Chapter 12:

Partial Differential Equations

(PDEs)

E. Kreyszig



12.1 Basic Concepts of PDEs

A partial differential equation (PDE) is an equation involving one or more partial
derivatives of an (unknown) function, call it u, that depends on two or more variables,
often time 7 and one or several variables in space. The order of the highest derivative is

called the order of the PDE. Just as was the case for ODEs, second-order PDEs will be
the most important ones in applications.

Just as for ordinary differential equations (ODEs) we say that a PDE is linear if it is
of the first degree in the unknown function u and its partial derivatives. Otherwise we
call it nonlinear. Thus, all the equations in Example 1 are linear. We call a linear PDE
homogeneous if each of its terms contains either u or one of its partial derivatives.
Otherwise we call the equation nonhomogeneous. Thus, (4) in Example 1 (with f not
identically zero) is nonhomogeneous, whereas the other equations are homogeneous.

THEOREM 1

Fundamental Theorem on Superposition

If u1 and us are solutions of a homogeneous linear PDE in some region R, then
U = ciuq + calso

with any constants ¢y and ¢y is also a solution of that PDE in the region R.




EXAMPLE 1 Important Second-Order PDEs

(1) = One-dimensional wave equation

(2) One-dimensional heat equation

3) Two-dimensional Laplace equation

0"u
(4) 5 Two-dimensional Poisson equation

(5) + Two-dimensional wave equation

(6) + Three-dimensional Laplace equation

Here c is a positive constant, ¢ is time, x, y, z are Cartesian coordinates, and dimension is the number of these
coordinates in the equation. H

In general, the totality of solutions of a PDE is very large. For example, the functions
(7) u=x2—y2 u=evcosy, u = sin x cosh y, u=1Inx2+ y?

which are entirely different from each other, are solutions of (3), as you may verify. We




EXAMPLE 2 Solving u,, — u = 0 Like an ODE

Find solutions u of the PDE u,, — # = 0 depending on x and y.

Solution. Since no y-derivatives occur, we can solve this PDE like #” — u = 0. In Sec. 2.2 we would have
obtained u = Ae” + Be™" with constant A and B. Here A and B may be functions of y, so that the answer is

u(x, y) = A(y)e* + B(y)e ™™

with arbitrary functions A and B. We thus have a great variety of solutions. Check the result by differentiation. I

EXAMPLE 3 Solvingu, = —u, Like an ODE

Find solutions u = u(x, y) of this PDE.

Solution. Setting u, = p, we have p, = —p, py/p = —1, In|pl| = —y + cx), p = c(x)e™ and by
integration with respect to x,

ux,y) =f(x)e ¥ + g(y)  where  f(x) = J ¢ (x) dx,

here, f(x) and g(y) are arbitrary.




12.2 Modeling: Vibrating String, Wave Equation

In this section we model a vibrating string, which will lead to our first important PDE,
that 1is, equation (3) which will then be solved in Sec. 12.3. The student should pay very
close attention to this delicate modeling process and detailed derivation starting from
scratch, as the skills learned can be applied to modeling other phenomena in general and
in particular to modeling a vibrating membrane (Sec. 12.7).

We want to derive the PDE modeling small transverse vibrations of an elastic string, such
as a violin string. We place the string along the x-axis, stretch it to length L, and fasten it
at the ends x = 0 and x = L. We then distort the string, and at some instant, call it # = 0,
we release it and allow it to vibrate. The problem is to determine the vibrations of the string,
that is, to find its deflection u (x, r) at any point x and at any time ¢ > 0; see Fig. 286.

Q
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Fig. 286. Deflected string at fixed time t. Explanation on p. 544



Physical Assumptions

1. The mass of the string per unit length is constant (“homogeneous string”). The string
1s perfectly elastic and does not offer any resistance to bending.

2. The tension caused by stretching the string before fastening it at the ends is so large
that the action of the gravitational force on the string (trying to pull the string down
a little) can be neglected.

3. The string performs small transverseé motions in a vertical plane; that is, every
particle of the string moves strictly vertically and so that the deflection and the slope
at every point of the string always remain small in absolute value.

Derivation of the PDE of the Model

(“Wave Equation”) from Forces

The model of the vibrating string will consist of a PDE (“Waveequation’”) and additional
conditions. To obtain the PDE, we consider the forces acting on a small portion of the
string (Fig. 286). This method is typical of modeling in mechanics and elsewhere.

