1(ai)α

n+i(b′j)ai = α−1(ai)

.⟨ai⟩ℓ ⊆ ⟨α−1(ai)⟩ℓ ن  ت  ی  ج  ه در .ai ∈ ⟨α−1(ai)⟩ℓ ای  ن رو از ،aiαn+i−1(b′j)α
−1(ai) = ai داش  ت خ  واه  ی  م ،6 . 3

.⟨ai⟩ℓ = ⟨α−1(ai)⟩ℓ ب  ن  اب  رای  ن
.⟨ai⟩ = ⟨α−1(ai)⟩ ب  ن  اب  رای  ن .⟨ai⟩r = ⟨α−1(ai)⟩r م  ی گ  ی  ری  م ن  ت  ی  ج  ه ق  ب  ل، پ  اراگ  راف م  ش  اب  ه اس  ت  دلال  ی ب  ا

.⟨αk(ai)⟩ = ⟨αt(ai)⟩ داری  م ،0 ≤ i ≤ m و k, t ∈ Z ه  ر ب  راي . 5 ادع  ا
م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه 4 و 3 ادع  اه  اي ب  ن  اب  ه . 5 ادع  ا اث  ب  ات

.∑i+j=m aidj =
∑

i+j=m d′jai = 1 ک  ه ب  ه ط  وري دارن  د وج  ود dj , d′j ∈ R ،0 ≤ j ≤ m ه  ر ب  راي . 6 ادع  ا
،3 . 3 م  ع  ادل  ه ب  ن  اب  ه ای  ن ص  ورت، در .dj = αn+i(b′j) ده  ی  د ق  رار ،0 ≤ j ≤ m ه  ر ب  راي ،3 . 3 م  ع  ادل  ه در . 6 ادع  ا اث  ب  ات

.∑i+j=m aidj = 1

d′′j ∈ R ،0 ≤ j ≤ m ب  راي ل  ذا .⟨αn(ai)⟩ℓ = ⟨αm(ai)⟩ℓ = ⟨ai⟩ℓ داری  م ،m,n ∈ Z ه  ر ب  راي ،5 ادع  ا ب  ن  اب  ه
م  ی گ  ی  ری  م: ن  ت  ی  ج  ه ،4 . 3 م  ع  ادل  ه ب  ن  اب  ه پ  س ،αr+j(ai) = d′′jai ،i+ j = m ه  ر ب  راي ک  ه ب  ه ط  وري دارد وج  ود

1 =
∑

i+j=m b′′jα
r+j(ai) =

∑
i+j=m b′′jd

′′
jai.

.∑i+j=m d′jai = 1 ب  ن  اب  رای  ن .b′′jd′′j = d′j ،0 ≤ j ≤ m ب  راي ک  ن  ی  د ت  وج  ه
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.aidj = 0 = aid
′
j ،i+ j ̸= m ه  ر ب  راي . 7 ادع  ا

در d′j و dj ت  ع  اری  ف ب  ن  اب  ه ل  ذا ،aibj = 0 ،i+ j ̸= m ه  ر ب  راي و اس  ت α-س  ازگ  ار ،R ح  ل  ق  ه ي چ  ون . 7 ادع  ا اث  ب  ات
م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه و aidj = 0 = aid

′
j ،i+ j ̸= m ه  ر ب  راي ،6 ادع  ا

.dj = d′j ،0 ≤ j ≤ m ه  ر ب  راي . 8 ادع  ا
a0dm+a1dm−1+· · ·+amd0 = م  ع  ادل  ه در راس  ت از d′0 ض  رب ب  ا پ  س دارد، IFP Rخ  اص  ی  ت چ  ون . 8 ادع  ا اث  ب  ات
م  ع  ادل  ه در راس  ت از d0 ض  رب ب  ا ه  م  چ  ن  ی  ن، .apd0d′0 = d′0 م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،7 ادع  ا ب  ن  اب  ه و 1

R از خ  ودت  وان ع  ن  ص  ر apd0 ،11 . 4 . 3 ن  ت  ی  ج  ه ب  ن  اب  ه .d′0apd0 = d0 داری  م ،d′0am + d′1am−1 + · · ·+ d′ma0 = 1

.d0 = d′0 ب  ن  اب  رای  ن اس  ت. آب  ل  ی R زی  را ،d′0apd0 = apd0d
′
0 ل  ذا م  ی ب  اش  د.

.dj = d′j ،0 ≤ j ≤ m ه  ر ب  راي م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،d′1, d′2, . . . , d′m و d1, d2, . . . , dm ب  راي رون  د، ای  ن ادام  ه ب  ا
.aidj = 0 ،i+ j ̸= m ه  ر ب  راي و ∑i+j=m aidj =

∑
i+j=m djai = 1 ب  ن  اب  رای  ن

ک  ه ب  ه ط  وري دارد وج  ود bj ∈ R ،i + j = m ه  ر ب  راي پ  س اس  ت، R از خ  ودری  خ  ت  ی α چ  ون ب  ال  ع  ک  س،
،i+ j ̸= m ه  ر ب  راي و اس  ت α-س  ازگ  ار ،R زی  را ،aibj = 0 ،i+ j ̸= m ه  ر ب  راي ای  ن ص  ورت، در .αn+i(bj) = dj

،i + j ̸= m ه  ر ب  راي چ  ون .g1 =
∑m

j=0 bjx
j ک  ه ب  ه ط  وري ،g = g1x

−(n+m) م  ی ده  ی  م ق  رار .aidj = 0

ای  ن رو از اس  ت، α-ص  ل  ب ،R و aibj = 0

fg = fg1x
−(n+m)

= (
∑

i+j=m

aiα
n+i(bj)) + (

∑
k ̸=m

(
∑

i+j=k

aiα
n+i(bj))x

k)x−m

= (
∑

i+j=m

aidj) + (
∑
k ̸=m

(
∑

i+j=k

aiα
n+i(bj))x

k)x−m = 1.

ب  ود. خ  واه  ی  م g ب  راي راس  ت وارون دن  ب  ال ب  ه ح  ال م  ی ب  اش  د. g چ  پ وارون f ل  ذا
ادع  اه  اي ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا پ  س ،aibj = 0 ،i + j ̸= m ه  ر ب  راي و ∑i+j=m aidj = 1 چ  ون
آن ج  ای  ی ک  ه از .⟨αt(dj)⟩r = ⟨αk(dj)⟩r ،0 ≤ j ≤ m و k, t ∈ Z ه  ر ب  راي داد ن  ش  ان م  ی ت  وان ،5 و 4 ،3
ک  ه ب  ه ط  وري دارد وج  ود rj ∈ R ،i + j = m ه  ر ب  راي ای  ن ص  ورت، در ،⟨bj⟩r = ⟨α−(n+i)(dj)⟩r = ⟨dj⟩r

ه  ر ب  راي ف  رض ک  ن  ی  م .∑i+j=m bj(rjai) = 1 ل  ذا ،dj = bjrj و ∑i+j=m djai = 1 چ  ون .dj = bjrj

b′i ∈ R ،i+ j = m ه  ر ب  راي ن  ت  ی  ج  ه در .a′ibj = 0 ،i+ j ̸= m ه  ر ب  راي ای  ن ص  ورت، در .rjai = a′i ،i+ j = m

.f ′ =
∑m

i=0 b
′
ix

i+n م  ی ده  ی  م ق  رار م  ی ب  اش  د. خ  ودری  خ  ت  ی α زی  را ،αj−(n+m)(b′i) = a′i ک  ه ب  ه ط  وري دارد وج  ود
ل  ذا ،bja′i = 0 ،i+ j ̸= m ه  ر ب  راي چ  ون

gf ′ = (
m∑
j=0

bjx
j)x−(n+m)(

m∑
i=0

b′ix
i)xn

= (
∑

i+j=m

bjα
j−(m+n)(b′i)) + (

∑
k ̸=m

(
∑

i+j=k

bjα
j−(m+n)(b′i))x

k)x−m

= (
∑

i+j=m

bja
′
i) + (

∑
k ̸=m

(
∑

i+j=k

bja
′
i)x

k)x−m = 1.

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و ،f ∈ U(R[x, x−1;α]) ب  ن  اب  رای  ن م  ی ب  اش  د. g ب  راي راس  ت وارون f ′ پ  س



۴ ف  ص  ل

چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ت  م  ی  ز و م  ن  ظ  م ع  ن  اص  ر ب  ررس  ی
اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي و اری  ب

ن  ی  وم  ان ف  ن م  ن  ظ  م را R ح  ل  ق  ه ي ش  د. ارائ  ه ن  ی  وم  ان ف  ن ج  ان ت  وس  ط 1936 س  ال در ح  ل  ق  ه ه  ا، در ن  ی  وم  ان ف  ن م  ن  ظ  م م  ف  ه  وم
م  ی  دان ه  ر م  ث  ال، ع  ن  وان ب  ه .a = axa ک  ه ب  ه ط  وري ب  اش  د داش  ت  ه وج  ود x ∈ R ،a ∈ R ع  ن  ص  ر ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م،

ب  اش  د. م  ی  دان اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ن  ی  وم  ان ف  ن م  ن  ظ  م ص  ح  ی  ح، دام  ن  ه ی  ک ه  م  چ  ن  ی  ن اس  ت. ن  ی  وم  ان ف  ن م  ن  ظ  م
از ع  ن  ص  ر ه  ر ک  ردن  د ث  اب  ت آن ه  ا ک  ردن  د. م  ش  خ  ص را ج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي م  ن  ظ  م ع  ن  اص  ر ،[4] م  رج  ع در ب  داوي و ان  درس  ون
ه  م  چ  ن  ی  ن، ب  اش  د. ش  ب  ه م  وض  ع  ی ی  ا و ک  اه  ش  ی ی  ا ص  ف  ر ب  ع  د ب  ا R اگ  ر ت  ن  ه  ا و اگ  ر اس  ت پ  وچ ت  وان ی  ا ن  ی  وم  ان ف  ن م  ن  ظ  م ،R ح  ل  ق  ه ي
ف  ن م  ن  ظ  م آن ص  ف  ر م  ق  س  وم ع  ل  ی  ه ه  اي ت  م  ام اگ  ر ت  ن  ه  ا و اگ  ر اس  ت (ب  ول  ی) ن  ی  وم  ان ف  ن م  ن  ظ  م R غ  ی  ردام  ن  ه ح  ل  ق  ه ي ک  ه دادن  د ن  ش  ان

ب  اش  د. (ب  ول  ی) ن  ی  وم  ان
چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ت  م  ی  ز و م  وض  ع  ی ن  ی  وم  ان ف  ن π-م  ن  ظ  م، ن  ی  وم  ان، ف  ن م  ن  ظ  م ع  ن  اص  ر ب  ررس  ی ب  ه ف  ص  ل، ای  ن در
م  ی پ  ردازی  م. R[x, x−1;α] اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي و A(R,α) ج  ردن ت  وس  ی  ع ح  ل  ق  ه ي ،R[x;α, δ] اری  ب

م  ی ب  اش  د. [20] و [19] م  راج  ع از ب  رگ  رف  ت  ه ف  ص  ل ای  ن م  ط  ال  ب

اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي م  ن  ظ  م ع  ن  اص  ر ب  ررس  ی 1 . 4
چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي در ن  ی  وم  ان ف  ن م  وض  ع  ی و ن  ی  وم  ان ف  ن م  ن  ظ  م ع  ن  اص  ر م  ورد در پ  ای  ه اي ن  ت  ای  ج اب  ت  دا ب  خ  ش، ای  ن در
راس  ت دوئ  و R ح  ل  ق  ه ي ک  ه ه  ن  گ  ام  ی ح  ل  ق  ه ای  ن در را م  ن  ظ  م ع  ن  اص  ر م  ی ت  وان  ی  م ن  ت  ای  ج ای  ن ت  وس  ط ک  ه م  ی آوری  م ب  ه دس  ت را اری  ب
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ب  ی  اب  ی  م. م  ی ب  اش  د، ,α)-س  ازگ  ار δ) و

ای  ن ص  ورت، در .a ∈ R و ب  اش  ن  د آب  ل  ی ح  ل  ق  ه ه  اي از خ  ان  واده اي {Rα} و آب  ل  ی ح  ل  ق  ه ه  اي S و R ف  رض ک  ن  ی  م .1 . 1 . 4 ق  ض  ی  ه

.xa = ax و ax ∈ Idem(R) آن گ  اه ،axa = a ،x ∈ R ب  رخ  ی ب  راي اگ  ر (1)

اس  ت. ب  س  ت  ه ض  رب ت  ح  ت vnr(R) (2)

.vnr(R) ∩Nil(R) = {0} (3)

.U(R) ∪ Idem(R) ⊆ vnr(R) ⊆ U(R) ∪ Z(R) (4)

ب  اش  د، ی  ا م  وض  ع  ی دام  ن  ه R اگ  ر ب  ه خ  ص  وص، .Idem(R) = {0, 1} اگ  ر ت  ن  ه  ا و اگ  ر vnr(R) = U(R) ∪ {0} (5)
آن گ  اه

vnr(R) = U(R) ∪ {0}.

.Idem(R) ̸= {0, 1} اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ن  اص  ف  ر و وارون ن  اپ  ذی  ر ع  ن  ص  ري داراي vnr(R) (6)

ف  ن م  ن  ظ  م Rα ه  ر اگ  ر وت  ن  ه  ا اگ  ر اس  ت ن  ی  وم  ان ف  ن م  ن  ظ  م ∏Rα ب  ه خ  ص  وص، .vnr(∏Rα) =
∏

vnr(Rα) (7)
ب  اش  د. ن  ی  وم  ان

ب  ه خ  ص  وص، .f(vnr(R)) ⊆ vnr(S) آن گ  اه ب  اش  د، ح  ل  ق  ه ه  ا از ه  م  ری  خ  ت  ی ی  ک f : R → S اگ  ر (8)
م  ن  ظ  م ن  ی  وم  ان، ف  ن م  ن  ظ  م ح  ل  ق  ه ي ه  م  ری  خ  ت ت  ص  وی  ر و ب  اش  د S از زی  ر ح  ل  ق  ه اي R ه  ن  گ  ام  ی ک  ه vnr(R) ⊆ vnr(S)

اس  ت. ن  ی  وم  ان ف  ن

ل  ذا م  ی ب  اش  ن  د. خ  ودت  وان ax و xa ب  ه وض  وح (1) ب  ره  ان.

ax = (ax)2 = a(xa)x = (xa)ax = xa(ax) = x(ax)a = (xa)2 = xa,

اس  ت. آب  ل  ی ح  ل  ق  ه ي R چ  ون
ک  رد. اث  ب  ات را دی  گ  ر گ  زاره ه  اي م  ی ت  وان م  ش  اب  ه، اس  ت  دلال  ی ب  ا

.a = a2x داری  م ،x ∈ R ب  رخ  ی ب  راي آن گ  اه ،a ∈ vnr(R) و ب  اش  د آب  ل  ی ح  ل  ق  ه ي R اگ  ر ،(1)1 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه

م  ع  ادل  ن  د: a ∈ R ه  ر ب  راي زی  ر گ  زاره ه  اي ای  ن ص  ورت، در ب  اش  د. آب  ل  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .2 . 1 . 4 گ  زاره

.a ∈ vnr(R) (1)

.a2v = a ک  ه ب  ه ط  وري دارد وج  ود v ∈ U(R) ع  ن  ص  ر (2)

.a = ue ک  ه ب  ه ط  وري م  وج  ودن  د e ∈ Idem(R) و u ∈ U(R) ع  ن  اص  ر (3)

.ab = 0 و a+ b ∈ U(R) ک  ه ب  ه ط  وري دارد وج  ود b ∈ vnr(R) \ {0} ع  ن  ص  ر (4)
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.ab = 0 و a+ b ∈ U(R) ک  ه ب  ه ط  وري دارد وج  ود b ∈ R ع  ن  ص  ر (5)

ب  ن  اب  ه .a = a2x داری  م ،x ∈ R ب  راي ای  ن ص  ورت، در .a ∈ vnr(R) ف  رض ک  ن  ی  م (1) ⇒ (2) ب  ره  ان.
ل  ذا .1 − e = 1 − ax ∈ Idem(R) پ  س .e = ax ∈ Idem(R) داش  ت خ  واه  ی  م ،(1)1 . 1 . 4 ق  ض  ی  ه
.(1 − e)a = (1 − ax)a = a − a2x = 0 و a(1 − e) = a(1 − ax) = a − a2x = a − a = 0

ب  ن  اب  رای  ن .v(a + 1 − e) = (a + 1 − e)v = 1 چ  ون ،v = ex + 1 − e ∈ U(R) ن  ت  ی  ج  ه در
.a2v = a2(ex+ 1− e) = a2ex+ a2 − a2e = a2ex+ a2(1− e) = a

ق  ض  ی  ه ب  ن  اب  ه .v−1 = u ∈ U(R) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، .a2v = a ، v ∈ U(R) ب  راي ف  رض ک  ن  ی  م (2) ⇒ (3)
.e = av ∈ Idem(R) زی  را ،ue = v−1(av) = avv−1 = a داری  م ،(1)1 . 1 . 4

،b ̸= a ب  راي ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، .a = ue ،e ∈ Idem(R) و u ∈ U(R) ب  راي ف  رض ک  ن  ی  م (3) ⇒ (4)
.b2u−1 = u2(1−e)2u−1 = u2(1−e)u−1 = u2u−1(1−e) = u(1−e) = b داری  م ت  وج  ه .b = u(1−e)

و ab = (ue)(u(1 − e)) = ueu − ueue = u2e − u2e2 = 0 داری  م ب  ن  اب  رای  ن .b ∈ vnr(R) ل  ذا
.a+ b = ue+ u(1− e) = u ∈ U(R)

اس  ت. واض  ح (4) ⇒ (5)
ای  ن ص  ورت، در .a+ b = u ∈ U(R) و ab = 0 ،b ∈ R ب  راي ف  رض ک  ن  ی  م (5) ⇒ (1)

au = a(a+ b) = a2 + ab = a2

.a ∈ vnr(R) ب  ن  اب  رای  ن .a2u−1 = (au)u−1 = a ن  ت  ی  ج  ه در و

وج  ود y ∈ R ف  رد ب  ه م  ن  ح  ص  ر ع  ن  ص  ر ای  ن ص  ورت، در .x ∈ vnr(R) و ب  اش  د آب  ل  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .3 . 1 . 4 ق  ض  ی  ه
.y2x = y و x2y = x ک  ه ب  ه ط  وري دارد

ق  ض  ی  ه ب  ن  اب  ه آن گ  اه ،y = z2x اگ  ر ح  ال .x = x2z داری  م ،z ∈ R ب  راي ای  ن ص  ورت، در .x ∈ vnr(R) ف  رض ک  ن  ی  م ب  ره  ان.
اس  ت. ف  رد ب  ه م  ن  ح  ص  ر y ع  ن  ص  ر ک  ه م  ی ده  ی  م ن  ش  ان ح  ال .y2x = y و x2y = x ل  ذا .zx = xz ∈ Idem(R) ،(1)1 . 1 . 4
،xy1 = y1x ∈ Idem(R) چ  ون .y1 = y21x و x = x2y1 ک  ه ب  ه ط  وري ب  اش  د داش  ت  ه وج  ود y1 ∈ R ع  ن  ص  ر ف  رض ک  ن  ی  م
ع  ن  ص  ر ب  ن  اب  رای  ن .y1 = y21x = y21(x

2y) = y1(xy1x)y = y1xy = y1(xyx)y = yxy1xy = yxy = y داری  م
اس  ت. ف  رد ب  ه م  ن  ح  ص  ر y

ت  ش  ک  ی  ل ،R از وارون ن  اپ  ذی  ر ع  ن  اص  ر ت  م  ام م  ج  م  وع  ه ي ه  رگ  اه م  ی ن  ام  ی  م، م  وض  ع  ی را R ح  ل  ق  ه ي ،[2 . 5 . 9 ت  ع  ری  ف ،50] ب  ن  اب  ه
ده  ن  د. ای  ده آل

ت  ن  ه  ا و اگ  ر R = vnr(R) ∪Nil(R) ای  ن ص  ورت، در ب  اش  د. داش  ت  ه IFP خ  اص  ی  ت R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .4 . 1 . 4 ق  ض  ی  ه
ب  اش  د. Nil(R) م  اک  س  ی  م  ال ای  ده آل ب  ا م  وض  ع  ی ی  ا ن  ی  وم  ان ف  ن م  ن  ظ  م R اگ  ر

ف  رض ک  ن  ی  م م  ی ب  اش  د. R از ای  ده آل  ی Nil(R) ل  ذا اس  ت، IFPخ  اص  ی  ت داراي R ح  ل  ق  ه ي چ  ون ب  ره  ان.
R از وارون ن  اپ  ذی  ر ع  ن  اص  ر از م  ج  م  وع  ه اي Nil(R) آن گ  اه ،vnr(R) = U(R) ∪ {0} اگ  ر .R = vnr(R) ∪Nil(R)

ع  ن  ص  ر ،(6)1 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه ای  ن ص  ورت، در ب  اش  د، ن  اص  ف  ر و وارون ن  اپ  ذی  ر ع  ن  ص  ر ش  ام  ل vnr(R) ک  ن  ی  م ف  رض ل  ذا اس  ت.
در .x ∈ Nil(R) ف  رض ک  ن  ی  م .Nil(R) = {0} ک  ه م  ی ک  ن  ی  م ادع  ا ح  ال دارد. وج  ود e ∈ Idem(R) \ {0, 1}
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.x− ex = (1− e)x = (1− e)(e+ x) ∈ vnr(R) ،(2)1 . 1 . 4 ب  ن  اب  ه ن  ت  ی  ج  ه در و e+ x ∈ vnr(R) ای  ن ص  ورت،
ب  ه ج  اي e گ  ذاري ج  اي ب  ا .x − ex = 0 ،(3)1 . 1 . 4 ب  ن  اب  ه ل  ذا ،x − ex = (1 − e)x ∈ Nil(R) داری  م ه  م  چ  ن  ی  ن
ب  ن  اب  رای  ن م  ی ش  ود. ث  اب  ت ادع  ا و ،x = 0 ای  ن رو از ،ex = 0 گ  رف  ت ن  ت  ی  ج  ه م  ی ت  وان م  ش  اب  ه، اس  ت  دلال  ی و 1 − e

.R = vnr(R) ∪Nil(R) = vnr(R)

R اگ  ر ب  اش  د. Nil(R) م  اک  س  ی  م  ال ای  ده آل ب  ا م  وض  ع  ی ی  ا ن  ی  وم  ان ف  ن م  ن  ظ  م ح  ل  ق  ه ي R ک  ن  ی  م ف  رض ب  ال  ع  ک  س،
م  اک  س  ی  م  ال ای  ده آل ب  ا م  وض  ع  ی R اگ  ر .R = vnr(R) ∪Nil(R) ل  ذا ،vnr(R) = R آن گ  اه ب  اش  د،  ن  ی  وم  ان ف  ن م  ن  ظ  م
ن  ت  ی  ج  ه در و vnr(R) = U(R) ∪ {0} = (R \Nil(R)) ∪ {0} داری  م ،(5)1 . 1 . 4 ب  ن  اب  ه آن گ  اه ب  اش  د، Nil(R)

.R = vnr(R) ∪Nil(R)

اس  ت، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ح  ال  ت  ی ک  ه در را R[x;α, δ] ح  ل  ق  ه ي ن  ی  وم  ان ف  ن م  ن  ظ  م ع  ن  اص  ر ح  ال
م  ی ک  ن  ی  م. م  ش  خ  ص

ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .5 . 1 . 4 ق  ض  ی  ه

vnr(R[x;α, δ]) =
{∑n

i=0 aix
i ∈ R[x;α, δ] | a0 = ue و ai ∈ e

(
Nil(R)

)
,

i ≥ 1, e ∈ Idem(R) و u ∈ U(R)
}
.

داش  ت: خ  واه  ی  م ،2 . 1 . 4 گ  زاره ب  ن  اب  ه ل  ذا اس  ت، آب  ل  ی ح  ل  ق  ه ي R[x;α, δ] ،5 . 2 . 3 ن  ت  ی  ج  ه ب  ه ب  ن  اب  ه ب  ره  ان.

vnr(R[x;α, δ]) = {fe | f ∈ U(R[x;α, δ]) و e ∈ Idem(R[x;α, δ])}.

ح  اص  ل ن  ت  ی  ج  ه 9 . 1 . 3 و 4 . 2 . 3 ن  ت  ای  ج ب  ن  اب  ه ل  ذا ،δ(e) = 0 و α(e) = e ،e ∈ R خ  ودت  وان ع  ن  ص  ر ه  ر ب  راي چ  ون
م  ی گ  ردد.

اس  ت، آب  ل  ی پ  ای  ه ح  ل  ق  ه ي ک  ه ه  ن  گ  ام  ی ن  ی  وم  ان ف  ن م  وض  ع  ی ع  ن  اص  ر م  ورد در ن  ت  ای  ج  ی ب  ررس  ی ب  ه ب  ع  دي، ق  ض  ی  ه در
ب  ود. خ  واه  د م  ف  ی  د اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي در ع  ن  اص  ر ای  ن ک  ردن م  ش  خ  ص ب  راي ن  ت  ای  ج ای  ن م  ی پ  ردازی  م.

ای  ن ص  ورت، در ب  اش  ن  د. آب  ل  ی ح  ل  ق  ه ه  اي از خ  ان  واده اي {Rα}α∈Λ و آب  ل  ی ح  ل  ق  ه ه  اي S و R ف  رض ک  ن  ی  م .6 . 1 . 4 ق  ض  ی  ه

ب  ه خ  ص  وص، .vnl(R) = vnr(R) ∪ (1 + vnr(R)) = {0, 1}+ vnr(R) (1)

.{0, 1}+ U(R) = U(R) ∪ (1 + U(R)) ⊆ vnl(R)

وج  ود e ∈ Idem(R) و u ∈ U(R) ع  ن  اص  ر اگ  ر ت  ن  ه  ا و اگ  ر a ∈ vnl(R) ای  ن ص  ورت در .a ∈ R ف  رض ک  ن  ی  م (2)
.a = 1 + ue ی  ا a = ue ب  ه ط  وري ک  ه ب  اش  ن  د داش  ت  ه

.U(R) ∪ J(R) ⊆ vnl(R) داری  م ل  ذا .J(R) ⊆ vnl(R) (3)

ب  ه خ  ص  وص، .Idem(R) = {0, 1} اگ  ر ت  ن  ه  ا و اگ  ر vnl(R) = U(R) ∪ (1 + U(R)) (4)
(ت  وج  ه ب  اش  د م  وض  ع  ی ی  ا دام  ن  ه R ح  ل  ق  ه ي ه  ن  گ  ام  ی ک  ه vnl(R) = U(R) ∪ (1 + U(R))

.(vnl(R) = R داری  م ب  اش  د، م  وض  ع  ی R ح  ل  ق  ه ي ه  ن  گ  ام  ی ک  ه م  ی ک  ن  ی  م
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داری  م آن گ  اه ب  اش  د، ب  س  ت  ه ض  رب ت  ح  ت vnl(∏Rα) اگ  ر .vnl(∏Rα) ⊆
∏

vnl(Rα) (5)
.vnl(∏Rα) =

∏
vnl(Rα)

ب  ه خ  ص  وص، .f(vnl(R)) ⊆ vnl(S) ای  ن ص  ورت، در ب  اش  د. ح  ل  ق  ه ه  ا از ه  م  ری  خ  ت  ی ی  ک f : R → S ف  رض ک  ن  ی  م (6)
ف  ن م  وض  ع  ی ح  ل  ق  ه ي از ه  م  ری  خ  ت ت  ص  وی  ر ه  ر و ب  اش  د، S از زی  رح  ل  ق  ه اي R ه  ن  گ  ام  ی ک  ه vnl(R) ⊆ vnl(S)

اس  ت. ن  ی  وم  ان ف  ن م  وض  ع  ی ن  ی  ز ن  ی  وم  ان،

م  ی ب  اش  د. R ح  ل  ق  ه ي از وارون پ  ذی  ر ع  ن  ص  ر س  ه م  ج  م  وع ب  ه ص  ورت a ∈ vnl(R) ه  ر آن گ  اه ،2 ∈ U(R) اگ  ر (7)

ک  رد. ث  اب  ت م  ی ت  وان ،[5 . 1 ق  ض  ی  ه ،4] ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا ب  ره  ان.

