
Rev.Confirming Pages

424

10C H A P T E R

Dynamic Programming

Dynamic programming is a useful mathematical technique for making a sequence of
interrelated decisions. It provides a systematic procedure for determining the opti-

mal combination of decisions.
In contrast to linear programming, there does not exist a standard mathematical for-

mulation of “the” dynamic programming problem. Rather, dynamic programming is a
general type of approach to problem solving, and the particular equations used must be
developed to fit each situation. Therefore, a certain degree of ingenuity and insight into
the general structure of dynamic programming problems is required to recognize when
and how a problem can be solved by dynamic programming procedures. These abilities
can best be developed by an exposure to a wide variety of dynamic programming appli-
cations and a study of the characteristics that are common to all these situations. A large
number of illustrative examples are presented for this purpose.

1This problem was developed by Professor Harvey M. Wagner while he was at Stanford University.

■ 10.1 A PROTOTYPE EXAMPLE FOR DYNAMIC PROGRAMMING

The STAGECOACH PROBLEM is a problem specially constructed1 to illustrate the fea-
tures and to introduce the terminology of dynamic programming. It concerns a mythical
fortune seeker in Missouri who decided to go west to join the gold rush in California dur-
ing the mid-19th century. The journey would require traveling by stagecoach through
unsettled country where there was serious danger of attack by marauders. Although his
starting point and destination were fixed, he had considerable choice as to which states
(or territories that subsequently became states) to travel through en route. The possible
routes are shown in Fig. 10.1, where each state is represented by a circled letter and the
direction of travel is always from left to right in the diagram. Thus, four stages (stage-
coach runs) were required to travel from his point of embarkation in state A (Missouri)
to his destination in state J (California).

This fortune seeker was a prudent man who was quite concerned about his safety. After
some thought, he came up with a rather clever way of determining the safest route. Life
insurance policies were offered to stagecoach passengers. Because the cost of the policy

EXAMPLE 1 The Stagecoach Problem

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 424

Rev.Confirming Pages

10.1 A PROTOTYPE EXAMPLE FOR DYNAMIC PROGRAMMING 425

for taking any given stagecoach run was based on a careful evaluation of the safety of that
run, the safest route should be the one with the cheapest total life insurance policy.

The cost for the standard policy on the stagecoach run from state i to state j, which
will be denoted by cij, is

3

4

7 4 6

3 2 4

4 1 5

1 4

6 3

3 3

2 4 3

B C D E F G H I J

A B

C

D

E

F

G

H

I

These costs are also shown in Fig. 10.1.
We shall now focus on the question of which route minimizes the total cost of the

policy.

Solving the Problem

First note that the shortsighted approach of selecting the cheapest run offered by each suc-
cessive stage need not yield an overall optimal decision. Following this strategy would
give the route A � B � F � I � J, at a total cost of 13. However, sacrificing a little on
one stage may permit greater savings thereafter. For example, A � D � F is cheaper
overall than A � B � F.

One possible approach to solving this problem is to use trial and error.2 However, the
number of possible routes is large (18), and having to calculate the total cost for each
route is not an appealing task.

Fortunately, dynamic programming provides a solution with much less effort than
exhaustive enumeration. (The computational savings are enormous for larger versions
of this problem.) Dynamic programming starts with a small portion of the original prob-
lem and finds the optimal solution for this smaller problem. It then gradually enlarges
the problem, finding the current optimal solution from the preceding one, until the orig-
inal problem is solved in its entirety.

A C F

D G

B E

I

H

J

2

4

3

6
4

7
1

3
3

2

4

4
1

5
3

3

3

6

4

4

■ FIGURE 10.1
The road system and costs
for the stagecoach problem.

2This problem also can be formulated as a shortest-path problem (see Sec. 9.3), where costs here play the role
of distances in the shortest-path problem. The algorithm presented in Sec. 9.3 actually uses the philosophy of
dynamic programming. However, because the present problem has a fixed number of stages, the dynamic pro-
gramming approach presented here is even better.

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 425

Rev.Confirming Pages

426 CHAPTER 10 DYNAMIC PROGRAMMING

For the stagecoach problem, we start with the smaller problem where the fortune
seeker has nearly completed his journey and has only one more stage (stagecoach run) to
go. The obvious optimal solution for this smaller problem is to go from his current state
(whatever it is) to his ultimate destination (state J). At each subsequent iteration, the prob-
lem is enlarged by increasing by 1 the number of stages left to go to complete the journey.
For this enlarged problem, the optimal solution for where to go next from each possible
state can be found relatively easily from the results obtained at the preceding iteration.
The details involved in implementing this approach follow.

Formulation. Let the decision variables xn (n � 1, 2, 3, 4) be the immediate destina-
tion on stage n (the nth stagecoach run to be taken). Thus, the route selected is A �
x1 � x2 � x3 � x4, where x4 � J.

Let fn(s, xn) be the total cost of the best overall policy for the remaining stages, given
that the fortune seeker is in state s, ready to start stage n, and selects xn as the immedi-
ate destination. Given s and n, let xn* denote any value of xn (not necessarily unique) that
minimizes fn(s, xn), and let f n* (s) be the corresponding minimum value of fn(s, xn). Thus,

f n*(s) � min fn(s, xn) � fn(s, xn*),
xn

where

fn(s, xn) � immediate cost (stage n) � minimum future cost (stages n � 1 onward)
� csxn

� f n*�1(xn).

The value of csxn
is given by the preceding tables for cij by setting i � s (the current state)

and j � xn (the immediate destination). Because the ultimate destination (state J) is reached
at the end of stage 4, f 5* (J) � 0.

The objective is to find f 1* (A) and the corresponding route. Dynamic programming
finds it by successively finding f 4*(s), f 3*(s), f 2*(s), for each of the possible states s and
then using f 2*(s) to solve for f 1*(A).3

Solution Procedure. When the fortune seeker has only one more stage to go (n � 4),
his route thereafter is determined entirely by his current state s (either H or I) and his fi-
nal destination x4 � J, so the route for this final stagecoach run is s � J. Therefore, since
f 4*(s) � f4(s, J) � cs,J, the immediate solution to the n � 4 problem is

When the fortune seeker has two more stages to go (n � 3), the solution procedure
requires a few calculations. For example, suppose that the fortune seeker is in state F.
Then, as depicted below, he must next go to either state H or I at an immediate cost of
cF,H � 6 or cF,I � 3, respectively. If he chooses state H, the minimum additional cost af-
ter he reaches there is given in the preceding table as f 4*(H) � 3, as shown above the H
node in the diagram. Therefore, the total cost for this decision is 6 � 3 � 9. If he chooses
state I instead, the total cost is 3 � 4 � 7, which is smaller. Therefore, the optimal choice
is this latter one, x3* � I, because it gives the minimum cost f 3*(F) � 7.

n � 4: s f 4*(s) x4*

H 3 J
I 4 J

3Because this procedure involves moving backward stage by stage, some writers also count n backward to denote
the number of remaining stages to the destination. We use the more natural forward counting for greater simplicity.

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 426

Rev.Confirming Pages

10.1 A PROTOTYPE EXAMPLE FOR DYNAMIC PROGRAMMING 427

Similar calculations need to be made when you start from the other two possible states
s � E and s � G with two stages to go. Try it, proceeding both graphically (Fig. 10.1)
and algebraically [combining cij and f 4*(s) values], to verify the following complete re-
sults for the n � 3 problem.

The solution for the second-stage problem (n � 2), where there are three stages to
go, is obtained in a similar fashion. In this case, f2(s, x2) � csx2

� f 3*(x2). For example,
suppose that the fortune seeker is in state C, as depicted below.

He must next go to state E, F, or G at an immediate cost of cC,E � 3, cC,F � 2, or
cC,G � 4, respectively. After getting there, the minimum additional cost for stage 3 to the
end is given by the n � 3 table as f 3*(E) � 4, f 3*(F) � 7, or f 3*(G) � 6, respectively, as
shown above the E and F nodes and below the G node in the preceding diagram. The re-
sulting calculations for the three alternatives are summarized below.

x2 � E: f2(C, E) � cC,E � f 3*(E) � 3 � 4 � 7.
x2 � F: f2(C, F) � cC,F � f 3*(F) � 2 � 7 � 9.
x2 � G: f2(C, G) � cC,G � f 3*(G) � 4 � 6 � 10.

The minimum of these three numbers is 7, so the minimum total cost from state C to the
end is f 2*(C) � 7, and the immediate destination should be x2* � E.

F

H

I

6

3

4

3

f3(s, x3) � csx3
� f 4*(x3)

x3

n � 3: s H I f 3*(s) x3*

E 4 8 4 H
F 9 7 7 I
G 6 7 6 H

C

E

G

3

2

4

F

7

6

4

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 427

Rev.Confirming Pages

428 CHAPTER 10 DYNAMIC PROGRAMMING

Making similar calculations when you start from state B or D (try it) yields the fol-
lowing results for the n � 2 problem:

In the first and third rows of this table, note that E and F tie as the minimizing value of
x2, so the immediate destination from either state B or D should be x2* � E or F.

Moving to the first-stage problem (n � 1), with all four stages to go, we see that the
calculations are similar to those just shown for the second-stage problem (n � 2), except
now there is just one possible starting state s � A, as depicted below.

These calculations are summarized next for the three alternatives for the immediate
destination:

x1 � B: f1(A, B) � cA,B � f 2*(B) � 2 � 11 � 13.
x1 � C: f1(A, C) � cA,C � f 2*(C) � 4 � 7 � 11.
x1 � D: f1(A, D) � cA,D � f 2*(D) � 3 � 8 � 11.

Since 11 is the minimum, f 1*(A) � 11 and x1* � C or D, as shown in the following table.

An optimal solution for the entire problem can now be identified from the four ta-
bles. Results for the n � 1 problem indicate that the fortune seeker should go initially to
either state C or state D. Suppose that he chooses x1* � C. For n � 2, the result for s � C
is x2* � E. This result leads to the n � 3 problem, which gives x3* � H for s � E, and the
n � 4 problem yields x4* � J for s � H. Hence, one optimal route is A � C � E �
H � J. Choosing x1* � D leads to the other two optimal routes A � D � E � H � J
and A � D � F � I � J. They all yield a total cost of f 1*(A) � 11.

These results of the dynamic programming analysis also are summarized in Fig. 10.2.
Note how the two arrows for stage 1 come from the first and last columns of the
n � 1 table and the resulting cost comes from the next-to-last column. Each of the other

f2(s, x2) � csx2
� f 3*(x2)

x2

n � 2: s E F G f 2*(s) x2*

B 11 11 12 11 E or F
C 7 9 10 7 E
D 8 8 11 8 E or F

A

B

D

2

4

11

C

7

8

3

f1(s, x1) � csx1
� f 2*(x1)

x1

n � 1: s B C D f 1*(s) x1*

A 13 11 11 11 C or D

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 428

Rev.Confirming Pages

10.2 CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEMS 429

arrows (and the resulting cost) comes from one row in one of the other tables in just
the same way.

You will see in the next section that the special terms describing the particular con-
text of this problem—stage, state, and policy—actually are part of the general terminol-
ogy of dynamic programming with an analogous interpretation in other contexts.

G

I

T
4

3

4

7
1

33

4

1 3

3
4

CA F

E

H

D

B

11

11 4

3

77

8 6

4

1 2 3 4Stage:

State:

■ FIGURE 10.2
Graphical display of the
dynamic programming
solution of the stagecoach
problem. Each arrow shows
an optimal policy decision
(the best immediate
destination) from that state,
where the number by the
state is the resulting cost
from there to the end.
Following the boldface
arrows from A to T gives the
three optimal solutions (the
three routes giving the
minimum total cost of 11).

