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Last modified: R. Schlüter, October 14, 2003 (18:23 h)



i

Literature:

H.A. Bourlard, N. Morgan: Connectionist Speech Recognition – A Hy-
brid Approach.

Kluwer Academic Publishers, Boston, 1994

R.O. Duda, P.E. Hart, D.G. Storck: Pattern Classification.

2nd ed., J. Wiley, New York, 2001.

R.O. Duda, P.E. Hart: Pattern Classification and Scene Analysis.

J. Wiley, New York, 1973.

P.A. Devijver, J. Kittler: Pattern Recognition: A Statistical Approach.

Prentice-Hall, Englewood Cliffs, NJ, 1982.

K. Fukunaga: Introduction to Statistical Pattern Recognition.

Academic Press, New York, 1990.

H. Niemann: Klassifikation von Mustern.

Springer, Berlin, 1983.

R. Schalkoff: Pattern Recognition: Statistical, Structural and Neural Ap-
proaches.

J. Wiley, New York, 1992.

special: Neural Networks

C.M. Bishop: Neural Networks for Pattern Recognition.

Oxford University Press, Oxford, UK, 1995.

S. Haykin: Neural Networks. A Comprehensive Foundation.

Prentice-Hall, Englewood Cliffs, NJ, 1997.

S.Y. Kung: Digital Neural Networks.

Prentice-Hall, Englewood Cliffs, NJ, 1993.

B.D. Ripley: Pattern Recognition and Neural Networks.

Cambridge University Press, Cambridge, UK, 1996.

Pattern Recognition and Neural Networks, October 14, 2003 (18:23 h) WS 03/04



ii

special: HMM

L.R. Rabiner, B.H. Juang: Fundamentals of Speech Recognition.

Prentice-Hall, Englewood Cliffs, NJ, 1993.

X.D. Huang, Y. Ariki, M.A. Jack: Hidden Markov Models for Speech
Recognition.

Edinburgh Univ. Press, 1990.

special: Stohastic

G. Casella, R.L. Berger: Statistical Inference.

Wadsworth&Brooks/Cole, Pacific Grove, CA, 1990.

U. Krengel: Einf”uhrung in die Wahrscheinlichkeitstheorie und Statistik.

Vieweg, 1988.

Extension/Application Lectures

• Speech Recognition and Search Procedures

• Digital Signal Processing for Speech and Images

• Language Modelling

• Stohastic Modelling in Pattern Recognition

• Grammatical Inference and Machine Learning

• Introduction to Artificial Intelligence

Pattern Recognition and Neural Networks, October 14, 2003 (18:23 h) WS 03/04



CONTENTS iii

Contents

1 Introduction 1
1.1 Pattern Recognition Domains . . . . . . . . . . . . . . . . 2
1.2 Structure of a Recognition System . . . . . . . . . . . . . . 3

1.2.1 Approach with Discriminants . . . . . . . . . . . . 3
1.2.2 Statistical Approach . . . . . . . . . . . . . . . . . 5
1.2.3 Typical Pattern Recognition Tasks . . . . . . . . . 8

1.3 Random Variables and Distributions . . . . . . . . . . . . 9
1.4 Gaussian Distribution: Univariate and Multivariate . . . . 15
1.5 Other Distributions in IRD . . . . . . . . . . . . . . . . . . 20

2 Bayes Decision Rule 25
2.1 Overview of different distributions . . . . . . . . . . . . . . 25
2.2 Bayes Approach and Decision Rule . . . . . . . . . . . . . 27
2.3 Discriminants and Limit Surfaces . . . . . . . . . . . . . . 30
2.4 Multivariate Gaussian Distribution . . . . . . . . . . . . . 33
2.5 Distance or Geometric Classifiers . . . . . . . . . . . . . . 36
2.6 Binary Features . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 Independent Binary Features . . . . . . . . . . . . . 42
2.6.2 Dependent Binary Features . . . . . . . . . . . . . . 43
2.6.3 Decision Rule and Error Rate for a special case . . 46

3 Training and Learning 49
3.1 Task Formulation . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Distribution of Distances in IRD when D À 1 . . . . . . . 51
3.3 Moment Method . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Maximum-Likelihood Method . . . . . . . . . . . . . . . . 55
3.5 Practical Aspects . . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Evaluation Criteria: Empirical Error Rate . . . . . . . . . 64
3.7 Dependency on Dimension off the Error Rate . . . . . . . 65
3.8 Bayes Learning . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Discriminants and Neural Networks 74
4.1 Squared Error Criterion . . . . . . . . . . . . . . . . . . . 74
4.2 Structures and Multilayer-Perceptron . . . . . . . . . . . . 78

4.2.1 Non-Linearity . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Notes about the Multilayer-Perceptron (MLP) . . . 82



CONTENTS iv

4.2.3 Multilayer-Perceptron Similar Structures for Statis-
tical Classificators . . . . . . . . . . . . . . . . . . . 87

4.3 Error Back Propagation . . . . . . . . . . . . . . . . . . . 88
4.4 Discriminative Training for Statistical Classificators . . . . 91
4.5 Error Rate and Discriminative Training . . . . . . . . . . . 92

5 Model-free methods 96
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Kernel Densities . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Next Neighbor Rule (NN-rule) . . . . . . . . . . . . . . . . 100
5.4 Error Rate of Next Neighbor Rule . . . . . . . . . . . . . . 103
5.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Mixture Densities and Cluster Analysis 109
6.1 Mixture Densities . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 109
6.1.2 EM Algorithm for Mixture Densities . . . . . . . . 112
6.1.3 Mixture Densities for K classes . . . . . . . . . . . 120
6.1.4 Maximum Approximation . . . . . . . . . . . . . . 121

6.2 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Squared Error Criterion and Exchange Method . . . 123
6.2.3 Hierarchical Cluster Analysis . . . . . . . . . . . . . 126

7 Stochastic Finite Automata 133
7.1 Motivation and Model . . . . . . . . . . . . . . . . . . . . 133
7.2 Mathematical Formalism . . . . . . . . . . . . . . . . . . . 138

7.2.1 Baum Recursion . . . . . . . . . . . . . . . . . . . . 139
7.2.2 Viterbi Algorithm . . . . . . . . . . . . . . . . . . . 140

7.3 Incorporating into Bayes Decision Rule . . . . . . . . . . . 141
7.4 Maximum-Likelihood Training . . . . . . . . . . . . . . . . 142
7.5 Stochastic Grammars (overview) . . . . . . . . . . . . . . . 146

8 Feature Extraction and Linear Mapping 149
8.1 Ideal Feature Extraction . . . . . . . . . . . . . . . . . . . 149
8.2 Linear Mappings . . . . . . . . . . . . . . . . . . . . . . . 151

8.2.1 Effect for given Gaussian Distribution . . . . . . . . 151
8.2.2 Minimization of Representation Error: Karhunen-
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1 INTRODUCTION 1

1 Introduction

Three examples of simple patterns:
left: hand-written digits; center: standardized digits; right: voltage flow
on the microphone output for the German word “mit”.

Two examples of complex patterns:
left: part of a town; right: clip of an electronic circuit scheme.
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1 INTRODUCTION 2

1.1 Pattern Recognition Domains

• Signals (“one-dimensional”)

– acoustic signals (noise, motors, . . . )

– speech

– EKG, EEG, phonocardiogram

– sonar, radar

• Images (“two-dimensional”)

– medical images (x-ray, cell, tomography, spine tomography im-
ages)

– physics of elementary particles

– production: electronic circuits, components, . . .

– satellite images

• written characters

– OCR (Optical Character Recognition)

– hand writing
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1 INTRODUCTION 3

1.2 Structure of a Recognition System

1.2.1 Approach with Discriminants

Classes k = 1, . . . , K (e.g. letters for character recognition)

feature analysis

preprocessing

argmax g(x,k)

signal  s

signal analysis

feature vector (pattern vector, observation vector)

discriminant function (decision function)
g(x,k)

index of recognised class

k

A corresponding class has to be found for a given observed signal s with the
calculated feature vector x ∈ IRD. In order to do this, we need a decision
rule x 7→ r(x):

x 7−→ r(x) = argmax
k

{g(x, k)}

g(x, k) is called discriminant function.
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1 INTRODUCTION 4

Representation of the function x 7→ g(x, k), k = 1, . . . , K:

g(x,1) g(x,k) g(x,K)

x1 xd xD

K outputs

D inputs

x=[x1 ... xd ... xD]

In principle there is no constraint for the functional dependency
x 7→ g(x, k). Often used in practice:

• linear functions of x : g(x, k) =
D∑

d=1
wkdxd + wk0

quadratic functions, i.e. linear functions of components xd xc:

↓
polynomial classifiers

• neural network (ANN = artificial neural network), especially the Multilayer-
Perceptron (with one or two “hidden” layers)

Design criteria for discriminant function g(x, k):

g(x, k) 7−→ 1 if k is the “right” class
g(x, k) 7−→ 0 if k is the “wrong” class

In practice, only approximations of these ideal values can be achieved, so
(as we will see later) the squared error criterion is applied in the learning
phase.

Pattern Recognition and Neural Networks, October 14, 2003 (18:23 h) WS 03/04



1 INTRODUCTION 5

1.2.2 Statistical Approach

Classes k = 1, . . . , K (e.g. letters for character recognition)

• a-priori probabilities: p(k),
K∑

k=1
p(k) = 1.

A-priori probabilities are usually calculated as relative frequencies.

Example - letter recognition: different letters have different frequen-
cies.

• class-dependent probability densities: p(x|k), x ∈ IRD.

Example:

p(x|k) =
D∏

d=1
p(xd|k)

p(xd|k) : univariate Gaussian distribution

x

p(x  | k)d

d
kd

kdσ

µ

µkd : the average value of the component xd for the class k
σ2

kd : the variance of the component xd for the class k
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1 INTRODUCTION 6

Example (two-dimensional):

x
p(x  | k)8

5
5kµ

p(x  | k)5

x8

8kµ

Q

Q

Q

3

2

1

p(x  ,x  |k) = const.5 8

1 2 3Q   > Q   > Q  

If we want to apply distributions p(k) and p(x|k), we have to know their
parameters:

p(k) : relative frequencies

p(x|k) : Gaussian distribution p(x|k) =
D∏

d=1
p(xd|k)

average value µkd

variance σ2
kd



 for each component xd and class k

Number of parameters:

K − 1 values for p(k) (normalization:
K∑

k=1
p(k) = 1)

2 ·K ·D values for p(x|k)
[
µkd, σ

2
kd

]
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1 INTRODUCTION 7

feature analysis

preprocessing

argmax p(k) p(x|k)

signal  s

 x      feature vector 

reference p(x|k)
 reference p(k)

index of recognised class

k

In the statistical approach, Bayes decision rule is used for determining the
corresponding class k for a given observation x

x 7−→ r(x) = argmax
k

{p(k) · p(x|k)}.

During the course, the following connection between two approaches will
be shown:

In ideal case, the discriminant function g(x, k) approximates the a-posteriori
probability p(k|x).

g(x, k) → p(k|x) :=
p(k) p(x|k)

K∑

k′=1
p(k′) p(x|k′)
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1 INTRODUCTION 8

1.2.3 Typical Pattern Recognition Tasks

Typical tasks for both approaches are:

1. Defining and calculating suitable features; this is usually task-specific:

• acoustic signals: spectral analysis, Fourier–transform, . . .

• writing: form-features, . . .

• images: texture, form-features, Fourier–transform, . . .

2. Finding suitable models and structures for

• p(k) and p(x|k) for the statistical approach

• g(x, k) for the discriminant approach

3. Defining suitable training criteria and algorithms in order to estimate
free parameters from the training sample.

4. Search problem: maximization

• not critical for 10 spoken digits or 36 written letters / digits

• critical for 10000 words, and especially for 1000010 = 1040 sen-
tences.

The tasks 1 and 4 are treated in the lecture Algorithms for Speech Recog-
nition [Ney99a].
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1 INTRODUCTION 9

1.3 Random Variables and Distributions

The class index k is omitted in order to simplify the notation.

• Discrete random variable:

Examples:

– throwing coins: X = {0, 1}
– throwing dice: X = {1, 2, 3, 4, 5, 6}

Probability distribution:

p(x) ≥ 0,
∑

x∈X

p(x) = 1

Expected value of function x 7−→ g(x):

E{g(x)} =
∑

x∈X

p(x) · g(x)

Average value (“weighted averaging”) of x:

E{x} =
∑

x∈X

x · p(x)

Variance of x (“scattering around average value”):

V ar{x} = E{(x− E{x})2}
= E{x2 − 2x E{x}+ E2{x}}
= E{x2} − 2 E2{x}+ E2{x}
= E{x2} − E2{x}

• One-dimensional, continuous random variable: x ∈ IR

A one-dimensional, continuous random variable is also called a uni-
variate random variable.
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1 INTRODUCTION 10

Distribution densities: p(x) ≥ 0,
∞∫

−∞
dx p(x) = 1

Examples:

– uniform distribution:

p(x)

x
a b

1
b-a

– triangular distribution:

p(x)

x
a ba+b

2

2
b-a

Both examples above illustrate the probability density p(x) whose
values are equal to zero outside certain finite interval.

An example of a distribution whose values are always greater than
zero:

– Gaussian distribution, normal distribution (bell curve):

p(x)

x
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1 INTRODUCTION 11

Gaussian distribution:

∀x : p(x) > 0, p(x) =
1√

2πσ2
exp


−1

2

(
x− µ

σ

)2

.

The values a, b, µ, σ2, . . . are necessary for the full definition of
densities and are called parameters of the distribution density.

Expected value, average value and variance for continuous random
variables are defined by using the integral instead of the sum:

Expected value of a function x 7−→ g(x):

E{g(x)} =
∞∫

−∞
dx p(x) · g(x)

Average value:

E{x} =
∞∫

−∞
dx x · p(x)

Variance:

V ar{x} =
∞∫

−∞
dx (x− E{x})2 · p(x)

Exercise: Calculate the average value and the variance for the three
previous examples (uniform distribution, triangular distribution, Gaus-
sian distribution).

• multidimensional, continuous random variable: x ∈ IRD

Multidimensional, continuous random variables are called multivariate
random variables.

x ∈ IRD : x = [x1, . . . , xd, . . . , xD]

p(x) = p(x1, . . . , xd, . . . , xD) ≥ 0

∫

IRD

dx p(x) =
∞∫

−∞
. . .

∞∫

−∞
dx1 . . . dxd . . . dxD p(x1, . . . , xd, . . . , xD) = 1
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1 INTRODUCTION 12

Illustration: two-dimensional case (D = 2) : x = [x1, x2]

p(x1, x2) represents the joint distribution / distribution density of the
joint event [x1, x2].

Representation of density p(x1, x2) by iso-likelihood lines, i.e. lines
with constant probability density value:

x1

x2

Marginal distributions p(x1) and p(x2) are obtained as projections on
x1 and x2:

p(x1) =
∞∫

−∞
dx2 p(x1, x2) ,

p(x2) =
∞∫

−∞
dx1 p(x1, x2) .
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1 INTRODUCTION 13

Normally p(x1, x2) 6= p(x1) · p(x2).

artifacts for assumption

p(x1 ,x2) = p(x1) p(x2)

Conditional distribution densities:

p(x1|x2) =
p(x1, x2)

p(x2)
Bayes rule

=
p(x1, x2)

∞∫

−∞
dx′1 p(x′1, x2)

Meaning: the knowledge about x2 also includes information about x1,
i.e. x1 can be better “predicted”.

In words: x2 and x1 are correlated (or dependent).

(Stochastic) independence of x1 and x2:

p(x1, x2) = p(x1) · p(x2) ∀ x1, x2.

If x1 and x2 are stochastically independent, then:

p(x1|x2) = p(x1),

p(x2|x1) = p(x2).

Stochastic Al independence of variables means that the knowledge
about one of the two variables does not contain any information about
the other. Similarly for D > 2.
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1 INTRODUCTION 14

Expected value of a function:

g : IRD −→ IR

x 7−→ g(x)

E{g(x)} =
∫

IRD

dx g(x) · p(x), E{g(x)} ∈ IR

Average value of a random variable x ∈ IRD:

E{xd} =
∫

IRD

dx xd · p(x)

=
∞∫

−∞
dxd xd · p(xd)

E{xd} defines the d-th component of the average value vector E{x}.

Covariance matrix Σ: the element Σcd is defined as:

Σcd = E{(xd − E{xd}) · (xc − E{xc})}

The diagonal element σ2
d of the covariance matrix is the variance of

the d-th component.

σ2
d = Σdd = E{(xd − E{xd})2}

=
∞∫

−∞
dxd p(xd) · (xd − E{xd})2
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1 INTRODUCTION 15

1.4 Gaussian Distribution: Univariate and Multivariate

We consider the conditional probability (density) p(x|k) and the observa-
tion vector x ∈ IRD for one fixed class k.

Observation vectors usually fluctuate around one “typical” prototype vec-
tor. These variations are often described by Gaussian distribution.

• Univariate Gaussian distribution:

We fix one vector component d. The distribution of xd is then:

p(xd|k) =
1√

2πσ2
kd

exp


−1

2

(
xd − µkd

σkd

)2



with parameters µkd and σ2
kd.

p(x|k)

x

For the parameters it holds:

+∞∫

−∞
dxd xd p(xd|k) = µkd average value

+∞∫

−∞
dxd (xd − µkd)

2 p(xd|k) = σ2
kd variance
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1 INTRODUCTION 16

• Multivariate Gaussian distribution with independent components:

p(x|k) = p(x1, . . . , xd, . . . , xD|k) =
D∏

d=1
p(xd|k)

=
1

D∏

d=1

√
2πσ2

kd

exp


−1

2

D∑

d=1

(
xd − µkd

σkd

)2



Iso-likelihood lines p(x|k) = const are hyper-ellipsoids whose main
axes are parallel to the coordinate axes:

x
p(x  | k)17

8

p(x  | k)8

x17

The negative logarithm of p(x|k) can be interpreted as the distance
between x and µk in IRD:

− log p(x|k) =
1

2

D∑

d=1

(
xd − µkd

σkd

)2
+

1

2

D∑

d=1
log (2πσ2

kd)

Notes about dimension:

1. Arguments in mathematical functions (e.g. exp, log, sin) have to
be (actually) dimensionless values. This is achieved by predefining
the dimension of the variance σ2

kd.

2. Because of 1. it is possible to combine different dimensions (length,
time, power, ...) in components xd, d = 1, . . . , D without any
dimension-related problems.
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1 INTRODUCTION 17

3. Dimension of the probability density p(x|k):

In order to obtain a true probability, integration over a volume
element is necessary.

∆∋x      v

v∆

Pr(x ∈ ∆v|k) =
∫

∆v
dx p(x|k) ∼= |∆v| · p(x|k)

• multivariate Gaussian distribution:

General multivariate Gaussian distribution is obtained if an arbitrary
quadratic positive definite form is used in the exponent:

(x− µk)
T Σ−1

k (x− µk)

where µk is the average value vector
Σ−1

k is the inverted covariance matrix

Iso-likelihood lines representation p(x|k) = const results in the

“rotated hyper-ellipsoid”.

x

x5

9
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1 INTRODUCTION 18

Taking normalization
∫

IRD
dx p(x|k) = 1 into account:

p(x|k) =
1√

(2π)D det Σk

exp

[
−1

2
(x− µk)

T Σ−1
k (x− µk)

]

=: N (x|µk, Σk).

For the average value of the component d it holds:
∫

IRD

dx xd p(x|k) = µkd

and for the covariance of components c and d
∫

IRD

dx (xd − µkd) (xc − µkc) p(x|k) = Σk,cd .

Exercise: Verify that the case of a diagonal covariance matrix:

Σk =




σ2
k1 0

. . .

0 σ2
kD




results in the Gaussian distribution with independent components.
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1 INTRODUCTION 19

Look-ahead:

A method for empirical estimation of model parameters µk and Σk:

We keep one class k fixed and collect all observation vectors x1, . . . , xN ∈
IRD which belong to this class. The average value and the covariance are
then estimated in the following way:

µ̂d :=
1

N

N∑

n=1
xnd

Σ̂cd :=
1

N

N∑

n=1
(xnd − µ̂d) (xnc − µ̂c)

Matrix notation:

Σ̂ :=
1

N

N∑

n=1
(xn − µ̂) (xn − µ̂)T

Note the difference between the scalar product and the matrix multiplica-
tion: y ∈ IRD

yT · y =
D∑

d=1
y2

d [1, D]× [D, 1] = [1, 1]

[
y · yT

]
cd

= yc · yd [D, 1]× [1, D] = [D,D]
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1 INTRODUCTION 20

1.5 Other Distributions in IRD

We consider two methods for “construction” of a distribution in IRD.

