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Introduction

« Substances:
+ Solids & Fluids
« Fluids
+ Liquid & Gases
« Fluid mechanics : The study of fluids
« at rest (fluid statics)
+ in motion (fluid dynamics)

- and the subsequent effects of the fluid upon the
boundaries

Substances & Shear Stress

« Asolid can resist a shear stress by a static deformation; a fluid cannot.
« Any shear stress applied to a fluid, no matter how small,
will result in motion of that fluid.
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Fluid Mechanics Instances

=Life adventure
=Environment behavior
=Weather

=Daily Life

=Animals behavior

=Industries

And ...
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The Fluid as a Continuum

« fluid pressure and density 12! , = iy
s §V

Microscopic

P !

Elemental o uncertainty

volume < _ 5
Ve =\p = 1000 ke/m Macroscopic

T M p=1100 uncertainty

P > 50 )

f \é[éf/ 1200 - o N — —
T =200

\ pd

N e 0

05U =107 mm?

Region containing fluid

Dimensions and Units

Primary dimension SI unit BG unit Conversion factor
Mass (M} Kilogram (kg) Slug 1 slug = 14.5939 kg
Length (L} Meter (m) Foot (ft) 1ft=03048 m
Time (T} Second (s) Second (s) Is=1s
Temperature {6} Kelvin (K) Rankine (°R) 1K=18R

<+Equation properties: 12
h+ EV‘ = constant
:'; §=So+ Vot + 3¢

<+ Convenient Prefixes in Powers of 10 Part

«Consistent Units
*Homogeneous

Properties of the Velocity Field

<»Eulerian and Lagrangian Desciptions

plx, v, z. 1) p(t)

«»Examples:

*Experimental Probes
«Traffic Studies




Thermodynamic Properties of a Fluid

* 1. Pressure

« 2, Density

¢ 3. Temperature

« 4. Internal energy
- 5. Enthalpy

» 6. Entropy

« 7. Specific heats

« 8. Coefficient of visc'o.sity =) Transport propertics
« 9. Thermal conductivity

|:{> Most common properties

Important when work, heat, and
’ energy balances are treated
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Pressure

« Pressureis the (compression) stress at a point in a static fluid.

+ Next to velocity, the pressure p is the most dynamic variable in
fluid mechanics.

« Differences or gradients in pressure often drive a fluid flow,
especially in ducts.

 In low-speed flows, the actual magnitude of the pressure is often
not important, unless it drops so low as to cause vapor bubbles to
formin a liquid.

+ High-speed (compressible) gas flows, however, are indeed sensitive
to the magnitude of pressure.

Temperature

Temperature T'is a measure of the internal energy level of a fluid.

It may vary considerably during high-speed flow of a gas.

Although engineers often use Celsius or Fahrenheit scales for
convenience, many applications require absolute (Kelvin or
Rankine) temperature scales:

(°R = °F + 459.69 K=°C 273.16)

If temperature differences are strong, heat transfer may be
important.

Density

The density of a fluid, is its mass per unit volume.

Density is highly variable in gases and increases nearly
proportionally to the pressure level.

Density in liquids is nearly constant; (water about 1000 kg/m”"3)
increases only 1% if the pressure is increased by a factor of 220.
(most liquid flows are treated analytically as “incompressible.”)

In general, liquids are about 3 orders of magnitude more dense than
gases at atmospheric pressure.

The heaviest liquid: mercury, the lightest gas: hydrogen They differ
by a factor of 162,000!

Various physical Properties =>dimensional analysis




Specific Weight

The specific weight of a fluid, is its weight per unit volume.

The units of are weight per unit volume, in 1bf/ft"3 or N/m"3.

In standard earth gravity, the specific weights of air and water at
20°Cand 1 atm are approximately:

» air (1.205 kg/m”3)*(9.807 m/s"2) 11.8 N/m”"3 0.0752 Ibf/ft"3

= water (998 kg/m”3)*(9.807 m/s"2) 9790 N/m"3 62.4 Ibf/ft"3

Specific weight is very useful in the hydrostatic-pressure
applications.
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Specific Gravity

« Specific gravity, is the ratio of a fluid density to a
standard reference fluid, water (for liquids), and air (for

gases):
Pas Paas
SG = =
B par 1.205 kg/m®
SGnqu.d _ Pliquia _ Pliquid

Pwaer 998 kg/m®

- Engineers find these dimensionless ratios easier to
remember than the actual numerical values of density of
a variety of fluids.