■ 10.2 CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEMS

The stagecoach problem is a literal prototype of dynamic programming problems. In fact,
this example was purposely designed to provide a literal physical interpretation of the
rather abstract structure of such problems. Therefore, one way to recognize a situation
that can be formulated as a dynamic programming problem is to notice that its basic struc-
ture is analogous to the stagecoach problem.

These basic features that characterize dynamic programming problems are presented
and discussed here.

1. The problem can be divided into stages, with a policy decision required at each stage.
The stagecoach problem was literally divided into its four stages (stagecoaches)

that correspond to the four legs of the journey. The policy decision at each stage was
which life insurance policy to choose (i.e., which destination to select for the next stage-
coach ride). Similarly, other dynamic programming problems require making a sequence
of interrelated decisions, where each decision corresponds to one stage of the problem.

2. Each stage has a number of states associated with the beginning of that stage.
The states associated with each stage in the stagecoach problem were the states

(or territories) in which the fortune seeker could be located when embarking on that par-
ticular leg of the journey. In general, the states are the various possible conditions in
which the system might be at that stage of the problem. The number of states may be
either finite (as in the stagecoach problem) or infinite (as in some subsequent examples).

3. The effect of the policy decision at each stage is to transform the current state to a
state associated with the beginning of the next stage (possibly according to a proba-
bility distribution).

The fortune seeker’s decision as to his next destination led him from his current state
to the next state on his journey. This procedure suggests that dynamic programming

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 429

Rev.Confirming Pages

430 CHAPTER 10 DYNAMIC PROGRAMMING

problems can be interpreted in terms of the networks described in Chap. 9. Each node
would correspond to a state. The network would consist of columns of nodes, with
each column corresponding to a stage, so that the flow from a node can go only to a
node in the next column to the right. The links from a node to nodes in the next col-
umn correspond to the possible policy decisions on which state to go to next. The value
assigned to each link usually can be interpreted as the immediate contribution to the
objective function from making that policy decision. In most cases, the objective cor-
responds to finding either the shortest or the longest path through the network.

4. The solution procedure is designed to find an optimal policy for the overall problem, i.e.,
a prescription of the optimal policy decision at each stage for each of the possible states.

For the stagecoach problem, the solution procedure constructed a table for each
stage (n) that prescribed the optimal decision (xn*) for each possible state (s). Thus, in
addition to identifying three optimal solutions (optimal routes) for the overall problem,
the results show the fortune seeker how he should proceed if he gets detoured to a state
that is not on an optimal route. For any problem, dynamic programming provides this
kind of policy prescription of what to do under every possible circumstance (which is
why the actual decision made upon reaching a particular state at a given stage is re-
ferred to as a policy decision). Providing this additional information beyond simply
specifying an optimal solution (optimal sequence of decisions) can be helpful in a va-
riety of ways, including sensitivity analysis.

5. Given the current state, an optimal policy for the remaining stages is independent of
the policy decisions adopted in previous stages. Therefore, the optimal immediate de-
cision depends on only the current state and not on how you got there. This is the
principle of optimality for dynamic programming.

Given the state in which the fortune seeker is currently located, the optimal life
insurance policy (and its associated route) from this point onward is independent of
how he got there. For dynamic programming problems in general, knowledge of the
current state of the system conveys all the information about its previous behavior nec-
essary for determining the optimal policy henceforth. (This property is the Markovian
property, discussed in Sec. 16.2.) Any problem lacking this property cannot be for-
mulated as a dynamic programming problem.

6. The solution procedure begins by finding the optimal policy for the last stage.
The optimal policy for the last stage prescribes the optimal policy decision for

each of the possible states at that stage. The solution of this one-stage problem is usu-
ally trivial, as it was for the stagecoach problem.

7. A recursive relationship that identifies the optimal policy for stage n, given the opti-
mal policy for stage n � 1, is available.

For the stagecoach problem, this recursive relationship was

f n*(s) � min
xn

{csxn
� f *n�1(xn)}.

Therefore, finding the optimal policy decision when you start in state s at stage n re-
quires finding the minimizing value of xn. For this particular problem, the corresponding
minimum cost is achieved by using this value of xn and then following the optimal pol-
icy when you start in state xn at stage n � 1.

The precise form of the recursive relationship differs somewhat among dynamic
programming problems. However, notation analogous to that introduced in the pre-
ceding section will continue to be used here, as summarized below.

N � number of stages.

n � label for current stage (n � 1, 2, . . . , N).

sn � current state for stage n.

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 430

Rev.Confirming Pages

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 431

xn � decision variable for stage n.

xn* � optimal value of xn (given sn).

fn(sn, xn) � contribution of stages n, n � 1, . . . , N to objective function if system
starts in state sn at stage n, immediate decision is xn, and optimal de-
cisions are made thereafter.

f n*(sn) � fn(sn, xn*).

The recursive relationship will always be of the form

f n*(sn) � max { fn(sn, xn)} or f n*(sn) � min {fn(sn, xn)},
xn xn

where fn(sn, xn) would be written in terms of sn, xn, f *n�1(sn�1), and probably some
measure of the immediate contribution of xn to the objective function. It is the inclu-
sion of f *n�1(sn�1) on the right-hand side, so that f *n (sn) is defined in terms of f *n�1(sn�1),
that makes the expression for f *n (sn) a recursive relationship.

The recursive relationship keeps recurring as we move backward stage by stage.
When the current stage number n is decreased by 1, the new fn*(sn) function is derived
by using the f *n�1(sn�1) function that was just derived during the preceding iteration,
and then this process keeps repeating. This property is emphasized in the next (and fi-
nal) characteristic of dynamic programming.

8. When we use this recursive relationship, the solution procedure starts at the end and
moves backward stage by stage—each time finding the optimal policy for that stage—
until it finds the optimal policy starting at the initial stage. This optimal policy immedi-
ately yields an optimal solution for the entire problem, namely, x1* for the initial state s1,
then x2* for the resulting state s2, then x3* for the resulting state s3, and so forth to x*N for
the resulting stage sN.

This backward movement was demonstrated by the stagecoach problem, where the
optimal policy was found successively beginning in each state at stages 4, 3, 2, and 1,
respectively.4 For all dynamic programming problems, a table such as the following
would be obtained for each stage (n � N, N � 1, . . . , 1).

When this table is finally obtained for the initial stage (n � 1), the problem of interest
is solved. Because the initial state is known, the initial decision is specified by x1* in this
table. The optimal value of the other decision variables is then specified by the other ta-
bles in turn according to the state of the system that results from the preceding decisions.

4Actually, for this problem the solution procedure can move either backward or forward. However, for many
problems (especially when the stages correspond to time periods), the solution procedure must move backward.

■ 10.3 DETERMINISTIC DYNAMIC PROGRAMMING

This section further elaborates upon the dynamic programming approach to deterministic
problems, where the state at the next stage is completely determined by the state and pol-
icy decision at the current stage. The probabilistic case, where there is a probability dis-
tribution for what the next state will be, is discussed in the next section.

fn(sn, xn)
xn

sn f n*(sn) xn*

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 431

Rev.Confirming Pages

432 CHAPTER 10 DYNAMIC PROGRAMMING

Deterministic dynamic programming can be described diagrammatically as shown in
Fig. 10.3. Thus, at stage n the process will be in some state sn. Making policy decision
xn then moves the process to some state sn�1 at stage n � 1. The contribution thereafter
to the objective function under an optimal policy has been previously calculated to be
f *n�1(sn�1). The policy decision xn also makes some contribution to the objective func-
tion. Combining these two quantities in an appropriate way provides fn(sn, xn), the con-
tribution of stages n onward to the objective function. Optimizing with respect to xn then
gives f n*(sn) � fn(sn, xn*). After xn* and f n*(sn) are found for each possible value of sn, the
solution procedure is ready to move back one stage.

One way of categorizing deterministic dynamic programming problems is by the
form of the objective function. For example, the objective might be to minimize the sum
of the contributions from the individual stages (as for the stagecoach problem), or to
maximize such a sum, or to minimize a product of such terms, and so on. Another cat-
egorization is in terms of the nature of the set of states for the respective stages. In par-
ticular, states sn might be representable by a discrete state variable (as for the stagecoach
problem) or by a continuous state variable, or perhaps a state vector (more than one vari-
able) is required. Similarly, the decision variables (x1, x2, . . . , xN) also can be either dis-
crete or continuous.

Several examples are presented to illustrate these various possibilities. More impor-
tantly, they illustrate that these apparently major differences are actually quite inconsequential
(except in terms of computational difficulty) because the underlying basic structure shown
in Fig. 10.3 always remains the same.

The first new example arises in a much different context from the stagecoach prob-
lem, but it has the same mathematical formulation except that the objective is to maxi-
mize rather than minimize a sum.

State:

Stage
n

Stage
n � 1

sn sn � 1
Contribution

of xnfn(sn, xn) f *
n � 1(sn � 1)

xn

Value:

■ FIGURE 10.3
The basic structure for
deterministic dynamic
programming.

EXAMPLE 2 Distributing Medical Teams to Countries

The WORLD HEALTH COUNCIL is devoted to improving health care in the underde-
veloped countries of the world. It now has five medical teams available to allocate among
three such countries to improve their medical care, health education, and training pro-
grams. Therefore, the council needs to determine how many teams (if any) to allocate to
each of these countries to maximize the total effectiveness of the five teams. The teams
must be kept intact, so the number allocated to each country must be an integer.

The measure of performance being used is additional person-years of life. (For a
particular country, this measure equals the increased life expectancy in years times the
country’s population.) Table 10.1 gives the estimated additional person-years of life (in
multiples of 1,000) for each country for each possible allocation of medical teams.

Which allocation maximizes the measure of performance?

Formulation. This problem requires making three interrelated decisions, namely, how
many medical teams to allocate to each of the three countries. Therefore, even though
there is no fixed sequence, these three countries can be considered as the three stages in

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 432

Rev.Confirming Pages

Six days after Saddam Hussein ordered his Iraqi military
forces to invade Kuwait on August 2, 1990, the United
States began the long process of deploying many of its
own military units and cargo to the region. After develop-
ing a coalition force from 35 nations led by the United
States, the military operation called Operation Desert
Storm was launched on January 17, 1991, to expel the
Iraqi troops from Kuwait. This led to a decisive victory
for the coalition forces, which liberated Kuwait and pene-
trated Iraq.

The logistical challenge involved in quickly trans-
porting the needed troops and cargo to the war zone was a
daunting one. A typical airlift mission carrying troops and
cargo from the United States to the Persian Gulf required
a three-day round-trip, visited seven or more different air-
fields, burned almost one million pounds of fuel, and cost
$280,000. During Operation Desert Storm, the Military
Airlift Command (MAC) averaged more than 100 such
missions daily as it managed the largest airlift in history.

To meet this challenge, operations research was
applied to develop the decision support systems needed
to schedule and route each airlift mission. The OR tech-
nique used to drive this process was dynamic program-
ming. The stages in the dynamic programming formulation
correspond to the airfields in the network of flight legs

relevant to the mission. For a given airfield, the states are
characterized by the departure time from the airfield and
the remaining available duty for the current crew. The
objective function to be minimized is a weighted sum of
several measures of performance: the lateness of deliver-
ies, the flying time of the mission, the ground time, and
the number of crew changes. The constraints include a
lower bound on the load carried by the mission and upper
bounds on the availability of crew and ground-support
resources at airfields.

This application of dynamic programming had a
dramatic impact on the ability to deliver the necessary
cargo and personnel to the Persian gulf quickly to sup-
port Operation Desert Storm. For example, when
speaking to the developers of this approach, MAC’s
deputy chief of staff for operations and transportation is
quoted as saying, “I guarantee you that we could not
have done that (the deployment to the Persian Gulf)
without your help and the contributions you made to
(the decision support systems)—we absolutely could
not have done that.”

Source: M. C. Hilliard, R. S. Solanki, C. Liu, I. K. Busch,
G. Harrison, and R. D. Kraemer: “Scheduling the Operation Desert
Storm Airlift: An Advanced Automated Scheduling Support
System,” Interfaces, 22(1): 131–146, Jan.–Feb. 1992.

