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Turbulence

Dr. Ali Sarreshtehdari,
(sarreshtehdari@gmail.com)

Mechanical Engineering Department
Shahrood University, Iran

Applied Fluid Mechanics Research Lab.
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Course Purpose:

Turbulent flows, with emphasis on engineering methods. Governing equations for
momentum, energy, and species transfer. Turbulence: its production, dissipation, and
scaling laws. Reynolds averaged equations for momentum, energy, and species transfer.
Simple closure approaches for free and bounded turbulent shear flows. Applications to jets,
pipe and channel flows, boundary layers, buoyant plumes and thermals, and Taylor dispersion,
ete., including heat and species transport as well as flow fields. Introduction to more complex
closure schemes, including the k-epsilon, and statistical methods in turbulence.

Course Outline (tentative and not exactly sorted)

Review of flow and transport equations, with particular emphasis on the energy equation and the
role of viscous dissipation.

Instability and transition.

Fundamental concepts in turbulence; approaches to closure and turbulence modeling.

Jets, wakes, etc. modeled via simple closure schemes. Scalar transport in free flows (temperature,
concentration).

Turbulent flow over walls: general near-wall scaling laws; flows in pipes, channels, etc.
Boundary layers.

Transient dispersion in laminar and turbulent shear flows (Taylor dispersion).

Turbulence models and their application.

Buoyant plumes, transient thermals, etc.

Additional topics (if time).
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- Course project:

Each student has to do a project specific title agreed with the instructor in advance.
Please talk me individually four weeks before ending of the term in order to finalize
it. The Project deadline is the last week of the current term. Take it Serious.

« Marking Strategy:

Activity Mark
Homework and Quiz (30)%
Midterm Exam and/or Term Project (40)%
Final Exam (30)%

A. Sarreshtehdari
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« A chaotic system is defined as one in which the solution is extremely
sensitive to initial conditions (o(r solut)ions are aperiodic).
i=o0(y—x),

Analysis Techniques of Turbulence Problems
« Consider following PDE: { y=px—y—xz, (Lorenz equation)

Z= —ﬁz + xy,
Status where the coefficients are ¢ = 10, # = £, and p = 28. For the initial condition
Methods Now Past . a) it ;W WA
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Instability

» Smooth laminar flows are stable to small disturbances only
when certain conditions are satisfied.

« when the flow becomes a superposition of various large
disturbances of random phases, and reaches a chaotic condition
that is commonly described as “turbulent.”

« Areal flow may be stable to infinitesimal disturbances (linearly
stable), but still can be unstable to sufficiently large disturbances
(nonlinearly unstable)

» The method of linear stability analysis consists of introducing
sinusoidal disturbances on a basic state (background or initial
state), which is the flow whose stability is being investigated.

Orr-Sommerfeld Equation

- flow along x direction, vary in the y: U =[U(y), 0, 0]
a=[U+u,v wl,

Decompose as: basic flow plus the perturbation:
p=F+p.

background and the perturbed flows satisfy the Navier—Stokes
equations.
The perturbed flow satisfies the x-momentum equation:

ﬂ + U +u)i(U +u)+ vi(U +u)
ot dx ay

3 1
=——(P —v? ,
PP+ VU 0

NOTE! Nondimensionalized by:

L (the width of flow), Uo (the maximum velocity of the basic flow);

time is scaled by L/Uo and the pressure is scaled by pUo”2 . The Reynolds
number is defined as Re = UOL/v.

A. Sarreshtehdari

« The background flow satisfies o apP 1

« Subtracting from last equation and neglecting terms nonlinear in the
perturbations, the x-momentum equation for the perturbations:
a d ] a 1
Bu e BU_ bp 1oy
ot dx ay dx Re
« Similarly the y-momentum, z-momentum, and continuity equations:
v v ap 1
ar v ax dy Re
ow dw  dp 1

—tU——=-—+ V',
at * ax 0z + Re

du dv  dw

— 4+ —4+—=0.

ax ay az

» Squire’s Theorem, 1933, showing that to each unstable three-
dimensional disturbance there corresponds a more unstable two-
dimensional one.

« The critical Reynolds number at which the instability starts is lower for
two-dimensional disturbances.

= ¢’y, D= —ik¢. A Sarreshtehdari

1
(U = &)y — K2) — Uyyp = TR Bey Ulpyy + k401,

Is the well-known Orr—Sommerfeld equation, which governs the stability of
nearly parallel viscous flows such as those in a straight channel or in a
boundary layer.

- Rayleigh’s Inflection Point Criterion

A necessary (but not sufficient) criterion for instability of an inviscid
parallel flow is that the basic velocity profile U(y) has a point of
inflection.

- Fjortoft’s Theorem
A necessary condition for instability of inviscid parallel flows is that

Uyy (U - U1)< o somewhere in the flow, where U1 is the value of U at the
point of inflection.

Note! an alternate way of stating Fjortoft’s theorem is that the magnitude of
vorticity of the basic flow must have a maximum within the region of flow,
not at the boundary.

Instructor: A.

Sarreshtehdari
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Some Results of Parallel Viscous Flows A Sarreshehdri

A.Sarreshtehdari

- Plane Poiseuille Flow

+ Channel flow with parabolic velocity distribution (no point of inflection and
is inviscidly stable) -> complicated solution of Sommerfeld eq.
Qlinear viscous calculations: flow becomes unstable at a critical Reynolds

« Examples of parallel number of 5780

flows. Nonlinear calculations: give a critical number of 2510 (which agrees better
with the observed transition)
Poisuille Points of inflection are Note! In flows with inflection points, viscosity acts as a singular
denoted by I. perturbation. Instability caused waves in these flows are called
Tollmien—Schlichting waves.

Only (e) and (f) satisfy
Fjortoft’s criterion of + pipe Flow
inviscid instability. = Absence of an inflection point -> Inviscidly stable.

= Stability calculations of the viscous problem have also shown stable
flow to small disturbances.

= In contrast, most experiments show that the transition to turbulence
takes place at about Re ~ 3000 .

s Careful experiments, have been able to maintain laminar flow until
Re = 50,000.

STABLE mi %

A. Sarreshtehdari

- Transition attributed to:

adverse pressure gradient

(1) It could be a finite amplitude effect;
(2) the turbulence may be initiated at the entrance of the tube by
boundary layer instability

|

(3) the instability could be caused by a slow rotation of the inlet flow l
shown to result in instability |

|

|

|

I

Sketch of marginal stability curves for a
boundary layer with favorable and adverse

ko pressure gradients.

zero or favorable
pressure gradient

Note! critical Reynolds number
is lower for flows with adverse

pressure gradients.
Note! New insights into the instability and transition of pipe

flow were described by Eckhardt et al. (2007) by analysis via
dynamical systems theory and comparison with recent very
carefully crafted experiments by them and others.

|
|
i
Re, Re, Re, = US*v

stable flow for low Reynolds and unstable at higher Reynolds numbers.
Increasing viscosity effects on stabilizing in this range.

For zero pressure gradient boundary layers (Blasius flow) or a favorable
pressure gradient, the instability loop shrinks to zero as Re§— (these
flows do not have a point of inflection in the velocity profile and are therefore

- Boundary Layers with Pressure Gradients
« pressure falling in the flow direction: “favorable” gradient,

+ pressure rising in the flow direction:“adverse” gradient. inviscidly stable).
= Adverse pressure gradient provide a inflection point in the « For an adverse pressure gradient boundary layers, the instability loop
velocity profile. does not shrink to zero.
« Upper branch of the curve becomes flat (with a limiting value of ke as
Red—w).

Instructor: A. Sarreshtehdari 5
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Linear Stability Results of Common Viscous Parallel Flows

Flow Uin /U Recr Remarks
Jet sechz( y/L) 4
Shear layer tanh (y/L) 0 Always unstable
Blasius 520 Re based on §*
Plane Poiseuille 1— ()/’L)2 5780 L = half-width
Pipe flow 1 — (r/R¥? o Always stable
Plane Couette y/L o Always stable

« The first two flows have points of inflection and are inviscidly
unstable; (viscous solution shows zero or a small critical
Reynolds number).

» The remaining flows are stable in the inviscid limit.

- Blasius boundary layer and the plane Poiseuille flow are
unstable in the presence of viscosity, but have high critical
Reynolds numbers.

Transition o

« The process by which a laminar flow changes to a turbulent one is
called transition.

= The process of transition is greatly affected by such experimental
conditions as intensity of fluctuations of the free stream, roughness of
the walls, and shape of the inlet.

