فصل 19 (کتاب سیلبربرگ)

تعادل های یونی در سیستم های آبی

Ionic Equilibria in Aqueous Systems

- 19.1 Equilibria of Acid-Base Buffers
- 19.2 Acid-Base Titration Curves
- 19.3 Equilibria of Slightly Soluble Ionic Compounds
- 19.4 Equilibria Involving Complex Ions

تعریف بافر اسید-باز

An acid-base buffer usually consists of a *conjugate acid-base pair* where both species are present in appreciable quantities in solution.

An acid-base buffer is therefore a solution of a weak acid and its conjugate base, or a weak base and its conjugate acid.

Figure 19.2 The effect of adding acid or base to a <u>buffered</u> solution.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A 100-mL sample of an acetate buffer is adjusted to pH 5.00. The addition of 1 mL of strong acid (*left*) or strong base (*right*) changes the pH very little.

The acetate buffer is made by mixing 1 *M* CH₃COOH (a weak acid) with 1 *M* CH₃COONa (which provides the conjugate base, CH₃COO-).

بافر چگونه عمل می کند: اثر یون مشترک

A buffer works through the common-ion effect.

$$CH_3COOH(aq) + H_2O(I)$$
 $CH_3COO^-(aq) + H_3O^+(aq)$ acetate ion

If NaCH₃COO is added, it provides a source of CH₃COO ion, and the equilibrium shifts to the left. CH₃COO is *common* to both solutions.

افزایش استات درصد تفکیک اسید را کاهش می دهد. جدول19 -1 را ببینید.

Table 19.1 The Effect of Added Acetate Ion on the Dissociation of Acetic Acid

[CH ₃ COOH] _{init}	[CH ₃ COO-] _{added}	% Dissociation*	[H ₃ O ⁺]	рН
0.10	0.00	1.3	1.3x10 ⁻³	2.89
0.10	0.050	0.036	3.6x10 ⁻⁵	4.44
0.10	0.10	0.018	1.8x10 ⁻⁵	4.74
0.10	0.15	0.012	1.2x10 ⁻⁵	4.92

* % Dissociation =
$$\frac{[CH_3COOH]_{dissoc}}{[CH_3COOH]_{init}} \times 100$$

Figure 19.3 How a buffer works.

بنابراین اجزای بافر درنهایت یون هیدرونیوم یا یون هیدروکسید اضافه شده را مصرف می کنند.

سوال: آیا با اضافه کردن اسید قوی یا باز قوی می توان pH بافر را تغییر داد؟

pH و نسبت غلظتی اجزای بافر

$$CH_{3}COOH(aq) + H_{2}O(I) \implies CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$$

$$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]} \qquad [H_{3}O^{+}] = K_{a} \times \frac{[CH_{3}COOH]}{[CH_{3}COO^{-}]}$$

Since K_a is constant, the $[H_3O^+]$ of the solution depends on the *ratio of buffer component concentrations*.

If the ratio
$$\frac{[HA]}{[A^-]}$$
 increases, $[H_3O^+]$ increases.

If the ratio
$$\frac{[HA]}{[A^-]}$$
 decreases, $[H_3O^+]$ decreases.

The Henderson-Hasselbalch Equation

$$HA(aq) + H2O(I) \Rightarrow A-(aq) + H3O+(aq)$$

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
 $[H_{3}O^{+}] = K_{a} \times \frac{[HA]}{[A^{-}]}$

$$-\log[H_3O^+] = -\log K_a - \log \left(\frac{[HA]}{[A^-]}\right)$$

$$pH = pK_a + log \left[\frac{[base]}{[acid]} \right]$$

تمرین: از مسائل آخر فصل 19 سیلبربرگ، دو مسئله 19–15 و 19–16 را در این زمینه حل کنید.

سوال: گستره pH بافر را به دست آورید.

Buffer Range

The **buffer range** is the pH range over which the buffer is effective.

Buffer range is related to the ratio of buffer component concentrations.

The closer $\frac{[HA]}{[A^-]}$ is to 1, the more effective the buffer.

If the concentration of one component is more than 10 times the concentration of the other, buffering action is poor. Since $\log 10 = 1$, buffers have a usable range within ± 1 pH unit of the pK_a of the acid component.

تمرین: از مسائل آخر فصل 19 سیلبربرگ، مسئله 19-9 را در این زمینه حل کنید.

Sample Problem 19.1

Calculating the Effect of Added H₃O⁺ or OH₂on Buffer pH

PROBLEM: Calculate the pH:

- (a) Of a buffer solution consisting of 0.50 M CH₃COOH and 0.50 M CH₃COONa
- (b) After adding 0.020 mol of solid NaOH to 1.0 L of the buffer solution in (a).
- (c) After adding 0.020 mol of HCl to 1.0 L of the buffer solution in (a).
 K_a of CH₃COOH = 1.8 x 10⁻⁵. (Assume the additions cause a negligible change in volume.)

