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د



گزاری... سپاس

از دانم مͬ خود رسیده،وظیفه سرانجام به پروژه این خداوند فضل به که اینک
دراجراي که اس΄ندری نوری محمدهادی دکتر آقای جناب گرامͬ استاد دریغ بی زحمات

باشم. راداشته تش΄روقدردانͬ اند،کمال فرموده یاري مرا پروژه این
. خواهانم را شما افزون روز وتوفیق سلامتͬ متعال ازخداوند همواره

دهنوئͬ سمیه
١٣٩٩ آذر

ه



نامه تعهد
علوم دانش΄ده کاربردی ریاضͬ رشته ارشد کارشناسͬ دانشجوی دهنوئͬ سمیه اینجانب
برنامه ریزی مسائل برای رهیافتͬ عنوان با پایان نامه نویسنده شاهرود، صنعتͬ دانش·اه ریاضͬ

ͬ شوم: م متعهد نوری اس΄ندری محمدهادی راهنمایی تحت ، زمان‐پیوسته کسری
برخوردار اصالت و صحت از و است شده انجام اینجانب توسط پایان نامه این در تحقیقات •

است.
شده استناد استفاده مورد ͽمرج به پژوهش گران، دی·ر پژوهش های نتایج از استفاده در •

است.
مدرک نوع هیچ دریافت برای دی·ری فرد یا خود، توسط کنون تا پایان نامه، این مطالب •

است. نشده ارایه هیچ جا در امتیازی یا
نام با مستخرج مقالات و دارد، تعلق شاهرود صنعتͬ دانش·اه به اثر، این معنوی حقوق •
خواهد چاپ به “ Shahrood University of Technology “ یا “ شاهرود صنعتͬ دانش·اه “

رسید.
بوده اند، تاثیرگذار پایان نامه اصلͬ نتایج آوردن به دست در که افرادی تمام معنوی حقوق •

ͬ گردد. م رعایت پایان نامه از مستخرج مقالات در
آنها) بافت های (یا زنده موجود از که مواردی در پایان نامه، این انجام مراحل تمام در •

است. شده رعایت اخلاقͬ اصول و ضوابط است، شده استفاده
افراد شخصͬ اطلاعات حوزه به که مواردی در پایان نامه، این انجام مراحل تمام در •
شده رعایت انسانͬ اخلاق اصول و رازداری اصل است)، شده استفاده (یا یافته دسترسͬ

است.
دهنوئͬ سمیه
١٣٩٩ آذر

نشر حق و نتایج مال΄یت
برنامه های کتاب، مستخرج، ( مقالات آن محصولات و اثر این معنوی حقوق تمام •
شاهرود صنعتͬ دانش·اه به متعلق شده) ساخته تجهیزات و نرم افزارها رایانه ای،

شود. ذکر مربوطه علمͬ تولیدات در مقتضͬ، نحو به باید مطلب این ͬ باشد. م
ͬ باشد. نم مجاز منبع ذکر بدون پایان نامه این در موجود نتایج و اطلاعات از استفاده •

و



چ΄یده
ͬ گیریم. م نظر در را زمان‐پیوسته غیرخطͬ و خطͬ کسری برنامه ریزی مسائل پایان نامه، این در
کسر دو نسبت هدف تابع که است هدف تابع ΁ی و دینامی΄ͬ معادله ΁ی شامل مسائل این
خطͬ کسری برنامه ریزی مسائل برای باخ دینکل رهیافت ابتدا ͬ باشد. م انتگرال ش΄ل به
به و کرد خارج کسری ش΄ل از را مساله ͬ توان م رهیافت این با ͬ شود. م مطرح زمان‐پیوسته
بر تکراری روش ΁ی سپس است. پارامتر ΁ی شامل که کرد تبدیل معادلͬ بهینه کنترل مسائل
بهینه سازی رهیافت ΁ی ادامه در است. شده پیشنهاد مسائل این حل برای موج΁ ها اساس
روش ΁ی نهایتا ͬ شود. م ارائه غیرخطͬ کسری برنامه ریزی مسائل از رده ای حل برای سراسری
عددی مثال های با و ͬ کنیم م پیشنهاد کلͬ ش΄ل در مسائل این حل برای جدید شبه طیفͬ

ͬ دهیم. م نشان را روش کارایی

بهینه سازی رهیافت غیرخطͬ، کسری برنامه ریزی خطͬ، کسری برنامه ریزی کلیدی: کلمات
شبه طیفͬ روش باخ، دینکل رهیافت سراسری،

ز
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پیش·فتار
ͬ باشد، م مقدار حقیقͬ تابع دو نسبت صورت به هدف تابع آن در که بهینه سازی مساله
نوع این کاربردهای از برخͬ ͬ شود. م شناخته ١ کسری برنامه ریزی مساله ΁ی عنوان به
برای تجزیه ال·وریتم و تصادفͬ برنامه ریزی اطلاعات، نظریه در ͬ توان م را بهینه سازی مسائل
محاسباتͬ و نظری مساله چندین .[۴٢ ،٣٧ ،٣٣ ،٢٩ ،١٩] یافت بزرگ خطͬ سیستم های
بررسͬ به [۵٣–۵١] ٢ زلمای شده اند. ارائه اخیر دهه های در کسری، برنامه ریزی به مربوط
و ۴ استانکو‐مینژن ͬ پردازد. م ٣ FP (CTLFP ) زمان‐پیوسته کسری برنامه ریزی مسائل
آن ها دادند. قرار مطالعه مورد را ٧ FP (CTFP ) خطͬ ۶ CT تصادفͬ مسائل [۴٣] ۵ تی·ون
هستند. CTLFP جبری مسائل معادل CTLFP مسائل شرایط، برخͬ تحت که دادند نشان
برای عددی ال·وریتم ΁ی توسعه برای ١٠ کوپر و ٩ چارنس تبدیلات از [۵٠] سایرین و ٨ ون
[۴٨–۴۶] ون و [۴٩] ١١ وو و ون همچنین کردند. استفاده CTLFP مسائل از کلاس ΁ی حل
رده ها از برخͬ حل برای گسسته تقریب روش و پارامتری روش ترکیب با را محاسباتͬ روش های
گسسته سازی روش و ΁پارامتری روش از ترکیب ΁ی [٣١] هم΄اران و ١٢ لوور داده اند. توسعه

کردند. ارائه ٢ درجه FP مسائل از رده ΁ی حل برای
مسائل تا کرده اند تلاش محققان برخͬ فوق الذکر، محاسباتͬ و نظری روش های بر علاوه
΁ی به باخ دینکل شدن ΁نزدی با .[١٢] کنند حل ١٣ دینکل باخ روش از استفاده با را CTFP
کسر وزن اختلاف با هدف تابع و ͬ رود م بین از نسبت که ͬ شود م تبدیل هم ارز مسائل خانواده
حل برای باخ دینکل نوع از ال·وریتم ΁ی [۶] در مثال برای ͬ شود. م مشخص کسر مخرج و

1Fractional programming (FP)
2Zalmai
3Continuous time fractional programming
4Stancu-Minsion
5Tigon
6Continuous time
7Continuous time linear fractional programming
8Wen
9Charnes
10Cooper
11Wu
12Lur
13Dinkelbach

س



جداول فهرست ع
برای دینکل باخ رهیافت بر مبتنͬ روش ΁ی [۴۵] در دارد. وجود CTLFP مسائل از رده ΁ی
خطͬ ΁دینامی و آفین انتگرال جمله از CTFP کسری برنامه نویسͬ مسائل از ویژه رده ΁ی حل
مسائل برای را سراسری بهینه سازی رهیافت ΁ی [٣۵] ١۵ ژو و ١۴ اینخبات است. شده ارائه

داده اند. ارائه دینکل باخ ال·وریتم اساس بر کسری بهینه کنترل
΁ی که ͬ رسد م نظر به ،CTFP مسائل ویژه رده های برای روش ها برخͬ وجود ͬ رغم عل
پایان نامه این اصلͬ هدف رو این از ندارد. وجود CTFP مسئله حل برای عملͬ قدرتمند روش
طیفͬ روش های است. CT کسری برنامه ریزی مسائل حل برای طیفͬ شبه روش ΁ی توسعه
حل برای عددی روش های بهترین از ی΄ͬ [٣٩ ،٢٣ ،٢٢ ،٢٠ ،١٧ ،١۶ ،١٣ ،٣] طیفͬ شبه
به از قبل دارند. زیادی کاربرد و نمایی) هم·رایی (با بالا دقت زیرا هستند؛ CTFP مسائل
ارائه کسری غیر روش ΁ی به CTFP مساله تبدیل برای جدید ΁تکنی ΁ی روش، این کارگیری

ͬ کنیم. م

14Enkhbat
15Zhou



١ فصل
مسائل برای باخ دینکل رهیافت

خطͬ کسری برنامه ریزی

مقدمه ١ . ١
نظر در را زمان‐پیوسته برنامه ریزی یا کسری بهینه کنترل مسائل از رده ای فصل این در
این، از پیش مسائل، نوع این ͬ شود. م داده انتگرال دو نسبت با هدف تابع آن در که ͬ گیریم م
است. شده حل ٣ مایل توسط ͬ تر کل چارچوب ΁ی در و ٢ بهات ،١ استانکو‐مینژن توسط
و وضعیت متغیر حسب بر خطͬ ΁دینامی و خطͬ انتگرال های با مسائل روی خاص طور به

است. شده گرفته [۵] مقاله از فصل این در شده ارائه روش ͬ کنیم، م تمرکز کنترل
برای مستقیم طور به ͬ تواند نم ΁کلاسی بهینه کنترل نظریه مسائل، این سادگͬ وجود با
۴ باخ دینکل روش از استفاده با روش ΁ی استانکو‐مینژن گیرد. قرار استفاده مورد آن ها حل
کسری فرم از را مساله باخ دینکل روش است. کرده پیشنهاد کلͬ بهینه کنترل مسائل برای
΁ی خانواده ΁ی به تبدیل کسری بهینه کنترل مساله باخ، دینکل روی΄رد با ͬ کند. م خارج
ͬ رود م بین از نسبت که حالتͬ در ͬ شود. م تبدیل بهینه کنترل مسائل از {Pq} معادل پارامتری

1 Stancu-Minasian
2 Bhatt
3Miele
4Dinkelbach

١



خطͬ کسری برنامه ریزی مسائل برای باخ دینکل رهیافت ٢
ͬ شود. م بیان مخرج و صورت وزنͬ تفاضل وسیله به هدف تابع و

مسائل شامل {Pq} خانواده خطͬ، ΁دینامی و آفین انتگرال با مسائل از ویژه ای کلاس در
ͬ دهد م اجازه ما به ͬ گیریم، م نظر در که مسائل از خاصͬ ساختار است. خطͬ بهینه کنترل
معادله ΁ی حل برای ΁کلاسی عددی تکنی΁ های به نیاز یا کنیم حل را آن ها صریح طور به تا

داریم. واحد
است. شده سازمان دهͬ زیر صورت به فصل این

سازی خطͬ روی΄رد و ͬ کنیم م فرمول سازی را کسری بهینه کنترل مساله ،١ . ٢ بخش در
مسائل از رده ΁ی به ،١ . ٣ بخش در ͬ بریم. م به کار کسری برنامه ریزی برای را باخ دینکل
بهینه، کنترل ساختار و هستیم رو به رو خطͬ ΁دینامی و آفین انتگرال با کسری بهینه کنترل
را کسری مساله جواب ،۴ . ١ بخش در ͬ کنیم. م پیدا را مربوطه خطͬ بهینه کنترل مسائل
بهره وری حداکثر افزایش برای کاربردی مدل ΁ی ،۵ . ١ بخش در که حالͬ در ͬ کنیم؛ م ارائه

ͬ دهیم. م قرار بحث مورد را تبلیغاتͬ ͬ های آگه

کسری بهینه کنترل مسائل ١ . ٢
[۴٠] ب·یرید: نظر در زیر به صورت را کسری بهینه کنترل مساله ΁ی

(FP ) max

∫ T٠ f(x(t), u(t), t)dt∫ T٠ g(x(t), u(t), t)dt
, (١ . ١)

s.t


ẋ(t) = h(x(t), u(t), t),

x(t٠) = x٠,
(١ . ٢)

استانکو‐ کسری برنامه ریزی در معمول طور به .t ∈ [٠, T ] ،u(t) ∈ U ⊂ Rm ،x(t) ∈ Rn که
که معنͬ این به است؛ مثبت کاملا́ کسر مخرج که ͬ شود م فرض ∫مینژن T٠ g(x(t), u(t), t)dt > ٠,

.u(t) ∈ U هر برای
این کلیدی ایده ͬ کند. م پیشنهاد (FP ) حل برای عددی روش ΁ی استانکو‐مینژن
بهات توسط که ͬ شود م استفاده کسری برنامه ریزی برای باخ دینکل ال·وریتم از که است
کسری بهینه کنترل مسائل حل برای نیز استانکو‐مینژن توسط همچنین و است شده اصلاح
بهینه کنترل مسائل خانواده ΁ی به کسری اصلͬ مساله تبدیل شامل رهیافت ͬ شود. م استفاده
F (q) ،q ∈ R١ هر برای که ͬ کنیم م تعریف را F کم΄ͬ تابع ΁ی حال ͬ باشد. م معادل پارامتری

باشد: زیر (غیرکسری) بهینه کنترل مساله هدف تابع مقدار حداکثر
(Pq) max

(x,u)∈Ω
[
∫ T٠ {f(x(t), u(t), t)− qg(x(t), u(t), t)}dt],



٣ کسری بهینه کنترل مسائل از رده ΁ی
΁دینامی سیستم توسط Ω که

ẋ(t) = h(x(t), u(t), t),

است. شده تعریف u ∈ U و x(٠) = x٠ با
باشد، داشته وجود (Pq) مساله برای u(t) ∈ U بهینه کنترل تابع ΁ی ،q ∈ R هر برای اگر
[۴٠] ͬ باشد. م فرد به منحصر q∗ صفر ΁ی دارای و محدب نزولͬ، به طوراکید F تابع آنگاه
مرتبط (Pq) کم΄ͬ مسائل خانواده با را (FP ) کسری بهینه کنترل اصلͬ مساله که خوبی ویژگͬ
بهینه مسیر و بهینه کنترل و (FP ) بهینه مقدار q∗ آنگاه ،F (q∗) = ٠ اگر که است این ͬ کند، م
تعیین معادل (FP ) مساله جواب که است رو این از است. بهینه نیز (FP ) مساله برای (pq)
ͬ توان م را (FP ) کسری مساله حل باخ، دینکل ایده دنبال به لذا است. F (q) = ٠ معادله ریشه
طوری به ͬ شود م شروع q مقدار از که آورد دست به شبه نیوتن تکراری روش ΁ی از استفاده با
بر خاص طور به روش این بخشͬ اثر ͬ رسد. م صفر به F (q) مقادیر دنباله و F (q) > ٠ که

دارد. بستگͬ کم΄ͬ بهینه کنترل مسائل خانواده ͬ های ویژگ

کسری بهینه کنترل مسائل از رده ΁ی ١ . ٣
ب·یرید: نظر در را وضعیت ΁ی و کنترل ΁ی با زیر کسری بهینه کنترل مساله

(P ) max
x(T ) + k

∫ T٠ (x(t) + c)dt

u٠ +
∫ T٠ u(t)dt

,

s.t


ẋ(t) = ax(t) + bu(t),

x(٠) = x٠,
u ∈ [٠, ū],

.c, k ∈ R و u٠ > ٠ ،ū > ٠ ،b ̸= ٠ ،a ̸= ٠ ،x(t), u(t) ∈ R که درآن
کنترل متغیر و است پیوسته مشتق دارای قطعه ای به طور و پیوسته x(t) وضعیت متغیر
متناهͬ، افق ΁ی با کسری بهینه کنترل مساله ΁ی (P ) اگر حتͬ است. پیوسته قطعه ای u(t)
نظریه از مستقیم طور به ͬ توانیم نم آن حل برای باشد، خطͬ ΁دینامی و آفین انتگرال های
از که است این (P ) مساله حل برای مم΄ن روش ΁ی کنیم. استفاده استاندارد بهینه کنترل
تعریف را F کم΄ͬ تابع بنابراین شد. بیان قبلͬ بخش در که کنید استفاده باخ دینکل رهیافت
است خطͬ که زیر بهینه کنترل مساله تابعͬ مقدار حداکثر عنوان به F (q) که طوری ͬ کنیم م

ͬ شود: م تعیین

(Pq) max
(x,u)∈Ω

[(
x(t) + k

∫ T٠ (x(t) + c)dt
)
− q
(
u٠ +

∫ T٠ u(t)dt
)]
.



خطͬ کسری برنامه ریزی مسائل برای باخ دینکل رهیافت ۴
ͬ شود م تعریف (P ) مساله محدودیت های توسط Ω اینجا در
ẋ(t) = ax(t) + bu(t),

x(٠) = x٠,
u ∈ [٠, ū].

حل ΁کلاسی خطͬ بهینه کنترل تکنی΁ های با ͬ تواند م (Pq) ،q ثابت هر برای کنید توجه
شود.

