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Chapter 1

Heat Equation

1.1 Introduction
We wish to discuss the solution of elementary problems involving partial differ-
ential equations, the kinds of problems that arise in various fields of science and
engineering. A partial differential equation (PDE) is a mathematical equation
containing partial derivatives, for example,

5 +35x =0. (1.1.1)

We could begin our study by determining what functions u(x, t) satisfy (1.1.1).
However, we prefer to start by investigating a physical problem. We do this for
two reasons. First, our mathematical techniques probably will be of greater inter-
est to you when it becomes clear that these methods analyze physical problems.
Second, we will actually find that physical considerations will motivate many of our
mathematical developments.

Many diverse subject areas in engineering and the physical sciences are domi-
nated by the study of partial differential equations. No list could be all-inclusive.
However, the following examples should give you a feeling for the type of areas
that are highly dependent on the study of partial differential equations: acoustics,
aerodynamics, elasticity, electrodynamics, fluid dynamics, geophysics (seismic wave
propagation), heat transfer, meteorology, oceanography, optics, petroleum engineer-
ing, plasma physics (ionized liquids and gases), and quantum mechanics.

We will follow a certain philosophy of applied mathematics in which the analysis
of a problem will have three stages:

1. Formulation
2. Solution
3. Interpretation

We begin by formulating the equations of heat flow describing the transfer of
thermal energy. Heat energy is caused by the agitation of molecular matter. Two

1



2 Chapter 1. Heat Equation

basic processes take place in order for thermal energy to move: conduction and con-
vection. Conduction results from the collisions of neighboring molecules in which
the kinetic energy of vibration of one molecule is transferred to its nearest neighbor.
Thermal energy is thus spread by conduction even if the molecules themselves do
not move their location appreciably. In addition, if a vibrating molecule moves from
one region to another, it takes its thermal energy with it. This type of movement
of thermal energy is called convection. In order to begin our study with relatively
simple problems, we will study heat flow only in cases in which the conduction of
heat energy is much more significant than its convection. We will thus think of
heat flow primarily in the case of solids, although heat transfer in fluids (liquids
and gases) is also primarily by conduction if the fluid velocity is sufficiently small.

1.2 Derivation of the Conduction of Heat
in a One-Dimensional Rod

Thermal energy density. We begin by considering a rod of constant cross-
sectional area A oriented in the x-direction (from x = 0 to x = L) as illustrated in
Fig. 1.2.1. We temporarily introduce the amount of thermal energy per unit volume
as an unknown variable and call it the thermal energy density:

e(x, t) __ thermal energy density.

We assume that all thermal quantities are constant across a section; the rod is one-
dimensional. The simplest way this may be accomplished is to insulate perfectly
the lateral surface area of the rod. Then no thermal energy can pass through the
lateral surface. The dependence on x and t corresponds to a situation in which
the rod is not uniformly heated; the thermal energy density varies from one cross
section to another.

O(x,t)
7T)

0

z

V U 1
x=0 x x+Ox x=L

Figure 1.2.1 One-dimensional rod with heat energy flowing into
and out of a thin slice.

Heat energy. We consider a thin slice of the rod contained between x and x+
Ox as illustrated in Fig. 1.2.1. If the thermal energy density is constant throughout
the volume, then the total energy in the slice is the product of the thermal energy
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density and the volume. In general, the energy density is not constant. However, if
Ox is exceedingly small, then e(x, t) may be approximated as a constant throughout
the volume so that

heat energy = e(x, t)A Ax,

since the volume of a slice is A Ax.

Conservation of heat energy. The heat energy between x and x + Ox
changes in time due only to heat energy flowing across the edges (x and x+Ox) and
heat energy generated inside (due to positive or negative sources of heat energy).
No heat energy changes are due to flow across the lateral surface, since we have
assumed that the lateral surface is insulated. The fundamental heat flow process is
described by the word equation

rate of change heat energy flowing
of heat energy = across boundaries + heat energy generated

.in time per unit time inside per
unit

t time.

This is called conservation of heat energy. For the small slice, the rate of change
of heat energy is

[e (x, t) A Ax] ,

where the partial derivative T is used because x is being held fixed.

Heat flux. Thermal energy flows to the right or left in a one-dimensional
rod. We introduce the heat flux:

heat flux (the amount of thermal energy per unit
time flowing to the right per unit surface area).

If O(x, t) < 0, it means that heat energy is flowing to the left. Heat energy flowing
per unit time across the boundaries of the slice is O(x, t)A-O(x+Ax, t) A, since the
heat flux is the flow per unit surface area and it must be multiplied by the surface
area. If O(x, t) > 0 and O(x + Ox, t) > 0, as illustrated in Fig. 1.2.1, then the heat
energy flowing per unit time at x contributes to an increase of the heat energy in
the slice, whereas the heat flow at x + Ox decreases the heat energy.

Heat sources. We also allow for internal sources of thermal energy:

.Q(x, t) = heat energy per unit volume generated per unit time,
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perhaps due to chemical reactions or electrical heating. Q(x, t) is approximately
constant in space for a thin slice, and thus the total thermal energy generated per
unit time in the thin slice is approximately Q(x, t)A Ax.

Conservation of heat energy (thin slice). The rate of change of
heat energy is due to thermal energy flowing across the boundaries and internal
sources:

at [e(x, t)A Ax] : c(x. t)A - O(x + Ax, t)A + Q(x, t)A Ax. (1.2.1)

Equation (1.2.1) is not precise because various quantities were assumed approxi-
mately constant for the small cross-sectional slice. We claim that (1.2.1) becomes
increasingly accurate as Ax --+ 0. Before giving a careful (and mathematically rigor-
ous) derivation, we will just attempt to explain the basic ideas of the limit process,
Ax 0. In the limit as Ax -+ 0, (1.2.1) gives no interesting information, namely,
0 = 0. However, if we first divide by Ax and then take the limit as Ax -+ 0, we
obtain

8e = O(x, t) - 4(x + Ax, t)
+ Q(x (1.2.2)

at nzmo AX
, t),

where the constant cross-sectional area has been cancelled. We claim that this
result is exact (with no small errors), and hence we replace the in (1.2.1) by = in
(1.2.2). In this limiting process, Ax 0, t is being held fixed. Consequently, from
the definition of a partial derivative,

ae 00 +n
= -1 at ax

(1.2.3)

Conservation of heat energy (exact). An alternative derivation of
conservation of heat energy has the advantage of our not being restricted to small
slices. The resulting approximate calculation of the limiting process (Ax , 0) is
avoided. We consider any finite segment (from x = a to x = b) of the Qriginal one-
dimensional rod (see Fig. 1.2.2). We will investigate the conservation of heat energy
in this region. The total heat energy is fa e(x, t)A dx, the sum of the contributions
of the infinitesimal slices. Again it changes only due to heat energy flowing through
the side edges (x = a and x = b) and heat energy generated inside the region, and
thus (after canceling the constant A)

dt
je dr. 0(a, t) - q5(b, t) + dx.

a
(1.2.4)

Technically, an ordinary derivative d/dt appears in (1.2.4) since fQ e dx depends
only on t, not also on x. However,

fb 6dtedx=J -dx,
a
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t 4)(b, t)

0 x = a x=b L

Figure 1.2.2 Heat energy flowing into
and out of a finite segment of a rod.

if a and b are constants (and if e is continuous). This holds since inside the integral
the ordinary derivative now is taken keeping x fixed, and hence it must be replaced
by a partial derivative. Every term in (1.2.4) is now an ordinary integral if we notice
that

4)(a, t) - 4)(b, t) = -
J

b aodx

(thisl being valid if 0 is continuously differentiable). Consequently,

10e 84 \\
&+8x-QIdx=O.f' \

This integral must be zero for arbitrary a and b; the area under the curve must be
zero for arbitrary limits. This is possible only if the integrand itself is identically
zero.2 Thus, we rederive (1.2.3) as

ae __ 046
Q8t 8x

(1.2.5)

Equation (1.2.4), the integral conservation law, is more fundamental than the
differential form (1.2.5). Equation (1.2.5) is valid in the usual case in which the
physical variables are continuous.

A further explanation of the minus sign preceding 84)/Ox is in order. For exam-
ple, if 84)/8x > 0 for a < x < b, then the heat flux 0 is an increasing function of
x. The heat is flowing greater to the right at x = b than at x = a (assuming that
b > a). Thus (neglecting any effects of sources Q), the heat energy must decrease
between x = a and x = b, resulting in the minus sign in (1.2.5).

'This is one of the fundamental theorems of calculus.
2Most proofs of this result are inelegant. Suppose that f (x) is continuous and fa f (x) dx = 0

for arbitrary a and b. We wish to prove f (x) = 0 for all x. We can prove this by assuming that
there exists a point xo such that f(xo) # 0 and demonstrating a contradiction. If f(xo) # 0 and
f(x) is continuous, then there exists some region near xo in which f(x) is of one sign. Pick a
and b to be in this region, and hence fa f(x)dx j4 0 since f (x) is of one sign throughout. This
contradicts the statement that fa f(x)dx = 0, and hence it is impossible for f(xo) # 0. Equation
(1.2.5) follows.
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Temperature and specific heat. We usually describe materials by
their temperature,

u(x, t) = temperature,

not their thermal energy density. Distinguishing between the concepts of tempera-
ture and thermal energy is not necessarily a trivial task. Only in the mid-1700s did
the existence of accurate experimental apparatus enable physicists to recognize that
it may take different amounts of thermal energy to raise two different materials from
one temperature to another larger temperature. This necessitates the introduction
of the specific heat (or heat capacity):

specific heat (the heat energy that must be supplied to a unit
mass of a substance to raise its temperature one unit).

In general, from experiments (and our definition) the specific heat c of a material
depends on the temperature u. For example, the thermal energy necessary to raise
a unit mass from 0°C to 1°C could be different from that needed to raise the mass
from 85°C to 86°C for the same substance. Heat flow problems with the specific
heat depending on the temperature are mathematically quite complicated. (Exer-
cise 1.2.6 briefly discusses this situation.) Often for restricted temperature intervals,
the specific heat is approximately independent of the temperature. However, exper-
iments suggest that different materials require different amounts of thermal energy
to heat up. Since we would like to formulate the correct equation in situations
in which the composition of our one-dimensional rod might vary from position to
position, the specific heat will depend on x, c = c(x). In many problems the rod is
made of one material (a uniform rod), in which case we will let the specific heat c
be a constant. In fact, most of the solved problems in this text (as well as other
books) correspond to this approximation, c constant.

Thermal energy. The thermal energy in a thin slice is e(x, t)A Ox. How-
ever, it is also defined as the energy it takes to raise the temperature from a reference
temperature 0° to its actual temperature u(x, t). Since the specific heat is inde-
pendent of temperature, the heat energy per unit mass is just c(x)u(x, t). We thus
need to introduce the mass density p(x):

p(x) = mass density (mass per unit volume),

allowing it to vary with x, possibly due to the rod being composed of nonuniform
material. The total mass of the thin slice is pA Ax. The total thermal energy in
any thin slice is thus c(x)u(x, t) pA Ax, so that

e(x, t) A Ax - c(x)u(--, t)pA Ax.
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In this way we have explained the basic relationship between thermal energy and
temperature:

e(x,t) = c(x)p(x)u(x,t). (1.2.6)

This states that the thermal energy per unit volume equals the thermal energy
per unit mass per unit degree times the temperature times the mass density (mass
per unit volume). When the thermal energy density is eliminated using (1.2.6),
conservation of thermal energy, (1.2.3) or (1.2.5), becomes

Ou 00
c(x)P(x)

tat 8x +Q-
(1.2.7)

Fourier's law. Usually, (1.2.7) is regarded as one equation in two unknowns,
the temperature u(x, t) and the heat flux (flow per unit surface area per unit time)
m(x, t). How and why does heat energy flow? In other words, we need an expression
for the dependence of the flow of heat energy on the temperature field. First we
summarize certain qualitative properties of heat flow with which we are all familiar:

1. If the temperature is constant in a region, no heat energy flows
2. If there are temperature differences, the heat energy flows from the hotter

region to the colder region.
3. The greater the temperature differences (for the same material), the greater

is the flow of heat energy.
4. The flow of heat energy will vary for different materials, even with the same

temperature differences.

Fourier (1768-1830) recognized properties 1 through 4 and summarized them (as
well as numerous experiments) by the formula

_ -Koax,

(1.2.8)

known as Fourier's law of heat conduction. Here 8u/8x is the derivative of the
temperature; it is the slope of the temperature (as a function of x for fixed t); it
represents temperature differences (per unit length). Equation (1.2.8) states that
the heat flux is proportional to the temperature difference (per unit length). If the
temperature u increases as x increases (i.e., the temperature is hotter to the right),
09u/8x > 0, then we know (property 2) that heat energy flows to the left. This
explains the minus sign in (1.2.8).

We designate the coefficient of proportionality Ko. It measures the ability of the
material to conduct heat and is called the thermal conductivity. Experiments
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indicate that different materials conduct heat differently; K° depends on the partic-
ular material. The larger Ko is, the greater the flow of heat energy with the same
temperature differences. A material with a low value of K° would be a poor con-
ductor of heat energy (and ideally suited for home insulation). For a rod composed
of different materials, K° will be a function of x. Furthermore, experiments show
that the ability to conduct heat for most materials is different at different temper-
atures, K°(x,u) . However, just as with the specific heat c, the dependence on the
temperature is often not important in particular problems. Thus, throughout this
text we will assume that the thermal conductivity K° only depends on x, Ko(x).
Usually, in fact, we will discuss uniform rods in which K° is a constant.

Heat equation. If Fourier's law, (1.2.8), is substituted into the conservation
of heat energy equation, (1.2.7), a partial differential equation results:

au au}
cp 5 ax K° ax J + Q (1.2.9)

We usually think of the sources of heat energy Q as being given, and the only
unknown being the temperature u(x, t). The thermal coefficients c, p, K° all depend
on the material and hence may be functions of x. In the special case of a uniform rod,
in which c, p, K° are all constants, the partial differential equation (1.2.9) becomes

au a2u
cp at =

K° axe + Q.

If, in addition, there are no sources, Q = 0, then after dividing by the constant cp,
the partial differential equation becomes

au a2u
at = kaxe

where the constant k,

(1.2.10)

k= K°
cp

is called the thermal diffusivity, the thermal conductivity divided by the product
of the specific heat and mass density. Equation (1.2.10) is often called the heat
equation; it corresponds to no sources and constant thermal properties. If heat
energy is initially concentrated in one place, (1.2.10) will describe how the heat
energy spreads out, a physical process known as diffusion. Other physical quan-
tities besides temperature smooth out in much the same mariner, satisfying the
same partial differential equation (1.2.10). For this reason (1.2.10) is also known
as the diffusion equation- For example, the concentration u(x, t) of chemicals
(such as perfumes and pollutants) satisfies the diffusion equation (1.2.8) in certain
one-dimensional situations.
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Initial conditions. The partial differential equations describing the flow of
heat energy, (1.2.9) or (1.2.10), have one time derivative. When an ordinary differ-
ential equation has one derivative, the initial value problem consists of solving the
differential equation with one initial condition. Newton's law of motion for the posi-
tion x of a particle yields a second-order ordinary differential equation, md2x/dt2 =
forces. It involves second derivatives. The initial value problem consists of solving
the differential equation with two initial conditions, the initial position x and the
initial velocity dx/dt. From these pieces of information (including the knowledge of
the forces), by solving the differential equation with the initial conditions, we can
predict the future motion of a particle in the x-direction. We wish to do the same
process for our partial differential equation, that is, predict the future temperature.
Since the heat equations have one time derivative, we must be given one initial
condition (IC) (usually at t = 0), the initial temperature. It is possible that the
initial temperature is not constant, but depends on x. Thus, we must be given the
initial temperature distribution,

u(x,0) = f(x).

Is this enough information to predict the future temperature? We know the initial
temperature distribution and that the temperature changes according to the partial
differential equation (1.2.9) or (1.2.10). However, we need to know that happens
at the two boundaries, x = 0 and x = L. Without knowing this information, we
cannot predict the future. Two conditions are needed corresponding to the second
spatial derivatives present in (1.2.9) or (1.2.10), usually one condition at each end.
We discuss these boundary conditions in the next section.

Diffusion of a chemical pollutant. Let u(x, t) be the density or
concentration of the chemical per unit volume. Consider a one dimensional region
(Fig. 1.2.2) between x = a and x = b with constant cross-sectional area A. The
total amount of the chemical in the region is fQ u(x, t)A dx. We introduce the flux
O(x, t) of the chemical, the amount of the chemical per unit surface flowing to the
right per unit time. The rate of change with respect to time of the total amount
of chemical in the region equals the amount of chemical flowing in per unit time
minus the amount of chemical flowing out per unit time. Thus, after canceling the
constant cross-sectional area A, we obtain the integral conservation law for the
chemical concentration:

fbd
u(x, t) dx = 6(a, t) - 0(b, t). (1.2.11)

Since fQ u(x, t) dx = fa u dx and 0(a, t) - 5(b, t) fQ a dx, it follows that
fQ ( + ) dx = 0. Since the integral is zero for arbitrary regions, the integrand
must be zero, and in this way we derive the differential conservation law for the
chemical concentration:
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8u e0 _
8t+ -8x0' (1.2.12)

In solids, chemicals spread out from regions of high concentration to regions of low
concentration. According to Fick's law of diffusion, the flux is proportional to
Si the spatial derivative of the chemical concentration:

(1.2.13)

If the concentration u(x, t) is constant in space, there is no flow of the chemical.
If the chemical concentration is increasing to the right (au > 0), then atoms of
chemicals migrate to the left, and vice versa. The proportionality constant k
is called the chemical diffusivity, and it can be measured experimentally. When
Fick's law (1.2.13) is used in the basic conservation law (1.2.12), we see that the
chemical concentration satisfies the diffusion equation:

8u 82u
Ot = k 8x2 , (1.2.14)

since we are assuming as an approximation that the diffusivity is constant. Fick's
law of diffusion for chemical concentration is analogous to Fourier's law for heat
diffusion. Our derivations are quite similar.

EXERCISES 1.2

1.2.1. Briefly explain the minus sign:

(a) in conservation law (1.2.3) or (1.2.5) if Q = 0
(b) in Fourier's law (1.2.8)
(c) in conservation law (1.2.12),

(d) in Fick's law (1.2.13)

1.2.2. Derive the heat equation for a rod assuming constant thermal properties
and no sources.

(a) Consider the total thermal energy between x and x + Ox.
(b) Consider the total thermal energy between x = a and x = b.

1.2.3. Derive the heat equation for a rod assuming constant thermal properties
with variable cross-sectional area A(x) assuming no sources by considering
the total thermal energy between x = a and x = b.
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1.2.4. Derive the diffusion equation for a chemical pollutant.

(a) Consider the total amount of the chemical in a thin region between x
and x + Ax.

(b) Consider the total amount of the chemical between x = a and x = b.

1.2.5. Derive an equation for the concentration u(x, t) of a chemical pollutant if
the chemical is produced due to chemical reaction at the rate of au(,3 - u)
per unit volume.

1.2.6. Suppose that the specific heat is a function of position and temperature,
c(x, u).

(a) Show that the heat energy per unit mass necessary to raise the temper-
ature of a thin slice of thickness Ax from 0° to u(x, t) is not c(x)u(x, t),
but instead fo c(x, u) du.

(b) Rederive the heat equation in this case. Show that (1.2.3) remains
unchanged.

1.2.7. Consider conservation of thermal energy (1.2.4) for any segment of a one-
dimensional rod a < x < b. By using the fundamental theorem of calculus,

a
ab

jb
f (x) dx = f (b),

derive the heat equation (1.2.9).

*1.2.8. If u(x, t) is known, give an expression for the total thermal energy contained
in a rod (0 < x < L).

1.2.9. Consider a thin one-dimensional rod without sources of thermal energy
whose lateral surface area is not insulated.

(a) Assume that the heat energy flowing out of the lateral sides per unit
surface area per unit time is w(x, t). Derive the partial differential
equation for the temperature u(x, t).

(b) Assume that w(x, t) is proportional to the temperature difference be-
tween the rod u(x, t) and a known outside temperature -y(x, t). Derive
that

cp at ax
(Koe / - A [u(x, t) - y(x, t))h(x), (1.2.15)

where h(x) is a positive x-/dependent proportionality, P is the lateral
perimeter, and A is the cross-sectional area.

(c) Compare (1.2.15) to the equation for a one-dimensional rod whose
lateral surfaces are insulated, but with heat sources.

(d) Specialize (1.2.15) to a rod of circular cross section with constant ther-
mal properties and 0° outside temperature.
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*(e) Consider the assumptions in part (d). Suppose that the temperature
in the rod is uniform [i.e., u(x,t) = u(t)]. Determine u(t) if initially
u(0) = uo.

1.3 Boundary Conditions
in solving the heat equation, either (1.2.9) or (1.2.10), one boundary condition
(BC) is needed at each end of the rod. The appropriate condition depends on the
physical mechanism in effect at each end. Often the condition at the boundary
depends on both the material inside and outside the rod. To avoid a more difficult
mathematical problem, we will assume that the outside environment is known, not
significantly altered by the rod.

Prescribed temperature. In certain situations, the temperature of the
end of the rod, for example, x = 0, may be approximated by a prescribed tem-
perature,

u(0, t) = us(t), (1.3.1)

where uB(t) is the temperature of a fluid bath (or reservoir) with which the rod is
in contact.

Insulated boundary. In other situations it is possible to prescribe the
heat flow rather than the temperature,

-Ko(0) - (0, t) = 0(t), (1.3.2)

where 0(t) is given. This is equivalent to giving one condition for the first derivative,
Ou/8x, at x = 0. The slope is given at x = 0. Equation (1.3.2) cannot be integrated
in x because the slope is known only at one value of x. The simplest example of the
prescribed heat flow boundary condition is when an end is perfectly insulated
(sometimes we omit the "perfectly"). In this case there is no heat flow at the
boundary. If x = 0 is insulated, then

a(0, t= 0.
x

Newton's law of cooling. When a one-dimensional rod is in contact at
the boundary with a moving fluid (e.g., air), then neither the prescribed temperature
nor the prescribed heat flow may be appropriate. For example, let us imagine a
very warm rod in contact with cooler moving air. Heat will leave the rod, heating
up the air. The air will then carry the heat away. This process of heat transfer is
called convection. However, the air will be hotter near the rod. Again, this is a
complicated problem; the air temperature will actually vary with distance from the
rod (ranging between the bath and rod temperatures). Experiments show that, as a
good approximation. the heat flow leaving the rod is proportional to the temperature
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difference between the bar and the prescribed external temperature. This boundary
condition is called Newton's law of cooling. If it is valid at x = 0, then

-Ko(0) (0, t) = -H[u(O, t) - UB(t)J, (1.3.4)

where the proportionality constant H is called the heat transfer coefficient (or
the convection coefficient). This boundary condition3 involves a linear combination
of u and Ou/8x. We must be careful with the sign of proportionality. If the rod
is hotter than the bath [u(0, t) > UB(t)], then usually heat flows out of the rod at
x = 0. Thus, heat is flowing to the left, and in this case the heat flow would be
negative. That is why we introduced a minus sign in (1.3.4) (with H > 0). The same
conclusion would have been reached had we assumed that u(0, t) G uB(t). Another
way to understand the signs in (1.3.4) is to again assume that u(0, t) > uB(t). The
temperature is hotter to the right at, x = 0, and we should expect the temperature
to continue to increase to the right. Thus, Ou/8x should be positive at x = 0.
Equation (1.3.4) is consistent with this argument. In Exercise 1.3.1 you are asked
to derive, in the same manner, that the equation for Newton's law of cooling at a
right end point x = L is

-Ko(L)

a-
(L, t) = H[u(L, t) - uB(t)J, (1.3.5)

where uB(t) is the external temperature at x = L. We immediately note the
significant sign difference between the left boundary (1.3.4) and the right boundary
(1.3.5).

The coefficient H in Newton's law of cooling is experimentally determined. It
depends on properties of the rod as well as fluid properties (including the fluid
velocity). If the coefficient is very small, then very little heat energy flows across
the boundary. In the limit as H -+ 0, Newton's law of cooling approaches the
insulated boundary condition. We can think of Newton's law of cooling for H # 0 as
representing an imperfectly insulated boundary. If H oo, the boundary condition
approaches the one for prescribed temperature, u(0, t) = tB(t). This is most easily
seen by dividing (1.3.4), for example, by H:

Ko
) ax(O't) = -[u(O,t) -UB(t)]

Thus, H -, oo corresponds to no insulation at all.

Summary. We have described three different kinds of boundary conditions.
For example, at x = 0,

u(0, t) = uB(t) prescribed temperature
-Ko(0) (0, t) _ ¢(t) prescribed heat flux
-Ko(O)"u(O,t) _ -H[u(O,t) - uB(t)] Newton's law of cooling

3For another situation in which (1.3.4) is valid, see Berg and McGregor [1966].
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These same conditions could hold at x = L, noting that the change of sign (-H
becoming H) is necessary for Newton's law of cooling. One boundary condition
occurs at each boundary. It is not necessary that both boundaries satisfy the same
kind of boundary condition. For example, it is possible for x = 0 to have a prescribed
oscillating temperature

u(0, t) = 100 - 25 cos t,

and for the right end, x = L, to be insulated,

ax(L,t)=0.

EXERCISES 1.3

1.3.1. Consider a one-dimensional rod, 0 < x < L. Assume that the heat en-
ergy flowing out of the rod at x = L is proportional to the temperature
difference between the end temperature of the bar and the known external
temperature. Derive (1.3.5) (briefly, physically explain why H > 0).

*1.3.2. Two one-dimensional rods of different materials joined at x = x0 are said to
be in perfect thermal contact if the temperature is continuous at x = xo:

u(xo-, t) = u(xo+, t)

and no heat energy is lost at x = xo (i.e., the heat energy flowing out of one
flows into the other). What mathematical equation represents the latter
condition at x = xo? Under what special condition is 8u/8x continuous at
x = xo?

*1.3.3. Consider a bath containing a fluid of specific heat c f and mass density p f
that surrounds the end x = L of a one-dimensional rod. Suppose that
the bath is rapidly stirred in a manner such that the bath temperature
is approximately uniform throughout, equaling the temperature at x =
L, u(L, t). Assume that the bath is thermally insulated except at its perfect
thermal contact with the rod. where the bath may be heated or cooled by
the rod. Determine an equation for the temperature in the bath. (This will
be a boundary condition at the end x = L.) (Hint: See Exercise 1.3.2.)

1.4 Equilibrium Temperature Distribution
1.4.1 Prescribed Temperature
Let us now formulate a simple, but typical, problem of heat flow. If the ther-
mal coefficients are constant and there are no sources of thermal energy. then the
temperature u(x, t) in a one-dimensional rod 0 < x < L satisfies

z

8t = kax2. (1.4.1)
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The solution of this partial differential equation must satisfy the initial condition

u(x,0) = f(x) (1.4.2)

and one boundary condition at each end. For example, each end might be in contact
with different large baths, such that the temperature at each end is prescribed:

u(0,t) = Ti(t)
u(L, t) = T2(t). (1.4.3)

One aim of this text is to enable the reader to solve the problem specified by (1.4.1-
1.4.3).

Equilibrium temperature distribution. Before we begin to attack
such an initial and boundary value problem for partial differential equations, we
discuss a physically related question for ordinary differential equations. Suppose
that the boundary conditions at x = 0 and x = L were steady (i.e., independent
of time),

u(0, t) =Ti and u(L,t) =T2,

where Ti and T2 are given constants. We define an equilibrium or steady-state
solution to be a temperature distribution that does not depend on time, that is,
u(x, t) = u(x). Since 8/8t u(x) = 0, the partial differential equation becomes
k((92u/8x2) = 0, but partial derivatives are not necessary, and thus

d2u
dx2 = 0.

The boundary conditions are

u(0) = Ti
u(L) = T2.

(1.4.4)

(1.4.5)

In doing steady-state calculations, the initial conditions are usually ignored. Equa-
tion (1.4.4) is a rather trivial second-order ordinary differential equation (ODE).
Its general solution may be obtained by integrating twice. Integrating (1.4.4) yields
du/dx = C1, and integrating a second time shows that

u(x)=Clx+C2. (1.4.6)

We recognize (1.4.6) as the general equation of a straight line. Thus, from the
boundary conditions (1.4.5) the equilibrium temperature distribution is the straight
line that equals Tt at x = 0 and T2 at x = L, as sketched in Fig. 1.4.1. Geomet-
r ically there is a unique equilibrium solution for this problem. Algebraically, we
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can determine the two arbitrary constants, C1 and C2, by applying the boundary
conditions, u(O) = T1 and u(L) = T2:

u(O) = T1 implies T1 = C2

u(L)=T2 implies T2 = C1L + C2.
(1.4.7)

It is easy to solve (1.4.7) for the constants C2 = T1 and C1 = (T2 - T1)/L. Thus,
the unique equilibrium solution for the steady-state heat equation with these fixed
boundary conditions is

u(x)=Ti+T2LT1 X.

T1

T2

i
I Figure 1.4.1 Equilibrium temperature

x = 0 x = L distribution.

(1.4.8)

Approach to equilibrium. For the time-dependent problem, (1.4.1) and
(1.4.2), with steady boundary conditions (1.4.5), we expect the temperature distri-
bution u(x, t) to change in time; it will not remain equal to its initial distribution
f (x). If we wait a very, very long time, we would imagine that the influence of the
two ends should dominate. The initial conditions are usually forgotten. Eventually,
the temperature is physically expected to approach the equilibrium temperature
distribution, since the boundary conditions are independent of time:

slim u(x, t) = u(x) = T1 + T2 L T1
00

(1.4.9)

In Sec. 8.2 we will solve the time-dependent problem and show that (1.4.9) is
satisfied. However, if a steady state is approached, it is more easily obtained by
directly solving the equilibrium problem.

1.4.2 Insulated Boundaries

As a second example of a steady-state calculation, we consider a one-dimensional
rod again with no sources and with constant thermal properties, but this time with
insulated boundaries at x = 0 and x = L. The formulation of the time-dependent



1.4. Equilibrium Temperature Distribution 17

problem is

PDE:
au a2u

= k (1.4.10)

IC:

at ax2

u(x,0) = f(x) (1.4.11)

BC1: (O,t)=0 (1.4.12)

BC2: 8 (L, t) = 0. (1.4.13)

The equilibrium problem is derived by setting au/at = 0. The equilibrium temper-
ature distribution satisfies

ODE:

BC1 :

BC2:

d2u = 0
dx2

du
(L) = 0,

(1.4.14)

(1.4.15)

(1.4.16)

where the initial condition is neglected (for the moment). The general solution of
d2u/dx2 = 0 is again an arbitrary straight line,

u=C1x+C2. (1.4.17)

The boundary conditions imply that the slope must be zero at both ends. Geomet-
rically, any straight line that is flat (zero slope) will satisfy (1.4.15) and (1.4.16), as
illustrated in Fig. 1.4.2.

x=0 x=L

Figure 1.4.2 Various constant
equilibrium temperature distributions
(with insulated ends).

The solution is any constant temperature. Algebraically, from (1.4.17), du/dx =
Cl and both boundary conditions imply C1 = 0. Thus,

u(x) = C2 (1.4.18)
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for any constant C2. Unlike the first example (with fixed temperatures at both
ends), here there is not a unique equilibrium temperature. Any constant tempera-
ture is an equilibrium temperature distribution for insulated boundary conditions.
Thus, for the time-dependent initial value problem, we expect

slim u(x, t) = C2;
00

if we wait long enough, a rod with insulated ends should approach a constant
temperature. This seems physically quite reasonable. However, it does not make
sense that the solution should approach an arbitrary constant; we ought to know
what constant it approaches. In this case, the lack of uniqueness was caused by
the complete neglect of the initial condition. In general, the equilibrium solution
will not satisfy the initial condition. However, the particular constant equilibrium
solution is determined by considering the initial condition for the time-dependent
problem (1.4.11). Since both ends are insulated, the total thermal energy is con-
stant. This follows from the integral conservation of thermal energy of the entire
rod [see (1.2.4)1:

d /' L 8 au
1.4.19dt f cpu dx = -Ko 87x (0, t) + Ko

8x
(L, t). ( )

0

Since both ends are insulated,

1
L

cpu dx = constant. (1.4.20)

One implication of (1.4.20) is that the initial thermal energy must equal the fi-
nal (limt.,,,) thermal energy. The initial thermal energy is ep fL f (x) dx since
u(x, 0) = f (x), while the equilibrium thermal energy is cp LL C2 dx = cpC2L since
the equilibrium temperature distribution is a constant u(x, t) = C2. The constant
C2 is determined by equating these two expressions for the constant total ther-
mal energy, cp fL f (x) dx = cpC2L. Solving for C2 shows that the desired unique
steady-state solution should be

t
u(x) = C2 = L J f (x) dx,

0

(1.4.21)

the average of the initial temperature distribution. It is as though the initial
condition is not entirely forgotten. Later we will find a u(x, t) that satisfies (1.4.10-
1.4.13) and show that limt.,,. u(x, t) is given by (1.4.21).

EXERCISES 1.4
1.4.1. Determine the equilibrium temperature distribution for a one-dimensional

rod with constant thermal properties with the following sources and bound-
ary conditions:
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* (a) Q = 0, u(0) = 0,

(b) Q = 0, u(0) = T,

(c) Q = 0, (0) = 0,

* (d) Q = 0, u(0) = T,

(e)
Ko

= 1, u(0) = T1, u(L) = T2

* (f)
Qc = x2, u(0) = T, 8 (L) = 0

(g) Q = 0, u(0) = T, ax (L) + u(L) = 0

*(h) Q=0, 8 (0)-[u(0)-TJ=0, ax(L)-a

In these you may assume that u(x, 0) = f (x).

1.4.2. Consider the equilibrium temperature distribution for a uniform one-dimen-
sional rod with sources Q/Ko = x of thermal energy, subject to the bound-
ary conditions u(0) = 0 and u(L) = 0.

*(a) Determine the heat energy generated per unit time inside the entire
rod.

(b) Determine the heat energy flowing out of the rod per unit time at x = 0
and at x = L.

(c) What relationships should exist between the answers in parts (a) and
(b)?

1.4.3. Determine the equilibrium temperature distribution for a one-dimensional
rod composed of two different materials in perfect thermal contact at x = 1.
For 0 < x < 1, there is one material (cp = 1, Ko = 1) with a constant
source (Q = 1), whereas for the other 1 < x < 2 there are no sources
(Q = 0, cp = 2, Ko = 2) (see Exercise 1.3.2) with u(O) = 0 and u(2) = 0.

1.4.4. If both ends of a rod are insulated, derive from the partial differential equa-
tion that the total thermal energy in the rod is constant.

1.4.5. Consider a one-dimensional rod 0 < x < L of known length and known
constant thermal properties without sources. Suppose that the temperature
is an unknoum constant T at x = L. Determine T if we know (in the steady
state) both the temperature and the heat flow at x = 0.

1.4.6. The two ends of a uniform rod of length L are insulated. There is a constant
source of thermal energy Qo 54 0, and the temperature is initially u(x, 0) _
f (x)-
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(a) Show mathematically that there does not exist any equilibrium tem-
perature distribution. Briefly explain physically.

(b) Calculate the total thermal energy in the entire rod.

1.4.7. For the following problems, determine an equilibrium temperature distri-
bution (if one exists). For what values of ,3 are there solutions? Explain
physically.

z

+ 1 0 = A )( At 1 t) = Q(L* (a) ,at 8xz u x, X ,) ) = ,8x ,a

(b)
au 192U

= 0) = f (( )
au

t) = 1(0
8u

t) = Q(L

)(

8xz ,

& =
02U

+

u ,x, x

0) = P(

, ,ax

t = 08 (0

,ax

= 0L tc z u x, X), ), , , )8x (

1.4.8. Express the integral conservation law for the entire rod with constant ther-
mal properties. Assume the heat flow is known to be different constants at
both ends By integrating with respect to time, determine the total thermal
energy in the rod. (Hint: use the initial condition.)

(a) Assume there are no sources.
(b) Assume the sources of thermal energy are constant.

1.4.9. Derive the integral conservation law for the entire rod with constant thermal
properties by integrating the heat equation (1.2.10) (assuming no sources).
Show the result is equivalent to (1.2.4).

1.4.10. Suppose = e + 4, u(x, 0) = f (x), Ou (0, t) = 5, "u (L, t) = 6. Calculate
the total thermal energy in the one-dimensional rod (as a function of time).

1.4.11. Suppose = s + x, u(x, 0) = f (x), Ou (0, t) = Q, &u (L, t) = 7.

(a) Calculate the total thermal energy in the one-dimensional rod (as a
function of time).

(b) From part (a), determine a value of Q for which an equilibrium exists.
For this value of Q, determine lim u(x, t).t00

1.4.12. Suppose the concentration u(x, t) of a chemical satisfies Fick's law (1.2.13),
and the initial concentration is given u(x, 0) = f (x). Consider a region
0 < x < L in which the flow is specified at both ends -kOu (0, t) = a and
-kOu (L, t) _ 0. Assume a and # are constants.

(a) Express the conservation law for the entire region.
(b) Determine the total amount of chemical in the region as a function of

time (using the initial condition).
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(c) Under what conditions is there an equilibrium chemical concentration
and what is it?

1.4.13. Do Exercise 1.4.12 if a and Q are functions of time.

1.5 Derivation of the Heat Equation
in Two or Three Dimensions

Introduction. In Sec. 1.2 we showed that for the conduction of heat in a one-
dimensional rod the temperature u(x, t) satisfies

cp
8t a (KO a / + Q.

In cases in which there are no sources (Q = 0) and the thermal properties are
constant, the partial differential equation becomes

8u 82u
at = k-- ,

where k = K°/cp. Before we solve problems involving these partial differential
equations, we will formulate partial differential equations corresponding to heat
flow problems in two or three spatial dimensions. We will find the derivation to be
similar to the one used for one-dimensional problems, although important differences
will emerge. We propose to derive new and more complex equations (before solving
the simpler ones) so that, when we do discuss techniques for the solutions of PDEs,
we will have more than one example to work with.

Heat energy. We begin our derivation by considering any arbitrary subregion
R, as illustrated in Fig. 1.5.1. As in the one-dimensional case, conservation of heat
energy is summarized by the following word equation:

rate of change
of heat energy

heat energy flowing heat energy generatedacross the boundaries + inside per unit time,per unit time

where the heat energy within an arbitrary subregion R is

heat energy = fff cpu dV,
R

instead of the one-dimensional integral used in Sec. 1.2.
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Figure 1.5.1 Three-dimensional subregion R.

Figure 1.5.2 Outward normal component of heat flux vec-
tor.

Heat flux vector and normal vectors. We need an expression for
the flow of heat energy. In a one-dimensional problem the heat flux 0 is defined
to the right (0 < 0 means flowing to the left). In a three-dimensional problem
the heat flows in some direction, and hence the heat flux is a vector 0. The
magnitude of 0 is the amount of heat energy flowing per unit time per unit surface
area. However, in considering conservation of heat energy, it is only the heat flowing
across the boundaries per unit time that is important. If, as at point A in Fig. 1.5.2,
the heat flow is parallel to the boundary, then there is no heat energy crossing the
boundary at that point. In fact, it is only the normal component of the heat flow
that contributes (as illustrated by point B in Fig. 1.5.2). At any point there are two
normal vectors, an inward and an outward normal n. We will use the convention
of only utilizing the unit outward normal vector A (where the " stands for a
unit vector).

Conservation of heat energy. At each point the amount of heat energy
flowing out of the region R per unit time per unit surface area is the outward normal
component of the heat flux vector. From Fig. 1.5.2 at point B, the outward normal
component of the heat flux vector is 10I cos8 = d, n/Inj = 0 A . If the heat flux
vector 0 is directed inward, then ¢ Is < 0 and the outward flow of heat energy
is negative. To calculate the total heat energy flowing out of R per unit time, we
must multiply 0 Is by the differential surface area dS and "sum" over the entire
surface that encloses the region R. This4 is indicated by the closed surface integral

0 A dS. This is the amount of heat energy (per unit time) leaving the region
R and (if positive) results in a decreasing of the total heat energy within R. If Q

4Sometimee the notation 0n is used instead of 0 A, meaning the outward normal component
of 0.
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is the rate of heat energy generated per unit volume, then the total heat energy
generated per unit time is fffR Q dV. Consequently, conservation of heat energy
for an arbitrary three-dimensional region R becomes

Divergence theorem. In one dimension, a way in which we derived a
partial differential relationship from the integral conservation law was to notice
(via the fundamental theorem of calculus) that

(a) - (b) = -
jb

X dx;

that is, the flow through the boundaries can be expressed as an integral over the
entire region for one-dimensional problems. We claim that the divergence theorem
is an analogous procedure for functions of three variables. The divergence theorem
deals with a vector A (with components A, Ay and A=; i.e., A = A=i+Ayj+Azk)
and its divergence defined as follows:

V.A aA,, + Ay + aA: (1.5.2)

Note that the divergence of a vector is a scalar. The divergence theorem states
that the volume integral of the divergence of any continuously differ-
entiable vector A is the closed surface integral of the outward normal
component of A:

JJJV.A d
R

(1.5.3)

This is also known as Gauss's theorem. It can be used to relate certain surface
integrals to volume integrals, and vice versa. It is very important and very useful
(both immediately and later in this text). We omit a derivation, which may be based
on repeating the one-dimensional fundamental theorem in all three dimensions.

Application of the divergence theorem to heat flow. In partic-
ular, the closed surface integral that arises in the conservation of heat energy (1.5.1),
corresponding to the heat energy flowing across the boundary per unit time, can
be written as a volume integral according to the divergence theorem, (1.5.3). Thus,
(1.5.1) becomes

dt
if (1.5.4)
R R

K
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We note that the time derivative in (1.5.4) can be put inside the integral (since R
is fixed in space) if the time derivative is changed to a partial derivative. Thus, all
the expressions in (1.5.4) are volume integrals over the same volume, and they can
be combined into one integgral::

fJJ[cP+v._Q] dV =0. (1.5.5)

Since this integral is zero for all regions R, it follows (as it did for one-dimensional
integrals) that the integrand itself must be zero:

cpat

or, equivalently,

cp _ -V- +Q.

Equation (1.5.6) reduces to (1.2.3) in the one-dimensional case.

(1.5.6)

Fourier's law of heat conduction. In one-dimensional problems, from
experiments according to Fourier's law, the heat flux 0 is proportional to the deriva-
tive of the temperature, 0 _ -KO au/ax. The minus sign is related to the fact that
thermal energy flows from hot to cold. Ou/ax is the change in temperature per
unit length. These same ideas are valid in three dimensions. In the appendix,
we derive that the heat flux vector 0 is proportional to the temperature gradient
(emu

TX- s + Yj + eik):

0 = -KoVu, (1.5.7)

known as Fourier's law of heat conduction, where again Ko is called the thermal
conductivity. Thus, in three dimensions the gradient Vu replaces au/ax.

Heat equation. When the heat flux vector, (1.5.7), is substituted into the
conservation of heat energy equation, (1.5.6), a partial differential equation for the
temperature results:

au
cp

at
= Q. (1.5.8)

In the cases in which there are no sources of heat energy (Q = 0) and the thermal
coefficients are constant, (1.5.8) becomes

au - kV.(Vu), (1.5.9)
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where k = Ko/cp is again called the thermal diffusivity. From their definitions, we
calculate the divergence of the gradient of u:

ax (ax) +
a
Z 5j (a + az (az)

2 2
2

a 2 + 8y2 + a,Z2 = V u.

(1.5.10)
This expression V2u is defined to be the Laplacian of u. Thus, in this case

au = kV2u.
8t

(1.5.11)

Equation (1.5.11) is often known as the heat or diffusion equation in three spatial
dimensions. The notation V2u is often used to emphasize the role of the del operator
v:

V- aaz+ay + axk.

Note that Vu is V operating on u, while is the vector dot product of del with
A. Frthermore, V2 is the dot product of the del operator with itself or

VV
ax (a ) ay+ \ ay / + Y Z-

operating on u, hence the notation del squared, V2.

Initial boundary value problem. In addition to (1.5.8) or (1.5.11),
the temperature satisfies a given initial distribution,

u(x,y,z,0) = f(x,y,z)-

The temperature also satisfies a boundary condition at every point on the surface
that encloses the region of interest. The boundary condition can be of various types
(as in the one-dimensional problem). The temperature could be prescribed,

u(x, y, z, t) = T(x, y, z, t),

everywhere on the boundary where T is a known function of t at each point of
the boundary. It is also possible that the flow across the boundary is prescribed.
Frequently, we might have the boundary (or part of the boundary) insulated. This
means that there is no heat flow across that portion of the boundary. Since the
heat flux vector is -KO Vu, the heat flowing out will be the unit outward normal
component of the heat flow vector, - KO V u n, where f is a unit outward normal
to the boundary surface. Thus, at an insulated surface,

0.
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Recall that is the directional derivative of u in the outward normal direction;
it is also called the normal derivative.5

Often Newton's law of cooling is a more realistic condition at the boundary.
It states that the heat energy flowing out per unit time per unit surface area is
proportional to the difference between the temperature at the surface u and the
temperature outside the surface ub. Thus, if Newton's law of cooling is valid, then
at the boundary

H(u - ub). (1.5.12)

Note that usually the proportionality constant H > 0, since if u > ub, then we ex-
pect that heat energy will flow out and will be greater than zero. Equa-
tion (1.5.12) verifies the two forms of Newton's law of cooling for one-dimensional
problems. In particular, at x = 0,n = -2 and the left-hand side (l.h.s.) of (1.5.12)
becomes Ko &u/ax, while at x = L, n = i and the l.h.s. of (1.5.12) becomes
-Ko0u/8x (see (1.3.4) and (1.3.5)].

Steady state. If the boundary conditions and any sources of thermal energy
are independent of time, it is possible that there exist steady-state solutions to the
heat equation satisfying the given steady boundary condition:

0 = V.(KoVu) + Q.

Note that an equilibrium temperature distribution u(x, y, z) satisfies a partial differ-
ential equation when more than one spatial dimension is involved. In the case with
constant thermal properties, the equilibrium temperature distribution will satisfy

known as Poisson's equation.
If, in addition, there are no sources (Q = 0), then

V2u=0;

(1.5.13)

(1.5.14)

the Laplacian of the temperature distribution is zero. Equation (1.5.14) is known
as Laplace's equation. It is also known as the potential equation, since the
gravitational and electrostatic potentials satisfy (1.5.14) if there are no sources. We
will solve a number of problems involving Laplace's equation in later sections.

5Sometimes (in other books and references) the notation 8u/8n is used. However, to calculate
8u/tOn we usually calculate the dot product of the two vectors, Vu and A, so we will not
use the notation &u/8n in this text.
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Two-dimensional problems. All the previous remarks about three-
dimensional problems are valid if the geometry is such that the temperature only
depends on x, y and t. For example, Laplace's equation in two dimensions, x and
y, corresponding to equilibrium heat flow with no sources (and constant thermal
properties) is

82u 82u
V2u

8x2
+ 9y2 = 0,

since 82u/8z2 = 0. Two-dimensional results can be derived directly (without tak-
ing a limit of three-dimensional problems), by using fundamental principles in two
dimensions. We will not repeat the derivation. However, we can easily outline the
results. Every time a volume integral (JR dV) appears, it must be replaced by
a surface integral over the entire two-dimensional plane region (IR . dS). Simi-
larly, the boundary contribution for three-dimensional problems, which is the closed
surface integral j ...dS, must be replaced by the closed line integral j.. dr,
an integration over the boundary of the two-dimensional plane surface. These
results are not difficult to derive since the divergence theorem in three dimen-
sions,

ff V.AdV= (1.5.15)

is valid in two dimensions, taking the form

JfV.AdS=JA.itdr. (1.5.16)

R

Sometimes (1.5.16) is called Green's theorem, but we prefer to refer to it as the two-
dimensional divergence theorem. In this way only one equation need be familiar to
the reader, namely (1.5.15); the conversion to two-dimensional form involves only
changing the number of integral signs.

Polar and cylindrical coordinates. The Laplacian,

2 2

°ZU - 5x2 + aye + 5_Z__2' (1.5.17)

is important for the heat equation (1.5.11) and its steady-state versio i (1.5.14), as
well as for other significant problems in science and engineering. Equation (1.5.17)
written in (1.5.17) in Cartesian coordinates is most useful when the geometrical
region under investigation is a rectangle or a rectangular box. Other coordinate
systems are frequently useful. In practical applications, we may need the formula
that expresses the Laplacian in the appropriate coordinate system. In circular
cylindrical coordinates, with r the radial distance from the z-axis and 0 the angle
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x = rcosO
y = rsin0 (1.5.18)

z = Z.

the Laplacian can be shown to equal the following formula:

v2u=T1 a &U &U

ar (rar)+T2ae2 +8za. (1.5.19)

There may be no need to memorize this formula, as it can often be looked up in a
reference book. As an aid in minimizing errors, it should be noted that every term
in the Laplacian has the dimension of u divided by two spatial dimensions (just as
in Cartesian coordinates, (1.5.17)]. Since 0 is measured in radians, which have no
dimensions, this remark aids in remembering to divide a2u/a02 by r2. In polar
coordinates (by which we mean a two-dimensional coordinate system with z fixed,
usually z = 0), the Laplacian is the same as (1.5.19) with a2u/az2 = 0 since there
is no dependence on z. Equation (1.5.19) can be derived (see the Exercises) using
the chain rule for partial derivatives, applicable for changes of variables.

In some physical situations it is known that the temperature does not depend
on the polar angle 0; it is said to be circularly or axially symmetric. In that case

V 2U
r ar (r) + az2. (1.5.20)

Spherical coordinates. Geophysical problems as well as electrical prob-
lems with spherical conductors axe best solved using spherical coordinates (p, 0, 0).
The radial distance is p, the angle from the pole (z-axis) is ¢, and the cylindrical
(or azimuthal) angle is 0. Note that if p is constant and the angle 0 is a constant a
circle is generated with radius p sin 0 (as shown in Fig. 1.5.3) so that

x = p sin o cos 8
y = psinosin0
z = p cos 0.

(1.5.21)

The angle from the pole ranges from 0 to it (while the usual cylindrical angle ranges
from 0 to 21r). It can be shown that the Laplacian satisfies

°2u = 1 a (p2 au1 a ( au) 1_a2u
p2 ap ap + P2 sin 80 sin ¢ a¢ +

p2sin2 o 502
(1.5.22)
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x=L

EXERCISES 1.5

Area
magnified

Figure 1.5.3 Spherical coordinates.
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1.5.1. Let c(x, y, z, t) denote the concentration of a pollutant (the amount per unit
volume).

(a) What is an expression for the total amount of pollutant in the region
R?

(b) Suppose that the flow J of the pollutant is proportional to the gradient
of the concentration. (Is this reasonable?) Express conservation of the
pollutant.

(c) Derive the partial differential equation governing the diffusion of the
pollutant.

*1.5.2. For conduction of thermal energy, the heat flux vector is 4 _ -KoVu. If
in addition the molecules move at an average velocity V, a process called
convection, then briefly explain why 0 _ -KoVu + cpuV. Derive the
corresponding equation for heat flow, including both conduction and con-
vection of thermal energy (assuming constant thermal properties with no
sources).

1.5.3. Consider the polar coordinates

x=rcos9
y = r sin 9.

(a) Since r2 = x2 + y2, show that O = cos 0, = sing, " =Ty-
cos B and 8B sin 9
r ' 8x r

(b) Show that r = cos Bi + sin 03 and B = - sin 0 + cos 63.
(c) Using the chain rule, show that V = r" ar + 9,i- g and hence Vu =

r"+ -r 8e 9.
(d) If A = ArT + Ae6, show that r Tr_ (rAr) + r 8 (AB), since

8r" /8B = 9 and 86/80 = -f follows from part (b).
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z
(e) Show that V2u = 1 (r a;`) + 3 aer Or

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the
special case of Exercise 1.5.3(e) if u(r) only.

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where
r2 = x2 + y2. We will derive the heat equation for this problem. Consider
any circular annulus a < r < b.

(a) Show that the total heat energy is 21r fQ cpur dr.
(b) Show that the flow of heat energy per unit time out of the annulus at

r = h is --21rbKoau/ar 1,=b. A similar result holds at r = a.
(c) Use parts (a) and (b) to derive the circularly symmetric heat equation

without sources:
au -k a aul
at r ar r

' a , _ J

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r.

1.5.7. Derive the heat equation in two dimensions by using Green's theorem,
(1.5.16), the two-dimensional form of the divergence theorem.

1.5.8. If Laplace's equation is satisfied in three dimensions, show that

Vu-ft dS = 0

for any closed surface. (Hint:

Use

the divergence theorem.) Give a physical
interpretation of this result (in the context of heat flow).

1.5.9. Determine the equilibrium temperature distribution inside a circular annu-
lus (rl < r < r2):

*(a) if the outer radius is at temperature T2 and the inner at T1
(b) if the outer radius is insulated and the inner radius is at temperature

Ti

1.5.10. Determine the equilibrium temperature distribution inside a circle (r < ro)
if the boundary is fixed at temperature To.

*1.5.11. Consider

subject to
at _r 5T Crar)

a<r<b

u r, 0
au au

(b, t) = 1.( ) = f (r), ar (a, t) = f3, and
19r

Using physical reasoning, for what value(s) of 0 does an equilibrium tem-
perature distribution exist?
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1.5.12. Assume that the temperature is spherically symmetric, u = u(r, t), where r
is the distance from a fixed point (r2 = x2 + y2 + z2). Consider the heat
flow (without sources) between any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 47r fo cpur2 dr.
(b) Show that the flow of heat energy per unit time out of the spherical

shell at r = b is -4irb2Ko 8u/8r Ir=b. A similar result holds at r = a.
(c) Use parts (a) and (b) to derive the spherically symmetric heat equation

8u k 8 T28u
8t r2 8r C?

.

*1.5.13. Determine the steady-state temperature distribution between two concentric
spheres with radii 1 and 4, respectively, if the temperature of the outer
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12).

1.5.14. Isobars are lines of constant temperature. Show that isobars are perpendic-
ular to any part of the boundary that is insulated.

1.5.15. Derive the heat equation in three dimensions assuming constant thermal
properties and no sources.

1.5.16. Express the integral conservation law for any three-dimensional object. As-
sume there are no sources. Also assume the heat flow is specified,
g(x, y, z), on the entire boundary and does not depend on time. By in-
tegrating with respect to time, determine the total thermal energy. (Hint:
Use the initial condition.)

1.5.17. Derive the integral conservation law for any three dimensional object (with
constant thermal properties) by integrating the heat equation (1.5.11) (as-
suming no sources). Show that the result is equivalent to (1.5.1).
Orthogonal curvilinear coordinates. A coordinate system (u,
v, w) may be introduced and defined by x = x(u, v, w), y = y(u, v, w) and
z = z(u, v, w). The radial vector r =_ At + yj + A. Partial derivatives of
r with respect to a coordinate are in the direction of the coordinate. Thus,
for example, a vector in the u-direction 8r/8u can be made a unit vector e
in the u-direction by dividing by its length h = I8r/8ul called the scale
factor: cu = - er/au .

1.5.18. Determine the scale factors for cylindrical coordinates.

1.5.19. Determine the scale factors for spherical coordinates.

1.5.20. The gradient of a scalar can be expressed in terms of the new coordinate
system Vg = a 6)r/8u + b 8r/(7v + c Or/Ow, where you will determine the
scalars a, b, c. Using dg = V9 dr, derive that the gradient in an orthogonal
curvilinear coordinate system is given by

Vg = 1 8g _ 1 8g 1 8g
0-

( )

T" T. eu + h 8; e +
hu, 8w

. 1.5.23
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An expression for the divergence is more difficult to derive, and we will just
state that if a vector p is expressed in terms of this new coordinate system
p = pueu + Pwew, then the divergence satisfies

p huh hw
[57u (hvhwpu) + 8v (huhwpv) + ru (huhvPw)] . (1.5.24)

v

1.5.21. Using (1.5.23) and (1.5.24), derive the Laplacian in an orthogonal curvi-
linear coordinate system:

V2 T
= huhvhw [a

(hhuw

n) + On

(huhw

va/ + Ow \ hw° Ow
(1.5.25)

1.5.22. Using (1.5.25), derive the Laplacian for cylindrical coordinates.

1.5.23. Using (1.5.25), derive the Laplacian for spherical coordinates.

Appendix to 1.5: Review of Gradient and a
Derivation of Fourier's Law of Heat Conduction
Experimentally, for isotropic6 materials (i.e., without preferential directions) heat
flows from hot to cold in the direction in which temperature differences
are greatest. The heat flow is proportional (with proportionality constant KO, the
thermal conductivity) to the rate of change of temperature in this direction.

The change in the temperature Au is

Du = u(x + Ax, t) - u(x, t) -- a-1 x + On
Ay + 8 Az.

In the direction a = a1z+a2j+a3%, Ox = Lisa, where As is the distance between
x and x + Ax. Thus, the rate of change of the temperature in the direction a is
the directional derivative:

AU &U
+ a2

On + a3 On = a Vu,lim
= a1o Os 8 8y 8z

where it has been convenient to define the following vector.

8u. 8u . 8u .
Vu = 8x z+ ay7 + 8z

k, (1.5.26)

called the gradient of the temperature. From the property of dot products, if 0
is the angle between a and Vu, then the directional derivative is JVul cos B since

6Examples of nonisotropic materials are certain crystal and grainy woods.
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Figure 1.5.4 The gradient is perpendih ular to level sur-
faces of the temperature.

161 = 1. The largest rate of change of u (the largest directional derivative) is
IVul > 0, and it occurs if 0 = 0 (i.e., in the direction of the gradient). Since this
derivative is positive, the temperature increase is greatest in the direction of the
gradient. Since heat energy flows in the direction of decreasing temperatures, the
heat flow vector is in the opposite direction to the heat gradient. It follows
that

4i = -KoVu, (1.5.27)

since jDuj equals the magnitude of the rate of change of u (in the direction of the
gradient). This again is called Fourier's law of heat conduction. Thus, in three
dimensions, the gradient Vu replaces Ou/8x.

Another fundamental property of the gradient is that it is normal (perpendicu-
lar) to the level surfaces. It is easier to illustrate this in a two-dimensional problem
(see Fig. 1.5.4) in which the temperature is constant along level curves (rather than
level surfaces). To show that the gradient is perpendicular, consider the surface
on which the temperature is the constant To, u(x, y, z, t) = To. We calculate the
differential of both sides (at a fixed time) along the surface. Since To is constant,
dTo = 0. Therefore, using the chain rule of partial derivatives,

du= 5-dx+ dy+ 8dz =0.

Equation (1.5.28) can be written as

\\
COZi + a-3 -5 k ] (dx a + dy j + dz =, k) = 0

or

(1.5.28)

(1.5.29)

dxi + dyj + dzk represents any vector in the tangent plane of the level surface.
From (1.5.29), its dot product with Vu is zero; that is, Vu is perpendicular to the
tangent plane. Thus, Vu is perpendicular to the surface u = constant.
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We have thus learned two properties of the gradient, Vu:

1. Direction: Vu is perpendicular to the surface u = constant. Vu is also in the
direction of the largest directional derivative. u increases in the direction of
the gradient.)

2. Magnitude: IVul is the largest value of the directional derivative.



Chapter 2

Method of
Separation of Variables

2.1 Introduction
In Chapter 1 we developed from physical principles an understanding of the heat
equation and its corresponding initial and boundary conditions. We are ready
to pursue the mathematical solution of some typical problems involving partial
differential equations. We will use a technique called the method of separation of
variables. You will have to become an expert in this method, and so we will discuss
quite a few examples. We will emphasize problem-solving techniques, but we must
also understand how not to misuse the technique.

A relatively simple but typical, problem for the equation of heat conduction
occurs for a one-dimensional rod (0 < x < L) when all the thermal coefficients are
constant. Then the PDE,

Ou 02u Q(x,t) t>0k +
(2.1.1)

8t 8x2 cp '

must be solved subject to the initial condition,

0 < x < L,

u(x,0) = f(x), 0 < x < L, (2.1.2)

and two boundary conditions. For example, if both ends of the rod have prescribed
temperature, then

u(0,t) = Ti(t)

u(L, t) = T2(t).
t > 0 (2.1.3)

The method of separation of variables is used when the partial differential equation
and the boundary conditions are linear and homogeneous, concepts we now explain.

35
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2.2 Linearity
As in the study of ordinary differential equations, the concept of linearity will be
very important for us. A linear operator L by definition satisfies

L(clul +c2u2) = c1L(ul)+c2L(u2) (2.2.1)

for any two functions ul and u2, where cl and c2 are arbitrary constants. 8/8t and
82/8x2 are examples of linear operators since they satisfy (2.2.1):

at (clul + c2u2)

02

8x2
(Clul + c2u2)

8ul 8u2
Cl

St + c2 at

82u1 82u2
Cl + C2

8x2 8x2

It can be shown (see Exercise 2.2.1) that any linear combination of linear operators
is a linear operator. Thus, the heat operator

0 02

8t k8x2

is also a linear operator.
A linear equation for u is of the form

(2.2.2)

where L is a linear operator and f is known. Examples of linear partial differential
equations are

L9u &2U

at k5X--2 +f(x,t)

Chapter 2. Method of Separation of Variables

L(u) = f,

02u

8x2
+

aujj = ka 22 + a(x, t)u + f (x, t)

82u
8y2

= 0

at a,+ a(x, t)u.

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

Examples of nonlinear partial differential equations are

2

at
= k + a(x,t)u4 (2.2.7)

8u 8u 83u
et + u 8x = 8x3 (2.2.8)

The u4 and u8u/8x terms are nonlinear; they do not satisfy (2.2.1).
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If f = 0, then (2.2.2) becomes L(u) = 0, called a linear homogeneous equa-
tion. Examples of linear homogeneous partial differential equations include the heat
equation,

z
- kO-2 =0 (2.2.9)

as well as (2.2.5) and (2.2.6). From (2.2.1) it follows that L(0) = 0 (let cl = c2 = 0).
Therefore, it = 0 is always a solution of a linear homogeneous equation. For example,
it = 0 satisfies the heat equation (2.2.9). We call it = 0 the trivial solution of a
linear homogeneous equation. The simplest way to test whether an equation is
homogeneous is to substitute the function u identically equal to zero. If it = 0
satisfies a linear equation, then it must be that f = 0 and hence the linear equation
is homogeneous. Otherwise, the equation is said to be nonhomogeneous [e.g.,
(2.2.3) and (2.2.4)].

The fundamental property of linear operators (2.2.1) allows solutions of linear
equations to be added together in the following sense:

Principle of Superposition
If ul and u2 satisfy a linear homogeneous equation, then an arbitrary linear
combination of them, clue + c2u2i also satisfies the same linear homogeneous
equation.

The proof of this relies on the definition of a linear operator. Suppose that ul and
u2 are two solutions of a linear homogeneous equation. That means that L(ul) = 0
and L(u2) = 0. Let us calculate L(clul + c2u2). From the definition of a linear
operator,

L(clul + C2U2) = c1L(ul) + c2L(u2).

Since ul and u2 are homogeneous solutions, it follows that L(clul+c2u2) = 0. This
means that clue + c2u2 satisfies the linear homogeneous equation L(u) = 0 if ul
and u2 satisfy the same linear homogeneous equation.

The concepts of linearity and homogeneity also apply to boundary conditions,
in which case the variables are evaluated at specific points. Examples of linear
boundary conditions are the conditions we have discussed:

u(0,t) = f(t) (2.2.10)

8 (L, t) = g(t) (2.2.11)

8 (0,t) = 0 (2.2.12)

-Ko (L, t) = h[u(L, t) - g(t)]. (2.2.13)

A nonlinear boundary condition, for example, would be

8x (L, t) = U2 (L, t). (2.2.14)
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Only (2.2.12) is satisfied by u 0 (of the linear conditions) and hence is homoge-
neous. It is not necessary that a boundary condition be u(0, t) = 0 for u 0 to
satisfy it.

EXERCISES 2.2

2.2.1. Show that any linear combination of linear operators is a linear operator.

2.2.2. (a) Show that L(u) = 307, [Ko(x)Ou] is a linear operator.

TX-
[Ko(x, u)Ou] is not a linear operator.(b) Show that usually L(u) _

2.2.3. Show that = k a + Q(u, x, t) is linear if Q = a(x, t)u + (3(x, t) and, in
addition, homogeneous if 3(x, t) = 0.

2.2.4. In this exercise we derive superposition principles for nonhomogeneous prob-
lems.

(a) Consider L(u) = f. If up is a particular solution, L(up) = f, and
if ul and u2 are homogeneous solutions, L(uj) = 0, show that u =
Up + c1u1 + c2U2 is another particular solution.

(b) If L(u) = f, + f2, where up; is a particular solution corresponding to
f;, what is a particular solution for f1 + f2?

2.2.5 If L is a linear operator, show that L(EM 1 cu,a) = En 1 c,iL(un). Use
this result to show that the principle of superposition may be extended to
any finite number of homogeneous solutions.

2.3 Heat Equation with Zero Temperatures
at Finite Ends

2.3.1 Introduction
Partial differential equation (2.1.1) is linear but it is homogeneous only if there are
no sources, Q(x, t) = 0. The boundary conditions (2.1.3) are also linear, and they
too are homogeneous only if T, (t) = 0 and T2(t) = 0. We thus first propose to
study

8u &2u 0<x<L
PDE:

k
(2.3.1)

-3t 8x2 t>0

BC: I u(0, t) = 0
(2 3 2)u(L, 0 = 0 . .
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IC: u(x,0) = f(x). (2.3.3)

The problem consists of a linear homogeneous partial differential equation with lin-
ear homogeneous boundary conditions. There are two reasons for our investigating
this type of problem, (2.3.1)-(2.3.3), besides the fact that we claim it can be solved
by the method of separation of variables. First, this problem is a relevant physical
problem corresponding to a one-dimensional rod (0 < x < L) with no sources and
both ends immersed in a 0° temperature bath. We are very interested in predicting
how the initial thermal energy (represented by the initial condition) changes in this
relatively simple physical situation. Second, it will turn out that in order to solve
the nonhomogeneous problem (2.1.1)-(2.1.3), we will need to know how to solve the
homogeneous problem, (2.3.1)-(2.3.3).

2.3.2 Separation of Variables
In the method of separation of variables, we attempt to determine solutions in
the product form

u(x, t) = O(x)G(t), (2.3.4)

where O(x) is only a function of x and G(t) only a function of t. Equation (2.3.4)
must satisfy the linear homogeneous partial differential equation (2.3.1) and bound-
ary conditions (2.3.2), but for the moment we set aside (ignore) the initial condition.
The product solution, (2.3.4), usually does not satisfy the initial conditions. Later
we will explain how to satisfy the initial conditions.

Let us be clear from the beginning-we do not give any reasons why we choose
the form (2.3.4). (Daniel Bernoulli invented this technique in the 1700s. It works
because it reduces a PDE to ODEs, as we shall see.) We substitute the assumed
product form, (2.3.4), into the partial differential equation (2.3.1):

au dG= OW
dt

02u d2o
Ox2 = jy2 G(t),

and consequently the heat equation (2.3.1) implies that

o-G(t). (2.3.5)fi(x) d - = kdX2

We note that we can "separate variables" by dividing both sides of (2.3.5) by
O(x)G(t):

1dG_ 1d20
G dt

k
0 dx2

Now the variables have been "separated" in the sense that the left-hand side is only
a function of t and the right-hand side only a function of x. We can continue in



40 Chapter 2. Method of Separation of Variables

this way, but it is convenient (i.e., not necessary) also to divide by the constant k,
and thus

1 dG
kG dt

function
of t only

1 d20
0dX2

function
of x only

(2.3.6)

This could be obtained directly from (2.3.5) by dividing by ko(x)G(t). How is it
possible for a function of time to equal a function of space? If x and t are both to
be arbitrary independent variables, then x cannot be a function of t (or t a function
of x) as seems to be specified by (2.3.6). The important idea is that we claim it is
necessary that both sides of (2.3.6) must equal the same constant:

1 dG 1d2O

kG dt dx2
(2.3.7)

where A is an arbitrary constant known as the separation constant.' We will
explain momentarily the mysterious minus sign, which was introduced only for
convenience.

Equation (2.3.7) yields two ordinary differential equations, one for G(t) and one
for O (x):

d2-
= -AO (2.3.8)

dx

dG = -AkG.
dt

(2.3.9)

We reiterate that A is a constant and it is the same constant that appears in both
(2.3.8) and (2.3.9). The product solutions, u(x, t) = O(x)G(t), must also satisfy
the two homogeneous boundary conditions. For example, u(0, t) = 0 implies that
i(0)G(t) = 0. There are two possibilities. Either G(t) = 0 (the meaning of =_
is identically zero, for all t) or ¢(0) = 0. If G(t) _ 0, then from (2.3.4), the
assumed product solution is identically zero, u(x, t) __ 0. This is not very interesting.
[u(x, t) - 0 is called the trivial solution since u(x, t) __ 0 automatically satisfies
any homogeneous PDE and any homogeneous BC.) Instead, we look for nontrivial
solutions. For nontrivial solutions, we must have

0(0) = 0. (2.3.10)

'As further explanation for the constant in (2.3.7), let us say the following. Suppose that the
left-hand side of (2.3.7) is some function of t, (1/kG) dG dt = w(t). If we differentiate with respect
to x, we get zero: 0 = d/dx(1/46 d2o/dx2). Since 1/0 ¢/dx2 is only a function of x, this implies
that 1/0 d24/dx2 must be a constant, its derivative equaling zero. In this way (2.3.7) follows.
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By applying the other boundary condition, u(L, t) = 0, we obtain in a similar way
that

O(L) = 0. (2.3.11)

Product solutions, in addition to satisfying two ordinary differential equations,
(2.3.8) and (2.3.9), must also satisfy boundary conditions (2.3.10) and (2.3.11).

2.3.3 Time-Dependent Equation
The advantage of the product method is that it transforms a partial differential
equation, which we do not know how to solve, into two ordinary differential equa-
tions. The boundary conditions impose two conditions on the x-dependent ordinary
differential equation (ODE). The time-dependent equation has no additional con-
ditions, just

dG = -
dt

AkG. (2.3.12)

Let us solve (2.3.12) first before we discuss solving the x-dependent ODE with
its two homogeneous boundary conditions. Equation (2.3.12) is a first-order linear
homogeneous differential equation with constant coefficients. We can obtain its gen-
eral solution quite easily. Nearly all constant-coefficient (linear and homogeneous)
ODES can be solved by seeking exponential solutions, G = e't, where in this case
by substitution the characteristic polynomial is r = -Ak. Therefore, the general
solution of (2.3.12) is

G(t) = ce'kt. (2.3.13)

We have remembered that for linear homogeneous equations, if a-akt is a solution,
then ce-1k' is a solution (for any arbitrary multiplicative constant c). The time-
dependent solution is a simple exponential. Recall that A is the separation constant,
which for the moment is arbitrary. However, eventually we will discover that only
certain values of A are allowable. If A > 0, the solution exponentially decays as t
increases (since k > 0). If A < 0, the solution exponentially increases, and if A = 0,
the solution remains constant in time. Since this is a heat conduction problem
and the temperature u(x, t) is proportional to G(t), we do not expect the solution
to grow exponentially in time. Thus, we expect A > 0; we have not proved that
statement, but we shouldn't. Thus, it is rather convenient that we have discovered
that we expect A > 0. In fact, that is why we introduced the expression -A when
we separated variables [see (2.3.7)]. If we had introduced p (instead of -A), then
our previous arguments would have suggested that p < 0. In summary, when
separating variables in (2.3.7), we mentally solve the time-dependent equation and
see that G(t) does not exponentially grow only if the separation constant was < 0.
We then introduce -A for convenience, since we would now expect A > 0. We
next show how we actually determine all allowable separation constants. We will
verify mathematically that A > 0, as we expect by the physical arguments presented
previously.
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2.3.4 Boundary Value Problem
The x-dependent part of the assumed product solution, O(x), satisfies a second-order
ODE with two homogeneous boundary conditions:

d20
Adx2

0(0) = 0
q5(L) = 0.

(2.3.14)

We call (2.3.14) a boundary value problem for ordinary differential equations. In
the usual first course in ordinary differential equations, only initial value problems
are specified. For example (think of Newton's law of motion for a particle), we solve
second-order differential equations (m. d2y/d2 = F) subject to two initial conditions
[y(0) and dy/dt(0) given) both at the same time. Initial value problems are quite nice,
as usually there exist unique solutions to initial value problems. However, (2.3.14)
is quite different. It is a boundary value problem, since the two conditions are not
given at the same place (e.g., x = 0) but at two different places, x = 0 and x = L.
There is no simple theory that guarantees that the solution exists or is unique to this
type of problem. In particular, we note that O(x) = 0 satisfies the ODE and both
homogeneous boundary conditions, no matter what the separation constant A is,
even if A < 0; it is referred to as the trivial solution of the boundary value problem.
It corresponds to u(x, t) 0, since u(x, t) = O(x)G(t). If solutions of (2.3.14) had
been unique, then O(x) 0 would be the only solution; we would not be able to
obtain nontrivial solutions of a linear homogeneous PDE by the product (separation
of variables) method. Fortunately, there are other solutions of (2.3.14). However,
there do not exist nontrivial solutions of (2.3.14) for all values of A. Instead, we
will show that there are certain special values of A, called eigenvalues2 of the
boundary value problem (2.3.14), for which there are nontrivial solutions, O(x). A
nontrivial 4(x), which exists only for certain values of A, is called an eigenfunction
corresponding to the eigenvalue A.

Let us try to determine the eigenvalues A. In other words, for what values of A
are there nontrivial solutions of (2.3.14)? We solve (2.3.14) directly. The second-
order ODE is linear and homogeneous with constant coefficients: Two independent
solutions are usually obtained in the form of exponentials, 0 = e''2. Substituting
this exponential into the differential equation yields the characteristic polynomial
r2 = -A. The solutions corresponding to the two roots have significantly different
properties depending on the value of A. There are four cases:

1. A > 0, in which the two roots are purely imaginary and are complex conjugates
of each other, r =

2. A = 0, in which the two roots coalesce and are equal, r = 0, 0.

2The word eigenvalue comes from the German word eigenwert, meaning characteristic value.



2.3. Heat Equation With Zero Temperature Ends 43

3. A < 0, in which the two roots are real and unequal, r = f-V--A, one positive
and one negative. (Note that in this case -A is positive, so that the square
root operation is well defined.)

4. A itself complex.

We will ignore the last case (as most of you would have done anyway) since we
will later (Chapter 5) prove that A is real in order for a nontrivial solution of the
boundary value problem (2.3.14) to exist. From the time-dependent solution, using
physical reasoning, we expect that A > 0; perhaps then it will be unnecessary
to analyze case 3. However, we will demonstrate a mathematical reason for the
omission of this case.

Eigenvalues and eigenfunctions (A > 0). Let us first consider the
case in which A > 0. The boundary value problem is

=d -A4 (2 15)3
2

. .

0(0) = 0 (2.3.16)

0 (2.3.17)

If A > 0, exponential solutions have imaginary exponents, e±"",\'. In this case,
the solutions oscillate. If we desire real independent solutions, the choices cos fx
and sin fx are usually made (cos fx and sin fx are each linear combinations
of et`vrA-l). Thus, the general solution of (2.3.15) is

(P = cl cos vx + c2 sin fx, (2.3.18)

an arbitrary linear combination of two independent solutions. (The linear combina-
tion may be chosen from any two independent solutions.) cos fx and sin v' x are
usually the most convenient, but e" and a-"/x-= can be used. In some examples,
other independent solutions are chosen. For example, Exercise 2.3.2(f) illustrates
the advantage of sometimes choosing cos and sin '(x-a) as independent
solutions.

We now apply the boundary conditions. 0(0) = 0 implies that

0=c1.

The cosine term vanishes, since the solution must be zero at x = 0. Thus, O(x) =
c2 sin f x. Only the boundary condition at x = L has not been satisfied. O(L) = 0
implies that

0 = C2 sin VA-L.

Either c2 = 0 or sin f L = 0. If c2 = 0, then O(x) = 0 since we already determined
that cl = 0. This is the trivial solution, and we are searching for those values of A
that have nontrivial solutions. The eigenvalues A must satisfy

sin fL = 0. (2.3.19)
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vfA-L must be a zero of the sine function. A sketch of sin z (see Fig. 2.3.1) or our
knowledge of the sine function shows that V_AL = na. v '_AL must equal an integral
multiple of 7r, where n is a positive integer since V > 0 (n = 0 is not appropriate
since we assumed that A > 0 in this derivation). The eigenvalues A are

(2.3.20)

The eigenfunction corresponding to the eigenvalue A = (nir/L)2 is

4,(x) = c2 sin vAx = c2 sin
n7rx

L (2.3.21)

where c2 is an arbitrary multiplicative constant. Often we pick a convenient value
for c2; for example, c2 = 1. We should remember, though, that any specific eigen-
function can always be multiplied by an arbitrary constant, since the PDE and BCs
are linear and homogeneous.

sinz

Figure 2.3.1 Zeros of sin z.

Eigenvalue (A = 0). Now we will determine if A = 0 is an eigenvalue for
(2.3.15) subject to the boundary conditions (2.3.16), (2.3.17). A = 0 is a special
case. If A = 0, (2.3.15) implies that

6 = Cl + c2x,

corresponding to the double-zero roots, r = 0, 0 of the characteristic polynomial.3
To determine whether A = 0 is an eigenvalue, the homogeneous boundary conditions
must be applied. 0(0) = 0 implies that 0 = c1, and thus 0 = c2x. In addition,
¢,(L) = 0 implies that 0 = c2L. Since the length L of the rod is positive ( 0),
c2 = 0 and thus 4,(x) = 0. This is the trivial solution, so we say that A = 0 is not
an eigenvalue, for this problem [(2.3.15) and (2.3.16), (2.3.17)]. Be wary, though;
A = 0 is an eigenvalue for other problems and should be looked at individually for
any new problem you may encounter.

3Please do not say that 0 = cl Cos fx + c2 sin fx is the general solution for a = 0. If you do
that, you find for A = 0 that the general solution is an arbitrary constant. Although an arbitrary
constant solves (2.3.15) when A = 0, (2.3.15) is still a linear second-order differential equation;
its general solution must be a linear combination of two independent solutions. It is possible to
choose sin fx/f as a second independent solution so that as A - 0 it agrees with the solution
x. However, this involves too much work. It is better just to consider a = 0 as a separate case.
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Eigenvalues (A < 0). Are there any negative eigenvalues? If A < 0, the
solution of

d20 =
d X-2

(2.3.22)xz -
is not difficult, but you may have to be careful. The roots of the characteristic
polynomial are r = f-,/--A, so solutions are and a-fix. If you do not like
the notation \/---A, you may prefer what is equivalent (if A < 0), namely 14
However, 3I 0 v since A < 0. It is convenient to let

A= -s,

in the case in which A < 0. Then s > 0, and the differential equation (2.3.22)
becomes

d2ox = so. (2.3.23)

Two independent solutions are a+fx and a-'1, since s > 0. The general solution
is

= cle`"Z + c2e-`' . (2.3.24)

Frequently, we instead use the hyperbolic functions. As a review, the definitions of
the hyperbolic functions are

ex + e-2 ex - e-z
cosh z =- 2 - and sink z = 2

simple linear combinations of exponentials. These are sketched in Fig. 2.3.2. Note
that sink 0 = 0 and cosh O = 1 (the results analogous to those for trigonometric
functions). Also note that d/dz cosh z = sinh z and d/dz sinh z = cosh z, quite
similar to trigonometric functions, but easier to remember because of the lack of
the annoying appearance of any minus signs in the differentiation formulas. If
hyperbolic functions are used instead of exponentials, the general solution of (2.3.23)
can be written as

0 = C3 cosh f x + c4 sinh f x, (2.3.25)

a form equivalent to (2.3.24). To determine if there are any negative eigenvalues
(A < 0, but s > 0 since A = -s), we again apply the boundary conditions. Either
form (2.3.24) or (2.3.25) can be used, the same answer is obtained either way. From
(2.3.25), 0(0) = 0 implies that 0 = c3i and hence 0 = c4sinh fx. The other
boundary condition, gS(L) = 0, implies that c4 sinh f L = 0. Since f L > 0 and
since sinh is never zero for a positive argument (see Fig. 2.3.2), it follows that c4 = 0.
Thus, O(x) = 0. The only solution of (2.3.23) for A < 0 that solves the homogeneous
boundary conditions is the trivial solution. Thus, there are no negative eigenvalues.
For this example, the existence of negative eigenvalues would have corresponded to
exponential growth in time. We did not expect such solutions on physical grounds,
and here we have verified mathematically in an explicit manner that there cannot
be any negative eigenvalues for this problem. In some other problems there can
be negative eigenvalues. Later (Sec. 5.3) we will formulate a theory, involving the
Rayleigh quotient, in which we will know before we start rFiany problems that there
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Figure 2.3.2 Hyperbolic functions.

cannot be negative eigenvalues. This will at times eliminate calculations such as
the ones just performed.

Elgenfunctions-summary. We summarize our results for the boundary
value problem resulting from separation of variables:

0(0) = 0
¢(L) = 0.

This boundary value problem will arise many times in the text. It is helpful to nearly
memorize the result that the eigen values A are all positive (not zero or negative),

where n is any positive integer, n = 1 , 2, 3, ... , and the corresponding eigenfunctions
are

n7rxO(x) = sin L

If we introduce the notation Al for the first (or lowest) eigenvalue, A2 for the next,
and soon, we see that An = (n7r/L)2, n = 1, 2..... The corresponding eigenfunctions
are sometimes denoted On (x), the first few of which are sketched in Fig. 2.3.3.
All eigenfunctions are (of course) zero at both x = 0 and x = L. Notice that
0i (x) = sin irx/L has no zeros for 0 < x < L, and 02(X) = sin 27rx/L has one
zero for 0 < x < L. In fact, On(x) = sinnzrx/L has n - 1 zeros for 0 < x < L.
We will claim later (see Sec 5.3) that, remarkably, this is a general property of
eigenfunctions.
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3
pcc::=?cW
Figure 2.3.3 Eigenfunctions sin nirx/L
and their zeros.

Spring-mass analog. We have obtained solutions of d20/dx2 = -A0. Here
we present the analog of this to a spring-mass system, which some of you may find
helpful. A spring-mass system subject to Hooke's law satisfies md2y/dt2 = -ky,
where k > 0 is the spring constant. Thus, if A > 0, the ODE (2.3.15) may be
thought of as a spring-mass system with a restoring force. Thus, if A > 0 the
solution should oscillate. It should not be surprising that the BCs (2.3.16, 2.3.17)
can be satisfied for A > 0; a nontrivial solution of the ODE, which is zero at x = 0,
has a chance of being zero again at x = L since there is a restoring force and the
solution of the ODE oscillates. We have shown that this can happen for specific
values of A > 0. However, if A < 0, then the force is not restoring. It would seem
less likely that a nontrivial solution that is zero at x = 0 could possibly be zero
again at x = L. We must not always trust our intuition entirely, so we have verified
these facts mathematically.

2.3.5 Product Solutions and the Principle of Superposition
In summary, we obtained product solutions of the heat equation, 8u/8t = k82u/8x2,
satisfying the specific homogeneous boundary conditions u(0, t) = 0 and u(L, t) = 0
only corresponding to A > 0. These solutions, u(x, t) = O(x)G(t), have G(t) =

ce-akt and O(x) = C2 sin fx, where we determined from the boundary condi-
tions [0(0) = 0 and 0(L) = 01 the allowable values of the separation constant
A, A = (nir/L)2. Here n is a positive integer. Thus, product solutions of the heat
equation are

u(x, t) = Bsin nLxe-k(n1r/L)'e n = 1,2,..., (2.3.26)

where B is an arbitrary constant (B = cc2). This is a different solution for each n.
Note that as t increases, these special solutions exponentially decay, in particular,
for these solutions, limt,. u(x, t) = 0. In addition, u(x, t) satisfies a special initial
condition, u(x, 0) = B sin nirx/L.
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Initial value problems. We can use the simple product solutions (2.3.26)
to satisfy an initial value problem if the initial condition happens to be just right.
For example, suppose that we wish to solve the following initial value problem:

2

PDE k: at axe

BC: u(O,t) = 0
u(L, t) = 0

IC ( 0) = x3
4 i: u x,

L
n .s

Our product solution u(x, t) = B sin satisfies the initial condition
u(x, 0) = B sin n7rx/L. Thus, by picking n = 3 and B = 4, we will have satisfied
the initial condition. Our solution of this example is thus

u(x, t) = 4 sin 3Lx
e-k(3+r/L)2c

It can be proved that this physical problem (as well as most we consider) has a
unique solution. Thus, it does hot matter what procedure we used to obtain the
solution.

Principle of superposition. The product solutions appear to be very
special, since they may be used directly only if the initial condition happens to be
of the appropriate form. However, we wish to show that these solutions are useful
in many other situations; in fact, in all situations. Consider the same PDE and
BCs, but instead subject to the initial condition

u(x, 0) = 4sin
3L

+ 7sin
8Lx

The solution of this problem can be obtained by adding together two simpler solu-
tions obtained by the product method:

u(x, t) = 4 sin 3Lx e-k(3a/L)': + 7sin 8L e-k(sa/L)2t

We immediately see that this solves the initial condition (substitute t = 0) as well
as the boundary conditions (substitute x = 0 and x = L). Only slightly more work
shows that the partial differential equation has been satisfied. This is an illustration
of the principle of superposition.

Superposition (extended). The principle of superposition can be ex-
tended to show that if u1i u2, u3, ... , UM are solutions of a linear homogeneous
problem, then any linear combination of these is also a solution, clue + c2u2 +
C3u3 + + CMUM = F-M1 Cnun, where c,, are arbitrary constants. Since we know
from the method of separation of variables that sin nirx/L e-k(na/L)'t is a solu-
tion of the heat equation (solving zero boundary conditions) for all positive 'n, it
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follows that any linear combination of these solutions is also a solution of the linear
homogeneous heat equation. Thus,

M

u(x, t) _ Bn sin
nJr.

xx e-k(n,/L)2t
n=1

(2.3.27)

solves the heat equation (with zero boundary conditions) for any finite M. We have
added solutions to the heat equation, keeping in mind that the "amplitude" B could
be different for each solution, yielding the subscript Bn. Equation (2.3.27) shows
that we can solve the heat equation if initially

M

u(x, 0) = f(x) = E Bn sin nLx, (2.3.28)
n=1

that is, if the initial condition equals a finite sum of the appropriate sine functions.
What should we do in the usual situation in which f (x) is not a finite linear combi-
nation of the appropriate sine functions? We claim that the theory of Fourier series
(to be described with considerable detail in Chapter 3) states that

1. Any function f (x) (with certain very reasonable restrictions, to be discussed
later) can be approximated (in some sense) by a finite linear combination of
sin nnx/L.

2. The approximation may not be very good for small M, but gets to be a better
and better approximation as M is increased (see Sec. 5.10).

3. If we consider the limit as M oo, then not only is (2.3.28) the best approx-
imation to f (x) using combinations of the eigenfunctions, but (again in some
sense) the resulting infinite series will converge to f (x) [with some restrictions
on f (x), to be discussed].

We thus claim (and clarify and make precise in Chapter 3) that "any" initial con-
dition f (x) can be written as an infinite linear combination of sin nrrx/L, known as
a type of Fourier series:

00

P X) = E Bn sin n; x .

(2.3.29)
n=1

What is more important is that we also claim that the corresponding infinite series
is the solution of our heat conduction problem:

00

u(x, t) = 1: Bn sin nLx_k(n,/L)2t.

n=1
(2.3.30)

Analyzing infinite series such as (2.3.29) and (2.3.30) is not easy. We must discuss
the convergence of these series as well as briefly discuss the validity of an infinite
series solution of our entire problem. For the moment, let us ignore these some-
what theoretical issues and concentrate on the construction of these infinite series
solutions.
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2.3.6 Orthogonality of Sines
One very important practical point has been neglected. Equation (2.3.30) is our
solution with the coefficients Bn satisfying (2.3.29) (from the initial conditions),
but how do we determine the coefficients Bn? We assume it is possible that

00

f (x) = I: Bn sin L
n=1

(2.3.31)

where this is to hold over the region of the one-dimensional rod, 0 < x < L. We
will assume that standard mathematical operations are also valid for infinite series.
Equation (2.3.31) represents one equation in an infinite number of unknowns, but
it should be valid at every value of x. If we substitute a thousand different values
of x into (2.3.31), each of the thousand equations would hold, but there would still
be an infinite number of unknowns. This is not an efficient way to determine the
Bn. Instead, we frequently will employ an extremely important technique based
on noticing (perhaps from a table of integrals) that the eigenfunctions sinnirx/L
satisfy the following integral property:

10

L
0sin

Lx sin Lx dx = ( L/2 m (2.3.32)

where m and n are positive integers.
To use these conditions, (2.3.32), to determine Bn, we multiply both sides of

(2.3.31) by sin mirx/L (for any fixed integer m, independent of the "dummy" index
n):

00

f (x) sin
Lx

= Bn sin nLx sin Lx. (2.3.33)
n=1

Next we integrate (2.3.33) from x = 0 to x = L:

00rL
f (x) sin Lx dx = J Bn fL sin nLx sin

mirx
dx.

J n=1

(2.3.34)

For finite series, the integral of a sum of terms equals the sum of the integrals.
We assume that this is valid for this infinite series. Now we evaluate the infinite
sum. From the integral property (2.3.32), we see that each term of the sum is zero
whenever r t# m. In summing over n, eventually n equals m. It is only for that one
value of n (i.e., n = m) that there is a contribution to the infinite sum. The only
term that appears on the right-hand side of (2.3.34) occurs when n is replaced by
m:

L f (x) sin
Lx

dx = B,n
L

sine Lx dx.1
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Since the integral on the right equals L/2, we can solve for

Bm =

L
f (x) sin

m7rx
dx L

0 L = 2
L L pf(x) sin L

e 7n7fx

fo

sin L dx
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dx. (2.3.35)

This result is very important and so is the method by which it was obtained. Try to
learn both. The integral in (2.3.35) is considered to be known since f (x) is the given
initial condition. The integral cannot usually be evaluated, in which case numerical
integrations (on a computer) may need to be performed to get explicit numbers for
B . , m = 1, 2, 3, ... .