An Application Vignette

a dynamic programming formulation. The decision variables xn (n � 1, 2, 3) are the num-
ber of teams to allocate to stage (country) n.

The identification of the states may not be readily apparent. To determine the states,
we ask questions such as the following. What is it that changes from one stage to the next?
Given that the decisions have been made at the previous stages, how can the status of the
situation at the current stage be described? What information about the current state of
affairs is necessary to determine the optimal policy hereafter? On these bases, an appro-
priate choice for the “state of the system” is

■ TABLE 10.1 Data for the World Health Council problem

Thousands of Additional
Person-Years of Life

Country
Medical
Teams 1 2 3

0 0 0 0
1 45 20 50
2 70 45 70
3 90 75 80
4 105 110 100
5 120 150 130

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 433

Rev.Confirming Pages

sn � number of medical teams still available for allocation to remaining countries
(n, . . . , 3).

Thus, at stage 1 (country 1), where all three countries remain under consideration for al-
locations, s1 � 5. However, at stage 2 or 3 (country 2 or 3), sn is just 5 minus the num-
ber of teams allocated at preceding stages, so that the sequence of states is

s1 � 5, s2 � 5 � x1, s3 � s2 � x2.

With the dynamic programming procedure of solving backward stage by stage, when we
are solving at stage 2 or 3, we shall not yet have solved for the allocations at the preceding
stages. Therefore, we shall consider every possible state we could be in at stage 2 or 3,
namely, sn � 0, 1, 2, 3, 4, or 5.

Figure 10.4 shows the states to be considered at each stage. The links (line segments)
show the possible transitions in states from one stage to the next from making a feasible
allocation of medical teams to the country involved. The numbers shown next to the links
are the corresponding contributions to the measure of performance, where these numbers

434 CHAPTER 10 DYNAMIC PROGRAMMING

Stage:

State:

1 2 3

0 0

120

20
150

50

70
0

105

45

20
110

80

100

130

0

75

45 20

45
75

90
0

110

75
20

70

0 0

20

0

45

45

0 0 0

1 1

2 2

33

44

555

■ FIGURE 10.4
Graphical display of the
World Health Council
problem, showing the
possible states at each stage,
the possible transitions in
states, and the corresponding
contributions to the measure
of performance.

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 434

Rev.Confirming Pages

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 435

come from Table 10.1. From the perspective of this figure, the overall problem is to find
the path from the initial state 5 (beginning stage 1) to the final state 0 (after stage 3) that
maximizes the sum of the numbers along the path.

To state the overall problem mathematically, let pi(xi) be the measure of performance
from allocating xi medical teams to country i, as given in Table 10.1. Thus, the objective
is to choose x1, x2, x3 so as to

Maximize �
3

i�1
pi(xi),

subject to

�
3

i�1
xi � 5,

and

xi are nonnegative integers.

Using the notation presented in Sec. 10.2, we see that fn(sn, xn) is

fn(sn, xn) � pn(xn) � max �
3

i�n�1
pi(xi),

where the maximum is taken over xn�1, . . . , x3 such that

�
3

i�n

xi � sn

and the xi are nonnegative integers, for n � 1, 2, 3. In addition,

f n*(sn) � max fn(sn, xn)
xn�0,1, . . . , sn

Therefore,

fn(sn, xn) � pn(xn) � f *n�1(sn � xn)

(with f 4* defined to be zero). These basic relationships are summarized in Fig. 10.5.
Consequently, the recursive relationship relating functions f 1*, f 2*, and f 3* for this

problem is

f n*(sn) � max {pn(xn) � f *n�1(sn � xn)}, for n � 1, 2.
xn�0,1, . . . , sn

For the last stage (n � 3),

f 3*(s3) � max p3(x3).
x3�0,1, . . . , s3

The resulting dynamic programming calculations are given next.

Solution Procedure. Beginning with the last stage (n � 3), we note that the values of
p3(x3) are given in the last column of Table 10.1 and these values keep increasing as we
move down the column. Therefore, with s3 medical teams still available for allocation to
country 3, the maximum of p3(x3) is automatically achieved by allocating all s3 teams;
so x3* � s3 and f 3*(s3) � p3(s3), as shown in the following table.

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 435

Rev.Confirming Pages

436 CHAPTER 10 DYNAMIC PROGRAMMING

sn sn � xn

Stage
n � 1

Stage
n

State:

Value: fn(sn, xn) pn(xn)
� pn(xn) � f*n�1(sn � xn)

f*n�1(sn � xn)

xn

■ FIGURE 10.5
The basic structure for the
World Health Council
problem.

2

0

2

45

20

0

1

50

70

0

State:

We now move backward to start from the next-to-last stage (n � 2). Here, finding
x2* requires calculating and comparing f2(s2, x2) for the alternative values of x2, namely,
x2 � 0, 1, . . . , s2. To illustrate, we depict this situation when s2 � 2 graphically:

This diagram corresponds to Fig. 10.5 except that all three possible states at stage 3 are
shown. Thus, if x2 � 0, the resulting state at stage 3 will be s2 � x2 � 2 � 0 � 2, whereas
x2 � 1 leads to state 1 and x2 � 2 leads to state 0. The corresponding values of p2(x2)
from the country 2 column of Table 10.1 are shown along the links, and the values of
f 3*(s2 � x2) from the n � 3 table are given next to the stage 3 nodes. The required calcu-
lations for this case of s2 � 2 are summarized below.

Formula: f2(2, x2) � p2(x2) � f 3*(2 � x2).
p2(x2) is given in the country 2 column of Table 10.1.
f 3*(2 � x2) is given in the n � 3 table above.

x2 � 0: f2(2, 0) � p2(0) � f 3*(2) � 0 � 70 � 70.
x2 � 1: f2(2, 1) � p2(1) � f 3*(1) � 20 � 50 � 70.
x2 � 2: f2(2, 2) � p2(2) � f 3*(0) � 45 � 0 � 45.

Because the objective is maximization, x2* � 0 or 1 with f 2*(2) � 70.

n � 3: s3 f 3*(s3) x3*

0 0 0
1 50 1
2 70 2
3 80 3
4 100 4
5 130 5

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 436

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 437

f2(s2, x2) � p2(x2) � f 3*(s2 � x2)
x2

n � 2: s2 0 1 2 3 4 5 f 2*(s2) x2*

0 0 0 0 or 1
1 50 20 50 0 or 1
2 70 70 45 70 0 or 1
3 80 90 95 75 95 2 or 1
4 100 100 115 125 110 125 3 or 1
5 130 120 125 145 160 150 160 4 or 1

5

0

0

160

4

5

120
125

45

0

State:

f1(s1, x1) � p1(x1) � f 2*(s1 � x1)
x2

n � 1: s1 0 1 2 3 4 5 f 1*(s1) x1*

5 160 170 165 160 155 120 170 1

Proceeding in a similar way with the other possible values of s2 (try it) yields the fol-
lowing table.

We now are ready to move backward to solve the original problem where we are
starting from stage 1 (n � 1). In this case, the only state to be considered is the starting
state of s1 � 5, as depicted below.

Since allocating x1 medical teams to country 1 leads to a state of 5 � x1 at stage 2, a choice
of x1 � 0 leads to the bottom node on the right, x1 � 1 leads to the next node up, and so forth
up to the top node with x1 � 5. The corresponding p1(x1) values from Table 10.1 are shown
next to the links. The numbers next to the nodes are obtained from the f 2*(s2) column of the
n � 2 table. As with n � 2, the calculation needed for each alternative value of the decision
variable involves adding the corresponding link value and node value, as summarized below.

Formula: f1(5, x1) � p1(x1) � f 2*(5 � x1).
p1(x1) is given in the country 1 column of Table 10.1.
f 2*(5 � x1) is given in the n � 2 table.

x1 � 0: f1(5, 0) � p1(0) � f 2*(5) � 0 � 160 � 160.
x1 � 1: f1(5, 1) � p1(1) � f 2*(4) � 45 � 125 � 170.

�

x1 � 5: f1(5, 5) � p1(5) � f 2*(0) � 120 � 0 � 120.

The similar calculations for x1 � 2, 3, 4 (try it) verify that x1* � 1 with f 1*(5) � 170, as
shown in the following table.

hil76299_ch10_424-463.qxd 12/10/08 10:03 AM Page 437 Rev.Confirming Pages

Rev.Confirming Pages

438 CHAPTER 10 DYNAMIC PROGRAMMING

State:

2 3

0

1

0 0

0

50 50
0

0 0

20

70 70

95

80

0

(x
2

�
 3

)
*

(x 1 �
 1)

*

(x 3 �
 1)

*
50

70

2

80

100

100

5

130

130

4

5

45

170 160

125

110

75

45

5

2

3 3

1

0

Stage: 1

4

■ FIGURE 10.6
Graphical display of the
dynamic programming
solution of the World Health
Council problem. An arrow
from state sn to state sn�1
indicates that an optimal
policy decision from state sn
is to allocate (sn � sn�1)
medical teams to country n.
Allocating the medical teams
in this way when following
the boldfaced arrows from
the initial state to the final
state gives the optimal
solution.

Thus, the optimal solution has x1* � 1, which makes s2 � 5 � 1 � 4, so x2* � 3, which
makes s3 � 4 � 3 � 1, so x3* � 1. Since f 1*(5) � 170, this (1, 3, 1) allocation of medical
teams to the three countries will yield an estimated total of 170,000 additional person-
years of life, which is at least 5,000 more than for any other allocation.

These results of the dynamic programming analysis also are summarized in Fig. 10.6.

A Prevalent Problem Type—The Distribution of Effort Problem

The preceding example illustrates a particularly common type of dynamic programming
problem called the distribution of effort problem. For this type of problem, there is just
one kind of resource that is to be allocated to a number of activities. The objective is to
determine how to distribute the effort (the resource) among the activities most effectively.
For the World Health Council example, the resource involved is the medical teams, and
the three activities are the health care work in the three countries.

Assumptions. This interpretation of allocating resources to activities should ring a bell
for you, because it is the typical interpretation for linear programming problems given at

hil76299_ch10_424-463.qxd 11/19/08 04:19 PM Page 438

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 439

the beginning of Chap. 3. However, there also are some key differences between the distri-
bution of effort problem and linear programming that help illuminate the general distinctions
between dynamic programming and other areas of mathematical programming.

One key difference is that the distribution of effort problem involves only one resource
(one functional constraint), whereas linear programming can deal with thousands of re-
sources. (In principle, dynamic programming can handle slightly more than one resource, as
we shall illustrate in Example 5 by solving the three-resource Wyndor Glass Co. problem,
but it quickly becomes very inefficient when the number of resources is increased.)

On the other hand, the distribution of effort problem is far more general than linear
programming in other ways. Consider the four assumptions of linear programming pre-
sented in Sec. 3.3: proportionality, additivity, divisibility, and certainty. Proportionality is
routinely violated by nearly all dynamic programming problems, including distribution of
effort problems (e.g., Table 10.1 violates proportionality). Divisibility also is often vio-
lated, as in Example 2, where the decision variables must be integers. In fact, dynamic
programming calculations become more complex when divisibility does hold (as in Ex-
amples 4 and 5). Although we shall consider the distribution of effort problem only un-
der the assumption of certainty, this is not necessary, and many other dynamic program-
ming problems violate this assumption as well (as described in Sec. 10.4).

Of the four assumptions of linear programming, the only one needed by the distribution
of effort problem (or other dynamic programming problems) is additivity (or its analog for
functions involving a product of terms). This assumption is needed to satisfy the principle
of optimality for dynamic programming (characteristic 5 in Sec. 10.2).

