

	Mineral processing and hardness								
depe	All deposits of minerals, rock or ores have different hardness depending on the chemical composition and the geological environment.								
Mo	Mohs numbers are a simple classification:								
4. 5. 6. 7. 8. 9.	Talc Gypsum Calcite Fluorite Apatite Feldspar Quartz Topaz Corundum Diamond	Crushed by a finger nail Scratched by a finger nail Scratched by an iron nail Easily scratched by a knife Scratched by a knife Hardly scratched by a knife Scratches glass Scratched by quartz Scratched by a diamond Cannot be scratched	Graphite, Sulphur, Mica, Gold Dolomite Magnesite Magnetite Granite, Pyrite Basalt Beryl						
In 1813	an Austrian geo	logist, Mr. Mohs, classified minerals	according to their individual hardness.						

	Mineral J	processing and hardness				
4	Friedrich Mohs	The Mohs scale of mineral hardness (/mouz/) is a <u>qualitative</u> ordinal scale characterizing scratce resistance of various <u>minerals</u> through the ability of harder material to scratch softer material. Created is 1812 by German <u>geologist</u> and <u>mineralogist Friedrice</u> <u>Mohs</u> , it is one of several definition of <u>hardness</u> in <u>materials science</u> , some of which ar more quantitative.				
Friedrich Mohs, 1832		Härteskala nach Mohs Scale of Hardness - Échelle de Dureté				
Born	29 January 1773 Gernrode, Holy Roman Empire	1. Talk, <i>Talc</i> 6. Feldspat, <i>Feldspar</i> 2. Gips, <i>Gypsum</i> 7. Quarz, <i>Quartz</i>				
Died	29 September 1839 (aged 66)	3. Kalkspat, Calcite 8. Topas, Topaz				
Alma mater	University of Halle	4. Flußspat, <i>Fluorite</i> 9. Korund, <i>Corundum</i> 5. Apatit, <i>Apatite</i> 10. Diamant, <i>Diamond</i>				
Known for	Mohs scale of mineral hardness Scientific career					
Fields	geology, mineralogy					

Operation stages					
Front service:	Starting point of mineral processing				
Size reduction & control:	Processes to produce requested size distributions from feed material				
Enrichment:	Processes to improve value of minerals by washing and/or separation				
Upgrading:	Processes to produce requested end products from value and waste minerals.				
Materials handling:	Operations for moving the processes forward with a minimum of flow disturbances				
Protection:	Measures to protect the process environment above from wear and emissions of dust and sound				

Impact Work Inde	x W _i k	Wh.	/sh.ton	Abrasion index =	A _i		
Material	Wi value			Material	Ai value		
Basalt	20	±	4	Basalt	0,200	±	0,20
Diabase	19	±	4	Diabase	0,300	±	0,10
Dolomite	12	±	3	Dolomite	0,010	±	0,05
Iron-ore, Hematite	13	±	8	Iron-ore, Hematite	0,500	±	0,30
Iron-ore, Magnetite	12	±	8	Iron-ore, Magnetite	0,200	±	0,10
Gabbro	20	±	3	Gabbro	0,400	±	0,10
Gneiss	16	±	4	Gneiss	0,500	±	0,10
Granite	16	±	6	Granite	0,550	±	0,10
Greywacke	18	±	3	Greywacke	0,300	±	0,10
Limestone	12	±	3	Limestone	0,001	-	0,03
Quartzite	16	±	3	Quartzite	0,750	±	0,10
Porphyry	18	±	3	Porphyry	0,100	-	0,90
Sandstone	10	±	3	Sandstone	0,600	±	0,20
Syenite	19	±	4	Syenite	0,400	±	0,10
INFLUENC	ING			INFLU	ENCING	5	

Primary crusher – Type □ For soft feed and non-abarasive feed (low Bond work index) a Horizontal Shaft Impactor (HSI) is an option if the capacity is not too high. • For harder feed there is a choice between a gyratory or a jaw crusher, see below. □ Note: HSI can be used only if the <u>abrasion index is lower</u> and <u>the</u> plant does not mind fines production. Otherwise, a jaw crusher is preferred for lower capacity aggregate plants. **Rule 1:** Always use a jaw crusher if you can, jaws are the least capital cost. **Rule 2:** For low capacity use jaw crusher and hydraulic hammer for oversize. **Rule 3:** For high capacities (800-1500 tph) use jaw crusher with big intake opening. **Rule 4:** For very high capacities (1200+ tph) use gyratory crusher.

