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WileyPLUS contains everything you and your students need— 

and nothing more, including:

The entire textbook online—with dynamic links 

from homework to relevant sections. Students 

can use the online text and save up to half the 

cost of buying a new printed book.

Automated assigning & grading of homework 

& quizzes.

An interactive variety of ways to teach and 

learn the material.

Instant feedback and help for students…

available 24/7.

Achieve Positive
Learning Outcomes

“WileyPLUS helped me become more prepared. There 

were more resources available using WileyPLUS than 

just using a regular [printed] textbook, which helped out 

significantly. Very helpful...and very easy to use.”

— Student Victoria Cazorla, 

Dutchess County Community College 

See and try
WileyPLUS in action!
Details and Demo:

www.wileyplus.com

W ileyPLUS combines 
robust course 
management tools 

with interactive teaching and 
learning resources all in one 
easy-to-use system.
It has helped over half a million 
students and instructors 
achieve positive learning 
outcomes in their courses.
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Why WileyPLUS for Engineering?

A robust variety of 
examples and exercises 
enable students to work 
problems, see their results, 
and obtain instant feedback 
including hints and reading 
references linked directly to 
the online text. 

Students can visualize 
concepts from the text 
by linking to dynamic 
resources such as 
animations, videos, and 
interactive LearningWare.

See and try WileyPLUS in action!
Details and Demo: www.wileyplus.com

W ileyPLUS offers today’s Engineering students the interactive and visual learning materials 
they need to help them grasp difficult concepts—and apply what they’ve learned to solve 

problems in a dynamic environment.

Why WileyPLUS for Engineering?

JWCL068_fm_i-xxii.qxd  11/7/08  5:00 PM  Page ii

http://www.wileyplus.com


Algorithmic questions 

allow a group of students 

to work on the same 

problem with differing 

values. Students can 

also rework a problem 

with differing values for 

additional practice.

MultiPart Problems and 

GoTutorials lead students 

through a series of steps, 

providing instant feedback 

along the way, to help 

them develop a logical, 

structured approach to 

problem solving.

Or, they can link directly 

to the online text to read 

about this concept before 

attempting the problem 

again—with or without the 

same values.

WileyPLUS combines robust course management tools with the complete online 
text and all of the interactive teaching & learning resources you and your students 
need in one easy-to-use system.

“I loved this program [WileyPLUS] and I hope I can
use it in the future.” — Anthony Pastin, West Virginia University
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Wiley is committed to making your entire WileyPLUS experience

productive & enjoyable by providing the help, resources, and

personal support you & your students need, when you need it.

It’s all here: www.wileyplus.com

TECHNICAL SUPPORT:

A fully searchable knowledge base of FAQs and help documentation, available 24/7

Live chat with a trained member of our support staff during business hours

A form to fill out and submit online to ask any question and get a quick response

Instructor-only phone line during business hours: 1.877.586.0192

FACULTY-LED TRAINING THROUGH THE WILEY FACULTY NETWORK:
Register online: www.wherefacultyconnect.com
Connect with your colleagues in a complimentary virtual seminar, with a personal mentor

in your field, or at a live workshop to share best practices for teaching with technology.

1ST DAY OF CLASS…AND BEYOND!
Resources You & Your Students Need to Get Started
& Use WileyPLUS from the first day forward.

2-Minute Tutorials on how to set up & maintain your WileyPLUS course

User guides, links to technical support & training options

WileyPLUS for Dummies: Instructors’ quick reference guide to using 

WileyPLUS

Student tutorials & instruction on how to register, buy, and use WileyPLUS

YOUR WileyPLUS ACCOUNT MANAGER:
Your personal WileyPLUS connection for any assistance you need!

SET UP YOUR WileyPLUS COURSE IN MINUTES!
Selected WileyPLUS courses with QuickStart contain pre-loaded assignments 

& presentations created by subject matter experts who are also experienced 

WileyPLUS users.

Interested? See and try WileyPLUS in action!
Details and Demo: www.wileyplus.com
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This book is intended for junior and senior engineering students who are interested in learning some

fundamental aspects of fluid mechanics. We developed this text to be used as a first course. The princi-

ples considered are classical and have been well-established for many years. However, fluid mechanics

education has improved with experience in the classroom, and we have brought to bear in this book our

own ideas about the teaching of this interesting and important subject. This sixth edition has been pre-

pared after several years of experience by the authors using the previous editions for introductory

courses in fluid mechanics. On the basis of this experience, along with suggestions from reviewers, col-

leagues, and students, we have made a number of changes in this edition. The changes (listed below, and

indicated by the word New in descriptions in this preface) are made to clarify, update, and expand cer-

tain ideas and concepts.

New to This Edition

In addition to the continual effort of updating the scope of the material presented and improving the

presentation of all of the material, the following items are new to this edition.

With the wide-spread use of new technologies involving the web, DVDs, digital cameras and the

like, there is an increasing use and appreciation of the variety of visual tools available for learning.

This fact has been addressed in the new edition by the inclusion of numerous new illustrations,

graphs, photographs, and videos.

Illustrations: The book contains more than 260 new illustrations and graphs. These illustrations

range from simple ones that help illustrate a basic concept or equation to more complex ones that

illustrate practical applications of fluid mechanics in our everyday lives.

Photographs: The book contains more than 256 new photographs. Some photos involve situations

that are so common to us that we probably never stop to realize how fluids are involved in them.

Others involve new and novel situations that are still baffling to us. The photos are also used to help

the reader better understand the basic concepts and examples discussed.

Videos: The video library for the book has been significantly enhanced by the addition of 80 new
video segments directly related to the text material. They illustrate many of the interesting and prac-

tical applications of real-world fluid phenomena. There are now 159 videos.

Examples: All of the examples are newly outlined and carried out with the problem solving method

of “Given, Find, Solution, and Comment.”

Learning objectives: Each chapter begins with a set of learning objectives. This new feature pro-

vides the student with a brief preview of the topics covered in the chapter.

List of equations: Each chapter ends with a new summary of the most important equations in 

the chapter.

Problems: Approximately 30% new homework problems have been added for this edition. They are

all newly grouped and identified according to topic. Typically, the first few problems in each group

are relatively easy ones. In many groups of problems there are one or two new problems in which

the student is asked to find a photograph/image of a particular flow situation and write a paragraph

describing it. Each chapter contains new Life Long Learning Problems (i.e., one aspect of the life

long learning as interpreted by the authors) that ask the student to obtain information about a given,

new flow concept and to write a brief report about it.

Fundamentals of Engineering Exam: A set of FE exam questions is newly available on the book

web site.

Preface
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Key Features

Illustrations, Photographs, and Videos

Fluid mechanics has always been a “visual” subject—much can be learned by viewing various as-

pects of fluid flow. In this new edition we have made several changes to reflect the fact that with

new advances in technology, this visual component is becoming easier to incorporate into the

learning environment, for both access and delivery, and is an important component to the learning

of fluid mechanics. Thus, approximately 516 new photographs and illustrations have been added to

the book. Some of these are within the text material; some are used to enhance the example prob-

lems; and some are included as margin figures of the type shown in the left margin to more clearly

illustrate various points discussed in the text. In addition, 80 new video segments have been added,

bringing the total number of video segments to 159. These video segments illustrate many interest-

ing and practical applications of real-world fluid phenomena. Many involve new CFD (compu-

tational fluid dynamics) material. Each video segment is identified at the appropriate location

in the text material by a video icon and thumbnail photograph of the type shown in the left mar-

gin. Each video segment has a separate associated text description of what is shown in the

video. There are approximately 160 homework problems that are directly related to the topics in

the videos.

Examples

One of our aims is to represent fluid mechanics as it really is—an exciting and useful discipline. To

this end, we include analyses of numerous everyday examples of fluid-flow phenomena to which

students and faculty can easily relate. In the sixth edition 163 examples are presented that provide

detailed solutions to a variety of problems. Many of the examples have been newly extended to 

illustrate what happens if one or more of the parameters is changed. This gives the user a better feel

for some of the basic principles involved. In addition, many of the examples contain new pho-

tographs of the actual device or item involved in the example. Also, all of the examples are newly
outlined and carried out with the problem solving methodology of “Given, Find, Solution, and Com-

ment” as discussed on page 5 in the “Note to User” before Example 1.1.

Fluids in the News

The set of approximately 60 short “Fluids in the News” stories has been newly updated to reflect

some of the latest important, and novel ways that fluid mechanics affects our lives. Many of these

problems have homework problems associated with them.

Homework Problems

A set of more than 1330 homework problems (approximately 30% new to this edition) stresses the

practical application of principles. The problems are newly grouped and identified according to topic.

An effort has been made to include several new, easier problems at the start of each group. The follow-

ing types of problems are included:

x Preface
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1) “standard” problems,

2) computer problems,

3) discussion problems,

4) supply-your-own-data problems,

5) review problems with solutions,

6) problems based on the “Fluids in the News”

topics,

7) problems based on the fluid videos,

8) Excel-based lab problems,

9) new “Life long learning” problems,

10) new problems that require the user to obtain

a photograph/image of a given flow situation and

write a brief paragraph to describe it,

11) simple CFD problems to be solved using

FlowLab,

12) new Fundamental of Engineering (FE) exam

questions available on book web site.

Lab Problems—There are 30 extended, laboratory-type problems that involve actual experimen-

tal data for simple experiments of the type that are often found in the laboratory portion of

many introductory fluid mechanics courses. The data for these problems are provided in Excel

format.
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Life Long Learning Problems—There are more than 40 new life long learning problems that in-

volve obtaining additional information about various new state-of-the-art fluid mechanics topics

and writing a brief report about this material.

Review Problems—There is a set of 186 review problems covering most of the main topics in

the book. Complete, detailed solutions to these problems can be found in the Student Solution
Manual and Study Guide for Fundamentals of Fluid Mechanics, by Munson, et al. (© 2009 John

Wiley and Sons, Inc.).

Well-Paced Concept and Problem-Solving Development

Since this is an introductory text, we have designed the presentation of material to allow for the

gradual development of student confidence in fluid problem solving. Each important concept or no-

tion is considered in terms of simple and easy-to-understand circumstances before more compli-

cated features are introduced. Each page contains a brief summary (a highlight) sentence that serves

to prepare or remind the reader about an important concept discussed on that page.

Several brief components have been added to each chapter to help the user obtain the “big

picture” idea of what key knowledge is to be gained from the chapter. A new brief Learning Objec-

tives section is provided at the beginning of each chapter. It is helpful to read through this list prior

to reading the chapter to gain a preview of the main concepts presented. Upon completion of the

chapter, it is beneficial to look back at the original learning objectives to ensure that a satisfactory

level of understanding has been acquired for each item. Additional reinforcement of these learning

objectives is provided in the form of a Chapter Summary and Study Guide at the end of each chap-

ter. In this section a brief summary of the key concepts and principles introduced in the chapter is

included along with a listing of important terms with which the student should be familiar. These

terms are highlighted in the text. A new list of the main equations in the chapter is included in the

chapter summary.

System of Units

Two systems of units continue to be used throughout most of the text: the International System of

Units (newtons, kilograms, meters, and seconds) and the British Gravitational System (pounds,

slugs, feet, and seconds). About one-half of the examples and homework problems are in each set

of units. The English Engineering System (pounds, pounds mass, feet, and seconds) is used in the

discussion of compressible flow in Chapter 11. This usage is standard practice for the topic.

Topical Organization

In the first four chapters the student is made aware of some fundamental aspects of fluid motion, in-

cluding important fluid properties, regimes of flow, pressure variations in fluids at rest and in mo-

tion, fluid kinematics, and methods of flow description and analysis. The Bernoulli equation is in-

troduced in Chapter 3 to draw attention, early on, to some of the interesting effects of fluid motion

on the distribution of pressure in a flow field. We believe that this timely consideration of elemen-

tary fluid dynamics increases student enthusiasm for the more complicated material that follows. In

Chapter 4 we convey the essential elements of kinematics, including Eulerian and Lagrangian math-

ematical descriptions of flow phenomena, and indicate the vital relationship between the two views.

For teachers who wish to consider kinematics in detail before the material on elementary fluid dy-

namics, Chapters 3 and 4 can be interchanged without loss of continuity.

Chapters 5, 6, and 7 expand on the basic analysis methods generally used to solve or to begin

solving fluid mechanics problems. Emphasis is placed on understanding how flow phenomena are

described mathematically and on when and how to use infinitesimal and finite control volumes. The

effects of fluid friction on pressure and velocity distributions are also considered in some detail. A

formal course in thermodynamics is not required to understand the various portions of the text that

consider some elementary aspects of the thermodynamics of fluid flow. Chapter 7 features the ad-

vantages of using dimensional analysis and similitude for organizing test data and for planning ex-

periments and the basic techniques involved.

Preface xi
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Owing to the growing importance of computational fluid dynamics (CFD) in engineering de-

sign and analysis, material on this subject is included in Appendix A. This material may be omitted

without any loss of continuity to the rest of the text. This introductory CFD overview includes exam-

ples and problems of various interesting flow situations that are to be solved using FlowLab software.

Chapters 8 through 12 offer students opportunities for the further application of the principles

learned early in the text. Also, where appropriate, additional important notions such as boundary lay-

ers, transition from laminar to turbulent flow, turbulence modeling, and flow separation are intro-

duced. Practical concerns such as pipe flow, open-channel flow, flow measurement, drag and lift, the

effects of compressibility, and the fluid mechanics fundamentals associated with turbomachines are

included.

Students who study this text and who solve a representative set of the exercises provided

should acquire a useful knowledge of the fundamentals of fluid mechanics. Faculty who use this text

are provided with numerous topics to select from in order to meet the objectives of their own

courses. More material is included than can be reasonably covered in one term. All are reminded of

the fine collection of supplementary material. We have cited throughout the text various articles and

books that are available for enrichment.

Student and Instructor Resources

Student Solution Manual and Study Guide, by Munson, et al. (© 2009 John Wiley and

Sons, Inc.)—This short paperback book is available as a supplement for the text. It provides detailed

solutions to the Review Problems and a concise overview of the essential points of most of the main

sections of the text, along with appropriate equations, illustrations, and worked examples. This sup-

plement is available through your local bookstore, or you may purchase it on the Wiley website at

www.wiley.com/college/munson.

Student Companion Site—The student section of the book website at www.wiley.com/

college/munson contains the assets listed below. Access is free-of-charge with the registration code

included in the front of every new book.

Video Library CFD Driven Cavity Example

Review Problems with Answers FlowLab Tutorial and User’s Guide

Lab Problems FlowLab Problems

Comprehensive Table of Conversion Factors

Instructor Companion Site—The instructor section of the book website at www.wiley.com/

college/munson contains the assets in the Student Companion Site, as well as the following, which

are available only to professors who adopt this book for classroom use:

Instructor Solutions Manual, containing complete, detailed solutions to all of the problems

in the text.

Figures from the text, appropriate for use in lecture slides.

These instructor materials are password-protected. Visit the Instructor Companion Site to register

for a password.

FlowLab®—In cooperation with Wiley, Ansys Inc. is offering to instructors who adopt this text the 

option to have FlowLab software installed in their department lab free of charge. (This offer is available

in the Americas only; fees vary by geographic region outside the Americas.) FlowLab is a CFD package

that allows students to solve fluid dynamics problems without requiring a long training period. This soft-

ware introduces CFD technology to undergraduates and uses CFD to excite students about fluid dynam-

ics and learning more about transport phenomena of all kinds. To learn more about FlowLab, and

request to have it installed in your department, visit the Instructor Companion Site at www.wiley.com/

college/munson.

WileyPLUS. WileyPLUS combines the complete, dynamic online text with all of the teaching and

learning resources you need, in one easy-to-use system. The instructor assigns WileyPLUS, but

students decide how to buy it: they can buy the new, printed text packaged with a WileyPLUS reg-

istration code at no additional cost or choose digital delivery of WileyPLUS, use the online text

and integrated read, study, and parctice tools, and save off the cost of the new book.

xii Preface

JWCL068_fm_i-xxii.qxd  11/7/08  9:20 PM  Page xii

http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/


WileyPLUS offers today’s engineering students the interactive and visual learning materials they

need to help them grasp difficult concepts—and apply what they’ve learned to solve problems in a

dynamic environment. A robust variety of examples and exercises enable students to work problems,

see their results, and obtain instant feedback including hints and reading references linked directly

to the online text.

Contact your local Wiley representative, or visit www.wileyplus.com for more information

about using WileyPLUS in your course.
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xiv

2.13 Chapter Summary and Study Guide

In this chapter the pressure variation in a fluid at rest is considered, along with some impor-

tant consequences of this type of pressure variation. It is shown that for incompressible fluids

at rest the pressure varies linearly with depth. This type of variation is commonly referred to

as hydrostatic pressure distribution. For compressible fluids at rest the pressure distribution will

not generally be hydrostatic, but Eq. 2.4 remains valid and can be used to determine the pres-

sure distribution if additional information about the variation of the specific weight is specified.

The distinction between absolute and gage pressure is discussed along with a consideration of

barometers for the measurement of atmospheric pressure.

Pressure measuring devices called manometers, which utilize static liquid columns, are

analyzed in detail. A brief discussion of mechanical and electronic pressure gages is also

included. Equations for determining the magnitude and location of the resultant fluid force

acting on a plane surface in contact with a static fluid are developed. A general approach for

determining the magnitude and location of the resultant fluid force acting on a curved surface

in contact with a static fluid is described. For submerged or floating bodies the concept of the

buoyant force and the use of Archimedes’ principle are reviewed.

The following checklist provides a study guide for this chapter. When your study of the

entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type

in the text.

calculate the pressure at various locations within an incompressible fluid at rest.

calculate the pressure at various locations within a compressible fluid at rest using Eq. 2.4

if the variation in the specific weight is specified.

use the concept of a hydrostatic pressure distribution to determine pressures from measure-

ments using various types of manometers.

determine the magnitude, direction, and location of the resultant hydrostatic force acting on a

plane surface.

Pascal’s law 
surface force 
body force 
incompressible fluid 
hydrostatic pressure

distribution 
pressure head 
compressible fluid 
U.S. standard 

atmosphere 
absolute pressure 
gage pressure 
vacuum pressure 
barometer 
manometer 
Bourdon pressure

gage 
center of pressure 
buoyant force 
Archimedes’ principle 
center of buoyancy

Featured in this Book

SUMMARY SENTENCES

A brief summary sentence is given on each

page to prepare or remind the reader about an

important concept discussed on that page.

PHOTOGRAPHS AMD ILLUSTRATIONS

More than 515 new photographs and illustra-

tions have been added to help illustrate

various concepts in the text.

FLUID VIDEOS

A set of 159 videos illustrating

interesting and practical applica-

tions of fluid phenomena is

provided on the book website. 

An icon in the margin identifies

each video. Approximately 

160 homework problems are 

tied to the videos.

BOXED EQUATIONS

Important equations are boxed to

help the user identify them.

CHAPTER SUMMARY AND

STUDY GUIDE

At the end of each chapter is a brief sum-

mary of key concepts and principles intro-

duced in the chapter along with key terms

and a summary of key equations involved.

2.11.1 Archimedes’ Principle

When a stationary body is completely submerged in a fluid 1such as the hot air balloon shown in

the figure in the margin2, or floating so that it is only partially submerged, the resultant fluid force

acting on the body is called the buoyant force. A net upward vertical force results because pres-

sure increases with depth and the pressure forces acting from below are larger than the pressure

forces acting from above. This force can be determined through an approach similar to that used

in the previous section for forces on curved surfaces. Consider a body of arbitrary shape, having

a volume that is immersed in a fluid as illustrated in Fig. 2.24a. We enclose the body in a par-

allelepiped and draw a free-body diagram of the parallelepiped with the body removed as shown

in Fig. 2.24b. Note that the forces and are simply the forces exerted on the plane

surfaces of the parallelepiped 1for simplicity the forces in the x direction are not shown2, is the

weight of the shaded fluid volume 1parallelepiped minus body2, and is the force the body is

exerting on the fluid. The forces on the vertical surfaces, such as are all equal and can-

cel, so the equilibrium equation of interest is in the z direction and can be expressed as

(2.21)

If the specific weight of the fluid is constant, then

where A is the horizontal area of the upper 1or lower2 surface of the parallelepiped, and Eq. 2.21

can be written as

Simplifying, we arrive at the desired expression for the buoyant force

(2.22)FB � gV�

FB � g1h2 � h12A � g 3 1h2 � h12A � V� 4

F2 � F1 � g1h2 � h12A

FB � F2 � F1 �w

F3 and F4,

FB

w
F4F1, F2, F3,

V�,
(Photograph courtesy of

Cameron Balloons.)

V2.6 Atmospheric
buoyancy

FLUIDS IN THE NEWS

Throughout the book are many brief 

news stories involving current, sometimes

novel, applications of fluid phenomena.

Many of these stories have homework

problems associated with them.

A standard technique for measuring pressure involves the use of liquid columns in vertical or inclined

tubes. Pressure measuring devices based on this technique are called manometers. The mercury

barometer is an example of one type of manometer, but there are many other configurations possi-

ble, depending on the particular application. Three common types of manometers include the piezome-

ter tube, the U-tube manometer, and the inclined-tube manometer.

Manometers use
vertical or inclined
liquid columns to
measure pressure.

2.6 Manometry

F l u i d s  i n  t h e  N e w s

Weather, barometers, and bars One of the most important

indicators of weather conditions is atmospheric pressure. In

general, a falling or low pressure indicates bad weather; rising

or high pressure, good weather. During the evening TV

weather report in the United States, atmospheric pressure is

given as so many inches (commonly around 30 in.). This value

is actually the height of the mercury column in a mercury

barometer adjusted to sea level. To determine the true atmos-

pheric pressure at a particular location, the elevation relative to

sea level must be known. Another unit used by meteorologists

to indicate atmospheric pressure is the bar, first used in

weather reporting in 1914, and defined as . The defi-

nition of a bar is probably related to the fact that standard sea-

level pressure is , that is, only slightly

larger than one bar. For typical weather patterns, “sea-level

equivalent” atmospheric pressure remains close to one bar.

However, for extreme weather conditions associated with tor-

nadoes, hurricanes, or typhoons, dramatic changes can occur.

The lowest atmospheric sea-level pressure ever recorded was

associated with a typhoon, Typhoon Tip, in the Pacific Ocean

on October 12, 1979. The value was 0.870 bars (25.8 in. Hg).

(See Problem 2.19.) 

1.0133 � 105 N�m2

105 N�m2
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Simple U-Tube ManometerEXAMPLE 2.4

F I G U R E  E2.4

GIVEN A closed tank contains compressed air and oil

as is shown in Fig. E2.4. A U-tube manometer using

mercury is connected to the tank as shown. The col-

umn heights are and 

FIND Determine the pressure reading 1in psi2 of the gage.

h3 � 9 in.h1 � 36 in., h2 � 6 in.,

1SGHg � 13.62
1SGoil � 0.902

Following the general procedure of starting at one end of the

manometer system and working around to the other, we will start

at the air–oil interface in the tank and proceed to the open end

where the pressure is zero. The pressure at level 112 is

This pressure is equal to the pressure at level 122, since these two

points are at the same elevation in a homogeneous fluid at rest. As

we move from level 122 to the open end, the pressure must de-

crease by and at the open end the pressure is zero. Thus, the

manometer equation can be expressed as

or

For the values given

so that

pair � 440 lb�ft2

� 113.62 162.4 lb�ft32 a
9

12
ftb

pair � �10.92 162.4 lb�ft32 a
36 � 6

12
 ftb

pair � 1SGoil2 1gH2O
2 1h1 � h22 � 1SGHg2 1gH2O

2h3 � 0

pair � goil1h1 � h22 � gHgh3 � 0

gHgh3,

p1 � pair � goil1h1 � h22

SOLUTION

Pressure
gage

Air

Oil

Open

Hg

(1) (2)

h1

h2

h3

Since the specific weight of the air above the oil is much smaller

than the specific weight of the oil, the gage should read the pres-

sure we have calculated; that is,

(Ans)

COMMENTS Note that the air pressure is a function of the

height of the mercury in the manometer and the depth of the oil

(both in the tank and in the tube). It is not just the mercury in the

manometer that is important.

Assume that the gage pressure remains at 3.06 psi, but the

manometer is altered so that it contains only oil. That is, the mer-

cury is replaced by oil. A simple calculation shows that in this

case the vertical oil-filled tube would need to be h3 � 11.3 ft tall,

rather than the original h3 � 9 in. There is an obvious advantage

of using a heavy fluid such as mercury in manometers.

pgage �
440 lb�ft2

144 in.2�ft2
� 3.06 psi

2.111 An open container of oil rests on the flatbed of a truck that
is traveling along a horizontal road at As the truck slows
uniformly to a complete stop in 5 s, what will be the slope of the oil
surface during the period of constant deceleration?

2.112 A 5-gal, cylindrical open container with a bottom area of
is filled with glycerin and rests on the floor of an elevator.

(a) Determine the fluid pressure at the bottom of the container
when the elevator has an upward acceleration of (b) What
resultant force does the container exert on the floor of the elevator
during this acceleration? The weight of the container is negligible.
(Note: )

2.113 An open rectangular tank 1 m wide and 2 m long contains
gasoline to a depth of 1 m. If the height of the tank sides is 1.5 m,
what is the maximum horizontal acceleration (along the long axis of
the tank) that can develop before the gasoline would begin to spill?

2.114 If the tank of Problem 2.113 slides down a frictionless plane
that is inclined at with the horizontal, determine the angle the
free surface makes with the horizontal.

2.115 A closed cylindrical tank that is 8 ft in diameter and 24 ft
long is completely filled with gasoline. The tank, with its long axis
horizontal, is pulled by a truck along a horizontal surface. Deter-
mine the pressure difference between the ends (along the long axis
of the tank) when the truck undergoes an acceleration of 5 ft�s2.

30°

1 gal � 231 in.3

3 ft�s2.

120 in.2

55 mi�hr.

F I G U R E  P2.121

Receiver

Light rays

6 ft

Δh

 = 7 rpmMercury ω

� Lab Problems

2.122 This problem involves the force needed to open a gate that
covers an opening in the side of a water-filled tank. To proceed with
this problem, go to Appendix H which is located on the book’s web
site, www.wiley.com/college/munson.

cumference and a point on the axis.

2.121 (See Fluids in the News article titled “Rotating mercury
mirror telescope,” Section 2.12.2.) The largest liquid mirror tele-
scope uses a 6-ft-diameter tank of mercury rotating at 7 rpm to pro-
duce its parabolic-shaped mirror as shown in Fig. P2.121. Deter-
mine the difference in elevation of the mercury, , between the
edge and the center of the mirror.

¢h

EXAMPLE PROBLEMS

A set of example problems provides the

student detailed solutions and comments

for interesting, real-world situations.

LAB PROBLEMS

WileyPLUS and on the book website 

is a set of lab problems in Excel format 

involving actual data for experiments of

the type found in many introductory fluid

mechanics labs.

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Problems

Note: Unless otherwise indicated, use the values of fluid prop-

erties found in the tables on the inside of the front cover. Prob-

lems designated with an 1*2 are intended to be solved with the

aid of a programmable calculator or a computer. Problems des-

ignated with a 1†2 are “open-ended” problems and require crit-

ical thinking in that to work them one must make various

assumptions and provide the necessary data. There is not a

unique answer to these problems.

Answers to the even-numbered problems are listed at the

end of the book. Access to the videos that accompany problems

can be obtained through the book’s web site, www.wiley.com/

college/munson. The lab-type problems can also be accessed on

this web site.

Section 3.2 F � ma along a Streamline

3.1 Obtain a photograph/image of a situation which can be ana-
lyzed by use of the Bernoulli equation. Print this photo and write
a brief paragraph that describes the situation involved.

3.2 Air flows steadily along a streamline from point (1) to point (2)
with negligible viscous effects. The following conditions are mea-
sured: At point (1) z1 � 2 m and p1 � 0 kPa; at point (2) z2 � 10
m, p2 � 20 N/m2, and V2 � 0. Determine the velocity at point (1).

front of the object and is the upstream velocity. (a) Determine
the pressure gradient along this streamline. (b) If the upstream
pressure is integrate the pressure gradient to obtain the pres-
sure p 1x2 for (c) Show from the result of part (b) that
the pressure at the stagnation point is as
expected from the Bernoulli equation.

p0 � rV 2
0 �2,1x � �a2

�� � x � �a.
p0,

V0

Dividing
streamline

Stagnation
point

V0

po a
x

x = 0

F I G U R E  P3.5

3 6 What pressure gradient along the streamline is requireddp�ds

REVIEW PROBLEMS

WileyPLUS on the book web site are

nearly 200 Review Problems covering

most of the main topics in the book.

Complete, detailed solutions to these

problems are found WileyPLUS or 

in the supplement Student Solution
Manual and Study Guide for Funda-
mentals of Fluid Mechanics, by 

Munson, et al. (© 2009 John Wiley

and Sons, Inc.).

LEARNING OBJECTIVES

At the beginning of each chapter is a 

set of learning objectives that provides 

the student a preview of topics covered 

in the chapter. Fluid StaticsFluid Statics22

CHAPTER OPENING PHOTO: Floating iceberg: An iceberg is a large piece of fresh water ice that originated as
snow in a glacier or ice shelf and then broke off to float in the ocean. Although the fresh water ice is lighter
than the salt water in the ocean, the difference in densities is relatively small. Hence, only about one ninth of
the volume of an iceberg protrudes above the ocean’s surface, so that what we see floating is literally “just the
tip of the iceberg.” (Photograph courtesy of Corbis Digital Stock/Corbis Images)

In this chapter we will consider an important class of problems in which the fluid is either at rest
or moving in such a manner that there is no relative motion between adjacent particles. In both
instances there will be no shearing stresses in the fluid, and the only forces that develop on the sur-
faces of the particles will be due to the pressure. Thus, our principal concern is to investigate pres-
sure and its variation throughout a fluid and the effect of pressure on submerged surfaces. The
absence of shearing stresses greatly simplifies the analysis and, as we will see, allows us to obtain
relatively simple solutions to many important practical problems.

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

� determine the pressure at various locations in a fluid at rest.

� explain the concept of manometers and apply appropriate equations to
determine pressures.

� calculate the hydrostatic pressure force on a plane or curved submerged surface.

� calculate the buoyant force and discuss the stability of floating or submerged
objects.
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STUDENT SOLUTION MANUAL AND STUDY GUIDE

A brief paperback book titled Student Solution Manual and
Study Guide for Fundamentals of Fluid Mechanics, by 

Munson, et al. (© 2009 John Wiley and Sons, Inc.), is

available. It contains detailed solutions to the Review

Problems and a study guide with a brief summary and 

sample problems with solutions for most major sections of

the book.

CFD FlowLab

For those who wish to become familiar with the 

basic concepts of computational fluid dynamics, a

new overview to CFD is provided in Appendices 

A and I. In addition, the use of FlowLab software 

to solve interesting flow problems is described in 

Appendices J and K.

HOMEWORK PROBLEMS

Homework problems at the end

of each chapter stress the practi-

cal applications of fluid

mechanics principles. Over

1350 homework problems are

included.

5.118 Water flows by gravity from one lake to another as sketched in
Fig. P5.118 at the steady rate of 80 gpm. What is the loss in available
energy associated with this flow? If this same amount of loss is asso-
ciated with pumping the fluid from the lower lake to the higher one at
the same flowrate, estimate the amount of pumping power required.

50 ft

F I G U R E  P5.118

5.119 Water is pumped from a tank, point (1), to the top of a wa-
ter plant aerator, point (2), as shown in Video V5.14 and Fig.
P5.119 at a rate of (a) Determine the power that the pump
adds to the water if the head loss from (1) to (2) where is 4 ft.
(b) Determine the head loss from (2) to the bottom of the aerator
column, point (3), if the average velocity at (3) is V3 � 2 ft/s.

V2 � 0
3.0 ft3/s.

Aerator column

(1)

(3)

(2)

Pump

5 ft
3 ft

10 ft

F I G U R E  P5.119

5.120 A liquid enters a fluid machine at section 112 and leaves at
sections 122 and 132 as shown in Fig. P5.120. The density of the fluid
is constant at 2 All of the flow occurs in a horizontal plane
and is frictionless and adiabatic. For the above-mentioned and ad-
ditional conditions indicated in Fig. P5.120, determine the amount
of shaft power involved.

slugs�ft3.

Section (1)

Section (2)

Section (3)

p2 = 50 psia
V2 = 35 ft/s

p3 = 14.7 psia
V3 = 45 ft/s
A3 = 5 in.2

p1 = 80 psia
V1 = 15 ft/s
A1 = 30 in.2

F I G U R E  P5.120

Pump

8-in. inside-
diameter pipe

Section (1)

50 ft

Section (2)

F I G U R E  P5.121

energy associated with being pumped from sections 112 to
122 is loss � where is the average velocity of wa-
ter in the 8-in. inside diameter piping involved. Determine the
amount of shaft power required.

5.122 Water is to be pumped from the large tank shown in Fig.
P5.122 with an exit velocity of . It was determined that the
original pump (pump 1) that supplies 1 kW of power to the water
did not produce the desired velocity. Hence, it is proposed that an
additional pump (pump 2) be installed as indicated to increase the
flowrate to the desired value. How much power must pump 2 add to
the water? The head loss for this flow is where is in
m when Q is in .m3�s

hLhL � 250Q2,

6 m�s

V61V 2�2 ft2�s2,
2.5 ft3�s

V = 6 m/s
Pump

#2

Pipe area = 0.02 m2
Nozzle area = 0.01 m2

2 m

Pump
#1

F I G U R E  P5.122

5.123 (See Fluids in the News article titled “Curtain of air,” Sec-
tion 5.3.3.) The fan shown in Fig. P5.123 produces an air curtain to
separate a loading dock from a cold storage room. The air curtain is
a jet of air 10 ft wide, 0.5 ft thick moving with speed The
loss associated with this flow is loss , where . How
much power must the fan supply to the air to produce this flow?

KL � 5� KLV 2�2
V � 30 ft�s.

Air curtain
(0.5-ft thickness)

Open door

10 ft

V = 30 ft/s

Fan

F I G U R E  P5.123

Section 5.3.2 Application of the Energy Equation—
Combined with Linear momentum
5.124 If a -hp motor is required by a ventilating fan to produce a
24-in. stream of air having a velocity of as shown in
Fig. P5.124, estimate (a) the efficiency of the fan and (b) the thrust
of the supporting member on the conduit enclosing the fan.

5.125 Air flows past an object in a pipe of 2-m diameter and exits
as a free jet as shown in Fig. P5.125. The velocity and pressure up-
stream are uniform at 10 m�s and respectively. At the50  N�m2,

40 ft/s

3
4

5.121 Water is to be moved from one large reservoir to another at
a higher elevation as indicated in Fig. P5.121. The loss of available

Axial Velocity (m/s) Legend

Axial Velocity

Full

Done Legend Freeze

XLog YLog Lines X Grid Y Grid Legend ManagerSymbols

Auto Raise Export DataPrint

0.0442

0.0395

0.0347

0.03

0.0253

0.0205
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0.0111

0.00631

0.00157
0
Position (n)

0.1

inlet

outlet
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1

CHAPTER OPENING PHOTO: The nature of air bubbles rising in a liquid is a function of fluid properties such

as density, viscosity, and surface tension. (Left: air in oil; right: air in soap.) (Photographs copyright 2007

by Andrew Davidhazy, Rochester Institute of Technology.)

11IntroductionIntroduction

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ determine the dimensions and units of physical quantities.

■ identify the key fluid properties used in the analysis of fluid behavior.

■ calculate common fluid properties given appropriate information.

■ explain effects of fluid compressibility.

■ use the concepts of viscosity, vapor pressure, and surface tension.

Fluid mechanics is that discipline within the broad field of applied mechanics that is concerned

with the behavior of liquids and gases at rest or in motion. It covers a vast array of phenomena

that occur in nature (with or without human intervention), in biology, and in numerous engineered,

invented, or manufactured situations. There are few aspects of our lives that do not involve flu-

ids, either directly or indirectly.
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2 Chapter 1 ■ Introduction

The immense range of different flow conditions is mind-boggling and strongly dependent

on the value of the numerous parameters that describe fluid flow. Among the long list of para-

meters involved are (1) the physical size of the flow, ; (2) the speed of the flow, V; and (3) the

pressure, p, as indicated in the figure in the margin for a light aircraft parachute recovery sys-

tem. These are just three of the important parameters which, along with many others, are dis-

cussed in detail in various sections of this book. To get an inkling of the range of some of the

parameter values involved and the flow situations generated, consider the following.

Size,

Every flow has a characteristic (or typical) length associated with it. For example, for flow

of fluid within pipes, the pipe diameter is a characteristic length. Pipe flows include the

flow of water in the pipes in our homes, the blood flow in our arteries and veins, and the

air flow in our bronchial tree. They also involve pipe sizes that are not within our every-

day experiences. Such examples include the flow of oil across Alaska through a four-foot

diameter, 799 mile-long pipe, and, at the other end of the size scale, the new area of inter-

est involving flow in nano-scale pipes whose diameters are on the order of 10�8 m. Each

of these pipe flows has important characteristics that are not found in the others.

Characteristic lengths of some other flows are shown in Fig. 1.1a.

Speed, V
As we note from The Weather Channel, on a given day the wind speed may cover what

we think of as a wide range, from a gentle 5 mph breeze to a 100 mph hurricane or a

250 mph tornado. However, this speed range is small compared to that of the almost

imperceptible flow of the fluid-like magma below the earth’s surface which drives the

motion of the tectonic plates at a speed of about 2 � 10�8 m/s or the 3 � 104 m/s

hypersonic air flow past a meteor as it streaks through the atmosphere. 

Characteristic speeds of some other flows are shown in Fig. 1.1b.

/

/

�

p

V

(Photo courtesy of CIR-

RUS Design Corpora-

tion.)
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F I G U R E  1.1 Characteristic values of some fluid flow parameters for a variety of flows. (a) Object
size, (b) fluid speed, (c) fluid pressure.

V1.1 Mt. St. Helens
Eruption

V1.2 E coli swim-
ming

JWCL068_ch01_001-037.qxd  8/19/08  8:30 PM  Page 2



Pressure, p
The pressure within fluids covers an extremely wide range of values. We are accustomed

to the 35 psi (lb/in.2) pressure within our car’s tires, the “120 over 70” typical blood pres-

sure reading, or the standard 14.7 psi atmospheric pressure. However, the large 10,000 psi

pressure in the hydraulic ram of an earth mover or the tiny 2 � 10�6 psi pressure of a sound

wave generated at ordinary talking levels are not easy to comprehend.

Characteristic pressures of some other flows are shown in Fig. 1.1c.

The list of fluid mechanics applications goes on and on. But you get the point. Fluid me-

chanics is a very important, practical subject that encompasses a wide variety of situations. It is

very likely that during your career as an engineer you will be involved in the analysis and design

of systems that require a good understanding of fluid mechanics. Although it is not possible to ad-

equately cover all of the important areas of fluid mechanics within one book, it is hoped that this

introductory text will provide a sound foundation of the fundamental aspects of fluid mechanics.

1.1 Some Characteristics of Fluids

1.1 Some Characteristics of Fluids 3

One of the first questions we need to explore is, What is a fluid? Or we might ask, What is the dif-

ference between a solid and a fluid? We have a general, vague idea of the difference. A solid is “hard”

and not easily deformed, whereas a fluid is “soft” and is easily deformed 1we can readily move through

air2. Although quite descriptive, these casual observations of the differences between solids and fluids

are not very satisfactory from a scientific or engineering point of view. A closer look at the molecu-

lar structure of materials reveals that matter that we commonly think of as a solid 1steel, concrete, etc.2
has densely spaced molecules with large intermolecular cohesive forces that allow the solid to main-

tain its shape, and to not be easily deformed. However, for matter that we normally think of as a liq-

uid 1water, oil, etc.2, the molecules are spaced farther apart, the intermolecular forces are smaller than

for solids, and the molecules have more freedom of movement. Thus, liquids can be easily deformed

1but not easily compressed2 and can be poured into containers or forced through a tube. Gases 1air,

oxygen, etc.2 have even greater molecular spacing and freedom of motion with negligible cohesive in-

termolecular forces and as a consequence are easily deformed 1and compressed2 and will completely

fill the volume of any container in which they are placed. Both liquids and gases are fluids.

Although the differences between solids and fluids can be explained qualitatively on the ba-

sis of molecular structure, a more specific distinction is based on how they deform under the action

of an external load. Specifically, a fluid is defined as a substance that deforms continuously when
acted on by a shearing stress of any magnitude. A shearing stress 1force per unit area2 is created

whenever a tangential force acts on a surface as shown by the figure in the margin. When common

solids such as steel or other metals are acted on by a shearing stress, they will initially deform 1usu-

ally a very small deformation2, but they will not continuously deform 1flow2. However, common flu-

ids such as water, oil, and air satisfy the definition of a fluid—that is, they will flow when acted on

by a shearing stress. Some materials, such as slurries, tar, putty, toothpaste, and so on, are not eas-

ily classified since they will behave as a solid if the applied shearing stress is small, but if the stress

exceeds some critical value, the substance will flow. The study of such materials is called rheology

F l u i d s  i n  t h e  N e w s

Will what works in air work in water? For the past few years a

San Francisco company has been working on small, maneuver-

able submarines designed to travel through water using wings,

controls, and thrusters that are similar to those on jet airplanes.

After all, water (for submarines) and air (for airplanes) are both flu-

ids, so it is expected that many of the principles governing the flight

of airplanes should carry over to the “flight” of winged submarines.

Of course, there are differences. For example, the submarine must

be designed to withstand external pressures of nearly 700 pounds

per square inch greater than that inside the vehicle. On the other

hand, at high altitude where commercial jets fly, the exterior pres-

sure is 3.5 psi rather than standard sea level pressure of 14.7 psi,

so the vehicle must be pressurized internally for passenger com-

fort. In both cases, however, the design of the craft for minimal

drag, maximum lift, and efficient thrust is governed by the same

fluid dynamic concepts. 

Both liquids and
gases are fluids.

F

Surface
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and does not fall within the province of classical fluid mechanics. Thus, all the fluids we will be

concerned with in this text will conform to the definition of a fluid given previously.

Although the molecular structure of fluids is important in distinguishing one fluid from an-

other, it is not yet practical to study the behavior of individual molecules when trying to describe

the behavior of fluids at rest or in motion. Rather, we characterize the behavior by considering the

average, or macroscopic, value of the quantity of interest, where the average is evaluated over a small

volume containing a large number of molecules. Thus, when we say that the velocity at a certain

point in a fluid is so much, we are really indicating the average velocity of the molecules in a small

volume surrounding the point. The volume is small compared with the physical dimensions of the

system of interest, but large compared with the average distance between molecules. Is this a rea-

sonable way to describe the behavior of a fluid? The answer is generally yes, since the spacing be-

tween molecules is typically very small. For gases at normal pressures and temperatures, the spac-

ing is on the order of and for liquids it is on the order of The number of

molecules per cubic millimeter is on the order of for gases and for liquids. It is thus clear

that the number of molecules in a very tiny volume is huge and the idea of using average values

taken over this volume is certainly reasonable. We thus assume that all the fluid characteristics we

are interested in 1pressure, velocity, etc.2 vary continuously throughout the fluid—that is, we treat

the fluid as a continuum. This concept will certainly be valid for all the circumstances considered

in this text. One area of fluid mechanics for which the continuum concept breaks down is in the

study of rarefied gases such as would be encountered at very high altitudes. In this case the spac-

ing between air molecules can become large and the continuum concept is no longer acceptable.

10211018

10�7 mm.10�6 mm,

4 Chapter 1 ■ Introduction

1.2 Dimensions, Dimensional Homogeneity, and Units

Since in our study of fluid mechanics we will be dealing with a variety of fluid characteristics,

it is necessary to develop a system for describing these characteristics both qualitatively and

quantitatively. The qualitative aspect serves to identify the nature, or type, of the characteristics 1such

as length, time, stress, and velocity2, whereas the quantitative aspect provides a numerical measure

of the characteristics. The quantitative description requires both a number and a standard by which

various quantities can be compared. A standard for length might be a meter or foot, for time an hour

or second, and for mass a slug or kilogram. Such standards are called units, and several systems of

units are in common use as described in the following section. The qualitative description is con-

veniently given in terms of certain primary quantities, such as length, L, time, T, mass, M, and tem-

perature, These primary quantities can then be used to provide a qualitative description of any

other secondary quantity: for example, and so on,

where the symbol is used to indicate the dimensions of the secondary quantity in terms of the

primary quantities. Thus, to describe qualitatively a velocity, V, we would write

and say that “the dimensions of a velocity equal length divided by time.” The primary quantities

are also referred to as basic dimensions.
For a wide variety of problems involving fluid mechanics, only the three basic dimensions, L,

T, and M are required. Alternatively, L, T, and F could be used, where F is the basic dimensions of

force. Since Newton’s law states that force is equal to mass times acceleration, it follows that

or Thus, secondary quantities expressed in terms of M can be expressed

in terms of F through the relationship above. For example, stress, is a force per unit area, so that

but an equivalent dimensional equation is Table 1.1 provides a list of di-

mensions for a number of common physical quantities.

All theoretically derived equations are dimensionally homogeneous—that is, the dimensions of

the left side of the equation must be the same as those on the right side, and all additive separate terms

must have the same dimensions. We accept as a fundamental premise that all equations describing phys-

ical phenomena must be dimensionally homogeneous. If this were not true, we would be attempting to

equate or add unlike physical quantities, which would not make sense. For example, the equation for

the velocity, V, of a uniformly accelerated body is

(1.1)V � V0 � at

s � ML�1T 
�2.s � FL�2,

s,

M � FL�1 T 
2.F � MLT 

�2

V � LT 
�1

�

density � ML�3,velocity � LT 
�1,area � L2,

™.

Fluid characteris-
tics can be de-
scribed qualitatively
in terms of certain
basic quantities
such as length,
time, and mass.
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1.2 Dimensions, Dimensional Homogeneity, and Units 5

where is the initial velocity, a the acceleration, and t the time interval. In terms of dimensions

the equation is

and thus Eq. 1.1 is dimensionally homogeneous.

Some equations that are known to be valid contain constants having dimensions. The equa-

tion for the distance, d, traveled by a freely falling body can be written as

(1.2)

and a check of the dimensions reveals that the constant must have the dimensions of if the

equation is to be dimensionally homogeneous. Actually, Eq. 1.2 is a special form of the well-known

equation from physics for freely falling bodies,

(1.3)

in which g is the acceleration of gravity. Equation 1.3 is dimensionally homogeneous and valid in

any system of units. For the equation reduces to Eq. 1.2 and thus Eq. 1.2 is valid

only for the system of units using feet and seconds. Equations that are restricted to a particular

system of units can be denoted as restricted homogeneous equations, as opposed to equations valid

in any system of units, which are general homogeneous equations. The preceding discussion indi-

cates one rather elementary, but important, use of the concept of dimensions: the determination of

one aspect of the generality of a given equation simply based on a consideration of the dimensions

of the various terms in the equation. The concept of dimensions also forms the basis for the pow-

erful tool of dimensional analysis, which is considered in detail in Chapter 7.

Note to the users of this text. All of the examples in the text use a consistent problem-solving

methodology which is similar to that in other engineering courses such as statics. Each example

highlights the key elements of analysis: Given, Find, Solution, and Comment.
The Given and Find are steps that ensure the user understands what is being asked in the

problem and explicitly list the items provided to help solve the problem. 

The Solution step is where the equations needed to solve the problem are formulated and

the problem is actually solved. In this step, there are typically several other tasks that help to set

g � 32.2 ft�s2

d �
gt 

2

2

LT 
�2

d � 16.1t 
2

LT 
�1 � LT 

�1 � LT 
�1

V0

TA B L E 1 . 1

Dimensions Associated with Common Physical Quantities

FLT MLT
System System

Acceleration

Angle

Angular acceleration

Angular velocity

Area

Density

Energy FL
Force F
Frequency

Heat FL

Length L L
Mass M
Modulus of elasticity

Moment of a force FL
Moment of inertia 1area2

Moment of inertia 1mass2

Momentum FT MLT 
�1

ML2FLT 
2

L4L4

ML2T 
�2

ML�1T 
�2FL�2

FL�1T 
2

ML2T 
�2

T 
�1T 

�1

MLT 
�2

ML2T 
�2

ML�3FL�4T 
2

L2L2

T 
�1T 

�1

T 
�2T 

�2

M 
0L0T 

0F 
0L0T 

0

LT 
�2LT 

�2

FLT MLT
System System

Power

Pressure

Specific heat

Specific weight

Strain

Stress

Surface tension

Temperature

Time T T

Torque FL

Velocity

Viscosity 1dynamic2

Viscosity 1kinematic2

Volume

Work FL ML2T�2

L3L3

L2T 
�1L2T 

�1

ML�1T 
�1FL�2T

LT 
�1LT 

�1

ML2T 
�2

™™
MT 

�2FL�1

ML�1T 
�2FL�2

M 
0L0T 

0F 
0L0T 

0

ML�2T 
�2FL�3

L2T 
�2™�1L2T 

�2™�1

ML�1T 
�2FL�2

ML2T 
�3FLT 

�1

General homo-
geneous equations
are valid in any
system of units.
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6 Chapter 1 ■ Introduction

up the solution and are required to solve the problem. The first is a drawing of the problem; where

appropriate, it is always helpful to draw a sketch of the problem. Here the relevant geometry and

coordinate system to be used as well as features such as control volumes, forces and pressures,

velocities, and mass flow rates are included. This helps in gaining a visual understanding of the

problem. Making appropriate assumptions to solve the problem is the second task. In a realistic

engineering problem-solving environment, the necessary assumptions are developed as an integral

part of the solution process. Assumptions can provide appropriate simplifications or offer useful

constraints, both of which can help in solving the problem. Throughout the examples in this text,

the necessary assumptions are embedded within the Solution step, as they are in solving a real-

world problem. This provides a realistic problem-solving experience.

The final element in the methodology is the Comment. For the examples in the text, this

section is used to provide further insight into the problem or the solution. It can also be a point

in the analysis at which certain questions are posed. For example: Is the answer reasonable,

and does it make physical sense? Are the final units correct? If a certain parameter were

changed, how would the answer change? Adopting the above type of methodology will aid 

in the development of problem-solving skills for fluid mechanics, as well as other engineering

disciplines.

GIVEN A liquid flows through an orifice located in the side of

a tank as shown in Fig. E1.1. A commonly used equation for de-

termining the volume rate of flow, Q, through the orifice is

where A is the area of the orifice, g is the acceleration of gravity,

and h is the height of the liquid above the orifice.

FIND Investigate the dimensional homogeneity of this for-

mula.

Q � 0.61 A12gh

SOLUTION

Restricted and General Homogeneous Equations

and, therefore, the equation expressed as Eq. 1 can only be di-

mensionally correct if the number 4.90 has the dimensions of

Whenever a number appearing in an equation or for-

mula has dimensions, it means that the specific value of the

number will depend on the system of units used. Thus, for

the case being considered with feet and seconds used as units,

the number 4.90 has units of Equation 1 will only give

the correct value for when A is expressed in square

feet and h in feet. Thus, Eq. 1 is a restricted homogeneous

equation, whereas the original equation is a general homoge-

neous equation that would be valid for any consistent system of

units. 

COMMENT A quick check of the dimensions of the vari-

ous terms in an equation is a useful practice and will often be

helpful in eliminating errors—that is, as noted previously, all

physically meaningful equations must be dimensionally ho-

mogeneous. We have briefly alluded to units in this example,

and this important topic will be considered in more detail in

the next section.

Q 1in ft3�s2
ft1�  2�s.

L1�  2T 
�1.

EXAMPLE 1.1

The dimensions of the various terms in the equation are Q � 
volume/time �

. L3T�1, A � area �
. L2, g � acceleration of gravity �

.

LT�2, and .

These terms, when substituted into the equation, yield the dimen-

sional form:

or

It is clear from this result that the equation is dimensionally

homogeneous 1both sides of the formula have the same dimensions

of 2, and the numbers 10.61 and 2 are dimensionless.

If we were going to use this relationship repeatedly we might

be tempted to simplify it by replacing g with its standard value of

and rewriting the formula as

(1)

A quick check of the dimensions reveals that

L3T 
�1 � 14.902 1L5�  22

Q � 4.90 A1h

32.2 ft �s2

12L3T 
�1

1L3T 
�12 � 3 10.61212 4 1L3T 

�12

1L3T 
�12 � 10.612 1L22 112 2 1LT 

�221�  21L21�  2

 h � height � L

(a)

h

A
Q

(b)

F I G U R E  E1.1
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1.2.1 Systems of Units

In addition to the qualitative description of the various quantities of interest, it is generally neces-

sary to have a quantitative measure of any given quantity. For example, if we measure the width

of this page in the book and say that it is 10 units wide, the statement has no meaning until the

unit of length is defined. If we indicate that the unit of length is a meter, and define the meter as

some standard length, a unit system for length has been established 1and a numerical value can be

given to the page width2. In addition to length, a unit must be established for each of the remain-

ing basic quantities 1force, mass, time, and temperature2. There are several systems of units in use

and we shall consider three systems that are commonly used in engineering.

International System (SI). In 1960 the Eleventh General Conference on Weights and

Measures, the international organization responsible for maintaining precise uniform standards of

measurements, formally adopted the International System of Units as the international standard.

This system, commonly termed SI, has been widely adopted worldwide and is widely used

1although certainly not exclusively2 in the United States. It is expected that the long-term trend will

be for all countries to accept SI as the accepted standard and it is imperative that engineering stu-

dents become familiar with this system. In SI the unit of length is the meter 1m2, the time unit is

the second 1s2, the mass unit is the kilogram 1kg2, and the temperature unit is the kelvin 1K2. Note

that there is no degree symbol used when expressing a temperature in kelvin units. The kelvin tem-

perature scale is an absolute scale and is related to the Celsius 1centigrade2 scale through the

relationship

Although the Celsius scale is not in itself part of SI, it is common practice to specify temperatures

in degrees Celsius when using SI units.

The force unit, called the newton 1N2, is defined from Newton’s second law as

Thus, a 1-N force acting on a 1-kg mass will give the mass an acceleration of 1 Standard grav-

ity in SI is 1commonly approximated as 2 so that a 1-kg mass weighs 9.81 N un-

der standard gravity. Note that weight and mass are different, both qualitatively and quantitatively! The

unit of work in SI is the joule 1J2, which is the work done when the point of application of a 1-N force

is displaced through a 1-m distance in the direction of a force. Thus,

The unit of power is the watt 1W2 defined as a joule per second. Thus,

Prefixes for forming multiples and fractions of SI units are given in Table 1.2. For example,

the notation kN would be read as “kilonewtons” and stands for Similarly, mm would be

read as “millimeters” and stands for The centimeter is not an accepted unit of length in10�3 m.

103 N.

1 W � 1 J�s � 1 N # m�s

1 J � 1 N # m

9.81 m�s29.807 m�s2

m�s2.

1 N � 11 kg2 11 m �s22

K � °C � 273.15

1°C2

1.2 Dimensions, Dimensional Homogeneity, and Units 7

In mechanics it is
very important to
distinguish between
weight and mass.

TA B L E 1 . 2

Prefixes for SI Units

Factor by Which Unit
Is Multiplied Prefix Symbol

peta P

tera T

giga G

mega M

kilo k

hecto h

10 deka da

deci d10�1

102

103

106

109

1012

1015

Factor by Which Unit
Is Multiplied Prefix Symbol

centi c

milli m

micro

nano n

pico p

femto f

atto a10�18

10�15

10�12

10�9

m10�6

10�3

10�2
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the SI system, so for most problems in fluid mechanics in which SI units are used, lengths will be

expressed in millimeters or meters.

British Gravitational (BG) System. In the BG system the unit of length is the foot 1ft2,
the time unit is the second 1s2, the force unit is the pound 1lb2, and the temperature unit is the

degree Fahrenheit or the absolute temperature unit is the degree Rankine where

The mass unit, called the slug, is defined from Newton’s second law accel-

eration2 as

This relationship indicates that a 1-lb force acting on a mass of 1 slug will give the mass an ac-

celeration of 

The weight, 1which is the force due to gravity, g2 of a mass, m, is given by the equation

and in BG units

Since the earth’s standard gravity is taken as 1commonly approximated as 2,
it follows that a mass of 1 slug weighs 32.2 lb under standard gravity.

32.2 ft�s2g � 32.174 ft�s2

w1lb2 � m 1slugs2  g 1ft�s22

w � mg

w

1 ft�s2.

1 lb � 11 slug2 11 ft �s22

1force � mass �

°R � °F � 459.67

1°R2,1°F2

8 Chapter 1 ■ Introduction

Two systems of
units that are
widely used in en-
gineering are the
British Gravita-
tional (BG) System
and the Interna-
tional System (SI).

1It is also common practice to use the notation, lbf, to indicate pound force.

English Engineering (EE) System. In the EE system, units for force and mass are de-

fined independently; thus special care must be exercised when using this system in conjunction

with Newton’s second law. The basic unit of mass is the pound mass 1lbm2, and the unit of force is the

pound 1lb2.1 The unit of length is the foot 1ft2, the unit of time is the second 1s2, and the absolute tem-

perature scale is the degree Rankine To make the equation expressing Newton’s second law

dimensionally homogeneous we write it as

(1.4)

where is a constant of proportionality which allows us to define units for both force and mass.

For the BG system, only the force unit was prescribed and the mass unit defined in a consistent

manner such that Similarly, for SI the mass unit was prescribed and the force unit defined

in a consistent manner such that For the EE system, a 1-lb force is defined as that force

which gives a 1 lbm a standard acceleration of gravity which is taken as Thus, for

Eq. 1.4 to be both numerically and dimensionally correct

1 lb �
11 lbm2 132.174 ft�s22

gc

32.174 ft �s2.

gc � 1.

gc � 1.

gc

F �
ma
gc

1°R2.

F l u i d s  i n  t h e  N e w s

How long is a foot? Today, in the United States, the common

length unit is the foot, but throughout antiquity the unit used to

measure length has quite a history. The first length units were based

on the lengths of various body parts. One of the earliest units was

the Egyptian cubit, first used around 3000 B.C. and defined as the

length of the arm from elbow to extended fingertips. Other mea-

sures followed, with the foot simply taken as the length of a man’s

foot. Since this length obviously varies from person to person it was

often “standardized” by using the length of the current reigning

royalty’s foot. In 1791 a special French commission proposed that

a new universal length unit called a meter (metre) be defined as the

distance of one-quarter of the earth’s meridian (north pole to the

equator) divided by 10 million. Although controversial, the meter

was accepted in 1799 as the standard. With the development of ad-

vanced technology, the length of a meter was redefined in 1983 as

the distance traveled by light in a vacuum during the time interval

of s. The foot is now defined as 0.3048 meters. Our

simple rulers and yardsticks indeed have an intriguing history.

1�299,792,458
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1.2 Dimensions, Dimensional Homogeneity, and Units 9

so that

With the EE system, weight and mass are related through the equation

where g is the local acceleration of gravity. Under conditions of standard gravity the weight

in pounds and the mass in pound mass are numerically equal. Also, since a 1-lb force gives a mass of

1 lbm an acceleration of and a mass of 1 slug an acceleration of it follows that

In this text we will primarily use the BG system and SI for units. The EE system is used very

sparingly, and only in those instances where convention dictates its use, such as for the compressible

flow material in Chapter 11. Approximately one-half the problems and examples are given in BG units

and one-half in SI units. We cannot overemphasize the importance of paying close attention to units

when solving problems. It is very easy to introduce huge errors into problem solutions through the

use of incorrect units. Get in the habit of using a consistent system of units throughout a given solu-

tion. It really makes no difference which system you use as long as you are consistent; for example,

don’t mix slugs and newtons. If problem data are specified in SI units, then use SI units throughout

the solution. If the data are specified in BG units, then use BG units throughout the solution. The rel-

ative sizes of the SI, BG, and EE units of length, mass, and force are shown in Fig. 1.2.

Tables 1.3 and 1.4 provide conversion factors for some quantities that are commonly en-

countered in fluid mechanics. For convenient reference these tables are reproduced on the inside of

the back cover. Note that in these tables 1and others2 the numbers are expressed by using computer

exponential notation. For example, the number is equivalent to in scien-

tific notation, and the number is equivalent to More extensive tables of

conversion factors for a large variety of unit systems can be found in Appendix E.

2.832 � 10�2.2.832 E � 2

5.154 � 1025.154 E � 2

1 slug � 32.174 lbm

1 ft �s2,32.174 ft �s2

1g � gc2

w �
mg

gc

gc �
11 lbm2 132.174 ft�s22

11 lb2

1.0

0.5

m

0 0

1

2

ft

3

Length

1.0

0.5

N

0

Force

0.06

0.04

slug

0

1

lbm

2

0.02

1.0

0.5

kg

0

Mass

0

0.1

lb

0.2

F I G U R E  1.2 Comparison
of SI, BG, and EE units.

When solving prob-
lems it is important
to use a consistent
system of units,
e.g., don’t mix BG
and SI units.

TA B L E 1 . 3

Conversion Factors from BG and EE Units to SI Units

(See inside of back cover.)

TA B L E 1 . 4

Conversion Factors from SI Units to BG and EE Units

(See inside of back cover.)
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10 Chapter 1 ■ Introduction

BG and SI UnitsEXAMPLE 1.2

GIVEN A tank of liquid having a total mass of 36 kg rests on

a support in the equipment bay of the Space Shuttle. 

FIND Determine the force 1in newtons2 that the tank exerts on

the support shortly after lift off when the shuttle is accelerating

upward as shown in Fig. E1.2a at 15 ft �s2.

SOLUTION

A free-body diagram of the tank is shown in Fig. E1.2b, where is the

weight of the tank and liquid, and is the reaction of the floor on the

tank. Application of Newton’s second law of motion to this body gives

or

(1)

where we have taken upward as the positive direction. Since

Eq. 1 can be written as

(2)

Before substituting any number into Eq. 2, we  must decide on a

system of units, and then be sure all of the data are expressed in

these units. Since we want in newtons, we will use SI units so that

Since , it follows that

(Ans)Ff � 518 N  1downward on floor2

1 N � 1 kg # m �s2

 � 518 kg # m �s2

 Ff � 36 kg 39.81 m �s2 � 115 ft �s22 10.3048 m �ft2 4

Ff

Ff � m 1g � a2

w � mg,

Ff �w � ma

a F�m a

Ff

w

The direction is downward since the force shown on the free-body

diagram is the force of the support on the tank so that the force the

tank exerts on the support is equal in magnitude but opposite in

direction.

COMMENT As you work through a large variety of prob-

lems in this text, you will find that units play an essential role in

arriving at a numerical answer. Be careful! It is easy to mix units

and cause large errors. If in the above example the acceleration

had been left as with m and g expressed in SI units, we

would have calculated the force as 893 N and the answer would

have been 72% too large!

15 ft�s2

F I G U R E  E1.2a (Photograph courtesy of
NASA.)

�

Ff

a

F I G U R E  E1.2b

F l u i d s  i n  t h e  N e w s

Units and space travel A NASA spacecraft, the Mars Climate

Orbiter, was launched in December 1998 to study the Martian

geography and weather patterns. The spacecraft was slated to

begin orbiting Mars on September 23, 1999. However, NASA

officials lost communication with the spacecraft early that day

and it is believed that the spacecraft broke apart or overheated

because it came too close to the surface of Mars. Errors in the

maneuvering commands sent from earth caused the Orbiter to

sweep within 37 miles of the surface rather than the intended 93

miles. The subsequent investigation revealed that the errors were

due to a simple mix-up in units. One team controlling the Orbiter

used SI units whereas another team used BG units. This costly

experience illustrates the importance of using a consistent sys-

tem of units.
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1.4 Measures of Fluid Mass and Weight 11

The study of fluid mechanics involves the same fundamental laws you have encountered in physics

and other mechanics courses. These laws include Newton’s laws of motion, conservation of mass,

and the first and second laws of thermodynamics. Thus, there are strong similarities between the

general approach to fluid mechanics and to rigid-body and deformable-body solid mechanics. This

is indeed helpful since many of the concepts and techniques of analysis used in fluid mechanics will

be ones you have encountered before in other courses.

The broad subject of fluid mechanics can be generally subdivided into fluid statics, in

which the fluid is at rest, and fluid dynamics, in which the fluid is moving. In the following

chapters we will consider both of these areas in detail. Before we can proceed, however, it will

be necessary to define and discuss certain fluid properties that are intimately related to fluid be-

havior. It is obvious that different fluids can have grossly different characteristics. For example,

gases are light and compressible, whereas liquids are heavy 1by comparison2 and relatively in-

compressible. A syrup flows slowly from a container, but water flows rapidly when poured from

the same container. To quantify these differences, certain fluid properties are used. In the fol-

lowing several sections the properties that play an important role in the analysis of fluid behav-

ior are considered.

1.4 Measures of Fluid Mass and Weight

1.3 Analysis of Fluid Behavior

1.4.1 Density

The density of a fluid, designated by the Greek symbol 1rho2, is defined as its mass per unit vol-

ume. Density is typically used to characterize the mass of a fluid system. In the BG system, has

units of and in SI the units are 

The value of density can vary widely between different fluids, but for liquids, variations

in pressure and temperature generally have only a small effect on the value of The small

change in the density of water with large variations in temperature is illustrated in Fig. 1.3. Ta-

bles 1.5 and 1.6 list values of density for several common liquids. The density of water at 

is or The large difference between those two values illustrates the im-

portance of paying attention to units! Unlike liquids, the density of a gas is strongly influenced

by both pressure and temperature, and this difference will be discussed in the next section.

The specific volume, , is the volume per unit mass and is therefore the reciprocal of the den-

sity—that is,

(1.5)

This property is not commonly used in fluid mechanics but is used in thermodynamics.

v �
1

r

v

999 kg�m3.1.94 slugs�ft3

60 °F

r.

kg�m3.slugs�ft3

r

rThe density of a
fluid is defined as
its mass per unit
volume.

F I G U R E  1.3 Density of water as a function of temperature.

@ 4°C     = 1000 kg/m3

1000

990

980

970

960

950
0

D
en

si
ty

, 
  

kg
/m

3
ρ

20 40 60 80 100
Temperature, °C

ρ
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1.4.2 Specific Weight

The specific weight of a fluid, designated by the Greek symbol 1gamma2, is defined as its weight
per unit volume. Thus, specific weight is related to density through the equation

(1.6)

where g is the local acceleration of gravity. Just as density is used to characterize the mass of a 

fluid system, the specific weight is used to characterize the weight of the system. In the BG sys-

tem, has units of and in SI the units are Under conditions of standard gravity

water at has a specific weight of and 

Tables 1.5 and 1.6 list values of specific weight for several common liquids 1based on standard grav-

ity2. More complete tables for water can be found in Appendix B 1Tables B.1 and B.22.

1.4.3 Specific Gravity

The specific gravity of a fluid, designated as SG, is defined as the ratio of the density of the fluid

to the density of water at some specified temperature. Usually the specified temperature is taken

as and at this temperature the density of water is or In

equation form, specific gravity is expressed as

(1.7)

and since it is the ratio of densities, the value of SG does not depend on the system of units used.

For example, the specific gravity of mercury at is 13.55. This is illustrated by the figure in

the margin. Thus, the density of mercury can be readily calculated in either BG or SI units through

the use of Eq. 1.7 as

or

It is clear that density, specific weight, and specific gravity are all interrelated, and from a

knowledge of any one of the three the others can be calculated.

rHg � 113.552 11000 kg�m32 � 13.6 � 103 kg�m3

rHg � 113.552 11.94 slugs�ft32 � 26.3 slugs�ft3

20 °C

SG �
r

rH2O@4 °C

1000 kg�m3.1.94 slugs�ft34 °C 139.2 °F2,

9.80 kN�m3.62.4 lb�ft360 °F1g � 32.174 ft�s2 � 9.807 m�s22,
N�m3.lb�ft3g

g � rg

g

12 Chapter 1 ■ Introduction

TA B L E 1 . 5

Approximate Physical Properties of Some Common Liquids (BG Units)

(See inside of front cover.)

TA B L E 1 . 6

Approximate Physical Properties of Some Common Liquids (SI Units)

(See inside of front cover.)

Specific weight is
weight per unit vol-
ume; specific grav-
ity is the ratio of
fluid density to the
density of water at
a certain tempera-
ture.

13.55

1

Water

Mercury

2We will use T to represent temperature in thermodynamic relationships although T is also used to denote the basic dimension of time.

1.5 Ideal Gas Law

Gases are highly compressible in comparison to liquids, with changes in gas density directly re-

lated to changes in pressure and temperature through the equation

(1.8)

where p is the absolute pressure, the density, T the absolute temperature,2 and R is a gas con-

stant. Equation 1.8 is commonly termed the ideal or perfect gas law, or the equation of state for

r

r �
p

RT
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an ideal gas. It is known to closely approximate the behavior of real gases under normal condi-

tions when the gases are not approaching liquefaction.

Pressure in a fluid at rest is defined as the normal force per unit area exerted on a plane surface

1real or imaginary2 immersed in a fluid and is created by the bombardment of the surface with the fluid

molecules. From the definition, pressure has the dimension of and in BG units is expressed as

1psf 2 or 1psi2 and in SI units as In SI, defined as a pascal, abbreviated as

Pa, and pressures are commonly specified in pascals. The pressure in the ideal gas law must be ex-

pressed as an absolute pressure, denoted (abs), which means that it is measured relative to absolute

zero pressure 1a pressure that would only occur in a perfect vacuum2. Standard sea-level atmospheric

pressure 1by international agreement2 is 14.696 psi 1abs2 or 101.33 kPa 1abs2. For most calculations these

pressures can be rounded to 14.7 psi and 101 kPa, respectively. In engineering it is common practice

to measure pressure relative to the local atmospheric pressure, and when measured in this fashion it is

called gage pressure. Thus, the absolute pressure can be obtained from the gage pressure by adding the

value of the atmospheric pressure. For example, as shown by the figure in the margin on the next page,

a pressure of 30 psi 1gage2 in a tire is equal to 44.7 psi 1abs2 at standard atmospheric pressure. Pressure

is a particularly important fluid characteristic and it will be discussed more fully in the next chapter.

1 N�m2N�m2.lb�in.2lb�ft2

FL�2,

1.5 Ideal Gas Law 13

In the ideal gas law,
absolute pressures
and temperatures
must be used.

Ideal Gas LawEXAMPLE 1.3

GIVEN The compressed air tank shown in Fig. E1.3a has a

volume of The temperature is and the atmos-

pheric pressure is 14.7 psi 1abs2.

FIND When the tank is filled with air at a gage pressure of 50 psi,

determine the density of the air and the weight of air in the tank. 

70 °F0.84 ft3.

SOLUTION

The air density can be obtained from the ideal gas law 1Eq. 1.82

so that

(Ans)

Note that both the pressure and temperature were changed to ab-

solute values.

 � 0.0102 slugs�ft3

r �
150 lb�in.2 � 14.7 lb�in.22 1144 in.2�ft22

11716 ft # lb�slug # °R2 3 170 � 4602°R 4

r �
p

RT

The weight, of the air is equal to

so that since 

(Ans)

COMMENT By repeating the calculations for various values of

the pressure, p, the results shown in Fig. E1.3b are obtained. Note

that doubling the gage pressure does not double the amount of air

in the tank, but doubling the absolute pressure does. Thus, a scuba

diving tank at a gage pressure of 100 psi does not contain twice the

amount of air as when the gage reads 50 psi.

w � 0.276 lb

1 lb � 1 slug # ft �s2

 � 0.276 slug # ft�s2

 � 10.0102 slug�ft32 132.2 ft �s22 10.84 ft32

 w � rg � 1volume2

w,

0.4

0.5

0.1

0
–20 0 20 40

p, psi
60 80 100

W
, 
lb

0.3

0.2
(50 psi, 0.276 lb)

F I G U R E  E1.3b

F I G U R E  E1.3a (Photograph courtesy of
Jenny Products, Inc.)
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14 Chapter 1 ■ Introduction

The gas constant, R, which appears in Eq. 1.8, depends on the particular gas and is related to

the molecular weight of the gas. Values of the gas constant for several common gases are listed in Ta-

bles 1.7 and 1.8. Also in these tables the gas density and specific weight are given for standard at-

mospheric pressure and gravity and for the temperature listed. More complete tables for air at stan-

dard atmospheric pressure can be found in Appendix B 1Tables B.3 and B.42.

The properties of density and specific weight are measures of the “heaviness” of a fluid. It is clear,

however, that these properties are not sufficient to uniquely characterize how fluids behave since

two fluids 1such as water and oil2 can have approximately the same value of density but behave

quite differently when flowing. There is apparently some additional property that is needed to de-

scribe the “fluidity” of the fluid.

To determine this additional property, consider a hypothetical experiment in which a mater-

ial is placed between two very wide parallel plates as shown in Fig. 1.4a. The bottom plate is

rigidly fixed, but the upper plate is free to move. If a solid, such as steel, were placed between the

two plates and loaded with the force P as shown, the top plate would be displaced through some

small distance, 1assuming the solid was mechanically attached to the plates2. The vertical line

AB would be rotated through the small angle, to the new position We note that to resist

the applied force, P, a shearing stress, would be developed at the plate–material interface, and

for equilibrium to occur, where A is the effective upper plate area 1Fig. 1.4b2. It is well

known that for elastic solids, such as steel, the small angular displacement, 1called the shear-

ing strain2, is proportional to the shearing stress, that is developed in the material.

What happens if the solid is replaced with a fluid such as water? We would immediately no-

tice a major difference. When the force P is applied to the upper plate, it will move continuously

with a velocity, U 1after the initial transient motion has died out2 as illustrated in Fig. 1.5. This be-

havior is consistent with the definition of a fluid—that is, if a shearing stress is applied to a fluid

it will deform continuously. A closer inspection of the fluid motion between the two plates would

reveal that the fluid in contact with the upper plate moves with the plate velocity, U, and the fluid

in contact with the bottom fixed plate has a zero velocity. The fluid between the two plates moves

with velocity that would be found to vary linearly, as illustrated in Fig. 1.5.

Thus, a velocity gradient, is developed in the fluid between the plates. In this particular case

the velocity gradient is a constant since but in more complex flow situations, suchdu�dy � U�b,

du�dy,

u � Uy�b,u � u 1y2

t,

db

P � tA
t,

AB¿.db,

da

1.6 Viscosity

44.7

14.7 0

0

30

(abs) (gage)
p, psi

TA B L E 1 . 7

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure 
(BG Units)

(See inside of front cover.)

TA B L E 1 . 8

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure 
(SI Units)

(See inside of front cover.)

F I G U R E  1.4 (a) Deformation of
material placed between two parallel plates. (b)
Forces acting on upper plate.

P P

(a) (b)

Fixed plate

a

b

δ

δβ

B

A

B' Aτ

Real fluids, even
though they may be
moving, always
“stick” to the solid
boundaries that
contain them.

V1.4 No-slip
condition

V1.3 Viscous fluids
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1.6 Viscosity 15

as that shown by the photograph in the margin, this is not true. The experimental observation that

the fluid “sticks” to the solid boundaries is a very important one in fluid mechanics and is usually

referred to as the no-slip condition. All fluids, both liquids and gases, satisfy this condition.

In a small time increment, an imaginary vertical line AB in the fluid would rotate through

an angle, so that

Since it follows that

We note that in this case, is a function not only of the force P 1which governs U 2 but also of

time. Thus, it is not reasonable to attempt to relate the shearing stress, to as is done for solids.

Rather, we consider the rate at which is changing and define the rate of shearing strain, as

which in this instance is equal to

A continuation of this experiment would reveal that as the shearing stress, is increased by in-

creasing P 1recall that 2, the rate of shearing strain is increased in direct proportion—that is,

or

This result indicates that for common fluids such as water, oil, gasoline, and air the shearing stress

and rate of shearing strain 1velocity gradient2 can be related with a relationship of the form

(1.9)

where the constant of proportionality is designated by the Greek symbol 1mu2 and is called the ab-
solute viscosity, dynamic viscosity, or simply the viscosity of the fluid. In accordance with Eq. 1.9,

plots of versus should be linear with the slope equal to the viscosity as illustrated in Fig. 1.6.

The actual value of the viscosity depends on the particular fluid, and for a particular fluid the vis-

cosity is also highly dependent on temperature as illustrated in Fig. 1.6 with the two curves for wa-

ter. Fluids for which the shearing stress is linearly related to the rate of shearing strain 1also referred

to as rate of angular deformation2 are designated as Newtonian fluids after I. Newton (1642–1727).

Fortunately most common fluids, both liquids and gases, are Newtonian. A more general formula-

tion of Eq. 1.9 which applies to more complex flows of Newtonian fluids is given in Section 6.8.1.

du�dyt

m

t � m 
du

dy

t r  

du

dy

t r g#
t � P�A

t,

g
#

�
U

b
�

du

dy

g
#

� lim
dtS0

 
db

dt

g
#
,db

dbt,

db

db �
U dt

b

da � U dt

tan db � db �
da

b

db,

dt,

F I G U R E  1.5 Behavior of a fluid
placed between two parallel plates.

b

U

δβ

B'B

P

u

Fixed plate

y

δ

A

a

u = u(y)

u = 0 on surface

Solid body

y

Dynamic viscosity
is the fluid property
that relates shear-
ing stress and fluid
motion.

V1.5 Capillary tube
viscometer
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Fluids for which the shearing stress is not linearly related to the rate of shearing strain are

designated as non-Newtonian fluids. Although there is a variety of types of non-Newtonian flu-

ids, the simplest and most common are shown in Fig. 1.7. The slope of the shearing stress versus

rate of shearing strain graph is denoted as the apparent viscosity, For Newtonian fluids the ap-

parent viscosity is the same as the viscosity and is independent of shear rate.

For shear thinning fluids the apparent viscosity decreases with increasing shear rate—the harder

the fluid is sheared, the less viscous it becomes. Many colloidal suspensions and polymer solutions

are shear thinning. For example, latex paint does not drip from the brush because the shear rate is

small and the apparent viscosity is large. However, it flows smoothly onto the wall because the thin

layer of paint between the wall and the brush causes a large shear rate  and a small apparent viscosity.

map.

16 Chapter 1 ■ Introduction

F I G U R E  1.6 Linear
variation of shearing stress with rate of
shearing strain for common fluids.
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Crude oil (60 °F)

μ

1
Water (60 °F)

Water (100 °F)

Air (60 °F)

Rate of shearing strain, du__
dy

τ

F I G U R E  1.7 Variation of shearing 
stress with rate of shearing strain for several 
types of fluids, including common non-Newtonian 
fluids.

Bingham plastic

Rate of shearing strain, du
dy
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g 
st
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,τ

μap

1

Shear thinning

tyield

Newtonian

Shear thickening

F l u i d s  i n  t h e  N e w s

An extremely viscous fluid Pitch is a derivative of tar once used for

waterproofing boats. At elevated temperatures it flows quite readily.

At room temperature it feels like a solid—it can even be shattered

with a blow from a hammer. However, it is a liquid. In 1927 Profes-

sor Parnell heated some pitch and poured it into a funnel. Since that

time it has been allowed to flow freely (or rather, drip slowly) from

the funnel. The flowrate is quite small. In fact, to date only seven

drops have fallen from the end of the funnel, although the eighth

drop is poised ready to fall “soon.” While nobody has actually seen

a drop fall from the end of the funnel, a beaker below the funnel

holds the previous drops that fell over the years. It is estimated that

the pitch is about 100 billion times more viscous than water.

For non-Newtonian
fluids, the apparent
viscosity is a func-
tion of the shear
rate.
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1.6 Viscosity 17

For shear thickening fluids the apparent viscosity increases with increasing shear rate—the

harder the fluid is sheared, the more viscous it becomes. Common examples of this type of fluid

include water–corn starch mixture and water–sand mixture 1“quicksand”2. Thus, the difficulty in

removing an object from quicksand increases dramatically as the speed of removal increases.

The other type of behavior indicated in Fig. 1.7 is that of a Bingham plastic, which is neither

a fluid nor a solid. Such material can withstand a finite, nonzero shear stress, �yield, the yield stress,

without motion 1therefore, it is not a fluid2, but once the yield stress is exceeded it flows like a fluid

1hence, it is not a solid2. Toothpaste and mayonnaise are common examples of Bingham plastic ma-

terials. As indicated in the figure in the margin, mayonnaise can sit in a pile on a slice of bread 1the

shear stress less than the yield stress2,but it flows smoothly into a thin layer when the knife increases

the stress above the yield stress.

From Eq. 1.9 it can be readily deduced that the dimensions of viscosity are Thus, in

BG units viscosity is given as and in SI units as Values of viscosity for several

common liquids and gases are listed in Tables 1.5 through 1.8. A quick glance at these tables reveals

the wide variation in viscosity among fluids. Viscosity is only mildly dependent on pressure and the

effect of pressure is usually neglected. However, as previously mentioned, and as illustrated in Fig.

1.8, viscosity is very sensitive to temperature. For example, as the temperature of water changes from

60 to the density decreases by less than 1% but the viscosity decreases by about 40%. It is

thus clear that particular attention must be given to temperature when determining viscosity.

Figure 1.8 shows in more detail how the viscosity varies from fluid to fluid and how for

a given fluid it varies with temperature. It is to be noted from this figure that the viscosity of

liquids decreases with an increase in temperature, whereas for gases an increase in temperature

causes an increase in viscosity. This difference in the effect of temperature on the viscosity of

liquids and gases can again be traced back to the difference in molecular structure. The liquid

molecules are closely spaced, with strong cohesive forces between molecules, and the resistance

to relative motion between adjacent layers of fluid is related to these intermolecular forces. As

100 °F

N # s�m2.lb # s�ft2

FTL�2.

The various types
of non-Newtonian
fluids are distin-
guished by how
their apparent 
viscosity changes
with shear rate.

t < tyield

t > tyield

F I G U R E  1.8 Dynamic
(absolute) viscosity of some common
fluids as a function of temperature.
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18 Chapter 1 ■ Introduction

the temperature increases, these cohesive forces are reduced with a corresponding reduction in

resistance to motion. Since viscosity is an index of this resistance, it follows that the viscosity

is reduced by an increase in temperature. In gases, however, the molecules are widely spaced

and intermolecular forces negligible. In this case, resistance to relative motion arises due to the

exchange of momentum of gas molecules between adjacent layers. As molecules are transported

by random motion from a region of low bulk velocity to mix with molecules in a region of higher

bulk velocity 1and vice versa2, there is an effective momentum exchange which resists the rela-

tive motion between the layers. As the temperature of the gas increases, the random molecular

activity increases with a corresponding increase in viscosity.

The effect of temperature on viscosity can be closely approximated using two empirical for-

mulas. For gases the Sutherland equation can be expressed as

(1.10)

where C and S are empirical constants, and T is absolute temperature. Thus, if the viscosity is known

at two temperatures, C and S can be determined. Or, if more than two viscosities are known, the

data can be correlated with Eq. 1.10 by using some type of curve-fitting scheme.

For liquids an empirical equation that has been used is

(1.11)

where D and B are constants and T is absolute temperature. This equation is often referred to as

Andrade’s equation. As was the case for gases, the viscosity must be known at least for two tem-

peratures so the two constants can be determined. A more detailed discussion of the effect of tem-

perature on fluids can be found in Ref. 1.

m � De 
B�T

m �
CT 

3�  2

T � SViscosity is very
sensitive to 
temperature.

Viscosity and Dimensionless QuantitiesEXAMPLE 1.4

GIVEN A dimensionless combination of variables that is impor-

tant in the study of viscous flow through pipes is called the Reynolds
number, Re, defined as where, as indicated in Fig. E1.4, is

the fluid density, V the mean fluid velocity, D the pipe diameter, and

the fluid viscosity. A Newtonian fluid having a viscosity of

and a specific gravity of 0.91 flows through a 25-mm-

diameter pipe with a velocity of 

FIND Determine the value of the Reynolds number using 1a2 SI

units, and 1b2 BG units. 

2.6 m�s.

0.38 N # s�m2

m

rrVD�m

SOLUTION

(a) The fluid density is calculated from the specific gravity as

and from the definition of the Reynolds number

However, since it follows that the Reynolds

number is unitless—that is,

(Ans)

The value of any dimensionless quantity does not depend on the

system of units used if all variables that make up the quantity are

Re � 156

1 N � 1 kg # m�s2

 � 156 1kg # m�s22�N

 Re �
rVD

m
�
1910 kg�m32 12.6 m�s2 125 mm2 110�3 m�mm2

0.38 N # s�m2

 r � SG rH2O@4 °C � 0.91 11000 kg�m32 � 910 kg�m3

expressed in a consistent set of units. To check this we will calcu-

late the Reynolds number using BG units.

(b) We first convert all the SI values of the variables appear-

ing in the Reynolds number to BG values by using the conver-

sion factors from Table 1.4. Thus,

 m � 10.38 N # s�m22 12.089 � 10�22 � 7.94 � 10�3 lb # s�ft2

 D � 10.025 m2 13.2812 � 8.20 � 10�2 ft

 V � 12.6 m�s2 13.2812 � 8.53 ft�s
 r � 1910 kg�m32 11.940 � 10�32 � 1.77 slugs�ft3

F I G U R E  E1.4

V

D

r,m
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1.6 Viscosity 19

Quite often viscosity appears in fluid flow problems combined with the density in the

form

n �
m

r

and the value of the Reynolds number is

(Ans)

since 1 lb � 1 slug # ft�s2.

 � 156 1slug # ft�s22�lb � 156

 Re �
11.77 slugs�ft32 18.53 ft�s2 18.20 � 10�2 ft2

7.94 � 10�3 lb # s�ft2

COMMENTS The values from part 1a2 and part 1b2 are the

same, as expected. Dimensionless quantities play an important

role in fluid mechanics and the significance of the Reynolds

number as well as other important dimensionless combinations

will be discussed in detail in Chapter 7. It should be noted that in

the Reynolds number it is actually the ratio that is important,

and this is the property that is defined as the kinematic viscosity.

m�r

Newtonian Fluid Shear StressEXAMPLE 1.5

GIVEN The velocity distribution for the flow of a Newtonian

fluid between two wide, parallel plates (see Fig. E1.5a) is given

by the equation

u �
3V

2
 c1 � a

y

h
b

2

d

SOLUTION

For this type of parallel flow the shearing stress is obtained from

Eq. 1.9,

(1)

Thus, if the velocity distribution is known, the shearing

stress can be determined at all points by evaluating the velocity

gradient, For the distribution given

(2)

(a) Along the bottom wall so that (from Eq. 2)

and therefore the shearing stress is

(Ans)

This stress creates a drag on the wall. Since the velocity distribu-

tion is symmetrical, the shearing stress along the upper wall

would have the same magnitude and direction.

(b) Along the midplane where it follows from Eq. 2 that

and thus the shearing stress is

(Ans)tmidplane � 0

du

dy
� 0

y � 0

 � 14.4 lb�ft2 1in direction of flow2

 tbottom
wall

� m a
3V

h
b �

10.04 lb # s�ft22 132 12 ft �s2
10.2 in.2 11 ft �12 in.2

du

dy
�

3V

h

y � �h

du

dy
� �

3Vy

h2

du�dy.

u � u1y2

t � m 
du

dy

COMMENT From Eq. 2 we see that the velocity gradient

(and therefore the shearing stress) varies linearly with y and in

this particular example varies from 0 at the center of the channel

to at the walls. This is shown in Fig. E1.5b. For the

more general case the actual variation will, of course, depend on

the nature of the velocity distribution.

14.4 lb�ft2

F I G U R E  E1.5a

h

h

y u

�0.2 �0.1 0 0.1 0.2

15

10

5

0

�,
 lb

/f
t2

y, in.

�midplane = 0

�bottom wall = 14.4 lb/ft2 = �top wall

F I G U R E  E1.5b

where V is the mean velocity. The fluid has a viscosity of

. Also, and 

FIND Determine: (a) the shearing stress acting on the bottom

wall, and (b) the shearing stress acting on a plane parallel to the

walls and passing through the centerline (midplane).

h � 0.2 in.V � 2 ft �s0.04 lb # s�ft2
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This ratio is called the kinematic viscosity and is denoted with the Greek symbol 1nu2. The dimen-

sions of kinematic viscosity are and the BG units are and SI units are Values of kine-

matic viscosity for some common liquids and gases are given in Tables 1.5 through 1.8. More exten-

sive tables giving both the dynamic and kinematic viscosities for water and air can be found in Appendix

B 1Tables B.1 through B.42, and graphs showing the variation in both dynamic and kinematic viscos-

ity with temperature for a variety of fluids are also provided in Appendix B 1Figs. B.1 and B.22.
Although in this text we are primarily using BG and SI units, dynamic viscosity is often ex-

pressed in the metric CGS 1centimeter-gram-second2 system with units of This com-

bination is called a poise, abbreviated P. In the CGS system, kinematic viscosity has units of 

and this combination is called a stoke, abbreviated St.

cm2�s,

dyne # s�cm2.

m2�s.ft2�sL2�T,

n

20 Chapter 1 ■ Introduction

1.7 Compressibility of Fluids

1.7.1 Bulk Modulus

An important question to answer when considering the behavior of a particular fluid is how eas-

ily can the volume 1and thus the density2 of a given mass of the fluid be changed when there is a

change in pressure? That is, how compressible is the fluid? A property that is commonly used to

characterize compressibility is the bulk modulus, defined as

(1.12)

where dp is the differential change in pressure needed to create a differential change in volume,

of a volume This is illustrated by the figure in the margin. The negative sign is included

since an increase in pressure will cause a decrease in volume. Since a decrease in volume of a

given mass, will result in an increase in density, Eq. 1.12 can also be expressed as

(1.13)

The bulk modulus 1also referred to as the bulk modulus of elasticity2 has dimensions of pressure,

In BG units, values for are usually given as 1psi2 and in SI units as 

Large values for the bulk modulus indicate that the fluid is relatively incompressible—that is, it

takes a large pressure change to create a small change in volume. As expected, values of for

common liquids are large 1see Tables 1.5 and 1.62. For example, at atmospheric pressure and a 

temperature of it would require a pressure of 3120 psi to compress a unit volume of water

1%. This result is representative of the compressibility of liquids. Since such large pressures are

required to effect a change in volume, we conclude that liquids can be considered as incompress-
ible for most practical engineering applications. As liquids are compressed the bulk modulus in-

creases, but the bulk modulus near atmospheric pressure is usually the one of interest. The use of

bulk modulus as a property describing compressibility is most prevalent when dealing with liq-

uids, although the bulk modulus can also be determined for gases.

60 °F

Ev

N�m2 1Pa2.lb�in.2EvFL�2.

Ev �
dp

dr�r

m � rV�,

V�.dV�,

Ev � �
dp

dV��V�

Ev,

Kinematic viscosity
is defined as the 
ratio of the ab-
solute viscosity to
the fluid density.

p

V

p + dp

V – dV

V1.7 Water 
balloon

F l u i d s  i n  t h e  N e w s

This water jet is a blast Usually liquids can be treated as in-

compressible fluids. However, in some applications the com-
pressibility of a liquid can play a key role in the operation of a de-

vice. For example, a water pulse generator using compressed

water has been developed for use in mining operations. It can

fracture rock by producing an effect comparable to a conventional

explosive such as gunpowder. The device uses the energy stored

in a water-filled accumulator to generate an ultrahigh-pressure

water pulse ejected through a 10- to 25-mm-diameter discharge

valve. At the ultrahigh pressures used (300 to 400 MPa, or 3000

to 4000 atmospheres), the water is compressed (i.e., the volume

reduced) by about 10 to 15%. When a fast-opening valve within

the pressure vessel is opened, the water expands and produces a

jet of water that upon impact with the target material produces an

effect similar to the explosive force from conventional explosives.

Mining with the water jet can eliminate various hazards that arise

with the use of conventional chemical explosives, such as those

associated with the storage and use of explosives and the genera-

tion of toxic gas by-products that require extensive ventilation.

(See Problem 1.87.)
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1.7 Compressibility of Fluids 21

1.7.2 Compression and Expansion of Gases

When gases are compressed 1or expanded2, the relationship between pressure and density depends

on the nature of the process. If the compression or expansion takes place under constant temper-

ature conditions 1isothermal process2, then from Eq. 1.8

(1.14)

If the compression or expansion is frictionless and no heat is exchanged with the surroundings

1isentropic process2, then

(1.15)

where k is the ratio of the specific heat at constant pressure, to the specific heat at constant volume,

The two specific heats are related to the gas constant, R, through the equation

As was the case for the ideal gas law, the pressure in both Eqs. 1.14 and 1.15 must be ex-

pressed as an absolute pressure. Values of k for some common gases are given in Tables 1.7 and 1.8,

and for air over a range of temperatures, in Appendix B 1Tables B.3 and B.42. The pressure–density

variations for isothermal and isentropic conditions are illustrated in the margin figure.

With explicit equations relating pressure and density, the bulk modulus for gases can be de-

termined by obtaining the derivative from Eq. 1.14 or 1.15 and substituting the results into

Eq. 1.13. It follows that for an isothermal process

(1.16)

and for an isentropic process,

(1.17)

Note that in both cases the bulk modulus varies directly with pressure. For air under standard at-

mospheric conditions with 1abs2 and the isentropic bulk modulus is 20.6 psi.

A comparison of this figure with that for water under the same conditions shows

that air is approximately 15,000 times as compressible as water. It is thus clear that in dealing with

gases, greater attention will need to be given to the effect of compressibility on fluid behavior. How-

ever, as will be discussed further in later sections, gases can often be treated as incompressible flu-

ids if the changes in pressure are small.

1Ev � 312,000 psi2
k � 1.40,p � 14.7 psi

Ev � kp

Ev � p

dp�dr

R � cp � cv.

cv 1i.e., k � cp�cv2.
cp,

p

rk � constant

p
r

� constant

p

Isothermal

Isentropic 
(k = 1.4)

ρ

The value of the
bulk modulus 
depends on the type
of process involved.

Isentropic Compression of a GasEXAMPLE 1.6

GIVEN A cubic foot of air at an absolute pressure of 14.7 psi is

compressed isentropically to ft3 by the tire pump shown in Fig.

E1.6a.

FIND What is the final pressure?

1
2

SOLUTION

For an isentropic compression

where the subscripts i and f refer to initial and final states, respec-

tively. Since we are interested in the final pressure, pf, it follows

that

pf � a
�f

�i
b

k

pi

pi

�k
i

�
pf

�k
f

F I G U R E  E1.6a
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1.7.3 Speed of Sound

Another important consequence of the compressibility of fluids is that disturbances introduced at

some point in the fluid propagate at a finite velocity. For example, if a fluid is flowing in a pipe

and a valve at the outlet is suddenly closed 1thereby creating a localized disturbance2, the effect

of the valve closure is not felt instantaneously upstream. It takes a finite time for the increased

pressure created by the valve closure to propagate to an upstream location. Similarly, a loud-

speaker diaphragm causes a localized disturbance as it vibrates, and the small change in pressure

created by the motion of the diaphragm is propagated through the air with a finite velocity. The

velocity at which these small disturbances propagate is called the acoustic velocity or the speed of
sound, c. It will be shown in Chapter 11 that the speed of sound is related to changes in pressure

and density of the fluid medium through the equation

(1.18)

or in terms of the bulk modulus defined by Eq. 1.13

(1.19)

Since the disturbance is small, there is negligible heat transfer and the process is assumed to be

isentropic. Thus, the pressure–density relationship used in Eq. 1.18 is that for an isentropic process.

For gases undergoing an isentropic process, 1Eq. 1.172 so that

and making use of the ideal gas law, it follows that

(1.20)

Thus, for ideal gases the speed of sound is proportional to the square root of the absolute temper-

ature. For example, for air at with and , it follows that

The speed of sound in air at various temperatures can be found in Appendix B

1Tables B.3 and B.42. Equation 1.19 is also valid for liquids, and values of can be used 

to determine the speed of sound in liquids. For water at and

so that or As shown by the figure in the margin, the

speed of sound in water is much higher than in air. If a fluid were truly incompressible 1Ev � q 2
4860 ft�s.c � 1481 m�sr � 998.2 kg�m3

20 °C, Ev � 2.19 GN�m2

Ev

c � 1117 ft �s.

R � 1716 ft # lb�slug # °Rk � 1.4060 °F

c � 1kRT

c �
B

kp
r

Ev � kp

c �
B

Ev

r

c �
B

dp

dr

6000

water

air

4000

2000

0 100 200
0

c,
 ft

/s

T, deg F

The velocity at
which small distur-
bances propagate
in a fluid is called
the speed of sound.

As the volume, is reduced by one-half, the density must dou-

ble, since the mass, of the gas remains constant. Thus,

with k � 1.40 for air 

(Ans)

COMMENT By repeating the calculations for various values

of the ratio of the final volume to the initial volume, , the re-

sults shown in Fig. E1.6b are obtained. Note that even though air is

often considered to be easily compressed (at least compared to liq-

uids), it takes considerable pressure to significantly reduce a given

volume of air as is done in an automobile engine where the com-

pression ratio is on the order of � 1/8 � 0.125.Vf �Vi

Vf �Vi

pf � 1221.40114.7 psi2 � 38.8 psi 1abs2

m � � V,

V, 400

350

300

250

200

150

100

50

0
0 0.2 0.4 0.6 0.8 1

p f
, p

si

Vf /Vi

(0.5, 38.8 psi)    

F I G U R E  E1.6b

V1.8 As fast as a
speeding bullet
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1.8 Vapor Pressure 23

the speed of sound would be infinite. The speed of sound in water for various temperatures can be

found in Appendix B 1Tables B.1 and B.22.

1.8 Vapor Pressure

It is a common observation that liquids such as water and gasoline will evaporate if they are sim-

ply placed in a container open to the atmosphere. Evaporation takes place because some liquid

molecules at the surface have sufficient momentum to overcome the intermolecular cohesive forces

and escape into the atmosphere. If the container is closed with a small air space left above the sur-

face, and this space evacuated to form a vacuum, a pressure will develop in the space as a result

of the vapor that is formed by the escaping molecules. When an equilibrium condition is reached

so that the number of molecules leaving the surface is equal to the number entering, the vapor is

said to be saturated and the pressure that the vapor exerts on the liquid surface is termed the

vapor pressure, . Similarly, if the end of a completely liquid-filled container is moved as shown 

in the figure in the margin without letting any air into the container, the space between the liquid

and the end becomes filled with vapor at a pressure equal to the vapor pressure.

Since the development of a vapor pressure is closely associated with molecular activity, the

value of vapor pressure for a particular liquid depends on temperature. Values of vapor pressure for

water at various temperatures can be found in Appendix B 1Tables B.1 and B.22, and the values of

vapor pressure for several common liquids at room temperatures are given in Tables 1.5 and 1.6.

Boiling, which is the formation of vapor bubbles within a fluid mass, is initiated when the ab-

solute pressure in the fluid reaches the vapor pressure. As commonly observed in the kitchen, water

pv

Liquid

Liquid

Vapor, pv

A liquid boils when
the pressure is 
reduced to the 
vapor pressure.

Speed of Sound and Mach NumberEXAMPLE 1.7

GIVEN A jet aircraft flies at a speed of 550 mph at an altitude

of 35,000 ft, where the temperature is �66� F and the specific

heat ratio is k � 1.4.

FIND Determine the ratio of the speed of the aircraft, V, to that

of the speed of sound, c, at the specified altitude.

SOLUTION

From Eq. 1.20 the speed of sound can be calculated as

Since the air speed is

the ratio is

(Ans)

COMMENT This ratio is called the Mach number, Ma. If 

Ma 	 1.0 the aircraft is flying at subsonic speeds, whereas for Ma 

1.0 it is flying at supersonic speeds. The Mach number is an impor-

tant dimensionless parameter used in the study of the flow of gases

at high speeds and will be further discussed in Chapters 7 and 11.

By repeating the calculations for different temperatures, the

results shown in Fig. E1.7 are obtained. Because the speed of

V

c
�

807 ft/s

973 ft/s
� 0.829

V �
1550 mi/hr2 15280 ft/mi2

13600 s/hr2
� 807 ft/s

 � 973 ft/s

 � 211.402 11716 ft�lb/slug�°R2 1�66 � 4602  °R

 c � 2kRT

sound increases with increasing temperature, for a constant

airplane speed, the Mach number decreases as the temperature

increases.

F I G U R E  E1.7
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24 Chapter 1 ■ Introduction

at standard atmospheric pressure will boil when the temperature reaches —that is,

the vapor pressure of water at is 14.7 psi 1abs2. However, if we attempt to boil water at a

higher elevation, say 30,000 ft above sea level 1the approximate elevation of Mt. Everest2, where

the atmospheric pressure is 4.37 psi 1abs2, we find that boiling will start when the temperature is

about At this temperature the vapor pressure of water is 4.37 psi 1abs2. For the U.S. Stan-

dard Atmosphere 1see Section 2.42, the boiling temperature is a function of altitude as shown in

the figure in the margin. Thus, boiling can be induced at a given pressure acting on the fluid by

raising the temperature, or at a given fluid temperature by lowering the pressure.

An important reason for our interest in vapor pressure and boiling lies in the common ob-

servation that in flowing fluids it is possible to develop very low pressure due to the fluid mo-

tion, and if the pressure is lowered to the vapor pressure, boiling will occur. For example, this

phenomenon may occur in flow through the irregular, narrowed passages of a valve or pump.

When vapor bubbles are formed in a flowing fluid, they are swept along into regions of higher

pressure where they suddenly collapse with sufficient intensity to actually cause structural dam-

age. The formation and subsequent collapse of vapor bubbles in a flowing fluid, called cavita-
tion, is an important fluid flow phenomenon to be given further attention in Chapters 3 and 7.

157 °F.

212 °F

212 °F 1100 °C2

1.9 Surface Tension

At the interface between a liquid and a gas, or between two immiscible liquids, forces develop

in the liquid surface which cause the surface to behave as if it were a “skin” or “membrane”

stretched over the fluid mass. Although such a skin is not actually present, this conceptual anal-

ogy allows us to explain several commonly observed phenomena. For example, a steel needle

or a razor blade will float on water if placed gently on the surface because the tension devel-

oped in the hypothetical skin supports it. Small droplets of mercury will form into spheres when

placed on a smooth surface because the cohesive forces in the surface tend to hold all the mol-

ecules together in a compact shape. Similarly, discrete bubbles will form in a liquid. (See the

photograph at the beginning of Chapter 1.)

These various types of surface phenomena are due to the unbalanced cohesive forces act-

ing on the liquid molecules at the fluid surface. Molecules in the interior of the fluid mass are

surrounded by molecules that are attracted to each other equally. However, molecules along the

surface are subjected to a net force toward the interior. The apparent physical consequence of this

unbalanced force along the surface is to create the hypothetical skin or membrane. A tensile force

may be considered to be acting in the plane of the surface along any line in the surface. The in-

tensity of the molecular attraction per unit length along any line in the surface is called the sur-
face tension and is designated by the Greek symbol 1sigma2. For a given liquid the surface ten-

sion depends on temperature as well as the other fluid it is in contact with at the interface. The

dimensions of surface tension are with BG units of and SI units of Values of sur-

face tension for some common liquids 1in contact with air2 are given in Tables 1.5 and 1.6 and in

Appendix B 1Tables B.1 and B.22 for water at various temperatures. As indicated by the figure in

the margin, the value of the surface tension decreases as the temperature increases.
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F l u i d s  i n  t h e  N e w s

Walking on water Water striders are insects commonly found on

ponds, rivers, and lakes that appear to “walk” on water. A typical

length of a water strider is about 0.4 in., and they can cover 100

body lengths in one second. It has long been recognized that it is

surface tension that keeps the water strider from sinking below

the surface. What has been puzzling is how they propel them-

selves at such a high speed. They can’t pierce the water surface or

they would sink. A team of mathematicians and engineers from

the Massachusetts Institute of Technology (MIT) applied conven-

tional flow visualization techniques and high-speed video to

examine in detail the movement of the water striders. They found

that each stroke of the insect’s legs creates dimples on the surface

with underwater swirling vortices sufficient to propel it forward.

It is the rearward motion of the vortices that propels the water

strider forward. To further substantiate their explanation, the MIT

team built a working model of a water strider, called Robostrider,

which creates surface ripples and underwater vortices as it moves

across a water surface. Waterborne creatures, such as the water

strider, provide an interesting world dominated by surface ten-

sion. (See Problem 1.103.)
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1.9 Surface Tension 25

The pressure inside a drop of fluid can be calculated using the free-body diagram in Fig. 1.9.

If the spherical drop is cut in half 1as shown2, the force developed around the edge due to surface

tension is This force must be balanced by the pressure difference, between the internal

pressure, and the external pressure, acting over the circular area, Thus,

or

(1.21)

It is apparent from this result that the pressure inside the drop is greater than the pressure sur-

rounding the drop. 1Would the pressure on the inside of a bubble of water be the same as that on

the inside of a drop of water of the same diameter and at the same temperature?2
Among common phenomena associated with surface tension is the rise 1or fall2 of a liquid

in a capillary tube. If a small open tube is inserted into water, the water level in the tube will rise

above the water level outside the tube, as is illustrated in Fig. 1.10a. In this situation we have a

liquid–gas–solid interface. For the case illustrated there is an attraction 1adhesion2 between the wall

of the tube and liquid molecules which is strong enough to overcome the mutual attraction 1cohe-

sion2 of the molecules and pull them up the wall. Hence, the liquid is said to wet the solid surface.

The height, h, is governed by the value of the surface tension, the tube radius, R, the spe-

cific weight of the liquid, and the angle of contact, between the fluid and tube. From the free-

body diagram of Fig. 1.10b we see that the vertical force due to the surface tension is equal to

and the weight is and these two forces must balance for equilibrium. Thus,

so that the height is given by the relationship

(1.22)

The angle of contact is a function of both the liquid and the surface. For water in contact with clean

glass It is clear from Eq. 1.22 that the height is inversely proportional to the tube radius, and

therefore, as indicated by the figure in the margin, the rise of a liquid in a tube as a result of capil-

lary action becomes increasingly pronounced as the tube radius is decreased.

If adhesion of molecules to the solid surface is weak compared to the cohesion between mol-

ecules, the liquid will not wet the surface and the level in a tube placed in a nonwetting liquid will

actually be depressed, as shown in Fig. 1.10c. Mercury is a good example of a nonwetting liquid

when it is in contact with a glass tube. For nonwetting liquids the angle of contact is greater than

and for mercury in contact with clean glass u � 130°.90°,

u � 0°.

h �
2s cos u

gR

gpR2h � 2pRs cos u

gpR2h2pRs cos u

u,g,

s,

¢p � pi � pe �
2s

R

2pRs � ¢p pR2

pR2.pe,pi,

¢p,2pRs.

Capillary action in
small tubes, which
involves a liquid–
gas–solid interface,
is caused by sur-
face tension.

F I G U R E  1.9 Forces acting on one-half of a liquid drop.

Rσ

σR2Δpπ

F I G U R E  1.10 Effect of capillary
action in small tubes. (a) Rise of column for a liquid
that wets the tube. (b) Free-body diagram for calculat-
ing column height. (c) Depression of column for a
nonwetting liquid.

π
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Surface tension effects play a role in many fluid mechanics problems, including the move-

ment of liquids through soil and other porous media, flow of thin films, formation of drops and

bubbles, and the breakup of liquid jets. For example, surface tension is a main factor in the for-

mation of drops from a leaking faucet, as shown in the photograph in the margin. Surface

phenomena associated with liquid–gas, liquid–liquid, and liquid–gas–solid interfaces are ex-

ceedingly complex, and a more detailed and rigorous discussion of them is beyond the scope of

this text. Fortunately, in many fluid mechanics problems, surface phenomena, as characterized

by surface tension, are not important, since inertial, gravitational, and viscous forces are much

more dominant.
(Photograph copyright

2007 by Andrew David-

hazy, Rochester Insti-

tute of Technology.)

Capillary Rise in a TubeEXAMPLE 1.8

GIVEN Pressures are sometimes determined by measuring the

height of a column of liquid in a vertical tube. 

FIND What diameter of clean glass tubing is required so that

the rise of water at in a tube due to capillary action 1as op-

posed to pressure in the tube2 is less than h � 1.0 mm?

20 °C

SOLUTION

From Eq. 1.22

so that

For water at 1from Table B.22, and

Since it follows that for 

and the minimum required tube diameter, D, is

(Ans)

COMMENT By repeating the calculations for various values

of the capillary rise, h, the results shown in Fig. E1.8 are obtained.

D � 2R � 0.0298 m � 29.8 mm

 � 0.0149 m

R �
210.0728 N�m2 112

19.789 � 103 N�m32 11.0 mm2 110�3 m�mm2

h � 1.0 mm,u � 0°g � 9.789 kN�m3.

s � 0.0728 N�m20 °C

R �
2s cos u

gh

h �
2s cos u

gR

Note that as the allowable capillary rise is decreased, the diame-

ter of the tube must be significantly increased. There is always

some capillarity effect, but it can be minimized by using a large

enough diameter tube.

0.5 1
h, mm

D
, 

m
m

1.5 20
0

20

40

60

80

100

(1 mm, 29.8 mm)

F I G U R E  E1.8
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Spreading of oil spills With the large traffic in oil tankers there

is great interest in the prevention of and response to oil spills. As

evidenced by the famous Exxon Valdez oil spill in Prince

William Sound in 1989, oil spills can create disastrous environ-

mental problems. It is not surprising that much attention is given

to the rate at which an oil spill spreads. When spilled, most oils

tend to spread horizontally into a smooth and slippery surface,

called a slick. There are many factors which influence the abil-

ity of an oil slick to spread, including the size of the spill, wind

speed and direction, and the physical properties of the oil. These

properties include surface tension, specific gravity, and viscos-
ity. The higher the surface tension the more likely a spill will re-

main in place. Since the specific gravity of oil is less than one,

it floats on top of the water, but the specific gravity of an oil can

increase if the lighter substances within the oil evaporate. The

higher the viscosity of the oil the greater the tendency to stay in

one place.
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1.10 A Brief Look Back in History 27

1.10 A Brief Look Back in History

Before proceeding with our study of fluid mechanics, we should pause for a moment to consider

the history of this important engineering science. As is true of all basic scientific and engineering

disciplines, their actual beginnings are only faintly visible through the haze of early antiquity. But,

we know that interest in fluid behavior dates back to the ancient civilizations. Through necessity

there was a practical concern about the manner in which spears and arrows could be propelled

through the air, in the development of water supply and irrigation systems, and in the design of

boats and ships. These developments were of course based on trial and error procedures without

any knowledge of mathematics or mechanics. However, it was the accumulation of such empirical

knowledge that formed the basis for further development during the emergence of the ancient Greek

civilization and the subsequent rise of the Roman Empire. Some of the earliest writings that pertain

to modern fluid mechanics are those of Archimedes 1287–212 B.C.2, a Greek mathematician and in-

ventor who first expressed the principles of hydrostatics and flotation. Elaborate water supply sys-

tems were built by the Romans during the period from the fourth century B.C. through the early

Christian period, and Sextus Julius Frontinus 1A.D. 40–1032, a Roman engineer, described these sys-

tems in detail. However, for the next 1000 years during the Middle Ages 1also referred to as the

Dark Ages2, there appears to have been little added to further understanding of fluid behavior.

As shown in Fig. 1.11, beginning with the Renaissance period 1about the fifteenth century2
a rather continuous series of contributions began that forms the basis of what we consider to be

the science of fluid mechanics. Leonardo da Vinci 11452–15192 described through sketches and

writings many different types of flow phenomena. The work of Galileo Galilei 11564–16422marked

the beginning of experimental mechanics. Following the early Renaissance period and during the

seventeenth and eighteenth centuries, numerous significant contributions were made. These include

theoretical and mathematical advances associated with the famous names of Newton, Bernoulli,

Euler, and d’Alembert. Experimental aspects of fluid mechanics were also advanced during this

period, but unfortunately the two different approaches, theoretical and experimental, developed

along separate paths. Hydrodynamics was the term associated with the theoretical or mathemati-

cal study of idealized, frictionless fluid behavior, with the term hydraulics being used to describe

the applied or experimental aspects of real fluid behavior, particularly the behavior of water. Fur-

ther contributions and refinements were made to both theoretical hydrodynamics and experimen-

tal hydraulics during the nineteenth century, with the general differential equations describing fluid

motions that are used in modern fluid mechanics being developed in this period. Experimental hy-

draulics became more of a science, and many of the results of experiments performed during the

nineteenth century are still used today.

At the beginning of the twentieth century, both the fields of theoretical hydrodynamics and

experimental hydraulics were highly developed, and attempts were being made to unify the two. In

1904 a classic paper was presented by a German professor, Ludwig Prandtl 11875–19532, who in-

troduced the concept of a “fluid boundary layer,” which laid the foundation for the unification of

Year

200019001800170016001500140013001200

Geoffrey Taylor

Theodor von Karman

Ludwig Prandtl

Osborne Reynolds

Ernst Mach

George Stokes

Leonardo da Vinci

Galileo Galilei

Isaac Newton

Daniel Bernoulli

Leonhard Euler

Louis Navier

Jean Poiseuille

F I G U R E  1.11 Time line of some contributors to the science of fluid mechanics.

Some of the earliest
writings that per-
tain to modern fluid
mechanics can be
traced back to the
ancient Greek civi-
lization and subse-
quent Roman 
Empire.
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the theoretical and experimental aspects of fluid mechanics. Prandtl’s idea was that for flow next to

a solid boundary a thin fluid layer 1boundary layer2 develops in which friction is very important, but

outside this layer the fluid behaves very much like a frictionless fluid. This relatively simple con-

cept provided the necessary impetus for the resolution of the conflict between the hydrodynamicists

and the hydraulicists. Prandtl is generally accepted as the founder of modern fluid mechanics.

Also, during the first decade of the twentieth century, powered flight was first successfully

demonstrated with the subsequent vastly increased interest in aerodynamics. Because the design of

aircraft required a degree of understanding of fluid flow and an ability to make accurate predictions

of the effect of air flow on bodies, the field of aerodynamics provided a great stimulus for the many

rapid developments in fluid mechanics that took place during the twentieth century.

As we proceed with our study of the fundamentals of fluid mechanics, we will continue to

note the contributions of many of the pioneers in the field. Table 1.9 provides a chronological list-

28 Chapter 1 ■ Introduction

ARCHIMEDES 1287–212 B.C.2
Established elementary principles of buoyancy and
flotation.

SEXTUS JULIUS FRONTINUS 1A.D. 40–1032
Wrote treatise on Roman methods of water
distribution.

LEONARDO da VINCI 11452–15192
Expressed elementary principle of continuity;
observed and sketched many basic flow phenomena;
suggested designs for hydraulic machinery.

GALILEO GALILEI 11564–16422
Indirectly stimulated experimental hydraulics;
revised Aristotelian concept of vacuum.

EVANGELISTA TORRICELLI 11608–16472
Related barometric height to weight of
atmosphere, and form of liquid jet to trajectory
of free fall.

BLAISE PASCAL 11623–16622
Finally clarified principles of barometer, hydraulic
press, and pressure transmissibility.

ISAAC NEWTON 11642–17272
Explored various aspects of fluid resistance—
inertial, viscous, and wave; discovered jet
contraction.

HENRI de PITOT 11695–17712
Constructed double-tube device to indicate water
velocity through differential head.

DANIEL BERNOULLI 11700–17822
Experimented and wrote on many phases of fluid
motion, coining name “hydrodynamics”; devised
manometry technique and adapted primitive energy
principle to explain velocity-head indication;
proposed jet propulsion.

LEONHARD EULER 11707–17832
First explained role of pressure in fluid flow;
formulated basic equations of motion and so-called
Bernoulli theorem; introduced concept of cavitation
and principle of centrifugal machinery.

JEAN le ROND d’ALEMBERT 11717–17832
Originated notion of velocity and acceleration com-
ponents, differential expression of continuity, and
paradox of zero resistance to steady nonuniform
motion.

ANTOINE CHEZY 11718–17982
Formulated similarity parameter for predicting flow
characteristics of one channel from measurements on
another.

GIOVANNI BATTISTA VENTURI 11746–18222
Performed tests on various forms of mouthpieces—
in particular, conical contractions and expansions.

LOUIS MARIE HENRI NAVIER 11785–18362
Extended equations of motion to include
“molecular” forces.

AUGUSTIN LOUIS de CAUCHY 11789–18572
Contributed to the general field of theoretical
hydrodynamics and to the study of wave motion.

GOTTHILF HEINRICH LUDWIG HAGEN
11797–18842
Conducted original studies of resistance in and
transition between laminar and turbulent flow.

JEAN LOUIS POISEUILLE 11799–18692
Performed meticulous tests on resistance of flow
through capillary tubes.

HENRI PHILIBERT GASPARD DARCY 11803–18582
Performed extensive tests on filtration and pipe
resistance; initiated open-channel studies carried out
by Bazin.

JULIUS WEISBACH 11806–18712
Incorporated hydraulics in treatise on engineering
mechanics, based on original experiments;
noteworthy for flow patterns, nondimensional
coefficients, weir, and resistance equations.

WILLIAM FROUDE 11810–18792
Developed many towing-tank techniques, in
particular the conversion of wave and boundary layer
resistance from model to prototype scale.

ROBERT MANNING 11816–18972
Proposed several formulas for open-channel
resistance.

GEORGE GABRIEL STOKES 11819–19032
Derived analytically various flow relationships
ranging from wave mechanics to viscous resistance—
particularly that for the settling of spheres.

ERNST MACH 11838–19162
One of the pioneers in the field of supersonic
aerodynamics.

TA B L E 1 . 9

Chronological Listing of Some Contributors to the Science of Fluid Mechanics Noted in the Texta

The rich history of
fluid mechanics is
fascinating, and
many of the contri-
butions of the
pioneers in the field
are noted in the
succeeding
chapters.

Leonardo da Vinci

Isaac Newton

Daniel Bernoulli

Ernst Mach
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ing of some of these contributors and reveals the long journey that makes up the history of fluid

mechanics. This list is certainly not comprehensive with regard to all of the past contributors, but

includes those who are mentioned in this text. As mention is made in succeeding chapters of the

various individuals listed in Table 1.9, a quick glance at this table will reveal where they fit into

the historical chain.

It is, of course, impossible to summarize the rich history of fluid mechanics in a few para-

graphs. Only a brief glimpse is provided, and we hope it will stir your interest. References 2 to 5

are good starting points for further study, and in particular Ref. 2 provides an excellent, broad, eas-

ily read history. Try it—you might even enjoy it!

OSBORNE REYNOLDS 11842–19122
Described original experiments in many fields—
cavitation, river model similarity, pipe resistance—
and devised two parameters for viscous flow; adapted
equations of motion of a viscous fluid to mean
conditions of turbulent flow.

JOHN WILLIAM STRUTT, LORD RAYLEIGH
11842–19192
Investigated hydrodynamics of bubble collapse,
wave motion, jet instability, laminar flow analogies,
and dynamic similarity.

VINCENZ STROUHAL 11850–19222
Investigated the phenomenon of “singing wires.”

EDGAR BUCKINGHAM 11867–19402
Stimulated interest in the United States in the use of
dimensional analysis.

MORITZ WEBER 11871–19512
Emphasized the use of the principles of similitude in
fluid flow studies and formulated a capillarity
similarity parameter.

LUDWIG PRANDTL 11875–19532
Introduced concept of the boundary layer and is
generally considered to be the father of present-day
fluid mechanics.

LEWIS FERRY MOODY 11880–19532
Provided many innovations in the field of hydraulic
machinery. Proposed a method of correlating pipe
resistance data which is widely used.

THEODOR VON KÁRMÁN 11881–19632
One of the recognized leaders of twentieth century
fluid mechanics. Provided major contributions to our
understanding of surface resistance, turbulence, and
wake phenomena.

PAUL RICHARD HEINRICH BLASIUS
11883–19702
One of Prandtl’s students who provided an analytical
solution to the boundary layer equations. Also,
demonstrated that pipe resistance was related to the
Reynolds number.

TA B L E 1 . 9 (continued)

aAdapted from Ref. 2; used by permission of the Iowa Institute of Hydraulic Research, The University of Iowa.

Osborne Reynolds

Ludwig Prandtl

1.11 Chapter Summary and Study Guide

This introductory chapter discussed several fundamental aspects of fluid mechanics. Methods for

describing fluid characteristics both quantitatively and qualitatively are considered. For a quanti-

tative description, units are required, and in this text, two systems of units are used: the British Grav-

itational (BG) system (pounds, slugs, feet, and seconds) and the International (SI) System (new-

tons, kilograms, meters, and seconds). For the qualitative description the concept of dimensions is

introduced in which basic dimensions such as length, L, time, T, and mass, M, are used to provide

a description of various quantities of interest. The use of dimensions is helpful in checking the gen-

erality of equations, as well as serving as the basis for the powerful tool of dimensional analysis

discussed in detail in Chapter 7.

Various important fluid properties are defined, including fluid density, specific weight, spe-

cific gravity, viscosity, bulk modulus, speed of sound, vapor pressure, and surface tension. The ideal

gas law is introduced to relate pressure, temperature, and density in common gases, along with a

brief discussion of the compression and expansion of gases. The distinction between absolute and

gage pressure is introduced and this important idea is explored more fully in Chapter 2.

The following checklist provides a study guide for this chapter. When your study of the en-

tire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type

in the text.
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determine the dimensions of common physical quantities.

determine whether an equation is a general or restricted homogeneous equation.

use both BG and SI systems of units.

calculate the density, specific weight, or specific gravity of a fluid from a knowledge of any

two of the three.

calculate the density, pressure, or temperature of an ideal gas (with a given gas constant)

from a knowledge of any two of the three.

relate the pressure and density of a gas as it is compressed or expanded using Eqs. 1.14

and 1.15.

use the concept of viscosity to calculate the shearing stress in simple fluid flows.

calculate the speed of sound in fluids using Eq. 1.19 for liquids and Eq. 1.20 for gases.

determine whether boiling or cavitation will occur in a liquid using the concept of vapor

pressure.

use the concept of surface tension to solve simple problems involving liquid–gas or liquid–

solid–gas interfaces.

Some of the important equations in this chapter are:

Specific weight (1.6)

Specific gravity (1.7)

Ideal gas law (1.8)

Newtonian fluid shear stress (1.9)

Bulk modulus (1.12)

Speed of sound in an ideal gas (1.20)

Capillary rise in a tube (1.22)h �
2s cos u

gR

c � 1kRT

Ev � �
dp

dV��V�

t � m 
du

dy

r �
p

RT

SG �
r

rH2O@4 °C

g � rg

30 Chapter 1 ■ Introduction

fluid 
units 
basic dimensions 
dimensionally 

homogeneous 
density 
specific weight 
specific gravity 
ideal gas law 
absolute pressure 
gage pressure
no-slip condition
rate of shearing strain
absolute viscosity
Newtonian fluid 
non-Newtonian fluid
kinematic viscosity
bulk modulus 
speed of sound 
vapor pressure 
surface tension
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Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson, et al.
(© 2009 John Wiley and Sons, Inc.).
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Problems

Note: Unless specific values of required fluid properties are
given in the statement of the problem, use the values found in
the tables on the inside of the front cover. Problems designated
with an are intended to be solved with the aid of a program-
mable calculator or a computer. Problems designated with a 
are “open-ended” problems and require critical thinking in
that to work them one must make various assumptions and
provide the necessary data. There is not a unique answer to
these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 1.2 Dimensions, Dimensional Homogeneity,
and Units

1.1 The force, F, of the wind blowing against a building is given by
where V is the wind speed, the density of the air,

A the cross-sectional area of the building, and CD is a constant termed
the drag coefficient. Determine the dimensions of the drag coefficient.

1.2 Verify the dimensions, in both the FLT and MLT systems, of
the following quantities which appear in Table 1.1: (a) volume,
(b) acceleration, (c) mass, (d) moment of inertia (area), and (e) work.

1.3 Determine the dimensions, in both the FLT system and the
MLT system, for (a) the product of force times acceleration, (b) the
product of force times velocity divided by area, and (c) momentum
divided by volume.

1.4 Verify the dimensions, in both the FLT system and the MLT
system, of the following quantities which appear in Table 1.1: (a)
frequency, (b) stress, (c) strain, (d) torque, and (e) work.

1.5 If u is a velocity, x a length, and t a time, what are the di-
mensions 1in the MLT system2 of (a) (b) (c)

1.6 If p is a pressure, V a velocity, and � a fluid density, what are
the dimensions (in the MLT system) of (a) p/�, (b) pV�, and
(c) ?

1.7 If V is a velocity, a length, and a fluid property (the kine-
matic viscosity) having dimensions of which of the fol-
lowing combinations are dimensionless: (a) (b) (c)
(d)

1.8 If V is a velocity, determine the dimensions of Z, a, and G,
which appear in the  dimensionally homogeneous equation

1.9 The volume rate of flow, Q, through a pipe containing a slowly
moving liquid is given by the equation

where R is the pipe radius, the pressure drop along the pipe, a
fluid property called viscosity , and the length of pipe.
What are the dimensions of the constant Would you classify
this equation as a general homogeneous equation? Explain.

1.10 According to information found in an old hydraulics book,
the energy loss per unit weight of fluid flowing through a nozzle
connected to a hose can be estimated by the formula

h � 10.04 to 0.092 1D�d24V 2�2g

p�8?
/1FL�2T2

m¢p

Q �
pR4¢p

8m/

V � Z1a � 12 � G

V�/n?
V 

2n,V/�n,V/n,
L2T  

�1,
n/

p�rV 2

� 10u�0t2 dx?
02u�0x0t, and0u�0t,

rF � CDrV
2 A�2,

1†2
1*2

where h is the energy loss per unit weight, D the hose diameter, d
the nozzle tip diameter, V the fluid velocity in the hose, and g the
acceleration of gravity. Do you think this equation is valid in any
system of units? Explain.

1.11 The pressure difference, across a partial blockage in an
artery 1called a stenosis2 is approximated by the equation

where V is the blood velocity, the blood viscosity 
the blood density the artery diameter, the area of the

unobstructed artery, and the area of the stenosis. Determine the di-
mensions of the constants and Would this equation be valid in
any system of units?

1.12 Assume that the speed of sound, c, in a fluid depends on an elas-
tic modulus, , with dimensions and the fluid density, in the
form If this is to be a dimensionally homogeneous
equation, what are the values for a and b? Is your result consistent
with the standard formula for the speed of sound? 1See Eq. 1.19.2

1.13 A formula to estimate the volume rate of flow, Q, flowing
over a dam of length, B, is given by the equation

where H is the depth of the water above the top of the dam 1called
the head2. This formula gives Q in ft3/s when B and H are in feet.
Is the constant, 3.09, dimensionless? Would this equation be valid
if units other than feet and seconds were used?

†1.14 Cite an example of a restricted homogeneous equation con-
tained in a technical article found in an engineering journal in your
field of interest. Define all terms in the equation, explain why it is
a restricted equation, and provide a complete journal citation 1ti-
tle, date, etc.2.

1.15 Make use of Table 1.3 to express the following quantities in
SI units: (a) (b) 4.81 slugs, (c) 3.02 lb, (d)
(e)

1.16 Make use of Table 1.4 to express the following quantities in
BG units: (a) 14.2 km, (b) (c)
(d) (e)

1.17 Express the following quantities in SI units: (a) 160 acres,
(b) 15 gallons (U.S.), (c) 240 miles, (d) 79.1 hp, (e)

1.18 For Table 1.3 verify the conversion relationships for: (a) area,
(b) density, (c) velocity, and (d) specific weight. Use the basic
conversion relationships: and

1.19 For Table 1.4 verify the conversion relationships for: (a) ac-
celeration, (b) density, (c) pressure, and (d) volume flowrate. Use
the basic conversion relationships: 1 m � 3.2808 ft; 1N � 0.22481
lb; and 1 kg � 0.068521 slug.

1.20 Water flows from a large drainage pipe at a rate of
What is this volume rate of flow in (a) ,

(b) liters min, and (c) ft ?

1.21 An important dimensionless parameter in certain types of
fluid flow problems is the Froude number defined as where
V is a velocity, g the acceleration of gravity, and � a length. Deter-
mine the value of the Froude number for 

and Recalculate the Froude number using
SI units for V, g, and Explain the significance of the results of
these calculations.

/.
/ � 2 ft.g � 32.2 ft�s2,

V � 10 ft�s,

V�1g/,

3�s�
m3�s1200 gal�min.

1 slug � 14.594 kg.
4.4482 N;1 ft � 0.3048 m; 1 lb �

60.3 °F.

5.67 mm�hr.0.0320 N # m�s,
1.61 kg�m3,8.14 N�m3,

0.0234 lb # s�ft2.
73.1 ft�s2,10.2 in.�min,

Q � 3.09 BH3�2

c � 1Ev2
a1r2b.

r,FL�2,Ev

Ku.Kv

A1

A01ML�32, Dr
1FL�2T 2,m

¢p � Kv 
mV

D
� Ku a

A0

A1

� 1b
2

rV 
2

¢p,
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†1.35 The presence of raindrops in the air during a heavy rain-
storm increases the average density of the air–water mixture. Esti-
mate by what percent the average air–water density is greater than
that of just still air. State all assumptions and show calculations.

Section 1.5 Ideal Gas Law 

1.36 Determine the mass of air in a 2 m3 tank if the air is at room
temperature, 20 °C, and the absolute pressure within the tank is
200 kPa (abs).

1.37 Nitrogen is compressed to a density of 4 kg/m3 under an ab-
solute pressure of 400 kPa. Determine the temperature in degrees
Celsius.

1.38 The temperature and pressure at the surface of Mars during
a Martian spring day were determined to be and 900 Pa,
respectively. (a) Determine the density of the Martian atmosphere
for these conditions if the gas constant for the Martian atmosphere
is assumed to be equivalent to that of carbon dioxide. (b) Compare
the answer from part (a) with the density of the earth’s atmosphere
during a spring day when the temperature is and the pres-
sure 101.6 kPa (abs).

1.39 A closed tank having a volume of is filled with 
0.30 lb of a gas. A pressure gage attached to the tank reads 12 psi
when the gas temperature is There is some question as to
whether the gas in the tank is oxygen or helium. Which do you
think it is? Explain how you arrived at your answer.

1.40 A compressed air tank contains 5 kg of air at a temperature
of 80 °C. A gage on the tank reads 300 kPa. Determine the vol-
ume of the tank.

1.41 A rigid tank contains air at a pressure of 90 psia and a tem-
perature of 60 �F. By how much will the pressure increase as the
temperature is increased to 110 �F?

1.42 The helium-filled blimp shown in Fig. P1.42 is used at var-
ious athletic events. Determine the number of pounds of helium
within it if its volume is 68,000 ft3 and the temperature and pres-
sure are 80 °F and 14.2 psia, respectively.

*1.43 Develop a computer program for calculating the density
of an ideal gas when the gas pressure in pascals 1abs2, the tem-
perature in degrees Celsius, and the gas constant in are
specified. Plot the density of helium as a function of temperature
from 0 °C to 200 °C and pressures of 50, 100, 150, and 200 kPa
(abs).

Section 1.6 Viscosity (Also see Lab Problems 1.104 
and 1.105.)

1.44 Obtain a photograph/image of a situation in which the vis-
cosity of a fluid is important. Print this photo and write a brief
paragraph that describes the situation involved.

1.45 For flowing water, what is the magnitude of the velocity gra-
dient needed to produce a shear stress of 1.0 N/m2?

J�kg # K

80 °F.

2 ft3

18 °C

�50 °C

Section 1.4 Measures of Fluid Mass and Weight

1.22 Obtain a photograph/image of a situation in which the den-
sity or specific weight of a fluid is important. Print this photo and
write a brief paragraph that describes the situation involved.

1.23 A tank contains 500 kg of a liquid whose specific gravity is
2. Determine the volume of the liquid in the tank.

1.24 Clouds can weigh thousands of pounds due to their liquid
water content. Often this content is measured in grams per cubic
meter (g/m3). Assume that a cumulus cloud occupies a volume of
one cubic kilometer, and its liquid water content is 0.2 g/m3. (a)
What is the volume of this cloud in cubic miles? (b) How much
does the water in the cloud weigh in pounds?

1.25 A tank of oil has a mass of 25 slugs. (a) Determine its weight
in pounds and in newtons at the earth’s surface. (b) What would
be its mass 1in slugs2 and its weight 1in pounds2 if located on the
moon’s surface where the gravitational attraction is approximately
one-sixth that at the earth’s surface?

1.26 A certain object weighs 300 N at the earth’s surface. Deter-
mine the mass of the object 1in kilograms2 and its weight 1in new-
tons2 when located on a planet with an acceleration of gravity equal
to 

1.27 The density of a certain type of jet fuel is 775 kg/m3. De-
termine its specific gravity and specific weight.

1.28 A hydrometer is used to measure the specific gravity of liq-
uids. (See Video V2.8.) For a certain liquid, a hydrometer read-
ing indicates a specific gravity of 1.15. What is the liquid’s den-
sity and specific weight? Express your answer in SI units.

1.29 An open, rigid-walled, cylindrical tank contains of wa-
ter at Over a 24-hour period of time the water temperature
varies from 40 to Make use of the data in Appendix B to
determine how much the volume of water will change. For a tank
diameter of 2 ft, would the corresponding change in water depth
be very noticeable? Explain.

†1.30 Estimate the number of pounds of mercury it would take to
fill your bathtub. List all assumptions and show all calculations.

1.31 A mountain climber’s oxygen tank contains 1 lb of oxygen
when he begins his trip at sea level where the acceleration of grav-
ity is 32.174 ft/s2. What is the weight of the oxygen in the tank
when he reaches the top of Mt. Everest where the acceleration of
gravity is 32.082 ft/s2? Assume that no oxygen has been removed
from the tank; it will be used on the descent portion of the climb.

1.32 The information on a can of pop indicates that the can con-
tains 355 mL. The mass of a full can of pop is 0.369 kg while an
empty can weighs 0.153 N. Determine the specific weight, den-
sity, and specific gravity of the pop and compare your results with
the corresponding values for water at Express your results
in SI units.

*1.33 The variation in the density of water, with temperature,
T, in the range is given in the following table.

Density 1kg m32 998.2 997.1 995.7 994.1 992.2 990.2 988.1

Temperature 20 25 30 35 40 45 50

Use these data to determine an empirical equation of the form
which can be used to predict the density over

the range indicated. Compare the predicted values with the data
given. What is the density of water at 

1.34 If 1 cup of cream having a density of 1005 kg/m3 is turned
into 3 cups of whipped cream, determine the specific gravity and
specific weight of the whipped cream.

42.1 °C?

r � c1 � c2T � c3T 
2

1°C2

�

20 °C � T � 50 °C,
r,

20 °C.

90 °F.
40 °F.

4 ft3

4.0 ft�s2.
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Problems 33

1.46 Make use of the data in Appendix B to determine the dy-
namic viscosity of glycerin at Express your answer in both
SI and BG units.

1.47 One type of capillary-tube viscometer is shown in Video
V1.5 and in Fig. P1.47. For this device the liquid to be tested is
drawn into the tube to a level above the top etched line. The time
is then obtained for the liquid to drain to the bottom etched line.
The kinematic viscosity, �, in m2/s is then obtained from the equa-
tion where K is a constant, R is the radius of the capil-
lary tube in mm, and t is the drain time in seconds. When glyc-
erin at 20 �C is used as a calibration fluid in a particular viscometer,
the drain time is 1430 s. When a liquid having a density of 970
kg/m3 is tested in the same viscometer the drain time is 900 s.
What is the dynamic viscosity of this liquid?

1.48 The viscosity of a soft drink was determined by using a cap-
illary tube viscometer similar to that shown in Fig. P1.47 and Video
V1.5. For this device the kinematic viscosity, �, is directly propor-
tional to the time, t, that it takes for a given amount of liquid to
flow through a small capillary tube. That is, . The following
data were obtained from regular pop and diet pop. The corre-
sponding measured specific gravities are also given. Based on these
data, by what percent is the absolute viscosity, �, of regular pop
greater than that of diet pop?

Regular pop Diet pop

t(s) 377.8 300.3

SG 1.044 1.003

1.49 Determine the ratio of the dynamic viscosity of water to air at
a temperature of 60 °C. Compare this value with the corresponding
ratio of kinematic viscosities. Assume the air is at standard atmos-
pheric pressure.

1.50 The viscosity of a certain fluid is poise. Determine
its viscosity in both SI and BG units.

1.51 The kinematic viscosity of oxygen at and a pressure
of 150 kPa 1abs2 is 0.104 stokes. Determine the dynamic viscosity
of oxygen at this temperature and pressure.

*1.52 Fluids for which the shearing stress, �, is not linearly
related to the rate of shearing strain, ��, are designated as non-
Newtonian fluids. Such fluids are commonplace and can exhibit
unusual behavior, as shown in Video V1.6. Some experimental data
obtained for a particular non-Newtonian fluid at 80 �F are shown
below.

20 °C

5 � 10�4

n � Kt

n � KR4t

85 °F.
� (lb/ft2) 0 2.11 7.82 18.5 31.7

�� (s�1) 0 50 100 150 200

Plot these data and fit a second-order polynomial to the data using
a suitable graphing program. What is the apparent viscosity of this
fluid when the rate of shearing strain is 70 ? Is this apparent vis-
cosity larger or smaller than that for water at the same tempera-
ture?

1.53 Water flows near a flat surface and some measurements of the
water velocity, u, parallel to the surface, at different heights, y, above
the surface are obtained. At the surface . After an analysis of
the data, the lab technician reports that the velocity distribution in
the range is given by the equation

with u in ft/s when y is in ft. (a) Do you think that this equation
would be valid in any system of units? Explain. (b) Do you think
this equation is correct? Explain. You may want to look at Video
1.4 to help you arrive at your answer.

1.54 Calculate the Reynolds numbers for the flow of water and
for air through a 4-mm-diameter tube, if the mean velocity is 3 m s
and the temperature is in both cases 1see Example 1.42. As-
sume the air is at standard atmospheric pressure.

1.55 For air at standard atmospheric pressure the values of the
constants that appear in the Sutherland equation 1Eq. 1.102 are

and Use these
values to predict the viscosity of air at and and com-
pare with values given in Table B.4 in Appendix B.

*1.56 Use the values of viscosity of air given in Table B.4 at tem-
peratures of 0, 20, 40, 60, 80, and to determine the con-
stants C and S which appear in the Sutherland equation 1Eq. 1.102.
Compare your results with the values given in Problem 1.55. 1Hint:
Rewrite the equation in the form

and plot versus T. From the slope and intercept of this curve,
C and S can be obtained.2

1.57 The viscosity of a fluid plays a very important role in deter-
mining how a fluid flows. (See Video V1.3.) The value of the vis-
cosity depends not only on the specific fluid but also on the fluid
temperature. Some experiments show that when a liquid, under the
action of a constant driving pressure, is forced with a low veloc-
ity, V, through a small horizontal tube, the velocity is given by the
equation . In this equation K is a constant for a given tube
and pressure, and � is the dynamic viscosity. For a particular liq-
uid of interest, the viscosity is given by Andrade’s equation (Eq.
1.11) with and . By what per-
centage will the velocity increase as the liquid temperature is in-
creased from 40 �F to 100 �F? Assume all other factors remain con-
stant.

*1.58 Use the value of the viscosity of water given in Table B.2
at temperatures of 0, 20, 40, 60, 80, and to determine the
constants D and B which appear in Andrade’s equation 1Eq. 1.112.
Calculate the value of the viscosity at and compare with
the value given in Table B.2. 1Hint: Rewrite the equation in the
form

and plot ln versus From the slope and intercept of this curve,
B and D can be obtained. If a nonlinear curve-fitting program is

1�T.m

ln m � 1B2 
1

T
� ln D

50 °C

100 °C

B � 4000 °RD � 5 � 10�7 lb # s�ft2

V � K�m

T 
3�  2�m

T 
3�  2

m
� a

1

C
b T �

S

C

100 °C

90 °C10 °C
S � 110.4 K.C � 1.458 � 10�6 kg� 1m # s # K1�22

30 °C
�

u � 0.81 � 9.2y � 4.1 � 103y 3

0 6 y 6 0.1 ft

y � 0

s�1

Etched lines

Glass
strengthening

bridge

Capillary
tube
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available the constants can be obtained directly from Eq. 1.11 with-
out rewriting the equation.2

1.59 For a parallel plate arrangement of the type shown in Fig.
1.5 it is found that when the distance between plates is 2 mm, a
shearing stress of 150 Pa develops at the upper plate when it is
pulled at a velocity of 1 m/s. Determine the viscosity of the fluid
between the plates. Express your answer in SI units.

1.60 Two flat plates are oriented parallel above a fixed lower plate
as shown in Fig. P1.60. The top plate, located a distance b above
the fixed plate, is pulled along with speed V. The other thin plate
is located a distance cb, where 0 	 c 	 1, above the fixed plate.
This plate moves with speed V1, which is determined by the vis-
cous shear forces imposed on it by the fluids on its top and bot-
tom. The fluid on the top is twice as viscous as that on the bot-
tom. Plot the ratio V1/V as a function of c for 0 	 c 	 1.

1.61 There are many fluids that exhibit non-Newtonian behavior
(see, for example, Video V1.6). For a given fluid the distinction
between Newtonian and non-Newtonian behavior is usually based
on measurements of shear stress and rate of shearing strain. As-
sume that the viscosity of blood is to be determined by measure-
ments of shear stress, �, and rate of shearing strain, du/dy, ob-
tained from a small blood sample tested in a suitable viscometer.
Based on the data given below determine if the blood is a New-
tonian or non-Newtonian fluid. Explain how you arrived at your
answer.

�(N/m2) 0.04 0.06 0.12 0.18 0.30 0.52 1.12 2.10

du/dy ( ) 2.25 4.50 11.25 22.5 45.0 90.0 225 450

1.62 The sled shown in Fig. P1.62 slides along on a thin horizontal
layer of water between the ice and the runners. The horizontal force
that the water puts on the runners is equal to 1.2 lb when the sled’s
speed is 50 ft/s. The total area of both runners in contact with the wa-
ter is , and the viscosity of the water is 
Determine the thickness of the water layer under the runners. Assume
a linear velocity distribution in the water layer.

1.63 A 25-mm-diameter shaft is pulled through a cylindrical bear-
ing as shown in Fig. P1.63. The lubricant that fills the 
0.3-mm gap between the shaft and bearing is an oil having a kine-
matic viscosity of and a specific gravity of 0.91.
Determine the force P required to pull the shaft at a velocity of 3
m/s. Assume the velocity distribution in the gap is linear.

8.0 � 10�4 m2�s

3.5 � 10�5 lb # s�ft2.0.08 ft2

s�1

1.64 A 10-kg block slides down a smooth inclined surface as
shown in Fig. P1.64. Determine the terminal velocity of the
block if the 0.1-mm gap between the block and the surface con-
tains SAE 30 oil at 60 °F. Assume the velocity distribution in
the gap is linear, and the area of the block in contact with the
oil is 0.1 m2.

1.65 A layer of water flows down an inclined fixed surface with
the velocity profile shown in Fig. P1.65. Determine the magnitude
and direction of the shearing stress that the water exerts on the fixed
surface for .

*1.66 Standard air flows past a flat surface and velocity measure-
ments near the surface indicate the following distribution:

y 1ft2 0.005 0.01 0.02 0.04 0.06 0.08

u 0.74 1.51 3.03 6.37 10.21 14.43

The coordinate y is measured normal to the surface and u is the
velocity parallel to the surface. (a) Assume the velocity distribu-
tion is of the form

and use a standard curve-fitting technique to determine the constants
and (b) Make use of the results of part 1a2 to determine the

magnitude of the shearing stress at the wall and at 

1.67 A new computer drive is proposed to have a disc, as shown
in Fig. P1.67. The disc is to rotate at 10,000 rpm, and the reader
head is to be positioned 0.0005 in. above the surface of the disc.
Estimate the shearing force on the reader head as result of the air
between the disc and the head.

y � 0.05 ft.1y � 02
C2.C1

u � C1y � C2y3

1ft�s2

U � 2 m�s and h � 0.1 m
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F I G U R E  P1.67

10,000 rpm

0.0005 in.

Rotating disc
2 in.

0.2-in.dia.Stationary reader head

1.68 The space between two 6-in.-long concentric cylinders is
filled with glycerin The inner
cylinder has a radius of 3 in. and the gap width between cylinders
is 0.1 in. Determine the torque and the power required to rotate
the inner cylinder at The outer cylinder is fixed. As-
sume the velocity distribution in the gap to be linear.

1.69 A pivot bearing used on the shaft of an electrical instrument
is shown in Fig. P1.69. An oil with a viscosity of � � 0.010 lb.s/ft2

fills the 0.001-in. gap between the rotating shaft and the station-
ary base. Determine the frictional torque on the shaft when it ro-
tates at 5,000 rpm.

1.70 The viscosity of liquids can be measured through the use of a
rotating cylinder viscometer of the type illustrated in Fig. P1.70. In
this device the outer cylinder is fixed and the inner cylinder is rotated
with an angular velocity, The torque required to develop is
measured and the viscosity is calculated from these two measurements.
(a) Develop an equation relating , and Neglect
end effects and assume the velocity distribution in the gap is lin-
ear. (b) The following torque-angular velocity data were obtained
with a rotating cylinder viscometer of the type discussed in part (a).

Torque 13.1 26.0 39.5 52.7 64.9 78.6

Angular
velocity 1.0 2.0 3.0 4.0 5.0 6.01rad�s2

1ft # lb2

Ri.m, v, t, /, Ro

�tv.

180 rev�min.

1viscosity � 8.5 � 10�3 lb # s�ft22.

For this viscometer and 
Make use of these data and a standard curve-fitting program to de-
termine the viscosity of the liquid contained in the viscometer.

1.71 A 12-in.-diameter circular plate is placed over a fixed bot-
tom plate with a 0.1-in. gap between the two plates filled with glyc-
erin as shown in Fig. P1.71. Determine the torque required to ro-
tate the circular plate slowly at 2 rpm. Assume that the velocity
distribution in the gap is linear and that the shear stress on the edge
of the rotating plate is negligible.

†1.72 Vehicle shock absorbers damp out oscillations caused by
road roughness. Describe how a temperature change may affect the
operation of a shock absorber.

1.73 Some measurements on a blood sample at 
indicate a shearing stress of 0.52 for a corresponding rate
of shearing strain of . Determine the apparent viscosity
of the blood and compare it with the viscosity of water at the
same temperature.

Section 1.7 Compressibility of Fluids

1.74 Obtain a photograph/image of a situation in which the com-
pressibility of a fluid is important. Print this photo and write a brief
paragraph that describes the situation involved.

1.75 A sound wave is observed to travel through a liquid with a
speed of 1500 m/s. The specific gravity of the liquid is 1.5. De-
termine the bulk modulus for this fluid.

1.76 Estimate the increase in pressure (in psi) required to decrease
a unit volume of mercury by 0.1%.

1.77 A volume of water is contained in a rigid container. Es-
timate the change in the volume of the water when a piston applies
a pressure of 35 MPa.

1.78 Determine the speed of sound at 20 °C in (a) air, (b) helium,
and (c) natural gas (methane). Express your answer in m/s.

1.79 Air is enclosed by a rigid cylinder containing a piston. A
pressure gage attached to the cylinder indicates an initial reading
of 25 psi. Determine the reading on the gage when the piston has
compressed the air to one-third its original volume. Assume the

1-m3

200 s�1
N�m2

37 °C 198.6 °F2

/ � 5.00 in.Ri � 2.45 in.,Ro � 2.50 in.,

F I G U R E  P1.69

0.2 in.

0.001 in.

5,000 rpm

30°

 = 0.010 lb • s/ft2μ
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Liquid

Fixed
outer

cylinder
�

ω

�

Rotating
inner

cylinder

Ri

Ro

Rotating plate

0.1 in. gap

Torque
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compression process to be isothermal and the local atmospheric
pressure to be 14.7 psi.

1.80 Repeat Problem 1.79 if the compression process takes place
without friction and without heat transfer (isentropic process).

1.81 Carbon dioxide at and 300 kPa absolute pressure ex-
pands isothermally to an absolute pressure of 165 kPa. Determine
the final density of the gas.

1.82 Natural gas at and standard atmospheric pressure of 14.7
psi (abs) is compressed isentropically to a new absolute pressure of
70 psi. Determine the final density and temperature of the gas.

1.83 Compare the isentropic bulk modulus of air at 101 kPa 1abs2
with that of water at the same pressure.

*1.84 Develop a computer program for calculating the final gage
pressure of gas when the initial gage pressure, initial and final vol-
umes, atmospheric pressure, and the type of process 1isothermal or
isentropic2 are specified. Use BG units. Check your program
against the results obtained for Problem 1.79.

1.85 An important dimensionless parameter concerned with very
high-speed flow is the Mach number, defined as V/c, where V is the
speed of the object such as an airplane or projectile, and c is the
speed of sound in the fluid surrounding the object. For a projectile
traveling at 800 mph through air at 50 �F and standard atmospheric
pressure, what is the value of the Mach number?

1.86 Jet airliners typically fly at altitudes between approximately 0
to 40,000 ft. Make use of the data in Appendix C to show on a graph
how the speed of sound varies over this range.

1.87 (See Fluids in the News article titled “This water jet is a
blast,” Section 1.7.1) By what percent is the volume of water de-
creased if its pressure is increased to an equivalent to 3000 at-
mospheres (44,100 psi)?

Section 1.8 Vapor Pressure
1.88 During a mountain climbing trip it is observed that the wa-
ter used to cook a meal boils at 90 °C rather than the standard 100
°C at sea level. At what altitude are the climbers preparing their
meal? (See Tables B.2 and C.2 for data needed to solve this prob-
lem.)

1.89 When a fluid flows through a sharp bend, low pressures may
develop in localized regions of the bend. Estimate the minimum
absolute pressure 1in psi2 that can develop without causing cavita-
tion if the fluid is water at 

1.90 Estimate the minimum absolute pressure 1in pascals2 that can
be developed at the inlet of a pump to avoid cavitation if the fluid
is carbon tetrachloride at 

1.91 When water at flows through a converging section of
pipe, the pressure decreases in the direction of flow. Estimate the
minimum absolute pressure that can develop without causing cav-
itation. Express your answer in both BG and SI units.

1.92 At what atmospheric pressure will water boil at Ex-
press your answer in both SI and BG units.

Section 1.9 Surface Tension

1.93 Obtain a photograph/image of a situation in which the sur-
face tension of a fluid is important. Print this photo and write a
brief paragraph that describes the situation involved.

1.94 When a 2-mm-diameter tube is inserted into a liquid in an
open tank, the liquid is observed to rise 10 mm above the free sur-
face of the liquid. The contact angle between the liquid and the tube

35 °C?

70 °C

20 °C.

160 °F.

70 °F

30 °C

is zero, and the specific weight of the liquid is 1.2 � 104 N/m3.
Determine the value of the surface tension for this liquid.

1.95 Small droplets of carbon tetrachloride at are formed
with a spray nozzle. If the average diameter of the droplets is

, what is the difference in pressure between the inside and
outside of the droplets?

1.96 A 12-mm-diameter jet of water discharges vertically into the
atmosphere. Due to surface tension the pressure inside the jet will
be slightly higher than the surrounding atmospheric pressure. De-
termine this difference in pressure.

1.97 As shown in Video V1.9, surface tension forces can be strong
enough to allow a double-edge steel razor blade to “float” on wa-
ter, but a single-edge blade will sink. Assume that the surface ten-
sion forces act at an angle � relative to the water surface as shown
in Fig. P1.97. (a) The mass of the double-edge blade is

, and the total length of its sides is 206 mm. De-
termine the value of � required to maintain equilibrium between
the blade weight and the resultant surface tension force. (b) The
mass of the single-edge blade is , and the total
length of its sides is 154 mm. Explain why this blade sinks. Sup-
port your answer with the necessary calculations.

1.98 To measure the water depth in a large open tank with opaque
walls, an open vertical glass tube is attached to the side of the
tank. The height of the water column in the tube is then used as
a measure of the depth of water in the tank. (a) For a true water
depth in the tank of 3 ft, make use of Eq. 1.22 (with ) to
determine the percent error due to capillarity as the diameter of
the glass tube is changed. Assume a water temperature of 80 �F.
Show your results on a graph of percent error versus tube diam-
eter, D, in the range (b) If you want the
error to be less than 1%, what is the smallest tube diameter al-
lowed?

1.99 Under the right conditions, it is possible, due to surface ten-
sion, to have metal objects float on water. (See Video V1.9.) Con-
sider placing a short length of a small diameter steel (sp. wt. � 490
lb/ft3) rod on a surface of water. What is the maximum diameter
that the rod can have before it will sink? Assume that the surface
tension forces act vertically upward. Note: A standard paper clip
has a diameter of 0.036 in. Partially unfold a paper clip and see
if you can get it to float on water. Do the results of this experi-
ment support your analysis?

1.100 An open, clean glass tube, having a diameter of 3 mm, is
inserted vertically into a dish of mercury at How far will
the column of mercury in the tube be depressed?

1.101 An open, clean glass tube is inserted vertically into
a pan of water. What tube diameter is needed if the water level in
the tube is to rise one tube diameter (due to surface tension)?

1.102 Determine the height that water at 60 °F will rise due to
capillary action in a clean, -in.-diameter tube. What will be the
height if the diameter is reduced to 0.01 in.?

1.103 (See Fluids in the News article titled “Walking on water,”
Section 1.9.) (a) The water strider bug shown in Fig. P1.103 is

1
4

1u � 0°2

20 °C.

0.1 in. 6 D 6 1.0 in.

u � 0°

2.61 � 10�3 kg

0.64 � 10�3 kg

200 mm

68 °F
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Surface tension
force

Blade θ
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Problems 37

supported on the surface of a pond by surface tension acting along
the interface between the water and the bug’s legs. Determine the
minimum length of this interface needed to support the bug. As-
sume the bug weighs and the surface tension force acts
vertically upwards. (b) Repeat part (a) if surface tension were to
support a person weighing 750 N.

■ Lab Problems

1.104 This problem involves the use of a Stormer viscometer
to determine whether a fluid is a Newtonian or a non-Newton-
ian fluid. To proceed with this problem, go to Appendix H,
which is located on the book’s web site, www.wiley.com/col-
lege/munson.

1.105 This problem involves the use of a capillary tube viscometer to
determine the kinematic viscosity of water as a function of tempera-
ture. To proceed with this problem, go to Appendix H, which is located
on the book’s web site, www.wiley.com/college/munson.

10�4 N

■ Life Long Learning Problems

1.106 Although there are numerous non-Newtonian fluids that oc-
cur naturally (quick sand and blood among them), with the advent
of modern chemistry and chemical processing, many new, man-
made non-Newtonian fluids are now available for a variety of novel
application. Obtain information about the discovery and use of
newly developed non-Newtonian fluids. Summarize your findings
in a brief report.

1.107 For years, lubricating oils and greases obtained by refining
crude oil have been used to lubricate moving parts in a wide vari-
ety of machines, motors, and engines. With the increasing cost of
crude oil and the potential for the reduced availability of it, the
need for nonpetroleum based lubricants has increased considerably.
Obtain information about non-petroleum based lubricants. Sum-
marize your findings in a brief report.

1.108 It is predicted that nano-technology and the use of nano-sized
objects will allow many processes, procedures, and products that, as
of now, are difficult for us to comprehend. Among new nano-
technology areas is that of nano-scale fluid mechanics. Fluid behav-
ior at the nano-scale can be entirely different than that for the usual
everyday flows with which we are familiar. Obtain information about
various aspects of nano-fluid mechanics. Summarize your findings in
a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam question for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.

F I G U R E  P1.103
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Fluid StaticsFluid Statics22

38

CHAPTER OPENING PHOTO: Floating iceberg: An iceberg is a large piece of fresh water ice that originated as

snow in a glacier or ice shelf and then broke off to float in the ocean. Although the fresh water ice is lighter

than the salt water in the ocean, the difference in densities is relatively small. Hence, only about one ninth of

the volume of an iceberg protrudes above the ocean’s surface, so that what we see floating is literally “just the

tip of the iceberg.” (Photograph courtesy of Corbis Digital Stock/Corbis Images)

In this chapter we will consider an important class of problems in which the fluid is either at rest

or moving in such a manner that there is no relative motion between adjacent particles. In both

instances there will be no shearing stresses in the fluid, and the only forces that develop on the sur-

faces of the particles will be due to the pressure. Thus, our principal concern is to investigate pres-

sure and its variation throughout a fluid and the effect of pressure on submerged surfaces. The

absence of shearing stresses greatly simplifies the analysis and, as we will see, allows us to obtain

relatively simple solutions to many important practical problems.

2.1 Pressure at a Point

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ determine the pressure at various locations in a fluid at rest.

■ explain the concept of manometers and apply appropriate equations to

determine pressures.

■ calculate the hydrostatic pressure force on a plane or curved submerged surface.

■ calculate the buoyant force and discuss the stability of floating or submerged

objects.

As we briefly discussed in Chapter 1, the term pressure is used to indicate the normal force per

unit area at a given point acting on a given plane within the fluid mass of interest. A question that

immediately arises is how the pressure at a point varies with the orientation of the plane passing
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through the point. To answer this question, consider the free-body diagram, illustrated in Fig. 2.1,

that was obtained by removing a small triangular wedge of fluid from some arbitrary location

within a fluid mass. Since we are considering the situation in which there are no shearing stresses,

the only external forces acting on the wedge are due to the pressure and the weight. For simplic-

ity the forces in the x direction are not shown, and the z axis is taken as the vertical axis so the

weight acts in the negative z direction. Although we are primarily interested in fluids at rest, to

make the analysis as general as possible, we will allow the fluid element to have accelerated mo-

tion. The assumption of zero shearing stresses will still be valid so long as the fluid element moves

as a rigid body; that is, there is no relative motion between adjacent elements.

The equations of motion 1Newton’s second law, 2 in the y and z directions are, re-

spectively,

where and are the average pressures on the faces, and are the fluid specific weight

and density, respectively, and the accelerations. Note that a pressure must be multiplied

by an appropriate area to obtain the force generated by the pressure. It follows from the geom-

etry that

so that the equations of motion can be rewritten as

Since we are really interested in what is happening at a point, we take the limit as and 

approach zero 1while maintaining the angle 2, and it follows that

or The angle was arbitrarily chosen so we can conclude that the pressure at a point
in a fluid at rest, or in motion, is independent of direction as long as there are no shearing stresses
present. This important result is known as Pascal’s law, named in honor of Blaise Pascal 11623–

16622, a French mathematician who made important contributions in the field of hydrostatics. Thus,

as shown by the photograph in the margin, at the junction of the side and bottom of the beaker, the

pressure is the same on the side as it is on the bottom. In Chapter 6 it will be shown that for mov-

ing fluids in which there is relative motion between particles 1so that shearing stresses develop2, the

normal stress at a point, which corresponds to pressure in fluids at rest, is not necessarily the same

ups � py � pz.

py � ps  pz � ps

u

dzdx, dy,

 pz � ps � 1raz � g2 
dz

2

 py � ps � ray 
dy

2

dy � ds cos u  dz � ds sin u

ay, az

rgpzps, py,

 a Fz � pz dx dy � ps dx ds cos u � g 
dx dy dz

2
 � r 

dx dy dz

2
 az

 a Fy � py dx dz � ps dx ds sin u � r 
dx dy dz

2
 ay

F � ma

2.1 Pressure at a Point 39

The pressure at a
point in a fluid at
rest is independent
of direction.

py � pz

pz

py

F I G U R E  2.1 Forces on an arbitrary wedge-shaped element of fluid.

δ
θ

θ
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40 Chapter 2 ■ Fluid Statics

The pressure may
vary across a fluid
particle.

Although we have answered the question of how the pressure at a point varies with direction, we

are now faced with an equally important question—how does the pressure in a fluid in which there

are no shearing stresses vary from point to point? To answer this question consider a small rectan-

gular element of fluid removed from some arbitrary position within the mass of fluid of interest

as illustrated in Fig. 2.2. There are two types of forces acting on this element: surface forces due

to the pressure, and a body force equal to the weight of the element. Other possible types of body

forces, such as those due to magnetic fields, will not be considered in this text.

If we let the pressure at the center of the element be designated as p, then the average pres-

sure on the various faces can be expressed in terms of p and its derivatives, as shown in Fig. 2.2.

We are actually using a Taylor series expansion of the pressure at the element center to approxi-

mate the pressures a short distance away and neglecting higher order terms that will vanish as we

let and approach zero. This is illustrated by the figure in the margin. For simplicity the

surface forces in the x direction are not shown. The resultant surface force in the y direction is

or

Similarly, for the x and z directions the resultant surface forces are

The resultant surface force acting on the element can be expressed in vector form as

dFs � dFxî � dFy ĵ � dFzk̂

dFx � �
0p

0x
 dx dy dz  dFz � �

0p

0z
 dx dy dz

dFy � �
0p

0y
 dx dy dz

dFy � ap �
0p

0y
 

dy

2
b dx dz � ap �

0p

0y
 

dy

2
b dx dz

dzdx, dy,

2.2 Basic Equation for Pressure Field

p

y

∂ δ
∂y

p
––– –––

2
y

δ
–––
2
y

F I G U R E  2.2 Surface and body forces acting on small fluid
element.

k 

i
j

z

∂ δ δ δ

δ

xδ

yδ

∂

xγ δ yδ zδ

^

^

^

x

y

z
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∂ δ δ δ
∂( ) x yp –
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p

––– –––
2
z

∂ δ δ δ
∂( ) x zp –

y
p

––– –––
2
y

in all directions. In such cases the pressure is defined as the average of any three mutually per-

pendicular normal stresses at the point.
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2.3 Pressure Variation in a Fluid at Rest 41

The resultant sur-
face force acting on
a small fluid ele-
ment depends only
on the pressure
gradient if there are
no shearing
stresses present.

For a fluid at rest and Eq. 2.2 reduces to

or in component form

(2.3)

These equations show that the pressure does not depend on x or y. Thus, as we move from

point to point in a horizontal plane 1any plane parallel to the x–y plane2, the pressure does not

0p

0x
� 0  

0p

0y
� 0  

0p

0z
� �g

§p � gk̂ � 0

a � 0

2.3 Pressure Variation in a Fluid at Rest

or

(2.1)

where and are the unit vectors along the coordinate axes shown in Fig. 2.2. The group

of terms in parentheses in Eq. 2.1 represents in vector form the pressure gradient and can be

written as

where

and the symbol is the gradient or “del” vector operator. Thus, the resultant surface force per

unit volume can be expressed as

Since the z axis is vertical, the weight of the element is

where the negative sign indicates that the force due to the weight is downward 1in the negative z
direction2. Newton’s second law, applied to the fluid element, can be expressed as

where represents the resultant force acting on the element, a is the acceleration of the ele-

ment, and is the element mass, which can be written as It follows that

or

and, therefore,

(2.2)

Equation 2.2 is the general equation of motion for a fluid in which there are no shearing stresses.

We will use this equation in Section 2.12 when we consider the pressure distribution in a mov-

ing fluid. For the present, however, we will restrict our attention to the special case of a fluid

at rest.

�§p � gk̂ � ra

�§p dx dy dz � g dx dy dz k̂ � r dx dy dz a

a dF � dFs � dwk̂ � dm a

r dx dy dz.dm
� dF

a dF � dm a

�dwk̂ � �g dx dy dz k̂

dFs

dx dy dz
� �§p

§

§ 1 2 �
0 1 2
0x

 î �
0 1 2
0y

 ĵ �
0 1 2
0z

 k̂

0p

0x
 î �

0p

0y
 ĵ �

0p

0z
 k̂ � §p

k̂î, ĵ,

dFs � �a
0p

0x
 î �

0p

0y
 ĵ �

0p

0z
 k̂b dx dy dz
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change. Since p depends only on z, the last of Eqs. 2.3 can be written as the ordinary differ-

ential equation

(2.4)

Equation 2.4 is the fundamental equation for fluids at rest and can be used to determine how

pressure changes with elevation. This equation and the figure in the margin indicate that the pres-

sure gradient in the vertical direction is negative; that is, the pressure decreases as we move up-

ward in a fluid at rest. There is no requirement that be a constant. Thus, it is valid for fluids with

constant specific weight, such as liquids, as well as fluids whose specific weight may vary with

elevation, such as air or other gases. However, to proceed with the integration of Eq. 2.4 it is nec-

essary to stipulate how the specific weight varies with z.

If the fluid is flowing (i.e., not at rest with a � 0), then the pressure variation is much more

complex than that given by Eq. 2.4. For example, the pressure distribution on your car as it is dri-

ven along the road varies in a complex manner with x, y, and z. This idea is covered in detail in

Chapters 3, 6, and 9.

2.3.1 Incompressible Fluid

Since the specific weight is equal to the product of fluid density and acceleration of gravity

changes in are caused either by a change in or g. For most engineering applications

the variation in g is negligible, so our main concern is with the possible variation in the fluid den-

sity. In general, a fluid with constant density is called an incompressible fluid. For liquids the vari-

ation in density is usually negligible, even over large vertical distances, so that the assumption of

constant specific weight when dealing with liquids is a good one. For this instance, Eq. 2.4 can be

directly integrated

to yield

or

(2.5)

where are pressures at the vertical elevations as is illustrated in Fig. 2.3. 

Equation 2.5 can be written in the compact form

(2.6)

or

(2.7)

where h is the distance, which is the depth of fluid measured downward from the location

of This type of pressure distribution is commonly called a hydrostatic distribution, and Eq. 2.7p2.

z2 � z1,

p1 � gh � p2

p1 � p2 � gh

z1 and z2,p1 and p2

p1 � p2 � g1z2 � z12

p2 � p1 � �g1z2 � z12

�
p2

p1

 dp � �g�
z2

z1

 dz

rg1g � rg2,

g

dp

dz
� �g

42 Chapter 2 ■ Fluid Statics

For liquids or gases
at rest, the pressure
gradient in the ver-
tical direction at
any point in a fluid
depends only on the
specific weight of
the fluid at that
point.

p

z

g

dz
dp
––– = −g

dz

dp

1

F I G U R E  2.3 Notation for
pressure variation in a fluid at rest with a 
free surface.

z

x

y

z1

z2 p1

p2

h = z2 – z1

Free surface
(pressure = p0)

V2.1 Pressure on a
car
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2.3 Pressure Variation in a Fluid at Rest 43

23.1 ft

Water

� = 10 lb

pA = 0 

pA = 10 lb 

A = 1 in.2
shows that in an incompressible fluid at rest the pressure varies linearly with depth. The pressure

must increase with depth to “hold up” the fluid above it.

It can also be observed from Eq. 2.6 that the pressure difference between two points can be

specified by the distance h since

In this case h is called the pressure head and is interpreted as the height of a column of fluid of

specific weight required to give a pressure difference For example, a pressure differ-

ence of 10 psi can be specified in terms of pressure head as 23.1 ft of water or

518 mm of Hg As illustrated by the figure in the margin, a 23.1-ft-tall column

of water with a cross-sectional area of 1 in.2 weighs 10 lb.

1g � 133 kN�m32.
lb�ft32,1g � 62.4

p1 � p2.g

h �
p1 � p2

g

F I G U R E  2.4 Fluid
pressure in containers of arbitrary
shape.

A B

Specific weight γ  

h

Liquid surface
(p = p0) 

When one works with liquids there is often a free surface, as is illustrated in Fig. 2.3, and it

is convenient to use this surface as a reference plane. The reference pressure would correspond

to the pressure acting on the free surface 1which would frequently be atmospheric pressure2, and

thus if we let in Eq. 2.7 it follows that the pressure p at any depth h below the free sur-

face is given by the equation:

(2.8)

As is demonstrated by Eq. 2.7 or 2.8, the pressure in a homogeneous, incompressible fluid

at rest depends on the depth of the fluid relative to some reference plane, and it is not influ-

enced by the size or shape of the tank or container in which the fluid is held. Thus, in Fig. 2.4

p � gh � p0

p2 � p0

p0

F l u i d s  i n  t h e  N e w s

Giraffe’s blood pressure A giraffe’s long neck allows it to graze

up to 6 m above the ground. It can also lower its head to drink at

ground level. Thus, in the circulatory system there is a significant

hydrostatic pressure effect due to this elevation change. To main-

tain blood to its head throughout this change in elevation, the gi-

raffe must maintain a relatively high blood pressure at heart

level—approximately two and a half times that in humans. To

prevent rupture of blood vessels in the high-pressure lower leg re-

gions, giraffes have a tight sheath of thick skin over their lower

limbs which acts like an elastic bandage in exactly the same way

as do the g-suits of fighter pilots. In addition, valves in the upper

neck prevent backflow into the head when the giraffe lowers its

head to ground level. It is also thought that blood vessels in the gi-

raffe’s kidney have a special mechanism to prevent large changes

in filtration rate when blood pressure increases or decreases with

its head movement. (See Problem 2.14.)
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44 Chapter 2 ■ Fluid Statics

The required equality of pressures at equal elevations throughout a system is important for

the operation of hydraulic jacks (see Fig. 2.5a), lifts, and presses, as well as hydraulic controls on

aircraft and other types of heavy machinery. The fundamental idea behind such devices and systems

is demonstrated in Fig. 2.5b. A piston located at one end of a closed system filled with a liquid,

such as oil, can be used to change the pressure throughout the system, and thus transmit an applied

force to a second piston where the resulting force is Since the pressure p acting on the faces

of both pistons is the same 1the effect of elevation changes is usually negligible for this type of hy-

draulic device2, it follows that The piston area can be made much larger than

and therefore a large mechanical advantage can be developed; that is, a small force applied at

the smaller piston can be used to develop a large force at the larger piston. The applied force could

be created manually through some type of mechanical device, such as a hydraulic jack, or through

compressed air acting directly on the surface of the liquid, as is done in hydraulic lifts commonly

found in service stations.

A1

A2F2 � 1A2 �A12F1.

F2.F1

The transmission of
pressure through-
out a stationary
fluid is the princi-
ple upon which
many hydraulic 
devices are based.

the pressure is the same at all points along the line AB even though the containers may have

the very irregular shapes shown in the figure. The actual value of the pressure along AB de-

pends only on the depth, h, the surface pressure, and the specific weight, of the liquid in

the container.

g,p0,

GIVEN Because of a leak in a buried gasoline storage tank,

water has seeped in to the depth shown in Fig. E2.1. The specific

gravity of the gasoline is 

FIND Determine the pressure at the gasoline–water interface

and at the bottom of the tank. Express the pressure in units of

and as a pressure head in feet of water.lb�ft2, lb�in.2,

SG � 0.68.

SOLUTION F I G U R E  E2.1

Pressure–Depth Relationship

It is noted that a rectangular column of water 11.6 ft tall and 

in cross section weighs 721 lb. A similar column with a 

cross section weighs 5.01 lb.

We can now apply the same relationship to determine the pres-

sure at the tank bottom; that is,

(Ans)

(Ans)

(Ans)

COMMENT Observe that if we wish to express these pres-

sures in terms of absolute pressure, we would have to add the lo-

cal atmospheric pressure 1in appropriate units2 to the previous

results. A further discussion of gage and absolute pressure is given

in Section 2.5.

 
p2

gH2O

�
908 lb�ft2

62.4 lb�ft3
� 14.6 ft

 p2 �
908 lb�ft2

144 in.2�ft2
� 6.31 lb�in.2

 � 908 lb�ft2

 � 162.4 lb�ft32 13 ft2 � 721 lb�ft2

 p2 � gH2O hH2O
� p1

1-in.2
1 ft2

(1)

(2)
Water

Gasoline

Open

17 ft

3 ft

EXAMPLE 2.1

Since we are dealing with liquids at rest, the pressure distribution

will be hydrostatic, and therefore the pressure variation can be

found from the equation:

With p0 corresponding to the pressure at the free surface of the

gasoline, then the pressure at the interface is

If we measure the pressure relative to atmospheric pressure 1gage

pressure2, it follows that and therefore

(Ans)

(Ans)

(Ans) 
p1

gH2O

�
721 lb�ft2

62.4 lb�ft3
� 11.6 ft

 p1 �
721 lb�ft2

144 in.2�ft2
� 5.01 lb�in.2

 p1 � 721 lb�ft2

p0 � 0,

 � 721 � p0 1lb�ft22

 � 10.682 162.4 lb�ft32 117 ft2 � p0

 p1 � SGgH2O 
h � p0

p � gh � p0
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2.3 Pressure Variation in a Fluid at Rest 45

F I G U R E  2.5 (a) Hydraulic jack, (b) Transmission of fluid pressure.

If the specific
weight of a fluid
varies significantly
as we move from
point to point, the
pressure will no
longer vary linearly
with depth.

F1 = pA1
F2 = pA2

A2 A1

(b)

A2

(a)

A1

2.3.2 Compressible Fluid

We normally think of gases such as air, oxygen, and nitrogen as being compressible fluids since

the density of the gas can change significantly with changes in pressure and temperature. Thus, al-

though Eq. 2.4 applies at a point in a gas, it is necessary to consider the possible variation in 

before the equation can be integrated. However, as was discussed in Chapter 1, the specific weights

of common gases are small when compared with those of liquids. For example, the specific weight

of air at sea level and is whereas the specific weight of water under the same

conditions is Since the specific weights of gases are comparatively small, it follows

from Eq. 2.4 that the pressure gradient in the vertical direction is correspondingly small, and even

over distances of several hundred feet the pressure will remain essentially constant for a gas. This

means we can neglect the effect of elevation changes on the pressure in gases in tanks, pipes, and

so forth in which the distances involved are small.

For those situations in which the variations in heights are large, on the order of thousands of

feet, attention must be given to the variation in the specific weight. As is described in Chapter 1,

the equation of state for an ideal 1or perfect2 gas is

where p is the absolute pressure, R is the gas constant, and T is the absolute temperature. This re-

lationship can be combined with Eq. 2.4 to give

and by separating variables

(2.9)

where g and R are assumed to be constant over the elevation change from Although the

acceleration of gravity, g, does vary with elevation, the variation is very small 1see Tables C.1 and

C.2 in Appendix C2, and g is usually assumed constant at some average value for the range of el-

evation involved.

z1 to z2.

�
p2

p1

 
dp

p
� ln 

p2

p1

� �
g

R �
z2

z1

 
dz

T

dp

dz
� �

gp

RT

r �
p

RT

62.4 lb�ft3.

0.0763 lb�ft3,60 °F

g
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46 Chapter 2 ■ Fluid Statics

Before completing the integration, one must specify the nature of the variation of tempera-

ture with elevation. For example, if we assume that the temperature has a constant value over

the range 1isothermal conditions2, it then follows from Eq. 2.9 that

(2.10)

This equation provides the desired pressure–elevation relationship for an isothermal layer. As shown

in the margin figure, even for a 10,000-ft altitude change the difference between the constant tem-

perature 1isothermal2 and the constant density 1incompressible2 results are relatively minor. For 

nonisothermal conditions a similar procedure can be followed if the temperature–elevation rela-

tionship is known, as is discussed in the following section.

p2 � p1 exp c�
g1z2 � z12

RT0

d

z1 to z2

T0

1

0.8

0.6
0 5000 10,000

z2 – z1,ft

p 2
/p

1

Isothermal

Incompressible

GIVEN In 2007 the Burj Dubai skyscraper being built in the

United Arab Emirates reached the stage in its construction where

it became the world’s tallest building. When completed it is ex-

pected to be at least 2275 ft tall, although its final height remains

a secret.

FIND (a) Estimate the ratio of the pressure at the projected 2275-

ft top of the building to the pressure at its base, assuming the air to be

at a common temperature of (b) Compare the pressure calcu-

lated in part (a) with that obtained by assuming the air to be incom-

pressible with at 14.7 psi 1abs2 1values for air at

standard sea level conditions2.
0.0765 lb�ft3g�

59 °F.

SOLUTION

Incompressible and Isothermal Pressure–Depth VariationsEXAMPLE 2.2

For the assumed isothermal conditions, and treating air as a com-

pressible fluid, Eq. 2.10 can be applied to yield

(Ans)

If the air is treated as an incompressible fluid we can apply

Eq. 2.5. In this case

or

(Ans)

COMMENTS Note that there is little difference between

the two results. Since the pressure difference between the bot-

tom and top of the building is small, it follows that the varia-

tion in fluid density is small and, therefore, the compressible

 � 1 �
10.0765 lb�ft32 12275 ft2

114.7 lb�in.22 1144 in.2�ft22
� 0.918

 
p2

p1

� 1 �
g1z2 � z12

p1

 p2 � p1 � g1z2 � z12

 � 0.921

 � exp e�
132.2 ft�s22 12275 ft2

11716 ft # lb�slug # °R2 3 159 � 4602°R 4
f

 
p2

p1

� exp c�
g1z2 � z12

RT0

d

fluid and incompressible fluid analyses yield essentially the

same result. 

We see that for both calculations the pressure decreases by ap-

proximately 8% as we go from ground level to the top of this tallest

building. It does not require a very large pressure difference to sup-

port a 2275-ft-tall column of fluid as light as air. This result supports

the earlier statement that the changes in pressures in air and other

gases due to elevation changes are very small, even for distances of

hundreds of feet. Thus, the pressure differences between the top and

bottom of a horizontal pipe carrying a gas, or in a gas storage tank,

are negligible since the distances involved are very small.

F I G U R E  E2.2 (Figure
courtesy of Emaar Properties, Dubai,
UAE.)
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2.4 Standard Atmosphere 47

An important application of Eq. 2.9 relates to the variation in pressure in the earth’s atmosphere.

Ideally, we would like to have measurements of pressure versus altitude over the specific range for

the specific conditions 1temperature, reference pressure2 for which the pressure is to be determined.

However, this type of information is usually not available. Thus, a “standard atmosphere” has been

determined that can be used in the design of aircraft, missiles, and spacecraft, and in comparing

their performance under standard conditions. The concept of a standard atmosphere was first de-

veloped in the 1920s, and since that time many national and international committees and organi-

zations have pursued the development of such a standard. The currently accepted standard atmos-

phere is based on a report published in 1962 and updated in 1976 1see Refs. 1 and 22, defining the

so-called U.S. standard atmosphere, which is an idealized representation of middle-latitude, year-

round mean conditions of the earth’s atmosphere. Several important properties for standard atmos-

pheric conditions at sea level are listed in Table 2.1, and Fig. 2.6 shows the temperature profile for

the U.S. standard atmosphere. As is shown in this figure the temperature decreases with altitude

in the region nearest the earth’s surface 1troposphere2, then becomes essentially constant in the next

layer 1stratosphere2, and subsequently starts to increase in the next layer. Typical events that occur

in the atmosphere are shown in the figure in the margin.

Since the temperature variation is represented by a series of linear segments, it is possible

to integrate Eq. 2.9 to obtain the corresponding pressure variation. For example, in the troposphere,

which extends to an altitude of about 11 km the temperature variation is of the form

(2.11)T � Ta � bz

1�36,000 ft2,

2.4 Standard Atmosphere

TA B L E 2 . 1

Properties of U.S. Standard Atmosphere at Sea Levela

Property SI Units BG Units

Temperature, T
Pressure, p 101.33 kPa 1abs2

Density,

Specific weight,

Viscosity,

aAcceleration of gravity at sea level � 9.807 m�s2 � 32.174 ft�s2.

3.737 � 10�7 lb # s�ft21.789 � 10�5 N # s�m2m

0.07647 lb�ft312.014 N�m3g

0.002377 slugs�ft31.225 kg�m3r

314.696 lb�in.2 1abs2 4
2116.2 lb�ft2 1abs2

518.67 °R 159.00 °F2288.15 K 115 °C2

The standard
atmosphere is an
idealized repre-
sentation of mean
conditions in the
earth’s atmosphere.

F I G U R E  2.6 Variation
of temperature with altitude in the
U.S. standard atmosphere.
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48 Chapter 2 ■ Fluid Statics

F I G U R E  2.7 Graphical
representation of gage and absolute
pressure.

where is the temperature at sea level and is the lapse rate 1the rate of change of tem-

perature with elevation2. For the standard atmosphere in the troposphere,

Equation 2.11 used with Eq. 2.9 yields

(2.12)

where is the absolute pressure at With and g obtained from Table 2.1, and with

the gas constant or the pressure variation throughout the

troposphere can be determined from Eq. 2.12. This calculation shows that at the outer edge of the

troposphere, where the temperature is the absolute pressure is about 23 kPa 13.3 psia2.
It is to be noted that modern jetliners cruise at approximately this altitude. Pressures at other al-

titudes are shown in Fig. 2.6, and tabulated values for temperature, acceleration of gravity, pres-

sure, density, and viscosity for the U.S. standard atmosphere are given in Tables C.1 and C.2 in

Appendix C.

�56.5 °C,

1716 ft # lb�slug # °R,R � 286.9 J�kg # K

pa, Ta,z � 0.pa

p � pa a1 �
bz

Ta

b
g�Rb

or 0.00357 °R�ft.
b � 0.00650 K�m

b1z � 02Ta

2.5 Measurement of Pressure

Since pressure is a very important characteristic of a fluid field, it is not surprising that numer-

ous devices and techniques are used in its measurement. As is noted briefly in Chapter 1, the

pressure at a point within a fluid mass will be designated as either an absolute pressure or a

gage pressure. Absolute pressure is measured relative to a perfect vacuum 1absolute zero pres-

sure2, whereas gage pressure is measured relative to the local atmospheric pressure. Thus, a gage

pressure of zero corresponds to a pressure that is equal to the local atmospheric pressure. 

Absolute pressures are always positive, but gage pressures can be either positive or negative

depending on whether the pressure is above atmospheric pressure 1a positive value2 or below

atmospheric pressure 1a negative value2. A negative gage pressure is also referred to as a suction
or vacuum pressure. For example, 10 psi 1abs2 could be expressed as psi 1gage2, if the lo-

cal atmospheric pressure is 14.7 psi, or alternatively 4.7 psi suction or 4.7 psi vacuum. The con-

cept of gage and absolute pressure is illustrated graphically in Fig. 2.7 for two typical pressures

located at points 1 and 2.

In addition to the reference used for the pressure measurement, the units used to express

the value are obviously of importance. As is described in Section 1.5, pressure is a force per unit

area, and the units in the BG system are or commonly abbreviated psf or psi, re-

spectively. In the SI system the units are this combination is called the pascal and written

as Pa As noted earlier, pressure can also be expressed as the height of a col-

umn of liquid. Then, the units will refer to the height of the column 1in., ft, mm, m, etc.2, and in

addition, the liquid in the column must be specified 1 etc.2. For example, standard atmos-

pheric pressure can be expressed as 760 mm Hg 1abs2. In this text, pressures will be assumed to
be gage pressures unless specifically designated absolute. For example, 10 psi or 100 kPa would

be gage pressures, whereas 10 psia or 100 kPa 1abs2 would refer to absolute pressures. It is to be

H2O, Hg,

11 N�m2 � 1 Pa2.
N�m2;

lb�in.2,lb�ft2

�4.7

Pressure is desig-
nated as either ab-
solute pressure or
gage pressure.

1

2

Absolute pressure
@ 2

Absolute pressure
@ 1

Gage pressure @ 1

P
re

ss
ur

e

Absolute zero reference

Local atmospheric
pressure reference

Gage pressure @ 2
(suction or vacuum)
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2.5 Measurement of Pressure 49

noted that pressure differences are independent of the reference, so that no special notation is re-

quired in this case.

The measurement of atmospheric pressure is usually accomplished with a mercury barom-
eter, which in its simplest form consists of a glass tube closed at one end with the open end im-

mersed in a container of mercury as shown in Fig. 2.8. The tube is initially filled with mercury

1inverted with its open end up2 and then turned upside down 1open end down2, with the open end

in the container of mercury. The column of mercury will come to an equilibrium position where

its weight plus the force due to the vapor pressure 1which develops in the space above the column2
balances the force due to the atmospheric pressure. Thus,

(2.13)

where is the specific weight of mercury. For most practical purposes the contribution of the va-

por pressure can be neglected since it is very small [for mercury, 1abs2 at

a temperature of ], so that It is conventional to specify atmospheric pressure in

terms of the height, h, in millimeters or inches of mercury. Note that if water were used instead of

mercury, the height of the column would have to be approximately 34 ft rather than 29.9 in. of

mercury for an atmospheric pressure of 14.7 psia! This is shown to scale in the figure in the mar-

gin. The concept of the mercury barometer is an old one, with the invention of this device attrib-

uted to Evangelista Torricelli in about 1644.

patm � gh.68 °F

lb�in.2pvapor � 0.000023

g

patm � gh � pvapor

F I G U R E  2.8 Mercury barometer.

pvapor

A

h

patm

B

Mercury

GIVEN A mountain lake has an average temperature of and

a maximum depth of 40 m. The barometric pressure is 598 mm Hg. 

10 °C FIND Determine the absolute pressure 1in pascals2 at the deepest

part of the lake.

SOLUTION

Barometric Pressure

From Table B.2, at and therefore

(Ans)

COMMENT This simple example illustrates the need for

close attention to the units used in the calculation of pressure; that

is, be sure to use a consistent unit system, and be careful not to

add a pressure head 1m2 to a pressure 1Pa2.

 � 472 kPa 1abs2

 � 392 kN�m2 � 79.5 kN�m2

 p � 19.804 kN�m32 140 m2 � 79.5 kN�m2

10 °CgH2 O � 9.804 kN�m3

EXAMPLE 2.3

The pressure in the lake at any depth, h, is given by the equation

where is the pressure at the surface. Since we want the absolute

pressure, will be the local barometric pressure expressed in a

consistent system of units; that is

and for 

p0 � 10.598 m2 1133 kN�m32 � 79.5 kN�m2

gHg � 133 kN�m3

pbarometric

gHg

� 598 mm � 0.598 m

p0

p0

p � gh � p0

Water

Mercury
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F I G U R E  2.9 Piezometer tube.

50 Chapter 2 ■ Fluid Statics

A standard technique for measuring pressure involves the use of liquid columns in vertical or inclined

tubes. Pressure measuring devices based on this technique are called manometers. The mercury

barometer is an example of one type of manometer, but there are many other configurations possi-

ble, depending on the particular application. Three common types of manometers include the piezome-

ter tube, the U-tube manometer, and the inclined-tube manometer.

2.6.1 Piezometer Tube

The simplest type of manometer consists of a vertical tube, open at the top, and attached to the

container in which the pressure is desired, as illustrated in Fig. 2.9. The figure in the margin shows

an important device whose operation is based upon this principle. It is a sphygmomanometer, the

traditional instrument used to measure blood pressure. 

Since manometers involve columns of fluids at rest, the fundamental equation describing

their use is Eq. 2.8

which gives the pressure at any elevation within a homogeneous fluid in terms of a reference pres-

sure and the vertical distance h between Remember that in a fluid at rest pressure will

increase as we move downward and will decrease as we move upward. Application of this equa-

tion to the piezometer tube of Fig. 2.9 indicates that the pressure can be determined by a mea-

surement of through the relationship

where is the specific weight of the liquid in the container. Note that since the tube is open at

the top, the pressure can be set equal to zero 1we are now using gage pressure2, with the heightp0

g1

pA � g1h1

h1

pA

p and p0.p0

p � gh � p0

Manometers use
vertical or inclined
liquid columns to
measure pressure.

2.6 Manometry

Open

h1

1

(1)

γ

A

Column of
mercury

Tube open at top

Container of
mercury

Arm cuff

F l u i d s  i n  t h e  N e w s

Weather, barometers, and bars One of the most important

indicators of weather conditions is atmospheric pressure. In

general, a falling or low pressure indicates bad weather; rising

or high pressure, good weather. During the evening TV

weather report in the United States, atmospheric pressure is

given as so many inches (commonly around 30 in.). This value

is actually the height of the mercury column in a mercury

barometer adjusted to sea level. To determine the true atmos-

pheric pressure at a particular location, the elevation relative to

sea level must be known. Another unit used by meteorologists

to indicate atmospheric pressure is the bar, first used in

weather reporting in 1914, and defined as . The defi-

nition of a bar is probably related to the fact that standard sea-

level pressure is , that is, only slightly

larger than one bar. For typical weather patterns, “sea-level

equivalent” atmospheric pressure remains close to one bar.

However, for extreme weather conditions associated with tor-

nadoes, hurricanes, or typhoons, dramatic changes can occur.

The lowest atmospheric sea-level pressure ever recorded was

associated with a typhoon, Typhoon Tip, in the Pacific Ocean

on October 12, 1979. The value was 0.870 bars (25.8 in. Hg).

(See Problem 2.19.) 

1.0133 � 105 N�m2

105 N�m2
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measured from the meniscus at the upper surface to point 112. Since point 112 and point A within

the container are at the same elevation,

Although the piezometer tube is a very simple and accurate pressure measuring device, it has

several disadvantages. It is only suitable if the pressure in the container is greater than atmospheric

pressure 1otherwise air would be sucked into the system2, and the pressure to be measured must be

relatively small so the required height of the column is reasonable. Also, the fluid in the container in

which the pressure is to be measured must be a liquid rather than a gas.

2.6.2 U-Tube Manometer

To overcome the difficulties noted previously, another type of manometer which is widely used

consists of a tube formed into the shape of a U, as is shown in Fig. 2.10. The fluid in the manome-

ter is called the gage fluid. To find the pressure in terms of the various column heights, we start

at one end of the system and work our way around to the other end, simply utilizing Eq. 2.8. Thus,

for the U-tube manometer shown in Fig. 2.10, we will start at point A and work around to the open

end. The pressure at points A and 112 are the same, and as we move from point 112 to 122 the pres-

sure will increase by The pressure at point 122 is equal to the pressure at point 132, since the

pressures at equal elevations in a continuous mass of fluid at rest must be the same. Note that we

could not simply “jump across” from point 112 to a point at the same elevation in the right-hand

tube since these would not be points within the same continuous mass of fluid. With the pressure

at point 132 specified, we now move to the open end where the pressure is zero. As we move ver-

tically upward the pressure decreases by an amount In equation form these various steps can

be expressed as

and, therefore, the pressure can be written in terms of the column heights as

(2.14)

A major advantage of the U-tube manometer lies in the fact that the gage fluid can be different

from the fluid in the container in which the pressure is to be determined. For example, the fluid

in A in Fig. 2.10 can be either a liquid or a gas. If A does contain a gas, the contribution of 

the gas column, is almost always negligible so that , and in this instance Eq. 2.14

becomes

Thus, for a given pressure the height, is governed by the specific weight, of the gage fluid

used in the manometer. If the pressure is large, then a heavy gage fluid, such as mercury, can

be used and a reasonable column height 1not too long2 can still be maintained. Alternatively, if the

pressure is small, a lighter gage fluid, such as water, can be used so that a relatively large col-

umn height 1which is easily read2 can be achieved.

pA

pA

g2,h2,

pA � g2h2

pA � p2g1h1,

pA � g2h2 � g1h1

pA

pA � g1h1 � g2h2 � 0

g2h2.

g1h1.

pA

pA � p1.

h1

2.6 Manometry 51

h1

h2

Open

(1)

(3)(2)

A

 
(gage
fluid)

1γ

2γ

F I G U R E  2.10 Simple U-tube manometer.

The contribution of
gas columns in
manometers is usu-
ally negligible
since the weight of
the gas is so small.

V2.2 Blood pres-
sure measurement
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F I G U R E  2.11 Differential U-tube
manometer.

The U-tube manometer is also widely used to measure the difference in pressure between

two containers or two points in a given system. Consider a manometer connected between con-

tainers A and B as is shown in Fig. 2.11. The difference in pressure between A and B can be found

52 Chapter 2 ■ Fluid Statics

(1)

(2) (3)

(4)

(5)

A

B

h1

h2

h3

2γ

3γ

1γ

Manometers are of-
ten used to measure
the difference in
pressure between
two points.

Simple U-Tube ManometerEXAMPLE 2.4

F I G U R E  E2.4

GIVEN A closed tank contains compressed air and oil

as is shown in Fig. E2.4. A U-tube manometer using

mercury is connected to the tank as shown. The col-

umn heights are and 

FIND Determine the pressure reading 1in psi2 of the gage.

h3 � 9 in.h1 � 36 in., h2 � 6 in.,

1SGHg � 13.62
1SGoil � 0.902

Following the general procedure of starting at one end of the

manometer system and working around to the other, we will start

at the air–oil interface in the tank and proceed to the open end

where the pressure is zero. The pressure at level 112 is

This pressure is equal to the pressure at level 122, since these two

points are at the same elevation in a homogeneous fluid at rest. As

we move from level 122 to the open end, the pressure must de-

crease by and at the open end the pressure is zero. Thus, the

manometer equation can be expressed as

or

For the values given

so that

pair � 440 lb�ft2

� 113.62 162.4 lb�ft32  a
9

12
 ftb

pair � �10.92 162.4 lb�ft32 a
36 � 6

12
 ftb

pair � 1SGoil2 1gH2O
2 1h1 � h22 � 1SGHg2 1gH2O

2
 
h3 � 0

pair � goil1h1 � h22 � gHgh3 � 0

gHgh3,

p1 � pair � goil1h1 � h22

SOLUTION

Pressure
gage

Air

Oil

Open

Hg

(1) (2)

h1

h2

h3

Since the specific weight of the air above the oil is much smaller

than the specific weight of the oil, the gage should read the pres-

sure we have calculated; that is,

(Ans)

COMMENTS Note that the air pressure is a function of the

height of the mercury in the manometer and the depth of the oil

(both in the tank and in the tube). It is not just the mercury in the

manometer that is important.

Assume that the gage pressure remains at 3.06 psi, but the

manometer is altered so that it contains only oil. That is, the mer-

cury is replaced by oil. A simple calculation shows that in this

case the vertical oil-filled tube would need to be h3 � 11.3 ft tall,

rather than the original h3 � 9 in. There is an obvious advantage

of using a heavy fluid such as mercury in manometers.

pgage �
440 lb�ft2

144 in.2�ft2
� 3.06 psi
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2.6 Manometry 53

by again starting at one end of the system and working around to the other end. For example, at

A the pressure is which is equal to and as we move to point 122 the pressure increases by

The pressure at is equal to and as we move upward to point 142 the pressure decreases

by Similarly, as we continue to move upward from point 142 to 152 the pressure decreases by

Finally, since they are at equal elevations. Thus,

Or, as indicated in the figure in the margin, we could start at B and work our way around to A to

obtain the same result. In either case, the pressure difference is

When the time comes to substitute in numbers, be sure to use a consistent system of units!

Capillarity due to surface tension at the various fluid interfaces in the manometer is usu-

ally not considered, since for a simple U-tube with a meniscus in each leg, the capillary effects

cancel 1assuming the surface tensions and tube diameters are the same at each meniscus2, or we

can make the capillary rise negligible by using relatively large bore tubes 1with diameters of

about 0.5 in. or larger; see Section 1.92. Two common gage fluids are water and mercury. Both

give a well-defined meniscus 1a very important characteristic for a gage fluid2 and have well-

known properties. Of course, the gage fluid must be immiscible with respect to the other flu-

ids in contact with it. For highly accurate measurements, special attention should be given to

temperature since the various specific weights of the fluids in the manometer will vary with

temperature.

pA � pB � g2h2 � g3h3 � g1h1

pA � g1h1 � g2h2 � g3h3 � pB

p5 � pB,g3h3.

g2h2.

p3,p2g1h1.

p1,pA,

pA

γ2h2

γ1h1

γ3h3

pA − pB

pB

U-Tube ManometerEXAMPLE 2.5

GIVEN As will be discussed in Chapter 3, the volume rate of

flow, Q, through a pipe can be determined by means of a flow noz-

zle located in the pipe as illustrated in Fig. E2.5a. The nozzle cre-

ates a pressure drop, along the pipe which is related to the

flow through the equation where K is a constant

depending on the pipe and nozzle size. The pressure drop is fre-

quently measured with a differential U-tube manometer of the type

illustrated. 

Q � K1pA � pB,

pA � pB,

FIND 1a2 Determine an equation for in terms of the

specific weight of the flowing fluid, the specific weight of

the gage fluid, and the various heights indicated. 1b2 For

and

what is the value of the pressure drop, pA � pB?

0.5 m,h2 �h1 � 1.0 m,g2 � 15.6 kN�m3,g1 � 9.80 kN�m3,

g2,

g1,

pA � pB

SOLUTION

F I G U R E  E2.5a

A B

Flow nozzle

(1)

h1

(2) (3)

(4)
h2

(5)

Flow

γ1

γ2

γ1

manometer could be placed 0.5 or 5.0 m above the pipe (h1 � 0.5 m

or h1 � 5.0 m), and the value of h2 would remain the same.

(b) The specific value of the pressure drop for the data given is

(Ans)

COMMENT By repeating the calculations for manometer

fluids with different specific weights, �2, the results shown in

Fig. E2.5b are obtained. Note that relatively small pressure

� 2.90 kPa

 pA � pB � 10.5 m2 115.6 kN�m3 � 9.80 kN�m32

(a) Although the fluid in the pipe is moving, the fluids in the

columns of the manometer are at rest so that the pressure variation

in the manometer tubes is hydrostatic. If we start at point A and

move vertically upward to level 112, the pressure will decrease by

and will be equal to the pressure at 122 and at 132. We can now

move from 132 to 142 where the pressure has been further reduced

by The pressures at levels 142 and 152 are equal, and as we

move from 152 to B the pressure will increase by 

Thus, in equation form

or

(Ans)

COMMENT It is to be noted that the only column height

of importance is the differential reading, h2. The differential

pA � pB � h21g2 � g12

pA � g1h1 � g2h2 � g11h1 � h22 � pB

g11h1 � h22.
g2h2.

g1h1
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F I G U R E  2.12 Inclined-tube manometer.
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2.6.3 Inclined-Tube Manometer

To measure small pressure changes, a manometer of the type shown in Fig. 2.12 is frequently used.

One leg of the manometer is inclined at an angle and the differential reading is measured

along the inclined tube. The difference in pressure can be expressed as

or

(2.15)

where it is to be noted the pressure difference between points 112 and 122 is due to the vertical dis-

tance between the points, which can be expressed as Thus, for relatively small angles the

differential reading along the inclined tube can be made large even for small pressure differences.

The inclined-tube manometer is often used to measure small differences in gas pressures so that

if pipes A and B contain a gas then

or

(2.16)

where the contributions of the gas columns have been neglected. Equation 2.16 and the

figure in the margin show that the differential reading 1for a given pressure difference2 of the in-

clined-tube manometer can be increased over that obtained with a conventional U-tube manome-

ter by the factor Recall that as uS 0.sin uS 01�sin u.

/2

h1 and h3

/2 �
pA � pB

g2 sin u

pA � pB � g2/2 sin u

/2 sin u.

pA � pB � g2/2 sin u � g3 h3 � g1h1

pA � g1h1 � g2/2 sin u � g3 h3 � pB

pA � pB

/2u,

h1

h3

�2

(2)

γ3

γ2

γ1

A

B

θ
(1)

Inclined-tube
manometers can be
used to measure
small pressure dif-
ferences accurately.

�2

300 60 90

θ  , deg

~�2 sin  
1

θ

differences can be measured if the manometer fluid has nearly

the same specific weight as the flowing fluid. It is the difference

in the specific weights, �2 � �1, that is important.

Hence, by rewriting the answer as 

it is seen that even if the value of is small, the value of 

can be large enough to provide an accurate reading provided the

value of is also small.g2 � g1

h2pA � pB

h2 � 1pA � pB2� 1g2 � g12

8

3

2

1

0
10 12 14 16

p A
 –

 p
B
,  

kP
a

�2, kN/m3

�2 = �1

(15.6 kN/m3, 2.90 kPa)

F I G U R E  E2.5b
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2.7 Mechanical and Electronic Pressure Measuring Devices 55

2.7 Mechanical and Electronic Pressure Measuring Devices

Although manometers are widely used, they are not well suited for measuring very high pressures,

or pressures that are changing rapidly with time. In addition, they require the measurement of one

or more column heights, which, although not particularly difficult, can be time consuming. To over-

come some of these problems numerous other types of pressure measuring instruments have been

developed. Most of these make use of the idea that when a pressure acts on an elastic structure the

structure will deform, and this deformation can be related to the magnitude of the pressure. Prob-

ably the most familiar device of this kind is the Bourdon pressure gage, which is shown in 

Fig. 2.13a. The essential mechanical element in this gage is the hollow, elastic curved tube 1Bour-

don tube2 which is connected to the pressure source as shown in Fig. 2.13b. As the pressure within

the tube increases the tube tends to straighten, and although the deformation is small, it can be

translated into the motion of a pointer on a dial as illustrated. Since it is the difference in pressure

between the outside of the tube 1atmospheric pressure2 and the inside of the tube that causes the

movement of the tube, the indicated pressure is gage pressure. The Bourdon gage must be cali-

brated so that the dial reading can directly indicate the pressure in suitable units such as psi, psf,

or pascals. A zero reading on the gage indicates that the measured pressure is equal to the local

atmospheric pressure. This type of gage can be used to measure a negative gage pressure 1vacuum2
as well as positive pressures.

The aneroid barometer is another type of mechanical gage that is used for measuring atmos-

pheric pressure. Since atmospheric pressure is specified as an absolute pressure, the conventional

Bourdon gage is not suitable for this measurement. The common aneroid barometer contains a hol-

low, closed, elastic element which is evacuated so that the pressure inside the element is near

absolute zero. As the external atmospheric pressure changes, the element deflects, and this motion

can be translated into the movement of an attached dial. As with the Bourdon gage, the dial can

be calibrated to give atmospheric pressure directly, with the usual units being millimeters or inches

of mercury.

For many applications in which pressure measurements are required, the pressure must be

measured with a device that converts the pressure into an electrical output. For example, it may be

desirable to continuously monitor a pressure that is changing with time. This type of pressure mea-

suring device is called a pressure transducer, and many different designs are used. One possible

type of transducer is one in which a Bourdon tube is connected to a linear variable differential

transformer 1LVDT2, as is illustrated in Fig. 2.14. The core of the LVDT is connected to the free

end of the Bourdon tube so that as a pressure is applied the resulting motion of the end of the tube

moves the core through the coil and an output voltage develops. This voltage is a linear function

of the pressure and could be recorded on an oscillograph or digitized for storage or processing on

a computer.

A Bourdon tube
pressure gage uses
a hollow, elastic,
and curved tube to
measure pressure.

F I G U R E  2.13 (a) Liquid-filled Bourdon pressure gages for various pressure ranges.
(b) Internal elements of Bourdon gages. The “C-shaped” Bourdon tube is shown on the left, and the
“coiled spring” Bourdon tube for high pressures of 1000 psi and above is shown on the right.
(Photographs courtesy of Weiss Instruments, Inc.)

(a) (b)

V2.3 Bourdon gage
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F I G U R E  2.14 Pressure
transducer which combines a linear variable
differential transformer (LVDT) with a
Bourdon gage. (From Ref. 4, used by 
permission.)

56 Chapter 2 ■ Fluid Statics

One disadvantage of a pressure transducer using a Bourdon tube as the elastic sensing ele-

ment is that it is limited to the measurement of pressures that are static or only changing slowly

1quasistatic2. Because of the relatively large mass of the Bourdon tube, it cannot respond to rapid

changes in pressure. To overcome this difficulty, a different type of transducer is used in which the

sensing element is a thin, elastic diaphragm which is in contact with the fluid. As the pressure

changes, the diaphragm deflects, and this deflection can be sensed and converted into an electri-

cal voltage. One way to accomplish this is to locate strain gages either on the surface of the di-

aphragm not in contact with the fluid, or on an element attached to the diaphragm. These gages

can accurately sense the small strains induced in the diaphragm and provide an output voltage pro-

portional to pressure. This type of transducer is capable of measuring accurately both small and

large pressures, as well as both static and dynamic pressures. For example, strain-gage pressure

transducers of the type shown in Fig. 2.15 are used to measure arterial blood pressure, which is a

relatively small pressure that varies periodically with a fundamental frequency of about 1 Hz. The

transducer is usually connected to the blood vessel by means of a liquid-filled, small diameter tube

called a pressure catheter. Although the strain-gage type of transducers can be designed to have

very good frequency response 1up to approximately 10 kHz2, they become less sensitive at the

higher frequencies since the diaphragm must be made stiffer to achieve the higher frequency re-

sponse. As an alternative, the diaphragm can be constructed of a piezoelectric crystal to be used as

both the elastic element and the sensor. When a pressure is applied to the crystal, a voltage devel-

ops because of the deformation of the crystal. This voltage is directly related to the applied pres-

sure. Depending on the design, this type of transducer can be used to measure both very low and

high pressures 1up to approximately 100,000 psi2 at high frequencies. Additional information on

pressure transducers can be found in Refs. 3, 4, and 5.

Bourdon C-tube

Core
LVDT Output

Input
Spring

Pressure line

Mounting
block

F l u i d s  i n  t h e  N e w s

Tire pressure warning Proper tire inflation on vehicles is im-

portant for more than ensuring long tread life. It is critical in pre-

venting accidents such as rollover accidents caused by underinfla-

tion of tires. The National Highway Traffic Safety Administration

is developing a regulation regarding four-tire tire-pressure moni-

toring systems that can warn a driver when a tire is more than 25

percent underinflated. Some of these devices are currently in

operation on select vehicles; it is expected that they will soon

be required on all vehicles. A typical tire-pressure monitoring

system fits within the tire and contains a pressure transducer
(usually either a piezo-resistive or a capacitive type trans-

ducer) and a transmitter that sends the information to an elec-

tronic control unit within the vehicle. Information about tire

pressure and a warning when the tire is underinflated is dis-

played on the instrument panel. The environment (hot, cold,

vibration) in which these devices must operate, their small

size, and required low cost provide challenging constraints for

the design engineer.

It is relatively com-
plicated to make
accurate pressure
transducers for the
measurement of
pressures that vary
rapidly with time.
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When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The deter-

mination of these forces is important in the design of storage tanks, ships, dams, and other hy-

draulic structures. For fluids at rest we know that the force must be perpendicular to the surface

since there are no shearing stresses present. We also know that the pressure will vary linearly with

depth as shown in Fig. 2.16 if the fluid is incompressible. For a horizontal surface, such as the bot-

tom of a liquid-filled tank 1Fig. 2.16a2, the magnitude of the resultant force is simply 

where p is the uniform pressure on the bottom and A is the area of the bottom. For the open tank

shown, Note that if atmospheric pressure acts on both sides of the bottom, as is illustrated,

the resultant force on the bottom is simply due to the liquid in the tank. Since the pressure is con-

stant and uniformly distributed over the bottom, the resultant force acts through the centroid of the

area as shown in Fig. 2.16a. As shown in Fig. 2.16b, the pressure on the ends of the tank is not

uniformly distributed. Determination of the resultant force for situations such as this is presented

below.

p � gh.

FR � pA,

2.8 Hydrostatic Force on a Plane Surface 57

(a)

Diaphragm

Case

Electrical connections

Beam (strain gages deposited on beam)

Link pin

Diaphragm

Armature

Diaphragm
stop

(b)

F I G U R E  2.15 (a) Two different sized strain-gage pressure transducers
(Spectramed Models P10EZ and P23XL) commonly used to measure physiological
pressures. Plastic domes are filled with fluid and connected to blood vessels through a
needle or catheter. (Photograph courtesy of Spectramed, Inc.) (b) Schematic diagram of
the P23XL transducer with the dome removed. Deflection of the diaphragm due to
pressure is measured with a silicon beam on which strain gages and an associated
bridge circuit have been deposited.

2.8 Hydrostatic Force on a Plane Surface

V2.4 Hoover dam
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F I G U R E  2.16 (a) Pressure distribution and resultant hydrostatic force on the 
bottom of an open tank. (b) Pressure distribution on the ends of an open tank.

58 Chapter 2 ■ Fluid Statics

For the more general case in which a submerged plane surface is inclined, as is illustrated

in Fig. 2.17, the determination of the resultant force acting on the surface is more involved. For

the present we will assume that the fluid surface is open to the atmosphere. Let the plane in which

the surface lies intersect the free surface at 0 and make an angle with this surface as in Fig. 2.17.

The x–y coordinate system is defined so that 0 is the origin and y � 0 (i.e., the x-axis) is directed

along the surface as shown. The area can have an arbitrary shape as shown. We wish to determine

the direction, location, and magnitude of the resultant force acting on one side of this area due to

the liquid in contact with the area. At any given depth, h, the force acting on dA 1the differential

area of Fig. 2.172 is and is perpendicular to the surface. Thus, the magnitude of the

resultant force can be found by summing these differential forces over the entire surface. In equa-

tion form

FR � �
A
 gh dA � �

A
 gy sin u dA

dF � gh dA

u

Free surface
p = 0

Specific weight = γ

FR
h

p = 0

p =   hγ

(a) Pressure on tank bottom

Free surface
p = 0

Specific weight = γ

p = 0

p =   hγ

(b) Pressure on tank ends

y

yc
yR

xR

xc

c

CP Centroid, c

Location of
resultant force

(center of pressure, CP)

dA

A

x

x

y

θ

0Free surface

h
hc

FR

dF

F I G U R E  2.17 Notation for hydrostatic force on an inclined plane
surface of arbitrary shape.

The resultant force
of a static fluid on a
plane surface is due
to the hydrostatic
pressure distribution
on the surface.
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where For constant and 

(2.17)

The integral appearing in Eq. 2.17 is the first moment of the area with respect to the x axis, so we

can write

where is the y coordinate of the centroid of area A measured from the x axis which passes through 0.

Equation 2.17 can thus be written as

or more simply as

(2.18)

where is the vertical distance from the fluid surface to the centroid of the area. Note that the

magnitude of the force is independent of the angle . As indicated by the figure in the margin, it

depends only on the specific weight of the fluid, the total area, and the depth of the centroid of

the area below the surface. In effect, Eq. 2.18 indicates that the magnitude of the resultant force

is equal to the pressure at the centroid of the area multiplied by the total area. Since all the differ-

ential forces that were summed to obtain are perpendicular to the surface, the resultant must

also be perpendicular to the surface.

Although our intuition might suggest that the resultant force should pass through the cen-

troid of the area, this is not actually the case. The y coordinate, of the resultant force can be

determined by summation of moments around the x axis. That is, the moment of the resultant force

must equal the moment of the distributed pressure force, or

and, therefore, since 

The integral in the numerator is the second moment of the area (moment of inertia), with re-

spect to an axis formed by the intersection of the plane containing the surface and the free surface

1x axis2. Thus, we can write

Use can now be made of the parallel axis theorem to express as

where is the second moment of the area with respect to an axis passing through its centroid and

parallel to the x axis. Thus,

(2.19)

As shown by Eq. 2.19 and the figure in the margin, the resultant force does not pass through the

centroid but for nonhorizontal surfaces is always below it, since 

The x coordinate, for the resultant force can be determined in a similar manner by sum-

ming moments about the y axis. Thus,

FR xR � �
A
 g sin u xy dA

xR,

Ixc�yc A 7 0.

yR �
Ixc

yc A
� yc

Ixc

Ix � Ixc � Ay2
c

Ix

yR �
Ix

yc A

Ix,

yR �

�
A
 y2 dA

yc A

FR � gAyc sin u

FR 

yR � �
A
 y dF � �

A
 g sin u y2 dA

yR,

FRFR

u

hc

FR � ghc  A

FR � gAyc sin u

yc

�
A
 y dA � yc A

FR � g sin u�
A
 y dA

ugh � y sin u.

2.8 Hydrostatic Force on a Plane Surface 59

The magnitude of
the resultant fluid
force is equal to the
pressure acting at
the centroid of the
area multiplied by
the total area.

γ

A

hc

c
FR = γhcA

c

yc

Ixc

ycA

FR
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F I G U R E  2.18 Geometric properties of some common shapes.

and, therefore,

where is the product of inertia with respect to the x and y axes. Again, using the parallel axis

theorem,1 we can write

(2.20)

where is the product of inertia with respect to an orthogonal coordinate system passing through

the centroid of the area and formed by a translation of the x–y coordinate system. If the submerged

area is symmetrical with respect to an axis passing through the centroid and parallel to either the

x or y axes, the resultant force must lie along the line since is identically zero in this

case. The point through which the resultant force acts is called the center of pressure. It is to be

noted from Eqs. 2.19 and 2.20 that as increases the center of pressure moves closer to the cen-

troid of the area. Since the distance will increase if the depth of submergence,

increases, or, for a given depth, the area is rotated so that the angle, decreases. Thus, the hydro-

static force on the right-hand side of the gate shown in the margin figure acts closer to the cen-

troid of the gate than the force on the left-hand side. Centroidal coordinates and moments of iner-

tia for some common areas are given in Fig. 2.18.

u,

hc,ycyc � hc�sin u,

yc

Ixycx � xc,

Ixyc

xR �
Ixyc

yc A
� xc

Ixy

xR �
�

A

 xy dA

yc A
�

Ixy

yc A

60 Chapter 2 ■ Fluid Statics

c

y

x

4R–––
3π

4R–––
3π

A =    R2
–––––
4

π

Ixc = Iyc = 0.05488R4

Ixyc = –0.01647R4

A =    R2
–––––
2

π

Ixc = 0.1098R4

Iyc = 0.3927R4

Ixyc = 0

A = ab–––
2

Ixc =

Ixyc =       (b – 2d)

ba3
–––-–
36

ba2
–––––
72

A =   R2

   R4
–––––
4

πIxc = Iyc = 

Ixyc = 0

πA = ba

1–––
12

Ixc =      ba3

Iyc =      ab3

Ixyc = 0

1–––
12

c

y
x

R R

4R–––
3π

c

y
x

b + d–––––––
3

b

a––
3

d

a

R

c

y

x
Rc

y

x

b––
2

b––
2

a––
2

a––
2

(a) Rectangle (b) Circle

(c) Semicircle (d) Triangle

(e) Quarter circle

1Recall that the parallel axis theorem for the product of inertia of an area states that the product of inertia with respect to an orthogonal

set of axes 1x–y coordinate system2 is equal to the product of inertia with respect to an orthogonal set of axes parallel to the original set

and passing through the centroid of the area, plus the product of the area and the x and y coordinates of the centroid of the area. Thus,

Ixy � Ixyc � Axcyc.

The resultant fluid
force does not pass
through the cen-
troid of the area.

FRleft

FRright

c

Gate
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F l u i d s  i n  t h e  N e w s

The Three Gorges Dam The Three Gorges Dam being con-

structed on China’s Yangtze River will contain the world’s

largest hydroelectric power plant when in full operation. The

dam is of the concrete gravity type, having a length of 2309 me-

ters with a height of 185 meters. The main elements of the pro-

ject include the dam, two power plants, and navigation facilities

consisting of a ship lock and lift. The power plants will contain

26 Francis type turbines, each with a capacity of 700 megawatts.

The spillway section, which is the center section of the dam, is

483 meters long with 23 bottom outlets and 22 surface sluice

gates. The maximum discharge capacity is 102,500 cubic meters

per second. After more than 10 years of construction, the dam

gates were finally closed, and on June 10, 2003, the reservoir

had been filled to its interim level of 135 meters. Due to the

large depth of water at the dam and the huge extent of the stor-

age pool, hydrostatic pressure forces have been a major factor

considered by engineers. When filled to its normal pool level of

175 meters, the total reservoir storage capacity is 39.3 billion

cubic meters. The project is scheduled for completion in 2009.

(See Problem 2.79.)

Hydrostatic Force on a Plane Circular SurfaceEXAMPLE 2.6

GIVEN The 4-m-diameter circular gate of Fig. E2.6a is lo-

cated in the inclined wall of a large reservoir containing water

The gate is mounted on a shaft along its hor-

izontal diameter, and the water depth is 10 m above the shaft.

FIND Determine 

(a) the magnitude and location of the resultant force exerted

on the gate by the water and 

(b) the moment that would have to be applied to the shaft to

open the gate.

1g � 9.80 kN�m32.

SOLUTION

F I G U R E  E2.6a–c

x
y

c

A

A Center of
pressure

FR

�

M

Oy

Ox
c(a)

(c)

(b)

4 m

Shaft

Stop
10 m

60°

0 0

FR
c

y R

y c
 =

 
10

 m
––

––
––

––
–

si
n 

60
°

(a) To find the magnitude of the force of the water we can apply

Eq. 2.18,

and since the vertical distance from the fluid surface to the cen-

troid of the area is 10 m, it follows that

(Ans)

To locate the point 1center of pressure2 through which acts,

we use Eqs. 2.19 and 2.20,

For the coordinate system shown, since the area is sym-

metrical, and the center of pressure must lie along the diameter A-
A. To obtain we have from Fig. 2.18

and is shown in Fig. E2.6b. Thus,

 � 0.0866 m � 11.55 m � 11.6 m

 yR �
1p�42 12 m24

110 m�sin 60°2 14p m22
�

10 m

sin 60°

yc

Ixc �
pR4

4

yR,

xR � 0

xR �
Ixyc

yc A
� xc  yR �

Ixc

yc A
� yc

FR

 � 1230 � 103 N � 1.23 MN

 FR � 19.80 � 103 N�m32 110 m2 14p m22

FR � ghc A

and the distance 1along the gate2 below the shaft to the center of

pressure is

(Ans)

We can conclude from this analysis that the force on the gate due

to the water has a magnitude of 1.23 MN and acts through a point

along its diameter A-A at a distance of 0.0866 m 1along the gate2
below the shaft. The force is perpendicular to the gate surface as

shown in Fig. E2.6b.

COMMENT By repeating the calculations for various values

of the depth to the centroid, hc, the results shown in Fig. E2.6d are

obtained. Note that as the depth increases, the distance between

the center of pressure and the centroid decreases.

(b) The moment required to open the gate can be obtained with

the aid of the free-body diagram of Fig. E2.6c. In this diagram w

yR � yc � 0.0866 m
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is the weight of the gate and and are the horizontal and

vertical reactions of the shaft on the gate. We can now sum mo-

ments about the shaft

and, therefore,

(Ans) � 1.07 � 105 N # m

 � 11230 � 103 N2 10.0866 m2

 M � FR 1yR � yc2

a Mc � 0

OyOx 0.5

0.4

0.3

0.2

0.1

0
0 5 10 15

hc, m

y R
 –

 y
c,

 m

20 25 30

(10m, 0.0886 m)

F I G U R E  E2.6d

Hydrostatic Pressure Force on a Plane Triangular SurfaceEXAMPLE 2.7

GIVEN An aquarium contains seawater to a

depth of 1 ft as shown in Fig. E2.7a. To repair some damage to

one corner of the tank, a triangular section is replaced with a new

section as illustrated in Fig. E2.7b. 

1g � 64.0 lb�ft32

(a) The various distances needed to solve this problem are

shown in Fig. E2.7c. Since the surface of interest lies in a ver-

tical plane, and from Eq. 2.18 the magnitude

of the force is

(Ans)

COMMENT Note that this force is independent of the tank

length. The result is the same if the tank is 0.25 ft, 25 ft, or 25 miles

long. 

(b) The y coordinate of the center of pressure 1CP2 is found from

Eq. 2.19,

and from Fig. 2.18

yR �
Ixc

yc A
� yc

� 164.0 lb�ft32 10.9 ft2 3 10.3 ft22�2 4 � 2.59 lb

 FR � ghc A

yc � hc � 0.9 ft,

SOLUTION

FIND Determine 

(a) the magnitude of the force of the seawater on this triangular

area, and

(b) the location of this force.

F I G U R E  E2.7b–d

0.3 ft

0.3 ft

0.9 ft 2.5 ft

1 ft

(b)

(c) (d )

1 ft

0.1 ft

0.2 ft

0.1 ft 0.15 ft 0.15 ft

Median line

δ A
yR

xR

yc

y

x

c

CP

c

CP

F I G U R E  E2.7a (Photograph courtesy
of Tenecor Tanks, Inc.)
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2.9 Pressure Prism 63

2.9 Pressure Prism

An informative and useful graphical interpretation can be made for the force developed by a fluid

acting on a plane rectangular area. Consider the pressure distribution along a vertical wall of a tank

of constant width b, which contains a liquid having a specific weight Since the pressure must

vary linearly with depth, we can represent the variation as is shown in Fig. 2.19a, where the pres-

sure is equal to zero at the upper surface and equal to at the bottom. It is apparent from this

diagram that the average pressure occurs at the depth and therefore the resultant force acting

on the rectangular area is

which is the same result as obtained from Eq. 2.18. The pressure distribution shown in Fig. 2.19a
applies across the vertical surface so we can draw the three-dimensional representation of the pres-

sure distribution as shown in Fig. 2.19b. The base of this “volume” in pressure-area space is the

plane surface of interest, and its altitude at each point is the pressure. This volume is called the pres-
sure prism, and it is clear that the magnitude of the resultant force acting on the rectangular surface

is equal to the volume of the pressure prism. Thus, for the prism of Fig. 2.19b the fluid force is

where bh is the area of the rectangular surface, A.
The resultant force must pass through the centroid of the pressure prism. For the volume un-

der consideration the centroid is located along the vertical axis of symmetry of the surface, and at

a distance of above the base 1since the centroid of a triangle is located at above its base2.
This result can readily be shown to be consistent with that obtained from Eqs. 2.19 and 2.20.

h�3h�3

FR � volume �
1

2
 1gh2 1bh2 � g a

h

2
b A

FR � pav  A � g a
h

2
b A

A � bh
h�2,

gh

g.

FR

γ h

h

h–3

(a) (b)

γ h

h

FR

h–3

b

CP
p

F I G U R E  2.19
Pressure prism for vertical
rectangular area.

The magnitude of
the resultant fluid
force is equal to the
volume of the pres-
sure prism and
passes through its
centroid.

so that

(Ans)

Similarly, from Eq. 2.20

and from Fig. 2.18

Ixyc �
10.3 ft2 10.3 ft22

72
 10.3 ft2 �

0.0081

72
 ft4

xR �
Ixyc

yc A
� xc

 � 0.00556 ft � 0.9 ft � 0.906 ft

 yR �
0.0081�36 ft4

10.9 ft2 10.09�2 ft22
� 0.9 ft

Ixc �
10.3 ft2 10.3 ft23

36
�

0.0081

36
 ft4

so that

(Ans)

COMMENT Thus, we conclude that the center of pressure is

0.00278 ft to the right of and 0.00556 ft below the centroid of the

area. If this point is plotted, we find that it lies on the median line

for the area as illustrated in Fig. E2.7d. Since we can think of the

total area as consisting of a number of small rectangular strips of

area 1and the fluid force on each of these small areas acts

through its center2, it follows that the resultant of all these parallel

forces must lie along the median.

dA

xR �
0.0081�72 ft4

10.9 ft2 10.09�2 ft22
� 0 � 0.00278 ft
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This same graphical approach can be used for plane rectangular surfaces that do not extend

up to the fluid surface, as illustrated in Fig. 2.20a. In this instance, the cross section of the pres-

sure prism is trapezoidal. However, the resultant force is still equal in magnitude to the volume of

the pressure prism, and it passes through the centroid of the volume. Specific values can be ob-

tained by decomposing the pressure prism into two parts, ABDE and BCD, as shown in Fig. 2.20b.

Thus,

where the components can readily be determined by inspection for rectangular surfaces. The loca-

tion of can be determined by summing moments about some convenient axis, such as one pass-

ing through A. In this instance

and can be determined by inspection.

For inclined plane rectangular surfaces the pressure prism can still be developed, and the

cross section of the prism will generally be trapezoidal, as is shown in Fig. 2.21. Although it is usu-

ally convenient to measure distances along the inclined surface, the pressures developed depend

on the vertical distances as illustrated.

The use of pressure prisms for determining the force on submerged plane areas is convenient

if the area is rectangular so the volume and centroid can be easily determined. However, for other

nonrectangular shapes, integration would generally be needed to determine the volume and centroid.

In these circumstances it is more convenient to use the equations developed in the previous section,

in which the necessary integrations have been made and the results presented in a convenient and

compact form that is applicable to submerged plane areas of any shape.

The effect of atmospheric pressure on a submerged area has not yet been considered, and we

may ask how this pressure will influence the resultant force. If we again consider the pressure dis-

tribution on a plane vertical wall, as is shown in Fig. 2.22a, the pressure varies from zero at the

surface to at the bottom. Since we are setting the surface pressure equal to zero, we are usinggh

y1 and y2

FRyA � F1y1 � F2 y2

FR

FR � F1 � F2

h1

h2

p

(a) (b)

C D E

AB

FR

F2

F1

y1
yA

y2

(h2 - h1)γ

h1γ

F I G U R E  2.20
Graphical representation of
hydrostatic forces on a
vertical rectangular surface.

γ h2

h2

γ h1
h1

F I G U R E  2.21 Pressure variation
along an inclined plane area.

The use of the pres-
sure prism concept
to determine the
force on a sub-
merged area is best
suited for plane
rectangular 
surfaces.
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atmospheric pressure as our datum, and thus the pressure used in the determination of the fluid

force is gage pressure. If we wish to include atmospheric pressure, the pressure distribution will

be as is shown in Fig. 2.22b. We note that in this case the force on one side of the wall now con-

sists of as a result of the hydrostatic pressure distribution, plus the contribution of the atmos-

pheric pressure, where A is the area of the surface. However, if we are going to include the

effect of atmospheric pressure on one side of the wall, we must realize that this same pressure acts

on the outside surface 1assuming it is exposed to the atmosphere2, so that an equal and opposite force

will be developed as illustrated in the figure. Thus, we conclude that the resultant fluid force on the

surface is that due only to the gage pressure contribution of the liquid in contact with the surface—

the atmospheric pressure does not contribute to this resultant. Of course, if the surface pressure of

the liquid is different from atmospheric pressure 1such as might occur in a closed tank2, the resul-

tant force acting on a submerged area, A, will be changed in magnitude from that caused simply

by hydrostatic pressure by an amount where is the gage pressure at the liquid surface 1the

outside surface is assumed to be exposed to atmospheric pressure2.
psps A,

patm A,

FR

2.9 Pressure Prism 65

FR FR

patm patm

patmpatm A A

(a) (b)

h

h

γ

patm

p

F I G U R E  2.22 Effect of atmospheric pressure on the resultant
force acting on a plane vertical wall.

The resultant fluid
force acting on a
submerged area is
affected by the
pressure at the free
surface.

Use of the Pressure Prism ConceptEXAMPLE 2.8

GIVEN A pressurized tank contains oil and has a

square, 0.6-m by 0.6-m plate bolted to its side, as is illustrated in

Fig. E2.8a. The pressure gage on the top of the tank reads 50 kPa,

and the outside of the tank is at atmospheric pressure.

1SG � 0.902 FIND What is the magnitude and location of the resultant force

on the attached plate?

p = 50 kPa

Air

2 m

0.6 m

(a)

F1

FR

Plate
O

(h2 – h1)γ

0.2 m

F2

yO
0.3 m

0.6 m

h2 = 2.6 m
h1 = 2 m

h1γ
ps Oil surface

(b)

Oil

F I G U R E  E2.8
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The equations developed in Section 2.8 for the magnitude and location of the resultant force act-

ing on a submerged surface only apply to plane surfaces. However, many surfaces of interest

1such as those associated with dams, pipes, and tanks2 are nonplanar. The domed bottom of the

beverage bottle shown in the figure in the margin shows a typical curved surface example. Al-

though the resultant fluid force can be determined by integration, as was done for the plane sur-

faces, this is generally a rather tedious process and no simple, general formulas can be devel-

oped. As an alternative approach we will consider the equilibrium of the fluid volume enclosed

by the curved surface of interest and the horizontal and vertical projections of this surface.

For example, consider a curved portion of the swimming pool shown in Fig. 2.23a. We wish

to find the resultant fluid force acting on section BC (which has a unit length perpendicular to the

plane of the paper) shown in Fig. 2.23b. We first isolate a volume of fluid that is bounded by the

surface of interest, in this instance section BC, the horizontal plane surface AB, and the vertical

plane surface AC. The free-body diagram for this volume is shown in Fig. 2.23c. The magnitude

and location of forces can be determined from the relationships for planar surfaces. The

weight, is simply the specific weight of the fluid times the enclosed volume and acts through

the center of gravity 1CG2 of the mass of fluid contained within the volume. The forces 

represent the components of the force that the tank exerts on the fluid.
In order for this force system to be in equilibrium, the horizontal component must be

equal in magnitude and collinear with and the vertical component equal in magnitude and

collinear with the resultant of the vertical forces This follows since the three forces act-

ing on the fluid mass 1 the resultant of and the resultant force that the tank exerts on

the mass2 must form a concurrent force system. That is, from the principles of statics, it is known

that when a body is held in equilibrium by three nonparallel forces, they must be concurrent 1their

lines of action intersect at a common point2, and coplanar. Thus,

and the magnitude of the resultant is obtained from the equation

FR � 21FH2
2 � 1FV2

2

 FV � F1 �w

 FH � F2

F1 and w,F2,

F1 and w.

FVF2,

FH

FH and FV

w,

F1 and F2

2.10 Hydrostatic Force on a Curved Surface

SOLUTION

The pressure distribution acting on the inside surface of the plate is

shown in Fig. E2.8b. The pressure at a given point on the plate is

due to the air pressure, at the oil surface, and the pressure due to

the oil, which varies linearly with depth as is shown in the figure.

The resultant force on the plate 1having an area A2 is due to the com-

ponents, where F1 and F2 are due to the rectangular and

triangular portions of the pressure distribution, respectively. Thus,

and

 � 0.954 � 103 N

 � 10.902  19.81 � 103 N�m32  a
0.6 m

2
b 10.36 m22

 F2 � g a
h2 � h1

2
b A

 � 24.4 � 103 N

 � 10.902 19.81 � 103 N�m32 12 m2 4 10.36 m22
 � 350 � 103 N�m2

 F1 � 1
 
ps � gh12  

 A

F1 and F2,

ps,

The magnitude of the resultant force, is therefore

(Ans)

The vertical location of can be obtained by summing mo-

ments around an axis through point O so that

or

(Ans)

Thus, the force acts at a distance of 0.296 m above the bottom of

the plate along the vertical axis of symmetry.

COMMENT Note that the air pressure used in the calculation

of the force was gage pressure. Atmospheric pressure does not af-

fect the resultant force 1magnitude or location2, since it acts on

both sides of the plate, thereby canceling its effect.

 � 0.296 m

 yO �
124.4 � 103 N2 10.3 m2 � 10.954 � 103 N2 10.2 m2

25.4 � 103 N

FR yO � F110.3 m2 � F210.2 m2

FR

FR � F1 � F2 � 25.4 � 103 N � 25.4 kN

FR,

V2.5 Pop bottle
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2.10 Hydrostatic Force on a Curved Surface 67

F I G U R E  2.23 Hydrostatic
force on a curved surface.

CG

O

C

A B

FH

FV

F2

F1

�
A

C

B

(b) (c) (d)

O

B

C

 √(FH)2 + (FV)2FR =

(a)

The resultant passes through the point O, which can be located by summing moments about an

appropriate axis. The resultant force of the fluid acting on the curved surface BC is equal and op-

posite in direction to that obtained from the free-body diagram of Fig. 2.23c. The desired fluid

force is shown in Fig. 2.23d.

FR

Hydrostatic Pressure Force on a Curved SurfaceEXAMPLE 2.9

GIVEN A 6-ft-diameter drainage conduit of the type shown in

Fig. E2.9a is half full of water at rest, as shown in Fig. E2.9b.
FIND Determine the magnitude and line of action of the resul-

tant force that the water exerts on a 1-ft length of the curved sec-

tion BC of the conduit wall.

SOLUTION

F I G U R E  E2.9 (Photograph courtesy of CONTECH Construction Products, Inc.)

B

C

(b)

A B

C

FV

FHF1
1 ft

�

CG

(c)

1 ft

A

1.27 ft

O

FR = 523 lb

32.5°

(d)

3 ft
A

(a)

We first isolate a volume of fluid bounded by the curved section

BC, the horizontal surface AB, and the vertical surface AC, as

shown in Fig. E2.9c. The volume has a length of 1 ft. The forces

acting on the volume are the horizontal force, which acts on

the vertical surface AC, the weight, of the fluid contained

within the volume, and the horizontal and vertical components of

the force of the conduit wall on the fluid, respectively.

The magnitude of is found from the equation

and this force acts 1 ft above C as shown. The weight ,

where is the fluid volume, is

w � g V� � 162.4 lb�ft32  19p�4 ft22  11 ft2 � 441 lb

V�
w � gV�

F1 � ghc  A � 162.4 lb�ft32  132 ft2 13 ft22 � 281 lb

F1

FH and FV,

w,

F1,

and acts through the center of gravity of the mass of fluid, which

according to Fig. 2.18 is located 1.27 ft to the right of AC as

shown. Therefore, to satisfy equilibrium

and the magnitude of the resultant force is

(Ans)

The force the water exerts on the conduit wall is equal, but oppo-
site in direction, to the forces shown in Fig. E2.9c.

Thus, the resultant force on the conduit wall is shown in

Fig. E2.9d. This force acts through the point O at the angle shown.

FH and FV

 � 21281 lb22 � 1441 lb22 � 523 lb

 FR � 21FH2
2 � 1FV2

2

FH � F1 � 281 lb  FV �w � 441 lb
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This same general approach can also be used for determining the force on curved surfaces

of pressurized, closed tanks. If these tanks contain a gas, the weight of the gas is usually negli-

gible in comparison with the forces developed by the pressure. Thus, the forces 1such as 

in Fig. 2.23c2 on horizontal and vertical projections of the curved surface of interest can simply

be expressed as the internal pressure times the appropriate projected area.

F1 and F2

68 Chapter 2 ■ Fluid Statics

2.11.1 Archimedes’ Principle

When a stationary body is completely submerged in a fluid 1such as the hot air balloon shown in

the figure in the margin2, or floating so that it is only partially submerged, the resultant fluid force

acting on the body is called the buoyant force. A net upward vertical force results because pres-

sure increases with depth and the pressure forces acting from below are larger than the pressure

forces acting from above. This force can be determined through an approach similar to that used

in the previous section for forces on curved surfaces. Consider a body of arbitrary shape, having

a volume that is immersed in a fluid as illustrated in Fig. 2.24a. We enclose the body in a par-

allelepiped and draw a free-body diagram of the parallelepiped with the body removed as shown

in Fig. 2.24b. Note that the forces and are simply the forces exerted on the plane

surfaces of the parallelepiped 1for simplicity the forces in the x direction are not shown2, is the

weight of the shaded fluid volume 1parallelepiped minus body2, and is the force the body is

exerting on the fluid. The forces on the vertical surfaces, such as are all equal and can-

cel, so the equilibrium equation of interest is in the z direction and can be expressed as

(2.21)

If the specific weight of the fluid is constant, then

where A is the horizontal area of the upper 1or lower2 surface of the parallelepiped, and Eq. 2.21

can be written as

Simplifying, we arrive at the desired expression for the buoyant force

(2.22)FB � gV�

FB � g1h2 � h12A � g 3 1h2 � h12A � V� 4

F2 � F1 � g1h2 � h12A

FB � F2 � F1 �w

F3 and F4,

FB

w

F4F1, F2, F3,

V�,

2.11 Buoyancy, Flotation, and Stability

(Photograph courtesy of

Cameron Balloons.)

COMMENT An inspection of this result will show that the line

of action of the resultant force passes through the center of the con-

duit. In retrospect, this is not a surprising result since at each point

on the curved surface of the conduit the elemental force due to the

pressure is normal to the surface, and each line of action must pass

through the center of the conduit. It therefore follows that the resul-

tant of this concurrent force system must also pass through the cen-

ter of concurrence of the elemental forces that make up the system.

F l u i d s  i n  t h e  N e w s

Miniature, exploding pressure vessels Our daily lives are safer

because of the effort put forth by engineers to design safe, light-

weight pressure vessels such as boilers, propane tanks, and pop

bottles. Without proper design, the large hydrostatic pressure
forces on the curved surfaces of such containers could cause the

vessel to explode with disastrous consequences. On the other

hand, the world is a more friendly place because of miniature pres-

sure vessels that are designed to explode under the proper condi-

tions—popcorn kernels. Each grain of popcorn contains a small

amount of water within the special, impervious hull (pressure ves-

sel) which, when heated to a proper temperature, turns to steam,

causing the kernel to explode and turn itself inside out. Not all

popcorn kernels have the proper properties to make them pop well.

First, the kernel must be quite close to 13.5% water. With too little

moisture, not enough steam will build up to pop the kernel; too

much moisture causes the kernel to pop into a dense sphere rather

than the light fluffy delicacy expected. Second, to allow the pres-

sure to build up, the kernels must not be cracked or damaged.

V2.6 Atmospheric
buoyancy
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2.11 Buoyancy, Flotation, and Stability 69

where is the specific weight of the fluid and is the volume of the body. The direction of the

buoyant force, which is the force of the fluid on the body, is opposite to that shown on the free-

body diagram. Therefore, the buoyant force has a magnitude equal to the weight of the fluid dis-

placed by the body and is directed vertically upward. This result is commonly referred to as

Archimedes’ principle in honor of Archimedes 1287–212 B.C.2, a Greek mechanician and mathe-

matician who first enunciated the basic ideas associated with hydrostatics.

The location of the line of action of the buoyant force can be determined by summing moments

of the forces shown on the free-body diagram in Fig. 2.24b with respect to some convenient axis. For

example, summing moments about an axis perpendicular to the paper through point D we have

and on substitution for the various forces

(2.23)

where is the total volume The right-hand side of Eq. 2.23 is the first 

moment of the displaced volume with respect to the x–z plane so that is equal to the y co-

ordinate of the centroid of the volume In a similar fashion it can be shown that the x coordi-

nate of the buoyant force coincides with the x coordinate of the centroid. Thus, we conclude that

the buoyant force passes through the centroid of the displaced volume as shown in Fig. 2.24c.

The point through which the buoyant force acts is called the center of buoyancy.

V�.

ycV�
1h2 � h12A.V�T

V�yc � V�Ty1 � 1V�T � V�2  y2

FByc � F2 y1 � F1y1 �wy2

V�g

F I G U R E  2.24 Buoyant force on submerged and floating bodies.

h2 

h1 

A B

CD

A B

CD

(a)

(b)

(c)

(d)

x

y

z

y1

y2

yc
F3 F4FB

FB

FB

c

F2

F1

�

Centroid

Centroid
of displaced

volume

c

Archimedes’ princi-
ple states that the
buoyant force has a
magnitude equal to
the weight of the
fluid displaced by
the body and is
directed vertically
upward.

F l u i d s  i n  t h e  N e w s

Concrete canoes A solid block of concrete thrown into a pond or

lake will obviously sink. But, if the concrete is formed into the

shape of a canoe it can be made to float. Of course the reason the

canoe floats is the development of the buoyant force due to the

displaced volume of water. With the proper design, this vertical

force can be made to balance the weight of the canoe plus passen-

gers—the canoe floats. Each year since 1988 there is a National

Concrete Canoe Competition for university teams. It’s jointly

sponsored by the American Society of Civil Engineers and Master

Builders Inc. The canoes must be 90% concrete and are typically

designed with the aid of a computer by civil engineering students.

Final scoring depends on four components: a design report, an

oral presentation, the final product, and racing. For the 2007 com-

petition the University of Wisconsin’s team won for its fifth con-

secutive national championship with a 179-lb, 19.11-ft canoe.

(See Problem 2.107.)

V2.7 Cartesian
Diver
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These same results apply to floating bodies which are only partially submerged, as illustrated

in Fig. 2.24d, if the specific weight of the fluid above the liquid surface is very small compared

with the liquid in which the body floats. Since the fluid above the surface is usually air, for prac-

tical purposes this condition is satisfied.

In the derivations presented above, the fluid is assumed to have a constant specific weight,

If a body is immersed in a fluid in which varies with depth, such as in a layered fluid, the

magnitude of the buoyant force remains equal to the weight of the displaced fluid. However, the

buoyant force does not pass through the centroid of the displaced volume, but rather, it passes

through the center of gravity of the displaced volume.

gg.

V2.8 Hydrometer

Buoyant Force on a Submerged ObjectEXAMPLE 2.10

GIVEN The 0.4-lb lead fish sinker shown in Fig. E2.10a is at-

tached to a fishing line as shown in Fig. E2.10b. The specific

gravity of the sinker is SGsinker � 11.3.

FIND Determine the difference between the tension in the line

above and below the sinker.

SOLUTION

A free body diagram of the sinker is shown in Fig. E.10b, where

is the weight of the sinker, FB is the buoyant force acting on the

sinker, and TA and TB are the tensions in the line above and below

the sinker, respectively. For equilibrium it follows that

(1)

Also,

(2)

where is the specific weight of water and is the volume of the

sinker. From Eq. 2.22,

(3)

By combining Eqs. 2 and 3 we obtain

(4)FB �w�SGsinker

FB � gV�

V�g

w � gsinker V� � gSGsinker V�

TA � TB �w � FB

w

Hence, from Eqs. 1 and 4 the difference in the tensions is

(5)

(Ans)

COMMENTS Note that if the sinker were raised out of the

water, the difference in tension would equal the entire weight of

the sinker (TA � TB � 0.4 lb) rather than the 0.365 lb when it is

in the water. Thus, since the sinker material is significantly heav-

ier than water, the buoyant force is relatively unimportant. As

seen from Eq. 5, as SGsinker becomes very large, the buoyant force

becomes insignificant, and the tension difference becomes nearly

equal to the weight of the sinker. On the other hand, if SGsinker � 1,

then TA � TB � 0 and the sinker is no longer a “sinker.” It is neu-

trally buoyant and no external force from the line is required to

hold it in place.

� 0.4 lb 31 � 11�11.32 4 � 0.365 lb

TA � TB �w �w�SGsinker �w 31 � 11�SGsinker2 4

F I G U R E  E2.10

(a)

�

FB

TA

TB

Pressure
envelope

�

TB

(b) (c)

TA
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2.11 Buoyancy, Flotation, and Stability 71

2.11.2 Stability

Another interesting and important problem associated with submerged or floating bodies is con-

cerned with the stability of the bodies. As illustrated by the figure in the margin, a body is said to

be in a stable equilibrium position if, when displaced, it returns to its equilibrium position. Con-

versely, it is in an unstable equilibrium position if, when displaced 1even slightly2, it moves to a

new equilibrium position. Stability considerations are particularly important for submerged or float-

ing bodies since the centers of buoyancy and gravity do not necessarily coincide. A small rotation

can result in either a restoring or overturning couple. For example, for the completely submerged

body shown in Fig. 2.25, which has a center of gravity below the center of buoyancy, a rotation

from its equilibrium position will create a restoring couple formed by the weight, and the buoy-

ant force, which causes the body to rotate back to its original position. Thus, for this configu-

ration the body is stable. It is to be noted that as long as the center of gravity falls below the cen-

ter of buoyancy, this will always be true; that is, the body is in a stable equilibrium position with

respect to small rotations. However, as is illustrated in Fig. 2.26, if the center of gravity of the

completely submerged body is above the center of buoyancy, the resulting couple formed by the

weight and the buoyant force will cause the body to overturn and move to a new equilibrium po-

sition. Thus, a completely submerged body with its center of gravity above its center of buoyancy

is in an unstable equilibrium position.

For floating bodies the stability problem is more complicated, since as the body rotates the

location of the center of buoyancy 1which passes through the centroid of the displaced volume2 may

FB,

w,

Stable

Unstable

The stability of a
body can be deter-
mined by consider-
ing what happens
when it is displaced
from its equilibrium
position.

F I G U R E  2.25
Stability of a completely immersed
body—center of gravity below
centroid.

F I G U R E  2.26
Stability of a completely immersed
body—center of gravity above
centroid.

FB FB
c c

CG CG

� �

Restoring
couple

Stable

FB FB

c c
CG CG

� �

Overturning
couple

Unstable

In this example we replaced the hydrostatic pressure force on the body by the buoyant force,

FB. Another correct free-body diagram of the sinker is shown in Fig. E2.20c. The net effect of

the pressure forces on the surface of the sinker is equal to the upward force of magnitude FB (the

buoyant force). Do not include both the buoyant force and the hydrostatic pressure effects in your

calculations—use one or the other.

F l u i d s  i n  t h e  N e w s

Explosive Lake In 1986 a tremendous explosion of carbon diox-

ide (CO2) from Lake Nyos, west of Cameroon, killed more than

1700 people and livestock. The explosion resulted from a build up

of CO2 that seeped into the high pressure water at the bottom of the

lake from warm springs of CO2-bearing water. The CO2-rich water

is heavier than pure water and can hold a volume of CO2 more than

five times the water volume. As long as the gas remains dissolved

in the water, the stratified lake (i.e., pure water on top, CO2 water

on the bottom) is stable. But if some mechanism causes the gas

bubbles to nucleate, they rise, grow, and cause other bubbles to

form, feeding a chain reaction. A related phenomenon often occurs

when a pop bottle is shaken and then opened. The pop shoots from

the container rather violently. When this set of events occurred in

Lake Nyos, the entire lake overturned through a column of rising

and expanding buoyant bubbles. The heavier-than-air CO2 then

flowed through the long, deep valleys surrounding the lake and as-

phyxiated human and animal life caught in the gas cloud. One vic-

tim was 27 km downstream from the lake.

V2.9 Stability of a
floating cube
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change. As is shown in Fig. 2.27, a floating body such as a barge that rides low in the water can be

stable even though the center of gravity lies above the center of buoyancy. This is true since as the

body rotates the buoyant force, shifts to pass through the centroid of the newly formed displaced

volume and, as illustrated, combines with the weight, to form a couple which will cause the

body to return to its original equilibrium position. However, for the relatively tall, slender body

shown in Fig. 2.28, a small rotational displacement can cause the buoyant force and the weight to

form an overturning couple as illustrated.

It is clear from these simple examples that the determination of the stability of submerged or

floating bodies can be difficult since the analysis depends in a complicated fashion on the particular

geometry and weight distribution of the body. Thus, although both the relatively narrow kayak and

the wide houseboat shown in the figures in the margin are stable, the kayak will overturn much more

easily than the houseboat. The problem can be further complicated by the necessary inclusion of other

types of external forces such as those induced by wind gusts or currents. Stability considerations are

obviously of great importance in the design of ships, submarines, bathyscaphes, and so forth, and

such considerations play a significant role in the work of naval architects 1see, for example, Ref. 62.

w,

FB,

72 Chapter 2 ■ Fluid Statics

F I G U R E  2.27 Stability of a floating body—stable configuration.

�

FB

c
CG

Restoring
couple

c' = centroid of new
displaced volume

c = centroid of original
displaced volume

Stable

�

FB

c'
CG

F I G U R E  2.28 Stability of a
floating body—unstable configuration.

� �

CGCG

c c'

FB FB

Overturning
couple

c' = centroid of new
displaced volume

c = centroid of original
displaced volume

Unstable

Although in this chapter we have been primarily concerned with fluids at rest, the general equa-

tion of motion 1Eq. 2.22

was developed for both fluids at rest and fluids in motion, with the only stipulation being that there

were no shearing stresses present. Equation 2.2 in component form, based on rectangular coordi-

nates with the positive z axis being vertically upward, can be expressed as

(2.24)

A general class of problems involving fluid motion in which there are no shearing stresses

occurs when a mass of fluid undergoes rigid-body motion. For example, if a container of fluid ac-

celerates along a straight path, the fluid will move as a rigid mass 1after the initial sloshing mo-

tion has died out2 with each particle having the same acceleration. Since there is no deformation,

�
0p

0x
� rax  �

0p

0y
� ray  �

0p

0z
� g � raz

�§p � gk̂ � ra

2.12 Pressure Variation in a Fluid with Rigid-Body Motion

Marginally stable

Very stable

Even though a fluid
may be in motion, if
it moves as a rigid
body there will be
no shearing
stresses present.

V2.10 Stability of a
model barge
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2.12 Pressure Variation in a Fluid with Rigid-Body Motion 73

there will be no shearing stresses and, therefore, Eq. 2.2 applies. Similarly, if a fluid is contained

in a tank that rotates about a fixed axis, the fluid will simply rotate with the tank as a rigid body,

and again Eq. 2.2 can be applied to obtain the pressure distribution throughout the moving fluid.

Specific results for these two cases 1rigid-body uniform motion and rigid-body rotation2 are devel-

oped in the following two sections. Although problems relating to fluids having rigid-body motion

are not, strictly speaking, “fluid statics” problems, they are included in this chapter because, as we

will see, the analysis and resulting pressure relationships are similar to those for fluids at rest.

2.12.1 Linear Motion

We first consider an open container of a liquid that is translating along a straight path with a constant

acceleration a as illustrated in Fig. 2.29. Since , it follows from the first of Eqs. 2.24 that the

pressure gradient in the x direction is zero In the y and z directions

(2.25)

(2.26)

The change in pressure between two closely spaced points located at y, z, and can

be expressed as

or in terms of the results from Eqs. 2.25 and 2.26

(2.27)

Along a line of constant pressure, and therefore from Eq. 2.27 it follows that the slope of

this line is given by the relationship

(2.28)

This relationship is illustrated by the figure in the margin. Along a free surface the pressure is con-

stant, so that for the accelerating mass shown in Fig. 2.29 the free surface will be inclined if 

In addition, all lines of constant pressure will be parallel to the free surface as illustrated.

ay � 0.

dz

dy
� �

ay

g � az

dp � 0,

dp � �ray dy � r1g � az2 dz

dp �
0p

0y
 dy �

0p

0z
 dz

y � dy, z � dz

 
0p

0z
� �r1g � az2

 
0p

0y
� �ray

10p�0x � 02.
ax � 0

z

dz

dy

ay

y

g + az

ay

g

(a)

F I G U R E  2.29 Linear acceleration of a liquid with a free surface.

Free surface
slope = dz/dy

p1
p2
p3

az

ay

y

z

x

Constant
pressure

lines

a

(b)

(c)

There is no shear
stress in fluids that
move with rigid-
body motion or
with rigid-body 
rotation.

JWCL068_ch02_038-092.qxd  8/19/08  10:16 PM  Page 73



74 Chapter 2 ■ Fluid Statics

For the special circumstance in which which corresponds to the mass of

fluid accelerating in the vertical direction, Eq. 2.28 indicates that the fluid surface will be hor-

izontal. However, from Eq. 2.26 we see that the pressure distribution is not hydrostatic, but is

given by the equation

For fluids of constant density this equation shows that the pressure will vary linearly with depth,

but the variation is due to the combined effects of gravity and the externally induced acceleration,

rather than simply the specific weight Thus, for example, the pressure along the bot-

tom of a liquid-filled tank which is resting on the floor of an elevator that is accelerating upward

will be increased over that which exists when the tank is at rest 1or moving with a constant veloc-

ity2. It is to be noted that for a freely falling fluid mass the pressure gradients in all

three coordinate directions are zero, which means that if the pressure surrounding the mass is zero,

the pressure throughout will be zero. The pressure throughout a “blob” of orange juice floating in

an orbiting space shuttle 1a form of free fall2 is zero. The only force holding the liquid together is

surface tension 1see Section 1.92.

1az � �g2,

rg.r1g � az2,

dp

dz
� �r 1g � az2

ay � 0, az � 0,
The pressure distri-
bution in a fluid
mass that is accel-
erating along a
straight path is not
hydrostatic.

Pressure Variation in an Accelerating TankEXAMPLE 2.11

GIVEN The cross section for the fuel tank of an experimental

vehicle is shown in Fig. E2.11. The rectangular tank is vented to

the atmosphere and the specific gravity of the fuel is SG � 0.65.

A pressure transducer is located in its side as illustrated. During

testing of the vehicle, the tank is subjected to a constant linear ac-

celeration,

FIND (a) Determine an expression that relates and the pres-

sure at the transducer. (b) What is the maximum acceler-

ation that can occur before the fuel level drops below the trans-

ducer?

1in lb�ft22
ay

ay.

SOLUTION

(a) For a constant horizontal acceleration the fuel will move as

a rigid body, and from Eq. 2.28 the slope of the fuel surface can

be expressed as

since Thus, for some arbitrary the change in depth, of

liquid on the right side of the tank can be found from the equation

or

Since there is no acceleration in the vertical, z, direction, the

pressure along the wall varies hydrostatically as shown by Eq.

2.26. Thus, the pressure at the transducer is given by the rela-

tionship

p � gh

z1 � 10.75 ft2  a
ay

g
b

�
z1

0.75 ft
� �

ay

g

z1,ay,az � 0.

dz

dy
� �

ay

g

where h is the depth of fuel above the transducer, and therefore

(Ans)

for As written, p would be given in 

(b) The limiting value for 1when the fuel level reaches

the transducer2 can be found from the equation

or

and for standard acceleration of gravity

(Ans)

COMMENT Note that the pressure in horizontal layers is not

constant in this example since Thus, for exam-

ple, p1 � p2.

0p�0y � �ray � 0.

1ay2max � 2
3 132.2 ft�s22 � 21.5 ft�s2

1ay2max �
2g

3

0.5 ft � 10.75 ft2 c
1ay2max

g
d

1ay2max

lb�ft2.z1 	 0.5 ft.

 � 20.3 � 30.4 

ay

g

 p � 10.652 162.4 lb�ft32 30.5 ft � 10.75 ft2 1ay�g2 4

F I G U R E  E2.11

ay Vent

Air

Fuel

(1)(2)

0.75 ft 0.75 ft

Transducer

0.5 ft
z1

y

z

JWCL068_ch02_038-092.qxd  8/19/08  10:16 PM  Page 74



2.12 Pressure Variation in a Fluid with Rigid-Body Motion 75

2.12.2 Rigid-Body Rotation

After an initial “start-up” transient, a fluid contained in a tank that rotates with a constant angular

velocity about an axis as is shown in Fig. 2.30 will rotate with the tank as a rigid body. It is

known from elementary particle dynamics that the acceleration of a fluid particle located at a dis-

tance r from the axis of rotation is equal in magnitude to and the direction of the acceleration

is toward the axis of rotation, as is illustrated in the figure. Since the paths of the fluid particles

are circular, it is convenient to use cylindrical polar coordinates r, and z, defined in the insert in

Fig. 2.30. It will be shown in Chapter 6 that in terms of cylindrical coordinates the pressure gra-

dient can be expressed as

(2.29)

Thus, in terms of this coordinate system

and from Eq. 2.2

(2.30)

These results show that for this type of rigid-body rotation, the pressure is a function of two vari-

ables r and z, and therefore the differential pressure is

or

(2.31)

On a horizontal plane (dz � 0), it follows from Eq. 2.31 that dp dr � ��2r, which is greater than

zero. Hence, as illustrated in the figure in the margin, because of centrifugal acceleration, the pres-

sure increases in the radial direction. 

Along a surface of constant pressure, such as the free surface, so that from Eq. 2.31

1using 2

Integration of this result gives the equation for surfaces of constant pressure as

(2.32)z �
v2r 2

2g
� constant

dz

dr
�

rv2

g

g � rg
dp � 0,

�

 dp � rrv2 dr � g dz

 dp �
0p

0r
 dr �

0p

0z
 dz

0p

0r
� rrv2  

0p

0u
� 0  

0p

0z
� �g

ar � �rv2 êr  au � 0  az � 0

§p �
0p

0r
 êr �

1

r
 
0p

0u
 êu �

0p

0z
 êz

§p

u,

rv2,

vA fluid contained in
a tank that is rotat-
ing with a constant
angular velocity
about an axis will
rotate as a rigid
body.

z = constant
p

r

dr

dp

dr
dp
––– = rw2r

F I G U R E  2.30 Rigid-body rotation of a liquid in a tank. (Photograph courtesy of Geno Pawlak.)

θ
θ

r

x

y

z

er

ez

e

ar = r   2ω

ω

r
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rotation

(b) (c)(a)

ω
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F I G U R E  2.31 Pressure
distribution in a rotating liquid.

76 Chapter 2 ■ Fluid Statics

This equation reveals that these surfaces of constant pressure are parabolic, as illustrated in Fig. 2.31.

Integration of Eq. 2.31 yields

or

(2.33)

where the constant of integration can be expressed in terms of a specified pressure at some arbi-

trary point This result shows that the pressure varies with the distance from the axis of ro-

tation, but at a fixed radius, the pressure varies hydrostatically in the vertical direction as shown

in Fig. 2.31.

r0, z0.

p �
rv2r 2

2
� gz � constant

�  dp � rv2
 �  r dr � g �  dz

Constant
pressure

lines

p1

p2

p3

p4

p1

p2

p3
p4

   2r2____
2g

ω

r

y

x

z

The free surface in
a rotating liquid is
curved rather than
flat.

EXAMPLE 2.12

GIVEN It has been suggested that the angular velocity, of a

rotating body or shaft can be measured by attaching an open

cylinder of liquid, as shown in Fig. E2.12a, and measuring with

some type of depth gage the change in the fluid level,

caused by the rotation of the fluid. 

FIND Determine the relationship between this change in fluid

level and the angular velocity.

H � h0,

v,

SOLUTION

cylindrical shell is taken at some arbitrary radius, r, and its vol-

ume is

dV� � 2prh dr

Free Surface Shape of Liquid in a Rotating Tank

F I G U R E  E2.12

r

hH

R

r

h0
h

dr

(b)(a)

ω

0

z

Depth
gage

Initial
depth

The height, h, of the free surface above the tank bottom can be de-

termined from Eq. 2.32, and it follows that

The initial volume of fluid in the tank, is equal to

The volume of the fluid with the rotating tank can be found with

the aid of the differential element shown in Fig. E2.12b. This

V�i � pR2H

V�i,

h �
v2r2

2g
� h0
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2.13 Chapter Summary and Study Guide

In this chapter the pressure variation in a fluid at rest is considered, along with some impor-

tant consequences of this type of pressure variation. It is shown that for incompressible fluids

at rest the pressure varies linearly with depth. This type of variation is commonly referred to

as hydrostatic pressure distribution. For compressible fluids at rest the pressure distribution will

not generally be hydrostatic, but Eq. 2.4 remains valid and can be used to determine the pres-

sure distribution if additional information about the variation of the specific weight is specified.

The distinction between absolute and gage pressure is discussed along with a consideration of

barometers for the measurement of atmospheric pressure.

Pressure measuring devices called manometers, which utilize static liquid columns, are

analyzed in detail. A brief discussion of mechanical and electronic pressure gages is also

included. Equations for determining the magnitude and location of the resultant fluid force

acting on a plane surface in contact with a static fluid are developed. A general approach for

determining the magnitude and location of the resultant fluid force acting on a curved surface

in contact with a static fluid is described. For submerged or floating bodies the concept of the

buoyant force and the use of Archimedes’ principle are reviewed.

The following checklist provides a study guide for this chapter. When your study of the

entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type

in the text.

calculate the pressure at various locations within an incompressible fluid at rest.

calculate the pressure at various locations within a compressible fluid at rest using Eq. 2.4

if the variation in the specific weight is specified.

use the concept of a hydrostatic pressure distribution to determine pressures from measure-

ments using various types of manometers.

determine the magnitude, direction, and location of the resultant hydrostatic force acting on a

plane surface.

2.13 Chapter Summary and Study Guide 77

Pascal’s law 
surface force 
body force 
incompressible fluid 
hydrostatic pressure

distribution 
pressure head 
compressible fluid 
U.S. standard 

atmosphere 
absolute pressure 
gage pressure 
vacuum pressure 
barometer 
manometer 
Bourdon pressure

gage 
center of pressure 
buoyant force 
Archimedes’ principle 
center of buoyancy

The total volume is, therefore,

Since the volume of the fluid in the tank must remain constant 1as-

suming that none spills over the top2, it follows that

pR 2H �
pv2R 4

4g
� pR2h0

V� � 2p�
R

0

 r      a
v2r2

2g
� h0b dr �

pv2R 4

4g
� pR2h0

or

(Ans)

COMMENT This is the relationship we were looking for. It

shows that the change in depth could indeed be used to determine

the rotational speed, although the relationship between the

change in depth and speed is not a linear one.

H � h0 �
v2R2

4g

F l u i d s  i n  t h e  N e w s

Rotating mercury mirror telescope A telescope mirror has the

same shape as the parabolic free surface of a liquid in a rotating
tank. The liquid mirror telescope (LMT) consists of a pan of liquid

(normally mercury because of its excellent reflectivity) rotating to

produce the required parabolic shape of the free surface mirror. With

recent technological advances, it is possible to obtain the vibration-

free rotation and the constant angular velocity necessary to produce

a liquid mirror surface precise enough for astronomical use. Con-

struction of the largest LMT, located at the University of British

Columbia, has recently been completed. With a diameter of 6 ft and

a rotation rate of 7 rpm, this mirror uses 30 liters of mercury for its

1-mm thick, parabolic-shaped mirror. One of the major benefits of a

LMT (compared to a normal glass mirror telescope) is its low cost.

Perhaps the main disadvantage is that a LMT can look only straight

up, although there are many galaxies, supernova explosions, and

pieces of space junk to view in any part of the sky. The next genera-

tion LMTs may have movable secondary mirrors to allow a larger

portion of the sky to be viewed. (See Problem 2.121.)
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Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems des-
ignated with a 1 2 are “open-ended” problems and require crit-
ical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.†

Problems

78 Chapter 2 ■ Fluid Statics

determine the magnitude, direction, and location of the resultant hydrostatic force acting on

a curved surface.

use Archimedes’ principle to calculate the resultant hydrostatic force acting on floating or

submerged bodies.

analyze, based on Eq. 2.2, the motion of fluids moving with simple rigid-body linear motion

or simple rigid-body rotation.

Some of the important equations in this chapter are:

Pressure gradient in a stationary fluid (2.4)

Pressure variation in a stationary incompressible fluid (2.7)

Hydrostatic force on a plane surface (2.18)

Location of hydrostatic force on a plane surface (2.19)

(2.20)

Buoyant force (2.22)

Pressure gradient in rigid-body motion (2.24)

Pressure gradient in rigid-body rotation (2.30)
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Problems 79

Section 2.3 Pressure Variation in a Fluid at Rest

2.1 Obtain a photograph/image of a situation in which the fact
that in a static fluid the pressure increases with depth is important.
Print this photo and write a brief paragraph that describes the
situation involved.

2.2 A closed, 5-m-tall tank is filled with water to a depth of 4 m.
The top portion of the tank is filled with air which, as indicated by
a pressure gage at the top of the tank, is at a pressure of 20 kPa.
Determine the pressure that the water exerts on the bottom of the tank.

2.3 A closed tank is partially filled with glycerin. If the air
pressure in the tank is 6 lb/in.2 and the depth of glycerin is 10 ft,
what is the pressure in lb/ft2 at the bottom of the tank?

2.4 Blood pressure is usually given as a ratio of the maximum
pressure (systolic pressure) to the minimum pressure (diastolic
pressure). As shown in Video V2.2, such pressures are commonly
measured with a mercury manometer. A typical value for this ratio
for a human would be where the pressures are in mm Hg.
(a) What would these pressures be in pascals? (b) If your car tire
was inflated to 120 mm Hg, would it be sufficient for normal driving?

2.5 An unknown immiscible liquid seeps into the bottom of an
open oil tank. Some measurements indicate that the depth of the
unknown liquid is 1.5 m and the depth of the oil (specific
weight floating on top is 5.0 m. A pressure gage
connected to the bottom of the tank reads 65 kPa. What is the
specific gravity of the unknown liquid?

2.6 Bathyscaphes are capable of submerging to great depths in the
ocean. What is the pressure at a depth of 5 km, assuming that
seawater has a constant specific weight of Express
your answer in pascals and psi.

2.7 For the great depths that may be encountered in the ocean the
compressibility of seawater may become an important consideration.
(a) Assume that the bulk modulus for seawater is constant and
derive a relationship between pressure and depth which takes into
account the change in fluid density with depth. (b) Make use of
part (a) to determine the pressure at a depth of 6 km assuming
seawater has a bulk modulus of and a density of

at the surface. Compare this result with that obtained
by assuming a constant density of 

2.8 Sometimes when riding an elevator or driving up or down a
hilly road a person’s ears “pop” as the pressure difference between
the inside and outside of the ear is equalized. Determine the
pressure difference (in psi) associated with this phenomenon if it
occurs during a 150 ft elevation change.

2.9 Develop an expression for the pressure variation in a liquid in
which the specific weight increases with depth, h, as 
where K is a constant and is the specific weight at the free surface.

*2.10 In a certain liquid at rest, measurements of the specific
weight at various depths show the following variation:

g0

g � Kh � g0,

1030 kg�m3.

1030 kg�m3
2.3 � 109 Pa

10.1 kN�m3?

� 8.5 kN�m32

120�70,

The depth corresponds to a free surface at atmospheric pres-
sure. Determine, through numerical integration of Eq. 2.4, the cor-
responding variation in pressure and show the results on a plot of
pressure (in psf) versus depth (in feet).

†2.11 Because of elevation differences, the water pressure in the
second floor of your house is lower than it is in the first floor. For
tall buildings this pressure difference can become unacceptable. Dis-
cuss possible ways to design the water distribution system in very tall
buildings so that the hydrostatic pressure difference is within accept-
able limits.

*2.12 Under normal conditions the temperature of the atmosphere
decreases with increasing elevation. In some situations, however,
a temperature inversion may exist so that the air temperature in-
creases with elevation. A series of temperature probes on a moun-
tain give the elevation–temperature data shown in the table below.
If the barometric pressure at the base of the mountain is 12.1 psia,
determine by means of numerical integration the pressure at the
top of the mountain.

†2.13 Although it is difficult to compress water, the density of
water at the bottom of the ocean is greater than that at the surface
because of the higher pressure at depth. Estimate how much higher
the ocean’s surface would be if the density of seawater were
instantly changed to a uniform density equal to that at the surface.

2.14 (See Fluids in the News article titled “Giraffe’s blood pres-
sure,” Section 2.3.1.) (a) Determine the change in hydrostatic pres-
sure in a giraffe’s head as it lowers its head from eating leaves 6 m
above the ground to getting a drink of water at ground level as
shown in Fig. P2.14. Assume the specific gravity of blood is

. (b) Compare the pressure change calculated in part (a) to
the normal 120 mm of mercury pressure in a human’s heart.
SG � 1

h � 0

h (ft) ( )

0 70
10 76
20 84
30 91
40 97
50 102
60 107
70 110
80 112
90 114

100 115

lb�ft3G

Elevation (ft) Temperature ( )

5000 50.1 1base2
5500 55.2
6000 60.3
6400 62.6
7100 67.0
7400 68.4
8200 70.0
8600 69.5
9200 68.0
9900 67.1 1top2

�F

6 m

Water

F I G U R E  P2.14
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Mercury

Water hw

hm

hm

Section 2.4 Standard Atmosphere

2.15 Assume that a person skiing high in the mountains at an
altitude of 15,000 ft takes in the same volume of air with each
breath as she does while walking at sea level. Determine the ratio
of the mass of oxygen inhaled for each breath at this high altitude
compared to that at sea level.

2.16 Pikes Peak near Denver, Colorado, has an elevation of
14,110 ft. (a) Determine the pressure at this elevation, based on
Eq. 2.12. (b) If the air is assumed to have a constant specific weight
of what would the pressure be at this altitude?
(c) If the air is assumed to have a constant temperature of 
what would the pressure be at this elevation? For all three cases
assume standard atmospheric conditions at sea level (see Table 2.1).

2.17 Equation 2.12 provides the relationship between pressure and
elevation in the atmosphere for those regions in which the
temperature varies linearly with elevation. Derive this equation and
verify the value of the pressure given in Table C.2 in Appendix C
for an elevation of 5 km.

2.18 As shown in Fig. 2.6 for the U.S. standard atmosphere, the
troposphere extends to an altitude of 11 km where the pressure is
22.6 kPa (abs). In the next layer, called the stratosphere, the
temperature remains constant at Determine the pressure
and density in this layer at an altitude of 15 km. Assume

in your calculations. Compare your results with
those given in Table C.2 in Appendix C.

2.19 (See Fluids in the News article titled “Weather, barometers,
and bars,” Section  2.5.) The record low sea-level barometric pres-
sure ever recorded is 25.8 in. of mercury. At what altitude in the
standard atmosphere is the pressure equal to this value?

Section 2.5 Measurement of Pressure

2.20 On a given day, a barometer at the base of the Washington
Monument reads 29.97 in. of mercury. What would the barometer
reading be when you carry it up to the observation deck 500 ft
above the base of the monument?

2.21 Bourdon gages (see Video V2.3 and Fig. 2.13) are commonly
used to measure pressure. When such a gage is attached to the
closed water tank of Fig. P2.21 the gage reads 5 psi. What is the
absolute air pressure in the tank? Assume standard atmospheric
pressure of 14.7 psi.

g � 9.77 m�s2

�56.5 °C.

59 °F,

0.07647 lb�ft3,

2.22 On the suction side of a pump a Bourdon pressure gage reads
40 kPa vacuum. What is the corresponding absolute pressure if the
local atmospheric pressure is 100 kPa (abs)?

Section 2.6 Manometry
2.23 Obtain a photograph/image of a situation in which the use of
a manometer is important. Print this photo and write a brief
paragraph that describes the situation involved.

2.24 A water-filled U-tube manometer is used to measure the pressure
inside a tank that contains air. The water level in the U-tube on the side
that connects to the tank is 5 ft above the base of the tank. The water
level in the other side of the U-tube (which is open to the atmosphere)
is 2 ft above the base. Determine the pressure within the tank.

2.25 A barometric pressure of 29.4 in. Hg corresponds to what
value of atmospheric pressure in psia, and in pascals?

2.26 For an atmospheric pressure of 101 kPa (abs) determine the
heights of the fluid columns in barometers containing one of the
following liquids: (a) mercury, (b) water, and (c) ethyl alcohol.
Calculate the heights including the effect of vapor pressure, and
compare the results with those obtained neglecting vapor pressure.
Do these results support the widespread use of mercury for
barometers? Why?

2.27 A mercury manometer is connected to a large reservoir of
water as shown in Fig. P2.27. Determine the ratio, hw �hm, of the
distances hw and hm indicated in the figure.

F I G U R E  P2.21

Air

Water
15 20

25

30

35

10

5

0

12 in.

Bourdon gage

6 in.

2.28 A U-tube manometer is connected to a closed tank containing
air and water as shown in Fig. P2.28. At the closed end of the

F I G U R E  P2.28

Pressure
gage

Air

Water

Air pressure = 16 psia

Gage fluid
(   = 90 lb/ft3)γ

Closed valve

4 ft

2 ft
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manometer the air pressure is 16 psia. Determine the reading on the
pressure gage for a differential reading of 4 ft on the manometer.
Express your answer in psi (gage). Assume standard atmospheric
pressure and neglect the weight of the air columns in the manometer.

2.29 A closed cylindrical tank filled with water has a hemispherical
dome and is connected to an inverted piping system as shown in Fig.
P2.29. The liquid in the top part of the piping system has a specific
gravity of 0.8, and the remaining parts of the system are filled with
water. If the pressure gage reading at A is 60 kPa, determine: (a) the
pressure in pipe B, and (b) the pressure head, in millimeters of
mercury, at the top of the dome (point C).

the tank is oil . The pressure at point A is 2.00 psi.
Determine: (a) the depth of oil, z, and (b) the differential reading, h,
on the manometer.

2.32 For the inclined-tube manometer of Fig. P2.32 the pressure
in pipe A is 0.6 psi. The fluid in both pipes A and B is water, and
the gage fluid in the manometer has a specific gravity of 2.6. What
is the pressure in pipe B corresponding to the differential reading
shown?

1g � 54.0 lb�ft32

2.33 A flowrate measuring device is installed in a horizontal
pipe through which water is flowing. A U-tube manometer is
connected to the pipe through pressure taps located 3 in. on either
side of the device. The gage fluid in the manometer has a specific
weight of . Determine the differential reading of the
manometer corresponding to a pressure drop between the taps
of 

2.34 Small differences in gas pressures are commonly measured
with a micromanometer of the type illustrated in Fig. P2.34. This
device consists of two large reservoirs each having a cross-
sectional area which are filled with a liquid having a specific
weight and connected by a U-tube of cross-sectional area
containing a liquid of specific weight When a differential gas
pressure, is applied, a differential reading, h, develops.
It is desired to have this reading sufficiently large (so that it can
be easily read) for small pressure differentials. Determine the
relationship between h and when the area ratio is
small, and show that the differential reading, h, can be magnified
by making the difference in specific weights, small.
Assume that initially (with ) the fluid levels in the two
reservoirs are equal.

p1 � p2

g2 � g1,

At�Arp1 � p2

p1 � p2,
g2.

Atg1

Ar

0.5 lb/in.2.

112 lb/ft3

2.35 The cyclindrical tank with hemispherical ends shown in Fig.
P2.35 contains a volatile liquid and its vapor. The liquid density is

and its vapor density is negligible. The pressure in the
vapor is 120 kPa (abs), and the atmospheric pressure is 101 kPa
(abs). Determine: (a) the gage pressure reading on the pressure
gage; and (b) the height, h, of the mercury manometer.

800 kg�m3,
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pA =
60 kPa

Water

B

2 m

4 m

3 m

3 m

SG = 0.8

Water

Hemispherical dome

C

A

2.30 Two pipes are connected by a manometer as shown in Fig.
P2.30. Determine the pressure difference, between the pipes.pA � pB,

2.31 A U-tube manometer is connected to a closed tank as shown in
Fig. P2.31. The air pressure in the tank is 0.50 psi and the liquid in

Gage fluid
(SG = 2.6)

1.3 m

0.5 m

0.6 m

Water

Water

B

A

F I G U R E  P2.30

F I G U R E  P2.31

Open
Air

Oil

A

z

h

2 ft

SG = 3.05

F I G U R E  P2.32

Water

Water

8 in.

30°
3 in.

3 in.

