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A : : : A
y Viscoelastic Fluids \y

Viscoelasticity is the property of materials that exhibit both viscosity and elastic characteristics
when undergoing deformation. Many materials of practical interest (such as polymer melts,
polymer and soap solutions, some biological fluids) exhibit viscoelastic behavior; they have
some ability to store and recover shear energy.

Viscoelastic fluids exhibit the following specification:

1. Relaxation and retardation time
constants (relaxation spectra)

Memory effect

The first and second normal
stress differences

Nonlinear viscometric functions
5. Unsteady elongational viscosity



A Standard Tests of Viscoelastic Fluids
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Rheological Tests

There are some standard tests for viscoelastic fluids which
are useful to measure the different material modulus and
rheological properties. They usually performed at constant
or variable temperature (for some classes of materials,
they should down at constant or variable, magnetic or
electric fields). The results of these tests are useful to
know the rheological behaviors of material in different
conditions and the main of them are:

Stress Relaxation

Creep

Recoil

Frequency Sweep and Amplitude Sweep

Viscometric Tests

A o

Steady and Unsteady Elongational Tests

The
Modular
Compact
Rheometer
Series

A
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oy Stress Relaxation Test oy

In stress relaxation test, a suddenly step strain is applied on a sample of material
and the response of stress is measured.

7t

Step strain applied

am -0 ]
V=70 = yo 120

o=~
time
r T
7 (0)
Elastic response (ideal Hookean Viscous response (ideal Newtonian
solids) to the step shear strain fluids) to the step shear strain
— —p—

time time 4



: A
oy Stress Relaxation Test oy
4 Solids T Fluids
! ; () ‘
|
o | -
—l A time A time

Observations of real materials (viscoelastic solids and fluids) shows that the stress
Is decreased rapidly in initial time and finally approaches to the limiting value.

The required time in which the stress is approach to the limiting value is known as
the relaxation time.

For ideal Newtonian fluids, this time constant is zero and for ideal Hookean solids,
it is approach to infinity:.



.) Stress Relaxation Test .)
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oy Relaxation Time Constants

TABLE 1.8. Viscoelastic fluid properties

Zero-shear
Temperature Relaxation viscosity Rigidity
Fluid (K) time (s) (Pa-s) No/A
type T A Mo (Pa)
Water 293 ~10712 0.001 10°
Mineral oil 303 7 x 10710 0.5 ' 7 x 108
Poly-dimethysiloxane {303 10~ 0.3 3 x 10°
398 1.7 x 104 100 6 x 10°
Low-density polyethylene {388 10 2 x 10° 2 x 10*
513 0.1 3000 3 x 10*
High-density polyethylene {453 0.07 2000 3 x 10*
: 493 0.05 1000 2 x 104
High-impact polystyrene {443 7 2 x 10° 3 x 10*
483 ‘ 3 1 x 103 3 x 10*
0.5% Hydroxyethyl- 300 0.1 1.3 13
cellulose in water
2% Polyisobutylene solution 300 100 1000 10

in Primol oil
Glass 300 >10° >10'8 ~5 x 10'°




Basic Elements of Linear Models A
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Isaac Newton (1642-1726)

RobHook (1635-1703)



Q)’ Maxwell Model Q)’

Maxwell
7 G y
@ /N—0 >
.4 2 71
n. .
T+—T=ny
James Clerk Maxwell (1831-1879) G

A Maxwell material 1s a viscoelastic material having the properties both of elasticity
and viscosity. It 1s named for James Clerk Maxwell who proposed the model in 1867.
It is also known as a Maxwell fluid. The Maxwell model can be represented by a purely
viscous damper and a purely elastic spring connected in series.



A Maxwell Model
yy

Derivation the equation

From the elements of Maxwell model, we have: V=htn
T=1, =1,
Therefore,
;V — ;Vl + }/2 Time denvation N ;V — }}1 + }}2 (2)
From Eq. (1), it is simply concluded that,
n=1/G
{- . (3)
VY, =T
By substituting Eq. (3) into the Eq. (2), we have
y=1/G+1/y —> r+%r‘:;y;> (4)

/ /4

{Tl :G:Vl (1)
T, =n7,

It is important to mention that, the term 77/ G has the dimension of time so it could be considered
as a time constant ( A ). Finally, the Maxwell constitutive equation 1s obtained as follows:

T+ AT=ny (5)

where A is the relaxation time constant of Maxwell model.