اس  ت. ن  ی  وم  ان ف  ن م  وض  ع  ی ح  ل  ق  ه ي R آن گ  اه ،R = vnr(R) ∪Nil(R) و ب  اش  د آب  ل  ی ح  ل  ق  ه ي R اگ  ر .7 . 1 . 4 ن  ت  ی  ج  ه

و ،1− a ∈ U(R) ⊆ vnr(R) آن گ  اه ،a ∈ Nil(R) اگ  ر زی  را م  ی ش  ود، ح  اص  ل ن  ت  ی  ج  ه ،(3)6 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه ب  ره  ان.
اس  ت. ن  ی  وم  ان ف  ن م  وض  ع  ی ح  ل  ق  ه ي R ن  ت  ی  ج  ه در

راس  ت دوئ  و R ح  ل  ق  ه ي ک  ه ه  ن  گ  ام  ی اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي در را ن  ی  وم  ان ف  ن م  وض  ع  ی ع  ن  اص  ر م  ی ت  وان  ی  م اک  ن  ون
ک  ن  ی  م. م  ش  خ  ص اس  ت، ,α)-س  ازگ  ار δ) و

ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .8 . 1 . 4 ق  ض  ی  ه

vnl(R[x;α, δ]) = {
n∑

i=0

aix
i ∈ R[x;α, δ] | a0 = ue ی  ا a0 = 1− ue و ai ∈ e(Nil(R)),

i ≥ 1 ه  ر ب  راي , u ∈ U(R) و e ∈ Idem(R)}.

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه (2)6 . 1 . 4 و 5 . 1 . 4 ق  ض  ای  اي ب  ن  اب  ه ب  ره  ان.

اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ت  م  ی  ز و π-م  ن  ظ  م ع  ن  اص  ر ب  ررس  ی 2 . 4
ای  ن از اس  ت  ف  اده ب  ا م  ی ک  ن  ی  م. ب  ی  ان را آب  ل  ی ح  ل  ق  ه ه  اي در ت  م  ی  ز و π-م  ن  ظ  م ع  ن  اص  ر م  ورد در پ  ای  ه اي ن  ت  ای  ج ب  خ  ش، ای  ن در
و راس  ت دوئ  و ح  ل  ق  ه ي R ک  ه ه  ن  گ  ام  ی R[x;α, δ] اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي در را ت  م  ی  ز و π-م  ن  ظ  م ع  ن  اص  ر ن  ت  ای  ج،

م  ی ک  ن  ی  م. ب  ررس  ی م  ی ب  اش  د، ,α)-س  ازگ  ار δ)
م  ی ب  اش  د. ،1 . 1 . 4 ق  ض  ی  ه م  ش  اب  ه ک  ه م  ی ک  ن  ی  م ب  ی  ان π-م  ن  ظ  م ع  ن  اص  ر م  ورد در ق  ض  ی  ه اي اب  ت  دا در

داری  م: ص  ورت، ای  ن در ب  اش  ن  د. آب  ل  ی ح  ل  ق  ه ه  اي S و R1, . . . , Rn و R ف  رض ک  ن  ی  م .1 . 2 . 4 ق  ض  ی  ه

اس  ت. π-م  ن  ظ  م ن  وی  م  ان، ف  ن م  ن  ظ  م ح  ل  ق  ه ي ه  ر ب  ه خ  ص  وص، .vnr(R) ⊆ π − r(R) (1)

.anx ∈ Idem(R) آن گ  اه ،an = anxan ب  اش  ی  م داش  ت  ه ،n ≥ 1 و x ∈ R ب  راي اگ  ر .a ∈ R ف  رض ک  ن  ی  م (2)

.vnr(R) ∪Nil(R) ⊆ π − r(R) ⊆ U(R) ∪ Z(R) (3)
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ب  ه خ  ص  وص، .Idem(R) = {0, 1} اگ  ر ت  ن  ه  ا و اگ  ر π − r(R) = U(R) ∪Nil(R) (4)

π − r(R) = U(R) ∪Nil(R)

ب  اش  د. م  وض  ع  ی ی  ا دام  ن  ه R اگ  ر

.Idem(R) ̸= {0, 1} اگ  ر ت  ن  ه  ا و اگ  ر دارد پ  وچ ت  وان غ  ی  ر و وارون ن  اپ  ذی  ر ع  ن  ص  ري π − r(R) (5)

π-م  ن  ظ  م ،R1 × · · · ×Rn ب  ه خ  ص  وص، .π − r(R1 × · · · ×Rn) = π − r(R1)× · · · × π − r(Rn) (6)
ب  اش  د. π-م  ن  ظ  م ،Ri ه  ر اگ  ر ت  ن  ه  ا و اگ  ر اس  ت

ای  ن ص  ورت، در ب  اش  د. آب  ل  ی ح  ل  ق  ه ه  اي از ه  م  ری  خ  ت  ی f : R → S ف  رض ک  ن  ی  م (7)

f(π − r(R)) ⊆ π − r(S).

ح  ل  ق  ه ي ه  م  ری  خ  ت ت  ص  وی  ر و اس  ت S از زی  ر ح  ل  ق  ه اي R ه  ن  گ  ام  ی ک  ه π − r(R) ⊆ π − r(S) ب  ه خ  ص  وص،
اس  ت. π-م  ن  ظ  م ن  ی  ز π-م  ن  ظ  م،

اس  ت. واض  ح (1) ب  ره  ان.
.(anx)2 = anxanx = anx داری  م ای  ن ص  ورت، در .an = anxan ،n ≥ 1 و x ∈ R ب  راي ف  رض ک  ن  ی  م (2)

.anx ∈ Idem(R) ب  ن  اب  رای  ن
اول ح  ال  ت در .a ∈ Nil(R) ی  ا a ∈ vnr(R) ای  ن ص  ورت، در .a ∈ vnr(R) ∪ Nil(R) ف  رض ک  ن  ی  م (3)
،x ∈ R ب  راي ل  ذا ،an = 0 ک  ه ب  ه ط  وري دارد وج  ود n ∈ N دوم، ح  ال  ت در .a ∈ π − r(R) داری  م ،(1) ب  ن  اب  ه

.vnr(R) ∪Nil(R) ⊆ π − r(R) ن  ت  ی  ج  ه در .an = anxan

ای  ن ص  ورت، در .a ∈ U(R) ده  ی  م ن  ش  ان اس  ت ک  اف  ی .a ̸∈ Z(R) ام  ا ،a ∈ π − r(R) ف  رض ک  ن  ی  م ح  ال
ای  ن ص  ورت، در .(1 − anx)an = 0 و an(1 − xan) = 0 ل  ذا ،an = anxan داری  م ،n ∈ N و x ∈ R ب  راي
ب  ن  اب  رای  ن .a ∈ U(R) ای  ن رو از و ،xan = anx = 1 ن  ت  ی  ج  ه در .a ̸∈ Z(R) چ  ون ،1− anx = 0 و 1− xan = 0

.π − r(R) ⊆ U(R) ∪ Z(R)

.a ∈ π − r(R) ای  ن ص  ورت، در .a ∈ Idem(R) و π − r(R) = U(R) ∪ Nil(R) ف  رض ک  ن  ی  م (4)
ب  ن  اب  رای  ن .a = 0 داری  م دوم، ح  ال  ت در .a = 1 آن گ  اه ،a ∈ U(R) اگ  ر .a ∈ Nil(R) ی  ا a ∈ U(R) ل  ذا

.Idem(R) = {0, 1}

،n ∈ N و x ∈ R ب  راي ای  ن ص  ورت، در .a ∈ π − r(R) و Idem(R) = {0, 1} ف  رض  ک  ن  ی  م ح  ال
خ  واه  ی  م ،(5)1 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه پ  س ،Idem(R) = {0, 1} ف  رض ب  ن  اب  ه چ  ون .an ∈ vnr(R) ل  ذا .an = anxan

ب  ن  اب  رای  ن .a ∈ Nil(R) ی  ا a ∈ U(R) ن  ت  ی  ج  ه در و an = 0 ی  ا an ∈ U(R) ای  ن رو از .an ∈ U(R) ∪ {0} داش  ت
.π − r(R) ⊆ U(R) ∪Nil(R)

.π − r(R) = U(R) ∪Nil(R) ب  ن  اب  رای  ن اس  ت. واض  ح ،(4)1 . 1 . 4 ق  ض  ی  ه و (3) ب  ن  اب  ه ب  ال  ع  ک  س،
م  وض  ع  ی ح  ل  ق  ه ي R اگ  ر ه  م  چ  ن  ی  ن، اس  ت. واض  ح آن گ  اه ،Idem(R) = {0, 1} چ  ون ب  اش  د، دام  ن  ه R اگ  ر ب  ه خ  ص  وص،

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و ،Idem(R) = {0, 1} ،13 . 1 . 2 گ  زاره ب  ن  اب  ه آن گ  اه ب  اش  د،
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اس  ت. واض  ح ،(4) از اس  ت  ف  اده ب  ا (5)
م  ی ب  اش  ن  د. واض  ح (7) و (6)

π-م  ن  ظ  م ح  ل  ق  ه ي R ای  ن ص  ورت، در .R = vnr(R) ∪Nil(R) و ب  اش  د آب  ل  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .2 . 2 . 4 ن  ت  ی  ج  ه
م  ی ب  اش  د.

م  ی ش  ود. ح  اص  ل ،(3)1 . 2 . 4 ق  ض  ی  ه از ب  ره  ان.

و x ∈ R ب  راي آن گ  اه ،a ∈ π − r(R) و ب  اش  د آب  ل  ی R ح  ل  ق  ه ي اگ  ر ،(2)1 . 2 . 4 ق  ض  ی  ه ب  ن  اب  ه م  ی ک  ن  ی  م ی  ادآوري
.an = a2nx = xa2n داری  م n ∈ N

اس  ت. ن  ی  م گ  روه ی  ک π − r(R) ای  ن ص  ورت، در ب  اش  د. IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .3 . 2 . 4 ق  ض  ی  ه

ب  رخ  ی ب  راي ک  ه ب  ه ط  وري دارد وج  ود k ∈ N ع  دد ،a, b ∈ π − r(R) ه  ر ب  راي ک  ه م  ی ده  ی  م ن  ش  ان اب  ت  دا ب  ره  ان.
و an = a2nx داری  م ،m,n ∈ N و x, y ∈ R ب  رخ  ی ب  راي ف  رض ک  ن  ی  م .bk = b2ky و ak = a2kx ،x, y ∈ R

خ  ودت  وان ع  ن  اص  ري bmy = ybm و anx = xan ،(1)1 . 1 . 4 و (2)1 . 2 . 4 ق  ض  ای  اي ب  ن  اب  ه ای  ن ص  ورت، در .bm = b2my

پ  س ه  س  ت  ن  د،

a2n = ana2nx = (a2nx)a2nx = a2nanxxan = a3nxanx = a4nx2,

ن  ت  ی  ج  ه در .x2a2n = a2nx2 داری  م و ه  س  ت  ن  د خ  ودت  وان a2nx2 و x2a2n ع  ن  اص  ر ،(2)1 . 2 . 4 ق  ض  ی  ه ب  ن  اب  ه ای  ن رو از

a3n = ana4nx2 = a2nxa4nx2 = ananxa2na2nx2 = ana2na2nanxx2 = a6nx3.

ب  راي داد ن  ش  ان م  ی ت  وان ن  ی  ز م  ش  اب  ه اس  ت  دلال  ی ب  ا .(an)m = a2mnxm ک  رد ث  اب  ت م  ی ت  وان رون  د، ای  ن ادام  ه ب  ا
پ  س .bk = b2kyn و ak = a2kxm ای  ن رو از ،k = mn م  ی ده  ی  م ق  رار .(bm)n = b2mnyn داری  م ،bm = b2my

آب  ل  ی R و اس  ت خ  ودت  وان xmak چ  ون ،akbk = (a2kxm)(b2kyn) = (akxmak)(bkynbk) = akbkynxmakbk

داراي R ح  ل  ق  ه ي زی  را ،(ab)2k(ynxmakbk − 1) = 0 ن  ت  ی  ج  ه در و ،akbk(ynxmakbk − 1) = 0 ل  ذا م  ی ب  اش  د.
ب  ن  اب  رای  ن اس  ت. IFP خ  اص  ی  ت

(ab)2k = (ab)2kynxmakbk = (ab)2kxmakynbk = (ab)2kakxmbkyn

= (ab)2kaak−1xmbkyn = (ab)2kabkynak−1xm

= (ab)abbk−1ynak−1xm

= (ab)2k+1α,

م  ی ب  اش  د. آب  ل  ی R و خ  ودت  وان bkyn = ynbk و akxm = xmak ع  ن  اص  ر زی  را ،α = bk−1ynak−1xm ب  ه ط  وري ک  ه
ن  ت  ی  ج  ه در ،p = 2k و c = ab م  ی ده  ی  م ق  رار ح  ال

cp = cp+1α = ccpα = c(cp+1α)α = cp+2α2 = .... = c2pαt.

اس  ت. ن  ی  م گ  روه ی  ک π − r(R) ن  ت  ی  ج  ه در و ،c = ab ∈ π − r(R) ب  ن  اب  رای  ن
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اس  ت. ن  ی  م گ  روه ی  ک π − r(R) ای  ن ص  ورت، در ب  اش  د. راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .4 . 2 . 4 ن  ت  ی  ج  ه

م  ع  ادل  ن  د: زی  ر گ  زاره ه  اي ،a ∈ R ه  ر ب  راي ای  ن ص  ورت، در ب  اش  د. IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .5 . 2 . 4 ق  ض  ی  ه

.a ∈ π − r(R) (1)

.an ∈ vnr(R) ،n ≥ 1 ب  رخ  ی ب  راي (2)

.an = ue داری  م ،n ≥ 1 و e ∈ Idem(R) ،u ∈ U(R) ب  رخ  ی ب  راي (3)

.a = b+ w ب  ه ط  وري ک  ه دارن  د وج  ود w ∈ Nil(R) و b ∈ vnr(R) ع  ن  اص  ر (4)

.a = ue+ w ب  ه ط  وري ک  ه م  وج  ودن  د w ∈ Nil(R) و e ∈ Idem(R) ،u ∈ U(R) ع  ن  اص  ر (5)

.a+Nil(R) ∈ vnr(R/Nil(R)) (6)

.an + b ∈ U(R) و anb ∈ Nil(R) ب  ه ط  وري ک  ه دارن  د وج  ود n ≥ 1 و b ∈ R ع  ن  اص  ر (7)

.a+ b ∈ U(R) و ab ∈ Nil(R) ب  ه ط  وري ک  ه اس  ت م  وج  ود b ∈ R ع  ن  ص  ر (8)

اس  ت. واض  ح (1) ⇔ (2) ب  ره  ان.
م  ی ش  ود. ح  اص  ل ،2 . 1 . 4 ق  ض  ی  ه از (4) ⇔ (5) و (2) ⇔ (3)

م  ی  ش  ود. ح  اص  ل ن  ت  ی  ج  ه ،28 . 1 . 2 ن  ت  ی  ج  ه ب  ن  اب  ه ل  ذا اس  ت، آب  ل  ی ،IFP خ  اص  ی  ت داراي ح  ل  ق  ه ي ه  ر چ  ون (1) ⇒ (5)
م  ی گ  ردد. ح  اص  ل ،(8)1 . 1 . 4 ق  ض  ی  ه از م  س  ت  ق  ی  م، ب  ه ط  ور (1) ⇒ (6)

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ،29 . 1 . 2 ق  ض  ی  ه ب  ن  اب  ه ل  ذا اس  ت، آب  ل  ی R ح  ل  ق  ه ي چ  ون (6) ⇒ (1)
ک  رد. ث  اب  ت م  ی ت  وان ،27 . 1 . 2 ق  ض  ی  ه ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ردن ب  ه ک  ار ب  ا (5) ⇒ (8) و (3) ⇒ (7)

ب  رخ  ی ب  راي ل  ذا دارد، IFP خ  اص  ی  ت R ح  ل  ق  ه ي چ  ون ای  ن ص  ورت، در .ac ∈ Nil(R) ف  رض ک  ن  ی  م (8) ⇒ (7)
چ  ون .ai1cj1 · · · aiscjs ∈ Nil(R) ،j1 + · · ·+ js ≥ 1 و i1 + · · ·+ is ≥ 1 ه  ر ب  راي و (ac)n = 0 ،n ≥ 1

ب  ه ط  وري ک  ه a2n + c2n = (a + c)2n −
∑

ai1cj1 · · · aiscjs و اس  ت R ح  ل  ق  ه ي از دوط  رف  ه ای  ده آل Nil(R)

و i1 + · · · + is ≥ 1 ،0 ≤ i1, i2, ..., is, j1, j2, ..., js ≤ 2n − 1 ،i1 + · · · + is + j1 + · · · + js = 2n

و b = c2n دادن ق  رار ب  ا ب  ن  اب  رای  ن .a2n + c2n ∈ U(R) + Nil(R) ⊆ U(R) ای  ن رو از ،j1 + · · · + js ≥ 1

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ،m = 2n

.am + b = u ∈ U(R) ب  ه ط  وري ک  ه amb ∈ Nil(R) ،m ≥ 1 و b ∈ R ب  رخ  ی ب  راي ف  رض ک  ن  ی  م (7) ⇒ (5)
ک  ن  ی  م، ض  رب م  ع  ادل  ه ط  رف دو در راس  ت س  م  ت از را u−1 اگ  ر ح  ال .amu = am(am+b) = a2m+amb ای  ن ص  ورت در
،am−a2mu−1 ∈ Nil(R) ل  ذا م  ی ب  اش  د، دوط  رف  ه ای  ده آل  ی Nil(R) چ  ون .am = a2mu−1+ambu−1 داری  م آن گ  اه
،28 . 1 . 2 ن  ت  ی  ج  ه ب  ن  اب  ه .a+Nil(R) ∈ π−r(R/Nil(R)) ای  ن رو از و ،am+Nil(R) = a2mu−1+Nil(R) پ  س
u1+Nil(R) ∈ ب  ه ط  وري ک  ه a+Nil(R) = (u1+Nil(R))(f+Nil(R))+(w+Nil(R)) داش  ت خ  واه  ی  م
ن  ت  ی  ج  ه در ،w + Nil(R) ∈ Nil(R/Nil(R)) و f + Nil(R) ∈ Idem(R/Nil(R)) ،U(R/Nil(R))

.u1 ∈ U(R) ک  ه م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،u1 +Nil(R) ∈ U(R/Nil(R)) چ  ون .a+Nil(R) = u1f +Nil(R)

داری  م h ∈ Nil(R) ب  رخ  ی ب  راي ،1 . 2 . 3 ل  م ب  ن  اب  ه ،f + Nil(R) ∈ Idem(R/Nil(R)) چ  ون ه  م  چ  ن  ی  ن،
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.e ∈ Idem(R) و u1 ∈ U(R) ب  ه ط  وري ک  ه a+Nil(R) = u1e+Nil(R) ل  ذا .e = f + h ∈ Idem(R)

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ای  ن رو از و ،a = u1e+ n داری  م ،n ∈ Nil(R) ب  راي پ  س
ح  اص  ل ن  ت  ی  ج  ه ،28 . 1 . 2 ن  ت  ی  ج  ه از اس  ت  ف  اده ب  ا و (7) ⇒ (5) ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ردن ب  ه ک  ار ب  ا (7) ⇒ (1)

م  ی ش  ود.

ای  ن ص  ورت، در ب  اش  د. IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .6 . 2 . 4 ن  ت  ی  ج  ه

.π − r(R) = vnr(R) +Nil(R) (1)

.π − r(R)/Nil(R) = vnr(R/Nil(R)) (2)

.π − r(R) = vnr(R) اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ک  اه  ش  ی R ح  ل  ق  ه ي (3)

از وارون پ  ذی  ر ع  ن  ص  ر دو م  ج  م  وع ف  رم ب  ه م  ی ت  وان را ،a ∈ π − r(R) ع  ن  ص  ر ه  ر آن گ  اه ب  اش  د، 2 ∈ U(R) اگ  ر (4)
ن  وش  ت. R ح  ل  ق  ه ي

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ،5 . 2 . 4 ق  ض  ی  ه در (4) و (1) ب  ودن م  ع  ادل از (1) ب  ره  ان.
ش  د. خ  واه  د ح  اص  ل ن  ت  ی  ج  ه ،5 . 2 . 4 ق  ض  ی  ه در (6) و (1) ب  ودن م  ع  ادل از (2)

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ،(1) ب  ن  اب  ه ل  ذا ،vnr(R) ∩Nil(R) = {0} داری  م ،(3)1 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه چ  ون (3)
ک  رد. ث  اب  ت م  ی ت  وان [4 . 3 ن  ت  ی  ج  ه ،4] ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا (4)

π − r(R) = vnr(R) ∪Nil(R) ای  ن ص  ورت، در ب  اش  د. IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .7 . 2 . 4 ق  ض  ی  ه
.Nil(R) = {0} ی  ا Idem(R) = {0, 1} اگ  ر ت  ن  ه  ا و اگ  ر

ه  م  چ  ن  ی  ن، .e ̸= 0, 1 ک  ه ب  ه ط  وري ب  اش  د داش  ت  ه وج  ود e ∈ Idem(R) ع  ن  ص  ر ف  رض ک  ن  ی  م اب  ت  دا ب  ره  ان.
.Nil(R) = {0} داد خ  واه  ی  م ن  ش  ان ای  ن ص  ورت، در .π − r(R) = vnr(R) ∪ Nil(R) ک  ن  ی  م ف  رض
داری  م ف  رض، ب  ه ت  وج  ه ب  ا و (1)6 . 2 . 4 ن  ت  ی  ج  ه ب  ن  اب  ه پ  س م  ی گ  ی  ری  م. ن  ظ  ر در را x ∈ Nil(R) ع  ن  ص  ر
ب  ن  اب  ه ل  ذا .e+ x ∈ vnr(R) ن  ت  ی  ج  ه در و ،e+ x ∈ vnr(R) +Nil(R) = π − r(R) = vnr(R) ∪Nil(R)

IFP خ  اص  ی  ت داراي R چ  ون ه  م  چ  ن  ی  ن، .x− ex = (1− e)x = (1− e)(e+ x) ∈ vnr(R) ،(2)1 . 1 . 4 ق  ض  ی  ه
ب  ه ج  اي e ج  اي گ  ذاري ب  ا .x − ex = 0 ،(3)1 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه پ  س .x − ex = (1 − e)x ∈ Nil(R) ل  ذا اس  ت،

.Nil(R) = {0} ب  ن  اب  رای  ن .x = 0 ای  ن رو از و ،ex = 0 گ  رف  ت ن  ت  ی  ج  ه م  ی ت  وان م  ش  اب  ه، اس  ت  دلال  ی و 1− e

،(1)6 . 2 . 4 ن  ت  ی  ج  ه ب  ن  اب  ه چ  ون .Nil(R) = {0} ی  ا Idem(R) = {0, 1} ف  رض ک  ن  ی  م ب  ال  ع  ک  س،
ن  ت  ی  ج  ه ش  رط دو ه  ر ل  ذا ،U(R) +Nil(R) = U(R) داری  م ای  ن  ک  ه ب  ه ت  وج  ه ب  ا و π − r(R) = vnr(R) +Nil(R)

.π − r(R) = vnr(R) ∪Nil(R) م  ی ده  د

ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .8 . 2 . 4 ق  ض  ی  ه

π − r(R[x;α, δ]) =
{∑n

i=1 aix
i ∈ R[x;α, δ] | a0 ∈ π − r(R) و ai ∈ Nil(R), i ≥ 1 ه  ر ب  راي }.
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گ  زاره ب  ن  اب  ه ه  م  چ  ن  ی  ن، م  ی ب  اش  د. آب  ل  ی ح  ل  ق  ه ي R[x;α, δ] ،5 . 2 . 3 ن  ت  ی  ج  ه ب  ن  اب  ه اس  ت، راس  ت دوئ  و ح  ل  ق  ه ي R چ  ون ب  ره  ان.
ای  ده آل Nil(R[x;α, δ]) پ  س .Nil(R)[x;α, δ] = L − rad(R[x;α, δ]) = Nil(R[x;α, δ]) داری  م ،7 . 1 . 3

داری  م: 5 . 1 . 4 ق  ض  ی  ه و (1)6 . 2 . 4 ن  ت  ی  ج  ه ب  ن  اب  ه ب  ن  اب  رای  ن م  ی ب  اش  د. R[x;α, δ] ح  ل  ق  ه ي از دوط  رف  ه

π − r(R[x;α, δ]) = vnr(R[x;α, δ]) +Nil(R[x;α, δ])

= {
n∑

i=0

aix
i +

m∑
j=0

wjx
j | a0 = ue و ai ∈ e(Nil(R)), i ≥ 1 ه  ر ,ب  راي

wj ∈ Nil(R), j ≥ 0 ه  ر ,ب  راي u ∈ U(R) و e ∈ Idem(R)}

= {
n∑

i=0

aix
i ∈ R[x;α, δ] | a0 = ue+ w, u ∈ U(R), e ∈ Idem(R)

و w ∈ Nil(R), ai ∈ Nil(R), i ≥ 1 ه  ر {ب  راي

= {
n∑

i=0

aix
i ∈ R[x;α, δ] | a0 ∈ π − r(R) و ai ∈ Nil(R), i ≥ 1 ه  ر .{ب  راي

ه  ر ب  راي ک  ه ب  اش  د م  ث  ب  ت  ی ص  ح  ی  ح ع  دد ک  م  ت  ری  ن n ه  رگ  اه اس  ت، n ک  ران داري ان  دی  س از Nil(R) گ  وی  ی  م
ص  ح  ی  ح ع  دد ک  م  ت  ری  ن n ه  رگ  اه م  ی ن  ام  ی  م، n ک  ران داري ان  دی  س از را R ح  ل  ق  ه ي ه  م  چ  ن  ی  ن، .wn = 0 ،w ∈ Nil(R)

م  راج  ع  ه ،[332 ص  ف  ح  ه ي ،40] ب  ه ب  ی  ش  ت  ر ج  زئ  ی  ات (ب  راي an ∈ vnr(R) ،a ∈ π − r(R) ه  ر ب  راي ک  ه ب  اش  د م  ث  ب  ت  ی
م  ی ب  اش  د. 1 ک  ران داري ان  دی  س از ن  ی  وم  ان، ف  ن م  ن  ظ  م ح  ل  ق  ه ي ه  ر ک  ه م  ی ک  ن  ی  م ت  وج  ه ش  ود).