Formulation. Because they always involve allocating one kind of resource to a num-
ber of activities, distribution of effort problems always have the following dynamic pro-
gramming formulation (where the ordering of the activities is arbitrary):

Stage n � activity n (n � 1, 2, . . . , N).
xn � amount of resource allocated to activity n.

State sn � amount of resource still available for allocation to remaining activities
(n, . . . , N).

The reason for defining state sn in this way is that the amount of the resource still avail-
able for allocation is precisely the information about the current state of affairs (entering
stage n) that is needed for making the allocation decisions for the remaining activities.

When the system starts at stage n in state sn, the choice of xn results in the next state
at stage n � 1 being sn�1 � sn � xn, as depicted below:5

Note how the structure of this diagram corresponds to the one shown in Fig. 10.5 for the
World Health Council example of a distribution of effort problem. What will differ from
one such example to the next is the rest of what is shown in Fig. 10.5, namely, the rela-
tionship between fn(sn, xn) and f *n�1(sn � xn), and then the resulting recursive relationship
between the f n* and f *n�1 functions. These relationships depend on the particular objective
function for the overall problem.

sn sn � xn
xn

n � 1n

State:

Stage:

5This statement assumes that xn and sn are expressed in the same units. If it is more convenient to define xn as
some other quantity such that the amount of the resource allocated to activity n is anxn, then sn�1 � sn � anxn.

hil76299_ch10_424-463.qxd 12/23/08 03:42 PM Page 439 Rev.Confirming Pages

Rev.Confirming Pages

440 CHAPTER 10 DYNAMIC PROGRAMMING

EXAMPLE 3 Distributing Scientists to Research Teams

A government space project is conducting research on a certain engineering problem that
must be solved before people can fly safely to Mars. Three research teams are currently
trying three different approaches for solving this problem. The estimate has been made
that, under present circumstances, the probability that the respective teams—call them
1, 2, and 3—will not succeed is 0.40, 0.60, and 0.80, respectively. Thus, the current prob-
ability that all three teams will fail is (0.40)(0.60)(0.80) � 0.192. Because the objective
is to minimize the probability of failure, two more top scientists have been assigned to
the project.

Table 10.2 gives the estimated probability that the respective teams will fail when 0, 1,
or 2 additional scientists are added to that team. Only integer numbers of scientists are
considered because each new scientist will need to devote full attention to one team. The
problem is to determine how to allocate the two additional scientists to minimize the prob-
ability that all three teams will fail.

Formulation. Because both Examples 2 and 3 are distribution of effort problems, their
underlying structure is actually very similar. In this case, scientists replace medical teams
as the kind of resource involved, and research teams replace countries as the activities.
Therefore, instead of medical teams being allocated to countries, scientists are being al-
located to research teams. The only basic difference between the two problems is in their
objective functions.

With so few scientists and teams involved, this problem could be solved very easily
by a process of exhaustive enumeration. However, the dynamic programming solution is
presented for illustrative purposes.

In this case, stage n (n � 1, 2, 3) corresponds to research team n, and the state sn is the
number of new scientists still available for allocation to the remaining teams. The decision
variables xn (n � 1, 2, 3) are the number of additional scientists allocated to team n.

Let pi(xi) denote the probability of failure for team i if it is assigned xi additional sci-
entists, as given by Table 10.2. If we let � denote multiplication, the government’s ob-
jective is to choose x1, x2, x3 so as to

Minimize �
3

i�1
pi(xi) � p1(x1)p2(x2)p3(x3),

■ TABLE 10.2 Data for the Government Space Project problem

Probability of Failure

Team
New

Scientists 1 2 3

0 0.40 0.60 0.80
1 0.20 0.40 0.50
2 0.15 0.20 0.30

The structure of the next example is similar to the one for the World Health Council
because it, too, is a distribution of effort problem. However, its recursive relationship dif-
fers in that its objective is to minimize a product of terms for the respective stages.

At first glance, this example may appear not to be a deterministic dynamic program-
ming problem because probabilities are involved. However, it does indeed fit our definition
because the state at the next stage is completely determined by the state and policy decision
at the current stage.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 440

Rev.Confirming Pages

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 441

subject to

�
3

i�1
xi � 2

and

xi are nonnegative integers.

Consequently, fn(sn, xn) for this problem is

fn(sn, xn) � pn(xn) � min �
3

i�n�1
pi(xi),

where the minimum is taken over xn�1, . . . , x3 such that

�
3

i�n

xi � sn

and

xi are nonnegative integers,

for n � 1, 2, 3. Thus,

f n*(sn) � min fn(sn, xn),
xn�0,1, . . . , sn

where

fn(sn, xn) � pn(xn) � f *n�1(sn � xn)

(with f 4* defined to be 1). Figure 10.7 summarizes these basic relationships.
Thus, the recursive relationship relating the f 1*, f 2*, and f 3* functions in this case is

f n*(sn) � min {pn(xn) � f *n�1(sn � xn)}, for n � 1, 2,
xn�0,1, . . . , sn

and, when n � 3,

f 3*(s3) � min p3(x3).
x3 � 0,1, . . . , s3

Solution Procedure. The resulting dynamic programming calculations are as follows:

n � 3: s3 f 3*(s3) x3*

0 0.80 0
1 0.50 1
2 0.30 2

sn sn � xn

Stage
n � 1

Stage
n

State:

Value: fn(sn, xn) pn(xn) f*n�1(sn � xn)

xn

� pn(xn) � f*n�1(sn � xn)

■ FIGURE 10.7
The basic structure for the
government space project
problem.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 441

Rev.Confirming Pages

442 CHAPTER 10 DYNAMIC PROGRAMMING

f1(s1, x1) � p1(x1) � f 2*(s1 � x1)
x1

n � 1: s1 0 1 2 f 1*(s1) x1*

2 0.064 0.060 0.072 0.060 1

Therefore, the optimal solution must have x1* � 1, which makes s2 � 2 � 1 � 1, so that
x2* � 0, which makes s3 � 1 � 0 � 1, so that x3* � 1. Thus, teams 1 and 3 should each
receive one additional scientist. The new probability that all three teams will fail would
then be 0.060.

All the examples thus far have had a discrete state variable sn at each stage. Further-
more, they all have been reversible in the sense that the solution procedure actually could
have moved either backward or forward stage by stage. (The latter alternative amounts to
renumbering the stages in reverse order and then applying the procedure in the standard
way.) This reversibility is a general characteristic of distribution of effort problems such
as Examples 2 and 3, since the activities (stages) can be ordered in any desired manner.

The next example is different in both respects. Rather than being restricted to integer
values, its state variable sn at stage n is a continuous variable that can take on any value over
certain intervals. Since sn now has an infinite number of values, it is no longer possible to
consider each of its feasible values individually. Rather, the solution for f n*(sn) and xn* must
be expressed as functions of sn. Furthermore, this example is not reversible because its stages
correspond to time periods, so the solution procedure must proceed backward.

Before proceeding directly to the rather involved example presented next, you might
find it helpful at this point to look at the two additional examples of deterministic dynamic
programming presented in the Worked Examples section of the book’s website. The first
one involves production and inventory planning over a number of time periods. Like the ex-
amples thus far, both the state variable and the decision variable at each stage are discrete.
However, this example is not reversible since the stages correspond to time periods. It also
is not a distribution of effort problem. The second example is a nonlinear programming prob-
lem with two variables and a single constraint. Therefore, even though it is reversible, its
state and decision variables are continuous. However, in contrast to the following example
(which has four continuous variables and thus four stages), it has only two stages, so it can
be solved relatively quickly with dynamic programming and a bit of calculus.

f2(s2, x2) � p2(x2) � f 3*(s2 � x2)
x2

n � 2: s2 0 1 2 f 2*(s2) x2*

0 0.48 0.48 0
1 0.30 0.32 0.30 0
2 0.18 0.20 0.16 0.16 2

EXAMPLE 4 Scheduling Employment Levels

The workload for the LOCAL JOB SHOP is subject to considerable seasonal fluctuation.
However, machine operators are difficult to hire and costly to train, so the manager is re-
luctant to lay off workers during the slack seasons. He is likewise reluctant to maintain
his peak season payroll when it is not required. Furthermore, he is definitely opposed to

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 442

Rev.Confirming Pages

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 443

overtime work on a regular basis. Since all work is done to custom orders, it is not pos-
sible to build up inventories during slack seasons. Therefore, the manager is in a dilemma
as to what his policy should be regarding employment levels.

The following estimates are given for the minimum employment requirements dur-
ing the four seasons of the year for the foreseeable future:

Employment will not be permitted to fall below these levels. Any employment above these
levels is wasted at an approximate cost of $2,000 per person per season. It is estimated
that the hiring and firing costs are such that the total cost of changing the level of em-
ployment from one season to the next is $200 times the square of the difference in em-
ployment levels. Fractional levels of employment are possible because of a few part-time
employees, and the cost data also apply on a fractional basis.

Formulation. On the basis of the data available, it is not worthwhile to have the em-
ployment level go above the peak season requirements of 255. Therefore, spring em-
ployment should be at 255, and the problem is reduced to finding the employment level
for the other three seasons.

For a dynamic programming formulation, the seasons should be the stages. There are
actually an indefinite number of stages because the problem extends into the indefinite
future. However, each year begins an identical cycle, and because spring employment is
known, it is possible to consider only one cycle of four seasons ending with the spring
season, as summarized below.

Stage 1 � summer,
Stage 2 � autumn,
Stage 3 � winter,
Stage 4 � spring.

xn � employment level for stage n (n � 1, 2, 3, 4).
(x4 � 255.)

It is necessary that the spring season be the last stage because the optimal value of
the decision variable for each state at the last stage must be either known or obtainable
without considering other stages. For every other season, the solution for the optimal em-
ployment level must consider the effect on costs in the following season.

Let

rn � minimum employment requirement for stage n,

where these requirements were given earlier as r1 � 220, r2 � 240, r3 � 200, and
r4 � 255. Thus, the only feasible values for xn are

rn � xn � 255.

Referring to the cost data given in the problem statement, we have

Cost for stage n � 200(xn � xn�1)2 � 2,000(xn � rn).

Note that the cost at the current stage depends upon only the current decision xn and
the employment in the preceding season xn�1. Thus, the preceding employment level is
all the information about the current state of affairs that we need to determine the opti-
mal policy henceforth. Therefore, the state sn for stage n is

State sn � xn�1.

Season Spring Summer Autumn Winter Spring

Requirements 255 220 240 200 255

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 443

Rev.Confirming Pages

444 CHAPTER 10 DYNAMIC PROGRAMMING

■ TABLE 10.3 Data for the Local Job Shop problem

n rn Feasible xn Possible sn � xn�1 Cost

1 220 220 � x1 � 255 s1 � 255 200(x1 � 255)2 � 2,000(x1 � 220)
2 240 240 � x2 � 255 220 � s2 � 255 200(x2 � x1)2 � 2,000(x2 � 240)
3 200 200 � x3 � 255 240 � s3 � 255 200(x3 � x2)2 � 2,000(x3 � 200)
4 255 x4 � 255 200 � s4 � 255 200(255 � x3)2

Stage
n

snState:

Stage
n � 1

Value: fn(sn, xn)
� sum

200(xn � sn)2 � 2,000(xn � rn) f*n�1(xn)

xn
xn

■ FIGURE 10.8
The basic structure for the
Local Job Shop problem.

When n � 1, s1 � x0 � x4 � 255.
For your ease of reference while working through the problem, a summary of the data

is given in Table 10.3 for each of the four stages.
The objective for the problem is to choose x1, x2, x3 (with x0 � x4 � 255) so as to

Minimize �
4

i�1
[200(xi � xi�1)2 � 2,000(xi � ri)],

subject to

ri � xi � 255, for i � 1, 2, 3, 4.