(همان دارد، وجود (Pq) مساله برای u(t) ∈ U بهینه کنترل تابع ΁ی ،q ∈ R هر برای
صفر ΁ی دارای و محدب نزولͬ، اکیداً F تابع وبه علاوه است) شده ذکر ١ . ٢ بخش در که طور

ͬ باشد. م نیز (P ) مساله بهینه مقدار که است q∗ فرد به منحصر

(Pq) خطͬ بهینه کنترل مساله ١ . ٣ . ١
شود: بیان زیر صورت به ͬ تواند م بهینه کنترل مساله ΁ی .١ . ٣ . ١ تعریف

min J(x, u) =

∫ tf

t٠
f(t, x, u)dt, (١ . ٣)

که طوری به
ẋ = g(t, x, u), t٠ ≤ t ≤ tf , (۴ . ١)

x(t٠) = α, x(tf ) = β, (۵ . ١)
ͬ شوند. م نامیده کنترل و وضعیت متغیرهای ترتیب به u و آن در که

ͬ شود: م تعریف زیر صورت به مساله این برای هامیلتونͬ تابع اکنون
H = H(t, x, u) = −f(t, x, u) + λ(t)g(t, x, u)

و λ = (λ١, . . . , λn) ،g = (g١, . . . , gn) آن در که
λ(t)g(t, x, u) =

n∑
i=١

λi(t)gi(t, x, u).

لذا
H = −f(t, x, u) +

n∑
i=١

λi(t)gi(t, x, u).

مفروض (٣ . ۴ . ۴)‐(١ . ۴ . ۴) بهینه کنترل مساله پونتریاگین). ماکزیمم (اصل ١ . ٣ . ٢ تعریف
جواب زوج ΁ی (x∗, u∗) اگر صورت این در باشند. معلوم دو هر x(tf ) و tf کنید فرض است.

آنگاه باشند، مساله این برای بهینه
یعنͬ ͬ کند. م اختیار u∗ در u به نسبت را خود ماکزیمم H هامیلتونͬ تابع (١



۵ کسری بهینه کنترل مسائل از رده ΁ی
H(t, x, ẋ, u∗) = maxH(t, x, ẋ, u).

لذا
∂H

∂u
= ٠, ∂٢H

∂u٢ < ٠
ͬ کنند: م صدق زیر روابط در (x∗, u∗, λ∗) که طوری به دارد وجود λ∗(t) بردار (٢

ẋ(t) = g(t, x, u)

λ̇(t) = −∂H
∂x

و t٠ ≤ t ≤ tf که طوری به دارد وجود c یعنͬ است؛ ثابت (x∗.ẋ∗, u∗) در هامیلتونͬ تابع (٣
H(t) = H(t, x∗, ẋ∗, u∗) = c.

آنگاه باشد، معین x(tf ) و نامعین tf اگر (۴
H(t, x∗(t), ẋ∗(t), u∗(t)) = ٠, t٠ ≤ t ≤ tf .

آنگاه باشد، نامعین x(tf ) و معین tf اگر (۵)
λ∗(tf ) = ٠.

آنگاه باشد، نامعین دو هر x(tf ) و tf اگر (۶
H(tf )δtf + λ(tf )δxf = ٠

آن در که
δxf = x(tf )− x∗(tf )

δtf = tf − t∗f

زیر لم به آن اثبات برای است. شده داده شرح ١ . ٣ . ١ گزاره در (Pq) مساله بهینه کنترل
داریم: نیاز

.F (q) = x٠ + kcT − bu٠ صورت این در .a = −k و q = −kb
a

کنید فرض .١ . ٣ . ١ لم
که کنید (توجه کنیم بازنویسͬ را هدف تابع این ͬ توانیم م ما ،(Pq) مساله از استفاده با اثبات.

:(q = b اینجا در
F (q) =

(
x(t) + k

∫ T

٠ (x(t) + c)dt
)
− q
(
u٠ +

∫ T

٠ u(t)dt
)

=

∫ T

٠ [kx(t)− qu(t) + kc]dt+ x(T )− qu٠

=

∫ T

٠ [kx(t)− qu(t)]dt+
∫ T

٠ ẋ(t)dt+ x٠ + kcT − qu٠

=

∫ T

٠ [kx(t)− qu(t) + ax(t) + bu(t)]dt+ x٠ + kcT − qu٠

= x٠ + kcT − bu٠.



خطͬ کسری برنامه ریزی مسائل برای باخ دینکل رهیافت ۶

ͬ کنیم: م تعریف حال
L =

(١ +
k

a

)
eaT − k

a
. (۶ . ١)

است: زیر صورت به (Pq) مساله u(t) بهینه کنترل .١ . ٣ . ١ گزاره
به علاوه .t ∈ (٠, T ) هر برای ،u(t) = ū آنگاه ،q ≤ bL اگر .b(k + a) < ٠ کنید فرض (a)

آنگاه ،q ∈ (bL, b) اگر
u(t) =


٠, t ∈ (٠, τ),
ū, t ∈ (τ, T ),

توسط τ سوئیچ زمان آن در که .t ∈ (٠, T ) هر برای ،u(t) = ٠ آنگاه ،q ≥ b اگر همچنین
است: شده داده زیر عبارت

τ = T − ١
a
log

kb+ aq

b(k + a)
. (١ . ٧)

اگر به علاوه .t ∈ (٠, T ) هر برای ،u(t) = ū آنگاه q ≤ b اگر .b(k + a) > ٠ کنید فرض (b)

آنگاه ،q ∈ (b, bL)

u(t) =


ū, t ∈ (٠, τ),
٠, t ∈ (τ, T ),

.t ∈ (٠, T ) هر برای u(t) = ٠ آنگاه ،q ≥ bL اگر همچنین
اگر به علاوه .t ∈ (٠, T ) هر برای ،u(t) = ū آنگاه ،q < b اگر .b(k + a) = ٠ کنید فرض (c)

بهینه مم΄ن، کنترل هر آنگاه ،q = b اگر همچنین t ∈ (٠, T ) هر برای ،u(t) = ٠ آنگاه ،q > b

است.
ب·یرید نظر در را (Pq) مساله هامیلتونͬ تابع اثبات.

Hq = kx(t)− qu(t) + λ(t)[ax(t) + bu(t)] = [k + λ(t)a]x(t) + [λ(t)b− q]u(t),

ͬ کند: م صدق زیر روابط در λ(t) تابع پونتریاگین، حداکثری اصل به توجه با که
λ̇(t) = −aλ(t)− k, λ(T ) = ١,

لذا
λ(t) =

(١ +
k

a

)
ea(T−t) − k

a
.

است: زیر صورت به سوئیچ تابع بنابراین
Gq(t) =

∂Hq

∂u = λ(t)b− q = b(a+ k)

a
ea(T−t) − bk

a
− q.



٧ (P ) مساله حل
.Gq(T ) = b− q و Gq(٠) = Lb− q ،(۶ . ١) تعریف با که باشید داشته توجه

،Gq(٠) ≥ ٠ اگر بنابراین است. صعودی Gq(t)اکیداً تابع باشد. b(a+k) < ٠ کنید فرض (a)
یعنͬ باشد، Gq(T ) ≤ ٠ اگر و ͬ باشد م u(t) = ū بهینه کنترل آنگاه ،Lb− q ≥ ٠ که معنͬ این به

است. u(t) = ٠ بهینه کنترل آنگاه باشد، b− q ≤ ٠
از تغییر برای τ ∈ (٠, T ) فرد به منحصر زمان ͬ توانیم م ما ،Gq(T ) > ٠ و Gq(٠) < ٠ اگر
صورت به سوئیچ زمان رو این از کنیم. تعیین Gq(t) = ٠ معادله حل از u(t) = ٠ به u(t) = ū

است: زیر

τ = T − ١
a
log

kb+ aq

b(k + a)
.

است. شده تعریف خوبی به τ لذا و kb+ aq

b(k + a)
> ٠ حالت این در که ͬ شود م مشاهده

کنترل باشد، Gq(t) ≥ ٠ اگر و است نزولͬ اکید طور به Gq(t) تابع ،b(a + k) > ٠ اگر (b)
.u(t) = ٠ باشد، Gq(٠) ≤ ٠ اگر که حالͬ در است؛ u(t) = ū بهینه

تغییر u(t) = ٠ به u(t) = ū از و کنترل را τ در زمان باید ما Gq(T ) < ٠ و Gq(٠) > ٠ اگر
است. شده تعریف خوبی به τ و kb+ aq

b(k + a)
> ٠ حالت این در همچنین دهیم.

آن علامت و است ثابت Gq(t) تابع ،b ̸= ٠ چون a = −k یعنͬ b(a + k) = ٠ حالت در (c)

اگر u(t) = ū بهینه کنترل بنابراین است. ی΄سان b− q علامت با یعنͬ −(bk + aq)

a
علامت با

صفر سوئیچ تابع ،q = b یعنͬ bk + aq = ٠ خاص حالت این در .q > b اگر u(t) = ٠ و q < b

به توجه با اما ندارد. وجود پونتریاگین حداکثری اصل از استفاده ام΄ان حالت این در است.
کنترل ΁ی (Pq) برای شدنͬ کنترل هر و است ثابت تابع ΁ی حالت این در F (q) تابع ،١ . ٣ . ١ لم

است. بهینه

(P ) مساله حل ۴ . ١
را هدف تابع بهینه مقدار سپس و ͬ کنیم م بیان را F (q) تابع تحلیلͬ ش΄ل ابتدا بخش این در

ͬ کنیم. م مشخص

F (q) تابع تحلیلͬ بیان ١ . ۴ . ١
تحلیلͬ ش΄ل به را F (q) تابع ͬ خواهیم م ،(FP ) مساله از صریح جواب ΁ی آوردن دست به برای

داریم. را زیر گزاره ،(۶ . ١) بخش از استفاده با کنیم. محاسبه و بیان

است: زیر صورت به F (q) تابع .١ . ۴ . ١ گزاره
آنگاه b(k + a) < ٠ اگر (a)



خطͬ کسری برنامه ریزی مسائل برای باخ دینکل رهیافت ٨

F (q) =


F١(q), q ≤ bL,

F٢(q), bL < q < b,

F٣(q), q ≥ b.

آنگاه b(k + a) > ٠ اگر (b)

F (q) =


F١(q), q ≤ b,

F۴(q), b < q < bL,

F٣(q), q ≥ bL.

آنگاه b(k + a) = ٠ اگر (c)

F (q) =


F١(q), q ≤ b,

F٣(q), q ≥ b,

درآن که
F١(q) = −(u٠ + ūT )q + x٠L+ ckT − bū

a
(١− L+ kT ),

F٢(q) = −
(
u٠ − ū

a

)
q + x٠L+ ckT − bū

a

[١ +
aq + kb

ab
log

aq + kb

b(a+ k)

]
,

F٣(q) = −u٠q + x٠L+ ckT,

F۴(q) = −
(
u٠ − ū

a

)
q + x٠L+ ckT

+
bū

a

{
L+

aq + kb

ab

[
− aT + log

aq + kb

b(a+ k)

]}
.

بیان (١ . ٣ . ١) گزاره در که صورتͬ به وضعیت معادله در u(t) بهینه کنترل جای·زینͬ با اثبات.
آنگاه ،t ∈ (٠, T ) هر ازای به ،u(t) = ū اگر ب·وییم ͬ توانیم م شد،

x(t) =
(
x٠ + bū

a

)
eat − bū

a
, (١ . ٨)

آنگاه ،t ∈ (٠, T ) هر ازای به u(t) = ٠ اگر
x(t) = x٠eat, (١ . ٩)

داریم ،u(t) = ū سپس و τ تا u(t) = ٠ اگر

x(t) =


x٠eat, t ∈ (٠, τ),
(x٠ + bū

a
e−aτ )eat − bū

a
, t ∈ (τ, T ).

(١ . ١٠)



٩ (P ) مساله حل
ͬ آید م دست به بهینه مسیرهای ،u(t) = ٠ سپس و τ تا u(t) = ū اگر نهایت در

x(t) =


(x٠ + bū

a
)eat − bū

a
, t ∈ (٠, τ),

(x٠ + bū

a
(١− e−aτ )]eat, t ∈ (τ, T ).

(١ . ١١)

به ،١ . ٣ . ١ گزاره گرفتن نظر در با و (Pq) مساله هدف تابعک در (١ . ١١)‐(١ . ٨) جای·زینͬ با
ͬ آید. م دست به F (q) تابع صریح طور

F (q) باخ دینکل تابع :١ . ١ ش΄ل
پیشنهاد ال·وریتم در ویژگͬ این هستند. خطͬ F٣(q) و F١(q) توابع که ͬ کنیم م یادآوری
درحالت F (q) تابع آنگاه ،b(k+ a) ̸= ٠ اگر که کرد ثابت ͬ توان م ͬ شود. م استفاده زیر در شده

نیست. پیوسته کلͬ
x٠ = ٠.١ ،b = ٢ ،a = −۴ ،T = ١ ،c = ٠.١٠ ،k = ٣ ،ū = ٣٠ کنید فرض مثال، عنوان به
تابع داریم. را ١ . ۴ . ١ و ١ . ٣ . ١ گزاره در (a) مورد لذا ،b(k + a) < ٠ که آن جا از باشد. u٠ = ١ و

است: زیر صورت به F

F (q) =


−٣١q + ۴٩.٠۵۶٧٧, q ≤ ١.۵٠٩١۶,
−٨.۵q + ١۵.٣٧۵۴۶ + ١.٨٧۵(۴q − ۶) log(٢q − ٣), ١.۵٠٩١۶ < q < ٢,
−q + ٠.٣٧۵۴۶, q ≥ ٢.

(١.۵٠٩١۶,٢) بازه در F (q) تابع فرد به منحصر صفر کردیم. ترسیم ١ . ١ ش΄ل در را F (q) تابع
مقدار آوریم. دست به را q∗ بهینه مقدار ،F٢(q∗) = ٠ معادله حل با ͬ توان م بنابراین دارد. قرار

معادله حل متناظر (P ) مساله بهینه
−٨.۵q∗ + ١۵.٣٧۵۴۶ + ١.٨٧۵(۴q∗ − ۶) log(٢q∗ − ٣) = ٠.



خطͬ کسری برنامه ریزی مسائل برای باخ دینکل رهیافت ١٠
است.

زمان کنیم. پیدا (١ . ٧) از را q∗ = ١.۶۴٩۶٠ تا ͬ سازد م قادر را ما ساده، عددی محاسبات
ͬ باشد. م τ∗ ≃ ٠.۶٩٨٣۴ بهینه سوئیچ

(P ) مساله بهینه مقدار ٢ . ۴ . ١
را q∗ بهینه مقدار که این محض به ͬ دهد، م اجازه ما به ١ . ٣ . ١ گزاره که باشید داشته توجه
برای ال·وریتمͬ بخش، این در کنیم. تعیین را (P ) مساله برای بهینه کنترل آوردیم، به دست

ͬ شود. م ارائه q∗ یافتن
معمولا˟ F تابع آن در که دارد F (q) = ٠ معادله حل به نیاز باخ دینکل رهیافت که حالͬ در
بیان ام΄ان تا ͬ دهد م اجازه (P ) مساله از خاصͬ ساختار ͬ شود، م شناخته ضمنͬ طور به فقط

کنید). ملاحظه را ١ . ۴ . ١ گزاره ) باشیم داشته را q مقدار هر برای F تابع صریح
،F (q) باخ دینکل تابع ی΄نوایی خواص از استفاده با ،١ . ۴ . ١ گزاره از نتیجه ΁ی عنوان به

داد. ارائه u∗ بهینه کنترل نتیجه در و q∗ یافتن برای روش ΁ی ͬ توان م
ͬ کند. م مشخص را F (q) تحلیلͬ تابع که است b(k + a) مقدار محاسبه شامل اول گام
است، شامل را F (q) تابع منحصربه فرد صفر که بازه ای ͬ توان م ͬ شود، م شناخته F که هنگامͬ
کنترل و q∗ بهینه مقدار ͬ شود: م بیان زیر ال·وریتم در (P ) مساله حل جزئیات کرد. مشخص

کرد: مشخص زیر به صورت ͬ توان م را (P ) مساله از u∗ بهینه
هر برای و F١(q∗) = ٠ آنگاه ،F١(bL) ≤ ٠ اگر صورت این در ،b(k + a) < ٠ کنید فرض . ١

.u∗(t) = u ،t ∈ (٠, T )
.u∗(t) = ٠ ، t ∈ (٠, T ) هر برای و F٣(q∗) = ٠ آنگاه ،F٣(bL) ≥ ٠ اگر این صورت درغیر

و F٢(q∗) = ٠ غیراین صورت در

u∗(t) =


٠, t ∈ (٠, τ∗),
ū, t ∈ (τ∗, T ).

