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سپاس گزاری

اکنون آراست. عقل زیور را آدمͬ خود، بی کران لطف با که را ح΄یم خداوندگار سپاس
برسانم، انجام به دانش کسب راه در را ناچیز چند هر تلاشͬ توانسته ام او یاری با که
نوری هادی محمد دکتر آقای جناب بزرگوارم، راهنمای استاد از ͬ دانم م لازم خود بر
نگارش و آموخت بنده به را کردن پژوهش صحیح نحوه ی که نمایم قدردانͬ اس΄ندری
آقای جناب از همچنین و نبود. میسر ایشان ارزنده راهنمایی های با جز پایان نامه این
بی های حمایت و ها دل·رمͬ واسطه به ها سال این در که جعفری حسین دکتر
دکتر آقای واز دارم. را گزاری سپاس و تش΄ر کمال بوده اینجانب راه چراغ دریغشان

ͬ نمایم. م تش΄ر نیز قوتمند مهدی
΁بی ش و بودند بنده مشوق همواره زندگͬ دوران تمام در که خانواده ام از پایان، در

دارم. را قدرشناسͬ و سپاس نهایت گردید، مهم این تحقق باعث ایشان حمایت
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است.
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است.
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است. نشده ارایه هیچ جا در امتیازی یا
نام با مستخرج مقالات و دارد، تعلق شاهرود صنعتͬ دانش·اه به اثر، این معنوی حقوق •
خواهد چاپ به “ Shahrood University of Technology “ یا “ شاهرود صنعتͬ دانش·اه “

رسید.
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است.
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نشر حق و نتایج مال΄یت
برنامه های کتاب، مستخرج، ( مقالات آن محصولات و اثر این معنوی حقوق تمام •
شاهرود صنعتͬ دانش·اه به متعلق شده) ساخته تجهیزات و نرم افزارها رایانه ای،

شود. ذکر مربوطه علمͬ تولیدات در مقتضͬ، نحو به باید مطلب این ͬ باشد. م
ͬ باشد. نم مجاز منبع ذکر بدون پایان نامه این در موجود نتایج و اطلاعات از استفاده •

ز



چ΄یده
اختصاص خود به مهندسͬ و علوم در وسیعͬ کاربردهای تاخیری انتگرال و دیفرانسیل معادلات
محاسبه را دقیق جواب ͬ توان نم معادلات، این غیرخطͬ نوع با برخورد در معمولا است. داده
کم خطای و بالا هم·رایی سرعت دارای که کارا عددی جواب ΁ی یافتن این رو از کرد.
لژاندر جمله ای های چند مبنای بر را طیفͬ شبه روش ΁ی رساله این در است. ضروری باشد
ͬ دهیم. م ارائه غیرخطͬ تاخیری انتگرال و دیفرانسیل معادلات از برخͬ حل برای انتقال یافته
آن، بهینه جواب که ͬ کنیم م پیشنهاد غیرخطͬ برنامه ریزی مساله ΁ی پیشنهادی، روش در
روش و محلͬ هم نقاط ب΄ارگیری با را مساله سپس است. مربوطه معادله برای جواب ΁ی
برنامه ریزی مساله این حل از ͬ کنیم. م تبدیل غیرخطͬ برنامه ریزی مساله ΁ی به طیفͬ شبه
روش هم·رایی آنالیز ͬ آوریم. م بدست تاخیری معادله برای تقریبی جواب هایی غیرخطͬ
با بعلاوه ͬ شود. م بررسͬ تاخیری انتگرال و دیفرانسیل معادلات از انواعͬ برای پیشنهادی
معادلات برای موجود روش های و تکنی΁ ها دی·ر با روش مقایسه و عددی مثال چندین حل

ͬ دهیم.// م نشان را پیشنهادی روش قابلیت و کارایی تاخیری، انتگرال و کلیدیدیفرانسیل کلمات
هم·رایی آنالیز ، لژاندر طیفͬ شبه روش ، تاخیری دیفرانسیل‐انتگرال معادلات
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١ فصل
مقدماتͬ مفاهیم و تعاریف

طیفͬ شبه و طیفͬ روش های ١ . ١
حل برای ابتدا در که هستند عددی روش های از رده ای طیف٢ͬ، شبه و طیف١ͬ روش های
طیفͬ روش های مبنای گرفتند. قرار استفاده مورد جزئͬ یا و معمولͬ دیفرانسیل معادلات
شده گرفته کسینوسͬ و سینوسͬ فوریه٣ توابع از استفاده با تابع ΁ی تقریب از طیفͬ شبه و
پایه ای توابع از استفاده با تابع ΁ی تقریب طیفͬ، روش های گفت ͬ توان م صراحت به است.
است محلͬ هم نقاط از استفاده و درونیابی براساس طیفͬ شبه روش های و هستند متعامد

.[٣۵]
زمینه های در زمانͬ پیوسته مسائل حل برای مهم روش های از ی΄ͬ طیفͬ شبه روش
تقریب برای درونیاب چندجمله ای ΁ی از روش، این در است. مهندسͬ و پایه علوم از مختلفͬ
گره  های در تقریبی مقادیر با ͬ تواند م مسئله مجهول تابع ͬ کنیم. م استفاده پیوسته تابع ΁ی
حل برای مناسب عددی روش های از ی΄ͬ ۴(LPS) لژاندر طیفͬ شبه .روش شود بیان خاص
است. داشته غیرخطͬ و خطͬ مسائل حل در زیادی پیشرفت که است، زمانͬ پیوسته مسائل
آن بالای دقت تقریبی روش های سایر به نسبت LPS روش از استفاده مزایا مهم ترین از ی΄ͬ

1Spectral method
2Pseudospectral methods
3Fourier functions
4Legendre pseudo-spectral



مقدماتͬ مفاهیم و تعاریف ٢
متعامد چندجمله ای های وسیله به چندجمله ای ها فضای تحت LPS روش همچنین ͬ باشد. م

ͬ آید. م پدید w(x) = ١ وزن تابع به نسبت و [−١, ١] بازه روی لژاندر

لژاندر چندجمله ای های ١ . ٢
رابطه در که ͬ باشند م [−١, ١] بازه در متعامد چندجمله ای هایی ،[٣۵] لژاندر چندجمله ای های

ͬ کنند، م صدق زیر بازگشتͬ
Pn+١(x) =

٢n+ ١
n+ ١ xPn(x)−

n

n+ ١Pn−١(x), n = ١,٢,٣, . . . , (١ . ١)
.. . . و P٢(x) = ٣)١٢x٢ − ١) ،P١(x) = x ،P٠(x) = ١ که

داریم، و
∫ ١
−١ Pn(x)Pm(x)dx =


٢

٢n+ ١ , n = m,

٠, n ̸= m.

(١ . ٢)

ͬ کنند، م صدق زیر روابط در و هستند کراندار لژاندر چندجمله ای های
|Pn(x)| ≤ ١, ∣∣P ′

n(x)
∣∣ ≤ n(n+ ١)

٢ , −١ ≤ x ≤ ١, (١ . ٣)
مرزی مقادیر با

Pn(±١) = (±١)n, P ′
n(±١) = (±١)n+١

٢ n(n+ ١) (۴ . ١)
ͬ باشد م زیر صورت به آن مشتق با جمله ای ها چند این بین بازگشتͬ رابطه

Pn(x) =
P ′
n+١(x)− P ′

n−١(x)٢n+ ١ , n ≥ ١. (۵ . ١)

لژاندر طیفͬ شبه روش ١ . ٣
که ͬ شود م استفاده {xj , wj}Nj=٠ بصورت وزن ها و گره ها مجموعه از لژاندر طیفͬ شبه روش در

[٣۵] است زیر حالات از ی΄ͬ شامل
:۵(LG) لژاندر‐گاوس . ١

آن متناظر های وزن و هستند PN+١(x) صفرهای {xj}Nj=٠

wj =
٢

(١ − x٢
j )(P

′
N+١(xj))٢

, ٠ ≤ j ≤ N. (۶ . ١)
5Legendre-Gauss



٣ تاخیری مدل های
:۶(LGR) لژاندر‐گاوس‐رادو . ٢

آن متناظر وزن های و هستند PN (x) + PN+١(x) صفرهای {xj}Nj=٠

wj =
١

(N + ٢(١ · ١ − xj

(PN (xj))٢
, ٠ ≤ j ≤ N. (١ . ٧)

:٧(LGL) لژاندر‐گاوس‐لوباتو . ٣
آن متناظر وزن های و هستند (١ − x٢)P ′

N (x) صفرهای {xj}Nj=٠

wj =
٢

N(N + ١) ·
١

(PN (xj))٢
, ٠ ≤ j ≤ N. (١ . ٨)

داریم وزن ها، و گره ها مجموعه به توجه با
∫ ١
−١ P (x)dx =

N∑
j=٠

P (xj)wj , ∀P ∈ P٢N+δ[−١, ١], (١ . ٩)

چندجمله ای های فضای P٢N+δ[−١, ١] و هستند LGL و LGR ،LG برای ترتیب به δ = ١, ١−,٠ که
هستند. [−١, ١] بازه روی شده تعریف

تاخیری مدل های ۴ . ١
از متأثر نه تنها دستگاه کنیم فرض که است طبیعͬ کاربردی، و مهندسͬ دستگاه ΁ی در
گذشته، به وابستگͬ این هست. نیز پیشینͬ حالت های به وابسته بل΄ه است، کنونͬ حالت های
معادلات با ریاضͬ لحاظ به مسائل گونه این ͬ شود. م ظاهر دستگاه آن مدل در تاخیر ش΄ل به
روی دستگاه هایی مدل سازی در تاخیری معادلات ͽواق در ͬ گیرند. م قرار بررسͬ مورد تاخیری
گرفتن نظر در با است. دستگاه گذشته به وابسته صریح به طور آن ها تکاملͬ سیر که ͬ دهند م

ش΄ل به تاخیر پارامتر با دیفرانسیل معادله
dN(t)

dt
= f(N(t), N(t− τ)),

تاخیر پارامتر τ > ٠ آن، در که کرد منظور جمعیت رشد مدل در را تاخیرها این همه ͬ توان م
به صورت ΁لجستی رشد مدل از تعمیمͬ ͬ تواند م مدلͬ چنین ΁ی است.

dN(t)

dt
= rN(t)

[
١ − N(t− τ)

k

]
در جمعیت پارامترتاخیر، با مدل های در هستند. مثبت ثابت های r و k ،τ آن، در که باشد

.[٢۶] دارد بستگͬ t− τ زمان در جمعیت به t زمان
6Legendre-Gauss-Radau
7Legendre-Gauss-Lobatto



مقدماتͬ مفاهیم و تعاریف ۴
نوع ͬ شوند، م نامیده نیز تفاضل٨ͬ دیفرانسیل معادلات که تاخیری دیفرانسیل معادلات
معادلات به شبیه تاخیری دیفرانسیل معادلات هستند. تابع٩ͬ دیفرانسیل معادلات از خاصͬ
بستگͬ نیز گذشته زمان های در حالت متغیرهای به آن ها تحول ولͬ هستند معمولͬ دیفرانسیل
دستگاه کنونͬ حالت دانستن به نه تنها تاخیری، دیفرانسیل معادله ΁ی حل برای لذا دارد.
برخͬ نیازمندیم. نیز گذشته زمانͬ دوره ΁ی در دستگاه وضعیت دانستن به بل΄ه داریم، نیاز
تاخیری دیفرانسیل معادله توصیف برای معمولͬ دیفرانسیل معادلات مدل از پژوهش·ران از
بیان را ΁کوچ تاخیرهای از چشم پوشͬ از ناشͬ خطرات ،[٢١] در کوانگ که کرده اند استفاده

است. کرده

تاخیری دیفرانسیل معادلات کاربردهای ۵ . ١
زیست شناسͬ در (DDEs) تاخیری١٠ دیفرانسیل معادلات کاربردهای از برخͬ به قسمت این در

ͬ کنیم. م اشاره ΁م΄انی و

تاخیری گیری همه مدل ΁ی
گیری همه دیفرانسیل مدل های مقالات، از سری ΁ی در ریاضیدان و زیست شناس لوتکا١١
گیری همه تاخیری دیفرانسیل معادلات او خاص، به طور داد. قرار بررسͬ مورد را مالاریا

کرد پیشنهاد را زیر مالاریا

ḣ(t) = bgm(t− µ١) [p− h(t− µ١)] /p− (M + r)h(t),

ṁ(t) = bfh(t− µ٢) [q −m(t− µ٢)] /p− (N + s)m(t),

(١ . ١٠)

حشرات و انسان ها جمعیت کل q و p ثابت های و حشرات µ٢ = ٠٫۶ و انسان ها µ١ = ٠٫۵ که
ارگانیسم که حشرات و انسان ها جمعیت های دادن نشان برای m(·) و h(·) تابع های هستند.
جمعیت ها این از کدام هر از ثابت نسبت ΁ی است. شده برده به کار ͬ کنند م حمل را مالاریا
باشند. gm و fh ترتیب به عفونت زا جمعیت اینکه فرض با باشند. عفونت زا که است شده فرض
این بر فرض هستند. بهبودی نرخ s و r ͬ که حال در هستند میر و مرگ نرخ N و M مقادیر
دچار زمان واحد در فرد هر و ͬ زنند م نیش را b افراد زمان واحد در پشه ها از ΁ی هر که است

.[٢١] ͬ شود م نیش
8Difference-differential equations
9Functional differential equations

10Delay differential equations
11Lotka



۵ تاخیری دیفرانسیل معادلات کاربردهای

م΄انی΄ͬ تاخیری مدل ΁ی
کنترل اپراتور که دلیل این به است. ضروری امری بارگیری برای جرثقیل هموار و سریع حرکت
΁ی ٢٠٠۵ سال در دارد. وجود جرثقیل کنترل برای زیادی روش های ندهد، دست از را آن
(مرسوم) قراردادی روش از کارآمدتر روش این شد. معرفͬ تاخیری بازخورد کنترل پایه بر روش
توضیح زیر تاخیری دیفرانسیل معادلات توسط کانتینر جرثقیل برای پاندول مدل .[٢٨] است

ͬ شود م داده
ÿ + εẏ + sin(y) = −λ cos(y) (y(t− µ)− y) , ٠ ≤ t ≤ T, (١ . ١١)

با را معادله این بعدی، فصل در است. مثبت ثابت λ و تاخیر µ ͬ دهد، م نشان را زاویه y که
ͬ کنیم. م حل خودمان پیشنهادی روش





٢ فصل
رده ای حل برای لژاندر طیفͬ شبه روش

تاخیری دیفرانسیل معادلات از

مقدمه ٢ . ١
تاخیری دیفرانسیل معادلات از خاصͬ نوع حل برای جای·زین روی΄ردهای گذشته، دهه های در
دیفرانسیل معادلات حل برای را آدومیان تجزیه روش [١١] شاکری٢ و دهقان١ است. شده ارائه
΁ی [۴٧] سزر۴ و یوزباش٣ͬ کرده اند. ارائه ͬ گیرند م منشا ΁ال΄ترودینامی از که تاخیری
کرده اند. ارائه تعمیم یافته پانتوگراف تاخیری دیفرانسیل معادلات حل برای نمایی تقریب روش
پیشنهاد را پانتوگراف معادله حل برای عددی طرح ΁ی همچنین [٣١] هم΄اران و صداقت۵
چندجمله ای های عناصر عنوان به نیاز مورد تقریبی جواب های گسترش شامل روش این کردند.
دیفرانسیل معادلات از عددی جواب ΁ی [٣٠] هم΄اران و صادق۶ͬ ͬ باشد. م تغییریافته چبیشف

1Dehghan
2Shakeri
3Yuzbasi
4Sezer
5Sedaghat
6Sadeghi



تاخیری دیفرانسیل معادلات از رده ای حل برای لژاندر طیفͬ شبه روش ٨
دیفرانسیل معادلات [٢۵] چ٨ͬ و ل٧ͬ کردند. پیشنهاد را لژاندر مرکب روش از استفاده با تاخیری
(IDDEs) از کلاسͬ ΁ی از تحلیلͬ حل راه و کردند بررسͬ را (IDDEs) نامتناه٩ͬ تاخیری
دیفرانسیل معادلات حل برای هموتوپی اختلال روش ΁ی [٣۴] در کرده اند. پیشنهاد را غیرخطͬ
حل برای را ژاکوبی طیفͬ شبه روش [٣] در هم΄اران و است.بهراوی١٠ شده ارائه تاخیری
روش از [۴٨] در همچنین اند. کرده ارائه برگر تاخیری‐زمانͬ دیفرانسیل معادلات عددی
استفاده تاخیری دیفرانسیل معادلات از رده ای حل برای یافته انتقال لژاندر چندجمله ای های

است. شده
را ریاضیدانان و زیست شناسͬ محققین از بسیاری توجه تاخیری شناسͬ زیست سیستم های
شناسͬ زیست مدل های در تاخیری معادلات کاربرد .[٩ ،٨ ،۶] است کرده معطوف خود به
شده همراه بی نظمͬ رفتار و نوسانات مانند ΁دینامی پدیده مطالعه با موارد از بسیاری در
΁ی به را مسئله انتقال یافته لژاندر طیفͬ شبه روش ΁ی از استفاده با فصل این در است.
معادله برای تقریبی جواب ΁ی آن حل از و ͬ کنیم م تبدیل معادل غیرخطͬ برنامه ریزی مسئله

ͬ آوریم. م بدست تاخیری

غیرخطͬ دیفرانسیل معادلات ٢ . ٢
ͬ گیریم م نظر در را زیر غیرخطͬ دیفرانسیل معادله فصل این در

ẋ(t) = f(t, x(t), x(αt+ β)), ٠ < t ≤ T,

x(t) = ϕ(t), −µ ≤ t ≤ ٠,
(٢ . ١)

x : [٠, T ] → Rn هستند، مشتق پذیر تابع دو ϕ : [٠ , T ] → Rn و f : [٠, T ]×Rn ×Rn → Rn که
.µ = −β

α
اینجا در بعلاوه ͬ باشند. م مفروض ثابت دو β ≤ ٠ و α > ٠ مجهول، تابع ΁ی

است. جواب ΁ی دارای (٢ . ١) سیستم که ͬ کنیم م فرض همچنین

روش پیاده سازی ٢ . ٣
ͬ کنیم م بازنویسͬ زیر معادل سیستم صورت به را (٢ . ١) تاخیری دیفرانسیل معادله ابتدا

ẋ(t) =


f(t, x(t), ϕ(αt+ β)), ٠ < t ≤ µ,

f(t, x(t), x(αt+ β)), µ < t ≤ T,

x(٠) = ϕ(٠),
(٢ . ٢)

7Lu
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9Infinite delay differential equation

10Bhrawy



٩ روش پیاده سازی
ͬ کنیم م پیشنهاد را زیر زمانͬ پیوسته سازی بهینه مسئله اکنون

Minimize J = ∥x(٠)− ϕ(٠)∥٢

subject to ẋ(t) =


f(t, x(t), ϕ(αt+ β)), ٠ < t ≤ µ,

f(t, x(t), x(αt+ β)), µ < t ≤ T.

(٢ . ٣)

همچنین ͬ باشد. م (٢ . ٣) مسئله برای بهینه جواب ΁ی (٢ . ٢) مسئله جواب هر که است ͹واض
دارای و است شدنͬ مسئله ΁ی (٢ . ٣) مسئله ͬ باشد، م جواب ΁ی دارای (٢ . ٢) مسئله چون

به صورت را (٢ . ٣) مسئله بهینه جواب ͬ باشد. م بهینه جواب ΁ی

x(t) ≃ xN (t) =

N∑
j=٠

x̄jLj(t) , 0 ≤ t ≤ T, (۴ . ٢)

و هستند لاگرانژ چندجمله ای های (·)Ljها و ͬ باشند م نامعین ضرایبی x̄jها که ͬ زنیم م تقریب
ͬ شوند م تعریف زیر به صورت

Lj(t) =
N∏
i=٠
i ̸=j

t− ti
tj − ti

, j = ٠, ١, . . . , N. (۵ . ٢)

ریشه های که هستند درونیابی نقاط همان یا هم محلͬ نقاط {tj}Nj=٠ ∈ [٠, T ] اینجا در
مرتبه از انتقال یافته لژاندر چندجمله ای pN (·) بعلاوه و ͬ باشند م

(
١ − ( ٢

T t− ٢(١
)

dPN (t)
dt

محاسبه قابل زیر بازگشتͬ فرمول از استفاده با [٠, T ] بازه روی چندجمله ای ها این است. N
ͬ باشند م

p٠(t) = ١, p١(t) = ( ٢
T t− ١),

pj+١(t) = (٢j+١
j+١ ) ( ٢

T t− ١ )pj(t)− ( j
j+١) pj−١(t), j = ١,٢, . . . , N.