Thus, for stage n onward (n � 1, 2, 3, 4), since sn � xn�1

fn(sn, xn) � 200(xn � sn)2 � 2,000(xn � rn)

� min �
4

i�n�1
[200(xi � xi�1)2 � 2,000(xi � ri)],

ri�xi�255

where this summation equals zero when n � 4 (because it has no terms). Also,

f n*(sn) � min fn(sn, xn).
rn�xn�255

Hence,

fn(sn, xn) � 200(xn � sn)2 � 2,000(xn � rn) � f *n�1(xn)

(with f5* defined to be zero because costs after stage 4 are irrelevant to the analysis). A
summary of these basic relationships is given in Fig. 10.8.

Consequently, the recursive relationship relating the f n* functions is

f n*(sn) � min {200(xn � sn)2 � 2,000(xn � rn) � f *n�1(xn)}.
rn�xn�255

The dynamic programming approach uses this relationship to identify successively
these functions—f 4*(s4), f 3*(s3), f 2*(s2), f 1*(255)—and the corresponding minimizing xn.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 444

Rev.Confirming Pages

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 445

Solution Procedure. Stage 4: Beginning at the last stage (n � 4), we already know
that x4* � 255, so the necessary results are

Stage 3: For the problem consisting of just the last two stages (n � 3), the recursive
relationship reduces to

f 3*(s3) � min {200(x3 � s3)2 � 2,000(x3 � 200) � f 4*(x3)}
200�x3�255

� min {200(x3 � s3)2 � 2,000(x3 � 200) � 200(255 � x3)2},
200�x3�255

where the possible values of s3 are 240 � s3 � 255.
One way to solve for the value of x3 that minimizes f3(s3, x3) for any particular value

of s3 is the graphical approach illustrated in Fig. 10.9.
However, a faster way is to use calculus. We want to solve for the minimizing x3 in

terms of s3 by considering s3 to have some fixed (but unknown) value. Therefore, set the
first (partial) derivative of f3(s3, x3) with respect to x3 equal to zero:

�
�
�
x3
� f3(s3, x3) � 400(x3 � s3) � 2,000 � 400(255 � x3)

� 400(2x3 � s3 � 250)

� 0,

which yields

x3* � �
s3 �

2
250
�.

Because the second derivative is positive, and because this solution lies in the feasible in-
terval for x3 (200 � x3 � 255) for all possible s3 (240 � s3 � 255), it is indeed the de-
sired minimum.

n � 4: s4 f 4*(s4) x4*

200 � s4 � 255 200(255 � s4)2 255

200 s3 s3 � 250
2

255 x3

2,000(x3 � 200)

200(x3 � s3)2

200(255 � x3)2
Sum � f3(s3, x3)

f *
3(s3)

■ FIGURE 10.9
Graphical solution for f 3*(s3)
for the Local Job Shop
problem.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 445

Rev.Confirming Pages

446 CHAPTER 10 DYNAMIC PROGRAMMING

n � 3: s3 f 3*(s3) x3*

240 � s3 � 255 50(250 � s3)2 � 50(260 � s3)2 � 1,000(s3 � 150)
s3 � 250
��

2

Note a key difference between the nature of this solution and those obtained for the
preceding examples where there were only a few possible states to consider. We now have
an infinite number of possible states (240 � s3 � 255), so it is no longer feasible to solve
separately for x3* for each possible value of s3. Therefore, we instead have solved for x3*
as a function of the unknown s3.

Using

f 3*(s3) � f3(s3, x3*) � 200��s3 �
2

250
� � s3�

2

� 200�255 � �
s3 �

2
250
��

2

� 2,000��s3 �
2

250
� � 200�

and reducing this expression algebraically complete the required results for the third-stage
problem, summarized as follows.

Stage 2: The second-stage (n � 2) and first-stage problems (n � 1) are solved in a
similar fashion. Thus, for n � 2,

f2(s2, x2) � 200(x2 � s2)2 � 2,000(x2 � r2) � f 3*(x2)
� 200(x2 � s2)2 � 2,000(x2 � 240)

� 50(250 � x2)2 � 50(260 � x2)2 � 1,000(x2 � 150).

The possible values of s2 are 220 � s2 � 255, and the feasible region for x2 is 240 �
x2 � 255. The problem is to find the minimizing value of x2 in this region, so that

f 2*(s2) � min f2(s2, x2).
240�x2�255

Setting to zero the partial derivative with respect to x2:

�
�
�
x2
� f2(s2, x2) � 400(x2 � s2) � 2,000 � 100(250 � x2) � 100(260 � x2) � 1,000

� 200(3x2 � 2s2 � 240)

� 0

yields

x2 � �
2s2 �

3
240

�.

Because

f2(s2, x2) � 600 	 0,

this value of x2 is the desired minimizing value if it is feasible (240 � x2 � 255). Over
the possible s2 values (220 � s2 � 255), this solution actually is feasible only if 240 �
s2 � 255.

Therefore, we still need to solve for the feasible value of x2 that minimizes f2(s2, x2)
when 220 � s2
 240. The key to analyzing the behavior of f2(s2, x2) over the feasible
region for x2 again is the partial derivative of f2(s2, x2). When s2
 240,

�2

�
�x2

2

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 446

Rev.Confirming Pages

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 447

f2(s2, x2) 	 0, for 240 � x2 � 255,

so that x2 � 240 is the desired minimizing value.
The next step is to plug these values of x2 into f2(s2, x2) to obtain f 2*(s2) for s2 � 240

and s2
 240. This yields

Stage 1: For the first-stage problem (n � 1),

f1(s1, x1) � 200(x1 � s1)2 � 2,000(x1 � r1) � f 2*(x1).

Because r1 � 220, the feasible region for x1 is 220 � x1 � 255. The expression for f 2*(x1)
will differ in the two portions 220 � x1 � 240 and 240 � x1 � 255 of this region.
Therefore,

�
�
�x2

n � 2: s2 f 2*(s2) x2*

220 � s2 � 240 200(240 � s2)2 � 115,000 240

240 � s2 � 255 �
20

9
0

� [(240 � s2)2 � (255 � s2)2 �
2s2 �

3
240
�

� (270 � s2)2] � 2,000(s2 � 195)

200(x1 � s1)2 � 2,000(x1 � 220) � 200(240 � x1)2 � 115,000,
if 220 � x1 � 240

f1(s1, x1) � �200(x1 � s1)2 � 2,000(x1 � 220) � [(240 � x1)2 � (255 � x1)2 � (270 � x1)2]

� 2,000(x1 � 195), if 240 � x1 � 255.

200
�

9

Considering first the case where 220 � x1 � 240, we have

�
�
�
x1
� f1(s1, x1) � 400(x1 � s1) � 2,000 � 400(240 � x1)

� 400(2x1 � s1 � 235).

It is known that s1 � 255 (spring employment), so that

�
�
�
x1
� f1(s1, x1) � 800(x1 � 245)
 0

for all x1 � 240. Therefore, x1 � 240 is the minimizing value of f1(s1, x1) over the region
220 � x1 � 240.

When 240 � x1 � 255,

�
�
�
x1
� f1(s1, x1) � 400(x1 � s1) � 2,000

� �
40
9
0

�[(240 � x1) � (255 � x1) � (270 � x1)] � 2,000

� �
40
3
0

� (4x1 � 3s1 � 225).

Because

�
�
�
x

2

1
2� f1(s1, x1) 	 0 for all x1,

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 447

Rev.Confirming Pages

448 CHAPTER 10 DYNAMIC PROGRAMMING

n � 1: s1 f 1*(s1) x1*

255 185,000 247.5

EXAMPLE 5 Wyndor Glass Company Problem

Consider the following linear programming problem:

Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4
3x1 � 2x2 � 12
3x1 � 2x2 � 18

set

�
�
�
x1
� f1(s1, x1) � 0,

which yields

x1 � �
3s1 �

4
225

�.

Because s1 � 255, it follows that x1 � 247.5 minimizes f1(s1, x1) over the region
240 � x1 � 255.

Note that this region (240 � x1 � 255) includes x1 � 240, so that f1(s1, 240) 	
f1(s1, 247.5). In the next-to-last paragraph, we found that x1 � 240 minimizes f1(s1, x1)
over the region 220 � x1 � 240. Consequently, we now can conclude that x1 � 247.5 also
minimizes f1(s1, x1) over the entire feasible region 220 � x1 � 255.

Our final calculation is to find f 1*(s1) for s1 � 255 by plugging x1 � 247.5 into the
expression for f1(255, x1) that holds for 240 � x1 � 255. Hence,

f 1*(255) � 200(247.5 � 255)2 � 2,000(247.5 � 220)

� �
20
9
0

� [2(250 � 247.5)2 � (265 � 247.5)2 � 30(742.5 � 575)]

� 185,000.

These results are summarized as follows:

Therefore, by tracing back through the tables for n � 2, n � 3, and n � 4, respec-
tively, and setting sn � x*n�1 each time, the resulting optimal solution is x1* � 247.5,
x2* � 245, x3* � 247.5, x4* � 255, with a total estimated cost per cycle of $185,000.

To conclude our illustrations of deterministic dynamic programming, we give one ex-
ample that requires more than one variable to describe the state at each stage.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 448

Rev.Confirming Pages

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 449

and

x1 � 0, x2 � 0.

(You might recognize this as being the model for the Wyndor Glass Co. problem—
introduced in Sec. 3.1.) One way of solving small linear (or nonlinear) programming prob-
lems like this one is by dynamic programming, which is illustrated below.

Formulation. This problem requires making two interrelated decisions, namely, the
level of activity 1, denoted by x1, and the level of activity 2, denoted by x2. Therefore,
these two activities can be interpreted as the two stages in a dynamic programming for-
mulation. Although they can be taken in either order, let stage n � activity n (n � 1, 2).
Thus, xn is the decision variable at stage n.

What are the states? In other words, given that the decision had been made at prior
stages (if any), what information is needed about the current state of affairs before the de-
cision can be made at stage n? Reflection might suggest that the required information is
the amount of slack left in the functional constraints. Interpret the right-hand side of these
constraints (4, 12, and 18) as the total available amount of resources 1, 2, and 3, respec-
tively (as described in Sec. 3.1). Then state sn can be defined as

State sn � amount of respective resources still available for allocation to
remaining activities.

(Note that the definition of the state is analogous to that for distribution of effort prob-
lems, including Examples 2 and 3, except that there are now three resources to be allo-
cated instead of just one.) Thus,

sn � (R1, R2, R3),

where Ri is the amount of resource i remaining to be allocated (i � 1, 2, 3). Therefore,

s1 � (4, 12, 18),
s2 � (4 � x1, 12, 18 � 3x1).

However, when we begin by solving for stage 2, we do not yet know the value of x1, and
so we use s2 � (R1, R2, R3) at that point.

Therefore, in contrast to the preceding examples, this problem has three state vari-
ables (i.e., a state vector with three components) at each stage rather than one. From a
theoretical standpoint, this difference is not particularly serious. It only means that, in-
stead of considering all possible values of the one state variable, we must consider all pos-
sible combinations of values of the several state variables. However, from the standpoint
of computational efficiency, this difference tends to be a very serious complication.
Because the number of combinations, in general, can be as large as the product of the num-
ber of possible values of the respective variables, the number of required calculations tends
to “blow up” rapidly when additional state variables are introduced. This phenomenon has
been given the apt name of the curse of dimensionality.

Each of the three state variables is continuous. Therefore, rather than consider each
possible combination of values separately, we must use the approach introduced in
Example 4 of solving for the required information as a function of the state of the system.