n ک  ران داري ان  دی  س از R ای  ن ص  ورت، در .n ∈ N و ب  اش  د IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ک  ن  ی  م ف  رض .9 . 2 . 4 ق  ض  ی  ه
ب  اش  د. n ک  ران داري ان  دی  س از Nil(R) اگ  ر ت  ن  ه  ا و اگ  ر اس  ت

.w ∈ Nil(R) ⊆ π− r(R) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، و ب  اش  د n ک  ران داري ان  دی  س از R ح  ل  ق  ه ي ک  ن  ی  م ف  رض اب  ت  دا ب  ره  ان.
ب  ن  اب  رای  ن .wn = 0 ن  ت  ی  ج  ه در و ،wn ∈ vnr(R) ∩Nil(R) = {0} داری  م ،(3)1 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه ای  ن ص  ورت، در

م  ی ب  اش  د. n ح  داک  ث  ر ک  ران داري ان  دی  س از Nil(R)

ق  ض  ی  ه ب  ن  اب  ه ل  ذا ،a ∈ π− r(R) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. n ک  ران داري ان  دی  س از Nil(R) ف  رض ک  ن  ی  م ب  ال  ع  ک  س،
خ  اص  ی  ت داراي R ح  ل  ق  ه ي چ  ون .a = ue+ w داری  م ،w ∈ Nil(R) و e ∈ Idem(R) ،u ∈ U(R) ب  راي ،5 . 2 . 4
.an = une+αe+wn = (un +α)e ک  ه ب  ه ط  وري دارد وج  ود α ∈ Nil(R) ل  ذا اس  ت، R از خ  ودت  وان  ی e و IFP

ب  ن  اب  ه ای  ن رو از و ،an = ve ،v ∈ U(R) ب  راي ن  ت  ی  ج  ه در اس  ت. وارون پ  ذی  ر v ب  ه وض  وح .un + α = v م  ی ده  ی  م ق  رار
دارد. n ح  داک  ث  ر ک  ران داري ان  دی  س R ح  ل  ق  ه ي ل  ذا .an ∈ vnr(R) داری  م ،2 . 1 . 4 گ  زاره

ک  ارب  ردي ع  ن  وان ب  ه م  ی ده  ی  م. ق  رار م  ط  ال  ع  ه م  ورد را R[x;α, δ] اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ت  م  ی  ز ع  ن  اص  ر ادام  ه، در
اس  ت، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و R ح  ل  ق  ه ي ک  ه ه  ن  گ  ام  ی را R[x;α, δ] ت  م  ی  ز ع  ن  اص  ر م  ی ت  وان  ی  م ق  ب  ل، ف  ص  ل ن  ت  ای  ج از

م  ی ک  ن  ی  م. م  ش  خ  ص

ای  ن ص  ورت، در ب  اش  ن  د. آب  ل  ی ح  ل  ق  ه ه  اي از خ  ان  واده اي {Rα} و آب  ل  ی ح  ل  ق  ه ه  اي S و R ف  رض ک  ن  ی  م .10 . 2 . 4 ق  ض  ی  ه
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ن  ی  وم  ان ف  ن م  ن  ظ  م ح  ل  ق  ه ي ه  ر ب  ول  ی، ح  ل  ق  ه ي ه  ر ب  ه خ  ص  وص، .Idem(R) ⊆ vnr(R) ⊆ vnl(R) ⊆ cln(R) (1)
اس  ت. ت  م  ی  ز ح  ل  ق  ه ي ن  ی  وم  ان، ف  ن م  وض  ع  ی ح  ل  ق  ه ي ه  ر و

.U(R) ∪ J(R) ⊆ U(R) ∪ (1 + U(R)) ⊆ cln(R) (2)

ه  ن  گ  ام  ی ک  ه cln(R) = vnl(R) ب  ه خ  ص  وص، .cln(R) = vnl(R) آن گ  اه ،Idem(R) = {0, 1} اگ  ر (3)
داری  م ب  اش  د، م  وض  ع  ی R ح  ل  ق  ه ي ه  ن  گ  ام  ی ک  ه م  ی ک  ن  ی  م (ت  وج  ه ب  اش  د م  وض  ع  ی ی  ا دام  ن  ه R ح  ل  ق  ه ي

.(cln(R) = vnl(R) = R

ب  اش  د. ت  م  ی  ز Rα ه  ر اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ت  م  ی  ز ح  ل  ق  ه ي ∏
Rα ب  ه خ  ص  وص، .cln(∏Rα) =

∏
cln(Rα) (4)

.f(cln(R)) ⊆ cln(S) ای  ن ص  ورت، در ب  اش  د. آب  ل  ی ح  ل  ق  ه ه  اي از ه  م  ری  خ  ت  ی ی  ک f : R → S ف  رض ک  ن  ی  م (5)
ت  م  ی  ز، ح  ل  ق  ه ي از ه  م  ری  خ  ت ت  ص  وی  ر ه  ر و ب  اش  د، S از زی  رح  ل  ق  ه اي R ه  ن  گ  ام  ی ک  ه cln(R) ⊆ cln(S) ب  ه خ  ص  وص،

اس  ت. ت  م  ی  ز ن  ی  ز

ن  وش  ت. R ح  ل  ق  ه ي از وارون پ  ذی  ر ع  ن  ص  ر س  ه م  ج  م  وع ب  ه ص  ورت م  ی ت  وان را a ∈ cln(R) ه  ر آن گ  اه ،2 ∈ U(R) اگ  ر (6)

.cln(R) = vnl(R) آن گ  اه ب  اش  د، ب  س  ت  ه ض  رب ت  ح  ت vnl(R) اگ  ر (7)

م  ی ش  ود. ث  اب  ت ،[6 . 1 ق  ض  ی  ه ،4] ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا ب  ره  ان.

.vnr(R) ⊆ π − r(R) ⊆ cln(R) ای  ن ص  ورت، در ب  اش  د. IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .11 . 2 . 4 ل  م
م  ی ب  اش  د. ت  م  ی  ز ح  ل  ق  ه ي π-م  ن  ظ  م، ح  ل  ق  ه ي ه  ر ب  ه خ  ص  وص،

ن  م  ود. ث  اب  ت م  ی ت  وان ،[6 . 1(2) ق  ض  ی  ه ،4] ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا ب  ره  ان.

ت  م  ی  ز ح  ل  ق  ه ي R آن گ  اه ،R = vnr(R) ∪Nil(R) و ب  اش  د IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي اگ  ر .12 . 2 . 4 ن  ت  ی  ج  ه
م  ی ب  اش  د.

ق  ض  ی  ه ب  ن  اب  ه ای  ن رو از اس  ت، ت  م  ی  ز ح  ل  ق  ه ي π-م  ن  ظ  م) ح  ل  ق  ه ي ه  ر (ی  ا ن  ی  وم  ان ف  ن م  وض  ع  ی ح  ل  ق  ه ي ه  ر چ  ون ب  ره  ان.
م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ،7 . 1 . 4 و 2 . 2 . 4 ن  ت  ای  ج و 11 . 2 . 4 ل  م ،(1)10 . 2 . 4

ای  ن ص  ورت، در ب  اش  د. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .13 . 2 . 4 ق  ض  ی  ه

cln(R[x;α, δ]) = {
∑n

i=0 aix
i ∈ R[x;α, δ] | a0 ∈ cln(R) و ai ∈ Nil(R), i ≥ 1 ه  ر ب  راي }.

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ،4 . 2 . 3 و 9 . 1 . 3 ن  ت  ای  ج ،7 . 1 . 3 گ  زاره ب  ن  اب  ه ب  ره  ان.
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و A(R,α) ج  ردن ت  وس  ی  ع ح  ل  ق  ه ي ت  م  ی  ز و م  ن  ظ  م ع  ن  اص  ر ب  ررس  ی 3 . 4
اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي

ج  ردن ت  وس  ی  ع ح  ل  ق  ه ي در را ت  م  ی  ز و ن  ی  وم  ان ف  ن م  وض  ع  ی π-م  ن  ظ  م، ن  ی  وم  ان، ف  ن م  ن  ظ  م ع  ن  اص  ر اب  ت  دا ب  خ  ش، ای  ن در
،R ک  ه ح  ال  ت  ی در A[x, x−1;α] ح  ل  ق  ه ي در ع  ن  اص  ر ای  ن م  ط  ال  ع  ه ب  ا س  پ  س و م  ی ده  ی  م ق  رار ب  ررس  ی م  ورد A(R,α) = A

م  ی ک  ن  ی  م. م  ش  خ  ص R[x, x−1;α] اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي در را ف  وق ع  ن  اص  ر م  ی ب  اش  د، α-ص  ل  ب

ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از ت  ک ری  خ  ت  ی α و آب  ل  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .1 . 3 . 4 ق  ض  ی  ه

(1)

vnr(A) = {x−i(er)xi ∈ A | e ∈ Idem(R), r ∈ R, i ≥ 0 و αn(r) ∈ U(R),

n ≥ 0 ب  رخ  ی ب  راي }.

(2)

vnl(A) = {x−iaxi ∈ A | a = er ی  ا a = 1− er, i ≥ 0, e ∈ Idem(R), r ∈ R

و αn(r) ∈ U(R), n ≥ 0 ب  رخ  ی ب  راي }.

ب  رخ  ی ب  راي و a = er ،r ∈ R و e ∈ Idem(R) ب  رخ  ی ب  راي ک  ه ب  ه ط  وري x−iaxi ∈ A ف  رض ک  ن  ی  م اب  ت  دا (1) ب  ره  ان.
.x−irxi ∈ U(A) و x−iexi ∈ Idem(R) ،1 . 3 . 3 ل  م ب  ن  اب  ه ای  ن ص  ورت، در .αn(r) ∈ U(R) ،n ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ل  ذا و ،x−iaxi ∈ vnr(A) ،2 . 1 . 4 گ  زاره ب  ن  اب  ه ن  ت  ی  ج  ه در و اس  ت آب  ل  ی A ،3 . 3 . 3 ل  م ب  ن  اب  ه
داری  م ،2 . 1 . 4 گ  زاره ب  ن  اب  ه پ  س اس  ت. آب  ل  ی A ،3 . 3 . 3 ل  م ب  ن  اب  ه .x−iaxi ∈ vnr(A) ف  رض ک  ن  ی  م ح  ال
،1 . 3 . 3 ل  م ب  ن  اب  ه ل  ذا ،x−kexk ∈ Idem(A) و x−jrxj ∈ U(A) ک  ه ب  ه ط  وري ،x−iaxi = (x−kexk)(x−jrxj)

داری  م ط  رف  ی از .αn(r) ∈ U(R) ،n ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي و e ∈ Idem(R)

x−iaxi = (x−kexk)(x−jrxj) = x−(k+j)αj(e)αk(r)xk+j . (1 . 4)

م  ی گ  ی  ری  م: ن  ظ  ر در را زی  ر ح  ال  ت س  ه
م  ی ده  ی  م ق  رار .x−iaxi = x−(k+j)αj(e)αj(αk−j(r))xk+j ،1 . 4 م  ع  ادل  ه ب  ن  اب  ه آن گ  اه ،k > j اگ  ر . 1 ح  ال  ت

داری  م ،[436 ص  ف  ح  ه ي ،31] ب  ن  اب  ه ل  ذا ،αk−j(r) = s

x−iaxi = x−(k+j)αj(es)xk+j = x−kesxk. (2 . 4)

م  ی گ  ی  ری  م: ن  ظ  ر در را زی  ر زی  رح  ال  ت دو
αm(s) ∈ U(R) ل  ذا ،αn(r) = αn−(k−j)(αk−j(r)) = αn−(k−j)(s) آن گ  اه ،n ≥ k−j اگ  ر . 1 زی  رح  ال  ت
و e ∈ Idem(R) ب  رخ  ی ب  راي ،2 . 4 م  ع  ادل  ه ب  ن  اب  ه پ  س اس  ت. ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد m = n − (k − j) ک  ه ب  ه ط  وري
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ای  ن رو از و ،αm(s) ∈ U(R) داری  م ،m ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي ک  ه ب  ه ط  وري x−iaxi = x−kesxk ،s ∈ R

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه
،m ≥ 1 ه  ر ب  راي ن  ت  ی  ج  ه در و s = αk−j(r) ∈ U(R) ،7 . 4 . 3 ت  ذک  ر ب  ن  اب  ه آن گ  اه ،n < k − j اگ  ر . 2 زی  رح  ال  ت
ب  راي و s ∈ R ،e ∈ Idem(R) ک  ه ب  ه ط  وري x−iaxi = x−kesxk داری  م ،2 . 4 م  ع  ادل  ه ب  ن  اب  ه پ  س .αm(s) ∈ U(R)

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ل  ذا و ،αm(s) ∈ U(R) ،m ≥ 1 ه  ر
داری  م ،1 . 4 م  ع  ادل  ه ب  ن  اب  ه آن گ  اه ،k < j اگ  ر . 2 ح  ال  ت

x−iaxi = x−(k+j)αk(αj−k(e))αk(r)xk+j = x−(k+j)αk(αj−k(e)r)xk+j .

داری  م ،[436 ص  ف  ح  ه ي ،31] ب  ن  اب  ه ای  ن ص  ورت، در .αj−k(e) = e′ م  ی ده  ی  م ق  رار

x−iaxi = x−(k+j)αk(e′r)xk+j = x−je′rxj

ح  اص  ل ن  ت  ی  ج  ه ل  ذا و ،αn(r) ∈ U(R) ،n ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي و r ∈ R ،e′ ∈ Idem(R) ک  ه ب  ه ط  وري
م  ی ش  ود.

داش  ت خ  واه  ی  م ،1 . 4 م  ع  ادل  ه در ،k ب  ه ج  اي j ج  اي گ  ذاري ب  ا آن گ  اه ،k = j اگ  ر . 3 ح  ال  ت
،n ≥ 0 ب  رخ  ی ب  راي و r ∈ R ،e ∈ Idem(R) ک  ه ب  ه ط  وري x−iaxi = x−(j+j)αj(er)xj+j = x−j(er)xj

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ب  ن  اب  رای  ن .αn(r) ∈ U(R)

م  ی ش  ود. ث  اب  ت ،(1) ب  ن  اب  ه (2)

ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از ت  ک ری  خ  ت  ی α و IFP خ  اص  ی  ت داراي R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .2 . 3 . 4 ق  ض  ی  ه

π − r(A) = {x−i(er + w)xi ∈ A | e ∈ Idem(R), i ≥ 0, w ∈ Nil(R), r ∈ R و
αn(r) ∈ U(R), n ≥ 0 ب  رخ  ی ب  راي }.

a = er + w ،r ∈ R و w ∈ Nil(R) ،e ∈ Idem(R) ب  راي ک  ه ب  ه ط  وري x−iaxi ∈ A ک  ن  ی  م ف  رض اب  ت  دا ب  ره  ان.
و x−ierxi ∈ vnr(A) ب  راي ،1 . 3 . 4 ق  ض  ی  ه و 1 . 3 . 3 ل  م ب  ن  اب  ه ای  ن ص  ورت در .αn(r) ∈ U(R) ،n ≥ 0 ب  رخ  ی ب  راي و
،3 . 3 . 3 ل  م ب  ن  اب  ه چ  ون .x−iaxi = x−i(er+w)xi = x−ierxi+x−iwxi داش  ت خ  واه  ی  م ،x−iwxi ∈ Nil(A)

ح  اص  ل ن  ت  ی  ج  ه ای  ن رو از و ،x−iaxi ∈ π − r(A) داری  م ،5 . 2 . 4 ق  ض  ی  ه ب  ن  اب  ه ل  ذا اس  ت، IFP خ  اص  ی  ت داراي A ح  ل  ق  ه ي
م  ی ش  ود.

ب  ن  اب  ه ل  ذا اس  ت، IFP خ  اص  ی  ت داراي A ح  ل  ق  ه ي ،3 . 3 . 3 ل  م ب  ن  اب  ه چ  ون .x−iaxi ∈ π − r(A) ک  ن  ی  م ف  رض ح  ال
داری  م ،x−kcxk ∈ Nil(A) و x−jbxj ∈ vnr(A) ب  رخ  ی ب  راي ،5 . 2 . 4 ق  ض  ی  ه

x−iaxi = x−jbxj + x−kcxk = x−(j+k)(αk(er) + αj(c))xj+k.

ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي و r ∈ R ،e ∈ Idem(R) ،c ∈ Nil(R) داری  م ،1 . 3 . 4 ق  ض  ی  ه و 1 . 3 . 3 ل  م ب  ن  اب  ه پ  س
م  ی گ  ی  ری  م: ن  ظ  ر در را زی  ر ح  ال  ت ه  اي .αn(r) ∈ U(R) ،n

داش  ت خ  واه  ی  م آن گ  اه ،j ≥ k اگ  ر . 1 ح  ال  ت

x−iaxi = x−(j+k)(αk(er) + αk(αj−k(c)))xj+k = x−j(er + αj−k(c))xj
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،n ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ب  رخ  ی ب  راي و r ∈ R و e ∈ Idem(R) ،αj−k(c) ∈ Nil(R) ک  ه ب  ه ط  وري
م  ی آی  د. ب  ه دس  ت ن  ت  ی  ج  ه ای  ن رو از و ،αn(r) ∈ U(R)

آن گ  اه ،j < k اگ  ر . 2 ح  ال  ت

x−iaxi = x−(j+k)(αj(αk−j(er)) + αj(c))xj+k = x−k(αk−j(e)αk−j(r) + c)xk.

ل  ذا .αk−j(e) = e′ و αk−j(r) = s م  ی ده  ی  م ق  رار

x−iaxi = x−(j+k)αj(e′s+ c)xj+k = x−k(e′s+ c)xk (3 . 4)

پ  س ،αn−(k−j)(s) = αn−(k−j)(αk−j(r)) = αn(r) آن گ  اه ،n ≥ k − j اگ  ر .e′ ∈ Idem(R) و
آن گ  اه ،k − j > n اگ  ر .m = n− (k − j) ≥ 0 ک  ه ب  ه ط  وري αm(s) ∈ U(R)

s = αk−j(r) = α(k−j)−n(αn(r)) ∈ U(R),

داش  ت خ  واه  ی  م ،s ∈ R و c ∈ Nil(R) ،e′ ∈ Idem(R) ب  راي ب  ن  اب  رای  ن .αn(r) ∈ U(R) چ  ون
و ،αm(s) ∈ U(R) ک  ه ب  ه ط  وري دارد وج  ود m ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ه  م  چ  ن  ی  ن، و ،x−iaxi = x−k(e′s + c)xk

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ب  ن  اب  رای  ن

ای  ن ص  ورت، در ب  اش  د. R ح  ل  ق  ه ي از ت  ک ری  خ  ت  ی α ک  ن  ی  م ف  رض .3 . 3 . 4 ق  ض  ی  ه

cln(A) = {x−i(e+r)xi ∈ A | e ∈ Idem(R), i ≥ 0, r ∈ R و αn(r) ∈ U(R), n ≥ 0 ب  رخ  ی ب  راي }.

ع  دد ب  رخ  ی ب  راي و a = e+ r ،r ∈ R و e ∈ Idem(R) ب  رخ  ی ب  راي ک  ه ب  ه ط  وري x−iaxi ∈ A ف  رض ک  ن  ی  م ب  ره  ان.
x−iaxi = x−i(e+r)xi = x−iexi+x−irxi ،1 . 3 . 3 ل  م ب  ن  اب  ه ای  ن ص  ورت، در .αn(r) ∈ U(R) ،n ن  ام  ن  ف  ی ص  ح  ی  ح

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه ل  ذا و ،x−iaxi ∈ cln(A) پ  س .x−irxi ∈ U(R) و x−iexi ∈ Idem(R) ک  ه ب  ه ط  وري
و x−jexj ∈ Idem(A) ب  رخ  ی ب  راي ،1 . 3 . 3 ل  م ب  ن  اب  ه ای  ن ص  ورت، در .x−iaxi ∈ cln(A) م  ی ک  ن  ی  م ف  رض ح  ال
ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ه  ر ب  راي و e ∈ Idem(R) ل  ذا و ،x−iaxi = x−jexj + x−krxk داری  م ،x−krxk ∈ U(A)

ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا ح  ال .x−iaxi = x−(j+k)(αk(e) + αj(r))xj+k داری  م ط  رف  ی از .αn(r) ∈ U(R) ،n
ک  رد. ک  ام  ل را اث  ب  ات م  ی ت  وان ،2 . 3 . 4 ق  ض  ی  ه

ای  ن ص  ورت، در ب  اش  د. α-ص  ل  ب ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .4 . 3 . 4 ق  ض  ی  ه

vnr(R[x, x−1;α]) =
{ m∑

i=0

eaix
i+n ∈ A[x, x−1;α] | e ∈ Idem(R) و dj ∈ A دارد ,وج  ود

ک  ه
∑

i+j=m

aidj = 1 =
∑

i+j=m

djai و aidj = 0, i+ j ̸= m ه  ر .{ب  راي
و ک  اه  ش  ی ن  ی  ز A ،8 . 2 . 2 و 3 . 3 . 3 ل  م ه  اي ب  ن  اب  ه پ  س اس  ت، α-س  ازگ  ار و ک  اه  ش  ی ح  ل  ق  ه ي R چ  ون ب  ره  ان.
،2 . 1 . 4 گ  زاره ب  ن  اب  ه ل  ذا اس  ت. آب  ل  ی A[x, x−1;α] ،6 . 4 . 3 ن  ت  ی  ج  ه ب  ن  اب  ه ای  ن ص  ورت، در م  ی ب  اش  د. α-س  ازگ  ار
2 . 3 . 3 ت  ذک  ر و 5 . 4 . 3 ق  ض  ی  ه ب  ن  اب  ه ط  رف  ی از .vnr(A[x, x−1;α]) = U(A[x, x−1;α])Idem(A[x, x−1;α])

ف  ن م  ن  ظ  م ع  ن  اص  ر ،12 . 4 . 3 ق  ض  ی  ه ب  ن  اب  ه ن  ت  ی  ج  ه در .Idem(A[x, x−1;α]) = Idem(A) = Idem(R) داری  م
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و e ∈ Idem(R) ک  ه ب  ه ط  وري م  ی ب  اش  ن  د ∑m
i=0 eaix

i+n ∈ A[x, x−1;α] ش  ک  ل ب  ه A[x, x−1;α] ن  ی  وم  ان
،i + j ̸= m ه  ر ب  راي و ∑i+j=m aidj =

∑
i+j=m djai = 1 ک  ه دارد وج  ود dj ∈ A ،0 ≤ j ≤ m ب  راي

ش  د. خ  واه  د ح  اص  ل ن  ت  ی  ج  ه پ  س ،R[x, x−1;α] ∼= A[x, x−1;α] آن ج  ای  ی ک  ه از .aidj = 0

اگ  ر ت  ن  ه  ا و اگ  ر f ∈ vnl(R[x, x−1;α]) ای  ن ص  ورت، در ب  اش  د. α-ص  ل  ب ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .5 . 3 . 4 ق  ض  ی  ه
دارد وج  ود dj ∈ A و ai ∈ A ،e ∈ Idem(R) ک  ه ب  ه ط  وري f = 1 +

∑m
i=0 eaix

i+n ی  ا f =
∑m

i=0 eaix
i+n

.aidj = 0 ،i+ j ̸= m ه  ر ب  راي و ∑i+j=m aidj =
∑

i+j=m djai = 1 ک  ه

،(2)6 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه پ  س م  ی ب  اش  د، آب  ل  ی ح  ل  ق  ه ي R[x, x−1;α] ∼= A[x, x−1;α] چ  ون ب  ره  ان.
،e ∈ Idem(A[x, x−1;α]) و u ∈ U(A[x, x−1;α]) ب  رخ  ی ب  راي اگ  ر ت  ن  ه  ا و اگ  ر f ∈ vnl(A[x, x−1;α])

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه 12 . 4 . 3 و 5 . 4 . 3 ق  ض  ای  اي ب  ن  اب  ه ب  ن  اب  رای  ن .f = 1 + eu ی  ا f = eu ب  اش  ی  م داش  ت  ه

،a ∈ R ه  ر ب  راي ای  ن ص  ورت، در ب  اش  د. R از دوط  رف  ه ای  ده آل Nil(R) و آب  ل  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .6 . 3 . 4 ل  م
م  ع  ادل  ن  د: زی  ر گ  زاره ه  اي

.a ∈ π − r(R) (1)

.a = b+ w ک  ه ب  ه ط  وري دارن  د وج  ود w ∈ Nil(R) و b ∈ vnr(R) ع  ن  اص  ر (2)

.a = ue+ w ک  ه ب  ه ط  وري م  وج  ودن  د w ∈ Nil(R) و e ∈ Idem(R) ،u ∈ U(R) ع  ن  اص  ر (3)

.a+Nil(R) ∈ vnr(R/Nil(R)) (4)

اس  ت. آب  ل  ی ح  ل  ق  ه ي R زی  را م  ی ش  ود، ح  اص  ل ن  ت  ی  ج  ه ،2 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه (2) ⇔ (3) ب  ره  ان.
ن  ت  ی  ج  ه ،30 . 1 . 2 ن  ت  ی  ج  ه ب  ن  اب  ه پ  س م  ی ب  اش  د، R از دوط  رف  ه ای  ده آل Nil(R) و آب  ل  ی ح  ل  ق  ه ي R چ  ون (1) ⇒ (3)

م  ی آی  د. ب  ه دس  ت
م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ،(8)1 . 1 . 4 ق  ض  ی  ه ب  ن  اب  ه پ  س اس  ت، آب  ل  ی ح  ل  ق  ه ي R چ  ون (2) ⇒ (4)

ن  ت  ی  ج  ه ،29 . 1 . 2 ق  ض  ی  ه ب  ن  اب  ه پ  س م  ی ب  اش  د، R از دوط  رف  ه ای  ده آل Nil(R) و آب  ل  ی ح  ل  ق  ه ي R چ  ون (4) ⇒ (1)
م  ی آی  د. ب  ه دس  ت

اگ  ر ت  ن  ه  ا و اگ  ر f ∈ π − r(R[x, x−1;α]) ای  ن ص  ورت، در ب  اش  د. α-ص  ل  ب ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .7 . 3 . 4 ق  ض  ی  ه
داش  ت  ه وج  ود dj ∈ A و wi ∈ Nil(R) ،ai ∈ A ،e ∈ Idem(R) ک  ه ب  ه ط  وري f =

∑m
i=0(eai + wi)x

i+n

.aidj = 0 ،i+ j ̸= m ه  ر ب  راي و ∑i+j=m aidj =
∑

i+j=m djai = 1 ک  ه ب  اش  د

،3 . 4 . 3 گ  زاره ب  ن  اب  ه ه  م  چ  ن  ی  ن، اس  ت. آب  ل  ی ح  ل  ق  ه ي A[x, x−1;α] ،6 . 4 . 3 ن  ت  ی  ج  ه ب  ن  اب  ه ب  ره  ان.
م  ی ب  اش  د. A[x, x−1;α] از دوط  رف  ه ای  ده آل Nil(A[x, x−1;α]) ل  ذا ،Nil(A)[x, x−1;α] = Nil(A[x, x−1;α])

ب  ن  اب  رای  ن .π − r(A[x, x−1;α]) = vnr(A[x, x−1;α]) +Nil(A[x, x−1;α]) داری  م ،6 . 3 . 4 ل  م ب  ن  اب  ه ن  ت  ی  ج  ه در
.R[x, x−1;α] ∼= A[x, x−1;α] زی  را م  ی ش  ود، ح  اص  ل ن  ت  ی  ج  ه 4 . 3 . 4 ق  ض  ی  ه ب  ن  اب  ه
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ای  ن ص  ورت، در ب  اش  د. α-ص  ل  ب ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .8 . 3 . 4 ق  ض  ی  ه

cln(R[x, x−1;α]) =
{
e+

m∑
i=0

aix
i+n ∈ A[x, x−1;α] | e ∈ Idem(R), ai ∈ A و dj ∈ A دارد ,وج  ود

ک  ه
∑

i+j=m

aidj = 1 =
∑

i+j=m

djai و aidj = 0, i+ j ̸= m ه  ر .{ب  راي
ح  اص  ل ن  ت  ی  ج  ه ،12 . 4 . 3 ق  ض  ی  ه ب  ن  اب  ه ب  ن  اب  رای  ن ،Idem(A[x, x−1;α]) = Idem(A) = Idem(R) چ  ون ب  ره  ان.