Since the string offers no resistance to bending, the tension is tangential to the curve
of the string at each point. Let 77 and 75 be the tension at the endpoints P and Q of that
portion. Since the points of the string move Metti€ally, there is no motion in the horizontal
direction. Hence the horizontal components of the tension must be constant. Using the
notation shown in Fig. 286, we thus obtain 5




(1) T cosa = 15cos B =T = const.

In the vertical direction we have two forces, namely, the vertical components —7; sin «
and 55 sin B of 7; and 75; here the minus sign appears because the component at P is
directed downward. By Newton’s second law (Sec. 2.4) the resultant of these two forces
is equal to the mass pAx of the portion fimes the acceleration azu/ 312, evaluated at some
point between x and x + Ax; here p is the mass of the undeflected string per unit length,
and Ax is the length of the portion of the undeflected string. (A is generally used to denote

. . i
15 sin B — Ty sina = pr—Z.
ot

Using (1), we can divide this by 75 cos B = 177 cos a = T, obtaining

(2)

=tanB —tana = —— —5.

LsinB  Tsina pAx 82?;
T ot

15cos 3 T cos

Now tan « and tan 3 are the slopes of the string at x and x + Ax:




Here we have to write partial derivatives because u also depends on time ¢. Dividing (2)

(o)l

by Ax, we thus have

If we let Ax approach zero, we obtain the linear PDE

This is called the one-dimensional wave equation. We see that it is homogeneous and
of the second order. The physical constant 7/p is denoted by ¢ (instead of ¢) to indicate

that this constant is positive, a fact that will be essential to the form of the solutions. “Oné=
” means that the equation involves only one space variable, x. In the next




12.3 Solution by Separating Variables.

Use of Fourier Series

We continue our work from Sec. 12.2, where we modeled a vibrating string and obtained
the one-dimensional wave equation. We now have to complete the model by adding
additional conditions and then Solving the resulting model.

The model of a vibrating elastic string (a violin string, for instance) consists of the one-
dimensional wave equation

(1) — =" — c” =

82u 2 azl/t 2 I
ot> x> p

for the unknown deflection u(x, f) of the string, a PDE that we have just obtained, and
some additional conditions, which we shall now derive.

Since the string 1s fastened at the ends x = 0 and x = L (see Sec. 12.2), we have the
two boundary conditions

(2) [(a) u(0, 1 =0, (b) u(L,r) =0, forall r = 0.]




Furthermore, the form of the motion of the string will depend on its initial deflection
(deflection at time ¢ = 0), call it f(x), and on its initial velocity (velocity at t = 0), call it
g (x). We thus have the two initial'conditions

3) (@) u@x0)=fx), b wx0)=gx) O=x=1L)

where u; = du/dt. We now have to find a solution of the PDE (1) satisfying the conditions
(2) and (3). This will be the solution of our problem. We shall do this in three steps, as
follows.

Step 1. By the “method of separating variables” or product method, setting

u(x, 1) = F(x)G (1), we obtain from (1) two ODEs, one for F(x) and the other one
for G (7).

Step 2. We determine solutions of these ODEs that satisfy the boundary conditions (2).

Step 3. Finally, using Fourier series, we compose the solutions found in Step 2 to obtain
a solution of (1) satisfying both (2) and (3), that is, the solution of our model of the
vibrating string.




Step 1. Two ODEs from the Wave Equation (1)

In the method of separating variables, or product method, we determine solutions of the
wave equation (1) of the form

@) [ u(x, 1) = F(x)G(t)]

which are a product of two functions, each depending on only one of the variables x and 7.
This 1s a powerful general method that has various applications in engineering mathematics,
as we shall see 1n this chapter. Differentiating (4), we obtain

62 . 82
—‘;‘ - FG  and _th - F'G
ot ox

where dots denote derivatives with respect to ¢ and primes derivatives with respect to X.
By inserting this into the wave equation (1) we have

[ FG = 2F"G.

Dividing by ¢*FG and simplifying gives -
G FH
[ch F .




The variables are now separated, the left side depending only on ¢ and the right side only
on x. Hence both sides must be constant because, if they were variable, then changing ¢
or x would affect only one side, leaving the other unaltered. Thus, say,

G F
G - F

= k.

Multiplying by the denominators gives immediately fWo ordinary DES

and

(6) G — %kG = 0.

Here, the separation constant « is still arbitrary.




Step 2. Satisfying the Boundary Conditions (2)

We now determine solutions F and G of (5) and (6) so that u = FG satisfies the boundary
conditions (2), that is,

(7)

We first golve (5). If G = 0, then u = FG = 0, which is of no interest. Hence G # 0
and then b\(7),

(8)

u(0,1n = FO0)G(r) = 0, u(ll,t) = F(L)G(t) = OJ for all .