1. Building a multivariate distribution from the product of univariate
distributions. The pairwise independence of univariate distributions
is assumed.

If p(xd|k) is the univariate distribution of the vector component xd,
then the multivariate distribution is composed as:

p(x1, . . . , xD|k) =
D∏

d=1
p(xd|k)

Example: Laplace distribution

p(xd|k) =
1

2vkd
exp


−|xd − µkd|

vkd




p(x1, . . . , xD|k) =
D∏

d=1
p(xd|k) =




D∏

d=1

1

2vkd


 exp


−

D∑

d=1

∣∣∣∣∣
xd − µkd

vkd

∣∣∣∣∣




Normalization: recalculate for yourself

2. Quadratic form (or distance):

(x− µk)
T Wk (x− µk) > 0 ∀x ∈ IRD, x 6= µk

with a suitable matrix Wk ∈ IRD × IRD.

Choose a function f : [0,∞[−→ [0,∞[, typically monotone decreasing

f(u)

u
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and define the probability density

p(x|k) =
1

CNORM
f [(x− µk)

T Wk (x− µk)],

where the normalization factor CNORM results from the normalization
condition

∫

IRD

dx p(x|k) = 1

with the dependency on the matrix Wk.

Example: t-distribution

p(x|k) =
1

CNORM
[1 +

1

Mk
(x− µk)

T Wk (x− µk)]
−


Mk + 1

2



,

where Mk ∈ IN, µk ∈ IRD, Wk ∈ IRD×D

A difference from the Gaussian distribution is in the polynomial de-
crease for (x− µk)

T Wk (x− µk) → +∞.

A special case of a t-distribution is Cauchy distribution, which results
from setting Mk = 1 and D = 1:

p(u) =
1

CNORM

1

1 + u2

p(u)

u
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Overview: distributions

Discrete events:

• Binomial distribution: gives the distribution for the output of a se-
quence of independent Bernoulli -experiments. Output of Bernoulli -
experiment is binary (A: event occurs; A: otherwise). Example:
throwing a coin. If p(A) = p is the probability that the event A

occurs (and thus p(A) = 1 − p) and N is the total number of obser-
vations in the considered Bernoulli -experiment, then the probability
that event A occurs n times is given by the binomial distribution:

p(n|N) =
N !

n! · (N − n)!
· pn · (1− p)N−n

• multinomial distribution (also polynomial distribution): generaliza-
tion of binomial distribution over k different events A1, ..., AK . Prob-
ability that the event Ak with p(Ak) = pk occurs ni times given the
total number of events N =

∑K
k=1 nk is provided by the multinomial

distribution:

p(n1, n2, . . . , nK |N) = N !
K∏

k=1

pnk
k

nk!

where
K∑

k=1
pk = 1.

• Poisson distribution: the limit value of the binomial distribution for
large values of n if n · p = λ:

p(n) =
λn

n!
exp (−λ)
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Continuous events:

• Normal distribution / Gaussian distribution (univariate): the univari-
ate Gaussian distribution (also “normal distribution”) can be repre-
sented as a special limit value of the binomial distribution for the case
n →∞ when p is constant. The univariate Gaussian distribution with
the average value µ ∈ IR and the variance σ2 ∈ IR+ is defined as:

p(x|µ, σ2) =
1√

2πσ2
· exp


−(x− µ)2

2σ2




• Gaussian distribution (multivariate): multidimensional generalization
of Gaussian distribution with the average value vector µ ∈ IRD and
the covariance matrices Σ ∈ IRD×D:

p(x|µ, Σ) =
1√

det(2πΣ)
· exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

• Laplace distribution: with medians µd and variances vd for d = 1, ..., D:

p(x|µ, v) =
D∏

d=1

1

2vd
· exp


−|xd − µd|

vd




• χ2-distribution: distribution of a sum χ2 =
∑n

i=1 x2
i of n squared

Gaussian-distributed random variables xi with the average values µi =
0 and the identical unit covariance matrix Σi = Σ = I (also called a
χ2-distribution with n degrees of freedom):

p(χ2|n) =
1

2
n
2 · Γ(

n
2

) · (χ2)
n
2−1 · exp

(− χ2

2

)

• t-distribution or Student distribution: distribution of quotients t =
x/χ2 of a Gaussian-distributed random variable x with the average
value µ = 0 and the variance σ2 = 1 and χ2-distributed random
variable χ2 with n degrees of freedom:

p(t|n) =
Γ

(
n+1

2

)

√
n · π · Γ (

n
2

) · 1
(
1 + t2

n )
n+1

2

for n = 1, 2, ...
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2 Bayes Decision Rule

2.1 Overview of different distributions

Observations or feature vectors: x ∈ IRD

Classes: k = 1, . . . , K

Assumption: following distributions are fully known, i.e. both the func-
tional form and the parameters are known.

• a-priori distribution of classes: p(k), k = 1, . . . , K

• class conditioned distributions (or models) of feature vectors x: p(x|k)

Then it is possible to derive following distributions:

• joint distribution of pairs (x, k):

p(x, k) = p(k) · p(x|k)

• distribution of x (independent of the class k):

p(x) =
K∑

k=1
p(x, k) =

K∑

k=1
p(k) · p(x|k)

• a-priori distribution of k (independent of x):

p(k) =
∫

x∈IRD

dx p(x, k)

• class conditioned distribution of x for the given class k:

p(x|k) =
p(x, k)

p(k)
=

p(x, k)∫

x′∈IRD

dx′p(x′, k)
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• a-posteriori distribution for each class k:

p(k|x) =
p(x, k)

p(x)
=

p(k) · p(x|k)
K∑

c=1
p(c) · p(x|c)

In the formula above it can be seen directly that the normalization
condition

K∑

k=1
p(k|x) = 1

is fulfilled.

Example: one-dimensional, D = 1
classes, K = 2
a-priori probabilities p(k = 1) = 2

3 and p(k = 2) = 1
3

probability
   density

x

p(x|k1)

p(x|k2)

x

probability

p(k1|x)

p(k2|x)
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2.2 Bayes Approach and Decision Rule

The goal is to find a decision rule which assigns a class k to each observation
x.

r : IRD −→ {1, . . . , K}
x 7→ r(x)

Assessment of the rule x 7→ r(x) results from a cost function (as usual for
Bayes approaches):

• local costs, if one observation of the class c is assigned to one class k:

L[c, k] =





0 c = k “correct”
. . . c 6= k “wrong”

• total costs are obtained by integration of the local costs over the com-
plete space:

Rx 7→r(x) =
∫

x

dx
K∑

c=1
p(x, c) · L[c, r(x)]

=
∫

x

dx p(x)
K∑

c=1
p(c|x) · L[c, r(x)]

• minimization of total costs over the decision rule:

min
x 7→r(x)

Rx 7→r(x) = min
x7→r(x)

∫

x

dx p(x)
K∑

c=1
p(c|x) · L[c, r(x)]

=
∫

x

dx p(x) min
k

K∑

c=1
p(c|x) · L[c, k]
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The costs for a given feature vector x ∈ IRD will be minimal if the following
decision rule is chosen:

x 7→ r(x) := argmin
k=1... ,K





K∑

c=1
p(c|x) · L[c, k]





(“Bayes decision rule in Pattern Recognition”)
We are often interested only in recognition errors. These errors can be
interpreted as costs using the following definition:

L[c, k] =





0 c = k “correct”
1 c 6= k “wrong”

This results in the following decision rule:

r(x) := argmin
k





K∑

c=1
p(c|x) · L[c, k]





= argmin
k





K∑

c=1
p(c|x)− p(k|x)





= argmin
k

{1− p(k|x)}
= argmax

k
{p(k|x)}

= argmax
k

{p(x, k)}

(“Bayes decision rule for minimum error rate”)

Error rate for a general decision rule:

px7→r(x)(e) =
∫

IRD

dx p(x) [1− p(k = r(x)|x)] .

Error rate for Bayes decision rule:

pB(e) =
∫

IRD

dx p(x) ·
[
1−max

k
p(k|x)

]

= 1−
∫

IRD

dx p(x) ·max
k

p(k|x).
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Hints:

• Note: guaranteed optimality of Bayes decision rule !

• Note the prerequisites !

Example: speech recognition

• classes: word sequences k = wN
1

• features: sequences of acoustic vectors x = yT
1

• cost function (for minimization of the sentence error rate):

C
[
wN

1 , vM
1

]
=





0, wN
1 = vM

1 , i.e. also N = M
1, otherwise

• Bayes decision rule:

argmax
k

{p(k) · p(x|k)} −→ argmax
N,wN

1

{
p(wN

1 ) · p(yT
1 |wN

1 )
}

acoustic model: p(yT
1 |wN

1 )

language model: e.g. bigram p(wN
1 ) =

N∏

n=1
p(wn|wn−1)

• A closed solution for Bayes error rate exists only rarely because the
speech recognition problem comprises

– too many classes, and

– too many dimensions.
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2.3 Discriminants and Limit Surfaces

Bayes decision rule is the starting point

r(x) = argmax
k

{p(k|x)} where p(k|x) =
p(k) · p(x|k)
K∑

c=1
p(c) · p(x|c)

A discriminant or decision function g(x, k) is often used instead of p(k|x):

r(x) = argmax
k

{g(x, k)},

where g(x, k) can be derived from p(k|x) using suitable transformations.

The following discriminants g(x, k) do not change the decision of assigning
a class k to a given feature vector x. The error rate is therefore invariant
to the choice of such a discriminant.

1. g(x, k) := p(x) · p(k|x) = p(x, k) = p(k) · p(x|k)

2. g(x, k) := log p(x, k) = log p(k) + log p(x|k)

3. g(x, k) := log p(k|x)

= log [p(k) · p(x|k)]− log




K∑

c=1
p(c) · p(x|c)



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Limit surfaces arise from discriminants. A limit surface between the classes
k and c is defined as follows:

{x ∈ IRD : g(x, k) = g(x, c)}.

Note: for K classes there are
K · (K − 1)

2
possible class pairs and the

corresponding number of limit surfaces (in the maximal case).
Example: D = 1, K = 3
Consider the joint probability p(x, k) = p(k) · p(x|k):

x1

x2

p(x|k1)p(k1)

p(x|k2)p(k2)

decision
boundary R2

p(x|k3)p(k3)

p(x|k2)p(k2)

p(x|k1)p(k1)

R3 R1 R2 R1

x

decision boundaries
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Illustration of the discriminant approach:

r(x) = argmax
k

{g(x, k)}

x1 xd xD

g(x,k)

g(x,1) g(x,k) g(x,K)

maximum operation

decision: r(x)

This concept consists of

• discriminant or evaluation functions g(x, k),

• maximum-operation.

This concept can be also found in other (“non-statistical”) approaches:

• neural networks,

• geometric classifiers.

Pattern Recognition and Neural Networks, October 14, 2003 (18:23 h) WS 03/04



2 BAYES DECISION RULE 33

2.4 Multivariate Gaussian Distribution

a) bivariate normal density

p(x)

x1

x2
µ2

µ1

µ

b) scatter diagram

x1

x2

µ2

µ1

µ

For each class k and each feature vector x ∈ IRD there is a class conditioned
probability

p(x|k) =
[
(2π)D det Σk

]− 1
2 · exp [−1

2
(x− µk)

T Σ−1
k (x− µk)]

where µk is the average value vector,
Σk is the covariance matrix.

It holds: (x− µk)
T Σ−1

k (x− µk) ≥ 0 ∀x ∈ IRD.
Thus this term can be interpreted as a distance.

We choose the following discriminant function:

g(x, k) := log p(k) + log p(x|k)

= log p(k)− 1

2
log [(2π)D det Σk]− 1

2
(x− µk)

T Σ−1
k (x− µk)

g(x, k) is quadratic in x (quadratic form).
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Different cases for determining limit surfaces:

1. Σk arbitrary

Most general case: the limit surface {x ∈ IRD : g(x, k) = g(x, c)} for
the boundary between two classes k and c is also a quadratic form
of x (hyper-quadratics: -planes, -circles, -ellipsoids, -hyperboloids, -
paraboloids).

Example: x ∈ IR2, K = 2 classes. Shaded surface belongs to the class
k=2.

R1

R2

R1
R2

R1

R2

a) circle b) ellipse

c) parabola

R2 R2R1

R2
R2

R1

R1

d) hyperbola e) straight lines
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2. Σk = Σ, class independent covariance matrix (pooled covariance
matrix)

Limit surfaces are linear functions of x, i.e. hyper-planes, because
quadratic terms of x in the equation g(x, c) = g(x, k) are canceled.

Hint: By applying the main axes transformation (diagonalization of
the covariance matrix Σ) and scaling of the coordinate axes, this case
can be reduced to:

Σk = σ2 I

(this corresponds to a Euclidean distance) classifier.

Exercise:

1. Calculate explicitly the class boundary in the case:

Σk = Σ ∀ k

2. Calculate the “images” for yourself.

3. Consider the XOR-problem, which is often treated in context of neural
networks:

x

x

2

1

A

A B

B

Is it possible to solve the XOR-problem with a Gaussian approach?

If yes, how?
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2.5 Distance or Geometric Classifiers

Starting point: Gaussian distribution with Σk = σ2 I

For the discriminant function g(x, k) = log [p(k) · p(x|k)] we get the follow-
ing expression by omitting the terms which are constant w. r. t. k:

g(x, k) = − 1

2σ2 (x− µk)
T (x− µk) + log p(k)

= − 1

2σ2

D∑

d=1
(xd − µkd)

2 + log p(k)

D∑
d=1

(xd − µkd)
2 is the squared Euclidean distance between x and µk.

Variant: we get the correlation classifier by omitting the quadratic terms
of x:

g̃(x, k) = − 1

2σ2




D∑

d=1
µ2

kd − 2
D∑

d=1
µkd xd


 + log p(k)

The only term dependent on x which remains is the correlation between x
and µk:

µT
k x =

D∑

d=1
µkd xd

(This method used to be important for “fast” hardware implementations,
e.g. radar.)

Generalization: Gaussian distribution with Σk = Σ class independent

By diagonalization of Σ and scaling of the coordinate axes, this case can
be reduced to:

Σk = σ2 I

(This transformation is also called Whitening Transformation)
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Distance classificators:

Distance classifiers are based on a distance function of x and µk:

d(x, µk) ≥ 0

A-priori probability p(k) is ignored and the following function is defined

g(x, k) = −d(x, µk),

so that the decision rules becomes:

r(x) = argmin
k

{d(x, µk)}

The terminology is not unique; the following notations are possible:

• minimum distance,

• nearest neighbor (attention: here normally another meaning!),

• nearest prototype (center, mean).

lp-norms (where p ∈ IN) are often used:

dp(x, µk) := ||x− µk||p

=




D∑

d=1
|xd − µkd|p




1/p

lp-norms fulfill the norm criteria, especially the triangle inequality, and
thus define a distance measure.
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Special cases

• p = 1: absolute value distance (city-block distance, chess board dis-
tance, comparable to Laplace distribution)

d1(x, µk) =
D∑

d=1
|xd − µkd|

• p = 2: Euclidean distance (comparable to Gaussian distribution, but
notice the root)

d2(x, µk) =

√√√√√
D∑

d=1
|xd − µkd|2

• p = ∞: “maximum distance” (Chebyshev distance)
d∞(x, µk) = max

d
|xd − µkd|

Exercise: For x ∈ IR2 and K = 3 classes calculate the limit surfaces for
the case p = 1, p = 2 and p = ∞.

Refinements: distance classifiers are sometimes refined with class- and axis-
dependent scaling factors vkd (variances). In the end, again a statistical
method is obtained.

Determining the error rate for the special case:

• Gaussian distribution with Σk = Σ

• K = 2 classes

A closed solution exists for this special case.

Because of the assumption Σ1 = Σ2, a linear limit surface exists as it is
known from chapter 2.4.

Difference of the two discriminants g(x, 1) and g(x, 2):

g(x, 1)− g(x, 2) = log
p(k = 1)

p(k = 2)
+ (µ2 − µ1)

TΣ−1x +
1

2
(µT

1 Σ−1µ1 − µT
2 Σ−1µ2)

︸ ︷︷ ︸
h(x)
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For an observation x ∈ IRD it is sufficient to calculate distance h(x) between
x and a linear limit surface and to integrate over this distance – instead of
integrating over the total space IRD. Since h(x) is a linear function of x, it
also has the Gaussian distribution (according to a general theorem for the
Gaussian distribution).

We need the average value uk and the variance v2
k of h(x) for each class

k = 1, 2. This results in ([Fuk90], p.85/86):

u1 = −u2 = u

v2
1 = v2

2 = v2

where v2 = 2 u = (µ2 − µ1)
TΣ−1(µ2 − µ1)

The value v2 has an important role and is called Mahalanobis distance
(between µ1 and µ2).

Let P (E1→2) be the conditioned probability that the classifier assigns a
wrong class k = 2 to an observation which actually belongs to the class
k = 1. Define R2 as the set of all observations to which the classifier
assigns the class k = 2:

R2 := {x ∈ IRD|p(2) · p(x|2) > p(1) · p(x|1)} .

Then for the class conditioned error probability of the class k = 1 we get:

P (E1→2) =
∫

R2

dx p(x|k = 1)

The class conditioned error probability for the class k = 2 P (E2→1) can be
derived analogically.

By applying the substitution with the distance h(x) to the class boundary,
these integrals can be reduced to one-dimensional integrals as shown in
the following figure (shaded). The integration limits result from the class
boundary.
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p(h,k)

+u-u

k=1

k=2

h
t

The total error rate probability P (E) is thus given by:

P (E) = p(k = 1) P (E1→2) + p(k = 2) P (E2→1)

= p(k = 1)
1√
2π

∞∫

u+t
v

dh exp


−h2

2


 + p(k = 2)

1√
2π

∞∫

u−t
v

dh exp


−h2

2




where t := log
p(k = 1)

p(k = 2)

This equation for P (E) shows that the error rate P (E) depends only on

• a-priori-probabilities ratio
p(k = 1)

p(k = 2)

• and Mahalanobis distance v2 = (µ2 − µ1)
TΣ−1(µ2 − µ1).

For the special case p(k = 1) = p(k = 2), we get the following simplified
representation for the total error P (E):

P (E) =
1√
2π

∞∫

v
2

dh exp


−h2

2




i.e. the total error P (E) depends only on the Mahalanobis distance.
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What happens with the error rate P (E) if the dimension D of the feature
vectors increases?

In order to represent the total error rate as a function of the dimension D,
we write:

P (E|v2
D) =

1√
2π

∞∫

vD/2

dh exp


−h2

2




Dv / 2

e-h /22
1
2π

In the figure above it can be easily seen that:

lim
D→∞

P (E|v2
D) = 0,

provided that for the increasing dimension D holds:

lim
D→∞

v2
D = ∞.

In this case the error rate P (E|v2
D) can be infinitely reduced.

To illustrate this, we assume that

Σ ∈ IRD×D : is a diagonal matrix with diagonal elements σ2
d > 0

Then the Mahalanobis distance v2
D for the dimension D is:

v2
D =

D∑

d=1

(
µ1d − µ2d

σd

)2

i.e. if each new dimension contributes sufficiently to this distance, the error
rate can be infinitely reduced.
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2.6 Binary Features

So far we have considered random vectors x ∈ IRD, but the Bayes rule also
holds for discrete observations which can be obtained by discretization of
measured values.
Strictly speaking it is better to call such values feature sets instead of
feature vectors:

x = [x1, . . . , xd, . . . , xD]

The case of binary features is especially simple:

xd ∈ {0, 1}
In this case there are 2D possible configurations of feature sets.

2.6.1 Independent Binary Features

If x = [x1, . . . , xd, . . . , xD] where xd ∈ {0, 1} is a binary feature set, then
the (class conditioned) independence of features means:

p(x|k) =
D∏

d=1
p(xd|k) for each class k = 1, . . . , K

For a single binary feature xd it holds:

p(xd|k) =





ϑkd xd = 1
1− ϑkd xd = 0

= (ϑkd)
xd · (1− ϑkd)

1−xd

where ϑkd is the class conditioned hitting quote .
For the whole feature set x it follows:

p(x|k) =
D∏

d=1

[
(ϑkd)

xd(1− ϑkd)
1−xd

]

=
D∏

d=1

[(
ϑkd

1− ϑkd

)xd

(1− ϑkd)

]
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We use the following discriminant function

g(x, k) := log [p(k) · p(x|k)]

and by inserting the class conditioned distribution p(x|k) we obtain:

g(x, k) =
D∑

d=1
xd · log

ϑkd

1− ϑkd
+

D∑

d=1
log (1− ϑkd) + log p(k)

This discriminant is a linear function of [x1, . . . , xD].

