




ریاضͬ علوم دانش΄ده
آنالیزعددی گرایش کاربردی، ریاضͬ رشته

ارشد کارشناسͬ پایان نامه
عددی حل برای ΁موج هم م΄انͬ ازروش استفاده با جزئͬ دیفرانسیل ماتریس هامعادلات

طالبیان فاطمه نگارنده:
راهنما استادان

قوتمند مهدی طهرانͬدکتر احسنͬ حجت دکتر
مشاور استاد

مغاری سمیه دکتر
تیر١٣٩٩



نامه ی لغت در واژه  مقدسترین به تقدیم
مدیون را زندگیم که مهربانم مادر دلم،
ͬ ها سخت در که ͬ دانم، م آن عطوفت و مهر
دلسوز یاوری همواره زندگͬ دشواری های و
برایم مطمئن و مح΄م پشتیبانͬ و فداکار و

است. بوده

د



این پایان به موفق بزرگ اساتید راهنمایی و یاری و پروردگار یاری با که اکنون
این در که عزیزانͬ تمامͬ از را سپاس·ذاری نهایت که دانسته خود وظیفه شده  ام رساله

آورم: عمل به را کرده اند ΁کم من به راه
که طهرانͬ احسنͬ حجت دکتر و قوتمند مهدی دکتر آقایان بزرگ، اساتید از آغاز در

دارم. را تش΄ر کمال داشته اند عهده به را نامه پایان این راهنمایی
قدردانͬ نیز بوده اند نامه پایان این مشاور استاد که مغاری سمیه دکتر خانم سرکار از

ͬ نمایم. م
که ناظمͬ علیرضا دکتر و اس΄ندری نوری محمد هادی دکتر اقایان گرامͬ، داوران از

دارم. را سپاس کمال داشتند عهده به را نامه پایان این تصحیح و داوری زحمت

طالبیان فاطمه
تیر١٣٩٩

ه



نامه تعهد
ریاضͬ علوم کاربردی ریاضͬ رشته ارشد کارشناسͬ دانشجوی طالبیان فاطمه اینجانب
معادلات عددی حل برای ΁موج هم م΄انͬ روش عنوان با پایان نامه نویسنده شاهرود، دانش·اه
ͬ شوم: م متعهد قوتمند مهدی راهنمایی تحت ، ماتریس ها از استفاده با جزئͬ دیفرانسیل
برخوردار اصالت و صحت از و است شده انجام اینجانب توسط پایان نامه این در تحقیقات •

است.
شده استناد استفاده مورد ͽمرج به پژوهش گران، دی·ر پژوهش های نتایج از استفاده در •

است.
مدرک نوع هیچ دریافت برای دی·ری فرد یا خود، توسط کنون تا پایان نامه، این مطالب •

است. نشده ارایه هیچ جا در امتیازی یا
نام با مستخرج مقالات و دارد، تعلق شاهرود صنعتͬ دانش·اه به اثر، این معنوی حقوق •
خواهد چاپ به “ Shahrood University of Technology “ یا “ شاهرود صنعتͬ دانش·اه “

رسید.
بوده اند، تاثیرگذار پایان نامه اصلͬ نتایج آوردن به دست در که افرادی تمام معنوی حقوق •

ͬ گردد. م رعایت پایان نامه از مستخرج مقالات در
آنها) بافت های (یا زنده موجود از که مواردی در پایان نامه، این انجام مراحل تمام در •

است. شده رعایت اخلاقͬ اصول و ضوابط است، شده استفاده
افراد شخصͬ اطلاعات حوزه به که مواردی در پایان نامه، این انجام مراحل تمام در •
شده رعایت انسانͬ اخلاق اصول و رازداری اصل است)، شده استفاده (یا یافته دسترسͬ

است.
طالبیان فاطمه
تیر١٣٩٩

نشر حق و نتایج مال΄یت
برنامه های کتاب، مستخرج، ( مقالات آن محصولات و اثر این معنوی حقوق تمام •
شاهرود صنعتͬ دانش·اه به متعلق شده) ساخته تجهیزات و نرم افزارها رایانه ای،

شود. ذکر مربوطه علمͬ تولیدات در مقتضͬ، نحو به باید مطلب این ͬ باشد. م
ͬ باشد. نم مجاز منبع ذکر بدون پایان نامه این در موجود نتایج و اطلاعات از استفاده •

و





چ΄یده
نبوده پذیر ام΄ان همیشه جزئͬ دیفرانسیل معادلات ΁کلاسی جواب های آوردن دست به
از باید معادلات از دسته این حل برای بنابراین است. غیرمم΄ن تقریبا موارد بسیاری در و است
لژاندر موج΁ های براساس موثر روش ΁ی نامه، پایان این در کرد. استفاده تقریبی روش های
شده داده اولیه شرایط با جزئͬ، دیفرانسیل معادلات تقریبی جواب یافتن برای چبیشف و
موج΁ های برای را معادلات انتگرال عمل·ر ماتریس های روش، این در ͬ دهیم. م گسترش
معادلات دستگاه ΁ی به را آن هم م΄انͬ روش ترکیب با و ͬ آوریم م دست به چبیشف و لژاندر
روش ها این برای مربوطه خطای تخمین و هم·رایی آنالیز همچنین ͬ کنیم. م تبدیل خطͬ
نشان را روش کارایی و دقت مثال چند ارائه ی با و ͬ کنیم م بررسͬ را شده داده شرایط تحت

ͬ دهیم. م

مرتبه جزئͬ دیفرانسیل معادلات هم·رایی، آنالیز انتگرال، عمل·ر ماتریس کلیدی: کلمات
چبیشف ΁موج لژاندر، ΁موج اول،

ح
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١ فصل
برای انتگرال عمل·ر ماتریس های

چبیشف و لژاندر موج΁ های

مقدمه ١ . ١
بازه هایشان تعداد اگر اما هستند ناپیوسته ذاتا که هستند ریاضͬ توابع از دسته ای موج΁ ها
با دیفرانسیل  معادلات برخͬ که ازآن جایی ͬ شوند. م ΁نزدی پیوسته توابعͬ به کنیم ریز را
دیفرانسیل ها معادله این ͬ توان م موج΁ ها از استفاده با ͬ باشند، نم حل قابل ΁کلاسی روش های
ͬ پردازیم، م ΁موج کاربردهای و تاریخچه تعریف، چند ارائه به ابتدا فصل دراین نمود. حل را
لژاندر موج΁ های برای انتگرال عمل·ر ماتریس و چبیشف و لژاندر موج΁ های معرفͬ به سپس
مورد شده مطرح مبحث های به توجه با معادله چندین حل همچنین ͬ پردازیم. م چبیشف و

ͬ گیرد. م قرار بررسͬ

΁موج تاریخچه ١ . ٢
زمینه ها از بسیاری در ͬ تر قدیم ایده های با ارتباط در اخیر دهه سه طͬ در موج΁ ها نظریه
است. کرده پیدا گسترش مهندسͬ و کامپیوتر علوم ،΁فیزی محض، و کاربردی ریاضͬ شامل
در آن ریشه های که داد نمایش درخت ΁ی صورت به ͬ توان م را موج΁ ها تاریخچه بنابراین

١



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ٢
سریع پیشرفت با متناظر درخت تنه نمایش، این در شده اند. پراکنده مختلف جهت های
زمینه این در مختلف حوزه های محققان تلاش های و هشتاد دهه دوم نیمه در موج΁ ها
در موج΁ ها کاربردهای با متناظر زیاد شاخه های با نیز درخت این راًس و تاج ͬ باشد، م

ͬ باشد. م مختلف زمینه های
ͬ باشد. م درخت این تنه ی قسمت و ریشه ها مختلف، شاخه های این معرفͬ به مقدمه این در
کردن صحبت برای زیادی روی΄ردهای موج΁ ها موضوع برای زیاد ریشه های وجود دلیل به
تاریخچه مطالعه به شروع ریشه ای همان از ͬ کنیم م سعͬ اینجا در دارد. وجود آن تاریخ به ͽراج

شدیم. موج΁ ها بحث وارد که کنیم موج΁ ها
سینوسͬ پایه ای توابع از استفاده دلیل به دارد، فوریه آنالیز که زیادی کاربردهای وجود با
در کسینوسͬ و سینوسͬ پایه ای توابع ͬ باشد. م زیادی محدودیت های دارای کسینوسͬ و
کار به ناپایدار توابع و سی·نال ها تقریب برای ͬ توانند نم بنابراین و ͬ روند م نهایت بی به زمان
΁ی ͬ کنند م تغییر زمان امتداد در آنها طیفͬ اجزا که محرک سی·نال های برای نتیجه در روند.
آنالیز برای ͬ توانست م که فوریه تبدیل تصحیح اولین ͬ باشد. م نیاز مورد فرکانس زمان نمایش
فوریه تبدیل پشت که ایده ای بود. کوتاه زمان فوریه تبدیل رود کار به محرک سی·نال های
به فوریه آنالیز شده پنجره ای توابع از استفاده با سی·نال ها که بود این است نهفته کوتاه زمان
کار به فوریه تبدیل شده پنجره ای قطعه هر برای کوتاه زمان فوریه تبدیل در ͬ شود. م برده کار

ͬ باشد. م فرکانس زمان خوب نمایش ΁ی به قادر سریع فوریه تبدیل بنابراین ͬ رود. م
پایه ای توابع از استفاده با مخابراتͬ سی·نال های نمایش به علاقه مند که ١ گابور دنیس
در بعد اندکͬ برد. کار به ١٩٨۶ سال در را سریع فوریه تبدیل که بود کسͬ اولین بود، نوسانͬ
در سی·نال ΁ی انرژی نمایش برای مشابه فرکانس زمان نمایش ΁ی ٢ ویل جان ١٩۴٧ سال

برد. کار به فرکانس زمان صفحه
حل برای زیادی فرکانس زمان تبدیلات ١٩٧٠ دهه اوایل تا ١٩۴٠ دهه اواخر فاصله در
کار به پنجره ای تبدیلات توابع انتخاب در آنها تفاوت که شده اند برده کار به مختلف مسائل
پنجره ΁ی از تبدیل این در داشت سریع فوریه تبدیل که زیادی کاربردهای باوجود شد. گرفته
بود[١۴]. سریع فوریه تبدیل برای بزرگ مش΄ل این و ͬ شد م استفاده سی·نال تمام آنالیز برای
تبدیل برای جای·زین روشͬ بود، شناس زمین مهندس که ٣ مورله هفتاد، دهه اواخر در
پنجره ای سی·نال های ابتدا استاندارد کوتاه زمان فوریه تبدیل در کرد. مطرح کوتاه زمان فوریه
را آنها آنالیز قصد مورله که سی·نال هایی اما ͬ شدند، م محاسبه فوریه ضرایب سپس و شده
فرکانس مولفه های معمولا و بودند فرکانس و زمان در متفاوتͬ مشخصه های دارای داشت
برای بودند. پایین تر فرکانس با مولفه های به نسبت کوتاه تری زمانͬ دوره ی دارای آن ها بالای
انتخاب را پهن باند با کوتاه زمان فوریه تبدیل ΁ی باید بالا، فرکانس با مولفه های آوردن بدست
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٣ ΁موج تاریخچه
باند با کوتاه زمان فوریه تبدیل ΁ی به پایین فرکانس با مولفه های برای دی·ر طرفͬ از ͬ کرد، م
نتیجه این به مورله سی·نال، تبدیل ΁ی در هدف دو این به رسیدن برای داشت. نیاز ΁باری

کند. تولید متفاوتͬ روش های به را توابع تبدیلات که رسید
فرکانس با تابع آوردن بدست برای و کرد انتخاب را شده پنجره ای کسینوسͬ موج ΁ی مورله
بازه در را آن پایین تر فرکانس با تابع آوردن بدست برای و کرد فشرده زمانͬ بازه در را آن بالاتر
این ͬ دهد م رخ اتفاقͬ چه مختلف زمان های در که شود متوجه اینکه برای داد. گسترش زمانͬ
و زمانͬ موقعیت پارامتر دو به تبدیل توابع شده اند. داده انتقال زمان طول در خوبی به توابع

بودند. وابسته آنها ( فشرده سازی (مقیاس درجه
روش در که بود این فوریه استاندارد تبدیل به نسبت مورله تبدیل توابع اساسͬ تفاوت
با توابع برای اتفاقͬ چنین که حالͬ در بودند، شده ΁باری خیلͬ بالا فرکانس با توابع مورله
۴ ثابت” ش΄ل ΁موج ” را تبدیل توابع این گرفت تصمیم مورله بود. نداده رخ پایین فرکانس
ذکر ریاضͬ کتاب های در باید هستند” درست تبدیلات این ”اگر ͬ گفتند: م او مخالفان بنامد.
بی ارزش احتمالا پس ندارد وجود موضوع این ریاضͬ کتاب هیچ در که آنجایی از باشند. شده

است.”
کند متقاعد را خود هم΄اران داشت قصد و ͬ گذراند م را سختͬ دوران مورله زمان آن در
پایه ΁ی آوردن بدست برای ΁کم جستجوی در و است ارزشمند ریاضͬ ابزار او تبدیلات که

بود. خود ΁موج تبدیل برای ریاضͬ
که گراسمان کرد. معرفͬ او به را ۵ گراسمان او، دانشجویی دوران دوستان از ی΄ͬ
مشابهͬ مش΄لات با که کوانتومͬ ΁م΄انی زمینه های در گسترده طور به بود، نظری فیزی΁ دان
مورله تبدیلات که شد متوجه گراسمان بود. کارکرده بود، مواجه فوریه تبدیلات کاربرد در
΁ی او داده است. قرار استفاده مورد کوانتومͬ ΁م΄انی در خوبی به او که است روشͬ مشابه
مورد موضوع این روی بر را زیاد کاربردهای سپس و ساخت مورله تبدلات برای دقیق فرمول
رخ حال در ΁موج ریشه های از خیلͬ در عمیق تحول ΁ی زمان همان در دادند. قرار بررسͬ

بود. دادن
کار به ͽراج چیزهایی بود، محض ریاضͬ حوزه در ریاضیدان ΁ی که ۶ میر ١٩٨۵ بهار در
فرمول های و تحلیل که شد متوجه کرد مطالعه را آنها مقالات او وقتͬ شنید. گراسمان و مورله
΁هارمونی آنالیز در شصت دهه ی در ٧ کالدرون که است فرمولͬ از کشف ΁ی بازسازی آن ها
تبدیلات رابطه متوجه بود، خود زمینه در برجسته متخصص ΁ی که میر کرده است. معرفͬ
علاقه مند ΁هارمونی آنالیز حوزه ی در جدید کاملا بحث این به و شد ΁هارمونی آنالیز با مورله
آنها با میر شد. کالدرون فرمول از مورله و گراسمان متفاوت تعبیر شیفته او همچنین شد،
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چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ۴
محققان و ΁هارمونی آنالیز زمینه در محققان بین انفعال و فعل ΁ی آغاز این و کرد برقرار تماس
اثبات ΁ی تنها نه میر بعد هفته چند بردند. بهره ارتباط این از طرف دو هر که بود کابردی
ارائه عالͬ زمان م΄ان سازی محلͬ خاصیت با ΁موج متعامد پایه های از زیبا ساختار ΁ی بل΄ه

.[١۴] داد تعمیم بعد N به را ساختار این میر ΁کم با و زود خیلͬ و کرد
میر دانشجوی حالا که را خود دانشجویی دوران قدیمͬ دوست ٨ مالات ١٩٨۶ تابستان در
این به مالات بلافاصله داد. توضیح مالات برای را میر ΁موج پایه های او و کرد ملاقات بود
او برای زیادی جنبه های از موضوع این که شد متوجه او اینکه ویژه به شد، علاقه مند موضوع
بود معمول کاملا تصاویر، آنالیز یعنͬ مالات مطالعاتͬ تخصصͬ زمینه در ͬ رسد. م نظر به آشنا
مشخصه های که حالͬ در هستند بزرگ مقیاس دارای تصویر ΁ی در درشت مشخصه های که
توابع آن در که موج΁ ها تجزیه فلسفه بنابراین شوند. مطالعه بیشتر موضعͬ به طور باید ریز
استفاده تر درشت  مشخصه های برای تر پهن توابع و ریز مقیاس با مشخصه های برای ΁باری
موضوعات این به که حالͬ در مالات بود. سازگار موضوع این با انگیزی ش·فت طور به ͬ شوند م
شنید او وقتͬ کرد. مطالعه ΁موج بسط های مشابه لایه ای ساختارهای به ͽراج ͬ کرد، م فکر
بحث های از پس و داد ترتیب او با ملاقاتͬ قرار کند، سفر شی΄اگو به پاییز در دارد قصد میر که
تمام برای چارچوب ΁ی ٩ ساز” ریزه چند آنالیز ” نظریه ی ریاضͬ جزئیات روی بر طولانͬ
بود شده انجام ΁موج پایه های ساخت در زمان آن تا که را انگیزی ش·فت کارهای و اتفاقات
کرد. ساده بسیار را موج΁ ها برای ی΄ه متعامد پایه های ساخت موضوع این و کردند توافق
استرمبرگ نام به ΁هارمونی آنالیز حوزه آنالیز محقق ΁ی شد معلوم که بود زمان همین در
که ١١ دابشͬ ١٩٨٨ سال در بود. کرده کشف قبل سال ۵ را مشابهͬ کاملا موج΁ های ١٠

و زمان گسسته سازی برای را موج΄ͬ قاب های بود بروکسل دانش·اه در گراسمان دانشجوی
ی΄ه متعامد موج΁ های گسترش با انجام سر داد. گسترش ΁موج تبدیل مقیاس پارامترهای
تمام وجود با شدند. نهاده بنا موج΁ ها مدرن نظریه ی شالوده دابشͬ، توسط فشرده محمل با
افراد اولین آنها شد انجام موج΁ ها زمینه ی در دابشͬ و مالات میر، مورله، توسط که کارهایی
ریاضیدان ١٢ هار آلفرد به و ١٩٠٩ سال به افتخار این بل΄ه نبودند ΁موج پیدایش زمینه ی در
رساله ضمیمه در را متعامد موج΁ های نوع ترین فهم قابل و ترین ساده که ͬ گردد م بر آلمانͬ

.[۶] کرد معرفͬ خود دکتری
وجود با ͬ شوند م معرفͬ او نام با نیز حاضر حال در هار توسط شده معرفͬ موج΁ های
موج΁ ها .[١۴] هستند کمͬ عملͬ کاربردهای دارای ضعیف سازی موضعͬ دلیل به سادگͬ
مختصر طور به بعد بخش در که هستند علمͬ مختلف حوزه های در فراوانͬ کاربردهای دارای
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۵ ها ΁موج برای کاربردهایی
ͬ پردازیم. م آن ها مهم کاربرد چند به

ها ΁موج برای کاربردهایی ١ . ٣
ذخیره بنابراین شده است، نهاده بنا دی·ر م΄ان به م΄ان ΁ی از داده انتقال پایه بر روز تکنولوژی

است. فوق العاده ای اهمیت دارای مم΄ن حجم کمترین با اطلاعات نمایش و
پیشرفت نیز تکنولوژی شوند داده انتقال بیشتری دقت و کمتر حجم با اطلاعات هرچه
که کنند معرفͬ را پایه هایی تا داشت آن بر را محققان موضوع این داشت. خواهد بیشتری
داشته را مم΄ن دقت حداکثر و حجم حداقل در اطلاعات و توابع نمایش و ذخیره قابلیت
برای هستند ویژگͬ این دارای که پایه هایی عنوان به موج΁ ها بعد به ١٩٨٠ سال از باشند.