A

B

SG = 2.6

h

p1 p2

2γ

1γ1γ
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2.36 Determine the elevation difference, between the water
levels in the two open tanks shown in Fig. P2.36.

¢h,

2.37 For the configuration shown in Fig. P2.37 what must be the
value of the specific weight of the unknown fluid? Express your
answer in .lb/ft3

2.38 An air-filled, hemispherical shell is attached to the ocean
floor at a depth of 10 m as shown in Fig. P2.38. A mercury
barometer located inside the shell reads 765 mm Hg, and a
mercury U-tube manometer designed to give the outside water
pressure indicates a differential reading of 735 mm Hg as
illustrated. Based on these data what is the atmospheric pressure
at the ocean surface?

*2.39 Both ends of the U-tube mercury manometer of Fig. P2.39
are initially open to the atmosphere and under standard atmospheric
pressure. When the valve at the top of the right leg is open, the level
of mercury below the valve is After the valve is closed, air pressure
is applied to the left leg. Determine the relationship between the
differential reading on the manometer and the applied gage pressure,

Show on a plot how the differential reading varies with for
50, 75, and 100 mm over the range 

Assume that the temperature of the trapped air remains constant.
0 	 pg 	 300 kPa.hi � 25,

pgpg.

hi.
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1 m

1 m

h
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1 m

0.4 m

Δh

SG = 0.90

Water
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3.3 in.

1.4 in.

5.5 in.
4.9 in.
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Mercury

Shell

Seawater
Shell wall

Ocean surface

735 mm

360 mm 10 m

F I G U R E  P2.39

Mercury

hi

pg
Valve

2.40 The inverted U-tube manometer of Fig. P2.40 contains oil
and water as shown. The pressure differential between

pipes A and B, is . Determine the differential
reading, h.

�5 kPapA � pB,
1SG � 0.92

F I G U R E  P2.40

A

Water

Oil

h
0.2 m

0.3 m

B

2.41 An inverted U-tube manometer containing oil (SG � 0.8) is
located between two reservoirs as shown in Fig. P2.41. The
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reservoir on the left, which contains carbon tetrachloride, is closed
and pressurized to 8 psi. The reservoir on the right contains water
and is open to the atmosphere. With the given data, determine the
depth of water, h, in the right reservoir.

2.42 Determine the pressure of the water in pipe A shown in Fig.
P2.42 if the gage pressure of the air in the tank is 2 psi.

2.43 In Fig. P2.43 pipe A contains gasoline , pipe B
contains oil , and the manometer fluid is mercury.
Determine the new differential reading if the pressure in pipe A is
decreased 25 kPa, and the pressure in pipe B remains constant. The
initial differential reading is 0.30 m as shown.

1SG � 0.92
1SG � 0.72

2.44 The inclined differential manometer of Fig. P2.44 contains
carbon tetrachloride. Initially the pressure differential between
pipes A and B, which contain a brine is zero as
illustrated in the figure. It is desired that the manometer give a
differential reading of 12 in. (measured along the inclined tube)
for a pressure differential of 0.1 psi. Determine the required angle
of inclination, u.

1SG � 1.12,

2.45 Determine the new differential reading along the inclined leg
of the mercury manometer of Fig. P2.45, if the pressure in pipe A
is decreased 10 kPa and the pressure in pipe B remains unchanged.
The fluid in A has a specific gravity of 0.9 and the fluid in B is
water.

2.46 Determine the change in the elevation of the mercury in the
left leg of the manometer of Fig. P2.46 as a result of an increase
in pressure of 5 psi in pipe A while the pressure in pipe B remains
constant.

2.47 The U-shaped tube shown in Fig. P2.47 initially contains
water only. A second liquid with specific weight, , less than water
is placed on top of the water with no mixing occurring. Can the

g
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0.7 ft

1 ft

Water
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Brine

12 in.

Carbon
tetrachloride
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B

θ
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50 mm

Mercury

Water
SG = 0.9
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A

B
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      in.

diameter

1_
2
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B
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height, h, of the second liquid be adjusted so that the left and right
levels are at the same height? Provide proof of your answer.

*2.48 An inverted hollow cylinder is pushed into the water as is
shown in Fig. P2.48. Determine the distance, that the water rises
in the cylinder as a function of the depth, d, of the lower edge of the
cylinder. Plot the results for when H is equal to 1 m. As-
sume the temperature of the air within the cylinder remains constant.

0 � d � H,

/,

Section 2.8 Hydrostatic Force on a Plane Surface (Also
see Lab Problems 2.122, 2.123, 2.124, and 2.125.)

2.49 Obtain a photograph/image of a situation in which the
hydrostatic force on a plane surface is important. Print this photo
and write a brief paragraph that describes the situation involved.

*2.50 A Bourdon gage (see Fig. 2.13 and Video V2.3) is often
used to measure pressure. One way to calibrate this type of gage
is to use the arrangement shown in Fig. P2.50a. The container is
filled with a liquid and a weight, �, placed on one side with the
gage on the other side. The weight acting on the liquid through a
0.4-in.-diameter opening creates a pressure that is transmitted to
the gage. This arrangement, with a series of weights, can be used
to determine what a change in the dial movement, in Fig. P2.50b,
corresponds to in terms of a change in pressure. For a particular
gage, some data are given below. Based on a plot of these data,
determine the relationship between and the pressure, p, where p
is measured in psi.

� (lb) 0 1.04 2.00 3.23 4.05 5.24 6.31
(deg.) 0 20 40 60 80 100 120u

u

u,

2.51 You partially fill a glass with water, place an index card on
top of the glass, and then turn the glass upside down while holding
the card in place. You can then remove your hand from the card
and the card remains in place, holding the water in the glass.
Explain how this works.

2.52 A piston having a cross-sectional area of is located
in a cylinder containing water as shown in Fig. P2.52. An open
U-tube manometer is connected to the cylinder as shown. For

what is the value of the applied
force, P, acting on the piston? The weight of the piston is
negligible.

h1 � 60 mm and h � 100 mm,

0.07 m2

2.53 A 6-in.-diameter piston is located within a cylinder which is

connected to a -diameter inclined-tube manometer as shown in

Fig. P2.53. The fluid in the cylinder and the manometer is oil

When a weight, , is placed on the

top of the cylinder, the fluid level in the manometer tube rises from

point (1) to (2). How heavy is the weight? Assume that the change

in position of the piston is negligible.

w1specific weight � 59 lb�ft32.

1
2-in.

2.54 A circular 2-m-diameter gate is located on the sloping side
of a swimming pool. The side of the pool is oriented 60� relative
to the horizontal bottom, and the center of the gate is located 
3 m below the water surface. Determine the magnitude of the
water force acting on the gate and the point through which it
acts.

2.55 A vertical rectangular gate is 8 ft wide and 10 ft long and
weighs 6000 lb. The gate slides in vertical slots in the side of a
reservoir containing water. The coefficient of friction between the
slots and the gate is 0.03. Determine the minimum vertical force
required to lift the gate when the water level is 4 ft above the top
edge of the gate.

2.56 A horizontal 2-m-diameter conduit is half filled with a
liquid (SG � 1.6) and is capped at both ends with plane vertical
surfaces. The air pressure in the conduit above the liquid surface
is 200 kPa. Determine the resultant force of the fluid acting on
one of the end caps, and locate this force relative to the bottom
of the conduit.

2.57 Forms used to make a concrete basement wall are shown in
Fig. P2.57. Each 4-ft-long form is held together by four ties—two
at the top and two at the bottom as indicated. Determine the tension
in the upper and lower ties. Assume concrete acts as a fluid with
a weight of 150 lb�ft3.

2.58 A structure is attached to the ocean floor as shown in Fig.
P2.58. A 2-m-diameter hatch is located in an inclined wall and
hinged on one edge. Determine the minimum air pressure, p1,
within the container that will open the hatch. Neglect the weight
of the hatch and friction in the hinge.
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2.59 A long, vertical wall separates seawater from freshwater. If
the seawater stands at a depth of 7 m, what depth of freshwater is
required to give a zero resultant force on the wall? When the
resultant force is zero will the moment due to the fluid forces be
zero? Explain.

2.60 A pump supplies water under pressure to a large tank as
shown in Fig. P2.60. The circular-plate valve fitted in the short
discharge pipe on the tank pivots about its diameter A–A and is
held shut against the water pressure by a latch at B. Show that the
force on the latch is independent of the supply pressure, p, and the
height of the tank, h.

in Fig. P2.61. Water acts against the gate which is hinged at point
A. Friction in the hinge is negligible. Determine the tension in the
cable.

†2.62 Sometimes it is difficult to open an exterior door of a
building because the air distribution system maintains a pressure
difference between the inside and outside of the building. Estimate
how big this pressure difference can be if it is “not too difficult”
for an average person to open the door.

2.63 An area in the form of an isosceles triangle with a base width
of 6 ft and an altitude of 8 ft lies in the plane forming one wall of
a tank which contains a liquid having a specific weight of

The side slopes upward, making an angle of with
the horizontal. The base of the triangle is horizontal and the vertex
is above the base. Determine the resultant force the fluid exerts on
the area when the fluid depth is 20 ft above the base of the triangu-
lar area. Show, with the aid of a sketch, where the center of pres-
sure is located.

2.64 Solve Problem 2.63 if the isosceles triangle is replaced with
a right triangle having the same base width and altitude as the
isosceles triangle.

2.65 A vertical plane area having the shape shown in Fig. P2.65 is
immersed in an oil bath . Deter-
mine the magnitude of the resultant force acting on one side of the
area as a result of the oil.

1specific weight � 8.75 kN�m32

60°79.8 lb�ft3.
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2.61 A homogeneous, 4-ft-wide, 8-ft-long rectangular gate weigh-
ing 800 lb is held in place by a horizontal flexible cable as shown

2.66 A 3-m-wide, 8-m-high rectangular gate is located at the
end of a rectangular passage that is connected to a large open
tank filled with water as shown in Fig. P2.66. The gate is hinged
at its bottom and held closed by a horizontal force, , located
at the center of the gate. The maximum value for 
(a) Determine the maximum water depth, h, above the center 
of the gate that can exist without the gate opening. (b) Is the 
answer the same if the gate is hinged at the top? Explain your
answer.

FH is 3500 kN.

FH
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2.67 A gate having the cross section shown in Fig. P2.67 closes an
opening 5 ft wide and 4 ft high in a water reservoir. The gate weighs
500 lb and its center of gravity is 1 ft to the left of AC and 2 ft above
BC. Determine the horizontal reaction that is developed on the gate
at C.

2.68 The massless, 4-ft-wide gate shown in Fig. P2.68 pivots
about the frictionless hinge O. It is held in place by the 2000 lb
counterweight, W. Determine the water depth, h.

*2.69 A 200-lb homogeneous gate of 10-ft width and 5-ft
length is hinged at point A and held in place by a 12-ft-long
brace as shown in Fig. P2.69. As the bottom of the brace is
moved to the right, the water level remains at the top of the
gate. The line of action of the force that the brace exerts on the
gate is along the brace. (a) Plot the magnitude of the force
exerted on the gate by the brace as a function of the angle of
the gate, (b) Repeat the calculations for the
case in which the weight of the gate is negligible. Comment on
the results as uS 0.

u, for 0 	 u 	 90°.

2.70 An open tank has a vertical partition and on one side contains
gasoline with a density at a depth of 4 m, as shown
in Fig. P2.70. A rectangular gate that is 4 m high and 2 m wide and
hinged at one end is located in the partition. Water is slowly added
to the empty side of the tank. At what depth, h, will the gate start to
open?

r � 700 kg�m3

2.71 A 4-ft by 3-ft massless rectangular gate is used to close the
end of the water tank shown in Fig. P2.71. A 200 lb weight attached
to the arm of the gate at a distance from the frictionless hinge is
just sufficient to keep the gate closed when the water depth is 2 ft,
that is, when the water fills the semicircular lower portion of the
tank. If the water were deeper the gate would open. Determine the
distance ./

/

2.72 A rectangular gate that is 2 m wide is located in the vertical
wall of a tank containing water as shown in Fig. P2.72. It is desired
to have the gate open automatically when the depth of water above
the top of the gate reaches 10 m. (a) At what distance, d, should the

F I G U R E  P2.66

Hinge

FH

h

4 m

4 m

F I G U R E  P2.67

Water
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A
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h
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�

F I G U R E  P2.68

12 ft
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Gate5 ft
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A
θ

Moveable
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F I G U R E  P2.69

Stop

Partition

Hinge

Water Gasoline
4 m

h

F I G U R E  P2.70

F I G U R E  P2.71

Gate
200 lb

Hinge Hinge�

Water

2 ft
radius

3 ft

4 ft

1 ft

F I G U R E  P2.72

Water

10 m

4 m

d
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Problems 87

frictionless horizontal shaft be located? (b) What is the magnitude
of the force on the gate when it opens?

2.73 A thin 4-ft-wide, right-angle gate with negligible mass is free
to pivot about a frictionless hinge at point O, as shown in Fig.
P2.73. The horizontal portion of the gate covers a 1-ft-diameter
drain pipe which contains air at atmospheric pressure. Determine
the minimum water depth, h, at which the gate will pivot to allow
water to flow into the pipe.

contains a spout that is closed by a 6-in.-diameter circular gate
that is hinged along one side as illustrated. The horizontal axis of
the hinge is located 10 ft below the water surface. Determine the
minimum torque that must be applied at the hinge to hold the
gate shut. Neglect the weight of the gate and friction at the hinge.

2.77 A 4-ft-tall, 8-in.-wide concrete (150 lb�ft3) retaining wall is
built as shown in Fig. P2.77. During a heavy rain, water fills the
space between the wall and the earth behind it to a depth h. Deter-
mine the maximum depth of water possible without the wall tipping
over. The wall simply rests on the ground without being anchored
to it.

2.79 (See Fluids in the News article titled “The Three Gorges
Dam,” Section 2.8.) (a) Determine the horizontal hydrostatic force
on the 2309-m-long Three Gorges Dam when the average depth of
the water against it is 175 m. (b) If all of the 6.4 billion people on
Earth were to push horizontally against the Three Gorges Dam,
could they generate enough force to hold it in place? Support your
answer with appropriate calculations.

Section 2.10 Hydrostatic Force on a Curved Surface

2.80 Obtain a photograph/image of a situation in which the
hydrostatic force on a curved surface is important. Print this
photo and write a brief paragraph that describes the situation
involved.

F I G U R E  P2.73

Water

Hinge

Right-angle gate

Width = 4 ft

1-ft-diameter pipe

O

h

3 ft

F I G U R E  P2.77

8 in.

h

4 ft

F I G U R E  P2.76

Water

Air

10 psi

Axis

6-in.-diameter
gate

3
4

10 ft

F I G U R E  P2.78

pB =   hγ

pA =   hTγ

AB
Water

Water

h

hT = 10 ft

80 ft

�

2.74 An open rectangular tank is 2 m wide and 4 m long. The
tank contains water to a depth of 2 m and oil on top of
the water to a depth of 1 m. Determine the magnitude and location
of the resultant fluid force acting on one end of the tank.

*2.75 An open rectangular settling tank contains a liquid suspen-
sion that at a given time has a specific weight that varies
approximately with depth according to the following data:

The depth corresponds to the free surface. Determine, by
means of numerical integration, the magnitude and location of the
resultant force that the liquid suspension exerts on a vertical wall of
the tank that is 6 m wide. The depth of fluid in the tank is 3.6 m.

2.76 The closed vessel of Fig. P2.76 contains water with an air
pressure of 10 psi at the water surface. One side of the vessel

h � 0

1SG � 0.82

h (m) ( )

0 10.0
0.4 10.1
0.8 10.2
1.2 10.6
1.6 11.3
2.0 12.3
2.4 12.7
2.8 12.9
3.2 13.0
3.6 13.1

N�m3G

*2.78 Water backs up behind a concrete dam as shown in
Fig. P2.78. Leakage under the foundation gives a pressure distribu-
tion under the dam as indicated. If the water depth, h, is too great,
the dam will topple over about its toe (point A). For the dimensions
given, determine the maximum water depth for the following widths
of the dam: Base your analysis on a
unit length of the dam. The specific weight of the concrete is

150 lb�ft3.

/ � 20, 30, 40, 50, and 60 ft.
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F I G U R E  P2.84

P

6 ft

Gate

Hinge

H

Water

2.85 The air pressure in the top of the 2-liter pop bottle shown in
Video V2.5 and Fig. P2.85 is 40 psi, and the pop depth is 10 in. The
bottom of the bottle has an irregular shape with a diameter of 4.3 in.
(a) If the bottle cap has a diameter of 1 in. what is the magnitude of
the axial force required to hold the cap in place? (b) Determine the
force needed to secure the bottom 2 in. of the bottle to its cylindri-
cal sides. For this calculation assume the effect of the weight of the
pop is negligible. (c) By how much does the weight of the pop in-
crease the pressure 2 in. above the bottom? Assume the pop has the
same specific weight as that of water.

2.86 Hoover Dam (see Video 2.4) is the highest arch-gravity type
of dam in the United States. A cross section of the dam is shown in
Fig. P2.86(a). The walls of the canyon in which the dam is located
are sloped, and just upstream of the dam the vertical plane shown in
Figure P2.86(b) approximately represents the cross section of the
water acting on the dam. Use this vertical cross section to estimate
the resultant horizontal force of the water on the dam, and show
where this force acts.

2.87 A plug in the bottom of a pressurized tank is conical in shape,
as shown in Fig. P2.87. The air pressure is 40 kPa and the liquid inF I G U R E  P2.83

Sphere diameter = 3 ftVent

Cable

12 in.
10 in.

1-in. diameter

4.3-in. diameter

pair = 40 psi

F I G U R E  P2.85

45 ft

727 ft

660 ft

715 ft.

(b)(a)

880 ft

290 ft

F I G U R E  P2.86

Air

Liquid

40 kPa

3 m

1 m

60°

F I G U R E  P2.87

F I G U R E  P2.82

h

Area = A Area = A

2.81 A 2-ft-diameter hemispherical plexiglass “bubble” is to be
used as a special window on the side of an above-ground swimming
pool. The window is to be bolted onto the vertical wall of the pool
and faces outward, covering a 2-ft-diameter opening in the wall.
The center of the opening is 4 ft below the surface. Determine the
horizontal and vertical components of the force of the water on the
hemisphere.

2.82 Two round, open tanks containing the same type of fluid rest
on a table top as shown in Fig. P2.82. They have the same bottom
area, A, but different shapes. When the depth, h, of the liquid in
the two tanks is the same, the pressure force of the liquids on the
bottom of the two tanks is the same. However, the force that the
table exerts on the two tanks is different because the weight in each
of the tanks is different. How do you account for this apparent
paradox?

2.83 Two hemispherical shells are bolted together as shown in Fig.
P2.83. The resulting spherical container, which weighs 300 lb, is
filled with mercury and supported by a cable as shown. The
container is vented at the top. If eight bolts are symmetrically located
around the circumference, what is the vertical force that each bolt
must carry?

2.84 The 18-ft-long gate of Fig. P2.84 is a quarter circle and is
hinged at H. Determine the horizontal force, P, required to hold
the gate in place. Neglect friction at the hinge and the weight of
the gate.

JWCL068_ch02_038-092.qxd  8/19/08  10:17 PM  Page 88



Problems 89

the tank has a specific weight of Determine the magni-
tude, direction, and line of action of the force exerted on the curved
surface of the cone within the tank due to the 40-kPa pressure and
the liquid.

2.88 The homogeneous gate shown in Fig. P2.88 consists of one

quarter of a circular cylinder and is used to maintain a water depth

of 4 m. That is, when the water depth exceeds 4 m, the gate opens

slightly and lets the water flow under it. Determine the weight of

the gate per meter of length.

27 kN�m3.

2.89 The concrete seawall of Fig.
P2.89 has a curved surface and restrains seawater at a depth of 24 ft.
The trace of the surface is a parabola as illustrated. Determine the
moment of the fluid force (per unit length) with respect to an axis
through the toe (point A).

1specific weight � 150 lb�ft32

2.90 A cylindrical tank with its axis horizontal has a diameter of
2.0 m and a length of 4.0 m. The ends of the tank are vertical planes.
A vertical, 0.1-m-diameter pipe is connected to the top of the tank.
The tank and the pipe are filled with ethyl alcohol to a level of 1.5 m
above the top of the tank. Determine the resultant force of the
alcohol on one end of the tank and show where it acts.

2.91 If the tank ends in Problem 2.90 are hemispherical, what is
the magnitude of the resultant horizontal force of the alcohol on
one of the curved ends?

2.92 An open tank containing water has a bulge in its vertical side
that is semicircular in shape as shown in Fig. P2.92. Determine the
horizontal and vertical components of the force that the water ex-
erts on the bulge. Base your analysis on a 1-ft length of the bulge.

2.93 A closed tank is filled with water and has a 4-ft-diameter hemi-
spherical dome as shown in Fig. P2.93. A U-tube manometer is con-
nected to the tank. Determine the vertical force of the water on the
dome if the differential manometer reading is 7 ft and the air pressure
at the upper end of the manometer is 12.6 psi.

2.94 A 3-m-diameter open cylindrical tank contains water and has a
hemispherical bottom as shown in Fig. P2.94. Determine the magni-
tude, line of action, and direction of the force of the water on the
curved bottom.

2.95 Three gates of negligible weight are used to hold back water
in a channel of width b as shown in Fig. P2.95 on the next page. The
force of the gate against the block for gate (b) is R. Determine (in
terms of R) the force against the blocks for the other two gates.

Section 2.11 Buoyancy, Flotation, and Stability

2.96 Obtain a photograph/image of a situation in which
Archimedes’ principle is important. Print this photo and write a
brief paragraph that describes the situation involved.

2.97 A freshly cut log floats with one fourth of its volume pro-
truding above the water surface. Determine the specific weight of
the log.

F I G U R E  P2.88

4 m

1 m

Pivot

F I G U R E  P2.92

6 ft

3 ft

Water Bulge

F I G U R E  P2.93
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y
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A
x

y = 0.2x2
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Water
8 m

3 m
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90 Chapter 2 ■ Fluid Statics

2.100 When the Tucurui Dam was constructed in northern
Brazil, the lake that was created covered a large forest of valuable
hardwood trees. It was found that even after 15 years underwater
the trees were perfectly preserved and underwater logging was
started. During the logging process a tree is selected, trimmed,
and anchored with ropes to prevent it from shooting to the surface
like a missile when cut. Assume that a typical large tree can be ap-
proximated as a truncated cone with a base diameter of 8 ft, a top
diameter of 2 ft, and a height of 100 ft. Determine the resultant
vertical force that the ropes must resist when the completely sub-
merged tree is cut. The specific gravity of the wood is approxi-
mately 0.6.

†2.101 Estimate the minimum water depth needed to float a canoe
carrying two people and their camping gear. List all assumptions
and show all calculations.

F I G U R E  P2.99

2γ

1γ

V

Δh

(a) (b)

F I G U R E  P2.104
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h

(a) (b)
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2
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h

F I G U R E  P2.95
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Plastic bottleWater
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F I G U R E  P2.102

F I G U R E  P2.105

Fluid
surfaceHydrometer

2.98 A river barge, whose cross section is approximately rectan-
gular, carries a load of grain. The barge is 28 ft wide and 
90 ft long. When unloaded its draft (depth of submergence) 
is 5 ft, and with the load of grain the draft is 7 ft. Determine:
(a) the unloaded weight of the barge, and (b) the weight of the
grain.

2.99 A tank of cross-sectional area A is filled with a liquid of
specific weight as shown in Fig. P2.99a. Show that when a
cylinder of specific weight and volume V– is floated in the liq-
uid (see Fig. P2.99b), the liquid level rises by an amount
¢h � 1g2 � g12 V��A.

 g2

 g1

2.102 An inverted test tube partially filled with air floats in a plas-
tic water-filled soft drink bottle as shown in Video V2.7 and Fig.
P2.102. The amount of air in the tube has been adjusted so that it
just floats. The bottle cap is securely fastened. A slight squeezing of
the plastic bottle will cause the test tube to sink to the bottom of the
bottle. Explain this phenomenon.

2.103 An irregularly shaped piece of a solid material weighs 8.05 lb
in air and 5.26 lb when completely submerged in water. Determine
the density of the material.

2.104 A  1-m-diameter cylindrical mass, M, is connected to a 2-
m-wide rectangular gate as shown in Fig. P2.104. The gate is to
open when the water level, h, drops below 2.5 m. Determine the
required value for M. Neglect friction at the gate hinge and the
pulley. 

2.105 When a hydrometer (see Fig. P2.105 and Video V2.8) hav-
ing a stem diameter of 0.30 in. is placed in water, the stem pro-
trudes 3.15 in. above the water surface. If the water is replaced with
a liquid having a specific gravity of 1.10, how much of the stem
would protrude above the liquid surface? The hydrometer weighs
0.042 lb.
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2.106 A 2-ft-thick block constructed of wood (SG � 0.6) is sub-
merged in oil (SG � 0.8), and has a 2-ft-thick aluminum (specific
weight � 168 lb�ft3) plate attached to the bottom as indicated in Fig.
P2.106. Determine completely the force required to hold the block
in the position shown. Locate the force with respect to point A.

2.107 (See Fluids in the News article titled “Concrete canoe,”
Section 2.11.1.) How much extra water does a 147-lb concrete ca-
noe displace compared to an ultralightweight 38-lb Kevlar canoe of
the same size carrying the same load?

2.108 An iceberg (specific gravity 0.917) floats in the ocean (spe-
cific gravity 1.025). What percent of the volume of the iceberg is
under water?

Section 2.12 Pressure Variation in a Fluid 
with Rigid-Body Motion

2.109 Obtain a photograph/image of a situation in which the pres-
sure variation in a fluid with rigid-body motion is involved. Print
this photo and write a brief paragraph that describes the situation
involved.

2.110 It is noted that while stopping, the water surface in a glass of
water sitting in the cup holder of a car is slanted at an angle of 15º
relative to the horizontal street. Determine the rate at which the car
is decelerating.

2.111 An open container of oil rests on the flatbed of a truck that
is traveling along a horizontal road at As the truck slows
uniformly to a complete stop in 5 s, what will be the slope of the oil
surface during the period of constant deceleration?

2.112 A 5-gal, cylindrical open container with a bottom area of
is filled with glycerin and rests on the floor of an elevator.

(a) Determine the fluid pressure at the bottom of the container
when the elevator has an upward acceleration of (b) What
resultant force does the container exert on the floor of the elevator
during this acceleration? The weight of the container is negligible.
(Note: )

2.113 An open rectangular tank 1 m wide and 2 m long contains
gasoline to a depth of 1 m. If the height of the tank sides is 1.5 m,
what is the maximum horizontal acceleration (along the long axis of
the tank) that can develop before the gasoline would begin to spill?

2.114 If the tank of Problem 2.113 slides down a frictionless plane
that is inclined at with the horizontal, determine the angle the
free surface makes with the horizontal.

2.115 A closed cylindrical tank that is 8 ft in diameter and 24 ft
long is completely filled with gasoline. The tank, with its long axis
horizontal, is pulled by a truck along a horizontal surface. Deter-
mine the pressure difference between the ends (along the long axis
of the tank) when the truck undergoes an acceleration of 5 ft�s2.

30°

1 gal � 231 in.3

3 ft�s2.

120 in.2

55 mi�hr.

2.116 The open U-tube of Fig. P2.116 is partially filled with a liq-
uid. When this device is accelerated with a horizontal acceleration
a, a differential reading h develops between the manometer legs
which are spaced a distance apart. Determine the relationship be-
tween a, and h./,

/

F I G U R E  P2.106
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�
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6 ft

Δh

 = 7 rpmMercury ω

■ Lab Problems

2.122 This problem involves the force needed to open a gate that
covers an opening in the side of a water-filled tank. To proceed with
this problem, go to Appendix H which is located on the book’s web
site, www.wiley.com/college/munson.

2.117 An open 1-m-diameter tank contains water at a depth of 0.7
m when at rest. As the tank is rotated about its vertical axis the cen-
ter of the fluid surface is depressed. At what angular velocity will
the bottom of the tank first be exposed? No water is spilled from the
tank.

2.118 An open, 2-ft-diameter tank contains water to a depth of 3 ft
when at rest. If the tank is rotated about its vertical axis with an an-
gular velocity of 180 rev�min, what is the minimum height of the
tank walls to prevent water from spilling over the sides?

2.119 A child riding in a car holds a string attached to a floating,
helium-filled balloon. As the car decelerates to a stop, the balloon
tilts backwards. As the car makes a right-hand turn, the balloon
tilts to the right. On the other hand, the child tends to be forced
forward as the car decelerates and to the left as the car makes a
right-hand turn. Explain these observed effects on the balloon and
child.

2.120 A closed, 0.4-m-diameter cylindrical tank is completely
filled with oil and rotates about its vertical longitudinal
axis with an angular velocity of Determine the difference
in pressure just under the vessel cover between a point on the cir-
cumference and a point on the axis.

2.121 (See Fluids in the News article titled “Rotating mercury
mirror telescope,” Section 2.12.2.) The largest liquid mirror tele-
scope uses a 6-ft-diameter tank of mercury rotating at 7 rpm to pro-
duce its parabolic-shaped mirror as shown in Fig. P2.121. Deter-
mine the difference in elevation of the mercury, , between the
edge and the center of the mirror.

¢h

40 rad�s.
1SG � 0.92
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92 Chapter 2 ■ Fluid Statics

2.123 This problem involves the use of a cleverly designed appa-
ratus to investigate the hydrostatic pressure force on a submerged
rectangle. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

2.124 This problem involves determining the weight needed to hold
down an open-bottom box that has slanted sides when the box is filled
with water. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

2.125 This problem involves the use of a pressurized air pad to
provide the vertical force to support a given load. To proceed with
this problem, go to Appendix H which is located on the book’s web
site, www.wiley.com/college/munson.

■ Life Long Learning Problems

2.126 Although it is relatively easy to calculate the net hydrostatic
pressure force on a dam, it is not necessarily easy to design and
construct an appropriate, long-lasting, inexpensive dam. In fact, in-
spection of older dams has revealed that many of them are in peril
of collapse unless corrective action is soon taken. Obtain informa-
tion about the severity of the poor conditions of older dams
throughout the country. Summarize your findings in a brief report.

2.127 Over the years the demand for high-quality, first-growth
timber has increased dramatically. Unfortunately, most of the trees
that supply such lumber have already been harvested. Recently,
however, several companies have started to reclaim the numerous
high-quality logs that sank in lakes and oceans during the logging
boom times many years ago. Many of these logs are still in excel-
lent condition. Obtain information, particularly that associated with
the use of fluid mechanics concepts, about harvesting sunken logs.
Summarize your findings in a brief report.

2.128 Liquid-filled manometers and Bourdon tube pressure gages
have been the mainstay for measuring pressure for many, many
years. However, for many modern applications, these tried-and-true
devices are not sufficient. For example, many new uses need small,
accurate, inexpensive pressure transducers with digital outputs.
Obtain information about some of the new concepts used for pres-
sure measurement. Summarize your findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam question for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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CHAPTER OPENING PHOTO: Flow past a blunt body: On any object placed in a moving fluid there is a stag-

nation point on the front of the object where the velocity is zero. This location has a relatively large pres-

sure and divides the flow field into two portions—one flowing to the left, and one flowing to the right of

the body. 1Dye in water.2 1Photograph by B. R. Munson.2

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ discuss the application of Newton’s second law to fluid flows.

■ explain the development, uses, and limitations of the Bernoulli equation.

■ use the Bernoulli equation (stand-alone or in combination with the continuity

equation) to solve simple flow problems.

■ apply the concepts of static, stagnation, dynamic, and total pressures.

■ calculate various flow properties using the energy and hydraulic grade lines.

In this chapter we investigate some typical fluid motions (fluid dynamics) in an elementary way.

We will discuss in some detail the use of Newton’s second law (F � ma) as it is applied to fluid

particle motion that is “ideal” in some sense. We will obtain the celebrated Bernoulli equation

and apply it to various flows. Although this equation is one of the oldest in fluid mechanics and

the assumptions involved in its derivation are numerous, it can be used effectively to predict and

analyze a variety of flow situations. However, if the equation is applied without proper respect

for its restrictions, serious errors can arise. Indeed, the Bernoulli equation is appropriately called

“the most used and the most abused equation in fluid mechanics.”

A thorough understanding of the elementary approach to fluid dynamics involved in this chap-

ter will be useful on its own. It also provides a good foundation for the material in the following

chapters where some of the present restrictions are removed and “more nearly exact” results are

presented.

33Elementary Fluid 
Dynamics—The
Bernoulli Equation

Elementary Fluid 
Dynamics—The
Bernoulli Equation

The Bernoulli equa-
tion may be the most
used and abused
equation in fluid
mechanics.
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94 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

As a fluid particle moves from one location to another, it usually experiences an acceleration or de-

celeration. According to Newton’s second law of motion, the net force acting on the fluid particle

under consideration must equal its mass times its acceleration,

In this chapter we consider the motion of inviscid fluids. That is, the fluid is assumed to have zero

viscosity. If the viscosity is zero, then the thermal conductivity of the fluid is also zero and there

can be no heat transfer 1except by radiation2.
In practice there are no inviscid fluids, since every fluid supports shear stresses when it is

subjected to a rate of strain displacement. For many flow situations the viscous effects are rela-

tively small compared with other effects. As a first approximation for such cases it is often possi-

ble to ignore viscous effects. For example, often the viscous forces developed in flowing water

may be several orders of magnitude smaller than forces due to other influences, such as gravity or

pressure differences. For other water flow situations, however, the viscous effects may be the dom-

inant ones. Similarly, the viscous effects associated with the flow of a gas are often negligible, al-

though in some circumstances they are very important.

We assume that the fluid motion is governed by pressure and gravity forces only and exam-

ine Newton’s second law as it applies to a fluid particle in the form:

The results of the interaction between the pressure, gravity, and acceleration provide numerous use-

ful applications in fluid mechanics.

To apply Newton’s second law to a fluid 1or any other object2, we must define an appropri-

ate coordinate system in which to describe the motion. In general the motion will be three-

dimensional and unsteady so that three space coordinates and time are needed to describe it. There

are numerous coordinate systems available, including the most often used rectangular and

cylindrical systems shown by the figure in the margin. Usually the specific flow geometry

dictates which system would be most appropriate.

In this chapter we will be concerned with two-dimensional motion like that confined to the

x–z plane as is shown in Fig. 3.1a. Clearly we could choose to describe the flow in terms of the

components of acceleration and forces in the x and z coordinate directions. The resulting equations

are frequently referred to as a two-dimensional form of the Euler equations of motion in rectan-

gular Cartesian coordinates. This approach will be discussed in Chapter 6.

As is done in the study of dynamics 1Ref. 12, the motion of each fluid particle is described

in terms of its velocity vector, V, which is defined as the time rate of change of the position of the

particle. The particle’s velocity is a vector quantity with a magnitude 1the speed, 2 and di-

rection. As the particle moves about, it follows a particular path, the shape of which is governed

by the velocity of the particle. The location of the particle along the path is a function of where

the particle started at the initial time and its velocity along the path. If it is steady flow 1i.e., noth-

ing changes with time at a given location in the flow field2, each successive particle that passes

through a given point [such as point 112 in Fig. 3.1a] will follow the same path. For such cases the

V � 0V 0

1r, u, z2
1x, y, z2

1particle mass2 � 1particle acceleration2

1Net pressure force on a particle2 � 1net gravity force on particle2 �

F � ma

3.1 Newton’s Second Law

Inviscid fluid flow
is governed by
pressure and grav-
ity forces.

z

x

y

Rectangular
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x
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V
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n

Streamlines

F I G U R E  3.1 (a) Flow in the x–z plane. (b) Flow in terms of streamline and normal
coordinates.
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path is a fixed line in the x–z plane. Neighboring particles that pass on either side of point 112 fol-

low their own paths, which may be of a different shape than the one passing through 112. The entire

x–z plane is filled with such paths.

For steady flows each particle slides along its path, and its velocity vector is everywhere

tangent to the path. The lines that are tangent to the velocity vectors throughout the flow field

are called streamlines. For many situations it is easiest to describe the flow in terms of the

“streamline” coordinates based on the streamlines as are illustrated in Fig. 3.1b. The particle

motion is described in terms of its distance, along the streamline from some convenient

origin and the local radius of curvature of the streamline, The distance along the

streamline is related to the particle’s speed by and the radius of curvature is related

to the shape of the streamline. In addition to the coordinate along the streamline, s, the coordi-

nate normal to the streamline, n, as is shown in Fig. 3.1b, will be of use.

To apply Newton’s second law to a particle flowing along its streamline, we must write the

particle acceleration in terms of the streamline coordinates. By definition, the acceleration is the

time rate of change of the velocity of the particle, For two-dimensional flow in the x–z
plane, the acceleration has two components—one along the streamline, the streamwise accel-

eration, and one normal to the streamline, the normal acceleration.

The streamwise acceleration results from the fact that the speed of the particle generally

varies along the streamline, For example, in Fig. 3.1a the speed may be at

point 112 and at point 122. Thus, by use of the chain rule of differentiation, the s com-

ponent of the acceleration is given by We have used the

fact that speed is the time rate of change of distance, Note that the streamwise ac-

celeration is the product of the rate of change of speed with distance along the streamline,

and the speed, V. Since can be positive, negative, or zero, the streamwise acceleration

can, therefore, be positive (acceleration), negative (deceleration), or zero (constant speed).

The normal component of acceleration, the centrifugal acceleration, is given in terms of the

particle speed and the radius of curvature of its path. Thus, where both V and may

vary along the streamline. These equations for the acceleration should be familiar from the study

of particle motion in physics 1Ref. 22 or dynamics 1Ref. 12. A more complete derivation and dis-

cussion of these topics can be found in Chapter 4.

Thus, the components of acceleration in the s and n directions, and are given by

(3.1)

where is the local radius of curvature of the streamline, and s is the distance measured along

the streamline from some arbitrary initial point. In general there is acceleration along the stream-

line 1because the particle speed changes along its path, 2 and acceleration normal to the

streamline 1because the particle does not flow in a straight line, 2. Various flows and the ac-

celerations associated with them are shown in the figure in the margin. As discussed in Section

3.6.2, for incompressible flow the velocity is inversely proportional to the streamline spacing.

Hence, converging streamlines produce positive streamwise acceleration. To produce this acceler-

ation there must be a net, nonzero force on the fluid particle.

To determine the forces necessary to produce a given flow 1or conversely, what flow results

from a given set of forces2, we consider the free-body diagram of a small fluid particle as is shown

in Fig. 3.2. The particle of interest is removed from its surroundings, and the reactions of the

r � �
0V�0s � 0

r

as � V 
0V

0s
,  an �

V 2

r

an,as

ran � V 2�r,

0V�0s
0V�0s,

V � ds�dt.
as � dV�dt � 10V�0s2 1ds�dt2 � 10V�0s2V.

50 ft�s
100 ft�sV � V1s2.

an,

as,

a � dV�dt.

V � ds�dt,
r � r1s2.

s � s1t2,

3.1 Newton’s Second Law 95

Fluid particles ac-
celerate normal to
and along stream-
lines.

as > 0

as = an = 0

an > 0

as > 0, an > 0

F1
F2F3

F4
F5

θ

Streamline

Fluid particle

g

x

z

F I G U R E  3.2 Isolation of a small fluid particle in a flow field. (Photo courtesy
of Diana Sailplanes.)

V3.1 Streamlines
past an airfoil
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96 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

Consider the small fluid particle of size by in the plane of the figure and normal to the

figure as shown in the free-body diagram of Fig. 3.3. Unit vectors along and normal to the stream-

line are denoted by and respectively. For steady flow, the component of Newton’s second law

along the streamline direction, s, can be written as

(3.2)

where represents the sum of the s components of all the forces acting on the particle, which

has mass and is the acceleration in the s direction. Here, is

the particle volume. Equation 3.2 is valid for both compressible and incompressible fluids. That

is, the density need not be constant throughout the flow field.

The gravity force 1weight2 on the particle can be written as where is

the specific weight of the fluid Hence, the component of the weight force in the

direction of the streamline is

If the streamline is horizontal at the point of interest, then and there is no component of

particle weight along the streamline to contribute to its acceleration in that direction.

As is indicated in Chapter 2, the pressure is not constant throughout a stationary fluid  

because of the fluid weight. Likewise, in a flowing fluid the pressure is usually not constant. In gen-

eral, for steady flow, If the pressure at the center of the particle shown in Fig. 3.3 is

denoted as p, then its average value on the two end faces that are perpendicular to the streamline are

and Since the particle is “small,” we can use a one-term Taylor series expansion

for the pressure field 1as was done in Chapter 2 for the pressure forces in static fluids2 to obtain

dps �
0p

0s
 
ds

2

p � dps.p � dps

p � p1s, n2.

1§p � 02

u � 0,

dws � �dw sin u � �g dV� sin u

1lb�ft3 or N�m32.
g � rgdw � g dV�,

dV� � ds dn dyV 0V�0sdm � r dV�,

g  dFs

a dFs � dm as � dm V 
0V

0s
� r dV� V 

0V

0s

n̂,ŝ

dydnds

3.2 along a StreamlineF � ma

Particle thickness =   y

Along streamline
Normal to streamline

g�

(p +   pn)  s   yδ δ δ

δ

(p +   ps)  n   yδ δ δ

(p –   ps)  n   yδ δ δ

(p –   pn)  s   yδ δ δ

  s   yδ δτ = 0

  s   yδ δτ = 0

 sδ
 zδθ

 zδ
θ

 nδ

 sδ

 nδ

s

 nδδ

 sδ

θ

θn

��

�

F I G U R E  3.3 Free-
body diagram of a fluid particle for
which the important forces are those
due to pressure and gravity.

surroundings on the particle are indicated by the appropriate forces present, and so forth.

For the present case, the important forces are assumed to be gravity and pressure. Other forces,

such as viscous forces and surface tension effects, are assumed negligible. The acceleration of grav-

ity, g, is assumed to be constant and acts vertically, in the negative z direction, at an angle rela-

tive to the normal to the streamline.

u

F1, F2,

In a flowing fluid
the pressure varies
from one location
to another.
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Thus, if is the net pressure force on the particle in the streamline direction, it follows that

Note that the actual level of the pressure, p, is not important. What produces a net pressure

force is the fact that the pressure is not constant throughout the fluid. The nonzero pressure gradi-

ent, is what provides a net pressure force on the particle. Viscous forces,

represented by are zero, since the fluid is inviscid.

Thus, the net force acting in the streamline direction on the particle shown in Fig. 3.3 is given by

(3.3)

By combining Eqs. 3.2 and 3.3, we obtain the following equation of motion along the streamline

direction:

(3.4)

We have divided out the common particle volume factor, that appears in both the force and

the acceleration portions of the equation. This is a representation of the fact that it is the fluid den-

sity 1mass per unit volume2, not the mass, per se, of the fluid particle that is important.

The physical interpretation of Eq. 3.4 is that a change in fluid particle speed is accomplished

by the appropriate combination of pressure gradient and particle weight along the streamline. For

fluid static situations this balance between pressure and gravity forces is such that no change in

particle speed is produced—the right-hand side of Eq. 3.4 is zero, and the particle remains sta-

tionary. In a flowing fluid the pressure and weight forces do not necessarily balance—the force

unbalance provides the appropriate acceleration and, hence, particle motion.

dV�,

�g sin u �
0p

0s
� rV 

0V

0s
� ras

a dFs � dws � dFps � a�g sin u �
0p

0s
b dV�

t ds dy,

§p � 0p�0s ŝ � 0p�0n n̂,

 � �
0p

0s
 ds dn dy � �

0p

0s
 dV�

 dFps � 1p � dps2  dn dy � 1p � dps2 dn dy � �2 dps dn dy

dFps
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The net pressure
force on a particle
is determined by the
pressure gradient.

FIND Determine the pressure variation along the streamline

from point A far in front of the sphere and to

point B on the sphere and VB � 02.1xB � �a
VA � V021xA � ��

Pressure Variation along a StreamlineEXAMPLE 3.1

GIVEN Consider the inviscid, incompressible, steady flow

along the horizontal streamline A–B in front of the sphere of ra-

dius a, as shown in Fig. E3.1a. From a more advanced theory of

flow past a sphere, the fluid velocity along this streamline is

as shown in Fig. E3.1b. 

V � V0 a1 �
a3

x3
b

–3a –2a –a 0 x

∂p__
∂x

0.610  V0
2/aρ

(c)
–3a –2a –a 0 x

(d)

p

0.5  V0
2ρ

VA = VO i

A

V = V i VB = 0

B a

z

(a) (b)

x

x

V

–3a –2a –1a 0

1 Vo

0.75 Vo

0.5 Vo

0.25 Vo

ˆˆ

F I G U R E  E3.1
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Equation 3.4 can be rearranged and integrated as follows. First, we note from Fig. 3.3 that along

the streamline Also, we can write Finally, along the streamline the

value of n is constant so that Hence, as indi-

cated by the figure in the margin, along a given streamline p(s, n) � p(s) and These

ideas combined with Eq. 3.4 give the following result valid along a streamline

This simplifies to

(3.5)

which, for constant acceleration of gravity, can be integrated to give

(3.6)

where C is a constant of integration to be determined by the conditions at some point on the

streamline.

�  
dp
r

�
1

2
 V 2 � gz � C  1along a streamline2

dp �
1

2
 rd1V 22 � g dz � 0  1along a streamline2

�g 
dz

ds
�

dp

ds
�

1

2
 r 

d1V 22

ds

0p�0s � dp�ds.

10p�0n2 dn � 10p�0s2 ds.dp � 10p�0s2 ds �1dn � 02
V dV�ds � 1

2d1V
22�ds.sin u � dz�ds.

98 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

SOLUTION

This variation is indicated in Fig. E3.1c. It is seen that the pres-

sure increases in the direction of flow from point A
to point B. The maximum pressure gradient occurs

just slightly ahead of the sphere It is the pressure

gradient that slows the fluid down from to as

shown in Fig. E3.1b.

The pressure distribution along the streamline can be obtained

by integrating Eq. 2 from 1gage2 at to pressure p at

location x. The result, plotted in Fig. E3.1d, is

(Ans)

COMMENT The pressure at B, a stagnation point since

is the highest pressure along the streamline 

As shown in Chapter 9, this excess pressure on the front of the

sphere 1i.e., 2 contributes to the net drag force on the

sphere. Note that the pressure gradient and pressure are directly

proportional to the density of the fluid, a representation of the fact

that the fluid inertia is proportional to its mass.

pB 7 0

1 pB � rV 2
0 �22.VB � 0,

p � �rV 0
2 c a

a

x
b

3

�
1a�x26

2
d

x � ��p � 0

VB � 0VA � V0

1x � �1.205a2.
10.610 rV 2

0 �a2
10p�0x 7 02

Since the flow is steady and inviscid, Eq. 3.4 is valid. In addition,

since the streamline is horizontal, and the

equation of motion along the streamline reduces to

(1)

With the given velocity variation along the streamline, the

acceleration term is

where we have replaced s by x since the two coordinates are iden-

tical 1within an additive constant2 along streamline A–B. It follows

that along the streamline. The fluid slows down

from far ahead of the sphere to zero velocity on the “nose” of

the sphere 

Thus, according to Eq. 1, to produce the given motion the

pressure gradient along the streamline is

(2)
0p

0x
�

3ra 3V 0
2 11 � a 3�x 32

x 4

1x � �a2.
V0

V 0V�0s 6 0

 � �3V 0
2  a1 �

a3

x3
b 

a3

x4

 V 
0V

0s
� V 

0V

0x
� V0  a1 �

a3

x3
b a�

3V0a3

x4
b

0p

0s
� �rV 

0V

0s

sin u � sin 0° � 0

F l u i d s  i n  t h e  N e w s

Incorrect raindrop shape The incorrect representation that

raindrops are teardrop shaped is found nearly everywhere—

from children’s books, to weather maps on the Weather Chan-
nel. About the only time raindrops possess the typical teardrop

shape is when they run down a windowpane. The actual shape

of a falling raindrop is a function of the size of the drop and re-

sults from a balance between surface tension forces and the air

pressure exerted on the falling drop. Small drops with a radius

less than about 0.5 mm are spherical shaped because the sur-

face tension effect (which is inversely proportional to drop

size) wins over the increased pressure, , caused by the

motion of the drop and exerted on its bottom. With increasing

size, the drops fall faster and the increased pressure causes the

drops to flatten. A 2-mm drop, for example, is flattened into a

hamburger bun shape. Slightly larger drops are actually con-

cave on the bottom. When the radius is greater than about

4 mm, the depression of the bottom increases and the drop

takes on the form of an inverted bag with an annular ring of wa-

ter around its base. This ring finally breaks up into smaller

drops. (See Problem 3.28.)

rV 0
2�2

p = p(s)n s

Streamline

n = constant

For steady, inviscid
flow the sum of cer-
tain pressure, ve-
locity, and
elevation effects is
constant along a
streamline.
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In general it is not possible to integrate the pressure term because the density may not be con-

stant and, therefore, cannot be removed from under the integral sign. To carry out this integration we

must know specifically how the density varies with pressure. This is not always easily determined.

For example, for a perfect gas the density, pressure, and temperature are related according to

where R is the gas constant. To know how the density varies with pressure, we must also

know the temperature variation. For now we will assume that the density and specific weight are con-

stant 1incompressible flow2. The justification for this assumption and the consequences of compress-

ibility will be considered further in Section 3.8.1 and more fully in Chapter 11.

With the additional assumption that the density remains constant 1a very good assumption

for liquids and also for gases if the speed is “not too high”2, Eq. 3.6 assumes the following sim-

ple representation for steady, inviscid, incompressible flow.

(3.7)

This is the celebrated Bernoulli equation—a very powerful tool in fluid mechanics. In 1738 Daniel

Bernoulli 11700–17822 published his Hydrodynamics in which an equivalent of this famous equa-

tion first appeared. To use it correctly we must constantly remember the basic assumptions used

in its derivation: 112 viscous effects are assumed negligible, 122 the flow is assumed to be steady,

132 the flow is assumed to be incompressible, 142 the equation is applicable along a streamline. In

the derivation of Eq. 3.7, we assume that the flow takes place in a plane 1the x–z plane2. In gen-

eral, this equation is valid for both planar and nonplanar 1three-dimensional2 flows, provided it is

applied along the streamline.

We will provide many examples to illustrate the correct use of the Bernoulli equation and will

show how a violation of the basic assumptions used in the derivation of this equation can lead to

erroneous conclusions. The constant of integration in the Bernoulli equation can be evaluated if suf-

ficient information about the flow is known at one location along the streamline.

p � 1
2rV

2 � gz � constant along streamline

r � p�RT,

3.2 F � ma along a Streamline 99

GIVEN Consider the flow of air around a bicyclist moving

through still air with velocity as is shown in Fig. E3.2.

FIND Determine the difference in the pressure between points

112 and 122.

V0,

SOLUTION

The Bernoulli Equation

the velocity distribution along the streamline, was known.

The Bernoulli equation is a general integration of To

determine knowledge of the detailed velocity distri-

bution is not needed—only the “boundary conditions” at 112 and

122 are required. Of course, knowledge of the value of V along

the streamline is needed to determine the pressure at points

between 112 and 122. Note that if we measure we can de-

termine the speed, As discussed in Section 3.5, this is the

principle upon which many velocity measuring devices are

based.

If the bicyclist were accelerating or decelerating, the flow

would be unsteady 1i.e., constant2 and the above analysis

would be incorrect since Eq. 3.7 is restricted to steady flow.

V0 �

V0.

p2 � p1

p2 � p1,

F � ma.

V1s2,

EXAMPLE 3.2

In a coordinate fixed to the ground, the flow is unsteady as the bi-

cyclist rides by. However, in a coordinate system fixed to the bike,

it appears as though the air is flowing steadily toward the bicyclist

with speed V0. Since use of the Bernoulli equation is restricted to

steady flows, we select the coordinate system fixed to the bike. If

the assumptions of Bernoulli’s equation are valid 1steady, incom-

pressible, inviscid flow2, Eq. 3.7 can be applied as follows along

the streamline that passes through 112 and 122

We consider 112 to be in the free stream so that and 122 to
be at the tip of the bicyclist’s nose and assume that and

1both of which, as is discussed in Section 3.4, are reason-

able assumptions2. It follows that the pressure at 122 is greater than

that at 112 by an amount

(Ans)

COMMENTS A similar result was obtained in Example 3.1

by integrating the pressure gradient, which was known because

p2 � p1 � 1
2rV 1

2 � 1
2rV 0

2

V2 � 0

z1 � z2

V1 � V0

p1 � 1
2rV 1

2 � gz1 � p2 � 1
2rV 2

2 � gz2

V2 = 0 V1 = V0

(1)(2)

F I G U R E  E3.2

V3.3 Flow past a
biker

V3.2 Balancing
ball
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The difference in fluid velocity between two points in a flow field, and can often be

controlled by appropriate geometric constraints of the fluid. For example, a garden hose nozzle

is designed to give a much higher velocity at the exit of the nozzle than at its entrance where it

is attached to the hose. As is shown by the Bernoulli equation, the pressure within the hose must

be larger than that at the exit 1for constant elevation, an increase in velocity requires a decrease

in pressure if Eq. 3.7 is valid2. It is this pressure drop that accelerates the water through the noz-

zle. Similarly, an airfoil is designed so that the fluid velocity over its upper surface is greater 1on

the average2 than that along its lower surface. From the Bernoulli equation, therefore, the aver-

age pressure on the lower surface is greater than that on the upper surface. A net upward force,

the lift, results.

V2,V1

100 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

In this section we will consider application of Newton’s second law in a direction normal to

the streamline. In many flows the streamlines are relatively straight, the flow is essentially

one-dimensional, and variations in parameters across streamlines 1in the normal direction2 can

often be neglected when compared to the variations along the streamline. However, in nu-

merous other situations valuable information can be obtained from considering normal

to the streamlines. For example, the devastating low-pressure region at the center of a tornado

can be explained by applying Newton’s second law across the nearly circular streamlines of

the tornado.

We again consider the force balance on the fluid particle shown in Fig. 3.3 and the figure in

the margin. This time, however, we consider components in the normal direction, and write New-

ton’s second law in this direction as

(3.8)

where represents the sum of n components of all the forces acting on the particle and 

is particle mass. We assume the flow is steady with a normal acceleration where is

the local radius of curvature of the streamlines. This acceleration is produced by the change in di-

rection of the particle’s velocity as it moves along a curved path.

We again assume that the only forces of importance are pressure and gravity. The compo-

nent of the weight 1gravity force2 in the normal direction is

If the streamline is vertical at the point of interest, and there is no component of the par-

ticle weight normal to the direction of flow to contribute to its acceleration in that direction.

If the pressure at the center of the particle is p, then its values on the top and bottom of the

particle are and where Thus, if is the net pressure

force on the particle in the normal direction, it follows that

Hence, the net force acting in the normal direction on the particle shown in Fig 3.3 is given by

(3.9)

By combining Eqs. 3.8 and 3.9 and using the fact that along a line normal to the streamline

1see Fig. 3.32, we obtain the following equation of motion along the normal direction

(3.10a)�g 
dz

dn
�

0p

0n
�
rV 2

r

cos u � dz�dn

a dFn � dwn � dFpn � a�g cos u �
0p

0n
b dV�

 � �
0p

0n
 ds dn dy � �

0p

0n
 dV�

 dFpn � 1p � dpn2  ds dy � 1p � dpn2  ds dy � �2 dpn ds dy

dFpndpn � 10p�0n2 1dn�22.p � dpn,p � dpn

u � 90°,

dwn � �dw cos u � �g dV� cos u

ran � V 2�r,

dmg  dFn

a dFn �
dm V 2

r
�
r dV� V 2

r

n̂,

F � ma

3.3 Normal to a StreamlineF � ma

V

�

n

 mδ

To apply F � ma
normal to stream-
lines, the normal
components of
force are needed.

V3.4 Hydrocyclone
separator

V3.5 Aircraft wing
tip vortex
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The physical interpretation of Eq. 3.10 is that a change in the direction of flow of a fluid

particle 1i.e., a curved path, 2 is accomplished by the appropriate combination of pressure

gradient and particle weight normal to the streamline. A larger speed or density or a smaller radius

of curvature of the motion requires a larger force unbalance to produce the motion. For example,

if gravity is neglected 1as is commonly done for gas flows2 or if the flow is in a horizontal 

plane, Eq. 3.10 becomes

(3.10b)

This indicates that the pressure increases with distance away from the center of curvature

1 is negative since is positive—the positive n direction points toward the “inside”

of the curved streamline2. Thus, the pressure outside a tornado 1typical atmospheric pres-

sure2 is larger than it is near the center of the tornado 1where an often dangerously low

partial vacuum may occur2. This pressure difference is needed to balance the centrifugal

acceleration associated with the curved streamlines of the fluid motion. (See Fig. E6.6a in

Section 6.5.3.)

rV 2�r0p�0n

0p

0n
� �

rV 2

r

1dz�dn � 02

r 6 �

3.3 F � ma Normal to a Streamline 101

Weight and/or pres-
sure can produce
curved streamlines.

V3.6 Free vortex

GIVEN Shown in Figs. E3.3a,b are two flow fields with circu-

lar streamlines. The velocity distributions are

for case (a)

and

for case (b)

where V0 is the velocity at 

FIND Determine the pressure distributions, p � p(r), for each,

given that p � p0 at r � r0.

r � r0.

V1r2 �
1V0 r02

r

V1r2 � 1V0 
/r02r

SOLUTION

Pressure Variation Normal to a StreamlineEXAMPLE 3.3

F I G U R E  E3.3

y

r = � n

(a)

V = (V0/r0)r V = (V0r0)/r

y

(b)

xx

We assume the flows are steady, inviscid, and incompressible

with streamlines in the horizontal plane (dz/dn � 0). Because the

streamlines are circles, the coordinate n points in a direction op-

posite that of the radial coordinate, ∂/∂n � �∂/∂r, and the radius

of curvature is given by r � r. Hence, Eq. 3.9 becomes

For case (a) this gives

whereas for case (b) it gives

For either case the pressure increases as r increases since ∂p/∂r � 0.

Integration of these equations with respect to r, starting with a

known pressure p � p0 at r � r0, gives

(Ans)p � p0 � 1�V2
0 �22 3 1r/r02

2 � 1 4

0p

0r
�

�1V0 r02
2

r3

0p

0r
� �1V0 

/r02
2r

0p

0r
�

�V2

r

for case (a) and

(Ans)

for case (b). These pressure distributions are shown in Fig. E3.3c. 

COMMENT The pressure distributions needed to balance the

centrifugal accelerations in cases (a) and (b) are not the same be-

cause the velocity distributions are different. In fact, for case (a) the

p � p0 � 1rV 2
0 �22 31 � 1r0/r22 4

0 0.5 1 1.5 2 2.5

4

6

2

0

�2

�4

�6

r/r0

(c)

p – p0

 V 0
2/2ρ

(b)

(a)
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If we multiply Eq. 3.10 by dn, use the fact that if s is constant, and integrate

across the streamline 1in the n direction2 we obtain

(3.11)

To complete the indicated integrations, we must know how the density varies with pressure and

how the fluid speed and radius of curvature vary with n. For incompressible flow the density is

constant and the integration involving the pressure term gives simply We are still left, how-

ever, with the integration of the second term in Eq. 3.11. Without knowing the n dependence in

and this integration cannot be completed.

Thus, the final form of Newton’s second law applied across the streamlines for steady, in-

viscid, incompressible flow is

(3.12)

As with the Bernoulli equation, we must be careful that the assumptions involved in the derivation

of this equation are not violated when it is used.

p � r �  
V 2

r
 dn � gz � constant across the streamline

r � r1s, n2V � V1s, n2

p�r.

�  
dp
r

� �  
V 2

r
 dn � gz � constant across the streamline

0p�0n � dp�dn
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pressure increases without bound as r → , whereas for case (b)

the pressure approaches a finite value as r → . The streamline

patterns are the same for each case, however.

Physically, case (a) represents rigid body rotation (as obtained

in a can of water on a turntable after it has been “spun up”) and

q
q case (b) represents a free vortex (an approximation to a tornado, a

hurricane, or the swirl of water in a drain, the “bathtub vortex”).

See Fig. E6.6 for an approximation of this type of flow.

In the previous two sections, we developed the basic equations governing fluid motion under a

fairly stringent set of restrictions. In spite of the numerous assumptions imposed on these flows,

a variety of flows can be readily analyzed with them. A physical interpretation of the equations

will be of help in understanding the processes involved. To this end, we rewrite Eqs. 3.7 and 3.12

here and interpret them physically. Application of along and normal to the streamline re-

sults in

(3.13)

and

(3.14)

as indicated by the figure in the margin.

The following basic assumptions were made to obtain these equations: The flow is steady

and the fluid is inviscid and incompressible. In practice none of these assumptions is exactly

true.

A violation of one or more of the above assumptions is a common cause for obtaining an

incorrect match between the “real world” and solutions obtained by use of the Bernoulli equa-

tion. Fortunately, many “real-world” situations are adequately modeled by the use of Eqs. 3.13

and 3.14 because the flow is nearly steady and incompressible and the fluid behaves as if it were

nearly inviscid.

The Bernoulli equation was obtained by integration of the equation of motion along the “nat-

ural” coordinate direction of the streamline. To produce an acceleration, there must be an unbalance

of the resultant forces, of which only pressure and gravity were considered to be important. Thus,

p � r �  
V 2

r
 dn � gz � constant across the streamline

p � 1
2rV

2 � gz � constant along the streamline

F � ma

3.4 Physical Interpretation

The sum of pres-
sure, elevation, and
velocity effects is
constant across
streamlines.

z

p + r �     dn + gz

= constant

V2

�

p +    rV2 + gz

= constant

1
2
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there are three processes involved in the flow—mass times acceleration 1the term2, pressure

1the p term2, and weight 1the term2.
Integration of the equation of motion to give Eq. 3.13 actually corresponds to the work-

energy principle often used in the study of dynamics [see any standard dynamics text 1Ref. 12].
This principle results from a general integration of the equations of motion for an object in a way

very similar to that done for the fluid particle in Section 3.2. With certain assumptions, a statement

of the work-energy principle may be written as follows:

The work done on a particle by all forces acting on the particle is equal to the change

of the kinetic energy of the particle.

The Bernoulli equation is a mathematical statement of this principle.

As the fluid particle moves, both gravity and pressure forces do work on the particle. Recall

that the work done by a force is equal to the product of the distance the particle travels times the

component of force in the direction of travel 1i.e., 2. The terms and p in Eq. 3.13

are related to the work done by the weight and pressure forces, respectively. The remaining term,

is obviously related to the kinetic energy of the particle. In fact, an alternate method of de-

riving the Bernoulli equation is to use the first and second laws of thermodynamics 1the energy

and entropy equations2, rather than Newton’s second law. With the appropriate restrictions, the gen-

eral energy equation reduces to the Bernoulli equation. This approach is discussed in Section 5.4.

An alternate but equivalent form of the Bernoulli equation is obtained by dividing each term

of Eq. 3.7 by the specific weight, to obtain

Each of the terms in this equation has the units of energy per weight or length 1feet,

meters2 and represents a certain type of head.

The elevation term, z, is related to the potential energy of the particle and is called the eleva-
tion head. The pressure term, is called the pressure head and represents the height of a column

of the fluid that is needed to produce the pressure p. The velocity term, is the velocity head
and represents the vertical distance needed for the fluid to fall freely 1neglecting friction2 if it is to

reach velocity V from rest. The Bernoulli equation states that the sum of the pressure head, the ve-

locity head, and the elevation head is constant along a streamline.

V 

2�2g,

p�g,

1LF�F � L2

p

g
�

V 2

2g
� z � constant on a streamline

g,

rV 

2�2,

gzwork � F � d

gz
rV 

2�2

3.4 Physical Interpretation 103

The Bernoulli
equation can be
written in terms of
heights called
heads.

GIVEN Consider the flow of water from the syringe shown in

Fig. E3.4(a). As indicated in Fig. E3.4b, a force, F, applied to the

plunger will produce a pressure greater than atmospheric at point

112 within the syringe. The water flows from the needle, point 122,
with relatively high velocity and coasts up to point 132 at the top of

its trajectory. 

FIND Discuss the energy of the fluid at points 112, 122, and 132 by

using the Bernoulli equation.

Kinetic, Potential, and Pressure EnergyEXAMPLE 3.4

Energy Type

Kinetic Potential Pressure
Point p

1 Small Zero Large

2 Large Small Zero

3 Zero Large Zero

GzzRV 2�2

g

F

(1)

(2)

(3)

(b)

F I G U R E  E3.4

(a)
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A net force is required to accelerate any mass. For steady flow the acceleration can be in-

terpreted as arising from two distinct occurrences—a change in speed along the streamline and

a change in direction if the streamline is not straight. Integration of the equation of motion along

the streamline accounts for the change in speed 1kinetic energy change2 and results in the Bernoulli

equation. Integration of the equation of motion normal to the streamline accounts for the cen-

trifugal acceleration and results in Eq. 3.14.

When a fluid particle travels along a curved path, a net force directed toward the center of cur-

vature is required. Under the assumptions valid for Eq. 3.14, this force may be either gravity or pres-

sure, or a combination of both. In many instances the streamlines are nearly straight so that

centrifugal effects are negligible and the pressure variation across the streamlines is merely hydro-

static 1because of gravity alone2, even though the fluid is in motion.

1r � � 2

1V 2�r2
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If the assumptions 1steady, inviscid, incompressible flow2 of the

Bernoulli equation are approximately valid, it then follows that

the flow can be explained in terms of the partition of the total en-

ergy of the water. According to Eq. 3.13 the sum of the three types

of energy 1kinetic, potential, and pressure2 or heads 1velocity, ele-

vation, and pressure2 must remain constant. The table above indi-

cates the relative magnitude of each of these energies at the three

points shown in the figure.

The motion results in 1or is due to2 a change in the magnitude

of each type of energy as the fluid flows from one location to an-

other. An alternate way to consider this flow is as follows. The

pressure gradient between 112 and 122 produces an acceleration to

eject the water from the needle. Gravity acting on the particle be-

tween 122 and 132 produces a deceleration to cause the water to

come to a momentary stop at the top of its flight.

COMMENT If friction 1viscous2 effects were important,

there would be an energy loss between 112 and 132 and for the given

the water would not be able to reach the height indicated in the

figure. Such friction may arise in the needle 1see Chapter 8 on

pipe flow2 or between the water stream and the surrounding air

1see Chapter 9 on external flow2.

p1

SOLUTION

F l u i d s  i n  t h e  N e w s

Armed with a water jet for hunting Archerfish, known for their

ability to shoot down insects resting on foliage, are like subma-

rine water pistols. With their snout sticking out of the water, they

eject a high-speed water jet at their prey, knocking it onto the wa-

ter surface where they snare it for their meal. The barrel of their

water pistol is formed by placing their tongue against a groove in

the roof of their mouth to form a tube. By snapping shut their

gills, water is forced through the tube and directed with the tip of

their tongue. The archerfish can produce a pressure head within

their gills large enough so that the jet can reach 2 to 3 m. How-

ever, it is accurate to only about 1 m. Recent research has shown

that archerfish are very adept at calculating where their prey will

fall. Within 100 milliseconds (a reaction time twice as fast as a

human’s), the fish has extracted all the information needed to pre-

dict the point where the prey will hit the water. Without further vi-

sual cues it charges directly to that point. (See Problem 3.41.)

GIVEN Water flows in a curved, undulating waterslide as

shown in Fig. E3.5a. As an approximation to this flow, consider

Pressure Variation in a Flowing StreamEXAMPLE 3.5

z
g

(2)

(1)

h2-1

A B

C D
�

Free surface
(p = 0)

n

h4-3

(4)

(3)

^

F I G U R E  E3.5b

F I G U R E  E3.5a (Photo courtesy of
Schlitterbahn® Waterparks.)

The pressure varia-
tion across straight
streamlines is hy-
drostatic.

the inviscid, incompressible, steady flow shown in Fig. E3.5b.

From section A to B the streamlines are straight, while from C to D
they follow circular paths. 

FIND Describe the pressure variation between points 112 and 122
and points 132 and 142.
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With the above assumptions and the fact that for the por-

tion from A to B, Eq. 3.14 becomes

The constant can be determined by evaluating the known variables at

the two locations using and to give

(Ans)

Note that since the radius of curvature of the streamline is infinite,

the pressure variation in the vertical direction is the same as if the

fluid were stationary.

However, if we apply Eq. 3.14 between points 132 and 142we ob-

tain 1using 2

p4 � r �
z4

z3 

 
V 2

r
 1�dz2 � gz4 � p3 � gz3

dn � �dz

p1 � p2 � g1z2 � z12 � p2 � gh2–1

z2 � h2–1p2 � 0 1gage2, z1 � 0,

p � gz � constant

r � � With and this becomes

(Ans)

To evaluate the integral, we must know the variation of V and 

with z. Even without this detailed information we note that the in-

tegral has a positive value. Thus, the pressure at 132 is less than the

hydrostatic value, by an amount equal to 

This lower pressure, caused by the curved streamline, is neces-

sary to accelerate the fluid around the curved path.

COMMENT Note that we did not apply the Bernoulli equa-

tion 1Eq. 3.132 across the streamlines from 112 to 122 or 132 to 142.
Rather we used Eq. 3.14. As is discussed in Section 3.8, applica-

tion of the Bernoulli equation across streamlines 1rather than

along them2 may lead to serious errors.

r � z4

z3

 1V 2�r2 dz.gh4–3,

r

p3 � gh4–3 � r �
z4

z3

 
V 2

r
 dz

z4 � z3 � h4–3p4 � 0

SOLUTION

A useful concept associated with the Bernoulli equation deals with the stagnation and dynamic pres-

sures. These pressures arise from the conversion of kinetic energy in a flowing fluid into a “pres-

sure rise” as the fluid is brought to rest 1as in Example 3.22. In this section we explore various results

of this process. Each term of the Bernoulli equation, Eq. 3.13, has the dimensions of force per unit

area—psi, The first term, p, is the actual thermodynamic pressure of the fluid as it

flows. To measure its value, one could move along with the fluid, thus being “static” relative to the

moving fluid. Hence, it is normally termed the static pressure. Another way to measure the static

pressure would be to drill a hole in a flat surface and fasten a piezometer tube as indicated by the

location of point 132 in Fig. 3.4. As we saw in Example 3.5, the pressure in the flowing fluid at 112
is the same as if the fluid were static. From the manometer considerations of Chap-

ter 2, we know that Thus, since it follows that 

The third term in Eq. 3.13, is termed the hydrostatic pressure, in obvious regard to the hy-

drostatic pressure variation discussed in Chapter 2. It is not actually a pressure but does represent the

change in pressure possible due to potential energy variations of the fluid as a result of elevation changes.

The second term in the Bernoulli equation, is termed the dynamic pressure. Its in-

terpretation can be seen in Fig. 3.4 by considering the pressure at the end of a small tube inserted

into the flow and pointing upstream. After the initial transient motion has died out, the liquid will

fill the tube to a height of H as shown. The fluid in the tube, including that at its tip, 122, will be

stationary. That is, or point 122 is a stagnation point.
If we apply the Bernoulli equation between points 112 and 122, using and assuming

that we find that

p2 � p1 � 1
2rV

2
1

z1 � z2,

V2 � 0

V2 � 0,

rV 2�2,

gz,

p1 � gh.h3–1 � h4–3 � hp3 � gh4–3.

p1 � gh3–1 � p3,

lb�ft2, N�m2.

3.5 Static, Stagnation, Dynamic, and Total Pressure

Each term in the
Bernoulli equation
can be interpreted
as a form of pres-
sure.

F I G U R E  3.4 Measurement
of static and stagnation pressures.

(1) (2)

(3)

(4)

h3-1

h h4-3

ρ

Open

H

V

V1 = V V2 = 0
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V3.7 Stagnation
point flow

Stagnation point

(a)

Stagnation streamline

(b)

Stagnation point

F I G U R E  3.5 Stagnation points.

Hence, the pressure at the stagnation point is greater than the static pressure, by an amount

the dynamic pressure.

It can be shown that there is a stagnation point on any stationary body that is placed into a

flowing fluid. Some of the fluid flows “over” and some “under” the object. The dividing line 1or sur-

face for two-dimensional flows2 is termed the stagnation streamline and terminates at the stagnation

point on the body. 1See the photograph at the beginning of Chapter 3.2 For symmetrical objects 1such

as a baseball2 the stagnation point is clearly at the tip or front of the object as shown in Fig. 3.5a.
For other flows such as a water jet against a car as shown in Fig. 3.5b, there is also a stagnation point

on the car.

If elevation effects are neglected, the stagnation pressure, is the largest pressure

obtainable along a given streamline. It represents the conversion of all of the kinetic energy into a

pressure rise. The sum of the static pressure, hydrostatic pressure, and dynamic pressure is termed

the total pressure, The Bernoulli equation is a statement that the total pressure remains con-

stant along a streamline. That is,

(3.15)

Again, we must be careful that the assumptions used in the derivation of this equation are appro-

priate for the flow being considered.

p � 1
2rV

2 � gz � pT � constant along a streamline

pT.

p � rV 2�2,

rV 

2
1�2,

p1,

F l u i d s  i n  t h e  N e w s

Pressurized eyes Our eyes need a certain amount of internal pres-

sure in order to work properly, with the normal range being be-

tween 10 and 20 mm of mercury. The pressure is determined by a

balance between the fluid entering and leaving the eye. If the

pressure is above the normal level, damage may occur to the op-

tic nerve where it leaves the eye, leading to a loss of the visual

field termed glaucoma. Measurement of the pressure within the

eye can be done by several different noninvasive types of instru-

ments, all of which measure the slight deformation of the eyeball

when a force is put on it. Some methods use a physical probe that

makes contact with the front of the eye, applies a known force,

and measures the deformation. One noncontact method uses a

calibrated “puff” of air that is blown against the eye. The stagna-
tion pressure resulting from the air blowing against the eyeball

causes a slight deformation, the magnitude of which is correlated

with the pressure within the eyeball. (See Problem 3.29.)

Knowledge of the values of the static and stagnation pressures in a fluid implies that the fluid

speed can be calculated. This is the principle on which the Pitot-static tube is based [H. de Pitot

(1695–1771)]. As shown in Fig. 3.6, two concentric tubes are attached to two pressure gages 1or a

differential gage2 so that the values of and 1or the difference 2 can be determined. The

center tube measures the stagnation pressure at its open tip. If elevation changes are negligible,

p3 � p � 1
2rV

2

p3 � p4p4p3
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where p and V are the pressure and velocity of the fluid upstream of point 122. The outer tube is

made with several small holes at an appropriate distance from the tip so that they measure the sta-

tic pressure. If the effect of the elevation difference between 112 and 142 is negligible, then

By combining these two equations we see that

which can be rearranged to give

(3.16)

The actual shape and size of Pitot-static tubes vary considerably. A typical Pitot-static probe used

to determine aircraft airspeed is shown in Fig. 3.7. (See Fig. E3.6a also.)

V � 221p3 � p42�r

p3 � p4 � 1
2rV

2

p4 � p1 � p

3.5 Static, Stagnation, Dynamic, and Total Pressure 107

V

p

(1)

(2)

(4)

(3)

F I G U R E  3.6 The Pitot-static tube.

Pitot-static tubes
measure fluid ve-
locity by converting
velocity into pres-
sure.

(b)

Four static pressure ports

Heated outer case

Stagnation
pressure port

Stagnation pressure fitting

Heater leads

Mounting flange

Static pressure fitting

(a)

F I G U R E  3.7 Airplane
Pitot-static probe. (a) Schematic, (b) Photo-
graph, (Photograph courtesy of SpaceAge
Control, Inc.)

V3.8 Airspeed
indicator
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F l u i d s  i n  t h e  N e w s

Bugged and plugged Pitot tubes Although a Pitot tube is a sim-

ple device for measuring aircraft airspeed, many airplane acci-

dents have been caused by inaccurate Pitot tube readings. Most of

these accidents are the result of having one or more of the holes

blocked and, therefore, not indicating the correct pressure

(speed). Usually this is discovered during takeoff when time to re-

solve the issue is short. The two most common causes for such a

blockage are either that the pilot (or ground crew) has forgotten to

remove the protective Pitot tube cover, or that insects have built

their nest within the tube where the standard visual check cannot

detect it. The most serious accident (in terms of number of fatali-

ties) caused by a blocked Pitot tube involved a Boeing 757 and

occurred shortly after takeoff from Puerto Plata in the Dominican

Republic. The incorrect airspeed data was automatically fed to

the computer, causing the autopilot to change the angle of attack

and the engine power. The flight crew became confused by the

false indications, the aircraft stalled, and then plunged into the

Caribbean Sea killing all aboard. (See Problem 3.30.)

GIVEN An airplane flies 200 mi�hr at an elevation of 10,000 ft

in a standard atmosphere as shown in Fig. E3.6a. 

FIND Determine the pressure at point 112 far ahead of the air-

plane, the pressure at the stagnation point on the nose of the

airplane, point 122, and the pressure difference indicated by a Pitot-

static probe attached to the fuselage.

SOLUTION F I G U R E  E3.6a (Photo
courtesy of Hawker Beechcraft.)

F I G U R E  E3.6b

Pitot-Static Tube

It was assumed that the flow is incompressible—the density re-

mains constant from 112 to 122. However, since a change in

pressure 1or temperature2 will cause a change in density. For this rel-

atively low speed, the ratio of the absolute pressures is nearly unity

so that

the density change is negligible. However, by repeating the calcula-

tions for various values of the speed, , the results shown in Fig.

E3.6b are obtained. Clearly at the 500 to 600 mph speeds nor-

mally flown by commercial airliners, the pressure ratio is such

that density changes are important. In such situations it is neces-

sary to use compressible flow concepts to obtain accurate results.

1See Section 3.8.1 and Chapter 11.2

V1

3 i.e., p1�p2 � 110.11 psia2� 110.11 � 0.524 psia2 � 0.951 4 ,

r � p�RT,

(2)

(1)

Pitot-static tube
V1 = 200 mph

EXAMPLE 3.6

From Table C.1 we find that the static pressure at the altitude

given is

(Ans)

Also, the density is 

If the flow is steady, inviscid, and incompressible and eleva-

tion changes are neglected, Eq. 3.13 becomes

With and 1since the co-

ordinate system is fixed to the airplane2 we obtain

Hence, in terms of gage pressure

(Ans)

Thus, the pressure difference indicated by the Pitot-static tube is

(Ans)

COMMENTS Note that it is very easy to obtain incorrect re-

sults by using improper units. Do not add and Recall

that 1slug�ft32 1ft2�s22 � 1slug # ft�s22� 1ft22 � lb�ft2.

lb�ft2.lb�in.2

p2 � p1 �
rV 2

1

2
� 0.524 psi

p2 � 75.4 lb�ft2 � 0.524 psi

 � 11456 � 75.42 lb�ft2 1abs2

 p2 � 1456 lb�ft2 � 10.001756 slugs�ft32 12932 ft2�s22�2

V2 � 0V1 � 200 mi�hr � 293 ft�s

p2 � p1 �
rV 2

1

2

r � 0.001756 slug�ft3.

p1 � 1456 lb�ft2 1abs2 � 10.11 psia
(200 mph, 0.951)

1

0.8

0.6

0.4

0.2

0
0 100 200 300

V1, mph

p 1
/p

2

400 500 600

The Pitot-static tube provides a simple, relatively inexpensive way to measure fluid speed.

Its use depends on the ability to measure the static and stagnation pressures. Care is needed to

obtain these values accurately. For example, an accurate measurement of static pressure requires

that none of the fluid’s kinetic energy be converted into a pressure rise at the point of
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measurement. This requires a smooth hole with no burrs or imperfections. As indicated in

Fig. 3.8, such imperfections can cause the measured pressure to be greater or less than the ac-

tual static pressure.

Also, the pressure along the surface of an object varies from the stagnation pressure at

its stagnation point to values that may be less than the free stream static pressure. A typical

pressure variation for a Pitot-static tube is indicated in Fig. 3.9. Clearly it is important that

the pressure taps be properly located to ensure that the pressure measured is actually the static

pressure.

In practice it is often difficult to align the Pitot-static tube directly into the flow direction. Any

misalignment will produce a nonsymmetrical flow field that may introduce errors. Typically, yaw

angles up to 12 to 1depending on the particular probe design2 give results that are less than 1%

in error from the perfectly aligned results. Generally it is more difficult to measure static pressure

than stagnation pressure.

One method of determining the flow direction and its speed 1thus the velocity2 is to use a di-

rectional-finding Pitot tube as is illustrated in Fig. 3.10. Three pressure taps are drilled into a small

circular cylinder, fitted with small tubes, and connected to three pressure transducers. The cylinder

is rotated until the pressures in the two side holes are equal, thus indicating that the center hole

points directly upstream. The center tap then measures the stagnation pressure. The two side holes

are located at a specific angle so that they measure the static pressure. The speed is

then obtained from 

The above discussion is valid for incompressible flows. At high speeds, compressibility be-

comes important 1the density is not constant2 and other phenomena occur. Some of these ideas are

discussed in Section 3.8, while others 1such as shockwaves for supersonic Pitot-tube applications2
are discussed in Chapter 11.

The concepts of static, dynamic, stagnation, and total pressure are useful in a variety of flow

problems. These ideas are used more fully in the remainder of the book.

V � 321p2 � p12�r 4 1�2.

1b � 29.5°2

20°
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F I G U R E  3.8 Incor-
rect and correct design of static
pressure taps.

V
p

V
p

V
p

(1)
p1 = p

(1)
p1 < p

(1)
p1 > p

Accurate measure-
ment of static pres-
sure requires great
care.

F I G U R E  3.9 Typical pressure distribution along
a Pitot-static tube.

V

Stagnation
pressure on

stem

Static
pressure S

te
m

Tube(1)

(1)

(2)

(2)

Stagnation
pressure at

 tip

0

p

F I G U R E  3.10 Cross section
of a directional-finding Pitot-static tube.

β

β
θ

V

p
(1)

(2)

(3) If    = 0θ

ρ

p1 = p3 = p

p2 = p +      V21_
2
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In this section we illustrate various additional applications of the Bernoulli equation. Between any

two points, 112 and 122, on a streamline in steady, inviscid, incompressible flow the Bernoulli equa-

tion can be applied in the form

(3.17)

Obviously if five of the six variables are known, the remaining one can be determined. In many in-

stances it is necessary to introduce other equations, such as the conservation of mass. Such consid-

erations will be discussed briefly in this section and in more detail in Chapter 5.

3.6.1 Free Jets

One of the oldest equations in fluid mechanics deals with the flow of a liquid from a large reservoir.

A modern version of this type of flow involves the flow of coffee from a coffee urn as indicated by

the figure in the margin. The basic principles of this type of flow are shown in Fig. 3.11 where a jet

of liquid of diameter d flows from the nozzle with velocity V . 1A nozzle is a device shaped to ac-

celerate a fluid.2 Application of Eq. 3.17 between points 112 and 122 on the streamline shown gives

We have used the facts that the reservoir is large and open to the atmos-

phere and the fluid leaves as a “free jet” Thus, we obtain

(3.18)

which is the modern version of a result obtained in 1643 by Torricelli 11608–16472, an Italian

physicist.

The fact that the exit pressure equals the surrounding pressure can be seen by ap-

plying as given by Eq. 3.14, across the streamlines between 122 and 142. If the streamlines

at the tip of the nozzle are straight it follows that Since 142 is on the surface of

the jet, in contact with the atmosphere, we have Thus, also. Since 122 is an arbi-

trary point in the exit plane of the nozzle, it follows that the pressure is atmospheric across this

plane. Physically, since there is no component of the weight force or acceleration in the normal

1horizontal2 direction, the pressure is constant in that direction.

Once outside the nozzle, the stream continues to fall as a free jet with zero pressure throughout

and as seen by applying Eq. 3.17 between points 112 and 152, the speed increases according to

where H is the distance the fluid has fallen outside the nozzle.

Equation 3.18 could also be obtained by writing the Bernoulli equation between points 132
and 142 using the fact that Also, since it is far from the nozzle, and from

hydrostatics, p3 � g1h � /2.
V3 � 0z4 � 0, z3 � /.

V � 12g 1h � H2

1p5 � 02

p2 � 0p4 � 0.

p2 � p4.1r � � 2,
F � ma,

1p2 � 02

V �
B

2 
gh

r
� 12gh

1p2 � 02.1p1 � 0 gage2,
1V1 � 02z1 � h, z2 � 0,

gh � 1
2rV

2

p1 � 1
2rV

2
1 � gz1 � p2 � 1

2rV
2
2 � gz2

3.6 Examples of Use of the Bernoulli Equation

V

F I G U R E  3.11
Vertical flow from a tank.

(2) (4)

(1)

(3)

V

d

(5)

 H

�

h z

(2)

V3.9 Flow from a
tank

The exit pressure
for an incompress-
ible fluid jet is
equal to the sur-
rounding pressure.
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As learned in physics or dynamics and illustrated in the figure in the margin, any object

dropped from rest that falls through a distance h in a vacuum will obtain the speed 

the same as the water leaving the spout of the watering can shown in the figure in the margin. This

is consistent with the fact that all of the particle’s potential energy is converted to kinetic energy,

provided viscous 1friction2 effects are negligible. In terms of heads, the elevation head at point 112
is converted into the velocity head at point 122. Recall that for the case shown in Fig. 3.11 the pres-

sure is the same 1atmospheric2 at points 112 and 122.
For the horizontal nozzle of Fig. 3.12a, the velocity of the fluid at the centerline, will be

slightly greater than that at the top, and slightly less than that at the bottom, due to the dif-

ferences in elevation. In general, as shown in Fig. 3.12b and we can safely use the center-

line velocity as a reasonable “average velocity.”

If the exit is not a smooth, well-contoured nozzle, but rather a flat plate as shown in Fig. 3.13,

the diameter of the jet, will be less than the diameter of the hole, This phenomenon, called

a vena contracta effect, is a result of the inability of the fluid to turn the sharp corner indi-

cated by the dotted lines in the figure.

Since the streamlines in the exit plane are curved the pressure across them is

not constant. It would take an infinite pressure gradient across the streamlines to cause the

fluid to turn a “sharp” corner The highest pressure occurs along the centerline at 122
and the lowest pressure, is at the edge of the jet. Thus, the assumption of uni-

form velocity with straight streamlines and constant pressure is not valid at the exit plane. It

is valid, however, in the plane of the vena contracta, section a–a. The uniform velocity as-

sumption is valid at this section provided as is discussed for the flow from the nozzle

shown in Fig. 3.12.

The vena contracta effect is a function of the geometry of the outlet. Some typical configu-

rations are shown in Fig. 3.14 along with typical values of the experimentally obtained contrac-
tion coefficient, where and are the areas of the jet at the vena contracta and the

area of the hole, respectively.

AhAjCc � Aj�Ah,

dj 
 h,

p1 � p3 � 0,

1r � 02.

1r 6 � 2,

90°

dh.dj,

d 
 h
V3,V1,

V2,

V � 12gh,

3.6 Examples of Use of the Bernoulli Equation 111

V = 0

V =  2gh

h

h

(1)

(2)
V = √2gh

F I G U R E  3.12 Horizontal flow from a tank. F I G U R E  3.13 Vena 
contracta effect for a sharp-edged orifice.

h
d

(1)

(2)

(3)

(a)

dj

dh
(2)

(1)

(3)
a

a

h

d

(b)

F l u i d s  i n  t h e  N e w s

Cotton candy, glass wool, and steel wool Although cotton candy

and glass wool insulation are made of entirely different materials

and have entirely different uses, they are made by similar processes.

Cotton candy, invented in 1897, consists of sugar fibers. Glass wool,

invented in 1938, consists of glass fibers. In a cotton candy machine,

sugar is melted and then forced by centrifugal action to flow through

numerous tiny orifices in a spinning “bowl.” Upon emerging, the

thin streams of liquid sugar cool very quickly and become solid

threads that are collected on a stick or cone. Making glass wool in-

sulation is somewhat more complex, but the basic process is similar.

Liquid glass is forced through tiny orifices and emerges as very fine

glass streams that quickly solidify. The resulting intertwined flexible

fibers, glass wool, form an effective insulation material because the

tiny air “cavities” between the fibers inhibit air motion. Although

steel wool looks similar to cotton candy or glass wool, it is made by

an entirely different process. Solid steel wires are drawn over special

cutting blades which have grooves cut into them so that long, thin

threads of steel are peeled off to form the matted steel wool.

The diameter of a
fluid jet is often
smaller than that of
the hole from
which it flows.
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3.6.2 Confined Flows

In many cases the fluid is physically constrained within a device so that its pressure cannot be pre-

scribed a priori as was done for the free jet examples above. Such cases include nozzles and pipes

of variable diameter for which the fluid velocity changes because the flow area is different from

one section to another. For these situations it is necessary to use the concept of conservation of

mass 1the continuity equation2 along with the Bernoulli equation. The derivation and use of this

equation are discussed in detail in Chapters 4 and 5. For the needs of this chapter we can use a

simplified form of the continuity equation obtained from the following intuitive arguments. Con-

sider a fluid flowing through a fixed volume 1such as a syringe2 that has one inlet and one outlet

as shown in Fig. 3.15a. If the flow is steady so that there is no additional accumulation of fluid

within the volume, the rate at which the fluid flows into the volume must equal the rate at which

it flows out of the volume 1otherwise, mass would not be conserved2.
The mass flowrate from an outlet, 1slugs�s or kg�s2, is given by where Q

is the volume flowrate. If the outlet area is A and the fluid flows across this area 1normal to the area2
with an average velocity V, then the volume of the fluid crossing this area in a time interval is 

equal to that in a volume of length and cross-sectional area A 1see Fig. 3.15b2. Hence, the vol-

ume flowrate 1volume per unit time2 is Thus, To conserve mass, the inflow rate

must equal the outflow rate. If the inlet is designated as 112 and the outlet as 122, it follows that 

Thus, conservation of mass requires

If the density remains constant, then and the above becomes the continuity equation for

incompressible flow

(3.19)

For example, if as shown by the figure in the margin the outlet flow area is one-half the size of the

inlet flow area, it follows that the outlet velocity is twice that of the inlet velocity, since

A1V1 � A2V2, or Q1 � Q2

r1 � r2,

r1A1V1 � r2A2V2

m
#

1 � m
#

2.

m
#

� rVA.Q � VA.

V dt
VA dt,dt

1ft3�s or m3�s2m
#

� rQ,m
#

112 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

dh

dj

CC = 0.61

CC = 0.61
CC = 0.50

CC = 1.0

CC = Aj /Ah = (dj /dh)
2

(a) Knife edge (b) Well rounded

(c) Sharp edge (d) Re-entrant

F I G U R E  3.14 Typical flow patterns and contraction coefficients
for various round exit configurations. (a) Knife edge, (b) Well rounded, (c) Sharp
edge, (d) Re-entrant.

The continuity
equation states that
mass cannot be cre-
ated or destroyed.

A2

Q

V2 = 2V1

V1

A1 = 2A2 (1)
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GIVEN A stream of refreshing beverage of diameter d � 0.01 m

flows steadily from the cooler of diameter D � 0.20 m as shown

in Figs. E3.7a and b.

FIND Determine the flowrate, Q, from the bottle into the

cooler if the depth of beverage in the cooler is to remain constant

at h � 0.20 m

Flow from a Tank—GravityEXAMPLE 3.7

3.6 Examples of Use of the Bernoulli Equation 113

V1

(1)

Volume = V1   t A1

V2

(2)

Volume = V2   t A2

Same parcel at t =   tFluid parcel at t = 0

V1   tδ

δ δV2    t

δ

δ

V1

V2

(2)

(1)

F I G U R E  3.15 (a) Flow through a syringe. (b) Steady flow into
and out of a volume.

(a) (b)

d = 0.01 m

h = 0.20 m
D = 0.20 m

(1)

(2)

(3)

Q

1.10

1.05

1.00
0 0.2 0.4 0.6 0.8

d/D

Q/Q0

(c)

(0.05, 1.000003)

F I G U R E  E3.7

The use of the Bernoulli equation and the flowrate equation 1continuity equa-

tion2 is demonstrated by Example 3.7.

V2 � A1V1�A2 � 2V1.
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The fact that a kinetic energy change is often accompanied by a change in pressure is shown

by Example 3.8.

114 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

For steady, inviscid, incompressible flow, the Bernoulli equation

applied between points 112 and 122 is

(1)

With the assumptions that and Eq. 1

becomes

(2)

Although the liquid level remains constant 1 constant2, there is an

average velocity, across section 112 because of the flow from the

tank. From Eq. 3.19 for steady incompressible flow, conservation of

mass requires where Thus, or

Hence,

(3)

Equations 1 and 3 can be combined to give

Thus,

(Ans) � 1.56 � 10�4 m3�s

 Q � A1V1 � A2V2 �
p

4
 10.01 m2211.98 m�s2

V2 �
B

2gh

1 � 1d�D24
�
B

219.81 m�s22 10.20 m2

1 � 10.01 m�0.20 m24
� 1.98 m�s

V1 � a
d

D
b

2

V2

p

4
 D2V1 �

p

4
 d2V2

A1V1 � A2V2,Q � AV.Q1 � Q2,

V1,

h �

1
2V 2

1 � gh � 1
2V 2

2

z2 � 0,p1 � p2 � 0, z1 � h,

p1 � 1
2rV

2
1 � gz1 � p2 � 1

2rV
2
2 � gz2

COMMENTS Note that this problem was solved using

points (1) and (2) located at the free surface and the exit of the

pipe, respectively. Although this was convenient (because most

of the variables are known at those points), other points could be

selected and the same result would be obtained. For example,

consider points (1) and (3) as indicated in Fig. E3.7b. At (3), lo-

cated sufficiently far from the tank exit, V3 � 0 and z3 � z2 � 0.

Also, p3 � �h since the pressure is hydrostatic sufficiently far

from the exit. Use of this information in the Bernoulli equation

applied between (1) and (3) gives the exact same result as ob-

tained using it between (1) and (2). The only difference is that

the elevation head, z1 � h, has been interchanged with the pres-

sure head at (3), p3/� � h. 

In this example we have not neglected the kinetic energy of

the water in the tank If the tank diameter is large com-

pared to the jet diameter Eq. 3 indicates that 

and the assumption that would be reasonable. The error

associated with this assumption can be seen by calculating the

ratio of the flowrate assuming denoted Q, to that as-

suming denoted This ratio, written as

is plotted in Fig. E3.7c. With it follows that

and the error in assuming is less than

1%. For this example with d/D � 0.01 m/0.20 m � 0.05, it follows

that Q/Q0 � 1.000003. Thus, it is often reasonable to assume

V1 � 0.

V1 � 01 6 Q�Q0 � 1.01,

0 6 d�D 6 0.4

Q

Q0

�
V2

V2 0 D��

�
22gh� 31 � 1d�D24 4

22gh
�

1

21 � 1d�D24

Q0.V1 � 0,

V1 � 0,

V1 � 0

V1 
 V21D � d2,
1V1 � 02.

SOLUTION

GIVEN Air flows steadily from a tank, through a hose of di-

ameter and exits to the atmosphere from a nozzle of

diameter as shown in Fig. E3.8. The pressure in the

tank remains constant at 3.0 kPa 1gage2 and the atmospheric con-

ditions are standard temperature and pressure.

FIND Determine the flowrate and the pressure in the hose.

d � 0.01 m

D � 0.03 m,

SOLUTION

Flow from a Tank—Pressure

With the assumption that 1horizontal hose2,
1large tank2, and 1free jet2, this becomes

V3 �
B

2p1

r

p3 � 0

V1 � 0z1 � z2 � z3

EXAMPLE 3.8

If the flow is assumed steady, inviscid, and incompressible, we

can apply the Bernoulli equation along the streamline from (1) to

(2) to (3) as

 � p3 � 1
2rV

2
3 � gz3

 p1 � 1
2rV

2
1 � gz1 � p2 � 1

2rV
2
2 � gz2

p1 = 3.0  kPa

(1)
Air

D = 0.03 m

(2) (3)

d = 0.01 m

Q

F I G U R E  E3.8
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In many situations the combined effects of kinetic energy, pressure, and gravity are important.

Example 3.9 illustrates this.

3.6 Examples of Use of the Bernoulli Equation 115

and

(1)

The density of the air in the tank is obtained from the perfect gas

law, using standard absolute pressure and temperature, as

Thus, we find that

or

(Ans)

The pressure within the hose can be obtained from Eq. 1 and

the continuity equation 1Eq. 3.192

Hence,

 � a
0.01 m

0.03 m
b

2

169.0 m�s2 � 7.67 m�s

 V2 � A3V3 �A2 � a
d

D
b

2

V3

A2V2 � A3V3

 � 0.00542 m3�s

 Q � A3 
V3 �

p

4
 d 2V3 �

p

4
 10.01 m22 169.0 m�s2

V3 �
B

213.0 � 103 N�m22

1.26 kg�m3
� 69.0 m�s

 � 1.26 kg�m3

�
103 N�kN

1286.9 N � m�kg � K2 115 � 2732K

 � 3 13.0 � 1012 kN�m2 4

 r �
p1

RT1

p2 � p1 � 1
2rV

2
2

and from Eq. 1

(Ans)

COMMENTS Note that the value of is determined strictly by

the value of 1and the assumptions involved in the Bernoulli equa-

tion2, independent of the “shape” of the nozzle. The pressure head

within the tank,

is converted to the velocity head at the exit,

Although we used gage

pressure in the Bernoulli equation we had to use

absolute pressure in the perfect gas law when calculating the

density.

In the absence of viscous effects the pressure throughout the

hose is constant and equal to Physically, the decreases in

pressure from to to accelerate the air and increase its

kinetic energy from zero in the tank to an intermediate value in

the hose and finally to its maximum value at the nozzle exit.

Since the air velocity in the nozzle exit is nine times that in the

hose, most of the pressure drop occurs across the nozzle

and 

Since the pressure change from 112 to 132 is not too great 

i.e., in terms of absolute pressure 

it follows from the perfect gas law that the density change

is also not significant. Hence, the incompressibility assumption is

reasonable for this problem. If the tank pressure were consider-

ably larger or if viscous effects were important, the above results

would be incorrect.

0.03 4 ,
1p1 � p32�p1 � 3.0�101 �3

p3 � 02.N�m2,1p1 � 3000 N�m2, p2 � 2963

p3p2p1

p2.

1p3 � 02,
169.0 m�s22� 12 � 9.81 m�s22 � 243 m.

V 22�2g �243 m,

p1�g � 13.0 kPa2� 19.81 m�s22 11.26 kg�m32  �

p1

V3

 � 13000 � 37.12N�m2 � 2963 N�m2

 p2 � 3.0 � 103 N�m2 � 1
2 11.26 kg�m32 17.67 m�s22

F l u i d s  i n  t h e  N e w s

Hi-tech inhaler The term inhaler often brings to mind a treat-

ment for asthma or bronchitis. Work is underway to develop a

family of inhalation devices that can do more than treat respira-

tory ailments. They will be able to deliver medication for

diabetes and other conditions by spraying it to reach the blood-

stream through the lungs. The concept is to make the spray

droplets fine enough to penetrate to the lungs’ tiny sacs, the

alveoli, where exchanges between blood and the outside world

take place. This is accomplished by use of a laser-machined

nozzle containing an array of very fine holes that cause the

liquid to divide into a mist of micron-scale droplets. The device

fits the hand and accepts a disposable strip that contains the

medicine solution sealed inside a blister of laminated plastic and

the nozzle. An electrically actuated piston drives the liquid from

its reservoir through the nozzle array and into the respiratory

system. To take the medicine, the patient breathes through the

device and a differential pressure transducer in the inhaler

senses when the patient’s breathing has reached the best condi-

tion for receiving the medication. At that point, the piston is au-

tomatically triggered.

GIVEN Water flows through a pipe reducer as is shown in Fig.

E3.9. The static pressures at 112 and 122 are measured by the in-

verted U-tube manometer containing oil of specific gravity, SG,

less than one.

Flow in a Variable Area PipeEXAMPLE 3.9

FIND Determine the manometer reading, h.
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In general, an increase in velocity is accompanied by a decrease in pressure. For example,

the velocity of the air flowing over the top surface of an airplane wing is, on the average, faster

than that flowing under the bottom surface. Thus, the net pressure force is greater on the bottom

than on the top—the wing generates a lift.

If the differences in velocity are considerable, the differences in pressure can also be con-

siderable. For flows of gases, this may introduce compressibility effects as discussed in Section

3.8 and Chapter 11. For flows of liquids, this may result in cavitation, a potentially dangerous sit-

uation that results when the liquid pressure is reduced to the vapor pressure and the liquid “boils.”

As discussed in Chapter 1, the vapor pressure, pv, is the pressure at which vapor bubbles form

in a liquid. It is the pressure at which the liquid starts to boil. Obviously this pressure depends on

the type of liquid and its temperature. For example, water, which boils at at standard

atmospheric pressure, 14.7 psia, boils at if the pressure is 0.507 psia. That is, psia

at and psia at 1See Tables B.1 and B.2.2
One way to produce cavitation in a flowing liquid is noted from the Bernoulli equation. If the

fluid velocity is increased 1for example, by a reduction in flow area as shown in Fig. 3.162 the pres-

sure will decrease. This pressure decrease 1needed to accelerate the fluid through the constriction2
can be large enough so that the pressure in the liquid is reduced to its vapor pressure. A simple ex-

ample of cavitation can be demonstrated with an ordinary garden hose. If the hose is “kinked,” a

restriction in the flow area in some ways analogous to that shown in Fig. 3.16 will result. The water

velocity through this restriction will be relatively large. With a sufficient amount of restriction the

sound of the flowing water will change—a definite “hissing” sound is produced. This sound is a

result of cavitation.

212 °F.pv � 14.780 °F

pv � 0.50780 °F

212 °F

116 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

SOLUTION

COMMENT The difference in elevation, was not

needed because the change in elevation term in the Bernoulli

equation exactly cancels the elevation term in the manometer

equation. However, the pressure difference, depends on

the angle because of the elevation, in Eq. 1. Thus, for a

given flowrate, the pressure difference, as measured by a

pressure gage would vary with but the manometer reading, h,

would be independent of u.

u,

p1 � p2,

z1 � z2,u,

p1 � p2,

z1 � z2,

With the assumptions of steady, inviscid, incompressible flow, the

Bernoulli equation can be written as

The continuity equation 1Eq. 3.192 provides a second relationship

between and if we assume the velocity profiles are uniform

at those two locations and the fluid incompressible:

By combining these two equations we obtain

(1)

This pressure difference is measured by the manometer and can

be determined by using the pressure–depth ideas developed in

Chapter 2. Thus,

or

(2)

As discussed in Chapter 2, this pressure difference is neither

merely nor 

Equations 1 and 2 can be combined to give the desired result

as follows:

or since 

(Ans)h � 1Q�A22
2 

1 � 1A2�A12
2

2g11 � SG2

V2 � Q�A2

11 � SG2gh �
1

2
 rV 2

2  c1 � a
A2

A1

b
2

d

g1h � z1 � z22.gh

p1 � p2 � g1z2 � z12 � 11 � SG2gh

p1 � g
 
1z2 � z12 � g/ � gh � SG gh � g/ � p2

p1 � p2 � g1z2 � z12 � 1
2rV

2
2 31 � 1A2�A12

2 4

Q � A1V1 � A2V2

V2V1

p1 � 1
2rV

2
1 � gz1 � p2 � 1

2rV
2
2 � gz2

F I G U R E  E3.9

�

γ
(1)

z2 – z1

(2)

Water θ

D1

D2

h

SG

V3.10 Venturi
channel

Cavitation occurs
when the pressure
is reduced to the
vapor pressure.
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In such situations boiling occurs 1though the temperature need not be high2, vapor bubbles form,

and then they collapse as the fluid moves into a region of higher pressure 1lower velocity2. This process

can produce dynamic effects 1imploding2 that cause very large pressure transients in the vicinity of the

bubbles. Pressures as large as 100,000 psi 1690 MPa2 are believed to occur. If the bubbles collapse close

to a physical boundary they can, over a period of time, cause damage to the surface in the cavitation

area. Tip cavitation from a propeller is shown in Fig. 3.17. In this case the high-speed rotation of the

propeller produced a corresponding low pressure on the propeller. Obviously, proper design and

use of equipment are needed to eliminate cavitation damage.

3.6 Examples of Use of the Bernoulli Equation 117

F I G U R E  3.16 Pressure
variation and cavitation in a variable
area pipe.

Q

p

(Absolute
pressure)

(1) (2) (3)

Small Q

Moderate Q

Large Q Incipient cavitation

pv

0 x

Cavitation can
cause damage to
equipment.

F I G U R E  3.17 Tip cavitation from a propeller. (Photograph
courtesy of Garfield Thomas Water Tunnel, Pennsylvania State University.)

GIVEN A liquid can be siphoned from a container as shown in

Fig. E3.10a provided the end of the tube, point (3), is below the

free surface in the container, point (1), and the maximum elevation

of the tube, point (2), is “not too great.” Consider water at 60° F

being siphoned from a large tank through a constant diameter hose

Siphon and CavitationEXAMPLE 3.10

as shown in Fig. E3.10b. The end of the siphon is 5 ft below the

bottom of the tank, and the atmospheric pressure is 14.7 psia.

FIND Determine the maximum height of the hill, H, over which

the water can be siphoned without cavitation occurring.
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SOLUTION

By using the fluid properties listed in Table 1.5 and repeating

the calculations for various fluids, the results shown in

Fig. E3.10c are obtained. The value of H is a function of both the

specific weight of the fluid, , and its vapor pressure, .pvg

If the flow is steady, inviscid, and incompressible we can apply

the Bernoulli equation along the streamline from 112 to 122 to 132 as

follows:

(1)

With the tank bottom as the datum, we have 

and Also, 1large tank2, 1open tank2,
1free jet2, and from the continuity equation or

because the hose is constant diameter, Thus, the speed of

the fluid in the hose is determined from Eq. 1 to be

Use of Eq. 1 between points 112 and 122 then gives the pressure 

at the top of the hill as

(2)

From Table B.1, the vapor pressure of water at is

0.256 psia. Hence, for incipient cavitation the lowest pressure in

the system will be psia. Careful consideration of Eq. 2

and Fig. E3.10b will show that this lowest pressure will occur at

the top of the hill. Since we have used gage pressure at point 112
we must use gage pressure at point 122 also. Thus,

psi and Eq. 2 gives

or

(Ans)

For larger values of H, vapor bubbles will form at point 122 and the

siphon action may stop.

COMMENTS Note that we could have used absolute pres-

sure throughout 1 psia and psia2 and ob-

tained the same result. The lower the elevation of point 132, the

larger the flowrate and, therefore, the smaller the value of H al-

lowed.

We could also have used the Bernoulli equation between 122
and 132, with to obtain the same value of H. In this case

it would not have been necessary to determine by use of the

Bernoulli equation between 112 and 132.
The above results are independent of the diameter and length

of the hose 1provided viscous effects are not important2. Proper

design of the hose 1or pipe2 is needed to ensure that it will not col-

lapse due to the large pressure difference 1vacuum2 between the

inside and outside of the hose.

V2

V2 � V3,

p1 � 14.7p2 � 0.256

H � 28.2 ft

� 162.4 lb�ft32 115 � H2ft � 1
2 11.94 slugs�ft32 135.9 ft�s22

1�14.4 lb�in.22 1144 in.2�ft22

p2 � 0.256 � 14.7 � �14.4

1p1 � 02,

p � 0.256

60 °F

 � g1z1 � z22 � 1
2rV

2
2

 p2 � p1 � 1
2rV

2
1 � gz1 � 1

2rV
2
2 � gz2

p2

 � 35.9 ft�s � V2

 V3 � 22g1z1 � z32 � 22132.2 ft�s22 315 � 1�52 4  ft

V2 � V3.

A2V2 � A3V3,p3 � 0

p1 � 0V1 � 0z3 � �5 ft.

z1 � 15 ft, z2 � H,

 � p3 � 1
2rV

2
3 � gz3

 p1 � 1
2rV

2
1 � gz1 � p2 � 1

2rV
2
2 � gz2

(2)

(3)

(1)

Water

(1)

(2)

(3)
5 ft

H

15 ft

F I G U R E  E3.10b

F I G U R E  E3.10c

F I G U R E  E3.10a
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3.6.3 Flowrate Measurement

Many types of devices using principles involved in the Bernoulli equation have been developed

to measure fluid velocities and flowrates. The Pitot-static tube discussed in Section 3.5 is an

example. Other examples discussed below include devices to measure flowrates in pipes and
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conduits and devices to measure flowrates in open channels. In this chapter we will consider

“ideal” flow meters—those devoid of viscous, compressibility, and other “real-world” effects.

Corrections for these effects are discussed in Chapters 8 and 10. Our goal here is to understand

the basic operating principles of these simple flow meters.

An effective way to measure the flowrate through a pipe is to place some type of restric-

tion within the pipe as shown in Fig. 3.18 and to measure the pressure difference between the

low-velocity, high-pressure upstream section 112, and the high-velocity, low-pressure downstream

section 122. Three commonly used types of flow meters are illustrated: the orifice meter, the noz-
zle meter, and the Venturi meter. The operation of each is based on the same physical principles—

an increase in velocity causes a decrease in pressure. The difference between them is a matter of

cost, accuracy, and how closely their actual operation obeys the idealized flow assumptions.

We assume the flow is horizontal steady, inviscid, and incompressible between

points 112 and 122. The Bernoulli equation becomes

1The effect of nonhorizontal flow can be incorporated easily by including the change in elevation,

in the Bernoulli equation.2
If we assume the velocity profiles are uniform at sections 112 and 122, the continuity equation

1Eq. 3.192 can be written as

where is the small flow area at section 122. Combination of these two equations re-

sults in the following theoretical flowrate

(3.20)

Thus, as shown by the figure in the margin, for a given flow geometry and the flowrate

can be determined if the pressure difference, is measured. The actual measured flowrate,

will be smaller than this theoretical result because of various differences between the “real

world” and the assumptions used in the derivation of Eq. 3.20. These differences 1which are quite

consistent and may be as small as 1 to 2% or as large as 40%, depending on the geometry used2 can

be accounted for by using an empirically obtained discharge coefficient as discussed in Section 8.6.1.

Qactual,

p1 � p2,

A221A1

Q � A2 
B

21p1 � p22

r 31 � 1A2�A12
2 4

1A2 6 A12A2

Q � A1V1 � A2V2

z1 � z2,

p1 � 1
2rV

2
1 � p2 � 1

2rV
2
2

1z1 � z22,
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F I G U R E  3.18 Typical devices
for measuring flowrate in pipes.

(1) (2)

(1) (2)

Venturi

Nozzle

Orifice

The flowrate varies
as the square root
of the pressure dif-
ference across the
flow meter.

Q

Δp = p1 – p2

Q ~  Δp
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Other flow meters based on the Bernoulli equation are used to measure flowrates in open chan-

nels such as flumes and irrigation ditches. Two of these devices, the sluice gate and the sharp-crested
weir, are discussed below under the assumption of steady, inviscid, incompressible flow. These and

other open-channel flow devices are discussed in more detail in Chapter 10.

Sluice gates like those shown in Fig. 3.19a are often used to regulate and measure the flowrate

in open channels. As indicated in Fig. 3.19b, the flowrate, Q, is a function of the water depth up-

stream, the width of the gate, b, and the gate opening, a. Application of the Bernoulli equation

and continuity equation between points 112 and 122 can provide a good approximation to the actual

flowrate obtained. We assume the velocity profiles are uniform sufficiently far upstream and down-

stream of the gate.

z1,

120 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

GIVEN Kerosene flows through the Venturi

meter shown in Fig. E3.11a with flowrates between 0.005 and

FIND Determine the range in pressure difference,

needed to measure these flowrates.

p1 � p2,

0.050 m3�s.

1SG � 0.852

Venturi MeterEXAMPLE 3.11

D1 = 0.1 m

(1)
(2)

0.005 m3/s < Q < 0.050 m3/s

D2 = 0.06 m

Kerosene, SG = 0.85

Q

F I G U R E  E3.11a

F I G U R E  E3.11b

SOLUTION

results presented here are independent of the particular flow

meter geometry—an orifice, nozzle, or Venturi meter 1see

Fig. 3.182.
It is seen from Eq. 3.20 that the flowrate varies as the

square root of the pressure difference. Hence, as indicated by

the numerical results and shown in Fig. E3.11b, a 10-fold in-

crease in flowrate requires a 100-fold increase in pressure dif-

ference. This nonlinear relationship can cause difficulties when

measuring flowrates over a wide range of values. Such mea-

surements would require pressure transducers with a wide

range of operation. An alternative is to use two flow meters in

parallel—one for the larger and one for the smaller flowrate

ranges.

If the flow is assumed to be steady, inviscid, and incompressible,

the relationship between flowrate and pressure is given by Eq.

3.20. This can be rearranged to give

With the density of the flowing fluid

and the area ratio

the pressure difference for the smallest flowrate is

Likewise, the pressure difference for the largest flowrate is

Thus,

(Ans)

COMMENTS These values represent the pressure differ-

ences for inviscid, steady, incompressible conditions. The ideal

1.16 kPa  p1 � p2  116 kPa

 � 1.16 � 105 N�m2 � 116 kPa

 p1 � p2 � 10.052218502 
11 � 0.3622

2 3 1p�42 10.0622 4 2

 � 1160 N�m2 � 1.16 kPa

 p1 � p2 � 10.005 m3�s221850 kg�m32 
11 � 0.3622

2 3 1p�42 10.06 m22 4 2

0.36A2�A1 � 1D2�D12
2 � 10.06 m�0.10 m22 �

r � SG rH2O
� 0.8511000 kg�m32 � 850 kg�m3

p1 � p2 �
Q2r 31 � 1A2�A12

2 4

2 A2
2

p 1
–p

2
, k

P
a

(0.005 m3/s, 1.16 kPa)

(0.05 m3/s, 116 kPa)

0
0

20

40

60

80

100

120

0.01 0.02 0.03 0.04 0.05

Q, m3/s
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Thus, we apply the Bernoulli equation between points on the free surfaces at 112 and 122 to

give

Also, if the gate is the same width as the channel so that A1 � bz1 and A2 � bz2, the continuity

equation gives

With the fact that these equations can be combined and rearranged to give the flowrate

as

(3.21)

In the limit of this result simply becomes

This limiting result represents the fact that if the depth ratio, is large, the kinetic energy of

the fluid upstream of the gate is negligible and the fluid velocity after it has fallen a distance

is approximately 

The results of Eq. 3.21 could also be obtained by using the Bernoulli equation between points

132 and 142 and the fact that and since the streamlines at these sections are straight.

In this formulation, rather than the potential energies at 112 and 122, we have the pressure contri-

butions at 132 and 142. 
The downstream depth, not the gate opening, a, was used to obtain the result of Eq. 3.21.

As was discussed relative to flow from an orifice 1Fig. 3.142, the fluid cannot turn a sharp cor-

ner. A vena contracta results with a contraction coefficient, less than 1. Typically is

approximately 0.61 over the depth ratio range of For larger values of the

value of increases rapidly.Cc

a�z10 6 a�z1 6 0.2.

CcCc � z2�a,

90°

z2,

p4 � gz2p3 � gz1

V2 � 12gz1.1z1 � z22 � z1

z1�z2,

Q � z2b12gz1

z1 � z2

Q � z2b 
B

2g1z1 � z22

1 � 1z2�z12
2

p1 � p2 � 0,

Q � A1V1 � bV1z1 � A2V2 � bV2z2

p1 � 1
2rV

2
1 � gz1 � p2 � 1

2rV
2
2 � gz2
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Sluice gate
width = b

(1)

(2)

(4)(3)

V1

z1

a

V2

z2

(b)(a)

Sluice gates

b

aQ

F I G U R E  3.19 Sluice gate geometry. (Photograph courtesy of Plasti-Fab, Inc.)

The flowrate under
a sluice gate de-
pends on the water
depths on either
side of the gate.

GIVEN Water flows under the sluice gate shown in Fig. E3.12a. FIND Determine the approximate flowrate per unit width of

the channel.

Sluice GateEXAMPLE 3.12
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Another device used to measure flow in an open channel is a weir. A typical rectangular,

sharp-crested weir is shown in Fig. 3.20. For such devices the flowrate of liquid over the top of

the weir plate is dependent on the weir height, the width of the channel, b, and the head, H,

of the water above the top of the weir. Application of the Bernoulli equation can provide a sim-

ple approximation of the flowrate expected for these situations, even though the actual flow is

quite complex.

Between points 112 and 122 the pressure and gravitational fields cause the fluid to accelerate

from velocity to velocity At 112 the pressure is while at 122 the pressure is essen-

tially atmospheric, Across the curved streamlines directly above the top of the weir plate

1section a–a2, the pressure changes from atmospheric on the top surface to some maximum value

within the fluid stream and then to atmospheric again at the bottom surface. This distribution is

indicated in Fig. 3.20. Such a pressure distribution, combined with the streamline curvature and

gravity, produces a rather nonuniform velocity profile across this section. This velocity distribu-

tion can be obtained from experiments or a more advanced theory.

p2 � 0.

p1 � gh,V2.V1

Pw,

122 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

SOLUTION

flowrate is not directly proportional to the flow depth. Thus,

for example, if during flood conditions the upstream depth dou-

bled from , the flowrate per unit width of

the channel would not double, but would increase only from

.4.61 m2�s to 6.67 m2�s

z1 � 5 m to z1 � 10 m

Under the assumptions of steady, inviscid, incompressible flow,

we can apply Eq. 3.21 to obtain the flowrate per unit width,

as

In this instance m and so the ratio

and we can assume that the contraction co-

efficient is approximately Thus,

and we obtain the flowrate

(Ans)

COMMENT If we consider and neglect the kinetic

energy of the upstream fluid, we would have

In this case the difference in Q with or without including is not

too significant because the depth ratio is fairly large

Thus, it is often reasonable to

neglect the kinetic energy upstream from the gate compared to

that downstream of it.

By repeating the calculations for various flow depths, , the

results shown in Fig. E3.12b are obtained. Note that the

z1

1z1�z2 � 5.0�0.488 � 10.22.

V1

 � 4.83 m2�s

 
Q

b
� z2 12gz1 � 0.488 m 2219.81 m�s22 15.0 m2

z1 � z2

 � 4.61 m2�s

 
Q

b
� 10.488 m2 

B

219.81 m�s22 15.0 m � 0.488 m2

1 � 10.488 m�5.0 m22

10.80 m2 � 0.488 m

z2 � Cca � 0.61Cc � 0.61.

a�z1 � 0.16 6 0.20,

a � 0.80 mz1 � 5.0

Q

b
� z2 

B

2g1z1 � z22

1 � 1z2�z12
2

Q�b,

Q

5.0 m

6.0 m

0.8 m

F I G U R E  E3.12a

F I G U R E  E3.12b

9

8

7

6

5

4

3

2

1

0
0 5

z1, m

Q
/b

, 
m

2
/s

10 15

(5m, 4.61 m2/s)

F I G U R E  3.20
Rectangular, sharp-crested weir geometry.

Q

Pressure distribution
Width = b H

a

a

Weir
plate(1)

V1

(2)

V2

Pw

h

b
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For now, we will take a very simple approach and assume that the weir flow is similar in

many respects to an orifice-type flow with a free streamline. In this instance we would expect the

average velocity across the top of the weir to be proportional to and the flow area for this

rectangular weir to be proportional to Hb. Hence, it follows that

where is a constant to be determined.

Simple use of the Bernoulli equation has provided a method to analyze the relatively com-

plex flow over a weir. The correct functional dependence of Q on H has been obtained 

as indicated by the figure in the margin), but the value of the coefficient is unknown. Even a

more advanced analysis cannot predict its value accurately. As is discussed in Chapter 10, exper-

iments are used to determine the value of C1.

C1

1Q � H3�2,

C1

Q � C1Hb 12gH � C1b 12g H3�2

12gH

3.7 The Energy Line and the Hydraulic Grade Line 123

GIVEN Water flows over a triangular weir, as is shown in Fig.

E3.13. 

FIND Based on a simple analysis using the Bernoulli equation,

determine the dependence of the flowrate on the depth H. If the

flowrate is when estimate the flowrate when the

depth is increased to H � 3H0.

H � H0,Q0

WeirEXAMPLE 3.13

SOLUTION

(Ans)

COMMENT Note that for a triangular weir the flowrate is

proportional to whereas for the rectangular weir discussed

above, it is proportional to The triangular weir can be accu-

rately used over a wide range of flowrates.

H3�2.

H5�2,

 � 15.6

 
Q3H0

QH0

 �
C2 tan1u�22  12g 13H02

5�2

C2 tan1u�22  12g 1H02
5�2

With the assumption that the flow is steady, inviscid, and incom-

pressible, it is reasonable to assume from Eq. 3.18 that the aver-

age speed of the fluid over the triangular notch in the weir plate is

proportional to Also, the flow area for a depth of H is

H The combination of these two ideas gives

(Ans)

where is an unknown constant to be determined experimentally.

Thus, an increase in the depth by a factor of three 1from to

2 results in an increase of the flowrate by a factor of3H0

H0

C2

 Q � AV � H 2 tan 
u

2
 1C2 12gH2 � C2 tan 

u

2
12g H5�2

3H tan 1u�22 4 .
12gH.

Q ~ H3/2

Q

H

H H

H tan _
2
θ

θ

F I G U R E  E3.13

The hydraulic
grade line and en-
ergy line are graph-
ical forms of the
Bernoulli equation.

As was discussed in Section 3.4, the Bernoulli equation is actually an energy equation repre-

senting the partitioning of energy for an inviscid, incompressible, steady flow. The sum of the

various energies of the fluid remains constant as the fluid flows from one section to another. A

useful interpretation of the Bernoulli equation can be obtained through the use of the concepts

of the hydraulic grade line 1HGL2 and the energy line 1EL2. These ideas represent a geometri-

cal interpretation of a flow and can often be effectively used to better grasp the fundamental

processes involved.

For steady, inviscid, incompressible flow the total energy remains constant along a stream-

line. The concept of “head” was introduced by dividing each term in Eq. 3.7 by the specific weight,

to give the Bernoulli equation in the following form

(3.22)
p

g
�

V 2

2g
� z � constant on a streamline � H

g � rg,

3.7 The Energy Line and the Hydraulic Grade Line
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Each of the terms in this equation has the units of length 1feet or meters2 and represents a certain

type of head. The Bernoulli equation states that the sum of the pressure head, the velocity head,

and the elevation head is constant along a streamline. This constant is called the total head, H.

The energy line is a line that represents the total head available to the fluid. As shown in

Fig. 3.21, the elevation of the energy line can be obtained by measuring the stagnation pressure

with a Pitot tube. 1A Pitot tube is the portion of a Pitot-static tube that measures the stagnation

pressure. See Section 3.5.2 The stagnation point at the end of the Pitot tube provides a measure-

ment of the total head 1or energy2 of the flow. The static pressure tap connected to the piezometer

tube shown, on the other hand, measures the sum of the pressure head and the elevation head,

This sum is often called the piezometric head. The static pressure tap does not measure

the velocity head.

According to Eq. 3.22, the total head remains constant along the streamline 1provided the as-

sumptions of the Bernoulli equation are valid2. Thus, a Pitot tube at any other location in the flow

will measure the same total head, as is shown in the figure. The elevation head, velocity head, and

pressure head may vary along the streamline, however.

The locus of elevations provided by a series of Pitot tubes is termed the energy line, EL.

The locus provided by a series of piezometer taps is termed the hydraulic grade line, HGL. Un-

der the assumptions of the Bernoulli equation, the energy line is horizontal. If the fluid veloc-

ity changes along the streamline, the hydraulic grade line will not be horizontal. If viscous effects

are important 1as they often are in pipe flows2, the total head does not remain constant due to a

loss in energy as the fluid flows along its streamline. This means that the energy line is no longer

horizontal. Such viscous effects are discussed in Chapters 5 and 8.

The energy line and hydraulic grade line for flow from a large tank are shown in Fig. 3.22.

If the flow is steady, incompressible, and inviscid, the energy line is horizontal and at the eleva-

tion of the liquid in the tank 1since the fluid velocity in the tank and the pressure on the surface

p�g � z.
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H

V2/2g

p/�

z

F I G U R E  3.21 Representation of the energy line and the
hydraulic grade line.

Q

H
Static

Stagnation

z1

p1/  

V1
2/2g

V 2/2g

z

z2

p2/  

V2
2

___
2g

Hydraulic
grade line (HGL)

Energy line (EL)

Datum

p/ γ

γ

γ

F I G U R E  3.22 The energy line
and hydraulic grade line for flow from a tank.

HGL

EL

(3) 

(2)

(1)

V1 = p1 = 0

H = z1

p2__

V2
2

___
2g

z2
z3

V3
2

___
2g

p3
 = 0

γ

Under the assump-
tions of the Bernoulli
equation, the energy
line is horizontal.
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are zero2. The hydraulic grade line lies a distance of one velocity head, below the energy

line. Thus, a change in fluid velocity due to a change in the pipe diameter results in a change in

the elevation of the hydraulic grade line. At the pipe outlet the pressure head is zero 1gage2 so the

pipe elevation and the hydraulic grade line coincide.

The distance from the pipe to the hydraulic grade line indicates the pressure within the pipe,

as is shown in Fig. 3.23. If the pipe lies below the hydraulic grade line, the pressure within the

pipe is positive 1above atmospheric2. If the pipe lies above the hydraulic grade line, the pressure is

negative 1below atmospheric2. Thus, a scale drawing of a pipeline and the hydraulic grade line can

be used to readily indicate regions of positive or negative pressure within a pipe.

V2�2g,

3.7 The Energy Line and the Hydraulic Grade Line 125

For flow below
(above) the hy-
draulic grade line,
the pressure is
positive (negative).

F I G U R E  3.23
Use of the energy line and the
hydraulic grade line.

Q

p > 0

p < 0

p/

z
z

V2
__
2g

EL

HGLγ
p/γ

GIVEN Water is siphoned from the tank shown in Fig. E3.14

through a hose of constant diameter. A small hole is found in the

hose at location 112 as indicated.

FIND When the siphon is used, will water leak out of the hose,

or will air leak into the hose, thereby possibly causing the siphon

to malfunction?

Energy Line and Hydraulic Grade LineEXAMPLE 3.14

SOLUTION

COMMENT In practice, viscous effects may be quite impor-

tant, making this simple analysis 1horizontal energy line2 incor-

rect. However, if the hose is “not too small diameter,” “not too

long,” the fluid “not too viscous,” and the flowrate “not too large,”

the above result may be very accurate. If any of these assumptions

are relaxed, a more detailed analysis is required 1see Chapter 82. If

the end of the hose were closed so that the flowrate were zero, the

hydraulic grade line would coincide with the energy line

1 throughout2, the pressure at 112 would be greater than

atmospheric, and water would leak through the hole at 112.
V 2�2g � 0

Whether air will leak into or water will leak out of the hose de-

pends on whether the pressure within the hose at 112 is less than or

greater than atmospheric. Which happens can be easily determined

by using the energy line and hydraulic grade line concepts. With

the assumption of steady, incompressible, inviscid flow it follows

that the total head is constant—thus, the energy line is horizontal.

Since the hose diameter is constant, it follows from the continuity

equation that the water velocity in the hose is con-

stant throughout. Thus, the hydraulic grade line is a constant dis-

tance, below the energy line as shown in Fig. E3.14. Since the

pressure at the end of the hose is atmospheric, it follows that the hy-

draulic grade line is at the same elevation as the end of the hose out-

let. The fluid within the hose at any point above the hydraulic grade

line will be at less than atmospheric pressure.

(Ans)
Thus, air will leak into the hose through

the hole at point 112.

V 2�2g,

1AV � constant2

F I G U R E  E3.14

Valve
HGL with valve open

HGL with valve closed and
EL with valve open or closed

(1)

V2__
2g p_

γ
z

The above discussion of the hydraulic grade line and the energy line is restricted to ideal sit-

uations involving inviscid, incompressible flows. Another restriction is that there are no “sources”

or “sinks” of energy within the flow field. That is, there are no pumps or turbines involved. Al-

terations in the energy line and hydraulic grade line concepts due to these devices are discussed in

Chapters 5 and 8.
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The Bernoulli
equation can be
modified for com-
pressible flows.

Δp ~ V2

V

Δp

Proper use of the Bernoulli equation requires close attention to the assumptions used in its de-

rivation. In this section we review some of these assumptions and consider the consequences of

incorrect use of the equation.

3.8.1 Compressibility Effects

One of the main assumptions is that the fluid is incompressible. Although this is reasonable for

most liquid flows, it can, in certain instances, introduce considerable errors for gases.

In the previous section, we saw that the stagnation pressure, , is greater than the static

pressure, , by an amount provided that the density remains con-

stant. If this dynamic pressure is not too large compared with the static pressure, the density change

between two points is not very large and the flow can be considered incompressible. However, since

the dynamic pressure varies as the error associated with the assumption that a fluid is incom-

pressible increases with the square of the velocity of the fluid, as indicated by the figure in the mar-

gin. To account for compressibility effects we must return to Eq. 3.6 and properly integrate the term

when is not constant.

A simple, although specialized, case of compressible flow occurs when the temperature of a

perfect gas remains constant along the streamline—isothermal flow. Thus, we consider 

where T is constant. 1In general, p, and T will vary.2 For steady, inviscid, isothermal flow, Eq.

3.6 becomes

where we have used The pressure term is easily integrated and the constant of integration

evaluated if and are known at some location on the streamline. The result is

(3.23)

Equation 3.23 is the inviscid, isothermal analog of the incompressible Bernoulli equation. In the

limit of small pressure difference, with and Eq. 3.23

reduces to the standard incompressible Bernoulli equation. This can be shown by use of the ap-

proximation for small The use of Eq. 3.23 in practical applications is restricted by

the inviscid flow assumption, since 1as is discussed in Section 11.52 most isothermal flows are ac-

companied by viscous effects.

A much more common compressible flow condition is that of isentropic 1constant entropy2
flow of a perfect gas. Such flows are reversible adiabatic processes—“no friction or heat transfer”—

and are closely approximated in many physical situations. As discussed fully in Chapter 11, for

isentropic flow of a perfect gas the density and pressure are related by where k is the

specific heat ratio and C is a constant. Hence, the integral of Eq. 3.6 can be evaluated

as follows. The density can be written in terms of the pressure as so that Eq. 3.6

becomes

The pressure term can be integrated between points 112 and 122 on the streamline and the constant

C evaluated at either point or to give the following:

 � a
k

k � 1
b a

p2

r2

�
p1

r1

b

 C1�k�
p2

p1

 p
�1�k dp � C1�k a

k

k � 1
b 3p1k�12�k

2 � p1k�12�k
1 4

C1�k � p2
1�k�r221C1�k � p1

1�k�r1

C1�k �  p�1�k dp �
1

2
 V 2 � gz � constant

r � p1�kC�1�k
�  dp�r

p�rk � C,

e.ln11 � e2 � e

e 
 1p1�p2 � 1 � 1p1 � p22�p2 � 1 � e,

V 2
1

2g
� z1 �

RT
g

 ln a
p1

p2

b �
V 2

2

2g
� z2

V1z1, p1,

r � p�RT.

RT �  
dp

p
�

1

2
 V 2 � gz � constant

r,

p � rRT,

r�  dp�r

V 2,

¢p � pstag � pstatic � rV 2�2,pstatic

pstag
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Thus, the final form of Eq. 3.6 for compressible, isentropic, steady flow of a perfect gas is

(3.24)

The similarities between the results for compressible isentropic flow 1Eq. 3.242 and incompressible

isentropic flow 1the Bernoulli equation, Eq. 3.72 are apparent. The only differences are the factors

of that multiply the pressure terms and the fact that the densities are different 

In the limit of “low-speed flow” the two results are exactly the same, as is seen by the following.

We consider the stagnation point flow of Section 3.5 to illustrate the difference between the

incompressible and compressible results. As is shown in Chapter 11, Eq. 3.24 can be written in

dimensionless form as

(3.25)

where 112 denotes the upstream conditions and 122 the stagnation conditions. We have assumed

and have denoted as the upstream Mach number—the ratio of the

fluid velocity to the speed of sound,

A comparison between this compressible result and the incompressible result is perhaps most

easily seen if we write the incompressible flow result in terms of the pressure ratio and the Mach

number. Thus, we divide each term in the Bernoulli equation, by and use the

perfect gas law, to obtain

Since this can be written as

(3.26)

Equations 3.25 and 3.26 are plotted in Fig. 3.24. In the low-speed limit of both of the

results are the same. This can be seen by denoting and using the binomial expan-

sion, where to write Eq. 3.25 as

For this compressible flow result agrees with Eq. 3.26. The incompressible and com-

pressible equations agree to within about 2% up to a Mach number of approximately 

For larger Mach numbers the disagreement between the two results increases.

Ma1 � 0.3.

Ma1 
 1

p2 � p1

p1

�
kMa2

1

2
 a1 �

1

4
 Ma2

1 �
2 � k

24
 Ma4

1 � pb  1compressible2

n � k� 1k � 12,11 � e~2n � 1 � ne~ � n1n � 12 e~2�2 � p,

1k � 12Ma1
2�2 � e~

Ma1 S 0,

p2 � p1

p1

�
kMa2

1

2
  1incompressible2

Ma1 � V1�1kRT1

p2 � p1

p1

�
V 2

1

2RT1

p1 � rRT1,

p1rV1
2�2 � p1 � p2,

c1 � 1kRT1.

Ma1 � V1�c1z1 � z2, V2 � 0,

p2 � p1

p1

� c a1 �
k � 1

2
 Ma2

1b
k�k�1

� 1 d  1compressible2

1r1 � r22.3k� 1k � 12 4

a
k

k � 1
b 

p1

r1

�
V 2

1

2
� gz1 � a

k

k � 1
b 

p2

r2

�
V 2

2

2
� gz2
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F I G U R E  3.24 Pressure
ratio as a function of Mach number
for incompressible and compressible
(isentropic) flow.

0 0.2 0.4 0.6 0.8 1

1

0.4

0.6

0.8

0.2

0

p 2
 –

 p
1

__
__

__
p 1

Ma1

Incompressible
(Eq. 3.26)

Compressible
(Eq. 3.25)

k = 1.4

For small Mach
numbers the com-
pressible and in-
compressible
results are nearly
the same.
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3.8.2 Unsteady Effects

Another restriction of the Bernoulli equation 1Eq. 3.72 is the assumption that the flow is steady. For

such flows, on a given streamline the velocity is a function of only s, the location along the stream-

line. That is, along a streamline For unsteady flows the velocity is also a function of

time, so that along a streamline Thus when taking the time derivative of the velocity

to obtain the streamwise acceleration, we obtain rather than just 

as is true for steady flow. For steady flows the acceleration is due to the change in velocity re-

sulting from a change in position of the particle 1the term2, whereas for unsteady flow

there is an additional contribution to the acceleration resulting from a change in velocity with

time at a fixed location 1the term2. These effects are discussed in detail in Chapter 4. The

net effect is that the inclusion of the unsteady term, does not allow the equation of motion

to be easily integrated 1as was done to obtain the Bernoulli equation2 unless additional assump-

tions are made.

The Bernoulli equation was obtained by integrating the component of Newton’s second law

1Eq. 3.52 along the streamline. When integrated, the acceleration contribution to this equation, the

0V�0t,
0V�0t

V 0V�0s

as � V 0V�0sas � 0V�0t � V 0V�0s
V � V1s, t2.
V � V1s2.
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GIVEN The jet shown in Fig. E3.15 flies at Mach 0.82 at an

altitude of 10 km in a standard atmosphere.

FIND Determine the stagnation pressure on the leading edge

of its wing if the flow is incompressible; and if the flow is com-

pressible isentropic.

SOLUTION

F I G U R E  E3.15 (Photograph courtesy of
Pure stock/superstock.)

Compressible Flow—Mach Number

lift and drag on the airplane; see Chapter 92 is approximately

times greater according to the compressible

flow calculations. This may be very significant. As discussed in

Chapter 11, for Mach numbers greater than 1 1supersonic flow2
the differences between incompressible and compressible results

are often not only quantitative but also qualitative.

Note that if the airplane were flying at Mach 0.30 1rather than

0.822 the corresponding values would be for

incompressible flow and for compressible

flow. The difference between these two results is about 2%.

p2 � p1 � 1.707 kPa

p2 � p1 � 1.670 kPa

14.7�12.5 � 1.18

EXAMPLE 3.15

From Tables 1.8 and C.2 we find that 1abs2,
and Thus, if we as-

sume incompressible flow, Eq. 3.26 gives

or

(Ans)

On the other hand, if we assume isentropic flow, Eq. 3.25 gives

or

(Ans)

COMMENT We see that at Mach 0.82 compressibility effects

are of importance. The pressure 1and, to a first approximation, the

p2 � p1 � 0.555 126.5 kPa2 � 14.7 kPa

 � 0.555

 
p2 � p1

p1

� e c 1 �
11.4 � 12

2
 10.8222 d

1.4�11.4�12

� 1 f

p2 � p1 � 0.471126.5 kPa2 � 12.5 kPa

p2 � p1

p1

�
kMa2

1

2
� 1.4 

10.8222

2
� 0.471

k � 1.4.r � 0.414 kg�m3,T1 � �49.9 °C,

p1 � 26.5 kPa

Thus, a “rule of thumb” is that the flow of a perfect gas may be considered as incompress-

ible provided the Mach number is less than about 0.3. In standard air 

this corresponds to a speed of At

higher speeds, compressibility may become important.

V1 � Ma1c1 � 0.311117 ft�s2 � 335 ft�s � 228 mi�hr.1117 ft�s2
c1 � 1kRT1 �1T1 � 59 °F,

The Bernoulli
equation can be
modified for un-
steady flows.
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term, gave rise to the kinetic energy term in the Bernoulli equation. If the steps leading

to Eq. 3.5 are repeated with the inclusion of the unsteady effect the following is

obtained:

For incompressible flow this can be easily integrated between points 112 and 122 to give

(3.27)

Equation 3.27 is an unsteady form of the Bernoulli equation valid for unsteady, incompressible,

inviscid flow. Except for the integral involving the local acceleration, it is identical to the

steady Bernoulli equation. In general, it is not easy to evaluate this integral because the variation

of along the streamline is not known. In some situations the concepts of “irrotational flow”

and the “velocity potential” can be used to simplify this integral. These topics are discussed in

Chapter 6.

0V�0t

0V�0t,

p1 �
1

2
 rV 2

1 � gz1 � r�
s2

s1

 
0V

0t
 ds � p2 �

1

2
 rV 2

2 � gz2  1along a streamline2

r 
0V

0t
 ds � dp �

1

2
 rd1V 22 � g dz � 0  1along a streamline2

10V�0t � 02

1
2 rd1V 22
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GIVEN An incompressible, inviscid liquid is placed in a verti-

cal, constant diameter U-tube as indicated in Fig. E3.16. When

released from the nonequilibrium position shown, the liquid

column will oscillate at a specific frequency. 

FIND Determine this frequency.

SOLUTION

F I G U R E  E3.16

Unsteady Flow—U-Tube

which has the solution 

The values of the constants and depend on the

initial state 1velocity and position2 of the liquid at Thus, the

liquid oscillates in the tube with a frequency

(Ans)

COMMENT This frequency depends on the length of the col-

umn and the acceleration of gravity 1in a manner very similar to

the oscillation of a pendulum2. The period of this oscillation 1the

time required to complete an oscillation2 is t0 � 2p1/�2g.

v � 22g�/

t � 0.

C2C1112g�/ t2.
z1t2 � C1 sin112g�/ t2 � C2 cos

g

(1)

V1

(2)

V2

�

z

z

Open
tube

Equilibrium
position

= 0

EXAMPLE 3.16

The frequency of oscillation can be calculated by use of Eq. 3.27

as follows. Let points 112 and 122 be at the air–water interfaces of

the two columns of the tube and correspond to the equilib-

rium position of these interfaces. Hence, and if

then In general, z is a function of time,

For a constant diameter tube, at any instant in time the fluid speed

is constant throughout the tube, and the integral

representing the unsteady effect in Eq. 3.27 can be written as

where is the total length of the liquid column as shown in the

figure. Thus, Eq. 3.27 can be written as

Since and this can be written as the second-

order differential equation describing simple harmonic motion

d 2z

dt 

2
�

2g

/
 z � 0

g � rg,V � dz�dt

g1�z2 � r/ 
dV

dt
� gz

/

�
s2

s1

 
0V

0t
 ds �

dV

dt �
s2

s1

 ds � / 
dV

dt

V1 � V2 � V,

z � z1t2.z1 � �z.z2 � z,

p1 � p2 � 0

z � 0

V3.11 Oscillations
in a U-tube

In a few unsteady flow cases, the flow can be made steady by an appropriate selection of the

coordinate system. Example 3.17 illustrates this.
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Some unsteady flows may be treated as “quasisteady” and solved approximately by using the

steady Bernoulli equation. In these cases the unsteadiness is “not too great” 1in some sense2, and the

steady flow results can be applied at each instant in time as though the flow were steady. The slow

draining of a tank filled with liquid provides an example of this type of flow.

3.8.3 Rotational Effects

Another of the restrictions of the Bernoulli equation is that it is applicable along the streamline. Ap-

plication of the Bernoulli equation across streamlines 1i.e., from a point on one streamline to a point

on another streamline2 can lead to considerable errors, depending on the particular flow conditions in-

volved. In general, the Bernoulli constant varies from streamline to streamline. However, under certain

restrictions this constant is the same throughout the entire flow field. Example 3.18 illustrates this fact.

130 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

GIVEN A submarine moves through seawater at a

depth of 50 m with velocity as shown in Fig. E3.17. 

FIND Determine the pressure at the stagnation point 122.

V0 � 5.0 m�s
1SG � 1.032

SOLUTION

F I G U R E  E3.17

Unsteady or Steady Flow

(Ans)

similar to that discussed in Example 3.2.

COMMENT If the submarine were accelerating,

the flow would be unsteady in either of the above coordinate sys-

tems and we would be forced to use an unsteady form of the

Bernoulli equation.

0V0 �0t � 0,

 � 518 kPa

 � 112,900 � 505,0002 N�m2

(1) (2)

h = 50 m

V0 = 5 m/s

x

γ

EXAMPLE 3.17

In a coordinate system fixed to the ground, the flow is unsteady.

For example, the water velocity at 112 is zero with the submarine

in its initial position, but at the instant when the nose, 122, reaches

point 112 the velocity there becomes Thus,

and the flow is unsteady. Application of the steady

Bernoulli equation between 112 and 122 would give the incorrect

result that According to this result the static

pressure is greater than the stagnation pressure—an incorrect use

of the Bernoulli equation.

We can either use an unsteady analysis for the flow 1which is

outside the scope of this text2 or redefine the coordinate system so

that it is fixed on the submarine, giving steady flow with respect

to this system. The correct method would be

 � 19.80 � 103 N�m32 11.032 150 m2

 p2 �
rV 2

1

2
� gh � 3 11.032 110002 kg�m3 4  15.0 m�s22�2

“p1 � p2 � rV 2
0�2.”

0V1�0t � 0

V1 � �V0 î.

Care must be used
in applying the
Bernoulli equation
across streamlines.

GIVEN Consider the uniform flow in the channel shown in

Fig. E3.18a. The liquid in the vertical piezometer tube is sta-

tionary.

FIND Discuss the use of the Bernoulli equation between

points 112 and 122, points 132 and 142, and points 142 and 152.

Use of Bernoulli Equation across Streamlines

(3)

(5)

(1)

(4)

(2)

V0

V0

p1 = p0

h

(a)

(b)z = h

z = 0

p5 = 0

H

Fluid particles spin

EXAMPLE 3.18

F I G U R E  E3.18

SOLUTION

If the flow is steady, inviscid, and incompressible, Eq. 3.7 written

between points 112 and 122 gives

 � constant � C12

 p1 � 1
2rV

2
1 � gz1 � p2 � 1

2rV
2
2 � gz2
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As is suggested by Example 3.18, if the flow is “irrotational” 1i.e., the fluid particles do not

“spin” as they move2, it is appropriate to use the Bernoulli equation across streamlines. However,

if the flow is “rotational” 1fluid particles “spin”2, use of the Bernoulli equation is restricted to flow

along a streamline. The distinction between irrotational and rotational flow is often a very subtle

and confusing one. These topics are discussed in more detail in Chapter 6. A thorough discussion

can be found in more advanced texts 1Ref. 32.

3.8.4 Other Restrictions

Another restriction on the Bernoulli equation is that the flow is inviscid. As is discussed in Section

3.4, the Bernoulli equation is actually a first integral of Newton’s second law along a streamline. This

general integration was possible because, in the absence of viscous effects, the fluid system consid-

ered was a conservative system. The total energy of the system remains constant. If viscous effects

are important the system is nonconservative 1dissipative2 and energy losses occur. A more detailed

analysis is needed for these cases. Such material is presented in Chapter 5.

The final basic restriction on use of the Bernoulli equation is that there are no mechanical

devices 1pumps or turbines2 in the system between the two points along the streamline for which

the equation is applied. These devices represent sources or sinks of energy. Since the Bernoulli

equation is actually one form of the energy equation, it must be altered to include pumps or tur-

bines, if these are present. The inclusion of pumps and turbines is covered in Chapters 5 and 12.

In this chapter we have spent considerable time investigating fluid dynamic situations gov-

erned by a relatively simple analysis for steady, inviscid, incompressible flows. Many flows can

be adequately analyzed by use of these ideas. However, because of the rather severe restrictions

imposed, many others cannot. An understanding of these basic ideas will provide a firm founda-

tion for the remainder of the topics in this book.
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Since and it follows that 

and the Bernoulli constant for this streamline, is given by

Along the streamline from 132 to 142we note that 

and As was shown in Example 3.5, application of

across the streamline 1Eq. 3.122 gives be-

cause the streamlines are straight and horizontal. The above facts

combined with the Bernoulli equation applied between 132 and 142
show that and that the Bernoulli constant along this

streamline is the same as that along the streamline between

112 and 122. That is, or

Similar reasoning shows that the Bernoulli constant is the same

for any streamline in Fig. E3.18. Hence,

p � 1
2rV

2 � gz � constant throughout the flow

p3 � 1
2rV

2
3 � gz3 � p4 � 1

2rV
2
4 � gz4 � C34 � C12

C34 � C12,

p3 � p4

p3 � p1 � ghF � ma
z3 � z4 � h.

V3 � V4 � V0

C12 � 1
2rV

2
0 � p0

C12,

p0p1 � p2 �z1 � z2 � 0,V1 � V2 � V0 Again from Example 3.5 we recall that

If we apply the Bernoulli equation across streamlines from 142 to
152, we obtain the incorrect result The cor-

rect result is 

From the above we see that we can apply the Bernoulli equation

across streamlines 112–122 and 132–142 1i.e., 2 but not across

streamlines from 142 to 152. The reason for this is that while the flow

in the channel is “irrotational,” it is “rotational” between the flowing

fluid in the channel and the stationary fluid in the piezometer tube.

Because of the uniform velocity profile across the channel, it is seen

that the fluid particles do not rotate or “spin” as they move. The flow

is “irrotational.” However, as seen in Fig. E3.18b, there is a very thin

shear layer between 142 and 152 in which adjacent fluid particles in-

teract and rotate or “spin.” This produces a “rotational” flow. A more

complete analysis would show that the Bernoulli equation cannot be

applied across streamlines if the flow is “rotational” 1see Chapter 62.

C12 � C34

H � p4�g.

“H � p4�g � V 2
4�2g.”

p4 � p5 � gH � gH

V3.12 Flow over a
cavity

In this chapter, several aspects of the steady flow of an inviscid, incompressible fluid are discussed.

Newton’s second law, , is applied to flows for which the only important forces are those

due to pressure and gravity (weight)—viscous effects are assumed negligible. The result is the often-

used Bernoulli equation, which provides a simple relationship among pressure, elevation, and veloc-

ity variations along a streamline. A similar but less often used equation is also obtained to describe

the variations in these parameters normal to a streamline.

The concept of a stagnation point and the corresponding stagnation pressure is introduced

as are the concepts of static, dynamic, and total pressure and their related heads.

F � ma

3.9 Chapter Summary and Study Guide

The Bernoulli
equation is not
valid for flows that
involve pumps or
turbines.
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Several applications of the Bernoulli equation are discussed. In some flow situations, such

as the use of a Pitot-static tube to measure fluid velocity or the flow of a liquid as a free jet

from a tank, a Bernoulli equation alone is sufficient for the analysis. In other instances, such

as confined flows in tubes and flow meters, it is necessary to use both the Bernoulli equation

and the continuity equation, which is a statement of the fact that mass is conserved as fluid

flows.

The following checklist provides a study guide for this chapter. When your study of the

entire chapter and end-of-chapter exercises has been completed, you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type

in the text.

explain the origin of the pressure, elevation, and velocity terms in the Bernoulli equation

and how they are related to Newton’s second law of motion.

apply the Bernoulli equation to simple flow situations, including Pitot-static tubes, free jet

flows, confined flows, and flow meters.

use the concept of conservation of mass (the continuity equation) in conjunction with the

Bernoulli equation to solve simple flow problems.

apply Newton’s second law across streamlines for appropriate steady, inviscid, incompress-

ible flows.

use the concepts of pressure, elevation, velocity, and total heads to solve various flow prob-

lems.

explain and use the concepts of static, stagnation, dynamic, and total pressures.

use the energy line and the hydraulic grade line concepts to solve various flow problems.

explain the various restrictions on use of the Bernoulli equation.

Some of the important equations in this chapter are:

Streamwise and normal 

acceleration (3.1)

Force balance along a streamline

for steady inviscid flow
(3.6)

The Bernoulli equation (3.7)

Pressure gradient normal to 

streamline for inviscid flow in (3.10b)
absence of gravity

Force balance normal to a 

streamline for steady, inviscid, (3.12)
incompressible flow

Velocity measurement for a 

Pitot-static tube
(3.16)

Free jet (3.18)

Continuity equation (3.19)

Flow meter equation (3.20)

Sluice gate equation (3.21)

Total head (3.22) 
p
g

�
V2

2g
� z � constant on a streamline � H

 Q � z2b 
B

2g1z1 � z22

1 � 1z2�z12
2

 Q � A2 
B

21p1 � p22

r 31 � 1A2�A12
2 4

 A1V1 � A2V2, or Q1 � Q2

 V �
B

2 
gh

r
� 12gh

 V � 22 1p3 � p42�r

 p � r�V2

r
 dn � gz � constant across the streamline

 
0p

0n
� �

rV2

r

 p � 1
2rV

2 � gz � constant along streamline

 �dp

r
�

1

2
 V2 � gz � C 1along a streamline2

 as � V 
0V

0s
, an �

V2

r

132 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

steady flow
streamline
Bernoulli equation
elevation head
pressure head
velocity head
static pressure
dynamic pressure
stagnation point
stagnation pressure
total pressure
Pitot-static tube 
free jet 
volume flowrate 
continuity equation 
cavitation
flow meter 
hydraulic grade line 
energy line
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Problems 133

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Problems

Q
V(x)

(1)
(2)

� = 3 ft

x

F I G U R E  P3.3

Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems des-
ignated with a 1†2 are “open-ended” problems and require crit-
ical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 3.2 F � ma along a Streamline

3.1 Obtain a photograph/image of a situation which can be ana-
lyzed by use of the Bernoulli equation. Print this photo and write
a brief paragraph that describes the situation involved.

3.2 Air flows steadily along a streamline from point (1) to point (2)
with negligible viscous effects. The following conditions are mea-
sured: At point (1) z1 � 2 m and p1 � 0 kPa; at point (2) z2 � 10
m, p2 � 20 N/m2, and V2 � 0. Determine the velocity at point (1).

3.3 Water flows steadily through the variable area horizontal pipe
shown in Fig. P3.3. The centerline velocity is given by 

where x is in feet. Viscous effects are neglected.
(a) Determine the pressure gradient, 1as a function of x2
needed to produce this flow. (b) If the pressure at section 112 is
50 psi, determine the pressure at 122 by 1i2 integration of the pres-
sure gradient obtained in (a), 1ii2 application of the Bernoulli
equation.

0p�0x,
1011 � x2 î  ft�s,

V �

front of the object and is the upstream velocity. (a) Determine
the pressure gradient along this streamline. (b) If the upstream
pressure is integrate the pressure gradient to obtain the pres-
sure p 1x2 for (c) Show from the result of part (b) that
the pressure at the stagnation point is as
expected from the Bernoulli equation.

p0 � rV 2
0 �2,1x � �a2

��  x  �a.
p0,

V0

3.4 Repeat Problem 3.3 if the pipe is vertical with the flow down.

3.5 An incompressible fluid with density flows steadily past
the object shown in Video V3.7 and Fig. P3.5. The fluid velocity
along the horizontal dividing streamline is found
to be where a is the radius of curvature of theV � V0 11 � a�x2,

1��  x  �a2

r

Dividing
streamline

Stagnation
point

V0

po a
x

x = 0

F I G U R E  P3.5

(2)

(1) 10 ft

30�

F I G U R E  P3.7

3.6 What pressure gradient along the streamline, , is required
to accelerate water in a horizontal pipe at a rate of ?

3.7 A fluid with a specific weight of 100 lb/ft3 and negligible vis-
cous effects flows in the pipe shown in Fig. P3.7. The pressures at
points (1) and (2) are 400 lb/ft2 and 900 lb/ft2, respectively. The
velocities at points (1) and (2) are equal. Is the fluid accelerating
uphill, downhill, or not accelerating? Explain.

30 m�s2
dp�ds

3.8 What pressure gradient along the streamline, , is required
to accelerate water upward in a vertical pipe at a rate of 
What is the answer if the flow is downward?

3.9 Consider a compressible fluid for which the pressure and
density are related by where n and are constants. In-
tegrate the equation of motion along the streamline, Eq. 3.6, to

C0p�rn � C0,

30 ft�s2?
dp�ds
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134 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

obtain the “Bernoulli equation” for this compressible flow as

3.10 An incompressible fluid flows steadily past a circular cylin-
der as shown in Fig. P3.10. The fluid velocity along the dividing
streamline is found to be 
where a is the radius of the cylinder and is the upstream ve-
locity. (a) Determine the pressure gradient along this streamline.
(b) If the upstream pressure is integrate the pressure gradient
to obtain the pressure p 1x2 for (c) Show from
the result of part (b) that the pressure at the stagnation
point is as expected from the Bernoulli
equation.

p0 � rV 2
0 �2,1x � �a2

��  x  �a.
p0,

V0

V � V0 11 � a2�x22,1��  x  �a2

3n� 1n � 12 4 p�r � V 2�2 � gz � constant.

3.16 Water in a container and air in a tornado flow in horizontal
circular streamlines of radius r and speed V as shown in Video
V3.6 and Fig. P3.16. Determine the radial pressure gradient,
needed for the following situations: (a) The fluid is water with

and (b) The fluid is air with and
V � 200 mph.

r � 300 ftV � 0.8 ft�s.r � 3 in.

0p�0r,

F I G U R E  P3.10

x = 0

Stagnation
point

Dividing
streamline

a

x
V0

p0

F I G U R E  P3.15

(1)

2 ft

20 ft

g

z

P1 = 25 psi

V = V(z)

a

a

3.11 Consider a compressible liquid that has a constant bulk mod-
ulus. Integrate along a streamline to obtain the equiva-
lent of the Bernoulli equation for this flow. Assume steady, inviscid
flow.

Section 3.3 F � ma Normal to a Streamline

3.12 Obtain a photograph/image of a situation in which Newton’s
second law applied across the streamlines (as given by Eq. 3.12)
is important. Print this photo and write a brief paragrph that de-
scribes the situation involved.

3.13 Air flows along a horizontal, curved streamline with a 20 ft
radius with a speed of 100 ft/s. Determine the pressure gradient
normal to the streamline.

3.14 Water flows around the vertical two-dimensional bend with
circular streamlines and constant velocity as shown in Fig. P3.14.
If the pressure is 40 kPa at point 112, determine the pressures at
points 122 and 132. Assume that the velocity profile is uniform as
indicated.

“F � ma”

(1)

(2)

(3)

1 m
2 m

4 m

g

V = 10m/s

F I G U R E  P3.14

*3.15 Water flows around the vertical two-dimensional bend with
circular streamlines as is shown in Fig. P3.15. The pressure at point
112 is measured to be p1 � 25 psi and the velocity across section
a–a is as indicated in the table. Calculate and plot the pressure
across section a–a of the channel [p � p(z) for ].0  z  2 ft

z (ft) V ( )

0 0
0.2 8.0
0.4 14.3
0.6 20.0
0.8 19.5
1.0 15.6

1.2 8.3
1.4 6.2
1.6 3.7
1.8 2.0
2.0 0

ft�s

y

x

r

V

F I G U R E  P3.16

3.17 Air flows smoothly over the hood of your car and up past the
windshield. However, a bug in the air does not follow the same path;
it becomes splattered against the windshield. Explain why this is so.

Section 3.5 Static, Stagnation, Dynamic,
and Total Pressure

3.18 Obtain a photograph/image of a situation in which the con-
cept of the stagnation pressure is important. Print this photo and
write a brief paragraph that describes the situation involved. 

3.19 At a given point on a horizontal streamline in flowing air, the
static pressure is �2.0 psi (i.e., a vacuum) and the velocity is 150 ft/s.
Determine the pressure at a stagnation point on that streamline.
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†3.20 Estimate the maximum pressure on the surface of your car
when you wash it using a garden hose connected to your outside
faucet. List all assumptions and show calculations.

3.21 When an airplane is flying 200 mph at 5000-ft altitude in a
standard atmosphere, the air velocity at a certain point on the wing
is 273 mph relative to the airplane. (a) What suction pressure is de-
veloped on the wing at that point? (b) What is the pressure at the
leading edge (a stagnation point) of the wing?

3.22 Some animals have learned to take advantage of Bernoulli ef-
fect without having read a fluid mechanics book. For example, a
typical prairie dog burrow contains two entrances—a flat front
door, and a mounded back door as shown in Fig. P3.22. When the
wind blows with velocity V0 across the front door, the average ve-
locity  across the back door is greater than V0 because of the mound.
Assume the air velocity across the back door is 1.07V0. For a wind
velocity of 6 m/s, what pressure differences, p1 � p2, are generated
to provide a fresh air flow within the burrow?

3.28 (See Fluids in the News article titled “Incorrect raindrop
shape,” Section 3.2.) The speed, V, at which a raindrop falls is a
function of its diameter, D, as shown in Fig. P3.28. For what sized
raindrop will the stagnation pressure be equal to half the internal
pressure caused by surface tension? Recall from Section 1.9 that
the pressure inside a drop is greater than the surround-
ing pressure, where is the surface tension.s

¢p � 4s�D

1.07 V0

(1)
(2)

V0

Q

F I G U R E  P3.22

3.23 A loon is a diving bird equally at home “flying” in the air or
water. What swimming velocity under water will produce a dy-
namic pressure equal to that when it flies in the air at 40 mph?

3.24 A person thrusts his hand into the water while traveling 3 m/s
in a motorboat. What is the maximum pressure on his hand?

3.25 A Pitot-static tube is used to measure the velocity of he-
lium in a pipe. The temperature and pressure are and
25 psia. A water manometer connected to the Pitot-static tube in-
dicates a reading of 2.3 in. Determine the helium velocity. Is it
reasonable to consider the flow as incompressible? Explain.

3.26 An inviscid fluid flows steadily along the stagnation stream-
line shown in Fig. P3.26 and Video V3.7, starting with speed far
upstream of the object. Upon leaving the stagnation point, point
(1), the fluid speed along the surface of the object is assumed to be
given by where is the angle indicated. At what an-
gular position, should a hole be drilled to give a pressure differ-
ence of Gravity is negligible.p1 � p2 � rV 2

0 /2?
u2,

uV � 2 V0 sin u,

V0

40 °F

θ θ2

(2)

(1)

V0

F I G U R E  P3.26

3.27 A water-filled manometer is connected to a Pitot-static tube
to measure a nominal airspeed of 50 ft/s. It is assumed that a change
in the manometer reading of 0.002 in. can be detected. What is the
minimum deviation from the 50 ft/s airspeed that can be detected
by this system? Repeat the problem if the nominal airspeed is 5 ft/s.

F I G U R E  P3.28

30

25

20

15

10

5

0
0 0.05 0.1

D, in.

V
, 
ft

/s

0.15 0.2

3.29 (See Fluids in the News article titled “Pressurized eyes,”
Section 3.5.) Determine the air velocity needed to produce a stag-
nation pressure equal to 10 mm of mercury.

3.30 (See Fluids in the News article titled “Bugged and plugged
Pitot tubes,” Section 3.5.) An airplane’s Pitot tube used to indicate
airspeed is partially plugged by an insect nest so that it measures
60% of the stagnation pressure rather than the actual stagnation
pressure. If the airspeed indicator indicates that the plane is flying
150 mph, what is the actual airspeed?

Section 3.6.1 Free Jets

3.31 Obtain a photograph/image of a situation in which the con-
cept of a free jet is important. Print this photo and write a brief para-
graph that describes the situation involved.

3.32 Water flows through a hole in the bottom of a large, open tank
with a speed of 8 m/s. Determine the depth of water in the tank. Vis-
cous effects are negligible.

3.33 Water flows from the faucet on the first floor of the building
shown in Fig. P3.33 with a maximum velocity of 20 ft�s. For steady

V = 20 ft/s

12 ft

4 ft

4 ft

4 ft

8 ft

F I G U R E  P3.33
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136 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

inviscid flow, determine the maximum water velocity from the
basement faucet and from the faucet on the second floor 1assume
each floor is 12 ft tall2.

3.34 The “super soaker” water gun shown in Fig. P3.34 can
shoot more than 30 ft in the horizontal direction. Estimate the
minimum pressure, , needed in the chamber in order to ac-
complish this. List all assumptions and show all calculations.

p1

†

3.39 An inviscid, incompressible liquid flows steadily from the large
pressurized tank shown in Fig. P.3.39. The velocity at the exit is

Determine the specific gravity of the liquid in the tank.40 ft/s.

F I G U R E  P3.34

(1)

F I G U R E  P3.38

Air

20 ft

2 ft

2 in.

6 in.

3.35* An inviscid liquid drains from a large tank through a square
duct of width b as shown in Fig. P3.35. The velocity of the fluid at
the outlet is not precisely uniform because of the difference in ele-
vation across the outlet. If this difference in velocity is negli-
gible. For given b and h, determine as a function of x and integrate
the results to determine the average velocity, V � Q/b2. Plot the ve-
locity distribution, across the outlet if h � 1 and b � 0.1,
0.2, 0.4, 0.6, 0.8, and 1.0 m. How small must b be if the centerline
velocity, at x � b/2, is to be within 3% of the average velocity?v

v � v1x2,

v
b � h,

F I G U R E  P3.35

h

b/2

b

x υ = υ(x)

3.36 Several holes are punched into a tin can as shown in Fig.
P3.36. Which of the figures represents the variation of the water ve-
locity as it leaves the holes? Justify your choice.

(a) (b) (c)

F I G U R E  P3.36

3.37 Water flows from a garden hose nozzle with a velocity of
15 m/s. What is the maximum height that it can reach above the
nozzle?

3.38 Water flows from a pressurized tank, through a 6-in.-diameter
pipe, exits from a 2-in.-diameter nozzle, and rises 20 ft above the
nozzle as shown in Fig. P3.38. Determine the pressure in the tank if
the flow is steady, frictionless, and incompressible.

40 ft/s

10 ft

5 ft

10 psi

Liquid

Air

F I G U R E  P3.39

3.40 Water flows from the tank shown in Fig. P3.40. If viscous ef-
fects are negligible, determine the value of h in terms of H and the
specific gravity, SG, of the manometer fluid.

H

h

SG

F I G U R E  P3.40

3.41 (See Fluids in the News article titled “Armed with a water
jet for hunting,” Section 3.4.) Determine the pressure needed in
the gills of an archerfish if it can shoot a jet of water 1 m vertically
upward. Assume steady, inviscid flow.

Section 3.6.2 Confined Flows (Also see Lab Problems
3.118 and 3.120.)

3.42 Obtain a photograph/image of a situation that involves a con-
fined flow for which the Bernoulli and continuity equations are
important. Print this photo and write a brief paragraph that de-
scribes the situation involved.
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3.43 Air flows steadily through a horizontal 4-in.-diameter pipe and
exits into the atmosphere through a 3-in.-diameter nozzle. The veloc-
ity at the nozzle exit is 150 ft/s. Determine the pressure in the pipe if
viscous effects are negligible.

3.44 A fire hose nozzle has a diameter of in. According to some
fire codes, the nozzle must be capable of delivering at least
250 gal�min. If the nozzle is attached to a 3-in.-diameter hose, what
pressure must be maintained just upstream of the nozzle to deliver
this flowrate?

3.45 Water flowing from the 0.75-in.-diameter outlet shown in
Video V8.14 and Fig. P3.45 rises 2.8 in. above the outlet. Deter-
mine the flowrate.

1
1
8

Q

2.8 in.

0.75 in.

F I G U R E  P3.45

3.46 Pop (with the same properties as water) flows from a 
4-in.-diameter pop container that contains three holes as shown in
Fig. P3.46 (see Video 3.9). The diameter of each fluid stream is
0.15 in., and the distance between holes is 2 in. If viscous effects
are negligible and quasi-steady conditions are assumed, determine
the time at which the pop stops draining from the top hole. Assume
the pop surface is 2 in. above the top hole when Compare
your results with the time you measure from the video.

t � 0.

Surface at t = 0

2 in. 0.15 in.

2 in.

4 in.

2 in.

F I G U R E  P3.46

Q

10 m

1 m

2 m

p = 50 kPa

F I G U R E  P3.47

3.47 Water (assumed inviscid and incompressible) flows steadily
in the vertical variable-area pipe shown in Fig. P3.47. Determine
the flowrate if the pressure in each of the gages reads 50 kPa..

3.48 Air is drawn into a wind tunnel used for testing automobiles
as shown in Fig. P3.48. (a) Determine the manometer reading, h,
when the velocity in the test section is 60 mph. Note that there is a
1-in. column of oil on the water in the manometer. (b) Determine
the difference between the stagnation pressure on the front of the
automobile and the pressure in the test section.

Wind tunnel

Fan

60 mph

h

Water

Open

1 in.

Oil (SG = 0.9)

F I G U R E  P3.48

3.49 Small-diameter, high-pressure liquid jets can be used to cut
various materials as shown in Fig. P3.49. If viscous effects are negli-
gible, estimate the pressure needed to produce a 0.10-mm-diameter
water jet with a speed of 700 m�s. Determine the flowrate.

0.1 mm

F I G U R E  P3.49

3.50 Water (assumed inviscid and incompressible) flows steadily
with a speed of 10 ft/s from the large tank shown in Fig. P3.50. De-
termine the depth, H, of the layer of light liquid 

that covers the water in the tank.50 lb�ft32
1specific weight �

50 lb/ft3

4 ft
5 ft

10 ft/s

Water

H

F I G U R E  P3.50

3.51 Water flows through the pipe contraction shown in Fig. P3.51.
For the given 0.2-m difference in manometer level, determine the
flowrate as a function of the diameter of the small pipe, D.
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138 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

3.52 Water flows through the pipe contraction shown in Fig. P3.52.
For the given 0.2-m difference in the manometer level, determine
the flowrate as a function of the diameter of the small pipe, D.

0.2 m

Q
0.1 m D

F I G U R E  P3.51

0.2 m

Q
0.1 m D

F I G U R E  P3.52

Q
0.1 m

0.2 m

D

F I G U R E  P3.53

3.53 Water flows through the pipe contraction shown in Fig. P3.53.
For the given 0.2-m difference in the manometer level, determine
the flowrate as a function of the diameter of the small pipe, D.

3.54 A 0.15-m-diameter pipe discharges into a 0.10-m-diameter
pipe. Determine the velocity head in each pipe if they are carrying

of kerosene.

3.55 Carbon tetrachloride flows in a pipe of variable diameter with
negligible viscous effects. At point A in the pipe the pressure and
velocity are 20 psi and 30 ft/s, respectively. At location B the pres-
sure and velocity are 23 psi and 14 ft/s. Which point is at the higher
elevation and by how much?

3.56 The circular stream of water from a faucet is observed to ta-
per from a diameter of 20 mm to 10 mm in a distance of 50 cm. De-
termine the flowrate.

3.57 Water is siphoned from the tank shown in Fig. P3.57. The
water barometer indicates a reading of 30.2 ft. Determine the max-
imum value of h allowed without cavitation occurring. Note that
the pressure of the vapor in the closed end of the barometer equals
the vapor pressure.

3.58 As shown in Fig. P3.58, water from a large reservoir flows
without viscous effects through a siphon of diameter D and into a
tank. It exits from a hole in the bottom of the tank as a stream of di-
ameter d. The surface of the reservoir remains H above the bottom

0.12 m3�s

of the tank. For steady-state conditions, the water depth in the tank,
h, is constant. Plot a graph of the depth ratio h/H as a function of the
diameter ratio d/D.

3.59 A smooth plastic, 10-m-long garden hose with an inside diam-
eter of 20 mm is used to drain a wading pool as is shown in Fig. P3.59.
If viscous effects are neglected, what is the flowrate from the pool?

30.2 ft

6 ft

3-in.
diameter

h

Closed end

5-in. diameter

F I G U R E  P3.57

h
H

d

D

F I G U R E  P3.58

0.2 m

0.23 m

F I G U R E  P3.59

8 ft

6-in. diameter

4-in. diameter

(1)

h

V = 16 ft/s

F I G U R E  P3.60

3.60 Water exits a pipe as a free jet and flows to a height h above
the exit plane as shown in Fig. P3.60. The flow is steady, incom-
pressible, and frictionless. (a) Determine the height h. (b) Deter-
mine the velocity and pressure at section (1).
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3.61 Water flows steadily from a large, closed tank as shown in
Fig. P3.61. The deflection in the mercury manometer is 1 in. and
viscous effects are negligible. (a) Determine the volume flowrate.
(b) Determine the air pressure in the space above the surface of the
water in the tank.

8 ft
3-in. diameter

1-ft diameter

Mercury

1 in.

Air

F I G U R E  P3.61

F I G U R E  P3.67

F I G U R E  P3.68

F I G U R E  P3.63

3.62 Blood (SG � 1) flows with a velocity of 0.5 m/s in an artery.
It then enters an aneurysm in the artery (i.e., an area of weakened
and stretched artery walls that cause a ballooning of the vessel)
whose cross-sectional area is 1.8 times that of the artery. Determine
the pressure difference between the blood in the aneurysm and that
in the artery. Assume the flow is steady and inviscid.

3.63 Water flows steadily through the variable area pipe shown in
Fig. P3.63 with negligible viscous effects. Determine the manome-
ter reading, H, if the flowrate is 0.5 m3/s and the density of the
manometer fluid is 600 kg/m3.

H

Area = 0.05 m2 Area = 0.07 m2

Density = 600 kg/m3

3.64 Water flows steadily with negligible viscous effects through
the pipe shown in Fig. P3.64. It is known that the 4-in.-diameter
section of thin-walled tubing will collapse if the pressure within it
becomes less than 10 psi below atmospheric pressure. Determine
the maximum value that h can have without causing collapse of the
tubing.

4-in.-diameter thin-walled tubing

6 in.
h

4 ft

3.65 Helium flows through a 0.30-m-diameter horizontal pipe
with a temperature of and a pressure of 200 kPa (abs) at a rate20 °C

F I G U R E  P3.64

of 0.30 kg/s. If the pipe reduces to 0.25-m-diameter determine the
pressure difference between these two sections. Assume incom-
pressible, inviscid flow.

3.66 Water is pumped from a lake through an 8-in. pipe at a rate of
If viscous effects are negligible, what is the pressure in the

suction pipe 1the pipe between the lake and the pump2 at an eleva-
tion 6 ft above the lake?

3.67 Air flows through a Venturi channel of rectangular cross sec-
tion as shown in Video V3.10 and Fig. P3.67. The constant width of
the channel is 0.06 m and the height at the exit is 0.04 m. Com-
pressibility and viscous effects are negligible. (a) Determine the
flowrate when water is drawn up 0.10 m in a small tube attached
to the static pressure tap at the throat where the channel height is
0.02 m. (b) Determine the channel height, at section (2)
where, for the same flowrate as in part (a), the water is drawn up
0.05 m. (c) Determine the pressure needed at section (1) to pro-
duce this flow.

h2,

10 ft3�s.

Q
Air

0.02m

0.04 m 0.10 m

Water

0.05 m 0.04 m

(2)(1)

b = width = 0.06 m

h2

Free jet

3.68 Water flows steadily from the large open tank shown in Fig.
P3.68. If viscous effects are negligible, determine (a) the flowrate,
Q, and (b) the manometer reading, h.

0.10 m
0.08 m

2 m

4 m

Q

h

Mercury

3.69 Water from a faucet fills a 16-oz glass (volume � 28.9 in.3) in
20 s. If the diameter of the jet leaving the faucet is 0.60 in., what is
the diameter of the jet when it strikes the water surface in the glass
which is positioned 14 in. below the faucet?

3.70 Air flows steadily through a converging–diverging rectangu-
lar channel of constant width as shown in Fig. P3.70 and Video
V3.10. The height of the channel at the exit and the exit velocity
are and respectively. The channel is to be shaped so that the
distance, d, that water is drawn up into tubes attached to static
pressure taps along the channel wall is linear with distance along
the channel. That is, where L is the channel length
and is the maximum water depth (at the minimum channel
height; ). Determine the height, as a function of x and
the other important parameters.

H1x2,x � L
dmax

d � 1dmax�L2 x,

V0,H0
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*3.71 The device shown in Fig. P3.71 is used to spray an appro-
priate mixture of water and insecticide. The flowrate from tank A is
to be QA � 0.02 gal/min when the water flowrate through the hose
is Q � 1 gal/min. Determine the pressure needed at point (1) and
the diameter, D, of the device For the diameter determined above,
plot the ratio of insecticide flowrate to water flowrate as a function
of water flowrate, Q, for gal/min. Can this device be
used to provide a reasonably constant ratio of insecticide to water
regardless of the water flowrate? Explain.

0.1  Q  1

3.74 Air at and 14.7 psia flows into the tank shown in Fig.
P3.74. Determine the flowrate in lb�s, and slugs�s. Assume in-
compressible flow.

ft3�s,
80 °F

3.75 Water flows from a large tank as shown in Fig. P3.75. At-
mospheric pressure is 14.5 psia, and the vapor pressure is 1.60 psia.
If viscous effects are neglected, at what height, h, will cavitation
begin? To avoid cavitation, should the value of be increased or
decreased? To avoid cavitation, should the value of be increased
or decreased? Explain.

D2

D1
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Water

dmax
d

Q
Air

H(x) H0

x = 0x = L

V0

L
x

F I G U R E  P3.70

F I G U R E  P3.74

F I G U R E  P3.75

F I G U R E  P3.71

F I G U R E  P3.72

F I G U R E  P3.73

(1)

D

Q + QA = Q

0.10-in. diameter

0.015-in.
diameter

Insecticide

Water

QA

A

Q

h = 6 in.

SG = 1.0

3.72 If viscous effects are neglected and the tank is large, deter-
mine the flowrate from the tank shown in Fig. P3.72.

Water

Oil,
SG = 0.81

2 m

0.7 m

50-mm
diameter

Oil SG = 0.7

Open

1.2 m

1 m

1.5 m

2 m

Q

0.6-in.
diameter

0.5 in. Hg vacuum

Pump

D3 = 4 in.

D1 = 1 in. D2 = 2 in.

h

3.76 Water flows into the sink shown in Fig. P3.76 and Video
V5.1 at a rate of 2 gal�min. If the drain is closed, the water will
eventually flow through the overflow drain holes rather than over
the edge of the sink. How many 0.4-in.-diameter drain holes are
needed to ensure that the water does not overflow the sink? Neglect
viscous effects.

3.73 Water flows steadily downward in the pipe shown in Fig.
3.73 with negligible losses. Determine the flowrate.
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3.78 Water is siphoned from the tank shown in Fig. P3.78. Deter-
mine the flowrate from the tank and the pressures at points 112, 122,
and 132 if viscous effects are negligible.

3.79 Water is siphoned from a large tank and discharges into
the atmosphere through a 2-in.-diameter tube as shown in Fig.
P3.79. The end of the tube is 3 ft below the tank bottom, and vis-
cous effects are negligible. (a) Determine the volume flowrate
from the tank. (b) Determine the maximum height, H, over
which the water can be siphoned without cavitation occurring.
Atmospheric pressure is 14.7 psia, and the water vapor pressure
is 0.26 psia.

3.81 Air flows steadily through the variable area pipe shown in
Fig. P3.81. Determine the flowrate if viscous and compressibility
effects are negligible.

3.82 JP-4 fuel flows through the Venturi meter
shown in Fig. P3.82 with a velocity of 15 ft�s in the 6-in. pipe.
If viscous effects are negligible, determine the elevation, h, of
the fuel in the open tube connected to the throat of the Venturi
meter.

1SG � 0.772

Problems 141

F I G U R E  P3.77

F I G U R E  P3.78

F I G U R E  P3.80

F I G U R E  P3.81

F I G U R E  P3.79F I G U R E  P3.76

3.77 What pressure, is needed to produce a flowrate of
0.09 from the tank shown in Fig. P3.77?ft3�s

p1,

Q = 2 gal/min

1 in.

0.4-in. diameter
holes

Stopper

Air

p1

Gasoline

Salt water
SG = 1.1

0.06-ft diameter

3.6 ft

2.0 ft

(1)

(2)
(3)

5 ft
4 ft

0.1 ft

3 ft

H

2-in. diameter

3 ft

9 ft

3.80 Determine the manometer reading, h, for the flow shown in
Fig. P3.80.

h
0.37 m

0.05-m diameter

Free
jet

0.08-m
diameter

0.1 m

Water

0.1 m

0.2 m
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3.85 Water, considered an inviscid, incompressible fluid, flows
steadily as shown in Fig. P3.85. Determine h.

3.86 Determine the flowrate through the submerged orifice shown
in Fig. P3.86 if the contraction coefficient is Cc � 0.63.

*3.87 An inexpensive timer is to be made from a funnel as indi-
cated in Fig. P3.87. The funnel is filled to the top with water and the
plug is removed at time t � 0 to allow the water to run out. Marks
are to be placed on the wall of the funnel indicating the time in 15-s
intervals, from 0 to 3 min (at which time the funnel becomes empty).
If the funnel outlet has a diameter of d � 0.1 in., draw to scale the
funnel with the timing marks for funnels with angles of , 45,
and 60°. Repeat the problem if the diameter is changed to 0.05 in.

u � 30
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0.8 ft

5 ft

Q A = 50 in.2

A = 20 in.2

Oil
SG = 0.86

SG = 2.5

F I G U R E  P3.84

F I G U R E  P3.85

0.5-ft diameter 1-ft diameter

Q = 4 ft3/s

3 ft

Water

Air
h

d

q

15
30

45
1:00

Plug

1:15

F I G U R E  P3.87

2 ft

0.1 in.

90°

F I G U R E  P3.88

*3.89 A spherical tank of diameter D has a drain hole of diameter
d at its bottom. A vent at the top of the tank maintains atmospheric
pressure at the liquid surface within the tank. The flow is quasi-
steady and inviscid and the tank is full of water initially. Determine
the water depth as a function of time, and plot graphs of
h 1t2 for tank diameters of 1, 5, 10, and 20 ft if 

3.90 When the drain plug is pulled, water flows from a hole in the
bottom of a large, open cylindrical tank. Show that if viscous ef-
fects are negligible and if the flow is assumed to be quasisteady,
then it takes 3.41 times longer to empty the entire tank than it does
to empty the first half of the tank. Explain why this is so.

*3.91 The surface area, A, of the pond shown in Fig. P3.91 varies
with the water depth, h, as shown in the table. At time a valve ist � 0

d � 1 in.
h � h1t2,

F I G U R E  P3.82

V = 15 ft/s

h

6 in.

8 in.
4 in.

JP-4 fuel

6 ft

6 in.

20°

3.83 Repeat Problem 3.82 if the flowing fluid is water rather than
JP-4 fuel.

3.84 Oil flows through the system shown in Fig. P3.84 with negli-
gible losses. Determine the flowrate.

2 ft

6 ft

4 ft

3-in.
diameter

F I G U R E  P3.86

3.88 A long water trough of triangular cross section is formed from
two planks as is shown in Fig. P3.88. A gap of 0.1 in. remains at the
junction of the two planks. If the water depth initially was 2 ft, how
long a time does it take for the water depth to reduce to 1 ft?
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3.92 Water flows through a horizontal branching pipe as shown in
Fig. P3.92. Determine the pressure at section (3).

3.93 Water flows through the horizontal branching pipe shown in
Fig. P3.93 at a rate of If viscous effects are negligible, de-
termine the water speed at section 122, the pressure at section 132,
and the flowrate at section 142.

10 ft3�s.

3.94 Water flows from a large tank through a large pipe that splits
into two smaller pipes as shown in Fig. P3.94. If viscous effects are
negligible, determine the flowrate from the tank and the pressure at
point 112.

3.95 An air cushion vehicle is supported by forcing air into the
chamber created by a skirt around the periphery of the vehicle as
shown in Fig. P3.95. The air escapes through the 3-in. clearance be-
tween the lower end of the skirt and the ground (or water). Assume
the vehicle weighs 10,000 lb and is essentially rectangular in shape,
30 by 65 ft. The volume of the chamber is large enough so that the
kinetic energy of the air within the chamber is negligible. Deter-
mine the flowrate, Q, needed to support the vehicle. If the ground
clearance were reduced to 2 in., what flowrate would be needed? If
the vehicle weight were reduced to 5000 lb and the ground clear-
ance maintained at 3 in., what flowrate would be needed?

3.96 Water flows from the pipe shown in Fig. P3.96 as a free jet and
strikes a circular flat plate. The flow geometry shown is axisymmet-
rical. Determine the flowrate and the manometer reading, H.

3.97 Air flows from a hole of diameter 0.03 m in a flat plate as
shown in Fig. P3.97. A circular disk of diameter D is placed a dis-
tance h from the lower plate. The pressure in the tank is maintained
at 1 kPa. Determine the flowrate as a function of h if viscous

Problems 143

Area A

h

D

3 ft

F I G U R E  P3.91

F I G U R E  P3.92

F I G U R E  P3.95

h (ft) A [acres (1 acre � 43,560 ft2)]

0 0
2 0.3
4 0.5
6 0.8
8 0.9

10 1.1
12 1.5
14 1.8
16 2.4
18 2.8

V1 = 4 m/s
p1 = 400 kPa
A1 = 0.1 m2

V2

V3

p2 = 350 kPa

A3 = 0.07 m2

A2 = 0.02 m2(2)

(3)

(1)

A1 = 1 ft2

Q1 = 10 ft3/s
p1 = 10 psi

A2 = 0.07 ft2

p2 = 5.0 psi

(2)

A3 = 0.2 ft2

V3 = 20 ft /s

(4)

(3)

(1)

F I G U R E  P3.93

F I G U R E  P3.96

7 m

3 m

0.05-m diameter

0.03-m diameter

0.02-m diameter
(1)

F I G U R E  P3.94

Skirt

Fan
Vehicle

3 in.

Q

V

0.2 m

0.01-m
diameter

0.4 mm

0.1-m
diameter

H

Q

Pipe

opened and the pond is allowed to drain through a pipe of diameter D.
If viscous effects are negligible and quasisteady conditions are as-
sumed, plot the water depth as a function of time from when the valve
is opened until the pond is drained for pipe diameters of

and 3.0 ft. Assume at .t � 0h � 18 ftD � 0.5, 1.0, 1.5, 2.0, 2.5,
1t � 02
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3.99 Water flows steadily from a nozzle into a large tank as shown
in Fig. P3.99. The water then flows from the tank as a jet of diame-
ter d. Determine the value of d if the water level in the tank remains
constant. Viscous effects are negligible.

3.100 A small card is placed on top of a spool as shown in
Fig. P3.100. It is not possible to blow the card off the spool by
blowing air through the hole in the center of the spool. The harder
one blows, the harder the card “sticks” to the spool. In fact, by
blowing hard enough it is possible to keep the card against the

spool with the spool turned upside down. 1Note: It may be neces-
sary to use a thumb tack to prevent the card from sliding from the
spool.2 Explain this phenomenon.

3.101 Water flows down the sloping ramp shown in Fig. P3.101
with negligible viscous effects. The flow is uniform at sections 112
and 122. For the conditions given, show that three solutions for the
downstream depth, are obtained by use of the Bernoulli and con-
tinuity equations. However, show that only two of these solutions
are realistic. Determine these values.

h2,

3.102 Water flows in a rectangular channel that is 2.0 m wide as
shown in Fig. P3.102. The upstream depth is 70 mm. The water sur-
face rises 40 mm as it passes over a portion where the channel bottom
rises 10 mm. If viscous effects are negligible, what is the flowrate?

*3.103 Water flows up the ramp shown in Fig. P3.103 with negligi-
ble viscous losses. The upstream depth and velocity are maintained at

and Plot a graph of the downstream depth,
as a function of the ramp height, H, for Note that

for each value of H there are three solutions, not all of which are re-
alistic.

0  H  2 m.h2,
V1 � 6 m �s.h1 � 0.3 m
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0.23 mQ = 0.50 m3/s

Pipe

Free jet

0.20 m

V

V

0.02 m

Cone

F I G U R E  P3.98

F I G U R E  P3.99

1 ft

3 ft

4 ft

d

0.15-ft diameter

0.1-ft diameter

Q

Card

Spool

F I G U R E  P3.100

V1 = 10 ft/s h1 = 1 ft h2

H = 2 ft V2

F I G U R E  P3.101

F I G U R E  P3.102

F I G U R E  P3.103

Q 10 mm

100 mm

70 mm

V1 = 6 m/s

V2

H

h2

h1 = 0.3 m

effects and elevation changes are assumed negligible and the flow
exits radially from the circumference of the circular disk with uni-
form velocity.

3.98 A conical plug is used to regulate the air flow from the
pipe shown in Fig. P3.98. The air leaves the edge of the cone
with a uniform thickness of 0.02 m. If viscous effects are negli-
gible and the flowrate is determine the pressure
within the pipe.

0.50 m3�s,

F I G U R E  P3.97

p = 1.0 kPa

h

D = 0.15 m

0.03-m diameter

Tank

Plate
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3.107 For what flowrate through the Venturi meter of Problem
3.106 will cavitation begin if kPa gage, atmospheric pres-
sure is 101 kPa 1abs2, and the vapor pressure is 3.6 kPa 1abs2?

3.108 What diameter orifice hole, d, is needed if under ideal con-
ditions the flowrate through the orifice meter of Fig. P3.108 is to be
30 gal�min of seawater with The contrac-
tion coefficient is assumed to be 0.63.

p1 � p2 � 2.37 lb�in.2?

p1 � 275

3.109 Water flows over a weir plate (see Video V10.13) which has
a parabolic opening as shown in Fig. P3.109. That is, the opening in
the weir plate has a width where C is a constant. Determine
the functional dependence of the flowrate on the head, Q � Q1H2.

CH1�2,

3.110 A weir (see Video V10.13) of trapezoidal cross section is
used to measure the flowrate in a channel as shown in Fig. P3.110.
If the flowrate is when what flowrate is expected
when H � /?

H � /�2,Q0

3.111 The flowrate in a water channel is sometimes determined by
use of a device called a Venturi flume. As shown in Fig. P3.111, this
device consists simply of a hump on the bottom of the channel. If
the water surface dips a distance of 0.07 m for the conditions
shown, what is the flowrate per width of the channel? Assume the
velocity is uniform and viscous effects are negligible.

3.112 Water flows under the inclined sluice gate shown in
Fig. P3.112. Determine the flowrate if the gate is 8 ft wide.

Section 3.7 The Energy Line and the Hydraulic
Grade Line

3.113 Water flows in a vertical pipe of 0.15-m diameter at a rate of
and a pressure of 200 kPa at an elevation of 25 m. Determine

the velocity head and pressure head at elevations of 20 and 55 m.

3.114 Draw the energy line and the hydraulic grade line for the
flow shown in Problem 3.78.

3.115 Draw the energy line and the hydraulic grade line for the
flow of Problem 3.75.

3.116 Draw the energy line and hydraulic grade line for the flow
shown in Problem 3.64.

Section 3.8 Restrictions on the Use of the Bernoulli
Equation

3.117 Obtain a photograph/image of a flow in which it would not
be appropriate to use the Bernoulli equation. Print this photo and
write a brief paragraph that describes the situation involved.

0.2 m3�s

Problems 145

Section 3.6.3 Flowrate Measurement (Also see Lab
Problems 3.119 and 3.121.)

3.104 Obtain a photograph/image of a situation that involves some
type of flow meter. Print this photo and write a brief paragraph that
describes the situation involved.

3.105 A Venturi meter with a minimum diameter of 3 in. is to be
used to measure the flowrate of water through a 4-in.-diameter
pipe. Determine the pressure difference indicated by the pressure
gage attached to the flow meter if the flowrate is 0.5 ft3/s and vis-
cous effects are negligible.

3.106 Determine the flowrate through the Venturi meter shown in
Fig. P3.106 if ideal conditions exist.

F I G U R E  P3.108

F I G U R E  P3.109

F I G U R E  P3.112

F I G U R E  P3.110

F I G U R E  P3.111

F I G U R E  P3.106

p1 = 735 kPa p2 = 550 kPa

Q
19 mm31 mm

γ = 9.1 kN/m3

p1 p2

2-in.
diameter

d
Q

Q

CH1/2

H

H

�

30°

0.07 m

0.2 m

1.2 m
V2V1

6 ft

1.6 ft
1 ft

30°
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■ Lab Problems

3.118 This problem involves the pressure distribution between
two parallel circular plates. To proceed with this problem, go to Ap-
pendix H which is located on the book’s web site, www.wiley.com/
college/munson.

3.119 This problem involves the calibration of a nozzle-type
flow meter. To proceed with this problem, go to Appendix H which
is located on the book’s web site, www.wiley.com/college/munson.

3.120 This problem involves the pressure distribution in a two-
dimensional channel. To proceed with this problem, go to Appen-
dix H which is located on the book’s web site, www.wiley.com/
college/munson.

3.121 This problem involves the determination of the flowrate un-
der a sluice gate as a function of the water depth. To proceed with
this problem, go to Appendix H which is located on the book’s web
site, www.wiley.com/college/munson.

■ Life Long Learning Problems

3.122 The concept of the use of a Pitot-static tube to measure the
airspeed of an airplane is rather straightforward. However, the de-
sign and manufacture of reliable, accurate, inexpensive Pitot-static
tube airspeed indicators is not necessarily simple. Obtain informa-
tion about the design and construction of modern Pitot-static tubes.
Summarize your findings in a brief report.

3.123 In recent years damage due to hurricanes has been signifi-
cant, particularly in the southeastern United States. The low baro-
metric pressure, high winds, and high tides generated by hurri-
canes can combine to cause considerable damage. According to
some experts, in the coming years hurricane frequency may in-
crease because of global warming. Obtain information about the
fluid mechanics of hurricanes. Summarize your findings in a brief
report.

3.124 Orifice, nozzle, or Venturi flow meters have been used for a
long time to predict accurately the flowrate in pipes. However, re-
cently there have been several new concepts suggested or used for
such flowrate measurements. Obtain information about new meth-
ods to obtain pipe flowrate information. Summarize your findings
in a brief report.

3.125 Ultra-high-pressure, thin jets of liquids can be used to cut
various materials ranging from leather to steel and beyond. Ob-
tain information about new methods and techniques proposed for
liquid jet cutting and investigate how they may alter various
manufacturing processes. Summarize your findings in a brief
report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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CHAPTER OPENING PHOTO: A vortex ring: The complex, three-dimensional structure of a smoke ring is indi-

cated in this cross-sectional view. 1Smoke in air.2 3Photograph courtesy of R. H. Magarvey and C. S.

MacLatchy 1Ref. 42.4

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ discuss the differences between the Eulerian and Lagrangian descriptions of

fluid motion.

■ identify various flow characteristics based on the velocity field.

■ determine the streamline pattern and acceleration field given a velocity field.

■ discuss the differences between a system and control volume.

■ apply the Reynolds transport theorem and the material derivative.

In this chapter we will discuss various aspects of fluid motion without being concerned with the

actual forces necessary to produce the motion. That is, we will consider the kinematics of the

motion—the velocity and acceleration of the fluid, and the description and visualization of its motion.

The analysis of the specific forces necessary to produce the motion 1the dynamics of the motion2
will be discussed in detail in the following chapters. A wide variety of useful information can be

gained from a thorough understanding of fluid kinematics. Such an understanding of how to describe

and observe fluid motion is an essential step to the complete understanding of fluid dynamics.

44Fluid KinematicsFluid Kinematics

V4.1 Streaklines

In general, fluids flow. That is, there is a net motion of molecules from one point in space to another

point as a function of time. As is discussed in Chapter 1, a typical portion of fluid contains so

many molecules that it becomes totally unrealistic 1except in special cases2 for us to attempt to

4.1 The Velocity Field
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account for the motion of individual molecules. Rather, we employ the continuum hypothesis and

consider fluids to be made up of fluid particles that interact with each other and with their

surroundings. Each particle contains numerous molecules. Thus, we can describe the flow of a fluid

in terms of the motion of fluid particles rather than individual molecules. This motion can be

described in terms of the velocity and acceleration of the fluid particles.

The infinitesimal particles of a fluid are tightly packed together 1as is implied by the continuum

assumption2. Thus, at a given instant in time, a description of any fluid property 1such as density,

pressure, velocity, and acceleration2 may be given as a function of the fluid’s location. This

representation of fluid parameters as functions of the spatial coordinates is termed a field
representation of the flow. Of course, the specific field representation may be different at different

times, so that to describe a fluid flow we must determine the various parameters not only as a

function of the spatial coordinates 1x, y, z, for example2 but also as a function of time, t. Thus, to

completely specify the temperature, T, in a room we must specify the temperature field,

throughout the room 1from floor to ceiling and wall to wall2 at any time of the

day or night.

Shown in the margin figure is one of the most important fluid variables, the velocity field,

where u, and w are the x, y, and z components of the velocity vector. By definition, the velocity

of a particle is the time rate of change of the position vector for that particle. As is illustrated in

Fig. 4.1, the position of particle A relative to the coordinate system is given by its position vector,

which 1if the particle is moving2 is a function of time. The time derivative of this position gives

the velocity of the particle, By writing the velocity for all of the particles we can

obtain the field description of the velocity vector 

Since the velocity is a vector, it has both a direction and a magnitude. The magnitude of V,

denoted is the speed of the fluid. 1It is very common in practicalV � 0V 0 � 1u2 � v2 � w221�2,

V � V1x, y, z, t2.
drA�dt � VA.

rA,

v,

V � u1x, y, z, t2 î � v1x, y, z, t2 ĵ � w1x, y, z, t2k̂

T � T 1x, y, z, t2,
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z

y

x

Particle A at
time t

rA(t) rA(t +   t)δ

Particle path
Particle A at
time t +   tδ

F I G U R E  4.1 Particle
location in terms of its position
vector.

V
w

u

z

x

y

v

j

i

k
^

^

^

F l u i d s  i n  t h e  N e w s

Follow those particles Superimpose two photographs of a

bouncing ball taken a short time apart and draw an arrow between

the two images of the ball. This arrow represents an approxima-

tion of the velocity (displacement/time) of the ball. The particle

image velocimeter (PIV) uses this technique to provide the in-

stantaneous velocity field for a given cross section of a flow. The

flow being studied is seeded with numerous micron-sized parti-

cles which are small enough to follow the flow yet big enough to

reflect enough light to be captured by the camera. The flow is

illuminated with a light sheet from a double-pulsed laser. A digi-

tal camera captures both light pulses on the same image frame,

allowing the movement of the particles to be tracked. By using

appropriate computer software to carry out a pixel-by-pixel inter-

rogation of the double image, it is possible to track the motion of

the particles and determine the two components of velocity in the

given cross section of the flow. By using two cameras in a stereo-

scopic arrangement it is possible to determine all three compo-

nents of velocity. (See Problem 4.62.)

V4.2 Velocity field

V4.3 Cylinder-
velocity vectors

situations to call V velocity rather than speed, i.e., “the velocity of the fluid is 12 m�s.”2 As is

discussed in the next section, a change in velocity results in an acceleration. This acceleration may

be due to a change in speed and/or direction.
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4.1 The Velocity Field 149

GIVEN A velocity field is given by 

where and are constants. /V0

V � 1V0�/2 1� xî � yĵ 2

SOLUTION

Velocity Field Representation

indicating that the flow is directed away from the ori-

gin along the y axis and toward the origin along the x axis as

shown in Fig. E4.1a.
By determining V and for other locations in the x–y plane, the

velocity field can be sketched as shown in the figure. For example,

on the line the velocity is at angle relative to the x axis

At the origin so that

This point is a stagnation point. The farther from the origin

the fluid is, the faster it is flowing 1as seen from Eq. 12. By careful

consideration of the velocity field it is possible to determine consid-

erable information about the flow.

COMMENT The velocity field given in this example approxi-

mates the flow in the vicinity of the center of the sign shown in

Fig. E4.1c. When wind blows against the sign, some air flows

over the sign, some under it, producing a stagnation point as indi-

cated.

V � 0.

x � y � 01tan u � v�u � �y�x � �12.
a 45°y � x

u

1if V0 7 02

EXAMPLE 4.1

The x, y, and z components of the velocity are given by

and so that the fluid speed, V, is

(1)

The speed is at any location on the circle of radius centered

at the origin as shown in Fig. E4.1a. (Ans)

The direction of the fluid velocity relative to the x axis is given

in terms of as shown in Fig. E4.1b. For this flow

Thus, along the x axis we see that so that

or Similarly, along the y axis we ob-

tain so that or Also, for we

find while for we have V � 1V0y�/2 ĵ,x � 0V � 1�V0 x�/2 î,
y � 0u � 270°.u � 90°tan u � �q

1x � 02u � 180°.u � 0°

tan u � 0,1y � 02

tan u �
v
u

�
V0 y�/

�V0 x�/
�

y

�x

1v�u2u � arctan

3 1x2 � y221�2 � / 4
/V � V0

V � 1u2 � v2 � w221�2 �
V0

/
 1x 2 � y 221� 2

w � 0u � �V0 x�/, v � V0 y�/,

FIND At what location in the flow field is the speed equal to

Make a sketch of the velocity field for by drawing ar-

rows representing the fluid velocity at representative locations.

x � 0V0?

θ
V

u

(b)

v

(c)

y

V = 0
x

F I G U R E  E4.1

y

2�

2V0

2V0

2V0

V0

V0

V0

V0/2

�

−2�

−�

0 x

(a)
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The figure in the margin shows the velocity field (i.e., velocity vectors) for flow past two

square bars. It is possible to obtain much qualitative and quantitative information for complex

flows by using plots such as this.

4.1.1 Eulerian and Lagrangian Flow Descriptions

There are two general approaches in analyzing fluid mechanics problems 1or problems in other

branches of the physical sciences, for that matter2. The first method, called the Eulerian method,
uses the field concept introduced above. In this case, the fluid motion is given by completely

prescribing the necessary properties 1pressure, density, velocity, etc.2 as functions of space and time.

From this method we obtain information about the flow in terms of what happens at fixed points

in space as the fluid flows through those points.

A typical Eulerian representation of the flow is shown by the figure in the margin which

involves flow past a row of turbine blades as occurs in a jet engine. The pressure field is indicated

by using a contour plot showing lines of constant pressure, with grey shading indicating the intensity

of the pressure.

The second method, called the Lagrangian method, involves following individual fluid

particles as they move about and determining how the fluid properties associated with these particles

change as a function of time. That is, the fluid particles are “tagged” or identified, and their

properties determined as they move.

The difference between the two methods of analyzing fluid flow problems can be seen in the

example of smoke discharging from a chimney, as is shown in Fig. 4.2. In the Eulerian method one

may attach a temperature-measuring device to the top of the chimney 1point 02 and record the

temperature at that point as a function of time. At different times there are different fluid particles

passing by the stationary device. Thus, one would obtain the temperature, T, for that location

and as a function of time. That is, The use of numerous

temperature-measuring devices fixed at various locations would provide the temperature field,

The temperature of a particle as a function of time would not be known unless the

location of the particle were known as a function of time.

In the Lagrangian method, one would attach the temperature-measuring device to a particular

fluid particle 1particle A2 and record that particle’s temperature as it moves about. Thus, one would

obtain that particle’s temperature as a function of time, The use of many such measuring

devices moving with various fluid particles would provide the temperature of these fluid particles

as a function of time. The temperature would not be known as a function of position unless the

location of each particle were known as a function of time. If enough information in Eulerian form

is available, Lagrangian information can be derived from the Eulerian data—and vice versa.

Example 4.1 provides an Eulerian description of the flow. For a Lagrangian description we

would need to determine the velocity as a function of time for each particle as it flows along from

one point to another.

In fluid mechanics it is usually easier to use the Eulerian method to describe a flow—in

either experimental or analytical investigations. There are, however, certain instances in which the

Lagrangian method is more convenient. For example, some numerical fluid mechanics calculations

are based on determining the motion of individual fluid particles 1based on the appropriate

interactions among the particles2, thereby describing the motion in Lagrangian terms. Similarly, in

TA � TA1t2.

T � T1x, y, z, t2.

T � T 1x0, y0, z0, t2.z � z021x � x0, y � y0,
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F I G U R E  4.2 Eulerian and
Lagrangian descriptions of temperature of a
flowing fluid.

y0

x0

0

x

Location 0:
T = T(x0, y0, t) Particle A:

TA = TA(t)

y

Flow

Flow

Either Eulerian or
Lagrangian meth-
ods can be used to
describe flow
fields.
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some experiments individual fluid particles are “tagged” and are followed throughout their motion,

providing a Lagrangian description. Oceanographic measurements obtained from devices that flow

with the ocean currents provide this information. Similarly, by using X-ray opaque dyes it is possible

to trace blood flow in arteries and to obtain a Lagrangian description of the fluid motion. A

Lagrangian description may also be useful in describing fluid machinery 1such as pumps and

turbines2 in which fluid particles gain or lose energy as they move along their flow paths.

Another illustration of the difference between the Eulerian and Lagrangian descriptions can

be seen in the following biological example. Each year thousands of birds migrate between their

summer and winter habitats. Ornithologists study these migrations to obtain various types of

important information. One set of data obtained is the rate at which birds pass a certain location on

their migration route 1birds per hour2. This corresponds to an Eulerian description—“flowrate” at a

given location as a function of time. Individual birds need not be followed to obtain this information.

Another type of information is obtained by “tagging” certain birds with radio transmitters and

following their motion along the migration route. This corresponds to a Lagrangian description—

“position” of a given particle as a function of time.

4.1.2 One-, Two-, and Three-Dimensional Flows

Generally, a fluid flow is a rather complex three-dimensional, time-dependent phenomenon—

In many situations, however, it is possible to make simplifying

assumptions that allow a much easier understanding of the problem without sacrificing needed

accuracy. One of these simplifications involves approximating a real flow as a simpler one- or two-

dimensional flow.

In almost any flow situation, the velocity field actually contains all three velocity components

1u, and w, for example2. In many situations the three-dimensional flow characteristics are

important in terms of the physical effects they produce. (See the photograph at the beginning of

Chapter 4.) For these situations it is necessary to analyze the flow in its complete three-dimensional

character. Neglect of one or two of the velocity components in these cases would lead to considerable

misrepresentation of the effects produced by the actual flow.

The flow of air past an airplane wing provides an example of a complex three-dimensional

flow. A feel for the three-dimensional structure of such flows can be obtained by studying Fig. 4.3,

which is a photograph of the flow past a model wing; the flow has been made visible by using a

flow visualization technique.

In many situations one of the velocity components may be small 1in some sense2 relative to

the two other components. In situations of this kind it may be reasonable to neglect the smaller

component and assume two-dimensional flow. That is, where u and are functions

of x and y 1and possibly time, t2.
It is sometimes possible to further simplify a flow analysis by assuming that two of the

velocity components are negligible, leaving the velocity field to be approximated as a one-
dimensional flow field. That is, As we will learn from examples throughout the remainder

of the book, although there are very few, if any, flows that are truly one-dimensional, there are

V � uî.

vV � uî � vĵ,

v,

V � V1x, y, z, t2 � uî � vĵ � wk̂.
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Most flow fields
are actually three-
dimensional.

F I G U R E  4.3
Flow visualization of the
complex three-dimensional
flow past a model wing.
(Photograph by M. R. Head.)

V4.4 Follow the par-
ticles (experiment)

V4.5 Follow the par-
ticles (computer)

V4.6 Flow past a
wing
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many flow fields for which the one-dimensional flow assumption provides a reasonable

approximation. There are also many flow situations for which use of a one-dimensional flow field

assumption will give completely erroneous results.

4.1.3 Steady and Unsteady Flows

In the previous discussion we have assumed steady flow—the velocity at a given point in space does

not vary with time, In reality, almost all flows are unsteady in some sense. That is, the

velocity does vary with time. It is not difficult to believe that unsteady flows are usually more difficult

to analyze 1and to investigate experimentally2 than are steady flows. Hence, considerable simplicity

often results if one can make the assumption of steady flow without compromising the usefulness of

the results. Among the various types of unsteady flows are nonperiodic flow, periodic flow, and truly

random flow. Whether or not unsteadiness of one or more of these types must be included in an

analysis is not always immediately obvious.

An example of a nonperiodic, unsteady flow is that produced by turning off a faucet to stop

the flow of water. Usually this unsteady flow process is quite mundane and the forces developed

as a result of the unsteady effects need not be considered. However, if the water is turned off

suddenly 1as with the electrically operated valve in a dishwasher shown in the figure in the margin2,
the unsteady effects can become important [as in the “water hammer” effects made apparent by

the loud banging of the pipes under such conditions 1Ref. 12].
In other flows the unsteady effects may be periodic, occurring time after time in basically

the same manner. The periodic injection of the air–gasoline mixture into the cylinder of an

automobile engine is such an example. The unsteady effects are quite regular and repeatable in a

regular sequence. They are very important in the operation of the engine.

0V�0t � 0.
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Solenoid off,valve closed

Spring

Solenoid Diaphragm

Solenoid on,valve open

Inlet

Outlet

F l u i d s  i n  t h e  N e w s

New pulsed liquid-jet scalpel High-speed liquid-jet cutters are

used for cutting a wide variety of materials such as leather

goods, jigsaw puzzles, plastic, ceramic, and metal. Typically,

compressed air is used to produce a continuous stream of water

that is ejected from a tiny nozzle. As this stream impacts the ma-

terial to be cut, a high pressure (the stagnation pressure) is pro-

duced on the surface of the material, thereby cutting the mater-

ial. Such liquid-jet cutters work well in air, but are difficult to

control if the jet must pass through a liquid as often happens in

surgery. Researchers have developed a new pulsed jet cutting

tool that may allow surgeons to perform microsurgery on tissues

that are immersed in water. Rather than using a steady water jet,

the system uses unsteady flow. A high-energy electrical dis-

charge inside the nozzle momentarily raises the temperature of

the microjet to approximately . This creates a rapidly

expanding vapor bubble in the nozzle and expels a tiny fluid jet

from the nozzle. Each electrical discharge creates a single, brief

jet, which makes a small cut in the material.

10,000 °C

In many situations the unsteady character of a flow is quite random. That is, there is no

repeatable sequence or regular variation to the unsteadiness. This behavior occurs in turbulent
flow and is absent from laminar flow. The “smooth” flow of highly viscous syrup onto a pancake

represents a “deterministic” laminar flow. It is quite different from the turbulent flow observed in

the “irregular” splashing of water from a faucet onto the sink below it. The “irregular” gustiness

of the wind represents another random turbulent flow. The differences between these types of

flows are discussed in considerable detail in Chapters 8 and 9.

It must be understood that the definition of steady or unsteady flow pertains to the behavior

of a fluid property as observed at a fixed point in space. For steady flow, the values of all fluid

properties 1velocity, temperature, density, etc.2 at any fixed point are independent of time. However,

the value of those properties for a given fluid particle may change with time as the particle flows

along, even in steady flow. Thus, the temperature of the exhaust at the exit of a car’s exhaust pipe

may be constant for several hours, but the temperature of a fluid particle that left the exhaust pipe

five minutes ago is lower now than it was when it left the pipe, even though the flow is steady.

4.1.4 Streamlines, Streaklines, and Pathlines

Although fluid motion can be quite complicated, there are various concepts that can be used to

help in the visualization and analysis of flow fields. To this end we discuss the use of streamlines,

V4.7 Flow types

V4.8 Jupiter red
spot
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streaklines, and pathlines in flow analysis. The streamline is often used in analytical work while

the streakline and pathline are often used in experimental work.

A streamline is a line that is everywhere tangent to the velocity field. If the flow is steady,

nothing at a fixed point 1including the velocity direction2 changes with time, so the streamlines

are fixed lines in space. (See the photograph at the beginning of Chapter 6.) For unsteady flows

the streamlines may change shape with time. Streamlines are obtained analytically by integrating

the equations defining lines tangent to the velocity field. As illustrated in the margin figure, for

two-dimensional flows the slope of the streamline, must be equal to the tangent of the

angle that the velocity vector makes with the x axis or

(4.1)

If the velocity field is known as a function of x and y 1and t if the flow is unsteady2, this equation

can be integrated to give the equation of the streamlines.

For unsteady flow there is no easy way to produce streamlines experimentally in the laboratory.

As discussed below, the observation of dye, smoke, or some other tracer injected into a flow can provide

useful information, but for unsteady flows it is not necessarily information about the streamlines.

dy

dx
�

v
u

dy�dx,
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dx

dy

u

x

y

v

V4.9 Streamlines

GIVEN Consider the two-dimensional steady flow discussed

in Example 4.1, V � 1V0�/2 1�xî � yĵ 2.

SOLUTION

F I G U R E  E4.2

Streamlines for a Given Velocity Field

y

4

–4

2

0
2 x

C = 1

C = –1

C = 4

C = –4

C = 9

C = –9
–2

4

EXAMPLE 4.2

Since 

and (1)

it follows that streamlines are given by solution of the equation

in which variables can be separated and the equation integrated to

give

or

Thus, along the streamline

(Ans)

By using different values of the constant C, we can plot various

lines in the x–y plane—the streamlines. The streamlines for 

are plotted in Fig. E4.2. A comparison of this figure with Fig.

E4.1a illustrates the fact that streamlines are lines tangent to the

velocity field.

COMMENT Note that a flow is not completely specified by

the shape of the streamlines alone. For example, the streamlines

for the flow with have the same shape as those for the

flow with . However, the direction of the flow is op-

posite for these two cases. The arrows in Fig. E4.2 representing the

flow direction are correct for since, from Eq. 1,

and That is, the flow is from right to left. For

the arrows are reversed. The flow is from left to right.V0�/ � �10

v � 10y.u � �10x
V0�/ � 10

V0�/ � �10

V0�/ � 10

x � 0

xy � C,  where C is a constant

ln y � �ln x � constant

�  
dy

y
� ��  

dx

x

dy

dx
�

v
u

�
1V0�/2y

�1V0�/2x
� �

y

x

v � 1V0�/2yu � 1�V0�/2x

FIND Determine the streamlines for this flow.
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A streakline consists of all particles in a flow that have previously passed through a common

point. Streaklines are more of a laboratory tool than an analytical tool. They can be obtained by

taking instantaneous photographs of marked particles that all passed through a given location in

the flow field at some earlier time. Such a line can be produced by continuously injecting marked

fluid 1neutrally buoyant smoke in air, or dye in water2 at a given location 1Ref. 22. (See Fig. 9.1.)

If the flow is steady, each successively injected particle follows precisely behind the previous one,

forming a steady streakline that is exactly the same as the streamline through the injection point.

For unsteady flows, particles injected at the same point at different times need not follow the

same path. An instantaneous photograph of the marked fluid would show the streakline at that instant,

but it would not necessarily coincide with the streamline through the point of injection at that particular

time nor with the streamline through the same injection point at a different time 1see Example 4.32.
The third method used for visualizing and describing flows involves the use of pathlines. A

pathline is the line traced out by a given particle as it flows from one point to another. The pathline

is a Lagrangian concept that can be produced in the laboratory by marking a fluid particle 1dying

a small fluid element2 and taking a time exposure photograph of its motion. (See the photograph

at the beginning of Chapter 7)
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V4.10 Streaklines

F l u i d s  i n  t h e  N e w s

Air bridge spanning the oceans It has long been known that

large quantities of material are transported from one location to

another by airborne dust particles. It is estimated that 2 billion

metric tons of dust are lifted into the atmosphere each year.

Most of these particles settle out fairly rapidly, but significant

amounts travel large distances. Scientists are beginning to un-

derstand the full impact of this phenomena—it is not only the

tonnage transported, but the type of material transported that is

significant. In addition to the mundane inert material we all

term “dust,” it is now known that a wide variety of hazardous

materials and organisms are also carried along these literal

particle paths. Satellite images reveal the amazing rate by

which desert soils and other materials are transformed into air-

borne particles as a result of storms that produce strong winds.

Once the tiny particles are aloft, they may travel thousands of

miles, crossing the oceans and eventually being deposited on

other continents. For the health and safety of all, it is important

that we obtain a better understanding of the air bridges that

span the oceans and also understand the ramification of such

material transport.

If the flow is steady, the path taken by a marked particle 1a pathline2 will be the same as the line

formed by all other particles that previously passed through the point of injection 1a streakline2. For

such cases these lines are tangent to the velocity field. Hence, pathlines, streamlines, and streaklines

are the same for steady flows. For unsteady flows none of these three types of lines need be the same

1Ref. 32. Often one sees pictures of “streamlines” made visible by the injection of smoke or dye into

a flow as is shown in Fig. 4.3. Actually, such pictures show streaklines rather than streamlines. However,

for steady flows the two are identical; only the nomenclature is incorrectly used.

For steady flow,
streamlines, streak-
lines, and pathlines
are the same.

GIVEN Water flowing from the oscillating slit shown in Fig.

E4.3a produces a velocity field given by 

where and are constants. Thus, the y com-

ponent of velocity remains constant and the x component

of velocity at coincides with the velocity of the oscillating

sprinkler head at y � 0 4 .3u � u0 sin1vt2
y � 0

1v � v02
vu0, v0,y�v02 4 î � v0 ĵ,

V � u0 sin 3v1t �

SOLUTION

Comparison of Streamlines, Pathlines, and StreaklinesEXAMPLE 4.3

(a) Since and it follows from

Eq. 4.1 that streamlines are given by the solution of

dy

dx
�

v
u

�
v0

u0 sin 3v1t � y�v02 4

v � v0u � u0 sin 3v1t � y�v02 4

FIND 1a2 Determine the streamline that passes through the ori-

gin at at 1b2 Determine the pathline of the parti-

cle that was at the origin at at 1c2 Discuss the

shape of the streakline that passes through the origin.

t � p�2.t � 0;

t � p�2v.t � 0;

in which the variables can be separated and the equation inte-

grated 1for any given time t2 to give

u0�  sin cv at �
y

v0

b d  dy � v0�  dx,
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or

(1)

where C is a constant. For the streamline at that passes

through the origin the value of C is obtained

from Eq. 1 as Hence, the equation for this

streamline is

(2) (Ans)

Similarly, for the streamline at that passes through the

origin, Eq. 1 gives  Thus, the equation for this streamline is

or

(3) (Ans)

COMMENT These two streamlines, plotted in Fig. E4.3b, are

not the same because the flow is unsteady. For example, at the ori-

gin the velocity is at and

at Thus, the angle of the streamline

passing through the origin changes with time. Similarly, the shape

of the entire streamline is a function of time.

(b) The pathline of a particle 1the location of the particle as a

function of time2 can be obtained from the velocity field and

the definition of the velocity. Since and 

we obtain

The y equation can be integrated 1since constant2 to give the

y coordinate of the pathline as

(4)

where is a constant. With this known dependence, the

x equation for the pathline becomes

dx

dt
� u0 sin cv at �

v0 t � C1

v0

b d � �u0 sin a
C1 v

v0

b

y � y1t2C1

y � v0 t � C1

v0 �

dx

dt
� u0 sin cv at �

y

v0

b d and 
dy

dt
� v0

v � dy�dtu � dx�dt

t � p�2v.V � u0î � v0 ĵ
t � 0V � v0 ĵ1x � y � 02

x �
u0

v
 sin a

vy

v0

b

x �
u0

v
 cos cv a

p

2v
�

y

v0

b d �
u0

v
 cos a

p

2
�
vy

v0

b

C � 0.

t � p�2v

x �
u0

v
 c cos a

vy

v0

b � 1 d

C � u0v0�v.

1x � y � 02,
t � 0

u01v0�v2 cos cv at �
y

v0

b d � v0 x � C

This can be integrated to give the x component of the pathline as

(5)

where is a constant. For the particle that was at the origin

at time Eqs. 4 and 5 give Thus,

the pathline is

(6) (Ans)

Similarly, for the particle that was at the origin at Eqs.

4 and 5 give and Thus, the path-

line for this particle is

(7)

The pathline can be drawn by plotting the locus of values

for or by eliminating the parameter t from Eq. 7 to give

(8) (Ans)

COMMENT The pathlines given by Eqs. 6 and 8, shown in

Fig. E4.3c, are straight lines from the origin 1rays2. The pathlines

and streamlines do not coincide because the flow is unsteady.

(c) The streakline through the origin at time is the locus of

particles at that previously passed through the ori-

gin. The general shape of the streaklines can be seen as follows.

Each particle that flows through the origin travels in a straight line

1pathlines are rays from the origin2, the slope of which lies between

as shown in Fig. E4.3d. Particles passing through the ori-

gin at different times are located on different rays from the origin

and at different distances from the origin. The net result is that a

stream of dye continually injected at the origin 1a streakline2would

have the shape shown in Fig. E4.3d. Because of the unsteadiness,

the streakline will vary with time, although it will always have the

oscillating, sinuous character shown. 

COMMENT Similar streaklines are given by the stream of

water from a garden hose nozzle that oscillates back and forth in

a direction normal to the axis of the nozzle.

In this example neither the streamlines, pathlines, nor streaklines

coincide. If the flow were steady, all of these lines would be the

same.

�v0�u0

1t 6 02t � 0

t � 0

y �
v0

u0
 x

t � 0

x1t2, y1t2

x � u0 at �
p

2v
b and y � v0 at �

p

2v
b

C2 � �pu0�2v.�pv0�2vC1 �
t � p�2v,

x � 0 and y � v0 
t

C1 � C2 � 0.t � 0,1x � y � 02
C2

x � � cu0 sin a
C1v

v0

b d t � C2

0

y

x

Oscillating
sprinkler head

Q

(a)

2  v0/π ω

  v0/π ωt = 0

t =   /2  ωπ

Streamlines
through origin

y

–2u0/ω 2u0/ω x0

(b) F I G U R E  E4.3(a), (b)
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As indicated in the previous section, we can describe fluid motion by either 112 following individual

particles 1Lagrangian description2 or 122 remaining fixed in space and observing different particles

as they pass by 1Eulerian description2. In either case, to apply Newton’s second law we

must be able to describe the particle acceleration in an appropriate fashion. For the infrequently

used Lagrangian method, we describe the fluid acceleration just as is done in solid body dynamics—

for each particle. For the Eulerian description we describe the acceleration field as a

function of position and time without actually following any particular particle. This is analogous

to describing the flow in terms of the velocity field, rather than the velocity for

particular particles. In this section we will discuss how to obtain the acceleration field if the velocity

field is known.

The acceleration of a particle is the time rate of change of its velocity. For unsteady flows

the velocity at a given point in space 1occupied by different particles2 may vary with time, giving

rise to a portion of the fluid acceleration. In addition, a fluid particle may experience an acceleration

because its velocity changes as it flows from one point to another in space. For example, water

flowing through a garden hose nozzle under steady conditions 1constant number of gallons per

minute from the hose2 will experience an acceleration as it changes from its relatively low velocity

in the hose to its relatively high velocity at the tip of the nozzle.

4.2.1 The Material Derivative

Consider a fluid particle moving along its pathline as is shown in Fig. 4.4. In general, the particle’s

velocity, denoted for particle A, is a function of its location and the time. That is,

VA � VA1rA, t2 � VA 3xA1t2, yA1t2, zA1t2, t 4

VA

V � V 1x, y, z, t2,

a � a 1t2

1F � ma2
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xx

y

t = 0

Pathlines of
particles at origin

at time t

v0/u0

–1 10

(c) (d)

0

t =   /2π ω Pathline

v0

u0

Streaklines
through origin

at time t

y

F I G U R E  E4.3(c), (d)

4.2 The Acceleration Field

Acceleration is the
time rate of change
of velocity for a
given particle.

F I G U R E  4.4
Velocity and position of particle A
at time t.

Particle A at
time t

rA

VA(rA, t)

Particle path

z

x

y

wA(rA, t)

uA(rA, t)

vA(rA, t)

zA(t)
xA(t)

yA(t)

V4.11 Pathlines
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where and define the location of the moving particle. By

definition, the acceleration of a particle is the time rate of change of its velocity. Since the velocity

may be a function of both position and time, its value may change because of the change in time

as well as a change in the particle’s position. Thus, we use the chain rule of differentiation to obtain

the acceleration of particle A, denoted as

(4.2)

Using the fact that the particle velocity components are given by 

and Eq. 4.2 becomes

Since the above is valid for any particle, we can drop the reference to particle A and obtain the

acceleration field from the velocity field as

(4.3)

This is a vector result whose scalar components can be written as

(4.4)

and

where and are the x, y, and z components of the acceleration.

The above result is often written in shorthand notation as

where the operator

(4.5)

is termed the material derivative or substantial derivative. An often-used shorthand notation for

the material derivative operator is

(4.6)

The dot product of the velocity vector, V, and the gradient operator,

1a vector operator2 provides a convenient notation for the spatial derivative terms

appearing in the Cartesian coordinate representation of the material derivative. Note that the notation

represents the operator 

The material derivative concept is very useful in analysis involving various fluid parameters,

not just the acceleration. The material derivative of any variable is the rate at which that variable

changes with time for a given particle 1as seen by one moving along with the fluid—the Lagrangian

description2. For example, consider a temperature field associated with a given

flow, like the flame shown in the figure in the margin. It may be of interest to determine the time

rate of change of temperature of a fluid particle 1particle A2 as it moves through this temperature

T � T1x, y, z, t2

V � § 1 2 � u0 1 2�0x � v0 1 2�0y � w0 1 2�0z.V � §

0y ĵ � 0 1 2�0z k̂
§ 1 2 � 0 1 2�0x î � 0 1 2�

D1 2

Dt
�

0 1 2
0t

� 1V � § 2 1 2

D1 2

Dt
�

0 1 2
0t

� u 
0 1 2
0x

� v 
0 1 2
0y

� w 
0 1 2
0z

a �
DV
Dt

azax, ay,

az �
0w

0t
� u 

0w

0x
� v 

0w

0y
� w 

0w

0z

ay �
0v

0t
� u 

0v

0x
� v 

0v

0y
� w 

0v

0z

ax �
0u

0t
� u 

0u

0x
� v 

0u

0y
� w 

0u

0z

a �
0V
0t

� u 

0V
0x

� v 
0V
0y

� w 
0V
0z

aA �
0VA

0t
� uA 

0VA

0x
� vA 

0VA

0y
� wA 

0VA

0z

wA � dzA�dt,
vA � dyA�dt,uA � dxA�dt,

aA1t2 �
dVA

dt
�

0VA

0t
 �

0VA

0x
 

dxA

dt
�

0VA

0y
 

dyA

dt
�

0VA

0z
 

dzA

dt

aA,

zA � zA 1t2xA � xA 1t2, yA � yA 1t2,

4.2 The Acceleration Field 157

V

T = T (x, y, z, t)

Particle A

yx

z

The material deriv-
ative is used to de-
scribe time rates of
change for a given
particle.
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field. If the velocity, is known, we can apply the chain rule to determine the rate

of change of temperature as

This can be written as

As in the determination of the acceleration, the material derivative operator, appears.D1 2�Dt,

DT

Dt
�

0T

0t
� u 

0T

0x
� v 

0T

0y
� w 

0T

0z
 �

0T

0t
� V � §T

dTA

dt
�

0TA

0t
�

0TA

0x
 

dxA

dt
�

0TA

0y
 

dyA

dt
�

0TA

0z
 

dzA

dt

V � V 1x, y, z, t2,
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GIVEN An incompressible, inviscid fluid flows steadily past a

ball of radius R, as shown in Fig. E4.4a. According to a more ad-

vanced analysis of the flow, the fluid velocity along streamline 

A–B is given by

where is the upstream velocity far ahead of the sphere. 

FIND Determine the acceleration experienced by fluid parti-

cles as they flow along this streamline.

V0

V � u1x2 î � V0 a1 �
R3

x3
b î

SOLUTION

Acceleration along a StreamlineEXAMPLE 4.4

A
x

y

V0VV

(a)

B

A
B

(b)

–0.2

–0.4

–0.6

x/xx R//

–1–2–3

a
x_______

(V0VV
2/R// )

F I G U R E  E4.4

Along streamline A–B there is only one component of velocity

so that from Eq. 4.3

or

Since the flow is steady the velocity at a given point in space does

not change with time. Thus, With the given velocity dis-

tribution along the streamline, the acceleration becomes

or

(Ans)

COMMENTS Along streamline and

the acceleration has only an x component and it is negative

1a deceleration2. Thus, the fluid slows down from its upstream

y � 02
A–B 1�q � x � �R

ax � �31V 0 
2�R2 

1 � 1R�x23

1x�R24

ax � u 
0u

0x
� V0 a1 �

R3

x3
b V0 3R

31�3x�42 4

0u�0t � 0.

ax �
0u

0t
� u 

0u

0x
,  ay � 0,  az � 0

a �
0V
0t

� u 
0V
0x

� a
0u

0t
� u 

0u

0x
b î

1v � w � 02

velocity of at to its stagnation point velocity of

at the “nose” of the ball. The variation of along

streamline is shown in Fig. E4.4b. It is the same result as is

obtained in Example 3.1 by using the streamwise component of

the acceleration, The maximum deceleration occurs

at and has a value of Note

that this maximum deceleration increases with increasing velocity

and decreasing size. As indicated in the following table, typical val-

ues of this deceleration can be quite large. For example, the

value for a pitched baseball is a decel-

eration approximately 1500 times that of gravity.

ax,max � �4.08 	 104 ft�s2

ax,max � �0.610 V0
2�R.x � �1.205R

ax � V 0V�0s.

A–B
axx � �R,V � 0

x � �qV � V0î
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4.2.2 Unsteady Effects

As is seen from Eq. 4.5, the material derivative formula contains two types of terms—those

involving the time derivative and those involving spatial derivatives 

and The time derivative portions are denoted as the local derivative. They represent

effects of the unsteadiness of the flow. If the parameter involved is the acceleration, that portion

given by is termed the local acceleration. For steady flow the time derivative is zero

throughout the flow field and the local effect vanishes. Physically, there is no change

in flow parameters at a fixed point in space if the flow is steady. There may be a change of those

parameters for a fluid particle as it moves about, however.

If a flow is unsteady, its parameter values 1velocity, temperature, density, etc.2 at any location

may change with time. For example, an unstirred cup of coffee will cool down in time

because of heat transfer to its surroundings. That is,

Similarly, a fluid particle may have nonzero acceleration as a result of the unsteady effect of the flow.

Consider flow in a constant diameter pipe as is shown in Fig. 4.5. The flow is assumed to be spatially

uniform throughout the pipe. That is, at all points in the pipe. The value of the acceleration

depends on whether is being increased, or decreased, Unless is

independent of time 1 constant2 there will be an acceleration, the local acceleration term. Thus,

the acceleration field, is uniform throughout the entire flow, although it may vary with

time 1 need not be constant2. The acceleration due to the spatial variations of velocity 1
etc.2 vanishes automatically for this flow, since and That is,

4.2.3 Convective Effects

The portion of the material derivative 1Eq. 4.52 represented by the spatial derivatives is termed

the convective derivative. It represents the fact that a flow property associated with a fluid

particle may vary because of the motion of the particle from one point in space where the

parameter has one value to another point in space where its value is different. For example,

the water velocity at the inlet of the garden hose nozzle shown in the figure in the margin is

different (both in direction and speed) than it is at the exit. This contribution to the time rate

of change of the parameter for the particle can occur whether the flow is steady or unsteady.

a �
0V
0t

� u 

0V
0x

� v 

0V
0y

� w 

0V
0z

�
0V
0t

�
0V0

0t
 î

v � w � 0.0u�0x � 00v�0y,

u 0u�0x, v0V0�0t
a � 0V0�0t î,

V0 �
V00V0�0t 6 0.0V0�0t 7 0,V0

V � V01t2 î

DT�Dt � 0T�0t � V � §T � 0T�0t 6 0.

1V � 02

3 0 1 2�0t � 0 4 ,
0V�0t

0 1 2�0z 4 .
0 1 2�0y,3 0 1 2�0x,3 0 1 2�0t 4
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In general, for fluid particles on streamlines other than 

all three components of the acceleration and will be

nonzero.

az21ax, ay,

A–B,
Object

Rising weather 
balloon 1 4.0

Soccer ball 20 0.80

Baseball 90 0.121

Tennis ball 100 0.104

Golf ball 200 0.070 �3.49 	 105

�5.87 	 104

�4.08 	 104

�305

�0.153

ax,max 1ft�s22R 1ft2V0 1ft�s2

The local derivative
is a result of the un-
steadiness of the
flow.

V4.12 Unsteady
flow

F I G U R E  4.5 Uniform, unsteady
flow in a constant diameter pipe.

V0(t)

V0(t)

x

V2 > V1

V1
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It is due to the convection, or motion, of the particle through space in which there is a gradient

in the parameter value. That portion of the acceleration

given by the term is termed the convective acceleration.
As is illustrated in Fig. 4.6, the temperature of a water particle changes as it flows through

a water heater. The water entering the heater is always the same cold temperature and the water

leaving the heater is always the same hot temperature. The flow is steady. However, the temperature,

T, of each water particle increases as it passes through the heater— Thus,

because of the convective term in the total derivative of the temperature. That is, but

1where x is directed along the streamline2, since there is a nonzero temperature gradient

along the streamline. A fluid particle traveling along this nonconstant temperature path 

at a specified speed 1u2 will have its temperature change with time at a rate of 

even though the flow is steady 

The same types of processes are involved with fluid accelerations. Consider flow in a variable

area pipe as shown in Fig. 4.7. It is assumed that the flow is steady and one-dimensional with

velocity that increases and decreases in the flow direction as indicated. As the fluid flows from

section 112 to section 122, its velocity increases from to Thus, even though 1steady

flow2, fluid particles experience an acceleration given by 1convective acceleration2.
For it is seen that so that —the fluid accelerates. For 

it is seen that so that —the fluid decelerates. This acceleration and deceleration

are shown in the figure in the margin. If the amount of acceleration precisely balances

the amount of deceleration even though the distances between and and and are not the

same.

The concept of the material derivative can be used to determine the time rate of change of

any parameter associated with a particle as it moves about. Its use is not restricted to fluid mechanics

alone. The basic ingredients needed to use the material derivative concept are the field description

of the parameter, and the rate at which the particle moves through that field,

V � V 1x, y, z, t2.
P � P1x, y, z, t2,

x2x3x1x2

V1 � V3,

ax 6 00u�0x 6 0

x2 6 x 6 x3,ax 7 00u�0x 7 0x1 6 x 6 x2,

ax � u 0u�0x
0V�0t � 0V2.V1

10T�0t � 02.
DT�Dt � u 0T�0x

10T�0x 
 02
u 0T�0x 
 0

0T�0t � 0,

DT�Dt 
 0Tout 7 Tin.

1V � § 2V
3§ 1 2 � 0 1 2�0x î � 0 1 2�0y ĵ � 0 1 2�0z k̂4
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F I G U R E  4.6 Steady-state
operation of a water heater. (Photo courtesy
of American Water Heater Company.)

Hot
Tout > Tin

Water
heater

Pathline

= 0  T___
 t

∂
∂

≠ 0DT___
Dt

Cold
Tin

F I G U R E  4.7 Uniform, steady flow in a variable
area pipe.

x

u = V3 = V1 < V2

x3

x2x1

u = V2 > V1
u = V1

u

x0

ax

x0

The convective de-
rivative is a result
of the spatial varia-
tion of the flow.
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4.2 The Acceleration Field 161

GIVEN Consider the steady, two-dimensional flow field dis-

cussed in Example 4.2. 

Acceleration from a Given Velocity Field

FIND Determine the acceleration field for this flow.

EXAMPLE 4.5

SOLUTION

Also, the acceleration vector is oriented at an angle from the x
axis, where

This is the same angle as that formed by a ray from the origin to

point Thus, the acceleration is directed along rays from the

origin and has a magnitude proportional to the distance from the

origin. Typical acceleration vectors 1from Eq. 22 and velocity vec-

tors 1from Example 4.12 are shown in Fig. E4.5 for the flow in the

first quadrant. Note that a and V are not parallel except along the

x and y axes 1a fact that is responsible for the curved pathlines of

the flow2, and that both the acceleration and velocity are zero at

the origin An infinitesimal fluid particle placed pre-

cisely at the origin will remain there, but its neighbors 1no matter

how close they are to the origin2 will drift away.

1x � y � 02.

1x, y2.

tan u �
ay

ax
�

y

x

u

In general, the acceleration is given by

(1)

where the velocity is given by so that

and For steady two-

dimensional and flow, Eq. l becomes

Hence, for this flow the acceleration is given by

or

(Ans)

COMMENTS The fluid experiences an acceleration in both

the x and y directions. Since the flow is steady, there is no local

acceleration—the fluid velocity at any given point is constant in

time. However, there is a convective acceleration due to the

change in velocity from one point on the particle’s pathline to an-

other. Recall that the velocity is a vector—it has both a magnitude

and a direction. In this flow both the fluid speed 1magnitude2 and

flow direction change with location 1see Fig. E4.1a2.
For this flow the magnitude of the acceleration is constant on

circles centered at the origin, as is seen from the fact that

(2)0a 0 � 1ax
2 � ay

2 � az
221�2 � a

V0

/
b

2

 1x2 � y221�2

ax �
V 2

0 x

/2
,  ay �

V 2
0 y

/2

� c a�
V0

/
b 1x2 102 � a

V0

/
b 1y2 a

V0

/
b d  ĵ

a � c a�
V0

/
b 1x2 a�

V0

/
b � a

V0

/
b 1y2 102 d  î

 � au 
0u

0x
� v 

0u

0y
b î � au 

0v 

0x
� v 

0v

0y
b ĵ

 a � u 
0V
0x

� v 
0V
0y

0 1 2�0z � 0 43w � 0

3 0 1 2�0t � 0 4 ,v � 1V0�/2y.u � �1V0�/2  x
V � 1V0�/2 1�xî � yĵ 2

 �
0V
0t

� u 
0V
0x

� v 
0V
0y

� w 
0V
0z

 a �
DV
Dt

�
0V
0t

� 1V � § 2 1V2

GIVEN A fluid flows steadily through a two-dimensional nozzle

of length as shown in Fig. E4.6a. The nozzle shape is given by

y�/ � ; 0.5� 31 � 1x�/2 4

/

The Material Derivative

If viscous and gravitational effects are negligible, the velocity

field is approximately

(1)u � V0�1 � x�/�, v � �V0y�/

EXAMPLE 4.6

F I G U R E  E4.5

V
a

Streamline

y

x
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162 Chapter 4 ■ Fluid Kinematics

and the pressure field is

where V0 and p0 are the velocity and pressure at the origin,

. Note that the fluid speed increases as it flows through

the nozzle. For example, along the center line , at

and at .

FIND Determine, as a function of x and y, the time rate of

change of pressure felt by a fluid particle as it flows through the

nozzle.

x � /V � 2V0x � 0

V � V01y � 02
x � y � 0

p � p0 � �1rV0
2�22 3 1x2 � y22�/2 � 2x�/ 4

SOLUTION

F I G U R E  E4.6a

COMMENT Lines of constant pressure within the nozzle are

indicated in Fig. E4.6b, along with some representative stream-

lines of the flow. Note that as a fluid particle flows along its

streamline, it moves into areas of lower and lower pressure.

Hence, even though the flow is steady, the time rate of change of

the pressure for any given particle is negative. This can be verified

from Eq. (5) which, when plotted in Fig. E4.6c, shows that for any

point within the nozzle .Dp�Dt 6 0

The time rate of change of pressure at any given, fixed point in

this steady flow is zero. However, the time rate of change of pres-

sure felt by a particle flowing through the nozzle is given by the

material derivative of the pressure and is not zero. Thus,

(2)

where the x- and y-components of the pressure gradient can be

written as

(3)

and

(4)

Therefore, by combining Eqs. (1), (2), (3), and (4) we obtain

or

(5) (Ans)
Dp

Dt
� �

rV0
3

/
c a

x

/
� 1b

2

� a
y

/
b

2

d

Dp

Dt
� V0 a1 �

x

/
b a�

rV0
2

/
b a

x

/
� 1b � a�V0

y

/
b a�

rV0
2

/
b a

y

/
b

0p

0y
� �

rV0
2

/
 a

y

/
b

0p

0x
� �

rV0
2

/
 a

x

/
� 1b

Dp

Dt
�

0p

0t
� u 

0p

0x
� v 

0p

0y
� u 

0p

0x
� v 

0p

0y

y

�

x

V0

2V0

0
0.5_______

(1 + x/�)

y_
�

=

y_
�

= – 0.5_______
(1 + x/�)

0
1

0.5

–0.5
–1.0

–1.5 –2.0 –3.0–2.5

y_
�

p – p0 ______
 1/2rV0

2

x_
�

F I G U R E  E4.6b

–0.5

0.5

–1

–2.25

–4

= 0  x  _
�

= 0.5  x  _
�

  x  _
�

  y  _
�

= 1  x  _
�

Dp/Dt_______
(ρV0

3/�)

F I G U R E  E4.6c
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4.2.4 Streamline Coordinates

In many flow situations it is convenient to use a coordinate system defined in terms of the streamlines

of the flow. An example for steady, two-dimensional flows is illustrated in Fig. 4.8. Such flows

can be described either in terms of the usual x, y Cartesian coordinate system 1or some other system

such as the r, polar coordinate system2 or the streamline coordinate system. In the streamline

coordinate system the flow is described in terms of one coordinate along the streamlines, denoted

s, and the second coordinate normal to the streamlines, denoted n. Unit vectors in these two

directions are denoted by and as shown in the figure. Care is needed not to confuse the coordinate

distance s 1a scalar2 with the unit vector along the streamline direction,

The flow plane is therefore covered by an orthogonal curved net of coordinate lines. At any

point the s and n directions are perpendicular, but the lines of constant s or constant n are not

necessarily straight. Without knowing the actual velocity field 1hence, the streamlines2 it is not

possible to construct this flow net. In many situations appropriate simplifying assumptions can be

made so that this lack of information does not present an insurmountable difficulty. One of the major

advantages of using the streamline coordinate system is that the velocity is always tangent to the s
direction. That is,

This allows simplifications in describing the fluid particle acceleration and in solving the equations

governing the flow.

For steady, two-dimensional flow we can determine the acceleration as

where and are the streamline and normal components of acceleration, respectively, as indicated

by the figure in the margin. We use the material derivative because by definition the acceleration

is the time rate of change of the velocity of a given particle as it moves about. If the streamlines

anas

a �
DV
Dt

� as ŝ � ann̂

V � V ŝ

ŝ.
n̂,ŝ

u
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V4.13 Streamline
coordinates

F I G U R E  4.8
Streamline coordinate system
for two-dimensional flow.

s

n^ s^

V

s = 0

s = s1

s = s2
n = n2

n = n1

n = 0
Streamlines

y

x

V

a

asan
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are curved, both the speed of the particle and its direction of flow may change from one point to

another. In general, for steady flow both the speed and the flow direction are a function of location—

and For a given particle, the value of s changes with time, but the value

of n remains fixed because the particle flows along a streamline defined by constant. 1Recall

that streamlines and pathlines coincide in steady flow.2 Thus, application of the chain rule gives

or

This can be simplified by using the fact that for steady flow nothing changes with time at a given

point so that both and are zero. Also, the velocity along the streamline is and

the particle remains on its streamline 1 constant2 so that Hence,

The quantity represents the limit as of the change in the unit vector along the

streamline, per change in distance along the streamline, The magnitude of is constant

1 it is a unit vector2, but its direction is variable if the streamlines are curved. From Fig. 4.9

it is seen that the magnitude of is equal to the inverse of the radius of curvature of the

streamline, at the point in question. This follows because the two triangles shown 1AOB and

2 are similar triangles so that or Similarly, in the

limit the direction of is seen to be normal to the streamline. That is,

Hence, the acceleration for steady, two-dimensional flow can be written in terms of its streamwise

and normal components in the form

(4.7)

The first term, represents the convective acceleration along the streamline and the

second term, represents centrifugal acceleration 1one type of convective acceleration2
normal to the fluid motion. These components can be noted in Fig. E4.5 by resolving the

acceleration vector into its components along and normal to the velocity vector. Note that the unit

vector is directed from the streamline toward the center of curvature. These forms of the

acceleration were used in Chapter 3 and are probably familiar from previous dynamics or physics

considerations.

n̂

an � V 2�r,

as � V 0V�0s,

a � V 
0V

0s
 ŝ �

V 2

r
 n̂ or as � V 

0V

0s
,  an �

V 2

r

0ŝ
0s
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dsS0

 
dŝ
ds

�
n̂
r

dŝ�dsds S 0,

0dŝ�ds 0 � 1�r.ds�r � 0d ŝ 0 � 0 ŝ 0 � 0dŝ 0 ,A¿O¿B¿
r,

0ŝ�0s
0 ŝ 0 � 1;

ŝds.dŝ,
ds S 00ŝ�0s

a � aV 
0V

0s
b ŝ � V aV 

0ŝ
0s
b

dn�dt � 0.n �
V � ds�dt0ŝ�0t0V�0t

a � a
0V

0t
�

0V

0s
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�

0V

0n
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dt
b ŝ � V a

0ŝ
0t

�
0ŝ
0s
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�

0ŝ
0n
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b

a �
D1V ŝ2

Dt
�

DV

Dt
 ŝ � V 

Dŝ
Dt

n �
ŝ � ŝ1s, n2.V � V1s, n2
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F I G U R E  4.9 Relationship between the unit vector along the
streamline, and the radius of curvature of the streamline, .rŝ ,

O

O

O'

� 

� 

δθ
δθ

δθ

s

s

A

A

A'

B

B

B'δ

sδ

δ

n^

s^

s (s)^

s (s)^

s(s
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4.3 Control Volume and System Representations 165

As is discussed in Chapter 1, a fluid is a type of matter that is relatively free to move and

interact with its surroundings. As with any matter, a fluid’s behavior is governed by fundamental

physical laws which are approximated by an appropriate set of equations. The application of laws

such as the conservation of mass, Newton’s laws of motion, and the laws of thermodynamics form

the foundation of fluid mechanics analyses. There are various ways that these governing laws can

be applied to a fluid, including the system approach and the control volume approach. By definition,

a system is a collection of matter of fixed identity 1always the same atoms or fluid particles2, which

may move, flow, and interact with its surroundings. A control volume, on the other hand, is a

volume in space 1a geometric entity, independent of mass2 through which fluid may flow.

A system is a specific, identifiable quantity of matter. It may consist of a relatively large

amount of mass 1such as all of the air in the earth’s atmosphere2, or it may be an infinitesimal size

1such as a single fluid particle2. In any case, the molecules making up the system are “tagged” in

some fashion 1dyed red, either actually or only in your mind2 so that they can be continually

identified as they move about. The system may interact with its surroundings by various means 1by

the transfer of heat or the exertion of a pressure force, for example2. It may continually change size

and shape, but it always contains the same mass.

A mass of air drawn into an air compressor can be considered as a system. It changes shape

and size 1it is compressed2, its temperature may change, and it is eventually expelled through the

outlet of the compressor. The matter associated with the original air drawn into the compressor

remains as a system, however. The behavior of this material could be investigated by applying the

appropriate governing equations to this system.

One of the important concepts used in the study of statics and dynamics is that of the free-

body diagram. That is, we identify an object, isolate it from its surroundings, replace its surroundings

by the equivalent actions that they put on the object, and apply Newton’s laws of motion. The body

in such cases is our system—an identified portion of matter that we follow during its interactions

with its surroundings. In fluid mechanics, it is often quite difficult to identify and keep track of a

specific quantity of matter. A finite portion of a fluid contains an uncountable number of fluid

particles that move about quite freely, unlike a solid that may deform but usually remains relatively

easy to identify. For example, we cannot as easily follow a specific portion of water flowing in a

river as we can follow a branch floating on its surface.

We may often be more interested in determining the forces put on a fan, airplane, or

automobile by air flowing past the object than we are in the information obtained by following a

given portion of the air 1a system2 as it flows along. Similarly, for the Space Shuttle launch vehicle

shown in the margin, we may be more interested in determining the thrust produced than we are in

the information obtained by following the highly complex, irregular path of the exhaust plume from

the rocket engine nozzle. For these situations we often use the control volume approach. We identify

a specific volume in space 1a volume associated with the fan, airplane, or automobile, for example2
and analyze the fluid flow within, through, or around that volume. In general, the control volume

can be a moving volume, although for most situations considered in this book we will use only

fixed, nondeformable control volumes. The matter within a control volume may change with time

as the fluid flows through it. Similarly, the amount of mass within the volume may change with

time. The control volume itself is a specific geometric entity, independent of the flowing fluid.

Examples of control volumes and control surfaces 1the surface of the control volume2 are

shown in Fig. 4.10. For case 1a2, fluid flows through a pipe. The fixed control surface consists of

the inside surface of the pipe, the outlet end at section 122, and a section across the pipe at 112. One

portion of the control surface is a physical surface 1the pipe2, while the remainder is simply a surface

in space 1across the pipe2. Fluid flows across part of the control surface, but not across all of it.

Another control volume is the rectangular volume surrounding the jet engine shown in Fig.

4.10b. If the airplane to which the engine is attached is sitting still on the runway, air flows through

this control volume because of the action of the engine within it. The air that was within the engine

itself at time 1a system2 has passed through the engine and is outside of the control volume

at a later time as indicated. At this later time other air 1a different system2 is within the engine.

If the airplane is moving, the control volume is fixed relative to an observer on the airplane, but it

t � t2

t � t1

4.3 Control Volume and System Representations

Both control vol-
ume and system
concepts can be
used to describe
fluid flow.

(Photograph courtesy
of NASA.)
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is a moving control volume relative to an observer on the ground. In either situation air flows

through and around the engine as indicated.

The deflating balloon shown in Fig. 4.10c provides an example of a deforming control volume.

As time increases, the control volume 1whose surface is the inner surface of the balloon2 decreases

in size. If we do not hold onto the balloon, it becomes a moving, deforming control volume as it

darts about the room. The majority of the problems we will analyze can be solved by using a fixed,

nondeforming control volume. In some instances, however, it will be advantageous, in fact

necessary, to use a moving, deforming control volume.

In many ways the relationship between a system and a control volume is similar to the relationship

between the Lagrangian and Eulerian flow description introduced in Section 4.1.1. In the system or

Lagrangian description, we follow the fluid and observe its behavior as it moves about. In the control

volume or Eulerian description we remain stationary and observe the fluid’s behavior at a fixed location.

1If a moving control volume is used, it virtually never moves with the system—the system flows

through the control volume.2 These ideas are discussed in more detail in the next section.

All of the laws governing the motion of a fluid are stated in their basic form in terms of a

system approach. For example, “the mass of a system remains constant,” or “the time rate of change

of momentum of a system is equal to the sum of all the forces acting on the system.” Note the word

system, not control volume, in these statements. To use the governing equations in a control volume

approach to problem solving, we must rephrase the laws in an appropriate manner. To this end we

introduce the Reynolds transport theorem in the following section.
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F I G U R E  4.10 Typical control volumes: (a) fixed control volume, (b) fixed or moving
control volume, (c) deforming control volume.

V

Pipe

(1) (2)

(a) (b)

Jet engine

(c)

Balloon

Control volume surface System at time t1 System at time t2 > t1

We are sometimes interested in what happens to a particular part of the fluid as it moves about.

Other times we may be interested in what effect the fluid has on a particular object or volume in

space as fluid interacts with it. Thus, we need to describe the laws governing fluid motion using

both system concepts 1consider a given mass of the fluid2 and control volume concepts 1consider

a given volume2. To do this we need an analytical tool to shift from one representation to the other.

The Reynolds transport theorem provides this tool.

All physical laws are stated in terms of various physical parameters. Velocity, acceleration, mass,

temperature, and momentum are but a few of the more common parameters. Let B represent any of

these 1or other2 fluid parameters and b represent the amount of that parameter per unit mass. That is,

where m is the mass of the portion of fluid of interest. For example, as shown by the figure in the

margin, if the mass, it follows that The mass per unit mass is unity. If 

the kinetic energy of the mass, then the kinetic energy per unit mass. The parameters B
and b may be scalars or vectors. Thus, if the momentum of the mass, then 1The

momentum per unit mass is the velocity.2
The parameter B is termed an extensive property and the parameter b is termed an intensive

property. The value of B is directly proportional to the amount of the mass being considered,

whereas the value of b is independent of the amount of mass. The amount of an extensive property

that a system possesses at a given instant, can be determined by adding up the amount associated

with each fluid particle in the system. For infinitesimal fluid particles of size and mass r dV�,dV�
Bsys,

b � V.B � mV,

b � V 2�2,

B � mV 2�2,b � 1.B � m,

B � mb

4.4 The Reynolds Transport Theorem

The governing laws
of fluid motion are
stated in terms of
fluid systems, not
control volumes.

V

m

V

B b = B/m

1m

mV

1_
2mV 21_
2

1_
2V 21_
2
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this summation 1in the limit of 2 takes the form of an integration over all the particles in

the system and can be written as

The limits of integration cover the entire system—a 1usually2 moving volume. We have used the

fact that the amount of B in a fluid particle of mass is given in terms of b by 

Most of the laws governing fluid motion involve the time rate of change of an extensive property

of a fluid system—the rate at which the momentum of a system changes with time, the rate at which

the mass of a system changes with time, and so on. Thus, we often encounter terms such as

(4.8)

To formulate the laws into a control volume approach, we must obtain an expression for the time

rate of change of an extensive property within a control volume, not within a system. This can

be written as

(4.9)

where the limits of integration, denoted by cv, cover the control volume of interest. Although Eqs.

4.8 and 4.9 may look very similar, the physical interpretation of each is quite different.

Mathematically, the difference is represented by the difference in the limits of integration. Recall

that the control volume is a volume in space 1in most cases stationary, although if it moves it need

not move with the system2. On the other hand, the system is an identifiable collection of mass that

moves with the fluid 1indeed it is a specified portion of the fluid2. We will learn that even for those

instances when the control volume and the system momentarily occupy the same volume in space,

the two quantities and need not be the same. The Reynolds transport theorem

provides the relationship between the time rate of change of an extensive property for a system

and that for a control volume—the relationship between Eqs. 4.8 and 4.9.

dBcv�dtdBsys �dt

dBcv

dt
�

d a �
cv

 rb dV�b

dt

Bcv,

dBsys

dt
�

d a �
sys

 rb dV�b

dt

dB � br dV�.r dV�

Bsys � lim
dV�S0

 a
i

bi 1ri dV�i2 � �
sys

 rb dV�

dV� S 0
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GIVEN Fluid flows from the fire extinguisher tank shown in

Fig. E4.7a. 

FIND Discuss the differences between and if B
represents mass.

dBcv�dtdBsys�dt

SOLUTION

F I G U R E  E4.7

Time Rate of Change for a System and a Control VolumeEXAMPLE 4.7

With the system mass, it follows that and Eqs. 4.8

and 4.9 can be written as

and

dBcv

dt
�

dmcv

dt
�

d a �
cv

r dV�b

dt

dBsys

dt
�

dmsys

dt
�

d a �
sys

 r dV�b

dt

b � 1B � m,

(a)

Differences be-
tween control vol-
ume and system
concepts are subtle
but very important.
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4.4.1 Derivation of the Reynolds Transport Theorem

A simple version of the Reynolds transport theorem relating system concepts to control volume

concepts can be obtained easily for the one-dimensional flow through a fixed control volume such

as the variable area duct section shown in Fig. 4.11a. We consider the control volume to be that

stationary volume within the duct between sections 112 and 122 as indicated in Fig. 4.11b. The system

that we consider is that fluid occupying the control volume at some initial time t. A short time

later, at time the system has moved slightly to the right. The fluid particles that coincided

with section 122 of the control surface at time t have moved a distance to the right,

where is the velocity of the fluid as it passes section 122. Similarly, the fluid initially at section

112 has moved a distance where is the fluid velocity at section 112. We assume the

fluid flows across sections 112 and 122 in a direction normal to these surfaces and that and are

constant across sections 112 and 122.
As is shown in Fig. 4.11c, the outflow from the control volume from time t to is denoted

as volume II, the inflow as volume I, and the control volume itself as CV. Thus, the system at time

t consists of the fluid in section CV; that is, At time the system

consists of the same fluid that now occupies sections That is,

at time The control volume remains as section CV for all time.t � dt.
“SYS � CV � I � II”1CV � I2 � II.

t � dt“SYS � CV” at time t.

t � dt

V2V1

V1d/1 � V1 dt,
V2

d/2 � V2 dt
t � dt,
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Physically these represent the time rate of change of mass within

the system and the time rate of change of mass within the control

volume, respectively. We choose our system to be the fluid within

the tank at the time the valve was opened and the control

volume to be the tank itself as shown in Fig. E4.7b. A short time

after the valve is opened, part of the system has moved outside of

the control volume as is shown in Fig. E4.7c. The control volume

remains fixed. The limits of integration are fixed for the control

volume; they are a function of time for the system.

Clearly, if mass is to be conserved 1one of the basic laws gov-

erning fluid motion2, the mass of the fluid in the system is con-

stant, so that

On the other hand, it is equally clear that some of the fluid has left the

control volume through the nozzle on the tank. Hence, the amount of

mass within the tank 1the control volume2 decreases with time, or

d a �
cv

 r dV�b

dt
6 0

d a �
sys

 r dV�b

dt
� 0

1t � 02

The actual numerical value of the rate at which the mass in the

control volume decreases will depend on the rate at which the fluid

flows through the nozzle 1i.e., the size of the nozzle and the speed

and density of the fluid2. Clearly the meanings of and

are different. For this example, Other

situations may have dBcv�dt � dBsys �dt.
dBcv�dt 6 dBsys �dt.dBcv�dt

dBsys �dt

F I G U R E  E4.7

(b) (c)

System

Control
surface

t = 0 t > 0

V1 V2
�1 = V1   tδ δ

(1)
(2)

�2 = V2   tδ δ

Fixed control surface and system
boundary at time t

System boundary at time t +   tδ

(b) (c)

I IICV– I

(2)

(1)

F I G U R E  4.11 Control volume and system for flow through a variable area pipe.

The moving system
flows through the
fixed control
volume.

(a)
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If B is an extensive parameter of the system, then the value of it for the system at time

t is

since the system and the fluid within the control volume coincide at this time. Its value at time

is

Thus, the change in the amount of B in the system in the time interval divided by this time

interval is given by

By using the fact that at the initial time t we have this ungainly expression may

be rearranged as follows.

(4.10)

In the limit the left-hand side of Eq. 4.10 is equal to the time rate of change of B for the

system and is denoted as We use the material derivative notation, to denote this

time rate of change to emphasize the Lagrangian character of this term. 1Recall from Section 4.2.1

that the material derivative, of any quantity P represents the time rate of change of that

quantity associated with a given fluid particle as it moves along.2 Similarly, the quantity 

represents the time rate of change of property B associated with a system 1a given portion of fluid2
as it moves along.

In the limit the first term on the right-hand side of Eq. 4.10 is seen to be the time

rate of change of the amount of B within the control volume

(4.11)

The third term on the right-hand side of Eq. 4.10 represents the rate at which the extensive parameter

B flows from the control volume, across the control surface. As indicated by the figure in the

margin, during the time interval from to the volume of fluid that flows across section

122 is given by Thus, the amount of B within region II, the outflow

region, is its amount per unit volume, times the volume

where and are the constant values of b and across section 122. Thus, the rate at which this

property flows from the control volume, is given by

(4.12)

Similarly, the inflow of B into the control volume across section 112 during the time interval

corresponds to that in region I and is given by the amount per unit volume times the volume,

Hence,

where and are the constant values of b and across section 112. Thus, the rate of inflow of

the property B into the control volume, is given by

(4.13)B
#

in � lim
dtS0

 
BI1t � dt2

dt
� r1A1V1b1

B
#

in,

rr1b1

BI 1t � dt2 � 1r1b12 1dV�12 � r1b1A1V1 dt

dV�I � A1 d/1 � A11V1 dt2.
dt

B
#

out � lim
dtS0

 
BII1t � dt2

dt
� r2 A2V2 b2

B
#

out,

rr2b2

BII 1t � dt2 � 1r2b22 1dV�II2 � r2b2A2V2 dt

rb,

dV�II � A2 d/2 � A2 1V2dt2.
t � dtt � 0

lim
dtS0

 
Bcv1t � dt2 � Bcv1t2

dt
�

0Bcv

0t
�

0 a �
cv

 rb dV�b

0t

dt S 0,

DBsys�Dt
DP�Dt,

D1 2�Dt,DBsys�Dt.
dt S 0,

dBsys

dt
�

Bcv1t � dt2 � Bcv1t2

dt
�

BI1t � dt2

dt
�

BII1t � dt2

dt

Bsys1t2 � Bcv1t2,

dBsys

dt
�

Bsys1t � dt2 � Bsys1t2

dt
�

Bcv1t � dt2 � BI1t � dt2 � BII1t � dt2 � Bsys1t2

dt

dt

Bsys1t � dt2 � Bcv1t � dt2 � BI1t � dt2 � BII1t � dt2

t � dt

Bsys1t2 � Bcv1t2
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The time rate of
change of a system
property is a La-
grangian concept.
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If we combine Eqs. 4.10, 4.11, 4.12, and 4.13 we see that the relationship between the time

rate of change of B for the system and that for the control volume is given by

(4.14)

or

(4.15)

This is a version of the Reynolds transport theorem valid under the restrictive assumptions

associated with the flow shown in Fig. 4.11—fixed control volume with one inlet and one outlet

having uniform properties 1density, velocity, and the parameter b2 across the inlet and outlet with

the velocity normal to sections 112 and 122. Note that the time rate of change of B for the system

1the left-hand side of Eq. 4.15 or the quantity in Eq. 4.82 is not necessarily the same as the rate

of change of B within the control volume 1the first term on the right-hand side of Eq. 4.15 or the

quantity in Eq. 4.92. This is true because the inflow rate and the outflow rate 

of the property B for the control volume need not be the same.

1b2 r2V2 A221b1r1V1A12

 
DBsys

Dt
�

0Bcv

0t
� r2A2V2b2 � r1A1V1b1

 
DBsys

Dt
�

0Bcv

dt
� B

#
out � B

#
in
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The time derivative
associated with a
system may be dif-
ferent from that for
a control volume.

GIVEN Consider again the flow from the fire extinguisher

shown in Fig. E4.7. Let the extensive property of interest be the

system mass 1 the system mass, or 2.b � 1B � m,

Use of the Reynolds Transport TheoremEXAMPLE 4.8

FIND Write the appropriate form of the Reynolds transport

theorem for this flow.

SOLUTION

The physical interpretation of this result is that the rate at which

the mass in the tank decreases in time is equal in magnitude but

opposite to the rate of flow of mass from the exit, Note

the units for the two terms of Eq. 2 1kg�s or slugs�s2. Note that

if there were both an inlet and an outlet to the control volume

shown in Fig. E4.7, Eq. 2 would become

(3)

In addition, if the flow were steady, the left-hand side of Eq. 3

would be zero 1the amount of mass in the control would be con-

stant in time2 and Eq. 3 would become

This is one form of the conservation of mass principle discussed in

Sect. 3.6.2—the mass flowrates into and out of the control volume

are equal. Other more general forms are discussed in Chapter 5.

r1 
A1V1 � r2 

A2V2

0 a �
cv

 r d�Vb

0t
� r1 A1V1 � r2 A2V2

r2 A2V2.

Again we take the control volume to be the fire extinguisher, and

the system to be the fluid within it at time For this case

there is no inlet, section 112, across which the fluid flows into the

control volume There is, however, an outlet, section 122.
Thus, the Reynolds transport theorem, Eq. 4.15, along with Eq.

4.9 with can be written as

(1) (Ans)

COMMENT If we proceed one step further and use the basic

law of conservation of mass, we may set the left-hand side of this

equation equal to zero 1the amount of mass in a system is con-

stant2 and rewrite Eq. 1 in the form

(2)

0 a �
cv

 r dV�b

0t
� �r2 A2V2

Dmsys

Dt
�

0 a �
cv

 r dV�b

0t
� r2 A2V2

b � 1

1A1 � 02.

t � 0.

Equation 4.15 is a simplified version of the Reynolds transport theorem. We will now derive

it for much more general conditions. A general, fixed control volume with fluid flowing through

it is shown in Fig. 4.12. The flow field may be quite simple 1as in the above one-dimensional flow

considerations2, or it may involve a quite complex, unsteady, three-dimensional situation such as

the flow through a human heart as illustrated by the figure in the margin. In any case we again

consider the system to be the fluid within the control volume at the initial time t. A short time

later a portion of the fluid 1region II2 has exited from the control volume and additional fluid

1region I, not part of the original system2 has entered the control volume.

Left
AtriumRight

Atrium

Right
Ventricle

Left
Ventricle
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We consider an extensive fluid property B and seek to determine how the rate of change of B
associated with the system is related to the rate of change of B within the control volume at any

instant. By repeating the exact steps that we did for the simplified control volume shown in Fig.

4.11, we see that Eq. 4.14 is valid for the general case also, provided that we give the correct

interpretation to the terms and In general, the control volume may contain more 1or less2
than one inlet and one outlet. A typical pipe system may contain several inlets and outlets as are

shown in Fig. 4.13. In such instances we think of all inlets grouped together 

and all outlets grouped together at least conceptually.

The term represents the net flowrate of the property B from the control volume. Its

value can be thought of as arising from the addition 1integration2 of the contributions through

each infinitesimal area element of size on the portion of the control surface dividing region

II and the control volume. This surface is denoted As is indicated in Fig. 4.14, in time 

the volume of fluid that passes across each area element is given by where

is the height 1normal to the base, 2 of the small volume element, and is the

angle between the velocity vector and the outward pointing normal to the surface, Thus,

since the amount of the property B carried across the area element in the time

interval is given by

The rate at which B is carried out of the control volume across the small area element denoted

is

dB
#

out � lim
dtS0

 
rb dV�

dt
� lim
dtS0

 
1rbV cos u dt2 dA

dt
� rbV cos u dA

dB
#

out,

dA,

dB � br dV� � br1V cos u dt2 dA

dt
dAd/ � V dt,

n̂.

udAd/n � d/ cos u

dV� � d/n dA,

dtCSout.

dA

B
#

out

IIc � p 2,1II � IIa � IIb �
1I � Ia � Ib � Ic � p 2

B
#

in.B
#

out
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F I G U R E  4.12 Control volume
and system for flow through an arbitrary, fixed
control volume.

CV–I

II

I

Inflow

Outflow

Fixed control surface and system
boundary at time t

System boundary at time t +   tδ

The simplified
Reynolds transport
theorem can be
easily generalized.

V1

V6

V4

V2

V3

V5
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IIa
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IId

F I G U R E  4.13 Typical control volume with more than one
inlet and outlet.
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F I G U R E  4.14 Outflow across a typical portion of the control surface.
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By integrating over the entire outflow portion of the control surface, we obtain

The quantity is the component of the velocity normal to the area element From the

definition of the dot product, this can be written as Hence, an alternate form of

the outflow rate is

(4.16)

In a similar fashion, by considering the inflow portion of the control surface, as shown

in Fig. 4.15, we find that the inflow rate of B into the control volume is

(4.17)

We use the standard notation that the unit normal vector to the control surface, points out from the

control volume. Thus, as is shown in Fig. 4.16, for outflow regions 1the normal

component of V is positive; 2. For inflow regions 1the normal component

of V is negative; 2. The value of is, therefore, positive on the portions of the

control surface and negative on the portions. Over the remainder of the control surface, there is

no inflow or outflow, leading to on those portions. On such portions either 

1the fluid “sticks” to the surface2 or 1the fluid “slides”along the surface without crossing it2
1see Fig. 4.162. Therefore, the net flux 1flowrate2 of parameter B across the entire control surface is

(4.18)

where the integration is over the entire control surface.

 � �
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#
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By combining Eqs. 4.14 and 4.18 we obtain

This can be written in a slightly different form by using so that

(4.19)

Equation 4.19 is the general form of the Reynolds transport theorem for a fixed, nondeforming

control volume. Its interpretation and use are discussed in the following sections.

4.4.2 Physical Interpretation

The Reynolds transport theorem as given in Eq. 4.19 is widely used in fluid mechanics 1and other

areas as well2. At first it appears to be a rather formidable mathematical expression—perhaps one

to be steered clear of if possible. However, a physical understanding of the concepts involved will

show that it is a rather straightforward, relatively easy-to-use tool. Its purpose is to provide a link

between control volume ideas and system ideas.

The left side of Eq. 4.19 is the time rate of change of an arbitrary extensive parameter of a

system. This may represent the rate of change of mass, momentum, energy, or angular momentum

of the system, depending on the choice of the parameter B.

Because the system is moving and the control volume is stationary, the time rate of change

of the amount of B within the control volume is not necessarily equal to that of the system. The first

term on the right side of Eq. 4.19 represents the rate of change of B within the control volume as

the fluid flows through it. Recall that b is the amount of B per unit mass, so that is the amount

of B in a small volume Thus, the time derivative of the integral of throughout the control

volume is the time rate of change of B within the control volume at a given time.

The last term in Eq. 4.19 1an integral over the control surface2 represents the net flowrate of

the parameter B across the entire control surface. As illustrated by the figure in the margin, over a

portion of the control surface this property is being carried out of the control volume 

over other portions it is being carried into the control volume Over the remainder of

the control surface there is no transport of B across the surface since because either

or V is parallel to the surface at those locations. The mass flowrate through area

element given by is positive for outflow 1efflux2 and negative for inflow 1influx2.
Each fluid particle or fluid mass carries a certain amount of B with it, as given by the product of

B per unit mass, b, and the mass. The rate at which this B is carried across the control surface is

given by the area integral term of Eq. 4.19. This net rate across the entire control surface may be

negative, zero, or positive depending on the particular situation involved.

4.4.3 Relationship to Material Derivative

In Section 4.2.1 we discussed the concept of the material derivative 

The physical interpretation of this derivative is that it

provides the time rate of change of a fluid property 1temperature, velocity, etc.2 associated with a

particular fluid particle as it flows. The value of that parameter for that particle may change because

of unsteady effects [the term] or because of effects associated with the particle’s motion

[the term].

Careful consideration of Eq. 4.19 indicates the same type of physical interpretation for the

Reynolds transport theorem. The term involving the time derivative of the control volume integral

represents unsteady effects associated with the fact that values of the parameter within the control

volume may change with time. For steady flow this effect vanishes—fluid flows through the control

volume but the amount of any property, B, within the control volume is constant in time. The term

involving the control surface integral represents the convective effects associated with the flow of the

system across the fixed control surface. The sum of these two terms gives the rate of change of the

parameter B for the system. This corresponds to the interpretation of the material derivative,

V � § 1 2
0 1 2�0t

0 1 20t � u 0 1 20x � v 0 1 2�0y � w 0 1 2�0z.
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in which the sum of the unsteady effect and the convective effect

gives the rate of change of a parameter for a fluid particle. As is discussed in Section 4.2, the material

derivative operator may be applied to scalars 1such as temperature2 or vectors 1such as velocity2. This

is also true for the Reynolds transport theorem. The particular parameters of interest, B and b, may

be scalars or vectors.

Thus, both the material derivative and the Reynolds transport theorem equations represent

ways to transfer from the Lagrangian viewpoint 1follow a particle or follow a system2 to the Eulerian

viewpoint 1observe the fluid at a given location in space or observe what happens in the fixed

control volume2. The material derivative 1Eq. 4.52 is essentially the infinitesimal 1or derivative2
equivalent of the finite size 1or integral2 Reynolds transport theorem 1Eq. 4.192.

4.4.4 Steady Effects

Consider a steady flow so that Eq. 4.19 reduces to

(4.20)

In such cases if there is to be a change in the amount of B associated with the system 1nonzero

left-hand side2, there must be a net difference in the rate that B flows into the control volume

compared with the rate that it flows out of the control volume. That is, the integral of over

the inflow portions of the control surface would not be equal and opposite to that over the outflow

portions of the surface.

Consider steady flow through the “black box” control volume that is shown in Fig. 4.17. If

the parameter B is the mass of the system, the left-hand side of Eq. 4.20 is zero 1conservation of

mass for the system as discussed in detail in Section 5.12. Hence, the flowrate of mass into the

box must be the same as the flowrate of mass out of the box because the right-hand side of Eq.

4.20 represents the net flowrate through the control surface. On the other hand, assume the

parameter B is the momentum of the system. The momentum of the system need not be constant.

In fact, according to Newton’s second law the time rate of change of the system momentum equals

the net force, F, acting on the system. In general, the left-hand side of Eq. 4.20 will therefore be

nonzero. Thus, the right-hand side, which then represents the net flux of momentum across the

control surface, will be nonzero. The flowrate of momentum into the control volume need not be

the same as the flux of momentum from the control volume. We will investigate these concepts

much more fully in Chapter 5. They are the basic principles describing the operation of such

devices as jet or rocket engines like the one shown in the figure in the margin.

For steady flows the amount of the property B within the control volume does not change

with time. The amount of the property associated with the system may or may not change with

time, depending on the particular property considered and the flow situation involved. The difference

between that associated with the control volume and that associated with the system is determined

by the rate at which B is carried across the control surface—the term 

4.4.5 Unsteady Effects

Consider unsteady flow so that all terms in Eq. 4.19 must be retained. When they

are viewed from a control volume standpoint, the amount of parameter B within the system may

change because the amount of B within the fixed control volume may change with time

3 0 1 2�0t 
 0 4
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and because there may be a net nonzero flow of that parameter across

the control surface 1the term2.
For the special unsteady situations in which the rate of inflow of parameter B is exactly

balanced by its rate of outflow, it follows that and Eq. 4.19 reduces to

(4.21)

For such cases, any rate of change in the amount of B associated with the system is equal to the

rate of change of B within the control volume. This can be illustrated by considering flow through

a constant diameter pipe as is shown in Fig. 4.18. The control volume is as shown, and the system

is the fluid within this volume at time We assume the flow is one-dimensional with 

where is a function of time, and that the density is constant. At any instant in time, all

particles in the system have the same velocity. We let system momentum

where m is the system mass, so that the fluid velocity. The magnitude of

the momentum efflux across the outlet [section 122] is the same as the magnitude of the momentum

influx across the inlet [section 112]. However, the sign of the efflux is opposite to that of the influx

since for the outflow and for the inflow. Note that along the sides

of the control volume. Thus, with on section 112, on section 122, and

, we obtain

It is seen that for this special case Eq. 4.21 is valid. The rate at which the momentum of the system

changes with time is the same as the rate of change of momentum within the control volume. If

is constant in time, there is no rate of change of momentum of the system and for this special

case each of the terms in the Reynolds transport theorem is zero by itself.

Consider the flow through a variable area pipe shown in Fig. 4.19. In such cases the fluid

velocity is not the same at section 112 as it is at 122. Hence, the efflux of momentum from the control

volume is not equal to the influx of momentum, so that the convective term in Eq. 4.20 [the integral

of over the control surface] is not zero. These topics will be discussed in considerably

more detail in Chapter 5.
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 r1V0î 2 1V � n̂2 dA

A1 � A2

V � n̂ � V0V � n̂ � �V0

V � n̂ � 0V � n̂ 6 0V � n̂ 7 0

b � B�m � V � V0î,
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4.4.6 Moving Control Volumes

For most problems in fluid mechanics, the control volume may be considered as a fixed volume

through which the fluid flows. There are, however, situations for which the analysis is simplified

if the control volume is allowed to move or deform. The most general situation would involve a

control volume that moves, accelerates, and deforms. As one might expect, the use of these control

volumes can become fairly complex.

A number of important problems can be most easily analyzed by using a nondeforming

control volume that moves with a constant velocity. Such an example is shown in Fig. 4.20 in

which a stream of water with velocity strikes a vane that is moving with constant velocity 

It may be of interest to determine the force, F, that the water puts on the vane. Such problems

frequently occur in turbines where a stream of fluid 1water or steam, for example2 strikes a series

of blades that move past the nozzle. To analyze such problems it is advantageous to use a moving

control volume. We will obtain the Reynolds transport theorem for such control volumes.

We consider a control volume that moves with a constant velocity as is shown in Fig. 4.21.