Exercise: For ternary features xd ∈ {−1, 0, 1} we get a quadratic discrim-
inant function.

2.6.2 Dependent Binary Features

Rademacher-Walsh expansion

We consider again the binary feature set x = [x1, . . . , xd, . . . , xD] where
xd ∈ {0, 1}.
For representation of the model p(x|k), 2D possible probabilities (more
correct: 2D − 1 due to normalization) are needed.

Rademacher-Walsh approach:

p(x|k) =
2D−1∑

i=0
ai(k) · ϕi(x) where ϕi(x) ∈ {−1, 1}.
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The base functions ϕi(x) are capturing more and more complex depen-
dencies between features xd when i is increasing, and they are defined as
follows:

ϕi(x) =





1 i = 0
2x1 − 1 i = 1
...

...
2xD − 1 i = D

(2x1 − 1)(2x2 − 1) i = D + 1
...

...

(2xD−1 − 1)(2xD − 1) i = D +
D(D − 1)

2
(2x1 − 1)(2x2 − 1)(2x3 − 1)
...

...
(2x1 − 1)(2x2 − 1) . . . (2xD − 1) i = 2D − 1

The base functions are orthogonal, i.e.

∑
x

ϕi(x) · ϕj(x) =





2D , i = j

0 , i 6= j
,

whereby the summation is carried out over all 2D configurations. Due to
the orthogonality, for the coefficients ai(k) it follows:

ai(k) =
1

2D

∑
x

ϕi(x) · p(x|k)

=
1

2D
Ek [ϕi(x)]
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Look-ahead: The training of ai(k) is performed by empirical averaging
of the training data x1, . . . , xN belonging to the class k:

âi(k) =
1

N

N∑

n=1

1

2D
ϕi(xn)

Notes to the orthogonal series expansion:

• the series can be truncated so that only the most important depen-
dencies between xkd are captured.

• but: the resulting function p̃(x|k) can become negative!

• alternative approach which enforces that p̃(x|k) is positive:

log p(x|k) =
2D−1∑

i=0
bi(k)ϕi(x)

similar methods ([DH73], p.111-114):

• expansion by Bahadur - Lazarsfeld

• Dependence Tree by Chow
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2.6.3 Decision Rule and Error Rate for a special case

Assumptions:

• 2 classes: k = 1, 2 where p(1) = p(2) = 1
2

• independent binary features with λ > 1
2 and

p(xd|k = 1) =





λ xd = 1
(1− λ) xd = 0

p(xd|k = 2) =





(1− λ) xd = 1
λ xd = 0

Then for both discriminants g(x, 1) and g(x, 2) it holds:

g(x, 1) =
D∑

d=1
xd · log

λ

1− λ
+

D∑

d=1
log (1− λ) + log (

1

2
)

=
D∑

d=1
xd · log

λ

1− λ
+ D · log (1− λ) + log (

1

2
)

g(x, 2) =
D∑

d=1
xd · log

1− λ

λ
+ D · log λ + log (

1

2
)

The difference of the discriminants is:

g(x, 1)− g(x, 2) =
D∑

d=1
(2xd − 1) · log

λ

1− λ

Because of λ > 1
2 it holds log

λ

1− λ
> 0, and we obtain the decision rule

r(x):

r(x) =





k = 1 if
D∑

d=1
xd > D

2

k = 2 if
D∑

d=1
xd < D

2

arbitrary if
D∑

d=1
xd = D

2 (occurs only for even D)
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Calculating the error rate for odd feature vector dimensions D:

Different cases:

1. An observation x which belongs to the class 1 is by mistake assigned
to the class 2.

d (where 0 ≤ d ≤ D−1
2 ) of the D components are equal to 1:

Probability for that

λd · (1− λ)D−d

Number of different configurations (see binomial distribution):

D

d


 =

D!

d! · (D − d)!

In this way we obtain:

P (E1→2|D, λ) =

D−1
2∑

d=0


D

d


 · λd · (1− λ)D−d

2. An observation x which belongs to the class 2 is by mistake assigned
to the class 1.

d (where 0 ≤ d ≤ D−1
2 ) of the D components are equal to 0:

P (E2→1|D, λ) =

D−1
2∑

d=0


D

d


 · λd · (1− λ)D−d

For the total error rate P (E|D,λ) it follows:

P (E|D, λ) = p(k = 1) · P (E1→2|D, λ) + p(k = 2) · P (E2→1|D, λ)

=

D−1
2∑

d=0


D

d


 · λd · (1− λ)D−d
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We obtain the following limit cases:

1. lim
λ→1

2

P (E|D,λ) =
1

2
(proof: exercise)

2. lim
D→∞P (E|D, λ) = 0

That means, that additional features with p(xd|k) = λxd · (1 − λ)1−xd are
guaranteed to reduce the error rate.

Proof for the limit case lim
D→∞P (E|D,λ) = 0:

P (E|D, λ) =

D−1
2∑

d=0


D

d


 · λd · (1− λ)D−d where λ >

1

2

=

D−1
2∑

d=0


D

d


 · λD

2 · (1− λ)
D
2 ·

(
1− λ

λ

)D
2 −d

︸ ︷︷ ︸
≤1 ∀ 0≤d≤D−1

2

≤ λ
D
2 · (1− λ)

D
2 ·

D−1
2∑

d=0


D

d




< λ
D
2 · (1− λ)

D
2 ·

D∑

d=0


D

d




︸ ︷︷ ︸
=2D=4D/2

= [4 λ(1− λ)]
D
2

Because of

4 λ(1− λ) < 1

it follows that

lim
D→∞[4 λ(1− λ)]

D
2 = 0

and consequently the statement

lim
D→∞P (E|D,λ) = 0.
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3 Training and Learning

Generally it holds: “the one” learning/estimation method does not exist;
the choice of a method depends on the existing task conditions.

In this chapter: class individual and non-discriminative methods, i.e. the
learning for class A and the learning for class B are fully independent of
each other:

A

A

B

B

3.1 Task Formulation

Notation: k = 1, . . . , K classes

x ∈ IRD feature vector

In the statistical approach we started from:

p(k) a-priori probability
p(x|k) class conditioned distributions or models

In the first two chapters we presumed that

• the functional form, e.g. Gaussian x 7→ p(x|k),

• as well as the parameters of the models, e.g. for Gaussian distribution

– average value vector µk – estimated µ̂k

– covariance matrix Σk – estimated Σ̂k

are known.
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In practice, the parameters of models p(x|k) are not known, they have to
be learned or estimated from training data.
For doing that, the training pairs (xn, kn) where n = 1, . . . , N are used,
whereby xn is the n-th feature vector and kn ∈ {1, . . . , K} is the corre-
sponding class.

Example: xn ∈ IR2

x1n

x2n
k=1
k=2
k=3

������ �� �

Example: xn ∈ IR16, dimension D = 16

Assume N = 105 observations quantified with 8 bits.
Number of possible values: 25616 = 2128 ≈ 1038

⇒ there are much fewer observations than possible values.

Example: Gaussian distribution

If it is possible to estimate average value vector µk and covariance matrix
Σk from training data for each class, then the (estimated) class limits are
also known.

Overlap between classes (or the corresponding training data) is the cause
of recognition errors.
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3.2 Distribution of Distances in IRD when D À 1

In contrast to the two- or three-dimensional case, the space is very sparsely
filled with training data if D À 1 (starting from about D = 10).
Let us assume that the class k is fixed and the distribution p(x|k) (e.g.
Gaussian) for x ∈ IRD is given.

x

p(x   )

17aaaa

B
A

x12

17

The following probabilities are to be compared:

Pr(x ∈ A) and Pr(x ∈ B).

For that purpose we calculate the probability approximatively as the prod-
uct of the volume content and the average distribution density:

Pr(x ∈ A) = cD · aD · 〈p(x|k)〉A

where cD is a constant depending on the dimension D

〈p(x|k)〉A is the average distribution density in A
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For B we obtain analogically:

Pr(x ∈ B) = cD ·
[
(2a)D − aD

] · 〈p(x|k)〉B
= cD ·

[
2D − 1

] · aD · 〈p(x|k)〉B

Hence we get the following probability ratio:

Pr(x ∈ B)

Pr(x ∈ A)
=

[
2D − 1

] · 〈p(x|k)〉B
〈p(x|k)〉A

Example: D = 16 and
〈p(x|k)〉B
〈p(x|k)〉A =

1

10

Pr(x ∈ B)

Pr(x ∈ A)
=

[
216 − 1

] · 1

10
∼= 6400

This example shows that the number of observations in the domain A, i.e.
in the center of the distribution, is negligible in comparison to the domain
B, i.e. far away from the center of the distribution.

Key word: sparseness of high-dimensional space

The exact distribution of the distances between a vector x ∈ IRD and a
class center µk of the class k

‖x− µk‖2 :=
D∑

d=1
(xd − µkd)

2

can be calculated if vectors x have Gaussian distribution. The derivation
of this result can be found in statistics books (e.g. [Kre91], p.170-173).

We consider one class k with Gaussian distribution p(x|k) and covariance
matrix Σk = I. The general case with an arbitrary covariance matrix can
be reduced to this special case by diagonalization of the matrix and scaling
of the coordinate axes.
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The result is the χ2-distribution (“Chi-Square”) with D degrees of freedom:

χ2 =
D∑

d=1
(xd − µkd)

2

p(χ2) =
1

Γ(D
2 ) 2

D
2

· (
χ2

)D
2 −1 · exp

(
−1

2
χ2

)

Graphical representation of the χ2-distribution:

p(
χ

2 )

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100

D=8

D=16

D=32

D=64

χ2

Properties (without proofs):

• Average value: E{χ2} = D

• Variance: V ar{χ2} = 2D
• Limit case D →∞ :

p


χ2 −D√

2D


 −→ Gaussian distribution with (µχ2 = 0, σ2

χ2 = 1)

From the graphical representation of the χ2-distribution for D = 8, 16, 32, 64
it can be perceived that the concentration around the average value de-
creases as the dimension D increases.
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3.3 Moment Method

Assume that Nk training vectors for each class k are given:

x1k, . . . , xnk, . . . , xNkk ∈ IRD

Approach: the expected value of a function f : IRD → IR

ϑk =
∫

IRD

dx f(x) · p(x|k)

is replaced by empirical averaging of the training data:

ϑ̂k =
1

Nk

Nk∑

n=1
f(xnk)

In the moment method, the moments or the centered moments are chosen
for f(x):

• moments: f(x) = xα for x ∈ IR, α ∈ IN > 0
• centered moments: f(x) = (x− µ)α where µ = E{x}

Then for the average value µk

µk =
∫

IRD

dx x · p(x|k)

we obtain the estimated value µ̂k

µ̂k =
1

Nk

Nk∑

n=1
xnk

and the estimated value for the elements Σ̂
(k)
cd (c, d = 1, . . . , D) of the

covariance matrix Σ̂k:

Σ̂
(k)
cd =

1

Nk

Nk∑

n=1
(xnk,c − µ̂k,c) · (xnk,d − µ̂k,d).
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For the variances σ̂2
kd (diagonal elements of Σ̂k) it holds:

σ̂2
kd =

1

Nk

Nk∑

n=1
(xnk,d − µ̂k,d)

2.

Higher moments can be estimated only unreliably and therefore are seldom
utilized.

3.4 Maximum-Likelihood Method

The method of moments fails for complex models. A general widely used
method is the Maximum-Likelihood method.
The dependency of the model p(x|k) on a parameter ϑ is written as

pϑ(x|k) or p(x|k, ϑ).

The parameter ϑ is often class dependent so that p(x|k, ϑ) is replaced by

p(x|k, ϑk) .

Nk training vectors are given for each class k:

x1k, . . . , xnk, . . . , xNkk ∈ IRD

The likelihood-function is then defined as follows:

ϑk −→
Nk∏

n=1
p(xnk|k, ϑk)

and also the log-likelihood-function:

ϑk −→
Nk∑

n=1
log p(xnk|k, ϑk).
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ϑk
ϑk

ϑp(x   |k,    )k
n=1

N

nk

The Maximum-Likelihood estimate ϑ̂k is defined as:

ϑ̂k := argmax
ϑk





Nk∏

n=1
p(xnk|k, ϑk)



 .

In words:
“ϑ̂k maximizes the probability of the model p(x|k, ϑk) for the given training
data.”
“ϑ̂k yields the best explanation of given the training data for the model
p(x|k, ϑk).”

ϑ̂k is often estimated by setting the derivation value to zero:

Nk∑

n=1

∂

∂ϑk
log p(xnk|k, ϑk)

!= 0

or also

Nk∑

n=1

1

p(xnk|k, ϑk)
· ∂p(xnk|k, ϑk)

∂ϑk

!= 0

Strictly speaking, it should be checked at this point if a global maximum
really exists.

Example: Gaussian distribution with diagonal covariance matrix

x ∈ IRD with average value vector µk ∈ IRD

variance vector σ2
k ∈ IRD
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p(x|k, µk, σ
2
k) =

1
D∏

d=1

√
2πσ2

kd

exp


−1

2

D∑

d=1

(
xd − µkd

σkd

)2



Training data: x1k, . . . , xnk, . . . , xNkk

Log-Likelihood for class k:

Nk∑

n=1
log p(xnk|k, µk, σ

2
k) = −1

2

Nk∑

n=1




D∑

d=1

(
xnk,d − µkd

σkd

)2
+

D∑

d=1
log (2πσ2

kd)




Derivation over µkd:

∂

∂µkd
=

Nk∑

n=1


xnk,d − µkd

σ2
kd


 != 0

which results in

µ̂kd =
1

Nk

Nk∑

n=1
xnk,d

Derivation with respect to σ2
kd:

∂

∂σ2
kd

=
1

2σ4
kd

Nk∑

n=1
(xnk,d − µkd)

2 −
Nk∑

n=1

1

2σ2
kd

!= 0

after inserting the estimate µ̂kd of µkd:

σ̂2
kd =

1

Nk

Nk∑

n=1
(xnk,d − µ̂kd)

2

The usual estimates of average value and variance are obtained, which are
identical to the estimates obtained using the method of moments (though

1
Nk−1 is often used for the variance instead of 1

Nk
).
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The estimated values resulted from a Gaussian distribution with an arbi-
trary covariance matrix Σk are the same as from the method of moments.

µ̂kd =
1

Nk

Nk∑

n=1
xnk,d

Σ̂kc,d =
1

Nk

Nk∑

n=1
(xnk,d − µ̂kd)(xnk,c − µ̂kc)

Derivation using the formula

∂

∂Aij
detA = (A−1)ij · detA

for an invertible matrix A.

As we will see later, estimating Σk can lead to a singular matrix Σ̂k. As a
remedy, it is possible to presume a class independent covariance matrix Σ.

p(x|k, µk, Σ) : Gaussian distribution with µk and Σ

The following likelihood-function is obtained

Σ →
K∏

K=1

Nk∏

n=1
p(xnk|k, µk, Σ)

Maximum-Likelihood estimation results in:

µ̂kd =
1

Nk

Nk∑

n=1
xnk,d

Σ̂cd =
1

N

K∑

k=1




Nk∑

n=1
(xnk,d − µ̂kd)(xnk,c − µ̂kc)




where N =
K∑

k=1
Nk
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Hints:

1. Each observation xnk enters only once, after subtraction of the corre-
sponding average value. Consequently, a contribution of a class with
many observations is stronger than a contribution of a class with view
observations; if this is not desired (e.g. because this class is not rep-
resented stronger in the test data), weights like Nk

√
. . . or 1

Nk
should be

used.

2. Interpretation: Σ̂ results from the weighted averaging of class individ-
ual covariance matrices Σ̂k.

Other distributions for which simple estimates are obtained by the Maximum-
Likelihood method:

• Laplace distribution:

p(x|µ, v) =
1

2vk
e−

|x−µ|
v ,

• Binomial distribution:

pN(n|ϑ) =


 N

n


 ϑn(1− ϑ)N−n,

• Multinomial distribution:

if
k∑

i=1
ϑi = 1 and

k∑

i=1
ni = N

pN(n1, . . . , nk|ϑ1, . . . , ϑk) =
N !

n1! · · · · · nk!
· ϑn1

1 · . . . · ϑnk
k ,

• Poisson distribution:
p(n|λ) =

λn

n!
e−λ.

Exercise: Calculate the corresponding estimates.
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Application of the multinomial distribution:

Language modeling (application examples: speech recognition, translation)
Consider a word sequence wN

1 = w1 . . . wN and an acoustic vector xT
1 =

x1 . . . xT

Determine
argmax

wN
1

{p(wN
1 ) · p(xT

1 |wN
1 )}

with the language model probability

p(wN
1 ) =

N∏

n=1
p(wn|w1 . . . wn−1)

=





N∏
n=1

p(wn) for a unigram language model

N∏
n=1

p(wn|wn−1) for a bigram language model

If N(w) is the frequency of the word w, then the log-likelihood function
for an unigram-model is

W∑

w=1
N(w) log p(w) .

The frequency of a word sequence v, w is N(v, w), and it has multinomial
distribution. Probabilities should be normalized so that

∑
w

p(w|v) = 1 ∀v.

(There are different methods for assigning a probability > 0 also to unseen
events, see the lecture Language Modeling.) The log-likelihood function for
a bigram-model is

N∑

n=1
log p(wn|wn−1) =

∑
v,w

N(v, w) log p(w|v)

=
∑
v

N(v)
∑
w

N(v, w)

N(v)
log p(w|v) .

N(v, w)

N(v)
is a distribution since

∑
w

N(v, w)

N(v)
= 1

; ML-estimate p̂(w|v) =
N(v, w)

N(v)
.
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Poisson distribution: Modeling of “rare” events (e.g. word counts in a
text)
Consider an unigram language model. If the count nw for each word w has
Poisson distribution with parameter λw, i.e.

p(nw|λw) =
λnw

w

nw!
e−λw .

then

p(n1, . . . , nW |λ1, . . . , λW ) =
W∏

w=1
p(nw|λw) =

∏
w

(e−λw
λnw

w

nw!
)

= p(N |λ1, . . . , λW ) · p(n1, . . . , nW |N, λ1, . . . , λW )︸ ︷︷ ︸
multinomial distribution

where N :=
W∑

w=1
nw.

Example: text classification
Text classes: k = 1, . . . , K
New text: w1 . . . wN (where N is between 1000 and 10000)
Multinomial distribution: success probability ϑwk where

∑
w

ϑwk = 1 ∀k
Reduce the text to the counts n1 . . . nw . . . nW := nW

1 .

argmax
k

p(k|nW
1 ) = argmax

k
{p(k) · p(nW

1 |k)}
= argmax

k
{p(k) · p(nW

1 |ϑW
w=1;k , N)}

where N =
W∑

w=1
nw (multinomial distribution)

= argmax
k

{p(k) ·N !
∏
w

ϑnk
wk

nw!
}

= argmax
k

{log p(k) +
∑
w

nw log ϑwk}

(since log p(nW
1 |k) = log N ! +

∑
w

nw log ϑwk − ∑
w

log nw!)
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3.5 Practical Aspects

1. Typical problems

Typical problems will be shown on the example of a Gaussian model:

• The variability of the learning sample is too small, so that the
estimation of the variance is too small.

• Due to this underestimation of the variance and the exponential
decrease of the Gaussian model, the probability mass is too con-
centrated in the center.

• The covariance matrix Σ̂k can easily become singular:

If we have Nk observation vectors, Σ̂k is constructed of Nk vectors
(xnk − µ̂k), from those only (Nk − 1) can be independent because
of µ̂k. That means that Σ̂k has the rank (Nk−1) and is definitely
singular if Nk ≤ D.

In practice it is required that:

Nk ≥ (10, . . . , 100) ·D
This singularity of Σ̂k is the main reason why often only diagonal
covariance matrices are utilized.

2. Counter measures in the case of singular Σ̂k

• class independent covariance matrix Σ̂:

In this case a transformation of the coordinates can be advisable.

• Smoothing Σ̂k using Σ̂:

Σ̃k := (1− λk)Σ̂k + λkΣ̂ ,

where λk is a class dependent weight parameter.