.R[x, x−1;α] ∼= A[x, x−1;α] زی  را م  ی گ  ردد،



۵ ف  ص  ل

ت  م  ی  ز و رادی  ک  ال خ  واص ج  ی  ک  ب  س  ون، رادی  ک  ال ب  ررس  ی
اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي

را اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م
ک  ه ب  ه ط  وري م  ی ب  اش  د f(x) = ∑n

i=−∞ aix
i ف  رم ب  ه ح  ل  ق  ه ای  ن از ع  ن  ص  ر ه  ر م  ی ده  ی  م. ن  ش  ان R((x−1;α, δ)) ن  م  اد ب  ا

ط  ب  ی  ع  ی ب  ه ط  ور R((x−1;α, δ)) ح  ل  ق  ه ي روي ض  رب و ج  م  ع ع  م  ل دو .ai ∈ R و اس  ت ص  ح  ی  ح ع  دد ی  ک n و م  ت  غ  ی  ر x
م  ی ک  ن  د: ت  ب  ع  ی  ت زی  ر رواب  ط از ض  رب ک  ه ب  ه ط  وري م  ی ش  ون  د ت  ع  ری  ف

xa = α(a)x+ δ(a)

و

x−1a =
∑∞

i=1 α
−1(−δα−1)i−1(a)x−i.

داری  م: ای  ن ص  ورت، در .a0 ∈ R ک  ن  ی  م ف  رض م  ث  ال، ب  راي

x−1a0 = α−1(a0)x
−1 + α−1(−δα−1)(a0)x

−2 + α−1(−δα−1)2(a0)x
−3 + · · ·
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و

x−2a0 = x−1(x−1a0)

= x−1(α−1(a0))x
−1 + x−1(α−1(−δα−1)(a0))x

−2 + · · ·

= α−1(α−1(a0))x
−2 + α−1(−δα−1)(α−1(a0))x

−3 + α−1(−δα−1)2(α−1(a0))x
−4

+ · · ·+ α−1α−1(−δα−1)(a0)x
−3 + α−1(−δα−1)α−1(−δα−1)(a0)x

−4 + · · · .

و ص  ح  ی  ح اع  داد ب  ه ت  رت  ی  ب j و i و ب  اش  د R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ک  ن  ی  م ف  رض
i آن ه  ا در ک  ه (ب  ه ط  وري a روي δ و α ح  س  ب ب  ر ت  ک ج  م  ل  ه ه  اي اث  ر ،a ∈ R ه  ر ب  راي ای  ن ص  ورت، در ب  اش  ن  د. ن  ام  ن  ف  ی ص  ح  ی  ح

م  ی ده  ی  م. ن  ش  ان ωi,j(α, δ)(a) ب  ا را ش  ده) ظ  اه  ر a روي δ ب  ار j و α ب  ار
α ک  ه ه  ن  گ  ام  ی را R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال اب  ت  دا ف  ص  ل، ای  ن در
را (JC) ش  رط م  ن  ظ  ور، ای  ن ب  راي م  ی آوری  م. ب  ه دس  ت م  ی ب  اش  د، R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی
در ک  رد. م  ش  خ  ص را P (R)((x−1;α, δ)) و J(R((x−1;α, δ))) ب  ی  ن راب  ط  ه م  ی ت  وان آن ت  وس  ط ک  ه م  ی ک  ن  ی  م م  ع  رف  ی

م  ی ش  ود. داده ارائ  ه م  ی ک  ن  ن  د، ص  دق (JC) ش  رط در ک  ه ح  ل  ق  ه ه  ای  ی از م  ث  ال ه  ای  ی اول، ب  خ  ش ان  ت  ه  اي
اگ  ر ک  ه م  ی ک  ن  ی  م ث  اب  ت اب  ت  دا م  ی ک  ن  ی  م. ب  ررس  ی را ح  ل  ق  ه ه  ا رادی  ک  ال ن  ظ  ري خ  واص از ب  رخ  ی دوم، ب  خ  ش در ادام  ه در
ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال آن گ  اه ب  اش  د، ,α)-ای  ده آل δ) ی  ک R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر و 2 -اول  ی  ه ح  ل  ق  ه ي R

ن  ت  ای  ج از ک  ارب  ردي ب  ه ع  ن  وان دارد. م  ط  اب  ق  ت P (R)((x−1;α, δ)) ب  ا R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي
در م  ی ک  ن  ن  د. ص  دق ک  وت  ه ح  دس در ک  ه ک  ن  ی  م اض  اف  ه را ح  ل  ق  ه ه  ا از ج  دی  د ک  لاس ی  ک م  ی ت  وان  ی  م ب  خ  ش، ای  ن در آم  ده ب  ه دس  ت
اول ای  ده آل ه  ر ک  ه ب  ه ط  وري ب  اش  د δ α-م  ش  ت  ق، ت  اب  ع و α خ  ودری  خ  ت  ی ب  ا 2 -اول  ی  ه ح  ل  ق  ه ي R اگ  ر ک  ه م  ی ده  ی  م ن  ش  ان واق  ع
ل  وران س  ري ه  اي ح  ل  ق  ه ي آن گ  اه ب  اش  د، پ  وچ ت  وان م  وض  ع  اً ش  م  ارا Nil(R) و اس  ت ,α)-ای  ده آل δ) ی  ک R از م  ی  ن  ی  م  ال

م  ی ک  ن  د. ص  دق ک  وت  ه ح  دس در R((x−1;α, δ)) اری  ب م  ع  ک  وس
در م  ی پ  ردازی  م. اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي در ت  م  ی  ز و ن  ی  م ک  ام  ل وی  ژگ  ی ه  اي م  ط  ال  ع  ه ب  ه س  وم، ب  خ  ش در
ی  ا ت  م  ی  ز R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ای  ن  ک  ه ب  راي ک  اف  ی و لازم ش  رای  ط ب  رخ  ی ح  ق  ی  ق  ت،

داد. خ  واه  ی  م ارائ  ه ب  اش  د، ن  ی  م ک  ام  ل
م  ی ب  اش  د. [22] و [21] م  راج  ع از ب  رگ  رف  ت  ه ف  ص  ل ای  ن

اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال ب  ررس  ی 1 . 5
اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ب  ا R ح  ل  ق  ه ي وارون پ  ذی  ر ع  ن  اص  ر از ب  رخ  ی ب  ی  ن راب  ط  ه اب  ت  دا ب  خ  ش، ای  ن در
اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال م  ط  ال  ع  ه ب  ه س  پ  س م  ی آوری  م. ب  ه دس  ت را R((x−1;α, δ))

ش  رط در ک  ه ح  ل  ق  ه ه  ای  ی از م  ث  ال ه  ای  ی ادام  ه در م  ی پ  ردازی  م. ،R ح  ل  ق  ه ي روي (JC) ش  رط م  ع  رف  ی ب  ا ،R((x−1;α, δ))

م  ی ده  ی  م. ارائ  ه م  ی ک  ن  ن  د، ص  دق (JC)

ج  م  لات درج  ه ب  زرگ  ت  ری  ن k ه  رگ  اه اس  ت، k م  رت  ب  ه از axnbxm گ  وی  ی  م ،n و m ص  ح  ی  ح ع  دد ه  ر ب  راي .1 . 1 . 5 ت  ذک  ر
ب  اش  د. axnbxm
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اط  لاع  ات  ی ح  ل  ق  ه آن وارون پ  ذی  ر ع  ن  اص  ر م  ورد در ک  ه اس  ت ض  روري ح  ل  ق  ه، ی  ک ج  ی  ک  ب  س  ون رادی  ک  ال آوردن ب  ه دس  ت ب  راي
ب  ود. خ  واه  د م  ف  ی  د اص  ل  ی ه  دف ب  راي ب  ع  دي گ  زاره ب  اش  ی  م. داش  ت  ه

ع  ن  ص  ر f =
∑∞

i=0 aix
n−i و R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ ،R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .2 . 1 . 5 گ  زاره

a0 اگ  ر ای  ن ص  ورت، در اس  ت. آن پ  ی  ش  رو ض  ری  ب a0 و n م  رت  ب  ه از f ک  ه ب  ه ط  وري ب  اش  د R((x−1;α, δ)) ح  ل  ق  ه ي از ن  اص  ف  ر
α−n(a−1

0 ) و −n م  رت  ب  ه از f−1 ب  ه ع  لاوه، ب  ود. خ  واه  د وارون پ  ذی  ر R((x−1;α, δ)) در f آن گ  اه ب  اش  د، وارون پ  ذی  ر R در
اس  ت. آن پ  ی  ش  رو ض  ری  ب

.gf = 1 ک  ه م  ی ک  ن  ی  م پ  ی  دا ط  وري را g =
∑∞

j=0 bjx
−n−j ∈ R((x−1;α, δ)) ع  ن  ص  ر اب  ت  دا ب  ره  ان.

دی  د م  ی ت  وان آس  ان  ی ب  ه ،gf ض  رب ب  س  ط ب  ا
اس  ت، 0 م  رت  ب  ه از b0x−na0x

n (1)
م  ی ب  اش  ن  د، - 1 م  رت  ب  ه از b1x−n−1a0x

n و b0x−na1x
n−1 (2)

ه  س  ت  ن  د، - 2 م  رت  ب  ه داراي b2x−n−2a0x
n و b1x−n−1a1x

n−1 ،b0x−na2x
n−2 (3)

...
وارون پ  ذی  ر R در a0 چ  ون .b0α−n(a0) = 1 داش  ت خ  واه  ی  م ،gf = 1 م  ع  ادل  ه در ض  رای  ب م  ق  ای  س  ه ب  ا ای  ن ص  ورت، در
ن  ت  ی  ج  ه ،1 ≤ ki1, ti1 ≤ 2 و pi1, qi1, ri1, si1 ب  رخ  ی ب  راي ،(2) و (1) ب  ن  اب  ه ه  م  چ  ن  ی  ن، .b0 = α−n(a−1

0 ) پ  س اس  ت،
م  ی گ  ی  ری  م:

b1 =
(∑

i

(−1)ki1b0ωpi1,qi1(α, δ)(a0) +
∑
i

(−1)ti1b0ωri1,si1(α, δ)(a1)
)
.α−n−1(a−1

0 ).

1 ≤ ki2, ti2, li2, di2, zi2 ≤ و pi2, qi2, ri2, si2, βi2, γi2, µi2, λi2, ui2, vi2 ب  رخ  ی ب  راي ،(3) و (2) ،(1) ب  ن  اب  ه
داش  ت: خ  واه  ی  م ،2

b2 =
(∑

i

(−1)ki2b0ωpi2,qi2(α, δ)(a0) +
∑
i

(−1)ti2b0ωri2,si2(α, δ)(a1)

+
∑
i

(−1)li2b0ωβi2,γi2(α, δ)(a2) +
∑
i

(−1)di2b1ωµi2,λi2
(α, δ)(a0)

+
∑
i

(−1)zi2b1ωui2,vi2(α, δ)(a1)
)
.α−n−2(a−1

0 ).

داری  م: ،1 ≤ kim ≤ 2 و pim, qim ب  رخ  ی ب  راي دی  د م  ی ت  وان آس  ان  ی ب  ه ب  الا، م  ش  اب  ه اس  ت  دلال  ی ب  ا

bm =
(∑

i

∑
r+s≤m
r ̸=m

(−1)kimbrωpim,qim(α, δ)(as)
)
.α−n−m(a−1

0 ).

ب  ا پ  س اس  ت، وارون پ  ذی  ر b0 چ  ون .hg = 1 ک  ه ب  ه ط  وري ه  س  ت  ی  م h ∈ R((x−1;α, δ)) ع  ن  ص  ر دن  ب  ال ب  ه ح  ال
در f وارون g ب  ن  اب  رای  ن .f = h ل  ذا آوری  م. ب  ه دس  ت g ب  راي h م  ان  ن  د چ  پ  ی وارون م  ی ت  وان  ی  م ب  الا م  ش  اب  ه اس  ت  دلال  ی

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و م  ی ب  اش  د، R((x−1;α, δ))

م  ی ده  ی  م ق  رار ،R ح  ل  ق  ه ي از M ای  ده آل ه  ر ب  راي
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M((x−1;α, δ)) =
{∑n

i=−∞ aix
i ∈ R((x−1;α, δ)) | ai ∈ M

}
.

ای  ن ص  ورت، در ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .3 . 1 . 5 گ  زاره
.J(R((x−1;α, δ))) ⊆ J(R)((x−1;α, δ))

راس  ت ای  ده آل M((x−1;α, δ)) ،R از M م  اک  س  ی  م  ال راس  ت ای  ده آل ه  ر ب  راي ده  ی  م ن  ش  ان اس  ت ک  اف  ی ب  ره  ان.
ف  رض م  ی ب  اش  د. T از راس  ت ای  ده آل M((x−1;α, δ)) اس  ت ب  دی  ه  ی م  ی ب  اش  د. T = R((x−1;α, δ)) از م  اک  س  ی  م  ال  ی
.f =

∑n
i=−∞ aix

i /∈ M((x−1;α, δ)) ک  ه ب  ه ط  وري ب  اش  د T از دل  خ  واه ع  ن  ص  ر f =
∑n

i=−∞ aix
i ک  ن  ی  م

ک  رد ف  رض م  ی ت  وان م  س  ئ  ل  ه، ک  ل  ی  ت از ش  دن ک  م ب  دون ل  ذا .fx−n /∈ M((x−1;α, δ)) داری  م ای  ن ص  ورت، در
.f =

∑0
i=−∞ aix

i /∈ M((x−1;α, δ))

،a0R +M = R ای  ن رو از اس  ت. T از راس  ت ای  ده آل M((x−1;α, δ)) زی  را ،a0 /∈ M ک  ن  ی  م ف  رض م  ی ت  وان  ی  م
س  ري  ،2 . 1 . 5 گ  زاره ب  ن  اب  ه ب  ن  اب  رای  ن .a0r + m = 1 ک  ه ب  ه ط  وري م  وج  ودن  د m ∈ M و r ∈ R پ  س

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و م  ی ب  اش  د وارون پ  ذی  ر fr +m ∈ fT +M((x−1;α, δ))

م  ی ب  اش  ن  د. ش  ده اي ش  ن  اخ  ت  ه ن  ت  ای  ج ب  ع  دي، ل  م ه  اي

ع  دد ه  ر ب  راي ای  ن ص  ورت، در ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R ح  ل  ق  ه ي از درون ری  خ  ت  ی α ف  رض ک  ن  ی  م .4 . 1 . 5 ل  م
.δn(ab) = ∑n

i=0 f
n−i
i (a)δi(b) داری  م ،n م  ث  ب  ت ص  ح  ی  ح

.α(J(R)) = J(R) آن گ  اه ب  اش  د، R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α اگ  ر .5 . 1 . 5 ل  م

ه  ر ب  راي و ب  اش  د ,α)-ای  ده آل δ) ی  ک J(R) ه  رگ  اه اس  ت، (JC) خ  اص  ی  ت داراي R ح  ل  ق  ه ي گ  وی  ی  م
ب  اش  ی  م داش  ت  ه ،j1, j2, . . . , jn ن  ام  ن  ف  ی ص  ح  ی  ح اع  داد و i1, i2, . . . , in ص  ح  ی  ح اع  داد و a ∈ J = J(R)

.Jαi1δj1αi2δj2 . . . αinδjn(a) ⊆ aR

(JC) خ  اص  ی  ت داراي R ح  ل  ق  ه ي ک  ه ح  ال  ت  ی در را J(R((x−1;α, δ))) ع  ن  اص  ر پ  ی  ش  رو ض  ری  ب م  ی ت  وان  ی  م ادام  ه، در
م  ش  خ  ص ک  ن  ی  م. اس  ت،

خ  اص  ی  ت داراي R اگ  ر ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .6 . 1 . 5 گ  زاره
R در ت  وان پ  وچ راس  ت ای  ده آل ی  ک f پ  ی  ش  رو ض  ری  ب ،J(R((x−1;α, δ))) در f ع  ن  ص  ر ه  ر ب  راي آن گ  اه ب  اش  د، (JC)

م  ی ک  ن  د. ت  ول  ی  د

T از ای  ده آل  ی J(T ) چ  ون .T = R((x−1;α, δ)) ک  ه ب  ه ط  وري f =
∑n

i=−∞ aix
i ∈ J(T ) ف  رض ک  ن  ی  م ب  ره  ان.

در .f =
∑1

i=−∞ aix
i ک  رد ف  رض م  ی ت  وان م  س  ئ  ل  ه، ک  ل  ی  ت از ش  دن ک  م ب  دون ل  ذا .fx−n+1 ∈ J(T ) پ  س اس  ت،

داری  م ،2 . 1 . 5 گ  زاره ب  ن  اب  ه .g =
∑0

i=−∞ aix
i م  ی ده  ی  م ق  رار .ai ∈ J(R) ،i ≤ 1 ه  ر ب  راي ،3 . 1 . 5 گ  زاره ب  ن  اب  ه ن  ت  ی  ج  ه

چ  ون ب  اش  د. 1 + g ب  راي وارون  ی h =
∑0

i=−∞ bix
i ف  رض ک  ن  ی  م ح  ال .1 + a0 ∈ U(R) زی  را ،1 + g ∈ U(T )

ل  ذا: ،1 + g ∈ 1 + J(R)((x−1;α, δ))

h = 1 + (h− 1) = 1 + (h− h(1 + g)) = 1 + h(1− (1 + g)) ∈ 1 + J(R)((x−1;α, δ)).
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ای  ن رو از ،(1 + a0)b0 = 1 آن ج  ای  ی ک  ه از ه  م  چ  ن  ی  ن، دارن  د. ق  رار J(R) در h ض  رای  ب دی  گ  ر و b0 ∈ U(R) پ  س
,α)-ای  ده آل δ) ی  ک J(R) و a0 ∈ J(R) چ  ون .δ(b0) = δ(1 − a0b0) = δ(−a0b0) ل  ذا و b0 = 1 − a0b0

زی  را اس  ت، وارون پ  ذی  ر ع  ن  ص  ر  ای  ن ل  ذا م  ی گ  ی  ری  م. ن  ظ  ر در را (1 − f)h ح  ال  .δ(b0) ∈ J(R) داری  م پ  س اس  ت،
وارون k ف  رض ک  ن  ی  م .(1 − f)h = 1 − a1xh ط  رف  ی از .(f ∈ J(T )) م  ی ب  اش  د وارون پ  ذی  ر ع  ن  ص  ر دو ح  اص  ل  ض  رب
و ب  اش  د - 1 م  ی ب  ای  س  ت k درج  ه ای  ن ص  ورت، غ  ی  ر در زی  را ن  ی  س  ت، م  ن  ف  ی k درج  ه ک  ه دی  د م  ی ت  وان ب  ه آس  ان  ی ب  اش  د. (1− f)h

m ک  ه ب  ه ط  وري k =
∑m−1

i=−∞ cix
i ف  رض ک  ن  ی  م .(a1 ∈ J(R)) اس  ت ت  ن  اق  ض ی  ک ک  ه ،−a1α(b0)α(c−1) = 1

داری  م: را زی  ر راب  ط  ه ط  رف  ی از ب  اش  د. م  ث  ب  ت ص  ح  ی  ح ع  دد

(
1 + (a1xh) + (a1xh)

2 + · · ·+ (a1xh)
m
)(

1− a1xh
)
= 1− (a1xh)

m+1.

داش  ت: خ  واه  ی  م ق  ب  ل، م  ع  ادل  ه در راس  ت س  م  ت از k ض  رب ب  ا

1 + (a1xh) + (a1xh)
2 + (a1xh)

3 + · · ·+ (a1xh)
m = k − (a1xh)

m+1k. (1 . 5)

م  ی گ  ی  ری  م: ن  ظ  ر در

a1xh = (a1α(b0))x+ (a1α(b−1) + a1δ(b0)) + (a1α(b−2) + a1δ(b−1))x
−1 + · · · .

ب  راب  ر ،1 . 5 م  ع  ادل  ه چ  پ س  م  ت در xm ض  ری  ب ب  ه وض  وح، پ  ی  دا ک  ن  ی  م. ،1 . 5 م  ع  ادل  ه ط  رف دو  در را xm ض  ری  ب م  ی خ  واه  ی  م ح  ال
ب  ا: اس  ت

a1α(b0)α(a1)α
2(b0) . . . α

m−1(a1)α
m(b0).

ب  ا: اس  ت ب  راب  ر ،1 . 5 م  ع  ادل  ه راس  ت س  م  ت در xm ض  ری  ب ه  م  چ  ن  ی  ن،

z∑
i=1

a1

(
αl1i1 δs1i1αl2i1 δs2i1 . . . αlwi1 δswi1 (bi1)

)
×
(
αt1i2 δk1i2αt2i2 δk2i2 . . . αtwi2 δkwi2 (a1)

)
×
(
αl1i2 δs1i2αl2i2 δs2i2 . . . αlwi2 δswi2 (bi2)

)
× . . .×

×
(
α
t1i(m+1) δ

k1i(m+1)α
t2i(m+1) δ

k2i(m+1) . . . α
twi(m+1) δ

kwi(m+1) (a1)
)

×
(
α
l1i(m+1) δ

s1i(m+1)α
l2i(m+1) δ

s2i(m+1) . . . α
lwi(m+1) δ

swi(m+1) (bim+1)
)
ri,
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داری  م: ه  س  ت  ن  د. ن  ام  ن  ف  ی ص  ح  ی  ح اع  داد si, ki و ص  ح  ی  ح اع  داد li, ti ،ri ∈ R ک  ه ب  ه ط  وري

a1

(
αl1i1 δs1i1 . . . αlwi1 δswi1 (bi1)

)
×
(
αt1i2 δk1i2 . . . αtwi2 δkwi2 (a1)

)
×
(
αl1i2 δs1i2 . . . αlwi2 δswi2 (bi2)

)
× . . .×

×
(
α
t1i(m+1) δ

k1i(m+1) . . . α
twi(m+1) δ

kwi(m+1) (a1)
)

×
(
α
l1i(m+1) δ

s1i(m+1) . . . α
lwi(m+1) δ

swi(m+1) (bim+1)
)

=
(
a1α(b0)

)(
α(b−1

0 )αl1i1 δs1i1 . . . αlwi1 δswi1 (bi1)
)

×
(
αt1i2 δk1i2 . . . αtwi2 δkwi2α−1(α(a1)α

2(b0)α
2(b−1

0 ))
)

×
(
αl1i2 δs1i2 . . . αlwi2 δswi2 (bi2)

)
× . . .×

×
(
α
t1i(m+1) δ

k1i(m+1) . . . α
twi(m+1) δ

kwi(m+1)α−m(αm(a1)α
m+1(b0)α

m+1(b−1
0 )

)
×
(
α
l1i(m+1) δ

s1i(m+1) . . . α
lwi(m+1) δ

swi(m+1) (bim+1)
)
.

ب  ا: اس  ت ب  راب  ر ق  ب  ل م  ع  ادل  ه ک  ه ب  ه ط  وري م  وج  ودن  د j2 ن  ام  ن  ف  ی ص  ح  ی  ح و i2 ص  ح  ی  ح اع  داد ،4 . 1 . 5 ل  م ب  ن  اب  ه
(
a1α(b0)

)(
α(b−1

0 )αl1i1 δs1i1 . . . αlwi1 δswi1 (bi1)
)

×
(∑

i2,j2

ωi2,j2(α, δ)(α(a1)α
2(b0))ωi2,j2(α, δ)(α

2(b−1
0 ))

)
×
(
αl1i2 δs1i2 . . . αlwi2 δswi2 (bi2)

)
× . . .×

×
(
α
t1i(m+1) δ

k1i(m+1) . . . α
twi(m+1) δ

kwi(m+1)α−m(αm(a1)α
m+1(b0)α

m+1(b−1
0 )

)
×
(
α
l1i(m+1) δ

s1i(m+1) . . . α
lwi(m+1) δ

swi(m+1) (bim+1)
)

=
(
a1α(b0)

)(∑
i2,j2

(α(b−1
0 )αl1i1 δs1i1 . . . αlwi1 δswi1 (bi1))ωi2,j2(α, δ)(α(a1)α

2(b0))

ωi2,j2(α, δ)(α
2(b−1

0 ))
)

×
(
αl1i2 δs1i2 . . . αlwi2 δswi2 (bi2)

)
× . . .×

×
(
α
t1i(m+1) δ

k1i(m+1) . . . α
twi(m+1) δ

kwi(m+1)α−m(αm(a1)α
m+1(b0)α

m+1(b−1
0 ))

)
×
(
α
l1i(m+1) δ

s1i(m+1) . . . α
lwi(m+1) δ

swi(m+1) (bim+1)
)
.

م  وج  ود ri2 ∈ R ف  رض، ب  ن  اب  ه پ  س ،(α(b−1
0 )αl1i1 δs1i1 . . . αlwi1 δswi1 (bi1)), (α(a1)α

2(b0)) ∈ J(R) چ  ون
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ب  ا: اس  ت ب  راب  ر ق  ب  ل م  ع  ادل  ه ک  ه ب  ه ط  وري )اس  ت
a1α(b0)

)(
α(a1)α

2(b0)ri2

)(∑
i2,j2

ωi2,j2(α, δ)(α
2(b−1

0 ))
)

×
(
αl1i2 δs1i2 . . . αlwi2 δswi2 (bi2)

)
× . . .×

×
(
α
t1i(m+1) δ

k1i(m+1) . . . α
twi(m+1) δ

kwi(m+1)α−m(αm(a1)α
m+1(b0)α

m+1(b−1
0 )

)
×
(
α
l1i(m+1) δ

s1i(m+1) . . . α
lwi(m+1) δ

swi(m+1) (bim+1)
)
.

ب  راي ،1 . 5 م  ع  ادل  ه راس  ت س  م  ت در xm ض  ری  ب گ  رف  ت ن  ت  ی  ج  ه م  ی ت  وان ،4 . 1 . 5 ل  م ب  ردن ب  ه ک  ار ب  ا و رون  د ای  ن ادام  ه ب  ا ل  ذا
ب  رخ  ی ب  راي پ  س ب  ود. خ  واه  د a1α(b0)α(a1)α

2(b0) . . . α
m(a1)α

m+1(b0)rim+1 ب  ا ب  راب  ر ،rim+1 ∈ R ب  رخ  ی
داش  ت: خ  واه  ی  م ،r ∈ R

a1α(b0)α(a1)α
2(b0) . . . α

m−1(a1)α
m(b0) = a1α(b0)α(a1)α

2(b0) . . . α
m(a1)α

m+1(b0)r,

ن  ت  ی  ج  ه در و

a1α(b0)α(a1)α
2(b0) . . . α

m−1(a1)α
m(b0)

(
1− αm(a1)α

m+1(b0)r
)
= 0.