Gyratory crusher – SUPERIOR® MK-II Primary						
	Туре	H mm (inch)	W mm (inch)	Weight mt (U.S. t)	Max. power kW (Hp)	
	Туре МК-II 42-65	H mm (inch) 4807 (189.3)	W mm (inch) 3937 (155.0)			
				mt (U.S. t)	kW (Hp)	
	MK-II 42-65	4807 (189.3)	3937 (155.0)	mt (U.S. t) 120 (132)	kW (Hp) 375 (500)	
	MK-II 42-65 MK-II 50-65	4807 (189.3) 5513 (217.0)	3937 (155.0) 4458 (175.5)	mt (U.S. t) 120 (132) 153 (168)	kW (Hp) 375 (500) 375 (500)	
	MK-II 42-65 MK-II 50-65 MK-II 54-75	4807 (189.3) 5513 (217.0) 5957 (234.5)	3937 (155.0) 4458 (175.5) 4928 (194.0)	mt (U.S. t) 120 (132) 153 (168) 242 (266)	kW (Hp) 375 (500) 375 (500) 450 (600)	

High Pressure Grinding Rolls (HPGRs) - HRC™

HPGRs utilize two counter-rotating tires – one fixed and

one floating - in order to effectively crush ore.

Hydraulic cylinders apply very high pressure to the

system, causing inter-particle comminution as the feed

travels between the two tires.

□ The basic operating principle behind HPGRs makes

them very energy efficient.

High Pressure Grinding Rolls (HPGRs) - HRC[™]
The feed is introduced to the crushing zone, where high pressure is applied to the bed of material in a highly controlled manner.
Dry
Size reduction through compression, controlled application of pressure – energy efficient
Open or closed circuit
Flexible operating parameters (speed and pressure)
No use of grinding media
Short retention time
Feed size restricted by operating gap, minus 90 mm depending on unit size
Low noise level

➢ Low operating cost

High Pressure Grinding Rolls (HPGRs) - HRC™						
		▲ _L-	→			
Model	Tire dimensions mm	America Max. motor power kW	Max. motor power HP	H mm (inch)	L mm (inch)	W mm (inch)
Model HRC™1200	dimensions	power	power	10 5476	L mm (inch) 1610 (639)	10.00 A 40.000
A111785038	dimensions mm	power kW	power HP	mm (inch)	S MANY IND POOL WAT AT	mm (inch)
HRC™1200	dimensions mm 1200 x 750	power kW 2 x 440 kW	power HP 2 x 590 HP	mm (inch) 2200 (87)	1610 (639)	mm (inch) 4400 (173)
HRC™1200 HRC™1450	dimensions mm 1200 x 750 1450 x 900	power kW 2 x 440 kW 2 x 650 kW	power HP 2 x 590 HP 2 x 872 HP	mm (inch) 2200 (87) 3556 (140)	1610 (639) 2050 (81)	mm (inch) 4400 (173) 5196 (205)
HRC [™] 1200 HRC [™] 1450 HRC [™] 1700	dimensions mm 1200 x 750 1450 x 900 1700 x 1000	power kW 2 x 440 kW 2 x 650 kW 2 x 900 kW	power HP 2 x 590 HP 2 x 872 HP 2 x 1207 HP	mm (inch) 2200 (87) 3556 (140) 3730 (147)	1610 (639) 2050 (81) 3690 (145)	mm (inch) 4400 (173) 5196 (205) 6240 (246)
HRC [™] 1200 HRC [™] 1450 HRC [™] 1700 HRC [™] 2000	dimensions mm 1200 x 750 1450 x 900 1700 x 1000 2000 x 1650	power kW 2 x 440 kW 2 x 650 kW 2 x 900 kW 2 x 2300 kW	power HP 2 x 590 HP 2 x 872 HP 2 x 1207 HP 2 x 3084 HP	mm (inch) 2200 (87) 3556 (140) 3730 (147) 5309 (209)	1610 (639) 2050 (81) 3690 (145) 6079 (239)	mm (inch) 4400 (173) 5196 (205) 6240 (246) 9512 (375)

Grinding – Introduction

- Size reduction by crushing has a size limitation for the final products. If we require further reduction, say below 5-20 mm, we have to use the processes of grinding.
- □ Grinding is a powdering or pulverizing process using the rock mechanical forces of impaction, compression, shearing and attrition.
- □ The two main purposes for a grinding process are:
- To liberate individual minerals trapped in rock crystals (ores) and thereby open up for a subsequent enrichment in the form of separation.
- 2. To produce fines (or filler) from mineral fractions by increasing the specific surface.

Grinding mills - Reduction ratios

- All crushers including impactors have limited reduction ratios.
 Due to the design there is a restriction in retention time for the material passing.
- In grinding as it takes place in more "open" space, <u>the retention</u> <u>time is longer and can easily be adjusted during operation</u>.
- Below the theoretical size reduction and power ranges for different grinding mills are shown. In practice also size reduction by grinding is done in optimized stages.

Typical duties: 3. Autogenous + Ball mill + Crusher

This is also called "<u>ABC-circuit</u>" and has a ball mill added in comparison with the above circuit No 2. This can be used to correct a too coarse product from the primary mill, and in this way be more useful and common. Mostly operated wet, but also dry possible.

Typical duties: 10. Reversed closed circuit

Scalped or fresh feed directly into the mill

- If it is desirable to use cyclones, <u>the next decision is where in the</u> <u>process the cyclones should be</u> – either closed circuit or reversed closed circuit.
- Typical closed circuit has the feed to the Vertimill circuit <u>coming</u> <u>directly to the mill. This means that every particle regardless of</u> <u>size will enter the mill and may be ground</u>.
- □ <u>For reverse close circuit</u>, the feed to the Vertimill circuit is <u>introduced at the cyclone sump</u>.