10



Q)’ Maxwell Model Q)’

Response of Maxwell model to the stress relaxation test:

As mentioned before, in the stress relaxation test, a step strain is applied on the sample and the
stress is measured. Therefore, the shear strain of this test can be expressed as:

H) 0 <0
y=V1l1) = yo 120 (6)
Therefore,
y=0 f or t=0 (7) Increasing the relaxation time

By substituting Eq. (7) into the Eq. (5), we have

T+ Ar=0 (8)

The solution of above equation is \
- —t/ 2 =

r=71,€ (9) Time

The above result has a good agreement for response of
viscoelastic materials and Maxwell equation is usually
used to model the effect of relaxation time.



"’ Creep Test "’

In creep test, we supposed that the material is subjected to a one-step stress history
and the response of shear deformation is measured.

T
# Shear Stress applied
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time
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shear strain response

time time
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Creep Test

Response of solid-like material
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Response of fluid-like material
4

time

For some cases, 1t 1s
impossible to tell which type
of behavior 1s occurred.

In these cases, a knowledge of
the material microstructure is

useful.
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"’ Kelvin-Voigt Model "’
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Kelvin-Voigt (KV) 6t B of Nands (1624 106) Woldomar Voigt (1850 - 191%)

William Thomson (1824-1907) =G| r+ n ¥y
Woldemar Voigt (1850-1919)

The Kelvin-Voigt model, also called as Voigt model and Mayer model, can be represented
by a purely viscous damper and purely elastic spring connected in parallel. It is a useful
equation to model both creep and recoil tests.

14



0)’ Kelvin-Voigt Model 0)’

Derivation the equation:

From the elements of Kelvin-Voigt model, we {}’ == & {ﬁ =Gy, (10)

have: T=17,+7, T, =17,
Based on Eq. (10), we can conclude that

r=1,+1, > =Gy, +ny, (11)
Eq. (11), can be written as

r=G(y+¢&) (12)

where £ is a time constant (£ =77/ G ) which is known as the Retardation Time. The Retardation

time is the delayed response to an applied force or stress and can be described as “delay of the
elasticity™.
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0)’ Kelvin-Voigt Model

Response of Kelvin-Voigt model to the creep test:

® 0 <0
T=T | =
o r, =0 (13)
By substituting Eq. (13) into the Eq. (12), we have

] ) T,
r,=G(y+&) —> §E’+J’=E{' (14)

By considering the initial value of »(0) = y,, the solution
of Eq. (14) is:

_erx T oy
y(1) =y.e "’+g”(1—€ r’“) (15)

The above result has a good agreement for response of
Solid-like materials in creep test.

Y®

4

As mentioned before, in the creep test, a step stress is applied on the sample and the shear strain is
measured. Therefore, the shear stress of this test can be expressed as:

Yo

To/G

Time
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0)’ Kelvin-Voigt Model 0)’

Recoil Test: During the creep test, if we would free the material at time 7=t; (the stress suddenly

becomes to zero), then the elastic element would retard the material back until the deformation
becomes zero. This experiment is known as the recoil test.

Response of Kelvin-Voigt model to the Recoil Test:

& |

In recoil test, the stress suddenly becomes zero at t=t.

Therefore, from the Eq. (12), we have:
y+&y=0 (16)

Y®

Recoil Test
By considering y(t=t)=y,, the solution of above

equation, is: {

[reep Test '
o

y=y, eV fort>t, 17

_ o =i Time
This response indicates that & has the role of

retardation time constant in Kelvin-Voigt model.
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0)’ Response Functions 0)’

Response Functions: Let R(y.z) be the stress relaxation function and C(7.t) be the creep function. Here, R(y.t) 1s

in form of shear stress and C(r.t) 1s in form of shear strain. It 1s important to mention that the relation between shear

stress and shear strain 1s m form of odd function. so we have:

R(y.t)= Gy +O0(), (18)
and
C(r,t)=J(t)r +O(z). (19)

The coefficients of linear terms are the linear stress relaxation modulus, G(¢) , and the linear creep compliance, J(1).

The values of these functions at =0 are denoted G¢ and J; (g for glass) and the value at t — == are G: and J: (e for
equilibrium). Immediately after application of a step stress or strain, the response 1s independent whether it 1s the stress
or the strain which is to be held constant in the future. Hence, at =0, r =G,y and y =J,r so G,J, =1.1If the stress

and strain approach to limiting value, it 1s wrreverent which one was held absolutely constant for positive times.