ای  ن رو از و ،αm(a1)α
m+1(b0)r ∈ J(R) پ  س اس  ت، ,α)-ای  ده آل δ) ی  ک J(R) و a1 ∈ J(R) چ  ون

ف  رض ک  ن  ی  م .a1α(b0)α(a1)α2(b0) . . . α
m−1(a1)α

m(b0) = 0 ب  ن  اب  رای  ن .1−αm(a1)α
m+1(b0)r ∈ U(R)

R از پ  وچ ت  وان راس  ت ای  ده آل aR م  ی ده  ی  م ن  ش  ان ح  ال .aα(a)α2(a) . . . αm(a) = 0 ای  ن ص  ورت، در .a = a1α(b0)

پ  س اس  ت، J در م  ش  م  ول RaR چ  ون م  ی ب  اش  د.

(aR)2m = (aR)(aR) . . . (aR) ⊆ aJaJ . . . aJaR

داش  ت خ  واه  ی  م ،5 . 1 . 5 ل  م ب  ن  اب  ه ل  ذا .Jα−1(a) ⊆ aR ف  رض، ب  ن  اب  ه ط  رف  ی از اس  ت). ش  ده ظ  اه  ر ب  ار m راب  ط  ه، در a)
ن  ت  ی  ج  ه در .Ja ⊆ αm(a)R ،m ص  ح  ی  ح ع  دد ه  ر ب  راي گ  رف  ت ن  ت  ی  ج  ه م  ی ت  وان م  ش  اب  ه، اس  ت  دلال  ی ب  ا .Ja ⊆ α(a)R

و aR = a1α(b0)R ⊆ P (R) ب  ن  اب  رای  ن .(aR)2m = 0 ای  ن رو از .(aR)2m ⊆ aα(a)α2(a) . . . αm(a)R = 0

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و دارد، ق  رار P (R) در f پ  ی  ش  رو ض  ری  ب ل  ذا

خ  اص  ی  ت داراي R ه  ن  گ  ام  ی ک  ه را R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال ح  ال
م  ی ک  ن  ی  م. م  ع  ی  ن اس  ت، (JC)

خ  اص  ی  ت داراي R اگ  ر ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R ح  ل  ق  ه ي از خ  ود ری  خ  ت  ی α ف  رض ک  ن  ی  م .7 . 1 . 5 ق  ض  ی  ه
.J(R((x−1;α, δ))) = P (R)((x−1;α, δ)) آن گ  اه ب  اش  د، (JC)

ب  ه وض  وح، اس  ت. پ  وچ ت  وان aR راس  ت ای  ده آل آن گ  اه ب  اش  د، P (R) از دل  خ  واه  ی ع  ن  ص  ر a اگ  ر ک  ه م  ی ده  ی  م ن  ش  ان اب  ت  دا ب  ره  ان.
(aR)2m پ  س اس  ت، P (R) ⊆ J = J(R) در م  ش  م  ول RaR چ  ون .am = 0 ف  رض ک  ن  ی  م م  ی ب  اش  د. پ  وچ ت  وان a
JaJ ف  رض، ب  ن  اب  ه ،Ja ⊆ aR چ  ون اس  ت). ش  ده ظ  اه  ر ب  ار m ع  ب  ارت در a) ب  ود خ  واه  د aJaJa . . . aJaR در م  ش  م  ول

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و ،(aR)2m ⊆ amR = 0 داش  ت خ  واه  ی  م ل  ذا م  ی ب  اش  د. aRJ = aJ در م  ش  م  ول
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پ  وچ ت  وان ن  ی  ز aR((x−1;α, δ)) راس  ت ای  ده آل آن گ  اه ب  اش  د، پ  وچ ت  وان aR راس  ت ای  ده آل اگ  ر ک  ه م  ی ک  ن  ی  م ث  اب  ت ح  ال
.∑n

i=−∞(agi)x
i ∈ aR((x−1;α, δ)) و (aR)k = 0 ،k م  ث  ب  ت ص  ح  ی  ح اع  داد از ب  رخ  ی ب  راي ک  ن  ی  م ف  رض ب  ود. خ  واه  د

م  ی ب  اش  د: زی  ر ش  ک  ل ب  ه
(∑n

i=−∞(agi)x
i
)2k از ج  م  ع  ون  د ه  ر

agi1α
p21δq21 . . . αp2mδq2m(agi2)α

p31δq31 . . . αp3mδq3m(agi3) . . . α
p(2k)1δq(2k)1 . . .

αp(2k)mδq(2k)m(agi2k).

داری  م: ،ri2 , ri4 , . . . , ri2k ∈ R ب  رخ  ی ب  راي اس  ت، (JC) خ  اص  ی  ت داراي R چ  ون

agi1︸︷︷︸
∈J(R)

αp21δq21 . . . αp2mδq2m(agi2) = agi2ri2 ,

αp31δq31 . . . αp3mδq3m(agi3)︸ ︷︷ ︸
∈J(R)

αp41δq41 . . . αp4mδq4m(agi4) = agi4ri4 , . . . ,

αp(2k−1)1δq(2k−1)1 . . . αp(2k−1)mδq(2k−1)m(agi2k−1
)︸ ︷︷ ︸

∈J(R)

αp(2k)1δq(2k)1 . . . αp(2k)mδq(2k)m(agi2k)

= agi2kri2k ,

ب  ن  اب  رای  ن ه  س  ت  ن  د. ن  ام  ن  ف  ی ص  ح  ی  ح اع  داد q21, . . . , q(2k)m و ص  ح  ی  ح اع  داد p21, . . . , p(2k)m ک  ه ب  ه ط  وري

(agi2ri2)(agi4ri4)(agi6ri6) . . . (agi2kri2k) = ar′1ar
′
2 . . . ar

′
k = 0.

ح  اص  ل ن  ت  ی  ج  ه و اس  ت پ  وچ ت  وان aR((x−1;α, δ)) راس  ت ای  ده آل ای  ن رو از و ،
(∑n

i=−∞(agi)x
i
)2k

= 0 پ  س
م  ی ش  ود.

م  ش  م  ول f پ  ی  ش  رو ض  ری  ب ،6 . 1 . 5 گ  زاره ب  ن  اب  ه ب  اش  د. J(R((x−1;α, δ))) از دل  خ  واه ع  ن  ص  ر f ف  رض ک  ن  ی  م ح  ال
ب  ن  اب  رای  ن اس  ت. J(R((x−1;α, δ))) در م  ش  م  ول f پ  ی  ش  رو ض  ری  ب ش  د، ث  اب  ت ب  الا در ک  ه ه  م  ان ط  ور اس  ت. P (R) در
P (R) در م  ش  م  ول f ض  رای  ب ت  م  ام م  ی گ  ی  ری  م ن  ت  ی  ج  ه رون  د، ای  ن ادام  ه ب  ا .f ′ = f − anx

n ∈ J(R((x−1;α, δ)))

.J(R((x−1;α, δ))) ⊆ P (R)((x−1;α, δ)) ب  ن  اب  رای  ن ب  ود. خ  واه  د
1 + f ،f =

∑n
i=−∞ aix

i ∈ N(R)((x−1;α, δ)) دل  خ  واه ع  ن  ص  ر ب  راي ده  ی  م ن  ش  ان اس  ت ک  اف  ی ب  ال  ع  ک  س،
ک  ن  ی  م ف  رض ح  ال اس  ت. وارون پ  ذی  ر 1+ f ،2 . 1 . 5 گ  زاره ب  ن  اب  ه آن گ  اه ب  اش  د، م  ن  ف  ی f درج  ه ب  زرگ  ت  ری  ن اگ  ر دارد. راس  ت وارون

داری  م ب  ه ع  لاوه، م  ی ب  اش  د. وارون پ  ذی  ر 1 + f1 ،2 . 1 . 5 گ  زاره ب  ن  اب  ه ل  ذا .f1 =
∑−1

i=−∞ aix
i و n ≥ 0

(1 + f)(1 + f1)
−1 = (1 + f)(1 + f1)

−1 + 1− 1

= (1 + f)(1 + f1)
−1 + 1− (1 + f1)(1 + f1)

−1

= 1 + (f − f1)(1 + f1)
−1,

ب  ن  اب  رای  ن .f − f1 =
∑n

i=0 aix
i ∈ J(R((x−1;α, δ))) داش  ت خ  واه  ی  م ک  ردی  م، ث  اب  ت ب  الا در ک  ه خ  واص  ی ب  ن  اب  ه ام  ا

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و ،1 + f ∈ U(R((x−1;α, δ))) ل  ذا و اس  ت وارون پ  ذی  ر 1 + (f − f1)(1 + f1)
−1

م  ی ده  ی  م. ارائ  ه م  ی ب  اش  ن  د، (JC) خ  اص  ی  ت داراي ک  ه ح  ل  ق  ه ه  ای  ی از م  ث  ال ه  ای  ی ادام  ه، در
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R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R از خ  ود ری  خ  ت  ی α و ن  ی  م  اب  ت  دائ  ی ،R ح  ل  ق  ه ي ف  رض ک  ن  ی  م .8 . 1 . 5 م  ث  ال
داد. ت  وس  ی  ع ،ᾱ(aij) = (α(aij)) ض  اب  ط  ه ب  ا ᾱ : T2(R) → T2(R) ب  ه م  ی ت  وان را α ای  ن ص  ورت، در ب  اش  د.
داری  م ل  ذا اس  ت. T2(R) ب  ر ᾱ-م  ش  ت  ق ت  اب  ع ی  ک ،δ̄(aij) = (δ(aij)) ض  اب  ط  ه ب  ا δ̄ : T2(R) → T2(R) ه  م  چ  ن  ی  ن،
ح  ل  ق  ه ي R چ  ون .δ(J(S)) ⊆ J(S) و α(J(S)) = J(S) ب  ه وض  وح، .J(T2(R) = S) = {ae12 | a ∈ R}

s1, . . . , sm ک  ه ب  ه ط  وري J(S)ᾱs1 δ̄k1 . . . ᾱsm δ̄km(A) = 0 ∈ AS ،A ∈ J(S) ه  ر ب  راي پ  س اس  ت، ن  ی  م اب  ت  دائ  ی
م  ی ب  اش  د. (JC) خ  اص  ی  ت داراي S ب  ن  اب  رای  ن ه  س  ت  ن  د. ن  ام  ن  ف  ی ص  ح  ی  ح اع  داد k1, . . . , km و ص  ح  ی  ح اع  داد

ح  ل  ق  ه ي ب  اش  د. α-م  ش  ت  ق ت  اب  ع ی  ک δ و D از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د ت  ق  س  ی  م ح  ل  ق  ه ي D ف  رض ک  ن  ی  م
آن ق  ط  ره  اي روي درای  ه ه  اي ک  ه ب  ه ط  وري م  ی ده  ی  م ن  ش  ان T (D,n) ن  م  اد ب  ا را D روي n× n م  ث  ل  ث  ی ب  الا م  ات  ری  س ه  اي

اس  ت. م  ث  ب  ت ص  ح  ی  ح ع  دد ی  ک n ≥ 2 و ث  اب  ت

ب  ه م  ی ت  وان را α ای  ن ص  ورت، در ب  اش  د. α-م  ش  ت  ق ت  اب  ع ی  ک δ و D ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .9 . 1 . 5 م  ث  ال
ب  ا δ̄ : T (D, 4) → T (D, 4) ه  م  چ  ن  ی  ن، داد. ت  وس  ی  ع ،ᾱ(aij) = (α(aij)) ض  اب  ط  ه ب  ا ᾱ : T (D, 4) → T (D, 4)

داراي T (D, 4) ک  ه ده  ی  م ن  ش  ان م  ی خ  واه  ی  م اس  ت. T (D, 4) ب  ر ᾱ-م  ش  ت  ق ت  اب  ع ی  ک ،δ̄(aij) = (δ(aij)) ض  اب  ط  ه
ک  ه اس  ت واض  ح م  ی ب  اش  د. (JC) خ  اص  ی  ت

J(T (D, 4) = S) = {a(e12 + e23 + e34) + b(e13 + e24) + ce14 | a, b, c ∈ D}.

م  ی ک  ن  ی  م ث  اب  ت ادام  ه، در .δ(J(S)) ⊆ J(S) و α(J(S)) = J(S) داد ن  ش  ان م  ی ت  وان ب  ه آس  ان  ی ل  ذا
داری  م ،k1, . . . , km ن  ام  ن  ف  ی ص  ح  ی  ح اع  داد و s1, . . . , sm ص  ح  ی  ح اع  داد ،A ∈ J(S) ه  ر ب  راي
A = a1(e12 + e23 + e34) + a2(e13 + e24) + a3e14 ف  رض ک  ن  ی  م . J(S)ᾱs1 δ̄k1 . . . ᾱsm δ̄km(A) ∈ AS

م  ی خ  واه  ی  م ح  ال .B ∈ J(S) ک  ه ب  ه ط  وري B = b1(e12 + e23 + e34) + b2(e13 + e24) + b3e14 و
پ  ی  دا ط  وري را X = x1(e11 + e22 + e33 + e44) + x2(e12 + e23 + e34) + x3(e13 + e24) + x4e14 ∈ S

ف  رض ک  ن  ی  م .Bᾱs1 δ̄k1 . . . ᾱsm δ̄km(A) = AX ک  ه ک  ن  ی  م

ᾱs1 δ̄k1 . . . ᾱsm δ̄km(A) = a′1(e12 + e23 + e34) + a′2(e13 + e24) + a′3e14

م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،Bᾱs1 δ̄k1 . . . ᾱsm δ̄km(A) = AX م  ع  ادل  ه م  ق  ای  س  ه ب  ا .a′1, a′2, a′3 ∈ D ک  ه ب  ه ط  وري

a1x1 = 0,

a1x2 + a2x1 = b1a
′
1,

a1x3 + a2x2 + a3x1 = b1a
′
2 + b2a

′
1.

م  ی گ  ی  ری  م: ن  ظ  ر در را زی  ر ح  ال  ت س  ه ل  ذا
.x3 = a−1

1 (b1a
′
2 + b2a

′
1 − a2a

−1
1 b1a

′
1) و x2 = a−1

1 b1a
′
1 داری  م آن گ  اه ،a1 ̸= 0 اگ  ر . 1 ح  ال  ت

و a−1
1 b1a

′
1 = v م  ی ده  ی  م ق  رار .x4 = a−1

1 (b1a
′
2 + b2a

′
1 − a2a

−1
1 b1a

′
1) ک  ن  ی  م ف  رض ه  م  چ  ن  ی  ن،

.X = v(e12 + e23 + e34) + w(e13 + e24) + we14 ب  ن  اب  رای  ن .a−1
1 (b1a

′
2 + b2a

′
1 − a2a

−1
1 b1a

′
1) = w
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ل  ذا .a−1
2 b1a

′
2 = v م  ی ده  ی  م ق  رار .x2 = a−1

2 b1a
′
2 آن گ  اه ،a2 ̸= 0 و a1 = 0 اگ  ر . 2 ح  ال  ت
.X = v(e12 + e23 + e34) + (e13 + e24) + e14

.X = 0 آن گ  اه ،a1 = a2 = 0 اگ  ر . 3 ح  ال  ت
و ،Bᾱs1 δ̄k1 . . . ᾱsm δ̄km(A) = AX ک  ه ب  ه ط  وري آوری  م ب  ه دس  ت را X م  ی ت  وان  ی  م ف  وق، ح  ال  ت س  ه از ی  ک ه  ر در

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه

خ  اص  ی  ت داراي T (D,n) ،n ≥ 2 م  ث  ب  ت ع  دد ه  ر ب  راي ک  ه ده  ی  م ن  ش  ان م  ی ت  وان  ی  م ،9 . 1 . 5 م  ث  ال م  ش  اب  ه اس  ت  دلال  ی ب  ا
اس  ت. (JC)

اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي رادی  ک  ال خ  واص ب  ررس  ی 2 . 5
ش  ای  د اس  ت. م  ه  م  ی م  س  ئ  ل  ه ح  ل  ق  ه ه  ا، از م  ش  خ  ص ک  لاس ی  ک در رادی  ک  ال ه  ا ب  رخ  ی ه  م زم  ان ب  ررس  ی ح  ل  ق  ه ه  ا، ن  ظ  ری  ه در
ح  ل  ق  ه ی  ک دارد وج  ود ت  ص  ور ای  ن ک  ه ک  وت  ه ب  اش  د ح  دس ام  روز ن  اج  اب  ه ج  ای  ی ح  ل  ق  ه ه  اي ن  ظ  ری  ه در ن  ش  ده ح  ل م  س  ئ  ل  ه ب  زرگ  ت  ری  ن
ج  م  ل  ه از اس  ت، ش  ده ح  ل خ  اص م  ورد چ  ن  دی  ن در ک  وت  ه ح  دس ن  دارد. ن  اص  ف  ر پ  وچ ی  ک ط  رف  ه ای  ده آل ن  اص  ف  ر، پ  وچ ای  ده آل ب  دون
,α)-آرم  ن  داری  ز δ) ح  ل  ق  ه ه  اي و ن  اش  م  ارا م  ی  دان ه  اي روي ج  ب  ره  ای  ی ب  راي ح  ل  ق  ه ه  ا، PI ب  راي ک  رول، ب  ع  د ب  ا ح  ل  ق  ه ه  ای  ی ب  راي
م  راج  ع (ب  ه ه  س  ت  ن  د α-س  ازگ  ار ک  ه س  ل  م  ا) ,α)-آرم  ن  داری  ز δ) م  خ  ت  ص  ر (ب  ه ط  ور اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ن  وع از اری  ب
اض  اف  ه ل  ی  س  ت ای  ن ب  ه را ح  ل  ق  ه ه  ا از ج  دی  د ک  لاس ی  ک م  ی خ  واه  ی  م ح  اض  ر ح  ال در ش  ود). رج  وع آن ه  ا م  ن  اب  ع و [17] و [1]
ب  ه را خ  وان  ن  ده چ  ن  دج  م  ل  ه اي، ت  وس  ی  ع ه  اي ت  ح  ت رادی  ک  ال وی  ژگ  ی ه  اي و رف  ت  ار م  ورد در ب  ی  ش  ت  ر اط  لاع  ات ک  س  ب ب  راي ک  ن  ی  م.

م  ی ده  ی  م. ارج  اع [14] م  رج  ع
R از ,α)-ای  ده آل δ) ی  ک I اگ  ر ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ی  ک δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م
δ̄ : R/I → R/I و ب  ود خ  واه  د α ت  وس  ط ش  ده ال  ق  ا ،R/I از خ  ودری  خ  ت  ی ᾱ : R/I −→ R/I ن  گ  اش  ت آن گ  اه ب  اش  د،

م  ی ب  اش  د. ᾱ-م  ش  ت  ق ت  اب  ع ی  ک
ب  ا R((x−1;α, δ)) از ع  ن  اص  ري ت  م  ام م  ج  م  وع  ه آن گ  اه ب  اش  د، R از ,α)-ای  ده آل δ) ی  ک I اگ  ر ک  ه داری  م ت  وج  ه

م  ی ده  ی  م. ن  ش  ان I((x−1;α, δ)) ن  م  اد ب  ا ک  ه ب  ود خ  واه  د R((x−1;α, δ)) از ای  ده آل  ی I در ض  رای  ب
α ک  ه ه  ن  گ  ام  ی را R((x;α)) اری  ب ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال ت  وگ  ان  ب  ائ  ف ،[2 . 4 گ  زاره ،53] در
ان  دی  س ب  ا R/P (R) ح  ل  ق  ه ي پ  وچ ت  وان، P (R) اگ  ر ک  ه ک  رد ث  اب  ت او اس  ت. ک  رده م  ش  خ  ص م  ی ب  اش  د، R از خ  ودری  خ  ت  ی
ب  راب  ر و پ  وچ ت  وان R((x;α)) ج  ی  ک  ب  س  ون رادی  ک  ال آن گ  اه ،α(P ) = P ،R از P م  ی  ن  ی  م  ال اول ای  ده آل ه  ر ب  راي و ک  ران دار
اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ب  راي [53] ن  ت  ای  ج ت  وس  ی  ع اول  ی  ه ه  دف ب  خ  ش، ای  ن در م  ی ب  اش  د. P (R)((x;α)) ب  ا

م  ی ب  اش  د. R((x−1;α, δ))

م  ی ک  ن  ی  م. ش  روع زی  ر اس  اس  ی ل  م ه  اي ب  ا را ب  خ  ش ای  ن

R از ,α)-ای  ده آل δ) ی  ک ،P (R) و R روي α-م  ش  ت  ق ت  اب  ع ،δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .1 . 2 . 5 ل  م
ب  رق  رارن  د: زی  ر گ  زاره ه  اي ای  ن ص  ورت، در .T = R((x−1;α, δ)) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د.

ب  ود خ  واه  د T از پ  وچ ت  وان ای  ده آل ن  ی  ز P (R)((x−1;α, δ)) آن گ  اه ب  اش  د، R از پ  وچ ت  وان ای  ده آل P (R) اگ  ر (1)
.(P (R)((x−1;α, δ)) ⊆ J(T ) (ب  ه خ  ص  وص،
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آن گ  اه ،P (R)((x−1;α, δ)) ⊆ J(T ) و ب  اش  د ن  ی  م اب  ت  دائ  ی ح  ل  ق  ه ي (
R/P (R)

)
((x−1; ᾱ, δ̄)) اگ  ر (2)

.J(T ) = P (R)((x−1;α, δ))

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ل  ذا م  ی ب  اش  د، ,α)-ای  ده آل δ) ی  ک P (R) چ  ون (1 ب  ره  ان.
ل  ذا اس  ت، ن  ی  م اب  ت  دائ  ی (R/P (R)

)
((x−1; ᾱ, δ̄)) ح  ل  ق  ه ي آن ج  ای  ی ک  ه از (2

T/P (R)((x−1;α, δ)) ∼=
(
R/P (R)

)
((x−1; ᾱ, δ̄))

داری  م ف  رض ب  ن  اب  ه ط  رف  ی از .J(T ) ⊆ P (R)((x−1;α, δ)) پ  س م  ی ب  اش  د. ن  ی  م اب  ت  دائ  ی ن  ی  ز
.J(T ) = P (R)((x−1;α, δ)) ب  ن  اب  رای  ن .P (R)((x−1;α, δ)) ⊆ J(T )

م  ی آی  د. ب  ه دس  ت ،17 . 2 . 2 ل  م ب  ره  ان از ب  ع  دي، ل  م اث  ب  ات ای  ده ي

.T = R((x−1;α, δ)) و ب  اش  د R روي α-م  ش  ت  ق ت  اب  ع δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .2 . 2 . 5 ل  م
م  ش  م  ول س  ري ه  اي پ  ی  ش  رو ض  رای  ب ت  م  ام ت  وس  ط ش  ده ت  ول  ی  د ،R از ن  اص  ف  ر ای  ده آل C و J(T ) ̸= 0 ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن،
ب  ه ط  وري ک  ه م  وج  ودن  د c′, c′′ ∈ C ن  اص  ف  ر ع  ن  ص  ر دو ،C از c ن  اص  ف  ر ع  ن  ص  ر ه  ر ب  راي ای  ن ص  ورت، در ب  اش  د. J(T ) در

.cc′ = c′′c = 0

c′ ∈ C م  ی ده  ی  م ن  ش  ان ب  اش  د. f پ  ی  ش  رو ض  ری  ب a0 = c و 0 ̸= f =
∑∞

i=0 aix
n−i ∈ J(T ) ک  ن  ی  م ف  رض ب  ره  ان.

ن  ظ  ر در 1 را f درج  ه ب  زرگ  ت  ری  ن م  ی ت  وان ،fx1−n ∈ J(T ) ،n ه  ر ب  راي آن ج  ای  ی ک  ه از .cc′ = 0 ک  ه ب  ه ط  وري دارد وج  ود
،b0 ̸= 0 ب  راي ک  ه ب  ه ط  وري اس  ت م  وج  ود g =

∑∞
j=0 bjx

m−j ∈ T ل  ذا اس  ت، وارون پ  ذی  ر 1 − f ط  رف  ی از گ  رف  ت.
گ  زاره ب  ن  اب  ه ،fg, gf ∈ J(T ) چ  ون .g = 1 + gf و g = 1 + fg داری  م پ  س .g(1− f) = 1 و (1− f)g = 1

،1− bm ج  م  ل  ه از ،1− g ض  رای  ب ت  م  ام ای  ن رو از م  ی ب  اش  د. J(R) در م  ش  م  ول gf و fg از م  ت  ع  ارف ض  رای  ب ت  م  ام ،3 . 1 . 5
آن ج  ای  ی ک  ه از ب  ن  اب  رای  ن .cbm, bmc ̸= 0 ن  ت  ی  ج  ه در و اس  ت وارون پ  ذی  ر bm ل  ذا ب  ود. خ  واه  ن  د J(R) در م  ش  م  ول ن  ی  ز

.m ≥ 0 داش  ت خ  واه  ی  م ،bm ̸= 0

ک  ه م  ی گ  ی  ری  م ن  ت  ی  ج  ه ،g = 1 + gf چ  ون م  ی ب  اش  د. gf ض  ری  ب ب  زرگ  ت  ری  ن b0c ̸= 0 ̸= bmc آن گ  اه ،m = 0 اگ  ر
م  ی ب  اش  د. ت  ن  اق  ض ی  ک ک  ه اس  ت، 1 ب  ا ب  راب  ر ،g از m درج  ه ب  زرگ  ت  ری  ن

خ  واه  د fg ∈ J(T ) درج  ه ب  زرگ  ت  ری  ن m و cα(b0) = 0 داری  م ،g = 1 + fg آن ج  ای  ی ک  ه از آن گ  اه ،m > 0 اگ  ر
وج  ود c′′ ∈ C ک  ه داد ن  ش  ان م  ی ت  وان آس  ان  ی ب  ه م  ش  اب  ه، اس  ت  دلال  ی ب  ا .c′ = α(b0) م  ی ده  ی  م ق  رار .α(b0) ∈ C ل  ذا ب  ود.