You will find that the formula (2.3.32), f L sin2 nax/L dx = L/2, is quite useful
in many different circumstances, including applications having nothing to do with
the material of this text. One reason for its applicability is that there are many
periodic phenomena in nature (sinwt), and usually energy or power is proportional
to the square (sin2 wt). The average energy is then proportional to fo sin2 wt dt
divided by the period 21r/w. It is worthwhile to memorize that the average over
a full period of sine or cosine squared is 2. Thus, the integral over any number
of complete periods of the square of a sine or cosine is one-half the length of the
interval. In this way fL sine n7rx/L dx = L/2, since the interval 0 to L is either a
complete or a half period of sinnirx/L.

Orthogonality. Whenever f L A(x)B(x) dx = 0, we say that the functions
A(x) and B(x) are orthogonal over the interval 0 < x < L. We borrow the
terminology "orthogonal" from perpendicular vectors because fL A(x)B(x) dx = 0
is analogous to a zero dot product, as is explained further in the appendix to this
section. A set of functions each member of which is orthogonal to every other
member is called an orthogonal set of functions. An example is that of the
functions sin n7rx/L, the eigenfunctions of the boundary value problem

dx2 + A4 = 0 with 0(0) = 0 and ¢(L) = 0.

They are mutually orthogonal because of (2.3.32). Therefore, we call (2.3.32) an
orthogonality condition.

In fact, we will discover that for most other boundary value problems, the eigen-
functions will form an orthogonal set of functions (with certain modifications dis-
cussed in Chapter 5 with respect to Sturm-Liouville eigenvalue problems).

2.3.7 Formulation, Solution, and Interpretation
of an Example

As an example, let us analyze our solution in the case in which the initial temper-
ature is constant, 100°C. This corresponds to a physical problem that is easy to
reproduce in the laboratory. Take a one-dimensional rod and place the entire rod in
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a large tub of boiling water (100°C). Let it sit there for a long time. After a while
(we expect) the rod will be at 100°C throughout. Now insulate the lateral sides (if
that had not been done earlier) and suddenly (at t = 0) immerse the two ends in
large well-stirred baths of ice water, 0°C. The mathematical problem is

L92

PDE:
t= k

a2 t> 0, 0 < x< L (2.3.36)

BC: (L; t) = 00 t > 0 (2.3.37)

IC: u(x,0) = 100 0 < x < L. (2.3.38)

According to (2.3.30) and (2.3.35), the solution is

00

u(x, t) = E Bn sin n7rxe-k(nn/L)'t,

n=1

where
IL

) sin nLx dxBn = L f (x

(2.3.39)

(2.3.40)

and f (x) = 100. Recall that the coefficient Bn was determined by having (2.3.39)
satisfy the initial condition,

00

f (x) Bn sin nLx. (2.3.41)
n=1

We calculate the coefficients Bn from (2.3.40):

2
Bn =

L

rL 100 sin nLx dx = 200 (-
r

L
cos nLx )10

L

o L

0 n even
= 200

(1 - cos nir) = 400 n odd
na

(2.3.42)

since cosnir = (-1)n, which equals 1 for n even and -1 for n odd. The solu-
tion (2.3.39) is graphed in Fig. 2.3.4. The series (2.3.41) will be studied further in
Chapter 3. In particular, we must explain the intriguing situation that the initial
temperature equals 100 everywhere, but the series (2.3.41) equals 0 at x = 0 and
x = L (due to the boundary conditions).

Approximations to the initial value problem. We have now
obtained the solution to the initial value problem (2.3.36)-(2.3.38) for the heat
equation with zero boundary conditions (x = 0 and x = L) and initial temperature
distribution equaling 100. The solution is (2.3.39), with Bn given by (2.3.42). The
solution is quite complicated, involving an infinite series. What can we say about it?
First, we notice that limt-00 u(x, t) = 0. The temperature distribution approaches
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Figure 2.3.4 Time dependence of temperature u(x, t).

a steady state, u(x, t) = 0. This is not surprising physically since both ends are at
0°; we expect all the initial heat energy contained in the rod to flow out the ends.
The equilibrium problem, d&u/dx2 = 0 with u(0) = 0 and u(L) = 0, has a unique
solution, u = 0, agreeing with the limit as t tends to infinity of the time-dependent
problem.

One question of importance that we can answer is the manner in which the
solution approaches steady state. If t is large, what is the approximate temperature
distribution, and how does it differ from the steady state 0°? We note that each
term in (2.3.39) decays at a different rate. The more oscillations in space, the faster
the decay. If t is such that kt(7r/L)2 is large, then each succeeding term is much
smaller than the first. We can then approximate the infinite series by only the first
term:

u(x, t) --
400

sin L e-k(a/L)'t (2.3.43)

The larger t is, the better this is as an approximation. Even if kt(ir/L)2 = Z, this
is not a bad approximation since

-k(37r/L)2te- = e-s(,r/L)2kt = e-4 = 0.018... .e-k(,,/L)2t

Thus, if kt(ir/L)2 > 2, we can use the simple approximation. We see that for
these times the spatial dependence of the temperature is just the simple rise and
fall of sin 7rx/L, as illustrated in Fig. 2.3.5. The peak amplitude, occurring in the
middle x = L/2, decays exponentially in time. For kt(7r/L)2 less than 2, the spatial
dependence cannot be approximated by one simple sinusoidal function; more tens
are necessary in the series. The solution can be easily computed, using a finite
number of terms. In some cases many terms may be necessary, and there would be
better ways to calculate u(x, t).
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Figure 2.3.5 Time dependence of temperature (using the
infinite series) compared to the first term. Note the first
term is a good approximation if the time is not too small.

2.3.8 Summary
Let us summarize the method of separation of variables as it appears for the one
example:

au 82uPDE: _
k8t 8x2

u(0 t) = 0
BC:

,

u(L, t) = 0

IC: u(x,0) = f(x).

1. Make sure that you have a linear and homogeneous PDE with linear and
homogeneous BC.

2. Temporarily ignore the nonzero IC.
3. Separate variables (determine differential equations implied by the assumption

of product solutions) and introduce a separation constant.
4. Determine separation constants as the eigenvalues of a boundary value prob-

lem.

5. Solve other differential equations. Record all product solutions of the PDE
obtainable by this method.

6. Apply the principle of superposition (for a linear combination of all product
solutions).

7. Attempt to satisfy the initial condition.
8. Determine coefficients using the orthogonality of the eigenfunctions.

These steps should be understood, not memorized. It is important to note that

1. The principle of superposition applies to solutions of the PDE (do not add up
solutions of various different ordinary differential equations).

2. Do not apply the initial condition u(x, 0) = f (x) until after the principle of
superposition.
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EXERCISES 2.3
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2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u
*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = k
a 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z
2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfies
the following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <
0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0
*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) ¢(0) = 0 and LO
(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2
subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k
09x22

- v0 ax

(d)

* (f)
=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)
1 0 < x < L/2
2 L/2<x<L
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[Your answer in part (c) may involve certain integrals that do not need to
be evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rx
cog L cc

L
dx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k
82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?
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(c) Show that the initial condition, u(x, 0) = f (x), is satisfied if

f (x) = Ao + E A. cos00

n=1

(d) Using Exercise 2.3.6, solve for AO and An(n > 1).
(e) What happens to the temperature distribution as t -+ oo? Show that

it approaches the steady-state temperature distribution (see Sec. 1.4).

*2.3.8. Consider
8u 02u& = kax2 - au.

This corresponds to a one-dimensional rod either with heat loss through the
lateral sides with outside temperature 0° (a > 0, see Exercise 1.2.4) or with
insulated lateral sides with a heat sink proportional to the temperature.
Suppose that the boundary conditions are

u(0,t) = 0 and u(L,t) = 0.

(a) What are the possible equilibrium temperature distributions if a > 0?
(b) Solve the time-dependent problem [u(x, 0) = f (x)] if a > 0. Analyze

the temperature for large time (t --+ oo) and compare to part (a).

*2.3.9. Redo Exercise 2.3.8 if a < 0. [Be especially careful if -a/k = (n7r/L)2.]

2.3.10. For two- and three-dimensional vectors, the fundamental property of dot
products, A B = IAI[BI cos9, implies that

IA - BI < IAIIBI. (2.3.44)

In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz's inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]

(a) Show that IA - -yBi2 > 0 implies (2.3.44), where ry = A B/B B.
(b) Express the inequality using both

00 00 b

n.
n=1 n=1 Cn

*(c) Generalize (2.3.44) to functions. [Hint: Let A A. B mean the integral
J L A(x)B(x) dx.]

2.3.11. Solve Laplace's equation inside a rectangle:

2
=

02u 02u
V U

axe
+ 8y2 = 0

subject to the boundary conditions

u(0,y) = g(y) u(x,0) = 0
u(L, y) = 0 u(x, H) = 0.

(Hint: If necessary, see Sec. 2.5.1.)
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Appendix to 2.3: Orthogonality of Functions
Two vectors A and B are orthogonal if A B = 0. In component form, A =
a1z+a2j +a3k and B = bli+b2j +b3k; A and B are orthogonal if >i aibi = 0. A
function A(x) can be thought of as a vector. If only three values of x are important,
x1, x2, and x3i then the components of the function A(x) (thought of as a vector)
are A(xl) - a1iA(x2) = a2, and A(x3) - a3. The function A(x) is orthogonal
to the function B(x) (by definition) if >i aibi = 0. However, in our problems, all
values of x between 0 and L are important. The function A(x) can be thought of
as an infinite-dimensional vector, whose components are A(xi) for all xi on some
interval. In this manner the function A(x) would be said to be orthogonal to B(x)
if Ei A(xi)B(xi) = 0, where the summation was to include all points between 0
and L. It is thus natural to define the function A(x) to be orthogonal to B(x)
if f L A(x)B(x) dx = 0. The integral replaces the vector dot product; both are
examples of "inner products."

In vectors, we have the three mutually perpendicular (orthogonal) unit vectors
i, j, and k, known as the standard basis vectors. In component form,

A=a1 +a2j+a3k.
al is the projection of A in the a direction, and so on. Sometimes we wish to
represent A in terms of other mutually orthogonal vectors (which may not be unit
vectors) u, v, and w, called an orthogonal set of vectors. Then

A = auu + aww.

To determine the coordinates au, a,,, aw with respect to this orthogonal set, u, v,
and w, we can form certain dot products. For example,

Note that v u= 0 and w u= 0, since we assumed that this new set was mutually
orthogonal. Thus, we can easily solve for the coordinate au, of A in the u-direction,

au = (2.3.45)

(auu is the vector projection of A in the u direction.)
For functions, we can do a similar thing. If f (x) can be represented by a linear

combination of the orthogonal set, sin nirx/L, then

AX) = EBnsin
nirxL ,

n=1

where the Bn may be interpreted as the coordinates of f(x) with respect to the
"direction" (or basis vector) sin nirx/L. To determine these coordinates, we take
the inner product with an arbitrary basis function (vector) sin nirx/L, where the
inner product of two functions is the integral rof their product. Thus, as before,

00

f
L

f (x) sin Lx dx = E B,, / L sui
nLx sin Lx dx.

n=1
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Since sin nirx/L is an orthogonal set of functions, fL sin nirx/L sin m7rx/L dx = 0
for n # m. Hence, we solve for the coordinate (coefficient) Bn:

Bn = fL f
L

sin nirx/L dx
(2.3.46)fL sin2 n7rx/L dx

This is seen to be the same idea as the projection formula (2.3.45). Our standard
formula (2.3.33), fL sin2 nirx/L dx = L/2, returns (2.3.46) to the more familiar
form,

L

fo
Bn = L f (x) sin nLx dx. (2.3.47)

Both formulas (2.3.45) and (2.3.46) are divided by something. In (2.3.45) it is u u,
or the length of the vector u squared. Thus, LL sin2 n7rx/L dx may be thought of
as the length squared of sinnirx/L (although here length means nothing other than
the square root of the integral). In this manner the length squared of the function
sin nirx/L is L/2, which is an explanation of the appearance of the term 2/L in
(2.3.47).

2.4 Worked Examples with the Heat Equation
(Other Boundary Value Problems)

2.4.1 Heat Conduction in a Rod with Insulated Ends
Let us work out in detail the solution (and its interpretation) of the following
problem defined for 0 < x < L and t > 0:

8u 82uPDE:
k

(2 4 1)

St tx2
. .

BC1: (0,t) = 0 (2.4.2)

BC2: a (L, t) = 0 (2.4.3)

IC: u(x,0) = f(x). (2.4.4)

As a review, this is a heat conduction problem in a one-dimensional rod with
constant thermal properties and no sources. This problem is quite similar to the
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problem treated in Sec. 2.3, the only difference being the boundary conditions. Here
the ends are insulated, whereas in Sec. 2.3 the ends were fixed at 0°. Both the par-
tial differential equation and the boundary conditions are linear and homogeneous.
Consequently, we apply the method of separation of variables We may follow the
general procedure described in Sec. 2.3.8. The assumption of product solutions,

u(x, t) _ -O(x)G(t),

implies from the PDE as before that

dG =
dt

_ AkG

d2odx2

where \ is the separation constant. Again,

G(t) = ce-ake

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)

The insulated boundary conditions, (2.4.2) and (2.4.3), imply that the separated
solutions must satisfy dg/dx(0) = 0 and dq5/dx(L) = 0. The separation constant
.1 is then determined by finding those \ for which nontrivial solutions exist for the
following boundary value problem:

d2(Pa A
axe

ddO (0) = 0

dO (L) = 0.

(2.4.9)

(2.4.10)

(2.4.11)

Although the ordinary differential equation for the boundary value problem is the
same one as previously analyzed, the boundary conditions are different. We must
repeat some of the analysis. Once again three cases should be discussed: A > 0,
J = 0, A < 0 (since we will assume the eigenvalues are real).

For A > 0, the general solution of (2.4.9) is again

0=clcosVx+c2sin vx. (2.4.12)

We need to calculate d¢/dx to satisfy the boundary conditions:

d-Od = f (-c1 sin x + C2 cos /5x) . (2.4.13)
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The boundary condition d4)/dx(0) = 0 implies that 0 = and hence c2 = 0,
since A > 0. Thus, 0: cl cos v/Ax and d4)/dx = -cl f sin \/'A-x. The eigenvalues A
and their corresponding eigenfunctions are determined from the remaining boundary
condition, d4)/dx(L) = 0:

0 = -cl v sin /L.
As before, for nontrivial solutions, cl 96 0, and hence sin f L = 0. The eigenvalues
for A > 0 are the same as the previous problem, vrX-L = nit or

A
( l2

-\LI n=1,2,3,... (2.4.14)

but the corresponding eigenfunctions are cosines (not sines),

¢(x) = cl cos nLx, n = 1, 2, 3, .... (2.4.15)

The resulting product solutions of the PDE are

u(x, t) = A cos n1x e-(nn/L)'kt, n = 1, 2, 3, ... , (2.4.16)

where A is an arbitrary multiplicative constant.
Before applying the principle of superposition, we must see if there are any other

eigenvalues. If \ = 0, then
¢ = cl + C2X, (2.4.17)

where cl and c2 are arbitrary constants. The derivative of 0 is
d4)

dx
= C.

Both boundary conditions, d4)/dx(0) = 0 and d4)/dx(L) = 0, give the same condi-
tion, c2 = 0. Thus, there are nontrivial solutions of the boundary value problem for
A = 0, namely, 4)(x) equaling any constant

¢(x) = cl. (2.4.18)

The time-dependent part is also a constant, since a-akt for A = 0 equals 1. Thus,
another product solution of both the linear homogeneous PDE and BCs is u(x, t) _
A, where A is any constant.

We do not expect there to be any eigenvalues for A < 0, since in this case the
time-dependent part grows exponentially. In addition, it seems unlikely that we
would find a nontrivial linear combination of exponentials that would have a zero
slope at both x = 0 and x = L. In Exercise 2.4.4 you are asked to show that there
are no eigenvalues for A < 0.

In order to satisfy the initial condition, we use the principle of superposition.
We should take a linear combination of all product solutions of the PDE (not just
those corresponding to \ > 0). Thus,

u(x, t) = Aa + >An cos
nLxe-(n*/L)'ke

I (2.4.19)
n=
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It is interesting to note that this is equivalent to

u(x, t) = An cos nTxe-(n rr/L)'kt (2.4.20)00

n=0

since cos 0 = 1 and co = 1. In fact, (2.4.20) is often easier to use in practice. We
prefer the form (2.4.19) in the beginning stages of the learning process, since it more
clearly shows that the solution consists of terms arising from the analysis of two
somewhat distinct cases, A = 0 and A > 0.

The initial condition u(x, 0) = f (x) is satisfied if

Do
f(x)=Ao+EAncosnLx,

n=1
(2.4.21)

for 0 < x < L. The validity of (2.4.21) will also follow from the theory of Fourier
series. Let us note that in the previous problem f (x) was represented by a series of
sines. Here f (x) consists of a series of cosines and the constant term. The two cases
are different due to the different boundary conditions. To complete the solution we
need to determine the arbitrary coefficients AO and An (n > 1). Fortunately, from
integral tables it is known that cos n7rx/L satisfies the following orthogonality
relation:

-
f cos L cos

0
n=m#0 (2.4.22)

n#m
m7rx

L

n = m = 0

for n and m nonnegative integers. Note that n = 0 or m = 0 corresponds to a
constant 1 contained in the integrand. The constant L/2 is another application
of the statement that the average of the square of a sine or cosine function is 2
The constant L in (2.4.22) is quite simple since for n = m = 0, (2.4.22) becomes
f L dx = L. Equation (2.4.22) states that the cosine functions (including the
constant function) form an orthogonal set of functions. We can use that idea,
in the same way as before, to determine the coefficients. Multiplying (2.4.21) by
cosmirx/L and integrating from 0 to L yields

J
L

f (x) cos Lx dx = > An J L cos nIx cos
mlrx

dx.
n=0

This holds for all m, m = 0. 1, 2,.... The case in which m = 0 corresponds just
to integrating (2.4.21) directly. Using the orthogonality results, it follows that only
the mth term in the infinite sum contributes,

jLf(x)cos!:x dx = An,
IL

cost Lx dx.
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The factor f L cost mirx/L dx has two different cases, m = 0 and m 54 0. Solving
for A,,, yields

jL

Ao =

rL2

J f (x) cos Lx dx.
0

(2.4.23)

(2.4.24)

The two different formulas are a somewhat annoying feature of this series of
cosines. They are simply caused by the factors L/2 and L in (2.4.22).

There is a significant difference between the solutions of the PDE for \ > 0 and
the solution for \ = 0. All the solutions for A > 0 decay exponentially in time,
whereas the solution for A = 0 remains constant in time. Thus, as t - oo the
complicated infinite series solution (2.4.19) approaches steady state,

jL
lim u(x, t) = AO = L f (x) dx.t--.0

Not only is the steady-state temperature constant, AO, but we recognize the con-
stant AO as the average of the initial temperature distribution. This agrees with
information obtained previously. Recall from Sec. 1.4 that the equilibrium temper-
ature distribution for the problem with insulated boundaries is not unique. Any
constant temperature is an equilibrium solution, but using the ideas of conservation
of total thermal energy, we know that the constant must be the average of the initial
temperature.

2.4.2 Heat Conduction in a Thin Circular Ring
We have investigated a heat flow problem whose eigenfunctions are sines and one
whose eigenfunctions are cosines. In this subsection we illustrate a heat flow problem
whose eigenfunctions are both sines and cosines.

Let us formulate the appropriate initial boundary value problem if a thin wire
(with lateral sides insulated) is bent into the shape of a circle, as illustrated in
Fig. 2.4.1. For reasons that will not be apparent for a while, we let the wire have
length 2L (rather than L as for the two previous heat conduction problems). Since

=0

Figure 2.4.1 Thin circular ring.
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the circumference of a circle is 2irr, the radius is r = 2L/21r = L/ir. If the wire is
thin enough, it is reasonable to assume that the temperature in the wire is constant
along cross sections of the bent wire. In this situation the wire should satisfy a one-
dimensional heat equation, where the distance is actually the arc length x along the
wire:

8t
k 82 . (2.4.25)

We have assumed that the wire has constant thermal properties and no sources. It
is convenient in this problem to measure the arc length x, such that x ranges from
-L to +L (instead of the more usual 0 to 2L).

Let us assume that the wire is very tightly connected to itself at the ends (x =
-L to x = +L). The conditions of perfect thermal contact should hold there (see
Exercise 1.3.2). The temperature u(x, t) is continuous there,

u(-L, t) = u(L, t). (2.4.26)

Also, since the heat flux must be continuous there (and the thermal conductivity is
constant everywhere), the derivative of the temperature is also continuous:

ax(-L,t) = 2(L, t). (2.4.27)

The two boundary conditions for the partial differential equation are (2.4.26) and
(2.4.27). The initial condition is that the initial temperature is a given function of
the position along the wire,

u(x, 0) = f W. (2.4.28)

The mathematical problem consists of the linear homogeneous PDE (2.4.25) subject
to linear homogeneous BCs (2.4.26, 2.4.27). As such, we will proceed in the usual
way to apply the method of separation of variables. Product solutions u(x, t) =
O(x)G(t) for the heat equation have been obtained previously, where G(t) = ce'akt
The corresponding boundary value problem is

d2¢
axe

= -AO (2.4.29)

4(-L) = O(L) 1 (2.4.30)
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(-L) _
d

(L). (2.4.31)

The boundary conditions (2.4.30) and (2.4.31) each involve both boundaries (some-
times called the mixed type). The specific boundary conditions (2.4.30) and
(2.4.31) are referred to as periodic boundary conditions since although the
problem can be thought of physically as being defined only for -L < x < L. it
is often thought of as being defined periodically for all x; the temperature will be
periodic (x = xo is the same physical point as x = xo + 2L, and hence must have
the same temperature).

If A > 0, the general solution of (2.4.29) is again

0 =ClcosxfA-x+C2sinvA-x.

The boundary condition 0(-L) = 46(L) implies that

cl cos,T (-L) + c2 sin v'(-L) = cl cos vrA_L + c2 sin VA-L.

Since cosine is an even function, cos vl-A(-L) = cos V"A-L, and since sine is an odd
function, sin f (-L) sin /X L, it follows that ¢(-L) = qS(L) is satisfied only if

c.2 sin \1.-\L = 0. (2.4.32)

Before solving (2.4.32), we analyze the second boundary condition, which involves
the derivative, d = f (-ci sin vXx + c2 cos Vx) .

Thus, dO/dx(-L) = dq5/dx(L) is satisfied only if

cl v' sin v"XL = 0, (2.4.33)

where the evenness of cosines and the oddness of sines has again been used. Condi-
tions (2.4.32) and (2.4.33) are easily solved. If sin fL 96 0, then cl = 0 and C2 = 0,
which is just the trivial solution. Thus, for nontrivial solutions,

sin \1,-\L = 0,

which determines the eigenvalues A. We find (as before) that fL = n7r or, equiv-
alently, that

A = (L) , n = 1, 2, 3,.... (2.4.34)

We chose the wire to have length 2L so that the eigenvalues have the same formula as
before (this will mean less to remember, as all our problems have a similar answer).
However, in this problem (unlike the others) there are no additional constraints
that cl and C2 must satisfy. Both are arbitrary. We say that both sinnirx/L and
cosnax/L are eigenfunctions corresponding to the eigenvalue A = (n7r/L)2,

OX) = cos nLx, sin nLx n = 1, 2, 3, .... (2.4.35)
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In fact, any linear combination of cosnirx/L and sin nirx/L is an eigenfunction,

45(x) = cl cos
nirx

L
+ c2 sin

nirx
L

(2.4.36)

but this is always to be understood when the statement is made that both are
eigenfunctions. There are thus two infinite families of product solutions of the
partial differential equation, n = 1, 2, 3...,

u(x, t) = cos nLx e-(n,r/L)2kt and u(x, t) = sin nLxe-(n"/L)2kt. (2.4.37)

All of these correspond to A > 0.
If A = 0, the general solution of (2.4.29) is

0=Cl+C2x.

The boundary condition 0(-L) = 0(L) implies that

cl - c2L = cl + c2L.

Thus, c2 = 0, 0(x) = cl and dO/dx = 0. The remaining boundary condition,
(2.4.30), is automatically satisfied. We see that

0(x) = C1,

any constant, is an eigenfunction, corresponding to the eigenvalue zero. Sometimes
we say that 0(x) = 1 is the eigenfullction, since it is known that any multiple of an
eigenfunction is always an eigenfunction. Product solutions u(x, t) are also constants
in this case. Note that there is only one independent eigenfunction corresponding
to A = 0, while for each positive eigenvalue in this problem, A = (nir/L)2, there are
two independent eigenfunctions, sinn7rx/L and cosn7rx/L. Not surprisingly, it can
be shown that there are no eigenvalues in which \ < 0.

The principle of superposition must be used before applying the initial condition.
The most general solution obtainable by the method of separation of variables
consists of an arbitrary linear combination of all product solutions:

00 00

u(x, t) = ap + > an cos nLxe-(nn/L)2kt + Ebn sin nLxe-(nn/L)'kt
n=1 n=1

(2.4.38)

The constant ao is the product solution corresponding to A = 0, whereas two families
of arbitrary coefficients, an and bn, are needed for A > 0. The initial condition
u(x, 0) = f (x) is satisfied if

00 00nirx naxf (x) = ao + > an cos L + bn sin L .

n=1 n=1
(2.4.39)
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Here the function f (x) is a linear combination of both sines and cosines (and a
constant), unlike the previous problems, where either sines or cosines (including
the constant term) were used. Another crucial difference is that (2.4.39) should be
valid for the entire ring, which means that -L < x < L, whereas the series of just
sines or cosines was valid for 0 < x < L. The theory of Fourier series will show
that (2.4.39) is valid, and, more important, that the previous series of just sines or
cosines are but special cases of the series in (2.4.39).

For now we wish just to determine the coefficients ao, an, bn from (2.4.39).
Again the eigenfunctions form an orthogonal set since integral tables verify the
following orthogonality conditions:

L n7rx mirx
d

0 n#m
L 0cos cos x

L
L L n=m&

2L n=m=0

L

1
Lsin-n7rx sin-L dx = { 0

n=m 0

IrL n7rx m7rx
in - d = 0f cos L x ,J L s

(2.4.40)

(2.4.41)

(2.4.42)

where n and m are arbitrary (nonnegative) integers. The constant eigenfunction
corresponds to n = 0 or m = 0. Integrals of the square of sines or cosines (n = m)
are evaluated again by the "half the length of the interval" rule. The last of these
formulas, (2.4.42), is particularly simple to derive, since sine is an odd function and
cosine is an even function.4 Note that, for example, cos n7rx/L is orthogonal to every
other eigenfunction [sines from (2.4.42), cosines and the constant eigenfunction from
(2.4.40)].

The coefficients are derived in the same manner as before. A few steps are saved
by noting (2.4.39) is equivalent to

00 00nlrx nlrxf (x) = an cos L + bn sin L .

n=0 n=1

If we multiply this by both cos mirx/L and sin m7rx/L and then integrate firm

4The product of an odd and an even function is odd. By antisymmetry, the integral of an odd
function over a symmetric interval is zero.
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x = -L to x = +L, we obtain
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mrx

J L f (x)
cos

mrx }dx =
L sin

L

mrx
00

0anJ-1 L Co. nx Cos L }dx
n=0

L

sin L

rL nirx os
LbnJ sin L mrrx

n=1 L sin
L

If we utilize (2.4.40-2.4.42), we find that

L

f- cost
Morx_ dxILLx dx = am L

L L

L mrx
Lf

(x) sin Lf
L

dx = bm f sine Lz
dx.

L

dx.

Solving for the coefficients in a manner that we are now familiar with yields

ao =
1 L

2L f_Lf(x) dx
rL

am = L / f (x) cos Lz dz
JJ L

L

bm = L I-Lf (z) sin Lx dx.

(2.4.43)

The solution to the problem is (2.4.38), where the coefficients are given by (2.4.43).

2.4.3 Summary of Boundary Value Problems
In many problems, including the ones we have just discussed, the specific simple
constant-coefficient differential equation,

d 20

dx2

forms the fundamental part of the boundary value problem. We collect in the table
in one place the relevant formulas for the eigenvalues and eigenfunctions for the
typical boundary conditions already discussed. You will find it helpful to understand
these results because of their enormous applicability throughout this text. It is
important to note that, in these cases, whenever a = 0 is an eigenvalue, a constani
is the eigenfunction (corresponding to n = 0 in cos nrx/L)
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Table 2.4.1: Boundary Value Problems
ford2o

e
= -a0

69

(0) = 0 m(-L) _ (L)
Boundary 46(0) = 0
conditions 46(L) = 0

(L) = 0 dx (-L) = dx (L)

Eigenvalues
nn) a )( (nvr) 2

An
( L

n = 1, 2, 3,...

T
L

n = 0, 1, 2, 3,...
L

n = 0, 1, 2, 3,...

Eigenfunctions
n7rx

sin L nax
cos L

nax
sin

L
and cos L

00
x1(x) E°n cos n

Series
00

f ( x ) _ E Bn sin
nrx f(x) A. cos

Ln=0

n=1 L n=0 L 00 n x
6 in s n+E

n=1

1 L
a0 = 2L /-L'(.) ds

1 L !(:) dxA0 = L I
Coefficients

/r`L

Bn = f(z).in n-
dx

2

/
O

1an - IL f(.)- nrs
dzL 0 L

Z nxsL
An J /(z) toy dz

L L I.

L O L
En - 1 /L !(s)sfn nva ds

1L L L

EXERCISES 2.4

*2.4.1. Solve the heat equation 8u/8t = k82u/8x2, 0 < x < L, t > 0, subject to

8x(O,t)0 t>0

(L, t)0 t>0.

(a) u(x,0) =
0 x < L/2
1 x>L/2

(c) u(x, 0) = -2 sin L

(b)
u(x,0)=6+4cos31rx

(d) u(x, 0) = -3 cos jLx
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*2.4.2. Solve
z

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2
- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x
_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two-
dimensional heat equation (in polar coordinates). Show that this reduces
to (2.4.25) if the temperature does not depend on r and if the wire is very
thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92U
V 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)



2.5. Laplace's Equation 71

2.5 Laplace's Equation: Solutions
and Qualitative Properties

2.5.1 Laplace's Equation Inside a Rectangle
In order to obtain more practice, we consider a different kind of problem that can be
analyzed by the method of separation of variables. We consider steady-state heat.
conduction in a two-dimensional region. To be specific, consider the equilibrium
temperature inside a rectangle (0 < x < L, 0 < y < H) when the temperature is a
prescribed function of position (independent of time) on the boundary. The equilib-
rium temperature u(x, y) satisfies Laplace's equation with the following boundary
conditions:

PDE:
a28x2 +
2

=
0 (2.5.1)

BC1:

BC2:

BC3:

BC4:

u(0,y) = 9i (Y)

u(L,y) = 92(y)

u(x,0) = fi(x)

u(x,H) = f2(x),

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)

where fi(x), f2(x),gi(y), and 92(y) are given functions of x and y, respectively.
Here the partial differential equation is linear and homogeneous, but the boundary
conditions, although linear, are not homogeneous. We will not be able to apply
the method of separation of variables to this problem in its present form, because
when we separate variables the boundary value problem (determining the separa-
tion constant) must have homogeneous boundary conditions. In this example all
the boundary conditions are nonhomogeneous. We can get around this difficulty by
noting that the original problem is nonhomogeneous due to the four nonhomoge-
neous boundary conditions. The idea behind the principle of superposition can be
used sometimes for nonhomogeneous problems (see Exercise 2.2.4). We break our
problem into four problems each having one nonhomogeneous condition. We let

u(x,y) = ui(x,y) + u2(x,y) + u3(x,y) + u4(x,y), (2.5.6)

where each u; (x, y) satisfies Laplace's equation with one nonhomogeneous boundary
condition and the related three homogeneous boundary conditions, as diagrammed
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u = f2(r) uy = 0

u*

U

U2=0

U3 = f2(r)

92(y)

+

U3

14321

V2u3=0

#0

143=0

0

+

U4

Figure 2.5.1 Laplace's equation inside a rectangle.

u4=0

U41 0

V2u4-0

91(y)

U4=0

in Fig. 2.5.1. Instead of directly solving for u, we will indicate how to solve for
U1, u2, u3, and u4. Why does the sum satisfy our problem? We check to see that
the PDE and the four nonhomogeneous BCs will be satisfied. Since ul, u2, U3,
and u4 satisfy Laplace's equation, which is linear and homogeneous, u a u1 + u2 +
u3 + 144 also satisfies the same linear and homogeneous PDE by the principle of
superposition. At x = 0, u1 = 0, u2 = 0, u3 = 0, and u4 = gl(y). Therefore, at
x = 0, u = ul + 142 + u3 + U4 = gl (y), the desired nonhomogeneous condition. In
a similar manner we can check that all four nonhomogeneous conditions have been
satisfied.

The method to solve for any of the u; (x, y) is the same: Only certain details
differ. We will only solve for 144(x, y), and leave the rest for the Exercises:

PDE:

BC1:

BC2:

BC3:

V2u=0

91(y)

92(y)

U1

142=0

U2 1=0

+ V2U2 = 0

U2 *0

U1

V2u1=0

0

U = fl(z) 141= f1(x)

L92
U4

x2 +
82 U4

(),9X

u4(O,y) = 91(y)

u4(L,y) = 0

144(x,0) = 0

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

BC4: 144(x, H) = 0. (2.5.11)
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We propose to solve this problem by the method of separation of variables. We
begin by ignoring the nonhomogeneous condition u4(0,y) = gl(y). Eventually,
we will add together product solutions to synthesize gl (y). We look for product
solutions

u4(x,y) = h(x)b(y). (2.5.12)

From the three homogeneous boundary conditions, we see that

h(L) = 0 (2.5.13)

0(0) = 0 (2.5.14)

O(H) = 0. (2.5.15)

Thus, the y-dependent solution 0(y) has two homogeneous boundary conditions,
whereas the x-dependent solution h(x) has only one. If (2.5.12) is substituted into
Laplace's equation, we obtain

d2h
0(y)dX2 + h(x)

V2
= 0.

The variables can be separated by dividing by h(x)b(y), so that

1 d2h 1 d25
2 5 16

h dx2 b dye
( )

The left-hand side is only a function of x, while the right-hand side is only a function
of y. Both must equal a separation constant. Do we want to use -A or A? One
will be more convenient. If the separation constant is negative (as it was before),
(2.5.16) implies that h(x) oscillates and 0(y) is composed of exponentials. This
seems doubtful, since the homogeneous boundary conditions (2.5.13-2.5.15) show
that the y-dependent solution satisfies two homogeiucous conditions; b(y) must be
zero at y = 0 and at y = H. Exponentials in y are not expected to work. On
the other hand, if the separation constant is positive, (2.5.16) implies that h(x) is
composed of exponentials and b(y) oscillates. This seems more reasonable, and we
thus introduce the separation constant A (but we do not assume A > 0):

Id2h1d20-A
(2.5.17)

h dx2 ¢ dye

This results in two ordinary differential equations:

d2h = Ah
dx2

deb
dye

The x-dependent problem is not a boundary value problem, since it does not have
two homogeneous boundary conditions:

d2h
dx2= Ah (2.5.18)
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h(L) = 0. (2.5.19)

However, the y-dependent problem is a boundary value problem and will be used
to determine the eigenvalues A (separation constants):

d2o = -A (2 5 20)dye . .

0(0) = 0 (2.5.21)

(2.5.22)

This boundary value problem is one that has arisen before, but here the length
of the interval is H. All the eigenvalues are positive, A > 0. The eigenfunctions are
clearly sines, since O(0) = 0. Furthermore, the condition ¢(H) = 0 implies that

O(y) =

2

( H)
Wirysin H

n = 1, 2, 3,.... (2.5.23)

To obtain product solutions we now must solve (2.5.18) with (2.5.19). Since A _
(nir/H)2,

d2 h _ nir 2

dx2
= (H) h. (2.5.24)

The general solution is a linear combination of exponentials or a linear combination
of hyperbolic functions. Either can be used, but neither is particularly suited for
solving the homogeneous boundary condition h(L) = 0. We can obtain our solution
more expeditiously if we note that both coshnir(x - L)/H and sinhnir(x - L)/H
are linearly independent solutions of (2.5.24). The general solution can be written
as a linear combination of these two:

h(x) = al cosh H (x - L) + a2 sinh
H
n7r (x - L), (2.5.25)

although it should now be clear that h(L) = 0 implies that al = 0 (since cosh 0 = 1
and sinh 0 = 0). As we could have guessed originally,

n7r (x - L). (2.5.26)h(x) = a2 sinh
H

The reason (2.5.25) is the solution (besides the fact that it solves the DE) is that it
is a simple translation of the more familiar solution, cosh nirx/L and sinh n7rx/L.
We are allowed to translate solutions of differential equations only if the differential
equation does not change (said to be invariant) upon translation. Since (2.5.24)
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has constant coefficients, thinking of the origin being at x = L (namely, x' = x - L)
does not affect the differential equation, since d2h/dx'2 = (nir/H)2h according to
the chain rule. For example, coshnirx'/H = coshnir(x - L)/H is a solution.

Product solutions are

U4 (X, y) = A L). (2.5.27)

You might now check that Laplace's equation is satisfied as well as the three required
homogeneous conditions. It is interesting to note that one part (the y) oscillates
and the other (the x) does not. This is a general property of Laplace's equation,
not restricted to this geometry (rectangle) or to these boundary conditions.

We want to use these product solutions to satisfy the remaining condition, the
nonhomogeneous boundary condition u4 (0, y) = g1 (y). Product solutions do not
satisfy nonhomogeneous conditions. Instead, we again use the principle of superpo-
sition. If (2.5.27) is a solution, so is

00

U4 (-T, y) = > An sin Hy sinh
H
nir (x - L).

n=1
(2.5.28)

Evaluating at x = 0 will determine the coefficients An from the nonhomogeneous
boundary condition:

0-0

91(y) _ An sin Hy sinh H (-L).
n=1

This is the same kind of series of sine functions we have already briefly discussed,
if we associate An sinh nir(-L)/H as its coefficients. Thus (by the orthogonality of
sin niry/H for y between 0 and H),

An An sinh

H

nir (-L) = H / g1 (y) sin H dy.
0

Since sinh na(-L)/H is never zero, we can divide by it and obtain finally a formula
for the coefficients:

= 2 H nny
An

H sinh nir(-L)/H
J g1(y) sin H dy. (2.5.29)

Equation (2.5.28) with coefficients determined by (2.5.29) is only the solution for
u4(x, y). The original u(x,y) is obtained by adding together four such solutions.



76 Chapter 2. Method of Separation of Variables

2.5.2 Laplace's Equation for a Circular Disk
Suppose that we had a thin circular disk of radius a (with constant thermal proper-
ties and no sources) with the temperature prescribed on the boundary, as illustrated
in Fig. 2.5.2. If the temperature on the boundary is independent of time, then it is
reasonable to determine the equilibrium temperature distribution. The temperature
satisfies Laplace's equation, V2u = 0. The geometry of this problem suggests that
we use polar coordinates, so that u = u(r, 9). In particular, on the circle r = a the
temperature distribution is a prescribed function of 9, u(a, 9) = f (9). The problem
we want to solve is

PDE:

BC:

1 2
V2u

r or Cr ar) + r2,902

u(a,9) = f(9).

=0

Figure 2.5.2 Laplace's equation inside a
circular disk.

(2.5.30)

(2.5.31)

At first glance it would appear that we cannot use separation of variables because
there are no homogeneous subsidiary conditions. However, the introduction of polar
coordinates requires some discussion that will illuminate the use of the method of
separation of variables. If we solve Laplace's equation on a rectangle (see Sec. 2.5.1),
0 < x < L, 0 < y < H, then conditions are necessary at the endpoints of definition
of the variables, x = 0, L and y = 0, H. Fortunately, these coincide with the
physical boundaries. However, for polar coordinates, 0 < r < a and -ir < 0 < n
(where there is some freedom in our definition of the angle 9). Mathematically, we
need conditions at the endpoints of the coordinate system, r = 0, a and 9 = -ir, ir.
Here, only r = a corresponds to a physical boundary. Thus, we need conditions
motivated by considerations of the physical problem at r = 0 and at 9 = f7r. Polar
coordinates are singular at r = 0; for physical reasons we will prescribe that the
temperature is finite or, equivalently, bounded there:

boundedness at origin Iu(0,9)l < 00. (2.5.32)

Conditions are needed at 9 = fir for mathematical reasons. It is similar to the
circular wire situation. 9 = -ir corresponds to the same points as 0 = r. Although
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there really is not a boundary, we say that the temperature is continuous there and
the heat flow in the 0-direction is continuous, which imply

u(r, -7r) = u(r, 7r)

periodicity
'AU

(2.5.33)

as though the two regions were in perfect thermal contact there (see Exercise
1.3.2). Equations (2.5.33) are called periodicity conditions; they are equivalent
to u(r, 0) = u(r, 0 + 2ir). We note that subsidiary conditions (2.5.32) and (2.5.33)
are all linear and homogeneous (it's easy to check that u = 0 satisfies these three
conditions). In this form the mathematical problem appears somewhat similar to
Laplace's equation inside a rectangle. There are four conditions. Here, fortunately,
only one is nonhomogeneous, u(a, 0) = f (e). This problem is thus suited for the
method of separation of variables.

We look for special product solutions,

u(r, 0) = /(0)G(r), (2.5.34)

which satisfy the PDE (2.5.30) and the three homogeneous conditions (2.5.32) and
(2.5.33). Note that (2.5.34) does not satisfy the nonhomogeneous boundary condi-
tion (2.5.31). Substituting (2.5.34) into the periodicity conditions shows that

.0(-'r) = 0(7r)

de (-ir) =

de

(1r);

(2.5.35)

the 0-dependent part also satisfies the periodic boundary conditions. The prod-
uct form will satisfy Laplace's equation if

1 d.
r dr (r Wr_

0(0)
+ r2 G(r) d02 = 0.

The variables are not separated by dividing by G(r)0(0) since 1/r2 remains multi-
plying the 0-dependent terms. Instead, divide by (1/r2)G(r)O(0), in which case

r d rdG
G dr ( dr) 0 de2 ( )

The separation constant is introduced as A (rather than -A) since there are two
homogeneous conditions in 0, (2.5.35), and we therefore expect oscillations in 0.
Equation (2.5.36) yields two ordinary differential equations. The boundary value
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problem to determine the separation constant is

d20 __

d92
-A

0(-ir) = 0(0

dB
(-7r) = d8 (7r).

(2.5.37)

The eigenvalues A are determined in the usual way. In fact, this is one of the three
standard problems, the identical problem as for the circular wire (with L = it).
Thus, the eigenvalues are

A

=
(l2 = n

2

L (2.5.38),I
with the corresponding eigenfunctions being both

sin nO and cos n9. (2.5.39)

The case n = 0 must be included (with only a constant being the eigenfunction).
The r-dependent problem is

G dr
(r dG) =A= n2, (2.5.40)

which when written in the more usual form becomes

r2d2G+rdG-n2G=0. (2.5.41)
dr2 dr

Here, the condition at r = 0 has already been discussed. We have prescribed
Ju(0, 0)I < oo. For the product solutions, u(r, 0) = O(8)G(r), it follows that the
condition at the origin is that G(r) must be bounded there,

JG(0) I < oc. (2.5.42)

Equation (2.5.41) is linear and homogeneous but has nonconstant coefficients.
There are exceedingly few second-order linear equations with nonconstant coeffi-
cients that we can solve easily. Equation (2.5.41) is one such case, an example of an
equation known by a number of different names: equidimensional or Cauchy or
Euler. The simplest way to solve (2.5.41) is to note that for the linear differential
operator in (2.5.41), any power G = rp reproduces itself.' On substituting G = rp
into (2.5.41), we determine that [p(p - 1) + p - n2]rp = 0. Thus, there usually are
two distinct solutions

p = fn,
5For constant-coefficient linear differential operators, exponentials reproduce themselves.
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except when n = 0, in which case there is only one independent solution in the form
rp. For n 0 0, the general solution of (2.5.41) is

G = c1rn + c2r-n. (2.5.43)

For n = 0 (and n = 0 is important since A = 0 is an eigenvalue in this problem),
one solution is r0 = 1 or any constant. A second solution for n = 0 is most easily
obtained from (2.5.40). If n = 0, d (r dc) = 0. By integration, r dG/dr is constant,
or, equivalently, dG/dr is proportional to 1/r. The second independent solution is
thus In r. Thus, for n = 0, the general solution of (2.5.41) is

G = c1 + E2 In r. (2.5.44)

Equation (2.5.41) has only one homogeneous condition to be imposed, IG(0)I < oo,
so it is not an eigenvalue problem. The boundedness condition would not have
imposed any restrictions on the problems we have studied previously. However,
here (2.5.43) or (2.5.44) shows that solutions may approach oo as r - 0. Thus, for
f G(0)! < 00,C2 = 0 in (2.5.43) and c2 = 0 in (2.5.44). The r-dependent solution
(which is bounded at r = 0) is

G(r) = clr' n > 0,

where for n = 0 this reduces to just an arbitrary constant.
Product solutions by the method of separation of variables, which satisfy the

three homogeneous conditions, are

rn cos n9(n > 0) and rn sin n9(n > 1).

Note that as in rectangular coordinates for Laplace's equation, oscillations occur in
one variable (here 0) and do not occur in the other variable (r). By the principle
of superposition, the following solves Laplace's equation inside a circle:

00 00

u(r, 0) = rAnrn cos n9 + rBnrn sin n9,
n=O

nn=1

0<r<a
-1r<0<7r. (2.5.45)

In order to solve the nonhomogeneous condition, u(a, 0) = f (0),

f (9) _ Anan cos nO + Bnan sin n9, -7r < 0 < 7r. (2.5.46)
n=0 n=1

The prescribed temperature is a linear combination of all sines and cosines (includ-
ing a constant term, n = 0). This is exactly the same question that we answered in
Sec. 2.4.2 with L = a if we let Anan be the coefficient of cosn9 and Bnan be the
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coefficient of sin nO. Using the orthogonality formulas, it follows that

Ao = 2 J f (0) dO
r

7r

J
f (9) cos nO d9 (2.5.47)(n> 1)

7r ir
1 fBa" = f (B) sin n9 dB.

n

Since an 54 0, the coefficients An and Bn can be uniquely solved for from (2.5.47).
Equation (2.5.45) with coefficients given by (2.5.47) determines the steady-state

temperature distribution inside a circle. The solution is relatively complicated,
often requiring the numerical evaluation of two infinite series. For additional inter-
pretations of this solution, see Chapter 9, on Green's functions.

2.5.3 Fluid Flow Past a Circular Cylinder (Lift)
In heat flow, conservation of thermal energy can be used to derive Laplace's equation
V2u = 0 under certain assumptions. In fluid dynamics, conservation of mass and
conservation of momentum can be used to also derive Laplace's equation:

V2V'=0,

in the following way. In the Exercises, it is shown that conservation of mass for
a fluid along with the assumption of a constant mass density p yields

= 0, (2.5.48)V u = 0 or in two dimensions ax + &V

where the velocity has x and y components u = (u, v). A stream function is
often introduced that automatically satisfies (2.5.48):

u andv=-0 . (2.5.49)

Often streamlines (0 =constant) are graphed that will be parallel to the fluid flow.
It can be shown that in some circumstances the fluid is irrotational (V x u = 0) so
that the stream function satisfies Laplace's equation

V2V) =0. (2.5.50)

The simplest example is a constant flow in the x-direction u = (U, 0), in which
case the stream function is 0 = Uy, clearly satisfying Laplace's equation.

As a first step in designing airplane wings, scientists have considered the flow
around a circular cylinder of radius a. For more details we refer the interested reader
to Acheson [1990].The velocity potential must satisfy Laplace's equation, which as
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before in polar coordinates is (2.5.30). We will assume that far from the cylinder
the flow is uniform so that as an approximation for large r,

i/i Uy = Ursin9, (2.5.51)

since we will use polar coordinates. The boundary condition is that the radial
component of the fluid flow must be zero at r = a. The fluid flow must be parallel
to the boundary, and hence we can assume

'(a,9) = 0. (2.5.52)

By separation of variables, including the n = 0 case given by (2.5.44),
00

1/i(r, 9) = c2 + cl In r + E (Anrn + Bnr-n) sin n9, (2.5.53)
n=1

where the cosn9 terms could be included (but would vanish). By applying the
boundary condition at r = a, we find

c2 + c1 In a = 0
Ana" + Bna-n = 0,

so that
' oo 2n

1()(r, 9) = ci In
a

+ > An(rn -
-

) sin n9. (2.5.54)
n=1

In order for the fluid velocity to be approximately a constant at infinity with zG
Uy = Ur sin 9 for large r, An = 0 for n > 2 and At = U. Thus,

2

,b(r, 9) = ci In a + U (r - a
sin 9. (2.5.55)

It can be shown in general that the fluid velocity in polar coordinates can be
obtained from the stream function: u,. = r T'90', ue = -7. 'Thus, the 9-component
of the fluid velocity is ue = - f - U(1 +) sin 9. The circulation is defined to be
f o " uer d9 = -2irc1. For a given velocity at infinity, different flows depending on
the circulation around a cylinder are illustrated in Figure 2.5.3.

The pressure p of the fluid exerts a force in the direction opposite to the
outward normal to the cylinder (a , a) = (cos 0, sin 0). The drag (x-direction) and
lift (y-direction) forces (per unit length in the z direction) exerted by the fluid on
the cylinder are

fo

27r

F p (cos 0, sin 9) a d9. (2.5.56)

For steady flows such as this one, the pressure is determined from Bernoulli's
condition

p+ 2pIuI2 = constant. (2.5.57)
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cl
Ua 2

cl 2
Ua

Figure 2.5.3 Flow past cylinder and lift = 27rpcl U.

Thus, the pressure is lower where the velocity is higher. If the circulation is clockwise
around the cylinder (a negative circulation) , then intuitively (which can be verified)
the velocity will be higher above the cylinder than below and the pressure will be
lower on the top of the cylinder and hence lift (a positive force in the y-direction)
will be generated. At the cylinder u,. = 0, so that there !u12 = ue. It can be shown
that the x-component of the force, the drag, is zero, but the y-component the lift
is given by (since the integral involving the constant vanishes)

Fy
fzn r ( z z

2 p J I _ rl _ U I 1 + *z ) sin 91 sin 0 a d9. (2.5.58)
o L

r2a
Fy = p -U2 U2 J sinz 9 a d9 = p21rcl U, (2.5.59)

a o
which has been simplified since f o " sin 9 dO = fo " sin3 9 dO = 0 due to the oddness
of the sin function. The lift vanishes if the circulation is zero. A negative circulation
(positive cl) results in a lift force on the cylinder by the fluid.

In the real world the drag is more complicated. Boundary layers exist due to the
viscous nature of the fluid. The pressure is continuous across the boundary layer
so that the preceding analysis is still often valid. However, things get much more
complicated when the boundary layer separates from the cylinder, in which case
a more substantial drag force occurs (which has been ignored in this elementary
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treatment). A plane will fly if the lift is greater than the weight of the plane.
However, to fly fast, a powerful engine is necessary to apply a force in the x-direction
to overcome the drag.

2.5.4 Qualitative Properties of Laplace's Equation
Sometimes the method of separation of variables will not be appropriate. If quanti-
tative information is desired, numerical methods (see Chapter 13) may be necessary.
In this subsection we briefly describe some qualitative properties that may be de-
rived for Laplace's equation.

Mean value theorem. Our solution of Laplace's equation inside a circle,
obtained in Sec 2.5.2 by the method of separation of variables, yields an important
result. If we evaluate the temperature at the origin, r = 0, we discover from (2.5.45)
that

u(O,0) = ao = J f(8) dB;
27r

the temperature there equals the average value of the temperature at the edges of
the circle. This is called the mean value property for Laplace's equation. It holds
in general in the following specific sense. Suppose that we wish to solve Laplace's
equation in any region R (see Fig. 2.5.4). Consider any point P inside R and a circle
of any radius ro (such that the circle is inside R). Let the temperature on the circle
be f (0), using polar coordinates centered at P. Our previous analysis still holds,
and thus the temperature at any point is the average of the temperature
along any circle of radius TO (lying inside R) centered at that point.

Figure 2.5.4 Circle within any region.

Maximum principles. We can use this to prove the maximum principle
for Laplace's equation: In steady state the temperature cannot attain its
maximum in the interior (unless the temperature is a constant everywhere)
assuming no sources. The proof is by contradiction. Suppose that the maximum
was at point P, as illustrated in Fig. 2.5.3. However, this should be the average
of all points on any circle (consider the circle drawn). It is impossible for the
temperature at P to be larger. This contradicts the original assumption, which
thus cannot hold. We should not be surprised by the maximum principle. If the
temperature was largest at point P, then in time the concentration of heat energy
would diffuse and in steady state the maximum could not be in the interior. By
letting ' = -u, we can also show that the temperature cannot attain its minimum
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in the interior. It follows that in steady state the maximum and minimum
temperatures occur on the boundary.

Wellposedness and uniqueness. The maximum principle is a very
important tool for further analysis of partial differential equations, especially in
establishing qualitative properties (see, e.g., Protter and Weinberger [1967]). We
say that a problem is wellposed if there exists a unique solution that depends
continuously on the nonhomogeneous data (i.e., the solution varies a small amount
if the data are slightly changed). This is an important concept for physical problems.
If the solution changed dramatically with only a small change in the data, then any
physical measurement would have to be exact in order for the solution to be reliable.
Fortunately, most standard problems in partial differential equations are wellposed.
For example, the maximum principle can be used to prove that Laplace's equation
V2u = 0 with u specified as u = f (x) on the boundary is wellposed.

Suppose that we vary the boundary data a small amount such that

V2v=0 with v=g(x)

on the boundary, where g(x) is nearly the same as f (x) everywhere on the boundary.
We consider the difference between these two solutions, w = u - v. Due to the
linearity,

V2w = 0 with w = f (x) - g(x)

on the boundary. The maximum (and minimum) principles for Laplace's equation
imply that the maximum and minimum occur on the boundary. Thus, at any point
inside,

min(f (x) - g(x)) < w < max(f (x) - g(x)). (2.5.60)

Since g(x) is nearly the same as f (x) everywhere, w is small, and thus the solution
v is nearly the same as u; the solution of Laplace's equation slightly varies if the
boundary data are slightly altered.

We can also prove that the solution of Laplace's equation is unique. We prove
this by contradiction. Suppose that there are two solutions, u and v as previously,
that satisfy the same boundary condition [i.e., let (f (x) = g(x))]. If we again
consider the difference (w = u - v), then the maximum and minimum principles
imply [see (2.5.60)] that inside the region

0<w<0.

We conclude that w = 0 everywhere inside, and thus u = v proving that if a solution
exists, it must be unique. These properties (uniqueness and continuous dependence
on the data) show that Laplace's equation with u specified on the boundary is a
wellposed problem.

Solvability condition. If on the boundary the heat flow is
specified instead of the temperature, Laplace's equation may have no solutions
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for a one-dimensional example, see Exercise 1.4.7(b)]. To show this, we integrate
V2u = 0 over the entire two-dimensional region

0 = if V2u dx dy = if V.(Vu) dx dy.

Using the (two-dimensional) divergence theorem, we conclude that (see Exercise
1.5.8)

0 = i Vu-ft ds. (2.5.61)

Since is proportional to the heat flow through the boundary, (2.5.61) implies
that the net heat flow through the boundary must be zero in order for a steady
state to exist. This is clear physically, because otherwise there would be a change
(in time) of the thermal energy inside, violating the steady-state assumption. Equa-
tion (2.5.61) is called the solvability condition or compatibility condition for
Laplace's equation.

EXERCISES 2.5

2.5.1. Solve Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with the
following boundary conditions:

(0,y) = 0, (L,y) = 0,*(a) ax- Tx-

(b) (O, y) = 9(y), (L, y) = 0,Tx- TX-

*(c) "'(0,y) = 0, u(L,y) = 9(y),

(d) u(O,y) = 9(y), u(L,y) = 0,

*(e) u(0,y) = 0, u(L,y) = 0,

(f) u(O, y) = f (y), u(L, y) = 0,

(0, y) = 0, (L, y) = 0,(g) TX- YX-

2.5.2.

u(x,0) = 0,

u(x,0) = 0,

u(x,0) = 0,

(x,0) = 0,Fy-

u(x,0) - (x,0) = 0,

(x,0) = 0,
TV-

u(x 0) = /0

u(x, H) = f (x)

u(x, H) = 0

u(x, H) = 0

u(x, H) = 0

u(x, H) = f (x)

"u (x, H) = 0

x > L/2 au ( H)x < L/2' yy- x, = 0

Consider u(x, y) satisfying Laplace's equation inside a rectangle (0 < x <
L, 0 < y < H) subject to the boundary conditions

(0,y) = 0
Yx-

(L,y)=0

(b)

Ou (x,0) = 0

(x, H) = f (x).

Without solving this problem, briefly explain the physical condition
under which there is a solution to this problem.
Solve this problem by the method of separation of variables. Show that
the method works only under the condition of part (a).
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(c) The solution [part (b)] has an arbitrary constant. Determine it by
consideration of the time-dependent heat equation (1.5.11) subject to
the initial condition

u(x,y,0) = g(x,y)

*2.5.3. Solve Laplace's equation outside a circular disk (r > a) subject to the
boundary condition

(a) u(a, 9) = In 2 + 4 cos 39

(b) u(a,9) = f(9)

You may assume that u(r, 9) remains finite as r - oo.

*2.5.4. For Laplace's equation inside a circular disk (r < a), using (2.5.45) and
(2.5.47), show that

00

u(r,9)= f(6) 2+E(a)ncosn(9-8)1 dB.
a L n_0

Using cos z = Re [ei=], sum the resulting geometric series to obtain Poisson's
integral formula.

2.5.5. Solve Laplace's equation inside the quarter-circle of radius 1 (0 < 0 <-
7r/2, 0 < r < 1) subject to the boundary conditions

* (a) (r, 0) = 0, u (r, 2) = 0, u(1,0) = f (O)

(b) Ou (r, 0) = 0, 6u (r, z) = 0, u(1, 0) = f (0)

* (c) u(r, 0) = 0, u (r, z) = 0, Ou (1, 9) = f (O)

(d) (r, o) = o, (r, 2) = o, (1, e) = g(e)

Show that the solution [part (d)] exists only if fo 2 g(9) d9 = 0. Explain
this condition physically.

2.5.6. Solve Laplace's equation inside a semicircle of radius a(0 < r < a, 0 < 9 <
a) subject to the boundary conditions

*(a) u = 0 on the diameter and u(a, 9) = g(9)
(b) the diameter is insulated and u(a, 0) = g(9)

2.5.7. Solve Laplace's equation inside a 60° wedge of radius a subject to the bound-
ary conditions

(a) u(r, 0) = 0, u (r, a) = 0, u(a, 9) = f (0)

* (b) (r, 0) = 0, (r, 3 ) = 0, u(a, 9) = f (0)
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2.5.8. Solve Laplace's equation inside a circular annulus (a < r < b) subject to
the boundary conditions

* (a) u(a, 9) = f (O), u(b, 9) = g(9)

(b) 67 (a,0) = 0, u(b,0) = g(9)

(c) (a,0) =Wr- f(0), (b,0) = g(0)3T

If there is a solvability condition, state it and explain it physically.

*2.5.9. Solve Laplace's equation inside a 90° sector of a circular annulus (a < r <
b, 0 < 0 < ir/2) subject to the boundary conditions

(a) u(r, 0) = 0, u(r, it/2) = 0, u(a, 9) = 0, u(b, 0) = f (0)

(b) u(r,0) = 0, u(r,ir/2) = f(r), u(a,0) = 0, u(b,9) = 0

2.5.10. Using the maximum principles for Laplace's equation, prove that the so-
lution of Poisson's equation, V2u = g(x), subject to u = f (x) on the
boundary, is unique.

2.5.11. Do Exercise 1.5.8.

2.5.12. (a) Using the divergence theorem, determine an alternative expression for
ffu02udxdydz.

(b) Using part (a), prove that the solution of Laplace's equation V2u = 0
(with u given on the boundary) is unique.

(c) Modify part (b) if 0 on the boundary.
(d) Modify part (b) if 0 on the boundary. Show that Newton's

law of cooling corresponds to h < 0.

2.5.13. Prove that the temperature satisfying Laplace's equation cannot attain its
minimum in the interior.

2.5.14. Show that the "backward" heat equation

au 02u
at = -k 8x2 ,

subject to u(0, t) = u(L, t) = 0 and u(x, 0) = f (x), is not well posed. (Hint:
Show that if the data are changed an arbitrarily small amount, for example,

1
srn _f (x) -' f (x) + n

for large n, then the solution u(x, t) changes by a large amount.]

2.5.15. Solve Laplace's equation inside a semi-infinite strip (0 < x < oo, 0 < y < H)
subject to the boundary conditions
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(a) 8' (x, 0) = 0,

(b) u(x,0) = 0,

(c) u(x,0) = 0,

(d) (x, 0) = 0,

Chapter 2. Method of Separation of Variables

"' (x, H) = 0, u(0, y) = f (y)

u(x, H) = 0, u(0,y) = f(y)

u(x, H) = 0, (0,y) = f(y)

Ou (x, H) = 0, a: (0, y) = f (y)

Show that the solution [part (d)] exists only if fH f (y) dy = 0.

2.5.16. Consider Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with
the boundary conditions

8u
au

8u
&"

8x(0,
y) = 0, 8x(L, y) = g(y),

8y(x, 0)
= 0, 8y (x, H) = f (x)

(a) What is the solvability condition and its physical interpretation?
(b) Show that u(x, y) = A(x2 - y2) is a solution if f (x) and g(y) are

constants [under the conditions of part (a)].
(c) Under the conditions of part (a), solve the general case [nonconstant

f (x) and g(y)]. [Hints: Use part (b) and the fact that f (x) = f +
[f (x) - f.,.], where f.,. = L fL f (x) dx.]

2.5.17. Show that the mass density p(x, t) satisfies k + V (pu) = 0 due to con-
servation of mass.

2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, show
that

2.5.19. Show that the streamlines are parallel to the fluid velocity.

2.5.20. Show that anytime there is a stream function, V x u = 0.

2.5.21. From u and v=- ,derive u,-=rue=-
2.5.22. Show the drag force is zero for a uniform flow past a cylinder including

circulation.

2.5.23. Consider the velocity ug at the cylinder. Where do the maximum and
minimum occur?

2.5.24. Consider .the velocity ue at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

2.5.25. A stagnation point is a place where u = 0. For what values of the circulation
does a stagnation point exist on the cylinder?

2.5.26. For what values of 0 will u,. = 0 off the cylinder? For these 6, where (for
what values of r) will ue = 0 also?

2.5.27. Show that r/ = a 81T B satisfies Laplace's equation. Show that the streamlines
are circles. Graph the streamlines.



Chapter 3

Fourier Series

3.1 Introduction
In solving partial differential equations by the method of separation of variables, we
have discovered that important conditions [e.g., the initial condition, u(x, 0) = f (x)]
could be satisfied only if f (x) could be equated to an infinite linear combination of
eigenfunctions of a given boundary value problem. Three specific cases have been
investigated. One yielded a series involving sine functions, one yielded a series of
cosines only (including a constant term), and the third yielded a series that included
all of these previous terms.

We will begin by investigating series with both sines and cosines, because we
will show that the others are just special cases of this more general series. For
problems with the periodic boundary conditions on the interval -L < x < L, we
asked whether the following infinite series (known as a Fourier series) makes sense:

00 00
nir

f (x) = ao + > an cos L
x

+ bn sin
naxL

n=1 n=1

Does the infinite series converge? Does it converge to f (x)? Is the resulting infinite
series really a solution of the partial differential equation (and doeb it also satisfy
all the other subsidiary conditions)? Mathematicians tell us that none of these
questions have simple answers. Nonetheless, Fourier series usually work quite well
(especially in situations where they arise naturally from physical problems). Joseph
Fourier developed this type of series in his famous treatise on heat flow in the early
1800s.

The first difficulty that arises is that we claim (3.1.1) will not be valid for all
functions f (x). However, (3.1.1) will hold for some kinds of functions and will need
only a small modification for other kinds of functions. In order to communicate var-
ious concepts easily, we will discuss only functions f (x) that are piecewise smooth.
A function f (x) is piecewise smooth (on some interval) if the interval can be
broken up into pieces (or sections) such that in each piece the function f (x) is con-

89
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f(xo )

xo
Figure 3.1.1 Jump discontinuity at
x=xo.

f(x)

xl X2 \ X3 Figure 3.1.2 Example of a piecewise
smooth function.

f(x) = 1/3

Figure 3.1.3 Example of a function
that is not piecewise smooth.

tinuous1 and its derivative df /dx is also continuous. The function f (x) may not
be continuous but the only kind of discontinuity allowed is a finite number of jump
discontinuities. A function f (x) has a jump discontinuity at a point x = xo if the
limit from the left [f (x0-o )] and the limit from the right [f (xa )] both exist (and are
unequal), as illustrated in Fig. 3.1.1. An example of a piecewise smooth function is
sketched in Fig. 3.1.2. Note that f (x) has two jump discontinuities at x = x1 and
at x = x3. Also, f (x) is continuous for x1 < x < X3 but df /dx is not continuous for
x1 < x < x3. Instead, df /dx is continuous for xl c x < x2 and x2 < x < x3. The
interval can be broken up into pieces in which both f (x) and df /dx are continuous.

X 3 -

A l m o s tAlmost all functions occurring in practice (and certainly most that we discuss in this
book) will be piecewise smooth. Let us briefly give an example of a function that
is not piecewise smooth. Consider f (x) = x1/3, as sketched in Fig. 3.1.3. It is not
piecewise smooth on any interval that includes x = 0, because df /dx = 1/3x-2/3 is
0o at x = 0. In other words, any region including x = 0 cannot be broken up into
pieces such that df /dx is continuous.

Each function in the Fourier series is periodic with period 2L. Thus, the Fourier
series of f(x) on the interval -L < x < L is periodic with period 2L. The function

I We do not give a definition of a continuous function here. However, one known useful fact is
that if a function approaches oo at some point, then it is not continuous in any interval including
that point.
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Figure 3.1.4 Periodic extension of f (x) = 2 x.

f (x) does not need to be periodic. We need the periodic extension of f (x). To
sketch the periodic extension of f (x), simply sketch f (x) for -L < x < L and
then continually repeat the same pattern with period 2L by translating the original
sketch for -L < x < L. For example, let us sketch in Fig. 3.1.4 the periodic
extension of f (x) = 2 x [the function f (x) = ix is sketched in dotted lines for
IxI > L]. Note the difference between f (x) and its periodic extension.

3.2 Statement of Convergence Theorem
Definitions of Fourier coefficients and a Fourier series. We will
be forced to distinguish carefully between a function f (x) and its Fourier series over
the interval -L < x < L:

00 00

Fourier series = ao + E a, cos nLx + E bn sin -Lx. (3.2.1)
n=1 n=1

The infinite series may not even converge, and if it converges. it may not converge
to f (x). However, if the series converges, we learned in Chapter 2 how to determine
the Fourier coefficients ao, an, bn using certain orthogonality integrals, (2.3.32).
We will use those results as the definition of the Fourier coefficients:

ao =

L

an = L jL f(x)cos nLx dx

bn
t

= L f f (x) sin nLx dx.
L

1 L

2L Lf (x) dx

(3.2.2)



92 Chapter 3. Fourier Series

The Fourier series of f (x) over the interval -L < x < L is defined
to be the infinite series (3.2.1), where the Fourier coefficients are given
by (3.2.2). We immediately note that a Fourier series does not exist unless for
example ao exists [i.e., unless ] f LL f (x) dxl < oo]. This eliminates certain functions
from our consideration. For example, we do not ask what is the Fourier series of
f(x) = 1/x2.

Even in situations in which f L f (x) dx exists, the infinite series may not con-
verge; furthermore, if it converges, it may not converge to f (x). We use the notation

00 00

f(x) - ao + > an cos nLx + bn sin nLx

n=1 n=1

(3.2.3)

where - means that f (x) is on the left-hand side and the Fourier series of f (x) (on
the interval -L < x < L) is on the right-hand side (even if the series diverges), but
the two functions may be completely different. The symbol - is read as "has the
Fourier series (on a given interval)."

Convergence theorem for Fourier series. At first we state a theo-
rem summarizing certain properties of Fourier series:

If f (x) is piecewise smooth on the interval -L < x _< L, then the Fourier
series of f (x) converges
1. to the periodic extension of f (x), where the periodic extension is

continuous;
2. to the average of the two limits, usually

2
[f (x+) + f (x-)] ,

where the periodic extension has a jump discontinuity.

We refer to this as Fourier's theorem. It is proved in many of the references
listed in the Bibliography.

Mathematically, if f (x) is piecewise smooth, then for -L < x < L (excluding
the endpoints),

f (x+) + P x-) - oo
n7rx

00
n7rx

2 = ao + an cos L + b,, sin L (3.2.4)
n-1 n=1

where the Fourier coefficients are given by (3.2.2). At points where f(x) is continu-
ous, f (x+) = f (x-) and hence (3.2.4) implies that for -L < x < L,

00 00

f(x)=ao+Ea, cos-L-+ bnsin"Lx

n=1 n=1
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The Fourier series actually converges to f (x) at points between -L and +L, where
f (x) is continuous. At the endpoints, x = L or x = -L, the infinite series converges
to the average of the two values of the periodic extension. Outside the range -L <
x < L, the Fourier series converges to a value easily determined using the known
periodicity (with period 2L) of the Fourier series.

Sketching Fourier series. Now we are ready to apply Fourier's theorem.
To sketch the Fourier series of f (x) (on the interval -L < x < L), we

1. Sketch f (x) (preferably for -L < x < L only).
2. Sketch the periodic extension of f (x).

According to Fourier's theorem, the Fourier series converges (here converge means
"equals") to the periodic extension, where the periodic extension is continuous
(which will be almost everywhere). However, at points of jump discontinuity of the
periodic extension, the Fourier series converges to the average. Therefore, there is
a third step:

3. Mark an "x" at the average of the two values at any jump
discontinuity of the periodic extension.

Example. Consider

1 x> 2
(3.2.5)

We would like to determine the Fourier series of f (x) on -L < x < L. We begin by
sketching f (x) for all x in Fig. 3.2.1 (although we only need the sketch for -L <-
x < L.) Note that f (x) is piecewise smooth, so we can apply Fourier's theorem.
The periodic extension of f (x) is sketched in Fig. 3.2.2. Often the understanding of
the process is made clearer by sketching at least three full periods, -3L < x < 3L,
even though in the applications to partial differential equations only the interval
-L < x < L is absolutely needed. The Fourier series of f (x) equals the periodic
extension of f (x), wherever the periodic extension is continuous (i.e., at all x except
the points of jump discontinuity, which are x = L/2, L, L/2 + 2L, -L, L/2 - 2L,
etc.). According to Fourier's theorem, at these points of jump discontinuity, the
Fourier series of f (x) must converge to the average. These points should be marked,
perhaps with an x, as in Fig. 3.2.2. At x = L/2 and x = L (as well as x = L/2±2nL
and x = L ± 2nL), the Fourier series converges to the average, 2. In summary, for
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L/2

Figure 3.2.1 Sketch of f (x)

X x

-3L =L L/2 L

Figure 3.2.2 Fourier series of f (x).

this example,

°O n7rx n7rx
ao + an cos L + bn sin

n=1 n=1

Chapter 3. Fourier Series

x x

3L
T

x=-L
0 -L<x<L/2
z x = L/2
1 L/2<x<L

x=L.

Fourier series can converge to rather strange functions, but they are not so different
from the original function.

Fourier coefficients. For a given f(x), it is not necessary to calculate
the Fourier coefficients in order to sketch the Fourier series of f (x). However, it is
important to know how to calculate the Fourier coefficients, given by (3.2.2). The
calculation of Fourier coefficients can be an algebraically involved process. Some-
times it is an exercise in the method of integration by parts. Often, calculations
can be simplified by judiciously using integral tables or computer algebra systems.
In any event, we can always use a computer to approximate the coefficients numer-
ically. As an overly simple example but one that illustrates some important points,
consider f (x) given by (3.2.5). From (3.2.2), the coefficients are

L L

ao = 2L

f
f (x) dx = I2L

dx = 4 (3.2.6)
L /2
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L n7rx L n7rx n7rx
an

L
f (x) cos L dx = L J cos L dx nir sin L

L L/2

= 1
sinn7r - sin

nir
nir 2

bn = 1 L f (x) sin
nirx

L

1L
dx = sin n

xL nir LL
J

/2

nn
Cos - - cos n7r

n7r 2
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(3.2.7)

(3.2.8)

We omit simplifications that arise by noting that sinn7r = 0, cosnir = (-1)", and
so on.

EXERCISES 3.2

3.2.1. For the following functions, sketch the Fourier series off (x) (on the interval
-L < x < L). Compare f (x) to its Fourier series:

(a) f(x) = 1 *(b) f(x) = x2

(c) f(x)=1+x *(d) f(x) = ex

(e) f (x) = { 2x x > 0 * (f) f (x) 1+x
(g) f(x) x

0
x < L/2
x > L/2

x > O

3.2.2. For the following functions, sketch the Fourier series of f (x) (on the interval
-L < x < L) and determine the Fourier coefficients:

*(a) f(x)=x (b) f(x) = e-x

*(c) f(x) = sin

L
(d) f(x)

0 x < 0

l x x>0

(e) f(x) I jxj < L/2
0 jxI > L/2

(g) f(x) = I 1 x < 0

l 2 x>0

-1 nirx
dx = - cos

* (f) f (x) = l 0

L

IL/2

L

L/2

x<0
x>0
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3.2.3. Show that the Fourier series operation is linear: that is, show that the
Fourier series of c1 f (x) + c2g(x) is the sum of cl times the Fourier series of
f (x) and c2 times the Fourier series of g(x).

3.2.4. Suppose that f (x) is piecewise smooth. What value does the Fourier series
of f (x) converge to at the endpoint x = -L? at x = L?

3.3 Fourier Cosine and Sine Series
In this section we show that the series of sines only (and the series of cosines only)
are special cases of a Fourier series.

3.3.1 Fourier Sine Series
Odd functions. An odd function is a function with the property f (-x)
- f (x). The sketch of an odd function for x < 0 will be minus the mirror image of
f (x) for x > 0, as illustrated in Fig. 3.3.1. Examples of odd functions are f (x) = x3
(in fact, any odd power) and f (x) = sin 4x. The integral of an odd function over
a symmetric interval is zero (any contribution from x > 0 will be canceled by a
contribution from x < 0).

Figure 3.3.1 An odd function.

Fourier series of odd functions. Let us calculate the Fourier coeffi-
cients of an odd function:

ao
1 fL

1 J_Lf (x) dx = 0

L

an = L ff(x)cosdx=0.
L

Both are zero because the integrand, f (x) cos nirx/L, is odd (being the product of
an even function cos n7rx/L and an odd function f (x)). Since an = 0, all the cosine
functions (which are even) will not appear in the Fourier series of an odd function.
The Fourier series of an odd function is an infinite series of odd functions (sines):

00

f (x) - bn sin
n1x,

(3.3.1)
n=1
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if f (x) is odd. In this case formulas for the Fourier coefficients bn may be simplified:

rL

j
L

= i J f (x) sin nix dx = L f (x) sin nix dx, (3.3.2)b
L

since the integral of an even function over the symmetric interval -L to +L is twice
the integral from 0 to L. For odd functions information about f (x) is needed only
for0<x<L.

Fourier sine series. However, only occasionally are we given an odd func-
tion and asked to compute its Fourier series. Instead, frequently series of only sines
arise in the context of separation of variables. Recall that the temperature in a
one-dimensional rod 0 < x < L with zero temperature ends [u(0, t) = u(L, t) = 0]
satisfies

00

u(x, t) _ >2 B,, sin ---e nn/L)2 ke (3.3.3)
n=1

where the initial condition u(x, 0) = f (x) is satisfied if
00

f (x) _ B. sin
n1rx .

(3.3.4)
n=1

f (x) must be represented as a series of sines; (3.3.4) appears in the same form as
(3.3.1). However, there is a significant difference. In (3.3.1) f (x) is given as an odd
function and defined for -L < x < L. In (3.3.4) f (x) is only defined for 0 < x < L
(it is just the initial temperature distribution); f (x) is certainly not necessarily odd.
If f (x) is only given for 0 < x < L, then it can be extended as an odd function; see
Fig. 3.3.2, called the odd extension of f (x). The odd extension of f (x) is defined
for -L < x < L. Fourier's theorem will apply [if the odd extension of f (x) is
piecewise smooth, which just requires that f (x) is piecewise smooth for 0 < x < U.
Moreover. since the odd extension of f (x) is certainly odd, its Fourier series only
involves sines:

the odd extension of f (x) - > Bn sin n7rx/L, -L < x < L,0.0

n=1

where Bn are given by (3.3.2). However, we are only interested in what happens
between x = 0 and x = L. In that region f (x) is identical to its odd extension:

f (x) - EBn sin nLx
n=1

0<x<L, (3.3.5)

where

r
Bn =

2

J
L

f (x) sin nLx dx. (3.3.6)
0
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0

Figure 3.3.2 Odd extension of f (x).

We call this the Fourier sine series of f (x) (on the interval 0 < x < L ). This
series (3.3.5) is nothing but an example of a Fourier series. As such, we can simply
apply Fourier's theorem; just remember that f (x) is only defined for 0 < x < L.
We may think of f (x) as being odd (although it is not necessarily) by extending
f (x) as an odd function. Formula (3.3.6) is very important but does not need to
be memorized. It can be derived from the formulas for a Fourier series simply by
assuming that f (x) is odd. [It is more accurate to say that we consider the odd
extension of f (x)]. Formula (3.3.6) is a factor of 2 larger than the Fourier series
coefficients since the integrand is even. In (3.3.6) the integrals are only from x = 0
to x = L.

According to Fourier's theorem, sketching the Fourier sine series of f (x) is easy:

1. Sketch f (x) (for 0 < x < L).
2. Sketch the odd extension of f (x).
3. Extend as a periodic function (with period 2L).
4. Mark an x at the average at points where the odd periodic extension of

f (x) has a jump discontinuity.

Example. As an example, we show how to sketch the Fourier sine series of
f (x) = 100. We consider f (x) = 100 only for 0 < x < L. We begin by sketching
in Fig. 3.3.3 its odd extension. The Fourier sine series of f (x) equals the Fourier
series of the odd extension of f (x). In Fig. 3.3.4 we repeat periodically the odd
extension (with period 2L). At points of discontinuity, the average is marked with
an x. According to Fourier's theorem (as illustrated in Fig. 3.3.4), the Fourier sine
series of 100 actually equals 100 for 0 < x < L, but the infinite series does not equal
100 at x=0andx=L:

00

100= Bnsinx, 0<x<L. (3.3.7)
n=1

At x = 0, Fig. 3.3.4 shows that the Fourier sine series converges to 0, because at
x = 0 the odd property of the sine series yields the average of 100 and -100, which
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100

0

Figure 3.3.3 Odd extension of f (x) = 100.

-3L ;L 0

Figure 3.3.4 Fourier sine series of f (x) = 100.

x

3L

99

is 0. For similar reasons, the Fourier sine series also converges to 0 at x = L. These
observations agree with the result of substituting x = 0 (and x = L) into the infinite
series of sines. The Fourier coefficients are determined from (3.3.6) as before [see
(2.3.42)]:

B. _ L / L f(x) sin n7rx dx _ 200 tr sin nLx 0
400

n even
(3.3.8)

0 0 n,r n odd.

Physical example. One of the simplest examples is the Fourier sine series
of a constant. This problem arose in trying to solve the one-dimensional heat
equation with zero boundary conditions and constant initial temperature, 100°:

Ott 0,2U
PDE: ka-2 ,

0<x<L, t>0
BC1: u(0, t) = 0
BC2: u(L, t) = 0

IC: u(x,0) = f(x)=1000.

We recall from Sec. 2.3 that the method of separation of variables implied that
00

u(x, t) = E Bn sin nirx
e-(n+r/L)2ki.

n=1

The initial conditions are satisfied if
00

100= f(x)Bnsinn.x, 0<x<L.

(3.3.9)

n=1
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u=0°

x=0 u=100° z=L

U = 0°

x

Figure 3.3.5 Boundary and initial condi-
tions.

This may be interpreted as the Fourier sine series of f (x) = 100 [see (3.3.8)]. Equiv-
alently, B may be determined from the orthogonality of sin nirx/L [see (2.3.42)].

Mathematically, the Fourier series of the initial condition has a rather bizarre
behavior at x = 0 (and at x = L). In fact, for this problem, the physical situation
is not very well defined at x = 0 (at t = 0). This might be illustrated in a space-
time diagram, Fig. 3.3.5. We note that Fig. 3.3.5 shows that the domain of our
problem is t > 0 and 0 < x < L. However, there is a conflict that occurs at
x = 0, t = 0 between the initial condition and the boundary condition. The
initial condition (t = 0) prescribes the temperature to be 100° even as x - 0,
whereas the boundary condition (x = 0) prescribes the temperature to be 0° even
as t -. 0. Thus, the physical problem has a discontinuity at x = 0, t = 0. In the
actual physical world, the temperature cannot be discontinuous. We introduced a
discontinuity into our mathematical model by "instantaneously" transporting (at
t = 0) the rod from a 100° bath to a 0° bath at x = 0. It actually takes a finite
time, and the temperature would be continuous. Nevertheless, the transition from
0° to 100° would occur over an exceedingly small distance and time. We introduce
the temperature discontinuity to approximate the more complicated real physical
situation. Fourier's theorem thus illustrates how the physical discontinuity at x = 0
(initially, at t = 0) is reproduced mathematically. The Fourier sine series of 100°
(which represents the physical solution at t = 0) has the nice property that it equals
100° for all x inside the rod, 0 < x < L (thus satisfying the initial condition there),
but it equals 0° at the boundaries, x = 0 and x = L (thus also satisfying the
boundary conditions). The Fourier sine series of 100° is a strange mathematical
function, but so is the physical approximation for which it is needed.

Fourier series computations and the Gibbs phenomenon. Let
us gain some confidence in the validity of Fourier series. The Fourier sine series of
f (x) = 100 states that

100 =
400 sin irx/L + sin 31rx/L + sin 5irx/L
Ir 1 3 5

(3.3.10)

Do we believe (3.3.10)? Certainly, it is not valid at x = 0 (as well as the other
boundary x = L), since at x = 0 every term in the infinite series is zero (they
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cannot add to 100). However, the theory of Fourier series claims that (3.3.10) is
valid everywhere except the two ends. For example, we claim it is valid at x = L/2.
Substituting x = L/2 into (3.3.10) shows that

400 1 1 1 1 1 it 1 1 1 1 1
100= C1-3+57911+... or41-3+5-7+9-11+...,
At first this may seem strange. However, it is Euler's formula for it. It can be
used to compute it (although very inefficiently); it can also be shown to be true
without relying on the theory of infinite trigonometric series (see Exercise 3.3.17).
The validity of (3.3.10) for other values of x, 0 < x < L, may also surprise you.
We will sketch the left- and right-hand sides of (3.3.10), hopefully convincing you
of their equality. We will sketch the r.h.s. by adding up the contribution of each
term of the series. Of course, we cannot add up the required infinite number of
terms; we will settle for a finite number of terms. In fact, we will sketch the sum
of the first few terms to see how the series approaches the constant 100 as the
number of terms increases. It is helpful to know that 400/ir = 127.32395... (al-
though for rough sketching 125 or 130 will do). The first term (400/ir) sin irx/L
by itself is the basic first rise and fall of a sine function; it is not a good ap-
proximation to the constant 100, as illustrated in Fig. 3.3.6. On the other hand,
for just one term in an infinite series it is not such a bad approximation. The
next term to be added is (400/3$) sin 3irx/L. This is a sinusoidal oscillation, with
one-third the amplitude and one-third the period of the first term. It is positive
near x = 0 and x = L, where the approximation needs to be increased, and it
is negative near x = L/2, where the approximation needs to be decreased. It
is sketched in dashed lines and then added to the first term in Fig. 3.3.7. Note
that the sum of the two nonzero terms already seems to be a considerable im-
provement over the first term. Computer plots of some partial sums are given in
Fig. 3.3.8.

Actually, a lot can be learned from Fig. 3.3.8. Perhaps now it does seem
reasonable that the infinite series converges to 100 for 0 < x < L. The worst
places (where the finite series differs most from 100) are getting closer and closer
to x = 0 and x = L as the number of terms increases. For a finite number of
terms in the series, the solution starts from zero at x = 0 and shoots up be-
yond 100, what we call the primary overshoot. It is interesting to note that
Fig. 3.3.8 illustrates the overshoot vividly. We can even extrapolate to guess
what happens for 1000 terms. The series should become more and more accu-
rate as the number of terms increases. We might expect the overshoot to vanish
as n - oo, but put a straight edge on the points of maximum overshoot. It
just does not seem to approach 100. Instead, it is far away from that, closer to
118. This overshoot is an example of the Gibbs phenomenon. In general (for
large n), there is an overshoot (and corresponding undershoot) of approximately
9% of the jump discontinuity. In this case (see Fig. 3.3.4), the Fourier sine se-
ries of f(x) = 100 jumps from -100 to +100 at x = 0. Thus, the finite series
will overshoot by about 9% of 200, or approximately 18. The Gibbs phenomenon
occurs only when a finite series of eigenfunctions approximates a discontinuous
function.
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100

Figure 3.3.6 First term of Fourier sine series of
f(x) = 100.

100

Figure 3.3.7 First two nonzero terms of Fourier sine
series of f(x) = 100.



3.3. Cosine and Sine Series

140

120

100

80

40

20

0.1

140

120

100

80

60

40

20

0.2 0.3 0.4 0.5 0.6

x/L

0.7 0.8 0.9

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/L

1

Figure 3.3.8 Various partial sums of Fourier sine series
of f (x) = 100. Using 51 terms (including n = 51), the
finite series is a good approximation to f (x) = 100 away
from the endpoints. Near the endpoints (where there is a
jump discontinuity of 200), there is a 9% overshoot (Gibbs
phenomenon).

103
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Further example of a Fourier sine series. We consider the Fourier
sine series of f (x) = x. f (x) = x is sketched on the interval 0 < x < L in
Fig. 3.3.9a. The odd-periodic extension of f (x) is sketched in Fig. 3.3.9b. The
jump discontinuity of the odd-periodic extension at x = (2n - 1)L shows that, for
example, the Fourier sine series of f (x) = x converges to zero at x = L. While
f (L) 96 0. We note that the Fourier sine series of f (x) = x actually equals x for
-L<x<L,

00

X Bn sin
n7rx, -L < x < L. (3.3.11)=

T.
n=1

The Fourier coefficients are determined from (3.3.6):

Bn = 2 J L f (x) sin nLx dx = L J L x sin nLx dx = 2L (-1)n+1, (3.3.12)
0 0 n7r

where the integral can be evaluated by integration by parts (or by a table).

L

Figure 3.3.9 (a) f (x) = x and (b) its Fourier sine
series.

Example. We now consider the Fourier sine serie$ of f (x) = cos irx/L. This
may seem to ask for a sine series expansion of an even function, but in applications
often the function is only given from 0 < x < L and must be expanded in a series
of sins due to the boundary conditions. cos 7rx/L is sketched in Fig. 3.3.10a. It
is an even function, but its odd extension is sketched in Fig. 3.3.10b. The Fourier
sine series of f (x) equals the Fourier series of the odd extension of f (x). Thus,
we repeat the sketch in Fig. 3.3.10b periodically (see Fig. 3.3.11), placing an x at
the average of the two values at the jump discontinuities. The Fourier sine series
representation of cos irx/L is

cos L Bn sin nix 0 < x < L,
n=1

where with some effort we obtain

2 fL (0 n odd7rxBn = cos T sin nix dx - {l 4n n even (3.3.13)L L ir(n2_1)
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(a)

-L

(b)

L

Figure 3.3.10 (a) f (x) = cos arx/L and (b) its
odd extension.

Figure 3.3.11 Fourier sine series of f (x) = cos irx/L.

According to Fig. 3.3.11 (based on Fourier's theorem), equality holds for 0 < x < L,
but not at x=0 and not atx=L:

00

cos L = Bn sin nLx 0 < x < L.
n=1

At x = 0 and at x = L the infinite series must converge to 0, since all terms in the
series are zero there. Figure 3.3.11 agrees with this. You may be a bit puzzled by
an aspect of this problem. You may have recalled that sin n7rx/L is orthogonal to
cos max/L, and thus expected all the Bn in (3.3.12) to be zero. However, Bn 0.
The subtle point is that you should remember that cos m7rx/L and sin nax/L are
orthogonal on the interval -L < x < L, f LL cos max/L sin nax/L dx = 0; they are
not orthogonal on 0 < x < L.
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3.3.2 Fourier Cosine Series
Even functions. Similar ideas are valid for even functions, in which f (-x) _
f (x). Let us develop the basic results. The sine coefficients of a Fourier series will
be zero for an even function,

fL
bn = - J f (x) sin nLx dx = 0,

L

since f (x) is even. The Fourier series of an even function is a representation of f (x)
involving an infinite sum of only even functions (cosines):

00

f(x) - Eancos
n=0

nirx
L '

(3.3.14)

if f(x) is even. The coefficients of the cosines may be evaluated using information
about f (x) only between x = 0 and x = L, since

ao = ZL J L f (x) dx = L / L f (x) dx (3.3.15)
L 0

Co.
dx, (3.3.16)f

JL
(n > 1) an = f (.T) cos nLx dx = 2

using the fact that for f (x) even, f (x) cos nirx/L is even.
Often, f (x) is not given as an even function. Instead, in trying to represent an

arbitrary function f (x) using an infinite series of cos nirx/L, the eigenfunctions of
the boundary value problem d246/dx2 = -AO with dO/dx (0) = 0 and dq6/dx (L) = 0,
we wanted

00

f (x) _ An cos nLx
n=0

(3.3.17)

only for 0 < x < L. We had previously determined the coefficients An to be the same
as given by (3.3.15) and (3.3.16), but our reason was because of the orthogonality
of cos nirx/L. To relate (3.3.17) to a Fourier series, we simply introduce the even
extension of f (x), an example being illustrated in Fig. 3.3.12. If f (x) is piecewise
smooth for 0 < x < L, then its even extension will also be piecewise smooth, and
hence Fourier's theorem can be applied to the even extension of f (x). Since the
even extension of f (x) is an even function, the Fourier series of the even extension
of f (x) will have only cosines:

even extension of f (x) ti >2 an cos nLx, -L < x < L,
n=0

where an is given by (3.3.15) and (3.3.16). In the region of interest, 0 < x < L,
f (x) is identical to the even extension. The resulting series in that region is called
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Figure 3.3.12 Even extension of f (x).

the Fourier cosine series of f (x) (on the interval 0 < x < L):

00

f(x) ti jA,, cosn1x, 0 < x < L
n=0

I1

L
Lf

(x) dx

2 L nirxAn =
L

r f (x) cos L dx.
0

(3.3.18)

(3.3.19)

(3.3.20)

The Fourier cosine series of f (x) is exactly the Fourier series of the even extension
of f (x). Since we can apply Fourier's theorem, we have an algorithm to sketch the
Fourier cosine series of f (x):

1. Sketch f (x) (for 0 < x < L).
2. Sketch the even extension of f (x).
3. Extend as a periodic function (with period 2L).
4. Mark x at points of discontinuity at the average.