« The basic state of wall-bounded parallel shear flows becomes unstable to
two-dimensional TS waves, which grow and eventually reach
equilibrium at some finite amplitude. This steady state can be considered a
new background state, and calculations show that it is generally unstable to
three-dimensional waves of short wavelength, which vary in the
“spanwise” direction (secondary instability).

Note! If x is the direction of flow and y is the directed normal to the
boundary, then the z-axis is spanwise.

Instructor: A. Sarreshtehdari
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Experimental Verification of Boundary Layer Instability

« The first calculations of the Blasius flow based on an analysis of the
Orr—Sommerfeld equation were performed by Tollmien in 1929 and
Schlichting in 1933 using the profile:

4% 10*

Usx

L7(y/8)
1—1L.03[1 — (y/8)?]
1

0< y/8<0.1724,
0.1724 < y/8 < 1,
¥zl

Unstable (Tollmien—Schlichting) waves
appear when the Reynolds number is high
enough.

2x10¢ |-

Marginal stability curve for a Blasius boundary layer. Theoretical solutions of
Shen and Schlichting are compared with experimental data of Schubauer
and Skramstad.

z A. Sarreshtehdari

x=7.6cm x=19em
0 x 1
0 0.05

Urms/U

Three-dimensional unstable waves initiated by vibrating ribbon. Measured distributions
of intensity of the u-fluctuation at two distances from the ribbon are shown.

3/1/2020
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1.25
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Wall Distance y/8 Streamwise Position x/&

Three-dimensional deformation of the ring vortex (a) as compared to
that of the Tollmien-Schlichting wave in a boundary layer (b): 3D
bursts (1), longitudinal disturbances (2), ring vortex (3), 3D distortion

of the 2D instability wave (4), roughness elements (5).

- Smoke visualization of the jet cross sections at
x/h = 0.5, 2.5, 4.5, 6.5 and 8.5 from the nozzle
exit (left to right); nozzle width h = 10 mm, jet
core velocity U, = 3 m/s, Re, = 2000.

Instructor: A. Sarreshtehdari
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A.Sarreshtehdari

TS-waves

airfoil flow; M=0.7, Re=1 million

Farpin vorex

“wller verlczs

Turbulence
- Most flows encountered in engineering practice and in nature are
turbulent.

« Turbulence is not easy to define precisely.

Lesieur (1987) :“turbulence is a dangerous topic which is at the origin
of serious fights in scientific meetings since it represents extremely
different points of view, all of which have in common their
complexity, as well as an inability to solve the problem. It is even
difficult to agree on what exactly is the problem to be solved.”

Instructor: A. Sarreshtehdari

A.Sarreshtehdari

T-5 Waves - Vortex Formation Turbulent
{Primary Instability) (Semndary Instability) Spols
B

Re,,

Stable Vortex Breakdown Edge
Laminar (Tertiary Istability) ‘Contamination
Flow

Idealized sketch of the transition process from White (1991)

fﬁ ] b
TS- Waves Spikes

W J-dlmensloml —>i
Laminar {«———————Transition ———————>| Turbulent

Turbulence

In fluid
dynamics, turbulence or turbulent flow is a
flow regime characterized by chaotic
property changes. This includes low
momentum diffusion, high momentum
convection, and rapid variation of pressure
and flow velocity in space and time.

T &Transicional

-’“'\/\/v\/\/‘— & Turbulento
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Some of turbulence’s characteristics

T rb l n « (1) Randomness: Turbulent flows seem irregular, chaotic, and unpredictable.
u u e C e « (2) Nonlinearity: Turbulent flows are highly nonlinear.

= Note! Two purposes of nonlinearity :

o . ° + it causes the relevant nonlinearity parameter, (e.g. Re)
« Definition of Turbulence. Hinze (1959): + nonlinearity of a turbulent flow results in vortex stretching, a key process by which three-dimensional
o . . . . e . . turbulent flows maintain their vorticity.
Turbulent fluid motion is an irregular condition of flow in which the

various quantities show a random variation with time and space
coordinates, so that statistically distinct average values can be discerned.”

Laminar Turbulent
, r L e ulr) up
U AANAST N
x
P
lurbulent N %
(b} ¢ (@) ()

reshtehdari A.Sarreshtehdari

Some of turbulence’s characteristics Some of turbulence’s characteristics

« (3) Diffusivity: Due to the macroscopic mixing of fluid particles, turbulent flows are : (4) Vorticity: Turbulence is characterized by high levels of fluctuating vorticity.

characterized by a rapid rate of diffusion of momentum and heat. Note! The identifiable structures in a turbulent flow are vaguely called eddies. A
characteristic feature of turbulence is the existence of an enormous
range of eddy sizes.

= The large eddies have a size of order of the width of the region of turbulent
flow.

= The large eddies contain most of the energy.

= The energy is handed down from large to small eddies by nonlinear
interactions, until it is dissipated by viscous diffusion in the smallest eddies,
whose size is of the order of millimeters.

Instructor: A. Sarreshtehdari 9
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instantaneous interface

Turbulent flow in a boundary layer, showing that a large eddy has a size of the order of
boundary layer thickness.

- 5. Dissipation: The vortex transfers energy and vorticity stretching
mechanism to increasingly smaller scales, until the gradients become so
large that they are smeared out (i.e., dissipated) by viscosity.

= Note! Turbulent flows therefore require a continuous supply of
energy to make up for the viscous losses.

A.Sarreshtehdari

- many flows that seem “random,” such as gravity waves in the ocean or
the atmosphere, are not turbulent because they are not dissipative,
vortical, and nonlinear.

» The turbulent flow variables are not deterministic in details and have
to be treated as stochastic or random variables.

- Averaging

Ty Jo

=
Il

o
1
‘M\/\\/ N e im [ uedr.

Ui

t
Mean and fluctuating components
of a flow property in a turbulent flow

A. Sarreshtehdari

10+T
. i 1
Averaglng ﬁ(x7 Y, Z) = lim — / u(x7 Y, 2, I)dt
T—oo T
» Time-Average to

= appropriate for stationary turbulence which is the one whose time average
does not vary with time.
s Characteristics of time-average:

« Spatial-Average
= appropriate for homogeneous turbulence, i.e., the one whose space average is

uniform in all flow directions. 1
u(f) = lim — x,v,2,1)dV
() Vu v/ﬂu( ) )

- Ensemble-Average A Saestchdai
= is the most general average and is also valid for time dependent mean
flows.

_ RS
u(x,y,z,l) = A}l__nalcﬁzu(xvyzzv t)
i=1

s N denotes large number of identical experiments.

W
'
W
o ‘
%

N
8 AM 9AM 10 AM

An ensemble of functions u(r)

Instructor: A. Sarreshtehdari
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- For stationary and homogeneous turbulent flow, the three
averages are equal.

Velocity
=1
&
E\\
3
=
&

Steady and unsteady mean
turbulent flows

A.Sarreshtehdari

(a) Sutionary (b) Nonstationary

Stationary and nonstationary time series

Note! For a stationary process the time average can be shown to equal the
ensemble average.

A. Sarreshtehdari

- The mean square value of a variable is called the variance.
» The square root of variance is called the root-mean-square (rms).

variance = F
Urms = (”TZ)I/Z
» The rms value of the fluctuation is called the standard deviation.

o = [ — 2]/

Correlations and Spectra

» The autocorrelation of a single variable u(t) at two times t1 and t2 is
defined as: R(1y, 1) = u(ru(ny)
- For a stationary process the statistics (i.e., the various kinds of averages)
are independent of the origin of time,
R(t) =u(®u(r + 1)
- normalized autocorrelation function:
r(z) = M(I)M(_;+ T)

r<l

A. Sarreshtehdari

‘ Lol

Method of caleulating autocorrelation w(t)u(t + )

utr+71)

™ 4T

Obviously, r(0) = 1. For a stationary process the autocorrelation is a symmetric
function, because then

R(t) =u(ut + 1) =ut —)u(@) =u(@u(t — 1) = R(—1).
©

Note! Under normal conditions r goes to
0 as T —o, because a process becomes 1
uncorrelated with itself after a long time.

=¥
integral fime scale T = [ r(r)dr
Jo

i
i
1
i
H

Is measure of the time over which u(t) is highly correlated - ~
with itself or measure of the “memory” of the process. Autocorrelation function and the integral time scale

Instructor: A.