.c′′c = 0 ط  وري ک  ه ب  ه دارد

ه  ر آن گ  اه ب  اش  د، ک  ران دار ان  دی  س ب  ا اول ح  ل  ق  ه ي R اگ  ر ک  ه داد ن  ش  ان ،[(6)14 . 5 گ  زاره ،52] م  رج  ع در ت  وگ  ان  ب  ائ  ف
R اگ  ر ک  ه ک  رد ث  اب  ت ،[1 . 2 ل  م ،53] در ت  وگ  ان  ب  ائ  ف ه  م  چ  ن  ی  ن، ب  ود. خ  واه  د ن  اص  ف  ر م  ق  س  وم ع  ل  ی  ه ش  ام  ل R از ن  اص  ف  ر ای  ده آل
ب  ه ط  وري اس  ت م  وج  ود b ∈ B ن  اص  ف  ر ع  ن  ص  ر آن گ  اه ب  اش  د، R ح  ل  ق  ه ي از ن  اص  ف  ر ای  ده آل B و راس  ت گ  ل  دي و ن  ی  م اول ح  ل  ق  ه ي

.bb′ ̸= 0 داری  م ،b′ ∈ B ن  اص  ف  ر ع  ن  ص  ر ه  ر ب  راي ک  ه
R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ش  رای  ط  ی چ  ه ت  ح  ت ک  ه م  ی ک  ن  ی  م م  ش  خ  ص ب  ع  دي، گ  زاره در

اس  ت. ن  ی  م اب  ت  دائ  ی
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در .T = R((x−1;α, δ)) و ب  اش  د R روي α-م  ش  ت  ق ت  اب  ع δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .3 . 2 . 5 گ  زاره
ای  ن ص  ورت،

اس  ت. ن  ی  م اب  ت  دائ  ی T آن گ  اه ب  اش  د، ک  ران دار ان  دی  س ب  ا اول ح  ل  ق  ه ي ی  ا و راس  ت گ  ل  دي و ن  ی  م اول ح  ل  ق  ه ي R اگ  ر (1)

آن گ  اه ب  اش  د، ,α)-ای  ده آل δ) ی  ک R از P م  ی  ن  ی  م  ال اول ای  ده آل ه  ر و ک  ران دار ان  دی  س ب  ا ن  ی  م اول ح  ل  ق  ه ي R اگ  ر (2)
اس  ت. ن  ی  م اب  ت  دائ  ی T

م  ش  م  ول س  ري ه  اي پ  ی  ش  رو ض  رای  ب ت  م  ام ت  وس  ط ش  ده ت  ول  ی  د ،R از ن  اص  ف  ر ای  ده آل C و J(T ) ̸= 0 ف  رض ک  ن  ی  م (1 ب  ره  ان.
اس  ت م  وج  ود c′ ∈ C ن  اص  ف  ر ع  ن  ص  ر ،c ∈ C ن  اص  ف  ر ع  ن  ص  ر ه  ر ب  راي ،2 . 2 . 5 ل  م ب  ن  اب  ه ای  ن ص  ورت، در ب  اش  د. J(T ) در
،52 . 1 . 2 ل  م ب  ن  اب  ه ه  م  چ  ن  ی  ن، ن  ی  س  ت. ک  ران دار ان  دی  س ب  ا اول ح  ل  ق  ه ي R ،48 . 1 . 2 گ  زاره ب  ن  اب  ه ب  ن  اب  رای  ن .cc′ = 0 ک  ه ب  ه ط  وري

ن  م  ی ب  اش  د. راس  ت گ  ل  دي و ن  ی  م اول ح  ل  ق  ه ي R

م  ی  ن  ی  م  ال اول ای  ده آل ه  ر ب  راي چ  ون ب  اش  د. R از م  ی  ن  ی  م  ال اول ای  ده آل ه  اي ت  م  ام م  ج  م  وع  ه ي {Pi}i∈I ف  رض ک  ن  ی  م (2
را ن  ت  ی  ج  ه م  ی ت  وان ،[1 . 5(2) گ  زاره ،53] ب  ره  ان م  ش  اب  ه اس  ت  دلال  ی ب  ا ل  ذا ،δ(Pi) ⊆ Pi و α(Pi) = Pi داری  م ،R از Pi

ک  رد. ث  اب  ت

.α(P (R)
)
= P (R) داری  م ب  ه وض  وح آن گ  اه ب  اش  د، R اول رادی  ک  ال P (R) و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α اگ  ر

.T = R((x−1;α, δ)) و ب  اش  د R روي α-م  ش  ت  ق ت  اب  ع δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .4 . 2 . 5 ل  م
اول ای  ده آل ه  ر و ک  ران دار ان  دی  س ب  ا ح  ل  ق  ه ي R/P (R) اگ  ر .P (R)((x−1;α, δ)) ⊆ J(T ) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن،

.J(T ) = P (R)((x−1;α, δ)) آن گ  اه ب  اش  د، ,α)-ای  ده آل δ) ی  ک R از P م  ی  ن  ی  م  ال

،R/P (R) از ᾱ-م  ش  ت  ق ت  اب  ع ی  ک δ̄ و α ت  وس  ط ش  ده ال  ق  ا ،R/P (R) ح  ل  ق  ه ي از خ  ودری  خ  ت  ی ᾱ ف  رض ک  ن  ی  م )ب  ره  ان.
R/P (R)

)
((x−1; ᾱ, δ̄)) ده  ی  م ن  ش  ان اس  ت ک  اف  ی ،1 . 2 . 5 ل  م ب  ن  اب  ه ب  اش  د. δ α-م  ش  ت  ق، ت  اب  ع ت  وس  ط ش  ده ال  ق  ا

از P̄ م  ی  ن  ی  م  ال اول ای  ده آل ه  ر آن گ  اه ب  اش  د، ,α)-ای  ده آل δ) ی  ک R از P م  ی  ن  ی  م  ال اول ای  ده آل ه  ر اگ  ر اس  ت. ن  ی  م اب  ت  دائ  ی
R/P (R) ف  رض ب  ن  اب  ه و اس  ت ن  ی  م اول R/P (R) چ  ون ط  رف  ی، از ب  ود. خ  واه  د ,ᾱ)-ای  ده آل δ̄) ی  ک ن  ی  ز R̄ = R/P (R)

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ،3 . 2 . 5 گ  زاره ب  ن  اب  ه پ  س م  ی ب  اش  د، ک  ران دار ان  دی  س ب  ا ح  ل  ق  ه ي

ب  ود. خ  واه  د م  ف  ی  د ب  خ  ش ای  ن در اص  ل  ی ه  دف ب  راي ب  ع  دي، گ  زاره

.T = R((x−1;α, δ)) و ب  اش  د R روي α-م  ش  ت  ق ت  اب  ع δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .5 . 2 . 5 گ  زاره
ک  ران دار ان  دی  س ب  ا ح  ل  ق  ه ي R/P (R) اگ  ر ای  ن ص  ورت در ب  اش  د. پ  وچ ت  وان R از P (R) اول رادی  ک  ال ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن،
داری  م و اس  ت T از پ  وچ ت  وان ای  ده آل J(T ) آن گ  اه ب  اش  د، ,α)-ای  ده آل δ) ی  ک R از P م  ی  ن  ی  م  ال اول ای  ده آل ه  ر و

.J(T ) = P (R)((x−1;α, δ))

،1 . 2 . 5 ل  م ب  ن  اب  ه پ  س م  ی ب  اش  د، پ  وچ ت  وان P (R) چ  ون اس  ت. ,α)-ای  ده آل δ) ی  ک P (R) ف  رض ب  ن  اب  ه ب  ره  ان.
.P (R)((x−1;α, δ)) ⊆ J(T ) داری  م ب  ه خ  ص  وص، و ب  ود خ  واه  د T از پ  وچ ت  وان ای  ده آل ن  ی  ز P (R)((x−1;α, δ))

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و ،J(T ) = P (R)((x−1;α, δ)) ،4 . 2 . 5 ل  م ب  ن  اب  ه ب  ن  اب  رای  ن
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ح  ل  ق  ه ي ه  ن  گ  ام  ی ک  ه را ،R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ج  ی  ک  ب  س  ون رادی  ک  ال م  ی ت  وان  ی  م ح  ال
ک  ن  ی  م. ت  وص  ی  ف ب  اش  د، ,α)-ای  ده آل δ) ی  ک R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر و 2 -اول  ی  ه ،R

R روي α-م  ش  ت  ق ت  اب  ع δ و R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د 2 -اول  ی  ه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .6 . 2 . 5 ق  ض  ی  ه
در ب  اش  د. ,α)-ای  ده آل δ) ی  ک R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر و T = R((x−1;α, δ)) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، اس  ت.

.J(T ) = P (R)((x−1;α, δ)) داری  م ای  ن ص  ورت،

ک  ران دار ان  دی  س ب  ا ح  ل  ق  ه ي R/P (R) ن  ت  ی  ج  ه در و م  ی ب  اش  د ک  اه  ش  ی R/P (R) پ  س اس  ت، 2 -اول  ی  ه ،R چ  ون ب  ره  ان.
،5 . 2 . 5 گ  زاره ب  ن  اب  ه ب  ن  اب  رای  ن م  ی ب  اش  د. ,α)-ای  ده آل δ) ی  ک R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر ف  رض، ب  ن  اب  ه ط  رف  ی از اس  ت.

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و ،J(T ) = P (R)((x−1;α, δ)) داری  م

ش  م  اراي م  ج  م  وع  ه ي زی  ر ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م، پ  وچ ت  وان1 م  وض  ع  اً ش  م  ارا ب  ه ط  ور را S ⊆ R م  ج  م  وع  ه ي
ص  ف  ر {s1, s2, . . .} از ع  ن  ص  ر N ه  ر ح  اص  ل  ض  رب ک  ه ب  ه ط  وري ب  اش  د داش  ت  ه وج  ود N ص  ح  ی  ح ع  دد ،{s1, s2, . . .} ⊆ S

ب  ود. خ  واه  د پ  وچ ت  وان م  وض  ع  اً ش  م  ارا ب  ه ط  ور Nil(R) آن گ  اه ب  اش  د، پ  وچ ت  وان Nil(R) اگ  ر م  ث  ال ب  ه ع  ن  وان ب  اش  د.

اس  ت. R روي α-م  ش  ت  ق ت  اب  ع δ و R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د 2 -اول  ی  ه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .7 . 2 . 5 گ  زاره

ب  اش  د. ,α)-ای  ده آل δ) ی  ک R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر و پ  وچ ت  وان م  وض  ع  اً ش  م  ارا ب  ه ط  ور Nil(R) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن،
.Nil∗

(
R((x−1;α, δ))

)
= Nil∗(R)((x−1;α, δ)) ای  ن ص  ورت، در

داری  م ط  رف  ی از .J(R((x−1;α, δ))
)

= P (R)((x−1;α, δ)) ،6 . 2 . 5 ق  ض  ی  ه ب  ن  اب  ه ب  ره  ان.
ل  ذا اس  ت، 2 -اول  ی  ه ،R چ  ون .Nil∗

(
R((x−1;α, δ))

)
⊆ J

(
R((x−1;α, δ))

)
Nil∗

(
R((x−1;α, δ))

)
⊆ P (R)((x−1;α, δ)) = Nil∗(R)((x−1;α, δ)).

اس  ت. 2 -اول  ی  ه ،R آن ج  ای  ی ک  ه از م  ی ب  اش  د، پ  وچ ای  ده آل P (R)((x−1;α, δ)) ک  ه ده  ی  م ن  ش  ان اس  ت ک  اف  ی ب  ال  ع  ک  س،
پ  س م  ی ب  اش  د، ,α)-ای  ده آل δ) ی  ک P (R) ف  رض، ب  ن  اب  ه .f =

∑∞
i=0 aix

n−i ∈ P (R)((x−1;α, δ)) ف  رض ک  ن  ی  م
ب  ه ط  ور P (R) = Nil(R) چ  ون .ωr,s(α, δ)(at) ∈ P (R) ،t ≥ 0 و s ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد ،r ص  ح  ی  ح ع  دد ب  راي
ب  ه ط  وري دارد وج  ود k ن  ام  ن  ف  ی ص  ح  ی  ح ع  دد پ  س ش  م  اراس  ت، ∪r,s

(
∪t ωr,s(α, δ)(at)

) و اس  ت پ  وچ ت  وان م  وض  ع  اً ش  م  ارا
ن  ت  ی  ج  ه و اس  ت، پ  وچ ای  ده آل P (R)((x−1;α, δ)) ب  ن  اب  رای  ن .f ∈ Nil

(
R((x−1;α, δ))

) ن  ت  ی  ج  ه در و ،fk = 0 ک  ه
م  ی گ  ردد. ح  اص  ل

ف  رض ک  ن  ی  م ک  ن  ی  م. ث  اب  ت م  ی ب  اش  د، ک  وت  ه ح  دس ب  ا م  رت  ب  ط ک  ه را ج  ال  ب  ی ن  ت  ی  ج  ه م  ی ت  وان  ی  م ک  ه ه  س  ت  ی  م م  رح  ل  ه اي در ح  ال
م  ن  ط  ب  ق R از پ  وچ راس  ت ای  ده آل ه  اي ت  م  ام م  ج  م  وع ب  ا (ک  ه ب  اش  د R از پ  وچ چ  پ ای  ده آل ه  اي ت  م  ام م  ج  م  وع ن  م  ای  ان  گ  ر A(R)

.Nil∗(R) = A(R) ،R ح  ل  ق  ه ي ه  ر ب  راي ی  ع  ن  ی اس  ت، پ  وچ ه  م  واره A(R) ک  ه اس  ت ای  ن م  ع  ادل ک  وت  ه ح  دس م  ی ب  اش  د).

اس  ت. R روي α-م  ش  ت  ق ت  اب  ع δ و R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د 2 -اول  ی  ه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .8 . 2 . 5 ق  ض  ی  ه

ب  اش  د. ,α)-ای  ده آل δ) ی  ک R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر و پ  وچ ت  وان م  وض  ع  اً ش  م  ارا ب  ه ط  ور Nil(R) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن،
م  ی ک  ن  د. ص  دق ک  وت  ه ح  دس در R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ای  ن ص  ورت، در

1Countable locally nilpotent
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ق  ض  ی  ه ب  ن  اب  ه ای  ن رو از اس  ت، 2 -اول  ی  ه ،R چ  ون .A(R((x−1;α, δ))
)
⊆ J

(
R((x−1;α, δ))

) م  ی دان  ی  م ب  ره  ان.
داری  م: ،6 . 2 . 5

J
(
R((x−1;α, δ))

)
= P (R)((x−1;α, δ)) = Nil∗(R)((x−1;α, δ)).

داش  ت خ  واه  ی  م ،7 . 2 . 5 گ  زاره ب  ن  اب  ه ن  ت  ی  ج  ه در و ،A(
R((x−1;α, δ))

)
⊆ Nil∗(R)((x−1;α, δ)) ل  ذا

ب  ن  اب  رای  ن .A(
R((x−1;α, δ))

)
⊆ Nil∗

(
R((x−1;α, δ))

)
A
(
R((x−1;α, δ))

)
= Nil∗

(
R((x−1;α, δ))

)
,

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و

ه  ر ب  راي ای  ن ک  ه ب  ه ت  وج  ه ب  ا م  ی ک  ن  د، ص  دق 8 . 2 . 5 ق  ض  ی  ه و 7 . 2 . 5 گ  زاره ش  رای  ط در ک  اه  ش  ی ح  ل  ق  ه ي ه  ر ک  ه اس  ت واض  ح
ذک  ر ق  ض  ی  ه و گ  زاره ش  رای  ط در ک  ه غ  ی  رک  اه  ش  ی ح  ل  ق  ه ي از م  ث  ال  ی ادام  ه در .Nil(R) = P (R) = 0 داری  م ک  اه  ش  ی ح  ل  ق  ه ي

م  ی ده  ی  م. ارائ  ه م  ی ک  ن  د، ص  دق ش  ده
ای  ن ص  ورت، در ب  اش  د. ی  ک  ان  ی R-دوم  دول ،M و دل  خ  واه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م

R⊕M = {(r,m) | r ∈ R,m ∈ M}

ج  م  ع ب  ا

(r,m) + (r′,m′) = (r + r′,m+m′)

ض  رب و

(r,m)(r′,m′) = (rr′, rm′ +mr′) (r, r′ ∈ R;m,m′ ∈ M)

ت  وج  ه م  ی ب  اش  د. (1, 0) ح  ل  ق  ه ای  ن در ه  م  ان  ی ع  ن  ص  ر م  ی ن  ام  ی  م. M ت  وس  ط R ب  دی  ه  ی2 ت  وس  ی  ع را آن ک  ه م  ی ده  د ح  ل  ق  ه ت  ش  ک  ی  ل
م  ی ب  اش  د: زی  ر ش  ک  ل ب  ه م  ات  ری  س  ی ن  م  ای  ش داراي R⊕M ک  ه داری  م

R⊕M =

( r m

0 r

)
: r ∈ R, m ∈ M


اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ج  اب  ه ج  ای  ی R ⊕M ب  ه وض  وح، م  ی ب  اش  د. م  ات  ری  س ه  ا ض  رب و ج  م  ع ه  م  ان ض  رب، و ج  م  ع ک  ه ب  ه ط  وري

ب  اش  د. ج  اب  ه ج  ای  ی R

ای  ن ص  ورت، در اس  ت. اول ع  ددي p ک  ه ب  ه ط  وري R = Z⊕ Zp∞ ف  رض ک  ن  ی  م .9 . 2 . 5 م  ث  ال

R =

( a m

0 a

)
: a ∈ Z,m ∈ Zp∞

 ,

اس  ت: زی  ر ف  رم ب  ه R از اول ای  ده آل ه  اي ت  م  ام م  ج  م  وع  ه ي ای  ن ص  ورت، در م  ی ب  اش  د. 2 -اول  ی  ه ن  ت  ی  ج  ه در و ج  اب  ه ج  ای  ی ح  ل  ق  ه ي
2Trivial extension
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D = {qZ⊕ Zp∞ : م  ی ب  اش  د اول ع  دد q } ∪ {0} ∪ {Zp∞}.

ن  ت  ی  ج  ه، در

P (R) = Nil(R) =

( 0 m

0 0

)
: a ∈ Z,m ∈ Zp∞

 .

ف  رض ک  ن  ی  م ح  ال م  ی ب  اش  د. پ  وچ ت  وان م  وض  ع  اً ش  م  ارا ب  ه ط  ور Nil(R) ای  ن رو از و اس  ت پ  وچ ت  وان R از Nil(R) ای  ده آل ل  ذا
م  ی گ  ی  ری  م: ن  ظ  ر در زی  ر ض  اب  ط  ه ي ب  ا را α : R → R ن  گ  اش  ت .(k, p) = 1 ک  ه ب  ه ط  وري ب  اش  د ص  ح  ی  ح  ی ع  دد k

α

( a m

0 a

) =
( a km

0 a

)
.

ش  ود: ت  ع  ری  ف زی  ر ش  ک  ل ب  ه δ : R → R ف  رض ک  ن  ی  م م  ی ب  اش  د. R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ب  ه وض  وح،

δ

( a m

0 a

) =
( 0 m

0 0

)
.

ی  ک R از P م  ی  ن  ی  م  ال اول ای  ده آل ه  ر ل  ذا ،δ(P ) ⊆ P و α(P ) = P چ  ون اس  ت. α-م  ش  ت  ق ت  اب  ع ی  ک δ ب  ه وض  وح،
ص  دق 8 . 2 . 5 ق  ض  ی  ه و 7 . 2 . 5 گ  زاره ش  رای  ط در ک  ه م  ی ب  اش  د غ  ی  رک  اه  ش  ی ح  ل  ق  ه  ي R ب  ن  اب  رای  ن م  ی ب  اش  د. ,α)-ای  ده آل δ)

م  ی ک  ن  د.

اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ت  م  ی  ز خ  اص  ی  ت ب  ررس  ی 3 . 5
ب  اش  د ت  م  ی  ز R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ای  ن  ک  ه ب  راي ک  اف  ی و لازم ش  رای  ط ب  رخ  ی ب  خ  ش، ای  ن در
ب  خ  ش ای  ن در اول  ی  ه ه  دف ک  ن  ی  م. م  ش  خ  ص را R((x−1;α, δ)) خ  ودت  وان ه  اي ب  ای  د اب  ت  دا، ق  س  م  ت ای  ن در م  ی ده  ی  م. ارائ  ه را

ب  ود. خ  واه  د ن  ت  ی  ج  ه ای  ن اث  ب  ات و ب  ی  ان

آن گ  اه ب  اش  د، α-ص  ل  ب ،R اگ  ر ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع δ و R از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .1 . 3 . 5 ل  م
.Idem(

R((x−1;α, δ))
)
= Idem(R)

α-ص  ل  ب ،R چ  ون .f ∈ Idem(R) ده  ی  م ن  ش  ان اس  ت ک  اف  ی .f ∈ Idem
(
R((x−1;α, δ))

) ف  رض ک  ن  ی  م ب  ره  ان.
،21 . 2 . 2 گ  زاره ب  ن  اب  ه ب  ن  اب  رای  ن م  ی ب  اش  د. س  ل  م  ا ,α)-آرم  ن  داری  ز δ) ح  ل  ق  ه ي R ،20 . 2 . 2 ق  ض  ی  ه ب  ن  اب  ه پ  س اس  ت،

م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه و ،f ∈ Idem(R)

ک  ه ب  ه ط  وري ب  اش  د α-ص  ل  ب ح  ل  ق  ه ي R اگ  ر ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع δ و R از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .2 . 3 . 5 ل  م
ب  ود. خ  واه  د ن  ی  وم  ان ف  ن م  ن  ظ  م R آن گ  اه اس  ت، ت  م  ی  ز T = R((x−1;α, δ))

ل  ذا .u ∈ U(T ) و e ∈ Idem(T ) ک  ه ب  ه ط  وري −ax = e + u ای  ن ص  ورت، در .a ∈ R ف  رض ک  ن  ی  م ب  ره  ان.
ک  ه ب  ه ط  وري دارد وج  ود f =

∑∞
i=0 aix

n−i ای  ن رو از .ax + e ∈ U(T ) پ  س .e ∈ Idem(R) ،1 . 3 . 5 ل  م ب  ن  اب  ه
ل  ذا: .(ax+ e)(· · ·+ an+1x

−1 + an + an−1x+ · · ·+ a1x
n−1 + a0x

n) = 1

aα(a0) = 0
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aδ(a0) + aα(a1) + ea0 = 0

aδ(a1) + aα(a2) + ea1 = 0

...

aδ(an−1) + aα(an) + ean−1 = 0

aδ(an) + aα(an+1) + ean = 1.

ض  رب ب  ا ح  ال .aδ(a0) = 0 ن  ت  ی  ج  ه در و aa0 = 0 م  ی گ  ی  ری  م ن  ت  ی  ج  ه م  ع  ادل  ه اول  ی  ن از پ  س اس  ت، ,α)-س  ازگ  ار δ) ،R چ  ون
,α)-س  ازگ  ار δ) ،R آن ج  ای  ی ک  ه از اس  ت. ک  اه  ش  ی R زی  را ،aα(a1) = 0 داش  ت خ  واه  ی  م م  ع  ادل  ه، دوم  ی  ن در چ  پ از a
ض  رب ب  ا ح  ال .aa0 = aa1 = aa2 = · · · = aan = 0 داد ن  ش  ان م  ی ت  وان س  اده اي اس  ت  ق  راي ب  ا .aa1 = 0 ل  ذا اس  ت،

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه ب  ن  اب  رای  ن اس  ت. α-ص  ل  ب ،R زی  را ،aα(an+1)a = a داری  م م  ع  ادل  ه، آخ  ری  ن در راس  ت از a

م  ی ن  م  ائ  ی  م. ب  ررس  ی را اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ت  م  ی  ز ع  ن  اص  ر ب  ع  دي گ  زاره در

ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، ب  اش  د. R روي α-م  ش  ت  ق ت  اب  ع ،δ و R از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .3 . 3 . 5 گ  زاره
ع  ن  ص  ري f آن گ  اه ب  اش  د، R از ت  م  ی  ز ع  ن  ص  ري a0 اگ  ر ب  اش  د. T از ع  ن  ص  ري f =

∑∞
i=0 aix

−i و T = R((x−1;α, δ))

ب  ود. خ  واه  د R((x−1;α, δ)) از ت  م  ی  ز

.f = (
∑∞

i=1 aix
−i+u)+e داری  م ل  ذا .u ∈ U(R) و e ∈ Idem(R) ک  ه ب  ه ط  وري a0 = e+u ف  رض، ب  ن  اب  ه ب  ره  ان.