رفته اند. کار به اطلاعات ذخیره و نمایش
با و کم حجم در را داده ها ͬ توانند م دارند که ساختارهایی به توجه با موج΄ͬ پایه های
را توابع کمتری پایه های تعداد از استفاده با قادرند موج΁ ها علاوه به کنند. ذخیره بالا دقت
تمرکز توابع محلͬ رفتارهای روی بر قادرند ساختارشان به توجه با موج΁ ها کنند. بازسازی
تومورهای شناسایی برای پزش΄ͬ حوزه در و تصاویر پردازش در ͬ توان م آن ها از بنابراین کنند،

کرد. استفاده بالقوه
زیر نفتͬ حوزه های مرز کردن مشخص برای تصاویر ردیابی و رادار در موج΁ ها همچنین

.[١١] ͬ گیرند م قرار استفاده مورد اشیاء م΄ان تعیین برای شناسͬ باستان در و زمینͬ
تلفن های کرد. استفاده موج΁ ها از ͬ توان م نیز ویدئویی تصویرهای پردازش و تحلیل در
تصاویر از دنباله ای انتقال ام΄ان زیرا ͬ گیرند نم قرار استقبال مورد خیلͬ حاضر حال در تصویری
تلفن خطوط ظرفیت از تصاویر این حجم و نیست پذیر ام΄ان تلفن خطوط توسط بالا کیفیت با
حجم با داده ها از مجموعه ΁ی توسط یا شوند فشرده ویدئویی تصاویر اگر ولͬ ͬ باشد، م بیشتر
قادر نیز تصویری تلفن های ببینند، جدی صدمه تصاویر کیفیت اینکه بدون شوند ذخیره کمتر
فشرده سازی خواص به توجه با موج΁ ها از استفاده بود. خواهند بالا دقت با تصاویر ارسال به

باشد[١١]. مفید بسیار ͬ تواند م کار این برای دارند که خوبی
به دارند. تفاوت هم با کمͬ جزئیات در معمولا مختلف صحنه های تلویزیونͬ تصاویر در
΁ی فقط که است مم΄ن و است ثابت تصاویر چارچوب تلویزیونͬ صحنه های در مثال: عنوان
ذخیره به جای بنابراین شود. جابه جا دی·ر صحنه به صحنه ی ΁ی از شخص ΁ی بدن از عضو
موج΁ ها از اگر شوند. داده انتقال باید صحنه ها تفاوت های فقط جدید صحنه کل انتقال و
تفاوت های فقط و ͬ کند نم تغییری مشابه اند تصاویر در که موج΁ هایی ضرایب شود، استفاده
ناحیه روی بر ͬ توانند م موج΁ ها که آنجایی از ͬ کنند. م بروز متفاوت صحنه های در ΁کوچ
انجام قابل داده ها از کمͬ تعداد با فقط به روزرسانͬ این شوند، متمرکز تصاویر از مشخصͬ

.[١١] است



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ۶
قرار استفاده مورد ١٣ فدرال تحقیقات اداره در انگشت اثر ذخیره برای موج΁ ها تبدیل
در تا شود ذخیره ΁ال΄ترونی صورت به باید فدرال تحقیقات اداره در انگشت ها اثر ͬ گیرد. م
حدود به کامل صورت به نفر ΁ی انگشت اثرات ذخیره برای باشند. دسترس در ضروری ͽمواق
ذخیره نفر میلیون ٢٠٠ حدود انگشت اثرات باشد قرار اگر حال است. نیاز حافظه م·ابایت ١٠
΁ی نهایت در است. مم΄ن غیر عمل در کار این و دارد نیاز حافظه ترابایت ٢٠٠٠ تقریبا شوند
استفاده با را کار این موج΁ ها از استفاده با ١۴ آلاموس لوس ملͬ آزمایش·اه از تحقیقاتͬ گروه
تبدیلات از ١۵ ناسا نوردان مریخ همچنین .[۴] دادند انجام نیاز مورد حافظه درصد ͷپن از
جالب کاربردهای دی·ر از ͬ کنند. م استفاده خود ارسالͬ تصاویر فشرده سازی برای ΁موج
کم حجم با فایل ها ذخیره نرم افزارهای طراحͬ برای ΁موج تبدیلات از استفاده موج΁ ها،
گرافی΄ͬ پرونده های فشرده سازی برای متداول و استاندارد روش ΁ی که JPEG فرمت است.
آن ها ͬ توان م طوری΄ه به ͬ کند م فشرده سازی را تصاویر ΁موج تبدیلات از استفاده با است،
برای روش متداول ترین JPEG قالب امروزه بازگرداند. اولیه قالب و تصویری حالت به دوباره را

است. تصویری فایل های ذخیره
در آن اصلͬ کاربرد و است رایانه ای فایل های برای قالب ΁ی که Djvu فرمت همچنین
تبدیلات از است، کم حجم با خطͬ ترسیم های و نوشته دارای شده اس΄ن تصاویر ذخیره سازی

ͬ گیرد. م ΁کم فایل ها فشرده سازی برای ΁موج
زمینه در ١۶ اغتشاشات حذف برای آن ها استفاده موج΁ ها، دی·ر کاربردهای از ی΄ͬ
ناخواسته اغتشاشات حذف سی·نال ها، پردازش در مشترک مساًله ͬ باشد. م تصاویر پردازش
که است اغتشاشات از مثالͬ کاست نوار ΁ی در ناخواسته هیس صدای مثال عنوان به است.

. ͬ شود م پرداخته آن به سی·نال پردازش بحث در
فوریه سری از استفاده با ابتدا که است این ناخواسته اغتشاش حذف برای روش ΁ی

شوند: تجزیه زیر صورت به کسینوسͬ و سینوسͬ مؤلفه های به سی·نال ها

∑
n

an cos(nx) + bn sin(nx) (١ . ١)
سی·نال بتوان اگر دهیم. قرار صفر برابر را ناخواسته فرکانس های با متناظر ضرایب سپس و
بسیاری برای ولͬ است، پذیر ام΄ان و ساده روش این کرد، تجزیه بالا مثلثاتͬ سری صورت به را
به تجزیه هستند ناگهانͬ اغتشاشات دارای یا دارند تری موضعͬ رفتارهای که سی·نال ها از

نیست. پذیر ام΄ان فوریه روش
این دلیل به ولͬ شوند، حذف باید که است مجزا ناگهانͬ اغتشاش دو دارای سی·نال این
اغتشاش های حذف و نمایش برای خوبی مدل کسینوسͬ و سینوسͬ توابع ناگهانͬ اغتشاش های
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٧ ها ΁موج برای کاربردهایی
به را سی·نال این ͬ توان م ΁موج پایه های ازمجموعه استفاده با ولͬ نیستند. سی·نال این

کرد. حذف را آن اغتشاش های و تجزیه خوبی
تناوب که کسینوسͬ و سینوسͬ توابع خلاف بر که هستند موج΁ هاموج هایی ͽواق در
انتقال با فوریه سری در مثلثاتͬ توابع مشابه ͬ باشند. م ناصفر متناهͬ بازه ΁ی روی تنها دارند،
کرد. تولید متفاوت فرکانس های با ΁موج پایه های ͬ توان م خاص ΁موج تابع ΁ی گسترش و
به سی·نال ابتدا فوریه، سری مشابه ͬ شود، م استفاده اغتشاش ͽرف برای ΁موج از که وقتͬ
تعدیل یا حذف ناخواسته جملات با متناظر ضرایب سپس ͬ شود، م تجزیه موج΄ͬ مؤلفه های

ͬ شود. م
برای چبیشف و لژاندر موج΁ های اساس بر را کارآمد محاسباتͬ روش ΁ی نامه پایان این در
ͬ دهیم. م ارا˚ِئه اولیه شرایط با هذلولͬ بعدی دو دیفرانسیل معادله ΁ی تقریبی حل راه یافتن
مورد و شده حاصل چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس روش این در
شوند. تبدیل معادلات خطͬ سیستم ΁ی به شده داده اولیه باشرایط تا ͬ گیرند م قرار استفاده
شرایط تحت نیز شده ارائه ایده به مربوط خطای تخمین و تبدیل تحلیل و تجزیه همچنین
تایید متلب محیط در سازی پیاده از حاصل عددی نتایج ͬ گیرد. قرارم بررسͬ مورد کوتاهͬ
های ΁موج از استفاده این بر علاوه دارد. خوبی کارایی و دقت پیشنهادی روش که ͬ کنند م

هستند. سریع و ساده دقیق، چبیشف، و لژاندر
بسیاری در زیادی ͽمداف است یافته توسعه گذشته سال ٣٠ طͬ در عمدتا که ΁موج نظریه
کاربرد از بسیاری حال این با است. کرده ایجاد مهندسͬ و علوم در تحقیقات زمینه های از
داده سازی فشرده برای ابزاری عنوان به موج΁ ها از استفاده و داده ها تحلیل بر موج΁ ها

است. شده متمرکز
میان در را زیادی توجه ΁موج از استفاده با دیفرانسیل معادلات حل اخیر سال های در

است. آورده به دست محققان از بسیاری
معادلات عنوان به لیزر پرتو مدل های موج، انتشار گرما، هدایت مانند فیزی΄ͬ مش΄لات اکثر
ͬ آید. نم بدست ΁کلاسی های روش با راحتͬ به آن ها جواب که ͬ شوند م سازی مدل دیفرانسیل
دیفرانسیل معادلات زیرا باشد جواب نامناسب فضای یا معادله بودن غیرخطͬ دلیل به شاید این
کاربرد مهندسͬ و علوم شاخه های از بسیاری در فیزی΄ͬ پدیده های سازی شبیه برای معمولا
دسترس در تحلیلͬ حل های راه دیفرانسیل معادلات از برخͬ برای تنها دی·ر سوی از دارند.

است. مم΄ن غیر یا مش΄ل موارد بسیاری در که هستند
روش های از استفاده مقالات از بسیاری در محاسباتͬ و نظری دیدگاه از اخیرا بنابراین

گرفته است. قرار بررسͬ مورد دیفرانسیل معادلات عددی برای حل ΁موج بر مبتنͬ
چبیشف و لژاندر موج΁ های براساس کارآمد ΁موج هم م΄انͬ روش ΁ی نامه پایان این در



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ٨
[١٣] صورت: به اول مرتبه دیفرانسیل معادلات تقریبی حل برای

∂u(x, t)
∂(t) +

∂u(x, t)
∂(x) + au(x, t) = bv(x, t) (١ . ٢)

(x, t) ∈ Λ(= [٠, ١] × [٠, ١]) (١ . ٣)
اس΄الرهای b و a کنیم فرض و ͬ دهیم م ارائه u(٠, t) = f(t), u(x, ٠) = g(x) اولیه شرایط با
شود. تعیین باید که است مجهول تابع u و هستند شده داده توابع v و g ، f هستند، حقیقͬ
معاصر قرن در جزئͬ دیفرانسیل معادلات مطالعه و هیدرولی΄ͬ ΁م΄انی معادلات از بسیاری

کرده است. جذب خود به را پژوهش·ران از بسیاری توجه
پرتوها) و آلات ماشین ساختمان ها، (مثلا ساختار ارتعاش با ͬ توانند م دیفرانسیل معادلات
تل·راف معادلات و موج معادلات هستند. اتمͬ ΁فیزی اساسͬ پایه های و شوند سازی مدل
تجزیه در گسترده ای طور به تل·راف معادله که هستند دیفرانسیل معادلات این از نمونه های
همچنین و ͬ شود م استفاده ال΄تری΄ͬ سی·نال های انتشار و انتقال برای سی·نال تحلیل و

دارد. را دی·ر کاربردهای بسیاری

چبیشف و لژاندر موج΁ های معرفͬ ۴ . ١
به و ͬ شود م داده نمایش A ⊗ B صورت به B و A ماتریس کرونکر ضرب [٧] .١ . ۴ . ١ تعریف

ͬ شود م بیان زیر صورت

A⊗B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
a١١B ⋯ a١nB
⋮ ⋯ ⋮

am١B ⋯ amnB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
درفضای y و x دلخواه بردار دو هر برای ͬ کند م بیان ͬ شوارتز کش نامساوی [۵] .٢ . ۴ . ١ تعریف

داریم: داخلͬ ,x⟩∣ضرب y⟩∣٢≤ ⟨x, x⟩ ⋅ ⟨y, y⟩
نوشته زیر ش΄ل به نامساوی بردار ها، نرم به توجه با و طرفین دوم ریشه گرفتن با همچنین

ͬ شود: ,x⟩∣م y⟩∣ ≤ ∥x∥ ⋅ ∥y∥
لژاندر موج΁ های ١ . ۴ . ١

برای آن هارا ͬ توان م بنابراین هستند. خطͬ مستقل و متعامد توابعͬ لژاندر موج΁ های
ماتریس و لژاندر موج΁ های ویژگͬ ΁باکم کاربرد. به دیفرانسیل معادلات جواب تقریب
دستگاه به را دیفرانسیل معادلات دستگاه ͬ پردازیم، م آن به بعد بخش در که عمل·رانتگرال



٩ چبیشف و لژاندر موج΁ های معرفͬ
را دیفرانسیل معادلات جواب ͬ توان م جبری معادلات حل با و ͬ کنیم م تبدیل جبری معادلات
انتقال و (a) اتساع شامل که ͬ شوند م ساخته ای گونه به موج΁ ها کلͬ طور به آورد. بدست
΁موج از خانواده هایی ͬ کنند، تغییرم پیوسته طور به پارامترها این که هنگامͬ و هستند (b)

[٩] داریم: زیر صورت به پیوسته
ψ
L
a,b(t) = ∣a∣−١٢ ψL( t − b

a ), a, b ∈ R, a ≠ ٠.
صورت به b ، a پارامترهای اگر

a = a−k٠ , b = nb٠a−k٠ , a٠ > ١, b٠ > ٠, n, k ∈ Z+

: صورت به گسسته ΁موج زیرخانواده و شوند بیان
ψk,n(t) = ∣a١٢−∣٠ ψ(ak٠t − nb٠),

ͬ که وقت خصوص به ͬ دهند، م تش΄یل را L٢(R) برای ΁موج پایه ψk,n(t) آن در که هستند
هستند: پارامتر چهار دارای ψL

n,m(t) = ψ(k, n̂,m, t) لژاندر موج΁ های b٠ = و١ a٠ = ٢
مرتبه m شود، فرض مثبت صحیح هرعدد ͬ تواند م k و n̂ = ٢n − ١, n = ٢,⋯,١,٢,٣k−١

به [٠،١] دربازه لژاندر بعدی ΁ی ΁موج است. شده نرمال زمان t و لژاندر چندجمله ای های
صورت

ψ
L
n,m(t) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
m + ١٢٢ k٢ pm(٢k

x − ٢n + ١), (n−١)
٢k−١ ≤ x ≤ n

٢k−١ ,

٠, درغیراینصورت
(۴ . ١)

ضریب (۴ . ١) در .n = ١,٢,٣, . . . ,٢k−١ و m = ٠, ١,٢, . . . ,M − ١ درآن که ͬ شود م تعریف
هستند. b = n̂٢−k و a = ٢−k و وزن تابع √m + ١٢

صدق زیر بازگشتͬ رابطه در و هستند m درجه از لژاندر چندجمله ای های مرتبه pm(t) اینجا
ͬ کنند: م

P٠(x) = ١, P١(x) = x, Ps+١(x) = ٢s+١
s+١ xPs(x) − s

s+١Ps−١(x), s = ١,٢,٣, . . .
ͬ توان م را [٠, ١] بازه ی روی f(t) معین تابع ͬ دهند. م تش΄یل [−١, ١] بازه در پایه ΁ی که

کرد: بیان زیر صورت به لژاندر موج΁ های برحسب
f(x) = ∞

∑
n=٠

∞

∑
m=٠

Cn,mψn,m(t) = CT
ψ(t) (۵ . ١)

درآن که
Cn,m = ⟨f(t), ψn,m(t)⟩



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ١٠
آنگاه کنیم بیان متناهͬ مجموع به صورت را (۵ . ١) معادله در نامتناهͬ سری های اگر است.

نوشت: ͬ توان م زیر صورت به را (۵ . ١) معادله

f(x) ≃ ٢k−١
∑
n=٠

M

∑
m=٠

Cn,mψn,m(t) = CT
ψ(t)

هستند: زیر ش΄ل به ٢k(M + ١) × ١ باابعاد مشخص بردار های ψ و C درآن که
C = [c٠,٠, c٠,١, . . . , c٠,M , c١,٠, . . . , c١,M , . . . , c٢k−١,٠ . . . , c٢k−١,M]T (۶ . ١)

ψ = [ψ٠,٠(t), ψ٠,١(t), . . . , ψ٠,M(t), ψ١,٠(t), . . . , ψ١,M(t), . . . , ψ٢k−١,٠(t), . . . , ψ٢k−١,M(t)]T
بعدی ΁ی موج΁ های از تعمیمͬ عنوان به ͬ توان م را لژاندر دوبعدی موج΁ های همچنین

:[١٠] ͬ شود. م بیان زیر صورت به لژاندر

ψ
L
n,m,n′,m′(x, t) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψ
L
n,m(x)ψL

n′,m′(t), (n−١)
٢k−١ ≤ x ≤ n

٢k−١ ,
(n′−١)
٢k′−١ ≤ t ≤ n

′

٢k′−١ ,

٠, درغیراینصورت
درآن که

ψ
L
n,m(x) = √

m + ١٢٢ k٢ pm(٢k
x − ٢n + ١),

ψ
L
n′,m′(t) = √

m′ + ١٢٢ k
′

٢ pm′(٢k
′

t − ٢n′ + ١),
m = ٠, ١,٢, . . . ,M − ١,m′ = ٠, ١,٢, . . . ,M ′ − ١,
n = ١,٢,٣, . . . ,٢k−١

, n
′ = ١,٢,٣, . . . ,٢k

′−١
.