Sarreshtehdari
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+ If S(w) : Fourier transform of R(t) - cross-correlation function between two stationary variables u(t) and
L[> i o e v(t): Clry =ulu(t +1)
S(w) = z—f R(m)dr mmm) R(r)= [ e S(w) do ) 4’ = [ S(w)dw + is not a symmetric function of the time lag t,
\ T J- -0 ) J—oo
! C(—1) =u(v(t —1) # C(1)

“Fourier transform pair.”

Note! cross-correlation at zero lag: u(n)v(r), simply written: uv

S(o)dw: energy (variance) in a frequency band do centered at ®.
(“correlation” of u and v).

—) S(w): represents the way energy is distributed as a function of frequency .

S(w) is the energy spectrum
Averaged Equations of Motion

e W [ s i i; = Ui +ui,
50) = 7/‘ R()dr = Lf roydr=“ Spectru.m value at zero freqlfency is 3 i o
21 Jox 7 Jo proportional to the integral time scale. Reynolds decomposition{ p=P+p. mhy i=p=T =0,
T=T + 7.
Taylor ’s hypothesis Averaging the continuity equation
» The assumption that the turbulent fluctuations at a point are (Ur u) = aﬂ SR TR L Wi _,,

dx;  dx;  dx; Using i; =0, Bxi

caused by the advection of a frozen field past the point.

« Ifthe turbulence field is “frozen” and does not change during the Subtracting Wi _

measurement it is possible to transfer time series u(t), to a ax;
spatial series u(x) by replacing t by x/Uo .

Mean Momentum Equation Reynolds Stress .
A Sarveshtchdari

A. Sarreshtehdari

The momentum equation Writing the term u;u; on the right-hand side, the mean momentum equation

il 9 s
Wi+ ) + W + 1)) 5 — (Ui + i) becomes
! i DU; 1 0P 3 [ au
o D =**r*g[1*a(T To)1 8, ERrrul Kt TP
= (F+[1)7 lfa(TJrTfT())]B,gnLudz(U 4 up) ! Po 0%; dxj L 9x;
P(» X;
B U, Bw  aU;  am; aU; which can be written as
(Uz +ui) = — =t =—, The average of the time derivative term
or ar ar or at -
B ——— — DU; 1 0% _
] au; ai; au; du; Dr = opgdn; gll —a(T — To)] §i3,
(UJ+Llj)E(UE+HE):UJT‘FU]'E‘FM]&j+£ljax] J
aU; ]
=U; —(wiu;), The average of the advective term where
ax;  dx;

7 8P 9p P : L) [ . —
g(F +p)= ™ + Pl The average of the pressure gradient term =-—P&;+n d Bx — Polilj. = additional stress —pou;l;
gl —aT +T"—To)] =gl —e(T —To)l The average of the gravity term The tensor — pyi; i is called the Reynolds stress tensor and has the nine Cartesian
827 520 components

Ty o Witw) = ey The average of the viscous term _

- FO ) —pou®  —poltv  —polw
_ ) — .
BU, al; 1 aP 8°U; —ApuY —pove —ppvW | . (symmetric tensor)
= Ui T (u.u,)-——g—gn—a(r Tlda +v5 oI — oot —po?

Instructor: A. Sarreshtehdari 12
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A. Sarreshtehdari
« Inisotropic turbulent, the off-diagonal components of vanish,
and 2 =2 = w?

- Isotropic: there is not any directional preference.

» The average value of the product uv is zero in isotropic
turbulence. » ) l

Isotropic Anisotropic

Isotropic and anisotropic turbulent fields. Each dot represents a uv-pair at a certain time.

A. Sarreshtehdari

Kinetic Energy Budget of Mean Flow

» AKkinetic energy equation can be obtained by multiplying the

equation for DU/Dt by U .
The equation of motion for the mean flow,
dU; U 1 0% g

— Rt R — = 583,
at J dx; po dx; p()p i3
where the stress is given by

Tj = —P8&; +2uE;; — poliu;.

Here we have introduced the mean strain rate

1 /aU; oU
E;i== LY.
) (axj - B,ri)
Multiplying by Ui,

a1, 8 (1 o\ 1§ . 1. 8U; g .
(-0 U= (V) = —=WiEp) — —F— — L U8
- (2 ,)+ i (2 ) Ui =ty Al

Instructor: A. Sarreshtehdari

- Exercis A Sarreshehdari
regard to following fig. describe: why the average product of the velocity
fluctuations in a turbulent flow is not expected to be zero.
uy)

initial position
- Reynolds stress is that it is the rate of mean momentum transfer by
turbulent fluctuations.

po(U + u)v = poUT + pouv = pouv.

Generalizing, poli;ui; is the average flux of j-momentum along the i-direction, which
also equals the average flux of i-momentum along the j-direction.

A. Sarreshtehdari

1
; ) alry (*71/.'1]51‘;' + Ui Eij — Llill;‘Ui) proportional to 8;;(§U; /8x;) = 3U; /8x;
Lo 0 (Continuity) . ]
- Exercise: describe

w7 the physical meaning
of this Zero term.

» . The mean kinetic energy balance then becomes

D1\ af Py
or\avi )= e\ o0 +2vU;Ejj —uiujUi | [=+The first term: transport of mean

Po L
Tramsport kinetic energy by the mean
U pressure, the second by the mean
i — — iﬁu;. viscous stresses , and the third by
dxj  po Reynolds stresses.
viscous loss to loss
dissipation turbulence  potential
energy

« product of the mean strain

rate and the mean viscous * loss of mean kinetic energy and « the work done by
stress. It is a loss at every a gain of turbulent kinetic gravity on the mean
point, (direct viscous energy (the shear production of vertical motion.
dissipation). The energy is turbulence by the interaction of
lost to heat. Reynolds stresses and the mean

shear).

3/1/2020
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A.Sarreshtehdari

» The two viscous terms, namely, the viscous transport and the
viscous dissipation, are small in a fully turbulent flow at high
Reynolds numbers.(e.g.) Compare, the viscous dissipation and the shear
production terms:

WE} VL v
T U axy) UL UL S

« The mean flow loses energy to the turbulent field by means of
the shear production; the turbulent kinetic energy so generated
is then dissipated by viscosity.

Kinetic Energy Budget of Turbulent Flow

Equations of motion for the total and mean flows are, respectively,

el
E(Uz‘ +ui) + (U +up) Ui + i),

1 - ’
=——(P+pi—gll =« +T" =Tl +v(Ui +ui) .
0

00
aU;
at

1 -
+ UV = *EPJ — gl —a(T — To)] &iz + vUi j; — (uiuy),j.

The first and second terms on the right-hand side of equation

A. Sarreshtehdari

1 1
—ui—pi=——(Up)i.
PO Po
uigaT' 83 = gawT'.
The last term on the right-hand side of equation
vy, jj = v{wi;, jj + %(ui,f +ugi)ui —uji)},
Defining the fluctuating strain rate by
e = %(d.‘,, +uji),
we finally obtain
VT 7 = 0[], — 2V

Collecting terms, the turbulent energy equation becomes

D (1, kil 1 T l—— 5
—| zur )| = —— ( —Pu; + curu; — 2vige;;
AV ax; Lol T2 i
transport
—wiu;Ui; + gowT' — 2vejje;;.

shear prod buoyant prod  viscous diss

A.Sarreshtehdari

Subtracting, we obtain the equation of motion for the turbulent velocity u;:

Ou; 1
a + Ujuij +ujUi j + wjugj — (Wiiy),j = *EP,J +gaT 83 + vu jj.
multiplying this equation by ui and averaging.

The first two terms on the left-hand side of equation

du; 3 (11—
uigr =5 \2% )
[ 1—
wiUjui j = Uj iu,. -

J

The third, fourth and fifth terms on the left-hand side of equation (

uin Ui j = ujujUi ;.

v = (A2 s — Y= Yl

uiuji j = (zuiuj),j — quiujj = 3(;uj),;
—ui(@iny) ; = i (@), j = 0,

the continuity equation u;; = 0 and ir; = 0.

Instructor: A.

Sarreshtehdari

. AU; A Sarreshtehdari
Shear production = —;t; —.
dxj

« the viscous dissipation ¢ is of the order of the
turbulence production terms (u;u;U;,; or gawT")
in most locations.

Buoyant production = gowT'.

& = Viscous dissipation = 2ve;je;;. ‘

Turbulence Production and Cascade

*Order of largest eddies: width of the shear flow.

*These eddies extract kinetic energy from the mean field.

*The smaller eddies are strained by the velocity field of the largest eddies, and extract
energy from the larger eddies by the same mechanism of vortex stretching.