Despite these complications, this problem is small enough that it can still be solved
without great difficulty. To solve it, we need to introduce the usual dynamic programming
notation. Thus,

f2(R1, R2, R3, x2) � contribution of activity 2 to Z if system starts in state
(R1, R2, R3) at stage 2 and decision is x2

� 5x2,

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 449

Rev.Confirming Pages

450 CHAPTER 10 DYNAMIC PROGRAMMING

Stage
1

State:

Stage
2

Value: f*2 (4 � x1, 12, 18 � 3x1)

x1
4, 12, 18 4 � x1, 12, 18 � 3x1

 f1(4, 12, 18, x1)
� sum

3x1

■ FIGURE 10.10
The basic structure for the
Wyndor Glass Co. linear
programming problem.

n � 2: (R1, R2, R3) f 2*(R1, R2, R3) x2*

R2 � 0, R3 � 0 5 min ��
R
2
2�, �

R
2
3�� min ��

R
2
2�, �

R
2
3��

f1(4, 12, 18, x1) � contribution of activities 1 and 2 to Z if system starts in state
(4, 12, 18) at stage 1, immediate decision is x1, and then
optimal decision is made at stage 2,

� 3x1 � max {5x2}.
2x2�12

2x2�18�3x1
x2�0

Similarly, for n � 1, 2,

f n*(R1, R2, R3) � max fn(R1, R2, R3, xn),
xn

where this maximum is taken over the feasible values of xn. Consequently, using the rel-
evant portions of the constraints of the problem gives

(1) f 2*(R1, R2, R3) � max {5x2},
2x2�R2
2x2�R3
x2�0

(2) f1(4, 12, 18, x1) � 3x1 � f 2*(4 � x1, 12, 18 � 3x1),

(3) f 1*(4, 12, 18) � max {3x1 � f 2*(4 � x1, 12, 18 � 3x1)}.
x1�4

3x1�18
x1�0

Equation (1) will be used to solve the stage 2 problem. Equation (2) shows the basic
dynamic programming structure for the overall problem, also depicted in Fig. 10.10. Equa-
tion (3) gives the recursive relationship between f 1* and f 2* that will be used to solve the
stage 1 problem.

Solution Procedure. Stage 2: To solve at the last stage (n � 2), Eq. (1) indicates that x2*
must be the largest value of x2 that simultaneously satisfies 2x2 � R2, 2x2 � R3, and x2 � 0.
Assuming that R2 � 0 and R3 � 0, so that feasible solutions exist, this largest value is the
smaller of R2/2 and R3/2. Thus, the solution is

Stage 1: To solve the two-stage problem (n � 1), we plug the solution just obtained
for f 2*(R1, R2, R3) into Eq. (3). For stage 2,

(R1, R2, R3) � (4 � x1, 12, 18 � 3x1),

so that

f 2*(4 � x1, 12, 18 � 3x1) � 5 min ��
R
2
2�, �

R
2
3�� � 5 min ��

1
2
2
�, �

18 �
2

3x1��

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 450

Rev.Confirming Pages

10.4 PROBABILISTIC DYNAMIC PROGRAMMING 451

is the specific solution plugged into Eq. (3). After we combine its constraints on x1, Eq. (3)
then becomes

f1*(4, 12, 18) � max �3x1 � 5 min ��
1
2
2
�, �

18 �
2

3x1���.
0�x1�4

Over the feasible interval 0 � x1 � 4, notice that

min ��
1
2
2
�, �

18 �
2

3x1�� � �
so that

3x1 � 5 min ��
1
2
2
�, �

18 �
2

3x1�� � �
Because both

max {3x1 � 30} and max �45 � �
9
2

� x1�0�x1�2 2�x1�4

achieve their maximum at x1 � 2, it follows that x1* � 2 and that this maximum is 36, as
given in the following table.

Because x1* � 2 leads to

R1 � 4 � 2 � 2, R2 � 12, R3 � 18 � 3(2) � 12

for stage 2, the n � 2 table yields x2* � 6. Consequently, x1* � 2, x2* � 6 is the optimal
solution for this problem (as originally found in Sec. 3.1), and the n � 1 table shows that
the resulting value of Z is 36.

You now have seen a variety of applications of dynamic programming, with more to
come in the next section. However, these examples only scratch the surface. For exam-
ple, Chapter 2 of Selected Reference 4 describes 47 types of problems to which dynamic
programming can be applied. (This reference also presents a software tool that can be
used to solve all these problem types.) The one common theme that runs through all these
applications of dynamic programming is the need to make a series of interrelated deci-
sions and the efficient way dynamic programming provides for finding an optimal com-
bination of decisions.

if 0 � x1 � 2

if 2 � x1 � 4.

3x1 � 30

45 � �
9
2

�x1

if 0 � x1 � 2

if 2 � x1 � 4,

6

9 � �
3
2

� x1

n � 1: (R1, R2, R3) f 1*(R1, R2, R3) x1*

(4, 12, 18) 36 2

Probabilistic dynamic programming differs from deterministic dynamic programming in
that the state at the next stage is not completely determined by the state and policy deci-
sion at the current stage. Rather, there is a probability distribution for what the next state
will be. However, this probability distribution still is completely determined by the state

■ 10.4 PROBABILISTIC DYNAMIC PROGRAMMING

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 451

Rev.Confirming Pages

452 CHAPTER 10 DYNAMIC PROGRAMMING

Stage n Stage n � 1

State:

Probability Contribution
from stage n

Decision
xn

p1

p2

pS

C1

C2

CS

f*n�1(1)

f*n�1(2)

f*n�1(S)

1

2

�
�
�

�
�
�

S

sn

fn(sn, xn)

■ FIGURE 10.11
The basic structure for
probabilistic dynamic
programming.

and policy decision at the current stage. The resulting basic structure for probabilistic dy-
namic programming is described diagrammatically in Fig. 10.11.

For the purposes of this diagram, we let S denote the number of possible states at
stage n � 1 and label these states on the right side as 1, 2, . . . , S. The system goes to
state i with probability pi (i � 1, 2, . . . , S) given state sn and decision xn at stage n. If
the system goes to state i, Ci is the contribution of stage n to the objective function.

When Fig. 10.11 is expanded to include all the possible states and decisions at all the
stages, it is sometimes referred to as a decision tree. If the decision tree is not too large,
it provides a useful way of summarizing the various possibilities.

Because of the probabilistic structure, the relationship between fn(sn, xn) and
the f *n�1(sn�1) necessarily is somewhat more complicated than that for deterministic dy-
namic programming. The precise form of this relationship will depend upon the form of
the overall objective function.

To illustrate, suppose that the objective is to minimize the expected sum of the con-
tributions from the individual stages. In this case, fn(sn, xn) represents the minimum ex-
pected sum from stage n onward, given that the state and policy decision at stage n are
sn and xn, respectively. Consequently,

fn(sn, xn) � �
S

i�1
pi[Ci � f *n�1(i)],

with

f *n�1(i) � min fn�1(i, xn�1),
xn�1

where this minimization is taken over the feasible values of xn�1.
Example 6 has this same form. Example 7 will illustrate another form.

EXAMPLE 6 Determining Reject Allowances

The HIT-AND-MISS MANUFACTURING COMPANY has received an order to supply
one item of a particular type. However, the customer has specified such stringent quality
requirements that the manufacturer may have to produce more than one item to obtain an

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 452

Rev.Confirming Pages

10.4 PROBABILISTIC DYNAMIC PROGRAMMING 453

item that is acceptable. The number of extra items produced in a production run is called
the reject allowance. Including a reject allowance is common practice when producing
for a custom order, and it seems advisable in this case.

The manufacturer estimates that each item of this type that is produced will be ac-
ceptable with probability �

1
2

� and defective (without possibility for rework) with probability �
1
2

�.
Thus, the number of acceptable items produced in a lot of size L will have a binomial dis-
tribution; i.e., the probability of producing no acceptable items in such a lot is (�

1
2

�)L.
Marginal production costs for this product are estimated to be $100 per item (even if

defective), and excess items are worthless. In addition, a setup cost of $300 must be in-
curred whenever the production process is set up for this product, and a completely new
setup at this same cost is required for each subsequent production run if a lengthy in-
spection procedure reveals that a completed lot has not yielded an acceptable item. The
manufacturer has time to make no more than three production runs. If an acceptable item
has not been obtained by the end of the third production run, the cost to the manufacturer
in lost sales income and penalty costs will be $1,600.

The objective is to determine the policy regarding the lot size (1 � reject allowance)
for the required production run(s) that minimizes total expected cost for the manufacturer.

Formulation. A dynamic programming formulation for this problem is

Stage n � production run n (n � 1, 2, 3),
xn � lot size for stage n,

State sn � number of acceptable items still needed (1 or 0) at beginning of stage n.

Thus, at stage 1, state s1 � 1. If at least one acceptable item is obtained subsequently, the
state changes to sn � 0, after which no additional costs need to be incurred.

Because of the stated objective for the problem,

fn(sn, xn) � total expected cost for stages n, . . . , 3 if system starts in state sn at stage
n, immediate decision is xn, and optimal decisions are made thereafter,

f n*(sn) � min fn(sn, xn),
xn�0, 1, . . .

where f n*(0) � 0. Using $100 as the unit of money, the contribution to cost from stage n
is [K(xn) � xn] regardless of the next state, where K(xn) is a function of xn such that

K(xn) � �
Therefore, for sn � 1,

fn(1, xn) � K(xn) � xn � ��
1
2

��
xn

f *n�1(1) � �1 � ��
1
2

��
xn� f *n�1(0)

� K(xn) � xn � ��
1
2

��
xn

f *n�1(1)

[where f 4*(1) is defined to be 16, the terminal cost if no acceptable items have been ob-
tained]. A summary of these basic relationships is given in Fig. 10.12.

Consequently, the recursive relationship for the dynamic programming calculations is

f n*(1) � min �K(xn) � xn � ��
1
2

��
xn

f *n�1(1)�xn�0, 1, . . .

for n � 1, 2, 3.

if xn � 0
if xn 	 0.

0,
3,

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 453

Rev.Confirming Pages

454 CHAPTER 10 DYNAMIC PROGRAMMING

Solution Procedure. The calculations using this recursive relationship are summa-
rized as follows.

f2(1, x2) � K(x2) � x2 � ��
1
2

��
x2

f 3*(1)

x2

n � 2: s2 0 1 2 3 4 f 2*(s2) x2*

0 0 0 0

1 8 8 7 7 7�
1
2

� 7 2 or 3

f3(1, x3) � K(x3) � x3 � 16��
1
2

��
x3

x3

n � 3: s3 0 1 2 3 4 5 f 3*(s3) x3*

0 0 0 0

1 16 12 9 8 8 8�
1
2

� 8 3 or 4

f1(1, x1) � K(x1) � x1 � ��
1
2

��
x

1
f 2*(1)

x1

n � 1: s1 0 1 2 3 4 f 1*(s1) x1*

1 7 7�
1
2

� 6�
3
4

� 6�
7
8

� 7�
1
7
6
� 6�

3
4

� 2

Thus, the optimal policy is to produce two items on the first production run; if none
is acceptable, then produce either two or three items on the second production run; if none
is acceptable, then produce either three or four items on the third production run. The to-
tal expected cost for this policy is $675.

State:

Probability Contribution
from stage n

Decision
1 xn

f*n�1(0) � 0

f*n�1(1)

Value: fn(1, xn)
� K()�xn� f*n�1(1)

0

1

1 � ()xn1
2

()1
2

xn

()1
2

xn

xn() 1
2

K()�xn xn

K()�xn xn

 xn
■ FIGURE 10.12
The basic structure for the
Hit-and-Miss Manufacturing
Co. problem.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 454

Rev.Confirming Pages

10.4 PROBABILISTIC DYNAMIC PROGRAMMING 455

EXAMPLE 7 Winning in Las Vegas

An enterprising young statistician believes that she has developed a system for winning
a popular Las Vegas game. Her colleagues do not believe that her system works, so they
have made a large bet with her that if she starts with three chips, she will not have at least
five chips after three plays of the game. Each play of the game involves betting any de-
sired number of available chips and then either winning or losing this number of chips.
The statistician believes that her system will give her a probability of �

2
3

� of winning a given
play of the game.