(١ . ١٢)

هر برای و F١(q∗) = ٠ آنگاه ،F١(bL) ≤ ٠ اگر صورت این در ،b(k + a) > ٠ کنید فرض . ٢
.u∗(t) = ū ،t ∈ (٠, T )

.u∗(t) = ٠ ، t ∈ (٠, T ) هر برای و F٣(q∗) = ٠ آنگاه ،F٣(b) ≥ ٠ اگر صورت درغیراین
و F۴(q∗) = ٠ غیراین صورت در

u∗(t) =


ū, t ∈ (τ∗, T ),

٠, t ∈ (٠, τ∗).
(١ . ١٣)

هر و q∗ = b آنگاه ،F١(b) = F٣(b) = ٠ اگر صورت این در ،b(k + a) = ٠ کنید فرض . ٣
است. بهینه کنترل ΁ی شدنͬ، کنترل



١١ تبلیغات کارایی کردن بیشینه مساله
.u∗(t) = ū ، t ∈ (٠, T ) هر برای و F١(q∗) = ٠ آنگاه ،F١(b) ≤ ٠ غیراین صورت در

.u∗(t) = ٠ ، t ∈ (٠, T ) هر برای و F٣(q∗) = ٠ غیراین صورت در
q∗ برحسب F٣(q∗) = ٠ و F١(q∗) = ٠ معادلات ال·وریتم در شده مشخص روش به اشاره با
تکنی΁ های از برخͬ است مم΄ن F۴(q∗) = ٠ و F٢(q∗) = ٠ حل برای که حالͬ در است؛ خطͬ
محدب نزولͬ، دو هر F۴ و F٢ توابع ͽواق در باشد. نیاز مورد نیوتن شبه روش مانند عددی  حل

هستند. (b, bL) و (bL, b) فواصل در ترتیب به مشتق پذیر مرتبه ای هر از و
ͬ توان م را q∗ بهینه مقدار ال·وریتم از استفاده با ب·یرید. نظر در را قبل بخش مثال اکنون

آورد. به دست (١ . ١) ش΄ل به توجه با F٢(q) = ٠ معادله حل از

تبلیغات کارایی کردن بیشینه مساله ۵ . ١
و [٠, T ] فروش دوره طͬ در را شرکت ΁ی تبلیغات کارایی سازی بیشینه مساله بخش، این در
قبلͬ بخش های در آمده دست به نتایج از و ͬ کنیم م بیان کسری کنترل مساله ΁ی عنوان به

ͬ کنیم. م استفاده بهینه تبلیغاتͬ سیاست های یافتن برای
از استفاده با بازاریابی ادبیات در زیادی حد تا بهینه تبلیغات مشͬ خط تعیین مساله
تبلیغات مختلف مدل های است. گرفته قرار بررسͬ مورد دینامی΄ͬ بهینه کنترل مدل های
توسط شده دنبال اهداف و فروش به را تبلیغات که دارند تمایز ی΄دی·ر با ΁دینامی در عمدتاً

.[٣٨ ،١٨] ͬ کند م متصل شرکت
ͬ شود م گرفته نظر در سرمایه گذاری عنوان به تبلیغات شده، شناخته مدل های در معمولا
است مشتریان تقاضای روی بلندمدت اثرات دارای و ͬ کند م ایجاد را تبلیغاتͬ سهام ΁ی که
فنͬ کارایی مفهوم بر ما تبلیغاتͬ، مدل های سایر خلاف بر اما کنید.) ملاحظه را [٣٢])
ورودی و شرکت توسط شده تولید خروجͬ بین نسبت عنوان به که هستیم متمرکز شرکت

بهره وری). نسبت نوع ΁ی) ͬ شود م تعریف تولید فرایند در استفاده مورد
نمایش S(t) با را t زمان در فروش نرخ و A(t) با را t زمان در تبلیغاتͬ سهام فرض کنید
فروش کل و A(T ) تبلیغات نهایی سهام را تبلیغات سرمایه گذاری از مرتبط ͬ های خروج دهیم.
برخͬ و تبلیغات کل هزینه شرکت، فعالیت ورودی ها ͬ گیریم. م درنظر فروش دوره طول در
نشان a(t) تابع با t زمان در را تبلیغات هزینه نرخ ͬ شود. م گرفته نظر در ثابت هزینه های از

ͬ کنیم: م تعریف زیر به صورت را تبلیغات بازدهͬ ͬ دهیم. م

E =
αA(T ) + (١− α) ∫ T٠ S(t)dt

C٠ +
∫ T٠ a(t)dt

,

نشان C٠ و تبلیغات نهایی سهام به یافته اختصاص وزن دهنده نشان α ∈ (٠, ١) طوری که به
است. ثابت هزینه های دهنده

کنیم: بازنویسͬ زیر صورت به را تبلیغات بازدهͬ ͬ توانیم م ،k =
١− α
α

فرض با



خطͬ کسری برنامه ریزی مسائل برای باخ دینکل رهیافت ١٢

E = α
A(T ) + k

∫ T٠ S(t)dt

C٠ +
∫ T٠ a(t)dt

,

به را تبلیغات سهام ΁دینامی اینجا در است. فروش کل به مربوط وزن k > ٠ پارامتر درآن که
صورت

Ȧ(t) = −δA(t) + ϵa(t),

بهره وری دهنده نشان ϵ > ٠ پارامتر و ͬ باشد م [٣٢] نرلو‐آرو مدل مشابه که ͬ کنیم. م تعریف
است. تبلیغات سهام لحاظ از تبلیغاتͬ

تعریف زیر به صورت t زمان در تبلیغاتͬ سهام از آفین تبدیل ΁ی به صورت S(t) فروش نرخ
ͬ شود: م

S(t) = A(t) + b, b ≥ ٠.
شود: بیان زیر به صورت ͬ تواند م تبلیغات بازدهͬ سازی بیشینه مساله بنابراین

(EP ) max
A(T ) + k

∫ T٠ (A(t) + b)dt

C٠ +
∫ T٠ a(t)dt

,

s.t.


Ȧ(t) = −δA(t) + ϵa(t),

A(٠) = A٠, a ∈ [٠, ā],
است. تبلیغات اولیه سهام A٠ و تبلیغات هزینه میزان حداکثر ā > ٠ طوری که به

درنظر مطلوب تبلیغاتͬ سیاست های به دستیابی منظور به را ١ . ٣ . ١ گزاره ͬ توانیم م ما
است. ā > ٠ و b ≥ ٠ ،δ > ٠ ،ϵ > ٠ ،k > ٠ به صورت پارامترها علامت (EP ) مساله در ب·یریم.

کرد. مشخص را زیر اصلͬ حالت دو ͬ توان م ١ . ٣ . ١ گزاره از بنابراین
است: زیر ساختار دارای a(t) مطلوب تبلیغات سیاست آنگاه ،δ > k اگر اول: حالت

a(t) =


٠, t ∈ (٠, τ),
ā, t ∈ (τ, T ).

گیرد. صورت تبلیغات بیشترین دوره انتهای در اما نباشد تبلیغاتͬ ابتدا در یعنͬ

سیاست آنگاه است، کم تبلیغات سهام رفتن بین از نرخ یعنͬ ،δ < k اگر دوم: حالت
بود خواهد زیر ش΄ل به a(t) مطلوب تبلیغات

a(t) =


ā, t ∈ (٠, τ),
٠, t ∈ (τ, T ).



١٣ تبلیغات کارایی کردن بیشینه مساله
F (q) بهینه مقدار تابع ͬ های ویژگ از برخͬ تا دهد مͬ را ام΄ان این (EP ) مساله خاص ساختار
معادله توسط ضمنͬ طور به (EP ) از q∗ بهینه مقدار حقیقت در کرد. مشخص را متناظرش

ͬ شود م تعریف زیر
F (q∗) = ٠.

F تابع آنگاه ،δ ̸= k اگر علاوه براین، است. آسان EP مساله حل قبل، بخش به توجه با
آوردن دست به برای ضمنͬ تابع قضیه از ͬ توان م و ∂F

∂q
< ٠ لذا است. نزولͬ و و مشتق پذیر

که داد نشان و کرد استفاده پارامترها به نسبت q∗ مشتق علامت
∂q∗

∂b
> ٠, ∂q∗

∂δ
< ٠, ∂q∗

∂A٠ > ٠, ∂q∗

∂C٠ < ٠, ∂q∗
∂ā
≥ ٠, ∂q∗

∂k
> ٠, ∂q∗

∂ϵ
≥ ٠.





٢ فصل
از رده ΁ی برای تکراری روش ΁ی

کسری برنامه ریزی مسائل

مقدمه ٢ . ١
روش های از استفاده بهینه، کنترل مسائل حل مستقیم غیر و مستقیم عددی روش های میان در
که دلیل این به است. برجسته بسیار تقریبی جواب های به رسیدن برای ΁موج جابجایی
رده ΁ی برای خوبی تقریبی جواب های ͬ تواند م روش این عددی، روش های سایر خلاف بر
نهایی و اولیه شرط با مسائل زمان بندی، مسائل عنوان به بهینه کنترل مسائل از گسترده
΁موج جمله از حار موج های خواص و تئوری پیشنهاد از رهیافت این دهد. ارائه ناشناخته
دینکل رهیافت و ΁موج ترکیبی روش دراین جا ͬ کند. م استفاده آن عملیاتͬ ماتریس و حار
به صورت کسری برنامه ریزی مسائل از رده ΁ی حل برای تکراری طرح ΁ی ایجاد برای را باخ

ͬ کنیم م ارائه زیر

(FP ) max

∫ T٠ f(t, x(t), u(t))dt∫ T٠ g(t, x(t), u(t))dt
, (٢ . ١)

s.t.


ẋ = h(t, x(t), u(t)),

x(٠) = x٠, x(T ) = xT ,

(٢ . ٢)

١۵



کسری برنامه ریزی مسائل از رده ΁ی برای تکراری روش ΁ی ١۶
مثبت کاملا́ کسر مخرج که ͬ شود م فرض و t ∈ [٠, T ] ،u(t) ∈ U ⊂ Rm ،x(t) ∈ Rn آن در که

که معنͬ این به است؛
∫ T٠ g(t, x(t), u(t))dt > ٠,

.u(t) ∈ U هر برای

΁موج هم محلͬ روش براساس تکراری طرح ΁ی ٢ . ٢
هار خانواده ٢ . ٢ . ١

دو موج΁ ها این میان در داریم. [٠, ١) بازه در هار ΁موج ٢J+١ ; J ∈ N معین تجزیه در
دختر ΁موج مانده، باقͬ ΁موج ٢J+٢−١ هستند. مهم مادر و پدر موج΁ های نام به ΁موج
دست به مادر ΁موج (تبدیل) انتقال و اتساع طریق از ͬ توان م را این ها که ͬ شوند م نامیده

داخلͬ ضرب با L٠]٢, ١) هیلبرت فضای از متعامد مجموعه زیر ΁ی خانواده این آورد.
⟨f, g⟩ =

∫ ١٠ f(t)g(t)dt

ͬ شوند، م تعریف [٠, ١) پیوسته بازه در که را آن خصوصیات و هار خانواده تکمیل، برای است.
ͬ کنیم م یادآوری
پدر: ΁موج

h١(x) =


١ x ∈ [٠, ١)
٠ جاها سایر

h٢(x) =


١ x ∈ [٠, ١

٢)

−١ x ∈ [
١
٢ , ١)

٠ جاها سایر
ͬ آیند: م دست به زیر فرمول وسیله به که m = ٢ℓ ،ℓ = {٠, ١,٢, . . . .J}برای دختر: موج΁ های

hi(x) = h٢(mx− k) =



١ x ∈ [
k

m
,
k + ٠٫۵
m

)

−١ x ∈ [
k + ٠٫۵
m

,
k + ١
m

٠ جاها سایر



١٧ ΁موج هم محلͬ روش براساس تکراری طرح ΁ی
انتقال و اتساع پارامترهای k و m که k = ٠, ١, . . . ,m − ١ و i = m + k + ١ این جا، در
٢J+١ برابر i مقدار بیشترین و (m = ١, k = ٠) ٢ برابر i مقدار کمترین ͬ شوند. م نامیده

است. (m = ٢J , k = ٢J − ١)

هار موج΁ های ماتریس ٢ . ٢ . ٢
فرعͬ بازه و کنید تقسیم فرعͬ بازه ٢K به را [٠, ١) بازه معین، K = J + ١(J ∈ N) ΁ی برای
را فرعͬ بازه هر میانͬ نقطه دهید. نشان j = ١,٢, . . . ,٢K برای Ij = [

j − ١
٢k

,
j

٢k
] با را j‐ام

م΄ان هم نقاط تمام مجموعه ما ͬ شود. م تعریف ٢j − ١
٢K+١ با و ͬ نامیم م j‐ام م΄انͬ هم نقطه

پس ͬ دهیم. م نمایش C با را
C = {xj =

٢j − ١
٢K+١ , j = ١,٢, . . . ,٢K} = {xj =

j − ٠٫۵
٢K

, j = ١,٢, . . . ,٢K}.

در که هار موج΁ های ٢K ارزیابی با N = ٢J+١ = ٢K اندازه با را H هار موج΁ های ماتریس
قرار H سطرهای در را آن ها و آورد دست به ͬ توان م ͬ شوند، م تعریف C نقاط در [٠, ١) بازه

ͬ شود. م فرمول دهͬ زیر صورت به H ماتریس (i, j)th ورودی دی·ر عبارت به داد.
.i, j ∈ {١,٢, . . . ,٢K هر برای H(i, j) = hi(xj) برای

است: زیر صورت به i = ١,٢, . . . ,٢K برای hi ΁موج هر رفتار

h١(xj) =


١ xj ∈ [٠, ١)
٠ جاها سایر

hi(xj) =



١ xj ∈ [
k

m
,
k + ٠٫۵
m

)

−١ xj ∈ [
k + ٠٫۵
m

,
k + ١
m

)

٠ جاها سایر

(٢ . ٣)

دهید قرار
Ci = {xj ∈ C, hi(xj) = ±١}.

کنید. تقسیم C−
i و C+

i مجموعه زیر دو به را Ci و کنید مرتب صعودی ترتیب به را Ci عناصر
hi(xj) = +١ ←→ xj ∈ C+

i ,

hi(xj) = −١ ←→ xj ∈ C−
i .



کسری برنامه ریزی مسائل از رده ΁ی برای تکراری روش ΁ی ١٨
بنابراین است. i = m + k + ١ و m = ٢ℓ ،k = ٠, ١, . . . ,m − ١ ،ℓ ∈ {٠, ١, . . . , J} این جا در

کرد: ساده زیر صورت به ͬ توان م را بالا معادلات
H(١, j) = ١, j = ١,٢, . . . ,٢K ,

H(i, j) =


١ xj ∈ C+

i

−١ xj ∈ C−
i

٠ xj ∈ C − Ci

ͬ آید: م دست به زیر صورت به (٢ . ٣) از انتگرال گیری از استفاده با انتگرال عملیاتͬ ماتریس
Phi(x) =

∫ x٠ hi(x)dx,

Qhi(x) =
∫ x٠ Phi(x)dx,

Chi(x) =
∫ ١٠ Phi(x)dx.

اصلͬ کسری مسئله تبدیل شامل باخ دینکل روی΄رد شد، اشاره قبل فصل در که طور همان
ͬ کنیم م تعریف را F کم΄ͬ تابع است. ΁پارامتری بهینه کنترل مسائل از معادل خانواده ΁ی به
باشد: زیر کسری) (غیر بهینه کنترل مساله مقدار حداکثر F (q) ،q ∈ R هر برای که طوری به

(Pq) max
(x,u)∈P

{
∫ T

٠ ζq(t, x(t), u(t))dt}, (۴ . ٢)

درآن که
ζq(t, x(t), u(t)) = f(t, x(t), u(t))− qg(t, x(t), u(t)).

دست به برای عددی تکراری طرح ایجاد برای شدید انگیزه ΁ی F تابع جالب خصوصیات
مختلف پارامتر دو باید فقط منظور این برای است. FP مساله بهینه جواب برای تقریبی آوردن
تولید برای بازه ΁ی بتوان تا است، منفͬ F (qu) و F (ql) حاصلضرب که گرفت نظر در را qu و ql
آوردن دست به برای است. هم·را F (q) = ٠ معادله ریشه به که آورد به دست {qv} دنباله ΁ی
منظور این برای کنیم. استفاده (۴ . ٢) بهینه کنترل مساله از باید q ∈ R هر برای F تابع مقدار
جواب تعیین برای عددی طرح ΁ی عنوان به ΁موج هم محلͬ روش از که است شده سعͬ

شود. استفاده q هر برای (۴ . ٢) بهینه تقریبی
استاندارد بازه کرد. تبدیل [٠, ١) فاصله به ͬ توان م را [٠, T ) فاصله ساده، خطͬ تبدیل ΁ی با

به صورت τk هم محلͬ نقاط با [٠, ١) صورت به این جا در
τk = (k − ٠٫۵)/M, k = ١,٢, . . . ,M,



١٩ ΁موج هم محلͬ روش براساس تکراری طرح ΁ی
بیشترین اندیس شماره همچنین و ͬ باشد م شده استفاده گره های تعداد M درآن که ͬ باشد م
هم محلͬ نقاط تعداد که طوری به است ٢ توان Mدر مقدار که باشید داشته توجه است. ΁موج
ی΄دی·ر از ١

M
با [٠, ١) زمانͬ فاصله تمام به هم محلͬ نقاط تمام ͬ یابد. م افزایش توان آن در نیز

با ͬ توان م را u(τ) کنترل متغیرهای و ẋ(τ) حالت متغیر مشتق که ͬ کنیم م فرض دارند. قرار
یعنͬ زد؛ تقریب هم محلͬ نقاط در هار موج΁ های

ẋ(τ) ≈ CT
x ΨM (τ), u(τ) ≈ CT

u ΨM (τ),

اینجا در که است متعامد [١٠] هار ΁موج بردار ΨM درآن که
CT
x = [Cx١, Cx٢, . . . , CxM ], CT

u = [Cu١, Cu٢, . . . , CuM ].