Potential and Kinetic Energies

In thermostatics the only energy in a substance is that stored in a
system by molecular activity and molecular bonding forces (internal
energy)

fluid flow: 2 more energy terms which arise from newtonian
mechanics: the potential energy and kinetic energy.

The potential energy equals the work required to move the system of
mass m from the origin to a position against a gravity field g.

The kinetic energy equals the work required to change the speed of

the mass from zero to velocity V/ e=a+1V+ g

The molecular internal energy is a function of T and p for the single-
phase pure substance, whereas the potential and kinetic energies are
kinematic properties.

State Relations for Gases & Liquids

« All gases at high temperatures and low pressures (relative to their
critical point) are in good agreement with the perfect-gas law:

A Jrm2g-1
=— (LT 0
p = pRT R =c¢, —c, = gas constant & M, { J

r - gas

A = 49700 (P4  R) = 8314 m(s” - K)

+ Thereis No “perfect-liquid law” comparable to that for gases.

« Liquids are nearly incompressible and have a single reasonably
constant specific heat. Thus an idealized state relation for a liquid is:

p == consl €p = ¢y = consl dh = ¢, dT
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Viscosity Viscosity (Cont.)

Common fluids as water, oil, and air show a

¥ linear relation between applied shear and
« There are certain secondary variables which characterize specific 1 resulting strain rate: "
fluid-mechanical behavior. S
Velocity
. .. . . . . rofil
« Viscosity relates the local stresses in a moving fluid to the strain rate e (an 56 = 2080
of the fluid element. Y
Lo . . ) ) de _ du
» When a fluid is sheared, it begins to move at a strain rate inversely @ T dy
proportional to a property called its coefficient of viscosity .
e du
The linear fluids which T= =u
follow this equation called dt dy

newtonian fluids, after sir isaac
Newton, who first postulated this
resistance law in 1687.

Viscosity Coefficient:{M/(LT)}

Viscosity (Cont.) Flow Between plates
+ The viscosity of newtonian fluids is a true thermodynamic property } Moving i T
and varies with temperature and pressure. At a given state (p, T) o u=v P P m = const
there is a vast range of values among the common fluids. v :
. . . o f Vfi]sc_odus u=a+ bv
+ Generally speaking, the viscosity of a fluid increases only weakly uly) !
with pressure. Temperature, however, has a strong effect, with 0=a+ b0) ay=0
increasing with T for gases and decreasing for liquids. =V =a+ b av=n
Fixed plate -
u=0
Student Exercises: explain behavior of sample liquid and gas for "w= Vl
above description. h
. Lo 3
« The kinematic viscosity: = o
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21 22
Surface Tension
Newtonian Fluid vs. Others . S
« Ifa cut of length dL is made in an interfacial surface, equal and
Shear ) opposite forces of magnitude odL are exposed normal to the cut
stess f “”L A and parallel to the surface, where is called the coefficient of
surface tension.
Student Exercise: Find a relation to surface tension description for
Plasic Dilatant below shapes.
T e 2RLAp TR Ap ApdA
V4 Newtonian
/ : YL
/ 27RY.
;i;lsds Pseudoplastic YL " [ L
' L/
0 Shear stainrae 49—
23 24

Contact angle

« Asecond important surface effect is the contact angle which appears when
a liquid interface intersects with a solid surface.

« Ifthe contact angle is less than 90°, the liquid is said to wet the solid; if
90°, the liquid is termed nonwetting.

« e.g, water wets soap but does not wet wax. Water is extremely wetting to a
clean glass surface.

Liquid

o il

Solid

Nonwetting

Basic Flow-Analysis Techniques

+ 1. Control-volume, or integral analysis
« 2. Infinitesimal system, or differential analysis
« 3. Experimental study, or dimensional analysis

In all cases, the flow must satisfy the three basic laws of
mechanics plus a thermodynamic state relation and associated
boundary conditions:

+ 1. Conservation of mass (continuity)

» 2, Linear momentum (Newton’s second law)

« 3. First law of thermodynamics (conservation of energy)

* 4. A staterelation like p(p, T)

- 5. Appropriate boundary conditions at solid surfaces, interfaces,
inlets, and exits
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Stream, Streak and Path Lines