(۶ . ٢)

و Lj(tk) =


١, j = k

٠, j ̸= k

که داریم توجه

x(tk) ≃ xN (tk) = x̄k. (٢ . ٧)
برنامه ریزی مسئله با را (٢ . ٣) سازی بهینه مسئله (٢ . ٧) و (۴ . ٢) رابطه از استفاده با اکنون

ͬ زنیم م تقریب زیر غیرخطͬ
Minimize J = ∥x٠ − ϕ(٠)∥٢

subject to


∑N

j=٠ x̄jDkj = f (tk, xk, ϕ(α tk + β)) , k = ١,٢, . . . , lµ,∑N
j=٠ x̄jDkj = f

(
tk, xk,

∑N
j=٠ x̄jLj(αtk + β)

)
, k = lµ + ١, . . . , N,

(٢ . ٨)



تاخیری دیفرانسیل معادلات از رده ای حل برای لژاندر طیفͬ شبه روش ١٠
که داد نشان ͬ توان م و Dk j = L̇j(tk) آن در که

Dk j =



LN (tk)

LN (tj)
· ١
tk − tj

, k ̸= j,

٢
T

· −N(N + ١)
۴ , k = j = ٠,

٢
T

· N(N + ١)
۴ , k = j = N,

٠, اینصورت غیر در

(٢ . ٩)

کند. صدق tlµ ≤ µ < tlµ+١ < T رابطه در که ͬ کنیم م انتخاب طوری را lµ اندیس (٢ . ٨) در
که داریم توجه

d

dt
x(tk) ≃

dxN

dt
(tk) =

N∑
j=٠

x̄jL̇j(tk) =

N∑
j=٠

x̄jDk j . (٢ . ١٠)

بنابراین و x̄∗ = (x̄∗٠, x̄∗١, · · · , x̄∗N) ͬ آوریم م بدست (٢ . ٨) غیرخطͬ سازی بهینه مسئله حل با

xN (t) =

N∑
j=٠

x̄∗jLj(t), ٠ ≤ t ≤ T, (٢ . ١١)

ͬ باشد. م (٢ . ١) سیستم برای تقریبی جواب ΁ی

هم·رایی آنالیز ۴ . ٢
محدودیت های که ͬ دهیم م نشان ͬ کنیم. م بررسͬ را روش این هم·رایی آنالیز بخش، این در
تضمین مسئله جواب بودن شدنͬ تا شود آزادسازی ͬ تواند م (٢ . ٨) غیرخطͬ برنامه ریزی مسئله
η : [٠, T ] → Rn توابع همه ی شامل که ͬ دهد م نشان را سوبولف فضای Wm,p اینجا در شود.

ͬ گیرد. م قرار Lp نرم در که η(j) : ٠ ≤ j ≤ m, که

∥η∥Wm,p =
m∑
j=٠

(∫ T

٠
∥∥∥η(j)(t)∥∥∥p) ١

p

,



١١ هم·رایی آنالیز
کرد آزادسازی زیر بصورت ͬ توان م را (٢ . ٨) معادله .η = (η١, η٢, . . . , ηn) که

Mininimize J = ∥x٠ − ϕ(٠)∥٢

subject to



∥∥∥∑N
j=٠ x̄jDkj − f (tk, xk, ϕ(αtk + β))

∥∥∥ ≤ (N − ١) ٣٢−m,

k = ١,٢, . . . , lµ,∥∥∥∑N
j=٠ x̄jDkj − f(tk, xk,

∑N
j=٠ x̄jLj(αtk + β))

∥∥∥ ≤ (N − ١) ٣٢−m,

k = lµ + ١, · · · , N.
(٢ . ١٢)

وجود N حداکثر درجه از pN (·) چندجمله ای ΁ی ،η(.) ∈Wm,∞ تابع هر برای [٧] .١ . ۴ . ٢ لم
که به طوری دارد

∥η(t)− pN (t)∥∞ ≤ CC٠N−m, ٠ ≤ t ≤ T,

.C٠ = ∥η∥Wm,∞ و است N از مستقل و ثابت C که
آنگاه باشد. (٢ . ٣) مسئله برای جواب ΁ی x(·) ∈ Wm,∞,m ≥ ٢ کنید فرض .١ . ۴ . ٢ قضیه
دارای (٢ . ١٢) مسئله ،N > N١ هر برای که به طوری دارد وجود N١ مانند مثبت و صحیح عدد

ͬ کند م صدق زیر رابطه در که است x̄ = (x̄٠, x̄١, · · · , x̄N ) شدنͬ جواب ΁ی
∥x(tk)− x̄k∥∞ ≤ L(N − ١(١−m, k = ٠, ١, · · · , N

است. N از مستقل و مثبت ثابت L و است محلͬ هم نقاط {tk}Nk=٠ که
و (N − ١) درجه از p(·) چندجمله ای ΁ی که ͬ دهیم م نشان ١ . ۴ . ٢ لم از استفاده با برهان.

که به طوری دارد وجود N از مستقل C١ ثابت
∥ẋ(t)− p(t)∥∞ ≤ C١ (N − ١(١−m

.

ͬ کنیم م تعریف
xN (t) =

∫ t

٠ p(τ)dτ + x(٠).
داریم بنابراین

ẋN (t) = p(t) , xN (٠) = x(٠).
−x(t)∥∥درنتیجه xN (t)

∥∥
∞ =

∥∥∥∥∫ t

٠ (ẋ(s)− p(s))ds

∥∥∥∥
∞

≤
∫ t

٠ ∥ẋ(s)− p(s)∥∞ ds

≤ C١ (N − ١(١−m
∫ t

٠ ds

≤ C١T (N − ١(١−m
. (٢ . ١٣)
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Ω ⊆ Rn مانند فشرده مجموعه ΁ی k = ٠, ١, · · · , N برای x̄k و x(tk) بالا، رابطه از استفاده با
M ثابت ΁ی است، مشتق پذیر [٠, T ] × Ω٢ بر پیوسته به طور f(·, ·, ·) که آنجایی از هستند.

که به طوری دارد وجود N از مستقل
∥f (t, η١, η٢)− f (t, ψ١, ψ٢)∥ ≤M (∥η١ − ψ١∥+ ∥η٢ − ψ٢∥) , (١۴ . ٢)

از چندجمله ای xN (·) تعریف از استفاده با .[٠, T ] × Ω٢ در (t, ψ١, ψ٢) و (t, η١, η٢) همه برای
داریم ،N مساوی یا کمتر درجه

N∑
j=٠

x̄jDkj = ẋN (tk). (١۵ . ٢)

داریم، k = ١,٢, · · · , lµ برای (١۵ . ٢) و (١۴ . ٢) ،(٢ . ١٣) رابطه برای ∥∥∥∥∥∥سپس
N∑
j=٠

x̄jDkj − f (tk, x̄k, ϕ(αtk + β))

∥∥∥∥∥∥
∞

≤
∥∥ẋN (tk)− ẋ(tk)

∥∥
∞ + ∥ẋ(tk)− f (tk, x̄k, ϕ(αtk + β))∥∞

= ∥p(tk)− ẋ(tk)∥∞ + ∥ f (tk, x(tk), ϕ(αtk + β))− f (tk, x̄k, ϕ(αtk + β))∥∞

≤ C١(N − ١(١−m +M (∥x(tk)− x̄k∥∞ + ∥ϕ(αtk + β)− ϕ(αtk + β)∥∞)

≤ C١(N − ١(١−m +MC١T (N − ١(١−m = C١ (١ +MT ) (N − ١(١−m,

ͬ آوریم م بدست k = lµ + ١, . . . , N برای ∥∥∥∥∥∥و
N∑
j=٠

x̄jDkj − f
(
tk, x̄k, x

N (αtk + β)
)∥∥∥∥∥∥

∞

≤
∥∥ẋN (tk)− ẋ(tk)

∥∥
∞ +

∥∥ẋ(tk)− f
(
tk, x̄k, x

N (αtk + β)
)∥∥

∞

≤ ∥p(tk)− ẋ(tk)∥∞ +
∥∥f(tk, x(tk), x(αtk + β)− f(tk, x̄k, x

N (αtk + β)
∥∥
∞

≤ C١(N − ١(١−m +M
(
∥x(tk)− x̄k∥∞ +

∥∥x (αtk + β)− xN (αtk + β)
∥∥
∞
)

≤ C١(N − ١(١−m +M(C١T (N − ١(١−m +C١T (N − ١(١−m)

= C١)١ + ٢MT )(N − ١(١−m.

ͬ آوریم م بدست ،C١)١ + ٢MT ) ≤ (N − ١) ١٢ که به طوری N١ ∈ N انتخاب با نتیجه در
∥∥∥∑N

j=٠ x̄jDk j − f (tk, x̄k, ϕ(αtk + β))
∥∥∥
∞

≤ (N − ١) ٣٢−m, k = ١,٢, . . . , lµ,∥∥∥∑N
j=٠ x̄jDk j − f (tk, x̄k, x(αtk + β))

∥∥∥
∞

≤ (N − ١) ٣٢−m, k = lµ + ١, . . . , N,
(١۶ . ٢)

.N ≥ N١ همه برای



١٣ هم·رایی آنالیز
ͬ کنیم م تعریف باشد، (٢ . ٨) مسئله برای بهینه جواب ΁ی (x̄∗٠, x̄∗١, . . . , x̄∗N ) اگر

x∗N (t) =

N∑
k=٠

x̄∗kLk(t), t ∈ [٠, T ] , (٢ . ١٧)

جواب های از مجموعه ای اینجا در هستند. لاگرانژ چندجمله ای های k = ٠, ١, · · · , N ،Lk(·) که
داریم. را {x∗N (·)}∞N=N١ توابع از مجموعه ای و {x̄∗٠, x̄∗١, . . . , x̄∗N}∞N=N١ گسسته

ی΄نواخت به طور که دارد زیرمجموعه ای {x̄∗٠, ẋ∗N (·)}∞N=N١ مجموعه ͬ کنیم م فرض .١ . ۴ . ٢ فرض
است. x∞٠ ∈ Rn و پیوسته تابعͬ q(·) که ͬ باشد م {x∞٠ , q(·)} به هم·را

و باشد (٢ . ٨) مسئله بهینه جواب از مجموعه ΁ی {x̄∗٠, x̄∗١, . . . , x̄∗N}∞N=N١ اگر .٢ . ۴ . ٢ قضیه
آنگاه کند صدق ١ . ۴ . ٢ فرض در که باشد آن ها شده درونیابی مجموعه {x∗N (·)}∞N=N١

x∗(t) =

∫ t

٠ q(τ)dτ + x∞٠ , ٠ ≤ t ≤ T, (٢ . ١٨)
است. (٢ . ٣) مسئله برای بهینه جواب ΁ی

است {ẋ∗N (·)}∞N=N١ مجموعه از زیرمجموعه ΁ی {ẋ∗Ni
(·)
}∞
i=١ ١ . ۴ . ٢ فرض از استفاده با برهان.

١ . ۴ . ٢ فرض و (٢ . ١٨) رابطه از استفاده با . lim
i→∞

ẋ∗Ni
(·) = q(·) و lim

i→∞
Ni = ∞ که به طوری

داریم
lim
i→∞

ẋ∗Ni
(·) = ẋ∗(·).

مسئله برای شدنͬ جواب ΁ی x∗(·) که ͬ دهیم م نشان ابتدا ͬ شود، م تقسیم مرحله دو به اثبات
ͬ باشد. م (٢ . ٣) مسئله برای بهینه جواب ΁ی x∗(·) که ͬ کنیم م ثابت سپس است. (٢ . ٣)

΁ی بنابراین نکند. صدق (٢ . ٣) مسئله محدودیت های در x∗(·) که کنیم فرض . ١ مرحله
که به طوری دارد وجود t̄ ∈ [٠, T ]

ẋ(t)− g
(
t, x∗(t), x∗(αt+ β)

)
̸= ٠,

که
g (t, x(t), x(α t+ β)) =


f (t, x(t), ϕ(α t+ β)) , ٠ < t ≤ µ,

f (t, x(t), x(α tk + β)) , µ ≤ t ≤ T.

وجود kNi زیرمجموعه ΁ی [١۵] هستند چ·ال [٠, T ] بازه در {tk}∞k=٠ مجموعه که آنجایی از
بنابراین . lim

i→∞
tkNi

= t̄ و ٠ < kNi < Ni که به طوری دارد
(٢ . ١٩)

ẋ(t̄)− g (t̄, x∗(t̄), x∗(α t̄+ β)) = lim
i→∞

(ẋ∗Ni
(tkNi

)− g
(
tkNi

, x∗Ni
(tkNi

), x∗Ni(αtkNi
+ β)

)
̸= ٠.

داریم ،(٢ . ١٢) مسئله محدودیت های از استفاده با بنابراین . lim
i→∞

(Ni − ٣٢(١−m
= ٠ طرفͬ از

lim
i→∞

(ẋ∗Ni
(tkNi

)− g
(
tkNi

, x∗Ni
(tkNi

), x∗Ni(αtkNi
+ β)

)
= ٠.



تاخیری دیفرانسیل معادلات از رده ای حل برای لژاندر طیفͬ شبه روش ١۴
(٢ . ٣) مسئله برای شدنͬ جواب ΁ی {x∗(·)} بنابراین است. تناقض در (٢ . ١٩) رابطه با که

است.
مجموعه ای باشند، (٢ . ٣) مسئله برای بهینه جواب ΁ی x∗∗(·) ∈Wm,∞,m ≥ ٢ اگر . ٢ مرحله
به طور که به طوری دارد وجود (٢ . ١٢) مسئله برای {x̃∗٠, x̃∗١, . . . , x̃∗N}∞N=N١ شدنͬ جواب های از
x̄∗ =

(
x̄∗٠, x̄∗١, . . . , x̄∗N

) و x∗∗(·) بهینگͬ از استفاده با بنابراین ͬ شوند. م هم·را x∗∗(·) به ی΄نواخت
داریم

٠ = ∥x∗∗(٠)− ϕ(٠)∥٢ ≤ ∥x∗(٠)− ϕ(٠)∥٢ = lim
i→∞

∥∥x∗Ni
(٠)− ϕ(٠)∥∥٢

= ∥x̄∗٠ − ϕ(٠)∥٢ ≤ ∥x̃∗٠ − ϕ(٠)∥٢ = ∥x∗∗(٠)− ϕ(٠)∥٢ = ٠.
است. (٢ . ٣) مسئله برای بهینه جواب ΁ی x∗(·) و ∥x∗(٠)− ϕ(٠)∥٢ = ٠ بنابراین

عددی مثال های ۵ . ٢
اینجا در ͬ دهیم. م نشان DDEs مثال چند حل با را شده ارائه روش کارایی بخش، این در

ͬ کنیم م محاسبه زیر فرمول از استفاده با را مطلق خطای
E(t) = ∥x(t)− x̄(t)∥ , ٠ ≤ t ≤ T,

نداشته وجود دقیق جواب اگر همچنین هستند. دقیق و تقریبی جواب ترتیب به x̄(·) و x(·) که
ͬ کنیم م محاسبه زیر رابطه از استفاده با را ͬ مانده باق خطای باشد،

E(t) =
∥∥∥ẋ(t)− g

(
t, x(t), x(αt+ β)

)∥∥∥ , ٠ ≤ t ≤ T,

(٢ . ٨) غیرخطͬ برنامه ریزی مسئله حل برای ͬ باشد. م آمده بدست تقریبی جواب x(·) که
ͬ کنیم. م استفاده متلب نرم افزار در FMINCON دستور از آمده بدست

ب·یرید. درنظر را زیر تاخیری معادله .١ . ۵ . ٢ مثال
Ḣ(t) = e−γµµH (t− µ)− γH(t), ٠ ≤ t ≤ T.

معادله با متناظر (٢ . ٨) غیرخطͬ برنامه ریزی مسئله .ϕ(t) = e٠٫١t و µ = ٠٫٢۵ ،γ = ٠٫١۵ که
نوشت زیر به صورت ͬ توان م را

Minimize J = (x̄٠ − ٢(١,

subject to


∑N

j=٠ x̄jDkj = e−γµµϕ (tk − µ)− γx̄k, k = ١,٢, . . . , lµ,∑N
j=٠ x̄jDkj = e−γµµ

∑N
j=٠ x̄jLj(tk − µ)− γx̄k, k = lµ + ١, . . . , N.

در (x̄∗٠, x̄∗١, . . . , x̄∗N ) بهینه جواب ͬ کنیم. م حل را مسئله N = ۵ و T = ٢ با .x̄k ≃ H(tk) که
به صورت پیوسته تقریبی جواب ΁ی همچنین است. شده داده نشان ٢ . ١ جدول



١۵ عددی مثال های
است. شده داده نشان ٢ . ١ ش΄ل در که ͬ شود م محاسبه x(t) ≃∑N

j=٠ x̄∗jLj(t), ٠ ≤ t ≤ T

است. شده داده نشان ٢ . ١ ش΄ل در N = ٧ و N = ۶ برای تقریبی جواب های خطای همچنین
ب·یرید نظر در را زیر تاخیری معادله .٢ . ۵ . ٢ مثال

ÿ + εẏ + sin(y) = −λ cos(y) (y(t− µ)− y) , ٠ ≤ t ≤ T,

معادله ابتدا .−µ ≤ t ≤ ٠ برای y(t) = ١ و ẏ(t) = ٠ ،λ = −٠٫١۵ ،µ = ١ ،T = ٢،ε = ٠٫١ که
ͬ کنیم م تبدیل زیر معادلات دستگاه به را

ẋ١(t) = x٢(t), ٠ ≤ t ≤ ٢,
ẋ٢(t) = −λ cos (x١) (x١(t− µ)− x١)− εx٢ − sin(x١), ٠ ≤ t ≤ ٢,
x١(t) = ϕ١(t) = ١, −µ ≤ t ≤ ٠,
x٢( t) = ϕ٢(t) = ٠, −µ ≤ t ≤ ٠,

است زیر شرح به بالا مسئله مطابق (٢ . ٨) برنامه ریزی مسئله x٢(t) = ẏ(t) و x١(t) = y(t) که
Minimize J = (x̄١٠ − ٢(١ + (x̄٢٠)٢,
subject to

∑N
j=٠ x̄١jDkj = x̄٢k, k = ١,٢, . . . , N,∑N
j=٠ x̄٢jDkj = −λ cos(x̄١k)(ϕ١(tk − µ)− x̄١k)− εx̄٢k − sin(x̄١k),

k = ١, . . . , lµ,∑N
j=٠ x̄٢jDkj = −λ cos(x̄١k)(

∑N
j=٠ x̄١klj(tk − µ)− x̄١k)− εx̄٢k − sin(x̄١k),

k = lµ + ١, . . . , N,
جواب ͬ کنیم. م حل را فوق خطͬ برنامه ریزی مسئله .N = ٢٠ و T = ۵ ͬ کنیم م فرض حال
ͬ آوریم. م بدست است شده داده نشان ٢ . ٢ جدول در که (x̄∗٠, x̄∗١, . . . , x̄∗N ) مانند گسسته تقریبی

آوریم مͬ بدست زیر به صورت ͬ توان م را پیوسته تقریبی جواب

x(t) =

N∑
j=٠

x̄∗jLj(t), ٠ ≤ t ≤ T,

مختلف مقادیر برای بالا تقریبی جواب از مانده خطای است. شده داده نشان ٢ . ٣ ش΄ل در که
است. شده داده نشان ۴ . ٢ ش΄ل در N

ب·یرید نظر در را DDE اول مرتبه غیرخطͬ معادله .٣ . ۵ . ٢ مثال
ẋ(t) = x(t) + t x٢(٠٫۵t) + f(t), ٠ ≤ t ≤ T,



تاخیری دیفرانسیل معادلات از رده ای حل برای لژاندر طیفͬ شبه روش ١۶
که ͬ کنیم م فرض اینجا در .x(٠) = ٠ اولیه شرط با

f(t) = ٩ (et−١ − ١) + ٩ t et−١ − ٩ t (et−١ − ١)− ٨١
۴ t٣(e t١−٢ − ٢(١.

با مطابق (٢ . ٨) غیرخطͬ برنامه ریزی مسئله است. DDE دقیق جواب x(t) = ٩t(et−١ − ١) و
است زیر صورت به DDE

Minimize J = x̄٢٠

subject to
N∑
j=٠

x̄jDkj = x̄k + tk

N∑
j=٠

x̄٢
jLj(٠٫۵ tk) + f(tk), k = ٠, ١, . . . , N.