ψ
L
n,m,n′,m′(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
m + ١٢٢ k٢ pm(٢k

x − ٢n + ١)√m′ + ١٢٢ k
′

٢ pm′(٢k
′

t − ٢n′ + ١)
٠ درغیراینصورت
(n−١)
٢k−١ ≤ x ≤ n

٢k−١ ,(n′−١)
٢k′−١ ≤ t ≤ n

′

٢k′−١(m−١)
٢k−١ ≤ x ≤ m

٢k−١ ,(m′−١)
٢k′−١ ≤ t ≤ m

′

٢k′−١



١١ چبیشف و لژاندر موج΁ های معرفͬ

چبیشف های ΁موج ٢ . ۴ . ١
n = ١,٢, . . . ,٢k−١ ،k ∈ N که دارند چهارآرگومان ψ

c
n,m = ψc(k,٢n−١,m, t) چبیشف موج΁ های

برای مثال عنوان به است. زمان پارامتر t و اول نوع از چبیشف چندجمله ای درجه m و
:[٣] ͬ شوند م تعریف زیر صورت به [٠, ١] فاصله در آن ها ،t ∈ [٠, ١]

ψ
c
n,m(t) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

٢ k٢ T̂m(٢k
t − ٢n + ١), n−١

٢k−١ ≤ t < n

٢k−١ ,

٠, درغیراینصورت
(١ . ٧)

درآن که

T̂m(t) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
١√
π
, m = ٢√,٠
π
Tm(t), m > ٠,

(١ . ٨)

{Tm(t),m ∈ N ∪ {٠}} درآن که است، مثبت صحیح عدد M و m = ٠, ١, . . . ,M − ١ آن در که
وزن تابع به توجه با و است m درجه شناخته شده چبیشف چندجمله ای های از مجموعه ای

است: زیر بازگشتͬ فرمول مطابق و [−١, ١] بازه در w(t) = ١√١−t٢

T٠(t) = ١, T١(t) = t, Tm+١(t) = ٢tTm(t) − Tm−١(t), m = ١,٢, . . .
گسترش باید ŵ(t) = w(٢t− ١) وزن تابع چبیشف، ΁موج با برخورد هنگام در که کنید توجه
معین تابع است. متعامد موج΁ های دریافت برای wn(t) = w(٢k

t − ٢n + ١) به صورت و یابد
نوشت: زیر صورت به چبیشف های ΁موج از جملاتͬ صورت به ͬ توان م را [٠, ١] بازه روی f(t)

f(t) = ∞

∑
m=٠

∞

∑
n=٠

Cn,mψn,m(t) (١ . ٩)

درآن که
Cn,m = ⟨f(t), ψn,m(t)⟩

کرد: بیان زیر صورت به ͬ توان م را f تابع (١ . ٩) معادله در نامتناهͬ سری کردن ͽقط با است.

f(x) ≃ M

∑
m=٠

٢k−١
∑
n=٠

Cn,mψn,m(t) = CT
ψ(t) (١ . ١٠)

هستند: زیر صورت به چبیشف ΁بردارموج و ضرایب بردار ترتیب به ψ(t) و C درآن که
C = [c٠,٠, c٠,١, . . . , c٠,m, c١,٠, . . . , c١,M , . . . , c٢k−١,٠ . . . , c٢k−١,M]T (١ . ١١)

ψ = [ψ٠,٠(t), ψ٠,١(t), . . . , ψ٠,M(t), ψ١,٠(t), . . . , ψ١,M(t), . . . , ψ٢k−١,٠(t), . . . , ψ٢k−١,M(t)]T



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ١٢
بعدی ΁ی چبیشف ΁موج تعمیم به عنوان ͬ توان م را دوبعدی چبیشف موج΁ های همچنین

کرد: بیان زیر به صورت
ψ
c
n,m,n′,m′(x, t) = ψc

n,m(x)ψc
n′,m′(t) (١ . ١٢)

ترتیب به m′
, n

′ با m,n جای·زینͬ با ψc
n′,m′(t) و شده تعریف (١ . ٨) معادله در ψ

c
n,m(x) که

کرد تعریف زیر صورت به مشابه روش به ͬ توان م

ψ
c
n,m(x) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

٢ k٢ T̂m(٢k
x − ٢n + ١), n−١

٢k−١ ≤ x < n

٢k−١ ,

٠, درغیراینصورت
(١ . ١٣)

ψ
c
n′,m′(t) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

٢ k
′

٢ T̂m′(٢k
′

t − ٢n′ + ١), n
′−١

٢k′−١ ≤ t < n
′

٢k′−١ ,

٠, درغیراینصورت
(١۴ . ١)

ψ
c
n,m,n′,m′(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

٢ k٢ T̂m(٢k
x − ٢n + ٢(١ k

′

٢ T̂m′(٢k
′

t − ٢n′ + ١)
٠, درغیراینصورت
n−١
٢k−١ ≤ x < n

٢k−١
n
′−١

٢k′−١ ≤ t < n
′

٢k′−١

(١۵ . ١)

موج΁ ها برحسب توابع تقریب ٣ . ۴ . ١
:[١٢] نوشت زیر صورت به موج΁ ها برحسب ͬ توان م را [٠, ١] دربازه شده تعریف f(x) تابع هر

f(x) = ∞

∑
n=١

∞

∑
m=٠

fnmψnm(x) (١۶ . ١)

داریم: ب·یریم نظر در را بالا سری از جمله متناهͬ تعداد اگر که

f(x) ⋍ ٢k−١
∑
n=١

M−١
∑
m=٠

fnmψ(x) = F T
ψ(x) (١ . ١٧)

ͬ شوند: م زیرتعریف صورت به و هستند ٢k−١
M درجه از بردار هایی ψ و F که

F = [f١,٠, f١,١, . . . , f١,M−١, f٢,٠, f٢,١ . . . , f٢,M−١, . . . , f٢k−١,٠, f٢k−١,١ . . . f٢k−١,M−١] (١ . ١٨)
و

ψ = [ψ١,٠, ψ١,١ . . . , ψ١,M−١, ψ٢,٠, ψ٢,١ . . . , ψ٢,M−١, . . . , ψ٢k−١,٠, . . . ψ٢k−١,M−١]



١٣ چبیشف و لژاندر موج΁ های معرفͬ
به ͬ توان م را [٠, ١] × [٠, ١] در شده تعریف f(x, t) هرتابع متغیره دو توابع برای همچنین

نوشت: زیر صورت
f(x, t) = ∞

∑
n=١

∞

∑
m=٠

∞

∑
n′=١

∞

∑
m′=٠

fnmn′m′Ψnmn′m′(x, t). (١ . ١٩)

داریم: فوق سری جملات ͽقط با و

f(x, t) ≈ ٢k−١
∑
n=١

M−١
∑
m=٠

٢k
′−١

∑
n′=١

M
′−١
∑
m′=٠

fnmn′m′Ψnmn′m′(t, x) = F T
Ψ(x, t), (١ . ٢٠)

ͬ شوند: م تعریف زیر به صورت و هستند ٢k−١٢k
′−١
MM

′ × ١ بردار های Ψ و F که
F = [f١,٠,١,٠, . . . , f١,٠,١,M ′−١, f١,٠,٢,٠, . . . , f١,٠,٢,M ′−١, . . . , f١,٠,٢k′−١,٠, . . . ,

f١,٠,٢k′−١,M ′−١, . . . , f١,M−١,١,٠, . . . f١,M−١,١,M ′−١, . . . , f١,M−١,٢,٠, . . . , f١,M−١,٢,M ′−١,
f١,M−١,٢k′−١,٠, . . . f١,M−١,٢k′−١,M ′−١, f٢,٠,١,٠, f٢,٠,١,M ′−١, f٢,٠,٢,٠, . . .,
f٢,٠,٢,M ′−١, . . . , f٢,٠,٢k′−١,M ′−١, . . . , f٢,M−١,١,٠, . . . , f٢,M−١,١,M ′−١,

f٢,M−١,٢,٠, . . . , f٢,M−١,٢,M ′−١, f٢,M−١,٢k′−١,٠, . . . f٢,M−١,٢k′−١,M ′−١, . . . ,,
f٢k−١,٠,١,٠, . . . , f٢k−١,٠,١,M ′−١, f٢k−١,٠,٢,٠, . . . , f٢k−١,٠,٢,M ′−١, . . . ,,

f٢k−١,٠,٢k′−١,٠, . . . , f٢k−١,٠,٢k′−١,M ′−١, . . . , f٢k−١,M−١,٢k′−١,٠, . . . , f٢k−١,M−١,٢k′−١,M ′−١]T ,
(١ . ٢١)

Ψ = [ψ١,٠,١,٠, . . . , ψ١,٠,١,M ′−١, ψ١,٠,٢,٠, . . . , ψ١,٠,٢,M ′−١, . . . , ψ١,٠,٢k′−١,٠, . . . ,
ψ١,٠,٢k′−١,M ′−١, . . . , ψ١,M−١,١,٠, . . . ψ١,M−١,١,M ′−١, . . . , ψ١,M−١,٢,٠, . . . , ψ١,M−١,٢,M ′−١,

ψ١,M−١,٢k′−١,٠, . . . ψ١,M−١,٢k′−١,M ′−١, ψ٢,٠,١,٠, ψ٢,٠,١,M ′−١, ψ٢,٠,٢,٠, . . .,
ψ٢,٠,٢,M ′−١, . . . , ψ٢,٠,٢k′−١,M ′−١, . . . , ψ٢,M−١,١,٠, . . . , ψ٢,M−١,١,M ′−١,

ψ٢,M−١,٢,٠, . . . , ψ٢,M−١,٢,M ′−١, ψ٢,M−١,٢k′−١,٠, . . . ψ٢,M−١,٢k′−١,M ′−١, . . . ,,
ψ٢k−١,٠,١,٠, . . . , ψ٢k−١,٠,١,M ′−١, ψ٢k−١,٠,٢,٠, . . . , ψ٢k−١,٠,٢,M ′−١, . . . ,,

ψ٢k−١,٠,٢k′−١,٠, . . . , ψ٢k−١,٠,٢k′−١,M ′−١, . . . , ψ٢k−١,M−١,٢k′−١,٠, . . . , ψ٢k−١,M−١,٢k′−١,M ′−١]T ,
(١ . ٢٢)



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ١۴

لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ۵ . ١
متغیره دو و ΁ی توابع برای انتگرال عمل·ر های ماتریس ١ . ۵ . ١

که ͬ باشد. م ٢k−١ ×M بعد از بردار ΁ی که ͬ شود م لژاندرتعریف بعدی ΁ی ΁بردارموج ψL(x)
ͬ باشد: م بیان زیر صورت به x متغیر Pبرای انتگرال عمل·ر ماتریس

∫ x

٠ Ψ
L(ς)dς =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ x

٠ ψL٠ (ς)dς
∫ x

٠ ψL١ (ς)dς
∫ x

٠ ψL٢ (ς)dς
⋮

∫ x

٠ ψL
N(ς)dς

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b٠(x)
b١(x)
b٢(x)

⋮

bN(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= PL

x ψ
L(x) (١ . ٢٣)

داریم: پس
∫ x

٠ Ψ
L(ς)dς = PL

x ψ
L(x)

داریم: t متغیر برای همچنین

∫ t

٠ Ψ
L(ς)dς =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ t

٠ ψL٠ (ς)dς
∫ t

٠ ψL١ (ς)dς
∫ t

٠ ψL٢ (ς)dς
⋮

∫ t

٠ ψL
N(ς)dς

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a٠(t)
a١(t)
a٢(t)
⋮

aN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= PL

t ψ
L(t) (٢۴ . ١)

با که ͬ نامیم م لژاندر دوبعدی ΁موج بردار ΁ی را Ψ
L(x, t) همچنین ،PL

t = (I ⊗ P
L) که

را کرونکر ضرب ⊗ و ٢k−١
M بعد از بردار کنید فرض است. شده تعریف (١ . ٢٢) از استفاده

: بنابراین ͬ دهد، م نشان
∫ x

٠ Ψ
L(ς, t)dς = ∫ x

٠ (ΨL(ς)⊗Ψ
L(t))dς = ( ∫ x

٠ Ψ(ς)dς)⊗Ψ
L(t)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ x

٠ ψL٠ (ς)dς
∫ x

٠ ψL١ (ς)dς
∫ x

٠ ψL٢ (ς)dς
⋮

∫ x

٠ ψL
N(ς)dς

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗Ψ

L(t) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b٠(x)
b١(x)
b٢(x)

⋮

bN(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗Ψ

L(t) =

≃ PL
Ψ

L(x)⊗ IΨ
L(t) = (PL ⊗ I)(ΨL(x)⊗Ψ

L(t)) = PL
x Ψ

L(x, t)



١۵ لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های
داریم: لذا

∫ x

٠ Ψ
L(ς, t)dς = PL

x Ψ
L(x, t), (٢۵ . ١)

P
L درآن که است ٢k−١٢k

′−١
MM

′ × ٢k−١٢k
′−١
MM

′ بعد از ماتریسͬ ΁ی PL
x = P

L ⊗ I که
:[٩] شود مͬ تعریف زیر صورت به و داده شده ٢k−١ ×M بعد از ماتریسͬ

P
L = ١

٢k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
L F F ⋯ F

O L F ⋯ F

⋮ O ⋱ ⋱ F

O O ⋯ O L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
هستند: زیر صورت به M ×M های ماتریس L و F

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
٢ ٠ ⋯ ٠
٠ ٠ ⋯ ٠
⋮ ⋮ ⋮ ⋮

٠ ٠ ⋯ ٠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

١ ١
٣ ١٢

٠ ٠ ⋯ ٠ ٠ ٠
−٣ ١٢

٣ ٠ ٣ ١٢
٣×۵ ١٢

٠ ⋯ ٠ ٠ ٠
٠ − ۵ ١٢

۵×٣ ١٢
٠ ۵ ١٢

۵×٧ ١٢
⋱ ٠ ٠ ٠

٠ ٠ − ٧ ١٢
٧×۵ ١٢

٠ ⋱ ٠ ٠ ٠
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮

٠ ٠ ٠ ٠ ⋯ − (٢M−٣) ١٢(٢M−٣)(٢M−۵) ١٢
٠ (٢M−٣) ١٢(٢M−٣)(٢M−١) ١٢

٠ ٠ ٠ ٠ ⋯ ٠ − (٢M−١) ١٢(٢M−١)(٢M−٣) ١٢
٠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
است. M ×M صفر ماتریس P ماتریس در صفرها از کدام هر

کرد: زیربیان صورت به ͬ توان م را t متغیر برای انتگرال عمل·ر ماتریس همچنین
∫ t

٠ ΨL(x, ς)dς = ∫ t

٠(ΨL(x)⊗Ψ
L(ς))dς = Ψ

L(x)⊗ ( ∫ t

٠ ΨL(ς)dς)

= Ψ(x)⊗
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ t

٠ ψL٠ (ς)dς
∫ t

٠ ψL١ (ς)dς
∫ t

٠ ψL٢ (ς)dς
⋮

∫ t

٠ ψL
N(ς)dς

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Ψ(x)⊗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a٠(t)
a١(t)
a٢(t)
⋮

aN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ١۶
≃ IΨL(x)⊗ P

L
Ψ

L(t) = (I ⊗ P
L)(ΨL(x)⊗Ψ

L(t)) = PL
t Ψ

L(x, t)
P

L
t = (I ⊗ P

L) که

چندگانه متغیرهای برای انتگرال عمل·ر ماتریس ٢ . ۵ . ١
:[١٢] کرد بیان زیر صورت به ͬ توان م متغیرچندگانه برای را ψL(x, t) انتگرال عمل·ر ماتریس

∫ t

٠ ∫ x

٠ Ψ
L(x′, t′)dxdt = ∫ t

٠ ∫ x

٠ Ψ
L(x′)⊗Ψ

L(t′)dx′dt′
= ( ∫ x

٠ Ψ
L(x′)dx′)⊗ ( ∫ t

٠ ΨL(t′)dt′)
= PL

Ψ
L(x)⊗ P

L
Ψ

L(t)
= (PL ⊗ P

L)ΨL(x, t).
ͬ گیریم: م نتیجه بنابراین

∫ t

٠ ∫ x

٠ Ψ
L(x′, t′)dx′dt′ = PL

xtΨ
L(x, t),

که
P

L
xt = P

L ⊗ P
L
.

ها مثال ٣ . ۵ . ١
کنید فرض [٢] .١ . ۵ . ١ مثال

٠٫٢۵ẏ(t) + y(t) = u(t) (٢۶ . ١)
که

y(٠) = u(t)و٠ = ⎧⎪⎪⎪⎨⎪⎪⎪⎩١ t ≥ ٠
٠ t < ٠ (١ . ٢٧)

معادله دقیق جواب y(t) = ١ − exp(−۴t) ،(١ . ٢٧) شرایط و (٢۶ . ١) معادله به توجه با است.
این جا در کردند. حل هار ΁موج با را مسأله این ١٩٩۶ سال در ١٨ جیانگ و ١٧ گو است.
و ͬ گیریم م نظر در را K = ٢ و M = ٣ که ͬ کنیم م حل لژاندر ΁موج از استفاده با را مسأله

شده است: داده زیر به صورت y(t) مجهول تابع ͬ  کنیم م فرض
y(t) = CT

ψ(t) (١ . ٢٨)
17Gu
18Jiang



١٧ لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های
آن در که

C = [c١٠, c١١, c١٢, c٢٠, c٢١, c٢٢]T (١ . ٢٩)

ψ(t) = [ψ١٠, ψ١١, ψ١٢, ψ٢٠, ψ٢١, ψ٢٢]T (١ . ٣٠)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ψ١٠ = ٢ ١٢

ψ١١ = ۶ ١٢ (۴t − ١) ٠ ≤ t < ١٢
ψ١٢ = (١٠) ١٢ [٣٢(۴t − ٢(١ − ١٢]

(١ . ٣١)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ψ٢٠ = ٢ ١٢

ψ٢١ = ۶ ١٢ (۴t − ٣) ١٢ ≤ t < ١
ψ٢٢ = (١٠) ١٢ [٣٢(۴t − ٢(٣ − ١٢]

(١ . ٣٢)

ͬ گیریم: م نظر در زیر صورت به را u(t) اکنون
u(t) ⋍ ١

٢ ٣٢
[١, ٠, ٠, ١, ٠, ٠]ψ(t) = dTψ(t) (١ . ٣٣)

داریم: (١ . ٣٣) و (١ . ٢٧) از استفاده و t تا ٠ از (٢۶ . ١) از گیری انتگرال با

٠٫٢۵ẏ(t) + y(t) = u(t)
∫ t

٠ ٠٫٢۵ẏ(t) + ∫ t

٠ y(t) = ∫ t

٠ u(t)
⇒ ٠٫٢۵CT

ψ(t) + ∫ t

٠ C
T
ψ(t)dt = ∫ t

٠ d
T
ψ(t)dt

(٣۴ . ١)

ͬ کنیم: م استفاده (٣۵ . ١) معادله از

∫ t

٠ ψ۶×١(t)dt = P۶×۶ψ۶(t) (٣۵ . ١)
داریم:

٠٫٢۵CT
ψ(t) + C

T
Pψ(t) = dT pψ(t).

بنابراین: است. برقرار [٠, ١) بازه ی در t هر برای بالا عبارت
٠٫٢۵CT + C

T
P = dTP (٣۶ . ١)



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ١٨
نوشت: زیر صورت به ͬ توان م را (٣۶ . ١) معادله

QC = D (١ . ٣٧)
است. ۶ × ۶ همانͬ ماتریس I و است D = P T

d و Q = ٠٫٢۵I + P
T که

است: زیر صورت به d بردار dT = ١
٢ ٣٢

[١, ٠, ٠, ١, ٠, ٠] و (١ . ٣٣) به باتوجه

d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

١
٢ ٣٢
٠
٠
١

٢ ٣٢
٠
٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
داریم: (۵ . ١) بخش در شده بیان مبحث به توجه با

P۶×۶ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣L٣×٣ F٣×٣
O٣×٣ L٣×٣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (١ . ٣٨)

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

١ ٢ ١٢
۶ ١٢

٠
−٣ ١٢

٣ ٠ ٣ ١٢
٣×۵ ١٢

٠ − ۵ ١٢
۵×٣ ١٢

٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(١ . ٣٩)

F٣×٣ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
٢ ٠ ٠
٠ ٠ ٠
٠ ٠ ٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ (۴١ . ٠)

P۶×۶ = ١
۴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

١ ٢ ١٢
۶ ١٢

٠ ٢ ٠ ٠
−٣ ١٢

٣ ٠ ٣ ١٢
٣×۵ ١٢

٠ ٠ ٠
٠ − ۵ ١٢

۵×٣ ١٢
٠ ٠ ٠ ٠

٠ ٠ ٠ ١ ٢ ١٢
۶ ١٢

٠
٠ ٠ ٠ −٣ ١٢

٣ ٠ ٣ ١٢
٣×۵ ١٢

٠ ٠ ٠ ٠ − ۵ ١٢
۵×٣ ١٢

٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(۴١ . ١)



١٩ لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های
پس

P
T = ١

۴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

١ −٣ ١٢
٣ ٠ ٠ ٠ ٠

٢ ١٢
۶ ١٢

٠ − ۵ ١٢
۵×٣ ١٢

٠ ٠ ٠
٠ ٣ ١٢

٣×۵ ١٢
٠ ٠ ٠ ٠

٢ ٠ ٠ ١ −٣ ١٢
٣ ٠

٠ ٠ ٠ ٢ ١٢
۶ ١٢

٠ − ۵ ١٢
۵×٣ ١٢

٠ ٠ ٠ ٠ ٣ ١٢
٣×۵ ١٢

٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(۴١ . ٢)

داریم: D و Q برای شده تعریف معادله های به توجه با
(۴١ . ٣)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

٠٫٢۵ ٠ ٠ ٠ ٠ ٠
٠ ٠٫٢۵ ٠ ٠ ٠ ٠
٠ ٠ ٠٫٢۵ ٠ ٠ ٠
٠ ٠ ٠ ٠٫٢۵ ٠ ٠
٠ ٠ ٠ ٠ ٠٫٢۵ ٠
٠ ٠ ٠ ٠ ٠ ٠٫٢۵