(a) F(O) =0, (b)y F(L)=0. }

We show that Eimustbenegative. For £ = 0 the general solution of (5) is FF="ax b,
and from (8) we obtain@ = b = 0, sothat F = 0and u = FG = 0, which is of no interest.
For positive k = )uz a general solution of (5) is

F = Ae®™™ + Be™ ™"

and from (8) we obtain ' = 0 as before (verify!). Hence we are left with the possibility
of choosing k'negative, say, k = —p2. Then (5) becomes F” + p?F = 0 and has as a

general solution



From this and (8) we have
FO=A=0 and then F(L) = BsinpL = 0.

We must take B # 0 since otherwise F' = 0. Hence sin pL. = 0. Thus

nir

9) pL = nr, so that p = 3

(n integer).

Setting B = 1, we thus obtain infinitely many solutions F'(x) = F,, (x), where

(10) [Fn(x) = sin %x] n=12-")

We now solve (6) with k = —p? = —(n7r/L)* resulting from (9), that is,

Cnir

(11%) G+A2G=0 where A,=cp= T

A general solution is

G,(t) = B,,cos Ayt + B} sin A,t.




Hence solutions of (1) satisfying (2) are u,,(x, t) = F,(x)G, (1) = G, (0)F,(x), written out

These functions are called the eigenfunctions, or characteristic functions, and the values
A, = cnar/L are called the eigenvalues, or characteristic values, of the vibrating string.
The set {Aq, Ao, ---} is called the spectrum.

Discussion of Eigenfunctions. We see that each u,, represents a harmonic motion having

the frequeney (\,,/27 = cn/2L tycles per unit time. This motion is called the ffliioEmal

mode of the string. The first normal mode is known as the fundamental mode (n = 1),
and the others are known as overtones; musically they give the octave, octave plus fifth,
etc. Since in (11)

7n7

smT—O X =

the nth normal mode has n =1 nodes, that is, points of the string that do not move (in
addition to the fixed endpoints); see Fig. 287.
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Fig. 287. Normal modes of the vibrating string

Figure 288 shows the second normal mode for various values of 7. At any instant the
string has the form of a Siné'wave. When the left part of the string is moving down, the

other half is moving up, and conversely. For the other modes the situation is similar.

Fig. 288. Second normal mode for various values of t




Step 3. Solution of the Entire Problem. Fourier Series

The eigenfunctions (11) satisfy the wave equation (1) and the boundary conditions (2)
(string fixed at the ends). A single u,, will generally not satisfy the initial conditions (3).
But since the wave equation (1) is linear and homogeneous, it follows from Fundamental
Theorem 1 in Sec. 12.1 that the sum of finitely many solutions u,, 1s a solution of (1). To
obtain a solution that also satisfies the initial conditions (3), we consider the infinite series
(with A,, = cnw /L as before)

(12) u(n, 1) = Supe,t) = 3 (B cos \pt + B sin Ay sin %x.

=l n=1

Satisfying Initial Condition (3a) (Given Initial Displacement). From (12) and (3a)
we obtain

e

(13) u(x.0) = > Bysin”"x = f(). O=x=1L)

n=1



Hence we must choose the B,,’s so that u(x, 0) becomes the Fourier sine series of f(x).
Thus, by (4) in Sec. 11.3,

I
(14) B, = J f() sm@dx n=12, -
0

Satisfying Initial Condition (3b) (Given Initial Velocity). Similarly, by differentiating
(12) with respect to ¢ and using (3b), we obtain

0 - . T
a—u - [ 2 (=B, Ay, sin At + BEA,, cos A,t) sin LR
Hiso n=1 t=0

n=1

Hence we must choose the B;;’s so that for 7 = 0 the derivative du/dt becomes the Fourier
sine series of g(x). Thus, again by (4) in Sec. 11.3,

L
B¥ A, = J g (x) sin T .
0




Since A,, = cnr/L, we obtain by division

2 NITX

L
(15) Bﬁ—%J g(x)sianx, n=12---
0

Result. Our discussion shows that @) given by (12) with coefficients (14) and (15)
1s a solution of (1) that satisfies all the conditions in (2) and (3), provided the series (12)
converges and so do the series obtained by differentiating (12) twice termwise with respect
to x and 7 and have the sums 0%u/ox? and 0%u/dt?, respectively, which are CORiUOUS.