PLAN: We can calculate [CH₃COOH]_{init} and [CH₃COO-]_{init} from the given information. From this we can find the starting pH. For **(b)** and **(c)** we assume that the added OH- or H₃O+ reacts completely with the buffer components. We write a balanced equation in each case, set up a reaction table, and calculate the new [H₃O+].

SOLUTION: (a)

Concentration (M) $CH_3COOH(aq)$	+ H ₂ O(I)) + H ₃ O⁺(ac	<u>1)</u>
Initial	0.50	-	0.50	0	
Change	-x	-	+x	+x	_
Equilibrium	0.50 - x	_	0.50 + x	x	

Since K_a is small, x is small, so we assume

[CH₃COOH] =
$$0.50 - x \approx 0.50 M$$
 and [CH₃COO-] = $0.50 + x \approx 0.50 M$

$$x = [H_3O^+] = K_a \times \frac{[CH_3COOH]}{[CH_3COO^-]} \approx 1.8 \times 10^{-5} \times \frac{0.50}{0.50} = 1.8 \times 10^{-5} M$$

Checking the assumption:

$$\frac{1.8 \times 10^{-5} M}{0.50 M}$$
 x 100 = 3.6x10⁻³% (< 5%; assumption is justified.)

(b)
$$[OH^-]_{added} = \frac{0.020 \text{ mol}}{1.0 \text{ L soln}} = 0.020 \text{ M OH}^-$$

Setting up a reaction table for the **stoichiometry**:

Concentration (M) $CH_3COOH(aq) + OH^-(aq) \rightarrow CH_3COO^-(aq) + H_2O(I)$

Initial	0.50	0.020	0.50	-
Change	-0.020	-0.020	+0.020	-
Equilibrium	0.48	0	0.52	

Setting up a reaction table for the acid dissociation, using new initial []:

Concentration (M) $CH_3COOH(aq) + H_2O(I) \longrightarrow CH_3COO^-(aq) + H_3O^+(aq)$

Initial	0.48	-	0.52	0
Change	-x	-	+x	+x
Equilibrium	0.48 - x	-	0.52 + x	x

Since K_a is small, x is small, so we assume

[CH₃COOH] =
$$0.48 - x \approx 0.48 M$$
 and [CH₃COOT] = $0.52 + x \approx 0.52 M$

$$x = [H_3O^+] = K_a \times \frac{[CH_3COOH]}{[CH_3COO^-]} \approx 1.8 \times 10^{-5} \times \frac{0.48}{0.52} = 1.7 \times 10^{-5} M$$

$$pH = -log(1.7x10^{-5}) = 4.77$$

Addition of a small amount of base caused the pH to rise only slightly, from 4.74 to 4.77.

(c)
$$[H_3O^+]_{added} = \frac{0.020 \text{ mol}}{1.0 \text{ L soln}} = 0.020 M H_3O^+$$

Setting up a reaction table for the **stoichiometry**:

Concentration (M) $CH_3COO^-(aq) + H_3O^+(aq) \rightarrow CH_3COOH(aq) + H_2O(I)$

Initial	0.50	0.020	0.50	-
Change	-0.020	-0.020	+0.020	-
Equilibrium	0.48	0	0.52	

Setting up a reaction table for the acid dissociation, using new initial []:

Concentration (M) $CH_3COOH(aq) + H_2O(I) \implies CH_3COO^{-}(aq) + H_3O^{+}(aq)$

Initial	0.52	-	0.48	0
Change	-x	-	+x	+x
Equilibrium	0.52 - x	-	0.48 + x	\boldsymbol{x}

Since K_a is small, x is small, so we assume

[CH₃COOH] = 0.52 −
$$x \approx 0.52$$
 M and [CH₃COO-] = 0.48 + $x \approx 0.48$ M

$$x = [H_3O^+] = K_a \times \frac{[CH_3COOH]}{[CH_3COO^-]} \approx 1.8 \times 10^{-5} \times \frac{0.52}{0.48} = 2.0 \times 10^{-5} M$$

$$pH = -log(2.0x10^{-5}) = 4.70$$

Addition of a small amount of acid caused the pH to drop only slightly, from 4.74 to 4.70.

تمرين:

از مسائل آخر فصل 19 سیلبربرگ، دو مسئله 19-18 و 19-19 را در این زمینه حل کنید.

منبع:

فصل 19 كتاب شيمي عمومي تاليف سيلبربرگ