Typical duties: 10. Reversed closed circuit

- □ The material feeding the circuit that is already at product size will have a chance to bypass the Vertimill all together, and the grinding energy will only be spent on the coarse material.
- □ <u>This</u> can reduce the size (and capital cost) of the Vertimill <u>installation</u>.
- Mineralogically, there may be some benefit to direct feed in that flotation recovery may improve if all the particles surfaces, regardless of the particle size, are polished or refreshed.
- □ <u>The reversed arrangement</u> will <u>minimize fines generation</u>, which may also **improve recovery**.
- □ To best make a mineralogical decision, you need to have a good understand on <u>where the losses are in the flotation circuit</u>.

Typical duties: 11. Direct feed

Circuit Configuration

In addition to cyclones or other external classification, <u>there are</u> four ways to configure a Vertimill circuit:

- Top feed with recycle system
- Top feed without recycle system
- Bottom feed with recycle system
- Bottom feed without recycle system

Bottom feed advantages

- All Particles must pass through the media, every particle surface is refreshed
- Provides additional upward classifying flow
- Can help free (v.) locked or frozen charge at start up
- Potentially more efficient because of lack of short circuiting
- need no return valves or a tall tank

Typical duties: 11. Direct feed

Bottom feed disadvantages

- Cannot be bottom fed via gravity and requires a feed pump
- Back flow
- Fine particles must pass through the media potential for over grinding
- Piping must loop above ball charge height so ball to not get to the pump
- Requires variable speed pumps
- Tank requires flow split and level control
- Minimum inlet pressure requirement to prevent plugging

Top feed advantages

- Does not require a feed pump; can be feed directly from cyclones
- No inlet pressure requirement

Typical duties: 13. Open circuit, scalped feed

- If the losses in the flotation circuit are in the coarse, un-liberated material and fines generation needs to be minimized, then the SMD will be more efficient at increasing the recovery by grinding just the coarse material.
- Scalping cyclones can be used ahead of the mill to scalp the fines and send them straight to the next process, and the cyclone underflow feeds the SMD, and is then recombined with the cyclone overflow for the next process.
- As previously stated, <u>the SMD is best operated between 40-50%</u> <u>solids</u>, and a scalping cyclone also provides a nice solution to thicken the feed to the mill.
 Scalping = جداکننده

Typical duties: 14. Closed circuit

The SMD can also be operated in closed circuit. <u>This arrangement</u> provides all the advantages of the Open Circuit, Scalped feed configuration, but also provides a method to control the particle size other than feed rate and mill power.
Other than = jack

- The SMD operates quite well in an open circuit configurations, and only a handful are operated in closed circuit.
- □ <u>For ultrafine grinding</u>, operating in closed circuit is difficult because <u>the small diameter cyclone can easily plug</u>.
- Closed circuit configuration is primarily used in coarser grinding applications and when the specific energy is low - the average residence time of the particle is short.

Metso Mining and Construction

Brand names in rock and minerals processing

Allis Chalmers (AC) Allis Minerals System Altairac Armstrong Holland Barmac Bergeaud **Boliden Allis** Cable Belt Conrad Scholtz Denver Dominion FACO GFA Hardinge Hewitt Robins Kennedy Van Saun KVS Kue-ken Seco Koppers Lennings Lokomo Marcy Masterscreens McDowell Wellman

McNally Wellman Neims NICO Nokia Nolan Nordberg MPSI Orion PECO Pyrotherm Read REDLER Sala Scamp Skega Stansteel Stephens – Adamson Strachan & Henshaw Svedala Thomas Tidco Trellex Tyler

	stant a	nd must be u	sed accordingly
values are not con	stant a	ind must be u	
Solids	10	Solids	
[kWh/sh.ton]	Wi	[kWh/sh.ton]	Wi
Andesite	18.25	Magnetite	9.97
Barite	4.73	Taconite	14.61
Basalt	17.10	Lead ore	11.90
Bauxite	8.78	Lead-zinc ore	10.93
Cement clinker	13.45	Limestone	12.74
Cement raw material	10.51	Manganese ore	12.20
Clay	6.30	Magnesite	11.13
Coal	13.00	Molybdenum	12.80
Coke	15.13	Nickel ore	13.65
Copper ore	12.72	Oil shale	15.84
Diorite	20.90	Phosphate rock	9.92
Dolomite	11.27	Potash ore	8.05
Emery	56.70	Pyrite ore	8.93
Feldspar	10.80	Pyrrhotite ore	9.57
Ferro-chrome	7.64	Quartzite	9.58
Ferro-manganese	8.30	Quartz	13.57
Ferro-silicon	10.01	Rutile ore	12.68
Flint	26.16	Shale	15.87
Fluorspar	8.91	Silica sand	14.10
Gabbro	18.45	Silicon carbide	25.87
Glass	12.31	Slag	10.24
Gneiss	20.13	Slate	14.30
Gold ore	14.93	Sodium silicate	13.40
Granite	15.13	Spodumene ore	10.37
Graphite	43.56	Syenite	13.13
Gravel	16.06	Tin ore	10.90
Gypsum rock	6.73	Titanium ore	12.33
Hematite	12.84	Trap rock	19.32
	0707.000	Zinc ore	11.56