متغیرهای ͬ کنیم، م مشخص P توسط را آن که هار عملیاتͬ انتگرال ماتریس از استفاده با
:[٢۴] بیان کنیم زیر صورت به ͬ توان م را x(τ) حالت

x(τ) =
∫ τ٠ ẋ(τ ′)dτ ′ + x٠ =

∫ τ٠ CT
x ΨM (τ ′)dτ ′ + x٠ = CT

x PΨM (τ) + x٠.

زیر به صورت را M ×M بعد با H هار ماتریس هم محلͬ نقطه M در ΨM (τ) ماتریس گسترش
ͬ دهد م نتیجه

H = [ΨM (τ١),ΨM (τ٢), . . . ,ΨM (τM )].

نتیجه در
(۵ . ٢)

ẋ(τk) = CT
x ΨM (τk), u(τk) = CT

u ΨM (τk), x(τk) = CT
x PΨM (τk) + x٠, k = ١, . . . ,M.

در آن ها ضرایب بردار حاصلضرب از استفاده با هم محلͬ نقطه هر در را متغیرها ͬ توانیم م لذا
کنیم. مقداردهͬ هار ماتریس در مربوطه ستون بردار

برنامه ریزی متغیرهای ͬ شود، م اعمال بهینه کنترل مسائل در هار هم محلͬ روش که هنگامͬ
کنترل متغیرهای و حالت متغیرهای مشتق مجهول ضرایب بردار به صورت ͬ تواند م خطͬ غیر

یعنͬ شوند؛ تعیین نهایی زمان با همراه
X = [Cx١, Cx٢, . . . , CxM , Cu١, Cu٢, . . . , CuM , T ].

ͬ کنیم. م بازنویسͬ زیر به صورت دوباره را Pq مساله هدف تابع
T
∫ ١٠ ζq(τ, (XT

x PΨM (τ) + x٠), CT
u ΨM (τ))dτ.

به صورت ͬ تواند م فوق هدف تابع هستند، ثابت زمانͬ بازه هر در هار موج΁ های که آن جایی از
شود بازنویسͬ زیر

J∗
q = Jq(X ) =

T

M

M∑
k=١

ζq(τk, (C
T
x PΨM (τk) + x٠), CT

u ΨM (τk)). (۶ . ٢)



کسری برنامه ریزی مسائل از رده ΁ی برای تکراری روش ΁ی ٢٠
ͬ گیریم م نتیجه (۵ . ٢) هار ΁موج بسط به توجه با و (٢ . ٢) و (٢ . ١) در x و u و ẋ جای·ذاری با

CT
x ΨM (τk) = Th(τk, (C

T
x PΨM (τk) + x٠), CT

u ΨM (τk)). (٢ . ٧)

متغیر ͬ شود، نم تنظیم نهایی و اولیه زمان عنوان به هم محلͬ نقاط آخرین و اولین که آن جا از
ͬ شود: م محاسبه زیر به صورت بازه انتهای و ابتدا در وضعیت

x٠ = x(١)− ẋ(١)/٢M,

xT = x(M) + ẋ(M)/٢M.

(٢ . ٨)

ͬ شود. م تبدیل غیرخطͬ برنامه ریزی مساله ΁ی به مساله ترتیب، این به

ال·وریتم ٢ . ٣
تعریف J∗

q مقدار نتیجه در آوریم. دست به را F (q) = ٠ معادله ریشه باید که است ذکر به لازم
دو در را ال·وریتم فوق، مباحث اساس بر ͬ باشد. م F (q) برای تقریبی عنوان به (۶ . ٢) با شده

ͬ کنیم. م خلاصه زیر به صورت ارائه اصلͬ گام و ابتدایی گام مرحله،

ابتدایی: گام
دهید قرار و ب·یرید نظر در Jql × Jqu < ٠ که طوری به [ql, qu] اولیه فاصله ΁ی و ε > ٠ ΁ی

K = ١

اصلͬ: گام های
،qm =

ql + qu٢ کنید تعریف (١
این غیر در شوید. متوقف K > log٢

qu − ql
ε

یا |J∗
qm | < ε اگر کنید. محاسبه را J∗

qm (٢
بروید. ٣ مرحله به صورت

دهید قرار صورت این غیر در و ql = qm دهید قرار صورت این در J∗
qm × J

∗
qu < ٠ اگر (٣

بروید. (١) مرحله به و K = K + ١ دهید قرار حال .qu = qm



٢١ عددی  مثال های

عددی ٢ . ۴ مثال های
[۵] ب·یرید نظر در را زیر مساله .١ . ۴ . ٢ مثال

max
x(١) + ٣ ∫ ١٠ (x(t) + ٠٫١)dt

١ +
∫ ١٠ u(t)dt

,

s̊.t.


ẋ = −۴x(t) + ٢u(t)),
x(٠) = ٠٫١,
u ∈ [٠,٣٠].

بیابیم را زیر معادله جواب ͬ کنیم م سعͬ معادل طور به
F (q) = x(١) + ٣ ∫ ١٠ (x(t) + ٠٫١)dt− q(١ +

∫ ١٠ u(t)dt).

جدول در آمده دست یه نتایج شده داده ال·وریتم تکراری روش از استفاده و M = ٨ انتخاب با
ش΄ل در ͬ تواند م تقریبی و دقیق بهینه وضعیت و تقریبی و دقیق بهینه کنترل است. آمده ٢ . ١

شود. دیده ٢ . ٢ و ٢ . ١
ب·یرید. نظر در را زیر خطͬ غیر FOCP .٢ . ۴ . ٢ مثال

max

∫ ١٠ [١− (x(t)− et)٢ − (u(t)− t)٢]dt∫ ١٠ [(tx(t)− ett)٢ + ١]dt ,

s.t.


ẋ = x(t)[u(t)٢et − t٢x(t) + ١],
x(٠) = ١,
u ∈ [٠, ١].

به هستند. u(t) = t و x(t) = et ترتیب به کنترل توابع و دقیق بهینه مسیر که طوری به
آوریم. دست به را F (q) = ٠ معادله جواب ͬ کنیم م سعͬ معادل طور

F (q) =
∫ ١٠ [(١− (x(t)− et)٢ − (u(t)− t)٢]− q[(tx(t)− ett)٢ + ١])dt.



کسری برنامه ریزی مسائل از رده ΁ی برای تکراری روش ΁ی ٢٢
تکرار q١ qu qm J∗

qm

١ −۵ ٣ −١ −٧٩٫٩٧٩٠١
٢ −١ ٣ ١ −١٧٫٩٧٩٠١
٣ ١ ٣ ٢ ١٫٣٩٩٠٢
۴ ١ ٢ ١٫۵ −٣٫٩٧٩٠١٣
۵ ١٫۵ ٢ ١٫٧۵ −٠٫١١٠٩٧٩٨
۶ ١٫٧۵ ٢ ١٫٨٧۵٠ ٠٫٨٠۵٢٢٧٠٢
٧ ١٫٧۵ ١٫٨٧۵٠ ١٫٨١٢۵ ٠٫۴٢٠٢٧٠٢
٨ ١٫٧۵ ١٫٨١٢۵ ١٫٧٨١٣ ٠٫١۵۵٠٧٠٢
٩ ١٫٧۵ ١٫٧٨١٣ ١٫٧۶۵۶ ٠٫٠٢١۶٢٠٢٢
١٠ ١٫٧۵ ١٫٧۶۵۶ ١٫٧۵٧٨ −٠٫٠۴۴۶٧٩٧٧٨
١١ ١٫٧۵٧٨ ١٫٧۶۵۶ ١٫٧۶١٧ −٠٫٠١١۵٢٩٧٨
١٢ ١٫٧۶١٧ ١٫٧۶۵۶ ١٫٧۶٣٧ ٠٫٠٠۵۴٧٠٢٢۴
١٣ ١٫٧۶١٧ ١٫٧۶٣٧ ١٫٧۶٢٧ −٠٫٠٠٣٠٢٩٧٧۶
١۴ ١٫٧۶٢٧ ١٫٧۶٣٧ ١٫٧۶٣٢ ٠٫٠٠١٢٢٠٢٢۴
١۵ ١٫٧۶٢٧ ١٫٧۶٣٢ ١٫٧۶٣٠ −٠٫٠٠٠۴٧٩٨٧٧۶٠

١ . ۴ . ٢ مثال برای پیشنهادی روش از استفاده نتایج :٢ . ١ جدول

١ . ۴ . ٢ مثال برای تقریبی و دقیق بهینه کنترل :٢ . ١ ش΄ل



٢٣ عددی  مثال های

١ . ۴ . ٢ مثال برای تقریبی و دقیق بهینه وضعیت :٢ . ٢ ش΄ل
که است شده داده نشان مساله این برای تکراری رهیافت از استفاده نتایج ،٢ . ٢ جدول در
و دقیق بهینه کنترل است. شده گرفته نظر در M = ۴ به صورت هم محلͬ نقطه تعداد آن در

کرد. ملاحظه ۴ . ٢ ش΄ل و ٢ . ٣ ش΄ل در ͬ توان م را تقریبی و دقیق وضعیت متغیر و تقریبی
تکرار q١ qu qm J∗

qm

١ −٨۶ ١٧٠ ۴٢ −۴١٫٠٠٠٩٣
٢ −٨۶ ۴٢ −٢٢ ۴١٫۵١٣۵٠
٣ −٢٢ ۴٢ ١٠ −٩٫٠٠٠٧۴٠
۴ −٢٢ ١٠ −۶ ١١٫٧٠٠۴١
۵ −۶ ١٠ ٢ −١٫٠٠٠۴٠۶
۶ −۶ ٢ −٢ ۴٫٢۴٧١٣۵
٧ −٢ ٢ ٠ ٠٫٩٩٩٨٧٨٨
٨ ٠ ٢ ١ −٠٫٠٠٠٢٩٢۵٠٣۴

٢ . ۴ . ٢ مثال برای پیشنهادی تکراری روش از استفاده نتایج :٢ . ٢ جدول



کسری برنامه ریزی مسائل از رده ΁ی برای تکراری روش ΁ی ٢۴

٢ . ۴ . ٢ مثال برای تقریبی و دقیق بهینه کنترل :٢ . ٣ ش΄ل

٢ . ۴ . ٢ مثال برای بهینه تقریبی و دقیق وضعیت :۴ . ٢ ش΄ل



٣ فصل
برای سراسری بهینه سازی رهیافت ΁ی

کسری برنامه ریزی مسائل از رده ای

مقدمه ٣ . ١
ب·یرید: نظر در را کسری برنامه ریزی مساله

max
x∈D

f(x)

g(x)
, (٣ . ١)

Dمحدب روی f(x) است، Rn از محدب مجموعه زیر ΁یD ،x = [x١, . . . , xn]T ∈ Rn آن در که
در زیادی کاربردهای ͬ شود، م نشان داده (P١) با که فوق مساله است. مقعر D روی g(x) و
آن ها از برخͬ دارد. وجود (P١) مساله حل زمینه در فراوانͬ روش های دارد. اقتصاد و مهندسͬ
ͬ باشند. م [١۵] ΁پارامتری روش و [٢٧] غیرخطͬ برنامه ریزی روش ،[١۴] متغیر تبدیل شامل
که است شده گرفته نظر در [۵۴ ،٣۶ ،٣٠ ،٢٨ ،٢۶ ،٢۵ ،١١ ،٩ ،٧ ،۴ ،٢ ،١] در (P١) مساله
باخ دینکل ال·وریتم از استفاده با ͬ تواند م (P١) مساله است. محدب g(x) و مقعر f(x) آن در
که است مرحله هر در برنامه ریزی مسائل حل نیازمند ال·وریتم روش، این در اما شود. حل

باشد. (٣ . ١) اصلͬ مساله حل از سخت تر است مم΄ن
خطͬ دیفرانسیل معادلات سیستم ΁ی شامل کسری بهینه کنترل مساله ΁ی اینجا در
نشان مقعر تابع ΁ی به محدب تابع نسبت صورت به آن هزینه تابع آن در که ͬ گیریم م درنظر

٢۵



کسری برنامه ریزی مسائل از رده ای برای سراسری بهینه سازی رهیافت ΁ی ٢۶
روش، این در ͬ کنیم. م معرفͬ را خطͬ سیستم برای دستیابی قابل مجموعه ͬ شود. م داده
بر ͬ شود. م تبدیل متناهͬ بعد با فضای ΁ی در شبه محدب بهینه سازی مساله ΁ی به مساله
کسری بهینه کنترل مساله این حل برای مؤثر ال·وریتم ΁ی سراسری، بهینگͬ شرط ΁ی اساس
با موضعͬ بهینه های کنترل از دنباله ΁ی ال·وریتم این که ͬ دهیم م نشان و ͬ کنیم م پیشنهاد
ͬ شود م اعمال مساله چندین روی بر پیشنهادی ال·وریتم ͬ کند. م تولید هزینه مقادیر کاهش

ͬ آید. م دست به مورد هر برای سراسری بهینه هزینه مقدار آن در که
مساله فرمول بندی ٣ . ٢ بخش در است. شده سازمان دهͬ زیر شرح به فصل این ادامه
۴ . ٣ بخش در مثال چندین برای عددی نتایج و ال·وریتم ͬ شود. م داده کسری بهینه کنترل

است. شده ارائه

کسری بهینه کنترل مساله ٣ . ٢
ب·یرید. نظر در را [t٠, tf ] زمانͬ بازه در خطͬ دیفرانسیل معادلات از زیر سیستم

ẋ(t) = A(t)x(t) +B(t)u(t) + C(t), (٣ . ٢)
x(t٠) = x٠, (٣ . ٣)

هستند، متناهͬ tf و t٠ آن در که
x(t) = [x١(t), x٢(t), . . . , xn(t)]T ∈ Rn, u(t) = [u١(t), u٢(t), . . . , ur(t)]T ∈ Rr.

، A(t) ∈ Rn×n ماتریس های عناصر و هستند کنترل و وضعیت متغیرهای ترتیب به
U ⊂ Rr کنید فرض هستند. [t٠, tf ] روی پیوسته قطعه ای توابعͬ C(t) ∈ Rn×l و B(t) ∈ Rn×r

تعریف زیر صورت به قبول قابل کنترل های مجموعه باشد. محدب و فشرده مجموعه زیر ΁ی
ͬ شود م

u ∈ V = {u ∈ L٢([t٠, tf ]) | u(t) ∈ U, t ∈ [t٠, tf ]}. (۴ . ٣)
تعریف زیر صورت به را ͬ شود م داده نشان (P٢) مساله با که کسری بهینه کنترل مساله

ͬ کنیم م
طوری را u ∈ V قبول قابل کنترل ب·یرید نظر در را (٣ . ٢) دینامی΄ͬ سیستم :(P٢) مساله

هزینه تابع که بیابید
φ
(
x(tf )

)
=

⟨D١x(tf ), x(tf )⟩
⟨D٢x(tf ), x(tf )⟩+ d

, (۵ . ٣)

متقارن، مثبت معین ماتریس ΁ی D١ ، داخلͬ ضرب بیانگر ⟨., .⟩ آن در که شود مینیمم V روی
طوری که است مثبت ثابت ΁ی d و متقارن منفͬ معین ماتریس ΁ی D٢



٢٧ کسری بهینه کنترل مساله
g٢
(
x(tf )

)
= ⟨D٢x(tf ), x(tf )⟩+ d > ٠, ∀u ∈ V,

و
g١
(
x(tf )

)
= ⟨D١x(tf ), x(tf )⟩ > ٠, ∀u ∈ V.

شود آورده دست به زیر به صورت ͬ تواند م (٣ . ٢) سیستم جواب
x(t|u) = F (t, t٠)x٠ +

∫ t

t٠
F (t, τ)[B(τ)u(τ) + C(τ)]dτ, (۶ . ٣)

است زیر ماتریسͬ معادله جواب F (t, τ) ∈ Rn×n آن در که
∂F (t, τ)

∂t
= A(t)F (t, τ), t ≥ τ ∈ [t٠, tf ], (٣ . ٧)

F (τ, τ) = I, (٣ . ٨)
مطلقا برداری تابع ΁ی x(t|u) که باشید داشته توجه ͬ دهد. م نشان را همانͬ ماتریس I که

ͬ کند. م صدق (٣ . ٣) و (٣ . ٢) در [t٠, tf ] روی جا همه تقریباً x(t|u) است. پیوسته
ͬ کنیم م تعریف ادامه، برای

D = D(tf ) = {y ∈ Rn | y = x(tf |u), u ∈ V }. (٣ . ٩)
که است ͹واض ͬ شود. م نامیده u ∈ V به نسبت (٣ . ٢) سیستم از دسترسͬ قابل مجموعه D

نوشت: زیر ش΄ل به ͬ توان م را (P٢) مساله است. فشرده و محدب مجموعه D ⊂ Rn

max
x∈D

φ(x) (٣ . ١٠)
کنید تعریف ͬ کنیم. م یاد (P٣) مساله عنوان به آن از که

L(φ, c) = {y ∈ D, | φ(y) ≤ c}. (٣ . ١١)
است. محدب مجموعه ΁ی c > ٠ هر برای L(φ, c) که است ͹واض

هر برای زیر نامعادله اگر ͬ شود، م نامیده شبه محدب ،h : D → R تابع [١۴] .٣ . ٢ . ١ تعریف
باشد: برقرار α ∈ [٠, ١] و x, y ∈ D

h(αx+ (١− α)y) ≤ max{h(x), h(y)}.