The shape, size, and orientation of the control volume do not change with time. The control volume

merely translates with a constant velocity, as shown. In general, the velocity of the control

volume and the fluid are not the same, so that there is a flow of fluid through the moving control

volume just as in the stationary control volume cases discussed in Section 4.4.2. The main difference

between the fixed and the moving control volume cases is that it is the relative velocity, W, that

carries fluid across the moving control surface, whereas it is the absolute velocity, V, that carries

the fluid across the fixed control surface. The relative velocity is the fluid velocity relative to the

moving control volume—the fluid velocity seen by an observer riding along on the control volume.

The absolute velocity is the fluid velocity as seen by a stationary observer in a fixed coordinate

system.

The difference between the absolute and relative velocities is the velocity of the control

volume, or

(4.22)

Since the velocity is a vector, we must use vector addition as is shown in Fig. 4.22 to obtain the

relative velocity if we know the absolute velocity and the velocity of the control volume. Thus, if

the water leaves the nozzle in Fig. 4.20 with a velocity of and the vane has a velocity

of 1the same as the control volume2, it appears to an observer riding on the vane that

the water approaches the vane with a velocity of In general, the absoluteVcv � 80î ft�s.W � V �
V0 � 20î ft�s

V1 � 100î ft�s

V � W � Vcv

Vcv � V � W,

Vcv,

V0.V1
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F I G U R E  4.20 Example of a moving control volume.
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velocity, V, and the control volume velocity, will not be in the same direction so that the

relative and absolute velocities will have different directions 1see Fig. 4.222.
The Reynolds transport theorem for a moving, nondeforming control volume can be derived

in the same manner that it was obtained for a fixed control volume. As is indicated in Fig. 4.23, the

only difference that needs be considered is the fact that relative to the moving control volume the

fluid velocity observed is the relative velocity, not the absolute velocity. An observer fixed to

the moving control volume may or may not even know that he or she is moving relative to some

fixed coordinate system. If we follow the derivation that led to Eq. 4.19 1the Reynolds transport

theorem for a fixed control volume2, we note that the corresponding result for a moving control

volume can be obtained by simply replacing the absolute velocity, V, in that equation by the relative

velocity, W. Thus, the Reynolds transport theorem for a control volume moving with constant

velocity is given by

(4.23)

where the relative velocity is given by Eq. 4.22.

4.4.7 Selection of a Control Volume

Any volume in space can be considered as a control volume. It may be of finite size or it may be

infinitesimal in size, depending on the type of analysis to be carried out. In most of our cases,

the control volume will be a fixed, nondeforming volume. In some situations we will consider

control volumes that move with constant velocity. In either case it is important that considerable

thought go into the selection of the specific control volume to be used.

The selection of an appropriate control volume in fluid mechanics is very similar to the selection

of an appropriate free-body diagram in dynamics or statics. In dynamics, we select the body in which

we are interested, represent the object in a free-body diagram, and then apply the appropriate governing

laws to that body. The ease of solving a given dynamics problem is often very dependent on the

specific object that we select for use in our free-body diagram. Similarly, the ease of solving a given

fluid mechanics problem is often very dependent on the choice of the control volume used. Only by

practice can we develop skill at selecting the “best” control volume. None are “wrong,” but some are

“much better” than others.

Solution of a typical problem will involve determining parameters such as velocity, pressure,

and force at some point in the flow field. It is usually best to ensure that this point is located on

the control surface, not “buried” within the control volume. The unknown will then appear in the

convective term 1the surface integral2 of the Reynolds transport theorem. If possible, the control
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surface should be normal to the fluid velocity so that the angle as shown by

the figure in the margin2 in the flux terms of Eq. 4.19 will be 0 or This will usually simplify

the solution process.

Figure 4.24 illustrates three possible control volumes associated with flow through a pipe.

If the problem is to determine the pressure at point 112, the selection of the control volume 1a2 is

better than that of 1b2 because point 112 lies on the control surface. Similarly, control volume 1a2 is
better than 1c2 because the flow is normal to the inlet and exit portions of the control volume. None

of these control volumes are wrong—1a2 will be easier to use. Proper control volume selection will

become much clearer in Chapter 5 where the Reynolds transport theorem is used to transform the

governing equations from the system formulation into the control volume formulation, and

numerous examples using control volume ideas are discussed.

180°.

1V � n̂ � V cos uu
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This chapter considered several fundamental concepts of fluid kinematics. That is, various aspects

of fluid motion are discussed without regard to the forces needed to produce this motion. The

concepts of a field representation of a flow and the Eulerian and Lagrangian approaches to

describing a flow are introduced, as are the concepts of velocity and acceleration fields.

The properties of one-, two-, or three-dimensional flows and steady or unsteady flows are

introduced along with the concepts of streamlines, streaklines, and pathlines. Streamlines, which

are lines tangent to the velocity field, are identical to streaklines and pathlines if the flow is steady.

For unsteady flows, they need not be identical.

As a fluid particle moves about, its properties (i.e., velocity, density, temperature) may

change. The rate of change of these properties can be obtained by using the material derivative,

which involves both unsteady effects (time rate of change at a fixed location) and convective

effects (time rate of change due to the motion of the particle from one location to another).

The concepts of a control volume and a system are introduced, and the Reynolds transport

theorem is developed. By using these ideas, the analysis of flows can be carried out using a control

volume (a volume, usually fixed, through which the fluid flows), whereas the governing principles

are stated in terms of a system (a flowing portion of fluid).

The following checklist provides a study guide for this chapter. When your study of the entire

chapter and end-of-chapter exercises has been completed you should be able to

write out meaning of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type in

the text.

understand the concept of the field representation of a flow and the difference between

Eulerian and Lagrangian methods of describing a flow.

explain the differences among streamlines, streaklines, and pathlines.

calculate and plot streamlines for flows with given velocity fields.

use the concept of the material derivative, with its unsteady and convective effects, to deter-

mine time rate of change of a fluid property.

determine the acceleration field for a flow with a given velocity field.

understand the properties of and differences between a system and a control volume.

interpret, physically and mathematically, the concepts involved in the Reynolds transport

theorem.

4.5 Chapter Summary and Study Guide

field representation 
velocity field 
Eulerian method 
Lagrangian method 
one-, two-, and three-

dimensional flow 
steady and unsteady

flow 
streamline 
streakline 
pathline 
acceleration field 
material derivative 
local acceleration 
convective acceleration 
system 
control volume 
Reynolds transport 

theorem

V

Control surface

(1)

(a)

V
(1)

(b)

V
(1)

(c)

F I G U R E  4.24 Various control volumes for flow through
a pipe.
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Some of the important equations in this chapter are:

Equation for streamlines (4.1)

Acceleration (4.3)

Material derivative (4.6)

Streamwise and normal components 

of acceleration (4.7)

Reynolds transport theorem (restricted form) (4.15)

Reynolds transport theorem (general form) (4.19)

Relative and absolute velocities (4.22)
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Problems 179

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Problems

Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an (*) are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a (†) are “open-ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 4.1 The Velocity Field

4.1 Obtain a photograph/image that shows a flowing fluid. Print
this photo and write a brief paragraph that describes the flow in
terms of an Eulerian description; a Lagrangian description.

4.2 Obtain a photograph/image of a situation in which the
unsteadiness of the flow is important. Print this photo and write a
brief paragraph that describes the situation involved.

4.3 Obtain a photograph/image of a situation in which a fluid is
flowing. Print this photo and draw in some lines to represent how
you think some streamlines may look. Write a brief paragraph to
describe the acceleration of a fluid particle as it flows along one
of these streamlines.

4.4 The x- and y-components of a velocity field are given by
x and y, where V0 and are constants.

Make a sketch of the velocity field in the first quadrant
by drawing arrows representing the fluid velocity

at representative locations.

4.5 A two-dimensional velocity field is given by and
Determine the equation of the streamline that passes

through the origin. On a graph, plot this streamline.

4.6 The velocity field of a flow is given by 
where x, y, and z are in feet. De-

termine the fluid speed at the origin and on the x
axis 

4.7 A flow can be visualized by plotting the velocity field as
velocity vectors at representative locations in the flow as shown in
Video V4.2 and Fig. E4.1. Consider the velocity field given in 

1y � z � 02.
1x � y � z � 02

15z � 32 î � 1x � 42 ĵ � 4yk̂ ft�s,
V �

v � 1.
u � 1 � y

1x 7 0, y 7 02

�v � �1V0 ��2u � �1V0 ��2
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polar coordinates by and This flow approx-
imates a fluid swirling into a sink as shown in Fig. P4.7. Plot the ve-
locity field at locations given by 2, and 3 with 30, 60,
and 90°.

4.8 The velocity field of a flow is given by 
where x and y are in

feet. Determine the fluid speed at points along the x axis; along the
y axis. What is the angle between the velocity vector and the x axis
at points 15, 52, and 10, 52?

4.9 The components of a velocity field are given by 
and . Determine the location of any stagna-

tion points in the flow field.

4.10 The x and y components of velocity for a two-dimensional
flow are and where y is in feet. Determine
the equation for the streamlines and sketch representative stream-
lines in the upper half plane.

4.11 Show that the streamlines for a flow whose velocity compo-
nents are and where c is a constant, are
given by the equation At which point
1points2 is the flow parallel to the y axis? At which point 1points2 is
the fluid stationary?

4.12 A velocity field is given by ,
where u and are in and x and y are in feet. Plot the streamline
that passes through and . Compare this streamline with
the streakline through the origin.

4.13 From time t � 0 to t � 5 hr radioactive steam is released from
a nuclear power plant accident located at x � �1 mile and y �
3 miles. The following wind conditions are expected:
mph for hr, mph for hr, and

mph for hr. Draw to scale the expected streakline of
the steam for t � 3, 10, and 15 hr. 

*4.14 Consider a ball thrown with initial speed at an angle 
of as shown in Fig. P4.14a. As discussed in beginning physics, if
friction is negligible the path that the ball takes is given by

That is, where and are constants. The path
is a parabola. The pathline for a stream of water leaving a small
nozzle is shown in Fig. P4.14b and Video V4.12. The coordinates
for this water stream are given in the following table. (a) Use the
given data to determine appropriate values for and in the above
equation and, thus, show that these water particles also follow a
parabolic pathline. (b) Use your values of and to determine
the speed of the water, leaving the nozzle.V0,

c2c1

c2c1

c2c1y � c1x � c2x
2,

y � 1tan u2x � 3g� 12 V0 
2

    cos2 u2 4x 2

u
V0

t 7 10V � 5 î
3 6 t 6 10V � 15 î � 8 ĵ0 6 t 6 3

V � 10 î � 5 ĵ

y � 0x � 0
ft�sv

V � x î � x1x � 12 1y � 12 ĵ

x 2y � y 3�3 � constant.
v � �2cxy,u � c1x2 � y22

v � 3 ft�s,u � 6y ft�s

1V � 02
w � 0v � xy 3 � 16,

u � x � y,

1x, y2 � 15, 02,

20y� 1x 2 � y 221�2
 î � 20x� 1x 2 � y 221�  2  ĵ ft�s,

V �

u � 0,r � 1,

vu � 10�r.vr � �10�r,

4.15 The x and y components of a velocity field are given by
and Determine the equation for the streamlines

of this flow and compare it with those in Example 4.2. Is the flow
in this problem the same as that in Example 4.2? Explain.

4.16 A flow in the x–y plane is given by the following velocity
field: and for ; and

for . Dye is released at the origin
for . (a) Draw the pathlines at for two

particles that were released from the origin—one released at 
and the other released at . (b) On the same graph draw the
streamlines at times and .

4.17 In addition to the customary horizontal velocity components of
the air in the atmosphere 1the “wind”2, there often are vertical air cur-
rents 1thermals2 caused by buoyant effects due to uneven heating of the
air as indicated in Fig. P4.17. Assume that the velocity field in a certain
region is approximated by for 
and for Plot the shape of the streamline that
passes through the origin for values of 1, and 2.

*4.18 Repeat Problem 4.17 using the same information except
that for rather than Use values of

0.1, 0.2, 0.4, 0.6, 0.8, and 1.0.

4.19 As shown in Video V4.6 and Fig. P4.19, a flying airplane
produces swirling flow near the end of its wings. In certain circum-
stances this flow can be approximated by the velocity field

and where K is a constant
depending on various parameters associated with the airplane (i.e.,
its weight, speed) and x and y are measured from the center of the
swirl. (a) Show that for this flow the velocity is inversely propor-
tional to the distance from the origin. That is,
(b) Show that the streamlines are circles.

V � K� 1x 2 � y 221�2.

v � Kx� 1x 2 � y 22,u � �Ky� 1x 2 � y 22

u0�v0 � 0,
u � u0.0 � y � hu � u0y�h

u0�v0 � 0.5,
y 7 h.u � u0, v � 0

0 6 y 6 h,u � u0, v � v0 11 � y�h2

t � 30 st � 10 s
t � 20 s

t � 0
t � 30 st � 01x � y � 02

20 6 t 6 40 sv � 0 m�s
u � �40 6 t 6 20 sv � 6 m�su � 3

v � �xy2.u � x2y
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4.20 (See Fluids in the News article titled “Follow those parti-
cles,” Section 4.1.) Two photographs of four particles in a flow past
a sphere are superposed as shown in Fig. P4.20. The time interval
between the photos is s. The locations of the particles,
as determined from the photos, are shown in the table. (a) Deter-
mine the fluid velocity for these particles. (b) Plot a graph to com-
pare the results of part (a) with the theoretical velocity which is
given by where a is the sphere radius and is
the fluid speed far from the sphere.

4.21 (See Fluids in the News article titled “Winds on Earth and
Mars,” Section 4.1.4.) A 10-ft-diameter dust devil that rotates one
revolution per second travels across the Martian surface (in the x-
direction) with a speed of 5 ft/s. Plot the pathline etched on the sur-
face by a fluid particle 10 ft from the center of the dust devil for
time . The particle position is given by the sum of that
for a stationary swirl cos sin and that
for a uniform velocity where x and y are in
feet and t is in seconds.

Section 4.2 The Acceleration Field

4.22 The x- and y-components of a velocity field are given by
and where V0 and are constants. Plot

the streamlines for this flow and determine the acceleration field.

4.23 A velocity field is given by and where c is
a constant. Determine the x and y components of the acceleration.
At what point 1points2 in the flow field is the acceleration zero?

4.24 Determine the acceleration field for a three-dimensional flow
with velocity components , , and .

†4.25 Estimate the deceleration of a water particle in a raindrop as
it strikes the sidewalk. List all assumptions and show all calcula-
tions.

4.26 The velocity of air in the diverging pipe shown in Fig. P4.26
is given by and where t is in seconds. (a)
Determine the local acceleration at points 112 and 122. (b) Is the av-
erage convective acceleration between these two points negative,
zero, or positive? Explain.

V2 � 2t ft�s,V1 � 4t ft�s

w � x � yv � 4x 2y 2u � �x

v � cy2,u � cx2

�v � �1V0 ��2  y,u � 1V0 ��2  x

1x � 5t, y � constant2,
12pt2 412pt2, y � 103x � 10 

0 � t � 3 s

V0V � V0 11 � a3�x 32,

¢t � 0.002

4.27 Water flows in a pipe so that its velocity triples every 20 s. At
it has . That is, ft/s. Deter-

mine the acceleration when , and 20 s.

4.28 When a valve is opened, the velocity of water in a certain
pipe is given by and where u is in
ft�s and t is in seconds. Determine the maximum velocity and max-
imum acceleration of the water.

4.29 The velocity of the water in the pipe shown in Fig. P4.29 is
given by and , where t is in seconds.
Determine the local acceleration at points (1) and (2). Is the average
convective acceleration between these two points negative, zero, or
positive? Explain.

4.30 A shock wave is a very thin layer (thickness � ) in a high-
speed (supersonic) gas flow across which the flow properties
(velocity, density, pressure, etc.) change from state (1) to state
(2) as shown in Fig. P4.30. If V1 � 1800 fps, V2 � 700 fps, and 

� 10�4 in., estimate the average deceleration of the gas as it
flows across the shock wave. How many g’s deceleration does
this represent?

†4.31 Estimate the average acceleration of water as it travels
through the nozzle on your garden hose. List all assumptions and
show all calculations.

4.32 As a valve is opened, water flows through the diffuser shown

in Fig. P4.32 at an increasing flowrate so that the velocity along the

centerline is given by where

c, and are constants. Determine the acceleration as a function

of x and t. If and what value of c 1other than

2 is needed to make the acceleration zero for any x at 

Explain how the acceleration can be zero if the flowrate is increas-

ing with time.

t � 1 s?c � 0

/ � 5 ft,V0 � 10 ft�s
/u0,

11 � x�/2 î,V � uî � V011 � e�ct2

/

/

V2 � 1.0t m�sV1 � 0.50t m�s

w � 0,v � 0,u � 1011 � e�t2,

t � 0, 10
V � u1t2 î � 5 13t�20 2 îu � 5 ft�st � 0
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t = 0
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x, ft
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4.33 A fluid flows along the x axis with a velocity given by
where x is in feet and t in seconds. (a) Plot the speed

for and (b) Plot the speed for and
(c) Determine the local and convective acceleration. (d)

Show that the acceleration of any fluid particle in the flow is zero.
(e) Explain physically how the velocity of a particle in this unsteady
flow remains constant throughout its motion.

4.34 A hydraulic jump is a rather sudden change in depth of a
liquid layer as it flows in an open channel as shown in Fig. P4.34
and Video V10.12. In a relatively short distance 
the liquid depth changes from to with a corresponding change
in velocity from to If and

estimate the average deceleration of the liquid as it
flows across the hydraulic jump. How many g’s deceleration does
this represent?

4.35 A fluid particle flowing along a stagnation streamline, as
shown in Video V4.9 and Fig. P4.35, slows down as it approaches
the stagnation point. Measurements of the dye flow in the video
indicate that the location of a particle starting on the stagnation
streamline a distance upstream of the stagnation point
at is given approximately by where t is in
seconds and s is in feet. (a) Determine the speed of a fluid
particle as a function of time, as it flows along the
streamline. (b) Determine the speed of the fluid as a function of
position along the streamline, (c) Determine the fluid
acceleration along the streamline as a function of position,

4.36 A nozzle is designed to accelerate the fluid from to 
in a linear fashion. That is, where a and b areV � ax � b,

V2V1

as � as1s2.

V � V1s2.

Vparticle1t2,

s � 0.6e�0.5t,t � 0
s � 0.6 ft

/ � 0.02 ft,
1.20 ft�s, V2 � 0.30 ft�s,V1 �V2.V1

z2,z1

1thickness � /2

2 � t � 4 s.
x � 7 ftt � 3 s.0 � x � 10 ft

V � 1x�t2 î,

constants. If the flow is constant with at and
at determine the local acceleration, the

convective acceleration, and the acceleration of the fluid at points
112 and 122.

4.37 Repeat Problem 4.36 with the assumption that the flow is not
steady, but at the time when and it is
known that and 

4.38 An incompressible fluid flows past a turbine blade as shown
in Fig. P4.38a and Video V4.9. Far upstream and downstream of
the blade the velocity is . Measurements show that the velocity of
the fluid along streamline near the blade is as indicated in
Fig. P4.38b. Sketch the streamwise component of acceleration,
as a function of distance, s, along the streamline. Discuss the im-
portant characteristics of your result.

*4.39 Air flows steadily through a variable area pipe with a veloc-
ity of where the approximate measured values of

are given in the table. Plot the acceleration as a function of x
for Plot the acceleration if the flowrate is increased
by a factor of N 1i.e., the values of u are increased by a factor of N 2
for 4, 10.

*4.40 As is indicated in Fig. P4.40, the speed of exhaust in a car’s
exhaust pipe varies in time and distance because of the
periodic nature of the engine’s operation and the damping
effect with distance from the engine. Assume that the speed is
given by where 

and Calculate and plot the fluid
acceleration at 1, 2, 3, 4, and 5 ft for 0 � t � p�25 s.x � 0,

v � 50 rad�s.b � 0.2 ft�1,
V0 � 8 fps, a � 0.05,V � V0 31 � ae�bx sin1vt2 4 ,

N � 2,

0 � x � 12 in.
u1x2

V � u1x2 î ft�s,

as,
A–F

V0

0V2�0t � 60 m�s2.0V1�0t � 20 m�s2
V2 � 25 m�s,V1 � 10 m�s

x2 � 1 m,V2 � 25 m�s
x1 � 0V1 � 10 m�s
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xu = V0(1 – e–ct)
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x (in.) u (ft�s) x (in.) u (ft�s)

0 10.0 7 20.1
1 10.2 8 17.4
2 13.0 9 13.5
3 20.1 10 11.9
4 28.3 11 10.3
5 28.4 12 10.0
6 25.8 13 10.0
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4.41 Water flows over the crest of a dam with speed V as shown in
Fig. P4.41. Determine the speed if the magnitude of the normal ac-
celeration at point (1) is to equal the acceleration of gravity, g.

4.42 Assume that the streamlines for the wingtip vortices from
an airplane (see Fig. P4.19 and Video V4.6) can be approximated
by circles of radius r and that the speed is where K is a
constant. Determine the streamline acceleration, and the normal
acceleration, for this flow.

4.43 A fluid flows past a sphere with an upstream velocity of
as shown in Fig. P4.43. From a more advanced theory

it is found that the speed of the fluid along the front part of the sphere
is Determine the streamwise and normal components
of acceleration at point A if the radius of the sphere is 

*4.44 For flow past a sphere as discussed in Problem 4.43, plot a graph
of the streamwise acceleration, the normal acceleration, and the
magnitude of the acceleration as a function of for with

and 1.0, and 10 ft. Repeat for At
what point is the acceleration a maximum; a minimum?

*4.45 The velocity components for steady flow through the nozzle
shown in Fig. P4.45 are and v � V0 31 � 1y�/2 4 ,u � �V0 x�/

V0 � 5 ft�s.a � 0.1,V0 � 50 ft�s
0 � u � 90°u

an,as,

a � 0.20 m.
V � 3

2V0 sin u.

V0 � 40 m�s

an,
as,

V � K�r,

where V0 and are constants. Determine the ratio of the magnitude
of the acceleration at point (1) to that at point (2).

*4.46 A fluid flows past a circular cylinder of radius a with an
upstream speed of as shown in Fig. P4.46. A more advanced the-
ory indicates that if viscous effects are negligible, the velocity of the
fluid along the surface of the cylinder is given by 
Determine the streamline and normal components of acceleration
on the surface of the cylinder as a function of a, and and plot
graphs of and for with and

0.10, 1.0, and 10.0 m.

4.47 Determine the x and y components of acceleration for the
flow given in Problem 4.11. If is the particle at point

and accelerating or decelerating? Explain.
Repeat if 

4.48 When flood gates in a channel are opened, water flows
along the channel downstream of the gates with an increasing
speed given by , for , where t
is in seconds. For the speed is a constant .
Consider a location in the curved channel where the radius of
curvature of the streamlines is 50 ft. For determine (a)
the component of acceleration along the streamline, (b) the
component of acceleration normal to the streamline, and (c)
the net acceleration (magnitude and direction). Repeat for

.

4.49 Water flows steadily through the funnel shown in
Fig. P4.49. Throughout most of the funnel the flow is approxi-
mately radial 1along rays from O2 with a velocity of 
where r is the radial coordinate and c is a constant. If the veloc-
ity is 0.4 m�s when determine the acceleration at
points A and B.

4.50 Water flows though the slit at the bottom of a two-
dimensional water trough as shown in Fig. P4.50. Throughout most
of the trough the flow is approximately radial 1along rays from O2
with a velocity of where r is the radial coordinate and c is
a constant. If the velocity is 0.04 m�s when determine
the acceleration at points A and B.

r � 0.1 m,
V � c�r,

r � 0.1 m,

V � c�r 2,

t � 30 s

t � 10 s

V � 12 ft�st 7 20 s
0 � t � 20 sV � 411 � 0.1t2 ft�s

x0 6 0.
y � 0x � x0 7 0

c 7 0,

a � 0.01,
V0 � 10 m�s0 � u � 90°anas

uV0,

V � 2V0 sin u.

V0

/
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4.51 Air flows from a pipe into the region between two parallel cir-
cular disks as shown in Fig. P4.51. The fluid velocity in the gap be-
tween the disks is closely approximated by where R is
the radius of the disk, r is the radial coordinate, and is the fluid
velocity at the edge of the disk. Determine the acceleration for

2, or 3 ft if and 

4.52 Air flows into a pipe from the region between a circular disk
and a cone as shown in Fig. P4.52. The fluid velocity in the gap be-
tween the disk and the cone is closely approximated by 
where R is the radius of the disk, r is the radial coordinate, and is
the fluid velocity at the edge of the disk. Determine the acceleration
for and 2 ft if and 

Section 4.2.1 The Material Derivative

4.53 Air flows steadily through a long pipe with a speed of
where x is the distance along the pipe in feet, and u is

in ft/s. Due to heat transfer into the pipe, the air temperature, T, within
the pipe is F. Determine the rate of change of the
temperature of air particles as they flow past the section at x � 5 ft.

4.54 A company produces a perishable product in a factory
located at x � 0 and sells the product along the distribution route

. The selling price of the product, P, is a function of the
length of time after it was produced, t, and the location at which it
is sold, x. That is, P � P(x, t). At a given location the price of the
product decreases in time (it is perishable) according to 
dollars/hr. In addition, because of shipping costs the price increases
with distance from the factory according to dollars/mi.
If the manufacturer wishes to sell the product for the same 100-dollar

0P�0x � 0.2

0P�0t � �8

x 7 0

T � 300 � 10x °

u � 50 � 0.5x,

R � 2 ft.V0 � 5 ft�sr � 0.5

V0

V � V0 R2�r2,

R � 3 ft.V0 � 5 ft�sr � 1,

V0

V � V0 R�r,

price anywhere along the distribution route, determine how fast he
must travel along the route.

4.55 Assume the temperature of the exhaust in an exhaust pipe can
be approximated by T � T0(1 � ae�bx) [1 � c cos( t)], where T0 �
100 C, a � 3, b � 0.03 m�1, c � 0.05, and � 100 rad/s. If the
exhaust speed is a constant 3 m/s, determine the time rate of change of
temperature of the fluid particles at x � 0 and x � 4 m when t � 0.

4.56 A bicyclist leaves from her home at 9 A.M. and rides to a
beach 40 mi away. Because of a breeze off the ocean, the tempera-
ture at the beach remains throughout the day. At the cyclist’s
home the temperature increases linearly with time, going from

at 9 A.M. to by 1 P.M. The temperature is assumed to
vary linearly as a function of position between the cyclist’s home
and the beach. Determine the rate of change of temperature ob-
served by the cyclist for the following conditions: (a) as she pedals
10 mph through a town 10 mi from her home at 10 A.M.; (b) as she
eats lunch at a rest stop 30 mi from her home at noon; (c) as she ar-
rives enthusiastically at the beach at 1 P.M., pedaling 20 mph.

4.57 The temperature distribution in a fluid is given by
where x and y are the horizontal and vertical coor-

dinates in meters and T is in degrees centigrade. Determine the
time rate of change of temperature of a fluid particle traveling (a)
horizontally with or (b) vertically with 

Section 4.4 The Reynolds Transport Theorem

4.58 Obtain a photograph/image of a situation in which a fluid is
flowing. Print this photo and draw a control volume through which
the fluid flows. Write a brief paragraph that describes how the fluid
flows into and out of this control volume.

4.59 The wind blows through the front door of a house with a speed
of 2 m/s and exits with a speed of 1 m/s through two windows on
the back of the house. Consider the system of interest for this flow
to be the air within the house at time t � 0. Draw a simple sketch
of the house and show an appropriate control volume for this flow.
On the sketch, show the position of the system at time t � 1 s.

4.60 Water flows through a duct of square cross section as shown
in Fig. P4.60 with a constant, uniform velocity of 
Consider fluid particles that lie along line at time Deter-
mine the position of these particles, denoted by line when

Use the volume of fluid in the region between lines 
A–B and to determine the flowrate in the duct. Repeat the
problem for fluid particles originally along line C–D; along line 
E–F. Compare your three answers.

4.61 Repeat Problem 4.60 if the velocity profile is linear from 0 to
20 m�s across the duct as shown in Fig. P4.61.

A¿�B¿
t � 0.20 s.

A¿�B¿,
t � 0.A–B
V � 20 m�s.

v � 20 m�s.
u � 0,u � 20 m�s, v � 0

T � 10x � 5y,

80 °F60 °F

60 °F

v°
v
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4.62 In the region just downstream of a sluice gate, the water
may develop a reverse flow region as is indicated in Fig. P4.62
and Video V10.9. The velocity profile is assumed to consist of
two uniform regions, one with velocity and the other
with Determine the net flowrate of water across the
portion of the control surface at section 122 if the channel is 20 ft
wide.

4.63 At time the valve on an initially empty 1perfect vac-
uum, 2 tank is opened and air rushes in. If the tank has a vol-
ume of and the density of air within the tank increases as

where b is a constant, determine the time rate of
change of mass within the tank.

†4.64 From calculus, one obtains the following formula 1Leibnitz
rule2 for the time derivative of an integral that contains time in both
the integrand and the limits of the integration:

Discuss how this formula is related to the time derivative of the
total amount of a property in a system and to the Reynolds transport
theorem.

4.65 Water enters the bend of a river with the uniform velocity
profile shown in Fig. P4.65. At the end of the bend there is a re-
gion of separation or reverse flow. The fixed control volume ABCD
coincides with the system at time . Make a sketch to indicate
(a) the system at time and (b) the fluid that has entered and
exited the control volume in that time period.

4.66 A layer of oil flows down a vertical plate as shown in
Fig. P4.66 with a velocity of where 
and h are constants. (a) Show that the fluid sticks to the plate and
that the shear stress at the edge of the layer is zero. (b) De-
termine the flowrate across surface AB. Assume the width of the
plate is b. (Note: The velocity profile for laminar flow in a pipe has
a similar shape. See Video V6.13.)

1x � h2

V0V � 1V0 �h22 12hx � x22 ĵ

t � 5 s
t � 0

d

dt �
x21t2

x11t2
 f 1x, t2dx � �

x2

x1

 
0f

0t
 dx � f 1x2, t2 

dx2

dt
 � f 1x1, t2 

dx1

dt

r � r�11 � e�bt2,
V�0

r � 0
t � 0

Vb � 3 fps.
Va � 10 fps

4.67 Water flows in the branching pipe shown in Fig. P4.67 with
uniform velocity at each inlet and outlet. The fixed control volume
indicated coincides with the system at time Make a sketch
to indicate (a) the boundary of the system at time (b) the
fluid that left the control volume during that 0.1-s interval, and (c)
the fluid that entered the control volume during that time interval.

4.68 Two plates are pulled in opposite directions with speeds of
1.0 ft/s as shown in Fig. P4.68. The oil between the plates moves
with a velocity given by ft/s, where y is in feet. The fixed
control volume ABCD coincides with the system at time t � 0. Make
a sketch to indicate (a) the system at time t � 0.2 s and (b) the fluid
that has entered and exited the control volume in that time period.

4.69 Water is squirted from a syringe with a speed of by
pushing in the plunger with a speed of as shown in
Fig. P4.69. The surface of the deforming control volume consists of
the sides and end of the cylinder and the end of the plunger. The sys-
tem consists of the water in the syringe at when the plunger
is at section 112 as shown. Make a sketch to indicate the control sur-
face and the system when t � 0.5 s.

t � 0

Vp � 0.03 m�s
V � 5 m�s

V � 10 y î

t � 20.1 s,
t � 20 s.
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Sluice gate
Control surface

Vb = 3 ft/s

Va = 10 ft/s

1.8 ft

1.2 ft

(1) (2)

F I G U R E  P4.62

10 m

1.2 m

0.5 m/s

Control volume

V = 1 m/s

A

B

C

D

F I G U R E  P4.65

x

y

A

h

B

v(x)

Plate

Oil

F I G U R E  P4.66

0.8 m

0.6 m

Control volume

0.5 m (1)

(3)
(2)

V3 = 2.5 m/s

V1 = 2 m/s

V2 = 1 m/s

F I G U R E  P4.67

F I G U R E  P4.68

x

1 ft/s

0.2 ft 0.2 ft
CB

A D

0.1 ft

0.1 ft

Control
volume

1 ft/s

u(y) = 10y ft/s

y
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4.70 Water enters a 5-ft-wide, 1-ft-deep channel as shown in
Fig. P4.70. Across the inlet the water velocity is in the cen-
ter portion of the channel and in the remainder of it. Farther
downstream the water flows at a uniform velocity across
the entire channel. The fixed control volume ABCD coincides
with the system at time Make a sketch to indicate (a) the
system at time and (b) the fluid that has entered and ex-
ited the control volume in that time period.

4.71 Water flows through the 2-m-wide rectangular channel
shown in Fig. P4.71 with a uniform velocity of 3 m�s. (a) Directly
integrate Eq. 4.16 with to determine the mass flowrate 1kg�s2
across section CD of the control volume. (b) Repeat part 1a2 with

where is the density. Explain the physical interpretation
of the answer to part (b).

rb � 1�r,

b � 1

t � 0.5 s
t � 0.

2 ft�s
1 ft�s

6 ft�s

4.72 The wind blows across a field with an approximate velocity
profile as shown in Fig. P4.72. Use Eq. 4.16 with the parameter b
equal to the velocity to determine the momentum flowrate across the
vertical surface which is of unit depth into the paper.

■ Life Long Learning Problems

4.73 Even for the simplest flows it is often not be easy to visually
represent various flow field quantities such as velocity, pressure, or
temperature. For more complex flows, such as those involving three-
dimensional or unsteady effects, it is extremely difficult to “show the
data.” However, with the use of computers and appropriate software,
novel methods are being devised to more effectively illustrate the
structure of a given flow. Obtain information about methods used to
present complex flow data. Summarize your findings in a brief report.

4.74 For centuries people have obtained qualitative and quantita-
tive information about various flow fields by observing the motion
of objects or particles in a flow. For example, the speed of the cur-
rent in a river can be approximated by timing how long it takes a
stick to travel a certain distance. The swirling motion of a tornado
can be observed by following debris moving within the tornado
funnel. Recently various high-tech methods using lasers and
minute particles seeded within the flow have been developed to
measure velocity fields. Such techniques include the laser doppler
anemometer (LDA), the particle image velocimeter (PIV), and oth-
ers. Obtain information about new laser-based techniques for mea-
suring velocity fields. Summarize your findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.

A–B,
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Vp = 0.03 m/s V = 5 m/s

Plunger

(1)
0.08 m

Cylinder

F I G U R E  P4.69

1 ft/s

2 ft/s

1 ft/s

6 ft/s

Control surface

A

D

B

C
2 ft

2 ft

1 ft 5 ft

F I G U R E  P4.70

θ
0.5 m

Control surface

A D

BV = 3 m/s C

F I G U R E  P4.71

20 ft

B

A

15 ft/s

10 ft

F I G U R E  P4.72
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187

CHAPTER OPENING PHOTO: Wind turbine farms (this is the Middelgrunden Offshore Wind Farm in Denmark)

are becoming more common. Finite control volume analysis can be used to estimate the amount of energy

transferred between the moving air and each turbine rotor. (Photograph courtesy of Siemens Wind Power.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ select an appropriate finite control volume to solve a fluid mechanics problem.

■ apply conservation of mass and energy and Newton’s second law of motion to

the contents of a finite control volume to get important answers.

■ know how velocity changes and energy transfers in fluid flows are related to

forces and torques.

■ understand why designing for minimum loss of energy in fluid flows is so

important.

To solve many practical problems in fluid mechanics, questions about the behavior of the contents

of a finite region in space 1a finite control volume2 are answered. For example, we may be asked

to estimate the maximum anchoring force required to hold a turbojet engine stationary during a

test. Or we may be called on to design a propeller to move a boat both forward and backward. Or

we may need to determine how much power it would take to move natural gas from one location

to another many miles away.

The bases of finite control volume analysis are some fundamental laws of physics, namely,

conservation of mass, Newton’s second law of motion, and the first and second laws of thermody-

namics. While some simplifying approximations are made for practicality, the engineering answers

possible with the estimates of this powerful analysis method have proven valuable in numerous in-

stances.

Conservation of mass is the key to tracking flowing fluid. How much enters and leaves a

control volume can be ascertained.

55Finite Control
Volume Analysis

Finite Control
Volume Analysis

Many fluid me-
chanics problems
can be solved by us-
ing control volume
analysis.
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Newton’s second law of motion leads to the conclusion that forces can result from or cause

changes in a flowing fluid’s velocity magnitude and/or direction. Moment of force 1torque2 can re-

sult from or cause changes in a flowing fluid’s moment of velocity. These forces and torques can

be associated with work and power transfer.

The first law of thermodynamics is a statement of conservation of energy. The second law

of thermodynamics identifies the loss of energy associated with every actual process. The me-

chanical energy equation based on these two laws can be used to analyze a large variety of steady,

incompressible flows in terms of changes in pressure, elevation, speed, and of shaft work and loss.

Good judgment is required in defining the finite region in space, the control volume, used

in solving a problem. What exactly to leave out of and what to leave in the control volume are im-

portant considerations. The formulas resulting from applying the fundamental laws to the contents

of the control volume are easy to interpret physically and are not difficult to derive and use.

Because a finite region of space, a control volume, contains many fluid particles and even

more molecules that make up each particle, the fluid properties and characteristics are often aver-

age values. In Chapter 6 an analysis of fluid flow based on what is happening to the contents of

an infinitesimally small region of space or control volume through which numerous molecules

simultaneously flow (what we might call a point in space) is considered.  

188 Chapter 5 ■ Finite Control Volume Analysis

5.1.1 Derivation of the Continuity Equation

A system is defined as a collection of unchanging contents, so the conservation of mass principle

for a system is simply stated as

time rate of change of the system mass

or

(5.1)

where the system mass, is more generally expressed as

(5.2)

and the integration is over the volume of the system. In words, Eq. 5.2 states that the system mass

is equal to the sum of all the density-volume element products for the contents of the system.

For a system and a fixed, nondeforming control volume that are coincident at an instant of

time, as illustrated in Fig. 5.1, the Reynolds transport theorem 1Eq. 4.192 with and 

allows us to state that

(5.3)
D

Dt
 �

sys

 r dV� �
0
0t

 �
cv

 r dV� � �
cs

 rV � n̂ dA

b � 1B � mass

Msys � �
sys

 r dV�

Msys,

DMsys

Dt
� 0

� 0

5.1 Conservation of Mass—The Continuity Equation

The amount of
mass in a system is
constant.

System Control Volume

(a) (b) (c)

F I G U R E  5.1 System and control volume at three different
instances of time. (a) System and control volume at time . (b) System and
control volume at time t, coincident condition. (c) System and control volume at
time .t � Dt

t � Dt
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or

In Eq. 5.3, we express the time rate of change of the system mass as the sum of two control vol-

ume quantities, the time rate of change of the mass of the contents of the control volume,

and the net rate of mass flow through the control surface,

When a flow is steady, all field properties 1i.e., properties at any specified point2 including

density remain constant with time and the time rate of change of the mass of the contents of the

control volume is zero. That is,

The integrand, in the mass flowrate integral represents the product of the compo-

nent of velocity, V, perpendicular to the small portion of control surface and the differential area,

dA. Thus, is the volume flowrate through dA and is the mass flowrate through

dA. Furthermore, as shown in the sketch in the margin, the sign of the dot product is 

for flow out of the control volume and for flow into the control volume since is considered

positive when it points out of the control volume. When all of the differential quantities,

are summed over the entire control surface, as indicated by the integral

the result is the net mass flowrate through the control surface, or

(5.4)

where is the mass flowrate If the integral in Eq. 5.4 is positive, the net flow

is out of the control volume; if the integral is negative, the net flow is into the control volume.

The control volume expression for conservation of mass, which is commonly called the con-
tinuity equation, for a fixed, nondeforming control volume is obtained by combining Eqs. 5.1, 5.2,

and 5.3 to obtain

(5.5)

In words, Eq. 5.5 states that to conserve mass the time rate of change of the mass of the contents

of the control volume plus the net rate of mass flow through the control surface must equal zero.

Actually, the same result could have been obtained more directly by equating the rates of mass flow

into and out of the control volume to the rates of accumulation and depletion of mass within the

control volume 1see Section 3.6.22. It is reassuring, however, to see that the Reynolds transport the-

orem works for this simple-to-understand case. This confidence will serve us well as we develop

control volume expressions for other important principles.

An often-used expression for mass flowrate, through a section of control surface having

area A is

(5.6)m
#

� rQ � rAV

m
#
,

0
0t

 �
cv

 r dV� � �
cs

 rV � n̂ dA � 0

1lbm�s, slug�s or kg�s2.m
#

�
cs

 rV � n̂ dA � a m
#

out � a m
#

in

 �
cs

  rV � n̂ dA

rV � n̂ dA,

n̂“�”

“�”V � n̂
rV � n̂ dAV � n̂ dA

V � n̂ dA,

0
0t

 �
cv

 r dV� � 0

�
cs

 rV � n̂ dA

0
0t

 �
cv

 r dV�

time rate of change

of the mass of the

coincident system

�

time rate of change

of the mass of the

contents of the coin-

cident control volume

�

net rate of flow

of mass through

the control

surface

5.1 Conservation of Mass—The Continuity Equation 189

Control
surface

V�n > 0^

V�n < 0^

n̂

n̂

V

V

The continuity
equation is a state-
ment that mass is
conserved.
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where is the fluid density, Q is the volume flowrate and V is the component of

fluid velocity perpendicular to area A. Since

application of Eq. 5.6 involves the use of representative or average values of fluid density, and

fluid velocity, V. For incompressible flows, is uniformly distributed over area A. For compress-

ible flows, we will normally consider a uniformly distributed fluid density at each section of flow

and allow density changes to occur only from section to section. The appropriate fluid velocity to

use in Eq. 5.6 is the average value of the component of velocity normal to the section area in-

volved. This average value, defined as

(5.7)

is shown in the figure in the margin.

If the velocity is considered uniformly distributed 1one-dimensional flow2 over the section

area, A, then

(5.8)

and the bar notation is not necessary 1as in Example 5.12. When the flow is not uniformly distrib-

uted over the flow cross-sectional area, the bar notation reminds us that an average velocity is be-

ing used 1as in Examples 5.2 and 5.42.

5.1.2 Fixed, Nondeforming Control Volume

In many applications of fluid mechanics, an appropriate control volume to use is fixed and nonde-

forming. Several example problems that involve the continuity equation for fixed, nondeforming

control volumes 1Eq. 5.52 follow.

V �
�

A

 rV � n̂ dA

rA
� V

V �
�

A

 rV � n̂ dA

rA

V,

r

r,

m
#

� �
A

 rV � n̂ dA

1ft3�s or m3�s2,r
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V

V

V5.1 Sink flow

GIVEN Water flows steadily through a nozzle at the end of a

fire hose as illustrated in Fig. E5.1a. According to local regula-

tions, the nozzle exit velocity must be at least 20 m/s as shown in

Fig. E5.1b.

FIND Determine the minimum pumping capacity, Q, required

in m3/s.

F I G U R E  E5.1b

F I G U R E  E5.1a

Conservation of Mass—Steady, Incompressible Flow

Section (1) (pump discharge)

Flow

Control volume

V2 = 20 m/s
D2 = 40 mm 

Section (2) (nozzle exit)

EXAMPLE 5.1

Q

Mass flowrate
equals the product
of density and vol-
ume flowrate.
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5.1 Conservation of Mass—The Continuity Equation 191

The pumping capacity is equal to the volume flowrate at the nozzle

exit. If, for simplicity, the velocity distribution at the nozzle exit plane,

section (2), is considered uniform (one-dimensional), then from Eq. 5

(Ans)

COMMENT By repeating the calculations for various val-

ues of the nozzle exit diameter, D2, the results shown in Fig.

E5.1c are obtained. The flowrate is proportional to the exit area,

which varies as the diameter squared. Hence, if the diameter

were doubled, the flowrate would increase by a factor of four,

provided the exit velocity remained the same.

 � 0.0251 m3/s

 � V2 
�

4
 D2

2 � 120 m/s2   
�

4
  a

40 mm

1000 mm/m
b

2

 Q1 � Q2 � V2A2

F I G U R E  E5.1c

0.15

0.10

0.05

0

Q
1
,  m

3
/s

0 20 40 60 80 100

D2, mm

(40 mm, 0.0251 m3/s)

SOLUTION

The pumping capacity sought is the volume flowrate delivered by

the fire pump to the hose and nozzle. Since we desire knowledge

about the pump discharge flowrate and we have information

about the nozzle exit flowrate, we link these two flowrates with

the control volume designated with the dashed line in Fig. E5.1b.

This control volume contains, at any instant, water that is within

the hose and nozzle from the pump discharge to the nozzle exit

plane.

Equation 5.5 is applied to the contents of this control volume

to give

0 (flow is steady)

(1)

The time rate of change of the mass of the contents of this control

volume is zero because the flow is steady. Because there is only

one inflow [the pump discharge, section (1)] and one outflow [the

nozzle exit, section (2)], Eq. (1) becomes

so that with 

(2)

Because the mass flowrate is equal to the product of fluid density, �,

and volume flowrate, Q (see Eq. 5.6), we obtain from Eq. 2

(3)

Liquid flow at low speeds, as in this example, may be considered

incompressible. Therefore

(4)

and from Eqs. 3 and 4

(5)Q2 � Q1

�2 � �1

�2Q2 � �1Q1

m
#

1 � m
#

2

m
#

� �AV

�2A2V2 � �1A1V1 � 0

0
0t

 �
cv

 
r dV� � �

cs

rV � n̂ dA � 0

GIVEN Air flows steadily between two sections in a long,

straight portion of 4-in. inside diameter pipe as indicated in 

Fig. E5.2. The uniformly distributed temperature and pressure at

each section are given. The average air velocity 1nonuniform ve-

locity distribution2 at section 122 is 

FIND Calculate the average air velocity at section 112.

1000 ft�s.

SOLUTION F I G U R E  E5.2

Conservation of Mass—Steady, Compressible Flow

Control volume

Flow

Section (1)

p1 = 100 psia
T1 = 540 °R

p2 = 18.4 psia
T2 = 453 °R
V2 = 1000 ft/s

D1 = D2 = 4 in.
Section (2)

Pipe

EXAMPLE 5.2

The average fluid velocity at any section is that velocity which

yields the section mass flowrate when multiplied by the section

average fluid density and section area 1Eq. 5.72. We relate the

flows at sections 112 and 122 with the control volume designated

with a dashed line in Fig. E5.2.

Equation 5.5 is applied to the contents of this control volume

to obtain

0 1flow is steady2

The time rate of change of the mass of the contents of this control

volume is zero because the flow is steady. The control surface

0
0t

 �
cv

 r dV� � �
cs

 rV � n̂ dA � 0
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192 Chapter 5 ■ Finite Control Volume Analysis

integral involves mass flowrates at sections 112 and 122 so that from

Eq. 5.4 we get

or

(1)

and from Eqs. 1, 5.6, and 5.7 we obtain

(2)

or since 

(3)

Air at the pressures and temperatures involved in this example

problem behaves like an ideal gas. The ideal gas equation of state

1Eq. 1.82 is

(4)r �
p

RT

V1 �
r2

r1

 V2

A1 � A2

r1 
A1V1 � r2 A2V2

m
#

1 � m
#
2

�
cs

 rV � n̂ dA � m
#

2 � m
#

1 � 0

Thus, combining Eqs. 3 and 4 we obtain

(Ans)

COMMENT We learn from this example that the continuity

equation 1Eq. 5.52 is valid for compressible as well as incom-

pressible flows. Also, nonuniform velocity distributions can be

handled with the average velocity concept. Significant average ve-

locity changes can occur in pipe flow if the fluid is compressible.

�
118.4 psia2 1540 °R2 11000 ft�s2

1100 psia2 1453 °R2
� 219 ft�s

 V1 �
p2T1V2

p1T2

GIVEN The inner workings of a dehumidifier are shown in

Fig. E5.3a. Moist air 1a mixture of dry air and water vapor2 enters

the dehumidifier at the rate of 600 lbm�hr. Liquid water drains out

of the dehumidifier at a rate of 3.0 lbm�hr. A simplified sketch of

the process is provided in Fig. E5.3b. 

FIND Determine the mass flowrate of the dry air and the water

vapor leaving the dehumidifier.

F I G U R E  E5.3a

Conservation of Mass—Two Fluids

Cooling
coil

Fan

F I G U R E  E5.3b

Fan

Motor

Cooling coil

Control volume

Condensate
(water)

Section (1)

Section (3)

Section (2)

m• 4

m• 1 =
600 lbm/hr

m• 3 = 3.0 lbm/hr

m• 2 = ?

m• 5

EXAMPLE 5.3

Not included in the control volume are the fan and its motor,

and the condenser coils and refrigerant. Even though the flow in

the vicinity of the fan blade is unsteady, it is unsteady in a cycli-

cal way. Thus, the flowrates at sections 112, 122, and 132 appear

steady and the time rate of change of the mass of the contents of

SOLUTION

The unknown mass flowrate at section 122 is linked with the known

flowrates at sections 112 and 132with the control volume designated

with a dashed line in Fig. E5.3b. The contents of the control vol-

ume are the air and water vapor mixture and the condensate 1liq-

uid water2 in the dehumidifier at any instant.
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5.1 Conservation of Mass—The Continuity Equation 193

the control volume may be considered equal to zero on a time-

average basis. The application of Eqs. 5.4 and 5.5 to the control

volume contents results in

or

(Ans)

COMMENT Note that the continuity equation 1Eq. 5.52 can

be used when there is more than one stream of fluid flowing

through the control volume.

� 597 lbm�hr

m
#

2 � m
#

1 � m
#

3 � 600 lbm�hr � 3.0 lbm�hr

�
cs

 rV � n̂ dA � �m
#

1 � m
#

2 � m
#

3 � 0

The answer is the same with a control volume which includes

the cooling coils to be within the control volume. The continuity

equation becomes

(1)

where is the mass flowrate of the cooling fluid flowing

into the control volume, and is the flowrate out of the

control volume through the cooling coil. Since the flow

through the coils is steady, it follows that . Hence,

Eq. 1 gives the same answer as obtained with the original con-

trol volume.

m
#

4 � m
#
 5

m
#

5

m
#

4

m
#

2 � m
#

1 � m
#

3 � m
#

4 � m
#

5

GIVEN Incompressible, laminar water flow develops in a

straight pipe having radius R as indicated in Fig. E5.4a. At section

(1), the velocity profile is uniform; the velocity is equal to a con-

stant value U and is parallel to the pipe axis everywhere. At sec-

tion (2), the velocity profile is axisymmetric and parabolic, with

zero velocity at the pipe wall and a maximum value of umax at the

centerline. 

FIND
(a) How are U and umax related? 

(b) How are the average velocity at section (2), , and umax

related?

V2

SOLUTION

F I G U R E  E5.4a

Conservation of Mass—Nonuniform Velocity Profile

Section (1) Control volume

dA2 = 2  r drπ Section (2)

Pipe

R

r

u1 = U

u2 = umax  1 -  r  2

                 
_
R( )[ ]

EXAMPLE 5.4

(a) An appropriate control volume is sketched (dashed lines) in

Fig. E5.4a. The application of Eq. 5.5 to the contents of this con-

trol volume yields

0 (flow is steady)

(1)

At the inlet, section (1), the velocity is uniform with V1 � U so

that

(2)

At the outlet, section (2), the velocity is not uniform. How-

ever, the net flowrate through this section is the sum of flows

through numerous small washer-shaped areas of size dA2 � 2�r dr
as shown by the shaded area element in Fig. E5.4b. On each of

�
112

rV � n̂ dA � �r1A1U

0
0t

 �
cv

 
r dV� � �

cs

rV � n̂ dA � 0

F I G U R E  E5.4b

r

dr
dA2

these infinitesimal areas the fluid velocity is denoted as u2.

Thus, in the limit of infinitesimal area elements, the summation

is replaced by an integration and the outflow through section (2)

is given by

(3)

By combining Eqs. 1, 2, and 3 we get

(4)

Since the flow is considered incompressible, �1 � �2. The para-

bolic velocity relationship for flow through section (2) is used in

Eq. 4 to yield

(5)

Integrating, we get from Eq. 5

2�umax a
r2

2
�

r4

4R2
b

R

0

� �R2U � 0

2�umax�
R

0

c1 � a
r

R
b

2

d r dr � A1U � 0

�2�
R

0

u22�r dr � �1A1U � 0

�
122

rV � n̂ dA � r2�
R

0

u22pr dr
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194 Chapter 5 ■ Finite Control Volume Analysis

or

(Ans)

(b) Since this flow is incompressible, we conclude from Eq.

5.7 that U is the average velocity at all sections of the control vol-

ume. Thus, the average velocity at section (2), , is one-half the

maximum velocity, umax, there or

(Ans)

COMMENT The relationship between the maximum veloc-

ity at section (2) and the average velocity is a function of the

“shape” of the velocity profile. For the parabolic profile as-

sumed in this example, the average velocity, is the actual

“average” of the maximum velocity at section (2),

and the minimum velocity at that section, u2 � 0. However, as

shown in Fig. E5.4c, if the velocity profile is a different shape

(non-parabolic), the average velocity is not necessarily one half

of the maximum velocity.

u2 � umax,

umax/2,

V2 �
umax

2

V2

umax � 2U
V2 = umax/2 

       (parabolic)

V2 = umax/2 

         (non-parabolic)

umax

F I G U R E  E5.4c

GIVEN A bathtub is being filled with water from a faucet. The

rate of flow from the faucet is steady at 9 gal/min. The tub volume

is approximated by a rectangular space as indicated in Fig. E5.5a. 

FIND Estimate the time rate of change of the depth of water in

the tub, ∂h/∂t, in inches per minute at any instant.

SOLUTION

F I G U R E  E5.5a

Conservation of Mass—Unsteady Flow

for air, and

(2)

for water. The volume of water in the control volume is given by

(3)

where Aj is the cross-sectional area of the water flowing from the

faucet into the tub. Combining Eqs. 2 and 3, we obtain

and, thus, since 

0h

0t
�

Qwater

110 ft2 � Aj2

  m
#

� �Q,

�water 110 ft2 � Aj2 
0h

0t
� m

#
water

� 11.5 ft � h2Aj 4

�water
volume

 �water dVwater � �water 3h12 ft2 15 ft2

0
0t

 �water
volume

 �water dVwater � m
#

water

Aj

h
2 ft

5 ft

1.5 ft

Control volume
Vj

EXAMPLE 5.5

We use the fixed, nondeforming control volume outlined with a

dashed line in Fig. E5.5a. This control volume includes in it, at

any instant, the water accumulated in the tub, some of the water

flowing from the faucet into the tub, and some air. Application of

Eqs. 5.4 and 5.5 to these contents of the control volume results in

(1)

Recall that the mass, dm, of fluid contained in a small volume

is . Hence, the two integrals in Eq. 1 represent the

total amount of air and water in the control volume, and the sum

of the first two terms is the time rate of change of mass within

the control volume.

Note that the time rate of change of air mass and water mass

are each not zero. Recognizing, however, that the air mass must

be conserved, we know that the time rate of change of the mass of

air in the control volume must be equal to the rate of air mass flow

out of the control volume. For simplicity, we disregard any water

evaporation that occurs. Thus, applying Eqs. 5.4 and 5.5 to the air

only and to the water only, we obtain

0
0t

 �air
volume

 �air dVair � m
#

air � 0

dm � � dVdV

  � m
#

water � m
#

air � 0

0
0t

 �air
volume

 �air dVair �
0
0t

 �water
volume

 �water dVwater
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The preceding example problems illustrate some important results of applying the conserva-

tion of mass principle to the contents of a fixed, nondeforming control volume. The dot product

is for flow out of the control volume and for flow into the control volume. Thus,

mass flowrate out of the control volume is and mass flowrate in is When the flow is

steady, the time rate of change of the mass of the contents of the control volume

is zero and the net amount of mass flowrate, through the control surface is therefore also zero

(5.9)

If the steady flow is also incompressible, the net amount of volume flowrate, Q, through the con-

trol surface is also zero:

(5.10)

An unsteady, but cyclical flow can be considered steady on a time-average basis. When the flow

is unsteady, the instantaneous time rate of change of the mass of the contents of the control vol-

ume is not necessarily zero and can be an important variable. When the value of

is the mass of the contents of the control volume is increasing. When it is the mass of

the contents of the control volume is decreasing.

When the flow is uniformly distributed over the opening in the control surface 1one-dimensional

flow2,

where V is the uniform value of the velocity component normal to the section area A. When the

velocity is nonuniformly distributed over the opening in the control surface,

(5.11)

where is the average value of the component of velocity normal to the section area A as defined

by Eq. 5.7.

For steady flow involving only one stream of a specific fluid flowing through the control vol-

ume at sections 112 and 122,

(5.12)

and for incompressible flow,

(5.13)Q � A1V1 � A2V2

m
#

� r1A1V1 � r2A2V2

V

m
#

� rAV

m
#

� rAV

“�,”“�,”

0
0t

 �
cv

 r dV�

a Qout � a Qin � 0

a m
#

out � a m
#
in � 0

m
#
,

0
0t

 �
cv

 r dV�

“�.”“�”

“�”“�”V � n̂

5.1 Conservation of Mass—The Continuity Equation 195

For Aj � 10 ft2 we can conclude that

or

(Ans)

COMMENT By repeating the calculations for the same

flowrate but with various water jet diameters, Dj, the results

shown in Fig. E5.5b are obtained. With the flowrate held constant,

the value of is nearly independent of the jet diameter for val-

ues of the diameter less than about 10 in.

0h/0t

0h

0t
�
19 gal/min2 112 in./ft2

17.48 gal/ft32 110 ft22
� 1.44 in./min

0h

0t
�

Qwater

110 ft22

3

2.5

2

1.5

1

0.5

0
0 10 20 30

∂h
/∂

t,
 in

./m
in

(1 in., 1.44 in./min)

Dj, in.

F I G U R E  E5.5b

The appropriate
sign convention
must be followed.

V5.2 Shop vac filter

V5.3 Flow through
a contraction
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For steady flow involving more than one stream of a specific fluid or more than one specific

fluid flowing through the control volume,

The variety of example problems solved above should give the correct impression that the

fixed, nondeforming control volume is versatile and useful.

a m
#

in � a m
#

out

196 Chapter 5 ■ Finite Control Volume Analysis

F l u i d s  i n  t h e  N e w s

New 1.6 GPF standards Toilets account for approximately 40%

of all indoor household water use. To conserve water, the new

standard is 1.6 gallons of water per flush (gpf ). Old toilets use

up to 7 gpf; those manufactured after 1980 use 3.5 gpf. Neither

are considered low-flush toilets. A typical 3.2 person household

in which each person flushes a 7-gpf toilet 4 times a day uses

32,700 gallons of water each year; with a 3.5-gpf toilet the

amount is reduced to 16,400 gallons. Clearly the new 1.6-gpf

toilets will save even more water. However, designing a toilet

that flushes properly with such a small amount of water is not

simple. Today there are two basic types involved: those that are

gravity powered and those that are pressure powered. Gravity

toilets (typical of most currently in use) have rather long cycle

times. The water starts flowing under the action of gravity and the

swirling vortex motion initiates the siphon action which builds to

a point of discharge. In the newer pressure-assisted models, the

flowrate is large but the cycle time is short and the amount of

water used is relatively small. (See Problem 5.32.)

5.1.3 Moving, Nondeforming Control Volume

It is sometimes necessary to use a nondeforming control volume attached to a moving reference

frame. Examples include control volumes containing a gas turbine engine on an aircraft in flight,

the exhaust stack of a ship at sea, and the gasoline tank of an automobile passing by.

As discussed in Section 4.4.6, when a moving control volume is used, the fluid velocity rela-

tive to the moving control volume 1relative velocity2 is an important flow field variable. The relative

velocity, W, is the fluid velocity seen by an observer moving with the control volume. The control

volume velocity, is the velocity of the control volume as seen from a fixed coordinate system.

The absolute velocity, V, is the fluid velocity seen by a stationary observer in a fixed coordinate sys-

tem. These velocities are related to each other by the vector equation

(5.14)

as illustrated by the figure in the margin. This is the same as Eq. 4.22, introduced earlier.

For a system and a moving, nondeforming control volume that are coincident at an instant

of time, the Reynolds transport theorem 1Eq. 4.232 for a moving control volume leads to

(5.15)

From Eqs. 5.1 and 5.15, we can get the control volume expression for conservation of mass

1the continuity equation2 for a moving, nondeforming control volume, namely,

(5.16)

Some examples of the application of Eq. 5.16 follow.

0
0t

 �
cv

 r dV� � �
cs

 rW � n̂ dA � 0

DMsys

Dt
�

0
0t

 �
cv

 r dV� � �
cs

 rW � n̂ dA

V � W � Vcv

Vcv,

Some problems are
most easily solved
by using a moving
control volume.

V VCV

W

GIVEN An airplane moves forward at a speed of as

shown in Fig. E5.6a. The frontal intake area of the jet engine is

and the entering air density is A stationary

observer determines that relative to the earth, the jet engine

exhaust gases move away from the engine with a speed of

0.736 kg�m3.0.80 m2

971 km�hr

Conservation of Mass—Compressible Flow with 
a Moving Control Volume

The engine exhaust area is , and the exhaust

gas density is 

FIND Estimate the mass flowrate of fuel into the engine in

kg�hr.

0.515 kg�m3.

0.558 m21050 km�hr.

EXAMPLE 5.6
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5.1 Conservation of Mass—The Continuity Equation 197

The control volume, which moves with the airplane 1see Fig.

E5.6b2, surrounds the engine and its contents and includes all flu-

ids involved at an instant. The application of Eq. 5.16 to these

contents of the control volume yields

0 1flow relative to moving control

volume is considered steady on a

time-average basis2

(1)

Assuming one-dimensional flow, we evaluate the surface integral

in Eq. 1 and get

or

(2)

We consider the intake velocity, , relative to the moving con-

trol volume, as being equal in magnitude to the speed of the air-

plane, The exhaust velocity, also needs to be

measured relative to the moving control volume. Since a fixed

W2,971 km�hr.

W1

m
#

fuel
in

� r2A2W2 � r1A1W1

�m
#

fuel
in

� r1A1W1 � r2A2W2 � 0

0
0t

 �
cv

 r dV� � �
cs

 rW � n̂ dA � 0

observer noted that the exhaust gases were moving away from the

engine at a speed of the speed of the exhaust gases

relative to the moving control volume, is determined as fol-

lows by using Eq. 5.14

or

and is shown in Fig. E5.6b.

From Eq. 2,

(Ans)

COMMENT Note that the fuel flowrate was obtained as the

difference of two large, nearly equal numbers. Precise values of 

and are needed to obtain a modestly accurate value of m
#

fuel
in

.W1

W2

 m
#

fuel
in

� 9100 kg�hr

� 1580,800 � 571,7002 kg�hr

� 10.736 kg�m32 10.80 m22 1971 km�hr2 11000 m�km2

 m
#

fuel
in

� 10.515 kg�m32  10.558 m22  12021 km�hr2  11000 m�km2

� 2021 km�hr

W2 � V2 � Vplane � 1050 km�hr � 1�971 km�hr2

V2 � W2 � Vplane

W2,

1050 km�hr,

Control volume

Vplane =
971 km/hr

Vplane =
971 km/hr

W1 =
971 km/hr

W2 = 1050 + 971 =
2021 km/hr

V2 = 1050 km/hr

m•
fuel in

Section (1)

Section (2)

(a)

(b) F I G U R E  E5.6

GIVEN Water enters a rotating lawn sprinkler through its base

at the steady rate of 1000 ml/s as sketched in Fig. E5.7. The exit

area of each of the two nozzles is 30 mm2.

FIND Determine the average speed of the water leaving the

nozzle, relative to the nozzle, if 

(a) the rotary sprinkler head is stationary,

(b) the sprinkler head rotates at 600 rpm, and 

(c) the sprinkler head accelerates from 0 to 600 rpm.

F I G U R E  E5.7

Conservation of Mass—Relative Velocity

Control volume

Section (3)

Sprinkler head
W2

Q

Q = 1000 ml/s

Section (1)

A2 = 30 mm2

Section (2) 

EXAMPLE 5.7

SOLUTION
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When a moving, nondeforming control volume is used, the dot product sign convention

used earlier for fixed, nondeforming control volume applications is still valid. Also, if the flow

within the moving control volume is steady, or steady on a time-average basis, the time rate of

change of the mass of the contents of the control volume is zero. Velocities seen from the con-

trol volume reference frame 1relative velocities2 must be used in the continuity equation. Rela-

tive and absolute velocities are related by a vector equation 1Eq. 5.142, which also involves the

control volume velocity.

5.1.4 Deforming Control Volume

Occasionally, a deforming control volume can simplify the solution of a problem. A deforming

control volume involves changing volume size and control surface movement. Thus, the Reynolds

transport theorem for a moving control volume can be used for this case, and Eqs. 4.23 and 5.1

lead to

(5.17)

The time rate of change term in Eq. 5.17,

is usually nonzero and must be carefully evaluated because the extent of the control volume varies

with time. The mass flowrate term in Eq. 5.17,

�
cs

 rW � n̂ dA

0
0t

 �
cv

 r dV�

DMsys

Dt
�

0
0t

 �
cv

 r dV� � �
cs

 rW � n̂ dA � 0

198 Chapter 5 ■ Finite Control Volume Analysis

SOLUTION

Hence, for incompressible flow with �1 � �2 � �3, Eq. 2 becomes

With Q � A1W1, A2 � A3, and W2 � W3 it follows that

or

(Ans)

(b), (c) The value of W2 is independent of the speed of rotation

of the sprinkler head and represents the average velocity of the

water exiting from each nozzle with respect to the nozzle for

cases (a), (b), and (c). 

COMMENT The velocity of water discharging from each noz-

zle, when viewed from a stationary reference (i.e., V2), will vary as

the rotation speed of the sprinkler head varies since from Eq. 5.14,

where U � �R is the speed of the nozzle and � and R are the an-

gular velocity and radius of the sprinkler head, respectively.

V2 � W2 � U

 � 16.7 m/s

 W2 �
11000 ml/s2 10.001 m3/liter2 1106 mm2/m22

11000 ml/liter2 122 130 mm22

W2 �
Q

2 A2

A2W2 � A3W3 � A1W1 � 0

(a) We specify a control volume that contains the water in the

rotary sprinkler head at any instant. This control volume is non-

deforming, but it moves (rotates) with the sprinkler head.

The application of Eq. 5.16 to the contents of this control volume

for situation (a), (b), or (c) of the problem results in the same ex-

pression, namely

0 flow is steady or the

control volume is filled with 

an incompressible fluid

or

(1)

The time rate of change of the mass of water in the control vol-

ume is zero because the flow is steady and the control volume is

filled with water.

Because there is only one inflow [at the base of the rotating

arm, section (1)] and two outflows [the two nozzles at the tips of

the arm, sections (2) and (3), each have the same area and fluid

velocity], Eq. 1 becomes

(2)�2A2W2 � �3A3W3 � �1A1W1 � 0

grout  Aout Wout � grin  Ain Win � 0

0
0t

 �
cv

r d V� � �
cs

rW � n̂ dA � 0

Care is needed to
ensure that absolute
and relative veloci-
ties are used cor-
rectly.
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must be determined with the relative velocity, W, the velocity referenced to the control surface.

Since the control volume is deforming, the control surface velocity is not necessarily uniform and

identical to the control volume velocity, as was true for moving, nondeforming control vol-

umes. For the deforming control volume,

(5.18)

where is the velocity of the control surface as seen by a fixed observer. The relative velocity, W,

must be ascertained with care wherever fluid crosses the control surface. Two example problems that

illustrate the use of the continuity equation for a deforming control volume, Eq. 5.17, follow.

Vcs

V � W � Vcs

Vcv,

5.1 Conservation of Mass—The Continuity Equation 199

The velocity of the
surface of a de-
forming control
volume is not the
same at all points
on the surface.

GIVEN A syringe 1Fig. E5.82 is used to inoculate a cow. The

plunger has a face area of The liquid in the syringe is

to be injected steadily at a rate of The leakage rate

past the plunger is 0.10 times the volume flowrate out of the

needle.

FIND With what speed should the plunger be advanced? 

300 cm3�min.

500 mm2.

SOLUTION

F I G U R E  E5.8

Conservation of Mass—Deforming Control Volume

Note that

(5)

where is the speed of the plunger sought in the problem state-

ment. Combining Eqs. 2, 4, and 5 we obtain

(6)

However, from Eq. 5.6, we see that

(7)

and Eq. 6 becomes

(8)

Solving Eq. 8 for yields

(9)

Since Eq. 9 becomes

and

(Ans) � 660 mm�min

 Vp �
11.12 1300 cm3�min2

1500 mm22
 a

1000 mm3

cm3
b

Vp �
Q2 � 0.1Q2

A1

�
1.1Q2

A1

Qleak � 0.1Q2,

Vp �
Q2 � Qleak

A1

Vp

�rA1Vp � rQ2 � rQleak � 0

m
#

2 � rQ2

�rA1Vp � m
#

2 � rQleak � 0

Vp

� 

0/
0t

� Vp

Plunger
motion

Section (1)

Section (2)

Control volume

Qleak =
0.1 Q2 Q2 =

300 cm3/min

Vp

Ap =
500 mm2

�

EXAMPLE 5.8

The control volume selected for solving this problem is the de-

forming one illustrated in Fig. E5.8. Section 112 of the control sur-

face moves with the plunger. The surface area of section 112, is

considered equal to the circular area of the face of the plunger, ,
although this is not strictly true, since leakage occurs. The differ-

ence is small, however. Thus,

(1)

Liquid also leaves the needle through section 122, which involves

fixed area The application of Eq. 5.17 to the contents of this

control volume gives

(2)

Even though and the flow through section area are

steady, the time rate of change of the mass of liquid in the

shrinking control volume is not zero because the control volume

is getting smaller. To evaluate the first term of Eq. 2, we note

that

(3)

where is the changing length of the control volume 1see Fig.

E5.82 and is the volume of the needle. From Eq. 3, we

obtain

(4)
0
0t

 �
cv

 r dV� � rA1 
0/
0t

V�needle

/

�
cv

 r dV� � r1/A1 � V�needle2

A2Qleak

0
0t

 �
cv

 r dV� � m
#

2 � rQleak � 0

A2.

A1 � Ap

Ap

A1,

GIVEN Consider Example 5.5. FIND Solve the problem of Example 5.5 using a deforming con-

trol volume that includes only the water accumulating in the bathtub.

Conservation of Mass—Deforming Control VolumeEXAMPLE 5.9
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The conservation of mass principle is easily applied to the contents of a control volume. The

appropriate selection of a specific kind of control volume 1for example, fixed and nondeforming,

moving and nondeforming, or deforming2 can make the solution of a particular problem less com-

plicated. In general, where fluid flows through the control surface, it is advisable to make the con-

trol surface perpendicular to the flow. In the sections ahead we learn that the conservation of mass

principle is primarily used in combination with other important laws to solve problems.

200 Chapter 5 ■ Finite Control Volume Analysis

SOLUTION

For this deforming control volume, Eq. 5.17 leads to

(1)

The first term of Eq. 1 can be evaluated as

(2)

The second term of Eq. 1 can be evaluated as

(3)�
cs

 r W � n̂ dA � �r aVj �
0h

0t
b Aj

 � r 110 ft22 
0h

0t

 
0
0t

 �
water

volume

 

r dV� �
0
0t

 3rh12 ft2 15 ft2 4

0
0t

 �
water

volume

r dV� � �
cs

 rW � n̂ dA � 0

where and are the cross-sectional area and velocity of the

water flowing from the faucet into the tube. Thus, from Eqs. 1, 2,

and 3 we obtain

or for 

(Ans)

COMMENT Note that these results using a deforming con-

trol volume are the same as that obtained in Example 5.5 with a

fixed control volume.

0h

0t
�

91gal�min2 112 in.�ft2
17.48 gal�ft32 110 ft22

� 1.44 in.�min

Aj � 10 ft2

0h

0t
�

Vj  Aj

110 ft2 � Aj2
�

Qwater

110 ft2 � Aj2

VjAj

5.2.1 Derivation of the Linear Momentum Equation

Newton’s second law of motion for a system is

Since momentum is mass times velocity, the momentum of a small particle of mass is

Thus, the momentum of the entire system is and Newton’s law becomes

(5.19)

Any reference or coordinate system for which this statement is true is called inertial. A fixed coor-

dinate system is inertial. A coordinate system that moves in a straight line with constant velocity

and is thus without acceleration is also inertial. We proceed to develop the control volume formula

for this important law. When a control volume is coincident with a system at an instant of time,

the forces acting on the system and the forces acting on the contents of the coincident control vol-

ume 1see Fig. 5.22 are instantaneously identical, that is,

(5.20)

Furthermore, for a system and the contents of a coincident control volume that is fixed and non-

deforming, the Reynolds transport theorem [Eq. 4.19 with b set equal to the velocity (i.e., momen-

tum per unit mass), and being the system momentum] allows us to conclude that

(5.21)
D

Dt
 �

sys

 Vr dV� �
0
0t

 �
cv

 Vr dV� � �
cs

 VrV #  n̂ dA

Bsys

a Fsys �a Fcontents of the
coincident control volume

D

Dt
 �

sys

 Vr dV� � a Fsys

�sys
VrdV�VrdV�.

rdV�

time rate of change of the

linear momentum of the system

� sum of external forces

acting on the system

5.2 Newton’s Second Law—The Linear Momentum 
and Moment-of-Momentum Equations

V5.4 Smokestack
plume momentum

Forces acting on a
flowing fluid can
change its velocity
magnitude and/or
direction.
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or

Equation 5.21 states that the time rate of change of system linear momentum is expressed

as the sum of the two control volume quantities: the time rate of change of the linear momentum
of the contents of the control volume, and the net rate of linear momentum flow through the con-
trol surface. As particles of mass move into or out of a control volume through the control sur-

face, they carry linear momentum in or out. Thus, linear momentum flow should seem no more

unusual than mass flow.

For a control volume that is fixed 1and thus inertial2 and nondeforming, Eqs. 5.19, 5.20, and 5.21

provide an appropriate mathematical statement of Newton’s second law of motion as

(5.22)

We call Eq. 5.22 the linear momentum equation.

In our application of the linear momentum equation, we initially confine ourselves to fixed,

nondeforming control volumes for simplicity. Subsequently, we discuss the use of a moving but

inertial, nondeforming control volume. We do not consider deforming control volumes and accel-

erating 1noninertial2 control volumes. If a control volume is noninertial, the acceleration compo-

nents involved 1for example, translation acceleration, Coriolis acceleration, and centrifugal accel-

eration2 require consideration.

The forces involved in Eq. 5.22 are body and surface forces that act on what is contained in

the control volume as shown in the sketch in the margin. The only body force we consider in this

chapter is the one associated with the action of gravity. We experience this body force as weight,w.

The surface forces are basically exerted on the contents of the control volume by material just out-

side the control volume in contact with material just inside the control volume. For example, a wall

in contact with fluid can exert a reaction surface force on the fluid it bounds. Similarly, fluid just

outside the control volume can push on fluid just inside the control volume at a common interface,

usually an opening in the control surface through which fluid flow occurs. An immersed object

can resist fluid motion with surface forces.

The linear momentum terms in the momentum equation deserve careful explanation. We clar-

ify their physical significance in the following sections.

5.2.2 Application of the Linear Momentum Equation

The linear momentum equation for an inertial control volume is a vector equation 1Eq. 5.222. In
engineering applications, components of this vector equation resolved along orthogonal coordi-

nates, for example, x, y, and z 1rectangular coordinate system2 or r, and x 1cylindrical coordinate

system2, will normally be used. A simple example involving steady, incompressible flow is con-

sidered first.

u,

0
0t

 �
cv

 Vr dV� � �
cs

 VrV � n̂ dA � a Fcontents of the
control volume

time rate of change

of the linear

momentum of the

system

�

time rate of change

of the linear

momentum of the

contents of the

control volume

�

net rate of flow

of linear momentum

through the

control surface
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FD

FE

FF

FG

FC

FB

FA

Coincident
control volume

System
F I G U R E  5.2 External forces acting on system and

coincident control volume.

V5.6 Force due to a
water jet

Flow out

Flow in

Control volume

Ffluid in

Ffluid out

Fwall

�

V5.5 Marine
propulsion
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GIVEN As shown in Fig. E5.10a, a horizontal jet of water ex-

its a nozzle with a uniform speed of V1 � 10 ft/s, strikes a vane,

and is turned through an angle �.

SOLUTION

F I G U R E  E5.10

Linear Momentum—Change in Flow Direction

and

(2)

where V � u î � w k̂, and �Fx and �Fz are the net x and z compo-

nents of force acting on the contents of the control volume. De-

pending on the particular flow situation being considered and the

coordinate system chosen, the x and z components of velocity, u
and w, can be positive, negative, or zero. In this example the flow is

in the positive directions at both the inlet and the outlet.

The water enters and leaves the control volume as a free jet at

atmospheric pressure. Hence, there is atmospheric pressure sur-

rounding the entire control volume, and the net pressure force on

the control volume surface is zero. If we neglect the weight of the

water and vane, the only forces applied to the control volume con-

tents are the horizontal and vertical components of the anchoring

force, FAx and FAz, respectively.

With negligible gravity and viscous effects, and since p1 � p2,

the speed of the fluid remains constant so that V1 � V2 � 10 ft/s

(see the Bernoulli equation, Eq. 3.7). Hence, at section (1),

u1 � V1, w1 � 0, and at section (2), u2 � V1 cos �, w2 � V1 sin �.

By using this information, Eqs. 1 and 2 can be written as

(3)

and

(4)

Equations 3 and 4 can be simplified by using conservation of

mass, which states that for this incompressible flow A1V1 �
A2V2, or A1 � A2 since V1 � V2. Thus

(5)

and

(6)

With the given data we obtain

(Ans)

and

(Ans)

COMMENTS The values of FAx and FAz as a function of � are

shown in Fig. E5.10d. Note that if � � 0 (i.e., the vane does not

turn the water), the anchoring force is zero. The inviscid fluid

merely slides along the vane without putting any force on it. If

� � 90°, then FAx � �11.64 lb and FAz � 11.64 lb. It is necessary

to push on the vane (and, hence, for the vane to push on the water)

 � 11.64 sin u lb

 FAz � 11.94 slugs/ft
32 10.06 ft22 110 ft/s2

2 sin u

 � �11.6411 � cos u2 lb

 � �11.6411 � cos u2 slugs � ft/s
2

 FAx � �11.94 slugs/ft
32 10.06 ft22 110 ft/s2

211 � cos u2

 FAz � �A1V2
1 sin �

 FAx � ��A1V2
1 � �A1V2

1 cos � � ��A1V2
1  11 � cos �2

V1sin � � A2V1 � 0 � A1V1 � FAz

V1cos � � A2V1 � V1 � A1V1 � FAx

w2 
�A2V2 � w1�A1V1 � gFz

Nozzle

A1 = 0.06 ft2 Vane

V1

(a)

θ

Nozzle
V1

(b)

Control
volume

(c)

z

x

(2)

FAx
FAz

V1

V2
θ

(1)

EXAMPLE 5.10

We select a control volume that includes the vane and a portion of

the water (see Figs. E5.10b, c) and apply the linear momentum

equation to this fixed control volume. The only portions of the

control surface across which fluid flows are section (1) (the en-

trance) and section (2) (the exit). Hence, the x and z components

of Eq. 5.22 become

0 1flow is steady2

and

0 1flow is steady2

or

(1)u2 
�A2V2 � u1�A1V1 � gFx

0
0t

 �
cv

 w r dV� � �
cs

 w r V � n̂ dA � a Fz

0
0t

 �
cv

 u r dV� � �
cs

 u r V � n̂ dA � a Fx

FIND Determine the anchoring force needed to hold the vane

stationary if gravity and viscous effects are negligible.
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 203

to the left (FAx is negative) and up in order to change the direction

of flow of the water from horizontal to vertical. This momentum

change requires a force. If � � 180°, the water jet is turned back

on itself. This requires no vertical force (FAz � 0), but the hori-

zontal force (FAx � �23.3 lb) is two times that required if

� � 90°. This horizontal fluid momentum change requires a hor-

izontal force only.

Note that the anchoring force (Eqs. 5, 6) can be written in

terms of the mass flowrate, as

and

In this example exerting a force on a fluid flow resulted in a

change in its direction only (i.e., change in its linear momentum).

FAz � m
#
V1 sin �

FAx � �m
#
V111 � cos �2

m
#

� �A1V1,

F I G U R E  E5.10d

–25

–20

–15

–10

–5

0

5

10

15
F A

x 
or

 F
A

z,  lb 30 60 90 120 150 180 

θ   , deg

FAx 

FAz 

0

F l u i d s  i n  t h e  N e w s

Where the plume goes Commercial airliners have wheel brakes

very similar to those on highway vehicles. In fact, antilock brakes

now found on most new cars were first developed for use on air-

planes. However, when landing, the major braking force comes

from the engine rather than the wheel brakes. Upon touchdown, a

piece of engine cowling translates aft and blocker doors drop

down, directing the engine airflow into a honeycomb structure

called a cascade. The cascade reverses the direction of the high-

speed engine exhausts by nearly so that it flows forward. As180°

predicted by the momentum equation, the air passing through the

engine produces a substantial braking force—the reverse thrust.

Designers must know the flow pattern of the exhaust plumes to

eliminate potential problems. For example, the plumes of hot ex-

haust must be kept away from parts of the aircraft where repeated

heating and cooling could cause premature fatigue. Also, the

plumes must not re-enter the engine inlet, or blow debris from the

runway in front of the engine, or envelop the vertical tail. (See

Problem 5.67.)

GIVEN As shown in Fig. E5.11a, water flows through a noz-

zle attached to the end of a laboratory sink faucet with a flowrate

of 0.6 liters/s. The nozzle inlet and exit diameters are 16 and 5

mm, respectively, and the nozzle axis is vertical. The mass of the

nozzle is 0.1 kg. The pressure at section (1) is 464 kPa.

SOLUTION

Linear Momentum—Weight, Pressure, and Change in Speed

where w is the z direction component of fluid velocity, and the

various parameters are identified in the figure.

Note that the positive direction is considered “up” for the

forces. We will use this same sign convention for the fluid veloc-

ity, w, in Eq. 1. In Eq. 1, the dot product, is for flow

out of the control volume and for flow into the control vol-

ume. For this particular example

(2)

with the used for flow out of the control volume and 

used for flow in. To evaluate the control surface integral in Eq. 1,

we need to assume a distribution for fluid velocity, w, and fluid

density, For simplicity, we assume that w is uniformly distrib-

uted or constant, with magnitudes of and over cross-

sectional areas and Also, this flow is incompressible so theA2.A1

w2w1

r.

“�”“�”

V � n̂ dA � 	 0w 0  dA

“�”

“�”V � n̂,

EXAMPLE 5.11

The anchoring force sought is the reaction force between the

faucet and nozzle threads. To evaluate this force we select a con-

trol volume that includes the entire nozzle and the water contained

in the nozzle at an instant, as is indicated in Figs. E5.11a and

E5.11b. All of the vertical forces acting on the contents of this con-

trol volume are identified in Fig. E5.11b. The action of atmos-

pheric pressure cancels out in every direction and is not shown.

Gage pressure forces do not cancel out in the vertical direction and

are shown. Application of the vertical or z direction component of

Eq. 5.22 to the contents of this control volume leads to

0 1flow is steady2

(1)�ww � p2A2

0
0t

 �
cv

 wr dV� � �
cs

 wrV � n̂ dA � FA �wn � p1A1

FIND Determine the anchoring force required to hold the noz-

zle in place.
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204 Chapter 5 ■ Finite Control Volume Analysis

fluid density, is constant throughout. Proceeding further we ob-

tain for Eq. 1

(3)

where is the mass flowrate.

Note that and are used because both of these veloc-

ities are “down.” Also, is used because it is associated with

flow into the control volume. Similarly, is used because it is

associated with flow out of the control volume. Solving Eq. 3 for

the anchoring force, we obtain

(4)

From the conservation of mass equation, Eq. 5.12, we obtain

(5)

which when combined with Eq. 4 gives

(6)

It is instructive to note how the anchoring force is affected

by the different actions involved. As expected, the nozzle

weight, the water weight, and gage pressure force at

section 112, all increase the anchoring force, while the

gage pressure force at section 122, acts to decrease the

anchoring force. The change in the vertical momentum

flowrate, will, in this instance, decrease the an-

choring force because this change is negative 1w2 7 w12.
m
#
1w1 � w22,

p2A2,

p1A1,

ww,wn,

FA � m
#  

1w1 � w22 �wn � p1A1 �ww � p2A2

m
#

1 � m
#

2 � m
#

FA � m
#

1w1 � m
#

2w2 �wn � p1A1 �ww � p2A2

FA,

�m
#

2

�m
#

1

�w2�w1

m
#

� rAV

 � FA �wn � p1A1 �ww � p2A2

 1�m
#

12 1�w12 � m
#

21�w22

r, To complete this example we use quantities given in the

problem statement to quantify the terms on the right-hand side

of Eq. 6.

From Eq. 5.6,

(7)

and

(8)

Also from Eq. 5.6,

(9)

The weight of the nozzle, can be obtained from the nozzle

mass, with

(10)

The weight of the water in the control volume, can be ob-

tained from the water density, , and the volume of water, inV�w,r

ww,

wn � mng � 10.1 kg2 19.81 m�s22 � 0.981 N

mn,

wn,

�
10.6 liter�s2 110�3 m3�liter2

p15 mm22�4110002 mm2�m22
� 30.6 m�s

w2 �
Q

A2

�
Q

p1D2
2�42

�
10.6 liter�s2 110�3 m3�liter2

p116 mm22�4110002 mm2�m22
� 2.98 m�s

w1 �
Q

A1

�
Q

p1D2
1�42

� 0.599 kg�s
� 1999 kg�m32 10.6 liter�s2 110�3 m3�liter2

m
#

� rw1A1 � rQ

F I G U R E  E5.11a F I G U R E  E5.11b

g
w1

D1 = 16 mm

x

z

Control volume

Section (1)

h = 30 mm

Section (2)

D2 = 5 mm

w2

FA

�n

p1A1

w1

�w

p2A2

w2

z

Control volume

FA

�n

�w

p1
A1

p2
A2

w1

w2

= anchoring force that holds
        nozzle in place
= weight of nozzle
= weight of water contained in
         the nozzle
= gage pressure at section (1)
= cross section area at
        section (1)
= gage pressure at section (2)
= cross section area at
       section (2)
= z direction velocity at
        control volume entrance
= z direction velocity at
        control volume exit
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 205

the truncated cone of height h. That is,

where

Thus,

(11)

The gage pressure at section 122, is zero since, as discussed in

Section 3.6.1, when a subsonic flow discharges to the atmosphere

as in the present situation, the discharge pressure is essentially at-

mospheric. The anchoring force, can now be determined from

Eqs. 6 through 11 with

or

(Ans)

Since the anchoring force, is positive, it acts upward in the z
direction. The nozzle would be pushed off the pipe if it were not

fastened securely.

COMMENT The control volume selected above to solve

problems such as these is not unique. The following is an alternate

solution that involves two other control volumes—one containing

FA,

� 77.8 N

FA � �16.5 N � 0.981 N � 93.3 N � 0.0278 N

 � 0.0278 N � 0

 � 1464 kPa2 11000 Pa�kPa2 
p116 mm22

4110002 mm2�m22

 FA � 10.599 kg�s2 12.98 m�s � 30.6 m�s2 � 0.981 N

FA,

p2,

 � 0.0278 N

ww � 1999 kg�m32 12.84 
 10�6 m32 19.81 m�s22

 � 2.84 
 10�6 m3

 
 c
116 mm22 � 15 mm22 � 116 mm2 15 mm2

110002 mm2�m22
d

 �
1

12
p 

130 mm2

11000 mm�m2

 V�w � 1
12ph1D2

1 � D 

2
2 � D1D22

ww � rV�wg

only the nozzle and the other containing only the water in the noz-

zle. These control volumes are shown in Figs. E5.11c and E5.11d
along with the vertical forces acting on the contents of each con-

trol volume. The new force involved, represents the interaction

between the water and the conical inside surface of the nozzle. It

includes the net pressure and viscous forces at this interface.

Application of Eq. 5.22 to the contents of the control volume

of Fig. E5.11c leads to

(12)

The term is the resultant force from the at-

mospheric pressure acting upon the exterior surface of the

nozzle 1i.e., that portion of the surface of the nozzle that is not

in contact with the water2. Recall that the pressure force on a

curved surface 1such as the exterior surface of the nozzle2 is

equal to the pressure times the projection of the surface area

on a plane perpendicular to the axis of the nozzle. The projec-

tion of this area on a plane perpendicular to the z direction is

The effect of the atmospheric pressure on the inter-

nal area 1between the nozzle and the water2 is already in-

cluded in which represents the net force on this area.

Similarly, for the control volume of Fig. E5.11d we obtain

(13)

where and are gage pressures. From Eq. 13 it is clear that

the value of depends on the value of the atmospheric pressure,

since That is, we must use absolute pressure, not

gage pressure, to obtain the correct value of From Eq. 13 we

can easily identify which forces acting on the flowing fluid

change its velocity magnitude and thus linear momentum.

By combining Eqs. 12 and 13 we obtain the same result for 

as before 1Eq. 62:

Note that although the force between the fluid and the nozzle wall,

is a function of the anchoring force, is not. That is, we

were correct in using gage pressure when solving for by means

of the original control volume shown in Fig. E5.11b.

FA

FA,patm,Rz,

FA � m
#
1w1 � w22 �wn � p1A1 � Ww � p2A2

FA

Rz.

A1 � A2.patm,

Rz

p2p1

� 1p2 � patm2A2

Rz � m
#
1w1 � w22 �ww � 1

 
p1 � patm2A1

Rz

A1 � A2.

patm 1A1 � A22

FA �wn � Rz � patm1A1 � A22

Rz,

(p1 + patm)A1

�w

Rz

w2

(p2 + patm)A2

w1

(2)

F I G U R E  E5.11c F I G U R E  E5.11d

FA

�n

Rz

patm
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Several important generalities about the application of the linear momentum equation 1Eq.

5.222 are apparent in the example just considered.

1. When the flow is uniformly distributed over a section of the control surface where flow into

or out of the control volume occurs, the integral operations are simplified. Thus, one-

dimensional flows are easier to work with than flows involving nonuniform velocity distri-

butions.

2. Linear momentum is directional; it can have components in as many as three orthogonal

coordinate directions. Furthermore, along any one coordinate, the linear momentum of a

fluid particle can be in the positive or negative direction and thus be considered as a pos-

itive or a negative quantity. In Example 5.11, only the linear momentum in the z direction

was considered 1all of it was in the negative z direction and was hence treated as being

negative2.

3. The flow of positive or negative linear momentum into a control volume involves a nega-

tive product. Momentum flow out of the control volume involves a positive 

product. The correct algebraic sign to assign to momentum flow 

will depend on the sense of the velocity 1 in positive coordinate direction, in negative

coordinate direction2 and the product 1 for flow out of the control volume, for

flow into the control volume2. This is shown in the figure in the margin. In Example 5.11,

the momentum flow into the control volume past section 112 was a positive 1 2 quantity

while the momentum flow out of the control volume at section 122 was a negative 1 2 quantity.

4. The time rate of change of the linear momentum of the contents of a nondeforming control

volume is zero for steady flow. The momentum problems considered in

this text all involve steady flow.

5. If the control surface is selected so that it is perpendicular to the flow where fluid enters or

leaves the control volume, the surface force exerted at these locations by fluid outside the

control volume on fluid inside will be due to pressure. Furthermore, when subsonic flow ex-

its from a control volume into the atmosphere, atmospheric pressure prevails at the exit cross

section. In Example 5.11, the flow was subsonic and so we set the exit flow pressure at the

atmospheric level. The continuity equation 1Eq. 5.122 allowed us to evaluate the fluid flow

velocities and at sections 112 and 122.

6. The forces due to atmospheric pressure acting on the control surface may need consideration

as indicated by Eq. 13 in Example 5.11 for the reaction force between the nozzle and the fluid.

When calculating the anchoring force, the forces due to atmospheric pressure on the con-

trol surface cancel each other 1for example, after combining Eqs. 12 and 13 the atmospheric

pressure forces are no longer involved2 and gage pressures may be used.

7. The external forces have an algebraic sign, positive if the force is in the assigned positive

coordinate direction and negative otherwise.

8. Only external forces acting on the contents of the control volume are considered in the lin-

ear momentum equation 1Eq. 5.222. If the fluid alone is included in a control volume, reac-

tion forces between the fluid and the surface or surfaces in contact with the fluid [wetted

surface1s2] will need to be in Eq. 5.22. If the fluid and the wetted surface or surfaces are

within the control volume, the reaction forces between fluid and wetted surface1s2 do not ap-

pear in the linear momentum equation 1Eq. 5.222 because they are internal, not external forces.

The anchoring force that holds the wetted surface1s2 in place is an external force, however,

and must therefore be in Eq. 5.22.

9. The force required to anchor an object will generally exist in response to surface pressure

and�or shear forces acting on the control surface, to a change in linear momentum flow

through the control volume containing the object, and to the weight of the object and the

fluid contained in the control volume. In Example 5.11 the nozzle anchoring force was re-

quired mainly because of pressure forces and partly because of a change in linear momen-

tum flow associated with accelerating the fluid in the nozzle. The weight of the water and

the nozzle contained in the control volume influenced the size of the anchoring force only

slightly.

FA,

w2w1

1i.e., 0�0t �cv
 Vr dV�2

�
�

��V � n̂
��
1VrV � n̂ dA21� or �2

V � n̂V � n̂

206 Chapter 5 ■ Finite Control Volume Analysis

Control
volume

x

y

Vr V�n > 0^

Vr V�n < 0^

n̂ n̂

V V

n̂ n̂
V V

V5.7 Running on
water

A control volume
diagram is similar
to a free-body 
diagram.
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To further demonstrate the use of the linear momentum equation 1Eq. 5.222, we consider

another one-dimensional flow example before moving on to other facets of this important

equation.

5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 207

F l u i d s  i n  t h e  N e w s

Motorized surfboard When Bob Montgomery, a former pro-

fessional surfer, started to design his motorized surfboard

(called a jet board), he discovered that there were many engi-

neering challenges to the design. The idea is to provide surfing

to anyone, no matter where they live, near or far from the ocean.

The rider stands on the device like a surfboard and steers it like

a surfboard by shifting his/her body weight. A new, sleek, com-

pact 45-horsepower engine and pump was designed to fit within

the surfboard hull. Thrust is produced in response to the change

in linear momentum of the water stream as it enters through the

inlet passage and exits through an appropriately designed noz-

zle. Some of the fluid dynamic problems associated with de-

signing the craft included one-way valves so that water does not

get into the engine (at both the intake or exhaust ports), buoy-

ancy, hydrodynamic lift, drag, thrust, and hull stability. (See

Problem 5.68.)

GIVEN Water flows through a horizontal, pipe bend as

illustrated in Fig. E5.12a. The flow cross-sectional area is con-

stant at a value of through the bend. The magnitude of the

flow velocity everywhere in the bend is axial and The

absolute pressures at the entrance and exit of the bend are 30 psia

and 24 psia, respectively. 

50 ft�s.

0.1 ft2

180°

SOLUTION

Linear Momentum—Pressure and Change in Flow Direction

At sections 112 and 122, the flow is in the y direction and therefore

at both cross sections. There is no x direction momentum

flow into or out of the control volume and we conclude from Eq. 1

that

(Ans)

For the y direction, we get from Eq. 5.22

(2)

For one-dimensional flow, the surface integral in Eq. 2 is easy to

evaluate and Eq. 2 becomes

(3)1�v12 1�m
#

12 � 1�v22 1�m
#

22 � FAy � p1A1 � p2A2

�
cs

 vrV � n̂ dA � FAy � p1A1 � p2A2

FAx � 0

u � 0

EXAMPLE 5.12

Since we want to evaluate components of the anchoring force to

hold the pipe bend in place, an appropriate control volume 1see

dashed line in Fig. E5.12a2 contains the bend and the water in the

bend at an instant. The horizontal forces acting on the contents of

this control volume are identified in Fig. E5.12b. Note that the

weight of the water is vertical 1in the negative z direction2 and

does not contribute to the x and y components of the anchoring

force. All of the horizontal normal and tangential forces exerted

on the fluid and the pipe bend are resolved and combined into the

two resultant components, and These two forces act on

the control volume contents, and thus for the x direction, Eq. 5.22

leads to

(1)�
cs

 urV � n̂ dA � FAx

FAy.FAx

FIND Calculate the horizontal 1x and y2 components of the an-

choring force required to hold the bend in place.

z

y
x

V = 50 ft/s

Section (1) A = 0.1 ft2

V = 
50 ft/s

Section (2)

Control
volume

180° pipe bend

(a)

x
u v y

w

z

p1A1

v1

v2

p2A2

FAz

FAy

�

FAx
Control volume

Pipe bend
and water

(b)

F I G U R E  E5.12
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In Examples 5.10 and 5.12 the force exerted on a flowing fluid resulted in a change in flow

direction only. This force was associated with constraining the flow, with a vane in Example 5.10,

and with a pipe bend in Example 5.12. In Example 5.11 the force exerted on a flowing fluid

resulted in a change in velocity magnitude only. This force was associated with a converging

nozzle. Anchoring forces are required to hold a vane or conduit stationary. They are most easily

estimated with a control volume that contains the vane or conduit and the flowing fluid involved.

Alternately, two separate control volumes can be used, one containing the vane or conduit only

and one containing the flowing fluid only.

208 Chapter 5 ■ Finite Control Volume Analysis

Note that the y component of velocity is positive at section 112 but

is negative at section 122. Also, the mass flowrate term is negative

at section 112 1flow in2 and is positive at section 122 1flow out2. From

the continuity equation 1Eq. 5.122, we get

(4)

and thus Eq. 3 can be written as

(5)

Solving Eq. 5 for we obtain

(6)

From the given data we can calculate the mass flowrate, from

Eq. 5.6 as

For determining the anchoring force, the effects of atmos-

pheric pressure cancel and thus gage pressures for and are

appropriate. By substituting numerical values of variables into

Eq. 6, and using the fact that we get

(Ans)

The negative sign for is interpreted as meaning that the y
component of the anchoring force is actually in the negative y
direction, not the positive y direction as originally indicated in

Fig. E5.12b.

COMMENT As with Example 5.11, the anchoring force for

the pipe bend is independent of the atmospheric pressure. How-

ever, the force that the bend puts on the fluid inside of it, Ry,

FAy

 FAy � �970 lb � 220 lb � 134 lb � �1324 lb

 � 124 psia � 14.7 psia2 1144 in.2�ft22 10.1 ft22
 � 130 psia � 14.7 psia2 1144 in.2�ft22 10.1 ft22

 FAy � �19.70 slugs�s2 150 ft�s � 50 ft�s2

1 lb � 1 slug � ft�s2

p2p1

FAy,

� 9.70 slugs�s
m
#

� r1A1v1 � 11.94 slugs�ft32 10.1 ft22 150 ft�s2

m
#
,

FAy � �m
#
1v1 � v22 � p1A1 � p2A2

FAy

�m
#
1v1 � v22 � FAy � p1A1 � p2A2

m
#

� m
#

1 � m
#

2

depends on the atmospheric pressure. We can see this by using a

control volume which surrounds only the fluid within the bend as

shown in Fig. E5.12c. Application of the momentum equation to

this situation gives

where and must be in terms of absolute pressure because

the force between the fluid and the pipe wall, is the complete

pressure effect 1i.e., absolute pressure2. We see that forces exerted

on the flowing fluid result in a change in its velocity direction 1a
change in linear momentum2.

Thus, we obtain

(7)

We can use the control volume that includes just the pipe

bend 1without the fluid inside it2 as shown in Fig. E5.12d to

determine the anchoring force component in the y direction

necessary to hold the bend stationary. The y component of the

momentum equation applied to this control volume gives

(8)

where is given by Eq. 7. The term represents the

net pressure force on the outside portion of the control volume.

Recall that the pressure force on the inside of the bend is ac-

counted for by By combining Eqs. 7 and 8 and using the fact that

, we obtain

in agreement with the original answer obtained using the control

volume of Fig. E5.12b.

 � �1324 lb

 FAy � �1748 lb � 2117 lb�ft2 10.1 ft2 � 0.1 ft22

patm � 14.7 lb�in.2 1144 in.2�ft22 � 2117 lb�ft2

Ry.

patm1A1 � A22Ry

FAy � Ry � patm 
1A1 � A22

FAy,

 � �1748 lb

 � 124 psia2 1144 in.2�ft22 10.1 ft22
 � 130 psia2 1144 in.2�ft22 10.1 ft22

 Ry � �19.70 slugs�s2 150 ft�s � 50 ft�s2

Ry,

p2p1

Ry � �m
#
1v1 � v22 � p1A1 � p2A2

F I G U R E  E5.12 cont.

Control volume

Water in 180° bend

p2A2

p1A1

v2

v1

(c)

Pipe bend only

(d)

Ry patm(A1 + A2)

Rz

Ry

Rx

�

Control volume

FAy

x
u v y

w

z

V5.8 Fire hose
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 209

GIVEN Air flows steadily between two cross sections in a long,

straight portion of 4-in. inside diameter pipe as indicated in Fig.

E5.13, where the uniformly distributed temperature and pressure at

each cross section are given. If the average air velocity at section 122
is 1000 ft�s, we found in Example 5.2 that the average air velocity at

section 112must be 219 ft�s. Assume uniform velocity distributions

at sections 112 and 122. 

SOLUTION
F I G U R E  E5.13

Linear Momentum—Pressure, Change in Speed, and Friction

English Engineering 1EE2 units are often used for this kind of
flow. The gas constant, R, for air in EE units is

(8)

Thus, from Eqs. 5 and 8

or 

(Ans)

COMMENT For this compressible flow, the pressure differ-

ence drives the motion which results in a frictional force, Rx, and

an acceleration of the fluid (i.e., a velocity magnitude increase).

For a similar incompressible pipe flow, a pressure difference re-

sults in fluid motion with a frictional force only (i.e., no change in

velocity magnitude).

Rx � 793 lb

 � 1025 lb � 232 lb

 32.1741lbm � ft2� 1lb � s22

 � 19.57 lbm2 11000 ft�s � 219 ft�s2�

 Rx �
p14 in.22

4
 1100 psia � 18.4 psia2

 

p14 in.22

41144 in.2�ft22
 11000 ft�s2 � 9.57 lbm�s

Hence,  m
#

�
118.4 psia2 1144 in.2�ft22

353.31ft # lb2� 1lbm # °R2 4  1453 °R2

R �
17161ft # lb2� 1slug # °R2

32.1741lbm�slug2
� 53.31ft # lb2� 1lbm # °R2

Control volume

Section (1)

Flow

V1
V2 =

1000 ft/s

p2A2

p1A1

p1 = 100 psia
T1 = 540 °R

Section (2)Pipe
p2 = 18.4 psia
T2 = 453 °R

Rx

y

x

EXAMPLE 5.13

The control volume of Example 5.2 is appropriate for this prob-

lem. The forces acting on the air between sections 112 and 122 are

identified in Fig. E5.13. The weight of air is considered negligibly

small. The reaction force between the wetted wall of the pipe and

the flowing air, is the frictional force sought. Application of

the axial component of Eq. 5.22 to this control volume yields

(1)

The positive x direction is set as being to the right. Furthermore,

for uniform velocity distributions 1one-dimensional flow2, Eq. 1

becomes

(2)

From conservation of mass 1Eq. 5.122 we get

(3)

so that Eq. 2 becomes

(4)

Solving Eq. 4 for we get

(5)

The equation of state gives

(6)

and the equation for area is

(7)

Thus, from Eqs. 3, 6, and 7

 m
#

� a
p2

RT2

b a
pD2

2

4
b u2

A2 �
pD2

2

4

A2

r2 �
p2

RT2

Rx � A21p1 � p22 � m
#
1u2 � u12

Rx,

m
#
1u2 � u12 � �Rx � A21p1 � p22

m
#

� m
#

1 � m
#

2

1�u12 1�m
#

12 � 1�u22 1�m
#

22 � �Rx � p1A1 � p2A2

�
cs

 urV � n̂ dA � �Rx � p1A1 � p2A2

Rx,

FIND Determine the frictional force exerted by the pipe wall on

the air flow between sections 112 and 122.

GIVEN Consider the flow of Example 5.4 to be vertically

upward.

Linear Momentum—Weight, Pressure, Friction, 
and Nonuniform Velocity Profile

EXAMPLE 5.14

FIND Develop an expression for the fluid pressure drop that

occurs between sections 112 and 122.
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210 Chapter 5 ■ Finite Control Volume Analysis

SOLUTION

been identical, a condition we call “fully developed” flow. Then,

the pressure drop, would be due only to pipe wall fric-

tion and the weight of the water column. If in addition to being

fully developed, the flow involved negligible weight effects 1for

example, horizontal flow of liquids or the flow of gases in any

direction2 the drop in pressure between any two sections,

would be a result of pipe wall friction only.

Note that although the average velocity is the same at section

112 as it is at section 122 the momentum flux

across section 112 is not the same as it is across section 122. If it
were, the left-hand side of Eq. 142 would be zero. For this nonuni-

form flow the momentum flux can be written in terms of the av-

erage velocity, and the momentum coefficient, as

Hence the momentum flux can be written as

where 1 for uniform flow2 and 1 for

any nonuniform flow2.
b 7 1b2 � 4�3b � 1b1 � 1

�
cs

 wrV � n̂ dA � �b1w
2
1rpR2 � b2w

2
1rpR2

b �
�  wrV � n̂ dA

rV 2A

b,V,

1V1 � V2 � w12,

p1 � p2,

p1 � p2,
A control volume 1see dashed lines in Fig. E5.142 that includes

only fluid from section 112 to section 122 is selected. The forces

acting on the fluid in this control volume are identified in Fig.

E5.14. The application of the axial component of Eq. 5.22 to the

fluid in this control volume results in

(1)

where is the resultant force of the wetted pipe wall on the

fluid. Further, for uniform flow at section 112, and because the

flow at section 122 is out of the control volume, Eq. 1 becomes

(2)

The positive direction is considered up. The surface integral over

the cross-sectional area at section 122, is evaluated by using

the parabolic velocity profile obtained in Example 5.4,

as

or

(3)

Combining Eqs. 2 and 3 we obtain

(4)

Solving Eq. 4 for the pressure drop from section 112 to section 122,
we obtain

(Ans)

COMMENT We see that the drop in pressure from section 112
to section 122 occurs because of the following:

1. The change in momentum flow between the two sections
associated with going from a uniform velocity profile to
a parabolic velocity profile,

2. Pipe wall friction,

3. The weight of the water column, ; a hydrostatic pres-
sure effect.

If the velocity profiles had been identically parabolic at sections

112 and 122, the momentum flowrate at each section would have

w

Rz

rw1
2�3

p1 � p2 �
rw2

1

3
�

Rz

A1

�
w

A1

p1 � p2,

�w1
2rpR2 � 4

3w
2
1rpR2 � p1A1 � Rz �w � p2A2

�
A2

 w2rw2 dA2 � 4prw2
1 

R2

3

� 2pr�
R

0

 12w12
2 c1 � a

r

R
b

2

d
2

 r dr

�
A2

 w2rw2 dA2 � r�
R

0

 w2
2 2pr dr

w2 � 2w1 31 � 1r�R22 4 ,

A2,

�w � p2A2

1�w12 1�m
#

12 � �
A2

 1�w22r1�w2 dA22 � p1A1 � Rz

Rz

�
cs

 wrV � n̂ dA � p1A1 � Rz �w � p2A2

F I G U R E  E5.14

Flow

p2A2

�

Rz

R
r

Fluid only

Control volume

Section (1)

Section (2)w2 = 2w1 1 – ( )[ ]r–
R

2

p1A1

w1

x

u v y

w

z

GIVEN A static thrust stand as sketched in Fig. E5.15 is to be

designed for testing a jet engine. The following conditions are

known for a typical test: Intake air velocity exhaust gas

velocity intake cross-sectional area intake� 1 m2;� 500 m�s;

� 200 m�s;

Linear Momentum—ThrustEXAMPLE 5.15

static pressure kPa 1abs2; intake static temper-

ature exhaust static pressure 0 kPa 1abs2. 

FIND Estimate the nominal anchoring force for which to design.

� 101 kPa�� 268 K;

� 78.5 kPa� �22.5
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 211

SOLUTION

Thus,

(6)

Finally, combining Eqs. 5 and 6 and substituting given data with

we obtain

or

(Ans)

COMMENT The force of the thrust stand on the engine is di-

rected toward the right. Conversely, the engine pushes to the left

on the thrust stand 1or aircraft2.

Fth � 22,500 N � 61,200 N � 83,700 N

 � 1204 kg�s2 1500 m�s � 200 m�s2 31 N� 1kg # m�s22 4
 Fth � �11 m22 1�22.5 kPa2 11000 Pa�kPa2 311N�m22�Pa 4

p2 � 0,

� 204 kg�s
m
#

� r1A1u1 � 11.02 kg�m32 11 m22 1200 m�s2

The cylindrical control volume outlined with a dashed line in 

Fig. E5.15 is selected. The external forces acting in the axial di-

rection are also shown. Application of the momentum equation

1Eq. 5.222 to the contents of this control volume yields

(1)

where the pressures are absolute. Thus, for one-dimensional flow,

Eq. 1 becomes

(2)

The positive direction is to the right. The conservation of mass

equation 1Eq. 5.122 leads to

(3)

Combining Eqs. 2 and 3 and using gage pressure we obtain

(4)

Solving Eq. 4 for the thrust force, we obtain

(5)

We need to determine the mass flowrate, to calculate and

to calculate we need From the ideal gas equation

of state

 � 1.02 kg�m3

 r1 �
p1

RT1

�
178.5 kPa2 11000 Pa�kPa2 311N�m22�Pa 4

1286.9 J�kg # K2 1268 K2 11 N # m�J2

r1.m
#

� r1A1u1,

Fth,m
#
,

Fth � �p1A1 � p2A2 � m
#
1u2 � u12

Fth,

m
#
1u2 � u12 � p1A1 � p2A2 � Fth

m
#

� m
#

1 � r1A1u1 � m
#

2 � r2A2u2

� 1  p2 � patm2A2 � Fth

1�u12 1�m
#

12 � 1�u22 1�m
#

22 � 1  p1 � patm2A1

� patm 1A1 � A22

�
cs

 urV � n̂ dA � p1A1 � Fth � p2A2

F I G U R E  E5.15

Control volume

Section (1)

Section (2)

p1A1
p2A2

patm(A1 – A2)

u1

Fth

u2

z

x u

F l u i d s  i n  t h e  N e w s

Bow thrusters In the past, large ships required the use of tugboats

for precise maneuvering, especially when docking. Nowadays,

most large ships (and many moderate to small ones as well) are

equipped with bow thrusters to help steer in close quarters. The

units consist of a mechanism (usually a ducted propeller mounted

at right angles to the fore/aft axis of the ship) that takes water from

one side of the bow and ejects it as a water jet on the other side.

The momentum flux of this jet produces a starboard or port force

on the ship for maneuvering. Sometimes a second unit is installed

in the stern. Initially used in the bows of ferries, these versatile

control devices have became popular in offshore oil servicing

boats, fishing vessels, and larger ocean-going craft. They permit

unassisted maneuvering alongside of oilrigs, vessels, loading plat-

forms, fishing nets, and docks. They also provide precise control at

slow speeds through locks, narrow channels, and bridges, where

the rudder becomes very ineffective. (See Problem 5.69.)

GIVEN A sluice gate across a channel of width b is shown in

the closed and open positions in Figs. E5.16a and E5.16b. 

SOLUTION

Linear Momentum—Nonuniform Pressure

volume used in each case is indicated with dashed lines in Figs.

E5.16a and E5.16b.

EXAMPLE 5.16

We will answer this question by comparing expressions for the

horizontal reaction force, between the gate and the water

when the gate is closed and when the gate is open. The control

Rx,

FIND Is the anchoring force required to hold the gate in place

larger when the gate is closed or when it is open?
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All of the linear momentum examples considered thus far have involved stationary and non-

deforming control volumes which are thus inertial because there is no acceleration. A nondeform-

ing control volume translating in a straight line at constant speed is also inertial because there is

no acceleration. For a system and an inertial, moving, nondeforming control volume that are both

coincident at an instant of time, the Reynolds transport theorem 1Eq. 4.232 leads to

(5.23)

When we combine Eq. 5.23 with Eqs. 5.19 and 5.20, we get

(5.24)

When the equation relating absolute, relative, and control volume velocities 1Eq. 5.142 is used with

Eq. 5.24, the result is

(5.25)
0
0t

 �
cv

 1W � Vcv2r dV� � �
cs

 1W � Vcv2rW � n̂ dA � a Fcontents of the
control volume

0
0t

 �
cv

 Vr dV� � �
cs

 VrW � n̂ dA � a Fcontents of the
control volume

D

Dt
 �

sys

 Vr dV� �
0
0t

 �
cv

 Vr dV� � �
cs

 VrW � n̂ dA

212 Chapter 5 ■ Finite Control Volume Analysis

When the gate is closed, the horizontal forces acting on the

contents of the control volume are identified in Fig. E5.16c. Ap-

plication of Eq. 5.22 to the contents of this control volume yields

0 1no flow2

(1)

Note that the hydrostatic pressure force, is used. From

Eq. 1, the force exerted on the water by the gate 1which is equal to

the force necessary to hold the gate stationary2 is

(2)

which is equal in magnitude to the hydrostatic force exerted on

the gate by the water.

When the gate is open, the horizontal forces acting on the con-

tents of the control volume are shown in Fig. E5.16d. Application

of Eq. 5.22 to the contents of this control volume leads to

(3)

Note that because the water at sections (1) and (2) is flowing

along straight, horizontal streamlines, the pressure distribution at

those locations is hydrostatic, varying from zero at the free sur-

face to times the water depth at the bottom of the channel (see

Chapter 3, Section 3.4). Thus, the pressure forces at sections (1)

and (2) (given by the pressure at the centroid times the area) are

and respectively. Also, the frictional force be-

tween the channel bottom and the water is specified as The

surface integral in Eq. 3 is nonzero only where there is flow

across the control surface. With the assumption of uniform veloc-

ity distributions,

(4)

Thus, Eqs. 3 and 4 combine to form

(5)�ru2
1Hb � ru2

2hb � 1
2 
gH2b � Rx � 1

2 
gh2b � Ff

�
cs

 urV � n̂ dA � 1u12r1�u12Hb � 1�u22r1�u22hb

Ff.

gh2b�2,gH2b�2

g

�
cs

 urV � n̂ dA � 1
2 gH2b � Rx � 1

2 gh2b � Ff

Rx � 1
2 
gH2b

gH2b�2,

�
cs

 urV � n̂ dA � 1
2 gH2b � Rx

If the upstream velocity, is much less than so that the

contribution of the incoming momentum flow to the control sur-

face integral can be neglected and from Eq. 5 we obtain

(6)

By using the continuity equation, Eq. (6)

can be rewritten as

(7)

Hence, since , by comparing the expressions for Rx (Eqs.

2 and 7) we conclude that the reaction force between the gate and

the water (and therefore the anchoring force required to hold the

gate in place) is smaller when the gate is open than when it is

closed. (Ans)

u2 7 u1

Rx � 1
2 
�H2b � 1

2 
�h2b � Ff � m

#
1u2 � u12

m
#

� �bHu1 � �bhu2,

Rx � 1
2 
gH2b � 1

2 
gh2b � Ff � ru2

2hb

u2u1,H � h,

F I G U R E  E5.16

H

Control volume

Closed sluice
gate

H

Control volume

Open sluice
gate

h
x

z

u

(a) (b)

Control volume

Water only

Control volume

Water only

u1

Rx

u2

( )1_
2

γ H Hb( )1_
2

γ H Hb

( )1_
2

γ h hbFf
Section

(1)

Section (2)

(c) (d)

Rx

V5.9 Jelly fish

The linear momen-
tum equation can
be written for a
moving control 
volume.
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For a constant control volume velocity, and steady flow in the control volume reference frame,

(5.26)

Also, for this inertial, nondeforming control volume

(5.27)

For steady flow 1on an instantaneous or time-average basis2, Eq. 5.15 gives

(5.28)

Combining Eqs. 5.25, 5.26, 5.27, and 5.28, we conclude that the linear momentum equation for

an inertial, moving, nondeforming control volume that involves steady 1instantaneous or time-

average2 flow is

(5.29)

Example 5.17 illustrates the use of Eq. 5.29.

�
cs

 WrW � n̂ dA � a Fcontents of the
control volume

�
cs

 rW � n̂ dA � 0

�
cs

 1W � Vcv2rW � n̂ dA � �
cs

 WrW � n̂ dA � Vcv�
cs

 rW � n̂ dA

0
0t

 �
cv

 1W � Vcv2r dV� � 0

Vcv,

5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 213

The linear momen-
tum equation for a
moving control vol-
ume involves the
relative velocity.

GIVEN A vane on wheels moves with constant velocity

when a stream of water having a nozzle exit velocity of is

turned by the vane as indicated in Fig. E5.17a. Note that

this is the same moving vane considered in Section 4.4.6

earlier. The speed of the water jet leaving the nozzle is 100 ft�s,

45°

V1

V0

Linear Momentum—Moving Control VolumeEXAMPLE 5.17

F I G U R E  E5.17

Nozzle
V1 V0

A1 = 0.006 ft2
45° Moving

vane

Nozzle
V1 V0

z

x

VCV = V0

�w

Rx

Rz

1 ft Moving
vane

Moving
control
volume

(1)

(2)

(b)

(c)

(a)

and the vane is moving to the right with a constant speed of

20 ft�s.

FIND Determine the magnitude and direction of the force, F,

exerted by the stream of water on the vane surface. 
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214 Chapter 5 ■ Finite Control Volume Analysis

SOLUTION

Combining results we get

or

Also,

where

Thus,

Combining the components we get

The angle of R from the x direction, is

The force of the water on the vane is equal in magnitude but op-

posite in direction from R; thus it points to the right and down at

an angle of from the x direction and is equal in magnitude

to 57.3 lb. (Ans)

COMMENT The force of the fluid on the vane in the x-

direction, , is associated with x-direction motion of the

vane at a constant speed of . Since the vane is not accelerat-

ing, this x-direction force is opposed mainly by a wheel friction

force of the same magnitude. From basic physics we recall that the

power this situation involves is the product of force and speed. Thus,

All of this power is consumed by friction.

 � 0.79 hp

 �
121.8 lb2 120 ft�s2

5501ft � lb2� 1hp � s2

 p � RxV0

20 ft�s
Rx � 21.8 lb

67.6°

a � tan�1
 

Rz

Rx

� tan�1 153 lb�21.8 lb2 � 67.6°

a,

R � 2Rx
2 � Rz

2 � 3 121.8 lb22 � 153 lb22 4 1�2 � 57.3 lb

 � 52.6 lb � 0.37 lb � 53 lb

 � 162.4 lb�ft32 10.006 ft22 11 ft2

 Rz � 11.94 slugs�ft32 180 ft�s221sin 45°2 10.006 ft22

ww � rgA1/

Rz � rW1
21sin 45°2A1 �ww

 � 21.8 lb

 Rx � 11.94 slugs�ft32 180 ft�s2210.006 ft22 11 � cos 45°2

Rx � rW 2
1 A1 11 � cos 45°2

To determine the magnitude and direction of the force, F, exerted

by the water on the vane, we apply Eq. 5.29 to the contents of the

moving control volume shown in Fig. E5.17b. The forces acting

on the contents of this control volume are indicated in 

Fig. E5.17c. Note that since the ambient pressure is atmospheric,

all pressure forces cancel each other out. Equation 5.29 is ap-

plied to the contents of the moving control volume in component

directions. For the x direction 1positive to the right2, we get

or

(1)

where

For the vertical or z direction 1positive up2 we get

or

(2)

We assume for simplicity that the water flow is frictionless and that

the change in water elevation across the vane is negligible. Thus,

from the Bernoulli equation 1Eq. 3.72we conclude that the speed of

the water relative to the moving control volume, W, is constant or

The relative speed of the stream of water entering the control vol-

ume, is

The water density is constant so that

Application of the conservation of mass principle to the contents

of the moving control volume 1Eq. 5.162 leads to

m
#

1 � r1W1A1 � r2W2A2 � m
#

2

r1 � r2 � 1.94 slugs�ft3

W1 � V1 � V0 � 100 ft�s � 20 ft�s � 80 ft�s � W2

W1,

W1 � W2

1�W2 sin 45°2 1�m
#

22 � Rz �ww

�
cs

 
Wz rW � n̂ dA � Rz �ww

m
#

1 � r1W1A1  and  m
#

2 � r2W2A2.

1�W12 1�m
#

12 � 1�W2 cos 45°2 1�m
#

22 � �Rx

�
cs

 
Wx r W � n̂ dA � �Rx

It is clear from the preceding examples that a flowing fluid can be forced to

1. change direction

2. speed up or slow down

3. have a velocity profile change

4. do only some or all of the above

5. do none of the above

A net force on the fluid is required for achieving any or all of the first four above. The forces

on a flowing fluid balance out with no net force for the fifth.

Typical forces considered in this book include

(a) pressure

(b) friction

(c) weight
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and involve some type of constraint such as a vane, channel, or conduit to guide the flowing fluid.

A flowing fluid can cause a vane, channel or conduit to move. When this happens, power is pro-

duced.

The selection of a control volume is an important matter. For determining anchoring forces,

consider including fluid and its constraint in the control volume. For determining force between a

fluid and its constraint, consider including only the fluid in the control volume.

5.2.3 Derivation of the Moment-of-Momentum Equation2

In many engineering problems, the moment of a force with respect to an axis, namely, torque, is im-

portant. Newton’s second law of motion has already led to a useful relationship between forces and

linear momentum flow. The linear momentum equation can also be used to solve problems involving

torques. However, by forming the moment of the linear momentum and the resultant force associated

with each particle of fluid with respect to a point in an inertial coordinate system, we will develop a

moment-of-momentum equation that relates torques and angular momentum flow for the contents of

a control volume. When torques are important, the moment-of-momentum equation is often more con-

venient to use than the linear momentum equation.

Application of Newton’s second law of motion to a particle of fluid yields

(5.30)

where V is the particle velocity measured in an inertial reference system, is the particle density,

is the infinitesimally small particle volume, and is the resultant external force acting

on the particle. If we form the moment of each side of Eq. 5.30 with respect to the origin of an

inertial coordinate system, we obtain

(5.31)

where r is the position vector from the origin of the inertial coordinate system to the fluid parti-

cle 1Fig. 5.32. We note that

(5.32)

and

(5.33)

Thus, since

(5.34)

by combining Eqs. 5.31, 5.32, 5.33, and 5.34, we obtain the expression

(5.35)
D

Dt
 3 1r � V2r dV� 4 � r � dFparticle

V � V � 0

Dr
Dt

� V

D

Dt
 3 1r � V2r dV� 4 �

Dr
Dt

� Vr dV� � r �
D1Vr dV�2

Dt

r �
D

Dt
 1Vr dV�2 � r � dFparticle

dFparticledV�
r

D

Dt
 1Vr dV�2 � dFparticle
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2This section may be omitted, along with Sections 5.2.4 and 5.3.5, without loss of continuity in the text material. However, these sec-

tions are recommended for those interested in Chapter 12.

F I G U R E  5.3 Inertial coordinate system.

r

y

x

z

V

dFparticle

The angular mo-
mentum equation is
derived from New-
ton’s second law.
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Equation 5.35 is valid for every particle of a system. For a system 1collection of fluid particles2,
we need to use the sum of both sides of Eq. 5.35 to obtain

(5.36)

where

(5.37)

We note that

(5.38)

since the sequential order of differentiation and integration can be reversed without consequence. 1Re-

call that the material derivative, denotes the time derivative following a given system; see

Section 4.2.1.2 Thus, from Eqs. 5.36 and 5.38 we get

(5.39)

or

The sketch in the margin illustrates what torque, , is. For a control volume that is in-

stantaneously coincident with the system, the torques acting on the system and on the control vol-

ume contents will be identical:

(5.40)

Further, for the system and the contents of the coincident control volume that is fixed and nonde-

forming, the Reynolds transport theorem 1Eq. 4.192 leads to

(5.41)

or

For a control volume that is fixed 1and therefore inertial2 and nondeforming, we combine Eqs. 5.39,

5.40, and 5.41 to obtain the moment-of-momentum equation:

(5.42)

An important category of fluid mechanical problems that is readily solved with the help of

the moment-of-momentum equation 1Eq. 5.422 involves machines that rotate or tend to rotate around

a single axis. Examples of these machines include rotary lawn sprinklers, ceiling fans, lawn mower

blades, wind turbines, turbochargers, and gas turbine engines. As a class, these devices are often

called turbomachines.

5.2.4 Application of the Moment-of-Momentum Equation3

We simplify our use of Eq. 5.42 in several ways:

1. We assume that flows considered are one-dimensional 1uniform distributions of average ve-

locity at any section2.

0
0t

 �
cv

 1r � V2r dV� � �
cs

 1r � V2rV � n̂ dA � a 1r � F2contents of the
control volume

time rate of change time rate of change net rate of flow

of the moment-of- of the moment-of- of the moment-of-

momentum of the � momentum of the � momentum through

system contents of the the control surface

control volume

D

Dt
 �

sys
 1r � V2r dV� �

0
0t

 �
cv

 1r � V2r dV� � �
cs

 1r � V2rV � n̂ dA

a 1r � F2sys � a 1r � F2cv

T � r 
 F

the time rate of change of the

moment-of-momentum of the system

� sum of external torques

acting on the system

D

Dt
 �

sys
 1r � V2r d V� � a 1r � F2sys

D1 2�Dt,

D

Dt
 �

sys
 1r � V2r dV� � �

sys

 
D

Dt
 3 1r � V2r dV� 4

a r � dFparticle � a 1r � F2sys

�
sys

 
D

Dt
 3 1r � V2r dV� 4 � a 1r � F2sys
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T
T = r × F

Fr
y

x

z

For a system, the
rate of change of
moment-of-momen-
tum equals the net
torque.

3This section may be omitted, along with Sections 5.2.3 and 5.3.5, without loss of continuity in the text material. However, these sec-

tions are recommended for those interested in Chapter 12.
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2. We confine ourselves to steady or steady-in-the-mean cyclical flows. Thus,

at any instant of time for steady flows or on a time-average basis for cyclical unsteady

flows.

3. We work only with the component of Eq. 5.42 resolved along the axis of rotation.

Consider the rotating sprinkler sketched in Fig. 5.4. Because the direction and magnitude of the flow

through the sprinkler from the inlet [section 112] to the outlet [section 122] of the arm changes, the

water exerts a torque on the sprinkler head causing it to tend to rotate or to actually rotate in the di-

rection shown, much like a turbine rotor. In applying the moment-of-momentum equation 1Eq. 5.422
to this flow situation, we elect to use the fixed and nondeforming control volume shown in Fig. 5.4.

This disk-shaped control volume contains within its boundaries the spinning or stationary sprinkler

head and the portion of the water flowing through the sprinkler contained in the control volume at

an instant. The control surface cuts through the sprinkler head’s solid material so that the shaft torque

that resists motion can be clearly identified. When the sprinkler is rotating, the flow field in the sta-

tionary control volume is cyclical and unsteady, but steady in the mean. We proceed to use the ax-

ial component of the moment-of-momentum equation 1Eq. 5.422 to analyze this flow.

The integrand of the moment-of-momentum flow term in Eq. 5.42,

can be nonzero only where fluid is crossing the control surface. Everywhere else on the control

surface this term will be zero because Water enters the control volume axially through

the hollow stem of the sprinkler at section 112. At this portion of the control surface, the compo-

nent of resolved along the axis of rotation is zero because as illustrated by the figure in the

margin, lies in the plane of section (1), perpendicular to the axis of rotation. Thus, there is

no axial moment-of-momentum flow in at section 112. Water leaves the control volume through

each of the two nozzle openings at section 122. For the exiting flow, the magnitude of the axial

component of is where is the radius from the axis of rotation to the nozzle centerline

and is the value of the tangential component of the velocity of the flow exiting each nozzle asVu2

r2r2Vu2,r � V

r � V
r � V

V � n̂ � 0.

�
cs

 1r � V2rV � n̂ dA

0
0t

 �
cv

 1r � V2r dV� � 0
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Change in moment
of fluid velocity
around an axis can
result in torque and
rotation around
that same axis. 

F I G U R E  5.4 (a) Rotary water
sprinkler. (b) Rotary water sprinkler, plane view.
(c) Rotary water sprinkler, side view.

Control volume

Flow out

Section (1)

Section (2)

Flow out

Flow in

Tshaft

ω

(a)

z

r
θ

eθ Control volume

Section (2)

Section (1)

Tshaft

(b)

W2

U2

V2

W2

U2 = r2ω

ω

r2 V  2

Flow

Control volume

(c)

Section (1)

êz

^
êr

θ

V5.10 Rotating
lawn sprinkler

z

r

r × V

V
(1)
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observed from a frame of reference attached to the fixed and nondeforming control volume. The

fluid velocity measured relative to a fixed control surface is an absolute velocity, V. The velocity

of the nozzle exit flow as viewed from the nozzle is called the relative velocity, W. The absolute

and relative velocities, V and W, are related by the vector relationship

(5.43)

where U is the velocity of the moving nozzle as measured relative to the fixed control surface.

The cross product and the dot product involved in the moment-of-momentum flow term of

Eq. 5.42,

can each result in a positive or negative value. For flow into the control volume, is negative.

For flow out, is positive. The correct algebraic sign to assign the axis component of 

can be ascertained by using the right-hand rule. The positive direction along the axis of rotation is

the direction the thumb of the right hand points when it is extended and the remaining fingers are

curled around the rotation axis in the positive direction of rotation as illustrated in Fig. 5.5. The di-

rection of the axial component of is similarly ascertained by noting the direction of the cross

product of the radius from the axis of rotation, and the tangential component of absolute ve-

locity, Thus, for the sprinkler of Fig. 5.4, we can state that

(5.44)

where, because of mass conservation, is the total mass flowrate through both nozzles. As was

demonstrated in Example 5.7, the mass flowrate is the same whether the sprinkler rotates or not. The

correct algebraic sign of the axial component of can be easily remembered in the following

way: if and U are in the same direction, use and U are in opposite directions, use 

The torque term of the moment-of-momentum equation 1Eq.

5.422 is analyzed next. Confining ourselves to torques acting with respect to the axis of rotation

only, we conclude that the shaft torque is important. The net torque with respect to the axis of ro-

tation associated with normal forces exerted on the contents of the control volume will be very

small if not zero. The net axial torque due to fluid tangential forces is also negligibly small for the

control volume of Fig. 5.4. Thus, for the sprinkler of Fig. 5.4

(5.45)

Note that we have entered as a positive quantity in Eq. 5.45. This is equivalent to assuming

that is in the same direction as rotation.

For the sprinkler of Fig. 5.4, the axial component of the moment-of-momentum equation 1Eq.

5.422 is, from Eqs. 5.44 and 5.45

(5.46)

We interpret being a negative quantity from Eq. 5.46 to mean that the shaft torque actually

opposes the rotation of the sprinkler arms as shown in Fig. 5.4. The shaft torque, opposes

rotation in all turbine devices.

Tshaft,

Tshaft

�r2Vu2m
#

� Tshaft

Tshaft

Tshaft

a B1r � F2contents of the
control volume

R
 axial

� Tshaft

3 g  1r � F2contents of the control volume 4
�.�; if VuVu

r � V

m
#

c �
cs

 1r � V2rV � n̂ dA d
axial

� 1�r2Vu22 1�m
#
2

Vuêu.
rêr,

r � V

r � VV � n̂
V � n̂

�
cs

 1r � V2rV � n̂ dA

V � W � U
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F I G U R E  5.5 Right-hand rule convention.

The algebraic sign
of r � V is obtained
by the right-hand
rule.

+
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We could evaluate the shaft power, associated with shaft torque, , by forming the

product of and the rotational speed of the shaft, [We use the notation that

Thus, from Eq. 5.46 we get

(5.47)

Since is the speed of each sprinkler nozzle, U, we can also state Eq. 5.47 in the form

(5.48)

Shaft work per unit mass, is equal to Dividing Eq. 5.48 by the mass flowrate,

we obtain

(5.49)

Negative shaft work as in Eqs. 5.47, 5.48, and 5.49 is work out of the control volume, that is, work

done by the fluid on the rotor and thus its shaft.

The principles associated with this sprinkler example can be extended to handle most sim-

plified turbomachine flows. The fundamental technique is not difficult. However, the geometry of

some turbomachine flows is quite complicated.

Example 5.18 further illustrates how the axial component of the moment-of-momentum equa-

tion 1Eq. 5.462 can be used.

wshaft � �U2Vu2

m
#
,W

#
shaft�m

#
.wshaft,

W
#

shaft � �U2Vu2m
#

r2v

W
#

shaft � Tshaft v � �r2Vu2m
#
 v

W � work, 1 # 2 � d1 2�dt, and thus W
#

� power. 4
v.Tshaft

TshaftW
#

shaft,
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Power is equal to
angular velocity
times torque.

V5.11 Impulse-type
lawn sprinkler

GIVEN Water enters a rotating lawn sprinkler through its base

at the steady rate of 1000 ml/s as sketched in Fig. E5.18a. The exit

area of each of the two nozzles is 30 mm2 and the flow leaving each

nozzle is in the tangential direction. The radius from the axis of ro-

tation to the centerline of each nozzle is 200 mm.

FIND (a) Determine the resisting torque required to hold the

sprinkler head stationary.

(b) Determine the resisting torque associated with the sprinkler

rotating with a constant speed of 500 rev/min.

(c) Determine the speed of the sprinkler if no resisting torque is

applied.

SOLUTION

F I G U R E  E5.18

Moment-of-Momentum—Torque

Control volume

Flow out
Flow out

Tshaft

Q = 1000 ml/s

r2 =
200 mm

Nozzle exit
area = 30 mm2

(a)

(b)

V2
V2 = V  2θ

V1

(c)

W2
W2

V1

U2
V2

ω

V2 = V  2θ
U2 = r2ω

EXAMPLE 5.18

To solve parts (a), (b), and (c) of this example we can use the

same fixed and nondeforming, disk-shaped control volume illus-

trated in Fig. 5.4. As indicated in Fig. E5.18a, the only axial

torque considered is the one resisting motion, Tshaft.

(a) When the sprinkler head is held stationary as specified in part

(a) of this example problem, the velocities of the fluid entering and

leaving the control volume are shown in Fig. E5.18b. Equation

5.46 applies to the contents of this control volume. Thus,

(1)

Since the control volume is fixed and nondeforming and the flow

exiting from each nozzle is tangential,

(2)

Equations 1 and 2 give

(3)Tshaft � �r2V2m
#

V�2 � V2

Tshaft � �r2V�2m
#
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When the moment-of-momentum equation 1Eq. 5.422 is applied to a more general, one-

dimensional flow through a rotating machine, we obtain

(5.50)Tshaft � 1�m
#

in2 1	rinVuin2 � m
#

out1	routVuout2

220 Chapter 5 ■ Finite Control Volume Analysis

In Example 5.7, we ascertained that V2 � 16.7 m/s. Thus, from

Eq. 3 with

we obtain

or

(Ans)

(b) When the sprinkler is rotating at a constant speed of 500

rpm, the flow field in the control volume is unsteady but cyclical.

Thus, the flow field is steady in the mean. The velocities of the flow

entering and leaving the control volume are as indicated in Fig.

E5.18c. The absolute velocity of the fluid leaving each nozzle, V2,

is from Eq. 5.43,

(4)

where

as determined in Example 5.7. The speed of the nozzle, U2, is ob-

tained from

(5)

Application of the axial component of the moment-of-momentum

equation (Eq. 5.46) leads again to Eq. 3. From Eqs. 4 and 5,

or

Thus, using Eq. 3, with (as calculated previ-

ously), we get

or

(Ans)

COMMENT Note that the resisting torque associated with

sprinkler head rotation is much less than the resisting torque that

is required to hold the sprinkler stationary.

Tshaft � �1.24 N � m

Tshaft � �
1200 mm2 16.2 m/s2 0.999 kg/s 31 1N/kg2/ 1m/s22 4

11000 mm/m2

m
#

� 0.999 kg/s

V2 � 16.7 m/s � 10.5 m/s � 6.2 m/s

 � 16.7 m/s �
1200 mm2 1500 rev/min2 12� rad/rev2

11000 mm/m2 160 s/min2

 V2 � 16.7 m/s � r2�

U2 � r2�

W2 � 16.7 m/s

V2 � W2 � U2

Tshaft � �3.34 N � m

Tshaft � �
1200 mm2 116.7 m/s2 10.999 kg/s2 31 1N/kg2/ 1m/s22 4

11000 mm/m2

 � 0.999 kg/s

 m
#

� Q� �
11000 ml/s2 110�3 m3/liter2 1999 kg/m32

11000 ml/liter2

(c) When no resisting torque is applied to the rotating sprinkler

head, a maximum constant speed of rotation will occur as demon-

strated below. Application of Eqs. 3, 4, and 5 to the contents of the

control volume results in

(6)

For no resisting torque, Eq. 6 yields

Thus,

(7)

In Example 5.4, we learned that the relative velocity of the

fluid leaving each nozzle, W2, is the same regardless of the speed

of rotation of the sprinkler head, �, as long as the mass flowrate

of the fluid, , remains constant. Thus, by using Eq. 7 we obtain

or

(Ans)

For this condition (Tshaft � 0), the water both enters and leaves the

control volume with zero angular momentum.

COMMENT Note that forcing a change in direction of a

flowing fluid, in this case with a sprinkler, resulted in rotary mo-

tion and a useful “sprinkling” of water over an area.

By repeating the calculations for various values of the angular

velocity, , the results shown in Fig. E5.18d are obtained. It is seen

that the magnitude of the resisting torque associated with rotation is

less than the torque required to hold the rotor stationary. Even in the

absence of a resisting torque, the rotor maximum speed is finite.

v

� �
183.5 rad/s2 160 s/min2

2 � rad/rev
� 797 rpm

� �
W2

r2

�
116.7 m/s2 11000 mm/m2

1200 mm2
� 83.5 rad/s

m
#

� �
W2

r2

0 � �r21W2 � r2�2m
#

Tshaft � �r21W2 � r2�2m
#

T
S

ha
ft

 ,  
N

 .
 m

–0.5

0

–1

–1.5

–2

–2.5

–3

–3.5

–4

ω,   rpm

200 400 6000 800

F I G U R E  E5.18d
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by applying the same kind of analysis used with the sprinkler of Fig. 5.4. The is used with

mass flowrate into the control volume, and the is used with mass flowrate out of the

control volume, to account for the sign of the dot product, involved. Whether

is used with the product depends on the direction of A simple way to

determine the sign of the product is to compare the direction of and the blade speed, U. As

shown in the margin, if and U are in the same direction, then the product is positive. If 

and U are in opposite directions, the product is negative. The sign of the shaft torque is

is in the same direction along the axis of rotation as , and otherwise.

The shaft power, is related to shaft torque, by

(5.51)

Thus, using Eqs. 5.50 and 5.51 with a sign for in Eq. 5.50, we obtain

(5.52)

or since 

(5.53)

The is used for the product when U and are in the same direction; the 

is used when U and are in opposite directions. Also, since was used to obtain Eq. 5.53,

when is positive, power is into the fluid 1for example, a pump2, and when is negative,

power is out of the fluid 1for example, a turbine2.
The shaft work per unit mass, can be obtained from the shaft power, by divid-

ing Eq. 5.53 by the mass flowrate, By conservation of mass,

From Eq. 5.53, we obtain

(5.54)

The application of Eqs. 5.50, 5.53, and 5.54 is demonstrated in Example 5.19. More exam-

ples of the application of Eqs. 5.50, 5.53, and 5.54 are included in Chapter 12.

wshaft � �1	UinVuin2 � 1	UoutVuout2

m
#

� m
#

in � m
#

out

m
#
.

W
#
shaft,wshaft,

W
#
shaftW

#
shaft

�TshaftVu

“�”VuUVu“�”

W
#

shaft � 1�m
#

in2 1	UinVuin2 � m
#

out1	UoutVuout2

rv � U

W
#

shaft � 1�m
#

in2 1	rinvVuin2 � m
#

out1	routvVuout2

Tshaft“�”

W
#

shaft � Tshaft v

Tshaft,W
#

shaft,

“�”v“�” if Tshaft

rVu

VurVuVu

VurVu

1r � V2axial.rVu“�” or “�”

V � n̂,m
#

out,

“�”m
#

in,

“�”
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rV� > 0

r�

U
Vr

V

VW

rV� < 0 V

r

U

Vr

VW

When shaft torque
and shaft rotation
are in the same
(opposite) direc-
tion, power is into
(out of) the fluid.

GIVEN An air fan has a bladed rotor of 12-in. outside di-

ameter and 10-in. inside diameter as illustrated in Fig.

E5.19a. The height of each rotor blade is constant at 1 in.

from blade inlet to outlet. The flowrate is steady, on a time-

average basis, at 230 ft3/min and the absolute velocity of the

air at blade inlet, V1, is radial. The blade discharge angle is

30� from the tangential direction. The rotor rotates at a con-

stant speed of 1725 rpm.

FIND Estimate the power required to run the fan.

SOLUTION

Moment-of-Momentum—Power

From Eq. 1 we see that to calculate fan power, we need mass

flowrate, , rotor exit blade velocity, U2, and fluid tangential ve-

locity at blade exit, V�2. The mass flowrate, , is easily obtained

from Eq. 5.6 as

(2)

Often, problems involving fans are solved using English Engi-

neering units. Since 1slug � 32.174 lbm, we could have used as

the density of air 

� 0.0766 lbm�ft3.

rair � 12.38 
 10�3 slug�ft32 132.174lbm�slug2

 � 0.00912 slug/s

m
#

� �Q �
12.38 
 10�3 slug/ft32 1230 ft3/min2

160 s/min2

m
#m

#

EXAMPLE 5.19

We select a fixed and nondeforming control volume that includes

the rotating blades and the fluid within the blade row at an instant, as

shown with a dashed line in Fig. E5.19a. The flow within this con-

trol volume is cyclical, but steady in the mean. The only torque we

consider is the driving shaft torque, Tshaft. This torque is provided by

a motor. We assume that the entering and leaving flows are each rep-

resented by uniformly distributed velocities and flow properties.

Since shaft power is sought, Eq. 5.53 is appropriate. Application of

Eq. 5.53 to the contents of the control volume in Fig. E5.19 gives

(1)W
#

shaft � �m
#

11	U1V�12 � m
#

21	U2V�22

0 1V1 is radial2
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Then

The rotor exit blade speed, U2, is

(3)

To determine the fluid tangential speed at the fan rotor exit, V�2,

we use Eq. 5.43 to get

(4)

The vector addition of Eq. 4 is shown in the form of a “velocity

triangle” in Fig. E5.19b. From Fig. E5.19b, we can see that

(5)

To solve Eq. 5 for V�2 we need a value of W2, in addition to the

value of U2 already determined (Eq. 3). To get W2, we recognize

that

(6)

where Vr2 is the radial component of either W2 or V2. Also, us-

ing Eq. 5.6, we obtain

(7)

or since

(8)A2 � 2 �r2h

m
#

� �A2Vr 2

W2 sin 30° � Vr 2

V�2 � U2 � W2 cos 30°

V2 � W2 � U2

 � 90.3 ft/s

U2 � r2� �
16 in.2 11725 rpm2 12� rad/rev2

112 in./ft2 160 s/min2

m
#

�
10.0766 lbm�ft32 1230 ft3�min2

160  s�min2
� 0.294 lbm�s

where h is the blade height, Eqs. 7 and 8 combine to form

(9)

Taking Eqs. 6 and 9 together we get

(10)

Substituting known values into Eq. 10, we obtain

By using this value of W2 in Eq. 5 we get

Equation 1 can now be used to obtain

with BG units.

With EE units

�
10.294 lbm/s2 190.3 ft/s2 164.9 ft/s2

332.174 1lbm � ft2� 1lb�s22 4 3550 1ft � lb2/ 1hp � s2 4
 W

#
shaft

U2V�2 �
10.00912 slug/s2 190.3 ft/s2 164.9 ft/s2

31 1slug � ft/s22/lb 4 3550 1ft � lb2/ 1hp � s2 4
� m

#
 W

#
shaft

 � 90.3 ft/s � 129.3 ft/s2 10.8662 � 64.9 ft/s

 V�2 � U2 � W2 cos 30°

 � 29.3 ft�s

W2 �
1230 ft3�min2 112 in.�ft2 112 in.�ft2
160 s�min22p16 in.2 11 in.2 sin 30°

 �
Q

2pr2h sin 30°

 W2 �
m
#

r2pr2h sin 30°
�

rQ

r2pr2h sin 30°

m
#

� �2�r2hVr 2

ω

Section (1)

Fixed control volume

Tshaft

V1

Section (2)

30°
W2

ω

Tshaft

D2 = 2r2 = 12 in.

D1 = 2r1 = 10 in.

h =
1 in.

Fixed
control volume

W2
Wr2 Vr2

U2

V2

(b)(a)

30° V  2θ

F I G U R E  E5.19
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In either case

(Ans)

COMMENT Note that the “�” was used with the U2V�2

product because U2 and V�2 are in the same direction. This result,

 W
#

shaft � 0.097 hp

0.097 hp, is the power that needs to be delivered through the fan

shaft for the given conditions. Ideally, all of this power would go

into the flowing air. However, because of fluid friction, only some

of this power will produce useful effects (e.g., movement and pres-

sure rise) on the air. How much useful effect depends on the effi-

ciency of the energy transfer between the fan blades and the fluid.

5.3.1 Derivation of the Energy Equation

The first law of thermodynamics for a system is, in words

In symbolic form, this statement is

or

(5.55)

Some of these variables deserve a brief explanation before proceeding further. The total stored

energy per unit mass for each particle in the system, e, is related to the internal energy per unit

mass, the kinetic energy per unit mass, and the potential energy per unit mass, gz, by the

equation

(5.56)

The net rate of heat transfer into the system is denoted with and the net rate of work trans-

fer into the system is labeled Heat transfer and work transfer are considered going into

the system and coming out.

Equation 5.55 is valid for inertial and noninertial reference systems. We proceed to develop

the control volume statement of the first law of thermodynamics. For the control volume that is

coincident with the system at an instant of time

(5.57)

Furthermore, for the system and the contents of the coincident control volume that is fixed and

nondeforming, the Reynolds transport theorem 1Eq. 4.19 with the parameter b set equal to e2 allows

us to conclude that

(5.58)

or in words,

the time rate

of increase

of the total

stored energy

of the system

�

the time rate of in-

crease of the total stored

energy of the contents

of the control volume

�

the net rate of flow

of the total stored energy

out of the control

volume through the

control surface

D

Dt
 �

sys

 er dV� �
0
0t

 �
cv

 er dV� � �
cs

 erV � n̂ dA

1Q
#

net
in

� W
#

net
in

2sys � 1Q
#

net
in

� W
#

net
in

2coincident
control volume

“�”

“�”W
#

net in.

Q
#

net in,

e � ǔ �
V 2

2
� gz

V 2�2,ǔ,

D

Dt
 �

 

sys

 er dV� � 1Q
#

net
in

� W
#

net
in

2sys

D

Dt
 �

sys
 er dV� � aa Q

#
in � a Q

#
outb

sys

� aa W
#

in � a W
#

outb
sys

time rate of net time rate of net time rate of

increase of the energy addition by energy addition by

total stored energy � heat transfer into � work transfer into

of the system the system the system

5.3 First Law of Thermodynamics—The Energy Equation

The first law of
thermodynamics is
a statement of con-
servation of energy.
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Combining Eqs. 5.55, 5.57, and 5.58 we get the control volume formula for the first law of ther-

modynamics:

(5.59)

The total stored energy per unit mass, e, in Eq. 5.59 is for fluid particles entering, leaving, and

within the control volume. Further explanation of the heat transfer and work transfer involved in

this equation follows.

The heat transfer rate, represents all of the ways in which energy is exchanged between

the control volume contents and surroundings because of a temperature difference. Thus, radiation,

conduction, and/or convection are possible. As shown by the figure in the margin, heat transfer

into the control volume is considered positive, heat transfer out is negative. In many engineering

applications, the process is adiabatic; the heat transfer rate, is zero. The net heat transfer rate,

can also be zero when 

The work transfer rate, also called power, is positive when work is done on the contents

of the control volume by the surroundings. Otherwise, it is considered negative. Work can be trans-

ferred across the control surface in several ways. In the following paragraphs, we consider some

important forms of work transfer.

In many instances, work is transferred across the control surface by a moving shaft. In rotary

devices such as turbines, fans, and propellers, a rotating shaft transfers work across that portion of

the control surface that slices through the shaft. Even in reciprocating machines like positive dis-

placement internal combustion engines and compressors that utilize piston-in-cylinder arrangements,

a rotating crankshaft is used. Since work is the dot product of force and related displacement, rate

of work 1or power2 is the dot product of force and related displacement per unit time. For a rotat-

ing shaft, the power transfer, is related to the shaft torque that causes the rotation, and

the angular velocity of the shaft, by the relationship

When the control surface cuts through the shaft material, the shaft torque is exerted by shaft ma-

terial at the control surface. To allow for consideration of problems involving more than one shaft

we use the notation

(5.60)

Work transfer can also occur at the control surface when a force associated with fluid nor-

mal stress acts over a distance. Consider the simple pipe flow illustrated in Fig. 5.6 and the con-

trol volume shown. For this situation, the fluid normal stress, is simply equal to the negative of

fluid pressure, p, in all directions; that is,

(5.61)

This relationship can be used with varying amounts of approximation for many engineering prob-

lems 1see Chapter 62.
The power transfer, , associated with a force F acting on an object moving with velocity V

is given by the dot product . This is illustrated by the figure in the margin. Hence, the power

transfer associated with normal stresses acting on a single fluid particle, can be evalu-

ated as the dot product of the normal stress force, and the fluid particle velocity, V, as

If the normal stress force is expressed as the product of local normal stress, and

fluid particle surface area, the result is

For all fluid particles on the control surface of Fig. 5.6 at the instant considered, power transfer

due to fluid normal stress, is

(5.62)W
#

normal
stress

� �
cs

 sV � n̂ dA � �
cs

 �pV � n̂ dA

W
#

normal stress,

dW
#

normal stress � sn̂ dA � V � �pn̂ dA � V � �pV � n̂ dA

n̂ dA,

s � �p,

dW
#

normal stress � dFnormal stress � V

dFnormal stress,

dW
#

normal stress,

F � V
W
#

s � �p

s,

W
#

shaft
net in

� aW
#

shaft
in

� aW
#

shaft
out

W
#

shaft � Tshaftv

v,

Tshaft,W
#

shaft,

W
#
,

g  Q
#

in � g  Q
#

out � 0.Q
#

net in,

Q
#
,

Q
#
,

0
0t

 �
cv

 er dV� � �
cs

 erV � n̂ dA � 1Q
#

net
in

� W
#

net
in

2cv
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The energy equa-
tion involves stored
energy and heat
and work transfer.

Control Volume

Q
•

4

Q
•

2
Q
•

3

Q
•

1

Q
•

net = Q
•

1 + Q
•

2 – Q
•

3 – Q
•

4
in

V

F
θ

W
•    

= F•V
= FV cosθ
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Note that the value of for particles on the wetted inside surface of the pipe is zero be-

cause is zero there. Thus, can be nonzero only where fluid enters and leaves the

control volume. Although only a simple pipe flow was considered, Eq. 5.62 is quite general and

the control volume used in this example can serve as a general model for other cases.

Work transfer can also occur at the control surface because of tangential stress forces. Ro-

tating shaft work is transferred by tangential stresses in the shaft material. For a fluid particle, shear

stress force power, can be evaluated as the dot product of tangential stress force,

and the fluid particle velocity, V. That is,

For the control volume of Fig. 5.6, the fluid particle velocity is zero everywhere on the wetted in-

side surface of the pipe. Thus, no tangential stress work is transferred across that portion of the

control surface. Furthermore, if we select the control surface so that it is perpendicular to the fluid

particle velocity, then the tangential stress force is also perpendicular to the velocity. Therefore,

the tangential stress work transfer is zero on that part of the control surface. This is illustrated in

the figure in the margin. Thus, in general, we select control volumes like the one of Fig. 5.6 and

consider fluid tangential stress power transfer to be negligibly small.

Using the information we have developed about power, we can express the first law of ther-

modynamics for the contents of a control volume by combining Eqs. 5.59, 5.60, and 5.62 to obtain

(5.63)

When the equation for total stored energy 1Eq. 5.562 is considered with Eq. 5.63, we obtain the

energy equation:

(5.64)

5.3.2 Application of the Energy Equation

In Eq. 5.64, the term represents the time rate of change of the total stored energy,

e, of the contents of the control volume. This term is zero when the flow is steady. This term is

also zero in the mean when the flow is steady in the mean 1cyclical2.
In Eq. 5.64, the integrand of

can be nonzero only where fluid crosses the control surface Otherwise, is zero

and the integrand is zero for that portion of the control surface. If the properties within parenthe-

ses, and gz, are all assumed to be uniformly distributed over the flow cross-sectional

areas involved, the integration becomes simple and gives

(5.65)� a
flow

in

 aǔ �
p
r

�
V 2

2
� gzb m

#

�
cs

 aǔ �
p
r

�
V 2

2
� gzb rV � n̂ dA � a

flow
out

 aǔ �
p
r

�
V 2

2
� gzb m

#

ǔ, p�r, V 2�2,

V � n̂1V � n̂ � 02.

�
cs

 aǔ �
p
r

�
V 2

2
� gzb rV � n̂ dA

0�0t �cv
 er dV�

0
0t

 �
cv

 er dV� � �
cs

 aǔ �
p
r

�
V 2

2
� gzb rV � n̂ dA � Q

#
net
in

� W
#

shaft
net in

0
0t

 �
cv

 er dV� � �
cs

 erV � n̂ dA � Q
#

net
in

� W
#

shaft
net in

� �
cs

 pV � n̂ dA

dW
#

tangential stress � dFtangential stress � V

dFtangential stress,

dW
#

tangential stress,

W
#

normal stressV � n̂
W
#

normal stress
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F I G U R E  5.6 Simple, fully
developed pipe flow.

R
r

Section (1) Control volume Section (2) Pipe

umax umax

u1 = umax  1 -  r  2

                 
_
R( )[ ] u2 = umax  1 -  r  2

                 
_
R( )[ ]

Work is transferred
by rotating shafts,
normal stresses,
and tangential
stresses.

n̂

V

p
τ

W
•

tangential stress = 0δ
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Furthermore, if there is only one stream entering and leaving the control volume, then

(5.66)

Uniform flow as described above will occur in an infinitesimally small diameter streamtube as il-

lustrated in Fig. 5.7. This kind of streamtube flow is representative of the steady flow of a particle

of fluid along a pathline. We can also idealize actual conditions by disregarding nonuniformities

in a finite cross section of flow. We call this one-dimensional flow and although such uniform flow

rarely occurs in reality, the simplicity achieved with the one-dimensional approximation often jus-

tifies its use. More details about the effects of nonuniform distributions of velocities and other fluid

flow variables are considered in Section 5.3.4 and in Chapters 8, 9, and 10.

If shaft work is involved, the flow must be unsteady, at least locally 1see Refs. 1 and 22. The

flow in any fluid machine that involves shaft work is unsteady within that machine. For example,

the velocity and pressure at a fixed location near the rotating blades of a fan are unsteady. How-

ever, upstream and downstream of the machine, the flow may be steady. Most often shaft work is

associated with flow that is unsteady in a recurring or cyclical way. On a time-average basis for

flow that is one-dimensional, cyclical, and involves only one stream of fluid entering and leaving

the control volume, Eq. 5.64 can be simplified with the help of Eqs. 5.9 and 5.66 to form

(5.67)

We call Eq. 5.67 the one-dimensional energy equation for steady-in-the-mean flow. Note that Eq. 5.67

is valid for incompressible and compressible flows. Often, the fluid property called enthalpy, where

(5.68)

is used in Eq. 5.67. With enthalpy, the one-dimensional energy equation for steady-in-the-mean

flow 1Eq. 5.672 is

(5.69)

Equation 5.69 is often used for solving compressible flow problems. Examples 5.20 and 5.21

illustrate how Eqs. 5.67 and 5.69 can be used.

m
#
c ȟout � ȟin �

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
in

� W
#

shaft
net in

ȟ � ǔ �
p
r

ȟ,

m
#
c ǔout � ǔin � a

p
r
b

out

� a
p
r
b

in

�
V 2

out � V 2
in

2
� g1zout � zin2 d � Q

#
net
in

� W
#
shaft
net in

aǔ �
p
r

�
V 2

2
� gzb

out

m
#

out � aǔ �
p
r

�
V 2

2
� gzb

in

m
#

in

�
cs

 aǔ �
p
r

�
V 2

2
� gzb rV � n̂ dA �
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F I G U R E  5.7
Streamtube flow.

Streamtube
dA

m•
in

m•
out

V

The energy equa-
tion is sometimes
written in terms of
enthalpy.

GIVEN A pump delivers water at a steady rate of 300 gal/min as

shown in Fig. E5.20. Just upstream of the pump [section (1)]

where the pipe diameter is 3.5 in., the pressure is 18 psi. Just

downstream of the pump [section (2)] where the pipe diameter is

1 in., the pressure is 60 psi. The change in water elevation across

Energy—Pump PowerEXAMPLE 5.20

the pump is zero. The rise in internal energy of water, , as-

sociated with a temperature rise across the pump is 93 ft lb/lbm.

The pumping process is considered to be adiabatic.

FIND Determine the power (hp) required by the pump.

�
ǔ2 � ǔ1
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SOLUTION

Substituting the values of Eqs. 2, 3, and 4 and values from the

problem statement into Eq. 1 we obtain

(Ans)

COMMENT Of the total 32.2 hp, internal energy change ac-

counts for 7.09 hp, the pressure rise accounts for 7.37 hp, and the

kinetic energy increase accounts for 17.8 hp.

  

1

35501ft�lb/s2/hp 4
� 32.2 hp

  �
1123 ft�s22 � 110.0 ft�s22

2 332.174 1lbm�ft2� 1lb�s22 4
d

  �
118 psi2 1144 in.2�ft22

11.94 slugs�ft32 132.174 lbm�slug2

 �
160 psi2 1144 in.2�ft22

11.94 slugs�ft32 132.174 lbm�slug2

� 141.8 lbm�s2 c 193 ft�lb�lbm2shaft
net in

W
#

We include in our control volume the water contained in the pump

between its entrance and exit sections. Application of Eq. 5.67 to

the contents of this control volume on a time-average basis yields

0 (no elevation change)

0 (adiabatic flow)

� (1)

We can solve directly for the power required by the pump,

, from Eq. 1, after we first determine the mass flowrate,

, the speed of flow into the pump, V1, and the speed of the flow

out of the pump, V2. All other quantities in Eq. 1 are given in the

problem statement. From Eq. 5.6, we get

(2)

Also from Eq. 5.6,

so

(3)

and

(4) � 123 ft/s

V2 �
Q

A2

�
1300 gal/min24 112 in./ft22

17.48 gal/ft32 160 s/min2� 11 in.22

 � 10.0 ft/s

V1 �
Q

A1

�
1300 gal/min24 112 in./ft22

17.48 gal/ft32 160 s/min2� 13.5 in.22

V �
Q

A
�

Q

�D2/4

 � 41.8 lbm�s

m
#

� rQ �
11.94 slugs�ft32 1300 gal�min2 132.174 lbm�slug2

17.48 gal�ft32 160 s�min2

m
#W
#

shaft net in

shaft
net in

W
#

net
in

 � Q
#

 m
#
c ǔ2 � ǔ1 � a

p

�
b

2

� a
p

�
b

1

�
V 2

2 � V 2
1

2
� g1z2 � z12 d

F I G U R E  E5.20

Control volume

Section (1)
p1 = 18 psi

u2 – u1 = 93 ft •lb/lbm
^ ^

D1 =
3.5 in. Pump

W
•

shaft = ?

D2 = 1 in.

Q =
300 gal/min.

Section (2)
p2 = 60 psi

GIVEN A steam turbine generator unit used to produce elec-

tricity is shown in Fig. E5.21a. Assume the steam enters a turbine

with a velocity of 30 m/s and enthalpy, , of 3348 kJ/kg (see Fig.

E5.21b). The steam leaves the turbine as a mixture of vapor and

liquid having a velocity of 60 m/s and an enthalpy of 2550 kJ/kg.

The flow through the turbine is adiabatic, and changes in eleva-

tion are negligible. 

FIND Determine the work output involved per unit mass of

steam through-flow.

ȟ1

F I G U R E  E5.21a

Energy—Turbine Power per Unit Mass of FlowEXAMPLE 5.21
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SOLUTION

F I G U R E  E5.21b

Thus,

(Ans)

COMMENT Note that in this particular example, the change

in kinetic energy is small in comparison to the difference in en-

thalpy involved. This is often true in applications involving steam

turbines. To determine the power output, , we must know

the mass flowrate, .m
# W

#
shaft

 � 797 kJ/kg

wshaft
net out

� 3348 kJ�kg � 2550 kJ�kg � 1.35 kJ�kg

Steam turbine

Control volume

Section (1)
V1 = 30 m/s
h1 = 3348 kJ/kg
^

Section (2)
V2 = 60 m/s
h2 = 2550 kJ/kg
^

wshaft = ?

We use a control volume that includes the steam in the turbine

from the entrance to the exit as shown in Fig. E5.21b. Applying

Eq. 5.69 to the steam in this control volume we get

0 (elevation change is negligible)

0 (adiabatic flow)

(1)

The work output per unit mass of steam through-flow, wshaft net in, can

be obtained by dividing Eq. 1 by the mass flow rate, , to obtain

(2)

Since wshaft net out� �wshaft net in, we obtain

or

 �
3 130 m�s22 � 160 m�s22 4 31 J� 1N�m2 4

2 31 1kg�m2� 1N�s22 4 11000 J�kJ2

wshaft
net out

� 3348 kJ�kg � 2550 kJ�kg

wshaft
net out

� ȟ1 � ȟ2 �
V 2

1 � V 2
2

2

wshaft
net in

�

W
#

shaft
net in

m
# � ȟ2 � ȟ1 �

V 2
2 � V 2

1

2

m
#

m
#
c ȟ2 � ȟ1 �

V 2
2 � V 2

1

2
� g1z2 � z12 d � Q

#
net
in

� W
#

shaft
net in

If the flow is steady throughout, one-dimensional, and only one fluid stream is involved, then the

shaft work is zero and the energy equation is

(5.70)

We call Eq. 5.70 the one-dimensional, steady flow energy equation. This equation is valid for in-

compressible and compressible flows. For compressible flows, enthalpy is most often used in the

one-dimensional, steady flow energy equation and, thus, we have

(5.71)

An example of the application of Eq. 5.70 follows.

m
#
c ȟout � ȟin �

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
in

m
#
c ǔout � ǔin � a

p
r
b

out

� a
p
r
b

in

�
V 2

out � V 2
in

2
� g1zout � zin2 d � Q

#
net
in
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V5.12 Pelton wheel
turbine

GIVEN The 420-ft waterfall shown in Fig. E5.22a involves

steady flow from one large body of water to another. 

SOLUTION

Energy—Temperature Change

the change of internal energy of the water, by the rela-

tionship

(1)T2 � T1 �
ǔ2 � ǔ1

č

ǔ2 � ǔ1,

EXAMPLE 5.22

To solve this problem we consider a control volume consisting of

a small cross-sectional streamtube from the nearly motionless

surface of the upper body of water to the nearly motionless sur-

face of the lower body of water as is sketched in Fig. E5.22b. We

need to determine This temperature change is related toT2 � T1.

FIND Determine the temperature change associated with this

flow.
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A form of the energy equation that is most often used to solve incompressible flow prob-

lems is developed in the next section.

5.3.3 Comparison of the Energy Equation with the Bernoulli Equation

When the one-dimensional energy equation for steady-in-the-mean flow, Eq. 5.67, is applied to a

flow that is steady, Eq. 5.67 becomes the one-dimensional, steady-flow energy equation, Eq. 5.70.

The only difference between Eq. 5.67 and Eq. 5.70 is that shaft power, is zero if the

flow is steady throughout the control volume 1fluid machines involve locally unsteady flow2. If in
addition to being steady, the flow is incompressible, we get from Eq. 5.70

(5.72)

Dividing Eq. 5.72 by the mass flowrate, and rearranging terms we obtain

(5.73)
pout

r
�

V 2
out

2
� gzout �

pin

r
�

V 2
in

2
� gzin � 1ǔout � ǔin � qnet

in

2

m
#
,

m
#
c ǔout � ǔin �

pout

r
�

pin

r
�

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
in

W
#
shaft net in,
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where is the specific heat of water. The ap-

plication of Eq. 5.70 to the contents of this control volume leads to

(2)

We assume that the flow is adiabatic. Thus Also,

(3)a
p

r
b

1

� a
p

r
b

2

Q
#

net in � 0.

� Q
#

net
in

m
#
 c ǔ2 � ǔ1 � a

p

r
b

2

� a
p

r
b

1

�
V 22 � V 21

2
� g1z2 � z12 d

č � 1 Btu�1lbm # °R2

because the flow is incompressible and atmospheric pressure pre-

vails at sections 112 and 122. Furthermore,

(4)

because the surface of each large body of water is considered mo-

tionless. Thus, Eqs. 1 through 4 combine to yield

so that with

(Ans)

COMMENT Note that it takes a considerable change of po-

tential energy to produce even a small increase in temperature.

� 0.540 °R

T2 � T1 �
132.2 ft�s22 1420 ft2

3778 ft # lb� 1lbm # °R2 4 332.2 1lbm # ft2� 1lb # s22 4

 � 3778 ft # lb� 1lbm # °R2 4

 č � 31 Btu� 1lbm # °R2 4  1778 ft # lb�Btu2

T2 � T1 �
g1z1 � z22

č

V1 � V2 � 0

F I G U R E  E5.22b

Section (2)

Control
volume

Section (1)

420 ft

F I G U R E  E5.22a
[Photograph of Akaka Falls (Hawaii)
courtesy of Scott and Margaret Jones.]
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where

is the heat transfer rate per mass flowrate, or heat transfer per unit mass. Note that Eq. 5.73 in-

volves energy per unit mass and is applicable to one-dimensional flow of a single stream of fluid

between two sections or flow along a streamline between two sections.

If the steady, incompressible flow we are considering also involves negligible viscous effects

1frictionless flow2, then the Bernoulli equation, Eq. 3.7, can be used to describe what happens be-

tween two sections in the flow as

(5.74)

where is the specific weight of the fluid. To get Eq. 5.74 in terms of energy per unit mass, so

that it can be compared directly with Eq. 5.73, we divide Eq. 5.74 by density, and obtain

(5.75)

A comparison of Eqs. 5.73 and 5.75 prompts us to conclude that

(5.76)

when the steady incompressible flow is frictionless. For steady incompressible flow with friction,

we learn from experience (second law of thermodynamics) that

(5.77)

In Eqs. 5.73 and 5.75, we can consider the combination of variables

as equal to useful or available energy. Thus, from inspection of Eqs. 5.73 and 5.75, we can con-

clude that represents the loss of useful or available energy that occurs in an in-

compressible fluid flow because of friction. In equation form we have

(5.78)

For a frictionless flow, Eqs. 5.73 and 5.75 tell us that loss equals zero.

It is often convenient to express Eq. 5.73 in terms of loss as

(5.79)

An example of the application of Eq. 5.79 follows.

pout

r
�

V 2out

2
� gzout �

pin

r
�

V 2in

2
� gzin � loss

ǔout � ǔin � qnet
in

� loss

ǔout � ǔin � qnet in

p
r

�
V 2

2
� gz

ǔout � ǔin � qnet
in

7 0

ǔout � ǔin � qnet
in

� 0

pout

r
�

V 2
out

2
� gzout �

pin

r
�

V 2
in

2
� gzin

r,

g � rg

pout �
rV 2

out

2
� gzout � pin �

rV 2
in

2
� gzin

qnet
in

�
Q
#

net in

m
#
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Minimizing loss is
the central goal of
fluid mechanical
design.

GIVEN As shown in Fig. E5.23a, air flows from a room

through two different vent configurations: a cylindrical hole in

the wall having a diameter of 120 mm and the same diameter

cylindrical hole in the wall but with a well-rounded entrance.

The room pressure is held constant at 1.0 kPa above atmos-

pheric pressure. Both vents exhaust into the atmosphere. As dis-

cussed in Section 8.4.2, the loss in available energy associated

with flow through the cylindrical vent from the room to the vent

Energy—Effect of Loss of Available EnergyEXAMPLE 5.23

exit is 0.5V2
2/2 where V2 is the uniformly distributed exit veloc-

ity of air. The loss in available energy associated with flow

through the rounded entrance vent from the room to the vent exit

is 0.05V2
2/2, where V2 is the uniformly distributed exit velocity

of air.

FIND Compare the volume flowrates associated with the two

different vent configurations.
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SOLUTION

or

(Ans)

COMMENT By repeating the calculations for various values

of the loss coefficient, KL, the results shown in Fig. E5.23b are

obtained. Note that the rounded entrance vent allows the passage

of more air than does the cylindrical vent because the loss asso-

ciated with the rounded entrance vent is less than that for the

cylindrical one. For this flow the pressure drop, p1 � p2, has two

purposes: (1) overcome the loss associated with the flow, and (2)

produce the kinetic energy at the exit. Even if there were no loss

(i.e., KL � 0), a pressure drop would be needed to accelerate the

fluid through the vent.

Q � 0.372 m3/s

We use the control volume for each vent sketched in Fig. E5.23a.

What is sought is the flowrate, Q � A2V2, where A2 is the vent exit

cross-sectional area, and V2 is the uniformly distributed exit veloc-

ity. For both vents, application of Eq. 5.79 leads to

0 (no elevation change)

(1)

where 1loss2 is the loss between sections (1) and (2). Solving Eq.

1 for V2 we get

(2)

Since

(3)

where KL is the loss coefficient (KL � 0.5 and 0.05 for the two vent

configurations involved), we can combine Eqs. 2 and 3 to get

(4)

Solving Eq. 4 for V2 we obtain

(5)

Therefore, for flowrate, Q, we obtain

(6)

For the rounded entrance cylindrical vent, Eq. 6 gives

or

(Ans)

For the cylindrical vent, Eq. 6 gives us

 
  
B

11.0 kPa2 11000 Pa�kPa2 311N�m22� 1Pa2 4

11.23 kg�m32 3 11 � 0.52�2 4 311N�s22� 1kg�m2 4

 Q �
p1120 mm22

411000 mm �m22
 

 Q � 0.445 m3/s

 
  
B

11.0 kPa2 11000 Pa�kPa2 311N�m22� 1Pa2 4

11.23 kg�m32 3 11 � 0.052�2 4 311N�s22� 1kg�m2 4

Q �
p1120 mm22

411000 mm�m22
 

Q � A2V2 �
pD 2

2

4
 
B

p1 � p2

r 3 11 � KL2�2 4

V2 �
B

p1 � p2

r 3 11 � KL2�2 4

V2 �
B

2 c a
p1 � p2

�
b � KL 

V2
2

2
d

1loss2 � KL 
V2

2

2

V2 �
B

2 c a
p1 � p2

�
b � 1loss2 d

0 1V1 � 02

p2

�
�

V2
2

2
� gz2 �

p1

�
�

V2
1

2
� gz1 � 1loss2

An important group of fluid mechanics problems involves one-dimensional, incompressible,

steady-in-the-mean flow with friction and shaft work. Included in this category are constant density

flows through pumps, blowers, fans, and turbines. For this kind of flow, Eq. 5.67 becomes

(5.80) m
#
c ǔout � ǔin �

pout

r
�

pin

r
�

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
in

� W
#

shaft
net in
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F I G U R E  E5.23a

Control
volume

Section (2)

V2

V2

Section (2)

Control
volume

D2 = 120 mm

D2 = 120 mm

Section (1) for
both vents is

in the room and
involves V1 = 0
p1 = 1.0 kPa

F I G U R E  E5.23b

0.5

0.4

0.3

0.2

0.1

0

Q
, 

m
3
/s

KL

0 0.1 0.2 0.3 0.4 0.5

(0.05, 0.445 m3/s)

(0.5, 0.372 m3/s)
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Dividing Eq. 5.80 by mass flowrate and using the work per unit mass, we 

obtain

(5.81)

If the flow is steady throughout, Eq. 5.81 becomes identical to Eq. 5.73, and the previous observation

that equals the loss of available energy is valid. Thus, we conclude that Eq. 5.81

can be expressed as

(5.82)

This is a form of the energy equation for steady-in-the-mean flow that is often used for incompressible

flow problems. It is sometimes called the mechanical energy equation or the extended Bernoulli equa-

tion. Note that Eq. 5.82 involves energy per unit mass 

According to Eq. 5.82, when the shaft work is into the control volume, as for example with a

pump, a larger amount of loss will result in more shaft work being required for the same rise in avail-

able energy. Similarly, when the shaft work is out of the control volume 1for example, a turbine2, a

larger loss will result in less shaft work out for the same drop in available energy. Designers spend

a great deal of effort on minimizing losses in fluid flow components. The following examples demon-

strate why losses should be kept as small as possible in fluid systems.

ft2�s2 or N # m � m2�s22.1ft # lb�slug �

pout

r
�

V 2out

2
� gzout �

pin

r
�

V 2in

2
� gzin � wshaft

net in

� loss

ǔout � ǔin � qnet in

pout

r
�

V 2
out

2
� gzout �

pin

r
�

V 2
in

2
� gzin � wshaft

net in

� 1ǔout � ǔin � qnet
in

2

wshaft
net in

� W
#

shaft
net in

�m
#
,
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The mechanical 
energy equation
can be written in
terms of energy per
unit mass.

V5.13 Energy 
transfer

GIVEN An axial-flow ventilating fan driven by a motor that

delivers 0.4 kW of power to the fan blades produces a 0.6-m-

diameter axial stream of air having a speed of 12 m/s. The flow

upstream of the fan involves negligible speed.

SOLUTION

F I G U R E  E5.24

Energy—Fan Work and Efficiency

To calculate the efficiency, we need a value of wshaft net in, which is

related to the power delivered to the blades, . We note

that

(4)
wshaft

net in

�

W
#

shaft
net in

m
#

W
#

shaft net in

Fan
motor

Fan

V1 = 0

Section (1)

Stream surface

Control volume
Section (2)

D2 =
0.6 m

V2 = 12 m/s

EXAMPLE 5.24

We select a fixed and nondeforming control volume as is illus-

trated in Fig. E5.24. The application of Eq. 5.82 to the contents of

this control volume leads to

0 (atmospheric pressures cancel) 0 (V1 � 0)

(1)

0 (no elevation change)

where wshaft net in � loss is the amount of work added to the air that

produces a useful effect. Equation 1 leads to

(2) (Ans)

A reasonable estimate of efficiency, �, would be the ratio of

amount of work that produces a useful effect, Eq. 2, to the amount

of work delivered to the fan blades. That is

(3)h �

wshaft
net in � loss

wshaft
net in

� 72.0 N�m/kg

wshaft
net in

� loss �
V 2

2

2
�

112 m�s22

2 311kg�m2� 1N�s22 4

wshaft
net in

� loss � a
p2

�
�

V2
2

2
� gz2b � a

p1

�
�

V2
1

2
� gz1b

FIND Determine how much of the work to the air actually pro-

duces useful effects, that is, fluid motion and a rise in available

energy. Estimate the fluid mechanical efficiency of this fan.
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If Eq. 5.82, which involves energy per unit mass, is multiplied by fluid density, we obtain

(5.83)

where is the specific weight of the fluid. Equation 5.83 involves energy per unit volume and

the units involved are identical with those used for pressure or 

If Eq. 5.82 is divided by the acceleration of gravity, g, we get

(5.84)

where

(5.85)

is the shaft work head and is the head loss. Equation 5.84 involves energy per unit weight
or In Section 3.7, we introduced the notion of “head,” which is energy

per unit weight. Units of length 1for example, ft, m2 are used to quantify the amount of head involved.

If a turbine is in the control volume, is negative because it is associated with shaft work out of

the control volume. For a pump in the control volume, is positive because it is associated with

shaft work into the control volume.

We can define a total head, H, as follows

Then Eq. 5.84 can be expressed as

Hout � Hin � hs � hL

H �
p

g
�

V 2

2g
� z

hs

hs

N # m�N � m2.1ft # lb�lb � ft

hL � loss�g

hs � wshaft net in�g �

W
#

shaft
net in

m
#
g

�

W
#

shaft
net in

gQ

pout

g
�

V 2
out

2g
� zout �

pin

g
�

V 2
in

2g
� zin � hs � hL

N # m�m3 � N�m22.1ft # lb�ft3 � lb�ft2

g � rg

pout �
rV 2

out

2
� gzout � pin �

rV 2
in

2
� gzin � rwshaft

net in

� r1loss2

r,
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where the mass flowrate, , is (from Eq. 5.6)

(5)

For fluid density, �, we use 1.23 kg/m3 (standard air) and, thus,

from Eqs. 4 and 5 we obtain

 
�

10.4 kW2 31000 1Nm2� 1skW2 4

11.23 kg�m32 3 1p2 10.6 m22�4 4 112 m�s2

 
wshaft

net in

�

W
#

shaft
net in

1rpD 2
2�42V2

m
#

� �AV � � 
�D2

2

4
 V2

m
#

or

(6)

From Eqs. 2, 3, and 6 we obtain

(Ans)

COMMENT Note that only 75% of the power that was deliv-

ered to the air resulted in useful effects, and, thus, 25% of the

shaft power is lost to air friction.

� �
72.0 N�m/kg

95.8 N�m/kg
� 0.752

wshaft
net in

� 95.8 N�m/kg

F l u i d s  i n  t h e  N e w s

Curtain of air An air curtain is produced by blowing air through

a long rectangular nozzle to produce a high-velocity sheet of air,

or a “curtain of air.” This air curtain is typically directed over a

doorway or opening as a replacement for a conventional door.

The air curtain can be used for such things as keeping warm air

from infiltrating dedicated cold spaces, preventing dust and other

contaminates from entering a clean environment, and even just

keeping insects out of the workplace, still allowing people to en-

ter or exit. A disadvantage over conventional doors is the added

power requirements to operate the air curtain, although the ad-

vantages can outweigh the disadvantage for various industrial

applications. New applications for current air curtain designs

continue to be developed. For example, the use of air curtains as

a means of road tunnel fire security is currently being investi-

gated. In such an application, the air curtain would act to isolate

a portion of the tunnel where fire has broken out and not allow

smoke and fumes to infiltrate the entire tunnel system. (See

Problem 5.123.)

V5.14 Water plant
aerator

The energy equa-
tion written in
terms of energy 
per unit weight 
involves heads.
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Some important possible values of in comparison to are shown in Fig. 5.8. Note that hL

(head loss) always reduces the value of , except in the ideal case when it is zero. Note also that

hL lessens the effect of shaft work that can be extracted from a fluid. When (ideal condi-

tion) the shaft work head, hs, and the change in total head are the same. This head change is some-

times called “ideal head change.” The corresponding ideal shaft work head is the minimum required

to achieve a desired effect. For work out, it is the maximum possible. Designers usually strive to

minimize loss. In Chapter 12 we learn of one instance when minimum loss is sacrificed for sur-

vivability of fish coursing through a turbine rotor.

hL � 0

Hout

HinHout
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F I G U R E  5.8 Total-head change in
fluid flows.

h L
 =

 0
, 

h s
 =

 0

Hout

Hin

h L
 =

 0
, 

h s
 >

 0

h L
 >

 0
, 

h s
 =

 0

h L
 >

 0
, 

h s
 >

 0

h L
 >

 0
,

h s
 <

 0

h L
 =

 0
,

h s
 <

 0

hs
hs – hL

hs + hL

hs

hL

GIVEN The pump shown in Fig. E5.25a adds 10 horsepower

to the water as it pumps water from the lower lake to the upper

lake. The elevation difference between the lake surfaces is 30 ft

and the head loss is 15 ft. 

FIND Determine 

(a) the flowrate and 

(b) the power loss associated with this flow.

SOLUTION

F I G U R E  E5.25a

Energy—Head Loss and Power Loss

Hence, from Eq. 2,

or

(Ans)

COMMENT Note that in this example the purpose of the

pump is to lift the water (a 30-ft head) and overcome the head loss

(a 15-ft head); it does not, overall, alter the water’s pressure or

velocity.

Q � 1.96 ft3/s

88.1�Q � 15 ft � 30 ft

Control volume

Section (2)

Section (1)
Pump

Flow

Flow

30 ft

EXAMPLE 5.25

(a) The energy equation (Eq. 5.84) for this flow is

(1)

where points 2 and 1 (corresponding to “out” and “in” in Eq.

5.84) are located on the lake surfaces. Thus, and

so that Eq. 1 becomes

(2)

where and The pump head is ob-

tained from Eq. 5.85 as

where is in ft when Q is in ft3/s.hs

 � 88.1�Q
 � 110 hp2 1550 ft #lb�s�hp2�162.4 lb�ft32 Q

 hs � W
#
shaft net in �� Q

hL � 15 ft.z2 � 30 ft, z1 � 0,

hs � hL � z2 � z1

V2 � V1 � 0

p2 � p1 � 0

p2

g
�

V 2
2

2g
� z2 �

p1

g
�

V 2
1

2g
� z1 � hs � hL
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A comparison of the energy equation and the Bernoulli equation has led to the concept of

loss of available energy in incompressible fluid flows with friction. In Chapter 8, we discuss in de-

tail some methods for estimating loss in incompressible flows with friction. In Section 5.4 and

Chapter 11, we demonstrate that loss of available energy is also an important factor to consider in

compressible flows with friction.

5.3 First Law of Thermodynamics—The Energy Equation 235

(b) The power lost due to friction can be obtained from

Eq. 5.85 as

(Ans)

COMMENTS The remaining 

that the pump adds to the water is used to lift the water from the

10 hp � 3.33 hp � 6.67 hp

 � 3.33 hp

 � 1830 ft #lb/s 11 hp�550 ft #lb/s2

 W
#
loss � � QhL � 162.4 lb/ft32 11.96 ft3/s2 115 ft2

lower to the upper lake. This energy is not “lost,” but it is stored

as potential energy.

By repeating the calculations for various head losses, the

results shown in Fig. E5.25b are obtained. Note that as the head

loss increases, the flowrate decreases because an increasing por-

tion of the 10 hp supplied by the pump is lost and, therefore, not

available to lift the fluid to the higher elevation.

hL,

F I G U R E  E5.25b

(15 ft, 1.96 ft3/s)

3.5

3

2.5

2

1.5

1

0.5

0
0 5 10

hL, ft

15 20 25

Q
, 
ft

3
/s

F l u i d s  i n  t h e  N e w s

Smart shocks Vehicle shock absorbers are dampers used to pro-

vide a smooth, controllable ride. When going over a bump, the rel-

ative motion between the tires and the vehicle body displaces a

piston in the shock and forces a viscous fluid through a small ori-

fice or channel. The viscosity of the fluid produces a head loss that

dissipates energy to dampen the vertical motion. Current shocks

use a fluid with fixed viscosity. However, recent technology has

been developed that uses a synthetic oil with millions of tiny iron

balls suspended in it. These tiny balls react to a magnetic field

generated by an electric coil on the shock piston in a manner that

changes the fluid viscosity, going anywhere from essentially no

damping to a solid almost instantly. A computer adjusts the current

to the coil to select the proper viscosity for the given conditions

(i.e., wheel speed, vehicle speed, steering-wheel angle, lateral ac-

celeration, brake application, and temperature). The goal of these

adjustments is an optimally tuned shock that keeps the vehicle on

a smooth, even keel while maximizing the contact of the tires with

the pavement for any road conditions. (See Problem 5.107.)

5.3.4 Application of the Energy Equation to Nonuniform Flows

The forms of the energy equation discussed in Sections 5.3.2 and 5.3.3 are applicable to one-

dimensional flows, flows that are approximated with uniform velocity distributions where fluid

crosses the control surface.
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If the velocity profile at any section where flow crosses the control surface is not uniform,

inspection of the energy equation for a control volume, Eq. 5.64, suggests that the integral

will require special attention. The other terms of Eq. 5.64 can be accounted for as already dis-

cussed in Sections 5.3.2 and 5.3.3.

For one stream of fluid entering and leaving the control volume, we can define the relationship

where is the kinetic energy coefficient and is the average velocity defined earlier in Eq. 5.7.

From the above we can conclude that

for flow through surface area A of the control surface. Thus,

(5.86)

It can be shown that for any velocity profile, with only for uniform flow. Some typical

velocity profile examples for flow in a conventional pipe are shown in the sketch in the margin. There-

fore, for nonuniform velocity profiles, the energy equation on an energy per unit mass basis for the

incompressible flow of one stream of fluid through a control volume that is steady in the mean is

(5.87)

On an energy per unit volume basis we have

(5.88)

and on an energy per unit weight or head basis we have

(5.89)

The following examples illustrate the use of the kinetic energy coefficient.

pout

g
�
aoutV

2
out

2g
� zout �

pin

g
�
ainV

2
in

2g
� zin �

wshaft
net in

g
� hL

pout �
raoutV

2
out

2
� gzout � pin �

rainV
2
in

2
� gzin � rwshaft

net in

� r1loss2

pout

r
�
aoutV

2
out

2
� gzout �

pin

r
�
ainV

2
in

2
� gzin � wshaft

net in

� loss

a � 1a � 1,

a �

�
A

 1V 2�22rV � n̂ dA

m
#
V 2�2

m
#
aV 2

2
� �

A

 
V 2

2
 rV � n̂ dA

Va

�
cs

 
V 2

2
 rV � n̂ dA � m

#
 a
aoutV

2
out

2
�
ainV

2
in

2
b

�
cs

 
V 2

2
 rV � n̂ dA
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The kinetic energy
coefficient is used
to account for non-
uniform flows.

Parabolic
(laminar)

Turbulent

Uniform

� = 2

�    1.08

� = 1

~~

GIVEN The small fan shown in Fig. E5.26 moves air at a

mass flowrate of 0.1 kg�min. Upstream of the fan, the pipe di-

ameter is 60 mm, the flow is laminar, the velocity distribution is

parabolic, and the kinetic energy coefficient, is equal to 2.0.

Downstream of the fan, the pipe diameter is 30 mm, the flow is

turbulent, the velocity profile is quite uniform, and the kinetic

a1,

energy coefficient, is equal to 1.08. The rise in static pres-

sure across the fan is 0.1 kPa and the fan motor draws 0.14 W.

FIND Compare the value of loss calculated: (a) assuming uni-

form velocity distributions, (b) considering actual velocity distri-

butions.

a2,

Energy—Effect of Nonuniform Velocity ProfileEXAMPLE 5.26
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SOLUTION

or

(Ans)

(b) For the actual velocity profiles Eq. 1

gives

(7)

If we use Eqs. 3, 4, and 5 and the given pressure rise, Eq. 7

yields

or

(Ans)

COMMENT The difference in loss calculated assuming uni-

form velocity profiles and actual velocity profiles is not large

compared to for this fluid flow situation.wshaft net in

 � 0.940 N # m�kg

� 0.230 N # m�kg � 1.99 N # m�kg

 loss � 84.0 N # m�kg � 81.3 N # m�kg

 �
210.479 m�s22

2 31 1kg # m2� 1N # s22 4
�

1.0811.92 m�s22

2 31 1kg # m2� 1� # s22 4

 loss � 84 N # m�kg �
10.1 kPa2 11000 Pa�kPa2 11 N�m2�Pa2

1.23 kg�m3

loss � wshaft
net in

� a
p2 � p1

r
b � a1 

V 1
2

2
� a2 

V 2
2

2

1a1 � 2, a2 � 1.082,

 � 0.975 N # m�kg

� 0.115 N # m�kg � 1.84 N # m�kg

 loss � 84.0 N # m�kg � 81.3 N # m�kg

Application of Eq. 5.87 to the contents of the control volume

shown in Fig. E5.26 leads to

0 1change in gz is negligible2

(1)

or solving Eq. 1 for loss we get

(2)

To proceed further, we need values of and These

quantities can be obtained as follows. For shaft work

or

(3)

For the average velocity at section 112, from Eq. 5.11 we obtain

(4)

For the average velocity at section 122,

(5)

(a) For the assumed uniform velocity profiles 

Eq. 2 yields

(6)

Using Eqs. 3, 4, and 5 and the pressure rise given in the problem

statement, Eq. 6 gives

 �
10.479 m�s22

2 31 1kg # m2� 1N # s22 4
�

11.92 m�s22

2 31 1kg # m2� 1N # s22 4

 loss � 84.0 
N # m

kg
�
10.1 kPa2 11000 Pa�kPa2 11 N�m2�Pa2

1.23 kg�m3

loss � wshaft
net in

� a
p2 � p1

r
b �

V 2
1

2
�

V 2
2

2

1.02,1a1 � a2 �

 � 1.92 m�s

 V2 �
10.1 kg�min2 11 min�60 s2 11000 mm�m22

11.23 kg�m32 3p130 mm22�4 4

V2,

 � 0.479 m�s

 �
10.1 kg�min2 11 min�60 s2 11000 mm�m22

11.23 kg�m32 3p160 mm22�4 4

 �
m
#

r1pD2
1�42

 V1 �
m
#

rA1

V1,

� 84.0 N # m�kg

wshaft
net in

�
10.14 W2 3 11 N # m�s2�W 4

0.1 kg�min
 160 s�min2

wshaft
net in

�
power to fan motor

m
#

V2.wshaft net in, V1,

loss � wshaft
net in

� a
p2 � p1

r
b �
a1V

2
1

2
�
a2V

2
2

2

� loss � wshaft
net in

p2

r
�
a2V

2
2

2
� gz2 �

p1

r
�
a1V

2
1

2
� gz1

Control volume

Turbulent
flow

Section (2)
  2 = 1.08α

D2 = 30 mm

D1 = 60 mm

Section (1)
  1 = 2.0α

Laminar flow
m• = 0.1 kg/min

F I G U R E  E5.26
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238 Chapter 5 ■ Finite Control Volume Analysis

GIVEN Consider the flow situation of Example 5.14. 

FIND Apply Eq. 5.87 to develop an expression for the fluid

pressure drop that occurs between sections 112 and 122. By compar-

ing the equation for pressure drop obtained presently with the re-

sult of Example 5.14, obtain an expression for loss between sec-

tions 112 and 122.

Energy—Effect of Nonuniform Velocity ProfileEXAMPLE 5.27

SOLUTION

Now we combine Eqs. 2 and 5 to get

(6)

However, from conservation of mass so that Eq. 6

becomes

(7)

The term associated with change in elevation, is equal

to the weight per unit cross-sectional area, of the water con-

tained between sections 112 and 122 at any instant,

(8)

Thus, combining Eqs. 7 and 8 we get

(9)

The pressure drop between sections 112 and 122 is due to:

1. The change in kinetic energy between sections 112 and 122 as-

sociated with going from a uniform velocity profile to a par-

abolic velocity profile.

2. The weight of the water column, that is, hydrostatic pressure

effect.

3. Viscous loss.

Comparing Eq. 9 for pressure drop with the one obtained in

Example 5.14 1i.e., the answer of Example 5.142 we obtain

(10)

or

(Ans)

COMMENT We conclude that while some of the pipe wall

friction force, resulted in loss of available energy, a portion of

this friction, led to the velocity profile change.rAw 2�6,

Rz,

loss �
Rz

rA
�

w 2

6

rw 2

2
�
w

A
� r1loss2 �

rw 2

3
�

Rz

A
�
w

A

p1 � p2 �
rw 2

2
�
w

A
� r1loss2

rg1z2 � z12 �
w

A

w�A,

rg1z2 � z12,

p1 � p2 �
rw 2

2
� rg1z2 � z12 � r1loss2

w2 � w1 � w

p1 � p2 � r c
2.0w 2

2

2
�

1.0w 1
2

2
� g1z2 � z12 � loss d

Application of Eq. 5.87 to the flow of Example 5.14 1see Fig.

E5.142 leads to

0 1no shaft work2

(1)

Solving Eq. 1 for the pressure drop, we obtain

(2)

Since the fluid velocity at section 112, is uniformly distributed

over cross-sectional area A1, the corresponding kinetic energy

coefficient, is equal to 1.0. The kinetic energy coefficient at

section 122, needs to be determined from the velocity profile

distribution given in Example 5.14. Using Eq. 5.86 we get

(3)

Substituting the parabolic velocity profile equation into Eq. 3 we

obtain

From conservation of mass, since 

(4)

Then, substituting Eq. 4 into Eq. 3, we obtain

or

(5)
� 2

a2 �
16

R2
 �

R

0

 31 � 31r�R22 � 31r�R24 � 1r�R26 4r dr

a2 �

r8w 3
22p�

R

0

 31 � 1r�R22 4 3r dr

rpR2w 3
2

w1 � w2

A1 � A2

a2 �

r �
R

0

 12w12
3 31 � 1r�R22 4 3 2pr dr

1rA2w22w 2
2

a2 �

�
A2

 rw3
2 dA2

m
#
w 2

2

a2,

a1,

w1,

p1 � p2 � r c
a2w

2
2

2
�
a1w 1

2

2
� g1z2 � z12 � loss d

p1 � p2,

p2

r
�
a2w

2
2

2
� gz2 �

p1

r
�
a1w 1

2

2
� gz1 � loss � wshaft

net in

5.3.5 Combination of the Energy Equation 
and the Moment-of-Momentum Equation4

If Eq. 5.82 is used for one-dimensional incompressible flow through a turbomachine, we can use 

Eq. 5.54, developed in Section 5.2.4 from the moment-of-momentum equation 1Eq. 5.422, to evaluate

4This section may be omitted without loss of continuity in the text material. This section should not be considered without prior study

of Sections 5.2.3 and 5.2.4. All of these sections are recommended for those interested in Chapter 12.
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shaft work. This application of both Eqs. 5.54 and 5.82 allows us to ascertain the amount of loss that

occurs in incompressible turbomachine flows as is demonstrated in Example 5.28.

5.4 Second Law of Thermodynamics—Irreversible Flow 239

GIVEN Consider the fan of Example 5.19.

FIND Show that only some of the shaft power into the air

is converted into useful effects. Develop a meaningful effi-

ciency equation and a practical means for estimating lost shaft

energy.

Energy—Fan PerformanceEXAMPLE 5.28

SOLUTION

However, when Eq. 5.54, which was developed from the moment-

of-momentum equation 1Eq. 5.422, is applied to the contents of

the control volume of Fig. E5.19, we obtain

(4)

Combining Eqs. 2, 3, and 4, we obtain

(5) (Ans)

Equation 5 provides us with a practical means to evaluate the ef-

ficiency of the fan of Example 5.19.

Combining Eqs. 2 and 4, we obtain

(6) (Ans)

COMMENT Equation 6 provides us with a useful method of

evaluating the loss due to fluid friction in the fan of Example

5.19 in terms of fluid mechanical variables that can be mea-

sured.

� a
p1

r
�

V 2
1

2
� gz1b d

loss � U2Vu2 � c a
p2

r
�

V 2
2

2
� gz2b

� 3 1p1�r2 � 1V 2
1�22 � gz1 4 6�U2Vu2

h � 5 3 1p2�r2 � 1V 2
2�22 � gz2 4

wshaft
net in

� �U2Vu2

We use the same control volume used in Example 5.19. Applica-

tion of Eq. 5.82 to the contents of this control volume yields

(1)

As in Example 5.26, we can see with Eq. 1 that a “useful effect”

in this fan can be defined as

(2) (Ans)

In other words, only a portion of the shaft work delivered to the

air by the fan blades is used to increase the available energy of the

air; the rest is lost because of fluid friction.

A meaningful efficiency equation involves the ratio of shaft

work converted into a useful effect 1Eq. 22 to shaft work into the

air, Thus, we can express efficiency, as

(3)h �

wshaft
net in � loss

wshaft
net in

h,wshaft net in.

� a
p2

r
�

V 2
2

2
� gz2b � a

p1

r
�

V 1
2

2
� gz1b

useful effect � wshaft
net in

� loss

p2

r
�

V 2
2

2
� gz2 �

p1

r
�

V 2
1

2
� gz1 � wshaft

net in

� loss

The second law of thermodynamics affords us with a means to formalize the inequality

(5.90)

for steady, incompressible, one-dimensional flow with friction 1see Eq. 5.732. In this section we

continue to develop the notion of loss of useful or available energy for flow with friction. Min-

imization of loss of available energy in any flow situation is of obvious engineering impor-

tance.

5.4.1 Semi-infinitesimal Control Volume Statement 
of the Energy Equation

If we apply the one-dimensional, steady flow energy equation, Eq. 5.70, to the contents of a con-

trol volume that is infinitesimally thin as illustrated in Fig 5.8, the result is

(5.91)m
#
 cdǔ � d a

p
r
b � d a

V 2

2
b � g 1dz2 d � dQ

#
net
in

ǔ2 � ǔ1 � qnet
in

� 0

5.4 Second Law of Thermodynamics—Irreversible Flow5

The second law of
thermodynamics
formalizes the no-
tion of loss.

5This entire section may be omitted without loss of continuity in the text material.
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For all pure substances including common engineering working fluids, such as air, water, oil, and

gasoline, the following relationship is valid 1see, for example, Ref. 32.

(5.92)

where T is the absolute temperature and s is the entropy per unit mass.

Combining Eqs. 5.91 and 5.92 we get

or, dividing through by and letting we obtain

(5.93)

5.4.2 Semi-infinitesimal Control Volume Statement 
of the Second Law of Thermodynamics

A general statement of the second law of thermodynamics is

(5.94)

or in words,

The right-hand side of Eq. 5.94 is identical for the system and control volume at the instant when

system and control volume are coincident; thus,

(5.95)

With the help of the Reynolds transport theorem 1Eq. 4.192 the system time derivative can be ex-

pressed for the contents of the coincident control volume that is fixed and nondeforming. Using

Eq. 4.19, we obtain

(5.96)
D

Dt
 �

sys

 sr dV� �
0
0t

 �
cv

 sr dV� � �
cs

 srV � n̂ dA

a a
dQ

#
net
in

T
b
sys

� a a
dQ

#
net
in

T
b

cv

the time rate of increase of the sum of the ratio of net heat

entropy of a system � transfer rate into system to

absolute temperature for each

particle of mass in the system

receiving heat from

surroundings

D

Dt
 �

sys
 sr dV� � a a

dQ
#

net
in

T
b

sys

dp
r

� d a
V 2

2
b � g dz � �1T ds � dqnet

in

2

dqnet
in

� dQ
#

net
in

�m
#
,m

#

m
#
 cT ds � pd a

1

r
b � d a

p
r
b � d a

V 2

2
b � g dz d � dQ

#
net
in

T ds � dǔ � pd a
1

r
b
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F I G U R E  5.9 Semi-infinitesimal control volume.

z

x
θ

θ

�

Flow

d�

Semi-infinitesimal
control volume

g

The second law of
thermodynamics in-
volves entropy, heat
transfer, and tem-
perature.
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For a fixed, nondeforming control volume, Eqs. 5.94, 5.95, and 5.96 combine to give

(5.97)

At any instant for steady flow

(5.98)

If the flow consists of only one stream through the control volume and if the properties are uni-

formly distributed 1one-dimensional flow2, Eqs. 5.97 and 5.98 lead to

(5.99)

For the infinitesimally thin control volume of Fig. 5.8, Eq. 5.99 yields

(5.100)

If all of the fluid in the infinitesimally thin control volume is considered as being at a uniform tem-

perature, T, then from Eq. 5.100 we get

or

(5.101)

The equality is for any reversible 1frictionless2 process; the inequality is for all irreversible 1fric-

tion2 processes.

5.4.3 Combination of the Equations of the First and Second Laws 
of Thermodynamics

Combining Eqs. 5.93 and 5.101, we conclude that

(5.102)

The equality is for any steady, reversible 1frictionless2 flow, an important example being flow for

which the Bernoulli equation 1Eq. 3.7) is applicable. The inequality is for all steady, irreversible

1friction2 flows. The actual amount of the inequality has physical significance. It represents the

extent of loss of useful or available energy which occurs because of irreversible flow phenom-

ena including viscous effects. Thus, Eq. 5.102 can be expressed as

(5.103)

The irreversible flow loss is zero for a frictionless flow and greater than zero for a flow with

frictional effects. Note that when the flow is frictionless, Eq. 5.103 multiplied by density,

is identical to Eq. 3.5. Thus, for steady frictionless flow, Newton’s second law of motion 1see

Section 3.12 and the first and second laws of thermodynamics lead to the same differential

equation,

(5.104)
dp
r

� d a
V 2

2
b � g dz � 0

r,

� c
dp
r

� d a
V 2

2
b � g dz d � d1loss2 � 1T ds � dqnet

in

2

� c
dp
r

� d a
V 2

2
b � g dz d � 0

T ds � dqnet
in

� 0

T ds � dqnet
in

m
#
 ds � a

dQ
#

net
in

T

m
#
1sout � sin2 � a

dQ
#

net
in

T

0
0t

 �
cv

 sr dV� � 0

0
0t

 �
cv

 sr dV� � �
cs

 srV � n̂ dA � a a
dQ

#
net
in

T
b

cv
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The relationship
between entropy
and heat transfer
rate depends on the
process involved.
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If some shaft work is involved, then the flow must be at least locally unsteady in a cyclical

way and the appropriate form of the energy equation for the contents of an infinitesimally thin con-

trol volume can be developed starting with Eq. 5.67. The resulting equation is

(5.105)

Equations 5.103 and 5.105 are valid for incompressible and compressible flows. If we combine

Eqs. 5.92 and 5.103, we obtain

(5.106)

For incompressible flow, and, thus, from Eq. 5.106,

(5.107)

Applying Eq. 5.107 to a finite control volume, we obtain

which is the same conclusion we reached earlier 1see Eq. 5.782 for incompressible flows.

For compressible flow, and thus when we apply Eq. 5.106 to a finite control vol-

ume we obtain

(5.108)

indicating that is not equal to loss.

5.4.4 Application of the Loss Form of the Energy Equation

Steady flow along a pathline in an incompressible and frictionless flow field provides a simple ap-

plication of the loss form of the energy equation 1Eq. 5.1052. We start with Eq. 5.105 and integrate

it term by term from one location on the pathline, section 112, to another one downstream, section

122. Note that because the flow is frictionless, Also, because the flow is steady through-

out, Since the flow is incompressible, the density is constant. The control volume

in this case is an infinitesimally small diameter streamtube 1Fig. 5.72. The resultant equation is

(5.109)

which is identical to the Bernoulli equation 1Eq. 3.72 already discussed in Chapter 3.

If the frictionless and steady pathline flow of the fluid particle considered above was com-

pressible, application of Eq. 5.105 would yield

(5.110)

To carry out the integration required, a relationship between fluid density, and pres-

sure, p, must be known. If the frictionless compressible flow we are considering is adiabatic and in-

volves the flow of an ideal gas, it is shown in Section 11.1 that

(5.111)

where is the ratio of gas specific heats, and which are properties of the fluid. Us-

ing Eq. 5.111 we get

(5.112)�
2

1

 
dp
r

�
k

k � 1
 a

p2

r2

�
p1

r1

b

cv,cpk � cp �cv

p

rk � constant

r,�2

1
 1dp�r2,

�
2

1

 
dp
r

�
V 2

2

2
� gz2 �

V 1
2

2
� gz1

p2

r
�

V 2
2

2
� gz2 �

p1

r
�

V 1
2

2
� gz1

wshaft net in � 0.

loss � 0.

uout � uin � qnet in

ǔout � ǔin � �
out

in

 pd a
1

r
b � qnet

in

 � loss

d11�r2 � 0,

ǔout � ǔin � qnet
in  

� loss

dǔ � dqnet
in

� d1loss2

d11�r2 � 0

dǔ � pd a
1

r
b � dqnet

in

� d1loss2

� c
dp
r

� d a
V 2

2
b � g dz d � d1loss2 � dwshaft

net in
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Zero loss is associ-
ated with the
Bernoulli equation.
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Thus, Eqs. 5.110 and 5.112 lead to

(5.113)

Note that this equation is identical to Eq. 3.24. An example application of Eqs. 5.109 and 5.113

follows.

k

k � 1
 
p2

r2

�
V 2

2

2
� gz2 �

k

k � 1
 
p1

r1

�
V 2

1

2
� gz1

5.4 Second Law of Thermodynamics—Irreversible Flow 243

GIVEN Air steadily expands adiabatically and without friction

from stagnation conditions of 100 psia and to 14.7 psia. 520 °R
FIND Determine the velocity of the expanded air assuming (a)

incompressible flow, (b) compressible flow.

Energy—Comparison of Compressible and Incompressible FlowEXAMPLE 5.29

SOLUTION

or

(4)

Given in the problem statement are values of and A value

of was calculated earlier (Eq. 2). To determine we need to

make use of a property relationship for reversible (frictionless)

and adiabatic flow of an ideal gas that is derived in Chapter 11;

namely,

(5)

where for air. Solving Eq. 5 for we get

or

Then, from Eq. 4, with 

and 

or

(Ans)

COMMENT A considerable difference exists between the air

velocities calculated assuming incompressible and compressible

flow. In Section 3.8.1, a discussion of when a fluid flow may be

appropriately considered incompressible is provided. Basically,

when flow speed is less than a third of the speed of sound in the

fluid involved, incompressible flow may be assumed with only a

small error.

V2 � 1620 ft�s

� 1620 1lb # ft�slug21�2 3 11 slug # ft�s22�lb 4 1�2

V2 �
B

122 11.42

1.4 � 1
  a

14,400 lb�ft2 

0.0161 slug�ft3
�

2117 lb�ft2  

0.00409 slug�ft3
b  

2117 lb�ft2,p2 � 14.7 lb�in.21144 in.2�ft22 �lb�ft2 

p1 � 100 lb�in.21144 in.2�ft22� 14,400

 r2 � 10.0161 slug�ft32 c
14.7 psia

100 psia
d

1�1.4

� 0.00409 slug�ft3

r2 � r1 a
p2

p1

b
1�k

r2k � 1.4

p

rk � constant

r2r1

p2.p1

V2 �
B

 
2k

k � 1
 a

p1

r1

�
p2

r2

b

(a) If the flow is considered incompressible, the Bernoulli equa-

tion, Eq. 5.109, can be applied to flow through an infinitesimal

cross-sectional streamtube, like the one in Fig. 5.7, from the stag-

nation state (1) to the expanded state (2). From Eq. 5.109 we get

0 (1 is the stagnation state)

(1)

0 (changes in gz are negligible for air flow)

or

We can calculate the density at state (1) by assuming that air be-

haves like an ideal gas,

(2)

Thus,

(Ans)

The assumption of incompressible flow is not valid in this case

since for air a change from 100 psia to 14.7 psia would undoubt-

edly result in a significant density change.

(b) If the flow is considered compressible, Eq. 5.113 can be ap-

plied to the flow through an infinitesimal cross-sectional control

volume, like the one in Fig. 5.7, from the stagnation state (1) to

the expanded state (2). We obtain

0 (1 is the stagnation state)

(3)

0 (changes in gz are negligible for air flow)

k

k � 1
 
p2

r2

�
V 2

2

2
� gz2 �

k

k � 1
 
p1

r1

�
V 2

1

2
� gz1

 � 1240 ft�s

 V2 �
B

21100 psia � 14.7 psia2 1144 in.2�ft22

10.016 slug�ft32 31 1lb # s22� 1slug # ft2 4

 � 0.0161 slug/ft3

 r �
p1

RT1

�
(100 psia)(144 in.2/ft2)

(1716 ft # lb/slug # °R)(520 °R)

V2 �
B

2 a
p1 � p2

r
b

 

p2

r
�

V 2
2

2
� gz2 �

p1

r
�

V 2
1

2
� gz1
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244 Chapter 5 ■ Finite Control Volume Analysis

In this chapter the flow of a fluid is analyzed by using important principles including conservation of

mass, Newton’s second law of motion, and the first and second laws of thermodynamics as applied to

control volumes. The Reynolds transport theorem is used to convert basic system-orientated laws

into corresponding control volume formulations.

The continuity equation, a statement of the fact that mass is conserved, is obtained in a

form that can be applied to any flow—steady or unsteady, incompressible or compressible. Sim-

plified forms of the continuity equation enable tracking of fluid everywhere in a control volume,

where it enters, where it leaves, and within. Mass or volume flowrates of fluid entering or leav-

ing a control volume and rate of accumulation or depletion of fluid within a control volume can

be estimated.

The linear momentum equation, a form of Newton’s second law of motion applicable to flow

of fluid through a control volume, is obtained and used to solve flow problems. Net force results

from or causes changes in linear momentum (velocity magnitude and/or direction) of fluid flow-

ing through a control volume. Work and power associated with force can be involved.

The moment-of-momentum equation, which involves the relationship between torque and

changes in angular momentum, is obtained and used to solve flow problems dealing with turbines

(energy extracted from a fluid) and pumps (energy supplied to a fluid).

The steady-state energy equation, obtained from the first law of thermodynamics (conser-

vation of energy), is written in several forms. The first (Eq. 5.69) involves power terms. The sec-

ond form (Eq. 5.82 or 5.84) is termed the mechanical energy equation or the extended Bernoulli

equation. It consists of the Bernoulli equation with extra terms that account for energy losses due

to friction in the flow, as well as terms accounting for the work of pumps or turbines in the flow.

The following checklist provides a study guide for this chapter. When your study of the en-

tire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type

in the text.

select an appropriate control volume for a given problem and draw an accurately labeled con-

trol volume diagram.

use the continuity equation and a control volume to solve problems involving mass or vol-

ume flowrate.

use the linear momentum equation and a control volume, in conjunction with the continuity

equation as necessary, to solve problems involving forces related to linear momentum change.

use the moment-of-momentum equation to solve problems involving torque and related work

and power due to angular momentum change.

use the energy equation, in one of its appropriate forms, to solve problems involving losses

due to friction (head loss) and energy input by pumps or extraction by turbines.

use the kinetic energy coefficient in the energy equation to account for nonuniform flows.

Some of the important equations in this chapter are given below.

Conservation of mass (5.5)

Mass flowrate (5.6)

Average velocity (5.7)

Steady flow mass conservation (5.9)

Moving control volume 

mass conservation
(5.16)

0
0t

 �
cv

 r dV� � �
cs

 rW � n̂ dA � 0

a m
#

out � a m
#
in � 0

V �
�

A

 rV � n̂ dA

rA

m
#

� rQ � rAV

0
0t

 �
cv

 r dV� � �
cs

 rV � n̂ dA � 0

5.5 Chapter Summary and Study Guide

conservation of mass
continuity equation
mass flowrate
linear momentum

equation
moment-of-

momentum
equation

shaft power
shaft torque
first law of 

thermodynamics
heat transfer rate
energy equation
loss
shaft work head
head loss
kinetic energy

coefficient
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Problems 245

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al. (©
2009 John Wiley and Sons, Inc.).

Review Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an (*) are intended to be solved
with the aid of a programmable calculator or a computer.
Problems designated with a (†) are “open-ended” problems
and require critical thinking in that to work them one must
make various assumptions and provide the necessary data.
There is not a unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 5.1.1 Derivation of the Continuity Equation

5.1 Explain why the mass of the contents of a system is constant
with time.

5.2 Explain how the mass of the contents of a control volume can
vary with time or not.

5.3 Explain the concept of a coincident control volume and system
and why it is useful.

5.4 Obtain a photograph/image of a situation for which the con-
servation of mass law is important. Briefly describe the situation
and its relevance.

Problems

Deforming control volume 

mass conservation (5.17)

Force related to change in 

linear momentum                    (5.22)

Moving control volume force related            
(5.29)

to change in linear momentum 

Vector addition of absolute and relative velocities             (5.43)

Shaft torque from force (5.45)

Shaft torque related to change in 
(5.50)moment-of-momentum (angular 

momentum)

Shaft power related to change in 
(5.53)moment-of-momentum (angular 

momentum)

First law of 

thermodynamics (5.64)
(Conservation of

energy)

Conservation of power (5.69)

Conservation of  

mechanical energy (5.82)
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2. Dean, R. C., “On the Necessity of Unsteady Flow in Fluid Machines,” ASME Journal of Basic Engi-
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3. Moran, M. J., and Shapiro, H. N., Fundamentals of Engineering Thermodynamics, 6th Ed., Wiley,
New York, 2008.
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Section 5.1.2 Fixed, Nondeforming Control Volume—
Uniform Velocity Profile or Average Velocity.

5.5 Water enters a cylindrical tank through two pipes at rates of
250 and 100 gal/min (see Fig. P5.5). If the level of the water in the
tank remains constant, calculate the average velocity of the flow
leaving the tank through an 8-in. inside-diameter pipe.

246 Chapter 5 ■ Finite Control Volume Analysis

Section (1)

Section (3)

Section (2)

Q2 = 
250 gal/min

Q1 = 
100 gal/min

D3 = 8 in.

F I G U R E  P5.5

0.08-ft diameter

0.1 ft

Inlet

Blades

0.6 ft
60°

V = 10 ft/s

F I G U R E  P5.6

5.6 Water flows out through a set of thin, closely spaced blades as
shown in Fig. 5.6 with a speed of around the entire cir-
cumference of the outlet. Determine the mass flowrate through the
inlet pipe.

V � 10 ft�s

5.7 The pump shown in Fig. P5.7 produces a steady flow of 10
gal/s through the nozzle. Determine the nozzle exit diameter,
if the exit velocity is to be .V2 � 100 ft�s

D2,

F I G U R E  P5.7

Section (1)

Section (2)

D2

V2 Pump

F I G U R E  P5.8

Three 0.4–in.-diameter
overflow holes Q = 2 gal/min

Drain

5.8 Water flows into a sink as shown in Video V5.1 and Fig. P5.8
at a rate of 2 gallons per minute. Determine the average velocity
through each of the three 0.4-in.-diameter overflow holes if
the drain is closed and the water level in the sink remains
constant.

5.9 The wind blows through a garage door opening
with a speed of 5 ft�s as shown in Fig. P5.9. Determine the average
speed, V, of the air through the two openings in the win-
dows.

3 ft 
 4 ft

7 ft 
 10 ft

10 ft16 ft

22 ft

3 ft 3 ft

V V

5 ft /s

20°

F I G U R E  P5.9

5.10 The human circulatory system consists of a complex branch-
ing pipe network ranging in diameter from the aorta (largest) to the
capillaries (smallest). The average radii and the number of these
vessels is shown in the table below. Does the average blood veloc-
ity increase, decrease, or remain constant as it travels from the aorta
to the capillaries?

Vessel Average Radius, mm Number

Aorta 12.5 1

Arteries 2.0 159

Arterioles 0.03 1.4 
 107

Capillaries 0.006 3.9 
 109 
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5.11 Air flows steadily between two cross sections in a long,
straight section of 0.1-m inside diameter pipe. The static tempera-
ture and pressure at each section are indicated in Fig. P5.11. If the
average air velocity at section 112 is 205 m�s, determine the average
air velocity at section 122.

Problems 247

F I G U R E  P5.11

D = 0.1 m

Section (1) Section (2)

p1 = 77 kPa (abs)
T1 = 268 K
V1 = 205 m/s

p2 = 45 kPa (abs)
T2 = 240 K

5.12 A hydraulic jump (see Video V10.10) is in place downstream
from a spillway as indicated in Fig. P5.12. Upstream of the jump,
the depth of the stream is 0.6 ft and the average stream velocity is
18 ft�s. Just downstream of the jump, the average stream velocity is
3.4 ft�s. Calculate the depth of the stream, h, just downstream of
the jump.

F I G U R E  P5.12

18 ft/s

3.4 ft/s
0.6 ft

h

F I G U R E  P5.13

Wet air
m•  = 156,900 lbm/hr

Warm water
m•  = 250,000 lbm/hr

Dry air
m•  = 151,000 lbm/hr

Cooled
water

F I G U R E  P5.15

Water and
alcohol mix

Water
Q = 0.1 m3/s

Alcohol (SG = 0.8)
Q = 0.3 m3/s

5.13 An evaporative cooling tower (see Fig. P5.13) is used to cool
water from 110 to . Water enters the tower at a rate of

. Dry air (no water vapor) flows into the tower at a
rate of . If the rate of wet air flow out of the tower
is , determine the rate of water evaporation in

and the rate of cooled water flow in .lbm�hrlbm�hr
156,900 lbm�hr

151,000 lbm�hr
250,000 lbm�hr

80°F

5.14 At cruise conditions, air flows into a jet engine at a steady
rate of 65 lbm�s. Fuel enters the engine at a steady rate of 0.60 lbm�s.
The average velocity of the exhaust gases is 1500 ft�s relative to the
engine. If the engine exhaust effective cross-sectional area is

estimate the density of the exhaust gases in lbm�ft3.3.5 ft2,

5.15 Water at 0.1 m3/s and alcohol (SG�0.8) at 0.3 m3/s are mixed
in a y-duct as shown in Fig. 5.15. What is the average density of the
mixture of alcohol and water?

5.16 Freshwater flows steadily into an open 55-gal drum initially
filled with seawater. The freshwater mixes thoroughly with the sea-
water and the mixture overflows out of the drum. If the freshwater
flowrate is 10 gal/min, estimate the time in seconds required to de-
crease the difference between the density of the mixture and the
density of freshwater by 50%.

Section 5.1.2 Fixed, Nondeforming Control Volume—
Nonuniform Velocity Profile

5.17 A water jet pump 1see Fig. P5.172 involves a jet cross-sectional
area of and a jet velocity of 30 m�s. The jet is surrounded by
entrained water. The total cross-sectional area associated with the
jet and entrained streams is These two fluid streams leave
the pump thoroughly mixed with an average velocity of 6 m�s
through a cross-sectional area of Determine the pumping
rate 1i.e., the entrained fluid flowrate2 involved in liters�s.

0.075 m2.

0.075 m2.

0.01 m2,

F I G U R E  P5.17

Entrained
water

Entrained
water

30 m/s
jet

6 m/s

5.18 Two rivers merge to form a larger river as shown in
Fig. P5.18. At a location downstream from the junction 1before the
two streams completely merge2, the nonuniform velocity profile is
as shown and the depth is 6 ft. Determine the value of V.

F I G U R E  P5.18

4 ft/s

3 ft/s

Depth = 3 ft

Depth = 5 ft
80 ft

50 ft

0.8 V

V
70 ft

30 ft
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5.19 Various types of attachments can be used with the shop vac
shown in Video V5.2. Two such attachments are shown in Fig. P5.19
—a nozzle and a brush. The flowrate is (a) Determine the
average velocity through the nozzle entrance, (b) Assume the air
enters the brush attachment in a radial direction all around the brush
with a velocity profile that varies linearly from 0 to along the length
of the bristles as shown in the figure. Determine the value of Vb.

Vb

Vn.
1 ft3/s.

248 Chapter 5 ■ Finite Control Volume Analysis

F I G U R E  P5.19

Q = 1 ft3/s

Q = 1 ft3/s

Vn

2-in. dia.

1.5 in.

3-in. dia.Vb

F I G U R E  P5.23

z

(a)

1 m

1 m

z

(b)

1 m
2 m

1 m

5.20 An appropriate turbulent pipe flow velocity profile is

where centerline velocity, local radius, pipe radius,
and vector along pipe centerline. Determine the ratio of av-
erage velocity, to centerline velocity, for (a) (b)
(c) (d) Compare the different velocity profiles.

5.21 As shown in Fig. P5.21, at the entrance to a 3-ft-wide channel
the velocity distribution is uniform with a velocity V. Further down-
stream the velocity profile is given by where u is in
ft�s and y is in ft. Determine the value of V.

u � 4y � 2y2,

n � 10.n � 8,
n � 6,n � 4,uc,u,

î � unit
R �r �uc �

V � uc a
R � r

R
b

1�n

 î

F I G U R E  P5.22

y

x

z

2

5

5
y

x

z

2

5

5

(a) (b)

5.23 An incompressible flow velocity field (water) is given as

where r is in meters. (a) Calculate the mass flowrate through the
cylindrical surface at m from to m as shown in
Fig.P5.23a. (b) Show that mass is conserved in the annular control
volume from m to m and to m as shown
in Fig. P5.23b.

z � 1z � 0r � 2r � 1

z � 1z � 0r � 1

V � �
1

r
 erˆ �

1

r
euˆ  m�s

5.24 Flow of a viscous fluid over a flat plate surface results in the
development of a region of reduced velocity adjacent to the wetted
surface as depicted in Fig. P5.24. This region of reduced flow is
called a boundary layer. At the leading edge of the plate, the veloc-
ity profile may be considered uniformly distributed with a value U.
All along the outer edge of the boundary layer, the fluid velocity
component parallel to the plate surface is also U. If the x direction
velocity profile at section 122 is

develop an expression for the volume flowrate through the edge of
the boundary layer from the leading edge to a location downstream
at x where the boundary layer thickness is d.

u

U
� a

y

d
b

1�7

F I G U R E  P5.24

U

U

x

δ

Section (1)

Section (2)

Outer edge
of

boundary
layer

F I G U R E  P5.25

Tank volume = 20 ft3
1.2 in.

700 ft/s

0.0035 slugs/ft3

10 ft3/s

Compressor

0.00238 slugs/ft3

Section 5.1.2 Fixed, Nondeforming Control Volume—
Unsteady Flow

5.25 Air at standard conditions enters the compressor shown in Fig.
P5.25 at a rate of It leaves the tank through a 1.2-in.-diame-
ter pipe with a density of and a uniform speed of

. (a) Determine the rate 1slugs s2 at which the mass of air in
the tank is increasing or decreasing. (b) Determine the average time
rate of change of air density within the tank.

�700 ft�s
slugs�ft30.0035

10 ft3�s.

F I G U R E  P5.21

u = 4y – 2y2

x

1 ft
0.75 ft

y

V

5.22 A water flow situation is described by the velocity field equation

where x, y, and z are in feet. (a) Determine the mass flowrate through
the rectangular area in the plane corresponding to feet having
corners at (x, y, z) � (0, 0, 2), (5, 0, 2), (5, 5, 2), and (0, 5, 2) as shown
in Fig P5.22a. (b) Show that mass is conserved in the control volume
having corners at (x, y, z) � (0, 0, 2), (5, 0, 2), (5, 5, 2), (0, 5, 2), (0, 0, 0),
(5, 0, 0), (5, 5, 0), and (0, 5, 0), as shown in Fig. P5.22b.

z � 2

V � 13x � 22 î � 12y � 42 ĵ � 5zk̂ ft�s
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5.26 Estimate the time required to fill with water a cone-shaped
container (see Fig. P5.26) 5 ft high and 5 ft across at the top if the
filling rate is .20  gal�min

Problems 249

F I G U R E  P5.26

5 ft

5 ft

†5.27 Estimate the maximum flowrate of rainwater 1during a heavy
rain2 that you would expect from the downspout connected to the gut-
ters of your house. List all assumptions and show all calculations.

Section 5.1.3 Moving, Nondeforming Control Volume

5.28 For an automobile moving along a highway, describe the con-
trol volume you would use to estimate the flowrate of air across the
radiator. Explain how you would estimate the velocity of that air.

Section 5.1.4 Deforming Control Volume

5.29 A hypodermic syringe (see Fig. P5.29) is used to apply a vac-
cine. If the plunger is moved forward at the steady rate of 20 mm/s
and if vaccine leaks past the plunger at 0.1 of the volume flowrate out
the needle opening, calculate the average velocity of the needle exit
flow. The inside diameters of the syringe and the needle are 20 mm
and 0.7 mm.

F I G U R E  P5.29

Qleak Qout

5.30 The Hoover Dam (see Video V2.4) backs up the Colorado
River and creates Lake Mead, which is approximately 115 miles long
and has a surface area of approximately 225 square miles.  If during
flood conditions the Colorado River flows into the lake at a rate of
45,000 cfs and the outflow from the dam is 8000 cfs, how many feet
per 24-hour day will the lake level rise?

5.31 Storm sewer backup causes your basement to flood at the steady
rate of 1 in. of depth per hour. The basement floor area is
What capacity 1gal�min2 pump would you rent to (a) keep the water
accumulated in your basement at a constant level until the storm sewer
is blocked off, and (b) reduce the water accumulation in your base-
ment at a rate of 3 in.�hr even while the backup problem exists?

5.32 (See Fluids in the News article “New 1.6 gpf standards,”
Section 5.1.2.) When a toilet is flushed, the water depth, h, in the
tank as a function of time, t, is as given in the table. The size of the
rectangular tank is 19 in. by 7.5 in. (a) Determine the volume of
water used per flush, gpf. (b) Plot the flowrate for .0 � t � 6 s

1500 ft2.

t (s) h (in.)

0 5.70
0.5 5.33
1.0 4.80
2.0 3.45
3.0 2.40
4.0 1.50
5.0 0.75
6.0 0 

Section 5.2.1 Derivation of the Linear Momentum
Equation

5.33 What is fluid linear momentum and the “flow” of linear
momentum?

5.34 Explain the physical meaning of each of the terms of the lin-
ear momentum equation (Eq. 5.22).

5.35 What is an inertial control volume?

5.36 Distinguish between body and surface forces.

5.37 Obtain a photograph/image of a situation in which the linear
momentum of a fluid changes during flow from one location to an-
other. Explain briefly how force is involved.

Section 5.2.2 Application of the Linear Momentum
Equation (Also see Lab Problems 5.140, 5.141, 5.142,
and 5.143.)

5.38 A 10-mm diameter jet of water is deflected by a homoge-
neous rectangular block (15 mm by 200 mm by 100 mm) that
weighs 6 N as shown in Video V5.6 and Fig. P5.38. Determine the
minimum volume flowrate needed to tip the block.

F I G U R E  P5.38

0.050 m

0.010 m

0.10 m

0.015 m

Q

5.39 Determine the anchoring force required to hold in place the
conical nozzle attached to the end of the laboratory sink faucet
shown in Fig. P5.39 when the water flowrate is 10 gal/min. The
nozzle weight is 0.2 lb. The nozzle inlet and exit inside diameters
are 0.6 and 0.2 in., respectively. The nozzle axis is vertical and the
axial distance between sections (1) and (2) is 1.2 in. The pressure at
section (1) is 68 psi.

F I G U R E  P5.39

D1 =
0.6 in.

Q = 10 gal/min

1.2 in.

Section (2)

Section (1)

D2 = 0.2 in.

5.40 Water flows through a horizontal, pipe bend as is illus-
trated in Fig. P5.40. The flow cross section area is constant at a value
of . The flow velocity everywhere in the bend is .15 m�s9000 mm2

180°
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The pressures at the entrance and exit of the bend are 210 and 165 kPa,
respectively. Calculate the horizontal (x and y) components of the an-
choring force needed to hold the bend in place.

5.41 Water enters the horizontal, circular cross-sectional, sudden
contraction nozzle sketched in Fig. P5.41 at section 112 with a uni-
formly distributed velocity of 25 ft�s and a pressure of 75 psi. The
water exits from the nozzle into the atmosphere at section 122where
the uniformly distributed velocity is 100 ft�s. Determine the axial
component of the anchoring force required to hold the contraction
in place.
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F I G U R E  P5.40

z

y

x

F I G U R E  P5.41

D1 = 3 in.

p1 = 75 psi
V1 = 25 ft/s

p2 = 
0 psi

V2 = 
100 ft/s

Section (2)

Section (1)

F I G U R E  P5.44

D = 12 in.

Section (1) Section (2)

p1 = 690 kPa (abs)
T1 = 300 K

p2 = 127 kPa (abs)
T2 = 252 K
V2 = 320 m/s

5.42 The four devices shown in Fig. P5.42 rest on frictionless
wheels, are restricted to move in the x direction only, and are ini-
tially held stationary. The pressure at the inlets and outlets of each
is atmospheric, and the flow is incompressible. The contents of
each device is not known. When released, which devices will move
to the right and which to the left? Explain.

F I G U R E  P5.42

(a)

(c)

(b)

(d)

5.43 Exhaust (assumed to have the properties of standard air)
leaves the 4-ft-diameter chimney shown in Video V5.4 and
Fig. P5.43 with a speed of Because of the wind, after a few
diameters downstream the exhaust flows in a horizontal direction
with the speed of the wind, Determine the horizontal com-
ponent of the force that the blowing wind puts on the exhaust
gases.

15 ft/s.

6 ft/s.

5.44 Air flows steadily between two cross sections in a long, straight
section of 12-in.-inside diameter pipe. The static temperature and pres-
sure at each section are indicated in Fig P5.44. If the average air
velocity at section (2) is 320 m/s, determine the average air velocity at
section (1). Determine the frictional force exerted by the pipe wall on
the air flowing between sections (1) and (2). Assume uniform velocity
distributions at each section.

F I G U R E  P5.43

15 ft/s
15 ft/s

6 ft/s

4 ft

5.45 Determine the magnitude and direction of the anchoring force
needed to hold the horizontal elbow and nozzle combination shown
in Fig. P5.45 in place. Atmospheric pressure is 100 kPa(abs). The
gage pressure at section (1) is 100 kPa. At section (2), the water ex-
its to the atmosphere.

F I G U R E  P5.45

160 mm

300 mm

Section (2)

Section (1)

y

x

Water

V2

V1

p1 = 100 kPa
V1 = 2 m/s

5.46 Water flows as two free jets from the tee attached to the pipe
shown in Fig. P5.46. The exit speed is 15 m�s. If viscous effects
and gravity are negligible, determine the x and y components of the
force that the pipe exerts on the tee.

F I G U R E  P5.46

y

x

V = 15 m/s

V = 15 m/s

Area = 0.3 m2

Area = 0.5 m2

Area = 1 m2

TeePipe
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5.47 A converging elbow (see Fig. P5.47) turns water through an
angle of in a vertical plane. The flow cross section diameter is
400 mm at the elbow inlet, section (1), and 200 mm at the elbow out-
let, section (2). The elbow flow passage volume is between
sections (1) and (2). The water volume flowrate is and the
elbow inlet and outlet pressures are 150 kPa and 90 kPa. The elbow
mass is 12 kg. Calculate the horizontal (x direction) and vertical
(z direction) anchoring forces required to hold the elbow in place.

0.4  m3�s
0.2 m3

135°

Problems 251

F I G U R E  P5.47

Section
(1)

Section (2)

D1 = 400 mm

D2 =
200 mm

135°

x

z

5.48 The hydraulic dredge shown in Fig. P5.48 is used to dredge
sand from a river bottom. Estimate the thrust needed from the pro-
peller to hold the boat stationary. Assume the specific gravity of the
sand�water mixture is SG � 1.2.

F I G U R E  P5.48

2-ft diameter
30°

30 ft/s

9 ft 7 ft Prop

5.49 A static thrust stand is to be designed for testing a specific jet
engine. Knowing the following conditions for a typical test,

intake air velocity

exhaust gas velocity

intake cross section area

intake static pressure

intake static temperature

exhaust gas pressure

estimate a nominal thrust to design for.

5.50 A horizontal, circular cross-sectional jet of air having a diam-
eter of 6 in. strikes a conical deflector as shown in Fig. P5.50. 
A horizontal anchoring force of 5 lb is required to hold the cone in

� 0 psi

�  480 °R

� 11.4 psia

� 10 ft2

� 1640 ft�s
� 700 ft�s

F I G U R E  P5.50

6 in.
60° FA = 5 lb

place. Estimate the nozzle flowrate in . The magnitude of the
velocity of the air remains constant.

5.51 A vertical, circular cross-sectional jet of air strikes a conical de-
flector as indicated in Fig. P5.51. A vertical anchoring force of 0.1 N
is required to hold the deflector in place. Determine the mass 1kg2 of
the deflector. The magnitude of velocity of the air remains constant.

ft3�s

F I G U R E  P5.51

0.1 m

V = 30 m/s

FA = 0.1 N

60°

5.52 Water flows from a large tank into a dish as shown in Fig.
P5.52. (a) If at the instant shown the tank and the water in it
weigh what is the tension, in the cable supporting the
tank? (b) If at the instant shown the dish and the water in it weigh

lb, what is the force, needed to support the dish?F2,W2

T1,W1 lb,

F I G U R E  P5.53

90°

V 1 =10 ft /s

V2 = 10 ft /s

V 

0.1 ft

0.1 ft

θ 

F I G U R E  P5.52

0.1-ft diameter

Dish

Tank

10 ft

12 ft

2 ft

F2

T1

5.53 Two water jets of equal size and speed strike each other as
shown in Fig. P5.53. Determine the speed, V, and direction, of
the resulting combined jet. Gravity is negligible.

u,
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5.54 Assuming frictionless, incompressible, one-dimensional flow
of water through the horizontal tee connection sketched in Fig.
P5.54, estimate values of the x and y components of the force exerted
by the tee on the water. Each pipe has an inside diameter of 1 m.
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F I G U R E  P5.54

Section (3)

Q3 =
10 m3/s

Section (2)

Section (1)

x

y

z

V1 = 6 m/s
p1 = 200 kPa

F I G U R E  P5.55

10 ft

4 ft/s

1.5 ft

F I G U R E  P5.56

Fz

Fx

F I G U R E  P5.57

Vj =
40 m/s

Dj = 30 mm

V3

V2

30°

90°

FA

5.55 Determine the magnitude of the horizontal component of the
anchoring force required to hold in place the sluice gate shown in
Fig. 5.55. Compare this result with the size of the horizontal com-
ponent of the anchoring force required to hold in place the sluice
gate when it is closed and the depth of water upstream is 10 ft.

5.56 The rocket shown in Fig. P5.56. is held stationary by the hor-
izontal force, Fx, and the vertical force, Fz. The velocity and pres-
sure of the exhaust gas are 5000 ft/s and 20 psia at the nozzle exit,
which has a cross section area of 60 in.2. The exhaust mass flowrate
is constant at 21 lbm/s. Determine the value of the restraining force
Fx. Assume the exhaust flow is essentially horizontal.

5.57 A horizontal circular jet of air strikes a stationary flat plate as
indicated in Fig. 5.57. The jet velocity is 40 m/s and the jet diameter

is 30 mm. If the air velocity magnitude remains constant as the air
flows over the plate surface in the directions shown, determine: (a)
the magnitude of FA, the anchoring force required to hold the plate
stationary; (b) the fraction of mass flow along the plate surface in
each of the two directions shown; (c) the magnitude of FA, the an-
choring force required to allow the plate to move to the right at a
constant speed of 10 m/s.

5.58 Water is sprayed radially outward over as indicated in
Fig. P5.58. The jet sheet is in the horizontal plane. If the jet veloc-
ity at the nozzle exit is 20 ft�s, determine the direction and magni-
tude of the resultant horizontal anchoring force required to hold the
nozzle in place.

180°

F I G U R E  P5.58

8 in. 0.5 in.

V =
20 ft/s

5.59 A sheet of water of uniform thickness flows
from the device shown in Fig. P5.59. The water enters vertically
through the inlet pipe and exits horizontally with a speed that varies
linearly from 0 to 10 m�s along the 0.2-m length of the slit. Deter-
mine the y component of anchoring force necessary to hold this de-
vice stationary.

1h � 0.01 m2

F I G U R E  P5.59

0.2 m

h = 0.01 m

x

y

0 m/s

10 m/s

Q

F I G U R E  P5.60

Variable mesh screen

Section (2)Section (1)

p1 = 0.2 psi
V1 = 100 ft/s

D = 2 ft

p2 = 0.15 psi

5.60 A variable mesh screen produces a linear and axisymmetric
velocity profile as indicated in Fig. P5.60 in the air flow through a
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2-ft-diameter circular cross section duct. The static pressures up-
stream and downstream of the screen are 0.2 and 0.15 psi and are
uniformly distributed over the flow cross section area. Neglecting
the force exerted by the duct wall on the flowing air, calculate the
screen drag force.

5.61 Water flows vertically upward in a circular cross-sectional
pipe as shown in Fig. P5.61. At section 112, the velocity profile over
the cross-sectional area is uniform. At section 122, the velocity pro-
file is

where local velocity vector, centerline velocity in the
axial direction, pipe radius, and radius from pipe axis.
Develop an expression for the fluid pressure drop that occurs be-
tween sections 112 and 122.

r �R �
wc �V �

V � wc a
R � r

R
b

1� 7

 k̂
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F I G U R E  P5.61

Section (1)

Section (2)

R

r

z

5.62 In a laminar pipe flow that is fully developed, the axial ve-
locity profile is parabolic. That is,

as is illustrated in Fig. P5.62. Compare the axial direction momen-
tum flowrate calculated with the average velocity, with the axial
direction momentum flowrate calculated with the nonuniform ve-
locity distribution taken into account.

�u,

u � uc c1 � a
r

R
b

2

d

F I G U R E  P5.62

uc

u
R r

†5.63 Water from a garden hose is sprayed against your car to
rinse dirt from it. Estimate the force that the water exerts on the car.
List all assumptions and show calculations.

5.64 A Pelton wheel vane directs a horizontal, circular cross-
sectional jet of water symmetrically as indicated in Fig. P5.64 and
Video V5.6. The jet leaves the nozzle with a velocity of 100 ft�s.
Determine the x direction component of anchoring force required
to (a) hold the vane stationary, (b) confine the speed of the vane to
a value of 10 ft�s to the right. The fluid speed magnitude remains
constant along the vane surface.

5.65 How much power is transferred to the moving vane of Prob-
lem 5.64?

5.66 The thrust developed to propel the jet ski shown in Video
V9.11 and Fig. P5.66 is a result of water pumped through the vehi-
cle and exiting as a high-speed water jet. For the conditions shown
in the figure, what flowrate is needed to produce a 300-lb thrust?
Assume the inlet and outlet jets of water are free jets.

F I G U R E  P5.64

45°

45°

D = 1 in.

100
ft/s

(a)

45°

45°

D = 1 in.

100
ft/s 10 ft/s

(b)

y

x

F I G U R E  P5.66

3.5-in.-diameter
outlet jet

30°

25-in.2 inlet area

5.67 (See Fluids in the News article titled “Where the plume
goes,” Section 5.2.2.) Air flows into the jet engine shown in Fig.
P5.67 at a rate of 9 slugs/s and a speed of . Upon landing,
the engine exhaust exits through the reverse thrust mechanism
with a speed of in the direction indicated. Determine the
reverse thrust applied by the engine to the airplane. Assume
the inlet and exit pressures are atmospheric and that the mass
flowrate of fuel is negligible compared to the air flowrate through
the engine.

900 ft�s

300 ft�s

4-ft diameter

30°(1)

(3)

(2)V1 = 300 ft/s

V2 = 900 ft/s

V3 = 900 ft/s

F I G U R E  P5.67

5.68 (See Fluids in the News article titled “Motorized surf-
board,” Section 5.2.2.) The thrust to propel the powered surfboard
shown in Fig. P5.68 is a result of water pumped through the board
that exits as a high-speed 2.75-in.-diameter jet. Determine the
flowrate and the velocity of the exiting jet if the thrust is to be
300 lb. Neglect the momentum of the water entering the pump.
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5.69 (See Fluids in the News article titled “Bow thrusters,” Sec-
tion 5.2.2). The bow thruster on the boat shown in Fig. P5.69 is
used to turn the boat. The thruster produces a 1-m-diameter jet of
water with a velocity of . Determine the force produced by
the thruster. Assume that the inlet and outlet pressures are zero and
that the momentum of the water entering the thruster is negligible.

10 m�s

254 Chapter 5 ■ Finite Control Volume Analysis

F I G U R E  P5.68

V = 10 m/s

D = 1 m

F I G U R E  P5.69

= 45°
(in plane of blade)

d = 8 in.

θ

U = 30 mph

F I G U R E  P5.70

5.70 A snowplow mounted on a truck clears a path 12 ft through
heavy wet snow, as shown in Figure P5.70. The snow is 8 in. deep
and its density is 10 lbm/ft3. The truck travels at 30 mph. The snow
is discharged from the plow at an angle of 45� from the direction of
travel and 45� above the horizontal, as shown in Figure P5.70. Esti-
mate the force required to push the plow.

Section 5.2.3 Derivation of the Moment-of-Momentum
Equation

5.71 What is fluid moment-of-momentum (angular momentum)
and the “flow” of moment-of-momentum (angular momentum)?

5.72 Describe the orthogonal components of the moment-of-
momentum equation (Eq. 5.42) and comment on the direction of each.

5.73 Describe a few examples (include photographs/images) of
turbines where the force/torque of a flowing fluid leads to rotation
of a shaft.

5.74 Describe a few examples (include photographs/images) of
pumps where a fluid is forced to move by “blades” mounted on a
rotating shaft.

Section 5.2.4 Application of the Moment-of-Momentum
Equation

5.75 Water enters a rotating lawn sprinkler through its base at the
steady rate of 16 gal/min as shown in Fig. P5.75. The exit cross-
sectional area of each of the two nozzles is and the flow
leaving each nozzle is tangential. The radius from the axis of rotation
to the centerline of each nozzle is 8 in. (a) Determine the resisting
torque required to hold the sprinkler head stationary. (b) Determine
the resisting torque associated with the sprinkler rotating with a con-
stant speed of 500 rev�min. (c) Determine the angular velocity of the
sprinkler if no resisting torque is applied.

0.04 in.2,

Q = 16 gal/min

r = 8 in. Nozzle exit
area = 0.04 in.2

F I G U R E  P5.75

Q = 5 liters/s

r = 0.5m Nozzle exit area normal to
relative velocity = 18 mm2

θ

F I G U R E  P5.76

5.76 Five liters s of water enter the rotor shown in Video V5.10
and Fig. P5.76 along the axis of rotation. The cross-sectional area
of each of the three nozzle exits normal to the relative velocity is

How large is the resisting torque required to hold the rotor
stationary? How fast will the rotor spin steadily if the resisting
torque is reduced to zero and (a) (b) (c) u � 60°?u � 30°,u � 0°,

18 mm2.

�

5.77 Shown in Fig. P5.77 is a toy “helicopter” powered by air
escaping from a balloon. The air from the balloon flows radially
through each of the three propeller blades and out through small
nozzles at the tips of the blades. Explain physically how this flow
can cause the rotation necessary to rotate the blades to produce the
needed lifting force.

5.78 A simplified sketch of a hydraulic turbine runner is shown in
Fig. P5.78. Relative to the rotating runner, water enters at section
(1) (cylindrical cross section area A1 at r1�1.5 m) at an angle of
100� from the tangential direction and leaves at section (2) (cylin-
drical cross section area A2 at r2�0.85 m ) at an angle of 50� from
the tangential direction. The blade height at sections (1) and (2) is
0.45 m and the volume flowrate through the turbine is 30 m3/s. The
runner speed is 130 rpm in the direction shown. Determine the shaft
power developed.
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5.79 A water turbine with radial flow has the dimensions shown in
Fig.P5.79.The absolute entering velocity is 50 ft/s, and it makes an

Problems 255

r1 =
1.5 m

130
rpm

r2 =
0.85 m

100°

50°

Section (1)

Section (2)

Q = 30 m3/s

0.45 mW2

W1

F I G U R E  P5.78

1 ft

Section (1) Section (2)

r1 = 2 ft

120
rpm

r2 =
1 ft

V2

V1 = 50 ft/s

30°

F I G U R E  P5.79

Balloon 

ω 

F I G U R E  P5.77

angle of with the tangent to the rotor. The absolute exit veloc-
ity is directed radially inward. The angular speed of the rotor is 120
rpm. Find the power delivered to the shaft of the turbine.

5.80 Shown in Fig. P5.80 are front and side views of a centrifugal
pump rotor or impeller. If the pump delivers 200 liters/s of water
and the blade exit angle is 35� from the tangential direction, deter-
mine the power requirement associated with flow leaving at the
blade angle. The flow entering the rotor blade row is essentially ra-
dial as viewed from a stationary frame.

30°

r1 =
9 cm

r2 =
15 cm

35°

3000
rpm

3 cm

F I G U R E  P5.80

W 2
 =

 1
6 

m
/s

W1V1V2

U 2
 =

16
 m

/s

U 1
 =

 8
 m

/s

30° 1

2

ω

F I G U R E  P5.81

5.81 The velocity triangles for water flow through a radial pump
rotor are as indicated in Fig. P5.81. (a) Determine the energy added
to each unit mass (kg) of water as it flows through the rotor. (b)
Sketch an appropriate blade section.

5.82 An axial flow turbomachine rotor involves the upstream (1)
and downstream (2) velocity triangles shown in Fig.P5.82. Is this
turbomachine a turbine or a fan? Sketch an appropriate blade sec-
tion and determine energy transferred per unit mass of fluid.

U1
= 30 ft/s

V1
= 20 ft/s

=

60°

U2
= 30 ft/sW1

W1 W2

1

W2

F I G U R E  P5.82
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5.83 An axial flow gasoline pump 1see Fig. P5.832 consists of a ro-
tating row of blades 1rotor2 followed downstream by a stationary row
of blades 1stator2. The gasoline enters the rotor axially 1without any an-
gular momentum2with an absolute velocity of 3 m�s. The rotor blade
inlet and exit angles are and from the axial direction. The
pump annulus passage cross-sectional area is constant. Consider the
flow as being tangent to the blades involved. Sketch velocity triangles
for flow just upstream and downstream of the rotor and just down-
stream of the stator where the flow is axial. How much energy is
added to each kilogram of gasoline? Is this an actual or ideal amount?

45°60°
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U

V1 = 3 m/s

60°

45°

Arithmetic
mean radius blade

sections

Rotor Stator

F I G U R E  P5.83

5.84 Sketch the velocity triangles for the flows entering and leaving
the rotor of the turbine-type flow meter shown in Fig. P5.84. Show
how rotor angular velocity is proportional to average fluid velocity.

FLOW

IN

OUT
Magnetic sensor

Turbine

Flow
in

Flow
out

F I G U R E  P5.84 (Courtesy of EG&G Flow
Technology, Inc.)

5.85 By using velocity triangles for flow upstream 112 and down-
stream 122 of a turbomachine rotor, prove that the shaft work in per
unit mass flowing through the rotor is

where absolute flow velocity magnitude, relative flow
velocity magnitude, and blade speed.U �

W �V �

wshaft
net in

�
V 22 � V 21 � U 22 � U 21 � W 21 � W 22

2

Section 5.3.1 Derivation of the Energy Equation

5.86 Distiguish between shaft work and other kinds of work asso-
ciated with a flowing fluid.

5.87 Define briefly what heat transfer is. What is an adiabatic
flow? Give several practical examples of nearly adiabatic flows.

Section 5.3.2 Application of the Energy Equation – No
Shaft Work and Section 5.3.3 Comparison of the Energy
Equation with the Bernoulli Equation

5.88 What is enthalpy and why is it useful for energy considera-
tions in fluid mechanics?

5.89 Cite a few examples of evidence of loss of available energy in
actual fluid flows. Why does loss occur?

5.90 Is zero heat transfer a necessary condition for application of
the Bernoulli equation (Eq. 5.75)?

5.91 A 1000-m-high waterfall involves steady flow from one large
body to another. Detemine the temperature rise associated with this
flow.

5.92 A 100-ft-wide river with a flowrate of flows over a
rock pile as shown in Fig. P5.92. Determine the direction of flow
and the head loss associated with the flow across the rock pile.

2400 ft3/s

(2)

2 ft

Rock pile

4 ft

(1)

F I G U R E  P5.92

5.93 Air steadily expands adiabatically and without friction from
stagnation conditions of 690 kpa (abs) and 290 K to a static pres-
sure of 101 kpa (abs). Determine the velocity of the expanded air
assuming: (a) incompressible flow; (b) compressible flow.

5.94 A horizontal Venturi flow meter consists of a converging–di-
verging conduit as indicated in Fig. P5.94. The diameters of cross
sections (1) and (2) are 6 and 4 in. The velocity and static pressure
are uniformly distributed at cross sections (1) and (2). Determine 
the volume flowrate (ft3/s) through the meter if ,
the flowing fluid is oil , and the loss per unit mass
from (1) to (2) is negligibly small.

1r � 56 lbm�ft32
p1 � p2 � 3 psi

Section (2)

Section (1)D1 = 6 in.

D2 = 4 in.

F I G U R E  P5.94

5.95 Oil flows downward through a vertical pipe con-
traction as shown in Fig. P5.95. If the mercury manometer reading,
h, is 100 mm, determine the volume flowrate for frictionless flow.
Is the actual flowrate more or less than the frictionless value?
Explain.

5.96 An incompressible liquid flows steadily along the pipe
shown in Fig. P5.96. Determine the direction of flow and the head
loss over the 6-m length of pipe.

1SG � 0.92
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5.97 Water flows through a vertical pipe, as is indicated in
Fig. P5.97. Is the flow up or down in the pipe? Explain.

Problems 257

100 mm

h

0.6 m

300 mm

F I G U R E  P5.95

0.75 m

1.0 m

1.5 m 6 m

3 m

F I G U R E  P5.96

1 m

h

25
mm

F I G U R E  P5.99

A

4 ft

4 ft

12 ft

3 in.

B

F I G U R E  P5.100

24 in.

12 in.

F I G U R E  P5.101

H

h

Mercury

F I G U R E  P5.97

Tube

Flow

Flow

Disk
to be
lifted

Disk
attached
to tube

F I G U R E  P5.98

5.98 A circular disk can be lifted up by blowing on it with the de-
vice shown in Fig. P5.98. Explain why this happens.

5.99 A siphon is used to draw water at from a large container
as indicated in Fig. P5.99. Does changing the elevation, h, of the
siphon centerline above the water level in the tank vary the flowrate
through the siphon? Explain. What is the maximum allowable
value of h?

20°C

5.100 A water siphon having a constant inside diameter of 3 in. is
arranged as shown in Fig. P5.100. If the friction loss between A and
B is where V is the velocity of flow in the siphon, deter-
mine the flowrate involved.

0.8V 2�2,

5.101 Water flows through a valve (see Fig.P5.101) at the rate of
1000 lbm/s. The pressure just upstream of the valve is 90 psi and the
pressure drop across the valve is 50 psi. The inside diameters of 
the valve inlet and exit pipes are 12 and 24 in. If the flow through
the valve occurs in a horizontal plane determine the loss in avail-
able energy across the valve.

5.102 Compare the volume flowrates associated with two differ-
ent vent configurations, a cylindrical hole in the wall having a di-
ameter of 4 in. and the same diameter cylindrical hole in the wall
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but with a well-rounded entrance (see Fig. P5.102). The room is
held at a constant pressure of 1.5 psi above atmospheric. Both vents
exhaust into the atmosphere. The loss in available energy associ-
ated with flow through the cylindrical vent from the room to the
vent exit is 0.5V2

2/2, where V2 is the uniformly distributed exit veloc-
ity of air. The loss in available energy associated with flow through
the rounded entrance vent from the room to the vent exit is
0.05V 2

2/2, where V2 is the uniformly distributed exit velocity of air.
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4 in.

4 in.

F I G U R E  P5.102

6 in.

12 in.

Section (2)

Section (1)

y

x

p1 = 15 psi
V1 = 5 ft/s

F I G U R E  P5.104

5.103 A gas expands through a nozzle from a pressure of 300 psia
to a pressure of 5 psia. The enthalpy change involved, ,
is 150 Btu/lbm. If the expansion is adiabatic but with frictional ef-
fects and the inlet gas speed is negligibly small, determine the exit
gas velocity.

5.104 For the elbow and nozzle flow shown in Fig. P5.104,
determine the loss in available energy from section 112 to section 122.
How much additional available energy is lost from section 122 to
where the water comes to rest?

180°

ȟ1 � ȟ2

5.105 An automobile engine will work best when the back pressure
at the interface of the exhaust manifold and the engine block is min-
imized. Show how reduction of losses in the exhaust manifold, pip-
ing, and muffler will also reduce the back pressure. How could
losses in the exhaust system be reduced? What primarily limits the
minimization of exhaust system losses?

†5.106 Explain how, in terms of the loss of available energy in-
volved, a home sink water faucet valve works to vary the flow
from the shutoff condition to maximum flow. Explain how you
would estimate the size of the overflow drain holes needed in the
sink of Video V5.1 (Video V3.9 may be helpful).

5.107 (See  Fluids in the News article titled “Smart shocks,” Section
5.3.3.) A 200-lb force applied to the end of the piston of the shock ab-
sorber shown in Fig. P5.107 causes the two ends of the shock absorber
to move toward each other with a speed of . Determine the head
loss associated with the flow of the oil through the channel. Neglect
gravity and any friction force between the piston and cylinder walls.

5 ft�s

Section 5.3.2 Application of the Energy Equation–With
Shaft Work

5.108 What is the maximum possible power output of the hydro-
electric turbine shown in Fig.P5.108?

Piston

Oil

Channel

1-in. diameter

p = 0

200 lb

Gas

F I G U R E  P5.107

50 m

6 m/s

1 m

Turbine

F I G U R E  P5.108

Hydrant

60 ft

10 psi
4-in.

diameter

F I G U R E  P5.109

5.109 The pumper truck shown in Fig. P5.109 is to deliver
to a maximum elevation of 60 ft above the hydrant. The

pressure at the 4-in.-diameter outlet of the hydrant is 10 psi. If head
losses are negligibly small, determine the power that the pump
must add to the water.

1.5 ft3/s
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20 ft

Air

Pump

p = 2 atm

F I G U R E  P5.111

Turbine

10 ft

Section (1)

p1
Q
D1   

= 60 psi
= 150 ft3/s
= 3 ft

p2

D2   

= 10-in. Hg
   vacuum
= 4 ft

Section (2)

F I G U R E  P5.113

600 ft

Turbine

F I G U R E  P5.110

20

16

12

8

4

0
0 1 2 3

h p
, 
ft

Q, ft3/s

hp = 16 – 5Q

Pump

12 ft

V

(a) (b)

F I G U R E  P5.115

5.110 The hydroelectric turbine shown in Fig. P5.110 passes 8 million
gal/min across a head of 600 ft. What is the maximum amount of
power output possible? Why will the actual amount be less?

5.111 A pump is to move water from a lake into a large, pressur-
ized tank as shown in Fig. P5.111 at a rate of 1000 gal in 10 min or
less. Will a pump that adds 3 hp to the water work for this purpose?
Support your answer with appropriate calculations. Repeat the prob-
lem if the tank were pressurized to 3, rather than 2, atmospheres.

5.112 A hydraulic turbine is provided with 4.25 m3/s of water at
415 kPa. A vacuum gage in the turbine discharge 3 m below the
turbine inlet centerline reads 250 mm Hg vacuum. If the turbine
shaft output power is 1100 kW, calculate the power loss through
the turbine. The supply and discharge pipe inside diameters are
identically 80 mm.

5.113 Water is supplied at and 60 psi to a hydraulic tur-
bine through a 3-ft inside diameter inlet pipe as indicated in Fig.
P5.113. The turbine discharge pipe has a 4-ft inside diameter. The
static pressure at section 122, 10 ft below the turbine inlet, is 10-in.
Hg vacuum. If the turbine develops 2500 hp, determine the power
lost between sections 112 and 122.

150 ft3�s

5.114 A centrifugal air compressor stage operates between an in-
let stagnation pressure of 14.7 psia and an exit stagnation pressure
of 60 psia. The inlet stagnation temperature is If the loss of
total pressure through the compressor stage associated with irre-
versible flow phenomena is 10 psi, estimate the actual and ideal
stagnation temperature rise through the compressor. Estimate the
ratio of ideal to actual temperature rise to obtain an approximate
value of the efficiency.

5.115 Water is pumped through a 4-in.-diameter pipe as shown in
Fig. P5.115a. The pump characteristics (pump head versus
flowrate) are given in Fig. P5.115b. Determine the flowrate if the
head loss in the pipe is .hL � 8V 2�2g

80 °F.

5.116 Water is pumped from the large tank shown in Fig. P5.116.
The head loss is known to be equal to and the pump head is

, where is in ft when Q is in Determine the
flowrate.

ft3�s.hphp � 20 � 4Q2
4V2�2g

13 ft

Q V

Pipe area = 0.10 ft2

Pump

F I G U R E  P5.116

5.117 When a fan or pump is tested at the factory, head curves
(head across the fan or pump versus volume flowrate) are often
produced. A generic fan or pump head curve is shown in
Fig.P5.117a. For any piping system, the drop in pressure or head
involved because of loss can be estimated as a function of vol-
ume flowrate. A generic piping system loss curve is shown in
Fig.P5.117b. When the pump or fan and piping system associated
with the two curves of Fig.P5.117 are combined, what will the
flowrate be? Why? How can the flowrate through this combined
system be varied?

Q, Volume flowrate

H
, 

H
ea

d 
ac

ro
ss

fa
n 

or
 p

um
p

(a)

Q, Volume flowrate

H
, 

H
ea

d 
lo

ss
 in

pi
pi

ng
 s

ys
te

m

(b)

F I G U R E  P5.117
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5.118 Water flows by gravity from one lake to another as sketched in
Fig. P5.118 at the steady rate of 80 gpm. What is the loss in available
energy associated with this flow? If this same amount of loss is asso-
ciated with pumping the fluid from the lower lake to the higher one at
the same flowrate, estimate the amount of pumping power required.
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50 ft

F I G U R E  P5.118

5.119 Water is pumped from a tank, point (1), to the top of a wa-
ter plant aerator, point (2), as shown in Video V5.14 and Fig.
P5.119 at a rate of (a) Determine the power that the pump
adds to the water if the head loss from (1) to (2) where is 4 ft.
(b) Determine the head loss from (2) to the bottom of the aerator
column, point (3), if the average velocity at (3) is V3 � 2 ft/s.

V2 � 0
3.0 ft3/s.

Aerator column

(1)

(3)

(2)

Pump

5 ft
3 ft

10 ft

F I G U R E  P5.119

5.120 A liquid enters a fluid machine at section 112 and leaves at
sections 122 and 132 as shown in Fig. P5.120. The density of the fluid
is constant at 2 All of the flow occurs in a horizontal plane
and is frictionless and adiabatic. For the above-mentioned and ad-
ditional conditions indicated in Fig. P5.120, determine the amount
of shaft power involved.

slugs�ft3.

Section (1)

Section (2)

Section (3)

p2 = 50 psia
V2 = 35 ft/s

p3 = 14.7 psia
V3 = 45 ft/s
A3 = 5 in.2

p1 = 80 psia
V1 = 15 ft/s
A1 = 30 in.2

F I G U R E  P5.120

Pump

8-in. inside-
diameter pipe

Section (1)

50 ft

Section (2)

F I G U R E  P5.121

energy associated with being pumped from sections 112 to
122 is loss � where is the average velocity of wa-
ter in the 8-in. inside diameter piping involved. Determine the
amount of shaft power required.

5.122 Water is to be pumped from the large tank shown in Fig.
P5.122 with an exit velocity of . It was determined that the
original pump (pump 1) that supplies 1 kW of power to the water
did not produce the desired velocity. Hence, it is proposed that an
additional pump (pump 2) be installed as indicated to increase the
flowrate to the desired value. How much power must pump 2 add to
the water? The head loss for this flow is where is in
m when Q is in .m3�s

hLhL � 250Q2,

6 m�s

V61V 2�2 ft2�s2,
2.5 ft3�s

V = 6 m/s
Pump

#2

Pipe area = 0.02 m2
Nozzle area = 0.01 m2

2 m

Pump
#1

F I G U R E  P5.122

5.123 (See Fluids in the News article titled “Curtain of air,” Sec-
tion 5.3.3.) The fan shown in Fig. P5.123 produces an air curtain to
separate a loading dock from a cold storage room. The air curtain is
a jet of air 10 ft wide, 0.5 ft thick moving with speed The
loss associated with this flow is loss , where . How
much power must the fan supply to the air to produce this flow?

KL � 5� KLV 2�2
V � 30 ft�s.

Air curtain
(0.5-ft thickness)

Open door

10 ft

V = 30 ft/s

Fan

F I G U R E  P5.123

Section 5.3.2 Application of the Energy Equation—
Combined with Linear momentum
5.124 If a -hp motor is required by a ventilating fan to produce a
24-in. stream of air having a velocity of as shown in
Fig. P5.124, estimate (a) the efficiency of the fan and (b) the thrust
of the supporting member on the conduit enclosing the fan.

5.125 Air flows past an object in a pipe of 2-m diameter and exits
as a free jet as shown in Fig. P5.125. The velocity and pressure up-
stream are uniform at 10 m�s and respectively. At the50  N�m2,

40 ft/s

3
4

5.121 Water is to be moved from one large reservoir to another at
a higher elevation as indicated in Fig. P5.121. The loss of available
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24 in. 40 ft/s

F I G U R E  P5.124

2-m-dia. 1-m dia.
4 m/s

12 m/s

Exit

Wake

Air

p = 50 N/m2
V = 10 m/s

F I G U R E  P5.125

pipe exit the velocity is nonuniform as indicated. The shear stress
along the pipe wall is negligible. (a) Determine the head loss asso-
ciated with a particle as it flows from the uniform velocity upstream
of the object to a location in the wake at the exit plane of the pipe.
(b) Determine the force that the air puts on the object.

5.126 Water flows through a 2-ft-diameter pipe arranged horizon-
tally in a circular arc as shown in Fig. P5.126. If the pipe discharges
to the atmosphere (p � 14.7 psia) determine the x and y components
of the resultant force exerted by the water on the piping between
sections (1) and (2). The steady flowrate is 3000 ft3/min. The loss in
pressure due to fluid friction between sections (1) and (2) is 60 psi.

y

x

Section (2)90°

Section (1)

Flow

1000 ft

F I G U R E  P5.126

5.127 Water flows steadily down the inclined pipe as indicated in
Fig. P5.127. Determine the following: (a) the difference in pressure

5 ft

6 in.

30°

Mercury

Section (2)

Section (1)

Flow

6 in.

F I G U R E  P5.127

(b) the loss between sections 112 and 122, (c) the net axial
force exerted by the pipe wall on the flowing water between sec-
tions 112 and 122.

5.128 Water flows steadily in a pipe and exits as a free jet through
an end cap that contains a filter as shown in Fig. P5.128. The flow
is in a horizontal plane. The axial component, , of the anchoring
force needed to keep the end cap stationary is 60 lb. Determine the
head loss for the flow through the end cap.

Ry

p1 � p2,

Area = 0.10 ft2

Area = 0.12 ft2

Ry = 60 lb

V = 10 ft/s

Rx

Pipe

Filter
30°

F I G U R E  P5.128

5.129 When fluid flows through an abrupt expansion as indicated
in Fig. P5.129, the loss in available energy across the expansion,

is often expressed as

where cross-sectional area upstream of expansion,
cross-sectional area downstream of expansion, and velocity
of flow upstream of expansion. Derive this relationship.

V1 �
A2 �A1 �

lossex � a1 �
A1

A2

b
2

  
V 21

2

lossex,

Section (1)

Section (2)

F I G U R E  P5.129

5.130 Two water jets collide and form one homogeneous jet as
shown in Fig. P5.130. (a) Determine the speed, V, and direction,
of the combined jet. (b) Determine the loss for a fluid particle flow-
ing from 112 to 132, from 122 to 132. Gravity is negligible.

u,

V2 = 6 m/s

V

V1 = 4 m/s

θ

0.12 m

0.10 m
(1)

(2)

(3)

90°

F I G U R E  P5.130
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Section 5.3.4 Application of the Energy Equation to
Nonuniform Flows

5.131 Water flows vertically upward in a circular cross-sectional
pipe. At section 112, the velocity profile over the cross-sectional area
is uniform. At section 122, the velocity profile is

where local velocity vector, centerline velocity in the
axial direction, pipe inside radius, and, radius from pipe
axis. Develop an expression for the loss in available energy be-
tween sections 112 and 122.

5.132 The velocity profile in a turbulent pipe flow may be approx-
imated with the expression

where local velocity in the axial direction, centerline ve-
locity in the axial direction, pipe inner radius from pipe axis,

local radius from pipe axis, and constant. Determine the
kinetic energy coefficient, for (a) (b) (c)
(d) (e) (f)

5.133 A small fan moves air at a mass flowrate of 0.004 lbm�s. Up-
stream of the fan, the pipe diameter is 2.5 in., the flow is laminar, the
velocity distribution is parabolic, and the kinetic energy coefficient,

is equal to 2.0. Downstream of the fan, the pipe diameter is 1 in.,
the flow is turbulent, the velocity profile is quite flat, and the kinetic
energy coefficient, is equal to 1.08. If the rise in static pressure
across the fan is 0.015 psi and the fan shaft draws 0.00024 hp, com-
pare the value of loss calculated: (a) assuming uniform velocity dis-
tributions, (b) considering actual velocity distributions.

Section 5.3.5 Combination of the Energy Equation
and the Moment-of-Momentum Equation

5.134 Air enters a radial blower with zero angular momentum. It
leaves with an absolute tangential velocity, of 200 ft�s. The ro-
tor blade speed at rotor exit is 170 ft�s. If the stagnation pressure
rise across the rotor is 0.4 psi, calculate the loss of available energy
across the rotor and the rotor efficiency.

5.135 Water enters a pump impeller radially. It leaves the impeller
with a tangential component of absolute velocity of 10 m�s. The
impeller exit diameter is 60 mm, and the impeller speed is 1800
rpm. If the stagnation pressure rise across the impeller is 45 kPa,
determine the loss of available energy across the impeller and the
hydraulic efficiency of the pump.

5.136 Water enters an axial-flow turbine rotor with an absolute ve-
locity tangential component, of 15 ft�s. The corresponding blade
velocity, U, is 50 ft s. The water leaves the rotor blade row with no
angular momentum. If the stagnation pressure drop across the tur-
bine is 12 psi, determine the hydraulic efficiency of the turbine.

5.137 An inward flow radial turbine 1see Fig. P5.1372 involves a
nozzle angle, of and an inlet rotor tip speed, of 30 ft�s.
The ratio of rotor inlet to outlet diameters is 2.0. The radial compo-
nent of velocity remains constant at 20 ft�s through the rotor, and
the flow leaving the rotor at section 122 is without angular momen-
tum. If the flowing fluid is water and the stagnation pressure drop
across the rotor is 16 psi, determine the loss of available energy
across the rotor and the hydraulic efficiency involved.

5.138 An inward flow radial turbine 1see Fig. P5.1372 involves a
nozzle angle, of and an inlet rotor tip speed of 30 ft�s. The
ratio of rotor inlet to outlet diameters is 2.0. The radial component
of velocity remains constant at 20 ft�s through the rotor, and the

60°a1,

U1,60°a1,

�
Vu,

Vu,

a2,

a1,

n � 10.n � 9,n � 8,
n � 7,n � 6,n � 5,a,

n �r �
R �

uc �u �

u

uc
� a

R � r

R
b

1�n

r �R �
wc �V �

V � wc a
R � r

R
b

1�7

 k̂
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U1 =
30 ft/s

Vr1 =
20 ft/s

60°

12

r1
r2

F I G U R E  P5.137

flow leaving the rotor at section 122 is without angular momentum.
If the flowing fluid is air and the static pressure drop across the ro-
tor is 0.01 psi, determine the loss of available energy across the ro-
tor and the rotor aerodynamic efficiency.

Section 5.4 Second Law of Thermodynamics—
Irreversible Flow

5.139 Why do all actual fluid flows involve loss of available energy?

■ Lab Problems

5.140 This problem involves the force that a jet of air exerts on a
flat plate as the air is deflected by the plate. To proceed with this
problem, go to Appendix H which is located on the book’s web site,
www.wiley.com/college/munson.

5.141 This problem involves the pressure distribution produced on
a flat plate that deflects a jet of air. To proceed with this problem, go
to Appendix H which is located on the book’s web site, www.
wiley.com/college/munson.

5.142 This problem involves the force that a jet of water exerts on
a vane when the vane turns the jet through a given angle. To proceed
with this problem, go to Appendix H which is located on the book’s
web site, www.wiley.com/college/munson.

5.143 This problem involves the force needed to hold a pipe elbow
stationary. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

■ Life Long Learning Problems

5.144 What are typical efficiencies associated with swimming
and how can they be improved?

5.145 Explain how local ionization of flowing air can accelerate
it. How can this be useful?

5.146 Discuss the main causes of loss of available energy in a
turbo-pump and how they can be minimized. What are typical
turbo-pump efficiencies?

5.147 Discuss the main causes of loss of available energy in a
turbine and how they can be minimized. What are typical turbine
efficiencies?

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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CHAPTER OPENING PHOTO: Flow past an inclined plate: The streamlines of a viscous fluid flowing slowly

past a two-dimensional object placed between two closely spaced plates 1a Hele-Shaw cell2 approximate

inviscid, irrotational 1potential2 flow. 1Dye in water between glass plates spaced 1 mm apart.2 1Photography

courtesy of D. H. Peregrine.2

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ determine various kinematic elements of the flow given the velocity field.

■ explain the conditions necessary for a velocity field to satisfy the continuity

equation.

■ apply the concepts of stream function and velocity potential.

■ characterize simple potential flow fields.

■ analyze certain types of flows using the Navier–Stokes equations.

In the previous chapter attention is focused on the use of finite control volumes for the solution

of a variety of fluid mechanics problems. This approach is very practical and useful, since it does

not generally require a detailed knowledge of the pressure and velocity variations within the control

volume. Typically, we found that only conditions on the surface of the control volume were needed,

and thus problems could be solved without a detailed knowledge of the flow field. Unfortunately,

there are many situations that arise in which the details of the flow are important and the finite

control volume approach will not yield the desired information. For example, we may need to

know how the velocity varies over the cross section of a pipe, or how the pressure and shear stress

vary along the surface of an airplane wing. In these circumstances we need to develop relationships

that apply at a point, or at least in a very small infinitesimal region within a given flow field. This

approach, which involves an infinitesimal control volume, as distinguished from a finite control

volume, is commonly referred to as differential analysis, since 1as we will soon discover2 the

governing equations are differential equations.

66Differential
Analysis of 
Fluid Flow

Differential
Analysis of 
Fluid Flow
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In this chapter we will provide an introduction to the differential equations that describe 1in
detail2 the motion of fluids. Unfortunately, we will also find that these equations are rather complicated,

non-linear partial differential equations that cannot be solved exactly except in a few cases, where

simplifying assumptions are made. Thus, although differential analysis has the potential for supplying

very detailed information about flow fields, this information is not easily extracted. Nevertheless, this

approach provides a fundamental basis for the study of fluid mechanics. We do not want to be too

discouraging at this point, since there are some exact solutions for laminar flow that can be obtained,

and these have proved to be very useful. A few of these are included in this chapter. In addition, by

making some simplifying assumptions many other analytical solutions can be obtained. For example,

in some circumstances it may be reasonable to assume that the effect of viscosity is small and can

be neglected. This rather drastic assumption greatly simplifies the analysis and provides the

opportunity to obtain detailed solutions to a variety of complex flow problems. Some examples of

these so-called inviscid flow solutions are also described in this chapter.

It is known that for certain types of flows the flow field can be conceptually divided into two

regions—a very thin region near the boundaries of the system in which viscous effects are important,

and a region away from the boundaries in which the flow is essentially inviscid. By making certain

assumptions about the behavior of the fluid in the thin layer near the boundaries, and using the

assumption of inviscid flow outside this layer, a large class of problems can be solved using

differential analysis. These boundary layer problems are discussed in Chapter 9. Finally, it is to be

noted that with the availability of powerful computers it is feasible to attempt to solve the differential

equations using the techniques of numerical analysis. Although it is beyond the scope of this book

to delve extensively into this approach, which is generally referred to as computational fluid
dynamics 1CFD2, the reader should be aware of this approach to complex flow problems. CFD has

become a common engineering tool and a brief introduction can be found in Appendix A. To

introduce the power of CFD, two animations based on the numerical computations are provided

as shown in the margin.

We begin our introduction to differential analysis by reviewing and extending some of the

ideas associated with fluid kinematics that were introduced in Chapter 4. With this background the

remainder of the chapter will be devoted to the derivation of the basic differential equations 1which

will be based on the principle of conservation of mass and Newton’s second law of motion2 and

to some applications.

264 Chapter 6 ■ Differential Analysis of Fluid Flow

V6.1 Spinning 
football-velocity
contours

V6.2 Spinning 
football-velocity
vectors

In this section we will be concerned with the mathematical description of the motion of fluid elements

moving in a flow field. A small fluid element in the shape of a cube which is initially in one position

will move to another position during a short time interval as illustrated in Fig. 6.1. Because of

the generally complex velocity variation within the field, we expect the element not only to translate

from one position but also to have its volume changed 1linear deformation2, to rotate, and to undergo

a change in shape 1angular deformation2. Although these movements and deformations occur

simultaneously, we can consider each one separately as illustrated in Fig. 6.1. Since element motion

and deformation are intimately related to the velocity and variation of velocity throughout the flow

field, we will briefly review the manner in which velocity and acceleration fields can be described.

dt

6.1 Fluid Element Kinematics

Fluid element mo-
tion consists of
translation, linear
deformation, rota-
tion, and angular
deformation.