1

Example. We consider the Fourier cosine -series of f (x) = x. f (x) is sketched
in Fig. 3.3.13a (note that f (x) is odd!]. We consider f (x) only from x = 0 to
x = L and then extend it in Fig. 3.3.13b as an even function. Next, we sketch the
Fourier series of the even extension, by periodically extending the even extension
(see Fig. 3.3.14). Note that between x = 0 and x = L the Fourier cosine series has
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.f(x)

x

(a)

-L

(b)

L

Figure 3.3.13 (a) f (x) = x, (b) its even extension.

x

Figure 3.3.14 Fourier cosine series of the even extension of
,f (x)

no jump discontinuities. The Fourier cosine series of f (x) = x actually equals x, so
that

00

x=EAnCOSnTx 0<x<L. (3.3.21)
n=0

The coefficients are given by the following integrals:

1 /'L 1

L
L

Ao
=

x2x dx = (3.3.22)
L 2

L o
2

0

An =
L

n
L

f cos nLx dx = (cos nit - 1). (3.3.23)(
0

2

The latter integral can be evaluated by integration by parts, tables, or a symbolic
computation program. We omit the details.

3.3.3 Representing f (x) by Both a Sine and Cosine Series
It may be apparent that any function f (x) (which is piecewise smooth) may be
represented both as a Fourier sine series and as a Fourier cosine series. The one
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you would use is dictated by the boundary conditions (if the problem arose in the
context of a solution to a partial differential equation using the method of separation
of variables). It is also possible to use a Fourier series (including both sines and
cosines). As an example, we consider the sketches of the Fourier, Fourier sine, and
Fourier cosine series of

I - Z sin" x<0
f(x) = x 0 < x < i

L-x x> 2.

The graph of f (x) is sketched for -L < x < L in Fig. 3.3.15. The Fourier series of
f (x) is sketched by repeating this pattern with period 2L. On the other hand, for
the Fourier sine (cosine) series, first sketch the odd (even) extension of the function
f(x) before repeating the pattern. These three are sketched in Fig. 3.3.16. Note
that for -L < x < L only the Fourier series of f (x) actually equals f (x). However,
for all three cases the series equals f (x) over the region 0 < x < L.

x

Figure 3.3.15 The graph of f (x) for -L < x <
L.

3.3.4 Even and Odd Parts
Let us consider the Fourier series of a function f (x) that is not necessarily even or
odd:

00nirx n7rxf(x)-ao+a,cos L +Ebnsin L (3.3.24)
n=1 n=1

where

as
1

L

2L I f (x) dx

L

an = L f fxcos
nLx

dx
.lL

bn =
rL

L J f (x) sin nLx dx.
L
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(a)

(b)

(c)

Figure 3.3.18 (a) Fourier series of f (x); (b) Fourier sine series of f (x);
(c) Fourier cosine series of f (x).

It is interesting to see that a Fourier series is the sum of a series of cosines and a series
of sines. For example, F_n , b sin n7rx/L is not, in general, the Fourier sine series of
f (x), because the coefficients, b = 1/L f L f (x) sin nirx/L dx, are not, in general,
the same as the coefficients of a Fourier sine series [2/L f ' f (x) sin nirx/L dx]. This
series of sines by itself ought to be the Fourier sine series of some function; let us
determine this function.

Equation (3.3.24) shows that f (x) is represented as a sum of an even function
(for the series of cosines must be an even function) and an odd function (similarly,
the sine series must be odd). This is a general property of functions, since for any
function it is rather obvious that

f (x) = 2 if (x) + f (-x)) +
2 if (x) - f (-x)) . (3.3.25)

Note that the first bracketed term is an even function; we call it the even part of
f (x). The second bracketed term is an odd function, called the odd part of f (x):

fi(x) = 2 if (x) + f (-x)) and f. (x) =
2

if (x) - f (--x)). (3.3.26)

In this way, any function is written as the sum of an odd function (the odd part)
and an even function (the even part). For example, if f (x) = 1/(1 + x),

1 _ 1( 1 1 1 1 1 - 1 1- 1 x
1+x 2 1+x+1-z +2 1+x 1-x 1-x2 1-x2'

This is the sum of an even function, 1/(1 - x2), and an odd function, -x/(1- x2).
Consequently, the Fourier series of f (x) equals the Fourier series of fe (x) [which is
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a cosine series since fe(x) is even] plus the Fourier series of fo(x) (which is a sine
series since ,,(x) is odd). This shows that the series of sines (cosines) that appears
in (3.3.17) is the Fourier sine (cosine) series of f,(x)(fe(x)). We summarize our
result with the statement:

The Fourier series of f (x) equals the Fourier sine series of f,(x) plus the
Fourier cosine series of fe(x), where f. (x) =

z
[f (x) + f (-x)], and

fo(x) = 12 [f(x) - f(-x)]-

Please do not confuse this result with even and odd extensions. For example, the
even part of f (x) = .1 [f (x) + f (-x)], while the

even extension of f (x) =
l

f (x), x > 0
f (-x), x < 0.

3.3.5 Continuous Fourier Series
The convergence theorem for Fourier series shows that the Fourier series of f (x)
may be a different function than f (x). Nevertheless, over the interval of interest,
they are the same except at those few points where the periodic extension of f (x)
has a jump discontinuity. Sine (cosine) series are analyzed in the same way, where
instead the odd (even) periodic extension must be considered. In addition to points
of jump discontinuity of f (x) itself, the various extensions of f (x) may introduce a
jump discontinuity. From the examples in the preceding section, we observe that
sometimes the resulting series does not have any jump discontinuities. In these
cases the Fourier series of f (x) will actually equal f (x) in the range of interest.
Also, the Fourier series itself will be a continuous function.

It is worthwhile to summarize the conditions under which a Fourier series is
continuous:

For piecewise smooth f (x), the Fourier series of f (x) is continuous
and converges to f (x) for -L < x < L if and only if f (x) is
continuous and f (-L) = f (L).

It is necessary for f (x) to be continuous; otherwise, there will be a jump discon-
tinuity [and the Fourier series of f (x) will converge to the average]. In Fig. 3.3.17
we illustrate the significance of the condition f (-L) = f (L). We illustrate two
continuous functions, only one of which satisfies f (-L) = f (L). The condition
f (-L) = f (L) insists that the repeated pattern (with period 2L) will be continuous
at the endpoints. The preceding boxed statement is a fundamental result for all
Fourier series. It explains the following similar theorems for Fourier sine and cosine
series.

Consider the Fourier cosine series of f (x) [f (x) has been extended as an even
function]. If f (x) is continuous, is the Fourier cosine series continuous? An example
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x

(a)

T

(b)

Figure 3.3.17 Fourier series of a continuous function with (a)
f(-L) $ f(L) and (b) f(-L) = f(L).

that is continuous for 0 _< x < L is sketched in Fig. 3.3.18. First we extend f (x)
evenly and then periodically. It is easily seen that

For piecewise smooth f (x), the Fourier cosine series of f (x) is continuous
and converges to f (x) for 0 < x < L if and only if f (x) is continuous.

We note that no additional conditions on f (x) are necessary for the cosine series to
be continuous (besides f (x) being continuous). One reason for this result is that if
f (x) is continuous for 0 < x < L, then the even extension will be continuous for

Figure 3.3.18 Fourier cosine series of a continuous function.
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(b)

(c)

(d)

Figure 3.3.19 Fourier sine series of a continuous function with
(a) f (0) 0 and f (L) jA 0; (b) f (0) = 0 but f (L) 96 0; (c) f (L) = 0
but f (0) # 0; and (d) f (0) = 0 and f (L) = 0.

113

-L < x < L. Also note that the even extension is the same at ±L. Thus, the
periodic extension will automatically be continuous at the endpoints.

Compare this result to what happens for a Fourier sine series. Four examples
are considered in Fig. 3.3.19, all continuous functions for 0 < x < L. From the first
three figures, we see that it is possible for the Fourier sine series of a continuous
function to be discontinuous. It is seen that

For piecewise smooth functions f (x), the Fourier sine series of f (x)
is continuous and converges to f (x) for 0 < x < L if and only if
f (x) is continuous and both f (0) = 0 and f (L) = 0.

If f (0) 36 0, then the odd extension of f (x) will have a jump discontinuity at
x = 0, as illustrated in Figs. 3.3.19a and c. If f (L) # 0, then the odd extension at
x = -L will be of opposite sign from f (L). Thus, the periodic extension will not
be continuous at the endpoints if f (L) 34 0 as in Figs. 3.3.19a and b.

EXERCISES 3.3
3.3.1. For the following functions, sketch f (x), the Fourier series of f (x), the

Fourier sine series of f (x), and the Fourier cosine series of f (x).
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(a)

(c)

f(x) = 1

f(x) _ {
1 + x x > 0

(e) f(x) e-x x > 0

(b) f(x)=1+x

*(d) f(x) = ex

3.3.2. For the following functions, sketch the Fourier sine series of f (x) and deter-
mine its Fourier coefficients.

(a) [Verify formula (3.3.13).]

(c) f(x)
0

x
x < L/2

x > L/2

1 x < L/6

(b) f (x) = 3 L/6 < x < L/2
0 x > L/2

* (d) f (x) 1 x < L/2
0 x > L/2

3.3.3. For the following functions, sketch the Fourier sine series of f (x). Also,
roughly sketch the sum of a finite number of nonzero terms (at least the
first two) of the Fourier sine series:

(a) f (x) = cos irx/L [Use formula (3.3.13).]

(b) f(x) _ { 1 x < L/2
0 x > L/2

(c) f (x) = x [Use formula (3.3.12).]

3.3.4. Sketch the Fourier cosine series of f (x) = sin irx/L. Briefly discuss.

3.3.5. For the following functions, sketch the Fourier cosine series of f (x) and
determine its Fourier coefficients:

1 x < L/6
(a) f (x) = x2 (b) f (x) = 3 L/6 < x < L/2 (c) f (x) =

0 x > L/2 fx x > L/2

3.3.6. For the following functions, sketch the Fourier cosine series of f (x). Also,
roughly sketch the sum of a finite number of nonzero terms (at least the
first two) of the Fourier cosine series:

(a) f (x) = x [Use formulas (3.3.22) and (3.3.23).]

(b) f (x) = 0 x<L/2
1 x > L12 [Use carefully formulas (3.2.6) and (3.2.7).]

_ 0 x < L/2(c) f (x)
1 x > L/2 [Hint: Add the functions in parts (b) and (c).]

3.3.7. Show that ex is the sum of an even and an odd function.
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3.3.8. (a) Determine formulas for the even extension of any f (x). Compare to
the formula for the even part of f (x).

(b) Do the same for the odd extension of f (x) and the odd part of f (x).

(c) Calculate and sketch the four functions of parts (a) and (b) if

= J x x>0
f(x x2 x <0.

Graphically add the even and odd parts of f (x). What occurs? Simi-
larly, add the even and odd extensions. What occurs then?

3.3.9. What is the sum of the Fourier sine series of f (x) and the Fourier cosine
series of f (x)? [What is the sum of the even and odd extensions of f (x)?]

2

*3.3.10. If f (x) = e_z x > 0 , what are the even and odd parts of f (x)?

3.3.11. Given a sketch of f(x), describe a procedure to sketch the even and odd

parts of f (x).

3.3.12. (a) Graphically show that the even terms (n even) of the Fourier sine series
of any function on 0 < x < L are odd .(antisymmetric) around x = L/2.

(b) Consider a function f (x) that is odd around x = L/2. Show that the
odd coefficients (n odd) of the Fourier sine series of f (x) on 0 < x < L
are zero.

*3.3.13. Consider a function f (x) that is even around x = L/2. Show that the even
coefficients (n even) of the Fourier sine series of f (x) on 0 < x < L are zero.

3.3.14. (a) Consider a function f (x) that is even around x = L/2. Show that
the odd coefficients (n odd) of the Fourier cosine series of f (x) on
0 < x < L are zero.

(b) Explain the result of part (a) by considering a Fourier cosine series of
f (x) on the interval 0 < x < L/2.

3.3.15. Consider a function f (x) that is odd around x = L/2. Show that the even
coefficients (n even) of the Fourier cosine series of f (x) on 0 < x < L are
zero.

3.3.16. Fourier series can be defined on other intervals besides -L < x < L. Sup-
pose that g(y) is defined for a < y < b. Represent g(y) using periodic
trigonometric functions with period b - a. Determine formulas for the coef-
ficients. [Hint: Use the linear transformation

a+b b-a
2 + 2L
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3.3.17. Consider

1
(1 dx

o l+x2'
(a) Evaluate explicitly.
(b) Use the Taylor series of 1/(1 + x2) (itself a geometric series) to obtain

an infinite series for the integral.
(c) Equate part (a) to part (b) in order to derive a formula for ir.

3.3.18. For continuous functions,

(a) Under what conditions does f (x) equal its Fourier series for all x,
-L < x < L?

(b) Under what conditions does f (x) equal its Fourier sine series for all x,
0<x<L?

(c) Under what conditions does f (x) equal its Fourier cosine series for all
x,0<x<L?

3.4 Term-by-Term Differentiation
of Fourier Series

In solving partial differential equations by the method of separation of variables, the
homogeneous boundary conditions sometimes suggest that the desired solution is
either an infinite series of sins or cosines. For example, we consider one-dimensional
heat conduction with zero boundary conditions. As before, we want to solve the
initial boundary value problem

=ka 22 (3.4.1)

u(0, t) = 0, u(L, t) = 0, u(x, 0) = f (x). (3.4.2)

By the method of separation of variables combined with the principle of superposi-
tion (taking a finite linear combination of solutions), we know that

N

u(x, t) _ Bn sin
n1x e-(na/L)2A t

n=1

solves the partial differential equation and the two homogeneous boundary condi-
tions. To satisfy the initial conditions, in general an infinite series is needed. Does
the infinite series

00

u(x, t) _ Bn sin nLx e-(nx/L)2kt (3.4.3)
n=1

satisfy our problem? The theory of Fourier sine series shows that the Fourier co-
efficients Bn can be determined to satisfy any (piecewise smooth) initial condition



3.4. Term-by-Term Differentiation 117

[i.e., B,, = 2/L f L f (x) sin nirx/L dx]. To see if the infinite series actually satisfies
the partial differential equation, we substitute (3.4.3) into (3.4.1). If the infinite
Fourier series can be differentiated term by term, then

00
nir l2 nirx

8 t - k (L I B,, sin
_T_

C_
n=1

and
0082u 'c 7L7r 2 n7rx (na/L)2kt

8x2 -'- L )2 B. sin L e-

Thus, the heat equation (&u/&t = k02u/8x2) is satisfied by the infinite Fourier series
obtained by the method of separation of variables, if term-by-term differentiation
of a Fourier series is valid.

Term-by-term differentiation of infinite series. Unfortunately,
infinite series (even convergent infinite series) cannot always be differentiated term
by term. It is not always true that

d 00

00
dun

dz E Cnun = E Cn
(

i

n=1 n=1

the interchange of operations of differentiation and infinite summation is not always
justified. However, we will find that in solving partial differential equations, all
the procedures we have performed on the infinite Fourier series are valid. We
will state and prove some needed theorems concerning the validity of term-by-
term differentiation of just the type of Fourier series that arise in solving partial
differential equations.

Counterexample. Even for Fourier series, term-by-term differentiation is
not always valid. To illustrate the difficulty in term-by-term differentiation, consider
the Fourier sine series of x (on the interval 0 < x < L) sketched in Fig. 3.4.1:

00
L n7rxx=2E -(-1)n+lsin L , on 0<x<L,

n7rn-1

as obtained earlier [see (3.3.11) and (3.3.12)]. If we differentiate the function on the
left-hand side, then we have the function 1. However, if we formally differentiate
term by term the function on the right, then we arrive at

00

2 11(-1)n+l cos
nLx

nn=1

This is a cosine series, but it is not the cosine series of f (x) = I (the cosine series
of 1 is just 1). Thus, Fig. 3.4.1 is an example where we cannot differentiate term
by term.2

21n addition, the resulting infinite series doe not even converge anywhere, since the nth term
does not approach zero



118 Chapter 3. Fourier Series

Figure 3.4.1 Fourier sine series of
f(x) = X.

Fourier series. We claim that this difficulty occurs any time the Fourier
series of f (x) has a jump discontinuity. Term-by-term differentiation is not justified
in these situations. Instead, we claim (and prove in an exercise) that

A Fourier series that is continuous can be differentiated term by
term if f'(x) is piecewise smooth.

An alternative form of this theorem is written if we remember the condition for the
Fourier series to be continuous:

If f (x) is piecewise smooth, then the Fourier series of a continuous
function f (x) can be differentiated term by term if f (-L) = f (L).

The result of term-by-term differentiation is the Fourier series of f'(x), which may
not be continuous. Similar results for sine and cosine series are of more frequent
interest to the solution of our partial differential equations.

Fourier cosine series. For Fourier cosine series,

If f'(x) is piecewise smooth, then a continuous Fourier cosine series
of f (x) can be differentiated term by term.

The result of term-by-term differentiation is the Fourier sine series of f'(x), which
may not be continuous. Recall that f (x) only needs to be continuous for its Fourier
cosine series to be continuous. Thus, this theorem can be stated in the following
alternative form:

If f'(x) is piecewise smooth, then the Fourier cosine series of a
continuous function f (x) can be differentiated term by term.



3.4. Term-by-Term Differentiation 119

These statements apply to the Fourier cosine series of f (x):

00

f (x) = EAn cos
nLx

n=o
0<x<L, (3.4.4)

where the = sign means that the infinite series converges to f (x) for all x (0 < x <-
L) since f (x) is continuous. Mathematically, these theorems state that term-by-
term differentiation is valid,

o0

( l

f '(x) - - L 1
An sin nLx,

n=1

(3.4.5)

where - means equality where the Fourier sine series of f'(x) is continuous and
means the series converges to the average where the Fourier sine series of f'(x) is
discontinuous.

Example. Consider the Fourier cosine series of x [see (3.3.21), (3.3.22), and
(3.3.23)],

x= E
n odd
only

-3L

L 4L
2 rr2

-L

1 nirx;2 cos L ,

0

Figure 3.4.2 Fourier cosine series of f (x) = x.

3L

(3.4.6)

as sketched in Fig. 3.4.2. Note the continuous nature of this series for 0 < x < L,
which results in the = sign in (3.4.6). The derivative of this Fourier cosine series
is sketched in Fig. 3.4.3: it is the Fourier sine series of f (x) = 1. The Fourier sine
series of f (x) = 1 can be obtained by term-by-term differentiation of the Fourier
cosine series of f (x) = x. Assuming that term-by-term differentiation of (3.4.6) is
valid as claimed, it follows that

0<x<L,

4

n

1
sin nLx , (3.4.7)

n odd
only
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3L

Figure 3.4.3 Fourier sine series of of/dx.

which is in fact correct [see (3.3.8)).

Fourier sine series. A similar result is valid for Fourier sine series:

If f'(x) is piecewise smooth, then a continuous Fourier sine series
of f (x) can be differentiated term by term.

However; if f (x) is continuous, then the Fourier sine series is continuous only if
f (0) = 0 and f (L) = 0. Thus, we must be careful in differentiating term by term a
Fourier sine series. In particular,

If f'(x) is piecewise smooth, then the Fourier sine series of a con-
tinuous function f(x) can only be differentiated term by term if
f(0)=0and f(L)=0.

Proofs. The proofs of these theorems are all quite similar. We include one
since it provides a way to learn more about Fourier series and their differentiability.
We will prove the validity of term-by-term differentiation of the Fourier sine series
of a continuous function f (x), in the case when f'(x) is piecewise smooth and
f (0) = 0 = f (L):

00

f (x) Bn sin nLx (3.4.8)
n=

where Bn are expressed below. An equality holds in (3.4.8) only if f (0) = 0 = f (L).
If f'(x) is piecewise smooth, then f'(x) has a Fourier cosine series

0. (3.4.9)
n-1

where AO and An are expressed in (3.4.10) and (3.4.11). This series will not converge
to f(x) at points of discontinuity of f'(x). We will have succeeded ir showing a
Fourier sine series may be term-by-tern differentiated if we can verify that

fl(x) ti (nir ) nix
L Bn cos00

n=1
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[i.e., if Ao = 0 and A = (nir/L)Bn). The Fourier cosine series coefficients are
derived from (3.4.9). If we integrate by parts, we obtain

Ao = L fLf'(x) dx L [f(L)-f(0)] (3.4.10)

2/ L , nirx 2( n rx L
(n 0) An = L J f (x) cos L dx =

L if (x) cos L to
0

+ L f t
f (x) sin nix dx . (3.4.11)

Jo

But from (3.4.8), Bn is the Fourier sine series coefficient of f (x),

r
0

L

Bn = L J f (x) sin nLx dx,

and thus for n # 0

An = L Bn + L [(-1)nf (L) - f (0)]. (3.4.12)

We thus see by comparing Fourier cosine coefficients that the Fourier sine series can
be term-by-term differentiated only if both f (L) - f (0) = 0 (so that Ao = 0) and
(-1)n f (L) - f (0) = 0 (so that An = (nir/L)Bn]. Both of these conditions hold only
if

f (0) = f (L) = 0,

exactly the conditions for a Fourier sine series of a continuous function to be contin-
uous. Thus, we have completed the proof. However, this demonstration has given
us more information. Namely, it gives the formula to differentiate the Fourier sine
series of a continuous function when the series is not continuous. We have that

If f'(x) is piecewise smooth, then the Fourier sine series of a continuous
function f (x),

00

f (x) > Bn sin nLx

n=1

cannot, in general be differentiated term by term. However,

fi(x) - L ff(L) - f(0)]+E [L Bn + i ((-1)nf(L) - f(0))) cos nLx
n=1

(3.4.13)
In this proof, it may appear that we never needed f (x) to be continuous. How-

ever, we applied integration by parts in order to derive (3.4.9). In the usual pre-
sentation in calculus, integration by parts is stated as being valid if both u(x) and
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v(x) and their derivatives are continuous. This is overly restrictive for our work.
As is clarified somewhat in an exercise, we state that integration by parts is valid
if only u(x) and v(x) are continuous. It is not necessary for their derivatives to be
continuous. Thus the result of integration by parts is valid only if f (x) is continuous.

Example. Let us reconsider the Fourier sine series of f (x) = x,

I' n7rxx-2E-' (-1)n+1sin L
n=1 nir

We already know that (d/dx)x = 1 does not have a Fourier cosine series that results
from term-by-term differentiation of (3.4.14) since f (L) 36 0. However, (3.4.13) may
be applied since f (x) is continuous [and f'(x) is piecewise smooth]. Noting that
f (0) = 0, f (L) = L and (n7r/L)B,, = 2(-1)n+l, it follows that the Fourier cosine
series of df /dx is

df
1.

dx

The constant function 1 is exactly the Fourier cosine series of df /dx since f = x
implies that df /dx = 1. Thus, the r.h.s. of (3.4.13) gives the correct expression for
the Fourier cosine series of f'(x) when the Fourier sine series of f (x) is known, even
if f (0) 36 0 and/or f (L) 54 0.

Method of eigenfunction expansion. Let us see how our results con-
cerning the conditions under which a Fourier series may be differentiated term by
term may be applied to our study of partial differential equations. We consider
the heat equation (3.4.1) with zero boundary conditions at x = 0 and x = L. We
will show that (3.4.3) is the correct infinite series representation of the solution of
this problem. We will show this by utilizing an alternative scheme to obtain (3.4.3)
known as the method of eigenfunction expansion, whose importance is that it
may also be used when there are sources or the boundary conditions are not ho-
mogeneous (see Exercises 3.4.9- 3.4.12 and Chapter 7). We begin by assuming that
we have a solution u(x, t) that is continuous such that 8u/8t,8u/8x and 82u/8x2
are also continuous. Now we expand the unknown solution u(x, t) in terms of the
eigenfunctions of the problem (with homogeneous boundary conditions). In this
example, the eigenfunctions are sin nirx/L, suggesting a Fourier sine series for each
time:

u(x, t) - EBn(t) sin nirLx.

n=1

the Fourier sine coefficients Bn will depend on time,
The initial condition [u(x, 0) = f (x)] is satisfied if

(3.4.15)

00

f (x) B, (0) sin nTx, (3.4.16)
n=1
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determining the Fourier sine coefficient initially

r
Bn(0) =

2

J
t

f (x) sin nLx dx. (3.4.17)
0

All that remains is to investigate whether the Fourier sine series representation of
u(x, t), (3.4.15), can satisfy the heat equation, 8u/8t = k8zu/8xz. To do that
we must differentiate the Fourier sine series. It is here that our results concerning
term-by-term differentiation are useful.

First we need to compute two derivatives with respect to x. If u(x, t) is con-
tinuous, then the Fourier sine series of u(x, t) can be differentiated term by term
if u(0, t) = 0 and u(L, t) = 0. Since these are exactly the boundary conditions on
u(x, t), it follows from (3.4.15) that

ax E L A,(t) cos nLx. (3.4.18)
n=1

Since 8u/8x is also assumed to be continuous, an equality holds in (3.4:18). Fur-
thermore, the Fourier cosine series of 8u/8x can now be term-by-term differentiated,
yielding

192 no
r lz

8xz
- - E \ L) Bn(t) sin nLx (3.4.19)

n=1

Note the importance of the separation of variables solution. Sines were differentiated
at the stage in which the boundary conditions occurred that allowed sines to be
differentiated. Cosines occurred with no boundary condition, consistent with the
fact that a Fourier cosine series does not need any subsidiary conditions in order
to be differentiated. To complete the substitution of the Fourier sine series into
the partial differential equation, we need only to compute 8u/8t. If we can also
term-by-term differentiate with respect to t, then

On °O dB,, nirx
St E dt

sin L
n=

(3.4.20)

If this last term-by-term differentiation is justified, we see that the Fourier sine
series (3.4.15) solves the partial differential equation if

lz
dtn

-k
L

ni,
/ Bn(t). (3.4.21)

The Fourier sine coefficient Bn(t) satisfies a first-order linear differential equation
with constant coefficients. The solution of (3.4.21) is

Bn(t) = Bn(0)e-(n*/1)2kt,

where B,,(0) is given by (3.4.17). Thus, we have derived that (3.4.3) is valid,
justifying the method of separation of variables.

Can we justify term-by-term differentiation with respect to the parameter t?
The following theorem states the conditions under which this operation is valid:
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The Fourier series of a continuous function u(x, t) (depending on a parameter t)
Ll

+ b , , sin
nx

u(x, t) = ao(t) + [a,,(t) cos
nirx

00

n=1
can be differentiated term by term with respect to the parameter t, yielding

n

nxla
005iu(x, t) - a' (t) + > [an' (t) cos nLx + b,, (t) sin
=1 J

if Su/8t is piecewise smooth.

We omit its proof (see Exercise 3.4.7), which depends on the fact that

L rL8 I g(x, t) dx 8gdx
& L L8t

is valid if g is continuous.
In summary, we have verified that the Fourier sine series is actually a solution

of the heat equation satisfying the boundary conditions u(0, t) = 0 and u(L, t) = 0.
Now we have two reasons for choosing a Fourier sine series for this problem. First,
the method of separation of variables implies that if u(0, t) = 0 and u(L, t) = 0,
then the appropriate eigenfunctions are sin nirx/L. Second, we now see that all the
differentiations of the infinite sine series are justified, where we need to assume that
u(0, t) = 0 and u(L, t) = 0, exactly the physical boundary conditions.

EXERCISES 3.4

3.4.1. The integration-by-parts formula

rtL

r
dx=uv-J b v dx

is known to be valid for functions u(x) and v(x), which are continuous and
have continuous first derivatives. However, we will assume that u, v, du/dx,
and dv/dx are continuous only for a < x < c and c < x < b; we assume
that all quantities may have a jump discontinuity at x = c.

*(a) Derive an expression for f.' u dv/dx dx in terms of f b v du/dx dx.

(b) Show that this reduces to the integration-by-parts formula if u and v
are continuous across x = c. It is not necessary for du/dx and dv/dx
to be continuous at x = c.

3.4.2. Suppose that f (x) and df /dx are piecewise smooth. Prove that the Fourier
series of f (x) can be differentiated term by term if the Fourier series of f (x)
is continuous.
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3.4.3. Suppose that f (x) is continuous [except for a jump discontinuity at x = x°i
f (xa) = a and f (xo) = 01 and df /dx is piecewise smooth.

*(a) Determine the Fourier sine series of df /dx in terms of the Fourier cosine
series coefficients of f (x).

(b) Determine the Fourier cosine series of df /dx in terms of the Fourier
sine series coefficients of f(x).

3.4.4. Suppose that f (x) and df /dx are piecewise smooth.

(a) Prove that the Fourier sine series of a continuous function f (x) can
only be differentiated term by term if f (0) = 0 and f (L) = 0.

(b) Prove that the Fourier cosine series of a continuous function f (x) can
be differentiated term by term.

3.4.5. Using (3.3.13) determine the Fourier cosine series of sin 7rx/L.

3.4.6. There are some things wrong in the following demonstration. Find the
mistakes and correct them.

In this exercise we attempt to obtain the Fourier cosine coefficients of ex:

00 nirxex=A°+E A.cos r .

n=1

Differentiating yields

00 nir nirxe2=-
L ,

n=1

the Fourier sine series of ex. Differentiating again yields

(3.4.22)

°O 2n7r
ex - ( L) An cos nLx (3.4.23)

n=1

Since equations (3.4.22) and (3.4.23) give the Fourier cosine series of ex,

they must be identical. Thus,

`40 0 (obviously wrong!).An =0

By correcting the mistakes, you should be able to obtain A° and An without
using the typical technique, that is, An = 2/L f L ex cos nirx/L dx.

3.4.7. Prove that the Fourier series of a continuous function u(x, t) can be differ-
entiated term by term with respect to the parameter t if 8u/8t is piecewise
smooth.
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3.4.8. Consider
au _ a2u
at kaxe

subject to

au/ax(0,t) = 0, au/ax(L,t) = 0, and u(x,0) = f(x).

Solve in the following way. Look for the solution as a Fourier cosine se-
ries. Assume that u and au/ax are continuous and a2u/axe and au/at are
piecewise smooth. Justify all differentiations of infinite series.

*3.4.9 Consider the heat equation with a known source q(x, t):

2

= k jx2 + q(x, t) with u(0, t) = 0 and u(L, t) = 0.

Assume that q(x, t) (for each t > 0) is a piecewise smooth function of x.
Also assume that u and au/ax are continuous functions of x (for t > 0) and
a2u/axe and au/at are piecewise smooth. Thus,

u(x, t) _ N,(t) sin .Lx.
n=1

What ordinary differential equation does satisfy? Do not solve this
differential equation.

3.4.10. Modify Exercise 3.4.9 if instead au/ax(0, t) = 0 and au/ax(L, t) = 0.

3.4.11. Consider the nonhomogeneous heat equation (with a steady heat source):

2

at kax2 +g(x).

Solve this equation with the initial condition

u(x,0) = f(x)

and the boundary conditions

u(O,t) = 0 and u(L, t) = 0.

Assume that a continuous solution exists (with continuous derivatives).
[Hints: Expand the solution as a Fourier sine series (i.e., use the method
of eigenfunction expansion). Expand g(x) as a Fourier sine series. Solve
for the Fourier sine series of the solution. Justify all differentiations with
respect to x.]

*3.4.12. Solve the following nonhomogeneous problem:

2

= k5-2 + e-t + e- 2t
cos 3Lx [assume that 2 # k(37r/L)2]
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subject to

au(0,t) = 0, a (L,t) = 0, and u(x,0) = f(x).

Use the following method. Look for the solution as a Fourier cosine series.
Justify all differentiations of infinite series (assume appropriate continuity).

3.4.13. Consider

subject to

8u _ 82u

it
-

8x2

u(0, t) = A(t), u(L, t) = 0, and u(x, 0) = g(x).

Assume that u(x, t) has a Fourier sine series. Determine a differential equa-
tion for the Fourier coefficients (assume appropriate continuity).

3.5 Term-By-Term Integration of Fourier Series
In doing mathematical manipulations with infinite series, we must remember that
some properties of finite series do not hold for infinite series. In particular, Sec. 3.4
indicated that we must be especially careful differentiating term by term an infinite
Fourier series. The following theorem however, enables us to integrate Fourier series
without caution:

A Fourier series of piecewise smooth f (x) can always be integrated term by
term and the result is a convergent infinite series that always converges to the
integral of f (x) for -L < x < L (even if the original Fourier series has jump
discontinuities).

Remarkably, the new series formed by term-by-term integration is continuous. How-
ever, the new series may not be a Fourier series.

To quantify this statement, let us suppose that f (x) is piecewise smooth and
hence has a Fourier series in the range -L < x < L (not necessarily continuous):

00 00

f (x) - as + E an cos nLx + E bn sin nLx. (3.5.1)
n=1 n=1

We will prove our claim that we can just integrate this result term by term:

fx
00

L
f (t) dt - ao(x + L) + E (an fx

L
cos Lt dt + bn f

L
x sin

nirt
dt I .

n=1 11
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Performing the indicated integration yields

x 00

f L f (t) dt r ao(x + L) + I n7r/L sin nLx + (cosnTl - cos
nLxl]

n=1` J
(3.5.2)

We will actually show that the preceding statement is valid with an = sign. If
term-by-term integration from -L to x of a Fourier series is valid, then any definite
integration is also valid since

f ab = fL - -L
Example. Term-by-term integration has some interesting applications. Re-

call that the Fourier sine series for f (x) = 1 is given by

4 ( irx 1 37rx 1 57rx 11 sin
L

+3 sin L +5sin L + J, (3.5.3)

where - is used since (3.5.3) is an equality only for 0 < x < L. Integrating term
by term from 0 to x results in

X
N 4L / 1 1 1 - 4L I irx cos 37rx/L cos 57rx/L

2 +32+52+ 2 cos f + 32 + 52 +
0<x<L,

(3.5.4)
where because of our theorem the = sign can be used. We immediately recognize
that (3.5.4) should be the Fourier cosine series of the function x. It was obtained
by integrating the Fourier sine series of f (x) = 1. However, an infinite series of
constants appears in (3.5.4); it is the constant term of the Fourier cosine series of
x. In this way we can evaluate that infinite series,

L42 C1+3252+...l=Lf xdx=2L.
JJ o

Thus, we obtain the usual form for the Fourier cosine series for x,

L 4L ( irx cos 37rx/L cos 57rx/LX
2
-

2
cos

L + 32 + 52 +... J10<x<L. (3.5.5)

The process of deriving new series from old ones can be continued. Integrating
(3.5.5) from 0 to x yields

sin 37rx/L sin 57rx/Lx2 L 4L2 (sin rrx 3
2

x - 7r3 L
+ 3 + 53 (3.5.6)

This example illustrates that integrating a Fourier series tern by term does not
necessarily yield another Fourier series. However, (3.5.6) can be looked at as either
yielding
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1. The Fourier sine series of x2/2 - (L/2)x, or
2. The Fourier sine series of x2/2, where the Fourier sine series of x is needed

first [see (3.3.11) and (3.3.12)).

An alternative procedure is to perform indefinite integration. In this case an
arbitrary constant must be included and evaluated. For example, reconsider the
Fourier sine series of f (x) = 1, (3.5.3). By term-by-term indefinite integration we
derive the Fourier cosine series of x,

x = c - 4L
cos

irx + cos 31rx/L + cos 5irx/L
.2 L 32 52

The constant of integration is not arbitrary; it must be evaluated. Here c is again
the constant term of the Fourier cosine series of x, c = (1/L) f L x dx = L/2.

Proof on integrating Fourier series. Consider

F(x) =
1=

f (t) dt. (3.5.7)
JJ L

This integral is a continuous function of x since f (x) is piecewise smooth. F(x)
has a continuous Fourier series only if F(L) = F(-L) [otherwise, remember that
the periodic nature of the Fourier series implies that the Fourier series does not
converge to F(x) at the endpoints x = ±L]. However, note that from the definition
(3.5.7),

F(-L) = 0 and F(L) = IL f (t) dt = 2Lao.

Thus, in general F(x) does not have a continuous Fourier series. In Fig. 3.5.1, F(x)
is sketched, illustrating the fact that usually F(-L) 54 F(L). However, consider the
straight line connecting the point F(-L) to F(L), y = ao(x + L). G(x), defined to
be the difference between F(x) and the straight line,

G(x) - F(x) - ao(x + L), (3.5.8)

will be zero at both ends, x = ±L,

G(-L) = G(L) = 0,

as illustrated in Fig. 3.5.1. G(x) is also continuous. Thus, G(x) satisfies the prop-
erties that enable the Fourier series of G(x) actually to equal G(x):

00

G(x) = Ao + >2 (An cos nLx + Bn sin nix) , (3.5.9)
n=1

where the = sign is emphasized. These Fourier coefficients can be computed as

An L J_L [F(x) - ao(x + L)] cos
nLx

dx (n 0).UL
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Figure 3.5.1 F(x) with F(-L)
F(L).

The x-term can be dropped since it is odd (i.e., f LL x cos nlrx/L dx = 0).
resulting expression can be integrated by parts as follows:

u = F(x) - aoL dv = cos nLx dx

yielding

An =

L
L

(F(x) - aoL) sl

i Ll /

The

-L lr J_L f (x) sin nLx dx I = - nor/L'
(3.5.10)

where we have recognized that bn is the Fourier sine coefficient of f (x). In a similar
manner (which we leave as an exercise), it can be shown that

R- =
an

n na/L,

where an is the Fourier cosine coefficient of f (x). Ao can be calculated in a different
manner (the previous method will not work). Since G(L) = 0 and the Fourier series
of G(x) is pointwise convergent, from (3.5.9) it follows that

"0

00 b.0=Ao+EAncosn7r=Ao-`nor/Lcosnir
n=1 n=1

since An = -bn/(nir/L). Thus, we have shown from (3.5.9) that

E an n7rx bn nlrxlF(x) = ao(x + L) +
0-1 L

1

I n/L sin L + nir/L (cos n7r -cos II ]
, (3.5.11)

exactly the result of simple term-by-term integration. However, notice that (3.5.11)
is not the Fourier series of F(x), since aox appears. Nonetheless, (3.5.11) is valid.
We have now justified term-by-term integration of Fourier series.
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EXERCISES 3.5

3.5.1. Consider

131

00

x2bnsinnrx. (3.5.12)
n=1

(a) Determine bn from (3.3.11), (3.3.12), and (3.5.6).

(b) Fdr what values of x is (3.5.12) an equality?

*(c) Derive the Fourier cosine series for x3 from (3.5.12). For what values
of x will this be an equality?

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x2.

(b) From part (a), determine the Fourier sine series of x3.

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of xm,
m odd.

Suppose that cosh x - F_', b,, sin nirx/L.

(a) Determine bn by correctly differentiating this series twice.

(b) Determine bn by integrating this series twice.

3.5.5. Show that Bn in (3.5.9) satisfies Bn = an/(n7r/L), where a is defined by
(3.5.1).

3.5.6. Evaluate
1 1 1 1 1+22+32+42+52+62+...

by evaluating (3.5.5) at x = 0.

*3.5.7. Evaluate
1 1 1 ...1-53 -

73
+T3- +

using (3.5.6).

3.6 Complex Form of Fourier Series
With periodic boundary conditions, we have found the theory of Fourier series to
be quite useful:

00 nirx nlrx
f (x) . ac + F, an cos f- + bn sin L (3.6.1)

n=1
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where

ei9 + e-i9
Cos 0 = and sin O =

ao =

-L

2L f (x) dx
Lr

n x

(3.6.2)

an = dxiLJ f(x)cos
L

(3.6.3)

bn =
L

L

1

f (x) sin nLx dx.
L

(3.6.4)

To introduce complex exponentials instead of sines and cosines, we use Euler's
formulas

It follows that

Chapter 3. Fourier Series

io - e-i9

2 2i

00 00

f (x) ^' ao + 2 (an - ibn) einxx/L + 2 > (an + On) e-inax/L. (3.6.5)
n=1 n=1

In order to only have e-inxx/L, we change the dummy index in the first summation,
replacing n by -n. Thus,

-oo 00

f (x) - ao + 2 E [a(-n) e-inax/L + 2 (an + ibn) e-inRx/L
n=-1 n=1

From the definition of an and bn, (3.6.3) and (3.6.4), a(_n) = an and b(_n) = -bn.
Thus, if we define

co = ao
an + On

Cn = 2

then f (x) becomes simply

00

f (x) ^' Cne-inax/L.

n=-oo
(3.6.6)

Equation (3.6.6) is known as the complex form of the Fourier series of f (X).3
It is equivalent to the usual form. It is more compact to write, but it is only used
infrequently. In this form the complex Fourier coefficients are

1 1 L n1x n1rx
cn =

2
(an + ibn) = 2L f f (x) (cos L + i sin L } dx. (n # 0)

L

3As before, an equal sign appears if f(x) is continuous [and periodic, f(-L) = f(L)J. At a
jump discontinuity of f (x) in the interior, the series converges to [ f (x+) + f(x-)]/2.
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We immediately recognize a simplification, using Euler's formula. Thus, we derive
a formula for the complex Fourier coefficients

1 L (x)Cn = 2L f ein+rx/L dx.
J L

(all n) (3.6.7)

Notice that the complex Fourier series representation of f (x) has e-inirz/L and
is summed over the discrete integers corresponding to the sum over the discrete
eigenvalues. The complex Fourier coefficients, on the other hand, involve a+inwx/L
and are integrated over the region of definition of f (x) (with periodic boundary
conditions), namely -L < x < L. If f (x) is real, c_n = cn (see Exercise 3.6.2).

Complex orthogonality . There is an alternative way to derive the for-
mula for the complex Fourier coefficients. Always, in the past, we have determined
Fourier coefficients using the orthogonality of the eigenfunctions. A similar idea
holds here. However, here the eigenfunctions are complex. For complex
functions the concept of orthogonality must be slightly modified. A complex func-
tion 0 is said to be orthogonal to a complex function i (over an interval a < x < b)
if fQ vl, dx = 0, where 46 is the complex conjugate of 0. This guarantees that the
length squared of a complex function f, defined by fa f f dx, is positive (this would
not have been valid for f' f f dx since f is complex).

Using this notion of orthogonality, the eigenfunctions e-inn./L, -oo < n < oo,
can be verified to form an orthogonal set because by simple integration

(e-im,rx/L)e-in7rx/L dx
0 n # m=

-L 2L n = m,

since
(e-imnx/L) = eimirx/L.

Now to determine the complex Fourier coefficients cn, we multiply (3.6.6) by einax/L
and integrate from -L to +L (assuming that the term-by-term use of these opera-
tions is valid). In this way

oo LL L
p(x)eim,rx/L dx = E c, f dx_f JL n_=-oo J L

Using the orthogonality condition, the sum reduces to one term, n = m. Thus,

L

J
f (x)eimax/L dx = 2Lcm,

L

which explains the 1/2L in (3.6.7) as well as the switch of signs in the exponent.
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EXERCISES 3.6

*3.6.1. Consider
0 x < xo

f (x) = 1/0 xo <X < xo +
0 x>xo+0.

Assume that xo > -L and xo + A < L. Determine the complex Fourier
coefficients c,,.

3.6.2. If f (x) is real, show that c_,a = c,,.



Chapter 4

Wave Equation:
Vibrating Strings
and Membranes

4.1 Introduction
At this point in our study of partial differential equations, the only physical problem
we have introduced is the conduction of heat. To broaden the scope of our discus-
sions, we now investigate the vibrations of perfectly elastic strings and membranes.
We begin by formulating the governing equations for a vibrating string from physi-
cal principles. The appropriate boundary conditions will be shown to be similar in a
mathematical sense to those boundary conditions for the heat equations. Examples
will be solved by the method of separation of variables.

4.2 Derivation of a Vertically Vibrating String
A vibrating string is a complicated physical system. We would like to present
a simple derivation. A string vibrates only if it is tightly stretched. Consider
a horizontally stretched string in its equilibrium configuration, as illustrated in
Fig. 4.2.1. We imagine that the ends are tied down in some way (to be described
in Sec. 4.3), maintaining the tightly stretched nature of the string. You may wish
to think of stringed musical instruments as examples. We begin by tracking the
motion of each particle that comprises the string. We let a be the x-coordinate
of a particle when the string is in the horizontal equilibrium position. The string
moves in time; it is located somewhere other than the equilibrium position at time
t, as illustrated in Fig. 4.2.1. The trajectory of particle a is indicated with both
horizontal and vertical components.

We will assume the slope of the string is small, in which case it can be shown
that the horizontal displacement v can be neglected. As an approximation, the

135
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V

a

(x, y)

Perturbed string

Equilibrium configuration

(highly stretched)

Figure 4.2.1 Vertical and horizontal displacements
of a particle on a highly stretched string.

motion is entirely vertical, x = a . In this situation, the vertical displacement
u depends on x and t:

y = u(x, t). (4.2.1)

Derivations including the effect of a horizontal displacement are necessarily compli-
cated (see Weinberger [1965] and Antman [1980). In general (x # a), it is best to
let y = u(a, t).

Newton's law. We consider an infinitesimally thin segment of the string
contained between x and x + Ax (as illustrated in Fig. 4.2.2). In the unperturbed
(yet stretched) horizontal position, we assume that the mass density po(x) is
known. For the thin segment, the total mass is approximately po (x) Ax. Our
object is to derive a partial differential equation describing how the displacement u
changes in time. Accelerations are due to forces; we must use Newton's law. For
simplicity we will analyze Newton's law for a point mass:

F = ma. (4.2.2)

We must discuss the forces acting on this segment of the string. There are body

T(x + Ax, t)

T(x, t)

x x+Ax

6(x+Ax,t)

Figure 4.2.2 Stretching of a finite segment of string,
illustrating the tensile forces.
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forces, which we assume act only in the vertical direction (e.g., the gravitational
force), as well as forces acting on the ends of the segment of string. We assume that
the string is perfectly flexible; it offers no resistance to bending. This means that
the force exerted by the rest of the string on the endpoints of the segment of the
string is in the direction tangent to the string. This tangential force is known as the
tension in the string, and we denote its magnitude by T (x, t). In Fig. 4.2.2 we show
that the force due to the tension (exerted by the rest of the string) pulls at both
ends in the direction of the tangent, trying to stretch the small segment. To obtain
components of the tensile force, the angle 0 between the horizon and the string is
introduced. The angle depends on both the position x and time t. Furthermore,
the slope of the string may be represented as either dy/dx or tan 9:

dx = tan 9(x, t) = 8 . (4.2.3)

The horizontal component of Newton's law prescribes the horizontal motion,
which we claim is small and can be neglected. The vertical equation of motion
states that the mass po(x) Ox times the vertical component of acceleration (a2u/ate,
where 0/at is used since x is fixed for this motion) equals the vertical component
of the tensile forces plus the vertical component of the body forces:

2

po(x) Ax &2 = T(x + Ox, t) sin 9(x + Ox, t)
(4.2.4)

-T(x, t) sin 9(x, t) + po(x) Ox Q(x, t),

where T(x, t) is the magnitude of the tensile force and Q(x, t) is the vertical compo-
nent of the body force per unit mass. Dividing (4.2.4) by Ox and taking the limit
as Ox -, 0 yields

82
Po(x) ate ax [T(x, t) sin 9(x, t)] + po(x)Q(x, t). (4.2.5)

For small angles 9,

= tan g= acos8 sin0,

and hence (4.2.5) becomes

/
Po(x) ate ax l Tax) + Po(x)Q(x, t). (4.2.6)

Perfectly elastic strings . \ The tension of a string is determined by
experiments. Real strings are nearly perfectly elastic, by which we mean that
the magnitude of the tensile force T(x, t) depends only on the local stretching of
the string. Since the angle 9 is assumed to be small, the stretching of the string
is nearly the same as for the unperturbed highly stretched horizontal string, where
the tension is constant, To (to be in equilibrium). Thus, the tension T(x, t) may
be approximated by a constant To. Consequently, the small vertical vibrations
of a highly stretched string are governed by

2

Po(x) ate To axe + Q(x, t)Po(x). (4.2.7)
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One-dimensional wave equation. If the only body force per unit mass
is gravity, then Q(x, t) = -g in (4.2.7). In many such situations, this force is small
(relative to the tensile force pog << jTo82u/8x20 and can be neglected. Alterna-
tively, gravity sags the string, and we can calculate the vibrations with respect to
the sagged equilibrium position. In either way we are often led to investigate (4.2.7)
in the case in which Q(x, t) = 0,

82u 82u
Po (x) 8t2

_ To 8x2

or

192U 02U

5j2 Ox2 ,

(4.2.8)

(4.2.9)

where c2 = Tolpo(x). Equation (4.2.9) is called the one-dimensional wave equa-
tion. The notation c2 is introduced because To/po(x) has the dimensions of velocity
squared. We will show that c is a very important velocity. For a uniform string, c
is constant.

EXERCISES 4.2

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position uE(x)
if Q(x, t) = -g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(x, t) = u(x, t) - uE(x) satisfies (4.2.9).

4.2.2. Show that c2 has the dimensions of velocity squared.

4.2.3. Consider a particle whose x-coordinate (in horizontal equilibrium) is des-
ignated by a. If its vertical and horizontal displacements are u and v,
respectively, determine its position x and y. Then show that

dy 8u/8a
dx - 1 + 8v/8a'

4.2.4. Derive equations for horizontal and vertical displacements without ignor-
ing v. Assume that the string is perfectly flexible and that the tension is
determined by an experimental law.

4.2.5. Derive the partial differential equation for a vibrating string in the simplest
possible manner. You may assume the string has constant mass density
po, you may assume the tension To is constant, and you may assume small
displacements (with small slopes).
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4.3 Boundary Conditions
The partial differential equation for a vibrating string, (4.2.7) or (4.2.8), has a
second-order spatial partial derivative. We will apply one boundary condition at
each end, just as we did for the one-dimensional heat equation.

The simplest boundary condition is that of a fixed end, usually fixed with zero
displacement. For example, if a string is fixed (with zero displacement) at x = L,
then

u(L,t) = 0.

Alternatively, we might vary an end of the string in a prescribed way:

u(L, t) = f (t).

(4.3.1)

(4.3.2)

Both (4.3.1) and (4.3.2) are linear boundary conditions; (4.3.2) is nonhomogeneous,
while (4.3.1) is homogeneous.

A more interesting boundary condition occurs if one end of the string is attached
to a dynamical system. Let us suppose that the left end, x = 0, of a string is
attached to a spring-mass system, as illustrated in Fig. 4.3.1. We will insist that
the motion be entirely vertical. To accomplish this, we must envision the mass to
be on a vertical track (possibly frictionless). The track applies a horizontal force to
the mass when necessary to prevent the large horizontal component of the tensile
force from turning over the spring-mass system. The string is attached to the mass
so that if the position of the mass is y(t), so is the position of the left end:

u(0, t) = y(t). (4.3.3)

However, y(t) is unknown and itself satisfies an ordinary differential equation deter-
mined from Newton's laws. We assume that the spring has unstretched length 1 and
obeys Hooke's law with spring constant k. To make the problem even more interest-
ing, we let the support of the spring move in some prescribed way, y, (t). Thus, the
length of the spring is y(t) - y,(t) and the stretching of the spring is y(t) - y. (t) -1.
According to Newton's law (using Hooke's law with spring constant k),

mdty2 = -k(y(t) - y,(t) - 1) + other forces on mass.

The other vertical forces on the mass are a tensile force applied by the string
T(0, t) sin 0(0, t) and a force g(t) representing any other external forces on the mass.
Recall that we must be restricted to small angles, such that the tension is nearly
constant, To. In that case, the vertical component is approximately ToOu/8x:

T(0, t) sin 0(0, t) T(0, t)
sin 0(0, t)

= T(0, t)
au

(0, t) To
8u

(0, t),
cos 9(0, t) 8x 8x

since for small angles cos 9 1. In this way the boundary condition at x = 0 for
a vibrating string attached to a spring-mass system [with a variable support y,(t)
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Figure 4.3.1 Spring-mass system with a variable support
attached to a stretched string.

and an external force 9(t)) is

mu(0, t) = -k(u(0, t) - y, (t) - 1) +To (0, t+ 9(t).dt2 a
Let us consider some special cases in which there are no external forces on the

mass, g(t) = 0. If, in addition, the mass is sufficiently small so that the forces on
the mass are in balance, then

azTo (0, t) = k(u(0, t) - uE(t)), (4.3.5)

where uE(t) is the equilibrium position of the mass, uE(t) = y,(t) + 1. This form,
known as the nonhomogeneous elastic boundary condition, is exactly analogous
to Newton's law of cooling (with an external temperature of UE(t)) for the heat
equation. If the equilibrium position of the mass coincides with the equilibrium
position of the string, UE(t) = 0, the homogeneous version of the elastic boundary
condition results:

To a7 (0, t) = ku(0, t). (4.3.6)

8u/8x is proportional to u. Since for physical reasons To > 0 and k > 0, the signs in
(4.3.6) are prescribed. This is the same choice of signs that occurs for Newton's law
of cooling. A diagram (Fig. 4.3.2) illustrates both the correct and incorrect choice
of signs. This figure shows that (assuming u = 0 is an equilibrium position for both
string and mass) if u > 0 at x = 0, then 0u/Ox > 0 in order to get a balance of
vertical forces on the massless spring-mass system. A similar argument shows that
there is an important sign change if the elastic boundary condition occurs at x = L:

To Bx
(L, t) = -k(u(L, t) - UE(t)), (4.3.7)
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Correct Incorrect

Figure 4.3.2 Boundary conditions for massless spring-mass sys-
tem.

the same sign change we obtained for Newton's law of cooling.
For a vibrating string, another boundary condition that can be discussed is the

free end. It is not literally free. Instead, the end is attached to a frictionless
vertically moving track as before and is free to move up and down. There is no
spring-mass system, nor external forces. However, we can obtain this boundary
condition by taking the limit as k - 0 of either (4.3.6) or (4.3.7):

To 8 (L, t) = 0. (4.3.8)

This says that the vertical component of the tensile force must vanish at the end
since there are no other vertical forces at the end. If the vertical component did
not vanish, the end would have an infinite vertical acceleration. Boundary condi-
tion (4.3.8) is exactly analogous to the insulated boundary condition for the one-
dimensional heat equation.

EXERCISES 4.3
4.3.1. If m = 0, which of the diagrams for the right end shown in Fig. 4.3.3 is

possibly correct? Briefly explain. Assume that the mass can move only
vertically.

Equilibrium position

(a)

of spring -

(b)

Figure 4.3.3

4.3.2. Consider two vibrating strings connected at x = L to a spring-mass system
on a vertical frictionless track as in Fig. 4.3.4. Assume that the spring is
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Figure 4.3.4

unstretched when the string is horizontal (the spring has a fixed support).
Also suppose that there is an external force f (t) acting on the mass m.

(a) What "jump" conditions apply at x = L relating the string on the left
to the string on the right?

(b) In what situations is this mathematically analogous to perfect thermal
contact?

4.4 Vibrating String with Fixed Ends
In this section we solve the one-dimensional wave equation, which represents a
uniform vibrating string without external forces,

PDE: 0t2 = C2 5x2 (4.4.1)

where c2 = To/po, subject to the simplest homogeneous boundary conditions,

BC1:
u(O,t) = 0

u(L,t) = 0,

(4.4.2)

both ends being fixed with zero displacement. Since the partial differential equation
(4.4.1) contains the second time derivative, two initial conditions are needed. We
prescribe both u(x, 0) and 8u/8t(x, 0).

u(x,0) = f(x)

IC: au (4.4.3)

at (x, 0) = 9(x),
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corresponding to being given the initial position and the initial velocity of each
segment of the string. These two initial conditions are not surprising, as the wave
equation was derived from Newton's law by analyzing each segment of the string as
a particle; ordinary differential equations for particles require both initial position
and velocity.

Since both the partial differential equation and the boundary conditions are lin-
ear and homogeneous, the method of separation of variables is attempted. As with
the heat equation the nonhomogeneous initial conditions are put aside temporarily.
We look for special product solutions of the form

u(x, t) = O(x)h(t). (4.4.4)

Substituting (4.4.4) into (4.4.1) yields

d2h 2 d24)
O(x) dt2 = c h(t)

dx2. (4.4.5)

Dividing by O(x)h(t) separates the variables, but it is more convenient to divide
additionally by the constant c2, since then the resulting eigenvalue problem will not
contain the parameter a2:

1 l d2h 1 d2¢
c2 h dt2 4) dx2 - - (4.4.6)

A separation constant is introduced since (1/c2)(1/h)(d2h/dt2) depends only on
t and (1/4))(d2(k/dx2) depends only on x. The minus sign is inserted purely for
convenience. With this minus sign, let us explain why we expect that .1 > 0. We
need the two ordinary differential equations that follow from (4.4.6):

d2h_ 2

dt2 = -Ac h (4.4.7)

and
d 2.0

axe -

The two homogeneous boundary conditions (4.4.2) show that

(4.4.8)

0(0) = 4)(L) = 0. (4.4.9)

Thus, (4.4.8) and (4.4.9) form a boundary value problem. Instead of first reviewing
the solution of (4.4.8) and (4.4.9), let us analyze the time-dependent ODE (4.4.7).
If A > 0, the general solution of (4.4.7) is a linear combination of sines and cosines,

h(t) = c1 cos cft + c2 sin cv/,\t. (4.4.10)

If A = 0, h(t) = c1 + c2t, and if \ < 0, h(t) is a linear combination of exponentially
growing and decaying solutions in time. Since we are solving a vibrating string, it
should seem more reasonable that the time-dependent solutions oscillate. This does
not prove that A > 0. Instead, it serves as an immediate motivation for choosing
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the minus sign in (4.4.6). Now by analyzing the boundary value problem, we may
indeed determine that the eigenvalues are nonnegative.

The boundary value problem is

d2 - -Adx2

0(0) = 0
O(L) = 0.

Although we could solve this by proceeding through three cases, we ought to recall
that all the eigenvalues are positive. In fact,

r l2 n=1,2,3...,

and the corresponding eigenfunctions are sin nirx/L. The time-dependent part of
the solution has been obtained previously, (4.4.10). Thus, there are two families of
product solutions: sin n7rx/L sin n7rct/L and sin n7rx/L cos n7rct/L. The principle of
superposition then implies that we should be able to solve the initial value problem
by considering a linear combination of all product solutions:

°D nirx n7rct nirx n7rctu(x t) = CA sin cos i i+ B 4 4 11, n L L as n L s n L ( . . )

The initial conditions (4.4.3) are satisfied if

f (x) =
nirxF' A i, , n s n

L
n7rc nirx (4.4.12)

g(x) = Eni Bn sin L.

The boundary conditions have implied that sine series are important. There are
two initial conditions and two families of coefficients to be determined. From our
previous work on Fourier sine series, we know that sin n7rx/L forms an orthogonal
set. An will be the coefficients of the Fourier sine series of f (x) and Bnn7rc/L will
be for the Fourier sine series of g(x):

An = 2 j
t

f (x) sin n1x dx

1L

Bn Lc = L g(x) sin nLx dx.
(4.4.13)

Let us interpret these results in the context of musical stringed instruments
(with fixed ends). The vertical displacement is composed of a linear combination
of simple product solutions,

sin nLx (An cos
nr

+ Bn sin
nL
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These are called the normal modes of vibration. The intensity of the sound
produced depends on the amplitude,) An + B,,. The time dependence is simple
harmonic with circular frequency (the number of oscillations in 2ir units of time)
equaling nirc/L, where c = To/po. The sound produced consists of the superpo-
sition of these infinite number of natural frequencies (n = 1, 2, ...). The normal
mode n = 1 is called the first harmonic or fundamental. In the case of a vibrating
string the fundamental mode has a circular frequency of 7rc/L.2 The larger the nat-
ural frequency, the higher the pitch of the sound produced. To produce a desired
fundamental frequency, c = To/po or L can be varied. Usually, the mass density
is fixed. Thus, the instrument is tuned by varying the tension Ta; the larger To, the
higher the fundamental frequency. While playing a stringed instrument the musi-
cian can also vary the pitch by varying the effective length L, by clamping down
the string. Shortening L makes the note higher. The nth normal mode is called the
nth harmonic. For vibrating strings (with fixed ends) the frequencies of the higher
harmonics are all integral multiples of the fundamental. It is not necessarily true
for other types of musical instruments. This is thought to be pleasing to the ear.

Let us attempt to illustrate the motion associated with each normal mode. The
fundamental and higher harmonics are sketched in Fig. 4.4.1. To indicate what
these look like, we sketch for various values of t. At each t, each mode looks like
a simple oscillation in x. The amplitude varies periodically in time. These are
called standing waves. In all cases there is no displacement at both ends due to
the boundary conditions. For the second harmonic (n = 2), the displacement is
also zero for all time in the middle x = L/2. x = L/2 is called a node for the
second harmonic. Similarly, there are two nodes for the third harmonic. This can
be generalized: The nth harmonic has n - 1 nodes.3

It is interesting to note that the vibration corresponding to the second harmonic
looks like two identical strings each with length L/2 vibrating in the fundamental
mode, since x = L/2 is a node. We should find that the frequencies of vibration
are identical; that is, the frequency for the fundamental (n = 1) with length L/2
should equal the frequency for the second harmonic (n = 2) with length L. The
formula for the frequency w = n7rc/L, verifies this observation.

Each standing wave can be shown to be composed of two travelling waves. For
example, consider the term sin n7rx/L sin nact/L. From trigonometric identities

sin nix sin nL =
2

cos

L
(x - ct) -

wave traveling
to the right

(with velocity c)

2
cos

L
(x + ct) (4.4.14)

wave traveling
to the left

(with velocity - c)

In fact, since the solution (4.4.11) to the wave equation consists of a superposition

'An coat + B. sin wt = A +B. sin(wt +0), where 0 = tan-'
2Frequencies are usually measured in cycles per second, not cycles per 2a units of time. The

fundamental thus has a frequency of c/2L, cycles per second.
3You can visualize experimentally this result by rapidly oscillating at the appropriate frequency

one end of a long rope that is tightly held at the other end. The result appears more easily for an
expandable spiral telephone cord or a "slinky."
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ct/L

d/L

1 n=3

1.5

ct/L

0.5

0 0 0.5

Figure 4.4.1 Normal modes of vibration for a string.

z/L
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of standing waves, it can be shown that this solution is a combination of just two
waves (each rather complicated)-one traveling to the left at velocity -c with fixed
shape and the other to the right at velocity c with a different fixed shape. We are
claiming that the solution to the one-dimensional wave equation can be written as

u(x, t) = R(x - ct) + S(x + ct),

even if the boundary conditions are not fixed at x = 0 and x = L. We will show
and discuss this further in the Exercises and in Chapter 12.

EXERCISES 4.4

4.4.1. Consider vibrating strings of uniform density po and tension To.

*(a) What are the natural frequencies of a vibrating string of length L fixed
at both ends?

*(b) What are the natural frequencies of a vibrating string of length H,
which is fixed at x = 0 and "free" at the other end [i.e., Ou/8x(H, t) =
01? Sketch a few modes of vibration as in Fig. 4.4.1.

(c) Show that the modes of vibration for the odd harmonics (i.e., n =
1, 3, 5, ...) of part (a) are identical to modes of part (b) if H = L/2.
Verify that their natural frequencies are the same. Briefly explain using
symmetry arguments.

4.4.2. In Sec. 4.2 it was shown that the displacement u of a nonuniform string
satisfies

02u 92u
Po To 8x2 + Q,

where Q represents the vertical component of the body force per unit length.
If Q = 0, the partial differential equation is homogeneous. A slightly differ-
ent homogeneous equation occurs if Q = au.

(a) Show that if a < 0, the body force is restoring (toward u = 0). Show
that if a > 0, the body force tends to push the string further away
from its unperturbed position u = 0.

(b) Separate variables if po(x) and a(x) but To is constant for physical
reasons. Analyze the time-dependent ordinary differential equation.

*(c) Specialize part (b) to the constant coefficient case. Solve the initial
value problem if a < 0:

u(0, t) = 0 u(x,0) = 0

u(L, t) = 0 5 (x, 0) = f W.

What are the frequencies of vibration?
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4.4.3. Consider a slightly damped vibrating string that satisfies

211

Po &2 T o - ) 9 -

(a) Briefly explain why /3 > 0.

*(b) Determine the solution (by separation of variables) that satisfies the
boundary conditions

u(0, t) = 0 and u(L, t) = 0

and the initial conditions

u(x,0) = f(x) and 8t(x,0) = g(x)-

You can assume that this frictional coefficient Q is relatively small
()32 < 4rr2poTo/L2).

4.4.4. Redo Exercise 4.4.3(b) by the eigenfunction expansion method.

4.4.5. Redo Exercise 4.4.3(b) if 4rr2poTo/L2 < p2 < 16rr2poTo/L2.

4.4.6. For (4.4.1)-(4.4.3), from (4.4.11) show that

u(x, t) = R(x - ct) + S(x + ct),

where R and S are some functions.

4.4.7. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially at rest, g(x) = 0,
show that

u(x, t) = I [F(x - ct) + F(x + ct)],

where F(x) is the odd periodic extension of f (x). Hints.

1. For all x, F(x) _ An sin !.
2. sin a cos b = [sin(a + b) + sin(a - b)].

Comment: This result shows that the practical difficulty of summing an
infinite number of terms of a Fourier series may be avoided for the one-
dimensional wave equation.

4.4.8. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially unperturbed, f (x) _
0, with the initial velocity given, show that

Ect
u(x, t) = 1 G(x) dam,

2c t

where G(x) is the odd periodic extension of g(x). Hints:

1. For all x, G(x) _ °O_1 nir-c sin nT
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2. sin a sin b = 1 [cos(a - b) cos(a + b)].

See the comment after Exercise 4.4.7.

4.4.9 From (4.4.1), derive conservation of energy for a vibrating string,

dE 2'9U &U L

wt -c8x8to, (4.4.15)

where the total energy E is the sum of the kinetic energy, defined by
f L 2 (8u) 2 dx, and the potential energy, defined by f L z (&) 2 dx.

4.4.10. What happens to the total energy E of a vibrating string (see Exercise 4.4.9)

(a) If u(0, T) = 0 and u(L, t) = 0
(b) If Ou(0,t) = 0 and u(L,t) = 0

(c) If u(0, t) = 0 and Ou (L, t) = -ryu(L, t) with y > 0
(d) If y < 0 in part (c)

4.4.11. Show that the potential and kinetic energies (defined in Exercise 4.4.9) are
equal for a traveling wave, u = R(x - ct).

4.4.12. Using (4.4.15), prove that the solution of (4.4.1)-(4.4.3) is unique.

4.4.13. (a) Using (4.4.15), calculate the energy of one normal mode.

(b) Show that the total energy, when u(x, t) satisfies (4.4.11), is the sum
of the energies contained in each mode.

4.5 Vibrating Membrane
The heat equation in one spatial dimension is 8u/8t = k82u/8x2. In two or three
dimensions, the temperature satisfies 8u/8t = kV2u. In a similar way, the vibration
of a string (one dimension) can be extended to the vibration of a membrane (two
dimensions).

The vertical displacement of a vibrating string satisfies the one-dimensional wave
equation

82u 82u
c2 8x2

There are important physical problems that solve

,92 = c2V2u, (4.5.1)

known as the two- or three-dimensional wave equation. An example of a physical
problem that satisfies a two-dimensional wave equation is the vibration of a highly
stretched membrane. This can be thought of as a two-dimensional vibrating string.
We will give a brief derivation in the manner described by Kaplan [1981], omitting
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Figure 4.5.1 Perturbed stretched
membrane with approximately constant
tension To. The normal vector to the surface
is fi and the tangent vector to the edge is L.

some of the details we discussed for a vibrating string. We again introduce the dis-
placement z = u(x, y, t), which depends on x, y and t (as illustrated in Fig. 4.5.1).
If all slopes (i.e., au/ax and au/ay) are small, then as an approximation we may
assume that the vibrations are entirely vertical and the tension is approximately
constant. Then the mass density (mass per unit surface area), po(x, y), of the mem-
brane in the unperturbed position does not change appreciably when the membrane
is perturbed.

The tensile force (per unit arc length), FT, is tangent to the membrane and acts
along the entire edge. The direction of the tensile force (see Fig. 4.5.1) is obtained
by crossing the unit tangent vector to the edge, t, with the unit normal vector to
the membrane, f1. Since the tensile force has constant magnitude (IFTI = To), it
follows that

FT = Toi X A,

where the vertical component is obtained by FT F. k.
Newton's law for vertical motion must be applied to each differential section of

the membrane and then summed (integrated). The sum (surface integral) of the
mass (po dA) times the vertical acceleration (&U'7&2) equals the total (closed line
integral) vertical tensile force (ignoring body forces)

PO ate dA = To£x fi k da = /To(fl x da, (4.5.2)if
2

where ds is the differential arc length, dA is differential surface area, and the vector
triple product relation has been used (A x B C = B x C C. A). Stokes' theorem
(ff V x B n dA = f B t ds), will be applied (for the only time in this text):

if
a2upo2 dA = JJT0(V x (n x dA. (4.5.3)

Since the region is arbitrary, we derive

Z =
PO To[Vx (Axk)]'_

)n. (4-5.4)

A point on the membrane is described by z = u(x, y). Thus, the unit normal to
the vibrating membrane (using the gradient; see Appendix to Sec. 1.5) is calculated
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as follows:

n= - i-Y-3+k au su_
2

axi-j+
Zai

) + 1 ay
J2 + (

since the partial derivatives are assumed to be small. We now begin to calculate
the expression needed in (4.5.4):

ft xk

Continuing, we obtain

Vx(uixk)=

i j k
au au 1

ax ay
o 0 1

au- au-ay:+ax1

_ %
a2u + 02u

( axe aye) .

In this way we obtain the partial differential equation for a vibrating membrane,

a2u (82u a2u
Po 8t2 axe sy2

Dividing by po yields the two-dimensional wave equation

a2u 2
(a2U

a2u) (4.5.5)
8t2 = e 8x2 + aye ,

where again c2 = T°/p0. The solutions of problems for a vibrating membrane are
postponed until Chapter 7.

EXERCISES 4.5
4.5.1. If a membrane satisfies an "elastic" boundary condition, show that

-ku (4.5.6)

if there is a restoring force per unit length proportional to the displacement.

4.6 Reflection and Refraction of Electromagnetic
(Light) and Acoustic (Sound) Waves

Disturbances in a uniform media frequently satisfy the three-dimensional wave
equation:

2

2=c2 (822+V2+8z2) (4.6.1)
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In a fluid, small displacements u to a uniform mass density p and pressure p satisfy
(4.6.1), where the coefficient c satisfies c2 = .

In electrodynamics, each compo-
nent of a system of vector fields satisfies (4.6.1), where c2 =ght/µE can be related
to the speed of light in a vacuum c12ight and the permeability ft and the dielectric
constant E.

Special plane traveling wave solutions of (4.6.1) exist of the form

u = Ae'(k,x+kzy+k3Z-Wt) = Ae`(k-Z-wt).
(4.6.2)

(The real or imaginary part have physical significance.) A is the constant amplitude.
The vector k, called the wave vector, is in the direction of the wave (perpendicular
to the wave fronts constant). The magnitude of the wave vector k - Jkl
is the wave number since it can be shown (see the Exercises) to equal the number
of waves in 2n distance in the direction of the wave (in the k-direction). (The wave
length =2.)

The temporal frequency w for plane wave solutions of the wave equations is
determined by substituting (4.6.2) into (4.6.1):

w2 = c2k2, (4.6.3)

where k2 = k?+ k2+ k3. It is important that w is a function of k satisfying (4.6.3).
As in one dimension, it can be shown that

traveling wave or phase velocity = = ±c. (4.6.4)

The plane wave solution corresponds to one component of a multidimensional
Fourier series (transformsee Chapter 10) if the wave equation is defined in a fi-
nite (infinite) region. As we show in the next subsection, frequently plane waves
are considered to be generated at infinity.

4.6.1 Snell's Law of Refraction
We assume that we have two different materials (different mass densities for sound
waves or different dielectric constants for electromagnetic waves) extending to infin-
ity with a plane boundary between them. We assume the wave speed is c+ for z > 0
and c- for z < 0, as shown in Fig. 4.6.1. We assume that there is an incident plane
wave satisfying (4.6.2) (with wave vector kl and frequency w = w+(kt) = c+kj)
propagating from infinity with z > 0 with amplitude A = 1, which we normalize to
1. We assume that the incident wave makes an angle e1 with the normal.

We assume that there is a reflected wave in the upper media satisfying (4.6.2)
(with unknown wave vector kR and frequency w = w+(kR) = c+kRJ with unknown
complex amplitude R. Due to the wave equation being linear, the solution in the
upper media is the sum of the incident and reflected wave:

u = e:(k,-x-w+(c+kr)t) + for z > 0. (4.6.5)

We will show that the wave vector of the reflected wave is determined by the familiar
relationship that the angle of reflection equals the angle of incidence.
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z=0

Figure 4.8.1 Reflected and refracted (transmitted) waves.

In the lower media z < 0, we assume that a refracted wave exists, which
we call a transmitted wave and introduce the subscript T. We assume that
the transmitted wave satisfies (4.6.2) (with unknown wave number vector kT and
frequency w = w_ (kT) = c_kT) with unknown complex amplitude T:

u = Te`(kT-x-W_(c_kr)t) for z < 0. (4.6.6)

In addition, we will show that this refracted wave may or may not exist as prescribed
by Snell's law of refraction.

There are two boundary conditions that must be satisfied at the interface be-
tween the two materials z = 0. One of the conditions is that u must be continuous.
At z = 0,

&+(kR-x-W+(c+kR)t) = (4.6.7)

Since this must hold for all time, the frequencies of the three waves must be the
same:

w+(ks) = w+(kR) = w_ (kT) (4.6.8)

From the frequency equation (4.6.3), we conclude that the reflected wave has the
same wave length as the incident wave, but the refracted wave has a different wave
length:

c+kr = c+kR = c-kT (4.6.9)

From (4.6.7), kl and k2 (the projection of k in the x- and y-directions) must be the
same for all three waves. Since kf = kR, the z-component of the reflected wave must
be minus the z-component of the incident wave. Thus, the angle of reflection
equals the angle of incidence,

OR = of, (4.6.10)

where the angles are measured with respect to the normal to the surface. Note that
k x = k Imp cos 46 is the same for all three waves, where 0 is the angle between
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k and x with z = 0 . Thus, for the transmitted wave, the angle of transmission
(refraction) satisfies

kIsin01=kTsinBT.

Using (4.6.9), Snell's law follows:

sin 9T _ k1 _ c_
sin 01 kT c+

(4.6.11)

Many important and well-known results from optics follow from Snell's law. For
example, in the usual case of the upper media (c+) being air and the lower media
(c_) water, then it is known that c+ > c_. In this case, from Snell's law (4.6.11)
sin 9T < sin 01, so that the transmitted wave is refracted toward the normal (as
shown in Fig. 4.6.1).

If c+ < c_, then Snell's law (4.6.11) predicts in some cases that sinOT > 1,
which is impossible. There is a critical angle of incidence sin 01 = at which total
internal reflection first occurs. For larger angles, the transmitted solution is not a
plane wave but is an evanescent wave exponentially decaying, as we describe in a
later subsection. The refracted plane wave does not exist.

4.6.2 Intensity (Amplitude)
of Reflected and Refracted Waves

Here we will assume that a refracted plane wave exists. With these laws for the
reflected and refracted waves, the one boundary condition (4.6.7) for the continuity
of u becomes simply

1+R=T. (4.6.12)

We cannot solve for either amplitude R or T without the second boundary condi-
tion. The second boundary condition can be slightly different in different physical
applications. Thus, the results of this subsection do not apply to all physical prob-
lems, but the method we use may be applied in all cases and the results obtained
may be slightly different.

We assume the second boundary condition is = 0 at z = 0. From (4.6.5) and
(4.6.6), it follows that

k3, + k3, R = k3, T. (4.6.13)

From Fig. 4.6.1, the z-components of the wave number of three waves satisfy,

k3, _ -k1 Cos e1
k3R = kR COs OR = k1 Cos 91

k3,- = -kTCOsOT = -k, sin
sin

e'
01 COs BT,

(4.6.14)

where we have recalled that the reflected wave satisfies k3R = -k3, and we have
used Snell's law (4.6.11) to simplify the z-component of the wave number of the
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transmitted wave. Using (4.6.14), the second boundary condition (4.6.13) becomes
(after dividing by -k j cos 9 j )

Bin 91 cos 9T
1 - R = T.

sin 9T cos 91
(4.6.15)

The complex amplitudes of reflection and transmission can be determined by adding
the two linear equations, (4.6.12) and (4.6.15),

T 2 - 2sin9TCOS01-
1 + sin eB sin(O + 0 )

R _
T 1

sin
Br coe B f /

2 sin 9T cos 9 j - sin (9T + 9 j) sin (9T - 6j)
sin(9T + 91) sin(0T + 91)

4.6.3 Total Internal Reflection
If sin 0j + > 1, then Snell's law cannot be satisfied for a plane transmitted (re-
fracted) wave u = Tei(kr-x-w_(c_kT)t) in the lower media. Because of the bound-
ary condition at z = 0, the x- and y-components of the wave number of a solution
must be the same as for the incident wave. Thus, the transmitted wave number
should satisfy kT = (kl j, k2, , k3,. ). If we apply Snell's law (4.6.11) and solve for
k3r,

k3,. = f sin2 0,), (4.6.16)

since ki + k2 = k2 sin2 9. We find that k3r is imaginary, suggesting that there are
solutions of the wave equation (in the lower media),

92u 2 82u 192U 92u

8t2 = c- (8-2 V+ 8 2 + 8z2
(4.6.17)

which exponentially grow and decay in z. We look for a product solution of the
form

u(x, y, z, t) = w(z)ei(k,x+kzy-wt), (4.6.18)

where kl and k2 are the wave numbers associated with the incident wave and w is
the frequency of the incident wave. We insist that (4.6.18) satisfy (4.6.17) so that

2

dz2 = (k1 2 + k2 - W
C2

)w = k2(sin 2 9j - 2 )w.

Thus, w(z) is a linear combination of exponentially growing and decaying terms
in z. Since we want our solution to decay exponentially as z --i -oo, we choose the
solution to the wave equation in the lower media to be

u(x, y, z, t) = Tek'
ain B!-4Zei(klx+kzy--1)t)
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instead of the plane wave. This is a horizontal two-dimensional plane wave whose
amplitude exponentially decays in the -z-direction. It is called an evanescent
wave (exponentially decaying in the -z-direction).

The continuity of u and Ou at z = 0 is satisfied if

1+R = T (4.6.19)

ik3, (1 - R) = Tkf sine 9J + (4.6.20)

These equations can be simplified and solved for the reflection coefficient, and T
(the amplitude of the evanescent wave at z = 0). R (and T) will be complex,
corresponding to phase shifts of the reflected (and evanescent) wave.

EXERCISES 4.6

4.6.1. Show that for a plane wave given by (4.6.2), the number of waves in 27r
distance in the direction of the wave (the k-direction) is k = Jkl.

4.6.2. Show that the phase of a plane wave stays the same moving in the direction
of the wave if the velocity is k.

4.6.3. In optics, the index of refraction is defined as n Express Snell's law
using the indices of refraction.

4.6.4. Find R and T for the evanescent wave by solving the simultaneous equations
(4.6.19) and (4.6.20).

4.6.5. Find R and T by assuming that k3l = ±ij, where ,6 is defined by (4.6.16).
Which sign do we use to obtain exponential decay as z -oo?



Chapter 5

Sturm-Liouville Eigenvalue
Problems

5.1 Introduction

We have found the method of separation of variables to be quite successful in solving
some homogeneous partial differential equations with homogeneous boundary con-
ditions. In all examples we have analyzed so far the boundary value problem that
determines the needed eigenvalues (separation constants) has involved the simple
ordinary differential equation

VX2 + AO = 0.

Explicit solutions of this equation determined the eigenvalues A from the homoge-
neous boundary conditions. The principle of superposition resulted in our needing
to analyze infinite series. We pursued three different cases (depending on the bound-
ary conditions): Fourier sine series, Fourier cosine series, and Fourier series (both
sines and cosines). Fortunately, we verified by explicit integration that the eigen-
functions were orthogonal. This enabled us to determine the coefficients of the
infinite series from the remaining nonhomogeneous condition.

In this section we further explain and generalize these results. We show that
the orthogonality of the eigenfunctions can be derived even if we cannot solve the
defining differential equation in terms of elementary functions [as in (5.1.1)]. In-
stead, orthogonality is a direct result of the differential equation. We investigate
other boundary value problems resulting from separation of variables that yield
other families of orthogonal functions. These generalizations of Fourier series will
not always involve sines and cosines since (5.1.1) is not necessarily appropriate in
every situation.

157
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5.2 Examples
5.2.1 Heat Flow in a Nonuniform Rod
In Sec. 1.2 we showed that the temperature u in a nonuniform rod solves the fol-
lowing partial differential equation:

8u a 8u 1
cp

8t 8x Ko 8x J + Q,
(5.2.1)

where Q represents any possible sources of heat energy. Here, in order to consider
the case of a nonuniform rod, we allow the thermal coefficients c, p, Ko to depend on
x. The method of separation of variables can be applied only if (5.2.1) is linear and
homogeneous. Usually, to make (5.2.1) homogeneous, we consider only situations
without sources. Q = 0. However, we will be slightly more general. We will allow
the heat source Q to be proportional to the temperature u,

Q=au,

in which case

8u 8 ( 8ul
cp et = ex 1\x0 8x J + au.

(5.2.2)

(5.2.3)

We also allow a to depend on x (but not on t), as though the specific types of
sources depend on the material. Although Q # 0, (5.2.3) is still a linear and
homogeneous partial differential equation. To understand the effect of this source Q,
we present a plausible physical situation in which terms such as Q = au might arise.
Suppose that a chemical reaction generates heat (called an exothermic reaction)
corresponding to Q > 0. Conceivably, this reaction could be more intense at higher
temperatures. In this way the heat energy generated might be proportional to the
temperature and thus a > 0 (assuming that u > 0). Other types of chemical
reactions (known as endothermic) would remove heat energy from the rod and also
could be proportional to the temperature. For positive temperatures (u > 0), this
corresponds to a < 0. In our problem a = a(x), and hence it is possible that a > 0
in some parts of the rod and a < 0 in other parts. We summarize these results by
noting that if a(x) < 0 for all x, then heat energy is being taken out of the rod, and
vice versa. Later in our mathematical analysis, we will correspondingly discuss the
special case a(x) < 0.

Equation (5.2.3) is suited for the method of separation of variables if, in addition,
we assume that there is one homogeneous boundary condition (as yet unspecified)
at each end, x = 0 and x = L. We have already analyzed cases in which a = 0 and
c, p, K0 are constant. In separating variables, we substitute the product form,

u(x, t) = O(x)h(t), (5.2.4)
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into (5.2.3), which yields

cpt(x) dt h(t)
TX (Ko i) + a0(x)h(t).

Dividing by O(x)h(t) does not necessarily separate variables since cp may depend
on x. However, dividing by cpc(x)h(t) is always successful:

h dt cps dx (Ko ) + _ -a. (5.2.5)

The separation constant -A has been introduced with a minus sign because in this
form the time-dependent equation [following from (5.2.5)],

dh = -Ah,
dt (5.2.6)

has exponentially decaying solutions if A > 0. Solutions to (5.2.6) exponentially
grow if A < 0 (and are constant if A = 0). Solutions exponentially growing in
time are not usually encountered in physical problems. However, for problems in
which a > 0 for at least part of the rod, thermal energy is being put into the rod
by the exothermic reaction, and hence it is possible for there to be some negative
eigenvalues (A < 0).

The spatial differential equation implied by separation of variables is

d-(Kodx)+aO+AcpO=0, (5.2.7)

which forms a boundary value problem when complemented by two homogeneous
boundary conditions. This differential equation is not d2o/dx2 + \46 = 0. Neither
does (5.2.7) have constant coefficients, because the thermal coefficients Ko, c, p, a
are not constant. In general, one way in which nonconstant-coefficient differential
equations occur is in situations where physical properties are nonuniform.

Note that we cannot decide on the appropriate convenient sign for the separation
constant by quickly analyzing the spatial ordinary differential equation (5.2.7) with
its homogeneous boundary conditions. Usually we will be unable to solve (5.2.7) in
the variable coefficient case, other than by a numerical approximate solution on the
computer. Consequently, we will describe in Sec. 5.3 certain important qualitative
properties of the solution of (5.2.7). Later, with a greater understanding of (5.2.7),
we will return to reinvestigate heat flow in a nonuniform rod. For now, let us
describe another example that yields a boundary value problem with nonconstant
coefficients.

5.2.2 Circularly Symmetric Heat Flow
Nonconstant-coefficient differential equations can also arise if the physical param-
eters are constant. In Sec. 1.5 we showed that if the temperature u in some plane
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two-dimensional region is circularly symmetric (so that u only depends on time t and
on the radial distance r from the origin), then u solves the linear and homogeneous
partial differential equation

8t
k r or (

under the assumption that all the thermal coefficients are constant.
We apply the method of separation of variables by seeking solutions in the form

of a product:
u(r, t) = O(r)h(t).

Equation (5.2.8) then implies that

dh _ kh(t) d dc
-O(r) (r)

dt r dr dr

Dividing by O(r)h(t) separates the variables, but also dividing by the constant k
is convenient since it eliminates this constant from the resulting boundary value
problem:

k h dt O dr Cr d (5.2.9)

The two ordinary differential equations implied by (5.2.9) are

dh = -Akh
dt

dr
(rLO)

+ .1rO = 0.

(5.2.10)

(5.2.11)

The separation constant is denoted -A since we expect solutions to exponentially
decay in time, as is implied by (5.2.10) if A > 0. The nonconstant coefficients in
(5.2.11) are due to geometric factors introduced by the use of polar coordinates.
Later in this text (Sec. 7.7) we will show that (5.2.11) can be solved using Bessel
functions. However, the general discussions in the remainder of this chapter will be
quite valuable in dur understanding of this problem.

Let us consider the appropriate homogeneous boundary conditions for circularly
symmetric heat flow in two different geometries: inside a circular annulus (as illus-
trated in Fig. 5.2.1a) and inside a circle (as illustrated in Fig. 5.2.1b). In both cases
we assume that all boundaries are fixed at zero temperature. For the annulus, the
boundary conditions for (5.2.11) are that the temperature should be zero at the
inner (r = a) and outer (r = b) concentric circular walls:

u(a,t) = 0 and u(b,t) = 0.
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Figure 5.2.1 (a) Circular annulus; (b) circle.

Both of these boundary conditions are exactly of the type we have already studied.
However, for the circle, the same second-order differential equation (5.2.11) has only
one boundary condition, u(b, t) = 0. Since the physical variable r ranges from r = 0
to r = b, we need a homogeneous boundary condition at r = 0 for mathematical
reasons. (This is the same problem that occurred in studying Laplace's equation
inside a cylinder. However, in that situation a nonhomogeneous condition was given
at r = b.) On the basis of physical reasoning, we expect that the condition at r = 0
is that the temperature is bounded there, Iu(0, t)l < oo. This is an example of a
singularity condition. It is homogeneous; it is the boundary condition that we
apply at r = 0. Thus, we have homogeneous conditions at both r = 0 and r = b for
the circle.

5.3 Sturm-Liouville Eigenvalue Problems

5.3.1 General Classification
Differential equation. A boundary value problem consists of a linear ho-
mogeneous differential equation and corresponding linear homogeneous boundary
conditions. All of the differential equations for boundary value problems that have
been formulated in this text can be put in the following form:

d
(P dx) + 90 + .10¢ = 0, (5.3.1)

where A is the eigenvalue. Here the variable x is defined on a finite interval a < x <
b. Four examples are as follows:

1. Simplest case: o- + A = 0; in which case, p = 1, q = 0, a = 1.dX2

2. Heat flow in a nonuniform rod: dx (Ko) + at+AcpqS = 0; in which case,

p = Ko, q = a, a = cp.
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2

3. Vibrations of a nonuniform string To d- + ac + Apoq = 0; in which case,
p = To (constant), q = a, a = po (see Exercise 5.3.1).

4. Circularly symmetric heat flow d (r)dr + .\r = 0, here the independent
dr dr

variable x = r and p(x) = x, q(x) = 0, a(x) = x.

Many interesting results are known concerning any equation in the form (5.3.1).
Equation (5.3.1) is known as a Sturm-Liouville differential equation, named
after two famous mathematicians active in the mid-1800s who studied it.

Boundary conditions. The linear homogeneous boundary conditions that
we have studied are of the form to follow. We also introduce some mathematical
terminology:

Heat flow Vibrating string Mathematical
terminology

0 = 0 Fixed (zero) Fixed (zero) First kind or
temperature displacement Dirichlet condition

d-O
= 0 Insulated Free Second kind or

dx Neumann condition

dO = fhO
dx

(Homogeneous) (Homogeneous) Third kind or Robin
Newton's law of elastic boundary condition

+left end cooling 0° condition
-right end outside h = k/To, h > 0

temperature, (physical)
h = H/Ko,
h > 0 (physical)

0(-L) = ¢(L) Perfect thermal - Periodicity condition
do d contact (example of

TX
(-L) =

dx (L) mixed type)

1¢(0)1 < oo Bounded - Singularity
temperature condition

5.3.2 Regular Sturm-Liouville Eigenvalue Problem
A regular Sturm-Liouville eigenvalue problem consists of the Sturm-Liouville dif-
ferential equation,

d

dx
(p(x) d + q(x)o + AQ(x)o = 0 I a < x < b, (5.3.2)
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subject to the boundary conditions that we have discussed (excluding periodic and
singular cases):

010(a) + Q2LO(a) = 0

Q30(b) +Q4LO(b) = 0,

(5.3.3)

where ,3; are real. In addition, to be called regular, the coefficients p, q, and o
must be real and continuous everywhere (including the end points) and p > 0 and
a > 0 everywhere (also including the endpoints). For the regular Sturm-Liouville
eigenvalue problem, many important general theorems exist. In Sec. 5.5 we will
prove these results, and in Secs. 5.7 and 5.8 we will develop some more interesting
examples that illustrate the significance of the general theorems.