Assuming the statistician is correct, we now use dynamic programming to determine
her optimal policy regarding how many chips to bet (if any) at each of the three plays of
the game. The decision at each play should take into account the results of earlier plays.
The objective is to maximize the probability of winning her bet with her colleagues.

Formulation. The dynamic programming formulation for this problem is

Stage n � nth play of game (n � 1, 2, 3),
xn � number of chips to bet at stage n,

State sn � number of chips in hand to begin stage n.

This definition of the state is chosen because it provides the needed information about the
current situation for making an optimal decision on how many chips to bet next.

Because the objective is to maximize the probability that the statistician will win her
bet, the objective function to be maximized at each stage must be the probability of fin-
ishing the three plays with at least five chips. (Note that the value of ending with more
than five chips is just the same as ending with exactly five, since the bet is won either
way.) Therefore,

fn(sn, xn) � probability of finishing three plays with at least five chips, given that
the statistician starts stage n in state sn, makes immediate decision xn,
and makes optimal decisions thereafter,

f n*(sn) � max fn(sn, xn).
xn�0, 1, . . . , sn

The expression for fn(sn, xn) must reflect the fact that it may still be possible to ac-
cumulate five chips eventually even if the statistician should lose the next play. If she
loses, the state at the next stage will be sn � xn, and the probability of finishing with at
least five chips will then be f *n�1(sn � xn). If she wins the next play instead, the state will
become sn � xn, and the corresponding probability will be f *n�1(sn � xn). Because the as-
sumed probability of winning a given play is �

2
3

�, it now follows that

fn(sn, xn) � �
1
3

� f *n�1(sn � xn) � �
2
3

� f *n�1(sn � xn)

[where f 4*(s4) is defined to be 0 for s4
 5 and 1 for s4 � 5]. Thus, there is no direct con-
tribution to the objective function from stage n other than the effect of then being in the
next state. These basic relationships are summarized in Fig. 10.13.

Therefore, the recursive relationship for this problem is

f n*(sn) � max ��
1
3

� f *n�1(sn � xn) � �
2
3

� f *n�1(sn � xn)�,
xn�0, 1, . . . , sn

for n � 1, 2, 3, with f 4*(s4) as just defined.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 455

Rev.Confirming Pages

456 CHAPTER 10 DYNAMIC PROGRAMMING

n � 3: s3 f 3*(s3) x3*

�0 0 —
�1 0 —
�2 0 —

�3 �
2
3

� 2 (or more)

�4 �
2
3

� 1 (or more)

�5 1 0 (or � s3 � 5)

f2(s2, x2) � �
1
3

�f 3*(s2 � x2) � �
2
3

�f 3*(s2 � x2)

x2

n � 2: s2 0 1 2 3 4 f 2*(s2) x2*

�0 0 0 —
�1 0 0 0 —

�2 0 �
4
9

� �
4
9

� �
4
9

� 1 or 2

�3 �
2
3

� �
4
9

� �
2
3

� �
2
3

� �
2
3

� 0, 2, or 3

�4 �
2
3

� �
8
9

� �
2
3

� �
2
3

� �
2
3

� �
8
9

� 1

�5 1 1 0 (or � s2 � 5)

State:

Probability Contribution
from stage n

Decision
sn xn

f*n�1(sn � xn)

f*n�1(sn � xn)

Value: fn(sn, xn)

� f*n�1(sn � xn) � sn � xn

sn � xn

0

0
f*n�1(sn � xn)2

3
1
3

1
3

2
3

Stage n Stage n � 1

■ FIGURE 10.13
The basic structure for the
Las Vegas problem.

Solution Procedure. This recursive relationship leads to the following computational
results.

f1(s1, x1) � �
1
3

�f 2*(s1 � x1) � �
2
3

�f 2*(s1 � x1)

x1

n � 1: s1 0 1 2 3 f 1*(s1) x1*

3 �
2
3

� �
2
2

0
7
� �

2
3

� �
2
3

� �
2
2
0
7
� 1

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 456

Rev.Confirming Pages

LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE 457

Therefore, the optimal policy is

if win, x2* � 1 �
x1* � 1

if lose, x2* � 1 or 2 �
This policy gives the statistician a probability of �

2
2
0
7
� of winning her bet with her colleagues.

if win,

if lose, bet is lost

x3* � 0
x3* � 2 or 3.

if win,
if lose,

x3* � �2 or 3 (for x2* � 1)
1, 2, 3, or 4 (for x2* � 2)�

Dynamic programming is a very useful technique for making a sequence of interrelated
decisions. It requires formulating an appropriate recursive relationship for each individ-
ual problem. However, it provides a great computational savings over using exhaustive
enumeration to find the best combination of decisions, especially for large problems. For
example, if a problem has 10 stages with 10 states and 10 possible decisions at each
stage, then exhaustive enumeration must consider up to 10 billion combinations, whereas
dynamic programming need make no more than a thousand calculations (10 for each
state at each stage).

This chapter has considered only dynamic programming with a finite number of stages.
Chapter 19 is devoted to a general kind of model for probabilistic dynamic programming
where the stages continue to recur indefinitely, namely, Markov decision processes.

■ 10.5 CONCLUSIONS

■ SELECTED REFERENCES

1. Bertsekas, D. P.: Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

2. Denardo, E. V.: Dynamic Programming Theory and Applications, Prentice-Hall, Englewood
Cliffs, NJ, 1982.

3. Howard, R. A.: “Dynamic Programming,” Management Science, 12: 317–345, 1966.
4. Lew, A., and H. Mauch: Dynamic Programming: A Computational Tool, Springer, New York, 2007.
5. Smith, D. K.: Dynamic Programming: A Practical Introduction, Ellis Horwood, London, 1991.
6. Sniedovich, M.: Dynamic Programming, Marcel Dekker, New York, 1991.

■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

Worked Examples:

Examples for Chapter 10

“Ch. 10—Dynamic Programming” LINGO File

Glossary for Chapter 10

See Appendix 1 for documentation of the software.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 457

Rev.Confirming Pages

458 CHAPTER 10 DYNAMIC PROGRAMMING

(a) Use dynamic programming to solve this problem. Instead of
using the usual tables, show your work graphically by con-
structing and filling in a network such as the one shown for
Prob. 10.2-1. Proceed as in Prob. 10.2-1b by solving for
f n*(sn) for each node (except the terminal node) and writing
its value by the node. Draw an arrowhead to show the opti-
mal link (or links in case of a tie) to take out of each node.
Finally, identify the resulting optimal path (or paths)
through the network and the corresponding optimal solution
(or solutions).

(b) Use dynamic programming to solve this problem by con-
structing the usual tables for n � 3, n � 2, and n � 1.

10.2-3. Consider the following project network (as described in
Sec. 9.8), where the number over each node is the time required
for the corresponding activity. Consider the problem of finding the
longest path (the largest total time) through this network from start
to finish, since the longest path is the critical path.

Region

Salespersons 1 2 3

1 40 24 32
2 54 47 46
3 78 63 70
4 99 78 84

(a) What are the stages and states for the dynamic programming
formulation of this problem?

(b) Use dynamic programming to solve this problem. However,
instead of using the usual tables, show your work graphically
(similar to Fig. 10.2). In particular, start with the given net-
work, where the answers already are given for f n*(sn) for four
of the nodes; then solve for and fill in f 2*(B) and f 1*(O). Draw
an arrowhead that shows the optimal link to traverse out of
each of the latter two nodes. Finally, identify the optimal path
by following the arrows from node O onward to node T.

(c) Use dynamic programming to solve this problem by manually
constructing the usual tables for n � 3, n � 2, and n � 1.

(d) Use the shortest-path algorithm presented in Sec. 9.3 to solve
this problem. Compare and contrast this approach with the one
in parts (b) and (c).

10.2-2. The sales manager for a publisher of college textbooks has
six traveling salespeople to assign to three different regions of the
country. She has decided that each region should be assigned at
least one salesperson and that each individual salesperson should
be restricted to one of the regions, but now she wants to determine
how many salespeople should be assigned to the respective regions
in order to maximize sales.

The next table gives the estimated increase in sales (in ap-
propriate units) in each region if it were allocated various numbers
of salespeople:

■ PROBLEMS
An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

10.2-1. Consider the following network, where each number along
a link represents the actual distance between the pair of nodes con-
nected by that link. The objective is to find the shortest path from
the origin to the destination.

(origin) (destination)B

C

A

D

E

T

9

6O

7

5

7

8

6

6

7

f *
3(D) � 6

f *
3(E) � 7

f *
2(C) � 13

f *
2(A) � 11

B E

D

C
A

0

3

START
FINISH

3 2
7

4
6

0

4

1

4
5

2

5

I
L

K

J

H

G

F

(a) What are the stages and states for the dynamic programming
formulation of this problem?

(b) Use dynamic programming to solve this problem. However,
instead of using the usual tables, show your work graphically.
In particular, fill in the values of the various f n*(sn) under the
corresponding nodes, and show the resulting optimal arc to
traverse out of each node by drawing an arrowhead near the
beginning of the arc. Then identify the optimal path (the
longest path) by following these arrowheads from the Start
node to the Finish node. If there is more than one optimal
path, identify them all.

(c) Use dynamic programming to solve this problem by con-
structing the usual tables for n � 4, n � 3, n � 2, and
n � 1.

10.2-4. Consider the following statements about solving dynamic
programming problems. Label each statement as true or false, and
then justify your answer by referring to specific statements in the
chapter.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 458

Rev.Confirming Pages

PROBLEMS 459

Store

Crates 1 2 3

0 0 0 0
1 5 6 4
2 9 11 9
3 14 15 13
4 17 19 18
5 21 22 20

(a) The solution procedure uses a recursive relationship that en-
ables solving for the optimal policy for stage (n � 1) given the
optimal policy for stage n.

(b) After completing the solution procedure, if a nonoptimal deci-
sion is made by mistake at some stage, the solution procedure
will need to be reapplied to determine the new optimal deci-
sions (given this nonoptimal decision) at the subsequent
stages.

(c) Once an optimal policy has been found for the overall prob-
lem, the information needed to specify the optimal decision at
a particular stage is the state at that stage and the decisions
made at preceding stages.

10.3-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 10.3.
Briefly describe how dynamic programming was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

10.3-2.* The owner of a chain of three grocery stores has pur-
chased five crates of fresh strawberries. The estimated probability
distribution of potential sales of the strawberries before spoilage
differs among the three stores. Therefore, the owner wants to know
how to allocate five crates to the three stores to maximize expected
profit.

For administrative reasons, the owner does not wish to split
crates between stores. However, he is willing to distribute no crates
to any of his stores.

The following table gives the estimated expected profit at each
store when it is allocated various numbers of crates:

that the alternative allocations for each course would yield the num-
ber of grade points shown in the following table:

Use dynamic programming to determine how many of the five
crates should be assigned to each of the three stores to maximize
the total expected profit.

10.3-3. A college student has 7 days remaining before final ex-
aminations begin in her four courses, and she wants to allocate this
study time as effectively as possible. She needs at least
1 day on each course, and she likes to concentrate on just one
course each day, so she wants to allocate 1, 2, 3, or 4 days to each
course. Having recently taken an OR course, she decides to use dy-
namic programming to make these allocations to maximize the to-
tal grade points to be obtained from the four courses. She estimates

Estimated Grade Points

Course

Study Days 1 2 3 4

1 1 5 4 4
2 3 6 6 4
3 6 8 7 5
4 8 8 9 8

Area

Commercials 1 2 3 4

0 0 0 0 0
1 4 6 5 3
2 7 8 9 7
3 9 10 11 12
4 12 11 10 14
5 15 12 9 16

Solve this problem by dynamic programming.

10.3-4. A political campaign is entering its final stage, and polls
indicate a very close election. One of the candidates has enough
funds left to purchase TV time for a total of five prime-time
commercials on TV stations located in four different areas. Based
on polling information, an estimate has been made of the num-
ber of additional votes that can be won in the different broad-
casting areas depending upon the number of commercials run.
These estimates are given in the following table in thousands of
votes:

Use dynamic programming to determine how the five com-
mercials should be distributed among the four areas in order to
maximize the estimated number of votes won.