از ت  م  ی  ز ع  ن  ص  ري f ای  ن رو از ،(∑∞
i=1 aix

−i + u) ∈ U
(
R((x−1;α, δ))

) ،2 . 1 . 5 گ  زاره ب  ن  اب  ه ک  ه آن ج  ای  ی از
م  ی ش  ود. ح  اص  ل ن  ت  ی  ج  ه و م  ی ب  اش  د R((x−1;α, δ))

R ح  ل  ق  ه ي ک  ه داری  م ت  وج  ه ه  م  چ  ن  ی  ن، ب  اش  د. م  ن  ظ  م و ک  اه  ش  ی R ه  رگ  اه م  ی ن  ام  ی  م م  ن  ظ  م3 ق  وی  اً ح  ل  ق  ه ي را R ح  ل  ق  ه ي
،x ∈ R ه  ر ب  راي اگ  ر ،[47] ب  ن  اب  ه م  ی آی  ن  د. ب  الا J(R) پ  ی  م  ان  ه ب  ه خ  ودت  وان ه  ا و م  ن  ظ  م R/J(R) ه  رگ  اه اس  ت ن  ی  م م  ن  ظ  م
م  ی ن  ام  ی  م. م  ن  اس  ب ح  ل  ق  ه ي را R ح  ل  ق  ه ي آن گ  اه ،e− x ∈ R(x− x2) ک  ه ب  ه ط  وري ب  اش  د داش  ت  ه وج  ود e2 = e ∈ R

ه  س  ت  ن  د. ی  ک  ی م  ن  اس  ب و ت  ب  ادل  ی ح  ل  ق  ه ه  اي ،57 . 1 . 2 ق  ض  ی  ه ب  ن  اب  ه ک  ه داری  م ت  وج  ه
ت  م  ی  ز ب  راي م  ع  ادل ش  رای  ط از ب  رخ  ی م  ی ت  وان آن ت  وس  ط ک  ه ک  ن  ی  م ب  ی  ان را ب  خ  ش ای  ن م  ه  م ن  ت  ای  ج از ی  ک  ی م  ی ت  وان  ی  م ح  ال

س  ازی  م. ف  راه  م را R((x−1;α, δ)) اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي ب  ودن

ب  راي و R روي α-م  ش  ت  ق ت  اب  ع δ ،R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د 2 -اول  ی  ه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .4 . 3 . 5 ق  ض  ی  ه
ه  ر و T = R((x−1;α, δ)) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، .δ(e) = 0 و α(e) = e ب  اش  ی  م داش  ت  ه ،e ∈ Idem(R) ه  ر

م  ع  ادل  ن  د: زی  ر گ  زاره ه  اي ای  ن ص  ورت، در ب  اش  د. ,α)-ای  ده آل δ) ی  ک R از P م  ی  ن  ی  م  ال اول ای  ده آل

اس  ت. ت  م  ی  ز T ح  ل  ق  ه ي (1)

م  ی ب  اش  د. ت  م  ی  ز T/J(T ) ح  ل  ق  ه ي (2)

اس  ت. ت  ب  ادل  ی T ح  ل  ق  ه ي (3)
3Strongly regular
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م  ی ب  اش  د. ت  ب  ادل  ی T/J(T ) ح  ل  ق  ه ي (4)

م  ی ب  اش  د. پ  وچ J(R) ک  ه ب  ه ط  وري اس  ت ن  ی  م م  ن  ظ  م R ح  ل  ق  ه ي (5)

م  ی ب  اش  د. پ  وچ J(R) ک  ه ب  ه ط  وري اس  ت م  ن  ظ  م ق  وی  اً R/J(R) (6)

ه  س  ت  ن  د. واض  ح (1) ⇒(3) ⇒(4) و (1) ⇒(2) ⇒(4) ب  ره  ان.
ل  ذا .J(T ) = P (R)((x−1;α, δ)) داری  م ،6 . 2 . 5 ل  م ب  ن  اب  ه (4) ⇒(5)(

R/P (R)
)
((x−1; ᾱ, δ̄)) ∼= T/P (R)((x−1;α, δ))

) ∼= T/J(T )

از م  ی آی  ن  د. ب  الا J(R) پ  ی  م  ان  ه ب  ه خ  ودت  وان ه  ا ،58 . 1 . 2 ن  ت  ی  ج  ه ب  ن  اب  ه ای  ن رو از م  ی ب  اش  د. م  ن  اس  ب ن  ت  ی  ج  ه در و ت  ب  ادل  ی ح  ل  ق  ه ي
پ  س م  ی ب  اش  د. اول ک  ام  لاً R از P م  ی  ن  ی  م  ال اول ای  ده آل ه  ر و ک  اه  ش  ی R/P (R) ل  ذا اس  ت، 2 -اول  ی  ه ،R آن ج  ای  ی ک  ه
ᾱ-ص  ل  ب ،R/P (R) ای  ن رو از م  ی ب  اش  د. ,ᾱ)-س  ازگ  ار δ̄) ،R/P (R) ن  ت  ی  ج  ه در و اس  ت ,α)-س  ازگ  ار δ) ،P (R)

گ  زاره ب  ن  اب  ه ب  ن  اب  رای  ن ه  س  ت  ن  د. م  رک  زي ،(R/P (R)
)
((x−1; ᾱ, δ̄)) خ  ودت  وان ه  اي ت  م  ام ،1 . 3 . 5 ل  م ب  ن  اب  ه ل  ذا ب  ود. خ  واه  د

م  ی گ  ی  ری  م ن  ت  ی  ج  ه ل  ذا م  ی ب  اش  د. م  ن  ظ  م R/P (R) ،2 . 3 . 5 ل  م ب  ن  اب  ه پ  س اس  ت. ت  م  ی  ز (R/P (R)
)
((x−1; ᾱ, δ̄)) ،59 . 1 . 2

م  ی ب  اش  د. ن  ی  م م  ن  ظ  م R و پ  وچ J(R) ب  ن  اب  رای  ن .P (R) = J(R) ای  ن رو از و ،J(R) ⊆ P (R)

از م  ی ب  اش  د. ک  اه  ش  ی R/J(R) ل  ذا اس  ت، 2 -اول  ی  ه R چ  ون .J(R) = P (R) داری  م ف  رض، ب  ن  اب  ه (5) ⇒(6)
م  ی ب  اش  د. م  ن  ظ  م ق  وی  اً R/J(R) ب  ن  اب  رای  ن ب  ود. خ  واه  د م  ن  ظ  م R/J(R) پ  س اس  ت، ن  ی  م م  ن  ظ  م R آن ج  ای  ی ک  ه

م  ی ش  ود. ن  ت  ی  ج  ه ،[2 . 5 ق  ض  ی  ه ،57] ب  ره  ان از ق  س  م  ت ای  ن اص  ل  ی ای  ده ک  ه م  ی ش  وی  م م  ت  ذک  ر اب  ت  دا، در (6) ⇒(1)
ک  ه ب  ه ط  وري f ∈ T ف  رض ک  ن  ی  م .J(T ) = J(R)((x−1;α, δ)) داری  م ف  رض، از اس  ت  ف  اده ب  ا و 6 . 2 . 5 ل  م ب  ن  اب  ه
،2 . 1 . 4 گ  زاره ب  ن  اب  ه پ  س اس  ت، م  ن  ظ  م ق  وی  اً R̄ := R/J(R) چ  ون .f ∈ cln(T ) م  ی ده  ی  م ن  ش  ان .f =

∑n
i=0 aix

n−i

،e20 = e0 ک  ه داری  م ت  وج  ه .ū0 ∈ U(R̄) و اس  ت R̄ از م  رک  زي ع  ن  ص  ر ē0 ∈ Idem(R̄) ک  ه ب  ه ط  وري ā0 = ē0ū0

و e0u0e0 ∈ U(e0Re0) ک  ه ب  ه ط  وري a0 = e0u0e0 + j0 ل  ذا آی  ن  د. م  ی ب  الا J(R) پ  ی  م  ان  ه ب  ه خ  ودت  وان ه  ا زی  را
پ  س ،δ(e) = 0 و α(e) = e داری  م ،e ∈ Idem(R) ه  ر ب  راي ف  رض، ب  ن  اب  ه چ  ون .j0 ∈ J(R)

e0fe0 = · · ·+ e0an+1x
−1e0 + e0ane0 + e0an−1xe0 + · · ·+ e0a1x

n−1e0

+e0a0x
ne0

= · · ·+ e0an+1e0x
−1 + e0ane0 + e0an−1e0x+ · · ·+ e0a1e0x

n−1

+(e0u0e0 + e0j0e0)x
n.

ع  ن  ص  ري e0fe0 (ب  ن  اب  رای  ن e0fe0 ∈ U
(
e0Re0((x

−1;α, δ)) = e0R((x−1;α, δ))e0
) ،2 . 1 . 5 گ  زاره ب  ن  اب  ه

ل  ذا .ē0f̄ = f̄ ē0 پ  س اس  ت، م  رک  زي ē0 ∈ R̄ آن ج  ای  ی ک  ه از م  ی ب  اش  د). e0Re0((x
−1;α, δ)) از ت  م  ی  ز

داری  م: ن  ت  ی  ج  ه در و e0f − fe0, fe0 − e0f ∈ J(R)((x−1;α, δ)) = J(T )

e0f(1− e0), (1− e0)fe0 ∈ J(T ).

از ت  م  ی  ز ع  ن  ص  ري (1− e0)f(1− e0) ک  ن  ی  م ث  اب  ت اس  ت ک  اف  ی ،36 . 1 . 2 ل  م ب  ن  اب  ه

(1− e0)R(1− e0)((x
−1;α, δ))

(
= (1− e0)R((x−1;α, δ))(1− e0)

)
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م  ی ده  ی  م: ق  رار م  ی ب  اش  د.

f1 := (1− e0)f(1− e0) = · · ·+ (1− e0)an+1x
−1(1− e0) + (1− e0)an(1− e0)

+(1− e0)an−1x(1− e0) + · · ·+ (1− e0)a1x
n−1(1− e0) + (1− e0)a0x

n(1− e0).

داری  م: ف  رض، ب  ن  اب  ه

f1 = · · ·+ (1− e0)an+1(1− e0)x
−1 + (1− e0)an(1− e0) + (1− e0)an−1(1− e0)x

+ · · ·+ (1− e0)a1(1− e0)x
n−1 + (1− e0)j0(1− e0)x

n.

ب  ه ط  وري اس  ت J(R1) پ  ی  م  ان  ه ب  ه م  ن  ظ  م ق  وی  اً و 2 -اول  ی  ه ،R1 ل  ذا ،R1 := (1 − e0)R(1 − e0) ف  رض ک  ن  ی  م
ک  ه ب  ه ط  وري (1 − e0)a1(1 − e0) = e1u1e1 + j1 داری  م ف  وق ت  وض  ی  ح  ات ب  ن  اب  ه پ  س م  ی ب  اش  د. پ  وچ J(R1) ک  ه
α(R1) ⊆ R1 چ  ون .j1 ∈ J(R1) و e1u1e1 ∈ U(e1R1e1) اس  ت، J(R1) پ  ی  م  ان  ه ب  ه م  رک  زي e1 ∈ Idem(R1)

داری  م: ف  رض، ب  ن  اب  ه ک  ه داری  م ت  وج  ه ب  ود. خ  واه  د ح  ل  ق  ه R1((x
−1;α, δ)) ای  ن رو از ،δ(R1) ⊆ R1 و

e1f1e1 = · · ·+ e1(1− e0)an+1(1− e0)e1x
−1 + e1(1− e0)an(1− e0)e1

+e1(1− e0)an−1(1− e0)e1x+ · · ·+ e1(1− e0)a1(1− e0)e1x
n−1

+e1(1− e0)j0(1− e0)e1x
n.

ل  ذا

e1f1e1 = · · ·+ e1an+1e1x
−1 + e1ane1 + e1an−1e1x+ · · ·+ e1a1e1x

n−1 + e1j0e1x
n

=
(
· · ·+ e1an+1e1x

−1 + e1ane1 + · · ·+ (e1u1e1 + e1j1e1)x
n−1

)
+ e1j0e1x

n.

e1R1e1((x
−1;α, δ))

(
= e1R1((x

−1;α, δ))e1
) از وارون پ  ذی  ر ع  ن  ص  ري e1f1e1 ،2 . 1 . 5 گ  زاره ب  ن  اب  ه ب  ن  اب  رای  ن

پ  س م  ی ب  اش  د، م  رک  زي ē1 ∈ R̄1 چ  ون اس  ت. ت  م  ی  ز e1f1e1 ∈ e1R1e1((x
−1;α, δ)) ن  ت  ی  ج  ه در و م  ی ب  اش  د

ب  راي ،36 . 1 . 2 ل  م ب  ن  اب  ه .e1f1(1−e0−e1), (1−e0−e1)f1e1 ∈ J
(
R1((x

−1;α, δ))
) ای  ن رو از .ē1f̄1 = f̄1ē1

f2 := (1− e0 − e1)f1(1− e0 − e1) ده  ی  م ن  ش  ان اس  ت ک  اف  ی ،f1 ∈ cln
(
(R1((x

−1;α, δ))
) ک  ن  ی  م ث  اب  ت ای  ن  ک  ه

ب  ود. خ  واه  د (1− e0 − e1)R(1− e0 − e1)((x
−1;α, δ)) از ت  م  ی  ز ع  ن  ص  ري

داری  م ،i = 1, 2, . . . , n− 1 ب  راي ک  ه م  ی ک  ن  ی  م ت  وج  ه

(1− e0 − · · · − ei−1)ai(1− e0 − · · · − ei−1) = eiuiei + ji

ب  ه م  رک  زي ei ∈ Idem
(
Ri := (1 − e0 − · · · − ei−1)R(1 − e0 − · · · − ei−1)

) ک  ه ب  ه ط  وري
م  ی ده  ی  م ق  رار ،i = 1, 2, . . . , n − 1 ب  راي .ji ∈ J(Ri) و eiuiei ∈ U(eiRiei) اس  ت، J(Ri) پ  ی  م  ان  ه

م  ی گ  ی  ری  م: ن  ت  ی  ج  ه ف  وق ت  وض  ی  ح  ات ب  ن  اب  ه .fi := (1− e0 − · · · − ei−1)f(1− e0 − · · · − ei−1)

f ∈ cln
(
R((x−1;α, δ))

)
⇔ f1 ∈ cln

(
R1((x

−1;α, δ))
)
⇔ f2 ∈ cln

(
R2((x

−1;α, δ))
)

⇔ · · · ⇔ fn ∈ cln
(
Rn((x

−1;α, δ))
)
.

ک  ه ب  ه ط  وري ب  اش  د fn = g + h ف  رض ک  ن  ی  م ح  ال
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g = (1− e0 − · · · − en−1)(jn−1x+ · · ·+ j1x
n−1 + j0x

n)(1− e0 − · · · − en−1)

و

h = (1− e0 − · · · − en−1)(· · ·+ an+1x
−1 + an)(1− e0 − · · · − en−1).

.g ∈ J(Rn)((x
−1;α, δ)) = J

(
Rn((x

−1;α, δ))
پ  س( ،j0, j1, . . . , jn−1 ∈ J(R) داری  م ،14 . 1 . 2 ق  ض  ی  ه ب  ن  اب  ه

ک  ه ب  ه ط  وري h = v + e ل  ذا ،h ∈ cln
(
Rn((x

−1;α, δ))
) داش  ت خ  واه  ی  م ،3 . 3 . 5 گ  زاره ب  ن  اب  ه اس  ت، ت  م  ی  ز Rn چ  ون

ای  ن رو از ،g ∈ J
(
Rn((x

−1;α, δ))
) ط  رف  ی از .e ∈ Idem

(
Rn((x

−1;α, δ))
) و v ∈ U

(
Rn((x

−1;α, δ))
)

و ب  ود خ  واه  د Rn((x
−1;α, δ)) از ت  م  ی  ز ع  ن  ص  ري fn = (g + v) + e ب  ن  اب  رای  ن .g + v ∈ U

(
Rn((x

−1;α, δ))
)

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه

ل  وران س  ري ه  اي ح  ل  ق  ه ي آن ه  ا ت  ح  ت ک  ه م  ی ک  ن  ی  م ب  ی  ان را ش  رای  ط  ی ،4 . 3 . 5 ق  ض  ی  ه از ن  ت  ی  ج  ه اي ب  ه ع  ن  وان ادام  ه، در
ب  ود. خ  واه  د ت  م  ی  ز اری  ب م  ع  ک  وس

ه  ر ب  راي و R روي α-م  ش  ت  ق ت  اب  ع δ ،R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د ک  اه  ش  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .5 . 3 . 5 ن  ت  ی  ج  ه
ی  ک R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، .δ(e) = 0 و α(e) = e ب  اش  ی  م داش  ت  ه ،e ∈ Idem(R)

ب  اش  د. م  ن  ظ  م ق  وی  اً R اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ت  م  ی  ز R((x−1;α, δ)) ای  ن ص  ورت، در ب  اش  د. ,α)-ای  ده آل δ)

،a ب  ه واب  س  ت  ه ،m = m(a) م  ث  ب  ت ص  ح  ی  ح ع  دد ،x ∈ R ه  ر ب  راي ه  رگ  اه م  ی ن  ام  ی  م π-م  ن  ظ  م4 ق  وی  اً را R ح  ل  ق  ه ي
π-م  ن  ظ  م ق  وی  اً ،R ج  اب  ه ج  ای  ی ح  ل  ق  ه ي ،25 . 1 . 2 ل  م ب  ن  اب  ه ک  ه م  ی ک  ن  ی  م ت  وج  ه .amR = am+1R ک  ه ب  ه ط  وري ب  اش  د م  وج  ود

اس  ت. پ  وچ J(R) ک  ه ب  ه ط  وري م  ن  ظ  م ب  اش  د (ق  وی  اً) R/J(R) ح  ل  ق  ه ي اگ  ر ت  ن  ه  ا و اگ  ر اس  ت
م  ی گ  ردد. ن  ت  ی  ج  ه ،4 . 3 . 5 ق  ض  ی  ه از ب  ع  دي ن  ت  ی  ج  ه

ب  راي و R روي α-م  ش  ت  ق ت  اب  ع δ ،R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د ج  اب  ه ج  ای  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .6 . 3 . 5 ن  ت  ی  ج  ه
ی  ک R از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، .δ(e) = 0 و α(e) = e ب  اش  ی  م داش  ت  ه ،e ∈ Idem(R) ه  ر

ب  اش  د. π-م  ن  ظ  م ق  وی  اً R اگ  ر ت  ن  ه  ا و اگ  ر اس  ت ت  م  ی  ز R((x−1;α, δ)) ای  ن ص  ورت، در ب  اش  د. ,α)-ای  ده آل δ)

م  ی ک  ن  د. ب  ی  ان را ب  اش  د ک  اه  ش  ی R((x−1;α, δ)) ح  ل  ق  ه ي ای  ن  ک  ه ب  راي ک  اف  ی ش  رط ب  ع  دي، ن  ت  ی  ج  ه

ای  ده آل ه  ر و R روي α-م  ش  ت  ق ت  اب  ع δ ،R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د ک  اه  ش  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .7 . 3 . 5 ل  م
اس  ت. ک  اه  ش  ی R((x−1;α, δ)) ای  ن ص  ورت، در ب  اش  د. ,α)-ای  ده آل δ) ی  ک R از P م  ی  ن  ی  م  ال اول

f2 پ  ی  ش  رو ض  ری  ب ای  ن ص  ورت، در .f2 = 0 ک  ه ب  ه ط  وري f =
∑∞

i=0 aix
n−i ∈ R((x−1;α, δ)) ف  رض ک  ن  ی  م ب  ره  ان.

ای  ده ال ه  ر پ  س م  ی ب  اش  د)، 2 -اول  ی  ه ن  ت  ی  ج  ه در (و اس  ت ک  اه  ش  ی R چ  ون .a0αn(a0) = 0 ای  ن رو از ب  ود. خ  واه  د 0 ب  راب  ر
،a0 ∈ P م  ی گ  ی  ری  م ن  ت  ی  ج  ه م  ورد، دو ه  ر در .αn(a0) ∈ P ی  ا a0 ∈ P ل  ذا ب  ود. خ  واه  د اول ک  ام  لاً R از P م  ی  ن  ی  م  ال اول
ن  ت  ی  ج  ه و ،f = 0 ب  ن  اب  رای  ن اس  ت. ک  اه  ش  ی R زی  را ،a0 ∈ ∩P = {0} ای  ن رو از م  ی ب  اش  د. ,α)-ای  ده آل δ) ی  ک P زی  را

م  ی گ  ردد. ح  اص  ل
4Strongly π-regular
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م  ی ک  ن  د. ب  ی  ان را ب  اش  د ن  ی  وم  ان ف  ن م  ن  ظ  م R((x−1;α, δ)) ح  ل  ق  ه ي ای  ن  ک  ه ب  راي لازم ش  رط ب  ع  دي ن  ت  ی  ج  ه

ای  ده آل ه  ر و R روي α-م  ش  ت  ق ت  اب  ع δ ،R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د ک  اه  ش  ی ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .8 . 3 . 5 ل  م
ب  اش  د، ن  ی  وم  ان ف  ن م  ن  ظ  م ح  ل  ق  ه ي R((x−1;α, δ)) اگ  ر ای  ن ص  ورت، در ب  اش  د. ,α)-ای  ده آل δ) ی  ک R از P م  ی  ن  ی  م  ال اول

ب  ود. خ  واه  د ن  ی  وم  ان ف  ن م  ن  ظ  م ن  ی  ز R آن گ  اه

ک  ه ب  ه ط  وري afa = a داری  م ،a ∈ R ه  ر ب  راي پ  س اس  ت، ن  ی  وم  ان ف  ن م  ن  ظ  م R((x−1;α, δ)) چ  ون ب  ره  ان.
.a = a2f ل  ذا اس  ت، ک  اه  ش  ی R((x−1;α, δ)) ح  ل  ق  ه ي ،7 . 3 . 5 ل  م ب  ن  اب  ه .f =

∑∞
i=0 aix

n−i ∈ R((x−1;α, δ))

ن  ت  ی  ج  ه و م  ی ب  اش  د ن  ی  وم  ان ف  ن م  ن  ظ  م a ب  ن  اب  رای  ن اس  ت. ک  اه  ش  ی R زی  را ،a = aana ن  ت  ی  ج  ه در و a = a2an ای  ن رو از
م  ی گ  ردد. ح  اص  ل

،e ∈ Idem(R) ه  ر ب  راي و ب  اش  د R روي α-م  ش  ت  ق ت  اب  ع δ و R ح  ل  ق  ه ي از خ  ودری  خ  ت  ی α ف  رض ک  ن  ی  م .9 . 3 . 5 گ  زاره
R آن گ  اه ب  اش  د، ن  ی  وم  ان ف  ن م  ن  ظ  م T = R((x−1;α, δ)) اگ  ر ای  ن ص  ورت، در .δ(e) = 0 و α(e) = e ب  اش  ی  م داش  ت  ه

ن  م  ی ب  اش  د. م  ت  ع  ام  د خ  ودت  وان ه  اي از ن  ام  ت  ن  اه  ی م  ج  م  وع  ه ي ش  ام  ل

،i = 0, 1, 2, . . . ه  ر ب  راي ک  ه ب  ه ط  وري ب  اش  د م  وج  ود e0, e1, . . . ن  ام  ت  ن  اه  ی دن  ب  ال  ه ي ف  رض ک  ن  ی  م خ  ل  ف، ف  رض ب  ه ب  ره  ان.
ت  ول  ی  د T از راس  ت ای  ده آل ب  ه ع  ن  وان و Z =

∑∞
i=0 eix

−i م  ی ده  ی  م ق  رار ب  اش  ن  د. R از ن  اص  ف  ر م  ت  ع  ام  د خ  ودت  وان ه  اي ه  ا ei

وج  ود f =
∑∞

j=0 ajx
s−j ∈ Idem(T ) پ  س م  ی ب  اش  د، ن  ی  وم  ان ف  ن م  ن  ظ  م T چ  ون م  ی گ  ی  ری  م. ن  ظ  ر در Z ت  وس  ط ش  ده

ب  راي ،−i ت  وان ب  راي fZ = Z م  ع  ادل  ه ي س  م  ت دو در ض  رای  ب م  ق  ای  س  ه ب  ا .ZT = fT و a0 ̸= 0 ک  ه ب  ه ط  وري دارد
داش  ت خ  واه  ی  م ،i = 0, 1, 2, . . .∑

m+n=s+i

amen = ei.

پ  س اس  ت، ZT در م  ش  م  ول f چ  ون .asei = ei داری  م ق  ب  ل، م  ع  ادل  ه در ،0 ≤ i < ∞ ب  راي راس  ت، س  م  ت از ei ض  رب ب  ا
ن  ت  ی  ج  ه ،Zg = f م  ع  ادل  ه در x0 ض  رای  ب م  ق  ای  س  ه از .Zg = f و b0 ̸= 0 ک  ه ب  ه ط  وري دارد وج  ود g =

∑∞
j=0 bjx

t−j

م  ی گ  ی  ری  م:

as =
∑
i+j=t

eiα
−i(bj). (2 . 5)

داش  ت: خ  واه  ی  م ،2 . 5 م  ع  ادل  ه در راس  ت از ek ض  رب ب  ا ح  ال .k > t ف  رض ک  ن  ی  م

ek = asek =
∑
i+j=t

eiα
−i(bj)ek.

R ب  ن  اب  رای  ن اس  ت. ت  ن  اق  ض ی  ک ک  ه ،ek = 0 م  ی گ  ی  ری  م ن  ت  ی  ج  ه آن گ  اه ک  ن  ی  م، ض  رب ق  ب  ل م  ع  ادل  ه در چ  پ از دوب  اره را ek اگ  ر
م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و ن  م  ی ب  اش  د م  ت  ع  ام  د خ  ودت  وان ه  اي از ن  ام  ت  ن  اه  ی م  ج  م  وع  ه ي ش  ام  ل

ه  م  چ  ن  ی  ن، ب  اش  د. ن  ی  م س  اده R/J(R) ه  رگ  اه م  ی ن  ام  ی  م، ن  ی  م م  وض  ع  ی را R ح  ل  ق  ه ي ،[39] ب  ن  اب  ه ک  ه م  ی ک  ن  ی  م ی  ادآوري
آی  ن  د. ب  الا J(R) پ  ی  م  ان  ه ب  ه R خ  ودت  وان ه  اي و ب  اش  د ن  ی  م م  وض  ع  ی R ه  رگ  اه اس  ت، ن  ی  م ک  ام  ل R ح  ل  ق  ه ي

م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي و R ح  ل  ق  ه ي ب  ی  ن را ن  ی  م م  وض  ع  ی و ن  ی  م ک  ام  ل وی  ژگ  ی ه  اي ش  رای  ط  ی ارائ  ه ب  ا ادام  ه، در
گ  رف  ت. خ  واه  ی  م ن  ت  ی  ج  ه R((x−1;α, δ)) اری  ب
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ب  راي و R روي α-م  ش  ت  ق ت  اب  ع δ ،R از خ  ودری  خ  ت  ی α ک  ه ب  ه ط  وري ب  اش  د 2 -اول  ی  ه ح  ل  ق  ه ي R ف  رض ک  ن  ی  م .10 . 3 . 5 ق  ض  ی  ه
ه  ر و T = R((x−1;α, δ)) ف  رض ک  ن  ی  م ه  م  چ  ن  ی  ن، .δ(e) = 0 و α(e) = e ب  اش  ی  م داش  ت  ه ،e ∈ Idem(R) ه  ر

م  ع  ادل  ن  د: زی  ر گ  زاره ه  اي ای  ن ص  ورت، در ب  اش  د. ,α)-ای  ده آل δ) ی  ک R از P م  ی  ن  ی  م  ال اول ای  ده آل

اس  ت. ن  ی  م ک  ام  ل T (1)

م  ی ب  اش  د. ن  ی  م م  وض  ع  ی T (2)

اس  ت. ن  ی  م م  ن  ظ  م T (3)

م  ی ب  اش  د. ن  ی  وم  ان ف  ن م  ن  ظ  م T/J(T ) (4)

م  ی ب  اش  د. پ  وچ J(R) ک  ه ب  ه ط  وري اس  ت ن  ی  م ک  ام  ل R (5)

م  ی ب  اش  د. پ  وچ J(R) ک  ه ب  ه ط  وري اس  ت ب  راب  ر ت  ق  س  ی  م ح  ل  ق  ه ي م  ت  ن  اه  ی ت  ع  داد م  س  ت  ق  ی  م ح  اص  ل  ض  رب ب  ا R/J(R) (6)

م  ی آی  ن  د. ب  ه دس  ت آس  ان  ی ب  ه (1) ⇒(3) ⇒(4) و (1) ⇒(2) ⇒(4) ب  ره  ان.
ل  ذا .J(T ) = P (R)((x−1;α, δ)) ،6 . 2 . 5 ل  م ب  ن  اب  ه (4) ⇒(5)(

R/P (R)
)
((x−1; ᾱ, δ̄)) ∼= T/P (R)((x−1;α, δ)) ∼= T/J(T )

از م  ی  ن  ی  م  ال اول ای  ده آل ه  ر و ک  اه  ش  ی R/P (R) پ  س م  ی ب  اش  د، 2 -اول  ی  ه ،R چ  ون اس  ت. ن  ی  وم  ان ف  ن م  ن  ظ  م
چ  ون اس  ت. ک  اه  ش  ی (

R/P (R)
)
((x−1; ᾱ, δ̄)) ،7 . 3 . 5 ل  م ب  ه ب  ن  ا ای  ن رو از اس  ت. ,ᾱ)-ای  ده آل δ̄) ی  ک ،R/P (R)

از اس  ت. ن  ی  وم  ان ف  ن م  ن  ظ  م ن  ی  ز R/P (R) ،8 . 3 . 5 ل  م ب  ن  اب  ه پ  س اس  ت، ن  ی  وم  ان ف  ن م  ن  ظ  م (R/P (R)
)
((x−1; ᾱ, δ̄))

ق  ض  ی  ه ب  ن  اب  ه ل  ذا ن  م  ی ب  اش  د. م  ت  ع  ام  د خ  ودت  وان ه  اي از ن  ام  ت  ن  اه  ی م  ج  م  وع  ه ي ش  ام  ل R/P (R) ،9 . 3 . 5 گ  زاره ب  ن  اب  ه ط  رف  ی
و J(R) = P (R) ب  ن  اب  رای  ن اس  ت. ن  ی  وم  ان ف  ن م  ن  ظ  م R/P (R) زی  را م  ی ب  اش  د، ن  ی  م س  اده آرت  ی  ن  ی R/P (R) ،60 . 1 . 2

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه
ل  ذا .J(R) = P (R) ن  ت  ی  ج  ه در و م  ی ب  اش  د ک  اه  ش  ی R/P (R) پ  س اس  ت، 2 -اول  ی  ه ،R ح  ل  ق  ه ي چ  ون (5) ⇒(6)
ن  ت  ی  ج  ه ب  ن  اب  رای  ن م  ی ب  اش  د. ن  ی  م ک  ام  ل R زی  را اس  ت، ب  راب  ر ت  ق  س  ی  م ح  ل  ق  ه ي م  ت  ن  اه  ی ت  ع  داد م  س  ت  ق  ی  م ح  اص  ل  ض  رب ب  ا R/J(R)