*The much smaller eddies are essentially advected in the velocity field of the large eddies.
*The small eddies do not interact with either the large eddies or the mean field.

* The kinetic energy is cascaded down from large to small eddies in a series of small steps.

This process of energy cascade is essentially inviscid, as the vortex stretching mechanism
arises from the nonlinear terms of the equations of motion .

3/1/2020
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. . . ASurshuehdari if 1is a typical length scale of the large eddies, and A Saresttehdari
« In a completely isotropic field the off-diagonal components of the wis a typical scale of the fluctuating velocity, the

Reynolds stress are zero and no turbulent energy can be extracted s
dissipation rate must then be of order
from the mean field. Therefore,
turbulence must develop anisotropy if it has to sustain itself against I’
viscous dissipation.

Kolmogorov suggested in 1941 that the size of the dissipating eddies depends On smallest

- viscosity does not affect the shear production, however, determine the eddies parameters. i.e. € and the diffusivity v.
scales at which tlérbulent energy is dissipated into heat. Dimensional reasoning shows that the length scale formed from & and v is: , (v3 ) i
£ = 2vejjej =\ :
» The continuous stretching and cascade generate long and thin ¢
filaments, “spaghetti.” When they become thin enough, molecular Landahl and Mollo-Christensen (1986) Kolmogorov microscale

diffusive effects are able to smear out their velocity gradients. Suppose we are using a 100-W household mixer in | kg of water. As all the power is
used to generate the turbulence, the rate of dissipationiss = 100 W /kg = 100m?/s>.

- ¢is determined by the inviscid properties of the large eddies. Using v = 10~ m?/s for water, we obtain 1 = 10~ mm,

7 (Kolmogorov microscale)

Spectrum of Turbulence in Inertial Subrange

Wavenumber spectrum S(K ), representing turbulent kinetic energy as a function of the
wavenumber vector K . In isotropic turbulence, it is independent of the orientation of the
wavenumber vector and depends on its magnitude K only,

o =]
uZ:/ S(K)dK
JO

Successive deformations of a marked fluid element.

A.Sarreshtehdari A. Sarreshtehdari

» Somewhat vaguely, a wavenumber K associate with an eddy of size K"—1. equilibrium range
S=S(K,e,v)  K>I~h . o
- inertial
+ In small scales there is no direct interaction between the turbulence and the r J
motion of the large, energy-containing eddies.
« The spectrum here does not depend on how much energy is present at large 0 -
scales, it depends only on the small-scale flow nature.
s
e The spectrum in the range of large wave numbers is nearly isotropic and usually N
called the equilibrium range . 1o
Kolmogorov argued that, in the inertial subrange part of the equilibrium range,
§ is independent of v also, so that 107 |-
S=S(K.e) I'«wk<y
1 1 1 1
dimensional reasoning gives 10 10 107 !
Kn
Kolmogorov's K= law | § = Ae2PK537 -l w kK <« 07!, Ax~15 A typical wavenumber spectrum observed in the ocean, plotted on a log—log scale.

Instructor: A. Sarreshtehdari 15
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A. Sarreshtehdari A. Sarreshtehdari
* wall-free shear flows « Aflow can slowly pull the surrounding irrotational fluid inward
Nearly parallel shear flows | (Such as jets, wakes, and shear layers) by “frictional” effects; the process is called entrainment.
+ wall-bounded shear flows « The source of this “friction” is viscous in laminar flow and
L inertace inertial in turbulent flow.
t i i ! viscous eddies
irrotational fluid irrotational fluid
Q interface
73 " & turbulent fluid
© turbulent fluid
Three types of wall-free turbulent » Experiments: Far downstream, the mean field in a wall-free
flows: shear flow becomes approximately self-similar at various
(a) jet; downstream distances(“moving equilibrium”).
(b) wake; and
(c) shear layer. + When both the mean and the turbulent fields are determined
solely by the local scales of length and velocity is called (self-
preservation).
Intermittency y is defined as the fraction of time the flow at a point is turbulent.

htehdari A.Sarreshtehdari

ASarres
« In the self-similar state, the mean velocity at various downstream

distances:
,% =f (%) (jet).
5; _,l[,::l =f (%) (shear layer).

Here (x) i1s the width of flow, U, (x) is the centerline velocity for the jet and the wake,
and U'; and U are the velocities of the two streams in a shear layer

For two-dimensional wakes and shear layers, it can be shown (Townsend, 1976;
Tennekes and Lumley, 1972) that the assumption of self similarity requires

U — Usocx V2, 5ox /3  (wake), Y

Uy —U; =const.,, doxx (shear layer). Sketch of observed variation of wrbulent intensity and Reynolds stress across a jet

uZ? is the intensity of fluctuation in the downstream direction x, 17 is the inten-
sity along the cross-stream direction y, and w? is the intensity in the z-direction;
g = (12 + v? + w?)/2 is the turbulent kinetic energy per unit mass.

Instructor: A. Sarreshtehdari 16
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A.Sarreshtehdari A.Sarreshtehdari

The kinetic energy budget For a two-dimensional jet under the boundary layer assumption

Blox << dldy: *The shear production is zero at the center where both 0U/0y and uv are zero, and reaches a

maximum close to the position of the maximum Reynolds stress.

B ay “US a_y[qiu ~7/p] ¢ *Near the center, the dissipation is primarily balanced by the downstream advection, which is
positive because the turbulent intensity q*2 decays downstream.

= *Away from the center, but not too close to the outer edge of the jet, the production and
Y dissipation terms balance.

Gain R & «In the outer parts of the jet, the transport term balances the cross-stream advection where V is
negative (i.e., toward the center) due to entrainment of the surrounding fluid, (q"2 decreases
with y).

Conclusion:

Loss L. . . .
The gross characteristics of free shear flows, are independent of viscosity.

Sketch of observed kinetic energy budget in a turbulent jet. Turbulent transport is indicated by T .

A Sarreshtehdari A Sarmeshtehdari
In a boundary layer on a flat plate there is no pressure gradient and the mean flow
equation is

« wall-free shear flows

Nearly parallel shear flows
* wall-bounded shear flows

(e.g. channel flows) au oU ot - .
pUB_ + pva— =3 where T is a function of x and y.

95 x y y

The mean equation of motion: (= 78—P + d_r where T = p(dU/dy) — puv is the total stress] i -
dx 8y Inner Layer: Law of the Wall
dP/dx is a function of x e
S . == both of them must be constants === The stress distribution is linear Consider : the wall bounded flow near the wall
a7 /8y is a function of y
¥y
centerline edge of boundary layer . Uco: the free-stream velocity ( or the centerline velocity)

. & : the width of flow
. wall : is smooth

total stress T The near wall velocity profile depends only on near wall parameters (not on U or §)

U=Ulp,tp,v,y)

only p and 0 involve the dimension of mass, so occur together in any nondimensional
group.

turbulent
stress —pun —]

To

Uy = V‘ o friction velocity D) U = U(u., v, y)

(a) )
Variation of shear stress across a channel and a boundary layer: (a) channel; and (b) boundary layer.

Instructor: A. Sarreshtehdari 17
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A.Sarreshtehdari

4 variables involving (length and time) ‘ only 4 — 2 =2 nondimensional groups
U/ux and yux/v

v_ f (\:') = fly4) (law of the wall)

Uy

where y4 = yu,/v is the distance nondimensionalized by the viscous scale v/u..

The inner part of the wall layer is dominated by viscous effects (viscous sublayer
or “laminar sublayer,” until experiments revealed the presence of considerable

fluctuations within the layer). du
b
H dy [}
. .. YT v_ . s cous subl:
No-slip boundary condition, U= o P Y+ (viscous sublayer)

Experiments show that the linear distribution holds up to yu./v ~ 5, which may be
taken to be the limit of the viscous sublayer.

Outer Layer: Velocity Defect Law st

Characteristics:
Inviscid
*wall-free
*Reynolds stresses generates a velocity defect (Uco — U), proportional to the wall friction
(ux).
In the outer region:

U-Us _p (i) = F(€)  (velocity defect law)

Ux P

where & = y/4. This is called the velociry defect law.
Overlap Layer: Logarithmic Law

*Distances in the outer part are scaled by &

. in the inner part are measured by the much smaller viscous scale v/ux.

* The small distances in the inner layer are magnified by expressing them as yu*/v.

*The inner and outer solutions are matched together in a region of over-lap by taking the
limits y+ —o0 and & — 0 simultaneously .