Solution (12) Established. According to our derivation, the solution (12) is at first a
purely formal expression, but we shall now establish it. For the sake of simplicity we
consider only the case when the initial velocity g(&) is identically zero. Then the Bjj are
zero, and (12) reduces to

(16) u(x, 1) = D B, cos At sin nTm’ Ay, = cnm

n=1

It is possible to sum this series, that is, to write the result in a closed or finite form. For
this purpose we use the formula [see (11), App. A3.1]

Cnir . nIr 1] . nar . nir
COS fsin—x = —| sin {—(x — ct)} + sin {—(x + ct)} ) 9
L L 2 L L rrer!




Consequently, we may write (16) in the form
1 < 1 <
u(x, ) = EEBW sin {%(x — ct)} + EEBR sin {%(x + ct)}.
n=1 n=1

These two series are those obtained by substituting x — ¢t and x + ct, respectively, for
the variable x in the Fourier sine series (13) for f(x). Thus

(17) ux, 1) = 5[ f*(x — ct) + f¥(x + cp)]

where f* 1s the odd periodic extension of f with the period 2L (Fig. 289). Since the initial
deflection f(x) 1s continuous on the interval 0 = x = L and zero at the endpoints, it follows
from (17) that u(x, #) iS a continuous function of both variables x and ¢ for all values of
the variables. By differentiating (17) we see that u (x, ¢) 1s a solution of (1), provided f(x)
is twice differentiable on the interval 0 < x < L, and has one-sided second derivatives at
x = 0and x = L, which are zero. Under these conditions u (x, f) is established as a solution

of (1), satisfying (2) and (3) with g(x) = 0. N

Fig. 289. Odd periodic extension of f(x)
20




Physical Interpretation of the Solution (17). The graph of f* (x — cf) is obtained from
the graph of f*(x) by shifting the latter ef units to the right (Fig. 290). This means that
f*(x — ct)(c > 0) represents a wave that is traveling to the right as ¢ increases. Similarly,
f*(x + ct) represents a wave that is traveling to the left, and u (x, r) is the superposition
of these two waves.

f*x —et)

7

ct |

Fig. 290. Interpretation of (17)

EXAMPLE 1 Vibrating String if the Initial Deflection Is Triangular

Find the solution of the wave equation (1) satisfying (2) and corresponding to the friangular initial deflection

(2k

L
—X if 0<x<— u(x, 0)
L 2 t=0
fx) = 9
2k L

—(L — x) if 5<x<L 0 L
\

and initial velocity zero. (Figure 291 shows f(x) = u(x, 0) at the top.)




Solution. Since g(x) = 0, we have B} = 0 in (12), and from Example 4 in Sec. 11.3 we see that the B,, are
given by (5), Sec. 11.3. Thus (12) takes the form

8k [ 1 T Tc 1 3T 3mc

ux,t) = ——5 |5sin—xcos—¢— —sin—xcos——t+ — -
w2 (127 L L 3® L L

2

For graphing the solution we may use u(x, 0) = f(x) and the above interpretation of the two functions in the
representation (17). This leads to the graph shown 1n Fig. 291.




1
vgf"’(x—”

1
—§f*(x +L)

Fig. 291. Solution u(x, t) in Example 1 for various values of t (right part
of the figure) obtained as the superposition of a wave traveling to the
right (dashed) and a wave traveling to the left (left part of the figure)




Example:
i’y _ ,0%y
1.
Y Czaxz for0<x<2,t>0

y0,6H=y2,t)=0for t>0

0
y(x,0)=0, a—);(x, 0)=gx) for0<x<2

2x for0<x<l1
0 forl<x<2.

where g(x) = {

g 2 (L
" nem ),

b [reos ()|

4L (nn) 0 + 1
" cn2m2 c0s L

g(x) sin (nTn x) dx =

_|__

) o

()

L=2
f(x) =u(x,0) =0

2x 0<x<1

du
90 =0y = {2 0 =X =)

%ij(x) sin(nTnx) dx =0
0

1

nm
— 2x sin (— x) dx =
nem J, L

1 nim p
j cos(Lx) X

)



[ =9 - * 8 nm 16  (nm
B 7 B = cn2m? COS( 2 ) T cn3m3 >t (7)

Eq.(12) => u(x, t) = z Bn sin (cnn t) sin (nL_nx>

u(x,t) = Z [cn3n3 (nncos <n2n> + 2 sin (nz_n)> sin (chn t) sin (n%r x)]

c=2

8 (T
u(x, t) = 3 sin(mt)sin (E x)

1
x) — — sin(2mt)sin(mx)
T

8
u,(x,t) = = sin(7t)sin (

27T




12.4 D’ Alembert’s Solution

of the Wave Equation.