داده نشان ٢ . ٣ جدول در که (x̄∗٠, x̄∗١, . . . , x̄∗N ) آمده بدست بهینه جواب و N = ٩ و T = ١ که
x(t) =

∑N
j=٠ x̄∗jLj(t), ٠ ≤ t ≤ T مانند پیوسته تقریبی جواب ΁ی همچنین است. شده

تقریبی جواب های مطلق خطای است. شده داده نشان ۵ . ٢ ش΄ل در که کرد مطرح ͬ توان م
جواب های مطلق خطای همچنین است. شده داده نشان ۶ . ٢ ش΄ل در N مختلف مقادیر برای
داده نشان ۴ . ٢ جدول در که ͬ کنیم م مقایسه [٢۵] در رفته ب΄ار روش با را آمده بدست تقریبی
جواب از بهتر DDE برای ما پیشنهادی روش که ͬ دهد م نشان ۴ . ٢ جدول در نتایج است. شده

است. [٢۵] در پیشنهادی

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−8

t

A
bs

ol
ut

e 
er

ro
r

 

 

N=6
N=7

.١ . ۵ . ٢ مثال  برای مطلق خطای :٢ . ٢ ش΄ل
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.١ . ۵ . ٢ مثال برای تقریبی جواب های :٢ . ١ ش΄ل
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.٢ . ۵ . ٢ مثال برای مطلق خطای :۴ . ٢ ش΄ل
0 1 2 3 4 5

−1

−0.5

0

0.5

1

1.5

2

t

 

 

Discrete approximate solution x
1
(.)

Continuous approximate solution x
1
(.)

Discrete approximate solution x
2
(.)

Continuous approximate solution x
2
(.)

.٢ . ۵ . ٢ مثال برای تقریبی جواب های :٢ . ٣ ش΄ل



١٧ عددی مثال های
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.٣ . ۵ . ٢ مثال برای مطلق خطای :۶ . ٢ ش΄ل
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.٣ . ۵ . ٢ مثال برای تقریبی جواب های :۵ . ٢ ش΄ل
.١ . ۵ . ٢ مثال برای تقریبی جواب های :٢ . ١ جدول

۵ ۴ ٣ ٢ ١ ٠ k

١٫١٨٧٣ ١٫١۶٣٧ ١٫١١۶٨ ١٫٠۶٣۵ ١٫٠٢٠۶ ١٫٠٠٠٠ x̄∗
k

.٢ . ۵ . ٢ مثال برای تقریبی جواب های :٢ . ٢ جدول
k = ١٩,٢٠ k = ١٧, ١٨ k = ١۵, ١۶ k = ١٣, ١۴ k = ١١, ١٢ k = ٩, ١٠ k = ٧,٨ k = ۵,۶ k = ٣,۴ k = ١,٢ k

٠٫٠٢٠٢ −٠٫١٢٧٩ −٠٫٣٨۶۶ −٠٫۶٣٠۶ −٠٫۶٣۴٧ ٠٫٢۶۶١ ٠٫٣١۴١ ٠٫٧۶٧٧ ٠٫٩۶٢٢ ٠٫٩٩٩٢ x̄∗
k

٠٫٠۴۴۴ −٠٫٠٣٧٣ −٠٫٢۴٧٩ −٠٫۵٢٣٧ −٠٫۶٧۶٢ −٠٫۴٩۴٩ ٠٫٠١٩٣ ٠٫۵٧٢٧ ٠٫٨٩٣٩ ٠٫٩٩١٢

.٣ . ۵ . ٢ مثال برای تقریبی جواب های :٢ . ٣ جدول
٩ ٨ ٧ ۶ ۵ ۴ ٣ ٢ ١ ٠ k

٠٫٠٠٠٠ −٠٫٣۴٠۶ −٠٫٩۵٨١ −١٫۵٢٨٠ −١٫٧٨٩٣ −١٫۶۵٨٧ −١٫٢٢٧٣ −٠٫۶٨٢٧ −٠٫٢٢٣۴ ٠٫٠٠٠٠ x̄∗
k

.٣ . ۵ . ٢ مثال برای مطلق خطای مقایسه :۴ . ٢ جدول
شده ارائه روش

N = ٩ برای
[٢۵] در روش
N = ١٠٠ برای t

١٫٨٣ × ١٢−١٠ ۶٫١٩ × ١٠−۴ ٠٫٠١
٩٫٣٣ × ١٢−١٠ ۶٫۴٠ × ١٠−۴ ٠٫٠۴
١٫٠۵ × ١١−١٠ ۶٫٧٧ × ١٠−۴ ٠٫٠٩
١٫٧١ × ١١−١٠ ٧٫٢٩ × ١٠−۴ ٠٫١۶
۴٫٨٣ × ١١−١٠ ٧٫٩٣ × ١٠−۴ ٠٫٢۵
۴٫۵٨ × ١١−١٠ ٨٫۵٩ × ١٠−۴ ٠٫٣۶
٢٫٠٢ × ١١−١٠ ٩٫٠۴ × ١٠−۴ ٠٫۴٩
٨٫٩١ × ١٠−١٠ ٨٫٨۵ × ١٠−۴ ٠٫۶۴
١٫٢٩ × ٩−١٠ ٧٫٣۵ × ١٠−۴ ٠٫٨١





٣ فصل
حل برای لژاندر طیفͬ شبه روش

تاخیری انتگرال‐دیفرانسیل معادلات

مقدمه ٣ . ١
دارند. مهندسͬ و پایه علوم در وسیعͬ کاربردهای تاخیری١ دیفرانسیل‐انتگرال معادلات
به را محققین از بسیاری توجه تاخیری دیفرانسیل‐انتگرال معادلات گذشته دهه چند در
معادلات یا انتگرالͬ معادلات حل برای مختلفͬ روش های اخیرا است. کرده جذب خود
معادلات حل برای کوتا٢ رانگ روش [۴٩ ،٣٩ ،١٨ ،١٣] در شده اند. ارائه دیفرانسیل‐انتگرال
برای گوناگونͬ عددی روش های همچنین است. شده استفاده تاخیری دیفرانسیل‐انتگرال

است. شده بحث [۴١ ،١۶ ،۵ ،۴ ،٢٣ ،٢۴] در تاخیری انتگرال و دیفرانسیل معادلات
معادلات حل برای را اسپلاین‐طیفͬ روش های از ترکیبی [١٢] در الشام۴ͬ و الهاواری٣
هم محلͬ روش های [۴٠] در چن۶ و وی۵ کردند. ارائه تاخیری ولترای انتگرال‐دیفرانسیل

1Delay integro-differential equations
2Runge Kutta method
3El-Hawary
4El-Shami
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6Chen



تاخیری انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ٢٠
ب΄ار پانتوگراف تاخیری ولترای دیفرانسیل‐انتگرال معادلات عددی حل برای را لژاندر طیفͬ
چندجمله ای های براساس جدیدی عددی روی΄رد ΁ی [٢] در بوسلسال٨ و بلور٧ برده اند.
. برده اند ب΄ار تاخیری دیفرانسیل‐انتگرال معادلات عددی حل برای پیوسته هم محلͬ تیلور
دیفرانسیل‐انتگرال معادلات عددی حل برای جدید ΁تکنی ΁ی [٢٩] در هم΄ارانش و ریحان٩
در برده اند. ب΄ار دارند ΁فیزی و زیست شناسͬ علوم در بسیاری کاربردهای که تاخیری ولترای
منفرد هسته با تاخیری دیفرانسیل‐انتگرالͬ معادلات حل برای طیفͬ روش های [٣۶ ،۵٠]
موثر عددی روی΄رد ΁ی [٣٨] در ١١ صمدی و ١٠ توحیدی است. شده استفاده ضعیف بطور
جمله چند اساس بر خطͬ غیر ولترای انتگرالͬ معادلات برای بهینه کنترل مسائل حل جهت

اند. برده ب΄ار لژاندر ایهای
دیفرانسیل‐انتگرال معادلات از رده ای حل برای جدیدی عددی روش ΁ی فصل، این در
دیفرانسیل‐ معادله در را تاخیر به مربوط تابع ΁تکنی ΁ی با ابتدا ͬ دهیم. م ارائه تاخیری
ͬ دهیم م ارائه معادل زمانͬ پیوسته بهینه سازی مساله ΁ی سپس ͬ کنیم. م لحاظ انتگرال
هم محلͬ نقاط از روش این در ͬ کنیم. م پیشنهاد آن حل برای را لژاندر شبه طیفͬ روش و
ͬ کنیم م استفاده غیرخطͬ برنامه ریزی مساله ΁ی به مساله تبدیل برای لژاندر‐گاوس‐لوباتو

ͬ دهیم. م نشان را روش قابلیت و کارایی عددی مثال چند حل با و

غیرخطͬ تاخیری انتگرال‐دیفرانسیل معادله ٣ . ٢
ͬ گیریم. م نظر در را زیر غیرخطͬ تاخیری انتگرال‐دیفرانسیل معادله فصل، این در

ẏ(x) = f(x, y(x), y(x− µ)) +

∫ x

x−µ
g(x, s, y(s))ds, ٠ < x ≤ T,

y(x) = ϕ(x), −µ ≤ x ≤ ٠,
(٣ . ١)

مشتق پذیر توابع ϕ : [٠, T ] → R و g : [٠, T ] × [٠, T ] × R → R ، f : [٠, T ] × R × R → R که
که ͬ کنیم م فرض است. ثابت مقدار ٠ < µ < T و مجهول تابع y : [٠, T ] → R ͬ باشند، م

است. جواب دارای (٣ . ١) دستگاه

روش پیاده سازی ٣ . ٣
انتقال برای s٣ =

µ

٢ t +
٢x− µ

٢ و s٢ =
x

٢ t +
x

٢ ،s١ =
µ− x

٢ t +
x− µ

٢ تبدیلات از ترتیب به
به (٣ . ١) دستگاه فرض این با ͬ کنیم. م استفاده [−١, ١] به [x− µ, x] و [٠, x] ،[x− µ, ٠] از بازه
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٢١ روش پیاده سازی
ͬ شود م تبدیل زیر معادل دستگاه

(٣ . ٢)

ẏ(x) =



f
(
x, y(x), ϕ(x− µ)

)
+
µ− x

٢
∫ ١
−١
g

(
x,
µ− x

٢ t+
x− µ

٢ , ϕ

(
µ− x

٢ t+
x− µ

٢
))

dt

+
x

٢
∫ ١
−١
g
(
x,
x

٢ t+
x

٢ , y(
x

٢ t+
x

٢ )
)
dt, ٠ < x ≤ µ

f(x, y(x), y(x− µ)) +
µ

٢
∫ ١
−١
g

(
x,
µ

٢ t+
٢x− µ

٢ , y(
µ

٢ t+
٢x− µ

٢ )

)
dt, µ < x ≤ T,

y(٠) = ϕ(٠).
ͬ کنیم م پیشنهاد را زیر زمانͬ پیوسته بهینه سازی مسئله اکنون

Minimize J = (y(٠)− ϕ(٠))٢
subject to

ẏ(x) =



f(x, y(x), ϕ(x− µ)) +
µ− x

٢
∫ ١
−١ g

(
x,
µ− x

٢ t+
x− µ

٢ , ϕ

(
µ− x

٢ t+
x− µ

٢
))

dt

+
x

٢
∫ ١
−١ g

(
x,
x

٢ t+
x

٢ , y(
x

٢ t+
x

٢)
)
dt, ٠ < x ≤ µ

f(x, y(x), y(x− µ)) +
µ

٢
∫ ١
−١ g

(
x,
µ

٢ t+
٢x− µ

٢ , y(
µ

٢ t+
٢x− µ

٢ )

)
dt, µ < x ≤ T.

(٣ . ٣)
ͬ شود م تبدیل زیر مسئله به (٣ . ٣) بهینه سازی مسئله اکنون

Minimize J = (y٠ − ϕ(٠))٢ ,
subject to

N∑
j=٠

ȳjDkj = f (xk, ȳk, ϕ(xk − µ)) +
µ− xk٢

∫ ١
−١
g

(
xk,

µ− xk٢ t+
xk − µ

٢ ,

ϕ(
µ− xk٢ t+

xk − µ

٢ )

)
dt+

xk٢
∫ ١
−١
g
(
xk,

xk٢ t+
xk٢ , yN

(xk٢ t+
xk٢
))

dt k = ١,٢, . . . , lµ,
N∑
j=٠

ȳjDkj = f
(
xk, ȳk, y

N (xk − µ)
)
+
µ

٢
∫ ١
−١
g

(
xk,

µ

٢ t+
٢xk − µ

٢ , yN (
µ

٢ t+
٢xk − µ

٢ )

)
dt

k = lµ + ١, . . . , N,
(۴ . ٣)

انتگرال ͬ کند. م صدق xlµ ≤ µ < xlµ+١ < T رابطه در lµ اندیس که ͬ کنیم م فرض اینجا در
شود. زده تقریب زیر لم از استفاده با ͬ تواند م (۴ . ٣) مسئله محدودیت در



تاخیری انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ٢٢
است دقیق زیر فرمول ،٢N − ١ درجه از P (·) چندجمله ای هر برای .٣ . ٣ . ١ ∫لم ١

−١ P (t) dt ≃
N∑
j=٠

P (tj)ωj ,

که
ωj =

٢
N(N + ١) ·

١
(PN (tj))

٢ , j = ٠, ١, . . . , N.
انتقال یافته لژاندر چندجمله ای و انتقال یافته لژاندر‐گاوس‐لوباتو نقاط ترتیب به PN (·) و {tj}Nj=٠

ͬ باشند. م [−١, ١] در N درجه از
.[٣۵] ͽمرج ٣ . ٢٩ قضیه در اثبات برهان.

شود تبدیل زیر مسئله به ͬ تواند م (۴ . ٣) مسئله اکنون
Minimize J = (y0 − ϕ(0))2,

subject to

N∑
j=٠ ȳjDkj = f (xk, ȳk, ϕ(xk − µ)) +

µ− xk٢
N∑
j=٠

ωjg

(
xk,

µ− xk٢ tj +
xk − µ

٢ ,

ϕ(
µ− xk٢ tj +

xk − µ

٢ )

)
+
xk٢

N∑
j=٠

ωjg

(
xk,

xk٢ tj +
xk٢ ,

N∑
i=٠

yiLi(
xk٢ tj +

xk٢ )

)
,

k = ١,٢, . . . , lµ,
N∑
j=٠ ȳjDkj = f

(
xk, ȳk,

N∑
i=٠ ȳiLi(xk − µ)

)
+
µ

٢
N∑
j=٠ωjg

(
xk,

µ

٢ tj +
٢xk − µ

٢ ,

N∑
i=٠ yiLi(

µ

٢ tj +
٢xk − µ

٢ )

)
, k = lµ + ١, . . . , N,

(۵ . ٣)
بنابراین و ͬ آید م بدست ȳ∗ = (ȳ∗٠, ȳ∗١ , . . . , ȳ∗N) ،(۴ . ٣) بهینه سازی مسئله حل با

yN (x) =

N∑
j=٠

ȳ∗jLj(x), ٠ ≤ x ≤ T (۶ . ٣)

ͬ باشد. م (٣ . ١) دستگاه برای تقریبی جواب ΁ی

هم·رایی آنالیز ۴ . ٣
مسئله محدودیت های که ͬ دهیم م نشان و ͬ کنیم م بررسͬ را روش این هم·رایی بخش، این در
مسئله شود. تضمین مسئله بودن شدنͬ تا شود آزادسازی ͬ تواند م (۴ . ٣) غیرخطͬ برنامه ریزی



٢٣ هم·رایی آنالیز
شود مͬ آزادسازی زیر صورت به (۵ . ٣)

Minimize J = (y٠ − ϕ(٠))٢,
subject to

∣∣∣∣∣ N∑
j=٠ ȳjDkj − f (xk, ȳk, ϕ(tk − µ))− µ− xk٢

∫ ١
−١ g

(
xk,

µ− xk٢ t+
xk − µ

٢ ,

ϕ(
µ− xk٢ t+

xk − µ

٢ )

)
dt− xk٢

∫ ١
−١ g

(
xk,

xk٢ t+
xk٢ , yN

(xk٢ t+
xk٢
))

dt

∣∣∣∣∣ ≤ (N − ١) ٣٢−m,

k = ١,٢, . . . , lµ,∣∣∣∣∣ N∑
j=٠ ȳjDkj − f

(
xk, ȳk, y

N (tk − µ)
)
− µ

٢
∫ ١
−١ g

(
xk,

µ

٢ t+
٢xk − µ

٢ ,

yN (
µ

٢ t+
٢xk − µ

٢ )

)
dt

∣∣∣∣ ≤ (N − ١) ٣٢−m k = lµ + ١, . . . , N,
(٣ . ٧)

ͬ باشند، م [٠, T ]٢×Ω و [٠, T ]×Ω٢ در مشتق پذیر پیوسته به طور g(·, ·, ·) و f(·, ·, ·) که آنجایی از
که به طوری دارند وجود N از مستقل M٢ و M١ ثابت های


|f (x, η١, η٢)− f (x, ψ١, ψ٢)| ≤M١ (|η١ − ψ١|+ |η٢ − ψ٢|) ,

|g(x, t, η١)− g(x, t, η٢)| ≤M٢|η١ − η٢|,
(٣ . ٨)

ͬ باشند. م [٠, T ]٢×Ω در (x, t, η٢) و (x, t, η١) و [٠, T ]×Ω٢ در (x, ψ١, ψ٢) و (x, η١, η٢) آن در که
x٠, x١ , . . . ., xN انتقال یافته لژاندر‐گاوس‐لوباتو نقاط در ،N حداکثر درجه از چندجمله ای هر برای

داریم پس است. شده ضرب D ماتریس در دقیق به طور و شده محاسبه مشتق

N∑
j=٠

ȳjDkj = ẏN (xk). (٣ . ٩)



تاخیری انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ٢۴
داریم k = ١,٢, . . . , lµ ẏN∣∣∣∣∣برای (xk)− f((xk, y

N (xk), ϕ(xk − µ))− µ− xk٢
∫ ١
−١ g

(
xk,

µ− xk٢ t+
xk − µ

٢ ,

ϕ(
µ− xk٢ t+

xk − µ

٢ )

)
dt− xk٢

∫ ١
−١ g

(
xk,

xk٢ t+
xk٢ , yN

(xk٢ t+
xk٢
))

dt

∣∣∣∣∣
≤
∣∣ẏN (xk)− ẏ(xk)

∣∣+ ∣∣f(xk, yN (xk), ϕ(xk − µ)− f (xk, y(xk), ϕ(xk − µ))
∣∣

+

∣∣∣∣∣xk٢
∫ ١
−١ g

(
xk,

xk٢ t+
xk٢ , yN

(xk٢ t+
xk٢
))

dt

−xk٢
∫ ١
−١ g

(
xk,

xk٢ t+
xk٢ , y

(xk٢ t+
xk٢
))

dt

∣∣∣∣∣
+

∣∣∣∣∣ẏ(xk)− f(xk, y(xk), ϕ(xk − µ))− µ− xk٢
∫ ١
−١ g

(
xk,

µ− xk٢ t+
xk − µ

٢ ,

ϕ(
µ− xk٢ t+

xk − µ

٢ )

)
dt− xk٢

∫ ١
−١ g

(
xk,

xk٢ t+
xk٢ , y

(xk٢ t+
xk٢
))

dt

∣∣∣∣∣
≤ |p(xk)− ẏ(xk)|+M١(

∣∣yN (xk)− y(xk)
∣∣

+M٢
xk٢
∫ ١
−١
∣∣∣yN (

xk٢ t+
xk٢ )− y(

xk٢ t+
xk٢ )
∣∣∣ dt

≤ C١(N − ١(١−m +M١TC١(N − ١(١−m +M٢C١T ٢(N − ١(١−m

= C١(N − ١(١−m(١ +M١T +M٢T ٢),

ͬ آوریم م بدست k = lµ + ١, . . . , N هر برای ẏN∣∣∣∣∣و (xk)− f(xk, y
N (xk), y

N (xk − µ))− µ

٢
∫ ١
−١ g

(
xk,

µ

٢ t+
٢xk − µ

٢ , yN (
µ

٢ t+
٢xk − µ

٢ )

)
dt

∣∣∣∣∣
≤
∣∣ẏN (xk)− ẏ(xk)

∣∣+ ∣∣f(xk, y(xk), y(xk − µ)− f
(
xk, y

N (xk), y
N (xk − µ)

)∣∣
+

∣∣∣∣∣µ٢
∫ ١
−١ g

(
xk,

µ

٢ t+
٢xk − µ

٢ , yN (
µ

٢ t+
٢xk − µ

٢ )

)
dt

−µ٢
∫ ١
−١ g

(
xk,

µ

٢ t+
٢xk − µ

٢ , y(
µ

٢ t+
٢xk − µ

٢ )

)
dt

∣∣∣∣∣
+

∣∣∣∣∣ẏ(xk)− f(xk, y(xk), y(xk − µ))− µ

٢
∫ ١
−١ g

(
xk,

µ

٢ t+
٢xk − µ

٢ , y(
µ

٢ t+
٢xk − µ

٢ )

)
dt

∣∣∣∣∣
≤ |p(xk)− ẏ(xk)|+M١

( ∣∣yN (xk)− y(xk)
∣∣+ ∣∣yN (xk − µ)− y(xk − µ)

∣∣ )
+M٢

µ

٢
∫ ١
−١

∣∣∣∣yN (
µ

٢ t+
٢xk − µ

٢ )− y(
µ

٢ t+
٢xk − µ

٢ )

∣∣∣∣ dt
≤ C١(N − ١(١−m + ٢M١TC١(N − ١(١−m +M٢µC١T (N − ١(١−m

= C١(N − ١(١−m(١ + ٢M١T +M٢µT ),



٢۵ هم·رایی آنالیز
به طوری ͬ گیریم م نظر در را N١ مثبت صحیح عدد هستند. لیپ شیتز ثابت های M٢, M١ که

، N ≥ N١ همه برای که

max{C١)١ +M١T +M٢T ٢), C١)١ + ٢M١T +M٢Tµ)} ≤ (N − ١) ١٢

ͬ کند. م صدق (٣ . ٧) مسئله محدودیت های در ȳ = (ȳ٠, ȳ١, . . . , ȳN ) بنابراین
ͬ کنیم م تعریف باشد. (٣ . ٧) مسئله برای بهینه جواب ΁ی (ȳ∗٠, ȳ∗١ , . . . , ȳ∗N ) اگر

yN∗ (x) =
N∑
k=٠

ȳ∗kLk(x), x ∈ [٠, T ] , (٣ . ١٠)

مجموعه ΁ی بنابراین هستند. لژاندر درونیاب چندجمله ای های Lk(·), k = ٠, ١, . . . , N که
را {yN∗ (·)

}∞
N=N١ درونیاب توابع از مجموعه ای و {ȳ∗٠, ȳ∗١ , . . . , ȳ∗N}∞N=N١ مستقیم جواب های از

داریم.