Uniform Periodic
approach flapping
flow plate

=

Release
point
m— Streamline
= = Pathline
-------- Streakline

(a) (b)

Pressure & Pressure Gradient

z(up)

S F,=0=pbAz—p,b Assin 6

g S F.=0=pbAx—p,bAscos § —+yb Ax Az
s Element weight:
AW =pg (b AxA2)

As sin = Az As cos 6 = Ax

o — Pe=Pn Pe=pativAz
Width b into paper
’, Pe=p:=pa=p

Equilibrium of a small wedge of fluid at rest p=—Xou+ oy +on)

26
Flows Classification Flow Patterns
. Steady or unsteady . 1..A str.'eamline is a line everywhere tangent to the velocity vector at a
L K given instant.
« Inviscid or viscous o ) o
. . < 2. A pathline is the actual path traversed by a given fluid particle.
- compressible or compressible
. . « 3.Astreakline is the locus of particles which have earlier passed through a
« Gasor thId prescribed point.
« 4. A timeline is a set of fluid particles that form a line at a given instant.
Steady Inviscid Incompressible Gas .
Unsteady Viscous Compressible Liquid
* Streamlines, pathlines,
and streaklines are /
identical in steady flow. f
__/\
@ »
28




Pressure & Pressure Gradient

Lop L0
T =42y 2
dz .
fpress = —Vp
Py d7 @ o (p+ g—fdv) dydz
dy
o .
S
N
\\
5
\ dx

ap )
dF, = p dydz — (p + é dx) dydz = 775 dx dy dz

k g—f) d dy dz
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Gage Pressure and Vacuum
.
Pressure: Relative Terms
p (Pascals)
High pre 3
120,000?— » flzpé,eosg;r;n abs = 30,000 Pa gage
30,000
Local atmosphere:
90,000 P =90.000 Pa abs = 0 Pa gage =0 Pa vacuum
40,000
0000 Vacuum pressure:
N p =50.000 Pa abs = 40,000 Pa vacuum
50,000
0 Absolute zero reference:
-l' (Tension) p=0Pa abs = 90,000 Pa vacuum
I p>pa p(gage) =p = pa
2. p<p, plvacuum) = p, — p

Hydrostatic Pressure Distributions

P _ P _ P =
ax =0 =0 0z PETTY

Atmospheric pressure:

Free surface

Depth 1

Mercury

Depth 2

Hydrostatic Pressure in Liquids

z
+b P=~P,—bVur
Air
v Free sutface: Z= 0, p = p,
= © =
l Water
g
=h P =Py + Mater




The Mercury Barometer

p =0 ™
(Mercury has a very
low vapor pressure.)

Pa— 0= —yu(0—h)

2" Py

= Pa (The mercury is in
Ym contact with the
atmosphere.)

Pa

Py

Mercury
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Application to Manometry

A change in elevation of a liquid is equivalent to a change in pressure. Thus a
static column of one or more liquids or gases can be used to measure pressure
differences between two points. Such a device is called a manometer.

Known pressure p,

Oil,
k) ald — =Py == P83 -3)
Water,
z 2 P — Py-Py=—P,8(23-2,)
Glycerin, -
| P — Py=Py==Poe(zy=23)
Mercury, p,
% M _ Ps—Py=—Pyelis=2,)
= Sun= p,—p,
Ps =P == (2= 2) = (@ — 22) — Yol — 23) — YmlZs — 24) Paown =P + 71 Az]

Application to Manometry

Open.p,

S acros.
oty B

e

wPa— i r\gﬁf P

)un

copm bk Jimpaeros | -

=z, in fluid 2 o . Jumpacrss ||

p. [.””»Jﬁ -

& )

. Jho.

Any two points at the same elevation in a

Patnlza—al —nla— 13| = P2 = P continuous mass of the same static fluid

will be at the same pressure.