Instructor: A. Sarreshtehdari

A. Sarreshtehdari
30 e inner region ——’-1

viscous buffer
sublayer layer

U
—=25lny+5
" p3

File

t————— outer region —————

T T 1
102 102 104

Yy

Law of the wall. A typical data cloud is shaded

A. Sarreshtehdari

the velocity gradients in the inner and outer regions are given

2
d_U _ ﬂﬁ and multiplying by y/u,. we obtain
dy v dys
w_uar a4
dy 8 dE’ g~ tdy, &

valid for large y. and small &. As the left-hand side can only be a function of £ and
the right-hand side can only be a function of y_. both sides must be equal to the same
universal constant, say 1/k, where k is called the von Karman constant. Experiments
show that k > 0.41. Integration of equation f(y,) = T Inys + A,

1
Fg)=InE+B.

Experiments show that A = 5.0 and B = —1.0 for a smooth flat plate,
UL s,
Uy k v
U—Usx 1,y
™ =z In 5 1.0.

3/1/2020
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A.Sarreshtehdari

These are the velocity distributions in the overlap layer, also called the inertial sub-
layer or simply the logarithmic layer. As the derivation shows, these laws are only

valid for large y+ and small y/é.

The region 5 < y+ < 30, where the velocity distribution is neither linear nor
logarithmic, is called the buffer layer. Neither the viscous stress nor the Reynolds
stress is negligible here. This layer is dynamically very important, as the turbulence
production —uv(d U /dy) reaches a maximum here due to the large velocity gradients.

y v y v
& in
H Rough Surface y0 is a measure of the
H roughness heights and is
g defined as the value of y at
5 which the logarithmic
distribution gives U=0.
continuation of 96
logarithm ol
'& o Viscous
-F== linear ¢ sublayer -
e

(a) (by
U 1.y

Variation of Turbulent Intensity

Logarithmic velocity distributions near smooth and rough 1
- u, k

A.Sarreshtehdari

o 0 y, 40 0 I 1

Sketch of observed variation of turbulent intensity and Reynolds stress across a channel of half-

3/1/2020

width 8. The left panels are plots as functions of the inner variable y+, while the right panels are
plots as functions of the outer variable y/8.

surfaces: (a) smooth wall; and (b) rough wall.

A. Sarreshtehdari

« The turbulent velocity fluctuations are of order ux.

« The longitudinal fluctuations are the largest because:
= the shear production initially feeds the energy into the u-component;

= subsequently distributed into the lateral components v and w.

« The turbulent intensity initially rises as the wall is approached,

It goes to zero right at the wall in a very thin wall layer.

The normal component vims starts to feel the wall effect earlier.

The distribution, close to the wall, becomes clear only when the
distances are magnified by the viscous scaling v/ux.

« The Reynolds stress profile shows: the stresses are negligible within

the viscous sublayer (y+ < 5),
« The Reynolds stress is nearly constant throughout the wall layer. (the

constant stress 1ayer).

A. Sarreshtehdari

Eddy Viscosity and Mixing Length

« The mean motion equations, cannot be solved for Ui (x ) unless to
have an expression relating the Reynolds stresses in terms of the mean

velocity field.

- Semiempirical theories (e.g. Prandtl and von Karman ) based on an
analogy between the momentum exchanges both in turbulent and in
laminar flows.

Tlam au

=p—

in a unidirectional laminar flow U(y), the shear stress is -
14 y

« where v is a property of the fluid.
The diffusive properties of a gas are due to the molecular motions, It can be

shown that the viscosity of a gas is of order
v~ ak

« where a is the rms speed of molecular motion, and A is the mean free

path defined as:

= the average distance traveled by a molecule between collisions.
The proportionalityconstant in equation is of order 1.

Instructor: A. Sarreshtehdari
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- Boussinesq speculated that the diffusive beh\zii}‘igl;]’glf a turbulent flow
may be qualitatively similar to that of a laminar flow and may simply
be represented by a much larger diffusivity:

au

‘dy  where ve is the eddy viscosity.

« Note: whereas v is a known property of the fluid, but ve depends on the
conditions of the flow .

—Uv =V

inflectional
profile

sccondary
flow Mechanics of streak break up. S. J.
Kline et al., Journal of Fluid
Mechanics 30: 741-773, 1967

initial
vortex

lifted and stretched
vortex element

low-speed streak

Top view of near-wall structure (at y+ =2 .7) in a turbulent boundary layer on a horizontal flat plate. The flow
is visualized by hydrogen bubbles. S. J. Kline et al., Journal of Fluid Mechanics 30 :741-773, 1967

A. Sarreshtehdari

Boussinesq Approximation Based Models

- Boussinesq approximation:
= the Reynolds stresses can be expressed in terms of the mean strain rate
= or turbulent momentum transport is assumed proportional to the mean

strain rate).
aa,-+anj
T =l | =—+=—
W= H Ox; Oy

» key issue: the computation of the eddy viscosity, by using a suitable
prescription.

- Note! The eddy viscosity is a flow property and not a fluid property
(unlike molecular viscosity) and therefore depends on flow characteristics.

+ The turbulent transport of heat, mass or other scalar quantities (i/¢")
is modeled similar to that for momentum (proportional to the
gradient of mean value of the transported quantity):

— 0

- —puip =T —
Proportionality constant: t aJC'
turbulent diffusivity of a / i

scalar variable.

A, Sarreshtehdari

» Turbulent transport of momentum or heat or mass is due to the same
mechanism, (i.e. eddy mixing).

m

= turbulent Prandtl number (Pr:) for heat transfer } Pr= Hond So = o
o turbulent Schmidt number (Sct) for mass transfer It

Here m, denotes the turbulent diffusivity of mass. A typical value of turbulent
Prandtl number or turbulent Schmidt number used in engineering computations
used is approximately 1.0.

Models Based on Boussinesq Approximation
« Turbulence simplified by the Boussinesq approximation:
= Reynolds stresses and turbulent transport quantities are related to the mean
flow And scalar fields, respectively.
» Boussinesq models based on transport equations used to compute the eddy
viscosity.
= Models types :
« (a) zero equation (or mixing length) models;
+ (b) one equation models;
+ (c) two equation models.

Instructor: A.

Sarreshtehdari
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A.Sarreshtehdari

« The first two require the specification of flow at least one flow variable
for a particular flow configuration and therefore are incomplete models.

» Two equation models are the simplest complete models and therefore
are widely used.

Mixing Length Models

» It assumed that the eddy viscosity can be expressed as a product of a
turbulent velocity scale (related to the mean flow properties ) and a
length scale (related to some typical width of the flow).

« The Prandtl’s (1925) mixing length model (for a thin-shear layer (such
as, boundary-layer, jet and plume): -
u

2
mix a
« The hypothesis idea: Turbulent moving eddies, typically retain their
momentum in x-direction over a distance in the y-direction equal to the
mixing length (Imix). I
V==

s

ve=1

where Imix denotes the mixing length.

A. Sarreshtehdari

For the wall bounded flows in the inner region, the mixing length:
Imix = ky,
k: the von Karman constant
y: the distance from the wall.

- Damping function is included to damp the near wall eddy viscosity.

« Since no additional transport equation is used, such models are called
the zero equation or algebraic model.

» Baldwin and Lomax (1978) and Cebeci and Smith (1974) Mixing length
models are the most widely used turbulent models for the
aerodynamics.

» Cebeci and Smith (1974) two-layer model : 1, =

ata particular location y,,

outer eddy viscosity is more than the inner viscosity.

K for y <ym
to fOr y > ym

12

on\? [ov)’ A
fi = pliy, {(5) +<&> } s =y [1 = /]

Uy = 0pUe03Fkieb

Instructor: A. Sarreshtehdari

» Mixing length models
need modifications to damp the eddy viscosity near wall and the outer
intermittent region.

= Can be used to predict turbulent diffusivity for the transport of a scalar
variable by using turbulent Prandtl number or turbulent Schmidt number
approximately equal to one.
Imix = ¢,
Where, c: coefficient of proportionality
1: width of the flow

Constant of proportionality for different turbulent free-shear flows

Flow Constant of proportionality
Plane jet 0.09

Round jet 0.075

Far wake 0.16

Mixing layer 0.07

A. Sarreshtehdari

U, denotes the free stream velocity, Fkjp, is a curve fit by Klebanoff (1955) to
the outer intermittency of turbulent flows. J,* denotes the velocity thickness and
for incompressible turbulent flows it reduces to the displacement thickness

The model constants are k = 0.41, & = 0.0168 and the variable Ag is
given as

dp/dx] 712
pu? '

T

A§:26{1+y

A takes care of the dependence of the mixing length on the pressure gradient.