VERTIMILL[®] - More than a grinding mill

The VERTIMILL® grinding mill is considered to be an "intelligent" grinding concept giving an energy saving and controlled process of size reduction for comparison with tumbling mills.

flue-gas: گاز دودکش، گاز سوخته، گاز مجرای کوره

Vertimill [®]	as lime slaker
□ The Vertimill [®] is an excellen	t lime slaker producing an optimal
product in a simple one-step o	peration.
Typical operation conditions:	
Material	Pebble lime with approximately 5 % grit
Feed size	minus 25mm (1")
Product size	80% passing 75 microns to 90-95% passing 45 microns
Percent solids (product)	20-26%
Temperature inside mill (product)	50-82 °C (130-180°F)
شکفتن، هیدراته کردن :/slake /sleɪk آهک هیدراته، آهک شکفته : Slaked lime	سنگریزه، شن، ریگ، ماسهسنگ :grit

	Vertin	nill [®] as lime	slaker	
	in a c			
cities vs mill s Mtph CaO	Stph CaO	Mill unit	Motor kW	Motorhp
1.4	1.5	VTM-10-LS	7.5	10
2.7	3.0	VTM-20-LS	14.9	20
3.7	4.1	VTM-30-LS	22.4	30
5.3	5.8	VTM-50-LS	37.3	50
6.6	7.3	VTM-100-LS	44.7	60
12.0	13.2	VTM-150-LS	74.6	100
13.9	15.3	VTM-200-LS	111.9	150
18.7	20.6	VTM-300-LS	149.1	200
10.7		Market All the second second	223.7	300

	AG ar	n <mark>d SAG</mark> n	nills	
Standard Mill size (m)	EGL (m)	Geared/Gearless	Std %TCS	Motor hp/kW (Typical)
12'x 5'(3,7 x 1,5)	4' (1,2)	Geared	75	150-250/110-185
14' x 6' (4,2 x 1,8)	5'(1,5)	Geared	75	300-500/220-370
16' x 7' (4,8 x 2,1)	6' (1,8)	Geared	75	550-850/400-630
18' x 8' (5,5 x 2,4)	6.75'(2,0)	Geared	75	900-1300/670-970
20' x 8' (6,0 x 2,4)	6.75'(2,0)	Geared	75	1000-1750/745-1300
21'x 10'(6,4 x 3,0)	8.75' (2,7)	Geared	75	1600-2500/1200-1860
22' x 10' (6,7 x 3,0)	8.75'(2,7)	Geared	75	2000-3000/1490-2240
24' x 10' (7,3 x 3,0)	8.75'(2,7)	Geared	75	2500-3500/1860-2610
26' x 10' (7,9 x 3,0)	8.75'(2,7)	Geared	75	3000-4500/2240-3350
28' x 10' (8,5 x 3,0)	8.5' (2,6)	Geared	75	3500-5500/2610-4100
28' x 14' (8,5 x 4,3)	12.5' (3,8)	Geared	75	5000-8000/3730-5960
30' x 12' (9,1 x 3,7)	10.5'(3,2)	Geared	75	5000-8000/3730-5960
32' x 14' (9,8 x 4,3)	12.5'(3,8)	Geared	75	7-11000/5-8200
32' x 16' (9,8 x 4,8)	14.5' (4,4)	Geared	75	8-12000/6-8950
34' x 15' (10,3 x 4,6)	13.25' (4,0)	Geared	75	8-13000/6-9700
34' x 17' (10,3 x 5,2)	15.25' (4,6)	Geared	75	10-15000/7-11190
34' x 19' (10,3 x 5,8)	17.25' (5,3)	Geared	75	11-17000/8-12680
36' x 15' (11,0 x 4,6)	13.25' (4,0)	Geared/Gearless	Variable	10-16000/7-11930
36' x 17' (11,0 x 5,2)	15.25' (4,6)	Geared/Gearless	Variable	11-18000/8-13420
36' x 19' (11,0 x 5,8)	17.25' (5,3)	Geared/Gearless	Variable	12-20000/9-14900
38' x 20' (11,6 x 6,0)	18' (5,5)	Geared/Gearless	Variable	15-24000/11-17800
40' x 22' (12,0 x 6,7)	19.5'-20' (5,9-6,1)	Gearless	Variable	19-30000/14-22370
42' x 25' (12,8 x 7,6)	22.5' (6,8)	Gearless	Variable	23-36000/17-26850