• Emphasizing the diagonal elements of Σ̂k:

Σ̃k := (1− λk)Σ̂k + λk · diag(Σ̂k) ,

assumed that all diagonal elements are greater than zero.
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3. Structure of a system (using Gaussian models)

• Calculate average values µ̂k and covariance matrices Σ̂k for each
class k.

• Check if the covariance matrix Σ̂k is singular or tends to be sin-
gular (by means of eigenvalues).

• Smooth the covariance matrix Σ̂k or calculate a class independent
covariance matrix Σ̂ (possibly including coordinate axes transfor-
mation).

• if necessary:

Emphasize diagonal elements of covariance matrices.

• still open: choice of the weight parameter λk

finally: Analyze the effect on the error rate (either for the training
data or for another sample).

• possible refinement (or unimodality test):

Nearest-Neighbor classifier:

Retain all training data and determine the next training vector for
a test vector x which has to be classified. This requires a distance
measure which contains the covariance matrix or its diagonal el-
ements.
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3.6 Evaluation Criteria: Empirical Error Rate

The most important evaluation criterion is the error rate of the system
when it is practically applied. There are 2 sample types:

• the training or learning sample which is used for the design of the
classifier, i.e. the choice of the model p(x|k, ϑk) and the estimation of
parameters ϑk;

• the test sample which is used to measure the reliability of the classifier
by means of

(empirical) error rate =
number of recognition errors

number of recognition tests

A Theoretical calculation of the error rate without a test sample is difficult
because generally the form of the models p(x|k, ϑk) is not known.

Considerations:

• The strict separation of training and test sample is absolutely neces-
sary for an objective determination of the error rate.

Example: The Nearest-Neighbor classifier has always a zero error rate
on the training sample.

• Repeated tests on the same test data can sometimes be delusive be-
cause the system is then optimized on this special test data. This
effect is called training on the testing data.

• For the purpose of scientific objectivity, the error rate must be mea-
sured on a so far unseen sample because the error rate should enable
a prediction for new tests. In statistics, such methods are known as
Cross-Validation.
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3.7 Dependency on Dimension off the Error Rate

Consider the following behavior of the theoretically expected and experi-
mentally obtained error rate in dependence on the number of feature com-
ponents D:

D

classification error

theory 

experiment

Hughes-phenomenon

“Hughes-Phenomenon”: For the constant training set, the error rate first
decreases as the number of feature components increases. From a certain
point it starts to increase although according to the theory dimension in-
crease leads to a error rate reduction.

Explanation: if more parameters have to be estimated, more errors can
occur so that the classification error rate can increase due to wrong esti-
mations.
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Theoretical view of the error rate: additional feature component:

xD
1 ∈ IRD → xD+1

1 ∈ IRD+1

Bayes Error Rate:

pD(e) = 1−
∫

xD
1

dxD
1 max

k
p(xD

1 , k)

1− pD(e) =
∫

xD
1

dxD
1 max

k
p(xD

1 , k)

=
∫

xD
1

dxD
1 max

k
[ p(xD

1 , k)
∫

xD+1

dxD+1 p(xD+1|xD
1 , k)

︸ ︷︷ ︸
=1

]

=
∫

xD
1

dxD
1 max

k
[

∫

xD+1

dxD+1 p(xD+1
1 , k) ]

(where max
u

∑

i

gi(u) ≤ ∑

i

max
u

gi(u) )

≤
∫

xD
1

dxD
1

∫

xD+1

dxD+1 max
k

p(xD+1
1 , k)

=
∫

xD+1
1

dxD+1
1 max

k
p(xD+1

1 , k)

= 1− pD+1(e)

That results in:

pD+1(e) ≤ pD(e)

This means, when the number of feature components increases, the error
rate can theoretically only be reduced or kept unchanged. Equality is trues
especially when xD+1 depends on xD

1 , i.e. xD+1 = f(xD
1 ).
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3.8 Bayes Learning

The following two assumptions are the starting point for this method:

1. ϑk in p(x|k, ϑk) is treated itself as a random variable.

2. There is an a-priori distribution p(ϑk) for the parameter i.e. the ran-
dom variable ϑk (this is given here).

a-priori =̂ before the actual measuring

This a-priori distribution p(ϑk) is based on

• previous measurements or experiments,

• or previous knowledge about the task that is also acquired from pre-
vious experiments.

Example:
Many systems for writing or speech recognition are user-dependent, i.e.
each user has to train the system personally. Such a system can be trained
with a sample spoken by many speakers so that the distribution p(ϑk) of
the speaker-dependent parameter ϑk can be estimated.

Advantage: such a system can be efficiently trained with only a small set
of speaker-dependent training material.

The Bayes parameter estimation itself results from the a-posteriori proba-
bility
p(ϑk|x1k, . . . , xNkk) for the training data xnk of class k where n = 1, . . . , Nk.

Distribution of the joint events (ϑk; x1k, . . . , xNkk):

p(ϑk; x1k, . . . , xNkk) = p(ϑk) · p(x1k, . . . , xNkk|ϑk)

= p(ϑk) ·
Nk∏

n=1
p(xnk|ϑk)

with the model p(xnk|ϑk)
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Definition and calculation of the a-posteriori distribution:

p(ϑk|x1k, . . . , xNkk) =

p(ϑk)
Nk∏

n=1
p(xnk|ϑk)

∫
dϑ′k p(ϑ′k)

Nk∏

n=1
p(xnk|ϑ′k)

=

p(ϑk)
Nk∏

n=1
p(xnk|ϑk)

const(ϑk)

Only the numerator is directly dependent on ϑk, and it is equal to the
product of a-priori distribution and likelihood.
The a-posteriori distribution is often reduced to one single value; following
values are especially used:

• Posterior mean:

ϑ̂Mean
k =

∫
dϑk ϑk p(ϑk|x1k, . . . , xNkk)

(ϑ̂Mean
k minimizes the cost function

∫
dϑk [ϑk − ϑ̂k]

2
p(ϑk|x1k, . . . , xNkk))

• Posterior maximum: (also called MAP-estimate, Maximum-A-Posteriori
estimate)

ϑ̂Max
k = argmax

ϑk

{p(ϑk|x1k, . . . , xNkk)}

• Posterior median:

ϑ̂Median
k = argmin

ϑk

∫
dϑk |ϑk − ϑ̂k| p(ϑk|x1k, . . . , xNkk)

If a symmetric distribution has global optimum in the center of symmetry
(like e.g. Gaussian distribution), then holds:

ϑ̂Mean
k = ϑ̂Max

k = ϑ̂Median
k
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Illustration:

ϑk

ϑp(    |x   ...x     )k 1k       N  kk

ϑk
Medianϑk

Max Meanϑk

Special case: if p(ϑk) = const(ϑk), then holds

ϑ̂Max
k = ϑ̂Max.Lik.

k .

Example: univariate Gaussian distribution
Class index k is omitted for simplification.
Assumptions:

• Gaussian distribution: p(x|µ, σ2), x ∈ IR

with unknown µ and known σ2.

• The a-priori distribution p(µ) for the parameter µ is also Gaussian:

p(µ|µ0, σ
2
0) with hyper-parameters µ0 and σ2

0.
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We calculate the a-posteriori distribution for the training data x1, . . . , xN :

p(µ|x1, . . . , xN) = const(µ) · p(µ|µ0, σ
2
0) ·

N∏

n=1
p(xn|µ, σ2)

= const′(µ) · exp


−1

2

(
µ− µ0

σ0

)2
− 1

2

N∑

n=1

(
xn − µ

σ

)2

 (∗)

= const′(µ) ·

exp



−1

2





µ2

σ2
0
− 2µµ0

σ2
0

+
µ2

0

σ2
0

+
Nµ2

σ2 −
2µ

N∑

n=1
xn

σ2 +

N∑

n=1
x2

n

σ2








Equation (∗) shows that the hyper-parameters (µ0, σ
2
0), similar to the pairs

(xn, σ
2), are determining the a-posteriori distribution (xn, σ

2), i.e. from
measurements xn and variance σ2.

Transformation of the exponent to a quadratic expression of µ results in:

p(µ|x1, . . . , xN) =
1√

2πσ2
N

exp


−1

2

(
µ− µN

σN

)2



with suitable expressions

σ2
N ≡ σ2

N(µ0, σ
2
0; x1, . . . , xN ; N),

µN ≡ µN(µ0; σ
2
0, x1, . . . , xN ; N).

Comparison of coefficients for µ2:

1

σ2
N

=
1

σ2
0

+
N

σ2
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We obtain

σ2
N =

σ2 σ2
0

σ2 + Nσ2
0

Comparison of coefficients for µ:

µN

σ2
N

=
µ0

σ2
0

+
1

σ2

∑
n

xn

Transformation and inserting σ2
N results in:

µN =


1− σ2

σ2 + Nσ2
0


 1

N

N∑

n=1
xn +

σ2

σ2 + Nσ2
0
· µ0

This expression describes an averaging between

• empirical average value
1

N

N∑

n=1
xn with weight


1− σ2

σ2 + Nσ2
0




• a-priori average value µ0 with weight
σ2

σ2 + Nσ2
0

.

If N → ∞, influence of the a-priori distribution p(µ|µ0, σ
2
0) tends to zero,

and the a-posteriori distribution p(µ|µN , σ2
N) results in the Delta-function:

N →∞

p(µ|µN , σ2
N)y

Delta-function

µN → 1

N

N∑

n=1
xn

σ2
N → 0
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Graphical representation: as N increases, the a-priori distribution becomes
more concentrated around µN .
Example:

p(µ|x1, . . . , xN) where µ0 = −2, σ0 = 1, σ = 2, µEmp =
1

N

N∑

n=1
xn = 0

µ0 µEmp

1
n

p(
µ|

x 
,..

. ,
 x

 )

N = 1

N = 4

N = 9

N = 16

N = 25

µ
0

0.5

1

1.5

2

2.5

3

-5 -4 -3 -2 -1 0 1 2

The general case is more difficult:

• multivariate (instead of univariate) Gaussian distribution;

• µ and Σ are both unknown at the same time;

• in general the covariance matrix is not diagonal.

Details can be found in:

• [Fuk90], p.389-394

• [Kee65]

In this and in similar cases, the new estimation is obtained (exact or as
approximation) by linear interpolation of:

• an estimate which is based on real measurements,

• and a suitable parameter of the a-priori distribution.
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How is the Bayes learning utilized in recognition?
We mention two methods:

1. So far the plug-in method is (implicitly) presumed:

apply p(x|k, ϑ̂k) with ϑ̂k = ϑ̂k(x1k, . . . , xNkk),

i.e. with an estimate ϑ̂k which is obtained using Bayes estimation
method from the training data x1k, . . . , xNkk of class k.

2. Another method (though rarely utilized) is based on the predictive
distribution p(x|k; x1k, . . . , xNkk):

p(x|k; x1k, . . . , xNkk) :=
∫

ϑk

dϑk p(x|k, ϑk) · p(ϑk|k; x1k, . . . , xNkk) ,

where p(ϑk|k; x1k, . . . , xNkk) is the a-posteriori distribution of the pa-
rameter ϑk, now with additional class index k.

In practice, closed solutions for the integrals which occur in this
method exist only in exceptional cases. Details can be found in the
already mentioned books: [DH73], p.55-59, [Kee65] and [Ney99b].
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4 Discriminants and Neural Networks

4.1 Squared Error Criterion

The learning methods which are treated in Chapter 3 are developed for
distribution models p(x|k, ϑk). At first, there is no underlying statistical
model for general discriminants g(x, k).

Reminder: discriminant approach

x x x
1 d D

g(x,1) g(x,k) g(x,K)

Decision rule: r(x) = argmax
k

{g(x, k)}

The function g(x, k) depends on the parameter ϑ:

g(x, k) = gϑ(x, k).

These parameters are obtained in learning phase.

In this phase, the ideal output values are assumed:

g(x, k) != 1, if x belongs to the class k,

g(x, k) != 0, if x does not belong to the class k.

Normally, these ideal values can be achieved only approximatively. During
the learning phase the squared error criterion is (normally) used for a
training vector xn which belongs to class kn:

K∑

c=1
[g(xn, c)− δ(kn, c)]

2
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with the Kronecker-function:

δ(k, c) =





1 , c = k (correct)
0 , c 6= k (wrong) .

Instead of one single training vector, there is a whole set:

training vectors: (x1, k1), . . . , (xn, kn), . . . , (xN , kN)

(Pay attention to the notation changes in comparison to the Chapter 3.)

We sum up the errors over all training vectors and define:

FN(g) :=
1

N

N∑

n=1

K∑

c=1
[g(xn, c)− δ(kn, c)]

2

The writing FN(g) should express:

• the dependency on the function (x, k) −→ g(x, k), i.e. its functional
form and its parameters;

• the dependency on the training data (xn, kn) where n = 1, . . . , N .

For the limit case N −→∞ ensues:

F (g) = lim
N−→∞

1

N

N∑

n=1

K∑

c=1
[g(xn, c)− δ(kn, c)]

2

=
∫

x

dx
K∑

k=1
p(x, k) ·

K∑

c=1
[g(x, c)− δ(k, c)]2

=
∫

x

dx p(x) ·
K∑

k=1
p(k|x) ·

K∑

c=1
[g(x, c)− δ(k, c)]2

︸ ︷︷ ︸
=: e(x)

e(x) is the local error at the point x.
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Transforming expression for the local error e(x):

e(x) =
K∑

k=1
p(k|x) ·

K∑

c=1
[g(x, c)− δ(k, c)]2

=
K∑

k=1
p(k|x) ·


[g(x, k)− 1]2 +

∑

c6=k

g2(x, c)




=
K∑

k=1
p(k|x) ·


1− 2 g(x, k) +

K∑

c=1
g2(x, c)




= 1− 2
K∑

c=1
p(c|x) · g(x, c) +

K∑

c=1
g2(x, c)

= 1−
K∑

c=1
p2(c|x) +

K∑

c=1
[p(c|x)− g(x, c)]2

According to the equation above, e(x) consists of two parts:

• 1−
K∑

c=1
p2(c|x) : independent of the discriminant function g(x, k)

(appears in other cases as well; in context of Gini-
criterion, Nearest-Neighbor error)
Upper limit for Bayes error:

pB(e|x) = 1 − max
k

p(k|x)

= 1 −
K∑

c=1
p(c|x) max

k
p(k|x)

≤ 1 −
K∑

c=1
p(c|x)p(c|x)

= 1−
K∑

c=1
p2(c|x)

•
K∑

c=1
[p(c|x)−g(x, c)]2: squared error criterion between g(x, c) and

the a-posteriori distribution p(c|x) at the point
x ∈ IRD.
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The expression for F (g) is:

F (g) =
∫

x

dx p(x) ·

1−

K∑

c=1
p2(c|x) +

K∑

c=1
[p(c|x)− g(x, c)]2




Notes about F (g):

• Global optimum is achieved if g(x, c) = p(c|x) ∀(x, c), i.e. if the val-
ues of the discriminant function are exactly identical to the a-posteriori
class probabilities.

For the global optimum g0 holds:

F (g0) =
∫

x

p(x) ·

1−

K∑

c=1
p2(c|x)


 dx ,

i.e. it is not possible to fall below this value (as error criterion).

• To achieve the global optimum (approximatively), the discriminant
function should be suitably chosen in view of

– functional form (structure) and

– number of free parameters ϑ.

• If the equality g(x, c) = p(c|x) is not achievable for each (x, c), the
error will be minimized primarily at points x at which p(x) has a large
value.

• Finding the (global) optimum is a difficult mathematical problem;
iterative methods are used for it:

– Gradient method (numerical mathematics)

– Error Back Propagation (stochastic gradient)
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4.2 Structures and Multilayer-Perceptron

Simple structures for the discriminant function (x, k) −→ g(x, k) are (see
Chapter 1):

linear : g(x, k) = αk0 +
D∑

d=1
αkd · xd

quadratic : g(x, k) = αk0 +
D∑

d=1
αkd · xd +

D∑

d=1

D∑

e=1
βkde · xdxe

with the parameters αkd and βkde.

These structures can be analogically defined as higher polynoms of x, in
this way the polynomial or regression classifiers are obtained.
(Regression because of the squared error criterion).

Advantage: There is an efficient mathematical formalism for the param-
eter estimation.

Disadvantage: Polynoms do not have good interpolation capabilities
(known from the approximation of functions). They are not smooth enough
and they easily fail for new data not seen before in training.

The disadvantages are (significantly) avoided using the Multilayer-Perceptron.

Structure of the Multilayer-Perceptron:

• There are several layers with nodes (multilayer):

– output layer (outputs g(x, k), k = 1, . . . , K);

– hidden layers;

– input layer (inputs xd, d = 1, . . . , D).

• In each node i (neuron) of a layer l, the corresponding inputs y
(l−1)
j

are linearly combined with weights α
(l)
ij (scalar product):

∑

j

α
(l)
ij · y(l−1)

j
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Each such linear combination passes through a non-linear function
u −→ f(u):

f(u)

u

1

A linear discriminant x −→ g(x, k) is also called (linear) perceptron.

Illustration of a Multilayer-Perceptron (example with 2 hidden layers):

outputs g(x, k) ≡

inputs x  ≡

nodes

nodes

weights 

weights

weights
k i

i j

j d

α

α

α

y j
(1)

y i
(2)

(3)

(2)

(1)

yk
(3)

d yd
(0)
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Outputs (layer 3) : y
(3)
k = f


∑

i

α
(3)
ki · y(2)

i




Node layer 2 : y
(2)
i = f


∑

j

α
(2)
ij · y(1)

j




Node layer 1 : y
(1)
j = f


∑

d

α
(1)
jd · y(0)

d




Inputs (layer 0) : y
(0)
d = xd

Thus the L-layer Multilayer-Perceptron realizes a discriminant function:

g(·, k) : IRD −→ IR

x 7−→ g(x, k) = y
(L)
k (x)

In order to include a constant (bias, offset) in the linear combination, a

fictive constant node value y
(l)
0 ≡ 1 is added in each layer, e.g.:

∑

j

α
(l)
ij · y(l−1)

j =
J∑

j=0
α

(l)
ij · y(l−1)

j

= α
(l)
i0 +

J∑

j=1
α

(l)
ij · y(l−1)

j .

4.2.1 Non-Linearity

The Sigmoid-function is typically chosen as function f :

f(u) =
1

1 + e−u
.

And its derivation is calculated as:

f ′(u) =
e−u

(1 + e−u)2 = f(u) · (1− f(u)).
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In probability theory/statistics, the function f(u) is known as logistic dis-
tribution.

The arc tangent can also be used as alternative to the Sigmoid-function
(quadratic decrease of derivation):

f ′(u) =
1

π
· 1

1 + u2

f(u) =
1

π
· arctan (u) +

1

2
.

Other variants are also possible, but are seldom utilized:

• Gaussian model:

f ′(u) =
1√
2π
· exp


−u2

2




f(u) =
u∫

−∞
dz f ′(z) .

• elementary functions:

f(u) =
1

2


1 +

u

1 + |u|




f ′(u) =
1

2

1

(1 + |u|)2 for u 6= 0 .

The non-linearity of the Sigmoid-function can be easily illustrated. The
following series expansion is known:

1

1 + z
= 1− z + z2 − z3 + . . . |z| < 1 .
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Application to the Sigmoid-function (expansion about the point u0 = 0):

f(u) =
1

1 + e−u

=
1

2
· 1

1 + 1
2(e

−u − 1)

=̃
1

2


1−


e−u − 1

2


 +


e−u − 1

2




2

−

e−u − 1

2




3

+ . . .




Interpretation: The Sigmoid-function generates the non-linear factors in a
specific manner.

4.2.2 Notes about the Multilayer-Perceptron (MLP)

• The Multilayer-Perceptron is the prototype of an artificial neural net-
work. The attribute artificial signifies the difference from biological
neural networks.

• The advantages of (artificial) neural networks are often summarized
in the following way:

– orientation to the biological example,

– massive parallelism (“pdp” =̂ parallel distributed processing),

– discriminative training,

– approximation of arbitrary input-output dependencies.

• The same advantages also hold for many non-neural approaches, but
the idea about discriminative training was revived through neural net-
works, especially in speech recognition.