Statement of theorems. At first let us just state (in one place) all the
theorems we will discuss more fully later (and in some cases prove). For any regular
Sturm-Liouville problem, all of the following theorems are valid:

1. All the eigenvalues A are real.
2. There exist an infinite number of eigenvalues:

X11 < A2 < ... < An < A,+1 < ...
a. There is a smallest eigenvalue, usually denoted Al.
b. There is not a largest eigenvalue and An -+ oc as n -+ oo.

3. Corresponding to each eigenvalue An, there is an eigenfunction,
denoted on(x) (which is unique to within an arbitrary multiplicative
constant). ¢n(x) has exactly n - 1 zeros for a < x < b.

4. The eigenfunctions on(x) form a "complete" set, meaning that
any piecewise smooth function f (x) can be represented by a generalized
Fourier series of the eigenfunctions:

00

f(x) Fa.On(x)
ncl

Furthermore, this infinite series converges to [f (x+) + f (x-)J/2
for a < x < b (if the coefficients an are properly chosen).

5. Eigenfunctions belonging to different eigenvalues are orthogonal
relative to the weight function a(x). In other words,

b

n(x)Om(x)a(x) dx = 0 if An # Am.j
n

6. Any eigenvalue can be related to its eigenfunction by the
Rayleigh quotient:

A _ -pO dO/dxIQ +.fa [p(dq5/dx)2 - qO2] dx

fb 2+adx'
where the boundary conditions may somewhat simplify this expression.
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It should be mentioned that for Sturm-Liouville eigenvalue problems that are not
"regular," these theorems maybe valid. An example of this is illustrated in Secs. 7.7
and 7.8.

5.3.3 Example and Illustration of Theorems
We will individually illustrate the meaning of these theorems (before proving many
of them in Sec. 5.5) by referring to the simplest example of a regular Sturm-Liouville
problem:

d2o +A0 = 0dX2
0(0) = 0
q(L). = 0.

(5.3.4)

The constant-coefficient differential equation has zero boundary conditions at both
ends. As we already know, the eigenvalues and corresponding eigenfunctions are

_ na 2An = (L) with 0n (x) = sin
n1rLx,

n = 1, 2, 3, ... ,

giving rise to a Fourier sine series.
1. Real eigenvalues. Our theorem claims that all eigenvalues A of a regular

Sturm-Liouville problem are real. Thus, the eigenvalues of (5.3.4) should all be real.
We know that the eigenvalues are (n7r/L)2, n = 1, 2,.... However, in determining
this result (see Sec. 2.3.4) we analyzed three cases: A > 0, A = 0, and A < 0. We did
not bother to look for complex eigenvalues because it is a relatively difficult task
and we would have obtained no additional eigenvalues other than (nir/L)2. This
theorem (see Sec 5.5 for its proof) is thus very useful. It guarantees that we do not
even have to consider A being complex.

2. Ordering of eigenvalues. There is an infinite number of eigenvalues for
(5.3.4), namely A = (nir/L)2 for n = 1,2,3,.... Sometimes we use the notation
An = (n7r/L)2. Note that there is a smallest eigenvalue, Al = (ir/L)2, but no
largest eigenvalue since An -+ co as n - oo. Our theorem claims that this idea is
valid for any regular Sturm-Liouville problem.

3. Zeros of elgenfunctions. For the elgenvalues of (5.3.4), An = (nn/L)2, the
eigenfunctions are known to be sinn7rx/L. We use the notation 46n(x) = sinnirx/L.
The eigenfunction is unique (to within an arbitrary multiplicative constant).

An important and interesting aspect of this theorem is that we claim that for all
regular Sturm-Liouville problems, the nth eigenfunction has exactly (n - 1) zeros,
not counting the endpoints. The eigenfunction ¢1 corresponding to the smallest
eigenvalue (,\1, n = 1) should have no zeros in the interior. The eigenfunction 02
corresponding to the next smallest eigenvalue (A2, n = 2) should have exactly one
zero in the interior; and so on. We use our eigenvalue problem (5.3.4) to illustrate
these properties. The eigenfunctions On(x) = sinnirx/L are sketched in Fig. 5.3.1
for n = 1, 2, 3. Note that the theorem is verified (since we only count zeros at interior
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x=0 x=L

n = 2: sin 2nx/L

n = 3: sin3irx/L

Figure 5.3.1 Zeros of eigenfunctions sin nirx/L.
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points); sin 7rx/L has no zeros between x = 0 and x = L, sin 27rx/L has one zero
between x = 0 and x = L, and sin 37rx/L has two zeros between x = 0 and x = L.

4. Series of eigenfunctions. According to this theorem, the eigenfunctions
can always be used to represent any piecewise smooth function f (x),

CO

f (x) .., D.O. x)
n=1=1

Thus, for our example (5.3.4),

00 nirxf (X) - E an sin L
n=1

(5.3.5)

We recognize this as a Fourier sine series. We know that any piecewise smooth func-
tion can be represented by a Fourier sine series and the infinite series converges to
[ f (x+).+ f (x-)]/2 for 0 < x < L. It converges to f (x) for 0 < x < L, if f (x) is con-
tinuous there. This theorem thus claims that the convergence properties of Fourier
sine series are valid for all series of eigenfunctions of any regular Sturm-Liouville
eigenvalue problem. Equation (5.3.5) is refereed to as an expansion of f (x) in terms
of the eigenfunctions On(x) or, more simply, as an eigenfunction expansion. It is
also called a generalized Fourier series of f (x). The coefficients an are called
the coefficients of the eigenfunction expansion or the generalized Fourier coeffi-
cients. The fact that rather arbitrary functions may be represented in terms of an
infinite series of eigenfunctions will enable us to solve partial differential equations
by the method of separation of variables.
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5. Orthogonality of eigenfunctions. The preceding theorem enables a func-
tion to be represented by a series of eigenfunctions, (5.3.5). Here we will show how
to determine the generalized Fourier coefficients, an. According to the important
theorem we are now describing, the eigenfunctions of any regular Sturm-Liouville
eigenvalue problem will always be orthogonal. The theorem states that a weight
a(x) must be introduced into the orthogonality relation:

J b0n(x)0m(x)a(x) dx = 0,
a

if An # Am. (5.3.6)

Here a(x) is the possibly variable coefficient that multiplies the eigenvalue A in the
differential equation defining the eigenvalue problem. Since corresponding to each
eigenvalue there is only one eigenfunction, the statement "if An # Am" in (5.3.6)
may be replaced by "if n # m." For the Fourier sine series example, the defining
differential equation is d2o/dx2 + A0 = 0, and hence a comparison with the form
of the general Sturm-Liouville problem shows that a(x) = 1. Thus, in this case
the weight is 1, and the orthogonality condition, f L sin n7rx/L sin mirx/L dx = 0,
follows if n # m, as we already know.

As with Fourier sine series, we use the orthogonality condition to determine
the generalized Fourier coefficients. In order to utilize the orthogonality condition
(5.3.6), we must multiply (5.3.5) by !bm(x) and a(x). Thus,

0
f (x)qSm(x)a(x) = F, anWn(x)0m(x)a(x),

n=1

where we assume these operations on infinite series are valid, and hence introduce
equal signs. Integrating from x = a to x = b yields

b oo

f (x).0m(x)a(x) dx = E an
fb

)4(x)a() dx.
a

Since the eigenfunctions are orthogonal [with weight a(x)], all the integrals on the
right-hand side vanish except when n reaches m:

J
b f (x)cm(x)a(x) dx = amf'b Zn(x)o,(x) dx.

a a

The integral on the right is nonzero since the weight o(x) must be positive (from
the definition of a regular Sturm-Liouville problem), and hence we may divide by
it to determine the generalized Fourier coefficient am:

fbf(x)0m(x)a(x) dx
am = ° b

Ia
n(x)a(x) dx

(5.3.7)
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In the example of a Fourier sine series, a = 0, b = L, cn = sin n7rx/L and o(x) = 1.
Thus, if we recall the known integral that fL sin2 n7rx/L dx = L/2, (5.3.7) reduces
to the well-known formula for the coefficients of the Fourier sine series. It is not
always possible to evaluate the integral in the denominator of (5.3.7) in a simple
way.

6. Rayleigh quotient. In Sec. 5.6 we will prove that the eigenvalue may be
related to its eigenfunction in the following way:

-p d0/dx1a + fb[p(dq/dx)2 - q02] dx

f°aOodx
(5.3.8)

known as the Rayleigh quotient. The numerator contains integrated terms and
terms evaluated at the boundaries. Since the eigenfunctions cannot be determined
without knowing the eigenvalues, this expression is never used directly to determine
the eigenvalues. However, interesting and significant results can be obtained from
the Rayleigh quotient without solving the differential equation. Consider the Fourier
sine series example (5.3.4) that we have been analyzing: a = 0, b = L, p(x) =
1,q(x) = 0 , and o(x) = 1. Since 0(0) = 0 and ¢(L) = 0, the Rayleigh quotient
implies that

A = fI (d¢/dx)2dx
fL,02 dx

(5.3.9)

Although this does not determine a since ¢ is unknown, it gives useful information.
Both the numerator and the denominator are > 0. Since 0 cannot be identically
zero and be called an eigenfunction, the denominator cannot be zero. Thus, a > 0
follows from (5.3.9). Without solving the differential equation, we immediately
conclude that there cannot be any negative eigenvalues. When we first determined
eigenvalues for this problem, we worked rather hard to show that there were no
negative eigenvalues (see Sec. 2.3). Now we can simply apply the Rayleigh quotient
to eliminate the possibility of negative eigenvalues for this example. Sometimes, as
we shall see later, we can also show that a > 0 in harder problems.

Furthermore, even the possibility of \ = 0 can sometimes be analyzed using the
Rayleigh quotient. For the simple problem (5.3.4) with zero boundary conditions,
0(0) = 0 and O(L) = 0, let us see if it is possible for a = 0 directly from (5.3.9).
,\ = 0 only if dO/dx = 0 for all x. Then, by integration, 0 must be a constant
for all x. However, from the boundary conditions [either 0(0) = 0 or O(L) = 0],
that constant must be zero. Thus, a = 0 only if 0 = 0 everywhere. But if = 0
everywhere, we do not call 0 an eigenfunction. Thus, \ = 0 is not an eigenvalue
in this case, and we have further concluded that a > 0; all the eigenvalues must
be positive. This is concluded without using solutions of the differential equation.
The known eigenvalues in this example, \n = (nir/L)2, n = 1,2,..., are clearly
consistent with the conclusions from the Rayleigh quotient. Other applications of
the Rayleigh quotient will appear in later sections.
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EXERCISES 5.3

*5.3.1. Do Exercise 4.4.2(b). Show that the partial differential equation may be
put into Sturm-Liouville form.

5.3.2. Consider
02U 1012u 8u

=To 8x2
+au+/3 .

(a) Give a brief physical interpretation. What signs must a and 'o have to
be physical?

(b) Allow p, a, /3 to be functions of x. Show that separation of variables
works only if Q = cp, where c is a constant.

(c) If 0 = cp, show that the spatial equation is a Sturm-Liouville differen-
tial equation. Solve the time equation.

*5.3.3. Consider the non-Sturm-Liouville differential equation

dx + a(x) dx + [AQ(x) + -Y(x)lo = 0.

Multiply this equation by H(x). Determine H(x) such that the equation
may be reduced to the standard Sturm-Liouville form:

d
dx [p(x) d-J + [Ao,(x) + q(x)1 q5 = 0.

Given a(x), 3(x), and -y(x), what are p(x), a(x), and q(x)?

5.3.4. Consider heat flow with convection (see Exercise 1.5.2):

19U 02U
49U

cat ka 2 - VoOx

(a) Show that the spatial ordinary differential equation obtained by sepa-
ration of variables is not in Sturm-Liouville form.

*(b) Sore the initial boundary value problem

u(0,t) = 0
u(L, t) = 0
u(x, 0) = f (x).

(c) Solve the initial boundary value problem

(O,t) = 0
TX_

(L, t) = 0Tz-
u(x,0) = f(x).



5.3. Sturm-Liouville Eigenvalue Problems 169

5.3.5. For the Sturm-Liouville eigenvalue problem,

x + AO = 0 with

dx

(0) = 0 and

dx

(L) = 0,

verify the following general properties:
(a) There is an infinite number of eigenvalues with a smallest but no

largest.
(b) The nth eigenfunction has n - 1 zeros.
(c) The eigenfunctions are complete and orthogonal.
(d) What does the Rayleigh quotient say concerning negative and zero

eigenvalues?

5.3.6. Redo Exercise 5.3.5 for the Sturm-Liouville eigenvalue problem

dx2 + A = 0 with (0) = 0 and ¢(L) = 0.

5.3.7. Which of statements 1-5 of the theorems of this section are valid for
the following eigenvalue problem?

I + AO = 0 with
O(L)d(-L) = d (L)

5.3.8. Show that A > 0 for the eigenvalue problem
2

d2 + (a - x2)0 = 0 with (0) = 0, (1) = 0.

Is A = 0 an eigenvalue?
5.3.9. Consider the eigenvalue problem

2

x2dx2 + x + AO = 0 with 0(1)=O, and 0(b)=O. (5.3.10)

(a) Show that multiplying by 1/x puts this in the Sturm-Liouville
form. (This multiplicative factor is derived in Exercise 5.3.3.)

(b) Show that A > 0.
*(c) Since (5.3.10) is an equidimensional equation, determine all posi-

tive eigenvalues. Is A = 0 an eigenvalue? Show that there is an
infinite number of eigenvalues with a smallest, but no largest.

(d) The eigenfunctions are orthogonal with what weight according to
Sturm-Liouville theory? Verify the orthogonality using properties
of integrals.

(e) Show that the nth eigenfunction has n - 1 zeros.
5.3.10. Reconsider Exercise 5.3.9 with the boundary conditions

dx (1) = 0 and (b) = 0.
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5.4 Worked Example: Heat Flow
in a Nonuniform Rod without Sources

In this section we illustrate the application to partial differential equations of some
of the general theorems on regular Sturm-Liouville cgenvalue problems. Consider
the heat flow in a nonuniform rod (with possibly nonconstant thermal properties
c, p, KO) without sources; see Sec. 1.2 or 5.2.1. At the left end x = 0 the temperature
is prescribed to be 00 and the right end is insulated. The initial temperature
distribution is given. The mathematical formulation of this problem is

PDE:
8u _ e 8u)/

Cp - K 4(5 1)(\et t
8x /J8x

..

u(0,t) = 0
BC: (5.4.2)

(L, t) = 0

IC: u(x,0) = f(x)- (5.4.3)

Since the partial differential equation and the boundary conditions are linear
and homogeneous, we seek special solutions (ignoring the initial condition) in the
product form:

u(x,t) = O(x)h(t). (5.4.4)

After separation of variables (for details see Sec. 5.2.1), we find that the time part
satisfies the ordinary differential equation

dh _ -Ah, (5.4.5)
dt

while the spatial part solves the following regular Sturm-Liouville eigenvalue prob-
lem:

TX
(K0 dx) + \cpO = 0

0(0) = 0

dO(L)=0.

(5.4.6)

(5.4.7)

(5.4.8)
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According to our theorems concerning Sturm-Liouville eigenvalue problems, there
is an infinite sequence of eigenvalues An and corresponding eigenfunctions On(x).
We assume that 4n(x) are known (it might be a difficult problem to determine
approximately the first few using numerical methods, but nevertheless it can be
done). The time-dependent part of the differential equation is easily solved,

h(t) = ce-a^t. (5.4.9)

In this way we obtain an infinite sequence of product solutions of the partial differ-
ential equation

u(x,t) = (bn(x)e-Ant. (5.4.10),

According to the principle of superposition, we attempt to satisfy the initial condi-
tion with an infinite linear combination of these product solutions:

u(x, t) = EanOn(x)e-X^t.
n=1

(5.4.11)

This infinite series has the property that it solves the PDE and the homogeneous
BCs. We will show that we can determine the as yet unknown constants an from
the initial condition

u(x, 0) = f (x) = E an.0n(x). (5.4.12)
n=1

Our theorems imply that any piecewise smooth f (x) can be represented by this
type of series of eigenfunctions. The coefficients an are the generalized Fourier
coefficients of the initial condition. Furthermore, the eigenfunctions are orthogonal
with a weight a(x) = c(x)p(x), determined from the physical properties of the rod:

10

L
0n(x)4m(x)C(x)p(x) dx = 0 for n # m.

Using these orthogonality formulas, the generalized Fourier coefficients are

L

f f(x)On(x)c(x)P(x) dx

an = 0
G

1gn(x)c(x)P(x) dx

(5.4.13)

We claim that (5.4.11) is the desired solution, with coefficients given by (5.4.13).
In order to give a minimal interpretation of the solution, we should ask what

happens for large t. Since the eigenvalues form an increasing sequence, each suc-
ceeding term in (5.4.11) is exponentially smaller than the preceding term for large
t. Thus, for large time the solution may be accurately approximated by

Au(x, t) a101(x)e-'t. (5.4.14)
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This approximation is not very good if a1 = 0, in which case (5.4.14) should begin
with the first nonzero term. However, often the initial temperature f (x) is non-
negative (and not identically zero). In this case, we will show from (5.4.13) that
al 0:

al
= fL f(x)4i(x)c(x)p(x) dx

5.4.15

fL O1(x)c(x)p(x) dx
( )

It follows that a1 96 0, because 41(x) is the eigenfunction corresponding to the
lowest eigenvalue and has no zeros; 01(x) is of one sign. Thus, if f (x) > 0 it
follows that al $ 0, since c(x) and p(x) are positive physical functions. In order to
sketch the solution for large fixed t, (5.4.14) shows that all that is needed is the first
eigenfunction. At the very least, a numerical calculation of the first eigenfunction
is easier than the computation of the first hundred.

For large time, the "shape" of the temperature distribution in space stays ap-
proximately the same in time. Its amplitude grows or decays in time depending on
whether Al > 0 or Al < 0 (it would be constant in time if Al = 0). Since this is a
heat flow problem with no sources and with zero temperature at x = 0, we certainly
expect the temperature to be exponentially decaying toward 0° (i.e., we expect that
Al > 0). Although the right end is insulated, heat energy should flow out the left
end since there u = 0. We now prove mathematically that all A > 0. Since p(x) _
Ko(x), q(x) = 0, and o(x) = c(x)p(x), it follows from the Rayleigh quotient that

A = f L
Ko(x)(d4ldx)2 dx

(5.4.16)0

fL 02c(x)p(x) dx ,

where the boundary contribution to (5.4.16) vanished due to the specific homoge-
neous boundary conditions, (5.4.7) and (5.4.8). It immediately follows from (5.4.16)
that all A > 0, since the thermal coefficients are positive. Furthermore, A > 0, since
0 = constant is not an allowable eigenfunction [because 0(0) = 0]. Thus, we have
shown that limt_,, u(x, t) = 0 for this example.

EXERCISES 5.4
5.4.1. Consider

CIO N 8x
(Ko

a J + au,

where c, p, KO, a are functions of x, subject to

u(0, t) = 0
u(L, t) = 0
u(x,0) = f(x).

Assume that the appropriate eigenfunctions are known.

(a) Show that the eigenvalues are positive if a < 0 (see Sec. 5.2.1).
(b) Solve the initial value problem.
(c) Briefly discuss limt,. u(x, t).
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*5.4.2. Consider
8u 8

f
Ou \

cp
5"t 8x

KO
FX

where c, p, KO are functions of x, subject to

(0, t) = 0L 9uTx-

(L,t) = 0
uu(x, 0) _ .f (x)

Assume that the appropriate eigenfunctions are known. Solve the initial
value problem, briefly discussing limt.,,. u(x, t).

*5.4.3. Solve
49U =
at k r 5+r (r 5+r )

with u(r, 0) = 1(r), u(0, t) bounded, and u(a, t) = 0. You may assume
that the corresponding eigenfunctions, denoted are known and are
complete. (Hint: See Sec. 5.2.2.)

5.4.4. Consider the following boundary value problem:

2

= k2 with a (0, t) = 0 and u(L, t) = 0.i§j

Solve such that u(x, 0) = sin7rx/L (initial condition). (Hint: If necessary,
use a table of integrals.)

5.4.5. Consider
8u2 02up2 TD

8x2
+au,

where p(x) > 0, a(x) < 0, and To is constant, subject to

u(0,t) = 0 u(x,0) = f(x)

u(L,t) = 0 au(x,0) = g(x).

Assume that the appropriate eigenfunctions are known. Solve the initial
value problem.

*5.4.6. Consider the vibrations of a nonuniform string of mass density po(x). Sup-
pose that the left end at x = 0 is fixed and the right end obeys the elastic
boundary condition: Ou/8x = -(k/To)u at x = L. Suppose that the string
is initially at rest with a known initial position f (x). Solve this initial
value problem. (Hints: Assume that the appropriate eigenvalues and corre-
sponding eigenfunctions are known. What differential equations with what
boundary conditions do they satisfy? The eigenfunctions are orthogonal
with what weighting function?)
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5.5 Self-Adjoint Operators and Sturm-Liouville
Eigenvalue Problems

Introduction. In this section we prove some of the properties of regular Sturm-
Liouville eigenvalue problems:

d

o
j + &).o + AQ(x).0 = 0

dx [p(x)d

,31 0(a) + 02 (a) = 0

0.3-0(b) +,34 dxx (b) = 0,

(5.5.1)

(5.5.2)

(5.5.3)

where fl, are real and where, on the finite interval (a < x < b), p, q, v are real
continuous functions and p, o, are positive [p(x) > 0 and 0'(x) > 01. At times we
will make some comments on the validity of our results if some of these restrictions
are removed.

The proofs of three statements are somewhat difficult. We will not prove that
there are an infinite number of eigenvalues. We will have to rely for understanding
on the examples already presented and on some further examples developed in later
sections. For Sturm-Liouville eigenvalue problems that are not regular, there may
be no eigenvalues at all. However, in most cases of physical interest (on finite inter-
vals) there will still be an infinite number of discrete eigenvalues. We also will not
attempt to prove that any piecewise smooth function can be expanded in terms of
the eigenfunctions of a regular Sturm-Liouville problem (known as the completeness
property). We will not attempt to prove that each succeeding eigenfunction has one
additional zero (oscillates one more time).

Linear operators. The proofs we will investigate are made easier to follow
by the introduction of operator notation. Let L stand for the linear differential
operator d/dx]p(x) dldx] +q(x) An operator acts on a function and yields another
function. The notation means that for this L acting on the function y(x),

L(y) =
d

[p(x)
]

+ q(x)y. (5.5.4)

Thus, L(y) is just a shorthand notation. For example, if L =_ d2/dx2 + 6, then
L(y) = d2y/dx2 + 6y or L(e2x) = 4e2x + 6e2x = 10e2s.
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The Sturm-Liouville differential equation is rather cumbersome to write over
and over again. The use of the linear operator notation is somewhat helpful. Using
the operator notation

L(O) +Ao(x)O = 0, (5.5.5)

where A is an eigenvalue and 0 the corresponding eigenfunction. L can operate on
any function, not just an eigenfunction.

Lagrange's identity. Most of the proofs we will present concerning Sturm-
Liouville eigenvalue problems are immediate consequences of an interesting and
fundamental formula known as Lagrange's identity. For convenience. we will use
the operator notation. We calculate uL(v) - vL(u), where u and v are any two
functions (not necessarily eigenfunctions). Recall that

L(u)

and hence

d du d dv
= TX (pdx) + qu and L(v) = TX pdx + qv,

uL(v) - vL(u) = udx (P -) + uqv - vdx (pdx) - vqu, (5.5.6)

where a simple cancellation of uqv - vqu should he noted. The right-hand side of
(5.5.6) is manipulated to an exact differential:

uL(v) - vL(u) =
dx
d

[p

(Udx
- vdx)] (5.5.7)

known as the differential form of Lagrange's identity. To derive (5.5.7), we
note from the product rule that

d / dv = dv)]d [ (
(

dv) du
u )dx pdx

u P
dx dx pdx dx

and similarly
d du _ d du du dv

vdx (pdx) dx v (pdx)
_

pdx) dx
Equation (5.5.7) follows by subtracting these two. Later [see (5.5.21)] we will use
the differential form, (5.5.7).

Green's formula. The integral form of Lagrange's identity is also known
as Green's formula. If follows by integrating (5.5.7):

J
b

[uL(v) - vL(u)] dx = p (u- dx)

for any functions,', u and v. This is a very useful formula.

b

a

(5.5.8)

1The integration requires du/dx and dv/dx to be continuous.
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Example. If p = 1 and q = 0 (in which case L = d2/dx2), (5.5.7) simply states
that

d2v d2u d

C

dv du\u2 - vdx2 =
dx

u - vZ J ,

which is easily independently checked. For this example, Green's formula is

lb
Cu

-d2V

2 - v Cjx2) dx
=

(UdV

dx - v dx

b

a

-adjointness. As an important case of Green's formula, suppose that itSelf
and v are any two functions, but with the additional restriction that the boundary
terms happen to vanish,

dv duP
udx - vdx

b

= 0.

a

Then from (5.5.8), fQ [uL(v) - vL(u)] dx = 0.
Let us show how it is possible for the boundary terms to vanish. Instead of being

arbitrary functions, we restrict u and v to both satisfy the same set of homogeneous
boundary conditions. For example, suppose that u and v are any two functions that
satisfy the following set of boundary conditions:

O(a) = 0
(b) + hO(b) = 0.

Since both u and v satisfy these conditions, it follows that

u(a) = 0 v(a) = 0
ai (b) + hu(b) = 0 and dj (b) + hv(b) = 0;

otherwise, u and v are arbitrary. In this case, the boundary terms for Green's
formula vanish:

p
(ul l

v dx /
Ib

= p(b) [u(b)(b) - v(b)
2i

(b)]
dv du

dx -
l

a

p(b)[-u(b)hv(b) + v(b)hu(b)] = 0.

Thus, for any functions u and v both satisfying these homogeneous boundary con-
ditions, we know that

b

1 [uL(v) - vL(u)] dx = 0.
a

In fact, we claim (see Exercise 5.5.1) that the boundary terms also vanish for any two
functions u and v that both satisfy the same set of boundary conditions of the type
that occur in the regular Sturm-Liouville eigenvalue problems (5.5.2) and (5.5.3).
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Thus, when discussing any regular Sturm-Liouville eigenvalue problem, we have the
following theorem:

If u and v are any two functions satisfying the same set of
homogeneous boundary conditions (of the regular Sturm-
Liouville type), then fa [uL(v) - vL(u)] dx = 0.

(5.5.9)

When (5.5.9) is valid, we say that the operator L (with the corresponding boundary
conditions) is self-adjoint.2

The boundary terms also vanish in circumstances other than for boundary con-
ditions of the regular Sturm-Liouville type. Two important further examples will
be discussed briefly. The periodic boundary condition can be generalized (for
nonconstant-coefficient operators) to

0(a)=O(b) and p(a) L(a) = p(b)d (b)

In this situation (5.5.9) also can be shown (see Exercise 5.5.1) to be valid. Another
example in which the boundary terms in Green's formula vanish is the "singular"
case. The singular case occurs if the coefficient of the second derivative of the
differential operator is zero at an endpoint; for example, if p(x) = 0 at x = 0 [i.e.,
p(O) = 0]. At a singular endpoint, a singularity condition is imposed. The usual
singularity condition at x = 0 is 0(0) bounded. It can also be shown that (5.5.9) is
valid (see Exercise 5.5.1) if both u and v satisfy this singularity condition at x = 0
and any regular Sturm-Liouville type of boundary condition at x = b.

Orthogonal eigenfunctions. We now will show the usefulness of Green's
formula. We will begin by proving the important orthogonality relationship for
Sturm-Liouville eigenvalue problems. For many types of boundary conditions.
eigenfunctions corresponding to different eigenvalues are orthogonal with
weight o(x). To prove that statement, let An, and Am be eigenvalues with corre-
sponding eigenfunctions On (x) and 0n, (x). Using the operator notation, the differ-
ential equations satisfied by these eigenfunctions are

L(0n) + Ana(x)0n = 0 (5.5.10)

L(Im) + \ma(x)O. = 0. (5.5.11)

In addition, both On and On satisfy the same set of homogeneous boundary con-
ditions. Since u and v are arbitrary functions, we may let u = Om and v = On in
Green's formula:

fb
J

[OmL(On) - OnL(Om)] dx = p(x) (Om
n

- 6n ddx )
a

b

2We usually avoid in this text an explanation of an adjoint operator. Here L equals its adjoint
and so is called self-adjoint.
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L(On) and L(Om) may be eliminated from (5.5.10) and (5.5.11). Thus,

r(gym - An)
Ib

cbncbmT dx = p(x) 0m - 0n
a

x
l b

a

(5.5.12)

corresponding to multiplying (5.5.10) by 0m, multiplying (5.5.11) by 0,, subtracting
the two, and then integrating. We avoided these steps (especially the integration)
by applying Green's formula. For many different kinds of boundary conditions (i.e.,
regular Sturm-Liouville types, periodic case, and the singular case), the boundary
terms vanish if u and v both satisfy the same set of homogeneous boundary condi-
tions. Since u and v are eigenfunctions, they satisfy this condition, and thus (5.5.12)
implies that

b

(Am - An)
J

ncbma dx = 0. (5.5.13)

if A,,, # A, then it immediately follows that

fb
'nOm0 dx = 0. (5.5.14)

In other words, eigenfunctions (¢n and ¢m) corresponding to different eigenvalues
(an # Am) are orthogonal with weight a(x).

Real eigenvalues. We can use the orthogonality of eigenfunctions to prove
that the eigenvalues are real. Suppose that A is a complex eigenvalue and O(x)
the corresponding eigenfunction (also allowed to be complex since the differential
equation defining the eigenfunction would be complex):

L(0) + avq = 0. (5.5.15)

We introduce the notation for the complex conjugate (e.g., if z = x + iy, then
z = x - iy). Note that if z = 0, then z = 0. Thus, the complex conjugate of (5.5.15)
is also valid:

(5.5.16)

assuming that the coefficient a is real and hence o = or. The complex conjugate
of L(O) is exactly L operating on the complex conjugate of 0, L(O) = L(¢) since
the coefficients of the linear differential operator are also real (see Exercise 5.5.7).
Thus,

L(O) + A i = 0. (5.5.17)

If 0 satisfies boundary conditions with real coefficients, then qS satisfies the same
boundary conditions. For example, if dO/dx + hO = 0 at x = a, then by taking
complex conjugates, do,/dx + h-.o = 0 at x = a. Equation (5.5.17) and the boundary
conditions show that satisfies the Sturm-Liouville eigenvalue problem, but with
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the eigenvalue being a. We have thus proved the following theorem:3 If A is a
complex eigenvalue with corresponding eigenfunction 0, then A is also an
eigenvalue with corresponding eigenfunction 0.

However, we will show A cannot be complex. As we have shown, if \ is an
eigenvalue, then so too is A. According to our fundamental orthogonality theorem,
the corresponding eigenfunctions (0 and ) must be orthogonal (with weight a).
Thus, from (5.5.13),

(A - A)
l b

gkodx=0. (5.5.18)

Since 070 = I012 > 0 (and o, > 0), the integral in (5.5.18) is > 0. In fact, the integral
can equal zero only if 0 = 0, which is prohibited since 0 is an eigenfunction. Thus,
(5.5.18) implies that A = A, and hence A is real; all the eigenvalues are real.
The eigenfunctions can always be chosen to be real.

Unique eigenfunctions (regular and singular cases). We next
prove that there is only one eigenfunction corresponding to an eigenvalue (except
for the case of periodic boundary conditions). Suppose that there are two different
eigenfunctions 01 and 02 corresponding to the same eigenvalue A. We say A is a
"multiple" eigenvalue with multiplicity two. In this case, both

L(.01)+Aa4l = 0
(5.5.19)L(02) + a0`02 = 0.

Since A is the same in both expressions,

02L(q51) - -OIL(02) = 0. (5.5.20)

This can be integrated by some simple manipulations. However, we avoid this
algebra by simply quoting the differential form of Lagrange's identity:

02L(O1) - g1L(42) = - [P i1 d /J
. (5.5.21)

From (5.5.20) it follows that

l
p (01 dl - 02 d11

J
= constant. (5.5.22)a

Often we can evaluate the constant from one of the boundary conditions. For
example, if do/dx + hO = 0 at x = a, a short calculation shows that the constant
= 0. In fact, we claim (Exercise 5.5.10) that the constant also equals zero if at
least one of the boundary conditions is of the regular Sturm-Liouville type (or of the
singular type). For any of these boundary conditions it follows that

012 - 021

= 0. (5.5.23)dx dx
:'A "similar" type of theorem follows from the quadratic formula: For a quadratic equation with

real coefficients, if A is a complex root, then so is A. This also holds for any algebraic equation
with real coefficients.
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This is equivalent to d/dx(462/451) = 0, and hence for these boundary conditions

-02 = c461 . (5.5.24)

This shows that any two eigenfunctions 01 and 02 corresponding to the same eigen-
value must be an integral multiple of each other for the preceding boundary condi-
tions. The two eigenfunctions are dependent; there is only one linearly independent
eigenfunction; the eigenfunction is unique.

Nonunique eigenfunctions (periodic case). For periodic boundary
conditions, we cannot conclude that the constant in (5.5.22) must be zero. Thus,
it is possible that 02 54 cb1 and that there might be two different eigenfunctions
corresponding to the same eigenvalue.

For example, consider the simple eigenvalue problem with periodic boundary
conditions,

d 20 +A( = 0
0(-L) _ q5(L) (5.5.25)

T-(-L) _
dx

(L).

We know that the eigenvalue 0 has any constant as the unique eigenfunction. The
other eigenvalues, (n7r/L)2, n = 1, 2,..., each have two linearly independent eigen-
functions, sin n1rx/L and cos nirx/L. This, we know, gives rise to a Fourier series.
However, (5.5.25) is not a regular Sturm-Liouville eigenvalue problem, since the
boundary conditions are not of the prescribed form. Our theorem about unique
eigenfunctions does not apply; we may have two4 eigenfunctions corresponding to
the same eigenvalue. Note that it is still possible to have only one eigenfunction, as
occurs for A = 0.

Nonunique eigenfunctions (Gram-Schmidt orthogonalization).
We can solve for generalized Fourier coefficients (and correspondingly we are able
to solve some partial differential equations) because of the orthogonality of the
eigenfunctions. However, our theorem states that eigenfunctions corresponding to
different eigenvalues are automatically orthogonal [with weight a(x)]. For the case
of periodic (or mixed-type) boundary conditions, it is possible for there to be more
than one independent eigenfunction corresponding to the same eigenvalue. For
these multiple eigenvalues the eigenfunctions are not automatically orthogonal to
each other. In the appendix to Sec. 7.5 we will show that we always are able
to construct the eigenfunctions such that they are orthogonal by a process called
Gram-Schmidt orthogonalization.

4No more than two independent eigenfunctions are possible, since the differential equation is
of second order.
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EXERCISES 5.5

5.5.1. A Sturm-Liouville eigenvalue problem is called self-adjoint if

du
p (udv

dx - vdx
b

=0
a

since then fQ [uL(v) - vL(u)] dx = 0 for any two functions u and v satis-
fying the boundary conditions. Show that the following yield self-adjoint
problems.

(a) 0(0) = O and O(L) = 0
(b) V. (0) = 0 and O(L) = 0

(c) a (0) - hq5(0) = 0 and
d

(L) = 0

(d) t(a) = 0(b) and p(a) 10 (a) = p(b) -2 (b)

(e) 0(a) = 0(b) and lk(a) _ (b) [self-adjoint only if p(a) = p(b)]

(f) q(L) = 0 and [in the situation in which p(0) = 0] 0(0) bounded and
lim;r .o p(x)- = 0

*(g) Under what conditions is the following self-adjoint (if p is constant)?

¢(L) + a0(0) + Qd (0) = 0

d
!k(L)+-r,0(0)+&-2(0) 0

5.5.2. Prove that the eigenfunctions corresponding to different eigenvalues (of the
following eigenvalue problem) are orthogonal:

dx [p(x) d_] + 4(x)¢ + Ao(x)¢ = 0

with the boundary conditions

0(1) = 0
.0(2) - 2 (2) = 0.

What is the weighting function?

5.5.3. Consider the eigenvalue problem L(¢) = -av(x)46, subject to a given set of
homogeneous boundary conditions. Suppose that

jb

[uL(v) - vL(u)] dx = 0

for all functions u and v satisfying the same set of boundary conditions.
Prove that eigenfunctions corresponding to different eigenvalues are orthog-
onal (with what weight?).
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5.5.4. Give an example of an eigenvalue problem with more than one eigenfunction
corresponding to an eigenvalue.

5.5.5. Consider

L= d +6d +9.
dx2

(a) Show that L(e'-'y) = (r + 3)2e''s

(b) Use part (a) to obtain solutions of L(y) = 0 (a second-order constant-
coefficient differential equation).

(c) If z depends on x and a parameter r, show that

arL(z)=L(50
-

(d) Using part (c), evaluate L(8z/8r) if z = e''x.
(e) Obtain a second solution of L(y) = 0, using part (d).

5.5.6. Prove that if x is a root of a sixth-order polynomial with real coefficients,
then a is also a root.

5.5.7. For

L=d (pd
)

+ 9

with p and q real, carefully show that

L(0) = L(¢)

5.5.8. Consider a fourth-order linear differential operator,

=dL

(a) Show that vL(v) - vL(u) is an exact differential.

(b) Evaluate fo [uL(v) - vL(u)] dx in terms of the boundary data for any
functions u and v.

(c) Show that fo [uL(v) - vL(u)] dx = 0 if u and v are any two functions
satisfying the boundary conditions

46(0) = 0 0(1) = 0
d(0) = 0 d (1) = 0.

(d) Give another example of boundary conditions such that

f 1 [uL(v) - vL(u)] dx = 0.
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(e) For the eigenvalue problem [using the boundary conditions in part (c)]

d44
+ aez ¢ = 0

dx4
,

show that the eigenfunctions corresponding to different eigenvalues are
orthogonal. What is the weighting function?

*5.5.9. For the eigenvalue problem

dx + Aexb = 0

subject to the boundary conditions

0(0) = 0 O(1) = 0
(0) = 0 (1) = 0,ad -,

show that the eigenvalues are less than or equal to zero (A < 0). (Don't
worry; in a physical context that is exactly what is expected.) Is A = 0 an
eigenvalue?

5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary con-
ditions is of the regular Sturm-Liouville type.

(b) Do part (a) if one boundary condition is of the singular type.

5.5.11. *(a) Suppose that

Consider

L = p(x)
2 + r(x) + q(x).

b

1 vL(u) dx.
a

By repeated integration by parts, determine the adjoint operator L'
such that

b

1 [uL'(v) - vL(u)j dx = H(x)
a

b

0

What is H(x)? Under what conditions does L = L', the self-adjoint
case? [Hint: Show that

\ \ 1
L' d2

2

p
d ( Pdr JJ=pdx + TX dx dx 4

(b) If
u(0) = 0 and (L) + u(L) = 0,

what boundary conditions should v(x) satisfy for H(x)ILa = 0, called
the adjoint boundary conditions?
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5.5.12. Consider nonself-adjoint operators as in Exercise 5.5.11. The eigenvalues A
may be complex as well as their corresponding eigenfunctions 0.

(a) Show that if A is a complex eigenvalue with corresponding eigenfunc-
tion 0, then the complex conjugate A is also an eigenvalue with eigen-
function q5.

(b) The eigenvalues of the adjoint L' may be different from the eigenvalues
of L. Using the result of Exercise 5.5.11, show that the eigenfunctions
of L(4) + A = 0 are orthogonal with weight v(in a complex sense)
to eigenfunctions of L ' (v ') + vo-t/ = 0 if the eigenvalues are different.
Assume that ?/i satisfies adjoint boundary conditions. You should also
use part (a).

5.5.13. Using the result of Exercise 5.5.11, prove the following part of the Fredholm
alternative (for operators that are not necessarily self-adjoint): A solution
of L(u) = f (x) subject to homogeneous boundary conditions may exist only
if f (x) is orthogonal to all solutions of the homogeneous adjoint problem.

5.5.14. If L is the following first-order linear differential operator

L =p(x)dxd ,

then determine the adjoint operator L' such that

b

1 [uL'(v) - vL(u)] dx = B(x)
a

b

What is B(x)? [Hint: Consider f, vL(u) dx and integrate by parts.]

Appendix to 5.5: Matrix Eigenvalue Problem
and Orthogonality of Eigenvectors
The matrix eigenvalue problem

Ax = Ax, (5.5.26)

where A is an n x n real matrix (with entries aid) and x is an n-dimensional column
vector (with components xi), has many properties similar to those of the Sturm-
Liouville eigenvalue problem.

Eigenvalues and eigenvectors. For all values of A, x= 0 is a "trivial"
solution of the homogeneous linear system (5.5.26). We ask, for what values of A
are there nontrivial solutions? In general, (5.5.26) can be rewritten as

(A - AI)x = 0, (5.5.27)

where I is the identity matrix. According to the theory of linear equations (ele-
mentary linear algebra), a nontrivial solution exists only if

det[A - \I] = 0. (5.5.28)
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Such values of A are called eigenvalues, and the corresponding nonzero vectors x
called eigenvectors.

In general, (5.5.28) yields an nth-degree polynomial (known as the character-
istic polynomial) that determines the eigenvalues; there will be n eigenvalues (but
they may not be distinct). Corresponding to each distinct eigenvalue, there will be
an eigenvector.

Example. If A= [
6

1 ], then the eigenvalues satisfy

0=det1 26)
1

1A
] =(2-A)(1-a)-6=A2-3A-4=(A-4)(A+1),

the characteristic polynomial. The eigenvalues are A = 4 and A = -1. For A = 4,
(5.5.26) becomes

2x1 + x2 = 4x1 and 6x1 + x2 = 4x2i

or, equivalently,1 X2 = 2x1. The eigenvector

multiple of [
2 1

for A = 4. For A = -1,

=x1[2] Is an arbitraryX1

X2

2x1 + x2 = -x1 and 6x1 + x2 = -x2,

and thus the eigenvector [
x1 J

= xi [ 13 ] is an arbitrary multiple of [
13 J

formula. The matrix A may be thought of as a linear operator in
the same way that

L
TX

d
(p x) +q

is a linear differential operator. A operates on n-dimensional vectors producing
an n-dimensional vector, while L operates on functions and yields a function. In
analyzing the Sturm-Liouville eigenvalue problem, Green's formula was important:

rb

J [uL(v) - vL(u)] dx = p (udx - Vdx)
a

b

a'

where u and v are arbitrary functions. Often, the boundary terms vanished. For
vectors, the dot product is analogous to integration, a b = Ei aibi, where ai and bi
are the ith components of, respectively, a and b (see Sec. 2.3 Appendix). By direct
analogy to Green's formula, we would be led to investigate u Av and v Au, where
u and v are arbitrary vectors. Instead, we analyze u Av and v Bu, where B is
any n x n matrix:

v Bu = Ei(vi [[., bijuj) = Li E, bijujvi = Li F,j bj4uivj,
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where an alternative expression for v Bu was derived by interchanging the roles
of i and j. Thus,

E (a,, -bj=)u;vj.

If we let B equal the transpose of A (i.e., b;, = a0), whose notation is B = At,
then we have the following theorem:

analogous to Green's formula.

(5.5.29)

Self-adjointness. The difference between A and its transpose, At, in
(5.5.29) causes insurmountable difficulties for us. We will thus restrict our attention
to symmetric matrices, in which case A = At. For symmetric matrices

(5.5.30)

and we will be able to use this result to prove the same theorems about eigenval-
ues and eigenvectors for matrices as we proved about Sturm-Liouville eigenvalue
problems.

For symmetric matrices, eigenvectors corresponding to
different eigenvalues are orthogonal. To prove this, suppose that u
and v are eigenvectors corresponding to \1 and )2, respectively:

Au = Aju and At, = A2v.

If we directly apply (5.5.30), then

Thus, if Al A2 (different eigenvalues), the corresponding eigenvectors are orthog-
onal in the sense that

(5.5.31)

We leave as an exercise the proof that the eigenvalues of a symmetric real matrix
are real.

Example. The eigenvalues of the real symmetric matrix
L

2
3 J are determined

from (6-.1)(3-.1)-4 = A2-9.1+14 = ( A = 0. For A = 2, the eigenvector
satisfies

6x1 + 2x2 = 2x, and 2x, + 3x2 = 2x2,
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and hence x1

X2 J
= xl I 12 I . For A = 7, it follows that

6xi + 2x21= 7x1 and 2x1 + 3x2 = 7x2,

and the eigenvector is [ xlX2
J = x2 [ i

J . As we have just proved for any real

symmetric matrix, the eigenvectors are orthogonal, [ 12 ] [
1

] =2-2=0.

Eigenvector expansions. For real symmetric matrices it can be shown
that if an eigenvalue repeats R times, there will be R independent eigenvectors
corresponding to that eigenvalue. These eigenvectors are automatically orthogonal
to any eigenvectors corresponding to a different eigenvalue. The Gram-Schmidt
procedure (see Sec. 6.5 Appendix) can be applied so that all R eigenvectors corre-
sponding to the same eigenvalue can be constructed to be mutually orthogonal. In
this manner, for real symmetric n x n matrices, n orthogonal eigenvectors can al-
ways be obtained. Since these vectors are orthogonal, they span the n-dimensional
vector space and may be chosen as basis vectors. Any vector v may be represented
in a series of the eigenvectors:

r.

V = poi, (5.5.32)
i=1

where Oi is the ith eigenvector. For regular Sturm-Liouville eigenvalue problems,
the eigenfunctions are complete, meaning that any (piecewise smooth) function can
be represented in terms of an eigenfunction expansion

00

f(x) (5.5.33)
i=1

This is analogous to (5.5.32). In (5.5.33) the Fourier coefficients ci are determined
by the orthogonality of the eigenfunctions. Similarly, the coordinates ci in (5.5.32)
are determined by the orthogonality of the eigenvectors. We dot equation (5.5.32)
into 0m:

n
A ,{{,, ,Iv - Y'm = E CiWi - 0m = CmY'm - 0m,

1=1

since 4)i ,,,. = 0, i # m, determining c,,,.

Linear systems. Sturm-Liouville eigenvalue problems arise in separating
variables for partial differential equations. One way in which the matrix eigen-
value problem occurs is in "separating" a linear homogeneous system of ordinary
differential equations with constant coefficients. We will be very brief. A linear
homogeneous first-order system of differential equations may be represented by

dv

dt
= Av, (5.5.34)
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where A is an n x n matrix and v is the desired n-dimensional vector solution. v
usually satisfies given initial conditions, v(O) = vo. We seek special solutions of the
form of simple exponentials:

v(t) = eatO,
(5.5.35)

where 0 is a constant vector. This is analogous to seeking product solutions by the
method of separation of variables. Since dv/dt = Ae\t0, it follows that

A¢ = A¢. (5.5.36)

Thus, there exist solutions to (5.5.34) of the form (5.5.35) if A is an eigenvalue
of A and 0 is a corresponding eigenvector. We now restrict our attention to real
symmetric matrices A. There will always be n mutually orthogonal eigenvectors ¢,i.
We have obtained n special solutions to the linear homogeneous system (5.5.34). A
principle of superposition exists, and hence a linear combination of these solutions
also satisfies (5.5.34):

n

v = Eciex'toi
i=1

(5.5.37)

We attempt to determine ci so that (5.5.37) satisfies the initial conditions, v(O) _
V0:

VO = ciOi
i=1

Here, the orthogonality of the eigenvectors is helpful, and thus, as before,

EXERCISES 5.5 APPENDIX

5.5A.1. Prove that the eigenvalues of real symmetric matrices are real.

5.5A.2. (a) Show that the matrix
A_- 1

2

0
1 ]

has only one independent eigenvector.

(b) Show that the matrix

1 0A=I
0

]
1

has two independent eigenvectors.
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5.5A.3. Consider the eigenvectors of the matrix

_ 6 4A 1 3].

189

(a) Show that the eigenvectors are not orthogonal.

(b) If the "dot product" of two vectors is defined as follows,

1albi+a2b2i

show that the eigenvectors are orthogonal with this dot product.

5.5A.4. Solve dv/dt = Av using matrix methods if

2 3 2

(b) A=I 21 42

]
v(0)=[2

3

5.5A.5. Show that` the eigenvalues are real and the eigenvectors orthogonal:

(a) A= r 2 1 ]
1 4

*(b) A= I
1 + i 1

i
] (see Exercise 5.5A.6)

5.5A.6. For a matrix A whose entries are complex numbers, the complex conjugate
of the transpose is denoted by AH. For matrices in which AH = A (called
Hermitian):

(a) Prove that the eigenvalues are real.

(b) Prove that eigenvectors corresponding to different eigenvalues are or-
thogonal (in the sense that Oj-;' = 0, where - denotes the complex
conjugate).

5.6 Rayleigh Quotient
The Rayleigh quotient can be derived from the Sturm-Liouville differential equation,

dx
[x} + q(x)O + Aa(x)O = 0, (5.6.1)

by multiplying (5.6.1)by 0 and integrating:

dx + A J b 02a dx = 0.
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Since fa 402 i dx > 0, we can solve for A:

fb d (p It
A= (5.6.2)

fb o2v dx

Integration by parts [f u dv = uv - f v du, where u = 0, dv = d/dx(p do/dx) dx
and hence du = d¢/dx dx, v = p dq/dx] yields an expression involving the function
0 evaluated at the boundary:

-P,hd IQ + fQ
[p()2_qi2]

dx

fn c52o dx
(5.6.3)

known as the Rayleigh quotient. In Sees. 5.3 and 5.4 we have indicated some
applications of this result. Further discussion will be given in Sec. 5.7.

Nonnegative eigenvalues. Often in physical problems, the sign of A
is quite important. As shown in Sec. 5.2.1, dh/dt + Ah = 0 in certain heat flow
problems. Thus, positive \ corresponds to exponential decay in time, while negative
A corresponds to exponential growth. On the other hand, in certain vibration
problems (see Sec. 5.7), d2h/dt2 = -Ah. There, only positive \ corresponds to the
"usually" expected oscillations. Thus, in both types of problems we often expect
A>0:

The Rayleigh quotient (5.6.3) directly proves that A > 0 if

(a) -pod
la

b

> 0, and
a

(b) q<0.
(5.6.4)

We claim that both (a) and (b) are physically reasonable conditions for nonneg-
ative A. Consider the boundary constraint, -- pO dq/dxlb > 0. The simplest types
of homogeneous boundary conditions, 0 = 0 and dq'/dx = 0, do not contribute to
this boundary term, satisfying (a). The condition d¢/dx = hq5 (for the physical
cases of Newton's law of cooling or the elastic boundary condition) has h > 0 at the
left end, x = a. Thus, it will have a positive contribution at x = a. The sign switch
at the right end, which occurs for this type of boundary condition, will also cause
a positive contribution. The periodic boundary condition [e.g., 0(a) = 0(b) and
p(a) dO/dx(a) = p(b) dcb/dx(b)] as well as the singularity condition [O(a) bounded,
if p(a) = 0) also do not contribute. Thus, in all these cases -pO dt/dxla > 0.

The source constraint q < 0 also has a meaning in physical problems. For
heat flow problems, q < 0 corresponds (q = a, Q = au) to an energy-absorbing
(endothermic) reaction, while for vibration problems q < 0 corresponds (q = a, Q =
au) to a restoring force.
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Minimization principle. The Rayleigh quotient cannot be used to de-
termine explicitly the eigenvalue (since 0 is unknown). Nonetheless, it can be quite
useful in estimating the eigenvalues. This is because of the following theorem: The
minimum value of the Rayleigh quotient for all continuous functions sat-
isfying the boundary conditions (but not necessarily the differential equation)
is the lowest eigenvalue:

Al = min
-pu du/dxI a + J b [p (du/dx)2 - qu2] dx

n
(5.6.5)

rb

J
u2o dx

a

where Al represents the smallest eigenvalue. The minimization includes all con-
tinuous functions that satisfy the boundary conditions. The minimum is obtained
only for u = 01(x), the lowest eigenfunction. For example, the lowest eigenvalue is
important in heat flow problems (see Sec. 5.4).

'Vial functions. Before proving (5.6.5), we will indicate how (5.6.5) is
applied to obtain bounds on the lowest eigenvalue. Equation (5.6.5) is difficult to
apply directly since we do not know how to minimize over all functions. However, let
UT be any continuous function satisfying the boundary conditions; UT is known as a
trial function. We compute the Rayleigh quotient of this trial function, RQ[uT]:

-PUT duT/dxl n + fa [p (duT/dx)2 - q42 ] dx
Al < RQ(UT] = 6

U2
(5.6.6)

f0 T
O dx

We have noted that Al must be less than or equal to the quotient since Al is the
minimum of the ratio for all functions. Equation (5.6.6) gives an upper bound for
the lowest eigenvalue.

Example. Consider the well-known eigenvalue problem.

d 202 + a = 0
0(o) = 0
0(1) = 0.

W e already know that A = n27r2(L = 1), and hence the lowest eigenvalue is Al = ir2.
For this problem, the Rayleigh quotient simplifies, and (5.6.6) becomes

1 fo (duT/dx)2 dx
5.6.7

f0UT ( )

Trial functions must be continuous and satisfy the homogeneous boundary condi-
tions, in this case, UT(O) = 0 and uT(1) = 0. In addition, we claim that the closer
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x=0 x=1 x=0 x=1 x=0 x=1
x x < 0.5

{1-x x>0.5
(a)

UT=x-x2

(b)

uT = sin lrx

(c)

Figure 5.6.1 Trial functions: continuous, satisfy the boundary conditions, and are of one
sign.

the trial function is to the actual eigenfunction, the more accurate is the bound
of the lowest eigenvalue. Thus, we also choose trial functions with no zeros in the
interior, since we already know theoretically that the lowest eigenfunction does not
have a zero. We will compute the Rayleigh quotient for the three trial functions
sketched in Fig. 5.6.1. For

I x, z<2
1lUT

1-x, x> Z,
(5.6.7) becomes

fo
/2 dx + f 2 dxI

< T01/2

x2 dx + L1 /2(1 x)2 dx 24 24
- 12,

a fair upper bound for the exact answer ire (7r2 9.8696... ). For UT = x - x2,
(5.6.7) becomes

< fo (1 - 2x)2 dx _ fo (1 - 4x + 4x2) dx = 1-2+43
1 -

L (x - x2)2 dx f (x2 - 2x3 + x4) dx 3 2 + b
= 10,

a more accurate bound. Since UT = sin irx is the actual lowest eigenfunction, the
Rayleigh quotient for this trial function will exactly equal the lowest eigenvalue.
Other applications of the Rayleigh quotient will be shown in later sections.

Proof. It is usual to prove the minimization property of the Rayleigh quo-
tient using a more advanced branch of applied mathematics known as the calculus
of variations. We do not have the space here to develop that material properly.
Instead, we will give a proof based on eigenfunction expansions. We again calculate
the Rayleigh quotient (5.6.3) for any function u that is continuous and satisfies the
homogeneous boundary conditions. In this derivation, the equivalent form of the

1
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Rayleigh quotient, (5.6.2), is more useful:

RQ[u] - fb uL(u) dx

fau2o, dx
(5.6.8)

where the operator notation is quite helpful. We expand the rather arbitrary func-
tion u in terms of the (usually unknown) eigenfunctions On(x):

00

u = EanOn(x)
n=1

L is a linear differential operator. We expect that

00

(5.6.9)

L(u) = anL(On(x)), (5.6.10)
n=1

since this is valid for finite series. In Chapter 7 we show that (5.6.10) is valid
if u is continuous and satisfies the same homogeneous boundary conditions as the
eigenfunctions 4n(x). Here, On are eigenfunctions, and hence L(On) - -A,Con.
Thus, (5.6.10) becomes

00

L(u) = - E anAnQWn, (5.6.11)
n=1

which can be thought of as the eigenfunction expansion of L(u). If (5.6.11) and
(5.6.9) are substituted into (5.6.8) and different dummy summation indices are
utilized for the product of two infinite series, we obtain

b o0 00

RQ[u] = fa (E m=1 /ten=1 amanAnOnOmc) dx
l b

f0
00 00

(Em=1 En=1 amanc'nOmQ) dx
(5.6.12)

We now do the integration in (5.6.12) before the summation. We recall that the
eigenfunctions are orthogonal (fab Q>n6mU dx = 0 if n # m), which implies that
(5.6.12) becomes

00 2 b 2
RQ[u] = -n=1 fa na dx

00En=la 2 n fabo2no dx
(5.6.13)

This is an exact expression for the Rayleigh quotient in terms of the generalized
Fourier coefficients an of u. We denote Al as the lowest eigenvalue (A1 < An for
n > 1). Thus,

1 an fa 0n0 dx
RQ[u] > o0 2 b 2

= Al. (5.6.14)En=1
an fa 0na dx

Furthermore, the equality in (5.6.14) holds only if an = 0 for n > 1 (i.e., only
if u = a1o1). We have shown that the smallest value of the Rayleigh quotient is
the lowest eigenvalue A1. Moreover, the Rayleigh quotient is minimized only when
u = a1¢1 (i.e., when u is the lowest eigenfunction).
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We thus have a minimization theorem for the lowest eigenvalue A1. We can
ask if there are corresponding theorems for the higher eigenvalues. Interesting
generalizations immediately follow from (5.6.13). If we insist that al = 0, then

F O O_ 2 anAn f6 0 2 a dx
RQ[u] =

2
b°

n (5.6.15)
En=2 an fn 'Vna dx

This means that in addition we are restricting our function u to be orthogonal to
461, since a1 = f, uOla dx/ fa 0la dx. We now proceed in a similar way. Since
1\2 < An for n > 2, it follows that

RQ[u] > A2,

and furthermore the equality holds only if an = 0 for n > 2 [i.e., u = a202(x)J
since al = 0 already. We have just proved the following theorem: The minimum
value for all continuous functions u(x) that are orthogonal to the lowest eigenfunc-
tion and satisfy the boundary conditions is the next-to-lowest eigenvalue. Further
generalizations also follow directly from (5.6.13).

EXERCISES 5.6

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound
for the lowest eigenvalue of

(a) + ( - x2) = 0 with 2(0) = 0 and ¢(1) = 0

(b) d +(a=x)4=0with d (0)=0and (1)+2-0(1)=0

*(c) St +A.0 = 0 with -0(0) = 0 and a!tt(l) = 0 (See Exercise 5.8.10.)

5.6.2. Consider the eigenvalue problem

subject to (0) = 0 and 2(1) = 0. Show that A > 0 (be sure to show that
A 0).

5.6.3. Prove that (5.6.10) is valid in the following way. Assume L(u)/a is piecewise
smooth so that

L(u)
_ E bn0n(x)

n=1

Determine bn. [Hint: Using Green's formula (5.5.5), show that bn = -anan
if u and du/dx are continuous and if u satisfies the same homogeneous
boundary conditions as the eigenfunctions On(x).]
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5.7 Worked Example: Vibrations
of a Nonuniform String

Some additional applications of the Rayleigh quotient are best illustrated in a phys-
ical problem. Consider the vibrations of a nonuniform string [constant tension To,
but variable mass density p(x)] without sources (Q = 0): See Sec. 4.2. We assume
that both ends are fixed with zero displacement. The mathematical equations for
the initial value problem are

PDE:
02u 02u

P
_

at2
To

8x2
(5.7.1)

BC:

IC:

u(0, t) = 0
u(L, t) = 0

u(x,0) = f(x)

(x,0) = 9(x)

(5.7.2)

(5.7.3)

Again since the partial differential equation and the boundary conditions are
linear and homogeneous, we are able to apply the method of separation of variables.
We look for product solutions:

u(x, t) = 4(x)h(t), (5.7.4)

ignoring the nonzero initial conditions. It can be shown that h(t) satisfies

d2h
dt2 = h, (5.7.5)

while the spatial part solves the following regular Sturm-Liouville eigenvalue prob-
lem:

To dO + AP(x)O = 0x 75 6. . )

0(0) = 0 (

O(L) = 0.

Usually, we presume that the infinite sequence of eigenvalues an and corresponding
eigenfunctions ¢ (x) are known. However, in order to analyze (5.7.5), it is necessary
to know something about A. From physical reasoning, we certainly expect A > 0
since we expect oscillations, but we will show that the Rayleigh quotient easily
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guarantees that A > 0. For (5.7.6), the Rayleigh quotient (5.6.3) becomes

rL
70J (d¢/dx)2 dx

o
LI

O2p(z) dx
0

(5.7.7)

Clearly, A > 0 (and as before it is impossible for A = 0 in this case). Thus, A > 0.
We now are assured that the solution of (5.7.5) is a linear combination of sin f t

and cos vt. There are two families of product solutions of the partial differential
equation, sin t 0.(x) and cos , nt 0,.,(x). According to the principle of super-
position, the solution is

00 00

u(x, t) = Ean sin vO\;t Q/n(x) + Ebn cos ,1nt On(x)-
n=1 n=1

(5.7.8)

We only need to show that the two families of coefficients can be obtained from the
initial conditions:

ao00

.f (x) ° bn0n(x) and 9(x) = an AnOn(x). (5.7.9)
n=1 n=1

Thus, bn are the generalized Fourier coefficient of the initial position f (x) while
an are the generalized Fourier coefficients for the initial velocity g(x). Thus,
due to the orthogonality of the eigenfunction [with weight p(x)], we can easily
determine an and bn:

L

I f(x)On(x)p(x) dx
0

bn = o L

Jo

0npdx

L9(x)On(x)p(x) dx

an V An = -

fo

L

¢np dx

(5.7.10)

(5.7.11)

The Rayleigh quotient can be used to obtain additional information about the
lowest eigenvalue A1. (Note that the lowest frequency of vibration is .) We
know that

To f L(du/dx)2 dx
a1 = min L (5.7.12)

fo u2p(x) dx
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We have already shown (see Sec. 5.6) how to use trial functions to obtain an upper
bound on the lowest eigenvalue. This is not always convenient since the denominator
in (5.7.12) depends on the mass density p(x). Instead, we will develop another
method for an upper bound. By this method we will also obtain a lower bound.

Let us suppose, as is usual, that the variable mass density has upper and lower
bounds,

0 < Pmin 5 P(x) < Pmax-

For any u(x) it follows that

L

JO

L L

u2 dx.Pmin f u2 dx < u2p(x) dx <
Pmax fo

0

Consequently, from (5.7.12),

rr2
J

2
L L

TO Mi.. J° (du/dx) dx
< Al < TO min ° dx

Pmax LL u2 dx Pmin JOL u2 dx
(5.7.13)

We can evaluate the expressions in (5.7.13), since we recognize the minimum of
f L(du/dx)2 dxl f L u2 dx subject to u(O) = 0 and u(L) = 0 as the lowest eigenvalue
of a different problem: namely, one with constant coefficients,

0

0(0) = 0 and O(L) = 0.

We already know that _ (n7r/L)2, and hence the lowest eigenvalue for this problem
is Al = (7r/L)2. But the minimization property of the Rayleigh quotient implies
that

f L(du/dx)2 dxmin1= fL U2 dx

Finally, we have proved that the lowest eigenvalue of our problem with variable
coefficients satisfies the following inequality:

(L
2<Al< 2

Pmax \ L / Pm n \ L

We have obtained an upper and a lower bound for the smallest eigenvalue. By
taking square roots,

L Pmax
< 1 < L Pmin

The physical meaning of this is clear: the lowest frequency of oscillation of a variable
string lies in between the lowest frequencies of vibration of two constant density
strings, one with the minimum density and the other with the maximum. Similar
results concerning the higher frequencies of vibration are also valid but are harder
to prove (see Weinberger [1965] or Courant and Hilbert [1953]).
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EXERCISES 5.7

*5.7.1. Determine an upper and a (nonzero) lower bound for the lowest frequency
of vibration of a nonuniform string fixed at x = 0 and x = 1 with c2 =

1+4c2(x-2)2.

5.7.2. Consider heat flow in a one-dimensional rod without sources with noncon-
stant thermal properties. Assume that the temperature is zero at x = 0
and x = L. Suppose that cpmjn < Cp < cp.., and Kmin < Ko(x) < Km..
Obtain an upper and (nonzero) lower bound on the slowest exponential rate
of decay of the product solution.

5.8 Boundary Conditions of the Third Kind
Introduction. So far we have analyzed two general varieties of boundary value
problems: very specific, easily solved ones (such as the ones that give rise to Fourier
sine series, Fourier cosine series, or Fourier series), and somewhat abstract Sturm-
Liouville eigenvalue problems, where our theorems guaranteed many needed prop-
erties. In one case the differential equation had constant coefficients (with simple
boundary conditions), and in the other we discussed differential equations with
variable coefficients.

In this section we analyze problems with a boundary condition of the third kind.
The boundary value problems will also be easily solved (since the differential equa-
tion will still have constant coefficients). However, due to its boundary conditions,
it will illustrate more convincingly the general ideas of Sturm-Liouville eigenvalue
problems.

Physical examples. We consider some simple problems with constant
physical parameters. Heat flow in a uniform rod satisfies

=
ka2x2'

(5.8.1)i§j

while a uniform vibrating string solves

82U 282u
8t2 = c 8x2 ' (5.8.2)

In either case we suppose that the left end is fixed, but the right end satisfies a
homogeneous boundary condition of the third kind:

u(0, t) = 0 (5.8.3)

(L, t) = -hu(L,t). (5.8.4)

Recall that, for heat conduction, (5.8.4) corresponds to Newton's law of cooling if
h > 0, and for the vibrating string problem, (5.8.4) corresponds to a restoring force
if h > 0, the so-called elastic boundary condition. We note that usually in physical
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problems h > 0. However, for mathematical reasons we will investigate both cases
with h < 0 and h > 0. If h < 0, the vibrating string has a destabilizing force at the
right end, while for the heat flow problem, thermal energy is being constantly put
into the rod through the right end.

Sturm-Liouville eigenvalue problem. After separation of variables,

u(x, t) = G(t)O(x),

the time part satisfies the following ordinary differential equations:

(5.8.5)

heat flow: dG = -AkG (5.8.6)

vibrating string: dt-2 = -Ac2G. (5.8.7)

We wish to concentrate on the effect of the third type of boundary condition (5.8.4).
For either physical problem, the spatial part, O(x), satisfies the following regular
Sturm-Liouville eigenvalue problem:

+a4=0d 5 8 8
x

( . . )

0(0) = 0 (5.8.9)

dX (L) + hcb(L) = 0, (5.8.10)

where h is a given fixed constant. If h > 0, this is what we call the "physical" case,
while if h < 0 we call it the "nonphysical" case. Although the differential equation
(5.8.8) has constant coefficients, the boundary conditions will give rise to some new
ideas. For the moment we ignore certain aspects of our theory of Sturm-Liouville
eigenvalue problems (except for the fact that the eigenvalues are real). In solving
(5.8.8) we must consider three distinct cases: A > 0, A < 0, and A = 0. This will be
especially important when we analyze the nonphysical case h < 0.

Positive eigenvalues. If A > 0, the solution of the differential equation is
a linear combination of sins and cosines:

O(x) = c1 cos VAX + c2 sin \1"\X- (5.8.11)

The boundary condition 0(0) = 0 implies that 0 = cl, and hence

O(x) = c2 sin fx. 1 (5.8.12)
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Clearly, sine functions are needed to satisfy the zero condition at x = 0. We will
need the first derivative,

d.0

dx
- c2v1cosfx.

Thus, the boundary condition of the third kind, (5.8.10), implies that

c2 (' cos /XL + h sin v.L) = 0. (5.8.13)

If c2 = 0, (5.8.12) shows that 0 = 0, which cannot be an eigenfunction. Thus,
eigenvalues exist for A > 0 for all values of A that satisfy

v/A- cos / L+hsin/L=0. (5.8.14)

The more elementary case h = 0 will be analyzed later. Equation (5.8.14) is a
transcendental equation for the positive eigenvalues A (if h # 0). In order to solve
(5.8.14), it is convenient to divide by cos AL to obtain an expression for tan v/' A-L:

tanfL=4 (5.8.15)

We are allowed to divide by cos \/A-L because it is not zero [if cos f L = 0, then
sin fL # 0 and (5.8.14) would not be satisfied]. We could have obtained an
expression for cotangent rather than tangent by dividing (5.8.14) by sin vIA-L, but
we are presuming that the reader feels more comfortable with the tangent function.

Graphical technique (A > 0). Equation (5.8.15) is a transcendental
equation. We cannot solve it exactly. However, let us describe a graphical technique
to obtain information about the eigenvalues. In order to graph the solution of a
transcendental equation, we introduce an artificial coordinate z. Let

z = tan vL (5.8.16)

and thus also

(5.8.17)z= -
h

.

Now the simultaneous solution of (5.8.16) and (5.8.17) (i.e., their points of inter-
section) corresponds to solutions of (5.8.15). Equation (5.8.16) is a pure tangent
function (not compressed) as a function of v'L, where V AL > 0 since A > 0. We
sketch (5.8.16) in Fig. 5.8.1. We note that the tangent function is periodic with
period lr; it is zero at fL = 0, it, 2a, and etc.; and it approaches ±oo as fL
approaches it/2, 3ir/2, 57r/2, and so on. We will intersect the tangent function with
(5.8.17). Since we are sketching our curves as functions of fL, we will express
(5.8.17) as a function of f L. This is easily done by multiplying numerator and
denominator of (5.8.17) by L:
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fL
z hL (5.8.18)

As a function of /XL, (5.8.18) is a straight line with slope -1/hL. However, this
line is sketched quite differently depending on whether h > 0 (physical case) or
h < 0 (nonphysical case).

Positive eigenvalues (physical case, h > 0). The intersection of
the two curves is sketched in Fig. 5.8.1 for the physical case (h > 0). There is an
infinite number of intersections; each corresponds to a positive eigenvalue. (We ex-
clude fL = 0 since we have assumed throughout that A > 0.) The eigenfunctions
are 0 = sin \/-Ax, where the allowable eigenvalues are determined graphically.

z

We cannot
5.8.1 that

Figure 5.8.1 Graphical determination of positive
eigenvalues (h > 0).

determine these eigenvalues exactly. However, we know from Fig.

2 < ., L < -7r, (5.8.19)

32 < a2L < 27r, (5.8.20)

and so on. It is interesting to note that as n increases, the intersecting points
more closely approach the position of the vertical portions of the tangent function.
We thus are able to obtain the following approximate (asymptotic) formula for the
eigenvalues

(5.8.21)

as n -- oo. This becomes more and more accurate as n -' oo. An asymptotic
formula for the large eigenvalues similar to (5.8.21) exists even for cases where the
differential equation cannot be explicitly solved. We will discuss this in Sec. 5.9.
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To obtain accurate values, a numerical method such as Newton's method (as
often described in elementary calculus texts) can be used. A practical scheme is to
use Newton's numerical method for the first few roots, until you reach a root whose
solution is reasonably close to the asymptotic formula, (5.8.21) (or improvements
to this elementary asymptotic formula). Then, for larger roots, the asymptotic
formula (5.8.21) is accurate enough.

Positive eigenvalues (nonphysical case, h < 0). The nonphysi-
cal case (h < 0) also will be a good illustration of various general ideas concerning
Sturm-Liouville eigenvalue problems. If h < 0, positive eigenvalues again are de-
termined by graphically sketching (5.8.15), tan fL = -f/h. The straight line
(here with positive slope) must intersect the tangent function. It intersects the "first
branch" of the tangent function only if the slope of the straight line is greater than
1 (see Fig. 5.8.2a). We are using the property of the tangent function that its slope
is 1 at x = 0 and its slope increases along the first branch. Thus, if h < 0 (the non-
physical case), there are two major subcases (-1/hL > 1 and 0 < -1/hL < 1) and
a minor subcase (-1/hL = 1). We sketch these three cases in Fig. 5.8.2. In each of
these three figures, there is an infinite number of intersections, corresponding to an
infinite number of positive eigenvalues. The eigenfunctions are again sin '5x.

z

(a)

z z

(b) (c)

Figure 5.8.2 Graphical determination of positive eigenvalues: (a) 0 > hL > -1;
(b) hL = -1; (c) hL < -1.

In these cases, the graphical solutions also show that the large eigenvalues are
approximately located at the singularities of the tangent function. Equation (5.8.21)
is again asymptotic; the larger is n, the more accurate is (5.8.21).

Zero eigenvalue. Is A = 0 an eigenvalue for (5.8.8)-(5.8.10)? Equation
(5.8.11) is not the general solution of (5.8.8) if A = 0. Instead,

0 = c1 + c2x; (5.8.22)

the eigenfunction must be a straight line. The boundary condition 0(0) = 0 makes
cl = 0, insisting that the straight line goes through the origin,

0 = c2x. (5.8.23)
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Finally, dO/dx(L) + hO(L) = 0 implies that

c2(1 + hL) = 0. (5.8.24)

If hL -1 (including all physical situations, h > 0), it follows that c2 = 0, 0 = 0,
and thus A = 0 is not an eigenvalue. However, if hL = -1, then from (5.8.24) c2 is
arbitrary, and A = 0 is an eigenvalue with eigenfunction x.

Negative eigenvalues. We do not expect any negative eigenvalues in the
physical situations [see (5.8.6) and (5.8.7]. If A < 0 we introduce s = -A. so that
s > 0. Then (5.8.8) becomes

d = st. (5.8.25)

The zero boundary condition at x = 0 suggests that it is more convenient to express
the general solution of (5.8.25) in terms of the hyperbolic functions:

0=clcosh fx+C2sinh Vs-x. (5.8.26)

Only the hyperbolic sines are needed, since 0(0) = 0 implies that cl = 0:

0 = c2 sinh f x
(5 8 27)dq

dx
c2 f cosh f x.

. .

The boundary condition of the third kind, dO/dx(L) + ho(L) = 0, implies that

c2 (f cosh / L + h sinh f L) = 0. (5.8.28)

At this point it is apparent that the analysis for \ < 0 directly parallels that
which occurred for A > 0 (with hyperbolic functions replacing the trigonometric
functions). Thus, since c2 # 0,

tanh f L = - h = - hLL
(5.8.29)

Graphical solution for negative eigenvalues. Negative eigenvalues
are determined by the graphical solution of transcendental equation (5.8.29). Here
properties of the hyperbolic tangent function are quite important. tanh is sketched
as a function of f L in Fig. 5.8.3. Let us note some properties of the tanh function
that follow from its definition:

tank x =
sinh x ex - e-x
cosh x ex + e-x
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-1<hL<0 hL=-1 hL<-1

lE - z=tanh fL

fL

h > 0 (physical)

Figure 5.8.3 Graphical determination of nega-
tive eigenvalues.

As fsL ---+ oo, tanh f L asymptotes to 1. We will also need to note that the
slope 5 of tanh equals 1 at f L = 0 and decreases toward zero as f L - oo. This
function must be intersected with the straight line implied by the r.h.s. of (5.8.29).
The same four cases appear, as is sketched in Fig. 5.8.3. In. physical situations
(h > 0), there are no intersections with /L > 0; there are no negative eigenvalues
in the physical situations (h > 0). All the eigenvalues are nonnegative. However,
if hL < -1 (and only in these situations), then there is exactly one intersection;
there is one negative eigenvalue (if hL < -1). If we denote the intersection by
s = sl, the negative eigenvalue is A = -sl, and the corresponding eigenfunction
is = sink Is-lx. In nonphysical situations, there is a finite number of negative
eigenvalues (one if hL < -1, none otherwise).

Special case h = 0. Although if h = 0, the boundary conditions are not
of the third kind, the eigenvalues and eigenfunctions are still of interest. If h = 0.
then all eigenvalues are positive [see (5.8.24) and (5.8.28)] and easily explicitly
determined from (5.8.14):

[(n_l/2)]2 n=1,2,3....

The eigenfunctions are sin fx.

Summary. We have shown there to be five somewhat different cases de-
pending on the value of the parameter h in the boundary condition. Table 5.8.1
summarizes the eigenvalues and eigenfunctions for these cases.

In some sense there actually are only three cases: If -1 < hL, all the eigenvalues
are positive; if hL = -1, there are no negative eigenvalues, but zero is an eigenvalue;
and if hL < -1, there are still an infinite number of positive eigenvalues, but there
is also one negative one.

sd/dxtanhx = sech2x = 1/cosh2x.
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Table 5.8.1: Eigenfunctions for (5.8.8)-(5.8.10)

A>0 A=0 A<0

Physical h > 0 sin v x

h = 0 sin fx

-1<hL<0 sinv"A-x

Nonphysical hL = -1 sin x

hL < -1 sin fx sinh slx

205

Rayleigh quotient. We have shown by explicitly solving the eigenvalue
problem,

d2+aO
= 0

0(0) = 0
dO (L) + hq(L) = 0,

(5.8.30)

(5.8.31)

(5.8.32)

that in physical problems (h > 0) all the eigenvalues are positive, while in nonphys-
ical problems (h < 0) there may or may not be negative eigenvalues. We will show
that the Rayleigh quotient is consistent with this result:

_ -Pm y la + f a [P d 2 - g02J
dx ( P Z dx

A J -
f6a 02v dx fL ¢2 dx

(5.8.33)

since from (5.8.30), p(x) = 1, o(x) = 1, q(x) = 0, and a = O, b = L, and where
the boundary conditions (5.8.31) and (5.8.32) have been utilized to simplify the
boundary terms in the Rayleigh quotient. If h > 0 (the physical cases), it readily
follows from (5.8.33) that the eigenvalues must be positive, exactly what we con-
cluded by doing the explicit calculations. However, if h < 0 (nonphysical case), the
numerator of the Rayleigh quotient contains a negative term ho2(L) and a positive

Lterm f (dcb/dx)2 dx. It is impossible to make any conclusions concerning the sign
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of A. Thus, it may be possible to have negative eigenvalues if h < 0. However, we
are unable to conclude that there must be negative eigenvalues. A negative eigen-
value occurs only when Ih42(L)l > f 0(dO/dx)Z dx. From the Rayleigh quotient we
cannot determine when this happens. It is only from an explicit calculation that
we know that a negative eigenvalue occurs only if hL < -1.

Zeros of eigenfunctions. The Sturm-Liouville eigenvalue problem that
we have been discussing in this section,

d +Ao = 0
0(0) = 0, (5.8.34)'

dO(L) + W(L) = 0,

is a good example for illustrating the general theorem concerning the zeros of the
eigenfunctions. The theorem states that the eigenfunction corresponding to the
lowest eigenvalue has no zeros in the interior. More generally, the nth eigenfunction
has n - 1 zeros.

Z

7r/2 /n 3ir/2 fL

Figure 5.8.4 Positive eigenvalues (hL < -1).

There are five cases of (5.8.34) worthy of discussion: h > 0, h = 0, -1 < hL <
0, hL = -1, hL < -1. However, the line of reasoning used in investigating the zeros
of the eigenfunctions is quite similar in all cases. For that reason we will analyze
only one case (hL < -1) and leave the others for the exercises. In this case (hL <
-1) there is one negative eigenvalue (with corresponding eigenfunction sink six)
and an infinite number of positive eigenvalues (with corresponding eigenfunctions
sin fx). We will need to analyze carefully the positive eigenvalues and so we
reproduce Fig. 5.8.2c (as Fig. 5.8.4). used for the graphical determination of the
eigenvalues in hL < -1. We designate the intersections starting from A,,,n = 2,
since the lowest eigenvalue is negative, Al = -si. Graphically, we are able to obtain
bounds for these eigenvalues:

7r< A2L<32

21r< a3L< 2

(5.8.35)

(5.8.36)
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fx

Figure 5.8.5 Zeros of the eigenfunctions

sin v,'\-x.

which is easily generalized as

(n - 1)ir < A L < (n - 1/2)7r, n > 2. (5.8.37)

Let us investigate zeros of the eigenfunctions. The lowest eigenfunction is
sink slx. Since the hyperbolic sine function is never zero (except at the end
x = 0), we have verified one part of the theorem. The eigenfunction corresponding
to the lowest eigenvalue does not have a zero in the interior. The other eigenfunc-
tions are sin sketched in Fig. 5.8.5. In this figure the endpoint x = 0 is clearly
marked, but x = L depends on A. For example, for A3i the endpoint x = L occurs
at v'A-3L, which is sketched in Fig. 5.8.5 due to (5.8.36). As x varies from 0 to L,
the eigenfunction is sketched in Fig. 5.8.5 up to the dashed line. This eigenfunction
has two zeros (/x = it and 21r). This reasoning can be used for any of these
eigenfunctions. Thus, the number of zeros for the nth eigenfunction corresponding
to A,,, is n - 1, exactly as the general theorem specifies. Our theorem does not
state that the eigenfunction corresponding to the lowest positive eigenvalue has no
zeros. Instead, the eigenfunction corresponding to the lowest eigenvalue
has no zeros. To repeat, in this example the lowest eigenvalue is negative and its
corresponding eigenfunction has no zeros.

Heat flow with a nonphysical boundary condition. To un-
derstand further the boundary condition of the third kind, let us complete the
investigation of one example. We consider heat flow in a uniform rod:

a02U
PDE:

BC1:

at = k 57X2

u(0, t) = 0

BC2:

IC:

(L, t) _ -hu(L, t)

u(x,0) = f(x) (5.8.38)

We assume that the temperature is zero at x = 0, and that the "nonphysical" case
(h < 0) of the boundary condition of the third kind is imposed at x = L. Thermal
energy flows into the rod at x = L [if u(L, t) > 01.

Separating variables,
u(x, t) = ¢(x)G(t), (5.8.39)
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yields
dG = - AkG
dt

(5.8.40)

20,
dx2

+0=0

0(0) = 0

(L) + hO(L) = 0.

(5.8.41)

(5.8.42)

(5.8.43)

The time part is an exponential, G = ce'akt. Here, we only consider the case in
which

hL < -1.

Then there exists one negative eigenvalue (A1 = -Si), with corresponding eigen-
function sink slx, where sl is determined as the unique solution of tanh fL =
-Vs-1h. The time part exponentially grows. All the other eigenvalues An are pos-
itive. For these the eigenfunctions are sin V-Xx (where tan v/-,\x = -VX/h has an
infinite number of solutions), while the corresponding time-dependent part expo-
nentially decays being proportional to a-akt The forms of the product solutions
are sin fx e-akt and sinh slx eslkt. Here, the somewhat "abstract" notation
may be considered more convenient; the product solutions are where
the eigenfunctions are

On
sinh s- x n = 1

(x)
sin v/,-\nx n > 1.

According to the principle of superposition, we attempt to satisfy the initial value
problem with a linear combination of all possible production solutions:

00

u(x, t) = E an0n(x)e'\"kt
n=1

The initial condition, u(x, 0) = f (x), implies that

f (x) _ anOn(x)
n=1
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Since the coefficient o(x) = 1 in (5.8.41), the eigenfunctions on(x) are orthogonal
with weight 1. Thus, we know that the generalized Fourier coefficients of the initial
condition f (x) are

an
f d,, =

L

f L f (x) sinh slx dx/ f L sinh2

L

stx dx n=1
f (X) sin vx dx/ fL sin2f 0n dx f anx dx n > 2.

In particular, we could show LL
sin2 vfA-.x dx 54 L/2. Perhaps we should empha-

size one additional point. We have utilized the theorem that states that eigenfunc-
tions corresponding to different eigenvalues are orthogonal; it is guaranteed that
fo sin / xsin.,,,x dx = 0(n # m) and fLsinv1xsinh stx dx = 0. We do
not need to verify these by integration (although it can be done).

Other problems with boundary conditions of the third kind appear in the Exer-
cises.

EXERCISES 5.8

5.8.1. Consider
au 92u

at = kax2
subject to u(0, t) = 0, ai (L, t) = -hu(L, t), and u(x, 0) = f (x).

(a) Solve if hL > -1.
(b) Solve if hL = -1.

5.8.2. Consider the eigenvalue problem (5.8.8)-(5.8.10). Show that the nth eigen-
function has n - 1 zeros in the interior if

(a) h>0 (b) h=0
* (c) -1 < hL < 0 (d) hL = -1

5.8.3. Consider the eigenvalue problem

2

d2 +X =0,

subject to Px (0) = 0 and 9t (L) + h¢(L) = 0 with h > 0.

(a) Prove that A > 0 (without solving the differential equation).

*(h) Determine all eigenvalues graphically. Obtain tipper and lower bounds.
Estimate the large eigenvalues.

(c) Show that the nth eigenfunction has n - 1 zeros in the interior.

5.8.4. Redo Exercise 5.8.3 parts (b) and (c) only if h < 0.
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5.8.5. Consider
8u 02U

at
k

8x2

with Ou (0, t) = 0, au (L, t) = -hu(L, t), and u(x, 0) = f (x).

(a) Solve if h > 0.
(b) Solve if h < 0.

5.8.6. Consider (with h > 0)
02U_

C

202U

0t2 8x2

(0,t) - hu(0,t) = 0 u(x,0) = f(x)

N 49Ua (L, t) =
0

8t (x, 0) = 9(x)

(a) Show that there are an infinite number of different frequencies of os-
cillation.

(b) Estimate the large frequencies of oscillation.

(c) Solve the initial value problem.

*5.8.7. Consider the eigenvalue problem

d2x2 + W = 0 subject to 0(0) = 0 and 0(1r) - 2L(0) = 0.

(a) Show that usually

J
d2v d2u

(Ud-X2 - v dx2 dx 0
0

for any two functions u and v satisfying these homogeneous boundary
conditions.

(b) Determine all positive eigenvalues.
(c) Determine all negative eigenvalues.

(d) Is A = 0 an eigenvalue?

(e) Is it possible that there are other eigenvalues besides those determined
in parts (b) through (d)? Briefly explain.

5.8.8. Consider the boundary value problem

d2o 0(0) - LO (0) = 0
dx2

+ A = 0 with
d

.0(1)+TX(1)=0.

(a) Using the Rayleigh quotient, show that A > 0. Why is A > 0?
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(b) Prove that eigenfunctions corresponding to different eigenvalues are
orthogonal.

*(c) Show that

tanf = 2f
a-1*

Determine the eigenvalues graphically. Estimate the large eigenvalues.

(d) Solve

with

8u _ 82u

8t
k

8x2

u(0, t) - ax (0, t) = 0

U(1, t) + Ox (l, t) = 0
u(x,0) = f(x).

You may call the relevant eigenfunctions 0 , (x) and assume that they
are known.

5.8.9. Consider the eigenvalue problem

dx46 + A i = 0 with 0(0) = LO (0) and 0(1) = 8 (1).

For what values (if any) of 8 is A = 0 an eigenvalue?

5.8.10. Consider the special case of the eigenvalue problem of Sec. 5.8:

d.0+A = 0 with 0(0) = 0 and dx(1)+m(1)=o.

*(a) Determine the lowest eigenvalue to at least two or three significant
figures using tables or a calculator.

*(b) Determine the lowest eigenvalue using a root finding algorithm (e.g..
Newton's method) on a computer.

(c) Compare either part (a) or (b) to the bound obtained using the Ray-
leigh quotient [see Exercise 5.6.1(c)].

5.8.11. Determine all negative eigenvalues for

dx2+50=-A5 with 0(0)=0andtj(ir)=0.

5.8.12. Consider 82u/8t2 = c202u/8x2 with the boundary conditions

u=0 atx=0
m2 = TO a - ku at x = L.
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(a) Give a brief physical interpretation of the boundary conditions.
(b) Show how to determine the frequencies of oscillation. Estimate the

large frequencies of oscillation.
(c) Without attempting to use the Rayleigh quotient, explicitly determine

if there are any separated solutions that do not oscillate in time. (Hint:
There are none.)

(d) Show that the boundary condition is not self-adjoint: that is, show
IL \

(u
d2u" - u

d2 un) dx # 0
" dx2 - dxz

///

even when u" and u,,, are eigenfunctions corresponding to different
eigenvalues.

*5.8.13. Simplify f L sine fx dx when .1 is given by (5.8.15).

5.9 Large Eigenvalues (Asymptotic Behavior)
For the variable coefficient case, the eigenvalues for the Sturm-Liouville differential
equation,

{(x] + [Ao,(x) + q(x)]O = 0, (5.9.1)

usually must be calculated numerically. We know that there will be an infinite num-
ber of eigenvalues with no largest one. Thus, there will be an infinite sequence of
large eigenvalues. In this section we state and explain reasonably good approxima-
tions to these large eigenvalues and corresponding eigenfunctions. Thus, numerical
solutions will be needed only for the first few eigenvalues and eigenfunctions.

A careful derivation with adequate explanations of the asymptotic method would
be lengthy. Nonetheless, some motivation for our result will be presented. We
begin by attempting to approximate solutions of the differential equation (5.9.1) if
the unknown eigenvalue A is large (A >> 1). Interpreting (5.9.1) as a spring-mass
system (x is time, 0 is position) with time-varying parameters is helpful. Then
(5.9.1) has a large restoring force [-Aa(x)O) such that we expect the solution to have
rapid oscillation in x. Alternatively, we know that eigenfunctions corresponding to
large eigenvalues have many zeros. Since the solution oscillates rapidly, over a few
periods (each small) the variable coefficients are approximately constant. Thus,
near any point xo, the differential equation may be approximated crudely by one
with constant coefficients:

P(xo) d O + )a(xo)O 0, (5.9.2)

since in addition Aa(x) >> q(x). According to (5.9.2), the solution is expected to
oscillate with "local" spatial (circular) frequency

frequency = Aa(xo)

P(xo)
(5.9.3)
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21r

(,\O,/p) lW
Figure 5.9.1 Liouville-Green asymptotic solution of dif-
ferential equation showing rapid oscillation (or, equiva-
lently, relatively slowly varying amplitude).

This frequency is large (A >> 1), and thus the period is small, as assumed. The
frequency (and period) depends on x, but it varies slowly; that is, over a few periods
(a short distance) the period hardly changes. After many periods. the frequency
(and period) may change appreciably. This slowly varying period will be illustrated
in Fig. 5.9.1.

