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Abstract

Let G be a graph with vertex set V(G) and edge set E(G). A set Z of vertices of a graph G is a
zero forcing set of G if iteratvely adding to Z vertices form V(G) \ Z that are the unique neighbor
in V(G) \ Z of some vertex in Z, results in the entire vertex set V' (G). The zero forcing number
Z(G) of G is the minimum cardinality of a zero forcing set of GG, and denoted by Z(G).

We study lower bounds on the forcing number of graphs in terms of its minimum degree and girth,
where the girth g of a graph is the length of a shortest cycle in the graph.

For the graph G with minimum degree § > 2 and girth g > 3, we will show that

Z(G)>d+ (6 —2)(g —3).
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