Structure of the Multilayer-Perceptron: For the choice of

• number of hidden layers – already one hidden layer can bring signifi-
cant improvements – and

• number of nodes per layer

there are basically only empirical statements.
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Formal inspection of the number of layers (1987)

structure
type of 

decision regions
exclusive OR

problem
classes with

meshed regions
most general
region shapes

single layer

two layers

three layers

half plane 
bounded by 
hyperplane

convex open or
closed regions

arbitrary
(complexity
limited by

number of nodes

A B

B A

A B

B A

A B

B A

B

A

B

A

B

A

Note: In general there are more than 2 classes; accordingly the class bound-
aries are getting more complex.

It is useful to prescribe symmetric dependencies between weights if that
results from the problem definition.

Example: Multilayer-Perceptron for character recognition by Yan le Cun.
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10 output units

layer H3
30 hidden units

layer H2
12 x 16 = 192
hidden units

layer H1
12 x 64 = 768
hidden units

256 input units

H2.12

H1.12

H2.1

H1.1

fully connected
~ 300 links

fully connected
~ 6000 links

~ 40000 links
from 12 kernels
5 x 5 x 8

~ 20000 links
from 12 kernels
5 x 5 
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Building the Multilayer-Perceptron:

Input layer: 16× 16 pixels (grey values)

Layer H1: Each node sees an image part of 5× 5 pixels.
The shifting of 2 pixels results in 8× 8 cells.
12 planes are assumed, each with 8× 8 cells.
Parameters per plane:

25 weights (independent of the cell)
64 biases (offsets)

total: 12× (25 + 64) = 1068 free parameters

Layer H2: also consists of 12 planes, each with 4× 4 cells.
Each H2-cell sees 8 of the 12 H1-planes,
5× 5 cells in the 8 planes.
Parameters per plane:

8 · 5 · 5 = 200 weights (independent
of the cell )
4 · 4 = 16 biases (offsets)

total: 12× (200 + 16) = 2592 free parameters

Idea:
H2 can build more complex features using features from H1.

Layer H3: consists of 30 cells, each of them sees
all 12 · 16 = 192 cells of H2.

Output layer: consists of 10 cells, each of them sees
all 30 cells of H3.
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hidden nodes:
H1: 768 nodes
H2: 192 nodes
H3: 30 nodes
total: 990 nodes

Weights (links):
H1: 768 · 25 = 19200
H2: 192 · 200 = 38400
H3: 30 · 192 = 5760
output layer: 10 · 30 = 300
total: 63660

independent parameters:
H1: 1068
H2: 2592
H3: 5790
output layer: 310
total: 9760

This example shows the building of structures in the Multilayer-Perception.
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4.2.3 Multilayer-Perceptron Similar Structures for Statistical
Classificators

Independent of neural networks, there are approaches which are leading to
similar structures for the a-posteriori probabilities p(k|x).
From Chapter 2 the following is known:

pϑ(k|x) =
pϑ(k) · pϑ(x|k)

K∑
c=1

pϑ(c) · pϑ(x|c)

=
1

1 +
∑

c6=k

pϑ(c) · pϑ(x|c)
pϑ(k) · pϑ(x|k)

=
1

1 +
∑

c6=k

pϑ(c)

pϑ(k)
· exp [log pϑ(x|c)− log pϑ(x|k)]

Note: pϑ(k, x) is only a model distribution – there are no statements about
the true probability p(k, x) here.

If the difference [log pϑ(x|c)− log pϑ(x|k)] is a linear function of x, then
there are operations resulting from that are similar to the operations within
a Multilayer-Perceptron node. This can be achieved with:

1. log-linear models: log pϑ(x|k) =
∑

d

αkd · xd

(Note: x is mostly discrete, because otherwise some problems consid-

ering normalization
∫

IRD

pϑ(x|k) dx = 1 usually occur.)

2. Gaussian models with Σk = Σ (class-independent)

Exercise: Specify the neuronal structures for 1. and 2.
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4.3 Error Back Propagation

Error Back Propagation is the most widely used method for the training of
a Multilayer-Perceptron and it was suggested by Rumelhart, Hinton and
Williams in the 1980s. There was also previous work: [Ama67], [Wer74],
[Par82].
Shortly summarized, it holds:

Error Back Propagation = stochastic gradient and chain rule

Starting point is the squared error criterion for the training data (xn, cn)
where n = 1, . . . , N :

E =
N∑

n=1
En (global squared error)

En =
1

2

K∑

k=1

[
y

(L)
k (xn)− δ(k, cn)

]2
(local squared error)

If for 1 ≤ l ≤ L holds: y
(l)
i = f(z

(l)
i ) where z

(l)
i =

∑

j

α
(l)
ij · y(l−1)

j ,

Then
∂z

(l)
i

∂α
(l)
ij

= y
(l−1)
j .

Different cases:

a) Output layer L:

∂En

∂α
(L)
ki

=
∂En

∂y
(L)
k

· ∂y
(L)
k

∂α
(L)
ki

=
∂En

∂y
(L)
k

· ∂y
(L)
k

∂z
(L)
k

· ∂z
(L)
k

∂α
(L)
ki

=
[
y

(L)
k (xn)− δ(k, cn)

]
· f ′(z(L)

k ) · y(L−1)
i

where
∂En

∂y
(L)
k

= y
(L)
k (xn)− δ(k, cn)
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b) hidden layer 1 ≤ l < L:

At first for the highest hidden layer L− 1:

∂En

∂α
(L−1)
ij

=
∂En

∂y
(L−1)
i

· ∂y
(L−1)
i

∂α
(L−1)
ij

=
∂En

∂y
(L−1)
i

· ∂y
(L−1)
i

∂z
(L−1)
i

· ∂z
(L−1)
i

∂α
(L−1)
ij

=
∂En

∂y
(L−1)
i

· f ′(z(L−1)
i ) · y(L−2)

j

Determining the partial derivation ∂En/∂y
(L−1)
j of the local squared error

En after the output y
(L−1)
i of the node i in the hidden layer L−1 is now more

complicated. For the calculation of ∂En/∂y
(L−1)
j the following functional

dependency has to be taken into account:

y
(L−1)
j −→ y

(L)
1...K(y

(L−1)
j ) −→ En

(
y

(L)
1...K(y

(L−1)
j )

)
.

That means, if there is a change in y
(L−1)
i i.e. in the inner node i of the

hidden layer L− 1, all outputs y
(L)
k are changed. The following derivation

results from that:

∂En

∂y
(L−1)
i

=
∑

k

∂En

∂y
(L)
k

· ∂y
(L)
k

∂z
(L)
k

· ∂z
(L)
k

∂y
(L−1)
i

=
∑

k

∂En

∂y
(L)
k

· f ′(z(L)
k ) · ∂

∂y
(L−1)
i

∑

i′
α

(L)
ki′ · y(L−1)

i′

=
∑

k

∂En

∂y
(L)
k

· f ′(z(L)
k ) · α(L)

ki
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The derivations of the local error En in respect to output in deeper nodes
ensue analogically by further recursive application of the chain rule, which
is illustrated in the following example:

y
(0)
1...D −→ y

(1)
1...J −→ . . . −→ y

(L−1)
1...I −→ y

(L)
1...K −→ En

∂En

∂y
(L)
k

↓
∂En

∂y
(L−1)
i

=
∑

k

∂En

∂y
(L)
k

∂y
(L)
k

∂y
(L−1)
i

↓
...

∂En

∂y
(1)
j

= · · ·

↓
∂En

∂y
(0)
d

=
∑

j

∂En

∂y
(1)
j

∂y
(1)
j

∂y
(0)
d

Note: The derivations
∂En

∂y
(l)
j

are calculated recursively, first for the output

layer and then step by step for each layer (Error Back Propagation).

Update of the parameters α
(l)
ij :

ᾱ
(l)
ij = α

(l)
ij − γ · ∂En

∂α
(l)
ij

with step length γ .
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The practical implementation of the Error Back Propagation requires suit-
able heuristics, regarding:

• choice of initial values,

• choice of step length (usually decreasing when the number of iteration
increases),

• avoiding bad local optima,

• controlling the convergence speed.

Altogether, the realization and implementation require considerable care.

4.4 Discriminative Training for Statistical Classificators

Discriminative training denotes criteria or methods which try to use a-
posteriori probability as learning criterion, e.g.

ϑ −→
N∏

n=1
p(kn|xn, ϑ)

or logarithmized

ϑ −→
N∑

n=1
log p(kn|xn, ϑ),

where ϑ denotes the unknown parameters.

Note the analogy and also the difference in comparison to Maximum-
Likelihood:

argmax
ϑ

∑
n

log p(kn|xn, ϑ) Maximum Class Posterior Probability

=̂ Maximum Mutual Information, MMI

argmax
ϑ

∑
n

log p(xn|kn, ϑ) Maximum Likelihood
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For p(kn|xn, ϑ) holds:

p(kn|xn, ϑ) =
p(kn) · p(xn|kn, ϑ)
K∑

c=1
p(c) · p(xn|c, ϑ)

Terminology:
Discriminative, since p(kn|xn, ϑ) captures the class overlap.

For the calculation of ϑ approximative methods have to be utilized, e.g.
corresponding modification of the Error Back Propagation. As initial value
for ϑ e.g. the Maximum-Likelihood estimate can be used.

Exercise: Formulate the Error Back Propagation for the criterion above
where p(x|k, µk, Σk) are Gaussian distributions with diagonal covariance
matrices Σk.

4.5 Error Rate and Discriminative Training

Model distribution: pϑ(k|x) (true distribution: p) with x ∈ IRD, class k,

parameters ϑ and normalization
∑

k

pϑ(k|x) = 1 ∀x, ϑ.

Decision rule r:

x 7−→ rx = argmax
k

pϑ(k|x)

Error rate for decision rule x 7−→ rx (local error):

• decision correct (with probability):
p(rx|x) where p(k|x) is true distribution

• local error rate for decision rule r:

pr(
′′e′′|x) = 1− p(rx|x)

• Bayes error rate:

pB(′′e′′|x) = min
x7→rx

[1− p(rx|x)]

= 1 − max
x7→rx

p(rx|x)

= 1 − max
k

p(k|x)
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• global error rate for decision rule r:

pr(
′′e′′) =

∫

IRD

dxp(x) · pr(
′′e′′|x)


 =

∫

IRD

pr(
′′e′′, x)




Maximum Mutual Information

Estimation of the Bayes error rate for class log-posterior probabilities (see
Maximum-Mutual-Information criterion, Chapter 4.4):

• local:

pB(′′e′′|x) = 1 − max
k

p(k|x)

= 1 −∑
c

pϑ(c|x)
︸ ︷︷ ︸

= 1

·max
k

p(k|x)

≤ 1 −∑
c

pϑ(c|x) · p(c|x)

=
∑
c

p(c|x) [1− pϑ(c|x)]

≤ −∑
c

p(c|x) log pϑ(c|x) since log y ≤ y−1

• global:

pB(′′e′′) ≤
∫

IRD

dx p(x)
∑
c

p(c|x) [− log pϑ(c|x)]

=
∫

IRD

dx
∑
c

p(c, x) [− log pϑ(c|x)]
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Consider training data (xn, kn), n = 1, . . . , N . This corresponds to the
empirical expected value or a empirical estimation of the error rate for
class log-posterior probabilities:

p̂B(′′e′′) ≤ 1

N

N∑

n=1
(− log pϑ(kn|xn)) ∀ϑ

⇒ p̂B(′′e′′) ≤ min
ϑ


− 1

N

N∑

n=1
log pϑ(kn|xn)






 ⇒

closer to the Bayes
error rate

=
1

N
max

ϑ

N∑

n=1
log pϑ(kn|xn)

min
pϑ(c|x)

{
−∑

c
p(c|x) log p(c|x)

}
results in p̂ϑ(c|x) = p(c|x)

(comparable with divergence inequality
∑

i

pi log qi ≤
∑

i

pi log pi)

Squared error criterion

local:

pB(′′e′′|x) = 1−max
k

p(k|x)

= 1−∑
c

p(c|x) max
k

p(k|x)

≤ 1−∑
c

p2(c|x)

NN with pϑ(c|x) =̂ g(x, c)

e(x) = 1−∑
c

p2(c|x) +
∑
c

[p(c|x)− pϑ(c|x)]2

︸ ︷︷ ︸
≥ 0
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pB(′′e′′|x) ≤ 1−∑
c

p2(c|x) +
∑
c

[p(c|x)− pϑ(c|x)]2

=
∑

k

p(k|x) ·∑
c

[pϑ(c|x)− δ(c, kn)]
2

With training data (xn, kn):

pB(′′e′′) ≤ 1

N

N∑

n=1

∑
c

[pϑ(c|x)− δ(c, kn)]
2

Training criterion yields upper limit for Bayes error rate.
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5 Model-free methods

5.1 Introduction

Terminology: Model-free methods are also called “non-parametric”.

For random numbers x ∈ IRD in Chapter 2 and 3 we have used special
models p(x|k, ϑk),

e.g. Gaussian or similar distributions.

Main characteristic of those methods is the strong reduction of the training
data to few parameters using

estimated values ϑ̂k = ϑ̂k(x1k, . . . , xNkk).

The other extreme is achieved by the model-free methods with the following
properties:

• there are (almost) no special assumptions about the distribution;

• the true distributions can possibly be approximated arbitrarily exact.

A possible disadvantage is the increased use of CPU-time and memory
requirement.

Distributions which can be described by model-free methods:

• class-dependent distributions p(x|k),

• a-posteriori distributions p(k|x),

• . . .

Typical model-free methods:

• Kernel Densities or Parzen Densities;

• Next-Neighbor rule for the classification;

• Discriminative methods, e.g. polynomial classificators or Multilayer-
Perceptron (Chapter 4);

• Mixture distributions (Chapter 6).
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The transitions between model-free and model-based methods are of course
fluent. If a Multilayer-Perceptron has too few nodes (parameters), then
strictly speaking it is not a model-free method anymore.

5.2 Kernel Densities

The starting point is a sort of histogram approximation of the training
data xn with n = 1, . . . , N in IRD.

Let xn ∈ IR for simplicity.

(x-x  |v)

x

ϕ n

nx

v=v
1

v=v
2

v=v
3

v  < v  < v1 2 3

The contribution of a training vector xn is distributed over its environ-
ment. This distribution is described by a function ϕ which is called Kernel
Density, Parzen Density or Parzen Window:

ϕ : IRD −→ [0,∞[
x 7−→ ϕ(x)

where

• ϕ(x) ≥ 0,

•
∫

IRD

ϕ(x) dx = 1.

ϕ(x) itself is a distribution which is chosen “smooth” and unimodal.

Pattern Recognition and Neural Networks, October 14, 2003 (18:23 h) WS 03/04



5 MODEL-FREE METHODS 98

In general, the distribution ϕ can depend on the class k, then it is written
ϕk(x). Typical choice for ϕk(x) is the Gaussian distribution:

ϕk(x) =
D∏

d=1

1√
2πv2

kd

exp


−1

2

(
xd

vkd

)2

 = ϕ(x|vk)

with suitable class-dependent variances vkd.

An estimate of the distribution p(x|k) is chosen as

p̂(x|k) =
1

Nk

Nk∑

n=1
ϕk(x− xnk) ,

where x1k, . . . , xNkk are the training data for the class k.

The variances vkd still have to be estimated. The Maximum-Likelihood
estimation does not work because the maximum is obtained for vkd → 0.

Remedy:
Combination with leaving-one-out, but rather unmanageable equations
might occur.

Possible way out is to try to introduce a class-dependent factor αk and to
multiply the usual estimated variances with this factor αk:

vkd(αk) = αk · 1

Nk

Nk∑

n=1
(xnk,d − µ̂kd)

2 .

The optimal value for αk can be now found by the simple method (in
combination with leaving-one-out):

αk −→ Lk(αk) :=
Nk∑

m=1
log fm(xm)

where fm(x) :=
1

Nk − 1

Nk∑
n=1
n 6=m

ϕ(x− xn|vk(αk)) .
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An approximative solution can be obtained using the maximum-approximation,
i.e. by replacing the sum fm(x) with the maximum:

fm(x) =̃
1

Nk − 1
max

n=1,... ,Nk
n 6=m

{ϕ(x− xn|vk(αk))}

αk
αk

αL  (    )k  k

Exercise:
Calculate the factors αk for the case that the Kernel Density is a Gaussian-
distribution with diagonal covariance matrix.

Refinements:
Like for Gaussian distributions in Chapter 2, it is possible to define the
dependency u −→ ϕk(u) using distances (u ∈ IRD):

• radially symmetric:

ϕk(u) := ϕk(u
Tu) = ϕk(||u||2)

• elliptically symmetric with weight matrix Ak:

ϕk(u) := ϕk((Aku)T (Aku)) = ϕk(u
TAT

k Aku)
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Examples for Kernel Densities in radially symmetric formalism (without
variances for simplicity):

• Gauss: ϕ(u) =
1√
2π
· exp

(−1
2‖u‖2

)
;

• t-distribution: ϕ(u) =
A

(B + ||u||2)M
, A, B,M > 0 .

The method is closely related to the potential-function where the Coulomb-
potential (from electrical engineering) is often applied:

ϕ(u) =
1

ε + ‖u‖ , ε > 0 ,

(problematic because of the normalization).

5.3 Next Neighbor Rule (NN-rule)

• more precise: nearest neighbor decision rule, and also 1-NN in contrast
to k-NN.

• not to be mixed up with Minimum distance e.g. for Gaussian distribu-
tion (see Chapter 2.5, S. 37) – for these methods the distance between
test vector and average value of the training vectors is considered, but
for 1-NN the distance between test vector and each single training
vector is considered

We derive the Next Neighbor rule from the Kernel Densities (another
derivation can be found in literature).

Training data for each class k: x1k, . . . , xNkk

As estimate for p(x|k) we use the Kernel Density:

p̂(x|k) =
1

Nk

Nk∑

n=1
ϕ(||x− xnk||),

with ϕ : IR+ −→ IR+ and suitable distance || ||.
Further on, we assume for simplicity that the Kernel Density ϕ is class-
independent.
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Estimated value of p(k):

p̂(k) =
Nk

N
where N =

K∑

k=1
Nk .

We insert p̂(x|k) and p̂(k) in the Bayes decision rule:

r(x) = argmax
k

{p̂(k) · p̂(x|k)}

= argmax
k

{Nk

N
· 1

Nk

Nk∑

n=1
ϕ(||x− xnk||)}

= argmax
k

{ 1

N

Nk∑

n=1
ϕ(||x− xnk||)}

= argmax
k

{
Nk∑

n=1
ϕ(||x− xnk||)}

(maximum approximation: replace
∑

with max)

≈ argmax
k

{ max
n=1,... ,Nk

ϕ(||x− xnk||)}
(z −→ ϕ(z) is monotonously decreasing)

= argmin
k

{ min
n=1,... ,Nk

||x− xnk||}

This approximation is called Next Neighbor Rule, because the class chosen
for the vector x is the class of the next neighbor in the training data xnk:

r(x) = argmin
k

{ min
n=1,... ,Nk

||x− xnk||}

Note:

• The NN-rule depends only on the chosen distance measure ||x − y||:
due to the maximum approximation of the sum and the monotony of
ϕ the slope of ϕ does not have any influence on the result.

• Kernel Densities generally yield better results
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• Furthermore, the maximum operation itself does not reduce compu-
tational time imperatively, since for the calculation of the maximum
all distances have to be determined anyway. The computational time
can be reduced only by using additional “tricks”, see below.

Illustration of the NN-rule for training vectors [xn, kn]
where n = 1, . . . , N and with a test vector x:

x

[x  ,k  ]2     2

[x  ,k  ]1     1

[x  ,k  ]3     3

[x  ,k  ]n     n

...

...

There are (successful and unsuccessful) approaches for reducing computa-
tional time, i.e. the number of distance calculations:

1. early truncation by summation over the dimensions (partial distance);

2. triangular equality;

3. hierarchical structuring of the training vectors;

4. k-dimensional binary search trees (k-d trees); partitioning search space
into disjunct hyper-cuboids (see [Ben75], [FBF77])

5. reducing the number of training vectors, e.g. “editing”: consideration
only vectors nearby the class boundaries
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5.4 Error Rate of Next Neighbor Rule

More precise: error rate in asymptotic Al limit case when the number N

of the training data tends to infinity [CT91].

Error rate for arbitrary decision rule:

p(error) =
∫

dx p(x)
∑

k

p(k|x) p(error|k, x)


 p(e|k, x) =




1 if k 6= rx

0 if k = rx




=
∫

dx p(x)
∑

k 6=rx

p(k|x)

=
∫

dx p(x) [1− p(rx|x)]

At first we consider the error rate for the Bayes decision rule (Chapter 2):

rB(x) = argmax
k

{p(k|x)} for x ∈ IRD.