10.3-5. A county chairwoman of a certain political party is mak-
ing plans for an upcoming presidential election. She has received
the services of six volunteer workers for precinct work, and she
wants to assign them to four precincts in such a way as to maxi-
mize their effectiveness. She feels that it would be inefficient to
assign a worker to more than one precinct, but she is willing to as-
sign no workers to any one of the precincts if they can accomplish
more in other precincts.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 459

Rev.Confirming Pages

460 CHAPTER 10 DYNAMIC PROGRAMMING

Effect on
Market Share

Millions of
Dollars Expended m f2 f3

0 — 0.2 0.3
1 20 0.4 0.5
2 30 0.5 0.6
3 40 0.6 0.7
4 50 — —

Probability of Functioning

Parallel Units Comp. 1 Comp. 2 Comp. 3 Comp. 4

1 0.5 0.6 0.7 0.5
2 0.6 0.7 0.8 0.7
3 0.8 0.8 0.9 0.9

Cost

Parallel Units Comp. 1 Comp. 2 Comp. 3 Comp. 4

1 1 2 1 2
2 2 4 3 3
3 3 5 4 4

Precinct

Workers 1 2 3 4

0 0 0 0 0
1 4 7 5 6
2 9 11 10 11
3 15 16 15 14
4 18 18 18 16
5 22 20 21 17
6 24 21 22 18

The following table gives the estimated increase in the num-
ber of votes for the party’s candidate in each precinct if it were al-
located various numbers of workers:

(b) Now assume that any amount within the total budget can be
spent in each phase, where the estimated effect of spending
an amount xi (in units of millions of dollars) in phase i (i � 1,
2, 3) is

m � 10x1 � x2
1

f2 � 0.40 � 0.10x2

f3 � 0.60 � 0.07x3.

[Hint: After solving for the f 2*(s) and f 3*(s) functions analytically,
solve for x1* graphically.]

10.3-8. Consider an electronic system consisting of four components,
each of which must work for the system to function. The reliability of
the system can be improved by installing several parallel units in one
or more of the components. The following table gives the probability
that the respective components (labeled as Comp. 1, 2, 3, and 4) will
function if they consist of one, two, or three parallel units:

This problem has several optimal solutions for how many of the
six workers should be assigned to each of the four precincts to
maximize the total estimated increase in the plurality of the
party’s candidate. Use dynamic programming to find all of them
so the chairwoman can make the final selection based on other
factors.

10.3-6. Use dynamic programming to solve the Northern Airplane
Co. production scheduling problem presented in Sec. 8.1 (see
Table 8.7). Assume that production quantities must be integer
multiples of 5.

10.3-7.* A company will soon be introducing a new product into
a very competitive market and is currently planning its marketing
strategy. The decision has been made to introduce the product in
three phases. Phase 1 will feature making a special introductory of-
fer of the product to the public at a greatly reduced price to attract
first-time buyers. Phase 2 will involve an intensive advertising cam-
paign to persuade these first-time buyers to continue purchasing the
product at a regular price. It is known that another company will
be introducing a new competitive product at about the time that
phase 2 will end. Therefore, phase 3 will involve a follow-up ad-
vertising and promotion campaign to try to keep the regular pur-
chasers from switching to the competitive product.

A total of $4 million has been budgeted for this marketing
campaign. The problem now is to determine how to allocate this
money most effectively to the three phases. Let m denote the initial
share of the market (expressed as a percentage) attained in phase 1,
f2 the fraction of this market share that is retained in phase 2, and
f3 the fraction of the remaining market share that is retained in
phase 3. Use dynamic programming to determine how to allocate
the $4 million to maximize the final share of the market for the new
product, i.e., to maximize mf2 f3.
(a) Assume that the money must be spent in integer multiples of

$1 million in each phase, where the minimum permissible mul-
tiple is 1 for phase 1 and 0 for phases 2 and 3. The following
table gives the estimated effect of expenditures in each phase:

The probability that the system will function is the prod-
uct of the probabilities that the respective components will
function.

The cost (in hundreds of dollars) of installing one, two, or three
parallel units in the respective components (labeled as Comp. 1, 2,
3, and 4) is given by the following table:

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 460

Rev.Confirming Pages

PROBLEMS 461

Because of budget limitations, a maximum of $1,000 can be
expended.

Use dynamic programming to determine how many parallel
units should be installed in each of the four components to maxi-
mize the probability that the system will function.

10.3-9. Consider the following integer nonlinear programming
problem.

Maximize Z � 3x2
1 � x3

1 � 5x2
2 � x3

2,

subject to

x1 � 2x2 � 4

and

x1 � 0, x2 � 0
x1, x2 are integers.

Use dynamic programming to solve this problem.

10.3-10. Consider the following integer nonlinear programming
problem.

Maximize Z � 32x1 � 2x2
1 � 30x2 � 20x3,

subject to

3x1 � 7x2 � 5x3 � 20

and

x1, x2, x3 are nonnegative integers.

Use dynamic programming to solve this problem.

10.3-11.* Consider the following nonlinear programming problem.

Maximize Z � 36x1 � 9x2
1 � 6x3

1

� 36x2 � 3x3
2,

subject to

x1 � x2 � 3

and

x1 � 0, x2 � 0.

Use dynamic programming to solve this problem.

10.3-12. Re-solve the Local Job Shop employment scheduling
problem (Example 4) when the total cost of changing the level of
employment from one season to the next is changed to $100 times
the square of the difference in employment levels.

10.3-13. Consider the following nonlinear programming problem.

Maximize Z � 2x2
1 � 2x2 � 4x3 � x2

3

subject to

2x1 � x2 � x3 � 4

and

x1 � 0, x2 � 0, x3 � 0.

Use dynamic programming to solve this problem.

10.3-14. Consider the following nonlinear programming problem.

Minimize Z � x4
1 � 2x2

2

subject to

x2
1 � x2

2 � 2.

(There are no nonnegativity constraints.) Use dynamic program-
ming to solve this problem.

10.3-15. Consider the following nonlinear programming problem.

Maximize Z � x3
1 � 4x2

2 � 16x3,

subject to

x1x2x3 � 4

and

x1 � 1, x2 � 1, x3 � 1.

(a) Solve by dynamic programming when, in addition to the given
constraints, all three variables also are required to be integer.

(b) Use dynamic programming to solve the problem as given (con-
tinuous variables).

10.3-16. Consider the following nonlinear programming problem.

Maximize Z � x1(1 � x2)x3,

subject to

x1 � x2 � x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

Use dynamic programming to solve this problem.

10.3-17. Consider the following linear programming problem.

Maximize Z � 15x1 � 10x2,

subject to

x1 � 2x2 � 6
3x1 � x2 � 8

and

x1 � 0, x2 � 0.

Use dynamic programming to solve this problem.

10.3-18. Consider the following “fixed-charge” problem.

Maximize Z � 3x1 � 7x2 � 6f (x3),

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 461

Rev.Confirming Pages

462 CHAPTER 10 DYNAMIC PROGRAMMING

subject to

x1 � 3x2 � 2x3 � 6
x1 � x2 � 2x3 � 5

and

x1 � 0, x2 � 0, x3 � 0,

where

f (x3) � �
Use dynamic programming to solve this problem.

10.4-1. A backgammon player will be playing three consecutive
matches with friends tonight. For each match, he will have the op-
portunity to place an even bet that he will win; the amount bet can
be any quantity of his choice between zero and the amount of
money he still has left after the bets on the preceding matches. For
each match, the probability is �

1
2

� that he will win the match and thus
win the amount bet, whereas the probability is �

1
2

� that he will lose
the match and thus lose the amount bet. He will begin with $75,
and his goal is to have $100 at the end. (Because these are friendly
matches, he does not want to end up with more than $100.) There-
fore, he wants to find the optimal betting policy (including all
ties) that maximizes the probability that he will have exactly $100
after the three matches.

Use dynamic programming to solve this problem.

10.4-2. Imagine that you have $10,000 to invest and that you will
have an opportunity to invest that amount in either of two invest-
ments (A or B) at the beginning of each of the next 3 years. Both
investments have uncertain returns. For investment A you will ei-
ther lose your money entirely or (with higher probability) get back
$20,000 (a profit of $10,000) at the end of the year. For invest-
ment B you will get back either just your $10,000 or (with low
probability) $20,000 at the end of the year. The probabilities for
these events are as follows:

if x3 � 0
if x3 	 0.

0
�1 � x3

You are allowed to make only (at most) one investment each year,
and you can invest only $10,000 each time. (Any additional money
accumulated is left idle.)
(a) Use dynamic programming to find the investment policy that

maximizes the expected amount of money you will have after
3 years.

(b) Use dynamic programming to find the investment policy that
maximizes the probability that you will have at least $20,000
after 3 years.

10.4-3.* Suppose that the situation for the Hit-and-Miss Manu-
facturing Co. problem (Example 6) has changed somewhat. After
a more careful analysis, you now estimate that each item produced
will be acceptable with probability �

2
3

�, rather than �
1
2

�, so that the prob-
ability of producing zero acceptable items in a lot of size L is (�

1
3

�)L.
Furthermore, there now is only enough time available to make two
production runs. Use dynamic programming to determine the new
optimal policy for this problem.

10.4-4. Reconsider Example 7. Suppose that the bet is changed
as follows: “Starting with two chips, she will not have at least five
chips after five plays of the game.” By referring to the previous
computational results, make additional calculations to determine
the new optimal policy for the enterprising young statistician.

10.4-5. The Profit & Gambit Co. has a major product that has
been losing money recently because of declining sales. In fact,
during the current quarter of the year, sales will be 4 million units
below the break-even point. Because the marginal revenue for each
unit sold exceeds the marginal cost by $5, this amounts to a loss
of $20 million for the quarter. Therefore, management must take
action quickly to rectify this situation. Two alternative courses
of action are being considered. One is to abandon the product
immediately, incurring a cost of $20 million for shutting down.
The other alternative is to undertake an intensive advertising
campaign to increase sales and then abandon the product (at the
cost of $20 million) only if the campaign is not sufficiently suc-
cessful. Tentative plans for this advertising campaign have been
developed and analyzed. It would extend over the next three
quarters (subject to early cancellation), and the cost would be
$30 million in each of the three quarters. It is estimated that the
increase in sales would be approximately 3 million units in the first
quarter, another 2 million units in the second quarter, and another
1 million units in the third quarter. However, because of a number
of unpredictable market variables, there is considerable uncertainty
as to what impact the advertising actually would have; and careful
analysis indicates that the estimates for each quarter could turn out
to be off by as much as 2 million units in either direction. (To quan-
tify this uncertainty, assume that the additional increases in sales

Amount
Investment Returned ($) Probability

A 0 0.25
20,000 0.75

B 10,000 0.9
20,000 0.1

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 462

Rev.Confirming Pages

PROBLEMS 463

in the three quarters are independent random variables having a
uniform distribution with a range from 1 to 5 million, from 0 to 4
million, and from �1 to 3 million, respectively.) If the actual in-
creases are too small, the advertising campaign can be discontin-
ued and the product abandoned at the end of either of the next two
quarters.

If the intensive advertising campaign were initiated and con-
tinued to its completion, it is estimated that the sales for some time

thereafter would continue to be at about the same level as in the
third (last) quarter of the campaign. Therefore, if the sales in that
quarter still were below the break-even point, the product would
be abandoned. Otherwise, it is estimated that the expected dis-
counted profit thereafter would be $40 for each unit sold over the
break-even point in the third quarter.

Use dynamic programming to determine the optimal policy
maximizing the expected profit.

hil76299_ch10_424-463.qxd 11/19/08 04:20 PM Page 463