Standard Mill size (m)	Geared/Gearless	Std %TCS	Approx hp/kW	Motor hp/kW
9'x 12'(2,7x3,7)	Geared	76	388/290	450/335
9' x 14' (2,7x4,2)	Geared	76	455/340	500/373
9.5' x 15' (2,9x4,6)	Geared	76	564/420	600/447
10'x 15'(3,0x4,6)	Geared	76	596/445	700/522
10.5'x 15' (3,2x4,6)	Geared	76	734/547	800/597
10.5' x 17' (3,2x5,2)	Geared	76	836/623	900/671
11'x 17'(3,3x5,2)	Geared	76	944/704	1000/746
11.5' x 18' (3,5x5,5)	Geared	76	1125/839	1250/932
13'x 17'(3,9x5,2)	Geared	76	1460/1089	1500/1119
13'x 19'(3,9x5,8)	Geared	76	1637/1220	1750/1305
14'x 18'(4,2x5,5)	Geared	76	1877/1400	2000/1491
14' x 20' (4,2x6,0)	Geared	76	2091/1559	2250/1677
15'x 19'(4,6x5,8)	Geared	76	2372/1769	2500/1864
15.5'x 21'(4,7x6,4)	Geared	76	2861/2133	3000/2237
16.5'x 21'(5,0x6,4)	Geared	76	3362/2507	3000/2237
16.5' x 24' (5,0x7,3)	Geared	76	3854/2873	4000/2983
16.5' x 27' (5,0x8,2)	Geared	76	4346/3240	4500/3356
16.5'x 30'(5,0x9,1)	Geared	76	4838/3608	5000/3728
16.5'x 33'(5,0x10,0)	Geared	76	5330/3975	5500/4101
18'x 29' (5,5x8,8)	Geared	76	5847/4360	6000/4474
18'x 31.5'(5,5x9,6)	Geared	76	6360/4743	6000/4474
18'x 33.5' (5,5x10,2)	Geared	76	6771/5049	7000/5220

Standard Mill size (m)	Geared/Gearless	Std %TCS	Approx hp/kW	Motor hp/kW
20' x 31.5' (6x9,6)	Geared	76	8336/6212	8000/5966
20' x 33.5' (6x10,2)	Geared	76	8874/6617	9000/6711
21'x 31.5' (6,4x9,6)	Geared	76	9446/7044	10000/7457
21'x 33.5'(6,4x10,2)	Geared	76	10361/7726	11000/8203
22' x 36.5' (6,7x11,1)	Geared	76	12357/9215	13000/9694
22'x 40.5' (6,7x12,3)	Geared	76	13370/9970	14500/10813
24'x 36'(7,3x11)	Geared	76	15220/11350	16000/11931
24' x 40' (7,3x12,3)	Geared	76	16935/12628	17800/13273
26' x 38' (7,9x11,6)	Geared/Gearless	76	19720/14705	20700/15436
26'x 40'(7,9x12,3)	Geared/Gearless	76	20771/15489	21800/16256
26' x 42' (7,9x12,8)	Geared/Gearless	76	21823/16273	23000/17151
26' x 44' (7,9x13,4)	Geared/Gearless	76	22875/17058	24000/17897
27'x 45'(8,2x13,7)	Gearless	76	25763/19211	27000/20134
28'x 46' (8,5x14)	Gearless	76	28898/21549	30000/22371
29'x 47' (8,8x14,3)	Gearless	76	32291/24079	34000/25354
30' x 46' (9,1x14)	Gearless	76	34442/25683	36000/26845

Mill size m (ft)	н	Ĺ	W	Power motor
DxL	mm (inch)	mm (inch)	mm (inch)	kW/HP
2.4x3.6 (8x11.8)	4350 (171)	5043 (199)	4650 (183)	232/311
2.4x4.2 (8x13.8)	4350 (171)	5643 (222)	4650 (183)	269/361
2.4x4.8 (8x15.7)	4350 (171)	6243 (246)	4650 (183)	306/410
2.8x4.2 (9x13.8)	4800 (189)	5874 (231)	5700 (225)	410/550
2.8x4.9 (9x16)	4800 (189)	6574 (259)	5700 (225)	474/636
2.8x5.6 (9x18.4)	4800 (189)	7274 (286)	5700 (225)	539/723
3.2x4.8 (10.5x15.7)	5200 (205)	6705 (264)	6790 (267)	643/863
3.2x5.6 (10.5x18.4)	5200 (205)	7505 (296)	6790 (267)	745/1000
3.2x6.4 (10.5x21)	5200 (205)	8317 (327)	6790 (267)	846/1135
3.6x5.4 (11.8x17.7)	5600 (221)	7548 (297)	7140 (281)	990/1327
3.6x6.3 (11.8x20.7)	5600 (221)	8448 (333)	7140 (281)	1145/1535
3.6x7.2 (11.8x23.6)	5600 (221)	9394 (370)	7140 (281)	1300/1743
4.0x6.0 (13x19.7)	7900 (311)	8425 (332)	9000 (355)	1452/1947
4.0x7.0 (13x23)	7900 (311)	9938 (391)	9000 (355)	1679/2251
4.0x8.0 (13x26)	7900 (311)	10425 (410)	9000 (355)	1905/2555
4.4x6.6 (14.4x21.7)	8000 (315)	9256 (364)	9500 (374)	2054/2754
4.4x7.2 (14.4x23.6)	8000 (315)	9856 (388)	9500 (374)	2229/2989
4.4x7.7 (14.4x25.3)	8000 (315)	10356 (408)	9500 (374)	2374/3184
4.4x8.2 (14.4x27)	8000 (315)	10856 (427)	5 700 (224)	2519/3379