= + + +

General
motion

Translation Linear
deformation

Rotation Angular
deformation

Element at t0 Element at t0 +   tδ

F I G U R E  6.1 Types of motion and deformation for a fluid element.
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6.1.1 Velocity and Acceleration Fields Revisited

As discussed in detail in Section 4.1, the velocity field can be described by specifying the velocity

V at all points, and at all times, within the flow field of interest. Thus, in terms of rectangular

coordinates, the notation means that the velocity of a fluid particle depends on where

it is located within the flow field 1as determined by its coordinates, x, y, and z2 and when it

occupies the particular point 1as determined by the time, t2. As is pointed out in Section 4.1.1,

this method of describing the fluid motion is called the Eulerian method. It is also convenient to

express the velocity in terms of three rectangular components so that

(6.1)

where u, and w are the velocity components in the x, y, and z directions, respectively, and

are the corresponding unit vectors, as shown by the figure in the margin. Of course,

each of these components will, in general, be a function of x, y, z, and t. One of the goals of

differential analysis is to determine how these velocity components specifically depend on x, y,

z, and t for a particular problem.

With this description of the velocity field it was also shown in Section 4.2.1 that the

acceleration of a fluid particle can be expressed as

(6.2)

and in component form:

(6.3a)

(6.3b)

(6.3c)

The acceleration is also concisely expressed as

(6.4)

where the operator

(6.5)

is termed the material derivative, or substantial derivative. In vector notation

(6.6)

where the gradient operator, is

(6.7)

which was introduced in Chapter 2. As we will see in the following sections, the motion and

deformation of a fluid element depend on the velocity field. The relationship between the motion

and the forces causing the motion depends on the acceleration field.

6.1.2 Linear Motion and Deformation

The simplest type of motion that a fluid element can undergo is translation, as illustrated in Fig.

6.2. In a small time interval a particle located at point O will move to point as is illustrated

in the figure. If all points in the element have the same velocity 1which is only true if there are no

velocity gradients2, then the element will simply translate from one position to another. However,

O¿dt

�1 2 �
0 1 2
0x

 î �
0 1 2
0y

 ĵ �
0 1 2
0z

 k̂

�1 2,

D1 2

Dt
�

0 1 2
0t

� 1V � �2 1 2

D1 2

Dt
�

0 1 2
0t

� u 
0 1 2
0x

� v 
0 1 2
0y

� w 
0 1 2
0z

a �
DV
Dt

 az �
0w

0t
� u 

0w

0x
� v 

0w

0y
� w 

0w

0z

 ay �
0v

0t
� u 

0v

0x
� v 

0v

0y
� w 

0v

0z

 ax �
0u

0t
� u 

0u

0x
� v 

0u

0y
� w 

0u

0z

a �
0V
0t

� u 
0V
0x

� v 
0V
0y

� w 
0V
0z

î, ĵ, and k̂
v,

V � uî � vĵ � wk̂

V 1x, y, z, t2
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^i

^k

^j

x

z

V

y

w

u
v

The acceleration of
a fluid particle is
described using the
concept of the ma-
terial derivative.
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because of the presence of velocity gradients, the element will generally be deformed and rotated

as it moves. For example, consider the effect of a single velocity gradient, on a small cube

having sides and As is shown in Fig. 6.3a, if the x component of velocity of O and B
is u, then at nearby points A and C the x component of the velocity can be expressed as

This difference in velocity causes a “stretching” of the volume element by an

amount during the short time interval in which line OA stretches to and BC
to 1Fig. 6.3b2. The corresponding change in the original volume, would be

and the rate at which the volume is changing per unit volume due to the gradient is

(6.8)

If velocity gradients and are also present, then using a similar analysis it follows that,

in the general case,

(6.9)

This rate of change of the volume per unit volume is called the volumetric dilatation rate. Thus, we

see that the volume of a fluid may change as the element moves from one location to another in the

flow field. However, for an incompressible fluid the volumetric dilatation rate is zero, since the element

volume cannot change without a change in fluid density 1the element mass must be conserved2.
Variations in the velocity in the direction of the velocity, as represented by the derivatives 

and simply cause a linear deformation of the element in the sense that the shape of the element

does not change. Cross derivatives, such as and will cause the element to rotate and

generally to undergo an angular deformation, which changes the shape of the element.

6.1.3 Angular Motion and Deformation

For simplicity we will consider motion in the x–y plane, but the results can be readily extended to

the more general three dimensional case. The velocity variation that causes rotation and angular

deformation is illustrated in Fig. 6.4a. In a short time interval the line segments OA and OB willdt

0v�0x,0u�0y
0w�0z,

0u�0x, 0v�0y,

1

dV�
 

d1dV�2

dt
�

0u

0x
�

0v

0y
�

0w

0z
� � � V

0w�0z0v�0y

1

dV�
 
d1dV�2

dt
� lim
dtS0 
c
10u�0x2 dt

dt
d �

0u

0x

0u�0xdV�

Change in dV� � a
0u

0x
 dxb 1dy dz2 1dt2

d V� � dx dy dz, BC¿
OA¿dt10u�0x2 1dx2 1dt2

u � 10u�0x2 dx.

dz.dx, dy,

0u�0x,
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The rate of volume
change per unit
volume is related
to the velocity
gradients.

O

u   tδ

v
u

O'

v   tδ

A A'

δ

CB u

y

u

O Axδ

yδ

xδO

CB C'

         
 u

   x
   

__

    

 x
δ tδ))

(b)(a)

u +  
 u

   x
   

__

    

 x
δ∂

∂

u +  
 u

   x
   

__

    

 x
δ∂

∂

∂
∂

F I G U R E  6.2 Translation of a fluid element.

F I G U R E  6.3
Linear deformation of a fluid
element.
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rotate through the angles and to the new positions and , as is shown in Fig. 6.4b.

The angular velocity of line OA, is

For small angles

(6.10)

so that

Note that if is positive, will be counterclockwise. Similarly, the angular velocity of the

line OB is

and

(6.11)

so that

In this instance if is positive, will be clockwise. The rotation, of the element about the

z axis is defined as the average of the angular velocities and of the two mutually perpendicular

lines OA and OB.1 Thus, if counterclockwise rotation is considered to be positive, it follows that

(6.12)

Rotation of the field element about the other two coordinate axes can be obtained in a similar

manner with the result that for rotation about the x axis

(6.13)

and for rotation about the y axis

(6.14)vy �
1

2
 a

0u

0z
�
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0x
b
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 a
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2
 a
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�

0u
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vz,vOB0u�0y
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10u�0y2 dt
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d �

0u

0y

tan db � db �
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�

0u

0y
 dt

vOB � lim
dtS0

 
db

dt

vOA0v�0x

vOA � lim
dtS0

c
10v�0x2 dt
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d �

0v

0x

tan da � da �
10v�0x2 dx dt
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�

0v

0x
 dt
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Rotation of fluid
particles is related
to certain velocity
gradients in the
flow field.
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F I G U R E  6.4
Angular motion and deforma-
tion of a fluid element.

1With this definition can also be interpreted to be the angular velocity of the bisector of the angle between the lines OA and OB.vz

V6.3 Shear 
deformation
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The three components, and can be combined to give the rotation vector, in the form

(6.15)

An examination of this result reveals that is equal to one-half the curl of the velocity vector. That is,

(6.16)

since by definition of the vector operator 

The vorticity, is defined as a vector that is twice the rotation vector; that is,

(6.17)

The use of the vorticity to describe the rotational characteristics of the fluid simply eliminates the

factor associated with the rotation vector. The figure in the margin shows vorticity contours of

the wing tip vortex flow shortly after an aircraft has passed. The lighter colors indicate stronger

vorticity. (See also Fig. 4.3.)

We observe from Eq. 6.12 that the fluid element will rotate about the z axis as an undeformed
block only when Otherwise the rotation will be associated

with an angular deformation. We also note from Eq. 6.12 that when the rotation

around the z axis is zero. More generally if then the rotation 1and the vorticity2 are zero,

and flow fields for which this condition applies are termed irrotational. We will find in Section 6.4

that the condition of irrotationality often greatly simplifies the analysis of complex flow fields.

However, it is probably not immediately obvious why some flow fields would be irrotational, and we

will need to examine this concept more fully in Section 6.4.

� � V � 0,

0u�0y � 0v�0x
0u�0y � �0v�0x.1i.e., vOA � �vOB2

112 2

Z � 2 � � � � V

Z,

 �
1

2
 a

0w

0y
�

0v

0z
b î �

1

2
 a

0u

0z
�

0w

0x
b ĵ �

1

2
 a

0v

0x
�

0u

0y
b k̂

 
1

2
 � � V �

1

2
 ∞

î
0
0x

u

 

ĵ
0
0y

v

 

k̂
0
0z

w

∞

� � V

� � 1
2 curl V � 1

2 � � V

�

� � vxî � vy ĵ � vzk̂

�,vzvx, vy,
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Wing

Vorticity in a flow
field is related to
fluid particle rota-
tion.

GIVEN For a certain two-dimensional flow field the velocity

is given by the equation

V � 1x2 � y22 î � 2xyĵ

FIND Is this flow irrotational?

SOLUTION

Vorticity

zero, since by definition of two-dimensional flow u and are not

functions of z, and w is zero. In this instance the condition for ir-

rotationality simply becomes or 

The streamlines for the steady, two-dimensional flow of this ex-

ample are shown in Fig. E6.1. (Information about how to calculate

0v�0x � 0u�0y.vz � 0

v 

EXAMPLE 6.1

For an irrotational flow the rotation vector, having the compo-

nents given by Eqs. 6.12, 6.13, and 6.14 must be zero. For the pre-

scribed velocity field

and therefore

Thus, the flow is irrotational. (Ans)

COMMENTS It is to be noted that for a two-dimensional flow

field 1where the flow is in the x–y plane2 and will always bevyvx

 vz �
1

2
 a

0v

0x
�

0u

0y
b �

1

2
 3 1�2y2 � 1�2y2 4 � 0

 vy �
1

2
 a

0u

0z
�

0w

0x
b � 0

 vx �
1

2
 a

0w

0y
�

0v

0z
b � 0

u � x2 � y2  v � �2xy  w � 0

�,

y

x

F I G U R E  E6.1
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In addition to the rotation associated with the derivatives and it is observed

from Fig. 6.4b that these derivatives can cause the fluid element to undergo an angular
deformation, which results in a change in shape of the element. The change in the original right

angle formed by the lines OA and OB is termed the shearing strain, and from Fig. 6.4b

where is considered to be positive if the original right angle is decreasing. The rate of change

of is called the rate of shearing strain or the rate of angular deformation and is commonly

denoted with the symbol The angles and are related to the velocity gradients through Eqs.

6.10 and 6.11 so that

and, therefore,

(6.18)

As we will learn in Section 6.8, the rate of angular deformation is related to a corresponding shearing

stress which causes the fluid element to change in shape. From Eq. 6.18 we note that if

the rate of angular deformation is zero, and this condition corresponds to the case

in which the element is simply rotating as an undeformed block 1Eq. 6.122. In the remainder of this

chapter we will see how the various kinematical relationships developed in this section play an important

role in the development and subsequent analysis of the differential equations that govern fluid motion.

0u�0y � �0v�0x,

g� �
0v

0x
�

0u

0y

g� � lim
dtS0

dg

dt
� lim
dtS0

c
10v�0x2 dt � 10u�0y2 dt

dt
d

dbdag�.
dg

dg

dg � da � db

dg,

0v�0x,0u�0y

6.2 Conservation of Mass 269

As is discussed in Section 5.1, conservation of mass requires that the mass, M, of a system remain

constant as the system moves through the flow field. In equation form this principle is expressed as

We found it convenient to use the control volume approach for fluid flow problems, with the control

volume representation of the conservation of mass written as

(6.19)

where the equation 1commonly called the continuity equation2 can be applied to a finite control

volume 1cv2, which is bounded by a control surface 1cs2. The first integral on the left side of Eq. 6.19

represents the rate at which the mass within the control volume is changing, and the second integral

represents the net rate at which mass is flowing out through the control surface 1rate of mass

outflow rate of mass inflow2. To obtain the differential form of the continuity equation, Eq. 6.19

is applied to an infinitesimal control volume.

6.2.1 Differential Form of Continuity Equation

We will take as our control volume the small, stationary cubical element shown in Fig. 6.5a. At

the center of the element the fluid density is and the velocity has components u, and w. Since

the element is small, the volume integral in Eq. 6.19 can be expressed as

(6.20)
0
0t

  �
cv

 r dV� �
0r
0t

 dx dy dz

v,r

�

0
0t

 �
cv

 r dV� � �
cs

 r V � n̂  dA � 0

DMsys

Dt
� 0

6.2 Conservation of Mass

Conservation of
mass requires that
the mass of a
system remain
constant.

streamlines for a given velocity field is given in Sections 4.1.4

and 6.2.3.) It is noted that all of the streamlines (except for the one

through the origin) are curved. However, because the flow is irro-

tational, there is no rotation of the fluid elements. That is, lines

OA and OB of Fig. 6.4 rotate with the same speed but in opposite

directions. 

AsshownbyEq.6.17, theconditionof irrotationality isequivalent

to the fact that the vorticity, , is zero or the curl of the velocity is zero.Z
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The rate of mass flow through the surfaces of the element can be obtained by considering the flow

in each of the coordinate directions separately. For example, in Fig. 6.5b flow in the x direction is

depicted. If we let represent the x component of the mass rate of flow per unit area at the center

of the element, then on the right face

(6.21)

and on the left face

(6.22)

Note that we are really using a Taylor series expansion of and neglecting higher order terms

such as and so on. When the right-hand sides of Eqs. 6.21 and 6.22 are multiplied by

the area the rate at which mass is crossing the right and left sides of the element are obtained

as is illustrated in Fig. 6.5b. When these two expressions are combined, the net rate of mass flowing

from the element through the two surfaces can be expressed as

(6.23)

For simplicity, only flow in the x direction has been considered in Fig. 6.5b, but, in general,

there will also be flow in the y and z directions. An analysis similar to the one used for flow in the

x direction shows that

(6.24)

and

(6.25)

Thus,

(6.26)

From Eqs. 6.19, 6.20, and 6.26 it now follows that the differential equation for conservation of mass is

(6.27)

As previously mentioned, this equation is also commonly referred to as the continuity equation.

0r
0t

�
0 1ru2

0x
�

0 1rv2
0y

�
0 1rw2

0z
� 0

Net rate of

mass outflow
� c

0 1ru2
0x

�
0 1rv2

0y
�

0 1rw2
0z
d  dx dy dz

Net rate of mass

outflow in z direction
�

0 1rw2
0z

 dx dy dz

Net rate of mass

outflow in y direction
�

0 1rv2
0y

 dx dy dz

 � cru �
0 1ru2

0x
 
dx

2
d  dy dz �

0 1ru2
0x

 dx dy dz

Net rate of mass

outflow in x direction
� cru �

0 1ru2
0x

 
dx

2
d  dy dz

dy dz,

1dx22, 1dx23,
ru

ru 0 x� 1dx�22 � ru �
0 1ru2

0x
 
dx

2

ru 0 x� 1dx�22 � ru �
0 1ru2

0x
 
dx

2

ru

The continuity
equation is one of
the fundamental
equations of fluid
mechanics.
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ρ u
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ρ
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F I G U R E  6.5 A differential element for the development of conservation of mass equation.

JWCL068_ch06_263-331.qxd  9/23/08  12:17 PM  Page 270



The continuity equation is one of the fundamental equations of fluid mechanics and, as

expressed in Eq. 6.27, is valid for steady or unsteady flow, and compressible or incompressible

fluids. In vector notation, Eq. 6.27 can be written as

(6.28)

Two special cases are of particular interest. For steady flow of compressible fluids

or

(6.29)

This follows since by definition is not a function of time for steady flow, but could be a function

of position. For incompressible fluids the fluid density, is a constant throughout the flow field

so that Eq. 6.28 becomes

(6.30)

or

(6.31)

Equation 6.31 applies to both steady and unsteady flow of incompressible fluids. Note that Eq. 6.31

is the same as that obtained by setting the volumetric dilatation rate 1Eq. 6.92 equal to zero. This

result should not be surprising since both relationships are based on conservation of mass for

incompressible fluids. However, the expression for the volumetric dilatation rate was developed

from a system approach, whereas Eq. 6.31 was developed from a control volume approach. In the

former case the deformation of a particular differential mass of fluid was studied, and in the latter

case mass flow through a fixed differential volume was studied.

0u

0x
�

0v

0y
�

0w

0z
� 0

� � V � 0

r,

r

0 1ru2
0x

�
0 1rv2

0y
�

0 1rw2
0z

� 0

� � rV � 0

0r
0t

� � � rV � 0

6.2 Conservation of Mass 271

For incompressible
fluids the continuity
equation reduces to
a simple relation-
ship involving cer-
tain velocity gradi-
ents.

GIVEN The velocity components for a certain incompress-

ible, steady flow field are

 w � ?

 v � xy � yz � z

 u � x2 � y2 � z2

FIND Determine the form of the z component, w, required to

satisfy the continuity equation.

Continuity EquationEXAMPLE 6.2

SOLUTION

so that the required expression for is

Integration with respect to z yields

(Ans)

COMMENT The third velocity component cannot be explic-

itly determined since the function can have any form and

conservation of mass will still be satisfied. The specific form of

this function will be governed by the flow field described by these

velocity components—that is, some additional information is

needed to completely determine w.

f 1x, y2

w � �3xz �
z2

2
� f 1x, y2

0w

0z
� �2x � 1x � z2 � �3x � z

0w�0z

Any physically possible velocity distribution must for an incom-

pressible fluid satisfy conservation of mass as expressed by the

continuity equation

For the given velocity distribution

0u

0x
� 2x  and  

0v

0y
� x � z

0u

0x
�

0v

0y
�

0w

0z
� 0
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6.2.2 Cylindrical Polar Coordinates

For some problems it is more convenient to express the various differential relationships in cylindrical

polar coordinates rather than Cartesian coordinates. As is shown in Fig. 6.6, with cylindrical coordinates

a point is located by specifying the coordinates r, and z. The coordinate r is the radial distance from

the z axis, is the angle measured from a line parallel to the x axis 1with counterclockwise taken as

positive2, and z is the coordinate along the z axis. The velocity components, as sketched in Fig. 6.6,

are the radial velocity, the tangential velocity, and the axial velocity, Thus, the velocity at

some arbitrary point P can be expressed as

(6.32)

where and are the unit vectors in the r, and z directions, respectively, as are illustrated

in Fig. 6.6. The use of cylindrical coordinates is particularly convenient when the boundaries of

the flow system are cylindrical. Several examples illustrating the use of cylindrical coordinates will

be given in succeeding sections in this chapter.

The differential form of the continuity equation in cylindrical coordinates is

(6.33)

This equation can be derived by following the same procedure used in the preceding section 1see

Problem 6.202. For steady, compressible flow

(6.34)

For incompressible fluids 1for steady or unsteady flow2

(6.35)

6.2.3 The Stream Function

Steady, incompressible, plane, two-dimensional flow represents one of the simplest types of flow

of practical importance. By plane, two-dimensional flow we mean that there are only two velocity

components, such as u and when the flow is considered to be in the x–y plane. For this flow

the continuity equation, Eq. 6.31, reduces to

(6.36)
0u

0x
�

0v

0y
� 0

v,

1

r
 

0 1rvr2

0r
�

1

r
 

0vu
0u

�
0vz

0z
� 0
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r
 

0 1rrvr2

0r
�

1

r
 

0 1rvu2
0u

�
0 1rvz2

0z
� 0

0r
0t

�
1

r
 

0 1rrvr2

0r
�

1

r
 

0 1rvu2
0u

�
0 1rvz2

0z
� 0

u,êzêr, êu,

V � vrêr � vuêu � vzêz

vz.vu,vr,

u

u,
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F I G U R E  6.6 The representation of
velocity components in cylindrical polar coordinates.

For some problems,
velocity components
expressed in cylin-
drical polar coordi-
nates will be
convenient.

JWCL068_ch06_263-331.qxd  9/23/08  12:17 PM  Page 272



We still have two variables, u and to deal with, but they must be related in a special way as

indicated by Eq. 6.36. This equation suggests that if we define a function called the stream
function, which relates the velocities shown by the figure in the margin as

(6.37)

then the continuity equation is identically satisfied. This conclusion can be verified by simply

substituting the expressions for u and into Eq. 6.36 so that

Thus, whenever the velocity components are defined in terms of the stream function we know that

conservation of mass will be satisfied. Of course, we still do not know what is for a particular

problem, but at least we have simplified the analysis by having to determine only one unknown

function, rather than the two functions, and 

Another particular advantage of using the stream function is related to the fact that lines
along which is constant are streamlines. Recall from Section 4.1.4 that streamlines are lines in

the flow field that are everywhere tangent to the velocities, as is illustrated in Fig. 6.7. It follows

from the definition of the streamline that the slope at any point along a streamline is given by

The change in the value of as we move from one point to a nearby point 

is given by the relationship:

Along a line of constant we have so that

and, therefore, along a line of constant 

which is the defining equation for a streamline. Thus, if we know the function we can plot

lines of constant to provide the family of streamlines that are helpful in visualizing the patternc

c1x, y2

dy

dx
�

v
u

c

�v dx � u dy � 0

dc � 0c

dc �
0c
0x

 dx �
0c
0y

 dy � �v dx � u dy

y � dy21x � dx,1x, y2c

dy

dx
�

v
u

c

v1x, y2.u1x, y2c1x, y2,

c1x, y2

0
0x

 a
0c
0y
b �

0
0y

 a�
0c
0x
b �

02c

0x 0y
�

02c

0y 0x
� 0

v

u �
0c
0y

  v � �
0c
0x

c1x, y2,
v,
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Velocity compo-
nents in a two-
dimensional flow
field can be ex-
pressed in terms of
a stream function.

V

y

x

u = y
∂ψ
∂

v = – x
∂ψ
∂

F I G U R E  6.7 Velocity and velocity
components along a streamline.

Streamlines x

y

V

v

u
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of flow. There are an infinite number of streamlines that make up a particular flow field, since for

each constant value assigned to a streamline can be drawn.

The actual numerical value associated with a particular streamline is not of particular

significance, but the change in the value of is related to the volume rate of flow. Consider two

closely spaced streamlines, shown in Fig. 6.8a. The lower streamline is designated and the upper

one Let dq represent the volume rate of flow 1per unit width perpendicular to the x–y
plane2 passing between the two streamlines. Note that flow never crosses streamlines, since by

definition the velocity is tangent to the streamline. From conservation of mass we know that the

inflow, dq, crossing the arbitrary surface AC of Fig. 6.8a must equal the net outflow through surfaces

AB and BC. Thus,

or in terms of the stream function

(6.38)

The right-hand side of Eq. 6.38 is equal to so that

(6.39)

Thus, the volume rate of flow, q, between two streamlines such as and of Fig. 6.8b can be

determined by integrating Eq. 6.39 to yield

(6.40)

The relative value of with respect to determines the direction of flow, as shown by the figure

in the margin.

In cylindrical coordinates the continuity equation 1Eq. 6.352 for incompressible, plane, two-

dimensional flow reduces to

(6.41)

and the velocity components, and can be related to the stream function, through the

equations

(6.42)

as shown by the figure in the margin.

Substitution of these expressions for the velocity components into Eq. 6.41 shows that the

continuity equation is identically satisfied. The stream function concept can be extended to

axisymmetric flows, such as flow in pipes or flow around bodies of revolution, and to two-

dimensional compressible flows. However, the concept is not applicable to general three-dimensional

flows.
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F I G U R E  6.8 The flow between two streamlines.

The change in the
value of the stream
function is related
to the volume rate
of flow.
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6.3 Conservation of Linear Momentum 275

GIVEN The velocity components in a steady, incompressible,

two-dimensional flow field are

v � 4x

u � 2y

FIND
(a) Determine the corresponding stream function and 

(b) Show on a sketch several streamlines. Indicate the direction

of flow along the streamlines.

SOLUTION

Stream Function

or

Other streamlines can be obtained by setting equal to various

constants. It follows from Eq. 1 that the equations of these stream-

lines can be expressed in the form

which we recognize as the equation of a hyperbola. Thus, the

streamlines are a family of hyperbolas with the stream-

lines as asymptotes. Several of the streamlines are plotted in

Fig. E6.3. Since the velocities can be calculated at any point, the

direction of flow along a given streamline can be easily de-

duced. For example, so that if 

and if The direction of flow is indicated on the

figure.

x 6 0.v 6 0

x 7 0v 7 0v � �0c�0x � 4x

c � 0

y2

c
�

x2

c�2
� 1

1for c � 02

c

y � �12x

EXAMPLE 6.3

(a) From the definition of the stream function 1Eqs. 6.372

and

The first of these equations can be integrated to give

where is an arbitrary function of x. Similarly from the sec-

ond equation

where is an arbitrary function of y. It now follows that in or-

der to satisfy both expressions for the stream function

(Ans)

where C is an arbitrary constant.

COMMENT Since the velocities are related to the derivatives

of the stream function, an arbitrary constant can always be added

to the function, and the value of the constant is actually of no con-

sequence. Usually, for simplicity, we set so that for this

particular example the simplest form for the stream function is

(1) (Ans)

Either answer indicated would be acceptable.

(b) Streamlines can now be determined by setting 

and plotting the resulting curve. With the above expression for

the value of at the origin is zero so that the

equation of the streamline passing through the origin 1the 

streamline2 is

0 � �2x2 � y2

c � 0

cc 1with C � 02

c � constant

c � �2x2 � y2

C � 0

c � �2x2 � y2 � C

f21y2

c � �2x2 � f21y2

f11x2

c � y2 � f11x2

v � �
0c
0x

� 4x

u �
0c
0y

� 2y

ψ = 0
y ψ = 0

x

F I G U R E  E6.3

To develop the differential momentum equations we can start with the linear momentum

equation

(6.43)

where F is the resultant force acting on a fluid mass, P is the linear momentum defined as

P � �
sys

 V dm

F �
DP
Dt
`
sys

6.3 Conservation of Linear Momentum
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276 Chapter 6 ■ Differential Analysis of Fluid Flow

and the operator is the material derivative 1see Section 4.2.122. In the last chapter it was

demonstrated how Eq. 6.43 in the form

(6.44)

could be applied to a finite control volume to solve a variety of flow problems. To obtain the

differential form of the linear momentum equation, we can either apply Eq. 6.43 to a differential

system, consisting of a mass, or apply Eq. 6.44 to an infinitesimal control volume, which

initially bounds the mass It is probably simpler to use the system approach since application

of Eq. 6.43 to the differential mass, yields

where is the resultant force acting on Using this system approach can be treated as a

constant so that

But is the acceleration, a, of the element. Thus,

(6.45)

which is simply Newton’s second law applied to the mass This is the same result that would

be obtained by applying Eq. 6.44 to an infinitesimal control volume 1see Ref. 12. Before we can

proceed, it is necessary to examine how the force can be most conveniently expressed.

6.3.1 Description of Forces Acting on the Differential Element

In general, two types of forces need to be considered: surface forces, which act on the surface of the

differential element, and body forces, which are distributed throughout the element. For our purpose,

the only body force, of interest is the weight of the element, which can be expressed as

(6.46)

where g is the vector representation of the acceleration of gravity. In component form

(6.47a)

(6.47b)

(6.47c)

where and are the components of the acceleration of gravity vector in the x, y, and z
directions, respectively.

Surface forces act on the element as a result of its interaction with its surroundings. At any

arbitrary location within a fluid mass, the force acting on a small area, which lies in an arbitrary

surface, can be represented by as is shown in Fig. 6.9. In general, will be inclined with

respect to the surface. The force can be resolved into three components, and 

where is normal to the area, , and and are parallel to the area and orthogonal to

each other. The normal stress, , is defined as

sn � lim
dAS0

 
dFn

dA

sn

dF2dF1dAdFn

dF2,dFn, dF1,dFs

dFsdFs,

dA,

gzgx, gy,

 dFbz � dm gz

 dFby � dm gy

 dFbx � dm gx

dFb � dm g

dFb,

dF

dm.

dF � dm a

DV�Dt

dF � dm 
DV
Dt

dmdm.dF

dF �
D1V dm2

Dt

dm,

dm.

dV�,dm,

a  Fcontents of the
control volume

�
0
0t

 �
cv

 Vr dV� � �
cs

 VrV � n̂ dA

D1 2�Dt

Both surface forces
and body forces
generally act on
fluid particles.

Fsδ

Fnδ

F1δF2δ
Aδ

Arbitrary
surface

F I G U R E  6.9 Components of force acting
on an arbitrary differential area.

JWCL068_ch06_263-331.qxd  9/23/08  12:17 PM  Page 276



and the shearing stresses are defined as

and

We will use for normal stresses and for shearing stresses. The intensity of the force per unit

area at a point in a body can thus be characterized by a normal stress and two shearing stresses, if the

orientation of the area is specified. For purposes of analysis it is usually convenient to reference the

area to the coordinate system. For example, for the rectangular coordinate system shown in Fig. 6.10

we choose to consider the stresses acting on planes parallel to the coordinate planes. On the plane

ABCD of Fig. 6.10a, which is parallel to the y–z plane, the normal stress is denoted and the shearing

stresses are denoted as and To easily identify the particular stress component we use a double

subscript notation. The first subscript indicates the direction of the normal to the plane on which

the stress acts, and the second subscript indicates the direction of the stress. Thus, normal stresses have

repeated subscripts, whereas the subscripts for the shearing stresses are always different.

It is also necessary to establish a sign convention for the stresses. We define the positive direction

for the stress as the positive coordinate direction on the surfaces for which the outward normal is in

the positive coordinate direction. This is the case illustrated in Fig. 6.10a where the outward normal

to the area ABCD is in the positive x direction. The positive directions for and are as shown

in Fig. 6.10a. If the outward normal points in the negative coordinate direction, as in Fig. 6.10b for

the area then the stresses are considered positive if directed in the negative coordinate

directions. Thus, the stresses shown in Fig. 6.10b are considered to be positive when directed as shown.

Note that positive normal stresses are tensile stresses; that is, they tend to “stretch” the material.

It should be emphasized that the state of stress at a point in a material is not completely

defined by simply three components of a “stress vector.” This follows, since any particular stress

vector depends on the orientation of the plane passing through the point. However, it can be shown

that the normal and shearing stresses acting on any plane passing through a point can be expressed

in terms of the stresses acting on three orthogonal planes passing through the point 1Ref. 22.
We now can express the surface forces acting on a small cubical element of fluid in terms

of the stresses acting on the faces of the element as shown in Fig. 6.11. It is expected that in general

the stresses will vary from point to point within the flow field. Thus, through the use of Taylor

series expansions we will express the stresses on the various faces in terms of the corresponding

stresses at the center of the element of Fig. 6.11 and their gradients in the coordinate directions.

For simplicity only the forces in the x direction are shown. Note that the stresses must be multiplied

by the area on which they act to obtain the force. Summing all these forces in the x direction yields

(6.48a)dFsx � a
0sxx

0x
�

0tyx

0y
�

0tzx

0z
b dx dy dz

A¿B¿C¿D¿,

txztxy,sxx,

txz.txy

sxx

ts

t2 � lim
dAS0

 
dF2

dA

t1 � lim
dAS0

 
dF1

dA
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z

x

y

(b) (a)

A' A

C' C

BB'

D'
D

σxx

τxy

τxz σxx

τxy

τxz

F I G U R E  6.10 Double subscript notation for stresses.

Surface forces can
be expressed in
terms of the shear
and normal
stresses.
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for the resultant surface force in the x direction. In a similar manner the resultant surface forces in

the y and z directions can be obtained and expressed as

(6.48b)

(6.48c)

The resultant surface force can now be expressed as

(6.49)

and this force combined with the body force, yields the resultant force, acting on the

differential mass, That is,

6.3.2 Equations of Motion

The expressions for the body and surface forces can now be used in conjunction with Eq. 6.45 to

develop the equations of motion. In component form Eq. 6.45 can be written as

where and the acceleration components are given by Eq. 6.3. It now follows

1using Eqs. 6.47 and 6.48 for the forces on the element2 that

(6.50a)

(6.50b)

(6.50c)

where the element volume cancels out.

Equations 6.50 are the general differential equations of motion for a fluid. In fact, they are

applicable to any continuum 1solid or fluid2 in motion or at rest. However, before we can use the

equations to solve specific problems, some additional information about the stresses must be obtained.

dx dy dz

rgz �
0txz

0x
�

0tyz

0y
�

0szz

0z
 � r a

0w

0t
� u 

0w

0x
� v 

0w

0y
� w 

0w

0z
b

rgy �
0txy

0x
�

0syy

0y
�

0tzy

0z
 � r a

0v

0t
� u 

0v

0x
� v 

0y
0y

� w 
0v

0z
b

rgx �
0sxx

0x
�

0tyx

0y
�

0tzx

0z
 � r a

0u

0t
� u 

0u

0x
� v 

0u

0y
� w 

0u

0z
b

dm � r dx dy dz,

 dFz � dm az

 dFy � dm ay

 dFx � dm ax

dF � dFs � dFb.dm.

dF,dFb,

dFs � dFsxî � dFsy ĵ � dFszk̂

dFsz � a
0txz

0x
�

0tyz

0y
�

0szz

0z
b dx dy dz

dFsy � a
0txy

0x
�

0syy

0y
�

0tzy

0z
b dx dy dz
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F I G U R E  6.11 Surface forces in the x direction acting on a 
fluid element.

The motion of a
fluid is governed 
by a set of nonlin-
ear differential
equations.
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Otherwise, we will have more unknowns 1all of the stresses and velocities and the density2 than

equations. It should not be too surprising that the differential analysis of fluid motion is complicated.

We are attempting to describe, in detail, complex fluid motion.

6.4 Inviscid Flow 279

As is discussed in Section 1.6, shearing stresses develop in a moving fluid because of the viscosity

of the fluid. We know that for some common fluids, such as air and water, the viscosity is small,

and therefore it seems reasonable to assume that under some circumstances we may be able to

simply neglect the effect of viscosity 1and thus shearing stresses2. Flow fields in which the shearing

stresses are assumed to be negligible are said to be inviscid, nonviscous, or frictionless. These terms

are used interchangeably. As is discussed in Section 2.1, for fluids in which there are no shearing

stresses the normal stress at a point is independent of direction—that is, In this

instance we define the pressure, p, as the negative of the normal stress so that

The negative sign is used so that a compressive normal stress 1which is what we expect in a fluid2
will give a positive value for p.

In Chapter 3 the inviscid flow concept was used in the development of the Bernoulli equation,

and numerous applications of this important equation were considered. In this section we will again

consider the Bernoulli equation and will show how it can be derived from the general equations of

motion for inviscid flow.

6.4.1 Euler’s Equations of Motion

For an inviscid flow in which all the shearing stresses are zero, and the normal stresses are replaced

by the general equations of motion 1Eqs. 6.502 reduce to

(6.51a)

(6.51b)

(6.51c)

These equations are commonly referred to as Euler’s equations of motion, named in honor of

Leonhard Euler 11707–17832, a famous Swiss mathematician who pioneered work on the relationship

between pressure and flow. In vector notation Euler’s equations can be expressed as

(6.52)

Although Eqs. 6.51 are considerably simpler than the general equations of motion, Eqs. 6.50,

they are still not amenable to a general analytical solution that would allow us to determine the

pressure and velocity at all points within an inviscid flow field. The main difficulty arises from the

nonlinear velocity terms 1 etc.2, which appear in the convective acceleration.

Because of these terms, Euler’s equations are nonlinear partial differential equations for which we

do not have a general method of solving. However, under some circumstances we can use them to

obtain useful information about inviscid flow fields. For example, as shown in the following section

we can integrate Eq. 6.52 to obtain a relationship 1the Bernoulli equation2 between elevation, pressure,

and velocity along a streamline.

6.4.2 The Bernoulli Equation

In Section 3.2 the Bernoulli equation was derived by a direct application of Newton’s second law

to a fluid particle moving along a streamline. In this section we will again derive this important

u 0u�0x, v 0u�0y,

rg � �p � r c
0V
0t

� 1V � �2V d

rgz �
0p

0z
� r a

0w

0t
� u 

0w

0x
� v 

0w

0y
� w 

0w

0z
b

rgy �
0p

0y
� r a

0v

0t
� u 

0v

0x
� v 

0v

0y
� w 

0v

0z
b

rgx �
0p

0x
� r a

0u

0t
� u 

0u

0x
� v 

0u

0y
� w 

0u

0z
b

�p,

�p � sxx � syy � szz

sxx � syy � szz.
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Euler’s equations 
of motion apply to
an inviscid flow
field.

JWCL068_ch06_263-331.qxd  9/23/08  12:17 PM  Page 279



equation, starting from Euler’s equations. Of course, we should obtain the same result since Euler’s

equations simply represent a statement of Newton’s second law expressed in a general form that

is useful for flow problems and maintains the restriction of zero viscosity. We will restrict our

attention to steady flow so Euler’s equation in vector form becomes

(6.53)

We wish to integrate this differential equation along some arbitrary streamline 1Fig. 6.122 and select

the coordinate system with the z axis vertical 1with “up” being positive2 so that, as shown by the

figure in the margin, the acceleration of gravity vector can be expressed as

where g is the magnitude of the acceleration of gravity vector. Also, it will be convenient to use

the vector identity

Equation 6.53 can now be written in the form

and this equation can be rearranged to yield

We next take the dot product of each term with a differential length ds along a streamline 1Fig.

6.122. Thus,

(6.54)

Since ds has a direction along the streamline, the vectors ds and V are parallel. However, as shown

by the figure in the margin, the vector is perpendicular to V 1why?2, so it follows that

Recall also that the dot product of the gradient of a scalar and a differential length gives the

differential change in the scalar in the direction of the differential length. That is, with 

we can write Thus, Eq.

6.54 becomes

(6.55)

where the change in p, V, and z is along the streamline. Equation 6.55 can now be integrated to

give

(6.56)

which indicates that the sum of the three terms on the left side of the equation must remain a

constant along a given streamline. Equation 6.56 is valid for both compressible and incompressible

�  
dp
r

�
V 2

2
� gz � constant

dp
r

�
1

2
 d1V 22 � g dz � 0

�p � ds � 10p�0x2 dx � 10p�0y2dy � 10p�0z2dz � dp.dx î � dy ĵ � dz k̂
ds �

3V � 1� � V2 4 � ds � 0

V � 1� � V2

�p
r

 � ds �
1

2
 �1V 22 � ds � g�z � ds � 3V � 1� � V2 4 � ds

�p
r

�
1

2
 �1V 22 � g�z � V � 1� � V2

�rg�z � �p �
r

2
 �1V � V2 � rV � 1� � V2

1V � �2V � 1
2�1V � V2 � V � 1� � V2

g � �g�z

rg � �p � r1V � �2V
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inviscid flows, but for compressible fluids the variation in with p must be specified before the

first term in Eq. 6.56 can be evaluated.

For inviscid, incompressible fluids 1commonly called ideal fluids2 Eq. 6.56 can be written as

(6.57)

and this equation is the Bernoulli equation used extensively in Chapter 3. It is often convenient to

write Eq. 6.57 between two points 112 and 122 along a streamline and to express the equation in the

“head” form by dividing each term by g so that

(6.58)

It should be again emphasized that the Bernoulli equation, as expressed by Eqs. 6.57 and 6.58, is

restricted to the following:

inviscid flow incompressible flow

steady flow flow along a streamline

You may want to go back and review some of the examples in Chapter 3 that illustrate the use of

the Bernoulli equation.

6.4.3 Irrotational Flow

If we make one additional assumption—that the flow is irrotational—the analysis of inviscid

flow problems is further simplified. Recall from Section 6.1.3 that the rotation of a fluid

element is equal to and an irrotational flow field is one for which 1i.e.,

the curl of velocity is zero2. Since the vorticity, is defined as it also follows that in

an irrotational flow field the vorticity is zero. The concept of irrotationality may seem to be

a rather strange condition for a flow field. Why would a flow field be irrotational? To answer

this question we note that if then each of the components of this vector, as

are given by Eqs. 6.12, 6.13, and 6.14, must be equal to zero. Since these components include

the various velocity gradients in the flow field, the condition of irrotationality imposes specific

relationships among these velocity gradients. For example, for rotation about the z axis to be

zero, it follows from Eq. 6.12 that

and, therefore,

(6.59)

Similarly from Eqs. 6.13 and 6.14

(6.60)

(6.61)

A general flow field would not satisfy these three equations. However, a uniform flow as is illustrated

in Fig. 6.13 does. Since 1a constant2, and it follows that Eqs. 6.59, 6.60, and

6.61 are all satisfied. Therefore, a uniform flow field 1in which there are no velocity gradients2 is

certainly an example of an irrotational flow.

Uniform flows by themselves are not very interesting. However, many interesting and

important flow problems include uniform flow in some part of the flow field. Two examples are

w � 0,v � 0,u � U
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�
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0v

0x
�
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� � V � 0
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shown in Fig. 6.14. In Fig. 6.14a a solid body is placed in a uniform stream of fluid. Far away

from the body the flow remains uniform, and in this far region the flow is irrotational. In Fig.

6.14b, flow from a large reservoir enters a pipe through a streamlined entrance where the velocity

distribution is essentially uniform. Thus, at the entrance the flow is irrotational.

For an inviscid fluid there are no shearing stresses—the only forces acting on a fluid element

are its weight and pressure forces. Since the weight acts through the element center of gravity, and

the pressure acts in a direction normal to the element surface, neither of these forces can cause the

element to rotate. Therefore, for an inviscid fluid, if some part of the flow field is irrotational, the

fluid elements emanating from this region will not take on any rotation as they progress through

the flow field. This phenomenon is illustrated in Fig. 6.14a in which fluid elements flowing far

away from the body have irrotational motion, and as they flow around the body the motion remains

irrotational except very near the boundary. Near the boundary the velocity changes rapidly from

zero at the boundary 1no-slip condition2 to some relatively large value in a short distance from the

boundary. This rapid change in velocity gives rise to a large velocity gradient normal to the boundary

and produces significant shearing stresses, even though the viscosity is small. Of course if we had

a truly inviscid fluid, the fluid would simply “slide” past the boundary and the flow would be

irrotational everywhere. But this is not the case for real fluids, so we will typically have a layer

1usually very thin2 near any fixed surface in a moving stream in which shearing stresses are not

negligible. This layer is called the boundary layer. Outside the boundary layer the flow can be

treated as an irrotational flow. Another possible consequence of the boundary layer is that the main

stream may “separate” from the surface and form a wake downstream from the body. (See the

282 Chapter 6 ■ Differential Analysis of Fluid Flow
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photographs at the beginning of Chapters 7, 9, and 11.) The wake would include a region of slow,

perhaps randomly moving fluid. To completely analyze this type of problem it is necessary to

consider both the inviscid, irrotational flow outside the boundary layer, and the viscous, rotational

flow within the boundary layer and to somehow “match” these two regions. This type of analysis

is considered in Chapter 9.

As is illustrated in Fig. 6.14b, the flow in the entrance to a pipe may be uniform 1if the

entrance is streamlined2, and thus will be irrotational. In the central core of the pipe the flow

remains irrotational for some distance. However, a boundary layer will develop along the wall

and grow in thickness until it fills the pipe. Thus, for this type of internal flow there will be an

entrance region in which there is a central irrotational core, followed by a so-called fully
developed region in which viscous forces are dominant. The concept of irrotationality is

completely invalid in the fully developed region. This type of internal flow problem is considered

in detail in Chapter 8.

The two preceding examples are intended to illustrate the possible applicability of

irrotational flow to some “real fluid” flow problems and to indicate some limitations of the

irrotationality concept. We proceed to develop some useful equations based on the assumptions

of inviscid, incompressible, irrotational flow, with the admonition to use caution when applying

the equations.

6.4.4 The Bernoulli Equation for Irrotational Flow

In the development of the Bernoulli equation in Section 6.4.2, Eq. 6.54 was integrated along a

streamline. This restriction was imposed so the right side of the equation could be set equal to

zero; that is,

1since ds is parallel to V2. However, for irrotational flow, so the right side of Eq. 6.54

is zero regardless of the direction of ds. We can now follow the same procedure used to obtain Eq.

6.55, where the differential changes and dz can be taken in any direction. Integration of

Eq. 6.55 again yields

(6.62)

where for irrotational flow the constant is the same throughout the flow field. Thus, for

incompressible, irrotational flow the Bernoulli equation can be written as

(6.63)

between any two points in the flow field. Equation 6.63 is exactly the same form as Eq. 6.58 but

is not limited to application along a streamline. However, Eq. 6.63 is restricted to

inviscid flow incompressible flow

steady flow irrotational flow

It may be worthwhile to review the use and misuse of the Bernoulli equation for rotational flow

as is illustrated in Example 3.18.

6.4.5 The Velocity Potential

For an irrotational flow the velocity gradients are related through Eqs. 6.59, 6.60, and 6.61. It

follows that in this case the velocity components can be expressed in terms of a scalar function

as

(6.64)u �
0f
0x

  v �
0f
0y

  w �
0f
0z

f1x, y, z, t2

p1

g
�

V 2
1

2g
� z1 �

p2

g
�

V 2
2

2g
� z2

�  
dp
r

�
V 2

2
� gz � constant

dp, d1V 22,

� � V � 0 ,

3V � 1� � V2 4 � ds � 0
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where is called the velocity potential. Direct substitution of these expressions for the velocity

components into Eqs. 6.59, 6.60, and 6.61 will verify that a velocity field defined by Eqs. 6.64 is

indeed irrotational. In vector form, Eqs. 6.64 can be written as

(6.65)

so that for an irrotational flow the velocity is expressible as the gradient of a scalar function

The velocity potential is a consequence of the irrotationality of the flow field, whereas the

stream function is a consequence of conservation of mass (see Section 6.2.3). It is to be noted,

however, that the velocity potential can be defined for a general three-dimensional flow, whereas

the stream function is restricted to two-dimensional flows.

For an incompressible fluid we know from conservation of mass that

and therefore for incompressible, irrotational flow it follows that

(6.66)

where is the Laplacian operator. In Cartesian coordinates

This differential equation arises in many different areas of engineering and physics and is called

Laplace’s equation. Thus, inviscid, incompressible, irrotational flow fields are governed by

Laplace’s equation. This type of flow is commonly called a potential flow. To complete the

mathematical formulation of a given problem, boundary conditions have to be specified. These are

usually velocities specified on the boundaries of the flow field of interest. It follows that if

the potential function can be determined, then the velocity at all points in the flow field can be

determined from Eq. 6.64, and the pressure at all points can be determined from the Bernoulli

equation 1Eq. 6.632. Although the concept of the velocity potential is applicable to both steady and

unsteady flow, we will confine our attention to steady flow.

Potential flows, governed by Eqs. 6.64 and 6.66, are irrotational flows. That is, the vorticity

is zero throughout. If vorticity is present (e.g., boundary layer, wake), then the flow cannot be

described by Laplace’s equation. The figure in the margin illustrates a flow in which the vorticity

is not zero in two regions—the separated region behind the bump and the boundary layer next to

the solid surface. This is discussed in detail in Chapter 9.

For some problems it will be convenient to use cylindrical coordinates, r, and z. In this

coordinate system the gradient operator is

(6.67)

so that

(6.68)

where Since

(6.69)

it follows for an irrotational flow 

(6.70)

Also, Laplace’s equation in cylindrical coordinates is

(6.71)
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GIVEN The two-dimensional flow of a nonviscous, incom-

pressible fluid in the vicinity of the corner of Fig. E6.4a is

described by the stream function

where has units of when r is in meters. Assume the

fluid density is and the x–y plane is horizontal—103 kg�m3

m2�sc

c � 2r2 sin 2u

90°

that is, there is no difference in elevation between points 112
and 122. 

FIND
(a) Determine, if possible, the corresponding velocity potential.

(b) If the pressure at point 112 on the wall is 30 kPa, what is the

pressure at point 122?

SOLUTION

Velocity Potential and Inviscid Flow Pressure

and therefore by integration

(1)

where is an arbitrary function of Similarly

and integration yields

(2)

where is an arbitrary function of r. To satisfy both Eqs. 1 and

2, the velocity potential must have the form

(Ans)

where C is an arbitrary constant. As is the case for stream functions,

the specific value of C is not important, and it is customary to let

so that the velocity potential for this corner flow is

(Ans)f � 2r2 cos 2u

C � 0

f � 2r2 cos 2u � C

f21r2

f � 2r2 cos 2u � f21r2

vu �
1

r
 

0f
0u

� �4r sin 2u

u.f11u2

f � 2r2 cos 2u � f11u2

EXAMPLE 6.4

(a) The radial and tangential velocity components can be ob-

tained from the stream function as 1see Eq. 6.422

and

Since

it follows that

0f
0r

� 4r cos 2u

vr �
0f
0r

vu � �
0c
0r

� �4r sin 2u

vr �
1

r
 

0c
0u

� 4r cos 2u

(2)

0.5 m

θ

r

(1)

1 m

x

y

y Streamline (    = constant)ψ

Equipotential
line

(    = constant)φ

(a) (b)
x

(c)

α

α

F I G U R E  E6.4
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COMMENT In the statement of this problem it was implied

by the wording “if possible” that we might not be able to find a

corresponding velocity potential. The reason for this concern is

that we can always define a stream function for two-dimensional

flow, but the flow must be irrotational if there is a corresponding

velocity potential. Thus, the fact that we were able to determine a

velocity potential means that the flow is irrotational. Several

streamlines and lines of constant are plotted in Fig. E6.4b.

These two sets of lines are orthogonal. The reason why stream-

lines and lines of constant are always orthogonal is explained in

Section 6.5.

(b) Since we have an irrotational flow of a nonviscous, incom-

pressible fluid, the Bernoulli equation can be applied between any

two points. Thus, between points 112 and 122 with no elevation

change

or

(3)

Since

it follows that for any point within the flow field

 � 16r 2

 � 16r 

21cos2 2u � sin2 2u2

 V 2 � 14r cos 2u22 � 1�4r sin 2u22

V 2 � v 2
r � v 2

u

p2 � p1 �
r

2
 1V 2

1 � V 2
22

p1

g
�

V 2
1

2g
�

p2

g
�

V 2
2

2g

f

f

This result indicates that the square of the velocity at any point

depends only on the radial distance, r, to the point. Note that the

constant, 16, has units of Thus,

and

Substitution of these velocities into Eq. 3 gives

(Ans)

COMMENT The stream function used in this example could

also be expressed in Cartesian coordinates as

or

since and However, in the cylindrical po-

lar form the results can be generalized to describe flow in the vicin-

ity of a corner of angle 1see Fig. E6.4c2 with the equations

and

where A is a constant.

f � Arp�a cos 
pu

a

c � Arp�a sin 
pu

a

a

y � r sin u.x � r cos u

c � 4xy

c � 2r 

2 sin 2u � 4r 

2 sin u cos u

� 36 kPa

p2 � 30 	 103 N�m2 �
103 kg�m3

2
 116 m2�s2 � 4 m2�s22

V 2
2 � 116 s�22 10.5 m22 � 4 m2�s2

V 2
1 � 116 s�22 11 m22 � 16 m2�s2

s�2.

A major advantage of Laplace’s equation is that it is a linear partial differential equation. Since it

is linear, various solutions can be added to obtain other solutions—that is, if and

are two solutions to Laplace’s equation, then is also a solution. The

practical implication of this result is that if we have certain basic solutions we can combine them

to obtain more complicated and interesting solutions. In this section several basic velocity potentials,

which describe some relatively simple flows, will be determined. In the next section these basic

potentials will be combined to represent complicated flows.

For simplicity, only plane 1two-dimensional2 flows will be considered. In this case, by using

Cartesian coordinates

(6.72)

or by using cylindrical coordinates

(6.73)

as shown by the figure in the margin. Since we can define a stream function for plane flow, we

can also let

(6.74)u �
0c
0y

  v � �
0c
0x

vr �
0f
0r

  vu �
1

r
 

0f
0u

u �
0f
0x

  v �
0f
0y

f3 � f1 � f2f21x, y, z2
f11x, y, z2

6.5 Some Basic, Plane Potential Flows

For potential flow,
basic solutions can
be simply added to
obtain more com-
plicated solutions.

V

y

x

u = x
∂φ
∂

v = y
∂φ
∂

θ
r

V
v  = ∂φ

θ∂θ

vr = 

1__
r

∂φ
∂r
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or

(6.75)

where the stream function was previously defined in Eqs. 6.37 and 6.42. We know that by defining

the velocities in terms of the stream function, conservation of mass is identically satisfied. If we

now impose the condition of irrotationality, it follows from Eq. 6.59 that

and in terms of the stream function

or

Thus, for a plane irrotational flow we can use either the velocity potential or the stream function—

both must satisfy Laplace’s equation in two dimensions. It is apparent from these results that the velocity

potential and the stream function are somehow related. We have previously shown that lines of constant

are streamlines; that is,

(6.76)

The change in as we move from one point to a nearby point is given by

the relationship

Along a line of constant we have so that

(6.77)

A comparison of Eqs. 6.76 and 6.77 shows that lines of constant 1called equipotential lines2
are orthogonal to lines of constant 1streamlines2 at all points where they intersect. 1Recall that

two lines are orthogonal if the product of their slopes is , as illustrated by the figure in the

margin.2 For any potential flow field a “flow net ” can be drawn that consists of a family of

streamlines and equipotential lines. The flow net is useful in visualizing flow patterns and can

be used to obtain graphical solutions by sketching in streamlines and equipotential lines and

adjusting the lines until the lines are approximately orthogonal at all points where they intersect.

An example of a flow net is shown in Fig. 6.15. Velocities can be estimated from the flow net,

since the velocity is inversely proportional to the streamline spacing, as shown by the figure in

the margin. Thus, for example, from Fig. 6.15 we can see that the velocity near the inside corner

will be higher than the velocity along the outer part of the bend. (See the photographs at the

beginning of Chapters 3 and 6.)

6.5.1 Uniform Flow

The simplest plane flow is one for which the streamlines are all straight and parallel, and the

magnitude of the velocity is constant. This type of flow is called a uniform flow. For example,

consider a uniform flow in the positive x direction as is illustrated in Fig. 6.16a. In this instance,

and and in terms of the velocity potential

0f
0x

� U  
0f
0y

� 0

v � 0,u � U

�1

c

f

dy

dx
`
along f�constant

� �
u
v

df � 0f

df �
0f
0x

 dx �
0f
0y

 dy � u dx � v dy

1x � dx, y � dy21x , y2f

dy

dx
`
along c�constant

�
v
u

c

02c

0x2
�

02c

0y2
� 0

0
0y

 a
0c
0y
b �

0
0x

 a�
0c
0x
b

0u

0y
�

0v

0x

vr �
1

r
 

0c
0u

  vu � �
0c
0r
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y

x

a

a

b b

a_
b

b_
a×(–   ) = –1

Streamwise acceleration

�ψ

Streamwise deceleration
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These two equations can be integrated to yield

where C is an arbitrary constant, which can be set equal to zero. Thus, for a uniform flow in the

positive x direction

(6.78)

The corresponding stream function can be obtained in a similar manner, since

and, therefore,

(6.79)

These results can be generalized to provide the velocity potential and stream function for a

uniform flow at an angle with the x axis, as in Fig. 6.16b. For this case

(6.80)

and

(6.81)

6.5.2 Source and Sink

Consider a fluid flowing radially outward from a line through the origin perpendicular to the x–y
plane as is shown in Fig. 6.17. Let m be the volume rate of flow emanating from the line 1per unit

length2, and therefore to satisfy conservation of mass

or

vr �
m

2pr

12pr2vr � m

c � U1y cos a � x sin a2

f � U1x cos a � y sin a2

a

c � Uy

0c
0y

� U  
0c
0x

� 0

f � Ux

f � Ux � C
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y

x

U

φ =   1φ φ =   2φ

=    1

=    2

=    3

=    4

y

x

U

α

=    1
=    2

=    3
=    4

φ =   1φ

φ =   2φ

(a) (b)

F I G U R E  6.16
Uniform flow: (a) in the x direction;
(b) in an arbitrary direction, .A

Streamline
(    = constant)ψ

d2 < d
V2 > V

V2

V1V

V

d

d
d1 > d

V1 < V

Equipotential line
(   = constant)φ

F I G U R E  6.15 Flow net for a bend.
(From Ref. 3, used by permission.)

90�
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Also, since the flow is a purely radial flow, the corresponding velocity potential can be

obtained by integrating the equations

It follows that

(6.82)

If m is positive, the flow is radially outward, and the flow is considered to be a source flow. If m
is negative, the flow is toward the origin, and the flow is considered to be a sink flow. The flowrate,

m, is the strength of the source or sink.

As shown by the figure in the margin, at the origin where the velocity becomes infinite,

which is of course physically impossible. Thus, sources and sinks do not really exist in real flow

fields, and the line representing the source or sink is a mathematical singularity in the flow field.

However, some real flows can be approximated at points away from the origin by using sources or

sinks. Also, the velocity potential representing this hypothetical flow can be combined with other

basic velocity potentials to approximately describe some real flow fields. This idea is further discussed

in Section 6.6.

The stream function for the source can be obtained by integrating the relationships

to yield

(6.83)

It is apparent from Eq. 6.83 that the streamlines 1lines of 2 are radial lines, and from Eq.

6.82 the equipotential lines 1lines of 2 are concentric circles centered at the origin.f � constant

c � constant

c �
m

2p
 u

vr �
1

r
 
0c
0u

�
m

2pr
  vu � �

0c
0r

� 0

r � 0

f �
m

2p
 ln r

0f
0r

�
m

2pr
  

1

r
 

0f
0u

� 0

vu � 0,
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A source or sink
represents a purely
radial flow.

= constantφ

vr r

θ

x

y

ψ = constant

F I G U R E  6.17 The streamline pattern for a
source.

GIVEN A nonviscous, incompressible fluid flows between

wedge-shaped walls into a small opening as shown in Fig. E6.5.

The velocity potential 1in 2, which approximately describes

this flow is

FIND Determine the volume rate of flow 1per unit length2 into

the opening.

f � �2 ln r

ft2�s

F I G U R E  E6.5

Potential Flow—Sink

R

θr

vr

π_
6

x

y

EXAMPLE 6.5

vr

r

~vr
1__
r
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6.5.3 Vortex

We next consider a flow field in which the streamlines are concentric circles—that is, we interchange

the velocity potential and stream function for the source. Thus, let

(6.84)

and

(6.85)

where K is a constant. In this case the streamlines are concentric circles as are illustrated in Fig.

6.18, with and

(6.86)

This result indicates that the tangential velocity varies inversely with the distance from the origin,

as shown by the figure in the margin, with a singularity occurring at 1where the velocity

becomes infinite2.
It may seem strange that this vortex motion is irrotational 1and it is since the flow field

is described by a velocity potential2. However, it must be recalled that rotation refers to the

orientation of a fluid element and not the path followed by the element. Thus, for an irrotational

vortex, if a pair of small sticks were placed in the flow field at location A, as indicated in Fig.

6.19a, the sticks would rotate as they move to location B. One of the sticks, the one that is

aligned along the streamline, would follow a circular path and rotate in a counterclockwise

r � 0

vu �
1

r
 

0f
0u

� �
0c
0r

�
K
r

vr � 0

c � �K ln r

f � Ku

290 Chapter 6 ■ Differential Analysis of Fluid Flow

The components of velocity are

which indicates we have a purely radial flow. The flowrate per

unit width, q, crossing the arc of length can thus be ob-

tained by integrating the expression

(Ans)� �
p

3
� �1.05 ft2�s

q � �
p�6

0

 vrR du � ��
p�6

0

 a
2

R
b R du

Rp�6

vr �
0f
0r

� �
2

r
  vu �

1

r
 

0f
0u

� 0

COMMENT Note that the radius R is arbitrary since the

flowrate crossing any curve between the two walls must be the

same. The negative sign indicates that the flow is toward the open-

ing, that is, in the negative radial direction.

SOLUTION

A vortex represents
a flow in which the
streamlines are con-
centric circles.

r

vθ

1__
r

vθ ~

F I G U R E  6.18 The streamline
pattern for a vortex.

φ = constant

θ

ψ = constant
y

x

r

vθ
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direction. The other stick would rotate in a clockwise direction due to the nature of the flow

field—that is, the part of the stick nearest the origin moves faster than the opposite end. Although

both sticks are rotating, the average angular velocity of the two sticks is zero since the flow is

irrotational.

If the fluid were rotating as a rigid body, such that where is a constant, then

sticks similarly placed in the flow field would rotate as is illustrated in Fig. 6.19b. This type of

vortex motion is rotational and cannot be described with a velocity potential. The rotational vortex

is commonly called a forced vortex, whereas the irrotational vortex is usually called a free vortex.

The swirling motion of the water as it drains from a bathtub is similar to that of a free vortex,

whereas the motion of a liquid contained in a tank that is rotated about its axis with angular velocity

corresponds to a forced vortex.

A combined vortex is one with a forced vortex as a central core and a velocity distribution

corresponding to that of a free vortex outside the core. Thus, for a combined vortex

(6.87)

and

(6.88)

where K and are constants and corresponds to the radius of the central core. The pressure

distribution in both the free and forced vortex was previously considered in Example 3.3. (See Fig.

E6.6a for an approximation of this type of flow.)

r0v

vu �
K
r
  r 7 r0

vu � vr  r 
 r0

v

K1vu � K1r
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F I G U R E  6.19 Motion of fluid element from A to B: (a) for
irrotational (free) vortex; (b) for rotational (forced) vortex.

1_
r

v  ~θ v  ~ rθ
B

A

r

(a) (b)

r

A

B

Vortex motion can
be either rotational
or irrotational.

F l u i d s  i n  t h e  N e w s

Some hurricane facts One of the most interesting, yet potentially

devastating, naturally occurring fluid flow phenomenan is a hurri-

cane. Broadly speaking a hurricane is a rotating mass of air circulat-

ing around a low pressure central core. In some respects the motion

is similar to that of a free vortex. The Caribbean and Gulf of Mexico

experience the most hurricanes, with the official hurricane season

being from June 1 to November 30. Hurricanes are usually 300 to

400 miles wide and are structured around a central eye in which

the air is relatively calm. The eye is surrounded by an eye wall

which is the region of strongest winds and precipitation. As one

goes from the eye wall to the eye the wind speeds decrease sharply

and within the eye the air is relatively calm and clear of clouds.

However, in the eye the pressure is at a minimum and may be 10%

less than standard atmospheric pressure. This low pressure creates

strong downdrafts of dry air from above. Hurricanes are classified

into five categories based on their wind speeds:

Category one—74–95 mph

Category two—96–110 mph

Category three—111–130 mph

Category four—131–155 mph

Category five—greater than 155 mph.

(See Problem 6.58.)
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A mathematical concept commonly associated with vortex motion is that of circulation. The

circulation, is defined as the line integral of the tangential component of the velocity taken

around a closed curve in the flow field. In equation form, can be expressed as 

(6.89)

where the integral sign means that the integration is taken around a closed curve, C, in the

counterclockwise direction, and ds is a differential length along the curve as is illustrated in Fig. 6.20.

For an irrotational flow, so that and, therefore,

This result indicates that for an irrotational flow the circulation will generally be zero. (Chapter 9

has further discussion of circulation in real flows.) However, if there are singularities enclosed

within the curve the circulation may not be zero. For example, for the free vortex with 

the circulation around the circular path of radius r shown in Fig. 6.21 is 

which shows that the circulation is nonzero and the constant However, for irrotational

flows the circulation around any path that does not include a singular point will be zero. This can

be easily confirmed for the closed path ABCD of Fig. 6.21 by evaluating the circulation around

that path.

The velocity potential and stream function for the free vortex are commonly expressed in

terms of the circulation as

(6.90)

and

(6.91)

The concept of circulation is often useful when evaluating the forces developed on bodies immersed

in moving fluids. This application will be considered in Section 6.6.3.

c � �
�

2p
 ln r

f �
�

2p
 u

K � ��2p.

≠ � �
2p

0

 
K
r

 1r du2 � 2pK

vu � K�r

≠ � �̌�
C

 df � 0

V � ds � �f � ds � dfV � �f

≠ � �̌�
C

 V � ds

�
�,
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F I G U R E  6.20 The notation
for determining circulation around closed
curve C.

ds
VArbitrary

curve C

F I G U R E  6.21 Circulation around various paths
in a free vortex.

θ

C
D

A

B
ds

vθ

r

θd

The numerical value
of the circulation
may depend on the
particular closed
path considered.

V6.4 Vortex in a
beaker
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6.5.4 Doublet

The final, basic potential flow to be considered is one that is formed by combining a source and

sink in a special way. Consider the equal strength, source–sink pair of Fig. 6.22. The combined

stream function for the pair is

c � �
m

2p
 1u1 � u22

6.5 Some Basic, Plane Potential Flows 293

GIVEN A liquid drains from a large tank through a small

opening as illustrated in Fig. E6.6a. A vortex forms whose veloc-

ity distribution away from the tank opening can be approximated

as that of a free vortex having a velocity potential

FIND Determine an expression relating the surface shape to

the strength of the vortex as specified by the circulation �.

f �
�

2p
 u

SOLUTION

F I G U R E  E6.6b

Potential Flow—Free Vortex

COMMENT The negative sign indicates that the surface falls

as the origin is approached as shown in Fig. E6.6. This solution is

not valid very near the origin since the predicted velocity be-

comes excessively large as the origin is approached.

EXAMPLE 6.6

Since the free vortex represents an irrotational flow field, the

Bernoulli equation

can be written between any two points. If the points are selected

at the free surface, so that

(1)

where the free surface elevation, is measured relative to a da-

tum passing through point 112 as shown in Fig. E6.6b.

The velocity is given by the equation

We note that far from the origin at point 112, so that

Eq. 1 becomes

(Ans)

which is the desired equation for the surface profile. 

zs � �
�2

8p2r 2g

V1 � vu � 0

vu �
1

r
 

0f
0u

�
�

2pr

zs,

V 2
1

2g
� zs �

V 2
2

2g

� 0,p1 � p2

p1

g
�

V 2
1

2g
� z1 �

p2

g
�

V 2
2

2g
� z2 z

r

y

x zs

p = patm

(2)

(1)

F I G U R E  E6.6a

A doublet is formed
by an appropriate
source–sink pair.

F I G U R E  6.22 The combination of
a source and sink of equal strength located along
the x axis.

P
y

x

θ2
θ1θ

r2

r1
r

SinkSource

a a
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which can be rewritten as

(6.92)

From Fig. 6.22 it follows that

and

These results substituted into Eq. 6.92 give

so that

(6.93)

The figure in the margin shows typical streamlines for this flow. For small values of the distance a

(6.94)

since the tangent of an angle approaches the value of the angle for small angles.

The so-called doublet is formed by letting the source and sink approach one another 

while increasing the strength so that the product remains constant. In this case,

since Eq. 6.94 reduces to

(6.95)

where K, a constant equal to is called the strength of the doublet. The corresponding velocity

potential for the doublet is

(6.96)

Plots of lines of constant reveal that the streamlines for a doublet are circles through the origin

tangent to the x axis as shown in Fig. 6.23. Just as sources and sinks are not physically realistic

entities, neither are doublets. However, the doublet when combined with other basic potential flows

c

f �
K cos u

r

ma�p,

c � �
K sin u

r

r� 1r 2 � a22S 1�r,

ma�pm 1m S � 2
1a S 02

c � �
m

2p
 
2ar sin u

r 

2 � a2
� �

mar sin u

p1r 

2 � a22

c � �
m

2p
 tan�1 a

2ar sin u

r2 � a2
b

tan a�
2pc

m
b �

2ar sin u

r 

2 � a2

tan u2 �
r sin u

r cos u � a

tan u1 �
r sin u

r cos u � a

tan a�
2pc

m
b � tan1u1 � u22 �

tan u1 � tan u2

1 � tan u1 tan u2
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x

y

Source
Sink

F I G U R E  6.23 Streamlines for a
doublet.

x

y

A doublet is formed
by letting a source
and sink approach
one another.
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provides a useful representation of some flow fields of practical interest. For example, we will

determine in Section 6.6.3 that the combination of a uniform flow and a doublet can be used to

represent the flow around a circular cylinder. Table 6.1 provides a summary of the pertinent

equations for the basic, plane potential flows considered in the preceding sections.

6.6 Superposition of Basic, Plane Potential Flows 295

TA B L E 6 . 1

Summary of Basic, Plane Potential Flows

Description of Velocity
Flow Field Velocity Potential Stream Function Componentsa

Uniform flow at 
angle with the x
axis 1see Fig.
6.16b2

Source or sink 
1see Fig. 6.172

source 
sink

Free vortex 
1see Fig. 6.182

counterclockwise 
motion 

clockwise motion

Doublet 
1see Fig. 6.232

aVelocity components are related to the velocity potential and stream function through the relationships:

.u �
0f
0x

�
0c
0y

  v �
0f
0y

� �
0c
0x

  vr �
0f
0r

�
1

r
 
0c
0u

  vu �
1

r
 
0f
0u

� �
0c
0r

vu � �
K sin u

r 2

vr � �
K cos u

r 2
c � �

K sin u

r
 f �

K cos u

r
 

� 6 0

� 7 0

m 6 0
m 7 0

v � U sin aa
u � U cos ac � U1 y cos a � x sin a2f � U1x cos a � y sin a2

vu �
�

2pr

vr � 0c � �
�

2p
 ln rf �

�

2p
 u

vu � 0

vr �
m

2pr
c �

m

2p
 uf �

m

2p
 ln r

As was discussed in the previous section, potential flows are governed by Laplace’s equation, which

is a linear partial differential equation. It therefore follows that the various basic velocity potentials

and stream functions can be combined to form new potentials and stream functions. 1Why is this

true?2Whether such combinations yield useful results remains to be seen. It is to be noted that any
streamline in an inviscid flow field can be considered as a solid boundary, since the conditions

along a solid boundary and a streamline are the same—that is, there is no flow through the boundary

or the streamline. Thus, if we can combine some of the basic velocity potentials or stream functions

to yield a streamline that corresponds to a particular body shape of interest, that combination can

be used to describe in detail the flow around that body. This method of solving some interesting

flow problems, commonly called the method of superposition, is illustrated in the following three

sections.

6.6.1 Source in a Uniform Stream—Half-Body

Consider the superposition of a source and a uniform flow as shown in Fig. 6.24a. The resulting

stream function is

(6.97) � Ur sin u �
m

2p
 u

 c � cuniform flow � csource

6.6 Superposition of Basic, Plane Potential Flows

Flow around a 
half-body is 
obtained by the 
addition of a source
to a uniform flow.
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and the corresponding velocity potential is

(6.98)

It is clear that at some point along the negative x axis the velocity due to the source will just cancel

that due to the uniform flow and a stagnation point will be created. For the source alone

so that the stagnation point will occur at where

or

(6.99)

The value of the stream function at the stagnation point can be obtained by evaluating at

and which yields from Eq. 6.97

Since 1from Eq. 6.992 it follows that the equation of the streamline passing through

the stagnation point is

or

(6.100)

where can vary between 0 and A plot of this streamline is shown in Fig. 6.24b. If we replace

this streamline with a solid boundary, as indicated in the figure, then it is clear that this combination

of a uniform flow and a source can be used to describe the flow around a streamlined body placed

in a uniform stream. The body is open at the downstream end, and thus is called a half-body. Other

streamlines in the flow field can be obtained by setting constant in Eq. 6.97 and plotting the

resulting equation. A number of these streamlines are shown in Fig. 6.24b. Although the streamlines

inside the body are shown, they are actually of no interest in this case, since we are concerned with

the flow field outside the body. It should be noted that the singularity in the flow field 1the source2
occurs inside the body, and there are no singularities in the flow field of interest 1outside the body2.

The width of the half-body asymptotically approaches This follows from Eq. 6.100,

which can be written as

y � b1p � u2

2pb.

c �

2p.u

r �
b1p � u2

sin u

pbU � Ur sin u � bUu

m�2 � pbU

cstagnation �
m

2

u � p,r � b
c

b �
m

2pU

U �
m

2pb

x � �b

vr �
m

2pr

f � Ur cos u �
m

2p
 ln r
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F I G U R E  6.24 The flow around a half-body: (a) superposition of a source and a uniform
flow; (b) replacement of streamline with solid boundary to form half-body.C � PbU

U

Stagnation
point

y

x

r

θ

Source

b

bπ

bπ

b

Stagnation point

 =    bUψ π

(b)(a)

V6.5 Half-body

For inviscid flow, a
streamline can be
replaced by a solid
boundary.
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so that as or the half-width approaches With the stream function 1or velocity

potential2 known, the velocity components at any point can be obtained. For the half-body, using

the stream function given by Eq. 6.97,

and

Thus, the square of the magnitude of the velocity, V, at any point is

and since 

(6.101)

With the velocity known, the pressure at any point can be determined from the Bernoulli

equation, which can be written between any two points in the flow field since the flow is irrotational.

Thus, applying the Bernoulli equation between a point far from the body, where the pressure is 

and the velocity is U, and some arbitrary point with pressure p and velocity V, it follows that

(6.102)

where elevation changes have been neglected. Equation 6.101 can now be substituted into Eq. 6.102 to

obtain the pressure at any point in terms of the reference pressure, and the upstream velocity, U.

This relatively simple potential flow provides some useful information about the flow around

the front part of a streamlined body, such as a bridge pier or strut placed in a uniform stream. An

important point to be noted is that the velocity tangent to the surface of the body is not zero; that

is, the fluid “slips” by the boundary. This result is a consequence of neglecting viscosity, the fluid

property that causes real fluids to stick to the boundary, thus creating a “no-slip” condition. All

potential flows differ from the flow of real fluids in this respect and do not accurately represent

the velocity very near the boundary. However, outside this very thin boundary layer the velocity

distribution will generally correspond to that predicted by potential flow theory if flow separation

does not occur. 1See Section 9.2.6.2 Also, the pressure distribution along the surface will closely

approximate that predicted from the potential flow theory, since the boundary layer is thin and

there is little opportunity for the pressure to vary through the thin layer. In fact, as discussed in

more detail in Chapter 9, the pressure distribution obtained from potential flow theory is used in

conjunction with viscous flow theory to determine the nature of flow within the boundary layer.

p0,

p0 � 1
2rU

2 � p � 1
2rV

2

p0

V 2 � U 2 a1 � 2 
b
r
 cos u �

b2

r 

2
b

b � m�2pU

V 2 � v2
r � v2

u � U 2 �
Um cos u

pr
� a

m

2pr
b

2

vu � �
0c
0r

� �U sin u

vr �
1

r
 

0c
0u

� U cos u �
m

2pr

�bp.uS 2puS 0
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For a potential flow
the fluid is allowed
to slip past a fixed
solid boundary.

GIVEN A 40 mi/hr wind blows toward a hill arising from a

plain that can be approximated with the top section of a half-body

as illustrated in Fig. E6.7a. The height of the hill approaches 200 ft

as shown. Assume an air density of 0.00238 slugs/ft3.

FIND
(a) What is the magnitude of the air velocity at a point on the

hill directly above the origin [point (2)]? 

(b) What is the elevation of point (2) above the plain and what

is the difference in pressure between point (1) on the plain far

from the hill and point (2)? 

F I G U R E  E6.7a

Potential Flow—Half-body

b

r

x

y

θ

40 mi/hr

(1) (3)

(2)
200 ft

EXAMPLE 6.7
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6.6.2 Rankine Ovals

The half-body described in the previous section is a body that is “open” at one end. To study the

flow around a closed body, a source and a sink of equal strength can be combined with a uniform

flow as shown in Fig. 6.25a. The stream function for this combination is

(6.103)

and the velocity potential is

(6.104)f � Ur cos u �
m

2p
 1ln r1 � ln r22

c � Ur sin u �
m

2p
 1u1 � u22

298 Chapter 6 ■ Differential Analysis of Fluid Flow

SOLUTION

and

it follows that

(Ans)

COMMENTS This result indicates that the pressure on the

hill at point 122 is slightly lower than the pressure on the plain at

some distance from the base of the hill with a 0.0533 psi differ-

ence due to the elevation increase and a 0.0114 psi difference due

to the velocity increase.

By repeating the calculations for various values of the upstream

wind speed, U, the results shown in Fig. E6.7b are obtained. Note

that as the wind speed increases, the pressure difference increases

from the calm conditions of p1 � p2 � 0.0533 psi.

The maximum velocity along the hill surface does not occur at

point 122 but farther up the hill at At this point 

Vsurface � 1.26U. The minimum velocity 1V � 02 and maximum

pressure occur at point 132, the stagnation point.

u � 63°.

 � 9.31 lb�ft2 � 0.0647 psi

 � 10.00238 slugs�ft32 132.2 ft�s22 1100 ft � 0 ft2

  p1 � p2 �
10.00238 slugs�ft32

2
 3 169.5 ft�s22 � 158.7 ft�s22 4

V2 � 147.4 mi�hr2 a
5280 ft�mi

3600 s�hr
b � 69.5 ft�s

(a) The velocity is given by Eq. 6.101 as

At point 122, and since this point is on the surface

1Eq. 6.1002

(1)

Thus,

and the magnitude of the velocity at 122 for a 40 mi�hr approach-

ing wind is

(Ans)

(b) The elevation at 122 above the plain is given by Eq. 1 as

Since the height of the hill approaches 200 ft and this height is

equal to it follows that

(Ans)

From the Bernoulli equation 1with the y axis the vertical axis2

so that

and with

V1 � 140 mi�hr2 a
5280 ft�mi

3600 s�hr
b � 58.7 ft�s

p1 � p2 �
r

2
 1V 2

2 � V 2
12 � g1y2 � y12

p1

g
�

V 2
1

2g
� y1 �

p2

g
�

V 2
2

2g
� y2

y2 �
200 ft

2
� 100 ft

pb,

y2 �
pb

2

V2 � a1 �
4

p2
b

1�2

 140 mi�hr2 � 47.4 mi�hr

 � U 2 a1 �
4

p2
b

 V 2
2 � U 2 c1 �

b2

1pb�222
d

r �
b1p � u2

sin u
�
pb

2

u � p�2,

V 2 � U 2 a1 � 2 
b

r
 cos u �

b2

r 

2
b

F I G U R E  E6.7b

(40 mph, 0.0647 psi)
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0
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2
, 
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i
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As discussed in Section 6.5.4, the stream function for the source–sink pair can be expressed as in

Eq. 6.93 and, therefore, Eq. 6.103 can also be written as

or

(6.105)

The corresponding streamlines for this flow field are obtained by setting constant. If several

of these streamlines are plotted, it will be discovered that the streamline forms a closed body

as is illustrated in Fig. 6.25b. We can think of this streamline as forming the surface of a body of

length and width 2h placed in a uniform stream. The streamlines inside the body are of no practical

interest and are not shown. Note that since the body is closed, all of the flow emanating from the

source flows into the sink. These bodies have an oval shape and are termed Rankine ovals.
Stagnation points occur at the upstream and downstream ends of the body as are indicated

in Fig. 6.25b. These points can be located by determining where along the x axis the velocity is

zero. The stagnation points correspond to the points where the uniform velocity, the source velocity,

and the sink velocity all combine to give a zero velocity. The locations of the stagnation points

depend on the value of a, m, and U. The body half-length, 1the value of that gives 

when 2, can be expressed as

(6.106)

or

(6.107)

The body half-width, h, can be obtained by determining the value of y where the y axis intersects

the streamline. Thus, from Eq. 6.105 with and it follows that

(6.108)

or

(6.109)

Equations 6.107 and 6.109 show that both and are functions of the dimensionless parameter,

Although for a given value of the corresponding value of can be determined

directly from Eq. 6.107, must be determined by a trial and error solution of Eq. 6.109.

A large variety of body shapes with different length to width ratios can be obtained by using

different values of as shown by the figure in the margin. As this parameter becomes large, flowUa�m,

h�a
/�aUa�mpUa�m.

h�a/�a

h
a

�
1

2
 c a

h
a
b

2

� 1 d  tan c2 a
pUa

m
b 

h
a
d

h �
h2 � a2

2a
 tan 

2pUh
m

y � h,c � 0, x � 0,c � 0

/
a

� a
m

pUa
� 1b

1�2

/ � a
ma

pU
� a2b

1�2

y � 0

V � 00x 0/

2/

c � 0

c �

c � Uy �
m

2p
 tan�1 a

2ay

x2 � y2 � a2
b

c � Ur sin u �
m

2p
 tan�1 a

2ar sin u

r 

2 � a2
b
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F I G U R E  6.25 The flow around a Rankine oval: (a) superposition of source–sink pair
and a uniform flow; (b) replacement of streamline with solid boundary to form Rankine oval.C � 0

(b)(a)

x

y
U

a a

r2

2

r r1

θ θ
1θ

Source Sink

� �

a a

+m –m

Stagnation
point

Stagnation
pointψ = 0

h

h

Rankine ovals are
formed by combin-
ing a source and
sink with a uniform
flow.

Large Ua/m

Small Ua/m
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around a long slender body is described, whereas for small values of the parameter, flow around a

more blunt shape is obtained. Downstream from the point of maximum body width the surface pressure

increases with distance along the surface. This condition 1called an adverse pressure gradient2 typically

leads to separation of the flow from the surface, resulting in a large low pressure wake on the downstream

side of the body. Separation is not predicted by potential theory 1which simply indicates a symmetrical

flow2. This is illustrated by the figure in the margin for an extreme blunt shape. Therefore, the potential

solution for the Rankine ovals will give a reasonable approximation of the velocity outside the thin,

viscous boundary layer and the pressure distribution on the front part of the body only.

6.6.3 Flow around a Circular Cylinder

As was noted in the previous section, when the distance between the source–sink pair approaches zero,

the shape of the Rankine oval becomes more blunt and in fact approaches a circular shape. Since the

doublet described in Section 6.5.4 was developed by letting a source–sink pair approach one another,

it might be expected that a uniform flow in the positive x direction combined with a doublet could be

used to represent flow around a circular cylinder. This combination gives for the stream function

(6.110)

and for the velocity potential

(6.111)

In order for the stream function to represent flow around a circular cylinder it is necessary that

constant for where a is the radius of the cylinder. Since Eq. 6.110 can be written as

it follows that for if

which indicates that the doublet strength, K, must be equal to Thus, the stream function for

flow around a circular cylinder can be expressed as

(6.112)

and the corresponding velocity potential is

(6.113)

A sketch of the streamlines for this flow field is shown in Fig. 6.26.

The velocity components can be obtained from either Eq. 6.112 or 6.113 as

(6.114)

and

(6.115)

On the surface of the cylinder it follows from Eq. 6.114 and 6.115 that and

As shown by the figure in the margin, the maximum velocity occurs at the top and bottom of

the cylinder and has a magnitude of twice the upstream velocity, U. As we move

away from the cylinder along the ray the velocity varies, as is illustrated in Fig. 6.26.u � p�2
1u � �p�22

vus � �2U sin u

vr � 01r � a2

vu �
1

r
 

0f
0u

� �
0c
0r

� �U a1 �
a2

r 2
b sin u

vr �
0f
0r

�
1

r
 

0c
0u

� U a1 �
a2

r 2
b cos u

f � Ur a1 �
a2

r 2
b cos u

c � Ur a1 �
a2

r 2
b sin u

Ua2.

U �
K

a2
� 0

r � ac � 0

c � aU �
K

r 2
b r sin u

r � a,c �

f � Ur cos u �
K cos u

r

c � Ur sin u �
K sin u

r
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V6.6 Circular
cylinder

V6.7 Ellipse

Potential Flow

Viscous Flow

A doublet combined
with a uniform flow
can be used to rep-
resent flow around
a circular cylinder.

0
0

1

2

θ

± π

θsυ
U

± π
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The pressure distribution on the cylinder surface is obtained from the Bernoulli equation

written from a point far from the cylinder where the pressure is and the velocity is U so that

where is the surface pressure. Elevation changes are neglected. Since the

surface pressure can be expressed as

(6.116)

A comparison of this theoretical, symmetrical pressure distribution expressed in dimensionless form

with a typical measured distribution is shown in Fig. 6.27. This figure clearly reveals that only on

the upstream part of the cylinder is there approximate agreement between the potential flow and

the experimental results. Because of the viscous boundary layer that develops on the cylinder, the

main flow separates from the surface of the cylinder, leading to the large difference between

the theoretical, frictionless fluid solution and the experimental results on the downstream side of

the cylinder 1see Chapter 92.
The resultant force 1per unit length2 developed on the cylinder can be determined by integrating

the pressure over the surface. From Fig. 6.28 it can be seen that

(6.117)Fx � ��
2p

0

 ps cos u a du

ps � p0 � 1
2rU

211 � 4 sin2 u2

vus � �2U sin u,ps

p0 � 1
2rU

2 � ps � 1
2rvus

2

p0

6.6 Superposition of Basic, Plane Potential Flows 301

The pressure dis-
tribution on the
cylinder surface is
obtained from the
Bernoulli equation.

F I G U R E  6.26 The flow around a
circular cylinder.

a

r

U

θ

Ψ = 0
2U

F I G U R E  6.27 A compari-
son of theoretical (inviscid) pressure distri-
bution on the surface of a circular cylinder
with typical experimental distribution.
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V6.8 Circular
cylinder with sepa-
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and

(6.118)

where is the drag 1force parallel to direction of the uniform flow2 and is the lift 1force perpendicular

to the direction of the uniform flow2. Substitution for from Eq. 6.116 into these two equations, and

subsequent integration, reveals that and 1Problem 6.732. These results indicate that both

the drag and lift as predicted by potential theory for a fixed cylinder in a uniform stream are zero.

Since the pressure distribution is symmetrical around the cylinder, this is not really a surprising result.

However, we know from experience that there is a significant drag developed on a cylinder when it is

placed in a moving fluid. This discrepancy is known as d’Alembert’s paradox. The paradox is named

after Jean le Rond d’Alembert 11717–17832, a French mathematician and philosopher, who first showed

that the drag on bodies immersed in inviscid fluids is zero. It was not until the latter part of the nineteenth

century and the early part of the twentieth century that the role viscosity plays in the steady fluid

motion was understood and d’Alembert’s paradox explained 1see Section 9.12.

Fy � 0Fx � 0

ps

FyFx

Fy � ��
2p

0

 ps sin u a du
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F I G U R E  6.28 The notation for determining lift and drag
on a circular cylinder.

a

x

y

Fx

Fy

dθ

θ

ps

V6.9 Potential and
viscous flow

Potential theory in-
correctly predicts
that the drag on a
cylinder is zero.

GIVEN When a circular cylinder is placed in a uniform

stream, a stagnation point is created on the cylinder as is shown in

Fig. E6.8a. If a small hole is located at this point, the stagnation

pressure, can be measured and used to determine the ap-

proach velocity, U.

pstag,

FIND
(a) Show how pstag and U are related. 

(b) If the cylinder is misaligned by an angle � (Figure E6.8b),

but the measured pressure is still interpreted as the stagnation

pressure, determine an expression for the ratio of the true

velocity, U, to the predicted velocity, U. Plot this ratio as a func-

tion of � for the range �20� 
 � 
 20�.

Potential Flow—CylinderEXAMPLE 6.8

F I G U R E  E6.8

y

x
a

θ
r

Stagnation
point

U

p0

(a)

U

a

α

(b)

U

(d)

β
β

1.5

1.4

1.3

1.2

1.1
1.0

–20° –10° 0° 10° 20°
α

U__
U'

(c)
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An additional, interesting potential flow can be developed by adding a free vortex to the

stream function or velocity potential for the flow around a cylinder. In this case

(6.119)

and

(6.120)

where is the circulation. We note that the circle will still be a streamline 1and thus can be

replaced with a solid cylinder2, since the streamlines for the added free vortex are all circular. However,

the tangential velocity, on the surface of the cylinder now becomes

(6.121)

This type of flow field could be approximately created by placing a rotating cylinder in a uniform

stream. Because of the presence of viscosity in any real fluid, the fluid in contact with the rotating

cylinder would rotate with the same velocity as the cylinder, and the resulting flow field would resemble

that developed by the combination of a uniform flow past a cylinder and a free vortex.

vus � �
0c
0r
`
r�a

� �2U sin u �
�

2pa

1r � a2vu,

r � a�

f � Ur a1 �
a2

r 2
b cos u �

�

2p
 u

c � Ur a1 �
a2

r 2
b sin u �

�

2p
 ln r
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SOLUTION

If we now write the Bernoulli equation between a point upstream

of the cylinder and the point on the cylinder where 

it follows that

and, therefore,

(2)

Since it follows from Eqs. 1 and 2 that

(Ans)

This velocity ratio is plotted as a function of the misalignment an-

gle in Fig. E6.8c.

COMMENT It is clear from these results that significant er-

rors can arise if the stagnation pressure tap is not aligned with the

stagnation streamline. As is discussed in Section 3.5, if two addi-

tional, symmetrically located holes are drilled on the cylinder, as

are illustrated in Fig. E6.8d, the correct orientation of the cylinder

can be determined. The cylinder is rotated until the pressures in

the two symmetrically placed holes are equal, thus indicating that

the center hole coincides with the stagnation streamline. For

the pressure at the two holes theoretically corresponds to

the upstream pressure, With this orientation a measurement of

the difference in pressure between the center hole and the side

holes can be used to determine U.

p0.
b � 30°

a

U1true2

U¿ 1predicted2
� 11 � 4 sin2a2�1�2

pstag � p0 � 1
2rU

2

pa � p0 � 1
2rU

211 � 4 sin2a2

p0 �
1

2
 rU 2 � pa �

1

2
 r1�2U sin a22

r � a, u � a,
(a) The velocity at the stagnation point is zero so the Bernoulli

equation written between a point on the stagnation streamline up-

stream from the cylinder and the stagnation point gives

Thus,

(Ans)

COMMENT A measurement of the difference between the

pressure at the stagnation point and the upstream pressure can

be used to measure the approach velocity. This is, of course, the

same result that was obtained in Section 3.5 for Pitot-static tubes.

(b) If the direction of the fluid approaching the cylinder is not

known precisely, it is possible that the cylinder is misaligned by

some angle, In this instance the pressure actually measured,

will be different from the stagnation pressure, but if the mis-

alignment is not recognized the predicted approach velocity,

would still be calculated as

Thus,

(1)

The velocity on the surface of the cylinder, where is ob-

tained from Eq. 6.115 as

vu � �2U sin u

r � a,vu,

U1true2

U¿ 1predicted2
� a

pstag � p0

pa � p0

b
1�2

U¿ � c
2

r
 1 pa � p02 d

1�2

U¿,
pa,

a.

U � c
2

r
 1pstag � p02 d

1�2

p0

g
�

U 2

2g
�

pstag

g

Flow around a ro-
tating cylinder is
approximated by
the addition of a
free vortex.
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A variety of streamline patterns can be developed, depending on the vortex strength, For

example, from Eq. 6.121 we can determine the location of stagnation points on the surface of the

cylinder. These points will occur at where and therefore from Eq. 6.121

(6.122)

If then —that is, the stagnation points occur at the front and rear of the cylinder

as are shown in Fig. 6.29a. However, for the stagnation points will occur at

some other location on the surface as illustrated in Figs. 6.29b,c. If the absolute value of the

parameter exceeds 1, Eq. 6.122 cannot be satisfied, and the stagnation point is located

away from the cylinder as shown in Fig. 6.29d.

The force per unit length developed on the cylinder can again be obtained by integrating the

differential pressure forces around the circumference as in Eqs. 6.117 and 6.118. For the cylinder

with circulation, the surface pressure, is obtained from the Bernoulli equation 1with the surface

velocity given by Eq. 6.1212

or

(6.123)

Equation 6.123 substituted into Eq. 6.117 for the drag, and integrated, again yields 1Problem 6.742

That is, even for the rotating cylinder no force in the direction of the uniform flow is developed.

However, use of Eq. 6.123 with the equation for the lift, 1Eq. 6.1182, yields 1Problem 6.742

(6.124)

Thus, for the cylinder with circulation, lift is developed equal to the product of the fluid density,

the upstream velocity, and the circulation. The negative sign means that if U is positive 1in the

positive x direction2 and is positive 1a free vortex with counterclockwise rotation2, the direction

of the is downward. 

Of course, if the cylinder is rotated in the clockwise direction (� � 0) the direction of Fy would

be upward. This can be seen by studying the surface pressure distribution (Eq. 6.123), which is plotted

in Fig. 6.30 for two situations. One has � 4pUa � 0, which corresponds to no rotation of the cylinder.

The other has � 4pUa � �0.25, which corresponds to clockwise rotation of the cylinder. With no�
�

Fy

�

Fy � �rU�

Fy

Fx � 0

ps � p0 �
1

2
 rU 2 a1 � 4 sin2 u �

2� sin u

paU
�

�2

4p2a2U 2
b

p0 �
1

2
 rU 2 � ps �

1

2
 r a�2U sin u �

�

2pa
b

2

ps,

��4pUa

�1 
 ��4pUa 
 1,

ustag � 0 or p� � 0,

sin ustag �
�

4pUa

vu � 0u � ustag

�.
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F I G U R E  6.29
The location of stagnation
points on a circular cylinder:
(a) without circulation; (b, c, d)
with circulation.

Γ = 0    < 1Γ
4   Uaπ

   > 1Γ
4   Uaπ   = 1Γ

4   Uaπ

(a) (b)

(c) (d)

Stagnation
point

Potential flow past
a cylinder with cir-
culation gives zero
drag but non-zero
lift.
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rotation the flow is symmetrical both top to bottom and front to back on the cylinder. With rotation

the flow is symmetrical front to back, but not top to bottom. In this case the two stagnation points

[i.e., (ps � p0) (�U2 2) � 1] are located on the bottom of the cylinder and the average pressure on

the top half of the cylinder is less than that on the bottom half. The result is an upward lift force. It

is this force acting in a direction perpendicular to the direction of the approach velocity that causes

baseballs and golf balls to curve when they spin as they are propelled through the air. The development

of this lift on rotating bodies is called the Magnus effect. (See Section 9.4 for further comments.)

Although Eq. 6.124 was developed for a cylinder with circulation, it gives the lift per unit

length for any two-dimensional object of any cross-sectional shape placed in a uniform, inviscid

stream. The circulation is determined around any closed curve containing the body. The general-

ized equation relating lift to fluid density, velocity, and circulation is called the Kutta–Joukowski
law, and is commonly used to determine the lift on airfoils (see Section 9.4.2 and Refs. 2–6).

��

6.7 Other Aspects of Potential Flow Analysis 305

F I G U R E  6.30 Pressure distribution on a circular cylinder with and without rotation.
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A sailing ship without sails A sphere or cylinder spinning about

its axis when placed in an airstream develops a force at right an-

gles to the direction of the airstream. This phenomenon is com-

monly referred to as the Magnus effect and is responsible for the

curved paths of baseballs and golf balls. Another lesser-known

application of the Magnus effect was proposed by a German

physicist and engineer, Anton Flettner, in the 1920s. Flettner’s

idea was to use the Magnus effect to make a ship move. To

demonstrate the practicality of the “rotor-ship” he purchased a

sailing schooner and replaced the ship’s masts and rigging with

two vertical cylinders that were 50 feet high and 9 feet in diame-

ter. The cylinders looked like smokestacks on the ship. Their spin-

ning motion was developed by 45-hp motors. The combination of

a wind and the rotating cylinders created a force 1Magnus effect2
to push the ship forward. The ship, named the Baden Baden,

made a successful voyage across the Atlantic, arriving in New

York Harbor on May 9, 1926. Although the feasibility of the

rotor-ship was clearly demonstrated, it proved to be less efficient

and practical than more conventional vessels and the idea was not

pursued. 1See Problem 6.72.2

In the preceding section the method of superposition of basic potentials has been used to obtain

detailed descriptions of irrotational flow around certain body shapes immersed in a uniform stream.

For the cases considered, two or more of the basic potentials were combined and the question is

asked: What kind of flow does this combination represent? This approach is relatively simple and

does not require the use of advanced mathematical techniques. It is, however, restrictive in its

general applicability. It does not allow us to specify a priori the body shape and then determine

the velocity potential or stream function that describes the flow around the particular body.

6.7 Other Aspects of Potential Flow Analysis
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Determining the velocity potential or stream function for a given body shape is a much more

complicated problem.

It is possible to extend the idea of superposition by considering a distribution of sources and

sinks, or doublets, which when combined with a uniform flow can describe the flow around bodies

of arbitrary shape. Techniques are available to determine the required distribution to give a

prescribed body shape. Also, for plane potential flow problems it can be shown that complex

variable theory 1the use of real and imaginary numbers2 can be effectively used to obtain solutions

to a great variety of important flow problems. There are, of course, numerical techniques that can

be used to solve not only plane two-dimensional problems, but the more general three-dimensional

problems. Since potential flow is governed by Laplace’s equation, any procedure that is available

for solving this equation can be applied to the analysis of irrotational flow of frictionless fluids.

Potential flow theory is an old and well-established discipline within the general field of fluid

mechanics. The interested reader can find many detailed references on this subject, including Refs.

2, 3, 4, 5, and 6 given at the end of this chapter.

An important point to remember is that regardless of the particular technique used to obtain

a solution to a potential flow problem, the solution remains approximate because of the

fundamental assumption of a frictionless fluid. Thus, “exact” solutions based on potential flow

theory represent, at best, only approximate solutions to real fluid problems. The applicability of

potential flow theory to real fluid problems has been alluded to in a number of examples considered

in the previous section. As a rule of thumb, potential flow theory will usually provide a reasonable

approximation in those circumstances when we are dealing with a low viscosity fluid moving at

a relatively high velocity, in regions of the flow field in which the flow is accelerating. Under

these circumstances we generally find that the effect of viscosity is confined to the thin boundary

layer that develops at a solid boundary. Outside the boundary layer the velocity distribution and

the pressure distribution are closely approximated by the potential flow solution. However, in

those regions of the flow field in which the flow is decelerating 1for example, in the rearward

portion of a bluff body or in the expanding region of a conduit2, the pressure near a solid boundary

will increase in the direction of flow. This so-called adverse pressure gradient can lead to flow

separation, a phenomenon that causes dramatic changes in the flow field which are generally not

accounted for by potential theory. However, as discussed in Chapter 9, in which boundary layer

theory is developed, it is found that potential flow theory is used to obtain the appropriate pressure

distribution that can then be combined with the viscous flow equations to obtain solutions near

the boundary 1and also to predict separation2. The general differential equations that describe

viscous fluid behavior and some simple solutions to these equations are considered in the remaining

sections of this chapter.
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Potential flow solu-
tions are always ap-
proximate because
the fluid is assumed
to be frictionless.

V6.10 Potential
flow

To incorporate viscous effects into the differential analysis of fluid motion we must return to the

previously derived general equations of motion, Eqs. 6.50. Since these equations include both

stresses and velocities, there are more unknowns than equations, and therefore before proceeding

it is necessary to establish a relationship between the stresses and velocities.

6.8.1 Stress–Deformation Relationships

For incompressible Newtonian fluids it is known that the stresses are linearly related to the rates

of deformation and can be expressed in Cartesian coordinates as 1for normal stresses2

(6.125a)

(6.125b)

(6.125c) szz � �p � 2m 
0w

0z

 syy � �p � 2m 
0v

0y

 sxx � �p � 2m 
0u

0x
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1for shearing stresses2

(6.125d)

(6.125e)

(6.125f)

where p is the pressure, the negative of the average of the three normal stresses; that is,

For viscous fluids in motion the normal stresses are not necessarily the

same in different directions, thus, the need to define the pressure as the average of the three normal

stresses. For fluids at rest, or frictionless fluids, the normal stresses are equal in all directions. 1We

have made use of this fact in the chapter on fluid statics and in developing the equations for inviscid

flow.2 Detailed discussions of the development of these stress–velocity gradient relationships can

be found in Refs. 3, 7, and 8. An important point to note is that whereas for elastic solids the

stresses are linearly related to the deformation 1or strain2, for Newtonian fluids the stresses are

linearly related to the rate of deformation 1or rate of strain2.
In cylindrical polar coordinates the stresses for incompressible Newtonian fluids are expressed

as 1for normal stresses2

(6.126a)

(6.126b)

(6.126c)

1for shearing stresses2

(6.126d)

(6.126e)

(6.126f)

The double subscript has a meaning similar to that of stresses expressed in Cartesian coordinates—

that is, the first subscript indicates the plane on which the stress acts, and the second subscript the

direction. Thus, for example, refers to a stress acting on a plane perpendicular to the radial direction

and in the radial direction 1thus a normal stress2. Similarly, refers to a stress acting on a plane

perpendicular to the radial direction but in the tangential 1 direction2 and is therefore a shearing stress.

6.8.2 The Navier–Stokes Equations

The stresses as defined in the preceding section can be substituted into the differential equations

of motion 1Eqs. 6.502 and simplified by using the continuity equation 1Eq. 6.312 to obtain:

1x direction2

(6.127a)

1y direction2
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For Newtonian 
fluids, stresses are
linearly related to
the rate of strain.
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1z direction2

(6.127c)

where and w are the x, y, and z components of velocity as shown in the figure in the margin

of the previous page. We have rearranged the equations so the acceleration terms are on the left

side and the force terms are on the right. These equations are commonly called the Navier–Stokes
equations, named in honor of the French mathematician L. M. H. Navier 11785–18362 and the

English mechanician Sir G. G. Stokes 11819–19032, who were responsible for their formulation.

These three equations of motion, when combined with the conservation of mass equation 1Eq. 6.312,
provide a complete mathematical description of the flow of incompressible Newtonian fluids. We

have four equations and four unknowns and and therefore the problem is “well-posed”

in mathematical terms. Unfortunately, because of the general complexity of the Navier–Stokes

equations 1they are nonlinear, second-order, partial differential equations2, they are not amenable

to exact mathematical solutions except in a few instances. However, in those few instances in which

solutions have been obtained and compared with experimental results, the results have been in close

agreement. Thus, the Navier–Stokes equations are considered to be the governing differential

equations of motion for incompressible Newtonian fluids.

In terms of cylindrical polar coordinates 1see the figure in the margin2, the Navier–Stokes

equations can be written as 

1r direction2

(6.128a)

1 direction2

(6.128b)

1z direction2

(6.128c)

To provide a brief introduction to the use of the Navier–Stokes equations, a few of the

simplest exact solutions are developed in the next section. Although these solutions will prove to

be relatively simple, this is not the case in general. In fact, only a few other exact solutions have

been obtained.
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The Navier–Stokes
equations are the
basic differential
equations describ-
ing the flow of 
Newtonian fluids.

A principal difficulty in solving the Navier–Stokes equations is because of their nonlinearity arising

from the convective acceleration terms There are no general analytical

schemes for solving nonlinear partial differential equations 1e.g., superposition of solutions cannot

be used2, and each problem must be considered individually. For most practical flow problems, fluid

particles do have accelerated motion as they move from one location to another in the flow field.

Thus, the convective acceleration terms are usually important. However, there are a few special cases

for which the convective acceleration vanishes because of the nature of the geometry of the flow

1i.e., u 0u�0x, w 0v�0z, etc.2. 

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Fluids

θ
y
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z

v

vz

vr

θr
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system. In these cases exact solutions are often possible. The Navier–Stokes equations apply to both

laminar and turbulent flow, but for turbulent flow each velocity component fluctuates randomly with

respect to time and this added complication makes an analytical solution intractable. Thus, the exact

solutions referred to are for laminar flows in which the velocity is either independent of time 1steady

flow2 or dependent on time 1unsteady flow2 in a well-defined manner.

6.9.1 Steady, Laminar Flow between Fixed Parallel Plates

We first consider flow between the two horizontal, infinite parallel plates of Fig. 6.31a. For this

geometry the fluid particles move in the x direction parallel to the plates, and there is no velocity

in the y or z direction—that is, In this case it follows from the continuity equation

1Eq. 6.312 that Furthermore, there would be no variation of u in the z direction for

infinite plates, and for steady flow so that If these conditions are used in the

Navier–Stokes equations 1Eqs. 6.1272, they reduce to

(6.129)

(6.130)

(6.131)

where we have set and That is, the y axis points up. We see that for this

particular problem the Navier–Stokes equations reduce to some rather simple equations.

Equations 6.130 and 6.131 can be integrated to yield

(6.132)

which shows that the pressure varies hydrostatically in the y direction. Equation 6.129, rewritten

as

can be integrated to give

and integrated again to yield

(6.133)

Note that for this simple flow the pressure gradient, is treated as constant as far as the

integration is concerned, since 1as shown in Eq. 6.1322 it is not a function of y. The two constants

must be determined from the boundary conditions. For example, if the two plates arec1 and c2

0p�0x,

u �
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u � u1y2.0u�0t � 0

0u�0x � 0.

v � 0 and w � 0.
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An exact solution
can be obtained for
steady laminar flow
between fixed paral-
lel plates.

u

g

h

h z

x

y u

umax

(a) (b)

F I G U R E  6.31 The viscous flow between parallel plates:
(a) coordinate system and notation used in analysis; (b) parabolic velocity 
distribution for flow between parallel fixed plates.

V6.11 No-slip
boundary condition
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fixed, then for 1because of the no-slip condition for viscous fluids2. To satisfy this

condition and

Thus, the velocity distribution becomes

(6.134)

Equation 6.134 shows that the velocity profile between the two fixed plates is parabolic as illustrated

in Fig. 6.31b.
The volume rate of flow, q, passing between the plates 1for a unit width in the z direction2 is

obtained from the relationship

or

(6.135)

The pressure gradient is negative, since the pressure decreases in the direction of flow. If

we let represent the pressure drop between two points a distance apart, then

and Eq. 6.135 can be expressed as

(6.136)

The flow is proportional to the pressure gradient, inversely proportional to the viscosity, and strongly

dependent on the gap width. In terms of the mean velocity, V, where Eq. 6.136

becomes

(6.137)

Equations 6.136 and 6.137 provide convenient relationships for relating the pressure drop along a

parallel-plate channel and the rate of flow or mean velocity. The maximum velocity, occurs

midway between the two plates, as shown in Fig. 6.31b, so that from Eq. 6.134

or

(6.138)

The details of the steady laminar flow between infinite parallel plates are completely predicted

by this solution to the Navier–Stokes equations. For example, if the pressure gradient, viscosity, and

plate spacing are specified, then from Eq. 6.134 the velocity profile can be determined, and from

Eqs. 6.136 and 6.137 the corresponding flowrate and mean velocity determined. In addition, from

Eq. 6.132 it follows that

where is a reference pressure at and the pressure variation throughout the fluid can

be obtained from
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V6.12 Liquid–
liquid no-slip

The Navier–Stokes
equations provide
detailed flow char-
acteristics for lami-
nar flow between
fixed parallel plates.
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For a given fluid and reference pressure, the pressure at any point can be predicted. This relatively

simple example of an exact solution illustrates the detailed information about the flow field which

can be obtained. The flow will be laminar if the Reynolds number, remains below

about 1400. For flow with larger Reynolds numbers the flow becomes turbulent and the preceding

analysis is not valid since the flow field is complex, three-dimensional, and unsteady.

Re � rV12h2�m,

p0,
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10 tons on 8 psi Place a golf ball on the end of a garden hose

and then slowly turn the water on a small amount until the ball

just barely lifts off the end of the hose, leaving a small gap be-

tween the ball and the hose. The ball is free to rotate. This is the

idea behind the new “floating ball water fountains” developed

in Finland. Massive, 10-ton, 6-ft-diameter stone spheres are

supported by the pressure force of the water on the curved sur-

face within a pedestal and rotate so easily that even a small

child can change their direction of rotation. The key to the

fountain design is the ability to grind and polish stone to an ac-

curacy of a few thousandths of an inch. This allows the gap be-

tween the ball and its pedestal to be very small (on the order of

5/1000 in.) and the water flowrate correspondingly small (on

the order of 5 gallons per minute). Due to the small gap, the

flow in the gap is essentially that of flow between parallel
plates. Although the sphere is very heavy, the pressure under

the sphere within the pedestal needs to be only about 8 psi. (See

Problem 6.88.)

6.9.2 Couette Flow

Another simple parallel-plate flow can be developed by fixing one plate and letting the other plate

move with a constant velocity, U, as is illustrated in Fig. 6.32a. The Navier–Stokes equations

reduce to the same form as those in the preceding section, and the solution for the pressure and

velocity distribution are still given by Eqs. 6.132 and 6.133, respectively. However, for the moving

plate problem the boundary conditions for the velocity are different. For this case we locate the

origin of the coordinate system at the bottom plate and designate the distance between the two

plates as b 1see Fig. 6.32a2. The two constants and in Eq. 6.133 can be determined from the

boundary conditions, at and at It follows that

(6.140)

or, in dimensionless form,

(6.141)
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F I G U R E  6.32 The viscous flow between parallel plates with bottom plate fixed and
upper plate moving (Couette flow): (a) coordinate system and notation used in analysis; (b) velocity
distribution as a function of parameter, P, where ( ) (From Ref. 8, used by
permission.)
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For a given flow
geometry, the char-
acter and details of
the flow are
strongly dependent
on the boundary
conditions.
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The actual velocity profile will depend on the dimensionless parameter

Several profiles are shown in Fig. 6.32b. This type of flow is called Couette flow.
The simplest type of Couette flow is one for which the pressure gradient is zero; that is, the

fluid motion is caused by the fluid being dragged along by the moving boundary. In this case, with

Eq. 6.140 simply reduces to

(6.142)

which indicates that the velocity varies linearly between the two plates as shown in Fig. 6.31b for

This situation would be approximated by the flow between closely spaced concentric cylinders

in which one cylinder is fixed and the other cylinder rotates with a constant angular velocity, As

illustrated in Fig. 6.33, the flow in an unloaded journal bearing might be approximated by this simple

Couette flow if the gap width is very small In this case and

the shearing stress resisting the rotation of the shaft can be simply calculated as 

When the bearing is loaded 1i.e., a force applied normal to the axis of rotation2, the shaft will no longer

remain concentric with the housing and the flow cannot be treated as flow between parallel boundaries.

Such problems are dealt with in lubrication theory 1see, for example, Ref. 92.

t � mri v� 1ro � ri2.
U � ri v, b � ro � ri,1i.e., ro � ri � ri2.

v.

P � 0.

u � U 
y

b

0p�0x � 0,

P � �
b2

2mU
 a

0p

0x
b
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Flow between par-
allel plates with one
plate fixed and the
other moving is
called Couette flow.

ω

ri

ro

Lubricating
oil

Rotating shaft

Housing

F I G U R E  6.33 Flow in the narrow gap of a
journal bearing.

GIVEN A wide moving belt passes through a container of a

viscous liquid. The belt moves vertically upward with a constant

velocity, V0, as illustrated in Fig. E6.9a. Because of viscous forces

the belt picks up a film of fluid of thickness h. Gravity tends to

make the fluid drain down the belt. Assume that the flow is lami-

nar, steady, and fully developed. 

FIND Use the Navier–Stokes equations to determine an ex-

pression for the average velocity of the fluid film as it is dragged

up the belt. 

SOLUTION

F I G U R E  E6.9a

Plane Couette Flow

This result indicates that the pressure does not vary over a hori-

zontal plane, and since the pressure on the surface of the film

is atmospheric, the pressure throughout the film must be1x � h2

y

x

h

Fluid layer

g

V0

EXAMPLE 6.9

Since the flow is assumed to be fully developed, the only velocity

component is in the y direction 1the component2 so that

It follows from the continuity equation that

and for steady flow so that Under

these conditions the Navier–Stokes equations for the x direction

1Eq. 6.127a2 and the z direction 1perpendicular to the paper2
1Eq. 6.127c2 simply reduce to

0p

0x
� 0  

0p

0z
� 0

v � v1x2.0v�0t � 0,0v�0y � 0,

u � w � 0.

v
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6.9.3 Steady, Laminar Flow in Circular Tubes

Probably the best known exact solution to the Navier–Stokes equations is for steady, incompressible,

laminar flow through a straight circular tube of constant cross section. This type of flow is commonly

called Hagen–Poiseuille flow, or simply Poiseuille flow. It is named in honor of J. L. Poiseuille 11799–

18692, a French physician, and G. H. L. Hagen 11797–18842, a German hydraulic engineer. Poiseuille

was interested in blood flow through capillaries and deduced experimentally the resistance laws

for laminar flow through circular tubes. Hagen’s investigation of flow in tubes was also

experimental. It was actually after the work of Hagen and Poiseuille that the theoretical results

presented in this section were determined, but their names are commonly associated with the

solution of this problem.

Consider the flow through a horizontal circular tube of radius R as is shown in Fig. 6.34a.
Because of the cylindrical geometry it is convenient to use cylindrical coordinates. We assume that

the flow is parallel to the walls so that and and from the continuity equation 16.342
Also, for steady, axisymmetric flow, is not a function of t or so the velocity, vz,uvz0vz�0z � 0.

vu � 0,vr � 0
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atmospheric 1or zero gage pressure2. The equation of motion in

the y direction 1Eq. 6.127b2 thus reduces to

or

(1)

Integration of Eq. 1 yields

(2)

On the film surface we assume the shearing stress is

zero—that is, the drag of the air on the film is negligible. The

shearing stress at the free surface 1or any interior parallel surface2
is designated as , where from Eq. 6.125d

Thus, if at it follows from Eq. 2 that

A second integration of Eq. 2 gives the velocity distribution in

the film as

At the belt the fluid velocity must match the belt velocity,

so that

and the velocity distribution is therefore

(3)

With the velocity distribution known we can determine the

flowrate per unit width, q, from the relationship

q � �
h

0

 v dx � �
h

0

 a
g

2m
 x2 �

gh

m
 x � V0b dx

v �
g

2m
 x2 �

gh

m
 x � V0

c2 � V0

V0,

1x � 02

v �
g

2m
 x2 �

gh

m
 x � c2

c1 � �
gh

m

x � h,txy � 0

txy � m a
dv

dx
b

txy

1x � h2

dv

dx
�
g

m
 x � c1

d 2v

dx2
�
g

m

0 � �rg � m 
d 2v

dx2

and thus

The average film velocity, V is therefore

(Ans)

COMMENT Equation (3) can be written in dimensionless

form as

where c � �h2/2�V0. This velocity profile is shown in Fig. E6.9b.

Note that even though the belt is moving upward, for c � 1 (e.g.,

for fluids with small enough viscosity or with a small enough belt

speed) there are portions of the fluid that flow downward (as in-

dicated by v/V0 � 0).

It is interesting to note from this result that there will be a net

upward flow of liquid (positive V) only if V0 � �h2/3�. It takes a

relatively large belt speed to lift a small viscosity fluid.

v

V0

� c a
x

h
b

2

 � 2c a
x

h
b � 1

V � V0 �
gh2

3m

1where q � Vh2,

q � V0h �
gh3

3m

F I G U R E  E6.9b

1

0.8

0.6

0.4

0.2

0
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–0.4
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–0.8

–1
c = 2.0

c = 1.0

c = 0

c = 0.5

c = 1.5

0 0.2 0.4 0.6 0.8 1

x/h

v/
V

0

An exact solution
can be obtained for
steady, incompress-
ible, laminar flow in
circular tubes.
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is only a function of the radial position within the tube—that is, Under these conditions

the Navier–Stokes equations 1Eqs. 6.1282 reduce to

(6.143)

(6.144)

(6.145)

where we have used the relationships and 1with measured from the

horizontal plane2.
Equations 6.143 and 6.144 can be integrated to give

or

(6.146)

Equation 6.146 indicates that the pressure is hydrostatically distributed at any particular cross

section, and the z component of the pressure gradient, is not a function of r or 

The equation of motion in the z direction 1Eq. 6.1452 can be written in the form

and integrated 1using the fact that constant2 to give

Integrating again we obtain

(6.147)

Since we wish to be finite at the center of the tube it follows that 3since

ln At the wall the velocity must be zero so that

and the velocity distribution becomes

(6.148)

Thus, at any cross section the velocity distribution is parabolic.

To obtain a relationship between the volume rate of flow, Q, passing through the tube and the

pressure gradient, we consider the flow through the differential, washer-shaped ring of Fig. 6.34b.

Since is constant on this ring, the volume rate of flow through the differential area is

dQ � vz12pr2 dr

dA � 12pr2 drvz

vz �
1

4m
 a

0p

0z
b 1r2 � R22

c2 � �
1

4m
 a

0p

0z
b R2

1r � R2102 � �� 4 .
c1 � 01r � 02,vz

vz �
1

4m
 a

0p

0z
b r2 � c1 ln r � c2

r 
0vz

0r
�

1

2m
 a

0p

0z
b r2 � c1

0p�0z �

1

r
 

0
0r

 ar 
0vz

0r
b �

1

m
 

0p

0z

u.0p�0z,

p � �rgy � f11z2

p � �rg1r sin u2 � f11z2

ugu � �g cos ugr � �g sin u

 0 � �
0p

0z
� m c

1

r
 

0
0r

 ar 
0vz

0r
b d

 0 � �rg cos u �
1

r
 
0p

0u

 0 � �rg sin u �
0p

0r

vz � vz1r2.
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y

z

vz

g

R

r θ
z

vz

dr

r

(b)(a)

F I G U R E  6.34
The viscous flow in a horizon-
tal, circular tube: (a) coordi-
nate system and notation used
in analysis; (b) flow through
differential annular ring.

The velocity distri-
bution is parabolic
for steady, laminar
flow in circular
tubes.

V6.13 Laminar
flow

JWCL068_ch06_263-331.qxd  9/23/08  12:19 PM  Page 314



and therefore

(6.149)

Equation 6.148 for can be substituted into Eq. 6.149, and the resulting equation integrated to

yield

(6.150)

This relationship can be expressed in terms of the pressure drop, which occurs over a length,

along the tube, since

and therefore

(6.151)

For a given pressure drop per unit length, the volume rate of flow is inversely proportional to the

viscosity and proportional to the tube radius to the fourth power. A doubling of the tube radius

produces a 16-fold increase in flow! Equation 6.151 is commonly called Poiseuille’s law.
In terms of the mean velocity, V, where Eq. 6.151 becomes

(6.152)

The maximum velocity occurs at the center of the tube, where from Eq. 6.148

(6.153)

so that

The velocity distribution, as shown by the figure in the margin, can be written in terms of as

(6.154)

As was true for the similar case of flow between parallel plates 1sometimes referred to as

plane Poiseuille flow2, a very detailed description of the pressure and velocity distribution in

tube flow results from this solution to the Navier–Stokes equations. Numerous experiments

performed to substantiate the theoretical results show that the theory and experiment are in

agreement for the laminar flow of Newtonian fluids in circular tubes or pipes. In general, the

flow remains laminar for Reynolds numbers, below 2100. Turbulent flow in

tubes is considered in Chapter 8.

Re � rV12R2�m,

vz

vmax

� 1 � a
r

R
b

2

vmax

vmax � 2V

vmax � �
R2

4m
 a

0p

0z
b �

R2¢p

4m/

vmax

V �
R2¢p

8m/

V � Q�pR2,

Q �
pR 4¢p

8m/

¢p

/
� �

0p

0z

/,

¢p,

Q � �
pR 4

8m
 a

0p

0z
b

vz

Q � 2p�
R

0

 vzr dr
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Poiseuille’s law re-
lates pressure drop
and flowrate for
steady, laminar flow
in circular tubes.

R r

vmax

vz r_
R = 1 – (   )2

vmax

V6.14 Complex
pipe flow

F l u i d s  i n  t h e  N e w s

Poiseuille’s law revisited Poiseuille’s law governing laminar
flow of fluids in tubes has an unusual history. It was developed in

1842 by a French physician, J. L. M. Poiseuille, who was inter-

ested in the flow of blood in capillaries. Poiseuille, through a

series of carefully conducted experiments using water flowing

through very small tubes, arrived at the formula, .

In this formula Q is the flowrate, K an empirical constant, the

pressure drop over the length , and D the tube diameter. Another/
¢p

Q � K¢p D4�/

formula was given for the value of K as a function of the water

temperature. It was not until the concept of viscosity was intro-

duced at a later date that Poiseuille’s law was derived mathe-

matically and the constant K found to be equal to , where

is the fluid viscosity. The experiments by Poiseuille have long

been admired for their accuracy and completeness considering

the laboratory instrumentation available in the mid nineteenth

century.

m

p�8m
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6.9.4 Steady, Axial, Laminar Flow in an Annulus

The differential equations 1Eqs. 6.143, 6.144, 6.1452 used in the preceding section for flow in

a tube also apply to the axial flow in the annular space between two fixed, concentric cylinders

1Fig. 6.352. Equation 6.147 for the velocity distribution still applies, but for the stationary

annulus the boundary conditions become at and for With these

two conditions the constants and in Eq. 6.147 can be determined and the velocity

distribution becomes

(6.155)

The corresponding volume rate of flow is

or in terms of the pressure drop, in length of the annulus

(6.156)

The velocity at any radial location within the annular space can be obtained from Eq. 6.155.

The maximum velocity occurs at the radius where Thus,

(6.157)

An inspection of this result shows that the maximum velocity does not occur at the midpoint of

the annular space, but rather it occurs nearer the inner cylinder. The specific location depends on

and 

These results for flow through an annulus are valid only if the flow is laminar. A criterion

based on the conventional Reynolds number 1which is defined in terms of the tube diameter2 cannot

be directly applied to the annulus, since there are really “two” diameters involved. For tube cross

sections other than simple circular tubes it is common practice to use an “effective” diameter,

termed the hydraulic diameter, which is defined as

The wetted perimeter is the perimeter in contact with the fluid. For an annulus

In terms of the hydraulic diameter, the Reynolds number is 1where 

area2, and it is commonly assumed that if this Reynolds number remains below

2100 the flow will be laminar. A further discussion of the concept of the hydraulic diameter as it

applies to other noncircular cross sections is given in Section 8.4.3.

cross-sectional

V � Q�Re � rDhV�m

Dh �
4p1r 2

o � r 2
i 2

2p1ro � ri2
� 21ro � ri2

Dh �
4 	 cross-sectional area

wetted perimeter

Dh,

ri.ro

rm � c
r 2

o � r 2
i

2 ln1ro�ri2
d

1�2

0vz �0r � 0.r � rm

Q �
p¢p

8m/
 c r 4

o � r 4
i �
1r 

2
o � r 2

i 2
2

ln1ro�ri2
d

/¢p,

Q � �
ro

ri

 vz12pr2  dr � �
p

8m
 a

0p

0z
b c r 4

o � r 4
i �
1r 2

o � r 2
i 2

2

ln1ro�ri2
d

vz �
1

4m
 a

0p

0z
b c r 

2 � r 2
o �

r 2
i � r 2

o

ln1ro�ri2
 ln 

r
ro
d

c2c1

r � ri.vz � 0r � rovz � 0
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vz

ri

ro

z

r

F I G U R E  6.35 The viscous flow through an annulus.

An exact solution
can be obtained for
axial flow in the an-
nular space be-
tween two fixed,
concentric cylin-
ders.
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GIVEN A viscous liquid 

flows at a rate of 12 ml�s through a horizontal,

4-mm-diameter tube. 

FIND 1a2 Determine the pressure drop along a l-m length of the

tube which is far from the tube entrance so that the only component

0.0045 N # s�m22
1r� 1.18 	 103 kg�m3; m � of velocity is parallel to the tube axis. 1b2 If a 2-mm-diameter rod is

placed in the 4-mm-diameter tube to form a symmetric annulus,

what is the pressure drop along a l-m length if the flowrate remains

the same as in part 1a2?

SOLUTION

F I G U R E  E6.10

Laminar Flow in an Annulus

so that

(Ans)

COMMENTS The pressure drop in the annulus is much larger

than that of the tube. This is not a surprising result, since to main-

tain the same flow in the annulus as that in the open tube, the aver-

age velocity must be larger (the cross-sectional area is smaller) and

the pressure difference along the annulus must overcome the shear-

ing stresses that develop along both an inner and an outer wall. 

By repeating the calculations for various radius ratios,

the results shown in Fig. E6.10 are obtained. It is seen that the

pressure drop ratio, (i.e., the pressure drop in the

annulus compared to that in a tube with a radius equal to the outer

radius of the annulus, ), is a strong function of the radius ratio.

Even an annulus with a very small inner radius will have a pressure

drop significantly larger than that of a tube. For example, if the in-

ner radius is only of the outer radius,

As shown in the figure, for larger inner radii, the pressure drop ra-

tio is much larger [i.e., �pannulus �ptube � 7.94 for as in

part (b) of this example].

ri�ro � 0.50�

¢pannulus�¢ptube � 1.28.1�100

ro

¢pannulus�¢ptube

ri�ro,

 � 68.2 kPa

 �
3 10.002 m22 � 10.001 m22 4 2

ln10.002 m�0.001 m2
f

�1

 	 e 10.002 m24 � 10.001 m24

 ¢p �
810.0045 N # s�m22 11 m2 112 	 10�6 m3�s2

p

1.3

1.2

1.1

1

(0.01, 1.28)
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8

7

6

5

4

3

2

1
0 0.1 0.2 0.3 0.4 0.5

0 0.005 0.01

ri /r0

Δp
an

nu
lu

s
__

__
__
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EXAMPLE 9.10

(a) We first calculate the Reynolds number, Re, to determine

whether or not the flow is laminar. With the diameter

the mean velocity is

and, therefore,

Since the Reynolds number is well below the critical value of

2100 we can safely assume that the flow is laminar. Thus, we can

apply Eq. 6.151, which gives for the pressure drop

(Ans)

(b) For flow in the annulus with an outer radius 

and an inner radius , the mean velocity is

and the Reynolds number [based on the hydraulic diameter,

] is

This value is also well below 2100 so the flow in the annulus

should also be laminar. From Eq. 6.156,

¢p �
8m/Q

p
 c r4

o � r4
i �
1r 

2
o � r 

2
i 2

2

ln1ro �ri2
d

�1

 � 666

 �
11.18 	 103 kg�m32 10.002 m2 11.27 m�s2

0.0045 N # s�m2

 Re �
rDhV

m

Dh � 21ro � ri2 � 210.002 m � 0.001 m2 � 0.002 m

 � 1.27 m�s

 V �
Q

p1r 2
o � r 2

i 2
�

12 	 10�6 m3�s
1p2 3 10.002 m22 � 10.001 m22 4

ri � 0.001 m

ro � 0.002 m

 � 8.59 kPa

 �
810.0045 N # s�m22 11 m2 112 	 10�6 m3�s2

p10.002 m24

 ¢p �
8m/Q

pR4

 � 1000

 Re �
rVD

m
�
11.18 	 103 kg�m32 10.955 m�s2 10.004 m2

0.0045 N # s�m2

 � 0.955 m�s

 V �
Q

1p�42D2
�
112 ml�s2 110�6 m3�ml2

1p�42 10.004 m22

D � 4 mm � 0.004 m,
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In this chapter the basic differential equations that govern the flow of fluids have been developed.

The Navier–Stokes equations, which can be compactly expressed in vector notation as

(6.158)

along with the continuity equation

(6.159)

are the general equations of motion for incompressible Newtonian fluids. Although we have

restricted our attention to incompressible fluids, these equations can be readily extended to include

compressible fluids. It is well beyond the scope of this introductory text to consider in depth

the variety of analytical and numerical techniques that can be used to obtain both exact and

approximate solutions to the Navier–Stokes equations. Students, however, should be aware of the

existence of these very general equations, which are frequently used as the basis for many advanced

analyses of fluid motion. A few relatively simple solutions have been obtained and discussed in

this chapter to indicate the type of detailed flow information that can be obtained by using

differential analysis. However, it is hoped that the relative ease with which these solutions were

obtained does not give the false impression that solutions to the Navier–Stokes equations are

readily available. This is certainly not true, and as previously mentioned there are actually very

few practical fluid flow problems that can be solved by using an exact analytical approach. In

fact, there are no known analytical solutions to Eq. 6.158 for flow past any object such as a sphere,

cube, or airplane.

Because of the difficulty in solving the Navier–Stokes equations, much attention has been

given to various types of approximate solutions. For example, if the viscosity is set equal to zero,

the Navier–Stokes equations reduce to Euler’s equations. Thus, the frictionless fluid solutions

discussed previously are actually approximate solutions to the Navier–Stokes equations. At the other

extreme, for problems involving slowly moving fluids, viscous effects may be dominant and

the nonlinear 1convective2 acceleration terms can be neglected. This assumption greatly simplifies

the analysis, since the equations now become linear. There are numerous analytical solutions to these

“slow flow” or “creeping flow” problems. Another broad class of approximate solutions is concerned

with flow in the very thin boundary layer. L. Prandtl showed in 1904 how the Navier–Stokes

equations could be simplified to study flow in boundary layers. Such “boundary layer solutions”

play a very important role in the study of fluid mechanics. A further discussion of boundary layers

is given in Chapter 9.

6.10.1 Numerical Methods

Numerical methods using digital computers are, of course, commonly utilized to solve a wide

variety of flow problems. As discussed previously, although the differential equations that govern

the flow of Newtonian fluids [the Navier–Stokes equations 16.1582] were derived many years ago,

there are few known analytical solutions to them. With the advent of high-speed digital computers

it has become possible to obtain numerical solutions to these 1and other fluid mechanics2 equations

for many different types of problems. A brief introduction to computational fluid dynamics (CFD)

is given in Appendix A.

Access to a program called FlowLab is available with this textbook. FlowLab is an

educational version of a commercial CFD program. The backbone of FlowLab is the Fluent

CFD package, which was used to create the numerical animations of flow past a spinning football

referenced at the beginning of the chapter (V6.1 and V6.2). FlowLab provides a virtual

laboratory for fluids experiments that makes use of the power of CFD, but with a student-

friendly interface. Chapters 7–9 contain fluids problems that require the use of FlowLab to

obtain the solutions.

§ � V � 0

r a
0V
0t

� V � �Vb � ��p � rg � m§ 2V

6.10 Other Aspects of Differential Analysis

Very few practical
fluid flow problems
can be solved using
an exact analytical
approach.

V6.15 CFD example
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6.11 Chapter Summary and Study Guide

F l u i d s  i n  t h e  N e w s

Fluids in the Academy Awards A computer science professor at

Stanford University and his colleagues were awarded a Scientific

and Technical Academy Award for applying the Navier–Stokes

equations for use in Hollywood movies. These researchers make

use of computational algorithms to numerically solve the

Navier–Stokes equations (also termed computational fluid dynam-

ics, or CFD) and simulate complex liquid flows. The realism of the

simulations has found application in the entertainment industry.

Movie producers have used the power of these numerical tools to

simulate flows from ocean waves in “Pirates of the Caribbean” to

lava flows in the final duel in “Star Wars: Revenge of the Sith.”

Therefore, even Hollywood has recognized the usefulness of CFD.

volumetric dilatation
rate

vorticity
irrotational flow
continuity equation
stream function
Euler’s equations of

motion
ideal fluid
Bernoulli equation
velocity potential
potential flow
equipotential lines
flow net
uniform flow
source and sink
vortex
circulation
doublet
method of

superposition
half-body
Rankine oval
Navier–Stokes

equations
Couette flow
Poiseuille’s law

Differential analysis of fluid flow is concerned with the development of concepts and techniques that

can be used to provide a detailed, point by point, description of a flow field. Concepts related to the

motion and deformation of a fluid element are introduced, including the Eulerian method for describing

the velocity and acceleration of fluid particles. Linear deformation and angular deformation of a fluid

element are described through the use of flow characteristics such as the volumetric dilatation rate,

rate of angular deformation, and vorticity. The differential form of the conservation of mass equation

(continuity equation) is derived in both rectangular and cylindrical polar coordinates.

Use of the stream function for the study of steady, incompressible, plane, two-dimensional

flow is introduced. The general equations of motion are developed, and for inviscid flow these

equations are reduced to the simpler Euler equations of motion. The Euler equations are integrated

to give the Bernoulli equation, and the concept of irrotational flow is introduced. Use of the velocity

potential for describing irrotational flow is considered in detail, and several basic velocity potentials

are described, including those for a uniform flow, source or sink, vortex, and doublet. The technique

of using various combinations of these basic velocity potentials, by superposition, to form new

potentials is described. Flows around a half-body, a Rankine oval, and around a circular cylinder

are obtained using this superposition technique.

Basic differential equations describing incompressible, viscous flow (the Navier–Stokes

equations) are introduced. Several relatively simple solutions for steady, viscous, laminar flow

between parallel plates and through circular tubes are included.

The following checklist provides a study guide for this chapter. When your study of the entire

chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic bold, and color type

in the text.

determine the acceleration of a fluid particle, given the equation for the velocity field.

determine the volumetric dilatation rate, vorticity, and rate of angular deformation for a fluid

element, given the equation for the velocity field.

show that a given velocity field satisfies the continuity equation.

use the concept of the stream function to describe a flow field.

use the concept of the velocity potential to describe a flow field.

use superposition of basic velocity potentials to describe simple potential flow fields.

use the Navier–Stokes equations to determine the detailed flow characteristics of in-

compressible, steady, laminar, viscous flow between parallel plates and through circular tubes.

Some of the important equations in this chapter are:

Acceleration of fluid particle (6.2)

Vorticity (6.17)

Conservation of mass (6.27)0r
0t

�
0 1ru2

0x
�

0 1rv2
0y

�
0 1rw2

0z
� 0

z � 2 � � § � V

a �
0V
0t

� u 
0V
0x

� v 
0V
0y

� w 
0V
0z
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320 Chapter 6 ■ Differential Analysis of Fluid Flow

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Stream function (6.37)

Euler’s equations of motion (6.51a)

(6.51b)

(6.51c)

Velocity potential (6.65)
Laplace’s equation (6.66)
Uniform potential flow

Source and sink

Vortex

Doublet

The Navier–Stokes equations

1x direction2

(6.127a)

1y direction2

(6.127b)

1z direction2

(6.127c)
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Problems 321

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an 1*2 are intended to be solved with
the aid of a programmable calculator or a computer. Prob-
lems designated with a 1 2 are “open-ended” problems and re-
quire critical thinking in that to work them one must make
various assumptions and provide the necessary data. There is
not a unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 6.1 Fluid Element Kinematics

6.1 Obtain a photograph/image of a situation in which a fluid is
undergoing angular deformation. Print this photo and write a brief
paragraph that describes the situation involved.

6.2 The velocity in a certain two-dimensional flow field is given
by the equation

where the velocity is in ft�s when x, y, and t are in feet and seconds,
respectively. Determine expressions for the local and convective
components of acceleration in the x and y directions. What is the
magnitude and direction of the velocity and the acceleration at the
point at the time 

6.3 The velocity in a certain flow field is given by the equation

Determine the expressions for the three rectangular components of
acceleration.

6.4 The three components of velocity in a flow field are given by

(a) Determine the volumetric dilatation rate and interpret the
results. (b) Determine an expression for the rotation vector. Is this
an irrotational flow field?

6.5 Determine the vorticity field for the following velocity vector:

6.6 Determine an expression for the vorticity of the flow field
described by

Is the flow irrotational?

6.7 A one-dimensional flow is described by the velocity field

where a and b are constants. Is the flow irrotational? For what com-
bination of constants 1if any2 will the rate of angular deformation as
given by Eq. 6.18 be zero?

6.8 For a certain incompressible, two-dimensional flow field the
velocity component in the y direction is given by the equation

Determine the velocity component in the x direction so that the vol-
umetric dilatation rate is zero

 v � 3xy � x2y

 v � w � 0

 u � ay � by2

V � �xy3 î � y4ĵ

V � 1x2 � y22 î � 2xyĵ

 w � �3xz � z2�2 � 4

 v � xy � yz � z2

 u � x2 � y2 � z2

V � xî � x 2z ĵ � yzk̂

t � 0?x � y � 2 ft

V � 2xtî � 2yt ĵ

†

Problems

6.9 An incompressible viscous fluid is placed between two large
parallel plates as shown in Fig. P6.9. The bottom plate is fixed and
the upper plate moves with a constant velocity, U. For these condi-
tions the velocity distribution between the plates is linear and can
be expressed as

Determine: (a) the volumetric dilatation rate, (b) the rotation vec-
tor, (c) the vorticity, and (d) the rate of angular deformation.

u � U 
y

b

U

b

y

u

Fixed
plate

Moving
plate

F I G U R E  P6.9

6.10 A viscous fluid is contained in the space between concentric
cylinders. The inner wall is fixed, and the outer wall rotates with an
angular velocity (See Fig. P6.10a and Video V6.3.) Assume that
the velocity distribution in the gap is linear as illustrated in Fig.
P6.10b. For the small rectangular element shown in Fig. P6.10b,
determine the rate of change of the right angle due to the fluid
motion. Express your answer in terms of and v.ri,r0,

g

v.

ro

ri

ω roω

x

y

u

γ
ro – ri

(a) (b)

F I G U R E  P6.10

Section 6.2 Conservation of Mass

6.11 Obtain a photograph/image of a situation in which stream-
lines indicate a feature of the flow field. Print this photo and write
a brief paragraph that describes the situation involved.

6.12 Verify that the stream function in cylindrical coordinates sat-
isfies the continuity equation.

6.13 For a certain incompressible flow field it is suggested that the
velocity components are given by the equations

Is this a physically possible flow field? Explain.

6.14 The velocity components of an incompressible, two-
dimensional velocity field are given by the equations

Show that the flow is irrotational and satisfies conservation of mass.

 v � y12x � 12

 u � y2 � x11 � x2

u � 2xy v � �x2y w � 0

JWCL068_ch06_263-331.qxd  9/23/08  12:20 PM  Page 321

http://www.wiley.com/college/munson


322 Chapter 6 ■ Differential Analysis of Fluid Flow

6.24 The radial velocity component in an incompressible, two-
dimensional flow field is

Determine the corresponding tangential velocity component,
required to satisfy conservation of mass.

6.25 The stream function for an incompressible flow field is given
by the equation

where the stream function has the units of with x and y in meters.
(a) Sketch the streamline1s2 passing through the origin. (b) Determine
the rate of flow across the straight path AB shown in Fig. P6.25.

m2�s

c � 3x2y � y3

vu,

vr � 2r � 3r2 sin u

1vz � 02

6.15 For each of the following stream functions, with units of
determine the magnitude and the angle the velocity vector

makes with the x axis at Locate any stagnation
points in the flow field.
(a)
(b)

6.16 The stream function for an incompressible, two-dimensional
flow field is

where a and b are constants. Is this an irrotational flow? Explain.

6.17 The stream function for an incompressible, two-dimensional
flow field is

where a and b are constants. Is this an irrotational flow? Explain.

6.18 The velocity components for an incompressible, plane flow are

where A and B are constants. Determine the corresponding stream
function.

6.19 For a certain two-dimensional flow field

(a) What are the corresponding radial and tangential velocity compo-
nents? (b) Determine the corresponding stream function expressed in
Cartesian coordinates and in cylindrical polar coordinates.

6.20 Make use of the control volume shown in Fig. P6.20 to derive
the continuity equation in cylindrical coordinates 1Eq. 6.33 in text2.

 v � V
 u � 0

 vu � Br�2 sin u

 vr � Ar�1 � Br�2 cos u

c � ay2 � bx

c � ay � by3

c � �2x2 � y
c � xy

y � 2 m.x � 1 m,
m2/s,

y

z

x

dr
d

r

θ

θ

Volume element
has thickness d z

F I G U R E  P6.20

6.21 A two-dimensional, incompressible flow is given by 
and . Show that the streamline passing through the point

and is a circle centered at the origin.

6.22 In a certain steady, two-dimensional flow field the fluid den-
sity varies linearly with respect to the coordinate x; that is,
where A is a constant. If the x component of velocity u is given by
the equation determine an expression for 

6.23 In a two-dimensional, incompressible flow field, the x com-
ponent of velocity is given by the equation (a) Determine
the corresponding equation for the y component of velocity if

along the x axis. (b) For this flow field, what is the magni-
tude of the average velocity of the fluid crossing the surface OA of
Fig. P6.23? Assume that the velocities are in feet per second when
x and y are in feet.

v � 0

u � 2x.

v.u � y,

r � Ax

y � 0x � 10
v � x

u � �y

A

O

y, ft

x, ft1.0

1.0

F I G U R E  P6.23

y, m

x, m1.0

1.0 B

A

0 F I G U R E  P6.25

y

x

A

B

q

q ψ  = 0

(xi, yi)

F I G U R E  P6.28

6.26 The streamlines in a certain incompressible, two-dimensional
flow field are all concentric circles so that Determine the
stream function for (a) and for (b) where A is a
constant.

*6.27 The stream function for an incompressible, two-
dimensional flow field is

For this flow field, plot several streamlines.

6.28 Consider the incompressible, two-dimensional flow of a non-
viscous fluid between the boundaries shown in Fig. P6.28. The ve-
locity potential for this flow field is

f � x2 � y2

c � 3x2y � y

vu � Ar�1,vu � Ar
vr � 0.
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Problems 323

6.37 It is known that the velocity distribution for two-dimensional
flow of a viscous fluid between wide parallel plates 1Fig. P6.372 is
parabolic; that is,

with Determine, if possible, the corresponding stream func-
tion and velocity potential.

v � 0.

u � Uc c1 � a
y

h
b

2

d

(a) Determine the corresponding stream function. (b) What is the
relationship between the discharge, q, (per unit width normal to
plane of paper) passing between the walls and the coordinates 
of any point on the curved wall? Neglect body forces.

Section 6.3 Conservation of Linear Momentum

6.29 Obtain a photograph/image of a situation in which a fluid
flow produces a force. Print this photo and write a brief paragraph
that describes the situation involved.

Section 6.4 Inviscid Flow

6.30 Obtain a photograph/image of a situation in which all or part
of a flow field could be approximated by assuming inviscid flow.
Print this photo and write a brief paragraph that describes the situ-
ation involved.

6.31 Given the streamfunction for a flow as , show
that the Bernoulli equation can be applied between any two points
in the flow field.

6.32 A two-dimensional flow field for a nonviscous, incompress-
ible fluid is described by the velocity components

where is a constant. If the pressure at the origin 1Fig. P6.322 is
determine an expression for the pressure at (a) point A, and

(b) point B. Explain clearly how you obtained your answer.
Assume that the units are consistent and body forces may be
neglected.

p0,
U0

 v � 0

 u � U0 � 2y

c � 4x2 � 4y2

xi, yi

y

xp0

B(0, 1)

A(1, 0)

F I G U R E  P6.32

6.33 In a certain two-dimensional flow field, the velocity is con-
stant with components and Determine
the corresponding stream function and velocity potential for this
flow field. Sketch the equipotential line which passes
through the origin of the coordinate system.

6.34 The stream function for a given two-dimensional flow field is 

Determine the corresponding velocity potential.

6.35 Determine the stream function corresponding to the velocity
potential

Sketch the streamline which passes through the origin.

6.36 A certain flow field is described by the stream function

where A and B are positive constants. Determine the correspond-
ing velocity potential and locate any stagnation points in this flow
field.

c � A u � B r sin u

c � 0,

f � x3 � 3xy2

c � 5x2y � 15�32y3

f � 0

v � �2 ft�s.u � �4 ft�s

Uc

uy

x

h

h

F I G U R E  P6.37

6.38 The velocity potential for a certain inviscid flow field is

where has the units of when x and y are in feet. Determine
the pressure difference 1in psi2 between the points 11, 22 and 14, 42,
where the coordinates are in feet, if the fluid is water and elevation
changes are negligible.

6.39 The velocity potential for a flow is given by

where a is a constant. Determine the corresponding stream function
and sketch the flow pattern.

6.40 The stream function for a two-dimensional, nonviscous, in-
compressible flow field is given by the expression

where the stream function has the units of with x and y in feet.
(a) Is the continuity equation satisfied? (b) Is the flow field irrota-
tional? If so, determine the corresponding velocity potential.
(c) Determine the pressure gradient in the horizontal x direction at
the point 

6.41 The velocity potential for a certain inviscid, incompressible
flow field is given by the equation

where has the units of when x and y are in meters. Deter-
mine the pressure at the point m, if the pressure at

is 200 kPa. Elevation changes can be neglected,
and the fluid is water.

6.42 A steady, uniform, incompressible, inviscid, two-dimensional
flow makes an angle of with the horizontal x axis. (a) Deter-
mine the velocity potential and the stream function for this flow.
(b) Determine an expression for the pressure gradient in the vertical
y direction. What is the physical interpretation of this result?

6.43 The streamlines for an incompressible, inviscid, two-
dimensional flow field are all concentric circles, and the velocity
varies directly with the distance from the common center of the
streamlines; that is

where K is a constant. (a) For this rotational flow, determine, if
possible, the stream function. (b) Can the pressure difference
between the origin and any other point be determined from the
Bernoulli equation? Explain.

vu � Kr

30°

x � 1 m, y � 1 m
y � 2 mx � 2

m2�sf

f � 2x2y � 123 2y
3

x � 2 ft, y � 2 ft.

ft2�s

c � �21x � y2

f �
a

2
1x2 � y22

ft2�sf

f � �13x2y � y32
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324 Chapter 6 ■ Differential Analysis of Fluid Flow

6.47 It is suggested that the velocity potential for the incompress-
ible, nonviscous, two-dimensional flow along the wall shown in
Fig. P6.47 is

Is this a suitable velocity potential for flow along the wall? Explain.

f � r4�3 cos 
4
3 u

6.44 The velocity potential

may be used to represent the flow against an infinite plane bound-
ary, as illustrated in Fig. P6.44. For flow in the vicinity of a stagna-
tion point, it is frequently assumed that the pressure gradient along
the surface is of the form

where A is a constant. Use the given velocity potential to show that
this is true.

0p

0x
� Ax

f � �k1x2 � y22  1k � constant2

y

x

F I G U R E  P6.44

6.45 Water is flowing between wedge-shaped walls into a small
opening as shown in Fig. P6.45. The velocity potential with units

for this flow is ln r with r in meters. Determine the
pressure differential between points A and B.

f � �2m2�s

F I G U R E  P6.45

0.5 m 1.0 m

__
6

θ

π
r

A B

B (1, 4)

A
ψ = 0

θ
π__
3

y

x
O

r

F I G U R E  P6.46

6.46 An ideal fluid flows between the inclined walls of a two-
dimensional channel into a sink located at the origin 1Fig. P6.462.
The velocity potential for this flow field is

where m is a constant. (a) Determine the corresponding stream
function. Note that the value of the stream function along the wall
OA is zero. (b) Determine the equation of the streamline passing
through the point B, located at x � 1, y � 4.

f �
m

2p
 ln r

y

xBA

100 ft

r

Rc

F I G U R E  P6.49

F I G U R E  P6.50

r
3  /4π

θ

F I G U R E  P6.47

y

x

(1, 1) (2, 1)

(1, 2) (2, 2)

Section 6.5 Some Basic, Plane Potential Flows

6.48 Obtain a photograph/image of a situation which approxi-
mates one of the basic, plane potential flows. Print this photo and
write a brief paragraph that describes the situation involved.

6.49 As illustrated in Fig. P6.49, a tornado can be approximated
by a free vortex of strength for where is the radius of
the core. Velocity measurements at points A and B indicate that

and Determine the distance from point
A to the center of the tornado. Why can the free vortex model not be
used to approximate the tornado throughout the flow field 1r � 02?

VB � 60 ft�s.VA � 125 ft�s

Rcr 7 Rc,�

6.50 If the velocity field is given by , and a is a con-
stant, find the circulation around the closed curve shown in Fig. P6.50.

V � axî � ay ĵ

6.51 The streamlines in a particular two-dimensional flow field are
all concentric circles, as shown in Fig. P6.51. The velocity is given by
the equation where is the angular velocity of the rotating
mass of fluid. Determine the circulation around the path ABCD.

vvu � vr
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Problems 325

6.54 Water flows over a flat surface at , as shown in
Fig. P6.54.  A pump draws off water through a narrow slit at a vol-
ume rate of per foot length of the slit. Assume that the fluid
is incompressible and inviscid and can be represented by the com-
bination of a uniform flow and a sink. Locate the stagnation point
on the wall 1point A2 and determine the equation for the stagnation
streamline. How far above the surface, H, must the fluid be so that
it does not get sucked into the slit?

0.1 ft3�s

4 ft�s

6.52 The motion of a liquid in an open tank is that of a combined
vortex consisting of a forced vortex for and a free vor-
tex for . The velocity profile and the corresponding shape of
the free surface are shown in Fig. P6.52. The free surface at the cen-
ter of the tank is a depth h below the free surface at . Deter-
mine the value of h. Note that , where 

are the corresponding depths for the forced vortex and the
free vortex, respectively. 1See Section 2.12.2 for further discussion
regarding the forced vortex.2

and hfree

hforcedh � hforced � hfree

r � q

r 7 2 ft
0 
 r 
 2 ft

B

A

r
b

a

C

Dω

θΔ

F I G U R E  P6.51

F I G U R E  P6.52

10

0 2

2

r, ft

r, ft

z

h

, ft/svθ

6.53 When water discharges from a tank through an opening in its
bottom, a vortex may form with a curved surface profile, as shown
in Fig. P6.53 and Video V6.4. Assume that the velocity distribution
in the vortex is the same as that for a free vortex. At the same time
the water is being discharged from the tank at point A, it is desired
to discharge a small quantity of water through the pipe B. As the
discharge through A is increased, the strength of the vortex, as indi-
cated by its circulation, is increased. Determine the maximum
strength that the vortex can have in order that no air is sucked in at
B. Express your answer in terms of the circulation. Assume that the
fluid level in the tank at a large distance from the opening at A re-
mains constant and viscous effects are negligible.

B

A

2 ft

1 ft

F I G U R E  P6.53

A

0.1 ft3/s
(per foot of length of slit)

4 ft/s

H

F I G U R E  P6.54

F I G U R E  P6.55

2� 3�

+m +3m

x

y

y

r

x

V

θ

α

F I G U R E  P6.56

6.55 Two sources, one of strength m and the other with strength 3m,
are located on the x axis as shown in Fig. P6.55. Determine the loca-
tion of the stagnation point in the flow produced by these sources.

6.56 The velocity potential for a spiral vortex flow is given by
ln r, where and m are constants. Show

that the angle, between the velocity vector and the radial direction
is constant throughout the flow field 1see Fig. P6.562.

a,
�f � 1��2p2 u � 1m�2p2

6.57 For a free vortex (see Video V6.4) determine an expression
for the pressure gradient (a) along a streamline, and (b) normal to a
streamline. Assume that the streamline is in a horizontal plane, and
express your answer in terms of the circulation.

6.58 (See Fluids in the News article titled “Some hurricanes
facts,” Section 6.5.3.) Consider a category five hurricane that has a
maximum wind speed of 160 mph at the eye wall, 10 miles from the
center of the hurricane. If the flow in the hurricane outside of
the hurricane’s eye is approximated as a free vortex, determine the
wind speeds at locations 20 mi, 30 mi, and 40 mi from the center of
the storm.
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Section 6.6 Superposition of Basic, Plane
Potential Flows

6.59 Obtain a photograph/image of a situation that mimics the su-
perposition of potential flows (see Ex. 6.7). Print this photo and
write a brief paragraph that describes the situation involved.

6.60 Potential flow against a flat plate 1Fig. P6.60a2 can be de-
scribed with the stream function

where A is a constant. This type of flow is commonly called a “stag-
nation point” flow since it can be used to describe the flow in the
vicinity of the stagnation point at O. By adding a source of strength
m at O, stagnation point flow against a flat plate with a “bump” is ob-
tained as illustrated in Fig. P6.60b. Determine the relationship be-
tween the bump height, h, the constant, A, and the source strength, m.

c � Axy

6.63 One end of a pond has a shoreline that resembles a half-body
as shown in Fig. P6.63. A vertical porous pipe is located near the
end of the pond so that water can be pumped out. When water is
pumped at the rate of through a 3-m-long pipe, what will
be the velocity at point A? Hint: Consider the flow inside a half-
body. (See Video V6.5.)

0.08 m3�s

326 Chapter 6 ■ Differential Analysis of Fluid Flow

y

x

O

(a)

y

x

(b)

Source

h

F I G U R E  P6.60

6.61 The combination of a uniform flow and a source can be used
to describe flow around a streamlined body called a half-body. (See
Video V6.5.) Assume that a certain body has the shape of a half-
body with a thickness of 0.5 m. If this body is placed in an airstream
moving at what source strength is required to simulate flow
around the body?

6.62 A vehicle windshield is to be shaped as a portion of a half-
body with the dimensions shown in Fig. P6.62. (a) Make a scale
drawing of the windshield shape. (b) For a free stream velocity of
55 mph, determine the velocity of the air at points A and B.

15 m/s,

F I G U R E  P6.62

A

B

r

2.0 ft

1.5 ft

y

x
θ

U = 55 mph

Windshield

F I G U R E  P6.64

A
Pipe

5 m
15 m

F I G U R E  P6.63

y

x

U
P(x, y)

H

H

A

6.64 Two free vortices of equal strength, but opposite direction
of rotation, are superimposed with a uniform flow as shown in
Fig. P6.64. The stream functions for these two vorticies are

. (a) Develop an equation for the x-component
of velocity, u, at point in terms of Cartesian coordinates x
and y. (b) Compute the x-component of velocity at point A and
show that it depends on the ratio .��H

P1x,y2
c � � 3;��12p2 4  ln r

6.65 A Rankine oval is formed by combining a source–sink pair,
each having a strength of and separated by a distance of 12 ft
along the x axis, with a uniform velocity of 1in the positive x di-
rection2. Determine the length and thickness of the oval.

*6.66 Make use of Eqs. 6.107 and 6.109 to construct a table show-
ing how and for Rankine ovals depend on the parame-
ter Plot versus and describe how this plot could
be used to obtain the required values of m and a for a Rankine oval
having a specific value of and h when placed in a uniform fluid
stream of velocity, U.

6.67 An ideal fluid flows past an infinitely long, semicircular
“hump” located along a plane boundary, as shown in Fig. P6.67.
Far from the hump the velocity field is uniform, and the pressure is

(a) Determine expressions for the maximum and minimum val-
ues of the pressure along the hump, and indicate where these points
are located. Express your answer in terms of U, and (b) If
the solid surface is the streamline, determine the equation of
the streamline passing through the point u � p�2, r � 2a.

c � 0
p0.r,

p0.

/

pUa�m/�hpUa�m.
/�h/�a, h�a,

10 ft�s
36 ft2�s
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6.68 Water flows around a 6-ft-diameter bridge pier with a velocity
of Estimate the force (per unit length) that the water exerts on
the pier. Assume that the flow can be approximated as an ideal fluid
flow around the front half of the cylinder, but due to flow separation
(see Video V6.8), the average pressure on the rear half is constant
and approximately equal to 1⁄2 the pressure at point A (see Fig. P6.68).

12 ft/s.

calculate the circulation by assuming the air sticks to the rotating
cylinders. Note: This calculated force is at right angles to the direc-
tion of the wind and it is the component of this force in the direction
of motion of the ship that gives the propulsive thrust. Also, due to
viscous effects, the actual propulsive thrust will be smaller than that
calculated from Eq. 6.124 which is based on inviscid flow theory.

6.73 A fixed circular cylinder of infinite length is placed in a
steady, uniform stream of an incompressible, nonviscous fluid. As-
sume that the flow is irrotational. Prove that the drag on the cylinder
is zero. Neglect body forces.

6.74 Repeat Problem 6.73 for a rotating cylinder for which the
stream function and velocity potential are given by Eqs. 6.119 and
6.120, respectively. Verify that the lift is not zero and can be ex-
pressed by Eq. 6.124.

6.75 At a certain point at the beach, the coast line makes a right-
angle bend, as shown in Fig. P6.75a. The flow of salt water in this
bend can be approximated by the potential flow of an incompress-
ible fluid in a right-angle corner. (a) Show that the stream function
for this flow is where A is a positive constant.
(b) A fresh-water reservoir is located in the corner. The salt water is
to be kept away from the reservoir to avoid any possible seepage of
salt water into the fresh water (Fig. P6.75b). The fresh-water source
can be approximated as a line source having a strength m, where m
is the volume rate of flow (per unit length) emanating from the
source. Determine m if the salt water is not to get closer than a dis-
tance L to the corner. Hint: Find the value of m (in terms of A and
L) so that a stagnation point occurs at (c) The streamline
passing through the stagnation point would represent the line dividing
the fresh water from the salt water. Plot this streamline.

y � L.

c � A r 2 sin 2u,
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r

a
θ

U, p0
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U = 12 ft/s
6 ft

A
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*6.69 Consider the steady potential flow around the circular cylin-
der shown in Fig. 6.26. On a plot show the variation of the magni-
tude of the dimensionless fluid velocity, along the positive
y axis. At what distance, 1along the y axis2, is the velocity within
1% of the free-stream velocity?

6.70 The velocity potential for a cylinder 1Fig. P6.702 rotating in a
uniform stream of fluid is

where is the circulation. For what value of the circulation will the
stagnation point be located at: (a) point A, (b) point B?

�

f � Ur a1 �
a2

r 2
b cos u �

�

2p
 u

y�a
V�U,

U

r

y

x
A

B

θ

a
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6.71 Show that for a rotating cylinder in a uniform flow, the fol-
lowing pressure ratio equation is true. 

Here U is the velocity of the uniform flow and q is the surface speed
of the rotating cylinder.

6.72 (See Fluids in the News article titled “A sailing ship without
sails,” Section 6.6.3.) Determine the magnitude of the total force
developed by the two rotating cylinders on the Flettner “rotor-ship”
due to the Magnus effect. Assume a wind speed relative to the ship
of (a) 10 mph and (b) 30 mph. Each cylinder has a diameter of 9 ft,
a length of 50 ft, and rotates at 750 rev/min. Use Eq. 6.124 and

ptop � pbottom

pstagnation
�

8q

U

Salt water

Dividing
streamline

Fresh waterFresh water
source

x

L

y

x

r

y

(b)(a)

θ
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6.76 Typical inviscid flow solutions for flow around bodies indi-
cate that the fluid flows smoothly around the body, even for blunt
bodies as shown in Video V6.10. However, experience reveals that
due to the presence of viscosity, the main flow may actually separate
from the body creating a wake behind the body. As discussed in a
later section (Section 9.2.6), whether or not separation takes place
depends on the pressure gradient along the surface of the body, as
calculated by inviscid flow theory. If the pressure decreases in the
direction of flow (a favorable pressure gradient), no separation will
occur. However, if the pressure increases in the direction of flow (an
adverse pressure gradient), separation may occur. For the circular
cylinder of Fig. P6.76 placed in a uniform stream with velocity, U,

U

θ

a

F I G U R E  P6.76
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determine an expression for the pressure gradient in the direction of
flow on the surface of the cylinder. For what range of values for the
angle will an adverse pressure gradient occur?

Section 6.8 Viscous Flow

6.77 Obtain a photograph/image of a situation in which the cylin-
drical form of the Navier–Stokes equations would be appropriate
for the solution. Print this photo and write a brief paragraph that de-
scribes the situation involved.

6.78 For a steady, two-dimensional, incompressible flow, the ve-
locity is given by , where a and c
are constants. Show that this flow can be considered inviscid.

6.79 Determine the shearing stress for an incompressible Newtonian
fluid with a velocity distribution of 

.

6.80 The two-dimensional velocity field for an incompressible
Newtonian fluid is described by the relationship

where the velocity has units of m/s when x and y are in me-
ters. Determine the stresses and at the point 

if pressure at this point is 6 kPa and the fluid is
glycerin at Show these stresses on a sketch.

6.81 For a two-dimensional incompressible flow in the x � y plane
show that the z component of the vorticity, varies in accordance
with the equation

What is the physical interpretation of this equation for a nonviscous
fluid? Hint: This vorticity transport equation can be derived from
the Navier–Stokes equations by differentiating and eliminating the
pressure between Eqs. 6.127a and 6.127b.

6.82 The velocity of a fluid particle moving along a horizontal
streamline that coincides with the x axis in a plane, two-dimensional,
incompressible flow field was experimentally found to be described
by the equation Along this streamline determine an expres-
sion for (a) the rate of change of the component of velocity with re-
spect to y, (b) the acceleration of the particle, and (c) the pressure
gradient in the x direction. The fluid is Newtonian.

Section 6.9.1 Steady, Laminar Flow between Fixed
Parallel Plates

6.83 Obtain a photograph/image of a situation which can be approx-
imated by one of the simple cases covered in Sec. 6.9. Print this photo
and write a brief paragraph that describes the situation involved.

6.84 Oil flows between two fixed horizontal
infinite parallel plates with a spacing of 5 mm. The flow is laminar
and steady with a pressure gradient of per unit meter.
Determine the volume flowrate per unit width and the shear stress
on the upper plate.

6.85 Two fixed, horizontal, parallel plates are spaced 0.4 in. apart.
A viscous liquid flows be-
tween the plates with a mean velocity of . The flow is lami-
nar. Determine the pressure drop per unit length in the direction of
flow. What is the maximum velocity in the channel?

6.86 A viscous, incompressible fluid flows between the two infi-
nite, vertical, parallel plates of Fig. P6.86. Determine, by use of the
Navier–Stokes equations, an expression for the pressure gradient in
the direction of flow. Express your answer in terms of the mean ve-
locity. Assume that the flow is laminar, steady, and uniform.

0.5 ft�s
1m � 8 	 10�3 lb # s�ft2, SG � 0.92

�900 1N�m22

1m � 0.4 N � s�m22

v
u � x2.

Dzz

Dt
� n§ 2zz

zz,

20 °C.
0.5 m, y � 1.0 m

x �txysxx, syy,

V � 112xy2 � 6x32 î � 118x2y � 4y32 ĵ

112x2y � y32 ĵ
V � 13xy2 � 4x32 î  �

V � 1ax � cy2 î � 1�ay � cx2 ĵ

u
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6.87 A fluid is initially at rest between two horizontal, infinite,
parallel plates. A constant pressure gradient in a direction parallel
to the plates is suddenly applied and the fluid starts to move. Deter-
mine the appropriate differential equation1s2, initial condition, and
boundary conditions that govern this type of flow. You need not
solve the equation1s2.

6.88 (See Fluids in the News article titled “10 tons on 8 psi,” Section
6.9.1.) A massive, precisely machined, 6-ft-diameter granite sphere
rests upon a 4-ft-diameter cylindrical pedestal as shown in Fig.
P6.88. When the pump is turned on and the water pressure within
the pedestal reaches 8 psi, the sphere rises off the pedestal, creating
a 0.005-in. gap through which the water flows. The sphere can then
be rotated about any axis with minimal friction. (a) Estimate the
pump flowrate, , required to accomplish this. Assume the flow in
the gap between the sphere and the pedestal is essentially viscous
flow between fixed, parallel plates. (b) Describe what would hap-
pen if the pump flowrate were increased to 2Q0.

Q0

h h

z
x

y

Direction of flow

F I G U R E  P6.86
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0.005 in.

4 in.

6 ft

4 ft
p � 8 psi

Pump

Section 6.9.2 Couette Flow

6.89 Two horizontal, infinite, parallel plates are spaced a distance
b apart. A viscous liquid is contained between the plates. The bot-
tom plate is fixed, and the upper plate moves parallel to the bottom
plate with a velocity U. Because of the no-slip boundary condition
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(see Video V6.11), the liquid motion is caused by the liquid being
dragged along by the moving boundary. There is no pressure gra-
dient in the direction of flow. Note that this is a so-called simple
Couette flow discussed in Section 6.9.2. (a) Start with the
Navier–Stokes equations and determine the velocity distribution
between the plates. (b) Determine an expression for the flowrate
passing between the plates (for a unit width). Express your answer
in terms of b and U.

6.90 A layer of viscous liquid of constant thickness 1no velocity
perpendicular to plate2 flows steadily down an infinite, inclined
plane. Determine, by means of the Navier–Stokes equations, the re-
lationship between the thickness of the layer and the discharge per
unit width. The flow is laminar, and assume air resistance is negli-
gible so that the shearing stress at the free surface is zero.

6.91 Due to the no-slip condition, as a solid is pulled out of a vis-
cous liquid some of the liquid is also pulled along as described in
Example 6.9 and shown in Video V6.11. Based on the results given
in Example 6.9, show on a dimensionless plot the velocity distribu-
tion in the fluid film when the average film velocity,
V, is of the belt velocity,

6.92 An incompressible, viscous fluid is placed between hori-
zontal, infinite, parallel plates as is shown in Fig. P6.92. The two
plates move in opposite directions with constant velocities,
and as shown. The pressure gradient in the x direction is zero,
and the only body force is due to the fluid weight. Use the Navier–
Stokes equations to derive an expression for the velocity distribu-
tion between the plates. Assume laminar flow.

U2,
U1

V0.10%
1v/V0 vs. x /h2
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b

x

y

U1

U2

F I G U R E  P6.92

6.93 Two immiscible, incompressible, viscous fluids having the
same densities but different viscosities are contained between two
infinite, horizontal, parallel plates 1Fig. P6.932. The bottom plate is
fixed and the upper plate moves with a constant velocity U. Deter-
mine the velocity at the interface. Express your answer in terms of
U, and The motion of the fluid is caused entirely by the
movement of the upper plate; that is, there is no pressure gradient
in the x direction. The fluid velocity and shearing stress are contin-
uous across the interface between the two fluids. Assume laminar
flow.

m2.m1,

h

h
y

x

U

,   1ρ μ

,   2ρ μ

Fixed
plate
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b
y

x

U

Fixed
plate
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0.1 in.

6 in. y

x

1.0 in.

U = 0.02 ft/s

= 100 lb/ft3γ

Fixed
plate
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6.94 The viscous, incompressible flow between the parallel plates
shown in Fig. P6.94 is caused by both the motion of the bottom
plate and a pressure gradient, As noted in Section 6.9.2, an
important dimensionless parameter for this type of problem is

0p�0x.

( ) where is the fluid viscosity. Make a plot
of the dimensionless velocity distribution (similar to that shown in
Fig. 6.32b) for For this case where does the maximum ve-
locity occur?

P � 3.

m0p�0xP � �1b2/2 mU2

6.96 A vertical shaft passes through a bearing and is lubricated
with an oil having a viscosity of as shown in Fig.
P6.96. Assume that the flow characteristics in the gap between the
shaft and bearing are the same as those for laminar flow between
infinite parallel plates with zero pressure gradient in the direction
of flow. Estimate the torque required to overcome viscous resis-
tance when the shaft is turning at 80 rev�min.

0.2 N # s�m2

0.25 mm

75 mm

Shaft

Oil

160 mm

Bearing

F I G U R E  P6.96

6.97 A viscous fluid is contained between two long concentric
cylinders. The geometry of the system is such that the flow between
the cylinders is approximately the same as the laminar flow between
two infinite parallel plates. (a) Determine an expression for the
torque required to rotate the outer cylinder with an angular velocity v.

6.95 A viscous fluid 1specific weight viscosity
is contained between two infinite, horizontal parallel

plates as shown in Fig. P6.95. The fluid moves between the plates
under the action of a pressure gradient, and the upper plate moves
with a velocity U while the bottom plate is fixed. A U-tube
manometer connected between two points along the bottom indi-
cates a differential reading of 0.1 in. If the upper plate moves with
a velocity of 0.02 ft�s, at what distance from the bottom plate does
the maximum velocity in the gap between the two plates occur? As-
sume laminar flow.

0.03 lb # s�ft22
�� 80 lb�ft3;
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The inner cylinder is fixed. Express your answer in terms of the
geometry of the system, the viscosity of the fluid, and the angular ve-
locity. (b) For a small, rectangular element located at the fixed wall
determine an expression for the rate of angular deformation of this
element. (See Video V6.3 and Fig. P6.9.)

*6.98 Oil 1SAE 302 flows between parallel plates spaced 5 mm apart.
The bottom plate is fixed, but the upper plate moves with a velocity of
0.2 in the positive x direction. The pressure gradient is 60 
and it is negative. Compute the velocity at various points across the
channel and show the results on a plot. Assume laminar flow.

Section 6.9.3 Steady, Laminar Flow in Circular Tubes

6.99 Consider a steady, laminar flow through a straight horizontal
tube having the constant elliptical cross section given by the equation

The streamlines are all straight and parallel. Investigate the possibil-
ity of using an equation for the z component of velocity of the form

as an exact solution to this problem. With this velocity distribution,
what is the relationship between the pressure gradient along the
tube and the volume flowrate through the tube?

6.100 A simple flow system to be used for steady flow tests con-
sists of a constant head tank connected to a length of 4-mm-
diameter tubing as shown in Fig. P6.100. The liquid has a viscosity
of a density of and discharges into the
atmosphere with a mean velocity of . (a) Verify that the flow
will be laminar. (b) The flow is fully developed in the last 3 m of the
tube. What is the pressure at the pressure gage? (c) What is the mag-
nitude of the wall shearing stress, in the fully developed region?trz,

2 m�s
1200 kg�m3,0.015 N # s�m2,

w � A a1 �
x2

a2
�

y2

b2
b

x2

a2
�

y2

b2
� 1

kPa�m,m�s
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Pressure
gage

3 mDiameter = 4 mm
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6.101 (a) Show that for Poiseuille flow in a tube of radius R the
magnitude of the wall shearing stress, can be obtained from the
relationship

for a Newtonian fluid of viscosity The volume rate of flow is Q.
(b) Determine the magnitude of the wall shearing stress for a fluid
having a viscosity of flowing with an average veloc-
ity of in a 2-mm-diameter tube.

6.102 An infinitely long, solid, vertical cylinder of radius R is lo-
cated in an infinite mass of an incompressible fluid. Start with the
Navier–Stokes equation in the direction and derive an expression
for the velocity distribution for the steady flow case in which the
cylinder is rotating about a fixed axis with a constant angular
velocity You need not consider body forces. Assume that the
flow is axisymmetric and the fluid is at rest at infinity.

v.

u

130 mm�s
0.004 N # s�m2

m.

0 1trz2wall 0 �
4mQ

pR3

trz,

*6.103 As is shown by Eq. 6.150 the pressure gradient for laminar
flow through a tube of constant radius is given by the expression

For a tube whose radius is changing very gradually, such as the one
illustrated in Fig. P6.103, it is expected that this equation can be
used to approximate the pressure change along the tube if the actual
radius, R1z2, is used at each cross section. The following measure-
ments were obtained along a particular tube.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.00 0.73 0.67 0.65 0.67 0.80 0.80 0.71 0.73 0.77 1.00

Compare the pressure drop over the length for this nonuniform
tube with one having the constant radius Hint: To solve this
problem you will need to numerically integrate the equation for the
pressure gradient given above.

Ro.
/

R1z2�Ro

z�/

0p

0z
� �

8mQ

pR4

Ro

z
R(z)

�
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2 m 4 mm

Δh
Density of

gage fluid = 2000 kg/m3
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6.104 A liquid (viscosity � 0.002 N�s/m2; density � 1000 kg/m3)
is forced through the circular tube shown in Fig. P6.104. A differ-
ential manometer is connected to the tube as shown to measure the
pressure drop along the tube. When the differential reading, �h, is
9 mm, what is the mean velocity in the tube?

Section 6.9.4 Steady, Axial, Laminar Flow in an Annulus

6.105 An incompressible Newtonian fluid flows steadily between
two infinitely long, concentric cylinders as shown in Fig. P6.105.
The outer cylinder is fixed, but the inner cylinder moves with a lon-
gitudinal velocity as shown. The pressure gradient in the axial
direction is . For what value of will the drag on the inner
cylinder be zero? Assume that the flow is laminar, axisymmetric,
and fully developed.

V0�¢p�/
V0

V0

Fixed wall

ri

ro

F I G U R E  P6.105

JWCL068_ch06_263-331.qxd  9/30/08  8:21 AM  Page 330



6.106 A viscous fluid is contained between two infinitely long,
vertical, concentric cylinders. The outer cylinder has a radius and
rotates with an angular velocity The inner cylinder is fixed and
has a radius Make use of the Navier–Stokes equations to obtain
an exact solution for the velocity distribution in the gap. Assume
that the flow in the gap is axisymmetric 1neither velocity nor pres-
sure are functions of angular position within the gap2 and that
there are no velocity components other than the tangential compo-
nent. The only body force is the weight.

6.107 For flow between concentric cylinders, with the outer cylinder
rotating at an angular velocity and the inner cylinder fixed, it is
commonly assumed that the tangential velocity distribution in the
gap between the cylinders is linear. Based on the exact solution to this
problem 1see Problem 6.1062 the velocity distribution in the gap is not
linear. For an outer cylinder with radius and an inner
cylinder with radius 1.80 in., show, with the aid of a plot, how the
dimensionless velocity distribution, varies with the dimen-
sionless radial position, for the exact and approximate solutions.

6.108 A viscous liquid
flows through the annular space between two horizontal, fixed, con-
centric cylinders. If the radius of the inner cylinder is 1.5 in. and the ra-
dius of the outer cylinder is 2.5 in., what is the pressure drop along the
axis of the annulus per foot when the volume flowrate is

6.109 Show how Eq. 6.155 is obtained.

6.110 A wire of diameter d is stretched along the centerline of a
pipe of diameter D. For a given pressure drop per unit length of

0.14 ft3�s?

slugs�ft32r � 1.791m � 0.012 lb # s�ft2, 

r�ro,

vu�rov,
ri �

ro � 2.00 in.

1vu2
v

u

ri.
v.

ro
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pipe, by how much does the presence of the wire reduce the
flowrate if (a) (b)

Section 6.10 Other Aspects of Differential Analysis

6.111 Obtain a photograph/image of a situation in which CFD has
been used to solve a fluid flow problem. Print this photo and write
a brief paragraph that describes the situation involved.

■ Life Long Learning Problems

6.112 What sometimes appear at first glance to be simple fluid
flows can contain subtle, complex fluid mechanics. One such ex-
ample is the stirring of tea leaves in a teacup. Obtain information
about “Einstein’s tea leaves” and investigate some of the complex
fluid motions interacting with the leaves. Summarize your findings
in a brief report.

6.113 Computational fluid dynamics (CFD) has moved from a re-
search tool to a design tool for engineering. Initially, much of the
work in CFD was focused in the aerospace industry, but now has
expanded into other areas. Obtain information on what other indus-
tries (e.g., automotive) make use of CFD in their engineering de-
sign. Summarize your findings in a brief report.

■ FE Exam Problems 

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley.
com/college/munson.

d�D � 0.01?d�D � 0.1;
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CHAPTER OPENING PHOTO: Flow past a circular cylinder with The pathlines of flow

past any circular cylinder 1regardless of size, velocity, or fluid2 are as shown provided that the dimension-

less parameter called the Reynolds number, Re, is equal to 2000. For other values of Re, the flow pattern

will be different 1air bubbles in water2. (Photograph courtesy of ONERA, France.)

Re � rVD�m � 2000:

Although many practical engineering problems involving fluid mechanics can be solved by us-

ing the equations and analytical procedures described in the preceding chapters, there remain a

large number of problems that rely on experimentally obtained data for their solution. In fact, it

is probably fair to say that very few problems involving real fluids can be solved by analysis

alone. The solution to many problems is achieved through the use of a combination of theoret-

ical and numerical analysis and experimental data. Thus, engineers working on fluid mechanics

problems should be familiar with the experimental approach to these problems so that they can

interpret and make use of data obtained by others, such as might appear in handbooks, or be

able to plan and execute the necessary experiments in their own laboratories. In this chapter we

consider some techniques and ideas that are important in the planning and execution of experi-

ments, as well as in understanding and correlating data that may have been obtained by other

experimenters.

An obvious goal of any experiment is to make the results as widely applicable as possible.

To achieve this end, the concept of similitude is often used so that measurements made on one

system 1for example, in the laboratory2 can be used to describe the behavior of other similar sys-

tems 1outside the laboratory2. The laboratory systems are usually thought of as models and are used

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ apply the Buckingham pi theorem.

■ develop a set of dimensionless variables for a given flow situation.

■ discuss the use of dimensionless variables in data analysis.

■ apply the concepts of modeling and similitude to develop prediction equations.

Experimentation
and modeling are
widely used tech-
niques in fluid
mechanics.

V7.1 Real and
model flies
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to study the phenomenon of interest under carefully controlled conditions. From these model studies,

empirical formulations can be developed, or specific predictions of one or more characteristics of

some other similar system can be made. To do this, it is necessary to establish the relationship be-

tween the laboratory model and the “other” system. In the following sections, we find out how this

can be accomplished in a systematic manner.

7.1 Dimensional Analysis 333

F l u i d s  i n  t h e  N e w s

Model study of New Orleans levee breach caused by
Hurricane Katrina Much of the devastation to New Orleans from

Hurricane Katrina in 2005 was a result of flood waters that surged

through a breach of the 17th Street Outfall Canal. To better under-

stand why this occurred and to determine what can be done to pre-

vent future occurrences, the U.S. Army Engineer Research and

Development Center Coastal and Hydraulics Laboratory is con-

ducting tests on a large (1:50 length scale) 15,000 square foot hy-

draulic model that replicates 0.5 mile of the canal surrounding the

breach and more than a mile of the adjacent Lake Pontchartrain

front. The objective of the study is to obtain information regarding

the effect that waves had on the breaching of the canal and to in-

vestigate the surging water currents within the canals. The waves

are generated by computer-controlled wave generators that can

produce waves of varying heights, periods, and directions similar to

the storm conditions that occurred during the hurricane. Data from

the study will be used to calibrate and validate information that

will be fed into various numerical model studies of the disaster.

To illustrate a typical fluid mechanics problem in which experimentation is required, consider the

steady flow of an incompressible Newtonian fluid through a long, smooth-walled, horizontal, cir-

cular pipe. An important characteristic of this system, which would be of interest to an engineer

designing a pipeline, is the pressure drop per unit length that develops along the pipe as a result

of friction. Although this would appear to be a relatively simple flow problem, it cannot gener-

ally be solved analytically 1even with the aid of large computers2 without the use of experimen-

tal data.

The first step in the planning of an experiment to study this problem would be to decide on

the factors, or variables, that will have an effect on the pressure drop per unit length,

We expect the list to include the pipe diameter, D, the fluid den-

sity, , fluid viscosity, , and the mean velocity, V, at which the fluid is flowing through the pipe.

Thus, we can express this relationship as

(7.1)

which simply indicates mathematically that we expect the pressure drop per unit length to be some

function of the factors contained within the parentheses. At this point the nature of the function is

unknown and the objective of the experiments to be performed is to determine the nature of this

function.

To perform the experiments in a meaningful and systematic manner, it would be necessary

to change one of the variables, such as the velocity, while holding all others constant, and mea-

sure the corresponding pressure drop. This series of tests would yield data that could be repre-

sented graphically as is illustrated in Fig. 7.1a. It is to be noted that this plot would only be valid

for the specific pipe and for the specific fluid used in the tests; this certainly does not give us the

general formulation we are looking for. We could repeat the process by varying each of the other

variables in turn, as is illustrated in Figs. 7.1b, 7.1c, and 7.1d. This approach to determining the

functional relationship between the pressure drop and the various factors that influence it, although

logical in concept, is fraught with difficulties. Some of the experiments would be hard to carry

out—for example, to obtain the data illustrated in Fig. 7.1c it would be necessary to vary fluid den-

sity while holding viscosity constant. How would you do this? Finally, once we obtained the var-

ious curves shown in Figs. 7.1a, 7.1b, 7.1c, and 7.1d, how could we combine these data to obtain

the desired general functional relationship between and V which would be valid for

any similar pipe system?

Fortunately, there is a much simpler approach to this problem that will eliminate the diffi-

culties described above. In the following sections we will show that rather than working with the

¢p/, D, r, m,

¢p/ � f 1D, r, m, V2

mr

¢p/ 3 1lb�ft22�ft � lb�ft3 or N�m3 4 .

7.1 Dimensional Analysis

It is important to
develop a meaning-
ful and systematic
way to perform an
experiment.
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original list of variables, as described in Eq. 7.1, we can collect these into two nondimensional

combinations of variables 1called dimensionless products or dimensionless groups2 so that

(7.2)

Thus, instead of having to work with five variables, we now have only two. The necessary

experiment would simply consist of varying the dimensionless product and determining

the corresponding value of The results of the experiment could then be represented

by a single, universal curve as is illustrated in Fig. 7.2. This curve would be valid for any com-

bination of smooth-walled pipe and incompressible Newtonian fluid. To obtain this curve we

could choose a pipe of convenient size and a fluid that is easy to work with. Note that we would-

n’t have to use different pipe sizes or even different fluids. It is clear that the experiment would

be much simpler, easier to do, and less expensive 1which would certainly make an impression

on your boss2.
The basis for this simplification lies in a consideration of the dimensions of the variables

involved. As was discussed in Chapter 1, a qualitative description of physical quantities can be given

in terms of basic dimensions such as mass, M, length, L, and time, Alternatively, we could use

force, F, L, and T as basic dimensions, since from Newton’s second law

F � MLT �2

T.1

D ¢p/�rV 2.

rVD�m

D ¢p/

rV 2
� f a

rVD
m
b
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F I G U R E  7.1 Illus-
trative plots showing how the pres-
sure drop in a pipe may be affected
by several different factors.

Δp� Δp�

Δp� Δp�

D,   ,   – constantρ μ

V

(a)

V,   ,   – constantρ μ

D

(b)

D, V,   – constantμ

ρ

(c)

D,   , V– constantρ

μ

(d)

F I G U R E  7.2 An illustrative plot of pressure drop
data using dimensionless parameters.

DΔp�_____

  
V2ρ

  VD____
μ

  ρ

Dimensionless
products are impor-
tant and useful in
the planning,
execution, and
interpretation of
experiments.

1As noted in Chapter 1, we will use T to represent the basic dimension of time, although T is also used for temperature in thermodynamic

relationships 1such as the ideal gas law2.
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1Recall from Chapter 1 that the notation is used to indicate dimensional equality.2 The dimen-

sions of the variables in the pipe flow example are 

and 3Note that the pressure drop per unit length has the dimensions of 

A quick check of the dimensions of the two groups that appear in Eq. 7.2 shows that they are in

fact dimensionless products; that is,

and

Not only have we reduced the number of variables from five to two, but the new groups are

dimensionless combinations of variables, which means that the results presented in the form of

Fig. 7.2 will be independent of the system of units we choose to use. This type of analysis is called

dimensional analysis, and the basis for its application to a wide variety of problems is found in

the Buckingham pi theorem described in the following section.

rVD
m

�
1FL�4T 22 1LT�12 1L2

1FL�2T2
� F 0L0T 0

D ¢p/

rV 2
�

L1F�L32

1FL�4T 22 1LT �122
� F 0L0T 0

1F�L22�L � FL�3. 4V � LT �1.

m � FL�2T,¢p/ � FL�3, D � L, r � FL�4T 2,

�

7.2 Buckingham Pi Theorem 335

A fundamental question we must answer is how many dimensionless products are required to re-

place the original list of variables? The answer to this question is supplied by the basic theorem

of dimensional analysis that states the following:

If an equation involving k variables is dimensionally homogeneous, it can be reduced
to a relationship among independent dimensionless products, where r is the
minimum number of reference dimensions required to describe the variables.

The dimensionless products are frequently referred to as “pi terms,” and the theorem is called the

Buckingham pi theorem.2 Edgar Buckingham used the symbol to represent a dimensionless

product, and this notation is commonly used. Although the pi theorem is a simple one, its proof is

not so simple and we will not include it here. Many entire books have been devoted to the subject

of similitude and dimensional analysis, and a number of these are listed at the end of this chapter

1Refs. 1–152. Students interested in pursuing the subject in more depth 1including the proof of the

pi theorem2 can refer to one of these books.

The pi theorem is based on the idea of dimensional homogeneity which was introduced in

Chapter 1. Essentially we assume that for any physically meaningful equation involving k vari-

ables, such as

the dimensions of the variable on the left side of the equal sign must be equal to the dimensions

of any term that stands by itself on the right side of the equal sign. It then follows that we can

rearrange the equation into a set of dimensionless products 1pi terms2 so that

where is a function of through 

The required number of pi terms is fewer than the number of original variables by r, where

r is determined by the minimum number of reference dimensions required to describe the origi-

nal list of variables. Usually the reference dimensions required to describe the variables will be

the basic dimensions M, L, and T or F, L, and T. However, in some instances perhaps only two

dimensions, such as L and T, are required, or maybe just one, such as L. Also, in a few rare cases

ßk�r.ß2f1ß2, ß3, . . . , ßk�r2

ß1 � f1ß2, ß3, . . . , ßk�r2

u1 � f 1u2, u3, . . . , uk2

ß

k � r

7.2 Buckingham Pi Theorem

2Although several early investigators, including Lord Rayleigh 11842–19192 in the nineteenth century, contributed to the development of

dimensional analysis, Edgar Buckingham’s 11867–19402 name is usually associated with the basic theorem. He stimulated interest in the sub-

ject in the United States through his publications during the early part of the twentieth century. See, for example, E. Buckingham, On Physi-

cally Similar Systems: Illustrations of the Use of Dimensional Equations, Phys. Rev., 4 119142, 345–376.

Dimensional analy-
sis is based on the
Buckingham pi
theorem.
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the variables may be described by some combination of basic dimensions, such as and L,

and in this case r would be equal to two rather than three. Although the use of the pi theorem

may appear to be a little mysterious and complicated, we will actually develop a simple, system-

atic procedure for developing the pi terms for a given problem.

M�T 2

336 Chapter 7 ■ Dimensional Analysis, Similitude, and Modeling

Several methods can be used to form the dimensionless products, or pi terms, that arise in a dimen-

sional analysis. Essentially we are looking for a method that will allow us to systematically form the pi

terms so that we are sure that they are dimensionless and independent, and that we have the right num-

ber. The method we will describe in detail in this section is called the method of repeating variables.
It will be helpful to break the repeating variable method down into a series of distinct steps

that can be followed for any given problem. With a little practice you will be able to readily com-

plete a dimensional analysis for your problem.

Step 1 List all the variables that are involved in the problem. This step is the most difficult

one and it is, of course, vitally important that all pertinent variables be included. Other-

wise the dimensional analysis will not be correct! We are using the term “variable” to

include any quantity, including dimensional and nondimensional constants, which play a

role in the phenomenon under investigation. All such quantities should be included in

the list of “variables” to be considered for the dimensional analysis. The determination

of the variables must be accomplished by the experimenter’s knowledge of the problem

and the physical laws that govern the phenomenon. Typically the variables will include

those that are necessary to describe the geometry of the system 1such as a pipe diame-

ter2, to define any fluid properties 1such as a fluid viscosity2, and to indicate external
effects that influence the system 1such as a driving pressure drop per unit length2. These

general classes of variables are intended as broad categories that should be helpful in

identifying variables. It is likely, however, that there will be variables that do not fit eas-

ily into one of these categories, and each problem needs to be carefully analyzed.

Since we wish to keep the number of variables to a minimum, so that we can mini-

mize the amount of laboratory work, it is important that all variables be independent. For

example, if in a certain problem the cross-sectional area of a pipe is an important variable,

either the area or the pipe diameter could be used, but not both, since they are obviously

not independent. Similarly, if both fluid density, and specific weight, are important

variables, we could list and or and g 1acceleration of gravity2, or and g. However,

it would be incorrect to use all three since that is, and g are not independent.

Note that although g would normally be constant in a given experiment, that fact is irrel-

evant as far as a dimensional analysis is concerned.

Step 2 Express each of the variables in terms of basic dimensions. For the typical fluid me-

chanics problem the basic dimensions will be either M, L, and T or F, L, and T. Dimension-

ally these two sets are related through Newton’s second law so that 

For example, Thus, either set can be used. The basic dimensions

for typical variables found in fluid mechanics problems are listed in Table 1.1 in Chapter 1.

Step 3 Determine the required number of pi terms. This can be accomplished by means of the

Buckingham pi theorem, which indicates that the number of pi terms is equal to 

where k is the number of variables in the problem 1which is determined from Step 12 and

r is the number of reference dimensions required to describe these variables 1which is deter-

mined from Step 22. The reference dimensions usually correspond to the basic dimensions

and can be determined by an inspection of the dimensions of the variables obtained in Step

2. As previously noted, there may be occasions 1usually rare2 in which the basic dimen-

sions appear in combinations so that the number of reference dimensions is less than the

number of basic dimensions. This possibility is illustrated in Example 7.2.

Step 4 Select a number of repeating variables, where the number required is equal to the
number of reference dimensions. Essentially what we are doing here is selecting from

the original list of variables several of which can be combined with each of the remaining

k � r,

r � ML�3 or r � FL�4T 2.

F � MLT �2.1F � ma2

r, g,g � rg;

grg,r

g,r,

7.3 Determination of Pi Terms

A dimensional
analysis can be 
performed using a
series of distinct
steps.
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variables to form a pi term. All of the required reference dimensions must be included

within the group of repeating variables, and each repeating variable must be dimension-

ally independent of the others 1i.e., the dimensions of one repeating variable cannot be

reproduced by some combination of products of powers of the remaining repeating vari-

ables2. This means that the repeating variables cannot themselves be combined to form

a dimensionless product.

For any given problem we usually are interested in determining how one partic-

ular variable is influenced by the other variables. We would consider this variable to be

the dependent variable, and we would want this to appear in only one pi term. Thus, do

not choose the dependent variable as one of the repeating variables, since the repeating

variables will generally appear in more than one pi term.

Step 5 Form a pi term by multiplying one of the nonrepeating variables by the product of
the repeating variables, each raised to an exponent that will make the combination
dimensionless. Essentially each pi term will be of the form where is one of

the nonrepeating variables; and are the repeating variables; and the exponents

and are determined so that the combination is dimensionless.

Step 6 Repeat Step 5 for each of the remaining nonrepeating variables. The resulting set of

pi terms will correspond to the required number obtained from Step 3. If not, check your

work—you have made a mistake!

Step 7 Check all the resulting pi terms to make sure they are dimensionless. It is easy to make

a mistake in forming the pi terms. However, this can be checked by simply substituting

the dimensions of the variables into the pi terms to confirm that they are all dimension-

less. One good way to do this is to express the variables in terms of M, L, and T if the

basic dimensions F, L, and T were used initially, or vice versa, and then check to make

sure the pi terms are dimensionless.

Step 8 Express the final form as a relationship among the pi terms, and think about what
it means. Typically the final form can be written as

where would contain the dependent variable in the numerator. It should be emphasized

that if you started out with the correct list of variables 1and the other steps were completed

correctly2, then the relationship in terms of the pi terms can be used to describe the prob-

lem. You need only work with the pi terms—not with the individual variables. However, it

should be clearly noted that this is as far as we can go with the dimensional analysis; that

is, the actual functional relationship among the pi terms must be determined by experiment.

To illustrate these various steps we will again consider the problem discussed earlier in this

chapter which was concerned with the steady flow of an incompressible Newtonian fluid through

a long, smooth-walled, horizontal circular pipe. We are interested in the pressure drop per unit

length, along the pipe as illustrated by the figure in the margin. First (Step 1) we must list

all of the pertinent variables that are involved based on the experimenter’s knowledge of the prob-

lem. In this problem we assume that

where D is the pipe diameter, and are the fluid density and viscosity, respectively, and V is the

mean velocity.

Next 1Step 22 we express all the variables in terms of basic dimensions. Using F, L, and T
as basic dimensions it follows that

 V � LT�1

 m � FL�2T

 r � FL�4T 2

 D � L

 ¢p/ � FL�3

mr

¢p/ � f 1D, r, m, V2

¢p/,

ß1

ß1 � f1ß2, ß3, . . . , ßk�r2

ciai, bi,

u3u1, u2,

uiuiu1
aiu2

biu3
ci
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By using dimen-
sional analysis, the
original problem is
simplified and de-
fined with pi terms.

(1) (2)

D
V

ρ, μ

�

Δp� = (p1 – p2)/�
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We could also use M, L, and T as basic dimensions if desired—the final result will be the same.

Note that for density, which is a mass per unit volume we have used the relationship

to express the density in terms of F, L, and T. Do not mix the basic dimensions; that

is, use either F, L, and T or M, L, and T.

We can now apply the pi theorem to determine the required number of pi terms 1Step 32. An

inspection of the dimensions of the variables from Step 2 reveals that all three basic dimensions

are required to describe the variables. Since there are five variables 1do not forget to count

the dependent variable, 2 and three required reference dimensions then according to

the pi theorem there will be or two pi terms required.

The repeating variables to be used to form the pi terms 1Step 42 need to be selected from the

list and V. Remember, we do not want to use the dependent variable as one of the repeat-

ing variables. Since three reference dimensions are required, we will need to select three repeating

variables. Generally, we would try to select as repeating variables those that are the simplest, di-

mensionally. For example, if one of the variables has the dimension of a length, choose it as one

of the repeating variables. In this example we will use D, V, and as repeating variables. Note

that these are dimensionally independent, since D is a length, V involves both length and time, and

involves force, length, and time. This means that we cannot form a dimensionless product from

this set.

We are now ready to form the two pi terms 1Step 52. Typically, we would start with the depen-

dent variable and combine it with the repeating variables to form the first pi term; that is,

Since this combination is to be dimensionless, it follows that

The exponents, a, b, and c must be determined such that the resulting exponent for each of the ba-

sic dimensions—F, L, and T—must be zero 1so that the resulting combination is dimensionless2.
Thus, we can write

The solution of this system of algebraic equations gives the desired values for a, b, and c. It fol-

lows that and, therefore,

The process is now repeated for the remaining nonrepeating variables 1Step 62. In this exam-

ple there is only one additional variable so that

or

and, therefore,

Solving these equations simultaneously it follows that so that

ß2 �
m

DVr

a � �1, b � �1, c � �1

 1 � b � 2c � 0  1for T 2

 �2 � a � b � 4c � 0  1for L2

 1 � c � 0  1for F2

1FL�2T 2 1L2a1LT �12b1FL�4T 22c � F 0L0T 0

ß2 � mDaVbrc

1m2

ß1 �
¢p/D

rV 2

a � 1, b � �2, c � �1

 �b � 2c � 0  1for T 2

 �3 � a � b � 4c � 0  1for L2

 1 � c � 0  1for F2

1FL�32 1L2a1LT�12b1FL�4T 22c � F 0L0T 0

ß1 � ¢p/D
aV 

b rc

r

r

D, r, m,

15 � 32,
1r � 32,¢p/

1k � 52

F � MLT�2

1ML�32,
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Special attention
should be given to
the selection of re-
peating variables as
detailed in Step 4.
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Note that we end up with the correct number of pi terms as determined from Step 3.

At this point stop and check to make sure the pi terms are actually dimensionless 1Step 72.
We will check using both FLT and MLT dimensions. Thus,

or alternatively,

Finally 1Step 82, we can express the result of the dimensional analysis as

This result indicates that this problem can be studied in terms of these two pi terms, rather than

the original five variables we started with. The eight steps carried out to obtain this result are sum-

marized by the figure in the margin. 

Dimensional analysis will not provide the form of the function This can only be obtained

from a suitable set of experiments. If desired, the pi terms can be rearranged; that is, the recipro-

cal of could be used, and of course the order in which we write the variables can be changed.

Thus, for example, could be expressed as

and the relationship between and as

as shown by the figure in the margin. 

This is the form we previously used in our initial discussion of this problem 1Eq. 7.22. The

dimensionless product is a very famous one in fluid mechanics—the Reynolds number.

This number has been briefly alluded to in Chapters 1 and 6 and will be further discussed in Sec-

tion 7.6.

To summarize, the steps to be followed in performing a dimensional analysis using the method

of repeating variables are as follows:

Step 1 List all the variables that are involved in the problem.

Step 2 Express each of the variables in terms of basic dimensions.

Step 3 Determine the required number of pi terms.

Step 4 Select a number of repeating variables, where the number required is equal to the num-

ber of reference dimensions 1usually the same as the number of basic dimensions2.

Step 5 Form a pi term by multiplying one of the nonrepeating variables by the product of

repeating variables each raised to an exponent that will make the combination 

dimensionless.

Step 6 Repeat Step 5 for each of the remaining nonrepeating variables.

Step 7 Check all the resulting pi terms to make sure they are dimensionless and independent.

Step 8 Express the final form as a relationship among the pi terms and think about what it

means.

rVD�m

D ¢p/

rV 2
� f a

rVD
m
b

ß2ß1

ß2 �
rVD
m

ß2

m�DVr

f̃.

¢p/D

rV 2
� f̃ a

m

DVr
b

 ß2 �
m

DVr
�

1ML�1T�12

1L2 1LT�12 1ML�32
� M 0L0T 0

 ß1 �
¢p/D

rV 2
�
1ML�2T�22 1L2

1ML�32 1LT�122
� M 0L0T 0

 ß2 �
m

DVr
�

1FL�2T 2

1L2 1LT �12 1FL�4T 22
� F 0L0T 0

 ß1 �
¢p/D

rV 2
�

1FL�32 1L2

1FL�4T 22 1LT �122
� F 0L0T 0
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ρ
μ
VD_____

ρ
DΔp�

V2
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The method of re-
peating variables
can be most easily
carried out by fol-
lowing a step-by-
step procedure.

Δp�D_____

  
V

2ρ
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L
0
T
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Step 1

Δp� = f(D, r, m , V)
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Δp� = FL
�3

, ...
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V
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�2 = mD
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V
brc
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DVρ
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GIVEN A thin rectangular plate having a width w and a height

h is located so that it is normal to a moving stream of fluid as

shown in Fig. E7.1. Assume the drag, d, that the fluid exerts on

the plate is a function of w and h, the fluid viscosity and density,

� and �, respectively, and the velocity V of the fluid approaching

the plate. 

SOLUTION

F I G U R E  E7.1

Method of Repeating Variables

h

w
V

ρ, μ

EXAMPLE 7.1

From the statement of the problem we can write

where this equation expresses the general functional relationship

between the drag and the several variables that will affect it. The

dimensions of the variables 1using the MLT system2 are

We see that all three basic dimensions are required to define the

six variables so that the Buckingham pi theorem tells us that three

pi terms will be needed 1six variables minus three reference di-

mensions,

We will next select three repeating variables such as w, V, and

A quick inspection of these three reveals that they are dimensionally

independent, since each one contains a basic dimension not included

in the others. Note that it would be incorrect to use both w and h as

repeating variables since they have the same dimensions.

Starting with the dependent variable, the first pi term can

be formed by combining with the repeating variables such that

and in terms of dimensions

Thus, for to be dimensionless it follows that

and, therefore, and The pi term then

becomes

Next the procedure is repeated with the second nonrepeating

variable, h, so that

ß2 � hwaV 

brc

ß1 �
d

w2V 2r

c � �1.a � �2, b � �2,

 �2 � b � 0  1for T 2

 1 � a � b � 3c � 0  1for L2

 1 � c � 0  1for M2

ß1

1MLT �22 1L2a1LT �12b1ML�32c � M 

0L0T 0

ß1 � dwaVbrc

d

d,

r.

k � r � 6 � 32.

 V � LT�1

 r � ML�3

 m � ML�1T�1

 h � L

 w � L

 d � MLT�2

d � f 1w, h, m, r, V 2

V7.2 Flow past a
flat plate

FIND Determine a suitable set of pi terms to study this prob-

lem experimentally.

It follows that

and

so that and therefore

The remaining nonrepeating variable is so that

with

and, therefore,

Solving for the exponents, we obtain so

that

Now that we have the three required pi terms we should check

to make sure they are dimensionless. To make this check we use

F, L, and T, which will also verify the correctness of the original

dimensions used for the variables. Thus,

 ß3 �
m

wVr
�

1FL�2T 2

1L2 1LT �12 1FL�4T 22
� F 0L0T 0

 ß2 �
h

w
�
1L2

1L2
� F 0L0T 0

 ß1 �
d

w2V 2r
�

1F2

1L221LT�1221FL�4T 22
� F 0L0T 0

ß3 �
m

wVr

a � �1, b � �1, c � �1

 �1 � b � 0  1for T2

 �1 � a � b � 3c � 0  1for L2

 1 � c � 0  1for M2

1ML�1T �12 1L2a1LT �12b1ML�32c � M 0L0T 0

ß3 � mwaVbrc

m

ß2 �
h

w

a � �1, b � 0, c � 0,

 b � 0  1for T 2

 1 � a � b � 3c � 0  1for L2

 c � 0  1for M2

1L2 1L2a1LT �12b1ML�32c � M 0L0T 0
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7.4 Some Additional Comments about Dimensional Analysis 341

If these do not check, go back to the original list of variables and

make sure you have the correct dimensions for each of the vari-

ables and then check the algebra you used to obtain the exponents

a, b, and c.

Finally, we can express the results of the dimensional analysis

in the form

(Ans)

Since at this stage in the analysis the nature of the function is

unknown, we could rearrange the pi terms if we so desire. For

f̃ 

d

w2V 2r
� f̃ a

h

w
, 
m

wVr
b

example, we could express the final result in the form

(Ans)

which would be more conventional, since the ratio of the plate

width to height, is called the aspect ratio, and is the

Reynolds number. 

COMMENT To proceed, it would be necessary to perform a

set of experiments to determine the nature of the function , as

discussed in Section 7.7.

f

rVw�mw�h,

d

w2rV 2
� f a

w

h
, 
rVw

m
b

The preceding section provides a systematic approach for performing a dimensional analysis. Other

methods could be used, although we think the method of repeating variables is the easiest for the

beginning student to use. Pi terms can also be formed by inspection, as is discussed in Section 7.5.

Regardless of the specific method used for the dimensional analysis, there are certain aspects of

this important engineering tool that must seem a little baffling and mysterious to the student 1and

sometimes to the experienced investigator as well2. In this section we will attempt to elaborate on

some of the more subtle points that, based on our experience, can prove to be puzzling to students.

7.4.1 Selection of Variables

One of the most important, and difficult, steps in applying dimensional analysis to any given prob-

lem is the selection of the variables that are involved. As noted previously, for convenience we will

use the term variable to indicate any quantity involved, including dimensional and nondimensional

constants. There is no simple procedure whereby the variables can be easily identified. Generally,

one must rely on a good understanding of the phenomenon involved and the governing physical

laws. If extraneous variables are included, then too many pi terms appear in the final solution, and

it may be difficult, time consuming, and expensive to eliminate these experimentally. If important

variables are omitted, then an incorrect result will be obtained; and again, this may prove to be

costly and difficult to ascertain. It is, therefore, imperative that sufficient time and attention be

given to this first step in which the variables are determined.

Most engineering problems involve certain simplifying assumptions that have an influence on

the variables to be considered. Usually we wish to keep the problem as simple as possible, perhaps

even if some accuracy is sacrificed. A suitable balance between simplicity and accuracy is a desirable

goal. How “accurate” the solution must be depends on the objective of the study; that is, we may be

only concerned with general trends and, therefore, some variables that are thought to have only a mi-

nor influence in the problem may be neglected for simplicity.

For most engineering problems 1including areas outside of fluid mechanics2, pertinent vari-

ables can be classified into three general groups—geometry, material properties, and external effects.

Geometry. The geometric characteristics can usually be described by a series of lengths

and angles. In most problems the geometry of the system plays an important role, and a sufficient

number of geometric variables must be included to describe the system. These variables can usu-

ally be readily identified.

Material Properties. Since the response of a system to applied external effects such as

forces, pressures, and changes in temperature is dependent on the nature of the materials involved

in the system, the material properties that relate the external effects and the responses must be in-

cluded as variables. For example, for Newtonian fluids the viscosity of the fluid is the property

that relates the applied forces to the rates of deformation of the fluid. As the material behavior be-

comes more complex, such as would be true for non-Newtonian fluids, the determination of ma-

terial properties becomes difficult, and this class of variables can be troublesome to identify.

7.4 Some Additional Comments about Dimensional Analysis

It is often helpful to
classify variables
into three groups—
geometry, material
properties, and ex-
ternal effects.
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External Effects. This terminology is used to denote any variable that produces, or tends

to produce, a change in the system. For example, in structural mechanics, forces 1either concen-

trated or distributed2 applied to a system tend to change its geometry, and such forces would need

to be considered as pertinent variables. For fluid mechanics, variables in this class would be re-

lated to pressures, velocities, or gravity.

The above general classes of variables are intended as broad categories that should be help-

ful in identifying variables. It is likely, however, that there will be important variables that do not

fit easily into one of the above categories and each problem needs to be carefully analyzed.

Since we wish to keep the number of variables to a minimum, it is important that all vari-

ables are independent. For example, if in a given problem we know that the moment of inertia

of the area of a circular plate is an important variable, we could list either the moment of in-

ertia or the plate diameter as the pertinent variable. However, it would be unnecessary to in-

clude both moment of inertia and diameter, assuming that the diameter enters the problem only

through the moment of inertia. In more general terms, if we have a problem in which the vari-

ables are

(7.3)

and it is known that there is an additional relationship among some of the variables, for example,

(7.4)

then q is not required and can be omitted. Conversely, if it is known that the only way the vari-

ables u, w, . . . enter the problem is through the relationship expressed by Eq. 7.4, then the

variables u, w, . . . can be replaced by the single variable q, therefore reducing the number of

variables.

In summary, the following points should be considered in the selection of variables:

1. Clearly define the problem. What is the main variable of interest 1the dependent variable2?

2. Consider the basic laws that govern the phenomenon. Even a crude theory that describes the

essential aspects of the system may be helpful.

3. Start the variable selection process by grouping the variables into three broad classes: geom-

etry, material properties, and external effects.

4. Consider other variables that may not fall into one of the above categories. For example, time

will be an important variable if any of the variables are time dependent.

5. Be sure to include all quantities that enter the problem even though some of them may be

held constant 1e.g., the acceleration of gravity, g2. For a dimensional analysis it is the dimen-

sions of the quantities that are important—not specific values!

6. Make sure that all variables are independent. Look for relationships among subsets of the

variables.

7.4.2 Determination of Reference Dimensions

For any given problem it is obviously desirable to reduce the number of pi terms to a minimum

and, therefore, we wish to reduce the number of variables to a minimum; that is, we certainly do

not want to include extraneous variables. It is also important to know how many reference dimen-

sions are required to describe the variables. As we have seen in the preceding examples, F, L, and

T appear to be a convenient set of basic dimensions for characterizing fluid-mechanical quantities.

There is, however, really nothing “fundamental” about this set, and as previously noted M, L, and

T would also be suitable. Actually any set of measurable quantities could be used as basic dimen-

sions provided that the selected combination can be used to describe all secondary quantities. How-

ever, the use of FLT or MLT as basic dimensions is the simplest, and these dimensions can be used

to describe fluid-mechanical phenomena. Of course, in some problems only one or two of these

are required. In addition, we occasionally find that the number of reference dimensions needed to

describe all variables is smaller than the number of basic dimensions. This point is illustrated in

Example 7.2. Interesting discussions, both practical and philosophical, relative to the concept of

basic dimensions can be found in the books by Huntley 1Ref. 42 and by Isaacson and Isaacson

1Ref. 122.

v,

v,

q � f11u, v, w, . . .2

f 1p, q, r, . . . , u, v, w, . . .2 � 0

342 Chapter 7 ■ Dimensional Analysis, Similitude, and Modeling

Typically, in fluid
mechanics, the re-
quired number of
reference dimen-
sions is three, but
in some problems
only one or two are
required.

JWCL068_ch07_332-382.qxd  9/23/08  10:46 AM  Page 342



7.4 Some Additional Comments about Dimensional Analysis 343

GIVEN An open, cylindrical paint can having a diameter D is

filled to a depth h with paint having a specific weight The ver-

tical deflection, of the center of the bottom is a function of D,

h, d, and E, where d is the thickness of the bottom and E is the

modulus of elasticity of the bottom material. 

FIND Determine the functional relationship between the verti-

cal deflection, and the independent variables using dimensional

analysis.

d,

g,

d,

g.

SOLUTION

F I G U R E  E7.2

Determination of Pi Terms

Thus, this problem can be studied by using the relationship

(Ans)

COMMENTS Let us now solve the same problem using the

MLT system. Although the number of variables is obviously the

same, it would seem that there are three reference dimensions re-

quired, rather than two. If this were indeed true it would certainly

be fortuitous, since we would reduce the number of required pi

terms from four to three. Does this seem right? How can we re-

duce the number of required pi terms by simply using the MLT
system of basic dimensions? The answer is that we cannot, and a

closer look at the dimensions of the variables listed above reveals

that actually only two reference dimensions, and L, are

required.

This is an example of the situation in which the number of

reference dimensions differs from the number of basic dimen-

sions. It does not happen very often and can be detected by look-

ing at the dimensions of the variables 1regardless of the systems

used2 and making sure how many reference dimensions are ac-

tually required to describe the variables. Once the number of

reference dimensions has been determined, we can proceed as

before. Since the number of repeating variables must equal the

number of reference dimensions, it follows that two reference

dimensions are still required and we could again use D and as

repeating variables. The pi terms would be determined in the

same manner. For example, the pi term containing E would be

developed as

 �1 � a � 2b � 0  1for L2

 1 � b � 0  1for MT �22

1ML�1T �22 1L2a1ML�2T �22b � 1MT �220L0

ß4 � EDagb

g

MT �2

d

D
� f a

h

D
, 

d

D
, 

E

Dg
b

D

E, d

h

g

d

EXAMPLE 7.2

From the statement of the problem

and the dimensions of the variables are 

where the dimensions have been expressed in terms of both the

FLT and MLT systems.

We now apply the pi theorem to determine the required num-

ber of pi terms. First, let us use F, L, and T as our system of basic

dimensions. There are six variables and two reference dimensions

1F and L2 required so that four pi terms are needed. For repeating

variables, we can select D and so that

and

Therefore, and

Similarly,

and following the same procedure as above, so that

The remaining two pi terms can be found using the same proce-

dure, with the result

ß3 �
d

D
  ß4 �

E

Dg

ß2 �
h

D

a � �1, b � 0

ß2 � h Dagb

ß1 �
d

D

a � �1, b � 0,

 b � 0  1for F 2

 1 � a � 3b � 0  1for L2

 1L2 1L2a1FL�32b � F 0L0

 ß1 � d Dagb

g

 E � FL�2 � ML�1T �2

 g � FL�3 � ML�2T �2

 d � L

 h � L

 D � L

 d � L

d � f 1D, h, d, g, E2
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7.4.3 Uniqueness of Pi Terms

A little reflection on the process used to determine pi terms by the method of repeating vari-

ables reveals that the specific pi terms obtained depend on the somewhat arbitrary selection of

repeating variables. For example, in the problem of studying the pressure drop in a pipe, we se-

lected D, V, and as repeating variables. This led to the formulation of the problem in terms of

pi terms as

(7.5)

What if we had selected D, V, and as repeating variables? A quick check will reveal that the pi

term involving becomes

and the second pi term remains the same. Thus, we can express the final result as

(7.6)

Both results are correct, and both would lead to the same final equation for . Note, however,

that the functions in Eqs. 7.5 and 7.6 will be different because the dependent pi terms

are different for the two relationships. As shown by the figure in the margin, the resulting graph

of dimensionless data will be different for the two formulations. However, when extracting the

physical variable, , from the two results, the values will be the same.

We can conclude from this illustration that there is not a unique set of pi terms which

arises from a dimensional analysis. However, the required number of pi terms is fixed, and once

a correct set is determined, all other possible sets can be developed from this set by combina-

tions of products of powers of the original set. Thus, if we have a problem involving, say, three

pi terms,

we could always form a new set from this one by combining the pi terms. For example, we could

form a new pi term, by letting

where a and b are arbitrary exponents. Then the relationship could be expressed as

or

All of these would be correct. It should be emphasized, however, that the required number of pi

terms cannot be reduced by this manipulation; only the form of the pi terms is altered. By using

ß1 � f21ß2, ß¿22

ß1 � f11ß¿2, ß32

ß¿2 � ßa
2 ßb

3

ß¿2,

ß1 � f1ß2, ß32

¢p/

f and f1

¢p/

¢p/D
2

Vm
� f1 a

rVD
m
b

¢p/D
2

Vm

¢p/

m

¢p/D

rV 2
� f a

rVD
m
b

r
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and, therefore, so that

which is the same as obtained using the FLT system. The other

pi terms would be the same, and the final result is the same; that is,

(Ans)
d

D
� f a

h

D
, 

d

D
, 

E

Dg
b

ß4

ß4 �
E

Dg

a � �1, b � �1 This will always be true—you cannot affect the required number

of pi terms by using M, L, and T instead of F, L, and T, or vice

versa.

Once a correct set
of pi terms is ob-
tained, any other
set can be obtained
by manipulation of
the original set.

D2Δp�

Vm

  VD____
μ

  ρ

  VD____
μ

  ρ

  
V2ρ

DΔp�
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this technique we see that the pi terms in Eq. 7.6 could be obtained from those in Eq. 7.5; that is,

we multiply in Eq. 7.5 by so that

which is the of Eq. 7.6.

There is no simple answer to the question: Which form for the pi terms is best? Usually our

only guideline is to keep the pi terms as simple as possible. Also, it may be that certain pi terms

will be easier to work with in actually performing experiments. The final choice remains an ar-

bitrary one and generally will depend on the background and experience of the investigator. It

should again be emphasized, however, that although there is no unique set of pi terms for a given

problem, the number required is fixed in accordance with the pi theorem.

ß1

a
¢p/D

rV 2
b a
rVD
m
b �

¢p/D
2

Vm

ß2ß1

7.5 Determination of Pi Terms by Inspection 345

The method of repeating variables for forming pi terms has been presented in Section 7.3. This

method provides a step-by-step procedure that if executed properly will provide a correct and com-

plete set of pi terms. Although this method is simple and straightforward, it is rather tedious, par-

ticularly for problems in which large numbers of variables are involved. Since the only restrictions

placed on the pi terms are that they be 112 correct in number, 122 dimensionless, and 132 indepen-

dent, it is possible to simply form the pi terms by inspection, without resorting to the more formal

procedure.

To illustrate this approach, we again consider the pressure drop per unit length along a smooth

pipe. Regardless of the technique to be used, the starting point remains the same—determine the

variables, which in this case are

Next, the dimensions of the variables are listed:

and subsequently the number of reference dimensions determined. The application of the pi theo-

rem then tells us how many pi terms are required. In this problem, since there are five variables

and three reference dimensions, two pi terms are needed. Thus, the required number of pi terms

can be easily obtained. The determination of this number should always be done at the beginning

of the analysis.

Once the number of pi terms is known, we can form each pi term by inspection, simply mak-

ing use of the fact that each pi term must be dimensionless. We will always let contain the de-

pendent variable, which in this example is Since this variable has the dimensions we

need to combine it with other variables so that a nondimensional product will result. One possi-

bility is to first divide by so that

The dependence on F has been eliminated, but is obviously not dimensionless. To elimi-

nate the dependence on T, we can divide by so that

a
¢p/

r
b 

1

V 2
� a

L

T 2
b 

1

1LT �122
�

1

L
1cancels T2

V 2

¢p/�r

¢p/

r
�
1FL�32

1FL�4T 22
�

L

T 2
1cancels F2

r¢p/

FL�3,¢p/.

ß1

V � LT �1

 m � FL�2T

 r � FL�4T 
2

 D � L

 ¢p/ � FL�3

¢p/ � f 1D, r, m, V2

7.5 Determination of Pi Terms by Inspection

Pi terms can be
formed by inspec-
tion by simply mak-
ing use of the fact
that each pi term
must be dimension-
less.
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Finally, to make the combination dimensionless we multiply by D so that

Thus,

Next, we will form the second pi term by selecting the variable that was not used in 

which in this case is We simply combine with the other variables to make the combination

dimensionless 1but do not use in since we want the dependent variable to appear only in

2. For example, divide by 1to eliminate F 2, then by V 1to eliminate T 2 , and finally by D 1to
eliminate L2. Thus,

and, therefore,

which is, of course, the same result we obtained by using the method of repeating variables.

An additional concern, when one is forming pi terms by inspection, is to make certain that

they are all independent. In the pipe flow example, contains which does not appear in ,

and therefore these two pi terms are obviously independent. In a more general case a pi term would

not be independent of the others in a given problem if it can be formed by some combination of

the others. For example, if can be formed by a combination of say and such as

then is not an independent pi term. We can ensure that each pi term is independent of those

preceding it by incorporating a new variable in each pi term.

Although forming pi terms by inspection is essentially equivalent to the repeating variable

method, it is less structured. With a little practice the pi terms can be readily formed by inspec-

tion, and this method offers an alternative to more formal procedures.

ß2

ß2 �
ß2

3 ß4

ß5

ß5ß3, ß4,ß2

ß1m,ß2

¢p/D

rV 2
� f a

m

rVD
b

ß2 �
m

rVD
�

1FL�2T 2

1FL�4T 22 1LT �12 1L2
� F 0L0T 0

rmß1

ß2,¢p/

mm.

ß1,

ß1 �
¢p/D

rV 2

a
¢p/

rV 2
b D � a

1

L
b 1L2 � L0 1cancels L2
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At the top of Table 7.1 is a list of variables that commonly arise in fluid mechanics problems.

The list is obviously not exhaustive but does indicate a broad range of variables likely to be found

in a typical problem. Fortunately, not all of these variables would be encountered in all prob-

lems. However, when combinations of these variables are present, it is standard practice to com-

bine them into some of the common dimensionless groups 1pi terms2 given in Table 7.1. These

combinations appear so frequently that special names are associated with them, as indicated in

the table.

It is also often possible to provide a physical interpretation to the dimensionless groups which

can be helpful in assessing their influence in a particular application. For example, the Froude num-

ber is an index of the ratio of the force due to the acceleration of a fluid particle to the force due

to gravity 1weight2. This can be demonstrated by considering a fluid particle moving along a stream-

line 1Fig. 7.32. The magnitude of the component of inertia force along the streamline can be ex-

pressed as where is the magnitude of the acceleration along the streamline for a par-

ticle having a mass m. From our study of particle motion along a curved path 1see Section 3.12 we

know that

as �
dVs

dt
� Vs 

dVs

ds

asFI � asm,

FI

7.6 Common Dimensionless Groups in Fluid Mechanics

A useful physical
interpretation can
often be given to di-
mensionless groups.
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where s is measured along the streamline. If we write the velocity, and length, s, in dimension-

less form, that is,

where V and represent some characteristic velocity and length, respectively, then

and

FI �
V 2

/
 V*s 

dV*s

ds*
 m

as �
V 2

/
 V*s 

dV*s

ds*

/

V*s �
Vs

V
  s* �

s

/

Vs,
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F I G U R E  7.3 The force of gravity acting on a
fluid particle moving along a streamline.

St
rea

mlin
e

gm

Vs

Special names
along with physical
interpretations are
given to the most
common dimen-
sionless groups.

TA B L E 7 . 1

Some Common Variables and Dimensionless Groups in Fluid Mechanics

Variables: Acceleration of gravity, g; Bulk modulus, Characteristic length, Density, ; Frequency of
oscillating flow, ; Pressure, p (or p); Speed of sound, c; Surface tension, ; Velocity, V; Viscosity,

Dimensionless Interpretation (Index of Types of 
Groups Name Force Ratio Indicated) Applications

Reynolds number, Re Generally of importance in
all types of fluid dynamics
problems

Froude number, Fr Flow with a free surface

Euler number, Eu Problems in which pressure,
or pressure differences, are
of interest

Cauchy Flows in which the 
compressibility of the fluid
is important

Mach Ma Flows in which the
compressibility of the fluid
is important

Strouhal number, St Unsteady flow with a 
characteristic frequency of
oscillation

Weber number, We Problems in which surface
tension is important

aThe Cauchy number and the Mach number are related and either can be used as an index of the relative effects of inertia and compressibil-

ity. See accompanying discussion.

number,a

number,a Ca

ms¢v
r�;Ev;

rV 2/
s

v/
V

V

c

rV 2

Ev

p

rV 2

V

1g/

rV/
m

inertia force

surface tension force

inertia 1local2 force

inertia 1convective2 force

inertia force

compressibility force

inertia force

compressibility force

pressure force

inertia force

inertia force

gravitational force

inertia force

viscous force
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The magnitude of the weight of the particle, so the ratio of the inertia to the grav-

itational force is

Thus, the force ratio is proportional to and the square root of this ratio, is called

the Froude number. We see that a physical interpretation of the Froude number is that it is a mea-

sure of, or an index of, the relative importance of inertial forces acting on fluid particles to the weight

of the particle. Note that the Froude number is not really equal to this force ratio, but is simply

some type of average measure of the influence of these two forces. In a problem in which gravity

1or weight2 is not important, the Froude number would not appear as an important pi term. A sim-

ilar interpretation in terms of indices of force ratios can be given to the other dimensionless groups,

as indicated in Table 7.1, and a further discussion of the basis for this type of interpretation is given

in the last section in this chapter. Some additional details about these important dimensionless groups

are given below, and the types of application or problem in which they arise are briefly noted in the

last column of Table 7.1.

Reynolds Number. The Reynolds number is undoubtedly the most famous dimension-

less parameter in fluid mechanics. It is named in honor of Osborne Reynolds 11842–19122, a

British engineer who first demonstrated that this combination of variables could be used as a cri-

terion to distinguish between laminar and turbulent flow. In most fluid flow problems there will

be a characteristic length, and a velocity, V, as well as the fluid properties of density, and

viscosity, which are relevant variables in the problem. Thus, with these variables the Reynolds

number

arises naturally from the dimensional analysis. The Reynolds number is a measure of the ratio of

the inertia force on an element of fluid to the viscous force on an element. When these two types

of forces are important in a given problem, the Reynolds number will play an important role. How-

ever, if the Reynolds number is very small this is an indication that the viscous forces

are dominant in the problem, and it may be possible to neglect the inertial effects; that is, the den-

sity of the fluid will not be an important variable. Flows at very small Reynolds numbers are com-

monly referred to as “creeping flows” as discussed in Section 6.10. Conversely, for large Reynolds

number flows, viscous effects are small relative to inertial effects and for these cases it may be

possible to neglect the effect of viscosity and consider the problem as one involving a “nonvis-

cous” fluid. This type of problem is considered in detail in Sections 6.4 through 6.7. An example

of the importance of the Reynolds number in determining the flow physics is shown in the figure

in the margin for flow past a circular cylinder at two different Re values. This flow is discussed

further in Chapter 9.

Froude Number. The Froude number

is distinguished from the other dimensionless groups in Table 7.1 in that it contains the acceler-

ation of gravity, g. The acceleration of gravity becomes an important variable in a fluid dynam-

ics problem in which the fluid weight is an important force. As discussed, the Froude number is

a measure of the ratio of the inertia force on an element of fluid to the weight of the element. It

will generally be important in problems involving flows with free surfaces since gravity princi-

pally affects this type of flow. Typical problems would include the study of the flow of water

around ships 1with the resulting wave action2 or flow through rivers or open conduits. The Froude

number is named in honor of William Froude 11810–18792, a British civil engineer, mathemati-

cian, and naval architect who pioneered the use of towing tanks for the study of ship design. It

is to be noted that the Froude number is also commonly defined as the square of the Froude num-

ber listed in Table 7.1.

Fr �
V

1g/

1Re � 12,

Re �
rV/
m

m,

r,/,

V�1g/,V 2�g/,FI�FG

FI

FG

�
V 2

g/
 V*s 

dV*s

ds*

FG, is FG � gm,
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V7.3 Reynolds
number

V7.4 Froude
number

No separation

Laminar boundary layer,
wide turbulent wake

Re ≈ 0.2

Re ≈ 20,000
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Euler Number. The Euler number

can be interpreted as a measure of the ratio of pressure forces to inertial forces, where p is some

characteristic pressure in the flow field. Very often the Euler number is written in terms of a pres-

sure difference, so that Also, this combination expressed as is called

the pressure coefficient. Some form of the Euler number would normally be used in problems in

which pressure or the pressure difference between two points is an important variable. The Euler

number is named in honor of Leonhard Euler 11707–17832, a famous Swiss mathematician who

pioneered work on the relationship between pressure and flow. For problems in which cavitation

is of concern, the dimensionless group is commonly used, where is the vapor

pressure and is some reference pressure. Although this dimensionless group has the same form

as the Euler number, it is generally referred to as the cavitation number.

Cauchy Number and Mach Number. The Cauchy number

and the Mach number

are important dimensionless groups in problems in which fluid compressibility is a significant fac-

tor. Since the speed of sound, c, in a fluid is equal to 1see Section 1.7.32, it follows

that

and the square of the Mach number

is equal to the Cauchy number. Thus, either number 1but not both2 may be used in problems in

which fluid compressibility is important. Both numbers can be interpreted as representing an in-

dex of the ratio of inertial forces to compressibility forces. When the Mach number is relatively

small 1say, less than 0.32, the inertial forces induced by the fluid motion are not sufficiently large

to cause a significant change in the fluid density, and in this case the compressibility of the fluid

can be neglected. The Mach number is the more commonly used parameter in compressible flow

problems, particularly in the fields of gas dynamics and aerodynamics. The Cauchy number is

named in honor of Augustin Louis de Cauchy 11789–18572, a French engineer, mathematician, and

hydrodynamicist. The Mach number is named in honor of Ernst Mach 11838–19162, an Austrian

physicist and philosopher.

Strouhal Number. The Strouhal number

is a dimensionless parameter that is likely to be important in unsteady, oscillating flow problems

in which the frequency of the oscillation is It represents a measure of the ratio of inertial forces

due to the unsteadiness of the flow 1local acceleration2 to the inertial forces due to changes in ve-

locity from point to point in the flow field 1convective acceleration2. This type of unsteady flow

may develop when a fluid flows past a solid body 1such as a wire or cable2 placed in the moving

stream. For example, in a certain Reynolds number range, a periodic flow will develop downstream

from a cylinder placed in a moving fluid due to a regular pattern of vortices that are shed from the

body. 1See the photograph at the beginning of this chapter and Fig. 9.21.2 This system of vortices,

called a Kármán vortex trail [named after Theodor von Kármán 11881–19632, a famous fluid

v.

St �
v/
V

Ma2 �
rV 2

Ev
� Ca

Ma � V 
A

r

Ev

c � 1Ev �r

Ma �
V
c

Ca �
rV 2

Ev

pr

pv1pr � pv2�
1
2 rV 

2

¢p�1
2 rV 

2Eu � ¢p�rV 2.¢p,

Eu �
p

rV 2
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The Mach number
is a commonly used
dimensionless pa-
rameter in com-
pressible flow
problems.

V7.5 Strouhal
number
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mechanician], creates an oscillating flow at a discrete frequency, such that the Strouhal number

can be closely correlated with the Reynolds number. When the frequency is in the audible range,

a sound can be heard and the bodies appear to “sing.” In fact, the Strouhal number is named in

honor of Vincenz Strouhal 11850–19222, who used this parameter in his study of “singing wires.”

The most dramatic evidence of this phenomenon occurred in 1940 with the collapse of the Tacoma

Narrows bridge. The shedding frequency of the vortices coincided with the natural frequency of

the bridge, thereby setting up a resonant condition that eventually led to the collapse of the bridge.

There are, of course, other types of oscillating flows. For example, blood flow in arteries is pe-

riodic and can be analyzed by breaking up the periodic motion into a series of harmonic components

1Fourier series analysis2, with each component having a frequency that is a multiple of the fundamen-

tal frequency, 1the pulse rate2. Rather than use the Strouhal number in this type of problem, a di-

mensionless group formed by the product of St and Re is used; that is

The square root of this dimensionless group is often referred to as the frequency parameter.

Weber Number. The Weber number

may be important in problems in which there is an interface between two fluids. In this situation

the surface tension may play an important role in the phenomenon of interest. The Weber number

can be thought of as an index of the inertial force to the surface tension force acting on a fluid el-

ement. Common examples of problems in which this parameter may be important include the flow

of thin films of liquid, or the formation of droplets or bubbles. Clearly, not all problems involving

flows with an interface will require the inclusion of surface tension. The flow of water in a river

is not affected significantly by surface tension, since inertial and gravitational effects are dominant

However, as discussed in a later section, for river models 1which may have small depths2
caution is required so that surface tension does not become important in the model, whereas it is

not important in the actual river. The Weber number is named after Moritz Weber 11871–19512, a

German professor of naval mechanics who was instrumental in formalizing the general use of com-

mon dimensionless groups as a basis for similitude studies.

1We � 12.

We �
rV 2/
s

St 	 Re �
rv/2

m

v

v,
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Slip at the micro scale A goal in chemical and biological analy-

ses is to miniaturize the experiment, which has many advantages

including reduction in sample size. In recent years, there has been

significant work on integrating these tests on a single microchip to

form the “lab-on-a-chip” system. These devices are on the mil-

limeter scale with complex passages for fluid flow on the micron

scale (or smaller). While there are advantages to miniaturization,

care must be taken in moving to smaller and smaller flow regimes,

as you will eventually bump into the continuum assumption. To

characterize this situation, a dimensionless number termed the

Knudsen number, , is commonly employed. Here is

the mean free path and is the characteristic length of the system.

If Kn is smaller than 0.01, then the flow can be described by

the Navier–Stokes equations with no-slip at the walls. For

, the same equations can be used, but there can

be “slip” between the fluid and the wall so the boundary conditions

need to be adjusted. For , the continuum assumption

breaks down and the Navier–Stokes equations are no longer valid.

Kn 7 10

0.01 6 Kn 6 0.3

/
lKn � l�/

One of the most important uses of dimensional analysis is as an aid in the efficient handling, in-

terpretation, and correlation of experimental data. Since the field of fluid mechanics relies heav-

ily on empirical data, it is not surprising that dimensional analysis is such an important tool in

this field. As noted previously, a dimensional analysis cannot provide a complete answer to any

given problem, since the analysis only provides the dimensionless groups describing the phe-

nomenon, and not the specific relationship among the groups. To determine this relationship,

suitable experimental data must be obtained. The degree of difficulty involved in this process

depends on the number of pi terms, and the nature of the experiments 1How hard is it to obtain

7.7 Correlation of Experimental Data
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the measurements?2. The simplest problems are obviously those involving the fewest pi terms,

and the following sections indicate how the complexity of the analysis increases with the in-

creasing number of pi terms.

7.7.1 Problems with One Pi Term

Application of the pi theorem indicates that if the number of variables minus the number of refer-

ence dimensions is equal to unity, then only one pi term is required to describe the phenomenon.

The functional relationship that must exist for one pi term is

where C is a constant. This is one situation in which a dimensional analysis reveals the specific

form of the relationship and, as is illustrated by the following example, shows how the individual

variables are related. The value of the constant, however, must still be determined by experiment.

ß1 � C

7.7 Correlation of Experimental Data 351

GIVEN As shown in Fig. E7.3, assume that the drag, d, act-

ing on a spherical particle that falls very slowly through a vis-

cous fluid, is a function of the particle diameter, D, the particle

velocity, V, and the fluid viscosity, �.

FIND Determine, with the aid of dimensional analysis, how

the drag depends on the particle velocity.

SOLUTION

F I G U R E  E7.3

Flow with Only One Pi Term

COMMENTS Actually, the dimensional analysis reveals that

the drag not only varies directly with the velocity, but it also

varies directly with the particle diameter and the fluid viscosity.

We could not, however, predict the value of the drag, since the

constant, C, is unknown. An experiment would have to be per-

formed in which the drag and the corresponding velocity are mea-

sured for a given particle and fluid. Although in principle we

would only have to run a single test, we would certainly want to

repeat it several times to obtain a reliable value for C. It should be

emphasized that once the value of C is determined it is not neces-

sary to run similar tests by using different spherical particles and

fluids; that is, C is a universal constant so long as the drag is a

function only of particle diameter, velocity, and fluid viscosity.

An approximate solution to this problem can also be obtained

theoretically, from which it is found that C � 3� so that

This equation is commonly called Stokes law and is used in the

study of the settling of particles. Our experiments would reveal that

this result is only valid for small Reynolds numbers (�VD/� � 1).

This follows, since in the original list of variables, we have

d � 3��VD

� = f (D,V,   )μ 

μ

V

D

EXAMPLE 7.3

From the information given, it follows that

d � f (D, V, �)

and the dimensions of the variables are

We see that there are four variables and three reference dimen-

sions (F, L, and T) required to describe the variables. Thus, ac-

cording to the pi theorem, one pi term is required. This pi term

can be easily formed by inspection and can be expressed as

Because there is only one pi term, it follows that

where C is a constant. Thus,

Thus, for a given particle and fluid, the drag varies directly with

the velocity so that

(Ans)d r V

d � C�VD

d

�VD
� C

ß1 �
d

�VD

 � � FL�2T

 V � LT �1

 D � L

 d � F

V7.7 Stokes flow

If only one pi term
is involved in a
problem, it must be
equal to a constant.
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7.7.2 Problems with Two or More Pi Terms

If a given phenomenon can be described with two pi terms such that

the functional relationship among the variables can then be determined by varying and mea-

suring the corresponding values of For this case the results can be conveniently presented in

graphical form by plotting versus as is illustrated in Fig. 7.4. It should be emphasized that

the curve shown in Fig. 7.4 would be a “universal” one for the particular phenomenon studied.

This means that if the variables and the resulting dimensional analysis are correct, then there is

only a single relationship between and as illustrated in Fig. 7.4. However, since this is an

empirical relationship, we can only say that it is valid over the range of covered by the exper-

iments. It would be unwise to extrapolate beyond this range, since as illustrated with the dashed

lines in the figure, the nature of the phenomenon could dramatically change as the range of is

extended. In addition to presenting the data graphically, it may be possible 1and desirable2 to ob-

tain an empirical equation relating and by using a standard curve-fitting technique.ß2ß1

ß2

ß2

ß2,ß1

ß2ß1

ß1.

ß2

ß1 � f1ß22
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neglected inertial effects (fluid density is not included as a vari-

able). The inclusion of an additional variable would lead to

another pi term so that there would be two pi terms rather than

one.

Consider a free body diagram of a sphere in Stokes flow; there

would be a buoyant force in the same direction as the drag in Fig.

E7.3, as well as a weight force in the opposite direction. As shown

above, the drag force is proportional to the product of the diame-

ter and fall velocity, . The weight and buoyant force ared r VD

proportional to the diameter cubed, W and . Given equi-

librium conditions, the force balance can be written as

Based on the scaling laws for these terms, it follows that 

Hence, the fall velocity will be proportional to the square of the di-

ameter, . Therefore, for two spheres, one having twice the

diameter of the other, and falling through the same fluid, the sphere

with the larger diameter will fall four times faster (see Video V7.7).

V r D2

VD r D3.

d � W � FB

FB r D3

For problems in-
volving only two pi
terms, results of an
experiment can be
conveniently pre-
sented in a simple
graph.

Valid range

Π1

Π2

k – r = 2

F I G U R E  7.4 The graphical presen-
tation of data for problems involving two pi terms,
with an illustration of the potential danger of extrap-
olation of data.

GIVEN The relationship between the pressure drop per unit

length along a smooth-walled, horizontal pipe and the variables

that affect the pressure drop is to be determined experimentally. In

the laboratory the pressure drop was measured over a 5-ft length of

smooth-walled pipe having an inside diameter of 0.496 in. The

fluid used was water at 

Tests were run in which the velocity was varied

and the corresponding pressure drop measured. The results of

these tests are shown below:

1.94 slugs�ft32.
60 °F 1m � 2.34 	 10�5 lb # s�ft2, r �

SOLUTION

Dimensionless Correlation of Experimental DataEXAMPLE 7.4

The first step is to perform a dimensional analysis during the

planning stage before the experiments are actually run. As was

discussed in Section 7.3, we will assume that the pressure drop

per unit length, is a function of the pipe diameter, D, fluid¢p/,

Pressure
Velocity drop for 5-ft

(ft/s) length (lb/ft2)

1.17 6.26

1.95 15.6

2.91 30.9

5.84 106

11.13 329

16.92 681

23.34 1200

28.73 1730

FIND Make use of these data to obtain a general relationship

between the pressure drop per unit length and the other variables.
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As the number of required pi terms increases, it becomes more difficult to display the results

in a convenient graphical form and to determine a specific empirical equation that describes the

phenomenon. For problems involving three pi terms

it is still possible to show data correlations on simple graphs by plotting families of curves as il-

lustrated in Fig. 7.5. This is an informative and useful way of representing the data in a general

ß1 � f1ß2, ß32
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density, fluid viscosity, and the velocity, V. Thus,

and application of the pi theorem yields two pi terms

Hence,

To determine the form of the relationship, we need to vary the

Reynolds number, and to measure the correspond-

ing values of The Reynolds number could be varied

by changing any one of the variables, V, D, or or any combi-

nation of them. However, the simplest way to do this is to vary the

velocity, since this will allow us to use the same fluid and pipe.

Based on the data given, values for the two pi terms can be com-

puted, with the result:

0.0195

0.0175

0.0155

0.0132

0.0113

0.0101

0.00939

0.00893

These are dimensionless groups so that their values are independent

of the system of units used so long as a consistent system is used.

For example, if the velocity is in ft�s, then the diameter should be in

feet, not inches or meters. Note that since the Reynolds numbers

are all greater than 2100, the flow in the pipe is turbulent 1see Sec-

tion 8.1.12.
A plot of these two pi terms can now be made with the results

shown in Fig. E7.4a. The correlation appears to be quite good, and

if it was not, this would suggest that either we had large experimen-

tal measurement errors or that we had perhaps omitted an important

variable. The curve shown in Fig. E7.4a represents the general rela-

tionship between the pressure drop and the other factors in the range

of Reynolds numbers between and Thus,

for this range of Reynolds numbers it is not necessary to repeat the

tests for other pipe sizes or other fluids provided the assumed inde-

pendent variables are the only important ones.

Since the relationship between and is nonlinear, it is not

immediately obvious what form of empirical equation might be

used to describe the relationship. If, however, the same data are

ß2ß1

1D, r, m, V 2

9.85 	 104.4.01 	 103

9.85 	 104

8.00 	 104

5.80 	 104

3.81 	 104

2.00 	 104

9.97 	 103

6.68 	 103

4.01 	 103

RVD�MD¢p��RV2

m,r,

D ¢p/�rV 2.

Re � rVD�m,

D ¢p/

rV 2
� f a

rVD

m
b

ß1 �
D ¢p/

rV 2
and ß2 �

rVD

m

¢p/ � f 1D, r, m, V 2

m,r,

plotted on logarithmic graph paper, as is shown in Fig. E7.4b, the

data form a straight line, suggesting that a suitable equation is of

the form where A and n are empirical constants to be

determined from the data by using a suitable curve-fitting tech-

nique, such as a nonlinear regression program. For the data given

in this example, a good fit of the data is obtained with the equation

(Ans)

COMMENT In 1911, H. Blasius 11883–19702, a German

fluid mechanician, established a similar empirical equation that is

used widely for predicting the pressure drop in smooth pipes in

the range 1Ref. 162. This equation can be

expressed in the form

The so-called Blasius formula is based on numerous experimen-

tal results of the type used in this example. Flow in pipes is dis-

cussed in more detail in the next chapter, where it is shown how

pipe roughness 1which introduces another variable2may affect the

results given in this example 1which is for smooth-walled pipes2.

D ¢p/

rV 2
� 0.1582 a

rVD

m
b

�1�4

4 	 103 6 Re 6 105

ß1 � 0.150 ß �0.25
2

ß1 � Aßn
2

For problems in-
volving more than
two or three pi
terms, it is often
necessary to use
a model to predict
specific character-
istics.
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way. It may also be possible to determine a suitable empirical equation relating the three pi terms.

However, as the number of pi terms continues to increase, corresponding to an increase in the gen-

eral complexity of the problem of interest, both the graphical presentation and the determination

of a suitable empirical equation become intractable. For these more complicated problems, it is of-

ten more feasible to use models to predict specific characteristics of the system rather than to try

to develop general correlations.
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Π1

Π

Π3 = C1 (constant)

Π3 = C2

Π3 = C3

Π3 = C4

k – r = 3

F I G U R E  7.5 The graphi-
cal presentation of data for problems
involving three pi terms.

Models are widely used in fluid mechanics. Major engineering projects involving structures, air-

craft, ships, rivers, harbors, dams, air and water pollution, and so on, frequently involve the use of

models. Although the term “model” is used in many different contexts, the “engineering model”

generally conforms to the following definition. A model is a representation of a physical system
that may be used to predict the behavior of the system in some desired respect. The physical sys-

tem for which the predictions are to be made is called the prototype. Although mathematical or

computer models may also conform to this definition, our interest will be in physical models, that

is, models that resemble the prototype but are generally of a different size, may involve different

fluids, and often operate under different conditions 1pressures, velocities, etc.2. As shown by the

figure in the margin, usually a model is smaller than the prototype. Therefore, it is more easily

handled in the laboratory and less expensive to construct and operate than a large prototype (it

should be noted that variables or pi terms without a subscript will refer to the prototype, whereas

the subscript m will be used to designate the model variables or pi terms). Occasionally, if the pro-

totype is very small, it may be advantageous to have a model that is larger than the prototype so

that it can be more easily studied. For example, large models have been used to study the motion

of red blood cells, which are approximately in diameter. With the successful development of

a valid model, it is possible to predict the behavior of the prototype under a certain set of condi-

tions. We may also wish to examine a priori the effect of possible design changes that are pro-

posed for a hydraulic structure or fluid-flow system. There is, of course, an inherent danger in the

use of models in that predictions can be made that are in error and the error not detected until the

prototype is found not to perform as predicted. It is, therefore, imperative that the model be prop-

erly designed and tested and that the results be interpreted correctly. In the following sections we

will develop the procedures for designing models so that the model and prototype will behave in

a similar fashion.

7.8.1 Theory of Models

The theory of models can be readily developed by using the principles of dimensional analysis. It

has been shown that any given problem can be described in terms of a set of pi terms as

(7.7)

In formulating this relationship, only a knowledge of the general nature of the physical phenome-

non, and the variables involved, is required. Specific values for variables 1size of components, fluid

properties, and so on2 are not needed to perform the dimensional analysis. Thus, Eq. 7.7 applies

ß1 � f1ß2, ß3, . . . , ßn2

8 mm

7.8 Modeling and Similitude

V7.8 Model
airplane

Prototype

V
�

Model

�m
Vm
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to any system that is governed by the same variables. If Eq. 7.7 describes the behavior of a par-

ticular prototype, a similar relationship can be written for a model of this prototype; that is,

(7.8)

where the form of the function will be the same as long as the same phenomenon is involved in

both the prototype and the model. Variables, or pi terms, without a subscript will refer to the pro-

totype, whereas the subscript m will be used to designate the model variables or pi terms.

The pi terms can be developed so that contains the variable that is to be predicted from

observations made on the model. Therefore, if the model is designed and operated under the fol-

lowing conditions,

(7.9)

then with the presumption that the form of is the same for model and prototype, it follows that

(7.10)

Equation 7.10 is the desired prediction equation and indicates that the measured value of ob-

tained with the model will be equal to the corresponding for the prototype as long as the other

pi terms are equal. The conditions specified by Eqs. 7.9 provide the model design conditions, also

called similarity requirements or modeling laws.
As an example of the procedure, consider the problem of determining the drag, on a thin

rectangular plate placed normal to a fluid with velocity, V, as shown by the figure

in the margin. The dimensional analysis of this problem was performed in Example 7.1, where it

was assumed that

Application of the pi theorem yielded

(7.11)

We are now concerned with designing a model that could be used to predict the drag on a certain

prototype 1which presumably has a different size than the model2. Since the relationship expressed

by Eq. 7.11 applies to both prototype and model, Eq. 7.11 is assumed to govern the prototype, with

a similar relationship

(7.12)

for the model. The model design conditions, or similarity requirements, are therefore

The size of the model is obtained from the first requirement which indicates that

(7.13)

We are free to establish the height ratio but then the model plate width, is fixed in ac-

cordance with Eq. 7.13.

The second similarity requirement indicates that the model and prototype must be operated at

the same Reynolds number. Thus, the required velocity for the model is obtained from the relationship

(7.14)Vm �
mm

m
 

r

rm
 

w
wm

 V

wm,hm�h,

wm �
hm

h
 w

wm

hm

�
w

h
  

rmVmwm

mm
�
rVw
m

dm

w2
mrmV 2

m

� f a
wm

hm

, 
rmVmwm

mm
b

d

w2rV 2
� f a

w

h
, 

rVw
m
b

d � f 1w, h, m, r, V2

1w 	 h in size2
d,

ß1

ß1m

ß1 � ß1m

f

 ßnm � ßn

o
 ß3m � ß3

 ß2m � ß2

ß1

ß1m � f1ß2m, ß3m, . . . , ßnm2
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The similarity re-
quirements for a
model can be read-
ily obtained with
the aid of dimen-
sional analysis.

h

w
V

ρ, μ
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Note that this model design requires not only geometric scaling, as specified by Eq. 7.13, but also

the correct scaling of the velocity in accordance with Eq. 7.14. This result is typical of most model

designs—there is more to the design than simply scaling the geometry!

With the foregoing similarity requirements satisfied, the prediction equation for the drag is

or

Thus, a measured drag on the model, must be multiplied by the ratio of the square of the plate

widths, the ratio of the fluid densities, and the ratio of the square of the velocities to obtain the

predicted value of the prototype drag,

Generally, as is illustrated in this example, to achieve similarity between model and pro-

totype behavior, all the corresponding pi terms must be equated between model and prototype.

Usually, one or more of these pi terms will involve ratios of important lengths 1such as in

the foregoing example2; that is, they are purely geometrical. Thus, when we equate the pi terms

involving length ratios, we are requiring that there be complete geometric similarity between

the model and prototype. This means that the model must be a scaled version of the prototype.

Geometric scaling may extend to the finest features of the system, such as surface roughness,

or small protuberances on a structure, since these kinds of geometric features may significantly

influence the flow. Any deviation from complete geometric similarity for a model must be

carefully considered. Sometimes complete geometric scaling may be difficult to achieve, par-

ticularly when dealing with surface roughness, since roughness is difficult to characterize and

control.

Another group of typical pi terms 1such as the Reynolds number in the foregoing exam-

ple2 involves force ratios as noted in Table 7.1. The equality of these pi terms requires the ratio

of like forces in model and prototype to be the same. Thus, for flows in which the Reynolds

numbers are equal, the ratio of viscous forces in model and prototype is equal to the ratio of in-

ertia forces. If other pi terms are involved, such as the Froude number or Weber number, a sim-

ilar conclusion can be drawn; that is, the equality of these pi terms requires the ratio of like

forces in model and prototype to be the same. Thus, when these types of pi terms are equal in

model and prototype, we have dynamic similarity between model and prototype. It follows that

with both geometric and dynamic similarity the streamline patterns will be the same and corre-

sponding velocity ratios and acceleration ratios are constant throughout the flow

field. Thus, kinematic similarity exists between model and prototype. To have complete similar-

ity between model and prototype, we must maintain geometric, kinematic, and dynamic similar-

ity between the two systems. This will automatically follow if all the important variables are in-

cluded in the dimensional analysis, and if all the similarity requirements based on the resulting

pi terms are satisfied.

1am�a21Vm�V2

w�h

d.

dm,

d � a
w
wm
b
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Modeling parachutes in a water tunnel The first use of a para-

chute with a free-fall jump from an aircraft occurred in 1914, al-

though parachute jumps from hot air balloons had occurred since the

late 1700s. In more modern times parachutes are commonly used by

the military, and for safety and sport. It is not surprising that there re-

mains interest in the design and characteristics of parachutes, and re-

searchers at the Worcester Polytechnic Institute have been studying

various aspects of the aerodynamics associated with parachutes. An

unusual part of their study is that they are using small-scale para-

chutes tested in a water tunnel. The model parachutes are reduced in

size by a factor of 30 to 60 times. Various types of tests can be per-

formed, ranging from the study of the velocity fields in the wake of

the canopy with a steady free-stream velocity to the study of condi-

tions during rapid deployment of the canopy. According to the re-

searchers, the advantage of using water as the working fluid, rather

than air, is that the velocities and deployment dynamics are slower

than in the atmosphere, thus providing more time to collect detailed

experimental data. (See Problem 7.47.)

Similarity between
a model and a pro-
totype is achieved
by equating pi
terms.

V7.9 Environmental
models
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GIVEN A long structural component of a bridge has an elliptical

cross section shown in Fig. E7.5. It is known that when a steady wind

blows past this type of bluff body, vortices may develop on the down-

wind side that are shed in a regular fashion at some definite fre-

quency. Since these vortices can create harmful periodic forces acting

on the structure, it is important to determine the shedding frequency.

For the specific structure of interest, and aH � 0.3 m,D � 0.1 m,

SOLUTION

F I G U R E  E7.5

Prediction of Prototype Performance from Model Data

The second similarity requirement indicates that the Reynolds

number must be the same for model and prototype so that the

model velocity must satisfy the condition

(1)

For air at standard conditions,

and for water at 

The fluid velocity for the proto-

type is

The required velocity can now be calculated from Eq. 1 as

(Ans)

This is a reasonable velocity that could be readily achieved in a

water tunnel.

With the two similarity requirements satisfied, it follows that

the Strouhal numbers for prototype and model will be the same so

that

and the predicted prototype vortex shedding frequency is

(Ans) v � 29.0 Hz

 �
113.9 m�s2
14.79 m�s2

 
120 	 10�3 m2

10.1 m2
 149.9 Hz2

 v �
V

Vm

 
Dm

D
 vm

vD

V
�
vmDm

Vm

 Vm � 4.79 m�s

 	
10.1 m2

120 	 10�3 m2
 113.9 m�s2

 Vm �
31.00 	 10�3 kg� 1m # s2 4

31.79 	 10�5 kg� 1m # s2 4
 
11.23 kg�m32

1998 kg�m32

V �
150 	 103 m�hr2

13600 s�hr2
� 13.9 m�s

10�3 kg�m # s, r � 998 kg�m3.

m � 1.00 	20 °C,r � 1.23 kg�m3,

m � 1.79 	 10�5 kg�m # s,

Vm �
mm

m
 

r

rm
 

D

Dm

 V

V D

H

EXAMPLE 7.5

We expect the shedding frequency, to depend on the lengths D
and H, the approach velocity, V, and the fluid density, and vis-

cosity, Thus,

where

Since there are six variables and three reference dimensions 1MLT 2 ,
three pi terms are required. Application of the pi theorem yields

We recognize the pi term on the left as the Strouhal number, and

the dimensional analysis indicates that the Strouhal number is a

function of the geometric parameter, and the Reynolds num-

ber. Thus, to maintain similarity between model and prototype

and

From the first similarity requirement

(Ans) Hm � 60 	 10�3 m � 60 mm

 �
120 	 10�3 m2

10.1 m2
 10.3 m2

 Hm �
Dm

D
 H

rmVmDm

mm
�
rVD

m

Dm

Hm

�
D

H

D�H,

vD

V
� f a

D

H
, 
rVD

m
b

 m � ML�1T �1

 r � ML�3

 V � LT �1

 H � L

 D � L

 v � T �1

v � f 1D, H, V, r, m2

m.

r,

v,

V7.10 Flow past an
ellipse

representative wind velocity is 50 km�hr. Standard air can be as-

sumed. The shedding frequency is to be determined through the use

of a small-scale model that is to be tested in a water tunnel. For the

model and the water temperature is 

FIND Determine the model dimension, and the velocity at

which the test should be performed. If the shedding frequency for

the model is found to be 49.9 Hz, what is the corresponding fre-

quency for the prototype?

Hm,

20 °C.Dm � 20 mm
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7.8.2 Model Scales

It is clear from the preceding section that the ratio of like quantities for the model and prototype

naturally arises from the similarity requirements. For example, if in a given problem there are two

length variables and the resulting similarity requirement based on a pi term obtained from

these two variables is

so that

We define the ratio or as the length scale. For true models there will be only one length

scale, and all lengths are fixed in accordance with this scale. There are, however, other scales such

as the velocity scale, density scale, viscosity scale, and so on. In fact, we can de-

fine a scale for each of the variables in the problem. Thus, it is actually meaningless to talk about

a “scale” of a model without specifying which scale.

We will designate the length scale as and other scales as and so on, where the

subscript indicates the particular scale. Also, we will take the ratio of the model value to the pro-

totype value as the scale 1rather than the inverse2. Length scales are often specified, for example,

as 1 : 10 or as a scale model. The meaning of this specification is that the model is one-tenth

the size of the prototype, and the tacit assumption is that all relevant lengths are scaled accord-

ingly so the model is geometrically similar to the prototype.

1
10

lV, lr, lm,l/,

mm�m,rm�r,Vm�V,

/2m�/2/1m�/1

/1m

/1

�
/2m

/2

/1

/2

�
/1m

/2m

/2,/1
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COMMENT This same model could also be used to predict

the drag per unit length, 1lb�ft or N�m2, on the prototype, since

the drag would depend on the same variables as those used for the

frequency. Thus, the similarity requirements would be the same

and with these requirements satisfied it follows that the drag per

unit length expressed in dimensionless form, such as d/�DrV 2,

d/

would be equal in model and prototype. The measured drag per

unit length on the model could then be related to the correspond-

ing drag per unit length on the prototype through the relationship

d/ � a
D

Dm

b a
r

rm
b a

V

Vm

b
2

 d/m

The ratio of a
model variable to
the corresponding
prototype variable
is called the scale
for that variable.

F l u i d s  i n  t h e  N e w s

“Galloping Gertie” One of the most dramatic bridge collapses

occurred in 1940 when the Tacoma Narrows bridge, located near

Tacoma, Washington, failed due to aerodynamic instability. The

bridge had been nicknamed “Galloping Gertie” due to its tendency

to sway and move in high winds. On the fateful day of the collapse

the wind speed was . This particular combination of a

high wind and the aeroelastic properties of the bridge created large

oscillations leading to its failure. The bridge was replaced in 1950,

and plans are underway to add a second bridge parallel to the ex-

65 km�hr

isting structure. To determine possible wind interference effects

due to two bridges in close proximity, wind tunnel tests were run

in a wind tunnel operated by the National Research

Council of Canada. Models of the two side-by-side bridges, each

having a length scale of 1 : 211, were tested under various wind

conditions. Since the failure of the original Tacoma Narrows

bridge, it is now common practice to use wind tunnel model stud-

ies during the design process to evaluate any bridge that is to be

subjected to wind-induced vibrations. (See Problem 7.72.)

9 m 	 9 m

7.8.3 Practical Aspects of Using Models

Validation of Model Design. Most model studies involve simplifying assumptions with

regard to the variables to be considered. Although the number of assumptions is frequently less

stringent than that required for mathematical models, they nevertheless introduce some uncer-

tainty in the model design. It is, therefore, desirable to check the design experimentally when-

ever possible. In some situations the purpose of the model is to predict the effects of certain proposed

changes in a given prototype, and in this instance some actual prototype data may be available.

The model can be designed, constructed, and tested, and the model prediction can be compared

JWCL068_ch07_332-382.qxd  9/23/08  10:46 AM  Page 358



with these data. If the agreement is satisfactory, then the model can be changed in the desired

manner, and the corresponding effect on the prototype can be predicted with increased confi-

dence.

Another useful and informative procedure is to run tests with a series of models of different

sizes, where one of the models can be thought of as the prototype and the others as “models” of this

prototype. With the models designed and operated on the basis of the proposed design, a necessary

condition for the validity of the model design is that an accurate prediction be made between any

pair of models, since one can always be considered as a model of the other. Although suitable agree-

ment in validation tests of this type does not unequivocally indicate a correct model design 1e.g., the

length scales between laboratory models may be significantly different than required for actual pro-

totype prediction2, it is certainly true that if agreement between models cannot be achieved in these

tests, there is no reason to expect that the same model design can be used to predict prototype be-

havior correctly.

Distorted Models. Although the general idea behind establishing similarity requirements

for models is straightforward 1we simply equate pi terms2, it is not always possible to satisfy all

the known requirements. If one or more of the similarity requirements are not met, for example,

if then it follows that the prediction equation is not true; that is,

Models for which one or more of the similarity requirements are not satisfied are called distorted
models.

Distorted models are rather commonplace, and they can arise for a variety of reasons. For

example, perhaps a suitable fluid cannot be found for the model. The classic example of a dis-

torted model occurs in the study of open channel or free-surface flows. Typically, in these prob-

lems both the Reynolds number, and the Froude number, are involved.

Froude number similarity requires

If the model and prototype are operated in the same gravitational field, then the required velocity

scale is

Reynolds number similarity requires

and the velocity scale is

Since the velocity scale must be equal to the square root of the length scale, it follows that

(7.15)

where the ratio is the kinematic viscosity, Although in principle it may be possible to sat-

isfy this design condition, it may be quite difficult, if not impossible, to find a suitable model fluid,

particularly for small length scales. For problems involving rivers, spillways, and harbors, for which

the prototype fluid is water, the models are also relatively large so that the only practical model

fluid is water. However, in this case 1with the kinematic viscosity scale equal to unity2 Eq. 7.15

will not be satisfied, and a distorted model will result. Generally, hydraulic models of this type are

distorted and are designed on the basis of the Froude number, with the Reynolds number different

in model and prototype.

Distorted models can be successfully used, but the interpretation of results obtained with this

type of model is obviously more difficult than the interpretation of results obtained with true mod-
els for which all similarity requirements are met. There are no general rules for handling distorted

n.m�r

mm�rm

m�r
�
nm

n
� 1l/2

3�2

Vm

V
�
mm

m
 

r

rm
 

/
/m

rmVm/m

mm
�
rV/
m

Vm

V
�
B

/m

/
� 1l/

Vm

1gm/m

�
V

1g/

V�1g/,rV/�m,

ß1 Z ß1m.ß1 � ß1mß2m Z ß2,
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Models for which
one or more simi-
larity requirements
are not satisfied
are called distorted
models.

V7.12 Distorted
river model

V7.11 Model of
fish hatchery pond
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models, and essentially each problem must be considered on its own merits. The success of using

distorted models depends to a large extent on the skill and experience of the investigator responsible

for the design of the model and in the interpretation of experimental data obtained from the model.

Distorted models are widely used, and additional information can be found in the references at the

end of the chapter. References 14 and 15 contain detailed discussions of several practical examples

of distorted fluid flow and hydraulic models.

360 Chapter 7 ■ Dimensional Analysis, Similitude, and Modeling

F l u i d s  i n  t h e  N e w s

Old Man River in (large) miniature One of the world’s

largest scale models, a Mississippi River model, resides near

Jackson, Mississippi. It is a detailed, complex model that cov-

ers many acres and replicates the 1,250,000 acre Mississippi

River basin. Built by the Army Corps of Engineers and used

from 1943 to 1973, today it has mostly gone to ruin. As with

many hydraulic models, this is a distorted model, with a hori-

zontal scale of 1 to 2000 and a vertical scale of 1 to 100. One

step along the model river corresponds to one mile along the

river. All essential river basin elements such as geological fea-

tures, levees, and railroad embankments were sculpted by hand

to match the actual contours. The main purpose of the model

was to predict floods. This was done by supplying specific

amounts of water at prescribed locations along the model and

then measuring the water depths up and down the model river.

Because of the length scale, there is a difference in the time

taken by the corresponding model and prototype events. Al-

though it takes days for the actual floodwaters to travel from

Sioux City, Iowa, to Omaha, Nebraska, it would take only min-

utes for the simulated flow in the model.

Models are used to investigate many different types of fluid mechanics problems, and it is diffi-

cult to characterize in a general way all necessary similarity requirements, since each problem is

unique. We can, however, broadly classify many of the problems on the basis of the general na-

ture of the flow and subsequently develop some general characteristics of model designs in each

of these classifications. In the following sections we will consider models for the study of 112 flow

through closed conduits, 122 flow around immersed bodies, and 132 flow with a free surface. Tur-

bomachine models are considered in Chapter 12.

7.9.1 Flow through Closed Conduits

Common examples of this type of flow include pipe flow and flow through valves, fittings, and

metering devices. Although the conduit cross sections are often circular, they could have other

shapes as well and may contain expansions or contractions. Since there are no fluid interfaces

or free surfaces, the dominant forces are inertial and viscous so that the Reynolds number is an

important similarity parameter. For low Mach numbers compressibility effects are

usually negligible for both the flow of liquids or gases. For this class of problems, geometric

similarity between model and prototype must be maintained. Generally the geometric character-

istics can be described by a series of length terms, and where is some par-

ticular length dimension for the system. Such a series of length terms leads to a set of pi terms

of the form

where and so on. In addition to the basic geometry of the system, the roughness of

the internal surface in contact with the fluid may be important. If the average height of surface

roughness elements is defined as then the pi term representing roughness will be This pa-

rameter indicates that for complete geometric similarity, surface roughness would also have to be

scaled. Note that this implies that for length scales less than 1, the model surfaces should be

smoother than those in the prototype since To further complicate matters, the pattern of

roughness elements in model and prototype would have to be similar. These are conditions that are

virtually impossible to satisfy exactly. Fortunately, in some problems the surface roughness plays

em � l/e.

e�/.e,

i � 1, 2, . . . ,

ßi �
/i

/

//,/1, /2, /3, . . . , /i,

1Ma 6 0.32,

7.9 Some Typical Model Studies

Geometric and
Reynolds number
similarity is usually
required for models
involving flow
through closed
conduits.
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a minor role and can be neglected. However, in other problems 1such as turbulent flow through

pipes2 roughness can be very important.

It follows from this discussion that for flow in closed conduits at low Mach numbers, any

dependent pi term 1the one that contains the particular variable of interest, such as pressure drop2
can be expressed as

(7.16)

This is a general formulation for this type of problem. The first two pi terms of the right side of

Eq. 7.16 lead to the requirement of geometric similarity so that

or

This result indicates that the investigator is free to choose a length scale, but once this scale is

selected, all other pertinent lengths must be scaled in the same ratio.

The additional similarity requirement arises from the equality of Reynolds numbers

From this condition the velocity scale is established so that

(7.17)

and the actual value of the velocity scale depends on the viscosity and density scales, as well as

the length scale. Different fluids can be used in model and prototype. However, if the same fluid

is used 1with and 2, then

Thus, which indicates that the fluid velocity in the model will be larger than that in the

prototype for any length scale less than 1. Since length scales are typically much less than unity,

Reynolds number similarity may be difficult to achieve because of the large model velocities re-

quired.

With these similarity requirements satisfied, it follows that the dependent pi term will be equal

in model and prototype. For example, if the dependent variable of interest is the pressure differ-

ential,3 between two points along a closed conduit, then the dependent pi term could be

expressed as

The prototype pressure drop would then be obtained from the relationship

so that from a measured pressure differential in the model, the corresponding pressure dif-

ferential for the prototype could be predicted. Note that in general ¢p 
 ¢pm.
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Accurate predic-
tions of flow behav-
ior require the cor-
rect scaling of
velocities.

3In some previous examples the pressure differential per unit length, was used. This is appropriate for flow in long pipes or conduits

in which the pressure would vary linearly with distance. However, in the more general situation the pressure may not vary linearly with po-

sition so that it is necessary to consider the pressure differential, as the dependent variable. In this case the distance between pressure

taps is an additional variable 1as well as the distance of one of the taps measured from some reference point within the flow system2.
¢p,

¢p/,
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GIVEN Model tests are to be performed to study the flow

through a large check valve having a 2-ft-diameter inlet and

carrying water at a flowrate of 30 cfs as shown in Fig. E7.6a.

The working fluid in the model is water at the same tempera-

ture as that in the prototype. Complete geometric similarity ex-

ists between model and prototype, and the model inlet diameter

is 3 in.

FIND Determine the required flowrate in the model.

SOLUTION

Reynolds Number Similarity

For this particular example, , and the correspond-

ing velocity scale is 8 (see Fig. E7.6b). Thus, with the prototype

velocity equal to , the re-

quired model velocity is . Although this is a rela-

tively large velocity, it could be attained in a laboratory facility. It

is to be noted that if we tried to use a smaller model, say one with

the required model velocity is 229 ft�s, a very high ve-

locity that would be difficult to achieve. These results are indica-

tive of one of the difficulties encountered in maintaining

Reynolds number similarity—the required model velocities may

be impractical to obtain.

D � 1 in.,

Vm � 76.4 ft�s
V � 130 ft3�s2� 1p�42 12 ft22 � 9.50 ft�s

Dm�D � 0.125

EXAMPLE 7.6

To ensure dynamic similarity, the model tests should be run so

that

or

where V and D correspond to the inlet velocity and diameter, re-

spectively. Since the same fluid is to be used in model and proto-

type, and therefore

The discharge, Q, is equal to VA, where A is the inlet area, so

and for the data given

(Ans)

COMMENT As indicated by the above analysis, to maintain

Reynolds number similarity using the same fluid in model and

prototype, the required velocity scale is inversely proportional to

the length scale, that is, . This strong influence

of the length scale on the velocity scale is shown in Fig. E7.6b.

Vm�V � 1Dm�D2�1

 Qm � 3.75 cfs

 Qm �
13�12 ft2

12 ft2
 130 ft3�s2

 � 
Dm

D

 
Qm

Q
�

VmAm

VA
� a

D

Dm

b 

3 1p�42Dm
2 4

3 1p�42D2 4

Vm

V
�

D

Dm

n � nm,

VmDm

nm
�

VD

n

Rem � Re

F I G U R E  E7.6a

Q = 30 cfs

(Qm = ?)

D = 2 ft
(Dm = 3 in.)    

25

20

15

10

5

0
0 0.2 0.4

Dm/D
0.6 0.8 1

V m
/V

(0.125, 8)

F I G U R E  E7.6b

Two additional points should be made with regard to modeling flows in closed conduits.

First, for large Reynolds numbers, inertial forces are much larger than viscous forces, and in this

case it may be possible to neglect viscous effects. The important practical consequence of this is

that it would not be necessary to maintain Reynolds number similarity between model and proto-

type. However, both model and prototype would have to operate at large Reynolds numbers. Since

we do not know, a priori, what a “large Reynolds number” is, the effect of Reynolds numbers would

In some problems
Reynolds number
similarity may be
relaxed.
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have to be determined from the model. This could be accomplished by varying the model Reynolds

number to determine the range 1if any2 over which the dependent pi term ceases to be affected by

changes in Reynolds number.

The second point relates to the possibility of cavitation in flow through closed conduits. For

example, flow through the complex passages that may exist in valves may lead to local regions

of high velocity 1and thus low pressure2, which can cause the fluid to cavitate. If the model is to

be used to study cavitation phenomena, then the vapor pressure, becomes an important vari-

able and an additional similarity requirement such as equality of the cavitation number

is required, where is some reference pressure. The use of models to study cav-

itation is complicated, since it is not fully understood how vapor bubbles form and grow. The ini-

tiation of bubbles seems to be influenced by the microscopic particles that exist in most liquids,

and how this aspect of the problem influences model studies is not clear. Additional details can

be found in Ref. 17.

7.9.2 Flow around Immersed Bodies

Models have been widely used to study the flow characteristics associated with bodies that are

completely immersed in a moving fluid. Examples include flow around aircraft, automobiles,

golf balls, and buildings. 1These types of models are usually tested in wind tunnels as is illus-

trated in Fig. 7.6.2 Modeling laws for these problems are similar to those described in the pre-

ceding section; that is, geometric and Reynolds number similarity is required. Since there are

no fluid interfaces, surface tension 1and therefore the Weber number2 is not important. Also, grav-

ity will not affect the flow patterns, so the Froude number need not be considered. The Mach

number will be important for high-speed flows in which compressibility becomes an important

factor, but for incompressible fluids 1such as liquids or for gases at relatively low speeds2 the

Mach number can be omitted as a similarity requirement. In this case, a general formulation for

these problems is

(7.18)

where is some characteristic length of the system and represents other pertinent lengths,

is the relative roughness of the surface 1or surfaces2, and is the Reynolds number.

Frequently, the dependent variable of interest for this type of problem is the drag, devel-

oped on the body, and in this situation the dependent pi term would usually be expressed in the

form of a drag coefficient, where

The numerical factor, is arbitrary but commonly included, and is usually taken as some rep-

resentative area of the object. Thus, drag studies can be undertaken with the formulation

(7.19)
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Geometric and
Reynolds number
similarity is usually
required for models
involving flow
around bodies.

V7.13 Wind engi-
neering models

F I G U R E  7.6 Model of the National
Bank of Commerce, San Antonio, Texas, for measure-
ment of peak, rms, and mean pressure distributions.
The model is located in a long-test-section, meteoro-
logical wind tunnel. (Photograph courtesy of Cermak
Peterka Petersen, Inc.)
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It is clear from Eq. 7.19 that geometric similarity

as well as Reynolds number similarity

must be maintained. If these conditions are met, then

or

Measurements of model drag, can then be used to predict the corresponding drag, on the

prototype from this relationship.

As was discussed in the previous section, one of the common difficulties with models is re-

lated to the Reynolds number similarity requirement which establishes the model velocity as

(7.20)

or

(7.21)

where is the ratio of kinematic viscosities. If the same fluid is used for model and prototype

so that then

and, therefore, the required model velocity will be higher than the prototype velocity for 

greater than 1. Since this ratio is often relatively large, the required value of may be large. For

example, for a length scale, and a prototype velocity of 50 mph, the required model velocity is

500 mph. This is a value that is unreasonably high to achieve with liquids, and for gas flows this

would be in the range where compressibility would be important in the model 1but not in the

prototype2.
As an alternative, we see from Eq. 7.21 that could be reduced by using a different fluid

in the model such that For example, the ratio of the kinematic viscosity of water to that

of air is approximately so that if the prototype fluid were air, tests might be run on the model

using water. This would reduce the required model velocity, but it still may be difficult to achieve

the necessary velocity in a suitable test facility, such as a water tunnel.

Another possibility for wind tunnel tests would be to increase the air pressure in the tunnel

so that thus reducing the required model velocity as specified by Eq. 7.20. Fluid viscos-

ity is not strongly influenced by pressure. Although pressurized tunnels have been used, they are

obviously more complicated and expensive.

The required model velocity can also be reduced if the length scale is modest; that is, the

model is relatively large. For wind tunnel testing, this requires a large test section which greatly

increases the cost of the facility. However, large wind tunnels suitable for testing very large mod-

els 1or prototypes2 are in use. One such tunnel, located at the NASA Ames Research Center, Mof-

fett Field, California, has a test section that is 40 ft by 80 ft and can accommodate test speeds to

345 mph. Such a large and expensive test facility is obviously not feasible for university or indus-

trial laboratories, so most model testing has to be accomplished with relatively small models.
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For flow around
bodies, drag is of-
ten the dependent
variable of interest.

V7.14 Model air-
plane test in water

V7.15 Large scale
wind tunnel
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Fortunately, in many situations the flow characteristics are not strongly influenced by the

Reynolds number over the operating range of interest. In these cases we can avoid the rather strin-

gent similarity requirement of matching Reynolds numbers. To illustrate this point, consider the

variation in the drag coefficient with the Reynolds number for a smooth sphere of diameter d placed

in a uniform stream with approach velocity, V. Some typical data are shown in Fig. 7.7. We ob-

serve that for Reynolds numbers between approximately and the drag coefficient is

relatively constant and does not strongly depend on the specific value of the Reynolds number.

Thus, exact Reynolds number similarity is not required in this range. For other geometric shapes

we would typically find that for high Reynolds numbers, inertial forces are dominant 1rather than

viscous forces2, and the drag is essentially independent of the Reynolds number.

2 	 105103

7.9 Some Typical Model Studies 365

GIVEN The drag on the airplane shown in Fig. E7.7 cruising

at 240 mph in standard air is to be determined from tests on a 1:10

scale model placed in a pressurized wind tunnel. To minimize

compressibility effects, the air speed in the wind tunnel is also to

be 240 mph.

FIND Determine

(a) the required air pressure in the tunnel (assuming the same

air temperature for model and prototype) and 

SOLUTION

F I G U R E  E7.7

Model Design Conditions and Predicted Prototype Performance 

for constant temperature Therefore, the wind tunnel

would need to be pressurized so that

Since the prototype operates at standard atmospheric pressure,

the required pressure in the wind tunnel is 10 atmospheres or

(Ans)

COMMENT Thus, we see that a high pressure would be re-

quired and this could not be achieved easily or inexpensively. How-

ever, under these conditions, Reynolds similarity would be attained. 

(b) The drag could be obtained from Eq. 7.19 so that

or

Thus, for a drag of 1 lb on the model the corresponding drag on

the prototype is

(Ans)d � 10 lb
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EXAMPLE 7.7

(a) From Eq. 7.19 it follows that drag can be predicted from a

geometrically similar model if the Reynolds numbers in model

and prototype are the same. Thus,

For this example, and so that

and therefore

This result shows that the same fluid with and 

cannot be used if Reynolds number similarity is to be maintained.

One possibility is to pressurize the wind tunnel to increase the

density of the air. We assume that an increase in pressure does not

significantly change the viscosity so that the required increase in

density is given by the relationship

For an ideal gas, so that
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(b) the drag on the prototype corresponding to a measured force

of 1 lb on the model.

V7.16 Wind tunnel
train model
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Another interesting point to note from Fig. 7.7 is the rather abrupt drop in the drag coeffi-

cient near a Reynolds number of As is discussed in Section 9.3.3, this is due to a change

in the flow conditions near the surface of the sphere. These changes are influenced by the surface

roughness and, in fact, the drag coefficient for a sphere with a “rougher” surface will generally be

less than that of the smooth sphere for high Reynolds number. For example, the dimples on a

golf ball are used to reduce the drag over that which would occur for a smooth golf ball. Al-

though this is undoubtedly of great interest to the avid golfer, it is also important to engineers

responsible for fluid-flow models, since it does emphasize the potential importance of the sur-

face roughness. However, for bodies that are sufficiently angular with sharp corners, the actual

surface roughness is likely to play a secondary role compared with the main geometric features

of the body.

One final note with regard to Fig. 7.7 concerns the interpretation of experimental data when

plotting pi terms. For example, if , , and d remain constant, then an increase in Re comes from

an increase in V. Intuitively, it would seem in general that if V increases, the drag would increase.

However, as shown in the figure, the drag coefficient generally decreases with increasing Re. When

interpreting data, one needs to be aware if the variables are nondimensional. In this case, the phys-

ical drag force is proportional to the drag coefficient times the velocity squared. Thus, as shown

by the figure in the margin, the drag force does, as expected, increase with increasing velocity. The

exception occurs in the Reynolds number range where the drag coeffi-

cient decreases dramatically with increasing Reynolds number (see Fig. 7.7). This phenomena is

discussed in Section 9.3.