For the local error pB(e|x) we obtain:

pB(e|x) = ′′pBayes(error|x)′′

= 1− pB(correct|x)

= 1−max
k

p(k|x)

= 1− p(rB(x)|x)
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The total error rate pB(e) results from integration over the whole space:

pB(e) =
∫

x

dx p(x) · pB(e|x)

=
∫

x

dx
[
1−max

k
p(k|x)

]
· p(x)

=
∫

x

dx 1 · p(x)−
∫

x

dx max
k

p(k|x) · p(x)

= 1−
∫

x

dx max
k

p(k, x)

For the Next Neighbor (NN) rule we define:

xNN : next neighbor of the considered test vector x, i.e.

xNN := argmin
xn:n=1,... ,N

{||x− xn||},

with the training vectors [xn, kn], n = 1, . . . , N .

For the local error rate pNN(e|x, xNN) of the NN-rule for given x and hence
calculated xNN results from

pNN(e|x, xNN) =
∑

k


p(k|x) · ∑

c6=k

p(c|xNN)




=
∑

k

p(k|x) · [1− p(k|xNN)]

= 1−∑

k

p(k|x) · p(k|xNN) .

In limit case N −→∞, i.e. with enough training data holds

p(k|xNN) = p(k|x) .

In this way the local error rate is simplified

pNN(e|x) = 1−∑

k

p2(k|x) ,

with the definition:

pNN(e|x) := lim
N→∞

pNN(e|x, xNN).
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We estimate the local error rate of the asymptotic NN-rule using the Bayes
error rate in the following way:

• estimating the lower bound of the NN-error:

pB(e|x) = 1−max
k

p(k|x)

= 1−∑
c

p(c|x) ·max
k

p(k|x)

≤ 1−∑

k

p2(k|x)

= pNN(e|x) .

• estimating the upper bound of the NN-error:

pNN(e|x) = 1−∑

k

p2(k|x)

= 1− p2(rB(x)|x)− ∑

k 6=rB(x)
p2(k|x)

We apply a special case of the Cauchy-Schwarz inequality:




∑

k 6=rB(x)
p(k|x)




2

=




∑

k 6=rB(x)
1 · p(k|x)




2

≤ ∑

k 6=rB(x)
12 · ∑

k 6=rB(x)
p2(k|x)

= (K − 1) · ∑

k 6=rB(x)
p2(k|x)

and therefore

∑

k 6=rB(x)
p2(k|x) ≥ 1

K − 1




∑

k 6=rB(x)
p(k|x)




2

=
1

K − 1
· [1− p(rB(x)|x)]2 .
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Inserting the inequality in pNN(e|x) results in:

pNN(e|x) ≤ 1− p2(rB(x)|x)− 1

K − 1
· [1− p(rB(x)|x)]2

= . . .

= 2 · [1− p(rB(x)|x)]− K

K − 1
· [1− p(rB(x)|x)]2

pNN(e|x) ≤ 2 · pB(e|x)− K

K − 1
· p2

B(e|x)

For the total error rate we need an additional inequality: if f(x) is a
function of random variable x, then holds:

V ar{f(x)} = E{f 2(x)} − E2{f(x)} ≥ 0

and thus

E2{f(x)} ≤ E{f 2(x)} .

Integration of both estimates over the whole space of both estimates results
in:

pB(e) ≤ pNN(e) ≤ 2 · pB(e)− K

K − 1
· p2

B(e) ≤ 2 · pB(e)
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Exercises:

1. In which case is the upper limit exact?

2. How does the upper limit look like for pNN(e) in case of an arbitrary
(instead of the Bayes) decision rule?

Illustration of the inequality for pNN(e):

pB(e) ≤ pNN(e) ≤ pB(e) ·
[
2− K

K − 1
· pB(e)

]

p    (e)

p   (e)
B

NN

K-1
  K

K-1
  K

The shaded area shows the possible values of pNN(e) for given pB(e).
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5.5 Outlook

The inequality for pNN(e) derived in Chapter 5.4 holds independently of
Next Neighbor rule. Actually, pNN(e) is identical to the Gini-criterion
which is mentioned in Chapter 4.1. In this way a connection between
recognition error and squared error criterion for discriminants is obtained:

Combination of definitions:

pB(e|x) = 1−max
k

p(k|x)

pNN(e|x) = 1−
K∑

k=1
p2(k|x)

f(g; x) =
K∑

k=1
p(k|x) ·

K∑

c=1
[g(x, c)− t(k, c)]2

=


1−

K∑

k=1
p2(k|x)


 +

K∑

c=1
[g(x, c)− p(c|x)]2

(local squared error criterion on the output of a neural network or discrim-
inant, see 4.1, page 76)
Thus for each point x ∈ IRD holds:

pB(e|x) ≤ pNN(e|x) ≤ f(g; x)

and if g(x, k) ≡ p(k|x) for each k:

pNN(e|x) = f(g; x).

A corresponding inequality/equality holds also for the global expected val-
ues:

pB(e) :=
∫

dx pB(e|x) · p(x)

pNN(e) :=
∫

dx pNN(e|x) · p(x)

f(g) :=
∫

dx f(g; x) · p(x)
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6 Mixture Densities and Cluster Analysis

6.1 Mixture Densities

6.1.1 Introduction

So far, two extremes have been introduced:

typical models (Gaussian unimodal distributions)xy
←− mixture densities

Kernel Densities (model-free)

Compromise:

• multi-modal instead of unimodal

• data reduction in comparison to Kernel Densities

• arbitrarily exact approximation for arbitrary distributions

Standard model: x ∈ IRD (class k fixed)

p(x) =
I∑

i=1
ci · p(x|i, ϑi)

(weighted sum of elementary densities)

with weights (mixture weights) ci, for which

ci ≥ 0,
∑

i

ci = 1

and basis densities, single densities (component densities)

p(x|i, ϑi).

Single densities are typically unimodal, mostly Gaussian:

ϑi = (µi, Σi)
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Example of a bimodal Gaussian distribution (both weighted unimodal dis-
tributions are drawn as well):

0

0.05

0.1

-10 -5 0 5

p(
x)

x

Similar applications are:

• Runaway-model (Tukey-Model)

Goal: ε-probability for non-central area

p(x) = (1− ε) · pGauß(x|µ, Σ) + ε · pGauß(x|µ, αΣ)

α À 1 : augmentation factor for scattering
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• Interpolation for language models, e.g. bigram

N(v, w): Counts of word pair v, w in the training data

Approach:

p(w|v) =
N(v, w)

N(v)

Many pairs are not seen in training, i.e. N(v, w) = 0, which means
that the corresponding conditional probability is p(w|v) = 0.

Improved approach with interpolation:

p(w|v) = (1− λ) · N(v, w)

N(v)
+ λ · p(w)

with λ : interpolation parameter
p(w) : unigram distribution

Normalization:
∑
w

p(w|v) = (1− λ)
∑
w

N(v, w)

N(v)︸ ︷︷ ︸
=1

+ λ
∑
w

p(w)
︸ ︷︷ ︸

=1

= 1

• Gaussian mixture densities

p(x) =
I∑

i=1
ciN (x|µi, Σi)

Normalization:
∫

dx p(x) =
∑

ci

∫
dxN (x|µi, Σi)

︸ ︷︷ ︸
=1

=
∑

ci = 1

p(x|k) =
I∑

i=1
p(i|k)︸ ︷︷ ︸
= cik

N (µik, Σik) covariance separately for each density i
of each class ky

N (µik, Σk) covariance pooled over one class ky
N (µik, Σ) covariance pooled over all classes
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6.1.2 EM Algorithm for Mixture Densities
Special case: Maximum Likelihood for Mixture Densities

We combine the unknown parameters ci and ϑi (i ∈ I) of all I single
densities under the notation λ:

λ ≡ {ci, ϑi}
Model: pλ(x) or p(x|λ)

Training data: x1, . . . , xn, . . . , xN

Maximum-Likelihood criterion:

argmax
λ

N∏

n=1
p(xn|λ) or argmax

λ

N∑

n=1
log p(xn|λ)

In this way, we obtain an unmanageable optimizing problem. A closed
solution for mixture densities and similar complex model distributions does
not exist.
The goal of the EM algorithm is to develop

• a simple, consistent iterative method

• without heuristics, and

• without (explicit) gradients.

The EM algorithm is based on the concept of a hidden variable y
(discrete random variable):

y=1

y=2

y=3 y=4xn
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An affiliation between an observation and a value of the hidden variable
y is not known/irrelevant. Therefore all values of the hidden variable are
considered.

Rewrite:

p(xn|λ) =
∑
y

p(xn, y|λ)

=
∑
y

p(y|λ) · p(xn|y, λ)

Mixture density: y =̂ i

p(xn|λ) =
∑

i

p(i|λ)︸ ︷︷ ︸
=̂ci

· p(xn|i, ϑi)

i is not observable

Applications of the EM algorithm:

• Mixture Densities

• smoothing in Language Modeling

• Hidden Markov Models

• IBM translation models

• . . .
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We consider the difference of log-likelihood functions for two parameter
sets λ and λ̃:

N∑

n=1
log

p(xn|λ̃)

p(xn|λ)
=

N∑

n=1

∑
y

p(y|xn, λ)
︸ ︷︷ ︸

≡1

· log
p(xn|λ̃)

p(xn|λ)

transform: p(xn|λ̃) · p(y|xn, λ̃) = p(xn, y|λ̃)

=
N∑

n=1

∑
y

p(y|xn, λ) · log


p(xn, y|λ̃)

p(xn, y|λ)
· p(y|xn, λ)

p(y|xn, λ̃)




=
N∑

n=1

∑
y

p(y|xn, λ) · log
p(xn, y|λ̃)

p(xn, y|λ)

+
N∑

n=1

∑
y

p(y|xn, λ) · log
p(y|xn, λ)

p(y|xn, λ̃)︸ ︷︷ ︸
(∗) ≥ 0 ∀ λ,λ̃

Define auxiliary function (corresponds to weighted Maximum-Likelihood
approach):

Q(λ, λ̃) :=
N∑

n=1

∑
y

p(y|xn, λ)︸ ︷︷ ︸
weight

· log p(xn, y|λ̃)︸ ︷︷ ︸
LL-function

=
N∑

n=1

1

p(xn|λ)

∑
y

p(y, xn|λ) · log p(xn, y|λ̃)

Then

N∑

n=1
log

p(xn|λ̃)

p(xn|λ)
≥ Q(λ, λ̃)−Q(λ, λ)

holds since (∗) ≥ 0.
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(∗) is the divergence inequality from information theory.

Proof of the divergence inequality:

N∑

n=1

∑
y

p(y|xn, λ) · log
p(y|xn, λ)

p(y|xn, λ̃)
≥ 0

It is enough to show:

∑
y

p(y) · log
p(y)

q(y)
≥ 0 where p(y) > 0,

∑
y

p(y) = 1,

q(y) > 0,
∑
y

q(y) = 1.

For the logarithm:

t-1
log t

t
1

log t ≤ t− 1, t > 0

Then

∑
y

p(y) · log
q(y)

p(y)
≤ ∑

y
p(y)


q(y)

p(y)
− 1




=
∑
y

q(y)−∑
y

p(y) = 1− 1 = 0

and the divergence inequality follows.
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EM iterative method:

Initial value λ

Iterations:
1. Expectation (over y): calculate Q(λ, λ̃)

2. Maximization (over λ̃): find argmax
λ̃

{Q(λ, λ̃)}
next iteration with λ := λ̃

Application on Mixture Densities:

p(xn|λ) =
∑

i

p(xn, i|λ)

=
∑

i

p(i|λ) · p(xn|i, λ)

Model =̂
∑

i

ci · p(xn|i, ϑi)

with constraint
∑

i

c̃i = 1.

Abbreviated notation for parameter set: λ ≡ ({ci}, {ϑi})
Using the Lagrange multiplicator for the constraint results in:

Q(λ, λ̃) =
∑
n

∑

i

p(i|xn, λ) · log [c̃i · p(xn|i, ϑ̃i)]− γ[
∑

i

c̃i − 1]

=
∑
n

∑

i

p(i|xn, λ) · log c̃i

+
∑
n

∑

i

p(i|xn, λ) · log p(xn|i, ϑ̃i) − γ[
∑

i

c̃i − 1]

where p(i|xn, λ) =
ci · p(xn|i, ϑi)

∑

i′
ci′ · p(xn|i′, ϑi′)

Taking derivatives for determining λ̃ as a function of λ:

a)
∂Q

∂γ
=

∑

i

c̃i − 1 != 0 ⇔ ∑

i

c̃i = 1 (constraint)
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b)

∂Q

∂c̃i
=

∑
n

p(i|xn, λ) · 1

c̃i
− γ != 0

Result:

c̃i =
1

N

N∑

n=1
p(i|xn, λ) =

1

N

N∑

n=1

ci · p(xn|i, ϑi)
∑

i′
ci′ · p(xn|i′, ϑi′)

c)

∂Q

∂ϑ̃i

=
N∑

n=1
p(i|xn, λ) · ∂

∂ϑ̃i

log p(xn|i, ϑ̃i)
!= 0

in particular Gauß: p(xn|i, µi, Σi)

with µi = average value vector
Σi = covariance matrix

∂Q

∂µ̃id
=

∑
n

p(i|xn, λ) · [µ̃id − xnd]
!= 0

⇔ µ̃id =

∑
n

p(i|xn, λ) · xnd

∑
n

p(i|xn, λ)

=
∑
n

p(i|xn, λ)
∑

n′
p(i|xn′, λ)

· xnd

Rewriting into vector equation with weights γi(n) results in

µ̃i =
N∑

n=1
γi(n) · xn where γi(n) =

p(i|xn, λ)
∑

n′
p(i|xn′, λ)

.
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The weights γi(n) express the contribution rate of observation xn for
the estimated value µ̃i.

Note:
N∑

n=1
γi(n) = 1 holds due to definition.

Corresponding result for the covariance matrix:

Σ̃i =
N∑

n=1
γi(n) · [xn − µ̃i][xn − µ̃i]

T .

Interpretation:
Weighted Maximum-Likelihood estimation where the weights are depend-
ing on p(i|xn, λ) and are changing during the iterations:

• µi : weighted empirical average value vector

• Σi : weighted empirical covariance matrix

• ci : weighted relative frequency

note:

• only local convergence;

• open choice of initial values.
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Algorithm (estimation of Gaussian mixture densities):

choose suitable initial values µi, Σi, ci

Loop: p(i|xn, {ci, µi, Σi}) :=
ci · p(xn|i, µi, Σi)

∑

i′
ci′ · p(xn|i′, µi′, Σi′)

γi(n) :=
p(i|xn, {ci, µi, Σi})

∑
n

p(i|xn, {ci, µi, Σi})

c̃i := 1
N

∑
n

p(i|xn, {ci, µi, Σi})

µ̃i :=
∑
n

γi(n) · xn

Σ̃i :=
∑
n

γi(n) · [xn − µ̃i][xn − µ̃i]
T

update: ci = c̃i µi = µ̃i Σi = Σ̃i

GOTO Loop

Exercises:

1. Write a C-program for the example above.

2. Calculate formulae for the EM algorithm for the Gaussian distribution
with tied covariance matrix, i.e. p(xn|i, µi, Σ) with Σ independent of
i.
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6.1.3 Mixture Densities for K classes

Different cases:

a) no coupling between classes:

for each class k: weight cik = p(i|k),
Ik∑

i=1
p(i|k) = 1

parameters of conditioned distributions ϑik

Model: p(x|k) =
Ik∑

i=1
cik · p(x|i, k, ϑik)

Training can be done separately for each class k.

b) Tied mixture densities:
Coupling between models p(x|k) through class-independent parame-

ters ϑi.

Model: p(x|k) =
I∑

i=1
cik · p(x|i, ϑi)

i.e. single densities p(x|i, ϑi) act as basis distributions.

Exercise:

Calculate the EM-iteration formula for the model above i.e. tied mix-
ture densities for Gaussian distributions.

Approach:

Q(λ, λ̃) =
K∑

k=1

Nk∑

n=1

I∑

i=1
p(i|xnk, k, λ) · log [c̃ik · p(xnk|i, ϑ̃i)]

with p(i|xnk, k, λ) =
cik · p(xnk|i, ϑi)

I∑

i′=1
ci′k · p(xnk|i′, ϑi′)

and training vectors x1k, . . . , xnk, . . . , xNkk for class k.
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6.1.4 Maximum Approximation
(without class index k)

Replace the sum with maximum:

p(x) = max
i

[ci · p(x|i, µi, Σi)︸ ︷︷ ︸
Gaussian distribution

].

Justification: the Gaussian distribution decreases exponentially such that
one sum element is expectedly dominating.

Training method:

choose suitable initial values µi, Σi, ci

Loop: determine the best single density for each observation xn

argmax
i

[ci · p(xn|i, µi, Σi)]

Observation xn contributes only to the training of one
single density, namely the best one.

Parameter estimation:
ci = relative frequency of choosing i as best single density

µi = average value for each single density i of assigned ob-
servations xn

Σi = covariance matrix for each single density i of assigned
observations xn

GOTO Loop

Interpretation: maximum approximation results from “specialization”:

p(i|xn, {ci, µi, Σi}) =





1, i = best single density,

0, otherwise.
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6.2 Cluster Analysis

6.2.1 Overview

Cluster = aggregation, grouping (of observations, usually points in IRD)

Goal: find (and interpret) clusters (sub-groups) for a given set of observa-
tions.

In many cases, there is no clear optimization criterion for this task and
it is not possible to define the best optimization strategy. The approach
developed in Chapter 6.1 can (partly) avoid these difficulties in the way
that the task is defined as a clear statistical model.

In literature about cluster analysis, a lot of different methods are proposed
which can be arranged according to different criteria:

• distance measures (similarity measures) ↔ statistical methods (mix-
ture densities), fuzzy clustering

• discrete ↔ continuous observations

• hierarchical ↔ non-hierarchical

• fully automatic ↔ interactive

Combinatorial problem:

• For a given set of N vectors there is an exponential number of parti-
tions (pairwise different).

Vectors x1, . . . , xN with label 0 or 1, i.e. 2 clusters

=⇒ 2N − 2

2
= 2N−1 − 1 partitions

• in principle, all partitions have to be considered in order to choose the
best (e.g. Maximum-Likelihood criterion).
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S(N, I) is the number of partitions for I clusters and N (pairwise different)
vectors.

S(N, I) =
1

I!
·

I∑

i=1


I

i


(−1)I−i · iN ∼= 1

I!
IN .

Note: Stirling numbers of the second kind

Recursion:

S(N + 1, I) = S(N, I − 1) xN+1 defines new I-th cluster

+ I · S(N, I) xN+1 will be inserted in each

of the I old clusters

Examples:

• I = 2 =⇒ S(N, 2) =
2N − 2

2
= 2N−1 − 1

• N = 5, I = 3 =⇒ S(5, 3) = 25

decompositions: {a, b, c} ∪ {d} ∪ {e} (5
3

)
= 10

{a, b} ∪ {c, d} ∪ {e} 5 · 3 = 15

In practice:

• heuristic methods;

• iterative methods: improving an initial partition step-by-step until a
local optimum is achieved (see EM algorithm).

6.2.2 Squared Error Criterion and Exchange Method

(often called variance criterion; minimum-distance method)

Names of iteration methods for optimizing the squared error criterion:

Nearest Mean, K-Means, Iso-data
(here: K = I=̂ number of clusters)
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Assumption: everything is reduced to one (Euclidean) distance measure
(after suitably scaling the axes).

If Ai are clusters where i = 1, . . . , I, then

GTOT :=
I∑

i=1
Gi

with Gi :=
∑

x∈Ai

||x− µi||2

and µi :=
1

Ni

∑

x∈Ai

x

Ni := |Ai| number of elements in Ai

Exchange operation: move x from cluster Ai into cluster Aj.