Conical ball mill							
Mill size m (ft)	H)	L	W	Power motor			
DxL	mm (inch	mm (inch	mm (inch	kW/Hp			
2.4x0.9 (8x3)	3 350 (132)	3 430 (135)	3 200 (126)	112/150			
2.4x1.2 (8x4)	3 350 (132)	3 730 (147)	3 200 (126)	130/175			
2.4x1.5 (8x5)	3 350 (132)	4 040 (159)	3 200 (126)	150/200			
2.4x1.8 (8x6)	3 350 (132)	4 340 (171)	3 200 (126)	186/250			
2.7x1.5 (9x5)	3 960 (156)	4 270 (168)	3 660 (144)	224/300			
3.0x1.2 (10x4)	4 360 (168)	3 <mark>810 (15</mark> 0)	3 660 (144)	260/350			
3.0x 1.7 (10x5.5)	4 360 (168)	4 110 (162)	3 860 (152)	300/400			
3.0x1.8 (10x6)	4 360 (<mark>1</mark> 68)	4 420 (174)	3 860 (152)	336/450			
3.0x2.1 (10x7)	4 360 (168)	4 720 (186)	3 860 (152)	373/500			

SRR Ball mill Mill size m (ft) DxL	H mm (inch)	L mm (inch)	W mm (inch)	Power motor kW/Hp	Weight (empty) ton
0.6x0.9 (2x3)	1 110 (44)	1 830 (72)	1 220 (48)	2.2/3	0.9
1.0x1.5 (3.3x5)	1 635 (64)	2 700 (106)	1 850 (73)	11/15	2.4
1.2x2.4 (4x8)	1 970 (78)	3 670 (144)	2 740 (108)	30/40	5.6
1.5x3.0 (3.3x6.6)	2 255 (89)	4 550 (179)	3 150 (124)	75/100	9.2
1.8x3.6 (6x12)	2 660 (105)	5 560 (219)	3 500 (138)	132/177	12.8
2.1x3.6 (7x12)	3 150 (124)	5 830 (230)	4 400 (173)	132+75/	22.0
				177+100 *	
SRR Rod mill Mill size m (ft) DxL	H mm (inch)	L mm (inch	W mm (inch		Weight (empty) ton
0.6x0.9 (2x3)	1 110 (44)	1 830 (72)	1 220 (48)	2.2/3	1.0
1.0x1.5 (3.3x5)	1 635 (64)	2 700 (106)	1 850 (73)	11/15	3.0
1.2x2.4 (4x8)	1 970 (78)	3 670 (144)	2 740 (108)	30/40	6.2
1.5x3.0 (3.3x6.6)	2 255 (89)	4 550 (179)	3 150 (124)	75/100	10.0
1.8x3.6 (6x12)	2 790 (110)	5 600 (220)	3 900 (154)	55+55/	14.5

		VERT	IMILL®		
Model	H mm (inch)	L mm (inch)	W mm (inch)	Power motor kW/Hp	Weight (empty ton
VTM-15-WB	7 060 (278)	1 520 (60)	1 320 (52)	11/15	5.5
VTM-20-WB	7 180 (283)	1 520 (60)	1 320 (52)	15/20	5.9
VTM-40-WB	7 460 (294)	1 780 (70)	1 520 (60)	3040	8.2
VTM-60-WB	7 600 (299)	1 780 (70)	1 520 (60)	45/60	8.8
VTM-75-WB	7 900 (311)	1 960 (77)	1 700 (67)	56/75	12.5
VTM-125-WB	9 270 <mark>(</mark> 365)	2 670 (105)	2 310 (91)	93/125	17.9
VTM-150-WB	9 780 (385)	2 670 (105)	2 310 (91)	112/150	19.6
VTM-200-WB	9 780 (385)	2 670 (105)	2 310 (91)	150/200	20.5
VTM-250-WB	9 650 (380)	3 660 (144)	3 180 (125)	186/250	33.8
VTM-300-WB	9 650 (380)	3 660 (144)	3 180 (125)	224/300	35.7
VTM-400-WB	11 320 (446)	3 910 (154)	3 380 (133)	298/400	52.7
VTM-500-WB	12 070 (475)	3 860 (152)	3 780 (149)	373/500	66.1