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

١
۴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

١ −٣ ١٢
٣ ٠ ٠ ٠ ٠

٢ ١٢
۶ ١٢

٠ − ۵ ١٢
۵×٣ ١٢

٠ ٠ ٠
٠ ٣ ١٢

٣×۵ ١٢
٠ ٠ ٠ ٠

٢ ٠ ٠ ١ −٣ ١٢
٣ ٠

٠ ٠ ٠ ٢ ١٢
۶ ١٢

٠ − ۵ ١٢
۵×٣ ١٢

٠ ٠ ٠ ٠ ٣ ١٢
٣×۵ ١٢

٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

١
۴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

١ −٣ ١٢
٣ ٠ ٠ ٠ ٠

٢ ١٢
۶ ١٢

٠ − ۵ ١٢
۵×٣ ١٢

٠ ٠ ٠
٠ ٣ ١٢

٣×۵ ١٢
٠ ٠ ٠ ٠

٢ ٠ ٠ ١ −٣ ١٢
٣ ٠

٠ ٠ ٠ ٢ ١٢
۶ ١٢

٠ − ۵ ١٢
۵×٣ ١٢

٠ ٠ ٠ ٠ ٣ ١٢
٣×۵ ١٢

٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

١
٢ ٣٢
٠
٠
١

٢ ٣٢
٠
٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ (۴۴ . ١)

محاسبه زیر صورت به C بردار متلب افزار نرم از استفاده با و (١ . ٣٧) معادله حل با اکنون



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ٢٠
ͬ شود: م

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

٠٫٣۵٣۶
٠٫٢۵۴١

٠
١٫٠۶٠٧
٠٫٢٠۴١

٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(۴۵ . ١)

چبیشف و لژاندر ΁موج با ١ . ۵ . ١ مثال تقریبی و دقیق جواب مطلق خطای :١ . ١ جدول
t Lg Chb Lg Chb Lg Chb

M = ٣ M = ٣ M = ۴ M = ۴ M = ۵ M = ۵
٠٫٠ ٠٫٢٧٠ ٠٫٠١٢٧ ٠٫٠٠٣٨ ٠٫٠٠٢١ ٠٫۴١١۴e − ٣ ٠٫٢٠٣٨e − ٣
٠٫١ ٠٫٠١٠٨ ٠٫٠١۴۵ ٠٫٠٠١۴ ٠٫٠٠١٣٢ ٠٫٠۴١١e − ٣ ٠٫٠٢٠٨e − ٣
٠٫٢ ٠٫٠٠۴٧ ٠٫٠٠٣٨ ٠٫٠٠١١ ٠٫٠٠١٧ ٠٫١١١۴e − ٣ ٠٫١۴۶٧e − ٣
٠٫٩ ٠٫٠٠١٠ ٠٫٠٠١۴ ٠٫٠٠٠٢ ٠٫٠٠٠٢ ٠٫٠١١٣e − ٣ ٠٫٠٠۵٢e − ٣
١٫٠ ٠٫٠٠٣۶ ٠٫٠٠٣١ ٠٫٠٠٠۵ ٠٫٠٠٠٣ ٠٫٠۵۵٧e − ٣ ٠٫٠٣٠١e − ٣

ب·یرید. نظر در را زیر صفر مرتبه از ١٩ بسل دیفرانسیل معادله [٢] .٢ . ۵ . ١ مثال
xy

′′ + y
′ + xy = ٠, y(٠) = ١, y

′(٠) = ٠ (۴۶ . ١)
ͬ شود: م تعریف زیر J٠(x) صورت به صفر مرتبه از بسل تابع برحسب جواب

J٠(x) = ∞

∑
q=٠

(−١)q(q!)٢ (x٢)٢q
.

ͬ کنیم. م حل را مسأله همین k = ٢ و M = ٣ با لژاندر موج΁ های از استفاده با اینجا در
ͬ شود: م تعریف زیر صورت به که است مجهول تابعͬ y′′(x) ͬ کنیم م فرض

y
′′(x) = CT

ψ(x). (۴١ . ٧)
(٣۵ . ١) از استفاده با

∫ t

٠ ψ۶×١(t)dt = P۶×۶ψ۶(t) (۴١ . ٨)
19Bessel



٢١ لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های
و ψ۶(t) = [ψ٠١, ψ١١, ψ١٢, ψ٢٠, ψ٢١, ψ٢٢]T که

P۶×۶ = ١
۴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

١ ٢ ١٢
۶ ١٢

٠ ٢ ٠ ٠
−٣ ١٢

٣ ٠ ٣ ١٢
٣×۵ ١٢

٠ ٠ ٠
٠ − ۵ ١٢

۵×٣ ١٢
٠ ٠ ٠ ٠

٠ ٠ ٠ ١ ٢ ١٢
۶ ١٢

٠
٠ ٠ ٠ −٣ ١٢

٣ ٠ ٣ ١٢
٣×۵ ١٢

٠ ٠ ٠ ٠ − ۵ ١٢
۵×٣ ١٢

٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(۴١ . ٩)

که

P۶×۶ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣L٣×٣ F٣×٣

٣×٠٣ L٣×٣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (۵١ . ٠)
،

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

١ ٢ ١٢
۶ ١٢

٠
−٣ ١٢

٣ ٠ ٣ ١٢
٣×۵ ١٢

٠ − ۵ ١٢
۵×٣ ١٢

٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(۵١ . ١)

،

F٣×٣ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
٢ ٠ ٠
٠ ٠ ٠
٠ ٠ ٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(۵١ . ٢)

داریم: (۴۶ . ١) در مرزی شرایط از .
y
′(x) = CT

Pψ(x), y(x) = CT
P

٢
ψ(x) + d

T
ψ(x) (۵١ . ٣)

شده است. آورده (١ . ٣٣) در d که
ͬ نویسیم: م زیر صورت به را x همچنین

x = ١
٢ ۵٢

[١, ١
٣ ١٢

, ٠,٣, ١
٣ ١٢

, ٠]Tψ(x) = eTψ(x) (۵۴ . ١)

داریم: (۴۶ . ١) در (۵١ . ٣) و (۴١ . ٧) جای·ذاری با
e
T
ψ(x)ψT (x)C + C

T
Pψ(x) + e

T
ψ(x)ψT (x)P ٢T

C + e
T
ψ(x)ψT (x)d = ٠ (۵۵ . ١)



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ٢٢
که

C = [c٠١, c١١,⋯, c١M−١, c٢٠,⋯, c٢M−١,⋯, c٢k−١M−١]T
ψ(t) = [ψ١٠(t), ψ١١(t),⋯, ψ١M−١(t), ψ٢٠(t),⋯, ψ٢k−١M−١(t)]T

و M = ٣ شده، محاسبه روش دادن نشان برای است. (٢k−١
M)× (٢k−١

M) ماتریس ΁ی C̃ و
ͬ آوریم: م به دست (١ . ٣٠) در ψ(x) از استفاده با و ͬ کنیم م انتخاب را K = ٢

ψ(x)ψT (x) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ١٠ψ١٠ ψ١٠ψ١١ ψ١٠ψ١٢ ψ١٠ψ٢٠ ψ١٠ψ٢١ ψ١٠ψ٢٢
ψ١١ψ١٠ ψ١١ψ١١ ψ١١ψ١٢ ψ١١ψ٢٠ ψ١١ψ٢١ ψ١١ψ٢٢
ψ١٢ψ١٠ ψ١٢ψ١١ ψ١٢ψ١٢ ψ١٢ψ٢٠ ψ١٢ψ٢١ ψ١٢ψ٢٢
ψ٢٠ψ١٠ ψ٢٠ψ١١ ψ٢٠ψ١٢ ψ٢٠ψ٢٠ ψ٢٠ψ٢١ ψ٢٠ψ٢٢
ψ٢١ψ١٠ ψ٢١ψ١١ ψ٢١ψ١٢ ψ٢١ψ٢٠ ψ٢١ψ٢١ ψ٢١ψ٢٢
ψ٢٢ψ١٠ ψ٢٢ψ١١ ψ٢٢ψ١٢ ψ٢٢ψ٢٠ ψ٢٢ψ٢١ ψ٢٢ψ٢٢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(۵۶ . ١)

ψi١ψi١ = ٢٢)٣٢٢٢
x− î)٢ = ( ۴

١٠ ١٢
ψi٢+٢ ١٢ψi٠) همچنین ψijψkl = ٠ ،i ≠ kاگر داریم: (۵۶ . ١) در

داریم: آنگاه داریم نگه را ψ(x) عناصر فقط اگر ψi٠ψij = ٢ ١٢ψij و

(۵١ . ٧)

ψψ
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

٢ ١٢ψ١٠ ٢ ١٢ψ١١ ٢ ١٢ψ١٢ ٠ ٠ ٠
٢ ١٢ψ١١ ٢ ١٢ψ١٠ + ۴

١٠ ١٢
ψ١١ ۴

١٠ ١٢
ψ١١ ٠ ٠ ٠

٢ ١٢ψ١٢ ۴
١٠ ١٢

ψ١١ ٢ ١٢ψ١٠ + ٢٠
١٠×٧ ١٢

ψ١٢ ٠ ٠ ٠
٠ ٠ ٠ ٢ ١٢ψ٢٠ ٢ ١٢ψ٢١ ٢ ١٢ψ٢٢
٠ ٠ ٠ ٢ ١٢ψ٢١ ٢ ١٢ψ٢٠ + ۴

١٠ ١٢
ψ٢٢ ۴

١٠ ١٢
ψ٢١

٠ ٠ ٠ ٢ ١٢ψ٢٢ ۴
١٠ ١٢

ψ٢١ ٢ ١٢ψ٢٠ + ٢٠
١٠×٧ ١٢

ψ٢٢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
داریم: CT

ψ(x)ψT (x) = ψT (x)C̃ در C̃(۶×۶) ماتریس و (١ . ٢٩) در C بردار از استفاده با
C̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣B١ ٠
٠ B٢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (۵١ . ٨)
است: زیر به صورت ٣ × ٣ ماتریس i = ١,٢ ،Bi که

Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
٢ ١٢ ci٠ ٢ ١٢ ci١ ٢ ١٢ ci٢
٢ ١٢ ci١ ٢ ١٢ ci٠ + ۴

١٠ ١٢
ci٢ ۴

١٠ ١٢
ci١

٢ ١٢ ci٢ ۴
١٠ ١٢

ci١ ٢ ١٢ ci٠ + ٢٠
١٠×٧ ١٢

ci٢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(۵١ . ٩)



٢٣ لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های
داریم: (۵۵ . ١) از

ψ
T (x)ẼC + ψ

T (x)P T
C + ψ

T (x)ẼP ٢T + ψ
T (x)Ẽd = ٠,

یا
ẼC + P

T
C + ẼP

٢T
C + Ẽd = ٠ (۶١ . ٠)

نوشت: زیر صورت به ͬ توان م (۵۵ . ١) آخر قسمت به توجه با را Ẽ که
Ẽ = eTψ(x)

ͬ آید. م دست زیر صورت به C (۶١ . ٠) معادله در P T و d و Ẽ جای·ذاری با سپس

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−٠٫١٧١۴ −٠٫٧٩٧٢ −٠٫٣۵٣۶ −٠٫٣۵٣۶ −٠٫٣۵٣۶ −٠٫٣۵٣۶
٠ ٠ ٠ ٠ ٠ ٠
٠ ٠ ٠ ٠ ٠ ٠

−٠٫١٨۴۵ −٠٫٣۵٣۶ −٠٫٣۵٣۶ −٠٫٢۵٣٣ −٠٫۴٢۶٨ −٠٫٣۵٣۶
٠ ٠ ٠ ٠ ٠ ٠
٠ ٠ ٠ ٠ ٠ ٠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
و لژاندر ΁موج با ٢ . ۵ . ١ مثال تقریبی و دقیق جواب مطلق خطای :١ . ٢ جدول

چبیشف
t لژاندر چبیشف

٠٫٠ ٠٫٩۶٣ × ٣−١٠ ٠٫٠۶٠١ − ٣
٠٫١ ٠٫٠٢٨٧ − ٣ ٠٫٠۶١۵ − ٣
٠٫٢ ٠٫٠٣۶٠ − ٣ ٠٫٠۵٩٩ − ٣
٠٫٣ ٠٫٠١٨٣ − ٣ ٠٫٠٠٩٠ − ٣
٠٫۴ ٠٫٠۴١٢ − ٣ ٠٫٠۵٢۴ − ٣
٠٫۵ ٠٫٢۶٩۵ − ٣ ٠٫١۶٩۵ − ٣
٠٫۶ ٠٫٠٩٢٢ − ٣ ٠٫١۶٠٢ − ٣
٠٫٧ ٠٫٠٨٢۶ − ٣ ٠٫١١۴٠ − ٣
٠٫٨ ٠٫٠۶٨٨ − ٣ ٠٫٠٧٨۴ − ٣
٠٫٩ ٠٫١٠٢۶ − ٣ ٠٫١۵٧٧ − ٣
١٫٠ ٠٫٢۶٨٩ − ٣ ٠٫١۶٣۶ − ٣



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ٢۴

چپیشف موج΁ های برای انتگرال عمل·ر ماتریس ۶ . ١
متغیره دو و ΁ی توابع برای عمل·رانتگرال های ماتریس ١ . ۶ . ١

٢k−١
M بعد از ماتریسͬ که ͬ شود م تعریف زیر صورت به ψc(x) چبیشف بعدی ΁ی ΁بردارموج

ͬ دهد: م نشان را

∫ x

٠ Ψ
c(ς)dς =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ x

٠ ψc٠(ς)dς
∫ x

٠ ψc١(ς)dς
∫ x

٠ ψc٢(ς)dς
⋮

∫ x

٠ ψc
N(ς)dς

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b٠(x)
b١(x)
b٢(x)

⋮

bN(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= P c

xψ
c(x) (۶١ . ١)

داریم: بنابراین
∫ x

٠ Ψ
c(ς)dς = P c

xψ
c(x)

داریم: t متغیر برای همچنین

∫ t

٠ Ψ
c(ς)dς =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ t

٠ ψc٠(ς)dς
∫ t

٠ ψc١(ς)dς
∫ t

٠ ψc٢(ς)dς
⋮

∫ t

٠ ψc
N(ς)dς

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a٠(t)
a١(t)
a٢(t)
⋮

aN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= P c

t ψ
c(t) (۶١ . ٢)

P
c
t = (I ⊗ P

c) که
(١ . ٢٢) معادله در تعریف شده بعدی دو ΁موج Ψ

C(x, t) = Ψ
C(x)⊗Ψ

C(t) کنید فرض حال
نوشت: زیر به صورت ͬ توان م را چپیشف ΁موج انتگرال ماتریس  باشد.

∫ x

٠ Ψ
C(ς, t)dς = PC

x Ψ
C(x, t),

∫ x

٠ Ψ
c(ς, t)dς = ∫ x

٠ (Ψc(ς)⊗Ψ
c(t)dς) = ( ∫ x

٠ Ψ(ς)dς)⊗Ψ
c(t)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ x

٠ ψc٠(ς)dς
∫ x

٠ ψc١(ς)dς
∫ x

٠ ψc٢(ς)dς
⋮

∫ x

٠ ψc
N(ς)dς

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗Ψ

c(t) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b٠(x)
b١(x)
b٢(x)

⋮

bN(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗Ψ

c(t) =

≃ P c
Ψ

c(x)⊗ IΨ
c(t) = (P c ⊗ I)(Ψc(x)⊗Ψ

c(t)) = P c
xΨ

c(x, t)



٢۵ چپیشف موج΁ های برای انتگرال عمل·ر ماتریس
از ماتریسͬ PC و است ٢K−١٢K

′−١
MM

′ × ٢K−١٢K
′−١
MM

′ بعد از ماتریسͬ PC
x = PC ⊗ I که

.[٩] است زیر صورت به ٢K−١
M بعد

P
c = ١

٢k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
L F F ⋯ F

O L F ⋯ F

⋮ O ⋱ ⋱ F

O O ⋯ O L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

آن در که

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

١ ٢√١ ٠ ٠ ٠ ⋯ ٠
−

√٢۴ ٠ ١۴ ٠ ٠ ⋯ ٠
⋮ ⋱ ⋱ ⋱ ⋮√٢٢ (−١)r( ١
r−٢ − ١

r
) ⋯ − ١٢(r−٢) ٠ ١٢r ⋯ ٠

⋮ ⋯ ⋱ ⋱ ⋱ ⋯ ⋮√٢٢ (−١)M( ١
M−١ − ١

M
) ٠ ٠ ٠ ⋯ − ١٢(M−٢)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (۶١ . ٣)

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

٢ ٠ ⋯ ٠
٠ ٠ ⋯ ٠

−٢٣√٢ ٠ ⋯ ٠
⋮ ⋮ ⋱ ⋮√٢٢ ((١−)−١r

r
− (١−)−١r−٢

r−٢ ) ٠ ⋯ ٠
⋮ ⋮ ⋱ ⋮√٢٢ ((١−)−١M

M
− (١−)−١M−٢

M−٢ ) ٠ ⋯ ٠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (۶۴ . ١)

[٣] . است M ×M مرتبه از صفر ماتریس صفرنیز و
ͬ آید. م به دست زیر صورت به t متغیر برای انتگرال عمل·ر ماتریس همچنین

∫ t

٠ ΨC(ς, t)dς = PC
t Ψ

C(x, t),
،

∫ t

٠ Ψc(x, ς)dς = ∫ t

٠(Ψc(x)⊗Ψ
c(ς)dς) = Ψ

c(x)⊗ ( ∫ t

٠ Ψc(ς)dς)

= Ψ(x)⊗
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ t

٠ ψc٠(ς)dς
∫ t

٠ ψc١(ς)dς
∫ t

٠ ψc٢(ς)dς
⋮

∫ t

٠ ψc
N(ς)dς

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Ψ(x)⊗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a٠(t)
a١(t)
a٢(t)
⋮

aN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

، ≃ IΨc(x)⊗ P
c
Ψ

c(t) = (I ⊗ P
c)(Ψc(x)⊗Ψ

c(t)) = P c
t Ψ

c(x, t)



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ٢۶
P

C
t = I ⊗ P

C که

چندمتغیره توابع برای چبیشف انتگرال عمل·ر ماتریس  ٢ . ۶ . ١
ͬ کنیم م تعریف زیر صورت به را متغیره چند توابع برای ψc(x, t) چبیشف عمل·رانتگرال ماتریس 

:[١٢]
∫ t

٠ ∫ x

٠ Ψ
C(x′, t′)dxdt = PC

xtΨ
C(x, t),

∫ t

٠ ∫ x

٠ Ψ
c(x′, t′)dxdt = ∫ t

٠ ∫ x

٠ Ψ
c(x′)⊗Ψ

c(t′)dx′dt′
= (∫ x

٠ Ψ
c(x′)dx′)⊗ (∫ t

٠ Ψ
c(t′)dt′)

= P c
Ψ

c(x)⊗ P
c
Ψ

c(t)
= (P c ⊗ P

c)Ψc(x, t).
داریم: بنابراین

∫ t

٠ ∫ x

٠ Ψ
c(x′, t′)dxdt = P c

xtΨ
c(x, t),

آن در که
P

c
xt = P

c ⊗ P
c
.

مثال ها ٣ . ۶ . ١
: ب·یرید نظر در را زیر انتگرال معادله [٣] .١ . ۶ . ١ مثال

(۶۵ . ١)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
∫ x

٠ ((۵ + x − t)u(t) + (x
٢

٢ + t)v(t)w(t))dt = ١۴٨x
۶ + ١٩٢٧٠x

۵ + ١٩٧٢x
۴ + ٧۶x

٣ + x
٢ + ۵x,

∫ x

٠ ((x٢
٢ + t)u(t) + (٣ + x − t)v(t) + ١۴(x٢ − t

٢)w(t))dt = ١٢۴x
۵ + ٣۵٢٨٨x

۴ + ١٧١٨x
٣ + ۵۴x

٢ + ٩٢x,
∫ x

٠ (tu(t)v(t) − xtv
٢(t) − ۵w(t))dt = − ١۵۴x

٧ + ١٧٢x
۶ − ١۴x

۵ + ١٧٩۶x
۴ − ٩٨x

٣ − ١٢x
٢ − ١٠٣ x, ٠ ≤ x ≤ ١.