For problems involving high velocities in which the Mach number is greater than about 0.3,

the influence of compressibility, and therefore the Mach number 1or Cauchy number2, becomes sig-

nificant. In this case complete similarity requires not only geometric and Reynolds number simi-

larity but also Mach number similarity so that

(7.22)

This similarity requirement, when combined with that for Reynolds number similarity 1Eq. 7.212,
yields

(7.23)
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At high Reynolds
numbers the drag is
often essentially in-
dependent of the
Reynolds number.
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F I G U R E  7.7 The effect of Reynolds number on the drag coefficient, CD, for a
smooth sphere with where A is the projected area of sphere, (Data from
Ref. 16, used by permission.)
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Clearly the same fluid with and cannot be used in model and prototype unless

the length scale is unity 1which means that we are running tests on the prototype2. In high-speed

aerodynamics the prototype fluid is usually air, and it is difficult to satisfy Eq. 7.23 for reason-

able length scales. Thus, models involving high-speed flows are often distorted with respect to

Reynolds number similarity, but Mach number similarity is maintained.

7.9.3 Flow with a Free Surface

Flows in canals, rivers, spillways, and stilling basins, as well as flow around ships, are all exam-

ples of flow phenomena involving a free surface. For this class of problems, both gravitational and

inertial forces are important and, therefore, the Froude number becomes an important similarity

parameter. Also, since there is a free surface with a liquid–air interface, forces due to surface ten-

sion may be significant, and the Weber number becomes another similarity parameter that needs

to be considered along with the Reynolds number. Geometric variables will obviously still be im-

portant. Thus a general formulation for problems involving flow with a free surface can be ex-

pressed as

(7.24)

As discussed previously, is some characteristic length of the system, represents other pertinent

lengths, and is the relative roughness of the various surfaces. Since gravity is the driving force

in these problems, Froude number similarity is definitely required so that

The model and prototype are expected to operate in the same gravitational field and

therefore it follows that

(7.25)

Thus, when models are designed on the basis of Froude number similarity, the velocity scale is de-

termined by the square root of the length scale. As is discussed in Section 7.8.3, to simultaneously

have Reynolds and Froude number similarity it is necessary that the kinematic viscosity scale be

related to the length scale as

(7.26)

The working fluid for the prototype is normally either freshwater or seawater and the length scale

is small. Under these circumstances it is virtually impossible to satisfy Eq. 7.26, so models involv-

ing free-surface flows are usually distorted. The problem is further complicated if an attempt is made

to model surface tension effects, since this requires the equality of Weber numbers, which leads to

the condition

(7.27)

for the kinematic surface tension It is again evident that the same fluid cannot be used in

model and prototype if we are to have similitude with respect to surface tension effects for 

Fortunately, in many problems involving free-surface flows, both surface tension and viscous

effects are small and consequently strict adherence to Weber and Reynolds number similarity is

not required. Certainly, surface tension is not important in large hydraulic structures and rivers.

Our only concern would be if in a model the depths were reduced to the point where surface ten-

sion becomes an important factor, whereas it is not in the prototype. This is of particular impor-

tance in the design of river models, since the length scales are typically small 1so that the width of

the model is reasonable2, but with a small length scale the required model depth may be very small.

To overcome this problem, different horizontal and vertical length scales are often used for river
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Froude number
similarity is usually
required for models
involving free-
surface flows.

V7.17 River flow
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V7.18 Boat model
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models. Although this approach eliminates surface tension effects in the model, it introduces geo-

metric distortion that must be accounted for empirically, usually by increasing the model surface

roughness. It is important in these circumstances that verification tests with the model be performed

1if possible2 in which model data are compared with available prototype river flow data. Model

roughness can be adjusted to give satisfactory agreement between model and prototype, and then

the model subsequently used to predict the effect of proposed changes on river characteristics 1such

as velocity patterns or surface elevations2.
For large hydraulic structures, such as dam spillways, the Reynolds numbers are large so that

viscous forces are small in comparison to the forces due to gravity and inertia. In this case, Reynolds

number similarity is not maintained and models are designed on the basis of Froude number sim-

ilarity. Care must be taken to ensure that the model Reynolds numbers are also large, but they are

not required to be equal to those of the prototype. This type of hydraulic model is usually made

as large as possible so that the Reynolds number will be large. A spillway model is shown in Fig.

7.8. Also, for relatively large models the geometric features of the prototype can be accurately

scaled, as well as surface roughness. Note that which indicates that the model surfaces

must be smoother than the corresponding prototype surfaces for l/ 6 1.

em � l/e,
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F I G U R E  7.8 A scale hydraulic model
(1:197) of the Guri Dam in Venezuela which is used
to simulate the characteristics of the flow over and
below the spillway and the erosion below the spill-
way. (Photograph courtesy of St. Anthony Falls
Hydraulic Laboratory.)

V7.19 Dam model

F l u i d s  i n  t h e  N e w s

Ice engineering Various types of models have been studied in

wind tunnels, water tunnels, and towing tanks for many years. But

another type of facility is needed to study ice and ice-related prob-

lems. The U.S. Army Cold Regions Research and Engineering

Laboratory has developed a unique complex that houses research

facilities for studies related to the mechanical behavior of ice and

ice–structure interactions. The laboratory contains three separate

cold-rooms—a test basin, a flume, and a general research area. In

the test basin, large-scale model studies of ice forces on structures

such as dams, piers, ships, and offshore platforms can be per-

formed. Ambient temperatures can be controlled as low as 

and at this temperature a 2-mm per hour ice growth rate can be

achieved. It is also possible to control the mechanical properties of

the ice to properly match the physical scale of the model. Tests run

in the recirculating flume can simulate river processes during ice

formation. And in the large research area, scale models of lakes

and rivers can be built and operated to model ice interactions with

various types of engineering projects. (See Problem 7.73.)

�20 °F,

GIVEN The spillway for the dam shown in Fig. E7.8a is 20 m

wide and is designed to carry 125 m3/s at flood stage. A 1:15 model

is constructed to study the flow characteristics through the spillway.

The effects of surface tension and viscosity are to be neglected.

FIND
(a) Determine the required model width and flowrate.

(b) What operating time for the model corresponds to a 24-hr pe-

riod in the prototype? 

F I G U R E  E7.8a

Froude Number SimilarityEXAMPLE 7.8
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There are, unfortunately, problems involving flow with a free surface in which viscous, in-

ertial, and gravitational forces are all important. The drag on a ship as it moves through water is

due to the viscous shearing stresses that develop along its hull, as well as a pressure-induced com-

ponent of drag caused by both the shape of the hull and wave action. The shear drag is a function

of the Reynolds number, whereas the pressure drag is a function of the Froude number. Since both

Reynolds number and Froude number similarity cannot be simultaneously achieved by using wa-

ter as the model fluid 1which is the only practical fluid for ship models2, some technique other than

a straightforward model test must be employed. One common approach is to measure the total drag

on a small, geometrically similar model as it is towed through a model basin at Froude numbers

matching those of the prototype. The shear drag on the model is calculated using analytical tech-

niques of the type described in Chapter 9. This calculated value is then subtracted from the total

drag to obtain pressure drag, and using Froude number scaling the pressure drag on the prototype

can then be predicted. The experimentally determined value can then be combined with a calcu-

lated value of the shear drag 1again using analytical techniques2 to provide the desired total drag

7.9 Some Typical Model Studies 369

SOLUTION

or

This result indicates that time intervals in the model will be

smaller than the corresponding intervals in the prototype if

For and a prototype time interval of 24 hr

(Ans)

COMMENT As indicated by the above analysis, the time

scale varies directly as the square root of the length scale. Thus,

as shown in Fig. E7.8b, the model time interval, , correspond-

ing to a 24-hr prototype time interval can be varied by changing

the length scale, . The ability to scale times may be very use-

ful, since it is possible to “speed up” events in the model which

may occur over a relatively long time in the prototype. There is

of course a practical limit to how small the length scale (and the

corresponding time scale) can become. For example, if the

length scale is too small then surface tension effects may

become important in the model whereas they are not in the pro-

totype. In such a case the present model design, based simply

on Froude number similarity, would not be adequate.
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The width, of the model spillway is obtained from the length

scale, so that

Therefore,

(Ans)

Of course, all other geometric features 1including surface rough-

ness2 of the spillway must be scaled in accordance with the same

length scale.

With the neglect of surface tension and viscosity, Eq. 7.24 in-

dicates that dynamic similarity will be achieved if the Froude

numbers are equal between model and prototype. Thus,

and for 

Since the flowrate is given by where A is an appropriate

cross-sectional area, it follows that

where we have made use of the relationship For

and 

(Ans)

The time scale can be obtained from the velocity scale, since

the velocity is distance divided by time and therefore
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F I G U R E  E7.8b

V7.20 Testing of
large yacht mode
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on the ship. Ship models are widely used to study new designs, but the tests require extensive fa-

cilities 1see Fig. 7.92.
It is clear from this brief discussion of various types of models involving free-surface flows

that the design and use of such models requires considerable ingenuity, as well as a good under-

standing of the physical phenomena involved. This is generally true for most model studies. Mode-

ling is both an art and a science. Motion picture producers make extensive use of model ships,

fires, explosions, and the like. It is interesting to attempt to observe the flow differences between

these distorted model flows and the real thing.

370 Chapter 7 ■ Dimensional Analysis, Similitude, and Modeling

F I G U R E  7.9 Instru-
mented, small-waterplane-area, twin
hull (SWATH) model suspended from
a towing carriage. (Photograph cour-
tesy of the U.S. Navy’s David W.
Taylor Research Center.)

In the preceding sections of this chapter, dimensional analysis has been used to obtain similarity

laws. This is a simple, straightforward approach to modeling, which is widely used. The use of di-

mensional analysis requires only a knowledge of the variables that influence the phenomenon of

interest. Although the simplicity of this approach is attractive, it must be recognized that omission

of one or more important variables may lead to serious errors in the model design. An alternative

approach is available if the equations 1usually differential equations2 governing the phenomenon

are known. In this situation similarity laws can be developed from the governing equations, even

though it may not be possible to obtain analytic solutions to the equations.

To illustrate the procedure, consider the flow of an incompressible Newtonian fluid. For sim-

plicity we will restrict our attention to two-dimensional flow, although the results are applicable

to the general three-dimensional case. From Chapter 6 we know that the governing equations are

the continuity equation

(7.28)

and the Navier–Stokes equations

(7.29)

(7.30)

where the y axis is vertical, so that the gravitational body force, only appears in the “y equa-

tion.” To continue the mathematical description of the problem, boundary conditions are required.

For example, velocities on all boundaries may be specified; that is, and at all bound-

ary points and In some types of problems it may be necessary to specify the pres-

sure over some part of the boundary. For time-dependent problems, initial conditions would also

have to be provided, which means that the values of all dependent variables would be given at

some time 1usually taken at 2.
Once the governing equations, including boundary and initial conditions, are known, we are

ready to proceed to develop similarity requirements. The next step is to define a new set of 
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7.10 Similitude Based on Governing Differential Equations

Similarity laws can
be directly devel-
oped from the equa-
tions governing the
phenomenon of
interest.
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variables that are dimensionless. To do this we select a reference quantity for each type of vari-

able. In this problem the variables are and t so we will need a reference velocity, V, a

reference pressure, a reference length, and a reference time, These reference quantities

should be parameters that appear in the problem. For example, may be a characteristic length of

a body immersed in a fluid or the width of a channel through which a fluid is flowing. The veloc-

ity, V, may be the free-stream velocity or the inlet velocity. The new dimensionless 1starred2 vari-

ables can be expressed as

as shown in the figure in the margin. 

The governing equations can now be rewritten in terms of these new variables. For example,

and

The other terms that appear in the equations can be expressed in a similar fashion. Thus, in terms

of the new variables the governing equations become

(7.31)

and

(7.32)

(7.33)

The terms appearing in brackets contain the reference quantities and can be interpreted as indices

of the various forces 1per unit volume2 that are involved. Thus, as is indicated in Eq. 7.33,

inertia 1local2 force, inertia 1convective2 force, pressure force, gravitational force,

and viscous force. As the final step in the nondimensionalization process, we will divide each

term in Eqs. 7.32 and 7.33 by one of the bracketed quantities. Although any one of these quanti-

ties could be used, it is conventional to divide by the bracketed quantity which is the index

of the convective inertia force. The final nondimensional form then becomes

(7.34)

(7.35)

We see that bracketed terms are the standard dimensionless groups 1or their reciprocals2 which
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the Euler number, the reciprocal of the square of the Froude number, and the recip-

rocal of the Reynolds number. From this analysis it is now clear how each of the dimensionless

groups can be interpreted as the ratio of two forces, and how these groups arise naturally from the

governing equations.

Although we really have not helped ourselves with regard to obtaining an analytical solution

to these equations 1they are still complicated and not amenable to an analytical solution2, the di-

mensionless forms of the equations, Eqs. 7.31, 7.34, and 7.35, can be used to establish similarity

requirements. From these equations it follows that if two systems are governed by these equations,

then the solutions will be the same if the four parameters

and are equal for the two systems. The two systems will be dynam-

ically similar. Of course, boundary and initial conditions expressed in dimensionless form must

also be equal for the two systems, and this will require complete geometric similarity. These are

the same similarity requirements that would be determined by a dimensional analysis if the same

variables were considered. However, the advantage of working with the governing equations is that

the variables appear naturally in the equations, and we do not have to worry about omitting an im-

portant one, provided the governing equations are correctly specified. We can thus use this method

to deduce the conditions under which two solutions will be similar even though one of the solu-

tions will most likely be obtained experimentally.

In the foregoing analysis we have considered a general case in which the flow may be

unsteady, and both the actual pressure level, and the effect of gravity are important. A

reduction in the number of similarity requirements can be achieved if one or more of these con-

ditions is removed. For example, if the flow is steady the dimensionless group, can be

eliminated.

The actual pressure level will only be of importance if we are concerned with cavitation. If not,

the flow patterns and the pressure differences will not depend on the pressure level. In this case,

can be taken as and the Euler number can be eliminated as a similarity requirement.

However, if we are concerned about cavitation 1which will occur in the flow field if the pressure at

certain points reaches the vapor pressure, 2, then the actual pressure level is important. Usually, in

this case, the characteristic pressure, is defined relative to the vapor pressure such that 

where is some reference pressure within the flow field. With defined in this manner, the simi-

larity parameter becomes This parameter is frequently written as

and in this form, as was noted previously in Section 7.6, is called the cavitation num-

ber. Thus we can conclude that if cavitation is not of concern we do not need a similarity parameter

involving , but if cavitation is to be modeled, then the cavitation number becomes an important

similarity parameter.

The Froude number, which arises because of the inclusion of gravity, is important for prob-

lems in which there is a free surface. Examples of these types of problems include the study of

rivers, flow through hydraulic structures such as spillways, and the drag on ships. In these situa-

tions the shape of the free surface is influenced by gravity, and therefore the Froude number be-

comes an important similarity parameter. However, if there are no free surfaces, the only effect of

gravity is to superimpose a hydrostatic pressure distribution on the pressure distribution created by

the fluid motion. The hydrostatic distribution can be eliminated from the governing equation 1Eq.

7.302 by defining a new pressure, and with this change the Froude number does not

appear in the nondimensional governing equations.

We conclude from this discussion that for the steady flow of an incompressible fluid with-

out free surfaces, dynamic and kinematic similarity will be achieved if 1for geometrically similar

systems2 Reynolds number similarity exists. If free surfaces are involved, Froude number similar-

ity must also be maintained. For free-surface flows we have tacitly assumed that surface tension

is not important. We would find, however, that if surface tension is included, its effect would ap-

pear in the free-surface boundary condition, and the Weber number, would become an ad-

ditional similarity parameter. In addition, if the governing equations for compressible fluids are

considered, the Mach number, would appear as an additional similarity parameter.

It is clear that all the common dimensionless groups that we previously developed by using

dimensional analysis appear in the governing equations that describe fluid motion when these equa-

tions are expressed in terms of dimensionless variables. Thus, the use of the governing equations

to obtain similarity laws provides an alternative to dimensional analysis. This approach has the

V�c,

rV 2/�s,

p¿ � p � rgy,

p0

1   pr � pv2�
1
2rV

2,

1   pr � pv2�rV 2.p0�rV 2

p0pr

p0 � pr � pvp0,

pv

rV 2 1or 
1
2rV

22,
p0

/�tV,

p0,

rV/�m/�tV, p0 �rV 2, V 2�g/,

1in terms of u*, v*, p*, x*, y*, and t*2

m�rV/g/�V 2
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Governing equa-
tions expressed in
terms of dimension-
less variables lead
to the appropriate
dimensionless
groups.
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advantage that the variables are known and the assumptions involved are clearly identified. In ad-

dition, a physical interpretation of the various dimensionless groups can often be obtained.

7.11 Chapter Summary and Study Guide 373

7.11 Chapter Summary and Study Guide

similitude 
dimensionless product
basic dimensions 
pi term 
Buckingham pi theorem 
method of repeating 

variables 
model 
modeling laws
prototype 
prediction equation
model design conditions 
similarity requirements
modeling laws
length scale 
distorted model 
true model

Many practical engineering problems involving fluid mechanics require experimental data for their

solution. Thus, laboratory studies and experimentation play a significant role in this field. It is impor-

tant to develop good procedures for the design of experiments so they can be efficiently completed

with as broad applicability as possible. To achieve this end the concept of similitude is often used in

which measurements made in the laboratory can be utilized for predicting the behavior of other sim-

ilar systems. In this chapter, dimensional analysis is used for designing such experiments, as an aid

for correlating experimental data, and as the basis for the design of physical models. As the name

implies, dimensional analysis is based on a consideration of the dimensions required to describe the

variables in a given problem. A discussion of the use of dimensions and the concept of dimensional

homogeneity (which forms the basis for dimensional analysis) was included in Chapter 1.

Essentially, dimensional analysis simplifies a given problem described by a certain set of vari-

ables by reducing the number of variables that need to be considered. In addition to being fewer in

number, the new variables are dimensionless products of the original variables. Typically these new

dimensionless variables are much simpler to work with in performing the desired experiments. The

Buckingham pi theorem, which forms the theoretical basis for dimensional analysis, is introduced. This

theorem establishes the framework for reducing a given problem described in terms of a set of vari-

ables to a new set of fewer dimensionless variables. A simple method, called the repeating variable

method, is described for actually forming the dimensionless variables (often called pi terms). Forming

dimensionless variables by inspection is also considered. It is shown how the use of dimensionless vari-

ables can be of assistance in planning experiments and as an aid in correlating experimental data.

For problems in which there are a large number of variables, the use of physical models is

described. Models are used to make specific predictions from laboratory tests rather than formu-

lating a general relationship for the phenomenon of interest. The correct design of a model is

obviously imperative for the accurate predictions of other similar, but usually larger, systems. It

is shown how dimensional analysis can be used to establish a valid model design. An alternative

approach for establishing similarity requirements using governing equations (usually differential

equations) is presented.

The following checklist provides a study guide for this chapter. When your study of the

entire chapter and end-of-chapter exercies has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type

in the text.

use the Buckingham pi theorem to determine the number of independent dimensionless vari-

ables needed for a given flow problem.

form a set of dimensionless variables using the method of repeating variables.

form a set of dimensionless variables by inspection.

use dimensionless variables as an aid in interpreting and correlating experimental data.

use dimensional analysis to establish a set of similarity requirements (and prediction equa-

tion) for a model to be used to predict the behavior of another similar system (the prototype).

rewrite a given governing equation in a suitable nondimensional form and deduce similar-

ity requirements from the nondimensional form of the equation.

Some of the important equations in this chapter are:

Reynolds number

Froude number Fr �
V

1g/

Re �
rV/
m
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Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the aid
of a programmable calculator or a computer. Problems desig-
nated with a 1†2 are “open-ended” problems and require critical
thinking in that to work them one must make various assump-
tions and provide the necessary data. There is not a unique an-
swer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems and FlowLab problems
can also be accessed on this web site.

Section 7.1 Dimensional Analysis

7.1 Obtain a photograph/image of an experimental setup used to in-
vestigate some type of fluid flow phenomena. Print this photo and
write a brief paragraph that describes the situation involved.

7.2 Verify the left-hand side of Eq. 7.2 is dimensionless using the
MLT system.

7.3 The Reynolds number, is a very important parameter in
fluid mechanics. Verify that the Reynolds number is dimensionless,
using both the FLT system and the MLT system for basic dimen-
sions, and determine its value for ethyl alcohol flowing at a velocity
of 3 m�s through a 2-in.-diameter pipe.

rVD�m,

Problems

Euler number

Cauchy number

Mach number

Strouhal number

Weber number
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7.4 What are the dimensions of acceleration of gravity, density,
dynamic viscosity, kinematic viscosity, specific weight, and speed
of sound in (a) the FLT system, and (b) the MLT system? Compare
your results with those given in Table 1.1 in Chapter 1.

7.5 For the flow of a thin film of a liquid with a depth h and a free
surface, two important dimensionless parameters are the Froude
number, and the Weber number, Determine the
value of these two parameters for glycerin flowing with
a velocity of 0.7 m�s at a depth of 3 mm.

7.6 The Mach number for a body moving through a fluid with ve-
locity V is defined as where c is the speed of sound in the fluid.
This dimensionless parameter is usually considered to be important
in fluid dynamics problems when its value exceeds 0.3. What
would be the velocity of a body at a Mach number of 0.3 if the fluid
is (a) air at standard atmospheric pressure and and (b) water
at the same temperature and pressure?

Section 7.3 Determination of Pi Terms

7.7 Obtain a photograph/image of Osborne Reynolds, who devel-
oped the famous dimensionless quantity, the Reynolds number.
Print this photo and write a brief paragraph about him.

7.8 The power, , required to run a pump that moves fluid within
a piping system is dependent upon the volume flowrate, Q, den-
sity, �, impeller diameter, d, angular velocity, , and fluid viscos-
ity, �. Find the number of pi terms for this relationship.

7.9 For low speed flow over a flat plate, one measure of the bound-
ary layer is the resulting thickness, , at a given downstream location.
The boundary layer thickness is a function of the free stream veloc-
ity, , fluid density and viscosity � and �, and the distance from the
leading edge, x. Find the number of pi terms for this relationship.

7.10 The excess pressure inside a bubble (discussed in Chapter 1)
is known to be dependent on bubble radius and surface tension. Af-
ter finding the pi terms, determine the variation in excess pressure
if we (a) double the radius and (b) double the surface tension.

7.11 It is known that the variation of pressure, within a static
fluid is dependent upon the specific weight of the fluid and the ele-
vation difference, . Using dimensional analysis, find the form of
the hydrostatic equation for pressure variation.

7.12 At a sudden contraction in a pipe the diameter changes from
The pressure drop, which develops across the con-

traction is a function of as well as the velocity, V, in the
larger pipe, and the fluid density, and viscosity, Use

as repeating variables to determine a suitable set of
dimensionless parameters. Why would it be incorrect to include
the velocity in the smaller pipe as an additional variable?

7.13 Water sloshes back and forth in a tank as shown in Fig. P7.13.
The frequency of sloshing, is assumed to be a function of the ac-
celeration of gravity, g, the average depth of the water, h, and the
length of the tank, Develop a suitable set of dimensionless para-
meters for this problem using g and as repeating variables./

/.

v,

D1, V, and m
m.r,

D1 and D2,
¢p,D1 to D2.

¢z

¢p,

Vq

d

v

p

20 °C,

V�c,

1at 20 °C2
rV 2h�s.V�1gh,

7.15 Assume that the flowrate, Q, of a gas from a smokestack is a
function of the density of the ambient air, , the density of the gas,

, within the stack, the acceleration of gravity, g, and the height and
diameter of the stack, h and d, respectively. Use , d, and g as re-
peating variables to develop a set of pi terms that could be used to
describe this problem.

7.16 The pressure rise, across a pump can be expressed as

where D is the impeller diameter, the fluid density, the
rotational speed, and Q the flowrate. Determine a suitable set of
dimensionless parameters.

7.17 A thin elastic wire is placed between rigid supports. A fluid
flows past the wire, and it is desired to study the static deflection, , at
the center of the wire due to the fluid drag. Assume that

where is the wire length, d the wire diameter, the fluid den-
sity, the fluid viscosity, V the fluid velocity, and E the modulus
of elasticity of the wire material. Develop a suitable set of pi terms
for this problem.

7.18 Because of surface tension, it is possible, with care, to support
an object heavier than water on the water surface as shown in Fig.
P7.18. (See Video V1.9.) The maximum thickness, h, of a square of
material that can be supported is assumed to be a function of the
length of the side of the square, the density of the material, the
acceleration of gravity, g, and the surface tension of the liquid,
Develop a suitable set of dimensionless parameters for this problem.

s.
r,/,

m
r/

d � f 1/, d, r, m, V, E2

d

vr

¢p � f 1D, r, v, Q2

¢p,

ra

rg

ra
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h

�

ω

F I G U R E  P7.13

7.14 Assume that the power, , required to drive a fan is a function
of the fan diameter, D, the fluid density, �, the rotational speed, ,
and the flowrate, Q. Use D, , and � as repeating variables to de-
termine a suitable set of pi terms.

v
v

p

� h

F I G U R E  P7.18

7.19 Under certain conditions, wind blowing past a rectangular speed
limit sign can cause the sign to oscillate with a frequency (See Fig.
P7.19 and Video V9.9.) Assume that is a function of the sign width,
b, sign height, h, wind velocity, V, air density, and an elastic con-
stant, k, for the supporting pole. The constant, k, has dimensions of FL.
Develop a suitable set of pi terms for this problem.

r,
v

v.

ω

SPEED
LIMIT

40

F I G U R E  P7.19

7.20 The height, h, that a liquid will rise in a capillary tube is a
function of the tube diameter, D, the specific weight of the liquid,

and the surface tension, Perform a dimensional analysis usings.g,
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both the FLT and MLT systems for basic dimensions. Note: the re-
sults should obviously be the same regardless of the system of di-
mensions used. If your analysis indicates otherwise, go back and
check your work, giving particular attention to the required number
of reference dimensions.

7.21 A cone and plate viscometer consists of a cone with a very
small angle which rotates above a flat surface as shown in
Fig. P7.21. The torque, , required to rotate the cone at an angular
velocity is a function of the radius, R, the cone angle, , and the
fluid viscosity, , in addition to . With the aid of dimensional
analysis, determine how the torque will change if both the viscosity
and angular velocity are doubled.

vm
av

�
a
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F I G U R E  P7.21

R

�

ω

Fluid α

7.22 The pressure drop, , along a straight pipe of diameter D has
been experimentally studied, and it is observed that for laminar flow
of a given fluid and pipe, the pressure drop varies directly with the
distance, between pressure taps. Assume that is a function of
D and the velocity, V, and the fluid viscosity, Use dimensional
analysis to deduce how the pressure drop varies with pipe diameter.

7.23 A cylinder with a diameter D floats upright in a liquid as
shown in Fig. P7.23. When the cylinder is displaced slightly along
its vertical axis it will oscillate about its equilibrium position with a
frequency, Assume that this frequency is a function of the diam-
eter, D, the mass of the cylinder, m, and the specific weight, of
the liquid. Determine, with the aid of dimensional analysis, how the
frequency is related to these variables. If the mass of the cylinder
were increased, would the frequency increase or decrease?

g,
v.

m./,
¢p/,

¢p

F I G U R E  P7.23

Cylinder
diameter = D

Section 7.5 Determination of Pi Terms by Inspection

7.24 A liquid spray nozzle is designed to produce a specific size
droplet with diameter, d. The droplet size depends on the nozzle di-
ameter, D, nozzle velocity, V, and the liquid properties . Us-
ing the common dimensionless terms found in Table 7.1, determine
the functional relationship for the dependent diameter ratio of 

7.25 The velocity, c, at which pressure pulses travel through arter-
ies (pulse-wave velocity) is a function of the artery diameter, D, and
wall thickness, h, the density of blood, , and the modulus of elas-
ticity, E, of the arterial wall. Determine a set of nondimensional pa-
rameters that can be used to study experimentally the relationship

r

d�D.

r, m, s

between the pulse-wave velocity and the variables listed. Form the
nondimensional parameters by inspection.

7.26 As shown in Fig. P7.26 and Video V5.6, a jet of liquid di-
rected against a block can tip over the block. Assume that the veloc-
ity, V, needed to tip over the block is a function of the fluid density,

the diameter of the jet, D, the weight of the block, the width
of the block, b, and the distance, d, between the jet and the bottom
of the block. (a) Determine a set of dimensionless parameters for
this problem. Form the dimensionless parameters by inspection. (b)
Use the momentum equation to determine an equation for V in terms
of the other variables. (c) Compare the results of parts (a) and (b).

w,r,

V

D

d

b

ρ
�

F I G U R E  P7.26

7.27 Assume that the drag, on an aircraft flying at supersonic
speeds is a function of its velocity, V, fluid density, speed of
sound, c, and a series of lengths, which describe the
geometry of the aircraft. Develop a set of pi terms that could
be used to investigate experimentally how the drag is affected by
the various factors listed. Form the pi terms by inspection.

Section 7.7 Correlation of Experimental Data (Also See
Lab Problems 7.82, 7.83, 7.84, and 7.85)

7.28 The measurement of pressure is typically an important task in
fluids experiments. Obtain a photograph/image of a pressure mea-
surement device. Print this photo and write a brief paragraph that
describes its use.

*7.29 The pressure drop, over a certain length of horizontal
pipe is assumed to be a function of the velocity, V, of the fluid in the
pipe, the pipe diameter, D, and the fluid density and viscosity, and

(a) Show that this flow can be described in dimensionless form as
a “pressure coefficient,” that depends on the
Reynolds number, (b) The following data were ob-
tained in an experiment involving a fluid with 

and Plot a dimensionless graph
and use a power law equation to determine the functional relationship
between the pressure coefficient and the Reynolds number. (c) What
are the limitations on the applicability of your equation obtained in
part (b)?

D � 0.1 ft.m � 2 	 10�3 lb # s�ft2,
r � 2 slugs/ft3,

Re � rVD�m.
Cp � ¢p� 10.5 rV 22

m.
r

¢p,

/1, . . . , /i,
r,

d,

3 192
11 704
17 1088
20 1280

¢p, lb�ft2V, ft�s

*7.30 The pressure drop across a short hollowed plug placed in a
circular tube through which a liquid is flowing (see Fig. P7.30) can
be expressed as

¢p � f 1r, V, D, d2
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where is the fluid density, and V is the mean velocity in the tube.
Some experimental data obtained with 
and are given in the following table:V � 2 ft�s

 r � 2.0 slugs�ft3,D � 0.2 ft,
r

Problems 377

F I G U R E  P7.30

0.06 0.08 0.10 0.15

493.8 156.2 64.0 12.6¢p 1lb�ft22

d 1ft2

D
V

d

Δp

Plot the results of these tests, using suitable dimensionless parame-
ters, on log–log graph paper. Use a standard curve-fitting technique
to determine a general equation for . What are the limits of ap-
plicability of the equation?

¢p

m h, m H, m

2.0 0.10 0.833
4.0 0.10 0.833
2.0 0.20 0.417
4.0 0.20 0.417
2.0 0.35 0.238
4.0 0.35 0.238 

/,

F I G U R E  P7.32

CG

C
b

H
h

7.33 The time, t, it takes to pour a certain volume of liquid from a
cylindrical container depends on several factors, including the vis-
cosity of the liquid. (See Video V1.3.) Assume that for very viscous
liquids the time it takes to pour out 2/3 of the initial volume depends
on the initial liquid depth, the cylinder diameter, D, the liquid vis-
cosity, and the liquid specific weight, The data shown in theg.m,

/,

following table were obtained in the laboratory. For these tests
and (a) Perform a

dimensional analysis, and based on the data given, determine if vari-
ables used for this problem appear to be correct. Explain how you
arrived at your answer. (b) If possible, determine an equation relating
the pouring time and viscosity for the cylinder and liquids used in
these tests. If it is not possible, indicate what additional information
is needed.

g � 9.60 kN/m3.D � 67 mm,/ � 45 mm,

� (N • s/m2) 11 17 39 61 107

15 23 53 83 145t 1s2

7.34 In order to maintain uniform flight, smaller birds must beat
their wings faster than larger birds. It is suggested that the relation-
ship between the wingbeat frequency, , beats per second, and the
bird’s wingspan, , is given by a power law relationship,
(a) Use dimensional analysis with the assumption that the wingbeat
frequency is a function of the wingspan, the specific weight of the
bird, , the acceleration of gravity, g, and the density of the air, ,
to determine the value of the exponent . (b) Some typical data for
various birds are given in the table below. Does this data support
your result obtained in part (a)? Provide appropriate analysis to
show how you arrived at your conclusion.

n
rag

v � /n./
v

Wingbeat frequency,
Bird Wingspan, m beats/s

purple martin 0.28 5.3
robin 0.36 4.3
mourning dove 0.46 3.2
crow 1.00 2.2
Canada goose 1.50 2.6
great blue heron 1.80 2.0

*7.35 The concentric cylinder device of the type shown in Fig.
P7.35 is commonly used to measure the viscosity, , of liquids by
relating the angle of twist, , of the inner cylinder to the angular ve-
locity, , of the outer cylinder. Assume that

where K depends on the suspending wire properties and has the di-
mensions FL. The following data were obtained in a series of tests
for which , , and and

were constant.D2

D1/ � 1 ftm � 0.01 lb � s�ft2, K � 10 lb � ft

u � f 1v, m, K, D1, D2, /2
v

u
m

(rad) (rad/s)

0.89 0.30
1.50 0.50
2.51 0.82
3.05 1.05
4.28 1.43
5.52 1.86
6.40 2.14

VU

Determine from these data, with the aid of dimensional analysis,
the relationship between , , and for this particular apparatus.
Hint: Plot the data using appropriate dimensionless parameters,
and determine the equation of the resulting curve using a standard
curve-fitting technique. The equation should satisfy the condition
that for .v � 0u � 0

mvu

*7.31 Describe some everyday situations involving fluid flow and
estimate the Reynolds numbers for them. Based on your results, do
you think fluid inertia is important in most typical flow situations?
Explain.

*7.32 As shown in Fig. 2.26, Fig. P7.32, and Video V2.10, a rec-
tangular barge floats in a stable configuration provided the dis-
tance between the center of gravity, CG, of the object (boat and
load) and the center of buoyancy, C, is less than a certain amount,
H. If this distance is greater than H, the boat will tip over. Assume
H is a function of the boat’s width, b, length, and draft, h. (a)
Put this relationship into dimensionless form. (b) The results of a
set of experiments with a model barge with a width of 1.0 m are
shown in the table. Plot these data in dimensionless form and
determine a power-law equation relating the dimensionless para-
meters.

/,
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Section 7.8 Modeling and Similitude

7.36 Obtain a photograph/image of a prototype and the corre-
sponding model that was used for testing. Print these photos and
write a brief paragraph that describes the situation involved.

7.37 Air at is to flow through a 2-ft pipe at an average veloc-
ity of 6 ft s. What size pipe should be used to move water at 
and average velocity of 3 ft s if Reynolds number similarity is en-
forced?

7.38 To test the aerodynamics of a new prototype automobile, a
scale model will be tested in a wind tunnel. For dynamic similarity,
it will be required to match Reynolds number between model and
prototype. Assuming that you will be testing a one-tenth-scale
model and both model and prototype will be exposed to standard
air pressure, will it be better for the wind tunnel air to be colder or
hotter than standard sea-level air temperature of ? Why?

7.39 You are to conduct wind tunnel testing of a new football de-
sign that has a smaller lace height than previous designs (see
Videos V6.1 and V6.2). It is known that you will need to maintain
Re and St similarity for the testing. Based on standard college quar-
terbacks, the prototype parameters are set at and

The prototype football has a 7-in. diameter. Due to
instrumentation required to measure pressure and shear stress on
the surface of the football, the model will require a length scale of
2:1 (the model will be larger than the prototype). Determine the re-
quired model freestream velocity and model angular velocity.

7.40 A model of a submarine, 1 : 15 scale, is to be tested at 180 ft
s in a wind tunnel with standard sea-level air, while the prototype
will be operated in seawater. Determine the speed of the prototype
to ensure Reynolds number similarity.

7.41 SAE 30 oil at is pumped through a 3-ft-diameter
pipeline at a rate of A model of this pipeline is to be
designed using a 3-in.-diameter pipe and water at as the work-
ing fluid. To maintain Reynolds number similarity between these
two systems, what fluid velocity will be required in the model?

7.42 The water velocity at a certain point along a 1 : 10 scale
model of a dam spillway is 3 m s. What is the corresponding pro-
totype velocity if the model and prototype operate in accordance
with Froude number similarity?

7.43 The drag characteristics of a torpedo are to be studied in a
water tunnel using a 1 : 5 scale model. The tunnel operates with
freshwater at , whereas the prototype torpedo is to be used in20 °C

�

60 °F
6400 gal�min.

60 °F

�

v � 300 rpm.
V � 40 mph

15 °C

�
60 °F�

80 °F
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seawater at To correctly simulate the behavior of the pro-
totype moving with a velocity of 30 m�s, what velocity is required
in the water tunnel?

7.44 For a certain fluid-flow problem it is known that both the
Froude number and the Weber number are important dimensionless
parameters. If the problem is to be studied by using a 1 : 15 scale
model, determine the required surface tension scale if the density
scale is equal to 1. The model and prototype operate in the same
gravitational field.

7.45 The fluid dynamic characteristics of an airplane flying
240 mph at 10,000 ft are to be investigated with the aid of a 1 : 20
scale model. If the model tests are to be performed in a wind tunnel
using standard air, what is the required air velocity in the wind tun-
nel? Is this a realistic velocity?

7.46 If an airplane travels at a speed of 1120 km�hr at an altitude
of 15 km, what is the required speed at an altitude of 8 km to satisfy
Mach number similarity? Assume the air properties correspond to
those for the U.S. standard atmosphere.

7.47 (See Fluids in the News article “Modeling parachutes in a wa-
ter tunnel,” Section 7.8.1.) Flow characteristics for a 30-ft-diameter
prototype parachute are to be determined by tests of a 1-ft-diameter
model parachute in a water tunnel. Some data collected with the model
parachute indicate a drag of 17 lb when the water velocity is .
Use the model data to predict the drag on the prototype parachute
falling through air at . Assume the drag to be a function of the
velocity, V, the fluid density, , and the parachute diameter, D.

7.48 The lift and drag developed on a hydrofoil are to be deter-
mined through wind tunnel tests using standard air. If full-scale
tests are to be run, what is the required wind tunnel velocity corre-
sponding to a hydrofoil velocity in seawater at 15 mph? Assume
Reynolds number similarity is required.

7.49 A scale model is to be used in a towing tank to study the
water motion near the bottom of a shallow channel as a large barge
passes over. (See Video V7.16.) Assume that the model is operated
in accordance with the Froude number criteria for dynamic simili-
tude. The prototype barge moves at a typical speed of 15 knots.
(a) At what speed (in ) should the model be towed? (b) Near the
bottom of the model channel a small particle is found to move
0.15 ft in one second so that the fluid velocity at that point is ap-
proximately Determine the velocity at the corresponding
point in the prototype channel.

7.50 A solid sphere having a diameter d and specific weight is
immersed in a liquid having a specific weight and then
released. It is desired to use a model system to determine the max-
imum height, h, above the liquid surface that the sphere will rise
upon release from a depth H. It can be assumed that the important
liquid properties are the density, , specific weight, , and vis-
cosity, . Establish the model design conditions and the prediction
equation, and determine whether the same liquid can be used in
both the model and prototype systems.

7.51 A thin layer of an incompressible fluid flows steadily over a
horizontal smooth plate as shown in Fig. P7.51. The fluid surface is
open to the atmosphere, and an obstruction having a square cross
section is placed on the plate as shown. A model with a length scale

mf

gfgf �g

gf 1gf 7 gs2
gs

0.15 ft/s.

ft/s

1/50

r
10 ft�s

4 ft�s

15.6 °C.
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of and a fluid density scale of 1.0 is to be designed to predict the
depth of fluid, y, along the plate. Assume that inertial, gravitational,
surface tension, and viscous effects are all important. What are the
required viscosity and surface tension scales?

7.52 The drag on a 2-m-diameter satellite dish due to an 80-km hr
wind is to be determined through a wind tunnel test using a geomet-
rically similar 0.4-m-diameter model dish. Assume standard air for
both model and prototype. (a) At what air speed should the model
test be run? (b) With all similarity conditions satisfied, the measured
drag on the model was determined to be 170 N. What is the pre-
dicted drag on the prototype dish?

7.53 A large, rigid, rectangular billboard is supported by an elastic
column as shown in Fig. P7.53. There is concern about the deflec-
tion, , of the top of the structure during a high wind of velocity V.
A wind tunnel test is to be conducted with a 1 : 15 scale model. As-
sume the pertinent column variables are its length and cross-
sectional dimensions, and the modulus of elasticity of the material
used for the column. The only important “wind” variables are the
air density and velocity. (a) Determine the model design conditions
and the prediction equation for the deflection. (b) If the same struc-
tural materials are used for the model and prototype, and the wind
tunnel operates under standard atmospheric conditions, what is the
required wind tunnel velocity to match an 80 km hr wind?�

d

�

1
4
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7.54 A thin flat plate having a diameter of 0.3 ft is towed through
a tank of oil at a velocity of . The plane of the
plate is perpendicular to the direction of motion, and the plate is
submerged so that wave action is negligible. Under these condi-
tions the drag on the plate is 1.4 lb. If viscous effects are neglected,
predict the drag on a geometrically similar, 2-ft-diameter plate that
is towed with a velocity of through water at under con-
ditions similar to those for the smaller plate.

7.55 For a certain model study involving a 1 : 5 scale model it is
known that Froude number similarity must be maintained. The pos-
sibility of cavitation is also to be investigated, and it is assumed that
the cavitation number must be the same for model and prototype.
The prototype fluid is water at and the model fluid is water at

If the prototype operates at an ambient pressure of 101 kPa
1abs2, what is the required ambient pressure for the model system?

7.56 A thin layer of particles rests on the bottom of a horizontal
tube as shown in Fig. P7.56. When an incompressible fluid flows

70 °C.
30 °C,

60 °F3 ft�s

5 ft�s1g � 53 lb�ft32

through the tube, it is observed that at some critical velocity the par-
ticles will rise and be transported along the tube. A model is to be
used to determine this critical velocity. Assume the critical velocity,

, to be a function of the pipe diameter, D, particle diameter, d, the
fluid density, , and viscosity, , the density of the particles, , and
the acceleration of gravity, g. (a) Determine the similarity require-
ments for the model, and the relationship between the critical
velocity for model and prototype (the prediction equation). (b) For
a length scale of and a fluid density scale of 1.0, what will be the
critical velocity scale (assuming all similarity requirements are
satisfied)?

7.57 The pressure rise, across a blast wave, as shown in Fig.
P7.57 and Video V11.7, is assumed to be a function of the amount
of energy released in the explosion, E, the air density, the speed
of sound, c, and the distance from the blast, d. (a) Put this relation-
ship in dimensionless form. (b) Consider two blasts: the prototype
blast with energy release E and a model blast with the en-
ergy release At what distance from the model blast
will the pressure rise be the same as that at a distance of 1 mile from
the prototype blast?

1Em � 0.001 E2.
1/1000th

r,

¢p,

1
2

rpmr
Vc
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Air (  , c)ρ
(2)
Δp = p2 – p1

(1)

d

7.58 The drag, on a sphere located in a pipe through which a
fluid is flowing is to be determined experimentally 1see Fig. P7.582.
Assume that the drag is a function of the sphere diameter, d, the
pipe diameter, D, the fluid velocity, V, and the fluid density, (a)
What dimensionless parameters would you use for this problem?
(b) Some experiments using water indicate that for 

and the drag is If possible,
estimate the drag on a sphere located in a 2-ft-diameter pipe
through which water is flowing with a velocity of 6 ft�s. The sphere
diameter is such that geometric similarity is maintained. If it is not
possible, explain why not.

1.5 � 10�3 lb.V � 2 ft�s,D � 0.5 in.,
d � 0.2 in.,

r.

d,
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V
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7.59 An incompressible fluid oscillates harmonically (
where V is the velocity) with a frequency of 10 rad s in a

4-in.-diameter pipe. scale model is to be used to determine the
pressure difference per unit length, (at any instant) along the
pipe. Assume that

where D is the pipe diameter, the frequency, t the time, the fluid
viscosity, and the fluid density. (a) Determine the similarity re-
quirements for the model and the prediction equation for . (b) If
the same fluid is used in the model and the prototype, at what fre-
quency should the model operate?

7.60 As shown in Fig. P7.60, a “noisemaker” B is towed behind a
minesweeper A to set off enemy acoustic mines such as at C. The
drag force of the noisemaker is to be studied in a water tunnel at a
1⁄4 scale model (model 1⁄4 the size of the prototype). The drag force is

¢p/

r
mv

¢p/ � f 1D, V0, v, t, m, r2

¢p/

A 
1
4

�V0 sin vt,
V �
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assumed to be a function of the speed of the ship, the density and
viscosity of the fluid, and the diameter of the noisemaker. (a) If the
prototype towing speed in 3 m s, determine the water velocity in
the tunnel for the model tests. (b) If the model tests of part (a) pro-
duced a model drag of 900 N, determine the drag expected on the
prototype.

�
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7.61 The drag characteristics for a newly designed automobile
having a maximum characteristic length of 20 ft are to be deter-
mined through a model study. The characteristics at both low speed
1approximately 20 mph2 and high speed 190 mph2 are of interest. For
a series of projected model tests, an unpressurized wind tunnel that
will accommodate a model with a maximum characteristic length
of 4 ft is to be used. Determine the range of air velocities that would
be required for the wind tunnel if Reynolds number similarity is de-
sired. Are the velocities suitable? Explain.

7.62 The drag characteristics of an airplane are to be determined
by model tests in a wind tunnel operated at an absolute pressure of
1300 kPa. If the prototype is to cruise in standard air at 385 km�hr,
and the corresponding speed of the model is not to differ by more
than 20% from this 1so that compressibility effects may be ignored2,
what range of length scales may be used if Reynolds number simi-
larity is to be maintained? Assume the viscosity of air is unaffected
by pressure, and the temperature of air in the tunnel is equal to the
temperature of the air in which the airplane will fly.

7.63 Wind blowing past a flag causes it to “flutter in the breeze.”
The frequency of this fluttering, is assumed to be a function of
the wind speed, V, the air density, the acceleration of gravity, g,
the length of the flag, and the “area density,” 1with dimensions
of 2 of the flag material. It is desired to predict the flutter fre-
quency of a large flag in a wind. To do this a
model flag with is to be tested in a wind tunnel. (a) Deter-
mine the required area density of the model flag material if the large
flag has (b) What wind tunnel velocity is re-
quired for testing the model? (c) If the model flag flutters at 6 Hz,
predict the frequency for the large flag.

†7.64 If a large oil spill occurs from a tanker operating near a
coastline, the time it would take for the oil to reach shore is of
great concern. Design a model system that can be used to investi-
gate this type of problem in the laboratory. Indicate all assump-
tions made in developing the design and discuss any difficulty that
may arise in satisfying the similarity requirements arising from
your model design.

7.65 The drag on a sphere moving in a fluid is known to be a func-
tion of the sphere diameter, the velocity, and the fluid viscosity and
density. Laboratory tests on a 4-in.-diameter sphere were performed
in a water tunnel and some model data are plotted in Fig. P7.65.
For these tests the viscosity of the water was 
and the water density was . Estimate the drag on an
8-ft-diameter balloon moving in air at a velocity of . Assume3 ft�s

1.94 slugs�ft3
2.3 � 10�5 lb # s�ft2

rA � 0.006 slugs�ft2.

/ � 4 ft
V � 30 ft�s/ � 40 ft

ML�2
rA/,

r,
v,

Section 7.9 Some Typical Model Studies

7.66 Obtain a photograph/image of a situation where a flow
around an immersed body is being experimentally tested. Print this
photo and write a brief paragraph that describes the situation in-
volved.

7.67 Drag measurements were taken for a sphere, with a diameter
of 5 cm, moving at 4 m s in water at . The resulting drag on
the sphere was 10 N. For a balloon with 1-m diameter rising in air
with standard temperature and pressure, determine (a) the velocity
if Reynolds number similarity is enforced and (b) the drag force if
the drag coefficient (Eq. 7.19) is the dependent pi term.

7.68 A prototype automobile is designed to travel at 65 km hr. A
model of this design is tested in a wind tunnel with identical stan-
dard sea-level air properties at a 1: 5 scale. The measured model
drag is 400 N, enforcing dynamic similarity. Determine (a) the drag
force on the prototype and (b) the power required to overcome this
drag. See Eq. 7.19.

7.69 A new blimp will move at 6 m s in air, and we want to
predict the drag force. Using a 1 : 13-scale model in water at 
and measuring a 2500-N drag force on the model, determine (a) the
required water velocity, (b) the drag on the prototype blimp and, (c)
the power that will be required to propel it through the air.

7.70 At a large fish hatchery the fish are reared in open, water-filled
tanks. Each tank is approximately square in shape with curved cor-
ners, and the walls are smooth. To create motion in the tanks, water
is supplied through a pipe at the edge of the tank. The water is
drained from the tank through an opening at the center. (See Video
V7.9.) A model with a length scale of 1 � 13 is to be used to deter-
mine the velocity, V, at various locations within the tank. Assume
that V � f ( , , , , g, Q) where is some characteristic length
such as the tank width, represents a series of other pertinent
lengths, such as inlet pipe diameter, fluid depth, etc., is the fluid
density, is the fluid viscosity, g is the acceleration of gravity, and
Q is the discharge through the tank. (a) Determine a suitable set of
dimensionless parameters for this problem and the prediction equa-
tion for the velocity. If water is to be used for the model, can all of
the similarity requirements be satisfied? Explain and support your
answer with the necessary calculations. (b) If the flowrate into the
full-sized tank is 250 gpm, determine the required value for the
model discharge assuming Froude number similarity. What model
depth will correspond to a depth of 32 in. in the full-sized tank?

7.71 Flow patterns that develop as winds blow past a vehicle, such
as a train, are often studied in low-speed environmental (meteoro-
logical) wind tunnels. (See Video V7.16.) Typically, the air veloci-
ties in these tunnels are in the range of to Consider
a cross wind blowing past a train locomotive. Assume that the local

30 m/s.0.1 m/s

m
r

/i

/mr/i/

20 °C
20 °C�

�

20 °C�

the air to have a viscosity of and a density of
.2.38 � 10�3 slugs�ft3

3.7 � 10�7 lb # s�ft2
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wind velocity, V, is a function of the approaching wind velocity (at
some distance from the locomotive), U, the locomotive length,
height, h, and width, b, the air density, and the air viscosity, (a)
Establish the similarity requirements and prediction equation for a
model to be used in the wind tunnel to study the air velocity, V,
around the locomotive. (b) If the model is to be used for cross winds
gusting to explain why it is not practical to maintain
Reynolds number similarity for a typical length scale 1�50.

7.72 (See Fluids in the News article titled “Galloping Gertie,” Sec-
tion 7.8.2.) The Tacoma Narrows bridge failure is a dramatic exam-
ple of the possible serious effects of wind-induced vibrations. As a
fluid flows around a body, vortices may be created which are shed
periodically creating an oscillating force on the body. If the fre-
quency of the shedding vortices coincides with the natural frequency
of the body, large displacements of the body can be induced as was
the case with the Tacoma Narrows bridge. To illustrate this type of
phenomenon, consider fluid flow past a circular cylinder. Assume
the frequency, n, of the shedding vortices behind the cylinder is a
function of the cylinder diameter, D, the fluid velocity, V, and the
fluid kinematic viscosity, . (a) Determine a suitable set of dimen-
sionless variables for this problem. One of the dimensionless vari-
ables should be the Strouhal number, . (b) Some results of ex-
periments in which the shedding frequency of the vortices (in Hz)
was measured, using a particular cylinder and Newtonian, incom-
pressible fluid, are shown in Fig. P7.72. Is this a “universal curve”
that can be used to predict the shedding frequency for any cylinder
placed in any fluid? Explain. (c) A certain structural component in
the form of a 1-in.-diameter, 12-ft-long rod acts as a cantilever beam
with a natural frequency of 19 Hz. Based on the data in Fig. P7.72,
estimate the wind speed that may cause the rod to oscillate at its
natural frequency. Hint: Use a trial and error solution.

nD�V

n

U � 25 m�s,

m.r,
/,
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7.73 (See Fluids in the News article titled “Ice engineering,” Sec-
tion 7.9.3.) A model study is to be developed to determine the force
exerted on bridge piers due to floating chunks of ice in a river. The
piers of interest have square cross sections. Assume that the force,
R, is a function of the pier width, b, the depth of the ice, d, the ve-
locity of the ice, V, the acceleration of gravity, g, the density of the
ice, , and a measure of the strength of the ice, , where has the
dimensions (a) Based on these variables determine a suitable
set of dimensionless variables for this problem. (b) The prototype
conditions of interest include an ice thickness of 12 in. and an ice
velocity of . What model ice thickness and velocity would be
required if the length scale is to be 1 10? (c) If the model and pro-
totype ice have the same density, can the model ice have the same
strength properties as that of the prototype ice? Explain.

�
6 ft�s

FL�2.
EiEiri

7.74 As illustrated in Video V7.9, models are commonly used to
study the dispersion of a gaseous pollutant from an exhaust stack
located near a building complex. Similarity requirements for the pol-
lutant source involve the following independent variables: the stack
gas speed, V, the wind speed, U, the density of the atmospheric air,

the difference in densities between the air and the stack gas,
the acceleration of gravity, g, the kinematic viscosity of the

stack gas, and the stack diameter, D. (a) Based on these variables,
determine a suitable set of similarity requirements for modeling the
pollutant source. (b) For this type of model a typical length scale
might be 1�200. If the same fluids were used in model and proto-
type, would the similarity requirements be satisfied? Explain and
support your answer with the necessary calculations.

7.75 River models are used to study many different types of flow
situations. (See, for example, Video V7.12.) A certain small river
has an average width and depth of 60 ft and 4 ft, respectively, and
carries water at a flowrate of A model is to be designed
based on Froude number similarity so that the discharge scale is
1�250. At what depth and flowrate would the model operate?

7.76 As winds blow past buildings, complex flow patterns can de-
velop due to various factors such as flow separation and interactions
between adjacent buildings. (See Video V7.13.) Assume that the lo-
cal gage pressure, p, at a particular loaction on a building is a func-
tion of the air density, the wind speed, V, some characteristic
length, and all other pertinent lengths, needed to characterize
the geometry of the building or building complex. (a) Determine a
suitable set of dimensionless parameters that can be used to study
the pressure distribution. (b) An eight-story building that is 100 ft
tall is to be modeled in a wind tunnel. If a length scale of 1�300 is to
be used, how tall should the model building be? (c) How will a mea-
sured pressure in the model be related to the corresponding proto-
type pressure? Assume the same air density in model and prototype.
Based on the assumed variables, does the model wind speed have to
be equal to the prototype wind speed? Explain.

Section 7.10 Similitude Based on Governing
Differential Equations

7.77 Start with the two-dimensional continuity equation and the
Navier–Stokes equations 1Eqs. 7.28, 7.29, and 7.302 and verify the
nondimensional forms of these equations 1Eqs. 7.31, 7.34, and 7.352.

7.78 A viscous fluid is contained between wide, parallel plates
spaced a distance h apart as shown in Fig. P7.78. The upper plate is
fixed, and the bottom plate oscillates harmonically with a velocity
amplitude U and frequency The differential equation for the
velocity distribution between the plates is

where u is the velocity, t is time, and and are fluid density and
viscosity, respectively. Rewrite this equation in a suitable nondi-
mensional form using h, U, and as reference parameters.v

mr

r 
0u

0t
� m 

02u

0y2

v.

/i,/,
r,

700 ft3/s.

vs,
r � rs,
r,

F I G U R E  P7.78

y h
u

u = Ucos    tω

x

Fixed plate

7.79 The deflection of the cantilever beam of Fig. P7.79 is gov-
erned by the differential equation

EI 
d2y

dx2
� P1x � / 2
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where E is the modulus of elasticity and I is the moment of inertia
of the beam cross section. The boundary conditions are at

and at (a) Rewrite the equation and
boundary conditions in dimensionless form using the beam length,

as the reference length. (b) Based on the results of part 1a2, what
are the similarity requirements and the prediction equation for a
model to predict deflections?

/,

x � 0.dy�dx � 0x � 0
y � 0
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7.81 An incompressible fluid is contained between two infinite
parallel plates as illustrated in Fig. P7.81. Under the influence of a
harmonically varying pressure gradient in the x direction, the fluid
oscillates harmonically with a frequency The differential equa-
tion describing the fluid motion is

r 
0u

0t
� X cos vt � m 

02u

0y2

v.

where X is the amplitude of the pressure gradient. Express this
equation in nondimensional form using h and as reference para-
meters.

■ Lab Problems

7.82 This problem involves the time that it takes water to drain
from two geometrically similar tanks. To proceed with this problem,
go to the book’s web site, www.wiley.com/college/munson.

7.83 This problem involves determining the frequency of vortex
shedding from a circular cylinder as water flows past it. To proceed
with this problem, go to the book’s web site, www.wiley.com/
college/munson.

7.84 This problem involves the determination of the head loss for
flow through a valve. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/munson.

7.85 This problem involves the calibration of a rotameter. To pro-
ceed with this problem, go to the book’s web site, www.wiley.com/
college/munson.

■ Life Long Learning Problems

7.86 Microfluidics is the study of fluid flow in fabricated devices
at the micro scale. Advances in microfluidics have enhanced the
ability of scientists and engineers to perform laboratory experi-
ments using miniaturized devices known as a “lab-on-a-chip.” Ob-
tain information about a lab-on-a-chip device that is available com-
mercially and investigate its capabilities. Summarize your findings
in a brief report.

7.87 For some types of aerodynamic wind tunnel testing, it is dif-
ficult to simultaneously match both the Reynolds number and
Mach number between model and prototype. Engineers have de-
veloped several potential solutions to the problem including pres-
surized wind tunnels and lowering the temperature of the flow.
Obtain information about cryogenic wind tunnels and explain the
advantages and disadvantages. Summarize your findings in a brief
report.

■ FlowLab Problems

*7.88 This FlowLab problem involves investigation of the
Reynolds number significance in fluid dynamics through the sim-
ulation of flow past a cylinder. To proceed with this problem, go to
the book’s web site, www.wiley.com/college/munson.

■ FE Exam Problems

Sample FE (Fundamental of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.

v

7.80 A liquid is contained in a pipe that is closed at one end as
shown in Fig. P7.80. Initially the liquid is at rest, but if the end is
suddenly opened the liquid starts to move. Assume the pressure 
remains constant. The differential equation that describes the re-
sulting motion of the liquid is

where is the velocity at any radial location, r, and t is time. Rewrite
this equation in dimensionless form using the liquid density, the
viscosity, and the pipe radius, R, as reference parameters.m,

r,
vz

r 
0vz

0t
�

p1

/
� m a

02vz

0r2
�

1

r
 

0vz

0r
b

p1

JWCL068_ch07_332-382.qxd  9/23/08  10:47 AM  Page 382

http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/
http://www.wiley.com/college/munson


383

CHAPTER OPENING PHOTO: Turbulent jet: The jet of water from the pipe is turbulent. The complex, irregular,

unsteady structure typical of turbulent flows is apparent. (Laser-induced fluorescence of dye in water.) (Pho-
tography by P. E. Dimotakis, R. C. Lye, and D. Z. Papantoniou.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ identify and understand various characteristics of the flow in pipes.

■ discuss the main properties of laminar and turbulent pipe flow and appreciate

their differences.

■ calculate losses in straight portions of pipes as well as those in various

pipe system components.

■ apply appropriate equations and principles to analyze a variety of pipe

flow situations.

■ predict the flowrate in a pipe by use of common flowmeters.

In the previous chapters we have considered a variety of topics concerning the motion of fluids.

The basic governing principles concerning mass, momentum, and energy were developed and ap-

plied, in conjunction with rather severe assumptions, to numerous flow situations. In this chapter

we will apply the basic principles to a specific, important topic—the incompressible flow of vis-

cous fluids in pipes and ducts.

The transport of a fluid 1liquid or gas2 in a closed conduit 1commonly called a pipe if it is of

round cross section or a duct if it is not round2 is extremely important in our daily operations. A brief

consideration of the world around us will indicate that there is a wide variety of applications of pipe

flow. Such applications range from the large, man-made Alaskan pipeline that carries crude oil al-

most 800 miles across Alaska, to the more complex 1and certainly not less useful2 natural systems of

“pipes” that carry blood throughout our body and air into and out of our lungs. Other examples
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include the water pipes in our homes and the distribution system that delivers the water from the

city well to the house. Numerous hoses and pipes carry hydraulic fluid or other fluids to various

components of vehicles and machines. The air quality within our buildings is maintained at com-

fortable levels by the distribution of conditioned 1heated, cooled, humidified�dehumidified2 air

through a maze of pipes and ducts. Although all of these systems are different, the fluid mechan-

ics principles governing the fluid motions are common. The purpose of this chapter is to under-

stand the basic processes involved in such flows.

Some of the basic components of a typical pipe system are shown in Fig. 8.1. They include

the pipes themselves 1perhaps of more than one diameter2, the various fittings used to connect the

individual pipes to form the desired system, the flowrate control devices 1valves2, and the pumps

or turbines that add energy to or remove energy from the fluid. Even the most simple pipe systems

are actually quite complex when they are viewed in terms of rigorous analytical considerations.

We will use an “exact” analysis of the simplest pipe flow topics 1such as laminar flow in long,

straight, constant diameter pipes2 and dimensional analysis considerations combined with experi-

mental results for the other pipe flow topics. Such an approach is not unusual in fluid mechanics

investigations. When “real-world” effects are important 1such as viscous effects in pipe flows2, it

is often difficult or “impossible” to use only theoretical methods to obtain the desired results. A

judicious combination of experimental data with theoretical considerations and dimensional analy-

sis often provides the desired results. The flow in pipes discussed in this chapter is an example of

such an analysis.

384 Chapter 8 ■ Viscous Flow in Pipes

F I G U R E  8.1 Typical pipe system components.
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Before we apply the various governing equations to pipe flow examples, we will discuss some of

the basic concepts of pipe flow. With these ground rules established we can then proceed to for-

mulate and solve various important flow problems.

Although not all conduits used to transport fluid from one location to another are round in

cross section, most of the common ones are. These include typical water pipes, hydraulic hoses, and

other conduits that are designed to withstand a considerable pressure difference across their walls

without undue distortion of their shape. Typical conduits of noncircular cross section include heat-

ing and air conditioning ducts that are often of rectangular cross section. Normally the pressure dif-

ference between the inside and outside of these ducts is relatively small. Most of the basic princi-

ples involved are independent of the cross-sectional shape, although the details of the flow may be

dependent on it. Unless otherwise specified, we will assume that the conduit is round, although we

will show how to account for other shapes.

8.1 General Characteristics of Pipe Flow

The pipe is as-
sumed to be com-
pletely full of the
flowing fluid.
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For all flows involved in this chapter, we assume that the pipe is completely filled with the

fluid being transported as is shown in Fig. 8.2a. Thus, we will not consider a concrete pipe through

which rainwater flows without completely filling the pipe, as is shown in Fig. 8.2b. Such flows,

called open-channel flow, are treated in Chapter 10. The difference between open-channel flow and

the pipe flow of this chapter is in the fundamental mechanism that drives the flow. For open-chan-

nel flow, gravity alone is the driving force—the water flows down a hill. For pipe flow, gravity

may be important 1the pipe need not be horizontal2, but the main driving force is likely to be a

pressure gradient along the pipe. If the pipe is not full, it is not possible to maintain this pressure

difference,

8.1.1 Laminar or Turbulent Flow

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow. Osborne Reynolds

11842–19122, a British scientist and mathematician, was the first to distinguish the difference be-

tween these two classifications of flow by using a simple apparatus as shown by the figure in the

margin, which is a sketch of Reynolds’ dye experiment. Reynolds injected dye into a pipe in which

water flowed due to gravity. The entrance region of the pipe is depicted in Fig. 8.3a. If water runs

through a pipe of diameter D with an average velocity V, the following characteristics are ob-

served by injecting neutrally buoyant dye as shown. For “small enough flowrates” the dye streak

1a streakline2 will remain as a well-defined line as it flows along, with only slight blurring due to

molecular diffusion of the dye into the surrounding water. For a somewhat larger “intermediate

flowrate” the dye streak fluctuates in time and space, and intermittent bursts of irregular behav-

ior appear along the streak. On the other hand, for “large enough flowrates” the dye streak al-

most immediately becomes blurred and spreads across the entire pipe in a random fashion. These

three characteristics, denoted as laminar, transitional, and turbulent flow, respectively, are illus-

trated in Fig. 8.3b.

The curves shown in Fig. 8.4 represent the x component of the velocity as a function of

time at a point A in the flow. The random fluctuations of the turbulent flow 1with the associated

particle mixing2 are what disperse the dye throughout the pipe and cause the blurred appearance

illustrated in Fig. 8.3b. For laminar flow in a pipe there is only one component of velocity,

p1 � p2.
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F I G U R E  8.3 (a) Experiment to illustrate type of flow. (b) Typical dye streaks.
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For turbulent flow the predominant component of velocity is also along the pipe, but it

is unsteady 1random2 and accompanied by random components normal to the pipe axis,

Such motion in a typical flow occurs too fast for our eyes to follow. Slow

motion pictures of the flow can more clearly reveal the irregular, random, turbulent nature of the

flow.

As was discussed in Chapter 7, we should not label dimensional quantities as being “large”

or “small,” such as “small enough flowrates” in the preceding paragraphs. Rather, the appropriate

dimensionless quantity should be identified and the “small” or “large” character attached to it. A

quantity is “large” or “small” only relative to a reference quantity. The ratio of those quantities re-

sults in a dimensionless quantity. For pipe flow the most important dimensionless parameter is the

Reynolds number, Re—the ratio of the inertia to viscous effects in the flow. Hence, in the previ-

ous paragraph the term flowrate should be replaced by Reynolds number, where V
is the average velocity in the pipe. That is, the flow in a pipe is laminar, transitional, or turbulent

provided the Reynolds number is “small enough,” “intermediate,” or “large enough.” It is not only

the fluid velocity that determines the character of the flow—its density, viscosity, and the pipe size

are of equal importance. These parameters combine to produce the Reynolds number. The distinc-

tion between laminar and turbulent pipe flow and its dependence on an appropriate dimensionless

quantity was first pointed out by Osborne Reynolds in 1883.

The Reynolds number ranges for which laminar, transitional, or turbulent pipe flows are ob-

tained cannot be precisely given. The actual transition from laminar to turbulent flow may take place

at various Reynolds numbers, depending on how much the flow is disturbed by vibrations of the pipe,

roughness of the entrance region, and the like. For general engineering purposes 1i.e., without undue

precautions to eliminate such disturbances2, the following values are appropriate: The flow in a round

pipe is laminar if the Reynolds number is less than approximately 2100. The flow in a round pipe is

turbulent if the Reynolds number is greater than approximately 4000. For Reynolds numbers between

these two limits, the flow may switch between laminar and turbulent conditions in an apparently ran-

dom fashion 1transitional flow2.

Re � rVD�m,

V � u î � v ĵ � wk̂.

V � uî.
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F I G U R E  8.4 Time dependence of fluid velocity at a point.
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Nanoscale flows The term nanoscale generally refers to objects

with characteristic lengths from atomic dimensions up to a few hun-

dred nanometers (nm). (Recall that .) Nanoscale

fluid mechanics research has recently uncovered many surprising

and useful phenomena. No doubt many more remain to be discov-

ered. For example, in the future researchers envision using

nanoscale tubes to push tiny amounts of water-soluble drugs to ex-

actly where they are needed in the human body. Because of the tiny

diameters involved, the Reynolds numbers for such flows are ex-

tremely small and the flow is definitely laminar. In addition, some

1 nm � 10�9 m

standard properties of everyday flows (for example, the fact that a

fluid sticks to a solid boundary) may not be valid for nanoscale

flows. Also, ultratiny mechanical pumps and valves are difficult to

manufacture and may become clogged by tiny particles such as bio-

logical molecules. As a possible solution to such problems, re-

searchers have investigated the possibility of using a system that

does not rely on mechanical parts. It involves using light-sensitive

molecules attached to the surface of the tubes. By shining light onto

the molecules, the light-responsive molecules attract water and

cause motion of water through the tube. (See Problem 8.10.)

Pipe flow character-
istics are dependent
on the value of the
Reynolds number.

V8.3 Intermittent
turbulent burst in
pipe flow
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8.1 General Characteristics of Pipe Flow 387

GIVEN Water at a temperature of 50 °F flows through a pipe

of diameter D � 0.73 in. and into a glass as shown in Fig. E8.1a.

FIND Determine

(a) the minimum time taken to fill a 12-oz glass (volume �
0.0125 ft3) with water if the flow in the pipe is to be laminar.

Repeat the calculations if the water temperature is 140 °F.

(b) the maximum time taken to fill the glass if the flow is to be tur-

bulent. Repeat the calculations if the water temperature is 140 °F.

SOLUTION

F I G U R E  E8.1a

F I G U R E  E8.1b

Laminar or Turbulent FlowEXAMPLE 8.1

(a) If the flow in the pipe is to remain laminar, the minimum

time to fill the glass will occur if the Reynolds number is the max-

imum allowed for laminar flow, typically

Thus, where from Table B.1,

and at while 

and at Thus, the maximum

average velocity for laminar flow in the pipe is

Similarly, at With of glass

and we obtain

(Ans)

Similarly, at To maintain laminar flow, the less

viscous hot water requires a lower flowrate than the cold water.

(b) If the flow in the pipe is to be turbulent, the maximum time to

fill the glass will occur if the Reynolds number is the minimum al-

lowed for turbulent flow, Thus,

and 

at (Ans)

Similarly, and at 

COMMENTS Note that because water is “not very viscous,”

the velocity must be “fairly small” to maintain laminar flow. In

general, turbulent flows are encountered more often than lami-

nar flows because of the relatively small viscosity of most com-

mon fluids (water, gasoline, air). By repeating the calculations

at various water temperatures, T (i.e., with different densities

and viscosities), the results shown in Fig. E8.1b are obtained. As

the water temperature increases, the kinematic viscosity, � �
�/�, decreases and the corresponding times to fill the glass 

increase as indicated. (Temperature effects on the viscosity of

gases are the opposite; increase in temperature causes an in-

crease in viscosity.)

140 °F.t � 12.8 sV � 0.335 ft�s

50 °Ft � 4.65 s

rD � 0.925 ft�s
V � 4000m�Re � 4000.

140 °F.t � 24.4 s

 � 8.85 s at T � 50 °F

 t �
V�

Q
�

V�

1p�42D2V
�

410.0125 ft32

1p 30.73�12 4 2ft22 10.486 ft�s2

V� � Qt
V� � volume140 °F.V � 0.176 ft�s

 � 0.486 lb # s�slug � 0.486 ft�s

 V �
2100m

rD
�

210012.73 � 10�5 lb # s�ft22

11.94 slugs�ft32 10.73�12 ft2

140 °F.lb # s�ft2m � 0.974 � 10�5 

r � 1.91 slugs�ft350 °F,m � 2.73 � 10�5 lb # s�ft2

slugs�ft3r � 1.94V � 2100 m�rD,

Re � rVD�m � 2100.

If the flowing fluid had been honey with a kinematic viscosity

(� � �/�) 3000 times greater than that of water, the velocities given

earlier would be increased by a factor of 3000 and the times re-

duced by the same factor. As shown in the following sections, the

pressure needed to force a very viscous fluid through a pipe at such

a high velocity may be unreasonably large.

�, �
Q

D

V

laminar 
flow

turbulent 
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0
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8.1.2 Entrance Region and Fully Developed Flow

Any fluid flowing in a pipe had to enter the pipe at some location. The region of flow near where

the fluid enters the pipe is termed the entrance region and is illustrated in Fig. 8.5. It may be the

first few feet of a pipe connected to a tank or the initial portion of a long run of a hot air duct com-

ing from a furnace.

As is shown in Fig. 8.5, the fluid typically enters the pipe with a nearly uniform velocity

profile at section 112. As the fluid moves through the pipe, viscous effects cause it to stick to the

pipe wall 1the no-slip boundary condition2. This is true whether the fluid is relatively inviscid air

or a very viscous oil. Thus, a boundary layer in which viscous effects are important is produced

along the pipe wall such that the initial velocity profile changes with distance along the pipe, x,

until the fluid reaches the end of the entrance length, section 122, beyond which the velocity pro-

file does not vary with x. The boundary layer has grown in thickness to completely fill the pipe.

Viscous effects are of considerable importance within the boundary layer. For fluid outside the

boundary layer [within the inviscid core surrounding the centerline from 112 to 122], viscous effects

are negligible.

The shape of the velocity profile in the pipe depends on whether the flow is laminar or tur-

bulent, as does the length of the entrance region, As with many other properties of pipe flow,

the dimensionless entrance length, correlates quite well with the Reynolds number. Typi-

cal entrance lengths are given by

(8.1)

and

(8.2)

For very low Reynolds number flows the entrance length can be quite short if 

whereas for large Reynolds number flows it may take a length equal to many pipe diameters before

the end of the entrance region is reached for For many practical engineer-

ing problems, so that as shown by the figure in the margin,

Calculation of the velocity profile and pressure distribution within the entrance region is

quite complex. However, once the fluid reaches the end of the entrance region, section 122 of Fig.

8.5, the flow is simpler to describe because the velocity is a function of only the distance from

the pipe centerline, r, and independent of x. This is true until the character of the pipe changes

in some way, such as a change in diameter, or the fluid flows through a bend, valve, or some

other component at section 132. The flow between 122 and 132 is termed fully developed flow. Be-

yond the interruption of the fully developed flow [at section 142], the flow gradually begins its 

20D 6 /e 6 30D.104 6 Re 6 105

Re � 20002.1/e � 120D

Re � 102,1/e � 0.6D

/e

D
� 4.4 1Re21�6 for turbulent flow

/e

D
� 0.06 Re for laminar flow

/e�D,

/e.
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return to its fully developed character [section 152] and continues with this profile until the next

pipe system component is reached [section 162]. In many cases the pipe is long enough so that

there is a considerable length of fully developed flow compared with the developing flow length

and In other cases the distances between one component

1bend, tee, valve, etc.2 of the pipe system and the next component is so short that fully developed

flow is never achieved.

8.1.3 Pressure and Shear Stress

Fully developed steady flow in a constant diameter pipe may be driven by gravity and�or pressure

forces. For horizontal pipe flow, gravity has no effect except for a hydrostatic pressure variation

across the pipe, that is usually negligible. It is the pressure difference, between

one section of the horizontal pipe and another which forces the fluid through the pipe. Viscous ef-

fects provide the restraining force that exactly balances the pressure force, thereby allowing the

fluid to flow through the pipe with no acceleration. If viscous effects were absent in such flows,

the pressure would be constant throughout the pipe, except for the hydrostatic variation.

In non-fully developed flow regions, such as the entrance region of a pipe, the fluid accel-

erates or decelerates as it flows 1the velocity profile changes from a uniform profile at the entrance

of the pipe to its fully developed profile at the end of the entrance region2. Thus, in the entrance

region there is a balance between pressure, viscous, and inertia 1acceleration2 forces. The result is

a pressure distribution along the horizontal pipe as shown in Fig. 8.6. The magnitude of the pres-

sure gradient, is larger in the entrance region than in the fully developed region, where it

is a constant,

The fact that there is a nonzero pressure gradient along the horizontal pipe is a result of vis-

cous effects. As is discussed in Chapter 3, if the viscosity were zero, the pressure would not vary

with x. The need for the pressure drop can be viewed from two different standpoints. In terms of

a force balance, the pressure force is needed to overcome the viscous forces generated. In terms

of an energy balance, the work done by the pressure force is needed to overcome the viscous dis-

sipation of energy throughout the fluid. If the pipe is not horizontal, the pressure gradient along it

is due in part to the component of weight in that direction. As is discussed in Section 8.2.1, this

contribution due to the weight either enhances or retards the flow, depending on whether the flow

is downhill or uphill.

The nature of the pipe flow is strongly dependent on whether the flow is laminar or turbu-

lent. This is a direct consequence of the differences in the nature of the shear stress in laminar and

turbulent flows. As is discussed in some detail in Section 8.3.3, the shear stress in laminar flow is

a direct result of momentum transfer among the randomly moving molecules 1a microscopic phe-

nomenon2. The shear stress in turbulent flow is largely a result of momentum transfer among the

randomly moving, finite-sized fluid particles 1a macroscopic phenomenon2. The net result is that

the physical properties of the shear stress are quite different for laminar flow than for turbulent

flow.

0p�0x � �¢p�/ 6 0.

0p�0x,

¢p � p1 � p2,gD,

1x6 � x52 � 1x5 � x42 4 .3 1x3 � x22 � /e
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As is indicated in the previous section, the flow in long, straight, constant diameter sections of a

pipe becomes fully developed. That is, the velocity profile is the same at any cross section of the

pipe. Although this is true whether the flow is laminar or turbulent, the details of the velocity pro-

file 1and other flow properties2 are quite different for these two types of flow. As will be seen in

the remainder of this chapter, knowledge of the velocity profile can lead directly to other useful

information such as pressure drop, head loss, flowrate, and the like. Thus, we begin by develop-

ing the equation for the velocity profile in fully developed laminar flow. If the flow is not fully de-

veloped, a theoretical analysis becomes much more complex and is outside the scope of this text.

If the flow is turbulent, a rigorous theoretical analysis is as yet not possible.

Although most flows are turbulent rather than laminar, and many pipes are not long enough

to allow the attainment of fully developed flow, a theoretical treatment and full understanding of

fully developed laminar flow is of considerable importance. First, it represents one of the few the-

oretical viscous analyses that can be carried out “exactly” 1within the framework of quite general

assumptions2 without using other ad hoc assumptions or approximations. An understanding of the

method of analysis and the results obtained provides a foundation from which to carry out more

complicated analyses. Second, there are many practical situations involving the use of fully devel-

oped laminar pipe flow.

There are numerous ways to derive important results pertaining to fully developed laminar

flow. Three alternatives include: 112 from applied directly to a fluid element, 122 from the

Navier –Stokes equations of motion, and 132 from dimensional analysis methods.

8.2.1 From Applied Directly to a Fluid Element

We consider the fluid element at time t as is shown in Fig. 8.7. It is a circular cylinder of fluid of

length and radius r centered on the axis of a horizontal pipe of diameter D. Because the veloc-

ity is not uniform across the pipe, the initially flat ends of the cylinder of fluid at time t become

distorted at time when the fluid element has moved to its new location along the pipe as

shown in the figure. If the flow is fully developed and steady, the distortion on each end of the

fluid element is the same, and no part of the fluid experiences any acceleration as it flows, as shown

by the figure in the margin. The local acceleration is zero because the flow is steady,

and the convective acceleration is zero because the flow is fully devel-

oped. Thus, every part of the fluid merely flows along its streamline parallel to the pipe walls with

constant velocity, although neighboring particles have slightly different velocities. The velocity

varies from one pathline to the next. This velocity variation, combined with the fluid viscosity, pro-

duces the shear stress.

If gravitational effects are neglected, the pressure is constant across any vertical cross sec-

tion of the pipe, although it varies along the pipe from one section to the next. Thus, if the pres-

sure is at section 112, it is at section 122 where is the pressure drop be-

tween sections (1) and (2). We anticipate the fact that the pressure decreases in the direction of

flow so that A shear stress, acts on the surface of the cylinder of fluid. This viscous

stress is a function of the radius of the cylinder,

As was done in fluid statics analysis 1Chapter 22, we isolate the cylinder of fluid as is shown

in Fig. 8.8 and apply Newton’s second law, In this case, even though the fluid is mov-

ing, it is not accelerating, so that Thus, fully developed horizontal pipe flow is merely aax � 0.

Fx � max.

t � t1r2.
t,¢p 7 0.

¢pp2 � p1 � ¢pp � p1

1V � � V � u 0u�0x î � 02
10V�0t � 02

t � dt

/

F � ma

F � ma

8.2 Fully Developed Laminar Flow

Steady, fully devel-
oped pipe flow ex-
periences no
acceleration.

Velocity profiles

Streamlines

(1) (2)

D

Velocity
profile

V = u(r)i

r

Fluid element at time t Element at time t +   tδ

x

�^ F I G U R E  8.7 Motion
of a cylindrical fluid element within a
pipe.
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balance between pressure and viscous forces—the pressure difference acting on the end of the

cylinder of area and the shear stress acting on the lateral surface of the cylinder of area 

This force balance can be written as

which can be simplified to give

(8.3)

Equation 8.3 represents the basic balance in forces needed to drive each fluid particle along

the pipe with constant velocity. Since neither are functions of the radial coordinate, r, it

follows that must also be independent of r. That is, where C is a constant. At 

1the centerline of the pipe2 there is no shear stress At  1the pipe wall2 the shear

stress is a maximum, denoted the wall shear stress. Hence, and the shear stress

distribution throughout the pipe is a linear function of the radial coordinate

(8.4)

as is indicated in Fig. 8.9. The linear dependence of on r is a result of the pressure force being

proportional to 1the pressure acts on the end of the fluid cylinder; 2 and the shear

force being proportional to r 1the shear stress acts on the lateral sides of the cylinder; area 2.
If the viscosity were zero there would be no shear stress, and the pressure would be constant

throughout the horizontal pipe As is seen from Eqs. 8.3 and 8.4, the pressure drop and

wall shear stress are related by

(8.5)

A small shear stress can produce a large pressure difference if the pipe is relatively long

Although we are discussing laminar flow, a closer consideration of the assumptions involved

in the derivation of Eqs. 8.3, 8.4, and 8.5 reveals that these equations are valid for both laminar

and turbulent flow. To carry the analysis further we must prescribe how the shear stress is related

to the velocity. This is the critical step that separates the analysis of laminar from that of turbulent

flow—from being able to solve for the laminar flow properties and not being able to solve for the

turbulent flow properties without additional ad hoc assumptions. As is discussed in Section 8.3,

the shear stress dependence for turbulent flow is very complex. However, for laminar flow of a

1/�D � 12.

¢p �
4/tw

D

1¢p � 02.

� 2pr/
area � pr 2r2

t

t �
2twr

D

C � 2tw�Dtw,

r � D�21t � 02.
r � 0t � Cr,2t�r

¢p nor /

¢p

/
�

2t

r

1p12pr 2 � 1p1 � ¢p2pr 2 � 1t22pr/ � 0

2pr/.pr2,
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Newtonian fluid, the shear stress is simply proportional to the velocity gradient,

1see Section 1.62. In the notation associated with our pipe flow, this becomes

(8.6)

The negative sign is included to give with 1the velocity decreases from the pipe

centerline to the pipe wall2.
Equations 8.3 and 8.6 represent the two governing laws for fully developed laminar flow of

a Newtonian fluid within a horizontal pipe. The one is Newton’s second law of motion and the

other is the definition of a Newtonian fluid. By combining these two equations we obtain

which can be integrated to give the velocity profile as follows:

or

where is a constant. Because the fluid is viscous it sticks to the pipe wall so that at

Thus, Hence, the velocity profile can be written as

(8.7)

where is the centerline velocity. An alternative expression can be written by us-

ing the relationship between the wall shear stress and the pressure gradient 1Eqs. 8.5 and 8.72 to give

where is the pipe radius.

This velocity profile, plotted in Fig. 8.9, is parabolic in the radial coordinate, r, has a max-

imum velocity, at the pipe centerline, and a minimum velocity 1zero2 at the pipe wall. The vol-

ume flowrate through the pipe can be obtained by integrating the velocity profile across the pipe.

Since the flow is axisymmetric about the centerline, the velocity is constant on small area elements

consisting of rings of radius r and thickness dr as shown in the figure in the margin. Thus,

or

By definition, the average velocity is the flowrate divided by the cross-sectional area,

so that for this flow

(8.8)

and

(8.9)Q �
pD4 ¢p

128m/

V �
pR2Vc

2pR2
�

Vc

2
�

¢pD2

32m/

V � Q�A � Q�pR2,

Q �
pR2Vc

2

Q � �  u dA � �
r�R

r�0

 u1r22pr dr � 2p Vc�
R

0

 c1 � a
r

R
b

2

d r dr

Vc ,

R � D�2

u1r2 �
twD

4m
 c1 � a

r

R
b

2

d

Vc � ¢pD2� 116m/2

u1r2 � a
¢pD2

16m/
b c1 � a

2r

D
b

2

d � Vc c1 � a
2r

D
b

2

d

C1 � 1¢p�16m/2D2.r � D�2.

u � 0C1

u � �a
¢p

4m/
b r 2 � C1

�  du � �
¢p

2m/
 �  r dr

du

dr
� �a

¢p

2m/
b r

du�dr 6 0t 7 0

t � �m 
du

dr

“t � m du�dy”
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Under certain re-
strictions the veloc-
ity profile in a pipe
is parabolic.

R

dr

r

dA = 2  r drπ
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As is indicated in Eq. 8.8, the average velocity is one-half of the maximum velocity. In general,

for velocity profiles of other shapes 1such as for turbulent pipe flow2, the average velocity is not

merely the average of the maximum and minimum 102 velocities as it is for the laminar para-

bolic profile. The two velocity profiles indicated in Fig. 8.9 provide the same flowrate—one is the

fictitious ideal profile; the other is the actual laminar flow profile.

The above results confirm the following properties of laminar pipe flow. For a horizontal

pipe the flowrate is 1a2 directly proportional to the pressure drop, 1b2 inversely proportional to the

viscosity, 1c2 inversely proportional to the pipe length, and 1d2 proportional to the pipe diameter to

the fourth power. With all other parameters fixed, an increase in diameter by a factor of 2 will in-

crease the flowrate by a factor of 24 � 16—the flowrate is very strongly dependent on pipe size.

This dependence is shown by the figure in the margin. Likewise, a small error in pipe diameter

can cause a relatively large error in flowrate. For example, a 2% error in diameter gives an 8% er-

ror in flowrate or  so that This flow, the properties of

which were first established experimentally by two independent workers, G. Hagen 11797–18842
in 1839 and J. Poiseuille 11799–18692 in 1840, is termed Hagen–Poiseuille flow. Equation 8.9 is

commonly referred to as Poiseuille’s law. Recall that all of these results are restricted to laminar

flow 1those with Reynolds numbers less than approximately 21002 in a horizontal pipe.

The adjustment necessary to account for nonhorizontal pipes, as shown in Fig. 8.10, can be

easily included by replacing the pressure drop, by the combined effect of pressure and grav-

ity, , where is the angle between the pipe and the horizontal. 1Note that if

the flow is uphill, while if the flow is downhill.2 This can be seen from the force balance

in the x direction 1along the pipe axis2 on the cylinder of fluid shown in Fig. 8.10b. The method is

exactly analogous to that used to obtain the Bernoulli equation 1Eq. 3.62 when the streamline is not

horizontal. The net force in the x direction is a combination of the pressure force in that direction,

and the component of weight in that direction, The result is a slightly mod-

ified form of Eq. 8.3 given by

(8.10)

Thus, all of the results for the horizontal pipe are valid provided the pressure gradient is adjusted

for the elevation term, that is, is replaced by so that

(8.11)

and

(8.12)

It is seen that the driving force for pipe flow can be either a pressure drop in the flow direction,

or the component of weight in the flow direction, If the flow is downhill, gravity

helps the flow 1a smaller pressure drop is required; 2. If the flow is uphill, gravity works

against the flow 1a larger pressure drop is required; 2. Note that 1whereg/ sin u � g¢zsin u 7 0

sin u 6 0

�g/ sin u.¢p,

Q �
p1¢p � g/ sin u2D4

128m/

V �
1¢p � g/ sin u2D2

32m/

¢p � g/ sin u¢p

¢p � g/ sin u

/
�

2t

r

�gpr 2/ sin u.¢ppr 2,

u 6 0

u 7 0u¢p � g/ sin u

¢p,

dQ�Q � 4 dD�D2.dQ � 4D3 dD,1Q � D4

1m � 02

1Vc2
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Poiseuille’s law is
valid for laminar
flow only.
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is the change in elevation2 is a hydrostatic type pressure term. If there is no flow,

as expected for fluid statics.V � 0 and ¢p � g/ sin u � g¢z,

¢z
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GIVEN An oil with a viscosity of and den-

sity flows in a pipe of diameter 

FIND (a) What pressure drop, is needed to produce

a flowrate of if the pipe is horizontal with

and x2 � 10 m?x1 � 0

Q � 2.0 � 10�5 m3�s
p1 � p2,

D � 0.020 m.r � 900 kg�m3

m � 0.40 N # s�m2 (b) How steep a hill, must the pipe be on if the oil is to flow

through the pipe at the same rate as in part 1a2, but with 

(c) For the conditions of part 1b2, if what is the

pressure at section where x is measured along the pipe?x3 � 5 m,

p1 � 200 kPa,

p1 � p2?

u,

SOLUTION

Laminar Pipe Flow

which is equivalent to that needed for

the horizontal pipe. For the horizontal pipe it is the work done by

the pressure forces that overcomes the viscous dissipation. For the

zero-pressure-drop pipe on the hill, it is the change in potential

energy of the fluid “falling” down the hill that is converted to the

energy lost by viscous dissipation. Note that if it is desired to in-

crease the flowrate to with the

value of given by Eq. 1 is  Since the sine of an

angle cannot be greater than 1, this flow would not be possible.

The weight of the fluid would not be large enough to offset the

viscous force generated for the flowrate desired. A larger diame-

ter pipe would be needed.

(c) With the length of the pipe, does not appear in the

flowrate equation 1Eq. 12. This is a statement of the fact that for such

cases the pressure is constant all along the pipe 1provided the pipe

lies on a hill of constant slope2. This can be seen by substituting the

values of Q and from case 1b2 into Eq. 8.12 and noting that 

for any For example, if 

Thus, so that

(Ans)

COMMENT Note that if the fluid were gasoline 

and the Reynolds number would

be the flow would probably not be laminar, and

use of Eqs. 8.9 and 8.12 would give incorrect results. Also note

from Eq. 1 that the kinematic viscosity, is the impor-

tant viscous parameter. This is a statement of the fact that with

constant pressure along the pipe, it is the ratio of the viscous

force to the weight force that determines the

value of u.

1�g � rg21�m2

n � m�r,

Re � 2790,

m32,r � 680 kg�10�4 N # s�m2
1m � 3.1 �

p3 � 200 kPa

p1 � p2 � p3

/ � x3 � x1 � 5 m.¢p � p1 � p3 � 0/.

¢p � 0u

/,p1 � p2

sin u � �1.15.u

p1 � p2,Q � 1.0 � 10�4 m3�s

N�m2,20,40012.31 m2 �

EXAMPLE 8.2

(a) If the Reynolds number is less than 2100 the flow is

laminar and the equations derived in this section are valid. Since

the average velocity is 

the Reynolds number is 

Hence, the flow is laminar and from Eq.

8.9 with the pressure drop is

or

(Ans)

(b) If the pipe is on a hill of angle such that 0,

Eq. 8.12 gives

(1)

or

Thus,

(Ans)

COMMENT This checks with the previous horizontal result

as is seen from the fact that a change in elevation of

is equivalent to

a pressure change of ¢p � rg ¢z � 1900 kg�m32 19.81 m�s22
110 m2 sin1�13.34°2 � �2.31 m¢z � / sin u �

u � �13.34°.

sin u �
�12810.40 N # s�m22 12.0 � 10�5 m3�s2

p1900 kg�m32 19.81 m�s22 10.020 m24

sin u � �
128mQ

prgD4

¢p � p1 � p2 �u

¢p � 20,400 N�m2 � 20.4 kPa

 �
12810.40 N # s�m22 110.0 m2 12.0 � 10�5 m3�s2

p10.020 m24

 ¢p � p1 � p2 �
128m/Q

pD4

/ � x2 � x1 � 10 m,

6 2100.rVD�m � 2.87

Re �3p10.02022m2�4 4 � 0.0637 m�s,

V � Q�A � 12.0 � 10�5 m3�s2�

8.2.2 From the Navier–Stokes Equations

In the previous section we obtained results for fully developed laminar pipe flow by applying

Newton’s second law and the assumption of a Newtonian fluid to a specific portion of the fluid—

a cylinder of fluid centered on the axis of a long, round pipe. When this governing law and assump-

tions are applied to a general fluid flow 1not restricted to pipe flow2, the result is the Navier –Stokes

equations as discussed in Chapter 6. In Section 6.9.3 these equations were solved for the specific

geometry of fully developed laminar flow in a round pipe. The results are the same as those given

in Eq. 8.7.

Poiseuille’s law can
be obtained from
the Navier–Stokes
equations.
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We will not repeat the detailed steps used to obtain the laminar pipe flow from the Navier–

Stokes equations 1see Section 6.9.32 but will indicate how the various assumptions used and steps ap-

plied in the derivation correlate with the analysis used in the previous section.

General motion of an incompressible Newtonian fluid is governed by the continuity equa-

tion 1conservation of mass, Eq. 6.312 and the momentum equation 1Eq. 6.1272, which are rewritten

here for convenience:

(8.13)

(8.14)

For steady, fully developed flow in a pipe, the velocity contains only an axial component, which

is a function of only the radial coordinate For such conditions, the left-hand side of

the Eq. 8.14 is zero. This is equivalent to saying that the fluid experiences no acceleration as it

flows along. The same constraint was used in the previous section when considering for

the fluid cylinder. Thus, with the Navier–Stokes equations become

(8.15)

The flow is governed by a balance of pressure, weight, and viscous forces in the flow direction,

similar to that shown in Fig. 8.10 and Eq. 8.10. If the flow were not fully developed 1as in an en-

trance region, for example2, it would not be possible to simplify the Navier –Stokes equations to that

form given in Eq. 8.15 1the nonlinear term would not be zero2, and the solution would be

very difficult to obtain.

Because of the assumption that the continuity equation, Eq. 8.13, is auto-

matically satisfied. This conservation of mass condition was also automatically satisfied by the

incompressible flow assumption in the derivation in the previous section. The fluid flows across

one section of the pipe at the same rate that it flows across any other section 1see Fig. 8.82.
When it is written in terms of polar coordinates 1as was done in Section 6.9.32, the compo-

nent of Eq. 8.15 along the pipe becomes

(8.16)

Since the flow is fully developed, and the right-hand side is a function of, at most, only

r. The left-hand side is a function of, at most, only x. It was shown that this leads to the condition

that the pressure gradient in the x direction is a constant— The same condition

was used in the derivation of the previous section 1Eq. 8.32.
It is seen from Eq. 8.16 that the effect of a nonhorizontal pipe enters into the Navier–Stokes

equations in the same manner as was discussed in the previous section. The pressure gradient in

the flow direction is coupled with the effect of the weight in that direction to produce an effective

pressure gradient of 

The velocity profile is obtained by integration of Eq. 8.16. Since it is a second-order equa-

tion, two boundary conditions are needed—112 the fluid sticks to the pipe wall 1as was also done

in Eq. 8.72 and 122 either of the equivalent forms that the velocity remains finite throughout the

flow 1in particular at 2 or, because of symmetry, that at In the de-

rivation of the previous section, only one boundary condition 1the no-slip condition at the wall2 was

needed because the equation integrated was a first-order equation. The other condition

was automatically built into the analysis because of the fact that 

and at 

The results obtained by either applying to a fluid cylinder 1Section 8.2.12 or solving

the Navier –Stokes equations 1Section 6.9.32 are exactly the same. Similarly, the basic assumptions

regarding the flow structure are the same. This should not be surprising because the two methods

are based on the same principle—Newton’s second law. One is restricted to fully developed lam-

inar pipe flow from the beginning 1the drawing of the free-body diagram2, and the other starts with

the general governing equations 1the Navier –Stokes equations2 with the appropriate restrictions

concerning fully developed laminar flow applied as the solution process progresses.

F � ma
r � 0.t � 2twr�D � 0

t � �m du�dr10u�0r � 0 at r � 02

r � 0.0u�0r � 0r � 0u 6 q

�¢p�/ � rg sin u.

0p�0x � �¢p�/.

u � u1r2

0p

0x
� rg sin u � m 

1

r
 

0
0r

 ar 
0u

0r
b

V � u1r2 î,

V � �V

 �p � rgk̂ � m�2V

 � � V � 0

g � �gk̂
F � ma

3V � u1r2 î 4 .

 
0V
0t

� V � �V � �
�p

r
� g � n�2V

 � � V � 0
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The governing
differential equa-
tions can be sim-
plified by
appropriate as-
sumptions.
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8.2.3 From Dimensional Analysis

Although fully developed laminar pipe flow is simple enough to allow the rather straightfor-

ward solutions discussed in the previous two sections, it may be worthwhile to consider this

flow from a dimensional analysis standpoint. Thus, we assume that the pressure drop in the hor-

izontal pipe, is a function of the average velocity of the fluid in the pipe, V, the length of

the pipe, the pipe diameter, D, and the viscosity of the fluid, , as shown by the figure in the

margin. We have not included the density or the specific weight of the fluid as parameters be-

cause for such flows they are not important parameters. There is neither mass 1density2 times

acceleration nor a component of weight 1specific weight times volume2 in the flow direction in-

volved. Thus,

There are five variables that can be described in terms of three reference dimensions 1M, L, T 2 .
According to the results of dimensional analysis 1Chapter 7 2, this flow can be described in terms

of dimensionless groups. One such representation is

(8.17)

where is an unknown function of the length to diameter ratio of the pipe.

Although this is as far as dimensional analysis can take us, it seems reasonable to impose a

further assumption that the pressure drop is directly proportional to the pipe length. That is, it takes

twice the pressure drop to force fluid through a pipe if its length is doubled. The only way that

this can be true is if where C is a constant. Thus, Eq. 8.17 becomes

which can be rewritten as

or

(8.18)

The basic functional dependence for laminar pipe flow given by Eq. 8.18 is the same as that

obtained by the analysis of the two previous sections. The value of C must be determined by

theory 1as done in the previous two sections2 or experiment. For a round pipe, For ducts

of other cross-sectional shapes, the value of C is different 1see Section 8.4.32.
It is usually advantageous to describe a process in terms of dimensionless quantities. To this end

we rewrite the pressure drop equation for laminar horizontal pipe flow, Eq. 8.8, as 

and divide both sides by the dynamic pressure, to obtain the dimensionless form as

This is often written as

where the dimensionless quantity

is termed the friction factor, or sometimes the Darcy friction factor [H. P. G. Darcy 

(1803–1858)]. 1This parameter should not be confused with the less-used Fanning friction

f � ¢p1D�/2� 1rV 2�22

¢p � f 
/
D

 
rV 2

2

¢p
1
2 rV

2
�
132m/V�D22

1
2 rV

2
� 64 a

m

rVD
b a

/
D
b �

64

Re
 a

/
D
b

rV 2�2,

¢p � 32m/V�D2

C � 32.

Q � AV �
1p�4C2 ¢pD4

m/

¢p

/
�

Cm V

D2

D ¢p

mV
�  

C/
D

f1/�D2 � C/�D,

f1/�D2

D ¢p
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� f a

/
D
b

k � r � 5 � 3 � 2

¢p � F1V, /, D, m2

m/,
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(1) (2)

D
V

μ

�

Δp = p1 – p2 = F(V, �, D, �)

Dimensional analy-
sis can be used to
put pipe flow para-
meters into dimen-
sionless form.
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factor, which is defined to be In this text we will use only the Darcy friction factor.2 Thus,

the friction factor for laminar fully developed pipe flow is simply

(8.19)

as shown by the figure in the margin.

By substituting the pressure drop in terms of the wall shear stress 1Eq. 8.52, we obtain an al-

ternate expression for the friction factor as a dimensionless wall shear stress

(8.20)

Knowledge of the friction factor will allow us to obtain a variety of information regarding pipe

flow. For turbulent flow the dependence of the friction factor on the Reynolds number is much

more complex than that given by Eq. 8.19 for laminar flow. This is discussed in detail in 

Section 8.4.

8.2.4 Energy Considerations

In the previous three sections we derived the basic laminar flow results from application of 

or dimensional analysis considerations. It is equally important to understand the implications of

energy considerations of such flows. To this end we consider the energy equation for incompress-

ible, steady flow between two locations as is given in Eq. 5.89

(8.21)

Recall that the kinetic energy coefficients, and compensate for the fact that the velocity

profile across the pipe is not uniform. For uniform velocity profiles, whereas for any

nonuniform profile, The head loss term, accounts for any energy loss associated with

the flow. This loss is a direct consequence of the viscous dissipation that occurs throughout the

fluid in the pipe. For the ideal 1inviscid2 cases discussed in previous chapters,

and the energy equation reduces to the familiar Bernoulli equation discussed in Chapter 3 

1Eq. 3.72.
Even though the velocity profile in viscous pipe flow is not uniform, for fully developed

flow it does not change from section 112 to section 122 so that Thus, the kinetic energy

is the same at any section and the energy equation becomes

(8.22)

The energy dissipated by the viscous forces within the fluid is supplied by the excess work done

by the pressure and gravity forces as shown by the figure in the margin.

A comparison of Eqs. 8.22 and 8.10 shows that the head loss is given by

1recall and which, by use of Eq. 8.4, can be rewritten in the form

(8.23)

It is the shear stress at the wall 1which is directly related to the viscosity and the shear stress

throughout the fluid2 that is responsible for the head loss. A closer consideration of the assump-

tions involved in the derivation of Eq. 8.23 will show that it is valid for both laminar and turbu-

lent flow.

hL �
4/tw

gD

z2 � z1 � / sin u2,p1 � p2 � ¢p

hL �
2t/
gr

a
p1

g
� z1b � a

p2

g
� z2b � hL

1a1 V 1
2�2 � a2 V 2

2�22
a1 � a2.

a1 � a2 � 1, hL � 0,

hL,a 7 1.

a � 1,

a2,a1

p1

g
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V 1
2
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� z1 �

p2

g
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V 2
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8tw
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f �
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The head loss in a
pipe is a result of
the viscous shear
stress on the wall.
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398 Chapter 8 ■ Viscous Flow in Pipes

GIVEN The flowrate, Q, of corn syrup through the horizontal

pipe shown in Fig. E8.3a is to be monitored by measuring the pres-

sure difference between sections 112 and 122. It is proposed that

where the calibration constant, K, is a function of tem-

perature, T, because of the variation of the syrup’s viscosity and

density with temperature. These variations are given in Table E8.3.

FIND (a) Plot versus T for (b) De-

termine the wall shear stress and the pressure drop,

for and (c) For the con-

ditions of part 1b2, determine the net pressure force,

and the net shear force, on the fluid within the pipe be-

tween the sections 112 and 122.
pD/tw ,

1pD2�42 ¢p,

T � 100 °F.Q � 0.5 ft3�s¢p � p1 � p2,

60 °F 	 T 	 160 °F.K1T 2

Q � K ¢p,

SOLUTION

Laminar Pipe Flow Properties

Hence, the flow is laminar. From Eq. 8.5 the wall shear stress

is

(Ans)

(c) For the conditions of part 1b2, the net pressure force, on

the fluid within the pipe between sections 112 and 122 is

(Ans)

Similarly, the net viscous force, on that portion of the fluid is

(Ans)

COMMENT Note that the values of these two forces are the

same. The net force is zero; there is no acceleration.

 � 2p c
3

21122
 ft d 16 ft2 11.24 lb�ft22 � 5.84 lb

 Fv � 2p a
D

2
b /tw

Fv,

Fp �
p

4
 D2 ¢p �

p

4
 a

3

12
 ftb

2

 1119 lb�ft22 � 5.84 lb

Fp,

tw �
¢pD

4/
�
1119 lb�ft22 1 3

12 ft2

416 ft2
� 1.24 lb�ft2

EXAMPLE 8.3

(a) If the flow is laminar it follows from Eq. 8.9 that

or

(1)

where the units on and are and re-

spectively. Thus

(Ans)

where the units of K are By using values of the viscosity

from Table E8.3, the calibration curve shown in Fig. E8.3b is ob-

tained. This result is valid only if the flow is laminar. 

COMMENT As shown in Section 8.5, for turbulent flow the

flowrate is not linearly related to the pressure drop so it would not

be possible to have Note also that the value of K is in-

dependent of the syrup density 1 was not used in the calculations2
since laminar pipe flow is governed by pressure and viscous ef-

fects; inertia is not important.

(b) For the viscosity is 

so that with a flowrate of the pressure drop 1accord-

ing to Eq. 8.92 is

(Ans)
provided the flow is laminar. For this case

so that

 � 1380 6 2100

 Re �
rVD

m
�
12.05 slugs�ft32 110.2 ft�s2 1 3

12 ft2

13.8 � 10�3 lb # s�ft22

V �
Q

A
�

0.5 ft3�s
p

4
 1 3

12 ft2
2

� 10.2 ft�s

 � 119 lb�ft2

 �
12813.8 � 10�3 lb # s�ft22 16 ft2 10.5 ft3�s2

p1 3
12 ft2

4

 ¢p �
128m/Q

pD4

Q � 0.5 ft3�s
10�3 lb # s�ft2m � 3.8 �T � 100 °F,

r

Q � K ¢p.

ft5�lb # s.

K �
1.60 � 10�5

m

lb # s�ft2,ft3�s, lb�ft2,mQ, ¢p,

Q � K ¢p �
1.60 � 10�5

m
 ¢p

Q �
pD4 ¢p

128m/
�
p1 3

12 ft2
4 ¢p

128m16 ft2

F I G U R E  E8.3

TA B L E E 8 . 3

T ( ) (slugs� ) ( )

60 2.07
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8.3 Fully Developed Turbulent Flow 399

In the previous section various properties of fully developed laminar pipe flow were discussed.

Since turbulent pipe flow is actually more likely to occur than laminar flow in practical situations,

it is necessary to obtain similar information for turbulent pipe flow. However, turbulent flow is a

very complex process. Numerous persons have devoted considerable effort in attempting to under-

stand the variety of baffling aspects of turbulence. Although a considerable amount of knowledge

about the topic has been developed, the field of turbulent flow still remains the least understood

area of fluid mechanics. In this book we can provide only some of the very basic ideas concern-

ing turbulence. The interested reader should consult some of the many books available for further

reading 1Refs. 1–32.

8.3.1 Transition from Laminar to Turbulent Flow

Flows are classified as laminar or turbulent. For any flow geometry, there is one 1or more2 di-

mensionless parameter such that with this parameter value below a particular value the flow is

laminar, whereas with the parameter value larger than a certain value the flow is turbulent. The

important parameters involved 1i.e., Reynolds number, Mach number2 and their critical values de-

pend on the specific flow situation involved. For example, flow in a pipe and flow along a flat

plate 1boundary layer flow, as is discussed in Section 9.2.42 can be laminar or turbulent, depend-

ing on the value of the Reynolds number involved. As a general rule for pipe flow, the value of

the Reynolds number must be less than approximately 2100 for laminar flow and greater than ap-

proximately 4000 for turbulent flow. For flow along a flat plate the transition between laminar

and turbulent flow occurs at a Reynolds number of approximately 500,000 1see Section 9.2.42,
where the length term in the Reynolds number is the distance measured from the leading edge of

the plate.

Consider a long section of pipe that is initially filled with a fluid at rest. As the valve is

opened to start the flow, the flow velocity and, hence, the Reynolds number increase from zero 1no

flow2 to their maximum steady-state flow values, as is shown in Fig. 8.11. Assume this transient

process is slow enough so that unsteady effects are negligible 1quasi-steady flow2. For an initial

time period the Reynolds number is small enough for laminar flow to occur. At some time the

Reynolds number reaches 2100, and the flow begins its transition to turbulent conditions. Intermit-

tent spots or bursts of turbulence appear. As the Reynolds number is increased, the entire flow field

becomes turbulent. The flow remains turbulent as long as the Reynolds number exceeds approxi-

mately 4000.

A typical trace of the axial component of velocity measured at a given location in the flow,

is shown in Fig. 8.12. Its irregular, random nature is the distinguishing feature of turbu-

lent flow. The character of many of the important properties of the flow 1pressure drop, heat trans-

fer, etc.2 depends strongly on the existence and nature of the turbulent fluctuations or randomness

u � u1t2,
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indicated. In previous considerations involving inviscid flow, the Reynolds number is 1strictly speak-

ing2 infinite 1because the viscosity is zero2, and the flow most surely would be turbulent. However,

reasonable results were obtained by using the inviscid Bernoulli equation as the governing equa-

tion. The reason that such simplified inviscid analyses gave reasonable results is that viscous 

effects were not very important and the velocity used in the calculations was actually the time-

averaged velocity, indicated in Fig. 8.12. Calculation of the heat transfer, pressure drop, and

many other parameters would not be possible without inclusion of the seemingly small, but very

important, effects associated with the randomness of the flow.

Consider flow in a pan of water placed on a stove. With the stove turned off, the fluid is

stationary. The initial sloshing has died out because of viscous dissipation within the water.

With the stove turned on, a temperature gradient in the vertical direction, is produced.

The water temperature is greatest near the pan bottom and decreases toward the top of the fluid

layer. If the temperature difference is very small, the water will remain stationary, even though

the water density is smallest near the bottom of the pan because of the decrease in density with

an increase in temperature. A further increase in the temperature gradient will cause a buoy-

ancy-driven instability that results in fluid motion—the light, warm water rises to the top, and

the heavy, cold water sinks to the bottom. This slow, regular “turning over” increases the heat

transfer from the pan to the water and promotes mixing within the pan. As the temperature gra-

dient increases still further, the fluid motion becomes more vigorous and eventually turns into

a chaotic, random, turbulent flow with considerable mixing, vaporization (boiling) and greatly

increased heat transfer rate. The flow has progressed from a stationary fluid, to laminar flow,

and finally to turbulent, multi-phase (liquid and vapor) flow.

Mixing processes and heat and mass transfer processes are considerably enhanced in turbu-

lent flow compared to laminar flow. This is due to the macroscopic scale of the randomness in tur-

bulent flow. We are all familiar with the “rolling,” vigorous eddy type motion of the water in a pan

being heated on the stove 1even if it is not heated to boiling2. Such finite-sized random mixing is

very effective in transporting energy and mass throughout the flow field, thereby increasing the var-

ious rate processes involved. Laminar flow, on the other hand, can be thought of as very small but

finite-sized fluid particles flowing smoothly in layers, one over another. The only randomness and

mixing take place on the molecular scale and result in relatively small heat, mass, and momentum

transfer rates.

Without turbulence it would be virtually impossible to carry out life as we now know it.

Mixing is one positive application of turbulence, as discussed above, but there are other situations

where turbulent flow is desirable. To transfer the required heat between a solid and an adjacent

fluid 1such as in the cooling coils of an air conditioner or a boiler of a power plant2 would require

an enormously large heat exchanger if the flow were laminar. Similarly, the required mass trans-

fer of a liquid state to a vapor state 1such as is needed in the evaporated cooling system associ-

ated with sweating2 would require very large surfaces if the fluid flowing past the surface were

0T�0z,

u,

400 Chapter 8 ■ Viscous Flow in Pipes

V8.4 Stirring color
into paint

V8.5 Laminar and
turbulent mixing

u(t) _
u = time-averaged
(or mean) value

u'

T

tO tO + T

u

t

F I G U R E  8.12 The time-averaged, and fluctuating, descrip-
tion of a parameter for turbulent flow.

u�,u,

JWCL068_ch08_383-460.qxd  9/23/08  10:51 AM  Page 400



laminar rather than turbulent. As shown in Chapter 9, turbulence can also aid in delaying flow

separation.

8.3 Fully Developed Turbulent Flow 401

F l u i d s  i n  t h e  N e w s

Smaller heat exchangers Automobile radiators, air condition-

ers, and refrigerators contain heat exchangers that transfer en-

ergy from (to) the hot (cold) fluid within the heat exchanger

tubes to (from) the colder (hotter) surrounding fluid. These

units can be made smaller and more efficient by increasing the

heat transfer rate across the tubes’ surfaces. If the flow through

the tubes is laminar, the heat transfer rate is relatively small.

Significantly larger heat transfer rates are obtained if the flow

within the tubes is turbulent. Even greater heat transfer rates

can be obtained by the use of turbulence promoters, sometimes

termed “turbulators,” which provide additional turbulent mix-
ing motion than would normally occur. Such enhancement

mechanisms include internal fins, spiral wire or ribbon inserts,

and ribs or grooves on the inner surface of the tube. While these

mechanisms can increase the heat transfer rate by 1.5 to 3 times

over that for a bare tube at the same flowrate, they also increase

the pressure drop (and therefore the power) needed to produce

the flow within the tube. Thus, a compromise involving in-

creased heat transfer rate and increased power consumption is

often needed.

Turbulence is also of importance in the mixing of fluids. Smoke from a stack would con-

tinue for miles as a ribbon of pollutant without rapid dispersion within the surrounding air if the

flow were laminar rather than turbulent. Under certain atmospheric conditions this is observed to

occur. Although there is mixing on a molecular scale 1laminar flow2, it is several orders of magni-

tude slower and less effective than the mixing on a macroscopic scale 1turbulent flow2. It is consid-

erably easier to mix cream into a cup of coffee 1turbulent flow2 than to thoroughly mix two colors

of a viscous paint 1laminar flow2.
In other situations laminar 1rather than turbulent2 flow is desirable. The pressure drop in pipes

1hence, the power requirements for pumping2 can be considerably lower if the flow is laminar rather

than turbulent. Fortunately, the blood flow through a person’s arteries is normally laminar, except

in the largest arteries with high blood flowrates. The aerodynamic drag on an airplane wing can

be considerably smaller with laminar flow past it than with turbulent flow.

8.3.2 Turbulent Shear Stress

The fundamental difference between laminar and turbulent flow lies in the chaotic, random behav-

ior of the various fluid parameters. Such variations occur in the three components of velocity, the

pressure, the shear stress, the temperature, and any other variable that has a field description. Tur-

bulent flow is characterized by random, three-dimensional vorticity 1i.e., fluid particle rotation or

spin; see Section 6.1.32. As is indicated in Fig. 8.12, such flows can be described in terms of their

mean values 1denoted with an overbar2 on which are superimposed the fluctuations 1denoted with

a prime2. Thus, if is the x component of instantaneous velocity, then its time mean

1or time-average2 value, is

(8.24)

where the time interval, T, is considerably longer than the period of the longest fluctuations, but con-

siderably shorter than any unsteadiness of the average velocity. This is illustrated in Fig. 8.12.

The fluctuating part of the velocity, , is that time-varying portion that differs from the av-

erage value

(8.25)

Clearly, the time average of the fluctuations is zero, since
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The fluctuations are equally distributed on either side of the average. It is also clear, as is indicated

in Fig. 8.13, that since the square of a fluctuation quantity cannot be negative its av-

erage value is positive. Thus,

On the other hand, it may be that the average of products of the fluctuations, such as are zero

or nonzero 1either positive or negative2.
The structure and characteristics of turbulence may vary from one flow situation to another.

For example, the turbulence intensity 1or the level of the turbulence2 may be larger in a very gusty

wind than it is in a relatively steady 1although turbulent2 wind. The turbulence intensity, is of-

ten defined as the square root of the mean square of the fluctuating velocity divided by the time-

averaged velocity, or

The larger the turbulence intensity, the larger the fluctuations of the velocity 1and other flow parame-

ters2. Well-designed wind tunnels have typical values of although with extreme care, values

as low as have been obtained. On the other hand, values of are found for the

flow in the atmosphere and rivers. A typical atmospheric wind speed graph is shown in the figure in

the margin.

Another turbulence parameter that is different from one flow situation to another is the pe-

riod of the fluctuations—the time scale of the fluctuations shown in Fig. 8.12. In many flows, such

as the flow of water from a faucet, typical frequencies are on the order of 10, 100, or 1000 cycles

per second 1cps2. For other flows, such as the Gulf Stream current in the Atlantic Ocean or flow

of the atmosphere of Jupiter, characteristic random oscillations may have a period on the order of

hours, days, or more.

It is tempting to extend the concept of viscous shear stress for laminar flow 

to that of turbulent flow by replacing u, the instantaneous velocity, by the time-averaged veloc-

ity. However, numerous experimental and theoretical studies have shown that such an approach

leads to completely incorrect results. That is, A physical explanation for this behav-

ior can be found in the concept of what produces a shear stress.

Laminar flow is modeled as fluid particles that flow smoothly along in layers, gliding past the

slightly slower or faster ones on either side. As is discussed in Chapter 1, the fluid actually consists

of numerous molecules darting about in an almost random fashion as is indicated in Fig. 8.14a. The

motion is not entirely random—a slight bias in one direction produces the flowrate we associate

t 
 m d u�dy.
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F I G U R E  8.14 (a) Laminar flow shear stress caused by random motion of molecules.
(b) Turbulent flow as a series of random, three-dimensional eddies.
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Listen to the flowrate Sonar systems are designed to listen to

transmitted and reflected sound waves in order to locate sub-

merged objects. They have been used successfully for many years

to detect and track underwater objects such as submarines and

aquatic animals. Recently, sonar techniques have been refined so

that they can be used to determine the flowrate in pipes. These

new flow meters work for turbulent, not laminar, pipe flows be-

cause their operation depends strictly on the existence of turbu-

lent eddies within the flow. The flow meters contain a sonar-based

array that listens to and interprets pressure fields generated by the

turbulent motion in pipes. By listening to the pressure fields asso-

ciated with the movement of the turbulent eddies, the device can

determine the speed at which the eddies travel past an array of sen-

sors. The flowrate is determined by using a calibration procedure

which links the speed of the turbulent structures to the volumetric

flowrate.

with the motion of fluid particles, As the molecules dart across a given plane 1plane A– A, for ex-

ample2, the ones moving upward have come from an area of smaller average x component of veloc-

ity than the ones moving downward, which have come from an area of larger velocity.

The momentum flux in the x direction across plane A– A gives rise to a drag 1to the left2 of

the lower fluid on the upper fluid and an equal but opposite effect of the upper fluid on the lower

fluid. The sluggish molecules moving upward across plane A– A must be accelerated by the fluid

above this plane. The rate of change of momentum in this process produces 1on the macroscopic

scale2 a shear force. Similarly, the more energetic molecules moving down across plane A– A must

be slowed down by the fluid below that plane. This shear force is present only if there is a gradi-

ent in otherwise the average x component of velocity 1and momentum2 of the upward and

downward molecules is exactly the same. In addition, there are attractive forces between molecules.

By combining these effects we obtain the well-known Newton viscosity law: where

on a molecular basis is related to the mass and speed 1temperature2 of the random motion of the

molecules.

Although the above random motion of the molecules is also present in turbulent flow, there

is another factor that is generally more important. A simplistic way of thinking about turbulent flow

is to consider it as consisting of a series of random, three-dimensional eddy type motions as is de-

picted 1in one dimension only2 in Fig. 8.14b. (See the photograph at the beginning of this chapter.)

These eddies range in size from very small diameter 1on the order of the size of a fluid particle2 to
fairly large diameter 1on the order of the size of the object or flow geometry considered2. They move

about randomly, conveying mass with an average velocity This eddy structure greatly pro-

motes mixing within the fluid. It also greatly increases the transport of x momentum across plane

A– A. That is, finite particles of fluid 1not merely individual molecules as in laminar flow2 are ran-

domly transported across this plane, resulting in a relatively large 1when compared with laminar

flow2 shear force. These particles vary in size but are much larger than molecules.

u � u1y2.

m

t � m du�dy,

u � u1y2,

u.

Turbulent flow
shear stress is
larger than laminar
flow shear stress
because of the 
irregular, random
motion.
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The random velocity components that account for this momentum transfer 1hence, the shear

force2 are 1for the x component of velocity2 and 1for the rate of mass transfer crossing the

plane2. A more detailed consideration of the processes involved will show that the apparent shear

stress on plane A– A is given by the following 1Ref. 22:

(8.26)

Note that if the flow is laminar, so that and Eq. 8.26 reduces to the cus-

tomary random molecule-motion-induced laminar shear stress, For turbulent flow

it is found that the turbulent shear stress, is positive. Hence, the shear stress is

greater in turbulent flow than in laminar flow. Note the units on are 

or as expected. Terms of the form 

1or etc.2 are called Reynolds stresses in honor of Osborne Reynolds who first discussed

them in 1895.

It is seen from Eq. 8.26 that the shear stress in turbulent flow is not merely proportional to

the gradient of the time-averaged velocity, It also contains a contribution due to the random

fluctuations of the x and y components of velocity. The density is involved because of the momen-

tum transfer of the fluid within the random eddies. Although the relative magnitude of com-

pared to is a complex function dependent on the specific flow involved, typical measurements

indicate the structure shown in Fig. 8.15a. 1Recall from Eq. 8.4 that the shear stress is proportional

to the distance from the centerline of the pipe.2 In a very narrow region near the wall 1the viscous
sublayer2, the laminar shear stress is dominant. Away from the wall 1in the outer layer2 the turbu-

lent portion of the shear stress is dominant. The transition between these two regions occurs in the

overlap layer. The corresponding typical velocity profile is shown in Fig. 8.15b.

The scale of the sketches shown in Fig. 8.15 is not necessarily correct. Typically the value

of is 100 to 1000 times greater than in the outer region, while the converse is true in the

viscous sublayer. A correct modeling of turbulent flow is strongly dependent on an accurate knowl-

edge of This, in turn, requires an accurate knowledge of the fluctuations and or 

As yet it is not possible to solve the governing equations 1the Navier–Stokes equations2 for these

details of the flow, although numerical techniques 1see Appendix A2 using the largest and fastest

computers available have produced important information about some of the characteristics of tur-

bulence. Considerable effort has gone into the study of turbulence. Much remains to be learned.

Perhaps studies in the new areas of chaos and fractal geometry will provide the tools for a better

understanding of turbulence 1see Section 8.3.52.
The vertical scale of Fig. 8.15 is also distorted. The viscous sublayer is usually a very thin

layer adjacent to the wall. For example, for water flow in a 3-in.-diameter pipe with an average

velocity of the viscous sublayer is approximately 0.002 in. thick. Since the fluid motion

within this thin layer is critical in terms of the overall flow 1the no-slip condition and the wall shear

stress occur in this layer2, it is not surprising to find that turbulent pipe flow properties can be quite
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dependent on the roughness of the pipe wall, unlike laminar pipe flow which is independent of

roughness. Small roughness elements 1scratches, rust, sand or dirt particles, etc.2 can easily disturb

this viscous sublayer 1see Section 8.42, thereby affecting the entire flow.

An alternate form for the shear stress for turbulent flow is given in terms of the eddy viscos-
ity, where

(8.27)

This extension of laminar flow terminology was introduced by J. Boussinesq, a French scientist,

in 1877. Although the concept of an eddy viscosity is intriguing, in practice it is not an easy pa-

rameter to use. Unlike the absolute viscosity, which is a known value for a given fluid, the eddy

viscosity is a function of both the fluid and the flow conditions. That is, the eddy viscosity of wa-

ter cannot be looked up in handbooks—its value changes from one turbulent flow condition to an-

other and from one point in a turbulent flow to another.

The inability to accurately determine the Reynolds stress, is equivalent to not knowing

the eddy viscosity. Several semiempirical theories have been proposed 1Ref. 32 to determine approx-

imate values of L. Prandtl 11875–19532, a German physicist and aerodynamicist, proposed that

the turbulent process could be viewed as the random transport of bundles of fluid particles over a

certain distance, the mixing length, from a region of one velocity to another region of a differ-

ent velocity. By the use of some ad hoc assumptions and physical reasoning, it was concluded that

the eddy viscosity was given by

Thus, the turbulent shear stress is

(8.28)

The problem is thus shifted to that of determining the mixing length, Further considerations

indicate that is not a constant throughout the flow field. Near a solid surface the turbulence is

dependent on the distance from the surface. Thus, additional assumptions are made regarding how

the mixing length varies throughout the flow.

The net result is that as yet there is no general, all-encompassing, useful model that can ac-

curately predict the shear stress throughout a general incompressible, viscous turbulent flow. With-

out such information it is impossible to integrate the force balance equation to obtain the turbulent

velocity profile and other useful information, as was done for laminar flow.

8.3.3 Turbulent Velocity Profile

Considerable information concerning turbulent velocity profiles has been obtained through the use of

dimensional analysis, experimentation, numerical simulations, and semiempirical theoretical efforts.

As is indicated in Fig. 8.15, fully developed turbulent flow in a pipe can be broken into three regions

which are characterized by their distances from the wall: the viscous sublayer very near the pipe wall,

the overlap region, and the outer turbulent layer throughout the center portion of the flow. Within the

viscous sublayer the viscous shear stress is dominant compared with the turbulent 1or Reynolds2 stress,

and the random, eddying nature of the flow is essentially absent. In the outer turbulent layer the

Reynolds stress is dominant, and there is considerable mixing and randomness to the flow.

The character of the flow within these two regions is entirely different. For example, within

the viscous sublayer the fluid viscosity is an important parameter; the density is unimportant. In

the outer layer the opposite is true. By a careful use of dimensional analysis arguments for the flow

in each layer and by a matching of the results in the common overlap layer, it has been possible

to obtain the following conclusions about the turbulent velocity profile in a smooth pipe 1Ref. 52.
In the viscous sublayer the velocity profile can be written in dimensionless form as

(8.29)
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where is the distance measured from the wall, is the time-averaged x component of ve-

locity, and is termed the friction velocity. Note that u* is not an actual velocity of the

fluid—it is merely a quantity that has dimensions of velocity. As is indicated in Fig. 8.16, Eq. 8.29

1commonly called the law of the wall 2 is valid very near the smooth wall, for 

Dimensional analysis arguments indicate that in the overlap region the velocity should vary

as the logarithm of y. Thus, the following expression has been proposed:

(8.30)

where the constants 2.5 and 5.0 have been determined experimentally. As is indicated in Fig. 8.16,

for regions not too close to the smooth wall, but not all the way out to the pipe center, Eq. 8.30

gives a reasonable correlation with the experimental data. Note that the horizontal scale is a loga-

rithmic scale. This tends to exaggerate the size of the viscous sublayer relative to the remainder of

the flow. As is shown in Example 8.4, the viscous sublayer is usually quite thin. Similar results

can be obtained for turbulent flow past rough walls 1Ref. 172.
A number of other correlations exist for the velocity profile in turbulent pipe flow. In the cen-

tral region 1the outer turbulent layer2 the expression where is the cen-

terline velocity, is often suggested as a good correlation with experimental data. Another often-used

1and relatively easy to use2 correlation is the empirical power-law velocity profile

(8.31)

In this representation, the value of n is a function of the Reynolds number, as is indicated in

Fig. 8.17. The one-seventh power-law velocity profile is often used as a reasonable ap-

proximation for many practical flows. Typical turbulent velocity profiles based on this power-law

representation are shown in Fig. 8.18.

A closer examination of Eq. 8.31 shows that the power-law profile cannot be valid near the

wall, since according to this equation the velocity gradient is infinite there. In addition, Eq. 8.31

cannot be precisely valid near the centerline because it does not give at How-

ever, it does provide a reasonable approximation to the measured velocity profiles across most of

the pipe.

Note from Fig. 8.18 that the turbulent profiles are much “flatter” than the laminar profile

and that this flatness increases with Reynolds number 1i.e., with n2. Recall from Chapter 3 that

r � 0.du�dr � 0

1n � 72

u

Vc

� a1 �
r

R
b

1�n

Vc1Vc � u2�u* � 2.5 ln1R�y2,

u

u*
� 2.5 ln a

yu*

n
b � 5.0

0 � yu*�n f 5.

u* � 1tw �r21�2
uy � R � r
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Experimental data

Eq. 8.29

Eq. 8.30

Turbulent effects

Viscous and
turbulent effects

Pipe
centerline

Viscous
sublayer

0
1 10 102 103 104

5

10

15

20

25

u___
u*

yu*____
v

F I G U R E  8.16
Typical structure of the
turbulent velocity profile in
a pipe.

A turbulent flow ve-
locity profile can be
divided into various
regions.

V8.8 Laminar to
turbulent flow from
a pipe
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reasonable approximate results are often obtained by using the inviscid Bernoulli equation and by

assuming a fictitious uniform velocity profile. Since most flows are turbulent and turbulent flows

tend to have nearly uniform velocity profiles, the usefulness of the Bernoulli equation and the uni-

form profile assumption is not unexpected. Of course, many properties of the flow cannot be ac-

counted for without including viscous effects.

8.3 Fully Developed Turbulent Flow 407

11

10

9

8n

7

5
104

Re =   VD____ρ
μ

105 106

6

F I G U R E  8.17 Exponent, n, for power-law velocity profiles.
(Adapted from Ref. 1.)

F I G U R E  8.18
Typical laminar flow and
turbulent flow velocity
profiles.

1.0

0.5

0
0 0.5 1.0

Turbulent

Laminar
n = 8

n = 6

n = 10

r__
R

_
u__
Vc

V8.9 Laminar/
turbulent velocity
profiles

GIVEN Water at and 

flows through a horizontal pipe of 0.1-m diameter

with a flowrate of and a pressure gradient of

2.59 kPa m. 

FIND (a) Determine the approximate thickness of the vis-

cous sublayer. 

�
Q � 4 � 10�2 m3�s

10�6 m2�s2
n � 1.004 �20 °C 1r � 998 kg�m3

Turbulent Pipe Flow PropertiesEXAMPLE 8.4

(b) Determine the approximate centerline velocity,

(c) Determine the ratio of the turbulent to laminar shear stress,

at a point midway between the centerline and the pipe

wall 1i.e., at r � 0.025 m2.
tturb �tlam,

Vc.
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SOLUTION

obtained by integration of the power-law velocity profile as fol-

lows. Since the flow is axisymmetric,

which can be integrated to give

Thus, since we obtain

With in the present case, this gives

(Ans)

Recall that for laminar pipe flow.

(c) From Eq. 8.4, which is valid for laminar or turbulent flow,

the shear stress at is

or

where From the power-law velocity profile 

1Eq. 8.312 we obtain the gradient of the average velocity as

which gives

Thus,

Thus, the ratio of turbulent to laminar shear stress is given by

(Ans)

COMMENT As expected, most of the shear stress at this lo-

cation in the turbulent flow is due to the turbulent shear stress.

tturb

tlam

�
t � tlam

tlam

�
32.4 � 0.0266

0.0266
� 1220

 � 0.0266 N�m2

 � �11.004 � 10�6 m2�s2 1998 kg�m32 1–26.5�s2

 tlam � �m 
du

dr
� �1nr2 

du

dr

 � �26.5�s

 
du

dr
� �

16.04 m�s2
8.410.05 m2

 a1 �
0.025 m

0.05 m
b
11�8.42�8.4

du

dr
� �

Vc

nR
 a1 �

r

R
b
11�n2�n

tlam � �m du�dr.

 t � tlam � tturb � 32.4 N�m2

  t �
2twr

D
�

2164.8 N�m22 10.025 m2

10.1 m2

r � 0.025 m

Vc � 2V

 � 6.04 m�s

 Vc �
1n � 12 12n � 12

2n2
 V � 1.186V � 1.186 15.09 m�s2

n � 8.4

V

Vc

�
2n2

1n � 12 12n � 12

Q � pR2V,

Q � 2pR2Vc 
n2

1n � 12 12n � 12

Q � AV � �  u dA � Vc �
r�R

r�0
 
a1 �

r

R
b

1�n 

12pr2 dr

(a) According to Fig. 8.16, the thickness of the viscous sub-

layer, is approximately

Therefore,

where

(1)

The wall shear stress can be obtained from the pressure drop data

and Eq. 8.5, which is valid for either laminar or turbulent flow.

Thus,

Hence, from Eq. 1 we obtain

so that

(Ans)

COMMENT As stated previously, the viscous sublayer is

very thin. Minute imperfections on the pipe wall will protrude

into this sublayer and affect some of the characteristics of the

flow 1i.e., wall shear stress and pressure drop2.

(b) The centerline velocity can be obtained from the average

velocity and the assumption of a power-law velocity profile as

follows. For this flow with

the Reynolds number is

Thus, from Fig. 8.17, so that

To determine the centerline velocity, we must know the re-

lationship between V 1the average velocity2 and This can beVc.

Vc,

u

Vc

� a1 �
r

R
b

1�8.4

n � 8.4

Re �
VD

n
�
15.09 m�s2 10.1 m2

11.004 � 10�6 m2�s2
� 5.07 � 105

V �
Q

A
�

0.04 m3�s
p10.1 m22�4

� 5.09 m�s

 � 1.97 � 10�5 m � 0.02 mm

 ds �
511.004 � 10�6 m2�s2

0.255 m�s

u* � a
64.8 N�m2

998 kg�m3
b

1�2

� 0.255 m�s

tw �
D ¢p

4/
�
10.1 m2 12.59 � 103 N�m22

411 m2
� 64.8 N�m2

u* � a
tw

r
b

1�2

ds � 5 
n

u*

dsu*

n
� 5

ds,

The turbulent flow characteristics discussed in this section are not unique to turbulent flow in

round pipes. Many of the characteristics introduced 1i.e., the Reynolds stress, the viscous sublayer, the

overlap layer, the outer layer, the general characteristics of the velocity profile, etc.2 are found in other

turbulent flows. In particular, turbulent pipe flow and turbulent flow past a solid wall 1boundary layer

flow2 share many of these common traits. Such ideas are discussed more fully in Chapter 9.
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8.3.4 Turbulence Modeling

Although it is not yet possible to theoretically predict the random, irregular details of turbulent

flows, it would be useful to be able to predict the time-averaged flow fields 1pressure, velocity, etc.2
directly from the basic governing equations. To this end one can time average the governing Navier–

Stokes equations 1Eqs. 6.31 and 6.1272 to obtain equations for the average velocity and pressure.

However, because the Navier–Stokes equations are nonlinear, the resulting time-averaged differ-

ential equations contain not only the desired average pressure and velocity as variables, but also

averages of products of the fluctuations—terms of the type that one tried to eliminate by averag-

ing the equations! For example, the Reynolds stress 1see Eq. 8.262 occurs in the time-

averaged momentum equation.

Thus, it is not possible to merely average the basic differential equations and obtain govern-

ing equations involving only the desired averaged quantities. This is the reason for the variety of

ad hoc assumptions that have been proposed to provide “closure” to the equations governing the

average flow. That is, the set of governing equations must be a complete or closed set of equa-

tions—the same number of equation as unknowns.

Various attempts have been made to solve this closure problem 1Refs. 1, 322. Such schemes

involving the introduction of an eddy viscosity or the mixing length 1as introduced in Section

8.3.22 are termed algebraic or zero-equation models. Other methods, which are beyond the scope

of this book, include the one-equation model and the two-equation model. These turbulence

models are based on the equation for the turbulence kinetic energy and require significant com-

puter usage.

Turbulence modeling is an important and extremely difficult topic. Although considerable

progress has been made, much remains to be done in this area.

8.3.5 Chaos and Turbulence

Chaos theory is a relatively new branch of mathematical physics that may provide insight into the com-

plex nature of turbulence. This method combines mathematics and numerical 1computer2 techniques

to provide a new way to analyze certain problems. Chaos theory, which is quite complex and is cur-

rently under development, involves the behavior of nonlinear dynamical systems and their response to

initial and boundary conditions. The flow of a viscous fluid, which is governed by the nonlinear Navier–

Stokes equations 1Eq. 6.1272, may be such a system.

To solve the Navier–Stokes equations for the velocity and pressure fields in a viscous flow, one

must specify the particular flow geometry being considered 1the boundary conditions2 and the condi-

tion of the flow at some particular time 1the initial conditions2. If, as some researchers predict, the

Navier–Stokes equations allow chaotic behavior, then the state of the flow at times after the initial

time may be very, very sensitive to the initial conditions. A slight variation to the initial flow condi-

tions may cause the flow at later times to be quite different than it would have been with the original,

only slightly different initial conditions. When carried to the extreme, the flow may be “chaotic,” “ran-

dom,” or perhaps 1in current terminology2, “turbulent.”

The occurrence of such behavior would depend on the value of the Reynolds number. For

example, it may be found that for sufficiently small Reynolds numbers the flow is not chaotic 1i.e.,

it is laminar2, while for large Reynolds numbers it is chaotic with turbulent characteristics.

Thus, with the advancement of chaos theory it may be found that the numerous ad hoc tur-

bulence ideas mentioned in previous sections 1i.e., eddy viscosity, mixing length, law of the wall,

etc.2 may not be needed. It may be that chaos theory can provide the turbulence properties and

structure directly from the governing equations. As of now we must wait until this exciting topic

is developed further. The interested reader is encouraged to consult Ref. 4 for a general introduc-

tion to chaos or Ref. 33 for additional material.

�ru¿v¿

8.4 Dimensional Analysis of Pipe Flow 409

As noted previously, turbulent flow can be a very complex, difficult topic—one that as yet has

defied a rigorous theoretical treatment. Thus, most turbulent pipe flow analyses are based on

experimental data and semi-empirical formulas. These data are expressed conveniently in dimen-

sionless form.

8.4 Dimensional Analysis of Pipe Flow

Chaos theory may
eventually provide a
deeper understand-
ing of turbulence.
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It is often necessary to determine the head loss, , that occurs in a pipe flow so that the

energy equation, Eq. 5.84, can be used in the analysis of pipe flow problems. As shown in Fig.

8.1, a typical pipe system usually consists of various lengths of straight pipe interspersed with

various types of components (valves, elbows, etc.). The overall head loss for the pipe system con-

sists of the head loss due to viscous effects in the straight pipes, termed the major loss and denoted

, and the head loss in the various pipe components, termed the minor loss and denoted

. That is,

The head loss designations of “major” and “minor” do not necessarily reflect the relative impor-

tance of each type of loss. For a pipe system that contains many components and a relatively

short length of pipe, the minor loss may actually be larger than the major loss.

8.4.1 Major Losses

A dimensional analysis treatment of pipe flow provides the most convenient base from which to

consider turbulent, fully developed pipe flow. An introduction to this topic was given in Section

8.3. As is discussed in Sections 8.2.1 and 8.2.4, the pressure drop and head loss in a pipe are de-

pendent on the wall shear stress, between the fluid and pipe surface. A fundamental difference

between laminar and turbulent flow is that the shear stress for turbulent flow is a function of the

density of the fluid, For laminar flow, the shear stress is independent of the density, leaving the

viscosity, as the only important fluid property.

Thus, as indicated by the figure in the margin, the pressure drop, for steady, incompress-

ible turbulent flow in a horizontal round pipe of diameter D can be written in functional form as

(8.32)

where V is the average velocity, is the pipe length, and is a measure of the roughness of the

pipe wall. It is clear that should be a function of V, D, and The dependence of on the

fluid properties and is expected because of the dependence of on these parameters.

Although the pressure drop for laminar pipe flow is found to be independent of the roughness

of the pipe, it is necessary to include this parameter when considering turbulent flow. As is dis-

cussed in Section 8.3.3 and illustrated in Fig. 8.19, for turbulent flow there is a relatively thin vis-

cous sublayer formed in the fluid near the pipe wall. In many instances this layer is very thin;

where is the sublayer thickness. If a typical wall roughness element protrudes suffi-

ciently far into 1or even through2 this layer, the structure and properties of the viscous sublayer 1along

with and 2 will be different than if the wall were smooth. Thus, for turbulent flow the pres-

sure drop is expected to be a function of the wall roughness. For laminar flow there is no thin vis-

cous layer—viscous effects are important across the entire pipe. Thus, relatively small roughness 

elements have completely negligible effects on laminar pipe flow. Of course, for pipes with very large

wall “roughness” such as that in corrugated pipes, the flowrate may be a function of

the “roughness.” We will consider only typical constant diameter pipes with relative roughnesses in

the range Analysis of flow in corrugated pipes does not fit into the standard con-

stant diameter pipe category, although experimental results for such pipes are available 1Ref. 302.
The list of parameters given in Eq. 8.32 is apparently a complete one. That is, experiments

have shown that other parameters 1such as surface tension, vapor pressure, etc.2 do not affect the

pressure drop for the conditions stated 1steady, incompressible flow; round, horizontal pipe2. Since

there are seven variables which can be written in terms of the three reference dimensions

MLT Eq. 8.32 can be written in dimensionless form in terms of dimensionless

groups. As was discussed in Section 7.9.1, one such representation is

This result differs from that used for laminar flow 1see Eq. 8.172 in two ways. First, we have cho-

sen to make the pressure dimensionless by dividing by the dynamic pressure, rather than a

characteristic viscous shear stress, This convention was chosen in recognition of the fact

that the shear stress for turbulent flow is normally dominated by which is a stronger functiontturb,

mV�D.

rV 2�2,

¢p
1
2rV

2
� f

~
 a
rVD

m
, 

/
D

, 
e

D
b

k � r � 41r � 32,
1k � 72

0 	 e�D f 0.05.

1e�D g 0.12,

tw¢p

dsds�D  1,

trm

¢p/.¢p
e/

¢p � F1V, D, /, e, m, r2

¢p,

m,

r.

tw,

hL � hL major � hL minor

hL minor

hL major

hL
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(1) (2)

D
εV

ρ, μ

�

Δp = p1 – p2

Turbulent pipe flow
properties depend
on the fluid density
and the pipe rough-
ness.
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of the density than it is of viscosity. Second, we have introduced two additional dimensionless 

parameters, the Reynolds number, and the relative roughness, which are not

present in the laminar formulation because the two parameters and are not important in fully

developed laminar pipe flow.

As was done for laminar flow, the functional representation can be simplified by imposing

the reasonable assumption that the pressure drop should be proportional to the pipe length. 1Such

a step is not within the realm of dimensional analysis. It is merely a logical assumption supported

by experiments.2 The only way that this can be true is if the dependence is factored out as

As was discussed in Section 8.2.3, the quantity is termed the friction factor, f. Thus,

for a horizontal pipe

(8.33)

where

For laminar fully developed flow, the value of f is simply independent of For tur-

bulent flow, the functional dependence of the friction factor on the Reynolds number and the relative

roughness, is a rather complex one that cannot, as yet, be obtained from a theoret-

ical analysis. The results are obtained from an exhaustive set of experiments and usually presented

in terms of a curve-fitting formula or the equivalent graphical form.

From Eq. 5.89 the energy equation for steady incompressible flow is

where is the head loss between sections 112 and 122. With the assumption of a constant diame-

ter so that horizontal pipe with fully developed flow this

becomes which can be combined with Eq. 8.33 to give

(8.34)hL major � f 
/
D

 
V 2

2g

¢p � p1 � p2 � ghL,

1a1 � a22,1z1 � z22V1 � V22,1D1 � D2

hL

p1

g
� a1 

V 1
2

2g
� z1 �

p2

g
� a2 

V 2
2

2g
� z2 � hL

f � f1Re, e�D2,

e�D.f � 64�Re,

f � f aRe, 
e

D
b

¢p � f 
/
D

 
rV 2

2

¢pD� 1/rV 2�22

¢p
1
2rV

2
�

/
D

 f aRe, 
e

D
b

/�D

er

e�D,Re � rVD�m,
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F I G U R E  8.19 Flow in the
viscous sublayer near rough and smooth
walls.

R = D/2

δs

δs

Viscous sublayer

Velocity
profile, u = u(y)

y

x

∋
∋

Smooth wallRough wall

or

The major head
loss in pipe flow is
given in terms of
the friction factor.
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Equation 8.34, called the Darcy–Weisbach equation, is valid for any fully developed, steady, in-

compressible pipe flow—whether the pipe is horizontal or on a hill. On the other hand, Eq. 8.33

is valid only for horizontal pipes. In general, with the energy equation gives

Part of the pressure change is due to the elevation change and part is due to the head loss associ-

ated with frictional effects, which are given in terms of the friction factor, f.
It is not easy to determine the functional dependence of the friction factor on the Reynolds

number and relative roughness. Much of this information is a result of experiments conducted by

J. Nikuradse in 1933 1Ref. 62 and amplified by many others since then. One difficulty lies in the

determination of the roughness of the pipe. Nikuradse used artificially roughened pipes produced

by gluing sand grains of known size onto pipe walls to produce pipes with sandpaper-type sur-

faces. The pressure drop needed to produce a desired flowrate was measured and the data were

converted into the friction factor for the corresponding Reynolds number and relative roughness.

The tests were repeated numerous times for a wide range of Re and to determine the

dependence.

In commercially available pipes the roughness is not as uniform and well defined as in the

artificially roughened pipes used by Nikuradse. However, it is possible to obtain a measure of the

effective relative roughness of typical pipes and thus to obtain the friction factor. Typical rough-

ness values for various pipe surfaces are given in Table 8.1. Figure 8.20 shows the functional de-

pendence of f on Re and and is called the Moody chart in honor of L. F. Moody, who, along

with C. F. Colebrook, correlated the original data of Nikuradse in terms of the relative roughness

of commercially available pipe materials. It should be noted that the values of do not neces-

sarily correspond to the actual values obtained by a microscopic determination of the average

height of the roughness of the surface. They do, however, provide the correct correlation for

It is important to observe that the values of relative roughness given pertain to new, clean

pipes. After considerable use, most pipes 1because of a buildup of corrosion or scale2 may have a

relative roughness that is considerably larger 1perhaps by an order of magnitude2 than that given.

As shown by the figure in the margin, very old pipes may have enough scale buildup to not only

alter the value of but also to change their effective diameter by a considerable amount.

The following characteristics are observed from the data of Fig. 8.20. For laminar flow,

which is independent of relative roughness. For turbulent flows with very large Reynolds

numbers, which, as shown by the figure in the margin, is independent of the Reynolds

number. For such flows, commonly termed completely turbulent flow 1or wholly turbulent flow2, the

laminar sublayer is so thin 1its thickness decreases with increasing Re2 that the surface roughness

completely dominates the character of the flow near the wall. Hence, the pressure drop required is a

f � f1e�D2,
f � 64�Re,

e

f � f1Re, e�D2.

e�D

e�D

f � f1Re, e�D2
e�D

p1 � p2 � g1z2 � z12 � ghL � g1z2 � z12 � f 
/
D

 
rV 2

2

V1 � V2
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TA B L E 8 . 1

Equivalent Roughness for New Pipes [From Moody
(Ref. 7) and Colebrook (Ref. 8)]

Equivalent Roughness,

Pipe Feet Millimeters

Riveted steel 0.003–0.03 0.9–9.0

Concrete 0.001–0.01 0.3–3.0

Wood stave 0.0006–0.003 0.18–0.9

Cast iron 0.00085 0.26

Galvanized iron 0.0005 0.15

Commercial steel

or wrought iron 0.00015 0.045

Drawn tubing 0.000005 0.0015

Plastic, glass 0.0 1smooth2 0.0 1smooth2

E

0.
00

00
1

0.
00

01

0.
00

1

0.
01 0.
1

0.08

0.06
Completely 

turbulent flow

0.04

0.02

0

 f

e
D
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result of an inertia-dominated turbulent shear stress rather than the viscosity-dominated laminar shear

stress normally found in the viscous sublayer. For flows with moderate values of Re, the friction fac-

tor is indeed dependent on both the Reynolds number and relative roughness— The

gap in the figure for which no values of f are given 1the range2 is a result of the

fact that the flow in this transition range may be laminar or turbulent 1or an unsteady mix of both2
depending on the specific circumstances involved.

Note that even for smooth pipes the friction factor is not zero. That is, there is a

head loss in any pipe, no matter how smooth the surface is made. This is a result of the no-slip

boundary condition that requires any fluid to stick to any solid surface it flows over. There is al-

ways some microscopic surface roughness that produces the no-slip behavior 1and thus 2 on

the molecular level, even when the roughness is considerably less than the viscous sublayer thick-

ness. Such pipes are called hydraulically smooth.

Various investigators have attempted to obtain an analytical expression for Note

that the Moody chart covers an extremely wide range in flow parameters. The nonlaminar region cov-

ers more than four orders of magnitude in Reynolds number—from to Ob-

viously, for a given pipe and fluid, typical values of the average velocity do not cover this range. How-

ever, because of the large variety in pipes 1D2, fluids and and velocities 1V 2, such a wide range

in Re is needed to accommodate nearly all applications of pipe flow. In many cases the particular pipe

flow of interest is confined to a relatively small region of the Moody chart, and simple semiempirical

expressions can be developed for those conditions. For example, a company that manufactures cast

iron water pipes with diameters between 2 and 12 in. may use a simple equation valid for their con-

ditions only. The Moody chart, on the other hand, is universally valid for all steady, fully developed,

incompressible pipe flows.

m2,1r

Re � 108.Re � 4 � 103

f1Re, e�D2.f �

f 
 0

1e � 02

2100 6 Re 6 4000

f � f1Re, e�D2.
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For any pipe, even
smooth ones, the
head loss is not
zero.

F I G U R E  8.20 Friction factor as a function of Reynolds number and relative roughness for round pipes—the Moody 
chart. (Data from Ref. 7 with permission.)
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0.0001
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The following equation from Colebrook is valid for the entire nonlaminar range of the Moody

chart

(8.35a)

In fact, the Moody chart is a graphical representation of this equation, which is an empirical

fit of the pipe flow pressure drop data. Equation 8.35 is called the Colebrook formula. A dif-

ficulty with its use is that it is implicit in the dependence of f. That is, for given conditions

it is not possible to solve for f without some sort of iterative scheme. With the

use of modern computers and calculators, such calculations are not difficult. A word of cau-

tion is in order concerning the use of the Moody chart or the equivalent Colebrook formula.

Because of various inherent inaccuracies involved 1uncertainty in the relative roughness, un-

certainty in the experimental data used to produce the Moody chart, etc.2, the use of several

place accuracy in pipe flow problems is usually not justified. As a rule of thumb, a 10% ac-

curacy is the best expected. It is possible to obtain an equation that adequately approximates

the Colebrook�Moody chart relationship but does not require an iterative scheme. For exam-

ple, an alternate form (Ref. 34), which is easier to use, is given by

(8.35b)

where one can solve for f explicitly.

1

2f
� �1.8 log c a

e�D
3.7
b

1.11

�
6.9

Re
d

1Re and e�D2,

1

1f
� �2.0 log a

e�D
3.7

�
2.51

Re1f
b
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The turbulent por-
tion of the Moody
chart is represented
by the Colebrook
formula.

GIVEN Air under standard conditions flows through a 4.0-mm-

diameter drawn tubing with an average velocity of 

For such conditions the flow would normally be turbulent. How-

ever, if precautions are taken to eliminate disturbances to the flow

1the entrance to the tube is very smooth, the air is dust free, the tube

does not vibrate, etc.2, it may be possible to maintain laminar flow. 

V � 50 m�s.

FIND (a) Determine the pressure drop in a 0.1-m section of

the tube if the flow is laminar. 

(b) Repeat the calculations if the flow is turbulent.

SOLUTION

Comparison of Laminar or Turbulent Pressure Drop

COMMENT Note that the same result is obtained from Eq. 8.8:

(b) If the flow were turbulent, then where

from Table 8.1, so that 

From the Moody chart with 

we obtain Thus, the pressure

drop in this case would be approximately

or

(Ans)¢p � 1.076 kPa

¢p � f 
/
D

 
1

2
 rV 2 � 10.0282 

10.1 m2

10.004 m2
 
1

2
 11.23 kg�m32 150 m�s22

f � 0.028.104 and e�D � 0.000375

Re � 1.37 �4.0 mm � 0.000375.

e�D � 0.0015 mm�e � 0.0015 mm

f � f1Re, e�D2,

 � 179 N�m2

 �
3211.79 � 10�5 N # s�m22 10.1 m2 150 m�s2

10.004 m22

¢p �
32m/

D2
 V

EXAMPLE 8.5

Under standard temperature and pressure conditions the density

and viscosity are and 

Thus, the Reynolds number is

which would normally indicate turbulent flow.

(a) If the flow were laminar, then

and the pressure drop in a 0.1-m-long horizontal section

of the pipe would be

or

(Ans)¢p � 0.179 kPa

 � 10.004672 
10.1 m2

10.004 m2
 
1

2
 11.23 kg�m32 150 m�s22

¢p � f 
/
D

 
1

2
 rV 2

0.00467

f � 64�Re � 64�13,700 �

Re �
rVD

m
�
11.23 kg�m32 150 m�s2 10.004 m2

1.79 � 10�5 N # s�m2
� 13,700

N # s�m2.

m � 1.79 � 10�5r � 1.23 kg�m3
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8.4.2 Minor Losses

As discussed in the previous section, the head loss in long, straight sections of pipe, the major losses,

can be calculated by use of the friction factor obtained from either the Moody chart or the Colebrook

equation. Most pipe systems, however, consist of considerably more than straight pipes. These addi-

tional components 1valves, bends, tees, and the like2 add to the overall head loss of the system. Such

losses are generally termed minor losses, with the corresponding head loss denoted In this

section we indicate how to determine the various minor losses that commonly occur in pipe systems.

The head loss associated with flow through a valve is a common minor loss. The purpose of

a valve is to provide a means to regulate the flowrate. This is accomplished by changing the geom-

etry of the system 1i.e., closing or opening the valve alters the flow pattern through the valve2,
which in turn alters the losses associated with the flow through the valve. The flow resistance or

head loss through the valve may be a significant portion of the resistance in the system. In fact,

with the valve closed, the resistance to the flow is infinite—the fluid cannot flow. Such minor

losses may be very important indeed. With the valve wide open the extra resistance due to the pres-

ence of the valve may or may not be negligible.

The flow pattern through a typical component such as a valve is shown in Fig. 8.21. It is not

difficult to realize that a theoretical analysis to predict the details of such flows to obtain the head

loss for these components is not, as yet, possible. Thus, the head loss information for essentially

all components is given in dimensionless form and based on experimental data. The most common

method used to determine these head losses or pressure drops is to specify the loss coefficient,
which is defined as

KL �
hL minor

1V 2�2g2
�

¢p
1
2rV

2

KL,

hL minor.
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COMMENT A considerable savings in effort to force the fluid

through the pipe could be realized 10.179 kPa rather than 1.076 kPa2
if the flow could be maintained as laminar flow at this Reynolds

number. In general this is very difficult to do, although laminar flow

in pipes has been maintained up to in rare instances.

An alternate method to determine the friction factor for

the turbulent flow would be to use the Colebrook formula,

Eq. 8.35a. Thus,

or

(1)

By using a root-finding technique on a computer or calculator, the

solution to Eq. 1 is determined to be in agreement

1within the accuracy of reading the graph2 with the Moody chart

method of 

Eq. 8.35b provides an alternate form to the Colebrook formula

that can be used to solve for the friction factor directly.

This agrees with the Colebrook formula and Moody chart values ob-

tained above.

Numerous other empirical formulas can be found in the litera-

ture 1Ref. 52 for portions of the Moody chart. For example, an often-

� 0.0289

� �1.8 log ca
0.000375

3.7
b

1.11

�
6.9

1.37 � 104
d 

1

1f
� �1.8 log ca

e�D
3.7
b

1.11

�
6.9

Re
d

f � 0.028.

f � 0.0291,

1

1f
� �2.0 log a1.01 � 10�4 �

1.83 � 10�4

1f
b

1

1f
� �2.0 log a

e�D
3.7

�
2.51

Re1f
b � �2.0 log a

0.000375

3.7
�

2.51

1.37 � 1041f
b

Re � 100,000

used equation, commonly referred to as the Blasius formula, for tur-

bulent flow in smooth pipes with is

For our case this gives

which is in agreement with the previous results. Note that the

value of f is relatively insensitive to for this particular situa-

tion. Whether the tube was smooth glass or the drawn

tubing would not make much difference in the

pressure drop. For this flow, an increase in relative roughness by

a factor of 30 to 1equivalent to a commercial steel

surface; see Table 8.12 would give  This would repre-

sent an increase in pressure drop and head loss by a factor of

compared with that for the original drawn

tubing.

The pressure drop of 1.076 kPa in a length of 0.1 m of pipe

corresponds to a change in absolute pressure [assuming 

] of approximately or

about 1%. Thus, the incompressible flow assumption on which the

above calculations 1and all of the formulas in this chapter2 are based

is reasonable. However, if the pipe were 2-m long the pressure drop

would be 21.5 kPa, approximately 20% of the original pressure. In

this case the density would not be approximately constant along the

pipe, and a compressible flow analysis would be needed. Such con-

siderations are discussed in Chapter 11.

1.076�101 � 0.0107,101 kPa 1abs2 at x � 0

p �

0.043�0.0291 � 1.48

f � 0.043.

e�D � 0.0113

1e�D � 0.0003752
1e�D � 02

e�D

f � 0.316113,7002�0.25 � 0.0292

f �
0.316

Re1�4

Re 6 1051e�D � 02

Losses due to pipe
system components
are given in terms
of loss coefficients.
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so that

or

(8.36)

The pressure drop across a component that has a loss coefficient of is equal to the dynamic

pressure, As shown by Eq. 8.36 and the figure in the margin, for a given value of KL the

head loss is proportional to the square of the velocity.

The actual value of is strongly dependent on the geometry of the component considered.

It may also be dependent on the fluid properties. That is,

where is the pipe Reynolds number. For many practical applications the Reynolds

number is large enough so that the flow through the component is dominated by inertia effects, with

viscous effects being of secondary importance. This is true because of the relatively large acceler-

ations and decelerations experienced by the fluid as it flows along a rather curved, variable area

1perhaps even torturous2 path through the component 1see Fig. 8.212. In a flow that is dominated by

inertia effects rather than viscous effects, it is usually found that pressure drops and head losses cor-

relate directly with the dynamic pressure. This is the reason why the friction factor for very large

Reynolds number, fully developed pipe flow is independent of the Reynolds number. The same con-

dition is found to be true for flow through pipe components. Thus, in most cases of practical inter-

est the loss coefficients for components are a function of geometry only,

Minor losses are sometimes given in terms of an equivalent length, In this terminology,

the head loss through a component is given in terms of the equivalent length of pipe that would

produce the same head loss as the component. That is,

or

/eq �
KLD

f

hL minor � KL 
V 2

2g
� f 

/eq

D
 
V 2

2g

/eq.

KL � f1geometry2.

Re � rVD�m

KL � f1geometry, Re2

KL

rV 2�2.

KL � 1

hL minor � KL 
V 2

2g

¢p � KL 
1
2rV

2
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Q Q

(b)

F I G U R E  8.21 Flow through a valve.

(a)

 ~ V2hL, minor

h L
, m

in
or

V

For most flows the
loss coefficient is
independent of the
Reynolds number.
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where D and f are based on the pipe containing the component. The head loss of the pipe system

is the same as that produced in a straight pipe whose length is equal to the pipes of the original

system plus the sum of the additional equivalent lengths of all of the components of the system.

Most pipe flow analyses, including those in this book, use the loss coefficient method rather than

the equivalent length method to determine the minor losses.

Many pipe systems contain various transition sections in which the pipe diameter changes

from one size to another. Such changes may occur abruptly or rather smoothly through some type

of area change section. Any change in flow area contributes losses that are not accounted for in

the fully developed head loss calculation 1the friction factor2. The extreme cases involve flow into

a pipe from a reservoir 1an entrance2 or out of a pipe into a reservoir 1an exit2.
A fluid may flow from a reservoir into a pipe through any number of differently shaped en-

trance regions as are sketched in Fig. 8.22. Each geometry has an associated loss coefficient. A

typical flow pattern for flow entering a pipe through a square-edged entrance is sketched in Fig.

8.23. As was discussed in Chapter 3, a vena contracta region may result because the fluid cannot

turn a sharp right-angle corner. The flow is said to separate from the sharp corner. The maximum

velocity at section 122 is greater than that in the pipe at section 132, and the pressure there is lower.

If this high-speed fluid could slow down efficiently, the kinetic energy could be converted into

pressure 1the Bernoulli effect2, and the ideal pressure distribution indicated in Fig. 8.23 would re-

sult. The head loss for the entrance would be essentially zero.

Such is not the case. Although a fluid may be accelerated very efficiently, it is very difficult

to slow down 1decelerate2 a fluid efficiently. Thus, the extra kinetic energy of the fluid at section

122 is partially lost because of viscous dissipation, so that the pressure does not return to the ideal

value. An entrance head loss 1pressure drop2 is produced as is indicated in Fig. 8.23. The majority

of this loss is due to inertia effects that are eventually dissipated by the shear stresses within the

fluid. Only a small portion of the loss is due to the wall shear stress within the entrance region.

The net effect is that the loss coefficient for a square-edged entrance is approximately 

One-half of a velocity head is lost as the fluid enters the pipe. If the pipe protrudes into the tank

1a reentrant entrance2 as is shown in Fig. 8.22a, the losses are even greater.

An obvious way to reduce the entrance loss is to round the entrance region as is shown in

Fig. 8.22c, thereby reducing or eliminating the vena contracta effect. Typical values for the loss

coefficient for entrances with various amounts of rounding of the lip are shown in Fig. 8.24. A sig-

nificant reduction in can be obtained with only slight rounding.KL

KL � 0.50.

8.4 Dimensional Analysis of Pipe Flow 417

(a) (b)

(c) (d)

F I G U R E  8.22 Entrance flow conditions and loss coefficient
(Refs. 28, 29). (a) Reentrant, (b) sharp-edged, (c) slightly
rounded, (see Fig. 8.24), (d) well-rounded, (see Fig. 8.24).KL � 0.04KL � 0.2

KL � 0.5,KL � 0.8,

Minor head losses
are often a result of
the dissipation of
kinetic energy.
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A head loss 1the exit loss2 is also produced when a fluid flows from a pipe into a tank as is shown

in Fig. 8.25. In these cases the entire kinetic energy of the exiting fluid 1velocity 2 is dissipated through

viscous effects as the stream of fluid mixes with the fluid in the tank and eventually comes to rest

The exit loss from points 112 and 122 is therefore equivalent to one velocity head, or 

Losses also occur because of a change in pipe diameter as is shown in Figs. 8.26 and 8.27.

The sharp-edged entrance and exit flows discussed in the previous paragraphs are limiting cases

of this type of flow with either respectively. The loss coefficient for a

sudden contraction, is a function of the area ratio, as is shown in Fig.

8.26. The value of changes gradually from one extreme of a sharp-edged entrance 

with to the other extreme of no area change with 

In many ways, the flow in a sudden expansion is similar to exit flow. As is indicated in Fig.

8.28, the fluid leaves the smaller pipe and initially forms a jet-type structure as it enters the larger

pipe. Within a few diameters downstream of the expansion, the jet becomes dispersed across the

pipe, and fully developed flow becomes established again. In this process [between sections 122 and

132] a portion of the kinetic energy of the fluid is dissipated as a result of viscous effects. A square-

edged exit is the limiting case with 

A sudden expansion is one of the few components 1perhaps the only one2 for which the loss

coefficient can be obtained by means of a simple analysis. To do this we consider the continuity

A1�A2 � 0.

KL � 02.1A2�A1 � 1KL � 0.502
1A2 �A1 � 0KL

A2�A1,KL � hL � 1V 2
2 �2g2,
A1�A2 � q, or A1�A2 � 0,

KL � 1.1V2 � 02.

V1
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Vena contracta

(2) (3)(1) V2 > V3

xV1 = 0

Flow separation
at corner

Separated flow

(a)

p1

p3

x1 x2 x3 x

p

(b)

Actual

Ideal full recovery
of kinetic energy

  V 2
2____

2

ρ

  V 2
3____

2

ρ

  V 2
3____

2

ρ
KL

F I G U R E  8.23 Flow pattern and pressure distribution for a sharp-
edged entrance.

D

r

0.5

0.4

0.3

0.2

0.1

0
0 0.05 0.1 0.15 0.20 0.25

r__
D

KL

F I G U R E  8.24
Entrance loss coefficient as a
function of rounding of the
inlet edge (Ref. 9).

V8.10 Entrance/exit
flows
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(a)

(c) (d)

(b)

(1)

(2)

F I G U R E  8.25 Exit flow conditions and loss coefficient. 
(a) Reentrant, (b) sharp-edged, (c) slightly rounded,
(d ) well-rounded, KL � 1.0.

KL � 1.0,KL � 1.0,KL � 1.0,

A1 A2 hL = KL 
V2

2
___
2g

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

A2/A1

KL

F I G U R E  8.26
Loss coefficient for a sudden
contraction (Ref. 10).

A1 A2 hL = KL 
V1

2
___
2g

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

A1/A2

KL

F I G U R E  8.27
Loss coefficient for a sudden
expansion (Ref. 10).
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and momentum equations for the control volume shown in Fig. 8.28 and the energy equation ap-

plied between 122 and 132. We assume that the flow is uniform at sections 112, 122, and 132 and the

pressure is constant across the left-hand side of the control volume The re-

sulting three governing equations 1mass, momentum, and energy2 are

and

These can be rearranged to give the loss coefficient, as

where we have used the fact that This result, plotted in Fig. 8.27, is in good agreement

with experimental data. As with so many minor loss situations, it is not the viscous effects directly

1i.e., the wall shear stress2 that cause the loss. Rather, it is the dissipation of kinetic energy 1another

type of viscous effect2 as the fluid decelerates inefficiently.

The losses may be quite different if the contraction or expansion is gradual. Typical re-

sults for a conical diffuser with a given area ratio, are shown in Fig. 8.29. 1A diffuser 

is a device shaped to decelerate a fluid.2 Clearly the included angle of the diffuser, is a very

important parameter. For very small angles, the diffuser is excessively long and most of the head

loss is due to the wall shear stress as in fully developed flow. For moderate or large angles, the flow

separates from the walls and the losses are due mainly to a dissipation of the kinetic energy of the jet

leaving the smaller diameter pipe. In fact, for moderate or large values of 1i.e., for the caseu 7 35°u

u,

A2�A1,

A2 � A3.

KL � a1 �
A1

A2

b
2

KL � hL � 1V 2
1�2g2,

p1

g
�

V 2
1

2g
�

p3

g
�

V 2
3

2g
� hL

 p1A3 � p3A3 � rA3V31V3 � V12

 A1V1 � A3V3

1pa � pb � pc � p12.
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(2) (3)

(1)

V1 V1 V3b

c

a

Control volume

F I G U R E  8.28 Control volume used to calculate the loss coefficient
for a sudden expansion.

The loss coefficient
for a sudden expan-
sion can be theoret-
ically calculated.

F I G U R E  8.29 Loss coefficient for a typical conical diffuser (Ref. 5).
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V8.11 Separated
flow in a diffuser

JWCL068_ch08_383-460.qxd  9/23/08  10:53 AM  Page 420



8.4 Dimensional Analysis of Pipe Flow 421

V8.12 Car exhaust
system

F I G U R E  8.30 Character of the flow in a bend and the
associated loss coefficient (Ref. 5).

90�

Separated flow
b b

a

Secondary
flow

90°

�

Primary
flow

D

a

__
D = 0.01

0.002

0.001

0

1.0

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12

�/D

KL

∋

shown in Fig. 8.292, the conical diffuser is, perhaps unexpectedly, less efficient than a sharp-edged ex-

pansion which has There is an optimum angle 1 for the case illustrated2 for

which the loss coefficient is a minimum. The relatively small value of for the minimum results

in a long diffuser and is an indication of the fact that it is difficult to efficiently decelerate a fluid.

It must be noted that the conditions indicated in Fig. 8.29 represent typical results only. Flow

through a diffuser is very complicated and may be strongly dependent on the area ratio spe-

cific details of the geometry, and the Reynolds number. The data are often presented in terms of a

pressure recovery coefficient, which is the ratio of the static pressure rise

across the diffuser to the inlet dynamic pressure. Considerable effort has gone into understanding

this important topic 1Refs. 11, 122.
Flow in a conical contraction 1a nozzle; reverse the flow direction shown in Fig. 8.292 is

less complex than that in a conical expansion. Typical loss coefficients based on the downstream

1high-speed2 velocity can be quite small, ranging from for to for

for example. It is relatively easy to accelerate a fluid efficiently.

Bends in pipes produce a greater head loss than if the pipe were straight. The losses are due

to the separated region of flow near the inside of the bend 1especially if the bend is sharp2 and the

swirling secondary flow that occurs because of the imbalance of centripetal forces as a result of

the curvature of the pipe centerline. These effects and the associated values of for large Reynolds

number flows through a bend are shown in Fig. 8.30. The friction loss due to the axial length

of the pipe bend must be calculated and added to that given by the loss coefficient of Fig. 8.30.

For situations in which space is limited, a flow direction change is often accomplished by

use of miter bends, as is shown in Fig. 8.31, rather than smooth bends. The considerable losses in

such bends can be reduced by the use of carefully designed guide vanes that help direct the flow

with less unwanted swirl and disturbances.

Another important category of pipe system components is that of commercially available

pipe fittings such as elbows, tees, reducers, valves, and filters. The values of for such compo-

nents depend strongly on the shape of the component and only very weakly on the Reynolds num-

ber for typical large Re flows. Thus, the loss coefficient for a elbow depends on whether the

pipe joints are threaded or flanged but is, within the accuracy of the data, fairly independent of the

pipe diameter, flow rate, or fluid properties 1the Reynolds number effect2. Typical values of for

such components are given in Table 8.2. These typical components are designed more for ease of

manufacturing and costs than for reduction of the head losses that they produce. The flowrate from

a faucet in a typical house is sufficient whether the value of for an elbow is the typical 

or it is reduced to by use of a more expensive long-radius, gradual bend 1Fig. 8.302.KL � 0.2

KL � 1.5,KL

KL

90°

KL

90°

KL

u � 60°,

KL � 0.07u � 30°,KL � 0.02

Cp � 1p2 � p12� 1rV 2
1�22,

A2�A1,

KLu

u � 8°KL � 11 � A1�A22
2.

Extensive tables are
available for loss
coefficients of stan-
dard pipe compo-
nents.
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KL ≈ 1.1

Q

Separated
flow

KL ≈ 0.2 

Guide vanes

Q

(a) (b)

F I G U R E  8.31 Character
of the flow in a mitered bend and the
associated loss coefficient: (a) without
guide vanes, (b) with guide vanes.

90�

TA B L E 8 . 2

Loss Coefficients for Pipe Components (Data from Refs. 5, 10, 27)

Component

a. Elbows
Regular flanged 0.3

Regular threaded 1.5

Long radius flanged 0.2

Long radius threaded 0.7

Long radius flanged 0.2

Regular threaded 0.4

b. return bends
return bend, flanged 0.2

return bend, threaded 1.5

c. Tees
Line flow, flanged 0.2

Line flow, threaded 0.9

Branch flow, flanged 1.0

Branch flow, threaded 2.0

d. Union, threaded 0.08

*e. Valves
Globe, fully open 10

Angle, fully open 2

Gate, fully open 0.15

Gate, closed 0.26

Gate, closed 2.1

Gate, closed 17

Swing check, forward flow 2

Swing check, backward flow �

Ball valve, fully open 0.05

Ball valve, closed 5.5

Ball valve, closed 210

*See Fig. 8.32 for typical valve geometry.

2
3

1
3

3
4

1
2

1
4

180°

180°

180�

45°,

45°,

90°,

90°,

90°,

90°,

KL

ahL � KL 
V 2

2g b

V

V

V

V

V

V
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8.4 Dimensional Analysis of Pipe Flow 423

F I G U R E  8.32 Internal structure of various valves: (a) globe valve, (b) gate valve,
(c) swing check valve, (d) stop check valve. (Courtesy of Crane Co., Valve Division.)

F I G U R E  8.33 Head loss in a valve
is due to dissipation of the kinetic energy of the
large-velocity fluid near the valve seat.

V
3
 >> V1

V1 V2 = V1
(1) (2)

Valves control the flowrate by providing a means to adjust the overall system loss coefficient

to the desired value. When the valve is closed, the value of is infinite and no fluid flows. Open-

ing of the valve reduces producing the desired flowrate. Typical cross sections of various types

of valves are shown in Fig. 8.32. Some valves 1such as the conventional globe valve2 are designed

for general use, providing convenient control between the extremes of fully closed and fully open.

Others 1such as a needle valve2 are designed to provide very fine control of the flowrate. The check

valve provides a diode type operation that allows fluid to flow in one direction only.

Loss coefficients for typical valves are given in Table 8.2. As with many system components,

the head loss in valves is mainly a result of the dissipation of kinetic energy of a high-speed por-

tion of the flow. This high speed, is illustrated in Fig. 8.33.V3,

KL,

KL
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GIVEN The closed-circuit wind tunnel shown in Fig. E8.6a is a

smaller version of that depicted in Fig. E8.6b in which air at stan-

dard conditions is to flow through the test section [between sections

(5) and (6)] with a velocity of 200 ft/s. The flow is driven by a fan

that essentially increases the static pressure by the amount p1 � p9

that is needed to overcome the head losses experienced by the fluid

as it flows around the circuit.

FIND Estimate the value of and the horsepower sup-

plied to the fluid by the fan.

p1 � p9

SOLUTION

Minor Losses

where is the actual head rise supplied by the pump 1fan2 to the

air. Again since and this, when combined with

Eq. 1, becomes

The actual power supplied to the air 1horsepower, 2 is obtained

from the fan head by

(2)

Thus, the power that the fan must supply to the air depends on

the head loss associated with the flow through the wind tunnel. To

obtain a reasonable, approximate answer we make the following

assumptions. We treat each of the four turning corners as a mitered

bend with guide vanes so that from Fig. 8.31 Thus,

for each corner

where, because the flow is assumed incompressible,

The values of A and the corresponding velocities throughout the

tunnel are given in Table E8.6.

We also treat the enlarging sections from the end of the test

section 162 to the beginning of the nozzle 142 as a conical diffuser

with a loss coefficient of This value is larger than that

of a well-designed diffuser 1see Fig. 8.29, for example2. Since the

KLdif
� 0.6.

V � V5 A5�A.

hLcorner
� KL 

V 2

2g
� 0.2 

V 2

2g

KLcorner
� 0.2.

pa � gQhp � gA5V5hp � gA5V5hL1�9

pa

hp �
1p1 � p92

g
� hL1�9

V9 � V1z9 � z1

hp

EXAMPLE 8.6

The maximum velocity within the wind tunnel occurs in the

test section 1smallest area; see Table E8.6 on the next page2.
Thus, the maximum Mach number of the flow is 

where and from Eq. 1.20 the speed of sound is

Thus, As was indicated in

Chapter 3 and discussed fully in Chapter 11, most flows can be con-

sidered as incompressible if the Mach number is less than about 0.3.

Hence, we can use the incompressible formulas for this problem.

The purpose of the fan in the wind tunnel is to provide the nec-

essary energy to overcome the net head loss experienced by the

air as it flows around the circuit. This can be found from the en-

ergy equation between points 112 and 192 as

where is the total head loss from 112 to 192. With and

this gives

(1)

Similarly, by writing the energy equation 1Eq. 5.842 across the fan,

from 192 to 112, we obtain

p9

g
�

V 2
9

2g
� z9 � hp �

p1

g
�

V 2
1

2g
� z1

p1

g
�

p9

g
� hL1�9

V1 � V9

z1 � z9hL1�9

p1

g
�

V 2
1

2g
� z1 �

p9

g
�

V 2
9

2g
� z9 � hL1�9

0.179.200�1117 �Ma5 �1117 ft�s.

3 1460 � 592 °R4 61�2 �11716 ft # lb�slug # °R2c5 �1kRT52
1�2 � 51.4

V5 � 200 ft�s
Ma5 � V5 �c5,

(4)

V5 = 200 ft/s

(5) (6) (7)

(8)

Fan

Q (1)
(9)(2)

Test section
Flow-straightening

screens

(3)

F I G U R E  E8.6bF I G U R E  E8.6a
(Photograph courtesy of
DELTALAB.France.)
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8.4.3 Noncircular Conduits

Many of the conduits that are used for conveying fluids are not circular in cross section. Although the

details of the flows in such conduits depend on the exact cross-sectional shape, many round pipe re-

sults can be carried over, with slight modification, to flow in conduits of other shapes.

Theoretical results can be obtained for fully developed laminar flow in noncircular 

ducts, although the detailed mathematics often becomes rather cumbersome. For an arbitrary

8.4 Dimensional Analysis of Pipe Flow 425

wind tunnel diffuser is interrupted by the four turning corners and

the fan, it may not be possible to obtain a smaller value of for

this situation. Thus,

The loss coefficients for the conical nozzle between section 142
and 152 and the flow-straightening screens are assumed to be

and 1Ref. 132, respectively. We neglect the

head loss in the relatively short test section.

Thus, the total head loss is

or

or

Hence, from Eq. 1 we obtain the pressure rise across the fan as

(Ans)

From Eq. 2 we obtain the power added to the fluid as

or

(Ans)pa �
34,300 ft # lb�s

550 1ft # lb�s2�hp
� 62.3 hp

� 34,300 ft # lb�s
pa � 10.0765 lb�ft32 14.0 ft22 1200 ft�s2 1560 ft2

 � 42.8 lb�ft2 � 0.298 psi

 p1 � p9 � ghL1�9
� 10.0765 lb�ft32 1560 ft2

hL1�9
� 560 ft

 � 0.2120022 � 4.0122.922 4  ft2�s2� 32132.2 ft�s22 4

 � 30.2180.02 � 44.42 � 28.62 � 22.922 � 0.6120022
 � 0.6V 2

6 � 0.2V 2
5 � 4.0V 2

4 4 �2g

hL1�9
� 30.21V 2

7 � V 2
8 � V 2

2 � V 2
32

 � hLdif
� hLnoz

� hLscr

hL1�9
� hLcorner7

� hLcorner8 � hLcorner2 � hLcorner3

KLscr
� 4.0KLnoz

� 0.2

hLdif
� KLdif

 
V 2

6

2g
� 0.6 

V 2
6

2g

KLdif

COMMENTS By repeating the calculations with various test

section velocities, , the results shown in Fig. E8.6c are ob-

tained. Since the head loss varies as and the power varies as

head loss times , it follows that the power varies as the cube of

the velocity. Thus, doubling the wind tunnel speed requires an

eightfold increase in power.

With a closed-return wind tunnel of this type, all of the

power required to maintain the flow is dissipated through vis-

cous effects, with the energy remaining within the closed tun-

nel. If heat transfer across the tunnel walls is negligible, the air

temperature within the tunnel will increase in time. For steady-

state operations of such tunnels, it is often necessary to provide

some means of cooling to maintain the temperature at accept-

able levels.

It should be noted that the actual size of the motor that powers

the fan must be greater than the calculated 62.3 hp because the fan

is not 100% efficient. The power calculated above is that needed

by the fluid to overcome losses in the tunnel, excluding those in

the fan. If the fan were 60% efficient, it would require a shaft

power of to run the fan. Determi-

nation of fan 1or pump2 efficiencies can be a complex problem that

depends on the specific geometry of the fan. Introductory mater-

ial about fan performance is presented in Chapter 12; additional

material can be found in various references 1Refs. 14, 15, 16, for

example2.
It should also be noted that the above results are only

approximate. Clever, careful design of the various components

1corners, diffuser, etc.2 may lead to improved 1i.e., lower2
values of the various loss coefficients, and hence lower power re-

quirements. Since is proportional to the components with

the larger V tend to have the larger head loss. Thus, even though

for each of the four corners, the head loss for corner 172
is  times greater than it is for cor-

ner 132.
1V7�V32

2 � 180�22.922 � 12.2

KL � 0.2

V 2,hL

p � 62.3 hp� 10.602 � 104 hp

V5

V5
2

V5

TA B L E E 8 . 6

Location Area ( ) Velocity ( )

1 22.0 36.4

2 28.0 28.6

3 35.0 22.9

4 35.0 22.9

5 4.0 200.0

6 4.0 200.0

7 10.0 80.0

8 18.0 44.4

9 22.0 36.4

ft�sft2

(200 ft/s, 62.3 hp)

250

200

150

100

50

0
0 50 100 150

V5, ft/s

�
a,

 h
p

200 250 300

F I G U R E  E8.6c
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cross section, as is shown in Fig. 8.34, the velocity profile is a function of both y and z
This means that the governing equation from which the velocity profile is obtained

1either the Navier–Stokes equations of motion or a force balance equation similar to that used for

circular pipes, Eq. 8.62 is a partial differential equation rather than an ordinary differential equa-

tion. Although the equation is linear 1for fully developed flow the convective acceleration is zero2,
its solution is not as straightforward as for round pipes. Typically the velocity profile is given in

terms of an infinite series representation 1Ref. 172.
Practical, easy-to-use results can be obtained as follows. Regardless of the cross-sectional

shape, there are no inertia effects in fully developed laminar pipe flow. Thus, the friction fac-

tor can be written as where the constant C depends on the particular shape of the

duct, and is the Reynolds number, based on the hydraulic diameter. The

hydraulic diameter defined as is four times the ratio of the cross-sectional flow area

divided by the wetted perimeter, P, of the pipe as is illustrated in Fig. 8.34. It represents a char-

acteristic length that defines the size of a cross section of a specified shape. The factor of 4 is

included in the definition of so that for round pipes the diameter and hydraulic diameter are

equal The hydraulic diameter is also used in the definition

of the friction factor, and the relative roughness,

The values of for laminar flow have been obtained from theory and or experiment

for various shapes. Typical values are given in Table 8.3 along with the hydraulic diameter. Note
�C � f Reh

e�Dh.hL � f 1/�Dh2V
2�2g,

3Dh � 4A�P � 41pD2�42� 1pD2 � D 4 .
Dh

Dh � 4A�P
Reh � rVDh�m,Reh

f � C�Reh,

3V � u1y, z2 î 4 .

426 Chapter 8 ■ Viscous Flow in Pipes

A = cross-sectional
area

P = perimeter
of pipe

Dh = 4A/P = hydraulic
diameter

(a) (b)

y

z

x

z V = u(y,z)

F I G U R E  8.34 Noncircular duct.

The hydraulic di-
ameter is used for
noncircular duct
calculations.

■ TA B L E 8 . 3

Friction Factors for Laminar Flow in Noncircular Ducts (Data from Ref. 18)

Shape Parameter

0.0001 71.8

0.01 80.1

0.1 89.4

0.6 95.6

1.00 96.0

a�b
0 96.0

0.05 89.9

0.10 84.7

0.25 72.9

0.50 62.2

0.75 57.9

1.00 56.9

D1�D2

C � f Reh

D1

D2

Concentric AnnulusI.
Dh = D2 – D1

a

b

Dh =
2ab_____

a + b

RectangleII.

JWCL068_ch08_383-460.qxd  9/23/08  10:54 AM  Page 426



that the value of C is relatively insensitive to the shape of the conduit. Unless the cross section is

very “thin” in some sense, the value of C is not too different from its circular pipe value,

Once the friction factor is obtained, the calculations for noncircular conduits are identical to those

for round pipes.

Calculations for fully developed turbulent flow in ducts of noncircular cross section are usu-

ally carried out by using the Moody chart data for round pipes with the diameter replaced by the

hydraulic diameter and the Reynolds number based on the hydraulic diameter. Such calculations

are usually accurate to within about 15%. If greater accuracy is needed, a more detailed analysis

based on the specific geometry of interest is needed.

C � 64.

8.4 Dimensional Analysis of Pipe Flow 427

The Moody chart,
developed for round
pipes, can also be
used for noncircu-
lar ducts.

GIVEN Air at a temperature of 120 ºF and standard pressure

flows from a furnace through an 8-in.-diameter pipe with an av-

erage velocity of 10 ft/s. It then passes through a transition sec-

tion similar to the one shown in Fig. E8.7 and into a square duct

whose side is of length a. The pipe and duct surfaces are smooth

. The head loss per foot is to be the same for the pipe and

the duct.

FIND Determine the duct size, a.

1e � 02

Noncircular ConduitEXAMPLE 8.7

V

F I G U R E  E8.7

SOLUTION

where a is in feet. Similarly, the Reynolds number based on the

hydraulic diameter is

(4)

We have three unknowns 1a, f, and Reh2 and three equations—

Eqs. 3, 4, and either in graphical form the Moody chart 1Fig. 8.202
or the Colebrook equation (Eq. 8.35a). 

If we use the Moody chart, we can use a trial and error solution

as follows. As an initial attempt, assume the friction factor for the

duct is the same as for the pipe. That is, assume From

Eq. 3 we obtain while from Eq. 4 we have

From Fig. 8.20, with this Reynolds number

and the given smooth duct we obtain which does not

quite agree with the assumed value of f. Hence, we do not have the

solution. We try again, using the latest calculated value of

as our guess. The calculations are repeated until the

guessed value of f agrees with the value obtained from Fig. 8.20.

The final result 1after only two iterations2 is 

and

(Ans)

COMMENTS Alternatively, we can use the Colebrook equa-

tion (rather than the Moody chart) to obtain the solution as 

a � 0.611 ft � 7.34 in.

Reh � 3.03 � 104,

f � 0.023,

f � 0.023

f � 0.023,

Reh � 3.05 � 104.

a � 0.606 ft,

f � 0.022.

Reh �
VsDh

n
�
13.49�a 22a

1.89 � 10�4
�

1.85 � 104

a

We first determine the head loss per foot for the pipe,

and then size the square duct to give the

same value. For the given pressure and temperature we obtain

1from Table B.32 so that

With this Reynolds number and with we obtain the fric-

tion factor from Fig. 8.20 as so that

Thus, for the square duct we must have

(1)

where

(2)

is the velocity in the duct.

By combining Eqs. 1 and 2 we obtain

or

(3)a � 1.30 f 1�5

0.0512 �
f

a
 
13.49�a 222

2132.22

 Vs �
Q

A
�

p

4
 a

8

12
 ftb

2 

110 ft�s2

a 2
�

3.49

a 2

 Dh � 4A�P � 4a 2�4a � a and

hL

/
�

f

Dh

 
V 2

s

2g
� 0.0512

hL

/
�

0.022

1 8
12 ft2

 
110 ft�s22

2132.2 ft�s22
� 0.0512

f � 0.022

e�D � 0

Re �
VD

n
�
110 ft�s2 1 8

12 ft2

1.89 � 10�4 ft2�s
� 35,300

n � 1.89 � 10�4 ft2�s

hL �/ � 1 f�D2 V 2�2g,
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follows. For a smooth pipe the Colebrook equation,

Eq. 8.35a, becomes

(5)

where from Eq. 3,

(6)

If we combine Eqs. 4, 5, and 6 and simplify, Eq. 7 is obtained for a.

(7)1.928 a�5�2 � �2 log12.62 � 10�4 a�3�22

f � 0.269 a5

 � �2.0 log a
2.51

Reh1f
b

1

1f
� �2.0 log a

e�Dh

3.7
�

2.51

Reh1f
b

1e�Dh � 02 By using a root-finding technique on a computer or calculator, the

solution to Eq. 7 is determined to be , in agreement

(given the accuracy of reading the Moody chart) with that ob-

tained by the trial and error method given above.

Note that the length of the side of the equivalent square duct

is or approximately 92% of the diameter

of the equivalent duct. It can be shown that this value, 92%, is a

very good approximation for any pipe flow—laminar or turbu-

lent. The cross-sectional area of the duct is

greater than that of the round pipe Also,

it takes less material to form the round pipe 

than the square duct Cir-

cles are very efficient shapes.

1perimeter � 4a � 29.4 in.2.25.1 in.2
1perimeter �pD �

1A �pD2�4 � 50.3 in.22.
1A � a 2 � 53.9 in.22

a�D � 7.34�8 � 0.918,

a � 0.614 ft

In the previous sections of this chapter, we discussed concepts concerning flow in pipes and ducts.

The purpose of this section is to apply these ideas to the solutions of various practical problems.

The application of the pertinent equations is straightforward, with rather simple calculations that

give answers to problems of engineering importance. The main idea involved is to apply the en-

ergy equation between appropriate locations within the flow system, with the head loss written in

terms of the friction factor and the minor loss coefficients. We will consider two classes of pipe

systems: those containing a single pipe 1whose length may be interrupted by various components2,
and those containing multiple pipes in parallel, series, or network configurations.

Pipe systems may
contain a single
pipe with compo-
nents or multiple
interconnected
pipes.

F l u i d s  i n  t h e  N e w s

New hi-tech fountains Ancient Egyptians used fountains in

their palaces for decorative and cooling purposes. Current use of

fountains continues, but with a hi-tech flair. Although the basic

fountain still consists of a typical pipe system (i.e., pump, pipe,

regulating valve, nozzle, filter, and basin), recent use of computer-

controlled devices has led to the design of innovative fountains

with special effects. For example, by using several rows of multi-

ple nozzles, it is possible to program and activate control valves to

produce water jets that resemble symbols, letters, or the time of

day. Other fountains use specially designed nozzles to produce

coherent, laminar streams of water that look like glass rods flying

through the air. By using fast-acting control valves in a synchronized

manner it is possible to produce mesmerizing three-dimensional

patterns of water droplets. The possibilities are nearly limitless.

With the initial artistic design of the fountain established, the ini-

tial engineering design (i.e., the capacity and pressure require-

ments of the nozzles and the size of the pipes and pumps) can be

carried out. It is often necessary to modify the artistic and/or en-

gineering aspects of the design in order to obtain a functional,

pleasing fountain. (See Problem 8.64.)

8.5.1 Single Pipes

The nature of the solution process for pipe flow problems can depend strongly on which of the var-

ious parameters are independent parameters 1the “given”2 and which is the dependent parameter 1the

“determine”2. The three most common types of problems are shown in Table 8.4 in terms of the pa-

rameters involved. We assume the pipe system is defined in terms of the length of pipe sections used

and the number of elbows, bends, and valves needed to convey the fluid between the desired loca-

tions. In all instances we assume the fluid properties are given.

In a Type I problem we specify the desired flowrate or average velocity and determine the

necessary pressure difference or head loss. For example, if a flowrate of 2.0 gal�min is required

for a dishwasher that is connected to the water heater by a given pipe system as shown by the fig-

ure in the margin, what pressure is needed in the water heater?

In a Type II problem we specify the applied driving pressure 1or, alternatively, the head loss2
and determine the flowrate. For example, how many gal�min of hot water are supplied to the dish-

washer if the pressure within the water heater is 60 psi and the pipe system details 1length, diam-

eter, roughness of the pipe; number of elbows; etc.2 are specified?

I: Δp = ?
III: D = ?

II: Q = ?
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In a Type III problem we specify the pressure drop and the flowrate and determine the diame-

ter of the pipe needed. For example, what diameter of pipe is needed between the water heater and

dishwasher if the pressure in the water heater is 60 psi 1determined by the city water system2 and the

flowrate is to be not less than 2.0 gal�min 1determined by the manufacturer2?
Several examples of these types of problems follow.

8.5 Pipe Flow Examples 429

■ TA B L E 8 . 4

Pipe Flow Types

Variable Type I Type II Type III

a. Fluid
Density Given Given Given

Viscosity Given Given Given

b. Pipe
Diameter Given Given Determine

Length Given Given Given

Roughness Given Given Given

c. Flow
Flowrate or Given Determine Given

Average Velocity

d. Pressure
Pressure Drop or Determine Given Given

Head Loss

Pipe flow problems
can be categorized
by what parameters
are given and what
is to be calculated.

GIVEN Water at 60 ºF flows from the basement to the second

floor through the 0.75-in. (0.0625-ft)-diameter copper pipe 

(a drawn tubing) at a rate of 

and exits through a faucet of diameter 0.50 in. as shown in Fig.

E8.8a.

FIND Determine the pressure at point (1) if

(a) all losses are neglected,

(b) the only losses included are major losses, or

(c) all losses are included.

Q � 12.0 gal�min � 0.0267 ft3�s

Type I, Determine Pressure DropEXAMPLE 8.8

SOLUTION

(1)

where the head loss is different for each of the three cases.

(a) If all losses are neglected Eq. 1 gives

or

(Ans)p1 � 10.7 psi

 � 11248 � 2992 lb�ft2 � 1547 lb�ft2

 �
1.94 slugs�ft3

2
 c a19.6 

ft

s
b

2

� a8.70 
ft

s
b

2

d

p1 � 162.4 lb�ft32 120 ft2

1hL � 02,

p1 � gz2 � 1
2r1V

2
2 � V 2

12 � ghL

Since the fluid velocity in the pipe is given by 

and the

fluid properties are and 

1see Table B.12, it follows that 

Thus, the flow is turbulent. The governing equation for either case

1a2, 1b2, or 1c2 is the energy equation given by Eq. 8.21,

where lb�ft3,

and the outlet velocity is 

We assume that the kinetic energy coeffi-

cients and are unity. This is reasonable because turbulent ve-

locity profiles are nearly uniform across the pipe. Thus,

a2a1

� 19.6 ft�s.1222ft2�4 4
3p10.50�V2 � Q�A2 � 10.0267 ft3�s2�

z1 � 0, z2 � 20 ft, p2 � 0 1free jet2, g� rg � 62.4

p1

g
� a1 

V 2
1

2g
� z1 �

p2

g
� a2 

V 2
2

2g
� z2 � hL

lb # s�ft22 � 45,000.slugs�ft32 18.70 ft�s2 10.0625 ft2� 12.34 � 10�5

rVD�m � 11.94Re �10�5 lb # s�ft2

m � 2.34 �r � 1.94 slugs�ft3

ft3�s2� 3p 10.0625 ft22�4 4� 8.70 ft�s,Q� 1pD2�42� 10.0267

V1 � Q�A1 �

Q =
12.0

gal/min

(1)

(2)

(3)

15 ft

10 ft

5 ft 10 ft

10 ft 10 ft
(8)(7)

(6)

(4)

(5)

g

Threaded
90° elbows

0.75-in.-diameter
copper pipe

Wide open
globe valve

0.50-in.
diameter

KL = 2 based on
pipe

velocity

F I G U R E  E8.8a
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COMMENT Note that for this pressure drop, the amount due

to elevation change 1the hydrostatic effect2 is 

and the amount due to the increase in kinetic energy is

(b) If the only losses included are the major losses, the head

loss is

From Table 8.1 the roughness for a 0.75-in.-diameter copper

pipe 1drawn tubing2 is so that 

With this and the calculated Reynolds number 

the value of f is obtained from the Moody chart as

Note that the Colebrook equation 1Eq. 8.352 would

give the same value of f. Hence, with the total length of the pipe

as and the elevation

and kinetic energy portions the same as for part 1a2, Eq. 1 gives

or

(Ans)

COMMENT Of this pressure drop, the amount due to pipe

friction is approximately 

(c) If major and minor losses are included, Eq. 1 becomes

or

(2)

where the 21.3 psi contribution is due to elevation change, kinetic

energy change, and major losses [part 1b2], and the last term rep-

resents the sum of all of the minor losses. The loss coefficients of

the components 1 for each elbow and for the

wide-open globe valve2 are given in Table 8.2 1except for the loss

coefficient of the faucet, which is given in Fig. E8.8a as 2.
Thus,

or

(3)

Note that we did not include an entrance or exit loss because points

112 and 122 are located within the fluid streams, not within an at-

a rKL 
V 2

2
� 9.17 psi 

 � 1321 lb�ft2

 a rKL 
V 2

2
� 11.94 slugs�ft32 

18.70 ft22

2
 310 � 411.52 � 2 4

KL � 2

KL � 10KL � 1.5

p1 � 21.3 psi � a rKL 
V 2

2

p1 � gz2 �
1

2
 r1V 2

2 � V 2
12 � fg 

/
D

 
V 2

1

2g
� a rKL 

V 2

2

psi � 10.6 psi.121.3 � 10.72

p1 � 21.3 psi

 � 11248 � 299 � 15152 lb�ft2 � 3062 lb�ft2

 � 11.94 slugs�ft32 10.02152 a
60 ft

0.0625 ft
b 
18.70 ft�s22

2

 � 11248 � 2992 lb�ft2

 p1 � gz2 �
1

2
 r1V 2

2 � V 2
12 � rf 

/
D

 
V 2

1

2

� 60 ft/ � 115 � 5 � 10 � 10 � 202 ft

f � 0.0215.

45,0002,
1Re �e�D

e�D � 8 � 10�5.e � 0.000005 ft

hL � f 
/
D

 
V 1

2

2g

2.07 psi.r1V 2
2 � V 2

12�2 �

g1z2 � z12 � 8.67 psi

taching reservoir where the kinetic energy is zero. Thus, by com-

bining Eqs. 2 and 3 we obtain the entire pressure drop as

(Ans)

This pressure drop calculated by including all losses should be the

most realistic answer of the three cases considered.

COMMENTS More detailed calculations will show that the

pressure distribution along the pipe is as illustrated in Fig. E8.8b
for cases 1a2 and 1c2—neglecting all losses or including all losses.

Note that not all of the pressure drop, is a “pressure

loss.” The pressure change due to the elevation and velocity

changes is completely reversible. The portion due to the major

and minor losses is irreversible.

This flow can be illustrated in terms of the energy line and hy-

draulic grade line concepts introduced in Section 3.7. As is shown

in Fig. E8.8c, for case 1a2 there are no losses and the energy line

1EL2 is horizontal, one velocity head above the hydraulic

grade line 1HGL2, which is one pressure head above the pipe

itself. For cases 1b2 or 1c2 the energy line is not horizontal. Each bit

of friction in the pipe or loss in a component reduces the available

1gz2
1V 2�2g2

p1 � p2,

p1 � 121.3 � 9.172 psi � 30.5 psi

80

60

40

20

0
0 10 20 30 40 50 60

Distance along pipe from point (1), ft

H
, 

el
ev

at
io

n 
to

 e
ne

rg
y 

lin
e,

 f
t

Energy line with no losses, case (a)

Energy line including all
losses, case (c)

Sharp drop due to component loss
Slope due to pipe friction

F I G U R E  E8.8c

F I G U R E  E8.8b

30

20

10

0
0 10 20 30 40 50 60

10.7 10.7

6.37

2.07
2.07

4.84
3.09

9.93

12.411.7

30.5 psi

27.1
27.8

20.2
21.0

18.5
19.3

(a) No losses
(c) Including all

losses    

Pressure
loss

Elevation
and

kinetic
energy

p2 = 0

Distance along pipe from point (1), ft

p,
 p

si

Location:  (1) (3) (4) (5) (6) (7) (8) (2)

6.37
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Although the governing pipe flow equations are quite simple, they can provide very reason-

able results for a variety of applications, as is shown in the next example.

8.5 Pipe Flow Examples 431

energy, thereby lowering the energy line. Thus, for case 1a2 the to-

tal head remains constant throughout the flow with a value of

For case 1c2 the energy line starts at

and falls to a final value of

� 26.0 ft

H2 �
p2

g
�

V 2
2

2g
� z2 � 0 �

119.6 ft�s22

2132.2 ft�s22
� 20 ft

�
130.5 � 1442lb�ft2

162.4 lb�ft32
�
18.70 ft�s22

2132.2 ft�s22
� 0 � 71.6 ft

H1 �
p1

g
�

V 2
1

2g
� z1

 �
p2

g
�

V 2
2

2g
� z2 �

p3

g
�

V 3
3

2g
� z3 � p

 � 26.0 ft.

 H �  
p1

g
�

V 2
1

2g
� z1 �

11547 lb�ft22

162.4 lb�ft32
�
18.70 ft�s22

2132.2 ft�s22
� 0

The elevation of the energy line can be calculated at any point

along the pipe. For example, at point 172, 50 ft from point 112,

The head loss per foot of pipe is the same all along the pipe.

That is,

Thus, the energy line is a set of straight line segments of the same

slope separated by steps whose height equals the head loss of the

minor component at that location. As is seen from Fig. E8.8c, the

globe valve produces the largest of all the minor losses.

hL

/
� f 

V 2

2gD
�

0.021518.70 ft�s22

2132.2 ft�s22 10.0625 ft2
� 0.404 ft�ft

 � 44.1 ft

 �
19.93 � 1442 lb�ft2

162.4 lb�ft32
�
18.70 ft�s22

2132.2 ft�s22
� 20 ft

 H7 �
p7

g
�

V 2
7

2g
� z7

GIVEN As shown in Fig. E8.9a, crude oil at 140 °F with � �
53.7 lb ft3 and � � 8 � 10�5 lb � s ft2 (about four times the vis-

cosity of water) is pumped across Alaska through the Alaskan

pipeline, a 799-mile-long, 4-ft-diameter steel pipe, at a maxi-

mum rate of Q � 2.4 million barrels day � 117 ft3 s. 

FIND Determine the horsepower needed for the pumps that

drive this large system.

��

��

Type I, Determine Head LossEXAMPLE 8.9

SOLUTION

1see Table 8.12 and 

Thus,

and the actual power supplied to the fluid, is

(Ans)

COMMENTS There are many reasons why it is not practical

to drive this flow with a single pump of this size. First, there are no

pumps this large! Second, the pressure at the pump outlet would

 � 202,000 hp

 � 1.11 � 108 ft # lb�s a
1 hp

550 ft # lb�s
b

 pa � gQhp � 153.7 lb�ft32 1117 ft3�s2 117,700 ft2

pa,

hp � 0.012511.05 � 1062 
19.31 ft�s22

2132.2 ft�s22
� 17,700 ft

7.76 � 105.s�ft22  �19.31 ft �s2 14.0 ft2 � 18 � 10�5 lb #slugs�ft3 4
m � 3 153.7�32.22Re � rVD�� 0.0000375From the energy equation 1Eq. 8.212 we obtain

where points 112 and 122 represent locations within the large hold-

ing tanks at either end of the line and is the head provided to the

oil by the pumps. We assume that 1pumped from sea level

to sea level2, 1large, open tanks2 and

Minor losses are negligible because of the

large length-to-diameter ratio of the relatively straight, uninterrupted

pipe; � Thus,

where V � Q A � (117 ft3 s) From Fig.

8.20 or Eq. 8.35, since 10.00015 ft2� 14 ft2e�D �f � 0.0125

3p14 ft22�4 4 � 9.31 ft�s.���

hp � hL � f 
/
D

 
V 2

2g

1.05 � 106.mi2� 14 ft2 �15280 ft�/�D � 1799 mi2

1  f/�D2V 2�2g.hL �
V1 � V2 � 0p1 � p2 �

z1 � z2

hp

p1

g
�

V 2
1

2g
� z1 � hp �

p2

g
�

V 2
2

2g
� z2 � hL

Pump

Oil: �  = 53.7 lb/ft3 

         � = 8 � 10�5 lbf . s/ft2
4-ft-diameter, 
799-mile-long 

steel pipe

Prudhoe Bay, Alaska

(1) (2)

Valdez, Alaska

F I G U R E  E8.9a
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Pipe flow problems in which it is desired to determine the flowrate for a given set of condi-

tions 1Type II problems2 often require trial-and-error or numerical root-finding techniques. This is

because it is necessary to know the value of the friction factor to carry out the calculations, but

the friction factor is a function of the unknown velocity 1flowrate2 in terms of the Reynolds num-

ber. The solution procedure is indicated in Example 8.10.

432 Chapter 8 ■ Viscous Flow in Pipes

need to be

No practical 4-ft-diameter pipe would withstand this

pressure. An equally unfeasible alternative would be to place the

holding tank at the beginning of the pipe on top of a hill of height

and let gravity force the oil through the 799-mi

pipe! How much power would it take to lift the oil to the top of the

hill?

To produce the desired flow, the actual system contains 12

pumping stations positioned at strategic locations along the

pipeline. Each station contains four pumps, three of which oper-

ate at any one time 1the fourth is in reserve in case of emergency2.
Each pump is driven by a 13,500-hp motor, thereby producing a

total horsepower of stations 2
If we assume that the combi-

nation is approximately 60% efficient, there is a total of

available to drive the fluid. This

number compares favorably with the 202,000-hp answer calcu-

lated above.

The assumption of a oil temperature may not seem reason-

able for flow across Alaska. Note, however, that the oil is warm when

it is pumped from the ground and that the 202,000 hp needed to pump

the oil is dissipated as a head loss 1and therefore a temperature rise2
along the pipe. However, if the oil temperature were rather than

, the viscosity would be approximately 

1twice as large2, but the friction factor would only increase from

at to at

This doubling of viscosity would result in70 °F 1Re � 3.88 � 1052.
f � 0.0140140 °F 1Re � 7.76 � 1052f � 0.0125

16 � 10�5 lb # s�ft2140 °F

70 °F

140 °F

0.60 1486,0002 hp � 292,000 hp

motorpump�pump2 � 486,000 hp.

113,500 hp�station13 pump�p � 12

hL � 17,700 ft

6600 psi.

11 ft2�144 in.22 �p � ghL � 153.7 lb�ft32 117,700 ft2 only an 11% increase in power 1from 202,000 to 226,000 hp2. Because

of the large Reynolds numbers involved, the shear stress is due mostly

to the turbulent nature of the flow. That is, the value of Re for this flow

is large enough 1on the relatively flat part of the Moody chart2 so that f
is nearly independent of Re 1or viscosity2.

By repeating the calculations for various values of the pipe di-

ameter, D, the results shown in Fig. E8.9b are obtained. Clearly the

required pump power, is a strong function of the pipe diameter,

with if the friction factor is constant. The actual 4-ft-

diameter pipe used represents a compromise between using smaller

diameter pipes which are less expensive to make but require consid-

erably more pump power, and larger diameter pipes which require

less pump power but are very expensive to make and maintain.

pa ~ D�4

pa,

4 × 106

3 × 106

2 × 106

1 × 106

0
0 1 2 3 4 5 6

(4 ft, 2.02 × 105 hp)

D, ft

�
a,

 h
p

F I G U R E  E8.9b

GIVEN Air at a temperature of 100 °F and standard pressure

flows from a clothes dryer. According to the appliance manufac-

turer, the 4-in.-diameter galvanized iron vent on the clothes dryer is

not to contain more than 20 ft of pipe and four 90� elbows.

FIND Under these conditions determine the air flowrate if the

pressure at the start of the vent pipe, directly downstream of the

dryer fan, is 0.20 in. of water.

Type II, Determine FlowrateEXAMPLE 8.10

SOLUTION

Thus, with 1see Table B.32 and 1the air

velocity in the pipe2, Eq. 1 becomes

or

(2)

where V is in ft�s.

945 � 16.0 � 60 f 2V 2

� 411.52 d  
V 2

2132.2 ft�s22

11.04 lb�ft22

10.0709 lb�ft32
� c f 

120 ft2

1 4
12 ft2

V2 � Vg � 0.0709 lb�ft3Application of the energy equation 1Eq. 8.212 between the beginning

of the vent pipe, point 112, and the exit of the pipe, point 122, gives

(1)

where for each elbow is assumed to be 1.5. In addition,

and 1The change in elevation is often negligible

for gas flows.2Also, and or

p1 � 10.2 in.2 a
1 ft

12 in.
b 162.4 lb�ft32 � 1.04 lb�ft2

p1�gH2O � 0.2 in.,p2 � 0,

z1 � z2.V1 � V2

KL

p1

g
�

V 2
1

2g
� z1 �

p2

g
�

V 2
2

2g
� z2 � f 

/
D

 
V 2

2g
�a KL 

V 2

2g

Some pipe flow
problems require a
trial-and-error solu-
tion technique.
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8.5 Pipe Flow Examples 433

The value of f is dependent on Re, which is dependent on V,

an unknown. However, from Table B.3, and

we obtain

or

(3)

where again V is in 

Also, since 1see Table

8.1 for the value of 2, we know which particular curve of the

Moody chart is pertinent to this flow. Thus, we have three rela-

tionships 1Eqs. 2, 3, and the curve of Fig. 8.202
from which we can solve for the three unknowns f, Re, and V.

This is done easily by an iterative scheme as follows.

It is usually simplest to assume a value of f, calculate V from Eq.

2, calculate Re from Eq. 3, and look up the appropriate value of f in

the Moody chart for this value of Re. If the assumed f and the new f
do not agree, the assumed answer is not correct—we do not have the

solution to the three equations. Although values of either f, V, or Re

could be assumed as starting values, it is usually simplest to assume

a value of f because the correct value often lies on the relatively flat

portion of the Moody chart for which f is quite insensitive to Re.

Thus, we assume approximately the large Re limit

for the given relative roughness. From Eq. 2 we obtain

and from Eq. 3

With this Re and Fig. 8.20 gives which is not

equal to the assumed solution 1although it is close!2.
We try again, this time with the newly obtained value of

which gives and With

these values, Fig. 8.20 gives  which agrees with the as-

sumed value. Thus, the solution is or

(Ans)Q � AV �
p

4
 1 4

12 ft2
2111.0 ft�s2 � 0.960 ft3�s

V � 11.0 ft�s,

f � 0.029,

Re � 20,500.V � 11.0 ft�sf � 0.029,

f � 0.022

f � 0.029,e�D,

Re � 1860111.42 � 21,200

V � c
945

6.0 � 6010.0222
d

1�2

� 11.4 ft�s

f � 0.022,

e�D � 0.0015

e

e�D � 10.0005 ft2� 14�12 ft2 � 0.0015

ft�s.

 Re � 1860 V

 Re �
VD

n
�

1 4
12 ft2 V

 1.79 � 10�4 ft2�s

n � 1.79 � 10�4 ft2�s
COMMENTS Note that the need for the iteration scheme is

because one of the equations, is in graphical

form 1the Moody chart2. If the dependence of f on Re and is

known in equation form, this graphical dependency is elimi-

nated, and the solution technique may be easier. Such is the case

if the flow is laminar so that the friction factor is simply

For turbulent flow, we can use the Colebrook equa-

tion rather than the Moody chart. Thus, we keep Eqs. 2 and 3

and use the Colebrook equation 1Eq. 8.35a) with 

to give

(4)

From Eq. 2 we have which can be

combined with Eq. 3 to give

(5)

The combination of Eqs. 4 and 5 provides a single equation for

the determination of f

(6)

By using a root-finding technique on a computer or calculator,

the solution to this equation is determined to be in

agreement with the above solution which used the Moody

chart. 

Note that unlike the Alaskan pipeline example 1Example

8.92 in which we assumed minor losses are negligible, minor

losses are of importance in this example because of the rela-

tively small length-to-diameter ratio:

The ratio of minor to major losses in this case is 

The elbows and entrance produce

considerably more loss than the pipe itself.

6.0� 30.029 1602 4 � 3.45.

KL �1 f/�D2 �
/�D � 20� 14�122 � 60.

f � 0.029,

� 4.39 � 10�5 
B

60 �
6.0

f
b

1

1f
� �2.0 log a4.05 � 10�4

Re �
57,200

16.0 � 60 f

V � 3945� 16.0 � 60 f 2 4 1�2,

 � �2.0 log a4.05 � 10�4 �
2.51

Re1f
b

1

1f
� �2.0 log a

e�D
3.7

�
2.51

Re1f
b

e�D � 0.0015

f � 64�Re.

e�D
f � f1Re, e�D2,

GIVEN The turbine shown in Fig. E8.11 extracts 50 hp from

the water flowing through it. The 1-ft-diameter, 300-ft-long

pipe is assumed to have a friction factor of 0.02. Minor losses

are negligible.

FIND Determine the flowrate through the pipe and turbine.

Type II, Determine FlowrateEXAMPLE 8.11

(2)

Free jet
Turbine

300-ft-long,
1-ft-diameter pipe

(1)

f = 0.02 z2 = 0

z1 = 90 ft

F I G U R E  E8.11
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In pipe flow problems for which the diameter is the unknown 1Type III2, an iterative or numer-

ical root-finding technique is required. This is, again, because the friction factor is a function of the

diameter—through both the Reynolds number and the relative roughness. Thus, neither 

are known unless D is known. Examples 8.12 and 8.13 illustrate this.4rQ�pmD nor e�D
Re � rVD�m�

434 Chapter 8 ■ Viscous Flow in Pipes

SOLUTION

and has no physical meaning for this flow.

Thus, the two acceptable flowrates are

(Ans)

or

(Ans)

COMMENTS Either of these two flowrates gives the same

power, The reason for two possible solutions can be

seen from the following. With the low flowrate we

obtain the head loss and turbine head as and

Because of the relatively low velocity there is a rela-

tively small head loss and, therefore, a large head available for the

turbine. With the large flowrate we find

and The high-speed flow in the pipe pro-

duces a relatively large loss due to friction, leaving a relatively small

head for the turbine. However, in either case the product of the tur-

bine head times the flowrate is the same. That is, the power extracted

is identical for each case. Although either flowrate

will allow the extraction of 50 hp from the water, the details of the

design of the turbine itself will depend strongly on which flowrate is

to be used. Such information can be found in Chapter 12 and various

references about turbomachines 1Refs. 14, 19, 202.
If the friction factor were not given, the solution to the prob-

lem would be much more lengthy. A trial-and-error solution sim-

ilar to that in Example 8.10 would be required along with the so-

lution of a cubic equation.

1pa � gQhT2

hT � 22.5 ft.hL � 57.8 ft

1Q � 19.6 ft3�s2,

hT � 85.3 ft.

hL � 4.04 ft

1Q � 5.17 ft3�s2,
pa � gQhT.

Q �
p

4
 11 ft22124.9 ft�s2 � 19.6 ft3�s

Q �
p

4
 D2V �

p

4
 11 ft2216.58 ft�s2 � 5.17 ft3�s

1V � �31.4 ft�s2The energy equation 1Eq. 8.212 can be applied between the surface

of the lake [point 112] and the outlet of the pipe as

(1)

where hT is the turbine head,

and the fluid velocity in the pipe. The head loss is given by

where V is in ft�s. Also, the turbine head is

Thus, Eq. 1 can be written as

or

(2)

where V is in ft�s. The velocity of the water in the pipe is found as

the solution of Eq. 2. Surprisingly, there are two real, positive

roots: The third root is negativeV � 6.58 ft�s or V � 24.9 ft�s.

0.109V 3 � 90V � 561 � 0

90 �
V 2

2132.22
� 0.0932V 2 �

561

V

 �
150 hp2 3 1550 ft # lb�s2�hp 4

162.4 lb�ft32 3 1p�42 11 ft22V 4
�

561

V
 ft

hT �
pa

gQ
�

pa

g1p�42D2V

hL � f 
/
D

 
V 2

2g
� 0.02 

1300 ft2

11 ft2
 

V 2

2132.2 ft�s22
� 0.0932V 2 ft

V2 � V,

p1 � V1 � p2 � z2 � 0, z1 � 90 ft,

p1

g
�

V 1
2

2g
� z1 �

p2

g
�

V 2
2

2g
� z2 � hL � hT

GIVEN Air at standard temperature and pressure flows

through a horizontal, galvanized iron pipe at a

rate of The pressure drop is to be no more than 0.50 psi

per 100 ft of pipe.

2.0 ft3�s.

1e � 0.0005 ft2
FIND Determine the minimum pipe diameter.

Type III without Minor Losses, Determine DiameterEXAMPLE 8.12

SOLUTION

With and the energy equation 1Eq. 8.212
becomes

(1)

where or

V �
2.55

D2

V � Q�A � 4Q� 1pD22 � 412.0 ft3�s2�pD2,

p1 � p2 � f 
/
D

 
rV 2

2

V1 � V2z1 � z2We assume the flow to be incompressible with 

and Note that if the

pipe were too long, the pressure drop from one end to the other,

would not be small relative to the pressure at the begin-

ning, and compressible flow considerations would be required.

For example, a pipe length of 200 ft gives 

which is

probably small enough to justify the incompressible as-

sumption.

3 10.50 psi2� 1100 ft2 4 1200 ft2�14.7 psia � 0.068 � 6.8%,

1p1 � p22�p1 �

p1 � p2,

10�7 lb # s�ft2.m � 3.74 �0.00238 slugs�ft3

r �
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In the previous example we only had to consider major losses. In some instances the inclu-

sion of major and minor losses can cause a slightly more lengthy solution procedure, even though

the governing equations are essentially the same. This is illustrated in Example 8.13.

8.5 Pipe Flow Examples 435

where D is in feet. Thus, with 

and Eq. 1 becomes

or

(2)

where D is in feet. Also 

or

(3)

and

(4)

Thus, we have four equations 1Eqs. 2, 3, 4, and either the

Moody chart or the Colebrook equation2 and four unknowns 1 f, D,

and Re2 from which the solution can be obtained by trial-

and-error methods.

If we use the Moody chart, it is probably easiest to assume a

value of f, use Eqs. 2, 3, and 4 to calculate D, Re, and and

then compare the assumed f with that from the Moody chart. If

they do not agree, try again. Thus, we assume a typi-

cal value, and obtain which gives

and 

From the Moody chart we obtain for these

values of and Re. Since this is not the same as our assumed

value of f, we try again. With we obtain 

and which in turn give

in agreement with the assumed value. Thus, the diam-

eter of the pipe should be

(Ans)D � 0.196 ft

f � 0.027,

Re � 8.27 � 104,e�D � 0.0026,

D � 0.196 ft,f � 0.027,

e�D
f � 0.0278.76 � 104.

Re � 1.62 � 104�0.185 �e�D � 0.0005�0.185 � 0.0027

0.185 ft,D � 0.40410.0221�5 �
f � 0.02,

e�D,

e�D,

e

D
�

0.0005

D

Re �
1.62 � 104

D

10�7 lb # s�ft22,3 12.55�D22 ft�s 4D� 13.74 �
Re � rVD�m � 10.00238 slugs�ft32

D � 0.404 f 1�5

 � f 
1100 ft2

D
 10.00238 slugs�ft32 

1

2
 a

2.55

D2
 
ft

s
b

2

 p1 � p2 � 10.52 11442 lb�ft2

/ � 100 ft,

1144 in.2�ft22p1 � p2 � 10.5 lb�in.22 COMMENT If we use the Colebrook equation 1Eq. 8.35a2
with and 

we obtain

or

By using a root-finding technique on a computer or calculator,

the solution to this equation is determined to be and

hence in agreement with the Moody chart

method.

By repeating the calculations for various values of the

flowrate, Q, the results shown in Fig. E8.12 are obtained. Al-

though an increase in flowrate requires a larger diameter pipe (for

the given pressure drop), the increase in diameter is minimal. For

example, if the flowrate is doubled from to , the di-

ameter increases from 0.151 ft to 0.196 ft.

2 ft3�s1 ft3�s

D � 0.196 ft,

f � 0.027,

1

1f
� �2.0 log a

3.35 � 10�4

f 1�5
�

6.26 � 10�5

f 3�10
b

1

1f
� �2.0 log a

e�D
3.7

�
2.51

Re1f
b

104�0.404 f 1�5 � 4.01 � 104�f 1�5,

Re � 1.62 �e�D � 0.0005�0.404 f 1�5 � 0.00124�f 1�5

(2 ft3/s, 0.196 ft)

0.25

0.20

0.15

0.10

0.05

0
0 0.5 1 1.5

Q, ft3/s

D
, 

ft

2 2.5 3

F I G U R E  E8.12

GIVEN Water at 1 see Table 1.52
is to flow from reservoir A to reservoir B through a pipe of

length 1700 ft and roughness 0.0005 ft at a rate of 

as shown in Fig. E8.13a. The system contains a sharp-edged

entrance and four flanged elbows.

FIND Determine the pipe diameter needed.

45°

Q � 26 ft3�s

n � 1.21 � 10�5 ft2�s,60 °F

Type III with Minor Losses, Determine DiameterEXAMPLE 8.13

(2)

(1)

Elevation z2 = 0

Elevation z1 = 44 ft

Total length = 1700 ft

D

B

A

F I G U R E  E8.13a
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SOLUTION

ment. A few rounds of calculation will reveal that the solution is

given by

(Ans)

COMMENTS Alternatively, we can use the Colebrook equa-

tion rather than the Moody chart to solve for D. This is easily

done by using the Colebrook equation (Eq. 8.35a) with f as a

function of D obtained from Eq. 3 and Re and as functions of

D from Eqs. 4 and 5. The resulting single equation for D can be

solved by using a root-finding technique on a computer or calcu-

lator to obtain . This agrees with the solution ob-

tained using the Moody chart.

By repeating the calculations for various pipe lengths, ,

the results shown in Fig. E8.13b are obtained. As the pipe

length increases it is necessary, because of the increased fric-

tion, to increase the pipe diameter to maintain the same

flowrate.

It is interesting to attempt to solve this example if all losses are

neglected so that Eq. 1 becomes Clearly from Fig. E8.13a,

Obviously something is wrong. A fluid cannot flow

from one elevation, beginning with zero pressure and velocity,

and end up at a lower elevation with zero pressure and velocity

unless energy is removed 1i.e., a head loss or a turbine2 some-

where between the two locations. If the pipe is short 1negligible

friction2 and the minor losses are negligible, there is still the ki-

netic energy of the fluid as it leaves the pipe and enters the reser-

voir. After the fluid meanders around in the reservoir for some

time, this kinetic energy is lost and the fluid is stationary. No mat-

ter how small the viscosity is, the exit loss cannot be neglected.

The same result can be seen if the energy equation is written from

the free surface of the upstream tank to the exit plane of the pipe,

at which point the kinetic energy is still available to the fluid. In

either case the energy equation becomes in agree-

ment with the inviscid results of Chapter 3 1the Bernoulli

equation2.

z1 � V 2�2g

z1 � 44 ft.

z1 � 0.

/

D � 1 .63 ft

e�D

D � 1.63 ft

The energy equation 1Eq. 8.212 can be applied between two points

on the surfaces of the reservoirs 

as follows:

or

(1)

where or

(2)

is the velocity within the pipe. 1Note that the units on V and D are

and ft, respectively.2 The loss coefficients are obtained from

Table 8.2 and Figs. 8.22 and 8.25 as 

and Thus, Eq. 1 can be written as

or, when combined with Eq. 2 to eliminate V,

(3)

To determine D we must know f, which is a function of Re and

where

(4)

and

(5)

where D is in feet. Again, we have four equations 1Eqs. 3, 4, 5, and

the Moody chart or the Colebrook equation2 for the four un-

knowns D, f, Re, and 

Consider the solution by using the Moody chart. Although

it is often easiest to assume a value of f and make calculations

to determine if the assumed value is the correct one, with the

inclusion of minor losses this may not be the simplest method.

For example, if we assume and calculate D from

Eq. 3, we would have to solve a fifth-order equation. With

only major losses 1see Example 8.122, the term proportional to

D in Eq. 3 is absent, and it is easy to solve for D if f is given.

With both major and minor losses included, this solution

for D 1given f 2 would require a trial-and-error or iterative

technique.

Thus, for this type of problem it is perhaps easier to assume

a value of D, calculate the corresponding f from Eq. 3, and with

the values of Re and determined from Eqs. 4 and 5, look up

the value of f in the Moody chart 1or the Colebrook equation2.
The solution is obtained when the two values of f are in agree-

e�D

f � 0.02

e�D.
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�
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8.5.2 Multiple Pipe Systems

In many pipe systems there is more than one pipe involved. The complex system of tubes in

our lungs 1beginning as shown by the figure in the margin, with the relatively large-diameter

trachea and ending in tens of thousands of minute bronchioles after numerous branchings2 and

the maze of pipes in a city’s water distribution system are typical of such systems. The gov-

erning mechanisms for the flow in multiple pipe systems are the same as for the single pipe

systems discussed in this chapter. However, because of the numerous unknowns involved,

additional complexities may arise in solving for the flow in multiple pipe systems. Some of

these complexities are discussed in this section.
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Bronchiole

Lung

Trachea

F l u i d s  i n  t h e  N e w s

Deepwater pipeline Pipelines used to transport oil and gas are

commonplace. But south of New Orleans, in deep waters of the

Gulf of Mexico, a not-so-common multiple pipe system is being

built. The new so-called Mardi Gras system of pipes is being laid

in water depths of 4300 to 7300 feet. It will transport oil and gas

from five deepwater fields with the interesting names of Holstein,

Mad Dog, Thunder Horse, Atlantis, and Na Kika. The deepwater

pipelines will connect with lines at intermediate water depths to

transport the oil and gas to shallow-water fixed platforms and

shore. The steel pipe used is 28 inches in diameter with a wall

thickness of 1 1�8 in. The thick-walled pipe is needed to with-

stand the large external pressure which is about 3250 psi at a

depth of 7300 ft. The pipe is installed in 240-ft sections from a

vessel the size of a large football stadium. Upon completion, the

deepwater pipeline system will have a total length of more than

450 miles and the capability of transporting more than 1 million

barrels of oil per day and 1.5 billion cubic feet of gas per day.

(See Problem 8.113.)

The simplest multiple pipe systems can be classified into series or parallel flows, as are shown

in Fig. 8.35. The nomenclature is similar to that used in electrical circuits. Indeed, an analogy be-

tween fluid and electrical circuits is often made as follows. In a simple electrical circuit, there is

a balance between the voltage 1e2, current 1i2, and resistance 1R2 as given by Ohm’s law: In a

fluid circuit there is a balance between the pressure drop the flowrate or velocity 1Q or V 2,
and the flow resistance as given in terms of the friction factor and minor loss coefficients .

For a simple flow it follows that where a measure of the

resistance to the flow, is proportional to f.
The main differences between the solution methods used to solve electrical circuit problems

and those for fluid circuit problems lie in the fact that Ohm’s law is a linear equation 1doubling

the voltage doubles the current2, while the fluid equations are generally nonlinear 1doubling the

pressure drop does not double the flowrate unless the flow is laminar2. Thus, although some of the

R~,¢p � Q2R~,3¢p � f 1/�D2 1rV 2�22 4 ,
1 f and KL2

1¢p2,
e � iR.

Q A V1
(1) (2) (3) 

V2D1 D2 D3 B 
Q

V3

(a)

V1

V2

V3

D3

D2

D1

(1)

(2)

(3)

Q1

Q2

Q3

B
A

(b)
F I G U R E  8.35 (a) Series and (b)

parallel pipe systems.

JWCL068_ch08_383-460.qxd  9/23/08  10:59 AM  Page 437



standard electrical engineering methods can be carried over to help solve fluid mechanics prob-

lems, others cannot.

One of the simplest multiple pipe systems is that containing pipes in series, as is shown in

Fig. 8.35a. Every fluid particle that passes through the system passes through each of the pipes.

Thus, the flowrate 1but not the velocity2 is the same in each pipe, and the head loss from point A
to point B is the sum of the head losses in each of the pipes. The governing equations can be writ-

ten as follows:

and

where the subscripts refer to each of the pipes. In general, the friction factors will be different for

each pipe because the Reynolds numbers and the relative roughnesses will

be different. If the flowrate is given, it is a straightforward calculation to determine the head loss or

pressure drop 1Type I problem2. If the pressure drop is given and the flowrate is to be calculated

1Type II problem2, an iteration scheme is needed. In this situation none of the friction factors, are

known, so the calculations may involve more trial-and-error attempts than for corresponding single

pipe systems. The same is true for problems in which the pipe diameter 1or diameters2 is to be de-

termined 1Type III problems2.
Another common multiple pipe system contains pipes in parallel, as is shown in Fig. 8.35b.

In this system a fluid particle traveling from A to B may take any of the paths available, with the

total flowrate equal to the sum of the flowrates in each pipe. However, by writing the energy equa-

tion between points A and B it is found that the head loss experienced by any fluid particle traveling

between these locations is the same, independent of the path taken. Thus, the governing equations

for parallel pipes are

and

Again, the method of solution of these equations depends on what information is given and what

is to be calculated.

Another type of multiple pipe system called a loop is shown in Fig. 8.36. In this case the

flowrate through pipe 112 equals the sum of the flowrates through pipes 122 and 132, or 

As can be seen by writing the energy equation between the surfaces of each reservoir, the head

loss for pipe 122 must equal that for pipe 132, even though the pipe sizes and flowrates may be dif-

ferent for each. That is,

for a fluid particle traveling through pipes 112 and 122, while
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g
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V 2
A

2g
� zA �

pB

g
�

V 2
B

2g
� zB � hL1

� hL3

pA

g
�

V 2
A

2g
� zA �

pB

g
�

V 2
B

2g
� zB � hL1

� hL2

Q1 � Q2 � Q3.

hL1
� hL2
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Q � Q1 � Q2 � Q3

fi,

1ei�Di21Rei � rViDi�m2

hLA – B
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� hL3

Q1 � Q2 � Q3
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F I G U R E  8.36 Multiple pipe loop system.
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pipe systems are of-
ten encountered.
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for fluid that travels through pipes 112 and 132. These can be combined to give This is a

statement of the fact that fluid particles that travel through pipe 122 and particles that travel through

pipe 132 all originate from common conditions at the junction 1or node, N 2 of the pipes and all end

up at the same final conditions.

The flow in a relatively simple looking multiple pipe system may be more complex than

it appears initially. The branching system termed the three-reservoir problem shown in Fig. 8.37

is such a system. Three reservoirs at known elevations are connected together with three pipes

of known properties 1lengths, diameters, and roughnesses2. The problem is to determine the

flowrates into or out of the reservoirs. If valve 112 were closed, the fluid would flow from

reservoir B to C, and the flowrate could be easily calculated. Similar calculations could be

carried out if valves 122 or 132 were closed with the others open.

With all valves open, however, it is not necessarily obvious which direction the fluid flows.

For the conditions indicated in Fig. 8.37, it is clear that fluid flows from reservoir A because the

other two reservoir levels are lower. Whether the fluid flows into or out of reservoir B depends

on the elevation of reservoirs B and C and the properties 1length, diameter, roughness2 of the

three pipes. In general, the flow direction is not obvious, and the solution process must include

the determination of this direction. This is illustrated in Example 8.14.

hL2
� hL3

.
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F I G U R E  8.37
A three-reservoir system.

A

B

C

(3)

(2)(1)

D1, �1

D2, �2

D3, �3

GIVEN Three reservoirs are connected by three pipes as are

shown in Fig. E8.14. For simplicity we assume that the diame-

ter of each pipe is 1 ft, the friction factor for each is 0.02, and

because of the large length-to-diameter ratio, minor losses are

negligible.

FIND Determine the flowrate into or out of each reservoir.

Three-Reservoir, Multiple-Pipe SystemEXAMPLE 8.14

SOLUTION

By using the fact that this becomes

For the given conditions of this problem we obtain

100 ft �
0.02

2132.2 ft�s22
 

1

11 ft2
 3 11000 ft2V 2

1 � 1400 ft2V 2
3 4

zA � f1 
/1

D1

 
V 2

1

2g
� f3 

/3

D3

 
V 2

3

2g

pA � pC � VA � VC � zC � 0,

It is not obvious which direction the fluid flows in pipe 122.
However, we assume that it flows out of reservoir B, write the

governing equations for this case, and check our assumption.

The continuity equation requires that which,

since the diameters are the same for each pipe, becomes simply

(1)

The energy equation for the fluid that flows from A to C in pipes

112 and 132 can be written as

pA

g
�

V 2
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� zA �
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�

V 2
C

2g
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F I G U R E  E8.14
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For some pipe sys-
tems, the direction
of flow is not
known a priori.
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The ultimate in multiple pipe systems is a network of pipes such as that shown in Fig. 8.38.

Networks like these often occur in city water distribution systems and other systems that may have

multiple “inlets” and “outlets.” The direction of flow in the various pipes is by no means obvi-

ous—in fact, it may vary in time, depending on how the system is used from time to time.

The solution for pipe network problems is often carried out by use of node and loop equations

similar in many ways to that done in electrical circuits. For example, the continuity equation requires

that for each node 1the junction of two or more pipes2 the net flowrate is zero. What flows into a node

must flow out at the same rate. In addition, the net pressure difference completely around a loop
1starting at one location in a pipe and returning to that location2 must be zero. By combining these

ideas with the usual head loss and pipe flow equations, the flow throughout the entire network can

440 Chapter 8 ■ Viscous Flow in Pipes

or

(2)

where and are in ft�s. Similarly the energy equation for

fluid flowing from B and C is

or

For the given conditions this can be written as

(3)

Equations 1, 2, and 3 1in terms of the three unknowns and 

2 are the governing equations for this flow, provided the fluid flows

from reservoir B. It turns out, however, that there is no solution for

these equations with positive, real values of the velocities. Although

these equations do not appear to be complicated, there is no simple

way to solve them directly. Thus, a trial-and-error solution is sug-

gested. This can be accomplished as follows. Assume a value of

calculate from Eq. 2, and then from Eq. 3. It is found

that the resulting trio does not satisfy Eq. 1 for any value of

assumed. There is no solution to Eqs. 1, 2, and 3 with real, positive

values of and Thus, our original assumption of flow out of

reservoir B must be incorrect.

To obtain the solution, assume the fluid flows into reser-

voirs B and C and out of A. For this case the continuity equation

becomes

or

(4)

Application of the energy equation between points A and B and A
and C gives

and

zA � zC � f1 
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which, with the given data, become

(5)

and

(6)

Equations 4, 5, and 6 can be solved as follows. By subtracting

Eq. 5 from 6 we obtain

Thus, Eq. 5 can be written as

or

(7)

which, upon squaring both sides, can be written as

By using the quadratic formula we can solve for to obtain 

either Thus, either 

The value is not a root of the orig-

inal equations. It is an extra root introduced by squaring Eq. 7, which

with becomes Thus,

and from Eq. 5, The corresponding flowrates are

(Ans)

(Ans)

and

(Ans)

Note the slight differences in the governing equations depending

on the direction of the flow in pipe 122—compare Eqs. 1, 2, and 3

with Eqs. 4, 5, and 6.

COMMENT If the friction factors were not given, a trial-and-

error procedure similar to that needed for Type II problems 1see

Section 8.5.12 would be required.
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be obtained. Of course, trial-and-error solutions are usually required because the direction of flow

and the friction factors may not be known. Such a solution procedure using matrix techniques is ide-

ally suited for computer use 1Refs. 21, 222.
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F I G U R E  8.38 A general
pipe network.

8.6 Pipe Flowrate Measurement

It is often necessary to determine experimentally the flowrate in a pipe. In Chapter 3 we introduced

various types of flow-measuring devices 1Venturi meter, nozzle meter, orifice meter, etc.2 and dis-

cussed their operation under the assumption that viscous effects were not important. In this section

we will indicate how to account for the ever-present viscous effects in these flow meters. We will

also indicate other types of commonly used flow meters.

8.6.1 Pipe Flowrate Meters

Three of the most common devices used to measure the instantaneous flowrate in pipes are the ori-

fice meter, the nozzle meter, and the Venturi meter. As was discussed in Section 3.6.3, each of these

meters operates on the principle that a decrease in flow area in a pipe causes an increase in veloc-

ity that is accompanied by a decrease in pressure. Correlation of the pressure difference with the

velocity provides a means of measuring the flowrate. In the absence of viscous effects and under

the assumption of a horizontal pipe, application of the Bernoulli equation 1Eq. 3.72 between points

112 and 122 shown in Fig. 8.39 gave

(8.37)

where Based on the results of the previous sections of this chapter, we anticipate that

there is a head loss between 112 and 122 so that the governing equations become

and

The ideal situation has and results in Eq. 8.37. The difficulty in including the head loss is

that there is no accurate expression for it. The net result is that empirical coefficients are used in

the flowrate equations to account for the complex real-world effects brought on by the nonzero

viscosity. The coefficients are discussed in this section.
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Q � A1V1 � A2V2

b � D2�D1.
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21p1 � p22

r11 � b42

F I G U R E  8.39 Typical
pipe flow meter geometry.
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Venturi meters 
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“high velocity gives
low pressure.”
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A typical orifice meter is constructed by inserting between two flanges of a pipe a flat plate

with a hole, as shown in Fig. 8.40. The pressure at point 122 within the vena contracta is less than

that at point 112. Nonideal effects occur for two reasons. First, the vena contracta area, is less than

the area of the hole, by an unknown amount. Thus, where is the contraction co-

efficient Second, the swirling flow and turbulent motion near the orifice plate introduce a

head loss that cannot be calculated theoretically. Thus, an orifice discharge coefficient, is used to

take these effects into account. That is,

(8.38)

where is the area of the hole in the orifice plate. The value of is a function of

and the Reynolds number where Typical values of are given

in Fig. 8.41. As shown by Eq. 8.38 and the figure in the margin, for a given value of , the

flowrate is proportional to the square root of the pressure difference. Note that the value of 

depends on the specific construction of the orifice meter 1i.e., the placement of the pressure taps,

whether the orifice plate edge is square or beveled, etc.2. Very precise conditions governing the

construction of standard orifice meters have been established to provide the greatest accuracy pos-

sible 1Refs. 23, 242.
Another type of pipe flow meter that is based on the same principles used in the orifice me-

ter is the nozzle meter, three variations of which are shown in Fig. 8.42. This device uses a con-

toured nozzle 1typically placed between flanges of pipe sections2 rather than a simple 1and less 

expensive2 plate with a hole as in an orifice meter. The resulting flow pattern for the nozzle meter

is closer to ideal than the orifice meter flow. There is only a slight vena contracta and the secondary

Co
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CoV � Q�A1.Re � rVD�m,b � d�D
CoAo � pd 2�4

Q � CoQideal � Co Ao 
B

21p1 � p22

r11 � b42

Co,

1Cc 6 12.
CcA2 � CcAo,Ao,

A2,
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An orifice discharge
coefficient is used
to account for non-
ideal effects.
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F I G U R E  8.40
Typical orifice meter construction.
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flow separation is less severe, but there still are viscous effects. These are accounted for by use of

the nozzle discharge coefficient, where

(8.39)

with As with the orifice meter, the value of is a function of the diameter ratio,

and the Reynolds number, Typical values obtained from experiments are

shown in Fig. 8.43. Again, precise values of depend on the specific details of the nozzle de-

sign. Accepted standards have been adopted 1Ref. 242. Note that the nozzle meter is more

efficient 1less energy dissipated2 than the orifice meter.

The most precise and most expensive of the three obstruction-type flow meters is the Venturi
meter shown in Fig. 8.44 [G. B. Venturi (1746–1822)]. Although the operating principle for this de-

vice is the same as for the orifice or nozzle meters, the geometry of the Venturi meter is designed to

reduce head losses to a minimum. This is accomplished by providing a relatively streamlined con-

traction 1which eliminates separation ahead of the throat2 and a very gradual expansion downstream

of the throat 1which eliminates separation in this decelerating portion of the device2. Most of the head

loss that occurs in a well-designed Venturi meter is due to friction losses along the walls rather than

losses associated with separated flows and the inefficient mixing motion that accompanies such flow.

Cn 7 Co;

Cn

Re � rVD�m.b � d�D,

CnAn � pd 2�4.

Q � CnQideal � CnAn 
B

21p1 � p22
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Cn,
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F I G U R E  8.42 Typical nozzle meter construction.

The nozzle meter is
more efficient than
the orifice meter.
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F I G U R E  8.43 Nozzle 
meter discharge coefficient (Ref. 24).
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Thus, the flowrate through a Venturi meter is given by

(8.40)

where is the throat area. The range of values of , the Venturi discharge coefficient,
is given in Fig. 8.45. The throat-to-pipe diameter ratio the Reynolds number, and the

shape of the converging and diverging sections of the meter are among the parameters that affect

the value of 

Again, the precise values of and depend on the specific geometry of the devices

used. Considerable information concerning the design, use, and installation of standard flow meters

can be found in various books 1Refs. 23, 24, 25, 26, 312.

CvCn, Co,

Cv.

1b � d�D2,
CvAT � pd 2�4

Q � CvQideal � CAT 
B

21p1 � p22

r11 � b42
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The Venturi dis-
charge coefficient
is a function of the
specific geometry
of the meter.

F I G U R E  8.45 Venturi
meter discharge coefficient (Ref. 23).

1.00

0.98

0.96

0.94
104 105 106 107 108

Re =   VD/ρ μ

Cv
Range of values

depending on specific
geometry

GIVEN Ethyl alcohol flows through a pipe of diameter

in a refinery. The pressure drop across the nozzle

meter used to measure the flowrate is to be when

the flowrate is Q � 0.003 m3�s.

¢p � 4.0 kPa

D � 60 mm

Nozzle Flow MeterEXAMPLE 8.15

SOLUTION

As a first approximation we assume that the flow is ideal, or

so that Eq. 1 becomes

(2)

In addition, for many cases so that an approximate

value of d can be obtained from Eq. 2 as

Hence, with an initial guess of or 

we obtain from Fig. 8.43 1using 

2 a value of Clearly this does not agree with

our initial assumption of Thus, we do not have the so-

lution to Eq. 1 and Fig. 8.43. Next we assume and

and solve for d from Eq. 1 to obtain

or With the new value of 

and we obtain 1from Fig. 8.432 inCn � 0.972Re � 42,200,0.568

b � 0.0341�0.060 �d � 0.0341 m.

d � a
1.20 � 10�3

0.972
 21 � 0.5774b

1�2

Cn � 0.972

b � 0.577

Cn � 1.0.

Cn � 0.972.42,200

Re �0.0346�0.06 � 0.577,

b � d�D �d � 0.0346 m

d � 11.20 � 10�321�2 � 0.0346 m

1 � b4 � 1,

d � 11.20 � 10�3 21 � b421�2

Cn � 1.0,

From Table 1.6 the properties of ethyl alcohol are 

and Thus,

From Eq. 8.39 the flowrate through the nozzle is

or

(1)

where d is in meters. Note that Equation 1

and Fig. 8.43 represent two equations for the two unknowns d and

that must be solved by trial and error.Cn

b � d�D � d�0.06.

1.20 � 10�3 �
Cnd

2

21 � b4

Q � 0.003 m3�s � Cn 
p

4
 d 2 
B

214 � 103 N�m22

789 kg�m311 � b42

 �
41789 kg�m32 10.003 m3�s2

p10.06 m2 11.19 � 10�3 N # s�m22
� 42,200

Re �
rVD

m
�

4rQ

pDm

10�3 N # s�m2.m � 1.19 �
r� 789 kg�m3

FIND Determine the diameter, d, of the nozzle.
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Numerous other devices are used to measure the flowrate in pipes. Many of these devices

use principles other than the high-speed/low-pressure concept of the orifice, nozzle, and Venturi

meters.

A quite common, accurate, and relatively inexpensive flow meter is the rotameter, or vari-

able area meter as is shown in Fig. 8.46. In this device a float is contained within a tapered, trans-

parent metering tube that is attached vertically to the pipeline. As fluid flows through the meter

1entering at the bottom2, the float will rise within the tapered tube and reach an equilibrium height

that is a function of the flowrate. This height corresponds to an equilibrium condition for which

the net force on the float 1buoyancy, float weight, fluid drag2 is zero. A calibration scale in the tube

provides the relationship between the float position and the flowrate.

8.6 Pipe Flowrate Measurement 445

agreement with the assumed value. Thus,

(Ans)

COMMENTS If numerous cases are to be investigated, it may

be much easier to replace the discharge coefficient data of Fig.

8.43 by the equivalent equation, and use a com-

puter to iterate for the answer. Such equations are available in the

literature 1Ref. 242. This would be similar to using the Colebrook

equation rather than the Moody chart for pipe friction problems.

By repeating the calculations, the nozzle diameters, d, needed

for the same flowrate and pressure drop but with different fluids

are shown in Fig. E8.15. The diameter is a function of the fluid

viscosity because the nozzle coefficient, Cn, is a function of the

Reynolds number (see Fig. 8.43). In addition, the diameter is a

function of the density because of this Reynolds number effect

and, perhaps more importantly, because the density is involved di-

rectly in the flowrate equation, Eq. 8.39. These factors all com-

bine to produce the results shown in the figure.

Cn � f1b, Re2,

d � 34.1 mm

F I G U R E  E8.15
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d = D

There are many
types of flow
meters.

Q

Q

Float at large end of tube indicates
maximum flowrate

Position of edge of float against
scale gives flowrate reading

Tapered metering tube

Metering float is freely suspended
in process fluid

Float at narrow end of tube
indicates minimum flowrate

F I G U R E  8.46
Rotameter-type flow meter.
(Courtesy of Fischer & 
Porter Co.)

V8.13 Rotameter
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Another useful pipe flowrate meter is a turbine meter as is shown in Fig. 8.47. A small, freely

rotating propeller or turbine within the turbine meter rotates with an angular velocity that is a func-

tion of 1nearly proportional to2 the average fluid velocity in the pipe. This angular velocity is picked

up magnetically and calibrated to provide a very accurate measure of the flowrate through the meter.

8.6.2 Volume Flow Meters

In many instances it is necessary to know the amount 1volume or mass2 of fluid that has passed

through a pipe during a given time period, rather than the instantaneous flowrate. For example,

we are interested in how many gallons of gasoline are pumped into the tank in our car rather than

the rate at which it flows into the tank. There are numerous quantity-measuring devices that pro-

vide such information.

The nutating disk meter shown in Fig. 8.48 is widely used to measure the net amount of wa-

ter used in domestic and commercial water systems as well as the amount of gasoline delivered to

your gas tank. This meter contains only one essential moving part and is relatively inexpensive and

accurate. Its operating principle is very simple, but it may be difficult to understand its operation

without actually inspecting the device firsthand. The device consists of a metering chamber with

spherical sides and conical top and bottom. A disk passes through a central sphere and divides the

chamber into two portions. The disk is constrained to be at an angle not normal to the axis of sym-

metry of the chamber. A radial plate 1diaphragm2 divides the chamber so that the entering fluid

causes the disk to wobble 1nutate2, with fluid flowing alternately above or below the disk. The fluid

exits the chamber after the disk has completed one wobble, which corresponds to a specific volume

of fluid passing through the chamber. During each wobble of the disk, the pin attached to the tip

446 Chapter 8 ■ Viscous Flow in Pipes

F I G U R E  8.47
Turbine-type flow meter.
(Courtesy of E G & G Flow
Technology, Inc.)

FLOW

IN

OUT

Magnetic sensor

Turbine

Flow
in

Flow
out

Volume flow meters
measure volume
rather than volume
flowrate.

F I G U R E  8.48
Nutating disk flow meter.
(Courtesy of Badger Meter,
Inc.)

Calibration gears

Pin

Flow
in

Flow
out

Metering
chamber

Disk assembly

SphereDiaphragm

Casing

V8.14 Water meter

JWCL068_ch08_383-460.qxd  9/23/08  11:00 AM  Page 446



of the center sphere, normal to the disk, completes one circle. The volume of fluid that has passed

through the meter can be obtained by counting the number of revolutions completed.

Another quantity-measuring device that is used for gas flow measurements is the bellows me-
ter as shown in Fig. 8.49. It contains a set of bellows that alternately fill and empty as a result of the

pressure of the gas and the motion of a set of inlet and outlet valves. The common household nat-

ural gas meter is of this type. For each cycle [1a2 through 1d 2] a known volume of gas passes through

the meter.

The nutating disk meter 1water meter2 is an example of extreme simplicity—one cleverly designed

moving part. The bellows meter 1gas meter2, on the other hand, is relatively complex—it contains many

moving, interconnected parts. This difference is dictated by the application involved. One measures a

common, safe-to-handle, relatively high-pressure liquid, whereas the other measures a relatively dan-

gerous, low-pressure gas. Each device does its intended job very well.

There are numerous devices used to measure fluid flow, only a few of which have been dis-

cussed here. The reader is encouraged to review the literature to gain familiarity with other use-

ful, clever devices 1Refs. 25, 262.

8.7 Chapter Summary and Study Guide 447

The nutating disk
meter has only one
moving part; the
bellows meter has a
complex set of
moving parts.

F I G U R E  8.49 Bellows-type flow meter. (Courtesy of BTR—Rockwell
Gas Products). (a) Back case emptying, back diaphragm filling. (b) Front diaphragm
filling, front case emptying. (c) Back case filling, back diaphragm emptying. (d) Front
diaphragm emptying, front case filling.

Inlet Outlet

Slider valves
driven by

diaphragm

Back case

Back
diaphragm

Front case

Front
diaphragm

(a) (b)

(d)(c)

8.7 Chapter Summary and Study Guide

This chapter discussed the flow of a viscous fluid in a pipe. General characteristics of laminar, tur-

bulent, fully developed, and entrance flows are considered. Poiseuille’s equation is obtained to

describe the relationship among the various parameters for fully developed laminar flow.
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laminar flow
transitional flow
turbulent flow 
entrance length 
fully developed flow
wall shear stress
Poiseuille’s law 
friction factor 
turbulent shear stress
major loss 
minor loss 
relative roughness
Moody chart 
Colebrook formula 
loss coefficient 
hydraulic diameter
multiple pipe systems
orifice meter 
nozzle meter 
Venturi meter

Various characteristics of turbulent pipe flow are introduced and contrasted to laminar flow.

It is shown that the head loss for laminar or turbulent pipe flow can be written in terms of the

friction factor (for major losses) and the loss coefficients (for minor losses). In general, the fric-

tion factor is obtained from the Moody chart or the Colebrook formula and is a function of the

Reynolds number and the relative roughness. The minor loss coefficients are a function of the

flow geometry for each system component.

Analysis of noncircular conduits is carried out by use of the hydraulic diameter concept.

Various examples involving flow in single pipe systems and flow in multiple pipe systems are

presented. The inclusion of viscous effects and losses in the analysis of orifice, nozzle, and Ven-

turi flow meters is discussed.

The following checklist provides a study guide for this chapter. When your study of the

entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type

in the text.

determine which of the following types of flow will occur: entrance flow, or fully devel-

oped flow; laminar flow, or turbulent flow.

use the Poiseuille equation in appropriate situations and understand its limitations.

explain the main properties of turbulent pipe flow and how they are different from or sim-

ilar to laminar pipe flow.

use the Moody chart and the Colebrook equation to determine major losses in pipe systems.

use minor loss coefficients to determine minor losses in pipe systems.

determine the head loss in noncircular conduits.

incorporate major and minor losses into the energy equation to solve a variety of pipe

flow problems, including Type I problems (determine the pressure drop or head loss),

Type II problems (determine the flow rate), and Type III problems (determine the pipe

diameter).

solve problems involving multiple pipe systems.

determine the flowrate through orifice, nozzle, and Venturi flowmeters as a function of the

pressure drop across the meter.

Some of the important equations in this chapter are given below.

Entrance length (8.1)

(8.2)

Pressure drop for fully 
developed laminar pipe flow (8.5)

Velocity profile for fully 
developed laminar pipe flow (8.7)

Volume flowrate for fully 
developed laminar pipe flow (8.9)

Friction factor for fully 
developed laminar pipe flow (8.19)

Pressure drop for a 
horizontal pipe (8.33)

Head loss due to major losses (8.34) hL major � f 
/
D

 
V 2

2g

 ¢p � f 
/
D

 
rV 2

2

 f �
64

Re

 Q �
pD4 ¢p

128m/

 u1r2 � a
¢pD2

16m/
b c1 � a

2r

D
b

2

d � Vc c1 � a
2r

D
b

2

d

 ¢p �
4/tw

D

 
/e

D
� 4.4 1Re21�6 for turbulent flow

 
/e

D
� 0.06 Re for laminar flow
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Colebrook formula (8.35a)

Explicit alternative to 
Colebrook formula (8.35b)

Head loss due to minor losses (8.36)

Volume flowrate for orifice,
nozzle, or Venturi meter (8.38, 8.39, 8.40)
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450 Chapter 8 ■ Viscous Flow in Pipes

Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Problems

Note: Unless otherwise indicated use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a 1 2 are “open-ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems and FlowLab problems
can also be accessed on this web site.

Section 8.1 General Characteristics of Pipe Flow (Also
see Lab Problem 8.130.)

8.1 Obtain a photograph/image of a piping system that would
likely contain “pipe flow” and not “open channel flow.” Print this
photo and write a brief paragraph that describes the situation in-
volved.

8.2 Water flows through a 50-ft pipe with a 0.5-in. diameter at
5 gal/min. What fraction of this pipe can be considered an entrance
region?

8.3 Rainwater runoff from a parking lot flows through a 3-ft-diam-
eter pipe, completely filling it. Whether flow in a pipe is laminar or
turbulent depends on the value of the Reynolds number. (See Video
V8.2.) Would you expect the flow to be laminar or turbulent? Sup-
port your answer with appropriate calculations.

8.4 Blue and yellow streams of paint at (each with a density
of 1.6 slugs and a viscosity 1000 times greater than water) enter
a pipe with an average velocity of as shown in Fig. P8.4.
Would you expect the paint to exit the pipe as green paint or sepa-
rate streams of blue and yellow paint? Explain. Repeat the problem
if the paint were “thinned” so that it is only 10 times more viscous
than water. Assume the density remains the same.

4 ft�s
�ft3

60 °F

†

calculated by assuming the flow is laminar. For tubes of diameter
0.5, 1.0, and 2.0 mm, determine the maximum flowrate allowed
(in cm3/s) if the fluid is (a) 20 °C water, or (b) standard air.

8.8 Carbon dioxide at and a pressure of 550 kPa (abs) flows
in a pipe at a rate of 0.04 N s. Determine the maximum diameter al-
lowed if the flow is to be turbulent.

8.9 The pressure distribution measured along a straight, horizontal
portion of a 50-mm-diameter pipe attached to a tank is shown in the
table below. Approximately how long is the entrance length? In the
fully developed portion of the flow, what is the value of the wall
shear stress?

x (m) (�0.01 m) p (mm H2O) (�5 mm)

0 (tank exit) 520
0.5 427
1.0 351
1.5 288
2.0 236
2.5 188
3.0 145
3.5 109
4.0 73
4.5 36

5.0 (pipe exit) 0

8.10 (See Fluids in the News article titled “Nanoscale flows,” Sec-
tion 8.1.1.) (a) Water flows in a tube that has a diameter of

Determine the Reynolds number if the average veloc-
ity is 10 diameters per second. (b) Repeat the calculations if the
tube is a nanoscale tube with a diameter of 

Section 8.2 Fully Developed Laminar Flow

8.11 Obtain a photograph/image of a piping system that contains
both entrance region flow and fully developed flow. Print this
photo and write a brief paragraph that describes the situation in-
volved.

8.12 For fully developed laminar pipe flow in a circular pipe, the
velocity profile is given by u(r) � 2 (1 � r2 R2) in m/s, where R
is the inner radius of the pipe. Assuming that the pipe diameter is
4 cm, find the maximum and average velocities in the pipe as well
as the volume flow rate.

8.13 The wall shear stress in a fully developed flow portion of a
12-in.-diameter pipe carrying water is Determine the
pressure gradient, where x is in the flow direction, if the
pipe is (a) horizontal, (b) vertical with flow up, or (c) vertical with
flow down.

8.14 The pressure drop needed to force water through a horizon-
tal 1-in.-diameter pipe is 0.60 psi for every 12-ft length of pipe. De-
termine the shear stress on the pipe wall. Determine the shear stress
at distances 0.3 and 0.5 in. away from the pipe wall.

0p�0x,
1.85 lb�ft2.

�

D � 100 nm.

D � 0.1 m.

�
20 °C

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

F I G U R E  P8.4

25 ft

2 in.
Green?

Blue

Yellow

Splitter

8.5 Air at 200 °F flows at standard atmospheric pressure in a pipe
at a rate of 0.08 lb/s. Determine the minimum diameter allowed if
the flow is to be laminar.

8.6 To cool a given room it is necessary to supply 4 ft3/s of air
through an 8-in.-diameter pipe. Approximately how long is the en-
trance length in this pipe?

8.7 A long small-diameter tube is to be used as a viscometer by
measuring the flowrate through the tube as a function of the pres-
sure drop along the tube. The calibration constant, isK � Q�¢p,
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8.15 Repeat Problem 8.14 if the pipe is on a hill. Is the flow
up or down the hill? Explain.

8.16 Water flows in a constant diameter pipe with the following
conditions measured: At section 1a2 and 
at section 1b2 and Is the flow from 1a2 to
1b2 or from 1b2 to 1a2? Explain.

*8.17 Some fluids behave as a non-Newtonian power-law fluid
characterized by where and so on,
and C is a constant. 1If the fluid is the customary New-
tonian fluid.2 (a) For flow in a round pipe of a diameter D,
integrate the force balance equation 1Eq. 8.32 to obtain the veloc-
ity profile

(b) Plot the dimensionless velocity profile where is the
centerline velocity 1at 2, as a function of the dimensionless
radial coordinate where D is the pipe diameter. Consider
values of and 7.

8.18 For laminar flow in a round pipe of diameter D, at what dis-
tance from the centerline is the actual velocity equal to the aver-
age velocity?

8.19 Water at flows through a horizontal 1-mm-diameter
tube to which are attached two pressure taps a distance 1 m apart.
(a) What is the maximum pressure drop allowed if the flow is to
be laminar? (b) Assume the manufacturing tolerance on the tube
diameter is Given this uncertainty in the tube
diameter, what is the maximum pressure drop allowed if it must
be assured that the flow is laminar?

8.20 Glycerin at flows upward in a vertical 75-mm-diameter
pipe with a centerline velocity of 1.0 m s. Determine the head loss
and pressure drop in a 10-m length of the pipe.

8.21 Determine the magnitude of the velocity gradient at points
10, 20, and 30 mm from the pipe wall for the flow in Problem
8.20.

8.22 A large artery in a person’s body can be approximated by a
tube of diameter 9 mm and length 0.35 m. Also assume that blood
has a viscosity of approximately a specific grav-
ity of 1.0, and that the pressure at the beginning of the artery is equiv-
alent to 120 mm Hg. If the flow were steady (it is not) with 

determine the pressure at the end of the artery if it is ori-
ented (a) vertically up (flow up) or (b) horizontal.

8.23 At time the level of water in tank A shown in Fig. P8.23
is 2 ft above that in tank B. Plot the elevation of the water in tank A
as a function of time until the free surfaces in both tanks are at the
same elevation. Assume quasisteady conditions—that is, the steady
pipe flow equations are assumed valid at any time, even though the
flowrate does change (slowly) in time. Neglect minor losses. Note:
Verify and use the fact that the flow is laminar.

t � 0

0.2 m�s,
V �

4 � 10�3 N # s�m2,

�
20 °C

D � 1.0 � 0.1 mm.

20 °C

n � 1, 3, 5,
r� 1D�22,

r � 0
Vcu�Vc,

u1r2 �
�n

1n � 12
 a

¢p

2/C
b

1�n

 c r 1n�12�n � a
D

2
b
1n�12�n

d

n � 1,
n � 1, 3, 5,t � �C1du�dr2n,

zb � 68.2 ft.pb � 29.7 psi
za � 56.8 ft;pa � 32.4 psi

20°

Problems 451

8.24 A fluid flows through a horizontal 0.1-in.-diameter pipe.
When the Reynolds number is 1500, the head loss over a 20-ft
length of the pipe is 6.4 ft. Determine the fluid velocity.

8.25 A viscous fluid flows in a 0.10-m-diameter pipe such that its
velocity measured 0.012 m away from the pipe wall is 
0.8 m�s. If the flow is laminar, determine the centerline velocity
and the flowrate.

8.26 Oil flows through the horizontal pipe shown in Fig. P8.26
under laminar conditions. All sections are the same diameter ex-
cept one. Which section of the pipe (A, B, C, D, or E) is slightly
smaller in diameter than the others? Explain.

8.27 Asphalt at 120 , considered to be a Newtonian fluid with
a viscosity 80,000 times that of water and a specific gravity of 1.09,
flows through a pipe of diameter 2.0 in. If the pressure gradient is
1.6 psi/ft determine the flowrate assuming the pipe is (a) horizon-
tal; (b) vertical with flow up.

8.28 Oil of and a kinematic viscosity 
flows through the vertical pipe shown in Fig. P8.28 at a rate

of Determine the manometer reading, h.4 � 10�4 m3�s.
m2�s

2.2 � 10�4n �SG � 0.87

°F

F I G U R E  P8.23

3 ft 3 ft

25 ft

2 ft at t = 0

0.1-in. diameter, galvanized iron

B A

F I G U R E  P8.26

Q

15 ft

60 in. 56 in.

5 ft 10 ft 6 ft 15 ft

46
in.

39
in.

26
in.

EDCBA

20-foot
sections

F I G U R E  P8.28

Q

SG = 0.87

4 m

20 mm

h

SG = 1.3

8.29 Determine the manometer reading, h, for Problem 8.28 if the
flow is up rather than down the pipe. Note: The manometer read-
ing will be reversed.

8.30 A liquid with and va-
por pressure is drawn into the syringe
as is indicated in Fig. P8.30. What is the maximum flowrate if cav-
itation is not to occur in the syringe?

pv � 1.2 � 104 N�m21abs2
m � 9.2 � 10�4 N # s�m2,SG � 0.96,
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Section 8.3 Fully Developed Turbulent Flow

8.31 Obtain a photograph/image of a “turbulator.” (See Fluids in
the News article titled “Smaller heat exchangers” in Section 8.3.1.)
Print this photo and write a brief paragraph that describes its use.

8.32 For oil ( ) flow of 
through a round pipe with diameter of 500 mm, determine the
Reynolds number. Is the flow laminar or turbulent?

8.33 For air at a pressure of 200 kPa (abs) and temperature of
determine the maximum laminar volume flowrate for flow

through a 2.0-cm-diameter tube.

8.34 Show that the power-law approximation for the velocity pro-
file in turbulent pipe flow (Eq. 8.31) cannot be accurate at the cen-
terline or at the pipe wall because the velocity gradients at these
locations are not correct. Explain.

8.35 As shown in Video V8.9 and Fig. P8.35, the velocity profile
for laminar flow in a pipe is quite different from that for turbulent
flow. With laminar flow the velocity profile is parabolic; with tur-
bulent flow at the velocity profile can be approxi-
mated by the power-law profile shown in the figure. (a) For lami-
nar flow, determine at what radial location you would place a Pitot

Re � 10,000

15 °C,

0.3 m3�sSG � 0.86, m � 0.025 Ns�m2
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tube if it is to measure the average velocity in the pipe. (b) Repeat
part (a) for turbulent flow with 

8.36 The kinetic energy coefficient, is defined in Eq. 5.86. Show
that its value for a power-law turbulent velocity profile (Eq. 8.31) is
given by .

8.37 When soup is stirred in a bowl, there is considerable tur-
bulence in the resulting motion (see Video V8.7). From a very
simplistic standpoint, this turbulence consists of numerous inter-
twined swirls, each involving a characteristic diameter and ve-
locity. As time goes by, the smaller swirls (the fine scale struc-
ture) die out relatively quickly, leaving the large swirls that
continue for quite some time. Explain why this is to be expected.

8.38 Determine the thickness of the viscous sublayer in a smooth
8-in.-diameter pipe if the Reynolds number is 25,000.

8.39 Water at flows through a 6-in.-diameter pipe with an
average velocity of 15 ft s. Approximately what is the height of
the largest roughness element allowed if this pipe is to be classi-
fied as smooth?

Section 8.4.1 Major Losses (Also see Lab Problem 8.126.)

8.40 Obtain photographs/images for round pipes of different mate-
rials. Print these photos and write a brief paragraph that describes the
different pipes.

8.41 A person with no experience in fluid mechanics wants to esti-
mate the friction factor for 1-in.-diameter galvanized iron pipe at a
Reynolds number of 8,000. They stumble across the simple equation
of f � 64/Re and use this to calculate the friction factor. Explain the
problem with this approach and estimate their error.

8.42 Water flows through a horizontal plastic pipe with a diameter
of 0.2 m at a velocity of 10 cm/s. Determine the pressure drop per
meter of pipe using the Moody chart.

8.43 For Problem 8.42, calculate the power lost to the friction per
meter of pipe.

8.44 Oil (SG � 0.9), with a kinematic viscosity of 0.007 ft2/s, flows
in a 3-in.-diameter pipe at 0.01 ft3/s. Determine the head loss per unit
length of this flow.

8.45 Water flows through a 6-in.-diameter horizontal pipe at a rate
of 2.0 cfs and a pressure drop of 4.2 psi per 100 ft of pipe. Deter-
mine the friction factor.

8.46 Water flows downward through a vertical 10-mm-diameter
galvanized iron pipe with an average velocity of and exits
as a free jet. There is a small hole in the pipe 4 m above the outlet.
Will water leak out of the pipe through this hole, or will air enter
into the pipe through the hole? Repeat the problem if the average
velocity is 

8.47 Air at standard conditions flows through an 8-in.-diameter,
14.6-ft-long, straight duct with the velocity versus pressure drop
data indicated in the following table. Determine the average fric-
tion factor over this range of data.

V (ft�min) 	p (in. water)

3950 0.35
3730 0.32
3610 0.30
3430 0.27
3280 0.24
3000 0.20
2700 0.16

0.5 m�s.

5.0 m�s

�
60 °F

a � 1n � 12312n � 123� 34n41n � 32 12n � 32 4

a,

Re � 10,000.

F I G U R E  P8.30

10-mm-diameter

0.25-mm-diameter
0.10-m-long needle

0.12 m

patm = 101 kPa (abs)

F I G U R E  P8.35

1.0

0.5

0 0.5 1.0

r__
R

r__
R

u__
Vc

u__
Vc

Laminar with Re < 2100

= 1 – 2( )

r__
R

u__
Vc

Turbulent with Re = 10,000

=  1 – 1/5[ ]

R r

u

Vc
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8.48 Water flows through a horizontal 60-mm-diameter galvanized
iron pipe at a rate of . If the pressure drop is 135 kPa per
10 m of pipe, do you think this pipe is (a) a new pipe, (b) an old
pipe with a somewhat increased roughness due to aging, or (c) a
very old pipe that is partially clogged by deposits? Justify your an-
swer.

8.49 Water flows at a rate of 10 gallons per minute in a new hor-
izontal 0.75-in.-diameter galvanized iron pipe. Determine the pres-
sure gradient, along the pipe.

8.50 Two equal length, horizontal pipes, one with a diameter of
1 in., the other with a diameter of 2 in., are made of the same ma-
terial and carry the same fluid at the same flow rate. Which pipe
produces the larger head loss? Justify your answer.

8.51 A 6-inch-diameter water main in your town has become
very rough due to rust and corrosion. It has been suggested that
the flowrate through this pipe can be increased by inserting a
smooth plastic liner into the pipe. Although the new diameter
will be smaller, the pipe will be smoother. Will such a procedure
produce a greater flowrate? List all assumptions and show all
calculations.

8.52 Blood (assume , SG � 1.0) flows
through an artery in the neck of a giraffe from its heart to its head
at a rate of . Assume the length is 10 ft and the di-
ameter is 0.20 in. If the pressure at the beginning of the artery (out-
let of the heart) is equivalent to 0.70 ft Hg, determine the pressure
at the end of the artery when the head is (a) 8 ft above the heart,
or (b) 6 ft below the heart. Assume steady flow. How much of this
pressure difference is due to elevation effects, and how much is
due to frictional effects?

8.53 A 40-m-long, 12-mm-diameter pipe with a friction factor of
0.020 is used to siphon 30 °C water from a tank as shown in Fig.
P8.53. Determine the maximum value of h allowed if there is to be
no cavitation within the hose. Neglect minor losses.

2.5 � 10�4 ft3�s

m � 4.5 � 10�5 lb # s�ft2

†

¢p�/,

0.02 m3�s
8.55 A 3-ft-diameter duct is used to carry ventilating air into a ve-
hicular tunnel at a rate of Tests show that the pres-
sure drop is 1.5 in. of water per 1500 ft of duct. What is the value
of the friction factor for this duct and the approximate size of the
equivalent roughness of the surface of the duct?

Section 8.4.2 Minor Losses (Also see Lab 
Problem 8.131.)

8.56 Obtain photographs/images of various pipe components that
would cause minor losses in the system. Print these photos and
write a brief paragraph that discusses these components.

8.57 An optional method of stating minor losses from pipe com-
ponents is to express the loss in terms of equivalent length; the
head loss from the component is quoted as the length of straight pipe
with the same diameter that would generate an equivalent loss. De-
velop an equation for the equivalent length, .

8.58 Given 90° threaded elbows used in conjunction with copper
pipe (drawn tubing) of 0.75-in. diameter, convert the loss for a sin-
gle elbow to equivalent length of copper pipe for wholly turbulent
flow.

8.59 Based on Problem 8.57, develop a graph to predict equiva-
lent length, , as a function of pipe diameter for a 45° threaded
elbow connecting copper piping (drawn tubing) for wholly turbu-
lent flow.

8.60 A regular threaded elbow is used to connect two
straight portions of 4-in.-diameter galvanized iron pipe. (a) If
the flow is assumed to be wholly turbulent, determine the equiv-
alent length of straight pipe for this elbow. (b) Does a pipe fit-
ting such as this elbow have a significant or negligible effect on
the flow? Explain.

8.61 To conserve water and energy, a “flow reducer” is installed
in the shower head as shown in Fig. P8.61. If the pressure at
point 112 remains constant and all losses except for that in the
“flow reducer” are neglected, determine the value of the loss co-
efficient 1based on the velocity in the pipe2 of the “flow reducer”
if its presence is to reduce the flowrate by a factor of 2. Neglect
gravity.

90°

/eq

/eq

9000 ft3�min.

Problems 453

7 m
10 m

30 m

h

3 m

F I G U R E  P8.53

Q

1__
2

in.

(1)

Flow reducer washer

50 holes of
diameter 0.05 in.

F I G U R E  P8.61

8.54 Gasoline flows in a smooth pipe of 40-mm diameter at a rate
of If it were possible to prevent turbulence from oc-
curring, what would be the ratio of the head loss for the actual tur-
bulent flow compared to that if it were laminar flow?

0.001 m3�s.

8.62 Water flows at a rate of in a 0.12-m-diameter pipe
that contains a sudden contraction to a 0.06-m-diameter pipe. De-
termine the pressure drop across the contraction section. How much
of this pressure difference is due to losses and how much is due to
kinetic energy changes?

8.63 A sign like the one shown in Fig. P8.63 is often attached to
the side of a jet engine as a warning to airport workers. Based on
Video V8.10 or Figs. 8.22 and 8.25, explain why the danger areas
(indicated in color) are the shape they are.

0.040 m3�s

JWCL068_ch08_383-460.qxd  9/23/08  11:01 AM  Page 453



8.64 (See Fluids in the News article titled “New hi-tech foun-
tains,” Section 8.5.) The fountain shown in Fig. P8.64 is de-
signed to provide a stream of water that rises to

above the nozzle exit in a periodic fashion. To do this
the water from the pool enters a pump, passes through a pres-
sure regulator that maintains a constant pressure ahead of the
flow control valve. The valve is electronically adjusted to pro-
vide the desired water height. With the loss coefficient
for the valve is Determine the valve loss coefficient
needed for All losses except for the flow control valve
are negligible. The area of the pipe is 5 times the area of the exit
nozzle.

h � 20 ft.
KL � 50.

h � 10 ft

h � 20 ft
h � 10 ft

*8.65 Water flows from a large open tank through a sharp-edged
entrance and into a galvanized iron pipe of length 100 m and di-
ameter 10 mm. The water exits the pipe as a free jet at a distance
h below the free surface of the tank. Plot a log–log graph of the
flowrate, Q, as a function of h for 

8.66 Air flows through the mitered bend shown in Fig. P8.66 at
a rate of 5.0 cfs. To help straighten the flow after the bend, a set
of 0.25-in.-diameter drinking straws is placed in the pipe as shown.

0.1 	 h 	 10 m.

Estimate the extra pressure drop between points (1) and (2) caused
by these straws.

8.67 Repeat Problem 8.66 if the straws are replaced by a piece of
porous foam rubber that has a loss coefficient equal to 5.4.

8.68 As shown in Fig. P8.68, water flows from one tank to an-
other through a short pipe whose length is n times the pipe diam-
eter. Head losses occur in the pipe and at the entrance and exit.
(See Video V8.10.) Determine the maximum value of n if the ma-
jor loss is to be no more than 10% of the minor loss and the fric-
tion factor is 0.02.

8.69 Air flows through the fine mesh gauze shown in Fig. P8.69
with an average velocity of 1.50 m/s in the pipe. Determine the
loss coefficient for the gauze.

8.70 Water flows steadily through the 0.75-in-diameter galva-
nized iron pipe system shown in Video V8.14 and Fig. P8.70 at
a rate of 0.020 cfs. Your boss suggests that friction losses in the
straight pipe sections are negligible compared to losses in the
threaded elbows and fittings of the system. Do you agree or dis-
agree with your boss? Support your answer with appropriate cal-
culations.

454 Chapter 8 ■ Viscous Flow in Pipes

C1130F

WARNING   Stand clear of
Hazard areas while engine is

running

WARNING   Stand clear of
Hazard areas while engine is

running

F I G U R E  P8.63

F I G U R E  P8.66

F I G U R E  P8.68

F I G U R E  P8.69

F I G U R E  P8.64

4 ft

Pump Flow control valve

Pressure regulator

h

(1)

(2)
12 in.

Tightly packed 0.25-in.-diameter,
12-in.-long straws

D

� = nD

Gauze over
end of pipe

Water

8 mm

V = 1.5 m/s
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Section 8.4.3 Noncircular Conduits

8.71 Obtain a photograph/image of a noncircular duct. Print this
photo and write a brief paragraph that describes the situation involved.

8.72 Given two rectangular ducts with equal cross-sectional area,
but different aspect ratios (width/height) of 2 and 4, which will
have the greater frictional losses? Explain your answer.

8.73 Air at standard temperature and pressure flows at a rate of
7.0 cfs through a horizontal, galvanized iron duct that has a rec-
tangular cross-sectional shape of 12 in. by 6 in. Estimate the pres-
sure drop per 200 ft of duct.

8.74 Air flows through a rectangular galvanized iron duct of size
0.30 m by 0.15 m at a rate of Determine the head loss
in 12 m of this duct.

8.75 Air at standard conditions flows through a horizontal 1 ft by
1.5 ft rectangular wooden duct at a rate of Determine
the head loss, pressure drop, and power supplied by the fan to over-
come the flow resistance in 500 ft of the duct.

Section 8.5.1 Single Pipes—Determine Pressure Drop
8.76 Assume a car’s exhaust system can be approximated as 14 ft
of 0.125-ft-diameter cast-iron pipe with the equivalent of six 
flanged elbows and a muffler. (See Video V8.12.) The muffler acts
as a resistor with a loss coefficient of Determine the
pressure at the beginning of the exhaust system if the flowrate is
0.10 cfs, the temperature is and the exhaust has the same
properties as air.

8.77 The pressure at section 122 shown in Fig. P8.77 is not to fall
below 60 psi when the flowrate from the tank varies from 0 to 1.0 cfs

250 °F,

KL � 8.5.