هر برای L(h, c) مجموعه اگر فقط و اگر است، شبه محدب ،D روی h(x) تابع [١۴] .٣ . ٢ . ١ لم
باشد. محدب c > ٠

مساله بنابراین است. شبه محدب ،D روی φ تابع که است ͹واض ،٣ . ٢ . ١ لم از استفاده با
مساله به را سراسری بهینگͬ شرایط حال است. شبه محدب ماکزیمم سازی مساله ΁ی (P٣)

کرد. خواهیم اعمال (P٣)



کسری برنامه ریزی مسائل از رده ای برای سراسری بهینه سازی رهیافت ΁ی ٢٨
کنید فرض [١۵] .٣ . ٢ . ١ قضیه

Ec(φ) = {y ∈ Rn | φ(y) = c}. (٣ . ١٢)
رابطه صورت این در

⟨φ′(y), x− y⟩ ≤ ٠, (٣ . ١٣)
فرض علاوه، به ͬ باشد. م φ گرادیان بیانگر φ′ که است برقرار x ∈ D و y ∈ Eφ(z)(φ) هر برای
شرط ΁ی (٣ . ١٣) شرط صورت این در باشد. برقرار y ∈ Eφ(z)(φ) هر برای φ′(y) ̸= ٠ که کنید

باشد. (P٣) مساله برای سراسری جواب ΁ی تا است z ∈ D برای کافͬ
نوشت: زیر معادل به صورت ͬ توان م را (٣ . ١٣) شرط که است ͹واض
n∑

i=١

{
∂g١(y)
∂xi

g٢(y)−
∂g٢(y)
∂xi

g١(y)
}(

xi − yi
g٢٢(y)

)
≤ ٠, (١۴ . ٣)

.x ∈ D و y ∈ Eφ(z)(φ) هر برای
نامعادله ،x, y ∈ D شدنͬ نقطه هر برای کنید فرض .٣ . ٢ . ٢ لم

⟨φ′(y), x− y⟩ > ٠,
.φ(x) ≥ φ(y) صورت این در باشد. برقرار

داریم است شبه محدب φ که آن جا از .φ(x) < φ(y) کنید فرض خلف، برهان به اثبات.
φ(αx+ (١− α)y) ≤ max{φ(x), φ(y)} = φ(y).

آن در که دارد وجود y نقطه از همسای·ͬ ΁ی تیلور، فرمول از استفاده با
φ(y + α(x− y))− φ(y) = α

(
⟨φ′(y), x− y⟩+ o(α ∥ x− y ∥)

α

)
≤ ٠,

که ΁کوچ کافͬ اندازه به α > ٠ برای
lim
α→٠

o(α ∥ x− y ∥)
α

= ٠.
است. تناقض در ⟨φ′(y), x− y⟩ > ٠ با که ⟨φ′(y), x− y⟩ ≤ ٠ بنابراین

داریم صورت این در باشد. (۵ . ٣) توسط شده تعریف تابع φ(x) کنید فرض .٣ . ٢ . ٣ لم
φ′(x) =

٢(D١ −D٢φ(x))x
⟨D٢x, x⟩+ d

. (١۵ . ٣)
ͬ آید. م دست به φ(x) تابع تعریف از اثبات اثبات.

بهینگͬ شرایط اعتبار کردن ΁چ برای y ∈ Eφ(z)(φ) نقطه ΁ی باید عددی محاسبات در
داریم. نیاز را زیر لم کار، این انجام برای کنیم. پیدا (٣ . ١٣)



٢٩ کسری بهینه کنترل مساله
عدد صورت این در .⟨φ′(z), h⟩ < ٠ که باشد طوری h ∈ Rn و z ∈ D کنید فرض .۴ . ٣ . ٢ لم

که طوری به دارد وجود α > ٠ مثبت
y = z + αh ∈ Eφ(z)(φ).

شرط ،٣ . ٢ . ٣ لم به توجه با .x ∈ D هر برای φ(x) > ٠ داریم φ(x) باتعریف اثبات.
نوشت: زیر ش΄ل به ͬ توان م را ⟨φ′(z), h⟩ < ٠

⟨(D١ −D٢φ(z))z, h⟩ < ٠. (١۶ . ٣)
داریم زیر معادله حل به نیاز کند، صدق y ∈ Eφ(z)(φ) رابطه در که α ΁ی کردن پیدا برای

φ(z + αh) = φ(z), (٣ . ١٧)
و h ∈ Rn ،z ∈ D آن در که

φ(z) =
⟨D١z, z⟩
⟨D٢z, z⟩+ d

, (٣ . ١٨)
معادل طور به یا

φ(z)⟨D٢z, z⟩+ φ(z)d = ⟨D١z, z⟩. (٣ . ١٩)
ͬ آوریم م به دست DT٢ = D٢ و DT١ = D١ که آن جا از

⟨D١(z + αh), z + αh⟩
⟨D٢(z + αh), (z + αh)⟩+ d

= φ(z). (٣ . ٢٠)
لذا

⟨D١z, z⟩+ ٢α⟨D١z, h⟩+ α٢⟨D١h, h⟩ = φ(z)⟨D٢z, z⟩+ ٢αφ(z)⟨D٢z, h⟩
+ α٢φ(z)⟨D٢h, h⟩+ φ(z)d. (٣ . ٢١)

ͬ آوریم: م دست به ،(٣ . ٢١) در (٣ . ١٩) کردن جای·زین با
٢α⟨D١z, h⟩+ α٢⟨D١h, h⟩ = ٢αφ(z)⟨D٢z, h⟩+ α٢φ(z)⟨D٢h, h⟩.

داریم ،α ̸= ٠ چون
α =

٢[⟨(φ(z)D٢ −D١)z, h⟩]
⟨D١h, h⟩ − φ(z)⟨D٢h, h⟩

= − ٢⟨(D١ − φ(z)D٢)z, h⟩
⟨D١h, h⟩ − φ(z)⟨D٢h, h⟩

. (٣ . ٢٢)
که است ͹واض ،D٢ < ٠ و φ(z) > ٠ که آن جا از این، بر علاوه
⟨D١h, h⟩ − φ(z)⟨D٢h, h⟩ > ٠. (٣ . ٢٣)
ͬ شود. م کامل اثبات نتیجه در و α > ٠ که ͬ دهد م نشان این



کسری برنامه ریزی مسائل از رده ای برای سراسری بهینه سازی رهیافت ΁ی ٣٠
(⟨φ′(z), h⟩ < ٠ (یعنͬ ۴ . ٣ . ٢ لم در شده فرض شرط که باشید داشته توجه .٣ . ٢ . ١ ملاحظه

نتیجه در ͬ شود. م برآورده ، x̄ ∈ D و است موضعͬ ماکزیمم نقطه ΁ی z که h = x̄− z اگر
⟨φ′(z), x− z⟩ ≤ ٠, ∀x ∈ D.

(P٣) مساله برای سراسری بهینه کنترل ΁ی که باشد قبول قابل کنترل ΁ی u∗ کنید فرض
صورت به Π(y) کم΄ͬ تابع ΁ی باشد. (٣ . ٢) سیستم با متناظر جواب x∗ کنید فرض و است

ͬ کنیم م تعریف زیر
Π(y) = max

x∈D
⟨φ′(y), x− y⟩, y ∈ Rn. (٢۴ . ٣)

به دست (P٢) مساله برای را سراسری بهینگͬ شرایط ͬ توانیم م ،٣ . ٢ . ١ قضیه اساس بر حال
است. شده بیان زیر قضیه در که آوریم

و اگر است (P٢) مساله برای سراسری بهینه کنترل ΁ی ،u∗ ∈ V کنترل ΁ی .٣ . ٢ . ٢ قضیه
اگر فقط

max
{
Π(y) | y ∈ Eφ(x∗)(φ)

}
≤ ٠, (٢۵ . ٣)

که
x∗ = x∗(tf |u∗) ∈ D(tf ).

ͬ توانیم م ٣ . ٢ . ٢ قضیه از است. (٣ . ١٣) شرط بهینگͬ با معادل ،٣ . ٢ . ٢ قضیه اعتبار اثبات.
که طوری به باشد موجود ỹ ∈ Eφ(x̄)(φ) و (x̃, ũ) اگر که ب·یریم نتیجه

⟨φ′(ỹ), x̃− ỹ⟩ > ٠. (٢۶ . ٣)
،x̃ = x(tf |ũ) آن در که نیست (P٢) مساله برای سراسری بهینه کنترل ،ū کنترل آنگاه

.ũ, ū ∈ V و x̄ = x(tf |ū)

پیشنهادی ال·وریتم های ٣ . ٣
y ∈ Rn هر برای را Π(y) باید آوریم، دست به (P٢) مساله حل برای ال·وریتمͬ که این از قبل
نشان (P۴) با را آن و ͬ گیریم م نظر را زیر خطͬ بهینه کنترل مساله ابتدا کنیم. محاسبه

ͬ دهیم. م
max
x∈D

⟨φ′(y), x⟩. (٣ . ٢٧)
ب·یرید: نظر در را زیر دیفرانسیل معادلات y ∈ Rn هر برای حال

ψ̇ = −ATψ,

ψ(tf ) = −φ′(y).

(٣ . ٢٨)



٣١ پیشنهادی ال·وریتم های
قطعه ای جواب ΁ی دارای ͬ شود، م شناخته هم وضعیت سیستم عنوان به که سیستم این

آن در که ͬ شود م تعریف [t٠, tf ] روی که است ψ(t) = y(t|y) منحصربه فرد مشتق پذیر
ψ(t, y) = [ψ١(t), . . . , ψn(t)]

T

ارائه نتایج از استفاده با ͬ توان م را (P۴) مساله ͬ شود. م یاد هم وضعیت متغیر عنوان به ψ(t)
کرد. حل زیر قضیه در شده

به ازای (٣ . ٢٨) برای جواب ΁ی ،t ∈ [t٠, tf ] ،ψ(t) = ψ(t|y) کنید فرض [١۴] .٣ . ٣ . ١ قضیه
بهینه کنترل ΁ی z(t) باشد. قبول قابل کنترل ΁ی z(t) = z(t|y) کنید فرض باشد. y ∈ Rn

اگر فقط و اگر است (P۴) مساله برای
⟨ψ(t|y), B(t)z(t|y)⟩ = min

u∈V
⟨ψ(t|y), B(t)u(t)⟩, (٣ . ٢٩)

.t ∈ [t٠, tf ] هر تقریباً برای
کرد. محاسبه زیر ال·وریتم از استفاده با ͬ توان م را Π(y) مقدار ،٣ . ٣ . ١ قضیه اساس بر

:١ ال·وریتم
کنید فرض کنید. حل شده داده y ∈ Rn ΁ی برای را (٣ . ٢٨) سیستم .١ مرحله

باشد. جواب ψ(t) = ψ(t|y)

بیابید [t٠, tf ] بازه روی زیر مساله جواب عنوان به را z(t) = z(t|y) بهینه کنترل .٢ مرحله
min
u∈U

⟨ψ(t), B(t)u(t)⟩.

کنید. پیدا u(t) = z(t|y) برای (٣ . ٢) سیستم از x(t) = x(t|y) جواب ΁ی .٣ مرحله
کنید. پیدا t = tf با (۶ . ٣) از استفاده با را x(tf ) = x(tf |z) .۴ مرحله

فرمول از استفاده با را Π(y) .۵ مرحله
،Π(y) = ⟨φ′(y), x(tf )− y⟩

کنید. محاسبه
توسط شده تعریف مجموعه Am

z کنید فرض شده، داده m صحیح عدد برای .٣ . ٣ . ١ تعریف
باشد زیر رابطه

Am
z = {y١, y٢, . . . , ym | yi ∈ Eφ(z)(φ) ∩D, i = ١,٢, . . . ,m}.

.z = x(tf |u), u ∈ V آن در که ͬ نامیم م تقریب مجموعه ΁ی را آن صورت این در



کسری برنامه ریزی مسائل از رده ای برای سراسری بهینه سازی رهیافت ΁ی ٣٢
که باشند داشته وجود yi ∈ Am

z نقطه ΁ی و z ∈ D شدنͬ نقطه ΁ی کنید فرض .٣ . ٣ . ١ لم
⟨φ′(yj), uj − yj⟩ > ٠.

آن در که φ(uj) > φ(z) صورت این در
⟨φ′(yj), uj⟩ = max

x∈D
⟨φ′(yj), x⟩.

است. ٣ . ٢ . ٢ لم از نتیجه ای اثبات.
کرد. بیان ͬ توان م زیر به صورت (p٢) مساله حل برای ال·وریتمͬ اکنون

:٢ ال·وریتم
با باشد. دلخواه شده داده کنترل ΁ی ūk ∈ V کنید فرض و k := ٠ دهید قرار .١ مرحله

بهینه کنترل نرم افزاری پ΄یج از استفاده با uk محلͬ بهینه کنترل ΁ی ،ūk کنترل با شروع
ͬ کنیم. م پیدا [۴۴]

کنید. پیدا u = uk برای (٣ . ٢) سیستم حل با را xk = x(tf |uk) .٢ مرحله
بسازید: زیر صورت به را Am

xk تقریب مجموعه .٣ مرحله
Am

xk == {y١, y٢, . . . , ym | yi ∈ Eφ(xk)(φ) ∩D(tf ), i = ١,٢, . . . ,m}.
کنید. حل را زیر خطͬ بهینه کنترل مسائل .۴ مرحله

max
x∈D(tf )

⟨φ′(yi), x⟩, i = ١,٢, . . . ,m.
کنید. محاسبه ١ ال·وریتم از استفاده با را i = ١,٢, . . . ,m که Π(yi) .۵ مرحله

کنید: محاسبه زیر رابطه با را ηk .۶ مرحله
ηk = Π(yi) = max١≤i≤m

Π(yi).

باشد: زیر مساله جواب zj = zj(t|yj) کنید فرض
⟨ψj(t), B(t)zj⟩ = min

u∈U
⟨ψj(t), B(t)u(t)⟩, t ∈ [t٠, tf ],

که
ψ̇j(t) = −AT (t)ψj(t),

ψj(tf ) = −φ′(yj).

است. سراسری تقریبی جواب ΁ی uk کنید. توقف آنگاه ،ηk ≤ ٠ اگر .٧ مرحله
بروید. بعدی مرحله به صورت این غیر در

بروید. ٢ مرحله به و k := k + ١ و ūk+١ := zj(t|yj) دهید قرار .٨ مرحله



٣٣ پیشنهادی ال·وریتم های
که طوری به باشد داشته وجود uk ∈ D(tf ) برای y′ ∈ Am

xk نقطه کنید فرض .٣ . ٣ . ٢ لم

⟨φ′(yj), x(tf , z
j)− yj⟩ > ٠,

کند: صدق زیر رابطه در zj که

⟨φ′(yj), x(tf |zj)⟩ = min
x(tf )∈D

⟨φ′(yj), x⟩,

داریم صورت این در

φ
(
x(tf |zj)

)
> φ

(
xk(tf |zk)

)
,

داریم ،٣ . ٢ . ٢ لم از استفاده با اثبات.

⟨φ′(yj), x(tf |zj)− yj⟩ > ٠,

بنابراین

φ
(
x(tf |zj)

)
≥ φ(yj) = φ

(
xk(t١|uk)

)
.

ͬ شود. م کامل اثبات لذا و

با که {J(uk)} دنباله آنگاه ،ηk > ٠ باشیم داشته ،k = ١,٢, . . . , s هر به ازای اگر .٣ . ٣ . ٢ قضیه
که معنͬ این به است؛ صعودی ی΄نوای دنباله ΁ی است، شده ساخته ٢ ال·وریتم

J(uk+١) ≥ J(uk), k = ١,٢, . . . , s,

.J(uk) = φ
(
x(tf |uk)

) که

(٣ . ٢٢) از آنگاه ،g٢
(
x(tf )

)
> ٠ و g١

(
x(tf )

)
> ٠ توابع ،x ∈ Rn هر برای اگر .٣ . ٣ . ١ ملاحظه

ͬ شود: م نتیجه

Am
xk

=
{
y١, y٢, . . . , ym | yi ∈ Eφ(xk)(φ), i = ١,٢, . . . ,m} ,

و (i = ١,٢, . . . ,m) yi = xk + αih
i, αi > ٠ که

αi =
٢[⟨(φ(xk(tf |uk))D٢ −D١

)
xk(tf |uk), hi⟩

]
⟨D١hi, hi⟩ − φ

(
xk(tf |uk))

)
⟨D٢hi, hi⟩

.



کسری برنامه ریزی مسائل از رده ای برای سراسری بهینه سازی رهیافت ΁ی ٣۴

عددی مثال های ۴ . ٣
ب·یرید نظر در را زیر مساله .١ . ۴ . ٣ مثال

max

{
φ(x(١)) = x٢١ (١) + x٢(١)٢٢x(١)١ + ۴x(١)٢

}
, (٣ . ٣٠)

مساله معادل، طور به یا

min

{
−φ(x(١)) = − x٢١ (١) + x٢(١)٢٢x(١)١ + ۴x(١)٢

}
, (٣ . ٣١)

آن در که
ẋ١ = u١,
ẋ٢ = u٢,

(٣ . ٣٢)

اولیه شرایط با
x(٠)١ = ٠,
x(٠)٢ = ١.