٢٧ چپیشف موج΁ های برای انتگرال عمل·ر ماتریس
΁موج روش از استفاده با .w(x) = ١٢x+ ٢٣ ،v(x) = ١٣x

٢ + ٣٢ ،u(x) = ١۴x
٢ + ١ دقیق جواب با

ͬ آید. م به دست زیر نتایج حاصل، غیرخطͬ دستگاه حل و چبیشف
C١ =[١٫٣٧٠٩٠٩۶٠٨, ٠٫١١٠٧٧۴۴٩١٠, ٠٫٠٢٧٩۶٠٧١۵٠٫٣٩٠−,٨٣۴٨٨٣٣۶٣ × ١٠−۵

,

− ٠٫٣٨۴٩١٢۵٠٣٨ × ١٠−۵
,−٠٫٢٩٠١١٩٠۶٣ × ١٠−۵]T ,

C٢ =[٢٫٠٣۶۶٣٧٠٩٨, ٠٫١۴٧٧٠۶٨٠۴۵, ٠٫٠٣۶٩٢٨۴٢۶٠٫٢٣١−,١١۵٢٠١۵۴۶ × ١٠−۵
,

− ٠٫٢١٣٩٣۶٨٢٩۶ × ١٠−۵
, ٠٫١۵٢٨۵۵٩٧۴٧ × ١٠−۵]T ,

C٣ =[١٫١۴٨٨٧۵۴٩٠, ٠٫٢٢١۵۶۴٢٧٨٨, ٠٫۵٩۴۴۴۴٢٨١٧ × ١٠−۵
, ٠٫٧۵٩٩٠١۶٣٠٨ × ١٠−۵

,

٠٫۶٢۵١۵٨١٨١٢ × ١٠−۵
, ٠٫٨۶٣٨٩٠٧۵۵٠ × ١٠−۵]T .

است: زیر صورت به تقریبی جواب بنابراین
u(x) ≃CT١ ψ(x) = −٠٫٠٠١۶٧۶١١٠١٢٢x۵ + ٠٫٠٠٣۶٣۴٣٣۶۴٢۴x۴ − ٠٫٠٠٢۶٩۵۶١١١٨٠x٣

+ ٠٫٢۵٠٧٩١٠۴٩۴x٢ − ٠٫٠٠٠٠٧٧٧۶٨۴۵٨۵٨x + ١٫٠٠٠٠٠١١۵٨,
v(x) ≃CT٢ ψ(x) = ٠٫٠٠٠٨٨٣٠٩۵٠٢۶٧x۵ − ٠٫٠٠١٨٩٨٧۴٣١٨۴x۴ + ٠٫٠٠١٣٩٧٣٧٩٢١١x٣

+ ٠٫٣٣٢٩٢۵٠۶٢٢x٢ + ٠٫٠٠٠٠۴٠۴۴٣٣١١٨٣x + ١٫۴٩٩٩٩٩٣۵٨,
w(x) ≃CT٣ ψ(x) = ٠٫٠٠۴٩٩٠٩۵٧٢١٢x۵ − ٠٫٠١١۵٧۴۴۶١٢۴x۴ + ٠٫٠٠٩٣٨۶٢۴١۶٠٠x٣

− ٠٫٠٠٣١٢٨۴٣٩٣٣١x٢ + ٠٫۵٠٠٣٧٩٣٧٩۶x + ٠٫۶۶۶۶۵۶٩٣٨۵.

نمودار و شده اند ارائه ١ . ٣ جدول در مطلق خطاهای و تقریبی دقیق، جوابهای مقادیر
است. شده داده نشان ١ . ١ ش΄ل در تقریبی جواب و دقیق جواب



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ٢٨

جدول١ . ٣:نتایجعددیمثال١ . ۶ . ١
x

(uدقیق)
(uچبیشف)

(u(x))خطای
(vدقیق)

(vچبیشف)
(v(x))خطای

(w
(دقیق

(w
(چبیشف

(w(x))خطای
٠

١
١٫٠٠٠٠٠

٠٫٠٠٠٠٠١١۵٨
١٫۵

١٫۴٩٩٩٩
٠٫٠٠٠٠٠٠۶۴٢

٠٫۶۶۶۶۶
٠٫۶۶۶۶۵

٠٫٠٠٠٠٠٩٧٢٨٢
٠٫٢

١٫٠١
١٫٠١٠٠٠

٠٫٠٠٠٠٠٠٩۵٩٩
١٫۵١٣٣٣

١٫۵١٣٣٣
٠٫٠٠٠٠٠٠۴۶٠۵

٠٫٧۶۶۶۶
٠٫٧۶۶۶۵

٠٫٠٠٠٠٠٠٨٢١٩
٠٫۴

١٫٠۴
١٫٠٣٩٩٩

٠٫٠٠٠٠٠٠٠٢۴٩
١٫۵۵٣٣٣

١٫۵۵٣٣٣
٠٫٠٠٠٠٠٠٠٧٩٢

٠٫٨۶۶۶۶
٠٫٨۶۶۶۶

٠٫٠٠٠٠٠٣٠٠۵٩
٠٫۶

١٫٠٩
١٫٠٨٩٩٩

٠٫٠٠٠٠٠٢٣٠١۶
١٫۶٢

١٫۶٢٠٠٠
٠٫٠٠٠٠٠١٠٧٢۶

٠٫٩۶۶۶۶
٠٫٩۶۶۶٧

٠٫٠٠٠٠٠٧١٣۶٢
٠٫٨

١٫١۶
١٫١۶٠٠٠

٠٫٠٠٠٠٠۴۴۵٨٣
١٫٧١٣٣٣

١٫٧١٣٣٣
٠٫٠٠٠٠٠٢۴٧۵٣

١٫٠۶۶۶۶
١٫٠۶۶۶۵

٠٫٠٠٠٠٠٨١٣٢۴
١

١٫٢۵
١٫٢۴٩٩٧

٠٫٠٠٠٠٢٢٩۴۵٩
١٫٨٣٣٣٣

١٫٨٣٣۴۶
٠٫٠٠٠٠١٣٢۶١٢

١٫١۶۶۶۶
١٫١۶۶٧١

٠٫٠٠٠٠۴٣٩۴٩۶



٢٩ چپیشف موج΁ های برای انتگرال عمل·ر ماتریس

١ . ۶ . ١ مثال تقریبی و دقیق جواب های مقایسه :١ . ١ ش΄ل

نظر در v(x) = x و u(x) = x٢ اولیه جواب با را زیر ΁ی درجه از ولترا معادله [٣] .٢ . ۶ . ١ مثال
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ب·یرید.

∫ x

٠ (١ − x
٢ + t

٢)(u(t) + v
٣(t))dt = − ١١٢x

۶ − ٢١۵x
۵ + ١۴x

۴ + ١٣x
٣
.

∫ x

٠ (۵ + x − t)(u٣(t) − v(t))dt = ١۵۶x
٨ + ۵٧x

٧ − ١۶x
٣ − ۵٢x

٢
. ٠ ≤ x ≤ ١,

(۶۶ . ١)



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ٣٠
کنید فرض

u(x) ≃ CT١ ψ(x), v(x) ≃ CT٢ ψ(x).
u

٣(x) ≃ Y T١ ψ(x), v
٣(x) ≃ Y T٢ ψ(x).

−
١

١٢x
۶ −

٢
١۵x

۵ +
١
۴x

۴ +
١
٣x

٣ ≃ F T١ ψ(x).
١

۵۶x
۶ +

۵
٧x

٧ −
١
۶x

٣ −
۵
٢x

٢ ≃ F T٢ ψ(x).(١ − x
٢ + t

٢) ≃ ψT (x)K١ψ(t).(۵ + x − t) ≃ ψT (x)K٢ψ(t).
ͬ شود: م تبدیل زیر صورت به اول ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧معادله

F
T١ ψ(x) = ψT (x)K١ ∫ x

٠ ψ(t)ψT (t)(C١ + Y٢)dt = ψT (x)K١Ỹ١Pψ(x),
F

T٢ ψ(x) = ψT (x)K٢ ∫ x

٠ ψ(t)ψT (t)(Y١ − C٢)dt = ψT (x)K٢Ỹ٢Pψ(x). (۶١ . ٧)

∫ ١
٠ (.)dx انتگرال طرفین از سپس ͬ کنیم، م ضرب (۶۶ . ١) سیستم طرف دو در را Wn(x)ψT (x)

ͬ آیند. م دست به زیر به صورت C٢ و C١ عناصر بردار ͬ شود. م حل سیستم و ͬ گیریم م

C١ = [٠٫۴٧٠٠١٢١۵١٣, ٠٫۴۴٣١۴٠٣٢۶٨, ٠٫١١٠٨٠٣٠٠٢٩, ٠٫٠٠٠٠٢٣۴٢۶٨٩٧٧٠,
٠٫٠٠٠٠٣٢۴٨٣٣٩۵۶٠, ٠٫٠٠٠٠۴٣۶١۶٢١۵۵٧]T ,
C٢ = [٠۶٢۶۶٧۵٠٢۴٢., ٠٫۴۴٣٠۶٩٩٨٣٩, ٠٫٠٠٠٠٢۴٧۵٣٣٨۵٨۴,−٠٫٠٠٠٠٣٩۵٠٩۵۴٨٣٢,
٠٫٠٠٠٠٢۶۶٢٩۵۶٠٫٠٠٠٠−,١١١۴٩٩٣٧۶۴١٨۵]T .

ͬ شود: م حاصل زیر جواب های
u(x) ≃ CT١ ψ(x) = ٠٫٠٢۵١٩٨۴٠٢٠۴x۵ − ٠٫٠۵٨٣٠۴٣۴۶٠٠x۴ + ٠٫٠۴۶۵٨۴٠٨٧٧٨x٣

+ ٠٫٩٨۵١٣١٨٧١٣x٢ + ٠٫٠٠١۶٠١٩١٠٩۵۴x − ٠٫٠٠٠٠٢۶٠٧٠٣۵۴٣٧,

v(x) ≃ CT٢ ψ(x) = −٠٫٠٢٨٨۵٠۴٨٠۴٩x۵ + ٠٫٠٧۵٩٧٢٣٧۶١۶x۴ − ٠٫٠٧٢٢٢٩٣٩٢٠۵x٣

+ ٠٫٠٢٩٧١٠۵٣٠٣٠x٢ + ٠٫٩٩۵٠٩۶٩٨۴٣x − ٠٫٠٠٠٢٢٢٢٩۶٧٣٧٢.
دقیق جواب های نمودار و x مقادیر از برخͬ در مطلق خطاهای و جواب مقادیر ۴ . ١ جدول در
آمده بدست جواب های مقایسه شده است. داده نشان ؟؟ ش΄ل در تقریب و ش΄ل در تقریبی و
خطای که ͬ دهد م نشان را روش این از نتایجͬ و [١۵] در ٢٠ آدومیان تجزیه روش از استفاده با

است. آدومیان تجزیه روش مطلق خطای از کمتر چبیشف ΁موج روش مطلق
20Adomian



٣١ چپیشف موج΁ های برای انتگرال عمل·ر ماتریس

٢ . ۶ . ١ مثال تقریبی و دقیق جواب های مقایسه :١ . ٢ ش΄ل

مثال١ . ۶ . ٢ عددی نتایج :۴ . ١ جدول

x (u (دقیق (u (چبیشف (u(x))خطای (v (دقیق (v (چبیشف (v(x))خطای
٠ ٠ −٠٫٠٠٠٠٢۶٠٧٠٣ ٠٫٠٠٠٠٢۶٠٧٠٣۵ ٠ ٠٫٠٠٠٢٢٢٢٩۶٧٣٧٢ ٠٫٠٠٠٢٢٢٢٩۶٧٣٧٢

۵۴٣٧ ۴٣٧
٠٫٢ ٠٫٠۴ ٠٫٠٣٩٩٨٧٠۵٩٣ ٠٫٠٠٠٠١٢٩۶۴٠٧۴٣٧ ٠٫٢ ٠٫١٩٩٩۶۴۶٠٣٠ ٠٫٠٠٠٠٣۵٣٩٩۶۶٨٣۶
٠٫۴ ٠٫١۶ ٠٫١۵٩٩۵٢۶١۵۴ ٠٫٠٠٠٠١٧٣٨۴۵۶٧٧٧ ٠٫۴ ٠٫۴٠٠٠۴١۵۵٨١ ٠٫٠٠٠٠۴١۵۵٨١١٩٧
٠٫۵ ٠٫٣۶ ٠٫٣۶٠٠۴٧٨٩٧۴ ٠٫٠٠٠٠۴٧٨٩٧٣۴٧٠٣ ٠٫۶ ٠٫۵٩٩٩٧٧٣٣۶١ ٠٫٠٠٠٠٢٢۶۶٣٨٧٠٣
٠٫٨ ٠٫۶۴ ٠٫۶٣٩٩۶۶۴۶١٢ ٠٫٠٠٠٠٣٣۵٣٨٧۵٩٣٧ ٠٫٨ ٠٫٧٩٩٩٩٧٧٣۴۶ ٠٫٠٠٠٠٠٢٢۶۵٣٣٧٣
١ ١ ١٫٠٠٠١٨۵٨۵۶ ٠٫٠٠٠١٨۵٨۵۵٧١٩۶ ١ ٠٫٩٩٩٩٢٢٣۴٩ ٠٫٠٠٠٠٧٧۶٨۵٠۴٧٣



چبیشف و لژاندر موج΁ های برای انتگرال عمل·ر ماتریس های ٣٢

نتیجه گیری ١ . ٧
نیست. پذیر ام΄ان همیشه جزئͬ دیفرانسیل معادلات ΁کلاسی جواب های آوردن دست به
فصل این در ͬ شود. م استفاده تقریبی روش های از معادلات، از دسته این حل برای بنابراین
انتگرال عمل·ر ماتریس های معرفͬ با سپس پرداختیم، چبیشف و لژاندر موج΁ های معرفͬ به
سپس شد. ارائه ماتریس ها این محاسبه برای کلͬ ش΄ل ΁ی چبیشف و لژاندر موج΁ های برای
حل در آن ها عمل·ر ماتریس های با همراه چبیشف و لژاندر عمل·ر ماتریس های پایه های کاربرد
این کارایی اثبات برای عددی مثال های پایان در گرفت. قرار بررسͬ مورد دیفرانسیل معادلات

است. شده ارائه روش



٢ فصل
برای خطا برآورد و آنالیزهم·رایی

جزئͬ مقداراولیه مسائل

مقدمه ٢ . ١
تخمین و هم·رایی آنالیز همچنین چبیشف، و لژاندر  ΁موج بسط هم·رایی به فصل این در
این بررسͬ برای ͬ پردازیم. م چبیشف و لژاندر  ΁موج از استفاده با مربوطه تقریب خطای

است. شده استفاده لم و قضیه چندین از شده داده شرایط تحت روش ها

لژاندر ΁موج بسط هم·رایی ٢ . ٢
به طوری باشد، کراندار دوم مرتبه مشتق دارای و f ∈ L

٠])٢, ١]) تابع اگر [٨] .٢ . ٢ . ١ قضیه
که

f(x) تابع به ی΄نواخت طور به f(x) تابع لژاندر ΁موج سری آنگاه ،∣f ′′(x)∣ ≤M
یعنͬ: هم·راست،

f(x) = ∞

∑
n=٠

∞

∑
m=٠

CnmΨnm(x),
٣٣



جزئͬ مقداراولیه مسائل برای خطا برآورد و آنالیزهم·رایی ٣۴
.Cnm =< f(x),Ψnm(x) > آن در که

برهان.

Cnm = ∫ ١
٠ f(x)Ψn,m(x)dx = ∫

n̂+١
٢k

n̂−١
٢k

f(x) (٢m + ١
٢ ) ١٢ ٢ k٢Pm(٢k

x − n̂)dx
.dx = ١٢kdt پس ٢k

x − n̂ = t ͬ کنیم م فرض حال

Cnm = ∫ ١
−١ f ( n̂ + t

٢k
) (٢m + ١

٢ ) ١٢ ٢ k٢Pm(t) ١
٢k

dt

= (٢m + ١
٢k+١ ) ١٢ ∫ ١

−١ f ( n̂ + t

٢k
)Pm(t)dt

= ( ١
٢k+٢)١m + ١))

١٢ (f( n̂ + t

٢k
)(Pm+١(t) − Pm−١(t)) »»»»»»١−١

− ( ١
٢k+٢)١m + ١))

١٢
∫ ١
−١ f

′( n̂ + t

٢k
) ١
٢k

(Pm+١(t) − Pm−١(t)) dt
= −( ١

٢k+٢)١m + ١))
١٢
∫ ١
−١ f

′ ( n̂ + t

٢k
) ١

٢k
(Pm+١(t) − Pm−١(t))dt

= −( ١
٢٣k+٢)١m + ١))

١٢
∫ ١
−١ f

′ ( n̂ + t

٢k
) (Pm+١(t) − Pm−١(t))dt

= −( ١
٢٣k+٢)١m + ١))

١٢
∫ ١
−١ f

′ ( n̂ + t

٢k
) (Pm+١(t) − Pm−١(t))dt

− ( ١
٢٣k+٢)١m + ١))

١٢
∫ ١
−١ f

′ ( n̂ + t

٢k
)d (Pm+٢(t) − Pm(t)

٢m + ٣ −
Pm(t) − Pm−٢(t)

٢m − ١ )
= −( ١

٢٣k+٢)١m + ١))
١٢
∫ ١
−١ f

′′ ( n̂ + t

٢k
) (Pm+١(t) − Pm(t)

٢m + ٣ −
Pm(t) − Pm−٢(t)

٢m − ١ ) dt
= ( ١

٢۵k+٢)١m + ١))
١٢
∫ ١
−١ f

′′ ( n̂ + t

٢k
) (Pm+٢(t) − Pm(t)

٢m + ٣ −
Pm(t) − Pm−٢(t)

٢m − ١ ) dt



٣۵ لژاندر ΁موج بسط هم·رایی
ͬ گیریم. م نظر ∫«««««««««در ١

−١ f
′′ ( n̂ + t

٢k
) (Pm+٢(t) − Pm(t)

٢m + ٣ −
Pm(t) − Pm−٢(t)

٢m − ١ ) dt»»»»»»»»»
٢

=
»»»»»»»»»∫ ١

−١ f
′′ ( n̂ + t

٢k
) (٢m − ١)Pm+٢(t) − (۴m + ٢)Pm(t) + (٢m + ٣)Pm−٢)٢m + ٢)(٣m − ١) dt

»»»»»»»»»
٢

≤ ∫ ١
−١

»»»»»»»»f ′′ ( n̂ + t

٢k
)»»»»»»»»٢ dt∫ ١

−١
»»»»»»»»(٢m − ١)Pm+٢(t) − (۴m + ٢)Pm(t) + (٢m + ٣)Pm−٢)٢m + ٢)(٣m − ١) »»»»»»»»٢ dt

< ٢m٢ ∫ ١
−١

(٢m − ٢(١
Pm+٢(t) + (۴m + ٢(٢

Pm
٢(t) + (٢m + ٢(٣

Pm−٢٢(t)(٢m + ٢)٢(٣m − ٢(١ dt

= ٢m٢)٢m + ٢)٢(٣m − ٢(١ [(٢m − ٢(١ ٢
٢m + ۵ + (۴m + ٢(٢ ٢

٢m + ١ + (٢m + ٢(٣ ٢
٢m − ٣]

< ٢m٢)٢m + ٢)٢(٣m − ٢(١ [٢)٢m − ٢(١ + ٢)٨m + ٢(١ + ٢)٢m + ٢(٣
٢m − ٣ ]

< ٢m٢)٢m + ٢)٢(٣m − ٢(١
٢)١٢m + ٢(٣

٢m − ٣ = ٢۴m٢)٢m − ٢)٢(١m − ٣) .
نتیجه: در

(٢ . ١)»»»»»»»»»∫ ١
−١ f

′′ ( n̂ + t

٢k
) (Pm+٢(t) − Pm(t)

٢m + ٣ −
Pm(t) − Pm−٢(t)

٢m − ١ )dt»»»»»»»»» < ٢۴ ١٢m(٢m − ٢)(١m − ٣) ١٢
.