هم·را ی΄نواخت به طور که دارد زیردنباله ای {ȳ∗٠, ẏ∗N (·)}∞N=N١ دنباله کنید فرض .١ . ۴ . ٣ فرض
است. y∞٠ ∈ Rn و پیوسته تابع q(·) که ͬ باشد م {y∞٠ , q(·)} به

و باشد (٣ . ٧) مسئله بهینه جواب های از دنباله ای {ȳ∗٠, ȳ∗١ , . . . , ȳ∗N}∞N=N١ اگر .١ . ۴ . ٣ قضیه
آن گاه کند صدق ١ . ۴ . ٣ فرض در که باشد آن ها درونیاب دنباله {yN∗ (·)

}∞
N=N١

y∗(x) =

∫ x

٠ q(τ)dτ + y∞٠ , ٠ ≤ x ≤ T, (٣ . ١١)

است. (٣ . ٣) مسئله برای بهینه جواب ΁ی
{
ẏN∗ (·)

}∞
N=١ دنباله از {ẏNi

∗ (·)
}∞

i=١ زیردنباله که ͬ دهیم م نشان ١ . ۴ . ٣ فرض از استفاده با برهان.
بدست ١ . ۴ . ٣ فرض از استفاده با . lim

i→∞
ẏNi
∗ (·) = q(·) و lim

i→∞
Ni = ∞ که به طوری دارد وجود

داریم ١ . ۴ . ٣ فرض و (٣ . ١١) مسئله گرفتن درنظر با همچنین . lim
i→∞

ẏNi
∗ (·) = y∗(·) ͬ آوریم م

J = (ȳ∗٠ − ϕ(٠))٢ =

(
lim
i→∞

yNi
∗ − ϕ(٠)

)٢
= (y∗(٠)− ϕ(٠))٢ = ٠.

است. شدنͬ جواب ΁ی y∗(·) ͬ دهیم م نشان اکنون
x̄ ∈ [٠, T ] ΁ی بنابراین ͬ کند. نم صدق (٣ . ٣) مسئله محدودیت های در y∗(·) که کنیم فرض

که به طوری دارد وجود

ẏ∗(x̄)− ψ (x̄, y∗(x̄), y∗(x̄− µ)) ̸= ٠,



تاخیری انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ٢۶
که

ψ (x, y∗(x), y∗(x− µ)) =

f(x, y∗(x), ϕ(x− µ)) +
µ− x

٢
∫ ١
−١ g

(
x,
µ− x

٢ t+
x− µ

٢ , ϕ

(
µ− x

٢ t+
x− µ

٢
))

dt

+
x

٢
∫ ١
−١ g

(
x,
x

٢ t+
x

٢ , y∗
(x

٢ t+
x

٢
))

dt ٠ < x ≤ µ

f(x, y∗(x), y∗(x− µ)) +
µ

٢
∫ ١
−١ g

(
x,
µ

٢ t+
٢x− µ

٢ , y∗

(
µ

٢ t+
٢x− µ

٢
))

dt, µ < x ≤ T,

دارد وجود xkNi
زیردنباله ΁ی [١۵] هستند چ·ال [٠, T ] در {xk}∞k=٠ مجموعه که آنجا از

بنابراین . lim
i→∞

xkNi
= x̄ و ٠ < kNi < Ni که به طوری

(٣ . ١٢)
ẏ∗(x̄)−ψ (x̄, y∗(x̄), y∗(x̄− µ)) = lim

i→∞

(
ẏNi
∗ (xkNi

)− ψ
(
xkNi

, yNi
∗ (xkNi

), yNi
∗ (xkNi

− µ)
))

̸= ٠.

(٣ . ٧) مسئله محدودیت های از استفاده با بنابراین . lim
i→∞

(Ni − ٣٢(١−m
= ٠ دی·ر طرفͬ از

داریم
lim
i→∞

(
ẏNi
∗ (xkNi

)− ψ
(
xkNi

, yNi
∗ (xkNi

), yNi
∗ (xkNi

− µ)
))

= ٠.
(٣ . ٣) مسئله برای شدنͬ جواب ΁ی {y∗(·)} بنابراین است. تناقض در (٣ . ١٢) رابطه با که

ͬ شود. م کامل اثبات و است

عددی مثال های ۵ . ٣
ب·یرید. نظر در را زیر تاخیری ولترا انتگرال‐دیفرانسیل معادله .١ . ۵ . ٣ مثال

ẏ(x) = y(x− ١) +
∫ x

x−١ y(s) ds, ٠ ≤ x ≤ ٢,
تقریبی جواب های است. معادله دقیق جواب y(x) = ex و −١ ≤ x ≤ ٠ ،y(x) = ϕ(x) = ex که
برای مطلق خطاهای است. شده داده نشان ٣ . ١ ش΄ل در N = ١٠ برای دقیق جواب های و
صفر به خطا N افزایش با ͬ دهد م نشان که شده داده نمایش ٣ . ٢ ش΄ل در N = ۶,٨, ١٠, ١٢

ͬ کند. م میل
ب·یرید. نظر در را زیر تاخیری ولترا انتگرال‐دیفرانسیل معادله .٢ . ۵ . ٣ مثال

ẏ(x) = (λ− ١) e١−x − (λ+ ١)y(x) + y(x− ١)− λ

∫ x

x−١ y(s) ds, ٠ ≤ x ≤ ٢,
مطلق خطای است. معادله دقیق جواب y(x) = e−x و −١ ≤ x ≤ ٠ ،y(x) = ϕ(x) = e−x که
برای دقیق جواب های و تقریبی جواب های ͬ کنیم. م محاسبه λ = ٣ برای شده ارائه روش با را



٢٧ عددی مثال های
ش΄ل در N = ۶,٨, ١٠, ١٢ برای مطلق خطاهای است. شده داده نشان ٣ . ٣ ش΄ل در N = ١٠

ͬ کند. م میل صفر به خطا N افزایش با ͬ دهد م نشان که است شده داده نشان ۴ . ٣
ب·یرید. نظر در را زیر تاخیری ولترا انتگرال‐دیفرانسیل معادله .٣ . ۵ . ٣ مثال

ẏ(x) = g(x) +

∫ x

x−١ k(x, s)y(s) ds, ٠ ≤ x ≤ ٣,
طوری را g و k(x, s) = cos(x + s + ١) + ٢ ،−١ ≤ x ≤ ٠ برای y(x) = ϕ(x) = sin(x) + ١ که
و دقیق جواب ۵ . ٣ ش΄ل در باشد. معادله دقیق جواب y(x) = sin(x) + ١ که ͬ کنیم م انتخاب
ش΄ل در N = ٨, ١٠, ١٢, ١۴ برای مطلق خطاهای است. شده داده نشان N = ١٠ برای تقریبی
همچنین ͬ کند. م میل صفر به خطا N افزایش با ͬ دهد م نشان که است شده داده نشان ۶ . ٣
داده نشان ٣ . ١ جدول در که کرده مقایسه [٢] روش با را پیشنهادی روش مطلق خطاهای

است.
ب·یرید. نظر در را زیر تاخیری ولترا انتگرال‐دیفرانسیل معادله .۴ . ۵ . ٣ مثال

ẏ(x) = g(x) +

∫ x

x−١ k(x, s)y(s) ds, ٠ ≤ x ≤ ۶,
انتخاب طوری را g و k(x, s) = (x− s) ex−s ،−١ ≤ x ≤ ٠ برای y(x) = ϕ(x) = cos(x) e−x که
تقریبی و دقیق جواب ٣ . ٧ ش΄ل در باشد. معادله دقیق جواب y(x) = cos(x) e−x که ͬ کنیم م
در N = ١٣, ١۵, ١٧, ١٩ برای مطلق خطاهای همچنین است. شده داده نشان N = ١۵ برای
ͬ کند. م میل صفر به خطا N افزایش با دهد مͬ نشان که است شده داده نمایش ٣ . ٨ ش΄ل
نشان ٣ . ٢ جدول در که کرده مقایسه [٢] روش با را پیشنهادی روش مطلق خطاهای همچنین

است. شده داده
ب·یرید. نظر در را زیر تاخیری غیرخطͬ ولترا انتگرال‐دیفرانسیل معادله .۵ . ۵ . ٣ مثال

ẏ(x) = y(x− ١) + g(x) +

∫ x

x−١ y
٢(s)ds, ٠ ≤ x ≤ ٢,

جواب y(x) = ex که ͬ کنیم م انتخاب طوری را g(·) و −١ ≤ x ≤ ٠ ،y(x) = ϕ(x) = ex که
خطاهای ͬ دهد. م نشان N = ١٠ برای را تقریبی و دقیق جواب ٣ . ٩ ش΄ل باشد. معادله دقیق
وقتͬ که ͬ شود م مشاهده است. شده داده نشان ٣ . ١٠ ش΄ل در N = ١٠, ١٢, ١۴ برای مطلق

ͬ کند. م میل صفر به خطا ͬ یابد م افزایش N
ب·یرید. نظر در را زیر تاخیری غیرخطͬ ولترا انتگرال‐دیفرانسیل معادله .۶ . ۵ . ٣ مثال

ẏ(x) = y٢(x− ١) +
∫ x

x−١ sin(y)ds, ٠ ≤ x ≤ ٢,
ندارد. دقیق جواب ولترا انتگرال‐دیفرانسیل معادله −١ ≤ x < ٠ ،y(x) = ϕ(x) = sin(x) که
برای تقریبی جواب آوردیم. بدست را باقیمانده خطای و کرده محاسبه را تقریبی جواب ΁ی
نشان ٣ . ١٢ ش΄ل و ٣ . ١١ ش΄ل در ترتیب به N = ۶,٨, ١٠ برای باقیمانده خطای و N = ١٠

ͬ کند. م میل صفر به خطا ͬ یابد م افزایش N وقتͬ که ͬ شود م مشاهده است. شده داده



تاخیری انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ٢٨
٣ . ۵ . ٣ مثال برای مطلق خطاهای :٣ . ١ جدول

شده ارائه لژاندر روش
N + ١ = ١٣ برای

برای تیلور محلͬ هم روش
هم نقاط تعداد M = N = ۵, r = ٣

[٢] r(N + ١) = ٢١ محلͬ
شده ارائه لژاندر روش

N + ١ = ١١ برای
برای تیلور محلͬ هم روش

هم نقاط تعداد M = N = ۴, r = ٣
[٢] r(N + ١) = ١۵ محلͬ

x

٠٫٣٧٨ × ٨−١٠ ٠٫١ × ٨−١٠ ٠٫١۶١ × ١٠−۶ ٠٫١٠۴ × ١٠−۵ ٠٫۵
٠٫۵٧١ × ٨−١٠ ٠٫٧ × ٨−١٠ ٠٫٢۴۵ × ١٠−۶ ٠٫٢١٣ × ١٠−۵ ١
٠٫٨٣١ × ٨−١٠ ٠٫١٣ × ٧−١٠ ٠٫٣۵٧ × ١٠−۶ ٠٫٣٠٣ × ١٠−۵ ١٫۵
٠٫١٣۶ × ٧−١٠ ٠٫٢۶ × ٧−١٠ ٠٫۵٨٢ × ١٠−۶ ٠٫۴١٢ × ١٠−۵ ٢
٠٫٢٧١ × ٧−١٠ ٠٫۴٧ × ٧−١٠ ٠٫١١۶ × ١٠−۵ ٠٫۶١٩ × ١٠−۵ ٢٫۵
٠٫۵٨٢ × ٧−١٠ ٠٫٨٩ × ٧−١٠ ٠٫٢۵٠ × ١٠−۵ ٠٫١ × ١٠−۴ ٣

۴ . ۵ . ٣ مثال برای مطلق خطاهای :٣ . ٢ جدول
شده ارائه لژاندر روش

N + ١ = ١٨ برای
برای تیلور محلͬ هم روش

هم نقاط تعداد M = N = ۶, r = ۶
[٢] r(N + ١) = ۴٢ محلͬ

شده ارائه لژاندر روش
N + ١ = ١۶ برای

برای تیلور محلͬ هم روش
هم نقاط تعداد M = N = ۵, r = ۶

[٢] r(N + ١) = ٣۶ محلͬ
x

٠٫١٧٨ × ٧−١٠ ٠٫١۴٣ × ٧−١٠ ٠٫۴۴ × ١٠−۶ ٠٫٨٠۵ × ١٠−۶ ١
٠٫٣۴۵ × ٧−١٠ ٠٫٢٠٨ × ٧−١٠ ٠٫٨۵ × ١٠−۶ ٠٫٢١۵ × ١٠−۵ ٢
٠٫۶۵۴ × ٧−١٠ ٠٫٣۶٣ × ٧−١٠ ٠٫١۶١ × ١٠−۵ ٠٫۴١٨ × ١٠−۵ ٣
٠٫١٢۴ × ١٠−۶ ٠٫۶٨۶ × ٧−١٠ ٠٫٣٠۶ × ١٠−۵ ٠٫٧٨٨ × ١٠−۵ ۴
٠٫٢٣۴ × ١٠−۶ ٠٫١٣٠ × ١٠−۶ ٠٫۵٧٩ × ١٠−۵ ٠٫١۴٨ × ١٠−۴ ۵
٠٫۴۴۴ × ١٠−۶ ٠٫٢۴۶ × ١٠−۶ ٠٫١١ × ١٠−۴ ٠٫٢٨١ × ١٠−۴ ۶
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.١ . ۵ . ٣ مثال برای N = ١٠ با تقریبی جواب های :٣ . ١ ش΄ل



٢٩ عددی مثال های
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.١ . ۵ . ٣ مثال برای مطلق خطاهای :٣ . ٢ ش΄ل
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.٢ . ۵ . ٣ مثال برای N = ١٠ با تقریبی جواب های :٣ . ٣ ش΄ل
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.٢ . ۵ . ٣ مثال برای مطلق خطاهای :۴ . ٣ ش΄ل



تاخیری انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ٣٠
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.٣ . ۵ . ٣ مثال برای N = ١٠ با تقریبی جواب های :۵ . ٣ ش΄ل
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.٣ . ۵ . ٣ مثال برای مطلق خطاهای :۶ . ٣ ش΄ل
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.۴ . ۵ . ٣ مثال برای N = ١۵ با تقریبی جواب های :٣ . ٧ ش΄ل



٣١ عددی مثال های
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.۴ . ۵ . ٣ مثال برای مطلق خطاهای :٣ . ٨ ش΄ل
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.۵ . ۵ . ٣ مثال برای N = ١٠ با تقریبی و دقیق جواب های :٣ . ٩ ش΄ل
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.۵ . ۵ . ٣ مثال برای مطلق خطاهای :٣ . ١٠ ش΄ل



تاخیری انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ٣٢
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Discrete approximate solution
Continuous approximate solution

.۶ . ۵ . ٣ مثال برای N = ١٠ با تقریبی جواب :٣ . ١١ ش΄ل
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۴ فصل
حل برای لژاندر طیفͬ شبه روش های

فردهلم انتگرال‐دیفرانسیل معادلات
تاخیری

مقدمه ١ . ۴
خود به را محققین از بسیاری توجه (DFIDEs) ١ تاخیری فردهلم انتگرال‐دیفرانسیل معادلات
کار به معادلات این گونه حل برای را مختلفͬ روش های محققین برخͬ اخیرا است. کرده جلب
معادلات حل برای را ٢ لژاندر‐مونتس ماتریس روش [۴۶] در هم΄ارانش و یوزباشͬ برده اند.
و یوزباشͬ همچنین و کرده اند. ارائه ثابت ضرایب با تاخیری خطͬ فردهلم انتگرال‐دیفرانسیل
انتگرال‐ معادلات حل برای را لژاندر‐مونتس ایهای جمله چند جوابهای [۴۵] در هم΄ارانش
در محتشم۴ͬ و اردوخان٣ͬ اند. برده ب΄ار نیز مانده باقͬ تصحیح و تاخیری فردهلم دیفرانسیل
زمانͬ تاخیری با غیرخطͬ فردهلم انتگرال‐دیفرانسیل معادلات حل برای را تیلور۵ روش [٢٧]

1Delay Fredholm integro-differentioal equations
2Muntz-Legendre matrix method
3Ordokhani
4Mohtashami
5Taylor method

٣٣



فردهلم انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش های ٣۴
تاخیری

فردهلم انتگرال‐دیفرانسیل معادلات حل برای را اسپلاین٧ تقریب [١] در آیاد۶ برده اند. به کار
چندجمله ای های براساس ماتریسͬ ال·وی ΁ی [۴۴] در یوزباشͬ است. کرده ارائه تاخیری
ضرایب با تاخیری خطͬ فردهلم انتگرال‐دیفرانسیل معادلات حل برای انتقال یافته لژاندر

کرده است. ارائه ثابت
انتگرال‐دیفرانسیل معادلات از رده ای حل برای لژاندر طیفͬ شبه روش از فصل این در

ͬ کنیم. م آنالیز را روش هم·رایی و ͬ پردازیم م تاخیری فردهلم

تاخیری غیرخطͬ فردهلم انتگرال‐دیفرانسیل معادلات ٢ . ۴
ͬ گیریم. م نظر در را زیر تاخیری غیرخطͬ فردهلم انتگرال‐دیفرانسیل معادلات فصل این در


ẏ(x) = f

(
x, y(x), y(x− σ)

)
+

∫ T

٠ h
(
x, s, y(s), y(s− σ)

)
ds, ٠ < x ≤ T,

y(x) = ξ(x), −σ ≤ x ≤ ٠,
(١ . ۴)

بطور توابع ξ : [٠, T ] → R و g : [٠, T ] × [٠, T ] × R × R → R ، f : [٠, T ] × R × R → R که
ثابت مقدار ٠ < σ < T و است مجهول تابع ΁ی y : [٠, T ] → R و هستند مشتق پذیر پیوسته

است. منحصربفرد جواب ΁ی دارای (١ . ۴) دستگاه ͬ کنیم م فرض است.
[٠, σ] بازه انتقال جهت s٢ =

T − σ

٢ t +
σ + T

٢ و s١ =
σ

٢ t +
σ

٢ تبدیلات از ترتیب به ابتدا
تبدیل زیر معادل دستگاه به (١ . ۴) دستگاه فرض این با ͬ کنیم. م استفاده [−١, ١] به [σ, T ] و

ͬ شود. م
(٢ . ۴)

ẏ(x) =



f
(
x, y(x), ξ(x− σ)

)
+
σ

٢
∫ ١
−١
h
(
x,
σ

٢ t+
σ

٢ , y(
σ

٢ t+
σ

٢ ), ξ(
σ

٢ t−
σ

٢ )
)
dt

+
T − σ

٢
∫ ١
−١
h

(
x,
T − σ

٢ t+
T + σ

٢ , y(
T − σ

٢ t+
T + σ

٢ ), y(
T − σ

٢ t+
T − σ

٢ )

)
dt,

٠ < x ≤ σ,

f
(
x, y(x), y(x− σ)

)
+
σ

٢
∫ ١
−١
h
(
x,
σ

٢ t+
σ

٢ , y(
σ

٢ t+
σ

٢ ), ξ(
σ

٢ t−
σ

٢ )
)
dt

+
T − σ

٢
∫ ١
−١
h

(
x,
T − σ

٢ t+
T + σ

٢ , y(
T − σ

٢ t+
T + σ

٢ ), y(
T − σ

٢ t+
T − σ

٢ )

)
dt,

σ < x ≤ T,

y(٠) = ξ(٠).