From (5.9.2) one might expect the amplitude of oscillation to be constant. How-
ever, (5.9.2) is only an approximation. Instead, we should expect the amplitude
to be approximately constant over each period. Thus, both the amplitude and
frequency are slowly varying:

O(x) = A(x) cos i,b(x), (5.9.4)

where sines can also be used. The appropriate asymptotic formula for the phase
V)(x) can be obtained using the ideas we have just outlined. Since the period is
small, only the values of x near any xo are needed to understand the oscillation
implied by (5.9.4). Using the Taylor series of 1/i(x), we obtain

O(x) = A(x) cos[&i(xo) + (x - xo)Vi'(xo) + ... ]. (5.9.5)

This is an oscillation with local frequency iP'(xo). Thus, the derivative of the
phase is the local frequency. From (5.9.2) we have motivated that the local
frequency should be [Aa(xo)/p(xo)]1/2. Thus, we expect

) = Al/2 [a lV)I (x

1/2

5 9 60
(xo)1

. . )(

This reasoning turns out to determine the phase correctly:

:
a

1/2

V1 (x)
=

)1/2 r[
d

9
(xo) J. xo.

.7)(5.

Note that the phase does not equal the frequency times x (unless the frequency is
constant).
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Precise asymptotic techniques6 beyond the scope of this text determine the
slowly varying amplitude. It is known that two independent solutions of the differ-
ential equation can be approximated accurately (if A is large) by

(at(x) -_ (op)-1/4exp
[±iAhI2fx 1/2

\P/ dxo (5.9.8)

where sines and cosines may be used instead. A rough sketch of these solutions
(using sines or cosines) is given in Fig. 5.9.1. The solution oscillates rapidly. The
envelope of the wave is the slowly varying function (ap)-1/4, indicating the rela-
tively slow amplitude variation. The local frequency is (Aa/p)1/2, corresponding to
the period 2ir/(Aa/p)1/2.

To determine the large eigenvalues, we must apply the boundary conditions to
the general solution (5.9.8). For ex mple, if 0(0) = 0, thena

(7)1/2
O(x) _ (ap)-1/4 sin

(A12fx
P

dxo) + . (5.9.9)

The second boundary condition, for example, O(L) = 0, determines the eigenvalues

0 = sin CA1/2
fL

\p/ 1/2
dxo) +...

Thus, we derive the asymptotic formula for the large eigenvalues )1/2 fL(P )i/2dx0
nir, or, equivalently,

JU

, . [nom /1L
Q1/2 z

o
I

(5.9.10)

valid if n is large. Often, this formula is reasonably accurate even when n is not
very large. The eigenfunctions are given approximately by (5.9.9), where (5.9.10)
should be used. Note that q(x) does not appear in these asymptotic formulas; q(x)
does not affect the eigenvalue to leading order. However, more accurate formulas
exist that take q(x) into account.

Example. Consider the eigenvalue problem

d + A(1 + x)46 = 0

46(0) = 0
0(1) = 0.

6These results can be derived by various ways. such as the W.K.B.(J.) method (which should
be called the Liouville-Green method) or the method of multiple scales. References for these
asymptotic techniques include books by Bender and Orszag [1999], Kevorkian and Cole [1996],
and Nayfeh [2002].
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Here p(x) = 1, a(x) = 1 + x, q(x) = 0, L = 1. Our asymptotic formula (5.9.10) for
the eigenvalues is

2
n7r n27r2 n2ir2

A... _ l - / (5.9.11)
JO (1 + xo)112 dx0

L3
(1 + xo)3/2I112 (23/2 _ 1)2

L 0

In Table 5.9.1 we compare numerical results (using an accurate numerical scheme on
the computer) with the asymptotic formula. Equation (5.9.11) is even a reasonable
approximation if n = 1. The percent or relative error of the asymptotic formula
improves as n increases. However, the error stays about the same (though small).
There are improvements to (5.9.10) that account for the approximately constant
error.

Table 5.9.2: Eigenvalues \n

n
Numerical answer*
(assumed accurate)

Asymptotic formula
(5.9.11) Error

1 6.548395 6.642429 0.094034
2 26.464937 26.569718 0.104781
3 59.674174 59.781865 0.107691
4 106.170023 106.278872 0.108849
5 165.951321 166.060737 0.109416
6 239.0177275 239.1274615 0.109734
7 325.369115 325.479045 0.109930

*Courtesy of E. C. Gartland, Jr.

EXERCISES 5.9

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigen-
functions for

(pcx) + [,\v(x) + q(x))q = 0

if the boundary conditions are

(a) 4 (0) = 0 and (L) = 0

*(b) -0(0) = 0 and
d

(L) = 0

(c) 0(0) = 0 and (L) + hcb(L) = 0

5.9.2. Consider

dxj + A(1 + x)o = 0

subject to 0(0) = 0 and 46(1) = 0. Roughly sketch the eigenfunctions for A

large. Take into account amplitude and period variations.
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5.9.3. Consider for A >> 1

*(a) Substitute

d2dx + [,\o(x) + 9(x)]o = 0.

¢ = A(x) exp [iAh12 f 112(xo) dxo]

Determine a differential equation for A(x).

(b) Let A(x) = Ao(x) + \-112A1(x) + . Solve for Ao(x) and A1(x).
Verify (5.9.8).

(c) Suppose that 0(0) = 0. Use A,(x) to improve (5.9.9).
(d) Use part (c) to improve (5.9.10) if 0(L) = 0.

*(e) Obtain a recursion formula for A0(x).

5.10 Approximation Properties
In many practical problems of solving partial differential equations by separation of
variables, it is impossible to compute and work with an infinite number of terms of
the infinite series. It is more usual to use a finite number of terms.' In this section,
we briefly discuss the use of a finite number of terms of generalized Fourier series.

We have claimed that any piecewise smooth function f (x) can be represented
by a generalized Fourier series of the eigenfunctions,

f(s) a,, 0,, (x). (5.10.1)
n=1

Due to the orthogonality [with weight a(x)] of the eigenfunctions, the generalized
Fourier coefficients can be determined easily:

an = Ja f(x)0.(x)a(x) dx
(5.10.2)

f'ba0 adxa

However, suppose that we can only use the first M eigenfunctions to approximate
a function f (x),

M

f(x) N an0.(x)
n=1

(5.10.3)

What should the coefficients an be? Perhaps if we use a finite number of terms, there
would be a better way to approximate f (x) than by using the generalized Fourier
coefficients, (5.10.2). We will pick these new coefficients a so that Enr 1 anon(x)
is the "best" approximation to f (x). There are many ways to define the "best,"
but we will show a way that is particularly useful. In general, the coefficients an

7Often, for numerical answers to problems in partial differential equations you may be better
off using direct numerical methods.
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will depend on M. For example, suppose that we choose M = 10 and calculate at
oil.... alo so that (5.10.3) is "best" in some way. After this calculation, we may
decide that the approximation in (5.10.3) is not good enough, so we may wish to
include more terms, for example, M = 11. We would then have to recalculate all
11 coefficients that make (5.10.3) "best" with M = 11. We will show that there is
a way to define best such that the coefficients an do not depend on M; that is, in
going from M = 10 to M = 11 only one additional coefficient need be computed,
namely all.

Mean-square deviation. We define best approximation as the approxi-
mation with the least error. However, error can be defined in many different ways.
The difference between f (x) and its approximation -M1 an0n(x) depends on x. It
is possible for f (x) - >M1 at(x) to be positive in some regions and negative in
others. One possible measure of the error is the maximum of the deviation over the
entire interval: maxi f (x) - >M 1 anOn(x)I. This is a reasonable definition of the
error, but it is rarely used, since it is very difficult to choose the an to minimize this
maximum deviation. Instead, we usually define the error to be the mean-square
deviation,

E
J

6

f (x) - Ean'vn(x)
2

a(x) dx.
n=1

(5.10.4)

Here a large penalty is paid for the deviation being large on even a small interval.
We introduce a weight factor a(x) in our definition of the error because we will show
that it is easy to minimize this error only with the weight o(x). a(x) is the same
function that appears in the differential equation defining the eigenfunctions On(x);
the weight appearing in the error is the same weight as needed for the orthogonality
of the eigenfunctions.

The error, defined by (5.10.4), is a function of the coefficients al, 0:2, ... , any
To minimize a function of M variables, we usually use the first-derivative condition.
We insist that the first partial derivative with respect to each a= is zero:

8E
= 0, i = 1,2,..., M.8a;

We calculate each partial derivative and lset it equal to zero:

0
8a; = -2 f b -- ann(xW

J

,(x)a(x) dx, i = 1, 2, ... , M, (5.10.5)
n=1

where we have used the fact that 8/8a:(>M1 a.On(x)) _ Oi(x). There are M
equations, (5.10.5), for the M unknowns. This would be rather difficult to solve,
except for the fact that the eigenfunctions are orthogonal with the same weight a(x)
that appears in (5.10.5). Thus, (5.10.5) becomes

b b

J
f(x)Oi(x)a(x) dx = ai J th?(x)a(x) dx.

a n
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The ith equation can be solved easily for a;. In fact, a; = a;, [see (5.10.2)); all
first partial derivatives are zero if the coefficients are chosen to be the generalized
Fourier coefficients. We should still show that this actually minimizes the error
(not just a local critical point, where all first partial derivatives vanish). We in
fact will show that the best approximation (in the mean-square sense using the
first M eigenfunctions) occurs when the coefficients are chosen to be the
generalized Fourier coefficients: Ip this way (1) the coefficients are easy to
determine, and (2) the coefficients are independent of M.

Proof. To prove that the error E is actually minimized, we will not use partial
derivatives. Instead, our derivation proceeds by expanding the square deviation in
(5.10.4):

E =

(f2 - 2 EanfOn + EEanalWnO1 Q dx. (5.10.6)
a n=1 n=1 1-1

Some simplification again occurs due to the orthogonality of the eigenfunctions:

1b (12_
1

E=
a n_1 n=1 /

Each an appears quadratically:

(5.10.7)

nvdx-tanbfAnadx+Jbf2adx, (5.10.8)E k fabm
n a

and this suggests completing the square

b 2 (lrb fY AnQ

dx)2

n0dx JJ/bf0nvdxan - f°6

f2 2adx.f. nor dx fQ(b2nadx a

(5.10.9)

The only term that depends on the unknowns an appears in a nonnegative way. The
minimum occurs only if that first term vanishes, determining the best coefficients

fb fOno dx
ana

b
fa ¢no dx

the same result as obtained using the simpler first derivative condition.

Error. In this way (5.10.9) shows that the minimal error is

fb M b

E f 2v dx - yanono dx,
n=1 a

(5.10.10)

(5.10.11)
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where (5.10.10) has been used. Equation (5.10.11) shows that as M increases, the
error decreases. Thus, we can think of a generalized Fourier series as an approxi-
mation scheme. The more terms in the truncated series that are used, the
better the approximation.

Example. For a Fourier sine series, where a(x) = 1, O (x) = sinnxx/L and
fo sin2 nirx/L dx = L/2, it follows that

fL
E f2 ndx - an. (5.10.12)

n=1

Bessel's inequality and Parseval's equality. Since E > 0 [see
(5.10.4)], it follows from (5.10.11) that

b M b

f f20'dx>Ea2 [02adx,
a n=1 a

(5.10.13)

known as Bessel's inequality. More importantly, we claim that for any Sturm-
Liouville eigenvalue problem, the eigenfunction expansion of f (x) converges in the
mean to f (x), by which we mean [see (5.10.4)] that

Jim E = 0;
M-.oo

the mean-square deviation vanishes as M --+ oo. This shows Parseval's equality:

rb oo b

Ja
fZV dx = E an1 0Z a dx.

n=1 n
(5.10.14)

Parseval's equality, (5.10.14), is a generalization of the Pythagorean theorem.
For a right triangle, c2 = a2 + V. This has an interpretation for vectors. If v =
ai + bj, then v v = Iv12 = a2 + V. Here a and b are components of v in an
orthogonal basis of unit vectors. Here we represent the function f (x) in terms of
our orthogonal eigenfunctions

00

f(x) = Ean0n(x)-
n=1

If we introduce eigenfunctions with unit length, /then

f(x) = " a,, lcn(x)

n=1
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where I is the length of 0n(x):

fa12 = dx.

Parseval's equality simply states that the length of f squared, fa f 2a dx, equals
the sum of squares of the components of f (using an orthogonal basis of functions
of unit length), (an1)2 = an fab 0na dx.

EXERCISES 5.10

5.10.1. Consider the Fourier sine series for f (x) = 1 on the interval 0 < x < L.
How many terms in the series should be kept so that the mean-square error
is 1% of f L f 2a dx?

5.10.2. Obtain a formula for an infinite series using Parseval's equality applied to
the

(a) Fourier sine series of f (x) = 1 on the interval 0 < x < L
*(b) Fourier cosine series of f (x) = x on the interval 0 < x < L

(c) Fourier sine series of f (x) = x on the interval 0 < x < L

5.10.3. Consider any function f (x) defined for a < x < b. Approximate this func-
tion by a constant. Show that the best such constant (in the mean-square
sense, i.e., minimizing the mean-square deviation) is the constant equal to
the average of f (x) over the interval a < x < b.

5.10.4. (a) Using Parseval's equality, express the error in terms of the tail of a
series.

(b) Redo part (a) for a Fourier sine series on the interval 0 < x < L.

(c) If f (x) is piecewise smooth, estimate the tail in part (b). (Hint: Use
integration by parts.)

5.10.5. Show that if

then

L(f)_-(p f)+qf,

- f'fL(f) dx = -pf dx
b

2

\
l

+

J. [p
dx) _ gf2J dx

a \a

if f and df /dx are continuous.

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f = and 9 = Nn 0n,
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then for normalized eigenfunctions

fb
0"fgv dx = E an/jne

n=1

a generalization of Parseval's equality.

5.10.7. Using Exercises 5.10.5 and 5.10.6, prove that

00
Az df

-unan= -pfdx
n=1

b

r ll

+
fbLp( )

z-9f2I dx. (5.10.15)

a L

[Hint Let g = L(f ), assuming that term-by-term differentiation is justified.]

5.10.8. According to Schwarz's inequality (proved in Exercise 2.3.10), the absolute
value of the pointwise error satisfies

M

"0

_ z

1/2 ao
z

11,2

flx) - E anon anon -_ > IAnlan
n=1 In=M+1 n=M+1 n=M+1 (A'll00

(5.10.16)
Furthermore, Chapter 9 introduces a Green's function G(x, xo), which is
shown to satisfy

00
±n - -G(x, x). (5.10.17)-
An

Using (5.10.15), (5.10.16), and (5.10.17), derive an upper bound for the
pointwise error (in cases in which the generalized Fourier series is pointwise
convergent). Examples and further discussion of this are given by Wein-
berger [1995].



Chapter 6

Finite Difference
Numerical Methods for
Partial Differential Equations

6.1 Introduction
Partial differential equations are often classified. Equations with the same classifica-
tion have qualitatively similar mathematical and physical properties. We have stud-
ied primarily the simplest prototypes. The heat equation (8u/8t = k82u/8x2) is
an example of a parabolic partial differential equation. Solutions usually exponen-
tially decay in time and approach an equilibrium solution. Information and disconti-
nuities propagate at an infinite velocity. The wave equation (82u/8t2 = c282u/8x2)
typifies hyperbolic partial differential equations. There are modes of vibration. in-
formation propagates at a finite velocity and thus discontinuities persist. Laplace's
equation (82u/8x2 + 82u/8y2 = 0) is an example of an elliptic partial differential
equation. Solutions usually satisfy maximum principles. The terminology parabolic,
hyperbolic, and elliptic result from transformation properties of the conic sections
(e.g., see Weinberger [1995]).

In previous chapters, we have studied various methods to obtain explicit so-
lutions of some partial differential equations' of physical interest. Except for the
one-dimensional wave equation the solutions were rather complicated, involving an
infinite series or an integral representation. In many current situations, detailed
numerical calculations of solutions of partial differential equations are needed. Our
previous analyses suggest computational methods (e.g., the first 100 terms of a
Fourier series). However, usually there are more efficient methods to obtain numer-
ical results, especially if a computer is to be utilized. In this chapter we develop
finite difference methods to numerically approximate solutions of the different types
of partial differential equations (i.e., parabolic, hyperbolic, and elliptic). We will
describe only simple cases, the heat, wave, and Laplace's equations, but algorithms
for more complicated problems (including nonlinear ones) will become apparent.

222
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6.2 Finite Differences and Truncated Taylor Series
Polynomial approximations. The fundamental technique for finite differ-
ence numerical calculations is based on polynomial approximations to f (x) near
x = xo. We let x = xO + Ax, so that Ax = x - xo. If we approximate f (x) by a
constant near x = xo, we choose f (xo). A better approximation (see Fig. 6.2.1) to
f (x) is its tangent line at x = xo:

f(x) f(xo) + (X - d (xo),
Ax

(6.2.1)

a linear approximation (a first order polynomial). We can also consider a quadratic
approximation to f (x), f (x) f (xo) + Ax f'(xo) + (Ax)2 f"(xo)/,2!, whose value,
first, and second derivatives at x = xo equal that for f (x). Each such succeeding
higher-degree polynomial approximation to f (x) is more and more accurate if x is
near enough to xo (i.e., if Ax is small).

so

Figure 6.2.1 Taylor polynomials.

Truncation error. A formula for the error in these polynomial approxima-
tions is obtained directly from

n
f(x) = f(xo) + Ax f'(xo) + ... + (AX )n In) (xo) + R, (6.2.2)

known as the Taylor series with remainder. The remainder Rn (also called the
truncation error) is known to be in the form of the next term of the series, but
evaluated at a usually unknown intermediate point:

R.
= (nx+ 1)! f(n+i) (fin+i ), where xo < G+1 < x = xo + Ax. (6.2.3)

For this to be valid, f (x) must have n + 1 continuous derivatives.
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Example. The error in the tangent line approximation is given by (6.2.3) with
n = 1:

2

f (xo + Ax) = f (xo) + Ox df (xo) + 2tf-(42), (6.2.4)

called the extended mean value theorem. If Ax is small, then 1;2 is contained
in a small interval, and the truncation error is almost determined (provided that
d2 f /dx2 is continuous),

)2 d
2f

(xo).R
(A2 2

We say that the truncation error is O(Ox)2, "order delta-x squared," meaning that

IRS < C(Ox)2,

since we usually assume that d2 f /dx2 is bounded (Id2 f /dx2 I < M). Thus, C =
M/2.

First derivative approximations. Through the use of Taylor series,
we are able to approximate derivatives in various ways. For example, from (6.2.4),

df _ f (xo + Ax) - f (xo) _ Ax d2f
TX- (x0) - Ax 2

a finite difference approximation, the forward difference ap-
proximation to df /dx:

(xo) -
f(xo + X)) - f(xo)

TX AX
(6.2.6)

This is nearly the definition of the derivative. Here we use a forward difference (but
do not take the limit as Ax 0). Since (6.2.5) is valid for all Ax, we can let Ax be
replaced by -Ax and derive the backward difference approximation to df /dx:

df (xo) =
f (xo - Ax) - f (xo) + Ax d2 f

(6.2.7)dx -Ox 2 dx

and hence

df
(xo)

f(xo - Ox) - f(xo) = f(xo) - f(xo - Ox)
dx -Ax Ox

(6.2.8)

By comparing (6.2.5) to (6.2.6) and (6.2.7) to (6.2.8), we observe that the trunca-
tion error is O(Ax) and nearly identical for both forward and backward difference
approximations of the first derivative.
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To obtain a more accurate approximation for df /dx(xo), we can average the
forward and backward approximations. By adding (6.2.5) and (6.2.7),

df __ f (xo + Ax) - f (xo - Ox) -Ax d2 f

2dx(xo) Ox
+

2
[d2-f
dx2 dx2 (e2)J (6.2.9)

Since {2 is near {2, we expect the error nearly to cancel and thus be much less than
O(Ax). To derive the error in this approximation, we return to the Taylor series
for f (xo - Ax) and f (xo + Ax):

f (x0 + Ax) = f(X0) + Ox f,(x0) + (0x)2 fii(x0) + (Ax)3 fui(x0) + ... (6.2.10)
2! 3!

,f(xo - Ox) = f(x0) - Oxfi(x0) + (0x)2 fa(ro) - (0 i)3 f...(xo) +.... (6.2.11)

Subtracting (6.2.10) from (6.2.11) yields

f (xo + Ax) - f (xo - Ax) = 2Ox f '(xo) + 3' (Ax)3 f"a(xo) + ... .

We thus expect that

f (x0) =
f (x0 + Ox) - f (xo - Ox) - (0x)2 f...(6), (6.2.12)

2Ax 6

which is proved in an exercise. This leads to the centered difference approxima-
tion to df /dx(xo):

f (xo + Ox) - f (xo - Ox)I (xe) ---
2Ax

(6.2.13)

Equation (6.2.13) is usually preferable since it is more accurate [the truncation error
is O(Ox)2] and involves the same number (2) of function evaluations as both the
forward and backward difference formulas. However, as we will show later, it is not
always better to use the centered difference formula.

These finite difference approximations to df /dx are consistent, meaning that
the truncation error vanishes as Ax 0. More accurate finite difference formulas
exist, but they are used less frequently.

Example. Consider the numerical approximation of df /dx(1) for f (x) = log x
using Ax = 0.1. Unlike practical problems, here we know the exact answer,
cV/dx(1) = 1. Using a hand calculator Ixo = 1, Ax = 0.1, f (xo + Ax) = f (1.1) =
log(1.1) = 0.0953102 and f (xo -Ox) = log(0.9) = -0.1053605] yields the numerical
results reported in Table 6.2.1. Theoretically, the error should be an order of mag-
nitude Ax smaller for the centered difference. We observe this phenomenon. To
understand the error further, we calculate the expected error E using an estimate
of the remainder. For forward or backward differences,

Oxd2f 0.1

E 2 dx2 (1) = 2 = +0.05,
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whereas for a centered difference,
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E (0x)2 d' f (1) 2 = 0.00333....
6 dx 6

These agree quite well with our actual tabulated errors. Estimating the errors this
way is rarely appropriate since usually the second and third derivatives are not
known to begin with.

Table 6.2.1 :

Forward Backward Centered

Difference formula 0.953102 1.053605 1.00335
JErrorl 4.6898% 5.3605% 0.335%

Second derivatives. By adding (6.2.10) and (6.2.11), we obtain

4

f (xo + Ox) + f (xo - [lx) = 2f (xo) + (0x)2 f,,(xo) + 2(Ax) f(iv) (x0) + ... .

We thus expect that

f (xo f (xo Ax) (Ax)2
f(

2(0x) 12
w) W ' (6.2.14)

This yields a finite difference approximation for the second derivative with an
O(/x)2 truncation error:

d2f
(xo)

f (-To + Ox) - 2f (xo) + f (xo - Ox)
dx2 (0x)2 (6.2.15)

Equation (6.2.15) is called the centered difference approximation for the second
derivative since it also can be obtained by repeated application of the centered
difference formulas for first derivatives (see Exercise 6.2.2). The centered difference
approximation for the second derivative involves three function evaluations f (xo -
Ax), f (xo), and f (xo + Ax). The respective "weights," 1/(Ax)2, -2/(0x)2, and
1/(,&x)2, are illustrated in Fig. 6.2.2. In fact, in general, the weights must sum to
zero for any finite difference approximation to any derivative.

Partial derivatives. In solving partial differential equations, we analyze
functions of two or more variables, for example., u(.,, y), u(x, t), and u(x, y, t). Nu-
merical methods often use finite difference approximations. Some (but not all)
partial derivatives may he obtained using our earlier results for functions of one
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1 -2 1

xo - Ox xp xo + Ax
Figure 6.2.2 Weights for centered
difference approximation of second
derivative.

variable. For example if u(x, y), then 8u/8x is an ordinary derivative du/dx, keep-
ing y fixed. We may use the forward, backward, or centered difference formulas.
Using the centered difference formula,

8u u(x0+AX,Yo)-u(xo-Ax,yo)
8x (xo, yo) 2Ax

For 8u/8y we keep x fixed and thus obtain

8u u (xo, yo + Ay) - u (xo, yo - Ay)
ay (xo, yo) My

using the centered difference formula. These are both two-point formulas, which we
illustrate in Fig. 6.2.3.

centered centered
difference difference
8u 8u (xo, yo + Ay)
ax 8y

(xo - Ox, yo) ;
(xo + Ax, yo)

(xo, yo - Dy)

Figure 6.2.3 Points for first partial derivatives.

In physical problems we often need the Laplacian V2u = 82U/8x2 + 82u/8y2.
We use the centered difference formula for second derivatives (6.2.15), adding the
formula for x fixed to the one for y fixed:

gtV2u(xo 11.1 u(xo+Ax,yo) -2u(xo,yo)+u(xo - Ax,yo)

2 16)(6 ..

+ u (xo, yo + Ay) - 2u (xo, yo) + u (xo, yo - Ay)
(Ay)2

Here the error is the largest of O(Ax)2 and O(Ay)2. We often let Ax = Ay, ob-
taining the standard five-point finite difference approximation to the Laplacian V2,

U(xo+Ax,yo)+u(xo-Ax,yo)+u(xo,YO +Ay)
+u (xo, yo - Ay) - 4u (xo, yo) (6.2.17)

02U(xo, yo) (0x)2
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V2 with Ax = AY

Figure 6.2.4 Weights for the Laplacian
(Ox = Dy).

as illustrated in Fig. 6.2.4, where Ox = Ay. Note that the relative weights again
sum to zero.

Other formulas for derivatives may be found in "Numerical Interpolation, Differ-
entiation, and Integration" by P. J. Davis and I. Polonsky (Chapter 25 of Abramo-
witz and Stegun [1974]).

EXERCISES 6.2

6.2.1. (a) Show that the truncation error for the centered difference approxima-
tion of the first derivative (6.2.13) is -(AX)2f "'(e3)/6. [Hint Consider
the Taylor series of g(Ox) = f (x + Ox) - f (x - Ox) as a function of
Ax around Ox = 0.]

(b) Explicitly show that (6.2.13) is exact for any quadratic polynomial.

6.2.2. Derive (6.2.15) by twice using the centered difference approximation for first
derivatives.

6.2.3. Derive the truncation error for the centered difference approximation of the
second derivative.

6.2.4. Suppose that we did not know (6.2.15) but thought it possible to approxi-
mate d2f/dx2(xo) by an unknown linear combination of the three function
values, f (xo - Ax), f (xo), and f (xo + Ox):

d2f
dx2

ti a f (xo - Ox) + bf (xo) + r f (xo + Ax).

Determine a, b, and c by expanding the right-hand side in a Taylor se-
ries around x0 using' (6.2.10) and (6.2.11) and equating coefficients through
d2f/dx2(xo)
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6.2.5. Derive the most accurate five-point approximation for f'(xo) involving f (xo),
f (xo ± ax), and f (xo ± 20x). What is the order of magnitude of the trun-
cation error?

*6.2.6. Derive an approximation for a2u/axay whose truncation error is O(Ox)2.
(Hint: Twice apply the centered difference approximations for first-order
partial derivatives.)

6.2.7. How well does j'[f (x) + f (x + Ox)] approximate f (x + Ox/2) (i.e., what is
the truncation error)?

6.3 Heat Equation
6.3.1 Introduction
In this subsection we introduce a numerical finite difference method to solve the
one-dimensional heat equation without sources on a finite interval 0 < x < L:

au = a2n

at
k

axe
u(0,t) = 0
u(L,t) = 0
u(x,0) = f(x).

(6.3.1)

6.3.2 A Partial Difference Equation
We will begin by replacing the partial differential equation at the point x = xo, t =
to by an approximation based on our finite difference formulas for the derivatives.
We can do this in many ways. Eventually, we will learn why some ways are good
and others bad. Somewhat arbitrarily we choose a forward difference in time
for au/at:

au u (xo, to + At) - u (xo, to) At a2u
8t (xo, to) = At 2 ate (xo, ni),

where to < rli < to + At. For spatial derivatives we introduce our spatial centered
difference scheme

a2u u (xo + Ax, to) - 2u (xo, to) + u (xo - Ox, to) (Ax)2 014U
axe (xo, to) _ -(0x)2 (6, to),

12 axa

where xo < C1 < xo + Ax. The heat equation at any point x = xo, t = to, becomes

u(xo,to+ tt)-u(xo,to) =ku(xo+Ax,to)-2u(xo,to)+u(xo-Ax,to) +E
( )2

(6.3.2)
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exactly, where the discretization (or truncation) error is

_ At 02u k(Ax)2 84u
E 2 §2 (xo, r7i) - 12 8x4

to). (6.3.3)

Since E is unknown, we cannot solve (6.3.2). Instead, we introduce the approxima-
tion that results by ignoring the truncation error:

U (xo, to + At) - u (xo, to) ku (xo + Ax, to) - 2u (xo, to) + u (xo - Ax, to)
At (0x)2

(6.3.4)
To be more precise, we introduce u(xo, to) an approximation at the point x =

xo, t = to of the exact solution u(xo, to). We let the approximation u(xo, to) solve
(6.3.4) exactly,

u (xo, to + At) - u (xo, to) = ku
(xo + Ax, to) - 2uu (xo, to) + u (xo - Ax, to)

At (Ax)2
(6.3.5)

u(xo, to) is the exact solution of an equation that is only approximately correct. We
hope that the desired solution u(xo, to) is accurately approximated by u(xo, to).

Equation (6.3.5) involves points separated a distance Ax in space and At in
time. We thus introduce a uniform mesh Ax and a constant discretization time At.
A space-time diagram (Fig. 6.3.1) illustrates our mesh and time discretization on
the domain of our initial boundary value problem. We divide the rod of length L
into N equal intervals, Ax = L/N. We have xo = 0, x1 = Ax, x2 = 20x, ... , xN =
NAx = L. In general,

xj = jAx.

Similarly, we introduce time step sizes At such that

tm = mAt.

(6.3.6)

(6.3.7)

x
x0 x1 x2 XN Figure 6.3.1 Space-time discretiza-
0 L tion.
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The exact temperature at the mesh point u(xj, t,,,) is approximately u(xj, t,,,),
which satisfies (6.3.5). We introduce the following notation:

m
(6.3.8)

indicating the exact solution of (6.3.5) at the jth mesh point at time t,,,. Equation
(6.3.5) will be satisfied at each mesh point xo = xj at each time to = t,,, (excluding
the space-time boundaries). Note that xo + Ax becomes xj + i x = xj+l and to +A t
becomes t,,, + At = tm+1. Thus,

(m+l) (m) (m) (m) (m)
u3 - 7Lj

k
uj+1 - 2uj + U 1

At (Ax)2
(6.3.9)

for j = 1, . . . , N - 1 and m starting from 1. We call (6.3.9) a partial difference
equation. The local truncation error is given by (6.3.3); it is the larger of O(At)
and O(Ox)2. Since E - 0 as Ax -- 0 and At -+ 0, the approximation (6.3.9) is
said to be consistent with the partial differential equation (6.3.1).

In addition, we insist that u("") satisfies the initial conditions (at the mesh
points)

u(x,0) = f(x) = f(xi), (6.3.10)

where xj = jzx for j = 0, ... , N. Similarly, satisfies the boundary conditions
(at each time step)

it0 = U(0, t) = 0 (6.3.11)

UN) _ u(L,t) = 0. (6.3.12)

If there is a physical (and thus mathematical) discontinuity at the initial time at
any boundary point, then we can analyze uo°) or U(o) in different numerical ways.

6.3.3 Computations
Our finite difference scheme (6.3.9) involves four points, three at the time t,,, and
one at the advanced time t,,,+1 = tm + At, as illustrated by Fig. 6.3.2. We can
"march forward in time" by solving for 14m+1) starred in Fig. 6.3.2:

ui'm) + S 1 I (6.3.13)
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t

(xr t,,,)
X

Figure 6.3.2 Marching forward in
time.

where s is a dimensionless parameter.

s=k At
(Ox)2 (6.3.14)

ui"`+1) is a linear combination of the specified three earlier values. We begin our
computation using the initial condition f (x3), for j = 1, ... , N - 1. Then
(6.3.13) specifies the solution at time At, and we continue the calculation. For
mesh points adjacent to the boundary (i.e., j = 1 or j = N - 1), (6.3.13) requires
the solution on the boundary points (j = 0 or j = N). We obtain these values
from the boundary conditions. In this way we can easily solve our discrete problem
numerically. Our proposed scheme is easily programmed for a personal computer
(or programmable calculator or symbolic computation program).

Propagation speed of disturbances. As a simple example, suppose
that the initial conditions at the mesh points are zero except for 1 at some interior
mesh point far from the boundary. At the first time step, (6.3.13) will imply that
the solution is zero everywhere except at the original nonzero mesh point and its
two immediate neighbors. This process continues as illustrated in Fig. 6.3.3. Stars
represent nonzero values. The isolated initial nonzero value spreads out at a con-
stant speed (until the boundary has been reached). This disturbance propagates at
velocity Ox/At. However, for the heat equation, disturbances move at an infinite
speed (see Chapter 10). In some sense our numerical scheme poorly approximates
this property of the heat equation. However. if the parameter s is fixed, then the
numerical propagation speed is

Ax _ kOx k
,&t s(Ox)2

_
;Ox

As Ox - 0 (with s fixed), this speed approaches oo as is desired.

Computed example. To compute with (6.3.13), we must specify Ox and
At. Presumably, our solution will be more accurate with smaller Ax and At.
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At

. . . * * * . . .

Figure 6.3.3 Propagation speed of
disturbances.

Certainly, the local truncation error will be reduced. An obvious disadvantage of
decreasing Ax and At will be the resulting increased time (and money) necessary
for any numerical computation. This trade-off usually occurs in numerical calcu-
lations. However, there is a more severe difficulty that will need to analyze. To
indicate the problem, we will compute using (6.3.13). First, we must choose Ox
and At. In our calculations we fix Ax = L/10 (nine interior points and two bound-
ary points). Since our partial difference equation (6.3.13) depends primarily on
s = kOt/(Ox)2, we pick At so that, as examples, s = 1/4 and s = 1. In both cases
we assume u(x, 0) = f (x) is the specific initial condition sketched in Fig. 6.3.4,
and the zero boundary conditions (6.3.11) and (6.3.12). The exact solution of the
partial differential equation is

00

u(x,t) = Eansin nLxe-k(nn/L)2t

rz-1 (6.3.15)

an = 2 J Lf (x) sin nLx dx,
0

as described in Chapter 2. It shows that the solution decays exponentially in time
and approaches a simple sinusoidal (sin7rx/L) shape in space for large t. Elemen-
tary computer calculations of our numerical scheme, (6.3.13), for s = 1 and s = 1,
are sketched in Fig. 6.3.5 (with smooth curves sketched through the nine interior
points at fixed values of t). For s = a these results seem quite reasonable, agreeing
with our qualitative understanding of the exact solution. On the other hand, the
solution of (6.3.13) for s = 1 is absurd. Its most obvious difficulty is the negative
temperatures. The solution then grows wildly in time with rapid oscillations in
space and time. None of these phenomena are associated with the heat equation.
The finite difference approximation yields unusable results ifs = 1. In the next sub-
section we explain these results. We must understand how to pick s = k(At)/(0x)2
so that we are able to obtain reasonable numerical solutions.

Figure 6.3.4 Initial condition.
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0.1

0.051

s = 1/4
(At = 0.0025)

0.5 0.6 0.7 0.8 0.9

(a)

(b)

1

Figure 6.3.5 Computations for the heat equation s =
k(At)/(Ox)1: (a) s = a stable and (b) s = 1 unstable.
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6.3.4 Fourier-von Neumann Stability Analysis
Introduction. In this subsection we analyze the finite difference scheme for
the heat equation obtained by using a forward difference in time and a centered
difference in space:

pdel : u(m+1) - U3 + 8 (u(+) - 2u(*n) + u(_1)

IC: II.(0) = f(xj) - fJ

BC:
u(-) = 00

UN (m) = 0,

(6.3.16)

(6.3.17)

(6.3.18)

where s = k(Ot)/(Ax)2. xj = jAx, t = m&t and hopefully u(xj, t) Zt We
will develop von Neumann's ideas of the 1940s based on Fourier-type analysis.

Eigenfunctions and product solutions. In Sec. 6.3.5 we show that
the method of separation of variables can be applied to the partial difference equa-
tion. There are special product solutions with wave number a of the form

U(M) = eiaxQt/Ot = eiajAxQm. (6.3.19)

By substituting (6.3.19) into (6.3.16) and canceling et' Qm, we obtain

Q = 1 + s(ea'Ax - 2 + e-'aAx) = 1 - 2s[1 - cos(a0x)]. (6.3.20)

Q is the same for positive and negative a. Thus a linear combination of ef=ax may
be used. The boundary condition uo'n) = 0 implies that sin ax is appropriate, while
uN) = 0 implies that a = nir/L. Thus, there are solutions of (6.3.16) with (6.3.18)
of the form

n7rxsin L Qt of

where Q is determined from (6.3.20),

r1 - cos t(n7L )jQ =1- 2s
L '

(6.3.21)

(6.3.22)

1 pde here means partial dtferrnce equation.
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and n = 1 , 2, 3, ... , N - 1, as will be explained. For partial differential equations
there are an infinite number of eigenfunctions (sin narx/L, n = 1,2,3,. ..). However,
we will show that for our partial difference equation there are only N-1 independent
eigenfunctions (sin narx/L, n = 1, 2, 3, ... , N - 1):

narx n7rj1x narj
sin

L
= sin L = sin N (6.3.23)

the same eigenfunctions as for the partial differential equation (in this case). For
example, for n = N, Oj = sinarj = 0 (for all j). Furthermore, tbj, for n = N + 1 is
equivalent to OJ for n = N - 1 since

(N (Nsin =sin + jar J =sin - jar J -sin

In Fig. 6.3.6 we sketch some of these "eigenfunctions" (for N = 10). For the
partial difference equation due to the discretization, the solution is composed of
only N - 1 waves. This number of waves equals the number of independent mesh
points (excluding the endpoints). The wave with the smallest wavelength is

sin
(N Ll)arx = sin (N N1)7rj

= sin N

which alternates signs at every point. The general solution is obtained by the
principle of superposition, introducing N - 1 constants pn:

N-1(m) n . narx n1r t/At

n=1

where

L [1 - 2s (1 - cos N )] (6.3.24)

kLt
S =

(Ox)2.

These coefficients can be determined from the N - 1 initial conditions, using the
discrete orthogonality of the eigenfunctions sin nirj/N. The analysis of this discrete
Fourier series is described in Exercises 6.3.3 and 6.3.4.

Comparison to partial differential equation. The product solu-
tions uj(-) of the partial difference equation may be compared with the product
solutions u(x, t) of the partial differential equation:

nirx nir 1t/ot
sin L [1-2s(1-cosN)J n = 1,2,...,N- 1

u (x, t) = sin
n Lx'e_k(na/t)jt
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(n=1)Oj=sin
10

(n = 2)pj = sin
10

L7rj

(n=9),j=sin 90

Iri_ (-1)J sin
10

(c)

Figure 6.3.6 Eigenfunctions for the discrete problem.
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where s = kLt/(ix)2. For the partial differential equation, each wave exponen-
tially decays, e-k(nir/L)2t. For the partial difference equation, the time dependence
(corresponding to the spatial part sin nirx/L) is

nir t/oe
Q- [1-2s(1-cos N)] (6.3.25)

Stability. If Q > 1, there is exponential growth in time, while exponential
decay occurs if 0 < Q < 1. The solution is constant in time if Q = 1. However,
in addition, it is possible for there to be a convergent oscillation in time (-1 <
Q < 0), a pure oscillation (Q = -1), and a divergent oscillation (Q < -1). These
possibilities are discussed and sketched in Sec. 6.3.5. The value of Q will determine
stability. If IQI < 1 for all solutions, we say that the numerical scheme is stable.
Otherwise, the scheme is unstable.

We return to analyze Q' = Qt/At, where Q = 1 - 2s(1 - cosn7r/N). Here
Q < 1; the solution cannot be a purely growing exponential in time. However, the
solution may be a convergent or divergent oscillation as well as being exponentially
decaying. We do not want the numerical scheme to have divergent oscillations in
time.' If s is too large, Q may become too negative.

2Convergent oscillations do not duplicate the behavior of the partial differential equation. How-
ever, they at least decay. We tolerate oscillatory decaying terms.
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Since Q < 1, the solution will be "stable" if Q > -1. To be stable, 1 - 2s(1 -
cos n7r/N) > -1 for n = 1. 2, 3.... N - 1, or, equivalently,

s< 1 forn=1,2,3,...,N-1.
- 1 - cos nir/N

For stability, s must be less than or equal to the smallest, n = N - 1,

1

- 1 - cos(N - 1)7r/N'

To simplify the criteria, we note that 1 - cos(N - 1)ir/N < 2, and hence we are
guaranteed that the numerical solution will be stable if s < 2:

1 1 (6.3.26)
2 < 1 - cos(N - 1)ir/N

In practice, we cannot be stable with s much larger than 1, since cos(N - 1)7r/N =
- cosir/N, and hence for N large, 1 - cos(N - 1)7r/N .:: 2.

If s > 2, usually Q < -1 (but not necessarily) for some n. Then the numerical
solution will contain a divergent oscillation. We call this a numerical instability.
If s > 1, the most rapidly "growing" solution corresponds to a rapid oscillation
(n = N-1) in space. The numerical instability is characterized by divergent
oscillation in time (Q < -1) of a rapidly oscillatory (n = N - 1) solution
in space. Generally, if we observe computer output of this form, we probably
have a numerical scheme that is unstable, and hence not reliable. This is what we
observed numerically when s = 1. For s = 1, the solution behaved quite reasonably.
However, for s = 1 a divergent oscillation was observed in time, rapidly varying in
space.

Since s = k.Ot/(0x)2, the restriction s < 2 says that

I X)2
At < 2

(k
(6.3.27)

This puts a practical constraint on numerical computations. The time steps At
must not be too large (otherwise the scheme becomes unstable). In fact. since
Ox must be small (for accurate computations), (6.3.27) shows that the time step
must be exceedingly small. Thus, the forward time, centered spatial difference
approximation for the heat equation is somewhat expensive to use.

To minimize calculations, we make At as large as possible (maintaining stabil-
ity). Here s = 2 would be a good value. In this case, the partial difference equation
becomes

(m+1) _ I r (m) (m)uj Lui+1 + u3_1

The temperature at time At later is the average of the temperatures to the left and
right.
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Convergence. As a further general comparison between the difference and
differential equations, we consider the limits of the solution of the partial difference
equation as Ax -+ 0 (N -+ oo) and At -+ 0. We will show that the time dependence
of the discretization converges to that of the heat equation if n/N << 1 (as though
we fix n and let N -. oo). If n/N << 1, then cosnir/N 1 - 2(nir/N)2 from its
Taylor series, and hence

f ll
2a/ne

[1 }
2t/ntQt/°t .^ L1-s(N/ ] = -kAt(L / ]

(6.3.28)

where N = L/Ox. Thus, as At - 0,

Qt/Lt e-k(n7r/L)2t (6.3.29)

since e may be defined as e = limZ..o(1 + z)t/Z. If n/N << 1, then by more careful
analysis [taking logs of (6.3.28)], it can be shown that Qm - exp(-k(n7r/L)2t) =
O(At). It is usually computed with fixed s. To improve a computation, we cut Ax
in half (and thus At will be decreased by a factor of 4). Thus, if n/N << 1 with s
fixed, numerical errors (at fixed x and t) are cut by a factor of 4 if the discretization
step size Ax is halved (and time step At is cut in four). All computations should
be done with s satisfying the stability condition.

However, difficulties may occur in practical computations if n/N is not small.
These are the highly spatially oscillatory solutions of the partial difference equation.
For the heat equation these are the only waves that may cause difficulty.

Lax equivalency theorem. The relationship between convergence and
stability can be generalized. The Lax equivalency theorem states that for con-
sistent finite difference approximations of time-dependent linear partial differential
equations that are well posed, the numerical scheme converges if it is stable and it
is stable if it converges.

A simplified determination of the stability condition. It is
often convenient to analyze the stability of a numerical method quickly. From our
analysis (based on the method of separation of variables), we have shown that there
are special solutions to the difference equation that oscillate in x:

,ui(m) = eiarQt/Ot
(6.3.30)

where
x = jAx and t = mAt.

From the boundary conditions a is restricted. Often, to simplify the stability anal-
ysis, we ignore the boundary conditions and allow a to be any value.' In this case,
stability follows from (6.3.20) if s < Z

3Our more detailed stability analysis showed that the unstable waves occur only for very short
wave lengths. For these waves, the boundary is perhaps expected to have the least effect.
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Random walk. The partial difference equation (6.3.16) may be put in the
form

U(M+i) = (1 - 2s)u(M) + sub+i (6.3.31)

In the stable region, s < 1; this may be interpreted as a probability problem known
as a random walk. Consider a "drunkard" who in each unit of time At stands still
or walks randomly to the left or to the right one step Ax. We do not know precisely
where that person will be. We let uj(m) be the probability that a drunkard is located
at point j at time mAt. We suppose that the person is equally likely to move one
step Ax to the left or to the right in time At, with probability s each. Note that
for this interpretation s must be less than or equal to 1. The person cannot move
further than Ax in time At; thus, the person stays still with probability 1 - 2s.
The probability that the person will be at jAx at the next time (m + 1)At is then
given by (6.3.31): It is the sum of the probabilities of the three possible events. For
example, the person might have been there at the previous time with probability

and did not move with probability 1 - 2s; the probability of this compound
event is (1 - In addition, the person might have been one step to the left
with probability uj( `i [or right with probability and moved one step in the
appropriate direction with probability s.

The largest time step for stable computations s = corresponds to a random
walk problem with zero probability of standing still. If the initial position is known
with certainty, then

u(o) = f 1 j = initial known location
3 l 0 j = otherwise.

Thereafter, the person moves to the left or right with probability z . This yields the
binomial probability distribution as illustrated by Pascal's triangle (see Fig. 6.3.7).

8 0 B 00 89 00 8

4 0 2 0

1

Figure 6.3.7 Pascal's triangle.
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6.3.5 Separation of Variables for Partial Difference
Equations and Analytic Solutions
of Ordinary Difference Equations

The partial difference equation can be analyzed by the same procedure we used for
partial differential equations-we separate variables. We begin by assuming that
(6.3.16) has special product solutions of the form

(m)uj = OjhM.

By substituting (6.3.19) into (6.3.16), we obtain

4jhm+1 = cbjhm + s(Oj+1hm - 20jhm + cbj_lhm).

Dividing this by gjhm separates the variables:

hm+1 =1+s(Oj+1+Oj-1 _21 =+1,

(6.3.32)

where A is a separation constant.
The partial difference equation thus yields two ordinary difference equations.

The difference equation in discrete time is of first order (meaning involving one
difference)

hm+1 = +Ahm (6.3.33)

The separation constant A (as in partial differential equations) is determined by a
boundary value problem, here a second-order difference equation,

(6.3.34)

with two homogeneous boundary conditions from (6.3.18):

00 = 0 (6.3.35)

ON = 0. (6.3.36)

First-order difference equations. First-order linear homogeneous dif-
ference equations with constant coefficients, such as (6.3.33), are easy to analyze.
Consider

(6.3.37)hm+1 = Ahm,

where A is a constant. We simply note that

h1 = Aho, h2 = Ah1 = A2ho, and so on.
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A<-1 I A=-1 -1<A<o A=o
I I

1 1

o<A<1 A=1 IA>1

I

Figure 6.3.8 Solutions of first-order difference equations.

Thus, the solution is
hm = Amho, (6.3.38)

where ho is an initial condition for the first-order difference equation.
An alternative way to obtain (6.3.38) is to assume that a homogeneous solution

exists in the form hm = Qm. Substitution of this into (6.3.37) yields Q"`+' = AQm
or Q = A, rederiving (6.3.38). This latter technique is analogous to the substitution
of ert into constant-coefficient homogenous differential equations.

The solution (6.3.38) is sketched in Fig. 6.3.8 for various values of A. Note
that if A > 1, then the solution exponentially grows [Am = em log a = e(log A/ot)t
since m = t/Otj. If 0 < A < 1, the solution exponentially decays. Furthermore,
if -1 < A < 0, the solution has an oscillatory (and exponential) decay, known
as a convergent oscillation. On the other hand, if A < -1, the solution has a
divergent oscillation.

In some situations we might even want to allow A to be complex. Using the
polar form of a complex number, A = reie, r =IAI and 0 = argA (or angle), we
obtain

Am = rmeimo = IAIm(cos m9 + i sin m9). (6.3.39)

For example, the real part is IAIm cos m9. As a function of m, A'" oscillates (with
period m = 21r/9 = 27r/ arg A). The solution grows in discrete time m if IAI > 1
and decays if IAI < 1.

We now can summarize (including the complex case). The solution A' of
hm+1 = Ahm remains bounded as m increases (t increases) if Al I< 1. It grows
if IAI>1.
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Second-order difference equations. Difference equation (6.3.34) has
constant coefficients [since (-A + 1 - 2s)/s is independent of the step j]. An analytic
solution can be obtained easily. For any constant-coefficient difference equation,
homogeneous solutions may be obtained by substituting 4, = Q3, as we could do
for first-order difference equations [see (6.3.38)].

The boundary conditions, 00 = ON = 0, suggest that the solution may oscillate.
This usually occurs if Q is complex with IQI = 1, in which case an equivalent
substitution is

O _ (IQ[eie)j = e'ej = eie(x/ox) = eiax (6.3.40)

since j = x/Ox, defining a = B/Ox = (argQ)/Ax. In Exercise 6.3.2 it is shown
that (6.3.34) implies that [QJ = 1, so that (6.3.40) may be used. Substituting
(6.3.40) into (6.3.34) yields an equation for the wave number a:

ei°ox + e-i°Gx = A - 1 + 2s
s

or, equivalently,

A
- 1

+ 2s2 cos(a0x) =
8

(6.3.41)

This yields two values of a (one the negative of the other), and thus instead of
Oj = eiax we use a linear combination of efiax, or

4,j = cl sin ax + c2 cos ax. (6.3.42)

The boundary conditions, 00 = ON = 0, imply that c2 = 0 and a = nir/L, where
n = 1, 2, 3, .... Thus,

nirx nir j Ax !7r j2 = sin L = sin L = sin N

Further analysis follows that of the preceding subsection.

(6.3.43)

6.3.6 Matrix Notation
A matrix4 notation is often convenient for analyzing the discretization of partial
differential equations. For fixed t, u(x, t) is only a function of x. Its discretization
u(M) is defined at each of the N+ 1 mesh points (at every time step). We introduce
a vector u of dimension N + 1 that changes at each time step; it is a function of m,
u(m). The jth component of u(m) is the value of u(x, t) at the jth mesh point:

\u(m)) = u('n). (6.3.44)

4This section requires some knowledge of linear algebra.
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The partial difference equation is

,gy(m) + s 2ujm) +

J

. (6.3.45)

If we apply the boundary conditions, uom) = u(m) = 0, then

n(m+l) = u(m) + s (4m) - 2uim) (1 - 28)u(-) + su(m)

A similar equation is valid for UNil). At each time step there are N - 1 unknowns.
We introduce the N - 1 x N - 1 tridiagonal matrix A with all entries zero
except for the main diagonal (with entries 1 - 2s) and neighboring diagonals (with
entries s):

A=

1-2s s 0 0 0 0 0
s 1-2s s 0 0 0 0
0 s 1-2s s 0 0 0
0 0 ... ... ... 0 0
0 0 0 s 1-2s s 0
0 0 0 0 s 1-2s s
0 0 0 0 0 s 1-2s

The partial difference equation becomes the following vector equation:

u(m+l) _ Au(m).

(6.3.46)

(6.3.47)

The vector u changes in a straightforward way. We start with u(0) representing the
initial condition. By direct computation

u(1) = Au(0)
U(2) = Au(1) = A2n.(0),

and thus
,u(m) = Amu(o). (6.3.48)

The matrix A raised to the mth power describes how the initial condition influences
the solution at the mth time step (t = mAt).

To understand this solution, we introduce the eigenvalues p of the matrix A,
the values p such that there are nontrivial vector solutions t:

At = pf . (6.3.49)

The eigenvalues satisfy
det[A - iI] = 0, (6.3.50)

where I is the identity matrix. Nontrivial vectors t that satisfy (6.3.49) are called
eigenvectors corresponding to p. Since A is an (N - 1) x (N - 1) matrix, A
has N - 1 eigenvalues. However, some of the eigenvalues may not be distinct,
there may be multiple eigenvalues (or degeneracies). For a distinct eigenvalue,
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there is a unique eigenvector (to within a multiplicative constant); in the case of a
multiple eigenvalue (of multiplicity k), there may be at most k linearly independent
eigenvectors. If for some eigenvalue there are less than k eigenvectors, we say the
matrix is defective. If A is real and symmetric [as (6.3.46) is], it is known that
any possible multiple eigenvalues are not defective. Thus, the matrix A has N - 1
eigenvectors (which can be shown to be linearly independent). Furthermore, if A
is real and symmetric, the eigenvalues (and consequently the eigenvectors) are real
and the eigenvectors are orthogonal (see Sec. 5.5 Appendix). We let µn be the nth
eigenvalue and to the corresponding eigenvector.

We can solve vector equation (6.3.47) (equivalent to the partial difference equa-
tion) using the method of eigenvector expansion. (This technique is analogous to
using an eigenfunction expansion to solve the partial differential equation.) Any
vector can be expanded in a series of the eigenvectors:

N-1
U(-) = r` (6.3.51)

n=1

The vector changes with m (time), and thus the constants c n() depend on m (time):

However, from (6.3.47),

N-1
U(m+1) = E (6.3.52)

n=1

N-1 N-1
u(m+l) = Au(m) = E Cnm),Untn, (6.3.53)

n=1 n=1

where (6.3.51) and (6.3.49) have been used. By comparing (6.3.52) and (6.3.53), we
determine a first-order difference equation with constant coefficients for cnm):

Cnm+1) = 'nC(m)

This is easily solved,
Cnn1) = C,,)(An)m,

and thus

N-1
U(m) = j:Cn)(An)_Cn-

n=1

(6.3.54)

(6.3.55)

(6.3.56)

c(n) can be determined from the initial condition.
From (6.3.56), the growth of the solution as t increases (m increases) depends

on (jun)m, where m = t/At. We recall that since An is real,

( exponential growth An > 1
m (+ exponential decay 0 < µn < 1

(µri)
11 1 0t tconvergen oscl a lon - - /An <

divergent oscillation An < -1.
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This numerical solution is unstable if any eigenvalue p > 1 or any p < -1.
We need to obtain the N - 1 eigenvalues p of A:

At = pt. (6.3.57)

We let i be the jth component of t. Since A is given by (6.3.46), we can rewrite
(6.3.57) as

ski+i + (1 - ski-1 = lei (6.3.58)

with
o=0andl;N=0. (6.3.59)

Equation (6.3.58) is equivalent to

tt t (i.i+2s_1) C
+ = (6 3 60)y7+1 Si-1

s Si' . .

By comparing (6.3.60) with (6.3.34), we observe that the eigenvalues p of A are
the eigenvalues A of the second-order difference equation obtained by separation of
variables. Thus [see (6.3.20)],

p = 1 - 2s (1 - cos(aAx)), (6.3.61)

where a = nir/L for n = 1, 2, ... , N -1. As before, the scheme is usually unstable if
s > z. To summarize this simple case, the eigenvalues can be explicitly determined
using Fourier-type analysis.

In more difficult problems it is rare that the eigenvalues of large matrices can
be obtained easily. Sometimes the Gershgorin circle theorem (see Strang [1993]
for an elementary proof) is useful: Every eigenvalue of A lies in at least one
of the circles ci, ... , cN-i in the complex plane where cj has its center
at the ith diagonal entry and its radius equal to the sum of the absolute
values of the rest of that row. If a2, are the entries of A, then all eigenvalues
p lie in at least one of the following circles:

N-1
Ip - a;i I S i Iaii I. (6.3.62)

j
(j i)

For our matrix A, the diagonal elements are all the same 1 - 2s and the rest of the
row sums to 2s (except the first and last rows, which sum to s). Thus, two circles
are Ip - (1 - 2s)I < s and the other N - 3 circles are

Ip - (1 - 28)1 < 2s. (6.3.63)

All eigenvalues lie in the resulting regions [the biggest of which is given by (6.3.63)],
as sketched in Fig. 6.3.9. Since the eigenvalues p are also known to be real, Fig. 6.3.9
shows that

1- 4s<p<1.
Stability is guaranteed if -1 < p < 1, and thus, the Gershgorin circle theorem
implies that the numerical scheme is stable if s < z. If s > 1, the Gershgorin circle
theorem does not imply the scheme is unstable.
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Complex s-plane

Figure 6.3.9 Gershgorin circles for A cor-
responding to discretization of the heat equa-
tion.

6.3.7 Nonhomogeneous Problems
The heat equation with sources may be computed in the same way. Consider

2

= k8-2 +Q(x,t)

u(0, t) = A(t)
u(L, t) = B(t)
u(x,0) = f(x).

As before, we use a forward difference in time and a centered difference in space.
We obtain the following numerical approximation:

(m+l) _ (m)
k19

At u' ((1x)2
2u(+ u,"l + Q(j Ax, mAt)

U(-) = A(mOt)
UN) = B(mAt)
uj°) = f (jAx).

The solution is easily computed by solving for u(M+l) We claim that our stability
analysis for homogeneous problems is valid for nonhomogeneous problems. Thus,
we compute with s = kAt/(Ax)2 < z.

6.3.8 Other Numerical Schemes
The numerical scheme for the heat equation, which uses the centered difference
in space and forward difference in time, is stable if s = kAt/(Ax)2 < 2. The
time step is small [being proportional to (Ax)2]. We might desire a less expensive
scheme. The truncation error is the sum of terms, one proportional to At and the
other to (Ax)2. If s is fixed (for example, s =

2
), both errors are 0(Ax)2 since

At = s(Ax)2/k.



248 Chapter 6. Finite Difference Numerical Methods

Richardson's scheme. For a less expensive scheme, we might try a more
accurate time difference. Using centered differences in both space and time was first
proposed by Richardson in 1927:

(m+1) - (m-1)
1(/

u
Atu3

(0x)2 \u?+,1
- 2u3m) +

U3_1
(6.3.64)

or /u,m+1) _ +s { U(Tj_j
) , (6.3.65)

where again s = kAt/(Ax)2. Here the truncation error is)the sum of a (At)2
and (Ax)2 terms. Although in some sense this scheme is more accurate than the
previous one, (6.3.65) should never be used. Exercise 6.3.12(a) shows that this
numerical method is always unstable.

Crank-Nicolson scheme. Crank and Nicolson (in 1947) suggested an
alternative way to utilize centered differences. The forward difference in time

Ou u(t + At) - u(t)
Ot At

may be interpreted as the centered difference around t + At/2. The error in ap-
proximating Ou/Ot(t + At/2) is O(At)2. Thus, we discretize the second derivative
at t + At/2 with a centered difference scheme. Since this involves functions evalu-
ated at this in-between time, we take the average at t and t + At. This yields the
Crank-Nicolson scheme,

(m+1) (m) (m) (m) (m) (m+1) (m+1) (m+1)uJ - u k u?+1 - . U3 + ui-1 + Ui+1 -- 2u) +
At 2 (Ax)2 (Ax)2

(6.3.66)
It is not obvious, but nevertheless true (Exercise 6.3.13), that the truncation error
remains the sum of two terms, one (Ax)2 and the other (At)2. The advantage of
the Crank-Nicolson method is that the scheme is stable for all s = kAt/(Ax)2, as is
shown in Exercise 6.3.12(b). At can be as large as desired. We can choose At to be
proportional to Ax [rather than (Ax)2]. The error is then O(Ax)2, an equivalent
accuracy as the earlier scheme with much less work (computing). Crank-Nicolson is
a practical method. However, the Crank-Nicolson scheme (see Fig. 6.3.10) involves
six points (rather than four for the simpler stable method), three of which are at the
advanced time. We cannot directly march forward in time with (6.3.66). Instead,
to advance one time step, (6.3.66) requires the solution of a linear system of N - 1
equations. The scheme (6.3.66) is called implicit [while (6.3.13) is called explicit].
The matrices involved are tridiagonal and thus the linear system may be solved
using Gauss elimination easily (and relatively inexpensively) even if N is large.

6.3.9 Other Types of Boundary Conditions
If Ou/Ox = g(t) at x = 0 (rather than u being given at x = 0), then we must
introduce a numerical approximation for the boundary condition. Since the dis-
cretization of the partial differential equation has an o(AX)2 truncation error, we
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t+At

t

x-Ox x x+Lx

Figure 6.3.10 Implicit Crank-Nicolson
scheme.

may introduce an equal error in the boundary condition by using a centered differ-
ence in space:

Ou __ u(x+Ax,t)-u(x-Ax,t)
8x 20x

In this case the boundary condition 8u/8x = g(t) at x = 0 becomes

(m) (m)U - u
11

= 9(t) = 9(mAt) = g,,. (6.3.67)20x

We use (6.3.67) to obtain an expression for the temperature at the fictitious point
(x_1 = -Ox):

u(m) u(m) - 20x1 - 1 9m (6.3.68)

In this way we determine the value at the fictitious point initially, u(0). This ficti-
tious point is needed to compute the boundary temperature at later times via the
partial difference equation. If we use forward difference in time and centered differ-
ence in space, (6.3.16) can now be applied for j = 0 to j = N - 1. For example, at
x=0(j=0)

u(cm+l) = s (u(m) - 2u0(m) + u(m)

u(m) + s (uim) - 2uom) + uim) 2Ax9m)

where (6.3.68) has been used. In this way a partial differential equation can be solved
numerically with boundary conditions involving the derivative. (The fictitious point
is eliminated between the boundary condition and the partial differential equation.)

EXERCISES 6.3

6.3.1. (a) Show that the truncation error for our numerical scheme, (6.3.3), be-
comes much smaller if k(ot)/(ix)s = 1. [Hint: u satisfies the partial
differential equation in (6.3.1).]
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(b) If kAt/(0x)2 = s, determine the order of magnitude of the truncation
error.

6.3.2. By letting g5j = Qj, show that (6.3.34) is only satisfied if JQI = 1. [Hint:
First show that / +1-2sQ2+I s )Q+1=0.

6.3.3. Define L(O) = ¢j+l + Oj-1 + -YO).

(a) Show that uL(v) - vL(u) = wj+l - wj, where wj = uj-lvj - vj-luj.
(b) Since summation is analogous to integration derive the discrete version

of Green's formula

N-1
(uL(v) - vL(u)] = wN - wo.

i=1

(c) Show that the right-hand side of part (b) vanishes if both u and v
satisfy the homogeneous boundary conditions (6.3.18).

(d) Letting ry = (1 - 2s)/s, the eigenfunctions 0 satisfy L(O) = (A/s)t.
Show that eigenfunctions corresponding to different eigenvalues are
orthogonal in the sense that

N-1
E mi Y'i = 0.
t=1

*6.3.4. (a) Using Exercise 6.3.3. determine (j in (6.3.24) from the initial condi-
tions fj.

(b) Evaluate the normalization constant

N-1
sin2nirl

N
j=1

for each eigenfunction (i.e., fix n). (Hint: Use the double-angle formula
and a geometric series.)

6.3.5. Show that at each successive mesh point the sign of the solution alternates
for the most unstable mode (of our numerical scheme for the heat equation,
s> z).

6.3.6. Evaluate 1/[1 - cos(N - 1)n/N]. What conclusions concerning stability do
you reach?

(a) N = 4 (b) N = 6 (c) N = 8 *(d) N = 10

(e) Asymptotically for large N
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6.3.7. Numerically compute solutions to the heat equation with the temperature
initially given in Fig. 6.3.4. Use (6.3.16)-(6.3.18) with N = 10. Do for
various s (discuss stability):

(a) s = 0.49 (b) s = 0.50 (c) s = 0.51 (d) s = 0.52

6.3.8. Under what condition will an initially positive solution [u(x, 0) > 0] remain
positive [u(x, t) > 0] for our numerical scheme (6.3.9) for the heat equation?

6.3.9. Consider

d2u =
2

f (x) with u(0) = 0 and u(L) = 0.
dx

(a) Using the centered difference approximation for the second-derivative
and dividing the length L into three equal mesh lengths (see Sec. 6.3.2).
derive a system of linear equations for an approximation to u(x). Use
the notation xi = iAx, fi = f (xi), and ui = u(xi). (Note: xo = 0,
XI = 3L, x2= 3L, x3=L.)

*(b) Write the system as a matrix system Au = f. What is A?
(c) Solve for ul and u2.

(d) Show that a "Green's function" matrix G can be defined:

ui=>Gi,fi (u=Gf)

i
What is G? Show that it is symmetric, Gig = Gji.

6.3.10. Suppose that,in a random walk, at each At the probability of moving to the
right Ax is a and the probability of moving to the left Ax is also a. The
probability of staying in place is b (2a + b = 1).

(a) Formulate the difference equation for this problem.

*(b) Derive a partial differential equation governing this process Ax --+ 0
and At --+ 0 such that

(Ax)2 klim
Ax 0 At

=
s-

At

(c) Suppose that there is a wall (or cliff) on the right at x = L with the
property that after the wall is reached, the probability of moving to the
left is a, to the right c, and for staying in place 1 - a - c. Assume that
no one returns from x > L. What condition is satisfied at the wall?
What is the resulting boundary condition for the partial differential
equation? Let Ax -p 0 and At - 0 as before.) Consider the two cases
c=0andc36 0.
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6.3.11. Suppose that, in a two-dimensional random walk, at each At it is equally
likely to move right Ax or left or up Ay or down (as illustrated in Fig.
6.3.11).

(a) Formulate the difference equation for this problem.

(b) Derive a partial differential equation governing this process if Ax
0, Ay --' 0, and At -. 0 such that

lim
(Ax)2

=
kl

and lim (Ay) = k2

Ax ' 0 At s Dy-+0 Ot s
At 0 At -+ 0

Figure 6.3.11 FIgure for Exer-
cise 6.3.11.

6.3.12. Use a simplified determination of stability [i.e., substitute e;QxQt/°t],

to investigate the following:

(a) Richardson's centered difference in space and time scheme for the heat
equation, (6.3.65)

(b) Crank-Nicolson scheme for the heat equation, (6.3.66)

6.3.13. Investigate the truncation error for the Crank-Nicolson method, (6.3.66).

6.3.14. For the following matrices,

1. Compute the eigenvalue.

2. Compute the Gershgorin row circles.

3. Compare (1) and (2) according to the theorem.

(a) 111 2 1 (b) [ 3

2

1

1 2 -3
*(c) 2 4 -6

0 3 2

6.3.15. For the examples in Exercise 6.3.14, compute the Gershgorin (column) cir-
cles. Show that a corresponding theorem is valid for them.
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6.3.16. Using forward differences in time and centered differences in space, analyze
carefully the stability of the difference scheme if the boundary condition for
the heat equation is

TX (0)
= 0 and (L) = 0.

(Hint: See Sec. 6.3.9.) Compare your result to the one for the boundary
conditions u(0) = 0 and u(L) = 0.

6.3.17. Solve on a computer [using (6.3.9] the heat equation au/at = a2u/axe
with u(0, t) = 0, u(1, t) = 0, u(x, 0) = sin irx with Ax = 1/100. Compare
to analytic solution at x = 1/2, t = 1 by computing the error there (the
difference between the analytic solution and the numerical solution). Pick
At so that

(a) s = 0.4 (c) to improve the calculation in part (a),
let Ax = 1/200 but keep s = 0.4

(b) s = 0.6 (d) compare the errors in parts (a) and (c)

6.4 Two-Dimensional Heat Equation
Similar ideas may be applied to numerically compute solutions of the two-dimen-
sional heat equation

au =
at k (8x

+a2u)a ay2

We introduce a two-dimensional mesh (or lattice), where for convenience we assume
that Ax = Ay. Using a forward difference in time and the formula for the Laplacian
based on a centered difference in both x and y [see (6.2.17)], we obtain

(m+1) (m)
uj1 - nil = k r (m) (m) (m) (m)1

(Ax)2
[u(j+m)

l,t + ui-1 1 + uj,t+1 + uj,t-1 - 4uj 1 J , (6.4.1)
At

where u(jAx, lAy, mAt). We march forward in time using (6.4.1).

Stability analysis. As before, the numerical scheme may be unstable. We
perform a simplified stability analysis, and thus ignore the boundary conditions.
We investigate possible growth of spatially periodic waves by substituting

u(i`) = Qt/Otei(ax+OY) (6.4.2)
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into (6.4.1). We immediately obtain

Q = 1 + s (etaAx + e-iQAx + eiOAy + e-iOA1 - 4)

= 1 + 2s(cos aAx + cos,3Ay - 2),

where s = kAt/(Ax)2 and Ax = Ay. To ensure stability, -1 < Q < 1, and hence
we derive the stability condition for the two-dimensional heat equation

kAt 1

s = (0x)2
<

4
(6.4.3)

Example. As an elementary example, yet one in which an exact solution is
not available, we consider the heat equation on an L-shaped region sketched in
Fig. 6.4.1. We assume that the temperature is initially zero. Also, on the boundary
u = 1000 at x = 0, but u = 0 on the rest of the boundary. We compute with the
largest stable time step, s = 4 [At = (Ax)2/4k], so that (6.4.1) becomes

I u(-) + u(m) + u(-)
-+1) - ` 7+1,t j- 1,t y.t+1 j.1-1IU (

i.t - 4
(6.4.4)

In this numerical scheme, the temperature at the next time is the average of the
four neighboring mesh (or lattice) points at the present time. We choose Ax =
10 (At = 1/400k) and sketch the numerical solution in Figs. 6.4.2 and 6.4.3. We
draw contours of approximately equal temperature in order to observe the thermal
energy invading the interior of this region.

The partial difference equation is straightforward to apply if the boundary is
composed entirely of mesh points. Usually, this is unlikely, in which case some
more complicated procedure must be applied for the boundary condition.

x= 0.4
500 y

1000 0 0 0 t= 0
1000 0 0 0

1000 0 0 0

1000 0 0 0 60.

1000 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0

500 y=0
x=0 x=1

Figure 6.4.1 Initial condition.
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Figure 6.4.2 Numerical computation of
temperature in an L-shaped region.

Figure 6.4.3 Numerical computation of
temperature in an L-shaped region.
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EXERCISES 6.4

*6.4.1. Derive the stability condition (ignoring the boundary condition) for the
two-dimensional heat equation if Ax 54- Ay.

6.4.2. Derive the stability condition (including the effect of the boundary condi-
tion) for the two-dimensional heat equation with u(x, y) = 0 on the four
sides of a square if Ax = Ay.

6.4.3. Derive the stability condition (ignoring the boundary condition) for the
three-dimensional heat equation if Ox = Ay = Az.

6.4.4. Solve numerically the heat equation on a rectangle 0 < x < 1, 0 < y < 2
with the temperature initially zero. Assume that the boundary conditions
are zero on three sides, but u = 1 on one long side.

6.5 Wave Equation
We may also compute solutions to the one-dimensional wave equation by introducing
finite difference approximations. Using centered differences in space and time,
the wave equation,

82u 82u- c2 (6.5.1)
8t2 8x2 ,

becomes the following partial difference equation,

(m+1) (m) (m-1) (m) (m) (m)u - 2u + uj - C2uj+l - 2uj + uj-1
(6.5.2)

(At)2 (Ax)2

The truncation error is the sum of a term of O(Ax)2 and one of O(At)2. By
solving (6.5.2) for the solution may be marched forward in time. Three
levels of time are involved in (6.5.2), as indicated in Fig. 6.5.1. u(x,t) is needed
"initially" at two values of t (0 and -At) to start the calculation. We use the two
initial conditions for the wave equation, u(x, 0) = f (x) and 8u/et(x, 0) = g(x), to
compute at m = 0 and at m = -1. Using a centered difference in time for 8u/8t
[so as to maintain an O(At)2 truncation error] yields

f (x1) = f (9Ax) (6.5.3)

U(') - u(-1)
3 i = A )) =( ( 4)6 5x .g g 9xi2At ( . .
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t+At

t - at
x- Ax X x+Ax

Figure 6.5.1 Marching forward in time
for the wave equation.

To begin the calculation we must compute The initial conditions, (6.5.3) and
(6.5.4), are two equations in three unknowns, t4' . The partial difference
equation at t = 0 provides a third equation:

C2 -i4' = 2 (u)1 - 2u4°) + (6.5.5)
(Ox/At)

may be eliminated from (6.5.4) and (6.5.5) since uj(°) is known from (6.5.3). In

this way we can solve for ui-1). Once and uj(°) are known, the later values of
u may be computed via (6.5.2). Boundary conditions may be analyzed as before.

Stability. Our limited experience should already suggest that a stability anal-
ysis is important. To determine if any spatially periodic waves grow, we substitute

u(m) = Qt/Ateiax
J (6.5.6)

into (6.5.2), yielding

Q-2+Q=a, (6.5.7)

where

r =
C2 2c2( -iaAx)saAx - 2 + ) - 1][ ( O 8)(6 5eo .e cos a x

(0X Ot)2 (Ox/&t)2
..

Equation (6.5.7) is a quadratic equation for Q since (6.5.2) involves three time levels
and two time differences:

Q2-(a+2)Q+1=0 andthus Q=a+2f (a+2)2 _ 4 (6.5.9)

The two roots correspond to two ways in which waves evolve in time. If -2 <
a+2 < 2, the roots are complex conjugates of each other. In this case (as discussed
earlier)

iQm = (reie)m = ,r,meme
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where r = IQI and 9 = arg Q. Since

IQI2 =
(o + 2)2 +4-(o,+2)2

4 4

the solution oscillates for fixed x as m (time) increases if -2 < o + 2 < 2. This is
similar to the wave equation itself, which permits time periodic solutions when the
spatial part is periodic (e.g., sin nirx/L cos n-7rct/L). If o + 2 > 2 or or + 2 < -2, the
roots are real with product equal to 1 [see (6.5.9)]. Thus, one root will be greater
than one in absolute value, giving rise to an unstable behavior.

The solution will be stable if -2 < o + 2 < 2 or -4 < or < 0. From (6.5.8) we
conclude that our numerical scheme is stable if

Ox/At S 1, (6.5.10)

known as the Courant stability condition (for the wave equation). Here c is the
speed of propagation of signals for the wave equation and Ox/.t is the speed of
propagation of signals for the discretization of the wave equation. Thus, we conclude
that for stability, the numerical scheme must have a greater propagation
speed than the wave equation itself. In this way the numerical scheme will be
able to account for the real signals being propagated. The stability condition again
limits the size of the time step, in this case

At < Ax. (6.5.11)
c

Convergence. The time dependent part oscillates if -2 < a + 2 < 2 (the
criterion for stability)

Qt1"t = ei At ar6 Q (6.5.12)

We note that if a0x is small (where a is the wave number usually n7r/L), then
cos(aLX) 1 -

z
(a0x)2 from its Taylor series. Thus, the parameter a is small

and negative

-1(aAx)2 2c2a z2 (Ox/At)
In this case the temporal frequency of the solutions of the partial difference equations
is

tan- 4-(-t2)2 1 N( -(0+2)2 1 N(r/g Q
- 1\ 0+2

",+2
/f +z o)

ca, (6.5.13)
At At of At

since a is very small and negative and tan ¢ : 0 for small angles ¢. Equation
(6.5.13) shows that the temporal frequency of the partial difference equation ap-
proaches the frequency of the partial differential equation. Perhaps this is clearer
by remembering that a is the wave number usually nir/L. Thus, if aLx is small
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the partial difference equation has solutions that are approximately the same as the
partial differential equation:

Qt/Ate" = eiwi argQeictx N eiQaeicat

It can also be shown that the error (difference between the solutions of the partial
difference and differential equations at fixed x and t) is O(At) if tOx is small. It is
usual to compute with fixed Ox/At. To improve a computation, we cut Ax in half
(and thus At will be decreased by a factor of 2). Thus, if a Ax << 1 with Ax/At
fixed, numerical errors (at fixed x and t) are cut in half if the discretization step
size Lax is halved (and time step At is halved). All computations should be done
satisfying the Courant stability condition (6.5.10).

EXERCISES 6.5
6.5.1. Modify the Courant stability condition for the wave equation to account for

the boundary condition u(0) = 0 and u(L) = 0.

6.5.2. Consider the wave equation subject to the initial conditions

1 4 < x <
4u(x, 0)

0 otherwise

j(x,0) = 0

and the boundary conditions

u(0, t) = 0
u(L, t) = 0.

Use nine interior mesh points and compute using centered differences in
space and time. Compare to the exact solution.

(a) At = Ox/2c
(b) At = Ox/c
(c) At = 2Ax/c

6.5.3. For the wave equation, u(x, t) = f (x - ct) is a solution, where f is an
arbitrary function. If c = Ax/At, show that u,' = f (xj - ct,n) is a solution
of (6.5.2) for arbitrary f .

6.5.4. Show that the conclusion of Exercise 6.5.3 is not valid if c 76 Ox/At.

6.5.5. Consider the first-order wave equation

a+cOx=0.

(a) Determine a partial difference equation by using a forward difference
in time and a centered difference in space.
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*(b) Analyze the stability of this scheme (without boundary conditions).

*6.5.6. Modify Exercise 6.5.5 for centered difference in space and time.

6.5.7. Solve on a computer (using 6.5.2) the wave equation 82u/8t2 = 82u/8x2
with u(0, t) = 0, u(1, t) = 0, u(x, 0) = sin ax and &u/&(x, 0) = 0 with
Ax = 1/100. For the initial condition for the first derivative Ou/8t(x, 0) = 0
use a forward difference instead of the centered difference (3.5.4). Compare
to analytic solution at x = 1/2, t = 1 by computing the error there (the
difference between the analytic solution and the numerical solution). Pick
At so that

(a) Ax/At = 1.5 (b) Ax/At = 0.5
(c) To improve the calculation in part (a), let Ax = 1/200

but keep Ax/At = 1.5.
(d) Compare the errors in parts (a) and (c).

6.6 Laplace's Equation
Introduction. Laplace's equation

V2u=0 (6.6.1)

is usually formulated in some region such that one condition must be satisfied along
the entire boundary. A time variable does not occur, so that a numerical finite
difference method must proceed somewhat differently than for the heat or wave
equations.

Using the standard centered difference discretization, Laplace's equation in two
dimensions becomes the following partial difference equation (assuming that Ax =
Dy)

uj+1,1 + uj_1,1 + uj,1+1 + uy,1_1 - 4uj,1 = 0, (6.6.2)(Qx)2

where, hopefully, uj,1 u(j Ax, 1 Ay).
The boundary condition may be analyzed in the same way as for the heat and

wave equations. In the simplest case it is specified along the boundary (composed
of mesh points). The temperatures at the interior mesh points are the unknowns.
Equation (6.6.2) is valid at each of these interior points. Some of the terms in
(6.6.2) are determined from the boundary conditions, but most terms remain un-
known. Equation (6.6.2) can be written as a linear system. Gaussian elimination
can be used, but in many practical situations the number of equations and unknowns
(equaling the number of interior mesh points) is too large for efficient numerical cal-
culations. This is especially true in three dimensions, where even a coarse 20 x 20 x 20
grid will generate 8000 linear equations in 8000 unknowns.
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By rearranging (6.6.2), we derive

ui+1,1 + ui-1,1 + ui,1+1 + Uj,t-1
ui,t = 4 (6.6.3)

The temperature ui,t must be the average of its four neighbors. Thus, the solution
of the discretization of Laplace's equation satisfies a mean value property. Also from
(6.6.3) we can prove discrete maximum and minimum principles. These properties
are analogous to similar results for Laplace's equation itself (see Sec. 2.5.4).

Jacobi iteration. Instead of solving (6.6.3) exactly, it is more usual to
use an approximate iterative scheme. One should not worry very much about the
errors in solving (6.6.3) if they are small since (6.6.3) already is an approximation
of Laplace's equation.

We cannot solve (6.6.3) directly since the four neighboring temperatures are not
known. However, the following procedure will yield the solution. We can make an
initial guess of the solution, and use the averaging principle (6.6.3) to,"update" the
solution:

(new) 1 (old)
ui,1 = 4

(ui+i,t + ui_l.t + ui t_1 + ui,t+1)

We can continue to do this, a process called Jacobi iteration. We introduce the
notation for the initial guess, u? i) for the first iterate [determined from u(°)

u i) for the second iterate (determined from u t)), and so on. Thus, the (m + 1)st
iterate satisfies

,u(in+1) _

4

1 /u(m) + u("`) + u+ 11(m)y.! ( +1,t 1,t j,t+1 ,7,t-1/ (6.6.4)

If the iterates converge, by which we mean that if

(m+1)lim ui
1m-.oo

then (6.6.4) shows that vi,t satisfies the discretization of Laplace's equation (6.6.3).
Equation (6.6.4) is well suited for a computer. We cannot allow m -+ oo. In

practice we stop the iteration process when is small (for all j and
1). Then +1) will be a reasonably good approximation to the exact solution vi,,
(Recall that vi,1 itself is only an approximate solution of Laplace's equation.)

The changes that occur at each updating may be emphasized by writing Jacobi
iteration as

u(m+1) = u(m)
+ 4

ru(m) + u(m) + ,u(m) + u( 4u(m) .

j" j,1 i+1, 1,1 i,1+1 i,t-1 - 7,1

)
J (6.6.5)
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In this way Jacobi iteration is seen to be the standard discretization (centered spatial
and forward time differences) of the two-dimensional diffusion equation, 8u/8t =
k(82u/8x2 + 82u/8y2), with s = k At/(Ax)2 = a [see (6.4.4)). Each iteration
corresponds to a time step At = (0x)2/4k. The earlier example of computing the
heat equation on an L-shaped region (see Section 6.4) is exactly Jacobi iteration.
For large m we see the solution approaching values independent of m. The resulting
spatial distribution is an accurate approximate solution of the discrete version of
Laplace's equation (satisfying the given boundary conditions).

Although Jacobi iteration converges, it will be shown to converge very slowly.
To analyze roughly the rate of convergence, we investigate the decay of spatial
oscillations for an L x L square (Ox = Ay = L/N). In (6.6.4), m is analogous to
time (t = mLt), and (6.6.4) is analogous to the type of partial difference equation
analyzed earlier. Thus, we know that there are special solutions

Qmei(ax+OY) (6.6.6)

where a = nl7r/L, 3 = n21r/L, ni = 1, 2, ..., N - 1. We assume that in this
calculation there are zero boundary conditions along the edge. The solution should
converge to zero as m - oo; we will determine the speed of convergence in order to
know how many iterations are expected to be necessary. Substituting (6.6.6) into
(6.6.4) yields

Q= 4 (eiaax + e-iaAx + e"04'' + e-1 ) = 2 (cos aAx + c os O AY) .

Since -1 < Q < 1 for all a and (.3, it follows from (6.6.6) that u( i) = 0, as
desired. However, the convergence can be very slow. The slowest rate of convergence
occurs for Q nearest to 1. This happens for the smallest and largest a and /3,
a = ,0 = 7r/L and a = (3 = (N - 1)ir/L, in which case

2

IQI = cos cos N 1 - 2 N2 , (6.6.7)

since Ox = L/N and N is large. In this case IQIt is approximately [1 -
2

(7r/N)2]'".
This represents the error associated with the worst spatial oscillation on a square.
If N is large, this error converges slowly to zero. For example, for the error to be
reduced by a factor of 2 ,

1 alt 1

[1 2\NI j -2
Solving for m using natural logarithms yields

m log 1 - 2 (N)
2=

-log 2.

A simpler formula is obtained since it/N is small. From the Taylor series for x
small, log(1 - x) -x, it follows that the number of iterations m necessary to
reduce the error by 2 is approximately

M _ log2 - N22log2
(ir/N)2 - n2
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using Jacobi iteration. The number of iterations required may be quite large, pro-
portional to N2 the number of lattice points squared (just to reduce the error in
half).

Gauss-Seidel iteration. Jacobi iteration is quite time consuming to com-
pute with. More important, there is a scheme which is easier to implement and
which converges faster to the solution of the discretized version of Laplace's equa-
tion. It is usual in Jacobi iteration to obtain the updated temperature u(m+1) first
in the lower left spatial region. Then we scan completely across a row of mesh
points (from left to right) before updating the temperature on the next row above
(again from left to right), as indicated in Fig. 6.6.1. For example,

(m+1) _ 4 (U(-) (m) (m) (m)1
7L3,8 712,8 + u3,7 + u3.9 + v'4,8 J

In Jacobi iteration w e use the old values u2 8), u3 7), u3 9 , u4 8) even though new

values for two, u3 and u28t1), already have been calculated. In doing a com-
puter implementation of Jacobi iteration, we cannot destroy immediately the old
values (as we have shown some are needed even after new values have been calcu-
lated).

4,7 4,8 4,9. .

3,7 3,8 3,9

2,7 2,8 2:
Figure 6.6.1 Gauss-Seidel iteration.

The calculation will be easier to program if old values are destroyed as soon as
a new one is calculated. We thus propose to use the updated temperatures when
they are known. For example,

(m+1) _ / (m+1) (m) (m+1) (m)1
u3.8 u2,8 + u4 8 + u3 3,7 + u3,9 J

In general, we obtain

u3(m+1) = 4 u(m) + u(m+1) + u( m) I (6.6.8)

known as Gauss-Seidel iteration. If this scheme converges, the solution will
satisfy the discretized version of Laplace's equation.

There is no strong reason at this point to believe this scheme converges faster
than Jacobi iteration. To investigate the speed at which Gauss-Seidel converges (for
a square), we substitute again

u(*n) = Qmei(ax+Rv), (6.6.9
7.1 )
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where
a= n1it

L
2271,!3= L ni=1, 2, ..., N-1.

The result is that

Q = 4 [eiaAx + ei0oy + Q (e-ia0x + e-iQ°v)}
. (6.6.10)

To simplify the algebra, we let l

z=
eiaAx + ei0ov

4
(6.6.11)

and thus obtain Q = z/(1-z). Q is complex, Q = IQleie U(-) = IQImei0mei(ax+Ov)
j'I

The convergence rate is determined from IQI,

2 = zz _ Iz12 _ £2
+77

2 + r/2
IQI (1 - 1)(1 - z) 1 + IzI2 - Re(z) + £2 +,n2 e)2 + 172

(6.6.12)
Since IzI < z and thus IQI < Z, it follows that IQI < 1, yielding the convergence
of Gauss-Seidel iteration. However, the rate of convergence is slow if IQI is near 1.
Equation (6.6.12) shows that IQI is near 1 only if is near 1, which (6.6.11) requires
a and 3 to be as small as possible. For a square, a = ir/L and 3 = it/L, and thus

-L
s i n

7rAx1
cos

7r L
and 77 =

2
1

L

Therefore,

1

IQI2 =
_ 1 _ 1 _ it 2

1 - 2 )
5 - 4 cos irOx/ L 5 - 4 cos 7r/N + 2(7r/N)2

(N

since 7r/N is small. Thus

)2

IQI is twice as far from 1 compared to Jacobi iteration [see (6.6.7)]. By doing
the earlier analysis, half the number of iterations are required to reduce the error
by any fixed fraction. Jacobi iteration should never be used. Gauss-Seidel iteration
is a feasible and better alternative.

S-O-R. Both Jacobi and Gauss-Seidel iterative schemes require the number
of iterations to be proportional to N2, where N is the number of intervals (in one
dimension). A remarkably faster scheme is successive overrelaxation, or simply
S-O-R.

Gauss-Seidel can be rewritten to emphasize the change that occurs at each
iteration

U(M) + 4 f
uml,l + uj+1,1) +

U(M)

1 + u' It+i - 4u'i`), .
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The bracketed term represents the change after each iteration as u(m) is updated3,i

to +1). Historically, it was observed that one might converge faster if larger
or smaller changes were introduced. Gauss-Seidel iteration with a relaxation pa-
rameter w yields an 3-O-R iteration:

w [ujmi,t + uj+i t) + u i`1 + ui 1+11) - 4u(-)] . (6.6.13)

If w = 4, this reduces to Gauss-Seidel. If S-O-R converges, it clearly converges
to the discretized version of Laplace's equation. We will choose w so that (6.6.13)
converges as fast as possible.

We again introduce
u(m) = Qmei(ax+QY)

in order to investigate the rate of convergence, where a = nlrr/L, 6 = n27r/L,
ni = 1, 2, ... , N - 1. We obtain

Q = 1 + w ((eia&x + eiAoy + Q (e-ia&x + e-ioay) - 41

The algebra here is somewhat complicated. We let z = w l(eiaLlx + ei0ay) _ + ir)
and obtain Q = (1- 4w + z)/(1- z). Q is complex; IQI determines the convergence
rate

IQ12 =
(1 - 4w + )2 + 772

- )2S+

172

Again Izi < 2w and thus Itl < 2w. In Exercise 6.6.1 we show IQJ < 1 if w < 21
guaranteeing the convergence of S-O-R. If w < 2, IQI is near 1 only if C is near 2w.
This occurs only if a and i3 are as small as possible; (for a square) a = rr/L and
/3 = ir/L and thus l; = 2w cos irAx/L and r] = 2w sin rrOx/L. In this way

IQI2 =
4w2 + (1 - 4w)2 + (1 - 4w)4w cos(A/N)

4w2 + 1 - 4w cos(ir/N)

Exercise 6.6.1 shows that IQI2 is minimized if w = 2 - (' /2) 1 - cos rr/N. Since
rr/N is large, we use (for a square) w = 2(1 - in/N), in which case

IQI~1-2N'
see Exercise 6.6.2. With the proper choice of w, IQI, although still near 1, is an order
of magnitude further away from 1 than for either Jacobi or Gauss-Seidel iteration.
In fact (see Exercise 6.6.2), errors are reduced by 1 in S-O-R with the number of
iterations being proportional to N (not N2).

For nonsquare regions, the best w for S-O-R is difficult to approximate. However,
there exist computer library routines that approximate w. Thus, often S-O-R is a
practical, relatively quickly convergent iterative scheme for Laplace's equation.

Other improved schemes have been developed, including the alternating direc-
tion-implicit (ADI) method, which was devised in the mid-1950s by Peaceman,
Douglas, and Rachford. More recent techniques exist, and it is suspected that
better techniques will be developed in the future.
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EXERCISES 6.6

6.6.1. (a) Show that JQI < 1 if w < z in S-O-R.

(b) Determine the optimal relaxation parameter w in S-O-R for a square,
by minimizing IQ12.

6.6.2. (a) If w =
2

(1 - 7r/N), show that JQJ 1 - in/2N (for large N) in S-0-11.

(b) Show that with this choice the number of iterations necessary to reduce
the error by z is proportional to N (not N2).

6.6.3. Describe a numerical scheme to solve Poisson's equation

DZU = f (x, y),

(assuming that Ox = Ay) analogous to

(a) Jacobi iteration

(b) Gauss-Seidel iteration

(c) S-O-R

6.6.4. Describe a numerical scheme (based on Jacobi iteration) to solve Laplace's
equation in three dimensions. Estimate the number of iterations necessary
to reduce the error in half.