(٣ . ٣٣)

تعریف شود: زیر صورت به قبول قابل کنترل مجموعه کنید فرض
u ∈ V =

{
u ∈ L٠])٢٢, ١]) | ٠ ≤ u١(t) ≤ ٧, ٠ ≤ u٢(t) ≤ ۴, t ∈ [٠, ١]} . (٣۴ . ٣)

و u١ = [٧,۴]T ،u٠ = [٠,۴]T کنترل سه مساله این کنیم بررسͬ راحتͬ به ͬ توانیم م
آیا کنیم بررسͬ که دهید اجازه اکنون ͬ کند. م برآورده را بیشینه اصل که دارد u٢ = [٧, ٠]T
سیستم حل با ابتدا کار این انجام برای خیر. یا است سراسری بهینه ΁ی u٠ = [٠,۴]T کنترل

ͬ آوریم م دست به ،u = u٠ برای (٣ . ٣٢)
x(٠)١ = ٠ , x٢(t) = ١ + ۴t , t ∈ [٠, ١].

به x(١, u٠) نقطه در Eφ(x)(φ) ͹سط مجموعه .φ(x, ١) = ۵
۴ و x(١)٢ = ۵ ،x(٠)١ = ٠ بنابراین

است: زیر صورت
Eφ(x(١))(φ) =

{
y ∈ R٢ ∣∣∣ y٢١ + y٢٢٢y١ + ۴y٢

=
۵
۴
}
.

بررسͬ را ũ = [۶,۴]T ∈ V نقطه اکنون .ỹ = [
۵
٢ ,۵]T ∈ Eφ(x(١))(φ) که داد نشان ͬ توان م

یعنͬ باشد، (٣ . ٣٣) شرایط و (٣ . ٣٢) از آمده دست به متناظر مسیر x̃ کنید فرض ͬ کنیم. م
x̃١(t) = ۶t, x̃٢(t) = ١ + ۴t, t ∈ [٠, ١].



٣۵ عددی مثال های
دست به ،x مؤلفه های به نسبت ،φ از جزئͬ مشتق گرفتن با .x̃(١)٢ = ۵ و x̃(١)١ = ۶ لذا

ͬ آوریم: م

∂φ(x(١))
∂x١

=
٢x٢١ + ٨x١x٢ − ٢x٢٢

(٢x١ + ۴x٢(٢
,

∂φ(x(١))
∂x٢

=
۴x٢٢ + ۴x١x٢ − ۴x٢١

(٢x١ + ۴x٢(٢
.

ͬ آوریم م به دست ⟨φ′(ỹ), x̃− ỹ⟩ محاسبه با
⟨φ′(ỹ), x̃− ỹ⟩ =

٢ỹ٢١ + ٨ỹ١ỹ٢ − ٢ỹ٢٢
(٢ỹ١ + ۴ỹ٢(٢

(x̃١ − ỹ١)

+
۴ỹ٢٢ + ۴ỹ١ỹ٢ − ۴ỹ٢١

(٢ỹ١ + ۴ỹ٢(٢
(x̃٢ − ỹ٢)

=
٨٧۵
٢۵٠٠ > ٠.

نیست. مساله برای سراسری کنترل ،u٠ = [۶,۴]T کنترل که ͬ دهد م نشان این و
φ(x(١, u١)) =

٧۴
٣٧ هزینه ارزش با سراسری کنترل ΁ی u١ = [٧,۴]T کنترل حقیقت، در

است.
است زیر صورت به هدف تابع آن در که ب·یرید نظر در را بهینه کنترل ΁ی .٢ . ۴ . ٣ مثال

φ(x(٢)) = ⟨D١x(٢), x(٢)⟩
⟨D٢x(٢), x(٢)⟩+ ١۵٠٠٠ ,

آن در که

D١ =

 ١ ٢
−١ ٣

 , D٢ =

−٢ ١
−١ ۴

 ,

دینامی΄ͬ سیستم اینجا در .V = {u ∈ R٢ | − ۴ ≤ ui ≤ ٧ , i = ١,٢ , t ∈ [٠,٢]} بعلاوه و
صورت به

ẋ١ = x٢ + u١,
ẋ٢ = x١ + u٢,

ͬ باشد. م x(٠)١ = x(٠)٢ = ٠ اولیه شرط با
است زیر صورت به هدف تابع آن در که ب·یرید نظر در بهینه کنترل ΁ی .٣ . ۴ . ٣ مثال

φ(x(١)) = ⟨D١x(١), x(١)⟩
⟨D٢x(١), x(١)⟩+ ١٠٠٠٠ ,

V = {u ∈ R٢ | − ١ ≤ ui ≤ ١ , i = ١,٢ , ٣u١ + ۴u٢ ≤ ۶ , t ∈ [٠, ١]} اندازه حداکثر به
دینامی΄ͬ سیستم موضوع



کسری برنامه ریزی مسائل از رده ای برای سراسری بهینه سازی رهیافت ΁ی ٣۶

ẋ١ = x١ − x٢ − u١ + u٢,
ẋ٢ = −x١ + ٢x٢ + ٢u١ − ٣u٢,

باشد. x(٠)٢ = ١ و x(٠)١ = ٢ اولیه شرایط با
از استفاده با بهینه کنترل مساله دو آمده دست به محلͬ بهینه کنترل های اساس بر
سراسری بهینه جواب های ͬ شوند. م حل ٢ ال·وریتم در شده فهرست بهینه سازی روش های

کنید. مراجعه ٣ . ١ جدول به ͬ آیند. م به دست مساله دو هر برای
زمان محاسبات ψ سراسری مقدار ψ موضعͬ مقدار مثال
٠٠ : ١١.١١۴۴ ٣.٣٣۴٨e+ ٠٠٠ ١.۴٩۵٨e− ٠٠۴ ٢
٠٠ : ٠٢.٨٠٩٣ ٢.٠۵٣١e+ ٠٠١ ١.۶۶٣٩e− ٠٠١ ٣

٣ . ١ جدول



۴ فصل
مسائل برای طیفͬ شبه روش ΁ی

خطͬ غیر کسری برنامه ریزی
نظر در را CTNFP مساله ΁ی ١ . ۴ بخش در است: شده سازمان دهͬ زیر شرح به فصل این
کسری غیر مساله ΁ی به CTNFP مساله تبدیل برای را روشͬ ،٢ . ۴ بخش در ͬ گیریم. م
CT برنامه ریزی مساله حل برای لژاندر روش از ،٣ . ۴ بخش در ͬ کنیم. م پیشنهاد معادل CT

در ͬ کنیم. م تحلیل و تجزیه را گسسته مساله بودن شدنͬ ،۴ . ۴ بخش در ͬ کنیم. م استفاده
حل را عددی مثال دو ،۶ . ۴ بخش در ͬ دهیم. م ارائه را روش هم·رایی تحلیل ،۵ . ۴ بخش

دهیم. نشان را روش کارایی تا ͬ کنیم م

مساله معرفͬ ١ . ۴
ͬ شویم م متمرکز زیر CTNFP مسئله روی فصل این در

Min J(x, u) =

∫ T٠ f(t, x(t), u(t))dt∫ T٠ g(t, x(t), u(t))dt
, (١ . ۴)

s.t.


ẋ(t) = h(t, x(t), u(t)), ٠ ≤ t ≤ T,
x(t٠) = α,

(٢ . ۴)



خطͬ غیر کسری برنامه ریزی مسائل برای طیفͬ شبه روش ΁ی ٣٨
.α ∈ Rn و هستند کنترل و وضعیت متغیرهای ترتیب به u : [٠, T ]→ Rm و x : [٠, T ]→ Rn که
پیوسته و خطͬ غیر را g : [٠, T ]×Rn ×Rm → R و f : [٠, T ]×Rn ×Rm → R توابع همچنین
علاوه ͬ باشند. م [٠, T ]×Rn×Rm مجموعه در ١ لیپ شیتز خاصیت دارای که ͬ گیریم م نظر در

یعنͬ است؛ مثبت اکیداً هدف تابعک در کسر مخرج که ͬ کنیم م فرض این ∫بر T

٠ g(t, x(t), u(t))dt ≥ ε > ٠. (٣ . ۴)
تاکنون دارد. بهینه جواب ΁ی حداقل CTNFP (١ . ۴)‐(٢ . ۴) مساله که ͬ کنیم م فرض
مساله بر مبتنͬ آن ها اکثر و است شده انجام (١ . ۴)‐(٢ . ۴) مساله روی بسیاری کارهای

است. زیر CT کسری غیر برنامه ریزی
Min Jp(x, u) =

∫ T

٠
(
f(t, x, u)− pg(t, x, u)

)
dt, (۴ . ۴)

s.t.


ẋ(t) = h(t, x, u), ٠ ≤ t ≤ T,
x(٠) = α,

(۵ . ۴)

ͬ کنیم م تعریف است. پارامتر ΁ی p که
Ω = {(x, u) : ẋ = h(t, x, u), x(٠) = α},

و
F (p) = min

(x,u)∈Ω
Jp(x, u). (۶ . ۴)

دارد. وجود (۴ . ۴)‐(۵ . ۴) مساله برای بهینه جواب ΁ی ،p ∈ R هر برای که کرد ثابت ͬ توان م
است شده ارائه زیر موارد در است شده تعریف (۶ . ۴) توسط که F (.) تابع ͬ های ویژگ از برخͬ

.[٢٩]
ͬ باشد. م R روی مقعر F تابع .١ . ١ . ۴ لم

،R در p٢ و p١ شده داده مقدار هر برای که معنا این به است. نزولͬ اکیداً F تابع .١ . ٢ . ۴ لم
.F (p١) > F (p٢) آنگاه ،p١ < p٢ اگر

دارد. فرد به منحصر حقیقͬ جواب ΁ی F (p) = ٠ معادله .١ . ٣ . ۴ لم
اگر ،(x, u) ∈ Ω هر برای .۴ . ١ . ۴ لم

p =

∫ T٠ f(t, x, u)dt∫ T٠ g(t, x, u)dt
,

.F (p) ≤ ٠ آنگاه
1Lipschitz property



٣٩ کسری غیر مساله ΁ی به CTNFP مساله تبدیل
شده ارائه زیر قضیه در ،(١ . ۴)‐(٢ . ۴) اصلͬ مساله بهینه جواب و F (.) تابع بین رابطه

است.

آنگاه ،F (p∗) = Jp∗(x
∗, u∗) = ٠ اگر [٢٩] .١ . ١ . ۴ قضیه

p∗ =

∫ T٠ f(t, x∗, u∗)dt∫ T٠ g(t, x∗, u∗)dt
= min

(x,u)∈Ω

∫ T٠ f(t, x, u)dt∫ T٠ g(t, x, u)dt
,

ͬ باشد. م (١ . ۴)‐(٢ . ۴) مساله برای بهینه جواب ΁ی (x∗, u∗) و

F (p) = ٠ معادله ریشه تعیین معادل ،(١ . ۴)‐(٢ . ۴) مساله حل ،١ . ١ . ۴ قضیه از استفاده با
تا کردند تلاش محققین برخͬ رو این از ͬ شود. م تعریف (۶ . ۴) توسط F (.) که طوری به است
مسائل از رده ای برای کارها بیشتر اما کنند؛ حل F (.) تابع اساس بر را ،(١ . ۴)‐(٢ . ۴) مساله
به توجه با خطͬ دینامی΁ های و آفین انتگرال های خطͬ، کنترل با مسائل مانند ،CTNFP
پارامتر به گذشته در شده ارائه روش های این، بر علاوه ͬ باشد. م کنترل و وضعیت متغیرهای
ͬ تواند نم بهینه) کنترل نظریه (یا CT بهینه سازی استاندارد نظریه همچنین هستند. وابسته p
را طیفͬ شبه روش مقاله این در رو، این از رود. کار به CTNFP مسائل حل برای مستقیماً
عددی روش های مهمترین از ی΄ͬ که ͬ کنیم م اعمال CTNFP (١ . ۴)‐(٢ . ۴) مساله حل برای
را، CTNFP (١ . ۴)‐(٢ . ۴) مسائل که ͬ دهیم م نشان این جا در است. CT مسائل حل برای
به آن حل برای ͬ توان م را طیفͬ روش و کرد تبدیل معادل کسری غیر مساله ΁ی به ͬ توان م

کرد. خواهیم تحلیل را روش هم·رایی همچنین برد. کار به عددی صورت

کسری غیر مساله ΁ی به CTNFP مساله تبدیل ٢ . ۴
زیر صورت به CTNFP (١ . ۴)‐(٢ . ۴) مساله برای را z(.) و y(.) جدید وضعیت متغیرهای

ͬ کنیم: م تعریف

y(t) =

∫ t

٠ f(t, x, u)dt, z(t) =

∫ t

٠ g(t, x, u)dt, ٠ ≤ t ≤ T. (٧ . ۴)

داریم: (٧ . ۴) از استفاده با

ẏ(t) = f(t, x, u), y(٠) = ٠,
ż(t) = g(t, x, u), z(٠) = ٠.



خطͬ غیر کسری برنامه ریزی مسائل برای طیفͬ شبه روش ΁ی ۴٠
ب·یریم: نظر در زیر معادل صورت به را CTNFP (١ . ۴)‐(٢ . ۴) مساله ͬ توانیم م رو این از

min J =
y(T )

z(T )
, (٨ . ۴)

s.t.



ẋ = h(t, x, u), ٠ ≤ t ≤ T,
ẏ = f(t, x, u), ٠ ≤ t ≤ T,
ż = g(t, x, u), ٠ ≤ t ≤ T,
x(٠) = x٠, y(٠) = ٠, z(٠) = ٠.

(٩ . ۴)

مساله به ͬ توان م روش این با است. z(T ) > ٠ آن در که λ =
y(T )

z(T )
ͬ کنیم م تعریف اکنون

رسید. زیر CT خطͬ غیر کسری غیر برنامه ریزی
min J = λ, (١٠ . ۴)

s.t.



ẋ = h(t, x, u), ٠ ≤ t ≤ T,
ẏ = f(t, x, u), ٠ ≤ t ≤ T,
ż = g(t, x, u), ٠ ≤ t ≤ T,
y(T )− λz(T ) = ٠,
x(٠) = α, y(٠) = ٠, z(٠) = ٠.

(١١ . ۴)

(١١ . ۴) و (١٠ . ۴) کسری غیر مساله برای بهینه جواب ΁ی (x∗, y∗, z∗, u∗, λ∗) اگر .٢ . ١ . ۴ قضیه
است. (٢ . ۴) و (١ . ۴) کسری مساله برای بهینه جواب ΁ی (x∗, u∗) آنگاه باشد،

΁ی بنابراین نباشد. بهینه CTNFP (٢ . ۴) و (١ . ۴) مساله برای (x∗, u∗) کنید فرض اثبات.
وجود J(x∗, u∗) > J(x̄, ȳ) که طوری به (٢ . ۴) و (١ . ۴) مساله برای (x̄, ȳ) ∈ Ω بهینه جواب

ͬ کنیم م تعریف اکنون دارد.
ȳ(t) =

∫ t٠ f(s, x̄, ū)ds, z̄(t) =
∫ t٠ g(s, x̄, ū)ds, λ̄ =

ȳ(T )

z̄(T )
.

داریم بنابراین
ȳ = f(s, x̄, ū), z̄(t) = g(s, x̄, ū), ȳ(٠) = ٠, z̄(٠) = ٠.

همچنین و است (١١ . ۴) و (١٠ . ۴) مساله برای قابل قبول جواب ΁ی (x̄, ȳ, z̄, ū, λ̄) رو این از
λ∗ =

y∗(T )

z∗(T )
= J(x∗, u∗) > J(x̄, ū) =

ȳ(T )

z̄(T )
= λ̄,

است. (١١ . ۴) و (١٠ . ۴) مساله برای (x∗, y∗, z∗, u∗, λ∗) بهینگͬ با تناقض در که



۴١ لژاندر شبه طیفͬ روش

لژاندر شبه طیفͬ روش ٣ . ۴
استفاده −١ ≤ τ ≤ ١ ،t = T

٢ (τ + ١) زمان تبدیل از لژاندر، شبه طیفͬ روش اعمال از قبل
ͬ کنیم م تعریف و ͬ کنیم م

X(τ) = x

(
T

٢ (τ + ١)
)
, Y (τ) = y

(
T

٢ (τ + ١)
)
,

Z(τ) = z

(
T

٢ (τ + ١)
)
, U(τ) = u

(
T

٢ (τ + ١)
)
.

ͬ شود: م تبدیل زیر معادل مساله به (٨ . ۴)‐(١١ . ۴) مساله تعاریف این با
Min J = λ, (١٢ . ۴)

s.t.



Ẋ(τ) = H(τ, x(τ), U(τ)), −١ ≤ τ ≤ ١,
Ẏ (τ) = F (τ, x(τ), u(τ)), −١ ≤ τ ≤ ١,
Ż(τ) = G(τ, x(τ), u(τ)), −١ ≤ τ ≤ ١,
Y (١)− λZ(١) = ٠,
X(−١) = α, Y (−١) = ٠, Z(−١) = ٠.