Hydrostatic Forces on Plane Surfaces

Free surface p=p,
= =
= ‘ ex PN
\
. N

hx, y) e p

P =patyh

)
Resultant «“

force:
F=peA

dA = dxdy

Plan view of arbitrary plane surface bco = a ff dA

F= fp dA = f(p(, + yh) dA = pA +y fhdA F=p,A+ ysin afgdA = poA + v sin 0 €coA




Hydrostatic Forces on Plane Surfaces

F=pA+ yhcgA = (pa + Yicg)A = pccA

Fycp = [_vp dA = [y(pu + y&sin 6) dA = vy sin 6 [_vf dA

Pressure distibution

Fyep = sin a(§CG [yaa - [y dA) = — ysin 01,

I

PccA

Yep = —7ysin @

Fxcp = pr A = fﬂpu + Y(fcg — ) sin 6] dA
\ Arbitrary

= —ysinf fxy dA = —ysin 01, plane surface

Centroid of the plane sufuce
Iy
PccA

Xcp = —ysin @
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Center of press.& gage press. formula

¥ 17 A=bL ¥ A=7R?
bL? R
,;rLA, S e ‘ ,4, o
L \ R /
5 Ly=0 \_ Iy=0
4
i
b b i
2 2
@ »
I, sin 0 Iy sin 0
F = vyhccA yep =~ ——— Yep =~ —
hccA hecA

I = 0.10976R*

RN =0
4¢'r -

T

R ir

Example

A tank of oil has a right-triangular panel near the bottom. as in Fig. E2.6. Omitting p,. find the
(a) hydrostatic force and () CP on the panel.

Pa

11m

Solution

Part (a)  The triangle has propertics given in Fig. 2.13c. The centroid is one-third up (4 m) and one-third
over (2 m) from the lower left comer, as shown. The area is

46 m)(12 m) = 36 m*

The moments of inertia are

=288 m*

L e ma2my’
- - 36

36

_ b(b—29)L* _ (6 m)[6m —2(6 m](12m)* _
- 72 - 72 -

and Iy -72 m*

The depth to the centroid is icg = 5 + 4 = 9 m; thus the hydrostatic force from Eq. (2.44) is

F = pghccA = (800 kg/m?)(9.807 m/s*)(© m)(36 m?)
= 254 X 10° (kg - m)/s® = 2.54 X 10° N = 2.54 MN Ans. (a)

10
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Solution

l
Part (b)  The CP position is given by Eqs. (2.44): AAAAAAAAAAAAAAAAAAA AN AL 4}\ OOV 4‘(
yopm i€ OSSO0 | }
hcaA O m)36 m? Cur_ve?_ sunfafe A *} % : L_ K
Xep = J‘;;:;g =- (7(792:):;%—6“:‘"_3)00) = +0.011 m Ans. (b) Fy 5;@1‘;;;‘;7 ! |

The resultant force F = 2.54 MN acts through this point, which is down and to the right of the
centroid, as shown in Fig. E2.6.

Fy Fy=W + W+ Wy
@ )

The horizontal component of force on a curved surface equals the force on the plane area formed
by the projection of the curved surface onto a vertical plane normal to the component. The vertical
component of pressure force on a curved surface equals in magnitude and direction the weight of
the entire column of fluid, both liquid and atmosphere,

above the curved surface.

i3 e

Buoyancy

AAAAAAANAA AL AAAAAAAAA ALY

Buoyancy and Stability

7 Horizontal
elemental
area dAy

- Two laws of buoyancy discovered by Archimedes
in the third century B.C.:

Surface
1

"

Surface
2

Fp Py
Fp=Fy(2) — Fy(1)
= (fluid weight above 2) — (fluid weight above 1)
= weight of fluid equivalent to body volume
Fp=

fwy (2~ p1y dAp = —v [ 22 — 21) dAy = (y)(body volume)

11



Floati

ng Body

Neglect the displaced air up here.

,,,,, AAAAANAAANAA N

(Displaced volume) x (Y of fluid) = body weight

Fp = (y)(displaced volume) = floating-body weight
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Stability

. Small Small
Line of disturbance
symmetry angle

Either  Restoring moment or  Overturning moment
@ 0] ©

X Vabode =
c

Oldea Obd cOa O

Variable-width
L(x) into paper
dA = xtan § dx

Original
waterline
area

Tilted floating body
[xav+ [xav = [xav=0+ [x@as) - [x @ an)
J I J

cOa

0+ [)c L (xtan 6 dx) — [XL (—x tan @ dx) = tan 6 fxz dAyaerine = Io tan 6
Obd cOa watérline

Stability formula

Yool _ lo

Vsubmerged - Vsub

-GB

If the metacentric height MG is positive, the body is stable for small disturbances. Note that if
GBiis negative, that is, B is above G, the body is always stable.