داریم: بنابراین

∣Cnm∣ < ١٢ ١٢m

٢ ۵k٢
٢)١m + ١) ١٢

٢)١m − ٢)(١m − ٣) ١٢

< ١٢ ١٢ ١
٢ ۵k٢

٢)١m − ٢(٣

< ١٢ ١٢ ١(٢n) ۵٢
٢)١m − ٢(٣ .

(٢ . ٢)

عددی سری لذا
∞

∑
n=١

∞

∑
m=٠

Cnm, (٢ . ٣)

توابع سری بنابراین هم·راست،
∞

∑
n=١

∞

∑
m=٠

CnmΨn,m(x), (۴ . ٢)

هم·راست. f(x) به ی΄نواخت طور به تابع لژاندر ΁موج سری پس ͬ باشد، م هم·را نیز



جزئͬ مقداراولیه مسائل برای خطا برآورد و آنالیزهم·رایی ٣۶

چبیشف ΁موج بسط هم·رایی ٢ . ٣
سری آنگاه باشد، هم·را ی΄نواخت طور به f(x) تابع چبیشف ΁موج سری اگر [١] .٢ . ٣ . ١ لم

هم·راست. f(x) به ی΄نواخت طور به چبیشف ΁موج
کنید فرض برهان.

g(x) = ∞

∑
n=١

∞

∑
m=٠

CnmΨnm(x), (۵ . ٢)

ثابت p, q که ͬ کنیم م ضرب Ψpq(x)wk(x) در را (۵ . ٢) طرف دو .Cnm < f(x),Ψnm(x) >wk
که

داریم: ͬ گیریم، م انتگرال [٠, ١] بازه در طرفین از و هستند

∫ ١
٠ g(x)Ψpq(x)wk(x)dx = ∫ ∞

n=١
∞

∑
m=٠

CnmΨnm(x)Ψpq(x)
wk(x)dx =

∞

∑
n=١

∞

∑
m=٠

Cnm ∫ ١
٠ Ψnm(x)Ψpq(x)wk(x)dx = Cpq

(۶ . ٢)

بنابراین
< g(x),Ψnm(x) >wk

= Cnm (٢ . ٧)
f(x) = g(x) بنابراین ی΄سانند، ی΄نواخت طور به f, g نتیجه در m = ٠, ١,⋯ و n = ١,٢,⋯ برای

.٠ ≤ x ≤ ١ وقتͬ
∣f ′′(X)∣ ≤ یعنͬ باشد، کراندار دوم مرتبه مشتق دارای f ∈ L

٠])٢, ١]) اگر [١] .٢ . ٣ . ١ قضیه
یعنͬ: هم·راست f(x) به ی΄نواخت طور به آن چبیشف ΁موج سری آنگاه M

f(x) = ∞

∑
n=٠

∞

∑
m=٠

CnmΨnm(x)
داریم: (٢ . ٧) به باتوجه برهان.

Cnm = ∫ ١
٠ f(x)Ψnm(x)wk(x)dx = ∫

n

٢k−١(n−١)
٢k−١

٢ k٢ f(x) (٢ . ٨)

T̃m(٢k
x − ٢n + ١)w(٢k

m − ٢n + ١)dx. (٢ . ٩)



٣٧ چبیشف ΁موج بسط هم·رایی
داریم: ٢ . ٩ در ٢k

x − ٢n + ١ = cos θ جای·ذاری با m > ١ اگر

Cmn = ١
٢ k٢

∫ π

٠ f (cos θ + ٢n − ١
٢k

)√٢
π cosmθdθ

=
√٢

٢ k٢ √πf (cos θ + ٢n − ١
٢k

) (sinmθm )]π٠
+

√٢
٢ ٣k٢ m

√
π
∫ π

٠ f
′ (cos θ + ٢n − ١

٢k
) sinmθ sin θdθ

= ١
٢٣k٢m√٢πf

′ (cos θ + ٢n − ١
٢k

) (sin(m − ١)θ
m − ١ −

sin(m + ١)θ
m + ١ )]π٠

+
١

٢ ۵k٢ m
√٢π ∫ π

٠ f
′′ (cos θ + ٢n − ١

٢k
)hm(θ)dθ

(٢ . ١٠)

که
hm(θ) = sin θ (sin(m − ١)θ

m − ١ −
sin(m + ١)θ
m + ١ )

داریم: بنابراین
∣Cnm∣ = »»»»»»»»» ١

٢ ۵k٢ m
√٢π ∫ π

٠ f
′′ (cos θ + ٢n − ١

٢k
)hmθdθ»»»»»»»»»

≤ ( ١
٢ ۵k٢ m

√٢π)∫ π

٠
»»»»»»»»f ′′ (cos θ + ٢n − ١

٢k
)hm(θ)dθ»»»»»»»»

≤ ( m

٢ ۵k٢ m
√٢π)∫ π

٠ ∣hm(θ)∣dθ.
(٢ . ١١)

: حال این با
∫ π

٠ ∣hm(θ)∣dθ = ∫ π

٠
»»»»»»»»sin θ (sin(m − ١)θ

m − ١ −
sin(m + ١)θ
m + ١ )dθ»»»»»»»»

≤ ∫ π

٠
»»»»»»»»sin θ sin(m − ١)θ

m − ١
»»»»»»»» + »»»»»»»»sin θ sin(m + ١)θ

m + ١
»»»»»»»»dθ

≤ ٢mπ(m٢ − ١) .
(٢ . ١٢)

داریم: n ≤ ٢k−١ که آن جایی از
∣Cnm∣ < √٢πm(٢n) ۵٢ (m٢ − ١)

داریم: (٢ . ١٠) از استفاده با m = ١ اگر
∣Cn١∣ < √٢π(٢n) ٣٢

max٠≤x≤١ ∣f ′(x)∣.
عددی سری رو این از

∞

∑
n=١

∞

∑
m=١

Cnm,



جزئͬ مقداراولیه مسائل برای خطا برآورد و آنالیزهم·رایی ٣٨
w(t) وزن تابع به توجه با شده ساخته متعامد تابع ΁ی Ψn٠∞n=١ تابع m = ٠ برای هم·راست.

بنابراین ͬ دهد، م تش΄یل
∞

∑
n=١

Cn٠Ψn٠(x),
داریم: دی·ر طرفͬ از ««««««««««هم·راست.

∞

∑
n=١

∞

∑
m=٠

CnmΨnm(x)»»»»»»»»»» ≤
»»»»»»»»»»
∞

∑
n=١

Cn٠Ψn٠(x)»»»»»»»»»»
+

∞

∑
n=١

∞

∑
m=١

∣Cnm∣∣Ψnm(x)∣ ≤ »»»»»»»»»»
∞

∑
n=١

∞

∑
m=١

∣Cnm∣»»»»»»»»»» < ∞.

مجموعه ٢ . ٣ . ١ لم طبق بنابراین
∞

∑
n=١

∞

∑
m=٠

CnmΨnm(x),
هم·راست. f(x) به ی΄نواخت طور به

لژاندر ΁موج از استفاده با آنالیزهم·رایی ۴ . ٢
مختلط دوم مشتق با Λ در شده تعریف پیوسته تابع ΁ی u(x, t) کنید فرض [١٢] .١ . ۴ . ٢ قضیه

آنگاه ∣∂۴(u(x, t))
∂x٢∂t٢ ∣ ≤ B باشیم: داشته B ثابت برای و باشد کراندار

ی΄نواخت هم·رایی و لژاندر ΁موج از نامتناهͬ مجموع ΁ی عنوان به ͬ تواند م u(x, t) الف)
که طوری به یابد، گسترش u(x, t) تابع به سری ها

u(x, t) = ∞

∑
n=١

∞

∑
m=٠

∞

∑
n′=١

∞

∑
m′=٠

U
L
nmn′m′Ψ

L
nmn′m′(x, t)

.U
L
n,m,n′,m′ = ⟨u(x, t),ΨL

n,m,n′,m′(x, t)⟩ آن در که
ب)

∥εu,k,M,k′,M ′∥٢
L٢(Λ) ≤ ٣۶B٢

٢۵k+۵k′
∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

٢)١m − ٣)۴(٢m′ − ٣)۴

آن در که

∥εu,k,M,k′,M ′∥٢
L٢(Λ) = ∫ ١

٠ ∫ ١
٠ ∣u(x, t)−٢k−١+١

∑
n=١

M−١
∑
m=٠

٢k
′−١+١
∑
n′=١

M
′−١
∑
m′=٠

U
L
n,m,n′,m′Ψ

L
n,m,n′,m′∣٢dxdt.



٣٩ لژاندر ΁موج از استفاده با آنالیزهم·رایی
ͬ دانیم: م الف) برهان.

U
L
n,m,n′,m′ = ∫ ١

٠ ∫ ١
٠ u(x, t)ΨL

n,m,n′,m′(x, t)dxdt.
ͬ آوریم: م دست به لژاندر ΁موج تعریف از استفاده با

U
L
n,m,n′,m′ = ∫ ١

٠ ∫
n

٢k−١
n − ١
٢k−١

u(x, t)(٢m + ١/٢٢(١(k−١)/٢
Pm (٢k

x − ٢n + ١)ΨL
n′,m′(t)dxdt.

داریم: بنابراین ٢k
x − ٢n + ١ = s ͬ دهیم م قرار

U
L
n,m,n′,m′ = ∫ ١

٠ ∫ ١
−١ u (s + ٢n − ١

٢k
, t) (٢m + ١/٢٢(١−(k+١)/٢

Pm (s)ΨL
n′,m′(t)dsdt.

= ٢−
(k + ١)

٢)٢m + ١/٢(١ ∫ ١
٠ Ψ

L
n′,m′(t)∫ ١

−١ u (s + ٢n − ١
٢k

, t) d (Pm+١(s) − Pm−١(s)) dsdt.
داریم: گیری انتگرال با

U
L
n,m,n′,m′ = (−١) ٢−

(k + ١)
٢

٢k(٢m + ١/٢(١ ∫ ١
٠ Ψ

L
n′,m′(t)∫ ١

−١
∂u (s + ٢n − ١

٢k
, t)

∂s(Pm+١(s) − Pm−١(s)) dsdt
= −١

٢٣k + ١
٢ (٢m + ١/٢(١

∫ ١
٠ Ψ

L
n′,m′(t)∫ ١

−١
∂u (s + ٢n − ١

٢k
, t)

∂s

×(P ′
m+٢(s) − P

′
m(s)

٢m + ٣ −
P

′
m(s) − P

′
m−٢(s)٢m − ١ ) dsdt.

داریم: بخش ها انتگرال از استفاده با دوباره

U
L
n,m,n′,m′ = ١

٢۵k + ١
٢ (٢m + ١/٢(١

∫ ١
٠ Ψ

L
n′,m′(t)∫ ١

−١
∂

٢
u (s + ٢n − ١

٢k
, t)

∂s٢

(Pm+٢(s) − Pm(s)
٢m + ٣ −

Pm(s) − Pm−٢(s)
٢m − ١ ) dsdt (٢ . ١٣)

داریم: Ψ
L
n′,m′(t) تعریف به توجه با

U
L
n,m,n′,m′ = ١

٢۵k + ١
٢ (٢m + ١/٢(١

∫
n
′

٢k′−١
n
′ − ١

٢k′−١
(٢m′ + ١/٢٢(١(k′−١)/٢



جزئͬ مقداراولیه مسائل برای خطا برآورد و آنالیزهم·رایی ۴٠

Pm′(٢k
′

t − ٢n′ + ١) × ∫ ١
−١
∂

٢
u (s + ٢n − ١

٢k
, t)

∂s٢

(Pm+٢(s) − Pm(s)
٢m + ٣ −

Pm(s) − Pm−٢(s)
٢m − ١ ) dsdt. (١۴ . ٢)
داریم: ٢k

′

t − ٢n′ + ١ = r جای·ذاری: با
U

L
n,m,n′,m′ = ١

٢۵k + ١
٢ ٢۵k′ + ١

٢ (٢m + ٢)١/٢(١m′ + ١/٢(١

∫ ١
−١ ∫

١
−١

∂
۴
u(s + ٢n − ١

٢k
,
r + ٢n′ − ١

٢k′ )
∂r٢∂s٢ σm(s)σm′(r)dsdt,

آن در که
σm(s) = (Pm+٢(s) − Pm(s)

٢m + ٣ −
Pm(s) − Pm−٢(s)

٢m − ١ ) ,
و

σm′(r) = (Pm′+٢(r) − Pm′(r)
٢m′ + ٣ −

Pm′(r) − Pm′−٢(r)
٢m′ − ١ ) .

داریم: بنابراین
(١۵ . ٢)∣UL

n,m,n′,m′∣٢ ≤ B
٢

٢(۵k+۵k′+٢)(٢m + ٢)(١m′ + ١) ∫ ١
−١ ∣σm(s)∣٢ds∫ ١

−١ ∣σm′(r)∣٢dr.
اکنون،

∫ ١
−١ ∣σm(s)∣٢ds = ∫ ١

−١ (Pm+٢(s) − Pm(s)
٢m + ٣ −

Pm(s) − Pm−٢(s)
٢m − ١ )٢

ds

= ∫ ١
−١ ((٢m − ١)Pm+٢(s) − (۴m + ٢)Pm(s) + (٢m − ٣)Pm−٢(s)(٢m + ٢)(٣m + ١) )٢

ds

≤ ∫ ١
−١

⎛⎜⎝(٢m − ٢(١
P

٢
m+٢(s) − (۴m + ٢(٢

P
٢
m(s) + (٢m − ٢(٣

P
٢
m−٢(s)(٢m + ٢)٢(٣m − ٢(١

⎞⎟⎠ ds
≤ ٢)١٢m + ٢)٢(٣m + ٢)٢(٣m − ٢)٢(١m − ٣) .

ͬ آوریم: م دست به بنابراین
∫ ١
−١ ∣σm(s)∣٢ds ≤ ٢)١٢m − ٢)٢(١m − ٣) . (١۶ . ٢)

داریم: مشابه طور به
∫ ١
−١ ∣σm′(t)∣٢dt ≤ ٢)١٢m′ − ٢)٢(١m′ − ٣) . (٢ . ١٧)



۴١ چبیشف موج΁  های از استفاده با آنالیزهم·رایی
داریم: (١۶ . ٢) و (١۵ . ٢) معادلات گروه بندی با

∣UL
n,m,n′,m′∣٢ ≤ ١۴۴B٢

٢۵k+۵k′+٢)٢m + ٢)(١m′ + ٢)(١m − ٢)٢(١m′ − ٢)٢(١m − ٢)(٣m′ − ٣) ,
< ٣۶B٢

٢۵k+۵k′(٢m − ٣)۴(٢m′ − ٣)۴ . (٢ . ١٨)

بنابراین هستند. مطلق هم·رای ∑∞
n=١ ∑∞

m=٠ ∑∞
n′=١ ∑∞

m′=٠ UL
nmn′m′ سری های رو این از

است. هم·را u(x, t) لژاندر ΁موج سری
ب)

∥εu,k,M,k′,M ′∥٢
L٢(Λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣∫
١

٠ ∫ ١
٠ ∣u(x, t) − ٢k−١

∑
n=١

M−١
∑
m=٠

٢k
′−١

∑
n′=١

M
′−١
∑
m′=٠

U
L
n,m,n′,m′Ψ

L
n,m,n′,m′∣٢dxdt⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ∫ ١
٠ ∫ ١

٠
∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

∣UL
n,m,n′,m′Ψ

L
n,m,n′,m′∣٢dxdt

=
∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

∣UL
n,m,n′,m′∣٢.

داریم: بنابراین

∥εu,k,M,k′,M ′∥٢
L٢(Λ) = ∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

∣UL
n,m,n′,m′∣٢ (٢ . ١٩)

معادله به بنا بنابراین ͬ دهد. م نتیجه را Ψ
L
n,m,n′,m′ بودن نرمال برابری آخرین که جایی

داریم: (٢ . ١٩) ، (٢ . ١٨)

∥εu,k,M,k′,M ′∥٢
L٢(Λ) ≤ ٣۶B٢

٢۵k+۵k′
∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

٢)١m − ٣)۴(٢m′ − ٣)۴

ͬ شود. م کامل قضیه اثبات لذا

چبیشف موج΁  های از استفاده با آنالیزهم·رایی ۵ . ٢
مشتق با Ω(= [٠, ١) × [٠, ١)) روی پیوسته تابع ΁ی u(x, t) کنید فرض [١٢] .١ . ۵ . ٢ قضیه

آن گاه ∣∂۴(u(x,t))
∂x٢∂t٢ ∣ ≤ B باشیم: داشته و باشد کراندار مختلط دوم



جزئͬ مقداراولیه مسائل برای خطا برآورد و آنالیزهم·رایی ۴٢
هم·رایی و داد گسترش چبیشف ΁موج نامتناهͬ مجموع ΁ی به ͬ توان م را u(x, t) الف)

که طوری به است، ی΄نواخت طور به u(x, t) به سری ها
u(x, t) = ∞

∑
n=١

∞

∑
m=٠

∞

∑
n′=١

∞

∑
m′=٠

U
C
nmn′m′Ψ

C
nmn′m′(x, t)

.U
C
n,m,n′,m′ = ⟨u(x, t),ΨC

n,m,n′,m′(x, t)⟩L٢
ω(Ω) آن در که

ب)

∥εu,k,M,k′,M ′∥٢
L٢
ω(Ω) ≤ ٢−۵(k+k′)

B
٢

۴
∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

١(m − ١)۴(m′ − ١)۴

آن در که

∥εu,k,M,k′,M ′∥٢
L٢
ω(Ω) = ∫ ١

٠ ∫ ١
٠ ∣u(x, t)−٢k−١

∑
n=١

M−١
∑
m=٠

٢k
′−١

∑
n′=١

M
′−١
∑
m′=٠

U
C
n,m,n′,m′Ψ

C
n,m,n′,m′∣٢ω(x, t)dxdt.

ͬ شود. م تعریف زیر صورت به u(x, t) پیوسته تابع ΁ی چبیشف ΁موج ضرایب الف) برهان.

U
C
n,m,n′,m′ = ∫ ١

٠ ∫ ١
٠ u(x, t)ΨC

n,m,n′,m′(x, t)ωn(x)ωn′(t)dxdt.
داریم: m,m′ > ٠ دادن قرار و چبیشف ΁موج تعریف از استفاده با

U
C
n,m,n′,m′ = ∫ ١

٠ ∫
n

٢k−١
n−١

٢k−١
u(x, t)٢ k٢Tm(٢k

x − ٢n + ١)ΨC
n′,m′(t)ωn(x)ωn′(t)dxdt

= ٢ k٢
√٢
π ∫ ١

٠ ∫
n

٢k−١
n−١

٢k−١
u(x, t)Tm(٢k

x − ٢n + ١)
ω(٢k

x − ٢n + ١)ΨC
n′,m′(t)ωn′(t)dxdt.

داریم: ،٢k
x − ٢n + ١ = y ͬ دهیم م قرار

U
C
n,m,n′,m′ = ٢− k٢

√٢
π ∫ ١

٠ Ψ
C
n′,m′(t)ωn′(t)∫ ١

−١ u (y + ٢n − ١
٢k

, t)Tm(y)ω(y)dydt
= ٢− k٢

√٢
π ∫ ١

٠ Ψ
C
n′,m′(t)ωn′(t)∫ ١

−١
u (y + ٢n − ١

٢k
, t)√١ − y٢ Tm(y)dydt.

ͬ آید: م دست به زیر رابطه چبیشف ΁موج تعریف و y = cosθ فرض با

U
C
n,m,n′,m′ = ٢− k٢

√٢
π ∫ ١

٠ Ψ
C
n′,m′(t)ωn′(t)∫ π

٠ u (cosθ + ٢n − ١
٢k

, t) cosmθdθdt.