6.6.5. Modify Exercise 6.6.4 for Gauss-Seidel iteration.

6.6.6. Show that Jacobi iteration corresponds to the two-dimensional diffusion
equation, by taking the limit as Ox = Ay --* 0 and At 0 in some
appropriate way.

6.6.7. What partial differential equation does S-O-R correspond to? (Hint: Take
the limit as Ax = Ay - 0 and At - 0 in various ways.) Specialize your
result to Gauss-Seidel iteration by letting w = 4.

6.6.8. Consider Laplace's equation on a square 0 < x < 1, 0 < y < 1 with u = 0
on three sides and u = 1 on the fourth.

(a) Solve using Jacobi iteration (let Ax = Ay = io ).
(b) Solve using Gauss-Seidel iteration (let Ox = Ay = io
(c) Solve using S-0-R iteration [let Ox = Ay = o and w = a
(d) Solve by separation of variables. Evaluate numerically the first 10 or

20 terms.

(e) Compare as many of the previous parts as you did.
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6.7 Finite Element Method
In our modern world, many interesting physical problems formulated by partial
differential equations are solved on the computer (including personal computers).
Finite difference methods may be used to approximate the continuous partial dif-
ferential equation by a large number of difference equations. We describe another
method known as the finite element method. For more in-depth explanations, we
refer the reader to Strang (1986).

6.7.1 Approximation with Nonorthogonal Functions
(Weak Form of the Partial Differential Equation)

We solve a relatively simple partial differential equation, Poisson's equation in two
dimensions with homogeneous boundary conditions,

V2u = f (x, y) with u = 0 on the closed boundary, (6.7.1)

where f (x, y) is given. In problems whose geometry is not rectangular or circular,
the method of separation of variables may be difficult or impossible. As an example,
we consider the complicated 10-sided polygonal geometry as illustrated in Figure
6.7.1.

Figure 6.7.1 Region (polygonal
example).

We approximate the solution with a large number of test functions T, (x, y),
which have nothing to do with the partial differential equation nor their eigenfunc-
tions. However, we assume the test functions satisfy the corresponding homogeneous
boundary conditions:

T; (x, y) = 0 on the closed boundary. (6.7.2)

We introduce U(x, y), an approximation to the solution u(x, y) using a series
(linear combination) of these test functions (instead of a series of eigenfunctions):

n

U(x,
Y)

= E UUTT (x, y) (6.7.3)

In practice, we use a large number n of test functions, and with computers today
thousands are easily included.
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We cannot insist that our approximation satisfies the partial differential equation
(6.7.1). Instead, we determine the n constants so that the approximation satisfies
the n conditions known as the weak form of the partial differential equation. We
insist that the left- and right-hand sides of the partial differential equation (6.7.1)
when multiplied by each trial function T; (x, y) and integrated over the entire region
are the same:

if V2uTi dA = if fT; dA, (6.7.4)

R R

where dA = dx dy. We can simplify this by integrating the left-hand side by parts.
Using V (T;Du) = T;V2u + VT; Vu, we obtain

fJ[v. (T;Vu) - VTf Du] dA = if fTs dA. (6.7.5)

R R

Now we use the (two-dimensional) divergence theorem (ff V B dA = 5 B i ds,
R

where ds is differential arc length), and we obtain if OT; Vu dA = 5 T;Du n ds -
R

if fT; dA. Since the boundary contribution vanishes, ¢T;Vu suds = 0, because
R

the trial functions satisfy the homogeneous boundary conditions (6.7.2), we obtain
the weak form (Galerkin) of the partial differential equation:

if fT;dA. (6.7.6)

R R

All solutions u(x, y) of the partial differential equation (6.7.1) satisfy the weak
form (6.7.6). We insist that our approximation U(x, y) (6.7.3) satisfies the weak
form:

Uj If VT; VTj dA = - f r fT; dA. (6.7.7)
7=1 R

This is n equations for the n unknown coefficients U;, (one equation for each test
function).

We introduce the symmetric stiffness matrix K with entries K;j = Kj;:

K;j = ff VT; OTC dA (6.7.8)

R

and the vector F with entries F;:
r r

F; fT; dA. (6.7.9)

The n equations, (6.7.7),

R

n

EKjUj = F;, (6.7.10)
j=1
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can be written in matrix form:
KU = F. (6.7.11)

With given test functions the right-hand side of (6.7.11) is known. Our solution is

U = K-1F. (6.7.12)

However, a computational solution will usually be obtained without finding the
general inverse of the usually very large n x n matrix K.

Orthogonal two-dimensional eigenfunctions. If the boundary was
exceptionally simple, then we could use trial functions that are two-dimensional
eigenfunctions T; (x, y) = O; (x, y) satisfying

(6.7.13)

These eigenfunctions are orthogonal in a two-dimensional sense (see Sec. 7.5):

if if i 34 j. (6.7.14)

R

In the Exercises we show that integration by parts is not necessary, so that there
is an alternate expression for the stiffness matrix that can be derived directly from
(6.7.4):

K' - /J T'V2T, dA - Jf O'02-0j dA aj J -0t0j dA, (6.7.15)R lRI

using (6.7.13). Using the two-dimensional orthogonality of eigenfunctions (6.7.14),
we see that the stiffness matrix is diagonal:

K;;=0 ifi j. (6.7.16)

The diagonal elements from (6.7.15) are given by

K;; =A; rj0?dA. (6.7.17)

R

The approximate solution is given by the finite series (6.7.3), where the coefficients
are easily determined from (6.7.11) or (6.7.12) (if A = 0 is not an eigenvalue):

p-.,
U; = (6.7.18)

;

where K;; is given by (6.7.17). This approximate solution is a truncation of an
infinite series of orthogonal functions. An example of this infinite series is described
in a small portion of Sec. 8.6.
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Galerkin numerical approximation for frequencies (eigen-
values). Suppose we wish to obtain a numerical approximation to the frequen-
cies of vibration of a membrane with shape perhaps as sketched in Figure 6.7.1.
In Sec. 7.2, it is shown that a vibrating membrane satisfies the two-dimensional
wave equation e = c2V2u with u = 0 on the boundary. After separation of
time, u = 46(x, y)h(t), the frequencies of vibration cf are determined from the
eigenvalue problem

020 = -A4 (6.7.19)

with = 0 on the boundary. Since (6.7.19) corresponds to (6.7.1) with the right-
hand side f (x) = -At, the Galerkin method may be used to approximate the
eigenvalues and the eigenfunctions. The eigenfunction can be approximated by a
series of test functions (6.7.3), O(x, y) = >. 1 cjTj (x, y). Using the weak form
(6.7.6) of the partial differential equation (6.7.19), the left-hand side of (6.7.7) can
be again written in terms of the stiffness matrix K. However, the right-hand side
of (6.7.7) using f (x) _ -)4 involves a different matrix M, so that the matrix form
(6.7.11) becomes

K¢ = .\MO, (6.7.20)

where we introduce the vector 0 with entries 4i and where the symmetric mass
matrix M with entries given by

=TdA. (6.7.21)MIA = ff T

The neigenvalues of (6.7.20) or M-'K approximate the eigenvalues of (6.7.19).
The approximation improves as n increases. Strang [1986] shows that, instead of
computing the eigenvalues of M-1K directly, it is better to use the Cholesky de-
composition of the mass matrix M.

Finite elements. The trial functions we will use are not orthogonal so
that the stiffness matrix will not be diagonal. However, finite elements will yield a
stiffness matrix that has many zeros, known as a sparse matrix. In practice, the
stiffness matrix is quite large and general methods to obtain its inverse as needed
in (6.7.12) are not practical. However, there are practical methods to obtain the
inverse since we will show that the stiffness matrix will be sparse.

6.7.2 The Simplest Triangular Finite Elements
One of the simplest ways to approximate any region is to break up the region into
small triangles. The approximation improves as the number of triangles increases
(and the size of the largest triangle decreases). We describe the method for a polyg-
onal region. There are many ways to divide the region up into triangles (forming a
triangular mesh). You can begin by dividing the region into triangles in a somewhat
arbitrary way.
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Figure 6.7.2 Triangulated region
(not unique).

Let us first describe a very course mesh for our 10-sided figure (see Fig. 6.7.1).
We somewhat arbitrarily pick 4 interior points forming 16 triangles (see Figure
6.7.2). In general,

number of triangles
= number of boundary triangles -2 + 2 (number of interior points). (6.7.22)

This is easily seen by counting the interior angles of the triangles (180 times the
number of triangles) in a different way. Each interior point is completely surrounded
(360 times the number of interior points) and the angles around the boundary points
are the interior angles of a polygon (180 times number of sides minus two).

The four interior points (xi, yi) give four unknowns U(xi, yi). This gives us a
four-dimensional vector space. We choose the test functions as the simplest ba-
sis functions of the four-dimensional vector space. We choose the test function
Ti(x,y) such that Ti(xi,yi) = 1, Tl(x2,y2) = 0,Ti(x3,y3) = 0,T1(x4,y4) = 0.
Similarly, the test function T2(x, y) is chosen to satisfy T2(xl, yi) = 0, T2(x2,Y2) =
1, T2 (x3, y3) = 0, T2 (x4, y4) = 0, and so on. This is easily generalized to many more
than three interior points (test functions).

Our approximation to the partial differential equation is (6.7.3), a linear combi-
nation of the four test functions,

4

U(x, Y) _ E U;TT y)

Note that we have the very nice property that

U(xl, yl) = U1
U(x2, Y2) = U2 (6.7.23)

U(x3, Y3) = U3
U(x4, Y4) = U4.

Here the coefficients are precisely the function evaluated at the nth point. That
is why we use the notation U; for the coefficients. In this way we have obtained
a set of difference equations (6.7.10) or (6.7.11), where the stiffness matrix will be
shown to be sparse. Because of (6.7.23), these represent difference equations for
the value of u at each interior point. Thus, the difference equations derived by the
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Figure 6.7.3 Four trial functions (one corresponds to each interior point).

finite element method are usually different from the difference equations that are
derived by finite difference methods.

Our trial functions need to be defined everywhere, not just at the interior points.
There are different finite elements, and we describe the simplest. We assume each
trial function is linear (and looks line a simple plane) in each triangular region.
Each trial function will be peaked at 1 and will linearly and continuously decay to 0
within the set of triangles that surrounds that vertex. Each trial function looks like
a pyramid. Each trial function will be identically zero for those regions
that do not connect to the one peaked vertex. The four trial functions for
this problem are illustrated in Fig. 6.7.3. When there is a large number of degrees
of freedom (vertices, trial functions), then each trial function is identically zero over
most of region.

Calculation of stiffness matrix. The stiffness matrix,

K;j = ff VT; VT, dA, (6.7.24)
R

is best calculated by summing up (called assembling) its contributions for each
small triangular finite element. The entries of the stiffness matrix will be non-
zero only for its diagonal entries and for entries corresponding to adjacent interior
vertices. The entries for the stiffness matrix will be zero corresponding to non-
adjacent interior vertices (since each trial function is mostly zero). The stiffness
matrix will be sparse when there are many interior points.

The diagonal entries of the stiffness matrix corresponding to a specific interior
vertex will be assembled only from the triangles that surround that interior vertex.



6.7. Finite Element Method 273

The entries of the stiffness matrix corresponding to adjacent interior vertices will
be assembled from the two small triangles with the side in common from the line
connecting the two adjacent interior vertices.

For a specific triangle with interior angles O , it can be shown (in the Exercises)
that the diagonal contributions satisfy

k11 = portion of K11 due to specific triangle =
2 tan B2 + 2 tan B3 '

etc.,

and the contributions to adjacent vertices are

k12 = portion of K12 due to specific triangle = - 1 etc.
2-tan03

Mesh refinement. We begin with a specific mesh (for example, with four
interior points as in Fig. 6.7.2). Then it is usual to obtain a finer mesh by subdividing
each triangle by connecting the midpoints of each side. In this way each triangle
becomes four similar triangles (see Figure 6.7.4). Keeping similar triangles in the
process can make numerical procedures somewhat easier since the above preceding
formula shows that additional calculations are not needed for the stiffness matrix
after the first mesh.

Figure 6.7.4 Refined mesh (each
triangle).

EXERCISES 6.7

6.7.1. Consider a polygonal region of your choice. Sketch the trial functions:

(a) Assuming 5 sided figure with 2 interior points
(b) Assuming 5 sided figure with 3 interior points
(c) Assuming 5 sided figure with 5 interior points
(d) Assuming 5 sided figure with 7 interior points

6.7.2. For the finite elements of Exercise 6.7.1, which entries of the stiffness matrix
are zero?

6.7.3. Derive a formula for K;., from (6.7.4).

6.7.4. Show that f(VU)2 dA = UT KU. Thus, the entire matrix K can be identi-
R

fled by calculating this integral.
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6.7.5. Show (by completing square of quadratics) that the minimum of

ff 1
(VU)2 - f(z,y)UI dA,

R

where U satisfies (6.7.3), occurs when KU = F.

6.7.6. Consider a somewhat arbitrary triangle (as illustrated in Figure 6.7.5) with
P1 = (0, 0), P2 = (L, 0), P3 = (D, H) and interior angles 6 . The solution on
the triangle will be linear U = a + bx + cy.

Figure 6.7.5 Triangular finite element.

(a) Show that ff (DU)2 dA = (b2 + c2)
Z

LH.
R

(b) The coefficients a, b, c are determined by the conditions at the three
vertices U(PP) = U. Demonstrate that a = Ul,b = Ua U , and c =
U3-Ul- (U2-Ul)

(c) Show that to = D77

Fan B2 = LL HD, and using tan 63 = -tan(61 +
B2) =

tan6,+tanos show that 1 - If D +
°-7

tanBitanBa-1 tan 03 - T H HL'
(d) Using Exercise 6.7.4 and parts (a), (b), (c) of this exercise, show that

for the contribution from this one triangle, K12 = - 2 tn 3 . The other
entries of the stiffness matrix follow in this way.

6.7.7. Continue with part (d) of Exercise 6.7.6 to obtain

(a) K11 (b) K22 (c) K33 (d) K23 (e) K13



Chapter 7

Higher Dimensional
Partial Differential Equations

7.1 Introduction
In our discussion of partial differential equations, we have solved many problems
by the method of separation of variables, but all involved only two independent
variables:

au

au

cp at

092 9'u
ax-2 ay2 =

0

_ a2u a2u
k8z2 8t2 = C2

82u
8x2

a au 1 a2u a2 U

az
(Ko

ex /1 p 8t2 - To 8x2 .

In this chapter we show how to extend the method of separation of variables to
problems with more than two independent variables.

In particular, we discuss techniques to analyze the heat equation (with constant
thermal properties) in two and three dimensions,

2

= k it di ) 17 1z2 + 1 wo mens ons( ( .. )

2 2au =
k ( +

th di i ) 7 1 2
t az2a aye + 8z2)

mensree ons( ( . . )

for various physical regions with various boundary conditions. Also of interest will
be the steady-state heat equation, Laplace's equation, in three dimensions,

a2u 82u 82u
8z2 + 8y2 + 8z2 = 0.

275
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In all these problems, the partial differential equation has at least three indepen-
dent variables. Other physical problems, not related to the flow of thermal energy,
may also involve more than two independent variables. For example, the vertical
displacement u of a vibrating membrane satisfies the two-dimensional wave equation

a2u 2 C72u 02u
ate = C ( ax2 + 49y2 )

It should also be mentioned that in acoustics, the perturbed pressure u satisfies the
three-dimensional wave equation

aZu _ 2 /a2u 4921 a2u)
ate - C t` 4922 + ayz + aZZ

We will discuss and analyze some of these problems.

7.2 Separation of the Time Variable
We will show that similar methods can be applied to a variety of problems. We will
begin by discussing the vibrations of a membrane of any shape, and follow that with
some analysis for the conduction of heat in any two- or three-dimensional region.

7.2.1 Vibrating Membrane: Any Shape
Let us consider the displacement u of a vibrating membrane of any shape. Later
(Sees. 7.3 and 7.7) we will specialize our result to rectangular and circular mem-
branes. The displacement u(x, y, t) satisfies the two-dimensional wave equation:

02u _ 2 02u a2u
49t2 - C ( ax2 + 5y2 )

The initial conditions will be

(7.2.1)

u(x, y, 0) = «(x, y) (7.2.2)

at (x, y, 0) = Q(x, y), (7.2.3)

but as usual they will be ignored at first when separating variables. A homoge-
neous boundary condition will be given along the entire boundary; u = 0 on the
boundary is the most common condition. However, it is possible, for example, for
the displacement to be zero on only part of the boundary and for the rest of the
boundary to bf "free." There are many other possible boundary conditions.

Let us now apply the method of separation of variables. We begin by showing
that the time variable can be separated out from the problem for a membrane of
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any shape by seeking product solutions of the following form:

u(x, y, t) = h(t)4(x, y). (7.2.4)

Here ¢(x, y) is an as yet unknown function of the two variables x and y. We do
not (at this time) specify further O(x, y) since we might expect different results
in different geometries or with different boundary conditions. Later, we will show
that for rectangular membranes O(x, y) = F(x)G(y), while for circular membranes
O(x, y) = F(r)G(B); that is, the form of further separation depends on the geometry.
It is for this reason that we begin by analyzing the general form (7.2.4). In fact,
for most regions that are not geometrically as simple as rectangles and circles,
O(x, y) cannot be separated further. If (7.2.4) is substituted into the equation for a
vibrating membrane, (7.2.1), then the result is

z a
2(x, y)d22

= c h(t) I z + y (7.2.5)

We will attempt to proceed as we did when there were only two independent vari-
ables. Time can be separated from (7.2.5) by dividing by h(t)¢(x, y) (and an addi-
tional division by the constant c2 is convenient):

z

hat -
(aX2+ay2)=-a.

(7.2.6)

The left-hand side of the first equation is only a function of time, while the right-
hand side is only a function of space (x and y). Thus, the two (as before) must equal
a separation constant. Again, we must decide what notation is convenient for the
separation constant, A or -A. A quick glance at the resulting ordinary differential
equation for h(t) shows that -A is more convenient (as will be explained). We thus
obtain two equations, but unlike the case of two independent variables, one of the
equations is itself still a partial differential equation:

d2h = -Ac2h
dt2

20 z

8x2 + ay

(7.2.7)

(7.2.8)

The notation -A for the separation constant was chosen because the time-dependent
differential equation (7.2.7) has oscillatory solutions if \ > 0. If A > 0, then
h is a linear combination of sin cwt and cos cft; it oscillates with frequency
cf. The values of ,1 determine the natural frequencies of oscillation of a vibrating
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membrane. However, we are not guaranteed that A > 0. To show that A > 0,
we must analyze the resulting eigenvalue problem, (7.2.8), where 0 is subject to
a homogeneous boundary condition along the entire boundary (e.g., 0 = 0 on the
boundary). Here the eigenvalue problem itself involves a linear homogeneous partial
differential equation. Shortly, we will show that A > 0 by introducing a Rayleigh
quotient applicable to (7.2.8). Before analyzing (7.2.8), we will show that it arises
in other contexts.

7.2.2 Heat Conduction: Any Region
We will analyze the flow of thermal energy in any two-dimensional region. We begin
by seeking product solutions of the form

u(x, y, t) = h(t)0(x,y) (7.2.9)

for the two-dimensional heat equation, assuming constant thermal properties and
no sources, (7.1.1). By substituting (7.2.9) into (7.1.1) and after dividing by
kh(t)0(x, y), we obtain

2 z

k h dt 4 (Oxz + 8y ) '
(7.2.10)

A separation constant in the form -A is introduced so that the time-dependent
part of the product solution exponentially decays (if A > 0) as expected, rather
than exponentially grows. Then, the two equations are

dh = -Akh
dt

02 0 2
(7.2.11)

The eigenvalue A relates to the decay rate of the time-dependent part. The eigen-
value A is determined by the boundary value problem, again consisting of the partial
differential equation (7.2.11) with a corresponding boundary condition on the entire
boundary of the region.

For heat flow in any three-dimensional region, (7.1.2) is valid. A product solu-
tion,

u(x, y, z, t) = h(t)O(x, y, z), (7.2.12)

may still be sought, and after separating variables, we obtain equations similar to
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(7.2.11),

dt

a246
920 820

dh = -Akh

ax ay oz
s + 2 + a = -A0.
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(7.2.13)

The eigenvalue A is determined by finding those values of A for which nontrivial
solutions of (7.2.13) exist, subject to a homogeneous boundary condition on the
entire boundary.

7.2.3 Summary
In situations described in this section the spatial part O(x, y) or 4,(x, y, z) of the so-
lution of the partial differential equation satisfies the eigenvalue problem consisting
of the partial differential equation,

V24 =

with 0 satisfying appropriate homogeneous boundary conditions, which may be of
the form [see (1.5.2) and (4.5.5)]

a and Q can depend on x, y, and z. If ,3 = 0, (7.2.15) is the fixed boundary
condition. If a = 0, (7.2.15) is the insulated or free boundary condition. If both
a 0 and /3 54 0, then (7.2.15) is the higher-dimensional version of Newton's law
of cooling or the elastic boundary condition. In Sec. 7.4 we will describe general
results for this two- or three-dimensional eigenvalue problem, similar to our theo-
rems concerning the general one-dimensional Sturm-Liouville eigenvalue problem.
However, first we will describe the solution of a simple two-dimensional eigenvalue
problem in a situation in which O(x, y) may be further separated, producing two
one-dimensional eigenvalue problems.

EXERCISES 7.2

7.2.1. For a vibrating membrane of any shape that satisfies (7.2.1), show that
(7.2.14) results after separating time.

7.2.2. For heat conduction in any two-dimensional region that satisfies (7.1.1),
show that (7.2.14) results after separating time.

7 2.3. (a) Obtain product solutions, ¢ = f (x)g(y), of (7.2.14) that satisfy 0 = 0
on the four sides of a rectangle. (Hint: If necessary, see Sec. 7.3.)
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(b) Using part (a), solve the initial value problem for a vibrating rectan-
gular membrane (fixed on all sides).

(c) Using part (a), solve the initial value problem for the two-dimensional
heat equation with zero temperature on all sides.

7.3 Vibrating Rectangular Membrane
In this section we analyze the vibrations of a rectangular membrane, as sketched
in Fig. 7.3.1. The vertical displacement u(x, y, t) of the membrane satisfies the
two-dimensional wave equation,

a2u _ c2 la2u 02u
at2 a.

+
aye

Figure 7.3.1 Rectangular membrane.

(7.3.1)

We suppose that the boundary is given such that all four sides are fixed with zero
displacement:

u(0,y,t) = 0 u(x,0,t) = 0 (7.3.2)

u(L, y, t) = 0 u(x, H, t) = 0. (7.3.3)

We ask what is the displacement of the membrane at time t if the initial position
and velocity are given:

u(x, y, 0) = c (x, y) (7.3.4)

at (x, y, 0) = )3(x, y). (7.3.5)

As we indicated in Sec. 7.2.1, since the partial differential equation and the
boundary conditions are linear and homogeneous, we apply the method of separation
of variables. First, we separate only the time variable by seeking product solutions
in the form

u(x,y,t) = h(t)¢(x,y) (7.3.6)
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According to our earlier calculation, we are able to introduce a separation constant
-A, and the following two equations result:

dzh
= -.\c2h (7.3.7)

dt2
z 2

= -A+ a 8)(7 3.

8xz y ..

We will show that A > 0, in which case h(t) is a linear combination of since t
and cos c f t. The homogeneous boundary conditions imply that the eigenvalue
problem is

z z0ex 3(7 9)+ y2_ ..

0(0,y) = 0 O(x 0) = 0,

(7.3.10)
O(L, y) = 0 q(x, H) = 0;

that is, 0 = 0 along the entire boundary. We call (7.3.9)-(7.3.10) a two-dimensional
eigenvalue problem.

The eigenvalue problem itself is a linear homogeneous PDE in two independent,
variables with homogeneous boundary conditions. As such (since the boundaries
are simple), we can expect that (7.3.9)-(7.3.10) can be solved by separation of
variables in Cartesian coordinates. In other words, we look for product solutions of
(7.3.9)-(7.3.10) in the form

OX, Y) = f(x)g(y) (7.3.11)

Before beginning our calculations, let us note that it follows from (7.3.6) that our
assumption (7.3.11) is equivalent to

u(x, y, t) = f(x)g(y)h(t) (7.3.12)

a product of functions of each independent variable. We claim, as we show in
an appendix to this section, that we could obtain the same result by substituting
(7.3.12) into the wave equation (7.3.1) as we now obtain by substituting (7.3.11)
into the two-dimensional eigenvalue problem (7.3.9):

z2
g(y) dx + f (x) dye = -Af (x)9(y) (7.3.13)

The x and y parts may be separated by dividing (7.3.13) by f (x)g(y) and rearrang-
ing terms:

ld2f 1d2gf dx2 = -A - 9 dy2 = -lt,. (7.3.14)

Since the first expression is only a function of x, while the second is only a function
of y we introduce a second separation constant. We choose it to be -j so that the
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easily solved equation, d1 f /dx2 = -p f has oscillatory solutions (as expected) if
µ > 0. Two ordinary differential equations result from separation of variables of a
partial differential equation with two independent variables:

d2f -
dx2 =-µf

dg
aye = -(A - µ)g

(7.3.15)

(7.3.16)

Equations (7.3.15) and (7.3.16) contain two separation constants A and µ, both of
which must be determined. In addition, h(t) solves an ordinary differential equation:

d2h
= -Ac2h.

dt2
(7.3.17)

When we separate variables for a partial differential equation in three variables,
u(x, y, t) = f (x)g(y)h(t), we obtain three ordinary differential equations, one a
function of each independent coordinate. However, there will be only two separation
constants.

To determine the separation constants, we need to use the homogeneous bound-
ary conditions (7.3.10). The product form (7.3.11) then implies that

f (0) = 0 and f (L) = 0 (7.3.18)
g(0) = 0 and g(H) = 0.

Of our three ordinary differential equations, only two will be eigenvalue problems.
There are homogeneous boundary conditions in x and y. Thus,

2

= -pf with f (O) =0 and f(L)=O (7.3.19)

is a Sturm-Liouville eigenvalue problem in the x-variable, where µ is the eigenvalue
and f (x) is the eigenfunction. Similarly, the y-dependent problem is a regular
Sturm-Liouville eigenvalue problem:

d2g
- (A - µ)g with g(0) = 0 and g(H) = 0. (7.3.20)dye =

Here A is the eigenvalue and g(y) the corresponding eigenfunction.
Not only are both (7.3.19) and (7.3.20) Sturm-Liouville eigenvalue problems,

but they are both ones we should be quite familiar with. Without going through
the well-known details, the eigenvalues are

nor 2µn- (L) , n=1,2,3,..., (7.3.21)
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and the corresponding eigenfunctions are

) = sin
nLxf ( (7 22)3n x . .

This determines the allowable values of the separation constant p,,.
For each value of un, (7.3.20) is still an eigenvalue problem. There is infinite

number of eigenvalues A for each n. Thus, A should be double subscripted, Anm. In
fact, from (7.3.20) the eigenvalues are

f ma 2
Anm -l`n= `H) m=1,2,3,..., (7.3.23)

where we must use a different index to represent the various y-eigenvalues (for each
value of n). The corresponding y-eigenfunction is

9nm(J) =sin
mayH

The separation constant Anm now can be determined from (7.3.23):

(Mlr
H )2,Anm

(Mlr

H )2- l L
nir)2

(7.3.24)

(7.3.25)

where n = 1, 2,3.... and m = 1, 2, 3, .... The two-dimensional eigenvalue problem
(7.3.9) has eigenvalues Ann, given by (7.3.25) and eigenfunctions given by the prod-
uct of the two one-dimensional eigenfunctions. Using the notation Onm (x, y) for the
two-dimensional eigenfunction corresponding to the eigenvalue Awn, we have

On.
nax may(x, y) = sin L sin H n= 1,2,3,...

m=1,2,3,.... (7.3.26)

Note how easily the homogeneous boundary conditions are satisfied.
From (7.3.25) we have explicitly shown that all the eigenvalues are positive (for

this problem). Thus, the time-dependent part of the product solutions are (as pre-
viously guessed) sin ct and cos c An,n t, oscillations with natural frequencies
c = c (na/L)2 + (ma/H)2, n = 1, 2, 3, ... and m = 1, 2, 3, .... In consider-
ing the displacement u, we have obtained two doubly infinite families of product so-
lutions: sin nax/L sin miry/H sin c An,nt and sin nax/L sin may/H cos ct.
As with the vibrating string, each of these special product solutions is known as a
mode of vibration. We sketch in Fig. 7.3.2 a representation of some of these modes.
In each we sketch level contours of displacement in dotted lines at a fixed t. As time
varies the shape stays the same, only the amplitude varies periodically. Each mode
is a standing wave. Curves along which the displacement is always zero in a mode
are called nodal curves and are sketched in solid lines. Cells are apparent with
neighboring cells always being out of phase; that is, when one cell has a positive
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Figure 7.3.2 Nodal curves for modes of a vibrating rectangular membrane.

displacement the neighbor has negative displacement (as represented by the + and
- signs).

The principle of superposition implies that we should consider a linear com-
bination of all possible product solutions. Thus, we must include both families,
summing over both n and m,

00 00

u(x, y, t) _ Ann sin
nirx

sin
miry

ra cos cJt
m=1 n=1

00 00

>B nax -pmwy-
nm sin L sin h sin+ C nm

m=1 n=1

(7.3.27)

The two families of coefficients An, and Bnm hopefully will be determined from
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the two initial conditions. For example, u(x, y, 0) = a(x, y) implies that

00 00 nirx miry
a(x, y) = > Anm sin L sin

H
. (7.3.28)

m=1 n=1

The series in (7.3.28) is an example of what is called a double Fourier series.
Instead of discussing the theory, we show one method to calculate Anm from
(7.3.28). (In Sec. 7.4 we will discuss a simpler way.) For fixed x, we note that
En__ 1 Anm sin n7rx/L depends only on m; furthermore, it must be the coefficients
of the Fourier sine series in y of a(x, y) over 0 < y < H. From our theory of Fourier
sine series, we therefore know that we may easily determine the coefficients:

f
_ - dyy) stna(x ,,

L H H
1n=

(7.3.29)

for each in. Equation (7.3.29) is valid for all x; the right-hand side is a function of
x (not y, because y is integrated from 0 to H). For each m, the left-hand side is a
Fourier sine series in x; in fact, it is the Fourier sine series of the right-hand side,
2/H f H a(x, y) sin miry/H dy. The coefficients of this Fourier sine series in x are
easily determined:

n

00 nlrxH miry2
Anm sin

2 fL 2 rH miry 1 n7rx
= L 1Y J

a(x, y) sin
H

dy I sin L dx.
o J

(7.3.30)

This may be simplified to one double integral over the entire rectangular region,
rather than two iterated one-dimensional integrals. In this manner we have deter-
mined one set of coefficients from one of the initial conditions.

The other coefficients Bnm can be determined in a similar way. In particular,
from (7.3.27), Su/8t(x, y, 0) = /3(x, y), which implies that

00 00

/3(x, y) _ c AnmBnm sin
-Lx

sin may
n_1 m=1

(7.3.31)

Thus, again using a Fourier sine series in y and a Fourier sine series in x, we obtain

4 / L / H/ miry n7rxsin -C nmBnm = LH f J i3(x, y) sin H L0 0
(7.3.32)

The solution of our initial value problem is the doubly infinite series given by
(7.3.27), where the coefficients are determined by (7.3.30) and (7.3.32).

We have shown that when all three independent variables separate for a partial
differential equation, there results three ordinary differential equations, two of which

dy dx.
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are eigenvalue problems. In general, for a partial differential equation in N variables
that completely separates. there will be N ordinary differential equations, N - 1 of
which are one-dimensional eigenvalue problems (to determine the N - 1 separation
constants). We have already shown this for N = 3 (this section) and N = 2.

EXERCISES 7.3

7.3.1. Consider the heat equation in a two-dimensional rectangular region 0 < x <
L,0<y<H,

W2au =
ay28t

kt8x + J
subject to the initial condition

u(x,y,0) = f(x,y)

Solve the initial value problem and analyze the temperature as t oo if
the boundary conditions are

* (a) u(0,y,t) = 0,

(b)
TX_

(0, y, t) = 0,

37 (0, y, t) = 0,
(d) u(0, y, t) = 0,
(e) u(0,y,t) = 0,

u(L, y, t) = 0, u(x, 0, t) = 0, u(x, H, t) = 0
az (L, y, t) = 0, ` (x, 0, t) = 0, 8u (x, H, t) = 0
az (L, y, t) = 0, u(x, 0, t) = 0, u(x, H, t) = 0

(L, y, t) = 0, au (x, 0, t) = 0, Ou (x, H, t) = 0
u(L, y, t) = 0, u(x, 0, t) = 0,

L 9u (x,H,t)+hu(x,H,t)=0. (h>0)

7.3.2. Consider the heat equation in a three-dimensional box-shaped region,
O<x<L, O<y<H, 0<z<W,

8u=k(02u+92u+52ul
C7X2 892 bZ2 J

subject to the initial condition

u(x,y,z,0) = f(x,y,z)

Solve the initial value problem and analyze the temperature as t -+ oo if
the boundary conditions are

(a) u(0,y,z,t) = 0, (x,0,z,t) = 0, "U(x,y,0,t) = 0,

u(L, y, z, t) = 0, (x, H, z, t) = 0, u(x, y, W, t) = 0
YY_

* (b)
TX_

(0, y, z, t) = 0, s-U (x, 0, z, t) = 0, OU (x, y, 0, t) = 0,

(L,y,z,t) =0, (x, H, z, t) =0, (x,y,W,t) =0
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7.3.3 Solve
z z

09U. =at
k,

axe
+ k2

2

on a rectangle (0 < x < L, 0 < y < H) subject to

u(x,y,0) = f(x,y)

u

(O, y,
t) = 0

(L, y, t) = 0
(x, 0, t)

(x, H, t)
ZTY

= 0
0.

287

7.3.4. Consider the wave equation for a vibrating rectangular membrane (0 < x <
L, 0<y<H)

C72u 2 (0'2U a2ul
at2 - C 8x2 + ay2 J

subject to the initial conditions

u(x,y,0) = 0 and 5 (x,y,0) = f(x,y).

Solve the initial value problem if

(a) u(0, y, t) = 0, u(L, y, t) = 0, ay (x, 0, t) = 0, au (x, H, t) = 0

* (b) (0, y, t) = 0, (L, y, t) = 0, (x, 0, t) = 0, (x, H, t) = 0

7.3.5. Consider
2

z z
with k > 0.atz = c C + 22 1 - k

On

(a) Give a brief physical interpretation of this equation.
(b) Suppose that u(x, y, t) = f(x)g(y)h(t). What ordinary differential

equations are satisfied by f, g, and h?

7.3.6. Consider Laplace's equation

°2u = axe + ay?2 + az2 = 0

in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top
is z = H and the bottom is z = 0. Assume that

a u(x, y, 0) = 0
u(x, y, H) = f (x, y)

and u = 0 on the "lateral" sides.

(a) Separate the z-variable in general.

*(b) Solve for u(x, y, z) if the region is a rectangular box, 0 < x < L, 0 <
y<W,0<z<H.



288 Chapter 7. Higher Dimensional PDEs

V Figure 7.3.3

7.3.7. If possible, solve Laplace's equation

2 2

°2u _ 8x2 + 8y2 + az22 = 0,

in a rectangular-shaped region, 0 < x < L, 0 < y < W, 0 < z < H, subject
to the boundary conditions

(a) Tx- (0, y, z) = 0,

(L, y, z) = 0,

(b) u(0,y,z) = 0,

u(L, y, z) = 0,

* (c) (0, y, z) = 0,

(L,y,z) = f(y,z),

u(L, y, z) = g(y, z),

u(x,0,z) = 0,

u(x, W, z) = 0,

u(x, 0, z) = 0,

u(x, W, z) = f(x,z),

ey(x,0,z) = 0,

ou(x, W, z) = 0,

P(x,0,z) = 0,

(x, W, z) = 0,

u(x,y,0) = f(x,y)

u(x, y, H) = 0

u(x,y,0) = 0,

u(x, y, H) = 0

8U(x,y,0) = 0

(x, y, H) = 0

(x, y, 0) = 0rz-

R- (x,y,H) = 0

Appendix to 7.3: Outline of Alternative Method to Separate
Variables
An alternative (and equivalent) method to separate variables for

82u u
,9t2 - c2 (&2U

8x2 + 9y2
oy2

)
is to assume product solutions of the form

u(x, y, t) = f (x)g(y)h(t)

(7.3.33)

(7.3.34)

By substituting (7.3.34) into (7.3.33) and dividing by c2 f (x)g(y)h(t), we obtain

1 1d2h 1d2f 1d2g
c2 h dt2 - f dx2 + g dye (7.3.35)



7.4. Eigenvalue Problem V20 + 0 289

after introducing a separation constant -A. This shows that

dh = -Ac2h. (7.3.36)

dt2

Equation (7.3.35) can be separated further,

(7.3.37)yf d22 =-Ag d

enabling a second separation constant - 2 to be introduced:

d2f
p= - f (7.3.38)

dx2

d29dye = (A - µ)9 (7.3.39)

In this way we have derived the same three ordinary differential equations (with
two separation constants).

7.4 Statements and Illustrations of Theorems
for the Eigenvalue Problem V20 + Aq = 0

In solving the heat equation and the wave equation in any two- or three-dimensional
region R (with constant physical properties, such as density), we have shown that
the spatial part m(x, y, z) of product form solutions u(x, y, z, t) = ¢(x, y, z)h(t)
satisfies the following multidimensional eigenvalue problem:

V20+AO=0,

with

(7.4.1)

(7.4.2)

on the entire boundary. Here a and b can depend on x, y, and z. Equation (7.4.1)
is known as the

Equation (7.4.1) can be generalized to

V (pV¢) + qi + AaO = 0, (7.4.3)
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where p, q and a are functions of x, y, and z. This eigenvalue problem (with
boundary condition (7.4.2)] is directly analogous to the one-dimensional regular
Sturm-Liouville eigenvalue problem. We prefer to deal with a somewhat simpler
case, (7.4.1), corresponding top = a = 1 and q = 0. We will state and prove results
for (7.4.1). We leave the discussion of (7.4.3) to some exercises (in Sec. 7.5).

Only for very simple geometries (for example, rectangles, see Sec. 7.3, or circles,
see Sec. 7.7) can (7.4.1) be solved explicitly. In other situations, we may have to
rely on numerical treatments. However, certain general properties of (7.4.1) are
quite useful, all analogous to results we understand for the one-dimensional Sturm-
Liouville problem. The reasons for the analogy will be discussed in the next section.
We begin by simply stating the theorems for the two-dimensional case of (7.4.1) and
(7.4.2):

1. All the eigenvalues are real.
2. There exists an infinite number of eigenvalues. There is a smallest eigen-

value, but no largest one.
3. Corresponding to an eigenvalue, there may be many eigenfunctions (unlike

regular Sturm-Liouville eigenvalue problems).
4. The eigenfunctions (k(x, y) form a "complete" set, meaning that any piece-

wise smooth function f (x, y) can be represented by a generalized Fourier
series of the eigenfunctions:

f(x,y)- aa0a(x,y). (7.4.4)

Here F_,\ a,,qa means a linear combination of all the eigenfunctions. The
series converges in the mean if the coefficients ax are chosen correctly.

5. Eigenfunctions belonging to different eigenvalues (al and A2) are orthog-
onal relative to the weight a(a = 1) over the entire region R. Mathemat-
ically,

dx dy = 0 if Al # A2, (7.4.5)
Rff

where ffR dx dy represents an integral over the entire region R. Fur-
thermore, different eigenfunctions belonging to the same eigenvalue can
be made orthogonal by the Gram-Schmidt process (see Sec. 7.5). Thus,
we may assume that (7.4.5) is valid even if Al = A2 as long as ¢a, is
independent of

6. An eigenvalue A can be related to the eigenfunction by the Rayleigh quo-
tient:

46O# . n dx + ffR I V4 I2 dx dy
7.4.6

ffR 02 dx dy ( )

The boundary conditions often simplify the boundary integral.
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Here n is a unit outward normal and f ds is a closed line integral over the entire
boundary of the plane two-dimensional region, where ds is the differential arc length.
The three-dimensional result is nearly identical; if f must be replaced by f f f and the
boundary line integral f ds must be replaced by the boundary surface integral j dS,
where dS is the differential surface area.

Example. We will prove some of these statements in Sec. 7.5. To understand
their meaning, we will show how the example of Sec. 7.3 illustrates most of these
theorems. For the vibrations of a rectangular (0 < x < L, 0 < y < H) membrane
with fixed zero boundary conditions, we have shown that the relevant eigenvalue
problem is

V20+a0=0
¢(0,y) = 0 0(x,0) = 0

b(L, y) = 0 cb(x, H) = 0.

We have determined that the eigenvalues and corresponding eigenfunctions are

nm = (L) 2 + (H
)2 n = 1, 2, 3, . . . withm = 1,2,3,...

nirx m7rynm(x, y) =sin L sin H

(7.4.8)

1. Real eigenvalues. In our calculation of the eigenvalues for (7.4.7) we as-
sumed that the eigenfunctions existed in a product form. Under that assump-
tion, (7.4.8) showed the eigenvalues to be real. Our theorem guarantees that
the eigenvalues will always be real.

2. Ordering of eigenvalues. There is a doubly infinite set of eigenvalues for
(7.4.7), namely An,n = (n7r/L)2 + (m7r/H)2 for n = 1,2,3,... and m =
1, 2, 3, .... There is a smallest eigenvalue, all = (7r/L)2 + (ir/H)2, but no
largest eigenvalue.

3. Multiple eigenvalues. For V24 + A0 = 0, our theorem states that, in gen-
eral, it is possible for there to be more than one eigenfunction corresponding
to the same eigenvalue. To illustrate this, consider (7.4.7) in the case in which
L = 2H. Then

with

2

nm = :j (n2 + 4m2)

(7.4.7)

(7.4.9)

nax miry
nm =Sin 2H

sin H (7.4.10)

We note that it is possible to have different eigenfunctions corresponding to
the same eigenvalue. For example, n = 4, m = 1 and n = 2, m = 2, yield the
same eigenvalue:

2

1\41 = 1\22 = 4H2 20.
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H

n=2
m=2

L=2H

H

n=4
m=1

L=2H

Figure 7.4.1 Nodal curves for eigenfunctions with the same
eigenvalue (symmetric).

For n = 4, m = 1, the eigenfunction is 041 = sin 4irx/2H sin iry/H, while
for n = 2, m = 2, ¢22 = sin 27rx/2H sin 2iry/H. The nodal curves for these
eigenfunctions are sketched in Fig. 7.4.1. They are different eigenfunctions
with the same eigenvalue, A = (1r2/4H2)20. It is not surprising that the
eigenvalue is the same, since a membrane vibrating in these modes has cells
of the same dimensions: one H x H/2 and the other H/2 x H. By symmetry
they will have the same natural frequency (and hence the same eigenvalue
since the natural frequency is cf ). In fact, in general by symmetry [as well
as by formula (7.4.9)] A(2n)m = A(2m)n

H

n=1
m=4

H

n=7
m=2

L = 2H L = 2H

Figure 7.4.2 Nodal curves for eigenfunction with the same
eigenvalue (asymmetric).

However, it is also possible for more than one eigenfunction to occur for rea-
sons having nothing to do with symmetry. For example, n = 1, m = 4
and n = 7, m = 2 yield the same eigenvalue: A14 = A72 = (ir2/4H2)65.
The corresponding eigenfunctions are 014 = sin irx/2H sin 47ry/H and 072 =
sin 71rx/2H sin 21ry/H, which are sketched in Fig. 7.4.2. It is only coincidental
that both of these shapes vibrate with the same frequency. In these situations,
it is possible for two eigenfunctions to correspond to the same eigenvalue. We
can find situations with even more multiplicities (or degeneracies). Since
A14 = A72 = (7r2/4H2)65, it is also true that A28 = A(14)4 = (7r2/4H2)260.



7.4. Eigenvalue Problem V20 + AO = 0 293

However, by symmetry 1\28 = A(16)1 and \(14)4 = X87. Thus,

12 \
1\28 = A(1s)1 = \(14)4 = \87

C4HZ
J 260.

Here there are four eigenfunctions corresponding to the same eigenvalue.

4a. Series of eigenfunctions. According to this theorem, (7.4.4), the eigenfunc-
tions of V20 + AO = 0 can always be used to represent any piecewise smooth
function f (x, y). In our illustrative example, (7.4.7), Ea becomes a double
sum,

00 00

f (x, y) an,,, sin
n1rx

sin
miry.T N (7.4.11)

n=1 m=1

5. Orthogonality of eigenfunctions. We will show that the multidimensional
orthogonality of the eigenfunctions, as expressed by (7.4.5) for any two dif-
ferent eigenfunctions, can be used to determine the generalized Fourier coeffi-
cients in (7.4.4).1 We will do this in exactly the way we did for one-dimensional
Sturm-Liouville eigenfunction expansions. We simply multiply (7.4.4) by Ox;
and integrate over the entire region R:

JjfcbA. dx dy = as JIR 0a0a; dx dy. (7.4.12)

Since the eigenfunctions are all orthogonal to each other (with weight 1 be-
cause V20 + a0 = 0), it follows that

fIR'dx dy = a,; dx dy, (7.4.13)
R

aa. = ffR f la, dx dy
ffR .0a; dx dy

(7.4.14)

There is no difficulty in forming (7.4.14) from (7.4.13) since the denominator
of (7.4.14) is necessarily positive.

For the special case that occurs for a rectangle with fixed zero bound-
ary conditions, (7.4.7), the generalized Fourier coefficients anm are given by
(7.4.14):

fH f0 t
0 f(x, y) sin nLz sin N dx dy (anm Zn+rx Zma 7.4.15)j0 sin L sin dx dy

The integral in the denominator may be easily shown to equal (L/2)(H/2) by
calculating two one-dimensional integrals; in this way we rederive (7.3.30). In

1If there is more than one eigenfunction corresponding to the same eigenvalue, then we assume
that the eigenfunctions have been made orthogonal (if necessary by the Gram-Schmidt process).
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this case, (7.4.11), the generalized Fourier coefficient a,,,,, can be evaluated in
two equivalent ways:

(a) Using one two-dimensional orthogonality formula for the eigenfunctions
of V2¢+)4=0

(b) Using two one-dimensional orthogonality formulas

4b. Convergence. As with any Sturm-Liouville eigenvalue problem (see Sec.
5.10), a finite series of the eigenfunctions of V20 + ai = 0 may be used
to approximate a function f (x, y). In particular, we could show that if we
measure error in the mean-square sense,

2rr
(.i'E // - dx dy, (7.4.16)/

with weight function 1, then this mean-square error is minimized by the co-
efficients a., being chosen by (7.4.14), the generalized Fourier coefficients. It
is known that the approximation improves as the number of terms increases.
Furthermore, E -' 0 as all the eigenfunctions are included. We say that the
series Eaaa¢,, converges in the mean to f.

EXERCISES 7.4

7.4.1. Consider the eigenvalue problem

020+AO=0

(0, y) = 0 Ox, 0) = 0
(L, y) = 0 O(x, H) = 0.

*(a) Show that there is a doubly infinite set of eigenvalues.
(b) If L = H, show that most eigenvalues have more than one eigenfunc-

tion.

(c) Derive that the eigenfunctions are orthogonal in a two-dimensional
sense using two one-dimensional orthogonality relations.

7.4.2. Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).

7.4.3. If necessary, see Sec. 7.5:

(a) Derive that ff (uV2v - vV2u) dx dy = f(uVv - vVu) . fn ds.
(b) From part (a), derive (7.4.5).

7.4.4. Derive (7.4.6). If necessary, see Sec. 7.6. [Hint: Multiply (7.4.1) by 0 and
integrate.]
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7.5 Green's Formula, Self-Adjoint Operators and
Multidimensional Eigenvalue Problems

Introduction. In this section we prove some of the properties of the multidi-
mensional cigenvalue problem:

o20+a.0 =0

with

(7.5.1)

(7.5.2)

on the entire boundary. Here Qi and /32 are real functions of the location in space.
As with Sturm-Liouville eigenvalue problems, we will simply assume that there is
an infinite number of eigenvalues for (7.5.1) with (7.5.2) and that the resulting set of
eigenfunctions is complete. Proofs of these statements are difficult and beyond the
intent of this text. The proofs for various other properties of the multidimensional
eigenvalue problem are quite similar to corresponding proofs for the one-dimensional
SturmmLiouville eigenvalue problem. We let

L = O2, (7.5.3)

in which case the notation for the multidimensional eigenvalue problem becomes

L(¢) +,\0 = 0. (7.5.4)

By comparing (7.5.4) to (7.4.3), we notice that the weight function for this multi-
dimensional problem is expected to be 1.

Multidimensional Green's formula. The proofs for the one-dimen-
sional Sturm-Liouville eigenvalue problem depended on uL(v)-vL(u) being an exact
differential (known as Lagrange's identity). The corresponding integrated form
(known as Green's formula) was also needed. Similar identities will be derived for
the Laplacian operator, L _ V2, a multidimensional analog of the Sturm-Liouville
differential operator. We will calculate uL(v) - vL(u) = uV2v - v02u. We recall
that Vu = V V. (Vu) and V V. (aB) = aV B + Va B (where a is a scalar and B a
vector). Thus,

By subtracting these,

V (uVv) = uV2v + Vu Vv
V (vVu) = vV2u + Vv Vu.

u02v - vV2u = V (uVv - vVu).

(7.5.5)

(7.5.6)
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The differential form, (7.5.6), is the multidimensional version of Lagrange's identity,
(5.5.7). Instead of integrating from a to b as we did in one-dimensional problems,
we integrate over the entire two-dimensional region

fIR
(uVv - vVu) dx dy.(uV2V - vV2u) dx dy = ff V

The right-hand side is in the correct form to apply the divergence theorem (recall
that ffR V A dx dy = f A n ds). Thus,

// (u02v - vV2u) dx dy = (uVv - vVu) n ds.
R

(7.5.7)

Equation (7.5.7) is analogous to Green's formula, (5.5.8). It is known as Green's
second identity,2 but we will just refer to it as Green's formula.

We have shown that L = V2 is a multidimensional self-adjoint operator in the
following sense:

If u and v are any two functions, such that

(uVv - ds = 0, (7.5.8)

then
[uV2v - vV2u] dx dy = 0. (7.5.9)

JJ

where L = V2.

R

In many problems, prescribed homogeneous boundary conditions will cause the
boundary term to vanish. For example, (7.5.8) and thus (7.5.9) is valid if u and v
both vanish on the boundary. Again for three-dimensional problems, ff must be
replaced by fff and f must be replaced by.# .

Orthogonality of the eigenfunctions . As with the one-dimensional
Sturm-Liouville eigenvalue problem, we can prove a number of theorems directly
from Green's formula (7.5.7). To show eigenfunctions corresponding to different
eigenvalues are orthogonal, we consider two eigenfunctions 01 and 02 corresponding
to the eigenvalues \1 and A2:

0201 + \101 = 0 or L(¢1) + A1W1 = 0

V202+1\202 = 0or L(02) + 1\202 = 0.

(7.5.10)

2Green's first identity arises from integrating (7.5.5) [rather than (7.5.6)[ with v = u and
applying the divergence theorem.
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If both 01 and 02 satisfy the same homogeneous boundary conditions, then (7.5.8)
is satisfied, in which case (7.5.9) follows. Thus

ff (-&&A202+-021\101) dx dy= (Ai -A2)146im2 dx dy=0.
R R

If Al # A2, then

1 0102 dx dy = 0, (7.5.11)

R

which means that eigenfunctions corresponding to different eigenvalues are orthog-
onal (in a multidimensional sense with weight 1). If two or more eigenfunctions
correspond to the same eigenvalue, they can be made orthogonal to each other (as
well as all other eigenfunctions) by a procedure shown in the appendix of this section
known as the Gram-Schmidt method.

We can now prove that the eigenvalues will be real. The proof is left for an
exercise since the proof is identical to that used for the one-dimensional Sturm-
Liouville problem (see Sec. 5.5).

EXERCISES 7.5
7.5.1. The vertical displacement of a nonuniform membrane satisfies

92u 2 (02u 82u1
8t2 = c 8x2 + 8y2 J

where c depends on x and y. Suppose that u = 0 on the boundary of an
irregularly shaped membrane.

(a) Show that the time variable can be separated by assuming that

u(x, y, t) = -0(x,y)h(t).

Show that O(x, y) satisfies the eigenvalue problem

V2 m + Aa(x, y)q5= 0 with 0=0 on the boundary. (7.5.12)

What is o(x, y)?
(b) If the eigenvalues are known (and A > 0), determine the frequencies of

vibration.

7.5.2. See Exercise 7.5.1. Consider the two-dimensional eigenvalue problem given
in (7.5.12).

(a) Prove that the eigenfunctions belonging to different eigenvalues are
orthogonal (with what weight?).

(b) Prove that all the eigenvalues are real.
(c) Do Exercise 7.6.1.
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7.5.3. Redo Exercise 7.5.2 if the boundary condition is instead

(a) V4 n = 0 on the boundary
(b) VO it + h(x, y)-O = 0 on the boundary

(c) 0 = 0 on part of the boundary and VO V. n = 0 on the rest of the
boundary

7.5.4. Consider the beat equation in three dimensions with no sources but with
nonconstant thermal properties

cp = V (KoVu),

where cp and KO are functions of x, y, and z. Assume that u = 0 on the
boundary. Show that the time variable can be separated by assuming that

u(x, y, z, t) _ 4(x, y, z)h(t).

Show that q5(x, y, z) satisfies the eigenvalue problem

V - (pVq) + .Xa(x, y, z)O = 0 with 0 = 0 on the boundary. (7.5.13)

What are a(x, y, z) and p(x, y, z)?

7.5.5. See Exercise 7.5.4. Consider the three-dimensional eigenvalue problem given
in (7.5.13).

(a) Prove that the eigenfunctions belonging to different eigenvalues are
orthogonal (with what weight?).

(b) Prove that all the eigenvalues are real.

(c) Do Exercise 7.6.3.

7.5.6. Derive an expression for

ffIuL(v) - vL(u)] dx dy

over a two-dimensional region R, where

L = V2 + q(x, y) [i.e., L(u) = V2u + q(x, y)u].

7.5.7. Consider Laplace's equation V2u = 0 in a three-dimensional region R
(where u is the temperature). Suppose that the heat flux is given on the
boundary (not necessarily a constant).

(a) Explain physically why j Vu n dS = 0.
(b) Show this mathematically.
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7.5.8. Suppose that in a three-dimensional region R
020 = f(x,y,z)

with f given and V n = 0 on the boundary.

(a) Show mathematically that (if there is a solution)

//J f dx dy dz = 0.
R

(b) Briefly explain physically (using the heat flow model) why condition
(a) must hold for a solution. What happens in a heat flow problem if

If f dx dy dz > 0?
R

7.5.9. Show that the boundary term (7.5.8) vanishes if both u and v satisfy (7.5.2):

(a) Assume that /32 34 0.
(b) Assume X32 = 0 for part of the boundary.

Appendix to 7.5: Gram-Schmidt Method
W e wish to s h o w in general that eigenfunctions corresponding to the same eigen-
value can be made orthogonal. The process is known as Gram-Schmidt orthog-
onalization. Let us suppose that 01, 02, ... , On are independent eigenfunctions
corresponding to the same eigenvalue. We will form a set of n-independent eigen-
functions denoted 01, 02, ... , On which are mutually orthogonal, even if 01,. - -, On
are not. Let ?yl = 01 be any one eigenfunction. Any linear combination of the eigen-
functions is also an eigenfunction (since they satisfy the same linear homogeneous
differential equation and boundary conditions). Thus, '02 = ¢2 + crfr is also an
eigenfunction (automatically independent of -rpj), where c is an arbitrary constant.
We choose c so that 02 = 02 + C01 is orthogonal to 1&1: f f R dil 02 dx dy = 0 becomes

ff(2 +c 1)'1 dxdy=0.

c is uniquely determined:
C = - ffR 02V), dx dy

(7.5.14)
ffR 1Pl dx dy

Since there may be more than two eigenfunctions corresponding to the same eigen-
value, we continue this process.

A third eigenfunction is 03 = 03 + c101 + C27'2, where we choose cl and C2 so

that 1p3 is orthogonal to the previous two: f fR 03 (0012) dx dy = 0. Thus,

ff(cb3+cibi+c2ib2)(1) dx dy = 0.
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However, 12 is already orthogonal to,01, and hence

ffR 0301 dx dy + cl ffR jpI dx dy = 0

& 0302 dx dy + C2 & ,02 dx dy = 0,

easily determining the two constants. This process can be used to determine n
orthogonal eigenfunctions. In general,

i-1 .ffR 0i ,G; dx dy+Gi="i-E\ ffR,0; dx dy

We have shown that even in the case of a multiple eigenvalue. we are always able
to restrict our attention to orthogonal eigenfunctions, if necessary by this Gram-
Schmidt construction.

7.6 Rayleigh Quotient and Laplace's Equation
7.6.1 Rayleigh Quotient
In Sec. 5.6 we obtained the Rayleigh quotient, for the one-dimensional Sturm-
Liouville eigenvalue problem. The result was obtained by multiplying the differen-
tial equation by ¢, integrating over the entire region, solving for A, and simplifying
using integration by parts. We will derive a similar result for

V20+a0=0.
(7.6.1)

We proceed as before by multiplying (7.6.1) by 0. Integrating over the entire two-
dimensional region and solving for A yields

- ffR OV20 dx dy
ffR (k2 dx dy

(7.6.2)

Next, we want to generalize integration by parts to multidimensional functions.
Integration by parts is based on the product rule for the derivative, d/dx(f g) =
f dg/dx + g df /dx. Instead of using the derivative, we use a product rule for the
divergence, V (f g) = f V g + g V f . Letting f = 0 and g = V q5, it follows that

V. Since V- (V#) =02t and

0020=V (0V )-1om12.

Using (7.6.3) in (7.6.2) yields an alternative expression for the eigenvalue,

(7.6.3)

A _ ffRV - (OV) dxdy+ffRIV012dxdy
f f7.6.4)

R 452 dx dy
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Now we use (again) the divergence theorem to evaluate the first integral in the
numerator of (7.6.4). Since ffR V A dx dy = f A n ds, it follows that

J¢v¢ , ds +
JJ

I V I2 dx dy
A= R

R
02 dx dy

(7.6.5)

known as the Rayleigh quotient. This is quite similar to the Rayleigh quotient for
Sturm-Liouville eigenvalue problems. Note that there is a boundary contribution
for each: -p0 d0/dxl. for (5.6.3) and - J OV4 n ds for (7.6.5).

Example. We consider any region in which the boundary condition is 0 = 0
on the entire boundary. Then f OV n ds = 0, and hence from (7.6.5), A > 0. If
A = 0, then (7.6.5) implies that

0 =
ff IV0l2 dx dy. (7.6.6)
R

Thus,

8 j = 0 (7.6.7)
y

everywhere. From (7.6.7) it follows that 8O/8x = 0 and 846/8y = 0 everywhere.
Thus, 0 is a constant everywhere, but since 0 = 0 on the boundary, 0 = 0 every-
where. 46 = 0 everywhere is not an eigenfunction, and thus we have shown that
A = 0 is not an eigenvalue. In conclusion, A > 0.

7.6.2 Time-Dependent Heat Equation and Laplace's
Equation

Equilibrium solutions of the time-dependent heat equation satisfy Laplace's equa-
tion. Solving Laplace's equation V20 = 0 subject to homogeneous boundary con-
ditions corresponds to investigating whether A = 0 is an eigenvalue for (7.6.1).

Zero temperature boundary condition. Consider V20 = 0 sub-
ject to ¢ = 0 along the entire boundary. It can be concluded from (7.6.6)
that 0 = 0 everywhere inside the region (since A = 0 is not an eigenvalue).
For an object of any shape subject to the zero temperature boundary condition on
the entire boundary, the steady-state (equilibrium) temperature distribution is zero
temperature, which is somewhat obvious physically. For the time-dependent heat
equation = k02u, (7.6.1) arises by separation of variables, and A > 0 (from
the Rayleigh quotient) proves that u(x, y, t) --+ 0 as t -+ oo, the time dependent
temperature approaches the equilibrium temperature distribution for large time.
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Insulated boundary condition. Consider V24 = 0 subject to
V V. n = 0 along the entire boundary. It can be concluded from (7.6.6)
that 0 = c =arbitrary constant everywhere inside the region (since A = 0
is an eigenvalue and 0 = c is the eigenfunction). The constant equilibrium solution
can be determined from the initial value problem for the time-dependent diffusion
(heat) equation a = kV2u. The fundamental integral conservation law (see
Section 1.5) using the entire region is f f u dx dy -' k .1f Vu n ds = 0, where
we have used the insulated boundary condition. Thus, the total thermal energy
f f u dx dy is constant in time, and its equilibrium value (t oo), f f c dx dy = cA,
equals its initial value (t = 0), f f f (x, y) dx dy. In this way, c = X f f f (x, y) dx dy,
so that the constant equilibrium temperature with insulated boundaries must be
the average of the initial temperature distribution. Here A is the area of the two-
dimensional region. For the time-dependent heat equation with insulated boundary
conditions, it can be shown that u(x, y, t) --a c =

a
f f f (x, y) dx dy as t - oo since

A > 0 (with 0 = 1 corresponding to A = 0 from the Rayleigh quotient) (i.e., the
time-dependent temperature approaches the equilibrium temperature distribution
for large time).

Similar results hold in three dimensions.

EXERCISES 7.6

7.6.1. See Exercise 7.5.1. Consider the two-dimensional eigenvalue problem with
v>0

V 20 + Ao (x, y)¢ = 0 with 0 = 0 on the boundary.

(a) Prove that A > 0.
(b) Is A = 0 an eigenvalue, and if so, what is the eigenfunction?

7.6.2. Redo Exercise 7.6.1 if the boundary condition is instead

(a) V4 n = 0 on the boundary
(b) V ft + h(x, y)o = 0 on the boundary
(c) 46 = 0 on part of the boundary and VO n = 0 on the rest of the

boundary

7.6.3. Redo Exercise 7.6.1 if the differential equation is

V (pV O) + \v(x, y, z)ti = 0

with boundary condition

(a) 0 = 0 on the boundary
(b) VO ft = 0 on the boundary

7.6.4. (a) If V2q5 = 0 with 0 = 0 on the boundary, prove that 0 = 0 everywhere.
(Hint: Use the fact that A = 0 is not an eigenvalue for V2(h = -,O.)
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(b) Prove that there cannot be two different solutions of the problem

V2u = f(x,y,z)

subject to the given boundary condition u = g(x, y, z) on the boundary.
(Hint: Consider ul - u2 and use part (a).]

7.7 Vibrating Circular Membrane
and Bessel Functions

7.7.1 Introduction
An interesting application of both one-dimensional (Sturm-Liouville) and multidi-
mensional eigenvalue problems occurs when considering the vibrations of a circular
membrane. The vertical displacement u satisfies the two-dimensional wave equa-
tion,

PDE:
02u

8t2
= c2V2u. (7.7.1)

The geometry suggests that we use polar coordinates, in which case u = u(r,9,t).
We assume that the membrane has zero displacement at the circular boundary,
r = a:

BC: u(a, 9, t) = 0.

The initial position and velocity are given:

IC:

u(r, 9, 0) = ct(r, 9)

iii(no,O)

7.7.2 Separation of Variables
We first separate out the time variable by seeking product solutions,

u(r, 9, t) = 0(r, 9)h(t).

Then, as shown earlier, h(t) satisfies

't2 = -Ac2h,

(7.7.2)

(7.7.3)

(7.7.4)

(7.7.5)



304 Chapter 7. Higher Dimensional PDEs

where A is a separation constant. From (7.7.5), the natural frequencies of vibration
are cf (if A > 0). In addition, 0(r, 0) satisfies the two-dimensional eigenvalue
problem

V2, +a0=0, (7.7.6)

with = 0 on the entire boundary, r = a:

0(a, 9) = 0 (7.7.7)

We will attempt to obtain solutions of (7.7.6) in the product form appropriate
for polar coordinates,

-O(r, 9) = f (r)g(9), (7.7.8)

since for the circular membrane 0 < r < a, -ir < 0 < ir. This is equivalent
to originally seeking solutions to the wave equation in the form of a product of
functions of each independent variable, u(r, 9, t) = f(r)g(O)h(t). We substitute
(7.7.8) into (7.7.6); in polar coordinates V240 = 1/r 8/8r(r 80/8r) + 1/r2 820/892,
and thus V2.0 + aq5 = 0 becomes

g(9) d f(r) d2g( i) + (9) = 0+ Af (r) (7 7 9).r 9dgar dr

r and 9 may be separated by multiplying by r2 and dividing by f (r)g(9):

. .

1 ( I + a e = (7 7 10)
9 d92

r ii.f dr rdr . .

We introduce a second separation constant in the form a because our experience
with circular regions (see Secs. 2.4.2 and 2.5.2) suggests that g(9) must oscillate in
order to satisfy the periodic conditions in 9. Our three differential equations, with
two separation constants, are thus

d2h = -Ac2h (7 7 11)
dt2

. .

d2g (7.7.12)
T02

rdr(rd)+(Ar2-u)f=0. (7.7.13)

Two of these equations must be eigenvalue problems. However, ignoring the initial
conditions, the only given boundary condition is f (a) = 0, which follows from
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u(a, 8, t) = 0 or 0(a, 9) = 0. We must remember that -ir < 9 < it and 0 < r < a.
Thus, both 8 and r are defined over finite intervals. As such there should be
boundary conditions at both ends. The periodic nature of the solution in 8 implies
that

g(-ir) = g(ir) (7.7.14)

d8
(-rr) = B (1r). (7.7.15)

We already have a condition at r = a. Polar coordinates are singular at r = 0;
a singularity condition must be introduced there. Since the displacement must be
finite, we conclude that

If (0)1 < cc.

7.7.3 Eigenvalue Problems (One Dimensional)
After separating variables, we have obtained two eigenvalue problems. We are
quite familiar with the 8-eigenvalue problem, (7.7.12) with (7.7.14) and (7.7.15).
Although it is not a regular Sturm-Liouville problem due to the periodic boundary
conditions, we know that the eigenvalues are

µm = m2, m = 0, 1, 2, .... (7.7.16)

The corresponding eigenfunctions are both

g(8) = sinmO and g(8) = cosm8, (7.7.17)

although for m = 0 this reduces to one eigenfunction (not two as for m 36 0). This
eigenvalue problem generates a full Fourier series in 0, as we already know. m is
the number of crests in the 0-direction.

For each integral value of m, (7.7.13) helps to define an eigenvalue problem for A:

rd f rd
l
+(Ar2-m2)f =0

f(a) = 0

If (0)1 < 00.

(7.7.18)

(7.7.19)

(7.7.20)

Since (7.7.18) has nonconstant coefficients, it is not surprising that (7.7.18) is some-
what difficult to analyze. Equation (7.7.18) can be put in the Sturm-Liouville form
by dividing it by r:

(7.7.21)
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or L f + \r f = 0, where L = d/dr (r d/dr) - m2/r. By comparison to the general
Sturm-Liouville differential equation,

d [p(x)J +qq+\ao=0,

with independent variable r, we have that x = r, p(r) = r, a(r) = r, and q(r) _
-m2/r. Our problem is not a regular Sturm-Liouville problem due to the behavior
at the origin (r = 0):

1. The boundary condition at r = 0, (7.7.20), is not of the correct form.
2. p(r) = 0 and a(r) = 0 at r = 0 (and hence is not positive everywhere).
3. q(r) approaches oo as r - 0 [and hence q(r) is not continuous) for m 0.

However, we claim that all the statements concerning regular Sturm-Liouville prob-
lems are still valid for this important singular Sturm-Liouville problem. To begin
with there are an infinite number of eigenvalues (for each m). We designate the
eigenvalues as An,,,, where m = 0, 1, 2, ... and n = 1, 2, ..., and the eigenfunctions
fnm(r). For each fined m, these eigenfunctions are orthogonal with weight r [see
(7.7.21)], since it can be shown that the boundary terms vanish in Green's formula
(see Exercise 5.5.1). Thus,

fo

a

fmn, fnn,r dr = 0 for nl # n2. (7.7.22)

Shortly, we will state more explicit facts about these eigenfunctions.

7.7.4 Bessel's Differential Equation
The r-dependent separation of variables solution satisfies a "singular" Sturm-Liou-
ville differential equation, (7.7.21). An alternative form is obtained by using the
product rule of differentiation and by multiplying by r:

z

r2ddrf + r- + (Ar2 - m2) f = 0. (7.7.23)

There is some additional analysis of (7.7.23) that can be performed. Equation
(7.7.23) contains two parameters, m and A. We already know that m is an integer,
but the allowable values of A are as yet unknown. It would be quite tedious to
solve numerically (7.7.23) for various values of A (for different integral values of m).
Instead, we might notice that the simple scaling transformation,

z = fir, 1 (7.7.24)
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removes the dependence of the differential equation on A:

z2d2+zI +(z2-m2)f=0. (7.7.25)

We note that the change of variables (7.7.24) may be performed3 since we showed
in Sec. 7.6 from the multidimensional Rayleigh quotient that A > 0 (for V20 +
)¢ = 0) anytime 0 = 0 on the entire boundary, as it is here. We can also show
that A > 0 for this problem using the one-dimensional Rayleigh quotient based
on (7.7.18)-(7.7.20) (see Exercise 7.7.13). Equation (7.7.25) has the advantage
of not depending on A; less work is necessary to compute solutions of (7.7.25)
than of (7.7.23). However, we have gained more than that since (7.7.25) has been
investigated for over 150 years. It is now known as Bessel's differential equation
of order m.

7.7.5 Singular Points and Bessel's Differential Equation
In this subsection we briefly develop some of the properties of Bessel's differential
equation. Equation (7.7.25) is a second-order linear differential equation with vari-
able coefficients. We will not be able to obtain an exact closed-form solution of
(7.7.25) involving elementary functions. To analyze a differential equation, one of
the first things we should do is search for any special values of z that might cause
some difficulties. z = 0 is a singular point of (7.7.25).

Perhaps we should define a singular point of a differential equation. We refer to
the standard form:

dz2 + a(z) d + b(z) f = 0.

If a(z) and b(z) and all their derivatives are finite at z = zo, then z = zo is called
an ordinary point. Otherwise, z = zo is a singular point. For Bessel's differential
equation, a(z) = 1/z and b(z) = 1- m2/z2. All finite4 z except z = 0 are ordinary
points. z = 0 is a singular point [since, for example, a(0) does not exist].

In the neighborhood of any ordinary point, it is known from the theory of differ-
ential equations that all solutions of the differential equation are well behaved [i.e.,
f (z) and all its derivatives exist at any ordinary point]. We thus are guaranteed
that all solutions of Bessel's differential equation are well behaved at every finite
point except possibly at z = 0. The only difficulty can occur in the neighborhood of
z = 0. We will investigate the expected behavior of solutions of Bessel's differential
equation in the neighborhood of z = 0. We will describe a crude (but important)
approximation. If z is very close to 0, then we should expect that z2f in Bessel's

31n other problems, if A = 0, then the transformation (7.7.24) is invalid. However, (7.7.24) is
unnecessary for A = 0 since in this case (7.7.23) becomes an equidimensional equation and can be
solved (as in Sec. 2.5.2).

4With an appropriate definition, it can be shown that z = oo is not an ordinary point for
Bessel's differential equation.
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differential equation can be ignored, since it is much smaller than m2 f .s We do
not ignore z2 d' f /dz2 or z df /dz because although z is small, it is possible that
derivatives of f are large enough so that z df /dz is as large as -m2 f . Dropping

z2f yields

zed 2 + Z !Y- - m2 f ^~ 0, (7.7.26)

a valid approximation near z = 0. The advantage of this approximation is that
(7.7.26) is exactly solvable, since it is an equidimensional (also known as a Cauchy

or Euler) equation (see Sec. 2.5.2). Equation (7.7.26) can be solved by seeking
solutions in the form

f z". (7.7.27)

By substituting (7.7.27) into (7.7.26) we obtain a quadratic equation for 8,

s(8- 1) +a -M2 =0, (7.7.28)

known as the indicial equation. Thus, s2 = m2, and the two roots (indices)
are s = ±m. If m # 0 (in which case we assume m > 0), then we obtain two
independent approximate solutions.

f zm and f -- z-' (m > 0). (7.7.29)

However, if m = 0, we only obtain one independent solution f z° = 1. A second
solution is easily derived from (7.7.26). If m = 0,

2

z2
dz2

+ Z !K 0 or z
dz

z
dz

U.
-

Thus, z df /dz is constant and, in addition to f 1, it is also possible for f In z.

In summary, for m = 0, two independent solutions have the expected behavior near

z = 0,
f .u 1 and f In z (m=0). (7.7.30)

The general solution of Bessel's differential equation will be a linear combination
of two independent solutions, satisfying (7.7.29) if m 0 and (7.7.30) if m = 0.
We have only obtained the expected approximate behavior near z = 0. More will
be discussed in the next subsection. Because of the singular point at z = 0, it is
possible for solutions not to be well behaved at z = 0. We see from (7.7.29) and
(7.7.30) that independent solutions of Bessel's differential equation can be chosen
such that one is well behaved at z = 0 and one solution is not well behaved at z = 0
[note that for one solution limZ_.o f (z) = ±oo).

7.7.6 Bessel Functions and Their Asymptotic Properties
(near z = 0)

We continue to discuss Bessel's differential equation of order m,

z2d2f+z +(z2-m2)f=0. (7.7.31)
dz2 dz

5Even if m = 0, we still claim that z2 f can be neglected near z = 0 and the result will give a
reasonable approximation.
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As motivated by the previous discussion, we claim there are two types of solutions,
solutions that are well behaved near z = 0 and solutions that are singular at z =
0. Different values of m yield a different differential equation. Its corresponding
solution will depend on m. We introduce the standard notation for a well-behaved
solution of (7.7.31), Jm(z), called the Bessel function of the first kind of order
m. In a similar vein, we introduce the notation for a singular solution of Bessel's
differential equation, Ym(z), called the Bessel function of the second kind of
order m. You can solve a lot of problems using Bessel's differential equation by
just remembering that Ym(z) approaches ±oo as z - 0.

The general solution of any linear homogeneous second-order differential equa-
tion is a linear combination of two independent solutions. Thus, the general solution
of Bessel's differential equation (7.7.31) is

f = CiJm(z) +C2Ym(Z) (7.7.32)

Precise definitions of Jm(z) and Ym(z) are given in Sec. 7.8. However, for our
immediate purposes, we simply note that they satisfy the following asymptotic
properties for small z (z -i 0):

Jm(z) -

Ym(z) -

1

1 mm, Z

In z

- 2-(m-l)! z-mx

m=0
m>0
m=0

m > 0.

(7.7.33)

It should be seen that (7.7.33) is consistent with our approximate behavior, (7.7.29)
and (7.7.30). We see that Jm(z) is bounded as z -+ 0 whereas Ym(z) is not.

7.7.7 Eigenvalue Problem Involving Bessel Functions
In this section we determine the eigenvalues of the singular Sturm-Liouville problem
(m fixed):

f (a) = 0

If(0)1 < co.

=0 (7.7.34)

(7.7.35)

(7.7.36)
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By the change of variables z = %/A-r, (7.7.34) becomes Bessel's differential equation,

Z2 dz2 + zd + (zz _ mz) f = 0.

The general solution is a linear combination of Bessel functions, f = c1Jm(z) +
c2Ym(z). The scale change implies that in terms of the radial coordinate r.

f = c1Jm(VAr) + c2Ym(VAT). (7.7.37)

Applying the homogeneous boundary conditions (7.7.35) and (7.7.36) will determine
the eigenvalues. f (0) must be finite. However, Ym (0) is infinite. Thus, c2 = 0,
implying that

f = c1J.(vr). (7.7.38)

Thus, the condition f (a) = 0 determines the eigenvalues:

Jm(/a) = 0. (7.7.39)

We we that fa must be a zero of the Bessel function Jm(z). Later in Sec. 7.8.1,
we show that a Bessel function is a decaying oscillation. There is an infinite number
of zeros of each Bessel function Jm(z). Let zmn designate the nth zero of Jm(z).
Then

Zmn or Amn =
an)z

(7.7.40)

For each m, there is an infinite number of eigenvalues, and (7.7.40) is analogous to
A = (nir/L)z, where n7r are the zeros of sinx.

Example. Consider Jo(z), sketched in detail in Fig. 7.7.1. From accurate ta-
bles, it is known that the first zero of Jo(z) is z = 2.4048255577.... Other zeros
are recorded in Fig. 7.7.1. The eigenvalues are Aon = (zon/a)z. Separate tables of
the zeros are available. The Handbook of Mathematical Functions (Abramowitz and
Stegun [1974]) is one source. Alternatively, over 700 pages are devoted to Bessel
functions in A Treatise on the Theory of Bessel Functions by Watson [1995].

Eigenfunctions. The eigenfunctions are thus
r),Jm mnr) = J. (zmn r) , (7.7.41)

f o r m = 0,1, 2, ... , n = 1, 2,.... For each m, these are an infinite set of eigenfunc-
tions for the singular Sturm-Liouville problem, (7.7.34)-(7.7.36). For fixed m they
are orthogonal with weight r [as already discussed, see (7.7.22)]:

J0
a

Jm (VA pr) Jm (VA-,r) r dr = 0, p 54- q. (7.7.42)
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1

0.5

0

z01= 2.40483...
Z02 = 5.52008...
Z03 = 8.65373...
z04 = 11.79153...

Z02 z03 x04

J0(z)

0 2 4 6 8 10 12 14 16

Figure 7.7.1 Sketch of Jo(z) and its zeros.

It is known that this infinite set of eigenfunctions (m fixed) is complete. Thus, any
piecewise smooth function of r can be represented by a generalized Fourier series of
the eigenfunctions:

a(r) _ a,,Jm (VA--r) (7.7.43)
n=1

where m is fixed. This is sometimes known as a Fourier-Bessel series. The
coefficients can be determined by the orthogonality of the Bessel functions (with
weight r):

fo a(r)J,,, (/r) r dran _ (7.7.44)f0 Jn,(r)rdr
This illustrates the one-dimensional orthogonality of the Bessel functions. We
omit the evaluation of the normalization integrals fo J,,, ( a,,,nr) r dr (e.g., see
Churchill [1972] and Berg and McGregor [1966]).

7.7.8 Initial Value Problem for a Vibrating Circular
Membrane

The vibrations u(r, 0, t) of a circular membrane are described by the two-dimensional
wave equation, (7.7.1), with u being fixed on the boundary, (7.7.2), subject to the
initial conditions (7.7.3). When we apply the method of separation of variables, we
obtain four families of product solutions, u(r, 9, t) = f (r)g(9)h(t):

cos mB cos cJm ( A mnr)
sin m9

It
sin cv/xZnt } (7.7.45)

To simplify the algebra, we will assume that the membrane is initially at rest,

(r, 0, 0) f3(r,9) = 0.

Thus, the sin cv t terms in (7.7.45) will not be necessary. Then according to
the principle of superposition, we attempt to satisfy the initial value problem by
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considering the infinite linear combination of the remaining product solutions:
00 00

u(r, 0, t) _ >AmnJm ( mnr) Cos m6 Cos c=mnt
m=0 n=1

00 00

+ 1: >BmnJm ( Tmnr) Sinm6COSC\/"\,,t-
m=1 n=1

The initial position u(r, 0, 0) = a(r, 0) implies that

a(r, 0) = (t AmnJm ( mnr ) ) COSi118
m=0 n=1

(7.7.46)

nJm ( Xmnr) sinm9. (7.7.47)E Bm+E
(n=1m=1 f

By properly arranging the terms in (7.7.47), we see that this is an ordinary Fourier
series in 6. Their Fourier coefficients are Fourier-Bessel series (note that m is fixed).
Thus, the coefficients may be determined by the orthogonality of Jm ( mnr) with
weight r [as in (7.7.44)]. As such we can determine the coefficients by repeated
application of one-dimensional orthogonality. Two families of coefficients Amn and
Bmn (including m = 0) can be determined from one initial condition since the
periodicity in 0 yielded two eigenfunctions corresponding to each eigenvalue.

However, it is somewhat easier to determine all the coefficients using two-
dimensional orthogonality. Recall that for the two-dimensional eigenvalue problem,

V20+'\.0 = 0

with 46 = 0 on the circle of radius a, the two-dimensional eigenfunctions are the
doubly infinite families

Jm mnT
sn m9

(
)\) sim9

Thus,
a(r, 0) _ AxOx(r, 9), (7.7.48)

where >a stands for a summation over all eigenfunctions [actually two double sums,
including both sinm9 and cos m9 as in (7.7.47)]. These eigenfunctions .0a (r, 9)
are orthogonal (in a two-dimensional sense) with weight 1. We then immediately
calculate Aa (representing both Amn and Bmn),

Aa = f f a(r, 0)0,\ (r, 0) dA
(7.7.49)

f f 02 (r, 6) dA

Here dA = r dr d9. In two dimensions the weighting function is constant. However,
for geometric reasons dA = r dr d9. Thus, the weight r that appears in
the one-dimensional orthogonality of Bessel functions is just a geometric
factor.
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7.7.9 Circularly Symmetric Case
In this subsection, as an example, we consider the vibrations of a circular membrane,
with u = 0 on the circular boundary, in the case in which the initial conditions are
circularly symmetric (meaning independent of 0). We could consider this as a
special case of the general problem, analyzed in Sec. 7.7.8. An alternative method,
which yields the same result, is to reformulate the problem. The symmetry of the
problem, including the initial conditions suggests that the entire solution should be
circularly symmetric; there should be no dependence on the angle 0. Thus,

u=u(r,t) and V2u=Tar (,r )

The mathematical formulation is thus

PDE:

IC:

2

since
2

= 0.

82u C 2

Or(J1t2

BC: u(a,t) = Q

u(r, 0) = a(r)

(r, 0) = 0(r)

(7.7.50)

(7.7.51)

(7.7.52)

We note that the partial differential equation has two independent variables. We
need not study this problem in this chapter, which is reserved for more than two
independent variables. We could have analyzed this problem earlier. However, as
we will see, Bessel functions are the radially dependent functions, and thus it is
more natural to discuss this problem in the present part of this text.

We will apply the method of separation of variables to (7.7.50)-(7.7.52). Looking
for product solutions,

yields
2 /

c2 h dt2 dr (r d } = -A, (7.7.54)

where -a is introduced because we suspect that the displacement oscillates in time.
The time-dependent equation,

d2h
= -Ac2h,

dt2
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has solutions sin cf t and cos cv/t if A > 0. The eigenvalue problem for the
separation constant is

O(a) = 0

X0(0)1 < oo.

(7.7.55)

(7.7.56)

(7.7.57)

Since (7.7.55) is in the form of a Sturm-Liouville problem, we immediately know that
eigenfunctions corresponding to distinct eigenvalues are orthogonal with weight r.

From the Rayleigh quotient we could show that A > 0. Thus, we may use the
transformation

z = fr, (7.7.58)

in which case (7.7.55) becomes

dd + zO=0 or z2dO+zdO+z20=0. (7.7.59)

We may recall that Bessel's differential equation of order m is

z2 d

2zo

+ z d- + (z2 - m2) m = 0, (7.7.60)

with solutions being Bessel functions of order m, J,,,(z) and }'m(z). A comparison
with (7.7.60) shows that (7.7.59) is Bessel's differential equation of order 0. The
general solution of (7.7.59) is thus a linear combination of the zeroth-order Bessel
functions:

= c1Jo(z) +c2Yo(z) = c1Jo (v'r) +c2Yo (,rr) , (7.7.61)

in terms of the radial variable. The singularity condition at the origin (7.7.57) shows
that c2 = 0, since Yo (VAr) has a logarithmic singularity at r = 0:

0 = c1Jo (vI_A_r) . (7.7.62)

Finally, the eigenvalues are determined by the condition at r = a, (7.7.56), in which
case

Jo (v'a) = 0. (7.7.63)

Thus, via must be a zero of the zeroth Bessel function. We thus obtain an infinite
number of eigenvalues, which we label A1, A2, ....
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We have obtained two infinite families of product solutions

Jo ( anr) sin c ant and Jo ( Anr) cos c ant.

According to the principle of superposition, we seek solutions to our original prob-
lem, (7.7.50)-(7.7.52) in the form

00 00

u(r, t) =I: anJo (/r) cos c ant + >2bnJo (v r) sin c ant.
n=1 n=1

(7.7.64)

As before, we determine the coefficients an and bn from the initial conditions.
u(r, 0) = a(r) implies that

00

a(r) _ anJ0 ( )1nr) .

n=1
(7.7.65)

The coefficients an are thus the Fourier-Bessel coefficients (of order 0) of a(r). Since
Jo ( Tnr) forms an orthogonal set with weight r, we can easily determine an,

a(r)Jo (\/,\-nr) r dr
a

0=an faj2 (/r) r dr
(7.7.66)

In a similar manner, the initial condition a/at u(r, 0) = 0(r) determines bn.

EXERCISES 7.7
*7.7.1. Solve as simply as possible:

Ua

at2 = c2V2u

with u(a, 0, t) = 0, u(r, 0, 0) = 0, and at (r, 0, 0) = a(r) sin 30.

7.7.2. Solve as simply as possible:

2 = c2V2u subject to a (a, 0, t) = 0

with initial conditions

(a) u(r, 0, 0) = 0,
a

(r, 0, 0) = f3(r) cos 50
(h) u(r, 0, 0) = 0, i (r, 0, 0) _ 13(r)

u(()d)

u(r, 0, 0) = 0,(r' B)' Tut (r, e, 0) = Q(r, e)

2
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7.7.3. Consider a vibrating quarter-circular membrane, 0 < r < a, 0 < 9 < it/2,
with u = 0 on the entire boundary.

*(a) Determine an expression for the frequencies of vibration.
(b) Solve the initial value problem if

u(r, 0, 0) = g(r, 9), (r, 0, 0) = 0.'ji

7.7.4. Consider the displacement u(r, 0, t) of a "pie-shaped" membrane of radius
a (and angle it/3 = 60°) that satisfies

82
2 = c2v2u.i§j

Assume that A > 0. Determine the natural frequencies of oscillation if the
boundary conditions are

(a) u(r, 0, t) = 0, u(r, it/3, t) = 0, au (a, 8, t) = 0

(b) u(r, 0, t) = 0, u(r, it/3, t) = 0, u(a, 9, t) = 0

*7.7.5. Consider the displacement u(r, 0, t) of a membrane whose shape is a 900
sector of an annulus, a < r < b, 0 < 9 < 7r/2, with the conditions that u = 0
on the entire boundary. Determine the natural frequencies of vibration.

7.7.6. Consider the circular membrane satisfying

02U

= c2v2u
subject to the boundary condition

u(a, 0, t) = - (a, 0, t).

(a) Show that this membrane only oscillates.
(b) Obtain an expression that determines the natural frequencies.
(c) Solve the initial value problem if

u(r, 0, 0) = 0, at (r, 9, 0) = a(r) sin 39.

7.7.7. Solve the heat equation
ou

= kV2u
8t

inside a circle of radius a with zero temperature around the entire boundary,
if initially

u(r, 0, 0) = f (r, 9).

Briefly analyze limt....oo u(r, 9, t). Compare this to what you expect to occur
using physical reasoning as t -' oo.
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*7.7.8. Reconsider Exercise 7.7.7, but with the entire boundary insulated.

7.7.9. Solve the heat equation

a" = kV2uat
inside a semicircle of radius a and briefly analyze the limt.,,. if the initial
conditions are

u(r,0,0) = f(r,9)

and the boundary conditions are

(a) u(r,0,t) = 0, u(r,a,t) = 0, Ou(a,9,t) = 0
* (b) ee (r, 0, t) = 0, a° (r, 7r, t) = 0, (a, 0, t) = 0

(c) "(r,0,t) = 0, N(r,7r,t) = 0, u(a,0,t) = 0
(d) u(r, 0, t) = 0, u(r, 7r, t) = 0, u(a, 9, t) = 0

*7.7.10. Solve for u(r, t) if it satisfies the circularly symmetric heat equation

19U = k1 '9 (r&u)

subject to the conditions

u(a,t) = 0

Briefly analyze the limt_,,,,,.

u(r, 0) = f (r).

7.7.11. Reconsider Exercise 7.7.10 with the boundary condition

(a,t) = 0.

7.7.12. For the following differential equations, what is the expected approximate
behavior of all solutions near x = 0?

*(a) x2 '4.- + (x - 6)y . 0 (b) x2 d + (x2 + is) y = 0

*(c) x2 d + (x + x2) e + 4y = 0 (d) x2 d + (x + x2) . - 4y = 0

*(e) x2d -4xd +(6+x3)y=0 (f) x2, +(x+1)y=0d.4 4

7.7.13. Using the one-dimensional Rayleigh quotient, show that A > 0 as defined
by (7.7.18)-(7.7.20).
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7.8 More on Bessel Functions
7.8.1 Qualitative Properties of Bessel Functions
It is helpful to have some understanding of the sketch of Bessel functions. Let us
rewrite Bessel's differential equation as

d2f _-/ m2) \ f - 1df1--,
dz z z dz

(7.8.1)

in order to compare it with the equation describing the motion of a spring-mass
system (unit mass, spring "constant" k and frictional coefficient c):

.

dty
-ky - cdyz

The equilibrium is y = 0. Thus, we might think of Bessel's differential equation as
representing a time-varying frictional force (c = 1/t) and a time-varying "restoring"
force (k = 1-m2/t2). The latter force is a variable restoring force only for t > m(z >
m). We might expect the solutions of Bessel's differential equation to be similar to
a damped oscillator (at least for z > m). The larger z gets, the closer the variable
spring constant k approaches 1 and the more the frictional force tends to vanish.
The solution should oscillate with frequency approximately 1, but should slowly
decay. This is similar to an underdamped spring-mass system, but the solutions
to Bessel's differential equation should decay more slowly than any exponential
since the frictional force is approaching zero. Detailed numerical solutions of Bessel
functions are sketched in Fig. 7.8.1, verifying these points. Note that for small z,

Jo(z);Z 1 Yo(z)-:t:
2

1nz
n

J, (Z) : 2z Y1 (z) -?z-1 (7.8.2)
ir

J2(z) ti 8z2 Y2(z) -4z-2.