6Ayad
7Spline



٣۵ روش پیاده سازی
ͬ کنیم م پیشنهاد را زیر زمانͬ پیوسته بهینه سازی مسئله اکنون

Minimize J = (y(٠)− ξ(٠))٢
subject to

ẏ(x) =



f
(
x, y(x), ξ(x− σ)

)
+
σ

٢
∫ ١
−١
h
(
x,
σ

٢ t+
σ

٢ , y(
σ

٢ t+
σ

٢ ), ξ(
σ

٢ t−
σ

٢ )
)
dt

+
T − σ

٢
∫ ١
−١
h

(
x,
T − σ

٢ t+
σ + T

٢ , y(
T − σ

٢ t+
σ + T

٢ ), y(
T − σ

٢ t+
T − σ

٢ )

)
dt,

٠ < x ≤ σ,

f
(
x, y(x), y(x− σ)

)
+
σ

٢
∫ ١
−١
h
(
x,
σ

٢ t+
σ

٢ , y(
σ

٢ t+
σ

٢ ), ξ(
σ

٢ t−
σ

٢ )
)
dt

+
T − σ

٢
∫ ١
−١
h

(
x,
T − σ

٢ t+
σ + T

٢ , y(
T − σ

٢ t+
σ + T

٢ ), y(
T − σ

٢ t+
T − σ

٢ )

)
dt,

σ < x ≤ T,

(٣ . ۴)
از ͬ باشد. م (٣ . ۴) مسئله برای بهینه جواب ΁ی (٢ . ۴) مسئله جواب هر که است ͹واض
شدنͬ مسئله ΁ی (٣ . ۴) مسئله ͬ باشد م منحصربفرد جواب دارای (٢ . ۴) مسئله که آنجایی

ͬ باشد. م منحصربفرد بهینه جواب دارای و است

روش پیاده سازی ٣ . ۴
ͬ کنیم م تبدیل زیر مسئله به را (٣ . ۴) زمانͬ پیوسته بهینه سازی مسئله اکنون

Minimize J = (y٠ − ξ(٠))٢ ,

N∑
j=٠

ȳjDkj = f
(
xk, ȳk, ξ(xk − σ

)
+
σ

٢
∫ ١
−١
h
(
xk,

σ

٢ t+
σ

٢ , yN (
σ

٢ t+
σ

٢ ), ξ(
σ

٢ t−
σ

٢ )
)
dt

+
T − σ

٢
∫ ١
−١
h

(
xk,

T − σ

٢ t+
T + σ

٢ , yN (
T − σ

٢ t+
T + σ

٢ ), yN (
T − σ

٢ t+
T − σ

٢ )

)
dt

k = ١,٢, . . . , lσ,
N∑
j=٠

ȳjDkj = f
(
xk, ȳk, yN (xk − σ)

)
+
σ

٢
∫ ١
−١
h
(
xk,

σ

٢ t+
σ

٢ , yN (
σ

٢ t+
σ

٢ ), ξ(
σ

٢ t−
σ

٢ )
)
dt

+
T − σ

٢
∫ ١
−١
h

(
xk,

T − σ

٢ t+
T + σ

٢ , yN (
T − σ

٢ t+
T + σ

٢ ), yN (
T − σ

٢ t+
T − σ

٢ )

)
dt

k = lσ + ١, . . . , N.
(۴ . ۴)



فردهلم انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش های ٣۶
تاخیری

در انتگرال ͬ کند. م صدق xlσ ≤ σ < xlσ+١ رابطه در lσ اندیس که ͬ کنیم م فرض اینجا در
٣ . ٣ . ١ لم با اکنون شود. زده تقریب زیر لم از استفاده با ͬ تواند م (۴ . ۴) مسئله محدودیت های

شود تبدیل زیر مسئله به ͬ تواند م (۴ . ۴) مسئله
Minimize J = (y0 − ξ(0))

2
,

N∑
j=٠

ȳjDkj = f
(
xk, ȳk, ξ(xk − σ

)
+
σ

٢
N∑
j=٠

ωjh

(
xk,

σ

٢ tj +
σ

٢ ,
N∑
i=٠

yiLi(
σ

٢ tj +
σ

٢ ), ξ(
σ

٢ tj −
σ

٢ )

)

+
T − σ

٢
N∑
j=٠

wjh

(
xk,

T − σ

٢ tj +
σ + T

٢ ,

N∑
i=٠

yiLi(
T − σ

٢ tj +
σ + T

٢ ),

N∑
i=٠

yiLi(
T − σ

٢ tj +
T − σ

٢ )

)
k = ١,٢, . . . , lσ,

N∑
j=٠

ȳjDkj = f

(
xk, ȳk,

N∑
i=٠

ȳiLi(xk − σ)

)
+
σ

٢
N∑
j=٠

ωjh

(
xk,

σ

٢ tj +
σ

٢ ,
N∑
i=٠

yiLi(
σ

٢ tj +
σ

٢ ), ξ(
σ

٢ tj −
σ

٢ )

)

+
T − σ

٢
N∑
j=٠

wjh

(
xk,

T − σ

٢ tj +
σ + T

٢ ,

N∑
i=٠

yiLi(
T − σ

٢ tj +
σ + T

٢ ),

N∑
i=٠

yiLi(
T − σ

٢ tj +
T − σ

٢ )

)
k = lσ + ١, . . . , N,

(۵ . ۴)
بنابراین و ͬ آید م بدست ȳ∗ = (ȳ∗٠, ȳ∗١ , . . . , ȳ∗N) ،(۵ . ۴) بهینه سازی مسئله حل با

yN (x) =
N∑
j=٠

ȳ∗jLj(x), ٠ ≤ x ≤ T, (۶ . ۴)
ͬ باشد. م (١ . ۴) مسئله برای تقریبی جواب ΁ی

هم·رایی آنالیز ۴ . ۴
بازنویسͬ زیر صورت به را (۴ . ۴) مسئله ͬ توانیم م ͬ کنیم. م آنالیز را روش هم·رایی بخش این در

کنیم
Minimize J = (y٠ − ξ(٠))٢,
subject to

∣∣∣∣∣ N∑
j=٠

ȳjDkj − f
(
xk, ȳk, ξ(xk − σ

)
− σ

٢
∫ ١
−١
h
(
xk,

σ

٢ t+
σ

٢ , yN (
σ

٢ t+
σ

٢ ), ξ(
σ

٢ t−
σ

٢ )
)
dt

−T − σ

٢
∫ ١
−١
h

(
xk,

T − σ

٢ t+
T + σ

٢ , yN (
T − σ

٢ t+
σ + T

٢ ), yN (
T − σ

٢ t+
T − σ

٢ )

)
dt

∣∣∣∣∣
≤ (N − ١) ٣٢−m, k = ١,٢, . . . , lσ,∣∣∣∣∣ N∑

j=٠
ȳjDkj − f

(
xk, ȳk, yN (xk − σ)

)
− T − σ

٢
∫ ١
−١
h

(
xk,

T − σ

٢ t+
T + σ

٢ , yN (
T − σ

٢ t+
σ + T

٢ ),

yN (
T − σ

٢ t+
T − σ

٢ )

)
dt− σ

٢
∫ ١
−١
h
(
xk,

σ

٢ t+
σ

٢ , yN (
σ

٢ t+
σ

٢ ), ξ
(σ

٢ t−
σ

٢
))

dt

∣∣∣∣∣ ≤ (N − ١) ٣٢−m

k = lσ + ١, . . . , N.
(٧ . ۴)



٣٧ هم·رایی آنالیز

در h(·, ·, ·, ·) و ͬ باشند م مشتق پذیر [٠, T ] × Ω٢ در پیوسته طور به f(·, ·, ·) که آنجایی از
دارند وجود N از مستقل و M٢ ،M١ ثابت های ͬ باشند، م مشتق پذیر پیوسته بطور [٠, T ]٢ ×Ω٢

که بطوری

|f (x, σ١, σ٢)− f (x, ψ١, ψ٢)| ≤M١

(
|σ١ − ψ١|+ |σ٢ − ψ٢|

)
,

|h(x, t, σ١, σ٢)− h(x, t, ψ١, ψ٢)| ≤M٢
(
|σ١ − ψ١|+ |σ٢ − ψ٢|

)
.

(٨ . ۴)

حداکثر درجه از چندجمله ای ΁ی yN (·) ، σ١, σ٢, ψ١, ψ٢ ∈ Ω و x, t ∈ [٠, T ] همه برای
بطور و شده محاسبه مشتق x٠, x١ , . . . , xN که ، انتقال یافته لوباتو گاوس لژاندر نقاط N.در

داریم بنابراین ، است شده ضرب D ماتریس در دقیق
N∑
j=٠

ȳjDkj = ẏN (xk). (٩ . ۴)

داریم k = ١,٢, . . . , lσ برای بنابراین
∣∣∣∣∣ẏN (xk)− f

(
(xk, yN (xk), ξ(xk − σ)

)
− σ

٢
∫ ١
−١ h

(
xk,

σ

٢ t+
σ

٢ , yN (
σ

٢ t+
σ

٢), ξ(
σ

٢ t−
σ

٢)
)
dt

−T − σ

٢
∫ ١
−١ h

(
xk,

T − σ

٢ t+
T + σ

٢ , yN (
T − σ

٢ t+
T + σ

٢ ), yN (
T − σ

٢ t+
T − σ

٢ )

)
dt

∣∣∣∣∣
≤
∣∣∣ẏN (xk)− ẏ(xk)

∣∣∣+ ∣∣∣f(xk, yN (xk), ξ(xk − σ)
)
− f

(
xk, y(xk), ξ(xk − σ)

)∣∣∣
+

∣∣∣∣∣σ٢
∫ ١
−١ h

(
xk,

σ

٢ t+
σ

٢ , yN (
σ

٢ t+
σ

٢), ξ(
σ

٢ t−
σ

٢)
)
dt

−σ٢
∫ ١
−١ h

(
xk,

σ

٢ t+
σ

٢ , y(
σ

٢ t+
σ

٢), ξ(
σ

٢ t−
σ

٢)
)
dt

∣∣∣∣∣
+

∣∣∣∣∣T − σ

٢
∫ ١
−١ h

(
xk,

T − σ

٢ t+
T + σ

٢ , yN (
T − σ

٢ t+
T + σ

٢ ), yN (
T − σ

٢ t+
T − σ

٢ )

)
dt

−T − σ

٢
∫ ١
−١ h

(
xk,

T − σ

٢ t+
T + σ

٢ , y(
T − σ

٢ t+
T + σ

٢ ), y(
T − σ

٢ t+
T − σ

٢ )

)
dt

∣∣∣∣∣
+

∣∣∣∣∣ẏ(xk)− f
(
xk, y(xk), ξ(xk − σ)

)
− σ

٢
∫ ١
−١ h

(
xk,

σ

٢ t+
σ

٢ , y(
σ

٢ t+
σ

٢), ξ
(σ

٢ t−
σ

٢
))

dt

−T − σ

٢
∫ ١
−١ h

(
xk,

T − σ

٢ t+
T + σ

٢ , y(
T − σ

٢ t+
T + σ

٢ ), y(
T − σ

٢ t+
T − σ

٢ )

)
dt

∣∣∣∣∣
≤
∣∣∣p(xk)− ẏ(xk)

∣∣∣+M١
∣∣∣yN (xk)− y(xk)

∣∣∣+M٢
σ

٢
∫ ١
−١
∣∣∣yN (

σ

٢ t+
σ

٢)− y(
σ

٢ t+
σ

٢)
∣∣∣ dt



فردهلم انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش های ٣٨
تاخیری

+M٢
(
T − σ

٢
)∫ ١

−١

∣∣∣∣yN (
T − σ

٢ t+
T + σ

٢ )− y(
T − σ

٢ t+
T + σ

٢ )

∣∣∣∣ dt
+M٢

(
T − σ

٢
)∫ ١

−١

∣∣∣∣yN (
T − σ

٢ t+
T − σ

٢ )− y(
T − σ

٢ t+
T − σ

٢ )

∣∣∣∣ dt
≤ C١(N − ١(١−m +M١TC١(N − ١(١−m +M٢σC١T (N − ١(١−m + ٢M٢(T − σ)C١T (N − ١(١−m

= C١(N − ١(١−m(١ +M١T +M٢σT + ٢M٢T (T − σ)),

ͬ آوریم م بدست k = lσ + ١, . . . , N برای ẏN∣∣∣∣∣همچنین (xk)− f
(
xk, yN (xk), yN (xk − σ)

)
− σ

٢
∫ ١
−١ h

(
xk,

σ

٢ t+
σ

٢ , yN (
σ

٢ t+
σ

٢), ξ
(σ

٢ t−
σ

٢
))

dt

−T − σ

٢
∫ ١
−١ h

(
xk,

T − σ

٢ t+
T + σ

٢ , yN (
T − σ

٢ t+
T + σ

٢ ), yN (
T − σ

٢ t+
T − σ

٢ )

)
dt

∣∣∣∣∣
≤
∣∣∣ẏN (xk)− ẏ(xk)

∣∣∣+ ∣∣∣f(xk, yN (xk), yN (xk − σ)
)
− f

(
xk, y(xk), y(xk − σ)

)∣∣∣
+

∣∣∣∣∣σ٢
∫ ١
−١ h

(
xk,

σ

٢ t+
σ

٢ , yN (
σ

٢ t+
σ

٢), ξ(
σ

٢ t−
σ

٢)
)
dt

−σ٢
∫ ١
−١ h

(
xk,

σ

٢ t+
σ

٢ , y(
σ

٢ t+
σ

٢), ξ(
σ

٢ t−
σ

٢)
)
dt

∣∣∣∣∣
+

∣∣∣∣∣T − σ

٢
∫ ١
−١ h

(
xk,

T − σ

٢ t+
T + σ

٢ , yN (
T − σ

٢ t+
T + σ

٢ ), yN (
T − σ

٢ t+
T − σ

٢ )

)
dt

−T − σ

٢
∫ ١
−١ h

(
xk,

T − σ

٢ t+
T + σ

٢ , y(
T − σ

٢ t+
T + σ

٢ ), y(
T − σ

٢ t+
T − σ

٢ )

)
dt

∣∣∣∣∣
+

∣∣∣∣∣ẏ(xk)− f(xk, y(xk), y(xk − σ))− σ

٢
∫ ١
−١ h

(
xk,

σ

٢ t+
σ

٢ , y(
σ

٢ t+
σ

٢), ξ(
σ

٢ t−
σ

٢)
)
dt

−T − σ

٢
∫ ١
−١ h

(
xk,

T − σ

٢ t+
T + σ

٢ , y(
T − σ

٢ t+
T + σ

٢ ), y(
T − σ

٢ t+
T − σ

٢ )

)
dt

∣∣∣∣∣
≤
∣∣∣p(xk)− ẏ(xk)

∣∣∣+M١
(∣∣∣yN (xk)− y(xk)

∣∣∣+ ∣∣∣yN (xk − σ)− y(xk − σ)
∣∣∣)

+M٢
σ

٢
∫ ١
−١
∣∣∣yN (

σ

٢ t+
σ

٢)− y(
σ

٢ t+
σ

٢)
∣∣∣ dt

+M٢
(
T − σ

٢
)∫ ١

−١

∣∣∣∣yN (
T − σ

٢ t+
T + σ

٢ )− y(
T − σ

٢ t+
T + σ

٢ )

∣∣∣∣ dt
+M٢

(
T − σ

٢
)∫ ١

−١

∣∣∣∣yN (
T − σ

٢ t+
T − σ

٢ )− y(
T − σ

٢ t+
T − σ

٢ )

∣∣∣∣ dt
≤ C١(N − ١(١−m + ٢M١TC١(N − ١(١−m +M٢σC١T (N − ١(١−m + ٢M٢(T − σ)C١T (N − ١(١−m

= C١(N − ١(١−m(١ + ٢M١T +M٢σT + ٢M٢T (T − σ)),



٣٩ هم·رایی آنالیز
بطوری ͬ گیریم م نظر در N١را مثبت صحیح عدد هستند. لیپ شیتز M٢ثابت های M١و که

N ≥ N١ همه برای که

C١)١ + ٢M١T +M٢σT + ٢M٢T (T − σ)) ≤ (N − ١) ١٢ .

ͬ کند. م صدق (٧ . ۴) مسئله محدودیت های در ȳ = (ȳ٠, ȳ١, . . . , ȳN ) ،N ≥ N١ هر برای
ͬ کنیم م تعریف باشد (٧ . ۴) مسئله برای بهینه جواب ΁ی (ȳ∗٠, ȳ∗١ , . . . , ȳ∗N ) اگر اکنون

y∗N (x) =
N∑
k=٠

ȳ∗kLk(x), x ∈ [٠, T ] , (١٠ . ۴)

از مجموعه ΁ی هستند. لژاندر درونیاب چندجمله ای های Lk(·), k = ٠, ١, . . . , N که
داریم. {y∗N (·)}∞N=N١ توابع درونیابی از مجموعه ای و {ȳ∗٠, ȳ∗١ , . . . , ȳ∗N}∞N=N١ مستقیم جواب های

{y∗N (·)}∞N=N١ و باشد (٧ . ۴) مسئله بهینه جواب از دنباله ای {ȳ∗٠, ȳ∗١ , . . . , ȳ∗N}∞N=N١ اگر .١ . ۴ . ۴ قضیه
بطور که دارد زیردنباله ΁ی {ẏ∗N (·)}∞N=N١ دنباله کنید فرض و باشد آن ها درونیاب از دنباله

بنابراین ͬ باشد. م هم·را q(·) به ی΄نواخت

y∗(x) =

∫ x

٠ q(τ)dτ + ξ(٠), ٠ ≤ x ≤ T, (١١ . ۴)

است. (٣ . ۴) مسئله برای بهینه جواب ΁ی

که بطوری باشد {ẏ∗N (·)}∞N=١ دنباله از ای زیردنباله {ẏ∗Ni
(·)
}∞
i=١ که کنیم فرض برهان.

نظر در با همچنین . lim
i→∞

y∗Ni
(·) = y∗(·) داریم بنابراین lim

i→∞
ẏ∗Ni

(·) = q(·) و lim
i→∞

Ni = ∞

داریم (١١ . ۴) مسئله گرفتن

J = (ȳ∗٠ − η(٠))٢ =

(
lim
i→∞

y∗Ni
(٠)− η(٠)

)٢
= (y∗(٠)− η(٠))٢ = (η(٠)− η(٠))٢ = ٠.

محدودیت در y∗(·) ͬ کنیم م فرض است. شدنͬ جواب ΁ی y∗(·) ͬ دهیم م نشان اکنون
که بطوری دارد وجود x̄ ∈ [٠, T ] ΁ی بنابراین ͬ کند. نم صدق (٣ . ۴) مسئله

ẏ∗(x̄)− ψ
(
x̄, y∗(x̄), y∗(x̄− σ)

)
̸= ٠,



فردهلم انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش های ۴٠
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که

ψ
(
x, y∗(x), y∗(x− σ)

)
=

f
(
x, y∗(x), ξ(x− σ)

)
+
σ

٢
∫ ١
−١ h

(
x,
σ

٢ t+
σ

٢ , y∗(
σ

٢ t+
σ

٢), ξ(
σ

٢ t−
σ

٢)
)
dt

+
T − σ

٢
∫ ١
−١ h

(
x,
T − σ

٢ t+
T + σ

٢ , y∗(
T − σ

٢ t+
T + σ

٢ ), y∗(
T − σ

٢ t+
T − σ

٢ )

)
dt

٠ < x ≤ σ,

f
(
x, y∗(x), y∗(x− σ)

)
+
σ

٢
∫ ١
−١ h

(
x,
σ

٢ t+
σ

٢ , y∗(
σ

٢ t+
σ

٢), ξ(
σ

٢ t−
σ

٢)
)
dt

+
T − σ

٢
∫ ١
−١ h

(
x,
T − σ

٢ t+
T + σ

٢ , y∗(
T − σ

٢ t+
T + σ

٢ ), y∗(
T − σ

٢ t+
T − σ

٢ )

)
dt

σ < x ≤ T.