Therefore, we have G_J_=1. G andJ are only reciprocal for these two cases and they are roughly reciprocal for other
times. It 1s also possible to prove that for any applied strain and stress; the following relationships are established:

()= [ G—1)d(y(") (20)

r(6)= [ J@e—)d(z(t") 1)

18



Response Functions )
v )4 P v /4
G(t) J(1)
5 | J
(@)
G, Relaxation modulus G and creep
I compliance J for (a) Solids, (b) Fluids.
. —tm
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0)’ Viscoelastic Spectrum 0)’

Viscoelastic Spectra

The Maxwell element cannot describe creep and the Voigt element cannot describe stress
relaxation. The Maxwell does describe stress relaxation and the Voigt does describe creep, but as
exponential functions of time. Most observed creep and relaxation processes in polymers progress
more gradually. The components of the complex modulus for the Maxwell element, and those of
the complex compliance for the Voigt element, depend on frequency. These elements may be
considered as building blocks for useful models. Therefore, polymeric materials are characterized

by a broad range of relaxation and retardation times.

It is important to mention that there are some discrete and continuous approaches to estimate the

viscoelastic spectrums.

20



0)’ Burgers Model 0)’

\‘\--__-/
é) J. M. Burgers (1895-1981)

The Burgers model is usually defined based on the parallel connection of two Maxwell
elements. It 1s a four constant linear viscoelastic model which brings two individual
relaxation times, a constant viscosity and a retardation time.



0)’ Burgers Model 0)’

Derivation the Burgers equation:

From the schematic shape of Burgers equation in previous slide and Eq. (5). we can express the
following relationships for any branches.

For branch No. 1: T, + AT, =17, (22a)

For branch No. 2: Ty + ATy =17, (22b)
where A =7,/G, and A, =7,/G,. It 1s important to remember that the branches are parallel so:
r=r,+7r,and y =y =7,.

By summing Eq. (22a) and (22b), we have:

O+, + AT+ AT, =nF+n) — THAT +AT, :(;;1+;;1)}a (23)

By time derivation of Eqns. (22a) and (22b), it 1s concluded that,

LEAT =Y —2 AT + AT =AY (24a)
T+ AT, =1y — AT, + AT, =hAY (24b)
22



0)’ Burgers Model 0)’

By summing Eq. (24a) and (24b), we have:
WT+ AT, + A4 (T,+7,) = (mA +m,4) 7 (25)
—> AL HAL+ALT=(0A4 +mA4)Y
Finally, by adding Eq. (23) and (25), the Burgers Equation is obtained as follows:
rH(A+4)0 H(A+4) 5, + AT =, +0,) 7+ (A +mA4) 7
LAt ibA j,} (26)

T+ 17,

— T+(A1+ﬂﬁ)f+’a1ﬂ?f:(}?l+}?2)[?;

The Burgers equation can be also expressed as:
T+t +a,t =n(y+ fBy) (27)

A, +1,4, _
1

where o4 = A +A,, a, =44, n=n,+1n, and B=

23



0)’ Burgers Model 0)’

Response of Burgers model to the stress relaxation test:

Based on Eqns. (6) and (7)., the following differential equation can be expressed from

Eq. (26):

r+(A+4)r+ 447 =0 (28)
The detail of solution of above equation is:
AT+ (A+24,)T+7=0
2ol +(A+ 2)r+1=0.  A=(24+24) —44k =(2-2)
(At2)E (A=) {n=—m

Ha

244 rn=—1/4
o —t/ 4 -t/ A, =¥ o —t/ 4 —t/ 4,
T=7y,e " +71,,e —=2 G(1)=G,e " +G, e (29)
The above relationship indicates that the Burgers model brings two relaxation times.

24



0)’ Jeffreys Model 0)’

The Jeffreys Model is usually defined based on parallel connection
of Maxwell and viscous elements. It could be considered as an -|-

especial case of Burgers model (Eq. (26)) by substituting A, =0:

r+At=n(y+<%y) (30)

The Jeffreys equation i1s a three constant model which brings a
relaxation time ( A ), a retardation time ( £ ) and a viscosity ( 77 ). This

equation is usually used to model dilute polymeric solutions in
which a little polymeric additive is solved in a Newtonian solvent.

Equation (30) is also derived by considering some details in
Burgers equation including: 7n,=7,, G,=G;, 7. =1,,

A=4=n,/G,, n=n,+n, and £=An, /7. Here, 1 and  are (\\\ 4;)

the relaxation time and viscosity of polymeric additives, 77, is the
viscosity of Newtonian solvent and 7 is the viscosity of solution. | 5 2 O
o

The Oldroyd-B model is a well-known quasilinear model which | B s )
is considered as the generalization of Jeffreys model for large S

deformations (fluid flow).
25



( ( ( Unv.-Prot. Dr.-Ing. Dieter Weichert, bor 1848

Dleter Welchert (1948)

The generalized (multi-modes) Maxwell model is defined as the parallel connection of some
Maxwell elements. Therefore, the Burgers equation is a two-modes generalized Maxwell model.
Due to the linear form of this model, the superposition principle is valid and similar to Eq. (29),
we can conclude the following relationships for the generalized Maxwell model:

r=Yre"" & G)=G+> Ge" (31)
i=1 i=1

The above equation is suitable to model the discrete relaxation spectra of viscoelastic materials.