90°

5000 ft3�min.

0.068 m3�s.

and the branch line is shut off. Determine the minimum height, h,
of the water tank under the assumption that (a) minor losses are neg-
ligible, (b) minor losses are not negligible.

8.78 Repeat Problem 8.77 with the assumption that the branch
line is open so that half of the flow from the tank goes into the
branch, and half continues in the main line.

8.79 The exhaust from your car’s engine flows through a complex
pipe system as shown in Fig. P8.79 and Video V8.12. Assume that
the pressure drop through this system is when the engine is
idling at 1000 rpm at a stop sign. Estimate the pressure drop (in
terms of ) with the engine at 3000 rpm when you are driving
on the highway. List all the assumptions that you made to arrive
at your answer.

¢p1

¢p1

8.80 According to fire regulations in a town, the pressure drop in
a commercial steel horizontal pipe must not exceed 1.0 psi per
150 ft of pipe for flowrates up to If the water tem-
perature is above can a 6-in-diameter pipe be used?

8.81 As shown in Video V8.14 and Fig. P8.81, water “bubbles up”
3 in. above the exit of the vertical pipe attached to three horizon-
tal pipe segments. The total length of the 0.75-in.-diameter galva-
nized iron pipe between point (1) and the exit is 21 in. Determine
the pressure needed at point (1) to produce this flow.

50° F,
500 gal�min.

8.82 Water at is pumped from a lake as shown in
Fig. P8.82. If the flowrate is , what is the maximum
length inlet pipe, that can be used without cavitation
occurring?

/,
0.011 m3�s

10 °C

8.83 Water flows through the pipe system shown  in Fig. P8.83
at a rate of 0.30 ft3/s. The pipe diameter is 2 in., and its roughness
is 0.002 in. The loss coefficient for each of the five filters is 6.0,
and all other minor losses are negligible. Determine the power

Problems 455

F I G U R E  P8.70

F I G U R E  P8.79

F I G U R E  P8.81

F I G U R E  P8.82

F I G U R E  P8.77

6-in. length 6-in. length

4-in. length

Closed ball
valve

90° threaded
elbows 0.60-in. dia.

Reducer Q = 0.020 cfs

1-in. length

Tee

Branch line (2) Main
line

6 ft

10 ft

All pipe is 6-in.-diameter plastic
(  /D = 0), flanged fittings∋

h

600 ft
with 15

90° elbows
900 ft

Exhaust header

Muffler
Exhaust

4 in.

3 in.

(1)

Elevation
650 m

Elevation
653 m

Length �
D = 0.07 m

   = 0.08 mm∋
Q =

0.011 m3/s
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added to the water by the pump if the pressure immediately before
the pump is to be the same as that immediately after the last filter.
The length of the pipe between these two locations is 80 ft.

8.84 Water at 40 °F flows through the coils of the heat exchanger
as shown in Fig. P8.84 at a rate of 0.9 gal�min. Determine the
pressure drop between the inlet and outlet of the horizontal
device.

8.85 For the flow in Problem 8.84, ethylene glycol is added to the
water for freeze protection if the temperature drops below the freez-
ing point. The density is unchanged, and all flow conditions are
the same except that the viscosity of the mixture has changed to
0.01 Ns/m2 at the given temperature. Recalculate the pressure drop
between inlet and outlet. Discuss how this loss will change if the
fluid temperature does drop below freezing.

8.86 Water flows through a 2-in.-diameter pipe with a velocity of
as shown in Fig. P8.86. The relative roughness of the pipe

is 0.004, and the loss coefficient for the exit is 1.0. Determine the
height, h, to which the water rises in the piezometer tube.

15 ft�s

8.89 As shown in Fig. P8.89, a standard household water meter is
incorporated into a lawn irrigation system to measure the volume
of water applied to the lawn. Note that these meters measure vol-
ume, not volume flowrate. (See Video V8.15.) With an upstream
pressure of p1 � 50 psi the meter registered that 120 ft3 of water
was delivered to the lawn during an “on” cycle. Estimate the up-
stream pressure, p1, needed if it is desired to have 150 ft3 delivered
during an “on” cycle. List any assumptions needed to arrive at
your answer.

8.90 A fan is to produce a constant air speed of through-
out the pipe loop shown in Fig. P8.90. The 3-m-diameter pipes are
smooth, and each of the four elbows has a loss coefficient of
0.30. Determine the power that the fan adds to the air.

90°

40 m�s
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Filters

Pump

Water

F I G U R E  P8.83

F I G U R E  P8.88

F I G U R E  P8.84

F I G U R E  P8.89

F I G U R E  P8.90F I G U R E  P8.86

Q

18 in.

0.5-in. copper pipe (drawn tubing)

Threaded 180°
return bend

8 ft

8 ft

2 in.
15 ft/s

h

Open

8.87 Water is pumped through a 60-m-long, 0.3-m-diameter pipe
from a lower reservoir to a higher reservoir whose surface is 10 m
above the lower one. The sum of the minor loss coefficients for
the system is . When the pump adds 40 kW to the wa-
ter the flowrate is . Determine the pipe roughness.

8.88 Estimate the pressure drop associated with the air flow from
the cold air register in your room to the furnace (see Figure P8.88).
List all assumptions and show all calculations.

†

0.20 m3�s
KL � 14.5

Duct

Cold air register

Furnace

Filter

(1)

Irrigation
system:
pipes, fittings,
nozzles, etc.

WATER
METER

Fan

V = 40 m/s

D = 3 m
10 m

20 m

Section 8.5.1 Single Pipes—Determine Flowrate (Also
see Lab Problems 8.128 and 8.129.)

8.91 The turbine shown in Fig. P8.91 develops 400 kW. Deter-
mine the flowrate if (a) head losses are negligible or (b) head loss
due to friction in the pipe is considered. Assume Note:
There may be more than one solution or there may be no solution
to this problem.

f � 0.02.
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*8.92 In some locations with very “hard” water, a scale can build
up on the walls of pipes to such an extent that not only does the
roughness increases with time, but the diameter significantly de-
creases with time. Consider a case for which the roughness and di-
ameter vary as mm, D 50 (1 0.02t) mm,
where t is in years. Plot the flowrate as a function of time for t 0
to t 10 years if the pressure drop per 12 m of horizontal pipe re-
mains constant at .

8.93 Water flows from the nozzle attached to the spray tank shown
in Fig. P8.93. Determine the flowrate if the loss coefficient for the
nozzle (based on upstream conditions) is 0.75 and the friction fac-
tor for the rough hose is 0.11.

¢p � 1.3 kPa
�

�
��e � 0.02 � 0.01t

the flowrate passing between the tanks? Assume the friction fac-
tor to be equal to 0.02 and minor losses to be negligible.

8.96 Gasoline is unloaded from the tanker truck shown in
Fig. P8.96 through a 4-in.-diameter rough-surfaced hose. This is a
“gravity dump” with no pump to enhance the flowrate. It is claimed
that the 8800-gallon capacity truck can be unloaded in 28 minutes.
Do you agree with this claim? Support your answer with appropri-
ate calculations.

†

8.97 The pump shown in Fig. P8.97 delivers a head of 250 ft to
the water. Determine the power that the pump adds to the water.
The difference in elevation of the two ponds is 200 ft.

8.98 Water flows through two sections of the vertical pipe shown
in Fig. P8.98. The bellows connection cannot support any force in
the vertical direction. The 0.4-ft-diameter pipe weighs 0.2 lb�ft, and
the friction factor is assumed to be 0.02. At what velocity will the
force, F, required to hold the pipe be zero?

8.99 Water is circulated from a large tank, through a filter, and back
to the tank as shown in Fig. P8.99. The power added to the water by
the pump is Determine the flowrate through the filter.200 ft # lb�s.

8.94 When the pump shown in Fig. P8.94 adds 0.2 horsepower to
the flowing water, the pressures indicated by the two gages are
equal. Determine the flowrate.

Length of pipe between gages � 60 ft
Pipe diameter � 0.1 ft
Pipe friction factor � 0.03
Filter loss coefficient � 12

8.95 Water is pumped between two large open tanks as shown in
Fig. P8.95. If the pump adds 50 kW of power to the fluid, what is

Problems 457
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120 m of 0.30-m-diameter
cast-iron pipe

1 m

20 m
Diffuser

T

Nozzle diameter
= 7.5 mm

0.80 m

p = 150 kPa

D = 15 mm
� = 1.9 m

40°

PumpFilter

Diameter
Dm = 0.5 m

Pipe length = 600 m

Pump
Water

Midstate Gasoline

KLvalve
 = 5.0

KLelbow
 = 1.5

Pipe length = 500 ft
Pipe diameter = 0.75 ft
Pipe roughness = 0KLent

 = 0.8

KLexit
 = 1.0

Pump

F

V

Free jet

f = 0.020 Pipe weighs
0.20 lb/ft

Bellows

D = 0.40 ft
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Section 8.5.1 Single Pipes—Determine Diameter

8.100 A certain process requires 2.3 cfs of water to be delivered
at a pressure of 30 psi. This water comes from a large-diameter
supply main in which the pressure remains at 60 psi. If the galva-
nized iron pipe connecting the two locations is 200 ft long and con-
tains six threaded elbows, determine the pipe diameter. Eleva-
tion differences are negligible.

8.101 Water is pumped between two large open reservoirs through
1.5 km of smooth pipe. The water surfaces in the two reservoirs are
at the same elevation. When the pump adds 20 kW to the water the
flowrate is . If minor losses are negligible, determine the pipe
diameter.

8.102 Determine the diameter of a steel pipe that is to carry
of gasoline with a pressure drop of 5 psi per 100 ft of

horizontal pipe.

8.103 Water is to be moved from a large, closed tank in which the
air pressure is 20 psi into a large, open tank through 2000 ft of
smooth pipe at the rate of The fluid level in the open tank
is 150 ft below that in the closed tank. Determine the required di-
ameter of the pipe. Neglect minor losses.

8.104 Rainwater flows through the galvanized iron downspout
shown in Fig. P8.104 at a rate of Determine the size
of the downspout cross section if it is a rectangle with an aspect
ratio of 1.7 to 1 and it is completely filled with water. Neglect the
velocity of the water in the gutter at the free surface and the head
loss associated with the elbow.

0.006 m3�s.

3 ft3�s.

2000 gal�min

1 m3�s

90°
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PumpFilter

KL elbow = 1.5
KL exit = 1.0

KL ent = 0.8

KL valve = 6.0

KL filter = 12.0

200 ft. of 0.1-ft-diameter 
pipe with ε/D = 0.01

F I G U R E  P8.99

g

70 mm

4 m

3 m

F I G U R E  P8.104

*8.105 Repeat Problem 8.104 if the downspout is circular.

Section 8.5.2 Multiple Pipe Systems

8.106 Obtain a photograph/image of a multiple pipe system with
series of parallel flows. Print this photo and write a brief paragraph
that describes the situation involved.

8.107 Air, assumed incompressible, flows through the two pipes
shown in Fig. P8.107. Determine the flowrate if minor losses are
neglected and the friction factor in each pipe is 0.015. Determine
the flowrate if the 0.5-in.-diameter pipe were replaced by a 1-in.-
diameter pipe. Comment on the assumption of incompressibility.

*8.108 Repeat Problem 8.107 if the pipes are galvanized iron and
the friction factors are not known a priori.

†8.109 Estimate the power that the human heart must impart to
the blood to pump it through the two carotid arteries from the heart
to the brain. List all assumptions and show all calculations.

8.110 The flowrate between tank A and tank B shown in
Fig. P8.110 is to be increased by 30% (i.e., from Q to 1.30Q) by
the addition of a second pipe (indicated by the dotted lines) run-
ning from node C to tank B. If the elevation of the free surface in
tank A is 25 ft above that in tank B, determine the diameter, D, of
this new pipe. Neglect minor losses and assume that the friction
factor for each pipe is 0.02.

p = 0.5 psi
T = 150°F

20 ft 20 ft

1 in. 0.50 in.

F I G U R E  P8.107

F I G U R E  P8.110

6-in. diameter;
600 ft long

6-in. diameter;
500 ft long

C

Diameter D, 500 ft long

A

B

F I G U R E  P8.111

Elevation =
838 ft

Elevation =
850 ft

Elevation =
805 ft

D = 1.0 ft
� = 800 ft

D = 1.1 ft
� = 700 ft

D = 1.2 ft
� = 600 ft

A

B

C

8.111 The three tanks shown in Fig. P8.111 are connected by pipes
with friction factors of 0.03 for each pipe. Determine the water ve-
locity in each pipe. Neglect minor losses.

8.112 The three water-filled tanks shown in Fig. P8.112 are con-
nected by pipes as indicated. If minor losses are neglected, deter-
mine the flowrate in each pipe.
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8.113 (See Fluids in the News article titled “Deepwater pipeline,”
Section 8.5.2.) Five oil fields, each producing an output of Q bar-
rels per day, are connected to the 28-in.-diameter “main line pipe”
(A– B–C) by 16-in.-diameter “lateral pipes” as shown in Fig.
P8.113. The friction factor is the same for each of the pipes and
elevation effects are negligible. (a) For section A– B determine the
ratio of the pressure drop per mile in the main line pipe to that in
the lateral pipes. (b) Repeat the calculations for section B–C.

Problems 459

Elevation = 20 m

Elevation = 60 m

Elevation = 0
= 0.10 m
= 200 m
= 0.015

D
�
f

= 0.08 m
= 400 m
= 0.020

D
�
f

= 0.08 m
= 200 m
= 0.020

D
�
f

F I G U R E  P8.112

F I G U R E  P8.113

Lateral

Main line

Q

Q

Q

Q

Q

A B C

F I G U R E  P8.114

Water meter

Shower

Hot water heater

DishwasherHot

Cold

†8.114 As shown in Fig. P8.114, cold water (T � 50 �F) flows
from the water meter to either the shower or the hot water heater.
In the hot water heater it is heated to a temperature of 150 �F. Thus,
with equal amounts of hot and cold water, the shower is at a com-
fortable 100 �F. However, when the dishwasher is turned on, the
shower water becomes too cold. Indicate how you would predict
this new shower temperature (assume the shower faucet is not ad-
justed). State any assumptions needed in your analysis.

Section 8.6 Pipe Flowrate Measurement (Also see Lab
Problem 8.127.)

8.115 Obtain a photograph/image of a flowrate measurement de-
vice. Print this photo and write a brief paragraph that describes the
measurement range of the device.

8.116 A 2-in.-diameter orifice plate is inserted in a 3-in.-diameter
pipe. If the water flowrate through the pipe is 0.90 cfs, determine
the pressure difference indicated by a manometer attached to the
flow meter.

8.117 Air to ventilate an underground mine flows through a large
2-m-diameter pipe. A crude flowrate meter is constructed by placing
a sheet metal “washer” between two sections of the pipe. Estimate
the flowrate if the hole in the sheet metal has a diameter of 1.6 m and
the pressure difference across the sheet metal is 8.0 mm of water.

8.118 Water flows through a 40-mm-diameter nozzle meter in a
75-mm-diameter pipe at a rate of Determine the pres-
sure difference across the nozzle if the temperature is (a)
or (b)

8.119 Air at and 60 psia flows in a 4-in.-diameter pipe at
a rate of 0.52 lb s. Determine the pressure at the 2-in.-diameter
throat of a Venturi meter placed in the pipe.

8.120 A 2.5-in.-diameter flow nozzle is installed in a 3.8-in.-
diameter pipe that carries water at If the air –water
manometer used to measure the pressure difference across the me-
ter indicates a reading of 3.1 ft, determine the flowrate.

8.121 A 0.064-m-diameter nozzle meter is installed in a 0.097 m-
diameter pipe that carries water at If the inverted air–water
U-tube manometer used to measure the pressure difference across
the meter indicates a reading of 1 m, determine the flowrate.

8.122 Water flows through the Venturi meter shown in
Fig. P8.122. The specific gravity of the manometer fluid is 1.52.
Determine the flowrate.

60 °C.

160 °F.

�
200 °F

80 °C.
10 °C,

0.015 m3�s.

h

Q

d

2 in.

F I G U R E  P8.123

3 in.6 in.

2 in.

SG = 1.52

Q

F I G U R E  P8.122

8.123 Water flows through the orifice meter shown in Fig. P8.123
at a rate of 0.10 cfs. If ft, determine the value of h.d � 0.1

8.124 Water flows through the orifice meter shown in Fig. P8.123
such that ft with in. Determine the flowrate.

8.125 The scale reading on the rotameter shown in Fig. P8.125
and Video V8.14 (also see Fig. 8.46) is directly proportional to the
volumetric flowrate. With a scale reading of 2.6 the water bubbles
up approximately 3 in. How far will it bubble up if the scale read-
ing is 5.0?

d � 1.5h � 1.6
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■ Lab Problems

8.126 This problem involves the determination of the friction fac-
tor in a pipe for laminar and transitional flow conditions. To pro-
ceed with this problem, go to Appendix H which is located on the
book’s web site, www.wiley.com/college/munson.

8.127 This problem involves the calibration of an orifice meter
and a Venturi meter. To proceed with this problem, go to Appen-
dix H which is located on the book’s web site, www.wiley.com/
college/munson.

8.128 This problem involves the flow of water from a tank and
through a pipe system. To proceed with this problem, go to
Appendix H which is located on the book’s web site, www.wiley.
com/college/munson.

8.129 This problem involves the flow of water pumped from a tank
and through a pipe system. To proceed with this problem, go to
Appendix H which is located on the book’s web site, www.wiley.
com/college/munson.

8.130 This problem involves the pressure distribution in the en-
trance region of a pipe. To proceed with this problem, go to
Appendix H which is located on the book’s web site, www.wiley.
com/college/munson.

8.131 This problem involves the power loss due to friction in a
coiled pipe. To proceed with this problem, go to Appendix H which
is located on the book’s web site, www.wiley.com/college/munson.

■ Life Long Learning Problems

8.132 The field of bioengineering has undergone significant
growth in recent years. Some universities have undergraduate and
graduate programs in this field. Bioengineering applies engineer-
ing principles to help solve problems in the medical field for hu-
man health. Obtain information about bioengineering applications
in blood flow. Summarize your findings in a brief report.

8.133 Data used in the Moody diagram were first published in
1944. Since then, there have been many innovations in pipe mate-
rial, pipe design, and measurement techniques. Investigate whether
there have been any improvements or enhancements to the Moody
chart. Summarize your findings in a brief report.

460 Chapter 8 ■ Viscous Flow in Pipes

8.134 As discussed in Sec. 8.4.2, flow separation in pipes can lead
to losses (we will also see in Chapter 9 that external flow separation
is a significant problem). For external flows, there have been many
mechanisms devised to help mitigate and control flow separation
from the surface, e.g., from the wing of an airplane. Investigate ei-
ther passive or active flow control mechanisms that can reduce or
eliminate internal flow separation (e.g., flow separation in a diffuser).
Summarize your findings in a brief report.

■ FlowLab Problems

*8.135 This FlowLab problem involves simulating the flow in the
entrance region of a pipe and looking at basic concepts involved
with the flow regime. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/munson.

*8.136 This FlowLab problem involves investigation of the cen-
terline pressure distribution along a pipe. To proceed with this prob-
lem, go to the book’s web site, www.wiley.com/college/munson.

*8.137 This FlowLab problem involves conducting a parametric
study to see how Reynolds number affects the entrance length of
a pipe. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/munson.

*8.138 This FlowLab problem involves investigation of pressure
drop in the entrance region of a pipe as a function of Reynolds
number as well as comparing simulation results to analytic values.
To proceed with this problem, go to the book’s web site, www.
wiley.com/college/munson.

*8.139 This FlowLab problem involves the simulation of fully de-
veloped pipe flow and how the Reynolds number affects the wall
friction. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/munson.

*8.140 This FlowLab problem involves conducting a parametric
study on the effects of a sudden pipe expansion on the overall pres-
sure drop in a pipe. To proceed with this problem, go to the book’s
web site, www.wiley.com/college/munson.

*8.141 This FlowLab problem involves investigation of effects of
the pipe expansion ratio on flow separation. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/munson.

*8.142 This FlowLab problem involves investigation of geometric
effects of a diffuser on the resulting flow field. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/munson.

*8.143 This FlowLab problem involves investigating the effects
of the diameter ratio for a flat plate type orifice meter. To proceed
with this problem, go to the book’s web site, www.wiley.com/
college/munson.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley.
com/college/munson.

Rotameter

3 in.

0

6
5
4
3
2
1

F I G U R E  P8.125
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CHAPTER OPENING PHOTO: Impulsive start of flow past an array of cylinders: The complex structure of lam-

inar flow past a relatively simple geometric structure illustrates why it is often difficult to obtain exact ana-

lytical results for external flows. 1Dye in water.2 (Photograph courtesy of ONERA, France.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ identify and discuss the features of external flow.

■ explain the fundamental characteristics of a boundary layer, including laminar,

transitional, and turbulent regimes.

■ calculate boundary layer paremeters for flow past a flat plate.

■ provide a description of boundary layer separation.

■ calculate the lift and drag forces for various objects.

In this chapter we consider various aspects of the flow over bodies that are immersed in a fluid.

Examples include the flow of air around airplanes, automobiles, and falling snowflakes, or the flow

of water around submarines and fish. In these situations the object is completely surrounded by

the fluid and the flows are termed external flows.
External flows involving air are often termed aerodynamics in response to the important exter-

nal flows produced when an object such as an airplane flies through the atmosphere. Although this

field of external flows is extremely important, there are many other examples that are of equal impor-

tance. The fluid force 1lift and drag2 on surface vehicles 1cars, trucks, bicycles2 has become a very

important topic. By correctly designing cars and trucks, it has become possible to greatly decrease the

fuel consumption and improve the handling characteristics of the vehicle. Similar efforts have resulted

in improved ships, whether they are surface vessels 1surrounded by two fluids, air and water2 or sub-

mersible vessels 1surrounded completely by water2.
Other applications of external flows involve objects that are not completely surrounded by

fluid, although they are placed in some external-type flow. For example, the proper design of a

99Flow over
Immersed Bodies

Flow over
Immersed Bodies

Many practical sit-
uations involve
flow past objects.
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building 1whether it is your house or a tall skyscraper2 must include consideration of the various

wind effects involved.

As with other areas of fluid mechanics, various approaches 1theoretical, numerical and ex-

perimental2 are used to obtain information on the fluid forces developed by external flows.

Theoretical 1i.e., analytical2 techniques can provide some of the needed information about such

flows. However, because of the complexities of the governing equations and the complexities of

the geometry of the objects involved, the amount of information obtained from purely theoreti-

cal methods is limited.

Much of the information about external flows comes from experiments carried out, for the

most part, on scale models of the actual objects. Such testing includes the obvious wind tunnel

testing of model airplanes, buildings, and even entire cities. In some instances the actual device,

not a model, is tested in wind tunnels. Figure 9.1a shows a test of a vehicle in a wind tunnel. Bet-

ter performance of cars, bikes, skiers, and numerous other objects has resulted from testing in wind

tunnels. The use of water tunnels and towing tanks also provides useful information about the flow

around ships and other objects. With advancement in computational fluid dynamics, or CFD, nu-

merical methods are also capable of predicting external flows past objects. Figure 9.1b shows stream-

lines around a Formula 1 car as predicted by CFD. Appendix A provides an introduction to CFD.

In this chapter we consider characteristics of external flow past a variety of objects. We in-

vestigate the qualitative aspects of such flows and learn how to determine the various forces on

objects surrounded by a moving liquid.

462 Chapter 9 ■ Flow over Immersed Bodies

A body immersed in a moving fluid experiences a resultant force due to the interaction between

the body and the fluid surrounding it. In some instances 1such as an airplane flying through still

air2 the fluid far from the body is stationary and the body moves through the fluid with veloc-

ity U. In other instances 1such as the wind blowing past a building2 the body is stationary and

the fluid flows past the body with velocity U. In any case, we can fix the coordinate system in

the body and treat the situation as fluid flowing past a stationary body with velocity U, the up-
stream velocity. For the purposes of this book, we will assume that the upstream velocity is con-

stant in both time and location. That is, there is a uniform, constant velocity fluid flowing past the

object. In actual situations this is often not true. For example, the wind blowing past a smokestack

is nearly always turbulent and gusty 1unsteady2 and probably not of uniform velocity from the top

to the bottom of the stack. Usually the unsteadiness and nonuniformity are of minor importance.

9.1 General External Flow Characteristics

F I G U R E  9.1 (a) Flow past a
full-sized streamlined vehicle in the GM
aerodynamics laboratory wind tunnel, an 18-ft
by 34-ft test section facility driven by a 4000-
hp, 43-ft-diameter fan. (Photograph courtesy
of General Motors Corporation.) (b) Predicted
streamlines for flow past a Formula 1 race
car as obtained by using computational fluid
dynamics techniques. (Courtesy of Ansys, Inc.)

(a)

(b)

For external flows
it is usually easiest
to use a coordinate
system fixed to the
object.
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Even with a steady, uniform upstream flow, the flow in the vicinity of an object may be un-

steady. Examples of this type of behavior include the flutter that is sometimes found in the flow

past airfoils 1wings2, the regular oscillation of telephone wires that “sing” in a wind, and the irreg-

ular turbulent fluctuations in the wake regions behind bodies.

The structure of an external flow and the ease with which the flow can be described and an-

alyzed often depend on the nature of the body in the flow. Three general categories of bodies are

shown in Fig. 9.2. They include 1a2 two-dimensional objects 1infinitely long and of constant cross-

sectional size and shape2, 1b2 axisymmetric bodies 1formed by rotating their cross-sectional shape

about the axis of symmetry2, and 1c2 three-dimensional bodies that may or may not possess a line

or plane of symmetry. In practice there can be no truly two-dimensional bodies—nothing extends

to infinity. However, many objects are sufficiently long so that the end effects are negligibly small.

Another classification of body shape can be made depending on whether the body is stream-

lined or blunt. The flow characteristics depend strongly on the amount of streamlining present. In

general, streamlined bodies 1i.e., airfoils, racing cars, etc.2 have little effect on the surrounding fluid,

compared with the effect that blunt bodies 1i.e., parachutes, buildings, etc.2 have on the fluid. Usu-

ally, but not always, it is easier to force a streamlined body through a fluid than it is to force a

similar-sized blunt body at the same velocity. There are important exceptions to this basic rule.

9.1.1 Lift and Drag Concepts

When any body moves through a fluid, an interaction between the body and the fluid occurs; this

effect can be given in terms of the forces at the fluid–body interface. These forces can be described

in terms of the stresses—wall shear stresses, due to viscous effects and normal stresses due to

the pressure, p. Typical shear stress and pressure distributions are shown in Figs. 9.3a and 9.3b.
Both and p vary in magnitude and direction along the surface.

It is often useful to know the detailed distribution of shear stress and pressure over the sur-

face of the body, although such information is difficult to obtain. Many times, however, only the

tw

tw,
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U U U
x

z

y

z

y

xx

y

(c)(b)(a)

F I G U R E  9.2 Flow classification: (a) two-dimensional, (b) axisymmetric,
(c) three-dimensional.

V9.1 Space shuttle
landing

F I G U R E  9.3 Forces from the sur-
rounding fluid on a two-dimensional object: (a)
pressure force, (b) viscous force, (c) resultant force
(lift and drag).

U

U

U �

�

(c)

(b)

(a)

w Shear stress
distribution

τ

p > 0
Pressure

distribution

p < 0

A body interacts
with the surround-
ing fluid through
pressure and shear
stresses.
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integrated or resultant effects of these distributions are needed. The resultant force in the direction

of the upstream velocity is termed the drag, and the resultant force normal to the upstream ve-

locity is termed the lift, as is indicated in Fig. 9.3c. For some three-dimensional bodies there

may also be a side force that is perpendicular to the plane containing and 

The resultant of the shear stress and pressure distributions can be obtained by integrating the

effect of these two quantities on the body surface as is indicated in Fig. 9.4. The x and y compo-

nents of the fluid force on the small area element dA are

and

Thus, the net x and y components of the force on the object are

(9.1)

and

(9.2)

Of course, to carry out the integrations and determine the lift and drag, we must know the body

shape 1i.e., as a function of location along the body2 and the distribution of and p along the

surface. These distributions are often extremely difficult to obtain, either experimentally or theo-

retically. The pressure distribution can be obtained experimentally by use of a series of static pres-

sure taps along the body surface. On the other hand, it is usually quite difficult to measure the wall

shear stress distribution.

twu

 l � �  dFy � ��  p sin u dA � �  tw cos u dA

 d � �  dFx � �  p cos u dA � �  tw sin u dA

 dFy � �1p dA2 sin u � 1tw dA2 cos u

 dFx � 1p dA2 cos u � 1tw dA2 sin u

l.d

l,

d,
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F I G U R E  9.4 Pressure and shear
forces on a small element of the surface of a
body.

U

pdA
θ

dA

τwdA

θ

y

x

Lift and drag on a
section of a body
depend on the ori-
entation of the sur-
face.

F l u i d s  i n  t h e  N e w s

Pressure-sensitive paint For many years, the conventional

method for measuring surface pressure has been to use static

pressure taps consisting of small holes on the surface connected

by hoses from the holes to a pressure measuring device. Pressure-

sensitive paint (PSP) is now gaining acceptance as an alternative

to the static surface pressure ports. The PSP material is typically

a luminescent compound that is sensitive to the pressure on it and

can be excited by an appropriate light which is captured by spe-

cial video imaging equipment. Thus, it provides a quantitative

measure of the surface pressure. One of the biggest advantages of

PSP is that it is a global measurement technique, measuring pres-

sure over the entire surface, as opposed to discrete points. PSP

also has the advantage of being nonintrusive to the flow field. Al-

though static pressure port holes are small, they do alter the sur-

face and can slightly alter the flow, thus affecting downstream

ports. In addition, the use of PSP eliminates the need for a large

number of pressure taps and connecting tubes. This allows pres-

sure measurements to be made in less time and at a lower cost.

It is seen that both the shear stress and pressure force contribute to the lift and drag, since

for an arbitrary body is neither zero nor along the entire body. The exception is a flat plate

aligned either parallel to the upstream flow or normal to the upstream flow as

is discussed in Example 9.1.

1u � 021u � 90°2
90°u
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GIVEN Air at standard conditions flows past a flat plate as

is indicated in Fig. E9.1. In case 1a2 the plate is parallel to the

upstream flow, and in case 1b2 it is perpendicular to the up-

stream flow. The pressure and shear stress distributions on 

the surface are as indicated 1obtained either by experiment or

theory2.

FIND Determine the lift and drag on the plate.

SOLUTION

Drag from Pressure and Shear Stress Distributions

symmetrical about the center of the plate. With the given rela-

tively large pressure on the front of the plate 1the center of the

plate is a stagnation point2 and the negative pressure 1less than

the upstream pressure2 on the back of the plate, we obtain the

following drag

or

(Ans)

COMMENTS Clearly there are two mechanisms responsible

for the drag. On the ultimately streamlined body 1a zero thickness

flat plate parallel to the flow2 the drag is entirely due to the shear

stress at the surface and, in this example, is relatively small. For

the ultimately blunted body 1a flat plate normal to the upstream

flow2 the drag is entirely due to the pressure difference between

the front and back portions of the object and, in this example, is

relatively large.

If the flat plate were oriented at an arbitrary angle relative to

the upstream flow as indicated in Fig. E9.1c, there would be both

a lift and a drag, each of which would be dependent on both the

shear stress and the pressure. Both the pressure and shear stress

distributions would be different for the top and bottom surfaces.

 d � 55.6 lb

 � 1�0.8932 lb�ft2 d  110 ft2 dy

 d � �
2 ft

y��2

 c0.744 a1 �
y 

2

4
b lb�ft2

EXAMPLE 9.1

For either orientation of the plate, the lift and drag are obtained

from Eqs. 9.1 and 9.2. With the plate parallel to the upstream flow

we have on the top surface and on the bottom

surface so that the lift and drag are given by

and

(1)

where we have used the fact that because of symmetry the shear

stress distribution is the same on the top and the bottom surfaces,

as is the pressure also [whether we use gage or absolute

pressure]. There is no lift generated—the plate does

not know up from down. With the given shear stress distribution,

Eq. 1 gives

or

(Ans)

With the plate perpendicular to the upstream flow, we have

on the front and on the back. Thus, from Eqs.

9.1 and 9.2

and

Again there is no lift because the pressure forces act parallel to the

upstream flow 1in the direction of not 2 and the shear stress isld

 d � �
front

 p dA � �
back

 p dA

 l � �
front

 tw dA � �
back

 tw dA � 0

u � 180°u � 0°

 d � 0.0992 lb

 d � 2 �
4 ft

x�0

 a
1.24 � 10�3

x 1�2
 lb�ft2b 110 ft2 dx

1p � patm2
1p � 02

 d � �
top

 tw dA � �
bottom

 tw dA � 2 �
top

 tw dA

l � ��
top

 p dA � �
bottom

 p dA � 0

u � 270°u � 90°

U = 25 ft/s

(b)

p = 0

p = 0.744  1 –       lb/ft2

where y is in feet

y2
__
4

y
p = –0.893 lb/ft2

x

(y) =
–   (–y) 

( )

τw

τw
τw

F I G U R E  E9.1

U = 25 ft/s

p = 0 (gage)

y

x

p = p(x) = 0

4 ft

b = width = 10 ft

(a)

=    (x) = (1.24 × 10 –3)/ x lb/ft2

where x is in feet
τw τw

U
Low p

High p

� ≠ 0

� ≠ 0

(c)

τw

τw

F I G U R E  E9.1 (Continued)
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Although Eqs. 9.1 and 9.2 are valid for any body, the difficulty in their use lies in obtaining

the appropriate shear stress and pressure distributions on the body surface. Considerable effort has

gone into determining these quantities, but because of the various complexities involved, such infor-

mation is available only for certain simple situations.

Without detailed information concerning the shear stress and pressure distributions on a body,

Eqs. 9.1 and 9.2 cannot be used. The widely used alternative is to define dimensionless lift and

drag coefficients and determine their approximate values by means of either a simplified analysis,

some numerical technique, or an appropriate experiment. The lift coefficient, and drag coeffi-
cient, are defined as

and

where A is a characteristic area of the object 1see Chapter 72. Typically, A is taken to be frontal
area—the projected area seen by a person looking toward the object from a direction parallel to

the upstream velocity, U, as indicated by the figure in the margin. It would be the area of the shadow

of the object projected onto a screen normal to the upstream velocity as formed by a light shining

along the upstream flow. In other situations A is taken to be the planform area—the projected area

seen by an observer looking toward the object from a direction normal to the upstream velocity 1i.e.,

from “above” it2. Obviously, which characteristic area is used in the definition of the lift and drag

coefficients must be clearly stated.

9.1.2 Characteristics of Flow Past an Object

External flows past objects encompass an extremely wide variety of fluid mechanics phenomena.

Clearly the character of the flow field is a function of the shape of the body. Flows past relatively

simple geometric shapes 1i.e., a sphere or circular cylinder2 are expected to have less complex flow

fields than flows past a complex shape such as an airplane or a tree. However, even the simplest-

shaped objects produce rather complex flows.

For a given-shaped object, the characteristics of the flow depend very strongly on various

parameters such as size, orientation, speed, and fluid properties. As is discussed in Chapter 7, ac-

cording to dimensional analysis arguments, the character of the flow should depend on the vari-

ous dimensionless parameters involved. For typical external flows the most important of these pa-

rameters are the Reynolds number, the Mach number, and for

flows with a free surface 1i.e., flows with an interface between two fluids, such as the flow past a

surface ship2, the Froude number, 1Recall that is some characteristic length of the

object and c is the speed of sound.2
For the present, we consider how the external flow and its associated lift and drag vary as a

function of Reynolds number. Recall that the Reynolds number represents the ratio of inertial ef-

fects to viscous effects. In the absence of all viscous effects the Reynolds number is in-

finite. On the other hand, in the absence of all inertial effects 1negligible mass or 2, the

Reynolds number is zero. Clearly, any actual flow will have a Reynolds number between 1but not

including2 these two extremes. The nature of the flow past a body depends strongly on whether

or 

Most external flows with which we are familiar are associated with moderately sized objects

with a characteristic length on the order of In addition, typical upstream ve-

locities are on the order of and the fluids involved are typically water

or air. The resulting Reynolds number range for such flows is approximately . 

This is shown by the figure in the margin for air. As a rule of thumb, flows with are

dominated by inertial effects, whereas flows with are dominated by viscous effects. Hence,

most familiar external flows are dominated by inertia.

On the other hand, there are many external flows in which the Reynolds number is consid-

erably less than 1, indicating in some sense that viscous forces are more important than inertial

Re 6 1

Re 7 100

10 6 Re 6 109

0.01 m�s 6 U 6 100 m�s
0.01 m 6 / 6 10 m.

Re � 1.Re � 1

r � 0

1m � 02,

/Fr � U�1g/.

Ma � U�c,Re � rU/�m � U/�n,

CD �
d

1
2rU 

2A

CL �
l

1
2rU 

2A

CD,

CL,
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Lift coefficients and
drag coefficients
are dimensionless
forms of lift and
drag.

A = D�

A = c�

�

�

U

U
c

D

The character of
flow past an object
is dependent on the
value of the
Reynolds number.
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forces. The gradual settling of small particles of dirt in a lake or stream is governed by low Reynolds

number flow principles because of the small diameter of the particles and their small settling speed.

Similarly, the Reynolds number for objects moving through large viscosity oils is small because

is large. The general differences between small and large Reynolds number flow past stream-

lined and blunt objects can be illustrated by considering flows past two objects—one a flat plate

parallel to the upstream velocity and the other a circular cylinder.

Flows past three flat plates of length with and are shown in

Fig. 9.5. If the Reynolds number is small, the viscous effects are relatively strong and the plate

affects the uniform upstream flow far ahead, above, below, and behind the plate. To reach that

portion of the flow field where the velocity has been altered by less than 1% of its undisturbed

value we must travel relatively far from the plate. In low Reynolds num-

ber flows the viscous effects are felt far from the object in all directions.

As the Reynolds number is increased 1by increasing U, for example2, the region in which vis-

cous effects are important becomes smaller in all directions except downstream, as is shown in

1i.e., U � u 6 0.01 U2

107Re � rU/�m � 0.1, 10,/

m

9.1 General External Flow Characteristics 467

For low Reynolds
number flows,
viscous effects are
felt far from the 
object.

Streamlines deflected
considerably

Re = U�/v = 0.1

U

Viscous effects
important

u < 0.99U

y

x

U

(a)

U

u < 0.99U

y

x

Viscous effects
important

Streamlines deflected
somewhat

Re =  10

Viscosity not
important

U

Viscosity not
important

Re =  107

(b)

U

(c)

Viscous effects
important

Boundary layer

y

Streamlines deflection
very slight

δ << �

Wake
region

U

x

�

F I G U R E  9.5 Character
of the steady, viscous flow past a flat
plate parallel to the upstream velocity:
(a) low Reynolds number flow, (b) mod-
erate Reynolds number flow, (c) large
Reynolds number flow.
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Fig. 9.5b. One does not need to travel very far ahead, above, or below the plate to reach areas in

which the viscous effects of the plate are not felt. The streamlines are displaced from their origi-

nal uniform upstream conditions, but the displacement is not as great as for the situation

shown in Fig. 9.5a.
If the Reynolds number is large 1but not infinite2, the flow is dominated by inertial effects

and the viscous effects are negligible everywhere except in a region very close to the plate and in

the relatively thin wake region behind the plate, as shown in Fig. 9.5c. Since the fluid viscosity is

not zero it follows that the fluid must stick to the solid surface 1the no-slip boundary

condition2. There is a thin boundary layer region of thickness 1i.e., thin relative to

the length of the plate2 next to the plate in which the fluid velocity changes from the upstream

value of to zero velocity on the plate. The thickness of this layer increases in the direction

of flow, starting from zero at the forward or leading edge of the plate. The flow within the bound-

ary layer may be laminar or turbulent, depending on various parameters involved.

The streamlines of the flow outside of the boundary layer are nearly parallel to the plate. As

we will see in the next section, the slight displacement of the external streamlines that are outside

of the boundary layer is due to the thickening of the boundary layer in the direction of flow. The

existence of the plate has very little effect on the streamlines outside of the boundary layer—ei-

ther ahead, above, or below the plate. On the other hand, the wake region is due entirely to the

viscous interaction between the fluid and the plate.

One of the great advancements in fluid mechanics occurred in 1904 as a result of the in-

sight of Ludwig Prandtl 11875–19532, a German physicist and aerodynamicist. He conceived of

the idea of the boundary layer—a thin region on the surface of a body in which viscous effects

are very important and outside of which the fluid behaves essentially as if it were inviscid. Clearly

the actual fluid viscosity is the same throughout; only the relative importance of the viscous ef-

fects 1due to the velocity gradients2 is different within or outside of the boundary layer. As is dis-

cussed in the next section, by using such a hypothesis it is possible to simplify the analysis of

large Reynolds number flows, thereby allowing solution to external flow problems that are oth-

erwise still unsolvable.

As with the flow past the flat plate described above, the flow past a blunt object 1such as a

circular cylinder2 also varies with Reynolds number. In general, the larger the Reynolds number,

the smaller the region of the flow field in which viscous effects are important. For objects that are

not sufficiently streamlined, however, an additional characteristic of the flow is observed. This is

termed flow separation and is illustrated by the figure in the margin and in Fig. 9.6.

Low Reynolds number flow past a circular cylinder is characterized by the

fact that the presence of the cylinder and the accompanying viscous effects are felt throughout a rel-

atively large portion of the flow field. As is indicated in Fig. 9.6a, for the vis-

cous effects are important several diameters in any direction from the cylinder. A somewhat surpris-

ing characteristic of this flow is that the streamlines are essentially symmetric about the center of the

cylinder—the streamline pattern is the same in front of the cylinder as it is behind the cylinder.

As the Reynolds number is increased, the region ahead of the cylinder in which viscous ef-

fects are important becomes smaller, with the viscous region extending only a short distance ahead

of the cylinder. The viscous effects are convected downstream and the flow loses its upstream to

downstream symmetry. Another characteristic of external flows becomes important—the flow sep-

arates from the body at the separation location as indicated in Fig. 9.6b. With the increase in

Reynolds number, the fluid inertia becomes more important and at some location on the body,

denoted the separation location, the fluid’s inertia is such that it cannot follow the curved path

around to the rear of the body. The result is a separation bubble behind the cylinder in which

some of the fluid is actually flowing upstream, against the direction of the upstream flow. (See

the photograph at the beginning of this chapter.)

At still larger Reynolds numbers, the area affected by the viscous forces is forced farther down-

stream until it involves only a thin boundary layer on the front portion of the cylinder and

an irregular, unsteady 1perhaps turbulent2 wake region that extends far downstream of the cylinder.

The fluid in the region outside of the boundary layer and wake region flows as if it were inviscid. Of

course, the fluid viscosity is the same throughout the entire flow field. Whether viscous effects are

important or not depends on which region of the flow field we consider. The velocity gradients within

the boundary layer and wake regions are much larger than those in the remainder of the flow field.

1d � D2

Re � UD�n � 0.1,

1Re � UD�n 6 12

u � U

d � d 1x2 � /
1Re 6 	 2,

Re � 0.1
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Thin boundary lay-
ers may develop in
large Reynolds
number flows.

V9.2 Streamlined
and blunt bodies
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Since the shear stress 1i.e., viscous effect2 is the product of the fluid viscosity and the velocity gradi-

ent, it follows that viscous effects are confined to the boundary layer and wake regions.

The characteristics described in Figs. 9.5 and 9.6 for flow past a flat plate and a circular

cylinder are typical of flows past streamlined and blunt bodies, respectively. The nature of the flow

depends strongly on the Reynolds number. (See Ref. 31 for many examples illustrating this behav-

ior.) Most familiar flows are similar to the large Reynolds number flows depicted in Figs. 9.5c and

9.6c, rather than the low Reynolds number flow situations. (See the photograph at the beginning

of Chapters 7 and 11.) In the remainder of this chapter we will investigate more thoroughly these

ideas and determine how to calculate the forces on immersed bodies.

9.1 General External Flow Characteristics 469

F I G U R E  9.6 Character of the steady, viscous flow past a circular
cylinder: (a) low Reynolds number flow, (b) moderate Reynolds number flow,
(c) large Reynolds number flow.

U

U

U

(c)

(b)

(a)

D

D

Boundary layer

Separated region

Viscosity not
important

Re = 105

δ <<D

Boundary layer separation
Viscous effects

important

Wake
region

x

Separation bubble

Separation
location

Viscosity not
important

Re = 50

Viscous forces
important throughout

Re = UD/v = 0.1

x

x

Viscous
effects

important

Most familiar flows
involve large
Reynolds numbers.

GIVEN It is desired to experimentally determine the various

characteristics of flow past a car as shown in Fig E9.2. The follow-

ing tests could be carried out: 1a2 flow of glycerin

past a scale model that is 34-mm tall, 100-mm long, and 40-mm

wide, 1b2 air flow past the same scale model, or

1c2 air flow past the actual car, which is 1.7-m tall, 5-m

long, and 2-m wide.

FIND Would the flow characteristics for these three situations

be similar? Explain.

U � 25 m�s
U � 20 mm�s

U � 20 mm�s

Characteristics of Flow Past ObjectsEXAMPLE 9.2

F I G U R E  E9.2
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SOLUTION

or flow past a circular cylinder, we would expect that the flow

past the actual car would behave in some way similar to the flows

shown in Figs. 9.5c or 9.6c. That is, we would expect some type

of boundary layer characteristic in which viscous effects would

be confined to relatively thin layers near the surface of the car and

the wake region behind it. Whether the car would act more like a

flat plate or a cylinder would depend on the amount of streamlin-

ing incorporated into the car’s design.

Because of the small Reynolds number involved, the flow past

the model car in glycerin would be dominated by viscous effects, in

some way reminiscent of the flows depicted in Figs. 9.5a or 9.6a.
Similarly, with the moderate Reynolds number involved for the air

flow past the model, a flow with characteristics similar to those in-

dicated in Figs. 9.5b and 9.6b would be expected. Viscous effects

would be important—not as important as with the glycerin flow, but

more important than with the full-sized car.

It would not be a wise decision to expect the flow past the full-

sized car to be similar to the flow past either of the models. The

same conclusions result regardless of whether we use or

As is indicated in Chapter 7, the flows past the model car and

the full-sized prototype will not be similar unless the Reynolds

numbers for the model and prototype are the same. It is not al-

ways an easy task to ensure this condition. One 1expensive2 solu-

tion is to test full-sized prototypes in very large wind tunnels 1see

Fig. 9.12.

Re/.

Reh, Reb,

The characteristics of flow past an object depend on the Reynolds

number. For this instance we could pick the characteristic length

to be the height, h, width, b, or length, of the car to obtain three

possible Reynolds numbers, and

These numbers will be different because of the dif-

ferent values of h, b, and Once we arbitrarily decide on the

length we wish to use as the characteristic length, we must stick

with it for all calculations when using comparisons between

model and prototype.

With the values of kinematic viscosity for air and glycerin ob-

tained from Tables 1.8 and 1.6 as and

we obtain the following Reynolds

numbers for the flows described.

Clearly, the Reynolds numbers for the three flows are quite

different 1regardless of which characteristic length we choose2.
Based on the previous discussion concerning flow past a flat plate

nglycerin � 1.19 � 10�3 m2�s,

nair � 1.46 � 10�5 m2�s

/.

Re/ � U/�n.
Uh�n, Reb � Ub�n,Reh �

/,

Reynolds (a) Model in (b) Model in (c) Car in Air
Number Glycerin Air

0.571 46.6

0.672 54.8

1.68 137.0 8.56 � 106Re/

3.42 � 106Reb

2.91 � 106Reh

As was discussed in the previous section, it is often possible to treat flow past an object as a com-

bination of viscous flow in the boundary layer and inviscid flow elsewhere. If the Reynolds num-

ber is large enough, viscous effects are important only in the boundary layer regions near the ob-

ject 1and in the wake region behind the object2. The boundary layer is needed to allow for the no-slip

boundary condition that requires the fluid to cling to any solid surface that it flows past. Outside of

the boundary layer the velocity gradients normal to the flow are relatively small, and the fluid acts

as if it were inviscid, even though the viscosity is not zero. A necessary condition for this structure

of the flow is that the Reynolds number be large.

9.2.1 Boundary Layer Structure and Thickness on a Flat Plate

There can be a wide variety in the size of a boundary layer and the structure of the flow within it.

Part of this variation is due to the shape of the object on which the boundary layer forms. In this

section we consider the simplest situation, one in which the boundary layer is formed on an infi-

nitely long flat plate along which flows a viscous, incompressible fluid as is shown in Fig. 9.7. If

the surface were curved 1i.e., a circular cylinder or an airfoil2, the boundary layer structure would

be more complex. Such flows are discussed in Section 9.2.6.

If the Reynolds number is sufficiently large, only the fluid in a relatively thin boundary layer

on the plate will feel the effect of the plate. That is, except in the region next to the plate the flow

velocity will be essentially the upstream velocity. For the infinitely long flat plate extend-

ing from to it is not obvious how to define the Reynolds number because there is

no characteristic length. The plate has no thickness and is not of finite length!

For a finite length plate, it is clear that the plate length, can be used as the characteristic

length. For an infinitely long plate we use x, the coordinate distance along the plate from the lead-

ing edge, as the characteristic length and define the Reynolds number as Thus, forRex � Ux�n.

/,

x � 	,x � 0

V � U î,

9.2 Boundary Layer Characteristics

Large Reynolds
number flow fields
may be divided into
viscous and inviscid
regions.

V9.3 Laminar
boundary layer
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any fluid or upstream velocity the Reynolds number will be sufficiently large for boundary layer

type flow 1i.e., Fig. 9.5c2 if the plate is long enough. Physically, this means that the flow situations

illustrated in Fig. 9.5 could be thought of as occurring on the same plate, but should be viewed by

looking at longer portions of the plate as we step away from the plate to see the flows in Fig. 9.5a,

9.5b, and 9.5c, respectively.

If the plate is sufficiently long, the Reynolds number is sufficiently large so that

the flow takes on its boundary layer character 1except very near the leading edge2. The details of

the flow field near the leading edge are lost to our eyes because we are standing so far from the

plate that we cannot make out these details. On this scale 1Fig. 9.5c2 the plate has negligible effect

on the fluid ahead of the plate. The presence of the plate is felt only in the relatively thin bound-

ary layer and wake regions. As previously noted, Prandtl in 1904 was the first to hypothesize such

a concept. It has become one of the major turning points in fluid mechanics analysis.

A better appreciation of the structure of the boundary layer flow can be obtained by con-

sidering what happens to a fluid particle that flows into the boundary layer. As is indicated in

Fig. 9.7, a small rectangular particle retains its original shape as it flows in the uniform flow

outside of the boundary layer. Once it enters the boundary layer, the particle begins to distort

because of the velocity gradient within the boundary layer—the top of the particle has a larger

speed than its bottom. The fluid particles do not rotate as they flow along outside the boundary

layer, but they begin to rotate once they pass through the fictitious boundary layer surface and

enter the world of viscous flow. The flow is said to be irrotational outside the boundary layer

and rotational within the boundary layer. 1In terms of the kinematics of fluid particles as is dis-

cussed in Section 6.1, the flow outside the boundary layer has zero vorticity, and the flow within

the boundary layer has nonzero vorticity.2
At some distance downstream from the leading edge, the boundary layer flow becomes tur-

bulent and the fluid particles become greatly distorted because of the random, irregular nature of

the turbulence. One of the distinguishing features of turbulent flow is the occurrence of irregular

mixing of fluid particles that range in size from the smallest fluid particles up to those compara-

ble in size with the object of interest. For laminar flow, mixing occurs only on the molecular

scale. This molecular scale is orders of magnitude smaller in size than typical size scales for tur-

bulent flow mixing. The transition from a laminar boundary layer to a turbulent boundary layer
occurs at a critical value of the Reynolds number, on the order of to de-

pending on the roughness of the surface and the amount of turbulence in the upstream flow, as is

discussed in Section 9.2.4. As shown by the figure in the margin, the location along the plate

where the flow becomes turbulent, xcr, moves towards the leading edge as the free-stream veloc-

ity increases.

The purpose of the boundary layer is to allow the fluid to change its velocity from the upstream

value of U to zero on the surface. Thus, V � 0 at y � 0 and V � U î at the edge of the boundary layer,

with the velocity profile, u � u(x, y) bridging the boundary layer thickness. This boundary layer char-

acteristic occurs in a variety of flow situations, not just on flat plates. For example, boundary lay-

ers form on the surfaces of cars, in the water running down the gutter of the street, and in the at-

mosphere as the wind blows across the surface of the earth (land or water).

3 � 106,2 � 105Rexcr,

Re � U/�n
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F I G U R E  9.7 Distortion of a fluid particle as it flows within the
boundary layer.
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In actuality (both mathematically and physically), there is no sharp “edge” to the boundary

layer; that is, as we get farther from the plate. We define the boundary layer thickness, �,
as that distance from the plate at which the fluid velocity is within some arbitrary value of the

upstream velocity. Typically, as indicated in Fig. 9.8a,

where u � 0.99U� � y

u S U

472 Chapter 9 ■ Flow over Immersed Bodies

F l u i d s  i n  t h e  N e w s

The Albatross: Nature’s Aerodynamic Solution for Long
Flights The albatross is a phenomenal seabird that soars just

above ocean waves, taking advantage of the local boundary layer
to travel incredible distances with little to no wing flapping. This

limited physical exertion results in minimal energy consumption

and, combined with aerodynamic optimization, allows the alba-

tross to easily travel 1000 km (620 miles) per day, with some

tracking data showing almost double that amount. The albatross

has high aspect ratio wings (up to 11 ft in wingspan) and a lift-

to-drag ratio (l/d) of approximately 27, both similar to high-

performance sailplanes. With this aerodynamic configuration,

the albatross then makes use of a technique called “dynamic

soaring” to take advantage of the wind profile over the ocean sur-

face. Based on the boundary layer profile, the albatross uses the

rule of dynamic soaring, which is to climb when pointed upwind

and dive when pointed downwind, thus constantly exchanging

kinetic and potential energy. Though the albatross loses energy

to drag, it can periodically regain energy due to vertical and di-

rectional motions within the boundary layer by changing local

airspeed and direction. This is not a direct line of travel, but it

does provide the most fuel-efficient method of long-distance

flight. 

To remove this arbitrariness 1i.e., what is so special about 99%; why not 98%?2, the fol-

lowing definitions are introduced. Shown in Fig. 9.8b are two velocity profiles for flow past

a flat plate—one if there were no viscosity 1a uniform profile2 and the other if there are vis-

cosity and zero slip at the wall 1the boundary layer profile2. Because of the velocity deficit,

within the boundary layer, the flowrate across section b–b is less than that across sec-

tion a–a. However, if we displace the plate at section a–a by an appropriate amount the

boundary layer displacement thickness, the flowrates across each section will be identical. This

is true if

where b is the plate width. Thus,

(9.3)

The displacement thickness represents the amount that the thickness of the body must be

increased so that the fictitious uniform inviscid flow has the same mass flowrate properties as

the actual viscous flow. It represents the outward displacement of the streamlines caused by the

d* � �
	

0

 a1 �
u

U
b dy

d*b U � �
	

0

 1U � u2b dy

d*,

U � u,

F I G U R E  9.8 Boundary layer thickness: (a) standard boundary
layer thickness, (b) boundary layer displacement thickness.

The boundary layer
displacement thick-
ness is defined in
terms of volumetric
flowrate.

U U U

δ*

δ

a b

Equal
areas

y a bu = 0.99 U
  = 0
u = U
μ

  ≠ 0
u = u(y)
μ

U – u

(a) (b)
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9.2 Boundary Layer Characteristics 473

GIVEN Air flowing into a 2-ft-square duct with a uniform ve-

locity of 10 ft�s forms a boundary layer on the walls as shown in

Fig. E9.3a. The fluid within the core region 1outside the boundary

layers2 flows as if it were inviscid. From advanced calculations it

is determined that for this flow the boundary layer displacement

thickness is given by

(1)

where and x are in feet.

FIND Determine the velocity of the air within the

duct but outside of the boundary layer.

U � U1x2

d*

d* � 0.00701x21�2

SOLUTION

F I G U R E  E9.3

Boundary Layer Displacement Thickness

ever, valid for the inviscid flow outside the boundary layer.2
Thus,

Hence, with and we obtain

or

For example, at 

If it were desired to maintain a constant velocity along the

centerline of this entrance region of the duct, the walls could be

displaced outward by an amount equal to the boundary layer dis-

placement thickness, d*.

x � 100 ft.p � �0.0401 lb�ft2

 p � 0.119 c1 �
1

11 � 0.0070x 1�224
d  lb�ft2

� c 110 ft�s22 �
102

11 � 0.0079x 1�224
 ft2�s2 d

 �
1

2
 12.38 � 10�3 slugs�ft32 

 p �
1

2
 r 1U 2

1 � U 22

p1 � 0r � 2.38 � 10�3 slugs�ft3

p1 � 1
2rU

2
1 � p � 1

2rU
2

(1) (2)

Inviscid core
2-ft square U(x)

x

δ∗

Viscous effects important
U1 =
10 ft/s

EXAMPLE 9.3

If we assume incompressible flow 1a reasonable assumption be-

cause of the low velocities involved2, it follows that the volume

flowrate across any section of the duct is equal to that at the en-

trance 1i.e., 2. That is,

According to the definition of the displacement thickness, the

flowrate across section 122 is the same as that for a uniform flow

with velocity U through a duct whose walls have been moved in-

ward by That is,

(2)

By combining Eqs. 1 and 2 we obtain

or

(Ans)

COMMENTS Note that U increases in the downstream di-

rection. For example, as shown in Fig. E9.3b, at

The viscous effects that cause the fluid to stick to the

walls of the duct reduce the effective size of the duct, thereby

1from conservation of mass principles2 causing the fluid to ac-

celerate. The pressure drop necessary to do this can be obtained

by using the Bernoulli equation 1Eq. 3.72 along the inviscid

streamlines from section 112 to 122. 1Recall that this equation is

not valid for viscous flows within the boundary layer. It is, how-

x � 100 ft.

U � 11.6 ft�s

U �
10

11 � 0.0070x 1�222
 ft�s

40 ft3�s � 4U11 � 0.0070x 1�222

40 ft3�s � �
122

 
u dA � U12 ft � 2d*22

d*.

d*,

U1A1 � 10 ft�s 12 ft22 � 40 ft3�s � �
122

u dA

Q1 � Q2

12

10

8
U

, 
ft

/s

6

4

2

0
0 20 40 60 80 100

x, ft

viscous effects on the plate. This idea allows us to simulate the presence that the boundary layer

has on the flow outside of the boundary layer by adding the displacement thickness to the ac-

tual wall and treating the flow over the thickened body as an inviscid flow. The displacement

thickness concept is illustrated in Example 9.3.

1a2

1b2
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Another boundary layer thickness definition, the boundary layer momentum thickness, is

often used when determining the drag on an object. Again because of the velocity deficit,

in the boundary layer, the momentum flux across section b–b in Fig. 9.8 is less than that across

section a–a. This deficit in momentum flux for the actual boundary layer flow on a plate of width

b is given by

which by definition is the momentum flux in a layer of uniform speed U and thickness That is,

or

(9.4)

All three boundary layer thickness definitions, and are of use in boundary layer analyses.

The boundary layer concept is based on the fact that the boundary layer is thin. For the flat

plate flow this means that at any location x along the plate, Similarly, and 

Again, this is true if we do not get too close to the leading edge of the plate 1i.e., not closer than

or so2.
The structure and properties of the boundary layer flow depend on whether the flow is lami-

nar or turbulent. As is illustrated in Fig. 9.9 and discussed in Sections 9.2.2 through 9.2.5, both the

boundary layer thickness and the wall shear stress are different in these two regimes.

9.2.2 Prandtl /Blasius Boundary Layer Solution

In theory, the details of viscous, incompressible flow past any object can be obtained by solving

the governing Navier–Stokes equations discussed in Section 6.8.2. For steady, two-dimensional

laminar flows with negligible gravitational effects, these equations 1Eqs. 6.127a, b, and c2 reduce

to the following:

(9.5)

(9.6)

which express Newton’s second law. In addition, the conservation of mass equation, Eq. 6.31, for

incompressible flow is

(9.7)
0u

0x
�

0v

0y
� 0

 u 
0v

0x
� v 

0v

0y
� �

1
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02v

0x2
�

02v
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0x
� n a

02u
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02u
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Rex � Ux�n � 1000

™ � x.d* � xd � x.

™,d, d*,

™ � �
	

0

 
u

U
 a1 �

u

U
b dy

rbU 2™ � rb�
	

0

 u1U � u2 dy

™.

�  ru1U � u2 dA � rb�
	

0

 u1U � u2  dy

U � u,

™,
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F I G U R E  9.9 Typical characteristics of boundary
layer thickness and wall shear stress for laminar and turbulent
boundary layers.
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The appropriate boundary conditions are that the fluid velocity far from the body is the upstream

velocity and that the fluid sticks to the solid body surfaces. Although the mathematical problem is

well-posed, no one has obtained an analytical solution to these equations for flow past any shaped

body! Currently much work is being done to obtain numerical solutions to these governing equa-

tions for many flow geometries.

By using boundary layer concepts introduced in the previous sections, Prandtl was able to

impose certain approximations 1valid for large Reynolds number flows2, and thereby to simplify

the governing equations. In 1908, H. Blasius 11883 –19702, one of Prandtl’s students, was able to

solve these simplified equations for the boundary layer flow past a flat plate parallel to the flow.

A brief outline of this technique and the results are presented below. Additional details may be

found in the literature 1Refs. 1–32.
Since the boundary layer is thin, it is expected that the component of velocity normal to the

plate is much smaller than that parallel to the plate and that the rate of change of any parameter

across the boundary layer should be much greater than that along the flow direction. That is,

Physically, the flow is primarily parallel to the plate and any fluid property is convected down-

stream much more quickly than it is diffused across the streamlines.

With these assumptions it can be shown that the governing equations 1Eqs. 9.5, 9.6, and 9.72
reduce to the following boundary layer equations:

(9.8)

(9.9)

Although both these boundary layer equations and the original Navier–Stokes equations are non-

linear partial differential equations, there are considerable differences between them. For one, the

y momentum equation has been eliminated, leaving only the original, unaltered continuity equa-

tion and a modified x momentum equation. One of the variables, the pressure, has been eliminated,

leaving only the x and y components of velocity as unknowns. For boundary layer flow over a flat

plate the pressure is constant throughout the fluid. The flow represents a balance between viscous

and inertial effects, with pressure playing no role.

As shown by the figure in the margin, the boundary conditions for the governing boundary

layer equations are that the fluid sticks to the plate

(9.10)

and that outside of the boundary layer the flow is the uniform upstream flow That is,

(9.11)

Mathematically, the upstream velocity is approached asymptotically as one moves away from the

plate. Physically, the flow velocity is within 1% of the upstream velocity at a distance of from

the plate.

In mathematical terms, the Navier–Stokes equations 1Eqs. 9.5 and 9.62 and the continuity

equation 1Eq. 9.72 are elliptic equations, whereas the equations for boundary layer flow 1Eqs. 9.8

and 9.92 are parabolic equations. The nature of the solutions to these two sets of equations, there-

fore, is different. Physically, this fact translates to the idea that what happens downstream of a

given location in a boundary layer cannot affect what happens upstream of that point. That is,

whether the plate shown in Fig. 9.5c ends with length or is extended to length the flow within

the first segment of length will be the same. In addition, the presence of the plate has no effect

on the flow ahead of the plate. On the other hand, ellipticity allows flow information to propagate

in all directions, including upstream.

In general, the solutions of nonlinear partial differential equations 1such as the boundary layer

equations, Eqs. 9.8 and 9.92 are extremely difficult to obtain. However, by applying a clever coordi-

nate transformation and change of variables, Blasius reduced the partial differential equations to an

/
2/,/

d
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boundary layer flow
analysis.
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ordinary differential equation that he was able to solve. A brief description of this process is given be-

low. Additional details can be found in standard books dealing with boundary layer flow 1Refs. 1, 22.
It can be argued that in dimensionless form the boundary layer velocity profiles on a flat

plate should be similar regardless of the location along the plate. That is,

where is an unknown function to be determined. In addition, by applying an order of magnitude

analysis of the forces acting on fluid within the boundary layer, it can be shown that the boundary layer

thickness grows as the square root of x and inversely proportional to the square root of U. That is,

Such a conclusion results from a balance between viscous and inertial forces within the boundary

layer and from the fact that the velocity varies much more rapidly in the direction across the bound-

ary layer than along it.

Thus, we introduce the dimensionless similarity variable and the stream func-

tion where is an unknown function. Recall from Section 6.2.3 that

the velocity components for two-dimensional flow are given in terms of the stream function as

and which for this flow become

(9.12)

and

(9.13)

with the notation We substitute Eqs. 9.12 and 9.13 into the governing equations, Eqs.

9.8 and 9.9, to obtain 1after considerable manipulation2 the following nonlinear, third-order ordi-

nary differential equation:

(9.14a)

As shown by the figure in the margin, the boundary conditions given in Eqs. 9.10 and 9.11 can be

written as

(9.14b)

The original partial differential equation and boundary conditions have been reduced to an ordi-

nary differential equation by use of the similarity variable The two independent variables, x and

y, were combined into the similarity variable in a fashion that reduced the partial differential equa-

tion 1and boundary conditions2 to an ordinary differential equation. This type of reduction is not

generally possible. For example, this method does not work on the full Navier–Stokes equations,

although it does on the boundary layer equations 1Eqs. 9.8 and 9.92.
Although there is no known analytical solution to Eq. 9.14, it is relatively easy to integrate

this equation on a computer. The dimensionless boundary layer profile, obtained by

numerical solution of Eq. 9.14 1termed the Blasius solution2, is sketched in Fig. 9.10a and is tab-

ulated in Table 9.1. The velocity profiles at different x locations are similar in that there is only

one curve necessary to describe the velocity at any point in the boundary layer. Because the sim-

ilarity variable contains both x and y, it is seen from Fig. 9.10b that the actual velocity profiles

are a function of both x and y. The profile at location is the same as that at except that the y
coordinate is stretched by a factor of 

From the solution it is found that when Thus,

(9.15) d � 5 
A

nx

U

h � 5.0.u�U � 0.99

1x2 �x12
1�2.

x2x1
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u�U � f ¿ 1h2,
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or

where It can also be shown that the displacement and momentum thicknesses are

given by

(9.16)

and

(9.17)

As postulated, the boundary layer is thin provided that is large as Rex S 	2.1i.e., d�x S 0Rex

 
™
x

�
0.664

1Rex

 
d*

x
�

1.721

1Rex

Rex � Ux�n.

 
d

x
�

5

1Rex
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F I G U R E  9.10 Blasius boundary layer profile: (a) boundary layer profile in
dimensionless form using the similarity variable (b) similar boundary layer profiles at
different locations along the flat plate.
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TA B L E 9 . 1

Laminar Flow along a Flat Plate 
(the Blasius Solution)

( ) ( ) ( )

0 0 3.6 0.9233

0.4 0.1328 4.0 0.9555

0.8 0.2647 4.4 0.9759

1.2 0.3938 4.8 0.9878

1.6 0.5168 5.0 0.9916

2.0 0.6298 5.2 0.9943

2.4 0.7290 5.6 0.9975

2.8 0.8115 6.0 0.9990

3.2 0.8761 1.0000	

Hf �H� u�UHf �1�2U�NxH � y

For large Reynolds
numbers the bound-
ary layer is rela-
tively thin.
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With the velocity profile known, it is an easy matter to determine the wall shear stress,

where the velocity gradient is evaluated at the plate. The value of at

can be obtained from the Blasius solution to give

(9.18)

As indicated by Eq. 9.18 and illustrated in the figure in the margin, the shear stress decreases with

increasing x because of the increasing thickness of the boundary layer—the velocity gradient at

the wall decreases with increasing x. Also, varies as not as U as it does for fully devel-

oped laminar pipe flow. These variations are discussed in Section 9.2.3.

9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate

One of the important aspects of boundary layer theory is the determination of the drag caused by

shear forces on a body. As was discussed in the previous section, such results can be obtained from

the governing differential equations for laminar boundary layer flow. Since these solutions are ex-

tremely difficult to obtain, it is of interest to have an alternative approximate method. The momen-

tum integral method described in this section provides such an alternative.

We consider the uniform flow past a flat plate and the fixed control volume as shown in Fig.

9.11. In agreement with advanced theory and experiment, we assume that the pressure is constant

throughout the flow field. The flow entering the control volume at the leading edge of the plate [sec-

tion 112] is uniform, while the velocity of the flow exiting the control volume [section 122] varies

from the upstream velocity at the edge of the boundary layer to zero velocity on the plate.

The fluid adjacent to the plate makes up the lower portion of the control surface. The upper

surface coincides with the streamline just outside the edge of the boundary layer at section 122. It
need not 1in fact, does not2 coincide with the edge of the boundary layer except at section 122. If
we apply the x component of the momentum equation 1Eq. 5.222 to the steady flow of fluid within

this control volume we obtain

where for a plate of width b

(9.19)

and is the drag that the plate exerts on the fluid. Note that the net force caused by the uniform

pressure distribution does not contribute to this flow. Since the plate is solid and the upper surface

of the control volume is a streamline, there is no flow through these areas. Thus,

or

(9.20)d � rU 2bh � rb �
d

0

 u2 dy

�d � r�
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 U1�U2 dA � r �
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 u2 dA

d

a Fx � �d � ��
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 tw dA � �b �
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 tw dx

a Fx � r�
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 uV � n̂ dA � r �
122

 uV � n̂ dA

U3�2,tw

tw � 0.332U3�2 
B

rm

x

y � 0

0u�0ytw � m 10u�0y2y�0,
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F I G U R E  9.11 Control volume used in the derivation of the
momentum integral equation for boundary layer flow.
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Although the height h is not known, it is known that for conservation of mass the flowrate

through section 112 must equal that through section 122, or

which can be written as

(9.21)

Thus, by combining Eqs. 9.20 and 9.21 we obtain the drag in terms of the deficit of momentum

flux across the outlet of the control volume as

(9.22)

The idea of a momentum deficit is illustrated in the figure in the margin. If the flow

were inviscid, the drag would be zero, since we would have and the right-hand side of

Eq. 9.22 would be zero. 1This is consistent with the fact that if .2 Equation 9.22

points out the important fact that boundary layer flow on a flat plate is governed by a balance

between shear drag 1the left-hand side of Eq. 9.222 and a decrease in the momentum of the

fluid 1the right-hand side of Eq. 9.222. As x increases, increases and the drag increases. The

thickening of the boundary layer is necessary to overcome the drag of the viscous shear stress

on the plate. This is contrary to horizontal fully developed pipe flow in which the momentum

of the fluid remains constant and the shear force is overcome by the pressure gradient along

the pipe.

The development of Eq. 9.22 and its use was first put forth in 1921 by T. von 

Kármán 11881–19632, a Hungarian/German aerodynamicist. By comparing Eqs. 9.22 and 9.4 we

see that the drag can be written in terms of the momentum thickness, as

(9.23)

Note that this equation is valid for laminar or turbulent flows.

The shear stress distribution can be obtained from Eq. 9.23 by differentiating both sides with

respect to x to obtain

(9.24)

The increase in drag per length of the plate, occurs at the expense of an increase of the

momentum boundary layer thickness, which represents a decrease in the momentum of the fluid.

Since 1see Eq. 9.192 it follows that

(9.25)

Hence, by combining Eqs. 9.24 and 9.25 we obtain the momentum integral equation for the bound-

ary layer flow on a flat plate

(9.26)

The usefulness of this relationship lies in the ability to obtain approximate boundary layer

results easily by using rather crude assumptions. For example, if we knew the detailed velocity

profile in the boundary layer 1i.e., the Blasius solution discussed in the previous section2, we could

evaluate either the right-hand side of Eq. 9.23 to obtain the drag, or the right-hand side of Eq. 9.26

to obtain the shear stress. Fortunately, even a rather crude guess at the velocity profile will allow

us to obtain reasonable drag and shear stress results from Eq. 9.26. This method is illustrated in

Example 9.4.
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As is illustrated in Example 9.4, the momentum integral equation, Eq. 9.26, can be used

along with an assumed velocity profile to obtain reasonable, approximate boundary layer results.

The accuracy of these results depends on how closely the shape of the assumed velocity profile

approximates the actual profile.

Thus, we consider a general velocity profile

and

where the dimensionless coordinate varies from 0 to 1 across the boundary layer. The

dimensionless function can be any shape we choose, although it should be a reasonableg1Y 2
Y � y�d

 
u

U
� 1 for Y 7 1

 
u

U
� g1Y 2 for 0 � Y � 1
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GIVEN Consider the laminar flow of an incompressible fluid

past a flat plate at The boundary layer velocity profile is

approximated as for and for 

as is shown in Fig. E9.4.

FIND Determine the shear stress by using the momentum inte-

gral equation. Compare these results with the Blasius results

given by Eq. 9.18.

y 7 d,u � U0 � y � du � Uy�d
y � 0.

SOLUTION

F I G U R E  E9.4

Momentum Integral Boundary Layer Equation

or

This can be integrated from the leading edge of the plate,

1where 2 to an arbitrary location x where the boundary layer

thickness is The result is

or

(4)

Note that this approximate result 1i.e., the velocity profile is not ac-

tually the simple straight line we assumed2 compares favorably with

the 1much more laborious to obtain2Blasius result given by Eq. 9.15.

The wall shear stress can also be obtained by combining Eqs.

1, 3, and 4 to give

(Ans)

Again this approximate result is close 1within 13%2 to the 

Blasius value of given by Eq. 9.18.tw
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EXAMPLE 9.4

From Eq. 9.26 the shear stress is given by

(1)

while for laminar flow we know that For the

assumed profile we have

(2)

and from Eq. 9.4

or

(3)

Note that as yet we do not know the value of 1but suspect that it

should be a function of x2. 
By combining Eqs. 1, 2, and 3 we obtain the following differ-

ential equation for 
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approximation to the boundary layer profile, as shown by the figure in the margin. In partic-

ular, it should certainly satisfy the boundary conditions at and at 

That is,

The linear function used in Example 9.4 is one such possible profile. Other conditions,

such as at could also be incorporated into the func-

tion to more closely approximate the actual profile.

For a given the drag can be determined from Eq. 9.22 as

or

(9.27)

where the dimensionless constant has the value

Also, the wall shear stress can be written as

(9.28)

where the dimensionless constant has the value

By combining Eqs. 9.25, 9.27, and 9.28 we obtain

which can be integrated from at to give

or

(9.29)

By substituting this expression back into Eqs. 9.28 we obtain

(9.30)

To use Eqs. 9.29 and 9.30 we must determine the values of and Several assumed ve-

locity profiles and the resulting values of are given in Fig. 9.12 and Table 9.2. The more closely

the assumed shape approximates the actual 1i.e., Blasius2 profile, the more accurate the final re-

sults. For any assumed profile shape, the functional dependence of and on the physical para-

meters and x is the same. Only the constants are different. That is, or

and where 

It is often convenient to use the dimensionless local friction coefficient, defined as

(9.31)cf �
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to express the wall shear stress. From Eq. 9.30 we obtain the approximate value

while the Blasius solution result is given by

(9.32)

These results are also indicated in Table 9.2.

For a flat plate of length and width b, the net friction drag, can be expressed in terms

of the friction drag coefficient, as

or

(9.33)CDf �
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F I G U R E  9.12 Typical 
approximate boundary layer profiles
used in the momentum integral equation.

TA B L E 9 . 2

Flat Plate Momentum Integral Results for Various Assumed
Laminar Flow Velocity Profiles

Profile Character

a. Blasius solution 5.00 0.664 1.328

b. Linear 
3.46 0.578 1.156

c. Parabolic 
5.48 0.730 1.460

d. Cubic 
4.64 0.646 1.292

e. Sine wave 
4.79 0.655 1.310u�U � sin 3p1 y�d2�2 4

u�U � 31 y�d2�2 � 1y�d23�2

u�U � 2y�d � 1y�d22

u�U � y�d

CDfRe�
1�2cfRex

1�2DRex
1�2�x

The friction drag
coefficient is an in-
tegral of the local
friction coefficient.
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We use the above approximate value of to obtain

where is the Reynolds number based on the plate length. The corresponding value ob-

tained from the Blasius solution 1Eq. 9.322 and shown by the figure in the margin gives

These results are also indicated in Table 9.2.

The momentum integral boundary layer method provides a relatively simple technique to ob-

tain useful boundary layer results. As is discussed in Sections 9.2.5 and 9.2.6, this technique can

be extended to boundary layer flows on curved surfaces 1where the pressure and fluid velocity at

the edge of the boundary layer are not constant2 and to turbulent flows.

9.2.4 Transition from Laminar to Turbulent Flow

The analytical results given in Table 9.2 are restricted to laminar boundary layer flows along a flat

plate with zero pressure gradient. They agree quite well with experimental results up to the point

where the boundary layer flow becomes turbulent, which will occur for any free-stream velocity

and any fluid provided the plate is long enough. This is true because the parameter that governs

the transition to turbulent flow is the Reynolds number—in this case the Reynolds number based

on the distance from the leading edge of the plate,

The value of the Reynolds number at the transition location is a rather complex function of

various parameters involved, including the roughness of the surface, the curvature of the surface 1for

example, a flat plate or a sphere2, and some measure of the disturbances in the flow outside the

boundary layer. On a flat plate with a sharp leading edge in a typical airstream, the transition takes

place at a distance x from the leading edge given by to Unless otherwise

stated, we will use in our calculations.

The actual transition from laminar to turbulent boundary layer flow may occur over a region

of the plate, not at a specific single location. This occurs, in part, because of the spottiness of the

transition. Typically, the transition begins at random locations on the plate in the vicinity of

These spots grow rapidly as they are convected downstream until the entire width of the

plate is covered with turbulent flow. The photo shown in Fig. 9.13 illustrates this transition process.

The complex process of transition from laminar to turbulent flow involves the instability of the

flow field. Small disturbances imposed on the boundary layer flow 1i.e., from a vibration of the plate,

a roughness of the surface, or a “wiggle” in the flow past the plate2 will either grow 1instability2 or

decay 1stability2, depending on where the disturbance is introduced into the flow. If these disturbances

occur at a location with they will die out, and the boundary layer will return to laminar

flow at that location. Disturbances imposed at a location with will grow and transform

the boundary layer flow downstream of this location into turbulence. The study of the initiation,

growth, and structure of these turbulent bursts or spots is an active area of fluid mechanics research.

Rex 7 Rexcr

Rex 6 Rexcr

Rex � Rexcr.

Rexcr � 5 � 105

3 � 106.Rexcr � 2 � 105

Rex � Ux�n.

CDf �
1.328

1Re/

Re/ � U/�n

CDf �
18C1C2

1Re/

cf � 12C1C2m�rUx21�2
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0.04

0.03

Laminar 
boundary

layer

0.02

0.01

0.00

Re�

C
D

f

F I G U R E  9.13
Turbulent spots and the tran-
sition from laminar to turbulent
boundary layer flow on a flat
plate. Flow from left to right.
(Photograph courtesy of 
B. Cantwell, Stanford University.)

V9.5 Transition on
flat plate

The boundary layer
on a flat plate will
become turbulent if
the plate is long
enough.
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Transition from laminar to turbulent flow also involves a noticeable change in the shape of

the boundary layer velocity profile. Typical profiles obtained in the neighborhood of the transition

location are indicated in Fig. 9.14. The turbulent profiles are flatter, have a larger velocity gradi-

ent at the wall, and produce a larger boundary layer thickness than do the laminar profiles.

484 Chapter 9 ■ Flow over Immersed Bodies

F I G U R E  9.14 Typical boundary layer
profiles on a flat plate for laminar, transitional, and turbu-
lent flow (Ref. 1).

x = 5.25 ft

x = 6.76 ft

x = 8.00 ft

U = 89 ft/s; air flow

Transitional

Turbulent

Laminar

0.06

0.05

0.04

0.03

0.02

0.01

0

y,
 f

t

0 0.2 0.4 0.6 0.8 1
u__
U

GIVEN A fluid flows steadily past a flat plate with a velocity

of 

FIND At approximately what location will the boundary layer

become turbulent, and how thick is the boundary layer at that

U � 10 ft�s.

point if the fluid is 1a2 water at 1b2 standard air, or 

1c2 glycerin at 68 °F?

60 °F,

SOLUTION

Boundary Layer Transition

where is in and and are in feet. The values of the

kinematic viscosity obtained from Tables 1.5 and 1.7 are listed in

Table E9.5 along with the corresponding and 

COMMENT Laminar flow can be maintained on a longer

portion of the plate if the viscosity is increased. However, the

boundary layer flow eventually becomes turbulent, provided the

plate is long enough. Similarly, the boundary layer thickness is

greater if the viscosity is increased.

dcr.xcr

dcrxcrft2�sn

EXAMPLE 9.5

For any fluid, the laminar boundary layer thickness is found from

Eq. 9.15 as

The boundary layer remains laminar up to

Thus, if we assume we obtain

and

dcr � d 0 x�xcr
� 5 c

n

10
 15 � 104 n2 d

1�2

� 354 n

 xcr �
5 � 105

10 ft�s
 n � 5 � 104 n

Rexcr � 5 � 105

xcr �
nRexcr

U

d � 5 
A

nx

U

TA B L E E 9 . 5

Fluid ( ) (ft) (ft)

a. Water 0.605 0.00428

b. Air 7.85 0.0556

c. Glycerin 640.0 4.53 1.28 � 10�2

1.57 � 10�4

1.21 � 10�5

Dcrxcrft2�sN

(Ans)
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9.2.5 Turbulent Boundary Layer Flow

The structure of turbulent boundary layer flow is very complex, random, and irregular. It shares

many of the characteristics described for turbulent pipe flow in Section 8.3. In particular, the veloc-

ity at any given location in the flow is unsteady in a random fashion. The flow can be thought of as

a jumbled mix of intertwined eddies 1or swirls2 of different sizes 1diameters and angular velocities2.
The figure in the margin shows a laser-induced fluorescence visualization of a turbulent boundary

layer on a flat plate (side view). The various fluid quantities involved 1i.e., mass, momentum, en-

ergy2 are convected downstream in the free-stream direction as in a laminar boundary layer. For tur-

bulent flow they are also convected across the boundary layer 1in the direction perpendicular to the

plate2 by the random transport of finite-sized fluid particles associated with the turbulent eddies.

There is considerable mixing involved with these finite-sized eddies—considerably more than is

associated with the mixing found in laminar flow where it is confined to the molecular scale. Al-

though there is considerable random motion of fluid particles perpendicular to the plate, there is

very little net transfer of mass across the boundary layer—the largest flowrate by far is parallel to

the plate.

There is, however, a considerable net transfer of x component of momentum perpendicular

to the plate because of the random motion of the particles. Fluid particles moving toward the plate

1in the negative y direction2 have some of their excess momentum 1they come from areas of higher

velocity2 removed by the plate. Conversely, particles moving away from the plate 1in the positive

y direction2 gain momentum from the fluid 1they come from areas of lower velocity2. The net re-

sult is that the plate acts as a momentum sink, continually extracting momentum from the fluid.

For laminar flows, such cross-stream transfer of these properties takes place solely on the mole-

cular scale. For turbulent flow the randomness is associated with fluid particle mixing. Conse-

quently, the shear force for turbulent boundary layer flow is considerably greater than it is for

laminar boundary layer flow 1see Section 8.3.22.
There are no “exact” solutions for turbulent boundary layer flow. As is discussed in Section

9.2.2, it is possible to solve the Prandtl boundary layer equations for laminar flow past a flat plate

to obtain the Blasius solution 1which is “exact” within the framework of the assumptions involved

in the boundary layer equations2. Since there is no precise expression for the shear stress in turbu-

lent flow 1see Section 8.32, solutions are not available for turbulent flow. However, considerable

headway has been made in obtaining numerical 1computer2 solutions for turbulent flow by using

approximate shear stress relationships. Also, progress is being made in the area of direct, full nu-

merical integration of the basic governing equations, the Navier–Stokes equations.

Approximate turbulent boundary layer results can also be obtained by use of the momen-

tum integral equation, Eq. 9.26, which is valid for either laminar or turbulent flow. What is

needed for the use of this equation are reasonable approximations to the velocity profile

where and u is the time-averaged velocity 1the overbar notation, of Sec-

tion 8.3.2 has been dropped for convenience2, and a functional relationship describing the wall

shear stress. For laminar flow the wall shear stress was used as In theory,

such a technique should work for turbulent boundary layers also. However, as is discussed in

Section 8.3, the details of the velocity gradient at the wall are not well understood for turbulent

flow. Thus, it is necessary to use some empirical relationship for the wall shear stress. This is

illustrated in Example 9.6.

tw � m10u�0y2y�0.

u,Y � y�du � U g1Y 2,
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Random transport
of finite-sized fluid
particles occurs
within turbulent
boundary layers.

Plate

GIVEN Consider turbulent flow of an incompressible fluid

past a flat plate. The boundary layer velocity profile is assumed

to be for and for

as shown in Fig. E9.6. This is a reasonable approxima-

tion of experimentally observed profiles, except very near the

plate where this formula gives at Note the

differences between the assumed turbulent profile and the lami-

nar profile. Also assume that the shear stress agrees with the

y � 0.0u�0y � q

Y 7 1

u � UY � y�d � 1u�U � 1y�d21� 7 � Y1� 7

experimentally determined formula:

(1)

FIND Determine the boundary layer thicknesses and 

and the wall shear stress, as a function of x. Determine the

friction drag coefficient, CDf.

tw,

™d, d*,

tw � 0.0225rU 2 a
n

Ud
b

1�4

Turbulent Boundary Layer PropertiesEXAMPLE 9.6
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SOLUTION

Similarly, from Eq. 2,

(4) (Ans)

The functional dependence for and is the same; only the

constants of proportionality are different. Typically,

By combining Eqs. 1 and 3, we obtain the following result for

the wall shear stress

(Ans)

This can be integrated over the length of the plate to obtain the

friction drag on one side of the plate, as

or

where is the area of the plate. 1This result can also be ob-

tained by combining Eq. 9.23 and the expression for the momen-

tum thickness given in Eq. 4.2 The corresponding friction drag

coefficient, is

(Ans)

COMMENT Note that for the turbulent boundary layer flow

the boundary layer thickness increases with x as and the

shear stress decreases as For laminar flow these de-

pendencies are and respectively. The random charac-

ter of the turbulent flow causes a different structure of the flow.

Obviously the results presented in this example are valid only

in the range of validity of the original data—the assumed veloc-

ity profile and shear stress. This range covers smooth flat plates

with 5 � 105 6 Re/ 6 107.

x �1�2,x 1�2
tw � x �1�5.

d � x 4�5

CDf �
df

1
2rU

2A
�

0.0720

Re/
1�5

CDf,

A � b/

df � 0.0360rU 2 
A

Re/
1�5

df � �
/

0
 
btw dx � b10.0288rU 22 �

/

0
 
a
n

Ux
b

1�5

 dx

d f,

 �
0.0288rU 2

Rex
1�5

 tw � 0.0225rU 2 c
n

U10.3702 1n�U21�5x 4�5
d

1�4

™ 6 d* 6 d.
™d, d*,

™ � 7
72 d � 0.0360 a

n

U
b

1�5

 x 4�5

Whether the flow is laminar or turbulent, it is true that the drag

force is accounted for by a reduction in the momentum of the

fluid flowing past the plate. The shear is obtained from Eq. 9.26

in terms of the rate at which the momentum boundary layer thick-

ness, increases with distance along the plate as

For the assumed velocity profile, the boundary layer momen-

tum thickness is obtained from Eq. 9.4 as

or by integration

(2)

where is an unknown function of x. By combining the assumed

shear force dependence 1Eq. 12 with Eq. 2, we obtain the follow-

ing differential equation for 

or

This can be integrated from at to obtain

(3) (Ans)

or in dimensionless form

Strictly speaking, the boundary layer near the leading edge of

the plate is laminar, not turbulent, and the precise boundary

condition should be the matching of the initial turbulent bound-

ary layer thickness 1at the transition location2 with the thickness

of the laminar boundary layer at that point. In practice, how-

ever, the laminar boundary layer often exists over a relatively

short portion of the plate, and the error associated with starting

the turbulent boundary layer with at can be negli-

gible.

The displacement thickness, and the momentum thickness,

can be obtained from Eqs. 9.3 and 9.4 by integrating as fol-

lows:

Thus, by combining this with Eq. 3 we obtain

(Ans)d* � 0.0463 a
n

U
b

1�5

 x 4�5

 � d�
1

0
 
11 � Y1�72 dY �

d

8

 d* � �
q

0
 
a1 �

u

U
b dy � d�

1

0
 
a1 �

u

U
b dY

™,

d*,

x � 0d � 0

d

x
�

0.370

Rex
1�5

d � 0.370 a
n

U
b

1�5

 x 4�5

x � 0d � 0

d1�4 dd � 0.231 a
n

U
b

1�4

 dx

0.0225rU 2 a
n

Ud
b

1�4

�
7

72
 rU 2 

dd

dx

d:

d

 ™ � d�
1

0
 
Y1� 7 11 � Y1� 72 dY �

7

72
 d

 ™ � �
q

0

 
u

U
 a1 �

u

U
b dy � d�

1

0

 
u

U
 a1 �

u

U
b dY

tw � rU 2 
d™
dx

™,

F I G U R E  E9.6
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u__
U

u__
U

= y__
δ
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Turbulent
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In general, the drag coefficient for a flat plate of length is a function of the Reynolds num-

ber, and the relative roughness, The results of numerous experiments covering a wide range

of the parameters of interest are shown in Fig. 9.15. For laminar boundary layer flow the drag co-

efficient is a function of only the Reynolds number—surface roughness is not important. This is

similar to laminar flow in a pipe. However, for turbulent flow, the surface roughness does affect the

shear stress and, hence, the drag coefficient. This is similar to turbulent pipe flow in which the sur-

face roughness may protrude into or through the viscous sublayer next to the wall and alter the flow

in this thin, but very important, layer 1see Section 8.4.12. Values of the roughness, for different

materials can be obtained from Table 8.1.

The drag coefficient diagram of Fig. 9.15 1boundary layer flow2 shares many characteris-

tics in common with the familiar Moody diagram 1pipe flow2 of Fig. 8.23, even though the mech-

anisms governing the flow are quite different. Fully developed horizontal pipe flow is governed

by a balance between pressure forces and viscous forces. The fluid inertia remains constant

throughout the flow. Boundary layer flow on a horizontal flat plate is governed by a balance be-

tween inertia effects and viscous forces. The pressure remains constant throughout the flow. 1As

is discussed in Section 9.2.6, for boundary layer flow on curved surfaces, the pressure is not

constant.2
It is often convenient to have an equation for the drag coefficient as a function of the Reynolds

number and relative roughness rather than the graphical representation given in Fig. 9.15. Although

there is not one equation valid for the entire range, the equations presented in Table 9.3

do work well for the conditions indicated.

Re/ � e�/

e,

e�/.Re/,

/
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0.002

      0

0.004

0.006

0.008

0.010

0.012

105 106 107 108 109

Re�

C
D

f

Turbulent

Completely
turbulent

1 × 10–3

      2 × 10–3

     = 3 × 10–3

      5 × 10–3

ε

Laminar

5 × 10–4

2 × 10–4

1 × 10–4

5 × 10–5

5 × 10–6

1 × 10–6

Transitional

Turbulent
smooth plate

2 × 10–5

�

0.014

F I G U R E  9.15 Friction drag coefficient for a flat
plate parallel to the upstream flow (Ref. 18, with permission).

The flat plate drag
coefficient is a
function of relative
roughness and
Reynolds number.

TA B L E 9 . 3

Empirical Equations for the Flat Plate Drag Coefficient (Ref. 1)

Equation Flow Conditions

Laminar flow

Transitional with 

Turbulent, smooth plate

Completely turbulentCDf � 31.89 � 1.62 log1e�/2 4�2.5

CDf � 0.455� 1log Re/2
2.58

Rexcr � 5 � 105CDf � 0.455� 1log Re/2
2.58 � 1700�Re/

CDf � 1.328� 1Re/2
0.5
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9.2.6 Effects of Pressure Gradient

The boundary layer discussions in the previous parts of Section 9.2 have dealt with flow along a

flat plate in which the pressure is constant throughout the fluid. In general, when a fluid flows past

an object other than a flat plate, the pressure field is not uniform. As shown in Fig. 9.6, if the

Reynolds number is large, relatively thin boundary layers will develop along the surfaces. Within

488 Chapter 9 ■ Flow over Immersed Bodies

GIVEN The water ski shown in Fig. E9.7a moves through

water with a velocity U.70 °F

FIND Estimate the drag caused by the shear stress on the bot-

tom of the ski for 0 6 U 6 30 ft�s.

SOLUTION

Drag on a Flat Plate

From Eq. 1 the corresponding drag is 

By covering the range of upstream velocities of interest we obtain

the results shown in Fig. E9.7b. (Ans)

COMMENTS If the results of boundary layer

theory are not valid—inertia effects are not dominant enough and

the boundary layer is not thin compared with the length of the

plate. For our problem this corresponds to 

For all practical purposes U is greater than this value, and the flow

past the ski is of the boundary layer type.

The approximate location of the transition from laminar to tur-

bulent boundary layer flow as defined by 

is indicated in Fig. E9.7b. Up to the entire

boundary layer is laminar. The fraction of the boundary layer that

is laminar decreases as U increases until only the front 0.18 ft is

laminar when 

For anyone who has water skied, it is clear that it can require

considerably more force to be pulled along at than the

1two skis2 indicated in Fig. E9.7b. As is

discussed in Section 9.3, the total drag on an object such as a wa-

ter ski consists of more than just the friction drag. Other compo-

nents, including pressure drag and wave-making drag, add con-

siderably to the total resistance.

2 � 4.88 lb � 9.76 lb

30 ft�s

U � 30 ft�s.

U � 1.31 ft�s5 � 105

Recr � rUxcr�m �

U � 2.63 � 10�3 ft�s.

Re f 1000,

df � 1.941102210.003082 � 0.598 lb

0.00308.

EXAMPLE 9.7

Clearly the ski is not a flat plate, and it is not aligned exactly

parallel to the upstream flow. However, we can obtain a reason-

able approximation to the shear force by using the flat plate re-

sults. That is, the friction drag, caused by the shear stress on

the bottom of the ski 1the wall shear stress2 can be determined as

With and 

1see Table B.12 we obtain

(1)

where and U are in pounds and respectively.

The friction coefficient, can be obtained from Fig. 9.15 or

from the appropriate equations given in Table 9.3. As we will see,

for this problem, much of the flow lies within the transition

regime where both the laminar and turbulent portions of the

boundary layer flow occupy comparable lengths of the plate. We

choose to use the values of from the table.

For the given conditions we obtain

where U is in With or we

obtain from Table 9.3 CDf � 0.455�1log Re/2
2.58 � 1700�Re/ �

Re/ � 3.80 � 106,U � 10 ft�s,ft�s.

Re/ �
rU/
m

�
11.94 slugs�ft32 14 ft2U

2.04 � 10�5 lb # s�ft2
� 3.80 � 105 U

CDf

CDf,

ft�s,df

 � 1.94 U 2CDf

 df � 1
2 11.94 slugs�ft32 12.0 ft22U 2CDf

2.04 � 10�5 lb # s�ft2

m �A � /b � 4 ft � 0.5 ft � 2 ft2, r � 1.94 slugs�ft3,

df � 1
2rU

2/bCDf

df,

0
0

1

2

3

4

5

5 10 15 20 25 30

1

2

3

4

5

U, ft /s

Entire boundary
layer laminar

xcr

�f

�
f, 

lb

x c
r,
 ft

b = width = 0.5 ft

x = 0 x = 4 ft = �
U

x 

(a)

(b)F I G U R E  E9.7
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these layers the component of the pressure gradient in the streamwise direction 1i.e., along the body

surface2 is not zero, although the pressure gradient normal to the surface is negligibly small. That

is, if we were to measure the pressure while moving across the boundary layer from the body to

the boundary layer edge, we would find that the pressure is essentially constant. However, the pres-

sure does vary in the direction along the body surface if the body is curved, as shown by the fig-

ure in the margin. The variation in the free-stream velocity, the fluid velocity at the edge of

the boundary layer, is the cause of the pressure gradient in this direction. The characteristics of the

entire flow 1both within and outside of the boundary layer2 are often highly dependent on the pres-

sure gradient effects on the fluid within the boundary layer.

For a flat plate parallel to the upstream flow, the upstream velocity 1that far ahead of the

plate2 and the free-stream velocity 1that at the edge of the boundary layer2 are equal—

This is a consequence of the negligible thickness of the plate. For bodies of nonzero thickness,

these two velocities are different. This can be seen in the flow past a circular cylinder of diame-

ter D. The upstream velocity and pressure are U and respectively. If the fluid were completely

inviscid the Reynolds number would be infinite and the stream-

lines would be symmetrical, as are shown in Fig. 9.16a. The fluid velocity along the surface would

vary from at the very front and rear of the cylinder 1points A and F are stagnation points2
to a maximum of at the top and bottom of the cylinder 1point C 2. This is also indicated

in the figure in the margin. The pressure on the surface of the cylinder would be symmetrical

about the vertical midplane of the cylinder, reaching a maximum value of 1the stag-

nation pressure2 at both the front and back of the cylinder, and a minimum of at the

top and bottom of the cylinder. The pressure and free-stream velocity distributions are shown in

Figs. 9.16b and 9.16c. These characteristics can be obtained from potential flow analysis of Sec-

tion 6.6.3.

Because of the absence of viscosity 1therefore, 2 and the symmetry of the pressure

distribution for inviscid flow past a circular cylinder, it is clear that the drag on the cylinder is zero.

Although it is not obvious, it can be shown that the drag is zero for any object that does not produce

a lift 1symmetrical or not2 in an inviscid fluid 1Ref. 42. Based on experimental evidence, however, we

know that there must be a net drag. Clearly, since there is no purely inviscid fluid, the reason for the

observed drag must lie on the shoulders of the viscous effects.

To test this hypothesis, we could conduct an experiment by measuring the drag on an object

1such as a circular cylinder2 in a series of fluids with decreasing values of viscosity. To our initial

surprise we would find that no matter how small we make the viscosity 1provided it is not pre-

cisely zero2 we would measure a finite drag, essentially independent of the value of As was

noted in Section 6.6.3, this leads to what has been termed d’Alembert’s paradox—the drag on an

m.

tw � 0

p0 � 3rU 2�2
p0 � rU 2�2

Ufs � 2U
Ufs � 0

rUD�m � 	 21Re �1m � 02,
p0,

U � Ufs.

Ufs,
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The free-stream ve-
locity on a curved
surface is not
constant.

Ufs = 0
U

Ufs = 2U

Ufs = U

A F

C

θ

p0 +      U 21
2

p0 –      U 21
2

p0 –   U 2

p0 –      U 23
2

p0
2U

U

0
0 90 180

, degreesθ
0 90 180

, degreesθ

Ufs

U, p0

A

C

F
C

FA

Ufs

(a)

(b) (c)

ρ

ρ

ρ

ρ

p

F I G U R E  9.16 Inviscid flow past a
circular cylinder: (a) streamlines for the flow if
there were no viscous effects, (b) pressure distribu-
tion on the cylinder’s surface, (c) free-stream veloc-
ity on the cylinder’s surface.
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object in an inviscid fluid is zero, but the drag on an object in a fluid with vanishingly small 1but

nonzero2 viscosity is not zero.

The reason for the above paradox can be described in terms of the effect of the pressure

gradient on boundary layer flow. Consider large Reynolds number flow of a real 1viscous2 fluid

past a circular cylinder. As was discussed in Section 9.1.2, we expect the viscous effects to be

confined to thin boundary layers near the surface. This allows the fluid to stick to the

surface—a necessary condition for any fluid, provided The basic idea of boundary layer

theory is that the boundary layer is thin enough so that it does not greatly disturb the flow out-

side the boundary layer. Based on this reasoning, for large Reynolds numbers the flow through-

out most of the flow field would be expected to be as is indicated in Fig. 9.16a, the inviscid

flow field.

The pressure distribution indicated in Fig. 9.16b is imposed on the boundary layer flow along

the surface of the cylinder. In fact, there is negligible pressure variation across the thin boundary

layer so that the pressure within the boundary layer is that given by the inviscid flow field. This

pressure distribution along the cylinder is such that the stationary fluid at the nose of the cylinder

is accelerated to its maximum velocity at and then is de-

celerated back to zero velocity at the rear of the cylinder at This is accom-

plished by a balance between pressure and inertia effects; viscous effects are absent for the invis-

cid flow outside the boundary layer.

Physically, in the absence of viscous effects, a fluid particle traveling from the front to

the back of the cylinder coasts down the “pressure hill” from to 1from point A
to C in Fig. 9.16b2 and then back up the hill to 1from point C to F 2 without any loss

of energy. There is an exchange between kinetic and pressure energy, but there are no energy

losses. The same pressure distribution is imposed on the viscous fluid within the boundary layer.

The decrease in pressure in the direction of flow along the front half of the cylinder is termed

a favorable pressure gradient. The increase in pressure in the direction of flow along the rear

half of the cylinder is termed an adverse pressure gradient.
Consider a fluid particle within the boundary layer indicated in Fig. 9.17a. In its attempt

to flow from A to F it experiences the same pressure distribution as the particles in the free

stream immediately outside the boundary layer — the inviscid flow field pressure. However,

because of the viscous effects involved, the particle in the boundary layer experiences a loss

of energy as it flows along. This loss means that the particle does not have enough energy to

coast all of the way up the pressure hill 1from C to F 2 and to reach point F at the rear of the

cylinder. This kinetic energy deficit is seen in the velocity profile detail at point C, shown in

Fig. 9.17a. Because of friction, the boundary layer fluid cannot travel from the front to the

rear of the cylinder. 1This conclusion can also be obtained from the concept that due to vis-

cous effects the particle at C does not have enough momentum to allow it to coast up the pres-

sure hill to F.2
The situation is similar to a bicyclist coasting down a hill and up the other side of the val-

ley. If there were no friction, the rider starting with zero speed could reach the same height from

which he or she started. Clearly friction 1rolling resistance, aerodynamic drag, etc.2 causes a loss

of energy 1and momentum2, making it impossible for the rider to reach the height from which he

or she started without supplying additional energy 1i.e., pedaling2. The fluid within the boundary

layer does not have such an energy supply. Thus, the fluid flows against the increasing pressure as

far as it can, at which point the boundary layer separates from 1lifts off 2 the surface. This bound-
ary layer separation is indicated in Fig. 9.17a as well as the figures in the margin. (See the pho-

tograph at the beginning of Chapters 7, 9, and 11.) Typical velocity profiles at representative lo-

cations along the surface are shown in Fig. 9.17b. At the separation location 1profile D2, the velocity

gradient at the wall and the wall shear stress are zero. Beyond that location 1from D to E 2 there is

reverse flow in the boundary layer.

As is indicated in Fig. 9.17c, because of the boundary layer separation, the average pressure

on the rear half of the cylinder is considerably less than that on the front half. Thus, a large pres-

sure drag is developed, even though 1because of small viscosity2 the viscous shear drag may be

quite small. D’Alembert’s paradox is explained. No matter how small the viscosity, provided it is

not zero, there will be a boundary layer that separates from the surface, giving a drag that is, for

the most part, independent of the value of m.

u � 180°

u � 90°u � 0

u � 180°2.1Ufs � 0

u � 90°21Ufs � 2U1Ufs � 0 at u � 02

m � 0.

1V � 02
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The pressure gradi-
ent in the external
flow is imposed
throughout the
boundary layer
fluid.

Separation
location

V9.6 Snow drifts
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The location of separation, the width of the wake region behind the object, and the pressure

distribution on the surface depend on the nature of the boundary layer flow. Compared with a lam-

inar boundary layer, a turbulent boundary layer flow has more kinetic energy and momentum as-

sociated with it because: 112 as is indicated in Fig. E9.6, the velocity profile is fuller, more nearly

like the ideal uniform profile, and 122 there can be considerable energy associated with the swirling,

random components of the velocity that do not appear in the time-averaged x component of veloc-

ity. Thus, as is indicated in Fig. 9.17c, the turbulent boundary layer can flow farther around the

cylinder 1farther up the pressure hill2 before it separates than can the laminar boundary layer.

The structure of the flow field past a circular cylinder is completely different for a zero vis-

cosity fluid than it is for a viscous fluid, no matter how small the viscosity is, provided it is not

9.2 Boundary Layer Characteristics 491

F I G U R E  9.17 Boundary layer characteristics on a circular cylinder: (a) boundary
layer separation location, (b) typical boundary layer velocity profiles at various locations on the 
cylinder, (c) surface pressure distributions for inviscid flow and boundary layer flow.
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Increasing truck mpg A large portion of the aerodynamic drag

on semis (tractor-trailer rigs) is a result of the low pressure on

the flat back end of the trailer. Researchers have recently devel-

oped a drag-reducing attachment that could reduce fuel costs on

these big rigs by 10 percent. The device consists of a set of flat

plates (attached to the rear of the trailer) that fold out into a box

shape, thereby making the originally flat rear of the trailer a

somewhat more “aerodynamic” shape. Based on thorough wind

tunnel testing and actual tests conducted with a prototype design

used in a series of cross-country runs, it is estimated that trucks

using the device could save approximately $6,000 a year in fuel

costs.

Viscous effects
within the bound-
ary layer cause
boundary layer
separation.
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zero. This is due to boundary layer separation. Similar concepts hold for other shaped bodies as

well. The flow past an airfoil at zero angle of attack 1the angle between the upstream flow and the

axis of the object2 is shown in Fig. 9.18a; flow past the same airfoil at a angle of attack is shown

in Fig. 9.18b. Over the front portion of the airfoil the pressure decreases in the direction of flow—

a favorable pressure gradient. Over the rear portion the pressure increases in the direction of flow—

an adverse pressure gradient. The boundary layer velocity profiles at representative locations are

similar to those indicated in Fig. 9.17b for flow past a circular cylinder. If the adverse pressure

gradient is not too great 1because the body is not too “thick” in some sense2, the boundary layer

fluid can flow into the slightly increasing pressure region 1i.e., from C to the trailing edge in Fig.

9.18a2 without separating from the surface. However, if the pressure gradient is too adverse 1because

the angle of attack is too large2, the boundary layer will separate from the surface as indicated in

Fig. 9.18b. Such situations can lead to the catastrophic loss of lift called stall, which is discussed

in Section 9.4.

Streamlined bodies are generally those designed to eliminate 1or at least to reduce2 the ef-

fects of separation, whereas nonstreamlined bodies generally have relatively large drag due to the

low pressure in the separated regions 1the wake2. Although the boundary layer may be quite thin,

it can appreciably alter the entire flow field because of boundary layer separation. These ideas are

discussed in Section 9.3.

9.2.7 Momentum Integral Boundary Layer Equation with Nonzero
Pressure Gradient

The boundary layer results discussed in Sections 9.2.2 and 9.2.3 are valid only for boundary lay-

ers with zero pressure gradients. They correspond to the velocity profile labeled C in Fig. 9.17b.
Boundary layer characteristics for flows with nonzero pressure gradients can be obtained from

nonlinear, partial differential boundary layer equations similar to Eqs. 9.8 and 9.9, provided the

pressure gradient is appropriately accounted for. Such an approach is beyond the scope of this

book 1Refs. 1, 22.

5°
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F I G U R E  9.18 Flow visualization photographs of flow past an airfoil (the boundary layer
velocity profiles for the points indicated are similar to those indicated in Fig. 9.17b): (a) zero angle of attack,
no separation, (b) angle of attack, flow separation. Dye in water. (Photograph courtesy of ONERA, France.)5�

Streamlined bodies
generally have no
separated flow.
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An alternative approach is to extend the momentum integral boundary layer equation technique

1Section 9.2.32 so that it is applicable for flows with nonzero pressure gradients. The momentum in-

tegral equation for boundary layer flows with zero pressure gradient, Eq. 9.26, is a statement of the

balance between the shear force on the plate 1represented by 2 and rate of change of momentum of

the fluid within the boundary layer [represented by ]. For such flows the free-stream ve-

locity is constant If the free-stream velocity is not constant [ where x is the

distance measured along the curved body], the pressure will not be constant. This follows from the

Bernoulli equation with negligible gravitational effects, since is constant along the stream-

lines outside the boundary layer. Thus,

(9.34)

For a given body the free-stream velocity and the corresponding pressure gradient on the surface

can be obtained from inviscid flow techniques 1potential flow2 discussed in Section 6.7. 1This is

how the circular cylinder results of Fig. 9.16 were obtained.2
Flow in a boundary layer with nonzero pressure gradient is very similar to that shown in Fig.

9.11, except that the upstream velocity, U, is replaced by the free-stream velocity, and the

pressures at sections 112 and 122 are not necessarily equal. By using the x component of the mo-

mentum equation 1Eq. 5.222 with the appropriate shear forces and pressure forces acting on the

control surface indicated in Fig. 9.11, the following integral momentum equation for boundary

layer flows is obtained:

(9.35)

The derivation of this equation is similar to that of the corresponding equation for constant-pressure

boundary layer flow, Eq. 9.26, although the inclusion of the pressure gradient effect brings in ad-

ditional terms 1Refs. 1, 2, 32. For example, both the boundary layer momentum thickness, and

the displacement thickness, are involved.

Equation 9.35, the general momentum integral equation for two-dimensional boundary layer

flow, represents a balance between viscous forces 1represented by 2, pressure forces 1represented

by 2, and the fluid momentum 1represented by the boundary layer mo-

mentum thickness2. In the special case of a flat plate, constant, and Eq. 9.35 reduces

to Eq. 9.26.

Equation 9.35 can be used to obtain boundary layer information in a manner similar to that

done for the flat plate boundary layer 1Section 9.2.32. That is, for a given body shape the free-

stream velocity, is determined, and a family of approximate boundary layer profiles is assumed.

Equation 9.35 is then used to provide information about the boundary layer thickness, wall shear

stress, and other properties of interest. The details of this technique are not within the scope of this

book 1Refs. 1, 32.

Ufs,

Ufs � U �
™,rUfs dUfs�dx � �dp�dx

tw

d*,
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dx
 1U 2
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dUfs

dx

Ufs1x2,
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dx

p � rU2
fs�2

Ufs � Ufs1x2,1Ufs � U2.
rU 2 1d™�dx2

tw
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9.3 Drag

As was discussed in Section 9.1, any object moving through a fluid will experience a drag, —a net

force in the direction of flow due to the pressure and shear forces on the surface of the object. This net

force, a combination of flow direction components of the normal and tangential forces on the body,

can be determined by use of Eqs. 9.1 and 9.2, provided the distributions of pressure, p, and wall shear

stress, are known. Only in very rare instances can these distributions be determined analytically.

The boundary layer flow past a flat plate parallel to the upstream flow as is discussed in Section 9.2

is one such case. Current advances in computational fluid dynamics, CFD, 1i.e., the use of computers

to solve the governing equations of the flow field2 have provided encouraging results for more com-

plex shapes. However, much work in this area remains.

Most of the information pertaining to drag on objects is a result of numerous experiments with

wind tunnels, water tunnels, towing tanks, and other ingenious devices that are used to measure the

drag on scale models. As was discussed in Chapter 7, these data can be put into dimensionless form

tw,

d

Pressure gradient
effects can be in-
cluded in the mo-
mentum integral
equation.
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and the results can be appropriately ratioed for prototype calculations. Typically, the result for a

given-shaped object is a drag coefficient, where

(9.36)

and is a function of other dimensionless parameters such as Reynolds number, Re, Mach num-

ber, Ma, Froude number, Fr, and relative roughness of the surface, That is,

The character of as a function of these parameters is discussed in this section.

9.3.1 Friction Drag

Friction drag, is that part of the drag that is due directly to the shear stress, on the object.

It is a function of not only the magnitude of the wall shear stress, but also of the orientation of the

surface on which it acts. This is indicated by the factor in Eq. 9.1. If the surface is parallel

to the upstream velocity, the entire shear force contributes directly to the drag. This is true for the

flat plate parallel to the flow as was discussed in Section 9.2. If the surface is perpendicular to the

upstream velocity, the shear stress contributes nothing to the drag. Such is the case for a flat plate

normal to the upstream velocity as was discussed in Section 9.1.

In general, the surface of a body will contain portions parallel to and normal to the upstream

flow, as well as any direction in between. A circular cylinder is such a body. Because the viscos-

ity of most common fluids is small, the contribution of the shear force to the overall drag on a

body is often quite small. Such a statement should be worded in dimensionless terms. That is, be-

cause the Reynolds number of most familiar flows is quite large, the percent of the drag caused

directly by the shear stress is often quite small. For highly streamlined bodies or for low Reynolds

number flow, however, most of the drag may be due to friction drag.

The friction drag on a flat plate of width b and length oriented parallel to the upstream

flow can be calculated from

where is the friction drag coefficient. The value of given as a function of Reynolds num-

ber, and relative surface roughness, in Fig. 9.15 and Table 9.3, is a result of

boundary layer analysis and experiments 1see Section 9.22. Typical values of roughness, for var-

ious surfaces are given in Table 8.1. As with the pipe flow discussed in Chapter 8, the flow is di-

vided into two distinct categories—laminar or turbulent, with a transitional regime connecting

them. The drag coefficient 1and, hence, the drag2 is not a function of the plate roughness if the

flow is laminar. However, for turbulent flow the roughness does considerably affect the value of

As with pipe flow, this dependence is a result of the surface roughness elements protruding

into or through the laminar sublayer 1see Section 8.32.
Most objects are not flat plates parallel to the flow; instead, they are curved surfaces along

which the pressure varies. As was discussed in Section 9.2.6, this means that the boundary layer char-

acter, including the velocity gradient at the wall, is different for most objects from that for a flat plate.

This can be seen in the change of shape of the boundary layer profile along the cylinder in Fig. 9.17b.
The precise determination of the shear stress along the surface of a curved body is quite

difficult to obtain. Although approximate results can be obtained by a variety of techniques 1Refs.

1, 22, these are outside the scope of this text. As is shown by the following example, if the shear

stress is known, its contribution to the drag can be determined.

CDf.

e,

e�/,Re/ � rU/�m,

CDf,CDf

df � 1
2rU

2b/CDf

/

tw sin u

tw,df,

CD

CD � f1shape, Re, Ma, Fr, e�/2
e�/.

CD

CD �
d

1
2rU

2A

CD,
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Friction (viscous)
drag is the drag
produced by viscous
shear stresses.

GIVEN A viscous, incompressible fluid flows past the circu-

lar cylinder shown in Fig. E9.8a. According to a more advanced

theory of boundary layer flow, the boundary layer remains

attached to the cylinder up to the separation location at

with the dimensionless wall shear stress as is indi-u � 108.8°,

Drag Coefficient Based on Friction DragEXAMPLE 9.8

cated in Fig. E9.8b 1Ref. 12. The shear stress on the cylinder in

the wake region, is negligible. 

FIND Determine the drag coefficient for the cylinder

based on the friction drag only.

CDf,

108.8 6 u 6 180°,
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9.3.2 Pressure Drag

Pressure drag, is that part of the drag that is due directly to the pressure, p, on an object.

It is often referred to as form drag because of its strong dependency on the shape or form of the

object. Pressure drag is a function of the magnitude of the pressure and the orientation of the

surface element on which the pressure force acts. For example, the pressure force on either side

of a flat plate parallel to the flow may be very large, but it does not contribute to the drag be-

cause it acts in the direction normal to the upstream velocity. On the other hand, the pressure

force on a flat plate normal to the flow provides the entire drag.

As previously noted, for most bodies, there are portions of the surface that are parallel to the

upstream velocity, others normal to the upstream velocity, and the majority of which are at some

angle in between, as shown by the figure in the margin. The pressure drag can be obtained from

Eq. 9.1 provided a detailed description of the pressure distribution and the body shape is given.

That is,

dp � �  p cos u dA

dp,

9.3 Drag 495

SOLUTION

where b is the length of the cylinder. Note that is in radians 1not

degrees2 to ensure the proper dimensions of 

Thus,

This can be put into dimensionless form by using the dimension-

less shear stress parameter, given in

Fig. E9.8b as follows:

where Thus,

(1)

The function obtained from Fig. E9.8b, is plotted in

Fig. E9.8c. The necessary integration to obtain from Eq. 1 can

be done by an appropriate numerical technique or by an approxi-

mate graphical method to determine the area under the given

curve.

The result is or

(Ans)

COMMENTS Note that the total drag must include both the

shear stress 1friction2 drag and the pressure drag. As we will see in

Example 9.9, for the circular cylinder most of the drag is due to

the pressure force.

The above friction drag result is valid only if the boundary layer

flow on the cylinder is laminar. As is discussed in Section 9.3.3, for

a smooth cylinder this means that It is

also valid only for flows that have a Reynolds number sufficiently

large to ensure the boundary layer structure to the flow. For the

cylinder, this means Re 7 100.

Re � rUD�m 6 3 � 105.

CDf �
5.93

1Re

�p0  F1u2 sin u du � 5.93,

CDf

F1u2 sin u,

CDf �
1

1Re
 �
p

0

 F1u2 sin u du

Re � rUD�m.

CDf � �
p

0

 
tw

1
2rU

2
 sin u du �

1

1Re
 �
p

0

 
tw 1Re

1
2rU

2
 sin u du

F1u2 � tw1Re� 1rU 2�22,

CDf �
df

1
2rU

2bD
�

2

rU 2
 �
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0

 tw sin u du

2 1D�22 b du.dA �
uThe friction drag, can be determined from Eq. 9.1 as

df � �tw sin u dA � 2 a
D

2
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which can be rewritten in terms of the pressure drag coefficient, as

(9.37)

Here is the pressure coefficient, where is a reference pressure. The level

of the reference pressure does not influence the drag directly because the net pressure force on a

body is zero if the pressure is constant 1i.e., 2 on the entire surface.

For flows in which inertial effects are large relative to viscous effects 1i.e., large Reynolds

number flows2, the pressure difference, scales directly with the dynamic pressure,

and the pressure coefficient is independent of Reynolds number. In such situations we expect the

drag coefficient to be relatively independent of Reynolds number.

For flows in which viscous effects are large relative to inertial effects 1i.e., very small Reynolds

number flows2, it is found that both the pressure difference and wall shear stress scale with the

characteristic viscous stress, where is a characteristic length. In such situations we expect

the drag coefficient to be proportional to That is,

These characteristics are similar to the friction factor dependence of for

laminar pipe flow and constant for large Reynolds number flow 1see Section 8.42.
If the viscosity were zero, the pressure drag on any shaped object 1symmetrical or not2 in a

steady flow would be zero. There perhaps would be large pressure forces on the front portion of

the object, but there would be equally large 1and oppositely directed2 pressure forces on the rear

portion. If the viscosity is not zero, the net pressure drag may be nonzero because of boundary

layer separation as is discussed in Section 9.2.6. Example 9.9 illustrates this.

f �
f � 1� Rem�rU/ � 1�Re.

CD � d� 1rU 2�22 � 1mU�/2� 1rU 2�22 �1�Re.

/mU�/,

rU 2�2,p � p0,

p0

p0Cp � 1p � p02� 1rU 2�22

 CDp �
dp

1
2rU

2A
�

�  p cos u dA

1
2rU

2A
�

�Cp cos u dA

A

CDp,
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The pressure coeffi-
cient is a dimen-
sionless form of the
pressure.

GIVEN A viscous, incompressible fluid flows past the circular

cylinder shown in Fig. E9.8a. The pressure coefficient on the

surface of the cylinder 1as determined from experimental measure-

ments2 is as indicated in Fig. E9.9a.

SOLUTION

Drag Coefficient Based on Pressure Drag

cylinder reduces the drag by pulling on the cylin-

der in the upstream direction. The positive area under the 

curve is greater than the negative area—there is a net pressure drag.

In the absence of viscosity, these two contributions would be

equal—there would be no pressure 1or friction2 drag.

The net drag on the cylinder is the sum of friction and pressure

drag. Thus, from Eq. 1 of Example 9.8 and Eq. 1 of this example,

we obtain the drag coefficient

(2) (Ans)

This result is compared with the standard experimental value 1ob-

tained from Fig. 9.212 in Fig. E9.9c. The agreement is very good

over a wide range of Reynolds numbers. For the curves

diverge because the flow is not a boundary layer type flow—the

shear stress and pressure distributions used to obtain Eq. 2 are not

valid in this range. The drastic divergence in the curves for

is due to the change from a laminar to turbulent

boundary layer, with the corresponding change in the pressure

distribution. This is discussed in Section 9.3.3.

Re 7 3 � 105

Re 6 10

CD � CDf � CDp �
5.93

1Re
� 1.17

Cp cos u

130 6 u 6 90°2

EXAMPLE 9.9

The pressure 1form2 drag coefficient, can be determined from

Eq. 9.37 as

or because of symmetry

where b and D are the length and diameter of the cylinder. To ob-

tain we must integrate the function from

radians. Again, this can be done by some numer-

ical integration scheme or by determining the area under the

curve shown in Fig. E9.9b. The result is

(1) (Ans)

Note that the positive pressure on the front portion of the cylinder

and the negative pressure 1less than the upstream

value2 on the rear portion produce positive contri-

butions to the drag. The negative pressure on the front portion of the

190 � u � 180°2
10 � u � 30°2

CDp � 1.17

u � 0 to u � p
Cp cos uCDp,

CDp � �
p

0

 Cp cos u du

CDp �
1

A
 �  Cp cos u  dA �

1

bD
 �

2p

0

 Cp cos u b a
D

2
b du

CDp,

FIND Determine the pressure drag coefficient for this flow.

Combine the results of Examples 9.8 and 9.9 to determine the drag

coefficient for a circular cylinder. Compare your results with those

given in Fig. 9.21.

JWCL068_ch09_461-533.qxd  9/23/08  11:48 AM  Page 496



9.3.3 Drag Coefficient Data and Examples

As was discussed in previous sections, the net drag is produced by both pressure and shear stress

effects. In most instances these two effects are considered together, and an overall drag coefficient,

as defined in Eq. 9.36 is used. There is an abundance of such drag coefficient data available

in the literature. This information covers incompressible and compressible viscous flows past ob-

jects of almost any shape of interest—both man-made and natural objects. In this section we con-

sider a small portion of this information for representative situations. Additional data can be ob-

tained from various sources 1Refs. 5, 62.

Shape Dependence. Clearly the drag coefficient for an object depends on the shape of

the object, with shapes ranging from those that are streamlined to those that are blunt. The drag

on an ellipse with aspect ratio where D and are the thickness and length parallel to the

flow, illustrates this dependence. The drag coefficient based on the frontal

area, where b is the length normal to the flow, is as shown in Fig. 9.19. The more blunt

the body, the larger the drag coefficient. With 1i.e., a flat plate normal to the flow2 we

obtain the flat plate value of With the corresponding value for a circular cylin-

der is obtained. As becomes larger the value of decreases.

For very large aspect ratios the ellipse behaves as a flat plate parallel to the flow.

For such cases, the friction drag is greater than the pressure drag, and the value of based on the

frontal area, would increase with increasing 1This occurs for larger values than

those shown in the figure.2 For such extremely thin bodies 1i.e., an ellipse with a flat plate,

or very thin airfoils2 it is customary to use the planform area, in defining the drag coefficient.A � b/,

/�D S 	,

/�D/�D.A � bD,

CD

1/�D S 	2
CD/�D

/�D � 1CD � 1.9.

/�D � 0

A � bD,

CD � d� 1rU 2 bD�22,
//�D,

CD,
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F I G U R E  E9.9

COMMENT It is of interest to compare the friction drag to

the total drag on the cylinder. That is,

df

d
�

CDf

CD

�
5.93�1Re

15.93�1Re2 � 1.17
�

1

1 � 0.1971Re

For and this ratio is 0.138, 0.0483, and 0.0158,

respectively. Most of the drag on the blunt cylinder is pressure

drag—a result of the boundary layer separation.

105Re � 103, 104,

Experimental value
Eq. 2

106105104103102101100
0.1

1.0
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100

Re = UD___
v

(c)

(a)
(b)
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The drag coefficient
may be based on
the frontal area or
the planform area.

V9.7 Skydiving
practice
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After all, it is the planform area on which the shear stress acts, rather than the much smaller 1for thin

bodies2 frontal area. The ellipse drag coefficient based on the planform area, is

also shown in Fig. 9.19. Clearly the drag obtained by using either of these drag coefficients would be

the same. They merely represent two different ways to package the same information.

The amount of streamlining can have a considerable effect on the drag. Incredibly, the drag

on the two two-dimensional objects drawn to scale in Fig. 9.20 is the same. The width of the wake

for the streamlined strut is very thin, on the order of that for the much smaller diameter circular

cylinder.

Reynolds Number Dependence. Another parameter on which the drag coefficient can

be very dependent is the Reynolds number. The main categories of Reynolds number dependence

are 112 very low Reynolds number flow, 122 moderate Reynolds number flow 1laminar boundary

layer2, and 132 very large Reynolds number flow 1turbulent boundary layer2. Examples of these three

situations are discussed below.

Low Reynolds number flows are governed by a balance between viscous and pres-

sure forces. Inertia effects are negligibly small. In such instances the drag on a three-

dimensional body is expected to be a function of the upstream velocity, U, the body size, and

the viscosity, Thus, for a small grain of sand settling in a lake 1see margin figure2

From dimensional considerations 1see Section 7.7.12

(9.38)

where the value of the constant C depends on the shape of the body. If we put Eq. 9.38 into di-

mensionless form using the standard definition of the drag coefficient, we obtain

CD �
d

1
2rU

2/2
�

2Cm/U

rU 2/2
�

2C

Re

d � Cm/U

d � f 1U, /, m2

m.

/,

1Re 6 12

CD � d� 1rU 2b/�22,
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F I G U R E  9.20 Two objects of considerably different size that have the same drag force:
(a) circular cylinder CD � 1.2; (b) streamlined strut CD � 0.12.

F I G U R E  9.19 Drag coefficient
for an ellipse with the characteristic area either
the frontal area, A � bD, or the planform area,
A � b (Ref. 5)./
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where The use of the dynamic pressure, in the definition of the drag coeffi-

cient is somewhat misleading in the case of creeping flows because it introduces the

fluid density, which is not an important parameter for such flows 1inertia is not important2. Use of

this standard drag coefficient definition gives the dependence for small Re drag coefficients.

Typical values of for low Reynolds number flows past a variety of objects are given in

Table 9.4. It is of interest that the drag on a disk normal to the flow is only 1.5 times greater than

that on a disk parallel to the flow. For large Reynolds number flows this ratio is considerably larger

1see Example 9.12. Streamlining 1i.e., making the body slender2 can produce a considerable drag

reduction for large Reynolds number flows; for very small Reynolds number flows it can actually

increase the drag because of an increase in the area on which shear forces act. For most objects,

the low Reynolds number flow results are valid up to a Reynolds number of about 1.

CD

1�Re

1Re 6 12
rU2�2,Re � rU/�m.
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For very small
Reynolds number
flows, the drag co-
efficient varies in-
versely with the
Reynolds number.

TA B L E 9 . 4

Low Reynolds Number Drag Coefficients (Ref. 7) ( )

( )

Object ( ) Object

a. Circular disk normal c. Sphere
to flow

b. Circular disk parallel d. Hemisphere
to flow

22.2�Re13.6�Re

24.0�Re20.4�Re

CDfor Re f 1

RU2A�2CD � d�

Re � RUD�M, A � PD2�4

U D

U

D

U D

U D

GIVEN A small grain of sand, diameter and

specific gravity settles to the bottom of a lake after

having been stirred up by a passing boat. 

SG � 2.3,

D � 0.10 mm

SOLUTION

Low Reynolds Number Flow Drag

From the free-body diagram, we obtain

where

(1)

and

(2)

We assume 1because of the smallness of the object2 that the

flow will be creeping flow with 1see Table

9.42 so that

 d �
1

2
 rH2O

U 2 
p

4
 D2CD �

1

2 
 rH2O

U 2 
p

4
 D2 a

24

rH2O
UD�mH2O

b

CD � 24�Re1Re 6 12

FB � gH2O V� � gH2O
 
p

6
 D3

w � gsand V� � SG gH2O
 
p

6
 D3

w � d � FB

EXAMPLE 9.10

A free-body diagram of the particle 1relative to the moving particle2
is shown in Fig. E9.10a. The particle moves downward with a con-

stant velocity U that is governed by a balance between the weight

of the particle, the buoyancy force of the surrounding water,

and the drag of the water on the particle, d.

FB,w,

FIND Determine how fast it falls through the still water.

FB

�

�

U
F I G U R E  E9.10a
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Moderate Reynolds number flows tend to take on a boundary layer flow structure. For such

flows past streamlined bodies, the drag coefficient tends to decrease slightly with Reynolds num-

ber. The dependence for a laminar boundary layer on a flat plate 1see Table 9.32 is

such an example. Moderate Reynolds number flows past blunt bodies generally produce drag co-

efficients that are relatively constant. The values for the spheres and circular cylinders shown

in Fig. 9.21a indicate this character in the range 

The structure of the flow field at selected Reynolds numbers indicated in Fig. 9.21a is shown

in Fig. 9.21b. For a given object there is a wide variety of flow situations, depending on the Reynolds

number involved. The curious reader is strongly encouraged to study the many beautiful pho-

tographs and videos of these 1and other2 flow situations found in Refs. 8 and 31. (See also the pho-

tograph at the beginning of Chapter 7.)

For many shapes there is a sudden change in the character of the drag coefficient when the

boundary layer becomes turbulent. This is illustrated in Fig. 9.15 for the flat plate and in Fig. 9.21

for the sphere and the circular cylinder. The Reynolds number at which this transition takes place

is a function of the shape of the body.

For streamlined bodies, the drag coefficient increases when the boundary layer becomes tur-

bulent because most of the drag is due to the shear force, which is greater for turbulent flow than

for laminar flow. On the other hand, the drag coefficient for a relatively blunt object, such as a

cylinder or sphere, actually decreases when the boundary layer becomes turbulent. As is discussed

in Section 9.2.6, a turbulent boundary layer can travel further along the surface into the adverse

pressure gradient on the rear portion of the cylinder before separation occurs. The result is a thin-

ner wake and smaller pressure drag for turbulent boundary layer flow. This is indicated in Fig. 9.21

103 6 Re 6 105.

CD

CD � Re�1�2
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or

(3)

We must eventually check to determine if this assumption 1Re  12
is valid or not. Equation 3 is called Stokes’s law in honor of G. G.

Stokes 11819–19032, a British mathematician and physicist. By

combining Eqs. 1, 2, and 3, we obtain

or, since 

(4)

From Table 1.6 for water at we obtain 

and Thus, from Eq. 4 we obtain

or

(Ans)

Since

we see that and the form of the drag coefficient used is
valid.

Re 6 1,

 � 0.564

Re �
rDU

m
�
1999 kg�m32 10.10 � 10�3 m2 10.00632 m�s2

1.12 � 10�3 N # s�m2

U � 6.32 � 10�3 m�s

U �
12.3 � 12 1999 kg�m32 19.81 m�s22 10.10 � 10�3 m22

1811.12 � 10�3 N # s�m22

N # s�m2.mH2O
� 1.12 � 10�3

rH2O
� 999 kg�m315.6 °C

U �
1SG � 12rH2O

 gD 

2

18 m

g � rg,

SG gH2O
 
p

6
 D3 � 3pmH2O

UD � gH2O
 
p

6
 D3

d � 3pmH2O
UD

COMMENTS By repeating the calculations for various parti-

cle diameters, D, the results shown in Fig. E9.10b are obtained.

Note that very small particles fall extremely slowly. Thus, it can

take considerable time for silt to settle to the bottom of a river or

lake.

Note that if the density of the particle were the same as the sur-

rounding water (i.e., SG � 1), from Eq. 4 we would obtain

This is reasonable since the particle would be neutrally

buoyant and there would be no force to overcome the motion-

induced drag. Note also that we have assumed that the particle falls

at its steady terminal velocity. That is, we have neglected the ac-

celeration of the particle from rest to its terminal velocity. Since

the terminal velocity is small, this acceleration time is quite small.

For faster objects 1such as a free-falling sky diver2 it may be im-

portant to consider the acceleration portion of the fall.

U � 0.

F I G U R E  E9.10b

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0
0 0.02 0.04

D, mm

U
, 

m
/s

0.06 0.08 0.1

(0.10 mm, 6.32 × 10–3 m/s)

Flow past a cylin-
der can take on a
variety of different
structures.

V9.8 Karman 
vortex street
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by the sudden decrease in for In a portion of this range the actual drag 1not

just the drag coefficient2 decreases with increasing speed. It would be very difficult to control the

steady flight of such an object in this range—an increase in velocity requires a decrease in thrust

1drag2. In all other Reynolds number ranges the drag increases with an increase in the upstream ve-

locity 1even though may decrease with Re2.
For extremely blunt bodies, like a flat plate perpendicular to the flow, the flow separates at

the edge of the plate regardless of the nature of the boundary layer flow. Thus, the drag coefficient

shows very little dependence on the Reynolds number.

The drag coefficients for a series of two-dimensional bodies of varying bluntness are

given as a function of Reynolds number in Fig. 9.22. The characteristics described above are

evident.

CD

105 6 Re 6 106.CD

9.3 Drag 501

A

B C D

E

Smooth cylinder

Smooth sphere

CD = 24

        

___

        

Re

400

200

100
60
40

20

10
6
4

2

1

0.6
0.4

0.2

0.1
0.06

10–1 100 101 102 103 104 105 106 107

Re =    UD

         

____ρ
μ

(a)

CD

No separation

(A)

Steady separation bubble

(B)

Oscillating Karman vortex street wake

(C)

Laminar boundary layer,
wide turbulent wake

(D)

Turbulent boundary layer,
narrow turbulent wake

(E)

(b)

F I G U R E  9.21 (a) Drag coefficient as
a function of Reynolds number for a smooth circular
cylinder and a smooth sphere. (b) Typical flow pat-
terns for flow past a circular cylinder at various
Reynolds numbers as indicated in (a).

V9.10 Flow past a
flat plate

V9.9 Oscillating
sign
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Flat plate

Circle

Ellipse

Airfoil

Flat plate

CD = �_________

   
U2

 
bD1__

2
ρ

D

D
0.18 D

0.5 D

D

D

D

D

1.0

0.1

0.01

CD

104 105 106 107

Re = UD___
v

b = length

F I G U R E  9.22 Character of the drag coefficient as a function
of Reynolds number for objects with various degrees of streamlining, from a
flat plate normal to the upstream flow to a flat plate parallel to the flow (two-
dimensional flow) (Ref. 5).

V9.11 Flow past an
ellipse

GIVEN Hail is produced by the repeated rising and falling of

ice particles in the updraft of a thunderstorm, as is indicated in

Fig. E9.11a. When the hail becomes large enough, the aerody-

namic drag from the updraft can no longer support the weight of

the hail, and it falls from the storm cloud. 

SOLUTION

F I G U R E  E9.11a

Terminal Velocity of a Falling Object

or

(3)

where U is in To determine U, we must know Unfortu-

nately, is a function of the Reynolds number 1see Fig. 9.212,
which is not known unless U is known. Thus, we must use an it-

erative technique similar to that done with the Moody chart for

certain types of pipe flow problems 1see Section 8.52.
From Fig. 9.21 we expect that is on the order of 0.5. Thus,

we assume and from Eq. 3 obtain

U �
64.5

10.5
� 91.2 ft�s

CD � 0.5

CD

CD

CD.ft�s.

U �
64.5

1CD

Anvil

Storm
movement

Ground

Hail
Updraft

Rain

40,000
to

50,000 ft Down
draft

EXAMPLE 9.11

As is discussed in Example 9.10, for steady-state conditions a

force balance on an object falling through a fluid at its terminal

velocity, U, gives

where is the buoyant force of the air on the particle,

is the particle weight, and is the aerodynamic drag.

This equation can be rewritten as

(1)

With and since 1i.e., 2, Eq. 1 can

be simplified to

(2)

By using and

Eq. 2 becomes

U � c
411.84 slugs�ft32 132.2 ft�s22 10.125 ft2

312.38 � 10�3 slugs�ft32CD

d
1�2

D � 1.5 in. � 0.125 ft,

rice � 1.84 slugs�ft3, rair � 2.38 � 10�3 slugs�ft3,

U � a
4

3

rice

rair

gD

CD

b
1�2

w � FBgice � gairV� � pD3�6

1
2rairU

2
p

4
D2CD �w � FB

dw � gice V�
FB � gair V�

w � d � FB

FIND Estimate the velocity, U, of the updraft needed to make

-in.-diameter 1i.e., “golf ball-sized”2 hail.D � 1.5
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Compressibility Effects. The above discussion is restricted to incompressible flows. If

the velocity of the object is sufficiently large, compressibility effects become important and the

drag coefficient becomes a function of the Mach number, where c is the speed of sound

in the fluid. The introduction of Mach number effects complicates matters because the drag

coefficient for a given object is then a function of both Reynolds number and Mach number—

The Mach number and Reynolds number effects are often closely connected be-

cause both are directly proportional to the upstream velocity. For example, both Re and Ma in-

crease with increasing flight speed of an airplane. The changes in due to a change in U are due

to changes in both Re and Ma.

The precise dependence of the drag coefficient on Re and Ma is generally quite complex

1Ref. 132. However, the following simplifications are often justified. For low Mach numbers, the

drag coefficient is essentially independent of Ma as is indicated in Fig. 9.23. For this situation, if

or so, compressibility effects are unimportant. On the other hand, for larger Mach num-

ber flows, the drag coefficient can be strongly dependent on Ma, with only secondary Reynolds

number effects.

For most objects, values of increase dramatically in the vicinity of 1i.e., sonic

flow2. This change in character, indicated by Fig. 9.24, is due to the existence of shock waves as

Ma � 1CD

Ma 6 0.5

CD

CD � f1Re, Ma2.

Ma � U�c,

9.3 Drag 503

The corresponding Reynolds number 1assuming 

2 is

For this value of Re we obtain from Fig. 9.21, Thus,

our assumed value of was correct. The corresponding

value of U is

(Ans)

COMMENTS By repeating the calculations for various alti-

tudes, z, above sea level (using the properties of the U.S. Standard

Atmosphere given in Appendix C), the results shown in Fig.

E9.11b are obtained. Because of the decrease in density with alti-

tude, the hail falls even faster through the upper portions of the

storm than when it hits the ground.

Clearly, an airplane flying through such an updraft would feel

its effects 1even if it were able to dodge the hail2. As seen from

Eq. 2, the larger the hail, the stronger the necessary updraft.

U � 91.2 ft�s � 62.2 mph

CD � 0.5

CD � 0.5.

Re �
UD

n
�

91.2 ft�s 10.125 ft2

1.57 � 10�4 ft2�s
� 7.26 � 104

10�4 ft2�s
v � 1.57 � Hailstones greater than 6 in. in diameter have been reported. In re-

ality, a hailstone is seldom spherical and often not smooth. How-

ever, the calculated updraft velocities are in agreement with mea-

sured values.

F I G U R E  E9.11b
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The drag coefficient
is usually indepen-
dent of Mach num-
ber for Mach
numbers up to ap-
proximately 0.5.

F I G U R E  9.23
Drag coefficient as a func-
tion of Mach number for
two-dimensional objects in
subsonic flow (Ref. 5).
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indicated by the figure in the margin. Shock waves are extremely narrow regions in the flow field

across which the flow parameters change in a nearly discontinuous manner, which are discussed

in Chapter 11. Shock waves, which cannot exist in subsonic flows, provide a mechanism for the

generation of drag that is not present in the relatively low-speed subsonic flows. (See the photo-

graph at the beginning of Chapter 11.)

The character of the drag coefficient as a function of Mach number is different for blunt bod-

ies than for sharp bodies. As is shown in Fig. 9.24, sharp-pointed bodies develop their maximum

drag coefficient in the vicinity of 1sonic flow2, whereas the drag coefficient for blunt bod-

ies increases with Ma far above This behavior is due to the nature of the shock wave

structure and the accompanying flow separation. The leading edges of wings for subsonic aircraft

are usually quite rounded and blunt, while those of supersonic aircraft tend to be quite pointed and

sharp. More information on these important topics can be found in standard texts about compress-

ible flow and aerodynamics 1Refs. 9, 10, 292.

Surface Roughness. As is indicated in Fig. 9.15, the drag on a flat plate parallel to the

flow is quite dependent on the surface roughness, provided the boundary layer flow is turbulent. In

such cases the surface roughness protrudes through the laminar sublayer adjacent to the surface 1see

Section 8.42 and alters the wall shear stress. In addition to the increased turbulent shear stress, sur-

face roughness can alter the Reynolds number at which the boundary layer flow becomes turbulent.

Thus, a rough flat plate may have a larger portion of its length covered by a turbulent boundary

layer than does the corresponding smooth plate. This also acts to increase the net drag on the plate.

In general, for streamlined bodies, the drag increases with increasing surface roughness. Great

care is taken to design the surfaces of airplane wings to be as smooth as possible, since protrud-

ing rivets or screw heads can cause a considerable increase in the drag. On the other hand, for an

extremely blunt body, such as a flat plate normal to the flow, the drag is independent of the sur-

face roughness, since the shear stress is not in the upstream flow direction and contributes noth-

ing to the drag.

For blunt bodies like a circular cylinder or sphere, an increase in surface roughness can actu-

ally cause a decrease in the drag. This is illustrated for a sphere in Fig. 9.25. As is discussed in Sec-

tion 9.2.6, when the Reynolds number reaches the critical value 1 for a smooth sphere2,Re � 3 � 105

Ma � 1.

Ma � 1
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Ma = 1.5
U

Ma = 3
U
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U

U

U
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cylinderD
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D
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F I G U R E  9.24
Drag coefficient as a function of
Mach number for supersonic 
flow (adapted from Ref. 19).

Depending on the
body shape, an in-
crease in surface
roughness may in-
crease or decrease
drag.
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the boundary layer becomes turbulent and the wake region behind the sphere becomes considerably

narrower than if it were laminar 1see Fig. 9.172. The result is a considerable drop in pressure drag

with a slight increase in friction drag, combining to give a smaller overall drag 1and 2.
The boundary layer can be tripped into turbulence at a smaller Reynolds number by using a

rough-surfaced sphere. For example, the critical Reynolds number for a golf ball is approximately

In the range the drag on the standard rough 1i.e., dim-

pled2 golf ball is considerably less than for the smooth ball. As

is shown in Example 9.12, this is precisely the Reynolds number range for well-hit golf balls—hence,

a reason for dimples on golf balls. The Reynolds number range for well-hit table tennis balls is less

than Thus, table tennis balls are smooth.Re � 4 � 104.

1CDrough�CDsmooth � 0.25�0.5 � 0.52
4 � 104 6 Re 6 4 � 105,Re � 4 � 104.

CD
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F I G U R E  9.25 The effect of surface roughness on the drag coefficient of a sphere in the
Reynolds number range for which the laminar boundary layer becomes turbulent (Ref. 5).
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D

ε__
D
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ε__
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ε__
D

= 5 × 10–3

= 1.25 × 10–2
= 0 (smooth)

= relative roughness

ρ

= 1.5 × 10–3

GIVEN A well-hit golf ball 1diameter in., weight

2 can travel at as it leaves the tee. A

well-hit table tennis ball 1diameter weight 

can travel at as it leaves the paddle. U � 60 ft�s0.00551 lb2
w �D �1.50 in.,

U � 200 ft�sw � 0.0992 lb

D � 1.69

SOLUTION

Effect of Surface Roughness

while for the table tennis ball

The corresponding drag coefficients are for the stan-

dard golf ball, for the smooth golf ball, and 

for the table tennis ball. Hence, from Eq. 1 for the standard golf ball

(Ans)� 0.185 lb

d �
1

2
 10.00238 slugs�ft32 1200 ft�s22 

p

4
 a

1.69

12
 ftb

2

 10.252

CD � 0.50CD � 0.51

CD � 0.25

Re �
UD

n
�
160 ft�s2 11.50�12 ft2

1.57 � 10�4 ft2�s
� 4.78 � 104

EXAMPLE 9.12

For either ball, the drag can be obtained from

(1)

where the drag coefficient, is given in Fig. 9.25 as a function

of the Reynolds number and surface roughness. For the golf ball

in standard air

Re �
UD

n
�
1200 ft�s2 11.69�12 ft2

1.57 � 10�4 ft2�s
� 1.79 � 105

CD,

d �
1

2
 rU 2 

p

4
 D2CD

FIND Determine the drag on a standard golf ball, a smooth

golf ball, and a table tennis ball for the conditions given. Also de-

termine the deceleration of each ball for these conditions.

Surface roughness
can cause the
boundary layer to
become turbulent.
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Froude Number Effects. Another parameter on which the drag coefficient may be strongly

dependent is the Froude number, As is discussed in Chapter 10, the Froude number

is a ratio of the free-stream speed to a typical wave speed on the interface of two fluids, such as the

surface of the ocean. An object moving on the surface, such as a ship, often produces waves that

require a source of energy to generate. This energy comes from the ship and is manifest as a drag.

[Recall that the rate of energy production 1power2 equals speed times force.] The nature of the waves

produced often depends on the Froude number of the flow and the shape of the object—the waves

generated by a water skier “plowing” through the water at a low speed 1low Fr2 are different than

those generated by the skier “planing” along the surface at high speed 1large Fr2.
Thus, the drag coefficient for surface ships is a function of Reynolds number 1viscous ef-

fects2 and Froude number 1wave-making effects2; As was discussed in Chapter

7, it is often quite difficult to run model tests under conditions similar to those of the prototype

1i.e., same Re and Fr for surface ships2. Fortunately, the viscous and wave effects can often be

separated, with the total drag being the sum of the drag of these individual effects. A detailed ac-

count of this important topic can be found in standard texts 1Ref. 112.
As is indicated in Fig. 9.26, the wave-making drag, can be a complex function of the

Froude number and the body shape. The rather “wiggly” dependence of the wave drag coefficient,

dw,

CD � f1Re, Fr2.

Fr � U�1g/.
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for the smooth golf ball

(Ans)

and for the table tennis ball

(Ans)

The corresponding decelerations are 

where m is the mass of the ball. Thus, the deceleration relative to

the acceleration of gravity, 1i.e., the number of g’s de-

celeration2 is or

(Ans)

(Ans)

(Ans)

COMMENTS Note that there is a considerably smaller decel-

eration for the rough golf ball than for the smooth one. Because of

its much larger drag-to-mass ratio, the table tennis ball slows down

relatively quickly and does not travel as far as the golf ball. Note

that with the standard golf ball has a drag of

and a deceleration of considerably

less than the of the table tennis ball. Conversely, aa�g � 4.77

a�g � 0.202,d � 0.0200 lb

U � 60 ft�s

a

g
�

0.0263 lb

0.00551 lb
� 4.77 for the table tennis ball

a

g
�

0.378 lb

0.0992 lb
� 3.81 for the smooth golf ball

a

g
�

0.185 lb

0.0992 lb
� 1.86 for the standard golf ball

a�g � d�w
a�g

a � d�m � gd�w,

 � 0.0263 lb

d �
1

2
 10.00238 slugs�ft32 160 ft�s22 

p

4
 a

1.50

12
 ftb

2

 10.502

 � 0.378 lb

d �
1

2
 10.00238 slugs�ft32 1200 ft�s22 

p

4
 a

1.69

12
 ftb

2

 10.512

table tennis ball hit from a tee at would decelerate at a

rate of or It would not travel nearly

as far as the golf ball.

By repeating the above calculations, the drag as a function of

speed for both a standard golf ball and a smooth golf ball is shown

in Fig. E9.12.

The Reynolds number range for which a rough golf ball has

smaller drag than a smooth one (i.e., 4 � 104 to 3.6 � 105) cor-

responds to a flight velocity range of 45  U  400 ft/s. This is

comfortably within the range of most golfers. (The fastest tee

shot by top professional golfers is approximately 280 ft/s.) As

discussed in Section 9.4.2, the dimples (roughness) on a golf

ball also help produce a lift (due to the spin of the ball) that al-

lows the ball to travel farther than a smooth ball.

a�g � 54.1.a � 1740 ft�s2,

200 ft�s

F I G U R E  E9.12

1.2

1

0.8

0.6

0.4

0.2

0

�
, 

lb

0 100 200 400 500

U, ft/s

300

Smooth
golf ball

Standard
golf ball

F l u i d s  i n  t h e  N e w s

Dimpled baseball bats For many years it has been known that

dimples on golf balls can create a turbulent boundary layer and re-

duce the aerodynamic drag, allowing longer drives than with

smooth balls. Thus, why not put dimples on baseball bats so that to-

morrow’s baseball sluggers can swing the bat faster and, therefore,

hit the ball farther? MIT instructor Jeffery De Tullio pondered that

question, performed experiments with dimpled bats to determine

the answer, and received a patent for his dimpled bat invention.

The result is that a batter can swing a dimpled bat approximately

3 to 5% faster than a smooth bat. Theoretically, this extra speed

will translate to an extra 10 to 15 ft distance on a long hit. (See

Problem 9.89.)

The drag coefficient
for surface ships is
a function of the
Froude number.

V9.12 Jet ski
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on the Froude number shown is typical. It results from the fact that the struc-

ture of the waves produced by the hull is a strong function of the ship speed or, in dimensionless

form, the Froude number. This wave structure is also a function of the body shape. For example,

the bow wave, which is often the major contributor to the wave drag, can be reduced by use of an

appropriately designed bulb on the bow, as is indicated in Fig. 9.26. In this instance the stream-

lined body 1hull without a bulb2 has more drag than the less streamlined one.

Composite Body Drag. Approximate drag calculations for a complex body can often be

obtained by treating the body as a composite collection of its various parts. For example, the total

force on a flag pole because of the wind (see the figure in the margin) can be approximated by

adding the aerodynamic drag produced by the various components involved—the drag on the flag

and the drag on the pole. In some cases considerable care must be taken in such an approach be-

cause of the interactions between the various parts. It may not be correct to merely add the drag

of the components to obtain the drag of the entire object, although such approximations are often

reasonable.

CDw � dw� 1rU 2/2�22,

9.3 Drag 507

F I G U R E  9.26 Typical drag coefficient data as a function of Froude number and hull
characteristics for that portion of the drag due to the generation of waves (adapted from Ref. 25).

Design speed, Fr = 0.267

0.30.20.1

Hull with bow bulb

0.4

Hull with no bow bulb

U

U

�

0.0015

0.0010

0.0005

0

CD =CDw

�w__________
    U2 �21__
2

ρ

Fr = U____
√�g

�pole �flag

The drag on a com-
plex body can be
approximated as
the sum of the drag
on its parts.

GIVEN A 60-mph 1i.e., 88-fps2 wind blows past the water

tower shown in Fig. E9.13a. 

FIND Estimate the moment 1torque2, M, needed at the base to

keep the tower from tipping over.

F I G U R E  E9.13

Drag on a Composite Body

U = 60 mph
   = 88 fps

Ds = 40 ft
Dc = 15 ft
b = 50 ft

�s

�c

b + Ds /2

b/2

Rx

Ry

M

(b)(a)

�

Dc

Ds

b

EXAMPLE 9.13

SOLUTION

We treat the water tower as a sphere resting on a circular cylinder

and assume that the total drag is the sum of the drag from these

parts. The free-body diagram of the tower is shown in Fig.
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The aerodynamic drag on automobiles provides an example of the use of adding component

drag forces. The power required to move a car along a level street is used to overcome the rolling

resistance and the aerodynamic drag. For speeds above approximately 30 mph, the aerodynamic

drag becomes a significant contribution to the net propulsive force needed. The contribution of the

drag due to various portions of car 1i.e., front end, windshield, roof, rear end, windshield peak, rear

roof�trunk, and cowl2 have been determined by numerous model and full-sized tests as well as by

508 Chapter 9 ■ Flow over Immersed Bodies

E9.13b. By summing moments about the base of the tower, we

obtain

(1)

where

(2)

and

(3)

are the drag on the sphere and cylinder, respectively. For standard

atmospheric conditions, the Reynolds numbers are

and

The corresponding drag coefficients, and can be approx-

imated from Fig. 9.21 as

CDs � 0.3 and CDc � 0.7

CDc,CDs

Rec �
UDc

n
�
188 ft�s2 115 ft2

1.57 � 10�4 ft2�s
� 8.41 � 106

 Res �
UDs

n
�
188 ft�s2 140 ft2

1.57 � 10�4 ft2�s
� 2.24 � 107

dc �
1

2
 rU 2bDcCDc

ds �
1

2
 rU 2 

p

4
 D2

sCDs

M � ds ab �
Ds

2
b � dc a

b

2
b

Note that the value of was obtained by an extrapolation of the

given data to Reynolds numbers beyond those given 1a potentially

dangerous practice!2. From Eqs. 2 and 3 we obtain

and

From Eq. 1 the corresponding moment needed to prevent the

tower from tipping is

(Ans)

COMMENT The above result is only an estimate because 1a2
the wind is probably not uniform from the top of the tower to the

ground, 1b2 the tower is not exactly a combination of a smooth

sphere and a circular cylinder, 1c2 the cylinder is not of infinite

length, 1d2 there will be some interaction between the flow past

the cylinder and that past the sphere so that the net drag is not ex-

actly the sum of the two, and 1e2 a drag coefficient value was ob-

tained by extrapolation of the given data. However, such approxi-

mate results are often quite accurate.

� 3.64 � 105 ft # lb

M � 3470 lb a50 ft �
40

2
 ftb � 4840 lb a

50

2
 ftb

 � 4840 lb

 dc � 0.510.00238 slugs�ft32 188 ft�s22150 ft � 15 ft2 10.72

 � 3470 lb

 ds � 0.510.00238 slugs�ft32 188 ft�s22 
p

4
 140 ft2210.32

CDs

V9.13 Drag on a
truck

V9.14 Automobile
streamlining

F I G U R E  9.27 The historical trend of streamlining automobiles to reduce their
aerodynamic drag and increase their miles per gallon (adapted from Ref. 5).

0.8

0.6

0.4

0.2

0
1920 1930 1940 1950 1960

Year
1970 1980 1990 2000 2010

CD
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numerical calculations. As a result it is possible to predict the aerodynamic drag on cars of a wide

variety of body styles.

As is indicated in Fig. 9.27, the drag coefficient for cars has decreased rather continuously

over the years. This reduction is a result of careful design of the shape and the details 1such as

window molding, rear view mirrors, etc.2. An additional reduction in drag has been accomplished

by a reduction of the projected area. The net result is a considerable increase in the gas mileage,

especially at highway speeds. Considerable additional information about the aerodynamics of

road vehicles can be found in the literature 1Ref. 302.

The effect of several important parameters 1shape, Re, Ma, Fr, and roughness2 on the drag co-

efficient for various objects has been discussed in this section. As stated previously, drag coefficient

information for a very wide range of objects is available in the literature. Some of this information

is given in Figs. 9.28, 9.29, and 9.30 below for a variety of two- and three-dimensional, natural and

man-made objects. Recall that a drag coefficient of unity is equivalent to the drag produced by the

dynamic pressure acting on an area of size A. That is, if Typical

nonstreamlined objects have drag coefficients on this order.

CD � 1.d � 1
2rU

2ACD � 1
2rU

2A

9.4 Lift 509

F l u i d s  i n  t h e  N e w s

At 10,240 mpg it doesn’t cost much to “fill ’er up” Typical

gas consumption for a Formula 1 racer, a sports car, and a sedan

is approximately 2 mpg, 15 mpg, and 30 mpg, respectively.

Thus, just how did the winning entry in the 2002 Shell Eco-

Marathon achieve an incredible 10,240 mpg? To be sure, this

vehicle is not as fast as a Formula 1 racer (although the rules re-

quire it to average at least 15 mph) and it can’t carry as large a

load as your family sedan can (the vehicle has barely enough

room for the driver). However, by using a number of clever

engineering design considerations, this amazing fuel efficiency

was obtained. The type (and number) of tires, the appropriate

engine power and weight, the specific chassis design, and the

design of the body shell are all important and interrelated con-

siderations. To reduce drag, the aerodynamic shape of the high-

efficiency vehicle was given special attention through theoreti-

cal considerations and wind tunnel model testing. The result is

an amazing vehicle that can travel a long distance without hear-

ing the usual “fill ’er up.” (See Problem 9.90.)

As is indicated in Section 9.1, any object moving through a fluid will experience a net force

of the fluid on the object. For objects symmetrical perpendicular to the upstream flow, this force

will be in the direction of the free stream—a drag, If the object is not symmetrical 1or if it

does not produce a symmetrical flow field, such as the flow around a rotating sphere2, there

may also be a force normal to the free stream—a lift, Considerable effort has been put forth

to understand the various properties of the generation of lift. Some objects, such as an airfoil,

are designed to generate lift. Other objects are designed to reduce the lift generated. For exam-

ple, the lift on a car tends to reduce the contact force between the wheels and the ground, caus-

ing reduction in traction and cornering ability. It is desirable to reduce this lift.

9.4.1 Surface Pressure Distribution

The lift can be determined from Eq. 9.2 if the distributions of pressure and wall shear stress around

the entire body are known. As is indicated in Section 9.1, such data are usually not known. Typi-

cally, the lift is given in terms of the lift coefficient,

(9.39)CL �
l

1
2rU

2A

l.

d.

9.4 Lift

The lift coefficient
is a dimensionless
form of the lift.

Considerable effort
has gone into re-
ducing the aerody-
namic drag of auto-
mobiles.
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which is obtained from experiments, advanced analysis, or numerical considerations. The lift co-

efficient is a function of the appropriate dimensionless parameters and, as the drag coefficient, can

be written as

The Froude number, Fr, is important only if there is a free surface present, as with an under-

water “wing” used to support a high-speed hydrofoil surface ship. Often the surface roughness,

is relatively unimportant in terms of lift—it has more of an effect on the drag. The Mach

number, Ma, is of importance for relatively high-speed subsonic and supersonic flows

and the Reynolds number effect is often not great. The most important

parameter that affects the lift coefficient is the shape of the object. Considerable effort has gone

into designing optimally shaped lift-producing devices. We will emphasize the effect of the

shape on lift—the effects of the other dimensionless parameters can be found in the literature

1Refs. 13, 14, 292.

1i.e., Ma 7 0.82,

e,

CL � f1shape, Re, Ma, Fr, e�/2
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D

R
Square rod

with rounded
corners

DR
Rounded

equilateral
triangle

D
Semicircular

shell

Semicircular
cylinder

D

D T-beam

I-beamD

D Angle

D

Hexagon

�

D Rectangle

Shape
Reference area

A
(b = length)

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

Drag coefficient

CD = �________

        

U2A1__
2

ρ

R/D CD

0
0.02
0.17
0.33

2.2
2.0
1.2
1.0

R/D CD

0
0.02
0.08
0.25

1.4
1.2
1.3
1.1

2.1
2.0
1.9
1.3

2.3
1.1

2.15
1.15

1.80
1.65

1.98
1.82

2.05

1.0

�/D CD

0.1
0.5
0.65
1.0
2.0
3.0

1.9
2.5
2.9
2.2
1.6
1.3

Reynolds number
Re =   UD/ ρ

Re = 105

Re = 105

Re = 2 × 104

Re > 104

Re > 104

Re > 104

Re > 104

Re > 104

Re = 105

<

μ

F I G U R E  9.28 Typical drag coefficients for regular two-dimensional
objects (Refs. 5, 6).

The lift coefficient
is a function of
other dimensionless
parameters.
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Most common lift-generating devices 1i.e., airfoils, fans, spoilers on cars, etc.2 operate in the

large Reynolds number range in which the flow has a boundary layer character, with viscous ef-

fects confined to the boundary layers and wake regions. For such cases the wall shear stress,

contributes little to the lift. Most of the lift comes from the surface pressure distribution. A typi-

cal pressure distribution on a moving car is shown in Fig. 9.31. The distribution, for the most part,

is consistent with simple Bernoulli equation analysis. Locations with high-speed flow 1i.e., over

the roof and hood2 have low pressure, while locations with low-speed flow 1i.e., on the grill and

windshield2 have high pressure. It is easy to believe that the integrated effect of this pressure dis-

tribution would provide a net upward force.

For objects operating in very low Reynolds number regimes viscous effects

are important, and the contribution of the shear stress to the lift may be as important as that of the

pressure. Such situations include the flight of minute insects and the swimming of microscopic or-

ganisms. The relative importance of and p in the generation of lift in a typical large Reynolds

number flow is shown in Example 9.14.

tw

1i.e., Re 6 12,

tw,

9.4 Lift 511

F I G U R E  9.29 Typical drag coefficients for regular three-dimensional
objects (Ref. 5).

D
Solid

hemisphere

D
Hollow

hemisphere

D Thin disk

�

D

Circular
rod

parallel
to flow

D Cone

CubeD

Cube

D

D

Streamlined
body

Shape Reference area
A

A =    D2__
4
π

A =    D2__
4
π

A =    D2__
4
π

A =    D2__
4
π

A =    D2__
4
π

A = D2

A = D2

A =    D2__
4
π

Drag coefficient
CD

1.17
0.42

1.42
0.38

1.1

, degrees CD

10
30
60
90

0.30
0.55
0.80
1.15

�/D CD

0.5
1.0
2.0
4.0

1.1
0.93
0.83
0.85

θ

1.05

0.80

0.04

Re > 104

Re > 104

Re > 103

Re > 105

Re > 104

Re > 104

Re > 104

Re > 105

Reynolds number
Re =   UD/ ρ μ

θ

Usually most lift
comes from pres-
sure forces, not vis-
cous forces.

JWCL068_ch09_461-533.qxd  9/23/08  11:49 AM  Page 511



512 Chapter 9 ■ Flow over Immersed Bodies

U

D Parachute

D Porous
parabolic

dish

Average
person

Fluttering
flag

D

l

Empire
State Building

Six-car passenger train

Bikes

Upright commuter

Racing

Drafting

Streamlined

Tractor-trailer trucks

Fairing

Gap seal

Standard

With fairing

With
fairing and
gap seal

Tree
U = 10 m/s
U = 20 m/s
U = 30 m/s

Dolphin

Large
birds

Shape Reference area

Frontal area

A =    D2__
4
π

Frontal area

A =    D2__
4
π

Standing

Sitting

Crouching

A = �D

Frontal area

Frontal area

A = 5.5 ft2

A = 3.9 ft2

A = 3.9 ft2

A = 5.0 ft2

Frontal area

Frontal area

Frontal area

Frontal area

Frontal area

Wetted area

Drag coefficient
CD

1.4

Porosity

Porosity = open area/total area

0 0.2 0.5

1.42 1.20 0.82

0.95 0.90 0.80

CDA = 9 ft2

CDA = 6 ft2

CDA = 2.5 ft2

�/D CD

2
1

3
0.12
0.07

0.15

1.4

1.8

1.1

0.88

0.50

0.12

0.96

0.76

0.70

0.43
0.26
0.20

0.0036 at Re = 6 × 106

(flat plate has CDf = 0.0031)

0.40

F I G U R E  9.30 Typical drag coefficients for objects of interest
(Refs. 5, 6, 15, 20).
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GIVEN When a uniform wind of velocity U blows past the

semicircular building shown in Fig. E9.14a,b, the wall shear

stress and pressure distributions on the outside of the building are

as given previously in Figs. E9.8b and E9.9a, respectively. 

Lift from Pressure and Shear Stress DistributionsEXAMPLE 9.14

FIND If the pressure in the building is atmospheric 1i.e., the

value, far from the building2, determine the lift coefficient and

the lift on the roof.

p0,

SOLUTION

curves of and 

plotted in Figs. E9.14c and E9.14d. The results are

and

Thus, the lift is

or

(Ans)

and

(4) (Ans)

COMMENTS Consider a typical situation with 

and standard atmospheric conditions

which

gives a Reynolds number of

Hence, the lift coefficient is

CL � 0.88 �
1.96

13.82 � 10621� 2
� 0.88 � 0.001 � 0.881

Re �
UD

n
�
130 ft�s2 120 ft2

1.57 � 10�4 ft2�s
� 3.82 � 106

� 10�4 ft2�s2,10�3 slugs�ft3 and n � 1.571r � 2.38 �
b � 50 ft,U � 30 ft�s,

D � 20 ft,

CL �
l

1
2rU

2A
� 0.88 �

1.96

1Re

l � a0.88 �
1.96

1Re
b a

1

2
 rU 2Ab

l �
1

2
 rU 2A c a�

1

2
b 1�1.762 �

1

21Re
 13.922 d

�
p

0

 F1u2 cos u du � 3.92

�
p

0

 
1p � p02

1
2rU

2
 sin u du � �1.76

versus u

F1u2 cos usin u versus u3 1p � p02� 1rU2�22 4From Eq. 9.2 we obtain the lift as

(1)

As is indicated in Fig. E9.14b, we assume that on the inside of the

building the pressure is uniform, and that there is no

shear stress. Thus, Eq. 1 can be written as

or

(2)

where b and D are the length and diameter of the building,

respectively, and Equation 2 can be put into

dimensionless form by using the dynamic pressure, plan-

form area, and dimensionless shear stress

to give

(3)

From the data in Figs. E9.8b and E9.9a, the values of the two in-

tegrals in Eq. 3 can be obtained by determining the area under the

�
1

21Re
 �
p

0

 F1u2 cos u du d

l �
1

2
 rU 2A c�

1

2
 �
p

0

 
1p � p02

1
2rU

2
 sin u du

F1u2 � tw1Re21�2� 1rU 2�22

A � bD,

rU 2�2,

dA � b1D�22du.

l �
bD

2
 c��

p

0

 1p � p02 sin u du � �
p

0

 tw cos u du d

� �
p

0

 tw cos u b a
D

2
b du

l � ��
p

0

 1p � p02 sin u b a
D

2
b du

p � p0,

l � ��  p sin u dA � �  tw cos u dA

U, p0

Denotes p > p0

Denotes p < p0

F I G U R E  9.31 Pressure distribution on the surface of
an automobile.
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A typical device designed to produce lift does so by generating a pressure distribution that

is different on the top and bottom surfaces. For large Reynolds number flows these pressure dis-

tributions are usually directly proportional to the dynamic pressure, with viscous effects

being of secondary importance. Hence, as indicated by the figure in the margin, for a given airfoil

the lift is proportional to the square of the airspeed. Two airfoils used to produce lift are indicated

in Fig. 9.32. Clearly the symmetrical one cannot produce lift unless the angle of attack, is nonzero.

Because of the asymmetry of the nonsymmetric airfoil, the pressure distributions on the upper and

lower surfaces are different, and a lift is produced even with Of course, there will be a

certain value of 1less than zero for this case2 for which the lift is zero. For this situation, the

pressure distributions on the upper and lower surfaces are different, but their resultant 1integrated2
pressure forces will be equal and opposite.

Since most airfoils are thin, it is customary to use the planform area, in the defini-

tion of the lift coefficient. Here b is the length of the airfoil and c is the chord length—the length

from the leading edge to the trailing edge as indicated in Fig. 9.32. Typical lift coefficients so de-

fined are on the order of unity. That is, the lift force is on the order of the dynamic pressure times

the planform area of the wing, The wing loading, defined as the average lift per

unit area of the wing, therefore, increases with speed. For example, the wing loading of thel�A,

l � 1rU 2�22A.

A � bc,

a

a � 0.

a,

rU 2�2,

Note that the pressure contribution to the lift coefficient is

0.88 whereas that due to the wall shear stress is only

The Reynolds number dependency of is

quite minor. The lift is pressure dominated. Recall from Example

9.9 that this is also true for the drag on a similar shape.

From Eq. 4 with , we obtain the

lift for the assumed conditions as

l � 1
2rU

2ACL � 1
2 10.00238 slugs�ft32 130 ft�s2211000 ft22 10.8812

A � 20 ft � 50 ft � 1000 ft2

CL1.96� 1Re1�22 � 0.001.

or

There is a considerable tendency for the building to lift off the

ground. Clearly this is due to the object being nonsymmetrical.

The lift force on a complete circular cylinder is zero, although

the fluid forces do tend to pull the upper and lower halves

apart.

l � 944 lb

U

� � ~ U2

d
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1903 Wright Flyer aircraft was while for the present-day Boeing 747 aircraft it is

The wing loading for a bumble bee is approximately 1Ref. 152.
Typical lift and drag coefficient data as a function of angle of attack, and aspect ratio,

are indicated in Figs. 9.33a and 9.33b. The aspect ratio is defined as the ratio of the square of the

wing length to the planform area, If the chord length, c, is constant along the length of

the wing 1a rectangular planform wing2, this reduces to 

In general, the lift coefficient increases and the drag coefficient decreases with an increase

in aspect ratio. Long wings are more efficient because their wing tip losses are relatively more mi-

nor than for short wings. The increase in drag due to the finite length of the wing is of-

ten termed induced drag. It is due to the interaction of the complex swirling flow structure near

the wing tips 1see Fig. 9.372 and the free stream 1Ref. 132. High-performance soaring airplanes and

highly efficient soaring birds 1i.e., the albatross and sea gull2 have long, narrow wings. Such wings,

however, have considerable inertia that inhibits rapid maneuvers. Thus, highly maneuverable fighter

or acrobatic airplanes and birds 1i.e., the falcon2 have small-aspect-ratio wings.

Although viscous effects and the wall shear stress contribute little to the direct generation of

lift, they play an extremely important role in the design and use of lifting devices. This is because of

the viscosity-induced boundary layer separation that can occur on nonstreamlined bodies such as

airfoils that have too large an angle of attack 1see Fig. 9.182. As is indicated in Fig. 9.33, up to a cer-

tain point, the lift coefficient increases rather steadily with the angle of attack. If is too large, the

boundary layer on the upper surface separates, the flow over the wing develops a wide, turbulent

wake region, the lift decreases, and the drag increases. This condition, as indicated by the figures in

the margin, is termed stall. Such conditions are extremely dangerous if they occur while the airplane

is flying at a low altitude where there is not sufficient time and altitude to recover from the stall.

a

1a 6 	 2

a � b�c.

a � b2�A.

a,a,

1 lb�ft2150 lb�ft2.

1.5 lb�ft2,
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α
U

Symmetrical

Nonsymmetrical

c

α
U

F I G U R E  9.32 Symmetrical and
nonsymmetrical airfoils.
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(a) (b)

α   , degreesα
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0

0.2
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� = 7

� = 3
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0.01

0
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F I G U R E  9.33 Typical lift and drag coefficient data as a function of angle of attack and the
aspect ratio of the airfoil: (a) lift coefficient, (b) drag coefficient.

Not stalled

Stalled

At large angles of
attack the boundary
layer separates and
the wing stalls.
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In many lift-generating devices the important quantity is the ratio of the lift to drag devel-

oped, Such information is often presented in terms of versus as is shown

in Fig. 9.34a, or in a lift-drag polar of versus with as a parameter, as is shown in Fig.

9.34b. The most efficient angle of attack 1i.e., largest 2 can be found by drawing a line tan-

gent to the curve from the origin, as is shown in Fig. 9.34b. High-performance airfoils

generate lift that is perhaps 100 or more times greater than their drag. This translates into the fact

that in still air they can glide a horizontal distance of 100 m for each 1 m drop in altitude.

CL � CD

CL �CD

aCDCL

a,CL �CDl�d � CL �CD.

As is indicated above, the lift and drag on an airfoil can be altered by changing the angle

of attack. This actually represents a change in the shape of the object. Other shape changes can

be used to alter the lift and drag when desirable. In modern airplanes it is common to utilize lead-

ing edge and trailing edge flaps as is shown in Fig. 9.35. To generate the necessary lift during

the relatively low-speed landing and takeoff procedures, the airfoil shape is altered by extending

special flaps on the front and�or rear portions of the wing. Use of the flaps considerably enhances

the lift, although it is at the expense of an increase in the drag 1the airfoil is in a “dirty” config-

uration2. This increase in drag is not of much concern during landing and takeoff operations—

the decrease in landing or takeoff speed is more important than is a temporary increase in drag.

During normal flight with the flaps retracted 1the “clean” configuration2, the drag is relatively

small, and the needed lift force is achieved with the smaller lift coefficient and the larger dynamic

pressure 1higher speed2.

516 Chapter 9 ■ Flow over Immersed Bodies

F I G U R E  9.34 Two representations of the same lift and drag data for a typical airfoil:
(a) lift-to-drag ratio as a function of angle of attack, with the onset of boundary layer separation on the
upper surface indicated by the occurrence of stall, (b) the lift and drag polar diagram with the angle of
attack indicated (Ref. 27).

120

100

80

60

40

20

0

–20

–40
–8 –4 0 4 8

, degreesα

CL__
CD

NACA 64(1) – 412 airfoil
Re = 7 × 105

Stall 1.5

1.0

0.5

0

–0.5
0 0.005 0.010 0.015 0.02

CD

CL

(b)(a)

= –6°α

= –4°α

= –2°α

= 0°α

= 2°α

= 4°α

= 6°α
= 8°α

V9.16 Bat flying

F l u i d s  i n  t h e  N e w s

Bats feel turbulence Researchers have discovered that at certain

locations on the wings of bats, there are special touch-sensing

cells with a tiny hair poking out of the center of the cell. These cells,

which are very sensitive to air flowing across the wing surface, can

apparently detect turbulence in the flow over the wing. If these hairs

are removed the bats fly well in a straight line, but when maneuver-

ing to avoid obstacles, their elevation control is erratic. When the

hairs grow back, the bats regain their complete flying skills. It is pro-

posed that these touch-sensing cells are used to detect turbulence on

the wing surface and thereby tell bats when to adjust the angle of at-

tack and curvature of their wings in order to avoid stalling out in

midair.

V9.15 Stalled
airfoil

V9.17 Trailing edge
flap
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A wide variety of lift and drag information for airfoils can be found in standard aerodynam-

ics books 1Ref. 13, 14, 292.

9.4 Lift 517

F I G U R E  9.35 Typi-
cal lift and drag alterations possible
with the use of various types of flap
designs (Ref. 21).

No flaps

Trailing edge
slotted flap

Double slotted
trailing edge flaps

(Data not
shown)

Leading
edge flap

3.0

2.0

1.0

0
0 0.1 0.2 0.3

CD

CL

V9.18 Leading
edge flap

F l u i d s  i n  t h e  N e w s

Learning from nature For hundreds of years humans looked

toward nature, particularly birds, for insight about flying. How-

ever, all early airplanes that closely mimicked birds proved to be

unsuccessful. Only after much experimenting with rigid (or at

least nonflapping) wings did human flight become possible. Re-

cently, however, engineers have been turning to living sys-

tems—birds, insects, and other biological models—in an at-

tempt to produce breakthroughs in aircraft design. Perhaps it is

possible that nature’s basic design concepts can be applied to

airplane systems. For example, by morphing and rotating their

wings in three dimensions, birds have remarkable maneuver-

ability that to date has no technological parallel. Birds can con-

trol the airflow over their wings by moving the feathers on their

wingtips and the leading edges of their wings, providing designs

that are more efficient than the flaps and rigid, pivoting tail sur-

faces of current aircraft (Ref. 15). On a smaller scale, under-

standing the mechanism by which insects dynamically manage

unstable flow to generate lift may provide insight into the devel-

opment of microscale air vehicles. With new hi-tech materials,

computers, and automatic controls, aircraft of the future may

mimic nature more than was once thought possible. (See Prob-

lem 9.110.)

GIVEN In 1977 the Gossamer Condor, shown in Fig. E9.15a,

won the Kremer prize by being the first human-powered aircraft to

complete a prescribed figure-of-eight course around two turning

points 0.5 mi apart 1Ref. 222.The following data pertain to this aircraft:

� power to overcome drag�pilot power �0.8

power train efficiency � h

drag coefficient � CD � 0.046 1based on planform area2

weight 1including pilot2 �w � 210 lb

wing size � b � 96 ft, c � 7.5 ft 1average2

flight speed � U � 15 ft�s

Lift and Power for Human Powered FlightEXAMPLE 9.15

FIND Determine

(a) the lift coefficient, CL, and

(b) the power, required by the pilot.p,

U

F I G U R E  E9.15a
(Photograph copyright © Don Monroe.)
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9.4.2 Circulation

Since viscous effects are of minor importance in the generation of lift, it should be possible to cal-

culate the lift force on an airfoil by integrating the pressure distribution obtained from the equa-

tions governing inviscid flow past the airfoil. That is, the potential flow theory discussed in Chap-

ter 6 should provide a method to determine the lift. Although the details are beyond the scope of

this book, the following is found from such calculations 1Ref. 42.
The calculation of the inviscid flow past a two-dimensional airfoil gives a flow field as in-

dicated in Fig. 9.36. The predicted flow field past an airfoil with no lift 1i.e., a symmetrical airfoil

at zero angle of attack, Fig. 9.36a2 appears to be quite accurate 1except for the absence of thin

boundary layer regions2. However, as is indicated in Fig. 9.36b, the calculated flow past the same

airfoil at a nonzero angle of attack 1but one small enough so that boundary layer separation would

not occur2 is not proper near the trailing edge. In addition, the calculated lift for a nonzero angle

of attack is zero—in conflict with the known fact that such airfoils produce lift.

In reality, the flow should pass smoothly over the top surface as is indicated in Fig. 9.36c, with-

out the strange behavior indicated near the trailing edge in Fig. 9.36b. As is shown in Fig. 9.36d, the

unrealistic flow situation can be corrected by adding an appropriate clockwise swirling flow around

the airfoil. The results are twofold: 112 The unrealistic behavior near the trailing edge is eliminated 1i.e.,

518 Chapter 9 ■ Flow over Immersed Bodies

SOLUTION

COMMENT This power level is obtainable by a well-condi-

tioned athlete 1as is indicated by the fact that the flight was suc-

cessfully completed2. Note that only 80% of the pilot’s power

1i.e., which corresponds to a drag of

2 is needed to force the aircraft through the air. The

other 20% is lost because of the power train inefficiency.

By repeating the calculations for various flight speeds, the

results shown in Fig. E9.15b are obtained. Note from Eq. 1 that

for a constant drag coefficient, the power required increases as

U3—a doubling of the speed to 30 ft/s would require an eight-

fold increase in power (i.e., 2.42 hp, well beyond the range of

any human).

d � 8.86 lb

0.8 � 0.302 � 0.242 hp,

(a) For steady flight conditions the lift must be exactly balanced

by the weight, or

Thus,

where and 

for standard air. This gives

(Ans)

a reasonable number. The overall lift-to-drag ratio for the aircraft is

23.7.

(b) The product of the power that the pilot supplies and the power

train efficiency equals the useful power needed to overcome the

drag, That is,

where

Thus,

(1)

or

(Ans) p � 166 ft # lb�s a
1 hp

550 ft # lb�s
b � 0.302 hp

 p �
12.38 � 10�3 slugs�ft32 1720 ft22 10.0462 115 ft�s23

210.82

p �
dU

h
�

1
2rU

2ACDU

h
�
rACDU 3

2h

d � 1
2rU

2ACD

hp � dU

d.

CL �CD � 1.09�0.046 �

 � 1.09

CL �
21210 lb2

12.38 � 10�3 slugs�ft32 115 ft�s221720 ft22

2.38 � 10�3 slugs�ft3

r �A � bc � 96 ft � 7.5 ft � 720 ft2, w � 210 lb,

CL �
2w

rU 2A

w � l � 1
2rU

2ACL

2.5

2.0

1.5

1.0

0.5

�
, 

hp

0
15 20 25 30

U, ft/s

100 5

(15, 0.302)

F I G U R E  E9.15b

Inviscid flow analy-
sis can be used to
obtain ideal flow
past airfoils.
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the flow pattern of Fig. 9.36b is changed to that of Fig. 9.36c2, and 122 the average velocity on the

upper surface of the airfoil is increased while that on the lower surface is decreased. From the Bernoulli

equation concepts 1i.e., 2, the average pressure on the upper surface is

decreased and that on the lower surface is increased. The net effect is to change the original zero lift

condition to that of a lift-producing airfoil.

The addition of the clockwise swirl is termed the addition of circulation. The amount of

swirl 1circulation2 needed to have the flow leave the trailing edge smoothly is a function of the

airfoil size and shape and can be calculated from potential flow 1inviscid2 theory 1see Section 6.6.3

and Ref. 292. Although the addition of circulation to make the flow field physically realistic may

seem artificial, it has well-founded mathematical and physical grounds. For example, consider the

flow past a finite length airfoil, as is indicated in Fig. 9.37. For lift-generating conditions the av-

erage pressure on the lower surface is greater than that on the upper surface. Near the tips of the

wing this pressure difference will cause some of the fluid to attempt to migrate from the lower

to the upper surface, as is indicated in Fig. 9.37b. At the same time, this fluid is swept down-

stream, forming a trailing vortex 1swirl2 from each wing tip 1see Fig. 4.32. It is speculated that the

reason some birds migrate in vee-formation is to take advantage of the updraft produced by the

trailing vortex of the preceding bird. [It is calculated that for a given expenditure of energy, a flock

of 25 birds flying in vee-formation could travel 70% farther than if each bird were to fly sepa-

rately 1Ref. 152.]
The trailing vortices from the right and left wing tips are connected by the bound vortex

along the length of the wing. It is this vortex that generates the circulation that produces the

lift. The combined vortex system 1the bound vortex and the trailing vortices2 is termed a horse-

shoe vortex. The strength of the trailing vortices 1which is equal to the strength of the bound

vortex2 is proportional to the lift generated. Large aircraft 1for example, a Boeing 7472 can gen-

erate very strong trailing vortices that persist for a long time before viscous effects and insta-

bility mechanisms finally cause them to die out. Such vortices are strong enough to flip smaller

aircraft out of control if they follow too closely behind the large aircraft. The figure in the mar-

gin clearly shows a trailing vortex produced during a wake vortex study in which an airplane

flew through a column of smoke.

p�g � V 2�2g � z � constant

9.4 Lift 519

F I G U R E  9.36 Inviscid
flow past an airfoil: (a) symmetrical flow
past the symmetrical airfoil at a zero
angle of attack; (b) same airfoil at a
nonzero angle of attack—no lift, flow
near trailing edge not realistic; (c) same
conditions as for (b) except circulation
has been added to the flow—nonzero
lift, realistic flow; (d) superposition of
flows to produce the final flow past the
airfoil.

(a)

(b)

(c)

+ =

(d)

   = 0
� = 0
α

   > 0
� = 0
α

   > 0
� > 0
α

"(a) + circulation = (c)"

V9.19 Wing tip 
vortices

(Photograph courtesy of

NASA.)
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520 Chapter 9 ■ Flow over Immersed Bodies

F I G U R E  9.37 Flow past a finite length wing: (a) the horseshoe
vortex system produced by the bound vortex and the trailing vortices; (b) the
leakage of air around the wing tips produces the trailing vortices.

U

A

B

Bound vortex

Trailing
vortex

(a)

(b)

BA

Low pressure

High pressure

Bound vortex

Trailing vortex

F l u i d s  i n  t h e  N e w s

Why winglets? Winglets, those upward turning ends of airplane

wings, boost the performance by reducing drag. This is accom-

plished by reducing the strength of the wingtip vortices formed by

the difference between the high pressure on the lower surface of

the wing and the low pressure on the upper surface of the wing.

These vortices represent an energy loss and an increase in drag. In

essence, the winglet provides an effective increase in the aspect

ratio of the wing without extending the wingspan. Winglets come

in a variety of styles—the Airbus A320 has a very small upper and

lower winglet; the Boeing 747-400 has a conventional, vertical

upper winglet; and the Boeing Business Jet (a derivative of the

Boeing 737) has an eight-foot winglet with a curving transition

from wing to winglet. Since the airflow around the winglet is

quite complicated, the winglets must be carefully designed and

tested for each aircraft. In the past, winglets were more likely to

be retrofitted to existing wings, but new airplanes are being de-

signed with winglets from the start. Unlike tailfins on cars,

winglets really do work. (See Problem 9.111.)

As is indicated above, the generation of lift is directly related to the production of a swirl or

vortex flow around the object. A nonsymmetric airfoil, by design, generates its own prescribed

amount of swirl and lift. A symmetric object like a circular cylinder or sphere, which normally

provides no lift, can generate swirl and lift if it rotates.

As is discussed in Section 6.6.3, the inviscid flow past a circular cylinder has the symmet-

rical flow pattern indicated in Fig. 9.38a. By symmetry the lift and drag are zero. However, if the

cylinder is rotated about its axis in a stationary real fluid, the rotation will drag some of

the fluid around, producing circulation about the cylinder as in Fig. 9.38b. When this circulation

is combined with an ideal, uniform upstream flow, the flow pattern indicated in Fig. 9.38c is ob-

tained. The flow is no longer symmetrical about the horizontal plane through the center of the

cylinder; the average pressure is greater on the lower half of the cylinder than on the upper half,

and a lift is generated. This effect is called the Magnus effect, after Heinrich Magnus 11802–18702,
a German chemist and physicist who first investigated this phenomenon. A similar lift is generated

on a rotating sphere. It accounts for the various types of pitches in baseball 1i.e., curve ball, floater,

sinker, etc.2, the ability of a soccer player to hook the ball, and the hook or slice of a golf ball.

Typical lift and drag coefficients for a smooth, spinning sphere are shown in Fig. 9.39. Al-

though the drag coefficient is fairly independent of the rate of rotation, the lift coefficient is strongly

1m � 02

A spinning sphere
or cylinder can
generate lift.

JWCL068_ch09_461-533.qxd  9/23/08  11:49 AM  Page 520



dependent on it. In addition 1although not indicated in the figure2, both and are dependent on

the roughness of the surface. As was discussed in Section 9.3, in a certain Reynolds number range

an increase in surface roughness actually decreases the drag coefficient. Similarly, an increase in sur-

face roughness can increase the lift coefficient because the roughness helps drag more fluid around

the sphere increasing the circulation for a given angular velocity. Thus, a rotating, rough golf ball

travels farther than a smooth one because the drag is less and the lift is greater. However, do not ex-

pect a severely roughed up 1cut2 ball to work better—extensive testing has gone into obtaining the

optimum surface roughness for golf balls.

CDCL

9.4 Lift 521

F I G U R E  9.38 Inviscid flow past a circular cylinder: (a) uniform upstream flow without
circulation, (b) free vortex at the center of the cylinder, (c) combination of free vortex and uniform flow
past a circular cylinder giving nonsymmetric flow and a lift.

S S

ω ω

S S

S = stagnation point (highest pressure)
“(a) + (b) = (c)”

(c)(b)(a)

F I G U R E  9.39 Lift and drag
coefficients for a spinning smooth sphere (Ref. 23).
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GIVEN A table tennis ball weighing with di-

ameter is hit at a velocity of with

a back spin of angular velocity as is shown in Fig. E9.16.v

U � 12 m�sD � 3.8 � 10�2 m

2.45 � 10�2 N FIND What is the value of if the ball is to travel on a hori-

zontal path, not dropping due to the acceleration of gravity?

v

Lift on a Rotating SphereEXAMPLE 9.16

A dimpled golf ball
has less drag and
more lift than a
smooth one.
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522 Chapter 9 ■ Flow over Immersed Bodies

In this chapter the flow past objects is discussed. It is shown how the pressure and shear

stress distributions on the surface of an object produce the net lift and drag forces on the

object.

The character of flow past an object is a function of the Reynolds number. For large

Reynolds number flows a thin boundary layer forms on the surface. Properties of this boundary

layer flow are discussed. These include the boundary layer thickness, whether the flow is lami-

nar or turbulent, and the wall shear stress exerted on the object. In addition, boundary layer sep-

aration and its relationship to the pressure gradient are considered.

The drag, which contains portions due to friction (viscous) effects and pressure effects, is

written in terms of the dimensionless drag coefficient. It is shown how the drag coefficient is a

function of shape, with objects ranging from very blunt to very streamlined. Other parameters

affecting the drag coefficient include the Reynolds number, Froude number, Mach number, and

surface roughness.

The lift is written in terms of the dimensionless lift coefficient, which is strongly depen-

dent on the shape of the object. Variation of the lift coefficient with shape is illustrated by the

variation of an airfoil’s lift coefficient with angle of attack.

The following checklist provides a study guide for this chapter. When your study of the

entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type

in the text.

9.5 Chapter Summary and Study Guide

drag 
lift 
lift coefficient 
drag coefficient 
wake region 
boundary layer
laminar boundary layer
turbulent boundary layer
boundary layer thickness
transition 
free-stream velocity
favorable pressure 

gradient 
adverse pressure 

gradient 
boundary layer 

separation
friction drag 
pressure drag 
stall 
circulation 
Magnus effect

SOLUTION

COMMENT Is it possible to impart this angular velocity to

the ball? With larger angular velocities the ball will rise and fol-

low an upward curved path. Similar trajectories can be produced

by a well-hit golf ball—rather than falling like a rock, the golf

ball trajectory is actually curved up and the spinning ball travels a

greater distance than one without spin. However, if topspin is im-

parted to the ball 1as in an improper tee shot2 the ball will curve

downward more quickly than under the action of gravity alone—

the ball is “topped” and a negative lift is generated. Similarly, ro-

tation about a vertical axis will cause the ball to hook or slice to

one side or the other.

For horizontal flight, the lift generated by the spinning of the

ball must exactly balance the weight, of the ball so that

or

where the lift coefficient, can be obtained from Fig. 9.39. For

standard atmospheric conditions with we obtain

which, according to Fig. 9.39, can be achieved if

or

Thus,

(Ans)� 5420 rpm

v � 1568 rad�s2 160 s�min2 11 rev�2p rad2

v �
2U10.92

D
�

2112 m�s2 10.92

3.8 � 10�2 m
� 568 rad�s

vD

2U
� 0.9

� 0.244

CL �
212.45 � 10�2 N2

11.23 kg�m32 112 m�s221p�42 13.8 � 10�2 m22

r � 1.23 kg�m3

CL,

CL �
2w

rU 21p�42D2

w � l � 1
2rU

2ACL

w,

F I G U R E  E9.16

ω U

Horizontal path
with backspin

Path without
spin
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determine the lift and drag on an object from the given pressure and shear stress distribu-

tions on the object.

for flow past a flat plate, calculate the boundary layer thickness, the wall shear stress, the

friction drag, and determine whether the flow is laminar or turbulent.

explain the concept of the pressure gradient and its relationship to boundary layer separation.

for a given object, obtain the drag coefficient from appropriate tables, figures, or equations

and calculate the drag on the object.

explain why golf balls have dimples.

for a given object, obtain the lift coefficient from appropriate figures and calculate the lift

on the object.

Some of the important equations in this chapter are:

Lift coefficient and drag coefficient (9.39), (9.36)

Boundary layer displacement thickness (9.3)

Boundary layer momentum thickness (9.4)

Blasius boundary layer  

, , (9.15), (9.16), (9.17)thickness, displacement 

thickness, and momentum 

thickness for flat plate

Blasius wall shear stress for flat plate (9.18)

Drag on flat plate (9.23)

Blasius wall friction coefficient 

, (9.32)and friction drag coefficient 

for flat plate
CDf �

1.328

1Re/
cf �

0.664

1Rex

d � rbU 2 ™

tw � 0.332U3�2 
B

rm

x

™
x

�
0.664

1Rex

d*

x
�

1.721

1Rex

d

x
�

5

1Rex

™ � �
	

0

 
u

U
 a1 �

u

U
b dy

d* � �
	

0

 a1 �
u

U
b dy

CD �
d

1
2rU

2A
CL �

l

1
2rU

2A
,
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Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al. 
(© 2009 John Wiley and Sons, Inc.).

pressure on the back side is a vacuum (i.e., less than the free stream
pressure) with a magnitude 0.4 times the stagnation pressure.
Determine the drag coefficient for this square.

9.3 A small 15-mm-long fish swims with a speed of 20 mm/s.
Would a boundary layer type flow be developed along the sides of
the fish? Explain.

9.4 The average pressure and shear stress acting on the surface
of the 1-m-square flat plate are as indicated in Fig. P9.4.
Determine the lift and drag generated. Determine the lift and
drag if the shear stress is neglected. Compare these two sets
of results.

Problems

Note: Unless otherwise indicated use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a 1†2 are “open ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems and FlowLab problems
can also be accessed on this web site.

Section 9.1 General External Flow Characteristics

9.1 Obtain photographs/images of external flow objects that are
exposed to both a low Reynolds number and high Reynolds num-
ber. Print these photos and write a brief paragraph that describes
the situations involved.

9.2 A thin square is oriented perpendicular to the upstream
velocity in a uniform flow. The average pressure on the front side
of the square is 0.7 times the stagnation pressure and the average F I G U R E  P9.4

U

pave = –1.2 kN/m2

  ave = 5.8 × 10–2 kN/m2τ

pave = 2.3 kN/m2

  ave = 7.6 × 10–2 kN/m2τ

α  = 7°
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*9.5 The pressure distribution on the 1-m-diameter circular
disk in Fig. P9.5 is given in the table. Determine the drag on
the disk.

9.6 When you walk through still air at a rate of 1 m/s, would you
expect the character of the air flow around you to be most like that
depicted in Fig. 9.6a, b, or c? Explain.

9.7 A 0.10 m-diameter circular cylinder moves through air with
a speed U. The pressure distribution on the cylinder’s surface is
approximated by the three straight line segments shown in Fig.
P9.7. Determine the drag coefficient on the cylinder. Neglect shear
forces.

9.8 Typical values of the Reynolds number for various animals
moving through air or water are listed below. For which cases is
inertia of the fluid important? For which cases do viscous effects
dominate? For which cases would the flow be laminar; turbulent?
Explain.

†9.9 Estimate the Reynolds numbers associated with the following
objects moving through water: (a) a kayak, (b) a minnow, (c) a
submarine, (d) a grain of sand settling to the bottom, (e) you
swimming.

Section 9.2 Boundary Layer Characteristics (Also see
Lab Problems 9.112 and 9.113.)

9.10 Obtain a photograph/image of an object that can be ap-
proximated as flow past a flat plate, in which you could use equa-
tions from Section 9.2 to approximate the boundary layer char-
acteristics. Print this photo and write a brief paragraph that
describes the situation involved.

9.11 Discuss any differences in boundary layers between internal
flows (e.g., pipe flow) and external flows.

9.12 Water flows past a flat plate that is oriented parallel to the flow
with an upstream velocity of 0.5 m/s. Determine the approximate
location downstream from the leading edge where the boundary layer
becomes turbulent. What is the boundary layer thickness at this
location?

9.13 A viscous fluid flows past a flat plate such that the boundary
layer thickness at a distance 1.3 m from the leading edge is 12 mm.
Determine the boundary layer thickness at distances of 0.20, 2.0, and
20 m from the leading edge. Assume laminar flow.

9.14 If the upstream velocity of the flow in Problem 9.13 is
determine the kinematic viscosity of the fluid.

9.15 Water flows past a flat plate with an upstream velocity of
Determine the water velocity a distance of 10 mm

from the plate at distances of and from the
leading edge.

9.16 Approximately how fast can the wind blow past a 0.25-
in.-diameter twig if viscous effects are to be of importance
throughout the entire flow field 1i.e., 2? Explain. Repeat for
a 0.004-in.-diameter hair and a 6-ft-diameter smokestack.

9.17 As is indicated in Table 9.2, the laminar boundary layer
results obtained from the momentum integral equation are
relatively insensitive to the shape of the assumed velocity profile.
Consider the profile given by for and

for as shown in Fig. P9.17.
Note that this satisfies the conditions at and 
at However, show that such a profile produces meaningless
results when used with the momentum integral equation. Explain.

y � d.
u � Uy � 0u � 0

y � du � U51 � 3 1y � d2�d 4 261�2
y 7 d,u � U

Re 6 1

x � 15 mx � 1.5 m
U � 0.02 m�s.

U � 1.5 m�s,

9.18 If a high-school student who has completed a first course in
physics asked you to explain the idea of a boundary layer, what
would you tell the student?

Problems 525

r (m) p (kN )

0 4.34
0.05 4.28
0.10 4.06
0.15 3.72
0.20 3.10
0.25 2.78
0.30 2.37
0.35 1.89
0.40 1.41
0.45 0.74
0.50 0.0

�m2

F I G U R E  P9.5

r

D = 1m

p = p(r)

p = –5 kN/m2

U

F I G U R E  P9.4

–6

3

–5

–4

–3

–2

–1

0

1

2

p,
 N

/m
2

20 40 60 80 100 120 140 160 180
θ, deg

Animal Speed Re

1a2 large whale 300,000,000
1b2 flying duck 300,000
1c2 large dragonfly 30,000
1d2 invertebrate larva 0.3
1e2 bacterium 0.00003 0.01 mm �s

 1 m m�s
 7 m �s

 20 m �s
 10 m �s F I G U R E  P9.17

y

u

u = U

δ
u = U[1�(      )2]1/2y � d

d
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9.19 Because of the velocity deficit, in the boundary layer,
the streamlines for flow past a flat plate are not exactly parallel to
the plate. This deviation can be determined by use of the
displacement thickness, For air blowing past the flat plate
shown in Fig. P9.19, plot the streamline A– B that passes through
the edge of the boundary layer at point B. That
is, plot for streamline A–B. Assume laminar boundary
layer flow.

y � y1x2
1y � dB at x � /2

d*.

U � u, floor of an urban building, what is the average velocity on the
sixtieth floor?

9.23 It is relatively easy to design an efficient nozzle to
accelerate a fluid. Conversely, it is very difficult to build an
efficient diffuser to decelerate a fluid without boundary layer
separation and its subsequent inefficient flow behavior. Use the
ideas of favorable and adverse pressure gradients to explain these
facts.

9.24 A 30-story office building 1each story is 12 ft tall2 is built in
a suburban industrial park. Plot the dynamic pressure, as a
function of elevation if the wind blows at hurricane strength 175 mph2
at the top of the building. Use the atmospheric boundary layer
information of Problem 9.22.

9.25 Show that for any function the velocity components
u and determined by Eqs. 9.12 and 9.13 satisfy the incompressible
continuity equation, Eq. 9.8.

*9.26 Integrate the Blasius equation (Eq. 9.14) numerically to
determine the boundary layer profile for laminar flow past a flat
plate. Compare your results with those of Table 9.1.

9.27 An airplane flies at a speed of 400 mph at an altitude of
10,000 ft. If the boundary layers on the wing surfaces behave as
those on a flat plate, estimate the extent of laminar boundary layer
flow along the wing. Assume a transitional Reynolds number of

If the airplane maintains its 400-mph speed but
descends to sea-level elevation, will the portion of the wing
covered by a laminar boundary layer increase or decrease
compared with its value at 10,000 ft? Explain.

†9.28 If the boundary layer on the hood of your car behaves as
one on a flat plate, estimate how far from the front edge of the
hood the boundary layer becomes turbulent. How thick is the
boundary layer at this location?

9.29 A laminar boundary layer velocity profile is approximated
by for and for (a)
Show that this profile satisfies the appropriate boundary conditions.
(b) Use the momentum integral equation to determine the boundary
layer thickness,

9.30 A laminar boundary layer velocity profile is approximated
by the two straight-line segments indicated in Fig. P9.30. Use the
momentum integral equation to determine the boundary layer
thickness, and wall shear stress, Compare
these results with those in Table 9.2.

tw � tw1x2.d � d1x2,

d � d1x2.

y 7 d.u � Uy � d,u�U � 32 � 1y�d2 4 1y�d2

Rexcr � 5 � 105.

v
f � f 1h2

ru2�2,
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yU =
1 m/s

x

� = 4 m

Edge of boundary layer

Streamline A–B

δB

B

A

F I G U R E  P9.19

F I G U R E  P9.20

1 ft d(x) 2 ft/s

U =
2 ft/s

x

F I G U R E  P9.22

u ~ y0.40

u ~ y0.28

u ~ y0.16

450

300

150

0

y,
 m

9.20 Air enters a square duct through a 1-ft opening as is shown
in Fig. P9.20. Because the boundary layer displacement thickness
increases in the direction of flow, it is necessary to increase the
cross-sectional size of the duct if a constant velocity is
to be maintained outside the boundary layer. Plot a graph of the
duct size, d, as a function of x for if U is to remain
constant. Assume laminar flow.

0 � x � 10 ft

U � 2 ft�s

9.21 A smooth, flat plate of length and width 
is placed in water with an upstream velocity of 
Determine the boundary layer thickness and the wall shear stress
at the center and the trailing edge of the plate. Assume a laminar
boundary layer.

9.22 An atmospheric boundary layer is formed when the wind
blows over the earth’s surface. Typically, such velocity profiles
can be written as a power law: where the constants a and
n depend on the roughness of the terrain. As is indicated in Fig.
P9.22, typical values are for urban areas, for
woodland or suburban areas, and for flat open country
1Ref. 232. (a) If the velocity is 20 ft�s at the bottom of the sail on
your boat what is the velocity at the top of the mast

(b) If the average velocity is 10 mph on the tenth1y � 30 ft2?
1y � 4 ft2,

n � 0.16
n � 0.28n � 0.40

u � ayn,

U � 0.5 m�s.
b � 4 m/ � 6 m

F I G U R E  P9.30

y

δ

δ /2

u

U0 2U___
3

*9.31 For a fluid of specific gravity flowing past a flat
plate with an upstream velocity of the wall shear stress
on a flat plate was determined to be as indicated in the table below.
Use the momentum integral equation to determine the boundary

U � 5 m�s,
SG � 0.86
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layer momentum thickness, Assume at the
leading edge, x � 0.

™ � 0™ � ™ 1x2.

Section 9.3 Drag

9.32 Obtain a photograph/image of an everyday item in which
drag plays a key role. Print this photo and write a brief paragraph
that describes the situation involved.

9.33 Should a canoe paddle be made rough to get a “better grip
on the water” for paddling purposes? Explain.

9.34 Define the purpose of “streamlining” a body.

9.35 Water flows over two flat plates with the same laminar free-
stream velocity. Both plates have the same width, but Plate #2
is twice as long as Plate #1. What is the relationship between
the drag force for these two plates?

9.36 Fluid flows past a flat plate with a drag force 1. If the free-
stream velocity is doubled, will the new drag force, 2, be larger
or smaller than 1 and by what amount?

9.37 A model is placed in an air flow with a given velocity and
then placed in water flow with the same velocity. If the drag
coefficients are the same between these two cases, how do the
drag forces compare between the two fluids?

9.38 The drag coefficient for a newly designed hybrid car is
predicted to be 0.21. The cross-sectional area of the car is 30 ft2.
Determine the aerodynamic drag on the car when it is driven
through still air at 55 mph.

9.39 A 5-m-diameter parachute of a new design is to be used
to transport a load from flight altitude to the ground with an
average vertical speed of 3 m/s. The total weight of the load and
parachute is 200 N. Determine the approximate drag coefficient
for the parachute.

9.40 A 50-mph wind blows against an outdoor movie screen
that is 70 ft wide and 20 ft tall. Estimate the wind force on the
screen.

9.41 The aerodynamic drag on a car depends on the “shape” of
the car. For example, the car shown in Fig. P9.41 has a drag
coefficient of 0.36 with the windows and roof closed. With the
windows and roof open, the drag coefficient increases to 0.45.

d

d

d

With the windows and roof open, at what speed is the amount
of power needed to overcome aerodynamic drag the same as it
is at 65 mph with the windows and roof closed? Assume the
frontal area remains the same. Recall that power is force times
velocity.

9.42 A rider on a bike with the combined mass of 100 kg attains
a terminal speed of 15 m/s on a 12% slope. Assuming that the
only forces affecting the speed are the weight and the drag,
calculate the drag coefficient. The frontal area is 0.9 m2.
Speculate whether the rider is in the upright or racing position.

9.43 A baseball is thrown by a pitcher at 95 mph through
standard air. The diameter of the baseball is 2.82 in. Estimate
the drag force on the baseball.

9.44 A logging boat is towing a log that is 2 m in diameter and
8 m long at 4 m/s through water. Estimate the power required if
the axis of the log is parallel to the tow direction.

9.45 A sphere of diameter D and density falls at a steady rate
through a liquid of density and viscosity If the Reynolds
number, is less than 1, show that the viscosity can
be determined from 

9.46 The square, flat plate shown in Fig. P9.46a is cut into four
equal-sized pieces and arranged as shown in Fig. P9.46b.
Determine the ratio of the drag on the original plate [case (a)]
to the drag on the plates in the configuration shown in (b).
Assume laminar boundary flow. Explain your answer physically.

m � gD21rs � r2�18 U.
Re � rDU�m,

m.r
rs
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x (m) (N� )

0 —
0.2 13.4
0.4 9.25
0.6 7.68
0.8 6.51
1.0 5.89
1.2 6.57
1.4 6.75
1.6 6.23
1.8 5.92
2.0 5.26

m2Tw

F I G U R E  P9.41

Windows and roof
closed: CD = 0.35

Windows open; roof
open: CD = 0.45

F I G U R E  P9.46

U

U

�

4�

�

�/4

(b)

(a)

9.47 If the drag on one side of a flat plate parallel to the upstream
flow is when the upstream velocity is U, what will the drag be
when the upstream velocity is 2U; or Assume laminar flow.

9.48 Water flows past a triangular flat plate oriented parallel to
the free stream as shown in Fig. P9.48. Integrate the wall shear
stress over the plate to determine the friction drag on one side of
the plate. Assume laminar boundary layer flow.

U�2?
d

U = 0.2 m/s
1.0 m

45°

45°

F I G U R E  P9.48
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9.49 For small Reynolds number flows the drag coefficient of an
object is given by a constant divided by the Reynolds number 1see
Table 9.42. Thus, as the Reynolds number tends to zero, the drag
coefficient becomes infinitely large. Does this mean that for small
velocities 1hence, small Reynolds numbers2 the drag is very large?
Explain.

9.50 A rectangular car-top carrier of 1.6-ft height, 5.0-ft length
(front to back), and 4.2-ft width is attached to the top of a car. Esti-
mate the additional power required to drive the car with the carrier
at 60 mph through still air compared with the power required to dri-
ving only the car at 60 mph.

9.51 As shown in Video V9.2 and Fig. P9.51a, a kayak is a relatively
streamlined object. As a first approximation in calculating the drag
on a kayak, assume that the kayak acts as if it were a smooth, flat
plate 17 ft long and 2 ft wide. Determine the drag as a function of
speed and compare your results with the measured values given in
Fig. P9.51b. Comment on reasons why the two sets of values may
differ.

9.52 A 38.1-mm-diameter, 0.0245-N table tennis ball is released
from the bottom of a swimming pool. With what velocity does it rise
to the surface? Assume it has reached its terminal velocity.

9.53 To reduce aerodynamic drag on a bicycle, it is proposed that
the cross-sectional shape of the handlebar tubes be made “tear-
drop” shape rather than circular. Make a rough estimate of the
reduction in aerodynamic drag for a bike with this type of
handlebars compared with the standard handlebars. List all
assumptions.

9.54 A hot air balloon roughly spherical in shape has a volume
of 70,000 ft3 and a weight of 500 lb (including passengers, basket,
ballon fabric, etc.). If the outside air temperature is 80 ºF and the
temperature within the balloon is 165 ºF, estimate the rate at which
it will rise under steady state conditions if the atmospheric pressure
is 14.7 psi.

9.55 It is often assumed that “sharp objects can cut through the
air better than blunt ones.” Based on this assumption, the drag on
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F I G U R E  P9.51

8

6

4

2

0
2 4

Kayak speed U, ft/s
6 8

M
ea

su
re

d 
dr

ag
 �

, 
lb

(b)

(a)

the object shown in Fig. P9.55 should be less when the wind blows
from right to left than when it blows from left to right. Experiments
show that the opposite is true. Explain.

*9.56 The device shown in Fig. P9.56 is to be designed to measure
the wall shear stress as air flows over the smooth surface with an
upstream velocity U. It is proposed that can be obtained by
measuring the bending moment, M, at the base [point (1)] of the
support that holds the small surface element which is free from
contact with the surrounding surface. Plot a graph of M as a
function of U for with � � 2, 3, 4, and 5 m.5 � U � 50 m�s,

tw

U? U?

F I G U R E  P9.55

U
�

(1)

Square

10 mm

5 mm

F I G U R E  P9.56

9.57 A 12-mm-diameter cable is strung between a series of poles
that are 50 m apart. Determine the horizontal force this cable puts
on each pole if the wind velocity is 30 m/s.

9.58 How fast do small water droplets of 
diameter fall through the air under standard sea-level conditions?
Assume the drops do not evaporate. Repeat the problem for standard
conditions at 5000-m altitude.

9.59 A strong wind can blow a golf ball off the tee by pivoting it
about point 1 as shown in Fig. P9.59. Determine the wind speed
necessary to do this.

16 � 10�8 m20.06 mm

9.60 A 22 in. by 34 in. speed limit sign is supported on a 3-in.
wide, 5-ft-long pole. Estimate the bending moment in the pole at
ground level when a 30-mph wind blows against the sign. (See
Video V9.9.) List any assumptions used in your calculations.

9.61 Determine the moment needed at the base of 20-m-tall, 0.12-
m-diameter flag pole to keep it in place in a wind.

9.62 Repeat Problem 9.61 if a 2-m by 2.5-m flag is attached to the
top of the pole. See Fig. 9.30 for drag coefficient data for flags.

20 m�s

0.20 in.

Weight = 0.0992 lb

Radius = 0.845 in.

(1)

U

F I G U R E  P9.59
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9.64 How much more power is required to pedal a bicycle at 
15 mph into a 20-mph head-wind than at 15 mph through still air?
Assume a frontal area of and a drag coefficient of

†9.65 Estimate the wind velocity necessary to knock over a 
10-lb garbage can that is 3 ft tall and 2 ft in diameter. List your
assumptions.

9.66 On a day without any wind, your car consumes x gallons of
gasoline when you drive at a constant speed, U, from point A to
point B and back to point A. Assume that you repeat the journey,
driving at the same speed, on another day when there is a steady
wind blowing from B to A. Would you expect your fuel
consumption to be less than, equal to, or greater than x gallons for
this windy round-trip? Support your answer with appropriate
analysis.

9.67 The structure shown in Fig. P9.67 consists of three
cylindrical support posts to which an elliptical flat-plate sign is
attached. Estimate the drag on the structure when a 50-mph wind
blows against it.

CD � 0.88.
3.9 ft2

9.69 As shown in Video V9.7 and Fig. P9.69, a vertical wind tunnel
can be used for skydiving practice. Estimate the vertical wind speed
needed if a 150-lb person is to be able to “float” motionless when
the person (a) curls up as in a crouching position or (b) lies flat. See
Fig. 9.30 for appropriate drag coefficient data.

*9.70 The helium-filled balloon shown in Fig. P9.70 is to be used
as a wind speed indicator. The specific weight of the helium is

the weight of the balloon material is 0.20 lb, and
the weight of the anchoring cable is negligible. Plot a graph of as
a function of U for Would this be an effective
device over the range of U indicated? Explain.

1 � U � 50 mph.
u

g � 0.011 lb�ft3,
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16 ft

0.6 ft

0.8 ft

1 ft 15 ft

15 ft

15 ft

5 ft
WADE’S
BARGIN

BURGERS

F I G U R E  P9.67

9.68 As shown in Video V9.13 and Fig. P9.68, the aerodynamic
drag on a truck can be reduced by the use of appropriate air
deflectors. A reduction in drag coefficient from to

corresponds to a reduction of how many horsepower
needed at a highway speed of 65 mph?
CD � 0.70

CD � 0.96

(a) CD = 0.70

b = width = 10 ft

Schuetz
2009

Schuetz
2009

(b) CD = 0.96

12 ft

F I G U R E  P9.68

U

F I G U R E  P9.69

F I G U R E  P9.70

U
2-ft diameter

θ

9.71 A 0.30-m-diameter cork ball ( ) is tied to an object
on the bottom of a river as is shown in Fig. P9.71. Estimate the

SG � 0.21

†9.63 During a flash flood, water rushes over a road as shown in
Fig. P9.63 with a speed of 12 mph. Estimate the maximum water
depth, h, that would allow a car to pass without being swept away.
List all assumptions and show all calculations.
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speed of the river current. Neglect the weight of the cable and the
drag on it.

the soil ball, point A. Estimate the tension in the rope if the wind
is 80 km hr. See Fig. 9.30 for drag coefficient data.

9.74 Estimate the wind force on your hand when you hold it out
of your car window while driving 55 mph. Repeat your calculations
if you were to hold your hand out of the window of an airplane
flying 550 mph.

†9.75 Estimate the energy that a runner expends to overcome
aerodynamic drag while running a complete marathon race. This
expenditure of energy is equivalent to climbing a hill of what
height? List all assumptions and show all calculations.

9.76 A 2-mm-diameter meteor of specific gravity 2.9 has a speed
of 6 km/s at an altitude of 50,000 m where the air density is

. If the drag coefficient at this large Mach
number condition is 1.5, determine the deceleration of the meteor.

9.77 Air flows past two equal sized spheres (one rough, one
smooth) that are attached to the arm of a balance as is indicated
in Fig. P9.77. With the beam is balanced. What is the
minimum air velocity for which the balance arm will rotate
clockwise?

U � 0

1.03 � 10�3 kg�m3

�

9.79 The United Nations Building in New York is approximately
87.5-m wide and 154-m tall. (a) Determine the drag on this building
if the drag coefficient is 1.3 and the wind speed is a uniform 
(b) Repeat your calculations if the velocity profile against the
building is a typical profile for an urban area 1see Problem 9.222
and the wind speed halfway up the building is 

9.80 A regulation football is 6.78 in. in diameter and weighs 0.91 lb.
If its drag coefficient is determine its deceleration if it
has a speed of at the top of its trajectory.20 ft�s

CD � 0.2,

20 m�s.

20 m�s.

9.72 A shortwave radio antenna is constructed from circular
tubing, as is illustrated in Fig. P9.72. Estimate the wind force on
the antenna in a 100 km hr wind.�

9.73 The large, newly planted tree shown in Fig. P9.73 is kept
from tipping over in a wind by use of a rope as shown. It is assumed
that the sandy soil cannot support any moment about the center of
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U

30°

10-mm diameter
1 m long

40-mm diameter
5 m long

0.25 m

0.6 m

0.5 m20-mm diameter
1.5 m long

F I G U R E  P9.72

2 m
Rope

Scale drawing

45�

U = 80 km/hr

A

F I G U R E  P9.73

D = 0.1 m Rough sphere
/D = 1.25 × 10–2

Smooth
sphere

0.5 m0.3 m

∋

U

F I G U R E  P9.77

Air
Area = 0.6 ft2

Area = 0.3 ft2

Pressure
gage

F I G U R E  P9.78

9.78 A 2-in.-diameter sphere weighing 0.14 lb is suspended by
the jet of air shown in Fig. P9.78 and Video V3.2. The drag
coefficient for the sphere is 0.5. Determine the reading on the
pressure gage if friction and gravity effects can be neglected for
the flow between the pressure gage and the nozzle exit.
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9.81 An airplane tows a banner that is tall and
long at a speed of If the drag coefficient

based on the area is estimate the power required to
tow the banner. Compare the drag force on the banner with that on
a rigid flat plate of the same size. Which has the larger drag force
and why?

†9.82 Skydivers often join together to form patterns during the
free-fall portion of their jump. The current Guiness Book of World
Records record is 297 skydivers joined hand-to-hand. Given that
they can’t all jump from the same airplane at the same time,
describe how they manage to get together (see Video V9.7). Use
appropriate fluid mechanics equations and principles in your
answer.

9.83 The paint stirrer shown in Fig. P9.83 consists of two circular
disks attached to the end of a thin rod that rotates at 80 rpm. The
specific gravity of the paint is and its viscosity is

Estimate the power required to drive the
mixer if the induced motion of the liquid is neglected.
m � 2 � 10�2 lb # s�ft2.

SG � 1.1

CD � 0.06,b/
150 km�hr./ � 25 m

b � 0.8 m

†9.84 If the wind becomes strong enough, it is “impossible” to
paddle a canoe into the wind. Estimate the wind speed at which this
will happen. List all assumptions and show all calculations.

9.85 A fishnet consists of 0.10-in.-diameter strings tied into squares
4 in. per side. Estimate the force needed to tow a 15-ft by 30-ft
section of this net through seawater at 

9.86 As indicated in Fig. P9.86, the orientation of leaves on a tree
is a function of the wind speed, with the tree becoming “more
streamlined” as the wind increases. The resulting drag coefficient
for the tree (based on the frontal area of the tree, HW) as a function
of Reynolds number (based on the leaf length, L) is approximated
as shown. Consider a tree with leaves of length . What
wind speed will produce a drag on the tree that is 6 times greater
than the drag on the tree in a wind?15 ft�s

L � 0.3 ft

5 ft�s.

9.88 Show that for level flight at a given speed, the power required
to overcome aerodynamic drag decreases as the altitude increases.
Assume that the drag coefficient remains constant. This is one
reason why airlines fly at high altitudes.

9.89 (See Fluids in the News article “Dimpled baseball bats,” Section
9.3.3.) How fast must a 3.5-in.-diameter, dimpled baseball bat move
through the air in order to take advantage of drag reduction produced
by the dimples on the bat. Although there are differences, assume the
bat (a cylinder) acts the same as a golf ball in terms of how the dimples
affect the transition from a laminar to a turbulent boundary layer.

9.90 (See Fluids in the News article “At 10,240 mpg it doesn’t cost
much to ‘fill ’er up,’” Section 9.3.3.) (a) Determine the power it
takes to overcome aerodynamic drag on a small ( cross section),
streamlined ( ) vehicle traveling 15 mph. (b) Compare the
power calculated in part (a) with that for a large ( cross-
sectional area), nonstreamlined SUV traveling 65
mph on the interstate.

Section 9.4 Lift

9.91 Obtain a photograph image of a device, other than an aircraft
wing, that creates lift. Print this photo and write a brief paragraph
that describes the situation involved.

9.92 A rectangular wing with an aspect ratio of 6 is to generate
1000 lb of lift when it flies at a speed of 200 ft s. Determine the
length of the wing if its lift coefficient is 1.0.

9.93 Explain why aircraft and birds take off and land into the 
wind.

9.94 A Piper Cub airplane has a gross weight of 1750 lb, a cruising
speed of 115 mph, and a wing area of . Determine the lift
coefficient of this airplane for these conditions.

9.95 A light aircraft with a wing area of and a weight of
2000 lb has a lift coefficient of 0.40 and a drag coefficient of 0.05.
Determine the power required to maintain level flight.

9.96 As shown in Video V9.19 and Fig. P9.96, a spoiler is used
on race cars to produce a negative lift, thereby giving a better
tractive force. The lift coefficient for the airfoil shown is ,
and the coefficient of friction between the wheels and the pavement
is 0.6. At a speed of 200 mph, by how much would use of the
spoiler increase the maximum tractive force that could be generated
between the wheels and ground? Assume the air speed past the
spoiler equals the car speed and that the airfoil acts directly over
the drive wheels.

CL � 1.1

200 ft2

179 ft2

�

�

1CD � 0.482
36 ft2

CD � 0.12
6 ft2

9.87 The blimp shown in Fig. P9.87 is used at various athletic
events. It is 128 ft long and has a maximum diameter of 33 ft. If
its drag coefficient (based on the frontal area) is 0.060, estimate
the power required to propel it (a) at its 35-mph cruising speed, or
(b) at its maximum 55-mph speed.
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U
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200 mph

TJ Wente II
Golf Supplies

Spoiler 1.5 ft

b = spoiler length = 4 ft
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9.97 The wings of old airplanes are often strengthened by the use
of wires that provided cross-bracing as shown in Fig. P9.97. If the
drag coefficient for the wings was 0.020 1based on the planform
area2, determine the ratio of the drag from the wire bracing to that
from the wings.

9.98 A wing generates a lift when moving through sea-level air
with a velocity U. How fast must the wing move through the air
at an altitude of 10,000 m with the same lift coefficient if it is to
generate the same lift?

9.99 Air blows over the flat-bottomed, two-dimensional object
shown in Fig. P9.99. The shape of the object, , and the
fluid speed along the surface, , are given in the table.
Determine the lift coefficient for this object.

u � u1x2
y � y1x2

l

the same configuration 1i.e., angle of attack, flap settings, etc.2, what
is its takeoff speed if it is loaded with 372 passengers? Assume each
passenger with luggage weighs 200 lb.

9.102 Show that for unpowered flight 1for which the lift, drag, and
weight forces are in equilibrium2 the glide slope angle, is given
by 

9.103 If the lift coefficient for a Boeing 777 aircraft is 15 times
greater than its drag coefficient, can it glide from an altitude of
30,000 ft to an airport 80 mi away if it loses power from its engines?
Explain. 1See Problem 9.102.2

9.104 On its final approach to the airport, an airplane flies on a
flight path that is relative to the horizontal. What lift-to-drag
ratio is needed if the airplane is to land with its engines idled back
to zero power? 1See Problem 9.102.2

9.105 Over the years there has been a dramatic increase in the
flight speed (U) and altitude (h), weight and wing loading
( divided by wing area) of aircraft. Use the data
given in the table below to determine the lift coefficient for each
of the aircraft listed.

w�A � weight
1w2,

3.0°

tan u � CD�CL.
u,

9.100 To help ensure safe flights, air-traffic controllers enforce a
minimum time interval between takeoffs. During busy times this
can result in a long queue of aircraft waiting for takeoff clearance.
Based on the flow shown in Fig. 9.37 and Videos V4.6, V9.1, and
V9.19, explain why the interval between takeoffs can be shortened
if the wind has a cross-runway component (as opposed to blowing
directly down the runway).

9.101 A Boeing 747 aircraft weighing 580,000 lb when loaded with
fuel and 100 passengers takes off with an airspeed of 140 mph. With
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Speed:  70 mph
Wing area:  148 ft2

Wire:  length = 160 ft
         diameter = 0.05 in.

x(% c) y(% c) u⁄U

0 0 0
2.5 3.72 0.971
5.0 5.30 1.232
7.5 6.48 1.273

10 7.43 1.271
20 9.92 1.276
30 11.14 1.295
40 11.49 1.307
50 10.45 1.308
60 9.11 1.195
70 6.46 1.065
80 3.62 0.945
90 1.26 0.856

100 0 0.807

U

y

x
c

u = u(x)

u = U

F I G U R E  P9.99

Aircraft Year , lb U, mph h, ft

Wright Flyer 1903 750 35 1.5 0
Douglas DC-3 1935 25,000 180 25.0 10,000
Douglas DC-6 1947 105,000 315 72.0 15,000
Boeing 747 1970 800,000 570 150.0 30,000

w�A, lb�ft2
w

F I G U R E  P9.110

9.106 The landing speed of an airplane such as the Space Shuttle
is dependent on the air density. (See Video V9.1.) By what percent
must the landing speed be increased on a day when the temperature
is compared to a day when it is Assume that the
atmospheric pressure remains constant.

9.107 Commercial airliners normally cruise at relatively high
altitudes 130,000 to 35,000 ft2. Discuss how flying at this high
altitude 1rather than 10,000 ft, for example2 can save fuel costs.

9.108 A pitcher can pitch a “curve ball” by putting sufficient spin
on the ball when it is thrown. A ball that has absolutely no spin will
follow a “straight” path. A ball that is pitched with a very small
amount of spin 1on the order of one revolution during its flight between
the pitcher’s mound and home plate2 is termed a knuckle ball. A ball
pitched this way tends to “jump around” and “zig-zag” back and forth.
Explain this phenomenon. Note: A baseball has seams.

9.109 For many years, hitters have claimed that some baseball
pitchers have the ability to actually throw a rising fastball.
Assuming that a top major leaguer pitcher can throw a 95-mph
pitch and impart an 1800-rpm spin to the ball, is it possible for the
ball to actually rise? Assume the baseball diameter is 2.9 in. and its
weight is 5.25 oz.

9.110 (See Fluids in the News article “Learning from nature,”
Section 9.4.1.) As indicated in Fig. P9.110, birds can significantly

50 °F?110 °F
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alter their body shape and increase their planform area, A, by
spreading their wing and tail feathers, thereby reducing their flight
speed. If during landing the planform area is increased by 50% and
the lift coefficient increased by 30% while all other parameters are
held constant, by what percent is the flight speed reduced?

9.111 (See Fluids in the News article “Why winglets?, ” Section
9.4.2.) It is estimated that by installing appropriately designed
winglets on a certain airplane the drag coefficient will be reduced
by 5%. For the same engine thrust, by what percent will the aircraft
speed be increased by use of the winglets?

■ Lab Problems

9.112 This problem involves measuring the boundary layer profile
on a flat plate. To proceed with this problem, go to Appendix H
which is located on the book’s web site, www.wiley.com/college/
munson.

9.113 This problem involves measuring the pressure distribution
on a circular cylinder. To proceed with this problem, go to Appendix
H which is located on the book’s web site, www.wiley.com/college/
munson.

■ Life Long Learning Problems

9.114 One of the “Fluids in the News” articles in this chapter
discusses pressure-sensitive paint—a new technique of measuring
surface pressure. There have been other advances in fluid
measurement techniques, particularly in velocity measurements.
One such technique is particle image velocimetry, or PIV. Obtain
information about PIV and its advantages. Summarize your
findings in a brief report.

9.115 For typical aircraft flying at cruise conditions, it is
advantageous to have as much laminar flow over the wing as
possible since there is an increase in friction drag once the flow
becomes turbulent. Various techniques have been developed to help
promote laminar flow over the wing, both in airfoil geometry
configurations as well as active flow control mechanisms. Obtain
information on one of these techniques. Summarize your findings
in a brief report.

9.116 We have seen in this chapter that streamlining an automobile
can help to reduce the drag coefficient. One of the methods of
reducing the drag has been to reduce the projected area. However,

it is difficult for some road vehicles, such as a tractor-trailer, to
reduce this projected area due to the storage volume needed to haul
the required load. Over the years, work has been done to help
minimize some of the drag on this type of vehicle. Obtain
information on a method that has been developed to reduce drag
on a tractor-trailer. Summarize your findings in a brief report.

■ FlowLab Problems

*9.117 This FlowLab problem involves simulation of flow past an
airfoil and investigation of the surface pressure distribution as a
function of angle of attack. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/munson.

*9.118 This FlowLab problem involves investigation of the effects
of angle-of-attack on lift and drag for flow past an airfoil. To
proceed with this problem, go to the book’s web site, www.
wiley.com/college/munson.

*9.119 This FlowLab problem involves simulating the effects of al-
titude on the lift and drag of an airfoil. To proceed with this problem,
go to the book’s web site, www.wiley.com/college/munson.

*9.120 This FlowLab problem involves comparison between in-
viscid and viscous flows past an airfoil. To proceed with this prob-
lem, go to the book’s web site, www.wiley.com/college/munson.

*9.121 This FlowLab problem involves simulating the pressure
distribution for flow past a cylinder and investigating the differ-
ences between inviscid and viscous flows. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/
munson.

*9.122 This FlowLab problem involves comparing CFD
predictions and theoretical values of the drag coefficient of flow
past a cylinder. To proceed with this problem, go to the book’s web
site, www.wiley.com/college/munson.

*9.123 This FlowLab problem involves simulating the unsteady
flow past a cylinder. To proceed with this problem, go to the book’s
web site, www.wiley.com/college/munson.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.

Problems 533
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CHAPTER OPENING PHOTO: Hydraulic jump: Under certain conditions, when water flows in an open chan-

nel, even if it has constant geometry, the depth of the water may increase considerably over a short distance

along the channel. This phenomenon is termed a hydraulic jump (water flow from left to right).

Open-channel flow involves the flow of a liquid in a channel or conduit that is not completely

filled. A free surface exists between the flowing fluid (usually water) and fluid above it (usually

the atmosphere). The main driving force for such flows is the fluid weight—gravity forces the fluid

to flow downhill. Most open-channel flow results are based on correlations obtained from model

and full-scale experiments. Additional information can be gained from various analytical and nu-

merical efforts.

Open-channel flows are essential to the world as we know it. The natural drainage of water

through the numerous creek and river systems is a complex example of open-channel flow. Although

the flow geometry for these systems is extremely complex, the resulting flow properties are of

considerable economic, ecological, and recreational importance. Other examples of open-channel flows

include the flow of rainwater in the gutters of our houses; the flow in canals, drainage ditches, sewers,

and gutters along roads; the flow of small rivulets and sheets of water across fields or parking lots;

and the flow in the chutes of water rides in amusement parks.

Open-channel flow involves the existence of a free surface which can distort into various shapes.

Thus, a brief introduction into the properties and characteristics of surface waves is included.

The purpose of this chapter is to investigate the concepts of open-channel flow. Because of

the amount and variety of material available, only a brief introduction to the topic can be presented.

Further information can be obtained from the references indicated.

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ discuss the general characteristics of open-channel flow. 

■ use a specific energy diagram. 

■ apply appropriate equations to analyze open-channel flow with uniform

depth.

■ calculate key properties of a hydraulic jump. 

■ determine flowrates based on open-channel flow-measuring devices.

V10.1 Off-shore oil
drilling platform.
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10.1 General Characteristics of Open-Channel Flow 535

In our study of pipe flow 1Chapter 82, we found that there are many ways to classify a flow—

developing, fully developed, laminar, turbulent, and so on. For open-channel flow, the existence of

a free surface allows additional types of flow. The extra freedom that allows the fluid to select its

free-surface location and configuration 1because it does not completely fill a pipe or conduit2 allows

important phenomena in open-channel flow that cannot occur in pipe flow. Some of the

classifications of the flows are described below.

The manner in which the fluid depth, y, varies with time, t, and distance along the channel, x, is

used to partially classify a flow. For example, the flow is unsteady or steady depending on whether the

depth at a given location does or does not change with time. Some unsteady flows can be viewed as

steady flows if the reference frame of the observer is changed. For example, a tidal bore 1difference it

water level2 moving up a river is unsteady to an observer standing on the bank, but steady to an observer

moving along the bank with the speed of the wave front of the bore. Other flows are unsteady regardless

of the reference frame used. The complex, time-dependent, wind-generated waves on a lake are in this

category. In this book we will consider only steady open-channel flows.

An open-channel flow is classified as uniform flow 1UF2 if the depth of flow does not vary

along the channel Conversely, it is nonuniform flow or varied flow if the depth varies

with distance Nonuniform flows are further classified as rapidly varying flow 1RVF2
if the flow depth changes considerably over a relatively short distance; Gradually
varying flows 1GVF2 are those in which the flow depth changes slowly with distance along the

channel; Examples of these types of flow are illustrated in Fig. 10.1 and the photographs

in the margin. The relative importance of the various types of forces involved 1pressure, weight,

shear, inertia2 is different for the different types of flows.

As for any flow geometry, open-channel flow may be laminar, transitional, or turbulent,
depending on various conditions involved. Which type of flow occurs depends on the Reynolds

number, where V is the average velocity of the fluid and is the hydraulic radius

of the channel 1see Section 10.42. A general rule is that open-channel flow is laminar if 

turbulent if and transitional otherwise. The values of these dividing Reynolds

numbers are only approximate—a precise knowledge of the channel geometry is necessary to

obtain specific values. Since most open-channel flows involve water 1which has a fairly small

viscosity2 and have relatively large characteristic lengths, it is rare to have laminar open-channel

flows. For example, flow of water with an average velocity of

in a river with a hydraulic radius of has The flow

is turbulent. However, flow of a thin sheet of water down a driveway with an average velocity of

such that 1in such cases the hydraulic radius is approximately equal to

the fluid depth; see Section 10.42 has The flow is laminar.

In some cases stratified flows are important. In such situations layers of two or more fluids

of different densities flow in a channel. A layer of oil on water is one example of this type of flow.

All of the open-channel flows considered in this book are homogeneous flows. That is, the fluid

has uniform properties throughout.

Open-channel flows involve a free surface that can deform from its undisturbed relatively

flat configuration to form waves. Such waves move across the surface at speeds that depend on

Re � 355.

Rh � 0.02 ftV � 0.25 ft�s

Re � VRh�n � 7.1 � 105.Rh � 10 ftV � 1 ft�s
1n � 1.41 � 10�5 ft2�s250 °F

Re 7 12,500,

Re 6 500,

RhRe � rVRh�m,

dy�dx � 1.

dy�dx � 1.

1dy�dx � 02.
1dy�dx � 02.

10.1 General Characteristics of Open-Channel Flow

Open-channel flow
can have a variety
of characteristics.

UF uniform flow
GVF gradually varying flow
RVF rapidly varying flow

RVF UF RVF UF RVF GVF RVF UF

y

F I G U R E  10.1 Classification of open-channel flow.

Uniform flow

Rapidly varying flow

(photograph courtesy

of Stillwater Sciences).
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their size 1height, length2 and properties of the channel 1depth, fluid velocity, etc.2. The character

of an open-channel flow may depend strongly on how fast the fluid is flowing relative to how fast

a typical wave moves relative to the fluid. The dimensionless parameter that describes this behavior

is termed the Froude number, where is an appropriate characteristic length of

the flow. This dimensionless parameter was introduced in Chapter 7 and is discussed more fully

in Section 10.2. As shown by the figure in the margin, the special case of a flow with a Froude number

of unity, is termed a critical flow. If the Froude number is less than 1, the flow is subcritical
1or tranquil2. A flow with the Froude number greater than 1 is termed supercritical 1or rapid 2.

Fr � 1,

/Fr � V� 1g/21�2,

536 Chapter 10 ■ Open-Channel Flow

The distinguishing feature of flows involving a free surface 1as in open-channel flows2 is the

opportunity for the free surface to distort into various shapes. The surface of a lake or the ocean is

seldom “smooth as a mirror.” It is usually distorted into ever-changing patterns associated with

surface waves as shown in the photos in the margin. Some of these waves are very high, some barely

ripple the surface; some waves are very long 1the distance between wave crests2, some are short;

some are breaking waves that form whitecaps, others are quite smooth. Although a general study of

this wave motion is beyond the scope of this book, an understanding of certain fundamental properties

of simple waves is necessary for open-channel flow considerations. The interested reader is

encouraged to use some of the excellent references available for further study about wave motion

1Refs. 1, 2, 32.

10.2 Surface Waves

F l u i d s  i n  t h e  N e w s

Rogue Waves There is a long history of stories concerning giant

rogue ocean waves that come out of nowhere and capsize ships. The

movie Poseidon (2006) is based on such an event. Although these

giant, freakish waves were long considered fictional, recent satel-

lite observations and computer simulations prove that, although

rare, they are real. Such waves are single, sharply-peaked mounds

of water that travel rapidly across an otherwise relatively calm

ocean. Although most ships are designed to withstand waves up to

15 meters high, satellite measurements and data from offshore oil

platforms indicate that such rogue waves can reach a height of 30

meters. Although researchers still do not understand the formation

of these large rogue waves, there are several suggestions as to how

ordinary smaller waves can be focused into one spot to produce a

giant wave. Additional theoretical calculations and wave tank ex-

periments are needed to adequately grasp the nature of such

waves. Perhaps it will eventually be possible to predict the occur-

rence of these destructive waves, thereby reducing the loss of ships

and life because of them.

10.2.1 Wave Speed

Consider the situation illustrated in Fig. 10.2a in which a single elementary wave of small height,

is produced on the surface of a channel by suddenly moving the initially stationary end wall

with speed The water in the channel was stationary at the initial time, A stationary

observer will observe a single wave move down the channel with a wave speed c, with no fluid

motion ahead of the wave and a fluid velocity of behind the wave. The motion is unsteady

for such an observer. For an observer moving along the channel with speed c, the flow will

appear steady as shown in Fig. 10.2b. To this observer, the fluid velocity will be on

the observer’s right and to the left of the observer.

The relationship between the various parameters involved for this flow can be obtained by

application of the continuity and momentum equations to the control volume shown in Fig. 10.2b
as follows. With the assumption of uniform one-dimensional flow, the continuity equation 1Eq.

5.122 becomes

where b is the channel width. This simplifies to

c �
1y � dy2dV

dy

�cyb � 1�c � dV2 1y � dy2b

V � 1�c � dV2 î
V � �cî

dV

t � 0.dV.

dy,

V10.2 Filling your
car’s gas tank.

Fr =
√gy
V

0

1 Critical

Supercritical

Subcritical
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or in the limit of small amplitude waves with 

(10.1)

Similarly, the momentum equation 1Eq. 5.222 is

where we have written the mass flowrate as and have assumed that the pressure variation

is hydrostatic within the fluid. That is, the pressure forces on the channel cross sections 112 and 122
are and respectively. If we again impose the

assumption of small amplitude waves [i.e., ], the momentum equation reduces to

(10.2)

Combination of Eqs. 10.1 and 10.2 gives the wave speed

(10.3)

as indicated by the figure in the margin.

The speed of a small amplitude solitary wave as is indicated in Fig. 10.2 is proportional to

the square root of the fluid depth, y, and independent of the wave amplitude, The fluid density

is not an important parameter, although the acceleration of gravity is. This is a result of the fact

that such wave motion is a balance between inertial effects 1proportional to 2 and weight or

hydrostatic pressure effects 1proportional to 2. A ratio of these forces eliminates the common

factor but retains g. For very small waves (like those produced by insects on water as shown in

the photograph on the cover of the book), Eq. 10.3 is not valid because the effects of surface tension

are significant.

The wave speed can also be calculated by using the energy and continuity equations rather

than the momentum and continuity equations as is done above. A simple wave on the surface is

shown in Fig. 10.3. As seen by an observer moving with the wave speed, c, the flow is steady.

Since the pressure is constant at any point on the free surface, the Bernoulli equation for this

frictionless flow is simply

V 2

2g
� y � constant

r

g � rg
r

dy.

c � 1gy

dV

dy
�

g

c

1dy22 � y dy
F2 � gyc2A2 � gy2b�2,F1 � gyc1A1 � g1y � dy22b�2

m
#

� rbcy

1
2 gy2b � 1

2 g1y � dy22b � rbcy 3 1c � dV2 � c 4

c � y 
dV

dy

dy � y
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Control
surface Stationary wave

V = (– c +   V)iδ
y +   yδ yV = – c i

x

x

Channel width = b

(1) (2)
(b)

(a)

Moving
end wall

Vδ yδ

Vδ

c = wave speed

y Stationary
fluid

^

^

F I G U R E  10.2 (a) Production of a single elementary wave in
a channel as seen by a stationary observer. (b) Wave as seen by an observer
moving with a speed equal to the wave speed.

The wave speed can
be obtained from
the continuity and
momentum equa-
tions.

10

8

6

4

2

0
0 2 4 6 8 10

c,
 m

/s

y, m

√c =   gy
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or by differentiating

Also, by differentiating the continuity equation, we obtain

We combine these two equations to eliminate and and use the fact that for this situation

1the observer moves with speed c2 to obtain the wave speed given by Eq. 10.3. 

The above results are restricted to waves of small amplitude because we have assumed one-

dimensional flow. That is, More advanced analysis and experiments show that the wave

speed for finite-sized solitary waves exceeds that given by Eq. 10.3. To a first approximation, one

obtains 1Ref. 42

As indicated by the figure in the margin, the larger the amplitude, the faster the wave travels.

A more general description of wave motion can be obtained by considering continuous 1not

solitary2 waves of sinusoidal shape as is shown in Fig. 10.4. By combining waves of various

wavelengths, and amplitudes, it is possible to describe very complex surface patterns found

in nature, such as the wind-driven waves on a lake. Mathematically, such a process consists of

using a Fourier series 1each term of the series represented by a wave of different wavelength and

amplitude2 to represent an arbitrary function 1the free-surface shape2.
A more advanced analysis of such sinusoidal surface waves of small amplitude shows that

the wave speed varies with both the wavelength and fluid depth as 1Ref. 12

(10.4)

where is the hyperbolic tangent of the argument The result is plotted 

in Fig. 10.5. For conditions for which the water depth is much greater than the wavelength 1
as in the ocean2, the wave speed is independent of y and given by

c �
A

gl

2p

y 	 l,

2py�l.tanh12py�l2

c � c
gl

2p
 tanh a

2py

l
b d

1�2

dy,l,

c � 1gy a1 �
dy

y
b

1� 2

dy�y � 1.

V � cdydV

y dV � V dy � 0

Vy � constant,

V dV
g

� dy � 0

538 Chapter 10 ■ Open-Channel Flow

V10.3 Water strider

δy

V = c V = c +   Vδ
y

Moving
fluid

Stationary wave

F I G U R E  10.3 Stationary simple wave in
a flowing fluid.

10

8

6

4

2

0
0 2 4 6 8 10

c
, 

m
/s

y, m

y
= 0.4

dy

y
= 0.2

dy

y
= 0

dy

F I G U R E  10.4 Sinusoidal surface wave.

c

y = mean depth

= lengthλ
c    tδ

Surface at time t

Surface at
time t +   tδ

y =
amplitude

δ

V10.4 Sinusoidal
waves
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This result, shown in the figure in the margin, follows from Eq. 10.4, since as

Note that waves with very long wavelengths [e.g., waves created by a tsunami (“tidal

wave”) with wavelengths on the order of several kilometers] travel very rapidly. On the other hand,

if the fluid layer is shallow 1 as often happens in open channels2, the wave speed is given

by as derived for the solitary wave in Fig. 10.2. This result also follows from Eq. 10.4,

since as These two limiting cases are shown in Fig. 10.5. For

moderate depth layers the results are given by the complete Eq. 10.4. Note that for a given

fluid depth, the long wave travels the fastest. Hence, for our purposes we will consider the wave

speed to be this limiting situation, c � 1gy21�2.

1y � l2,
y�lS 0.tanh12py�l2S 2py�l

c � 1gy21�2,

y � l,

y�lS 
.

tanh12py�l2S 1
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F I G U R E  10.5 Wave speed as a function
of wavelength.

c2__
gy

1.0

0
0 __

y
λ

y >> λ

y << λ

Eq. 10.4

c = g  __
2  

λ
π√

deep layer

c =  gy √ shallow layer

150

50

100

0
0 2 4 6 8 10

c,
 m

/s

l, km

y >> l

F l u i d s  i n  t h e  N e w s

Tsunami, the nonstorm wave A tsunami, often miscalled a “tidal

wave,” is a wave produced by a disturbance (for example, an earth-

quake, volcanic eruption, or meteorite impact) that vertically dis-

places the water column. Tsunamis are characterized as shallow-

water waves, with long periods, very long wavelengths, and

extremely large wave speeds. For example, the waves of the great

December 2005, Indian Ocean tsunami traveled with speeds to

500–1000 m/s. Typically, these waves were of small amplitude in

deep water far from land. Satellite radar measured the wave height

less than 1 m in these areas. However, as the waves approached

shore and moved into shallower water, they slowed down consid-

erably and reached heights up to 30 m. Because the rate at which a

wave loses its energy is inversely related to its wavelength,

tsunamis, with their wavelengths on the order of 100 km, not only

travel at high speeds, they also travel great distances with minimal

energy loss. The furthest reported death from the Indian Ocean

tsunami occurred approximately 8000 km from the epicenter of

the earthquake that produced it. (See Problem 10.14.)

10.2.2 Froude Number Effects

Consider an elementary wave traveling on the surface of a fluid, as is shown in the figure in the

margin and Fig. 10.2a. If the fluid layer is stationary, the wave moves to the right with speed c
relative to the fluid and the stationary observer. If the fluid is flowing to the left with velocity

the wave 1which travels with speed c relative to the fluid2 will travel to the right with a

speed of relative to a fixed observer. If the fluid flows to the left with the wave will

remain stationary, but if the wave will be washed to the left with speed 

The above ideas can be expressed in dimensionless form by use of the Froude number,

where we take the characteristic length to be the fluid depth, y. Thus, the

Froude number, is the ratio of the fluid velocity to the wave speed.

The following characteristics are observed when a wave is produced on the surface of a

moving stream, as happens when a rock is thrown into a river. If the stream is not flowing, the

wave spreads equally in all directions. If the stream is nearly stationary or moving in a tranquil

manner 1i.e., 2, the wave can move upstream. Upstream locations are said to be in hydraulic

communication with the downstream locations. That is, an observer upstream of a disturbance can

tell that there has been a disturbance on the surface because that disturbance can propagate upstream

V 6 c

Fr � V� 1gy21�2 � V�c,

Fr � V� 1gy21�2,

V � c.V 7 c
V � c,c � V

V 6 c,

V > c

Stationary

V = c

V < c

c – V

V – c
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to the observer. Viscous effects, which have been neglected in this discussion, will eventually damp

out such waves far upstream. Such flow conditions, or are termed subcritical.
On the other hand, if the stream is moving rapidly so that the flow velocity is greater than

the wave speed 1i.e., 2, no upstream communication with downstream locations is possible.

Any disturbance on the surface downstream from the observer will be washed farther downstream.

Such conditions, or are termed supercritical. For the special case of or

the upstream propagating wave remains stationary and the flow is termed critical.Fr � 1,

V � cFr 7 1,V 7 c

V 7 c

Fr 6 1,V 6 c,
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GIVEN At a certain location along the Rock River shown in

Fig. E10.1a, the velocity, V, of the flow is a function of the depth,

SOLUTION

EXAMPLE 10.1

While the river travels to the left with speed V, the surface wave

travels upstream (to the right) with speed relative to

the water (not relative to the ground). Hence relative to the sta-

tionary ground, the wave travels to the right with speed

(2)

For the wave to travel upstream, so that from Eq. 2,

or

(Ans)

COMMENT As shown above, if the river depth is less than

2.14 ft, its velocity is less than the wave speed and the wave can

travel upstream against the current. This is consistent with the fact

that if a wave is to travel upstream, the flow must be subcritical (i.e.,

). For this flow

This result is plotted in Fig. E10.1c. Note that in agreement with

the above answer, for the flow is subcritical; the wave

can travel upstream.

y 6 2.14

 � 0.881 y1�6
 �  5 y1�6� 132.2 ft�s221�2

 Fr � V�c � 15 y2�32� 1g y21�2

Fr � V�c 6 1

y 6 2.14 ft

132.2 y21�2 7 5 y2�3

c � V 7 0

 � 132.2 ft�s2 y21�2 � 5 y2�3
 c � V � 1g y21�2 � 5 y2�3

c � 1g y21�2

F I G U R E  E10.1a

V

F I G U R E  E10.1b

14

12

10

8

6

4

2

0
0 1 2 3

V = 5y2/3

4

V
, 

ft
/s

y, ft

Measured values

F I G U R E  E10.1c

1.2

1

0.8

Fr 0.6

0.4

0.2

0
0 1 2 3 4

y, ft

(2.14,1)

y, of the river as indicated in Fig. E10.1b. A reasonable approxi-

mation to these experimental results is

(1)

where V is in ft/s and y is in ft.

FIND For what range of water depth will a surface wave on the

river be able to travel upstream?

V � 5 y2�3

The character of an open-channel flow may depend strongly on whether the flow is subcritical

or supercritical. The characteristics of the flow may be completely opposite for subcritical flow

than for supercritical flow. For example, as is discussed in Section 10.3, a “bump” on the bottom
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of a river 1such as a submerged log2 may cause the surface of the river to dip below the level it

would have had if the log were not there, or it may cause the surface level to rise above its

undisturbed level. Which situation will happen depends on the value of Fr. Similarly, for supercritical

flows it is possible to produce steplike discontinuities in the fluid depth 1called a hydraulic jump;

see Section 10.6.12. For subcritical flows, however, changes in depth must be smooth and

continuous. Certain open-channel flows, such as the broad-crested weir 1Section 10.6.32, depend

on the existence of critical flow conditions for their operation.

As strange as it may seem, there exist many similarities between the open-channel flow of

a liquid and the compressible flow of a gas. The governing dimensionless parameter in each case

is the fluid velocity, V, divided by a wave speed, the surface wave speed for open-channel flow or

sound wave speed for compressible flow. Many of the differences between subcritical 

and supercritical open-channel flows have analogs in subsonic and supersonic

compressible gas flow, where Ma is the Mach number. Some of these similarities are

discussed in this chapter and in Chapter 11.

1Ma 7 12
1Ma 6 121Fr 7 12

1Fr 6 12
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A typical segment of an open-channel flow is shown in Fig. 10.6. The slope of the channel bottom

1or bottom slope2, is assumed constant over the segment shown. The fluid depths

and velocities are and as indicated. Note that the fluid depth is measured in the vertical

direction and the distance x is horizontal. For most open-channel flows the value of is very small

1the bottom is nearly horizontal2. For example, the Mississippi River drops a distance of 1470 ft in

its 2350-mi length to give an average value of In such circumstances the values of

x and y are often taken as the distance along the channel bottom and the depth normal to the bottom,

with negligibly small differences introduced by the two coordinate schemes.

With the assumption of a uniform velocity profile across any section of the channel, the one-

dimensional energy equation for this flow 1Eq. 5.842 becomes

(10.5)

where is the head loss due to viscous effects between sections 112 and 122 and 

Since the pressure is essentially hydrostatic at any cross section, we find that and

so that Eq. 10.5 becomes

(10.6)

One of the difficulties of analyzing open-channel flow, similar to that discussed in Chapter 8 for pipe

flow, is associated with the determination of the head loss in terms of other physical parameters.

Without getting into such details at present, we write the head loss in terms of the slope of the

energy line, 1often termed the friction slope2, as indicated in Fig. 10.6. Recall fromSf � hL�/

y1 �
V 2

1

2g
� S0/ � y2 �

V 2
2

2g
� hL

p2 �g � y2

p1�g � y1

z1 � z2 � S0/.hL

p1

g
�

V 2
1

2g
� z1 �

p2

g
�

V 2
2

2g
� z2 � hL

S0 � 0.000118.

S0

V2y1, y2, V1,

S0 � 1z1 � z22�/,

10.3 Energy Considerations

The slope of the
bottom of most
open channels is
very small; the 
bottom is nearly
horizontal.

F I G U R E  10.6 Typical open-channel geometry.

1 Sf
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2g

y1 V1

(1)
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�
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hL

Slope = Sf
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V10.5 Bicycle
through a puddle
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Chapter 3 that the energy line is located a distance z 1the elevation from some datum to the channel

bottom2 plus the pressure head plus the velocity head above the datum. Therefore,

Eq. 10.6 can be written as

(10.7)

If there is no head loss, the energy line is horizontal and the total energy of the

flow is free to shift between kinetic energy and potential energy in a conservative fashion. In

the specific instance of a horizontal channel bottom and negligible head loss 

Eq. 10.7 simply becomes

10.3.1 Specific Energy

The concept of the specific energy or specific head, E, defined as

(10.8)

is often useful in open-channel flow considerations. The energy equation, Eq. 10.7, can be written

in terms of E as

(10.9)

If head losses are negligible, then so that and the sum of the

specific energy and the elevation of the channel bottom remains constant 1i.e.,

a statement of the Bernoulli equation2.
If we consider a simple channel whose cross-sectional shape is a rectangle of width b, the

specific energy can be written in terms of the flowrate per unit width, as

(10.10)

which is illustrated by the figure in the margin.

For a given channel of constant width, the value of q remains constant along the channel, although

the depth, y, may vary. To gain insight into the flow processes involved, we consider the specific energy
diagram, a graph of , with q fixed, as shown in Fig. 10.7. The relationship between the flow

depth, y, and the velocity head, as given by Eq. 10.8 is indicated in the figure.V 2�2g,

E � E1y2

E � y �
q2

2gy2

Vyb�b � Vy,q � Q�b �

E1 � z1 � E2 � z2,

1Sf � S02/ � �S0/ � z2 � z1Sf � 0

E1 � E2 � 1Sf � S02/

E � y �
V 2

2g

y1 � y2 �
1V 2

2 � V 2
12

2g

1Sf � 02,1S0 � 02

1Sf � 02,

y1 � y2 �
1V 2 

2 � V 2
12

2g
� 1Sf � S02/

1V 2�2g21p�g2

542 Chapter 10 ■ Open-Channel Flow

The specific energy
is the sum of poten-
tial energy and
kinetic energy (per
unit weight).

E

y

q = constant

F I G U R E  10.7 Specific energy 
diagram.

y = E

y

ysub

ysup

yneg

yc

Emin E

q = q'

q = q" > q'

y

V2

2g
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For given q and E, Eq. 10.10 is a cubic equation with three

solutions, and If the specific energy is large enough 1i.e., where is a

function of q2, two of the solutions are positive and the other, is negative. The negative root,

represented by the curved dashed line in Fig. 10.7, has no physical meaning and can be ignored.

Thus, for a given flowrate and specific energy there are two possible depths, unless the vertical

line from the E axis does not intersect the specific energy curve corresponding to the value of q
given 1i.e., 2. These two depths are termed alternate depths.

For large values of E the upper and lower branches of the specific energy diagram 

approach and respectively. These limits correspond to a very deep channel flowing

very slowly as with fixed2, or a very high-speed flow in a

shallow channel 

As is indicated in Fig. 10.7, Thus, since is constant along the curve, it

follows that where the subscripts “sub” and “sup” on the velocities correspond to the

depths so labeled. The specific energy diagram consists of two portions divided by the “nose”

of the curve. We will show that the flow conditions at this location correspond to critical conditions

those on the upper portion of the curve correspond to subcritical conditions 1hence, the

“sub” subscript2, and those on the lower portion of the curve correspond to supercritical conditions

1hence, the “sup” subscript2.
To determine the value of we use Eq. 10.10 and set to obtain

or

(10.11)

where the subscript “c” denotes conditions at By substituting this back into Eq. 10.10 we

obtain

By combining Eq. 10.11 and , we obtain

or Thus, critical conditions occur at the location of Since the

layer is deeper and the velocity smaller for the upper part of the specific energy diagram 1compared

with the conditions at 2, such flows are subcritical Conversely, flows for the lower

part of the diagram are supercritical. This is shown by the figure in the margin. Thus, for a given

flowrate, q, if there are two possible depths of flow, one subcritical and the other

supercritical.

It is often possible to determine various characteristics of a flow by considering the specific

energy diagram. Example 10.2 illustrates this for a situation in which the channel bottom eleva-

tion is not constant.

E 7 Emin

1Fr 6 12.Emin

Emin.1Fr � 12Frc � Vc� 1gyc2
1�2 � 1.

Vc �
q

yc
�
1y3�2

c g1�22

yc
� 1gyc

Vc � q�yc

Emin �
3yc

2

Emin.

yc � a
q2

g
b

1�3

dE

dy
� 1 �

q2

gy3
� 0

dE�dy � 0Emin,

1Fr � 12,

Emin

Vsup 7 Vsub,

q � Vyysup 6 ysub.

1E � y � V 2�2g S V 2�2g as y S 02.
q � Vyy S 
1E � y � V 2�2g S y

y � 0,y � E
1ysub and ysup2

 E 6 Emin

yneg,

EminE 7 Emin,yneg.ysup, ysub,

3y3 � Ey2 � 1q2�2g2 � 0 4
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For a given value
of specific energy, a
flow may have al-
ternate depths.

E

Fr = 1

Fr < 1

Fr > 1

y

GIVEN Water flows up a 0.5-ft-tall ramp in a constant width

rectangular channel at a rate as is shown in Fig.

E10.2a. 1For now disregard the “bump.”2 The upstream depth is

2.3 ft and viscous effects are negligible.

q � 5.75 ft2�s

Specific Energy Diagram—QuantitativeEXAMPLE 10.2

FIND Determine the elevation of the water surface downstream

of the ramp, y2 � z2.
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F I G U R E  E10.2

(b)

0
0

1

2

3

4

1 2 3 4

y,
 f

t
(c)

(2')

(2)

0.5

(1)

Emin = 1.51 E1 = 2.40

E, ft

E2 = 1.90

y1 = 2.30

q =
5.75 ft2/s

yc =
1.01

SOLUTION

specific energy to As is seen from Fig. E10.2a, this would

require a specified elevation 1bump2 in the channel bottom so

that critical conditions would occur above this bump. The height

of this bump can be obtained from the energy equation 1Eq.

10.92 written between points 112 and 1c2 with 1no viscous

effects2 and . That is, . In par-

ticular, since and 

the top of this bump would need to be

above the chan-

nel bottom at section 112. The flow could then accelerate to su-

percritical conditions as is shown by the free surface

represented by the dashed line in Fig. E10.2a.
Since the actual elevation change 1a ramp2 shown in Fig.

E10.2a does not contain a bump, the downstream conditions will

correspond to the subcritical flow denoted by 122, not the super-

critical condition Without a bump on the channel bottom,

the state is inaccessible from the upstream condition state 112.
Such considerations are often termed the accessibility of flow
regimes. Thus, the surface elevation is

(Ans)

Note that since and the

elevation of the free surface decreases as it goes across the

ramp.

y2 � z2 � 2.22 ft,y1 � z1 � 2.30 ft

y2 � z2 � 2.22 ft

12¿ 2
12¿ 2.

1Fr2¿ 7 12

ft � 1.51 ft � 0.89 ftzc � z1 � E1 � Emin � 2.40

31q2�g21�3�2 � 1.51 ft,

Emin � 3yc�2 �E1 � y1 � 0.513�y1
2 � 2.40 ft

E1 � Emin � z1 � zcS0/ � z1 � zc

Sf � 0

Emin.

With and conservation of energy 1Eq. 10.6

which, under these conditions, is actually the Bernoulli equation2
requires that

For the conditions given and

this becomes

(1)

where and are in ft�s and feet, respectively. The continuity

equation provides the second equation

or

(2)

Equations 1 and 2 can be combined to give

which has solutions

Note that two of these solutions are physically realistic, but the

negative solution is meaningless. This is consistent with the previ-

ous discussions concerning the specific energy 1recall the three

roots indicated in Fig. 10.72. The corresponding elevations of the

free surface are either

or

The question is which of these two flows is to be expected? This

can be answered by use of the specific energy diagram obtained

from Eq. 10.10, which for this problem is

where E and y are in feet. The diagram is shown in Fig. E10.2b.
The upstream condition corresponds to subcritical flow; the

downstream condition is either subcritical or supercritical,

corresponding to points 2 or Note that since 

it follows that the downstream condi-

tions are located 0.5 ft to the left of the upstream conditions on the

diagram.

With a constant width channel, the value of q remains the

same for any location along the channel. That is, all points for

the flow from 112 to 122 or must lie along the 

curve shown. Any deviation from this curve would imply either

a change in q or a relaxation of the one-dimensional flow as-

sumption. To stay on the curve and go from 112 around the criti-

cal point 1point c2 to point would require a reduction in 12¿ 2

q � 5.75 ft2�s12¿ 2

1z2 � z12 � E2 � 0.5 ft,

E1 � E2 �2¿.

E � y �
0.513

y2

y2 � z2 � 0.638 ft � 0.50 ft � 1.14 ft

y2 � z2 � 1.72 ft � 0.50 ft � 2.22 ft

y2 � 1.72 ft,  y2 � 0.638 ft, or y2 � �0.466 ft

y2
3 � 1.90y2

2 � 0.513 � 0

y2V2 � 5.75 ft2�s

y2V2 � y1V1

y2V2

1.90 � y2 �
V 2

2

64.4

V1 � q�y1 � 2.5 ft�s2,
y1 � 2.3 ft,1z1 � 0, z2 � 0.5 ft,

y1 �
V 2

1

2g
� z1 � y2 �

V 2
2

2g
� z2

hL � 0,S0/ � z1 � z2

y1 =
2.3 ft

V1 =
2.5 ft/s V2y2

z1 = 0

z2 = 0.5 ft0.89 ft
0.5 ft

Ramp

Bump

Free surface with ramp

Free
surface

with bump

(a)

(c)
y2
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10.3.2 Channel Depth Variations

By using the concepts of the specific energy and critical flow conditions it is possible to

determine how the depth of a flow in an open channel changes with distance along the channel.

In some situations the depth change is very rapid so that the value of is of the order of 1.

Complex effects involving two- or three-dimensional flow phenomena are often involved in such

flows.

In this section we consider only gradually varying flows. For such flows, and it

is reasonable to impose the one-dimensional velocity assumption. At any section the total head is

and the energy equation 1Eq. 10.52 becomes

where is the head loss between sections 112 and 122.
As is discussed in the previous section, the slope of the energy line is and

the slope of the channel bottom is Thus, since

we obtain

or

(10.12)

For a given flowrate per unit width, q, in a rectangular channel of constant width b, we have 

or by differentiation

dV

dx
� �

q

y2
 

dy

dx
� �

V
y

 

dy

dx

V � q�y

V
g

 

dV

dx
�

dy

dx
� Sf � S0

dhL

dx
�

V
g

 
dV

dx
�

dy

dx
� S0

dH

dx
�

d

dx
 a

V 2

2g
� y � zb �

V
g

 
dV

dx
�

dy

dx
�

dz

dx

dz�dx � S0.

dH�dx � dhL �dx � Sf

hL

H1 � H2 � hL

H � V 2�2g � y � z

dy�dx � 1

dy�dx

1Fr � 12,
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112 on the lower 1supercritical2 branch of the specific energy curve

and ends at 122 on the same branch with Since both y and

z increase from 112 to 122, the surface elevation, also

increases. Thus, flow up a ramp is different for subcritical than it

is for supercritical conditions.

y � z,

y2 7 y1.
COMMENT If the flow conditions upstream of the ramp

were supercritical, the free-surface elevation and fluid depth

would increase as the fluid flows up the ramp. This is indicated in

Fig. E10.2c along with the corresponding specific energy dia-

gram, as is shown in Fig. E10.2d. For this case the flow starts at

F I G U R E  E10.2 (Continued)

(2)

0.5 ft

(1)

E

y

y2
y1

(d)(c)

V1 > c1

V2 > c2

y1

y2 > y1

0.5 ft
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so that the kinetic energy term in Eq. 10.12 becomes

(10.13)

where is the local Froude number of the flow. Substituting Eq. 10.13 into Eq. 10.12

and simplifying gives

(10.14)

It is seen that the rate of change of fluid depth, depends on the local slope of the

channel bottom, , the slope of the energy line, , and the Froude number, Fr. As shown by the

figure in the margin, the value of can be either negative, zero, or positive, depending on

the values of these three parameters. That is, the channel flow depth may be constant or it may

increase or decrease in the flow direction, depending on the values of , , and Fr. The behavior

of subcritical flow may be the opposite of that for supercritical flow, as seen by the denominator,

of Eq. 10.14.

Although in the derivation of Eq. 10.14 we assumed q is constant 1i.e., a rectangular channel2,
Eq. 10.14 is valid for channels of any constant cross-sectional shape, provided the Froude number

is interpreted properly 1Ref. 32. In this book we will consider only rectangular cross-sectional

channels when using this equation.

1 � Fr2,

SfS0

dy�dx
SfS0

dy�dx,

dy

dx
�
1Sf � S02

11 � Fr22

Fr � V� 1gy21� 2

V
g

 
dV

dx
� �

V 2

gy
 
dy

dx
� �Fr2 

dy

dx
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10.4 Uniform Depth Channel Flow

Many channels are designed to carry fluid at a uniform depth all along their length. Irrigation canals

are frequently of uniform depth and cross section for considerable lengths. Natural channels such

as rivers and creeks are seldom of uniform shape, although a reasonable approximation to the

flowrate in such channels can often be obtained by assuming uniform flow. In this section we will

discuss various aspects of such flows.

Uniform depth flow can be accomplished by adjusting the bottom slope, so

that it precisely equals the slope of the energy line, That is, This can be seen from Eq.

10.14. From an energy point of view, uniform depth flow is achieved by a balance between the

potential energy lost by the fluid as it coasts downhill and the energy that is dissipated by viscous

effects 1head loss2 associated with shear stresses throughout the fluid. Similar conclusions can be

reached from a force balance analysis as discussed in the following section.

10.4.1 Uniform Flow Approximations

We consider fluid flowing in an open channel of constant cross-sectional size and shape such that

the depth of flow remains constant as is indicated in Fig. 10.8. The area of the section is A and

the wetted perimeter 1i.e., the length of the perimeter of the cross section in contact with the fluid2
is P. The interaction between the fluid and the atmosphere at the free surface is assumed negligible

so that this portion of the perimeter is not included in the definition of the wetted perimeter.

Since the fluid must adhere to the solid surfaces, the actual velocity distribution in an open

channel is not uniform. Some typical velocity profiles measured in channels of various shapes are

indicated in Fig. 10.9a. The maximum velocity is often found somewhat below the free surface,

S0 � Sf.Sf.

S0,1dy�dx � 02

V10.6 Merging
channels

0
0.5 1.5 2

Fr

dy
dx Sf = So

Sf > So
Sf < So

F I G U R E  10.8 
Uniform flow in an open channel.

Q

a

a
Free surface A = flow area

P = wetted
      perimeter

Section    –a a

(a) (b)

The wall shear
stress acts on the
wetted perimeter
of the channel.
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and the fluid velocity is zero on the wetted perimeter, where a wall shear stress, is developed.

This shear stress is seldom uniform along the wetted perimeter, with typical variations as are

indicated in Fig. 10.9b.
Fortunately, reasonable analytical results can be obtained by assuming a uniform velocity

profile, V, and a constant wall shear stress, Similar assumptions were made for pipe flow

situations 1Chapter 82, with the friction factor being used to obtain the head loss.

tw.

tw,
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F I G U R E  10.9 Typical velocity and
shear stress distributions in an open channel:
(a) velocity distribution throughout the cross section,
(b) shear stress distribution on the wetted perimeter.

Lines of
constant
velocity

Centerline
velocity
profiles

u

y

(a)

(b)

u

y

Actual
Uniform

τ  w = shear stress
distribution

τ  w

F l u i d s  i n  t h e  N e w s

Plumbing the Everglades Because of all of the economic de-

velopment that has occurred in southern Florida, the natural

drainage pattern of that area has been greatly altered during the

past century. Previously there was a vast network of surface

flow southward from the Orlando area, to Lake Okeechobee,

through the Everglades, and out to the Gulf of Mexico. Cur-

rently a vast amount of freshwater from Lake Okeechobee and

surrounding waterways (1.7 billion gallons per day) is sluiced

into the ocean for flood control, bypassing the Everglades. A

new long-term Comprehensive Everglades Restoration Plan is

being implemented to restore, preserve, and protect the south

Florida ecosystem. Included in the plan are the use of numer-

ous aquifer-storage-and-recovery systems that will recharge the

ecosystem. In addition, surface water reservoirs using artificial

wetlands will clean agricultural runoff. In an attempt to im-

prove the historical flow from north to south, old levees will be

removed, parts of the Tamiami Trail causeway will be altered,

and stored water will be redirected through miles of new pipes

and rebuilt canals. Strictly speaking, the Everglades will not be

“restored.” However, by 2030, 1.6 million acres of national

parkland will have cleaner water and more of it. (See Problem

10.77.) 

10.4.2 The Chezy and Manning Equations

The basic equations used to determine the uniform flowrate in open channels were derived many

years ago. Continual refinements have taken place to obtain better values of the empirical coefficients

involved. The result is a semiempirical equation that provides reasonable engineering results. A

more refined analysis is perhaps not warranted because of the complexity and uncertainty of the

flow geometry 1i.e., channel shape and the irregular makeup of the wetted perimeter, particularly

for natural channels2.
Under the assumptions of steady uniform flow, the x component of the momentum equation

1Eq. 5.222 applied to the control volume indicated in Fig. 10.10 simply reduces to

since There is no acceleration of the fluid, and the momentum flux across section 112 is

the same as that across section 122. The flow is governed by a simple balance between the forces

in the direction of the flow. Thus, or

(10.15)F1 � F2 � twP/ �w sin u � 0

�Fx � 0,

V1 � V2.

�Fx � rQ1V2 � V12 � 0

For steady, uniform
depth flow in an
open channel 
there is no fluid 
acceleration.

JWCL068_ch10_534-578.qxd  9/30/08  8:33 AM  Page 547



where and are the hydrostatic pressure forces across either end of the control volume, as shown

by the figure in the margin. Because the flow is at a uniform depth it follows that 

so that these two forces do not contribute to the force balance. The term is the component of

the fluid weight that acts down the slope, and is the shear force on the fluid, acting up the slope

as a result of the interaction of the water and the channel’s wetted perimeter. Thus, Eq. 10.15 becomes

where we have used the approximation that since the bottom slope is typically

very small 2. Since and the hydraulic radius is defined as the

force balance equation becomes

(10.16)

Most open-channel flows are turbulent rather than laminar. In fact, typical Reynolds numbers

are quite large, well above the transitional value and into the wholly turbulent regime. As was

discussed in Chapter 8, and shown by the figure in the margin, for very large Reynolds number pipe

flows 1wholly turbulent flows2, the friction factor, f, is found to be independent of Reynolds number,

dependent only on the relative roughness, , of the pipe surface. For such cases, the wall shear

stress is proportional to the dynamic pressure, and independent of the viscosity. That is,

where K is a constant dependent upon the roughness of the pipe.

It is not unreasonable that similar shear stress dependencies occur for the large Reynolds

number open-channel flows. In such situations, Eq. 10.16 becomes

or

(10.17)

where the constant C is termed the Chezy coefficient and Eq. 10.17 is termed the Chezy equation.
This equation, one of the oldest in the area of fluid mechanics, was developed in 1768 by A. Chezy

11718–17982, a French engineer who designed a canal for the Paris water supply. The value of the

Chezy coefficient, which must be determined by experiments, is not dimensionless but has the

dimensions of per time 1i.e., the square root of the units of acceleration2.
From a series of experiments it was found that the slope dependence of Eq. 10.17 

is reasonable, but that the dependence on the hydraulic radius is more nearly rather than

In 1889, R. Manning 11816–18972, an Irish engineer, developed the following somewhat

modified equation for open-channel flow to more accurately describe the dependence:

(10.18)V �
R2�3

h S0
1�2

n

Rh

V � Rh
1�2.

V � Rh
2�3
1V � S0

1�22
1length21�2

V � C 2RhS0

Kr 
V 2

2
� gRhS0

tw � Kr 
V 2

2

rV 2�2,

e�D

tw �
gA/S0

P/
� gRhS0

Rh � A�P,w � gA/1i.e., S0 � 1

sin u � tan u � S0,

tw �
w sin u

P/
�
w S0

P/

twP/
wsin u

F1 � F21y1 � y22,
F2F1
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For uniform depth,
channel flow is gov-
erned by a balance
between friction
and weight.

F I G U R E  10.10
Control volume for uniform flow
in an open channel.

F1

V1

(1)
θ

y1 = y2

= 0τ

�

y2τ P�

� =   A�γ

� sin θ

(2)

F2

V2 = V1

x

Control surface

θ
w

 f

Wholly
turbulent

Re

f = f �  �e
D

p(y)

Equal pressure
distributions

y 2
 =

 y
1

y1

y
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Equation 10.18 is termed the Manning equation, and the parameter n is the Manning resistance
coefficient. Its value is dependent on the surface material of the channel’s wetted perimeter and is

obtained from experiments. It is not dimensionless, having the units of or 

As is discussed in Chapter 7, any correlation should be expressed in dimensionless form,

with the coefficients that appear being dimensionless coefficients, such as the friction factor for

pipe flow or the drag coefficient for flow past objects. Thus, Eq. 10.18 should be expressed in

dimensionless form. Unfortunately, the Manning equation is so widely used and has been used for

so long that it will continue to be used in its dimensional form with a coefficient, n, that is not

dimensionless. The values of n found in the literature 1such as Table 10.12 were developed for SI

units. Standard practice is to use the same value of n when using the BG system of units, and to

insert a conversion factor into the equation.

Thus, uniform flow in an open channel is obtained from the Manning equation written as

(10.19)

and

(10.20)

where if SI units are used, and if BG units are used. The value 1.49 is the cube

root of the number of feet per meter: Thus, by using in meters, A in 

and the average velocity is and the flowrate By using in feet, A in and

the average velocity is and the flowrate 

Typical values of the Manning coefficient are indicated in Table 10.1. As expected, the

rougher the wetted perimeter, the larger the value of n. For example, the roughness of floodplain

surfaces increases from pasture to brush to tree conditions. So does the corresponding value of

the Manning coefficient. Thus, for a given depth of flooding, the flowrate varies with floodplain

roughness as indicated by the figure in the margin.

Precise values of n are often difficult to obtain. Except for artificially lined channel

surfaces like those found in new canals or flumes, the channel surface structure may be quite

complex and variable. There are various methods used to obtain a reasonable estimate of the

value of n for a given situation 1Ref. 52. For the purpose of this book, the values from Table

10.1 are sufficient. Note that the error in Q is directly proportional to the error in n. A 10%

ft3�s.ft�sk � 1.49,

ft2,Rhm3�s.m�sk � 1,

m2,Rh13.281 ft�m21�3 � 1.49.

k � 1.49k � 1

Q �
k

n
 ARh

2�3S1�2
0

V �
k

n
 Rh

2�3S0
1�2

s�ft1�3.s�m1�3
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The Manning equa-
tion is used to ob-
tain the velocity or
flowrate in an open
channel.

A. Natural channels
Clean and straight 0.030

Sluggish with deep pools 0.040

Major rivers 0.035

B. Floodplains
Pasture, farmland 0.035

Light brush 0.050

Heavy brush 0.075

Trees 0.15

C. Excavated earth channels
Clean 0.022

Gravelly 0.025

Weedy 0.030

Stony, cobbles 0.035

TA B L E 1 0 . 1

Values of the Manning Coefficient, n (Ref. 6)

Wetted Perimeter n Wetted Perimeter n

D. Artificially lined channels
Glass 0.010

Brass 0.011

Steel, smooth 0.012

Steel, painted 0.014

Steel, riveted 0.015

Cast iron 0.013

Concrete, finished 0.012

Concrete, unfinished 0.014

Planed wood 0.012

Clay tile 0.014

Brickwork 0.015

Asphalt 0.016

Corrugated metal 0.022

Rubble masonry 0.025

Q

n

0.150.10.05

Tr
ee

s
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h
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error in the value of n produces a 10% error in the flowrate. Considerable effort has been put

forth to obtain the best estimate of n, with extensive tables of values covering a wide variety

of surfaces 1Ref. 72. It should be noted that the values of n given in Table 10.1 are valid only

for water as the flowing fluid.