A barge has a uniform rectangular cross section of width 2L and vertical draft of height H, as

in Fig. E2.10. Determine () the metacentric height for a small tilt angle and (b) the range of

ratio L/H for which the barge is statically stable if G is exactly at the waterline as shown.

Solution

If the barge has length b into the paper, the waterline arca, relative to tilt axis O, has a base b
and a height 2L; therefore, Io = b(2L)*/12. Meanwhile, Uy, = 2LbH. Equation (2.52) predicts

VG do _gp_SLM2 _H_ L' H
MG = . GB="30m 330 2 Ans. (a)
The barge can thus be stable only if
L*>3H72  or  2L>245H Ans. (b)

The wider the barge relative to its draft, the more stable it is. Lowering G would help also.

12



Pressure Distribution in Rigid-Body Motion
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Pressure Distribution in Rigid-Body Motion

+ Inrigid-body motion, all particles are in combined translation and
rotation, and there is no relative motion between particles. With no L%,
relative motion, there are no strains, strain rates, so leaving a " la, Fuid
. . . — —1 23 L
balance between pressure, gravity, and particle acceleration o=t | o atrest
2 an-
Vp=pg-a) g=tan! o=
+ The pressure gradient acts in the direction g -a, and lines of constant —
pressure (including the free surface, if any) are perpendicular to this s \\ P
direction. P
« The general case of combined translation and rotation of a rigid
body is: V=Vo+Qxr,
- Differentiating, we obtain the most general form of the acceleration Z—i =pG  where G=[al+ (g + a)*'?
ofarigidbody:  _avo @ x 1o+
dar dar
Rigid-Body Rotation Rigid-Body Rotation
.k
. ; . holding z constant, with respect to r. The result is .
the angular-velocity and position vectors are given by iy
A p=tor ¢ fi) rep,
Q=kQ ro=ir ijg
Then the acceleration is given by I a=-rQ%, 1
Q X (X o) = —rQ%, ! l Still-water
Pp _ - | | level
e 0+f@)=~-vy \ \
b 1 __
J g
i 2% fl=-y+C 0 y
Vp =i, 5E 4 kT = ol — ) = p(—gk + 1Y) Axisof‘ P2 oo
tati \
Equating like components, we find the pressure field by solving two first-order partial rolten | 2
differential equations ‘ 3
ap _ o2 ap _ ' \
T PP o - This is the pressure distribution in the fluid. The value of C is found by specifying the
pressure at one point. If p = pg at (r, ) = (0., 0), then C = po. The final desired dis-
tribution is o
p = const — yz + $pr’()? p=po— .+’ L}/“ + r,ig =a+br

13
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Rigid-Body Rotation

Integral Relations for a Control Volume

« Three basic approaches to the analysis of
arbitrary flow problems:

« System: an arbitrary quantity of mass of fixed
identity. Everything external to this system is

Since the volume of a paraboloid is one-half the base area times its height, the still-water denoted by the term surroundings and the

level is exactly halfway between the high and low points of the free surface.

system is separated from its surroundings by its
boundaries.

Volume and Mass Rate of Flow Volume and Mass Rate of Flow

dV = VdtdAcos = (V-n)dAdt

conservation of mass: Newton’s second law M= aH The integral of d77dt is the total volume rate of flow Q through the surface S
dr
Msyst = const v - f ;. - f m:f (V- m) dA = f v, dA
Foma=m® =L V) H=3(x V) smis the angular momentum Q=] (V-mdi=]|V,da 3P L Prn
dm _ dr dr Control Control
dt Unit normal n surface surface 7 = pQ

Control
surface

— AN
-
s ()
/ A Fixed, moving, and deformable control volumes: (a) fixed control volume for nozzle-stress analysis; (b)
\4/ Vdr ™~

control volume moving at ship speed for drag-force analysis; (¢) control volume deforming within cylinder for
5 transient pressure-variation analysis.
(@) (b)

14



System at
time f + dt

System at
time 1

n, Unit outward
normal to dA

Fixed
control
volume

cv

dB

Bev=[ poav  p=IT

Arbitrary

n, Unit outward fixed
normal to dA control
surface

iy =Vig dAip 038 di o = Vour d Aoy 08 B
=_VendAd: =VendAds
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Reynolds Transport Theorem.

d =L _L
< (Bov) == Boy(t +dn) = = Bey()