0)’ Discrete Retardation Spectra

h ) e 1,
—d O 4 &
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The generalized Kelvin-Voigt model

A group of Kelvin-Voigt elements in series represents the generalized Kelvin-Voigt model. It can
specify a discrete spectrum of retardation times, each time & being associated with a spectral

compliance magnitude J:.. Applying the superposition principle on Eq. (15) and considering y,=0,
we can derive the following response to the creep test:

y(1) = Z ;—“ (1-¢) & J@)= Z J(1-e") @)
i=1 i=1

i
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0)’ The Continuous Relaxation Spectrum 0)’

The Continuous Relaxation Spectrum:

If the number of elements in the generalized Maxwell model is increased without
limit, the result is a continuous spectrum in which each infinitesimal contribution to
rigidity Fd A is associated with relaxation times lying in the range between A and

A+dA. Actually, experience has shown that a logarithmic time scale is far more
convenient; accordingly, the continuous relaxation spectrum is defined as Hd(LnA),
the contribution to rigidity associated with relaxation times whose logarithms lie in
the range between LnA and LnA+ d(LnA), a measure of the population of relaxation
mechanisms with relaxation times in this interval. (Evidently, H=F A). For the
continuous spectrum, equation (31) becomes

G(t)=G, + j H(A)e"*d(LnA) (33)

The constant G. is added to allow for a discrete contribution to the spectrum with
r =, for viscoelastic solids; for viscoelastic liquids (uncross-linked polymers), of
course, G=0.

28



¢ The Continuous Relaxation Spectrum oy
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o= T | i
Polymeric Liquids
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log 7+ A log 7 + A

The characteristic zones of the viscoelastic time scale are clearly apparent in H: the glassy zone to
the left of the principal maximum, the transition zone where H drops steeply, the terminal zone
where it approaches zero, and a region to the right of the transition zone in examples III, IV, and

VII where H is relatively flat (the plateau) or passes through a minimum.
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0)’ The Continuous Retardation Spectrum 0)’

The Continuous Retardation Spectrum:

In an entirely analogous manner, if the generalized Kelvin-Voigt model is made
infinite in extent, it represents a continuous spectrum of retardation times, L,
alternatively defined by the continuous analog of equation (32):

J(t)=J,+ T L(&)(1-e)d(Lng)+1/n, (34)

In this case an instantaneous compliance J; must be added to allow for the
possibility of a discrete contribution with & =0 (It can be down via canceling a

damper inside the model). Although J; may be inaccessible experimentally, its
presence must be inferred or else instantaneous deformation would require

infinite stress. A term £/ 7, must be added if one of the springs has zero rigidity,

as must be the case for an uncross-linked polymer), etc.

30
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log L{cm?2/dyne)

The Continuous Retardation Spectrum
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At long times, L, like H, should vanish when an uncross-linked viscoelastic liquid polymer reaches
the state of steady flow. This condition is observed for Examples I, II, and III. For Example IV,
there are compliance mechanisms persisting beyond the longest times for which data are available.
The plateau or minimum in the spectrum H corresponds very roughly to a maximum in the

spectrum L.



0)’ Some Points on Linear Viscoelastic Models 0)’

By parallel and series connections of different damper and spring elements, we can
derive the different linear constitutive equations. It is possible to show that the general
form of these equations is:

d'r
dr"

T+o T +0,7+0,T +...+Q,

_ B dm_lj”
=n| 7+py+ By +.+ 5, g (35)

The above linear equation brings a constant viscosity and, » and m discrete relaxation
and retardation times, respectively. They are appropriate for small deformations while
their results are not usually correct for large deformations and fluid flow. These models
are widely used in solid mechanics and polymer Engineering for the problems in which
the size of deformations is small. They are also useful for interoperating the results of
some standard rheological tests such as stress relaxation, creep, recoil, frequency
sweep and amplitude sweep tests. The linear equations cannot model the nonlinear
viscometric functions (viscosity and, the first and second normal stress differences
coefficients) and extensional viscosity. Therefore, there are not suitable to model the
flow of viscoelastic fluids. Some nonlinear and quasilinear constitutive equations for
flow of viscoelastic liquids are derived base on generalization of linear models.
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