		VERT	'IMILL®		
Model	H mm (inch)	L mm (inch)	W mm (inch)	Power motor kW/Hp	Weight (empty) ton
VTM-650-WB	12 270 (483)	3 250 (128)	3 860 (152)	485/650	82.6
VTM-800-WB	13 460 (530)	<mark>3 5</mark> 60 (140)	4 060 (160)	597/800	100.4
VTM-1000-WB	13 460 (530)	3 660 (144)	4 270 (168)	746/1 000	116.1
VTM-1250-WB	13 460 (530)	4 090 (161)	4 520 (178)	932/1 250	125.4
VTM-1500-WB	14 220 (5 <mark>60)</mark>	4 370 (172)	4 570 (180)	1 118/1 500	167.0
VTM-3000-WB	17 590 (692)	6 820 (268)	6 880 (271)	2 237/3 000	343.0
VTM-4500-C	18 600 (732)	6 820 (268)	6 880 (271)	3355/4500	367.0

		VERT	'IMILL®		
Model	H mm (inch)	L mm (inch)	W mm (inch)	Power motor kW/Hp	Weight (empty) ton
VTM-20-LS	7 060 (278)	1 520 (60)	1 320 (52)	15/20	5.5
VTM-30-LS	7 180 (283)	1 520 (60)	1 320 (52)	22/30	5.9
VTM-50-LS	7 460 (294)	1 780 (70)	1 520 (60)	37/50	8.2
VTM-100-LS	7 900 (311)	1 960 (77)	1 700 (67)	45/60	8.8
VTM-150-LS	8 740 (344)	2 670 (105)	2 310 (91)	75/100	12.5
VTM-200-LS	9 780 (385)	2 670 (105)	2 310 (91)	112/150	17.9
VTM-300-LS	10 160 (400)	3 660 (144)	3 180 (125)	150/200	19.6
VTM-400-LS	11 320 (446)	3 910 (154)	3 380 (133)	224/300	50.0

	Stirre	ed media g	rinding m	ill
Model	Power motor kW (HP)	H mm (inch)	W mm (inch)	Weight (empty) kg (lb.)
Model SMD-90				
	kW (HP)	mm (inch)	mm (inch)	kg (lb.)
SMD-90	kW (HP) 90 (120)	mm (inch) 4215 (166)	mm (inch) 2130 (84)	kg (lb.) 4020 (8 863)

		Vibrat	ing ball i	mill	
Model	H mm (inch)	L mm (inch)	W mm (inch)	Power motor kW/Hp	Weight (empty) ton
Model VBM 1518*		L mm (inch) 1 780 (70)			Weight (empty) ton 1.2

Grinding chamber diameter15"(380mm), length 18"(460mm)

** Grinding chamber diameter30"(760mm), length 34"(860mm)

Screen capacities

	Feed th	rough screen de	eck (t/h)		Example:
Separation	3.6 x 1.5 m	4.2 x 1.8 m	4.8 x 2.1 m	6.0 x 2.4 m	Single deck
(mm)	5.4 m ²	7.6 m ²	10.0 m ²	14.4 m ²	screen. Feed s
2	20	30	45	65	50% - 2 mm. F
5	50	70	95	135	capacity 90 t/
8	75	105	140	180	cut 2 mm.
12	100	145	200	230	Select: a 10 m
16	125	180	230	270	screen deck.
25	175	250	300	350	
32	200	290	350	400	
50	270	370	430	500	-
90	370	460	550	640	-

Select	ion of screenin	g media
 Selection of the corre Equally important is This refers not only to but also to the wear in Below a short selection 	the selection of the to a correct apertur n operation of these	screening media. re related to the "cut size", e screens.
Rubber or polyurethan	e?	
Feed size	Select	Because
>35 mm dry	Rubber 60 sh	Absorbes impact Resistant to sliding abrasion
<0-50 mm wet	Polyurethane	Very good against sliding abrasion Accurate separation
<40 mm dry/moist	Rubber 40 sh (soft)	Very flexible Prevents blinding
Look out for:	Oil in rubber applicat Hot water or acids in	

mesh*	micron	mesh	micron	mesh	micron
21/2	8000	14	1180	80	180
3	6700	16	1000	100	150
31/2	5600	20	850	115	125
4	4750	24	710	150	106
(5)	4000	28	600	170	90
0	3350	32	500	200	75
7	2800	35	425	250	63
8	2360	42	355	270	53
9	2000	48	300	325	45
10	1700	60	250	400	38
12	1400	65	212	500	25
of wires p) mber = the num per inch or the of square apertu	ıber	4 5		4000 micro

Dimensions	at 15° inclina	tion			
Model	H mm (inch)	L mm (inch)	W mm (inch)	Power motor kW/hp	Weight ton
VFS 36/15 2d	2 700 (106)	4 465 (176)	2 230 (88)	11/15	3.7
VFS 42/18 2d*	2 965 (117)	5 065 (199)	2 530 (100)	15/20	4.5
VFS 48/21 2d	3 100 (122)	5 665 (223)	2 830 (111)	18.5/25	5.5
VFS 36/15 3d	3 065 (121)	4 465 (176)	2 230 (88)	15/20	4.7
VFS 42/18 3d	3 220 (127)	5 065 (199)	2 530 (100)	18.5/25	5.8
VFS 48/21 3d	3 530 (139)	5 665 (223)	2 830 (88)	22/30	7.5
VFSM 42/18 2d**	2 900 (114)	5 200 (205)	2 530 (100)	18.5/25	5.6
VFSM 48/21 2d	3 050 (120)	5 800 (228)	2 830 (111)	22/33	7.0
VFSM 60/24 2d	3 550 (140)	7 000 (276)	3 340 (131)	2x18.5/2x25	10.8
VFSM 48/21 3d	3 425 (135)	5 800 (228)	2 830 (88)	2x18.5/2x25	8.5
VFSM 60/24 3d	4 305 (170)	7 000 (276)	3 340 (131)	2x22/2x33	14.2