Both the friction factor for pipe flow and the Manning coefficient for channel flow are

parameters that relate the wall shear stress to the makeup of the bounding surface. Thus, various

results are available that describe n in terms of the equivalent pipe friction factor, f, and the surface

roughness, 1Ref. 82. For our purposes we will use the values of n from Table 10.1.

10.4.3 Uniform Depth Examples

A variety of interesting and useful results can be obtained from the Manning equation. The following

examples illustrate some of the typical considerations.

The main parameters involved in uniform depth open-channel flow are the size and shape of

the channel cross section the slope of the channel bottom the character of the material

lining the channel bottom and walls 1n2, and the average velocity or flowrate Although

the Manning equation is a rather simple equation, the ease of using it depends in part on which

variables are given and which are to be determined.

Determination of the flowrate of a given channel with flow at a given depth 1often termed

the normal flowrate for normal depth, sometimes denoted 2 is obtained from a straightforward

calculation as is shown in Example 10.3.

yn

1V or Q2.
1S02,1A, Rh2,

e

550 Chapter 10 ■ Open-Channel Flow

GIVEN Water flows in the canal of trapezoidal cross section

shown in Fig. E10.3a. The bottom drops 1.4 ft per 1000 ft of

length. The canal is lined with new finished concrete.

FIND Determine

(a) the flowrate and

(b) the Froude number for this flow.

Uniform Flow, Determine Flow RateEXAMPLE 10.3

SOLUTION

From Table 10.1, we obtain for the finished

concrete. Thus,

(Ans)

COMMENT The corresponding average velocity,

is 10.2 ft�s. It does not take a very steep slope 

for this velocity.

By repeating the calculations for various surface types 1i.e.,

various Manning coefficient values2, the results shown in Fig.

E10.3b are obtained. Note that the increased roughness causes

a decrease in the flowrate. This is an indication that for the tur-

bulent flows involved, the wall shear stress increases with sur-

face roughness. [For water at the Reynolds number

based on the 3.25-ft hydraulic radius of the channel and a

smooth concrete surface is 

well into the turbulent regime.]

(b) The Froude number based on the maximum depth for the

flow can be determined from For the finishedFr � V� 1gy21�2.

11.41 �10�5 ft2�s2� 2.35 �106,

3.25 ft 110.2 ft�s2�Re � RhV�n �

50 °F,

tan�1 10.00142 � 0.080°2
1S0 � 0.0014 or u �

V � Q�A,

Q �
10.98

0.012
� 915 cfs

n � 0.012(a) From Eq. 10.20,

(1)

where we have used since the dimensions are given in

BG units. For a depth of the flow area is

so that with a wetted perimeter of 

the hydraulic radius is determined to be 

Note that even though the channel is quite wide 1the free-

surface width is 23.9 ft2, the hydraulic radius is only 3.25 ft, which

is less than the depth.

Thus, with Eq. 1 becomes

where Q is in ft3�s.

Q �
1.49

n
 189.8 ft22 13.25 ft22�310.001421�2 �

10.98

n

S0 � 1.4 ft�1000 ft � 0.0014,

3.25 ft.

Rh � A�P �27.6 ft,

P �12 ft � 215�sin 40° ft2 �

A � 12 ft 15 ft2 � 5 ft a
5

tan 40°
 ftb � 89.8 ft2

y � 5 ft,

k � 1.49,

Q �
1.49

n
 ARh 

2�3 S0
1�2

F I G U R E  E10.3a

y = 5 ft
40°40°

12 ft

V10.7 Uniform
channel flow
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In some instances a trial-and-error or iteration method must be used to solve for the dependent

variable. This is often encountered when the flowrate, channel slope, and channel material are

given, and the flow depth is to be determined as illustrated in the following examples.

10.4 Uniform Depth Channel Flow 551

concrete case,

(Ans)

The flow is subcritical.

COMMENT The same results would be obtained for the

channel if its size were given in meters. We would use the same

value of n but set for this SI units situation.k � 1

Fr �
10.2 ft�s

132.2 ft�s2 � 5 ft21�2
� 0.804

F I G U R E  E10.3b

1200

1000

800

600

400

200

0
0 0.005 0.01 0.015 0.02 0.025 0.03

Q
, 
cf

s

n

Finished concrete

Rubble masonry

Brickwork Asphalt

GIVEN Water flows in the channel shown in Fig. E10.3a at a

rate of The canal lining is weedy.Q � 10.0 m3�s.

Uniform Flow, Determine Flow DepthEXAMPLE 10.4

SOLUTION

and-error methods. The only physically meaningful root of Eq. 1

1i.e., a positive, real number2 gives the solution for the normal

flow depth at this flowrate as

(Ans)

COMMENT By repeating the calculations for various

flowrates, the results shown in Fig. E10.4 are obtained. Note that

the water depth is not linearly related to the flowrate. That is, if

the flowrate is doubled, the depth is not doubled.

y � 1.50 m

In this instance neither the flow area nor the hydraulic radius are

known, although they can be written in terms of the depth, y.

Since the flowrate is given in m3/s, we will solve this problem using

SI units. Hence, the bottom width is (12 ft) (1 m/3.281 ft) � 3.66 m

and the area is

where A and y are in square meters and meters, respectively. Also,

the wetted perimeter is

so that

where and y are in meters. Thus, with 1from Table

10.12, Eq. 10.20 can be written as

which can be rearranged into the form

(1)

where y is in meters. The solution of Eq. 1 can be easily obtained

by use of a simple rootfinding numerical technique or by trial-

11.19y2 � 3.66y25 � 51513.11y � 3.6622 � 0

 � 10.001421�2

 �
1.0

0.030
 11.19y2 � 3.66y2 a

1.19y2 � 3.66y

3.11y � 3.66
b

2�3

 Q � 10 �
k

n
 AR2�3

h  S1�2
0

n � 0.030Rh

Rh �
A

P
�

1.19y2 � 3.66y

3.11y � 3.66

P � 3.66 � 2 a
y

sin 40°
b � 3.11y � 3.66

A � y a
y

tan 40°
b � 3.66y � 1.19y2 � 3.66y

FIND Determine the depth of the flow.

F I G U R E  E10.4

(10, 1.50)

3.0

2.5

2.0

1.5

1.0

0.5

0
0 5 10 15 20 25 30

y,
 m

Q, m3/s
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In Example 10.4 we found the flow depth for a given flowrate. Since the equation for this

depth is a nonlinear equation, it may be that there is more than one solution to the problem. For a

given channel there may be two or more depths that carry the same flowrate. Although this is not

normally so, it can and does happen, as is illustrated by Example 10.5.

552 Chapter 10 ■ Open-Channel Flow

GIVEN Water flows in a round pipe of diameter D at a depth

of as is shown in Fig. E10.5a. The pipe is laid on a

constant slope of and the Manning coefficient is n.

FIND (a) At what depth does the maximum flowrate occur?

(b) Show that for certain flowrates there are two depths possible

with the same flowrate. Explain this behavior.

S0,

0 � y � D,

Uniform Flow, Maximum Flow RateEXAMPLE 10.5

SOLUTION

It occurs when or 

Thus,

(Ans)

(b) For any there are two possible depths

that give the same Q. The reason for this behavior can be seen by

considering the gain in flow area, A, compared to the increase in

wetted perimeter, P, for The flow area increase for an

increase in y is very slight in this region, whereas the increase in

wetted perimeter, and hence the increase in shear force holding

back the fluid, is relatively large. The net result is a decrease in

flowrate as the depth increases. 

COMMENT For most practical problems, the slight difference

between the maximum flowrate and full pipe flowrates is negligible,

particularly in light of the usual inaccuracy of the value of n.

y � D.

0.929 6 Q�Qmax 6 1

Q � Qmax when y � 0.938D

rad � 303°.

u � 5.28y � 0.938D,Qfull � 0.929Qmax.

(a) According to the Manning equation 1Eq. 10.202 the flowrate is

(1)

where n, and are constants for this problem. From geometry

it can be shown that

where the angle indicated in Fig. E10.5a, is in radians. Simi-

larly, the wetted perimeter is

so that the hydraulic radius is

Therefore, Eq. 1 becomes

This can be written in terms of the flow depth by using

A graph of flowrate versus flow depth, has the

characteristic indicated in Fig. E10.5b. In particular, the maxi-

mum flowrate, does not occur when the pipe is full;Qmax,

Q � Q1y2,
y � 1D�22 31 � cos1u�22 4 .

Q �
k

n
 S1�2

0  
D8�3

81422�3
 c
1u � sin u25�3

u2�3
d

Rh �
A

P
�

D1u � sin u2

4u

P �
Du

2

u,

A �
D2

8
 1u � sin u2

kS0,

Q �
k

n
 AR2�3

h S1�2
0

F I G U R E  E10.5

θ
y

D

(a)

F l u i d s  i n  t h e  N e w s

Done without GPS or lasers Two thousand years before the

invention of such tools as the GPS or laser surveying equipment,

Roman engineers were able to design and construct structures that

made a lasting contribution to Western civilization. For example,

one of the best surviving examples of Roman aqueduct construc-

tion is the Pont du Gard, an aqueduct that spans the Gardon River

near Nîmes, France. This aqueduct is part of a circuitous, 50 km

long open channel that transported water to Rome from a spring

located 20 km from Rome.  The spring is only 14.6 m above the

point of delivery, giving an average bottom slope of only 3 � 10�4.

It is obvious that to carry out such a project, the Roman under-

standing of hydraulics, surveying, and construction was well ad-

vanced. (See Problem 10.59.)

Q_____
Qmax

0
0

0.5

1.0

(b)

0.5

y__
D

Qfull = 0.929 Qmax

Qmax

y = 0.938D
1.0
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In many man-made channels and in most natural channels, the surface roughness 1and hence

the Manning coefficient2 varies along the wetted perimeter of the channel. A drainage ditch, for

example, may have a rocky bottom surface with concrete side walls to prevent erosion. Thus,

the effective n will be different for shallow depths than for deep depths of flow. Similarly, a river

channel may have one value of n appropriate for its normal channel and another very different

value of n during its flood stage when a portion of the flow occurs across fields or through

floodplain woods. An ice-covered channel usually has a different value of n for the ice than for

the remainder of the wetted perimeter 1Ref. 72. 1Strictly speaking, such ice-covered channels are

not “open” channels, although analysis of their flow is often based on open-channel flow

equations. This is acceptable, since the ice cover is often thin enough so that it represents a fixed

boundary in terms of the shear stress resistance, but it cannot support a significant pressure

differential as in pipe flow situations.2
A variety of methods has been used to determine an appropriate value of the effective

roughness of channels that contain subsections with different values of n. Which method gives the

most accurate, easy-to-use results is not firmly established, since the results are nearly the same

for each method 1Ref. 52. A reasonable approximation is to divide the channel cross section into N
subsections, each with its own wetted perimeter, area, and Manning coefficient, The 

values do not include the imaginary boundaries between the different subsections. The total flowrate

is assumed to be the sum of the flowrates through each section. This technique is illustrated by

Example 10.7.

Pini.Ai,Pi,

10.4 Uniform Depth Channel Flow 553

For many open
channels, the sur-
face roughness
varies across the
channel.

GIVEN Water flows along the drainage canal having the proper-

ties shown in Fig. E10.6a. The bottom slope is 

.

FIND Estimate the flowrate when the depth is 

0.6 ft � 1.4 ft.

y � 0.8 ft �

0.002

S0 � 1 ft�500 ft �

Uniform Flow, Variable RoughnessEXAMPLE 10.6

SOLUTION

We divide the cross section into three subsections as is indicated

in Fig. E10.6a and write the flowrate as 

where for each section

The appropriate values of and are listed in

Table E10.6. Note that the imaginary portions of the perimeters

between sections 1denoted by the vertical dashed lines in Fig.

E10.6a2 are not included in the That is, for section 122

and

P2 � 2 ft � 210.8 ft2 � 3.6 ft

A2 � 2 ft 10.8 � 0.62 ft � 2.8 ft2

Pi.

niAi, Pi, Rhi,

Qi �
1.49

ni
 AiR

2�3
hi

S0
1�2

Q3,Q � Q1 � Q2 �

F I G U R E  E10.6a

(2)

n2 =
0.015

0.8 ft
y

(3)0.6 ft(1)

n1 = 0.020 n3 = 0.030
3 ft2 ft3 ft

■ TA B L E  E 1 0 . 6

i ( ) (ft) (ft)

1 1.8 3.6 0.500 0.020

2 2.8 3.6 0.778 0.015

3 1.8 3.6 0.500 0.030

nift2
RhiPiAi

so that

Thus, the total flowrate is

or

(Ans)

COMMENTS If the entire channel cross section were con-

sidered as one flow area, then and

or 

The flowrate is given by Eq. 10.20, which can be writ-

ten as

Q �
1.49

neff

 AR2�3
h S1�2

0

0.593 ft.

Rh � A�P � 6.4 ft2�10.8 ft �P2 � P3 �10.8 ft,P � P1 �
A2 � A3 � 6.4 ft2A � A1 �

Q � 16.8 ft3�s

 �
11.8 ft22 10.500 ft22�3

0.030
d

 � c
11.8 ft22 10.500 ft22�3

0.020
�
12.8 ft22 10.778 ft22�3

0.015

 Q � Q1 � Q2 � Q3 � 1.4910.00221�2

Rh2
�

A2

P2

�
2.8 ft2

3.6 ft
� 0.778 ft
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One type of problem often encountered in open-channel flows is that of determining the best
hydraulic cross section defined as the section of the minimum area for a given flowrate, Q, slope,

and roughness coefficient, n. By using we can write Eq. 10.20 as

which can be rearranged as

where the quantity in the parentheses is a constant. Thus, a channel with minimum A is one with

a minimum P, so that both the amount of excavation needed and the amount of material to line

the surface are minimized by the best hydraulic cross section.

The best hydraulic cross section possible is that of a semicircular channel. No other shape

has as small a wetted perimeter for a given area. It is often desired to determine the best shape for

a class of cross sections. The results (given here without proof) for rectangular, trapezoidal (with

60° sides), and triangular shapes are shown in Fig. 10.11. For example, the best hydraulic cross

section for a rectangle is one whose depth is half its width; for a triangle it is a 90° triangle.

A � a
nQ

kS1�2
0

b
3�5

 P2�5

Q �
k

n
 A a

A

P
b

2�3

 S1�2
0 �

k

n
 
A5�3S1�2

0

P2�3

Rh � A�PS0,
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where is the effective value of n for this channel. With

as determined above, the value of is found to be

As expected, the effective roughness 1Manning n2 is between the

minimum and maximum values for

the individual subsections.

By repeating the calculations for various depths, y, the results

shown in Fig. E10.6b are obtained. Note that there are two distinct

portions of the graph—one when the water is contained entirely

within the main, center channel the other when the wa-

ter overflows into the side portions of the channel 1y 7 0.8 ft2.
1y 6 0.8 ft2;

1n3 � 0.03021n2 � 0.0152

 �
1.4916.42 10.59322�310.00221�2

16.8
� 0.0179

 neff �
1.49AR2�3

h S0
1�2

Q

neff Q � 16.8 ft3�s
neff 

(1.4 ft, 16.8 ft3/s)

40

30

20

10

0
0 0.5 1

y, ft

Q
, 
ft

3
/s

1.5 2

F I G U R E  E10.6b

For a given flow-
rate, the channel of
minimum area is
denoted as the best
hydraulic cross 
section.

F I G U R E  10.11 Best hydraulic cross sections for a rectangle, a 60º
trapezoid, and a triangle.

y = b/2

b

b

b

60°
√

y =
3b/2

90°

10.5 Gradually Varied Flow

In many situations the flow in an open channel is not of uniform depth along the

channel. This can occur because of several reasons: The bottom slope is not constant, the cross-

sectional shape and area vary in the flow direction, or there is some obstruction across a portion

of the channel. Such flows are classified as gradually varying flows if .

If the bottom slope and the energy line slope are not equal, the flow depth will vary along

the channel, either increasing or decreasing in the flow direction. In such cases 

, and the right-hand side of Eq. 10.10 is not zero. Physically, the difference between thedV�dx � 0

dy�dx � 0,

dy�dx � 1

1y � constant2
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component of weight and the shear forces in the direction of flow produces a change in the fluid

momentum that requires a change in velocity and, from continuity considerations, a change in

depth. Whether the depth increases or decreases depends on various parameters of the flow, with

a variety of surface profile configurations [flow depth as a function of distance, ] possible

(Refs. 5, 9).

y � y 1x2

10.6 Rapidly Varied Flow 555

F I G U R E  10.12 Hydraulic jump.

F I G U R E  10.13 Rapidly varied
flow may occur in a channel transition section.

Flow

In many cases the
flow depth may
change significantly
in a short distance.

V10.8 Erosion in a
channel

V10.9 Bridge pier
scouring

10.6 Rapidly Varied Flow

In many open channels, flow depth changes occur over a relatively short distance so that 

Such rapidly varied flow conditions are often quite complex and difficult to analyze in a precise

fashion. Fortunately, many useful approximate results can be obtained by using a simple one-

dimensional model along with appropriate experimentally determined coefficients when necessary.

In this section we discuss several of these flows.

Some rapidly varied flows occur in constant area channels for reasons that are not immediately

obvious. The hydraulic jump is one such case. As is indicated in Fig. 10.12, the flow may change

from a relatively shallow, high-speed condition into a relatively deep, low-speed condition within

a horizontal distance of just a few channel depths. Other rapidly varied flows may be due to a

sudden change in the channel geometry such as the flow in an expansion or contraction section of

a channel as is indicated in Fig. 10.13.

In such situations the flow field is often two- or three-dimensional in character. There may be

regions of flow separation, flow reversal, or unsteady oscillations of the free surface. For the purpose

of some analyses, these complexities can be neglected and a simplified analysis can be undertaken.

In other cases, however, it is the complex details of the flow that are the most important property of

the flow; any analysis must include their effects. The scouring of a river bottom in the neighborhood

of a bridge pier, as is indicated in Fig. 10.14, is such an example. A one- or two-dimensional model

of this flow would not be sufficient to describe the complex structure of the flow that is responsible

for the erosion near the foot of the bridge pier.

Many open-channel flow-measuring devices are based on principles associated with rapidly

varied flows. Among these devices are broad-crested weirs, sharp-crested weirs, critical flow flumes,

and sluice gates. The operation of such devices is discussed in the following sections.

dy�dx � 1.
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10.6.1 The Hydraulic Jump

Observations of flows in open channels show that under certain conditions it is possible that the

fluid depth will change very rapidly over a short length of the channel without any change in the

channel configuration. Such changes in depth can be approximated as a discontinuity in the free-

surface elevation For reasons discussed below, this step change in depth is always

from a shallow to a deeper depth—always a step up, never a step down.

Physically, this near discontinuity, called a hydraulic jump, may result when there is a conflict

between the upstream and downstream influences that control a particular section 1or reach2 of a channel.

For example, a sluice gate may require that the conditions at the upstream portion of the channel

1downstream of the gate2 be supercritical flow, while obstructions in the channel on the downstream

end of the reach may require that the flow be subcritical. The hydraulic jump provides the mechanism

1a nearly discontinuous one at that2 to make the transition between the two types of flow.

The simplest type of hydraulic jump occurs in a horizontal, rectangular channel as is indicated

in Fig. 10.15. Although the flow within the jump itself is extremely complex and agitated, it is

reasonable to assume that the flow at sections 112 and 122 is nearly uniform, steady, and one-

dimensional. In addition, we neglect any wall shear stresses, within the relatively short segment

between these two sections. Under these conditions the x component of the momentum equation

1Eq. 5.222 for the control volume indicated can be written as

where, as indicated by the figure in the margin, the pressure force at either section is hydrostatic.

That is, and where and are

the pressures at the centroids of the channel cross sections and b is the channel width. Thus, the

momentum equation becomes

(10.21)

In addition to the momentum equation, we have the conservation of mass equation 1Eq. 5.122

(10.22)y1bV1 � y2bV2 � Q

y1 
2

2
�

y2
2

2
�

V1y1

g
 1V2 � V12

pc2 � gy2�2pc1 � gy1�2F2 � pc2A2 � gy2
2b�2,F1 � pc1A1 � gy2

1b�2

F1 � F2 � rQ1V2 � V12 � rV1y1b1V2 � V12

tw,

1dy�dx � 
2.
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F I G U R E  10.14 The complex three-dimensional flow structure around a bridge pier.

Upstream velocity
profile

Bridge pier

Horseshoe vortex

Scouring of
channel bottom

A hydraulic jump is
a steplike increase
in fluid depth in an
open channel.

F I G U R E  10.15 Hydraulic jump geometry.

Q

Control
volume

(1) V1

F1y1

y2F2

V2(2)

hL Energy
line

x

w = 0τ

p

c

y
1

y1/2

V10.10 Big Sioux
River bridge 
collapse
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and the energy equation 1Eq. 5.842

(10.23)

The head loss, in Eq. 10.23 is due to the violent turbulent mixing and dissipation that occur

within the jump itself. We have neglected any head loss due to wall shear stresses.

Clearly Eqs. 10.21, 10.22, and 10.23 have a solution and This

represents the trivial case of no jump. Since these are nonlinear equations, it may be possible that

more than one solution exists. The other solutions can be obtained as follows. By combining Eqs.

10.21 and 10.22 to eliminate we obtain

which can be simplified by factoring out a common nonzero factor from each side to give

where is the upstream Froude number. By using the quadratic formula we obtain

Clearly the solution with the minus sign is not possible 1it would give a negative 2. Thus,

(10.24)

This depth ratio, across the hydraulic jump is shown as a function of the upstream Froude number

in Fig. 10.16. The portion of the curve for is dashed in recognition of the fact that to have a

hydraulic jump the flow must be supercritical. That is, the solution as given by Eq. 10.24 must be

restricted to for which This can be shown by consideration of the energy equation,

Eq. 10.23, as follows. The dimensionless head loss, can be obtained from Eq. 10.23 as

(10.25)

where, for given values of the values of are obtained from Eq. 10.24. As is indicated in

Fig. 10.16, the head loss is negative if Since negative head losses violate the second lawFr1 6 1.

y2 �y1Fr1,

hL

y1

� 1 �
y2

y1

�
Fr1

2

2
 c1 � a

y1

y2

b
2

d

hL �y1,

y2 �y1 � 1.Fr1 � 1,

Fr1 6 1

y2 �y1,

y2

y1

�
1

2
 1�1 � 21 � 8Fr1 

2 2

y2�y1

y2

y1

�
1

2
 1�1  21 � 8Fr1

22

Fr1 � V1�1gy1

a
y2

y1

b
2

� a
y2

y1

b � 2 Fr1
2 � 0

y1 � y2

y1 
2

2
�

y2
2

2
�

V1y1

g
 a

V1y1

y2

� V1b �
V 2

1y1

gy2

 1y1 � y22

V2

hL � 0.y1 � y2, V1 � V2,

hL,

y1 �
V 2

1

2g
� y2 �

V 2
2

2g
� hL
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The depth ratio
across a hydraulic
jump depends on
the Froude number
only.

F I G U R E  10.16 Depth ratio and dimension-
less head loss across a hydraulic jump as a function of
upstream Froude number.

4

3

2

1

0

–1
0 1 2 3 4

No jump
possible

Fr1 =
V1______

√gy1

y2__
y1

y2__
y1

hL__
y1

hL__
y1

or

V10.11 Hydraulic
jump in a river
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of thermodynamics 1viscous effects dissipate energy, they cannot create energy; see Section 5.32,
it is not possible to produce a hydraulic jump with The head loss across the jump is

indicated by the lowering of the energy line shown in Fig. 10.15.

A flow must be supercritical 1Froude number 2 to produce the discontinuity called a

hydraulic jump. This is analogous to the compressible flow ideas discussed in Chapter 11 in which

it is shown that the flow of a gas must be supersonic 1Mach number 2 to produce the

discontinuity called a normal shock wave. However, the fact that a flow is supercritical 1or

supersonic2 does not guarantee the production of a hydraulic jump 1or shock wave2. The trivial

solution and is also possible.

The fact that there is an energy loss across a hydraulic jump is useful in many situations. For

example, the relatively large amount of energy contained in the fluid flowing down the spillway

of a dam like that shown in the figure in the margin could cause damage to the channel below the

dam. By placing suitable flow control objects in the channel downstream of the spillway, it is

possible 1if the flow is supercritical2 to produce a hydraulic jump on the apron of the spillway and

thereby dissipate a considerable portion of the energy of the flow. That is, the dam spillway produces

supercritical flow, and the channel downstream of the dam requires subcritical flow. The resulting

hydraulic jump provides the means to change the character of the flow.

V1 � V2y1 � y2

7 1

7 1

Fr1 6 1.

558 Chapter 10 ■ Open-Channel Flow

Hydraulic jumps
dissipate energy.

F l u i d s  i n  t h e  N e w s

Grand Canyon rapids building Virtually all of the rapids in the

Grand Canyon were formed by rock debris carried into the Col-

orado River from side canyons. Severe storms wash large

amounts of sediment into the river, building debris fans that nar-

row the river. This debris forms crude dams which back up the

river to form quiet pools above the rapids. Water exiting the pool

through the narrowed channel can reach supercritical conditions

and produce hydraulic jumps downstream. Since the configura-

tion of the jumps is a function of the flowrate, the difficulty in

running the rapids can change from day to day. Also, rapids

change over the years as debris is added to or removed from the

rapids. For example, Crystal Rapid, one of the notorious rafting

stretches of the river, changed very little between the first photos

of 1890 and those of 1966. However, a debris flow from a severe

winter storm in 1966 greatly constricted the river. Within a few

minutes the configuration of Crystal Rapid was completely

changed. The new, immature rapid was again drastically changed

by a flood in 1983. While Crystal Rapid is now considered full

grown, it will undoubtedly change again, perhaps in 100 or 1000

years. (See Problem 10.100.)

GIVEN Water on the horizontal apron of the 100-ft-wide spill-

way shown in Fig. E10.7a has a depth of 0.60 ft and a velocity of

18 ft�s.

Hydraulic JumpEXAMPLE 10.7

SOLUTION

Conditions across the jump are determined by the upstream

Froude number

(Ans)

Thus, the upstream flow is supercritical, and it is possible to gen-

erate a hydraulic jump as sketched.

From Eq. 10.24 we obtain the depth ratio across the jump as

� 
1

2
 3�1 � 21 � 814.1022 4 � 5.32

 
y2

y1

�
1

2
 1�1 � 21 � 8 Fr2

12

Fr1 �
V1

1gy1

�
18 ft�s

3 132.2 ft�s22 10.60 ft2 4 1�2
� 4.10

or

(Ans)

Since or 

it follows that

(Ans)

As is true for any hydraulic jump, the flow changes from super-

critical to subcritical flow across the jump.

The power 1energy per unit time2 dissipated, by viscous

effects within the jump can be determined from the head loss

pd,

Fr2 �
V2

2gy2

�
3.39 ft�s

3 132.2 ft�s22 13.19 ft2 4 1�2
� 0.334

3.39 ft�s,

V2 � 1y1V12�y2 � 0.60 ft 118 ft�s2�3.19 ft �Q1 � Q2,

y2 � 5.32 10.60 ft2 � 3.19 ft

FIND Determine the depth, after the jump, the Froude

numbers before and after the jump, and and the power dis-

sipated, within the jump.pd,

Fr2,Fr1

y2,

(Photograph courtesy

of U.S. Army Corps 

of Engineers.)
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The actual structure of a hydraulic jump is a complex function of even though the depth

ratio and head loss are given quite accurately by a simple one-dimensional flow analysis 1Eqs. 10.24

and 10.252. A detailed investigation of the flow indicates that there are essentially five types of

surface and jump conditions. The classification of these jumps is indicated in Table 10.2, along with

sketches of the structure of the jump. For flows that are barely supercritical, the jump is more like

a standing wave, without a nearly step change in depth. In some Froude number ranges the jump is

Fr1,

10.6 Rapidly Varied Flow 559

as 1see Eq. 5.852

(12

where is obtained from Eqs. 10.23 or 10.25 as

or

Thus, from Eq. 1,

or

(Ans)

COMMENTS This power, which is dissipated within the

highly turbulent motion of the jump, is converted into an increase

in water temperature, T. That is, Although the power

dissipated is considerable, the difference in temperature is not

great because the flowrate is quite large.

By repeating the calculations for the given flowrate Q1 �
but with

various upstream depths, y1, the results shown in Fig. E10.7b are

obtained. Note that a slight change in water depth can produce a

considerable change in energy dissipated. Also, if 

the flow is subcritical ( ) and no hydraulic jump can occur.

The hydraulic jump flow process can be illustrated by use of the

specific energy concept introduced in Section 10.3 as follows. Equa-

tion 10.23 can be written in terms of the specific energy,

as where 

and As is discussed in

Section 10.3, the specific energy diagram for this flow can be ob-

tained by using where

Thus,

where y and E are in feet. The resulting specific energy diagram

is shown in Fig. E10.7c. Because of the head loss across the

E � y �
q2

2gy2
� y �

110.8 ft2�s22

2132.2 ft�s22y2
� y �

1.81

y2

 � 10.8 ft2�s

q � q1 � q2 �
Q
b

� y1V1 � 0.60 ft 118.0 ft�s2

V � q�y,

E2 � y2 � V 2
2�2g � 3.37 ft.5.63 ft

E1 � y1 � V 1
2�2g �E1 � E2 � hL,E � y � V 2�2g,

Fr1 6 1

y1 7 1.54 ft

A1V1 � b1y1V1 � 100 ft 10.6 ft2 118 ft�s2 � 1080 ft3�s

T2 7 T1.

 pd �
1.52 � 105 ft # lb�s
550 3 1ft # lb�s2�hp 4

� 277 hp

 � 1.52 � 105 ft # lb�s
 pd � 162.4 lb�ft32 1100 ft2 10.60 ft2 118.0 ft�s2 12.26 ft2

hL � 2.26 ft

 � c3.19 ft �
13.39 ft�s22

2132.2 ft�s22
d

 hL � ay1 �
V 2

1

2g
b � ay2 �

V 2
2

2g
b � c0.60 ft �

118.0 ft�s22

2132.2 ft�s22
d

hL

pd � gQhL � gby1V1hL

jump, the upstream and downstream values of E are different.

In going from state 112 to state 122 the fluid does not proceed

along the specific energy curve and pass through the critical

condition at state Rather, it jumps from 112 to 122 as is repre-

sented by the dashed line in the figure. From a one-dimensional

consideration, the jump is a discontinuity. In actuality, the jump

is a complex three-dimensional flow incapable of being repre-

sented on the one-dimensional specific energy diagram.

2¿.

(0.60 ft, 277 hp)

(1.54 ft, 0 hp)

1000

800

600

400

200

0
0 0.2 0.4 0.6 0.8

y1, ft

�
d,

 h
p

1 1.2 1.4 1.6

(b)

F I G U R E  E10.7

q = 10.8 ft2/s
(2)

(2')

(1)

hL = 2.26 ft

4

3

2

1

0
0 1 2 3 4 5 6

y,
 f

t

E, ft

E2 = 3.37 E1 = 5.63

(c)

y1 = 0.60 ft Downstream
obstacles

b = width = 100 ft

Spillway apron
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unsteady, with regular periodic oscillations traveling downstream. 1Recall that the wave cannot travel

upstream against the supercritical flow.2
The length of a hydraulic jump 1the distance between the nearly uniform upstream and

downstream flows2 may be of importance in the design of channels. Although its value cannot be

determined theoretically, experimental results indicate that over a wide range of Froude numbers,

the jump is approximately seven downstream depths long 1Ref. 52.
Hydraulic jumps can occur in a variety of channel flow configurations, not just in horizontal,

rectangular channels as discussed above. Jumps in nonrectangular channels 1i.e., circular pipes,

trapezoidal canals2 behave in a manner quite like those in rectangular channels, although the details

of the depth ratio and head loss are somewhat different from jumps in rectangular channels.

Other common types of hydraulic jumps include those that occur in sloping channels as is

indicated in Fig. 10.17a and the submerged hydraulic jumps that can occur just downstream of a

560 Chapter 10 ■ Open-Channel Flow

TA B L E 1 0 . 2

Classification of Hydraulic Jumps (Ref. 12)

Classification Sketch

1 Jump impossible

1 to 1.7 1 to 2.0 Standing wave or undulant jump

1.7 to 2.5 2.0 to 3.1 Weak jump

2.5 to 4.5 3.1 to 5.9 Oscillating jump

4.5 to 9.0 5.9 to 12 Stable, well-balanced steady jump;
insensitive to downstream conditions

Rough, somewhat intermittent strong jump71279.0

61

y2�y1Fr1

V1

y1

V2 = V1

y2

The actual struc-
ture of a hydraulic
jump depends on
the Froude number.

V10.12 Hydraulic
jump in a sink

F I G U R E  10.17
Hydraulic jump variations: (a) jump
caused by a change in channel slope,
(b) submerged jump.

V2
V1

S0 < S0c

S0 > S0c

(a)

Submerged jump

(b)

Q

Q

Free jump
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10.6 Rapidly Varied Flow 561

sluice gate as is indicated in Fig. 10.17b. Details of these and other jumps can be found in standard

open-channel flow references 1Refs. 3 and 52.

10.6.2 Sharp-Crested Weirs

A weir is an obstruction on a channel bottom over which the fluid must flow. It provides a convenient

method of determining the flowrate in an open channel in terms of a single depth measurement. A

sharp-crested weir is essentially a vertical sharp-edged flat plate placed across the channel in a way

such that the fluid must flow across the sharp edge and drop into the pool downstream of the weir

plate, as is shown in Fig. 10.18. The specific shape of the flow area in the plane of the weir plate

is used to designate the type of weir. Typical shapes include the rectangular weir, the triangular weir,

and the trapezoidal weir, as indicated in Fig. 10.19.

The complex nature of the flow over a weir makes it impossible to obtain precise analytical

expressions for the flow as a function of other parameters, such as the weir height, weir head,
H, the fluid depth upstream, and the geometry of the weir plate 1angle for triangular weirs or

aspect ratio, for rectangular weirs2. The flow structure is far from one-dimensional, with a

variety of interesting flow phenomena obtained.

The main mechanisms governing flow over a weir are gravity and inertia. From a highly

simplified point of view, gravity accelerates the fluid from its free-surface elevation upstream

of the weir to larger velocity as it flows down the hill formed by the nappe. Although viscous

and surface tension effects are usually of secondary importance, such effects cannot be entirely

neglected. Generally, appropriate experimentally determined coefficients are used to account for

these effects.

As a first approximation, we assume that the velocity profile upstream of the weir plate is

uniform and that the pressure within the nappe is atmospheric. In addition, we assume that the

fluid flows horizontally over the weir plate with a nonuniform velocity profile, as indicated in Fig.

10.20. With the Bernoulli equation for flow along the arbitrary streamline A– B indicated

can be written as 

(10.26)
pA

g
�

V 2
1

2g
� zA � 1H � Pw � h2 �

u2
2

2g

pB � 0

b�H,

u

Pw,

F I G U R E  10.18 Sharp-crested weir geometry.

Q

H

Pw

Draw down

Nappe

Weir plate

F I G U R E  10.19 Sharp-crested weir plate geometry: (a) rectangular,
(b) triangular, (c) trapezoidal.

Weir
plate

Channel
walls

(a) (b) (c)

b

θ

A sharp-crested
weir can be used to
determine the
flowrate.
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where h is the distance that point B is below the free surface. We do not know the location of point

A from which came the fluid that passes over the weir at point B. However, since the total head

for any particle along the vertical section 112 is the same, H � Pw � V 2
1�2g,zA � pA�g � V 2

1�2g �

562 Chapter 10 ■ Open-Channel Flow

F I G U R E  10.20 Assumed flow structure over a weir.

z

V1
2

___
2g

Energy line

Free surface and hydraulic grade line

h
B

V1

zA

A

u2(h)

H

Pw

x

h

B

dh
�

(b)(a)

A�

pA�/g

pA/g

A

VA�

VA

ZA ZA�

A weir coefficient is
used to account for
nonideal conditions
excluded in the
simplified analysis.

the specific location of A 1i.e., A or A� shown in the figure in the margin2 is not needed, and the

velocity of the fluid over the weir plate is obtained from Eq. 10.26 as

The flowrate can be calculated from

(10.27)

where is the cross-channel width of a strip of the weir area, as is indicated in Fig. 10.20b.
For a rectangular weir is constant. For other weirs, such as triangular or circular weirs, the value

of is known as a function of h.
For a rectangular weir, and the flowrate becomes

or

(10.28)

Equation 10.28 is a rather cumbersome expression that can be simplified by using the fact that

with 1as often happens in practical situations2 the upstream velocity is negligibly small.

That is, and Eq. 10.28 simplifies to the basic rectangular weir equation

(10.29)

Note that the weir head, H, is the height of the upstream free surface above the crest of the weir.

As is indicated in Fig. 10.18, because of the drawdown effect, H is not the distance of the free

surface above the weir crest as measured directly above the weir plate.

Because of the numerous approximations made to obtain Eq. 10.29, it is not unexpected that

an experimentally determined correction factor must be used to obtain the actual flowrate as a

function of weir head. Thus, the final form is

(10.30)Q � Cwr 
2
3 12g b H3�2

Q � 2
3 12g b H 3�2

V 2
1�2g � H

Pw 	 H

Q �
2

3
 12g b c aH �

V 2
1

2g
b

3�2

� a
V 2

1

2g
b

3�2

d

Q � 12g b 	
H

0
 ah �

V 2
1

2g
b

1�2

 dh

/ � b,

/
/

/ � /1h2

Q � 	
122

 u2 dA � 	
h�H

h�0

 u2/ dh

u2 �
B

2g ah �
V 2

1

2g
b
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where is the rectangular weir coefficient. From dimensional analysis arguments, it is expected

that is a function of Reynolds number 1viscous effects2, Weber number 1surface tension

effects2, and 1geometry2. In most practical situations, the Reynolds and Weber number

effects are negligible, and the following correlation, shown in the figure in the margin, can be

used 1Refs. 4, 72:

(10.31)

More precise values of can be found in the literature, if needed 1Refs. 3, 142.
The triangular sharp-crested weir is often used for flow measurements, particularly for

measuring flowrates over a wide range of values. For small flowrates, the head, H, for a rectangular

weir would be very small and the flowrate could not be measured accurately. However, with the

triangular weir, the flow width decreases as H decreases so that even for small flowrates, reasonable

heads are developed. Accurate results can be obtained over a wide range of Q.
The triangular weir equation can be obtained from Eq. 10.27 by using

where is the angle of the V-notch 1see Figs. 10.19 and 10.202. After carrying out the integration

and again neglecting the upstream velocity we obtain

An experimentally determined triangular weir coefficient, is used to account for the real-world

effects neglected in the analysis so that

(10.32)

Typical values of for triangular weirs are in the range of 0.58 to 0.62, as is shown in Fig. 10.21.

Note that although and are dimensionless, the value of is given as a function of the

weir head, H, which is a dimensional quantity. Although using dimensional parameters is not

recommended 1see the dimensional analysis discussion in Chapter 72, such parameters are often

used for open-channel flow.

CwtuCwt

Cwt

Q � Cwt 
8

15
 tan a

u

2
b 12g H 5�2

Cwt,

Q �
8

15
 tan a

u

2
b 12g H 5�2

1V 2
1�2g � H2,

u

/ � 21H � h2 tan a
u

2
b

Cwr

Cwr � 0.611 � 0.075 a
H

Pw

b

H�Pw

Cwr

Cwr
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Minimum Cwt for all θ

0.66

0.64

0.62

0.60

0.58

0.56

0 0.2 0.4 0.6 0.8 1.0
H, ft

Cwt 90°

60°

45°

= 20°θ

F I G U R E  10.21 Weir coefficient
for triangular sharp-crested weirs (Ref. 10).

1

0
0 1

Cwr

H/Pw

V10.13 Triangular
weir

V10.14 Low-head
dam
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The above results for sharp-crested weirs are valid provided the area under the nappe is

ventilated to atmospheric pressure. Although this is not a problem for triangular weirs, for

rectangular weirs it is sometimes necessary to provide ventilation tubes to ensure atmospheric

pressure in this region. In addition, depending on downstream conditions, it is possible to obtain

submerged weir operation, as is indicated in Fig. 10.22. Clearly the flowrate will be different for

these situations than that given by Eqs. 10.30 and 10.32.

10.6.3 Broad-Crested Weirs

A broad-crested weir is a structure in an open channel that has a horizontal crest above which the

fluid pressure may be considered hydrostatic. A typical configuration is shown in Fig. 10.23.

Generally, to ensure proper operation, these weirs are restricted to the range 

These conditions are drawn to scale in the figure in the margin. For long weir blocks 1 less

than 0.082, head losses across the weir cannot be neglected. On the other hand, for short weir blocks

1 greater than 0.502 the streamlines of the flow over the weir block are not horizontal. Although

broad-crested weirs can be used in channels of any cross-sectional shape, we restrict our attention

to rectangular channels.

The operation of a broad-crested weir is based on the fact that nearly uniform critical flow

is achieved in the short reach above the weir block. 1If viscous effects are important,

and the flow is subcritical over the weir.2 If the kinetic energy of the upstream flow is negligible,

then and the upstream specific energy is Observations show

that as the flow passes over the weir block, it accelerates and reaches critical conditions,

and corresponding to the nose of the specific energy curve 1see Fig. 10.72.
The flow does not accelerate to supercritical conditions To do so would require the

ability of the downstream fluid to communicate with the upstream fluid to let it know that there is

an end of the weir block. Since waves cannot propagate upstream against a critical flow, this

information cannot be transmitted. The flow remains critical, not supercritical, across the weir

block.

The Bernoulli equation can be applied between point 112 upstream of the weir and point 122
over the weir where the flow is critical to obtain

or, if the upstream velocity head is negligible

H � yc �
1V 2

c � V 2
12

2g
�

V 2
c

2g

H � Pw �
V 2

1

2g
� yc � Pw �

V 2
c

2g

1Fr2 7 12.
Fr2 � 1 1i.e., V2 � c22,

y2 � yc

y1 � y1.E1 � V 2
1�2g �V 2

1�2g � y1

H�Lw 6 0.08,

H�Lw

H�Lw

H�Lw 6 0.50.0.08 6
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F I G U R E  10.22 Flow conditions over a weir without a free nappe: (a) plunging 
nappe, (b) submerged nappe.

(a) (b)

H/L
w
 = 0.08

H/L
w
 = 0.50

H

L
w

F I G U R E  10.23 Broad-crested
weir geometry.

Weir block

V1 V2 = Vcy2 = yc

Lw

Pw

H
y1

(1)

(2)

Flowrate over a
weir depends on
whether the nappe
is free or sub-
merged.
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However, since we find that so that we obtain

or

Thus, the flowrate is

or

Again an empirical weir coefficient is used to account for the various real-world effects not included

in the above simplified analysis. That is

(10.33)

where approximate values of the broad-crested weir coefficient shown in the figure in the

margin, can be obtained from the equation 1Ref. 62

(10.34)Cwb � 1.125 a
1 � H�Pw

2 � H�Pw

b
1� 2

Cwb,

Q � Cwb b 1g a
2

3
b

3�2

 H 3�2

Q � b 1g a
2

3
b

3�2

 H3�2

Q � by2V2 � bycVc � byc1gyc2
1�2 � b 1g y3�2

c

yc �
2H

3

H � yc �
yc

2

V 2
c � gycV2 � Vc � 1gyc2

1�2,
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1

0
0 1

Cwb

H/Pw

GIVEN Water flows in a rectangular channel of width 

with flowrates between and 

This flowrate is to be measured by using either 1a2 a rectangular

sharp-crested weir, 1b2 a triangular sharp-crested weir with

or 1c2 a broad-crested weir. In all cases the bottom of theu � 90°,

Qmax � 0.60 m3�s.m3�sQmin � 0.02

b � 2 m

Sharp-Crested and Broad-Crested WeirsEXAMPLE 10.8

flow area over the weir is a distance above the channel

bottom. 

FIND Plot a graph of for each weir and comment

on which weir would be best for this application.

Q � Q1H2

Pw � 1 m

SOLUTION

(a) For the rectangular weir with Eqs. 10.30 and

10.31 give

Thus,

or

(1)

where H and Q are in meters and respectively. The results

from Eq. 1 are plotted in Fig. E10.8.

m3�s,

 Q � 5.9110.611 � 0.075H2H3�2

 Q � 10.611 � 0.075H2 
2

3
 2219.81 m�s22  12 m2 H3�2

 � a0.611 � 0.075 
H

Pw

b 
2

3
 12g bH3�2

 Q � Cwr 
2

3
 12g bH3�2

Pw � 1 m,

F I G U R E  E10.8
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0 0.2 0.4 0.80.6
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Q
, 
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3
/s

H, m

Qmax = 0.60

Triangular

Rectangular
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Qmin = 0.02

The broad-crested
weir is governed by
critical flow across
the weir block.
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10.6.4 Underflow Gates

A variety of underflow gate structures is available for flowrate control at the crest of an overflow

spillway (as shown by the figure in the margin), or at the entrance of an irrigation canal or river

from a lake. Three types are illustrated in Fig. 10.24. Each has certain advantages and

disadvantages in terms of costs of construction, ease of use, and the like, although the basic

fluid mechanics involved are the same in all instances.

The flow under a gate is said to be free outflow when the fluid issues as a jet of supercritical

flow with a free surface open to the atmosphere as shown in Fig. 10.24. In such cases it is customary

to write this flowrate as the product of the distance, a, between the channel bottom and the bottom

of the gate times the convenient reference velocity That is,

(10.35)

where q is the flowrate per unit width. The discharge coefficient, is a function of the contraction

coefficient, and the depth ratio Typical values of the discharge coefficient for freey1�a.Cc � y2�a,

Cd,

q � Cd a12gy1

12gy12
1�2.
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(b) Similarly, for the triangular weir, Eq. 10.32 gives

or

(2)

where H and Q are in meters and and is obtained from

Fig. 10.21. For example, with we find 

or The triangular weir

results are also plotted in Fig. E10.8.

(c) For the broad-crested weir, Eqs. 10.28 and 10.29 give

Thus, with Pw � 1 m

or

(3) Q � 3.84 a
1 � H

2 � H
b

1/2

 H 3/2

 Q � 1.125 a
1 � H

2 � H
b

1�2

12 m2 29.81 m�s2 a
2

3
b

3�2

 H 3�2

 � 1.125 a
1 � H�Pw

2 � H�Pw

b
1�2 

b1g a
2

3
b

3�2

H3�2

Q � Cwb b1g a
2

3
b

3�2 

H 3�2

Q � 2.36 10.602 10.2025�2 � 0.0253 m3�s.

0.60,Cwt �H � 0.20 m,

Cwtm3�s

 Q � 2.36Cwt H
5�2

 � Cwt 
8

15
 tan145°2 2219.81 m�s22  H 5�2

 Q � Cwt 
8

15
 tan a

u

2
b 12g H5�2

where, again, H and Q are in meters and m3 s. This result is also

plotted in Fig. E10.8.

COMMENTS Although it appears as though any of the three

weirs would work well for the upper portion of the flowrate range,

neither the rectangular nor the broad-crested weir would be very

accurate for small flowrates near Q � Qmin because of the small

head, H, at these conditions. The triangular weir, however, would

allow reasonably large values of H at the lowest flowrates. The

corresponding heads with Q � Qmin � 0.02 m3 s for rectangular,

triangular, and broad-crested weirs are 0.0312, 0.182, and 0.0375 m,

respectively.

In addition, as discussed in this section, for proper operation

the broad-crested weir geometry is restricted to 0.08 � H Lw �
0.50, where Lw is the weir block length. From Eq. 3 with Qmax �
0.60 m3 s, we obtain Hmax � 0.349. Thus, we must have Lw �
Hmax 0.5 � 0.698 m to maintain proper critical flow conditions at

the largest flowrate in the channel. However, with Q � Qmin �
0.02 m3 s, we obtain Hmin � 0.0375 m. Thus, we must have Lw �
Hmin 0.08 � 0.469 m to ensure that frictional effects are not im-

portant. Clearly, these two constraints on the geometry of the weir

block, Lw, are incompatible.

A broad-crested weir will not function properly under the

wide range of flowrates considered in this example. The sharp-

crested triangular weir would be the best of the three types con-

sidered, provided the channel can handle the Hmax � 0.719-m

head.

�
�

�
�

�

�

�

F I G U R E  10.24 Three variations of underflow gates: (a) vertical gate, (b) radial gate,
(c) drum gate.

(a) (b) (c)

y1
y2

a

(Photograph courtesy

of Pend Oreille Public

Utility District.)

V10.15 Spillway
gate
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outflow 1or free discharge2 from a vertical sluice gate are on the order of 0.55 to 0.60 as indicated

by the top line in Fig. 10.25 1Ref. 32.
As indicated in Fig. 10.26, in certain situations the depth downstream of the gate is controlled

by some downstream obstacle and the jet of water issuing from under the gate is overlaid by a

mass of water that is quite turbulent.

The flowrate for a submerged 1or drowned2 gate can be obtained from the same equation

that is used for free outflow 1Eq. 10.352, provided the discharge coefficient is modified

appropriately. Typical values of for drowned outflow cases are indicated as the series of lower

curves in Fig. 10.25. Consider flow for a given gate and upstream conditions 1i.e., given 2
corresponding to a vertical line in the figure. With there is no head to

drive the flow so that and the fluid is stationary. For a given upstream depth 1 fixed2,
the value of increases with decreasing until the maximum value of is reached. This

maximum corresponds to the free discharge conditions and is represented by the free outflow line

so labeled in Fig. 10.25. For values of that give values between zero and its maximum,

the jet from the gate is overlaid 1drowned2 by the downstream water and the flowrate is therefore

reduced when compared with a free discharge situation. Similar results are obtained for the radial

gate and drum gate.

Cdy3�a

Cdy3�aCd

y1�aCd � 0

y3�a � y1�a 1i.e., y3 � y12
y1�a

Cd
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F I G U R E  10.25 Typical discharge coefficients for underflow gates (Ref. 3).
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Drowned outflow
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F I G U R E  10.26 Drowned outflow
from a sluice gate.
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y3
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The flowrate from
an underflow gate
depends on whether
the outlet is free or
drowned.

V10.16 Unsteady
under and over

GIVEN Water flows under the sluice gate shown in Fig. E10.9.

The channel width is the upstream depth is 

and the gate is  off the channel bottom.a � 1.0 ft

y1 � 6 ft,b � 20 ft,

Sluice GateEXAMPLE 10.9

FIND Plot a graph of flowrate, Q, as a function of y3.
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568 Chapter 10 ■ Open-Channel Flow

10.7 Chapter Summary and Study Guide

This chapter discussed various aspects of flows in an open channel. A typical open-channel flow

is driven by the component of gravity in the direction of flow. The character of such flows can

be a strong function of the Froude number, which is ratio of the fluid speed to the free-surface

wave speed. The specific energy diagram is used to provide insight into the flow processes

involved in open-channel flow.

Uniform depth channel flow is achieved by a balance between the potential energy lost by

the fluid as it coasts downhill and the energy dissipated by viscous effects. Alternately, it repre-

sents a balance between weight and friction forces. The relationship among the flowrate, the slope

of the channel, the geometry of the channel, and the roughness of the channel surfaces is given

by the Manning equation. Values of the Manning coefficient used in the Manning equation are

dependent on the surface material roughness.

The hydraulic jump is an example of nonuniform depth open-channel flow. If the Froude

number of a flow is greater than one, the flow is supercritical, and a hydraulic jump may occur.

The momentum and mass equations are used to obtain the relationship between the upstream

Froude number and the depth ratio across the jump. The energy dissipated in the jump and the

head loss can then be determined by use of the energy equation.

The use of weirs to measure the flowrate in an open channel is discussed. The relationships

between the flowrate and the weir head are given for both sharp-crested and broad-crested weirs.

The following checklist provides a study guide for this chapter. When your study of the

entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type

in the text.

determine the Froude number for a given flow and explain the concepts of subcritical, crit-

ical, and supercritical flows.

plot and interpret the specific energy diagram for a given flow.

SOLUTION

From Eq. 10.35 we have

or

(1)

The value of is obtained from Fig. 10.25 along the vertical line

For we

obtain , indicating that there is no flow when there is no

head difference across the gate. The value of increases as 

decreases, reaching a maximum of when 

Thus, with 

The flowrate for is obtained from Eq. 1 and

the values of Fig. 10.24 with the results as indicated in Fig.

E10.9.

COMMENT For the flowrate is independent of

and the outflow is a free 1not submerged2 outflow. For such

cases the inertia of the water flowing under the gate is sufficient

to produce free outflow even with y3 7 a.

y3,

y3 6 3.2 ft

Cd

3.2 ft � y3 � 6 ft

Q � 393 10.562 cfs � 220 cfs

y3 � 3.2a � 3.2 ft

y3�a � 3.2.Cd � 0.56

y3�aCd

Cd � 0

y3 � 6 ft 1i.e., y3�a � 6 � y1�a2y1�a � 6 ft�1 ft � 6.

Cd

Q � 393Cd cfs

 � 20 ft 11.0 ft2 Cd 22132.2 ft�s22 16.0 ft2

Q � bq � baCd 12gy1

F I G U R E  E10.9
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weir head
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underflow gate
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use the Manning equation to analyze uniform depth flow in an open channel.

calculate properties such as the depth ratio and the head loss for a hydraulic jump.

determine the flowrates over sharp-crested weirs, broad-crested weirs, and under underflow gates.

Some of the important equations in this chapter are:

Froude number

Wave speed (10.3)

Specific energy (10.8)

Manning equation (10.19)

Hydraulic jump depth ratio (10.24)

Hydraulic jump head loss (10.25)

Rectangular sharp-crested weir (10.30)

Triangular sharp-crested weir (10.32)

Broad-crested weir (10.33)

Underflow gate (10.35)q � Cd a12gy1

Q � Cwb b 1g a
2

3
b

3�2

 H 3�2

Q � Cwt 
8

15
 tan a

u

2
b 12g H 5�2

Q � Cwr 
2

3
 12g b H3�2

hL

y1

� 1 �
y2

y1

�
Fr1

2

2
 c1 � a

y1

y2

b
2

d

y2

y1

�
1

2
 1�1 � 21 � 8Fr1 

2 2

V �
k

n
 Rh

2�3S0
1�2

E � y �
V 2

2g

c � 1gy

Fr � V� 1gy21�2
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570 Chapter 10 ■ Open-Channel Flow

10.9 Observations at a shallow sandy beach show that even though
the waves several hundred yards out from the shore are not parallel
to the beach, the waves often “break” on the beach nearly parallel to
the shore as indicated in Fig. P10.9. Explain this behavior based
on the wave speed c � 1gy21�2.

Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an (*) are intended to be solved
with the aid of a programmable calculator or a computer.
Problems designated with a (†) are “open-ended” problems
and require critical thinking in that to work them one must
make various assumptions and provide the necessary data.
There is not a unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 10.2 Surface Waves

10.1 Obtain a photograph image of surface waves. Print this photo
and write a brief paragraph that describes the similarities and
differences between these waves and those depicted in Fig. 10.4.

10.2 On a distant planet small amplitude waves travel across a 
1-m-deep pond with a speed of 5 m s. Determine the acceleration
of gravity on the surface of that planet.

10.3 The flowrate in a 50-ft-wide, 2-ft-deep river is Q � 190 cfs.
Is the flow subcritical or supercritical?

10.4 The flowrate per unit width in a wide channel is 
Is the flow subcritical or supercritical if the depth is (a) 0.2 m, (b)
0.8 m, or (c) 2.5 m?

10.5 A rectangular channel 3 m wide carries at a depth
of 2 m. Is the flow subcritical or supercritical? For the same
flowrate, what depth will give critical flow?

10.6 Consider waves made by dropping objects (one after another
from a fixed location) into a stream of depth y that is moving with
speed V as shown in Fig. P10.6 (see Video V10.5). The circular
wave crests that are produced travel with speed relative
to the moving water. Thus, as the circular waves are washed
downstream, their diameters increase and the center of each circle
is fixed relative to the moving water. (a) Show that if the flow is
supercritical, lines tangent to the waves generate a wedge of half-
angle where is the Froude
number. (b) Discuss what happens to the wave pattern when the
flow is subcritical, Fr 6 1.

Fr � V� 1gy21�2a�2 � arcsin11�Fr2,

c � 1gy21�2

10 m3�s

2.3 m2�s.q �

�

�

F I G U R E  P10.6

V
α

10.7 Waves on the surface of a tank are observed to travel at a speed
of 2 m�s. How fast would these waves travel if (a) the tank were in
an elevator accelerating downward at a rate of (b) the tank
accelerates horizontally at a rate of (c) the tank were
aboard the orbiting Space Shuttle? Explain.

10.8 In flowing from section 112 to section 122 along an open
channel, the water depth decreases by a factor of two and the
Froude number changes from a subcritical value of 0.5 to a
supercritical value of 3.0. Determine the channel width at 122 if it
is 12 ft wide at 112.

9.81 m�s2,
4 m�s2,

F I G U R E  P10.9

Wave crest

Ocean

c

Beach

†10.10 Explain, physically, why surface tension increases the
speed of surface waves.

10.11 Often when an earthquake shifts a segment of the ocean
floor, a relatively small amplitude wave of very long wavelength
is produced. Such waves go unnoticed as they move across the open
ocean; only when they approach the shore do they become
dangerous 1a tsunami or “tidal wave”2. Determine the wave speed
if the wavelength, is 6000 ft and the ocean depth is 15,000 ft.

10.12 A bicyclist rides through a 3-in.-deep puddle of water as
shown in Video V10.5 and Fig. P10.12. If the angle made by the
V-shaped wave pattern produced by the front wheel is observed
to be 40°, estimate the speed of the bike through the puddle.
Hint: Make a sketch of the current location of the bike wheel
relative to where it was seconds ago. Also indicate on this
sketch the current location of the wave that the wheel made 
seconds ago. Recall that the wave moves radially outward in all
directions with speed c relative to the stationary water.

¢t
¢t

l,

F I G U R E  P10.12

40°

10.13 Determine the minimum depth in a 3-m-wide rectangular
channel if the flow is to be subcritical with a flowrate of 

10.14 (See Fluids in the News article titled “Tsunami, the nonstorm
wave,” Section 10.2.1.) An earthquake causes a shift in the ocean
floor that produces a tsunami with a wavelength of 100 km. How

Q � 60 m3�s.
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fast will this wave travel across the ocean surface if the ocean depth
is 3000 m?

Section 10.3 Energy Considerations

10.15 Water flows in a 10-m-wide open channel with a flowrate
of 5 m3 s. Determine the two possible depths if the specific energy
of the flow is E � 0.6 m.

10.16 Water flows in a rectangular channel with a flowrate per
unit width of Plot the specific energy diagram for
this flow. Determine the two possible depths of flow if 

10.17 Water flows radially outward on a horizontal round disk as
shown in Video V10.12 and Fig. P10.17. (a) Show that the specific
energy can be written in terms of the flowrate, Q, the radial distance
from the axis of symmetry, r, and the fluid depth, y, as

(b) For a constant flowrate, sketch the specific energy diagram.
Recall Fig. 10.7, but note that for the present case r is a variable.
Explain the important characteristics of your sketch. (c) Based on the
results of Part (b), show that the water depth increases in the flow
direction if the flow is subcritical, but that it decreases in the flow
direction if the flow is supercritical.

E � y � a
Q

2pr
b

2

 

1

2gy2

E � 2.5 m.
q � 2.5 m2�s.

�

Problems 571

F I G U R E  P10.17

r

y
V

Vr

10.18 Water flows in a 10-ft-wide rectangular channel with a flowrate
of 200 ft3/s. Plot the specific energy diagram for this flow. Determine
the two possible flowrates when the specific energy is 6 ft.

10.19 Water flows in a rectangular channel at a rate of
When a Pitot tube is placed in the stream, water in

the tube rises to a level of 4.5 ft above the channel bottom.
Determine the two possible flow depths in the channel. Illustrate
this flow on a specific energy diagram.

10.20 Water flows in a 5-ft-wide rectangular channel with a
flowrate of and an upstream depth of as
is shown in Fig. P10.20. Determine the flow depth and the surface
elevation at section 122.

y1 � 2.5 ftQ � 30 ft3�s

q � 20 cfs�ft.

F I G U R E  P10.20

V1
Q V2

y1

y2

0.2 ft (2)

(1)

10.21 Repeat Problem 10.20 if the upstream depth is 

*10.22 Water flows over the bump in the bottom of the rectangular
channel shown in Fig. P10.22 with a flowrate per unit width of

y1 � 0.5 ft.

The channel bottom contour is given by 
where and x are in meters. The water depth far upstream of the
bump is Plot a graph of the water depth, and
the surface elevation, for Assume one-
dimensional flow.

� x � 4 m.�4 mz � z1x2,
y � y1x2,y1 � 2 m.

zB

zB � 0.2e�x2

,q � 4 m2�s.

F I G U R E  P10.22

0

V1
y1

z

x

y(x) z(x)

zB = 0.2e–x2

*10.23 Repeat Problem 10.22 if the upstream depth is 0.4 m.

10.24 Water in a rectangular channel flows into a gradual
contraction section as is indicated in Fig. P10.24. If the flowrate
is and the upstream depth is determine the
downstream depth, y2.

y1 � 2 ft,Q � 25 ft3�s

F I G U R E  P10.24

V1
V2

V1

V2

(2)(1)

y1 y2

Side view

Top view

b2 = 3 ftb1 = 4 ft

10.25 Sketch the specific energy diagram for the flow of Problem
10.24 and indicate its important characteristics. Note that 

10.26 Repeat Problem 10.24 if the upstream depth is 
Assume that there are no losses between sections 112 and 122.

10.27 Water flows in a rectangular channel with a flowrate per
unit width of and a depth of 0.5 m at section 112. The
head loss between sections 112 and 122 is 0.03 m. Plot the specific
energy diagram for this flow and locate states 112 and 122 on this
diagram. Is it possible to have a head loss of 0.06 m? Explain.

10.28 Water flows in a horizontal rectangular channel with a
flowrate per unit width of and a depth of 1.0 ft at the
downstream section 122. The head loss between section 112 upstream
and section 122 is 0.2 ft. Plot the specific energy diagram for this
flow and locate states 112 and 122 on this diagram.

10.29 Water flows in a horizontal, rectangular channel with an
initial depth of 1 m and an initial velocity of 4 m�s. Determine the
depth downstream if losses are negligible. Note that there may be
more than one solution.

10.30 A smooth transition section connects two rectangular
channels as shown in Fig. P10.30. The channel width increases
from 6.0 to 7.0 ft and the water surface elevation is the same in
each channel. If the upstream depth of flow is 3.0 ft, determine h,
the amount the channel bed needs to be raised across the transition
section to maintain the same surface elevation.

q � 10 ft2�s

q � 1.5 m2�s

y1 � 0.5 ft.

q1 � q2.
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10.31 Water flows over a bump of height on the bottom
of a wide rectangular channel as is indicated in Fig. P10.31. If energy
losses are negligible, show that the slope of the water surface is
given by where and

are the local velocity and depth of flow. Comment on the
sign of relative to the sign of dh�dx.dy�dx1i.e., 60, � 0, or 702
y � y1x2

V � V1x2gy2 4 ,dy�dx � �1dh�dx2� 31 � 1V 2�

h � h1x2

10.37 Fluid properties such as viscosity or density do not appear
in the Manning equation (Eq. 10.20). Does this mean that this
equation is valid for any open-channel flow such as that involving
mercury, water, oil, or molasses? Explain.

10.38 The following data are taken from measurements on Indian
Fork Creek: A � 26 m2, P � 16 m, and S0 � 0.02 m 62 m. Determine
the average shear stress on the wetted perimeter of this channel.

10.39 The following data are obtained for a particular reach of the
Provo River in Utah: free-surface width 
average depth length of

and elevation drop of Determine
(a) the average shear stress on the wetted perimeter, (b) the
Manning coefficient, n, and (c) the Froude number of the flow.

10.40 At a particular location the cross section of the Columbia
River is as indicated in Fig. P10.40. If on a day without wind it takes
5 min to float 0.5 mi along the river, which drops 0.46 ft in that
distance, determine the value of the Manning coefficient, n.

reach � 1.04 ft.reach � 116 ft,
V � 6.56 ft�s,Rh � 3.22 ft,� 3.3 ft,

� 55 ft,A � 183 ft2,

�

10.32 Integrate the differential equation obtained in Problem
10.31 to determine the draw-down distance, indicated in
Fig. P10.31. Comment on your results.

10.33 Water flows in the river shown in Fig. P10.33 with a uniform
bottom slope. The total head at each section is measured by using
Pitot tubes as indicated. Determine the value of at the
location where the Froude number is 0.357.

dy�dx

/ � /1x2,

10.34 Repeat Problem 10.33 if the Froude number is 2.75.

10.35 Water flows in a horizontal rectangular channel at a depth
of 0.5 ft and a velocity of 8 ft�s. Determine the two possible depths
at a location slightly downstream. Viscous effects between the
water and the channel surface are negligible.

Section 10.4.2 The Manning Equation

10.36 Water flows in a 5-m-wide channel with a speed of 2 m/s
and a depth of 1 m. The channel bottom slopes at a rate of 1 m
per 1000 m. Determine the Manning coefficient for this channel.

572 Chapter 10 ■ Open-Channel Flow

F I G U R E  P10.30

6 ft 7 ft
Q

Q

Top view

Side view

3 ft

h

F I G U R E  P10.31

V1
V(x)

y1 y

h(x)

�(x)

x

F I G U R E  P10.33

(2)
(1)

(4)

(3)

Q

z
z1 = 620.1 ft
z3 = 628.3 ft
x2 – x1 = 4100 ft

z2 = 618.7 ft
z4 = 625.0 ft

F I G U R E  P10.40
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F I G U R E  P10.42

Asphalt street
6 in.

110

Sidewalk

Concrete curb

F I G U R E  P10.43

b/2

b/2

b

Center board

Section 10.4.3 Uniform Depth Examples—Determine
Flowrate

10.41 A 2-m-diameter pipe made of finished concrete lies on a slope
of 1 m elevation change per 1000 m horizontal distance. Determine
the flowrate when the pipe is half full.

10.42 Rainwater flows down a street whose cross section is shown
in Fig. P10.42. The street is on a hill at an angle of 2°. Determine
the maximum flowrate possible if the water is not to overflow onto
the sidewalk.

10.43 By what percent is the flowrate reduced in the rectangular
channel shown in Fig. P10.43 because of the addition of the thin
center board? All surfaces are of the same material.
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10.44 The great Kings River flume in Fresno County, California,
was used from 1890 to 1923 to carry logs from an elevation of
4500 ft where trees were cut to an elevation of 300 ft at the railhead.
The flume was 54 miles long, constructed of wood, and had a V-
cross section as indicated in Fig. P10.44. It is claimed that logs
would travel the length of the flume in 15 hours. Do you agree
with this claim? Provide appropriate calculations to support your
answer.

*10.53 The cross section of a long tunnel carrying water through
a mountain is as indicated in Fig. P10.53. Plot a graph of flowrate
as a function of water depth, y, for . The slope is 
2 ft�mi and the surface of the tunnel is rough rock (equivalent to
rubble masonry). At what depth is the flowrate maximum? Explain.

0 � y � 18 ft

10.54 The smooth concrete-lined channel shown in Fig. P10.54 is
built on a slope of 2 m�km. Determine the flowrate if the depth is
y � 1.5 m.

*10.55 At a given location, under normal conditions a river flows
with a Manning coefficient of 0.030 and a cross section as indicated
in Fig. P10.55a. During flood conditions at this location, the river
has a Manning coefficient of 0.040 (because of trees and brush in
the floodplain) and a cross section as shown in Fig. P10.55b.
Determine the ratio of the flowrate during flood conditions to that
during normal conditions.

Problems 573

F I G U R E  P10.44

1 ft1 ft

F I G U R E  P10.45

2 d
d

10 d

10.45 Water flows in a channel as shown in Fig. P10.45. The velocity
is 4.0 ft�s when the channel is half full with depth d. Determine the
velocity when the channel is completely full, depth 2d.

10.46 A trapezoidal channel with a bottom width of 3.0 m and
sides with a slope of 2 : 1 1horizontal:vertical2 is lined with fine
gravel and is to carry Can this channel be10 m3�s.1n � 0.0202
built with a slope of if it is necessary to keep the
velocity below 0.75 m�s to prevent scouring of the bottom?
Explain.

10.47 Water flows in a 2-m-diameter finished concrete pipe so
that it is completely full and the pressure is constant all along the
pipe. If the slope is determine the flowrate by using
open-channel flow methods. Compare this result with that obtained
by using pipe flow methods of Chapter 8.

10.48 Water flows in a weedy earthen channel at a rate of 30 m3�s.
What flowrate can be expected if the weeds are removed and the
depth remains constant?

10.49 A round concrete storm sewer pipe used to carry rainfall
runoff from a parking lot is designed to be half full when the
rainfall rate is a steady 1 in.�hr. Will this pipe be able to handle
the flow from a 2-in.�hr rainfall without water backing up into the
parking lot? Support your answer with appropriate calculations.

10.50 A 10-ft-wide rectangular channel is built to bypass a dam
so that fish can swim upstream during their migration. During
normal conditions when the water depth is 4 ft, the water velocity
is Determine the velocity during a flood when the water
depth is 8 ft.

†10.51 Overnight a thin layer of ice forms on the surface of a
river. Estimate the percent reduction in flowrate caused by this
condition. List all assumptions and show all calculations.

*10.52 Water flows in the painted steel rectangular channel with
rounded corners shown in Fig. P10.52. The bottom slope is 
1 ft�200 ft. Plot a graph of flowrate as a function of water depth
for with corner radii of 0.2, 0.4, 0.6, 0.8, and
1.0 ft.

r � 0,0 � y � 1 ft

5 ft�s.

S0 � 0.005,

S0 � 0.00010

F I G U R E  P10.52

y

2 ft

1 ft

r

F I G U R E  P10.53

12 ft
y

6 ft

F I G U R E  P10.54

0.5 m

1.0 m

6 m

3 m

Concrete

F I G U R E  P10.55

800 ft

12 ft

(a)

800 ft

20 ft

(b)

1000 ft

8 ft

10.56 Repeat Problem 10.54 if the surfaces are smooth concrete
as is indicated, except for the diagonal surface, which is gravelly
with n � 0.025.

JWCL068_ch10_534-578.qxd  9/23/08  11:56 AM  Page 573



*10.57 Water flows through the storm sewer shown in Fig. P10.57.
The slope of the bottom is Plot a graph of the flowrate
as a function of depth for On the same graph, plot
the flowrate expected if the entire surface were lined with material
similar to that of a clay tile.

0 � y � 1.7 m.
2 m�400 m.

574 Chapter 10 ■ Open-Channel Flow

10.66 An engineer is to design a channel lined with planed wood
to carry water at a flowrate of on a slope of 
The channel cross section can be either a triangle or a rectangle
with a cross section twice as wide as its depth. Which would require
less wood and by what percent?

10.67 A circular finished concrete culvert is to carry a discharge
of on a slope of 0.0010. It is to flow not more than half-
full. The culvert pipes are available from the manufacture with
diameters that are multiples of 1 ft. Determine the smallest suitable
culvert diameter.

10.68 At what depth will of water flow in a 6-ft-wide
rectangular channel lined with rubble masonry set on a slope of 
1 ft in 500 ft? Is a hydraulic jump possible under these conditions?
Explain.

10.69 The rectangular canal shown in Fig. P10.69 changes to a
round pipe of diameter D as it passes through a tunnel in a mountain.
Determine D if the surface material and slope remain the same and
the round pipe is to flow completely full.

50 ft3�s

50 ft3�s

90°
10 m�800 m.2 m3�s

10.58 Determine the flowrate for the symmetrical channel shown
in Fig. P10.80 if the bottom is smooth concrete and the sides are
weedy. The bottom slope is 

10.59 (See Fluids in the News article titled “Done without a GPS
or lasers,” Section 10.4.3.) Determine the number of gallons of wa-
ter delivered per day by a rubble masonry, 1.2-m-wide aqueduct
laid on an average slope of 14.6 m per 50 km if the water depth is
1.8 m.

Section 10.4.3 Uniform Depth Examples—Determine
Depth or Size
10.60 Water flows in a rectangular, finished concrete channel at
a rate of . The bottom slope is 0.001. Determine the channel
width if the water depth is to be equal to its width.

10.61 An old, rough-surfaced, 2-m-diameter concrete pipe with a
Manning coefficient of 0.025 carries water at a rate of 5.0 m3/s
when it is half full. It is to be replaced by a new pipe with a Manning
coefficient of 0.012 that is also to flow half full at the same flowrate.
Determine the diameter of the new pipe.

10.62 Four sewer pipes of 0.5-m diameter join to form one pipe
of diameter D. If the Manning coefficient, n, and the slope are
the same for all of the pipes, and if each pipe flows half-full,
determine D.

10.63 The flowrate in the clay-lined channel shown
in Fig. P10.63 is to be To prevent erosion of the sides,
the velocity must not exceed 5 ft s. For this maximum velocity,
determine the width of the bottom, b, and the slope, S0.

�
300 ft3�s.

1n � 0.0252

2 m3�s

S0 � 0.001.

10.64 Overnight a thin layer of ice forms on the surface of a 40-
ft-wide river that is essentially of rectangular cross-sectional shape.
Under these conditions the flow depth is 3 ft. During the following
day the sun melts the ice cover. Determine the new depth if the
flowrate remains the same and the surface roughness of the ice is
essentially the same as that for the bottom and sides of the river.

10.65 A rectangular, unfinished concrete channel of 28-ft-width
is laid on a slope of 8 ft�mi. Determine the flow depth and Froude
number of the flow if the flowrate is 400 ft3�s.

F I G U R E  P10.57

0.5 m

Clay tile

Rubble
masonry

2.5 m

y

F I G U R E  P10.63

b

2 ft
45°30°

F I G U R E  P10.70

3 m

8 m L

45� 45�

F I G U R E  P10.69

D

b

b
2

10.70 The flowrate through the trapezoidal canal shown in Fig.
P10.70 is Q. If it is desired to double the flowrate to 2Q without
changing the depth, determine the additional width, L, needed. The
bottom slope, surface material, and the slope of the walls are to
remain the same.

F I G U R E  P10.71

2 m

L

10.71 When the channel of triangular cross section shown in Fig.
P10.71 was new, a flowrate of Q caused the water to reach 
up the side as indicated. After considerable use, the walls of the
channel became rougher and the Manning coefficient, n, doubled.
Determine the new value of L if the flowrate stayed the same.

L � 2 m

10.72 A smooth steel water slide at an amusement park is of
semicircular cross section with a diameter of 2.5 ft. The slide
descends a vertical distance of 35 ft in its 420-ft length. If pumps

JWCL068_ch10_534-578.qxd  9/23/08  11:56 AM  Page 574



supply water to the slide at a rate of 6 cfs, determine the depth of
flow. Neglect the effects of the curves and bends of the slide.

10.73 Two canals join to form a larger canal as shown in Video
V10.6 and Fig. P10.73. Each of the three rectangular canals is
lined with the same material and has the same bottom slope. The
water depth in each is to be 2 m. Determine the width of the
merged canal, b. Explain physically (i.e., without using any
equations) why it is expected that the width of the merged canal
is less than the combined widths of the two original canals (i.e.,
b 6 4 m � 8 m � 12 m2.

Problems 575

10.74 Water flows uniformly at a depth of 1 m in a channel that is
5 m wide as shown in Fig. P10.74. Further downstream the channel
cross section changes to that of a square of width and height b.
Determine the value of b if the two portions of this channel are made
of the same material and are constructed with the same bottom slope.

F I G U R E  P10.73

8 m

4 m

b
Q2

Q1

Q3

F I G U R E  P10.74

1 m
b

Width = 5 m

10.75 Determine the flow depth for the channel shown in Fig.
P10.54 if the flowrate is 

10.76 Rainwater runoff from a 200-ft by 500-ft parking lot is to
drain through a circular concrete pipe that is laid on a slope of
3 ft�mi. Determine the pipe diameter if it is to be full with a steady
rainfall of 1.5 in.�hr.

10.77 (See Fluids in the News article titled “Plumbing the Ever-
glades,” Section 10.4.1.) The canal shown in Fig. P10.77 is to be
widened so that it can carry twice the amount of water. Determine the
additional width, L, required if all other parameters (i.e., flow depth,
bottom slope, surface material, side slope) are to remain the same.

15 m3�s.

F I G U R E  P10.77

5 ft

2 ft

10 ft

L

Section 10.4.3 Uniform Depth Examples—Determine Slope

10.78 Water flows 1 m deep in a 2-m-wide finished concrete
channel. Determine the slope if the flowrate is 

10.79 Water flows in the channel shown in Fig. P10.79 at a rate
of Determine the minimum slope that this channel can
have so that the water does not overflow the sides. The Manning
coefficient for this channel is n � 0.014.

90 ft3�s.

3 m3�s.

F I G U R E  P10.79

2 ft

2 ft

10.80 To prevent weeds from growing in a clean earthen-lined
canal, it is recommended that the velocity be no less than 2.5 ft�s.
For the symmetrical canal shown in Fig. P10.80, determine the
minimum slope needed.

10.81 The smooth, concrete-lined, symmetrical channel shown in
Video V10.7 and Fig. P10.80 carries water from the silt-laden
Colorado River. If the velocity must be 4.0 ft�s to prevent the silt
from settling out 1and eventually clogging the channel2, determine the
minimum slope needed.

10.82 The symmetrical channel shown in Fig. P10.80 is dug in sandy
loam soil with For such surface material it is recommended
that to prevent scouring of the surface the average velocity be no more
than 1.75 ft�s. Determine the maximum slope allowed. 

10.83 The depth downstream of a sluice gate in a rectangular
wooden channel of width 5 m is 0.60 m. If the flowrate is 18 m3�s,
determine the channel slope needed to maintain this depth. Will the
depth increase or decrease in the flow direction if the slope is (a)
0.02; (b) 0.01?

10.84 Water in a painted steel rectangular channel of width 
and depth y is to flow at critical conditions, Plot a graph of
the critical slope, as a function of y for What
is the maximum slope allowed if critical flow is not to occur
regardless of the depth?

10.85 A 50-ft-long aluminum gutter 1Manning coefficient
2 on a section of a roof is to handle a flowrate of 0.15 ft3�sn � 0.011

0.05 ft � y � 5 ft.S0c,
Fr � 1.

b � 1 ft

n � 0.020.

F I G U R E  P10.80

12 ft

3 ft

4 ft

F I G U R E  P10.85

60�

3 in.

5 in.
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during a heavy rain storm. The cross section of the gutter is shown
in Fig. P10.85. Determine the vertical distance that this gutter must
be pitched 1i.e., the difference in elevation between the two ends
of the gutter2 so that the water does not overflow the gutter. Assume
uniform depth channel flow.

Section 10.6.1 The Hydraulic Jump (Also see Lab
Problems 10.116 and 10.117.)
10.86 Obtain a photograph image of a situation that involves a
hydraulic jump. Print this photo and write a brief paragraph that
describes the flow.

10.87 Water flows upstream of a hydraulic jump with a depth of
0.5 m and a velocity of Determine the depth of the water
downstream of the jump.

10.88 A 2.0-ft standing wave is produced at the bottom of the
rectangular channel in an amusement park water ride. If the water
depth upstream of the wave is estimated to be 1.5 ft, determine
how fast the boat is traveling when it passes through this standing
wave 1hydraulic jump2 for its final “splash.”

10.89 The water depths upstream and downstream of a hydraulic
jump are 0.3 and 1.2 m, respectively. Determine the upstream
velocity and the power dissipated if the channel is 50 m wide.

10.90 Under appropriate conditions, water flowing from a faucet,
onto a flat plate, and over the edge of the plate can produce a circular
hydraulic jump as shown in Fig. P10.90 and Video V10.12. Consider
a situation where a jump forms 3.0 in. from the center of the plate
with depths upstream and downstream of the jump of 0.05 in. and
0.20 in., respectively. Determine the flowrate from the faucet.

6 m�s.

�

576 Chapter 10 ■ Open-Channel Flow

and velocity of the uniform flow upstream of the jump are 0.5 m
and respectively. Determine the value of h if the flow
downstream of the jump is to be uniform flow.

10.96 At a given location in a 12-ft-wide rectangular channel the
flowrate is 900 ft3 s and the depth is 4 ft. Is this location upstream
or downstream of the hydraulic jump that occurs in this channel?
Explain.

*10.97 A rectangular channel of width b is to carry water at flowrates
from The water depth upstream of the hydraulic
jump that occurs 1if one does occur2 is to remain 1.5 ft for all cases.
Plot the power dissipated in the jump as a function of flowrate for
channels of width 20, 30, and 40 ft.

10.98 Water flows in a rectangular channel at a depth of 
and a velocity of When a gate is suddenly placed across
the end of the channel, a wave 1a moving hydraulic jump2 travels
upstream with velocity as is indicated in Fig. P10.98. Determine

Note that this is an unsteady problem for a stationary observer.
However, for an observer moving to the left with velocity the
flow appears as a steady hydraulic jump.

Vw,
Vw.

Vw

V � 20 ft�s.
y � 1 ft

b � 10,

30 � Q � 600 cfs.

�

8 m�s,

F I G U R E  P10.90

Jump

3 in.
Jump

0.05 in. 0.20 in.

10.91 Show that the Froude number downstream of a hydraulic
jump in a rectangular channel is times the Froude number
upstream of the jump, where (1) and (2) denote the upstream and
downstream conditions, respectively.

10.92 Water flows in a 2-ft-wide rectangular channel at a rate of
If the water depth downstream of a hydraulic jump is 2.5 ft,

determine (a) the water depth upstream of the jump, (b) the
upstream and downstream Froude numbers, and (c) the head loss
across the jump.

10.93 A hydraulic jump at the base of a spillway of a dam is such
that the depths upstream and downstream of the jump are 0.90 and
3.6 m, respectively (see Video V10.11). If the spillway is 10 m
wide, what is the flowrate over the spillway?

10.94 Determine the head loss and power dissipated by the
hydraulic jump of Problem 10.93.

10.95 A hydraulic jump occurs in a 4-m-wide rectangular channel
at a point where the slope changes from 3 m per 100 m upstream
of the jump to h m per 100 m downstream of the jump. The depth

10 ft3�s.

1y1�y22
3/2

F I G U R E  P10.98

V y

Vw

V = 0

10.99 Water flows in a rectangular channel with velocity
. A gate at the end of the channel is suddenly closed

so that a wave (a moving hydraulic jump) travels upstream with
velocity as is indicated in Fig. P10.98. Determine the
depths ahead of and behind the wave. Note that this is an unsteady
problem for a stationary observer. However, for an observer moving
to the left with velocity Vw, the flow appears as a steady hydraulic
jump.

10.100 (See Fluids in the News article titled “Grand Canyon
rapids building,” Section 10.6.1.) During the flood of 1983, a large
hydraulic jump formed at “Crystal Hole” rapid on the Colorado
River. People rafting the river at that time report “entering the
rapid at almost 30 mph, hitting a 20-ft-tall wall of water, and exit-
ing at about 10 mph.” Is this information (i.e., upstream and down-
stream velocities and change in depth) consistent with the princi-
ples of a hydraulic jump? Show calculations to support your
answer.

Section 10.6.2,3 Sharp-Crested and Broad-Crested
Weirs (Also see Lab Problems 10.114 and 10.115.)
10.101 Obtain a photograph image of a situation that involves a
weir. Print this photo and write a brief paragraph that describes the
flow.

10.102 Water flows over a 2-m-wide rectangular sharp-crested
weir. Determine the flowrate if the weir head is 0.1 m and the
channel depth is 1 m.

10.103 Water flows over a 5-ft-wide, rectangular sharp-crested
weir that is tall. If the depth upstream is 5 ft, determine
the flowrate.

10.104 A rectangular sharp-crested weir is used to measure the
flowrate in a channel of width 10 ft. It is desired to have the channel
flow depth be 6 ft when the flowrate is 50 cfs. Determine the height,

of the weir plate.Pw,

Pw � 4.5 ft

�

Vw � 2 m�s

V �  6 m�s
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10.105 Water flows from a storage tank, over two triangular
weirs, and into two irrigation channels as shown in Video V10.13
and Fig. P10.105. The head for each weir is 0.4 ft, and the flowrate
in the channel fed by the 90°-V-notch weir is to be twice the
flowrate in the other channel. Determine the angle for the second
weir.

u

Problems 577

calculations if the weir of part (a) is replaced by a rectangular sharp-
crested “duck bill” weir which is oriented at an angle of 30° relative
to the channel centerline as shown in Fig. P10.109b. The weir
coefficient remains the same.

10.110 Water flows in a rectangular channel of width at
a rate of The flowrate is to be measured by using either a
rectangular weir of height or a triangular sharp-
crested weir. Determine the head, H, necessary. If measurement of
the head is accurate to only determine the accuracy of the
measured flowrate expected for each of the weirs. Which weir would
be the most accurate? Explain.

Section 10.6.4 Underflow Gates
10.111 Water flows under a sluice gate in a 60-ft-wide finished
concrete channel as is shown in Fig. P10.111. Determine the
flowrate. If the slope of the channel is will the water
depth increase or decrease downstream of the gate? Assume

Explain.Cc � y2 �a � 0.65.

2.5 ft�200 ft,

0.04 ft,

1u � 90°2Pw � 4 ft
100 ft3�s.

b � 20 ft

F I G U R E  P10.105

90° 0.4 ft θ

F I G U R E  P10.106

5 ft

H

Pw = 2 ft

10.106 Rain water from a parking lot flows into a 2-acre 18.71
� 104 ft22 retention pond. After a heavy rain when there is no
more inflow into the pond, the rectangular weir shown in Fig.
P10.106 at the outlet of the pond has a head of (a)
Determine the rate at which the level of the water in the pond
decreases, at this condition. (b) Determine how long it
will take to reduce the pond level by half a foot; that is, to

ft.H � 0.1

dH�dt,

H � 0.6 ft.

F I G U R E  P10.109

(a) (b)

20 ft
Q Q

30°

F I G U R E  P10.111

a = 2 ft

y2
10 ft

Q

F I G U R E  P10.113

1m
2m

2m

y1

10.107 A basin at a water treatment plant is 60 ft long, 10 ft wide,
and 5 ft deep. Water flows from the basin over a 3-ft-long,
rectangular weir whose crest is 4 ft above the bottom of the basin.
Estimate how long it will take for the depth of the water in the
basin to change from 4.5 ft to 4.4 ft if there is no flow into the
basin.

10.108 Water flows over a sharp-crested triangular weir with
The head range covered is 0 and the

accuracy in the measurement of the head, H, is 
Plot a graph of the percent error expected in Q as a function of Q.

10.109 (a) The rectangular sharp-crested weir shown in Fig.
P10.109a is used to maintain a relatively constant depth in the
channel upstream of the weir. How much deeper will the water be
upstream of the weir during a flood when the flowrate is 
compared to normal conditions when the flowrate is Assume
the weir coefficient remains constant at (b) Repeat theCwr � 0.62.

30 ft3�s?
45 ft3�s

dH � ;0.01 ft.
.20 � H � 1.0 ftu � 90°.

10.112 Water flows under a sluice gate in a channel of 10-ft width.
If the upstream depth remains constant at 5 ft, plot a graph of
flowrate as a function of the distance between the gate and the
channel bottom as the gate is slowly opened. Assume free outflow.

10.113 A water-level regulator 1not shown2 maintains a depth of
2.0 m downstream from a 10-m-wide drum gate as shown in Fig.
P10.113. Plot a graph of flowrate, Q, as a function of water depth
upstream of the gate, for 2.0 � y1 � 5.0 m.y1,

■ Lab Problems

10.114 This problem involves the calibration of a triangular weir.
To proceed with this problem, go to Appendix H which is located
on the book’s web site, www.wiley.com/college/munson.

10.115 This problem involves the calibration of a rectangular
weir. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

10.116 This problem involves the depth ratio across a hydraulic
jump. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

10.117 This problem involves the head loss across a hydraulic
jump. To proceed with this problem, go to Appendix H which is
located on the book’s web site, www.wiley.com/college/munson.

JWCL068_ch10_534-578.qxd  9/23/08  11:56 AM  Page 577

http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/college/munson
http://www.wiley.com/college/munson


■ Life Long Learning Problems

10.118 With the increased usage of low-lying coastal areas and
the possible rise in ocean levels because of global warming, the
potential for widespread damage from tsunamis 1i.e., “tidal waves”2
is increasing. Obtain information about new and improved methods
available to predict the occurrence of these damaging waves and
how to better use coastal areas so that massive loss of life and
property does not occur. Summarize your findings in a brief report.

10.119 Recent photographs from NASA’s Mars Orbiter Camera
on the Mars Global Surveyor provide new evidence that water may
still flow on the surface of Mars. Obtain information about the
possibility of current or past open-channel flows on Mars and other
planets or their satellites. Summarize your findings in a brief report.

578 Chapter 10 ■ Open-Channel Flow

10.120 Hydraulic jumps are normally associated with water
flowing in rivers, gullies, and other such relatively high-speed open
channels. However, recently, hydraulic jumps have been used in
various manufacturing processes involving fluids other than water
1such as liquid metal solder2 in relatively small-scale flows. Obtain
information about new manufacturing processes that involve
hydraulic jumps as an integral part of the process. Summarize your
findings in a brief report.

■ FE Exam Problems

Sample FE 1Fundamentals of Engineering2 exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.com/
college/munson.
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579

CHAPTER OPENING PHOTO: Flow past a sphere at Mach 1.53: An object moving through a fluid at super-

sonic speed 1Mach number greater than one2 creates a shock wave 1a discontinuity in flow conditions shown

by the dark curved line2, which is heard as a sonic boom as the object passes overhead. The turbulent wake

is also shown 1shadowgraph technique used in air2. (Photograph courtesy of A. C. Charters.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ distinguish between incompressible and compressible flows, and know when the

approximations associated with assuming fluid incompressibility are acceptable.

■ understand some important features of different categories of compressible

flows of ideal gases.

■ explain speed of sound and Mach number and their practical significance.

■ solve useful problems involving isentropic and nonisentropic flows including

flows across normal shock waves.

■ appreciate the compelling similarities between compressible flows of gases

and open channel flows of liquids.

■ move on to understanding more advanced concepts about compressible flows.

Most first courses in fluid mechanics concentrate on constant density 1incompressible2 flows. In

earlier chapters of this book, we mainly considered incompressible flow behavior. In a few in-

stances, variable density 1compressible2 flow effects were covered briefly. The notion of an incom-

pressible fluid is convenient because when constant density and constant 1including zero2 viscos-

ity are assumed, problem solutions are greatly simplified. Also, fluid incompressibility allows us

to build on the Bernoulli equation as was done, for example, in Chapter 5. Preceding examples

should have convinced us that nearly incompressible flows are common in everyday experiences.

1111 Compressible 
Flow

Compressible 
Flow
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Any study of fluid mechanics would, however, be incomplete without a brief introduction to com-

pressible flow behavior. Fluid compressibility is a very important consideration in numerous engineer-

ing applications of fluid mechanics. For example, the measurement of high-speed flow velocities re-

quires compressible flow theory. The flows in gas turbine engine components are generally compressible.

Many aircraft fly fast enough to involve compressible flow.

The variation of fluid density for compressible flows requires attention to density and other

fluid property relationships. The fluid equation of state, often unimportant for incompressible flows,

is vital in the analysis of compressible flows. Also, temperature variations for compressible flows

are usually significant and thus the energy equation is important. Curious phenomena can occur with

compressible flows. For example, with compressible flows we can have fluid acceleration because

of friction, fluid deceleration in a converging duct, fluid temperature decrease with heating, and the

formation of abrupt discontinuities in flows across which fluid properties change appreciably.

For simplicity, in this introductory study of compressibility effects we mainly consider the

steady, one-dimensional, constant 1including zero2 viscosity, compressible flow of an ideal gas. We

limit our study to compressibility due to high speed flow. In this chapter, one-dimensional flow

refers to flow involving uniform distributions of fluid properties over any flow cross-sectional area.

Both frictionless and frictional compressible flows are considered. If the change

in volume associated with a change of pressure is considered a measure of compressibility, our ex-

perience suggests that gases and vapors are much more compressible than liquids. We focus our

attention on the compressible flow of a gas because such flows occur often. We limit our discus-

sion to ideal gases, since the equation of state for an ideal gas is uncomplicated, yet representative

of actual gases at pressures and temperatures of engineering interest, and because the flow trends

associated with an ideal gas are generally applicable to other compressible fluids.

An excellent film about compressible flow is available 1see Ref. 12. This resource is a use-

ful supplement to the material covered in this chapter.

1m � 021m � 02

580 Chapter 11 ■ Compressible Flow

11.1 Ideal Gas Relationships

Before we can proceed to develop compressible flow equations, we need to become more famil-

iar with the fluid we will work with, the ideal gas. Specifically, we must learn how to evaluate

ideal gas property changes. The equation of state for an ideal gas is

(11.1)

We have already discussed fluid pressure, p, density, and temperature, T, in earlier chapters. The

gas constant, R, represents a constant for each distinct ideal gas or mixture of ideal gases, where

(11.2)

With this notation, is the universal gas constant and is the molecular weight of the ideal gas or

gas mixture. Listed in Tables 1.7 and 1.8 are values of the gas constants of some commonly used gases.

Knowing the pressure and temperature of a gas, we can estimate its density. Nonideal gas state equa-

tions are beyond the scope of this text, and those interested in this topic are directed to texts on engi-

neering thermodynamics, for example, Ref. 2. Note that the trends of ideal gas flows are generally

good indicators of what nonideal gas flow behavior is like.

For an ideal gas, internal energy, is part of the stored energy of the gas as explained in

Section 5.3 and is considered to be a function of temperature only 1Ref. 22. Thus, the ideal gas spe-

cific heat at constant volume, can be expressed as

(11.3)

where the subscript on the partial derivative refers to differentiation at constant specific volume,

From Eq. 11.3 we conclude that for a particular ideal gas, is a function of tempera-

ture only. Equation 11.3 can be rearranged to yield

dǔ � cv dT

cvv � 1�r.
v

cv � a
0ǔ

0T
b

v
�

dǔ

dT

cv,

ǔ,

Mgasl

R �
l

Mgas

r,

r �
p

RT

We consider ideal
gas flows only.

V11.1 Lighter
flame
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Thus,

(11.4)

Equation 11.4 is useful because it allows us to evaluate the change in internal energy, as-

sociated with ideal gas flow from section 112 to section 122 in a flow. For simplicity, we can assume

that is constant for a particular ideal gas and obtain from Eq. 11.4

(11.5)

Actually, for a particular gas varies with temperature 1see Ref. 22. However, for moderate changes

in temperature, the constant assumption is reasonable.

The fluid property enthalpy, is defined as

(11.6)

It combines internal energy, and pressure energy, and is useful when dealing with the en-

ergy equation 1Eq. 5.692. For an ideal gas, we have already stated that

From the equation of state 1Eq. 11.12

Thus, it follows that

Since for an ideal gas, enthalpy is a function of temperature only, the ideal gas specific heat at con-

stant pressure, can be expressed as

(11.7)

where the subscript p on the partial derivative refers to differentiation at constant pressure, and 

is a function of temperature only. The rearrangement of Eq. 11.7 leads to

and

(11.8)

Equation 11.8 is useful because it allows us to evaluate the change in enthalpy, associ-

ated with ideal gas flow from section 112 to section 122 in a flow. For simplicity, we can assume

that is constant for a specific ideal gas and obtain from Eq. 11.8

(11.9)

As is true for the value of for a given gas varies with temperature. Nevertheless, for moder-

ate changes in temperature, the constant assumption is reasonable.

From Eqs. 11.5 and 11.9 we see that changes in internal energy and enthalpy are related

to changes in temperature by values of and We turn our attention now to developing use-

ful relationships for determining and Combining Eqs. 11.6 and 11.1 we get

(11.10)ȟ � ǔ � RT

cp.cv

cp.cv

cp

cpcv,

ȟ2 � ȟ1 � cp1T2 � T12

cp

ȟ2 � ȟ1,

ȟ2 � ȟ1 � �
T2

T1

 cp dT

dȟ � cp dT

cp

cp � a
0ȟ

0T
b

p

�
dȟ

dT

cp,

ȟ � ȟ1T2

p
r

� RT

ǔ � ǔ1T2

p�r,ǔ,

ȟ � ǔ �
p
r

ȟ,

cv

cv

ǔ2 � ǔ1 � cv1T2 � T12

cv

ǔ2 � ǔ1,

ǔ2 � ǔ1 � �
T2

T1

 cv dT
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For moderate tem-
perature changes,
specific heat values
can be considered
constant.
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Differentiating Eq. 11.10 leads to

or

(11.11)

From Eqs. 11.3, 11.7, and 11.11 we conclude that

(11.12)

Equation 11.12 indicates that the difference between and is constant for each ideal gas re-

gardless of temperature. Also If the specific heat ratio, k, is defined as

(11.13)

then combining Eqs. 11.12 and 11.13 leads to

(11.14)

and

(11.15)

Actually, and k are all somewhat temperature dependent for any ideal gas. We will assume

constant values for these variables in this book. Values of k and R for some commonly used gases at

nominal temperatures are listed in Tables 1.7 and 1.8. These tabulated values can be used with Eqs.

11.13 and 11.14 to determine the values of and Example 11.1 demonstrates how internal en-

ergy and enthalpy changes can be calculated for a flowing ideal gas having constant and cv.cp

cv.cp

cp, cv,

cv �
R

k � 1

cp �
Rk

k � 1

k �
cp

cv

cp 7 cv.

cvcp

cp � cv � R

dȟ

dT
�

dǔ

dT
� R

dȟ � dǔ � R dT
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The gas constant is
related to the spe-
cific heat values.

GIVEN Air flows steadily between two sections in a long

straight portion of 4-in.-diameter pipe as is indicated in Fig. E11.1.

The uniformly distributed temperature and pressure at each section

are psia, and psia. T2 � 453 °R, p2 � 18.4T1 � 540 °R, p1 � 100

Internal Energy, Enthalpy, and Density for an Ideal GasEXAMPLE 11.1

SOLUTION

units are used more often than British Gravitational System units

in compressible flow discussions, we use

to get

R �
1716 1ft # lb2� 1slug # °R2

32.174 1lbm�slug2
� 53.3 1ft # lb2� 1lbm # °R2

1 slug � 32 .174 lbm

(a) Assuming air behaves as an ideal gas, we can use Eq. 11.5 to

evaluate the change in internal energy between sections 112 and 122.
Thus

(1)

From Eq. 11.15 we have

(2)

and from Table 1.7, and 

Throughout this book, we use the nominal values of k for

common gases listed in Tables 1.7 and 1.8 and consider these val-

ues as being representative. Since English Engineering System

k � 1.4.R � 1716 1ft # lb2� 1slug # °R2

cv �
R

k � 1

ǔ2 � ǔ1 � cv1T2 � T12

F I G U R E  E11.1

DSection (2)Section (1)Flow

Control volumePipe

D1 = D2 = 4 in.

FIND Calculate the 1a2 change in internal energy between sec-

tions 112 and 122, 1b2 change in enthalpy between sections 112 and

122, and 1c2 change in density between sections 112 and 122.
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For compressible flows, changes in the thermodynamic property entropy, s, are important.

For any pure substance including ideal gases, the “first T ds equation” is 1see Ref. 22

(11.16)

where T is absolute temperature, s is entropy, is internal energy, p is absolute pressure, and is

density. Differentiating Eq. 11.6 leads to

(11.17)

By combining Eqs. 11.16 and 11.17, we obtain

(11.18)

Equation 11.18 is often referred to as the “second T ds equation.” For an ideal gas, Eqs. 11.1, 11.3,

and 11.16 can be combined to yield

(11.19)

and Eqs. 11.1, 11.7, and 11.18 can be combined to yield

(11.20)ds � cp 
dT

T
� R 

dp

p

ds � cv 

dT

T
�

R

1�r
 d a

1

r
b

T ds � dȟ �  a
1

r
b dp

dȟ � dǔ � pd a
1

r
b � a

1

r
b dp

rǔ

T ds � dǔ � pd  a
1

r
b
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From Eq. 2 we obtain

(3)

Combining Eqs. 1 and 3 yields

(Ans)

Or, if Btu are wanted as energy units, we note that

and so

(b) For enthalpy change we use Eq. 11.9. Thus

(4)

where since we obtain

(5)

From Eqs. 4 and 5 we obtain

(Ans) � �16,200 ft # lb�lbm

 � 1453 °R � 540 °R2
 ȟ2 � ȟ1 � cp1T2 � T12 � 186 1ft # lb2� 1lbm # °R2

 � 186 1ft # lb2� 1lbm # °R2

cp � kcv � 11.42 3133 1ft # lb2� 1lbm # °R2 4

k � cp�cv

ȟ2 � ȟ1 � cp1T2 � T12

ǔ2 � ǔ1 � �
11,600 1ft # lb2�lbm

778 1ft # lb2�Btu
� �14.9 Btu�lbm

778 ft # lb � 1 Btu

 � �11,600 ft # lb�lbm

 � 1453 °R � 540 °R2
 ǔ2 � ǔ1 � cv1T2 � T12 � 133 1ft # lb2� 1lbm # °R2

 � 133 1ft # lb2� 1lbm # °R2

 cv �
53.3

11.4 � 12
 1ft # lb2� 1lbm # °R2

(c) For density change we use the ideal gas equation of state

1Eq. 11.12 to get

(6)

Using the pressures and temperatures given in the problem state-

ment we calculate from Eq. 6

or

(Ans)

COMMENT This is a significant change in density when

compared with the upstream density

Compressibility effects are important for this flow.

 � 0.499 lbm�ft3

r1 �
p1

RT1

�
1100 psia2 1144 in.2�ft22

353.3 1ft # lb2� 1lbm # °R2 4 1540 °R2

 r2 � r1 � �0.389 lbm�ft3

 �
1100 psia2 1144  in.2�ft22

540 °R
d

 � c
118.4 psia2 1144 in.2�ft22

453 °R

 r2 � r1 �
1

53.3 1ft # lb2� 1lbm # °R2

r2 � r1 �
p2

RT2

�
p1

RT1

�
1

R
 a

p2

T2

�
p1

T1

b

Changes in entropy
are important be-
cause they are re-
lated to loss of
available energy.
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If and are assumed to be constant for a given gas, Eqs. 11.19 and 11.20 can be integrated to get

(11.21)

and

(11.22)

Equations 11.21 and 11.22 allow us to calculate the change of entropy of an ideal gas flowing from

one section to another with constant specific heat values 1 and 2.cvcp

s2 � s1 � cp ln 
T2

T1

� R ln 
p2

p1

s2 � s1 � cv ln 
T2

T1

� R ln 
r1

r2

cvcp

584 Chapter 11 ■ Compressible Flow

Changes in entropy
are related to
changes in temper-
ature, pressure, and
density.

GIVEN Consider the air flow of Example 11.1.

Entropy for an Ideal GasEXAMPLE 11.2

SOLUTION

we get

or

(Ans)

From Eq. 11.22,

(4)

By substituting known values into Eq. 4 we obtain

or

(Ans)

COMMENT As anticipated, both Eqs. 11.21 and 11.22 yield

the same result for the entropy change,

Note that since the ideal gas equation of state was used in the

derivation of the entropy difference equations, both the pressures

and temperatures used must be absolute.

s2 � s1.

s2 � s1 � 57.5 1ft # lb2� 1lbm # °R2

� 353.3 1ft # lb2� 1lbm # °R2 4  ln a
18.4 psia

100 psia
b

 s2 � s1 � 3186 1ft # lb2� 1lbm # °R2 4  ln a
453 °R

540 °R
b

s2 � s1 � cp ln 
T2

T1

� R ln 
p2

p1

 s2 � s1 � 57.5 1ft # lb2� 1lbm # °R2

 � 353.3 1ft # lb2� 1lbm # °R2 4  ln 4.56

 s2 � s1 � 3133 1ft # lb2� 1lbm # °R2 4  ln a
453 °R

540 °R
b

Assuming that the flowing air in Fig. E11.1 behaves as an ideal

gas, we can calculate the entropy change between sections by us-

ing either Eq. 11.21 or Eq. 11.22. We use both to demonstrate that

the same result is obtained either way.

From Eq. 11.21,

(1)

To evaluate from Eq. 1 we need the density ratio,

which can be obtained from the ideal gas equation of state 

1Eq. 11.12 as

(2)

and thus from Eqs. 1 and 2,

(3)

By substituting values already identified in the Example 11.1

problem statement and solution into Eq. 3 with

a
p1

T1

b a
T2

p2

b � a
100 psia

540 °R
b a

453 °R

18.4 psia
b � 4.56

s2 � s1 � cv ln 
T2

T1

� R ln c a
p1

T1

b a
T2

p2

b d

r1

r2

� a
p1

T1

b a
T2

p2

b

r1�r2,s2 � s1

s2 � s1 � cv ln 
T2

T1

� R ln 
r1

r2

If internal energy, enthalpy, and entropy changes for ideal gas flow with variable specific heats

are desired, Eqs. 11.4, 11.8, and 11.19 or 11.20 must be used as explained in Ref. 2. Detailed tables

1see, for example, Ref. 32 are available for variable specific heat calculations.

The second law of thermodynamics requires that the adiabatic and frictionless flow of any fluid

results in Constant entropy flow is called isentropic flow. For the isentropic

flow of an ideal gas with constant and we get from Eqs. 11.21 and 11.22

(11.23)cv ln 
T2

T1

� R ln 
r1

r2

� cp ln 
T2

T1

� R ln 
p2

p1

� 0

cv,cp

ds � 0 or s2 � s1 � 0.

FIND Calculate the change in entropy, between sec-

tions 112 and 122.
s2 � s1,
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By combining Eq. 11.23 with Eqs. 11.14 and 11.15 we obtain

(11.24)

which is a useful relationship between temperature, density, and pressure for the isentropic flow

of an ideal gas. From Eq. 11.24 we can conclude that

(11.25)

for an ideal gas with constant and flowing isentropically, a result already used without proof

earlier in Chapters 1, 3, and 5.

cvcp

p

rk � constant

a
T2

T1

b
k�1k�12

� a
r2

r1

b
k

� a
p2

p1

b

11.2 Mach Number and Speed of Sound 585

F l u i d s  i n  t h e  N e w s

Hilsch tube (Ranque vortex tube) Years ago (around 1930) a

French physics student (George Ranque) discovered that apprecia-

bly warmer and colder portions of rapidly swirling air flow could be

separated in a simple apparatus consisting of a tube open at both

ends into which was introduced, somewhere in between the two

openings, swirling air at high pressure. Warmer air near the outer

portion of the swirling air flowed out one open end of the tube

through a simple valve and colder air near the inner portion of the

swirling air flowed out the opposite end of the tube. Rudolph

Hilsch, a German physicist, improved on this discovery (ca. 1947).

Hot air temperatures of 260 °F (127 °C) and cold air temperatures

of �50 °F (�46 °C) have been claimed in an optimized version of

this apparatus. Thus far the inefficiency of the process has pre-

vented it from being widely adopted. (See Problems 11.80.)

The Mach number, Ma, was introduced in Chapters 1 and 7 as a dimensionless measure of com-

pressibility in a fluid flow. In this and subsequent sections, we develop some useful relationships

involving the Mach number. The Mach number is defined as the ratio of the value of the local flow

velocity, V, to the local speed of sound, c. In other words,

What we perceive as sound generally consists of weak pressure pulses that move through air with

a Mach number of one. When our ear drums respond to a succession of moving pressure pulses,

we hear sounds.

To better understand the notion of speed of sound, we analyze the one-dimensional fluid me-

chanics of an infinitesimally thin, weak pressure pulse moving at the speed of sound through a

fluid at rest 1see Fig. 11.1a2. Ahead of the pressure pulse, the fluid velocity is zero and the fluid

pressure and density are p and Behind the pressure pulse, the fluid velocity has changed by an

amount and the pressure and density of the fluid have also changed by amounts and 

We select an infinitesimally thin control volume that moves with the pressure pulse as is sketched

dr.dpdV,

r.

Ma �
V
c

11.2 Mach Number and Speed of Sound

Mach number is
the ratio of local
flow and sound
speeds.

F I G U R E  11.1 (a) Weak pressure pulse moving through a fluid at
rest. (b) The flow relative to a control volume containing a weak pressure pulse.

c

p

A A

V = 0

ρ

p

V

ρ δρ

δ

(a)

Control volume

Weak pressure pulse

+

δρ+

c
c

p

A A

ρ
p

V

ρ δρ

δ

(b)

Control volume

Weak pressure pulse

+

–

δρ+
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in Fig. 11.1a. The speed of the weak pressure pulse is considered constant and in one direction

only; thus, our control volume is inertial.

For an observer moving with this control volume 1Fig. 11.1b2, it appears as if fluid is enter-

ing the control volume through surface area A with speed c at pressure p and density and leav-

ing the control volume through surface area A with speed pressure and density

When the continuity equation 1Eq. 5.162 is applied to the flow through this control vol-

ume, the result is

(11.26)

or

(11.27)

Since is much smaller than the other terms in Eq. 11.27, we drop it from further consid-

eration and keep

(11.28)

The linear momentum equation 1Eq. 5.292 can also be applied to the flow through the control vol-

ume of Fig. 11.1b. The result is

(11.29)

Note that any frictional forces are considered as being negligibly small. We again neglect higher

order terms [such as compared to c for example] and combine Eqs. 11.26 and 11.29

to get

or

(11.30)

From Eqs. 11.28 1continuity2 and 11.30 1linear momentum2 we obtain

or

(11.31)

This expression for the speed of sound results from application of the conservation of mass and

conservation of linear momentum principles to the flow through the control volume of Fig. 11.1b.

These principles were similarly used in Section 10.2.1 to obtain an expression for the speed of sur-

face waves traveling on the surface of fluid in a channel.

The conservation of energy principle can also be applied to the flow through the control vol-

ume of Fig. 11.1b. If the energy equation 1Eq. 5.1032 is used for the flow through this control vol-

ume, the result is

(11.32)

For gas flow we can consider g as being negligibly small in comparison to the other terms in the

equation. Also, if we assume that the flow is frictionless, then and Eq. 11.32 becomes

or, neglecting compared to c we obtain

(11.33)r dV �
dp

c

dV,1dV22

dp
r

�
1c � dV22

2
�

c2

2
� 0

d1loss2 � 0

dz

dp
r

� d a
V 2

2
b � g dz � d1loss2

c �
B

dp

dr

c2 �
dp

dr

rdV �
dp

c

�crcA � 1c � dV2rAc � �dpA

dV,1dV22

�crcA � 1c � dV2 1r � dr2 1c � dV2A � pA � 1p � dp2A

r dV � c dr

1dr2 1dV2

rc � rc � r dV � c dr � 1dr2 1dV2

rAc � 1r � dr2A1c � dV2

r � dr.
p � dp,c � dV,

r
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The changes in fluid
properties across 
a sound wave are
very small compared
to their local values.
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By combining Eqs. 11.28 1continuity2 and 11.33 1energy2 we again find that

which is identical to Eq. 11.31. Thus, the conservation of linear momentum and the conservation

of energy principles lead to the same result. If we further assume that the frictionless flow through

the control volume of Fig. 11.1b is adiabatic 1no heat transfer2, then the flow is isentropic. In the

limit, as becomes vanishingly small 

(11.34)

where the subscript s is used to designate that the partial differentiation occurs at constant entropy.

Equation 11.34 suggests to us that we can calculate the speed of sound by determining the

partial derivative of pressure with respect to density at constant entropy. For the isentropic flow of

an ideal gas 1with constant and 2, we learned earlier 1Eq. 11.252 that

and thus

(11.35)

Thus, for an ideal gas

(11.36)

From Eq. 11.36 and the charts in the margin we conclude that for a given temperature, the speed

of sound, c, in hydrogen and in helium, is higher than in air.

More generally, the bulk modulus of elasticity, of any fluid including liquids is defined

as 1see Section 1.7.12

(11.37)

Thus, in general, from Eqs. 11.34 and 11.37,

(11.38)

Values of the speed of sound are tabulated in Tables B.1 and B.2 for water and in 

Tables B.3 and B.4 for air. From experience we know that air is more easily compressed than wa-

ter. Note from the values of c in Tables B.1 through B.4 and the graph in the margin that the

speed of sound in air is much less than it is in water. From Eq. 11.37, we can conclude that if a

fluid is truly incompressible, its bulk modulus would be infinitely large, as would be the speed

of sound in that fluid. Thus, an incompressible flow must be considered an idealized approxima-

tion of reality.

c �
B

Ev

r

Ev �
dp

dr�r
� r a

0p

0r
b

s

Ev,

c � 2RTk

a
0p

0r
b

s

� 1constant2 krk�1 �
p

rk kr
k�1 �

p
r

 k � RTk

p � 1constant2 1rk2

cvcp

c �
B
a

0p

0r
b

s

1dp S 0p S 02dp

c �
B

dp

dr
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Speed of sound is
larger in fluids that
are more difficult to
compress.

F l u i d s  i n  t h e  N e w s

Sonification The normal human ear is capable of detecting

even very subtle sound patterns produced by sound waves.
Most of us can distinguish the bark of a dog from the meow of

a cat or the roar of a lion, or identify a person’s voice on the

telephone before they identify who is calling. The number of

“things” we can identify from subtle sound patterns is enor-

mous. Combine this ability with the power of computers to

transform the information from sensor transducers into varia-

tions in pitch, rhythm, and volume and you have sonification,

the representation of data in the form of sound. With this

emerging technology, pathologists may soon learn to “hear”

abnormalities in tissue samples, engineers may “hear” flaws in

gas turbine engine blades being inspected, and scientists may

“hear” a desired attribute in a newly invented material. Perhaps

the concept of hearing the trends in data sets may become as

commonplace as seeing them. Analysts may listen to the stock

market and make decisions. Of course, none of this can happen

in a vacuum.

6000

4000

Water

Air
2000

0 100 200
0

c
, 

ft
/s

T, deg F
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GIVEN Consider the data in Table B.4. FIND Verify the speed of sound for air at .0 °C

SOLUTION

Speed of Sound

Thus, since 

we obtain

(Ans)

COMMENT The value of the speed of sound calculated with

Eq. 11.36 agrees very well with the value of c listed in Table B.4.

The ideal gas approximation does not compromise this result sig-

nificantly.

c � 331.4 m�s

1 1m�s22,
1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg �

 � 331.4 1J�kg21�2

 c � 2 3 1286.92 J� 1kg # K2 4 1273.15 K2 11.4012

EXAMPLE 11.3

In Table B.4, we find the speed of sound of air at given as

331.4 m�s. Assuming that air behaves as an ideal gas, we can cal-

culate the speed of sound from Eq. 11.36 as

(1)

The value of the gas constant is obtained from Table 1.8 as

and the specific heat ratio is listed in Table B.4 as

By substituting values of R, k, and T into Eq. 1 we obtain

k � 1.401

R � 286.9 J� 1kg # K2

c � 2RTk

0 °C

In Section 3.8.1, we learned that the effects of compressibility become more significant as the Mach

number increases. For example, the error associated with using in calculating the stagna-
tion pressure of an ideal gas increases at larger Mach numbers. From Fig. 3.24 we can conclude

that incompressible flows can only occur at low Mach numbers.

Experience has also demonstrated that compressibility can have a large influence on other

important flow variables. For example, in Fig. 11.2 the variation of drag coefficient with Reynolds

rV 2�2

11.3 Categories of Compressible Flow

F I G U R E  11.2 The variation of the drag coeffi-
cient of a sphere with Reynolds number and Mach number.
(Adapted from Fig. 1.8 in Ref. 1 of Chapter 9.)

0.3
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0.6

0.7

0.9

1.0

1.1
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3.0 1.52.0Ma = 1.2
1.0
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0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

CD

2 3 4 5 6 7 8 9
Re × 10–5

Compressibility ef-
fects are more im-
portant at higher
Mach numbers.
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number and Mach number is shown for air flow over a sphere. Compressibility effects can be of

considerable importance.

To further illustrate some curious features of compressible flow, a simplified example is con-

sidered. Imagine the emission of weak pressure pulses from a point source. These pressure waves

are spherical and expand radially outward from the point source at the speed of sound, c. If a pres-

sure wave is emitted at different times, we can determine where several waves will be at a

common instant of time, t, by using the relationship

where r is the radius of the sphere-shaped wave emitted at time For a stationary point

source, the symmetrical wave pattern shown in Fig. 11.3a is involved.

When the point source moves to the left with a constant velocity, V, the wave pattern is no

longer symmetrical. In Figs. 11.3b, 11.3c, and 11.3d are illustrated the wave patterns at s for

different values of Also shown with a “ ” are the positions of the moving point source at val-

ues of time, t, equal to 0 s, 1 s, 2 s, and 3 s. Knowing where the point source has been at differ-

ent instances is important because it indicates to us where the different waves originated.

From the pressure wave patterns of Fig. 11.3, we can draw some useful conclusions. Before

doing this we should recognize that if instead of moving the point source to the left, we held the

point source stationary and moved the fluid to the right with velocity V, the resulting pressure wave

patterns would be identical to those indicated in Fig. 11.3.

�V.

t � 3

� twave.

r � 1t � twave2c

twave,

11.3 Categories of Compressible Flow 589

3c 2c
c

(a) (b)

c
2c

3V

2V

V

3c

(c)

c
2c

3c

Zone of actionZone of silence

Tangent plane
(Mach wave)

V = c

2V = 2c

3V = 3c

(d)

c
2c

3V
2V

V

3c

α

Zone of silence

Mach cone

Zone of action

Wave emitted at t = 0 s Wave emitted at t = 1 s Wave emitted at t = 2 s

Source at t = 1, 2, or 3 sSource at t = 0 s

F I G U R E  11.3 (a) Pressure waves at (b) pressure waves at t � 3 s,t � 3 s, V � 0;

(c) pressure waves at (d ) pressure waves at V 7 c.t � 3 s,V � c;t � 3 s,V 6 c;

The wave pattern
from a moving
source is not 
symmetrical.
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When the point source moves in fluid at rest 1or when fluid moves past a stationary point

source2, the pressure wave patterns vary in asymmetry, with the extent of asymmetry depending

on the ratio of the point source 1or fluid2 velocity and the speed of sound. When the wave

pattern is similar to the one shown in Fig. 11.3b. This flow is considered subsonic and compress-

ible. A stationary observer will hear a different sound frequency coming from the point source de-

pending on where the observer is relative to the source because the wave pattern is asymmetrical.

We call this phenomenon the Doppler effect. Pressure information can still travel unrestricted

throughout the flow field, but not symmetrically or instantaneously.

When pressure waves are not present ahead of the moving point source. The flow

is sonic. If you were positioned to the left of the moving point source, you would not hear the

point source until it was coincident with your location. For flow moving past a stationary point

source at the speed of sound the pressure waves are all tangent to a plane that is per-

pendicular to the flow and that passes through the point source. The concentration of pressure

waves in this tangent plane suggests the formation of a significant pressure variation across the

plane. This plane is often called a Mach wave. Note that communication of pressure information

is restricted to the region of flow downstream of the Mach wave. The region of flow upstream of

the Mach wave is called the zone of silence and the region of flow downstream of the tangent plane

is called the zone of action.

When the flow is supersonic and the pressure wave pattern resembles the one de-

picted in Fig. 11.3d. A cone 1Mach cone2 that is tangent to the pressure waves can be con-

structed to represent the Mach wave that separates the zone of silence from the zone of action

in this case. The communication of pressure information is restricted to the zone of action.

From the sketch of Fig. 11.3d, we can see that the angle of this cone, is given by

(11.39)

This relationship between Mach number, Ma, and Mach cone angle, , shown by the figure in

the margin, is valid for only. The concentration of pressure waves at the surface of

the Mach cone suggests a significant pressure, and thus density, variation across the cone sur-

face. (See the photograph at the beginning of this chapter.) An abrupt density change can be

visualized in a flow field by using special optics. Examples of flow visualization methods in-

clude the schlieren, shadowgraph, and interferometer techniques 1see Ref. 42. A schlieren photo

of a flow for which is shown in Fig. 11.4. The air flow through the row of compressor

blade airfoils is as shown with the arrow. The flow enters supersonically and1Ma1 � 1.142
V 7 c

V�c 7 1

a

sin a �
c

V
�

1

Ma

a,

V 7 c,

1V�c � 12,

V�c � 1,

V�c 6 1,
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1 1.5 2

Ma

2.5 3

90

60
a

a

30

0

V11.3 Speed boat

F l u i d s  i n  t h e  N e w s

Pistol shrimp confound blast detectors Authorities are on the

trail of fishermen in Southeast Asia and along Africa’s east

coast who illegally blast coral reefs to rubble to increase their

catch. Researchers at Hong Kong University of Science and

Technology have developed a method of using underwater mi-

crophones (hydrophones) to pick up the noise from such blasts.

One complicating factor in the development of such a system is

the noise produced by the claw-clicking pistol shrimp that live

on the reefs. The third right appendage of the 2-in.-long pistol

shrimp is adapted into a huge claw with a moveable finger that

can be snapped shut with so much force that the resulting sound
waves kill or stun nearby prey. When near the hydrophones, the

shrimp can generate short-range shock waves that are bigger

than the signal from a distant blast. By recognizing the differ-

ences between the signatures of the sound from an explosion

and that of the pistol shrimp “blast,” the scientists can differen-

tiate between the two and pinpoint the location of the illegal

blasts.

V11.2 Jet noise

When the point source and the fluid are stationary, the pressure wave pattern is symmetrical

1Fig. 11.3a2 and an observer anywhere in the pressure field would hear the same sound frequency

from the point source. When the velocity of the point source 1or the fluid2 is very small in com-

parison with the speed of sound, the pressure wave pattern will still be nearly symmetrical. The

speed of sound in an incompressible fluid is infinitely large. Thus, the stationary point source and

stationary fluid situation are representative of incompressible flows. For truly incompressible flows,

the communication of pressure information throughout the flow field is unrestricted and instanta-

neous 1c � 	2.

JWCL068_ch11_579-644.qxd  9/25/08  8:17 PM  Page 590



leaves subsonically . The center two airfoils have pressure tap hoses connected to

them. Regions of significant changes in fluid density appear in the supersonic portion of the

flow. Also, the region of separated flow on each airfoil is visible.

This discussion about pressure wave patterns suggests the following categories of fluid flow:

1. Incompressible flow: Unrestricted, nearly symmetrical and instantaneous pressure

communication.

2. Compressible subsonic flow: Unrestricted but noticeably asymmetrical

pressure communication.

3. Compressible supersonic flow: Formation of Mach wave; pressure communica-

tion restricted to zone of action.

In addition to the above-mentioned categories of flows, two other regimes are commonly referred

to: namely, transonic flows and hypersonic flows Modern aircraft

are mainly powered by gas turbine engines that involve transonic flows. When a space shuttle reen-

ters the earth’s atmosphere, the flow is hypersonic. Future aircraft may be expected to operate from

subsonic to hypersonic flow conditions.

1Ma 7 52.10.9 
 Ma 
 1.22

Ma � 1.0.

0.3 6 Ma 6 1.0.

Ma 
 0.3.

1Ma2 � 0.862
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F I G U R E  11.4 The Schlieren visualization of flow (supersonic to
subsonic) through a row of compressor airfoils. (Photograph provided by Dr. Hans
Starken, Germany.)

Shock wave

Airfoil

V11.4 Compressible
flow visualization

Abrupt changes in
fluid properties can
occur in supersonic
flows.

F l u i d s  i n  t h e  N e w s

Supersonic and compressible flows in gas turbines Modern

gas turbine engines commonly involve compressor and turbine

blades that are moving so fast that the fluid flows over the blades

are locally supersonic. Density varies considerably in these

flows so they are also considered to be compressible. Shock
waves can form when these supersonic flows are sufficiently de-

celerated. Shocks formed at blade leading edges or on blade sur-

faces can interact with other blades and shocks and seriously

affect blade aerodynamic and structural performance. It is possi-

ble to have supersonic flows past blades near the outer diameter

of a rotor with subsonic flows near the inner diameter of the same

rotor. These rotors are considered to be transonic in their opera-

tion. Very large aero gas turbines can involve thrust levels ex-

ceeding 100,000 lb. Two of these engines are sufficient to carry

over 350 passengers halfway around the world at high subsonic

speed. (See Problem 11.81.)

GIVEN An aircraft cruising at 1000-m elevation, z, above you

moves past in a flyby. It is moving with a Mach number equal to

1.5 and the ambient temperature is .20 °C

FIND How many seconds after the plane passes overhead do

you expect to wait before you hear the aircraft?

Mach ConeEXAMPLE 11.4

SOLUTION

as is illustrated in Fig. E11.4a. A photograph of this phenomenon

is shown in Fig. E11.4b. When the surface of the cone reaches the

Since the aircraft is moving supersonically we can

imagine a Mach cone originating from the forward tip of the craft

1Ma 7 12,
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observer, the “sound” of the aircraft is perceived. The angle in

Fig. E11.4 is related to the elevation of the plane, z, and the ground

distance, x, by

(1)

Also, assuming negligible change of Mach number with elevation,

we can use Eq. 11.39 to relate Mach number to the angle Thus,

(2)

Combining Eqs. 1 and 2 we obtain

(3)

The speed of the aircraft can be related to the Mach number with

(4)

where c is the speed of sound. From Table B.4,

Using we get from Eqs. 3 and 4

1.5 �
1

sin e tan�1 c
1000 m

11.52 1343.3 m�s2t
d f

 

Ma � 1.5,

c � 343.3 m�s.

V � 1Ma2c

Ma �
1

sin 3 tan�1 11000�Vt2 4

Ma �
1

sin a

a.

a � tan�1 
z

x
� tan�1 

1000

Vt

a or

(Ans)

COMMENT By repeating the calculations for various values

of Mach number, Ma, the results shown in Fig. E11.4c are ob-

tained. Note that for subsonic flight (Ma � 1) there is no delay

since the sound travels faster than the aircraft. You can hear a sub-

sonic aircraft approaching.

t � 2.17 s

F I G U R E  E11.4a

F I G U R E  E11.4b NASA
Schlieren photograph of shock waves from a 
T-38 aircraft at Mach 1.1, 13,000 feet.

z

Mach cone

Aircraft moving with velocity
V and Mach number Ma

α

x = Vt

F I G U R E  E11.4c

(1.5, 2.17 s)

3

2.5

2

1.5

1

0.5

0
0 0.5 1 1.5 2

Ma
2.5 3 3.5 4

t, 
s

In this section, we consider in further detail the steady, one-dimensional, isentropic flow of an ideal

gas with constant specific heat values 1 and 2. Because the flow is steady throughout, shaft work

cannot be involved. Also, as explained earlier, the one-dimensionality of flows we discuss in this

chapter implies velocity and fluid property changes in the streamwise direction only. We consider

flows through finite control volumes with uniformly distributed velocities and fluid properties at

each section of flow. Much of what we develop can also apply to the flow of a fluid particle along

its pathline.

Isentropic flow involves constant entropy and was discussed earlier in Section 11.1, where

we learned that adiabatic and frictionless 1reversible2 flow is one form of isentropic flow. Some

ideal gas relationships for isentropic flows were developed in Section 11.1. An isentropic flow is

not achievable with actual fluids because of friction. Nonetheless, the study of isentropic flow

trends is useful because it helps us to gain an understanding of actual compressible flow phenomena

cvcp

11.4 Isentropic Flow of an Ideal Gas

An important class
of isentropic flow
involves no heat
transfer and zero
friction.
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including choked flow, shock waves, acceleration from subsonic to supersonic flow, and deceler-

ation from supersonic to subsonic flow.

11.4.1 Effect of Variations in Flow Cross-Sectional Area

When fluid flows steadily through a conduit that has a flow cross-sectional area that varies with

axial distance, the conservation of mass 1continuity2 equation

(11.40)

can be used to relate the flow rates at different sections. For incompressible flow, the fluid density

remains constant and the flow velocity from section to section varies inversely with cross-sectional

area. However, when the flow is compressible, density, cross-sectional area, and flow velocity can

all vary from section to section. We proceed to determine how fluid density and flow velocity

change with axial location in a variable area duct when the fluid is an ideal gas and the flow through

the duct is steady and isentropic.

In Chapter 3, Newton’s second law was applied to the inviscid 1frictionless2 and steady flow

of a fluid particle. For the streamwise direction, the result 1Eq. 3.52 for either compressible or in-

compressible flows is

(11.41)

The frictionless flow from section to section through a finite control volume is also governed by Eq.

11.41, if the flow is one-dimensional, because every particle of fluid involved will have the same ex-

perience. For ideal gas flow, the potential energy difference term, can be dropped because of

its small size in comparison to the other terms, namely, dp and Thus, an appropriate equation

of motion in the streamwise direction for the steady, one-dimensional, and isentropic 1adiabatic and

frictionless2 flow of an ideal gas is obtained from Eq. 11.41 as

(11.42)

If we form the logarithm of both sides of the continuity equation 1Eq. 11.402, the result is

(11.43)

Differentiating Eq. 11.43 we get

or

(11.44)

Now we combine Eqs. 11.42 and 11.44 to obtain

(11.45)

Since the flow being considered is isentropic, the speed of sound is related to variations of

pressure with density by Eq. 11.34, repeated here for convenience as

Equation 11.34, combined with the definition of Mach number

(11.46)

and Eq. 11.45 yields

(11.47)
dp

rV 2
 11 � Ma22 �

dA

A

Ma �
V
c

c �
B
a

0p

0r
b

s

dp

rV 2
 a1 �

V 2

dp�dr
b �

dA

A

�
dV

V
�

dr

r
�

dA

A

dr

r
�

dA

A
�

dV

V
� 0

ln r � ln A � ln V � constant

dp

rV 2
� �

dV

V

d1V 22.
g dz,

dp � 1
2 r d1V

22 � g dz � 0

m
#

� rAV � constant
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Density, cross-
sectional area, and
velocity may all
vary for a com-
pressible flow.
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Equations 11.42 and 11.47 merge to form

(11.48)

We can use Eq. 11.48 to conclude that when the flow is subsonic velocity and

section area changes are in opposite directions. In other words, the area increase associated with

subsonic flow through a diverging duct like the one shown in Fig. 11.5a is accompanied by a ve-

locity decrease. Subsonic flow through a converging duct 1see Fig. 11.5b2 involves an increase of

velocity. These trends are consistent with incompressible flow behavior, which we described ear-

lier in this book, for instance, in Chapters 3 and 8.

Equation 11.48 also serves to show us that when the flow is supersonic velocity

and area changes are in the same direction. A diverging duct 1Fig. 11.5a2 will accelerate a super-

sonic flow. A converging duct 1Fig. 11.5b2 will decelerate a supersonic flow. These trends are the

opposite of what happens for incompressible and subsonic compressible flows.

To better understand why subsonic and supersonic duct flows are so different, we combine

Eqs. 11.44 and 11.48 to form

(11.49)

Using Eq. 11.49, we can conclude that for subsonic flows density and area changes are

in the same direction, whereas for supersonic flows density and area changes are in op-

posite directions. Since must remain constant 1Eq. 11.402, when the duct diverges and the flow

is subsonic, density and area both increase and thus flow velocity must decrease. However, for su-

personic flow through a diverging duct, when the area increases, the density decreases enough so

that the flow velocity has to increase to keep constant.

By rearranging Eq. 11.48, we can obtain

(11.50)

Equation 11.50 gives us some insight into what happens when For Eq. 11.50

requires that This result suggests that the area associated with is either a min-

imum or a maximum amount.

A converging–diverging duct 1Fig. 11.6a and margin photograph2 involves a minimum area.

If the flow entering such a duct were subsonic, Eq. 11.48 discloses that the fluid velocity would

increase in the converging portion of the duct, and achievement of a sonic condition at

the minimum area location appears possible. If the flow entering the converging–diverging duct

is supersonic, Eq. 11.48 states that the fluid velocity would decrease in the converging portion of

the duct and the sonic condition at the minimum area is possible.

1Ma � 12

Ma � 1dA�dV � 0.

Ma � 1,Ma � 1.

dA

dV
� �

A

V
 11 � Ma22

rAV

rAV
1Ma 7 12,

1Ma 6 12,

dr

r
�

dA

A
 

Ma2

11 � Ma22

1Ma 7 12,

1Ma 6 12,

dV

V
� �

dA

A
 

1

11 � Ma22
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Flow

Flow

Subsonic flow
(Ma < 1)

dA > 0
dV < 0

Supersonic flow
(Ma > 1)

dA > 0
dV > 0

dA < 0
dV > 0

dA < 0
dV < 0

(a)

(b)
F I G U R E  11.5 (a) A

diverging duct. (b) A converging duct.

A converging duct
will decelerate a su-
personic flow and
accelerate a sub-
sonic flow.
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A diverging–converging duct 1Fig. 11.6b2, on the other hand, would involve a maximum area.

If the flow entering this duct were subsonic, the fluid velocity would decrease in the diverging por-

tion of the duct and the sonic condition could not be attained at the maximum area location. For

supersonic flow in the diverging portion of the duct, the fluid velocity would increase and thus

at the maximum area is again impossible.

For the steady isentropic flow of an ideal gas, we conclude that the sonic condition 

can be attained in a converging–diverging duct at the minimum area location. This minimum area

location is often called the throat of the converging–diverging duct. Furthermore, to achieve super-

sonic flow from a subsonic state in a duct, a converging–diverging area variation is necessary. For

this reason, we often refer to such a duct as a converging–diverging nozzle. Note that a converging–

diverging duct can also decelerate a supersonic flow to subsonic conditions. Thus, a converging–

diverging duct can be a nozzle or a diffuser depending on whether the flow in the converging portion

of the duct is subsonic or supersonic. A supersonic wind tunnel test section is generally preceded by

a converging–diverging nozzle and followed by a converging–diverging diffuser 1see Ref. 12. Fur-

ther details about steady, isentropic, ideal gas flow through a converging–diverging duct are discussed

in the next section.

11.4.2 Converging–Diverging Duct Flow

In the preceding section, we discussed the variation of density and velocity of the steady isentropic

flow of an ideal gas through a variable area duct. We proceed now to develop equations that help

us determine how other important flow properties vary in these flows.

It is convenient to use the stagnation state of the fluid as a reference state for compressible flow

calculations. The stagnation state is associated with zero flow velocity and an entropy value that cor-

responds to the entropy of the flowing fluid. The subscript 0 is used to designate the stagnation state.

Thus, stagnation temperature and pressure are and For example, if the fluid flowing through

the converging–diverging duct of Fig. 11.6a were drawn isentropically from the atmosphere, the at-

mospheric pressure and temperature would represent the stagnation state of the flowing fluid. The

stagnation state can also be achieved by isentropically decelerating a flow to zero velocity. This can

be accomplished with a diverging duct for subsonic flows or a converging–diverging duct for super-

sonic flows. Also, as discussed earlier in Chapter 3, an approximately isentropic deceleration can be

accomplished with a Pitot-static tube 1see Fig. 3.62. It is thus possible to measure, with only a small

amount of uncertainty, values of stagnation pressure, and stagnation temperature, of a flow-

ing fluid.

In Section 11.1, we demonstrated that for the isentropic flow of an ideal gas 1see Eq. 11.252

The streamwise equation of motion for steady and frictionless flow 1Eq. 11.412 can be expressed

for an ideal gas as

(11.51)

since the potential energy term, , can be considered as being negligibly small in comparison

with the other terms involved.

g dz

dp
r

� d a
V 2

2
b � 0

p

rk � constant �
p0

rk
0

T0,p0,

p0.T0

1Ma � 12
Ma � 1
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A converging–
diverging duct is re-
quired to accelerate
a flow from sub-
sonic to supersonic
flow conditions.

(a) (b)

FlowFlow

F I G U R E  11.6 (a) A converging–diverging duct. (b) A diverging–
converging duct.
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By incorporating Eq. 11.25 into Eq. 11.51 we obtain

(11.52)

Consider the steady, one-dimensional, isentropic flow of an ideal gas with constant and

through the converging–diverging nozzle of Fig. 11.6a. Equation 11.52 is valid for this flow

and can be integrated between the common stagnation state of the flowing fluid to the state of the

gas at any location in the converging–diverging duct to give

(11.53)

By using the ideal gas equation of state 1Eq. 11.12 with Eq. 11.53 we obtain

(11.54)

It is of interest to note that combining Eqs. 11.14 and 11.54 leads to

which, when merged with Eq. 11.9, results in

(11.55)

where is the stagnation enthalpy. If the steady flow energy equation 1Eq. 5.692 is applied to the

flow situation we are presently considering, the resulting equation will be identical to Eq. 11.55.

Further, we conclude that the stagnation enthalpy is constant. The conservation of momentum and

energy principles lead to the same equation 1Eq. 11.552 for steady isentropic flows.

The definition of Mach number 1Eq. 11.462 and the speed of sound relationship for ideal

gases (Eq. 11.36) can be combined with Eq. 11.54 to yield

(11.56)

which is graphed in the margin for air. With Eq. 11.56 we can calculate the temperature of an

ideal gas anywhere in the converging–diverging duct of Fig. 11.6a if the flow is steady, one-

dimensional, and isentropic, provided we know the value of the local Mach number and the stag-

nation temperature.

We can also develop an equation for pressure variation. Since then

(11.57)

From Eqs. 11.57 and 11.25 we obtain

(11.58)

Combining Eqs. 11.58 and 11.56 leads to

(11.59)

For density variation we consolidate Eqs. 11.56, 11.57, and 11.59 to get

(11.60)

These relationships are graphed in the margin for air.

r

r0

� e
1

1 � 3 1k � 12�2 4Ma2
f

1�1k�12

p

p0

� e
1

1 � 3 1k � 12�2 4Ma2
f

k�1k�12

a
p

p0

b � a
T

T0

b
k�1k�12

a
p

p0

b a
r0

r
b �

T

T0

p�r � RT,

T

T0

�
1

1 � 3 1k � 12�2 4Ma2

ȟ0

ȟ0 � aȟ �
V 2

2
b � 0

cp 1T0�T2  � 
V 2

2
� 0

kR

k � 1
 1T0�T2  � 

V 2

2
� 0

k
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p0

r0

�
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b �

V 2

2
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0
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� d a

V 2

2
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0.0
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Ma
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 __
  0

ρ
ρ

For isentropic flows
the temperature,
pressure, and den-
sity ratios are func-
tions of the Mach
number.
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A very useful means of keeping track of the states of an isentropic flow of an ideal gas in-

volves a temperature–entropy (T–s) diagram, as is shown in Fig. 11.7. Experience has shown

1see, for example, Refs. 2 and 32 that lines of constant pressure are generally as are sketched in

Fig. 11.7. An isentropic flow is confined to a vertical line on a T –s diagram. The vertical line in

Fig. 11.7 is representative of flow between the stagnation state and any state within the converging–

diverging nozzle. Equation 11.56 shows that fluid temperature decreases with an increase in Mach

number. Thus, the lower temperature levels on a T –s diagram correspond to higher Mach num-

bers. Equation 11.59 suggests that fluid pressure also decreases with an increase in Mach num-

ber. Thus, lower fluid temperatures and pressures are associated with higher Mach numbers in

our isentropic converging–diverging duct example.

One way to produce flow through a converging–diverging duct like the one in Fig. 11.6a is

to connect the downstream end of the duct to a vacuum pump. When the pressure at the down-

stream end of the duct 1the back pressure2 is decreased slightly, air will flow from the atmosphere

through the duct and vacuum pump. Neglecting friction and heat transfer and considering the air

to act as an ideal gas, Eqs. 11.56, 11.59, and 11.60 and a T –s diagram can be used to describe

steady flow through the converging–diverging duct.

If the pressure in the duct is only slightly less than atmospheric pressure, we predict with

Eq. 11.59 that the Mach number levels in the duct will be low. Thus, with Eq. 11.60 we conclude

that the variation of fluid density in the duct is also small. The continuity equation 1Eq. 11.402 leads

us to state that there is a small amount of fluid flow acceleration in the converging portion of the

duct followed by flow deceleration in the diverging portion of the duct. We considered this type

of flow when we discussed the Venturi meter in Section 3.6.3. The T –s diagram for this flow is

sketched in Fig. 11.8.

We next consider what happens when the back pressure is lowered further. Since the flow

starts from rest upstream of the converging portion of the duct of Fig. 11.6a, Eqs. 11.48 and

11.50 reveal to us that flow up to the nozzle throat can be accelerated to a maximum allowable

Mach number of 1 at the throat. Thus, when the duct back pressure is lowered sufficiently, the

Mach number at the throat of the duct will be 1. Any further decrease of the back pressure will

not affect the flow in the converging portion of the duct because, as is discussed in Section

11.3, information about pressure cannot move upstream when When at the throat

of the converging–diverging duct, we have a condition called choked flow. Some useful equa-

tions for choked flow are developed below.

We have already used the stagnation state for which as a reference condition. It will

prove helpful to us to use the state associated with and the same entropy level as the flow-

ing fluid as another reference condition we shall call the critical state, denoted 

The ratio of pressure at the converging–diverging duct throat for choked flow, to stagna-

tion pressure, is referred to as the critical pressure ratio. By substituting into Eq. 11.59

we obtain

(11.61)
p*

p0

� a
2

k � 1
b

k�1k�12

Ma � 1p0,

p*,

1 2*.

Ma � 1

Ma � 0

Ma � 1Ma � 1.
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F I G U R E  11.7 The (T – s) 
diagram relating stagnation and static states.

T

s

T

p

p0

T0

F I G U R E  11.8 The T – s diagram
for Venturi meter flow.

T

s

(1) (2)

T2

T1

T0

p0
p1
p2

Choked flow occurs
when the Mach
number is 1.0 at
the minimum cross-
sectional area.

JWCL068_ch11_579-644.qxd  9/25/08  8:18 PM  Page 597



For the nominal value of k for air, Eq. 11.61 yields

(11.62)

Because the stagnation pressure for our converging–diverging duct example is the atmospheric pres-

sure, the throat pressure for choked air flow is, from Eq. 11.62

We can get a relationship for the critical temperature ratio, by substituting 

into Eq. 11.56. Thus,

(11.63)

or for 

(11.64)

For the duct of Fig. 11.6a, Eq. 11.64 yields

The stagnation and critical pressures and temperatures are shown on the T –s diagram of

Fig. 11.9.

When we combine the ideal gas equation of state 1Eq. 11.12 with Eqs. 11.61 and 11.63, for

we get

(11.65)

For air Eq. 11.65 leads to

(11.66)

and we see that when the converging–diverging duct flow is choked, the density of the air at the

duct throat is 63.4% of the density of atmospheric air.

a
r*

r0

b
k�1.4

� 0.634

1k � 1.42,

r*

r0

� a
p*

T*
b a

T0

p0

b � a
2

k � 1
b

k�1k�12

a
k � 1

2
b � a

2

k � 1
b

1�1k�12

Ma � 1

T*
k�1.4

� 0.833Tatm

a
T*

T0

b
k�1.4

� 0.833

k � 1.4

T*

T0

�
2

k � 1

Ma � 1T*�T0,

p*
k�1.4 � 0.528patm

patm,

a
p*

p0

b
k�1.4

� 0.528

k � 1.4,
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The stagnation and
critical states are at
the same entropy
level.

GIVEN A converging duct passes air steadily from standard

atmospheric conditions to a receiver pipe as illustrated in Fig.

E11.5a. The throat 1minimum2 flow cross-sectional area of the con-

verging duct is . The receiver pressure is 1a2 80 kPa

1abs2, 1b2 40 kPa 1abs2. 
1 � 10�4 m2

FIND Determine the mass flowrate through the duct and

sketch temperature–entropy diagrams for situations 1a2 and 1b2.

Isentropic Flow in a Converging DuctEXAMPLE 11.5

F I G U R E  11.9 The relationship
between the stagnation and critical states.

T

T* =

T0

p0

T0

s

( )2______
k + 1

p* = p0( )2______
k + 1

( )k______
k – 1

JWCL068_ch11_579-644.qxd  9/25/08  8:18 PM  Page 598



11.4 Isentropic Flow of an Ideal Gas 599

SOLUTION

From Eq. 5

or

Substituting into Eq. 4 we obtain

Thus, since 

we obtain

Vth � 193 m�s

1m�s22,
1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg �

 � 193 1J�kg21�2
Vth � 0.587 2 3286.9 J� 1kg # K2 4 1269 K2 11.42

Math � 0.587 and Tth � 269 K

Tth � 269 K

Tth

288 K
�

1

1 � 3 11.4 � 12�2 4 10.58722

To determine the mass flowrate through the converging duct we

use Eq. 11.40. Thus,

or in terms of the given throat area,

(1)

We assume that the flow through the converging duct is isen-

tropic and that the air behaves as an ideal gas with constant and

Then, from Eq. 11.60

(2)

The stagnation density, for the standard atmosphere is

and the specific heat ratio is 1.4. To determine the

throat Mach number, we can use Eq. 11.59,

(3)

The critical pressure, is obtained from Eq. 11.62 as

If the receiver pressure, is greater than or equal to then

If then and the flow is choked. With

and k known, can be obtained from Eq. 3, and can

be determined from Eq. 2.

The flow velocity at the throat can be obtained from Eqs.

11.36 and 11.46 as

(4)

The value of temperature at the throat, can be calculated from

Eq. 11.56,

(5)

Since the flow through the converging duct is assumed to be isen-

tropic, the stagnation temperature is considered constant at the

standard atmosphere value of 

Note that absolute pressures and temperatures are used.

(a) For we have

kPa1abs2. Then from Eq. 3

or

From Eq. 2

or

rth � 1.04 kg�m3

rth

1.23 kg�m3
� e

1

1 � 3 11.4 � 12�2 4 10.58722
f

1�11.4�12

 Math � 0.587

80 kPa1abs2

101 kPa1abs2
� e

1

1 � 3 11.4 � 12�2 4Ma2
th

f
1.4� 11.4�12

pth � 80

pre � 80 kPa1abs2 7 53.3 kPa1abs2 � p*,

288 K.T0 � 15 K � 273 K �

Tth

T0

�
1

1 � 3 1k � 12�2 4Ma2
th

Tth,

Vth � Math cth � Math2RTthk

rthMathpth, p0,

pth � p*pre 6 p*,pth � pre.

p*,pre,

 � 10.5282 3101 kPa1abs2 4 � 53.3 kPa1abs2

p* � 0.528p0 � 0.528patm

p*,

pth

p0

� e
1

1 � 3 1k � 12�2 4Ma2
th

f
k�1k�12

Math,

1.23 kg�m3

r0,

rth

r0

� e
1

1 � 3 1k � 12�2 4Ma2
th

f
1�1k�12

cv.

cp

m
#

� rthAthVth

Ath,

m
#

� rAV � constant

F I G U R E  E11.5

Tre < T*

pre < p*

300

290

280

270

260

250

240

230

220

T,
 K

J_______
(kg • K)

s,

(c)

T* = 240 K

p* = 53.3 kPa (abs)

p0 = 101 kPa (abs)

T0 = 288 K

300

290

280

270

260

250

240

230

220

Situation (b)

Situation (a)

Tth, b = 240 K

Tth, a = 269 K

T0 = 288 K

pth, b = 53.3 kPa (abs) = p*

pth, a = 80 kPa (abs)

p0 = 101 kPa (abs)

T,
 K

J_______
(kg • K)

s,

(b)

Flow

Standard
atmosphere

Converging duct Receiver pipe

(a)
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Isentropic flow Eqs. 11.56, 11.59, and 11.60 have been used to construct Fig. D.1 in Appen-

dix D for air Examples 11.6 and 11.7 illustrate how these graphs of and 

as a function of Mach number, Ma, can be used to solve compressible flow problems.

r�r0p�p0,T�T0,1k � 1.42.

600 Chapter 11 ■ Compressible Flow

Finally from Eq. 1 we have

(Ans)

(b) For we have

and The converging duct is

choked. From Eq. 2 1see also Eq. 11.662

or

From Eq. 5 1see also Eq. 11.642,

or

Tth � 240 K

Tth

288 K
�

1

1 � 3 11.4 � 12�2 4 1122

rth � 0.780 kg�m3

rth

1.23 kg�m3
� e

1

1 � 3 11.4 � 12�2 4 1122
f

1� 11.4�12

Math � 1.pth � p* � 53.3 kPa1abs2
pre � 40 kPa1abs2 � 53.3 kPa1abs2 � p*,

 � 0.0201 kg�s
m
#

� 11.04 kg�m32 11 � 10�4 m22 1193 m�s2

From Eq. 4,

since Finally

from Eq. 1

(Ans)

From the values of throat temperature and throat pressure cal-

culated above for flow situations 1a2 and 1b2, we can construct the

temperature–entropy diagram shown in Fig. E11.5b.

COMMENT Note that the flow from standard atmosphere to

the receiver for receiver pressure, greater than or equal to the

critical pressure, is isentropic. When the receiver pressure is

less than the critical pressure as in situation 1b2 above, what is the

flow like downstream from the exit of the converging duct? Expe-

rience suggests that this flow, when is three-

dimensional and nonisentropic and involves a drop in pressure

from to a drop in temperature, and an increase of entropy

as are indicated in Fig. E11.5c.

pre,pth

pre 6 p*,

p*,

pre,

 � 0.0242 kg�s
m
#

� 10.780 kg�m32 11 � 10�4 m22 1310 m�s2

1 J�kg �1 N # m�kg �1 1kg # m�s22 # m�kg � 1m�s22.

 � 310 1J�kg21�2 � 310 m�s
Vth � 112 2 3286.9 J� 1kg # K2 4 1240 K2 11.42

GIVEN Consider the flow described in Example 11.5.

Use of Compressible Flow Graphs in Solving ProblemsEXAMPLE 11.6

SOLUTION

Thus, from Eqs. 2 and 3

and

Furthermore, using Eqs. 11.36 and 11.46 we get

since Fi-

nally, from Eq. 1

(Ans) � 0.0202 kg�s
m
#

� 11.04 kg�m32 11 � 10�4 m22 1194 m�s2

1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg � 1m�s22.

 � 194 1J�kg21�2 � 194 m�s

 � 10.592 2 3286.9 J� 1kg # K2 4 1269 K2 11.42

 Vth � Math 2RTthk

rth � 10.852 11.23 kg�m32 � 1.04 kg�m3

Tth � 10.942 1288 K2 � 271 K

We still need the density and velocity of the air at the converging

duct throat to solve for mass flowrate from

(1)

(a) Since the receiver pressure, is greater

than the critical pressure, the throat pres-

sure, is equal to the receiver pressure. Thus

From Fig. D.1, for we get from the graph

(2)

(3) 
rth

r0

� 0.85

 
Tth

T0

� 0.94

 Math � 0.59

p�p0 � 0.79,

pth

p0

�
80 kPa1abs2

101 kPa1abs2
� 0.792

pth,

p* � 53.3 kPa1abs2,
pre � 80 kPa1abs2,

m
#

� rthAthVth

FIND Solve Example 11.5 using Fig. D.1 of Appendix D.
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11.4 Isentropic Flow of an Ideal Gas 601

(b) For the throat

pressure is equal to 53.3 kPa1abs2 and the duct is choked with

From Fig. D.1, for we get

(4)

and

(5)

From Eqs. 4 and 5 we obtain

and

 rth � 10.642 11.23 kg�m32 � 0.79 kg�m3

 Tth � 10.832 1288 K2 � 240 K

rth

r0

� 0.64

Tth

T0

� 0.83

Ma � 1Math � 1.

pre � 40 kPa1abs2 6 53.3 kPa1abs2 � p*, Also, from Eqs. 11.36 and 11.46 we conclude that

Then, from Eq. 1

(Ans)

COMMENT The values from Fig. D.1 resulted in answers

for mass flowrate that are close to those using the ideal gas equa-

tions 1see Example 11.52.
The temperature–entropy diagrams remain the same as those

provided in the solution of Example 11.5.

 � 0.024 kg�s
m
#

� 10.79 kg�m32 11 � 10�4 m22 1310 m�s2

 � 310 1J�kg21�2 � 310 m�s
 � 112 2 3286.9 J� 1kg # K2 4 1240 K2 11.42

 Vth � Math 2RTthk

GIVEN The static pressure to stagnation pressure ratio at a point

in a flow stream is measured with a Pitot-static tube 1see Fig. 3.62 as

being equal to 0.82. The stagnation temperature of the fluid is 68 °F.

Static to Stagnation Pressure RatioEXAMPLE 11.7

SOLUTION

and using Eqs. 1, 2, and 4 we get

Thus, since it follows that

(Ans)

(b) For helium, and By substituting

these values into Eq. 11.59 we get

or

From Eq. 11.56 we obtain

Thus,

 � 488 °R

T � e
1

1 � 3 11.66 � 12�2 4 10.49922
f 3 168 � 4602 °R 4

T

T0

�
1

1 � 3 1k � 12�2 4Ma2

Ma � 0.499

0.82 � e
1

1 � 3 11.66 � 12�2 4  Ma2
f

1.66�11.66�12

k � 1.66.p�p0 � 0.82

 � 590 ft�s
V � 104 1ft # lb�lbm21�2 3 132.2 lbm # ft�s22�lb 4 1�2

1 lb � 32.2 lbm # ft�s2,

� 104 1ft # lb�lbm21�2

V � 10.542 2 353.3 1ft # lb2� 1lbm # °R2 4 1496 °R2 11.42

We consider both air and helium, flowing as described above, to

act as ideal gases with constant specific heats. Then, we can use

any of the ideal gas relationships developed in this chapter. To de-

termine the flow velocity, we can combine Eqs. 11.36 and 11.46

to obtain

(1)

By knowing the value of static to stagnation pressure ratio,

and the specific heat ratio we can obtain the corresponding Mach

number from Eq. 11.59, or for air, from Fig. D.1. Figure D.1 

cannot be used for helium, since k for helium is 1.66 and Fig. D.1

is for only. With Mach number, specific heat ratio, and

stagnation temperature known, the value of static temperature can

be subsequently ascertained from Eq. 11.56 1or Fig. D.1 for air2.

(a) For air, thus from Fig. D.1,

(2)

and

(3)

Then, from Eq. 3

(4)T � 10.942 3 168 � 4602 °R 4 � 496 °R

T

T0

� 0.94

Ma � 0.54

p�p0 � 0.82;

k � 1.4

p�p0,

V � Ma 2RTk

FIND Determine the flow velocity if the fluid is 1a2 air, 1b2 he-

lium.
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Also included in Fig. D.1 is a graph of the ratio of local area, A, to critical area, for dif-

ferent values of local Mach number. The importance of this area ratio is clarified below.

For choked flow through the converging–diverging duct of Fig. 11.6a, the conservation of

mass equation 1Eq. 11.402 yields

or

(11.67)

From Eqs. 11.36 and 11.46, we obtain

(11.68)

and

(11.69)

By combining Eqs. 11.67, 11.68, and 11.69 we get

(11.70)

The incorporation of Eqs. 11.56, 11.60, 11.63, 11.65, and 11.70 results in

(11.71)

Equation 11.71 was used to generate the values of for air in Fig. D.1. These val-

ues of are graphed as a function of Mach number in Fig. 11.10. As is demonstrated in the

following examples, whether or not the critical area, is physically present in the flow, the area

ratio, is still a useful concept for the isentropic flow of an ideal gas through a converging–

diverging duct.

A�A*,

A*,

A�A*

1k � 1.42A�A*

A

A*
�

1

Ma
 e

1 � 3 1k � 12�2 4Ma2

1 � 3 1k � 12�2 4
f
1k�12� 321k�124

A

A*
�

1

Ma
 a
r*

r0

b a
r0

r
b 
B

1T*�T02

1T�T02

V � Ma 1RTk

V* � 1RT*k

A

A*
� a
r*

r
b a

V*

V
b

rAV � r*A*V*

A*,

602 Chapter 11 ■ Compressible Flow

From Eq. 1 we obtain

or, using 

(Ans)

COMMENT Note that the isentropic flow equations and Fig.

D.1 for were used presently to describe fluid particlek � 1.4

 � 1580 ft�s
V � 279 1ft # lb�lbm21�2 3 132.2 lbm # ft�s22�lb 4 1�2

1 lb � 32.2 lbm # ft�s2,

 � 279 1ft # lb�lbm21�2
V � 10.4992 2 3386 1ft # lb2� 1lbm # °R2 4 1488 °R2 11.662

isentropic flow along a pathline in a stagnation process. Even

though these equations and graph were developed for one-

dimensional duct flows, they can be used for frictionless, adia-

batic pathline flows also.

Furthermore, while the Mach numbers calculated above are of

similar size for the air and helium flows, the flow speed is much

larger for helium than for air because the speed of sound in he-

lium is much larger than it is in air.

F I G U R E  11.10 The variation of area
ratio with Mach number for isentropic flow of an
ideal gas ( linear coordinate scales).kk � 1.4,

2.0

1.0

A___
A*

0 1.0
Ma

The ratio of flow
area to the critical
area is a useful
concept for isen-
tropic duct flow.
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11.4 Isentropic Flow of an Ideal Gas 603

GIVEN Air enters subsonically from standard atmosphere and

flows isentropically through a choked converging–diverging duct

having a circular cross-sectional area, A, that varies with axial dis-

tance from the throat, x, according to the formula

where A is in square meters and x is in meters. The duct extends

from to x � �0.5 m.x � �0.5 m

A � 0.1 � x2

Isentropic Choked Flow in a Converging–Diverging
Duct with Subsonic Entry

EXAMPLE 11.8

SOLUTION

and a graph of radius as a function of axial distance can be easily

constructed (see Fig. E11.8a).

Since the converging – diverging duct in this example is

choked, the throat area is also the critical area, From Eq. 2 we

see that

(4)

For any axial location, from Eqs. 2 and 4 we get

(5)
A

A*
�

0.1 � x2

0.1

A* � 0.1 m2

A*.

The side view of the converging–diverging duct is a graph of ra-

dius r from the duct axis as a function of axial distance. For a cir-

cular flow cross section we have

(1)

where

(2)

Thus, combining Eqs. 1 and 2, we have

(3)r � a
0.1 � x2

p
b

1�2

A � 0.1 � x2

A � pr2

FIND For this flow situation, sketch the side view of the duct and

graph the variation of Mach number, static temperature to stagnation

temperature ratio, and static pressure to stagnation pressure ra-

tio, through the duct from to Also

show the possible fluid states at and us-

ing temperature –entropy coordinates.

�0.5 mx � �0.5 m, 0 m,

x � �0.5 m.x � �0.5 mp�p0,

T�T0,

0.4

0.3

0.2

0.1

0
–0.5 –0.4 –0.2 0

(a)

x, m
0.2 0.4 0.5

r,
 m

3.0

2.0

1.0

–0.5 –0.4 –0.2 0
x, m

Ma

0.2 0.4 0.5

Subsonic Subsonic

Supersonic

(b)

(c) (d)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

x, m

T___
T0

T/T0

p/p0

p___
p0

Subsonic

Subsonic

Subsonic

Subsonic

Supersonic

Supersonic

310

290

270

250

230

210

190

170

150

130

110

90

0

d

b

a, c

pd = 4 kPa (abs)

pb = 54 kPa (abs)

pa = pc = 99 kPa (abs)p0 = 101 kPa (abs)

Td = 112 K

Tb = 39 K

Ta = Tc = 285 K

T0 = 288 K

T,
 K

J_______
(kg • K)

s,

F I G U R E  E11.8
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604 Chapter 11 ■ Compressible Flow

Values of from Eq. 5 can be used in Eq. 11.71 to calculate

corresponding values of Mach number, Ma. For air with 

we could enter Fig. D.1 with values of and read off values of

the Mach number. With values of Mach number ascertained, we

could use Eqs. 11.56 and 11.59 to calculate related values of 

and For air with Fig. D.1 could be entered with

or Ma to get values of and To solve this example,

we elect to use values from Fig. D.1.

The following table was constructed by using Eqs. 3 and 5 and

Fig. D.1.

With the air entering the choked converging–diverging duct

subsonically, only one isentropic solution exists for the converg-

ing portion of the duct. This solution involves an accelerating

flow that becomes sonic at the throat of the passage.

Two isentropic flow solutions are possible for the diverging por-

tion of the duct—one subsonic, the other supersonic. If the pres-

sure ratio, is set at 0.98 at 1the outlet2, the sub-

sonic flow will occur. Alternatively, if is set at 0.04 at

the supersonic flow field will exist. These condi-

tions are illustrated in Fig. E11.8. An unchoked subsonic flow

through the converging–diverging duct of this example is dis-

cussed in Example 11.10. Choked flows involving flows other

than the two isentropic flows in the diverging portion of the duct

of this example are discussed after Example 11.10.

COMMENT Note that if the diverging portion of this duct

is extended, larger values of and Ma are achieved. From

Fig. D1, note that further increases of result in smaller

changes of Ma after values of about 10. The ratio of p�p0A�A*

A�A*

A�A*

x � �0.5 m,

p�p0

x � �0.5 mp�p0,

1Ma � 12

p�p0.T�T0A�A*

k � 1.4,p�p0.

T�T0

A�A*

k � 1.4,

A�A*
From From
Eq. 3, Eq. 5,

From Fig. D.1

x (m) r (m) Ma State

Subsonic Solution

0.334 3.5 0.17 0.99 0.98 a
0.288 2.6 0.23 0.99 0.97

0.246 1.9 0.32 0.98 0.93

0.211 1.4 0.47 0.96 0.86

0.187 1.1 0.69 0.91 0.73

0 0.178 1 1.00 0.83 0.53 b
0.187 1.1 0.69 0.91 0.73

0.211 1.4 0.47 0.96 0.86

0.246 1.9 0.32 0.98 0.93

0.288 2.6 0.23 0.99 0.97

0.344 3.5 0.17 0.99 0.98 c

Supersonic Solution

0.187 1.1 1.37 0.73 0.33

0.211 1.4 1.76 0.62 0.18

0.246 1.9 2.14 0.52 0.10

0.288 2.6 2.48 0.45 0.06

0.334 3.5 2.80 0.39 0.04 d�0.5

�0.4

�0.3

�0.2

�0.1

�0.5

�0.4

�0.3

�0.2

�0.1

�0.1

�0.2

�0.3

�0.4

�0.5

p�p0T�T0A�A*

becomes vanishingly small, suggesting a practical limit to the

expansion.

GIVEN Air enters supersonically with and equal to stan-

dard atmosphere values and flows isentropically through the

choked converging–diverging duct described in Example 11.8.

FIND Graph the variation of Mach number, Ma, static temper-

ature to stagnation temperature ratio, and static pressure toT�T0,

p0T0

Isentropic Choked Flow in a Converging–Diverging
Duct with Supersonic Entry

EXAMPLE 11.9

SOLUTION

With the air entering the converging–diverging duct of Example

11.8 supersonically instead of subsonically, a unique isentropic

flow solution is obtained for the converging portion of the duct.

Now, however, the flow decelerates to the sonic condition at the

throat. The two solutions obtained previously in Example 11.8 for

the diverging portion are still valid. Since the area variation in the

duct is symmetrical with respect to the duct throat, we can use the

supersonic flow values obtained from Example 11.8 for the super-

sonic flow in the converging portion of the duct. The supersonic

flow solution for the converging passage is summarized in the fol-

lowing table. The solution values for the entire duct are graphed

in Fig. E11.9.

stagnation pressure ratio, through the duct from

to Also show the possible fluid states

at and by using temperature –

entropy coordinates.

�0.5 mx � �0.5 m, 0 m,

x � �0.5 m.x � �0.5 m

p�p0,

From Fig. D.1

x (m) Ma State

3.5 2.8 0.39 0.04 e
2.6 2.5 0.45 0.06

1.9 2.1 0.52 0.10

1.4 1.8 0.62 0.18

1.1 1.4 0.73 0.33

0 1 1.0 0.83 0.53 b
�0.1

�0.2

�0.3

�0.4

�0.5

p�p0T�T0A�A*
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0.4

0.3

0.2

0.1

0
–0.5 –0.4 –0.2 0

(a) (b)

x, m x, m
0.2 0.4 0.5

3.0

2.0

1.0

0
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

(c)

x, m
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

Ma

Supersonic

Supersonic

Subsonic

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T___
T0

p___
p0

Subsonic

Subsonic

SupersonicSupersonic

Supersonic Supersonic

T/T0

p/p0

(d)

310

290

270

250

230

210

190

170

150

130

110

90

0

d

b

c

pe = pd = 4 kPa (abs)

pb = 54 kPa (abs)

pc = 99 kPa (abs)p0 = 101 kPa (abs)

Te = Td = 112 K

Tb = 240 K

Tc = 286 K
T0 = 288 K

T,
 K

r, m

J_______
(kg • K)

s,

F I G U R E  E11.9

GIVEN Air flows subsonically and isentropically through the

converging–diverging duct of Example 11.8.

FIND Graph the variation of Mach number, Ma, static temper-

ature to stagnation temperature ratio, and the static pressureT�T0,

Isentropic Unchoked Flow in a Converging–
Diverging Duct

EXAMPLE 11.10

SOLUTION

for this example is

(1)

With known values of duct area at different axial locations,

we can calculate corresponding area ratios, knowing

Having values of the area ratio, we can use

Fig. D.1 and obtain related values of Ma, and The fol-

lowing table summarizes flow quantities obtained in this manner.

The results are graphed in Fig. E11.10.

p�p0.T�T0,

A* � 0.07 m2.

A�A*,

A* �
A

1A�A*2
�

0.10 m2

1.4
� 0.07 m2

A*Since for this example, at the isentropic

flow through the converging–diverging duct will be entirely

subsonic and not choked. For air flowing isentrop-

ically through the duct, we can use Fig. D.1 for flow field

quantities. Entering Fig. D.1 with we read off

and Even though the

duct flow is not choked in this example and does not there-

fore exist physically, it still represents a valid reference. For a

given isentropic flow, and are constants. Since A
at is equal to 1from Eq. 2 of Example 11.82,0.10 m2x � 0 m

A*p0, T0,

A*

A�A* � 1.4.T�T0 � 0.96,p�p0 � 0.85,

Ma � 0.48

1k � 1.42

x � 0 m,Ma � 0.48

to stagnation pressure ratio, through the duct from

to for at Show

the corresponding temperature–entropy diagram.

x � 0 m.Ma � 0.48x � �0.5 mx � �0.5 m

p�p0,
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A more precise solution for the flow of this example could

have been obtained with isentropic flow equations by following

the steps outlined below.

1. Use Eq. 11.59 to get at knowing k and

2. From Eq. 11.71, obtain value of at knowing

k and Ma.

3. Determine knowing A and at 

4. Determine at different axial locations, x.

5. Use Eq. 11.71 and from step 4 above to get values

of Mach numbers at different axial locations.

6. Use Eqs. 11.56 and 11.59 and Ma from step 5 above to

obtain and at different axial locations, x.

COMMENT There are an infinite number of subsonic, isen-

tropic flow solutions for the converging–diverging duct consid-

ered in this example 1one for any given Ma � 1 at x � 02.

p�p0T�T0

A�A*

A�A*

x � 0.A�A*A*

x � 0A�A*

Ma � 0.48.

x � 0p�p0

F I G U R E  E11.10

0.4

0.3

0.2

0.1

0
–0.5 –0.4 –0.2 0

(a) (b)

x, m x, m
0.2 0.4 0.5

1.0

0
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

(c)

x, m
–0.5 –0.4 –0.2 0 0.2 0.4 0.5

Ma SubsonicSubsonic

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T___
T0

p___
p0

Subsonic T/T0 Subsonic p/p0

(d)

296

292

288

284

280

276

272

268

264

260

0

b

a, c

pa = pc = 100 kPa (abs)

p0 = 101 kPa (abs)

T,
 K

r, m

J_______
(kg • K)

s,

pb = 86 kPa (abs)

Tb = 276 K

T0 = 288 K
Ta = Tc = 285 K

Calculated,
From Fig. D.1

x (m) Ma State

5.0 0.12 0.99 0.99 a
3.7 0.16 0.99 0.98

2.7 0.23 0.99 0.96

2.0 0.31 0.98 0.94

1.6 0.40 0.97 0.89

0 1.4 0.48 0.96 0.85 b
1.6 0.40 0.97 0.89

2.0 0.31 0.98 0.94

2.7 0.23 0.99 0.96

3.7 0.16 0.99 0.98

5.0 0.12 0.99 0.99 c�0.5

�0.4

�0.3

�0.2

�0.1

�0.1

�0.2

�0.3

�0.4

�0.5

p�p0T�T0A�A*

F l u i d s  i n  t h e  N e w s

Liquid knife A supersonic stream of liquid nitrogen is capable of

cutting through engineering materials like steel and concrete. Origi-

nally developed at the Idaho National Engineering Laboratory for

cutting open barrels of waste products, this technology is now more

widely available. The fast moving nitrogen enters the cracks and

crevices of the material being cut then expands rapidly and breaks up

the solid material it has penetrated. After doing its work, the nitrogen

gas simply becomes part of the atmosphere which is mostly nitrogen

already. This technology is also useful for stripping coatings even

from delicate surfaces.
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The isentropic flow behavior for the converging–diverging duct discussed in Examples 11.8,

11.9, and 11.10 is summarized in the area ratio–Mach number graphs sketched in Fig. 11.11. The

points a, b, and c represent states at axial distance 0 m, and In Fig. 11.11a,

the isentropic flow through the converging–diverging duct is subsonic without choking at the

throat. This situation was discussed in Example 11.10. Figure 11.11b represents subsonic to sub-

sonic choked flow 1Example 11.82 and Fig. 11.11c is for subsonic to supersonic choked flow 1also

Example 11.82. The states in Fig. 11.11d are related to the supersonic to supersonic choked flow

of Example 11.9; the states in Fig. 11.11e are for the supersonic to subsonic choked flow of 

Example 11.9. Not covered by an example but also possible are the isentropic flow states a, b,

and c shown in Fig. 11.11f for supersonic to supersonic flow without choking. These six cate-

gories generally represent the possible kinds of isentropic, ideal gas flow through a converging–di-

verging duct.

For a given stagnation state 1i.e., and fixed2, ideal gas and converging–

diverging duct geometry, an infinite number of isentropic subsonic to subsonic 1not choked2 and

supersonic to supersonic 1not choked2 flow solutions exist. In contrast, the isentropic subsonic

to supersonic 1choked2, subsonic to subsonic 1choked2, supersonic to subsonic 1choked2, and su-

personic to supersonic 1choked2 flow solutions are each unique. The above-mentioned isentropic

1k � constant2,p0T0

�0.5 m.x � �0.5 m,
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A___
A*

1.0

0 1.0
Ma

(a) (b)

a, c

b
A___
A*

1.0

0 1.0
Ma

a, c

b

A___
A*

1.0

0 1.0
Ma

(c) (d)

ca

b

A___
A*

1.0

0 1.0
Ma

a, c

b

A___
A*

1.0

0 1.0
Ma

(e) ( f )

ac

b

A___
A*

1.0

0 1.0
Ma

a, c

b

F I G U R E  11.11 (a) Subsonic to subsonic isentropic flow (not choked). (b) Subsonic to
subsonic isentropic flow (choked). (c) Subsonic to supersonic isentropic flow (choked). (d) Supersonic 
to supersonic isentropic flow (choked). (e) Supersonic to subsonic isentropic flow (choked). ( f ) Supersonic
to supersonic isentropic flow (not choked).

A variety of flow
situations can oc-
cur for flow in a
converging–
diverging duct.

V11.5 Rocket 
engine start-up
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flow solutions are represented in Fig. 11.12. When the pressure at 1exit2 is greater

than or equal to indicated in Fig. 11.12d, an isentropic flow is possible. When the pressure

at is equal to or less than isentropic flows in the duct are possible. However, when

the exit pressure is less than and greater than as indicated in Fig. 11.13, isentropic flows

are no longer possible in the duct. Determination of the value of is discussed in Example

11.19.

Some possible nonisentropic choked flows through our converging–diverging duct are

represented in Fig. 11.13. Each abrupt pressure rise shown within and at the exit of the 

flow passage occurs across a very thin discontinuity in the flow called a normal shock wave.

Except for flow across the normal shock wave, the flow is isentropic. The nonisentropic flow

equations that describe the changes in fluid properties that take place across a normal shock

wave are developed in Section 11.5.3. The less abrupt pressure rise or drop that occurs after

the flow leaves the duct is nonisentropic and attributable to three-dimensional oblique shock
waves or expansion waves 1see margin photograph2. If the pressure rises downstream of the

duct exit, the flow is considered overexpanded. If the pressure drops downstream of the duct

exit, the flow is called underexpanded. Further details about over- and underexpanded flows

and oblique shock waves are beyond the scope of this text. Interested readers are referred to

pIII

pIIIpI

pII,x � �0.5

pI

x � �0.5
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–0.5 0

(a)

x, m
+0.5

r

–0.5 0

(c)

x, m
+0.5

T

–0.5

1.0

0

(b)

x, m
+0.5

Ma

–0.5 0

(d)

x, m
+0.5

p

pII

pI

F I G U R E  11.12 (a) The variation of duct radius with axial distance. (b) The variation of
Mach number with axial distance. (c) The variation of temperature with axial distance. (d ) The variation
of pressure with axial distance.

p

x

pI

pIII

pII

F I G U R E  11.13 Shock formation in 
converging – diverging duct flows.

Shock waves

V11.6 Supersonic
nozzle flow

Photographs courtesy
of NASA.
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11.5 Nonisentropic Flow of an Ideal Gas 609

Constant area duct

Fluid flow
F I G U R E  11.14 Constant area duct

flow.

11.4.3 Constant Area Duct Flow

For steady, one-dimensional, isentropic flow of an ideal gas through a constant area duct 1see

Fig. 11.142, Eq. 11.50 suggests that or that flow velocity remains constant. With the en-

ergy equation 1Eq. 5.692 we can conclude that since flow velocity is constant, the fluid enthalpy

and thus temperature are also constant for this flow. This information and Eqs. 11.36 and 11.46

indicate that the Mach number is constant for this flow also. This being the case, Eqs. 11.59

and 11.60 tell us that fluid pressure and density also remain unchanged. Thus, we see that a

steady, one-dimensional, isentropic flow of an ideal gas does not involve varying velocity or

fluid properties unless the flow cross-sectional area changes.

In Section 11.5 we discuss nonisentropic, steady, one-dimensional flows of an ideal gas

through a constant area duct and also a normal shock wave. We learn that friction and�or heat trans-

fer can also accelerate or decelerate a fluid.

dV � 0

F l u i d s  i n  t h e  N e w s

Rocket nozzles To develop the massive thrust needed for space

shuttle liftoff, the gas leaving the rocket nozzles must be moving

supersonically. For this to happen, the nozzle flow path must first

converge, then diverge. Entering the nozzle at very high pressure

and temperature, the gas accelerates in the converging portion of

the nozzle until the flow chokes at the nozzle throat. Downstream

of the throat, the gas further accelerates in the diverging portion of

the nozzle (area ratio of 77.5 to 1), finally exiting into the atmos-

phere supersonically. At launch, the static pressure of the gas

flowing from the nozzle exit is less than atmospheric and so the

flow is overexpanded. At higher elevations where the atmospheric

pressure is much less than at launch level, the static pressure of

the gas flowing from the nozzle exit is greater than atmospheric

and so now the flow is underexpanded, the result being expansion

or divergence of the exhaust gas as it exits into the atmosphere.

(See Problem 11.49.)

11.5 Nonisentropic Flow of an Ideal Gas

Actual fluid flows are generally nonisentropic. An important example of nonisentropic flow involves

adiabatic 1no heat transfer2 flow with friction. Flows with heat transfer 1diabatic flows2 are generally

nonisentropic also. In this section we consider the adiabatic flow of an ideal gas through a constant

area duct with friction. This kind of flow is often referred to as Fanno flow. We also analyze the

diabatic flow of an ideal gas through a constant area duct without friction 1Rayleigh flow2. The con-

cepts associated with Fanno and Rayleigh flows lead to further discussion of normal shock waves.

11.5.1 Adiabatic Constant Area Duct Flow 
with Friction (Fanno Flow)

Consider the steady, one-dimensional, and adiabatic flow of an ideal gas through the constant area

duct shown in Fig. 11.15. This is Fanno flow. For the control volume indicated, the energy equa-

tion 1Eq. 5.692 leads to

0 1negligibly 0 1flow is adiabatic2
small for 01flow is steady

gas flow2 throughout2

m
#
c ȟ2 � ȟ1 �

V 2
2 � V 2

1

2
� g1z2 � z12 d � Q

#
net
in.

� W
#

shaft
net in

Fanno flow involves
wall friction with
no heat transfer
and constant cross-
sectional area.

texts on compressible flows and gas dynamics 1for example, Refs. 4, 5, and 62 for additional

material on this subject.
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or

(11.72)

where is the stagnation enthalpy. For an ideal gas we gather from Eq. 11.9 that

(11.73)

so that by combining Eqs. 11.72 and 11.73 we get

or

(11.74)

By substituting the ideal gas equation of state 1Eq. 11.12 into Eq. 11.74 we obtain

(11.75)

From the continuity equation 1Eq. 11.402 we can conclude that the density–velocity product,

is constant for a given Fanno flow since the area, A, is constant. Also, for a particular Fanno

flow, the stagnation temperature, is fixed. Thus, Eq. 11.75 allows us to calculate values of fluid

temperature corresponding to values of fluid pressure in the Fanno flow. We postpone our discus-

sion of how pressure is determined until later.

As with earlier discussions in this chapter, it is helpful to describe Fanno flow with a temper-

ature–entropy diagram. From the second T ds relationship, an expression for entropy variation was

already derived 1Eq. 11.222. If the temperature, pressure, and entropy, at the entrance of

the Fanno flow duct are considered as reference values, then Eq. 11.22 yields

(11.76)

Equations 11.75 and 11.76 taken together result in a curve with T–s coordinates as is illustrated in

Fig. 11.16. This curve involves a given gas 1 and R2 with fixed values of stagnation temperature,

density–velocity product, and inlet temperature, pressure, and entropy. Curves like the one sketched

in Fig. 11.16 are called Fanno lines.

cp

s � s1 � cp ln 
T

T1

� R ln 
p

p1

s1,p1,T1,

T0,

rV,

T �
1rV22T 2

2cp1p
2�R22

� T0 � constant

T �
1rV22

2cpr
2

� T0 � constant

T �
V 2

2cp

� T0 � constant

ȟ � ȟ0 � cp 1T � T02

h0

ȟ �
V 2

2
� ȟ0 � constant
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F I G U R E  11.15 Adiabatic constant
area flow.

Adiabatic flow

Insulated wall

Control volume

Section (1) Section (2)

F I G U R E  11.16 The T –s
diagram for Fanno flow.

Entropy increases
in Fanno flows
because of wall
friction.

Ta

s

pa

T

a

Constant entropy line

Fanno line
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11.5 Nonisentropic Flow of an Ideal Gas 611

GIVEN Air enters [section 112] an insulated, con-

stant cross-sectional area duct with the following properties:

 p1 � 14.3 psia

 T1 � 514.55 °R

 T0 � 518.67 °R

1k � 1.42

Compressible Flow with Friction (Fanno Flow)EXAMPLE 11.11

SOLUTION

Eq. 4 becomes

or

For psia we have from Eq. 1

or

Thus, since we obtain

Hence,

(Ans)

where T is in 

From Eq. 2, we obtain

or

(Ans)

Proceeding as outlined above, we construct the table of values

shown below and graphed as the Fanno line in Fig. E11.11. The

s � s1 � 33.6 1ft # lb2� 1lbm # °R2

 � 353.3 1ft # lb2� 1lbm # °R2 4  ln a
7 psia

14.3 psia
b

 s � s1 � 3187 1ft # lb2� 1lbm # °R2 4  ln a
502.3 °R

514.55 °R
b

°R.

T � 502.3 °R

6.5 � 10�5T 2 � T � 518.67 � 0

1 lb � 32.2 lbm # ft�s2

2.08 � 10�3 3 1lbm # ft�s22� 1lb # °R 2 4 T 2 � T � 518.67 °R � 0

 � 518.67 °R

T �
316.7 lbm� 1ft2 # s2 4 2T 2

2 3187 1ft # lb2� 1lbm # °R2 4  
17 psia221144 in.2�ft222

353.3 1ft # lb2� 1lbm # °R2 4 2

p � 7

rV � 16.7 lbm� 1ft2 # s2

rV �
114.3 psia2 1144 in.2�ft220.211112 ft�s2
353.3 1ft # lb2� 1lbm # °R2 4 1514.55 °R2

To plot the Fanno line we can use Eq. 11.75

(1)

and Eq. 11.76

(2)

to construct a table of values of temperature and entropy change

corresponding to different levels of pressure in the Fanno flow.

We need values of the ideal gas constant and the specific heat

at constant pressure to use in Eqs. 1 and 2. From Table 1.7 we read

for air

From Eq. 11.14 we obtain

(3)

or

From Eqs. 11.1 and 11.69 we obtain

and is constant for this flow

(4)

But

and from Eq. 11.56

Thus, with

 � 1112 ft�s
 � 196 3 1ft # lb2�lbm 4 1�2 3 132.2 lbm # ft�s22�lb 4 1�2

2RT1k � 211.42 353.3 1ft # lb2� 1lbm # °R2 4 1514.55 °R2

Ma1 �
A
a

1

0.992
� 1b �.02 � 0.2

T1

T0

�
514.55 °F

518.67 °R
� 0.992

rV � r1V1 �
p1

RT1

 Ma11RT1k

rV

rV �
p

RT
 Ma1RTk

 � 187 1ft # lb2� 1lbm # °R2

cp �
353.3 1ft # lb2� 1lbm # °R2 4 11.42

1.4 � 1

cp �
Rk

k � 1

� 53.3 1ft # lb2� 1lbm # °R2R � 1716 1ft # lb2� 1slug # °R2

s � s1 � cp ln 
T

T1

� R ln 
p

p1

T �
1rV22T 2

2cpp2�R2
� T0 � constant

FIND For Fanno flow, determine corresponding values of fluid

temperature and entropy change for various values of down-

stream pressures and plot the related Fanno line.

F I G U R E  E11.11

550

500

450

400

350

300
35 40 45 50 55

T,
 °

R

s – s1, (ft•lb)________
(lbm•°R)
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We can learn more about Fanno lines by further analyzing the equations that describe the

physics involved. For example, the second T ds equation 1Eq. 11.182 is

(11.18)

For an ideal gas

(11.7)

and

(11.1)

or

(11.77)

Thus, consolidating Eqs. 11.1, 11.7, 11.18, and 11.77 we obtain

(11.78)

Also, from the continuity equation 1Eq. 11.402, we get for Fanno flow , or

(11.79)

Substituting Eq. 11.79 into Eq. 11.78 yields

or

(11.80)

By differentiating the energy equation 111.742 obtained earlier, we obtain

(11.81)
dV

dT
� �

cp

V

ds

dT
�

cp

T
� R a�

1

V
 
dV

dT
�

1

T
b

T ds � cp dT � RT a�
dV

V
�

dT

T
b

dr

r
� �

dV

V

rV � constant

T ds � cp dT � RT a
dr

r
�

dT

T
b

dp

p
�

dr

r
�

dT

T

r �
p

RT

dȟ � cp dT

T ds � dȟ �
dp
r
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maximum entropy difference occurs at a pressure of 2.62 psia and

a temperature of 432.1 

COMMENT Note that for Fanno flow the entropy must in-

crease in the direction of flow. Hence, this flow can proceed either

from subsonic conditions upstream to a sonic condition 1 2
downstream or from supersonic conditions upstream to a sonic

condition downstream. The arrows in Fig. 11.11 indicate in which

direction a Fanno flow can proceed.

Ma � 1

°R. p T s � s1

(psia) ( ) [( ) ��( )]

7 502.3 33.6

6 496.8 39.8

5 488.3 46.3

4 474.0 52.6

3 447.7 57.3

2.62 432.1 57.9

2 394.7 55.4

1.8 378.1 53.0

1.5 347.6 47.0

1.4 335.6 44.2

lbm � �Rft � lb�R

Fanno flow proper-
ties can be obtained
from the second 
T ds equation com-
bined with the con-
tinuity and energy
equations.
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which, when substituted into Eq. 11.80, results in

(11.82)

The Fanno line in Fig. 11.16 goes through a state 1labeled state a2 for which At this

state, we can conclude from Eqs. 11.14 and 11.82 that

(11.83)

However, by comparing Eqs. 11.83 and 11.36 we see that the Mach number at state a is 1. Since

the stagnation temperature is the same for all points on the Fanno line [see energy equation 1Eq.

11.742], the temperature at point a is the critical temperature, for the entire Fanno line. Thus,

Fanno flow corresponding to the portion of the Fanno line above the critical temperature must be

subsonic, and Fanno flow on the line below must be supersonic.

The second law of thermodynamics states that, based on all past experience, entropy can only

remain constant or increase for adiabatic flows. For Fanno flow to be consistent with the second

law of thermodynamics, flow can only proceed along the Fanno line toward state a, the critical

state. The critical state may or may not be reached by the flow. If it is, the Fanno flow is choked.

Some examples of Fanno flow behavior are summarized in Fig. 11.17. A case involving subsonic

Fanno flow that is accelerated by friction to a higher Mach number without choking is illustrated

in Fig. 11.17a. A supersonic flow that is decelerated by friction to a lower Mach number without

choking is illustrated in Fig. 11.17b. In Fig. 11.17c, an abrupt change from supersonic to subsonic

flow in the Fanno duct is represented. This sudden deceleration occurs across a standing normal
shock wave that is described in more detail in Section 11.5.3.

The qualitative aspects of Fanno flow that we have already discussed are summarized in

Table 11.1 and Fig. 11.18. To quantify Fanno flow behavior we need to combine a relation-

ship that represents the linear momentum law with the set of equations already derived in this

chapter.

T*

T*,

Va � 1RTak

ds�dT � 0.

ds

dT
�

cp

T
� R a

cp

V 2
�

1

T
b
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F I G U R E  11.17 (a) Subsonic Fanno flow. (b) Supersonic Fanno flow. (c) Normal shock
occurrence in Fanno flow.

T

s

(a)

1

2

a

T

s

(b)

1

2

a

T

s

(c)

1

2

N
or

m
al

 s
ho

ck

a

Friction accelerates
a subsonic Fanno
flow.

TA B L E 1 1 . 1

Summary of Fanno Flow Behavior

Flow

Parameter Subsonic Flow Supersonic Flow

Stagnation temperature Constant Constant

Ma Increases Decreases

1maximum is 12 1minimum is 12

Friction Accelerates flow Decelerates flow

Pressure Decreases Increases

Temperature Decreases Increases
F I G U R E  11.18 Fanno flow.

T1

T0

T*
a

p0, I

p1

p1'

p0, a

T1'
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If the linear momentum equation 1Eq. 5.222 is applied to the Fanno flow through the control

volume sketched in Fig. 11.19a, the result is

where is the frictional force exerted by the inner pipe wall on the fluid. Since and

we obtain

(11.84)

The differential form of Eq. 11.84, which is valid for Fanno flow through the semi-infinitesimal

control volume shown in Fig. 11.19b, is

(11.85)

The wall shear stress, is related to the wall friction factor, f, by Eq. 8.20 as

(11.86)

By substituting Eq. 11.86 and into Eq. 11.85, we obtain

(11.87)

or

(11.88)

Combining the ideal gas equation of state 1Eq. 11.12, the ideal gas speed-of-sound equation 1Eq.

11.362, and the Mach number definition 1Eq. 11.462 with Eq. 11.88 leads to

(11.89)

Since then

or

(11.90)
d1V 22

V 2
�

d1Ma22

Ma2
�

dT

T

V 2 � Ma2RTk

V � Ma c � Ma 1RTk,

dp

p
�

fk

2
 Ma2 

dx

D
� k 

Ma2

2
 
d1V 22

V 2 
� 0

dp

p
�

f

p
 
rV 2

2
 
dx

D
�
r

p
 
d1V 22

2
� 0

�dp � fr 
V 2

2
 
dx

D
� rV dV

A � pD2�4

f �
8tw

rV 2

tw,

�dp �
twpD dx

A
� rV dV

p1 � p2 �
Rx

A
� rV1V2 � V12

m
#

� rAV � constant,

A1 � A2 � ARx

p1A1 � p2A2 � Rx � m
#
1V2 � V12
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Friction forces in
Fanno flow are
given in terms of
the friction factor.

F I G U R E  11.19 (a) Finite
control volume. (b) Semi-infinitesimal control
volume.

Flow

Section (1) Section (2)

Control volume

(a)

p1A1

Rx

p2A2

Flow

Semi-infinitesimal control volume

(b)

pA

x

D

w

(p +   p)A

δ

τ Dπ xδ

δ
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The application of the energy equation 1Eq. 5.692 to Fanno flow gave Eq. 11.74. If Eq. 11.74 is

differentiated and divided by temperature, the result is

(11.91)

Substituting Eqs. 11.14, 11.36, and 11.46 into Eq. 11.91 yields

(11.92)

which can be combined with Eq. 11.90 to form

(11.93)

We can merge Eqs. 11.77, 11.79, and 11.90 to get

(11.94)

Consolidating Eqs. 11.94 and 11.89 leads to

(11.95)

Finally, incorporating Eq. 11.93 into Eq. 11.95 yields

(11.96)

Equation 11.96 can be integrated from one section to another in a Fanno flow duct. We elect to

use the critical 1*2 state as a reference and to integrate Eq. 11.96 from an upstream state to the crit-

ical state. Thus

(11.97)

where is length measured from an arbitrary but fixed upstream reference location to a section in

the Fanno flow. For an approximate solution, we can assume that the friction factor is constant at

an average value over the integration length, We also consider a constant value of k. Thus,

we obtain from Eq. 11.97

(11.98)

For a given gas, values of can be tabulated as a function of Mach number for

Fanno flow. For example, values of for air Fanno flow are graphed as a

function of Mach number in Fig. D.2 in Appendix D and in the figure in the margin. Note that the

critical state does not have to exist in the actual Fanno flow being considered, since for any two

sections in a given Fanno flow

(11.99)

The sketch in Fig. 11.20 illustrates the physical meaning of Eq. 11.99.

For a given Fanno flow 1constant specific heat ratio, duct diameter, and friction factor2 the

length of duct required to change the Mach number from to can be determined from Eqs.

11.98 and 11.99 or a graph such as Fig. D.2. To get the values of other fluid properties in the Fanno

flow field we need to develop more equations.

Ma2Ma1

f 1/* � /22

D
�

f 1/* � /12

D
�

f

D
 1/1 � /22

1k � 1.42f 1/* � /2�D
f 1/* � /2�D

1

k
 
11 � Ma22

Ma2
�

k � 1

2k
 ln e

3 1k � 12�2 4Ma2

1 � 3 1k � 12�2 4Ma2
f �

f 1/* � /2
D

/* � /.

/

�
Ma*�1

Ma

 
11 � Ma22 d1Ma22

51 � 3 1k � 12�2 4  Ma26kMa4
� �

/*

/
 f  

dx

D

11 � Ma22 d1Ma22

51 � 3 1k � 12�2 4Ma26kMa4
� f 

dx

D

1

2
 11 � kMa22 

d1V 22

V 2
�

d1Ma22

Ma2
�

fk

2
 Ma2 

dx

D
� 0

dp

p
�

1

2
 
d1V 22

V 2
�

d1Ma22

Ma2

d1V 22

V 2
�

d1Ma22�Ma2

1 � 3 1k � 12�2 4Ma2

dT

T
�

k � 1

2
 Ma2 

d1V 22

V 2
� 0

dT

T
�

d1V 22

2cpT
� 0
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For Fanno flow, the
Mach number is a
function of the dis-
tance to the critical
state.

5.0

0.0
101.0

Ma

0.1

 f
(�

*
 
– 

�)
__

__
__

__
D
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By consolidating Eqs. 11.90 and 11.92 we obtain

(11.100)

Integrating Eq. 11.100 from any state upstream in a Fanno flow to the critical 1*2 state leads to

(11.101)

Equations 11.68 and 11.69 allow us to write

(11.102)

Substituting Eq. 11.101 into Eq. 11.102 yields

(11.103)

Equations 11.101 and 11.103 are graphed in the margin for air.

From the continuity equation 1Eq. 11.402 we get for Fanno flow

(11.104)

Combining 11.104 and 11.103 results in

(11.105)
r

r*
� e

1 � 3 1k � 12�2 4Ma2

3 1k � 12�2 4Ma2
f

1�2

r

r*
�

V*

V

V

V*
� e

3 1k � 12�2 4Ma2

1 � 3 1k � 12�2 4Ma2
f

1�2

V

V*
�

Ma 1RTk

1RT*k
� Ma 

A

T

T*

T

T *
�

1k � 12�2
1 � 3 1k � 12�2 4Ma2

dT

T
� �

1k � 12

251 � 3 1k � 12�2 4Ma26
 d1Ma22
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F I G U R E  11.20 (a) Unchoked Fanno flow. (b) Choked Fanno flow.

Frictionless and adiabatic
converging–diverging ductReference

section
Section

(1)

Actual duct with
friction factor = f

Section
(2)

Imagined
choked flow

section

Flow

Imagined duct
friction factor = f

D = constant

�1

�2

�*

(a)

Frictionless and adiabatic
converging–diverging ductReference

section
Section

(1)

Actual duct with
friction factor = f

Section
(2)

Actual
choked flow

section

Flow D = constant

�1

�2

�*

(b)

5.0

1.0

0.0
101.0

Ma

0.1

T__
T*

5.0

1.0

0.0
101.0

Ma

0.1

V___
V*

For Fanno flow, the
length of duct
needed to produce a
given change in
Mach number can
be determined.
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The ideal gas equation of state 1Eq. 11.12 leads to

(11.106)

and merging Eqs. 11.106, 11.105, and 11.101 gives

(11.107)

This relationship is graphed in the margin for air.

Finally, the stagnation pressure ratio can be written as

(11.108)

which by use of Eqs. 11.59 and 11.107 yields

(11.109)

Values of for Fanno flow of air are

graphed as a function of Mach number 1using Eqs. 11.99, 11.101, 11.103, 11.107, and 11.1092 in Fig.

D.2 of Appendix D. The usefulness of Fig. D.2 is illustrated in Examples 11.12, 11.13, and 11.14. 

See Ref. 7 for additional compressible internal flow material.

1k � 1.42f 1/* � /2�D, T�T*, V�V*, p�p*, and p0�p*0

p0

p*
0

�
1

Ma
 c a

2

k � 1
b a1 �

k � 1

2
 Ma2b d

31k�12�21k�124

p0

p*
0

� a
p0

p
b a

p

p*
b a

p*

p*
0

b

p

p*
�

1

Ma
 e

1k � 12�2
1 � 3 1k � 12�2 4Ma2

f
1�2

p

p*
�
r

r*
 

T

T*
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5.0

0.0
101.0

Ma

0.1

p___
p*

For Fanno flow,
thermodynamic and
flow properties can
be calculated as a
function of Mach
number.

GIVEN Standard atmospheric air 101

is drawn steadily through a frictionless, adiabatic con-

verging nozzle into an adiabatic, constant area duct as shown in

Fig. E11.12a. The duct is 2 m long and has an inside diameter of

0.1 m. The average friction factor for the duct is estimated as be-

ing equal to 0.02. 

FIND What is the maximum mass flowrate through the duct?

For this maximum flowrate, determine the values of static tem-

perature, static pressure, stagnation temperature, stagnation pres-

sure, and velocity at the inlet [section 112] and exit [section 122] of

the constant area duct. Sketch a temperature–entropy diagram for

this flow.

kPa1abs2 4
3T0 � 288 K, p0 �

Choked Fanno FlowEXAMPLE 11.12

(b)

2

Fanno line

p0.1 =
101 kPa (abs)

p0.2 =
84 kPa (abs)

p2 =
45 kPa (abs)

p1 =
77 kPa (abs)

T1 = 268 K

T0 = 288 K

T2 = 240 K

300

290

280

270

260

250

240

230
0 10 20 30 40 50

T,
 K

s – s1, J_____
(kg•K)

1

F I G U R E  E11.12

p0 = 101 kPa (abs)
Frictionless and
adiabatic nozzle

Adiabatic duct with friction
factor f = 0.02

Standard atmospheric air
T0 = 288K

Control volume

Section (1) Section (2)

� = 2 m

(a)

D = 0.1 m

SOLUTION

We consider the flow through the converging nozzle to be isen-

tropic and the flow through the constant area duct to be Fanno

flow. A decrease in the pressure at the exit of the constant area

duct 1back pressure2 causes the mass flowrate through the nozzle

and the duct to increase. The flow throughout is subsonic. The

maximum flowrate will occur when the back pressure is lowered

to the extent that the constant area duct chokes and the Mach

number at the duct exit is equal to 1. Any further decrease of back

pressure will not affect the flowrate through the nozzle–duct

combination.
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For the maximum flowrate condition, the constant area duct

must be choked, and

(1)

With for air and the above calculated value of 

we could use Eq. 11.98 to determine a value of Mach

number at the entrance of the duct [section 112]. With and

Ma1 known, we could then rely on Eqs. 11.101, 11.103, 11.107,

and 11.109 to obtain values of 

Alternatively, for air we can use Fig. D.2 with 

and read off values of and

The pipe entrance Mach number, also represents the Mach

number at the throat 1and exit2 of the isentropic, converging nozzle.

Thus, the isentropic flow equations of Section 11.4 or Fig. D.1 can

be used with Ma1. We use Fig. D.1 in this example.

With known, we can enter Fig. D.1 and get values of

and Through the isentropic nozzle, the values

of and are each constant, and thus and can be

readily obtained.

Since also remains constant through the constant area duct

1see Eq. 11.752, we can use Eq. 11.63 to get Thus,

(2)

Since we get from Eq. 2,

(3) (Ans)

With known, we can calculate from Eq. 11.36 as

Thus, since 

we obtain

(4) (Ans)

Now can be obtained from V* and Having and

we can get the mass flowrate from

(5)

Values of the other variables asked for can be obtained from the

ratios mentioned.

Entering Fig. D.2 with we read

(7)

(8)

(9)

(10)

(11) 
p0,1

p*0
� 1.16

 
p1

p*
� 1.7

 
V1

V*
� 0.66

 
T1

T*
� 1.1

 Ma1 � 0.63

f 1/* � /2�D � 0.4

m
#

� r1A1V1

V1

A1, r1,V1�V*.V1

V* � 310 m�s � V2

1m�s22,1 J�kg � 1 N # m�kg � 1 1kg # m�s22 # m�kg �

 � 310 1J�kg21�2

 � 2 3 1286.9 J2� 1kg # K2 4 1240 K2 11.42

 V* � 1RT*k

V*T*

T* � 10.83332 1288 K2 � 240 K � T2

T0 � 288 K,

T*

T0

�
2

k � 1
�

2

1.4 � 1
� 0.8333

T*.

T0

r1T1, p1,r0T0, p0,

r1�r0.T1�T0, p1�p0,

Ma1

Ma1,

 p0,1�p*0.

p1�p*,V1�V*,Ma1, T1�T*,D � 0.4

f 1/* � /12�1k � 1.42,
p1�p*, and p0,1�p*0.V1�V*,T1�T*,

k � 1.4

D � 0.4,

f 1/* � /12�k � 1.4

f 1/* � /12

D
�

f 1/2 � /12

D
�
10.022 12 m2

10.1 m2
� 0.4

Entering Fig. D.1 with we read

(12)

(13)

(14)

Thus, from Eqs. 4 and 9 we obtain

(Ans)

From Eq. 14 we get

and from Eq. 5 we conclude that

(Ans)

From Eq. 12, it follows that

(Ans)

Equation 13 yields

(Ans)

The stagnation temperature, remains constant through this

adiabatic flow at a value of

(Ans)

The stagnation pressure, at the entrance of the constant area

duct is the same as the constant value of stagnation pressure

through the isentropic nozzle. Thus

(Ans)

To obtain the duct exit pressure we can use Eqs. 10 and

13. Thus,

(Ans)

For the duct exit stagnation pressure we can use Eq.

11 as

(Ans)

The stagnation pressure, decreases in a Fanno flow because of

friction.

COMMENT Use of graphs such as Figs. D.1 and D.2 illus-

trates the solution of a problem involving Fanno flow. The T–s di-

agram for this flow is shown in Fig. E.11.12b, where the entropy

difference, is obtained from Eq. 11.22.s2 � s1,

p0,

 � 87.1 kPa1abs2

p0,2 � a
p*

0

p0,1

b 1p0,12 � a
1

1.16
b 3101 kPa1abs2 4

1p0,2 � p*
0
2

 � 45 kPa1abs2

p2 � a
p*

p1

b a
p1

p0,1

b 1p0,12 � a
1

1.7
b 10.762 3101 kPa1abs2 4

1p2 � p*2

p0,1 � 101 kPa1abs2

p0,

T0,1 � T0,2 � 288 K

T0,

p1 � 10.762 3101 kPa1abs2 4 � 77 kPa1abs2

T1 � 10.932 1288 K2 � 268 K

 � 1.65 kg�s

m
#

� 11.02 kg�m32 c
p10.1 m22

4
d  1206 m�s2

r1 � 0.83r0,1 � 10.832 11.23 kg�m32 � 1.02 kg�m3

V1 � 10.662 1310 m�s2 � 205 m�s

 
r1

r0,1

� 0.83

 
p1

p0,1

� 0.76

 
T1

T0

� 0.93

Ma1 � 0.63
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GIVEN The duct in Example 11.12 is shortened by 50%, but

the duct discharge pressure is maintained at the choked flow value

for Example 11.12, namely,

pd � 45 kPa1abs2

Effect of Duct Length on Choked Fanno FlowEXAMPLE 11.13

SOLUTION

which is read in Fig. D.1 for Thus,

(3)

We get from

(4)

from Fig. D.2 for The value of V* is the same as it

was in Example 11.12, namely,

(5)

Thus, from Eqs. 4 and 5 we obtain

(6)

and from Eqs. 1, 3, and 6 we get

(Ans)

The mass flowrate associated with a shortened tube is larger than

the mass flowrate for the longer tube, This trend is

general for subsonic Fanno flow. 

COMMENT For the same upstream stagnation state and

downstream pressure, the mass flowrate for the Fanno flow will

decrease with increase in length of duct for subsonic flow. Equiv-

alently, if the length of the duct remains the same but the wall fric-

tion is increased, the mass flowrate will decrease.

m
#

� 1.65 kg�s.

� 1.73 kg�s

m
#

� 10.97 kg�m32 c
p10.1m22

4
d  1226 m�s2

V1 � 10.732 13102 � 226 m�s

V* � 310 m�s

Ma1 � 0.7.

V1

V*
� 0.73

V1

r1 � 10.792 11.23 kg�m32 � 0.97 kg�m3

Ma1 � 0.7.We guess that the shortened duct will still choke and check our

assumption by comparing with p*. If the flow is

choked; if not, another assumption has to be made. For choked flow

we can calculate the mass flowrate just as we did for Example 11.12.

For unchoked flow, we will have to devise another strategy.

For choked flow

and from Fig. D.2, we read the values 

With we use Fig. D.1 and get

Now the duct exit pressure can be obtained from

and we see that Our assumption of choked flow is jus-

tified. The pressure at the exit plane is greater than the surround-

ing pressure outside the duct exit. The final drop of pressure

from 48.5 kPa1abs2 to 45 kPa1abs2 involves complicated three-

dimensional flow downstream of the exit.

To determine the mass flowrate we use

(1)

The density at section 112 is obtained from

(2)
r1

r0,1

� 0.79

m
#

� r1A1V1

pd 6 p*.

 � a
1

1.5
b 10.722 3101 kPa1abs2 4 � 48.5 kPa1abs2

 p2 � p* � a
p*

p1

b a
p1

p0,1

b 1p0,12

1p2 � p*2

p1

p0

� 0.72

Ma1 � 0.70,p* � 1.5.

Ma1 � 0.70 and p1�

f 1/* � /12

D
�
10.022 11 m2

0.1 m
� 0.2

pd 6 p*,pd

FIND Will shortening the duct cause the mass flowrate through

the duct to increase or decrease? Assume that the average friction

factor for the duct remains constant at a value of f � 0.02.

GIVEN The same flowrate obtained in Example 11.12 

is desired through the shortened duct of Example 11.13

Assume f remains constant at a value of 0.02. 1/2 � /1 � 1 m2.
1.65 kg�s2

1m� �

Unchoked Fanno FlowEXAMPLE 11.14

SOLUTION

from Example 11.12, and from Fig. D.2

f 1/* � /12

D
� 0.4

Ma1 � 0.63Since the mass flowrate of Example 11.12 is desired, the Mach

number and other properties at the entrance of the constant area

duct remain at the values determined in Example 11.12. Thus,

FIND Determine the Mach number at the exit of the duct,

and the back pressure, required. p2,

M2,
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For this example,

or

so that

(1)

By using the value from Eq. 1 and Fig. D.2, we get

(Ans)

and

(2)
p2

p*
� 1.5

Ma2 � 0.70

f 1/* � /22

D
� 0.2

10.022 11 m2

0.1 m
� 0.4 �

f 1/* � /22

D

f 1/2 � /12

D
�

f 1/* � /12

D
�

f 1/* � /22

D

We obtain from

where is given in Eq. 2 and and are

the same as they were in Example 11.12. Thus,

(Ans)

COMMENT A larger back pressure [68.0 kPa1abs2] than the

one associated with choked flow through a Fanno duct [45 kPa1abs2]
will maintain the same flowrate through a shorter Fanno duct with

the same friction coefficient. The flow through the shorter duct is not

choked. It would not be possible to maintain the same flowrate

through a Fanno duct longer than the choked one with the same fric-

tion coefficient, regardless of what back pressure is used.

� 68.0 kPa1abs2

p2 � 11.52 a
1

1.7
b 10.762 3101 kPa1abs2 4

p0,1p*�p1, p1�p0,1,p2�p*

p2 � a
p2

p*
b a

p*

p1

b a
p1

p0,1

b 1p0,12

p2

11.5.2 Frictionless Constant Area Duct Flow with Heat Transfer
(Rayleigh Flow)

Consider the steady, one-dimensional, and frictionless flow of an ideal gas through the constant

area duct with heat transfer illustrated in Fig. 11.21. This is Rayleigh flow. Application of the

linear momentum equation 1Eq. 5.222 to the Rayleigh flow through the finite control volume

sketched in Fig. 11.21 results in

01frictionless flow2

or

(11.110)

Use of the ideal gas equation of state 1Eq. 11.12 in Eq. 11.110 leads to

(11.111)

Since the flow cross-sectional area remains constant for Rayleigh flow, from the continuity equa-

tion 1Eq. 11.402 we conclude that

For a given Rayleigh flow, the constant in Eq. 11.111, the density–velocity product, and the

ideal gas constant are all fixed. Thus, Eq. 11.111 can be used to determine values of fluid temper-

ature corresponding to the local pressure in a Rayleigh flow.

To construct a temperature–entropy diagram for a given Rayleigh flow, we can use Eq. 11.76,

which was developed earlier from the second T ds relationship. Equations 11.111 and 11.76 can

be solved simultaneously to obtain the curve sketched in Fig. 11.22. Curves like the one in Fig.

11.22 are called Rayleigh lines.

rV,

rV � constant

p �
1rV22 RT

p
� constant

p �
1rV22

r
� constant

p1A1 � m
#
V1 � p2A2 � m

#
V2 � Rx

Rayleigh flow in-
volves heat transfer
with no wall fric-
tion and constant
cross-sectional area.

F I G U R E  11.21 Rayleigh flow.

Frictionless and adiabatic
converging–diverging duct

Semi-infinitesimal
control volume

Section (1) Section (2)Finite
control volumeFlow

Frictionless duct with
heat transfer

D = constant
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F I G U R E  11.22 Rayleigh line.

Ma < 1

Ma > 1

a (Maa = 1)

Mab = 

b

T

s

( )1_
k√

GIVEN Air enters [section 112] a frictionless, con-

stant flow cross-sectional area duct with the following properties

(the same as in Example 11.11):

 p1 � 14.3 psia

 T1 � 514.55 °R

 T0 � 518.67 °R

1k � 1.42

Frictionless, Constant Area Compressible Flow 
with Heat Transfer (Rayleigh Flow)

EXAMPLE 11.15

FIND For Rayleigh flow, determine corresponding values of

fluid temperature and entropy change for various levels of down-

stream pressure and plot the related Rayleigh line.

SOLUTION

To plot the Rayleigh line asked for, use Eq. 11.111

(1)

and Eq. 11.76

(2)

to construct a table of values of temperature and entropy change

corresponding to different levels of pressure downstream in a

Rayleigh flow.

Use the value of ideal gas constant for air from Table 1.7

or in EE system units

and the value of specific heat at constant pressure for air from Ex-

ample 11.11, namely,

Also, from Example 11.11, For the

given inlet [section 112] conditions, we get

Thus, from Eq. 1 we get

 � 14.3 psia � 3720 lbm� 1ft # s22 � constant

p �
1rV22 RT

p
� 14.3 psia � 316.7 lbm� 1ft2 # s2 4 2113.3 ft3�lbm2

 � 13.3 ft3�lbm

RT1

p1

�
353.3 1ft # lb2� 1lbm # °R2 4 1514.55 °R2

14.3 psia 1144 in.2�ft22

rV � 16.7 lbm� 1ft2 # s2.

cp � 187 1ft # lb2� 1lbm # °R2

R � 53.3 1ft # lb2� 1lbm # °R2

R � 1716 1ft # lb2� 1slug # °R2

s � s1 � cp ln 
T

T1

� R ln 
p

p1

p �
1rV22 RT

p
� constant

or, since 

(3)

With the downstream pressure of psia, we can obtain

the downstream temperature by using Eq. 3 with the fact that

Hence, from Eq. 3,

or

From Eq. 2 with the downstream pressure and tem-

perature we get

By proceeding as outlined above, we can construct the table of

values shown below and graph the Rayleigh line of Fig. E11.15.

s � s1 � 121 1ft # lb2� 1lbm # °R2

 � 353.3 1ft # lb2� 1lbm # °R2 4  ln a
13.5 psia

14.3 psia
b

s � s1 � 3187 1ft # lb2� 1lbm # °R2 4  ln a
969 °R

514.55 °R
b

T � 969 °R

p � 13.5 psia

T � 969 °R

13.5 psia � 31.65 � 10�3 1lb�in.22�°R 4  T � 15.10 psia

� 1.65 � 10�3 1lb�in.22�°R

 � 0.238 1lb�ft22�°R11 ft2�144 in.22

 � 7.65 3 lbm� 1ft # s22 4 �°R 31 lb� 132.2 lbm # ft�s22 4

1rV22R

p
�
316.7 lbm� 1ft2 # s2 4 2 353.3 1ft # lb2� 1lbm # °R2 4

1144 in.2�ft22 13.5 psia

p � 13.5

� 15.10 psia � constant

p �
1rV22 RT

p
� 14.3 psia � 3 13720�32.22lb�ft2 4 11 ft2�144 in.22

lb�ft2,32.22
11�1 lbm� 1ft # s22 � 3 11�32.22 1lb # s2�ft2 4 � 1ft # s22�
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COMMENT Depending on whether the flow is being heated or

cooled, it can proceed in either direction along the curve.

F I G U R E  E11.15

p T
(psia) ( ) [( ) ( )]

13.5 969 9.32

12.5 1459 202

11.5 1859 251

10.5 2168 285

9.0 2464 317

8.0 2549 330

7.6 2558 333

7.5 2558 334

7.0 2544 336

6.3 2488 338

6.0 2450 338

5.5 2369 336

5.0 2266 333

4.5 2140 328

4.0 1992 321

2.0 1175 259

1.0 633 181

lbm � �R�ft � lb�R
s � s1

3000

2500

2000

1500

1000

500
100 200 300

T,
 °

R

s – s1, (ft•lb)________
(lbm•°R)

At point a on the Rayleigh line of Fig. 11.22, To determine the physical impor-

tance of point a, we analyze further some of the governing equations. By differentiating the linear

momentum equation for Rayleigh flow 1Eq. 11.1102 we obtain

or

(11.112)

Combining Eq. 11.112 with the second T ds equation 1Eq. 11.182 leads to

(11.113)

For an ideal gas 1Eq. 11.72 Thus, substituting Eq. 11.7 into Eq. 11.113 gives

or

(11.114)

Consolidation of Eqs. 11.114, 11.112 1linear momentum2, 11.1, 11.77 1differentiated equation of

state2, and 11.79 1continuity2 leads to

(11.115)

Hence, at state a where Eq. 11.115 reveals that

(11.116)

Comparison of Eqs. 11.116 and 11.36 tells us that the Mach number at state a is equal to 1,

(11.117)

At point b on the Rayleigh line of Fig. 11.22, From Eq. 11.115 we get

dT

ds
�

1

ds�dT
�

1

1cp�T2 � 1V�T2 3 1T�V2 � 1V�R2 4�1

dT�ds � 0.

Maa � 1

Va � 1RTak

ds�dT � 0,

ds

dT
�

cp

T
�

V
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1

3 1T�V2 � 1V�R2 4

ds

dT
�

cp

T
�

V

T
 
dV

dT

T ds � cp dT � V dV

dȟ � cp dT.

T ds � dȟ � V dV

dp
r

� �V dV

dp � �rV dV

ds�dT � 0.

The maximum
entropy state on the
Rayleigh line corre-
sponds to sonic
conditions.
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which for 1point b2 gives

(11.118)

The flow at point b is subsonic Recall that for any gas.

To learn more about Rayleigh flow, we need to consider the energy equation in addition to

the equations already used. Application of the energy equation 1Eq. 5.692 to the Rayleigh flow

through the finite control volume of Fig. 11.21 yields

01negligibly small 01flow is steady

for gas flow2 throughout2

or in differential form for Rayleigh flow through the semi-infinitesimal control volume of Fig. 11.21

(11.119)

where is the heat transfer per unit mass of fluid in the semi-infinitesimal control volume.

By using in Eq. 11.119, we obtain

(11.120)

Thus, by combining Eqs. 11.36 1ideal gas speed of sound2, 11.46 1Mach number2, 11.1 and 11.77

1ideal gas equation of state2, 11.79 1continuity2, and 11.112 1linear momentum2 with Eq. 11.120 1en-

ergy2 we get

(11.121)

With the help of Eq. 11.121, we see clearly that when the Rayleigh flow is subsonic 

fluid heating increases fluid velocity while fluid cooling decreases fluid ve-

locity. When Rayleigh flow is supersonic fluid heating decreases fluid velocity and fluid

cooling increases fluid velocity.

The second law of thermodynamics states that, based on experience, entropy increases with

heating and decreases with cooling. With this additional insight provided by the conservation of

energy principle and the second law of thermodynamics, we can say more about the Rayleigh

line in Fig. 11.22. A summary of the qualitative aspects of Rayleigh flow is outlined in Table

11.2 and Fig. 11.23. Along the upper portion of the line, which includes point b, the flow is sub-

sonic. Heating the fluid results in flow acceleration to a maximum Mach number of 1 at point

a. Note that between points b and a along the Rayleigh line, heating the fluid results in a tem-

perature decrease and cooling the fluid leads to a temperature increase. This trend is not surpris-

ing if we consider the stagnation temperature and fluid velocity changes that occur between

points a and b when the fluid is heated or cooled. Along the lower portion of the Rayleigh curve

the flow is supersonic. Rayleigh flows may or may not be choked. The amount of heating or

cooling involved determines what will happen in a specific instance. As with Fanno flows, an

abrupt deceleration from supersonic flow to subsonic flow across a normal shock wave can also

occur in Rayleigh flows.

1Ma 7 12,
1dq 6 021dq 7 02

1Ma 6 12,
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�
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�
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kRT
d

�1

dȟ � cp dT � Rk dT� 1k � 12
dq

dȟ � V dV � dq
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#
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TA B L E 1 1 . 2

Summary of Rayleigh Flow Characteristics

Heating Cooling

Acceleration Deceleration

Deceleration AccelerationMa 7 1

Ma 6 1

Fluid temperature
reduction can ac-
company heating a
subsonic Rayleigh
flow.
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To quantify Rayleigh flow behavior we need to develop appropriate forms of the governing

equations. We elect to use the state of the Rayleigh flow fluid at point a of Fig. 11.22 as the refer-

ence state. As shown earlier, the Mach number at point a is 1. Even though the Rayleigh flow be-

ing considered may not choke and state a is not achieved by the flow, this reference state is useful.

If we apply the linear momentum equation 1Eq. 11.1102 to Rayleigh flow between any up-

stream section and the section, actual or imagined, where state a is attained, we get

or

(11.122)

By substituting the ideal gas equation of state 1Eq. 11.12 into Eq. 11.122 and making use of the ideal

gas speed-of-sound equation 1Eq. 11.362 and the definition of Mach number 1Eq. 11.462, we obtain

(11.123)

This relationship is graphed in the margin for air.

From the ideal gas equation of state 1Eq. 11.12 we conclude that

(11.124)

Conservation of mass 1Eq. 11.402 with constant A gives

(11.125)

which when combined with Eqs. 11.36 1ideal gas speed of sound2 and 11.46 1Mach number defi-

nition2 gives

(11.126)

Combining Eqs. 11.124 and 11.126 leads to

(11.127)

which when combined with Eq. 11.123 gives

(11.128)
T
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� c
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F I G U R E  11.23 (a) Subsonic Rayleigh flow. (b) Supersonic Rayleigh flow. (c) Normal
shock in a Rayleigh flow.
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This relationship is graphed in the margin on the previous page for air.

From Eqs. 11.125, 11.126, and 11.128 we see that

(11.129)

This relationship is graphed in the margin for air.

The energy equation 1Eq. 5.692 tells us that because of the heat transfer involved in Rayleigh

flows, the stagnation temperature varies. We note that

(11.130)

We can use Eq. 11.56 1developed earlier for steady, isentropic, ideal gas flow2 to evaluate and

because these two temperature ratios, by definition of the stagnation state, involve isentropic

processes. Equation 11.128 can be used for Thus, consolidating Eqs. 11.130, 11.56, and

11.128 we obtain

(11.131)

This relationship is graphed in the margin for air.

Finally, we observe that

(11.132)

We can use Eq. 11.59 developed earlier for steady, isentropic, ideal gas flow to evaluate and

because these two pressure ratios, by definition, involve isentropic processes. Equation

11.123 can be used for Together, Eqs. 11.59, 11.123, and 11.132 give

(11.133)

This relationship is graphed in the margin for air.

Values of or and are graphed in Fig. D.3 of Appendix D

as a function of Mach number for Rayleigh flow of air The values in Fig. D.3 were calcu-

lated from Eqs. 11.123, 11.128, 11.129, 11.131, and 11.133. The usefulness of Fig. D.3 is illustrated

in Example 11.16. 

See Ref. 7 for a more advanced treatment of internal flows with heat transfer.

1k � 1.42.
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V ___ V a
ρ__
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1.0
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Ma

0.1

T0___
T0,a

Unlike Fanno flow,
the stagnation tem-
perature in Ray-
leigh flow varies.

2.0

1.0

0.0
101.0

Ma

0.1

p0___
p0,a

GIVEN The information in Table 11.2 shows us that subsonic

Rayleigh flow accelerates when heated and decelerates when

cooled. Supersonic Rayleigh flow behaves just opposite to sub-

sonic Rayleigh flow; it decelerates when heated and accelerates

when cooled. 

Effect of Mach Number and Heating/Cooling 
for Rayleigh Flow

FIND Using Fig. D.3 for air state whether velocity,

Mach number, static temperature, stagnation temperature, static

pressure, and stagnation pressure increase or decrease as subsonic

and supersonic Rayleigh flow is 1a2 heated, 1b2 cooled.

1k � 1.42,

EXAMPLE 11.16
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Heating Cooling

Subsonic Supersonic Subsonic Supersonic

V Increase Decrease Decrease Increase

Ma Increase Decrease Decrease Increase

T Increase for Increase Decrease for Decrease

Decrease for Increase for

Increase Increase Decrease Decrease

p Decrease Increase Increase Decrease

Decrease Decrease Increase Increasep0

T0


 1
 1

11�k 
 Ma11�k 
 Ma

11�k11�k
0 
 Ma 
0 
 Ma 


11.5.3 Normal Shock Waves

As mentioned earlier, normal shock waves can occur in supersonic flows through converging–

diverging and constant area ducts. Past experience suggests that normal shock waves involve de-

celeration from a supersonic flow to a subsonic flow, a pressure rise, and an increase of entropy.

To develop the equations that verify this observed behavior of flows across a normal shock, we ap-

ply first principles to the flow through a control volume that completely surrounds a normal shock

wave 1see Fig. 11.242. We consider the normal shock and thus the control volume to be infinitesi-

mally thin and stationary.

For steady flow through the control volume of Fig. 11.24, the conservation of mass princi-

ple yields

(11.134)

because the flow cross-sectional area remains essentially constant within the infinitesimal thickness

of the normal shock. Note that Eq. 11.134 is identical to the continuity equation used for Fanno and

Rayleigh flows considered earlier.

The friction force acting on the contents of the infinitesimally thin control volume surround-

ing the normal shock is considered to be negligibly small. Also for ideal gas flow, the effect of

gravity is neglected. Thus, the linear momentum equation 1Eq. 5.222 describing steady gas flow

through the control volume of Fig. 11.24 is

or for an ideal gas for which 

(11.135)

Equation 11.135 is the same as the linear momentum equation for Rayleigh flow, which was de-

rived earlier 1Eq. 11.1112.

p �
1rV22RT

p
� constant

p � rRT,

p � rV 2 � constant

rV � constant

V11.7 Blast waves

Normal shock
waves are assumed
to be infinitesimally
thin discontinuities.

SOLUTION

heating and friction cause the stagnation pressure to decrease.

Since stagnation pressure loss is considered undesirable in terms

of fluid mechanical efficiency, heating a fluid flow must be ac-

complished with this loss in mind.

COMMENT Note that for a small range of Mach numbers

cooling actually results in a rise in temperature, T.

Acceleration occurs when in Fig. D.3 increases. For decel-

eration, decreases. From Fig. D.3 and Table 11.2 the follow-

ing chart can be constructed.

From the Rayleigh flow trends summarized in the table above,

we note that heating affects Rayleigh flows much like friction af-

fects Fanno flows. Heating and friction both accelerate subsonic

flows and decelerate supersonic flows. More importantly, both

V�Va

V�Va
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For the control volume containing the normal shock, no shaft work is involved and the heat

transfer is assumed negligible. Thus, the energy equation 1Eq. 5.692 can be applied to steady gas

flow through the control volume of Fig. 11.24 to obtain

or, for an ideal gas, since and 

(11.136)

Equation 11.136 is identical to the energy equation for Fanno flow analyzed earlier 1Eq. 11.752.
The T ds relationship previously used for ideal gas flow 1Eq. 11.222 is valid for the 

flow through the normal shock 1Fig. 11.242 because it 1Eq. 11.222 is an ideal gas property rela-

tionship.

From the analyses in the previous paragraphs, it is apparent that the steady flow of an

ideal gas across a normal shock is governed by some of the same equations used for describ-

ing both Fanno and Rayleigh flows 1energy equation for Fanno flows and momentum equation

for Rayleigh flow2. Thus, for a given density–velocity product gas 1R, k2, and conditions

at the inlet of the normal shock the conditions downstream of the shock 1state y2
will be on both a Fanno line and a Rayleigh line that pass through the inlet state 1state x2, as is

illustrated in Fig. 11.25. To conform with common practice we designate the states upstream

and downstream of the normal shock with x and y instead of numerals 1 and 2. The Fanno and

Rayleigh lines describe more of the flow field than just in the vicinity of the normal shock when

Fanno and Rayleigh flows are actually involved 1solid lines in Figs. 11.26a and 11.26b2. Other-

wise, these lines 1dashed lines in Figs. 11.26a, 11.26b, and 11.26c2 are useful mainly as a way

to better visualize how the governing equations combine to yield a solution to the normal shock

flow problem.

The second law of thermodynamics requires that entropy must increase across a normal shock

wave. This law and sketches of the Fanno line and Rayleigh line intersections, like those of Figs.

11.25 and 11.26, persuade us to conclude that flow across a normal shock can only proceed from

supersonic to subsonic flow. Similarly, in open-channel flows 1see Chapter 102 the flow across a hy-

draulic jump proceeds from supercritical to subcritical conditions.

Since the states upstream and downstream of a normal shock wave are represented by the

supersonic and subsonic intersections of actual and�or imagined Fanno and Rayleigh lines, we

should be able to use equations developed earlier for Fanno and Rayleigh flows to quantify nor-

mal shock flow. For example, for the Rayleigh line of Fig. 11.26b

(11.137)
py
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1Tx, px, and sx2,
1rV2,
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1rV22T 2

2cp1p
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ȟ �
V 2
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F I G U R E  11.24 Normal shock
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But from Eq. 11.123 for Rayleigh flow we get

(11.138)

and

(11.139)

Thus, by combining Eqs. 11.137, 11.138, and 11.139 we get

(11.140)

Equation 11.140 can also be derived starting with

and using the Fanno flow equation 1Eq. 11.1072

As might be expected, Eq. 11.140 can be obtained directly from the linear momentum equation

since 

For the Fanno flow of Fig. 11.26a,

(11.141)
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F I G U R E  11.26  (a) The normal
shock in a Fanno flow. (b) The normal shock in a
Rayleigh flow. (c) The normal shock in a friction-
less and adiabatic flow.
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From Eq. 11.101 for Fanno flow we get

(11.142)

and

(11.143)

A consolidation of Eqs. 11.141, 11.142, and 11.143 gives

(11.144)

We seek next to develop an equation that will allow us to determine the Mach number down-

stream of the normal shock, when the Mach number upstream of the normal shock, is

known. From the ideal gas equation of state 1Eq. 11.12, we can form

(11.145)

Using the continuity equation

with Eq. 11.145 we obtain

(11.146)

When combined with the Mach number definition 1Eq. 11.462 and the ideal gas speed-of-sound

equation 1Eq. 11.362, Eq. 11.146 becomes

(11.147)

Thus, Eqs. 11.147 and 11.144 lead to

(11.148)

which can be merged with Eq. 11.140 to yield

(11.149)

This relationship is graphed in the margin for air.

Thus, we can use Eq. 11.149 to calculate values of Mach number downstream of a normal

shock from a known Mach number upstream of the shock. As suggested by Fig. 11.26, to have a

normal shock we must have From Eq. 11.149 we find that 

If we combine Eqs. 11.149 and 11.140, we get

(11.150)

This relationship is graphed in the margin for air.
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This equation allows us to calculate the pressure ratio across a normal shock from a known up-

stream Mach number. Similarly, taking Eqs. 11.149 and 11.144 together we obtain

(11.151)

This relationship is graphed in the margin for air.

From the continuity equation 1Eq. 11.402, we have for flow across a normal shock

(11.152)

and from the ideal gas equation of state 1Eq. 11.12

(11.153)

Thus, by combining Eqs. 11.152, 11.153, 11.150, and 11.151, we get

(11.154)

This relationship is graphed in the margin for air.

The stagnation pressure ratio across the shock can be determined by combining

(11.155)

with Eqs. 11.59, 11.149, and 11.150 to get

(11.156)

This relationship is graphed in the margin for air.

Figure D.4 in Appendix D graphs values of downstream Mach numbers, pressure ratio,

temperature ratio, density ratio, , or velocity ratio, and stagnation pres-

sure ratio, as a function of upstream Mach number, for the steady flow across a nor-

mal shock wave of an ideal gas having a specific heat ratio These values were calculated

from Eqs. 11.149, 11.150, 11.151, 11.154, and 11.156.

Important trends associated with the steady flow of an ideal gas across a normal shock wave

can be determined by studying Fig. D.4. These trends are summarized in Table 11.3.

Examples 11.17 and 11.18 illustrate how Fig. D.4 can be used to solve fluid flow problems

involving normal shock waves.
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TA B L E 1 1 . 3

Summary of Normal Shock Wave Characteristics

Variable Change Across Normal Shock Wave

Mach number Decrease

Static pressure Increase

Stagnation pressure Decrease

Static temperature Increase

Stagnation temperature Constant

Density Increase

Velocity Decrease

Across a normal
shock the values of
some parameters
increase, some re-
main constant, and
some decrease.
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11.5 Nonisentropic Flow of an Ideal Gas 631

GIVEN Designers involved with fluid mechanics work hard at

minimizing loss of available energy in their designs. Adiabatic,

frictionless flows involve no loss in available energy. Entropy

remains constant for these idealized flows. Adiabatic flows with

friction involve available energy loss and entropy increase. Gen-

erally, larger entropy increases imply larger losses.

Stagnation Pressure Drop across a Normal ShockEXAMPLE 11.17

SOLUTION

tion pressure drop across the shock is appreciable. If a shock oc-

curs at only about 50% of the upstream stagnation

pressure is recovered.

In devices where supersonic flows occur, for example, high-

performance aircraft engine inlet ducts and high-speed wind tun-

nels, designers attempt to prevent shock formation, or if shocks

must occur, they design the flow path so that shocks are posi-

tioned where they are weak 1small Mach number2.
Of interest also is the static pressure rise that occurs across a

normal shock. These static pressure ratios, obtained from

Fig. D.4 are shown in the table for a few Mach numbers. For a de-

veloping boundary layer, any pressure rise in the flow direction is

considered as an adverse pressure gradient that can possibly cause

flow separation 1see Section 9.2.62. Thus, shock–boundary layer

interactions are of great concern to designers of high-speed flow

devices.

py�px,

Max � 2.5,

We assume that air behaves as a typical gas and use Fig.

D.4 to respond to the above-stated requirements. Since

we can construct the following table with values of 

from Fig. D.4.

COMMENT When the Mach number of the flow entering the

shock is low, say the flow across the shock is nearly

isentropic and the loss in stagnation pressure is small. However,

as shown in Fig. E11.17, at larger Mach numbers, the entropy

change across the normal shock rises dramatically and the stagna-

Max � 1.2,

p0,y�p0,x

1 �
p0,y

p0,x
�

p0,x � p0,y

p0,x

1k � 1.42

FIND For normal shocks, show that the stagnation pressure

drop 1and thus loss2 is larger for higher Mach numbers.

1.0 1.0 0

1.2 0.99 0.01

1.5 0.93 0.07

2.0 0.72 0.28

2.5 0.50 0.50

3.0 0.33 0.67

3.5 0.21 0.79

4.0 0.14 0.86

5.0 0.06 0.94

p0,xp0,y�p0,xMax

p0,x � p0,y

1.0 1.0

1.2 1.5

1.5 2.5

2.0 4.5

3.0 10

4.0 18

5.0 29

py�pxMax

0
0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

p0,x – p0,y_________ 
p0,x

Max

F I G U R E  E11.17

GIVEN A total pressure probe is inserted into a supersonic air

flow. A shock wave forms just upstream of the impact hole and

head as illustrated in Fig. E11.18. The probe measures a total

pressure of 60 psia. The stagnation temperature at the probe head

is The static pressure upstream of the shock is measured

with a wall tap to be 12 psia.

FIND Determine the Mach number and velocity of the flow.

1000 °R.

Supersonic Flow Pitot TubeEXAMPLE 11.18

Wall static pressure tap

Supersonic
flow

Stagnation
pathline

Total
pressure probe

Shock
wave

x y

F I G U R E  E11.18
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SOLUTION

The stagnation temperature downstream of the shock was mea-

sured and found to be

Since the stagnation temperature remains constant across a nor-

mal shock 1see Eq. 11.1362,

For the isentropic flow upstream of the shock, Eq. 11.56 or

Fig. D.1 can be used. For 

or

With Eq. 3 we obtain

(Ans)

COMMENT Application of the incompressible flow Pitot

tube results 1see Section 3.52 would give highly inaccurate

results because of the large pressure and density changes

involved.

 � 2220 ft�s
 � 392 1ft # lb�lbm21�2 3 132.2 lbm # ft�s22�lb 4 1�2

Vx � 1.87 2 353.3 1ft # lb2� 1lbm # °R2 4 1590 °R2 11.42

Tx � 10.592 11000 °R2 � 590 °R

Tx

T0, x

� 0.59

Max � 1.9,

T0, x � T0,y � 1000 °R

T0,y � 1000 °R

We assume that the flow along the stagnation pathline is isen-

tropic except across the shock. Also, the shock is treated as a nor-

mal shock. Thus, in terms of the data we have

(1)

where is the stagnation pressure measured by the probe, and

is the static pressure measured by the wall tap. The stagnation

pressure upstream of the shock, is not measured.

Combining Eqs. 1, 11.156, and 11.59 we obtain

(2)

which is called the Rayleigh Pitot-tube formula. Values of 

from Eq. 2 are considered important enough to be included in Fig.

D.4 for Thus, for and

we use Fig. D.4 1or Eq. 22 to ascertain that

(Ans)

To determine the flow velocity we need to know the static tem-

perature upstream of the shock, since Eqs. 11.36 and 11.46 can be

used to yield

(3)Vx � Max cx � Max 1RTxk

Max � 1.9

p0,y

px
�

60 psia

12 psia
� 5

k � 1.4k � 1.4.

p0,y�px

p0,y

px
�

5 3 1k � 12�2 4Max
26k�1k�12

5 32k� 1k � 12 4Max
2 � 3 1k � 12� 1k � 12 4 61�1k�12

p0, x,

px

p0,y

p0,y

px
� a

p0,y

p0, x
b a

p0, x

px
b

GIVEN Consider the converging–diverging duct of Example

11.8.

FIND Determine the ratio of back pressure to inlet stagnation

pressure, 1see Fig. 11.132, that will result in a standingpIII�p0, x

normal shock at the exit of the duct. What value of

the ratio of back pressure to inlet stagnation pressure would be

required to position the shock at Show related

temperature–entropy diagrams for these flows.

x � �0.3 m?

1x � �0.5 m2

Normal Shock in a Converging–Diverging DuctEXAMPLE 11.19

SOLUTION

Thus,

(Ans)

When the ratio of duct back pressure to inlet stagnation pressure,

is set equal to 0.36, the air will accelerate through the

converging–diverging duct to a Mach number of 2.8 at the duct

exit. The air will subsequently decelerate to a subsonic flow

across a normal shock at the duct exit. The stagnation pressure 

ratio across the normal shock, is 0.38 1Fig. D.4 forp0,y�p0,x,

pIII�p0, x,

 � 0.36 �
pIII

p0, x

py

p0, x
� a

py

px
b a

px

p0, x
b � 19.02 10.042

For supersonic, isentropic flow through the nozzle to just up-

stream of the standing normal shock at the duct exit, we have

from the table of Example 11.8 at 

and

From Fig. D.4 for we obtain

py

px
� 9.0

Max � 2.8

px

p0,x
� 0.04

Max � 2.8

x � �0.5 m
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11.6 Analogy between Compressible and Open-Channel Flows 633

2. A considerable amount of available energy is lost

across the shock.

For a normal shock at we note from the table of

Example 11.8 that and

(1)

From Fig. D.4 for we obtain ,

and

(2)

From Fig. D.1 for we get

(3)

For the ratio of duct exit area to local area 

is, using the area equation from Example 11.8,

(4)

Using Eqs. 3 and 4 we get

A2

A*
� a

Ay

A*
b a

A2

Ay

b � 11.242 11.8422 � 2.28

A2

Ay

�
0.1 � 10.522

0.1 � 10.322
� 1.842

1A2�Ay2x � �0.3 m,

Ay

A*
� 1.24

May � 0.56

p0,y

p0, x
� 0.66

May � 0.56py�px � 5.2,Max � 2.14

px

p0, x
� 0.10

Max � 2.14

x � �0.3 m,

Max � 2.8 Note that for the isentropic flow upstream of the shock,

1the actual throat area2, while for the isentropic flow down-

stream of the shock, 2.28�0.15 m2. With

we use Fig. D.1 and find and

(5)

Combining Eqs. 2 and 5 we obtain

(Ans)

When the back pressure, is set equal to 0.63 times the inlet

stagnation pressure, the normal shock will be positioned at

The corresponding T – s diagrams are shown in

Figs. E11.19a and E11.19b.

COMMENT Note that is less than the value of

this ratio for subsonic isentropic flow through the converging–

diverging duct, 1from Example 11.82 and is larger

than for duct flow with a normal shock at the exit

1see Fig. 11.132. Also the stagnation pressure ratio with the shock

at is much greater than the stagna-

tion pressure ratio, 0.38, when the shock occurs at the exit

of the duct.1x � �0.5 m2

�0.3 m, p0,y�p0, x � 0.66,x �

pIII�p0,x � 0.36,

 � 0.98p2�p0

p2�p0,x � 0.63

x � �0.3 m.

p0,x,

p2,

p2

p0, x
� a

p2

p0,y
b a

p0,y

p0, x
b � 10.952 10.662 � 0.63

p2

p0,y
� 0.95

Ma2 � 0.26A2�A* � 2.28

A* � A2�2.28 � 0.35 m2�
0.10 m2

A* �

F I G U R E  E11.19

340

300

260

220

180

140

100

0 80 160 240 320 400 480 0 80 160 240 320 400 480

x

x
px = 4 kPa (abs)

p0, x = 101 kPa (abs)

Shock at nozzle exit plane (x = 0.5 m)

p0, y = 38 kPa (abs)
py =

36 kPa (abs)
= pIII

0, y

0, x
y, III

Tx = 112 K

Ty = 275 K

T0, x =
T0,y = 288 K

No
rm

al
 s
ho

ck

T,
 K

T,
 K

s – sx ,
J______

(kg•K)
s – sx ,

J______
(kg•K)

(a) (b)

340

300

260

220

180

2

140

100
Shock within nozzle (x = 0.3 m)

Tx = 150 K

px = 10 kPa (abs)

py = 52 kPa (abs)

Ty = 271 K
T2 = 284 K

N
or

m
al

 s
ho

ck

0, y

0, x
y

T0, x = T0,y =
288 K

p0, x =
101 kPa (abs)

p0, y = 67 kPa (abs)

p2 = 64 kPa (abs)

11.6 Analogy between Compressible and Open-Channel Flows

During a first course in fluid mechanics, students rarely study both open-channel flows 1Chap-

ter 102 and compressible flows. This is unfortunate because these two kinds of flows are strik-

ingly similar in several ways. Furthermore, the analogy between open-channel and compressible

flows is useful because important two-dimensional compressible flow phenomena can be simply
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634 Chapter 11 ■ Compressible Flow

and inexpensively demonstrated with a shallow, open-channel flow field in a ripple tank or wa-
ter table.

The propagation of weak pressure pulses 1sound waves2 in a compressible flow can be

considered to be comparable to the movement of small amplitude waves on the surface of an

open-channel flow. In each case—two-dimensional compressible flow and open-channel flow—

the influence of flow velocity on wave pattern is similar. When the flow velocity is less than

the wave speed, wave fronts can move upstream of the wave source and the flow is subsonic

1compressible flow2 or subcritical 1open-channel flow2. When the flow velocity is equal to the

wave speed, wave fronts cannot move upstream of the wave source and the flow is sonic 1com-

pressible flow2 or critical 1open-channel flow2. When the flow velocity is greater than the wave

speed, the flow is supersonic 1compressible flow2 or supercritical 1open-channel flow2. Normal

shocks can occur in supersonic compressible flows. Hydraulic jumps can occur in supercritical

open-channel flows. Comparison of the characteristics of normal shocks 1Section 11.5.32 and

hydraulic jumps 1Section 10.6.12 suggests a strong resemblance and thus analogy between the

two phenomena.

For compressible flows a meaningful dimensionless variable is the Mach number, where

(11.46)

In open-channel flows, an important dimensionless variable is the Froude number, where

(11.157)

The velocity of the channel flow is the acceleration of gravity is g, and the depth of the flow

is y. Since the speed of a small amplitude wave on the surface of an open-channel flow, is 1see

Section 10.2.12

(11.158)

we conclude that

(11.159)

From Eqs. 11.46 and 11.159 we see the similarity between Mach number 1compressible flow2 and

Froude number 1open-channel flow2.
For compressible flow, the continuity equation is

(11.160)

where V is the flow velocity, is the fluid density, and A is the flow cross-sectional area. For an

open-channel flow, conservation of mass leads to

(11.161)

where is the flow velocity, and y and b are the depth and width of the open-channel flow. Com-

paring Eqs. 11.160 and 11.161 we note that if flow velocities are considered similar and flow area,

A, and channel width, b, are considered similar, then compressible flow density, is analogous to

open-channel flow depth, y.

It should be pointed out that the similarity between Mach number and Froude number is gen-

erally not exact. If compressible flow and open-channel flow velocities are considered to be sim-

ilar, then it follows that for Mach number and Froude number similarity the wave speeds c and 

must also be similar.

From the development of the equation for the speed of sound in an ideal gas 1see Eqs. 11.34

and 11.352 we have for the compressible flow

(11.162)

From Eqs. 11.162 and 11.158, we see that if y is to be similar to as suggested by comparing Eq.

11.160 and 11.161, then k should be equal to 2. Typically or 1.67, not 2. This limitationk � 1.4

r

c � 21constant2 krk�1

coc

r,

Voc

ybVoc � constant

r

rAV � constant

Fr �
Voc

coc

coc � 1gy

coc,

Voc,

Fr �
Voc

1gy

Ma �
V
c

Compressible gas
flows and open-
channel liquid
flows are strikingly
similar in several
ways.

JWCL068_ch11_579-644.qxd  9/25/08  8:27 PM  Page 634



11.7 Two-Dimensional Compressible Flow 635

A brief introduction to two-dimensional compressible flow is included here for those who are in-

terested. We begin with a consideration of supersonic flow over a wall with a small change of di-

rection as sketched in Fig. 11.27.

We apply the component of the linear momentum equation 1Eq. 5.222 parallel to the Mach

wave to the flow across the Mach wave. 1See Eq. 11.39 for the definition of a Mach wave.2 The

result is that the component of velocity parallel to the Mach wave is constant across the Mach

wave. That is, Thus, from the simple velocity triangle construction indicated in Fig.

11.27, we conclude that the flow accelerates because of the change in direction of the flow. If sev-

eral changes in wall direction are involved as shown in Fig. 11.28, then the supersonic flow accel-

erates 1expands2 because of the changes in flow direction across the Mach waves 1also called

expansion waves2. Each Mach wave makes an appropriately smaller angle with the upstream wall

because of the increase in Mach number that occurs with each direction change 1see Section 11.32.
A rounded expansion corner may be considered as a series of infinitesimal changes in direction.

Conversely, even sharp corners are actually rounded when viewed on a small enough scale. Thus,

expansion fans as illustrated in Fig. 11.29 are commonly used for supersonic flow around a “sharp”

corner. If the flow across the Mach waves is considered to be isentropic, then Eq. 11.42 suggests

that the increase in flow speed is accompanied by a decrease in static pressure.

When the change in supersonic flow direction involves the change in wall orientation

sketched in Fig. 11.30, compression rather than expansion occurs. The flow decelerates and the

static pressure increases across the Mach wave. For several changes in wall direction, as indicated

in Fig. 11.31, several Mach waves occur, each at an appropriately larger angle with the upstream

wall. A rounded compression corner may be considered as a series of infinitesimal changes in

a

a

Vt1 � Vt2.

11.7 Two-Dimensional Compressible Flow

Expansion Mach wave 

p2 < p1

V2 > V1

Vt2 = Vt1 

Vn2 
p1

V1

Vn1 
Vt1

F I G U R E  11.27 Flow acceleration
across a Mach wave.

F I G U R E  11.28 Flow acceleration
across Mach waves.

Expansion Mach waves

α1 α2
α3

α4

to exactness is, however, usually not serious enough to compromise the benefits of the analogy

between compressible and open-channel flows.

F I G U R E  11.30 Flow deceleration
across a Mach wave.

Compression Mach wave 

p2 > p1

V2 < V1

Vt2 = Vt1Vn2 

p1

V1

Vn1 
Vt1

F I G U R E  11.29 Corner expansion
fan.

V2 > V1

V1

Expansion fan

Supersonic flows
accelerate across
expansion Mach
waves.
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636 Chapter 11 ■ Compressible Flow

Compression Mach waves

F I G U R E  11.31 Flow decelera-
tion across Mach waves.

Attached
oblique shock

(a) (b)

Detached
curved shock

F I G U R E  11.33 Supersonic flow over a wedge: (a) Smaller wedge angle results in
attached oblique shock. (b) Large wedge angle results in detached curved shock.

In this chapter, consideration is given to the flow of gas involving substantial changes in fluid

density caused mainly by high speeds. While the flow of liquids may most often be considered

of constant density or incompressible over a wide range of speeds, the flow of gases and vapors

11.8 Chapter Summary and Study Guide

Compression
Mach waves 

V2 < V1

V1

Oblique shock wave 

F I G U R E  11.32 Oblique shock
wave.

direction and even sharp corners are actually rounded. Mach waves or compression waves can co-

alesce to form an oblique shock wave as shown in Fig. 11.32.

The above discussion of compression waves can be usefully extended to supersonic flow im-

pinging on an object. For example, for supersonic flow incident on a wedge-shaped leading edge

1see Fig. 11.332, an attached oblique shock can form as suggested in Fig. 11.33a. For the same in-

cident Mach number but with a larger wedge angle, a detached curved shock as sketched in Fig.

11.33b can result. A detached, curved shock ahead of a blunt object 1a sphere2 is shown in the pho-

tograph at the beginning of this chapter. In Example 11.19, we considered flow along a stagnation

pathline across a detached curved shock to be identical to flow across a normal shock wave.

From this brief look at two-dimensional supersonic flow, one can easily conclude that the

extension of these concepts to flows over immersed objects and within ducts can be exciting,

especially if three-dimensional effects are considered. Reference 6 provides much more on this sub-

ject than could be included here.

V11.8 Two-
dimensional com-
pressible flow
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compressible flow
ideal gas
internal energy
enthalpy
specific heat ratio
entropy
adiabatic
isentropic
Mach number
speed of sound
stagnation pressure
subsonic
sonic
Mach wave
supersonic
Mach cone
transonic flows
hypersonic flows
converging – diverging

duct
throat
temperature – entropy

(T – s) diagram
choked flow
critical state
critical pressure ratio
normal shock wave
oblique shock wave
expansion wave
overexpanded
underexpanded
nonisentropic flow
Fanno flow
Rayleigh flow

may involve substantial fluid density changes at higher speeds. At lower speeds, gas and vapor

density changes are not appreciable and so these flows may be treated as incompressible.

Since fluid density and other fluid property changes are significant in compressible flows,

property relationships are important. An ideal gas, with well-defined fluid property relationships,

is used as an approximation of an actual gas. This profound simplification still allows useful con-

clusions to be made about compressible flows.

The Mach number is a key variable in compressible flow theory. Most easily understood as

the ratio of the local speed of flow and the speed of sound in the flowing fluid, it is a measure

of the extent to which the flow is compressible or not. It is used to define categories of com-

pressible flows which range from subsonic (Mach number less than 1) to supersonic (Mach num-

ber greater than 1). The speed of sound in a truly incompressible fluid is infinite so the Mach

numbers associated with liquid flows are generally low.

The notion of an isentropic or constant entropy flow is introduced. The most important isen-

tropic flow is one that is adiabatic (no heat transfer to or from the flowing fluid) and frictionless

(zero viscosity). This simplification, like the one associated with approximating real gases with an

ideal gas, leads to useful results including trends associated with accelerating and decelerating

flows through converging, diverging, and converging–diverging flow paths. Phenomena including

flow choking, acceleration in a diverging passage, deceleration in a converging passage, and the

achievement of supersonic flows are discussed.

Three major nonisentropic compressible flows considered in this chapter are Fanno flows,

Rayleigh flows, and flows across normal shock waves. Unusual outcomes include the conclusions

that friction can accelerate a subsonic Fanno flow, heating can result in fluid temperature reduc-

tion in a subsonic Rayleigh flow, and a flow can decelerate from supersonic flow to subsonic

flow across a very small distance. The value of temperature–entropy (T –s) diagramming of flows

to better understand them is demonstrated.

Numerous formulas describing a variety of ideal gas compressible flows are derived. These

formulas can be easily solved with computers. However, to provide the learner with a better grasp

of the details of a compressible flow process, a graphical approach, albeit approximate, is used.

The striking analogy between compressible and open-channel flows leads to a brief discus-

sion of the usefulness of a ripple tank or water table to simulate compressible flows.

Expansion and compression Mach waves associated with two-dimensional compressible

flows are introduced as is the formation of oblique shock waves from compression Mach waves.

The following checklist provides a study guide for this chapter. When your study of the entire

chapter and end-of-chapter exercises is completed you should be able to

write out the meanings of the terms listed here in the margin and understand each of the

related concepts. These terms are particularly important and are set in italic, bold, and color
type in the text.

estimate the change in ideal gas properties in a compressible flow.

calculate Mach number value for a specific compressible flow.

estimate when a flow may be considered incompressible and when it must be considered

compressible to preserve accuracy.

estimate details of isentropic flows of an ideal gas though converging, diverging, and con-

verging–diverging passages.

estimate details of nonisentropic Fanno and Rayleigh flows and flows across normal shock

waves.

explain the analogy between compressible and open-channel flows.

Some of the important equations in this chapter are:

Ideal gas equation 

of state
(11.1)

Internal energy change (11.5)

Enthalpy (11.6) ȟ � ǔ �
p

r

 ǔ2 � ǔ1 � cv1T2 � T12

 r �
p

RT
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Enthalpy change (11.9)

Specific heat difference (11.12)

Specific heat ratio (11.13)

Specific heat at

constant pressure
(11.14)

Specific heat at

constant volume
(11.15)

First Tds equation (11.16)

Second Tds equation (11.18)

Entropy change (11.21)

Entropy change (11.22)

Isentropic flow (11.25)

Speed of sound (11.34)

Speed of sound in gas (11.36)

Speed of sound in liquid (11.38)

Mach cone angle (11.39)

Mach number (11.46)

Isentropic flow (11.48)

Isentropic flow (11.49)

Isentropic flow (11.56)

Isentropic flow (11.59)

Isentropic flow (11.60)

Isentropic flow-critical 

pressure ratio (11.61)

Isentropic flow-critical

temperature ratio
(11.63) 

T*

T0

�
2

k � 1

 
p*

p0

� a
2

k � 1
b

k�1k�12

 
r

r0

� e
1

1 � 3 1k � 12�2 4Ma2
f

1�1k�12

 
p

p0

� e
1

1 � 3 1k � 12�2 4Ma2
f

k�1k�12

 
T

T0

�
1

1 � 3 1k � 12�2 4Ma2

 
dr

r
�

dA

A
 

Ma2

11 � Ma22

 
dV

V
� �

dA

A
 

1

11 � Ma22

 Ma �
V

c

 sin a �
c

V
�

1

Ma

 c �
B

Ev

r

 c � 2RTk

 c �
B
a

0p

0r
b

s

 
p

rk
� constant

 s2 � s1 � cp ln 
T2

T1

� R ln 
p2

p1

 s2 � s1 � cv ln 
T2

T1

� R ln 
r1

r2

 T ds � dȟ �  a
1

r
b dp

 T ds � dǔ � pd  a
1

r
b

 cv �
R

k � 1

 cp �
Rk

k � 1

 k �
cp

cv

 cp � cv � R

 ȟ2 � ȟ1 � cp1T2 � T12
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Isentropic flow (11.71)

Fanno flow        (11.98)

Fanno flow (11.101)

Fanno flow (11.103)

Fanno flow (11.107)

Fanno flow (11.109)

Rayleigh flow (11.123)

Rayleigh flow (11.128)

Rayleigh flow (11.129)

Rayleigh flow
(11.131)

Rayleigh flow (11.133)

Normal shock (11.149)

Normal shock (11.150)

Normal shock (11.151)

Normal shock (11.154)

Normal shock (11.156)
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Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al. 
(© 2009 John Wiley and Sons, Inc.).

Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an 1*2 are intended to be solved with
the aid of a programmable calculator or a computer. If

the figures of Appendix D can be used to simplify a
problem solution. Problems designated with a 1†2 are “open-
ended” problems and require critical thinking in that to work
them one must make various assumptions and provide the
necessary data. There is not a unique answer to these prob-
lems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. 

Section 11.1 Ideal Gas Relationships

11.1 Distinguish between flow of an ideal gas and inviscid flow of
a fluid.

11.2 Compare the density of standard air listed in Table 1.8 with
the value of standard air calculated with the ideal gas equation of
state, and comment on what you discover.

11.3 Five pounds mass of air are heated in a closed, rigid container
from , 15 psia to . Estimate the final pressure of the air
and the entropy rise involved.

11.4 Air flows steadily between two sections in a duct. At section 112,
the temperature and pressure are 
and at section 122, the temperature and pressure are 

Calculate the (a) change in internal energy be-
tween sections 112 and 122, (b) change in enthalpy between sections
112 and 122, (c) change in density between sections 112 and 122, (d)
change in entropy between sections 112 and 122. How would you es-
timate the loss of available energy between the two sections of this
flow?

11.5 Does the entropy change during the process of Example 11.2
indicate a loss of available energy by the flowing fluid?

11.6 As demonstrated in Video V11.1, fluid density differences
in a flow may be seen with the help of a schlieren optical system.
Discuss what variables affect fluid density and the different ways
in which a variable density flow can be achieved.

11.7 Describe briefly how a schlieren optical visualization system
(Videos V11.1 and V11.4, also Fig. 11.4) works. How else might
density changes in a fluid flow be made visible to the eye?

p2 � 181 kPa1abs2.
T2 � 180 °C,

p1 � 301 kPa1abs2,T1 � 80 °C,

500 °F80 °F

k � 1.4

11.8 Explain why the Bernoulli equation (Eq. 3.7) cannot be ac-
curately used for compressible flows.

11.9 Air at 14.7 psia and is compressed adiabatically by a
centrifugal compressor to a pressure of 100 psia. What is the min-
imum temperature rise possible? Explain.

11.10 Methane is compressed adiabatically from 100 kPa1abs2 and
to 200 kPa1abs2. What is the minimum compressor exit tem-

perature possible? Explain.

11.11 Air expands adiabatically through a turbine from a pressure
and temperature of 180 psia, to a pressure of 14.7 psia. If
the actual temperature change is 85% of the ideal temperature
change, determine the actual temperature of the expanded air and
the actual enthalpy and entropy differences across the turbine.

11.12 An expression for the value of for carbon dioxide as a
function of temperature is

where is in and T is in Compare the change
in enthalpy of carbon dioxide using the constant value of (see
Table 1.7) with the change in enthalpy of carbon dioxide using the
expression above, for equal to (a) (b) (c)

Set 

11.13 Are the flows shown in Videos V11.1 and V11.4 compress-
ible? Do they involve high-speed flow velocities? Discuss.

Section 11.2 Mach Number and Speed of Sound

11.14 Confirm the speed of sound for air at listed in Table
B.3.

11.15 From Table B.1 we can conclude that the speed of sound
in water at is . Is this value of c consistent with the
value of bulk modulus, , listed in Table 1.5?

11.16 If the observed speed of sound in steel is 5300 m�s, deter-
mine the bulk modulus of elasticity of steel in The density
of steel is nominally How does your value of for
steel compare with for water at Compare the speeds
of sound in steel, water, and air at standard atmospheric pressure
and and comment on what you observe.

11.17 Using information provided in Table C.1, develop a table
of speed of sound in as a function of elevation for U.S. stan-
dard atmosphere.

ft�s

15 °C

15.6 °C?Ev

Ev7790 kg�m3.
N�m3.

Ev

4814 ft�s60 °F

70 °F

T1 � 540 °R.3000 °R.
1000 °R,10 °R,T2 � T1

cp

°R.1ft # lb2� 1lbm # °R2cp

cp � 286 �
1.15 � 10 5

T
�

2.49 � 106

T2

cp

1600 °R

25 °C

70 °F
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11.18 Using information provided in Table C.2, develop a table
of speed of sound in as a function of elevation for U.S. stan-
dard atmosphere.

11.19 Determine the Mach number of a car moving in standard
air at a speed of (a) 25 mph, (b) 55 mph, and (c) 100 mph.

†11.20 Estimate the Mach number levels associated with space
shuttle main engine nozzle exit flows at launch (see Video V11.3).

Section 11.3 Categories of Compressible Flow

11.21 Obtain a photograph image showing visualisation of flow
phenomena caused by an object moving through a fluid at a Mach
number exceeding 1.0. Explain what is happening, and identify
zones of silence and of action.

11.22 Cite one specific and actual example each of a hypersonic
flow, a supersonic flow, a transonic flow, and a compressible sub-
sonic flow.

11.23 At a given instant of time, two pressure waves, each mov-
ing at the speed of sound, emitted by a point source moving with
constant velocity in a fluid at rest are shown in Fig. P11.23. De-
termine the Mach number involved and indicate with a sketch the
instantaneous location of the point source.

�

m�s
11.25 Sound waves are very small amplitude pressure pulses that
travel at the “speed of sound.” Do very large amplitude waves
such as a blast wave caused by an explosion (see Video V11.7)
travel less than, equal to, or greater than the speed of sound?
Explain.

11.26 How would you estimate the distance between you and an
approaching storm front involving lightning and thunder?

11.27 If a person inhales helium and then talks, his or her voice
sounds like “Donald Duck.” Explain why this happens.

11.28 If a high-performance aircraft is able to cruise at a Mach
number of 3.0 at an altitude of 80,000 ft, how fast is this in (a) mph,
(b) ft�s, (c) m�s?

11.29 At the seashore, you observe a high-speed aircraft mov-
ing overhead at an elevation of 10,000 ft. You hear the plane 
8 s after it passes directly overhead. Using a nominal air tem-
perature of estimate the Mach number and speed of the
aircraft.

11.30 Explain how you could vary the Mach number but not
the Reynolds number in air flow past a sphere. For a constant
Reynolds number of 300,000, estimate how much the drag co-
efficient will increase as the Mach number is increased from 0.3
to 1.0.

Section 11.4 Isentropic Flow of an Ideal Gas

11.31 Obtain photographs�images of converging�diverging noz-
zles used to achieve supersonic flows, and briefly explain each ap-
plication.

11.32 Obtain photographs�images of supersonic diffusers used to
decelerate supersonic flows to subsonic flows, and briefly explain
each application.

11.33 Starting with the enthalpy form of the energy equation (Eq.
5.69), show that for isentropic flows, the stagnation temperature
remains constant. Why is this important?

11.34 Explain how fluid pressure varies with cross-sectional area
change for the isentropic flow of an ideal gas when the flow is (a)
subsonic, (b) supersonic.

11.35 For any ideal gas, prove that the slope of constant pressure
lines on a temperature–entropy diagram is positive and that higher
pressure lines are above lower pressure lines. Why is this impor-
tant?

11.36 Air flows steadily and isentropically from standard
atmospheric conditions to a receiver pipe through a converging
duct. The cross-sectional area of the throat of the converging
duct is Determine the mass flowrate through the duct if
the receiver pressure is (a) 10 psia, (b) 5 psia. Sketch tempera-
ture – entropy diagrams for situations (a) and (b). Verify results
obtained with values from the appropriate graph in Appendix D
with calculations involving ideal gas equations. Is condensation
of water vapor a concern? Explain.

11.37 Determine the static pressure to stagnation pressure ratio
associated with the following motion in standard air: (a) a runner
moving at the rate of 10 mph, (b) a cyclist moving at the rate of
40 mph, (c) a car moving at the rate of 65 mph, (d) an airplane
moving at the rate of 500 mph.

11.38 The static pressure to stagnation pressure ratio at a point in
a gas flow field is measured with a Pitot-static probe as being equal
to 0.6. The stagnation temperature of the gas is Determine
the flow speed in m�s and the Mach number if the gas is air. What
error would be associated with assuming that the flow is incom-
pressible?

20 °C.

0.05 ft2.

40 °F,

10 in.

2 in.

5 in.

F I G U R E  P11.24

0.15 m

0.1 m

0.01 m

F I G U R E  P11.23

11.24 At a given instant of time, two pressure waves, each moving
at the speed of sound, emitted by a point source moving with con-
stant velocity in a fluid at rest, are shown in Fig. P11.24. Determine
the Mach number involved and indicate with a sketch the instan-
taneous location of the point source.
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11.39 The stagnation pressure and temperature of air flowing
past a probe are 120 kPa1abs2 and respectively. The air
pressure is 80 kPa1abs2. Determine the air speed and the Mach
number considering the flow to be (a) incompressible, (b) com-
pressible.

11.40 The stagnation pressure indicated by a Pitot tube mounted
on an airplane in flight is 45 kPa1abs2. If the aircraft is cruising in
standard atmosphere at an altitude of 10,000 m, determine the speed
and Mach number involved.

†11.41 Estimate the stagnation pressure level necessary at the en-
trance of a space shuttle main engine nozzle to achieve the over-
expansion condition shown in Video V11.5.

*11.42 An ideal gas enters subsonically and flows isentropically
through a choked converging–diverging duct having a circular
cross-sectional area A that varies with axial distance from the
throat, x, according to the formula

where A is in square feet and x is in feet. For this flow situation,
sketch the side view of the duct and graph the variation of Mach
number, static temperature to stagnation temperature ratio,
and static pressure to stagnation pressure ratio, through the
duct from to Also show the possible
fluid states at and using temperature–
entropy coordinates. Consider the gas as being helium 

Sketch on your pressure variation graph
the nonisentropic paths that would occur with over- and under-
expanded duct exit flows (see Video V11.6) and explain when
they will occur. When will isentropic supersonic duct exit flow
occur?

*11.43 An ideal gas enters supersonically and flows isentropi-
cally through the choked converging – diverging duct described
in Problem 11.42. Graph the variation of Ma, and 
from the entrance to the exit sections of the duct for helium

Show the possible fluid states at
and using temperature–entropy

coordinates. Sketch on your pressure variation graph the nonisen-
tropic paths that would occur with over- and underexpanded duct
exit flows (see Video V11.6) and explain when they will occur.
When will isentropic supersonic duct exit flow occur?

11.44 An ideal gas flows subsonically and isentropically through
the converging–diverging duct described in Problem 11.42. Graph
the variation of Ma, and from the entrance to the exit
sections of the duct for air. The value of is 0.6708 at 
Sketch important states on a T –s diagram.

11.45 An ideal gas is to flow isentropically from a large tank
where the air is maintained at a temperature and pressure of 
and 80 psia to standard atmospheric discharge conditions. Describe
in general terms the kind of duct involved and determine the duct
exit Mach number and velocity in ft�s if the gas is air.

11.46 An ideal gas flows isentropically through a converging–
diverging nozzle. At a section in the converging portion of the noz-
zle, and 
For section 122 in the diverging part of the nozzle, determine 
and if and the gas is air.

11.47 Upstream of the throat of an isentropic converging –
diverging nozzle at section 112, kPa1abs2,
and If the discharge flow is supersonic and the throat
area is determine the mass flowrate in kg s for the flow
of air.

�0.1 m2,
T1 � 20 °C.

V1 � 150 m�s, p1 � 100

Ma2 � 3.0T2

A2, p2,
Ma1 � 0.6.A1 � 0.1 m2, p1 � 600 kPa1abs2, T1 � 20 °C,

59 °F

x � 0 ft.p�p0

p�p0T�T0,

�0.6 ftx � �0.6 ft, 0 ft,
1use 0.051 
 Ma 
 5.1932.

p�p0T�T0,

5.1932.0.051 
 Ma 

1use 

�0.6 ftx � �0.6 ft, 0 ft,
x � �0.6 ft.x � �0.6 ft

p�p0,
T�T0,

A � 0.1 � x2

100 °C,
11.48 The flow blockage associated with the use of an intrusive
probe can be important. Determine the percentage increase in sec-
tion velocity corresponding to a 0.5% reduction in flow area due to
probe blockage for air flow if the section area is 
and the unblocked flow Mach numbers are (a) (b)

(c) (d)

11.49 (See Fluids in the News article titled “Rocket nozzles,” Sec-
tion 11.4.2.) Comment on the practical limits of area ratio for the
diverging portion of a converging–diverging nozzle designed to
achieve supersonic exit flow.

Section 11.5.1 Adiabatic Constant Area Duct Flow 
with Friction (Fanno Flow)

11.50 Cite an example of an actual subsonic flow of practical im-
portance that can be approximated with a Fanno flow.

11.51 An ideal gas enters [section 112] an insulated, constant cross-
sectional area duct with the following properties:

For Fanno flow, determine corresponding values of fluid tempera-
ture and entropy change for various levels of pressure and plot the
Fanno line if the gas is helium.

11.52 For Fanno flow, prove that

and in so doing show that when the flow is subsonic, friction ac-
celerates the fluid, and when the flow is supersonic, friction decel-
erates the fluid.

11.53 Standard atmospheric air 1 psia2 is
drawn steadily through a frictionless and adiabatic converging noz-
zle into an adiabatic, constant cross-sectional area duct. The duct
is 10 ft long and has an inside diameter of 0.5 ft. The average fric-
tion factor for the duct may be estimated as being equal to 0.03.
What is the maximum mass flowrate in slugs�s through the duct?
For this maximum flowrate, determine the values of static temper-
ature, static pressure, stagnation temperature, stagnation pressure,
and velocity at the inlet [section 112] and exit [section 122] of the
constant area duct. Sketch a temperature–entropy diagram for this
flow.

11.54 The upstream pressure of a Fanno flow venting to the at-
mosphere is increased until the flow chokes. What will happen to
the flowrate when the upstream pressure is further increased?

11.55 The duct in Problem 11.53 is shortened by 50%. The duct
discharge pressure is maintained at the choked flow value determined
in Problem 11.53. Determine the change in mass flowrate through
the duct associated with the 50% reduction in length. The average
friction factor remains constant at a value of 0.03.

11.56 If the same mass flowrate of air obtained in Problem 11.53
is desired through the shortened duct of Problem 11.55, determine
the back pressure, required. Assume f remains constant at a
value of 0.03.

11.57 If the average friction factor of the duct of Example 11.12
is changed to (a) 0.01 or (b) 0.03, determine the maximum mass
flowrate of air through the duct associated with each new friction

p2,

T0 � 59 °F, p0 � 14.7

dV

V
�

f k1Ma2�22 1dx�D2
1 � Ma2

 Ma1 � 0.2

 p0 � 101 kPa1abs2

 T0 � 293 K

Ma � 30.Ma � 1.5,Ma � 0.8,
Ma � 0.2,

T0 � 20 °C,1.0 m2, 
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factor; compare with the maximum mass flowrate value of Exam-
ple 11.12.

11.58 Air flows adiabatically between two sections in a constant
area pipe. At upstream section 112, psia,
and At downstream section 122, the flow is choked. Es-
timate the magnitude of the force per unit cross-sectional area ex-
erted by the inside wall of the pipe on the fluid between sections
112 and 122.

Section 11.5.2 Frictionless Constant Area Duct Flow
with Heat Transfer (Rayleigh Flow)

11.59 Cite an example of an actual subsonic flow of practical im-
portance that may be approximated with a Rayleigh flow.

11.60 Standard atmospheric air [ kPa1abs2]
is drawn steadily through an isentropic converging nozzle into a
frictionless diabatic constant area duct. For
maximum flow, determine the values of static temperature, sta-
tic pressure, stagnation temperature, stagnation pressure, and
flow velocity at the inlet [section 112] and exit [section 122] of the
constant area duct. Sketch a temperature – entropy diagram for
this flow.

11.61 Air enters a 0.5-ft inside diameter duct with 
and What frictionless heat addition rate

in Btu s is necessary for an exit gas temperature 
Determine and also.

11.62 Air enters a length of constant area pipe with 
1abs2, and If 500  kJ kg of energy is
removed from the air by frictionless heat transfer between sections
112 and 122, determine and Sketch a temperature–entropy
diagram for the flow between sections 112 and 122.

11.63 Describe what happens to a Fanno flow when heat transfer
is allowed to occur. Is this the same as a Rayleigh flow with fric-
tion considered?

Section 11.5.3 Normal Shock Waves

11.64 Obtain a photograph image of a normal shock wave and
explain briefly the situation involved.

11.65 The Mach number and stagnation pressure of air are 2.0
and 200 kPa1abs2 just upstream of a normal shock. Estimate the
stagnation pressure loss across the shock.

11.66 The stagnation pressure ratio across a normal shock in an
air flow is 0.6. Estimate the Mach number of the flow entering the
shock.

11.67 Just upstream of a normal shock in an air flow,
and Estimate values of Ma,

and V downstream of the shock.

11.68 A total pressure probe like the one shown in Video V3.8 is
inserted into a supersonic air flow. A shock wave forms just up-
stream of the impact hole. The probe measures a total pressure of
500 kPa1abs2. The stagnation temperature at the probe head is 500 K.
The static pressure upstream of the shock is measured with a wall
tap to be 100 kPa1abs2. From these data, estimate the Mach num-
ber and velocity of the flow.

11.69 The Pitot tube on a supersonic aircraft (see Video V3.8)
cruising at an altitude of 30,000 ft senses a stagnation pressure of
12 psia. If the atmosphere is considered standard, determine the
airspeed and Mach number of the aircraft. A shock wave is pre-
sent just upstream of the probe impact hole.

T0, T, p0, p,p � 30 psia.T � 600 °R,
Ma � 3.0,

�

V2.p2, T2,

�V1 � 400 m�s.T1 � 500 K,
200 kPap1 �

Ma2p2, V2,
T2 � 1500 °F?�

V1 � 200 ft�s.T1 � 80 °F,
p1 � 20 psia,

1q � 500 kJ�kg2

p0 � 101T0 � 288 K,

Ma1 � 0.5.
T0,1 � 600 °R,p0,1 � 100

11.70 An aircraft cruises at a Mach number of 2.0 at an alti-
tude of 15 km. Inlet air is decelerated to a Mach number of 0.4
at the engine compressor inlet. A normal shock occurs in the in-
let diffuser upstream of the compressor inlet at a section where
the Mach number is 1.2. For isentropic diffusion, except across
the shock, and for standard atmosphere, determine the stagna-
tion temperature and pressure of the air entering the engine com-
pressor.

11.71 Determine, for the air flow through the frictionless and adi-
abatic converging–diverging duct of Example 11.8, the ratio of
duct exit pressure to duct inlet stagnation pressure that will result
in a standing normal shock at: (a) (b)
(c) How large is the stagnation pressure loss in each
case?

11.72 A normal shock is positioned in the diverging portion of a
frictionless, adiabatic, converging–diverging air flow duct where the
cross-sectional area is and the local Mach number is 2.0. Up-
stream of the shock, psia and If the duct
exit area is determine the exit area temperature and pressure
and the duct mass flowrate.

11.73 Supersonic air flow enters an adiabatic, constant area 1in-
side ft2 30-ft-long pipe with The pipe
friction factor is estimated to be 0.02. What ratio of pipe exit pres-
sure to pipe inlet stagnation pressure would result in a normal shock
wave standing at (a) or (b) where x is the dis-
tance downstream from the pipe entrance? Determine also the duct
exit Mach number and sketch the temperature–entropy diagram
for each situation.

11.74 Supersonic air flow enters an adiabatic, constant area pipe
1inside m2 with The pipe friction fac-
tor is 0.02. If a standing normal shock is located right at the pipe
exit, and the Mach number just upstream of the shock is 1.2, de-
termine the length of the pipe.

11.75 Air enters a frictionless, constant area duct with
and psia. The air is deceler-

ated by heating until a normal shock wave occurs where the local
Mach number is 1.5. Downstream of the normal shock, the sub-
sonic flow is accelerated with heating until it chokes at the duct
exit. Determine the static temperature and pressure, the stagnation
temperature and pressure, and the fluid velocity at the duct en-
trance, just upstream and downstream of the normal shock, and at
the duct exit. Sketch the temperature–entropy diagram for this
flow.

11.76 Air enters a frictionless, constant area duct with 
and kPa1abs2. The gas is decelerated by

heating until a normal shock occurs where the local Mach num-
ber is 1.3. Downstream of the shock, the subsonic flow is accel-
erated with heating until it exits with a Mach number of 0.9. De-
termine the static temperature and pressure, the stagnation
temperature and pressure, and the fluid velocity at the duct en-
trance, just upstream and downstream of the normal shock, and
at the duct exit. Sketch the temperature– entropy diagram for this
flow.

■ Life Long Learning Problems

11.77 Is there a limit to how fast an object can move through the
atmosphere? Explain.

11.78 Discuss the similarities between hydraulic jumps in open-
channel flow and shock waves in compressible flow. Explain how
this knowledge can be useful.

p0 � 101T0 � 20 °C,
Ma � 2.5,

p0,1 � 14.7Ma1 � 2.0, T0,1 � 59 °F,

Ma1 � 2.0.diameter � 0.1

x � 10 ft,x � 5 ft,

Ma1 � 3.0.diameter � 1

0.15 ft2,
T0 � 1200 °R.p0 � 200

0.1 ft2

x � �0.4 m.
x � �0.2 m,x � �0.1 m,

JWCL068_ch11_579-644.qxd  9/25/08  8:30 PM  Page 643



11.79 Estimate the surface temperature associated with the re-
entry of the Space Shuttle into the earth’s atmosphere. Why is
knowing this important?

