چکیده

فرض کنید $S\subseteq V$ گرافی ساده، بدون جهت و متناهی باشد و $S\subseteq V$ زیرمجموعهای از رئوس $V\setminus S$ و گرافی ساده، بدون رنگ شدهاند، حال آنکه رئوس واقع در آن رنگ آمیزی شدهاند، حال آنکه رئوس واقع در S به بدون رنگ هستند. می گوییم رأس دلخواه S به نوسط رأسهای واقع در مجموعه S به صورت اجباری رنگ می شود، هرگاه یک رأس S پنان موجود باشد که:

$$N(x) \setminus S = \{v\}$$
 , $v \in N(x)$.

مجموعه S را یک مجموعه اجبار کننده برای G گوییم، هرگاه با شروع از این مجموعه و تکرار عملیات بالا، همه رأسهای S، رنگ شوند. به اندازه کوچکترین مجموعه اجبار کننده در G معلیات بالا، همه رأسهای G، رنگ شوند. به اندازه کوچکترین مجموعه اجبار کننده در G عدد صفرساز G گوییم و آن را با G نمایش می دهیم. در این پایان نامه، دنبال یافتن کران هایی برای عدد صفرساز برای گراف G با مینیمم درجه G و کمر G و کمر G می باشیم و نشان می دهیم:

$$Z(G) \ge \delta + (\delta - \Upsilon)(g - \Upsilon).$$

كلمات كليدى: مجموعه اجبار كننده، مجموعه صفرساز، عدد صفرساز.

Abstract

Let G be a graph with vertex set V(G) and edge set E(G). A set Z of vertices of a graph G is a zero forcing set of G if iteratively adding to Z vertices form $V(G) \setminus Z$ that are the unique neighbor in $V(G) \setminus Z$ of some vertex in Z, results in the entire vertex set V(G). The zero forcing number Z(G) of G is the minimum cardinality of a zero forcing set of G, and denoted by Z(G).

We study lower bounds on the forcing number of graphs in terms of its minimum degree and girth, where the girth g of a graph is the length of a shortest cycle in the graph.

For the graph G with minimum degree $\delta \geq 2$ and girth $g \geq 3$, we will show that

$$Z(G) \ge \delta + (\delta - 2)(g - 3).$$

Key words: Forcing set, zero forcing set, zero forcing number.