(١٣ . ۴)

که طوری به
H (τ, x(τ), u(τ)) =

T

٢h
(T

٢ (τ + ١), x(T٢ (τ + ١)), u(T٢ (τ + ١))),
F
(
τ, x(τ), u(τ)

)
=
T

٢ f
(T

٢ (τ + ١), x(T٢ (τ + ١)), u(T٢ (τ + ١))),
G
(
τ, x(τ), u(τ)

)
=
T

٢ g
(T

٢ (τ + ١), x(T٢ (τ + ١)), u(T٢ (τ + ١))).
با ͬ توان م را چندجمله ای این است. j درجه از لژاندر چندجمله ای pj(.) ͬ کنیم م فرض اکنون

آورد به دست زیر تکراری فرمول
pj+١(τ) =

٢j + ١
j + ١ τpj(τ)−

j

j + ١pj−١(τ), −١ ≤ τ ≤ ١,
p٠(τ) = ١, p١(τ) = τ.

لژاندر‐گاوس‐لوباتو نقاط این باشد. (١− τ٢)p′N (τ) چندجمله ای ریشه {τk}Nk=٠ کنید فرض
لاگرانژ چندجمله های به (١٢ . ۴)‐(١٣ . ۴) مساله متغیرهای درونیابی برای ͬ شوند. م نامیده

ͬ شوند م مشخص زیر رابطه با که داریم نیاز
Li(τ) =

N∏
j=٠,i ̸=N

τ − τj
τi − τj

, −١ ≤ τ ≤ ١.



خطͬ غیر کسری برنامه ریزی مسائل برای طیفͬ شبه روش ΁ی ۴٢
ͬ زنیم م تقریب زیر صورت به را (١٢ . ۴)‐(١٣ . ۴) مساله بهینه جواب های اکنون
X(τ) ≈ XN (τ) =

N∑
l=٠

x̄lLl(τ), U(τ) ≈ UN (τ) =
N∑
l=٠

ūlLl(τ),

Y (τ) ≈ XN (τ) =
N∑
l=٠

ȳlLl(τ), Z(τ) ≈ XN (τ) =
N∑
l=٠

z̄lLl(τ),

(١۴ . ۴)

Lk(τk) = ١ ،k = ٠, ١, . . . , N هر برای چون هستند. مجهول ضرائبی (x̄l, ȳl, z̄l, ūl) آن در که
داریم k = ٠, ١, . . . , N هر برای پس ،Lk(τj) = ٠ ،j ̸= k هر برای و

X(τk) ≈ XN (τk) = x̄k, U(τk) ≈ UN (τk) = ūk,

Y (τk) ≈ YN (τk) = ȳk, Z(τk) ≈ ZN (τk) = z̄k.

(١۵ . ۴)

همچنین
X ′(τk) ≈ X ′

N (τk) =
N∑
l=٠

x̄lDkl, Y ′(τk) ≈ Y ′
N (τk) =

N∑
l=٠

ȳlDkl,

Z ′(τk) ≈ Z ′
N (τk) =

N∑
l=٠

z̄lDkl, k = ٠, ١, . . . , N,
(١۶ . ۴)

که

Dkl = L′
l(τk)



−N(N + ١)
۴ , k = l = ٠,

pN (τk)

(τk − τl)pN (τl)
, k ̸= l, ٠ ≤ k, l ≤ N,

N(N + ١)
۴ , k = l = N,

٠, ١ ≤ k = l ≤ N − ١,

(١٧ . ۴)

ͬ توانیم م (١۶ . ۴) و (١۵ . ۴) ،(١۴ . ۴) از استفاده با ͬ شود. م نامیده مشتق Dماتریس = (Dkl) و
بزنیم: تقریب زیر گسسته زمان مساله با را (١٢ . ۴)‐(١٣ . ۴) CT مساله

Min JN = λ, (١٨ . ۴)

s.t.



N∑
l=٠

x̄lDkl = H(τk, x̄k, ūk), k = ٠, ١, . . . , N,
N∑
l=٠

ȳlDkl = F (τk, x̄k, ūk), k = ٠, ١, . . . , N,
N∑
l=٠

z̄lDkl = G(τk, x̄k, ūk), k = ٠, ١, . . . , N,
ȳN − λz̄N = ٠, x̄٠ = α, ȳ٠ = ٠, z̄٠ = ٠,

(١٩ . ۴)

آن در که
(x̄, ȳ, z̄, ū, λ) = (x̄٠, . . . , x̄N , ȳ٠, . . . , ȳN , z̄٠, . . . , z̄N , ū٠ . . . , ūN , λ)

قرار بررسͬ مورد را (١٨ . ۴)‐(١٩ . ۴) DT مساله ͬ بودن بعد، شدن بخش در است. مساله متغیر
ͬ دهیم. م



۴٣ زمان‐گسسته مساله ͬ بودن  شدن آنالیز

زمان‐گسسته مساله ͬ بودن  شدن آنالیز ۴ . ۴
توابع آن ها، اعضای که هستند توپولوژی΄ͬ برداری فضاهای سوبولوف، فضاهای .١ . ۴ . ۴ تعریف
صدق خاصͬ نامساوی در آن ها مشتق و هستند Rn بعدی n اقلیدسͬ فضاهای روی شده تعریف

ͬ کند. م
توابع همه از که باشد [−١, ١] روی ٢ سوبولوف فضای p ≥ ١ و m ≥ ٢ که Wm,p کنید فرض
قرار زیر نرم با Lp فضای در j = ٠, ١,٢, . . . ,m ،φ(j)(.) که است شده تش΄یل φ : [−١, ١]→ Rn

دارد

∥ φ ∥Wm,p=
m∑
j=١
(∫ ١

−١ ∥ φ(j)(τ) ∥pp dt
)١
p .

داریم: نیاز زیر لم به بخش این در
از pN (.) چندجمله ای ΁ی ،[−١, ١] روی φ ∈ Wm,p شده داده تابع هر برای [٨] .١ . ۴ . ۴ لم

که طوری به دارد وجود کمتر یا N درجه
∥ φ(τ)− pN (τ) ∥∞≤ cc٠N−m, −١ ≤ τ ≤ ١,

.c٠ =∥ φ ∥Wm,p و N از مستقل و ثابت c آن در که
را مساله محدودیت های (١٨ . ۴)‐(١٩ . ۴) DT مساله بودن شدنͬ تضمین برای اکنون

ͬ کنیم: م بازنویسͬ زیر صورت به را مساله و داده تغییر
Min JN = λ, (٢٠ . ۴)

s.t.



∥∥∥∥ N∑
l=٠

x̄lDkl −H(τk, x̄k, ūk)

∥∥∥∥
∞
≤ (N − ١) ٣٢−m,∣∣∣∣ N∑

l=٠
ȳlDkl − F (τk, x̄k, ūk)

∣∣∣∣ ≤ (N − ١) ٣٢−m,∣∣∣∣ N∑
l=٠

z̄lDkl −G(τk, x̄k, ūk)
∣∣∣∣ ≤ (N − ١) ٣٢−m,∣∣∣∣ȳN − λz̄N ∣∣∣∣ ≤ (N − ١) ٣٢−m,

∥∥∥∥x̄٠ − α
∥∥∥∥
∞
≤ (N − ١) ٣٢−m,∣∣∣∣ȳ٠

∣∣∣∣ ≤ (N − ١) ٣٢−m,

∣∣∣∣z̄٠
∣∣∣∣ ≤ (N − ١) ٣٢−m,

(٢١ . ۴)

توجه .[٣۴] است پولاک سازگار تقریب نظریه اساس بر فوق تبدیل .m ≥ ٢ آن در که
(١٨ . ۴)‐(١٩ . ۴) مسائل محدودیت های بین کند، میل بی نهایت به N وقتͬ که باشید داشته

ندارد. وجود تفاوتͬ (٢٠ . ۴)‐(٢١ . ۴) و
2Sobolov space



خطͬ غیر کسری برنامه ریزی مسائل برای طیفͬ شبه روش ΁ی ۴۴
،M١ ثابت های دارند، را لیپ شیتز خاصیت H و G ،F توابع که آن جایی از .١ . ۴ . ۴ ملاحظه

داریم: (X̃, Ũ) و (X̄, Ū) هر برای که طوری به دارند وجود M٣ و M٢∣∣∣F (t, X̄, Ū)− F (t, X̃, Ũ)

∣∣∣ ≤M١
(
∥ X̄ − X̃ ∥ + ∥ Ū − Ũ ∥

)
,

∣∣∣G(t, X̄, Ū)−G(t, X̃, Ũ)

∣∣∣ ≤M٢
(
∥ X̄ − X̃ ∥ + ∥ Ū − Ũ ∥

)
,

∥∥∥H(t, X̄, Ū)−H(t, X̃, Ũ)

∥∥∥ ≤M٣
(
∥ X̄ − X̃ ∥ + ∥ Ū − Ũ ∥

)
.

CT مساله برای بهینه جواب ΁ی (X∗, Y ∗, Z∗, U∗, λ) کنیم فرض ͬ بودن] [شدن .١ . ۴ . ۴ قضیه
برای که طوری به دارد وجود K مثبت صحیح عدد ΁ی صورت این در باشد. (١٢ . ۴)‐(١٣ . ۴)

دارد زیر صورت به بهینه جواب ΁ی (١٨ . ۴)‐(١٩ . ۴) DT مساله ،N ≥ k هر

(x̄, ȳ, z̄, ū, λ̄) = (x̄٠, . . . , x̄N , ȳ٠, . . . , ȳN , z̄٠, . . . , z̄N , ū٠ . . . , ūN , λ̄),

و ūk = U∗(τk) که طوری
∥ X∗(τk)− x̄k ∥∞ ≤ L١(N − ١(١−m, k = ٠, ١, . . . , N, (٢٢ . ۴)∣∣∣Y ∗(τk)− ȳk

∣∣∣ ≤ L٢(N − ١(١−m, k = ٠, ١, . . . , N, (٢٣ . ۴)∣∣∣Z∗(τk)− z̄k
∣∣∣ ≤ L٣(N − ١(١−m, k = ٠, ١, . . . , N, (٢۴ . ۴)

هستند. N از مستقل ثابت هایی L٣ و L٢ ،L١ درآن که

Ẏ ∗(.) ،X̄∗(.) چندجمله ای تقریب های بهترین ترتیب به R(.) و Q(.) ،P (.) کنیم فرض اثبات.
وجود N از مستقل c٣ و c٢ ،c١ وضعیت متغیرهای ،١ . ۴ . ۴ لم از استفاده با باشند. Ż∗(.) و

که طوری به دارند
∥ Ẋ∗(τ)− P (τ) ∥∞ ≤ c١(N − ١(١−m, (٢۵ . ۴)
∥ Ẏ ∗(τ)−Q(τ) ∥∞ ≤ c٢(N − ١(١−m, (٢۶ . ۴)
∥ Ż∗(τ)−R(τ) ∥∞ ≤ c٣(N − ١(١−m. (٢٧ . ۴)

ͬ کنیم م تعریف
XN (τ) = X∗(−١) +

∫ τ

−١ P (s)ds, YN (τ) =

∫ τ

−١Q(s)ds, ZN (τ) =

∫ τ

−١R(s)ds, (٢٨ . ۴)

x̄k = XN (τk), ȳk = YN (τk), z̄k = ZN (τk), ūk = UN (τk), k = ٠, ١, . . . , N. (٢٩ . ۴)



۴۵ زمان‐گسسته مساله ͬ بودن  شدن آنالیز
،(٢۵ . ۴) روابط از استفاده با ͬ کند. م صدق (٢٢ . ۴) رابطه در (x̄, ū) که ͬ دهیم م نشان ابتدا

داریم τ ∈ [−١, ١] هر برای ،(٢٩ . ۴) و (٢٨ . ۴)
∥ X∗(τ)−XN (τ) ∥∞ =∥

∫ τ

−١
(
Ẋ∗(s)− P (s)

)
ds ∥∞

≤
∫ τ

−١ ∥
(
Ẋ∗(s)− P (s)

)
∥∞ ds

≤ c١(N − ١(١−m

∫ τ

−١ ds (٣٠ . ۴)
≤ ٢c١(N − ١(١−m.

داریم مشابه طور Y∣∣∣به ∗(τ)− Y N (τ)

∣∣∣ ≤ ٢c٢(N − ١(١−m, (٣١ . ۴)∣∣∣Z∗(τ)− ZN (τ)

∣∣∣ ≤ ٢c٣(N − ١(١−m. (٣٢ . ۴)
داریم لذا ،x∗(−١) = α که آن جا از علاوه، به

∥ x̄٠ − α ∥ − ∥ X∗(−١)− α ∥ ≤∥ (X∗(−١)− α)− (x̄٠ − α) ∥
=∥ X∗(−١)− x̄٠ ∥
≤ ٢c١(N − ١(١−m.

بنابراین
∥ x̄٠ − α ∥≤∥ X∗(−١)− α ∥ +٢c١(N − ١(١−m = ٢c١(N − ١(١−m. (٣٣ . ۴)

دهیم نشان ͬ توانیم م مشابه طور به
|ȳ٠| ≤ ٢c٢(N − ١(١−m, |z̄٠| ≤ ٢c٣(N − ١(١−m. (٣۴ . ۴)

داریم پس ،Y ∗(١)− λ̄Z∗(١) = ٠ چون همچنین

∣∣∣YN (١)− λZN (١)
∣∣∣ = ∣∣∣(Y ∗(١)− λ̄Z∗(١))− (YN (١)− λ̄ZN (١))∣∣∣
=
∣∣∣Y ∗(١)− YN (١)− λ̄(Z∗(١)− ZN (١))∣∣∣

≤
∣∣∣Y ∗(١)− YN (١)

∣∣∣+ ∣∣∣λ̄∣∣∣ ∣∣∣Z∗(١)− ZN (١)
∣∣∣ (٣۵ . ۴)

≤
(

٢c٢ +
|Y ∗(١)|
|Z∗(١)|٢c٣

)
(N − ١(١−m.

،N ≥ K هر برای که کنیم انتخاب گونه ای به را K اگر بنابراین

max

{
٢c١,٢c٢,٢c٣,٢c٢(N − ١) + ٢c٣ |Y

∗(١)|
|Z∗(١)|

}
≤ (N − ١)

١
٢ ,



خطͬ غیر کسری برنامه ریزی مسائل برای طیفͬ شبه روش ΁ی ۴۶
(x̄, ȳ, z̄, ū, λ̄) رو این از ͬ کند. م صدق (٢٠ . ۴)‐(٢١ . ۴) محدودیت های در (x̄, ȳ, z̄, ū, λ̄) آنگاه
،L١ = ٢c١ انتخاب با نهایت در است. (٢٠ . ۴)‐(٢١ . ۴) DT مساله برای شدنͬ جواب ΁ی

برسیم. (٢٢ . ۴)‐(٢۴ . ۴) به (٣٠ . ۴)‐(٣٢ . ۴) از ͬ توانیم م L٣ = ٢c٣ و L٢ = ٢c٢
داریم (٣ . ۴) رابطه به توجه با ،١ . ۴ . ۴ قضیه اثبات در که داریم توجه .٢ . ۴ . ۴ ملاحظه

Z∗(١) = ∫ ١
−١G

(
τ,X(τ), U(τ)

)
dt = ٢

T

∫ T٠ g
(
t, x(t), u(t)

)
dt ≥ ε > ٠.

‐(٢١ . ۴) DT مساله شدنͬ مجموعه ،(٣٠ . ۴)‐(٣٢ . ۴) روابط از استفاده با .٣ . ۴ . ۴ ملاحظه
از نقطه ΁ی در را خود مینیمم JN = λ پیوسته تابع است.بنابراین فشرده و تهͬ غیر (٢٠ . ۴)

ͬ کند. م دریافت شدنͬ ناحیه

روش هم·رایی ۵ . ۴
هم·را (٢٠ . ۴)‐(٢١ . ۴) DT مساله بهینه جواب های دنباله که ͬ دهیم م نشان بخش این در
شده داده هم·رایی آنالیز تعمیم روش، است. (١٢ . ۴)‐(١٣ . ۴) CT مساله بهینه جواب به
DT مساله بهینه جواب ΁ی k = ٠, ١, . . . , N که (x̄∗k, ȳ

∗
k, z̄

∗
k, ū

∗
k, λ̄

∗
N ) کنید فرض است. [١]

ͬ کنیم م تعریف باشد. (٢٠ . ۴)‐(٢١ . ۴)

X∗
N (τ) =

N∑
k=٠

x̄∗kLk(τ), Y
∗
N (τ) =

N∑
k=٠

ȳ∗kLk(τ), Z
∗
N (τ) =

N∑
k=٠

z̄∗kLk(τ), (٣۶ . ۴)
و

U∗
N (τ) =

N∑
k=٠

ū∗kLk(τ), −١ ≤ τ ≤ ١, (٣٧ . ۴)

جواب های از دنباله ای بنابراین است. لاگرانژ چندجمله ای k = ٠, ١, . . . , N برای Lk(.) آن در که
بهینه

{x̄∗k, ȳ∗k, z̄∗k, ū∗k, λ̄∗N , k = ٠, ١, . . . , N}∞N=N١ ,

ش΄ل به درونیاب چندجمله ای های از دنباله ای و
{X∗

N (.), Y ∗
N (.), Z∗

N (.), U∗
N (.), λ̄∗N}∞N=N١ ,

داریم.
صورت به که دارد دنباله زیر ΁ی {x̄∗٠, ȳ∗٠, z̄∗٠ , x′∗N (.), y′∗N (.), z′∗N (.), u′∗N (.)}∞N=N١ دنباله .I فرض

به ی΄نواخت
(x∞٠ , x∞٠ , x∞٠ , q١(.), q٢(.), q٣(.), u∗(.))