How are the centers µi and µj and scores Gi and Gj changed after an
exchange operation? (calculate for yourself, s.a. [DH73], p. 227):

µ∗j = µj +
x− µj

Nj + 1

µ∗i = µi − x− µi

Ni − 1

G∗
j = Gj +

Nj

Nj + 1
||x− µj||2

G∗
i = Gi − Ni

Ni − 1
||x− µi||2

Variant: introduction of cluster-dependent variances.
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Algorithms:

NEAREST MEAN (sequential, adaptive, on-line)

choose initial partition A1, . . . , AI and calculate Gi and µi

Loop: choose next observation x; let x ∈ Ai

calculate G∗
j for all clusters Aj and move x to the best

cluster

update: µj, Gj, µi, Gi

if (GTOT does not change in N passes ) STOP
otherwise GOTO Loop

NEAREST MEAN (batch, off-line)

choose initial partition A1, . . . , AI and calculate Gi and µi

Loop: for each observation xn where n = 1, . . . , N determine the
nearest cluster Ai and memorize the cluster index i

for each cluster Ai where i = 1, . . . , I calculate new average
value µi from the observations xn assigned to this cluster

if (no change) STOP
otherwise GOTO Loop
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Notes:

1. it is clear that both algorithms can be transferred to other “average
value” models.

2. empirical experience: batch-variant is less susceptible to bad local
minima.

3. still open: how to choose initial partition?
−→ hierarchical clusters

6.2.3 Hierarchical Cluster Analysis

Hierarchy is modeled with binary tree:

Criteria:

• distance measure or likelihood

• structuring/refinement of the tree

Two variants:

1. Top-down, divisive method (splitting)

2. Bottom-up, agglomerative method (merging)
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Top-down method: basic concept

Start: all data x1, . . . , xN build one cluster

Loop: choose the cluster with the worst score,
split this cluster into two new clusters

improve parameters of all clusters by iterative training
(NEAREST-MEAN-STYLE) until stop-criterion is achieved

check the quality of total partition

if “good” STOP,

otherwise GOTO Loop

Problem:
By splitting a cluster which contains m elements there are 2m−1− 1 possi-
bilities to build 2 clusters. Due to computing time issues it is usually not
possible to evaluate all of them.

Heuristic for the “distance method”:

1. infinitesimal perturbation of the average value µi

A  , i      iµ

µ  = µ  (1+   )       ∋

i        i

+ −

µ  = µ  (1−   )       ∋

i        i

Pattern Recognition and Neural Networks, October 14, 2003 (18:23 h) WS 03/04



6 MIXTURE DENSITIES AND CLUSTER ANALYSIS 128

2. iterative training to improve µ−i and µ+
i

Example:

µ         i      

+

−

µ  i     

µ         i      

Perturbation is normally performed in standard direction because the
direction is not critical.

Speech processing: Linde, Buzo, Gray [LBG80] “LBG algorithm”

Note:

• Extension to mixture densities as an extension of distance models is
obvious

• it is suitable for vector spaces, equivalent for language modeling is not
known.

Bottom-up method (agglomerative hierarchical clustering)

Start: each observation is its own cluster

Loop: determine the cluster pair with minimal distance (∗)

merge the two clusters

if (number of clusters > 1) GOTO Loop

else STOP
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Complexity:

• For m clusters,
m(m− 1)

2
steps are necessary to find the optimal pair.

• sum over all m = N, N − 1, . . . , 1

N∑

m=1

m(m− 1)

2
∼= 1

6
N 3

cubic complexity =⇒ from N ∼= 10000, computational time is critical.

improved variant (∗):
Loop: find the cluster pair whose merging produces minimal deterioration
of the global criterion.

Standard methods:

• [Gor81], p.46

• [Spa77], p.170

• [DH73], p.230
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Distance measures between clusters:

given: cluster Ai with vectors xi and cluster Aj with vectors xj,
||.|| Euclidean distance (not squared)

• single link

d(Ai, Aj) := min
i,j
||xi − xj||

• complete link

d(Ai, Aj) := max
i,j

||xi − xj||

• group average link

d(Ai, Aj) :=
1

Ni ·Nj

∑

i

∑

j

||xi − xj||

• weighted average link

d(Ai, Aj) :=
∑

i

∑

j

||xi − xj||

• centroid link

d(Ai, Aj) := ||µi − µj||

• median link Medians µ̃i, µ̃j

d(Ai, Aj) := ||µ̃i − µ̃j||

• sum of squares (Ward algorithm)

d(Ai, Aj) :=
Ni ·Nj

Ni + Nj
||µi − µj||2

(consistent with Gaussian model)
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Exercise:

Specify Gaussian model
(but: in the first step, each vector represents its own cluster i.e. it is
not possible to calculate variances.
therefore: pooled covariance matrix in the first step)

Note:
Efficient reformulations can be found in the literature.

Hints:

• preferably avoid (often in literature): “reading tea leaves”

• preferably define objective criteria for new test data:

– likelihood

– error rate (for classification tasks)

Iterative optimal algorithm for hierarchical agglomerative clustering

Start: each observation is one cluster

Loop: find the cluster pair whose merging produces minimal de-
terioration of global criterion
merge those clusters

if (number of clusters > 1) GOTO Loop

Notes:

1. Computational effort increases scarcely (factor 2 at most) in compar-
ison to standard methods.

2. “optimum” is achieved with each merging.

3. The Ward algorithm (“sum of squares”) already has this optimality
property (see [DH73], p.260, Exercise(Lesson) 19).
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7 Stochastic Finite Automata

7.1 Motivation and Model

We consider a time sequence of observations:

x1, . . . , xt, . . . , xT , xt ∈ IRD, t = time .

The mapping of corresponding events (e.g. phonemes in speech) is difficult
without a fixed time basis:

X2 X3X1 X5 X6X4

Y2Y1 Y4 Y5Y3

X7

Y6 Y7

In other words:
The sequence as a whole (practically) cannot be described as an element
of a suitable vector space because a mapping of observations xt to corre-
sponding points on coordinate axes is difficult.

Linear scaling and normalization of the time axis is helpful but not suffi-
cient.

Analogy:

• Formal grammars are introduced in order to compactly describe the
chains of discrete symbols ⇒ extension of probability statements.

• Stochastic finite automata are introduced in order to compactly de-
scribe continuous vectors (or discrete noisy symbols ).

• Syntactic Pattern Recognition (probability scores)
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Stochastic finite automaton
= stochastic regular grammar
= Hidden Markov Model (HMM)

2 31 4 T

• Also: lattice / trellis

• Path corresponds to unfolding of a regular grammar

• Recombination of different paths in one point

Estimating the number of possible paths for the standard (0, 1, 2)-model
in the figure above which is used in speech recognition:

For a sufficiently long word model, i.e. S ≥ T
2 , there are 3T−1 possible

paths for T observation vectors x1, . . . , xt, . . . xT if all 2T −1 reachable
end states are allowed. But actually only one end state is allowed. If
we assume the simplification that all end states can be reached through
an equal number of different paths (raw approximation!), we obtain
approximately 3T−1/(2T −1) possible paths for one allowed end state.

abstract (=hidden) states: s, σ ∈ {1, . . . , S}
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HMM specification:

• Transitions: specifying pairs σ −→ s and their probabilities p(s|σ)
with constraint:

∑
s

p(s|σ) = 1, ∀σ.

(0, 1, 2)-model:

2∑

i=0
p(σ + i|σ) = 1

• Emissions (=̂ observations xt) during transition σ −→ s:

p(xt|σ, s) = “usual model” (e.g. Gauss, mixture densities, . . . ).

Note the normalization:
∫

p(xt|σ, s) = 1

• Specifying start and end state.

Examples:

1. Speech:

xt = energy distribution (over frequency axis), calculated every 10 ms
using Fourier-analysis.

HMMs extremely important:

• extreme non-linear variations of the speaking rate;

• avoids local decisions (e.g. about the identity of one phoneme).

similar: signal flow over time-axis
(e.g. gradients, EKG, EEG, . . . )
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2. Character recognition:

Approach:

(a) time axis =̂ horizontal axis

(b) decomposition of the image using window function

(c) feature vector xt for each window

3. Processing “erroneous” symbol chains

• Levenshtein distance: deletions, insertions, substitutions

• special: written language

model for letters

lower case

upper case

lower case

upper case

block letters

cursive

model for phonemes

Figure: Hidden Markov Models for character and speech recognition.
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normalisation
feature extraction

feature extraction
normalisation

feature transformation
and

classification

system adaptation
(transformation matrix, codebook,

HMM-parameters)
recognition

list of 
alternatives
(single words)

word 
hypotheses

graph 
(continuous speech)

Figure: Block-diagram of a recognition system with feature extraction,
feature transformation and classification, training of HMM parameters and
Viterbi recognition.

Figure: Address word after preprocessing and normalization.
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7.2 Mathematical Formalism

(for Hidden Markov Models in general)

In practical systems
xT

1 : time sequence of vectors x1, . . . , xT

sT
1 : time sequence of states s1, . . . , sT

p(xT
1 ) : probability of whole sequence. Strictly speaking,

this should be considered separately for each class
k = 1, . . . , K , i.e. p has the form p(xT

1 |k). In the
following, we will use only the shortened form.

p(xT
1 ) =

∑

[sT
1 ]

p(xT
1 , sT

1 ) (introducing states) (∗)

p(xT
1 , sT

1 ) =
T∏

t=1
p(xt, st|xt−1

1 , st−1
1 )

Model assumptions:

• Dependency only on states (hidden):

p(xt, st|xt−1
1 , st−1

1 ) = p(xt, st|st−1
1 )

• Dependency only on the first previous state (first-order Markov):

p(xt, st|st−1
1 ) = p(xt, st|st−1) = p(st|st−1) · p(xt|st−1, st)

(=̂ Transition Probability · Emission Probability (density))

Inserting in (∗) results in:

p(xT
1 ) =

∑

[sT
1 ]

T∏

t=1
[p(st|st−1) · p(xt|st−1, st)]

=
∑

[sT
1 ]

T∏

t=1
p(xt, st|st−1)
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A direct calculation of the sum in the previous equation is time-consuming
because we have to sum over 3T−1/(2T−1) (for the standard (0, 1, 2)-model)
or ST−1 (in general) paths. However, there is one simple and efficient
method which we will derive in the following (see also [Ney99a]):

7.2.1 Baum Recursion
Define auxiliary function Q(t, s) as “sum over all paths passing through
(t, s)”.

Q(t, s) :=
∑

st
1:st=s

t∏

τ=1
p(xτ , sτ |sτ−1)

1

s

S

t-1 t T1

Decomposition: [· · · −→ (s, t)] = [· · · −→ (σ, t− 1)] [(σ, t− 1) −→ (s, t)]

Q(t, s) =
∑
σ

[ ∑

st−1
1 :st−1=σ

t−1∏

τ=1
p(xτ , sτ |sτ−1)

︸ ︷︷ ︸
=Q(t−1,σ)

·p(xt, s|σ)
]

Q(t, s) =
∑
σ

p(xt, s|σ) ·Q(t− 1, σ)

p(xT
1 ) = Q(T, S)

Recursion equation of type divide and conquer
(dynamic programming)
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The computational time is proportional to T ·S2 (instead of 3T−1/(2 · (T −
1)) ∼= as the number of paths in the standard (0, 1, 2)-model or ST−1 as
the number of paths in general).

This equation is (for historical reasons) called Baum Recursion.

• Variants: Baum-Welch Recursion, Forward-Backward Algorithm (here,
only the Forward-direction is considered)

7.2.2 Viterbi Algorithm
(also: Maximum Approximation)
This approximation means restriction to the best path through (t, s):

p(xT
1 ) ∼= max

[sT
1 ]

T∏

t=1
p(xt, st|st−1) .

This is a good approximation of the sum if one path is “dominating”.

Analogously to the Baum(-Welch) recursion, define Q(t, s) as:

Q(t, s) := max
st
1:st=s

t∏

τ=1
p(xτ , sτ |sτ−1) .

The decomposition results in:

Q(t, s) = max
σ

[p(xt, s|σ) · max
st−1
1 :st−1=σ

t−1∏

τ=1
p(xτ , sτ |sτ−1)

︸ ︷︷ ︸
=Q(τ−1,σ)

]

Q(t, s) = max
σ

[p(xt, s|σ) ·Q(t− 1, σ)]

Recursive equation of dynamic programming
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As in the previous case, the computational time is proportional to T · S2

(instead of 3T−1/(2 · (T − 1))).

Local decisions are stored for t = 1, . . . , T and for each state s. After
reaching the end-time point (t = T ), the best path is traced back.

Analogy to formal languages:

Recognizer =̂ Baum algorithm : all parse trees
Parser =̂ Viterbi algorithm : best parse tree

7.3 Incorporating into Bayes Decision Rule

Each class k has its own automaton with end-state S(k).
Qk(T, S(k)) is calculated for a vector sequence xT

1 using the recursive equa-
tion (either exact or DP):

Qk(T, S(k)) for each class (automaton) k = 1, . . . , K

Therefore, the following holds per definition:

p(xT
1 |k) = Qk(T, S(k)),

and the decision rule is:

xT
1 −→ r(xT

1 ) = argmax
k

{p(k) · p(xT
1 |k)}

= argmax
k

{p(k) ·Qk(T, S(k))}
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7.4 Maximum-Likelihood Training

Same approach as for mixture densities, i.e. Baum algorithm, EM algo-
rithm

Vector sequence: xT
1 (only one observation;

for more: summation over n)
y = sT

1 = hidden variable

Q(λ, λ̃) =
∑

[sT
1 ]

p(sT
1 |xT

1 , λ) · log p(xT
1 , sT

1 |λ̃)

=
1

p(xT
1 |λ)

· ∑

[sT
1 ]

p(xT
1 , sT

1 |λ) · log p(xT
1 , sT

1 |λ̃)

• Model: p(xT
1 , sT

1 |λ̃) =
T∏

t=1

[
p(st|st−1, λ̃) · p(xt|st−1, st, λ̃)

]

• Parameter λ: α(s|σ),
∑
s
α(s|σ) = 1, ∀σ instead of p(s|σ).

p(x|σ, s; ϑ) = p(x|s; ϑs) e.g. Gaussian or mixture density with
parameters ϑs

Parameter set: λ = {α(s|σ), ϑs}
Regrouping of terms results in:

Q(λ, λ̃) =
1

p(xT
1 |λ)

·

∑

s,σ

∑

t
p(xT

1 , st−1 = σ, st = s|λ) · log α̃(s|σ)

+
∑
s

∑

t
p(xT

1 , st = s|λ) · log p(xt|s, ϑ̃s)




Note:
An initial distribution π(s) which is often found in literature is omitted
here; it can be easily modeled by insertion of a fictitious state s = 0 and
probability π(s) := p(s|0).
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p(xT
1 |λ) =

∑

[sT
1 ]

p(xT
1 , sT

1 |λ)

p(xT
1 , st−1 = σ, st = s|λ) :=

∑

[sT
1

];
st−1=σ;st=s

p(xT
1 , sT

1 |λ)

“Paths going through (t− 1, σ) and (t, s)”

1

σ

t-1 t T1

s

S

Analogous definition for p(xT
1 , st − 1 = s|λ).

Defining the “posterior” auxiliary functions:

γt(σ, s) = p(st−1 = σ, st = s|xT
1 , λ) =

p(xT
1 , st−1 = σ, st = s|λ)

p(xT
1 |λ)

=

∑
[sT

1
];

st−1=σ;st=s

p(xT
1 , sT

1 |λ)

∑
sT
1

p(xT
1 , sT

1 |λ)

γt(s) = p(st = s|xT
1 , λ) =

p(xT
1 , st = s|λ)

p(xT
1 |λ)

Model: Gaussian distribution ϑs = [µs, Σs] for each state s
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Iteration formulae (reestimation):

α̃(s|σ) =

∑

t
γt(σ, s)

∑

t

∑

s′
γt(σ, s′)

=

∑

t
γt(σ, s)

∑

t
γt(σ)

⇒ Q(λ, λ̃) =
∑
s,σ

∑

t
γt(σ, s) · log α̃(s|σ)

+
∑
s,σ

∑

t
γt(s) · log p(xt|s, θ̃s)

p(xt|s, θ̃s)
!= N (xt|µ̃s, Σ̃s)

⇒ µ̃s =

∑

t
γt(s) · xt

∑

t
γt(s)

Σ̃s =

∑

t
γt(s) · [xt − µ̃s] · [xt − µ̃s]

T

∑

t
γt(s)

Note:

1. Mixture densities: analogous result, but more complicated proof of
the EM method (exercise)

2. Necessary: extension to many vector sequences
−→ “analogous” iteration formulae for one long vector sequence

Explanations about training:

1

s

S

t-1 t T1

σ

γt(σ, s) “forces” paths through σ and s in order to isolate their contribution
(γt(s) analogously).

Pattern Recognition and Neural Networks, October 14, 2003 (18:23 h) WS 03/04



7 STOCHASTIC FINITE AUTOMATA 145

The computation of γt(σ, s) and γt(s) can be efficiently determined by
combining the forward and backward variants of the Baum recursion, i.e.
the Forward-Backward algorithm.
The principle is simple, but an implementation has to be done using tricks
due to CPU and memory requirements as well as possible overflow.

Instead of that, we will consider the Maximum Approximation (also called
Viterbi training), which uses only the best path:

γt(σ, s) =





1, best path through σ, s

0, otherwise

γt(s) =





1, best path through s

0, otherwise

Training using Maximum Approximation: (see [Ney99a])
Speech training samples: utterances of a word B

HMM for
  word B

1. utterance 2.utterance 3. utterance 4. utterance 5. utterance

Iterative training in two steps:

1. Time alignment: estimating the best path

2. Estimation of the model parameters:

(a) Collecting observations for each state and each transition

(b) Maximum-Likelihood estimation, e.g.
Gauss: µ̂ = empirical average value

Σ̂ = empirical covariance

transition probability = relative frequency
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Note:

1. This is a further example of decision-directed learning
(as for cluster analysis).

2. Extension to word chains instead of single words is possible in a simple
way.

7.5 Stochastic Grammars (overview)

Goal: transferring the HMM concept to general context-free grammars.

Notation: A,B, C, . . . , Z
x1, . . . , xt, . . . , xT

non-terminals
terminals (observations, discrete
or ∈ IRD)

• Stochastic regular grammar:

The probability that the terminal x is observed during a transition
from state σ into state s

¹¸

º·
σ -x

¹¸

º·
s

is denoted as p(x, s|σ) ( = p(s|σ) · p(x|σ, s) ).

This corresponds to a production rule of type s −→ σx or σ −→ xs

(according to interpretation).

The whole regular grammar can be built from this type of rule (except
start-states).
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• Stochastic context-free grammar (Chomsky Normal Form):

structure A −→ BC p(BC|A)
observation A −→ x p(x|A)

p(BC|A) corresponds to the probability of applying rule A −→ BC if
non-terminal A is given.

Note:

For significantly distinctive structures only a small number of proba-
bilities p(BC|A) > 0.

A

S

$

a

a

b b

a

b

S

A

$

. . .

. . .

. . .

0 i I

observations x1, ..., xi, ..., xI
st

at
es

Consider the chain of rules r1 . . . rM (in Chomsky Normal Form: M =
2T − 1) :

S
r1−→ · · · rm−→ · · · rM−→ [x1 . . . xt . . . xT ]

S
r:   A         BC

               p(BC|A) := q(r)
r:    A         x   

            p(x|A) := q(r)

x  ... x  ... x  
1 Tt
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Model: q(rm|rm−1) = q(rm) “arbitrary order”

p(xT
1 , rM

1 ) =
M∏

m=1
q(rm)

p(xT
1 ) =

∑

[rM
1 ]

p(xT
1 , rM

1 ) “all derivations” (recognizer)

∼= max
[rM

1 ]
p(xT

1 , rM
1 ) “best derivations” (parser)

Notes:

1. Efficient algorithms based on dynamic programming (or divide and
conquer) exist for both variants (

∑
, max).

2. In this way, a stochastic variant of Cocke-Younger-Kasami or Earley
algorithm is obtained (Bottom-Up or Top-Down Parser for context-
free grammars).

3. Training:

• extensions to the reestimation equations exist

• so far not much experience with real problems

• open and actual problem: learning the rules (grammatical infer-
ence)

4. Hierarchical structure is possible:

• word level: combining word observations

• sentence level: combining words into sentences

(Example: introducing parity checking in digit-sequence recognition)
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8 Feature Extraction and Linear Mapping

8.1 Ideal Feature Extraction

Different data types (k = class index):

p(s|k)

p(x|k)

p(y|k)

s

x

y

original measured data after digitalisation
(speech signal, image signal, ...)

mapping independent of k

observation vector x 
(feature vector)

mapping independent of k

"real ideal features":
a) low dimension, about 5-10
b) unimodal distribution with small overlap

Statements:

1. For completely and exactly known distributions

p(s|k), p(x|k), p(y|k)

and invertible transformations s ←→ x ←→ y there is no difference
in the error rate when the Bayes decision rule is used, at most in
computational time (original data s are always extremely extensive).