It is interesting that the solution (17), Sec. 12.3, of the wave equation

(1) gu_p20n 2 =
can be immediately obtained by transforming (1) in a suitable way, namely, by introducing
the new independent variables

(2) v=x+ ct, w =X — ct.

Then u becomes a function of v and w. The derivatives in (1) can now be expressed in terms
of derivatives with respect to v and w by the use of the chain rule in Sec. 9.6. Denoting
partial derivatives by subscripts, we see from (2) that v, = 1 and w,, = 1. For simplicity
let us denote u (x, ), as a function of v and w, by the same letter u. Then

Up = UpUy T UyWa = Uy T Uy,



We now apply the chain rule to the right side of this equation. We assume that all the
partial derivatives involved are continuous, so that u,,, = u,,,. Sincev, = l and w, = 1,
we obtain

Upy = Uy T Uy)ye = Uy T Uy)yUx + Uy T Uy)yyWa = Uyy T 2Uyyy + Uy
Transforming the other derivative in (1) by the same procedure, we find

_ 2
Ut — C (uvv T 2uvw + uww)

By inserting these two results in (1) we get (see footnote 2 in App. A3.2)

The point of the present method is that (3) can be readily solved by two successive
integrations, first with respect to w and then with respect to v. This gives

and u = Jh(v)dv + fr(w).




Here 2 (v) and ¢ (w) are arbitrary functions of v and w, respectively. Since the integral is
a function of v, say, ¢ (v), the solution is of the form u = ¢ ([@®) + ¢ (w). In terms of x
and 7, by (2), we thus have

4) ulx,1) = o(x + ct) + y(x — ct).

This is known as d?Alembert’s solution' of the wave equation (1).
Its derivation was much more glegant than the method in Sec. 12.3, but d’ Alembert’s method
is special, whereas the use of Fourier series applies to various equations, as we shall see.

D’Alembert’s Solution Satisfying the Initial Conditions

() (@) u(x,0) = fx), (d)  ut(x, 0) = g(x).
These are the same as (3) in Sec. 12.3. By differentiating (4) we have
(6) ue(x, 1) = cd'(x + ct) — cp'(x — ct)

where primes denote derivatives with respect to the entire arguments x + c¢f and x — ct,
respectively, and the minus sign comes from the chain rule. From (4)—(6) we have



(7 u(x, 0) = ) + i (x) = fx),
(8) 1y (x, 0) = cd'(x) + caf'(x) = g(v).

Dividing (8) by ¢ and integrating with respect to x, we obtain

9) b (x) — P (x) = k(xg) + %J g(s) ds, k(xg) = ¢ (xp) — P (xo).

Lo

If we add this to (7), then ¢ drops out and division by 2 gives

(10) {qb(x) )+ o f ¢(s) ds + = k(m)}

Lo

Similarly, subtraction of (9) from (7) and division by 2 gives

(11) £¢(x) ) = 5 f o(s)ds — + k(xo)}

Lo




In (10) we replace x by k + ¢t; we then get an integral from xqo to x + ct. In (11) we
replace x by ¥ ='¢t and get minus an integral from x¢ to x — ¢t or plus an integral from

X — ctto xg. Hence addition of ¢ (x + cf) and s (x — ct) gives u(x, t) [see (4)] in the form

xr+ct
u(x,r) = %[f(x + ct) + f(x — ct)] + ZLCJ g(s)ds.
x—ct

If the initial velocity is zero, we see that this reduces to

(13) u(x, 1) = 3[f(x + cn) + f(x — cp,

in agreement with (17) in Sec. 12.3. You may show that because of the boundary conditions
(2) in that section the function f must be odd and must have the period 2L.
Our result shows that the two initial conditions [the functions f(x) and g(x) in (5)]
determine the solution uniquely.
The solution of the wave equation by the Laplace transform method will be shown in
Sec. 12.11.




12.12 Solution of PDEs by Laplace Transforms

Readers familiar with Chap. 6 may wonder whether Laplace transforms can also be used
for solving partial differential equations. The answer is §€§, particularly if one of the
independent variables ranges over the positive axis. The steps to obtain a solution are
similar to those in Chap. 6. For a PDE in two variables they are as follows.