دارد وجود xkNi
زیردنباله ΁ی [١۵] هستند چ·ال [٠, T ] در {xk}∞k=٠ مجموعه که آنجایی از

بنابراین lim
i→∞

xkNi
= x̄ و ٠ < kNi < Ni که بطوری

(١٢ . ۴)
ẏ∗(x̄)−ψ

(
x̄, y∗(x̄), y∗(x̄− σ)

)
= lim

i→∞

(
ẏ∗Ni

(xkNi
)− ψ

(
xkNi

, y∗Ni
(xkNi

), y∗Ni
(xkNi

− σ)
))

̸= ٠.

(٧ . ۴) مسئله محدودیت های از استفاده با بنابراین lim
i→∞

(Ni − ٣٢(١−m
= ٠ دی·ر طرفͬ از

داریم
lim
i→∞

(
ẏ∗Ni

(xkNi
)− ψ

(
xkNi

, y∗Ni
(xkNi

), y∗Ni
(xkNi

− σ)
))

= ٠.
است (٣ . ۴) مسئله برای شدنͬ جواب ΁ی y∗(·) بنابراین است. تناقض در (١٢ . ۴) رابطه با که

ͬ شود. م کامل اثبات و

عددی مثال های ۵ . ۴
ب·یرید. نظر در را زیر تاخیری فردهلم انتگرال‐دیفرانسیل معادله .١ . ۵ . ۴ مثال

ẏ(x) = y(x− ١) + ex − ex−١ + e−١ − e+
∫ ٢٠ y(s− ١) ds, ٠ ≤ x ≤ ٢,

y(x) = ξ(x), −١ ≤ x ≤ ٠.
ش΄ل در N = ١٠ برای دقیق و تقریبی جواب های است. معادله دقیق جواب y(x) = ex که
شده داده نشان ٢ . ۴ ش΄ل در N = ٨, ١٠, ١٢ برای مطلق خطاهای و است شده داده نشان ١ . ۴

ͬ کند. م میل صفر به خطا N افزایش با ͬ شود م مشاهده که همانطور است.



۴١ عددی مثال های
ب·یرید. نظر در را زیر تاخیری فردهلم انتگرال‐دیفرانسیل معادله .٢ . ۵ . ۴ مثال


ẏ(x) = y(x− ١) + cos(x)− sin(x− ١) + sin(١)− cos(١) + ∫ π٢٠ y(s− ١) ds, ٠ ≤ x ≤ ٢,
y(x) = ξ(x), −١ ≤ x ≤ ٠.

ش΄ل در N = ١٠ برای دقیق و تقریبی جواب های است. معادله دقیق جواب y(x) = sinx که
شده داده نشان ۴ . ۴ ش΄ل در N = ٨, ١٠, ١٢ برای مطلق خطاهای و است شده داده نشان ٣ . ۴

ͬ کند. م میل صفر به خطا N افزایش با ͬ شود م مشاهده که همانطور . است

ب·یرید. نظر در را زیر تاخیری فردهلم انتگرال‐دیفرانسیل معادله .٣ . ۵ . ۴ مثال

ẏ(x) = y(x− ١)− cos(x− ١)− ١٢sin(٢)− π/۴ − sin(x) +

∫ π٢٠ y٢(s− ١) ds, ٠ ≤ x ≤ ٢,
y(x) = ξ(x), −١ ≤ x ≤ ٠.

ش΄ل در N = ١٠ برای دقیق و تقریبی جواب های است. معادله دقیق جواب y(x) = cosx که
شده داده نشان ۶ . ۴ ش΄ل در N = ٨, ١٠, ١٢ برای مطلق خطاهای و است شده داده نشان ۵ . ۴

ͬ کند. م میل صفر به خطا N افزایش با ͬ شود م مشاهده که همانطور است.
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.١ . ۵ . ۴ مثال برای N = ١٠ با تقریبی و دقیق جواب های :١ . ۴ ش΄ل
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.٢ . ۵ . ۴ مثال برای N = ١٠ با تقریبی و دقیق جواب های :٣ . ۴ ش΄ل
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.٢ . ۵ . ۴ مثال برای مطلق خطاهای :۴ . ۴ ش΄ل
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.٣ . ۵ . ۴ مثال برای N = ١٠ با تقریبی و دقیق جواب های :۵ . ۴ ش΄ل
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.٣ . ۵ . ۴ مثال برای مطلق خطاهای :۶ . ۴ ش΄ل



۵ فصل
حل برای لژاندر طیفͬ شبه روش های

انتگرال‐دیفرانسیل معادلات
تاخیری ولترا‐فردهلم

مقدمه ١ . ۵
خود به را ͬ دانان ریاض از بسیاری توجه تاخیری١ ولترا‐فردهلم انتگرال‐دیفرانسیل معادلات
معادلات این گونه حل برای را مختلفͬ روش های محققین برخͬ اخیرا است. کرده جلب
ولترا‐ دیفرانسیل انتگرال‐ معادلات از رده ای [٣٧] در هم΄ارانش و تیان٢ برده اند. به  کار
کرده اند. ارائه زمان مقیاس در را دینامی΄ͬ انتگرال نامساوی های نوع تاخیری غیرخطͬ فردهلم
انتگرال‐ معادلات حل برای را بزیر۴ ͬ های منحن روش [١٧] در هم΄ارانش و قومنجان٣ͬ
روش [٢٠] در هم΄ارانش و عیس۵ͬ برده اند. به کار غیرخطͬ و خطͬ ولترا‐فردهلم دیفرانسیل

1Delay Volterra-Fredholm integro-differetial equations
2Tian
3Ghomanjani
4Bezier Curves
5Issa

۴٣



ولترا‐فردهلم انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش های ۴۴
تاخیری

به کار تاخیری فردهلم و ولترا انتگرال‐دیفرانسیل معادلات حل برای را گالرکین۶ آشفتگͬ
انتگرال‐دیفرانسیل معادلات حل برای را تاو٩ روش [٣٣] در استادزاد٨ و شاهمراد٧ برده اند.

برده اند. به کار تاخیری ولترا و فردهلم
دیفرانسیل انتگرال‐ معادلات از رده ΁ی حل برای را جدیدی عددی روش فصل، این در

ͬ دهیم. م ارائه تاخیری

غیرخطͬ ولترا‐فردهلم انتگرال‐دیفرانسیل معادلات ٢ . ۵
تاخیری

نظر در را زیر تاخیری غیرخطͬ ولترا‐فردهلم انتگرال‐دیفرانسیل معادلات فصل این در
ͬ گیریم. م

u̇(x) = f
(
x, u(x), u(x− τ)

)
+ λ١

∫ x

x−τ
g
(
x, s, u(s)

)
ds

+λ٢
∫ T٠ h

(
x, s, u(s), u(s− τ)

)
ds, ٠ < x ≤ T,

u(x) = η(x), −τ ≤ x ≤ ٠,
(١ . ۵)

h : [٠, T ]× [٠, T ]× R× R → R ، g : [٠, T ]× [٠, T ]× R → R ، f : [٠, T ]× R× R → R که
و مجهول تابع u : [٠, T ] → R و هستند مشتق پذیر پیوسته بطور توابع η : [٠, T ] → R و
کنیم فرض .(λ١, λ٢) ̸= (٠, ٠) که هستند حقیقͬ اعداد λ١, λ٢ و است ثابت مقدار ٠ < τ < T

است. منحصربفرد جواب دارای (١ . ۵) دستگاه
داریم را زیر رابطه −τ ≤ x ≤ ٠ ،u(x) = η(x) ∫با x

x−τ
g
(
x, s, u(s)

)
ds =

∫ ٠
x−τ

g
(
x, s, η(s)

)
ds+

∫ x

٠ g
(
x, s, u(s)

)
ds, ٠ ≤ x ≤ T,

(٢ . ۵)∫ T

٠ h
(
x, s, u(s), u(s− τ)

)
ds =

∫ τ

٠ h
(
x, s, u(s), η(s− τ)

)
ds+

∫ T

τ
h
(
x, s, u(s), u(s− τ)

)
ds,

(٣ . ۵)٠ ≤ x ≤ T.

s۴ = τ٢ t + τ٢ ،s٣ = τ٢ t + ٢x−τ٢ ،s٢ = x٢ t + x٢ ،s١ = τ−x٢ t + x−τ٢ تبدیلات از ترتیب به ابتدا
[−١, ١] به [τ, T ] و [٠, τ ] ،[x − τ, x] ،[٠, x] ،[x− τ, ٠] بازه انتقال جهت s۵ = T−τ٢ t + τ+T٢ و
زیر معادل دستگاه به (١ . ۵) دستگاه (٣ . ۵) و (٢ . ۵) رابطه و فرض این با ͬ کنیم. م استفاده

ͬ شود. م تبدیل
6Perturbed Galerkin method
7Shahmorad
8Ostadzad
9Tau method



۴۵ روش سازی پیاده

Minimize J = (u(٠)− η(٠))٢

subject to

u̇(x) =



f(x, u(x), η(x− τ)) +
τ − x

٢
∫ ١
−١ g

(
x,

τ − x

٢ t+
x− τ

٢ , η(
τ − x

٢ t+
x− τ

٢ )

)
dt

+
x

٢
∫ ١
−١ g

(
x,

x

٢ t+
x

٢ , u(
x

٢ t+
x

٢ )

)
dt+

τ

٢
∫ ١
−١ h

(
x,

τ

٢ t+
τ

٢ , u(
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )

)
dt

+
T − τ

٢
∫ ١
−١ h

(
x,

T − τ

٢ t+
τ + T

٢ , u(
T − τ

٢ t+
τ + T

٢ ), u(
T − τ

٢ t+
T − τ

٢ )

)
dt,

٠ < x ≤ τ,

f(x, u(x), u(x− τ)) +
τ

٢
∫ ١
−١ g

(
x,

τ

٢ t+
٢x− τ

٢ , u(
τ

٢ t+
٢x− τ

٢ )

)
dt

+
τ

٢
∫ ١
−١ h

(
x,

τ

٢ t+
τ

٢ , u(
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )

)
dt

+
T − τ

٢
∫ ١
−١ h

(
x,

T − τ

٢ t+
T + τ

٢ , u(
T − τ

٢ t+
τ + T

٢ ), u(
T − τ

٢ t+
T − τ

٢ )

)
dt,

τ < x ≤ T,

(۴ . ۵)

دارای نیز (۴ . ۵) مسئله ͬ باشد م منحصربفرد بهینه جواب دارای (١ . ۵) مسئله آنجاکه از
است. منحصربفرد بهینه جواب

روش سازی پیاده ٣ . ۵
ͬ کنیم م تبدیل زیر مسئله به را (۴ . ۵) بهینه سازی مسئله اکنون

Minimize J = (u٠ − η(٠))٢ ,

subject to

N∑
j=٠ ūjDkj = f (xk, ūk, η(xk − τ)) +

τ − xk

٢
∫ ١
−١ g

(
xk,

τ − xk

٢ t+
xk − τ

٢ ,

η(
τ − xk

٢ t+
xk − τ

٢ )

)
dt+

xk

٢
∫ ١
−١ g

(
xk,

xk

٢ t+
xk

٢ , uN (
xk

٢ t+
xk

٢ )

)
dt

+
τ

٢
∫ ١
−١ h

(
xk,

τ

٢ t+
τ

٢ , uN (
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )

)
dt

+
T − τ

٢
∫ ١
−١ h

(
xk,

T − τ

٢ t+
T + τ

٢ , uN (
T − τ

٢ t+
T + τ

٢ ), uN (
T − τ

٢ t+
T − τ

٢ )

)
dt

k = ١,٢, . . . , lτ ,
N∑
j=٠ ūjDkj = f (xk, ūk, uN (xk − τ)) +

τ

٢
∫ ١
−١ g

(
xk,

τ

٢ t+
٢xk − τ

٢ , uN (
τ

٢ t+
٢xk − τ

٢ )

)
dt

+
τ

٢
∫ ١
−١ h

(
xk,

τ

٢ t+
τ

٢ , uN (
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )

)
dt

+
T − τ

٢
∫ ١
−١ h

(
xk,

T − τ

٢ t+
T + τ

٢ , uN (
T − τ

٢ t+
T + τ

٢ ), uN (
T − τ

٢ t+
T − τ

٢ )

)
dt

k = lτ + ١, . . . , N,

(۵ . ۵)



ولترا‐فردهلم انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش های ۴۶
تاخیری

٣ . ٣ . ١ لم با ͬ کند. م صدق xlτ ≤ τ < xlτ+١ رابطه در lτ اندیس که ͬ کنیم م فرض اینجا در
ͬ زنیم م تقریب زیر صورت به (۵ . ۵) مسئله و

Minimize J = (u٠ − η(٠))٢,
subject to

N∑
j=٠

ūjDkj = f (xk, ūk, η(xk − τ)) +
τ − xk٢

N∑
j=٠

ωjg

(
xk,

τ − xk٢ tj +
xk − τ

٢ ,

η(
τ − xk٢ tj +

xk − τ

٢ )

)
+
xk٢

N∑
j=٠

ωjg

(
xk,

xk٢ tj +
xk٢ ,

N∑
i=٠

uiLi(
xk٢ tj +

xk٢ )

)
,

+
τ

٢
N∑
j=٠

wjh

(
xk,

τ

٢ tj +
τ

٢ ,
N∑
i=٠

uiLi(
τ

٢ tj +
τ

٢ ), η(
τ

٢ tj −
τ

٢ )

)

+
T − τ

٢
N∑
j=٠

wjh

(
xk,

T − τ

٢ tj +
τ + T

٢ ,
N∑
i=٠

uiLi(
T − τ

٢ tj +
τ + T

٢ ),
N∑
i=٠

uiLi(
T − τ

٢ tj +
T − τ

٢ )

)

k = ١,٢, . . . , lτ ,
N∑
j=٠

ūjDkj = f

(
xk, ūk,

N∑
i=٠

ūiLi(xk − τ)

)
+
τ

٢
N∑
j=٠

ωjg

(
xk,

τ

٢ tj +
٢xk − τ

٢ ,
N∑
i=٠

uiLi(
τ

٢ tj +
٢xk − τ

٢ )

)
,

+
τ

٢
N∑
j=٠

wjh

(
xk,

τ

٢ tj +
τ

٢ ,
N∑
i=٠

uiLi(
τ

٢ tj +
τ

٢ ), η(
τ

٢ tj −
τ

٢ )

)
,

+
T − τ

٢
N∑
j=٠

wjh

(
xk,

T − τ

٢ tj +
τ + T

٢ ,

N∑
i=٠

uiLi(
T − τ

٢ tj +
τ + T

٢ ),

N∑
i=٠

uiLi(
T − τ

٢ tj +
T − τ

٢ )

)
,

k = lτ + ١, . . . , N,
(۶ . ۵)

بنابراین ͬ آید. م بدست ū∗ = (ū∗٠, ū∗١, . . . , ū∗N) ،(۶ . ۵) بهینه سازی مسئله حل با

u∗N (x) =
N∑
j=٠

ū∗jLj(x), ٠ ≤ x ≤ T, (٧ . ۵)

ͬ باشد. م (١ . ۵) مسئله برای تقریبی جواب ΁ی



۴٧ هم·رایی آنالیز

هم·رایی آنالیز ۴ . ۵
زیر صورت به را (۵ . ۵) مسئله ͬ توانیم م ͬ کنیم. م بررسͬ را روش این هم·رایی بخش این در

کنیم بازنویسͬ
Minimize J = (u٠ − η(٠))٢,
subject to



∣∣∣∣∣ N∑
j=٠

ūjDkj − f (xk, ūk, η(tk − τ))− τ − xk٢
∫ ١
−١
g

(
xk,

τ − xk٢ t+
xk − τ

٢ , η(
τ − xk٢ t+

xk − τ

٢ )

)
dt

−xk٢
∫ ١
−١
g
(
xk,

xk٢ t+
xk٢ , uN (

xk٢ t+
xk٢ )
)
dt− τ

٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , uN (
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

−T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , uN (
T − τ

٢ t+
T + τ

٢ ), uN (
T − τ

٢ t+
T − τ

٢ )

)
dt

∣∣∣∣∣ ≤ (N − ١) ٣٢−m,

k = ١,٢, . . . , lτ ,
∣∣∣∣∣ N∑
j=٠

ūjDkj − f (xk, ūk, uN (tk − τ))− τ

٢
∫ ١
−١
g

(
xk,

τ

٢ t+
٢xk − τ

٢ , uN (
τ

٢ t+
٢xk − τ

٢ )

)
dt

− τ٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , uN (
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

−T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , uN (
T − τ

٢ t+
T + τ

٢ ), uN (
T − τ

٢ t+
T − τ

٢ )

)
dt

∣∣∣∣∣ ≤ (N − ١) ٣٢−m

k = lτ + ١, . . . , N,
(٨ . ۵)

در g(·, ·, ·) ͬ باشند، م مشتق پذیر [٠, T ]× Ω٢ در پیوسته طور به f(·, ·, ·) که آنجایی از
ثابت های ͬ باشند، م مشتق پذیر پیوسته بطور [٠, T ]٢×Ω٢ در h(·, ·, ·, ·) و [٠, T ]× [٠, T ]×Ω

که بطوری دارند وجود N از مستقل M٣ و M٢ ،M١

|f (x, σ١, σ٢)− f (x, ψ١, ψ٢)| ≤M١
(
|σ١ − ψ١|+ |σ٢ − ψ٢|

)
,

|g(x, t, σ١)− g(x, t, σ٢)| ≤M٢|σ١ − σ٢|,

|h(x, t, σ١, σ٢)− h(x, t, ψ١, ψ٢)| ≤M٣
(
|σ١ − ψ١|+ |σ٢ − ψ٢|

)
.

(٩ . ۵)

درجه از چندجمله ای ΁ی uN (·) تعریف با σ١, σ٢, ψ١, ψ٢ ∈ Ω و x, t ∈ [٠, T ] همه برای
شده محاسبه مشتق x٠, x١ , . . . , xN انتقال یافته لوباتو گاوس لژاندر نقاط در N مساوی یا کمتر



ولترا‐فردهلم انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش های ۴٨
تاخیری

داریم بنابراین است. شده ضرب D ماتریس در دقیق بطور و
N∑
j=٠

ūjDkj = u̇N (xk). (١٠ . ۵)
داریم k = ١,٢, . . . , lτ برای u̇N∣∣∣∣∣بنابراین (xk)− f

(
(xk, uN (xk), η(xk − τ)

)
− τ − xk٢

∫ ١
−١
g

(
xk,

τ − xk٢ t+
xk − τ

٢ ,

η(
τ − xk٢ t+

xk − τ

٢ )

)
dt− xk٢

∫ ١
−١
g
(
xk,

xk٢ t+
xk٢ , uN (

xk٢ t+
xk٢ )
)
dt

− τ٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , uN (
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

−T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , uN (
T − τ

٢ t+
T + τ

٢ ), uN (
T − τ

٢ t+
T − τ

٢ )

)
dt

∣∣∣∣∣
≤
∣∣∣u̇N (xk)− u̇(xk)

∣∣∣+ ∣∣∣f(xk, uN (xk), η(xk − τ)
)
− f

(
xk, u(xk), η(xk − τ)

)∣∣∣
+

∣∣∣∣∣xk٢
∫ ١
−١
g
(
xk,

xk٢ t+
xk٢ , uN (

xk٢ t+
xk٢ )
)
dt− xk٢

∫ ١
−١
g
(
xk,

xk٢ t+
xk٢ , u(

xk٢ t+
xk٢ )
)
dt

∣∣∣∣∣
+

∣∣∣∣∣T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , uN (
T − τ

٢ t+
T + τ

٢ ), uN (
T − τ

٢ t+
T − τ

٢ )

)
dt

−T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , u(
T − τ

٢ t+
T + τ

٢ ), u(
T − τ

٢ t+
T − τ

٢ )

)
dt

∣∣∣∣∣
+

∣∣∣∣∣ τ٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , uN (
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

− τ٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , u(
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

∣∣∣∣∣
+

∣∣∣∣∣u̇(xk)− f(xk, u(xk), η(xk − τ))− τ − xk٢
∫ ١
−١
g

(
xk,

τ − xk٢ t+
xk − τ

٢ ,

η(
τ − xk٢ t+

xk − τ

٢ )

)
dt− xk٢

∫ ١
−١
g
(
xk,

xk٢ t+
xk٢ , u(

xk٢ t+
xk٢ )
)
dt

−T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , u(
T − τ

٢ t+
T + τ

٢ ), u(
T − τ

٢ t+
T − τ

٢ )

)
dt

− τ٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , u(
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

∣∣∣∣∣
≤
∣∣∣p(xk)− u̇(xk)

∣∣∣+M١
(∣∣∣uN (xk)− u(xk)

∣∣∣)+M٢
xk٢
∫ ١
−١
∣∣∣uN (

xk٢ t+
xk٢ )− u(

xk٢ t+
xk٢ )
∣∣∣ dt

+M٣
(
T − τ

٢
)∫ ١

−١
( ∣∣∣∣uN (

T − τ

٢ t+
T + τ

٢ )− u(
T − τ

٢ t+
T + τ

٢ )

∣∣∣∣
+

∣∣∣∣uN (T − τ

٢ t+
T − τ

٢
)
− u

(
T − τ

٢ t+
T − τ

٢
)∣∣∣∣ )dt+M٣

( τ
٢
)∫ ١

−١
∣∣∣uN (

τ

٢ t+
τ

٢ )− u(
τ

٢ t+
τ

٢ )
∣∣∣ dt

≤ C١(N − ١(١−m +M١TC١(N − ١(١−m +M٢C١T ٢(N − ١(١−m

+ ٢M٣(T − τ)TC١(N − ١(١−m +M٣τTC١(N − ١(١−m

= C١(N − ١(١−m
(١ +M١T +M٢T ٢ + ٢M٣T (T − τ) +M٣τT

)
.