3/1/2020
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A.Sarreshtehdari

Deficiencies of the zero equations models:

« do not directly account for the flow history effects, as the eddy
viscosity is related to local mean flow properties.

Eddy viscosity reduces to zero when the mean strain rate equals zero,
but this condition may not be valid in all cases.

Cannot be directly applied to three-dimensional flows without any
modification.

Incomplete models because the mixing length needs to be specified.

The mixing length prescription is not unique and depends on a
particular flow configuration being studied.

The formulation of the model becomes difficult if there is a sudden
change in the flow conditions (e.g. Mixing length for separation flow on
airfoil).

A. Sarreshtehdari

Is a symmetric in tensor i and j, by substitutingi=j:

ok _ok 0 'aE ’au;b\u} —om; 0 [1—— u}p’
ey =) e e g\ 3

From left to right:

(a) time rate of change of turbulence kinetic energy;

(b) convection of turbulence kinetic energy by the mean flow;

(c) molecular diffusion of turbulence kinetic energy;

(d) dissipation of turbulence kinetic energy which denotes its conversion to thermal

energy due to viscous effects;

(e) production of turbulence kinetic energy by Reynolds stress acting on mean velocity
gradient;

(f) transport of turbulence kinetic energy by fluctuating velocity and by pressure-velocity
correlation.

The second and last terms on the RHS require modeling and,
—_ ou;  Ou; 2
/o) L J S
Ty = —puill; = i (T +—') — 5 pkdy;
Fori=j ox; ox;) 3
g\ 2
- 5”" RHS is zero due to continuity equation

—pu, = —p(u? +V2 +w7) = (L—
oxi

A.Sarreshtehdari

One Equation Model

+ One transport equation in addition to the continuity and momentum
equations is solved.

« The extra transport equation used can be for any turbulence variable.

« The most widely used one equation models are based on the transport equation
for turbulence kinetic energy. 1, 1 — —
K+k= {5 @+ + wz)] + {E (11’2 V4 w’z”

from the trace of transport equation for the Reynolds stress tensor

dpu)) o _ 9 — =
i — S N
Tj + a-ﬁ(f)ukuf'l}) =i @[W,’-"}M}( + p'(0u; + O;kll,'-)}
Cjj = Convection D; = Turbulent Diffusion
0 0 /— ——-0l; o,
ol —(u’»u’.) —p | Wl —L + v —
Oy "axk R P Koxy T IR,
Df; = Molecular Diffusion Pj; = Stress Production
o, ou ou.  oul
J i o)
+p =+ ) - 2t
P ox;  Ox; g Ox;  Oxy
i i k k
n il
¢y = Pressure Strain & = Dissipation

Instructor: A. Sarreshtehdari

A. Sarreshtehdari

The rate of dissipation of turbulence kinetic energy is modeled as:

&= Cpk?/l
Cp: is a model constant
1: a turbulent length scale that needs to be specified.

The sum of the turbulent transport and pressure fluctuation term is modeled
based on the gradient diffusion hypothesis as:

The turbulent Prandtl humber for turbulence kinetic energy (a flow property and
not a fluid property).

» Modeled transport equation for turbulence kinetic energy:

ok g ok 0 n 1\ Ok N ou;
— L p— = — oS Pl I i A
p@t Y O0x;  Ox; # oy ) Ox; Y 0x; P
« Major disadvantage: this model is is an incomplete model, since we need to

specify the length scale 1. Further no unique prescription of the length scale can
be specified.

3/1/2020
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Based on Equation for Eddy Viscosity A Sarreshtehdari

The Spalart and Allmaras model (1992) is a simple one equation model. It
directly solves a modeled transport equation for the kinematic eddy (turbulent)
viscosity itself. In this model, a length scale related to the local shear layer
thickness need not be calculated. The relevant transport equation for Spalart—
Allmaras variable is

ov oy ¢ N1 of
o . - ; ;
T Mja—x/_ =cpi(1 = fi)SV — [C»-wa - Ff’z] (3) + J (v + ‘)é_xj]
‘e ov o
”Zaxl Ox;

The kinematic turbulent viscosity is given as product of Spalart—Allmaras
variable and f,,;. Model constants: ¢;,; = 0.1355, ¢;, = 0.662, ¢,; = 7.1, ¢ = 2/3,
cwl =B +2 ¢, =03, ¢,3 = 2.0, kK = 041 and the model relations:

P X 6 N\ 1/6
A 1+c,

for = N s fn= — fw= g( 3 t63 ) )
B+ T+ fa g+

v

Z:;,g=r+cw2(r6—r) r—mm{s Y7 10] Ve =V,

ehdari

Two Equation Models A s

« Atleast two variables (for example, velocity and length scales) are needed to
characterize turbulent flows completely.

« Therefore, two equation models are the simplest complete models

« The standard k-e model is one of the most widely used turbulence models.

Limitations of Boussinesq Approximation

+ The key assumption that the turbulent stresses are proportional to the mean strain
rate may not hold true in many situations.

« assume an isotropic eddy viscosity (i.e. which is same in all the directions) and this
assumptionmay also fail in some situations.

Proper cases
Zero equation models work well in simple flows (which do not separate and where
thin shear layer assumption is valid) such as

- jets, mixing layers, wakes,
« boundary layer flow, flow through pipe,
« flow between parallel plates, etc.

A.Sarreshtehdari

S= 2d2fvz §=/20;Qy, fo = c,3exp(—c,4;52),c,3 =12,c4=05

€Q;; denotes the rotation tensor Q; = 1/2(3%; /dx; — 01;/0x;) and d the distance
from the surface. The Spalart and Allmaras model gives good results for boundary
layers subjected to adverse pressure gradients. This model was designed specifi-
cally for aerospace applications involving wall-bounded flows. It can also be used
for turbo-machinery applications. The model of Baldwin and Barth (1990) is
another one equation based on the transport equation for the eddy viscosity.
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k—¢ and Other Two Equations Models

® Standard k—e Model (Jones and Launder (1972))

= The exact transport equation for the rate of dissipation of turbulence
kinetic energy (), obtained from mathematical operation:
du; 0

2, Gx/ ax,[N(”')] =0

where N(u;) denotes the Navier—Stokes operator and is defined as

Nw) = du; Py du, -+@p u;
u;) = —— L
P TP e Tan Moo

68+_ Oe 5 {#4»#}6&[ T 6212[
‘ — 4 U—=-2v|u, u u, Uy | =— — 2vu i, ———
ot Jan ik"jk ki”k.j 6x/_ k lJa_xkaxj
; 7 o Qe —_— V—
2wl ), — 22, +—|v——vuu, u;, —2—p, u
ikTim™ ke m i.km 11<m an an Jim ™ im p smjm
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+ More complex compared to the exact equation *swrebuhixi
for turbulent kinetic energy.

+ On LHS: the standard unsteady and convection terms.
» On the RHS:

= the production of dissipation,

= dissipation of dissipation,

= turbulent transport

= molecular diffusion of dissipation.

» The unsteady, convection and molecular diffusion terms do not
require any modeling.

+ The remaining seven terms require modeling.

» The modeled form of the dissipation equation used in the literature is a
major weakness of the k—e model.

Modelled Transport Equations for k and e

The modeled transport equation for turbulent kinetic energy (k):

Ok GOk Ok GOk DI v )oK O v\
o e Vay Waziax ! o )0x| Oy ! oy ) Oy
0

) v, \ Ok
v+ P, —
= ‘+ok)6z} +Pr—e

+
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Features of the k—e Model

« Itis a high turbulence Reynolds number model.

« It cannot be applied without suitable modifications in the low Re regions.

« The solution of two separate transport equations for k and e allows the turbulent
velocity and length scales to be independently determined.

+ Each term of the modeled transport equation for k almost accurately
represents the corresponding term in the exact equation.

- However, the gross effect of several terms in the exact dissipation equation is
modeled by few terms.