These sketches vividly show a property worth memorizing: Bessel functions
of the first and second kind look like decaying oscillations. In fact, it is
known that-0J,,,(z) and Y, (z) may be accurately approximated for large z by simple
algebraically decaying oscillations for large z:

2 r n )
J.n(z)

rrz
cos

(z
z -

4
- m 2

F2s,n 7rY .z- m2
asz -+oo

asz -+oo.
(7.8.3)

These are known as asymptotic formulas, meaning that the approximations improve
as z -+ oo. In Sec. 5.9 we claimed that approximation formulas similar to (7.8.3)
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Figure 7.8.1 Sketch of various Bessel functions.
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always exist for any Sturm-Liouville problem for the large eigenvalues A > 1. Here
A >> 1 implies that z >> 1 since z = -..fA-r and 0 < r < a (as long as r is not too
small).

A derivation of (7.8.3) requires facts beyond the scope of this text. However,
information such as (7.8.3) is readily available from many sources.' We notice
from (7.8.3) that the only difference in the approximate behavior for large z of all
these Bessel functions is the precise phase shift. We also note that the frequency
is approximately 1 (and period 27r) for large z. consistent with the comparison
with a spring-mass system with vanishing friction and k -+ 1. Furthermore, the
amplitude of oscillation, 2/7rz, decays more slowly as z - oo than the exponential
rate of decay associated with an underdamped oscillator, as previously discussed
qualitatively.

7.8.2 Asymptotic Formulas for the Eigenvalues
Approximate values of the zeros of the eigenfunctions Jn(z) may be obtained using
these asymptotic formulas, (7.8.3). For example, for m = 0, for large z

Ji!icosJ° (z) (z - it

The zeros approximately occur when z - 7r/4 = -7r/2 + sir, but s must be large (in
order for z to be large). Thus, the large zeros are given approximately by

z- -7rs-41, (7.8.4)

for large integral s. We claim that formula (7.8.4) becomes more and more accurate
as n increases. In fact, since the formula is reasonably accurate already for n = 2 or 3

6A personal favorite, highly recommended to students with a serious interest in the applications
of mathematics to science and engineering, is Handbook of Mathematical Functions, edited by
M. Abramowitz and I. A. Stegun, originally published snexpensively by the National Bureau of
Standards in 1964 and in 1974 reprinted by Dover in paperback.
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Table 7.8.1: Zeros of Jo(z)

Large z formula Percentage
n zon Exact (7.8.4) Error error zon - Zo(n-1)
1 z01 2.40483 ... 2.35619 0.04864 2.0 -
2 z02 5.52008... 5.49779 0.02229 0.4 3.11525
3 z03 8.65373 ... 8.63938 0.01435 0.2 3.13365
4 z04 11.79153 ... 11.78097 0.01156 0.1 3.13780

(see Table 7.8.1), it may be unnecessary to compute the zero to a greater accuracy
than is given by (7.8.4). A further indication of the accuracy of the asymptotic
formula is that we see that the differences of the first few eigenvalues are already
nearly 7r (as predicted for the large eigenvalues).

7.8.3 Zeros of Bessel Functions and Nodal Curves
We have shown that the eigenfunctions are Jm where ( / )2mn = Zmn a ,

zmn being the nth zero of J,n(z). Thus, the eigenfunctions are

J. Zmnr-)

For example, for m = 0, the eigenfunctions are Jo(zonr/a), where the sketch of
Jo(z) is reproduced in Fig. 7.8.2 (and the zeros are marked). As r ranges from 0
to a, the argument of the eigenfunction Jo(zonr/a) ranges from 0 to the nth zero,
zon. At r = a, z = zon, the nth zero. Thus, the nth eigenfunction has n - 1 zeros
in the interior. Although originally stated for regular Sturm-Liouville problems, it
is also valid for singular problems (if eigenfunctions exist).

Z04 z zonr/a

4 6 8 10 12 14

Figure 7.8.2 Sketch of Jo(z) and its zeros.

The separation of variables solution of the wave equation is

u(r, 0, t) = f (r)g(0)h(t),
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M=0
n=2

m=3
n=1

Figure 7.8.3 Normal nodes and nodal curves for a vibrating circular membrane.

where

u(r, 0, t) = J. ` Zmn a 1 {
cos mB } { cos CVT..t (7.8.5)

known as a normal mode of oscillation and is graphed for fixed tin Fig. 7.8.3. For
each m 54 0 there are four families of solutions (for m = 0 there are two families).
Each mode oscillates with a characteristic natural frequency, c mn. At certain
positions along the membrane, known as nodal curves, the membrane will be
unperturbed for all time (for vibrating strings we called these positions nodes).
The nodal curve for the sin mO mode is determined by

Jm I zmn
r \

sin m6 = 0. (7.8.6)aJ
The nodal curve consists of all points where sinmO = 0 or Jm(zmnr/a) = 0; sinmO
is zero along 2m distinct rays, 0 = sa/m, s = 1, 2, ... , 2m. In order for there to
be a zero of Jm(zmnr/a) for 0 < r < a, zmnr/a must equal an earlier zero of
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Jm(Z), zmnr/a = z,np, p = 1, 2, ... , n - 1. There are thus n - 1 circles along which
Jmn(zmnr/a) = 0 besides r = a. We illustrate this for m = 3, n = 2 in Fig. 7.8.3,
where the nodal circles are determined from a table.

7.8.4 Series Representation of Bessel Functions
The usual method of discussing Bessel functions relies on series solution methods
for differential equations. We will obtain little useful information by pursuing this
topic. However, some may find it helpful to refer to the formulas that follow.

First we review some additional results concerning series solutions around z = 0
for second-order linear differential equations:

z2 + a(z)
dz

+ b(z) f = 0. (7.8.7)

Recall that z = 0 is an ordinary point if both a(z) and b(z) have Taylor series
around z = 0. In this case we are guaranteed that all solutions may be represented
by a convergent Taylor series,

W

f = Eanzn=a0+alz+a2Z2+...
n=0

at least in some neighborhood of z = 0.
If z = 0 is not an ordinary point, then we call it a singular point (e.g., z = 0

is a singular point of Bessel's differential equation). If z = 0 is a singular point,
we cannot state that all solutions have Taylor series around z = 0. However, if
a(z) = R(z)/z and b(z) = S(z)/z2 with R(z) and S(z) having Taylor series, then
we can say more about solutions of the differential equation near z = 0. For this case
known as a regular singular point, the coefficients a(z) and b(z) can have at worst
a simple pole and double pole, respectively. It is possible for the coefficients a(z) and
b(z) not to be that singular. For example, if a(z) = 1 + z and b(z) = (1 - z3)/z2,
then z = 0 is a regular singular point. Bessel's differential equation in the form
(7.8.7) is

d2 f l df z2 - m2
dz2 + z dz +

z2
f = U.

Here R(z) = 1 and S(z) = z2-m2; both have Taylor series around z = 0. Therefore,
z = 0 is a regular singular point for Bessel's differential equation.

For a regular singular point at z = 0, it is known by the method of Frobenius
that at least one solution of the differential equation is in the form

00

f =zpEa,, zn,
n=0

(7.8.8)

that is, zp times a Taylor series, where p is one of the solutions of the quadratic
indicial equation. One method to obtain the indicial equation is to substitute f = zp
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into the corresponding equidimensional equation that results by replacing R(z) by
R(0) and S(z) by S(0). Thus

p(p - 1) + R(0)p + S(0) = 0

is the indicial equation. If the two values of p (the roots of the indicial equation)
differ by a noninteger, then two independent solutions exist in the form (7.8.8).
If the two roots of the indicial equation are identical, then only one solution is in
the form (7.8.8) and the other solution is more complicated but always involves
logarithms. If the roots differ by an integer, then sometimes both solutions exist
in the form (7.8.8), while other times form (7.8.8) only exists corresponding to the
larger root p and a series beginning with the smaller root p must be modified by
the introduction of logarithms. Details of the method of Frobenius are presented in
most elementary differential equations texts.

For Bessel's differential equation, we have shown that the indicial equation is

p(p - 1) + p - 1rt2 =0,

since R(0) = 1 and S(0) = -m2. Its roots axe ±m. If m = 0, the roots are
identical. Form (7.8.8) is valid for one solution, while logarithms must enter the
second solution. For m 0 the roots of the indicial equation differ by an integer.
Detailed calculations also show that logarithms must enter. The following infinite
series can be verified by substitution and are often considered as definitions of J,,,(z)
and Y,,,(z):

Jm(z) = (-1)k(z/2)2k+m
(7.8.9)k=O k!(kk + m)!

k=0

2

[(log
z 1(m - k- 1)!(z/2)2k-mYm(zn 2+Y)Jm(x)-2 , k!

k-0 (7.8.10)
I °O 2k+m

+ 2 E(-1)k+i [cp(k) + V(k + m)] M(m)+ k)!
k=O

where

(i) cp(k) = 1 + Z + 3 + + 1/k, O(O)=0
(ii) y = limk-.[cp(k) - Ink] = 0.5772157..., known as Euler's constant.
(iii) Ifm=0, Fk al =0.

We have obtained these from the previously mentioned handbook edited by Abra-
mowitz and Stegun.

EXERCISES 7.8
7.8.1. The boundary value problem for a vibrating annular membrane 1 < r < 2

(fixed at the inner and outer radii) is

' (') / 2\
dr rd +IAr--m if=0

with f (1) = 0 and f (2) = 0, where m = 0, 1, 2, ... .
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(a) Show that A > 0.
*(b) Obtain an expression that determines the eigenvalues.

(c) For what value of m does the smallest eigenvalue occur?
*(d) Obtain an upper and lower bound for the smallest eigenvalue.

(e) Using a trial function, obtain an upper bound for the lowest eigenvalue.

(f) Compute approximately the lowest eigenvalue from part (b) using ta-
bles of Bessel functions. Compare to parts (d) and (e).

7.8.2. Consider the temperature u(r, 9, t) in a quarter-circle of radius a satisfying

au = kV2u
8t

subject to the conditions

u(r, 0, t) = 0 u(a, 9, t) = 0
u(r, 7r/2, t) = 0 u(r, 9, 0) = G(r, 9).

(a) Show that the boundary value problem is

d (r±f-) + (Ar - f = 0

with f (a) = 0 and f (0) bounded.
(b) Show that A> 0if µ> 0.
(c) Show that for each µ, the eigenfunction corresponding to the smallest

eigenvalue has no zeros for 0 < r < a.
*(d) Solve the initial value problem.

7.8.3. Reconsider Exercise 7.8.2 with the boundary conditions

a9 (r, 0, t) = 0, aB (r, 2 , t) = 0, u(a, 9, t) = 0.

7.8.4. Consider the boundary value problem

(Ar
-m2 )f=0

with f (a) = 0 and f (0) bounded. For each integral m, show that the nth
eigenfunction has n - 1 zeros for 0 < r < a.

7.8.5. Using the known asymptotic behavior as z --+ 0 and as z - oo, roughly
sketch for all z > 0

(a) J4(z) (b) Yi(z) (c) Yo(z)

(d) Jo(z) (e) Ys(z) (f) J2(z)
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7.8.6. Determine approximately the large frequencies of vibration of a circular
membrane.

7.8.7. Consider Bessel's differential equation

z2d222 +zz+(z2-m2) f = 0.

Let f = y/z1/2. Derive that

d2 + y ( 1 + z-2 - m2z-2) = 0.

*7.8.8. Using Exercise 7.8.7, determine exact expressions for J112(z) and Y1/2(z).
Use and verify (7.8.3) and (7.7.33) in this case.

7.8.9. In this exercise use the result of Exercise 7.8.7. If z is large, verify as much
as possible concerning (7.8.3).

7.8.10. In this exercise use the result of Exercise 7.8.7 in order to improve on (7.8.3):

(a) Substitute y = etzw(z) and show that

1
z2+2iaz + 72w=0, where ry=4-m2.

(b) Substitute w = F_, 0 Determine the first few terms an (as-
suming that 130 = 1).

(c) Use part (b) to obtain an improved asymptotic solution of Bessel's
differential equation. For real solutions, take real and imaginary parts.

(d) Find a recurrence formula for /3,,. Show that the series diverges.
(Nonetheless, a finite series is very useful.)

7.8.11. In order to "understand" the behavior of Bessel's differential equation as
z -+ oo, let x = 11z. Show that x = 0 is a singular point, but an irregular
singular point. [The asymptotic solution of a differential equation in the
neighborhood of an irregular singular point is analyzed in an unmotivated
way in Exercise 7.8.10. For a more systematic presentation, see advanced
texts on asymptotic or perturbation methods (such as Bender and Orszag
[19991.)]

7.8.12. The lowest cigenvalue for (7.7.34)-(7.7.36) for m = 0 is A = (zol/a)2. De-
termine a reasonably accurate upper bound by using the Rayleigh quotient
with a trial function. Compare to the exact answer.

7.8.13. Explain why the nodal circles in Fig. 7.8.3 are nearly equally spaced.
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7.9 Laplace's Equation in a Circular Cylinder
7.9.1 Introduction
Laplace's equation,

V2u=0, (7.9.1)

represents the steady-state heat equation (without sources). We have solved La-
place's equation in a rectangle (Sec. 2.5.1) and Laplace's equation in a circle (Sec.
2.5.2). In both cases, when variables were separated, oscillations occur in one
direction, but not in the other. Laplace's equation in a rectangular box can also
be solved by the method of separation of variables. As shown in some exercises in
Chapter 7, the three independent variables yield two eigenvalue problems that have
oscillatory solutions and solutions in one direction that are not oscillatory.

A more interesting problem is to consider Laplace's equation in a circular cylin-
der of radius a and height H. Using circular cylindrical coordinates,

x = rcos9
y=rsin9
z=z,

Laplace's equation is

2 2

T C7T
(r &u) + T e2 + az2 = . (7.9.2)

We prescribe u (perhaps temperature) on the entire boundary of the cylinder:

top: u(r, 9, H) = 0(r, O)
bottom: u(r, 9, 0) = ce(r, B)
lateral side: u(a, 0, z) = -y(O, z).

There are three nonhomogeneous boundary conditions. One approach is to break
the problem up into the sum of three simpler problems, each solving Laplace's
equation,

O2u,=0, i=1,2,3,

where u = ul + u2 + u3. This is illustrated in Fig. 7.9.1. In this way each problem
satisfies two homogeneous boundary conditions, but the sum satisfies the desired
nonhomogeneous conditions. We separate variables once, for all three cases, and
then proceed to solve each problem individually.

7.9.2 Separation of Variables
We begin by looking for product solutions,

u(r,0,z) = f(r)g(9)h(z), (7.9.3)
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U = -Y(9, z)

u = ,Q(r, 0)

V2u=0

U3 = 7(µ,z)

u = o(r, 9) u, = 0 u2 = o(r. 9) U3 = 0

u, = Q(r,8)

V2u,=0

u1=0

u2=0

V2U2 = 0

U2 = 0

V2u3 = 0

Figure 7.9.1 Laplace's equation in a circular cylinder.

for Laplace's equation. Substituting (7.9.3) into (7.9.2) and dividing by f (r)g(9)h(z)
yields

fd(rdr
J

df1
+

19_d2g 1d2h
0'r dr r2 d92 + h dz2 =

We immediately can separate the z-dependence and hence

1d2h
h dz2 A.

(7.9.4)

(7.9.5)

Do we expect oscillations in z? From Fig. 7.9.1 we see that oscillations in z should be
expected for the u3-problem but not necessarily for the ul- or u2-problem. Perhaps
A < 0 for the u3-problem but not for the u1- and u2-problems. Thus, we do not
specify A at this time. The r and 9 parts also can be separated if (7.9.4) is multiplied
by r2 [and (7.9.5) is utilized]:

f a (ri) + are = = p (7.9.6)

A second separation constant p is introduced, with the anticipation that p > 0
because of the expected oscillations in 9 for all three problems. In fact, the implied
periodic boundary conditions in 9 dictate that

p = m2, (7.9.7)

and that g(O) can be either sin m9 or cos m9, where m is a nonnegative integer,
m = 0, 1, 2, .... A Fourier series in 0 will be appropriate for all these problems.

In summary, the 9-dependence is sin m9 and cos m9, and the remaining two
differential equations are

X22 = Ah

d dr- r f + (are - m2) f = 0.dr dr

(7.9.8)

(7.9.9)
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These two differential equations contain only one unspecified parameter A. Only
one will become an eigenvalue problem. The eigenvalue problem needs two homoge-
neous boundary conditions. Different results occur for the various problems, u1, u2,
and u3. For the u3-problem, there are two homogeneous boundary conditions in z,
and thus (7.9.8) will become an eigenvalue problem [and (7.9.9) will have nonoscil-
latory solutions]. However, for the u1- and u2-problems there do not exist two
homogeneous boundary conditions in z. Instead, there should be two homogeneous
conditions in r. One of these is at r = a. The other must be a singularity condition
at r = 0, which occurs due to the singular nature of polar (or circular cylindrical)
coordinates at r = 0 and the singular nature of (7.9.9) at r = 0:

If(0)1 < Co. (7.9.10)

Thus, we will find that for the u1- and u2-problems, (7.9.9) will be the eigenvalue
problem. The solution of (7.9.9) will oscillate, whereas the solution of (7.9.8) will
not oscillate. We next describe the details of all three problems.

7.9.3 Zero Temperature on the Lateral Sides
and on the Bottom or Top

The mathematical problem for ul is

O2u1 = 0 (7.9.11)

ul (r, 9, 0) = 0 (7.9.12)

u1 (r, 0, H) = (3(r, 0) (7.9.13)

ul(a,0,z) = 0. (7.9.14)

The temperature is zero on the bottom. By separation of variables in which
the nonhomogeneous condition (7.9.13) is momentarily ignored, ul = f (r)g(9)h(z).
The 9-part is known to equal sin m9 and cos m9 (for integral m > 0). The z-
dependent equation, (7.9.8), satisfies only one homogeneous condition, h(0) = 0.
The r-dependent equation will become a boundary value problem determining the
separation constant A. The two homogeneous boundary conditions are

f(a) = 0 (7.9.15)

If(0)I < 00. (7.9.16)

The eigenvalue problem, (7.9.9) with (7.9.15) and (7.9.16), is one that, was analyzed
in Sec. 7.8. There we showed that A > 0 (by directly using the Rayleigh quotient).
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Furthermore, we showed that the general solution of (7.9.9) is a linear combination
of Bessel functions of order m with argument vlr\-r:

f(r) = c1Jm (fr) +c2Ym (V.\r) = C1 J- (v'r) , (7.9.17)

which has been simplified using the singularity condition, (7.9.16).Then the homo-
geneous condition, (7.9.15), determines A:

Jm (vrA- a) = 0. (7.9.18)

Again via must be a zero of the mth Bessel function, and the notation Amn is
used to indicate the infinite number of eigenvalues for each m. The eigenfunction
Jm (/nr) oscillates in r.

Since A > 0. the solution of (7.9.8) that satisfies h(0) = 0 is proportional to

h(z) =sinh viz. (7.9.19)

No oscillations occur in the z-direction. There are thus two doubly infinite families
of product solutions:

sinh amnz J. sin mB I
cos mB

(7.9.20)

oscillatory in r and 9, but nonoscillatory in z. The principle of superposition implies
that we should consider

00 00

u(r, 9, z) _ EAmn sinh Jm (/r) cosm9
m=0 n=1
00 00

+ >Bmn sinh /z Jm (fir) sin m9.
m=1 n=1

(7.9.21)

The nonhomogeneous boundary condition, (7.9.13), u1 (r, 0, H) = Q(r, 9), will de-
termine the coefficients A,nn and Bmn. It will involve a Fourier series in 9 and a
Fourier-Bessel series in r. Thus we can solve Amn and Bmn using the two one-
dimensional orthogonality formulas. Alternatively, the coefficients are more eas-
ily calculated using the two-dimensional orthogonality of Jm (./X r) cos mB and
Jm ( mnr) sin m9 (see Sec. 7.8). We omit the details.

In a similar manner, one can obtain u2. We leave as an exercise the solution of
this problem.
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7.9.4 Zero Temperature on the Top and Bottom
A somewhat different mathematical problem arises if we consider the situation in
which the top and bottom are held at zero temperature. The problem for u3 is

V2U3 = 0 (7.9.22)

u3(r,9,0)=0 (7.9.23)

u3(r, 9, H) = 0 (7.9.24)

u3(a, 0, z) = 'Y(9, z) (7.9.25)

We may again use the results of the method of separation of variables. The
periodicity again implies that the 8-part will relate to a Fourier series (i.e., sin m9
and cos m9). However, unlike what occurred in Sec. 7.9.3, the z-equation has two
homogeneous boundary conditions:

d 2h

dzz = A

h(0) = 0

h(H) = 0.

(7.9.26)

(7.9.27)

(7.9.28)

This is the simplest Sturm-Liouville eigenvalue problem (in a somewhat different
form). In order for h(z) to oscillate and satisfy (7.9.27) and (7.9.28), the separation
constant A must be negative. In fact, we should recognize that

(
A

=
-\H)z

n=1,2,... (7.9.29)

h(z) = sin Hz (7.9.30)

The boundary conditions at top and bottom imply that we will be using an ordinary
Fourier sine series in z.
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We have oscillations in z and 9. The r-dependent solution should not be oscil-
latory; they satisfy (7.9.9), which using (7.9.29) becomes

n?r)2 2H r = 0. (7.9.31)

A homogeneous condition, in the form of a singularity condition, exists at r = 0,

If (0) 1 < oc, (7.9.32)

but there is no homogeneous condition at r = a.
Equation (7.9.31) looks similar to Bessel's differential equation but has the wrong

sign in front of the r2 term. It cannot be changed into Bessel's differential equation
using a real transformation. If we let

/n7r\s=i H
where i =, then (7.9.31) becomes

2

s ds (sd / + (s2 - m2) f = 0 or S2d
ds2

f
+ sd + (s2 - m2) f = 0.

We recognize this as exactly Bessel's differential equation, and thus

f = cl J,,, (s) + c2Y(s) or f = cl J,,, (i H r) + c2Ym (i H r) .

(7.9.33)

(7.9.34)

Therefore, the solution of (7.9.31) can be represented in terms of Bessel functions
of an imaginary argument. This is not very useful since Bessel functions are not
usually tabulated in this form.

Instead, we introduce a real transformation that eliminates the dependence on
n7r/H of the differential equation:

nirw = H r.

Then (7.9.31) becomes

w2 22 + wdw + (-w2 - m2) f = 0. (7.9.35)

Again the wrong sign appears for this to be Bessel's differential equation. Equation
(7.9.35) is a modification of Bessel's differential equation, and its solutions, which
have been well tabulated, are known as modified Bessel functions.

Equation (7.9.35) has the same kind of singularity at w = 0 as Bessel's differen-
tial equation. As such, the singular behavior could be determined by the method
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of FYobenius.7 Thus, we can specify one solution to be well defined at w = 0, called
the modified Bessel function of order m of the first kind, denoted I,n(w).
Another independent solution, which is singular at the origin, is called the modi-
fied Bessel function of order m of the second kind, denoted K,,,(w). Both
I,n(w) and Km(w) are well-tabulated functions. We will need very little knowledge
concerning I,(w) and Km(w). The general solution of (7.9.31) is thus

f = c1Km (Hr) +c21m (Hr) (7.9.36)

Since K,n is singular at r = 0 and I,,, is not, it follows that cl = 0 and f (r) is
proportional to I,n(nirr/H). We simply note that both In(w) and K,(w) are non-
oscillatory and are not zero for w > 0. A discussion of this and further properties
are given in Sec. 7.9.5.

There are thus two doubly infinite families of product solutions:

I'll (H r) sin ft- cos m0 and I..
H
n7r

r) sin Hz sin m6. (7.9.37)

These solutions are oscillatory in z and 0, but nonoscillatory in r. The principle
of superposition, equivalent to a Fourier sine series in z and a Fourier series in 9,
implies that

u3(r, 9, z) _ EmnIm
nrr
lY

r sin nirz
H cosmo"0 "0

+ E >Fmn I,n (Fj r) sin Hz sin mB.
m=1 n=1

m=O n=1
00 00 (7.9.38)

The coefficients Emn and Fmn can be determined [if I,n(nira/H) # 0] from the
nonhomogeneous equation (7.9.25) either by two iterated one-dimensional orthog-
onality results or by one application of two-dimensional orthogonality. In the next
section we will discuss further properties of I,n(nira/H), including the fact that it
has no positive zeros.

In this way the solution for Laplace's equation inside a circular cylinder has been
determined given any temperature distribution along the entire boundary.

7.9.5 Modified Bessel Functions
The differential equation that defines the modified Bessel functions is

2

w2dw + wdw + (-w2 - m2) f = 0. (7.9.39)

Two independent solutions are denoted Km(w) and I,,,(w). The behavior in the
neighborhood of the singular point w = 0 is determined by the roots of the indicial

Here it is easier to use the complex transformation (7.9.33). Then the infinite series represen-
tation for Bessel functions is valid for complex arguments, avoiding additional calculations.
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equation, ±m, corresponding to approximate solutions near w = 0 of the forms wf'n
(for m 54 0) and w° and w° In w (for m = 0). We can choose the two independent
solutions such that one is well behaved at w = 0 and the other singular.

A good understanding of these functions comes from also analyzing their behav-
ior as w oo. Roughly speaking, for large w (7.9.39) can be rewritten as

d2f 1 +f. (7.9.40)
dw2 w dw

Thinking of this as Newton's law for a particle with certain forces, the -1/w df/dw
term is a weak damping force tending to vanish as w -+ oo. We might expect as
w - oo that

d2f
dw2 " f>

which suggests that the solution should be a linear combination of an exponentially
growing e' and exponentially decaying a-w term. In fact, the weak damping has its
effects (just as it did for ordinary Bessel functions). We state (but do not prove) a
more advanced result, namely that the asymptotic behavior for large w of solutions
of (7.9.39) are approximately efw/w'/2. Thus, both I,(w) and K,,,(w) are linear
combinations of these two, one exponentially growing and the other decaying.

There is only one independent linear combination that decays as w - oc. There
are many combinations that grow as w -+ oo. We define K,(w) to be a solution
that decays as w - oo. It must be proportional to e-'/w'/' and it is defined
uniquely by

)
7f a-w

Km (w ~ V 2 w'/2,

(7.9.41)

as w -+ oo. As w -- 0 the behavior of K,,,(w) will be some linear combination of
the two different behaviors (e.g., w- and w-m for m :pk 0). In general, it will be
composed of both and hence will be singular at w = 0. In more advanced treatments
it is shown that

1 In w M=0K, (w) 2(m - 1)!(Zw)_m

m 54 0,
(7.9.42)

as w - 0. The most important facts about this function is that the K,,,(w)
exponentially decays as w - oo but is singular at w = 0.

Since Km(w) is singular at w = 0, we would like to define a second solution
I,,,(w) not singular at w = 0. I,,,(w) is defined uniquely such that

Im(w) ~ m,j (2w)m,

(7.9.43)
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as w -+ 0. As w -+ oo, the behavior of I,,,(w) will be some linear combination of
the two different asymptotic behaviors (efw/w1"2). In general, it will be composed
of both and hence is expected to exponentially grow as w --+ oc. In more advanced
works, it is shown that

ww em( )
r-1-W

(7.9.44)

as w -+ oo. The most important facts about this function is that Im(w) is well
behaved at w = 0 but grows exponentially as w - oo.

Some modified Bessel functions are sketched in Fig. 7.9.2. Although we have
not proved it, note that both I,,,(w) and K,,,(w) are not zero for w > 0.

0 0.5 1 1.5 2 2.5

w

Figure 7.9.2 Various modified Bessel functions (from
Abramowitz and Stegun 119741).

EXERCISES 7.9
7.9.1. Solve Laplace's equation inside a circular cylinder subject to the boundary

conditions

(a) u(r, 9, 0) = a(r, 9), u(r, 0, H) = 0, u(a, 9, z) = 0

*(b) u(r,0,0) = a(r)sin 79, u(r,9, H) = 0, u(a,0,z) = 0

(c) u(r, 9, 0) = 0, u(r, 9, H) = /3(r) cos 39, (a, 9, z) = 0
Tor-

(d) "(r, 0, 0) = a(r) sin 39, Ou (r, 9, H) = 0, (a, 9, z) = 0

(e) (r, 9, 0) a(r, 9), Yz (r, 9, H) = 0, dr (a, 9, z) = 0

For (e) only, under what condition does a solution exist?
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7.9.2. Solve Laplace's equation inside a semicircular cylinder, subject to the bound-
ary conditions

(a) u(r, 9, 0) = 0,

u(r, it, z) = 0,

*(b) u(r, 0, 0) = 0,

u(r, it, z) = 0,

(c) 0 u(r, 0, 0) = 0,

e (r, it, z) = 0,

u(r, 0, H) = a(r, 9), u(r, 0, z) = 0,

u(a, 0, z) = 0

(r, 9, H) = 0, u(r, 0, z) = 0,
Tz-

u(a,0,z) = /3(9,z)

T.u(r, 9, H) = 0, (r, 0, z) = 0,

L 9u (a, 0, z) = /3(9, z)

For (c) only, under what condition does a solution exist?

(d) u(r, 0, 0) = 0, u(r, 0, z) = 0, u(a, 0, z) = 0,

(r, 7r, z) = a(r, z)u(r, 0, H) = 0,
FO_

7.9.3. Solve the heat equation
au = kV2u
8t

inside a quarter-circular cylinder (0 < 0 < it/2 with radius a and height H)
subject to the initial condition

u(r,0,z,0) = f(r,0,z)

Briefly explain what temperature distribution you expect to be approached
as t -+ oo. Consider the following boundary conditions

(a) u(r, 9, 0) = 0,

u(r, ir/2, z) = 0,

*(b) 8u (r, 9, 0) = 0,

(r, ir/2, z) = 0,

(c) u(r, 9, 0) = 0,

u(r, ir/2, z) = 0,

u(r, 9, H) = 0, u(r, 0, z) = 0,

u(a, 9, z) = 0

(r, 9, H) = 0,(r, 0, z) = 0,
Wz- _M

Ou(a,9,z) = 0

u(r, 9, H) = 0, (r, 0, z) = 0,

Ou(a,0,z)=0

7.9.4. Solve the heat equation
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inside a cylinder (of radius a and height H) subject to the initial condition,

u(r, 9, z, 0) = f (r, z),

independent of 9, if the boundary conditions are

t(a) u(r,O,0,t) = 0, u(r,9,H,t) = 0, u(a,9,z,t) = 0

(b) (r, 9, 0, t) = 0, (r, 9, H, t) = 0, (a, 9, z, t) = 0

(c) u(r, 9, 0, t) = 0, u(r, 9, H, t) = 0, Ar (a, 9, z, t) = 0

7.9.5. Determine the three ordinary differential equations obtained by separation
of variables for Laplace's equation in spherical coordinates

(sin0o
1 2

0 = i ( r2
) + sin a + sin

892.

7.10 Spherical Problems and Legendre
Polynomials

7.10.1 Introduction
Problems in a spherical geometry are of great interest in many applications. In
the exercises, we consider the three-dimensional heat equation inside the spherical
earth. Here, we consider the three-dimensional wave equation which describes the
vibrations of the earth:

&2 = c2V2u, (7.10.1)

where u is a local displacement. In geophysics, the response of the real earth to
point sources is of particular interest due to earthquakes and nuclear testing. Solid
vibrations of the real earth are more complicated than (7.10.1). Compressional
waves called P for primary are smaller than shear waves called S for secondary,
arriving later because they propagate at a smaller velocity. There are also long (L)
period surface waves, which are the most destructive in severe earthquakes because
their energy is confined to a thin region near the surface. Real seismograms are
more complicated because of scattering of waves due to the interior of the earth
not being uniform. Measuring the vibrations is frequently used to determine the
interior structure of the earth needed not only in seismology but also in mineral
exploration, such as petroleum engineering. All displacements solve wave equations.
Simple mathematical models are most valid for the destructive long waves, since
the variations in the earth are averaged out for long waves. For more details, see
Aki and Richards [1980], Quantitative Seismology. We use spherical coordinates (p,
0, 46), where 0 is the angle from the pole and 9 is the usual cylindrical angle. The



7.10. Spherical Problems and Legendre Polynomials 337

boundary condition we assume is u(a, 9, ¢, t) = 0, and the initial displacement and
velocity distribution is given throughout the entire solid:

u(r, 0, 0, 0) = F(r, 8, 0) (7.10.2)

(r, 0, 0, 0) =,jF G(r, 0, 0). (7.10.3)

Problems with nonhomogeneous boundary conditions are treated in Chapter 8.

7.10.2 Separation of Variables and One-Dimensional
Eigenvalue Problems

We use the method of separation of variables. As before, we first introduce product
solutions of space and time:

u(r, 0, 0, t) = w(r, 8, 0)h(t). (7.10.4)

We have already separated space and time, so that we know

d2h = -Ac2h (7.10.5)
dt2

V2w+Aw = 0, (7.10.6)

where the first separation constant A satisfies the multidimensional eigenvalue prob-
lem (7.10.6) subject to being zero on the boundary of the sphere. The frequencies
of vibration of the solid sphere are given by cf.

Using the equation for the Laplacian in spherical coordinates (reference from
Chapter 1), we have

1 a 2 011W 1 a aw 1 02w

p2 ap (P FP) + p2 sin 0 ao (an' 6 -0 + p2 sin2 a82
+ Aw = 0. (7.10.7)

We seek product solutions of the form

w(r,0,0) = f(r)9(0)g(O). (7.10.8)

To save some algebra, since the coefficients in (7.10.7) do not depend on 8, we note
that it is clear that the eigenfunctions in 0 are cosm8 and sin m8, corresponding to
the periodic boundary conditions associated with the usual Fourier series in 9 on
the interval -7r < 0 < ir. In this case the term eo in (7.10.7) may be replaced
by -mew. We substitute (7.10.8) into (7.10.7), multiply by p2, divide by f (r)g((A),
and introduce the third (counting -m2as number two) separation constant p:

1 d (p2 df) +.Ap2 = - 1 d (sin odg) - ,m2
7.10.9f dp dp g sin ¢ d¢ dO sin2 0 = µ'

( )

The two ordinary differential equations that are the fundamental part of the eigen-
value problems in 0 and p are

(7.10.10)dp`P2 P)+(AP2-p)f = 0
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d-0 IsinoO I+lµsin¢-sn0 Ig = 0. (7.10.11)

The homogeneous boundary conditions associated with (7.10.10) and (7.10.11) will
be discussed shortly. We will solve (7.10.11) first because it does not depend on the
eigenvalues A of (7.10.10).

Equation (7.10.11) is a Sturm-Liouville differential equation (for each m) in the
angular coordinate 0 with eigenvalue µ and nonnegative weight sin 0. Equation
(7.10.11) is defined from 0 = 0 (North Pole) to 0 = it (South Pole). However,
(7.10.11) is not a regular Sturm-Liouville problem since p = sin# must be > 0
and sin 0 = 0 at both ends. There is no physical boundary condition at the sin-
gular endpoints. Instead we will insist the solution is bounded at each endpoint:
Ig(0)I < oo and (g(ir)l < oo. We claim that the usual properties of eigenvalues and
eigenfunctions are valid. In particular, there is an infinite set of eigenfunctions (for
each fixed m) corresponding to different eigenvalues µ,,,,, , and these eigenfunctions
will be an orthogonal set with weight sin 0.

Equation (7.10.10) is a Sturm-Liouville differential equation (for each m and
n) in the radial coordinate p with eigenvalue .1 and weight p2. One homogeneous
boundary condition is f (a) = 0. Equation (7.10.10) is a singular Sturm-Liouville
problem because of the zero at p = 0 in the coefficient in front of df /dp. Spherical
coordinates are singular at p = 0, and solutions of the Sturm-LiouvilIe differential
equation must be bounded there: If (0) I < oo. We claim that this singular problem
still has an infinite set of eigenfunctions (for each fixed m and n) corresponding to
different eigenvalues Akn,,, , and these eigenfunctions will form an orthogonal set
with weight p2.

7.10.3 Associated Legendre Functions and Legendre
Polynomials

A (not obvious) change of variables has turned out to simplify the analysis of the
differential equation that defines the orthogonal eigenfunctions in the angle 0:

x = cos ¢. (7.10.12)

As 0 goes from 0 to 7r, this is a one-to-one transformation in which x goes from
1 to -1. We will show that both endpoints remain singular points. Derivatives

41-are transformed by the chain rule,
m

=
d1-

dz sin 0fj. In this way (7.10.11)
becomes after dividing by sin 0 and recognizing that sine 0 = 1 - cost ¢ = 1 - x2:

(7.10.13)
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This is also a Sturm-Liouville equation, and eigenfunctions will be orthogonal in
x with weight 1. This corresponds to the weight sin o with respect to 0 since
dx = - sin 0 dm. Equation (7.10.13) has singular points at x = ±1, which we will
show are regular singular points (see Sec. 7.8.4). It is helpful to understand the local
behavior near each singular point using a corresponding elementary equidimensional
(Euler) equation. We analyze (7.10.13) near x = 1 (and claim due to symmetry
that the local behavior near x = -1 can be the same). The troublesome coefficients
1-x2 = (1-x)(1 +x) can be approximated by -2(x -1) near x = 1 Thus (7.10.13)
may be approximated near x = 1 by

-2 d [(x-1)dg]+ 2 g;: 0 (7.10.14)
dx dx 2(x - 1)

since only the singular term that multiplies .9 is significant. Equation (7.10.14) is an
equidimensional (Euler) differential equation whose exact solutions is easy to obtain
by substituting g = (x - 1)9 , from which we obtain p2 = m2/4 or p = ±m/2. If
m 0 0, we conclude that one independent solution is bounded near x = 1 [and
approximated by (x - 1)m/2] and the second independent solution is unbounded
[and approximated by (x - 1)'m/2].

Since we want our solution to he bounded at x = 1, we can only use the one
solution that is bounded at x = 1. When we compute this solution (perhaps nu-
merically) at x = -1, its behavior must be a linear combination of the two local
behaviors near x = -1. Usually the solution that is bounded at x = 1 will be
unbounded at x = -1. Only for certain very special values of (which we have
called the eigenvalues) will the solution of (7.10.13) be bounded at both x = ±1.
To simplify significantly the presentation, we will not explain the mysterious but
elegant result that the only values of µ for which the solution is bounded at x = ±1

p = n(n + 1), (7.10.15)

where n is an integer with some restrictions we will mention. It is quite remark-
able that the eigenvalues do not depend on the important parameter m. Equation
(7.10.13) is a linear differential equation whose two independent solutions are called
associated Legendre functions (spherical harmonics) of the first F7 '(x) and
second kind Qn (x). The first kind is bounded at both x = fl for integer n, so that
the eigenfunctions are given by g(x) = Pn (x).

If m = 0: Legendre polynomials. m = 0 corresponds to solutions of
the partial differential equation with no dependence on the cylindrical angle 0. In
this case the differential equation (7.10.13) becomes

dx
[(1 - x2)

dg]

+ n(n + 1)g = 0, (7.10.16)

given that it can be shown that the eigenvalues satisfy (7.10.15). By series methods
it can be shown that there are elementary Taylor series solutions around x = 0
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that terminate (are finite series) only when p = n(n + 1), and hence are bounded
at x = ±l when p = n(n + 1). It can be shown (not easy) that if u n(n + 1),
then the solution to the differential equation is not bounded at either ±1. These
important bounded solutions are called Legendre polynomials and are not difficult
to compute:

n = 0: Po(x) = 1
n = 1: Pj(x) = x = cos q5

n = 2:P2(x)=2(3x2-1)=4(3cos20+1).
(7.10.17)

These have been chosen such that they equal 1 at x = 1 (0 = 0, North Pole). It
can be shown that the Legendre polynomials satisfy Rodrigues' formula:

P. (x) _
2

n!n (x2 - 1)n (7.10.18)

Since Legendre polynomials are orthogonal with weight 1, they can be obtained
using the Gram-Schmidt procedure (see appendix of Section 7.5). We graph (see
Fig. 7.10.1) in x and 0 the first few eigenfunctions (Legendre polynomials). It can
be shown that the Legendre polynomials are a complete set of polynomials, and
therefore there are no other eigenvalues besides p = n(n + 1).

If m > 0: the associated Legendre functions. Remarkably, the
eigenvalues when m > 0 are basically the same as when m = 0 given by (7.10.15).
Even more remarkable is that the eigenfunctions when m > 0 (which we have called
associated Legendre functions) can be related to the eigenfunctions when m = 0
(Legendre polynomials):

g(x) = Pn (x) = (x2 - 1),n/2 dM Pn(x)
dxm

We note that Pn(x) is the nth-degree Legendre polynomial. The mth derivative
will be zero if n < m. Thus, the eigenfunctions exist only for n > in, and the
eigenvalues do depend (weakly on m). The infinite number of eigenvalues are

p = n(n + 1), (7.10.20)

with the restriction that n > m. These formulas are also valid when m = 0; the
associated Legendre functions when m = 0 are the Legendre polynomials, Pn (x) _
Pn(x).
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P0(x) = 1

P0(cosO) = 1

Pj(x) = x

Pl(cos4) = cosO

P2(x) =

2

(3x2 - 1)
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P2(cosO) =

4

(3cos20 + 1)

Figure 7.10.1 Legendre polynomials.

7.10.4 Radial Eigenvalue Problems
The radial Sturm-Liouville differential equation, (7.10.10), with u = n(n + 1),

P
(p2 1 )

+
(Ap2 - n(n + 1)) f = 0, (7.10.21)

has the restriction n > m for fixed m. The boundary conditions are f (a) = 0, and
the solution should be bounded at p = 0. Equation (7.10.21) is nearly Bessel's differ-
ential equation. The parameter A can be eliminated by instead considering fp as
the independent variable. However, the result is not quite Bessel's differential equa-
tion. It is easy to show (see the Exercises) that if ZZ(x) solves Bessel's differential
equation (7.7.25) of order p, then f (p) = p 112Zn+i (gyp), called spherical Bessel
functions, satisfy (7.10.21). Since the radial eigenfunctions must be bounded at
p = 0, we have

f (P) = P (Vr-P), (7.10.22)

for n > m. [If we recall the behavior of the Bessel functions at the origin (7.7.33),
we can verify that these solutions are bounded at the origin. In fact, they are zero
at the origin except for n = 0.1 The eigenvalues A are determined by applying the
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homogeneous boundary condition at p = a:

Jn+i(Vr.-\a) = 0. (7.10.23)

The eigenvalues are determined by the zeroes of the Bessel functions of order n +
2. There is an infinite number of eigenvalues for each n and m. Note that the
frequencies of vibration are the same for all values of m < n.

The spherical Bessel functions can be related to trigonometric functions:

_I dx1/2Jn+,l (x) = x"
X TX / n

CSlzx

7.10.5 Product Solutions, Modes of Vibration,
and the Initial Value Problem

(7.10.24)

Product solutions for the wave equation in three dimensions are

u(r,9,4,,t)=coscftsin cftp 1/2Jn+,(vf,\-p)cosmOsinm9Pn (cos0),

where the frequencies of vibration are determined from (7.10.23). The angular
parts YY = cos m9 sin m9Pn (cos 4,) are called surface harmonics of the first
kind. Initial value problems are solved by using superposition of these infinite
modes, summing over m, n, and the infinite radial eigenfunctions characterized by
the zeros of the Bessel functions. The weights of the three one-dimensional or-
thogonality give rise to d9, sin 0 do, p2 dp, which is equivalent to orthogonality in
three dimensions with weight 1, since differential volume in spherical coordinates
is dV = p2 sin 0 dp do d9. This can be checked using the Jacobian J of the original
transformation since dx dy dx = J dp d9 do and

J=
sin4cos9 pcos4cos9
sin0sin0 pcos0sin0

cos 0 -p sin 4,

-p sin 0sin B
psin4coa9

0
= p2 sin 0.

Normalization integrals for associated Legendre functions can be found in reference
books such as Abramowitz and Stegun:

fIP(x)]21 dx = (n + 2)1(n + m)!/(n - m)! (7.10.25)

Example. For the purely radial mode n = 0 (m = 0 only), using (7.10.24) the
frequencies of vibration satisfy sin(fa) = 0, so that

circular frequency =cv' = J1rc,
a
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where a is the radius of the earth, for example. The fundamental mode j = 1 has
circular frequency hertz (cycles per second) or a frequency of 2a per second or
a period of 21 seconds. For the earth we can take a = 6000 km and c = 5 km/s,
giving a period of 12500 = 2400 seconds or 40 minutes.

7.10.6 Laplace's Equation Inside a Spherical Cavity
In electrostatics, it is of interest to solve Laplace's equation inside a sphere with the
potential u specified on the boundary p = a

V2u=0

u(a, 0, 0) = F(9, ¢).

(7.10.26)

(7.10.27)

This corresponds to determining the electric potential given the distribution of the
potential along the spherical conductor. We can use the previous computations,
where w e solved b y separation of variables. The 8 and 0 equations and their solu-
tions will be the same, a Fourier series in 8 involving cos m8 and sin m O and a g e n -
e r a l i z e d Fourier series in 0 involving the associated Legendre functions I ' (cos 0).
However, we need to insist that A = 0, so that the radial equation (7.10.21) will be
different and will not be an eigenvalue problem:

(7.10.28)dp(p2dp)-n(n+1))f = 0.

Here (7.10.28) is an equidimensional equation and can be solved exactly by sub-
stituting f = p''. By substitution we have r(r + 1) - n(n + 1) = 0, which is a
quadratic equation with two different roots r = n and r = -n - 1 since n is an
integer. Since the potential must be bounded at the center p = 0, we reject the
unbounded solution p-n-1. Product solutions for Laplace's equation are

pn cos m8 sin mOP,m(cos 0), (7.10.29)

so that the solution of Laplace's equation is in the form

00 00

u(r, 0, 0) = >2 >2 pn[A,,,n cos m9 + Bmn sin m9JP.'(cos 0).
m=0 n=m

(7.10.30)

The nonhomogeneous boundary condition implies that

00 00

F(8, 0) = >2 >2 an[A,,,n cos mO + Bmn sin m9JPn (cos 0). (7.10.31)
m=0 n=m
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By orthogonality, for example,

PJ/ F(B, ¢) sin m9Pn (cuss 4) sin / d¢ d8
anB..= UUUr

// sing Me [Pn (COB O)] 2 sin ¢ do d9

A similar expression exists for A,n.

(7.10.32)

Example. In electrostatics, it is of interest to determine the electric potential
inside a conducting sphere if the hemispheres are at different constant potentials.
This can be done experimentally by separating two hemispheres by a negligibly small
insulated ring. For convenience, we assume the upper hemisphere is at potential
+V and the lower hemisphere at potential -V. The boundary condition at p = a
is cylindrically (azimuthally) symmetric; there is no dependence on the angle 9.
We solve Laplace's equation under this simplifying circumstance, or we can use the
general solution obtained previously. We follow the later procedure. Since there is
no dependence On 9, all terms for the Fourier series in a will be zero in (7.10.30)
except for the m = 0 term. Thus, the solution of Laplace's equation with cylindrical
symmetry can be written as a series involving the Legendre polynomials:

00u(r, q5) = E Anp'Pn(cos.0) (7.10.33)
n=0

The boundary condition becomes

V for 0 < 0 < 7r/2 (0 < x < 1) 00

(7.10.34)-V for ir/2 < 0 < 7r(-1 < x < 0) L
n

Thus, using orthogonality (in x = cos 0) with weight 1,

Arran _ .fo1 -VPn(x) dx+,f0 VPn(x) dx

f 11 [Pn (x)]2 dx

0 for n even

2 VPn(x)dx/f [P n(x)]2dx for n odd, (7.10-35)

0

since Pn(x) is even for n even and Pn(x) is odd for n odd and the potential on
the surface of the sphere is an odd function of x. Using the normalization integral
(7.10.25) for the denominator and Rodrigues formula for Legendre polynomials,
(7.10.18), for the numerator, it can be shown that

u(r,45)= V[2aP1(cos0)- 8(Q)3P3(COSO)+ 11(a)SP5(cos¢i)+...] (7.10.36)

For a more detailed discussion of this, see Jackson [1998], Classical Electrodynamics.
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EXERCISES 7.10

7.10.1. Solve the initial value problem for the wave equationew = c2V2u inside a
sphere of radius a subject to the boundary condition u(a, 0, O, t) = 0 and
the initial conditions

(a) u(p, 0, 0, 0) = F(p, 0, 0) and Ou (p, 0, 0, 0) = 0

(b) u(p, 0, 0, 0) = 0 and g (p, 0, 0, 0) = G(p, 0, 0)

(c) u(p, 0, 0, 0) = F(p, 0) and Ou (p, 0, 0, 0) = 0

(d) u(p, 0, -0, 0) = 0 and j (p, 0, 0, 0) = G(p, 4,)
(e) u(p, 0, 4,, 0) = F(p, 0) cos 30 and (p, 0, 0, 0) = 0

(f) u(p, 0, 0, 0) = F(p) sin 20 and (p, 0, 0, 0) = 0

(g) u(p, 0, 0, 0) = F(p) and g (p, 0, 0, 0) = 0

(h) u(p, 0, 0, 0) = 0 and (p, 0, 0, 0) = G(p)

7.10.2. Solve the initial value problem for the heat equation = k02u inside a
sphere of radius a subject to the boundary condition u(a, 0, 0, t) = 0 and
the initial conditions

(a) u(p, 0, 0, 0) = F(p, 0, 0)
(b) u(p, 0, ¢, 0) = F(p, 0)
(c) u(p, 0, ¢, 0) = F(p, 0) cos 0

(d) u(p, 0, 0, 0) = F(p)

7.10.3. Solve the initial value problem for the heat equationen = kV2u inside a
sphere of radius a subject to the boundary condition (a, 8, , t) = 0 and
the initial conditions

(a) u(p, 0, 4', 0) = F(p, 0,.0)

(b) u(p, 0, 4, 0) = F(p, 0)
(c) u(p, 0, 4', 0) = F(p, 0) sin 30

(d) u(p, 0, 0) = F(p)

7.10.4. Using the one-dimensional Rayleigh quotient, show that p > 0 (if m > 0)
as defined by (7.10.11). Under what conditions does p = 0?

7.10.5. Using the one-dimensional Rayleigh quotient, show that p > 0 (if m > 0)
as defined by (7.10.13). Under what conditions does p = 0?

7.10.6. Using the one-dimensional Rayleigh quotient, show that A > 0 (if n > 0) as
defined by (7.10.6) with the boundary condition f (a) = 0. Can A = 0?

7.10.7. Using the three-dimensional Rayleigh quotient, show that A > 0 as defined
by (7.10.11) with u(a, 0, 0, t) = 0. Can A = 0?
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7.10.8. Differential equations related to Bessel's differential equation. Use this to
show that

x2dxz+x(1-2a-2bx)d +[a2-p2+(2a-l)bx+(d2+b2)x2]f = 0 (7.10.37)

has solutions x°e"Zp(dx), where Zp(x) satisfies Bessel's differential equa-
tion (7.7.25). By comparing (7.10.21) and (7.10.37), we have a = -a,b =
0,1- p2=-n(n+1), andd2=A. We find that p=(n+2).

7.10.9. Solve Laplace's equation inside a sphere p < a subject to the following
boundary conditions on the sphere:

(a) u(a, 0, 0) = F(O) cos 48

(b) u(a, 0, 0) = F(q)
(c) (a, 0, 0) = F(et) cos 40

(d)
WP-

(a, 0, 0) = F(O) with for F(i) sin ¢ d¢ = 0

(e) (a,9,) =F(0,46) with fo fo " F(0, cb) sin q5 d9 d, = 0

7.10.10. Solve Laplace's equation outside a sphere p > a subject to the potential
given on the sphere:

(a) u(a, 9, 0) = F(0, 0)
(b) u(a, 0, = F(q), with cylindrical (azimuthal) symmetry
(c) u(a, 0, = V in the upper hemisphere, -V in the lower hemisphere

(do not simplify; do not evaluate definite integrals)

7.10.11. Solve Laplace's equation inside a sector of a sphere p < a with 0 < 0 < 2
subject to u(p, 0, ¢) = 0 and u(p, 2, q5) = 0 and the potential given on the
sphere: u(a, 0, 0) = F(0, 0).

7.10.12. Solve Laplace's equation inside a hemisphere p > a with z > 0 subject
to u = 0 at z = 0 and the potential given on the hemisphere: u(a, 0, ¢) =
F(9, 4)) [Hint: Use symmetry and solve a different problem, a sphere with
the antisymmetric potential on the lower hemisphere.]

7.10.13. Show that Rodrigues' formula agrees with the given Legendre polynomials
for n = 0, n = 1, and n = 2.

7.10.14. Show that Rodrigues' formula satisfies the differential equation for Legen-
dre polynomials.

7.10.15. Derive (7.10.36) using (7.10.35), (7.10.18), and (7.10.25).



Chapter 8

Nonhomogeneous Problems

8.1 Introduction
In the previous chapters we have developed only one method to solve partial dif-
ferential equations: the method of separation of variables. In order to apply the
method of separation of variables, the partial differential equation (with n indepen-
dent variables) must be linear and homogeneous. In addition, we must be able to
formulate a problem with linear and homogeneous boundary conditions for n - 1
variables. However, some of the most fundamental physical problems do not have
homogeneous conditions.

8.2 Heat Flow with Sources
and Nonhomogeneous Boundary Conditions

Time-independent boundary conditions. As an elementary example of a non-
homogeneous problem, consider the heat flow (without sources) in a uniform rod of
length L with the temperature fixed at the left end at A° and the right at B°. If
the initial condition is prescribed, the mathematical problem for the temperature
u(x, t) is

PDE:
8u _ 82u

8t k 8x2
(8.2.1)

BC1: u(O,t) = A (8.2.2)

BC2: I u(L, t) = B (8.2.3)

347
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IC: u(x, 0) = f (x). (8.2.4)

The method of separation of variables cannot be used directly since for even this
simple example the boundary conditions are not homogeneous.

Equilibrium temperature. To analyze this problem, we first obtain an
equilibrium temperature distribution, uE(x). If such a temperature distribution
exists, it must satisfy the steady-state (time-independent) heat equation,

d2UE
dx2 = 0, (8.2.5)

as well as the given time-independent boundary conditions,

uE(0) = A (8.2.6)

UE(L) = B. (8.2.7)

We ignore the initial conditions in defining an equilibrium temperature distribution.
As shown in Sec. 1.4, (8.2.5) implies that the temperature distribution is linear, and
the unique one that satisfies (8.2.2) and (8.2.3) can be determined geometrically or
algebraically:

UEx) = A+ B-A
L x, (8.2.8)

which is sketched in Fig. 8.2.1. Usually uE(x) will not be the desired time-dependent
solution, since it satisfies the initial conditions (8.2.4) only if f (x) = A + [(B -
A)/L]x.

A

B

- --- - _j Figure 8.2.1 Equilibrium temperature
0 x L distribution.

Displacement from equilibrium. For more general initial conditions,
we consider the temperature displacement from the equilibrium temperature,

v(x,t) __ U(x,t) - UE(x).1 (8.2.9)
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Instead of solving for u(x, t), we will determine v(x, t). Since &v/8t = 8u/8t and
82v/8x2 = 82u/8x2 [note that UE(X) is linear in x], it follows that v(x,t) also
satisfies the heat equation

2
at, =k8-X2 (8.2.10)

Furthermore, both u(x, t) and UE(x) equal A at x = 0 and equal B at x = L, and
hence their difference is zero at x = 0 and at x = L:

v(0,t) = 0 (8.2.11)

v(L, t) = 0. (8.2.12)

Initially, v(x, t) equals the difference between the given initial temperature and the
equilibrium temperature,

v(x,0) = f(x) - uE(x). (8.2.13)

Fortunately, the mathematical problem for v(x, t) is a linear homogeneous partial
differential equation with linear homogeneous boundary conditions. Thus, v(x, t)
can be determined by the method of separation of variables. In fact, this problem
is one we have encountered frequently. Hence, we note that

00

v(x, t) = E an sin nLx
e-k(n7r/L)'t,

n=1

where the initial conditions imply that

00

f (x) - uE(x) = an SM
nLx

n-1

Thus, an equals the Fourier sine coefficients of f (x) - uE(x):

L

an = L f [f (x) - UE(x)] sin nLxdx.
0

(8.2.14)

(8.2.15)

(8.2.16)

From (8.2.9) we easily obtain the desired temperature, u(x, t) = uE(x) + v(x, t).
Thus,

00

u(x, t) = uE(x) + Ean sin nLxe-k(nw/L)'t,
n=1

(8.2.17)

where an is given by (8.2.16) and UE (X) is given by (8.2.8). As t --+ oo, u(x, t) -+
nE(x) irrespective of the initial conditions. The temperature approaches its
equilibrium distribution for all initial conditions.
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Steady nonhomogeneous terms. The previous method also works if
there are steady sources of thermal energy:

PDE k
02U

+ Q( ) (8.2.18): = x2

BC:
u(0, t) = A

(8.2.19)u(L, t) = B

IC: u(x,0) = f(x). (8.2.20)

If an equilibrium solution exists (see Exercise 1.4.6 for a somewhat different example
in which an equilibrium solution does not exist), then we determine it and again
consider the displacement from equilibrium,

v(x, t) = u(x, t) - UE(x).

We can show that v(x, t) satisfies a linear homogeneous partial differential equation
(8.2.10) with linear homogeneous boundary conditions (8.2.11) and (8.2.12). Thus,
again u(x,t) uE(x) as t oo.

Time-dependent nonhomogeneous terms. Unfortunately, nonho-
mogeneous problems are not always as easy to solve as the previous examples.
In order to clarify the situation, we again consider the heat flow in a uniform
rod of length L. However, we make two substantial changes. First, we introduce
temperature-independent heat sources distributed in a prescribed way throughout
the rod. Thus, the temperature will solve the following nonhomogeneous partial
differential equation:

PDE:
2

8t
k5-X-2 + Q(x't). (8.2.21)

Here the sources of thermal energy Q(x, t) vary in space and time. In addition, we
allow the temperature at the ends to vary in time. This yields time-dependent and
nonhomogeneous linear boundary conditions,

BC:
u(0, t) A(t) (8.2.22)u(L,t) = B(t)
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instead of the time-independent ones, (8.2.3) and (8.2.4). Again the initial temper-
ature distribution is prescribed:

IC: u(x, 0) = f (x). (8.2.23)

The mathematical problem defined by (8.2.21) -(8.2.23) consists of a nonhomoge-
neous partial differential equation with nonhomogeneous boundary conditions.

Related homogeneous boundary conditions. We claim that we
cannot always reduce this problem to a homogeneous partial differential equation
with homogeneous boundary conditions, as we did for the first example of this
section. Instead, we will find it quite useful to note that we can always transform
our problem into one with homogeneous boundary conditions, although in general
the partial differential equation will remain nonhomogeneous. We consider any
reference temperature distribution r(x, t) (the simpler the better) with only
the property that it satisfy the given nonhomogeneous boundary conditions. In our
example, this means only that

r(O, t) = A(t)
r(L, t) = B(t).

It is usually not difficult to obtain many candidates for r(x, t). Perhaps the simplest
choice is

r(x, t) = A(t) + L [B(t) - A(t)], (8.2.24)

although there are other possibilities.' Again the difference between the desired
solution u(x, t) and the chosen function r(x, t) (now not necessarily an equilibrium
solution) is employed:

v(x,t.) - u(x,t) - r(x,t). (8.2.25)

Since both u(x, t) and r(x, t) satisfy the same linear (although nonhomogeneous)
boundary condition at both x = 0 and x = L, it follows that v(x, t) satisfies the
related homogeneous boundary conditions:

V(0, t) = 0 (8.2.26)

v(L, t) = 0. (8.2.27)

The partial differential equation satisfied by v(x, t) is derived by substituting

u(x, t) = v(x, t) + r(x, t)

into the heat equation with sources, (8.2.21). Thus,

8v (9.)?,
Orrr z z

= kJxz
+ LCl (x, t) - + k ax2 I - k a- + Q: (8.2.28)

Other choices for r(x, t) yield equivalent solutions to the original nonhomogeneous problem.
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In general, the partial differential equation for v(x, t) is of the same type as for
u(x, t), but with a different nonhomogeneous term, since r(x, t) usually does not
satisfy the homogeneous heat equation. The initial condition is also usually altered:

v(x, 0) = f (x) - r(x, 0) = f (x) - A(0) - L (B(0) - A(0)] = 9(x). (8.2.29)

It can be seen that in general only the boundary conditions have been made homo-
geneous. In Sec. 8.3 we will develop a method to analyze nonhomogeneous problems
with homogeneous boundary conditions.

EXERCISES 8.2

8.2.1. Solve the heat equation with time-independent sources and boundary con-
ditions

= k
82U

2 + Q(x)

u(x,0) = f(x)

if an equilibrium solution exists. Analyze the limits as t - oo. If no equilib-
rium exists, explain why and reduce the problem to one with homogeneous
boundary conditions (but do not solve). Assume

(L,t) = B* (a) Q(x) = 0, u(0,t) = A,
Tax-

(b) Q(x) = 0, (0, t) = 0, ai (L, t) = B 96 0
(c) Q(x) = 0, (0,t) = A 96 0, r(L,t) = A

* (d) Q(x) = k, u(0, t) = A, u(L, t) = B
(e) Q(x) = k, U (0, t) = 0, au (L, t) = 0
(f) Q(x) = sin 2-i-, a!i (0, t) = 0, Ou(L, t) = 0

8.2.2. Consider the heat equation with time-dependent sources and boundary con-
ditions:

2
09U =
8t k8x2 + Q(x, t)

u(x,0) = f(x).

Reduce the problem to one with homogeneous boundary conditions if

* (a) 8u(0,t) = A(t) and &u(L,t) = B(t)
(b) u(0, t) = A(t) and (L, t) = B(t)

D_X

* (c) (0, t) = A(t) and u(L, t) = B(t)
TX_

(d) u(O, t) = 0 and Ou(L, t) + h(u(L, t) - B(t)) = 0
(e) (0,t) = 0 and (L, t) + h(u(L, t) - B(t)) = 0

'67X '67X
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8.2.3. Solve the two-dimensional heat equation with circularly symmetric time-
independent sources, boundary conditions, and initial conditions (inside a
circle):

= rC 8r (r 8 ) + Q(r)
with

u(r, 0) = f (r) and u(a, t) = T.

8.2.4. Solve the two-dimensional heat equation with time-independent boundary
conditions:

au _ k (82U + a2u
at ax2 W2

subject to the boundary conditions

u(0, y, t) = 0 u(x, 0, t) = 0
u(L, y, t) = 0 u(x, H, t) = g(x)

and the initial condition

u(x,y,0) = f(x,y)
Analyze the limit as t -' oo.

8.2.5. Solve the initial value problem for a two-dimensional heat equation inside a
circle (of radius a) with time-independent boundary conditions:

au = kV2u
at

u(a,0,t) =
u(r, 9, 0) =

g(9)
f(r,9)

8.2.6. Solve the wave equation with time-independent sources,

a2u 2 82u
at2 = C ax2 + Q(x)

u(x,0) = f(x)

a u(x,0) = g(x),

if an "equilibrium" solution exists. Analyze the behavior for large t. If
no equilibrium exists, explain why and reduce the problem to one with
homogeneous boundary conditions. Assume that

* (a) Q(x) = 0, u(0, t) = A,
(b) Q(x) = 1, U(0, t) = 0,

(c) Q(x) = 1, u(0, t) = A,

u(L, t) = B
u(L,t) = 0
u(L, t) = B

[Hint: Add problems (a) and (b).]
: (d) Q(x) = sin , u(0, t) = 0, u(L, t) = 0
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8.3 Method of Eigenfunction Expansion
with Homogeneous Boundary Conditions
(Differentiating Series of Eigenfunctions)

In Sec. 8.2 we showed how to introduce a problem with homogeneous boundary
conditions, even if the original problem of interest has nonhomogeneous boundary
conditions. For that reason we will investigate nonhomogeneous linear partial dif-
ferential equations with homogeneous boundary conditions. For example, consider

PDE:
a _

= kax2 +Q(x,t) (8.3.1)

BC:
u(0, t) = 0
v(L. t) = 0

IC: v(x,0) = 9(x).

(8.3.2)

(8.3.3)

We will solve this problem by the method of eigenfunction expansion. Con-
sider the eigenfunctions of the related homogeneous problem. The related homoge-
neous problem is

8u _ 8.2u

k8t 8x2
(8 3 4)u(0, t) = 0

u(L, t) = 0.

The eigenfunctions of this related homogeneous problem satisfy

. .

+AOd = 0
X2

0(0) = 0 (8.3.5)

g(L) = 0.

We know that the eigenvalues are a = (nir/L)2, n = 1, 2.... and the corresponding
eigenfunctions are 95n (x) = sin n7rx/L. However, the eigenfunctions will be differ-
ent for other problems. We do not wish to emphasize the method of eigenfunction
expansion solely for this one example. Thus, we will speak in some generality. We
assume that the eigenfunctions (of the related homogeneous problem) are known,
and we designate them 0n(x). The eigenfunctions satisfy a Sturm-Liouville eigen-
value problem and as such they are complete (any piecewise smooth function may
be expanded in a series of these eigenfunctions). The method of eigenfunction
expansion, employed to solve the nonhomogeneous problem (8.3.1) with
homogeneous boundary conditions, (8.3.2), consists of expanding the
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unknown solution v(x, t) in a series of the related homogeneous eigen-
functions:

00

v(x, t) = Ean(t)'Vn(x)
n=1

(8.3.6)

For each fixed t, v(x, t) is a function of x, and hence v(x, t) will have a generalized
Fourier series. In our example, On(x) = sin nirx/L, and this series is an ordinary
Fourier sine series. The generalized Fourier coefficients are an, but the coefficients
will vary as t changes. Thus, the generalized Fourier coefficients are functions of
time, an(t). At first glance expansion (8.3.6) may appear similar to what occurs in
separating variables for homogeneous problems. However, (8.3.6) is substantially
different. Here an(t) are not the time-dependent separated solutions e-k(nw/L)2t
Instead, an (t) are just the generalized Fourier coefficients for v(x, t). We will deter-
mine an(t) and show that usually an(t) is not proportional to e-k(n7r/L)2t

Equation (8.3.6) automatically satisfies the homogeneous boundary conditions.
We emphasize this by stating that both v(x, t) and On (x) satisfy the same homoge-
neous boundary conditions. The initial condition is satisfied if

9(x) _ an (O)On (X)

n=1

Due to the orthogonality of the eigenfunctions [with weight 1 in this problem because
of the constant coefficient in (8.3.5)], we can determine the initial values of the
generalized Fourier coefficients:

an(0) - f g(x)On(x) dx

Jo
0n(x) dx

(8.3.7)

"All" that remains is to determine an(t) such that (8.3.6) solves the nonhomoge-
neous partial differential equation (8.3.1). We will show in two different ways that
an(t) satisfies a first-order differential equation in order for (8.3.6) to satisfy (8.3.1).

One method to determine an(t) is by direct substitution. This is easy to do
but requires calculation of 8v/8t and 82v/0x2. Since v(x, t) is an infinite series,
the differentiation can be a delicate process. We simply state that with some de-
gree of generality, if v and 8v/8x are continuous and if v(x, t) solves the same
homogeneous boundary conditions as does On(x), then the necessary
term-by-term differentiations can be justified. For the cases of Fourier sine
and cosine series, a more detailed investigation of the properties of the term-by-term
differentiation of these series was presented in Sec. 3.4, which proved this result.
For the general case, we omit a proof. However, we obtain the same solution in Sec.
8.4 by an alternative method, which thus justifies the somewhat simpler technique
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of the present section. We thus proceed to term-by-term differentiate v(x, t):

8v _ °° dan(t)On(x)
8t dt

82v

8x2

00

a
2 On (X) 00

San(t) dx2 = -Ean(t)AnOn(x),2
n=1

dx
n=1

since ¢n(x) satisfies d2On/dx2 + \nOn = 0. Substituting these results into (8.3.1)
yields

0E0
11

u [dan
dt On (X) = (x, t) (8.3.8)

The left-hand side is the generalized Fourier series for Q(x, t). Due to the orthogo-
nality of On(x), we obtain a first-order differential equation for an(t):

clan + \nkan = JO Q(x, t)On(x) dx t
dt J0 02 (x) dx = 4n ( ) (8.3.9)

The right-hand side is a known function of time (and n), namely, the Fourier coef-
ficient of Q(x, t):

00Q(x,t) = 1: 4n(t)'Yn(x)
n=1

Equation (8.3.9) requires an initial condition, and sure enough an(0) equals the
generalized Fourier coefficients of the initial condition [see (8.3.7)].

Equation (8.3.9) is a nonhomogeneous linear first-order equation. Perhaps the
easiest method2 to solve it [unless Wt) is particularly simple] is to multiply it by
the integrating factor eankt Thus,

deankt (dt n
+

Ankara)
= wt

(aneankt) = 9neankt

-

Integrating from 0 to t yields

an(t)eankt -
an (0) = J dr.t

0

We solve for an(t) and obtain

/t
an(t) = an(O)e- ankt + I 4n(T)e,\nkr dr.

J J0
(8.3.10)

Note that an(t) is in the form of a constant, an(0), times the homogeneous solu-
tion e-,\nkt plus a particular solution. This completes the method of eigenfunction

2Another method is variation of parameters.
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expansions. The solution of our nonhomogeneous partial differential equation with
homogeneous boundary conditions is

00

v(x, t) = F, a.(t)O.n(x),
n=1

where On (x) = sinn7rx/L, An = (n7r/L)2,an(t) is given by (8.3.10), qn(r) is given
by (8.3.9), and an (0) is given by (8.3.7). The solution is rather complicated.

As a check, if the problem was homogeneous, Q(x, t) = 0, then the solution
simplifies to

00

where

v(x,t) = Y, an M On (X),
n=1

an (t) = an (O)C_

and an(0) is given by (8.3.7), exactly the solution obtained by separation of vari-
ables.

Example. As an elementary example, suppose that for 0 < x < 7r (i.e., L = 1r)

8u 82u -t
u(0,t) = 0

subject to8t =axe + sin 3x a Or, t) =
u(x,0) =

1

f(x).

To make the boundary conditions homogeneous, we introduce the displacement
from equilibrium v(x, t) = u(x, t) - x/ir, in which case

Ov 02v v(0,t) = 0
8t = axe + sin 3x a-t subject to v(ir, t) = 0

v(x,0) = f(x) -z,.

The eigenfunctions are sin nirx/L = sin nx (since L = ir), and thus

00

v(x,t) = Ean(t)sinnx. (8.3.11)
n=1

This eigenfunction expansion is substituted into the PDE, yielding

00

E C a + n2 an)
sin nx = sin 3x a-t.

Thus, the unknown Fourier sine coefficients satisfy

dan 2

1

0 n 3
dt +n an= a-t n=3.
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The solution of this does not require (8.3.10):

where

( n 3

-st n = 3
an t)

l ae-t + 1a3(0) - s]e

an (0) =
2 17r

[f (x) - -] sinnx dx.
7r

0

(8.3.12)

(8.3.13)

The solution to the original nonhomogeneous problem is given by u(x, t) = v(x, t) +
x/lr, where v satisfies (8.3.11) with an(t) determined from (8.3.12) and (8.3.13).

EXERCISES 8.3

8.3.1. Solve the initial value problem for the heat equation with time-dependent
sources

= k8 22 +Q(x,t)
u(x,0) = f(x)

subject to the following boundary conditions:

(a) u(0, t) = 0, Ou (L, t) = 0
(b) u(0,t) = 0, u(L,t) + 2au(L,t) = 0

* (c) u(0, t) = A(t), (L, t) = 0
(d) u(0, t) = A # 0, u(L, t) = 0
(e) (0, t) = A(t). au (L, t) = B(t)

YZ_

*(f) Ou(0,t)=0, Ou(L,t)=0
(g) Specialize part (f) to the case Q(x, t) = Q(x) (independent of t)

such that f o Q(x) dx # 0. In this case show that there are no
time-independent solutions. What happens to the time-dependent
solution as t - oo? Briefly explain.

8.3.2. Consider the heat equation with a steady source

= kax2 + Q(x)

subject to the initial and boundary conditions described in this section:

u(0,t) = 0,u(L,t) = 0, and u(x,0) = f(x).

Obtain the solution by the method of eigenfunction expansion. Show that
the solution approaches a steady-state solution.

*8.3.3. Solve the initial value problem

8u a / 8u lspat = ax K° x J + qu + f(x, t),

,
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where c, p, KO, and q are functions of x only, subject to the conditions

u(0, t) = 0, u(L, t) = 0, and u(x, 0) = g(x).

Assume that the eigenfunctions are known. [Hint: let L d: (KoA) +q]

8.3.4. Consider
11

8t a(x) a f Ko(x)YX-J (Ko > O,o > 0)

with the boundary conditions
Land

initial conditions:

u(x, 0) = g(x), u(0, t) = A, and u(L, t) = B.

*(a) Find a time-independent solution, uo(x).
(b) Show that limi_.,.. u(x, t) = f (x) independent of the initial conditions.

[Show that f (x) = uo(x).]

*8.3.5. Solve
8u =kV2u+f(r,t)
8t

inside the circle (r < a) with u = 0 at r = a and initially u = 0.

8.3.6. Solve
8u _ 8zu

c?t 8x2
+ sin 5x a-ze

subject to u(0, t) = 1, u(7r, t) = 0, and u(x, 0) = 0.

*8.3.7. Solve 8u02u
8t

_
8x2

subject to u(0, t) = 0, u(L, t) = t, and u(x, 0) = 0.

8.4 Method of Eigenfunction Expansion
Using Green's Formula
(With or Without Homogeneous Boundary
Conditions)

In this section we reinvestigate problems that may have nonhomogeneous boundary
conditions. We still use the method of eigenfunction expansion. For example,
consider

z
PDE:

at kaxz + Q(x, t) (8.4.1)
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BC:

IC:

u(0, t) = A(t)
u(L, t) = B(t)

u(x,0) = f(x).

(8.4.2)

(8.4.3)

The eigenfunctions of the related homogeneous problem,

d2 'vn
+ A = 0 4 4)(8nndx2

..

On (0) = 0 (8.4.5)

On (L) = 0, (8.4.6)

are known to be On (x) = sin nirx/L, corresponding to the eigenvalues An = (nir/L)2.

Any piecewise smooth function can be expanded in terms of these eigenfunctions.
Thus, even though u(x, t) satisfies nonhomogeneous boundary conditions, it is still
true that

u(x, t) _ bn(t)On(x)-
n=1

(8.4.7)

Actually, the equality in (8.4.7) cannot be valid at x = 0 and at x = L since On(x)
satisfies the homogeneous boundary conditions, while u(x, t) does not. Nonethe-
less, we use the = notation, where we understand that the - notation is more
proper. It is difficult to determine bn(t) by substituting (8.4.7) into (8.4.1); the re-
quired term-by-ter111 differentiations with respect to x are not justified since u(x, t)
and ¢n(x) do not satisfy the same homogeneous boundary conditions 182u/8x2 54

ZOO 1 bn(t)d2q5n/dx2). However, term-by-term time derivatives in time were shownves i n tim
valid in Sec. 3.4:

8udbn
8t

n=1
dt

(8.4.8)

We will determine a first-order differential equation for bn(t). Unlike in Sec. 8.3,
it will be obtained without calculating spatial derivatives of an infinite series of
eigenfunctions. Rom (8.4.8) it follows that

)°O: 2

1 +Q(x,t),dj On (x) = k

and thus

Chapter 8. Nonhomogeneous Problems

-1

dbn fo [k ©K,, + Q(x, t)] -On(x) dx

dt fo 0n dx
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Equation (8.4.9) allows the partial differential equation to be satisfied. Already we
note the importance of the generalized Fourier series of Q(x, t):

Q(x, t) _ gn(t)cbn(x), where qn(t) =
f L Q(L t)OJ dxZd

n=1

Thus, (8.4.9) simplifies to

Jo 'n x

L 82u

dbn _ b02 On (x) dx
dt - 4n (t) +

L¢n dx
0

(8.4.10)

We will show how to evaluate the integral in (8.4.10) in terms of bn(t), yielding a
first-order differential equation.

If we integrate f L 82u/8x2On(x) dx twice by parts, then we would obtain the
desired result. However, this would be a considerable effort. There is a better
way; we have already performed the required integration by parts in a more general
context. Perhaps the operator notation, L = 82/8x2, will help to remind you of the
result we need. Using L = 82/8x2,

L 82u Lf
axe

On(x) dx = f cbnL(u) dx.
0

Now this may be simplified by employing Green's formula (derived by repeated
integrations in Section 5.5). Let us restate Green's formula:

1
L

[uL(v) - vL(u)] dx = p (ud- - vdu)
0

L

0

(8.4.11)

where L is any Sturm-Liouville operator (L = d/dx(pd/dx) + q). In our context,
L = 82/8x2 (i.e., p = 1, q = 0). Partial derivatives may be used, since 8/8x = d/dx
with t fixed. Thus,

J0L I "ax - va 2
J

dx = 1 ua - v8
L

0

(8.4.12)

Here we let v = On(x). Often both u and 4n'satisfy the same homogeneous boundary
conditions, and the right-hand side vanishes. Here 4'n (x) = sin nirx/L satisfies
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homogeneous boundary conditions, but u(x, t) does not [u(0, t) = A(t) and u(L, t) =
B(t)]. Using dOn/dx = (nn/L) cos nirx/L, the right-hand side of (8.4.12) simplifies
to (n7r/L)[B(t)(-1)n - A(t)]. Furthermore, f L dx = -a f L urn dx
since d20n/dx2 +An(dn = 0. Thus, (8.4.12) becomes

f L (0.
8adx = -An

fL

u0ndx - L [B(t)(-1)n - A(t)].

Since bn(t) are the generalized Fourier coefficients of u(x,t), we know that

pL u4ndxb-(t) = Jo
L02dx

Finally, (8.4.10) reduces to a first-order differential equation for bn(t):

dbn k(nir/L)[A(t) - (-1)nB(t)]
dt + kanbn = 9n(t) + rL

J
On (x) dx

0

(8.4.13)

The nonhomogeneous terms arise in two ways: qn(t) is due to the source terms in
the PDE, while the term involving A(t) and B(t) is a result of the nonhomogeneous
boundary conditions at x = 0 and x = L. Equation (8.4.13) is again solved by
introducing the integrating factor ek) t The required initial condition for bn(t)
follows from the given initial condition, u(x, 0) = f (x):

f(x) = Ebn(O)On(x)
n=1

bn(0)

fLf(x)On(x)
dx

0

I;::

L

do dx

It is interesting to note that the differential equation for the coefficients bn(t) for
problems with nonhomogeneous boundary conditions is quite similar to the one that
occurred in the preceding section for homogeneous boundary conditions; only the
nonhomogeneous term is modified.

If the boundary conditions are homogeneous, u(0, t) = 0 and u(L, t) = 0, then
(8.4.13) reduces to

dbn

dt + kAnbn = qn(t),

the differential equation derived in the preceding section. Using Green's formula
is an alternative procedure to derive the eigenfunction expansion. It can be used
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even if the boundary conditions are homogeneous. In fact, it is this derivation that
justifies the differentiation of infinite series of eigenfunctions used in Sec. 8.3.

We now have two procedures to solve nonhomogeneous partial differential equa-
tions with nonhomogeneous boundary conditions. By subtracting any function that
just solves the nonhomogeneous boundary conditions, we can solve a related problem
with homogeneous boundary conditions by the eigenfunction expansion method. Al-
ternatively, we can solve directly the original problem with nonhomogeneous bound-
ary conditions by the method of eigenfunction expansions. In both cases we need
the eigenfunction expansion of some function w(x, t):

00

w(x, t) = E a,, (t)0n(x)
n=1

If w(x, t) satisfies the same homogeneous boundary conditions as 0n(x), then we
claim that this series will converge reasonably fast. However, if w(x, t) satisfies
nonhomogeneous boundary conditions, then not only will the series not satisfy the
boundary conditions (at x = 0 and x = L), but the series will converge more slowly
everywhere. Thus, the advantage of reducing a problem to homogeneous boundary
conditions is that the corresponding series converges fasts r.

EXERCISES 8.4

8.4.1. In these exercises, do not make a reduction to homogeneous boundary con-
ditions. Solve the initial value problem for the heat equation with time-
dependent sources

au
= ka 22 +Q(x,t)

u(x,0) = f(x)
subject to the following boundary conditions:

(a) u(0,t) = A(t),

* (b) (0, t) = A(t),
TX_ YX_

(L, t) = B(t)

8.4.2. Use the method of cigenfunction expansions to solve, without reducing to
homogeneous boundary conditions:

8u 82u_
k 8x2at

u(x,0) = f(x)
u (O, t) _

B
A }constants.

( )

8.4.3. Consider

[Ko(x)
l

c(x)P(x) at = ax
1

+ 9(x)u + f (x, t)
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u(x,0) = g(x) u(0, t) = a(t)

u(L, t) = ,Q(t).

Assume that the eigenfunctions 0,a(x) of the related homogeneous problem
are known.

(a) Solve without reducing to a problem with homogeneous boundary con-
ditions.

(b) Solve by first reducing to a problem with homogeneous boundary con-
ditions.

8.4.4. Reconsider
z

= kz + Q(x, t)
u(x,0) = f(x) u(O,t) = 0

u(L, t) = 0.

Assume that the solution u(x, t) has the appropriate smoothness, so that it
may be represented by a Fourier cosine series

u(x, t) _ cn(t) cos
nLx

.

n-0

Solve for dcn/dt. Show that c satisfies a first-order nonhomogeneous or-
dinary differential equation, but part of the nonhomogeneous term is not
known. Make a brief philosophical conclusion.

8.5 Forced Vibrating Membranes and Resonance
The method of eigenfunction expansion may also be applied to nonhomogeneous
partial differential equations with more than two independent variables. An in-
teresting example is a vibrating membrane of arbitrary shape. In our previous
analysis of membranes, vibrations were caused by the initial conditions. Another
mechanism that will put a membrane into motion is an external force. The linear
nonhomogeneous partial differential equation that describes a vibrating membrane
is

02u
c3tz

= c2Vzu + Q(x, y, t), (8.5.1)

where Q(x, y, t) represents a time- and spatially dependent external force. To be
completely general, there should be some boundary condition along the boundary
of the membrane. However, it is more usual for a vibrating membrane to be fixed
with zero vertical displacement. Thus, we will specify this homogeneous boundary
condition,

u = 0, (8.5.2)
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on the entire boundary. Both the initial position and initial velocity are specified:

u(x,y,0) = a(x,y)

5t(x,y,0) = f3(x,y) (8.5.4)

To use the method of eigenfunction expansion, we must assume that we "know"
the eigenfunctions of the related homogeneous problem. By applying the method of
separation of variables to (8.5.1) with Q(x, y, t) = 0, where the boundary condition
is (8.5.2), we obtain the problem satisfied by the eigenfunctions:

02.0 = -AO, (8.5.5)

with 0 = 0 on the entire boundary. We know that these eigenfunctions are complete,
and that different eigenfunctions are orthogonal (in a two-dimensional sense) with
weight 1. We have also shown that A > 0. However, the specific eigenfunctions
depend on the geometric shape of the region. Explicit formulas can be obtained only
for certain relatively simple geometries. Recall that for a rectangle (0 < x < L, 0 <
y < H) the eigenvalues are A,,,,, = (nir/L)2 + (mir/H)2, and the corresponding
eigenfunctions are Qnm (x, y) = sin n7rx/L sin m7ry/H, where n = 1,2,3,... and
m = 1, 2, 3 ... Also for a circle of radius a, we have shown that the eigenvalues
are Amn = (zmn/a)2, where zmn are the nth zeros of the Bessel function of order
m, Jm(zmn) = 0, and the corresponding eigenfunctions are both Jm(zmnr/a) sin mO
and Jm (z,nnr/a) cos mO, where n = 1, 2,3.... and m = 0, 1, 2, 3, ... .

In general, we designate the related homogeneous eigenfunctions Oi(x, y). Any
(piecewise smooth) function, including the desired solution for our forced vibrating
membrane, may be expressed in terms of an infinite series of these eigenfunctions.
Thus,

u(x,y,t) = >A=(t)Oi (x,y)
i

(8.5.6)

Here the E, represents a summation over all eigenfunctions. For membranes it will
include a double sum if we are able to separate variables for V20 + A¢ = 0.

Term-by-term differentiation. We will obtain an ordinary differential
equation for the time-dependent coefficients, A, (t). The differential equation will
be derived in two ways: direct substitution (with the necessary differentiation of
infinite series of eigenfunctions) and use of the multidimensional Green's formula.
In either approach we need to assume there are no difficulties with the term-by-term
differentiation of (8.5.6) with respect to t. Thus,

82u = d2 A,

&2 dt2

O,(x,y).
(8.5.7)
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Term-by-term spatial differentiation are allowed since both u and Wi solve the
same homogeneous boundary conditions:

V2u = E Ai(t)V2bi(x, y). (8.5.8)

This would not be valid if u ,A 0 on the entire boundary. Since V20i = -a;Oi, it
follows that (8.5.1) becomes

dz A;
8.5.9

dt2 + c2AiAi/ Oi = Q(x, y, t) ( )

If we expand Q(x, y, t) in terms of these same eigenfunctions,

Q(x, y, t) = E 4i (t)q5i (x, y), where q1(t) =
ff QO` dx dy (8.5.10)
ff02dxdy

i i

then

d22' + C2.\Ai = 9i(t)
dt

(8.5.11)

Thus, Ai solves a linear nonhomogeneous second-order differential equation.

Green's formula. An alternative way to derive (8.5.11) is to use Green's
formula. We begin this derivation by determining d2Ai/dt2 directly from (8.5.7),
only using the two-dimensional orthogonality of Oi(x, y) (with weight 1):

z

d2Ai it_
dt2 dx dy

We then eliminate 02u/&t2 from the partial differential equation (8.5.1):

d2Ai _ ff (c2V 2u + Q)'Yi dx dy
dt2 f f 0, dx dy

(8.5.12)

(8.5.13)

Recognizing the latter integral as the generalized Fourier coefficients of Q [see
(8.5.10)], we have that

d2Ai ff c2V2u 0i dx dy
dt2

= Qi(t) + faz dx dy
(8.5.14)

It is now appropriate to use the two-dimensional version of Green's formula:

ff(c5zV2u - uV20i) dx dy = i(OiVu - ds, (8.5.15)
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where ds represents differential are length along the boundary and n is a unit
outward normal to the boundary. In our situation u and Oi satisfy homogeneous
boundary conditions, and hence the boundary term in (8.5.15) vanishes:

ff(cbiV2u - uV2,0c) dx dy = 0. (8.5.16)

Equation (8.5.16) is perhaps best remembered as ff [uL(v)-vL(u)] dx dy = 0, where
L = V2. If the membrane did not have homogeneous boundary conditions, then
(8.5.15) would be used instead of (8.5.16). as we did in Sec. 8.4. The advantage of
the use of Green's formula is that we can also solve the problem if the boundary
condition was nonhomogeneous. Through the use of (8.5.16),

ff 0jV2u dx dy = if vV2Oi dx dy = -Ai ff u0i dx dy = -AA(t) if 0,2 dx dy,

since V20, + \,O, = 0 and since Ai(t) is the generalized Fourier coefficient of
u(x, y, t):

Ai(t) = ff u4i dx dy
ffmi dxdy

Consequently, we derive from (8.5.14) that

d2 Ai

dt2
+ C2AiAi = gi,

(8.5.17)

(8.5.18)

the same second-order differential equation as already derived [see (8.5.11)], justi-
fying the simpler term-by-term differentiation performed there.

Variation of parameters. We will need some facts about ordinary dif-
ferential equations in order to solve (8.5.11) or (8.5.18). Equation (8.5.18) is a
second-order linear nonhomogeneous differential equation with constant coefficients
(since Aic2 is constant). The general solution is a particular solution plus a linear
combination of homogeneous solutions. In this problem the homogeneous solutions
are sin cwt and cos cwt since Ai > 0. A particular solution can always be
obtained by variation of parameters. However, the method of undetermined coef-
ficients is usually easier and should be used if qi(t) is a polynomial, exponential,
sine, or cosine (or products and/or sums of these). Using the method of variation
of parameters (see Sec. 9.3.2), it can be shown that the general solution of (8.5.18)
is

Ai (t) = cl cos cwt + c2 sin cwt + J tgi (T)
sin cVA-i (tc

- T) dT. (8.5.19)
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Using this form, the initial conditions may be easily satisfied:

Ai(0) = cl (8.5.20)

dAi _
dt (0) c2C 1i. (8.5.21)

From the initial conditions (8.5.3) and (8.5.4), it follows that

At(0) _ ff a (x, y) Oi (x, y) dx dy
ff 0i dx dy

dAt ff Q(x, y)q,t (x, y) dx dy
0 -

dt f f ,02 dx dy

The solution, in general, for a forced vibrating membrane is

u(x,y,t) = E Ai (t) 0, (x, y),

(8.5.22)

(8.5.23)

where 0i, is given by (8.5.5) and Ai (t) is determined by (8.5.19)-(8.5.23).
If there is no external force, Q(x, y, t) = 0 [i.e., qi(t) = 0], then Ai(t) _

Cj cos cst + c2 sin c>jt. In this situation, the solution is

u(x, y, t) = L(at cos c )lit + bi sin c ait)Oi(x, y),
i

exactly the solution obtained by separation of variables. The natural frequencies of
oscillation of a membrane are c .

Periodic forcing. We have just completed the analysis of the vibrations of
an arbitrarily shaped membrane with arbitrary external forcing. We could easily
specialize this result to rectangular and circular membranes. Instead of doing that,
we continue to discuss an arbitrarily shaped membrane. However, let us suppose
that the forcing function is purely oscillatory in time; specifically,

Q(x, y, t) = Q(x, y) cos wt; (8.5.24)

that is, the forcing frequency is w. We do not specify the sp&tial dependence,
Q(x, y). The eigenfunction expansion of the forcing function is also needed. From
(8.5.10) it follows that

qi(t) = 7i cos wt, (8.5.25)

where ryt are constants,

ff Q(x, y)0t (x, y) dx dy
.ff ct ax dy
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From (8.5.18), the generalized Fourier coefficients solve the second-order differential
equation,

d2 Ai

dt2 + c2AiA; = ryi coswt. (8.5.26)

Since the r.h.s. of (8.5.26) is simple, a particular solution is more easily obtained
by the method of undetermined coefficients [rather than by using the general form
(8.5.19)]. Homogeneous solutions are again a linear combination of sin cKt and
cos c pit, representing the natural frequencies c Ai of the membrane. The mem-
brane is being forced at frequency w.