* VFS 42/18 2d = screen deck dimension 4.2m x1.8m (165"x70"), double deck

**VFSM 42/18 2d = same as above but heavy duty version

Screening area calculated from screen type ex. VFS 42/18; $4.2x1.8 = 7.6 \text{ m}^2 \text{ x}11 = 82\text{ ft}^2$

	ole illei	Inacion	Screen	– Linear		
Model	H mm (inch)	L mm (inch)	W mm (inch)	Power motor kW/hp	Weight ton	Max feed mm/inch
VFO 12/10 2d	1 450 (57)	1 330 (52)	435 (17)	2x1.3/2x1.7	1.0	120/5
VFO 20/12 2d	1 515 (60)	2 380 (94)	1 700 (67)	2x2.3/2x3.1	1.6	150/6
VFO 20/12 3d	1 515 (60)	2 380 (94)	1 700 (67)	2x2.3/2x3.1	1.7	150/6
	1 200 (55)	1 460 (579	1 426 (56)	2x2.3/2x3.1	1.3	300/12
VFOM 12/10 3d*	1 390 (55)	1 400 (575				

* VFOM, heavy-duty version with dual springs at feed and discharge ends

	Triple inc	lination so	reen – Lii	near motio	n
Model	L mm (inch)	W mm (inch)	A m² (Sq. ft.)	Power motor kW /HP	Weight ton
TS 2.2*	5 830 (230)	1 530 (60)	7.5 (80)	15/20	6
TS 2.3*	5 830 (230)	1 530 (60)	7.5 (80)	15/20	8
TS 3.2	6 330 (249)	1 839 (72)	11 (116)	22/30	8
TS 3.3	6 330 (249)	1 839 (72)	11 (116)	22/30	10
TS 4.2	6 350 (250)	2 445 (96)	15 (156)	30/40	9
TS 4.3	6 350 (250)	2 445 (96)	15 (156)	30/40	12
TS 5.2	8 595 (338)	2 445 (96)	20 (215)	30/40	16
TS 5.3	8 595 (338)	2 445 (96)	20 (215)	2x22/2x30	20
TS 6.2	8 734 (344)	3 045 (120)	25 (269)	2x22/2x30	20
TS 6.3	8 736 (344)	3 045 (120)	25 (269)	2x30/2x40	24

H	L			W	
<u> </u>					
Model	H mm (inch)	L mm (inch)	W mm (inch)	Power motor kW/hp	Weight
Model MF 1800x6100 1d		L mm (inch) 6 430 (253)			
	mm (inch)		mm (inch)	kW/hp	ton
MF 1800x6100 1d	mm (inch) 2 703 (107)	6 430 (253)	mm (inch) 2 555 (101)	kW/hp 22/30	ton 6.7

By combining the proper submergence of the spiral as shown in the drawings of the three models at right with one of the three tank designs a choice of combinations are possible.

Thus the selection can be tailored to suit each problem.

- □ The proper combination of pool depth, area and spiral construction, result in controlled turbulence for accurate size separations or efficient washing or dewatering as desired.
- □ The required pool area is balanced with the sand raking capacity of the spiral by the design of the tank.

□ Tank designs to suit specific applications are shown below.

مناسب، درخور، جورشده، tai·lored /'teɪləd \$ -ərd/: fit

Spiral classifier – Design

Straight side: For coarse separations.

- □ **Modified flare:** Increases pool area for intermediate to fine separations and for washing and dewatering.
- Full flare: Maximum pool area for fine to very fine separations and for washing and dewatering where large volumes of water are to be handled.

Sand raking and conveying is usually a major consideration in any classifier application, and the full range of spiral diameters available cover all requirements.

Grinding circuits – Classification

- Classifiers being dynamic (floating cut point) are more tolerant to changes in product size as the cut point is moving with the changes.
- Cyclones, being most common, are effective as classifiers at cut points below 300 microns (1)
- Spiral classifiers are effective as classifiers at cut points up to 800 microns.
- □ For the coarse fraction solids up to 50mm (2") can be removed by the spiral.
- Spiral classifiers and cyclones can be used complementary if cut point is coarser than 200 microns. (2)

Wear in operation

Mineral processing activities unavoidably result in wear. And wear costs money. Often lots of money. This is related to the structure of rock, ore or minerals, being crystals normally both hard and abrasive.

Why wear at all?

Wear is caused by the normal rock stress forces

- Compression (1)
- Impaction (2)
- Shearing (3)
- Attrition (4)

in combination with mineral abrasion, hardness and energy!