۴٣ چبیشف موج΁  های از استفاده با آنالیزهم·رایی
ͬ دهد: م نتیجه را زیر رابطه بالا بخش های انتگرال

U
C
n,m,n′,m′ = ٢− ٣k٢

√٢
π ∫ ١

٠ Ψ
C
n′,m′(t)ωn′(t)∫ π

٠
∂u ( cosθ+٢n−١٢k , t)

∂θ

sinmθ
m sinθdθdt

= ١
٢m٢− ٣k٢

√٢
π ∫ ١

٠ Ψ
C
n′,m′(t)ωn′(t)∫ π

٠
∂u ( cosθ+٢n−١٢k , t)

∂θ(cos(m − ١)θ − cos(m + ١)θ)dθdt,
داریم:

U
C
n,m,n′,m′ = ١

٢m٢− ٣k٢
√٢
π ∫ ١

٠ Ψ
C
n′,m′(t)ωn′(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣∫
π

٠
∂u( cosθ+٢n−١٢k , t)

∂θ
cos(m − ١)θdθ − ∫ π

٠
∂u( cosθ+٢n−١٢k , t)

∂θ
cos(m + ١)θdθ⎤⎥⎥⎥⎥⎥⎥⎥⎦ dt.

بنویسیم: زیر صورت به ͬ توانیم م را بالا معادله

U
C
n,m,n′,m′ = ٢− ٣k٢

√٢
π ∫ ١

٠ Ψ
C
n′,m′(t)ωn′(t)(I١ − I٢)dt (٢ . ٢٠)

که جایی
I١ = ١

٢m ∫ π

٠
∂u ( cosθ+٢n−١٢k , t)

∂θ
cos(m − ١)θdθ,

و
I٢ = ١

٢m ∫ π

٠
∂u ( cosθ+٢n−١٢k , t)

∂θ
cos(m + ١)θdθ.

که: ͬ دهد م نشان ساده محاسبه ΁ی

I١ = ١
٢m ∫ π

٠
∂u ( cosθ+٢n−١٢k , t)

∂θ
cos(m − ١)θdθ.

ͬ آوریم: م دست به m > ١ برای بالا بخش های انتگرال از استفاده با

I١ = ١
٢m(m − ٢(١k

∫ π

٠
∂

٢
u ( cosθ+٢n−١٢k , t)

∂θ٢ sin(m − ١)θsinθdθ
= ٢−k

۴m(m − ١) ∫ π

٠
∂

٢
u ( cosθ+٢n−١٢k , t)

∂θ٢ (cos(m − ٢)θ − cosmθ)dθ
و

I٢ = ٢−k

۴m(m + ١) ∫ π

٠
∂

٢
u ( cosθ+٢n−١٢k , t)

∂θ٢ (cosmθ − cos(m + ٢)θ)dθ.
داریم: m > ١ برای بنابراین

I = I١ − I٢ = ٢−k

۴m ∫ π

٠
∂

٢
u ( cosθ+٢n−١٢k , t)

∂θ٢



جزئͬ مقداراولیه مسائل برای خطا برآورد و آنالیزهم·رایی ۴۴
(cos(m − ٢)θ − cosmθ

m − ١ −
cosmθ − cos(m + ٢)θ

m + ١ ) dθ
ͬ آوریم: م دست به (٢ . ٢٠) معادله در I١ − I٢ مقدار جای·ذاری از استفاده با

U
C
n,m,n′,m′ =

√٢
π

٢−۵k٢
۴m ∫ ١

٠ Ψ
C
n′,m′(t)ωn′(t)∫ π

٠
∂

٢
u ( cosθ+٢n−١٢k , t)

∂θ٢

× (cos(m − ٢)θ − cosmθ

m − ١ −
cosmθ − cos(m + ٢)θ

m + ١ ) dθdt
=
√٢
π

٢−۵k٢
۴m ∫

n
′

٢k′−١
n′−١

٢k′−١
٢ k

′

٢ Tm′(٢k
′

t − ٢n′ + ١)ω(٢k
′

t − ٢n′ + ١)∫ π

٠
∂

٢
u ( cosθ+٢n−١٢k , t)

∂θ٢

× (cos(m − ٢)θ − cosmθ

m − ١ −
cosmθ − cos(m + ٢)θ

m + ١ ) dθdt
=
√٢
π

٢−۵k٢
۴m ∫

n
′

٢k′−١
n′−١

٢k′−١
٢ k

′

٢
√٢
πTm

′(٢k
′

t−٢n′+١)ω(٢k
′

t−٢n′+١)∫ π

٠
∂

٢
u ( cosθ+٢n−١٢k , t)

∂θ٢

× (cos(m − ٢)θ − cosmθ

m − ١ −
cosmθ − cos(m + ٢)θ

m + ١ ) dθdt.
ͬ آوریم: م دست به مشابه محاسبات با آنگاه ٢k

′

t − ٢n′ + ١ = cosθ′ دهیم قرار اگر
(٢ . ٢١)

U
C
n,m,n′,m′ = ٢

π
٢− k+k′٢
١۶mm′ ∫

π

٠ ∫ π

٠
∂

۴
u ( cosθ+٢n−١٢k , cosθ

′+٢n′−١
٢k′

)
∂θ٢∂θ′٢ rm(θ)rm′(θ′)dθdθ′

که جایی
rm(θ) = cos(m − ٢)θ − cosmθ

m − ١ −
cosmθ − cos(m + ٢)θ

m + ١
= (m + ١)cos(m − ٢)θ − ٢mcosmθ + (m − ١)cos(m + ٢)θ(m − ١)(m + ١)

و
rm′(θ′) = (m′ + ١)cos(m′ − ٢)θ′ − ٢m′

cosm
′
θ
′ + (m′ − ١)cos(m′ + ٢)θ′(m′ − ١)(m′ + ١)

داریم: را زیر رابطه شوارتز نامساوی و ∣∂۴(u(x,t))
∂x٢∂t٢ ∣ ≤ B که واقعیت این از استفاده با

∣UC
n,m,n′,m′∣٢ ≤ ١

٢٩۶m٢m′٢
۴
π٢ ٢−۵(k+k′) ∫ π

٠ ∫ π

٠
∂

۴
u ( cosθ+٢n−١٢k , cosθ

′+٢n′−١
٢k′

)
∂θ٢∂θ′٢∣rm(θ)∣٢∣rm′(θ′)∣٢dθdθ′

≤ ۴
π٢

٢−۵(k+k′)
B

٢
٢٩۶m٢m′٢ ∫ π

٠ ∣rm(θ)∣٢dθ∫ π

٠ ∣rm′(θ′)∣٢dθ′.



۴۵ چبیشف موج΁  های از استفاده با آنالیزهم·رایی
داریم: حال

∫ π

٠ ∣rm(θ)∣٢dθ = ١(m − ٢(١(m′ − ٢(١ ∫ π

٠ ∣(m + ١)cos(m − ٢)θ − ٢mcosmθ

+ (m − ١)cos(m + ٢)θ∣٢dθ ≤ ١(m − ٢(١(m + ٢(١

(∫ π

٠ (m + ٢(١
cos

٢(m − ٢)θdθ + ∫ π

٠ ۴m٢
cos

٢
mθdθ + ∫ π

٠ (m − ٢(١
cos

٢(m + ٢)θdθ)
= ١(m − ٢(١(m + ٢(١ (π٢(m + ٢(١ +

π

٢۴m٢ +
π

٢(m − ٢(١)
= (٣m٢ + ١)π(m − ٢(١(m + ٢(١ .

مشابه: طور به
∫ π

٠ ∣rm′(θ′)∣٢dθ′ ≤ (٣m′٢ + ١)π(m′ − ٢(١(m′ + ٢(١ .

داریم: m,m′ > ١ برای بنابراین

∣UC
n,m,n′,m′∣٢ ≤ ( ۴

π٢) ٢−۵(k+k′)(٣m٢ + ٣)(١m′٢ + ١)B٢
π

٢
٢٩۶m٢m′٢(m − ٢(١(m + ٢(١(m′ − ٢(١(m′ + ٢(١

≤ ( ۴
π٢) ٢−۵(k+k′)

π
٢

١۶(m − ١)۴(m′ − ١)۴
و

∣UC
n,m,n′,m′∣٢ ≤ ٢−۵( k+k′٢ )

B

٢(m − ٢(١(m′ − ٢(١ (٢ . ٢٢)

سری های بنابراین
∞

∑
n=١

∞

∑
m=٠

∞

∑
n′=١

∞

∑
m′=٠

U
C
nmn′m′

سری های ، Ψ
C
n,٠,n′,٠(x, t) تعریف به توجه با و m,m′ = ٠ برای هستند. مطلق هم·رای

∞

∑
n=١

∞

∑
n′=١

U
C
n,٠,n′,٠ΨC

n,٠,n′,٠(x, t)
سری های بنابراین هستند. هم·را

∞

∑
n=١

∞

∑
m=٠

∞

∑
n′=١

∞

∑
m′=٠

U
C
nmn′m′Ψ

C
nmn′m′(x, t)

ͬ باشند. م هم·را ی΄نواخت طور به u(x, t) به



جزئͬ مقداراولیه مسائل برای خطا برآورد و آنالیزهم·رایی ۴۶
ب)

∥εu,k,M,k′,M ′∥٢
L٢
ω(Ω) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣∫

١
٠ ∫ ١

٠ ∣u(x, t) − ٢k−١
∑
n=١

M−١
∑
m=٠

٢k
′−١

∑
n′=١

M
′−١
∑
m′=٠

U
C
n,m,n′,m′Ψ

C
n,m,n′,m′∣٢ω(x, t)dxdt.⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ∫ ١
٠ ∫ ١

٠
∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

∣UC
n,m,n′,m′Ψ

C
n,m,n′,m′∣٢ωn(x)ωn′(t)dxdt

=
∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

∣UC
n,m,n′,m′∣٢.

ͬ آوریم: م دست به بنابراین

∥εu,k,M,k′,M ′∥٢
L٢
ω(Ω) = ∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

∣UC
n,m,n′,m′∣٢, (٢ . ٢٣)

معادله به بنا بنابراین ͬ دهد. م نتیجه را Ψ
C
n,m,n′,m′ بودن نرمال برابری آخرین آن در که

داریم: (٢ . ٢٣) ، (٢ . ٢٢)

∥εu,k,M,k′,M ′∥٢
L٢
ω(Ω) ≤ ٢−۵(k+k′)

B
٢

۴
∞

∑
n=٢k−١+١

∞

∑
m=M

∞

∑
n′=٢k′−١+١

∞

∑
m′=M ′

١(m − ١)۴(m′ − ١)۴

شد. کامل اثبات

گیری نتیجه ۶ . ٢
را توابع تقریب خطای و کردیم بیان را چبیشف و لژاندر ΁موج سری هم·رایی فصل این در

دادیم. قرار بررسͬ مورد جبیشف و لژاندر ΁موج از استفاده با



٣ فصل
جزئͬ مشتقات با معادلات عددی حل
چبیشف و لژاندر ΁موج از استفاده با

مقدمه ٣ . ١
همیشه ΁کلاسی روش های با دیفرانسیل  معادلات برخͬ برای دقیق جواب آوردن دست به
این در کرد. استفاده آن ها حل برای تقریبی روش های از باید بنابراین نیست، پذیر ام΄ان
جواب های این آوردن بدست برای قبل، فصل های در شده بیان مبحث های به توجه با فصل،
روش کارایی و دقت مثال چندین ارائه با سپس و ͬ پردازیم م روش سازی پیاده به ابتدا تقریبی

ͬ کنیم. م بیان را

روش پیاده سازی ٣ . ٢
تبدیل بعدی دو انتگرالͬ معادله ΁ی به را (١ . ٢) معادله ابتدا (١ . ٢) معادله عددی حل برای
دستگاه به بعدی دو انتگرال معادله ΁ی تبدیل برای انتگرال عمل·ر ماتریس از سپس ͬ کنیم. م
انتگرال t و x به توجه با (١ . ٢) معادله دوطرف از ͬ شود. م استفاده خطͬ جبری معادلات

۴٧



چبیشف و لژاندر ΁موج از استفاده با جزئͬ مشتقات با معادلات عددی حل ۴٨
.[١٢] ͬ گیریم م

∫ x

٠ u(x′, t)dx′ + ∫ t

٠ u(x, t′)dt′ + a∫ t

٠ ∫ x

٠ u(x′, t′)dx′dt′ = w(x, t) (٣ . ١)
که

w(x, t) = ∫ x

٠ g(x′)dx′ + ∫ t

٠ f(t′)dt′ + b∫ t

٠ ∫ x

٠ v(x′, t′)dx′dt′
برای حال است. معلوم تابع w(x, t) آن در که است، (١ . ٢) معادل فرمولͬ بالا انتگرال معادله

ͬ گیریم. م درنظر زیر صورت به را w(x, t) و u(x, t) (٣ . ١) معادله پیداکردن

u(x, t) ≈ ٢k−١
∑
n=١

M−١
∑
m=٠

٢k
′−١

∑
n′=١

M
′−١
∑
m′=٠

Unmn′m′ψnmn′m′(x, t) = UT
Ψ(x, t), (٣ . ٢)

w(x, t) ≈ ٢k−١
∑
n=١

M−١
∑
m=٠

٢k
′−١

∑
n′=١

M
′−١
∑
m′=٠

Wnmn′m′ψnmn′m′(x, t) =W T
Ψ(x, t), (٣ . ٣)

طوری΄ه: به
u(x′, t) ≈ UT

Ψ(x′, t)
u(x, t′) ≈ UT

Ψ(x, t′)
داریم: نتیجه در

u(x′, t′) ≈ UT
Ψ(x′, t′)

داریم: ͬ دهیم، قرارم (٣ . ١) در را w(x, t) و u(x′, t′) ،u(x, t′) ،u(x′, t) اکنون
U

T ∫ x

٠ Ψ(x′, t)dx′ + U
T ∫ t

٠ Ψ(x, t′)dt′ + aU
T ∫ t

٠ ∫ x

٠ Ψ(x′, t′)dx′dt′ =W T
Ψ(x, t)

داریم: معادل به طور یا
U

T
PxΨ(x, t) + U

T
PtΨ(x, t) + aU

T
Px,tΨ(x, t) =W T

Ψ(x, t) (۴ . ٣)
نوشت: زیر صورت به ͬ توان م (۴ . ٣) معادله به توجه با

U
T (Px + Pt + aPx,t)Ψ(x, t) =W T

Ψ(x, t). (۵ . ٣)
ͬ دهیم: م قرار (۵ . ٣) معادله در را (xi, tj) نقطه ی اکنون

(۶ . ٣)
U

T (Px +Pt + aPx,t)Ψ(xi, tj) =W T
Ψ(xi, tj) i = ١,٢, . . . ,٢k−١

M, j = ١,٢, . . . ,٢k−١
M

هستند: چبیشف چندجمله ای صفرهای هم م΄انͬ نقاط (xi, tj) که



۴٩ روش پیاده سازی
xi = cos ( (٢i+١)π

٢kM
), i = ١,٢, . . . ,٢k−١

M.

tj = cos ( (٢j+١)π
٢k′M ′

), j = ١,٢, . . . ,٢k
′−١
M

′
.

برای که است مجهول ها تعداد همان با و معادله ٢k−١٢k
′−١
MM

′ با دستگاه (۶ . ٣) سیستم
تقریبی جواب توان مͬ (٣ . ٢) معادله در UT مقدار قراردادن با سپس ͬ شود. م حل U عناصر

آورد. رابدست (٣ . ١) معادله
برای چپیشف و لژاندر ΁موج از استفاده با و گرفتیم نظر در را عددی مثال دو اینجا، در
ͬ گیریم: م نظر در زیر صورت به را خطا توابع است. شده حل ،M,M

′ = ٢,۴,۶ و k = k′ = ١
εi,j = (uexact)i,j − (uapprax)i,j , ε = uexact − uapprax,

∥ε∥L∞ = max∣εj∣, ∥ε∥L٢ =

√√√√√√√⎷ N

∑
j=١

∣εj∣٢.
[١٣] .٣ . ٢ . ١ مثال

ͬ گیریم. م نظر در را زیر دیفرانسیل معادله اول مثال عنوان ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧به
ut + ux + u = (x − t)٢

ϕ(x, ٠) = x٢
,

u(٠, t) = t٢.
معادله این تقریبی جواب کردن پیدا برای است. u(x, t) = (x− t)٢ مثال این برای دقیق جواب
شرایط و ͬ گیریم م انتگرال ترتیب به t و x به توجه با را بالا دیفرانسیل معادله ابتدا دیفرانسیل

ͬ کنیم. م تبدیل بعدی دو انتگرال معادله به را آن که طوری به ͬ کنیم م تحمیل را اولیه
∫ x

٠ u(x′, t)dx′ + ∫ t

٠ u(x, t′)dt′ + a∫ t

٠ ∫ x

٠ u(x′, t′)dx′dt′ = w(x, t)
w(x, t) = ∫ x

٠ g(x′)dx′ + ∫ t

٠ f(t′)dt′ + b∫ t

٠ ∫ x

٠ v(x′, t′)dx′dt′
⇒ w(x, t) = ∫ x

٠ (x′)٢
dx

′ + ∫ t

٠ (t′)٢
dt

′ + ∫ t

٠ ∫ x

٠ (x′ − t
′)٢

dx
′
dt

′ =

١
٣x

٣ +
١
٣ t

٣ + ∫ t

٠ ∫ x

٠ (x′ − t
′)٢

dx
′
dt

′
⇒

∫ t

٠ ∫ x

٠ (x′ − t
′)٢

dx
′
dt

′ = ∫ x

٠ x
′٢
dx

′ + ∫ x

٠ t
′٢
dx

′ − ٢∫ x

٠ x
′
t
′
dx = ١

٣x
′٣∣x٠ + x

′
t
′٢∣x٠ − ٢( ١

٢x
′٢
t
′)∣x٠

١
٣(x٣ − ٠) + t

′٢(x − ٠) − t
′(x٢ − ٠) = ١

٣x
٣ + xt

′٢ − x
٢
t
′



چبیشف و لژاندر ΁موج از استفاده با جزئͬ مشتقات با معادلات عددی حل ۵٠
داریم: t به نسبت انتگرال با اکنون

∫ x

٠ ( ١
٣x

٣ + xt
′٢ − x

٢
t
′)dt′ = ( ١

٣x
٣
t
′ +

١
٣xt

′٣ −
١
٢x

٢
t
′٢)∣t٠ =

( ١
٣x

٣
t +

١
٣xt

٣ −
١
٢x

٢
t
٢) ⇒

w(x, t) = ١
٣x

٣ +
١
٣ t

٣ +
١
٣x

٣
t +

١
٣xt

٣ −
١
٢x

٢
t
٢

(٣ . ٧)

(٣ . ٨)
w(x, t) = ∫ t

٠ ∫ x

٠ (x′− t′)٢
dx

′
dt

′+∫ x

٠ x
′٢
dx

′+∫ t

٠ t
′٢
dt

′ = ١
٣xt

٣− ١
٢ tx

٢+ ١
٣x

٣
t+

١
٣x

٣+ ١
٣ t

٣
.