هستند. پیوسته توابعͬ i = ١,٢,٣ برای qi(.) درآن که ͬ باشد م هم·را



۴٧ روش هم·رایی
فرض (٣٧ . ۴) و (٣۶ . ۴) درونیاب چندجمله ای های که کنید فرض (هم·رایی) .١ . ۵ . ۴ قضیه
بهینه جواب ΁ی φ∗(.) =

(
X∗(.), Y ∗(.), Z∗(.), U∗(.), λ∗

) صورت این در سازد. برآورده را I
درآن که  ͬ باشد م (١٢ . ۴)‐(١٣ . ۴) CT مساله برای

X∗(τ) = x∞٠ +

∫ τ

−١ q١(s)ds, −١ ≤ τ ≤ ١, (٣٨ . ۴)
Y ∗(τ) =

∫ τ

−١ q٢(s)ds, −١ ≤ τ ≤ ١, (٣٩ . ۴)
Z∗(τ) =

∫ τ

−١ q٣(s)ds, −١ ≤ τ ≤ ١, (۴٠ . ۴)
λ∗ = lim

N→∞
λ∗N . (۴١ . ۴)

که طوری به دارد وجود lim
i→∞

Ni =∞ با Ni ∈ {١,٢, . . .} دنباله زیر ،I فرض با اثبات.

lim
i→∞

X ′∗
Ni

= q١(.), lim
i→∞

Y ′∗
Ni

= q٢(.), lim
i→∞

Z ′∗
Ni

= q٣(.), lim
i→∞

λ∗Ni
= λ∗. (۴٢ . ۴)

داریم (۴٢ . ۴) و (٣٨ . ۴)‐(۴٠ . ۴) با رو این از
lim
i→∞

X∗
Ni
(.) = X∗(.), lim

i→∞
Y ∗
Ni
(.) = Y ∗(.), lim

i→∞
Z∗
Ni
(.) = Z∗(.). (۴٣ . ۴)

شدنͬ جواب ΁ی φ∗(.) که ͬ دهیم م نشان ،١ مرحله در ͬ کنیم. م دنبال مرحله سه در را اثبات
ͬ دهیم م نشان J∗ به را J∗

Ni
هم·رایی ،٢ مرحله در است. (١٢ . ۴)‐(١٣ . ۴) CT مساله برای

‐(٢١ . ۴) و (١٢ . ۴)‐(١٣ . ۴) مساله برای هدف تابع بهینه مقادیر ترتیب به J∗ و J∗
Ni

درآن که
‐(١٣ . ۴) CT مساله برای بهینه جواب ΁ی φ∗(.) که ͬ دهیم م نشان نهایت در هستند. (٢٠ . ۴)

است. (١٢ . ۴)
ͬ کند. م برآورده را (١٢ . ۴)‐(١٣ . ۴) محدودیت های φ∗(.) که داد خواهیم نشان . ١ مرحله
به دارد وجود τ̄ ∈ [−١, ١] زمان پس نکند. صدق (١٢ . ۴)‐(١٣ . ۴) معادله در φ∗(.) کنید فرض

که طوری
Ẋ∗(τ̄)−H

(
τ̄ , X∗(τ̄), U∗(τ̄)

)
̸= ٠. (۴۴ . ۴)

که طوری به دارد وجود kNi دنباله ΁ی ،[٢١] هستند چ·ال [−١, ١] در LGL نقاط که آن جا از
بنابراین . lim

i→∞
τkNi

= τ̄ و ٠ < kNi < Ni

(۴۵ . ۴)
lim
i→∞

(
X ′∗

Ni
(τkNi

)−H
(
τkNi

, X(τkNi
), U(τkNi

)
))

= X∗((τ̄ −H
(
τ̄ , X∗(τ̄), U∗(τ̄)

)
̸= ٠.

داریم (١٢ . ۴)‐(١٣ . ۴) محدودیت با ، lim
i→∞

(Ni − ١) ٣٢−m = ٠ چون حال

lim
i→∞

(
X ′∗

Ni
(τkNi

)−H
(
τkNi

, X(τkNi
), U(τkNi

)
))

= ٠,



خطͬ غیر کسری برنامه ریزی مسائل برای طیفͬ شبه روش ΁ی ۴٨
برآورده را (١٢ . ۴)‐(١٣ . ۴) مساله اول محدودیت φ∗(.) بنابراین است. (۴۴ . ۴) با تناقض در که
‐(١٣ . ۴) مساله محدودیت های بقیه φ∗(.) که ببینیم ͬ توانیم م مشابه فرآیند ΁ی با ͬ کند. م

داریم مثال عنوان به ͬ کند. م برآورده نیز را (١٢ . ۴)
٠ ≤ ∣∣∣Y ∗(١)− λ∗Z∗(١)

∣∣∣ = ∣∣∣∣ limi→∞

(
Y ∗
Ni
(١)− λ∗Ni

(١))∣∣∣∣
= lim

i→∞

∣∣∣Y ∗
Ni
(١)− λ∗Ni

(١)
∣∣∣ = lim

i→∞

∣∣∣ȳ∗Ni
− λ∗Ni

z̄∗Ni

∣∣∣
≤ lim

i→∞
(Ni − ١)

٣
٢−m

= ٠.
بر علاوه .X∗(−١) = α داریم مشابه روش ΁ی با همچنین .Y ∗(١) − λ∗Z∗(١) = ٠ بنابراین

ͬ کند. م صدق Z(−١) = ٠ و Y (−١) = ٠ روابط در Y ∗(.) و X∗(.) که است بدیهͬ این،
J∗ = λ∗ = lim

i→∞
λ∗Ni

= lim
i→∞

JNi . داریم (۴١ . ۴) و (١٨ . ۴) از استفاده با . ٢ مرحله
کنید فرض . ٣ مرحله

φ̃(.) =
(
X̃(.), Ỹ (.), Z̃(.), Ũ(.), λ̃

)
.

قضیه بحث همان از استفاده با باشد. (١٢ . ۴)‐(١٣ . ۴) CT مساله برای بهینه جواب ΁ی
وجود (٢٠ . ۴)‐(٢١ . ۴) DT مساله برای {x̃, ỹ, z̃, ũλ̃N}∞N=N١ شدنͬ جواب های دنباله ،١ . ١ . ۴
با اکنون ͬ شود. م هم·را φ̃(.) به ی΄نواخت طور به آن با متناظر درونیاب چندجمله ای که دارد

داریم: φ̃(.) بودن بهینه
J̃ = λ̃ ≤ J∗ = λ∗ = lim

i→∞
λ∗Ni
≤ lim

i→∞
λ̃Ni = J̃ .

ͬ باشد. م J هدف تابع برای  ͬ شدن بهینه جواب ΁ی φ∗(.) لذا .λ∗ = λ̃ بنابراین

عددی مثال های ۶ . ۴
از دراینجا ͬ کنیم. م استفاده CTFP مساله دو حل برای خود پیشنهادی روش از بخش این در
استفاده (١٨ . ۴)‐(١٩ . ۴) DT مساله حل برای MATLAB نرم افزار در FMINCON دستور
ͬ کنیم: م محاسبه زیر روابط با را تقریبی بهینه جواب های مطلق خطای این، بر علاوه کرده ایم.

ex(tk) =
∣∣∣x∗(tk)− x̄k∣∣∣ , k = ٠, ١,٢, . . . , N,

eu(tk) =
∣∣∣u∗(tk)− ūk∣∣∣ , k = ٠, ١,٢, . . . , N,

هستند. تقریبی بهینه جواب های u(.) و x(.) و دقیق بهینه جواب های u∗(.) و x∗(.) آن در که
ب·یرید نظر در را زیر CTFP مساله .١ . ۶ . ۴ مثال



۴٩ عددی مثال های

min J =

∫ ١٠
(
t٢(x(t)− et)٢ + ١)dt∫ ١٠

(١− (x(t)− et)٢(u(t)− t)٢)dt , (۴۶ . ۴)

s.t.


ẋ(t) = x(t)

(
u٢(t)et − t٢x(t) + ١), ٠ ≤ t ≤ ١,

x(٠) = ١.
(۴٧ . ۴)

هدف تابع بهینه مقدار همچنین است. (x∗(.), u∗(.)) = (et, t) مساله این دقیق بهینه جواب
زیر صورت به (۴۶ . ۴)‐(۴٧ . ۴) برای (١٨ . ۴)‐(١٩ . ۴) متناظر DT مساله ͬ باشد. م J∗ = ١

است:
min Jn = λ,

s.t.



N∑
j=٠ x̄jDkj =

١٢ x̄k
(
ū٢
ke

١٢ (τk+١) − ( ١٢(τk + ٢((١x̄k + ١), k = ٠, ١,٢, . . . , N,
N∑
j=٠ ȳjDkj =

١٢
(( ١٢(τk + ٢((١(x̄k − e ١٢ (τk+١))٢ + ١), k = ٠, ١,٢, . . . , N,

N∑
j=٠ z̄jDkj =

١٢
(١− (x̄k − e

١٢ (τk+١))٢ − (ūk − ١٢(τk + ١))), k = ٠, ١,٢, . . . , N,
ȳN − λz̄N = ٠, x̄٠ = ١, ȳ٠ = z̄٠ = ٠,

ū = (ū٠, ū١, . . . , ūN ) و z̄ = (z̄٠, z̄١, . . . , z̄N ) ،ȳ = (ȳ٠, ȳ١, . . . , ȳN ) ،x̄ = (x̄٠, x̄١, . . . , x̄N ) آن در که
(x̄, ū) تقریبی جواب به ،N = ۵ برای DT مساله حل از پس هستند. مساله متغیرهای λ و
شده داده نشان ٢ . ۴ و ١ . ۴ ش΄ل های در که رسیدیم (۴۶ . ۴)‐(۴٧ . ۴) CTFP مساله برای
داده نشان ۴ . ۴ و ٣ . ۴ ش΄ل های در کنترل و وضعیت برای تقریبی خطای همچنین است.

را تقریبی بهینه مقداری این جا در است. شده
λ∗ = J∗۵ = ١ + ٢.١١× ١١−١٠,

ͬ باشد. م J∗ = ١ دقیق بهینه مقدار به ΁نزدی مقدار که ͬ آوریم م دست به
ب·یرید. نظر در را زیر CTFP مساله .٢ . ۶ . ۴ مثال

min J =

∫ π٠
(١ +

(
x(t) cos t− u(t) sin t

)٢)
dt∫ π٠

(١− (x(t)− sin t
)٢ − (u(t)− cos t

)٢)dt, (۴٨ . ۴)

s.t.


ẋ(t) = u(t), ٠ ≤ t ≤ π,
x(٠) = ٠.

(۴٩ . ۴)

J∗ = ١ و (x∗(.), u∗(.)) = (sin t, cos t) ترتیب به هدف تابع بهینه مقدار و دقیق بهینه جواب
زیر صورت به (۴٨ . ۴)‐(۴٩ . ۴) CT مساله برای (١٨ . ۴)‐(١٩ . ۴) متناظر DT مساله هستند.



خطͬ غیر کسری برنامه ریزی مسائل برای طیفͬ شبه روش ΁ی ۵٠
است:

min JN = λ,

N∑
j=٠ x̄jDkj =

π

٢ ūk, k = ٠, ١,٢, . . . , N,
N∑
j=٠ ȳjDkj =

π

٢
(١ +

(
x̄k cos

( ١
٢(τk + ١))− ūk sin ( ١

٢(τk + ٢(((١)
, k = ٠, ١,٢, . . . , N

N∑
j=٠ z̄jDkj =

١
٢
(١− (x̄k − sin

( ١
٢(τk + ٢(((١

−
(
ūk − cos

( ١
٢(τk + ٢(((١)

k = ٠, ١,٢, . . . , N,
ȳN − λz̄N = ٠, x̄٠ = ȳ٠ = z̄٠ = ٠.

۵ . ۴ ش΄ل های در که را (x̄, ū) تقریبی بهینه جواب و کردیم حل N = ١٠ برای را DT مساله
مطلق خطای ،٨ . ۴ و ٧ . ۴ ش΄ل های در این، بر علاوه آوردیم. دست به شده اند، ارائه ۶ . ۴ و

این جا در دادیم، نشان را تقریبی بهینه جواب
λ∗ = J∗١٠ = ١ + ١.٨٨× ٩−١٠,

ͬ باشد. م J∗ = ١ دقیق بهینه مقدار به ΁نزدی مقداری که

(١ . ۶ . ۴) مثال برای تقریبی بهینه وضعیت :١ . ۴ ش΄ل



۵١ عددی مثال های

(١ . ۶ . ۴) مثال برای تقریبی بهینه کنترل متغیر :٢ . ۴ ش΄ل

(١ . ۶ . ۴) مثال برای آمده دست به تقریبی بهینه وضعیت برای مطلق خطای :٣ . ۴ ش΄ل



خطͬ غیر کسری برنامه ریزی مسائل برای طیفͬ شبه روش ΁ی ۵٢

(١ . ۶ . ۴) مثال برای آمده دست به تقریبی بهینه کنترل مطلق خطای :۴ . ۴ ش΄ل

(٢ . ۶ . ۴) مثال برای آمده دست به تقریبی بهینه وضعیت متغیر :۵ . ۴ ش΄ل



۵٣ عددی مثال های

(٢ . ۶ . ۴) مثال برای آمده دست به تقریبی بهینه کنترل متغیر :۶ . ۴ ش΄ل

(٢ . ۶ . ۴) مثال برای تقریبی بهینه وضعیت متغیر مطلق خطای :٧ . ۴ ش΄ل



خطͬ غیر کسری برنامه ریزی مسائل برای طیفͬ شبه روش ΁ی ۵۴

(٢ . ۶ . ۴) مثال برای تقریبی بهینه کنترل متغیر مطلق خطای :٨ . ۴ ش΄ل



۵ فصل
نتیجه گیری

دینکل روش از استفاده با را آن و گرفتیم نظر در را خطͬ کسری بهینه کنترل مساله ΁ی
جواب ΁ی به دستیابی اجازه مساله، ΁دینامی و هدف تابعک خاص ساختار کردیم. حل باخ
و بیشتر کنترل های با مسائل مورد در ͬ تواند م روش این ͬ دهد. م را مساله از صریح تقریباً
کنترل چندین و حالت متغیر ΁ی با گیرد. قرار استفاده مورد بیشتر وضعیت متغیرهای یا
متغیر چندین دارای مسائل در آورد. دست به صریح طور به ͬ توان م را سوئیچ زمان های تمام
نیستند. نمایش قابل بسته ش΄ل به اما شوند محاسبه ͬ تواند م سوئیچ زمان های وضعیت،
کنترل از کلاس ΁ی برای تقریبی جواب های آوردن دست به برای ترکیبی طرح ΁ی سپس
و ΁موج از استفاده با باخ دینکل رهیافت مزایای از استفاده با که دادیم ارائه کسری بهینه
که دیدیم شد. ارائه بهینه ΁نزدی عددی جواب های استخراج برای ال·وریتمͬ محلͬ، هم نقاط
برسد بهینه دقیق جواب به است مم΄ن انتخاب کنیم، را هم پوشانͬ نقاط از زیادی تعداد اگر
بر علاوه ͬ یابد. م کاهش خطͬ محدودیت های تحت رساندن حداکثر مساله به مساله نیز و
برای مؤثر ال·وریتم ΁ی شبه محدب تابع ͬ های ویژگ و سراسری بهینگͬ شرایط براساس این
کاربرد قابلیت دادن نشان برای عددی نتایج و آمد دست به سراسری ͹سط در مساله حل
خطͬ غیر برنامه ریزی مسائل تبدیل برای جدید رهیافت ΁ی نهایتاً شد. پیشنهاد ال·وریتم
کسری غیر مساله که دادیم نشان کردیم. پیشنهاد کسری غیر ش΄ل به زمان‐پیوسته کسری

کرد. حل خوبی نسبتاً دقت با لژاندر شبه طیفͬ روش از استفاده با ͬ توان م را

۵۵
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Aabstract

In this thesis we consider time-continuous linear and nonlinear Fractional programming problems.

These problems include a dynamical equation and an objective functional where the objective

functional is given by the ratio of two integrals. First Dinkelbach approach is considered for time-

continuous linear Fractional programming problems. With this approach, the problem can be taken

out the fraction form and converted into equivalent optimal control problems that includes a pa-

rameter. Then a wavelets-based iterative method is proposed to solve these problems. Moreover,

a global optimization approach is given to numerically solve a class of nonlinear fractional pro-

gramming problems. Finally, we propose a new pseudo-spectral method to to solve general form

of these problems and show the efficiency of the approach by numerical examples.

Keywords: Dinkelbach approach, global optimization approach, linear fractional programming,

pseudospectral method, nonlinear fractional programming.
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