11.80 [See Fluids in the News article titled “Hilsch tube (Ranque
vortex tube),” Section 11.1.] Explain why a Hilsch tube works and
cite some high and low gas temperatures actually achieved. What
is the most important limitation of a Hilsch tube and how can it be
overcome?

11.81 [See Fluids in the News article titled “Supersonic and com-
pressible flows in gas turbines,” Section 11.3.] Using typical phys-
ical dimensions and rotation speeds of manufactured gas turbine
rotors, consider the possibility that supersonic fluid velocities

relative to blade surfaces are possible. How do designers use this
knowledge?

11.82 Develop useful equations describing the constant tem-
perature 1isothermal2 flow of an ideal gas through a constant
cross section area pipe. What important practical flow situations
would these equations be useful for? How are real gas effects
estimated?

■ FE Exam Problems

Sample FE 1Fundamentals of Engineering2 exam questions for fluid
mechanics are provided on the book’s web site, www.wiley.
com/college/munson.

644 Chapter 11 ■ Compressible Flow
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CHAPTER OPENING PHOTO: A mixed-flow, transonic compressor stage. (Photograph courtesy of Concepts

NREC.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ explain how and why a turbomachine works.

■ know the basic differences between a turbine and a pump.

■ recognize the importance of minimizing loss in a turbomachine.

■ select an appropriate class of turbomachine for a particular application.

■ understand why turbomachine blades are shaped like they are.

■ appreciate the basic fundamentals of sensibly scaling turbomachines that are

larger or smaller than a prototype.

■ move on to more advanced engineering work involving the fluid mechanics of

turbomachinery (e.g., design, development, research).

In previous chapters we often used generic “black boxes” to represent fluid machines such as pumps

or turbines. The purpose of this chapter is to understand the fluid mechanics of these devices when

they are turbomachines.

Pumps and turbines 1often turbomachines2 occur in a wide variety of configurations. In gen-

eral, pumps add energy to the fluid—they do work on the fluid to move and/or increase the pres-

sure of the fluid; turbines extract energy from the fluid—the fluid does work on them. The term

“pump” will be used to generically refer to all pumping machines, including pumps, fans, blow-
ers, and compressors.

Turbomachines involve a collection of blades, buckets, flow channels, or passages arranged

around an axis of rotation to form a rotor. A fluid that is moving can force rotation and produce

1212 TurbomachinesTurbomachines

Turbomachines are
dynamic fluid ma-
chines that add (for
pumps) or extract
(for turbines) flow
energy.
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shaft power. In this case we have a turbine. On the other hand, we can exert a shaft torque, typi-

cally with a motor, and by using blades, flow channels, or passages force the fluid to move. In this

case we have a pump. In Fig. 12.1 are shown the turbine and compressor 1pump2 rotors of an au-

tomobile turbocharger. Examples of turbomachine-type pumps include simple window fans, pro-

pellers on ships or airplanes, squirrel-cage fans on home furnaces, axial-flow water pumps used in

deep wells, and compressors in automobile turbochargers. Examples of turbines include the tur-

bine portion of gas turbine engines on aircraft, steam turbines used to drive generators at electri-

cal generation stations, and the small, high-speed air turbines that power dentist drills.

Turbomachines serve in an enormous array of applications in our daily lives and thus play an

important role in modern society. These machines can have a high power density 1large power trans-

fer per size2, relatively few moving parts, and reasonable efficiency. The following sections provide

an introduction to the fluid mechanics of these important machines. References 1–3 are a few ex-

amples of the many books that offer much more knowledge about turbomachines.
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Exhaust gas
flow

Compressed
air flow

Exhaust gas
flow

Turbine
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Exhaust gas flow

Exhaust gas flow

Compressed
air flow

Shaft rotation

Air flow

Compressor
rotor

Air flow

F I G U R E  12.1 Automotive turbocharger turbine and compressor rotors.
(Photograph courtesy of Concepts NREC.)

Turbomachines in-
volve the related
parameters of force,
torque, work, and
power.

(Photograph courtesy

of Mid American 

Energy.)

12.1 Introduction

Turbomachines are mechanical devices that either extract energy from a fluid 1turbine2 or add en-

ergy to a fluid 1pump2 as a result of dynamic interactions between the device and the fluid. While

the actual design and construction of these devices often require considerable insight and effort,

their basic operating principles are quite simple.

Using a food blender to make a fruit drink is an example of turbo-pump action. The blender

blades are forced to rotate around an axis by a motor. The moving blades pulverize fruit and ice

and mix them with a base liquid to form a “smoothie.”

Conversely, the dynamic effect of the wind blowing past the sail on a boat creates pressure dif-

ferences on the sail. The wind force on the moving sail in the direction of the boat’s motion provides

power to propel the boat. The sail and boat act as a machine extracting energy from the air. Turbine

blades are like sails. See, for example, the enormous wind turbine blades in the figure in the margin.

The fluid involved can be either a gas 1as with a window fan or a gas turbine engine2 or a

liquid 1as with the water pump on a car or a turbine at a hydroelectric power plant2. While the ba-

sic operating principles are the same whether the fluid is a liquid or a gas, important differences

in the fluid dynamics involved can occur. For example, cavitation may be an important design con-

sideration when liquids are involved if the pressure at any point within the flow is reduced to the

vapor pressure. Compressibility effects may be important when gases are involved if the Mach

number becomes large enough.

Many turbomachines contain some type of housing or casing that surrounds the rotating blades

or rotor, thus forming an internal flow passageway through which the fluid flows 1see Fig. 12.22.
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Others, such as a windmill or a window fan, are unducted. Some turbomachines include stationary

blades or vanes in addition to rotor blades. These stationary vanes can be arranged to accelerate the

flow and thus serve as nozzles. Or, these vanes can be set to diffuse the flow and act as diffusers.

Turbomachines are classified as axial-flow, mixed-flow, or radial-flow machines depending

on the predominant direction of the fluid motion relative to the rotor’s axis as the fluid passes the

blades 1see Fig. 12.22. For an axial-flow machine the fluid maintains a significant axial-flow direc-

tion component from the inlet to outlet of the rotor. For a radial-flow machine the flow across the

blades involves a substantial radial-flow component at the rotor inlet, exit, or both. In other machines,

designated as mixed-flow machines, there may be significant radial- and axial-flow velocity compo-

nents for the flow through the rotor row. Each type of machine has advantages and disadvantages

for different applications and in terms of fluid-mechanical performance.

12.2 Basic Energy Considerations 647

F I G U R E  12.2 (a) A radial-flow turbomachine, (b) an axial-flow turbomachine. 
(Photographs courtesy of Comair Rotron, Inc.)
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12.2 Basic Energy Considerations

An understanding of the work transfer in turbomachines can be obtained by considering the 

basic operation of a household fan 1pump2 and a windmill 1turbine2. Although the actual flows

in such devices are very complex 1i.e., three-dimensional and unsteady2, the essential phenom-

ena can be illustrated by use of simplified flow considerations and velocity triangles.

Consider a fan blade driven at constant angular velocity, , by a motor as is shown in Fig.

12.3a. We denote the blade speed as where r is the radial distance from the axis of the fan.

The absolute fluid velocity 1that seen by a person sitting stationary at the table on which the fan

rests2 is denoted V, and the relative velocity 1that seen by a person riding on the fan blade2 is de-

noted W. As shown by the figure in the margin, the actual 1absolute2 fluid velocity is the vector sum

of the relative velocity and the blade velocity

(12.1)

A simplified sketch of the fluid velocity as it “enters” and “exits” the fan at radius r is

shown in Fig. 12.3b. The shaded surface labeled a–b–c–d is a portion of the cylindrical surface

1including a “slice” through the blade2 shown in Fig. 12.3a. We assume for simplicity that the

V � W � U

U � vr,

v

V

U

W

A group of blades
moving with or
against a lift force
is the essence of a
turbomachine.
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flow moves smoothly along the blade so that relative to the moving blade the velocity is parallel

to the leading and trailing edges 1points 1 and 22 of the blade. For now we assume that the fluid

enters and leaves the fan at the same distance from the axis of rotation; thus, In

actual turbomachines, the entering and leaving flows are not necessarily tangent to the blades,

and the fluid pathlines can involve changes in radius. These considerations are important at de-

sign and off-design operating conditions. Interested readers are referred to Refs. 1, 2, and 3 for

more information about these aspects of turbomachine flows.

With this information we can construct the velocity triangles shown in Fig. 12.3b. Note that

this view is from the top of the fan, looking radially down toward the axis of rotation. The motion

of the blade is up; the motion of the incoming air is assumed to be directed along the axis of rota-

tion. The important concept to grasp from this sketch is that the fan blade 1because of its shape and

motion2 “pushes” the fluid, causing it to change direction. The absolute velocity vector, V, is turned

during its flow across the blade from section 112 to section 122. Initially the fluid had no component

of absolute velocity in the direction of the motion of the blade, the 1or tangential2 direction. When

the fluid leaves the blade, this tangential component of absolute velocity is nonzero. For this to oc-

cur, the blade must push on the fluid in the tangential direction. That is, the blade exerts a tangen-

tial force component on the fluid in the direction of the motion of the blade. This tangential force

component and the blade motion are in the same direction—the blade does work on the fluid. This

device is a pump.

On the other hand, consider the windmill shown in Fig. 12.4a. Rather than the rotor being

driven by a motor, the blades move in the direction of the lift force 1compared to the fan in Fig.

12.32 exerted on each blade by the wind blowing through the rotor. We again note that because of

the blade shape and motion, the absolute velocity vectors at sections 112 and 122, and haveV2,V1

u

U1 � U2 � vr.
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F I G U R E  12.3 Idealized flow through
a fan: (a) fan blade geometry; (b) absolute velocity, V;
relative velocity, W; and blade velocity, U at the inlet
and exit of the fan blade section.
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V12.1 Windmills

When blades move
because of the fluid
force, we have a
turbine; when
blades are forced to
move fluid, we have
a pump.
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different directions. For this to happen, the blades must have pushed up on the fluid—opposite to the

direction of blade motion. Alternatively, because of equal and opposite forces 1action�reaction2
the fluid must have pushed on the blades in the direction of their motion—the fluid does work on

the blades. This extraction of energy from the fluid is the purpose of a turbine.

These examples involve work transfer to or from a flowing fluid in two axial-flow turboma-

chines. Similar concepts hold for other turbomachines including mixed-flow and radial-flow con-

figurations.
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Current from currents The use of large, efficient wind turbines to

generate electrical power is becoming more commonplace through-

out the world. “Wind farms” containing numerous turbines located

at sites that have proper wind conditions can produce a significant

amount of electrical power. Recently, researchers in the United

States, the United Kingdom and Canada have been investigating the

possibility of harvesting the power of ocean currents and tides by us-

ing current turbines that function much like wind turbines. Rather

than being driven by wind, they derive energy from ocean currents

that occur at many locations in the 70% of the earth’s surface that

is water. Clearly, a 4-knot (2.5 m�s) tidal current is not as fast as 

a 40-mph (70 km�hr) wind driving a wind turbine. However,

since turbine power output is proportional to the fluid density, and

since seawater is more than 800 times as dense as air, significant

power can be extracted from slow, but massive, ocean currents.

One promising configuration involves blades twisted in a helical

pattern. This technology may provide electrical power that is both

ecologically and economically sound. (See Problem 12.6.)

F I G U R E  12.4 Idealized flow through a windmill: (a) windmill; 
(b) windmill blade geometry; (c) absolute velocity, V; relative velocity, W; and blade
velocity, U; at the inlet and exit of the windmill blade section.

(2)(1)

ω

(b) (c)

Blade motion

(2)
(1)

U2

V2

W2

U1

V1

W1

(a)
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GIVEN The rotor shown in Fig. E12.1a rotates at a constant

angular velocity of Although the fluid initially

approaches the rotor in an axial direction, the flow across the

blades is primarily outward 1see Fig. 12.2a2. Measurements

v � 100 rad�s.

Basic Difference between a Pump and a TurbineEXAMPLE 12.1

SOLUTION

To answer this question, we need to know if the tangential com-

ponent of the force of the blade on the fluid is in the direction of

the blade motion 1a pump2 or opposite to it 1a turbine2. We assume

that the blades are tangent to the incoming relative velocity and

that the relative flow leaving the rotor is tangent to the blades as

shown in Fig. E12.1b. We can also calculate the inlet and outlet

blade speeds as

and

With the known, absolute fluid velocity and blade velocity at

the inlet, we can draw the velocity triangle 1the graphical repre-

sentation of Eq. 12.12 at that location as shown in Fig. E12.1c.

U2 � vr2 � 1100 rad�s2 10.2 m2 � 20 m�s

U1 � vr1 � 1100 rad�s2 10.1 m2 � 10 m�s

indicate that the absolute velocity at the inlet and outlet are

and respectively.

FIND Is this device a pump or a turbine?

V2 � 15 m�s,V1 � 12 m�s

Blade

(1)

(2)

(1)

(2)
 = 60°β

= 100 rad/sω

r2 = 0.2m

r1 = 0.1m

2

(a)

F I G U R E  E12.1

ωU2

W2

W1

V1
U1

V2

(d)

W2

U2 = 20 m/s

V2 = 15 m/s
= 60°β2

30°

Radial

Circumferential

W1
V1 = 12 m/s

U1 = 10 m/s

Outlet

Known quantities
shown in color

Inlet

(c)

(1)

(2) 60°

W2

U2 = 20 m/s

Blade
motion

W1

U1 = 10 m/s

+
(b)

Note that we have assumed that the absolute flow at the blade

row inlet is radial 1i.e., the direction of is radial2. At the out-

let we know the blade velocity, the outlet speed, and the rel-

ative velocity direction, 1because of the blade geometry2. There-

fore, we can graphically 1or trigonometrically2 construct the outlet

velocity triangle as shown in the figure. By comparing the velocity

triangles at the inlet and outlet, it can be seen that as the fluid flows

across the blade row, the absolute velocity vector turns in the di-

rection of the blade motion. At the inlet there is no component

of absolute velocity in the direction of rotation; at the outlet this

component is not zero. That is, the blade pushes and turns the

fluid in the direction of the blade motion, thereby doing work on

the fluid, adding energy to it.

This device is a pump. (Ans)

b2

V2,U2,

V1
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12.3 Basic Angular Momentum Considerations

In the previous section we indicated how work transfer to or from a fluid flowing through a pump

or a turbine occurs by interaction between moving rotor blades and the fluid. Since all of these

turbomachines involve the rotation of an impeller or a rotor about a central axis, it is appropriate

to discuss their performance in terms of torque and angular momentum.

Recall that work can be written as force times distance or as torque times angular dis-

placement. Hence, if the shaft torque 1the torque that the shaft applies to the rotor2 and the ro-

tation of the rotor are in the same direction, energy is transferred from the shaft to the rotor

and from the rotor to the fluid—the machine is a pump. Conversely, if the torque exerted by

the shaft on the rotor is opposite to the direction of rotation, the energy transfer is from the

fluid to the rotor—a turbine. The amount of shaft torque 1and hence shaft work2 can be obtained

from the moment-of-momentum equation derived formally in Section 5.2.3 and discussed as

follows.

Consider a fluid particle traveling outward through the rotor in the radial-flow machine shown

in Figs. E12.1a, b, and c. For now, assume that the particle enters the rotor with a radial velocity

only 1i.e., no “swirl”2. After being acted upon by the rotor blades during its passage from the inlet

[section 112] to the outlet [section 122], this particle exits with radial 1r2 and circumferential com-

ponents of velocity. Thus, the particle enters with no angular momentum about the rotor axis of

rotation but leaves with nonzero angular momentum about that axis. 1Recall that the axial compo-

nent of angular momentum for a particle is its mass times the distance from the axis times the 

component of absolute velocity.2
A similar experience can occur at the neighborhood playground. Consider yourself as a par-

ticle and a merry-go-round as a rotor. Walk from the center to the edge of the spinning merry-

go-round and note the forces involved. The merry-go-round does work on you—there is a “side-

ward force” on you. Another person must apply a torque 1and power2 to the merry-go-round to

maintain a constant angular velocity, otherwise the angular momentum of the system 1you and the

merry-go-round2 is conserved and the angular velocity decreases as you increase your distance

from the axis of rotation. 1Similarly, if the motor driving a pump is turned off, the pump will ob-

viously slow down and stop.2Your friend is the motor supplying energy to the rotor that is trans-

ferred to you. Is the amount of energy your friend expends to keep the angular velocity constant

dependent upon what path you follow along the merry-go-round 1i.e., the blade shape2; on how

fast and in what direction you walk off the edge 1i.e., the exit velocity2; on how much you weigh

1i.e., the density of the fluid2? What happens if you walk from the outside edge toward the cen-

ter of the rotating merry-go-round? Recall that the opposite of a pump is a turbine.

In a turbomachine a series of particles 1a continuum2 passes through the rotor. Thus, the mo-

ment-of-momentum equation applied to a control volume as derived in Section 5.2.3 is valid. For

steady flow 1or for turbomachine rotors with steady-in-the-mean or steady-on-average cyclical

flow2, Eq. 5.42 gives

Recall that the left-hand side of this equation represents the sum of the external torques 1moments2
acting on the contents of the control volume, and the right-hand side is the net rate of flow of mo-

ment-of-momentum 1angular momentum2 through the control surface.

a 1r � F2 � �
cs

 1r � V2 rV � n̂ dA

u

1u2

COMMENT On the other hand, by reversing the direction

of flow from larger to smaller radii, this device can become a

radial-flow turbine. In this case 1Fig. E12.1d 2 the flow direction

is reversed 1compared to that in Figs. E12.1a, b, and c2 and the

velocity triangles are as indicated. Stationary vanes around the

perimeter of the rotor would be needed to achieve as shown.

Note that the component of the absolute velocity, V, in the di-

V1

rection of the blade motion is smaller at the outlet than at the

inlet. The blade must push against the fluid in the direction op-

posite the motion of the blade to cause this. Hence 1by equal

and opposite forces2, the fluid pushes against the blade in the

direction of blade motion, thereby doing work on the blade.

There is a transfer of work from the fluid to the blade—a

turbine operation.

When shaft torque
and rotation are in
the same direction,
we have a pump;
otherwise we have a
turbine.

V12.2 Self-
propelled lawn
sprinkler
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The axial component of this equation applied to the one-dimensional simplification of flow

through a turbomachine rotor with section 112 as the inlet and section 122 as the outlet results in

(12.2)

where is the shaft torque applied to the contents of the control volume. The is associated

with mass flowrate into the control volume and the is used with the outflow. The sign of the 

component depends on the direction of and the blade motion, U. If and U are in the same di-

rection, then is positive. The sign of the torque exerted by the shaft on the rotor, is positive

if is in the same direction as rotation, and negative otherwise.

As seen from Eq. 12.2, the shaft torque is directly proportional to the mass flowrate,

1It takes considerably more torque and power to pump water than to pump air with the same vol-

ume flowrate.2 The torque also depends on the tangential component of the absolute velocity,

Equation 12.2 is often called the Euler turbomachine equation.
Also recall that the shaft power, is related to the shaft torque and angular velocity by

(12.3)

By combining Eqs. 12.2 and 12.3 and using the fact that we obtain

(12.4)

Again, the value of is positive when and U are in the same direction and negative otherwise.

Also, is positive when the shaft torque and are in the same direction and negative other-

wise. Thus, is positive when power is supplied to the contents of the control volume 1pumps2
and negative otherwise 1turbines2. This outcome is consistent with the sign convention involving

the work term in the energy equation considered in Chapter 5 1see Eq. 5.672.
Finally, in terms of work per unit mass, we obtain

(12.5)

where we have used the fact that by conservation of mass, Equations 12.3, 12.4, and 12.5

are the basic governing equations for pumps or turbines whether the machines are radial-, mixed-,

or axial-flow devices and for compressible and incompressible flows. Note that neither the axial

nor the radial component of velocity enter into the specific work 1work per unit mass2 equation.

[In the above merry-go-round example the amount of work your friend does is independent of how

fast you jump “up” 1axially2 or “out” 1radially2 as you exit. The only thing that counts is your 

component of velocity.]

Another useful but more laborious form of Eq. 12.5 can be obtained by writing the right-

hand side in a slightly different form based on the velocity triangles at the entrance or exit as shown

generically in Fig. 12.5. The velocity component is the generic through-flow component of ve-

locity and it can be axial, radial, or in-between depending on the rotor configuration. From the

large right triangle we note that

or

(12.6)V 2
x � V 2 � V 2

u

V 2 � V 2
u � V 2

x

Vx

u

m
#

1 � m
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F I G U R E  12.5 Velocity triangle: V
absolute velocity, W relative velocity, U blade velocity.��

�U

V
W

θ

Vx

Vθ

x

The Euler turboma-
chine equation is the
axial component of
the moment-
of-momentum
equation.
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From the small right triangle we note that

(12.7)

By combining Eqs. 12.6 and 12.7 we obtain

which when written for the inlet and exit and combined with Eq. 12.5 gives

(12.8)

Thus, the power and the shaft work per unit mass can be obtained from the speed of the blade, U,

the absolute fluid speed, V, and the fluid speed relative to the blade, W. This is an alternative to us-

ing fewer components of the velocity as suggested by Eq. 12.5. Equation 12.8 contains more terms

than Eq. 12.5; however, it is an important concept equation because it shows how the work trans-

fer is related to absolute, relative, and blade velocity changes. Because of the general nature of the

velocity triangle in Fig. 12.5, Eq. 12.8 is applicable for axial-, radial-, and mixed-flow rotors.

wshaft �
V 2

2 � V 2
1 � U2

2 � U2
1 � 1W 2

2 � W 2
1 2

2

VuU �
V 2 � U2 � W 2

2

V 2
x � 1Vu � U22 � W 2
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1948 Buick Dynaflow started it Prior to 1948 almost all cars had

manual transmissions which required the use of a clutch pedal to

shift gears. The 1948 Buick Dynaflow was the first automatic

transmission to use the hydraulic torque converter and was 

the model for present-day automatic transmissions. Currently, in

the U.S. over 84% of the cars have automatic transmissions. The

torque converter replaces the clutch found on manual shift vehicles

and allows the engine to continue running when the vehicle comes

to a stop. In principle, but certainly not in detail or complexity, op-

eration of a torque converter is similar to blowing air from a fan
onto another fan which is unplugged. One can hold the blade of

the unplugged fan and keep it from turning, but as soon as it is let

go, it will begin to speed up until it comes close to the speed of the

powered fan. The torque converter uses transmission fluid (not air)

and consists of a pump (the powered fan) driven by the engine

drive shaft, a turbine (the unplugged fan) connected to the input

shaft of the transmission, and a stator (absent in the fan model) to

efficiently direct the flow between the pump and turbine.

12.4 The Centrifugal Pump

F I G U R E  12.6 Schematic
diagram of basic elements of a 
centrifugal pump.(a)

Discharge

Impeller

Eye

Inflow

Blade

Hub plate

Casing, housing,
or volute

(b)

One of the most common radial-flow turbomachines is the centrifugal pump. This type of pump

has two main components: an impeller attached to a rotating shaft, and a stationary casing, hous-
ing, or volute enclosing the impeller. The impeller consists of a number of blades 1usually curved2,
also sometimes called vanes, arranged in a regular pattern around the shaft. A sketch showing

the essential features of a centrifugal pump is shown in Fig. 12.6. As the impeller rotates, fluid

is sucked in through the eye of the casing and flows radially outward. Energy is added to the

fluid by the rotating blades, and both pressure and absolute velocity are increased as the fluid

flows from the eye to the periphery of the blades. For the simplest type of centrifugal pump, the

Turbomachine work
is related to
changes in absolute,
relative, and blade
velocities.
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fluid discharges directly into a volute-shaped casing. The casing shape is designed to reduce the

velocity as the fluid leaves the impeller, and this decrease in kinetic energy is converted into an

increase in pressure. The volute-shaped casing, with its increasing area in the direction of flow,

is used to produce an essentially uniform velocity distribution as the fluid moves around the cas-

ing into the discharge opening. For large centrifugal pumps, a different design is often used in

which diffuser guide vanes surround the impeller. The diffuser vanes decelerate the flow as the

fluid is directed into the pump casing. This type of centrifugal pump is referred to as a diffuser
pump.

Impellers are generally of two types. For one configuration the blades are arranged on a hub

or backing plate and are open on the other 1casing or shroud2 side. A typical open impeller is shown

in Fig. 12.7a. For the second type of impeller, called an enclosed or shrouded impeller, the blades

are covered on both hub and shroud ends as shown in Fig. 12.7b.

Pump impellers can also be single or double suction. For the single-suction impeller the fluid

enters through the eye on only one side of the impeller, whereas for the double-suction impeller

the fluid enters the impeller along its axis from both sides. The double-suction arrangement re-

duces end thrust on the shaft, and also, since the net inlet flow area is larger, inlet velocities are

reduced.

Pumps can be single or multistage. For a single-stage pump, only one impeller is mounted on

the shaft, whereas for multistage pumps, several impellers are mounted on the same shaft. The stages

operate in series, that is, the discharge from the first stage flows into the eye of the second stage, the

discharge from the second stage flows into the eye of the third stage, and so on. The flowrate is the

same through all stages, but each stage develops an additional pressure rise. Thus, a very large dis-

charge pressure, or head, can be developed by a multistage pump.

Centrifugal pumps come in a variety of arrangements 1open or shrouded impellers, volute

or diffuser casings, single- or double-suction, single- or multistage2, but the basic operating prin-

ciple remains the same. Work is done on the fluid by the rotating blades 1centrifugal action and

tangential blade force acting on the fluid over a distance2, creating a large increase in kinetic en-

ergy of the fluid flowing through the impeller. This kinetic energy is converted into an increase

in pressure as the fluid flows from the impeller into the casing  enclosing the impeller. A simpli-

fied theory describing the behavior of the centrifugal pump was introduced in the previous sec-

tion and is expanded in the following section.

12.4.1 Theoretical Considerations

Although flow through a pump is very complex 1unsteady and three-dimensional2, the basic theory of

operation of a centrifugal pump can be developed by considering the average one-dimensional flow of

the fluid as it passes between the inlet and the outlet sections of the impeller as the blades rotate. As

shown in Fig. 12.8, for a typical blade passage, the absolute velocity, of the fluid entering the pas-

sage is the vector sum of the velocity of the blade, rotating in a circular path with angular veloc-

ity and the relative velocity, within the blade passage so that Similarly, at the

exit Note that and Fluid velocities are taken to be average

velocities over the inlet and exit sections of the blade passage. The relationship between the various

velocities is shown graphically in Fig. 12.8.

U2 � r2v.U1 � r1vV2 � W2 � U2 .

V1 � W1 � U1 .W1,v,

U1,

V1,
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Centrifugal pumps
involve radially
outward flows.

F I G U R E  12.7 
(a) Open impeller, (b) enclosed
or shrouded impeller. 
(Courtesy of Ingersoll-Dresser
Pump Company.)
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As discussed in Section 12.3, the moment-of-momentum equation indicates that the shaft

torque, required to rotate the pump impeller is given by equation Eq. 12.2 applied to a pump

with That is,

(12.9)

or

(12.10)

where and are the tangential components of the absolute velocities, and 1see Figs.

12.8b,c2.
For a rotating shaft, the power transferred, is given by

and therefore from Eq. 12.10

Since and we obtain

(12.11)

Equation 12.11 shows how the power supplied to the shaft of the pump is transferred to the flow-

ing fluid. It also follows that the shaft power per unit mass of flowing fluid is

(12.12)

For incompressible pump flow, we get from Eq. 5.82

wshaft � a
pout

r
�

Vout
2

2
� gzoutb � a

pin

r
�

Vin
2

2
� gzinb � loss

wshaft �
W
#

shaft

rQ
� U2Vu2 � U1Vu1

W
#

shaft � rQ1U2Vu2 � U1Vu12

U2 � r2vU1 � r1v

W
#

shaft � rQv1r2Vu2 � r1Vu12

W
#

shaft � Tshaftv

W
#

shaft,

V2V1Vu2Vu1

Tshaft � rQ1r2Vu2 � r1Vu12

Tshaft � m
#
1r2Vu2 � r1Vu12

m
#

1 � m
#

2 � m
#
.

Tshaft,
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V 1θ
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+

ω
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(b)

(c)

 2β

α 2
V 2θ

F I G U R E  12.8 Velocity diagrams at the inlet and exit of a
centrifugal pump impeller.

Centrifugal pump
impellers involve an
increase in blade
velocity along the
flow path.
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Combining Eq. 12.12 with this, we get

Dividing both sides of this equation by the acceleration of gravity, g, we obtain

where H is total head defined by

and hL is head loss.

From this equation we see that is the shaft work head added to the fluid by the

pump. Head loss, hL, reduces the actual head rise, , achieved by the fluid. Thus, the ideal

head rise possible, hi, is

(12.13)

The actual head rise, , is always less than the ideal head rise, hi, by an amount

equal to the head loss, hL, in the pump. Some additional insight into the meaning of Eq. 12.13 can

be obtained by using the following alternate version 1see Eq. 12.82.

(12.14)

A detailed examination of the physical interpretation of Eq. 12.14 would reveal the following. The

first term in brackets on the right-hand side represents the increase in the kinetic energy of the

fluid, and the other two terms represent the pressure head rise that develops across the impeller

due to the centrifugal effect, and the diffusion of relative flow in the blade passages,

An appropriate relationship between the flowrate and the pump ideal head rise can be ob-

tained as follows. Often the fluid has no tangential component of velocity or swirl, as it en-

ters the impeller; that is, the angle between the absolute velocity and the tangential direction is 

1 in Fig. 12.82. In this case, Eq. 12.13 reduces to

(12.15)

From Fig. 12.8c

so that Eq. 12.15 can be expressed as

(12.16)

The flowrate, Q, is related to the radial component of the absolute velocity through the equation

(12.17)

where is the impeller blade height at the radius Thus, combining Eqs. 12.16 and 12.17 yields

(12.18)

This equation is graphed in the margin and shows that the ideal or maximum head rise for a cen-

trifugal pump varies linearly with Q for a given blade geometry and angular velocity. For actual

hi �
U 2

2

g
�

U2 cot b2

2pr2b2g
 Q

r2.b2

Q � 2pr2b2Vr2

hi �
U 2

2

g
�

U2Vr2 cot b2

g

cot b2 �
U2 � Vu2

Vr2

hi �
U2Vu2

g

a1 � 90°

90°

Vu1,

W 1
2 � W 2

2.

U 2
2 � U 1

2,

hi �
1

2g
 3 1V 2

2 � V 1
22 � 1U 2

2 � U 1
22 � 1W 1

2 � W 2
22 4

Hout � Hin � ha

hi �
U2Vu2 � U1Vu1

g

Hout � Hin

1U2Vu2 � U1Vu12�g

H �
p

rg
�

V 2

2g
� z

U2Vu 2 � U1Vu1
g

� Hout � Hin � hL

a
pout

r
�

Vout
2

2
� gzoutb � a
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r
�

Vin
2

2
� gzinb � lossU2Vu2 � U1Vu1 �
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The pump actual
head rise is less
than the pump ideal
head rise by an
amount equal to the
head loss in the
pump.

hi

Q
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pumps, the blade angle falls in the range of with a normal range of 

and with 1Ref. 102. Blades with are called backward curved, whereas

blades with are called forward curved. Pumps are not usually designed with forward

curved vanes since such pumps tend to suffer unstable flow conditions.

b2 7 90°

b2 6 90°15° 6 b1 6 50°

20° 6 b2 6 25°,15°�35°,b2
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GIVEN Water is pumped at the rate of 1400 gpm through a

centrifugal pump operating at a speed of 1750 rpm. The impeller

has a uniform blade height, b, of 2 in. with in. and

in., and the exit blade angle is 1see Fig. 12.82. As-

sume ideal flow conditions and that the tangential velocity com-

ponent, of the water entering the blade is zero 1a1 � 90°2.Vu1,

23°b2r2 � 7.0

r1 � 1.9

Centrifugal Pump Performance Based on Inlet/Outlet
Velocities

EXAMPLE 12.2

SOLUTION

(Ans)

(c) From Eq. 12.11, with the power transferred to the

fluid is given by the equation

(Ans)

Note that the ideal head rise and the power transferred to the

fluid are related through the relationship

COMMENT It should be emphasized that results given in

the previous equation involve the ideal head rise. The actual

head-rise performance characteristics of a pump are usually

determined by experimental measurements obtained in a testing

laboratory. The actual head rise is always less than the ideal head

rise for a specific flowrate because of the loss of available energy

associated with actual flows. Also, it is important to note that

even if actual values of U2 and Vr2 are used in Eq. 12.16, the ideal

head rise is calculated. The only idealization used in this exam-

ple problem is that the exit flow angle is identical to the blade an-

gle at the exit. If the actual exit flow angle was made available in

this example, it could have been used in Eq. 12.16 to calculate

the ideal head rise.

The pump power, is the actual power required to

achieve a blade speed of 107 ft s, a flowrate of 1400 gpm, and the

tangential velocity, V�2, associated with this example. If pump

losses could somehow be reduced to zero (every pump designer’s

dream), the actual and ideal head rise would have been identical

at 316 ft. As is, the ideal head rise is 316 ft and the actual head rise

something less.

�
W
#

shaft,

W
#

shaft � rgQhi

� 161,500 ft # lb�s2 11 hp�550 ft # lb�s2 � 112 hp

 �
11.94 slugs�ft32 11400 gpm2 1107 ft�s2 195.0 ft�s2
311slug # ft�s22�lb 4 17.48 gal�ft32 160 s�min2

 W
#

shaft � rQU2Vu2

Vu1 � 0,

 � 316 ft

 �
1107 ft�s22

32.2 ft�s2
�
1107 ft�s2 15.11 ft�s2 cot 23°

32.2 ft�s2

(a) At the exit the velocity diagram is as shown in Fig. 12.8c,

where is the absolute velocity of the fluid, is the relative

velocity, and is the tip velocity of the impeller with

Since the flowrate is given, it follows that

or

From Fig. 12.8c we see that

so that

(Ans)

(b) From Eq. 12.15 the ideal head rise is given by

(Ans)

Alternatively, from Eq. 12.16, the ideal head rise is

 hi �
U2

2

g
�

U2Vr2 cot b2

g

 � 316 ft

 hi �
U2Vu2

g
�
1107 ft�s2 195.0 ft�s2

32.2 ft�s2

 � 95.0 ft�s
 � 1107 � 5.11 cot 23°2 ft�s

 Vu2 � U2 � Vr2 cot b2

cot b2 �
U2 � Vu2

Vr2

 � 5.11 ft�s

 �
1400 gpm

17.48 gal�ft32 160 s�min2 12p2 17�12 ft2 12�12 ft2

 Vr2 �
Q

2pr2b2

Q � 2pr2b2Vr2

 � 107 ft�s

 U2 � r2v � 17�12 ft2 12p rad�rev2 
11750 rpm2

160 s�min2

U2

W2V2

FIND Determine (a) the tangential velocity component, at

the exit, (b) the ideal head rise, and (c) the power, trans-

ferred to the fluid. Discuss the difference between ideal and actual

head rise. Is the power, , ideal or actual? Explain.W
#

shaft

W
#

shaft,hi,

Vu2,
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Figure 12.9 shows the ideal head versus flowrate curve 1Eq. 12.182 for a centrifugal pump

with backward curved vanes Since there are simplifying assumptions 1i.e., zero losses2
associated with the equation for we would expect that the actual rise in head of fluid, would

be less than the ideal head rise, and this is indeed the case. As shown in Fig. 12.9, the versus

Q curve lies below the ideal head-rise curve and shows a nonlinear variation with Q. The differ-

ences between the two curves 1as represented by the shaded areas between the curves2 arise from

several sources. These differences include losses due to fluid skin friction in the blade passages,

which vary as and other losses due to such factors as flow separation, impeller blade-casing

clearance flows, and other three-dimensional flow effects. Near the design flowrate, some of these

other losses are minimized.

Centrifugal pump design is a highly developed field, with much known about pump theory

and design procedures 1see, for example, Refs. 4–62. However, due to the general complexity of

flow through a centrifugal pump, the actual performance of the pump cannot be accurately pre-

dicted on a completely theoretical basis as indicated by the data of Fig. 12.9. Actual pump perfor-

mance is determined experimentally through tests on the pump. From these tests, pump character-

istics are determined and presented as pump performance curves. It is this information that is most

helpful to the engineer responsible for incorporating pumps into a given flow system.

12.4.2 Pump Performance Characteristics

The actual head rise, gained by fluid flowing through a pump can be determined with an ex-

perimental arrangement of the type shown in Fig. 12.10, using the energy equation 1Eq. 5.84 with

where is the shaft work head and is identical to and is the pump head loss2

(12.19)

with sections 112 and 122 at the pump inlet and exit, respectively. Typically, the differences in ele-

vations and velocities are small so that

(12.20)

The power, gained by the fluid is given by the equation

(12.21)pf � gQha

pf,

ha �
p2 � p1

g

ha �
p2 � p1

g
� z2 � z1 �

V 2
2 � V 1

2

2g

hLhi,hsha � hs � hL

ha,

Q2,

ha

ha,hi,

1b2 6 90°2.
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F I G U R E  12.9 Effect of losses 
on the pump head–flowrate curve.Flowrate

H
ea

d

Other
losses

Actual head, ha

Theoretical or ideal head, hi

Friction losses

Ideal and actual
head rise levels dif-
fer by the head loss.

F I G U R E  12.10 Typical
experimental arrangement for determining
the head rise gained by a fluid flowing
through a pump.

(1)

(2)

z2 – z1
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and this quantity, expressed in terms of horsepower is traditionally called the water horsepower.

Thus,

(12.22)

with expressed in Q in and in ft. Note that if the pumped fluid is not water, the 

appearing in Eq. 12.22 must be the specific weight of the fluid moving through the pump.

In addition to the head or power added to the fluid, the overall efficiency, is of interest,

where

The denominator of this relationship represents the total power applied to the shaft of the pump

and is often referred to as brake horsepower 1bhp2. Thus,

(12.23)

The overall pump efficiency is affected by the hydraulic losses in the pump, as previously dis-

cussed, and in addition, by the mechanical losses in the bearings and seals. There may also be

some power loss due to leakage of the fluid between the back surface of the impeller hub plate

and the casing, or through other pump components. This leakage contribution to the overall effi-

ciency is called the volumetric loss. Thus, the overall efficiency arises from three sources, the hy-
draulic efficiency, the mechanical efficiency, and the volumetric efficiency, so that

Performance characteristics for a given pump geometry and operating speed are usually given

in the form of plots of and bhp versus Q 1commonly referred to as capacity2 as illustrated in

Fig. 12.11. Actually, only two curves are needed since and bhp are related through Eq. 12.23.

For convenience, all three curves are usually provided. Note that for the pump characterized by

the data of Fig. 12.11, the head curve continuously rises as the flowrate decreases, and in this case

the pump is said to have a rising head curve. As shown by the figure in the margin, pumps may

also have curves that initially rise as Q is decreased from the design value and then fall

with a continued decrease in Q. These pumps have a falling head curve. The head developed by

the pump at zero discharge is called the shutoff head, and it represents the rise in pressure head

across the pump with the discharge valve closed. Since there is no flow with the valve closed, the

related efficiency is zero, and the power supplied by the pump is simply dissipated

as heat. Although centrifugal pumps can be operated for short periods of time with the discharge

valve closed, damage will occur due to overheating and large mechanical stress with any extended

operation with the valve closed.

As can be seen from Fig. 12.11, as the discharge is increased from zero the brake horsepower in-

creases, with a subsequent fall as the maximum discharge is approached. As previously noted, with 

and bhp known, the efficiency can be calculated. As shown in Fig. 12.11, the efficiency is a function

ha

1bhp at Q � 02

ha � Q

ha, h,

ha, h,

h � hhhmhv.

hv,hm,hh,

h �
gQha�550

bhp

h �
power gained by the fluid

shaft power driving the pump
�
pf

W
#

shaft

h,

ghaft3�s,lb�ft3,g

pf � water horsepower �
gQha

550
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Pump overall effi-
ciency is the ratio
of power actually
gained by the fluid
to the shaft power
supplied.

F I G U R E  12.11 Typical perfor-
mance characteristics for a centrifugal pump of a
given size operating at a constant impeller speed.
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of the flowrate and reaches a maximum value at some particular value of the flowrate, commonly re-

ferred to as the normal or design flowrate or capacity for the pump. The points on the various curves

corresponding to the maximum efficiency are denoted as the best efficiency points 1BEP2. It is ap-

parent that when selecting a pump for a particular application, it is usually desirable to have the

pump operate near its maximum efficiency. Thus, performance curves of the type shown in Fig.

12.11 are very important to the engineer responsible for the selection of pumps for a particular flow

system. Matching the pump to a particular flow system is discussed in Section 12.4.4.

Pump performance characteristics are also presented in charts of the type shown in Fig. 12.12.

Since impellers with different diameters may be used in a given casing, performance characteris-

tics for several impeller diameters can be provided with corresponding lines of constant efficiency

and brake horsepower as illustrated in Fig. 12.12. Thus, the same information can be obtained from

this type of graph as from the curves shown in Fig. 12.11.

It is to be noted that an additional curve is given in Fig. 12.12, labeled which stands

for required net positive suction head. As discussed in the following section, the significance of

this curve is related to conditions on the suction side of the pump, which must also be carefully

considered when selecting and positioning a pump.

12.4.3 Net Positive Suction Head (NPSH)

On the suction side of a pump, low pressures are commonly encountered, with the concomitant

possibility of cavitation occurring within the pump. As discussed in Section 1.8, cavitation occurs

when the liquid pressure at a given location is reduced to the vapor pressure of the liquid. When

this occurs, vapor bubbles form 1the liquid starts to “boil”2; this phenomenon can cause a loss in

efficiency as well as structural damage to the pump. To characterize the potential for cavitation,

the difference between the total head on the suction side, near the pump impeller inlet,

and the liquid vapor pressure head, is used. The position reference for the el-

evation head passes through the centerline of the pump impeller inlet. This difference is called the

net positive suction head 1NPSH2 so that

(12.24)

There are actually two values of NPSH of interest. The first is the required NPSH, denoted

that must be maintained, or exceeded, so that cavitation will not occur. Since pressures

lower than those in the suction pipe will develop in the impeller eye, it is usually necessary to de-

termine experimentally, for a given pump, the required This is the curve shown in Fig.

12.12. Pumps are tested to determine the value for as defined by Eq. 12.24, by either 

directly detecting cavitation, or by observing a change in the head-flowrate curve 1Ref. 72. The sec-

ond value for NPSH of concern is the available NPSH, denoted which represents the head

that actually occurs for the particular flow system. This value can be determined experimentally,

or calculated if the system parameters are known. For example, a typical flow system is shown in

NPSHA,

NPSHR,

NPSHR.

NPSHR,

NPSH �
ps

g
�

Vs
2

2g
�

pv

g

pv�g,ps�g � Vs
2�2g,

NPSHR,
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F I G U R E  12.12 Perfor-
mance curves for a two-stage centrifugal
pump operating at 3500 rpm. Data given for
three different impeller diameters.
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Fig. 12.13. The energy equation applied between the free liquid surface, where the pressure is at-

mospheric, and a point on the suction side of the pump near the impeller inlet yields

where represents head losses between the free surface and the pump impeller inlet. Thus, the

head available at the pump impeller inlet is

so that

(12.25)

For this calculation, absolute pressures are normally used since the vapor pressure is usually spec-

ified as an absolute pressure. For proper pump operation it is necessary that

It is noted from Eq. 12.25 that as the height of the pump impeller above the fluid surface, is

increased, the is decreased. Therefore, there is some critical value for above which the

pump cannot operate without cavitation. The specific value depends on the head losses and the value

of the vapor pressure. It is further noted that if the supply tank or reservoir is above the pump,

will be negative in Eq. 12.25, and the will increase as this height is increased.NPSHA

z1

z1NPSHA

z1,

NPSHA � NPSHR

NPSHA �
patm

g
� z1 � a hL �

pv

g

ps

g
�

Vs
2

2g
�

patm

g
� z1 � a hL

�hL

patm

g
� z1 �

ps

g
�

Vs
2

2g
� a hL

patm,
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F I G U R E  12.13 Schematic of a pump
installation in which the pump must lift fluid from
one level to another.

Reference
plane

p1 = patm

(1)

(2)

z1

GIVEN A centrifugal pump is to be placed above a large, open

water tank, as shown in Fig. 12.13, and is to pump water at a rate of

At this flowrate the required net positive suction head,

is 15 ft, as specified by the pump manufacturer. The water

temperature is and atmospheric pressure is 14.7 psi. Assume

that the major head loss between the tank and the pump inlet is

due to filter at the pipe inlet having a minor loss coefficient

80 °F

NPSHR,

0.5 ft3�s.

Net Positive Suction HeadEXAMPLE 12.3

SOLUTION

From Eq. 12.25 the available net positive suction head, is

given by the equation

NPSHA �
patm

g
� z1 � a hL �

pv

g

NPSHA,

Other losses can be neglected. The pipe on the suction

side of the pump has a diameter of 4 in.

FIND Determine the maximum height, that the pump can

be located above the water surface without cavitation. If you were

required to place a valve in the flow path would you place it

upstream or downstream of the pump? Why?

z1,

KL � 20.

and the maximum value for will occur when 

Thus,

(1)1z12max �
patm

g
� a hL �

pv

g
� NPSHR

NPSHR.NPSHA �z1

For proper pump
operation, the
available net posi-
tive suction head
must be greater
than the required
net positive suction
head.
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12.4.4 System Characteristics and Pump Selection

A typical flow system in which a pump is used is shown in Fig. 12.14. The energy equation ap-

plied between points 112 and 122 indicates that

(12.26)

where is the actual head gained by the fluid from the pump, and represents all friction losses

in the pipe and minor losses for pipe fittings and valves. From our study of pipe flow, we know

that typically varies approximately as the flowrate squared; that is, 1see Section 8.42.
Thus, Eq. 12.26 can be written in the form

(12.27)

where K depends on the pipe sizes and lengths, friction factors, and minor loss coefficients. Equa-

tion 12.27, which is shown in the figure in the margin, is the system equation and shows how the

actual head gained by the fluid from the pump is related to the system parameters. In this case the

parameters include the change in elevation head, and the losses due to friction as expressed

by Each flow system has its own specific system equation. If the flow is laminar, the fric-

tional losses will be proportional to Q rather than 1see Section 8.22.Q2

KQ2.

z2 � z1,

ha � z2 � z1 � KQ2

hL � Q2hL

�hLha

ha � z2 � z1 � a hL
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Since the only head loss to be considered is the loss

with

it follows that

From Table B.1 the water vapor pressure at is 0.5069 psia

and Equation 112 can now be written as

(Ans) � 7.65 ft

 �
10.5069 lb�in.22 1144 in.2�ft22

62.22 lb�ft3
� 15 ft

 1z12max �
114.7 lb�in.22 1144 in.2�ft22

62.22 lb�ft3
� 10.2 ft

g � 62.22 lb�ft3.

80 °F

a hL �
1202 15.73 ft�s22

2132.2 ft�s22
� 10.2 ft

V �
Q

A
�

0.5 ft3�s
1p�42 14�12 ft22

� 5.73 ft�s

a hL � KL 
V 2

2g

Thus, to prevent cavitation, with its accompanying poor

pump performance, the pump should not be located higher than

7.65 ft above the water surface.

COMMENT If the valve is placed upstream of the pump, not

only would the pump have to operate with an additional loss in

the system, it would now operate with a lower inlet pressure be-

cause of this additional upstream loss and could now suffer cavi-

tation with its usually negative consequences. If the valve is

placed downstream of the pump, the pump would need to operate

with more loss in the system and with higher back pressure than

without the valve. Depending on the stability of the pump at

higher back pressures, this could be inconsequential or important.

Usually, pumps are stable even with higher back pressures. So,

placing the valve on the downstream side of the pump is normally

the better choice.

(1)

Pump

(2)

z1

z 2

F I G U R E  12.14
Typical flow system.

ha

z2 – z1

Q

ha = z2 – z1 + KQ2

The system equa-
tion relates the 
actual head gained
by the fluid to the
flowrate.
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There is also a unique relationship between the actual pump head gained by the fluid and

the flowrate, which is governed by the pump design 1as indicated by the pump performance curve2.
To select a pump for a particular application, it is necessary to utilize both the system curve, as

determined by the system equation, and the pump performance curve. If both curves are plotted

on the same graph, as illustrated in Fig. 12.15, their intersection 1point A2 represents the operat-

ing point for the system. That is, this point gives the head and flowrate that satisfies both the sys-

tem equation and the pump equation. On the same graph the pump efficiency is shown. Ideally,

we want the operating point to be near the best efficiency point 1BEP2 for the pump. For a given

pump, it is clear that as the system equation changes, the operating point will shift. For example,

if the pipe friction increases due to pipe wall fouling, the system curve changes, resulting in the

operating point A shifting to point B in Fig. 12.15 with a reduction in flowrate and efficiency.

The following example shows how the system and pump characteristics can be used to decide if

a particular pump is suitable for a given application.

12.4 The Centrifugal Pump 663

The intersection of
the pump perfor-
mance curve and
the system curve is
the operating point.

Change in
system equation System

curve

Efficiency
curve

Operating
point

Pump performance
curve

A
ct

ua
l p

um
p

he
ad

, 
h a

E
ff

ic
ie

nc
y

(A)(B)

Flowrate, Q

Elevation (static) head
= z2 – z1 F I G U R E  12.15 Utilization of

the system curve and the pump performance
curve to obtain the operating point for the
system.

F l u i d s  i n  t h e  N e w s

Space Shuttle fuel pumps The fuel pump of your car engine is

vital to its operation. Similarly, the fuels (liquid hydrogen and

oxygen) of each Space Shuttle main engine (there are three per

shuttle) rely on multistage turbopumps to get from storage

tanks to main combustors. High pressures are utilized through-

out the pumps to avoid cavitation. The pumps, some centrifugal
and some axial, are driven by axial-flow, multistage turbines.

Pump speeds are as high as 35,360 rpm. The liquid oxygen is

pumped from 100 to 7420 psia, the liquid hydrogen from 30 to 

6515 psia. Liquid hydrogen and oxygen flowrates of about

17,200 gpm and 6100 gpm, respectively, are achieved. These

pumps could empty your home swimming pool in seconds. The

hydrogen goes from �423 °F in storage to �6000 °F in the

combustion chamber!

GIVEN Water is to be pumped from one large, open tank to a

second large, open tank as shown in Fig. E12.4a. The pipe

diameter throughout is 6 in. and the total length of the pipe

between the pipe entrance and exit is 200 ft. Minor loss coeffi-

cients for the entrance, exit, and the elbow are shown, and the

friction factor for the pipe can be assumed constant and equal to

Use of Pump Performance CurvesEXAMPLE 12.4

0.02. A certain centrifugal pump having the performance charac-

teristics shown in Fig. E12.4b is suggested as a good pump for

this flow system. 

FIND With this pump, what would be the flowrate between the

tanks? Do you think this pump would be a good choice?
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SOLUTION

Application of the energy equation between the two free surfaces,

points (1) and (2) as indicated, gives

(1)

Thus, with p1 � p2 � 0, V1 � V2 � 0, 	z � z2 � z1 � 10 ft,

f � 0.02, D � 6/12 ft, and � � 200 ft, Eq. 1 becomes

(2)

where the given minor loss coefficients have been used. Since

Eq. 2 can be expressed as

(3)ha � 10 � 4.43 Q2

V �
Q

A
�

Q1ft3/s2

1�/42 16/12 ft22

 � 10.5 � 1.5 � 1.02 d  
V 2

2132.2 ft /s22

ha � 10 � c0.02 
1200 ft2

16�12 ft2

� f 
/
D

 
V 2

2g
�a KL 

V 2

2g

p1

g
�

V 2
1

2g
� z1 � ha �

p2

g
�

V 2
2

2g
� z2 

where Q is in ft3/s, or with Q in gallons per minute

(4)

Equation 3 or 4 represents the system equation for this particular

flow system and reveals how much actual head the fluid will need

to gain from the pump to maintain a certain flowrate. Perfor-

mance data shown in Fig. E12.4b indicate the actual head the

fluid will gain from this particular pump when it operates at a cer-

tain flowrate. Thus, when Eq. 4 is plotted on the same graph with

performance data, the intersection of the two curves represents

the operating point for the pump and the system. This combina-

tion is shown in Fig. E12.4c with the intersection (as obtained

graphically) occurring at

(Ans)

with the corresponding actual head gained equal to 66.5 ft.

Another concern is whether the pump is operating efficiently

at the operating point. As can be seen from Fig. E12.4c, al-

though this is not peak efficiency, which is about 86%, it is close

(about 84%). Thus, this pump would be a satisfactory choice,

assuming the 1600 gal/min flowrate is at or near the desired

flowrate.

Q � 1600 gal/min

ha � 10 � 2.20 � 10�5Q2

KL = 0.5

(1)

KL = 1.5

Pump

KL = 1.0

(2)

Water

Diameter of pipe = 6 in.
Total pipe length = 200 ft

0 400 800 1200 1600 2000 2400
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F I G U R E  E12.4a, b
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Pumps can be arranged in series or in parallel to provide for additional head or flow capac-

ity. When two pumps are placed in series, the resulting pump performance curve is obtained by

adding heads at the same flowrate. As illustrated in Fig. 12.16a, for two identical pumps in series,

both the actual head gained by the fluid and the flowrate are increased, but neither will be doubled

if the system curve remains the same. The operating point is at 1A2 for one pump and moves to 1B2
for two pumps in series. For two identical pumps in parallel, the combined performance curve is

obtained by adding flowrates at the same head, as shown in Fig. 12.16b. As illustrated, the flowrate

for the system will not be doubled with the addition of two pumps in parallel 1if the same system

12.4 The Centrifugal Pump 665

The amount of pump head needed at the pump shaft is

66.5 ft/0.84 � 79.2 ft. The power needed to drive the pump is

�

COMMENT By repeating the calculations for 	z � z2 �
z1 � 80 ft and 100 ft (rather than the given 10 ft), the results

shown in Fig. E12.4d are obtained. Although the given pump

could be used with (provided that the 500 gal/min

flowrate produced is acceptable), it would not be an ideal pump

for this application since its efficiency would be only 36 percent.

¢z � 80 ft

 � 17,600 ft�lb/s � 32.0 hp

162.4 lb�ft32 3 11600 gal�min2� 17.48 gal�ft32 160 s�min2 4 166.5 ft2

0.84

 W� shaft �
�Qha

� Energy could be saved by using a different pump with a perfor-

mance curve that more nearly matches the new system require-

ments (i.e., higher efficiency at the operating condition). On the

other hand, the given pump would not work at all for 

since its maximum head (ha � 88 ft when Q � 0) is not enough to

lift the water 100 ft, let alone overcome head losses. This is shown

in Fig. E12.4d by the fact that for the system curve

and the pump performance curve do not intersect.

Note that head loss within the pump itself was accounted for

with the pump efficiency, . Thus, hs � ha , where hs is the pump

shaft work head and ha is the actual head rise experienced by the

flowing fluid.

h�h

¢z � 100 ft

¢z � 100 ft
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F I G U R E  E12.4c ( C o n t i n u e d )

F I G U R E  E12.4d

For two pumps in
series, add heads;
for two in parallel,
add flowrates.

Two pumps
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P
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F I G U R E  12.16
Effect of operating pumps in 
(a) series and (b) in parallel.
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curve applies2. However, for a relatively flat system curve, as shown in Fig. 12.16b, a significant in-

crease in flowrate can be obtained as the operating point moves from point 1A2 to point 1B2.

666 Chapter 12 ■ Turbomachines

As discussed in Chapter 7, dimensional analysis is particularly useful in the planning and execu-

tion of experiments. Since the characteristics of pumps are usually determined experimentally, it

is expected that dimensional analysis and similitude considerations will prove to be useful in the

study and documentation of these characteristics.

From the previous section we know that the principal, dependent pump variables are the ac-

tual head rise, shaft power, and efficiency, We expect that these variables will depend

on the geometrical configuration, which can be represented by some characteristic diameter, D, other

pertinent lengths, and surface roughness, In addition, the other important variables are flowrate,

Q, the pump shaft rotational speed, fluid viscosity, and fluid density, We will only consider

incompressible fluids presently, so compressibility effects need not concern us yet. Thus, any one

of the dependent variables and can be expressed as

and a straightforward application of dimensional analysis leads to

(12.28)

The dependent pi term involving the head is usually expressed as where

is the actual head rise in terms of energy per unit mass, rather than simply which is en-

ergy per unit weight. This dimensionless parameter is called the head rise coefficient. The de-

pendent pi term involving the shaft power is expressed as and this standard

dimensionless parameter is termed the power coefficient. The power appearing in this dimension-

less parameter is commonly based on the shaft 1brake2 horsepower, bhp, so that in BG units,

The rotational speed, which appears in these dimensionless groups is ex-

pressed in rad�s. The final dependent pi term is the efficiency, which is already dimensionless.

Thus, in terms of dimensionless parameters the performance characteristics are expressed as

The last pi term in each of the above equations is a form of Reynolds number that represents

the relative influence of viscous effects. When the pump flow involves high Reynolds numbers, as

is usually the case, experience has shown that the effect of the Reynolds number can be neglected.

For simplicity, the relative roughness, can also be neglected in pumps since the highly irreg-

ular shape of the pump chamber is usually the dominant geometric factor rather than the surface

roughness. Thus, with these simplifications and for geometrically similar pumps 1all pertinent di-

mensions, scaled by a common length scale2, the dependent pi terms are functions of only

so that

(12.29)

(12.30)

(12.31) h � f3 a
Q

vD3
b

 
W
#

shaft

rv3D5
� f2 a

Q

vD3
b

 
gha

v2D2
� f1 a

Q

vD3
b

Q�vD3,

/i,

e�D,

 h �
rgQha

W
#

shaft

� f3 a
/i

D
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e

D
, 

Q

vD3
, 
rvD2

m
b

 Cp �
W
#

shaft

rv3D5
� f2 a

/i

D
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, 

Q

vD3
, 
rvD2

m
b

 CH �
gha

v2D2
� f1 a

/i

D
, 
e
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, 

Q

vD3
, 
rvD2

m
b

h,

v,W
#

shaft � 550 � 1bhp2.

Cp � W
#

shaft�rv3D5,

ha,gha

CH � gha�v2D2,

dependent pi term � fa
/i

D
, 
e

D
, 

Q

vD3
, 
rvD2

m
b

dependent variable � f 1D, /i, e, Q, v, m, r2

hha, W
#

shaft,

r.m,v,

e./i,

h.W
#

shaft,ha,

12.5 Dimensionless Parameters and Similarity Laws

Dimensionless pi
terms and similarity
laws are important
pump considera-
tions.
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The dimensionless parameter is called the flow coefficient. These three equations

provide the desired similarity relationships among a family of geometrically similar pumps. If

two pumps from the family are operated at the same value of flow coefficient

(12.32)

it then follows that

(12.33)

(12.34)

(12.35)

where the subscripts 1 and 2 refer to any two pumps from the family of geometrically similar

pumps.

With these so-called pump scaling laws it is possible to experimentally determine the per-

formance characteristics of one pump in the laboratory and then use these data to predict the cor-

responding characteristics for other pumps within the family under different operating conditions.

Figure 12.17a shows some typical curves obtained for a centrifugal pump. Figure 12.17b shows

the results plotted in terms of the dimensionless coefficients, and From these curves

the performance of different-sized, geometrically similar pumps can be predicted, as can the effect

of changing speeds on the performance of the pump from which the curves were obtained. It is to

be noted that the efficiency, is related to the other coefficients through the relationship

This follows directly from the definition of h.h � CQCHCp
�1.

h,

h.CQ, CH, Cp,

 h1 � h2

 a
W
#

shaft

rv3D5
b

1

� a
W
#

shaft

rv3D5
b

2

 a
gha

v2D2
b

1

� a
gha

v2D2
b

2

a
Q

vD3
b

1

� a
Q

vD3
b

2

CQ � Q�vD3
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Pump scaling laws
relate geometrically
similar pumps.
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F I G U R E  12.17 Typical performance data for a centrifugal pump: (a) characteristic curves for
a 12-in. centrifugal pump operating at 1000 rpm, (b) dimensionless characteristic curves. (Data from Ref. 8,
used by permission.)

GIVEN An 8-in.-diameter centrifugal pump operating at 1200

rpm is geometrically similar to the 12-in.-diameter pump having

the performance characteristics of Figs. 12.17a and 12.17b while

operating at 1000 rpm. The working fluid is water at 60 °F.

Use of Pump Scaling LawsEXAMPLE 12.5

FIND For peak efficiency, predict the discharge, actual head

rise, and shaft horsepower for this smaller pump.

JWCL068_ch12_645-700.qxd  9/25/08  8:42 PM  Page 667



12.5.1 Special Pump Scaling Laws

Two special cases related to pump similitude commonly arise. In the first case we are interested

in how a change in the operating speed, for a given pump, affects pump characteristics. It fol-

lows from Eq. 12.32 that for the same flow coefficient 1and therefore the same efficiency2 with

1the same pump2

(12.36)

The subscripts 1 and 2 now refer to the same pump operating at two different speeds at the same

flow coefficient. Also, from Eqs. 12.33 and 12.34 it follows that

(12.37)

and

(12.38)

Thus, for a given pump operating at a given flow coefficient, the flow varies directly with speed,

the head varies as the speed squared, and the power varies as the speed cubed. These effects of an-

gular velocity variation are illustrated in the sketch in the margin. These scaling laws are useful in

estimating the effect of changing pump speed when some data are available from a pump test ob-

tained by operating the pump at a particular speed.

In the second special case we are interested in how a change in the impeller diameter, D, of

a geometrically similar family of pumps, operating at a given speed, affects pump characteristics.

As before, it follows from Eq. 12.32 that for the same flow coefficient with 

(12.39)

Similarly, from Eqs. 12.33 and 12.34

(12.40)
ha1

ha2

�
D2

1

D2
2

Q1

Q2

�
D1

3

D2
3

v1 � v2

W
#

shaft1

W
#

shaft2

�
v3

1

v3
2

ha1

ha2

�
v1

2

v2
2

Q1

Q2

�
v1

v2

D1 � D2

v,
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SOLUTION

As is indicated by Eq. 12.31, for a given efficiency the flow coef-

ficient has the same value for a given family of pumps. From Fig.

12.17b we see that at peak efficiency Thus, for the

8-in. pump

(Ans)

or in terms of gpm

(Ans)

The actual head rise and the shaft horsepower can be deter-

mined in a similar manner since at peak efficiency 

and so that with 

(Ans)ha �
CHv

2D2

g
�
10.192 1126 rad�s2218�12 ft22

32.2 ft�s2
� 41.6 ft

12p rad�rev2 � 126 rad�s
v � 1200 rev�min11 min�60 s2Cp � 0.014,

CH � 0.19

 � 1046 gpm

Q � 12.33 ft3�s2 17.48 gal�ft32 160 s�min2

 Q � 2.33 ft3�s
 � 10.06252 11200�60 rev�s2 12p rad�rev2 18�12 ft23

 Q � CQvD3

CQ � 0.0625.

and

(Ans)

COMMENT This last result gives the shaft horsepower,

which is the power supplied to the pump shaft. The power actu-

ally gained by the fluid is equal to which in this example is

Thus, the efficiency, is

which checks with the efficiency curve of Fig. 12.17b.

h �
pf

W
#

shaft

�
6050

7150
� 85%

h,

pf � gQha � 162.4 lb�ft32 12.33 ft3�s 2 141.6 ft2 � 6050 ft # lb�s

gQha,

 W
#

shaft �
7150 ft # lb�s

550 ft # lb�s�hp
� 13.0 hp

 � 7150 ft # lb�s

 � 10.0142 11.94 slugs�ft32 1126 rad�s2318�12 ft25

 W
#

shaft � Cp rv
3D5

8

6

4

2

0
0 0.5 1 1.5 2

  ⋅           ⋅
Wshaft1/Wshaft2 

w1/w2 

ha1/ha2 

Q1/Q2

Effects of changes
in pump operating
speed and impeller
diameter are often
of interest.

JWCL068_ch12_645-700.qxd  9/25/08  8:44 PM  Page 668



and

(12.41)

Thus, for a family of geometrically similar pumps operating at a given speed and the same flow

coefficient, the flow varies as the diameter cubed, the head varies as the diameter squared, and the

power varies as the diameter raised to the fifth power. These strong effects of diameter variation

are illustrated in the sketch in the margin. These scaling relationships are based on the condition

that, as the impeller diameter is changed, all other important geometric variables are properly scaled

to maintain geometric similarity. This type of geometric scaling is not always possible due to prac-

tical difficulties associated with manufacturing the pumps. It is common practice for manufactur-

ers to put impellers of different diameters in the same pump casing. In this case, complete geometric

similarity is not maintained, and the scaling relationships expressed in Eqs. 12.39, 12.40, and 12.41

will not, in general, be valid. However, experience has shown that if the impeller diameter change

is not too large, less than about 20%, these scaling relationships can still be used to estimate the

effect of a change in the impeller diameter. The pump similarity laws expressed by Eqs. 12.36

through 12.41 are sometimes referred to as the pump affinity laws.
The effects of viscosity and surface roughness have been neglected in the foregoing similar-

ity relationships. However, it has been found that as the pump size decreases these effects more

significantly influence efficiency because of smaller clearances and blade size. An approximate,

empirical relationship to estimate the influence of diminishing size on efficiency is 1Ref. 92

(12.42)

In general, it is to be expected that the similarity laws will not be very accurate if tests on a model

pump with water are used to predict the performance of a prototype pump with a highly viscous

fluid, such as oil, because at the much smaller Reynolds number associated with the oil flow, the

fluid physics involved is different from the higher Reynolds number flow associated with water.

12.5.2 Specific Speed

A useful pi term can be obtained by eliminating diameter D between the flow coefficient and the

head rise coefficient. This is accomplished by raising the flow coefficient to an appropriate expo-

nent and dividing this result by the head coefficient raised to another appropriate exponent

so that

(12.43)

The dimensionless parameter is called the specific speed. Specific speed varies with flow coef-

ficient just as the other coefficients and efficiency discussed earlier do. However, for any pump it

is customary to specify a value of specific speed at the flow coefficient corresponding to peak ef-

ficiency only. For pumps with low Q and high the specific speed is low compared to a pump

with high Q and low Centrifugal pumps typically are low-capacity, high-head pumps, and there-

fore have low specific speeds.

Specific speed as defined by Eq. 12.43 is dimensionless, and therefore independent of the sys-

tem of units used in its evaluation as long as a consistent unit system is used. However, in the United

States a modified, dimensional form of specific speed, is commonly used, where

(12.44)

In this case is said to be expressed in U.S. customary units. Typical values of are in the

range for centrifugal pumps. Both and have the same physical mean-

ing, but their magnitudes will differ by a constant conversion factor when in

Eq. 12.43 is expressed in rad�s.

Each family or class of pumps has a particular range of values of specific speed associated with

it. Thus, pumps that have low-capacity, high-head characteristics will have specific speeds that are

v1Nsd � 2733 Ns2
NsdNs500 6 Nsd 6 4000
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Nsd �
v1rpm21Q1gpm2

3ha1ft2 4
3�4
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ha.
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1Q�vD321�2

1gha�v2D223�4
�
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smaller than pumps that have high-capacity, low-head characteristics. The concept of specific speed

is very useful to engineers and designers, since if the required head, flowrate, and speed are speci-

fied, it is possible to select an appropriate 1most efficient2 type of pump for a particular application.

For example, as shown by the figure in the margin, as the specific speed, increases beyond about

2000 the peak efficiency, of the purely radial-flow centrifugal pump starts to fall off, and other

types of more efficient pump design are preferred. In addition to the centrifugal pump, the axial-flow
pump is widely used. As discussed in Section 12.6, in an axial-flow pump the direction of flow is

primarily parallel to the rotating shaft rather than radial as in the centrifugal pump. Axial-flow pumps

are essentially high-capacity, low-head pumps, and therefore have large specific speeds 

compared to centrifugal pumps. Mixed-flow pumps combine features of both radial-flow and axial-

flow pumps and have intermediate values of specific speed. Figure 12.18 illustrates how the specific

speed changes as the configuration of the pump changes from centrifugal or radial to axial.

12.5.3 Suction Specific Speed

With an analysis similar to that used to obtain the specific speed pi term, the suction specific speed,

can be expressed as

(12.45)

where in Eq. 12.43 has been replaced by the required net positive suction head This

dimensionless parameter is useful in determining the required operating conditions on the suction

side of the pump. As was true for the specific speed, the value for commonly used is for

peak efficiency. For a family of geometrically similar pumps, should have a fixed value. If this

value is known, then the can be estimated for other pumps within the same family oper-

ating at different values of and Q.

As noted for the suction specific speed as defined by Eq. 12.45 is also dimensionless,

and the value for is independent of the system of units used. However, as was the case for spe-

cific speed, in the United States a modified dimensional form for the suction specific speed, des-

ignated as is commonly used, where

(12.46)

For double-suction pumps the discharge, Q, in Eq. 12.46 is one-half the total discharge.

Typical values for fall in the range of 7000 to 12,000 1Ref. 112. If is specified, Eq. 12.46

can be used to estimate the for a given set of operating conditions. However, this calculation

would generally only provide an approximate value for the and the actual determination of

the for a particular pump should be made through a direct measurement whenever possible.

Note that with expressed in rad�s in Eq. 12.45.vSsd � 2733 Ss,

NPSHR

NPSHR,

NPSHR

SsdSsd

Ssd �
v1rpm21Q1gpm2

3NPSHR 1ft2 4 3�4

Ssd,

Ss

Ns,

v

NPSHR

Ss

SsNs,

1NPSHR2.ha

Ss �
v1Q

3g1NPSHR2 4
3�4

Ss,

1Nsd 7 90002

h

Nsd,
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12.6 Axial-Flow and Mixed-Flow Pumps 671

As noted previously, centrifugal pumps are radial-flow machines that operate most efficiently for

applications requiring high heads at relatively low flowrates. This head–flowrate combination typ-

ically yields specific speeds that are less than approximately 4000. For many applications,

such as those associated with drainage and irrigation, high flowrates at low heads are required

and centrifugal pumps are not suitable. In this case, axial-flow pumps are commonly used. This

type of pump consists essentially of a propeller confined within a cylindrical casing. Axial-flow

pumps are often called propeller pumps. For this type of pump the flow is primarily in the axial

direction 1parallel to the axis of rotation of the shaft2, as opposed to the radial flow found in the

centrifugal pump. Whereas the head developed by a centrifugal pump includes a contribution due

to centrifugal action, the head developed by an axial-flow pump is due primarily to the tangen-

tial force exerted by the rotor blades on the fluid. A schematic of an axial-flow pump arranged

for vertical operation is shown in Fig. 12.19. The rotor is connected to a motor through a shaft,

and as it rotates 1usually at a relatively high speed2 the fluid is sucked in through the inlet. Typ-

ically the fluid discharges through a row of fixed stator 1guide2 vanes used to straighten the flow

leaving the rotor. Some axial-flow pumps also have inlet guide vanes upstream of the rotor row,

and some are multistage in which pairs 1stages2 of rotating blades 1rotor blades2 and fixed vanes

1stator blades2 are arranged in series. Axial-flow pumps usually have specific speeds in ex-

cess of 9000.

The definitions and broad concepts that were developed for centrifugal pumps are also ap-

plicable to axial-flow pumps. The actual flow characteristics, however, are quite different. In Fig.

12.20 typical head, power, and efficiency characteristics are compared for a centrifugal pump and

an axial-flow pump. It is noted that at design capacity 1maximum efficiency2 the head and brake

horsepower are the same for the two pumps selected. But as the flowrate decreases, the power in-

put to the centrifugal pump falls to 180 hp at shutoff, whereas for the axial-flow pump the power

input increases to 520 hp at shutoff. This characteristic of the axial-flow pump can cause overload-

ing of the drive motor if the flowrate is reduced significantly from the design capacity. It is also

noted that the head curve for the axial-flow pump is much steeper than that for the centrifugal

pump. Thus, with axial-flow pumps there will be a large change in head with a small change in

the flowrate, whereas for the centrifugal pump, with its relatively flat head curve, there will be

only a small change in head with large changes in the flowrate. It is further observed from Fig.

12.20 that, except at design capacity, the efficiency of the axial-flow pump is lower than that of

the centrifugal pump. To improve operating characteristics, some axial-flow pumps are constructed

with adjustable blades.

For applications requiring specific speeds intermediate to those for centrifugal and axial-flow

pumps, mixed-flow pumps have been developed that operate efficiently in the specific speed range

As the name implies, the flow in a mixed-flow pump has both a radial and an

axial component. Figure 12.21 shows some typical data for centrifugal, mixed-flow, and axial-flow

pumps, each operating with the same flowrate. These data indicate that as we proceed from the

centrifugal pump to the mixed-flow pump to the axial-flow pump, the specific speed increases, the

4000 6 Nsd 6 9000.

1Nsd2

1Nsd2

12.6 Axial-Flow and Mixed-Flow Pumps

Inlet

Discharge

Rotor blades

Fixed stator blades

Drive shaft

Shaft to motor

F I G U R E  12.19 Schematic
diagram of an axial-flow pump arranged
for vertical operation.

Axial-flow pumps
often have alternat-
ing rows of stator
blades and rotor
blades.
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head decreases, the speed increases, the impeller diameter decreases, and the eye diameter increases.

These general trends are commonly found when these three types of pumps are compared.

The dimensionless parameters and scaling relationships developed in the previous sections

apply to all three types of pumps—centrifugal, mixed-flow, and axial-flow—since the dimensional

analysis used is not restricted to a particular type of pump. Additional information about pumps

can be found in Refs. 4, 7, 9, 12, and 13.
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F I G U R E  12.20 Comparison of
performance characteristics for a centrifugal pump
and an axial-flow pump, each rated 42,000 gal�min
at a 17-ft head. (Data from Ref. 12, used with per-
mission.)

F l u i d s  i n  t h e  N e w s

Mechanical heart assist devices As with any pump, the human

heart can suffer various malfunctions and problems during its

useful life. Recent developments in artificial heart technology

may be able to provide help to those whose pumps have broken

down beyond repair. One of the more promising techniques is

use of a left-ventricular assist device (LVAD), which supple-

ments a diseased heart. Rather than replacing a diseased heart,

an LVAD pump is implanted alongside the heart and works in

parallel with the cardiovascular system to assist the pumping

function of the heart’s left ventricle. (The left ventricle supplies

oxygenated blood to the entire body and performs about 80% of

the heart’s work.) Some LVADs are centrifugal or axial flow
pumps that provide a continuous flow of blood. The continuous

flow may take some adjustment on the part of patients, who do

not hear a pulse or a heartbeat. Despite advances in artificial

heart technology, it is probably still several years before fully

implantable, quiet, and reliable devices will be considered for

widespread use.
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F I G U R E  12.21 Comparison of different types of impellers. Specific speed for 
centrifugal pumps based on single suction and identical flowrate. (Adapted from Ref. 12, used with
permission.)
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12.8 Turbines 673

F l u i d s  i n  t h e  N e w s

Hi-tech ceiling fans Energy savings of up to 25% can be real-

ized if thermostats in air-conditioned homes are raised by a few

degrees. This can be accomplished by using ceiling fans and

taking advantage of the increased sensible cooling brought on

by air moving over skin. If the energy used to run the fans can

be reduced, additional energy savings can be realized. Most

ceiling fans use flat, fixed pitch, nonaerodynamic blades with

uniform chord length. Because the tip of a paddle moves

through air faster than its root does, airflow over such fan blades

is lowest near the hub and highest at the tip. By making the fan

blade more propeller-like, it is possible to have a more uniform,

efficient distribution. However, since ceiling fans are restricted

by law to operate at less than 200 rpm, ordinary airplane pro-

peller design is not appropriate. After considerable design ef-

fort, a highly efficient ceiling fan capable of delivering the same

airflow as the conventional design with only half the power has

been successfully developed and marketed. The fan blades are

based on the slowly turning prop used in the Gossamer
Albatross, the human-powered aircraft that flew across the Eng-

lish Channel in 1979. (See Problem 12.58.)

When the fluid to be moved is air, or some other gas or vapor, fans are commonly used. Types of

fans vary from the small fan used for cooling desktop computers to large fans used in many indus-

trial applications such as ventilating of large buildings. Fans typically operate at relatively low ro-

tation speeds and are capable of moving large volumes of gas. Although the fluid of interest is a

gas, the change in gas density through the fan does not usually exceed 7%, which for air represents

a change in pressure of only about 1 psi 1Ref. 142. Thus, in dealing with fans, the gas density is

treated as a constant, and the flow analysis is based on incompressible flow concepts. Because of

the low pressure rise involved, fans are often constructed of lightweight sheet metal. Fans are also

called blowers, boosters, and exhausters depending on the location within the system; that is, blow-

ers are located at the system entrance, exhausters are at the system exit, and boosters are located at

some intermediate position within the system. Turbomachines used to produce larger changes in gas

density and pressure than possible with fans are called compressors 1see Section 12.9.12.
As is the case for pumps, fan designs include centrifugal 1radial-flow2 fans, as well as

mixed-flow and axial-flow 1propeller2 fans, and the analysis of fan performance closely follows

that previously described for pumps. The shapes of typical performance curves for centrifugal

and axial-flow fans are quite similar to those shown in Fig. 12.20 for centrifugal and axial-flow

pumps. However, fan head-rise data are often given in terms of pressure rise, either static or to-

tal, rather than the more conventional head rise commonly used for pumps.

Scaling relationships for fans are the same as those developed for pumps, that is, Eqs.

12.32 through 12.35 apply to fans as well as pumps. As noted above, for fans it is common to

replace the head, in Eq. 12.33 with pressure head, so that Eq. 12.33 becomes

(12.47)

where, as before, the subscripts 1 and 2 refer to any two fans from the family of geometrically

similar fans. Equations 12.47, 12.32 and 12.34, are called the fan laws and can be used to scale

performance characteristics between members of a family of geometrically similar fans. Additional

information about fans can be found in Refs. 14–17.

a
pa

rv2D2
b

1

� a
pa

rv2D2
b

2

pa�rg,ha,

12.7 Fans

As discussed in Section 12.2, turbines are devices that extract energy from a flowing fluid. The

geometry of turbines is such that the fluid exerts a torque on the rotor in the direction of its rota-

tion. The shaft power generated is available to drive generators or other devices.

In the following sections we discuss mainly the operation of hydraulic turbines 1those for

which the working fluid is water2 and to a lesser extent gas and steam turbines 1those for which

the density of the working fluid may be much different at the inlet than at the outlet2.
Although there are numerous ingenious hydraulic turbine designs, most of these turbines can

be classified into two basic types—impulse turbines and reaction turbines. 1Reaction is related to

12.8 Turbines

Fans are used to
pump air and other
gases and vapors.
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the ratio of static pressure drop that occurs across the rotor to static pressure drop across the turbine

stage, with larger rotor pressure drop corresponding to larger reaction.2 For hydraulic impulse tur-

bines, the pressure drop across the rotor is zero; all of the pressure drop across the turbine stage oc-

curs in the nozzle row. The Pelton wheel shown in Fig. 12.22 is a classical example of an impulse

turbine. In these machines the total head of the incoming fluid 1the sum of the pressure head, veloc-

ity head, and elevation head2 is converted into a large velocity head at the exit of the supply nozzle

1or nozzles if a multiple nozzle configuration is used2. Both the pressure drop across the bucket 1blade2
and the change in relative speed 1i.e., fluid speed relative to the moving bucket2 of the fluid across

the bucket are negligible. The space surrounding the rotor is not completely filled with fluid. It is the

impulse of the individual jets of fluid striking the buckets that generates the torque.

For reaction turbines, on the other hand, the rotor is surrounded by a casing 1or volute2, which

is completely filled with the working fluid. There is both a pressure drop and a fluid relative speed

change across the rotor. As shown for the radial-inflow turbine in Fig 12.23, guide vanes act as noz-

zles to accelerate the flow and turn it in the appropriate direction as the fluid enters the rotor. Thus,

part of the pressure drop occurs across the guide vanes and part occurs across the rotor. In many re-

spects the operation of a reaction turbine is similar to that of a pump “flowing backward,” although

such oversimplification can be quite misleading.

Both impulse and reaction turbines can be analyzed using the moment-of-momentum prin-

ciples discussed in Section 12.3. In general, impulse turbines are high-head, low-flowrate devices,

while reaction turbines are low-head, high-flowrate devices.

12.8.1 Impulse Turbines

Although there are various types of impulse turbine designs, perhaps the easiest to understand is the

Pelton wheel 1see Fig. 12.242. Lester Pelton 11829–19082, an American mining engineer during the

674 Chapter 12 ■ Turbomachines

Rotor

BucketNozzle

(a)

(b)

F I G U R E  12.22 (a) Schematic diagram of a Pelton wheel turbine,
(b) photograph of a Pelton wheel turbine. (Courtesy of Voith Hydro, York, PA.)

The two basic types
of hydraulic tur-
bines are impulse
and reaction.
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California gold-mining days, is responsible for many of the still-used features of this type of tur-

bine. It is most efficient when operated with a large head 1for example, a water source from a lake

located significantly above the turbine nozzle2, which is converted into a relatively large velocity at

the exit of the nozzle. Among the many design considerations for such a turbine are the head loss

that occurs in the pipe 1the penstock2 transporting the water to the turbine, the design of the nozzle,

and the design of the buckets on the rotor.

12.8 Turbines 675

(b)

Draft tube
Tail race

Adjustable
guide vanes

Rotor
vanes

Casing

(a)

F I G U R E  12.23 (a) Schematic diagram of a reaction turbine,
(b) photograph of a reaction turbine. (Courtesy of Voith Hydro, York, PA.)
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F I G U R E  12.24 Details of
Pelton wheel turbine bucket.
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As shown in Fig. 12.24, a high-speed jet of water strikes the Pelton wheel buckets and is de-

flected. The water enters and leaves the control volume surrounding the wheel as free jets 1atmos-

pheric pressure2. In addition, a person riding on the bucket would note that the speed of the water

does not change as it slides across the buckets 1assuming viscous effects are negligible2. That is, the

magnitude of the relative velocity does not change, but its direction does. The change in direction of

the velocity of the fluid jet causes a torque on the rotor, resulting in a power output from the turbine.

Design of the optimum, complex shape of the buckets to obtain maximum power output

is a very difficult matter. Ideally, the fluid enters and leaves the control volume shown in Fig.

12.25 with no radial component of velocity. 1In practice there often is a small but negligible ra-

dial component.2 In addition, the buckets would ideally turn the relative velocity vector through

a turn, but physical constraints dictate that the angle of the exit edge of the blade, is less

than Thus, the fluid leaves with an axial component of velocity as shown in Fig. 12.26.

The inlet and exit velocity triangles at the arithmetic mean radius, are assumed to be as

shown in Fig. 12.27. To calculate the torque and power, we must know the tangential components

of the absolute velocities at the inlet and exit. 1Recall from the discussion in Section 12.3 that nei-

ther the radial nor the axial components of velocity enter into the torque or power equations.2 From

Fig. 12.27 we see that

(12.48)Vu1 � V1 � W1 � U

rm,

180°.

b,180°
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F I G U R E  12.25 Ideal fluid

velocities for a Pelton wheel turbine.

Pelton wheel tur-
bines operate most
efficiently with a
larger head and
lower flowrates.
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F I G U R E  12.27 Inlet and exit 
velocity triangles for a Pelton wheel turbine.
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F I G U R E  12.26 Flow as viewed 
by an observer riding on the Pelton wheel—relative
velocities.
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and

(12.49)

Thus, with the assumption that 1i.e., the relative speed of the fluid does not change as it

is deflected by the buckets2, we can combine Eqs. 12.48 and 12.49 to obtain

(12.50)

This change in tangential component of velocity combined with the torque and power equations

developed in Section 12.3 1i.e., Eqs. 12.2 and 12.42 gives

where is the mass flowrate through the turbine. Since , it follows that

(12.51)

These results are plotted in Fig. 12.28 along with typical experimental results. Note that 

1i.e., the jet impacts the bucket2, and 1i.e., the turbine extracts power from the fluid2.
Several interesting points can be noted from the above results. First, the power is a function

of However, a typical value of 1rather than the optimum 2 results in a relatively

small 1less than 2%2 reduction in power since compared to 

Second, although the torque is maximum when the wheel is stopped there is no power

under this condition—to extract power one needs force and motion. On the other hand, the power

output is a maximum when

(12.52)

This can be shown by using Eq. 12.51 and solving for U that gives A bucket speed

of one-half the speed of the fluid coming from the nozzle gives the maximum power. Third, the

maximum speed occurs when 1i.e., the load is completely removed from the turbine, as

would happen if the shaft connecting the turbine to the generator were to break and frictional

torques were negligible2. For this case the turbine is “free wheeling,” and the wa-

ter simply passes across the rotor without putting any force on the buckets.

Although the actual flow through a Pelton wheel is considerably more complex than assumed

in the above simplified analysis, reasonable results and trends are obtained by this simple applica-

tion of the moment-of-momentum principle.

U � vR � V1,

Tshaft � 0

dW
#

shaft�dU � 0.

U ƒ max power �
V1

2

1U � 02,
1 � cos 180° � 2.1 � cos 165° � 1.966,

180°b � 165°b.

W
#

shaft 6 0

V1 7 U

W
#

shaft � Tshaftv � m
#
U1U � V12 11 � cos b2

U � vRmm
#

� rQ

Tshaft � m
#
rm1U � V12 11 � cos b2

Vu2 � Vu1 � 1U � V12 11 � cos b2

W1 � W2

Vu2 � W2 cos b � U
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analyses, we as-
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F I G U R E  12.28 Typical
theoretical and experimental power and
torque for a Pelton wheel turbine as a
function of bucket speed.
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GIVEN Water to drive a Pelton wheel is supplied through a

pipe from a lake as indicated in Fig. E12.6a. The head loss due to

friction in the pipe is important, but minor losses can be

neglected.

FIND (a) Determine the nozzle diameter, D1, that will give

the maximum power output.

(b) Determine the maximum power and the angular velocity of

the rotor at the conditions found in part (a). 

Pelton Wheel Turbine CharacteristicsEXAMPLE 12.6

SOLUTION

(a) As indicated by Eq. 12.51, the power output depends on the

flowrate, , and the jet speed at the nozzle exit, V1, both of

which depend on the diameter of the nozzle, D1, and the head loss

associated with the supply pipe. That is

(1)

The nozzle exit speed, V1, can be obtained by applying the

energy equation (Eq. 5.85) between a point on the lake sur-

face (where V0 � p0 � 0) and the nozzle outlet (where 

z1 � p1 � 0) to give

(2)

where the head loss is given in terms of the friction factor, f, as

(see Eq. 8.34)

The speed, V, of the fluid in the pipe of diameter D is obtained

from the continuity equation

We have neglected minor losses associated with the pipe entrance

and the nozzle. With the given data, Eq. 2 becomes

(3)

or

(4)

where D1 is in feet.
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By combining Eqs. 1 and 4 and using Q � �D2

1V1/4 we obtain

the power as a function of D1 and U as

(5)

where U is in feet per second and is in ft 
 lb/s. These re-

sults are plotted as a function of U for various values of D1 in

Fig. 12.6b.
As shown by Eq. 12.52, the maximum power (in terms of its

variation with U) occurs when U � V1/2, which, when used with

Eqs. 4 and 5, gives

(6)

The maximum power possible occurs when 

which according to Eq. 6 can be found as
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In previous chapters we mainly treated turbines 1and pumps2 as “black boxes” in the flow that

removed 1or added2 energy to the fluid. We treated these devices as objects that removed a certain

shaft work head from or added a certain shaft work head to the fluid. The relationship between the

shaft work head and the power output as described by the moment-of-momentum considerations is 

illustrated in Example 12.7.

12.8 Turbines 679

or

Thus, the nozzle diameter for maximum power output is

(Ans)

(b) The corresponding maximum power can be determined

from Eq. 6 as

or

(Ans)

The rotor speed at the maximum power condition can be obtained

from

where V1 is given by Eq. 4. Thus,

(Ans) � 295 rpm

 � 30.9 rad /s � 1 rev/2� rad � 60 s/min

� �
V1

2R
�

  
113.5

21 � 15210.23924
 ft/s

2a
3

2
 ftb

U � �R �
V1

2

 � �59.0 hp

W� shaft � �3.25 � 104 ft � lb/s �
1 hp

550 ft�lb/s

W� shaft � � 
1.04 � 106 10.23922

31 � 15210.23924 4 3�2
� �3.25 � 104 ft � lb/s

D1 � 0.239 ft

304 D4
1 � 1

COMMENT The reason that an optimum diameter nozzle

exists can be explained as follows. A larger diameter nozzle will

allow a larger flowrate, but will produce a smaller jet velocity be-

cause of the head loss within the supply side. A smaller diameter

nozzle will reduce the flowrate but will produce a larger jet veloc-

ity. Since the power depends on a product combination of flowrate

and jet velocity (see Eq. 1), there is an optimum-diameter nozzle

that gives the maximum power.

These results can be generalized (i.e., without regard to the

specific parameter values of this problem) by considering Eqs. 1

and 3 and the condition that U � V1/2 to obtain

By setting it can be shown (see Problem 12.67)

that the maximum power occurs when

which gives the same results obtained earlier for the specific pa-

rameters of the example problem. Note that the optimum condi-

tion depends only on the friction factor and the length-to-diameter

ratio of the supply pipe. What happens if the supply pipe is fric-

tionless or of essentially zero length?

D1 � D^a2f 
/
D
b

1/4

dW� shaft /dD1 � 0,

 � 12gz02
3/2 D2

1^a1 � f 
/

D5
 D4

1b
3/2

W� shaft �U�V1�2 � � 
p

16
  r 11 �  cos b2

GIVEN Water flows through the Pelton wheel turbine shown

in Fig. 12.24. For simplicity we assume that the water is turned

by the blade. 180°

Maximum Power Output for a Pelton Wheel TurbineEXAMPLE 12.7

SOLUTION

(b) the absolute velocity at the exit is zero, or

(c) the exiting stream flows in the direction of the incoming

stream.

According to Eq. 12.52, the maximum power occurs when

which corresponds to the situation shown in Fig.

E12.7b, that is, If viscous effects are negligible,

then and we have which gives

(Ans)V2 � 0

U � W2,W1 � W2

U � V1�2 � W1.

U � V1�2,

As indicated by Eq. 12.51, the shaft power of the turbine is given by

(1)

For this impulse turbine with the velocity triangles

simplify into the diagram types shown in Fig. E12.7. Three possi-

bilities are indicated:

(a) the exit absolute velocity, is directed back toward the

nozzle,

V2,

b � 180°,

 � 2rQ1U2 � V1U2

W
#

shaft � rQU1U � V12 11 � cos b2

FIND Show, based on the energy equation 1Eq. 5.842, that the

maximum power output occurs when the absolute velocity of the

fluid exiting the turbine is zero.
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A second type of impulse turbine that is widely used 1most often with air as the working

fluid2 is indicated in Fig. 12.29. A circumferential series of fluid jets strikes the rotating blades

which, as with the Pelton wheel, alter both the direction and magnitude of the absolute velocity.

As with the Pelton wheel, the inlet and exit pressures 1i.e., on either side of the rotor2 are equal,

and the magnitude of the relative velocity is unchanged as the fluid slides across the blades 1if fric-

tional effects are negligible2.
Typical inlet and exit velocity triangles 1absolute, relative, and blade velocities2 are shown in

Fig. 12.30. As discussed in Section 12.2, in order for the absolute velocity of the fluid to be changed

680 Chapter 12 ■ Turbomachines

If we consider the energy equation 1Eq. 5.842 for flow across

the rotor we have

p1

g
�

V 2
1

2g
� z1 � hS �

p2

g
�

V 2
2

2g
� z2 � hL

where is the shaft work head. This simplifies to

(2)

since and Note that the impulse turbine obtains

its energy from a reduction in the velocity head. The largest shaft

work head possible 1and therefore the largest power2 occurs

when all of the kinetic energy available is extracted by the tur-

bine, giving

(Ans)

This is consistent with the maximum power condition represented

by Fig. E12.7b.

COMMENT As indicated by Eq. 1, if the exit absolute veloc-

ity is not in the plane of the rotor 1i.e., 2, there is a reduc-

tion in the power available 1by a factor of 2. This is also

supported by the energy equation, Eq. 2, as follows. For 

the inlet and exit velocity triangles are as shown in Fig. E12.7d.

Regardless of the bucket speed, U, it is not possible to reduce the

value of to zero—there is always a component in the axial di-

rection. Thus, according to Eq. 2, the turbine cannot extract the

entire velocity head; the exiting fluid has some kinetic energy left

in it.

V2

b 6 180°

1 � cos b

b 6 180°

V2 � 0

z1 � z2.p1 � p2

hS �
V 2

2 � V 2
1

2g
� hL

hS
U W1

U W1

U W1

U W1

V1

V1

V1

V1

Inlet

U V2

W2 = W1

U V2 = 0

W2 = W1

U

V2 W2 = W1

U

V2

W2 =
 W1

Outlet

(a)

(b)

(c)

(d )

F I G U R E  E12.7

Nozzles

Tshaft

Control
volume

ω

Fluid jets

(a)

F I G U R E  12.29  A multinozzle, non-Pelton wheel impulse turbine commonly used with air as the
working fluid.

Dentist drill tur-
bines are usually of
the impulse class.

(b)
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as indicated during its passage across the blade, the blade must push on the fluid in the direction

opposite of the blade motion. Hence, the fluid pushes on the blade in the direction of the blade’s

motion—the fluid does work on the blade 1a turbine2.

12.8 Turbines 681

Section (1)

V1

Section (2)

U

U1

W1

V2

U2

W2

V 1θ

F I G U R E  12.30 Inlet and exit velocity
triangles for the impulse turbine shown in Fig. 12.29.

GIVEN An air turbine used to drive the high-speed drill used

by your dentist is shown in Figs. 12.29 and E12.8a. Air exiting

from the upstream nozzle holes forces the turbine blades to move

in the direction shown. The turbine rotor speed is 300,000 rpm,

the tangential component of velocity out of the nozzle is twice the

Non-Pelton Wheel Impulse Turbine (Dental Drill)EXAMPLE 12.8

SOLUTION

We use the fixed, nondeforming control volume that includes the

turbine rotor and the fluid in the rotor blade passages at an in-

stant of time 1see Fig. E12.8b2. The only torque acting on this

control volume is the shaft torque. For simplicity we analyze this

problem using an arithmetic mean radius, where

A sketch of the velocity triangles at the rotor entrance and exit is

shown in Fig. E12.8c.

Application of Eq. 12.5 1a form of the moment-of-momentum

equation2 gives

(1)

where is shaft energy per unit of mass flowing through 

the turbine. From the problem statement, and 

where

(2)

� 394 ft�s
� 10.168 in. � 0.133 in.2�2112 in.�ft2

 U � vrm � 1300,000 rev�min2 11 min�60 s2 12p rad�rev2

Vu2 � 0,Vu1 � 2U
wshaft

wshaft � �U1Vu1 � U2Vu2

rm �
1

2
 1r0 � ri2

rm,

blade speed, and the tangential component of the absolute veloc-

ity out of the rotor is zero.

FIND Estimate the shaft energy per unit mass of air flowing

through the turbine.

is the mean-radius blade velocity. Thus, Eq. 112 becomes

(Ans)

COMMENT For each lbm of air passing through the turbine

there is 9640 of energy available at the shaft to drive the

drill. However, because of fluid friction, the actual amount of en-

ergy given up by each slug of air will be greater than the amount

available at the shaft. How much greater depends on the effi-

ciency of the fluid-mechanical energy transfer between the fluid

and the turbine blades.

Recall that the shaft power, , is given by

Hence, to determine the power we need to know the mass flowrate,

which depends on the size and number of the nozzles. Although

the energy per unit mass is large 1i.e., 9640 2, the

flowrate is small, so the power is not “large.”

ft # lb�lbm

m
#
,

W
#

shaft � m
#
wshaft

W
#

shaft

ft # lb

 � �9640 ft # lb�lbm

 � 1�310,000 ft2�s22� 132.1741ft # lbm2� 1lb # s22 2

 � �310,000 ft2�s2

 wshaft � �U1Vu1 � �2U 2 � �21394 ft�s22
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12.8.2 Reaction Turbines

As indicated in the previous section, impulse turbines are best suited 1i.e., most efficient2 for lower

flowrate and higher head operations. Reaction turbines, on the other hand, are best suited for higher

flowrate and lower head situations such as are often encountered in hydroelectric power plants as-

sociated with a dammed river, for example.

In a reaction turbine the working fluid completely fills the passageways through which it

flows 1unlike an impulse turbine, which contains one or more individual unconfined jets of fluid2.
The angular momentum, pressure, and velocity of the fluid decrease as it flows through the tur-

bine rotor—the turbine rotor extracts energy from the fluid.

As with pumps, turbines are manufactured in a variety of configurations—radial-flow,

mixed-flow, and axial-flow. Typical radial- and mixed-flow hydraulic turbines are called Fran-
cis turbines, named after James B. Francis, an American engineer. At very low heads the most

efficient type of turbine is the axial-flow or propeller turbine. The Kaplan turbine, named af-

ter Victor Kaplan, a German professor, is an efficient axial-flow hydraulic turbine with ad-

justable blades. Cross sections of these different turbine types are shown in Fig. 12.31.

As shown in Fig. 12.31a, flow across the rotor blades of a radial-inflow turbine has a ma-

jor component in the radial direction. Inlet guide vanes 1which may be adjusted to allow opti-

mum performance2 direct the water into the rotor with a tangential component of velocity. The

absolute velocity of the water leaving the rotor is essentially without tangential velocity. Hence,

the rotor decreases the angular momentum of the fluid, the fluid exerts a torque on the rotor in

the direction of rotation, and the rotor extracts energy from the fluid. The Euler turbomachine

equation 1Eq. 12.22 and the corresponding power equation 1Eq. 12.42 are equally valid for this

turbine as they are for the centrifugal pump discussed in Section 12.4.

As shown in Fig. 12.31b, for an axial-flow Kaplan turbine, the fluid flows through the in-

let guide vanes and achieves a tangential velocity in a vortex 1swirl2 motion before it reaches the
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V12.4 Dental drill

ri = 0.133 in
ro = 0.168 in

Tshaft Tshaft

Control
volume

Section (1) Section (2)

U

U1

V1

V  1θ

V2W1

U2
W2

(a) (b)

(c)

ω

■ F I G U R E  E12.8

Reaction turbines
are best suited for
higher flowrate and
lower head situa-
tions.

JWCL068_ch12_645-700.qxd  9/25/08  8:47 PM  Page 682



rotor. Flow across the rotor contains a major axial component. Both the inlet guide vanes and the

turbine blades can be adjusted by changing their setting angles to produce the best match 1opti-

mum output2 for the specific operating conditions. For example, the operating head available may

change from season to season and/or the flowrate through the rotor may vary.

12.8 Turbines 683

Rotor blades

ω

Rotor Adjustable
guide vanes

Draft tube

ω

Adjustable
guide vane

Plan view of guide vanes
ω

(a) (b)

ω

F I G U R E  12.31 (a) Typical radial-flow Francis turbine, (b) typical axial-flow
Kaplan turbine.

F l u i d s  i n  t h e  N e w s

Fish friendly hydraulic turbine Based on data about what actu-

ally kills fish as they pass through hydraulic turbines, Concepts

NREC produced a rotor design that allows a larger flow passage, a

more uniform pressure distribution, lower levels of shear stress,

and other acceptable trade offs between efficiency and fish surviv-

ability. Tests and projections suggest that the fish friendly turbine

design will achieve 90 percent efficiency, with fish survivability

increased from 60% to 98%.

Pumps and turbines are often thought of as the “inverse” of each other. Pumps add energy

to the fluid; turbines remove energy. The propeller on an outboard motor 1a pump2 and the pro-

peller on a Kaplan turbine are in some ways geometrically similar, but they perform opposite tasks.

Similar comparisons can be made for centrifugal pumps and Francis turbines. In fact, some large

turbomachines at hydroelectric power plants are designed to be run as turbines during high-power

demand periods 1i.e., during the day2 and as pumps to resupply the upstream reservoir from the

downstream reservoir during low-demand times 1i.e., at night2. Thus, a pump type often has its cor-

responding turbine type. However, is it possible to have the “inverse” of a Pelton wheel turbine—

an impulse pump?

As with pumps, incompressible flow turbine performance is often specified in terms of appro-

priate dimensionless parameters. The flow coefficient, the head coefficient,

and the power coefficient, are defined in the same way for

pumps and turbines. On the other hand, turbine efficiency, is the inverse of pump efficiency. That

is, the efficiency is the ratio of the shaft power output to the power available in the flowing fluid, or

h �
W
#

shaft

rgQha

h,

Cp � W
#

shaft�rv3D5,CH � gha�v2D2,

CQ � Q�vD3,

Actual head avail-
able for a turbine,
ha, is always
greater than shaft
work head, hs,
because of head
loss, hL , in the 
turbine.
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For geometrically similar turbines and for negligible Reynolds number and surface roughness dif-

ference effects, the relationships between the dimensionless parameters are given functionally by

that shown in Eqs. 12.29, 12.30, and 12.31. That is,

where the functions and are dependent on the type of turbine involved. Also, for tur-

bines the efficiency, is related to the other coefficients according to 

As indicated above, the design engineer has a variety of turbine types available for any given

application. It is necessary to determine which type of turbine would best fit the job 1i.e., be most ef-

ficient2 before detailed design work is attempted. As with pumps, the use of a specific speed para-

meter can help provide this information. For hydraulic turbines, the rotor diameter D is eliminated

between the flow coefficient and the power coefficient to obtain the power specific speed, where

We use the more common, but not dimensionless, definition of specific speed

(12.53)

That is, is calculated with angular velocity, in rpm; shaft power, in brake horsepower;

and actual head available, in feet. Optimum turbine efficiency 1for large turbines2 as a function

of specific speed is indicated in Fig. 12.32. Also shown are representative rotor and casing cross

sections. Note that impulse turbines are best at low specific speeds; that is, when operating with

large heads and small flowrate. The other extreme is axial-flow turbines, which are the most effi-

cient type if the head is low and if the flowrate is large. For intermediate values of specific speeds,

radial- and mixed-flow turbines offer the best performance.

The data shown in Fig. 12.32 are meant only to provide a guide for turbine-type selection.

The actual turbine efficiency for a given turbine depends very strongly on the detailed design of

the turbine. Considerable analysis, testing, and experience are needed to produce an efficient tur-

bine. However, the data of Fig. 12.32 are representative. Much additional information can be found

in the literature.

ha,

W
#

shaft,v,N¿sd

N¿sd �
v1rpm22W

#
shaft 1bhp2

3ha 1ft2 4
5�4

N¿s �
v2W

#
shaft�r

1gha 2
5�4

N¿s,

h � Cp�CHCQ.h,

f3f1, f2,

CH � f11CQ2, Cp � f21CQ2, and h � f31CQ2
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Reaction turbines

  ′Nsd

F I G U R E  12.32
Typical turbine cross sections
and maximum efficiencies as a
function of specific speed.

Specific speed may
be used to approxi-
mate what kind of
turbine geometry
(axial to radial)
would operate most
efficiently.
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12.9 Compressible Flow Turbomachines

12.9 Compressible Flow Turbomachines 685

F l u i d s  i n  t h e  N e w s

Cavitation damage in hydraulic turbines The occurrence of

cavitation in hydraulic pumps seem to be an obvious possibility

since low suction pressures are expected. Cavitation damage can

also occur in hydraulic turbines even though they do not seem

obviously prone to this kind of problem. Local acceleration of

liquid over blade surfaces can be sufficient to result in local pres-

sures low enough to cause fluid vaporization or cavitation.

Further along the flow path, the fluid can decelerate rapidly

enough with accompanying increase in local pressure to make

cavitation bubbles collapse with enough intensity to cause blade

surface damage in the form of material erosion. Over time, this

erosion can be severe enough to require blade repair or replace-

ment which is very expensive. (See Problem 12.80.)

GIVEN A hydraulic turbine is to operate at an angular veloc-

ity of 6 rev�s, a flowrate of and a head of 20 ft.10 ft3�s,

Use of Specific Speed to Select Turbine TypeEXAMPLE 12.9

SOLUTION

As shown by Eq. 12.52, for maximum efficiency of a Pelton

wheel the jet velocity is ideally two times the blade velocity.

Thus, or the wheel diameter, is

To obtain a flowrate of at a velocity of

the jet diameter, must be given by

or

A Pelton wheel with a diameter of supplied with

water through a nozzle of diameter is not a prac-

tical design. Typically 1see Fig. 12.222. By using

multiple jets it would be possible to reduce the jet diameter.

However, even with 8 jets, the jet diameter would be 0.211 ft,

which is still too large 1relative to the wheel diameter2 to be

practical. Hence, the above calculations reinforce the results

presented in Fig. 12.32—a Pelton wheel would not be practical

for this application. If the flowrate were considerably smaller,

the specific speed could be reduced to the range where a Pelton

wheel would be the type to use 1rather than a mixed-flow reac-

tion turbine2.

d1 6 6 D
d1 � 0.596 ft

D � 0.952 ft

d1 � c
4Q

pV1

d
1�2

� c
4110 ft3�s2
p135.9 ft�s2

d
1�2

� 0.596 ft

Q �
p

4
 d 2

1 V1

d1,V1 � 35.9 ft�s,

Q � 10 ft3�s

D �
V1

v
�

35.9 ft�s
16 rev�s � 2p rad�rev2

� 0.952 ft

D � 2R,V1 � 2vR,

The most efficient type of turbine to use can be obtained by cal-

culating the specific speed, , and using the information of Fig.

12.32. To use the dimensional form of the specific speed indicated

in Fig. 12.32 we must convert the given data into the appropriate

units. For the rotor speed we get

To estimate the shaft power, we assume all of the available head

is converted into power and multiply this amount by an assumed

efficiency 194%2.

Thus for this turbine,

According to the information of Fig. 12.32,

A mixed-flow Francis turbine would

probably give the highest efficiency and

an assumed efficiency of 0.94 is appropriate. (Ans)

COMMENT What would happen if we wished to use a Pelton

wheel for this application? Note that with only a 20-ft head, the

maximum jet velocity, obtainable 1neglecting viscous effects2
would be

V1 � 12 gz � 22 � 32.2 ft�s2 � 20 ft � 35.9 ft�s

V1,

N¿sd �
v2W

#
shaft

1ha2
5�4

�
1360 rpm2 221.3 hp

120 ft25�4
� 39.3

 W
#

shaft � 21.3 hp

 W
#

shaft � gQzh � 162.4 lb�ft32 110 ft3�s2 c
20 ft10.942

550 ft # lb�s # hp
d

v � 6 rev�s � 60 s�min � 360 rpm

N¿sd

FIND What type of turbine should be selected? Explain.

Compressible flow turbomachines are in many ways similar to the incompressible flow pumps and

turbines described in previous portions of this chapter. The main difference is that the density of

the fluid 1a gas or vapor2 changes significantly from the inlet to the outlet of the compressible flow

machines. This added feature has interesting consequences, benefits, and complications.
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Compressors are pumps that add energy to the fluid, causing a significant pressure rise and

a corresponding significant increase in density. Compressible flow turbines, on the other hand, re-

move energy from the fluid, causing a lower pressure and a smaller density at the outlet than at

the inlet. The information provided earlier about basic energy considerations 1Section 12.22 and 

basic angular momentum considerations 1Section 12.32 is directly applicable to these turbomachines

in the ways demonstrated earlier.

As discussed in Chapter 11, compressible flow study requires an understanding of the prin-

ciples of thermodynamics. Similarly, an in-depth analysis of compressible flow turbo-machines

requires use of various thermodynamic concepts. In this section we provide only a brief discus-

sion of some of the general properties of compressors and compressible flow turbines. The inter-

ested reader is encouraged to read some of the excellent references available for further informa-

tion 1e.g., Refs. 1–3, 18–202.

12.9.1 Compressors

Turbocompressors operate with the continuous compression of gas flowing through the device. Since

there is a significant pressure and density increase, there is also a considerable temperature increase.

Radial-flow 1or centrifugal2 compressors are essentially centrifugal pumps 1see Section 12.42
that use a gas 1rather than a liquid2 as the working fluid. They are typically high pressure rise, low

flowrate, and axially compact turbomachines. A photograph of the rotor of a centrifugal compres-

sor rotor is shown in Fig. 12.33.

The amount of compression is typically given in terms of the total pressure ratio,

where the pressures are absolute. Thus, a radial flow compressor with can compress stan-

dard atmospheric air from 14.7 psia to 

Higher pressure ratios can be obtained by using multiple stage devices in which flow from the

outlet of the preceding stage proceeds to the inlet of the following stage. If each stage has the same

pressure ratio, PR, the overall pressure ratio after n stages is Thus, as shown by the figure in

the margin, a four-stage compressor with individual stage can compress standard air from

p0 in � 14.7 psia to p0 out � Adiabatic 1i.e., no heat transfer2 compression of a

gas causes an increase in temperature and requires more work than isothermal 1constant temperature2
compression of a gas. An interstage cooler 1i.e., an intercooler heat exchanger2 as shown in Fig. 12.34

can be used to reduce the compressed gas temperature and thus the work required.

Relative to centrifugal water pumps, radial compressors of comparable size rotate at much

higher speeds. It is not uncommon for the rotor blade exit speed and the speed of the absolute flow

leaving the impeller to be greater than the speed of sound. That such large speeds are necessary

for compressors can be seen by noting that the large pressure rise designed for is related to the dif-

ferences of several squared speeds 1see Eq. 12.142.
The axial-flow compressor is the other widely used configuration. This type of turboma-

chine has a lower pressure rise per stage, a higher flowrate, and is more radially compact than a

centrifugal compressor. As shown in Fig. 12.35, axial-flow compressors usually consist of several

stages, with each stage containing a rotor/stator row pair. For an 11-stage compressor, a compres-

sion ratio of per stage gives an overall pressure ratio of As the gas� 1.211 � 7.4.p02�p01PR � 1.2

24 � 14.7 � 235 psia.

PR � 2.0

PRn.

3.0 � 14.7 � 44.1 psia.

PR � 3.0

PR � p02�p01,
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F I G U R E  12.33 Centrifugal
compressor rotor. (Photograph courtesy of
concepts NREC.)

Multistaging is
common in high-
pressure ratio 
compressors.
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is compressed and its density increases, a smaller annulus cross-sectional area is required and the

flow channel size decreases from the inlet to the outlet of the compressor. The typical jet aircraft

engine uses an axial-flow compressor as one of its main components 1see Fig. 12.36 and Ref. 212.
An axial-flow compressor can include a set of inlet guide vanes upstream of the first rotor row.

These guide vanes optimize the size of the relative velocity into the first rotor row by directing the

flow away from the axial direction. Rotor blades push on the gas in the direction of blade motion and

to the rear, adding energy 1like in an axial-pump2 and moving the gas through the compressor. The sta-
tor blade rows act as diffusers, turning the fluid back toward the axial direction and increasing the sta-

tic pressure. The stator blades cannot add energy to the fluid because they are stationary. Typical pres-

sure, velocity, and enthalpy distributions along the axial direction are shown in Fig. 12.35. [If you are
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Intercooler

Inlet to
stage 1

Blade

Cooling
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stage 2
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Shaft

Stage 1 Stage 2

F I G U R E  12.34 Two-stage
centrifugal compressor with an intercooler.

ω

Shaft

Rotor
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enthalpy or

temperature

F I G U R E  12.35 Enthalpy, velocity, and pressure
distribution in an axial-flow compressor.

Axial-flow compres-
sor multistaging re-
quires less space
than centrifugal
compressors.

V12.5 Flow in a
compressor stage

F I G U R E  12.36 Rolls-Royce Trent 900 three-shaft propulsion system. 
(Courtesy of Rolls-Royce plc.)
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not familiar with the thermodynamic concept of enthalpy 1see Section 11.12, you may replace “en-

thalpy” by temperature as an approximation.] The reaction of the compressor stage is equal to the ra-

tio of the rise in static enthalpy or temperature achieved across the rotor to the enthalpy or tempera-

ture rise across the stage. Most modern compressors involve 50% or higher reaction.

The blades in an axial-flow compressor are airfoils carefully designed to produce appropriate

lift and drag forces on the flowing gas. As occurs with airplane wings, compressor blades can stall

1see Section 9.42. When the flowrate is decreased from the design amount, the velocity triangle at the

entrance of the rotor row indicates that the relative flow meets the blade leading edge at larger an-

gles of incidence than the design value. When the angle of incidence becomes too large, blade stall

can occur and the result is compressor surge or stall—unstable flow conditions that can cause ex-

cessive vibration, noise, poor performance, and possible damage to the machine. The lower flowrate

bound of compressor operation is related to the beginning of these instabilities 1see Fig. 12.372.
Other important compressible flow phenomena such as variations of the Mach cone 1see Sec-

tion 11.32, shock waves 1see Section 11.5.32, and choked flow 1see Section 11.4.22 occur commonly

in compressible flow turbomachines. They must be carefully designed for. These phenomena are

very sensitive to even very small changes or variations of geometry. Shock strength is kept low to

minimize shock loss, and choked flows limit the upper flowrate boundary of machine operation

1see Fig. 12.372.
The experimental performance data for compressors are systematically summarized with

parameters prompted by dimensional analysis. As mentioned earlier, total pressure ratio,

is used instead of the head-rise coefficient associated with pumps, blowers, and fans.

Either isentropic or polytropic efficiencies are used to characterize compressor performance.

A detailed explanation of these efficiencies is beyond the scope of this text. Those interested in

learning more about these parameters should study any of several available books on turboma-

chines 1for example, Refs. 2 and 32. Basically, each of these compressor efficiencies involves a ra-

tio of ideal work to actual work required to accomplish the compression. The isentropic efficiency

involves a ratio of the ideal work required with an adiabatic and frictionless 1no loss2 compression

process to the actual work required to achieve the same total pressure rise. The polytropic effi-

ciency involves a ratio of the ideal work required to achieve the actual end state of the compres-

sion with a polytropic and frictionless process between the actual beginning and end stagnation

states across the compressor and the actual work involved between these same states.

p02�p01,
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The flow parameter commonly used for compressors is based on the following dimension-

less grouping from dimensional analysis

where R is the gas constant, the mass flowrate, k the specific heat ratio, the stagnation tem-

perature at the compressor inlet, D a characteristic length, and the stagnation pressure at the

compressor inlet.

To account for variations in test conditions, the following strategy is employed. We set

where the subscript “test” refers to a specific test condition and “std” refers to the standard atmos-

phere condition. When we consider a given compressor operating

on a given working fluid 1so that R, k, and D are constant2, the above equation reduces to

(12.54)

In essence, is the compressor-test mass flowrate “corrected” to the standard atmosphere inlet

condition. The corrected compressor mass flowrate, is used instead of flow coefficient. Of-

ten, is divided by A, the frontal area of the compressor flow path.

While for pumps, blowers, and fans, rotor speed was accounted for in the flow coeffi-

cient, it is not in the corrected mass flowrate derived above. Thus, for compressors, rotor speed

needs to be accounted for with an additional group. This dimensionless group is

For the same compressor operating on the same gas, we eliminate D, k and R and, as with cor-

rected mass flowrate, obtain a corrected speed, where

(12.55)

Often, the percentage of the corrected speed design value is used.

An example of how compressor performance data are typically summarized is shown in

Fig. 12.37.

12.9.2 Compressible Flow Turbines

Turbines that use a gas or vapor as the working fluid are in many respects similar to hydraulic

turbines 1see Section 12.82. Compressible flow turbines may be impulse or reaction turbines, and

mixed-, radial-, or axial-flow turbines. The fact that the gas may expand 1compressible flow2 in

coursing through the turbine can introduce some important phenomena that do not occur in hy-

draulic turbines. 1Note: It is tempting to label turbines that use a gas as the working fluid as gas

turbines. However, the terminology “gas turbine” is commonly used to denote a gas turbine en-
gine, as employed, for example, for aircraft propulsion or stationary power generation. As shown

in Fig. 12.36, these engines typically contain a compressor, combustion chamber, and turbine.2
Although for compressible flow turbines the axial-flow type is common, the radial-inflow type

is also used for various purposes. As shown in Fig. 12.33, the turbine that drives the typical auto-

mobile turbocharger compressor is a radial-inflow type. The main advantages of the radial-inflow

turbine are: 112 It is robust and durable, 122 it is axially compact, and 132 it can be relatively inexpen-

sive. A radial-flow turbine usually has a lower efficiency than an axial-flow turbine, but lower ini-

tial costs may be the compelling incentive in choosing a radial-flow turbine over an axial-flow one.

Axial-flow turbines are widely used compressible flow turbines. Steam engines used in elec-

trical generating plants and marine propulsion and the turbines used in gas turbine engines are
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A gas turbine en-
gine generally con-
sists of a compres-
sor, a combustor,
and a turbine.
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usually of the axial-flow type. Often they are multistage turbomachines, although single-stage com-

pressible turbines are also produced. They may be either an impulse type or a reaction type. With

compressible flow turbines, the ratio of static enthalpy or temperature drop across the rotor to this

drop across the stage, rather than the ratio of static pressure differences, is used to determine re-

action. Strict impulse 1zero pressure drop2 turbines have slightly negative reaction; the static en-

thalpy or temperature actually increases across the rotor. Zero-reaction turbines involve no change

of static enthalpy or temperature across the rotor but do involve a slight pressure drop.

A two-stage, axial-flow impulse turbine is shown in Fig. 12.38a. The gas accelerates through

the supply nozzles, has some of its energy removed by the first-stage rotor blades, accelerates again

through the second-stage nozzle row, and has additional energy removed by the second-stage ro-

tor blades. As shown in Fig. 12.38b, the static pressure remains constant across the rotor rows.

Across the second-stage nozzle row, the static pressure decreases, absolute velocity increases, and

the stagnation enthalpy 1temperature2 is constant. Flow across the second rotor is similar to flow

across the first rotor. Since the working fluid is a gas, the significant decrease in static pressure

across the turbine results in a significant decrease in density—the flow is compressible. Hence,

more detailed analysis of this flow must incorporate various compressible flow concepts developed

in Chapter 11. Interesting phenomena such as shock waves and choking due to sonic conditions at

the “throat” of the flow passage between blades can occur because of compressibility effects. The

interested reader is encouraged to consult the various references available 1e.g., Refs. 2, 3, 202 for

fascinating applications of compressible flow principles in turbines.

The rotor and nozzle blades in a three-stage, axial-flow reaction turbine are shown in Fig.

12.39a. The axial variations of pressure and velocity are shown in Fig. 12.39c. Both the station-

ary and rotor blade 1passages2 act as flow-accelerating nozzles. That is, the static pressure and en-

thalpy 1temperature2 decrease in the direction of flow for both the fixed and the rotating blade rows.

This distinguishes the reaction turbine from the impulse turbine 1see Fig. 12.38b2. Energy is re-

moved from the fluid by the rotors only 1the stagnation enthalpy or temperature is constant across

the adiabatic flow stators2.
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F I G U R E  12.39 Enthalpy,
pressure, and velocity distribution in a
three-stage reaction turbine.
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Because of the reduction of static pressure in the downstream direction, the gas expands, and

the flow passage area must increase from the inlet to the outlet of this turbine. This is seen in Fig.

12.39b.

Performance data for compressible flow turbines are summarized with the help of parame-

ters derived from dimensional analysis. Isentropic and polytropic efficiencies 1see Refs. 2, 3, and

202 are commonly used as are inlet-to-outlet total pressure ratios corrected rotor speed

1see Eq. 12.552, and corrected mass flowrate 1see Eq. 12.542. In Fig. 12.40 is shown a compress-

ible flow turbine performance “map.”

1p01�p022,
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Turbine perfor-
mance maps are
used to display
complex turbine
characteristics.
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angular momentum 
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chine equation 
shaft power 
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pump performance
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impulse turbine 
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12.10 Chapter Summary and Study Guide

Various aspects of turbomachine flow are considered in this chapter. The connection between fluid

angular momentum change and shaft torque is key to understanding how turbo-pumps and tur-

bines operate.

The shaft torque associated with change in the axial component of angular momentum of a

fluid as it flows through a pump or turbine is described in terms of the inlet and outlet velocity

triangles diagrams. Such diagrams indicate the relationship among absolute, relative, and blade

velocities.

Performance characteristics for centrifugal pumps are discussed. Standard dimensionless

pump parameters, similarity laws, and the concept of specific speed are presented for use in pump

analysis. How to use pump performance curves and the system curve for proper pump selection

is presented. A brief discussion of axial-flow and mixed-flow pumps is given.

An analysis of impulse turbines is provided, with emphasis on the Pelton wheel turbine. For

impulse turbines there is negligible pressure difference across the blade; the torque is a result of

the change in direction of the fluid jet striking the blade. Radial-flow and axial-flow reaction tur-

bines are also briefly discussed.

The following checklist provides a study guide for this chapter. When your study of the entire

chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related

concepts. These terms are particularly important and are set in italic, bold, and color type in

the text.

draw appropriate velocity triangles for flows entering and leaving given pump or turbine

configurations.
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estimate the actual shaft torque, actual shaft power, and ideal pump head rise for a given

centrifugal pump configuration.

use pump performance curves and the system curve to predict pump performance in a given

system.

predict the performance characteristics for one pump based on the performance of another

pump of the same family using the pump scaling laws.

use specific speed to determine whether a radial flow, mixed flow, or axial flow pump would

be most appropriate for a given situation.

estimate the actual shaft torque and actual shaft power for flow through an impulse turbine

configuration.

estimate the actual shaft torque and actual shaft power for a given reaction turbine.

use specific speed to determine whether an impulse or a reaction turbine would be most

appropriate for a given situation.

Some of the important equations in this chapter are:

Vector addition of velocities (12.1)

Shaft torque (12.2)

Shaft power (12.3)

Shaft power (12.4)

Shaft work (12.8)

Pump ideal head rise

Pump actual head rise (12.19)

Pump similarity relationship (12.29)

Pump similarity relationship (12.30)

Pump similarity relationship (12.31)

Pump scaling law (12.32)

Pump scaling law (12.33)

Pump scaling law (12.34)

Pump scaling law (12.35)

Specific speed (pumps) (12.44)

Suction specific speed (12.46)

Specific speed (turbines) (12.53) N¿sd �
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Problems 693

Review Problems

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al. 
(© 2009 John Wiley and Sons, Inc.).

can be obtained through the book’s web site, www.wiley.com/
college/munson.

Section 12.1 Introduction and Section 12.2 Basic
Energy Considerations
12.1 Obtain a photograph image of the blades of an actual axial-
flow turbomachine. Briefly explain how and why the machine
works and whether it is a “pump” or a “turbine.”

�

Problems

Notes: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with a 1†2 are “open-ended” problems and re-
quire critical thinking in that to work them one must make
various assumptions and provide the necessary data. There is
not a unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems

Corrected compressor mass 

flowrate (12.54)

Corrected compressor speed (12.55)
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12.2 Obtain a photograph image of the blades of an actual radial-
flow turbomachine. Briefly explain how and why the machine
works and whether it is a “pump” or a “turbine.”

12.3 List ten examples of turbomachines you have encountered.

12.4 The rotor shown in Fig. P12.4 rotates clockwise. Assume that
the fluid enters in the radial direction and the relative velocity is
tangent to the blades and remains constant across the entire rotor.
Is the device a pump or a turbine? Explain.

�

694 Chapter 12 ■ Turbomachines

12.13 At a given radial location, a wind against a wind-
mill (see Video V12.1) results in the upstream (1) and downstream
(2) velocity triangles shown in Fig. P12.13. Sketch an appropriate
blade section at that radial location and determine the energy trans-
ferred per unit mass of fluid.

15-mph

F I G U R E  P12.4

ω

r1

V1

r2

12.5 Obtain a schematic of a hydraulic turbine system, and briefly
explain the main elements of how potential energy is converted to
produce electricity.

12.6 (See Fluids in the News article titled “Current from currents,”
Section 12.2.) What is the Betz limit associated with wind turbines
and why does it exist?

12.7 Would a turbine rotor that is forced to rotate in a fluid by
applying a torque to the shaft move that fluid? Explain. Comment
on the impact of rotation direction.

Section 12.3 Basic Angular Momentum Considerations

12.8 Identify typical units for the variables work per unit mass
and power in the British Gravitational, International, and English
Engineering Systems. Which unit system is easiest to understand,
and why?

12.9 Obtain a schematic of a torque converter, and briefly explain
how it works.

12.10 Water flows through a rotating sprinkler arm as shown
in Fig. P12.10 and Video V12.2. Estimate the minimum water pres-
sure necessary for an angular velocity of 150 rpm. Is this a turbine
or a pump?

12.11 Water is supplied to a dishwasher through the manifold
shown in Fig. P12.11. Determine the rotational speed of the man-
ifold if bearing friction and air resistance are neglected. The total
flowrate of 2.3 gpm is divided evenly among the six outlets, each
of which produces a 5 16-in.-diameter stream.

12.12 Water flows axially up the shaft and out through the two
sprinkler arms as sketched in Fig. P12.10 and as shown in Video
V12.2. With the help of the moment-of-momentum equation ex-
plain why only at a threshold amount of water flow, the sprin-
kler arms begin to rotate. What happens when the flowrate in-
creases above this threshold amount? If the exit nozzle could 
be varied, what would happen for a set flowrate above the thresh-
old amount, when the angle is increased to 90°? Decreased 
to 0°?

�

F I G U R E  P12.11

3 in. 3 in. 3 in.

W W W

W W W

ω

a

a
W 

30°

section a-a

F I G U R E  P12.10

0.3 in.
70°

= 120 rpmω

Q

7 in.

F I G U R E  P12.13

60°V1 = 15 mph

W1

W2

V2

U1 = 20 mph
U2 = 20 mph

⎪W2⎪ = ⎪W1⎪

12.14 Sketch how you would arrange four 3-in.-wide by 12-in.-
long thin but rigid strips of sheet metal on a hub to create a wind-
mill like the one shown in Video V12.1. Discuss, with the help of
velocity triangles, how you would arrange each blade on the hub
and how you would orient your windmill in the wind.

12.15 Sketched in Fig. P12.15 are the upstream [section 112] and
downstream [section 122] velocity triangles at the arithmetic mean
radius for flow through an axial-flow turbomachine rotor. The axial
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component of velocity is 50 ft�s at sections 112 and 122. (a) Label
each velocity vector appropriately. Use V for absolute velocity, W
for relative velocity, and U for blade velocity. (b) Are you dealing
with a turbine or a fan? (c) Calculate the work per unit mass in-
volved. (d) Sketch a reasonable blade section. Do you think that
the actual blade exit angle will need to be less or greater than 
Why?

12.16 Shown in Fig. P12.16 is a toy “helicopter” powered by air
escaping from a balloon. The air from the balloon flows radially
through each of the three propeller blades and out small nozzles at
the tips of the blades. The nozzles 1along with the rotating pro-
peller blades2 are tilted at a small angle as indicated. Sketch the
velocity triangle 1i.e., blade, absolute, and relative velocities2 for
the flow from the nozzles. Explain why this toy tends to move up-
ward. Is this a turbine? Pump?

15°?

Problems 695

of the absolute velocity at the pump exit is The fluid enters
the pump rotor radially. Calculate the shaft work required per unit
mass flowing through the pump.

12.19 A centrifugal water pump having an impeller diameter of
0.5 m operates at 900 rpm. The water enters the pump parallel to
the pump shaft. If the exit blade angle, 1see Fig. 12.82, is 
determine the shaft power required to turn the impeller when the
flow through the pump is The uniform blade height is
50 mm.

12.20 A centrifugal pump impeller is rotating at 1200 rpm in the
direction shown in Fig. P12.20. The flow enters parallel to the axis
of rotation and leaves at an angle of to the radial direction. The
absolute exit velocity, is 90 ft�s. (a) Draw the velocity triangle
for the impeller exit flow. (b) Estimate the torque necessary to turn
the impeller if the fluid is water. What will the impeller rotation
speed become if the shaft breaks?

V2,
30°

0.16 m3�s.

25°,b2

90 ft�s.

15°

(1)

15°

(2)

Axial
direction

30°

F I G U R E  P12.15

F I G U R E  P12.16

Balloon 

ω 

Section 12.4 The Centrifugal Pump and Section 12.4.1
Theoretical Considerations

12.17 Obtain photographs/images of a variety of centrifugal pump
rotors. Does the predominant direction of flow through the rotor
make sense? Explain.

12.18 The radial component of velocity of water leaving the
centrifugal pump sketched in Fig. P12.18 is The magnitude45 ft�s.

3000
rpm

0.2 ft

0.5 ft

V1

+

V2 = 90 ft/s

Vr2 = 45 ft/s

F I G U R E  P12.18

F I G U R E  P12.20

+

30°

V2

1 in.

ω 1 ft

12.21 Discuss the main simplifying assumptions associated with
Eq. 12.13 and explain why actual head rise is always less than ideal
head rise. Discuss how ideal head rise is head “added” to the fluid
and actual head rise is head “gained” by the fluid. Can Eq. 12.13
be used for a turbine? Explain in terms of actual and ideal changes
in head.

12.22 A centrifugal radial water pump has the dimensions shown
in Fig. P12.22. The volume rate of flow is and the ab-
solute inlet velocity is directed radially outward. The angular ve-
locity of the impeller is 960 rpm. The exit velocity as seen from a
coordinate system attached to the impeller can be assumed to be
tangent to the vane at its trailing edge. Calculate the power required
to drive the pump.

0.25 ft3�s,
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Section 12.4.2 Pump Performance Characteristics

12.23 Water is pumped with a centrifugal pump, and measure-
ments made on the pump indicate that for a flowrate of 240 gpm
the required input power is 6 hp. For a pump efficiency of 62%,
what is the actual head rise of the water being pumped?

12.24 The performance characteristics of a certain centrifugal
pump are determined from an experimental setup similar to that
shown in Fig. 12.10. When the flowrate of a liquid 
through the pump is 120 gpm, the pressure gage at 112 indicates a
vacuum of 95 mm of mercury and the pressure gage at 122 indi-
cates a pressure of 80 kPa. The diameter of the pipe at the inlet is
110 mm and at the exit it is 55 mm. If what is the
actual head rise across the pump? Explain how you would estimate
the pump motor power requirement.

12.25 The performance characteristics of a certain centrifugal
pump having a 9-in.-diameter impeller and operating at 1750 rpm
are determined using an experimental setup similar to that shown
in Fig. 12.10. The following data were obtained during a series of
tests in which and the fluid was water.z2 � z1 � 0, V2 � V1,

z2 � z1 � 0.5 m,

1SG � 0.92

12.29 A centrifugal pump with a 7-in.-diameter impeller has the
performance characteristics shown in Fig. 12.12. The pump is used
to pump water at and the pump inlet is located 12 ft above
the open water surface. When the flowrate is 200 gpm, the head
loss between the water surface and the pump inlet is 6 ft of water.
Would you expect cavitation in the pump to be a problem? Assume
standard atmospheric pressure. Explain how you arrived at your
answer.

12.30 Water at is pumped from an open tank through 200 m
of 50-mm-diameter smooth horizontal pipe as shown in Fig. P12.30
and discharges into the atmosphere with a velocity of 3 m�s. Minor
losses are negligible. (a) If the efficiency of the pump is 70%, how
much power is being supplied to the pump? (b) What is the

at the pump inlet? Neglect losses in the short section of
pipe connecting the pump to the tank. Assume standard atmos-
pheric pressure.

NPSHA

40 °C

100 °F,

F I G U R E  P12.22

0.75 in.

55°

960
rpm

V1

+

Q = 0.25 ft3/s

11 in. 3 in.

Q 1gpm2 20 40 60 80 100 120 140

40.2 40.1 38.1 36.2 33.5 30.1 25.8

Power input 1hp2 1.58 2.27 2.67 2.95 3.19 3.49 4.00

p2 � p1 1psi2

Based on these data, show or plot how the actual head rise, and
the pump efficiency, vary with the flowrate. What is the design
flowrate for this pump?

12.26 It is sometimes useful to have pump performance
curves expressed in the form of an equation. Fit the data
given in Problem 12.25 to an equation of the form 
and compare the values of determined from the equation with
the experimentally determined values. 1Hint: Plot versus and
use the method of least squares to fit the data to the equation.2

Section 12.4.3 Net Positive Suction Head (NPSH)

12.27 Obtain a photograph image of cavitation damage to a cen-
trifugal pump rotor. Is the damage where you expect it to occur?
Explain.

12.28 In Example 12.3, how will the maximum height, that the
pump can be located above the water surface change if the water
temperature is decreased to 40 °F?

z1,

�

Q2ha

ha

ha � ho � kQ2
ha � Q

ha � Q

h,
ha,

F I G U R E  P12.30

F I G U R E  P12.31

Diameter = 50 mm

Length = 200 m
Pump

3 m

Pump Pump

(a) (b)

12.31 The centrifugal pump shown in Fig. P12.31 is not self-priming.
That is, if the water is drained from the pump and pipe as shown
in Fig. P12.311a2, the pump will not draw the water into the pump
and start pumping when the pump is turned on. However, if the
pump is primed [i.e., filled with water as in Fig. P12.311b2], the
pump does start pumping water when turned on. Explain this
behavior.

Section 12.4.4 System Characteristics 
and Pump Selection

12.32 Contrast the advantages and disadvantages of using pumps
in parallel and in series.

12.33 Owing to fouling of the pipe wall, the friction factor for the
pipe of Example 12.4 increases from 0.02 to 0.03. Determine the
new flowrate, assuming all other conditions remain the same. What
is the pump efficiency at this new flowrate? Explain how a line
valve could be used to vary the flowrate through the pipe of
Example 12.4. Would it be better to place the valve upstream or
downstream of the pump? Why?

12.34 A centrifugal pump having a head-capacity relationship given
by the equation with in feet when
Q is in gpm, is to be used with a system similar to that shown in

haha � 180 � 6.10 � 10�4Q2,
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Problems 697

Fig. 12.14. For what is the expected flowrate if the
total length of constant diameter pipe is 600 ft and the fluid is wa-
ter? Assume the pipe diameter to be 4 in. and the friction factor to
be equal to 0.02. Neglect all minor losses.

12.35 A centrifugal pump having a 6-in.-diameter impeller and
the characteristics shown in Fig. 12.12 is to be used to pump gaso-
line through 4000 ft of commercial steel 3-in.-diameter pipe. The
pipe connects two reservoirs having open surfaces at the same
elevation. Determine the flowrate. Do you think this pump is a
good choice? Explain.

12.36 Determine the new flowrate for the system described in
Problem 12.35 if the pipe diameter is increased from 3 in. to 4 in.
Is this pump still a good choice? Explain.

12.37 A centrifugal pump having the characteristics shown in
Example 12.4 is used to pump water between two large open tanks
through 100 ft of 8-in.-diameter pipe. The pipeline contains 4 reg-
ular flanged elbows, a check valve, and a fully open globe
valve. Other minor losses are negligible. Assume the friction fac-
tor for the 100-ft section of pipe. If the static head 1dif-
ference in height of fluid surfaces in the two tanks2 is 30 ft, what
is the expected flowrate? Do you think this pump is a good choice?
Explain.

12.38 In a chemical processing plant a liquid is pumped from an
open tank, through a 0.1-m-diameter vertical pipe, and into another
open tank as shown in Fig. P12.381a2. A valve is located in the
pipe, and the minor loss coefficient for the valve as a function of
the valve setting is shown in Fig. P12.381b2. The pump head-
capacity relationship is given by the equation 

with in meters when Q is in m3 s. Assume the friction�ha103 Q2
ha � 52.0 � 1.01 �

f � 0.02

90°

z2 � z1 � 50 ft, factor f 0.02 for the pipe, and all minor losses, except for the
valve, are negligible. The fluid levels in the two tanks can be as-
sumed to remain constant. (a) Determine the flowrate with the valve
wide open. (b) Determine the required valve setting 1percent open2
to reduce the flowrate by 50%.

†12.39 Water is pumped between the two tanks described in Ex-
ample 12.4 once a day, 365 days a year, with each pumping pe-
riod lasting two hours. The water levels in the two tanks remain
essentially constant. Estimate the annual cost of the electrical power
needed to operate the pump if it were located in your city. You will
have to make a reasonable estimate for the efficiency of the motor
used to drive the pump. Due to aging, it can be expected that the
overall resistance of the system will increase with time. If the op-
erating point shown in Fig. E12.4c changes to a point where the
flowrate has been reduced to 1000 gpm, what will be the new an-
nual cost of operating the pump? Assume that the cost of electri-
cal power remains the same.

Section 12.5 Dimensionless Parameters and 
Similarity Laws

12.40 Obtain photographs images of a series of production pump
rotors that suggest they are geometrically similar though different
in feature size.

12.41 What is the rationale for operating two geometrically sim-
ilar pumps differing in feature size at the same flow coefficient?

12.42 A centrifugal pump having an impeller diameter of 1 m is
to be constructed so that it will supply a head rise of 200 m at a
flowrate of of water when operating at a speed of 1200 rpm.
To study the characteristics of this pump, a scale, geometri-
cally similar model operated at the same speed is to be tested in
the laboratory. Determine the required model discharge and head
rise. Assume that both model and prototype operate with the same
efficiency 1and therefore the same flow coefficient2.

12.43 A centrifugal pump with a 12-in.-diameter impeller requires
a power input of 60 hp when the flowrate is 3200 gpm against a
60-ft head. The impeller is changed to one with a 10-in. diame-
ter. Determine the expected flowrate, head, and input power if the
pump speed remains the same.

12.44 Do the head-flowrate data shown in Fig. 12.12 appear to
follow the similarity laws as expressed by Eqs. 12.39 and 12.40?
Explain.

12.45 A centrifugal pump has the performance characteristics
of the pump with the 6-in.-diameter impeller described in Fig.
12.12. Note that the pump in this figure is operating at 3500 rpm.
What is the expected head gained if the speed of this pump is
reduced to 2800 rpm while operating at peak efficiency?

12.46 A centrifugal pump provides a flowrate of 500 gpm when
operating at 1750 rpm against a 200-ft head. Determine the pump’s
flowrate and developed head if the pump speed is increased to
3500 rpm.

12.47 Explain how Fig. 12.18 was constructed from test data. Why
is this use of specific speed important? Illustrate with a specific
example.

12.48 Use the data given in Problem 12.25 and plot the dimen-
sionless coefficients versus for this pump. Calculate
a meaningful value of specific speed, discuss its usefulness, and
compare the result with data of Fig. 12.18.

12.49 In a certain application a pump is required to deliver 5000
gpm against a 300-ft head when operating at 1200 rpm. What type
of pump would you recommend?

CQCH, Cp, h

1�5
4.1 m3�s

�

�

F I G U R E  P12.38

0
20 40 60 80 100

10

20

30

40

0
(Open)(Closed)

Percent valve setting

Valve

D = 0.1 m

Open

Pump

KL

30 m

3 m

(a)

(b)
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698 Chapter 12 ■ Turbomachines

Section 12.6 Axial-Flow and Mixed-Flow Pumps

12.50 Obtain photographs images of a variety of axial-flow and
mixed-flow pump rotors. Explain any unusual features.

12.51 (See Fluids in the News Article titled “Mechanical heart as-
sist devices” Section 12.6.) Obtain photographs images of blood
flow pumps that are turbomachines.

12.52 Explain how a marine propeller and an axial-flow pump are
similar in the main effect they produce.

12.53 A certain axial-flow pump has a specific speed of 
If the pump is expected to deliver 3000 gpm when operating against
a 15-ft head, at what speed 1rpm2 should the pump be run?

12.54 A certain pump is known to have a capacity of when
operating at a speed of 60 rad s against a head of 20 m. Based on
the information in Fig. 12.18, would you recommend a radial-flow,
mixed-flow, or axial-flow pump?

12.55 Fuel oil 
is pumped through the piping system of Fig. P12.55 with a

velocity of 4.6 ft s. The pressure 200 ft upstream from the pump
is 5 psi. Pipe losses downstream from the pump are negligible, but
minor losses are not 1minor loss coefficients are given on the fig-
ure2. (a) For a pipe diameter of 2 in. with a relative roughness

determine the head that must be added by the pump.
(b) For a pump operating speed of 1750 rpm, what type of pump
1radial-flow, mixed-flow, or axial-flow2 would you recommend for
this application?

e�D � 0.001,

�
s�ft22

1sp. wt � 48.0 lb�ft3, viscosity � 2.0 � 10�5 lb #

�
3 m3�s

NS � 5.0.

�

�

12.61 Consider the Pelton wheel turbine illustrated in Figs. 12.24,
12.25, 12.26, and 12.27. This kind of turbine is used to drive the
oscillating sprinkler shown in Video V12.3. Explain how this kind
of sprinkler is started, and subsequently operated at constant oscil-
lating speed. What is the physical significance of the zero torque
condition with the Pelton wheel rotating?

12.62 A small Pelton wheel is used to power an oscillating lawn
sprinkler as shown in Video V12.3 and Fig. P12.62. The arithmetic
mean radius of the turbine is 1 in., and the exit angle of the blade
is 135° relative to the blade motion. Water is supplied through a
single 0.20-in.-diameter nozzle at a speed of Determine the
flowrate, the maximum torque developed, and the maximum power
developed by this turbine.

50 ft�s.

F I G U R E  P12.55

D = 2 in.

Valve

Pump

(KL = 10.0) 

(KL = 1.5) 
Elbow

(KL = 1.0) 
Exit

V = 4.6 ft/s

5 psi

Open

200 ft

20 ft

12.56 The axial-flow pump shown in Fig. 12.19 is designed to
move of water over a head rise of 5 ft of water. Es-
timate the motor power requirement and the needed to achieve
this flowrate on a continuous basis. Comment on any cautions as-
sociated with where the pump is placed vertically in the pipe.

Section 12.7 Fans

12.57 Obtain photographs images of a variety of fan rotors and
categorize them as axial-flow, radial-flow, or mixed-flow fans. Note
any unusual features.

12.58 (See Fluids in the News Article titled “High-tech ceiling
fans,” Section 12.7.) Explain why reversing the direction of rota-
tion of a ceiling fan results in airflow in the opposite direction.

12.59 For the fan of both Examples 5.19 and 5.28 discuss what
fluid flow properties you would need to measure to estimate fan
efficiency.

Section 12.8 Turbines

12.60 Obtain photographs images of very small and very large
turbine rotors, and explain briefly where each is used.

�

�

U2Vu2
5000 gal�min

F I G U R E  P12.62

Q

12.63 The single-stage, axial-flow turbomachine shown in Fig.
P12.63 involves water flow at a volumetric flowrate of 9 m3�s. The
rotor revolves at 600 rpm. The inner and outer radii of the annu-
lar flow path through the stage are 0.46 and 0.61 m, and .
The flow entering the rotor row and leaving the stator row is ax-
ial when viewed from the stationary casing. Is this device a tur-
bine or a pump? Estimate the amount of power transferred to or
from the fluid.

b2 � 60°

F I G U R E  P12.63

600
rpm

r1 = 0.46 m

r0 = 0.61 m
Q =
9  m3/s

β 2

W2

U2

V2V1

U1W1

12.64 Describe what will happen when the flow through the tur-
bomachine of Fig. P12.63 is in the opposite direction (right to left)
and the shaft is freed up to rotate in response to the reversed flow.

12.65 For an air turbine of a dentist’s drill like the one shown in
Fig. E12.8 and Video V12.4, calculate the average blade speed as-
sociated with a rotational speed of 350,000 rpm. Estimate the air
pressure needed to run this turbine.

12.66 Water for a Pelton wheel turbine flows from the headwater
and through the penstock as shown in Fig. P12.66. The effective
friction factor for the penstock, control valves, and the like is 0.032
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and the diameter of the jet is 0.20 m. Determine the maximum
power output.

12.67 Water to run a Pelton wheel is supplied by a penstock of length
and diameter D with a friction factor f. If the only losses associ-

ated with the flow in the penstock are due to pipe friction, show that
the maximum power output of the turbine occurs when the nozzle di-
ameter, is given by 

12.68 A hydraulic turbine operating at 180 rpm with a head of
100 feet develops 20,000 horsepower. Estimate the power if the
same turbine were to operate under a head of 50 ft.

12.69 Draft tubes as shown in Fig. P12.69 are often installed at
the exit of Kaplan and Francis turbines. Explain why such draft
tubes are advantageous.

D� 12f /�D21�4.D1 �D1,

/

Problems 699

†12.73 It is possible to generate power by using the water from
your garden hose to drive a small Pelton wheel turbine (see Video
V12.3). Provide a preliminary design of such a turbine and esti-
mate the power output expected. List all assumptions and show
calculations.

12.74 The device shown in Fig. P12.74 is used to investigate the
power produced by a Pelton wheel turbine. Water supplied at a
constant flowrate issues from a nozzle and strikes the turbine buck-
ets as indicated. The angular velocity, of the turbine wheel is
varied by adjusting the tension on the Prony brake spring, thereby
varying the torque, applied to the output shaft. This torque
can be determined from the measured force, R, needed to keep the
brake arm stationary as where is the moment arm of
the brake force.

/Tshaft � F/,

Tshaft,

v,

F I G U R E  P12.66

Elevation = 975 m

D = 0.90 m
    = 1020 ml 1.7 m

Elevation = 250 m

0.20 m

F I G U R E  P12.69

Draft tube

12.70 Turbines are to be designed to develop 30,000 horsepower
while operating under a head of 70 ft and an angular velocity of
60 rpm. What type of turbine is best suited for this purpose? Esti-
mate the flowrate needed.

12.71 Show how you would estimate the relationship between fea-
ture size and power production for a wind turbine like the one
shown in Video V12.1.

12.72 Test data for the small Francis turbine shown in Fig. P12.72
is given in the table below. The test was run at a constant 32.8-ft
head just upstream of the turbine. The Prony brake on the turbine
output shaft was adjusted to give various angular velocities, and
the force on the brake arm, F, was recorded. Use the given data to
plot curves of torque as a function of angular velocity and turbine
efficiency as a function of angular velocity.

F I G U R E  P12.72

F

Q

Brake arm

Brake cord

 (rpm) Q (ft3/s) F (lb)

0
1000
1500
1870
2170
2350
2580
2710

0.129
0.129
0.129
0.124
0.118

0.0942
0.0766
0.068

2.63
2.40
2.22
1.91
1.49

0.876
0.337
0.089

ω

ω

6   in.3
8

Prony brakeω

Pelton
wheel Spring

Brake shoe

0.43 in.

.(0)

R

= 6 in.

Q =
0.0542 ft3/s

D
2

= 3 in.

F I G U R E  P12.74

Experimentally determined values of and R are shown in
the following table. Use these results to plot a graph of torque as
a function of the angular velocity. On another graph plot the power
output, as a function of the angular velocity. On
each of these graphs plot the theoretical curves for this turbine, as-
suming 100% efficiency.

W
#

shaft � Tshaft v,

v
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12.76 Obtain photographs images of a variety of compressible
flow turbines and categorize them as axial-flow or radial-flow tur-
bines. Explain briefly how they are used. Note any unusual features.

■ Life Long Learning Problems

12.77 What do you think are the major unresolved fluid dynam-
ics problems associated with gas turbine engine compressors? For
gas turbine engine high-pressure and low-pressure turbines? For
gas turbine engine fans?

12.78 Outline the steps associated with the preliminary design of
a turbomachine rotor.

12.79 What are current efficiencies achieved by the following cat-
egories of turbomachines? (a) Wind turbines; (b) hydraulic 
turbines; (c) power plant steam turbines; (d) aircraft gas turbine
engines; (e) natural gas pipeline compressors; (f ) home vacuum
cleaner blowers; (g) laptop computer cooling fan; (h) irrigation
pumps; (i) dentist drill air turbines. What is being done to improve
these devices?

12.80 (See Fluids in the News Article titled “Cavitation damage
in hydraulic turbines,” Section 12.8.2.) How is cavitation and, more
importantly, the damage it can cause detected in hydraulic turbines?
How can this damage be minimized?

�Compare the experimental and theoretical results and dis-
cuss some possible reasons for any differences between them.

700 Chapter 12 ■ Turbomachines

Section 12.9 Compressible Flow Turbomachines

12.75 Obtain photographs images of a variety of turbo-compres-
sor rotors and categorize them as axial-flow or radial-flow com-
pressors. Explain briefly how they are used. Note any unusual
features.

�

(rpm) R (lb)

0 2.47

360 1.91

450 1.84

600 1.69

700 1.55

940 1.17

1120 0.89

1480 0.16

�
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Appendix A
Computational Fluid Dynamics
and FlowLab

A.1 Introduction

Numerical methods using digital computers are, of course, commonly utilized to solve a wide

variety of flow problems. As discussed in Chapter 6, although the differential equations that gov-

ern the flow of Newtonian fluids [the Navier–Stokes equations (Eq. 6.127)] were derived many

years ago, there are few known analytical solutions to them. However, with the advent of high-

speed digital computers it has become possible to obtain approximate numerical solutions to these

(and other fluid mechanics) equations for a wide variety of circumstances.

Computational fluid dynamics (CFD) involves replacing the partial differential equations

with discretized algebraic equations that approximate the partial differential equations. These

equations are then numerically solved to obtain flow field values at the discrete points in space

and/or time. Since the Navier–Stokes equations are valid everywhere in the flow field of the fluid

continuum, an analytical solution to these equations provides the solution for an infinite num-

ber of points in the flow. However, analytical solutions are available for only a limited num-

ber of simplified flow geometries. To overcome this limitation, the governing equations can

be discretized and put in algebraic form for the computer to solve. The CFD simulation solves

for the relevant flow variables only at the discrete points, which make up the grid or mesh of

the solution (discussed in more detail below). Interpolation schemes are used to obtain values

at non-grid point locations.

CFD can be thought of as a numerical experiment. In a typical fluids experiment, an exper-

imental model is built, measurements of the flow interacting with that model are taken, and the

results are analyzed. In CFD, the building of the model is replaced with the formulation of the

governing equations and the development of the numerical algorithm. The process of obtaining

measurements is replaced with running an algorithm on the computer to simulate the flow inter-

action. Of course, the analysis of results is common ground to both techniques.

CFD can be classified as a subdiscipline to the study of fluid dynamics. However, it should

be pointed out that a thorough coverage of CFD topics is well beyond the scope of this textbook.

This appendix highlights some of the more important topics in CFD, but is only intended as a brief

introduction. The topics include discretization of the governing equations, grid generation, bound-

ary conditions, application of CFD, and some representative examples. Also included is a section

on FlowLab, which is the educational CFD software incorporated with this textbook. FlowLab offers

the reader the opportunity to begin using CFD to solve flow problems as well as to reinforce con-

cepts covered in the textbook. For more information, go to the book’s website, www.wiley.com/

college/munson, to access the FlowLab problems, tutorials, and users guide.

A.2 Discretization

The process of discretization involves developing a set of algebraic equations (based on discrete

points in the flow domain) to be used in place of the partial differential equations. Of the vari-

ous discretization techniques available for the numerical solution of the governing differential

equations, the following three types are most common: (1) the finite difference method, (2) the

finite element (or finite volume) method, and (3) the boundary element method. In each of these

methods, the continuous flow field (i.e., velocity or pressure as a function of space and time) is

described in terms of discrete (rather than continuous) values at prescribed locations. Through

this technique the differential equations are replaced by a set of algebraic equations that can be

solved on the computer.

VA.1 Pouring 
a liquid
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702 Appendix A ■ Computational Fluid Dynamics and FlowLab

For the finite element (or finite volume) method, the flow field is broken into a set of small

fluid elements (usually triangular areas if the flow is two-dimensional, or small volume elements

if the flow is three-dimensional). The conservation equations (i.e., conservation of mass, momen-

tum, and energy) are written in an appropriate form for each element, and the set of resulting

algebraic equations for the flow field is solved numerically. The number, size, and shape of ele-

ments are dictated in part by the particular flow geometry and flow conditions for the problem

at hand. As the number of elements increases (as is necessary for flows with complex bound-

aries), the number of simultaneous algebraic equations that must be solved increases rapidly. Prob-

lems involving one million (or more) grid cells are not uncommon in today’s CFD community,

particularly for complex three-dimensional geometries. Further information about this method can

be found in Refs. 1 and 2.

For the boundary element method, the boundary of the flow field (not the entire flow field

as in the finite element method) is broken into discrete segments (Ref. 3) and appropriate singu-

larities such as sources, sinks, doublets, and vortices are distributed on these boundary elements.

The strengths and type of the singularities are chosen so that the appropriate boundary condi-

tions of the flow are obtained on the boundary elements. For points in the flow field not on the

boundary, the flow is calculated by adding the contributions from the various singularities on

the boundary. Although the details of this method are rather mathematically sophisticated, it may

(depending on the particular problem) require less computational time and space than the finite

element method. Typical boundary elements and their associated singularities (vortices) for two-

dimensional flow past an airfoil are shown in Fig. A.1. Such use of the boundary element method

in aerodynamics is often termed the panel method in recognition of the fact that each element

plays the role of a panel on the airfoil surface (Ref. 4).

The finite difference method for computational fluid dynamics is perhaps the most eas-

ily understood and widely used of the three methods listed above. For this method the flow

field is dissected into a set of grid points and the continuous functions (velocity, pressure, etc.)

are approximated by discrete values of these functions calculated at the grid points. Deriva-

tives of the functions are approximated by using the differences between the function values

at local grid points divided by the grid spacing. The standard method for converting the par-

tial differential equations to algebraic equations is through the use of Taylor series expansions.

(See Ref. 5.) For example, assume a standard rectangular grid is applied to a flow domain as

shown in Fig. A.2.

This grid stencil shows five grid points in x–y space with the center point being labeled as

i, j. This index notation is used as subscripts on variables to signify location. For example,

is the u component of velocity at the first point to the right of the center point i, j. The grid spac-

ing in the i and j directions is given as and , respectively.¢y¢x

ui�1, j

i – 1 

i th panel

i = strength of vortex on 
     i th  panel

Γ

U

iΓ
i+ 1 Γ

Γ F I G U R E  A.1 Panel
method for flow past an airfoil.

Δy

Δx

i – 1 i i + 1

j + 1

j

j – 1

x

y

F I G U R E  A.2 Standard rectangular
grid.
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A.3 Grids 703

To find an algebraic approximation to a first derivative term such as at the i, j grid

point, consider a Taylor series expansion written for u at as

(A.1)

Solving for the underlined term in the above equation results in the following:

(A.2)

where contains higher order terms proportional to , and so forth. Equation A.2

represents a forward difference equation to approximate the first derivative using values at 

and i, j along with the grid spacing in the x direction. Obviously in solving for the term we

have ignored higher order terms such as the second and third derivatives present in Eq. A.1. This

process is termed truncation of the Taylor series expansion. The lowest order term that was trun-

cated included . Notice that the first derivative term contains . When solving for the first

derivative, all terms on the right-hand side were divided by . Therefore, the term signi-

fies that this equation has error of “order ,” which is due to the neglected terms in the Taylor

series and is called truncation error. Hence, the forward difference is termed first-order accurate.

Thus, we can transform a partial derivative into an algebraic expression involving values of

the variable at neighboring grid points. This method of using the Taylor series expansions to obtain

discrete algebraic equations is called the finite difference method. Similar procedures can be used

to develop approximations termed backward difference and central difference representations of

the first derivative. The central difference makes use of both the left and right points (i.e.,

) and is second-order accurate. In addition, finite difference equations can be

developed for the other spatial directions (i.e., ) as well as for second derivatives ,

which are also contained in the Navier–Stokes equations (see Ref. 5 for details).

Applying this method to all terms in the governing equations transfers the differential equa-

tions into a set of algebraic equations involving the physical variables at the grid points (i.e.,

etc.). This set of equations is then solved by appro-

priate numerical techniques. The larger the number of grid points used, the larger the number of

equations that must be solved.

A student of CFD should realize that the discretization of the continuum governing equa-

tions involves the use of algebraic equations that are an approximation to the original partial dif-

ferential equation. Along with this approximation comes some amount of error. This type of error

is termed truncation error because the Taylor series expansion used to represent a derivative is

“truncated” at some reasonable point and the higher order terms are ignored. The truncation errors

tend to zero as the grid is refined by making and smaller, so grid refinement is one method

of reducing this type of error. Another type of unavoidable numerical error is the so-called round-

off error. This type of error is due to the limit of the computer on the number of digits it can

retain in memory. Engineering students can run into round-off errors from their calculators if they

plug values into the equations at an early stage of the solution process. Fortunately, for most CFD

cases, if the algorithm is setup properly, round-off errors are usually negligible.

A.3 Grids

CFD computations using the finite difference method provide the flow field at discrete points in

the flow domain. The arrangement of these discrete points is termed the grid or the mesh. The

type of grid developed for a given problem can have a significant impact on the numerical sim-

ulation, including the accuracy of the solution. The grid must represent the geometry correctly

and accurately, since an error in this representation can have a significant effect on the solution.

The grid must also have sufficient grid resolution to capture the relevant flow physics, other-

wise they will be lost. This particular requirement is problem dependent. For example, if a flow

field has small-scale structures, the grid resolution must be sufficient to capture these structures. It

is usually necessary to increase the number of grid points (i.e., use a finer mesh) where large gra-

dients are to be expected, such as in the boundary layer near a solid surface. The same can also be
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said for the temporal resolution. The time step, , used for unsteady flows must be smaller than

the smallest time scale of the flow features being investigated.

Generally, the types of grids fall into two categories: structured and unstructured, depending on

whether or not there exists a systematic pattern of connectivity of the grid points with their neighbors.

As the name implies, a structured grid has some type of regular, coherent structure to the mesh lay-

out that can be defined mathematically. The simplest structured grid is a uniform rectangular grid, as

shown in Fig. A.3a. However, structured grids are not restricted to rectangular geometries. Fig. A.3b
shows a structured grid wrapped around a parabolic surface. Notice that grid points are clustered near

the surface (i.e., grid spacing in normal direction increases as one moves away from the surface) to

help capture the steep flow gradients found in the boundary layer region. This type of variable grid

spacing is used wherever there is a need to increase grid resolution and is termed grid stretching.

For the unstructured grid, the grid cell arrangement is irregular and has no systematic pat-

tern. The grid cell geometry usually consists of various-sized triangles for two-dimensional prob-

lems and tetrahedrals for three-dimensional grids. An example of an unstructured grid is shown

in Fig. A.4. Unlike structured grids, for an unstructured grid each grid cell and the connection

information to neighboring cells is defined separately. This produces an increase in the computer

code complexity as well as a significant computer storage requirement. The advantage to an

unstructured grid is that it can be applied to complex geometries, where structured grids would

have severe difficulty. The finite difference method is restricted to structured grids whereas the

finite volume (or finite element) method can use either structured or unstructured grids.

Other grids include hybrid, moving, and adaptive grids. A grid that uses a combination of grid

elements (rectangles, triangles, etc.) is termed a hybrid grid. As the name implies, the moving grid

¢t

(a) (b)

F I G U R E  A.3 Structured grids. (a) Rectangular grid. 
(b) Grid around a parabolic surface.

VA.2 Dynamic grid

F I G U R E  A.4 Anisotropic adaptive mesh for the calculation of viscous flow over a NACA
0012 airfoil at a Reynolds number of 10,000, Mach number of 0.755, and angle of attack of 1.5°. (From
CFD Laboratory, Concordia University, Montreal, Canada. Used by permission.)
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is helpful for flows involving a time-dependent geometry. If, for example, the problem involves

simulating the flow within a pumping heart or the flow around a flapping wing, a mesh that moves

with the geometry is desired. The nature of the adaptive grid lies in its ability to literally adapt

itself during the simulation. For this type of grid, while the CFD code is trying to reach a con-

verged solution, the grid will adapt itself to place additional grid resources in regions of high flow

gradients. Such a grid is particularly useful when a new problem arises and the user is not quite

sure where to refine the grid due to high flow gradients.

A.4 Boundary Conditions

The same governing equations, the Navier–Stokes equations (Eq. 6.127), are valid for all incom-

pressible Newtonian fluid flow problems. Thus, if the same equations are solved for all types of

problems, how is it possible to achieve different solutions for different types of flows involving

different flow geometries? The answer lies in the boundary conditions of the problem. The bound-

ary conditions are what allow the governing equations to differentiate between different flow fields

(for example, flow past an automobile and flow past a person running) and produce a solution

unique to the given flow geometry.

It is critical to specify the correct boundary conditions so that the CFD simulation is a well-

posed problem and is an accurate representation of the physical problem. Poorly defined boundary

conditions can ultimately affect the accuracy of the solution. One of the most common boundary

conditions used for simulation of viscous flow is the no-slip condition, as discussed in Section

1.6. Thus, for example, for two-dimensional external or internal flows, the x and y components

of velocity (u and v) are set to zero at the stationary wall to satisfy the no-slip condition. Other

boundary conditions that must be appropriately specified involve inlets, outlets, far-field, wall gra-

dients, etc. It is important to not only select the correct physical boundary condition for the prob-

lem, but also to correctly implement this boundary condition into the numerical simulation.

A.5 Basic Representative Examples

A very simple one-dimensional example of the finite difference technique is presented in the fol-

lowing example.

A viscous oil flows from a large, open tank and through a long,

small-diameter pipe as shown in Fig. EA.1a. At time the

fluid depth is H. Use a finite difference technique to determine the

t � 0

liquid depth as a function of time, Compare this result

with the exact solution of the governing equation.

h � h1t2.

SOLUTION

Flow from a Tank

Conservation of mass requires that the flowrate from the tank,

is related to the rate of change of depth of oil in the

tank, by

where is the tank diameter. Thus,

or

(3)V � �a
DT

D
b

2

 
dh

dt

p

4
 D2V � �

p

4
 D2

T 
dh

dt

DT

Q � �
p

4
 D2

T 
dh

dt

dh�dt,
Q � pD2V�4,

EXAMPLE A.1

Although this is an unsteady flow 1i.e., the deeper the oil, the faster

it flows from the tank2 we assume that the flow is “quasisteady”

and apply steady flow equations as follows.

As shown by Eq. 6.152, the mean velocity, V, for steady lami-

nar flow in a round pipe of diameter D is given by

(1)

where is the pressure drop over the length For this prob-

lem the pressure at the bottom of the tank 1the inlet of the pipe2 is
and that at the pipe exit is zero. Hence, and 

Eq. 1 becomes

(2)V �
D2gh

32m/

¢p � ghgh

/.¢p

V �
D2¢p

32m/

JWCL068_AppA_701-713.qxd  9/23/08  12:07 PM  Page 705



706 Appendix A ■ Computational Fluid Dynamics and FlowLab

By combining Eqs. 2 and 3 we obtain

or

where is a constant. For simplicity we assume

the conditions are such that Thus, we must solve

(4)

The exact solution to Eq. 4 is obtained by separating the vari-

ables and integrating to obtain

(5)

However, assume this solution was not known. The following fi-

nite difference technique can be used to obtain an approximate

solution.

h � He�t

dh

dt
� �h with h � H at t � 0

C � 1.

C � gD4�32m/D2
T

dh

dt
� �Ch

D2gh

32m/
� �a

DT

D
b

2dh

dt

As shown in Fig. EA.1b, we select discrete points 1nodes or

grid points2 in time and approximate the time derivative of h by

the expression

(6)

where is the time step between the different node points on the

time axis and and are the approximate values of h at nodes i
and Equation 6 is called the backward-difference approxima-

tion to We are free to select whatever value of that we wish.

1Although we do not need to space the nodes at equal distances, it is

often convenient to do so.2 Since the governing equation 1Eq. 42 is an

ordinary differential equation, the “grid” for the finite difference

method is a one-dimensional grid as shown in Fig. EA.1b rather than

a two-dimensional grid 1which occurs for partial differential equa-

tions2 as shown in Fig. EA.2b, or a three-dimensional grid.

Thus, for each value of . . . we can approximate the

governing equation, Eq. 4, as

hi � hi�1

¢t
� �hi

i � 2, 3, 4,

¢tdh�dt.
i � 1.

hi�1hi

¢t

dh

dt
`
t� ti

�
hi � hi�1

¢t

h

DT

D

V

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2H 

0.4H 

0.6H 

0.8H 

H

0 Δ t 2Δ t

i = 1 2 3 i – 1 i

(b)(a)

(c)

Δ t

t

h

h

H

h2

h3

hi – 1

hi

Exact: h = He-t

t = 0.2

hi – hi – 1

Δ

t = 0.1Δ

0

F I G U R E  EA.1
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For most CFD problems the governing equations to be solved are partial differential equa-

tions [rather than an ordinary differential equation as in the above example (Eq. A.1)] and the

finite difference method becomes considerably more involved. The following example illustrates

some of the concepts involved.

or

(7)

We cannot use Eq. 7 for since it would involve the non-

existing Rather we use the initial condition 1Eq. 42, which gives

The result is the following set of N algebraic equations for the N ap-

proximate values of h at times 

For most problems the corresponding equations would be more

complicated than those just given, and a computer would be used to

solve for the For this problem the solution is simply

. 
. 
.

. 
. 
.

h3 � H� 11 � ¢t22

h2 � H� 11 � ¢t2

hi.

 hN � hN�1� 11 � ¢t2

. 
. 
.

. 
. 
.

 h3 � h2� 11 � ¢t2

 h2 � h1� 11 � ¢t2

 h1 � H

1N � 12¢t.� ¢t, . . . , tN �t1 � 0, t2

h1 � H

h0.

i � 1

hi �
hi�1

11 � ¢t2

or in general

The results for are shown in Fig. EA.1c. Tabulated

values of the depth for are listed in the table below.t � 1

0 6 t 6 1

hi � H� 11 � ¢t2i�1

It is seen that the approximate results compare quite favorably

with the exact solution given by Eq. 5. It is expected that the finite

difference results would more closely approximate the exact re-

sults as is decreased since in the limit of the finite dif-

ference approximation for the derivatives 1Eq. 62 approaches the

actual definition of the derivative.

¢t S 0¢t

i for 

0.2 6 0.4019H

0.1 11 0.3855H

0.01 101 0.3697H

0.001 1001 0.3681H

Exact 1Eq. 52 — 0.3678H

hi for t � 1t � 1�t

Consider steady, incompressible flow of an inviscid fluid past a

circular cylinder as shown in Fig. EA.2a. The stream function,

for this flow is governed by the Laplace equation 1see Section 6.52

(1)
02c

0x2
�

02c

0y2
� 0

c,

The exact analytical solution is given in Section 6.6.3.

Describe a simple finite difference technique that can be used

to solve this problem.

SOLUTION

Flow Past a Cylinder

artificial, uniform flow conditions at a location where the actual

flow is not uniform. If these boundaries are farther than neces-

sary from the object, the flow domain will be larger than neces-

sary and excessive computer time and storage will be required.

Experience in solving such problems is invaluable!

Once the flow domain has been selected, an appropriate grid is

imposed on this domain 1see Fig. EA.2b2. Various grid structures

can be used. If the grid is too coarse, the numerical solution may

not be capable of capturing the fine scale structure of the actual

flow field. If the grid is too fine, excessive computer time and

EXAMPLE A.2

The first step is to define a flow domain and set up an appropri-

ate grid for the finite difference scheme. Since we expect the

flow field to be symmetrical both above and below and in front

of and behind the cylinder, we consider only one-quarter of the

entire flow domain as indicated in Fig. EA.2b. We locate the up-

per boundary and right-hand boundary far enough from the

cylinder so that we expect the flow to be essentially uniform at

these locations. It is not always clear how far from the object

these boundaries must be located. If they are not far enough, the

solution obtained will be incorrect because we have imposed
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storage may be required. Considerable work has gone into form-

ing appropriate grids 1Ref. 62. We consider a grid that is uniformly

spaced in the x and y directions, as shown in Fig. EA.2b.

As shown in Eq. 6.112, the exact solution to Eq. 1 1in terms

of polar coordinates r, rather than Cartesian coordinates x, y2
is The finite difference solution ap-

proximates these stream function values at a discrete 1finite2
number of locations 1the grid points2 as where the i and j in-

dices refer to the corresponding and locations.

The derivatives of can be approximated as follows:

and

This particular approximation is called a forward-difference ap-

proximation. Other approximations are possible. By similar rea-

soning, it is possible to show that the second derivatives of can

be written as follows:

(2)

and

(3)
02c

0y2
�

1

1¢y22
 1ci, j�1 � 2ci, j � ci, j�12

02c

0x2
�

1

1¢x22
 1ci�1, j � 2ci, j � ci�1, j2

c

0c
0y

�
1

¢y
 1ci, j�1 � ci, j2

0c
0x

�
1

¢x
 1ci�1, j � ci, j2

c
yjxi

ci, j,

c � Ur 11 � a2�r 22 sin u.

u

Thus, by combining Eqs. 1, 2, and 3 we obtain

(4)

Equation 4 can be solved for the stream function at and to give

(5)

Note that the value of depends on the values of the stream

function at neighboring grid points on either side and above and

below the point of interest 1see Eq. 5 and Fig. EA. 2c2.
To solve the problem 1either exactly or by the finite difference

technique2 it is necessary to specify boundary conditions for

points located on the boundary of the flow domain 1see Section

6.6.32. For example, we may specify that on the lower

boundary of the domain 1see Fig. EA.2b2 and a constant,

on the upper boundary of the domain. Appropriate boundary con-

ditions on the two vertical ends of the flow domain can also be

specified. Thus, for points interior to the boundary Eq. 5 is valid;

similar equations or specified values of are valid for boundary

points. The result is an equal number of equations and unknowns,

one for every grid point. For this problem, these equations

represent a set of linear algebraic equations for the solutionci, j,

ci, j,

ci, j

c � C,

c � 0

ci, j

 � 1¢x221ci, j�1 � ci, j�12 4

ci, j �
1

2 3 1¢x22 � 1¢y22 4
 3 1¢y221ci�1, j � ci�1, j2

yjxi

� ci, j�12 � 2 a
1

1¢x22
�

1

1¢y22
b ci, j � 0

02c

0x2
�
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0y2
�

1

1¢x22
 1ci�1, j � ci�1, j2 �

1

1¢y22
 1ci, j�1

i
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xΔ
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i , j – 1

i – 1, j i + 1, j 
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ψ ψ
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(a)

(b)

(c) F I G U R E  EA.2
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A.6 Methodology

In general, most applications of CFD take the same basic approach. Some of the differences

include problem complexity, available computer resources, available expertise in CFD, and

whether a commercially available CFD package is used, or a problem-specific CFD algorithm is

developed. In today’s market, there are many commercial CFD codes available to solve a wide

variety of problems. However, if the intent is to conduct a thorough investigation of a specific

fluid flow problem such as in a research environment, it is possible that taking the time to develop

a problem-specific algorithm may be most efficient in the long run. The features common to most

CFD applications can be summarized in the flow chart shown in Fig. A.6. A complete, detailed

CFD solution for a viscous flow obtained by using the steps summarized in the flow chart can

be accessed from the book’s website at www.wiley.com/college/munson.

A.6 Methodology 709

The preceding two examples are rather simple because the governing equations are not too

complex. A finite difference solution of the more complicated, nonlinear Navier–Stokes equation

(Eq. 6.127) requires considerably more effort and insight and larger and faster computers. A typ-

ical finite difference grid for a more complex flow, the flow past a turbine blade, is shown in Fig.

A.5. Note that the mesh is much finer in regions where large gradients are to be expected (i.e.,

near the leading and trailing edges of the blade) and more coarse away from the blade.

of which provides the finite difference approximation for the

stream function at discrete grid points in the flow field. Stream-

lines 1lines of constant 2 can be obtained by interpolating values

of between the grid points and “connecting the dots” of

The velocity field can be obtained from the deriva-

tives of the stream function according to Eq. 6.74. That is,

u �
0c
0y

�
1

¢y
 1ci, j�1 � ci, j2

c � constant.

ci, j

c

and

Further details of the finite difference technique can be found in

standard references on the topic 1Refs. 5, 7, 82. Also, see the com-

pletely solved viscous flow CFD problem in Section A6.

v � �
0c
0x

� �
1

¢x
 1ci�1, j � ci, j2

F I G U R E  A.5 Finite difference
grid for flow past a turbine blade. (From Ref. 9,
used by permission.)
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F I G U R E  A.6 Flow chart of general CFD methodology.
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The Algorithm Development box is grayed because this step is required only when devel-

oping your own CFD code. When using a commercial CFD code, this step is not necessary. This

chart represents a generalized methodology to CFD. There are other more complex components

that are hidden in the above steps, which are beyond the scope of a brief introduction to CFD.

A.7 Application of CFD

In the early stages of CFD, research and development was primarily driven by the aerospace

industry. Today, CFD is still used as a research tool, but it also has found a place in industry as

a design tool. There is now a wide variety of industries that make at least some use of CFD,

including automotive, industrial, HVAC, naval, civil, chemical, biological, and others. Industries

are using CFD as an added engineering tool that complements the experimental and theoretical

work in fluid dynamics.

A.7.1 Advantages of CFD

There are many advantages to using CFD for simulation of fluid flow. One of the most important

advantages is the realizable savings in time and cost for engineering design. In the past, coming up

with a new engineering design meant somewhat of a trial-and-error method of building and testing

multiple prototypes prior to finalizing the design. With CFD, many of the issues dealing with fluid

flow can be flushed out prior to building the actual prototype. This translates to a significant sav-

ings in time and cost. It should be noted that CFD is not meant to replace experimental testing, but

rather to work in conjunction with it. Experimental testing will always be a necessary component

of engineering design. Other advantages include the ability of CFD to: (1) obtain flow information

in regions that would be difficult to test experimentally, (2) simulate real flow conditions, (3) con-

duct large parametric tests on new designs in a shorter time, and (4) enhance visualization of com-

plex flow phenomena.

A good example of the advantages of CFD is shown in Figure A.7. Researchers use a type of

CFD approach called “large-eddy simulation” or LES to simulate the fluid dynamics of a tornado as

it encounters a debris field and begins to pick up sand-sized particles. A full animation of this tor-

nado simulation can be accessed by visiting the book website. The motivation for this work is to

investigate whether there are significant differences in the fluid mechanics when debris particles are

present. Historically it has been difficult to get comprehensive experimental data throughout a tor-

nado so CFD is helping to shine some light on the complex fluid dynamics involved in such a flow.

A.7.2 Difficulties in CFD

One of the key points that a beginning CFD student should understand is that one cannot treat the

computer as a “magic black box” when performing flow simulations. It is quite possible to obtain a

fully converged solution for the CFD simulation, but this is no guarantee that the results are physi-

cally correct. This is why it is important to have a good understanding of the flow physics and how

they are modeled. Any numerical technique (including those discussed above), no matter how sim-

ple in concept, contains many hidden subtleties and potential problems. For example, it may seem

reasonable that a finer grid would ensure a more accurate numerical solution. While this may be true

(as Example A.1), it is not always so straightforward; a variety of stability or convergence problems

may occur. In such cases the numerical “solution” obtained may exhibit unreasonable oscillations or

the numerical result may “diverge” to an unreasonable (and incorrect) result. Other problems that

may arise include (but are not limited to): (1) difficulties in dealing with the nonlinear terms of the

Navier–Stokes equations, (2) difficulties in modeling or capturing turbulent flows, (3) convergence

issues, (4) difficulties in obtaining a quality grid for complex geometries, and (5) managing resources,

both time and computational, for complex problems such as unsteady three-dimensional flows.

A.7.3 Verification and Validation

Verification and validation of the simulation are critical steps in the CFD process. This is a neces-

sary requirement for CFD, particularly since it is possible to have a converged solution that is non-

physical. Figure A.8 shows the streamlines for viscous flow past a circular cylinder at a given instant

VA.3 Tornado 
simulation
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after it was impulsively started from rest. The lower half of the figure represents the results of a finite

difference calculation; the upper half of the figure represents the photograph from an experiment of

the same flow situation. It is clear that the numerical and experimental results agree quite well. For

any CFD simulation, there are several levels of testing that need to be accomplished before one can

have confidence in the solution. The most important verification to be performed is grid convergence

testing. In its simplest form, it consists of proving that further refinement of the grid (i.e., increasing

the number of grid points) does not alter the final solution. When this has been achieved, you have a

grid-independent solution. Other verification factors that need to be investigated include the suitability

F I G U R E  A.7 Results from a large-eddy simulation showing the visual appear-
ance of the debris and funnel cloud from a simulated medium swirl F3-F4 tornado. The fun-
nel cloud is translating at 15 m/s and is ingesting 1-mm-diameter “sand” from the surface as
it encounters a debris field. Please visit the book website to access a full animation of this
tornado simulation. (Photographs and animation courtesy of Dr. David Lewellen, Ref. 10, and
Paul Lewellen, West Virginia University.)

F I G U R E  A.8 Streamlines for flow past
a circular cylinder at a short time after the flow was
impulsively started. The upper half is a photograph
from a flow visualization experiment. The lower half is
from a finite difference calculation. (See the photo-
graph at the beginning of Chapter 9.) (From Ref. 9,
used by permission.)
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of the convergence criterion, whether the time step is adequate for the time scale of the problem, and

comparison of CFD solutions to existing data, at least for baseline cases. Even when using a com-

mercial CFD code that has been validated on many problems in the past, the CFD practitioner still

needs to verify the results through such measures as grid-dependence testing.

A.7.4 Summary

In CFD, there are many different numerical schemes, grid techniques, etc. They all have their

advantages and disadvantages. A great deal of care must be used in obtaining approximate numer-

ical solutions to the governing equations of fluid motion. The process is not as simple as the

often-heard “just let the computer do it.” Remember that CFD is a tool and as such needs to be

used appropriately to produce meaningful results. The general field of computational fluid dynam-

ics, in which computers and numerical analysis are combined to solve fluid flow problems, rep-

resents an extremely important subject area in advanced fluid mechanics. Considerable progress

has been made in the past relatively few years, but much remains to be done. The reader is encour-

aged to consult some of the available literature.

A.8 FlowLab

The authors of this textbook are working in collaboration with Fluent, Inc., the largest provider

of commercial CFD software (www.fluent.com), to offer students the opportunity to use a new

CFD tool called FlowLab. FlowLab is designed to be a virtual fluids laboratory to help enhance

the educational experience in fluids courses. It uses computational fluid dynamics to help the stu-

dent grasp various concepts in fluid dynamics and introduces the student to the use of CFD in

solving fluid flow problems. Go to the book’s website at www.wiley.com/college/munson to

access FlowLab resources for this textbook.

The motivation behind incorporating FlowLab with a fundamental fluid mechanics textbook is

twofold: (1) expose the student to computational fluid dynamics and (2) offer a mechanism for stu-

dents to conduct experiments in fluid dynamics, numerically in this case. This educational software

allows students to reinforce basic concepts covered in class, conduct parametric studies to gain a bet-

ter understanding of the interaction between geometry, fluid properties, and flow conditions, and pro-

vides the student a visualization tool for various flow phenomena.

One of the strengths of FlowLab is the ease-of-use. The CFD simulations are based on pre-

viously developed templates which allow the user to start using CFD to solve flow problems with-

out requiring an extensive background in the subject. FlowLab provides the student the opportu-

nity to focus on the results of the simulation rather than the development of the simulation. Typical

results showing the developing velocity profile in the entrance region of a pipe are shown in the

solution window of Fig. A.9.
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F I G U R E  A.2 Entrance
flow in a pipe. Velocity profiles as a
function of radial position for various
locations along the pipe length.
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Problems have been developed that take advantage of the FlowLab capability of this text-

book. Go to the book’s website, www.wiley.com/college/munson, to access these problems (con-

tained in Chapters 7, 8, and 9) as well as a basic tutorial on using FlowLab. The course instructor

can provide information on accessing the FlowLab software. The book’s website also has a brief

example using FlowLab.
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Appendix B
Physical Properties of Fluids

MethaneCarbon dioxide

Hydrogen

Helium

Heptane

Octane

Water

Carbon tetrachloride

Mercury

Kerosene

SAE 10W oil

SAE 10W-30 oil

SAE 30W oil

Castor oil

Glycerin

–20 0 20 40 60 80 100 120

Temperature, °C

4.0

2.0

1.0
8
6

4

2

1 × 10–1

8
6

4

2

1 × 10–2

8
6

4

2

1 × 10–3

8
6

4

2

1 × 10–4

8
6

4

2

1 × 10–5

8
6

  
, 

D
yn

am
ic

 v
is

co
si

ty
, 

N
•
s/

m
2

µ

Air

F I G U R E  B.1 Dynamic (absolute) viscosity of common fluids as a function
of temperature. To convert to BG units of multiply by 
(Curves from R. W. Fox and A. T. McDonald, Introduction to Fluid Mechanics, 3rd Ed.,
Wiley, New York, 1985. Used by permission.)

2.089 � 10�2.N � s�m2lb � s�ft2
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(Curves from R. W. Fox and A. T. McDonald, Introduction to Fluid Mechanics, 3rd Ed.,
Wiley, New York, 1985. Used by permission.)
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TA B L E  B . 1

Physical Properties of Water ( )a

Specific Dynamic Kinematic Surface Vapor Speed of
Density, Viscosity, Viscosity, Pressure,

Temperature c
( ) ( ) ( ) ( ) ( ) (lb�ft) [ (abs)] (ft�s)

32 1.940 62.42 4603

40 1.940 62.43 4672

50 1.940 62.41 4748

60 1.938 62.37 4814

70 1.936 62.30 4871

80 1.934 62.22 4819

90 1.931 62.11 4960

100 1.927 62.00 4995

120 1.918 61.71 5049

140 1.908 61.38 5091

160 1.896 61.00 5101

180 1.883 60.58 5195

200 1.869 60.12 5089

212 1.860 59.83 50621.469  E � 14.04  E � 33.165  E � 65.886  E � 6

1.152  E � 14.12  E � 33.393  E � 66.342  E � 6

7.507  E � 04.26  E � 33.827  E � 67.207  E � 6

4.736  E � 04.40  E � 34.385  E � 68.315  E � 6

2.888  E � 04.53  E � 35.106  E � 69.743  E � 6

1.692  E � 04.67  E � 36.067  E � 61.164  E � 5

9.493  E � 14.79  E � 37.383  E � 61.423  E � 5

6.979  E � 14.86  E � 38.233  E � 61.500  E � 5

5.069  E � 14.91  E � 39.262  E � 61.791  E � 5

3.631  E � 14.97  E � 31.052  E � 52.037  E � 5

2.563  E � 15.03  E � 31.210  E � 52.344  E � 5

1.781  E � 15.09  E � 31.407  E � 52.730  E � 5

1.217  E � 15.13  E � 31.664  E � 53.228  E � 5

8.854  E � 25.18  E � 31.924  E � 53.732  E � 5

lb�in 2.ft2�slb�s�ft2lb�ft3slugs�ft3�F
pvSNMGR

Soundd,Tensionc,Weightb,

BG Units

aBased on data from Handbook of Chemistry and Physics, 69th Ed., CRC Press, 1988. Where necessary, values obtained by interpolation.
bDensity and specific weight are related through the equation For this table,
cIn contact with air.
dFrom R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984.

g � 32.174 ft�s2.g � rg.

TA B L E  B . 2

Physical Properties of Water ( )a

Specific Dynamic Kinematic Surface Vapor Speed of
Density, Viscosity, Viscosity, Pressure,

Temperature c
( ) ( ) ( ) ( ) ( ) (N�m) [ (abs)] (m�s)

0 999.9 9.806 1403

5 1000.0 9.807 1427

10 999.7 9.804 1447

20 998.2 9.789 1481

30 995.7 9.765 1507

40 992.2 9.731 1526

50 988.1 9.690 1541

60 983.2 9.642 1552

70 977.8 9.589 1555

80 971.8 9.530 1555

90 965.3 9.467 1550

100 958.4 9.399 15431.013  E � 55.89  E � 22.940  E � 72.818  E � 4

7.010  E � 46.08  E � 23.260  E � 73.147  E � 4

4.734  E � 46.26  E � 23.650  E � 73.547  E � 4

3.116  E � 46.44  E � 24.134  E � 74.042  E � 4

1.992  E � 46.62  E � 24.745  E � 74.665  E � 4

1.233  E � 46.79  E � 25.534  E � 75.468  E � 4

7.376  E � 36.96  E � 26.580  E � 76.529  E � 4

4.243  E � 37.12  E � 28.009  E � 77.975  E � 4

2.338  E � 37.28  E � 21.004  E � 61.002  E � 3

1.228  E � 37.42  E � 21.307  E � 61.307  E � 3

8.722  E � 27.49  E � 21.519  E � 61.519  E � 3

6.105  E � 27.56  E � 21.787  E � 61.787  E � 3

N�m2m2�sN�s�m2kN�m3kg�m3�C
pvSNMGR

Soundd,Tensionc,Weightb,

SI Units

aBased on data from Handbook of Chemistry and Physics, 69th Ed., CRC Press, 1988.
bDensity and specific weight are related through the equation For this table,
cIn contact with air.
dFrom R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984.

g � 9.807 m�s2.g � rg.
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Appendix B ■ Physical Properties of Fluids 717

TA B L E  B . 3

Physical Properties of Air at Standard Atmospheric Pressure (BG Units)a

Specific Speed
Specific Dynamic Kinematic Heat of

Density, Viscosity, Viscosity, Ratio, Sound,
Temperature k c

( ) ( ) ( ) ( ) ( ) (—) (ft�s)

1.401 1004

1.401 1028

0 1.401 1051

10 1.401 1062

20 1.401 1074

30 1.401 1085

40 1.401 1096

50 1.401 1106

60 1.401 1117

70 1.401 1128

80 1.400 1138

90 1.400 1149

100 1.400 1159

120 1.400 1180

140 1.399 1200

160 1.399 1220

180 1.399 1239

200 1.398 1258

300 1.394 1348

400 1.389 1431

500 1.383 1509

750 1.367 1685

1000 1.351 1839

1500 1.329 21141.51  E � 39.50  E � 72.024  E � 26.291  E � 4

9.30  E � 47.85  E � 72.717  E � 28.445  E � 4

6.68  E � 46.81  E � 73.280  E � 21.020  E � 3

4.51  E � 45.80  E � 74.135  E � 21.285  E � 3

3.65  E � 45.24  E � 74.616  E � 21.435  E � 3

3.06  E � 44.97  E � 75.224  E � 21.624  E � 3

2.40  E � 44.49  E � 76.016  E � 21.870  E � 3

2.25  E � 44.34  E � 76.204  E � 21.928  E � 3

2.12  E � 44.22  E � 76.404  E � 21.990  E � 3

2.01  E � 44.13  E � 76.617  E � 22.057  E � 3

1.89  E � 44.02  E � 76.846  E � 22.128  E � 3

1.79  E � 43.94  E � 77.090  E � 22.204  E � 3

1.74  E � 43.90  E � 77.219  E � 22.244  E � 3

1.69  E � 43.86  E � 77.353  E � 22.286  E � 3

1.64  E � 43.82  E � 77.492  E � 22.329  E � 3

1.58  E � 43.75  E � 77.636  E � 22.373  E � 3

1.52  E � 43.68  E � 77.786  E � 22.420  E � 3

1.46  E � 43.60  E � 77.942  E � 22.469  E � 3

1.42  E � 43.58  E � 78.104  E � 22.519  E � 3

1.36  E � 43.50  E � 78.273  E � 22.571  E � 3

1.31  E � 43.44  E � 78.449  E � 22.626  E � 3

1.26  E � 43.38  E � 78.633  E � 22.683  E � 3

1.19  E � 43.34  E � 79.026  E � 22.805  E � 3�20

1.12  E � 43.29  E � 79.456  E � 22.939  E � 3�40

ft2�slb�s�ft2lb�ft3slugs�ft3�F
NMGR

Weightb,

aBased on data from R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984.
bDensity and specific weight are related through the equation For this table g � 32.174 ft�s2.g � rg.
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TA B L E  B . 4

Physical Properties of Air at Standard Atmospheric Pressure (SI Units)a

Specific Speed
Specific Dynamic Kinematic Heat of

Density, Viscosity, Viscosity, Ratio, Sound,
Temperature k c

( ) ( ) ( ) ( ) ( ) (—) (m�s)

1.514 14.85 1.401 306.2

1.395 13.68 1.401 319.1

0 1.292 12.67 1.401 331.4

5 1.269 12.45 1.401 334.4

10 1.247 12.23 1.401 337.4

15 1.225 12.01 1.401 340.4

20 1.204 11.81 1.401 343.3

25 1.184 11.61 1.401 346.3

30 1.165 11.43 1.400 349.1

40 1.127 11.05 1.400 354.7

50 1.109 10.88 1.400 360.3

60 1.060 10.40 1.399 365.7

70 1.029 10.09 1.399 371.2

80 0.9996 9.803 1.399 376.6

90 0.9721 9.533 1.398 381.7

100 0.9461 9.278 1.397 386.9

200 0.7461 7.317 1.390 434.5

300 0.6159 6.040 1.379 476.3

400 0.5243 5.142 1.368 514.1

500 0.4565 4.477 1.357 548.8

1000 0.2772 2.719 1.321 694.81.82  E � 45.04  E � 5

7.97  E � 53.64  E � 5

6.34  E � 53.32  E � 5

4.84  E � 52.98  E � 5

3.39  E � 52.53  E � 5

2.29  E � 52.17  E � 5

2.20  E � 52.14  E � 5

2.07  E � 52.07  E � 5

1.97  E � 52.03  E � 5

1.86  E � 51.97  E � 5

1.76  E � 51.95  E � 5

1.66  E � 51.87  E � 5

1.60  E � 51.86  E � 5

1.56  E � 51.85  E � 5

1.51  E � 51.82  E � 5

1.47  E � 51.80  E � 5

1.41  E � 51.76  E � 5

1.36  E � 51.73  E � 5

1.32  E � 51.71  E � 5

1.17  E � 51.63  E � 5�20

1.04  E � 51.57  E � 5�40

m2�sN�s�m2N�m3kg�m3�C
NMGR

Weightb,

aBased on data from R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984.
bDensity and specific weight are related through the equation For this table g � 9.807 m�s2.g � rg.

JWCL068_AppB_714-718.qxd  9/23/08  12:08 PM  Page 718



719

Appendix C
Properties of the U.S.
Standard Atmosphere

TA B L E  C . 1

Properties of the U.S. Standard Atmosphere (BG Units)a

Dynamic
Acceleration Density, Viscosity,

Altitude Temperature of Gravity, Pressure, p
(ft) ( ) g ( ) [ (abs)] ( ) ( )

76.84 32.189 17.554

0 59.00 32.174 14.696

5,000 41.17 32.159 12.228

10,000 23.36 32.143 10.108

15,000 5.55 32.128 8.297

20,000 12.26 32.112 6.759

25,000 30.05 32.097 5.461

30,000 47.83 32.082 4.373

35,000 65.61 32.066 3.468

40,000 69.70 32.051 2.730

45,000 69.70 32.036 2.149

50,000 69.70 32.020 1.692

60,000 69.70 31.990 1.049

70,000 67.42 31.959 0.651

80,000 61.98 31.929 0.406

90,000 56.54 31.897 0.255

100,000 51.10 31.868 0.162

150,000 19.40 31.717 0.020

200,000 19.78 31.566 0.003

250,000 88.77 31.415 0.000 2.846  E � 76.458  E � 8�

3.279  E � 75.328  E � 7�

3.511  E � 73.658  E � 6

3.087  E � 73.318  E � 5�

3.052  E � 75.610  E � 5�

3.018  E � 78.571  E � 5�

2.984  E � 71.392  E � 4�

2.969  E � 72.256  E � 4�

2.969  E � 73.639  E � 4�

2.969  E � 74.623  E � 4�

2.969  E � 75.873  E � 4�

2.995  E � 77.382  E � 4�

3.107  E � 78.907  E � 4�

3.217  E � 71.066  E � 3�

3.324  E � 71.267  E � 3�

3.430  E � 71.496  E � 3

3.534  E � 71.756  E � 3

3.637  E � 72.048  E � 3

3.737  E � 72.377  E � 3

3.836  E � 72.745  E � 3�5,000

lb�s�ft2slugs�ft3lb�in.2ft�s2�F
MR

aData abridged from U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.
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TA B L E  C . 2

Properties of the U.S. Standard Atmosphere (SI Units)a

Dynamic
Acceleration Density, Viscosity,

Altitude Temperature of Gravity, Pressure, p
(m) ( ) g ( ) [ (abs)] ( ) ( )

21.50 9.810

0 15.00 9.807

1,000 8.50 9.804

2,000 2.00 9.801

3,000 4.49 9.797

4,000 10.98 9.794

5,000 17.47 9.791

6,000 23.96 9.788

7,000 30.45 9.785

8,000 36.94 9.782

9,000 43.42 9.779

10,000 49.90 9.776

15,000 56.50 9.761

20,000 56.50 9.745

25,000 51.60 9.730

30,000 46.64 9.715

40,000 22.80 9.684

50,000 2.50 9.654

60,000 26.13 9.624

70,000 53.57 9.594

80,000 74.51 9.564 1.321  E � 51.846  E � 51.052  E � 0�

1.438  E � 58.283  E � 55.221  E � 0�

1.584  E � 53.097  E � 42.196  E � 1�

1.704  E � 51.027  E � 37.978  E � 1�

1.601  E � 53.996  E � 32.871  E � 2�

1.475  E � 51.841  E � 21.197  E � 3�

1.448  E � 54.008  E � 22.549  E � 3�

1.422  E � 58.891  E � 25.529  E � 3�

1.422  E � 51.948  E � 11.211  E � 4�

1.458  E � 54.135  E � 12.650  E � 4�

1.493  E � 54.671  E � 13.080  E � 4�

1.527  E � 55.258  E � 13.565  E � 4�

1.561  E � 55.900  E � 14.111  E � 4�

1.595  E � 56.601  E � 14.722  E � 4�

1.628  E � 57.364  E � 15.405  E � 4�

1.661  E � 58.194  E � 16.166  E � 4�

1.694  E � 59.093  E � 17.012  E � 4�

1.726  E � 51.007  E � 07.950  E � 4

1.758  E � 51.112  E � 08.988  E � 4

1.789  E � 51.225  E � 01.013  E � 5

1.821  E � 51.347  E � 01.139  E � 5�1,000

N�s�m2kg�m3N�m2m�s2�C
MR

aData abridged from U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.
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Appendix D
Compressible Flow Graphs 
for an Ideal Gas (k 1.4)�

F I G U R E  D.1 Isentropic flow of an ideal gas with (Graph provided by 
Dr. Bruce A. Reichert.)

k � 1.4.
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722 Appendix D ■ Compressible Flow Graphs for an Ideal Gas (k 1.4)�

F I G U R E  D.2 Fanno flow of an ideal gas with (Graph provided by
Dr. Bruce A. Reichert.)

k � 1.4.
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F I G U R E  D.3 Rayleigh flow of an ideal gas with (Graph provided by
Dr. Bruce A. Reichert.)

k � 1.4.
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F I G U R E  D.4 Normal shock flow of an ideal gas with (Graph provided by
Dr. Bruce A. Reichert.)

k � 1.4.
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Chapter 1
1.2 1a2 L3; 1b2 LT�2; 1c2 FL�1T 2; L4; ML2T�2

1.6 1a2 L2T�2; 1b2 M2L�3T�3; 1c2 M 0L0T 0

1.8 LT�1, F 0L 0T 0, LT�1

1.10 Yes

1.12 1 2, �1 2

1.14 No, no

1.16 1a2 4.66 � 104 ft; 1b2 5.18 � 10�2 lb ft3; 

1c2 3.12 � 10�3 slugs ft3; 1d2 2.36 � 10�2 ft � lb s;

1e2 5.17 � 10�6 ft s

1.20 1a2 7.57 � 10�2 m3 s; 1b2 4540 liters min; 

1c2 2.67 ft3 s

1.24 1a2 0.240 mi3; 1b2 4.41 � 105 lb

1.26 30.6 kg; 37.3 N

1.28 1150 kg m3; 11.3 kN m3

1.32 9770 N m3; 996 kg m3; 0.996

1.34 0.335; 3290 N m3

1.36 4.76 kg

1.38 1a2 0.0214 kg m3; 1b2 �Mars �earth � 1.75%

1.40 1.26 m3

1.42 668 lb

1.46 0.6 N � s m2, 1.3 � 10�2 lb � s ft2

1.48 31.0%

1.50 5 � 10�5 N � s m2; 10.4 � 10�7 lb � s ft2

1.52 0.116 lb � s ft2; larger

1.54 15,000 1water2; 752 1air2
1.56 C � 1.43 � 10�6 kg 1m � s � K1 22; S � 107 K

1.58 D � 1.767 � 10�6 N � s m2; B � 1.870 � 103 K; 

5.76 � 10�4 N � s m2

1.60 V1 V � 2c 11 � c2
1.62 11.7 � 10�4 ft

1.64 0.0883 m s

1.66 1a2 C1 � 153 s�1; C2 � 4350 ft�2s�1 1b2 5.72 �
10�5 lb ft2 1y � 02; 6.94 � 10�5 lb ft2 1 y � 0.05 ft2

1.68 0.944 ft � lb; 17.8 ft � lb s

1.70
1.76 4.14 � 103 psi

1.78 1a2 343 m s; 1b2 1010 m s; 1c2 446 m s

1.80 170 psi

1.82 4.25 � 10�3 slugs ft3; 305 �F
1.88 3000 m

1.90 13 kPa 1abs2

�

���

� � 2pR3
i /mw1R0 � Ri2

�
��

�

��
�

�

��

�
��

��

��

�
��

��

�
��

�
��

�

��

1.92 5.81 kPa 1abs2; 0.842 psi 1abs2
1.94 0.0600 N m

1.96 12.2 Pa

1.98 1a2 0.126 D; 0.126 in.

1.100 3.00 mm

1.102 0.186 in.; 4.65 in.

Chapter 2
2.2 59.2 kPa

2.4 1a2 16.0 kPa; 9.31 kPa; 1b2 no

2.6 50.5 M Pa; 7320 psi

2.8 0.0797 psi

2.12 10.2 psia

2.14 1a2 58.8 kPa; 1b2 442 mm Hg

2.16 1a2 1240 lb ft2 1abs2; 1b2 1040 lb ft2 1abs2; 
1c2 1270 lb ft2 1abs2

2.18 12.1 kPa; 0.195 kg m3

2.20 29.43 in. Hg

2.22 60 kPa

2.24 �187 lb ft2

2.26 1a2 0.759 m; 0.759 m 1without vapor pressure2; 
1b2 10.1 m; 10.3 m 1without vapor pressure2; 
1c2 12.3 m; 13.0 m 1without vapor pressure2

2.28 4.67 psi

2.30 �3.32 kPa

2.32 0.224 psi

2.34 h � 1p1 � p22 1�2 � �12
2.36 0.040 m

2.38 94.9 kPa

2.40 0.449 m

2.42 3.99 psi

2.44 27.8 deg

2.46 0.304 ft 1down2
2.48
2.50 p1psi2 � 0.416 

2.52 889 N

2.54 92.4 kN; 0.0723 m along gate below centroid

2.56 639 kN; 0.990 m above bottom

2.58 107 kPa

2.64 33,900 lb

2.66 1a2 16.2 m; 1b2 No

2.68 5.24 ft

u

/ � 3d � 11.31 � 1d 2 � 18.61 d � 12821�2 4 �2

�

�

�
�

��

�

�

Answers to
Selected Even-Numbered 
Homework Problems

ANS-1
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2.70 3.55 m

2.72 1a2 2.11 m; 1b2 941 kN

2.74 78.5 kN; 2.03 m below free surface

2.76 102 ft � lb

2.78 48.2 ft; 61.1 ft; 71.8 ft; 81.1 ft; 89.1 ft

2.84 20,200 lb

2.86 7.77 � 109 lb acting 406 ft up from base of dam

2.88 64.4 kN

2.90 60.8 kN; 0.100 m below center of tank end wall

2.92 337 lb, 882 lb

2.94 485 kN

2.98 1a2 786,000 lb; 1b2 315,000 lb

2.100 54,600 lb

2.104 2480 kg

2.106 681 lb up; 6.22 ft to right of A

2.108 89.5

2.110 �8.63 ft s2

2.112 1a2 68.9 lb ft2; 1b2 57.4 lb

2.114 37.4 deg

2.116
2.118 5.76 ft

2.120 28.8 kPa

Chapter 3
3.2 13.7 m s

3.4 1a2 �19411 � x2 � 62.4 lb ft3; 1b2 41.2 psi

3.6 �30.0 kPa m

3.8 �0.838 psi ft; 0.0292 psi ft

3.10 1a2 �2 a2V0
2 [1 � 1a x22] x3

1b2 p0 � V0
2 [1a x22 � 1a x24 2]

3.14 12.0 kPa; �20.1 kPa

3.16 1a2 4.97 lb ft3; 1b2 0.681 lb ft3

3.22 3.21 N m2

3.24 4.50 kPa

3.26 30 deg

3.28 0.14 in.

3.30 194 mph

3.32 3.26 m

3.36 Tank 1a2
3.38 1248 lb ft2

3.40 h � 0

3.44 43.0 psi

3.46 10.7 s

3.48 1a2 0.223 ft; 1b2 9.22 lb ft2

3.50 3.19 ft

3.52 0.0156 D2 [10.124 � D4] m3 s when D m

3.54 2.35 m; 11.9 m

3.56 2.54 � 10�4 m3 s

3.58 h H � 1 [1 � 1d D24]
3.60 1a2 3.98 ft; 1b2 36.0 ft s, �510 lb ft2

3.62 86.3 Pa

3.64 1.31 ft

3.66 �8.11 psi

3.68 1a2 0.0696 m3 s; 1b2 0.574 m

3.70 H H0 � 1 11 � cx L21 2, where 

c � 2gH2O
 dmax�rV0

2

����
�

��
���

�

��1�2�

�

�

�
��

���r
��r
��

�
�

�

h � a/�g

�
�

ANS-2 Answers to Selected Even-Numbered Homework Problems

3.72 0.0132 m3 s

3.74 0.346 ft3 s, 7.89 � 10�4 slugs s; 0.0254 lb s

3.76 4

3.78 0.141 ft3 s, �499 lb ft2, �312 lb ft2, �312 lb ft2

3.80 0.37 m

3.82 7.53 ft

3.84 1.38 ft3 s

3.86 0.351 ft3 s

3.88 36.5 s

3.92 404.5 kPa

3.94 9.10 � 10�3 m3 s; 57.9 kPa

3.96 2.00 � 10�4 m3 s; 0.129 m

3.98 155 N m2

3.102 0.174 m3 s

3.106 6.10 � 10�3 m3 s

3.108 1.016 in.

3.110 3.46 Q0

3.112 145 ft3 s

Chapter 4
4.6 5 ft s; 1x2 � 8x � 2521 2 ft s

4.8 20 ft s for any x, y; �90 deg, �45 deg, 0 deg

4.10 y2 � x � c
4.12
4.14 1a2 0.712, �8.50; 1b2 1.69 ft s

4.18 x h � 1u0 02 ln1h 1h � y2 � y h
4.20 10 ft s, 9 ft s, 6 ft s, 4 ft s

4.22 ; 

4.24 ax � x; ay � 8x2y214x2y � 12; az � �1x � 4x2y22
4.26 1a2 4 ft s2, 2 ft s2; 1b2 negative

4.28 10 ft s; 10 ft s2

4.30 �1.65 � 1011 ft s2; �5.12 � 109

4.32

4.34 �33.8 ft s2; 1.05

4.36 1225x � 1502 m s2; 0; 1225x � 1502 m s2; 

150 m s2; 375 m s2

4.42 0, K r3

4.44 19V0
2 4a2 sin � cos �; 19V0

2 4a2 sin2 �; 0 deg; 90 deg

4.46 14V 2
0 a2 sin � cos �; 14V0

2 a2 sin2 �
4.48 1a2 0.4 ft s2, 0; 1b2 1.28 ft s2, 2.88 ft s2; 

1c2 1.34 ft s2, 2.88 ft s2

4.50 3.13 � 10�5 m s2; 2.00 � 10�3 m s2

4.52 25,600 ft s2; 25.0 ft s2

4.54 40 mi hr

4.56 1a2 2.5 �F hr; 1b2 1.25 �F hr; 1c2 �10 �F hr

4.60 5.0 m3 s

4.62 132 ft3 s

4.66 2V0hb 3

4.72 7.14 slug � ft s2

Chapter 5
5.6 3.66 slugs s

5.8 1.70 ft s

5.10 decrease
�

�

�î
�
�
�

���
�

��
��

��
���

��
��

�
��

��
�

c � 0.490 s�1

V011 � x�/2 3ce�ct � 1V0�/2 11 � e�ct22 4 ;
�

��
��

ay � 1V0�/22yax � 1V0�/22x
����

4��3v��
�

y � e1x
2� 2�x2 � 1

�
���

�

�
�

�
�
�

�
�

����

���
�
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5.12 3.18 ft

5.14 0.0125 lbm ft3

5.16 229 s

5.18 3.63 ft s

5.20 1a2 0.711; 1b2 0.791; 1c2 0.837; 1d2 0.866

5.22 485 slugs s

5.24
5.26 12.2 min

5.30 0.51 ft day

5.32 3.52 gal flush 1gpf2
5.38 2.66 10�4 m3 s

5.40 0; 7420 N

5.42 motion to right 1a2, 1b2, 1c2; motion to left 1d2
5.44 70.1 m s; 30,800 N

5.46 72,000 N; 67,400 N

5.48 6650 lb

5.50 28.7 ft3 s

5.52 1a2 W1 � 9.8 lb; 1b2 W2 � 14.7 lb

5.54 �185 kN; �45.8 kN

5.56 3580 lb

5.58 43 lb

5.60 13.3 lb

5.62 3 4

5.64 1a2 181 lb; 1b2 146 lb

5.66 3.94 ft3 s

5.68 2.52 ft3 s; 61.2 ft s

5.70 8220 lb

5.76 1a2 231 N � m; 185 rad s; 1b2 200 N � m; 

160 rad s; 1c2 116 N � m; 92.5 rad s

5.78 12.8 MW

5.80 348 kW

5.82 turbine; 36.8 1ft � lb2 slug or 1.14 1ft � lb2 lbm

5.90 No

5.92 right to left; 0.32 ft

5.94 2.17 ft3 s

5.96 right to left; 0.5 m

5.100 0.830 ft3 s

5.102 30.4 ft3 s; 36.3 ft3 s

5.104 9261ft � lb2 slug; 2001ft � lb2 slug

5.108 2.22 MW

5.110 1.21 � 106 hp

5.112 930 kW

5.114 303 �R; 267 �R; 0.88

5.116 1.67 ft3 s

5.118 16101ft � lb2 slug; 2.02 hp

5.120 31.1 hp

5.122 1.78 kW

5.124 1a2 56%; 1b2 11.7 lb

5.126 32,200 lb; 8,190 lb

5.128 2.36 ft

5.130 1a2 4.29 m s; 17.2� 1b2 558 N � m s

5.132 1a2 1.11; 1b2 1.08; 1c2 1.06; 1d2 1.05; 1e2 1.04; 

1f 2 1.03

5.134 305 1ft � lb2 lbm; 71%

5.136 84.2%

5.138 5.16 1ft � lb2 lbm; 86%�

�

��

�
�

��
��

�

�

��

��
�

��
�

�

�

�

��
�

�

17�82 U/d
�

�

�

Answers to Selected Even-Numbered Homework Problems ANS-3

Chapter 6
6.2 2x, 4xt 2; �2y, 4yt 2; V � 0; a � 4 � 4 ft s2; 

a � 5.66 ft s2

6.4 1a2 0; 1b2

6.6

6.8

6.10

6.16 No

6.18

6.22

6.24

6.26 1a2 ; 1b2 � �A ln r � C

6.28 1a2 � 2xy; 1b2 q � 2xiyi

6.32 1a2 pA � p0; 1b2 pB � p0

6.34 � 15 32x3 � 5xy2 � C
6.36 � A ln r � Br cos � � C; � � �, r � A B
6.38 60.5 psi

6.40 1a2 Yes; 1b2 Yes, � 21x � y2 � C; 1c2 0
6.42 1a2 � U 10.866x � 0.500y2; � U 10.866y �

0.500x2; 1b2

6.46 1a2 ; 1b2 � � 1.33 rad

6.50 	 � 0

6.52 1.80 ft

6.54 , H � 0.0250 ft

6.58 80 mph; 53.3 mph; 40 mph

6.60

6.62 1b2 VA � 0, VB � 68.2 mph

6.64 uA � U � 1	 H2 �
6.68 Fx � 978 lb ft

6.70 1a2 	 � 0; 1b2 	 � �4�Ua
6.72 1a2 Fy � 34,900 lb; 1b2 Fy � 105,000 lb

6.76 sin � cos �; � falls in range 

of

6.80 �xx � �5.98 kPa, �yy � �6.02 kPa, �xy � 45.0 Pa

6.82 1a2 1b2 1c2

6.84

6.86

6.88 4.98 gal min

6.90
6.92
6.94 1⁄3

6.96 0.355 N � m

6.100 1a2 Re � 640 
 2100; 1b2 180 kPa; 1c2 60.0 N m2�

y�b �

u � 3 1U1 � U22�b 4y � U2

q � 1rgh3 sin a2�3m
�

0p

0y
�

�3mV

h2
� rg

q�/ � 2.3 � 10�5 m2�s, t � 2.25 N�m2

2m � 2rx3

0p�0x �a � 2x3î;0v�0y � �2x;

�90°

0ps�0u � 4rU2

�
��

h2 �
m

2pA

y �
m

2pU
 u

c � m a
u

2p
�

1

6
b

0p

0y
� �g

cf

f

�f
�f

c

cc �
�Ar 2

2
� C

vu � �4ru � 9r 2 cos u � f 1r2

v �
�y2

2x
� f 1x2

c � Au � Br�1 sin u � C

g
#

�
�r0v

r0 � ri

u � �
3

2
x2 �

x3

3
� f 1y2

z � 3xy2 k̂; No

No

1y�22k̂;v � �1y�2 � z2 î � 15z�22 ĵ �
�

�ĵî
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6.102
6.104 V � 1.10 � 10�2 m s

6.106

6.108 lb ft2 per ft

6.110 1a2 42.6%; 1b2 21.7%

Chapter 7
7.6 1a2 103 m s; 1b2 444 m s

7.8 k � r � 3 pi terms

7.10 1a2 �p is halved; 1b2 �p is doubled

7.12 �pD1 1V�2 � 	1D2 D1, �D1V �2
7.14 p 1�D5
32 � 	1Q D3
2
7.16 �p 1D2�
22 � 	1Q D3
2
7.18
7.20 h D � 	1� �D22
7.22 �p  1 D2 1for a given velocity2
7.24 d D � 	1�VD �, � �V 2D2

7.26 1a2 1b2

7.30 �p 1�V22 � 0.505 1D d 23.99

7.32 1a2
1b2

7.34 1a2 n � �1 2; 1b2 Yes

7.38 Colder

7.40 0.963 ft s

7.42 9.49 m s

7.44
7.46 1170 km hr

7.48 187 mph

7.50
7.52 1a2 400 km hr; 1b2 170 N

7.54 26.4 lb

7.56 1a2 dm Dm � d D, �m �pm � � �p, gmdm
3�m

2 �m
2 �

gd3�2 �2, �VcD � � �mVcm Dm �m; 1b2 Vcm Vc �
0.707

7.58 1a2 1b2
7.60 1a2 12 m s; 1b2 900 N

7.62 0.0647 to 0.0971

7.68 1a2 400 N; 1b2 7222 W

7.70 1a2 ; no 

1b2 0.410 gpm; 2.46 in.

7.72 1a2 nD V � 	1VD 2; 1b2 Yes; 1c2 7.54 ft s

7.74 1a2

1b2 no

7.76 1a2 ; 1b2 0.333 ft; 1c2 p � 1V Vm
22

pm, No

7.78
7.80

Chapter 8
8.2 1.0 ft

8.4 blue and yellow streams; green

11�r*2 0vz*�0r*

0vz*�0t* � p
1
rR3� 1/2m2 � 02vz*�0r*2 �

1rvh2�m2 0u*�0t* � 02u*�0y*2

�p�rV 2 � f1/�/i2

1r � rs2�r;
Vm

2 �gm Dm � V2�g D, 1r � rs2m �rm �

Vm  

�Um � V�U, Vm Dm �nsm � VD�ns,
�n��

V/2�Q � f1/i�/, Q2�/5g, rQ�/m2

�
31.1 lbd�rV2D2 � f1d�D2;

����
�����

�
h�d � f1H�d, gs�gf , mfg

1�2� 1gfd
3�22 2

�
sm�s � 4.44 � 10�3

�
�

�
H�b � 0.0833 1h�b2�1.00

H�b � f 1h�b, /�b2;
��

22�b�prdD2

V �VD 2r�� � f1b�d, d�D2;
���

�
��

h�/ � f1s�/2gr2
��

��
���

��

�
¢p

/
� 33.1

vu �
rv

11 � ri
2�ro

22
c1 �

ri
2

r 2
d

�
vu � R2 v�r

ANS-4 Answers to Selected Even-Numbered Homework Problems

8.6 17.7 ft

8.8 0.0883 m

8.10 1a2 8.93 � 104; 1b2 8.93 � 10�8

8.12 Vmax � 2 m s, V � 1 m s, Q � 1.3 �
10�3 m3 s

8.14 0.15 lb ft2, 0.06 lb ft2, 0 lb ft2

8.16 from 1b2 to 1a2
8.18 0.354 D
8.20 3.43 m, 166 kPa

8.22 1a2 12.42 kPa; 1b2 15.85 kPa

8.24 2.01 ft s

8.26 D
8.28 18.5 m

8.30 8.88 � 10�8 m3 s

8.32 26,300, turbulent

8.38 0.00243 ft

8.42 0.65 Pa m

8.44 0.02 ft ft

8.46 water out if air in if 

8.48 1b2
8.50 smaller pipe

8.52 1a2 1a2
8.54 21.0

8.58 8.15 ft

8.60 1a2
8.62 39.7 kPa from losses and 93.0 kPa from 

change in kinetic energy

8.64 13.0

8.66 0.223 lb ft2

8.68 9

8.70 disagree

8.72 aspect ratio equal to 4

8.74 0.188 m

8.76
8.78 1a2 ; 1b2
8.80 No

8.82 50.0 m

8.84 0.325 psi

8.86 16.5 ft

8.90 379 kW

8.94
8.98
8.100 0.442 ft

8.102 0.535 ft

8.104 0.031 m by 0.053 m

8.108 0.0746 cfs; 0.339 cfs

8.110 0.662 ft

8.112
8.116 24.9 psi

8.118 64.8 kPa

8.120
8.122
8.124

Chapter 9
9.2 1.1

9.4 3.45 kN, 0.560 kN; 3.47 kN, 0.427 kN

0.0936 ft3�s
0.115 ft3�s
0.528 ft3�s

0.0284 m3�s; 0.0143 m3�s; 0.0141 m3�s

5.73 ft�s
0.06 ft3�s

137 ft135 ft

0.899 lb�ft2

�

133 kPa;

23.8 ft

908 lb�ft234.5 lb�ft2;

V � 0.5 m�sV � 5 m�s;
�
�

�

�

���
�

��
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9.6 Fig. 9.6c
9.12 1.12 m, 7.92 � 10�3 m

9.14
9.16 7.54 � 10�3 ft s; 0.471 ft s; 2.62 � 10�5 ft s

9.22 1a2 27.6 ft s; 1b2 20.5 mph

9.30 , �w � 4�U 13�2
9.36 Larger by a factor of 4

9.38 48.8 lb

9.40 10,300 lb

9.42 1.4, upright

9.44 85.4 kW

9.46 2

9.48 0.0296 N

9.50 12.9 hp

9.52 1.06 m s

9.54 16.8 ft s

9.58 1.10 � 10�7 m s, 1.20 � 10�7 m s

9.60 162 ft � lb

9.62 8,950 N � m

9.64 0.350 hp

9.66 greater

9.68 58.4 hp

9.72 180 N

9.76 7220 m s2

9.78 9.65 lb ft2

9.80 0.841 ft s2

9.86 41.6 ft s

9.90 1a2 0.0166 hp; 1b2 32.4 hp

9.92 11.2 ft

9.94 0.288

9.96 405 lb

9.98 1.72 Usea level

9.104 19.1

9.106 5.72% increase

9.110 28.4%

Chapter 10
10.2
10.4 1a2 supercritical; 1b2 supercritical; 

1c2 subcritical

10.8 5.66 ft

10.12
10.14
10.16 2.45 m; 0.388 m

10.18 1.13 ft; 5.82 ft

10.20 1.77 ft; 1.97 ft

10.24 1.83 ft

10.26 0.694 ft

10.30 0.429 ft

10.34
10.36 0.0126

10.38
10.40 0.0169

10.42
10.44 Yes

10.46 Yes

10.48 40.9 m3�s

9.25 ft3�s

5.14 N�m2

�7.07 � 10�5

616 km�hr

8.30 ft�s

25 m�s2

�
�

�
�

��
�
�

�d � 4.121nx�U
�

���
6.65 � 10�6 m2�s

Answers to Selected Even-Numbered Homework Problems ANS-5

10.50
10.54
10.56
10.58
10.60 1.19 m

10.62 0.840 m

10.64 2.31 ft

10.66 Same

10.68 2.53 ft; Not possible

10.70 8.77 m

10.72 0.368 ft

10.74 2.21 m

10.76 1.64 ft

10.78 0.000816

10.80 0.000664

10.82 0.000269

10.84 0.00757

10.88
10.90
10.92 1a2 0.228 ft; 1b2 8.09, 0.223; 1c2 5.15 ft

10.94 1.51 m, 12,500 kW

10.96 upstream

10.98
10.100 Yes

10.102
10.104 4.70 ft

10.106 �0.324 ft hr; 5.53 hr

10.110

Chapter 11
11.4 1a2 71,700 J kg; 1b2 100,000 J kg; 

1c2 �1.58 kg m3; 1d2 396 J kg � K

11.10 351 K

11.12 1a2 1520 1ft � lb2 lbm; 1580 1ft � lb2 lbm; 

1b2 1.52 � 105 1ft � lb2 lbm; 1.95 � 105 1ft � lb2 lbm;

1c2 4.56 � 105 1ft � lb2 lbm; 6.80 � 105 1ft � lb2 lbm

11.16 , cwater � 1470 m s,

cair � 340 m s

11.24 0.625

11.28 1a2 2000 mph; 1b2 2930 ft s; 1c2 893 m s

11.36 1a2 2.34 lbm s; 1b2 2.51 lbm s

11.38 283 m s; 0.89

11.40 269 m s; 0.90

11.46 A2 � 0.36 m2, p2 � 23 kPa 1abs2, T2 � 113 K

11.48 1a2 0.483%; 1b2 1.43%; 1c2 �0.445%; 1d2 �0.0163%

11.54 increase

11.56 11 psia

11.58 2830 lb ft2

11.60

11.62 404 kPa 1abs2; 81.19 K; 31 m s

11.66 2.29

11.68 1.9; 648 m s

11.70 394 K; 82 kPa 1abs2
11.72 1160 �R; 132 psia; 26.1 lbm s�

�

�
p02 � 84.9 kPa 1abs2; V2 � 520 m�s
674 K; p2 � 45 kPa 1abs2; T02 � 786 K;

p01 � 101 kPa 1abs2; V1 � 104 m�s; T2 �
T1 � 282 K; p1 � 95 kPa 1abs2; T01 � 288 K;

�

�
�

��
��

�
�Evsteel

� 2.19 � 1011 N�m2
��
��

��

��
��

Hr � 1.294 ft; Ht � 4.39 ft; triangular
�

0.116 m3�s

4.36 ft�s

0.00759 ft3�s
13.7 ft�s

119 m3�s
17.3 m3�s
18.2 m3�s
6.22 ft�s
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11.74 1.35 m

11.76 at duct entrance T � 130 K; p � 6.0 kPa 1abs2; 
T0 � 293 K; p0 � 101 kPa 1abs2; V � 571 m s;

just upstream of shock T � 296 K; p � 17

kPa 1abs2; T0 � 396 K; p0 � 47.7 kPa 1abs2; 
V � 448 m s; just downstream of shock 

T � 354 K; p � 30.8 kPa 1abs2; T0 � 396 K; 

p0 � 46.4 kPa 1abs2; V � 299 m s; at duct exit 

T � 351 K; p � 26.6 kPa 1abs2; T0 � 407 K; 

p0 � 45.9 kPa 1abs2; V � 337 m s

Chapter 12
12.4 pump

12.8 BG, 1ft � lb2 slug; hp; SI, 1N � m2 kg or J kg; J s 

or watt 1W2; EE, 1ft � lb2 lbm; hp

12.10 10.8 lb ft2; turbine

12.16 turbine and pump

12.18 379 1ft � lb2 lbm�

�
�

����

�

�

�

�

ANS-6 Answers to Selected Even-Numbered Homework Problems

12.20 1b2 891 ft � lb; 0 rpm

12.22 1.84 hp

12.24 11.5 m

12.28 increase to 8.43 ft

12.30 1a2 2.07 kW; 1b2 12.6 m

12.34 365 gpm

12.36 255 gpm; no

12.38 1a2 0.0529 m3 s; 1b2 13%

12.42 0.0328 m3 s; 8 m

12.44 Yes

12.46 1000 gpm; 800 ft

12.48 671 at maximum efficiency

12.54 mixed-flow

12.56 6.4 hp; 163 ft2 s2

12.62 0.0109 ft3 s; 0.150 ft � lb; 0.0409 hp

12.66 23,200 kW

12.68 41,000 hp

12.70 Francis; 378 ft3 s�

�
�

�
�
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I-1

Absolute pressure, 13, 48

Absolute temperature, 7, 13

Absolute velocity, 176, 196, 218, 647

Absolute viscosity, 15

of air, 717, 718

of common gases, 14, 714

of common liquids, 12, 714

of U.S. Standard Atmosphere, 719, 720

of water, 716

Acceleration, 95, 156, 265

centrifugal, 164, video V3.4

convective, 160, 164

field, 156, 265

gravitational, 8, 719, 720

local, 159

normal, 95, 164, video V3.1, video V3.4

particle, 156

streamwise, 95, 164, video V3.1, video V5.3

Accessibility of flow, 544

Acoustic velocity, 22, 585

of air, 717, 718

of water, 716

Adiabatic flow, 224, 584

with friction, see Fanno line flow

reversible, see Isentropic flow

Adverse pressure gradient, 300, 490

Aerodynamics, 28

Air, table of properties of, 717, 718

Airfoil, 514, video V9.15, video V9.17, video V9.18

Alternate depths, 543

Analogy, compressible and open channel flow, 634

Andrade’s equation, 18

Aneroid barometer, 55

Angle:

of attack, 492, 515

of contact, 25

of Mach cone, 590

Angular deformation, 264, 267, 269, video V6.3

Index

Angular momentum, see Moment of momentum

Angular momentum flow, 216, video V5.10

Annulus, flow in, 316

Apparent viscosity, 16

Archimedes, 27, 28, 69

Archimedes’ principle, 68, video V2.7

Area:

centroid, 59, 60

moment of inertia, 59, 60

product of inertia, 59, 60

Area ratio, critical, isentropic flow, 602

Aspect ratio:

airfoil, 515

plate, 341

Atmosphere, standard, 47

properties of, 47, 719, 720

Atmospheric pressure, 13, 47

Available energy, 230

Average velocity, 190

Axial-flow machine, 647

Axial-flow pump, 671

Axisymmetric flow, 463

Backward curved blades, 657

Backward difference, 703

Barometer:

aneroid, 55

mercury, 49

Basic differential equations of fluid motion, 279

Basic dimensions, 4, 334

Bellows meter, 447

Bends, 421

Bernoulli, D., 27, 28, 99

Bernoulli equation:

cautions on use of, 99, 281

derivation from , 99, 279, video V3.1

derivation from first law of thermodynamics, 229

extended, 232

F � ma
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I-2 Index

Bernoulli equation: (cont.)
irrotational flow, 130, 283

outside boundary layer, 473

physical interpretation, 102

restrictions on use of, 126, 281, video V3.12

unsteady flow, 128

use of, 110, video V3.2

Best efficiency point, 660

Best hydraulic cross section, 554

BG units, see British gravitational system of units

Bingham plastic, 17

Blade velocity, 647

Blasius, H., 29, 353, 475

Blasius formula, 353, 415

Blasius solution, 476, 477

Blower, 645, 673

Blunt bodies, 463, video V9.2

Body force, 40, 201, 276

Boiling, 23, 116

Booster, 673

Bottom slope, 541

Boundary conditions:

inviscid flow, 295

no-slip, 15, 297, 309, video V1.4, video V6.11,

video V6.12

numerical methods, 705

pipe exit, 110

Boundary element method, 701

Boundary layer:

concept of, 27, 282, 468, video V1.4, video

V6.11, video V9.8

displacement thickness, 472

effect of pressure gradient on, 488

effect of wall roughness, 504

equations, 475

flat plate, 470, 472

laminar:

approximate solution, 482

Blasius solution, 476, 477

momentum integral equation for, 479, 482

momentum thickness, 474

pipe, 388

pressure gradient, 488

separation, 468, 490, video V6.8

thickness, 472, video V9.3

transition, 471, 483, video V9.5

turbulent, 471, 485

velocity profiles, 484, 491, video V9.3

vorticity, 471

Bound vortex, 519, video V4.6

Bourdon pressure gage, 55, video V2.3

Boussinesq, J., 405

Brake horsepower, 659

British gravitational system of units, 8

Broad-crested weir, 564, video V10.14

Buckingham, E., 29, 335

Buckingham pi theorem, 335

Bulk modulus, 20, 587, video V1.7

of common liquids, 12

of elasticity, 20

Buoyant force, 68, video V2.6, video V2.7,

video V11.4

Canal, 551

Capillary action, 25, video V1.10

Capillary tube viscometer, 33, video V1.5

Casing, 653

Cauchy, A., 28, 349

Cauchy number, 347, 349

Cavitation, 24, 116

number, 349, 363, 372

Center of buoyancy, 69, video V2.10

Center of pressure, 58, 60

Central difference, 703

Centrifugal pump, 653

Centroid, 59

of common areas, 60

CFD, 318, 701, video V2.9, video V6.2,

video V6.15, video V11.5, video VA.1

Chaos, 409

Chezy, A., 28, 548

Chezy coefficient, 549

Chezy equation, 547, 548

Choked flow, 597, 613

Chord length, 514

Circulation, 292

about an airfoil, 518

origin of, 519

Colebrook formula, 414

Completely turbulent flow, 412

Composite body drag, 507

Compressibility criterion, 127

Compressibility of fluids, 20

Compressible flow, 126, 580, video V11.4

with area change, 593, video V11.5, video V11.6

categories, 588

graphs of, 721–724

with friction, 609

with heat transfer, 620

turbomachines, 685

two-dimensional, 635

Compression wave, 635, video V11.7

Compressor, 645, 673, 686, video V12.5

corrected speed, 689

multi stage, 686

stall, 688

surge, 688

Computational fluid dynamics (CFD), 318, 701,

video V2.9, video V6.2, video V6.15, video V11.5

Conservation:

of energy, see First law of thermodynamics

of linear momentum, 200, 275, video V5.4,

video V5.5, video V5.6

of mass, 112, 188, 269

Contact angle, 25

Continuity equation:

cylindrical coordinates, 272

differential equation, 270

finite control volume, 112, 188

compressible flow, 593

incompressible flow, 195, video V5.1, video V5.2

unsteady flow, 189, 271

rectangular coordinates, 270

Continuum hypothesis, 4

Contraction coefficient, 111, 121, 566

Control surface, 165

Control volume, 165

accelerating, 201

deforming, 166, 198

fixed, 165, 188
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Index I-3

guidelines for selection, 177, 200

infinitesimal, 263

moving, 176, 196, 212

velocity, 196

Convective acceleration, 160, 164

Convective derivative, 159

Converging–diverging diffuser, 595

Converging–diverging duct flow, 595, video V11.5,

video V11.6

Converging–diverging nozzle, 595, video V11.5,

video V11.6

Conversion factors, 9

Core flow, 282

Couette flow, 311

Creeping flow, 318, 348

Critical depth, 543

Critical flow, open channel, 536, 540, 634

Critical pressure ratio, 597

Critical Reynolds number, 471, 483

Critical state, compressible flow, 597, 615

Curl operator, 268

Curved surface, forces on, 66

Cylinder:

drag coefficient for, 501

inviscid flow around, 301, video V6.6

large Reynolds number flow around, 468,

video V6.8

low Reynolds number flow around, 468,

video V6.15

pressure distribution on surface of, 301

rotating, 303, 520

Cylindrical coordinates, 75, 272

D’Alembert, J., 28, 302

D’Alembert’s paradox, 302, 489

Darcy, H., 28

Darcy friction factor, 396

Darcy–Weisbach equation, 412

DaVinci, L., 27, 28

Deepwater wave, 538

Deformation:

angular, 264, 267, video V6.3

linear, 264, 266

rate of, 266

Deforming control volume, 166, 198

Del (gradient) operator:

cylindrical coordinates, 284

rectangular coordinates, 41

Density, 11

of air, 717, 718

of common gases, 14

of common liquids, 12

of U.S. Standard Atmosphere, 719, 720

of water, 716

Derivative:

convective, 159

local, 159

material, 157

substantial, 157

Detached shock, 636

Differential analysis, 263

Diffuser, 420, 595

Diffuser pump, 654, video V8.11

Dimensional analysis, 5, 333, 335

Dimensional homogeneity, 4, 333

Dimensionless groups, 334

list of, 347

Dimensionless products, 334, 335

Dimensions:

basic, 4, 334

of common physical quantities, 5

reference, 335, 342

Discharge coefficient:

nozzle, 443

orifice, 442

sluice gate, 566

Venturi meter, 444

weir, 563, 565

Discretization, 701

Displacement thickness, 472

Distorted model, 359, video V7.8, video V7.12,

video V7.11, video V7.17, video V7.18

Doppler effect, 590

Doublet, 293

strength of, 294

Drag, 302, 463, 493

form, 495, video V7.2, video V9.7

friction, 482, 494

in potential flow, 305

pressure, 495

Drag coefficient, 350, 466, 494

airfoil, 519

automobile, 508

composite body, 507

cylinder, 501

effect of compressibility on, 503, 588

effect of Froude number on, 506, video V9.12

effect of Mach number on, 503, 588

effect of Reynolds number on, 498, 588

effect of shape on, 497, 502, video V9.7,

video V9.13

effect of surface roughness on, 366, 504

ellipse, 497

flat plate normal to flow, 497, 502, video V7.2

flat plate parallel to flow, 487, 497, 502

form, 495

friction, 487

from model studies, 363

pressure, 495

selected three-dimensional objects, 511

selected two-dimensional objects, 510

sphere, 366, 499, 501, 504, 505, 521, 588

streamlined body, 498

vehicle, 508

Duct, 383, 425, 609

Dynamic pressure, 105

Dynamic similarity, 356

Dynamic viscosity, 15

of air, 717, 718

of common gases, 14, 714

of common liquids, 12, 714

of U.S. Standard Atmosphere, 719, 720

of water, 716

Eddies, 403

Eddy viscosity, 405, video V8.7

EE units, see English engineering system of units

Efficiency, 239, 659, 683

hydraulic, 659

isentropic, 688
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I-4 Index

Efficiency, (cont.)
mechanical, 659

overall, 659

polytropic, 688

volumetric, 659

Elbows, losses in, 422

Elevation head, 103, 124

Energy:

available, 230

internal, 223, 580

kinetic, 103, 223

per unit mass, 223

per unit volume, 233

per unit weight, see Head

potential, 103, 223

specific, 542

stored, 223

useful, 230

Energy equation, see First law of thermodynamics

Energy line, 123, 430, 541

English engineering system of units, 8

Enthalpy, 226, 581

Entrance length, 388, video V8.10

Entrance loss, 417

Entrance region, 283, 388, 417

Entropy, 240, 583

Equations:

general homogeneous, 5

of motion, 279

restricted homogeneous, 5

Equation of state, 12, 580

Equipotential line, 287

Equivalent length, 416

Euler, L., 27, 28, 279, 349

Eulerian description of motion, 150, video V6.2

Euler number, 347, 349, 372

Euler turbomachine equation, 652

Euler’s equations, 94, 279

Exhauster, 673

Exit pipe loss, 419, video V8.10

Expansion wave, 608, 635, video V11.5,

video V11.8

Extensive property, 166

External flow, 461

Eye, 653

Falling head curve, 659

Fan, 645, 673

Fanning friction factor, 396

Fanno line flow, 609

basic equations of, 609

choking length for, 613

normal shock in, 613

graph for computations of, 722

T–s diagram, 610, 613

Favorable pressure gradient, 490

Field representation, 148, video V4.2

Finite control volume analysis, 187

Finite difference:

grid, 702, 703

method, 701

Finite element:

mesh, 702

method, 701

Finite volume, 701

First law of thermodynamics, 223, 225, video

V5.13, video V5.14

First moment of area, 59

Fittings, losses in, 422

Flap, airfoil, 516, video V9.17, video V9.18

Flat plate:

Blasius solution, 476, 477

momentum integral equation, 478

laminar flow, 480

turbulent flow, 485

roughness effect, 487

Floating body, 69, video V2.7

Flow coefficient, 667, 683

FlowLab, 712

Flow measurement:

external flow

Pitot-static tube, 106, video V3.8

Pitot tube, 124, 632, video V3.8

internal flow:

bellows meter, 447

nozzle meter, 119, 442

nutating disk meter, 446, video V8.14

orifice meter, 119, 442

rotameter, 445, video V8.13

turbine meter, 446

Venturi meter, 119, 443, video V3.10

open channel flow:

sluice gate, 120, 566

weir, 120, 561, video V10.13

Flow meters, see Flow measurement

Flow net, 287

Flowrate:

mass, 112, 189

volume, 112, 190

Flow separation, 468, 492, video V9.6,

video V9.13

Flow visualization, 151, video V4.1, video V4.6,

video V4.9, video V7.16, video V9.13,

video V11.4

Fluid:

definition, 3

ideal, 281

inviscid, 279

Newtonian, 15

non-Newtonian, 16, video V1.6

Fluid dynamics, 11

Fluid machines, 646, videos V12.1–V12.4

Fluid mechanics, history of, 27

Fluid particle, 94

Fluid properties:

graphs of, 714

tables of, 12, 14, 714

Fluid statics, 11

equilibrium in, 40

forces in, 57

pressure height relation, 42, 46, 48

Force:

anchoring, 202, 206

body, 40, 201, 276

buoyant, 68, video V2.6, video V2.7

compressibility, 347

drag, 302, 463, 493

gravity, 347
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Index I-5

hydrostatic:

on curved surfaces, 66, video V2.5

on plane surfaces, 57, video V2.4

inertia, 347

lift, 302, 463

pressure, 57, 66, 347

shear, 14

surface, 40, 201, 276

surface tension, 24, 350, video V1.9

viscous, 15, 348

Forced vortex, 291

Form drag, 495

Forward curved blades, 657

Forward difference, 703

Francis turbine, 682

Free jet, 110, video V3.9

Free-stream velocity, 489

Free surface, 58, 367

Free vortex, 101, 291, video V3.6,

video V6.4

Frequency parameter, 350

Friction coefficient, 482

Friction drag, see Drag

Friction factor, 396

data correlation for, 413

Moody chart, 412, 413

noncircular duct, 426

smooth pipe, 413

wholly turbulent, 412

Frictionless flow:

compressible adiabatic, see Isentropic flow

compressible with heat transfer, see Rayleigh 

line flow

incompressible, 99, 242, 281

open channel, see Open-channel flow

Friction slope, 541

Friction velocity, 406

Frontal area, 497

Frontinus, S., 27, 28

Froude, W., 28, 348

Froude number, 347, 348, 372, 536, 539,

video V7.4, video V10.5

Fully developed flow, 283, 388

laminar, 388, 390, video V8.9

turbulent, 399

gc, 8

Gage fluid, 51

Gage pressure, 13, 48

Galilei, G., 27, 28

Gas constant, 12, 580

for common gases, 14

ideal gas equation of state, 12, 580

universal, 580

Gas dynamics, see Compressible flow

Gas turbine engine, 689

General homogeneous equation, 5

Geometric similarity, 356

Grade line:

energy, 123, 541

hydraulic, 123

Gradient:

operator, 41, 157, 284

pressure, 41

Gradually varied flow, 535, 554

Gravity, acceleration of, 8, 719, 720

Grid, 703, video VA.2

Guide vanes, 421, 671

Hagen, G., 28, 313, 393

Hagen–Poiseuille flow, 313, 393, video V6.13

Half-body, 296, video V6.5

Head, 124

coefficient, 683

elevation, 103, 124

loss, 233

piezometric, 124

pressure, 43, 103, 124

pump, 656, 662

shaft, 233

shaft work head, 233

total, 124

velocity, 103, 124

weir, 561

Head curve:

falling, 659

rising, 659

Head loss, 233

in diffusers, 420

in enlargements and contractions, 419

in entrances, 417, video V8.10

in exits, 419, video V8.10

in gradual contractions, 420

in hydraulic jumps, 557, video V10.11,

video V10.12

major, 410, 411

minor, 410, 415, video V8.12

in mitered bends, 421

in nozzles, 420

in open channels, 542

in pipe bends, 421

in pipe entrances, 417

in pipes, 397, 422

in sudden area changes, 418

in valves and fittings, 422

Head loss coefficient, 415

Head rise coefficient, 666

Heat transfer, 223, 224

Rayleigh flow, 609, 620

relationship between head loss, internal energy

and, 233

History of fluid mechanics, 27

Homogeneous flow, 535

Horseshoe vortex, 519, 556, video V4.6,

video V9.1, video V9.19

Hybrid grid, 704

Hydraulic diameter, 316, 426

Hydraulic efficiency, 659

Hydraulic grade line, 123

Hydraulic jump, 556, 634, video V10.11,

video V10.12

classification of, 560

depth ratio across, 557

head loss across, 557

Hydraulic radius, 548

Hydraulically smooth wall, 413

Hydraulics, 27

Hydrodynamics, 27
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I-6 Index

Hydrometer, 90, video V2.8

Hydrostatic force:

on curved surfaces, 66, video V2.5

on plane surfaces, 57, video V2.4

Hydrostatic pressure distribution, 42

Hypersonic flow, 591

Ideal fluid, 281

Ideal gas flow, 580, video V11.1

Ideal gas law, 12, 580, video V11.1

Ideal head rise, 656

Impeller, 653

Impulse turbine, 673, 674, video V12.4

Inclined tube manometer, 54

Incompressible flow, 99, 271

Incompressible fluid, 20, 42, 99, video V1.7

Induced drag, 515

Inertial control volume, 200

Infinitesimal control volume, 263

Inlet guide vane, 687

Intensity of turbulence, 402

Intensive property, 166

Internal energy, 223, 580

Inviscid core, 282, 388

Inviscid flow, 94, 264, 279

fluid, 279

Irreversible flow, 240

Irrotational flow, 130, 268, 281, video V3.6,

video V6.4

Irrotational vortex, 291

Isentropic flow, 127, 242, 584

with area change, 593

basic equations for, 593

in converging–diverging nozzle, 594, video V11.6

in converging nozzle, 594

effect of area variation on, 593

graph for calculations of, 721

ideal gas, 592

reference condition for, 595, 597

Isentropic process, 21, 584

Isentropic stagnation properties, 596

Isothermal:

atmosphere, 46

process, 21

Jet exit pressure, 110

Joule, 7

Jump, hydraulic, 556, 634, video V10.11,

V10.12

Kaplan turbine, 682

Kármán vortex trail, 349, 501, video V4.12, video

V6.15, video V9.8

Kilogram, 7

Kinematics of fluid flow, 147, 264

Kinematic similarity, 356

Kinematic viscosity, 20

of air, 717, 718

of common gases, 14, 715

of common liquids, 12

of water, 716

Kinetic energy, 103, 223

coefficient, 236

Kutta–Joukowski law, 305

Lagrangian description of flow, 150, video V4.4,

video V4.5

Laminar boundary layer:

Blasius solution, 476, 477

description of, 468, video V9.3

effect of pressure gradient, 488

flat plate:

approximate solution, 492

exact solution, 476, 477

friction coefficient for, 482

thickness of, 472, video V9.3

Laminar flow, 152, video V4.7

between parallel plates, 309

in an annulus, 316

in a boundary layer, 471

past a cylinder, 491

past a sphere, 500

in a pipe, 313, 385, 390, video V6.13, video V8.2

Laplace’s equation, 284

Laplacian operator, 284

Lapse rate, 48

Law of the wall, 406

Length scale, 358

Lift, 302, 463, 509

rotating cylinder, 304

Lift coefficient, 466, 510

airfoil, 514

rotating cylinder or sphere, 520

Lift/drag polar diagram, 516

Lift/drag ratio, 516

Linear deformation, 264

Linear momentum, see Newton’s second law 

of motion

Linear momentum equation, 200, 213, 285

Linear momentum flow, 201, video V5.4,

video V5.5, video V5.6, video V5.8, video V5.9

Local acceleration, 159

Local derivative, 159

Local friction coefficient, 481

Logarithmic velocity profile, 406

Loss, 230

Loss, major and minor, see Head loss

Loss coefficient, 415

Low Reynolds number flow, 466, 498, video V1.3,

video V7.7, video V8.4

Mach, E., 28, 349

Mach cone, 590, video V1.8, video V11.2,

video V11.3

Mach cone angle, 590

Mach number, 23, 347, 349, 585

Mach wave, 590, 635, video V1.8, video V11.2,

video V11.6

Magnus, H., 520

Magnus effect, 305, 520

Major loss, see Head loss, 410

Manning, R., 28, 548

Manning coefficient, 549

values of, 549

Manning equation, 549

Manometer, 50

differential, 52

inclined tube, 54

micro, 81
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Index I-7

piezometer tube, 50, 105, video V2.2

U-tube, 51

Mass, units of, 7

Mass flowrate, 112, 189

Material derivative, 157, 265

Measurement, flow, see Flow measurement

Mechanical efficiency, 659

Mechanical energy equation, 232

Meniscus, 51

Mesh, 702

Meter, flow, see Flow measurement

Method of repeating variables, 336

Method of superposition, 295, video V6.5

Methods of description:

Eulerian, 150

Lagrangian, 150

Micromanometer, 81

Minor loss, 410, 415

Minor loss coefficient, 415

Mixed-flow machine, 647

Mixed-flow pump, 671

Mixing length, 405

Model, 332

definition, 354

design conditions, 355

distorted, 359, video V7.8, video V7.12,

video V7.17, video V7.18

scales, 358

true, 359

Modeling laws, 355

Model studies, 360, video V7.1, video V7.9,

video V7.18, video V7.19, video V7.20

Moment of inertia, 59

of common areas, 60

Moment of momentum, 215, 217, 651, video V5.11

Momentum:

angular, see Moment of momentum 

linear, see Newton’s second law of motion

Momentum coefficient, 210

Momentum equation:

for differential control volume, 276

for finite control volume with constant 

velocity, 213

for inertial finite control volume, 201, 213

for inviscid flow, 278

for viscous flow, 307

Momentum flux, 201

Momentum integral equation, 478

boundary layer with nonzero pressure gradient, 492

boundary layer with zero pressure gradient, 479

Momentum thickness, 474

Moody, L., 29, 412

Moody chart, 412, 413

Moving grid, 704

Multiple pipe system, see Pipe systems

Nappe, 561

Navier, L., 28, 308

Navier–Stokes equations:

cylindrical coordinates, 308

rectangular coordinates, 307

Net positive suction head:

available, 660

required, 660

Newton, 7

Newton, I., 27, 28

Newtonian fluid, 15, 306

Newton’s law of viscosity, 422

Newton’s second law of motion, 94, 200, 276

Noncircular duct, 425

Noninertial reference frame, 201

Nonisentropic flow of an ideal gas, 609

Non-Newtonian fluid, 16, video V1.6

Nonuniform flow, 236, 535

Normal acceleration, 95, 164, video V3.1, video V3.4

Normal depth, 550

Normal shock, 608, 626, video V11.6,

video V11.7

basic equations for, 626

graph for calculation of, 724

T–s diagram, 627

Normal stress, 224, 276

in a Newtonian fluid, 15, 306

work, 224

No-slip condition, 15, 297, 309, video V1.4,

video V6.11, video V6.12

Nozzle:

choked flow in, 597

converging, 595

converging–diverging, 595 video V11.6

definition, 110

incompressible flow through, 421

normal shock in, 608

overexpanded, 608, video V11.5, video V11.6

underexpanded, 608, video V11.6

Nozzle discharge coefficient, 443

Nozzle meter, 119, 442

Numerical methods, 318, video V6.14

Nutating disk meter, 446, video V8.14

Oblique shock wave, 608, 635, video V1.8,

video V11.5, video V11.6

One-dimensional flow, 151

One-equation model, 409

Open-channel flow:

critical flow, 534, 540

depth variation, 545

energy equation for, 541

gradually varied flow, 535, 554

hydraulic jump, 556, video V10.11, video V10.12

laminar, 535

Manning equation for, 549

most efficient, 554

normal depth, 550

rapidly varied flow, 535, 555, video V10.8

surface wave propagation, 536

uniform flow, 535, 546

varied flow, 535, video V10.6

Open channels:

characteristics of, 535, video V10.6

geometric properties of, 546, video V10.7

optimum cross sections, 554

regimes of flow in, 536

shear stress in, 547

velocity contours in, 547

Orifice:

flow through, 111

Orifice discharge coefficient, 442
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I-8 Index

Orifice meter, 119, 442

Outer layer, 405

Overexpanded nozzle, 608, video V11.5,

video V11.6

Overlap layer, 405

Panel method, 702

Parallel plates, 309

Pascal, B., 28, 39

Pascal, 13

Pascal’s law, 39

Pathline, 154, video V4.11

Pelton wheel, 674, video V5.6, video V12.2,

video V12.3

Perfect gas law, 12, 615, video V11.1

Physical properties of fluids:

of air, 717, 718

of common gases, 14, 714

of common liquids, 12, 715

of U.S. Standard Atmosphere, 719, 720

of water, 716

Piezometer, 50, 105, video V2.2

Piezometric head, 124, video V2.2

Pipe:

aging, 412

compressible adiabatic flow in, see Fanno line flow

developing flow in, 388

fittings, 422

flow meter, 441

flowrate, 441

fully developed flow in, 313, 388, 390

head loss, see Head loss

heat transfer in, see Rayleigh line flow

hydraulically smooth, 413

laminar flow in, 313, 385, 388, video V6.13

noncircular, 425

relative roughness of, 411

smooth, 413

transitional flow in, 385, 399, video V8.2,

video V8.3, video V8.8

turbulent flow in, 385, 399, video V8.2,

video V8.3

Pipe system components, 384

Pipe systems, 384, video V6.14

loop, 438

multiple pipes, 437

networks, 440

parallel, 437

series, 437

single pipes, 428

Pi terms, 335, 336, 345

Pi theorem, 335

Pitot, H., 28

Pitot-static tube, 106, 109, video V3.8

Pitot tube, 124, 632, video V3.8

Plane Poiseuille flow, 315

Planform area, 497

Poise, 20

Poiseuille, J., 28, 313, 393

Poiseuille flow, 313, 393, video V6.13

plane, 315

Poiseuille’s law, 315, 393

Polar coordinates, 75

Polar diagram, lift-drag, 516

Position vector, 148

Potential, velocity, 284

Potential energy, 103, 223

Potential flow theory, 284, 305, video V6.9

basic plane flows, 286, video V6.6, video V6.7,

video V6.10

doublet, 293

sink, 288

source, 288

uniform flow, 287

vortex, 290

singularity, 289

superposition of basic plane

flows, 295, video V6.5

flow past cylinder, 300

flow past half-body, 296, video V6.5

flow past Rankine oval, 298

flow past rotating cylinder, 303

Potential function, 284

Pound:

force, 8

mass, 8

Power, 2, 224

coefficient, 666, 683

units of, 7

Power-law velocity profile, 406

Power specific speed, 684

Prandtl, L., 27, 29, 405, 468

Prandtl boundary layer equations, 474

Prediction equation, 355

Pressure:

absolute, 13, 48

atmospheric, 13, 719, 720

center of, 58, 60

coefficient, 349, 496

definition, 13

dynamic, 105

gage, 13, 48

hydrostatic, 42, 105

isentropic stagnation, see Isentropic stagnation

properties

measurement of, 48, 109, video V2.2, video V2.3

at a point, 38, 279, 307

stagnation, 105, 106, 632, video V3.7

static, 105

suction, 48

thermodynamic, 105

total, 105, 106

vacuum, 48

vapor, 23

Pressure coefficient, 349, 496

Pressure distribution:

airfoil, 463

automobile, 513, video V2.1

converging–diverging nozzle, 608

cylinder, inviscid flow, 301, 491

cylinder, viscous flow, 491

entrance of pipe, 388, 417

hydrostatic, 42

in rigid-body motion, 72, 75

in a rotating fluid, 75

standard atmosphere, 47, 419, 420

Pressure drag, see Drag

Pressure drag coefficient, 496
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Index I-9

Pressure force, 40

Pressure gradient, 41

adverse, 300, 490

effect on boundary layer, 488

favorable, 490

Pressure head, 43, 103, 124

Pressure at a jet exit, 110

Pressure prism, 63

Pressure recovery coefficient, 421

Pressure tap, 109

Pressure transducer, 55

strain gage, 56

Primary quantities, 4

Product of inertia, 59

of common areas, 60

Profile, velocity, see Velocity profile

Propeller pump, 671

Properties:

of air, 717, 718

of common gases, 14, 714

of common liquids, 12, 714

of U.S. Standard Atmosphere, 47, 719, 720

of water, 716

Prototype, 354

Pump, 645

affinity laws, 669

axial-flow, 671

blades, 653

centrifugal, 653

dimensionless parameters, 666

double-stage, 654

efficiency, 239

fan, 673

geometrically similar, 666

head, 656, 662

mixed-flow, 671

multistage, 654

parallel, 665

performance curve, 658

propeller, 671

scaling laws, 667, 668

selection, 662

series, 665

similarity laws, 666

single-stage, 654

specific speed, 669

stage, 671

system equation, 662

Quasi-steady flow, 130

Radial-flow machine, 647

Rankine oval, 298

Rapidly varied flow, 536, 555, video V10.9,

video V10.10

Rate of angular deformation, 269, video V6.3

Rate of heat transfer, 223

Rate of shearing strain, 15, 269

Rayleigh, Lord, 29

Rayleigh line flow, 609, 620

basic equations for, 620

graph for calculation of, 723

normal shock in, 624

T–s diagram, 621, 624

Rayleigh Pitot tube formula, 632

Reaction turbine, 673, 682

Rectangular weir, 122, 562

Reentrant entrance, 417

Reference dimensions, 335, 342

Relative roughness, 411, 487

Relative velocity, 176, 196, 218, 647

Repeating variable, 336

Restricted homogeneous equation, 5

Reversible process, 131

Reynolds, O., 29, 348, 385

Reynolds number, 18, 347, 348, 372

critical, see Transition to turbulence

properties of flows with low, 467, 469,

video V1.2, video V7.3, video V7.7, video V9.10

properties of flows with large, 467, 469,

video V1.1, video V7.3

Reynolds pipe flow experiment, 385, video V8.2

Reynolds stress, 404

Reynolds transport theorem, 166, 168, 170, 173

Rheology, 3

Right-hand rule, 218

Rigid body motion of fluid, 72

Ripple tank, 634

Rising head curve, 659

Rotameter, 445, video V8.13

Rotation, 130, 264, 267

vector, 268

Rotor, turbomachine, 217, 221, 647, 687

Roughness:

effect on models, 360, 367, video V7.13

on flat plates, 487

in open channels, 549

in pipes, 410

relative, 411

typical values of, 412

Roughness coefficient, Manning, 549

Round-off error, 703

Scale:

length, 358

model, 358

Scaling laws for pumps, 667

Secondary flow:

in a pipe, 421

Secondary quantities, 4

Second law of thermodynamics, 239

Second moment of area, 59

of common areas, 60

Semi-infinitesimal control volume, 239

Separation: video V6.8, video V9.6, video V9.11,

video V9.13

in a boundary layer, 282, 468, 490

in a pipe, 417, 421

with a shock wave, 631

Separation location, 468

on an airfoil, 492

on a cylinder, 468, 490

definition, 490

Shaft:

head, 233

power, 219, 652

torque, 219, 652

work, 219, 652
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I-10 Index

Shallow water wave, 538

Sharp crested weir, 122, 561, video V10.13

Shearing strain, 15

rate of, 15, 269, video V6.3

Shearing stress, 14, 225, 277, 306

distribution on a flat plate, 497

distribution in a pipe, 391

in laminar flow, 403

in a Newtonian fluid, 306

in open channel flow, 547

in turbulent flow, 401, 404

Shear thickening fluid, 17

Shear thinning fluid, 16

Shear stress work, 225

Shock: video V1.8, video V11.5, video V11.6,

video V11.7

curved, 636

detached, 636

normal, see Normal shock

oblique, 608, 636, video V1.8, video V11.5,

video V11.6, video V11.8

Similar velocity profiles, 477

Similarity:

dynamic, 356

geometric, 356

kinematic, 356

Similarity requirements, 355

Similarity variable, 476

Similitude, 332

based on differential equations, 370

Sink, 288

strength of, 289

Siphon, 117

SI units, 7

prefixes, 7

Slope:

of channel bottom, 541

friction, 541

energy line, 123, 541

friction, 541

Slug, 8

Sluice gate:

discharge coefficient, 566

flow rate under a, 120, 566

force on a, 211

free outflow, 567

submerged, 567

Smooth pipe, 413

Sonic condition, 590

Sound, speed of, 22, 585, 587, video V11.2

of air, 717, 718

ideal gas, 22, 587

of water, 716

Source, 288, video V6.5

strength of, 289

Specific energy, 542

Specific energy diagram, 543

Specific gravity, 12

Specific head, 542

Specific heat:

constant pressure, 21, 581

constant volume, 21, 580

Specific heat ratio, 21, 582

of air, 717, 718

of common gases, 14

Specific speed, 669, 670

Specific volume, 11

Specific weight, 12

of air, 717, 718

of common gases, 14

of common liquids, 12

of water, 716

Speed, 94

Speed of sound, 22, 585, 587

of air, 717, 718

ideal gas, 22

of water, 716

Sphere:

compressible flow past, 504, 588

drag coefficient for, 366, 449, 501, 504, 505, 521,

588

effect of surface roughness, 504

low Reynolds number flow past, 498

rotating, 520

Spillway, 558, video V10.15, video V10.16

Stability, 71, video V2.9, video V2.10

Stagnation enthalpy, 596

Stagnation point, 105, 596, video V3.7

Stagnation pressure, 106, 588, video V3.8

isentropic, see Isentropic stagnation properties

Stagnation pressure probe, see Pitot tube

Stagnation properties, see Isentropic stagnation

properties

Stagnation state, 588, 595

Stagnation streamline, 106, video V3.7, video V4.9

Stagnation temperature, 595

Stall, 492, 515, 688, video V9.15

Standard atmosphere, 47

properties of, 47, 719, 720

State, equation of, 12, 580

Static fluid, pressure variation in, 43

Static pressure, 105

Static pressure tap, 105, 109

Stator, turbomachine, 671, 687

Steady flow, 94, 152, 174, video V4.7

Stoke, 20

Stokes, G., 28, 308, 500

Stokes’ law, 351, 500, video V7.7

Stratified flow, 535

Stratosphere, 47

Streakline, 154, video V4.10, video V7.14

Stream function, 272

Streamline, 95, 153, video V3.1, video V4.9

equation of, 273

Streamline bodies, 463, video V2.1, video V9.2,

video V9.14

Streamline coordinates, 163, video V4.13

Streamline curvature, 95

Streamtube, 226

Streamwise acceleration, 95

Stress:

components, 306

compressive, 224

Newtonian fluid, 15, 306

normal, 224, 276, 306

notation, 277

shearing, 14, 225, 277, 307

sign convention, 277

tangential, 225

turbulent, 401
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Index I-11

Stress field, 277

Strouhal, V., 29, 350

Strouhal number, 347, 349, 372, video V7.5

Structured grid, 704

Subcritical flow, 536, 540, 543, 634, video V10.5

Submerged area, forces on, 57

Subsonic flow, 23, 590, 634

Substantial derivative, 157, 265

Suction, 48

Suction specific speed, 670

Sudden contraction, 419

Sudden expansion, 419

Supercritical flow, 536, 540, 543, 634,

video V10.5

Superposition: video V6.5

direct method, 306

inverse method, 306

irrotational flow by method of, 295

Supersonic flow, 23, 590, 634, video V1.8,

video V11.5, video V11.6

Surface force, 40, 201, 276

Surface tension, 24, video V1.9, video V7.6,

video V10.3

of common liquids, 12

effect on models, 367

of water, 716

Surface wave, 536, video V7.4, video V9.12,

videos V10.1–5

Surge, 688

Sutherland equation, 18

System, 165

System curve, 662

System equation, 663

Systems of units, 7

T–s diagram, 597

Tangential stress work, 225

T ds equations, 241, 583

Temperature:

absolute, 7, 13

Celsius, 7

centigrade, 7

Fahrenheit, 8

Kelvin, 7

Rankine, 8

stagnation, 595

Thermodynamic pressure, see Pressure

Thermodynamics:

first law of, 223, 225, 241

second law of, 239

Three-dimensional flow, 151, 463

Three-reservoir problem, 439

Throat, 595

Time average, 400

Time-averaged equations, 409

Torricelli, E., 28, 110

Torricelli’s formula, 110

Torque, 216

shaft, 218, 652

Total pressure, 106

Total pressure ratio, 686

Total head, 124

Trailing vortex, 519, video V4.6, video V9.1,

video V9.19

Tranquil flow, 536

Transition to turbulence, 385, 399, video V9.4

in a boundary layer flow, 471, 483, video V9.5

in flow past a sphere or cylinder, 490

in an open channel flow, 535

in a pipe flow, 385, 399, video V8.2, video V8.3

Transonic flow, 591

Triangular weir, 123, 563, video V10.13

Troposphere, 47

True model, 359

Truncation error, 703

Turbine, 673

axial-flow, 647

compressible flow, 685, 689

Francis, 682

gas, 689

impulse, 673, 674, video V12.3, video V12.4

Kaplan, 682

Pelton, 674, video V5.6, video V5.12, video

V12.3

performance map, 691

radial-flow, 647

reaction, 673, 682

specific speed, 669, 670

Turbine flow meter, 446

Turbomachine, 221, 646

axial-flow, 647

flow coefficient, 667, 683

head coefficient, 667

mixed-flow, 647

radial-flow, 647

rotary sprinkler, 219, video V4.11, video V5.10,

video V12.2

specific speed, 669, 670

Turbulence:

chaos, 409

characteristics of, 152, 402, video V1.1, video

V8.1, video V8.7

intensity of, 402

mixing in, 403, video V1.1, video V8.5, video

V8.6, video V8.7

modeling, 409

Reynolds stress in, 404

spots in, 483

Turbulent boundary layer, 471, 485

approximate solution for flat plate, 485

effect on separation, 491

velocity profiles in, 484

Turbulent jet, video V8.1

Turbulent pipe flow, 385, 399, video V8.2, video

V8.3, video V8.8

mean velocity, 401

overlap layer, 405

shear stress, 404

shear stress distribution, 401, 404

velocity profile, 405, video V8.2

logarithmic, 406

power law, 406

viscous sublayer, 404

Turbulent stresses, 401, 404

Two-dimensional compressible flow, 635

Two-dimensional flow, 151, 463

Two-equation model, 409

U-tube manometer, 51

Underexpanded nozzle, 608, video V11.6
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I-12 Index

Underflow gate, 566

Uniform depth flow, 546

Uniform flow:

in an open channel, 535, 546

in a pipe, 391

potential, 287

at a section, 112, 190

Uniform flow field, 287

U.S. standard atmosphere, see Standard atmosphere

Units, 4

conversion factors, 9, 725

system of, 7

Universal gas constant, 580

Unsteady Bernoulli equation, 128

Unsteady flow, 128, 152, 159, 174, 179,

video V3.11, video V4.7, video V5.7

Unstructured grid, 704

Upstream velocity, 462

Vacuum, 48

Valve losses, 422

Valves, 416, 423

Vane, 653

Vapor pressure, 23

boiling, 23

in barometer tubes, 49

of common liquids, 12

effect on cavitation, 24

of water, 716

Varied flow, 535

Velocity:

absolute, 176, 196, 218, 647

average, 190

friction, 406

particle, 148

relative, 176, 196, 218, 647

time-averaged, 401

Velocity distribution, see Velocity profile

Velocity field, 148, 265, video V4.2, video V4.3,

video V6.1, video V6.2

Velocity gradient, 14

Velocity head, 103, 124

Velocity measurement, see Flow measurement

Velocity potential, 284

Velocity profile:

between flat plates, 309

in a boundary layer

effect of pressure gradient on, 490

laminar, 477, 482, 484

turbulent, 484, 486

in an open channel, 547

in a pipe

laminar, 313, 392, video V8.9

power law, 406

turbulent, 405, video V8.9

Velocity triangle, 648

Vena contracta, 111, 121, 418

Venturi, G., 28

Venturi discharge coefficient, 444

Venturi meter, 119, 443, video V3.10

Viscometer:

capillary tube, 33, video V1.5

rotating cylinder, 35

Stormer, 37

Viscosity, 14, video V1.3

absolute or dynamic, 15

of air, 717, 718

apparent, 16

of common gases, 14, 714, 715

of common liquids, 12, 714, 715

eddy, 405

kinematic, 20

of U.S. Standard Atmosphere, 719, 720

of water, 716

Viscous dissipation, 397

Viscous flow, 306

Viscous stresses, 306

Viscous sublayer, 404

Visualization, flow, 151, video V4.6, video V4.9,

video V7.16, video V9.13

Volume flowrate, 112

Volume flow meter, 446

Volumetric dilatation, 266

Volumetric efficiency, 659

Volute, 653

von Kármán, T., 29, 349, 479

Vortex:

bound, 519, video V4.6, video V9.19

combined, 291, video V4.8

forced, 291

free, 101, 290, video V3.6, video V6.4

horseshoe, 519, 556

irrotational, 291

Kármán trail, 501, video V6.15, video V9.9

ring, video V4.1

rotational, 291

strength of, 291

tornado, video VA.3

trailing, 519, video V3.5, video V4.6,

video V9.1, video V9.19

Vortex shedding, 349, 501, 526, video V4.12,

video V7.5, video V7.10, video V9.9

Vortex street, 501, video V6.15, video V7.5,

video V9.8

Vorticity, 268

production of, 471

restrictions on Bernoulli

equation because of, 126

transport equation, 328

Wake, 282, 468, video V9.6

flat plate, 468

streamlined object, 498

vortex street, 501, video V6.15, video V9.9

Wall shear stress, 391, 478

Water horsepower, 659

Water, table of properties, 716

Water table, 634

Watt, 7

Wave:

gravity, 536, video V10.4, video V11.3

shock, see Normal shock

surface, 536, video V9.12, video V10.3,

video V10.4, video V10.5, video V11.3

Wave motion, 538

Wave speed:

open channel flow, 636

sound, 22, video V11.2
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Index I-13

Weber, M., 29, 350

Weber number, 347, 350, 372, video V7.6

Weight, 8

Weir, 122, 561

broad-crested, 564, video V10.14

head, 561

rectangular, 122, 562

sharp-crested, 122, 561, video V10.13

triangular, 123, 563, video V10.13

Weir coefficient, 563, 565

Weisbach, J., 28

Wetted perimeter, 316, 426, 546

Wholly turbulent flow, 412

Wind tunnel, 424, video V3.3, video V7.15, video

V9.7, video V9.16

Windmill, 649, video V12.1

Wing loading, 514

Wing tip vortex, 546, video V3.5

Work, 223, 652

normal stress, 224

rate of, 219, 224

shaft, 219, 652

shear stress, 225

sign convention for, 224

tangential stress, 225

units of, 7

Work–energy equation, 103

Zero-equation model, 409

Zone:

of action, 590

of silence, 590
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Index of Fluids Phenomena Videos
Available on www.wiley.com/college/munson

Use the registration code included with this new text to access the videos.

V1.1
Mt. St. Helens 

Eruption

V2.3
Bourdon gage

V1.2
E coli swimming

V1.3
Viscous fluids

V1.4
No-slip condition

V1.5
Capillary tube vis-

cometer

V1.6
Non-Newtonian 

behavior

V1.7
Water balloon

V1.8
As fast as a speeding

bullet

V1.9
Floating razor blade

V1.10
Capillary rise

V2.1
Pressure on a car

V2.2
Blood pressure meas-

urement

V2.4
Hoover dam

V2.5
Pop bottle

V2.6
Atmospheric 

buoyancy

V2.7
Cartesian Diver

V2.8
Hydrometer

V2.9
Stability of a floating

cube

V2.10
Stability of a model

barge

V3.1
Streamlines past an

airfoil

V3.2
Balancing ball

V3.3
Flow past a biker

V3.4
Hydrocyclone sepa-

rator

V3.7
Stagnation point flow

V3.8
Airspeed indicator

V3.9
Flow from a tank

V3.10
Venturi channel

V3.11
Oscillations in a 

U-tube

V3.12
Flow over a cavity

V4.1
Streaklines

V4.2
Velocity field

V4.3
Cylinder-velocity

vectors

V4.4
Follow the particles

(experiment)

V4.5
Follow the particles

(computer)

V4.6
Flow past a wing

V4.7
Flow types

V3.5
Aircraft wing tip 

vortex

V3.6
Free vortex

JWCL068_ind video_VI-1-VI-9.qxd  11/12/08  11:05 AM  Page VI-1
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V4.8
Jupiter red spot

V4.9
Streamlines

V4.10
Streaklines

V4.11
Pathlines

V4.12
Unsteady flow

V4.13
Streamline coordi-

nates

V5.1
Sink flow

V5.2
Shop vac filter

V5.3
Flow through a con-

traction

V5.4
Smokestack plume

momentum

V5.6
Force due to a water

jet

V5.7
Running on water

V5.8
Fire hose

V5.9
Jelly fish

V5.10
Rotating lawn sprin-

kler

V5.11
Impulse-type lawn

sprinkler

V5.12
Pelton wheel turbine

V5.13
Energy transfer

V5.14
Water plant aerator

V6.1
Spinning football-

velocity contours

V6.2
Spinning football-ve-

locity vectors

V6.3
Shear deformation

V6.4
Vortex in a beaker

V6.6
Circular cylinder

V6.7
Ellipse

V6.8
Circular cylinder

with separation

V6.9
Potential and viscous

flow

V6.10
Potential flow

V6.11
No-slip boundary

condition

V6.12
Liquid– liquid 

no-slip

V6.13
Laminar flow

V6.14
Complex pipe flow

V6.15
CFD example

V7.1 
Real and model flies

V7.2 
Flow past a flat plate

V5.5
Marine propulsion

V6.5
Half-body

V7.3 
Reynolds number

V7.4

Froude number

V7.5 
Strouhal number

V7.6 
Weber number

V7.7 
Stokes flow

V7.8 
Model airplane

V7.9 
Environmental mod-

els

V7.10
Flow past an ellipse
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V7.11 
Model of fish hatch-

ery pond

V7.12
Distorted river model

V7.13 
Wind engineering

models

V7.14
Model airplane test

in water

V7.15 
Large scale wind

tunnel

V7.16 
Wind tunnel train

model

V7.17 

River flow model

V7.19 
Dam model

V7.20 
Testing of large yacht

mode

V8.1
Turbulent jet

V8.2
Laminar/turbulent

pipe flow

V8.3
Intermittent turbulent

burst in pipe flow

V8.4
Stirring color into

paint

V8.5
Laminar and 

turbulent mixing

V8.6
Stirring cream into

coffee

V8.7
Turbulence in a bowl

V8.8
Laminar to turbulent

flow from a pipe

V8.9
Laminar/turbulent

velocity profiles

V8.10
Entrance/exit flows

V8.11
Separated flow in a

diffuser

V8.13
Rotameter

V8.14
Water meter

V9.1
Space shuttle landing

V9.2
Streamlined and

blunt bodies

V9.3
Laminar boundary

layer

V9.4
Laminar/turbulent

transition

V9.5
Transition on flat

plate

V9.6
Snow drifts

V9.7
Skydiving practice

V9.8
Karman vortex street

V9.9
Oscillating sign

V9.10
Flow past a flat plate

V7.18
Boat model

V8.12
Car exhaust system

V9.11
Flow past an ellipse

V9.12
Jet ski

V9.13
Drag on a truck

V9.14
Automobile 

streamlining

V9.15
Stalled airfoil

V9.16
Bat flying

V9.17
Trailing edge flap

V9.18
Leading edge flap

V9.19
Wing tip vortices

V10.1
Off-shore oil drilling

platform.

V10.2
Filling your car’s gas

tank.
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V10.3
Water strider

V10.4
Sinusoidal waves

V10.5
Bicycle through a

puddle

V10.6
Merging channels

V10.8
Erosion in a channel

V10.9
Bridge pier scouring

V10.10
Big Sioux River

bridge collapse

V10.11
Hydraulic jump in a

river

V10.12
Hydraulic jump in

a sink

V10.13
Triangular weir

V10.14
Low-head dam

V10.15
Spillway gate

V10.16
Unsteady under and

over

V11.1
Lighter flame

V11.2
Jet noise

V11.3
Speed boat

V11.4
Compressible flow

visualization

V11.6
Supersonic nozzle

flow

V11.7
Blast waves

V11.8
Two-dimensional

compressible flow

V12.1
Windmills

V12.2
Self-propelled lawn

sprinkler

V12.3
Pelton wheel lawn

sprinkler

V12.4
Dental drill

V12.5
Flow in a compressor

stage

VA.1
Pouring a liquid

VA.2
Dynamic grid

VA.3
Tornado simulation

V10.7
Uniform channel

flow

V11.5
Rocket engine

start-up

JWCL068_ind video_VI-1-VI-9.qxd  11/12/08  11:05 AM  Page VI-4



JWCL068_ind video_VI-1-VI-9.qxd  11/12/08  11:05 AM  Page VI-5



JWCL068_ind video_VI-1-VI-9.qxd  11/12/08  11:05 AM  Page VI-6



JWCL068_ind video_VI-1-VI-9.qxd  11/12/08  11:05 AM  Page VI-7



JWCL068_ind video_VI-1-VI-9.qxd  11/12/08  11:05 AM  Page VI-8



JWCL068_ind video_VI-1-VI-9.qxd  11/12/08  11:05 AM  Page VI-9



■ TA B L E 1 . 3

Conversion Factors from BG and EE Units to SI 

To Convert from to Multiply by

Acceleration

Area

Density

Energy Btu J

J 1.356

Force lb N 4.448

Length ft m

in. m

mile m

Mass lbm kg

slug kg

Power W 1.356

hp W

Pressure in. Hg 

Specific weight

Temperature

K

Velocity

Viscosity (dynamic)

Viscosity (kinematic)

Volume flowrate

If more than four-place accuracy is desired, refer to Appendix E.
a

6.309 E � 5m3�sgal�min 1gpm2
2.832 E � 2m3�sft3�s
9.290 E � 2m2�sft2�s
4.788 E � 1N � s�m2lb � s�ft2

4.470 E � 1m�smi�hr 1mph2

3.048 E � 1m�sft�s
5.556 E � 1°R

TC � 15�92 1TF � 32°2°C°F

1.571 E � 2N�m3lb�ft3

6.895 E � 3N�m2lb�in.2 1psi2

4.788 E � 1N�m2lb�ft2 1psf2

3.377 E � 3N�m2160 °F2

7.457 E � 2

ft � lb�s
1.459 E � 1

4.536 E � 1

1.609 E � 3

2.540 E � 2

3.048 E � 1

ft � lb

1.055 E � 3

5.154 E � 2kg�m3slugs�ft3

1.602 E � 1kg�m3lbm�ft3

9.290 E � 2m2ft2

3.048 E � 1m�s2ft�s2

Unitsa
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■ TA B L E 1 . 4

Conversion Factors from SI Units to BG and EE 

To Convert from to Multiply by

Acceleration 3.281

Area

Density

Energy J Btu

J

Force N lb

Length m ft 3.281

m in.

m mile

Mass kg lbm 2.205

kg slug

Power W

W hp

Pressure in. Hg 

Specific weight

Temperature

K 1.800

Velocity 3.281

2.237

Viscosity (dynamic)

Viscosity (kinematic)

Volume flowrate

If more than four-place accuracy is desired, refer to Appendix E.
a

1.585 E � 4gal�min 1gpm2m3�s
3.531 E � 1ft3�sm3�s
1.076 E � 1ft2�sm2�s
2.089 E � 2lb � s�ft2N � s�m2

mi�hr 1mph2m�s
ft�sm�s
°R

TF � 1.8 TC � 32°°F°C

6.366 E � 3lb�ft3N�m3

1.450 E � 4lb�in.2 1psi2N�m2

2.089 E � 2lb�ft2 1psf2N�m2

2.961 E � 4160 °F2N�m2

1.341 E � 3

7.376 E � 1ft � lb�s
6.852 E � 2

6.214 E � 4

3.937 E � 1

2.248 E � 1

7.376 E � 1ft � lb

9.478 E � 4

1.940 E � 3slugs�ft3kg�m3

6.243 E � 2lbm�ft3kg�m3

1.076 E � 1ft2m2

ft�s2m�s2

Unitsa
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