عبارات در w(x, t) ≈ W
T
Ψ(x, t) تقریب و M = M

′ = ۴ ، k = k
′ = ١ ͬ کنیم م فرض حال

طوری که: به ͬ بریم م کار به را چبیشف و لژاندر ΁موج
W

L =[٠٫١٩۴۴۴ ٠٫١٠۵٨۴٨ ٠٫٠۴٣۴٧٩١ ٠٫٠٠٩۴۴٩١١ ٠٫١٠۵٨۴٨ ٠٫٠٠٨٣٣٣ ٠ ٠٫٠٠١٨١٨۴٨
٠٫٠۴٣۴٧٩ ٠ ٠٫٠٠٢٧٧٨ ٠ ٠٫٠٠٩۴۴٩١ ٠٫٠٠١٨١٨۴٨ ٠ ٠]

W
C =[٠٫٣٨٠۴٢٢ ٠٫٢١۴٠۴۵ ٠٫٠٧٨٠٩٧۵ ٠٫٠١٧٣۵۵ ٠٫٢١۴٠۴۵ ٠٫٠٢۴۴٨٩٣ ٠ ٠٫٠٠۴٠٩٠۶٢

٠٫٠٧٨٠٩٧۵ ٠ − ٠٫٠٠۶١۴٣ ٠٫٠٠٠٧١٣٨٨ ٠٫٠١٧٣۵۵ ٠٫٠٠۴٠٩٠۶٢ − ٠٫٠٠٠٠٩٨٠۶۵۴ ٠]
ͬ کنیم: م حل را زیر خطͬ دستگاه مثال این برای تقریبی جواب کردن پیدا برای

U
T (Px + Pt + aPxt)Ψ(xi, tj) =W T

Ψ(xi, tj). (٣ . ٩)
است. شده حل چبیشف و لژاندر ΁موج با k, k′,M,M

′ متفاوت مقادیر برای را سیستم این
است: زیر صورت به k = k′ = ١,M =M ′ = ۴ برای بالا خطͬ سیستم جواب

U
t =[٠٫١۶۶٧ ٠ ٠٫٠٧۴۵ ٠ ٠ − ٠٫١۶۶٧ ٠ ٠ ٠٫٠٧۴۵ ٠ ٠ ٠ ٠ ٠ ٠ ٠]

U
C =[٠٫٣٩٢۶ ٠٫١٣٨٧ ٠٫٠٠٠١ − ٠٫٠٠٠١ − ٠٫٣٩٢٨ ٠ ٠٫٠٠٠٣ ٠٫١٣٨۶ ٠

− ٠٫٠٠٠۴ ٠٫٠٠٠١ − ٠٫٠٠٠١ ٠٫٠٠٠١ ٠٫٠٠٠١ ٠٫٠٠٠۶]
تا ٣ . ٢ جداول در k, k′,M,M

′ متفاوت مقادیر برای L∞ مطلق خطاهای و L٢ مطلق خطاهای
ش΄ل های در K = K ′ = ١,M =M ′ = ۴,۶ برای گراف خطاهای بعلاوه شده اند داده نشان ۴ . ٣

شده اند. داده نشان تا٣ . ۴ ٣ . ١



۵١ روش پیاده سازی

نشانه گذاری لیست :٣ . ١ جدول
عمومͬ نماد لژاندر ΁موج از استفاده چبیشف ΁موج از استفاده
Ψ(x, t) Ψ

L(x, t) Ψ
C(x, t)

P P
L

P
C

Px P
L
x P

C
x

Pt P
L
t P

C
t

Pxt P
L
xt P

C
xt

U U
L

U
C

W W
L

W
C

سوال٣ . ٢ . ١ برای لژاندر ΁موج با مطلق خطاهای :٣ . ٢ جدول
نقاط k = k

′ = ١ k = k
′ = ١ k = k

′ = ١(x, t) M = M
′ = ٢ M = M

′ = ۴ M = M
′ = ۶(٠٫١, ٠٫١) ٨٫٧٠ × ٢−١٠ ١٫٠٣ × ١٠−۴ ٨٫٢٠ × ١٠−۵

(٠٫٢, ٠٫٢) ٢٫۵٠ × ٢−١٠ ٩٫٠ × ١٠−۶ ٧٫١٠ × ١٠−۶

(٠٫٣, ٠٫٣) ١٫٠٣ × ١−١٠ ۵٫٨٧ × ١٠−۵ ۴٫۶۵ × ١٠−۵

(٠٫۴, ٠٫۴) ١٫۴٨ × ١−١٠ ٩٫٩۴ × ١٠−۵ ٧٫٨۶ × ١٠−۵

(٠٫۵, ٠٫۵) ١٫۵٩ × ١−١٠ ١٫١٢ × ١٠−۴ ٨٫٩٣ × ١٠−۵

(٠٫۶, ٠٫۶) ١٫٣۶ × ١−١٠ ٩٫٩۴ × ١٠−۵ ٧٫٨۶ × ١٠−۵

(٠٫٧, ٠٫٧) ٧٫٩٨ × ٢−١٠ ۵٫٨٧ × ١٠−۵ ۴٫۶۵ × ١٠−۵

(٠٫٨, ٠٫٨) ١٫٠٣ × ٢−١٠ ٩٫٠ × ١٠−۶ ٧٫١٠ × ١٠−۶

(٠٫٩, ٠٫٩) ١٫٣۴ × ١−١٠ ١٫٠٣ × ١٠−۴ ٨٫٢٢ × ١٠−۵



چبیشف و لژاندر ΁موج از استفاده با جزئͬ مشتقات با معادلات عددی حل ۵٢

٣ . ٢ . ١ مثال برای چبیشف ΁موج مطلق خطاهای :٣ . ٣ جدول
نقاط k = k

′ = ١ k = k
′ = ١ k = k

′ = ١(x, t) M = M
′ = ٢ M = M

′ = ۴ M = M
′ = ۶(٠٫١, ٠٫١) ۵٫٨ × ٢−١٠ ٢٫۵٧ × ١٠−۴ ۴٫١۶ × ١٠−۴

(٠٫٢, ٠٫٢) ۵٫٧١ × ٢−١٠ ٣٫٨٣ × ١٠−۴ ۵٫٣٧ × ١٠−۴

(٠٫٣, ٠٫٣) ١٫٣٧ × ١−١٠ ۴٫٣٨ × ١٠−۴ ٣٫۵۵ × ١٠−۵

(٠٫۴, ٠٫۴) ١٫٨٣ × ١−١٠ ٢٫٢٢ × ١٠−۵ ٢٫۶۵ × ١٠−۴

(٠٫۵, ٠٫۵) ١٫٩۴ × ١−١٠ ٢٫٣٠ × ١٠−۴ ١٫٢٧ × ١٠−۵

(٠٫۶, ٠٫۶) ١٫۶٩ × ١−١٠ ١٫٣٨ × ١٠−۵ ١٫٩٣ × ١٠−۵

(٠٫٧, ٠٫٧) ١٫١١ × ١−١٠ ٣٫۶۶ × ١٠−۴ ٢٫١١ × ١٠−۵

(٠٫٨, ٠٫٨) ١٫٠۵ × ٢−١٠ ٢٫٧۵ × ١٠−۴ ٣٫٢٢ × ١٠−۵

(٠٫٩, ٠٫٩) ١٫١۴ × ١−١٠ ۴٫٠١ × ١٠−۴ ١٫٢٠ × ١٠−۴

برای (CW) چبیشف ΁موج و (LW) لژاندر ΁موج با L∞وLخطاهای٢ :۴ . ٣ جدول
٣ . ٢ . ١ مثال

M L
LW)خطای٢ ) L

CW)خطای٢ ) L
LW)خطای∞ ) L

CW)خطای∞ )
M = ٢ ۴٫۵٢ × ١−١٠ ۵٫۴١−×٠٢ ١٫٣۴ × ١−١٠ ١٫٩۴ × ١−١٠

M = ۴ ٣٫۴٨ × ١٠−۴ ١٫٢ × ٣−١٠ ١٫١٢ × ١٠−۴ ۴٫٠١ × ١٠−۴

M = ۶ ٢٫٧۵ × ١٠−۴ ١٫۴ × ٣−١٠ ٨٫٢٢ × ١٠−۴ ۵٫٣٧ × ١٠−۴



۵٣ روش پیاده سازی

M = M
′ = ۴ ،K = K

′ = ١ برای لژاندر ΁موج ٣ . ٢ . ١با مثال یا خطا نمودار :٣ . ١ ش΄ل

M = M
′ = ،K = K

′ = ١ برای چبیشف ΁٣ . ٢ . ١باموج مثال یا خطا نمودار :٣ . ٢ ش΄ل
۴



چبیشف و لژاندر ΁موج از استفاده با جزئͬ مشتقات با معادلات عددی حل ۵۴

M = M
′ = ۶ ،K = K

′ = ١ برای لژاندر ΁موج ٣ . ٢ . ١با مثال یا خطا نمودار :٣ . ٣ ش΄ل

M = ،K = K
′ = ١ برای چبیشف ΁موج ٣ . ٢ . ١با مثال یا خطا نمودار :۴ . ٣ ش΄ل

M
′ = ۶



۵۵ روش پیاده سازی
u(x, t) = دقیق جواب با اول مرتبه از دیفرانسیل معادله دوم مثال در [١٣] .٣ . ٢ . ٢ مثال

ͬ گیریم: م نظر در را cos(x + t)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ut + ux + u = −٢ sin(x + t) + cos(x + t)
ϕ(x, ٠) = cos(x)
u(٠, t) = cos(t)

و ͬ گیریم م انتگرال ترتیب به t و x به نسبت بالا دیفرانسیل معادله از قبل مثال مانند
ͬ گیریم: م نظر در را اولیه شرایط

∫ x

٠ u(x′, t)dx′ + ∫ t

٠ u(x, t′)dt′ + a∫ t

٠ ∫ x

٠ u(x′, t′)dx′dt′ = w(x, t)
داریم: روش سازی پیاده بخش به توجه با

f(t) = cos(t), cos(x) = g(x)
w(x, t) = ∫ x

٠ cos(x′)dx′ + ∫ t

٠ cos(t′)dt′ + (∫ t

٠ ∫ x

٠ −٢ sin(x′ + t
′) + cos(x′ + t

′))dx′dt′
⇒ w(x, t) = sin(x′)∣x٠ + sin(t′)∣t٠ + (∫ t

٠ ∫ x

٠ −٢ sin(x′ + t
′) + cos(x′ + t

′))dx′dt′
w(x, t) = sinx + sin t + (∫ t

٠ ∫ x

٠ −٢ sin(x′ + t
′) + cos(x′ + t

′))dx′dt′ (٣ . ١٠)
که

∫ t

٠ ∫ x

٠ −٢ sin(x′ + t
′) + cos(x′ + t

′)dx′dt′ = ∫ x

٠ (−٢ sin(x′ + t
′) + cos(x′ + t

′)dx′) =
٢ cos(x′ + t

′) + sin(x′ + t
′)∣x٠ = ٢ cos(x + t

′) + sin(x + t
′) − (٢ cos(٠ + t

′) + sin(٠ + t
′)) =

٢ cos(x + t
′) + sin(x + t

′) − ٢ cos(٠) − ٢ cos(t′) − sin(٠) − sin(t′) = ٢ cos(x + t
′) + sin(x + t

′)
− ٢ − ٢ cos(t′) − sin(t′) ⇒ ∫ t

٠ (٢ cos(x + t
′) + sin(x + t

′) − ٢ − ٢ cos(t′) − sin(t′))dt′
= −٢ + ٢ sin(x + t

′) − cos(x + t
′) − ٢ sin(t′) + cos(t′)∣t٠ = ٢ + (٢ sin(x + t) − cos(x + t) − ٢ sin(t)

+ cos(t) − (٢ sin(x + ٠) − cos(x + ٠) − ٢ sin(٠) − cos(٠)) ⇒
(٣ . ١١)

طوری که به
w(x, t) = −١ − sin(x) + cos(x) − sin(t) + cos(t) + ٢ sin(x + t) − cos(x + t).



چبیشف و لژاندر ΁موج از استفاده با جزئͬ مشتقات با معادلات عددی حل ۵۶

٣ . ٢ . ٢ مثال لژاندر ΁موج مطلق خطای :۵ . ٣ جدول
نقاط K = K

′ = ١ K = K
′ = ١ K = K

′ = ١(x, t) M = M
′ = ٢ M = M

′ = ۴ M = M
′ = ۶(٠٫١, ٠٫١) ٣٫٧٧ × ٢−١٠ ۴٫٨۶ × ١٠−۵ ٩٫١٢ × ١٠−۵

(٠٫٢, ٠٫٢) ١٫٢۴ × ٢−١٠ ٢٫٧٨ × ١٠−۴ ٣٫٣۶ × ١٠−۵

(٠٫٣, ٠٫٣) ٣٫٩٩ × ٢−١٠ ٨٫۶۴ × ١٠−۵ ١٫٨۶ × ١٠−۵

(٠٫۴, ٠٫۴) ۴٫٨۶ × ٢−١٠ ١٫١۵ × ١٠−۴ ٢٫۴٢ × ١٠−۵

(٠٫۵, ٠٫۵) ۴٫٣۵ × ٢−١٠ ١٫۴٢ × ١٠−۴ ٨٫٣٠ × ١٠−۵

(٠٫۶, ٠٫۶) ٣٫١٠ × ٢−١٠ ۵٫۴٠ × ١٠−۶ ١٫٣٨ × ١٠−۴

(٠٫٧, ٠٫٧) ١٫٨١ × ٢−١٠ ١٫۶٧ × ١٠−۴ ٩٫٩٠ × ١٠−۵

(٠٫٨, ٠٫٨) ١٫٢۴ × ٢−١٠ ٢٫۴۶ × ١٠−۴ ١٫٢٠ × ١٠−۶

(٠٫٩, ٠٫٩) ٢٫٢٢ × ٢−١٠ ٢٫٢٩ × ١٠−۴ ٩٫٠ × ١٠−۵

٣ . ٢ . ٢ مثال چبیشف ΁موج مطلق خطای :۶ . ٣ جدول
نقاط K = K

′ = ١ K = K
′ = ١ K = K

′ = ١(x, t) M = M
′ = ٢ M = M

′ = ۴ M = M
′ = ۶(٠٫١, ٠٫١) ٢٫٣۶ × ٢−١٠ ٣٫٠ × ١٠−۴ ۴٫۵٣ × ١٠−۴

(٠٫٢, ٠٫٢) ٢٫۵٩ × ٢−١٠ ٢٫٠ × ١٠−۴ ٢٫٠٧ × ١٠−۴

(٠٫٣, ٠٫٣) ۵٫٢٣ × ٢−١٠ ١٫٠ × ١٠−۴ ۶٫٩٢ × ١٠−۵

(٠٫۴, ٠٫۴) ۵٫٩۴ × ٢−١٠ ۵٫٠ × ١٠−۴ ١٫٣٩ × ١٠−۴

(٠٫۵, ٠٫۵) ۵٫٢٣ × ٢−١٠ ۶٫٠ × ١٠−۴ ٢٫۶۴ × ١٠−۵

(٠٫۶, ٠٫۶) ٣٫٧٣ × ٢−١٠ ٢٫٠ × ١٠−۴ ٧٫۶٢ × ١٠−۵

(٠٫٧, ٠٫٧) ٢٫١۴ × ٢−١٠ ٢٫٠ × ١٠−۴ ٢٫١٠ × ١٠−۵

(٠٫٨, ٠٫٨) ١٫٢۴ × ٢−١٠ ٢٫٠ × ١٠−۴ ٢٫٠١ × ١٠−۵

(٠٫٩, ٠٫٩) ١٫٨١ × ٢−١٠ ١٫٠ × ١٠−۴ ٣٫٠ × ١٠−۴

است: شده داده زیر خطͬ سیستم حل با مثال این برای تقریبی جواب دوباره،
U

T (Px + Pt + aPxt)Ψ(xi, tj) =W T
Ψ(xi, tj).



۵٧ روش پیاده سازی
است: زیر بصورت خطͬ سیستم این جواب M =M ′ = ۴ و K = K ′ = ١ برای

U
L =[٠٫۴٩۶٨ − ٠٫٢٢٧١ − ٠٫٠١٩٠ ٠٫٠٠٢۵ − ٠٫٢٢٧١ − ٠٫۴٢٨ ٠٫٠٠٨٧ ٠٫٠٠٠۵

− ٠٫٠١٩٠ ٠٫٠٠٨٧ ٠٫٠٠٠٧ − ٠٫٠٠٠١ ٠٫٠٠٢۵ ٠٫٠٠٠۵ − ٠٫٠٠٠١ ٠]
U

C =[٠٫٧۴٧۶ − ٠٫۴٢۵١ − ٠٫٠٣۴٢ ٠٫٠٠۴۶ − ٠٫۴٢۴٨ − ٠٫٠٩٩۵ ٠٫٠١٩٩ ٠٫٠٠١٧
− ٠٫٠٣۴٢ ٠٫٠١٩٣ ٠٫٠٠١٧ ٠٫٠٠٠١ ٠٫٠٠۴٣ ٠٫٠٠١٧ − ٠٫٠٠٠۵ ٠٫٠٠٠٧]

ͬ کند، م توصیف چبیشف و لژاندر ΁موج با را مثال این مطلق خطای ۶ . ٣ و ۵ . ٣ جداول
k = k′ = برای گراف خطاهای آمده اند. ٣ . ٧ جدول در که هستند خطاهایی L∞ و L٢ همچنین

شده اند. داده نشان ٣ . ٨ تا ۵ . ٣ ش΄ل های در M =M ′ = ۴,۶ و ١

مثال٣ . ٢ . ٢ برای چبیشف و لژاندر ΁موج با L∞وL٢ خطاهای :٣ . ٧ جدول
M L

LW)خطای٢ ) L
CW)خطای٢ ) L

LW)خطای∞ ) L
CW)خطای∞ )

M = ٢ ١٫۴٧ × ١−١٠ ١٫۶۵ × ١−١٠ ۴٫٨۶ × ٢−١٠ ۵٫٩۴ × ٢−١٠

M = ۴ ٧٫٩۴ × ١٠−۴ ١٫٧ × ٣−١٠ ٢٫٧٨ × ١٠−۴ ۶٫٠ × ١٠−۴

M = ۶ ۴٫٠۵٣ × ١٠−۴ ٨٫۵۵ × ١٠−۴ ٩٫٩٠ × ١٠−۵ ۴٫۵٣ × ١٠−۴

M = M
′ = ۴ ،K = K

′ = ١ برای لژاندر ΁موج ٣ . ٢ . ٢با مثال یا خطا نمودار :۵ . ٣ ش΄ل



چبیشف و لژاندر ΁موج از استفاده با جزئͬ مشتقات با معادلات عددی حل ۵٨

M = ،K = K
′ = ١ برای چبیشف ΁٣ . ٢ . ٢باموج مثال یا خطا نمودار :۶ . ٣ ش΄ل

M
′ = ۴

M = M
′ = ۶ ،K = K

′ = ١ برای لژاندر ΁موج ٣ . ٢ . ٢با مثال یا خطا نمودار :٣ . ٧ ش΄ل



۵٩ گیری نتیجه

M = ،K = K
′ = ١ برای چبیشف ΁موج ٣ . ٢ . ٢با مثال یا خطا نمودار :٣ . ٨ ش΄ل

M
′ = ۶

گیری نتیجه ٣ . ٣
جواب های آوردن بدست برای قبل، فصل های در شده بیان مبحث های به توجه با فصل این در
کارایی اثبات برای عددی های مثال است. شده پرداخته روش سازی پیاده به ابتدا تقریبی،
نشان جزئͬ دیفرانسیل معادلات حل در را موج΁ ها روش کارایی و دقت عددی نتایج و روش
روش که ͬ دهد م نشان ٣ . ٨ تا ٣ . ١ نمودار های خطای و ٣ . ٧ تا ٣ . ٢ جداول همچنین ͬ دهند. م

ͬ باشد. م کارآمد محاسباتͬ نظر از پیشنهادی
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Aabstract

Classic solutions to partial differential equations have not always been possible and in many

cases almost impossible. Therefore, approximate methods should be used to solve this set of equa-

tions. In this thesis, we extend an effective method based on Legendre and Chebyshev wavelets to

find the approximate solution of partial differential equations with the given initial conditions. In

this method, we obtain the integral operator matrices for Legendre and Chebyshev wavelets, and

by combining the collocation method convert into a system of linear equations. We also survey

the convergence analysis and the corresponding error estimates for these methods under the given

conditions and illustrate the accuracy and efficiency of method by providing some examples.

Keywords: First order partial differential equation, Legendre wavelets, Chebyshev wavelets, Op-

erational matrix of integration, Convergence analysis.
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