=L _ - Ml — -1
= [Bo(t +dt) = (Bp dV)ou, + (Bpd ¥ )ia] p [B2(1)]

1
=u [Bo(t + dt) = By(D)] = (BpAV)ou + (BpAV)in

d _d N on .
By =5 (Lv Bod ) + [ 8oV cos 0. - LS BpV cos 0 dAy,

BV, iy = || By~ | By = [ foy-m)da

I
Flux terms = Ls BpV, dAgy — fcs

The compact form of the Reynolds transport theorem is thus

d (Buyw) = d

[ B
4 Ky ) + Vo) da
dr i ey PPV | ¥ )y BV 6

One-Dimensional Flux-Term Approximations

Section 2:
uniform V, . A

| | Allsections i:
| | V,;approximately

$ cv | normal to area A;
|

L BoVe m = S BoVAdw — BV, A %
o f——"\

Conservation of Mass

dm d [ ;
a7 =0== r V.- —dT+ (V-n)dA =0
( dr )tysl 0= ([cv pav ) * fcs p(Ve ) da ’[3" ar ’[CS i

EXAMPLE  Consider the constant-density velocity field

Yox v=0 w=——=

u=

(Vom)y = G+ kw) - k=l = —VL"

A o
0= (Vemaa=[ (Vo dx=—vobL
: o

=0

(Vom)y = (i + kw) - (=) = —uly = -2 ;N

Depth b into paper

= (i ) ——(i—K) = ——= (4 —w
(V- n), = (iu + kw) \/E(l k) \/E(M W)

L[Voi,( Z)]X,::\/ELVM o szvca

L \V/2Vex

sz»[ (v ~n)dA:L - (V2b dx) = VobL 01+ 0+ Qs = —VobL + VgbL + 0 = 0

15



The Linear Momentum Equation

7(m\r)sysl:Zsz(fcv\rpm)+fcswp(\',-mdA Sr=S([ vear)+ {‘s\mz ) dA

“«\

d
dr dr
Net Pressure Force on a Closed Control Surface

F, - (—n) dA
e[

1
|
Va = Vi — Roi i
)= - |
. ' 2= Vol — Roi I
|
> Mo == Tok = (r2 X Vaitgw = (11 X V)it M |

1 ov
here, from continuity, 1oy = riti, = pQ. The cross products with reference to point O are Hy / Retd

etarding
2 1

2 X V= Rj % (Vo = Rwji = (R*0 — RVpk 1 torque 7o

2 2=Rj x (Vo — Rwji = (R0 o)l ! /

T XV, =0jx Vk=0 |

of 1 x

r /
—Pa J" dA = 0: (b) nonuniform [Equation (1) thus becomes IND%
N PR ~Tok = pO(R*w — RVo)k
pressure, F = J(p Do) dA. e v Tnlet velocity
Vo _ _To Vo=-2 k
@ 0) =2 -—2 Ans. o= —
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The Angular-Momentum Theorem

HO:f (r X V)dm p:@:rxv
Jsyst Im
dHy d . N I dHg
Zol =2 X Vip d¥ |+ X V)p(V,-mydA =2=>My= X F
dr et Uc\ (Ve ] fcs % V)p(V, - m) =2 Mo=3 (rxFo
alr . o [ . . EXAMPLE
> My = —(,/7‘ |, X Vip ‘+ |, (r % Vp(V - m) dA ® At

Solution T

e Vy= Vi - Ref
7

P
The Energy Equation

pedsn=c 92 OV _dE_d(

= av) + Von)dA
ar  ar o ar [over ) fcs(‘p( "

Jev

€ = €internal + €kinetic T €potential T Eother e=0+1+ %
W= Wonate + Woress + Wiscons suesses = We + W, + W,
AW, = —(p dA)V,;, = —p(=V - ) dA

The total pressure work is the integral over the control surface

v'v,,:f p(V - n) dA
‘cs
W:Wﬁf PV -m)dA — [ (1 + V)ss dA
‘cs J‘cs

P v
)p(V - m) dA

L . ) ; 2
¢~ = Wss =g ([ epav)+ [ e+t

. . E
) — W, — W, =—
E ’ vooat

(a++v2+ g?\p(iT“F [ (A+4v2+ gz) p(v - m) da
e | J o |42 J ‘

Friction Losses in

+ Bpsiciion — Npump + Prarbine
Low-Speed Flow t

16