۴٩ هم·رایی آنالیز
ͬ آوریم م بدست k = lτ + ١, . . . , N برای u̇N∣∣∣∣∣همچنین (xk)− f

(
xk, uN (xk), uN (xk − τ)

)
− τ

٢
∫ ١
−١
g

(
xk,

τ

٢ t+
٢xk − τ

٢ , uN (
τ

٢ t+
٢xk − τ

٢ )

)
dt

− τ٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , uN (
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

−T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , uN (
T − τ

٢ t+
T + τ

٢ ), uN (
T − τ

٢ t+
T − τ

٢ )

)
dt

∣∣∣∣∣
≤
∣∣∣u̇N (xk)− u̇(xk)

∣∣∣+ ∣∣∣f(xk, u(xk), u(xk − τ)
)
− f

(
xk, uN (xk), uN (xk − τ)

)∣∣∣
+

∣∣∣∣∣ τ٢
∫ ١
−١
g

(
xk,

τ

٢ t+
٢xk − τ

٢ , uN (
τ

٢ t+
٢xk − τ

٢ )

)
dt

− τ٢
∫ ١
−١
g

(
xk,

τ

٢ t+
٢xk − τ

٢ , u(
τ

٢ t+
٢xk − τ

٢ )

)
dt

∣∣∣∣∣
+

∣∣∣∣∣T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , uN (
T − τ

٢ t+
T + τ

٢ ), uN (
T − τ

٢ t+
T − τ

٢ )

)
dt

−T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , u(
T − τ

٢ t+
T + τ

٢ ), u(
T − τ

٢ t+
T − τ

٢ )

)
dt

∣∣∣∣∣
+

∣∣∣∣∣ τ٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , uN (
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

− τ٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , u(
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

∣∣∣∣∣
+

∣∣∣∣∣u̇(xk)− f(xk, u(xk), u(xk − τ))− τ

٢
∫ ١
−١
g

(
xk,

τ

٢ t+
٢xk − τ

٢ , u(
τ

٢ t+
٢xk − τ

٢ )

)
dt

−T − τ

٢
∫ ١
−١
h

(
xk,

T − τ

٢ t+
T + τ

٢ , u(
T − τ

٢ t+
T + τ

٢ ), u(
T − τ

٢ t+
T − τ

٢ )

)
dt

− τ٢
∫ ١
−١
h
(
xk,

τ

٢ t+
τ

٢ , u(
τ

٢ t+
τ

٢ ), η(
τ

٢ t−
τ

٢ )
)
dt

∣∣∣∣∣
≤ |p(xk)− u̇(xk)|+M١

(
|uN (xk)− u(xk) |+ |uN (xk − τ)− u(xk − τ)|

)
+M٢

τ

٢
∫ ١
−١

∣∣∣∣uN (
τ

٢ t+
٢xk − τ

٢ )− u(
τ

٢ t+
٢xk − τ

٢ )

∣∣∣∣ dt
+M٣

(
T − τ

٢
)∫ ١

−١
( ∣∣∣∣uN (

T − τ

٢ t+
T + τ

٢ )− u(
T − τ

٢ t+
T + τ

٢ )

∣∣∣∣ dt
+

∣∣∣∣uN (
T − τ

٢ t+
T − τ

٢ )− u(
T − τ

٢ t+
T − τ

٢ )

∣∣∣∣ )dt
+M٣

( τ
٢
)∫ ١

−١
∣∣∣uN (

τ

٢ t+
τ

٢ )− u(
τ

٢ t+
τ

٢ ) dt
∣∣∣ ≤ C١(N − ١(١−m + ٢M١TC١(N − ١(١−m

+M٢τC١T (N − ١(١−m + ٢M٣(T − τ)TC١(N − ١(١−m +M٣τTC١(N − ١(١−m

= C١(N − ١(١−m
(١ + ٢M١T +M٢τT + ٢M٣T (T − τ) +M٣τT

)
,

صحیح عدد ͬ کند. م صدق (٩ . ۵) رابطه در و هستند لیپ شیتز ثابت های M٣ ,M٢و M١ که



ولترا‐فردهلم انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش های ۵٠
تاخیری

N ≥ N١ همه برای که بطوری ͬ گیریم م نظر در را N١ مثبت

max
{
C١)١ +M١T +M٢T ٢ + ٢M٣T (T − τ) +M٣τT ), C١)١ + ٢M١T +M٢τT

+ ٢M٣T (T − τ) +M٣τT )
}
≤ (N − ١) ١٢ .

ͬ کند. م صدق (٨ . ۵) مسئله محدودیت های در ū = (ū٠, ū١, . . . , ūN ) بنابراین
ͬ کنیم م تعریف باشد (٨ . ۵) مسئله برای بهینه جواب ΁ی (ū∗٠, ū∗١, . . . , ū∗N ) اگر اکنون

u∗N (x) =

N∑
k=٠

ū∗kLk(x), x ∈ [٠, T ] , (١١ . ۵)

جواب های از مجموعه ΁ی هستند. لاگرانژ درونیاب چندجمله ای های Lk(·), k = ٠, ١, . . . , N که
داریم. {u∗N (·)}∞N=N١ توابع درونیابی از مجموعه ای و {ū∗٠, ū∗١, . . . , ū∗N}∞N=N١ مستقیم

و باشد (٨ . ۵) مسئله بهینه جواب از ای دنباله {ū∗٠, ū∗١, . . . , ū∗N}∞N=N١ اگر .١ . ۴ . ۵ قضیه
دارد زیردنباله ای {u̇∗N (·)}∞N=N١ دنباله کنید فرض و باشد آن ها درونیاب دنباله {u∗N (·)}∞N=N١

بنابراین ͬ باشد. م هم·را q(·) به ی΄نواخت بطور که

u∗(x) =

∫ x

٠ q(τ)dτ + η(٠), ٠ ≤ x ≤ T, (١٢ . ۵)

است. (۴ . ۵) مسئله برای بهینه جواب ΁ی

که بطوری باشد {u̇∗N (·)}∞N=١ دنباله از زیردنباله ΁ی {u̇∗Ni
(·)
}∞
i=١ که ͬ کنیم م فرض برهان.

نظر در با همچنین . lim
i→∞

u∗Ni
(·) = u∗(·) داریم بنابراین lim

i→∞
u̇∗Ni

(·) = q(·) و lim
i→∞

Ni = ∞

داریم (٨ . ۵) مسئله گرفتن

J = (ū∗٠ − η(٠))٢ =

(
lim
i→∞

u∗Ni
(٠)− η(٠)

)٢
= (u∗(٠)− η(٠))٢ = (η(٠)− η(٠))٢ = ٠.

محدودیت برای u∗(·) ͬ کنیم م فرض است. شدنͬ جواب ΁ی u∗(·) ͬ دهیم م نشان اکنون
که بطوری دارد وجود x̄ ∈ [٠, T ] ΁ی بنابراین نیست. برقرار (۴ . ۵) مسئله

u̇∗(x̄)− φ
(
x̄, u∗(x̄), u∗(x̄− τ)

)
̸= ٠,



۵١ عددی مثال های
که

φ (x, u∗(x), u∗(x− τ)) =

f(x, u∗(x), η(x− τ)) +
τ − x

٢
∫ ١
−١ g

(
x,
τ − x

٢ t+
x− τ

٢ , η(
τ − x

٢ t+
x− τ

٢ )

)
dt

+
x

٢
∫ ١
−١ g

(
x,
x

٢ t+
x

٢ , u∗(
x

٢ t+
x

٢)
)
dt+

τ

٢
∫ ١
−١ h

(
xk,

τ

٢ t+
τ

٢ , u∗(
τ

٢ t+
τ

٢), η(
τ

٢ t−
τ

٢)
)
dt

+
T − τ

٢
∫ ١
−١ h

(
xk,

T − τ

٢ t+
T + τ

٢ , u∗(
T − τ

٢ t+
T + τ

٢ ), u∗(
T − τ

٢ t+
T − τ

٢ )

)
dt,

٠ < x ≤ τ,

f(x, u∗(x), u∗(x− τ)) +
τ

٢
∫ ١
−١ g

(
x,
τ

٢ t+
٢x− τ

٢ , u∗(
τ

٢ t+
٢x− τ

٢ )

)
dt,

+
τ

٢
∫ ١
−١ h

(
xk,

τ

٢ t+
τ

٢ , u∗(
τ

٢ t+
τ

٢), η(
τ

٢ t−
τ

٢)
)
dt

+
T − τ

٢
∫ ١
−١ h

(
xk,

T − τ

٢ t+
T + τ

٢ , u∗(
T − τ

٢ t+
T + τ

٢ ), u∗(
T − τ

٢ t+
T − τ

٢ )

)
dt,

τ < x ≤ T.

دارد وجود xkNi
زیردنباله ای [١۵] هستند چ·ال [٠, T ] در {xk}∞k=٠ مجموعه که آنجا از

بنابراین lim
i→∞

xkNi
= x̄ و ٠ < kNi < Ni که بطوری

(١٣ . ۵)
u̇∗(x̄)−φ

(
x̄, u∗(x̄), u∗(x̄− τ)

)
= lim

i→∞

(
u̇∗Ni

(xkNi
)− φ(xkNi

, u∗Ni
(xkNi

), u∗Ni
(xkNi

− τ))
)
̸= ٠.

(٨ . ۵) مسئله محدودیت های از استفاده با بنابراین . lim
i→∞

(Ni − ٣٢(١−m
= ٠ دی·ر طرفͬ از

داریم
lim
i→∞

(
u̇∗Ni

(xkNi
)− φ(xkNi

, u∗Ni
(xkNi

), u∗Ni
(xkNi

− τ)
)
= ٠,

و است (۴ . ۵) مسئله برای شدنͬ جواب ΁ی u∗(·) بنابراین است. تضاد در (١٣ . ۵) رابطه با که
ͬ شود. م کامل اثبات

عددی مثال های ۵ . ۵
ب·یرید. نظر در را زیر تاخیری ولترا‐فردهلم انتگرال‐دیفرانسیل معادله .١ . ۵ . ۵ مثال
u̇(x) = u(x− ١) + e−١ − e+

∫ x
x−١ u(s) ds+

∫ ٢٠ u(s− ١) ds, ٠ ≤ x ≤ ٢,
u(x) = ex, −١ ≤ x ≤ ٠.



ولترا‐فردهلم انتگرال‐دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش های ۵٢
تاخیری

ش΄ل در N = ١٠ برای دقیق جواب های و تقریبی جواب های است. دقیق جواب u(x) = ex

ͬ دهد م نشان ٢ . ۵ ش΄ل در N = ٨, ١٠, ١٢ برای مطلق خطاهای و است شده داده نشان ١ . ۵
ͬ کند. م میل صفر به خطا N افزایش با که

ب·یرید. نظر در را زیر تاخیری ولترا‐فردهلم انتگرال‐دیفرانسیل معادله .٢ . ۵ . ۵ مثال
u̇(x) = e١−x − ٣u(x) + u(x− ١) + ١٢ e−٢ − ١٢ e٢ − ٢ ∫ x

x−١ u(s) ds+
∫ ٢٠ u٢(s− ١) ds, x ≥ ٠,

u(x) = e−x, −١ ≤ x ≤ ٠.

در N = ١٠ برای دقیق جواب های و تقریبی جواب های است. دقیق جواب u(x) = e−x

ͬ دهد م ۴ . ۵ ش΄ل در N = ٨, ١٠, ١٢ برای مطلق خطاهای و است شده داده نشان ٣ . ۵ ش΄ل
ͬ کند. م میل صفر به خطا N افزایش با که

ب·یرید. نظر در را زیر تاخیری ولترا‐فردهلم انتگرال‐دیفرانسیل معادله .٣ . ۵ . ۵ مثال
u̇(x) = e−٢u(x) + ١٢ e−٢ − ١٢ e+ ٢ ∫ x

x−١ es−x u(s) ds+
∫ ٣٢٠ u٢(s− ١) ds, x ≥ ٠,

u(x) = ex, −١ ≤ x ≤ ٠.

در N = ١٠ برای دقیق جواب های و تقریبی جواب های است. دقیق جواب u(x) = ex

ͬ دهد م ۶ . ۵ ش΄ل در N = ٨, ١٠, ١٢ برای مطلق خطاهای و است شده داده نشان ۵ . ۵ ش΄ل
ͬ کند. م میل صفر به خطا N افزایش با که

ب·یرید. نظر در را زیر تاخیری ولترا‐فردهلم انتگرال‐دیفرانسیل معادله .۴ . ۵ . ۵ مثال
u̇(x) = u٢(x− ١) + ٢ cosx− sin٢(x− ١)− cos(x− ١) + ∫ ٢٠ u(s− ١) + ∫ x

x−١ u(s) ds, x ≥ ٠,
u(x) = sinx, −١ ≤ x ≤ ٠.

در N = ١٠ برای دقیق جواب های و تقریبی جواب های است. دقیق جواب u(x) = sinx

ͬ دهد م ٨ . ۵ ش΄ل در N = ٨, ١٠, ١٢ برای مطلق خطاهای و است شده داده نشان ٧ . ۵ ش΄ل
ͬ کند. م میل صفر به خطا N افزایش با که

X
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Approximate solution
Exact solution

.١ . ۵ . ۵ مثال برای N = ١٠ با تقریبی و دقیق جواب های :١ . ۵ ش΄ل



۵٣ عددی مثال های
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.٢ . ۵ . ۵ مثال برای N = ١٠ با تقریبی و دقیق جواب های :٣ . ۵ ش΄ل
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.٣ . ۵ . ۵ مثال برای مطلق خطاهای :۶ . ۵ ش΄ل

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u(
x)

0

0.2

0.4

0.6

0.8

1

Approximate  solution
Exact  solution

.۴ . ۵ . ۵ مثال برای N = ١٠ با تقریبی و دقیق جواب های :٧ . ۵ ش΄ل
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۶ فصل
حل برای لژاندر طیفͬ شبه روش

نوع از تاخیری دیفرانسیل معادلات
گانه چند پانتوگراف

مقدمه ١ . ۶
تاخیری دیفرانسیل معادلات از خاصͬ نوع حل برای مختلفͬ روش های گذشته، دهه های در
روش ΁ی [١٠] در رشیدی نیا٣ و داوری فر٢ است. شده ارائه (MPDDEs) ١ گانه چند پانتوگراف
اولیه شرایط با و متغیر ضرایب با MPDDEs سیستم از تقریبی جواب تا کرده اند ارائه هم محلͬ
حل جهت لژاندر هم محلͬ روش ΁ی [۴٨] در سزر۵ و یوزباش۴ͬ آورند. بدست را شده داده
[۴٢] در توحیدی٧ و یانگ۶ کرده اند. ارائه ͬ مانده باق تصحیح تکنی΁ های براساس MPDDEs

1Multi Pantograph delay differential equations
2Davarifar
3Rashidinia
4Yuzbasi
5Sezer
6Yang
7Tohidi

۵۵



پانتوگراف نوع از تاخیری دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ۵۶
گانه چند

در کرده اند.یو٨ ارائه مرزی مقادیر مسائل با MPDDEs حل برای را لژاندر طیفͬ هم محلͬ روش
آشفتگͬ روش [١۴] برده اند.در ب΄ار MPDDEs حل جهت را (VIM) متغیر٩ تکرار روش [۴٣]
هم΄اران و سزر اند. برده ب΄ار متغیر ضرایب با MPDDEs حل برای را (HPM) هموتوپی١٠
از استفاده با را متغییر ضرایب با گانه چند پانتوگراف معادلات از تقریبی جواب [٣٢] در
حل برای رانگ‐کوتا١٢ روش های [٢٢] در همچنین اند. برده ب΄ار تیلور١١ چندجمله ای های

است. شده برده ب΄ار را MPDDEs

نوع از تاخیری دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش آنالیز فصل این در
مثال چند حل با همچنین ͬ کنیم. م بررسͬ را روش هم·رایی و ͬ پردازیم م گانه چند پانتوگراف
ͬ پردازیم. م روش ها سایر با پیشنهادی روش مقایسه به و ͬ دهیم م نشان را روش کارایی عددی

چندگانه پانتوگراف نوع از تاخیری دیفرانسیل معادلات ٢ . ۶
ͬ گیریم م نظر در را زیر گانه چند پانتوگراف نوع از تاخیری دیفرانسیل معادله فصل این در

(١ . ۶)
ḟ(r) = a(r)f(r) + b١(r)f(q١r) + b٢(r)f(q٢r) + · · ·+ bL(r)f(qLr) + g(r), ٠ ≤ r ≤ R,

f(٠) = γ,

γ مجهول، تابع f : Rm → R هستند، مشتق پذیر توابع g(·) و a(·), b١(·), b٢(·), . . . , bL(·) که
سیستم که ͬ کنیم م فرض همچنین است. ٠ < q١ < q٢ < · · · < qL < ١ و است ثابت مقدار

است. جواب ΁ی دارای (١ . ۶)

روش سازی پیاده ٣ . ۶
ͬ کنیم م بازنویسͬ زیر معادل سیستم صورت به را (١ . ۶) معادله ابتدا

Minimize I = ∥f(٠)− γ∥٢

subject to ḟ(r) = a(r)f(r) + b١(r)f(q١r) + b٢(r)f(q٢r) + · · ·+ bL(r)f(qLr) + g(r), ٠ ≤ r ≤ R.

(٢ . ۶)
همچنین ͬ باشد. م (٢ . ۶) مسئله برای بهینه جواب ΁ی (١ . ۶) مسئله جواب هر که است ͹واض
و است شدنͬ مسئله ΁ی (٢ . ۶) مسئله ͬ باشد، م جواب ΁ی دارای (١ . ۶) مسئله که آنجایی از

8Yu
9Variational iteration method

10Homotopy perturbation method
11Taylor polynomials
12Runge-Kutta



۵٧ روش سازی پیاده
به صورت را (٢ . ۶) مسئله بهینه جواب ͬ باشد. م بهینه جواب ΁ی دارای

f(r) ≃ fM (r) =

M∑
j=٠

f̄jLj(r), ٠ ≤ r ≤ R, (٣ . ۶)

و هستند لاگرانژ چندجمله ای های (·)Ljها و ͬ باشند م نامعین ضرایبی f̄jها که ͬ زنیم م تقریب
ͬ شوند م تعریف زیر به صورت

Lj(r) =
M∏

i=٠,i ̸=j

r − ri
rj − ri

, j = ٠, ١, . . . ,M. (۴ . ۶)

که داریم توجه هستند. انتقال یافته لوباتو ‐ گاوس ‐ لژاندر نقاط {rj}Mj=٠ ∈ [٠, R] اینجا در
و Lj(rk) =


١, j = k

٠, j ̸= k

f(rk) ≃ fM (rk) = f̄k. (۵ . ۶)

برنامه ریزی مسئله با را (٢ . ۶) سازی بهینه مسئله (۵ . ۶) و (٣ . ۶) رابطه از استفاده با اکنون
ͬ زنیم م تقریب زیر غیرخطͬ

Minimize I =
∥∥f̄٠ − γ

∥∥٢

subject to
M∑
j=٠

f̄jDkj = a(rk)f̄k + b١(rk)
M∑
j=٠

f̄jLj(q١rk) + b٢(rk)
M∑
j=٠

f̄jLj(q٢rk) + . . .