م  ی ش  ود. ح  اص  ل
داری  م ف  رض، ب  ن  اب  ه (6) ⇒(1)

R/J(R) = D1 ×D2 × · · · ×Dk,

م  ن  ظ  م R/J(R) پ  س اس  ت، ن  ی  م س  اده R/J(R) چ  ون م  ی ب  اش  ن  د. ت  ق  س  ی  م ح  ل  ق  ه ي ه  ا Di ،1 ≤ i ≤ k ب  راي ک  ه ب  ه ط  وري
ای  ن رو از م  ی ب  اش  د. ک  اه  ش  ی R/J(R) ل  ذا اس  ت، پ  وچ J(R) و 2 -اول  ی  ه ح  ل  ق  ه ي R ف  رض، ب  ن  اب  ه ب  ود. خ  واه  د ن  ی  وم  ان ف  ن
T خ  ودت  وان ه  اي ،37 . 1 . 2 گ  زاره ب  ن  اب  ه ل  ذا اس  ت. ت  م  ی  ز T ،4 . 3 . 5 ق  ض  ی  ه ب  ن  اب  ه پ  س ب  ود. خ  واه  د م  ن  ظ  م ق  وی  اً R/J(R)

پ  س اس  ت، پ  وچ J(R) چ  ون .J(T ) = P (R)((x−1;α, δ)) داری  م ،6 . 2 . 5 ل  م ب  ن  اب  ه م  ی آی  ن  د. ب  الا J(T ) پ  ی  م  ان  ه ب  ه
ای  ن رو از .J(T ) = J(R)((x−1;α, δ))

T/J(T ) = T/J(R)((x−1;α, δ)) ∼=
(
R/J(R)

)
((x−1; ᾱ, δ̄)).
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ب  ه D1 ×D2 × · · · ×Dk از ای  ده آل ه  ر و ه  س  ت  ن  د م  ج  زا غ  ی  ره  م  ری  خ  ت ت  ق  س  ی  م ح  ل  ق  ه ه  اي ه  ا Di ،1 ≤ i ≤ k ب  راي چ  ون
ب  اش  د، D1 ×D2 × · · · ×Dk از خ  ودری  خ  ت  ی α اگ  ر پ  س .Ii ⊴Di ک  ه ب  ه ط  وري م  ی ب  اش  د I1 × I2 × · · · × Ik ش  ک  ل

داری  م: ،ai ∈ Di ه  ر ب  راي آن گ  اه

α
(
(0, . . . , ai, 0, . . . , 0︸ ︷︷ ︸

k

)
)
= (0, . . . , 0, bi, 0, . . . , 0︸ ︷︷ ︸

k

)

م  ی ش  ود. ت  ع  ری  ف Di از خ  ودری  خ  ت  ی ب  ه ع  ن  وان α ،1 ≤ i ≤ k ه  ر ب  راي ن  ت  ی  ج  ه در .1 ≤ i ≤ k ک  ه ب  ه ط  وري
اگ  ر چ  ون ش  ود، ت  ع  ری  ف Di ه  ر ب  راي م  ی ت  وان  د δ ،1 ≤ i ≤ k ب  راي ه  م  چ  ن  ی  ن،

δ
(
(a1, 0, . . . , 0︸ ︷︷ ︸

k

)
)
= (a′1, a

′
2, . . . , a

′
k),

داری  م آن گ  اه

(0, 0, . . . , 0) = δ
(
(a1, 0, . . . , 0)(0, 1, 0, . . . , 0)

)
= δ

(
(a1, 0, . . . , 0)

)
(0, 1, 0, . . . , 0)

+α
(
(a1, 0, . . . , 0)

)
δ
(
(0, 1, 0, . . . , 0)

)
= (a′1, a

′
2, . . . , a

′
k)(0, 1, 0, . . . , 0) + (x′1, 0, . . . , 0)(b12 , b22 , . . . , bk2),

(0, 0, . . . , 0) = δ
(
(a1, 0, . . . , 0)(0, 0, 1, 0, . . . , 0)

)
= δ

(
(a1, 0, . . . , 0)

)
(0, 0, 1, 0, . . . , 0)

+α
(
(a1, 0, . . . , 0)

)
δ
(
(0, 0, 1, 0, . . . , 0)

)
= (a′1, a

′
2, . . . , a

′
k)(0, 0, 1, 0, . . . , 0) + (x′1, 0, . . . , 0)(b13 , b23 , . . . , bk3),

...
(0, 0, . . . , 0) = δ

(
(a1, 0, . . . , 0)(0, 0, . . . , 0, 1)

)
= δ

(
(a1, 0, . . . , 0)

)
(0, 0, . . . , 0, 1)

+α
(
(a1, 0, . . . , 0)

)
δ
(
(0, 0, . . . , 0, 1)

)
= (a′1, a

′
2, . . . , a

′
k)(0, 0, . . . , 0, 1) + (x′1, 0, . . . , 0)(b1k , b2k , . . . , bkk).

ل  ذا .a′2 = a′3 = · · · = a′k = 0 گ  رف  ت ن  ت  ی  ج  ه م  ی ت  وان ف  وق، اس  ت  دلال ب  ن  اب  ه

δ
(
(a1, 0, . . . , 0︸ ︷︷ ︸

k

)
)
= (a′1, 0, . . . , 0︸ ︷︷ ︸

k

).

داش  ت خ  واه  ی  م ،ai ∈ Di ه  ر ب  راي م  ش  اب  ه، اس  ت  دلال  ی ب  ا

δ
(
(0, . . . , ai, 0, . . . , 0︸ ︷︷ ︸

k

)
)
= (0, . . . , a′i, 0, . . . , 0︸ ︷︷ ︸

k

),

ب  ن  اب  رای  ن .1 ≤ i ≤ k ک  ه )ب  ه ط  وري
R/J(R)

)
((x−1; ᾱ, δ̄)) ∼= D1((x

−1;α, δ))× · · · ×Dk((x
−1;α, δ)).

،1 ≤ i ≤ k ب  راي ،2 . 1 . 5 گ  زاره ب  ن  اب  ه پ  س ه  س  ت  ن  د، ت  ق  س  ی  م ح  ل  ق  ه ي ه  ا Di ،1 ≤ i ≤ k ه  ر ب  راي چ  ون
م  ی ب  اش  د ن  ی  م س  اده آرت  ی  ن  ی (R/J(R)

)
((x−1;α, δ)) ای  ن رو از ب  ود. خ  واه  ن  د ت  ق  س  ی  م ح  ل  ق  ه ي ن  ی  ز ه  ا Di((x

−1;α, δ))

م  ی گ  ردد. ح  اص  ل ن  ت  ی  ج  ه و اس  ت ن  ی  م ک  ام  ل T ب  ن  اب  رای  ن ب  ود. خ  واه  د ن  ی  م س  اده آرت  ی  ن  ی T/J(T ) ن  ت  ی  ج  ه در و
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خ  ودت  وان و وارون پ  ذی  ر ع  ن  اص  ر ل  ذا م  ی ک  ن  ن  د. ب  ررس  ی و ت  ح  ق  ی  ق ارُ ت  وس  ی  ع ه  اي س  اخ  ت  اره  اي م  ورد در پ  ژوه  ش  گ  ران ک  ه س  ال  ه  اس  ت
چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي در را وارون پ  ذی  ر و خ  ودت  وان ع  ن  اص  ر اب  ت  دا رس  ال  ه ای  ن در م  ی ب  اش  د. اه  م  ی  ت ح  ائ  ز ح  ل  ق  ه ه  ا ای  ن در
ع  ن  اص  ر ب  ی  ن رواب  ط س  پ  س ک  ردی  م. م  ش  خ  ص اس  ت، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و R ح  ل  ق  ه ي ک  ه ه  ن  گ  ام  ی R[x;α, δ] اری  ب
ح  ل  ق  ه ي در را ت  م  ی  ز و م  ن  ظ  م ع  ن  اص  ر و آوردی  م دس  ت ب  ه ح  ل  ق  ه ای  ن در را ت  م  ی  ز و م  ن  ظ  م ع  ن  اص  ر و وارون پ  ذی  ر و خ  ودت  وان
م  س  ئ  ل  ه ک  ردی  م. ب  ررس  ی اس  ت، ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ک  ه ه  ن  گ  ام  ی R[x;α, δ] اری  ب چ  ن  دج  م  ل  ه اي ه  اي
م  ن  ظ  م خ  ودت  وان، وارون پ  ذی  ر، ع  ن  اص  ر آی  ا آن گ  اه ب  اش  د، ,α)-س  ازگ  ار δ) و 2 -اول  ی  ه ،R ح  ل  ق  ه ي اگ  ر ک  ه اس  ت ای  ن ت  وج  ه ق  اب  ل

ک  رد. م  ش  خ  ص م  ی ت  وان R[x;α, δ] اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي در را ت  م  ی  ز و
پ  وچ ت  وان ع  ن  ص  ر ی  ک و خ  ودت  وان ع  ن  ص  ر ی  ک م  ج  م  وع ف  رم ب  ه ب  ت  وان را r ه  رگ  اه م  ی ن  ام  ی  م ت  م  ی  ز1 پ  وچ را r ∈ R ع  ن  ص  ر
R ح  ل  ق  ه ي ک  ه ه  ن  گ  ام  ی م  ی ب  اش  د R[x;α, δ] اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي ت  م  ی  ز پ  وچ ع  ن  اص  ر ب  ررس  ی ب  از م  س  ئ  ل  ه ب  ن  وی  س  ی  م.

اس  ت. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و
آن ک  ردن ب  ررس  ی ب  راي ک  ارآم  د روش ه  اي از ی  ک  ی ری  اض  ی  ات م  خ  ت  ل  ف ش  اخ  ه ه  اي ب  ی  ن م  وج  ود م  ف  اه  ی  م ک  ردن م  رت  ب  ط
پ  ژوه  ش  گ  ران ک  ه اس  ت م  وض  وع  ات  ی گ  راف ه  ا و ح  ل  ق  ه ه  ا س  اخ  ت  ار ب  ی  ن ارت  ب  اط و ح  ل  ق  ه ب  ه گ  راف دادن ن  س  ب  ت م  ی ب  اش  د. م  ف  اه  ی  م

ش  دن  د. آن ه  ا ج  ذب ج  ب  ر ش  اخ  ه در ب  ه خ  ص  وص زی  ادي
رئ  وس م  ج  م  وع  ه ي ک  ه اس  ت گ  راف  ی ،R ح  ل  ق  ه ي ت  م  ی  ز2 گ  راف ب  اش  د. ج  اب  ه ج  ای  ی) ل  زوم  اً (ن  ه ی  ک  دار ح  ل  ق  ه ي R ک  ن  ی  م ف  رض
و (e, u) م  ج  زاي رأس دو م  ی ب  اش  د. وارون پ  ذی  ر ع  ن  ص  ر ی  ک u و خ  ودت  وان ع  ن  ص  ر ی  ک e ک  ه ب  ه ط  وري اس  ت (e, u) ف  رم ب  ه آن

1Nil clean
2Clean graph
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ن  ش  ان Cl(R) ن  م  اد ب  ا را R ح  ل  ق  ه ي ت  م  ی  ز گ  راف .uv = vu = 0 ی  ا ef = fe = 0 اگ  ر ت  ن  ه  ا و اگ  ر م  ج  اورن  د (f, v)
،Cl(R[x]) گ  راف ه  اي ک  م  ر و اح  اط  ه گ  ر م  ج  م  وع  ه ي ق  ط  ر، م  ان  ن  د گ  راف ن  ظ  ري خ  واص ب  ررس  ی ت  أم  ل ق  اب  ل م  س  ئ  ل  ه م  ی ده  ی  م.

اس  ت. ,α)-س  ازگ  ار δ) و راس  ت دوئ  و ح  ل  ق  ه ي R ک  ه ه  ن  گ  ام  ی م  ی ب  اش  د Cl(R[x;α, δ]) و Cl(R[x;α])
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Skew Armendariz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اری  ب آرم  ن  داری  ز
Prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اول ای  ده آل
Minimal prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ی  ن  ی  م  ال اول ای  ده آل
Completely prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اول ک  ام  لاً ای  ده آل
Maximal ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  اک  س  ی  م  ال ای  ده آل
(α, δ)-ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,α)-ای  ده آل δ)
α-ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . α-ای  ده آل
δ-ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . δ-ای  ده آل
Reversible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  رگ  ش  ت پ  ذی  ر
Nilpotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . پ  وچ ت  وان
Monomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  ک ری  خ  ت  ی
Ore extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اُر ت  وس  ی  ع
Trivial extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  دی  ه  ی ت  وس  ی  ع
Jordan’s construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ج  ردن ت  وس  ی  ع
Köthe’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  وت  ه ح  دس
Abelian ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ح  ل  ق  ه ي آب  ل  ی
Armendariz ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . آرم  ن  داری  ز ح  ل  ق  ه ي
Bounded index ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  ران دار ان  دی  س ح  ل  ق  ه ي
2-primal ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 -اول  ی  ه ح  ل  ق  ه ي
Weakly 2-primal ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ض  ع  ی  ف 2 -اول  ی  ه ح  ل  ق  ه ي
Reversible ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  رگ  ش  ت پ  ذی  ر ح  ل  ق  ه ي
Boolean ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  ول  ی ح  ل  ق  ه ي
Exchange ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  ب  ادل  ی ح  ل  ق  ه ي
Clean ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  م  ی  ز ح  ل  ق  ه ي
Skew polynomial ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي
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Skew Laurent polynomial ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي
Dedekind-finite ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ددک  ی  ن  د-م  ت  ن  اه  ی ح  ل  ق  ه ي
Duo ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . دوئ  و ح  ل  ق  ه ي
Laurent series ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ل  وران س  ري ه  اي ح  ل  ق  ه ي
Skew inverse Laurent series ring . . . . . . . . . . . . . . . . . . . . . . . . . . . اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي
Strongly regular ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ن  ظ  م ق  وی  اً ح  ل  ق  ه ي
Reduceh ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  اه  ش  ی ح  ل  ق  ه ي
Right Goldie ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . راس  ت گ  ل  دي ح  ل  ق  ه ي
Suitable ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ن  اس  ب ح  ل  ق  ه ي
Von Neumann regular ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  وم  ان ف  ن م  ن  ظ  م ح  ل  ق  ه ي
Local ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  وض  ع  ی ح  ل  ق  ه ي
Von Neumann local ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  وم  ان ف  ن م  وض  ع  ی ح  ل  ق  ه ي
Semiprimitive ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  م اب  ت  دائ  ی ح  ل  ق  ه ي
Semiperfect ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  م ک  ام  ل ح  ل  ق  ه ي
Semiregular ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  م م  ن  ظ  م ح  ل  ق  ه ي
Semilocal ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  م م  وض  ع  ی ح  ل  ق  ه ي
α-compatible ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . α-س  ازگ  ار ح  ل  ق  ه ي
δ-compatible ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . δ-س  ازگ  ار ح  ل  ق  ه ي
α-rigid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . α-ص  ل  ب ح  ل  ق  ه ي
π-regular ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π-م  ن  ظ  م ح  ل  ق  ه ي
Insertion-of-factors-property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IFP خ  اص  ی  ت
Idempotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . خ  ودت  وان
Orthogonal idempotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ت  ع  ام  د خ  ودت  وان ه  اي
Automorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . خ  ودری  خ  ت  ی
Endomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . درون ری  خ  ت  ی
Right duo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . راس  ت دوئ  و
Prime radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اول رادی  ک  ال
Upper nilradical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  الای  ی پ  وچ رادی  ک  ال
Lower nilradical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . پ  ای  ی  ن  ی پ  وچ رادی  ک  ال
Jacobson radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ج  ی  ک  ب  س  ون رادی  ک  ال
Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . رئ  وس
Ascending chain condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اف  زای  ش  ی زن  ج  ی  ر ش  رط
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Descending chain condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  اه  ش  ی زن  ج  ی  ر ش  رط
Countable locally nilpotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . پ  وچ ت  وان م  وض  ع  اً ش  م  ارا
Nil clean element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  م  ی  ز پ  وچ  ع  ن  ص  ر
Clean element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  م  ی  ز ع  ن  ص  ر
Von Neumann regular element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  وم  ان ف  ن م  ن  ظ  م ع  ن  ص  ر
Unit-regular element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ن  ظ  م-وارون پ  ذی  ر ع  ن  ص  ر
Von Neumann local element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  وم  ان ف  ن م  وض  ع  ی ع  ن  ص  ر
Invertible element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . وارون پ  ذی  ر ع  ن  ص  ر
π-regular element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π-م  ن  ظ  م ع  ن  ص  ر
Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ق  ط  ر
Strongly π-regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π-م  ن  ظ  م ق  وی  اً
Girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  م  ر
Clean graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  م  ی  ز گ  راف
Adjacent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ج  اور
Dominating set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اح  اط  ه گ  ر م  ج  م  وع  ه ي
Zero divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ص  ف  ر م  ق  س  وم ع  ل  ی  ه
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Abelian ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . آب  ل  ی ح  ل  ق  ه ي
Adjacent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ج  اور
Armendariz ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . آرم  ن  داری  ز ح  ل  ق  ه ي
Ascending chain condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اف  زای  ش  ی زن  ج  ی  ر ش  رط
Automorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . خ  ودری  خ  ت  ی
Boolean ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  ول  ی ح  ل  ق  ه ي
Bounded index ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  ران دار ان  دی  س ح  ل  ق  ه ي
Clean element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  م  ی  ز ع  ن  ص  ر
Clean graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  م  ی  ز گ  راف
Clean ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  م  ی  ز ح  ل  ق  ه ي
Completely prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اول ک  ام  لاً ای  ده آل
α-compatible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . α-س  ازگ  ار ح  ل  ق  ه ي
δ-compatible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . δ-س  ازگ  ار ح  ل  ق  ه ي
Countable locally nilpotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . پ  وچ ت  وان م  وض  ع  اً ش  م  ارا
Dedekind-finite ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ددک  ی  ن  د-م  ت  ن  اه  ی ح  ل  ق  ه ي
Descending chain condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  اه  ش  ی زن  ج  ی  ر ش  رط
ِDiameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ق  ط  ر
Dominating set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اح  اط  ه گ  ر م  ج  م  وع  ه ي
Duo ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . دوئ  و ح  ل  ق  ه ي
Endomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . درون ری  خ  ت  ی
Exchange ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  ب  ادل  ی ح  ل  ق  ه ي
Girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  م  ر
Idempotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . خ  ودت  وان
Insertion-of-factors-property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IFP خ  اص  ی  ت
Invertible element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . وارون پ  ذی  ر ع  ن  ص  ر
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(α, δ)-ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,α)-ای  ده آل δ)
α-ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . α-ای  ده آل
δ-ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . δ-ای  ده آل
Jacobson radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ج  ی  ک  ب  س  ون رادی  ک  ال
Jordan’s construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ج  ردن ت  وس  ی  ع
Köthe’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  وت  ه ح  دس
Laurent series ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ل  وران س  ري ه  اي ح  ل  ق  ه ي
Local ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  وض  ع  ی ح  ل  ق  ه ي
Lower nilradical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . پ  ای  ی  ن  ی پ  وچ رادی  ک  ال
Maximal ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  اک  س  ی  م  ال ای  ده آل
Minimal prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ی  ن  ی  م  ال اول ای  ده آل
Monomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  ک ری  خ  ت  ی
Nil clean element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ت  م  ی  ز پ  وچ ع  ن  ص  ر
Nilpotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . پ  وچ ت  وان
Ore extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اُر ت  وس  ی  ع
Orthogonal idempotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ت  ع  ام  د خ  ودت  وان ه  اي
Prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اول ای  ده آل
Prime radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اول رادی  ک  ال
2-primal ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 -اول  ی  ه ح  ل  ق  ه ي
Reduced ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ک  اه  ش  ی ح  ل  ق  ه ي
Reversible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  رگ  ش  ت پ  ذی  ر
Reversible ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  رگ  ش  ت پ  ذی  ر ح  ل  ق  ه ي
Right duo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . راس  ت دوئ  و
Right Goldie ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . راس  ت گ  ل  دي ح  ل  ق  ه ي
α-rigid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . α-ص  ل  ب ح  ل  ق  ه ي
π-regular element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π-م  ن  ظ  م ع  ن  ص  ر
π-regular ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π-م  ن  ظ  م ح  ل  ق  ه ي
Semilocal ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  م م  وض  ع  ی ح  ل  ق  ه ي
Semiperfect ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  م ک  ام  ل ح  ل  ق  ه ي
Semiprimitive ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  م اب  ت  دائ  ی ح  ل  ق  ه ي
Semiregular ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  م م  ن  ظ  م ح  ل  ق  ه ي
Skew Armendariz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اری  ب آرم  ن  داری  ز
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Skew inverse Laurent series ring . . . . . . . . . . . . . . . . . . . . . . . . . . . اری  ب م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي
Skew Laurent polynomial ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اری  ب ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي
Skew polynomial ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . اری  ب چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي
Strongly π-regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π-م  ن  ظ  م ق  وی  اً
Strongly regular ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ن  ظ  م ق  وی  اً ح  ل  ق  ه ي
Trivial extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  دی  ه  ی ت  وس  ی  ع
Unit-regular element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . م  ن  ظ  م-وارون پ  ذی  ر ع  ن  ص  ر
Upper nilradical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ب  الای  ی پ  وچ رادی  ک  ال
Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . رئ  وس
Von Neumann local element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  وم  ان ف  ن م  وض  ع  ی ع  ن  ص  ر
Von Neumann local ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  وم  ان ف  ن م  وض  ع  ی ح  ل  ق  ه ي
Von Neumann regular element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  وم  ان ف  ن م  ن  ظ  م ع  ن  ص  ر
Von Neumann regular ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ن  ی  وم  ان ف  ن م  ن  ظ  م ح  ل  ق  ه ي
Weakly 2-primal ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ض  ع  ی  ف 2 -اول  ی  ه ح  ل  ق  ه ي
Zero divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ص  ف  ر م  ق  س  وم ع  ل  ی  ه





ن  م  ای  ه

18 اری  ب، آرم  ن  داری  ز
4 م  ی  ن  ی  م  ال، اول ای  ده آل

9 اول، ک  ام  لاً ای  ده آل
2 م  اک  س  ی  م  ال، ای  ده آل

4 ,α)-ای  ده آل، δ)
12 α-ای  ده آل،

3 δ-ای  ده آل،
1 ب  رگ  ش  ت پ  ذی  ر،

7 پ  وچ ت  وان،
17 ت  ک ری  خ  ت  ی،

1 ارُ، ت  وس  ی  ع
66 ب  دی  ه  ی، ت  وس  ی  ع
18 ج  ردن، ت  وس  ی  ع
1 ،IFP خ  اص  ی  ت

1 ک  وت  ه، ح  دس

1 آب  ل  ی، ح  ل  ق  ه ي
3 ک  ران دار، ان  دی  س ح  ل  ق  ه ي

1 2 -اول  ی  ه، ح  ل  ق  ه ي
9 ض  ع  ی  ف، 2 -اول  ی  ه ح  ل  ق  ه ي

7 ب  رگ  ش  ت پ  ذی  ر، ح  ل  ق  ه ي
2 ب  ول  ی، ح  ل  ق  ه ي

11 ت  ب  ادل  ی، ح  ل  ق  ه ي
12 ت  م  ی  ز، ح  ل  ق  ه ي

4 اری  ب، چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي
4 اری  ب، ل  وران چ  ن  دج  م  ل  ه اي ه  اي ح  ل  ق  ه ي

8 ددک  ی  ن  د-م  ت  ن  اه  ی، ح  ل  ق  ه ي

3 اری  ب، م  ع  ک  وس ل  وران س  ري ه  اي ح  ل  ق  ه ي
3 ل  وران، س  ري ه  اي ح  ل  ق  ه ي

68 م  ن  ظ  م، ق  وی  اً ح  ل  ق  ه ي
1 ک  اه  ش  ی، ح  ل  ق  ه ي

3 راس  ت، گ  ل  دي ح  ل  ق  ه ي
16 م  ن  اس  ب، ح  ل  ق  ه ي

2 ، ن  ی  وم  ان ف  ن م  ن  ظ  م ح  ل  ق  ه ي
9 م  وض  ع  ی، ح  ل  ق  ه ي

11 ، ن  ی  وم  ان ف  ن م  وض  ع  ی ح  ل  ق  ه ي
3 ن  ی  م اب  ت  دائ  ی، ح  ل  ق  ه ي

3 ن  ی  م ک  ام  ل، ح  ل  ق  ه ي
3 ن  ی  م م  ن  ظ  م، ح  ل  ق  ه ي

11 ن  ی  م م  وض  ع  ی، ح  ل  ق  ه ي
13 α-س  ازگ  ار، ح  ل  ق  ه ي
13 δ-س  ازگ  ار، ح  ل  ق  ه ي

4 α-ص  ل  ب، ح  ل  ق  ه ي
2 π-م  ن  ظ  م، ح  ل  ق  ه ي

2 خ  ودت  وان،
12 م  ت  ع  ام  د، خ  ودت  وان ه  اي

3 خ  ودری  خ  ت  ی،
12 درون ری  خ  ت  ی،

4 راس  ت، دوئ  و
3 اول، رادی  ک  ال

7 ب  الای  ی، پ  وچ رادی  ک  ال
2 ج  ی  ک  ب  س  ون، رادی  ک  ال

15 اف  زای  ش  ی، زن  ج  ی  ر ش  رط

91



ن  م  ای  ه 92

16 ک  اه  ش  ی، زن  ج  ی  ر ش  رط
64 پ  وچ ت  وان، م  وض  ع  اً ش  م  ارا

75 ت  م  ی  ز، پ  وچ ع  ن  ص  ر
12 ت  م  ی  ز، ع  ن  ص  ر

10 ، ن  ی  وم  ان ف  ن م  ن  ظ  م ع  ن  ص  ر
12 م  ن  ظ  م-وارون پ  ذی  ر، ع  ن  ص  ر

11 ، ن  ی  وم  ان ف  ن م  وض  ع  ی ع  ن  ص  ر
7 وارون پ  ذی  ر، ع  ن  ص  ر
10 π-م  ن  ظ  م، ع  ن  ص  ر

76 ق  ط  ر،
71 π-م  ن  ظ  م، ق  وی  اً

76 ک  م  ر،
75 ت  م  ی  ز، گ  راف

76 م  ج  اور،
76 اح  اط  ه گ  ر، م  ج  م  وع  ه ي

10 ص  ف  ر، م  ق  س  وم ع  ل  ی  ه



Abstract

In this thesis, we investigate the structure of Ore extensions. Also, we want to peruse some notable

results in noncommutative rings. In this regard, we study some important classes of noncommu-

tative rings such as reversible, right duo, IFP and also abelian. By using these properties, we get

closer to the commutative rings, and for this reason they are called cousins of commutative rings.

Also, we determine some elements such as unit, idempotent, von Neumann regular, von Neumann

local, π-regular and clean in skew polynomial rings, skew Laurent polynomial rings and skew in-

verse Laurent series rings. In the following, we also investigate some radical-theoretic properties

of skew inverse Laurent series rings and specify their Jacobson radicals.

Keywords: Abelian rings; Clean elements; Idempotent elements; IFP ; Jacobson radical; π-

regular elements; Reversible rings; Right duo rings; Skew inverse Laurent series rings; Skew

Laurent polynomial rings; Skew polynomial rings; Unit elements; Von Neumann local elements;

Von Neumann regular elements.
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