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Abstract

Prompt and accurate diagnosis of cancer or its subtypes in patients has a significant impact
on the correct treatment process and reduction of treatment costs. There are a variety of
methods for diagnosing cancer and its subtypes that have evolved with recent advances in
machine learning and deep learning. Also, new methods have been introduced using machine
learning and deep learning that have good results in predicting different types of cancer or its
subgroups and diagnosing benign and malignant cancerous tumors in patients. One of the
methods that is considered today for the diagnosis of cancer and its subtypes is the
classification of cancer based on somatic mutations. Exposure to UV rays or certain chemicals
can cause mutations in the body's cells. These abnormal mutations caused by environmental
factors are called somatic mutations. However, the classification of somatic mutation-based
cancers is challenging. Challenges such as low sample data volume, high data scatter,
overfitting, and the use of simple linear classifiers are factors that prevent increased
classification performance. This paper presents ways to solve these challenges. These
methods include clustering gene filter preprocessing, indexed scatter reduction, regulatory
methods, the Global-Max-Pooling layer, and the use of the embedding layer. Also in this
dissertation, three deep learning models CNN, LSTM and a combination of these two models
are tested on the TCGA-DeepGene data set. Our proposed model is a single-layer CNN model
with an embedding layer. This model achieved 11,¢¢7 accuracy. Compared to the reference
cited in this dissertation, the accuracy has increased by Y,¢°7.

Keywords: Cancer classification, De novo mutations, Deep neural network, CNN, LSTM

AY



Shahrood University of Thchnology

Faculty of Computer Engineering and Information Technology

M.Sc. Thesis in Artificial Intelligence Engineering

A comparison of deep neural network
models for cancer subtyping Based on
somatic point mutations

By: Pouria Parhami

Supervisors:
Dr. Mansoor Fateh

Advisors:
Dr. Mohsen Rezvani

Dr. Hamid Alinejad Rokny

September Y+ Y

AN