+ bL(rk)

M∑
j=٠

f̄jLj(qLrk) + g(rk), k = ١,٢, . . . ,M,

(۶ . ۶)

که داریم توجه

d

dr
f(rk) ≃

dfM

dr
(rk) =

M∑
j=٠

f̄jL̇j(rk) =
M∑
j=٠

f̄jDk j . (٧ . ۶)

بنابراین و f̄∗ = (f̄∗٠ , f̄∗١ , · · · , f̄∗M) ͬ آوریم م بدست (۶ . ۶) غیرخطͬ سازی بهینه مسئله حل با

fM (r) =

M∑
j=٠

f̄∗j Lj(r), ٠ ≤ r ≤ R, (٨ . ۶)

ͬ باشد. م (١ . ۶) سیستم برای تقریبی جواب ΁ی



پانتوگراف نوع از تاخیری دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ۵٨
گانه چند

هم·رایی آنالیز ۴ . ۶
بصورت را (۶ . ۶) مسئله ͬ توانیم م ͬ کنیم. م بررسͬ را روش این هم·رایی آنالیز بخش، این در

کنیم بازنویسͬ زیر
Minimize I =

∥∥f̄٠ − γ
∥∥٢

subject to∥∥∥∥∥∥
M∑
j=٠

f̄jDkj − a(rk)f̄k − b١(rk)
M∑
j=٠

f̄jLj(q١rk)− b٢(rk)
M∑
j=٠

f̄jLj(q٢rk)− . . .

−bL(rk)
M∑
j=٠

f̄jLj(qLrk)− g(rk)

∥∥∥∥∥∥
∞

≤ (M − ١) ٣٢−β, k = ١,٢, . . . ,M.

(٩ . ۶)

عدد باشد. (٢ . ۶) مسئله برای جواب ΁ی f(·) ∈ V β,∞, β ≥ ٢ کنید فرض .١ . ۴ . ۶ قضیه
΁ی دارای (٩ . ۶) مسئله ،N > M١ هر برای که به طوری دارد وجود M١ مانند مثبت و صحیح

ͬ کند م صدق زیر رابطه در که است f̄ =
(
f̄٠, f̄١, · · · , f̄M

) شدنͬ ∥∥جواب f(rk)− f̄k
∥∥
∞ ≤ L(M − ١(١−β, k = ٠, ١, . . . ,M,

است. M از مستقل و مثبت ثابت L و است محلͬ هم نقاط {rk}Mk=٠ که
و (M − ١) درجه از p(·) چندجمله ای ΁ی که ͬ دهیم م نشان ١ . ۴ . ٢ لم از استفاده با برهان.

که به طوری دارد وجود M از مستقل C١ −ḟ(r)∥∥∥ثابت p(r)
∥∥∥
∞

≤ C١ (M − ١(١−β
.

ͬ کنیم م تعریف
fM (r) =

∫ r

٠ p(τ)dτ + f(٠), r ≥ ٠.
داریم بنابراین

ḟM (r) = p(r) , fM (٠) = f(٠).
−f(r)∥∥درنتیجه fM (r)

∥∥
∞ =

∥∥∥∥∫ r

٠ (ḟ(s)− p(s))ds

∥∥∥∥
∞

≤
∫ r

٠
∥∥∥ḟ(s)− p(s)

∥∥∥
∞
ds

≤ C١ (M − ١(١−β
∫ r

٠ ds ≤ C١R (M − ١(١−β
.

(١٠ . ۶)

Ω ⊆ Rm مانند فشرده مجموعه ΁ی k = ٠, ١, · · · ,M برای f̄k و f(rk) بالا، رابطه از استفاده با
داریم ،M مساوی یا کمتر درجه از چندجمله ای fM (·) تعریف از استفاده با هستند.

M∑
j=٠

f̄jDkj = ḟM (rk). (١١ . ۶)



۵٩ هم·رایی آنالیز
داریم، k = ١,٢, · · · ,M برای (١١ . ۶) و (١٠ . ۶) رابطه برای ∥∥∥∥∥∥سپس

M∑
j=٠

f̄jDkj − a(rk)f(rk)− b١(rk)f(q١rk)− b٢(rk)f(q٢rk)− · · · − bL(rk)f(qLrk)− g(rk)

∥∥∥∥∥∥
∞

≤
∥∥∥ḟM (rk)− ḟ(rk)

∥∥∥
∞

+
∥∥a(rk)fM (rk)− a(rk)f(rk)

∥∥
∞ +

∥∥b١(rk)fM (q١rk)− b١(rk)f(q١rk)
∥∥
∞

+
∥∥b٢(rk)fM (q٢rk)− b٢(rk)f(q٢rk)

∥∥
∞ + · · ·+

∥∥bL(rk)fM (qLrk)− bL(rk)f(qLrk)
∥∥
∞

≤
∥∥∥p(rk)− ḟ(rk)

∥∥∥
∞

+ ∥a(rk)∥∞
∥∥fM (rk)− f(rk)

∥∥
∞ + ∥b١(rk)∥∞

∥∥fM (q١rk)− f(q١rk)
∥∥
∞

+ ∥b٢(rk)∥∞
∥∥fM (q٢rk)− f(q٢rk)

∥∥
∞ + · · ·+ ∥bL(rk)∥∞

∥∥fM (qLrk)− f(qLrk)
∥∥
∞

≤ C١(M − ١(١−β + α١C١R(M − ١(١−β + α٢C١R(M − ١(١−β + · · ·+ αL+١C١R(M − ١(١−β

= C١(M − ١(١−β(١ + α١R+ α٢R+ · · ·+ αL+١R),

[٠, R] بازه روی a(·), b١(·), . . . , bL(·) پیوسته توابع برای بالایی کران α١, α٢, . . . , αL+١ که
که به طوری M ∈ N انتخاب با نتیجه در و ͬ باشند م

ͬ آوریم م بدست ،C١)١ + α١R+ α٢R+ · · ·+ αL+١R) ≤ (M − ١) ١٢∥∥∥∥∥∥
M∑
j=٠

f̄jDkj − a(rk)f(rk)− b١(rk)f(q١rk)− b٢(rk)f(q٢rk)− · · · − bL(rk)f(qLrk)− g(rk)

∥∥∥∥∥∥
∞

≤ (M − ١) ٣٢−β, k = ١,٢, . . . ,M,

(١٢ . ۶)
.N ≥M همه برای

ͬ کنیم م تعریف باشد، (٩ . ۶) مسئله برای بهینه جواب ΁ی (f̄∗٠ , f̄∗١ , . . . , f̄∗M ) اگر

f∗M (r) =

M∑
k=٠

f̄∗kLk(r), r ∈ [٠, R] , (١٣ . ۶)

جواب های از مجموعه ای اینجا در هستند. لاگرانژ چندجمله ای های k = ٠, ١, · · · ,M ،Lk(·) که
داریم. را {f∗M (·)}∞M=M١ توابع از مجموعه ای و {f̄∗٠ , f̄∗١ , . . . , f̄∗M}∞M=M١ گسسته

ی΄نواخت به طور که دارد زیرمجموعه ای {f̄∗٠ , ḟ∗M (·)
}∞

M=M١
مجموعه ͬ کنیم م فرض .١ . ۴ . ۶ فرض

است. f∞٠ ∈ Rm و پیوسته تابعͬ q(·) که ͬ باشد م {f∞٠ , q(·)} به هم·را
و باشد (٩ . ۶) مسئله بهینه جواب از مجموعه ΁ی {f̄∗٠ , f̄∗١ , . . . , f̄∗M}∞M=M١ اگر .٢ . ۴ . ۶ قضیه

آنگاه کند صدق ١ . ۴ . ۶ فرض در که باشد آن ها شده درونیابی مجموعه {f∗M (·)}∞M=M١

f∗(r) =

∫ r

٠ q(τ)dτ + f∞٠ , ٠ ≤ r ≤ R, (١۴ . ۶)
است. (٢ . ۶) مسئله برای بهینه جواب ΁ی



پانتوگراف نوع از تاخیری دیفرانسیل معادلات حل برای لژاندر طیفͬ شبه روش ۶٠
گانه }چند

ḟ∗M (·)
}∞

M=M١
مجموعه از زیرمجموعه ΁ی {ḟ∗Mi

(·)
}∞

i=١ ١ . ۴ . ۶ فرض از استفاده با برهان.
فرض و (١۴ . ۶) رابطه از استفاده با . lim

i→∞
ḟ∗Mi

(·) = q(·) و lim
i→∞

Mi = ∞ که به طوری است
داریم ١ . ۴ . ۶

lim
i→∞

ḟ∗Mi
(·) = ḟ∗(·).

مسئله برای شدنͬ جواب ΁ی f∗(·) که ͬ دهیم م نشان ابتدا ͬ شود، م تقسیم مرحله دو به اثبات
ͬ باشد. م (٢ . ۶) مسئله برای بهینه جواب ΁ی f∗(·) که ͬ کنیم م ثابت سپس است. (٢ . ۶)

΁ی بنابراین نکند. صدق (٢ . ۶) مسئله محدودیت های در f∗(·) که کنیم فرض . ١ مرحله
که به طوری دارد وجود r̄ ∈ [٠, R]

ḟ∗(r)− a(r)f∗(r)− b١(r)f∗(q١r)− b٢(r)f∗(q٢r)− · · · − bL(r)f
∗(qLr)− g(r) ̸= ٠,

وجود kMi زیرمجموعه ΁ی [١۵] هستند چ·ال [٠, R] بازه در {rk}∞k=٠ مجموعه که آنجایی از
بنابراین . lim

i→∞
rkMi

= r̄ و ٠ < kMi < Mi که به طوری دارد

ḟ∗(r̄)− a(r)f∗(r)− b١(r)f∗(q١r)− b٢(r)f∗(q٢r)− · · · − bL(r)f
∗(qLr)− g(r) =

lim
i→∞

(
ḟ∗Mi

(rkMi
)− a(rkMi

)f∗Mi
(rkMi

)− b١(rkMi
)f∗Mi

(q١rkMi
)− b٢(rkMi

)f∗Mi
(q٢rkMi

)− . . .

−bL(rkMi
)f∗Mi

(qLrkMi
)− g(rkMi

)
)
̸= ٠.

(١۵ . ۶)

داریم ،(٩ . ۶) مسئله محدودیت های از استفاده با بنابراین . lim
i→∞

(Mi − ٣٢(١−β
= ٠ طرفͬ از

lim
i→∞

(
ḟ∗Mi

(rkMi
)− a(rkMi

)f∗Mi
(rkMi

)− b١(rkMi
)f∗Mi

(q١rkMi
)− b٢(rkMi

)f∗Mi
(q٢rkMi

)− . . .

− bL(rkMi
)f∗Mi

(qLrkMi
)− g(rkMi

)

)
= ٠,

(٢ . ۶) مسئله برای شدنͬ جواب ΁ی {f∗(·)} بنابراین است. تناقض در (١۵ . ۶) رابطه با که
است.

مجموعه ای باشند، (٢ . ۶) مسئله برای بهینه جواب ΁ی f∗∗(·) ∈ V β,∞, β ≥ ٢ اگر . ٢ مرحله
به طوری دارد وجود (٩ . ۶) مسئله برای {f̃ = (f̃∗٠ , f̃∗١ , . . . , f̃∗M )

}∞

M=M١
شدنͬ جواب های از

f̄∗ = و f∗∗(·) بهینگͬ از استفاده با بنابراین ͬ شوند. م هم·را f∗∗(·) به ی΄نواخت به طور که
داریم (f̄∗٠ , f̄∗١ , . . . , f̄∗M)

٠ = ∥f∗∗(٠)− γ∥٢ ≤ ∥f∗(٠)− γ∥٢ = lim
i→∞

∥∥f∗Mi
(٠)− γ

∥∥٢

=
∥∥f̄∗٠ − γ

∥∥٢ ≤
∥∥∥f̃∗٠ − γ

∥∥∥٢
= ∥f∗∗(٠)− γ∥٢ = ٠.

است. (٢ . ۶) مسئله برای بهینه جواب ΁ی f∗(·) و ∥f∗(٠)− γ∥٢ = ٠ بنابراین



۶١ عددی مثال های

عددی مثال های ۵ . ۶
ب·یرید. درنظر را زیر گانه چند پانتوگراف تاخیری دیفرانسیل معادله .١ . ۵ . ۶ مثال
ḟ(r) = f(r) + f(r/٢) + f(r/۴) + f(r/٨) + g(r), ٠ ≤ r ≤ R.

f(٠) = ١
دقیق جواب ١ . ۶ ش΄ل باشد. مسئله دقیق جواب f(r) = er که ͬ کنیم م انتخاب طوری را g(r)
٢ . ۶ ش΄ل در M = ۶,٨, ١٠ برای مطلق خطاهای ͬ دهد. م نشان M = ١٠ برای را تقریبی و
ͬ کند. م میل صفر به خطا ͬ یابد م افزایش M وقتͬ که ͬ شود م مشاهده است. شده داده نشان

ب·یرید. درنظر را زیر چندگانه پانتوگراف تاخیری دیفرانسیل معادله .٢ . ۵ . ۶ مثال
ḟ(r) = −f(r)− e−٠٫۵r sin(٠٫۵)f(٠٫۵r)− ٢ e−٠٫٧۵r cos(٠٫۵r) sin(٠٫٢۵r)f(٠٫٢۵r),

٠ ≤ r ≤ R.

f(٠) = ١
برای را تقریبی و دقیق جواب ٣ . ۶ ش΄ل است. مسئله دقیق جواب f(r) = cos(r) er که
است شده داده نشان ۴ . ۶ ش΄ل در M = ٧,٩, ١١ برای مطلق خطاهای ͬ دهد. م نشان M = ٩
روش مطلق خطاهای همچنین ͬ کند. م میل صفر به خطا M افزایش با ͬ دهد م نشان که

است. شده داده نشان ١ . ۶ جدول در که کرده مقایسه دی·ر روش های با را پیشنهادی
ب·یرید. درنظر را زیر گانه چند پانتوگراف تاخیری دیفرانسیل معادله .٣ . ۵ . ۶ مثال

ḟ(r) = f(r) + f(r/٢) + f(r/۴) + f(r/٨) + f(r/١۶) + g(r), ٠ ≤ r ≤ R.

f(٠) = ١
جواب ۵ . ۶ ش΄ل باشد. مسئله دقیق جواب f(r) = sin(r) که ͬ کنیم م انتخاب طوری را g(r)
ش΄ل در M = ۶,٨, ١٠ برای مطلق خطاهای ͬ دهد. م نشان M = ٨ برای را تقریبی و دقیق

ͬ کند. م میل صفر به خطا M افزایش با ͬ دهد م نشان که است شده داده نشان ۶ . ۶
ب·یرید. درنظر را زیر چندگانه پانتوگراف تاخیری دیفرانسیل معادله .۴ . ۵ . ۶ مثال

ḟ(r) = ١٢f(r) + ١٢ e
r٢ f( r٢) + ٣٨rf( r٣) + g(r), ٠ ≤ r ≤ R.

f(٠) = ٠
مسئله دقیق جواب g(r) = −١٨ e−r

(
− ٨ cos(r) + ٣ e

٢r٣ r sin( r٣) + ۴ er sin( r٢) + ١٢ sin(r)
) که

ͬ دهد. م نشان M = ٨ برای را تقریبی و دقیق جواب ٧ . ۶ ش΄ل است. f(r) = er sin r

خطاهای همچنین است. شده داده نشان ٨ . ۶ ش΄ل در M = ۶,٨, ١٠ برای مطلق خطاهای
است. شده داده نشان ٢ . ۶ جدول در که M از مختلف مقادیر با مطلق
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دی·ر. روش های با ٢ . ۵ . ۶ مثال برای مطلق خطاهای مقایسه :١ . ۶ جدول
M = ۶ با شده پیشنهاده روش [١٩] ششم درجه از برنشتاین [۴٣] متغییر تکرار روش [٣٢] پنجم درجه از تیلور r

۴٫١ × ٨−١٠ ١٫١۶١٣۵ × ١٠−۶ ٩٫٧٨٠٠٠ × ١١−١٠ ١٫٢٧٨٠۶ × ١٠−١٠ ٠٫١
٨٫۶ × ٨−١٠ ٨٫۶٨٢۵۴ × ١٠−۶ ۵٫۶۵٠٠٠ × ٩−١٠ ١٫٩١۵٣۵ × ٨−١٠ ٠٫٢
١٫١١ × ٧−١٠ ٩٫٠٣۶٩٢ × ١٠−۵ ۵٫٨١٠٠٠ × ٨−١٠ ٣٫٢١۵٣٣ × ٧−١٠ ٠٫٣
٢٫٢۴ × ٧−١٠ ۴٫١٨٨۴۵ × ١٠−۴ ٢٫٩۵٠٠٠ × ٧−١٠ ٢٫٣۵١٣٣ × ١٠−۶ ٠٫۴
٨٫١٠ × ٧−١٠ ١٫٣٧۴۴٨ × ٣−١٠ ١٫٠١٠٠٠ × ١٠−۶ ١٫٠٩٣۵۴ × ١٠−۵ ٠٫۵
١٫٣١٣ × ١٠−۶ ٣٫۶۵۴١٢ × ٣−١٠ ٢٫٧٢٠٠٠ × ١٠−۶ ٣٫٨٢٠٩٧ × ١٠−۵ ٠٫۶
١٫۴۶٩ × ١٠−۶ ٨٫۴٠١۵٣ × ٣−١٠ ۶٫١٨٠٠٠ × ١٠−۶ ١٫٠٩۶٠٩ × ١٠−۴ ٠٫٧

١٫٣ × ١٠−۶ ١٫٧٣۵٧٠ × ٢−١٠ ١٫٢۴٠٠٠ × ١٠−۵ ٢٫٧٢١۶٢ × ١٠−۴ ٠٫٨
١٫٠٨١ × ١٠−۶ ٣٫٣٠٢۵٩ × ٢−١٠ ٢٫٢۵٠٠٠ × ١٠−۵ ۶٫٠۵٢۴۶ × ١٠−۴ ٠٫٩
٩٫٩٠ × ٧−١٠ ۵٫٨٨۶۶١ × ٢−١٠ ٣٫٨٠٠٠٠ × ١٠−۵ ١٫٢٣٣٨٩ × ٣−١٠ ١٫٠

.۴ . ۵ . ۶ مثال برای M مختلف مقادیر با مطلق خطاهای :٢ . ۶ جدول
M = ١٠ M = ٨ M = ۶ r

٢٫٩ × ١٣−١٠ ٢٫٨ × ١١−١٠ ١٫٢٧ × ٧−١٠ ٠٫١
۵٫٧ × ١٣−١٠ ٨٫۴ × ١١−١٠ ٢٫٣۴ × ٧−١٠ ٠٫٢
۶٫٣ × ١٣−١٠ ٣٫٠٣ × ١٠−١٠ ٣٫۵٣ × ٧−١٠ ٠٫٣
۴٫١ × ١٣−١٠ ١٫۴١ × ١٠−١٠ ۶٫۶٨ × ٧−١٠ ٠٫۴

٨٫١۴ × ١٢−١٠ ١٫٨۵٧ × ٩−١٠ ٢٫٧٠٨ × ١٠−۶ ٠٫۵
١٫٧٠٧ × ١١−١٠ ٣٫۵٧٣ × ٩−١٠ ۴٫٨١٧ × ١٠−۶ ٠٫۶
١٫٨١٨ × ١١−١٠ ۴٫١۴٢ × ٩−١٠ ۶٫٠۴٩ × ١٠−۶ ٠٫٧
١٫٧٨۶ × ١١−١٠ ۴٫٠۴٠ × ٩−١٠ ۶٫٢٧۶ × ١٠−۶ ٠٫٨
١٫٩۶٨ × ١١−١٠ ۴٫٣٠٩ × ٩−١٠ ۶٫٣٣۶ × ١٠−۶ ٠٫٩
٢٫٠٨٢ × ١١−١٠ ۴٫۶۵۵ × ٩−١٠ ۶٫٩٣۴ × ١٠−۶ ١
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Aabstract

Delay differential and integral equations (DDIEs) have a wide range of applications in

science and engineering. When these equations are nonlinear, we cannot usually obtain

an exact solution. Hence, we must utilize an efficient numerical method with high con-

vergence rate and low error to approximate the solution. In this thesis, we propose a new

shifted pseudo spectral method to solve different classes of DDIEs. First, we transform

the problem into a nonlinear programming (NLP) problem and then utilize a pseudo spec-

tral method to discrete the problem. After solving this discrete problem, we can achieve

the pointwise and continuous approximate solutions for the main DDIES. We analyze the

convergence of the suggested methods for DDIEs. Moreover,by solving some practical

DDIEs and comparing the method with some other methods, we show the efficiency of

the method.
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Delay integro-differential equations, Legendre pseudo spectral method,convergence analy-
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