+ Orthere is no one to one correspondence between different terms in the
modeled and exact transport equations for dissipation.
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« The modeled transport equation for the dissipation:

QJe Oc 0 v\ Oe &—Oil; &
ST (PRI il Y B i S gl
o ey, aij‘ +(f€> ax_J t ety T %

- in the expanded form:

§+'%+V%+r-g—i v+l E +3 v+l %
o ox oy 4V'éz_ax o.)0x| Oy g, )0y
4] v, Oe g &

+a—z[(\ +G—k>e—z] + P — Cap

« where Px denotes the rate of shear production of k and is:
o, on\?, (o7 0%\’ (00 0%\’
dy Ox 0z Oy 0z Ox
A\ 2 \ 2 _\2
Oi ov ow
21— 2| — 2 —
(o) - (ay> - (az> ]

The eddy viscosity (kinematic) is given as v, = C, ,(% and the following standard
values of the model constants are used (Launder and Spalding 1974) C, = 0.09,
o =1.00, 6, =13,C,) = 1.44,C» = 1.92.

Pr=v

+ v
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Boundary Conditions

1. Inlet: It is difficult to obtain values of k and e at the inlet, based on an approximation from
the turbulent intensity Ti and a characteristic length L of the flow configuration:

32
k= %(U,_sz-,)Z, &= CEA kT’ 1=0.07L I denotes a turbulent length scale.

2. Outlet: At the outlet usually turbulence (k and &) is taken equal to zero, the
mean temperature (7,,) equal to the ambient temperature (7.) and pressure (p)
equal to the atmospheric pressure pa..

3. Symmetry plane: Gradients of all flow properties normal to the plane or line of
symmetry are taken equal to zero, i.e., 0;/On = 0,07 /on = 0,0k/on = 0 and
0¢/0n = 0, where n denotes normal to the plane or line of symmetry.

4. The free-streams are usually non turbulent and therefore k = 0 and ¢ = 0 are
usually specified. Mean velocity and temperature may be taken equal to their
atmospheric counterparts.

5. At the solid wall either the no slip condition using the low-Re version or wall
function approach can be applied. We will present the features of these two
approaches in the next section.

3/1/2020

24



Instructor: A. Sarreshtehdari 3/1/2020

A.Sarreshtehdari

A.Sarreshtehdari

Non-Equilibrium Wall Functions
It uses the modified log-law for the mean velocity to account for the effects of
the pressure gradient ( two-layer approach to calculate the turbulence kinetic
energy in the cells close to the wall).

Treatment of Wall

Turbulence major complexities because of zero turbulence at the wall.

(a)Wall Functions Approach

(b) Low Reynolds Number Models u aclUa (EpC'f‘k'/‘Zv)
o i i )
=-—In
. o ___ Tw k t
(2)Wall Functions Approach (a) First olp !
Standard Wall Functions d poi
Outer layer _ gridpoint P Eld_l” W (L) Y= +ﬁ
s ‘ bf,%if:,';"g 2dx [pkvk \w)  pkvk o #
=ty Log layer _— fayer in here E=9.793 and y, denotes the viscous sub-layer thickness and is obtained from
I, Aln)[, +B wall ¥
K o— functions the expression .
I N - .
2 2 Sub layer + buffer lyer  —— approach o=t
b= —_ g =T Vo
P 172 & — : d Plu kp
C, Kyp Wall (b) First grid point at the wall
s (y =0) in a low-Re model .

. X . . . where y¥, = 11.225. Here two-layer concept is used to calculate the turbulence
where y denotes the distance of the first grid point from the wall in the wall Kinetic energy and dissipation rate at the first grid point. If y<y, the region is
co-ordinates. k = 0.41 the von Karman constant and B = 5.0 a dimensionless called the sublayer region and y > y,the region is called the fully turbulent region.
constant. Depending on the location of the first grid point with respect to y, values of

It is not universal. e.g., in separating and reattaching flows and flows with strong curvature, turbulence Kkinetic energy and dissipation are specified.

the law of the wall is invalid.

«  Auser needs to ensure that the location of the first grid point is in the logarithmic region.
However, this cannot be determined a priori because the value of y+ depends on the skin
friction coefficient.

A.Sa
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(b) Low Reynolds Number Models The modified form of the constant c,, used by Launder and Sharma (1974) is
i -Rek— fiscosity i i iven as
111- ‘generalz ina low-Rek—e model the eddy viscosity is computed by a slightly g e =192[1-03 exp(—Re%)]
modified expression k2
Vi =¢C Pf#_ « Additional terms vanish far away from the wall and the model reduces to the
& standard model.

Here f, denotes a damping function and in different models it is based either on

the distance from the wall or turbuler}m l»leyl{olds» nu‘n?ber. For example, in the Variants of k—e Model
Launder and Sharma model the damping function is given as e .
25 (To enhance the range of applicability of this model).
=exp|———==
Ju P[ 1+Re7/50}

RNG k—e Model
Yakhot and Orszag (1986) using a statistical technique (called the
renormalization group).

Far away from the wall this function becomes equal to 1.0 and thus the
expression reduces to the standard expression for the eddy viscosity (v, = C#kQ/s)
used in the standard k—¢ model. The following modified forms of the transport

equations for k and ¢ are used in the Launder and Sharma (1974) model Similar in form to the standard k—e model, but includes refinements:
2 2 (1) It has an additional term in its dissipation equation that is supposed to
aa_k + V@_k — E [( : i) 6_k:| v, (E_k) _i_ 2y % improve the accuracy for rapidly strained flows.
dx @y o) By dy dy (2) The effect of swirl on turbulence is included in the RNG model.
- - - - 2 . 2.2 The RNG theory provides an analytical formula for turbulent Prandtl
gﬁ 4 v@ - i { (v + ‘_f) g} c ﬂﬂ (a_u) _ szi + 2wy, (e_u) numbers, (sgrf)dard k—e modelyltmes the constant values).
ox  dy Oy oy ) Oy "k \ 0y “k oy2
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RNG also provides an analytically-derived differential formula for the Realizable k—e Model
effective viscosity that accounts for low-Reynolds-number effects. « By Shih et al. (1995) and differs from the standard k—e model :
(1) It contains a new formulation for the turbulent viscosity
The transport equations for turbulent kinetic energy and its dissipation (2) it has a new transport equation for the dissipation rate (derived from
an exact equation for the transport of the mean-square vorticity

. 3 8 1 ok fluctuation).

—(pk) +—(pki) = — | | u+ =L )—| + Px — pe

63‘('0 ) ax,»(p 2 0x; [(‘ o) Ox; kP . . . .

For normal Reynolds stress in an incompressible strained mean flow,
(using the Boussinesq relationship and the standard expression for the eddy

3 0 0 1\ de & & viscosity) ) oI
—(pe) + —(pett;) = — =)= =Py — cHp— R op o,
6t(pF) +6x1('0m) @ij#Jrag)axj et Caby us = 3"‘ 2‘fax

Therefore one obtains the result that the normal stress, ﬁ, which by definition
is a positive quantity, becomes negative, i.e., “non-realizable’’, when the strain is
large and therefore the following equation needs to be satisfied

The model constants and the auxiliary relations are C, = 0.0845,C,; = 1.42,
Cp =168, 6, =0, =0.7178, = 0.012

k -
with q=STand 1y =4.38 ]@%}%zl_/
g eQx "

cw (1= n/no)

B
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The term “realizable’” means that the model satisfies certain mathematical « This k—w model is an improved version of the original model proposed
constraints on the Reynolds stresses. Both the standard k—¢ model and the RNG k¢ by Kolmogorov (1942), (inclusion of the molecular diffusion and
model are not realizable. One limitation of the realizable k—¢ model is that it production terms).

produces non-physical turbulent viscosities in situations when computational
domain contains both rotating and stationary fluid zones.
k— Model « The k—e model:

« Performance compare of the k—e model and k—w model:

.. . . . does not accurately predict the characteristics of far wakes and mixing layers and the
The k- model Ol'lglﬂﬂ]ly given by Wilcox (1988) is based on the modelled spreading rate of axisymmetric jets in stagnant surrounding is also overpredicted.

transport qulﬂtiOl"lS for the turbulence kinetic energy (k) and the speciﬁc dissipa- + it can be improved by making ad hoc adjustments to the model constants. The model also
tion rate ((.()), which can also be thOUght of as the ratio of & to k. The model {::i?;:l‘)lls]gizg:;:l;:iil:;: and flows with large strains (e.g.,highly curved boundary
incorporates modifications for low-Reynolds-number effects and is applicable to . ) )

- . ) * k—w model:
wall-bounded flows without any further modifications and free shear flows.

« reproduce the behaviour within viscous sublayer without the need for any corrections.