Mappings s −→ x −→ y are usually connected with data reduction,
therefore there is no gain in reducing the error rate for given distribu-
tions.

2. Distributions are not known in practice, so feature extraction has the
following advantages:

(a) less amount of data;

(b) fixed dimension of observation vector x, y ∈ IRD;
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(c) Dependencies between components of x or y can be captured eas-
ier (see problem: estimation of covariance matrix).

3. (Possible) strategy:

(a) Fully automatic determination of a mapping s −→ x (or x −→ y)
requires a good criterion, e.g. the empirical error rate (on the
training data).

=⇒ the resulting optimization problem is almost always too com-
plex

(b) Choice of mapping s −→ x is task-specific, based on specific
knowledge about the problem (e.g. spectral analysis for speech,
“primitives” for character recognition, textures for images).

(c) For the last step x −→ y, a linear mapping is specified:

V : IRD −→ IRd, d < D

x 7−→ y = V x

The mapping V is determined using an optimization criterion
which will be considered in the following.
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8.2 Linear Mappings

8.2.1 Effect for given Gaussian Distribution

Given µ and Σ:

(example for illustration)
x ∈ IRD : p(x|µx, Σx)
If V ∈ IRD×D is invertible, “distance ratios” remain unchanged.

Proof:

y = V · x =⇒ µy = E{y} = V · µx

Σy = · · · = V · Σx · V T

d2
x ≡ (x− µx)

TΣ−1
x (x− µx) (exponent in p(x|µx, Σx))

d2
y ≡ (y − µy)

TΣ−1
y (y − µy)

= (x− µx)
T · V TΣ−1

y V
︸ ︷︷ ︸

V T (V T )−1Σ−1
x V−1V

=Σ−1
x

·(x− µx)

=⇒ d2
x ≡ d2

y

8.2.2 Minimization of Representation Error: Karhunen-Loève
Transformation

([Fuk90], p.417)

other names: KL expansion, Principal Component Analysis, Hotelling
transformation [also principal axes transformation, diagonalization]
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x ∈ IRD [class affiliation is not given]
Basis vectors, orthogonal and normalized:
V = [v1, . . . , vi, . . . , vD], vi ∈ IRD, i = 1, . . . , D
where

vT
i vj =





1, i=j
0, otherwise

Decomposition:

x =
D∑

i=1
αi(x) · vi, where αi(x) = vT

i · x

Approach:
Starting from i > d replace coefficients αi(x) with constant βi (independent
of x):

x =
d∑

i=1
αi(x) · vi +

D∑

i=d+1
αi(x) · vi

⇓
x̂ =

d∑

i=1
αi(x) · vi +

D∑

i=d+1
βi · vi

Criterion: choose basis vectors so that the representation error

F (d) = Ex{‖x− x̂‖2}
=

∫

x

dx ||x− x̂||2 · p(x)

= Ex{‖
D∑

i=d+1
(αi(x)− βi) · vi‖2}

is minimized.

F (d) = Ex{
∑

i>d

∑

j>d

(αi(x)− βi) · (αj(x)− βj) · vT
i vj}

= Ex{
∑

i>d

(αi(x)− βi)
2}

=
∑

i>d

Ex{(αi(x)− βi)
2}
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Optimal choice for βi (vi = average value of αi(x), µ := Ex{x}):
βi = Ex{αi(x)} = Ex{vT

i · x} = vT
i · Ex{x} = vT

i · µ

βi = vT
i · µ

Rewriting F (d) results in:

F (d) =
∑

i>d

Ex{[vT
i · (x− µ)]2}

=
∑

i>d

Ex{vT
i · (x− µ) · (x− µ)T · vi}

=
∑

i>d

vT
i · Ex{(x− µ) · (x− µ)T}︸ ︷︷ ︸

Σ

·vi

=
∑

i>d

vT
i · Σ · vi

Minimization of F (d) in terms of vi ∈ IRD where ‖vi‖2 = 1 results in the
equation for eigenvalues:

Σ · vi = λi · vi, λi > 0.

(Derivation: either clever estimation using linear algebra or derivation with
the aid of the Lagrange formalism)

Sort the eigenvalues in descending order: λ1 > λ2 > . . . > λD. Then set

F (d) :=
∑

i>d

λi

[v1, . . . , vd∗] is then the matrix for dimension reduction (with suitably cho-
sen d∗).
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Note:
The same derivation is also possible when the representation error is aver-
aged over one sample (difference: λi ≥ 0).

Karhunen-Loève-transformation:

1. Calculate (empirical) covariance matrix Σ;

2. Diagonalize Σ;

3. Arrange eigenvectors vi according to eigenvalues λi;

4. Choose (trial-and-error) new dimension d; sometimes, the relative er-
ror as a criterion is helpful:

Ed =
F (d)

F (0)
=

∑
i>d

λi

D∑
i=1

λi

.

Notes:

1. The term “class” or “class separability” does not occur at all in the
derivation.

2. Therefore there is no reason to expect any optimality for class sepa-
ration (warning: in the literature often unclear or wrong).

3. Derivation is possible without any assumption about distributions.

4. New features αi(x) = vT
i ·x have diagonal covariance matrix, i.e. they

are “decorrelated”.

5. If (in context of time sequence analysis/signal analysis, see [Ney99a])

Σij = R(i− j)

holds, i.e. if Σij has a Töplitz structure, the diagonalization is achieved
using a Fourier/cos transformation.
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Counter-example (for point 2):
“Karhunen-Loève transformation is good for class separability.”

v1
v2

• v1 : important for representation error (Karhunen-Loève transforma-
tion)

• v2 : important for class separation

8.2.3 Linear Discriminant Analysis (LDA; Fisher’s LDA)
([DH73], p.118-120)

Given: training data xn ∈ IRD where n = 1, . . . , N :

µ :=
1

N

∑
x

x

For each class Ak:

µk :=
1

nk

∑

x∈Ak

x

nk := |Ak| = number of observations belonging to class k
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Desired: linear mapping x −→ y = V Tx such that

i) distances within one class remain constant;

ii) distances between class centers µk are maximized.

Let tr(X) :=
D∑

d=1
Xdd be the trace of a matrix X ∈ IRD×D,

such that uTu = ‖u‖2 =
∑

d

u2
d = tr(uuT ) for u ∈ IRD.

Then:

for i)

DW (V ) :=
∑

k

∑

x∈Ak

‖V T (x− µk)‖2

= tr
[ ∑

k

∑

x∈Ak

V T (x− µk)(x− µk)
TV

]

= tr
[
V T ∑

k

∑

x∈Ak

(x− µk)(x− µk)
T

︸ ︷︷ ︸
=:W

V
]

W : Within-Class Scatter Matrix

for ii)

DB(V ) :=
∑

k

nk‖V T (µk − µ)‖2

...

= tr
[ ∑

k

nk V T (µk − µ)(µk − µ)TV
]

= tr
[
V T ∑

k

nk (µk − µ)(µk − µ)T

︸ ︷︷ ︸
=:B

V
]

B : Between-Class Scatter Matrix
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The result is the Total Scatter Matrix

T :=
∑
x

(x− µ)(x− µ)T

independent of class affiliations.

Then the following holds:

T = W + B

Transition trace → determinant:
Within-Class Scatter Matrix is given by the volume of a hyper-ellipsoid;
the volume is described by the determinant of the matrix:

volume = const · π ·
D∏

i=1
axis i

Optimization criterion:
Choose a dimension reducing mapping V so that

F (V ) =
det(V TBV )

det(V TWV )
!= maximum

resp. F (V ) =
tr(V TBV )

tr(V TWV )
!= maximum

or alternatively

aTWa != minimum and aTBa != maximum
resp.

aTWa != minimum with constraint aTBa = 1
or

aTBa != maximum with constraint aTWa = 1

Pattern Recognition and Neural Networks, October 14, 2003 (18:23 h) WS 03/04



8 FEATURE EXTRACTION AND LINEAR MAPPING 158

Solution: generalized eigenvectors [vd]
D
1

with constraint vT
d WvD = 1 ∀d = 1, . . . , D.

B · vd = λd ·W · vd, λd ∈ IR, d = 1 . . . D, vd ∈ IRD.

due to T = W + B, it follows:

T · vd = (1 + λd) ·W · vd

a) determine eigenvectors vd

b) sort according to eigenvalues λd

Direct derivation:

Mapping V = [v1, . . . , vd, . . . , vD] where vd ∈ IRD, choose each vector vd

so that:

• vT
d ·B · vd = maximum

• with constraint: vT
d ·W · vd = const

(equivalent to:
vT

d ·B · vd

vT
d ·W · vd

= maximum)

Lagrange: f(vd, λd) = vT
d ·B · vd − λd(v

T
d ·W · vd − 1)

Calculation (linear algebra, differentiation) results in:

B · vd = λd ·W · vd.
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Notes:

1. Solution for V is not unique due to the properties of functions tr and
det:

an invertible mapping leaves the optimum invariant.

2. Without dimension reduction, i.e. V ∈ IRD×D, the following holds:

F (I) = F (V )

In words:
LDA does not make sense without dimension reduction. A regular
mapping in the new feature space leaves the criterion F (V ) invariant.

3. Eigenvalues λd are invariant with respect to invertible linear transfor-
mations. The following holds ([DH73], p.223):

tr(W−1B) =
∑

d

λd tr(W−1T ) =
∑

d

(1 + λd)

det(W−1B) =
∏

d

λd det(W−1T ) =
∏

d

(1 + λd)

(= 0 because of 4., if D ≥ K)

4. Between-Class Scatter Matrix B has the rank (K − 1) according to
the definition (see covariance matrix for Gaussian model), i.e. only
(K − 1) eigenvalues λd are not equal to zero.

5. Special case: W = I (Isotropy)

Then holds: {µk − µ; k = 1, . . . , K}
⇓

Gram-Schmidt orthogonalization

⇓
Eigenvectors vk

6. The derivation of LDA does not use any Gaussian model, only dis-
tances.
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Illustration (“simultaneous diagonalization”) ([Fuk90],p.31)

1. Determine principal axes of W and assign them to B.

W

B

2. Scale axes so that W is a hyper-sphere. Determine principal axes of
B and assign them to W .

W’

B’

3. Rotate the axes appropriately.

W’’

B’’

4. Reduce dimension according to new axes.

Pattern Recognition and Neural Networks, October 14, 2003 (18:23 h) WS 03/04



8 FEATURE EXTRACTION AND LINEAR MAPPING 161

8.2.4 Motivation for Determinant Criterion

• Basics
Gaussian model: N (x|µ, Σ), x ∈ IRD

Data: x1, . . . , xN

F (µ, Σ) :=
∑
n

logN (xn|µ, Σ)

= −1

2

∑
n

[log det(2πΣ) + (xn − µ)TΣ−1(xn − µ)]

(where aT b = tr(abT ) = tr(baT )

and tr(A + B) = tr(A) + tr(B) )

= −N

2
log det(2πΣ)− 1

2

∑
n

tr(Σ−1(xn − µ)(xn − µ)T )]

(insert ML estimate µ̂ and Σ̂ =
1

N

∑
n

(xn − µ̂)(xn − µ̂)T )

= −N

2
[log det(2πΣ̂) + tr(ID)]

= −N

2
[log det(2πΣ̂) + D]

= −N

2
log det(2πeΣ̂)

• Model score
class-dependent models: p(x|k) = N (x|µk,W )

Score: N samples

−N

2
log det(2πeW ) (?)

p(x) = N (x|µ, T ) is used instead of p(x) =
∑
k

p(k) · p(x|k), where T is

the total scatter matrix.

Score: −N

2
log det(2πeT̃ ) with T̃ = V TTV , where V T is the transpose

of V .
This value is optimized, and the value (?) is kept constant.
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8.3 Linear Classificators/Discriminants

(see Chapter 4.2)

Number of classes K is arbitrary (i.e. not only 2 classes).

Reminder: Gaussian model with Σk = Σ leads to linear limit surfaces.

Method (different from typical ones in the literature):

1. general case K > 2;

2. no assumptions about class separability;

3. one single criterion instead of considering class pairs ([DH73], p.151,177).

1

2

3

R1

R2

R3 ω2
not ω2

ω1

not ω1

a)  ωi/not ωi  dichotomies

1

2

3

R3

R1

R2

ω1
ω3

ω2
ω3

ω1 ω2

b)  ωi/ωj  dichotomies

1

2

3

R3

R1

R2

a) three-closs problem

g2 > g3
g3 > g2

g2 > g1
g1 > g2

g3 > g1

g1 > g3

R2

R1
R3

R4

R5

b) five-closs problem

Figure: linear classification boundaries.
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Model:
Decision rule:

r(x) := argmax
k

{g(x, k)}

Discriminant:
g(x, k) = vT

k · x, x, vk ∈ IRD.

Training: (ideal values)

vT
k x != 1 , if x belongs to class k,

vT
k x

!= 0 , if x does not belong to class k .

In general, ideal demands can be realized only approximatively. Therefore
the squared error criterion is usually chosen:

F (v1 . . . vk) =
∑
n

∑
c

[vT
c xn − δ(c, kn)]

2,

with training data (xn, kn) and Kronecker function δ:

δ(c, k) =





1, c = k

0, c 6= k .

Solution:

F is a quadratic function of vk; thus resulting in a linear equation system
for vk where k = 1, . . . , K. The structure of this equation system is similar
to normal equations and pseudo-inverses.

generalized features:

1. g(x, k) = bk + vT
k x, bk ∈ IR, vk ∈ IRD

2. g(x, k) = bk + vT
k x + xTWkx, vk ∈ IRD, Wk ∈ IRD×D

3. g(x, k) = vT
k f(x), f : IRD → IRD′

, vk ∈ IRD′

Notation: polynomial discriminant function, regression classificator
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a-priori distribution, 25

for parameters, 67
arc tangent, 81
average value

continuous, 11
discrete distribution, 9
multidimensional, 14

Back Propagation, 88
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chess board distance, 38
χ2-distribution, 23, 53
Chomsky Normal Form, 147
city-block distance, 38
class, 3
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class conditioned distribution, 25

class individual, 49
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Euclidean distance, 35
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regression, 78

cluster analysis, 122
Cocke-Younger-Kasami algorithm

stochastic, 148
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stochastic, 146
correlated, 13
correlation classificator, 36
cost function, 27
Coulomb-Potential, 100
covariance matrix, 14
Cross-Validation, 64
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error rate, 28
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dependent, 13
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discriminant, 3

general, 74
linear, 79

discriminant approach, 32
Discriminant function

polynomial, 163
discriminant function, 3
discriminative training, 91
distance

between clusters, 130
distance classifier, 37
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distribution
binomial, 22, 59
Cauchy, 21
χ2, 23, 53
Coloumb, 100
Gaussian

multivariate, 23
univariate, 23

Laplace, 20, 23, 59
multinomial, 22, 59
Poisson, 22, 59
quadratic form, 20
Student, 23
t, 21, 23, 100
triangular, 10
uniform, 10

distribution density, 10
divergence inequality, 114

Earley algorithm
stochastic, 148

Editing, 102
eigenvalue

generalized, 158
Eigenwert, 153
elementary functions, 81
EM algorithm

for Hidden Markov Model, 142
for Mixture Densities, 112
iteration

Gauss, 119
general, 116

maximum approximation, 121
empirical averaging, 45
empirical error rate, 64
error

local, 75
Error Back Propagation, 88

chain rule, 88
heuristics, 91
update, 90

error rate
empirical, 64
for a decision rule, 28
Next Neighbor rule, 103

Euclidean distance, 38
classification using, 35

Expectation
continuous, 11

Expectation-Maximization, 112
expected value

discrete, 9
multidimensional, 14

feature extraction
ideal, 149
linear mappings, 151

first-order Markov, 138
Fisher’s LDA, 155
Forward-Backward algorithm, 140

training, 145

Gaussian distribution, 10
ML-estimate, 56
multivariate, 23, 33
multivariate general, 17
multivariate independent, 16
univariate, 5, 15, 23

Gaussian model
(perceptron), 81

generalized eigenvalue, 158
Gini-criterion, 76, 108
Gram-Schmidt orthogonalization, 159
grammatical inference, 148

Hidden Markov Model, 134
Bayes Decision Rule, 141
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Maximum Approximation, 140
Maximum-Likelihood Training,

142
hierarchical cluster analysis, 126

agglomerative clustering, 131
bottom-up method, 128
top-down method, 127

hierarchical structuring, 102
high-dimensional space

sparseness of, 51
hitting quote, 42
HMM, 134
Hotelling transformation, 151
hyper-ellipsoid, 16, 17
hyper-parameter, 69

independent, 13
interpolation

language model, 111
iso-data-method, 123
iso-likelihood lines, 12

joint distribution, 12, 25
joint event, 12

k-d trees, 102
k-means, 123
Karhunen-Loève transformation

counter-example for optimality,
155

Karhunen-Loève-transformation, 151
Kernel Densities, 97
KL expansion, 151
Kronecker-function, 75

Lagrange multiplicator, 116
language model, 111
Laplace distribution, 20, 23, 59
lattice, 134
LBG algorithm, 128

LDA, 155
leaving-one-out, 98
Levenshtein distance, 136
limit surfaces, 31

for quadratic form, 34
linear classificators

K > 2 classes, 162
Linear Discriminant Analysis, 155
linear mappings

feature abstraction, 151
lp-norm, 37

Mahalanobis distance, 39, 40
main axis transformation, 35
MAP-estimate, 68
marginal distribution, 12
Maximum Class Posterior Proba-

bility, 91
maximum distance, 38
Maximum Mutual Information, 91
Maximum-A-Posteriori estimate, 68
Maximum-Likelihood

Gaussian distribution, 56
weighted, 118

Maximum-Likelihood method, 55
problems, 62

minimum distance, 35, 37
minimum-distance

method, 123
mixture densities, 109
mixture weights, 109
MMI, 91
model-free methods, 96
moment, 54
moment method, 54
Multilayer-Perceptron, 78

advantages, 82
class boundaries, 83
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regions, 83
similar structures, 87

multinomial distribution, 22, 59

Nearest Mean
off-line, 125
on-line, 125

nearest mean, 37, 123
nearest prototype, 37
Nearest-Neighbor error, 76
Next Neighbor rule, 100
NN-rule, 100
non-discriminative, 49
non-parametric methods, 96
normal distribution, 10, 23

observation vector, 3
offset, 80

parameters
of distribution density, 11

parser, 141, 148
partial distance, 102
partitioning, 122
Parzen Densities, 97
PCA, 151
Perceptron

Error Back Propagation, 88
Multilayer, 78

perceptron
bias, 80
class boundaries, 83
offset, 80
regions, 83

Plug-in-Method, 73
Poisson distribution, 22, 59
polynomial classificator, 78
Polynomial classifier, 4
polynomial discriminant function,

163

posterior maximum, 68
posterior mean, 68
posterior median, 68
predictive distribution, 73
principal axes transformation, 151
Principal Component Analysis, 151
probability density, 10
probability distribution

discrete, 9
projection, 12

quadratic form, 20, 33
quick implementation, 36

Rademacher-Walsh expansion, 43
random variables, 9
recognition error, 28, 50
recognizer, 141, 148
Regression classificator, 163
regression classificator, 78
regular grammar, 134
representation error, 151
runaway model, 110

scattering
around average value, 9

Sigmoid-function, 80
series expansion, 81

simultaneous diagonalization, 160
sparse space, 51
speech recognition, 135
squared error criterion, 74, 123

for discriminative training, 94
standard model, 109
statistical approach, 5
statistical classificators

discriminative training, 91
Stirling numbers, 123
stochastic finite automaton, 133
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stochastic grammar, 146
stochastic regular grammar, 134
Student distribution, 23
syntactic pattern recognition, 133

t-distribution, 21, 23, 100
test sample, 64
tied mixture densities, 120
time alignment, 134
Total Scatter Matrix, 157
training on the testing data, 64
training sample, 64
trellis, 134
triangle inequality, 37
triangular distribution, 10
triangular equality, 102
Tukey-Model, 110

uniform distribution, 10
univariate, 9
user dependent systems, 67
USPS

with Multilayer-Perceptron, 83

variance
continuous, 11
discrete distribution, 9

variance criterion, 123
Viterbi-algorithm, 140

training, 145

Whitening Transformation, 36
Within-Class Scatter Matrix, 156
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