1. Take the Edplacetransform with respect to one of the two variables, usually z. This
gives an ODE for the transform of the unknown function. This is so since the
derivatives of this function with respect to the other variable slip into the
transformed equation. The latter also incorporates the given boundary and initial
conditions.

2. Solving thatODE, obtain the transform of the unknown function.
3. Taking the inverse transform, obtain the solution of the given problem.
If the coefficients of the given equation do not depend on t, the use of Laplace transforms

will simplify the problem.
We explain the method in terms of a typical example.



EXAMPLE 1 Semi-Infinite String

Find the displacement w(x; #) of an elastic string subject to the following conditions. (We write w since we need
u to denote the unit step function.)

(i) The string is initially at rest on the x-axis from x = 0 to % (“semi-infinite string”).

(ii) For 1 > 0 the left end of the string (x = 0) is moved in a given fashion, namely, according to a single
sine wave

sint if0=¢=2m

w(0, 1) = f(f) = { (Fig. 316).

0 otherwise

(iii) Furthermore, %1_{1}0 w(x,t) = 0 fort = 0.

Of course there is no infinite string, but our model describes a long string or rope (of negligible weight) with
its right end fixed far out on the x-axis.

f@)
1

-1

Fig. 316. Motion of the left end of the string in Example 1 as a function of time t




Solution. We have to solve the wave equation (Sec. 12.2)
(1)

for positive x and #, subject to the “boundary conditions”

(2) w(0, 1) = f(2), altl_r)r; wx, ) =0

with f as given above, and the initial conditions

3) (@) w(x, 0) =0, (b) w(x,0) =0.

We take the Laplace transform with respect to't. By (2) in Sec. 6.2,

2 2
58{6—:} = s2%{w) — sw(x. 0) — wy(x, 0) = czg{a—g’}.
Jat ox

The expression —sw (x, 0) — wy(x, 0) drops out because of (3). On the right we assume that we may interchange
integration and differentiation. Then

92 ” 72 (~ 92
33{—‘: : ¢tw(n, ) dt = —— £{w(x, 1)),
ox ox




Writing W(x,s) = £{w(x, )}, we thus obtain

Since this equation contains only a derivative with respect to x, it may be regarded as an prdinary differential
équation for W(x, s) considered as a function of x. A general solution 1s

(4) W(x, s) = A(s)e™/¢ + B(s)e "¢
From (2) we obtain, writing F(s) = £{f(1)},
W(O0,s) = £{w(0,n} = L{f(O} = F(s).

Assuming that we can interchange integration and taking the limit, we have

Jim W(x,9) = lim J e Shw(x, ) dt = J ¢St lim w(x, 1) dr = 0.
0 0

This implies A(s) = 0 in (4) because ¢ > 0, so that for every fixed positive s the function €5/ increases as x

increases. Note that we may assume s > 0 since a Laplace transform generally exists for all s greater than some
fixed k (Sec. 6.2). Hence we have

W(0, s) = B(s) = F(s),

so that (4) becomes

W(x, s) = F(s)e ¥/,




From the second shifting theorem (Sec. 6.3) with @ = x/c we obtain the inverse transform

(5) wix, 1) = f(t - g) u(t

that 1s,

. X . X X
w(x,t)=s1n(t—;) if E<t<;+27r or ct > x> (t — 2m)c

and Zero otherwise. This is a single sine wave traveling to the right with speed c. Note that a point x remains
at rest until # = x/c, the time needed to reach that x if one starts at t = 0 (start of the motion of the left end)
and travels with speed ¢. The result agrees with our physical intuition. Since we proceeded formally, we must
verify that (5) satisfies the given conditions. We leave this to the student. H
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Fig. 317. Traveling wave in Example 1




Time Shifting (t-Shifting): Replacing t by t — ain f(t)

The first shifting theorem (“s-shifting”) in Sec. 6.1 concerned transforms F(s) = £{f(1)}
and F(s — a) = ¥{ eatf(t) }. The second shifting theorem will concern functions f(¢) and
f(t — a). Unit step functions are just tools, and the theorem will be needed to apply them
in connection with any other functions.

THEOREM 1 Second Shifting Theorem; Time Shifting
If (1) has the transform F(s), then the “shifted function”

0 ift<a

3) Pty = £t — ayu(t — a) = {

ft—a) ift>a
has the transform e~ **F(s). That is, if L{f(1)} = F(s), then

) LUt — ayu(t — a)} = e~ PF(s).

Or, if we take the inverse on both sides, we can write

(4%) f(t — aut — a) = L He SF(s)).