Transport equations for this model are given as « However, it sensitive to the free-stream conditions for the free-shear flows.
ok Ok [ k\ 0k Ou;
= uf_ =—||v+e—)—= Tfj_l - ﬁ“kw Comparison of growth rates of four typical free shear flows predicted by k—e and k-w models (Wilcox 2006)
or ox;  Ox; ) 0x; ox;
Flow Measurements k—& model k= model
dw . aj% O0(, 4 ok\8e|  oluiz feo? Round jet 0.08-0.09 0.12 0.07-0.37
or dx;  Ox; ] 0x; k 8x; p Plane jet 0.10-0.11 0.11 0.09-0.14
Far wake 0.36 0.25 0.30-0.50
5 3 9 l 1 " ixing laver
o == ﬁz__ ﬁ*z__ G=—. ¢ =-—. g=[)‘ wk Mixing layer 0.12 0.10 0.10-0.14
9’ 40° 100° 2’ 27
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Vaf Model The transport equations used can be written as (Kazerooni and Hannani 2009):
« By Durbin (1991), based on the root mean square normal velocity ok ok 0 v\ Ok
fluctuations /2. as the velocity scale rather than turbulence kinetic energy k). 5 + “ja_xj = e_x_, / U_A a_xj +Pr—e
- Capable of handling the wall region without the need for the additional
damping functions. (because the normal velocity fluctuations are known to be quite sensitive g + M_E = i . i E + CaPr — Ca
to the presence of wall, like a natural damper). ot ER) x; a x; o o) X T

The model employs four transport equations for the closure of the RANS — —= —
. e p " o o 0 v\ OV —&
equations, which include an equation for the turbulence kinetic energy (the a—+ ”fa_=a_ V4 — ol V2 L kf
equation is same as that for the standard k—& model), the dissipation of turbulence ! X O Ok/) OXj k
kinetic energy (this equation is same as that used for the standard k—¢ model but

with a slightly modified value of the constant), a new transport equation for the f—I2V% = (C) — 1)2/3 — V2 /k Cgﬂ
normal r.m.s. velocity fluctuations and finally a transport equation for f that takes ’ ’ T k
care of in-homogeneity and wall blocking effects in the transport equation for 72, ) Here L and T denote turbulence length and time scales, respectively, and are
Since these two transport equations are used in conjunction with those for k and &, grven as . k v 0.6k
this model_is termed as the k — & — v — £ model. There have been continuous T'= min| max {_’ CT@ ’ zﬁcﬁﬁs
improvements in the v2f model. The original v2f model was numerically unstable
for segregated solvers. B2 pen V4
L =Cymax |min|—,——=|.C;—7
e i

Shear Stress Transport k—w Model

. « By Menter (1994) to take advantage of accurété'ﬁ)ﬁﬁvulation of the k—w
model in the near-wall region with the free-stream independence of
the k—e model in the far field.

« The term ke redistributes turbulence kinetic energy from the streamwise
velocity component. The eddy viscosity can be written as

Hr - « Itis similar to the standard k- model, but includes three refinements:
7 =y =C,Tv (1) This rpodel incorporates a damped cross-diffusion derivative term in the
. . . equation.
The v2f model constants are given as (Durbin and Reif 2001) (2) The turbulent viscosity definition is modified to account for the
=022, ¢ =023, ;=85 ¢cr=6. ¢;=04 =03 transport of the turbulent shear stress.
(3) The model constants are different. There is no need for a special
cp=19 o =1 a=13 treatment for the viscosity affected wall region because of the low-
Reynolds correction in the k—w and k—® SST models.
k The transport equations for k and :
co = 1.4 l+0.045\/;2} ok _ok_of,. 0k ™
v 5+MJE_)CJ-_B_XJ (»+Jk\f,)6—xJ+Pk—B 0}
0w _ 0w Py 5 0 0w 1 &k dw
It suggested that the model has a good potential for turbo-machinery applications. e “f'a_x, = po”+ 6-_)5,{(" + Jm"r)@} +2(1-F 1)%25 3 oy,

The eddy viscosity is written as

ark
Vp = — — — —
! max(a;w, SF)
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The auxiliary relations and the model constants can be written as

F) = tanh ({min

2
2vk 500v
F> = tanh [ max | — ] . . . .
Foy yo + The wall functions approach for treating turbulence in the vicinity of a solid wall
has some limitations.

R » Two equation models with the Boussinesq assumption are widely used for
max ( vk 500\!) 40,0k } } ) predicting turbulent flows encountered in industry.

By’ y2o )’ CDwy?

The standard k—e model is the most widely used turbulence model.

Py = min (rij%, l()ﬁ*ku))
O « The wall function approach is likely to fail in the following situations:
CDy,, = max <2po‘w2 1ok %’ 10720) (1) Blowing/suction thrf)ugh the wall;
© Ox; &x; (2) Large pressure gradients;
(3) Strong body forces (e.g., flow near a rotating body);
(4) High three-dimensionality near the walls (e.g., strongly skewed flows).

The constants for example @ are blended using the relation

¢ =1 F1+¢y(l - F1)

>1=%f”"“\/ﬁﬁf, v]=%f”‘”\;ﬁiﬁz, By =3/40, f,=00828, B~ =9/100

6 =085, oo=1 a =031, 6, =05 04 =085

m; + Modeling of Turbulent Transport m %
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Reynolds-Stress and Scalar Flux Transport Model co—c? K [ors | O Lo
ik 3e oy dy O
« solving transport equations for different Reynolds stresses components Here C, ~ 0.11 is a model constant.
+ (Wilcox 2006): « Modeling of Pressure Strain
Ot,-- 01y on; ou; 0 01 o 2 2 2
i Yt /i i ij & . R p <
U = — Tk — Tike—+ & — Tj + =— | v=—+ Cjj 1:,~:C—<1,--+— k§,--> —x(P,- ——Po,--) - <D,--——Pr),->
o o, b om0 T T g |V, T 5= Cig\ % T3Pk i =3P% ) =B\ Dy =3P
— A 1 e 2 K32
X . o Ou au; — 9k (s,;,- - —Skké,-,> + [04125-(1,, + _kzs,,> —0.015(P; — D,-,)} —
The exact pressure strain correlation term is given by m; = p’ = T 3 k 3 en
x;  Ox;
oul o J ! The model constants are given as (Launder 1989)
The exact dissipation term is given by &; = 2| — —~ .
p & ¥ ey H(axk dxz 4= (8+C)/11,p=(8Cy —2)/11,9 = (60C; — 4)/55,C) = 1.8,C, = 0.6

. —— = — The auxiliary relations are given as
The exact turbulent transport term is given by Cy = pujuiiy, + puio; +puf.5,-k

ivJ o oty A ity 1
Py = Timgm + Tj!l!a D; = Tlma—xi + ija—xi- P= EPkk
The pressure-strain correlation (7;), dissipation (e;;) and turbulent transport (Cj) + Modeling of Dissipation 2

terms need to be modeled in order to close the exact transport equation for Rey-
nolds stress 7;;.
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Features of Reynolds-Stress and Scalar Flux Transport Model + The assumption of isotropic eddy viscosity (Mixing length and k-e models) may
« This is the most complex turbulence model. not be valid in many situations and therefore the use of RSSFT model is

advisable in such situations.
+ The RSSFT model closes the Reynolds-averaged Navier—Stokes equations by solving

transport equations for the Reynolds stresses and scalar fluxes, together with an « Use of a RSSFT model significantly increases the computational cost due to the
equation for the dissipation rate. employment of seven additional partial differential equations.
« Four additional transport equations + However, RSSFT models are not as widely used as the k-e model.

two Reynolds normal stresses,
one Reynolds shear stress
one for dissipation) are required in a two-dimensional mean flow

seven additional transport equations (three Reynolds shear stresses, three Reynolds normal stresses, and
one for dissipation) must be solved in a three-dimensional mean flow.

« Accounts for the effects of streamline curvature, swirl, rotation, and rapid
changes in strain rate in a more physical manner than that by one-equation and
two-equation models.

» Good potential to provide accurate predictions of complex flows.

« Itis used for computing cyclone flows, swirling flows in combustors, rotating flow
passages, and the stress-induced secondary flows in ducts.

A. Sarreshtehdari

Concludion

« The second order closure is the most complex and physically the
most realistic among all other closure options that can be used.

- However, the additional complexity does not necessarily mean that
the predictions using a Reynolds stress and scalar flux transport model will
be more accurate compared to those obtained using other simpler
models.

« This anomaly arises due to the uncertainty involved in modeling
complex double and triple correlations in the transport equation for the
Reynolds stress tensor and turbulent scalar flux.
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