The solution of (8.5.26) is not difficult. We might guess that a particular solution
is in the form3

Ai(t) = Bicoswt. (8.5.27)

Substituting (8.5.27) into (8.5.26) shows that

Bi(c2Ai - w2) = ryi or Bi = ry' ,

c2 A, - w2

but this division is valid only if w2 # c2Ai. The physical meaning of this result is
that if the forcing frequency w is different from a natural frequency, then a particular
solution is _ ryi cos wt

A, (t) c2A, -w2 (8.5.28)

and the general solution is

=
yi cos wt

A,(t) c2,\ _w2 +clcosc ait+c2 sinc fit. (8.5.29)
i

Ai(t) represents the amplitude of the mode (k(x, y). Each mode is composed of a
vibration at its natural frequency cam, and a vibration at the forcing frequency w.
The closer these two frequencies are (for a given mode), the larger the amplitude of
that mode.

Resonance. However, if the forcing frequency w is the same as one of
the natural frequencies cam, then a phenomenon known as resonance occurs.
Mathematically, if w2 = c2Ai, then for those modes [i.e., only those ¢i (x, y) such that
w2 = c2.Ai], (8.5.27) is not the appropriate solution since the r.h.s. of (8.5.26) is a
homogeneous solution. Instead, the solution is not periodic in time. The amplitude
of oscillations grows proportional tot. Some algebra shows that a particular solution
of (8.5.26) is

Ai(t) = tsinwt, (8.5.30)

and hence the general solution is

Ai(t) = -tsinwt+clcoswt+c2sinwt, (8.5.31)

3If the first derivative term were present in (8.5.26), representing a frictional force, then a
particular solution must include both coswt and sinwt.
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where w = c ai, for any mode that resonates. At resonance, natural modes corre-
sponding to the forcing frequency grow in time without a bound. The other oscil-
lating modes remain bounded. After a while, the resonating modes will dominate.
Thus the spatial structure of a solution will be primarily due to the eigenfunctions
of the resonant modes. The other modes are not significantly excited. We present
a brief derivation of (8.5.30), which avoids some tedious algebra. If w2 54 c2A,, we
obtain the general solution (8.5.28) relatively easily. Unfortunately, we cannot take
the limit as w -' c/ since the amplitude then approaches infinity. However, from
(8.5.29) we see that

Ai(t) = 'Y' (coswt - cosc J\it) (8.5.32)
c2A -w2

is also an allowable solution4 if w2 54 c2Ai. However (8.5.32) may have a limit as.
w c2.1i, since A;(t) is in the form of 0/0 as w --* c. We calculate the limit of
(8.5.32) as w -a c'./5 (i using l'Hopital's rule:

Ai(t) = lim
ryi(coswt - coscfit) = lim

-,yitsinwt
wc c2Ai - w2 ar-c%I -2w

verifying (8.5.30).
The displacement of the resonated mode cannot grow indefinitely, as (8.5.31)

suggests. The mathematics is correct, but some physical assumptions should be
modified. Perhaps it is appropriate to include a frictional force, which limits the
growth as is shown in an exercise. Alternatively, perhaps the mode grows to such a
large amplitude that the linearization assumption, needed in a physical derivation of
the two-dimensional wave equation, is no longer valid; a different partial differential
equation should be appropriate for sufficiently large displacements. Perhaps the
amplitude growth due to resonance would result in the snapping of the membrane
(but this is not likely to happen until after the linearization assumption has been
violated).

Note that we have demonstrated the result for any geometry. The introduc-
tion of the details of rectangular or circular geometries might just cloud the basic
mathematical and physical phenomena.

Resonance for a vibrating membrane is similar mathematically to resonance
for spring-mass systems (also without friction). In fact, resonance occurs for any
mechanical system when a forcing frequency equals on of the natural frequencies.
Disasters such as the infamous Tacoma Bridge collapse and various jet airplane
crashes have been blamed on resonance phenomena.

EXERCISES 8.5

8.5.1. By substitution show that

y(t) = o It f (1) sinwo(t - t) dt

4This solution corresponds to the initial conditions Ai(0) = 0,dA,/dt = 0.
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is a particular solution of

ti 2dty
+ wov = f (t)

What is the general solution? What solution satisfies the initial conditions
y(O) = yo and g(0) = vo?

8.5.2. Consider a vibrating string with time-dependent forcing:

z z

atz = cz 8x2 + Q(x, t)
u(0, t) = 0 u(x, 0) = f(x)

u(L,t) = 0 5(x,0) = 0.

(a) Solve the initial value problem.
*(b) Solve the initial value problem if Q(x, t) = g(x) cos wt. For what values

of w does resonance occur?

8.5.3. Consider a vibrating string with friction with time-periodic forcing

02 2 2

0-t2 = c axz -pet + g(x) coswt

u(0, t) = 0 u(x, 0) = f(x)
u(L,t) = 0 gf(x,0) = 0.

(a) Solve this initial value problem if 3 is moderately small (0 < Q <
2cir/L).

(b) Compare this solution to Exercise 8.5.2(b).

8.5.4. Solve the initial value problem for a vibrating string with time-dependent
forcing.

z

at2 = cz 8xz + Q(x, t), u(x, 0) = f (x), St (x, 0) = 0,

subject to the following boundary conditions. Do not reduce to homoge-
neous boundary conditions:

(a) u(0, t) = A(t), u(L, t) = B(t)
(b) u(0, t) = 0, (L,t) = 0

(c) P; (0, t) = A(t), u(L, t) = 0

8.5.5. Solve the initial value problem for a membrane with time-dependent forcing
and fixed boundaries (u = 0),

2 = c2 V2u + Q(x, y, t),
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u(x,y,0) = f(x,y), (x,y,0) = 0,

if the membrane is

(a) a rectangle (0 < x < L, 0 < y < H)
(b) a circle (r < a)

*(c) a semicircle (0 < 0 < ir,r < a)
(d) a circular annulus (a < r < b)

8.5.6. Consider the displacement u(r, 0, t) of a forced semicircular membrane of
radius a (Fig. 8.5.1) that satisfies the partial differential equation

1 82u 1 8
C

8u\ 1 82u
c2 8t2 r 8r r

8r J + r2 882
+ 9(r' 0, t)'

u=0
(Zero displacement) Figure 8.5.1

with the homogeneous boundary conditions:

u(r, 0, t) = 0, u(r, ir, t) = 0, and

and the initial conditions

(a, 0, t) = 0

u(r, 0, 0) = H(r, 0) and 5 (r, 9, 0) = 0.

*(a) Assume that u(r, 0, t) = E F, a(t)4(r, 0), where 0(r, 0) are the eigen-
functions of the related homogeneous problem. What initial conditions
does a(t) satisfy? What differential equation does a(t) satisfy?

(b) What are the eigenfunctions?
(c) Solve for u(r, 0, t). (Hint: See Exercise 8.5.1.)

8.6 Poisson's Equation
We have applied the method of eigenfunction expansion to nonhomogeneous time-
dependent boundary value problems for PDEs (with or without homogeneous bound-
ary conditions). In each case, the method of eigenfunction expansion,

u = E ai(t)Oi,
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yielded an initial value problem for the coefficients a1(t), where ¢i are the related
homogeneous eigenfunctions satisfying, for example,

2d
2

+A¢=0 or V20+a¢=0.

Time-independent nonhomogeneous problems must be solved in a slightly differ-
ent way. Consider the equilibrium temperature distribution with time-independent
sources, which satisfies Poisson's equation,

V2u = Q, (8.6.1)

where Q is related to the sources of thermal energy. For now we do not specify the
geometric region. However, we assume the temperature is specified on the entire
boundary,

u = a

where a is given and usually not constant. This problem is nonhomogeneous in
two ways: due to the forcing function Q and the boundary condition a. We can
decompose the equilibrium temperature into two parts, u = u1 + u2i one ul due to
the forcing and the other u2 due to the boundary condition:

V2u1 = Q V2U2 = 0
u1 = 0 on the boundary u2 = a on the boundary.

It is easily checked that u = u1 + u2 satisfies Poisson's equation and the non-
homogeneous BC. The problem for u2 is the solution of Laplace's equation (with
nonhomogeneous boundary conditions). For simple geometries this can be solved
by the method of separation of variables (where in Secs. 2.5.1 and 7.9.1 we showed
how homogeneous boundary conditions could be introduced).

Thus, at first in this section, we focus our attention on Poisson's equation

V2u1 = Q

with homogeneous boundary conditions (u1 = 0 on the boundary). Since ul satisfies
homogeneous BC, we should expect that the method of eigenfunction expansion is
appropriate. The problem can be analyzed in two somewhat different ways: (1) We
can expand the solutions in eigenfunctions of the related homogeneous problem,
coming from separation of variables of V2u1 = 0 (as we did for the time-dependent
problems); or (2) we can expand the solution in the eigenfunctions

V20+AO=0.

The two methods are different (but are related).
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One-dimensional eigenfunctions. To be specific, let us consider the
two-dimensional Poisson's equation in a rectangle with zero boundary conditions:

V2u1 = Q, (8.6.2)

as illustrated in Fig. 8.6.1. We first describe the use of one-dimensional eigenfunc-
tions. The related homogeneous problem, V2u1 = 0, which is Laplace's equation,
can be separated (in rectangular coordinates). We may recall that the solution os-
cillates in one direction and is a combination of exponentials in the other direction.
Thus, eigenfunctions of the related homogeneous problem (needed for the method
of eigenfunction expansion) might be x-eigenfunctions or y-eigenfunctions. Since
we have two homogeneous boundary conditions in both directions, we can use ei-
ther x-dependent or y-dependent eigenfunctions. To be specific we use x-dependent
eigenfunctions, which are sin nrrx/L since ul = 0 at x = 0 and x = L. The method
of eigenfunction expansion consists in expanding ul (x, y) in a series of these eigen-
functions:

n7rx
ul = >bn(y) sin r.

'n=1

(8.6.3)

where the sine coefficients b,,(y) are functions of y. Differentiating (8.6.3) twice
with respect to y and substituting this into Poisson's equation, (8.6.2), yields

d2bn n7rx 82u1
dye sinL +

8x2
= Q. (8.6.4)

82u1/8x2 can be determined in two related ways (as we also showed for nonhomo-
geneous time-dependent problems): term-by-term differentiation with respect to x
of the series (8.6.3), which is more direct or by use of Green's formula. In either
way we obtain, from (8.6.4),

[d2bn (nir l 2 nirx
dye - \ L / b,,] sin L

u1=0 u1=0

= Q, (8.6.5)

Figure 8.6.1 Poisson equation in
a rectangle.
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since both ul and sin nax/L satisfy the same homogeneous boundary conditions.
Thus, the Fourier sine coefficients satisfy the following second-order ordinary dif-
ferential equation:

d2bn nir l 2 2 L nirx
dye - (L I bn = L 0 L dx = q,, (y), (8.6.6)

where the right-hand side is the sine coefficient of Q,
00

Q = qn sin
nrx.

(8.6.7)
n=1

We must solve (8.6.6). Two conditions are needed. We have satisfied Poisson's
equation and the boundary condition at x = 0 and x = L. The boundary condition
aty=0(for all x),ul=0, and at y = H (for all x), ul = 0, imply that

bn(0) = 0 and bn(H) = 0. (8.6.8)

Thus, the unknown coefficients in the method of eigenfunction expansion [see (8.6.6)]
themselves solve a one-dimensional nonhomogeneous boundary value problem. Com-
pare this result to the time-dependent nonhomogeneous PDE problems, in which
the coefficients satisfied one-dimensional initial value problems. One-dimensional
boundary value problems are more difficult to satisfy than initial value problems.
Later we will discuss boundary value problems for ordinary differential equations.
We will find different ways to solve (8.6.6) subject to the BC (8.6.8). One form of
the solution we can obtain using the method of variation of parameters (see Sec.
9.3.2) is

bn(y)
v

= sink "(H y) q. (C) sinll L dl;

fy

+ sinh nEy
H fo

qn (l;) sink "'(H
L

(8.6.9)

Thus, we can solve Poisson's equation (with homogeneous boundary conditions)
using the x-dependent related one-dimensional homogeneous eigenfunctions. Prob-
lems with nonhomogeneous boundary conditions can be solved in the same way,
introducing the appropriate modifications following from the use of Green's for-
mula with nonhomogeneous conditions. In Exercise 8.6.1, the same problem is
solved using the y-dependent related homogeneous eigenfunctions.

Two-dimensional eigenfunctions. A somewhat different way to solve
Poisson's equation,

V2u1 = Q, 1 (8.6.10)
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on a rectangle with zero BC is to consider the related two-dimensional eigenfunc-
tions:

02 , = _AO

with 0 = 0 on the boundary. For a rectangle we know that this implies a sine series
in x and a sine series in y:

'nm
n7rx . mirysin L sin H

Anm
nir

\L/2+\H/2
The method of eigenfunction expansion consists of expanding the solution ul in
terms of these two-dimensional eigenfunctions:

00 00
n1rx miryui = bnm sin L sin T f.

n=1 m=1
(8.6.11)

Here bnm are constants (not a function of another variable) since ul only depends
on x and y. The substitution of (8.6.11) into Poisson's equation (8.6.10) yields

co 00 nix miry = Q
bnmAnm sin L sin H ,

n=1 m=1

since V2 On, = -An,ncbnm. The Laplacian can be evaluated by term-by-term differ-
entiation since both ui and On,,, satisfy the same homogeneous boundary conditions.
The eigenfunctions onn, are orthogonal (in a two-dimensional sense) with weight 1.
Thus,

fH ft Q sin nirx/L sin miry/H dx dy
-bnmAnm = H L 2 2fo f0 sin nirx/L sin miry/H dx dy'

(8.6.12)

determining the bnm. The expression on the r.h.s. of (8.6.12) is recognized as the
generalized Fourier coefficients of Q. Dividing by Anm to solve for bnm poses no
difficulty since \nm > 0 (explicitly or by use of the Rayleigh quotient). It is easier to
obtain the solution using the expansion in terms of two-dimensional eigenfunctions
than using one-dimensional ones. However, doubly infinite series such as (8.6.11)
may converge quite slowly. Numerical methods may be preferable except in simple
cases. In Exercise 8.6.2 we show that the Fourier sine coefficients in y of bn(y)
[see (8.6.3)] equal bnm [see (8.6.11)]. This shows the equivalence of the one- and
two-dimensional eigenfunction expansion approaches.

Nonhomogeneous boundary conditions (any geometry). The
two-dimensional eigenfunctions can also be directly used for Poisson's equation sub-
ject to nonhomogeneous boundary conditions. It is no more difficult to indicate the
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solution for a rather general geometry. Suppose that

V2u = Q, (8.6.13)

with u = a on the boundary. Consider the eigenfunctions 0i of V246 = -) with
0 = 0 on the boundary. We represent u in terms of these eigenfunctions:

(8.6.14)

Now, it is no longer true that

V2u = bi02(ki,

since u does not satisfy homogeneous boundary conditions. Instead, from (8.6.14)
we know that

b - ff u46i dx dy 1 ff u02Oi dx dy
8.6.15i ff ci dx dy ff q? dx dy ( )

since V20i = -A,4,. We can evaluate the numerator using Green's two-dimensional
formula:

, - v02u) dx dy = (uVv - vVu) n ds. (8.6.16)

Letting v = (ki, we see

Jf uo20i dx dy = if 0i02u dx dy + i(uVoi - 4iVu) Ads.

However, V2u = Q and on the boundary Oi = 0 and u = a. Thus,

bi

1

ff 4iQdxdy+ f
ff 02 dx dy (8.6.17)

This is the general expression for bi, since Ai, Oi, a, and Q are considered to be
known. Again, dividing by Ai causes no difficulty, since A, > 0 from the Rayleigh
quotient. For problems in which A, = 0, see Sec. 9.4.

If u also satisfies homogeneous boundary conditions, a = 0, then (8.6.17) be-
comes

bi1 ffciQdxdy
Ai ff0?dxdy'

agreeing with (8.6.12) in the case of a rectangular region. This shows that (8.6.11)
may be term-by-term differentiated if u and c satisfy the same homogeneous bound-
ary conditions.



378 Chapter 8. Nonhomogeneous Problems

EXERCISES 8.6
8.6.1. Solve

V2u = Q(x, y)

on a rectangle (0 < x < L, 0 < y < H) subject to

(a) u(O,y) = 0, u(x,0) = 0
u(L,y) = 0, u(x, H) = 0

Use a Fourier sine series in y.
*(b) u(O,y) = 0, u(x,0) = 0

u(L, y) = 1, u(x, H) - 0
Do not reduce to homogeneous boundary conditions.

(c) Solve part (b) by first reducing to homogeneous boundary conditions.

*(d) au Ou(0,y) = 0, (x,0) = 0
(L,y)=0,(x,H)=0

In what situations are there solutions?
(e) (0, y) = 0, u(x, 0) = 0

(L,y)=0,(x,H)=0
O-x

8.6.2. The solution of (8.6.6),

d2b rn, 2
y

subject to bn(0) = 0 and bn(H) = 0 is given by (8.6.9).

(a) Solve this instead by letting bn(y) equal a Fourier sine series.
(b) Show that this series is equivalent to (8.6.9).
(c) Show that this series is equivalent to the answer obtained by an ex-

pansion in the two-dimensional eigenfunctions, (8.6.11).

8.6.3. Solve (using two-dimensional eigenfunctions) V2u = Q(r, 9) inside a circle
of radius a subject to the given boundary condition. In what situations are
there solutions?

*(a) u(a,9) = 0 (b)
a°(a,9) = 0

(c) u(a,9) = f(9) (d) gur (a, 9) = 9(9)

8.6.4. Solve Exercise 8.6.3 using one-dimensional eigenfunctions.

8.6.5. Consider
Vu = Q(x, y)

inside an unspecified region with u = 0 on the boundary. Suppose that the
eigenfunctions V20 = -AO subject to 0 = 0 on the boundary are known.
Solve for u(x, y).
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*8.6.6. Solve the following example of Poisson's equation:

V 2U = e2V sin x

subject to the following boundary conditions:

u(O,y) = 0 u(x,0) = 0
u(7r, y) = 0 u(x, L) = f (x).

8.6.7. Solve

O2u = Q(x, y, z)

inside a rectangular box (0 < x < L, 0 < y < H, 0 < z < W) subject to
u = 0 on the six sides.

8.6.8. Solve
V 2U = Q(r, 9, z)

inside a circular cylinder (0 < r < a, 0 < 9 < 27r, 0 < z < H) subject to
u = 0 on the sides.

8.6.9. On a rectangle (0 < x < L, 0 < y < H) consider

O2u = Q(x, y)

with Vu n = 0 on the boundary.

(a) Show that a solution exists only if f f Q(x, y) dx dy = 0. Briefly explain,
using physical reasoning.

(b) Solve using the method of eigenfunction expansion. Compare to part
(a). (Hint: A = 0 is an eigenvalue.)

(c) If if f Q dx dy = 0, determine the arbitrary constant in the solution of
part (b) by consideration of the time-dependent problem = k(V2u-
Q), subject to the initial condition u(x, y, 0) = g(x, y).

8.6.10. Reconsider Exercise 8.6.9 for an arbitrary two-dimensional region.



Chapter 9

Green's Functions for
Time-Independent Problems

9.1 Introduction
Solutions to linear partial differential equations are nonzero due to initial conditions,
nonhomogeneous boundary conditions, and forcing terms. If the partial differential
equation is homogeneous and there is a set of homogeneous boundary conditions,
then we usually attempt to solve the problem by the method of separation of vari-
ables. In Chapter 8 we developed the method of eigenfunction expansions to ob-
tain solutions in cases in which there were forcing terms (and/or nonhomogeneous
boundary conditions).

In this chapter, we will primarily consider problems without initial conditions
(ordinary differential equations and Laplace's equation with sources). We will show
that there is one function for each problem called the Green's function, which can
be used to describe the influence of both nonhomogeneous boundary conditions and
forcing terms. We will develop properties of these Green's functions and show direct
methods to obtain them. Time-dependent problems with initial conditions, such as
the heat and wave equations, are more difficult. They will be used as motivation,
but detailed study of their Green's functions will not be presented until Chapter
11.

9.2 One-dimensional Heat Equation
We begin by reanalyzing the one-dimensional heat equation with no sources and
homogeneous boundary conditions:

all 19241

at - k
axe

(9.2.1)

380
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U(0' t) = 0

u(L, t) = 0
u(x,0) = g(x).

381

(9.2.2)

(9.2.3)

(9.2.4)

In Chapter 2, according to the method of separation of variables, we obtained

00

u(x, t) = E an sin
nrxe-k(na/L)2t

n=1
(9.2.5)

where the initial condition implied that an are the coefficients of the Fourier sine
series of g(x),

00

g(x)an sin n7rx
L

n=1

L

an = L J g(x) sin nLx dx.
0

(9.2.6)

(9.2.7)

We examine this solution (9.2.5) more closely in order to investigate the effect
of the initial condition g(x). We eliminate the Fourier sine coefficients from (9.2.7)
(introducing a dummy integration variable xo):

00
2

J
L nirxou(x, t) _ I L g(xo) sin dxo sin

If we interchange the order of operations of the infinite summation and integration,
we obtain

u(x, t) = fL 9(xo) sin
n
L

o sin nLx e-k(na/L)'e dxo. (9.2.8)

We define the quantity in parenthesis as the influence function for the initial
condition. It expresses the fact that the temperature at position x at time t is
due to the initial temperature at x0. To obtain the temperature u(x, t), we sum
(integrate) the influences of all possible initial positions.

Before further interpreting this result, it is helpful to do a similar analysis for a
more general heat equation including sources, but still having homogeneous bound-
ary conditions

2

at = k axe + Q(x, t) (9.2.9)
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11(0, t) = 0 (9.2.10)

u(L, t) = 0 (9.2.11)

u(x,0) = g(x). (9.2.12)

This nonhomogeneous problem is suited for the method of eigenfunction expansions,

u(x, t) _ an (t) sin nLx . (9.2.13)00

n=1

This Fourier sine series can be differentiated term by term since both sin nirx/L
and u(x, t) solve the same homogeneous boundary conditions. Hence, an (t) solves
the following first-order differential equation:

dan n, )'a. L

dt + k \ L= qn (t) = L J Q(x, t) sin nLx dx, (9.2.14)
0

where qn(t) are the coefficients of the Fourier sine series of Q(x, t),
00

Q(x, t) _ qn(t) sin
nTx .

(9.2.15)
n=1

The solution of (9.2.14) [using the integrating factor ek(nir/L)2t] is

t

an(t) = an(0)e-k(na/L)2t + e-k(na/L)2t fqn (
to)ek(n,r/L)2t0 dto. (9.2.16)

an (0) are the coefficients of the Fourier sine series of the initial condition, u(x, 0) _
9(x):

0-11

g(x) = Ean(0)sinnTx (9.2.17)
n=1

Lr
an (0) = L J 9(x) sin nLx dx. (9.2.18)

0

These Fourier coefficients may be eliminated, yielding

00

, t) _ n L ° e-k(/L)2t
n=1

(21L
u(x

+ e-k(nn/L)2t jt(2 Q(xo, to) sin nLx dxo f ek(n,./L)2to dto] sin nLx

After interchanging the order of performing the infinite summation and the inte-
gration (over both xo and to), we obtain

L sin
n

L ° inu(x, t) =
fL

9(xo) E\ /If
+ [ xo, to) sin n o sin nLxe-k(n./L)2(t-to)dtodxo.

o J
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We therefore introduce the Green's function, G(x, t; xo, to),

sin
n

L o sin nLxe-k(nn/L)'(c-eo)
G(x, t; xo, to) _ E

2

We have shown that

n=1

u(x, t) = I g(xo)G(x, t; xo, 0) dxoL
0

+J' Q(xo, to)G(x, t; xo, to) dto dxo.
0 0

(9.2.19)

(9.2.20)

The Green's function at to = 0, G(x, t; xo, 0), expresses the influence of the ini-
tial temperature at xo on the temperature at position x and time t. In addition,
G(x, t; xo, to) shows the influence on the temperature at the position x and time t
of the forcing term Q(xo, to) at position xo and time to. Instead of depending on
the source time to and the response time t, independently, we note that the Green's
function depends only on the elapsed time t - to:

G(x, t; xo, to) = G(x, t - to; xo, 0).

This occurs because the heat equation has coefficients that do not change in time;
the laws of thermal physics are not changing. The Green's function exponentially
decays in elapsed time (t - to) [see (9.2.19)]. For example, this means that the
influence of the source at time to diminishes rapidly. It is only the most recent
sources of thermal energy that are important at time t.

Equation (9.2.19) is an extremely useful representation of the Green's function
if time t is large. However, for small t the series converges more slowly. In Chapter
11 we will obtain an alternative representation of the Green's function useful for
small t.

In (9.2.20) we integrate over all positions xo. The solution is the result of adding
together the influences of all sources and initial temperatures. We also integrate
the sources over all past times 0 < to < t. This is part of a causality principle.
The temperature at. time t is only due to the thermal sources that acted before time
t. Any future sources of heat energy cannot influence the temperature now.

Among the questions we will investigate later for this and other problems are
the following:

1. Are there more direct methods to obtain the Green's function?
2. Are there any simpler expressions for the Green's function (can we simplify

(9.2.19))?

3. Can we explain the relationships between the influence of the initial condition
and the influence of the forcing terms?

4. Can we account easily for nonhomogeneous boundary conditions?
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EXERCISES 9.2
9.2.1. Consider

= k8- +Q(x,t)

u(x,0) = g(x).

In all cases obtain formulas similar to (9.2.20) by introducing a Green's
function.

(a) Use Green's formula instead of term-by-term spatial differentiation if

u(0, t) = 0 and u(L,t) = 0.

(b) Modify part (a) if

u(0, t) = A(t) and u(L, t) = B(t).

Do not reduce to a problem with homogeneous boundary conditions.
(c) Solve using any method if

8 (0, t) = 0 and ax (L, t) = 0.

*(d) Use Green's formula instead of term-by-term differentiation if

(0, t) = A(t) and (L, t) = B(t).

9.2.2. Solve by the method of eigenfunction expansion

au a au 1
cpat = ax KOaxl +Q(x,t)

subject to u(0, t) = 0, u(L,t) = 0, and u(x, 0) = g(x), if cp and K° are
functions of x. Assume that the eigenfunctions are known. Obtain a formula
similar to (9.2.20) by introducing a Green's function.

*9.2.3. Solve by the method of eigenfunction expansion
02

2 t+
ate

c )Q(x,8 22
u(0, t) = 0 u(x,0) = f(x)

u(L,t) = 0 5 (x,0) = g(x).

Define functions (in the simplest possible way) such that a relationship
similar to (9.2.20) exists. It must be somewhat different due to the two
initial conditions. (Hint: See Exercise 8.5.1.)

9.2.4. Modify Exercise 9.2.3 (using Green's formula if necessary) if instead

(a) (0,t) = 0 and(L,t) = 0
(b) u(0, t) = A(t) and u(L, t) = 0
(c) Ou (0, t) = 0 and (L, t) = B(t)
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9.3 Green's Functions for Boundary Value Prob-
lems for Ordinary Differential Equations

9.3.1 One-Dimensional Steady-State Heat Equation
Introduction. Investigating the Green's functions for the time-dependent heat
equation is not an easy task. Instead, we first investigate a simpler problem. Most
of the techniques discussed will be valid for more difficult problems.

We will investigate the steady-state heat equation with homogeneous bound-
ary conditions, arising in situations in which the source term Q(x, t) = Q(x) is
independent of time:

0 = k d
ix2

+ Q(x).

We prefer the form

d2u
= f (x),dx2

(9.3.1)

in which case f (x) _ -Q(x)/k. The boundary conditions we consider are

u(0) = 0 and u(L) = 0. (9.3.2)

We will solve this problem in many different ways in order to suggest methods for
other harder problems.

Limit of time-dependent problem. One way (not the most obvious
nor easiest) to solve (9.3.1) is to analyze our solution (9.2.20) of the time-dependent
problem, obtained in the preceding section, in the special case of a steady source:

Lu(x, t) =
J

g(xo)G(x, t; xo, 0) dxo
o rL t (9.3.3)

(x, t; xo, to) dto/ dxo,+1 - kf (xo) Uo G
0

G(x, t; xo, to) _
2

sin
n

L ° sin tt1xe-k(na/L)'(t-to). (9.3.4)

As t -, oc, G(x, t; xo, 0) --a 0 such that the effect of the initial condition u(x, 0) =
g(x) vanishes at t , oo. However, even though G(x, t; xo, to) - 0 as t , o c. the
steady source is still important as t --+ oc since

t k(n*/ L)`(t-to)e-

o k(mr/L)2

t

to=o

1 - e-k(ns/L)'t
k(nir/L)2



386 Chapter 9. Time-Independent Green's Functions

Thus, as t - oo,

u(x, t) --+
L

U(X) = 10 f (xo)G(x, xo) dxo,
0

where

°O 2 sin n7rxo/L sin n7rx/L
G(x, xo) = -Y- L (n r/L)2

Here we obtained the steady-state temperature distribution u(x) by taking the limit
as t -+ 00 of the time-dependent problem with a steady source Q(x) = -k f (x).
G(x, xO) is the influence or Green's function for the steady-state problem. The
symmetry,

G(x, xo) = G(xo, x),

will be discussed later.

9.3.2 The Method of Variation of Parameters
There are more direct ways to obtain the solution of (9.3.1) with (9.3.2). We consider
a more general nonhomogeneous problem

L(u) = f (x), (9.3.7)

defined for a < x < b, subject to two homogeneous boundary conditions (of the
standard form discussed in Chapter 5), where L is the Sturm-Liouville operator:

(9.3.8)

For the simple steady-state heat equation of the preceding subsection, p = 1 and
q = 0, so that L = d2/dx2.

Nonhomogeneous ordinary differential equations can always be solved by the
method of variation of parameters if two' solutions of the homogeneous prob-
lem are known, ul(x) and u2(x). We briefly review this technique. In the method
of variation of parameters, a particular solution of (9.3.7) is sought in the form

u=V1'u1+V2'u2, (9.3.9)

'Actually, only one homogeneous solution is necessary as the method of reduction of order is a
procedure for obtaining a second homogeneous solution if one is known.
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where vl and v2 are functions of x to be determined. The original differential
equation has one unknown function, so that the extra degree of freedom allows us
to assume du/dx is the same as if vl and v2 were constants:

du _ dul due
dx - vl dx + v2

dx

Since vl and V2 are not constant, this is valid only if the other terms, arising from
the variation of vl and V2, vanish:

dxul+ u2=0.
The differential equation L(u) = f (x) is then satisfied if

dvl dul dv2 due
dx P dx + dx P dx = f (x)

The method of variation of parameters at this stage yields two linear equations for
the unknowns dvl/dx and dv2/dx. The solution is

dvl _ -fu2 -fu2
(9.3.10)

dx du2 dul

- )
c

dv2

u2
dxP (ul dx

ful ful (9.3.11)
dx du2 dul

-( )
c '

P u2dxuldx
where

due dul
(Uc = - u 3 12)(9l dx 2 dxP

..

Using the Wronskian described shortly, we will show that c is constant. The constant
c depends on the choice of homogeneous solutions ul and u2. The general solution
of L(u) = f (x) is given by u = ulvl + U2V2, where vl and v2 are obtained by
integrating (9.3.10) and (9.3.11).

Wronskian. We define the Wronskian W as
due dul

W = ul
dx

- u2 -.
It satisfies an elementary differential equation:

dW d2u2 d2ul dp/dx. ( due dul) dp/dx
dx

ul
dx2

u2
dx2 ul dx - u2

dx W, (9.3.13)

where the defining differential equations for the homogeneous solutions, L(ul) = 0
and L(u2) = 0, have been used. Solving (9.3.13) shows that

W= c
or pW=c.

P
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Example. Consider the problem (9.3.1) with (9.3.2):

d2u
dx2

= f(x) with u(0) = 0 and u(L) = 0.

This corresponds to the general case (9.3.7) with p = 1 and q = 0. Two homoge-
neous solutions of (9.3.1) are 1 and x. However, the algebra is easier if we pick ul (x)
to be a homogeneous solution satisfying one of the boundary conditions u(O) = 0
and u2(x) to be a homogeneous solution satisfying the other boundary condition:

ul(x) = x
u2(x) = L - x.

Since p = 1, c = -L from (9.3.12). By integrating (9.3.10) and (9.3.11), we obtain

vi(x) = L J f(xo)(L - xo) dxo + cl
0

v2(x) _ - L f f(xo)xo dxo + c2,
0

which is needed in the method of variation of parameters (u = idyl + u2v2). The
boundary condition u(O) = 0 yields 0 = c2L, whereas u(L) = 0 yields

0 = f L f (xo) (L - xo) dxo + c1L,
0

so that v1 (x) = - i fx f (xo)(L-xo) dxo. Thus, the solution of the nonhomogeneous
boundary value problem is

L x

f (xo)xo dxo. (9.3.14)u(x) = - L f f (xo)(L - xo) dxo -
L_L

x fox

L

f(xo)G(x,xo) dxo.u(x) = f
0

By comparing (9.3.14) to (9.3.15), we obtain

-x(L - xo) x<xo
G(x xo) = L

-xo(L - x)
L

(9.3.15)

(9.3.16)
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A sketch and interpretation of this solution will be given in Sec. 9.3.5. Although
somewhat complicated, the symmetry can be seen:

G(x, xo) = G(xo, X).

For the steady-state heat equation we have obtained two Green's functions, (9.3.6)
and (9.3.16). They appear quite different. In Exercise 9.3.1 they are shown to
be the same. In particular, (9.3.16) yields a piecewise smooth function (actually
continuous), and its Fourier sine series can be shown to be given by (9.3.6).

The solution also can be derived by directly integrating (9.3.1) twice:
x xo

u = f (2) da dxo + c1x + c2. (9.3.17)0

In Exercise 9.3.2. you are asked to show that (9.3.16) can be obtained from (9.3.17).
This can be done by interchanging the order of integration in (9.3.17) or by inte-
grating (9.3.17) by parts.

9.3.3 The Method of Eigenfunction Expansion
for Green's Functions

In Chapter 8, nonhomogeneous partial differential equations were solved by the
eigenfunction expansion method. Here we show how to apply the same ideas to the
general Sturm-Liouville nonhomogeneous ordinary differential equation:

L(u) = f (x) (9.3.18)

subject to two homogeneous boundary conditions. We introduce a related eigenvalue
problem,

L(O) _ -,\a O, (9.3.19)

subject to the same homogeneous boundary conditions. The weight a here can be
chosen arbitrarily. However, there is usually at most one choice of a(x) such that
the differential equation (9.3.19) is in fact well known.2 We solve (9.3.18) by seeking
u(x) as a generalized Fourier series of the eigenfunctions

00u(x) = yanOn(x)-
n=1

(9.3.20)

We can differentiate this twice term by term3 since both On(x) and u(x) solve the
same homogeneous boundary conditions:

00 a
E anL(On) L anAnac'n = f (x),
n=1 n=1

2For example, if L = d2/dx2, we pick a = I giving trigonometric functions, but if L =
(x dx) - z2

, we pick o = x so that Bessel functions occur.
3Green's formula can be used to justify this step (see Sec. 8.4).
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where (9.3.19) has been used. The orthogonality of the eigenfunctions (with weight
v) implies that

fb
J .f(x)On dx

-anon = a
b (9.3.21)

o dx

The solution of the boundary value problem for the nonhomogeneous ordinary dif-
ferential equation is thus (after interchanging summation and integration)

b 00 b

u(x) = f f(xo) E 0n(x)4n(xo) dxo = f

fa

f (xo)G(x, xo) dxo. (9.3.22)

a n=1 - \n 02 a dx a

For this problem, the Green's function has the representation in terms of the eigen-
functions:

c(x xo) - r On(x)-On(x°)

02adxnG=11A f nnf
Again the symmetry is explicitly shown. Note the appearance of the eigenvalues An
in the denominator. The Green's function does not exist if one of the eigenvalues
is zero. This will be explained in Sec. 9.4. For now we assume that all An 34 0.

Example. For the boundary value problem,
d2u

= f (X)dx2

u(0) = 0 and u(L) = 0,

the related eigenvalue problem,

d2o -Ad

0(0) = 0

=
dx2

and O(L) = 0,

is well known. The eigenvalues are an = (nir/L)2, n = 1, 2, 3 and the corre-
sponding eigenfunctions are sin nirx/L. The Fourier sine series of u(x) is given by
(9.3.20). In particular,

L

U(X) = f f(xo)G(x,xo) dxo,
0

where the Fourier sine series of the Green's function is

_ 2 °° sinnirx/Lsinn7rxo/L
G(x' x0) L (n7r/L)2

n=1

from (9.3.23), agreeing with the answer (9.3.6) obtained by the limit as t - oc of
the time-dependent problem.
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9.3.4 The Dirac Delta Function and Its Relationship
to Green's Functions

We have shown that

u(x) = f L f (xo)G(x, xo) dxo, (9.3.24)

where we have obtained different representations of the Green's function. The
Green's function shows the influence of each position xo of the source on the solution
at x. In this section, we will find a more direct way to derive (9.3.24) and to
determine the Green's function.

L1--t I I

Figure 9.3.1 Piecewise constant representation of a
function.

1

Figure 9.3.2 Pulse with unit height.

Dirac delta function. Our source f (x) represents a forcing of our system
at all points. f(x) is sketched in Fig. 9.3.1. In order to isolate the effect of each
individual point, we decompose f (x) into a linear combination of unit pulses of
duration Ox (see Fig. 9.3.2):

f (x) f (xi) (unit pulse starting at x = xi).

This is somewhat reminiscent of the definition of an integral. Only Ox is missing,
which we introduce by multiplying and dividing by Ox:

f (x) = limo f (xi)
unit pulse

lax. (9.3.25)
Oxi

In this way we have motivated a rectangular pulse of width Ox and height 1/Ax,
sketched in Fig. 9.3.3. It has unit area. In the limit as Ax -+ 0, this approaches an
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AT

I
X

xi

Figure 9.3.3 Rectangular pulse with
unit area.

infinitely concentrated pulse (not really a function) 6(x - x;), which would be zero
everywhere except oo at x = xi, still with unit area:

6(x - xi) 0 x 34 xi
0o x=xi (9.3.26)

We can think of 6(x-xi) as a concentrated source or impulsive force at x = xi.
According to (9.3.25), we have

f(x) = 1 f(xi)6(x - xi) dxi. (9.3.27)

Since 6(x - xi) is not a function, we define it as an operator with the property
that for any continuous f (x):

AX) = t f(xi)b(x - xi) dxi,
J 00

(9.3.28)

as is suggested by (9.3.27). We call 6(x - x;), the Dirac delta function.4 It
is so concentrated that in integrating it with any continuous function f (xi), it
"sifts" out the value at xi = x. The Dirac delta function may be motivated by the
"limiting function" of any sequence of concentrated pulses (the shape need not be
rectangular).

Other important properties of the Dirac delta function are that it has unit area:

jo(x1 = - xi) dx.; (9.3.29)

it operates like an even function

6(x - x1) = 6(x1 - x). (9.3.30)

This means that the definition (9.3.28) may be used without worrying about whether
6(x - xi) or 6(x1 - x) appears. The Dirac delta function is also the. derivative of the

.

4Named after Paul Dirac, a twentieth-century mathematical physicist (1902-1984).
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Heaviside unit step function H(x - xi)

H(x - xi) = 0 x < xi (9.3.31)
1 x > xi;

b(x - xi) = d H(x - xi); (9.3.32)

H(x - xi) = jo(xo
00

- xi) dxo; (9.3.33)

it has the following scaling property:

5Lc(x - xi)] = I1I5(x - xi).

These properties are proved in the Exercises.

Green's function. The solution of the nonhomogeneous problem

L(u) = f(x)

subject to two homogeneous boundary conditions is

bu(x) =
J

f (xo)G(x, xo) dxo.
a

(9.3.34)

(9.3.35)

(9.3.36)

Here, the Green's function is the influence function for the source f (x). As an
example, suppose that f (x) is a concentrated source at x = x f (x) = 6(x - x,).
Then the response at x, u(x), satisfies

f
b

tu(x) = b(xo - x)G(x, x0) dxo = G(x, xs)

due to (9.3.28). This yields the fundamental interpretation of the Green's func-
tion G(x, x.), it is the response at x due to a concentrated source at x,:

L [G(x, x,)] = b(x - x,), (9.3.37)

where G(x, x,) will also satisfy the same homogeneous boundary conditions at x = a
and x = b.

As a check, let us verify that (9.3.36) satisfies (9.3.35). To satisfy (9.3.35), we
must use the operator L (in the simple case, L = d2/dx2):

L(u) = I f (xo)L [G(x, xo)] dxo =
J

b f (xo)b(x - xo) dxo = f (x),b
a a
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where the fundamental property of both the Green's function (9.3.37) and the Dirac
delta function (9.3.28) has been used.

Often (9.3.37) with two homogeneous boundary conditions is thought of as an
independent definition of the Green's function. In this case we might want to derive
(9.3.36), the representation of the solution of the nonhomogeneous problem in terms
of the Green's function satisfying (9.3.37). The usual method to derive (9.3.36)
involves Green's formula:

I
b

[uL(v) - vL(u)] dx = p ( udx - vdu)
b

a

(9.3.38)

If we let v = G(x, xo), then the right-hand side vanishes since both u(x) and G(x, xo)
satisfy the same homogeneous boundary conditions. Furthermore, from the respec-
tive differential equations (9.3.35) and (9.3.37), it follows that

j
b

[u(x)b(x - xo) - G(x, xo) f (x)] dx = 0.

Thus, from the definition of the Dirac delta function,
b

u(xo) = f f (x)G(x, xo) dx.
a

If we interchange the variables x and xo, we obtain (9.3.36):
b

u(x) = f f (xo)G(xo, x) dxo = fb

f (xo)G(x, xo) dxo, (9.3.39)
n a

since the Green's function is known to be symmetric (9.3.16), G(xo, x) = G(x, xo).

Maxwell's reciprocity. The symmetry of the Green's function is very
important. We will prove it without using the eigenfunction expansion. Instead, we
will directly use the defining differential equation (9.3.37). We again use Green's
formula (9.3.38). Here we let u = G(x, xl) and v = G(x, x2). Since both satisfy the
same homogeneous boundary conditions, it follows that the right-hand side is zero.
In addition, L(u) = 6(x - xl) while L(v) = 6(x - x2), and thus

b

f [G(x, xl)a(x - x2) - G(x, x2)6(x - xl)] dx = 0.
a

From the fundamental property of the Dirac delta function, it follows that

G(xl, X2) = G(x2, X0, (9.3.40)

proving the symmetry from the differential equation defining the Green's function.
This symmetry is remarkable; we call it Maxwell's reciprocity. The response
at x due to a concentrated source at x0 is the same as the response at xo
due to a concentrated source at x. This is not physically obvious.
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Jump conditions. The Green's function G(x,x,) may be determined from
(9.3.37). For x < x G(x, x,) must be a homogeneous solution satisfying the
homogeneous boundary condition at x = a. A similar procedure is valid for x > x,.
Jump conditions across x = x, are determined from the singularity in (9.3.37).
If G(x, x,) has a jump discontinuity at x = x, then dG/dx has a delta function
singularity at x = x, and d2G/dx2 would be more singular than the right-hand side
of (9.3.37). Thus, the Green's function G(x, x,) is continuous at x = x,.
However, dG/dx is not continuous at x = x,; it has a jump discontinuity obtained
by integrating (9.3.37) across x = x, We illustrate this method in the next example
and leave further discussion to the Exercises.

Example. Consider the solution of the steady-state heat flow problem

dx2
f(x)

u(O) = 0 and u(L) = 0.
(9.3.41)

We have shown that the solution can be represented in terms of the Green's function:

L

U(X) = 1 f (xo) G(x, xo) dxo,
0

where the Green's function satisfies the following problem:

d2G(x,
xo) = b(x - xo)

dx2

G(0, xo) = 0 and G(L, xo) = 0.

(9.3.42)

(9.3.43)

One reason for defining the Green's function by the differential equation is that it
gives an alternative (and often easier) way to calculate the Green's function. Here
xo is a parameter, representing the position of a concentrated source. For x # xo
there are no sources and hence the steady-state heat distribution G(x,xo) must be
linear (d2G/dx2 = 0):

a+bx x<xo
G(x, xo) 1 c + dx x > xo,

but the constants may be different. The boundary condition at x = 0 applies for
x < xe. G(0,xo) = 0 implies that a = 0. Similarly, G(L,xo) = 0 implies that
c+dL=0:

G(x xo) _ j bx x < xo
l d(x - L) x > xo.
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xo L

Figure 9.3.4 Green's function before ap-
plication of jump conditions at x = xo.

This preliminary result is sketched in Fig. 9.3.4.
The two remaining constants are determined by two conditions at x = x0. The

temperature G(x, xo) must be continuous at x = xo,

G(xo-, xo) = G(xo+, xo), (9.3.44)

and there is a jump in the derivative of G(x, xo), most easily derived by integrating
the defining differential equation (9.3.43) from x = xo- to x = xo+:

dG _ dG
= 1.

dx =-xo+ dx z=2p.

Equation (9.3.44) implies that

while (9.3.45) yields

bxo = d(xo - L),

d - b = 1.
By solving these simultaneously, we obtain

d= L and

and thus

G(x xo) =, x

b xo - L
L

x-L(L-xo) x<xo
o--(L - x) x > xo

L
,

(9.3.45)

(9.3.46)
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(xo, -xo(L - xo)/L)

_n is

Figure 9.3.5 Green's function.

-0.24G(x,0.2)

25'0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9.3.6 Illustration of Maxwell's reci-
procity.

agreeing with (9.3.16). We sketch the Green's function in Fig. 9.3.5. The negative
nature of this Green's function is due to the negative concentrated source of thermal
energy, -6(x - xo), since 0 = d&G/dx2(x, 0) - 6(x - xo).

The symmetry of the Green's function (proved earlier) is apparent in all repre-
sentations we have obtained. For example, letting L = 1,

_ -x(1 - xo) x< xo 1 1 1 1 1G(x,xo)- -xo(1-x) x>xo andGf2,5)=G(52)=-10.

We sketch G(x,
5)

and G(x, 1) in Fig. 9.3.6. Their equality cannot be explained by
simple physical symmetries.

9.3.5 Nonhomogeneous Boundary Conditions
We have shown how to use Green's functions to solve nonhomogeneous differential
equations with homogeneous boundary conditions. In this subsection we extend
these ideas to include problems with nonhomogeneous boundary conditions:

dx2 = J (x) (9.3.47)

u(0) = a and u(L) =,3. 1 (9.3.48)
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We will use the same Green's function as we did previously with problems with
homogeneous boundary conditions:

d2G
dx2

= b(x - xo)

G(0, xo) = 0 and G(L, xo) = 0;

(9.3.49)

(9.3.50)

the Green's function always satisfies the related homogeneous boundary
conditions.

To obtain the representation of the solution of (9.3.47) with (9.3.48) involving
the Green's function, we again utilize Green's formula, with v = G(x, xo):

( 2
l

dx2
xo)

- G(x' x0) dx2 I dx = u
dG(dxxo)

_ G(x, xo)
du
dx

L

0

The right-hand side now does not vanish since u(x) does not satisfy homogeneous
boundary conditions. Instead, using only the definitions of our problem (9.3.47)-
(9.3.48) and the Green's function (9.3.49) - (9.3.50), we obtain

JLIU(x)o(x dG(x, xo) dG(x, xo)
- xo) - G(x, xo)f (x)] dx = u(L) dx - u(0)

dx I s=oLL
We analyze this as before. Using the property of the Dirac delta function (and
reversing the roles of x and xo) and using the symmetry of the Green's function,
we obtain

u(x) = Lf (xo)G(x, xo) dxo +
0dG(x, xo)f

o dxo

dG(x, xo)

zo-L
- a

dxo zo=0
(9.3.51)

This is a representation of the solution of our nonhomogeneous problem (including
nonhomogeneous boundary conditions) in terms of the standard Green's function.
We must be careful in evaluating the boundary terms. In our problem, we have
already shown that

x-L(L - xo) x <xo
G(x, xo) _ x- L (L - x) x > xo.

The derivative with respect to the source position of the Green's function is thus
x

dG(x, xo) x < x0

dxo -0- i) x>xo.
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Evaluating this at the endpoints yields

dG(x, xo)
dxo

Consequently,

and
dG(x, xo

dxo

u(x) = f f (xo)G(x, xo) dxo + /jL +a 1- L) . (9.3.52)

The solution is the sum of a particular solution of (9.3.42) satisfying homogeneous
boundary conditions obtained earlier, f L f (xo)G(x, xo) dxo, and a homogeneous
solution satisfying the two required nonhomogeneous boundary conditions, Q(x/L)+
all - x/L).

9.3.6 Summary
We have described three fundamental methods to obtain Green's functions:

1. Variation of parameters
2. Method of eigenfunction expansion
3. Using the defining differential equation for the Green's function

In addition, steady-state Green's functions can be obtained as the limit as t oo of
the solution with steady sources. To obtain Green's functions for partial differential
equations, we will discuss one important additional method. It will be described in
Sec. 9.5.

EXERCISES 9.3

9.3.1. The Green's function for (9.3.1) is given explicitly by (9.3.16). The method
of eigenfunction expansion yields (9.3.6). Show that the Fourier sine series
of (9.3.16) yields (9.3.6).

9.3.2. (a) Derive (9.3.17).

(b) Integrate (9.3.17) by parts to derive (9.3.16).

(c) Instead of part (b), simplify the double integral in (9.3.17) by inter-
changing the orders of integration. Derive (9.3.16) this way.

9.3.3. Consider
a

8t k 8x2
+ Q(x, t)

subject to u(0, t) = 0, ai (L, t) = 0, and u(x, 0) = g(x).

(a) Solve by the method of eigenfunction expansion.

(b) Determine the Green's function for this time-dependent problem.
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(c) If Q(x, t) = Q(x), take the limit as t -+ oo of part (b) in order to
determine the Green's function for

d
22 = f (x) with u(0) = 0 and dx (L) = 0.

9.3.4. (a) Derive (9.3.29) from (9.3.28) (Hint: Let f (x) = 1.]
(b) Show that (9.3.33) satisfies (9.3.31).

(c) Derive (9.3.30) [Hint: Show for any continuous f (x) thatI
f(xo)6(x - xo) dxo =

1
f(xo)6(xo - x) dxo

00

by letting xo - x = s in the integral on the right.]
(d) Derive (9.3.34) [Hint: Evaluate f f (x)b[c(x - xo)] dx by making the

change of variables y = c(x - xo).]

9.3.5. Consider
d2 dux2 = Ax) with u(O)=O and (L) = 0.

*(a) Solve by direct integration.

*(b) Solve by the method of variation of parameters.

*(c) Determine G(x, xo) so that (9.3.15) is valid.

(d) Solve by the method of eigenfunction expansion. Show that G(x, xo)
is given by (9.3.23).

9.3.6. Consider

2 = 6(x - xo) with G(0, xo) = 0 and
dx

(L, xo) = 0.

*(a) Solve directly.

*(b) Graphically illustrate G(x, xo) = G(xo, x).
(c) Compare to Exercise 9.3.5.

9.3.7. Redo Exercise 9.3.5 with the following change: (L) + hu(L) = 0, h > 0.

9.3.8. Redo Exercise 9.3.6 with the following change: dG (L) + hG(L) = 0, h > 0.

9.3.9. Consider

dx2 + u = f (x) with u(0) = 0 and u(L) = 0.

Assume that (nir/L)2 54 1 (i.e., L nir for any n).
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(a) Solve by the method of variation of parameters.
*(b) Determine the Green's function so that u(x) may be represented in

terms of it [see (9.3.15)).

9.3.10. Solve the problem of Exercise 9.3.9 using the method of eigenfunction ex-
pansion.

9.3.11. Consider

d2Gdx2 + G = b(x - xo) with G(0, xo) = 0 and G(L, xo) = 0.

*(a) Solve for this Green's function directly. Why is it necessary to assume
that L 3A nit?

(b) Show that G(x, xo) = G(xo, x).

9.3.12. For the following problems, determine a representation of the solution in
terms of the Green's function. Show that the nonhomogeneous boundary
conditions can also be understood using homogeneous solutions of the dif-
ferential equation:

(a) X22 = f (x), u(0) = A, dx (L) = B. (See Exercise 9.3.6.)

(b) z + u = f (x), u(0) = A, u(L) = B. Assume L 0 na. (See Exercise
9.3.11.)

d2u du
(c)

dx2
= f (x), u(0) = A,

dx
(L) + hu(L) = 0. (See Exercise 9.3.8.)

9.3.13. Consider the one-dimensional infinite space wave equation with a periodic
source of frequency w:

a2
0 = c2 2 + g(x)e-:Wt. (9.3.53)

(a) Show that a particular solution 0 = u(x)e-"t of (9.3.53) is obtained
if u satisfies a nonhomogeneous Helmholtz equation

d(u 2

dx2
+ k u = f(x).

*(b) The Green's function G(x, xo) satisfies

d2G 2

dx2
+ k G = 5(x - xo).

Determine this infinite space Green's function so that the corresponding
O(x, t) is an outward-propagating wave.

(c) Determine a particular solution of (9.3.53).
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9.3.14. Consider L(u) = f (x) with L = (per) + q. Assume that the appropriate
Green's function exists. Determine the representation of u(x) in terms of
the Green's function if the boundary conditions are nonhomogeneous:

(a) u(0) = a and u(L) =,6

(b) du- (0) = a and (L) = 3

(c) u(O) = a and
TX

(L)

*(d) u(0) = a and dx (L) + hu(L) = J3

9.3.15. Consider L(G) = 5(x - xo) with L = d (pg) + q subject to the boundary
conditions G(0, xo) = 0 and G(L, xo) = 0. Introduce for all x two homoge-
neous solutions, yl and Y2, such that each solves one of the homogeneous
boundary conditions:

L(yi) = 0 L(y2) = 0

yi(0) = 0 y2(L) = 0
dy, (0)1 d2(L)1.
Iii-

Even if yl and y2 cannot be explicitly obtained, they can be easily calculated
numerically on a computer as two initial value problems. Any homogeneous
solution must be a linear combination of the two.

*(a) Solve for G(x,xo) in terms of y, (x) and y2(x). You may assume that
yi(x) 0 CY2(x)

(b) What goes wrong if yl (x) = cy2 (x) for all x and why?

9.3.16. Reconsider (9.3.41), whose solution we have obtained, (9.3.46). For (9.3.41),
what is yl and Y2 in Exercise 9.3.15? Show that G(x, xo) obtained in Exer-
cise 9.3.15 reduces to (9.3.46) for (9.3.41).

9.3.17. Consider

L(u) = f (x) with L =
d (pd)+q

dx dx

u(0) = 0 and u(L) = 0.

Introduce two homogeneous solutions yl and y2, as in Exercise 9.3.15.

(a) Determine u(x) using the method of variation of parameters.

(b) Determine the Green's function from part (a).

(c) Compare to Exercise 9.3.15.

9.3.18. Reconsider Exercise 9.3.17. Determine u(x) by the method of eigenfunction
expansion. Show that the Green's function satisfies (9.3.23).
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9.3.19. (a) If a concentrated source is placed at a node of some mode (eigen-
function), show that the amplitude of the response of that mode is
zero. [Hint: Use the result of the method of eigenfunction expansion
and recall that a node x* of an eigenfunction means anyplace where
-0n(x*) =

(b) If the eigenfunctions are sin nirx/L and the source is located in the
middle, xo = L/2, show that the response will have no even harmonics.

9.3.20. Derive the eigenfunction expansion of the Green's function (9.3.23) directly
from the defining differential equation (9.3.41) by letting

00

G(x, xo) = anOn(x)
n=1

Assume that term-by-term differentiation is justified.

*9.3.21. Solve
dG
dx

=b(x-xo) with G(0,xo)=0.

Show that G(x, xo) is not symmetric even though b(x - xo) is.

9.3.22. Solve
dG with G 0

Show that G(x, xo) is not symmetric even though 6(x - xo) is.

9.3.23. Solve

C = b(x - xo)

G(0, xo) = 0 G(L, xo) = 0

dG d2G
dx

(0, xo) = 0 -2 (L, xo) = 0.

9.3.24. Use Exercise 9.3.23 to solve

dau
= f(x)

u(0) = 0 u(L) = 0

(0)=02(L)=0.
(Hint: Exercise 5.5.8 is helpful.)

9.3.25. Use the convolution theorem for Laplace transforms to obtain particular
solutions of

(a) X22 = f (x) (See Exercise 9.3.5.)
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4d*(b)4 = f (x) (See Exercise 9.3.24.)

9.3.26 Determine the Green's function satisfying = - G = 6(x - xo):

(a) Directly on the interval 0 < x < L with G(0, xo) = 0 and G(L, xo) = 0
(b) Directly on the interval 0 < x < L with G(0, xo) = 0 and AG- (L, xo) = 0

(c) Directly on the interval 0 < x < L with dz (0, xo) = 0 and 9(L, xo) _
0

(d) Directly on the interval 0 < x < oc with G(0, xo) = 0
(e) Directly on the interval 0 < x < oo with (0, xo) = 0
(f) Directly on the interval -oo < x < oc

Appendix to 9.3: Establishing Green's Formula
with Dirac Delta Functions
Green's formula is very important when analyzing Green's functions. However, our
derivation of Green's formula requires integration by parts. Here we will show that
Green's formula,

f[uL(v) - vL(u)] dx = p I udv - vdu J where L = dx (-) + q (9.3.54)

is valid even if v is a Green's function,

L(v) = 6(x - xo). (9.3.55)

We will derive (9.3.54). We calculate the left-hand side of(9.3.54). Since there is
a singularity at x = xo, we are not guaranteed that (9.3.54) is valid. Instead, we
divide the region into three parts:

fb

- Ja
czo-

+

xo+ Zb

a Jx0- +0+
In the regions that exclude the singularity, a < x < xo_ and xo+ < x < b, Green's
formula can be used. In addition, due to the property of the Dirac delta function,

+

f.020-

[uL(v) - vL(u)] dx =
XOX_

[ub(x - xo) - vL(u)] dx = u(xo),
fx

since f=o ± vL(u) dx = 0. Thus, we obtain

r° / dv du \
J [uL(v) - vL(u)] dx = p ( ud -

vdx
I

a

=
p

dv du ludx-vdx

xO-
p

(Udv du) lb

+ -v- +u x )( o
a dx dx xo+

b (udv du1lx0-
+ u(xo).a + p dx - vdx

du)
x.+

b

(9.3.56)
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Since u, du/dx, and v are continuous at x = xo; it follows that

p (udv - vdu
dx

x0 -

=
P(xo)u(xo)j

xo+ ax

xo -

sot

However, by integrating (9.3.55), we know that p dv/dxIio± = I. Thus, (9.3.54)
follows from (9.3.56). Green's formula may be utilized even if Green's functions are
present.

9.4 Fredholm Alternative and
Generalized Green's Functions

9.4.1 Introduction
If A = 0 is an eigenvalue, then the Green's function does not exist. In order to
understand the difficulty, we reexamine the nonhomogeneous problem:

L(u) = f (x), (9.4.1)

subject to homogeneous boundary conditions. By the method of eigenfunction ex-
pansion, in the preceding section we obtained

00

u = E anon (x), (9.4.2)
n=1

where by substitution

la
f(x)On(x) dx

-anAn = b (9.4.3)

Iodx

If An = 0 (for some n, often the lowest eigenvalue), there may not be any solutions to
the nonhomogeneous boundary value problem. In particular, if f, f (x)On(x) dx 0
0, for the eigenfunction corresponding to An = 0, then (9.4.3) cannot be satisfied.
This warrants further explanation.

Example. Let us consider the following simple nonhomogeneous boundary value
problem:

X22 = ex with
du du(0) = 0 and

aj
(L) = 0. (9.4.4)

We attempt to solve (9.4.4) by integrating:

du
TX

=ex+c.
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The two boundary conditions cannot be satisfied as they are contradictory:

0 = l+c
0 = eL +c.

There is no guarantee that there are any solutions to a nonhomogeneous boundary
value problem when A = 0 is an eigenvalue for the related eigenvalue problem
[d246n/dx2 = with d4,a/dx(0) = 0 and di,,/dx(L) = 01.

In this example, from one physical point of view, we are searching for an equilib-
rium temperature distribution. Since there are sources and the boundary conditions
are of the insulated type, we know that an equilibrium temperature can only exist
if there is no net input of thermal energy:

1L

e=dx=0,
0

which is not valid. Since thermal energy is being constantly removed, there can be
no equilibrium (0 = d2u/dx2 - ex).

Zero eigenvalue. If J = 0 is an eigenvalue, we have shown that there may
be difficulty in solving

L(u) = f (x), (9.4.5)

subject to homogeneous boundary conditions. The eigenfunctions 0,a satisfy

L(On) =

subject to the same homogeneous boundary conditions. Thus, if A = 0 is an eigen-
value, the corresponding eigenfunction Oh(x) satisfies

L(Oh) = 0 (9.4.6)

with the same homogeneous boundary conditions. Thus, Oh(x) is a nontrivial ho-
mogeneous solution of (9.4.5). This is important: Nontrivial homogeneous so-
lutions of (9.4.5) solving the same homogeneous boundary conditions are
equivalent to eigenfunctions corresponding to the zero eigenvalue. If there
are no nontrivial homogeneous solutions (solving the same homogeneous boundary
conditions), then A = 0 is not an eigenvalue. If there are nontrivial homogeneous
solutions, then \ = 0 is an eigenvalue.

The notion of a homogeneous solution is less confusing than can be a zero eigen-
value. For example, consider

2 + u = e= with u(0) = 0 and u(ir) = 0. (9.4.7)

Are there homogeneous solutions? The answer is yes, 0 = sin x. However, it may
cause some confusion to say that A = 0 is an eigenvalue (although it is true). The
definition of the eigenvalues for (9.4.7) is

dx2 + -a¢ with O(0) = 0 and 4(7r) = 0.

This is best written as d2q5/dx2 + (A + 1)0 = 0. Therefore, \ + 1 = (nir/L)2 =
n2, n = 1, 2, 3, ... , and it is now clear that A = 0 is an eigenvalue (n = 1).
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9.4.2 Fredholm Alternative
Important conclusions can be reached from (9.4.3), obtained by the method of
eigenfunction expansion. The Fredholm alternative summarizes these results for
nonhomogeneous problems

L(u) = f(x), (9.4.8)

subject to homogeneous boundary conditions (of the self-adjoint type). Either

1. u = 0 is the only homogeneous solution (i.e., A = 0 is not an
eigenvalue), in which case the nonhomogeneous problem has
a unique solution, or

2. There are nontrivial homogeneous solutions ¢h(x) (i.e., A = 0
is an eigenvalue), in which case the nonhomogeneous problem
has no solutions or an infinite number of solutions.

Let us describe in more detail what occurs if ¢h(x) is a nontrivial homogeneous
solution. By (9.4.3) there is an infinite number of solutions of (9.4.8) if

f f(x)4h(x) dx = 0,
a

(9.4.9)

because the corresponding an is arbitrary. These nonunique solutions correspond to
an arbitrary additive multiple of a homogeneous solution 4Sh(x). Equation (9.4.9)
corresponds to the forcing function being orthogonal to the homogeneous solution
(with weight 1). If

a
fbf(x)Oh(x) dx 96 0, (9.4.10)

then the nonhomogeneous problem (with homogeneous boundary conditions) has
no solutions. These results are illustrated in Table 9.4.1.

Table 9.4.1: Number of Solutions of L(u) = f (x) Subject to Homogeneous Boundary
Conditions

#
b1f

(x)Oh(x) dx

',=0(A0) 1 0
Oh 96 0 (A = 0) o0 0

q5hO0(A=0) 0 00
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A different phrasing of the Fredholm alternative states that for the nonhomo-
geneous problem (9.4.8) with homogeneous boundary conditions, solu-
tions exist only if the forcing function is orthogonal to all homogeneous
solutions.' Note that if u = 0 is the only homogeneous solution, then f (x) is
automatically orthogonal to it (in a somewhat trivial way), and there is a solution.

Part of the Fredholm alternative can be shown without using an eigenfunction
expansion. If the nonhomogeneous problem has a solution, then

L(u) = f(x).

All homogeneous solutions, Oh(x), satisfy

L(Oh) = 0.

We now use Green's formula with v = Oh and obtain

f
b

f(x)h(x) dx = 0,fb

since u and Oh satisfy the same homogeneous boundary conditions.

Examples. We consider three examples. First, suppose that

d2u
= ex with du (0) = 0 and du (L) = 0. (9.4.11)

dx2 dx dx

u = 1 is a homogeneous solution. According to the Fredholm alternative, there is
a solution to (9.4.11) only if ex is orthogonal to this homogeneous solution. Since
f L ex 1 dx 0, there are no solutions of (9.4.11).

For another example, suppose that

dx2 + 2u = ex with u(0) = 0 and u(ir) = 0.

Since there are no solutions of the corresponding homogeneous problem6 (other than
u = 0), the Fredholm alternative implies that there is a unique solution. However,
to obtain that solution we must use standard techniques to solve nonhomogeneous
differential equations, such as the methods of undetermined coefficients, variation
of parameters, or eigenfunction expansion (using sinnx).

As a more nontrivial example, we consider

d2u 2
dx2 + (L) u

=,3
+ x with u(0) = 0 and u(L) = 0.

5Here the operator L is self-adjoint. For non-self-adjoint operators, the solutions exist if the
forcing function is orthogonal to all solutions of the corresponding homogeneous adjoint problem
(see Exercises 5.5.11 to 5.5.14).

6For d2c,/dx2 +Am = 0, with 0(0) = 0 and m(L) = 0, the eigenvalues are (nn/L)2. Here 2 96 n2.
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Since 0 = sin ax/L is a solution of the homogeneous problem, the nonhomogeneous
problem only has a solution if the right-hand side is orthogonal to sin irx/L:

f0 (,0 + x) sin 'X L dx.

This can be used to determine the only value of'3 for which there is a solution:

/l =

L-
x sin 7rx/L dx

0

fo

L

sin 7rx/Ldx

L
2

However, again the F4edholm alternative cannot be used to actually obtain the
solution, u(x).

9.4.3 Generalized Green's Functions
In this section, we will analyze

L(u) = f (9.4.12)

subject to homogeneous boundary conditions when A = 0 is an eigen-
value. If a solution to (9.4.12) exists, we will produce a particular solution of
(9.4.12) by defining and constructing a modified or generalized Green's function.

If A = 0 is not an eigenvalue, then there is a unique solution of the nonhomo-
geneous boundary value problem, (9.4.12), subject to homogeneous boundary con-
ditions. In Sec. 9.3 we represented the solution using a Green's function G(x,xo)
satisfying

L [G(x, xo)] = 8(x - xo), (9.4.13)
subject to the same homogeneous boundary conditions.

Here we analyze the case in which A = 0 is an eigenvalue: There are nontrivial
homogeneous solutions Oh(x) of (9.4.12), L(Oh) = 0. We will assume that there are
solutions of (9.4.12), that is,

f(x)(x) dx = 0. (9.4.14)
f b

However, the Green's function defined by (9.4.13) does not exist for all xo following
from (9.4.10) since 5(x - x0) is not orthogonal to solutions of the homogeneous
problem for all xo:

j
b

b(x - xo)h(x) dx = -Oh(x0) 0.

Instead, we introduce a simple comparison problem that has a solution. b(x - xo)
is not orthogonal to Oh(x) because it has a "component in the direction" ¢h(x).
However, there is a solution of (9.4.12) for all xo for the forcing function

OX - xo) + c,h(x),
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if c is properly chosen. In particular, we determine c easily such that this function
is orthogonal to Oh(/x):

/ r
0

J 46h(X) [OX - x0) +' COh(X)} dx = Oh(xo) + cJ b h(x) dx.
a a

Thus, we introduce the generalized Green's function G,,, (x, xo), which satisfies

x)0hlx0)L [Gm(x, xo)] = 8(x - xo) - //h(b

J
,0A (x) dx

a

(9.4.15)

subject to the same homogeneous boundary conditions.
Since the right-hand side of (9.4.15) is orthogonal to oh(x), unfortunately there

are an infinite number of solutions. In Exercise 9.4.9 it is shown that the generalized
Green's function can be chosen to be symmetric

G.(x,xo) = G'm(x0,x) (9.4.16)

If g,,,(x,xo) is one symmetric generalized Green's function, then the following is
also a symmetric generalized Green's function

Gm(x, xo) = 9. (X, xo) +80h(x0)Oh(x)

for any constant Q (independent of x and xo). Thus, there are an infinite number
of symmetric generalized Green's functions. We can use any of these.

We use Green's formula to derive a representation formula for u(x) using the
generalized Green's function. Letting it = u(x) and v = G,,,(x,xo), Green's formula
states that

b

{u(x)L [Gm(x, xo)] - G,,,(x, xo)L [u(x)]} dx = 0,
n

since both u(x) and G,,, (x, xO) satisfy the same homogeneous boundary conditions.
The defining differential equations (9.4.12) and (9.4.15) imply that

Oh(x)Oh(x0)
- Gm(:x, xo)f (x) fdx=0.b

a 0h(2) d2

Using the fundamental Dirac delta property (and reversing the roles of x and xo)
yields

u(x) b f(xo)Gm(x, xo) dx0 + /bOh(X) fb

a / 0h() da
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where the symmetry of G,,,(x,xo) has also been utilized. The last expression
is a multiple of the homogeneous solution, and thus a simple particular solution
of (9.4.12) is

//
b

u(x) = f f (xo)Gm(x, x0) dxo,
a

(9.4.17)

the same form as occurs when u = 0 is not an eigenvalue [see (9.3.36)].

Example. The simplest example of a problem with a nontrivial homogeneous
solution is

d2u
dx2 - f (X)

du (0) = 0 and du (L) = 0.

(9.4.18)

(9.4.19)

A constant is a homogeneous solution (eigenfunction corresponding to the zero
eigenvalue). For a solution to exist, by the Fredholm alternative,7 fL f (x) dx = 0.
We assume f (x) is of this type [e.g., f (x) = x - L/2]. The generalized Green's
function Gm(x, xo) satisfies

d =9( -x )+c (9 4 20)dx2
dx2

x o . .

dGn,
(0 = 0 d

dG
(L) = 0 21)(9 4

dx
) an , . .

since a constant is the eigenfunction. For there to be such a generalized Green's

function, the r.h.s. must be orthogonal to the homogeneous solutions:

L
L

[b(x-xo)+c] dx=0 or

We use properties of the Dirac delta function to solve (9.4.20) with (9.4.21). For
x76 xo,

d2Gm 1

By integration
dx2 L'

dGm =

X- L x < xo
(9 4 22)

x
..

dx -L+l x>xo,
where the constants of integration have been chosen to satisfy the boundary condi-
tions at x = 0 and x = L. The jump condition for the derivative (dGm/dxiio± = 1),

TPhysically with insulated boundaries there must be zero net thermal energy generated for
equilibrium.
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obtained by integrating (9.4.20), is already satisfied by (9.4.22). We integrate again
to obtain G,,,(x,xo). Assuming that G,(x,xo) is continuous at x = x0 yields

Gm(x, xo) =

1 x2

- L 2 +
xo + c(xo) x < xo

1 x2

- L 2 +
x + c(X0) x > xo.

c(xo) is an arbitrary additive constant that depends on x0 and corresponds to an
arbitrary multiple of the homogeneous solution. This is the representation of all
possible generalized Green's functions. Often we desire G,(x, x0) to be symmetric.
For example, G, (x, xo) = G,,,(xo, x) for x < x0 yields

1 X2
1 2

-- 2 +xo+c(x) = -L 2 +xo+c(xo)

or

1
c(X0)

X02
_ - L Q,2 +

where /3 is an arbitrary constant. Thus, finally we obtain the generalized Green's
function,

1 (x2 + xp) +xo+,Q x<xo
Gm(x, xo) =

L 2
(9.4.23)

1 (x2 + xo)
L 2

+x+Q x > xo.

A solution of (9.4.18)-(9.4.19) is given by (9.4.17) with G,,,(x,xo) given previously.

An alternative generalized Green's function. In order to solve
problems with homogeneous solutions, we could introduce instead a comparison
problem satisfying nonhomogeneous boundary conditions. For example, the Neu-
mann function G. is defined by

d2 G. = otx - xo) (9.4.24)
dx2

dGa

(0)
= 4 29dx

-c ( .. 5)

d a
(L) =

d
c. (9.4.26)

Physically, this represents a unit negative source -6(x - xo) of thermal energy with
heat energy flowing into both ends at the rate of c per unit time. Thus, physically
there will be a solution only if 2c = 1. This can be verified by integrating (9.4.24)
from x = 0 to x = L or by using Green's formula. This alternate generalized Green's
function can be obtained in a manner similar to the previous one. In terms of this
Green's function, the representation of the solution of a nonhomogeneous problem
can be obtained using Green's formula (see Exercise 9.4.12).
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EXERCISES 9.4

9.4.1. Consider

L(u) = f(x) with L = dx I pd +q

subject to two homogeneous boundary conditions. All homogeneous solu-
tions ¢h (if they exist) satisfy L(Oh) = 0 and the same two homogeneous
boundary conditions. Apply Green's formula to prove that there are no
solutions u if f (x) is not orthogonal (weight 1) to all Oh(x).

9.4.2. Modify Exercise 9.4.1 if
L(u) = f(x)

u(0) = cr and u(L)

*(a) Determine the condition for a solution to exist.

(b) If this condition is satisfied, show that there is an infinite number of
solutions using the method of eigenfunction expansion.

9.4.3. Without determining u(x), how many solutions are there of

d2u
dx2

+ ryu = sin x

(a) Ifry=1 andu(0)=u(ir)=0?
*(b) If 1 and

TX-
(0) _ e(rr) = 0?

(c) If -y = -1 and u(O) u(n) 0?

(d) If ry = 2 and u(0) = u(n) = 0?

9.4.4. For the following examples, obtain the general solution of the differential
equation using the method of undetermined coefficients. Attempt to solve
the boundary conditions, and show that the result is consistent with the
Fredholm alternative:

(a) Equation (9.4.7)
(b) Equation (9.4.11)

(c) Example after (9.4.11)

(d) Second example after (9.4.11)

9.4.5. Are there any values of ,(1 for which there are solutions of

d2u
dx2

+u=/3+x

u(-rr) = u(7r) and (,r)?
dx (-1r) =

du
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*9.4.6. Consider
dzu

= 1.
dxz

+ U

(a) Find the general solution of this differential equation. Determine all
solutions with u(O) = u(n) = 0. Is the Fredholm alternative consistent
with your result?

(b) Redo part (a) if "(0) _ 'u (1r) = 0.
(c) Redo part (a) if 4u-(-7r)(-7r) = (7r) and u(-.7r) = u(ir).

9.4.7. Consider
dzu

+ 4u = cos xdxz

dx (0) _ dx (7r) = l/.

(a) Determine all solutions using the hint that a particular solution of the
differential equation is in the form, u, = A cos x.

(b) Determine all solutions using the eigenfunction expansion method.
(c) Apply the Fredholm alternative. Is it consistent with parts (a) and

(b)?

9.4.8. Consider
dz u
dxz + U = cos x,

which has a particular solution of the form, up = Ax sin x.

*(a) Suppose that u(0) = u(7r) = 0. Explicitly attempt to obtain all solu-
tions. Is your result consistent with the Fredholm alternative?

(b) Answer the same questions as in part (a) if u(-7r) = u(ir) and ai (-ir) _
du (ir).

9.4.9. (a) Since (9.4.15) (with homogeneous boundary conditions) is solvable,
there is an infinite number of solutions. Suppose that g,,, (x, xo) is one
such solution that is not orthogonal to qSh(x). Show that there is a
unique generalized Green's function G,,,(x,xo) that is orthogonal to
Oh (x).

(b) Assume that G,,, (x, xo) is the generalized Green's function that is or-
thogonal to Oh (X) - Prove that is symmetric. [Hint: Apply
Green's formula with G,,, (x, x1) and G,,, (x, X2) -1

*9.4.10. Determine the generalized Green's function that is needed to solve
z

dx2 + u = f(x)
u(0) = a and u(rr)

Assume that f (x) satisfies the solvability condition (see Exercise 9.4.2).
Obtain a representation of the solution u(x) in terms of the generalized
Green's function.
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9.4.11. Consider

d Z = f (x) with (0) = 0 and du (L) = 0.

A different generalized Greens function may be defined:

d2Ga = b( -
dx2

x xo)

dGa
0) 0( =

dGa
(L) = c.

*(a)

*(b)

Determine c using mathematical reasoning.

Determine c using physical reasoning.

415

(c) Explicitly determine all possible G. (x, xo).

*(d) Determine all symmetric G.(x, xo).

*(e) Obtain a representation of the solution u(x) using Ga(x,xo).

9.4.12. The alternate generalized Green's function (Neumann function) satisfies

d2Ga
= b(x - xo)

dx2

dGa
(0) = -c

dx

dGa
(L) = c, where we have shown c = z.dx.

(a) Determine all possible G.(x,xo).
(b) Determine all symmetric G.(x,xo).
(c) Determine all G.(x, x0) that are orthogonal to Oh(x).

(d) What relationship exists between Q and -y for there to be a solution to

dx2 = f(x) with
du

(0) = 3 and (L) = -y?

In this case, derive the solution u(x) in terms of a Neumann function,
defined above.

9.4.13 Consider dUj7 + u = f (x) with u(O) = 1 and u(7r) = 4. How many solutions
are there, and how does this depend on f (x) ? Do not determine u(x).

9.4.14 Consider e + u = f (x) with periodic boundary conditions u(-L) _
u(L) and Au- (-L) = (L). Note that Oh = sin and -Oh = cos L are
homogeneous solutions.
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(a) Under what condition is there a solution?
(b) Suppose a generalized Green's function satisfies

irx 7rx

dx2
+ G,,, = d(x - xo) + cl cos L + c2 sin

L

with periodic boundary conditions. What are the constants cl and
c2? Do NOT solve for G,,,(x,xo).

(c) Assume that the generalized Green's function is symmetric. Derive a
representation for u(x) in terms of G,,,(x,xo).

9.5 Green's Functions for Poisson's Equation
9.5.1 Introduction
In Secs. 9.3 and 9.4 we discussed Green's functions for Sturm-Liouville-type or-
dinary differential equations L(u) = f, where L = d/dx (p d/dx) + q. Before
discussing Green's functions for time-dependent partial differential equations (such
as the heat and wave equations), we will analyze Green's functions for Poisson's
equation, a time-independent partial differential equation:

L(u) = f, (9.5.1)

where L = V2, the Laplacian. At first, we will assume that u satisfies homogeneous
boundary conditions. Later we will show how to use the same ideas to solve problems
with nonhomogeneous boundary conditions. We will begin by assuming that the
region is finite, as illustrated in Fig. 9.5.1. The extension to infinite domains will
be discussed in some depth.

Figure 9.5.1 Finite two-dimensional region.

One-dimensional Green's functions were introduced to solve the nonhomoge-
neous Sturm-Liouville problem. Key relationships were provided by Green's for-
mula. The analysis of Green's functions for Poisson's equation is quite similar.
We will frequently use Green's formula for the Laplacian, either in its two- or
three-dimensional forms:

ff (uV2v - vV2u) dV ¢= (uVv - vVu) n dS

if (uV2v - vV2u) dA = (uVv - vVu) A ds.
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We claim that these formulas are valid even for the more exotic functions we will
be discussing.

9.5.2 Multidimensional Dirac Delta Function
and Green's Functions

The Green's function is defined as the solution to the nonhomogeneous problem with
a concentrated source, subject to homogeneous boundary conditions. We define a
two-dimensional Dirac delta function as an operator with a concentrated source
with unit volume. It is the product of two one-dimensional Dirac delta functions.
If the source is concentrated at x = xo(x = xi + yj, xo = xoi + yoj), then

5(x - xo) = 5(x - xo)5(y - yo). (9.5.2)

Similar ideas hold in three dimensions. The fundamental operator property of this
multidimensional Dirac delta function is that

00

1 1_00
f(x)5(x-xo) dA=f(xo)

x,y)5(x - xo)5(y - yo) dA f(xo,yo),
f- f0,00 f(

00
(9.5.4)

in vector or two-dimensional component form, where f (x) = f (x, y). We will use
the vector notation.

Green's function. In order to solve the nonhomogeneous partial differential
equation

Vu = f (x), (9.5.5)

subject to homogeneous conditions along the boundary, we introduce the Green's
function G(x, xo) for Poisson's equation:'

VZG(x, xo) = 5 (x - xo), (9.5.6)

subject to the same homogeneous boundary conditions. Here G(x, xo) represents
the response at x due to a source at xo.

BSometimes this is called the Green's function for Laplace's equation.
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Representation formula using Green's function. Green's for-
mula (in its two-dimensional form) with v = G(x, x0) becomes

Jf (UV2G - GV2u) dA = 0,

since both u(x) and G(x, xo) solve the same homogeneous boundary conditions
such that f (uVG - GVu). ds vanishes. From (9.5.5) and (9.5.6), it follows that

u(xo) = I f (x)G(x, xo) dA.

If we reverse the role of x and x0, we obtain

u(x) = ff f (xo)G(xo, x) dA0.

As we will show, the Green's function is symmetric

G(x, xo) = G(xo, x),

and hence

u(x) = fJf(xo)G(xxo) dAo.

(9.5.7)

(9.5.8)

This shows how the solution of the partial differential equation may be computed
if the Green's function is known.

Symmetry. As in one-dimensional problems, to show the symmetry of the
Green's function we use Green's formula with G(x, xj) and G(x, x2). Since both
satisfy the same homogeneous boundary conditions, we have

iff [G(x, xi) V2G(x, X2) - G(x, x2)V 2G(x, xi )] dA = 0.

Since V2G(x,xl) = 6(x - x1) and V2G(x,x2) = 5(x - X2), it follows using the
fundamental property of the Dirac delta function that G(xi, X2) = G(x2, XI); the
Green's function is symmetric.

9.5.3 Green's Functions by the Method of Eigenfunction
Expansion and the Fredholm Alternative

One method to solve Poisson's equation in a finite region with homogeneous bound-
ary conditions,

Vu = f (x), 1 (9.5.9)



9.5. Green's Fbnctions for Poisson's Equation 419

is to use an eigenfunction expansion. We consider the related eigenfunctions, V20 =
-AO, subject to the same homogeneous boundary conditions. We assume that the
eigenvalues A and corresponding eigenfunctions 0a (x) are known. Simple examples
occur in rectangular and circular regions. We solve for u(x) using the method of
eigenfunction expansion

u(x) = Eaa¢a(x). (9.5.10)
A

Since u(x) and 0a(x) solve the same homogeneous boundary condition, we expect
to be able to differentiate term by term:

f = V2u = E aa02*a(x) J aaaOa(x)
A a

This can be verified using Green's formula. Due to the multidimensional orthogo-
nality of Ox(x), it follows that

-Aaa = ff f(xo)ca(xo)dAo
ff4dA

If A = 0 is not an eigenvalue, then we can determine aa. The representation of the
solution u(x) follows from 9.5.10 after interchanging E,\ and f f :

u(x) = f f f (xo)G(x, xo) dAo,

where the eigenfunction expansion of the Green's function is given by

G(x, xo) _ Ea Ox x -Oa Moa 0,, dA

(9.5.12)

(9.5.13)

This is the natural generalization of the one-dimensional result (ordinary differen-
tial equation) corresponding to the Green's function for a nonhomogeneous Sturm-
Liouville boundary value problem (see Sec. 9.3.3).

Example. For a rectangle, 0 < x < L, 0 < y < H, with boundary conditions
zero on all four sides, we have shown (see Chapter 7) that the eigenvalues are
nm = (n7r/L)2 + (m7r/H)2 (n = 1, 2, 3.... and m = 1, 2, 3, ...) and the
corresponding eigenfunctions are 0a(x) = sinnirx/Lsinmay/H. In this case the
normalization constants are if 02 dx dy = L/2 - H/2. The Green's function can be
expanded in a series of these eigenfunctions, a Fourier sine series in x and y,

G'(x,xo) =
-4 00 00 sinn7rx/Lsinmay/Hsinnlrxo/Lsinm7ryo/H
LH n-1 m=1 (nor/L) + (m7r/H)2

Later in this section, as well as in Exercise 9.5.22(a), we will obtain alternative
forms of this Green's function.



420 Chapter 9. Time-Independent Green's Functions

Fredholm alternative. We show that there is a Fredholm alternative as
in Sec 9.4. If A # 0, we have obtained a unique solution of the nonhomogeneous
problem (9.5.9) subject to homogenous boundary conditions. As before, difficulties
occur if A = 0 is an eigenvalue. In this case there is at least one nontrivial homo-
geneous solution Oh of Laplace's equation V2 Oh = 0 (the homogeneous equation
related to Poisson's equation) satisfying homogeneous boundary conditions. From
(9.5.11), it follows that for the nonhomogeneous boundary value problem (9.5.9)
subject to homogeneous boundary conditions:

There is an infinite number of solutions if the right-hand side is
orthogonal to all homogenous solutions f f f (xo)gh(xo) dAo = 0.
From (9.5.11) the corresponding a, is arbitrary.

There are no solutions if f f f (xo)-Oh(xo) dAo 34 0.

(9.5.14)

(9.5.15)

Example. If the entire boundary is insulated, V n = 0, then .h equaling
any constant is a nontrivial solution of V2¢ = 0 satisfying the boundary conditions.
Oh = 1 is the eigenfunction corresponding to A = 0. Solutions of V2u = f (X)
then exist only if if f (x) dA = 0. Physically for a steady-state heat equation with
insulated boundaries, the net heat energy generated must be zero. This is just
the two-dimensional version of the problem discussed in Sec. 9.4. In particular, we
could introduce in some way a generalized Green's function (which is also known
as a Neumann function). We leave any discussion of this for the Exercises. For
the remainder of Sec. 9.5 we will assume that A = 0 is not an eigenvalue.

9.5.4 Direct Solution of Green's Functions
(One-Dimensional Eigenfunctions)

Green's functions can also be obtained by more direct methods. Consider the
Green's function for Poisson's equation,

V2G(x, xo) = 6(x - xo), (9.5.16)

inside a rectangle with zero boundary conditions, as illustrated in Fig. 9.5.2. Instead
of solving for this Green's function using a series of two-dimensional eigenfunctions
(see Sec. 9.5.3), we will use one-dimensional eigenfunctions, either a sine series in x
or y due to the boundary conditions. Using a Fourier sine series in x,

00G(x, xo) = E an (y) sin nix . (9.5.17)
n=1
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H

G=O

0L
0

G=O

G=0

G=0

L

Figure 9.5.2 Green's function for Poisson's equa-
tion on a rectangle.

By substituting (9.5.17) into (9.5.16), we obtain [since both G(x, xo) and sin n7rx/L
satisfy the same set of homogeneous boundary conditions]

00
d2 an (n7r 2 nirx

[ dye - \ L /
afJ sin L = b(z - xo)b(y - yo)

n=1

or

d2an l2 L

dy - \ L I an = L b(x - xo)b(y - yo) sin nLx dx
(9.5.18)

2 n7rxo
=
L

sin L b(y - YO).

The boundary conditions at y = 0 and y = H imply that the Fourier coefficients
must satisfy the corresponding boundary conditions,

an(0) = 0 and an(H) = 0. (9.5.19)

Equation (9.5.18) with boundary conditions (9.5.19) may be solved by a Fourier sine
series in y; but this will yield the earlier double-sine-series analysis. On the other
hand, since the nonhomogeneous term for an(y) is a one-dimensional Dirac delta
function, we may solve (9.5.18) as we have done for Green's functions. The differ-
ential equation is homogeneous if y 96 yo. In addition, if we utilize the boundary
conditions, we obtain

cn sinh
n r i

sinh
n,r(yoL H)

an(y)
cn sinh

na(
L H) sink n L o

y<yo

Y > Yo,

where in this form continuity at y = yo is automatically satisfied. In addition, we
integrate (9.5.18) from yo_ to yo+ to obtain the jump in the derivative:

dan I 10} 2 n7rxod
vo-

= L sin L
y

or

nir nzryo '(Y0 - H) "'(Yo - H) 1 2cn L sink L cosh L sink L cosh
L

1= L sin L.
(9.5.20)
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Using an addition formula for hyperbolic functions, we obtain

c =
2 sin nirxo/L

n nit sinh nirH/L

This yields the Fourier sine series (in x) representation of the Green's function

nir(yo - H) niry
- r. 2 sin nirxo/L sin n7rx/L sinh L sink L y < yo

G(x, x°)
nir sink nirH/L nir(y

- H) sink nlryo o.n=1 sink y > yL L
(9.5.21)

The symmetry is exhibited explicitly. In the preceding subsection this same Green's
function was represented as a double Fourier sine series in both x and y.

A third representation of this Green's function is also possible. Instead of using
a Fourier sine series in x, we could have used a Fourier sine series in y. We omit
the nearly identical analysis.

9.5.5 Using Green's Functions for Problems
with Nonhomogeneous Boundary Conditions

As with one-dimensional problems, the same Green's function determined in Secs.
9.5.2 through 9.5.4, V2G = 6(x-xo) [with G(x, xo) satisfying homogeneous bound-
ary conditions], may be used to solve Poisson's equation V2u = f (x) subject to
nonhomogeneous boundary conditions.

For example, consider

V2u = f (M)

with

u = h(z)

on the boundary. The Green's function is defined by

V2G=6(x-xo),

with

G(x, xo) = 0

(9.5.22)

(9.5.23)

(9.5.24)

(9.5.25)

for x on the boundary (xo is often not on the boundary). The Green's function
satisfies the related homogeneous boundary conditions. To obtain the Green's func-
tion representation of the solution of (9.5.22) and (9.5.23), we again employ Green's
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formula,

I (uV2G - GV2u) dA = i (uVG - GVu) fi de.

Using the defining differential equations and the boundary conditions,

I [u(x)5(x - xo) - f (x)G(x, xo)] dA = ¢ h(x)VG fi ds,

and thus,

u(xo) _ fJ f (x)G(x, xo) dA + i h(x)VG(x, xo) 9. ds.

We interchange x and xo, and we use the symmsymmetry of G(x, xo) to obtain

u(x) = iff(xo)G(x, xo) dAo + ih(xo)Vx0G(x, wo)-ift dso. (9.5.26)

We must be especially careful with the closed line integral, representing the effect
of the nonhomogeneous boundary condition. Vxu is a symbol for the gradient with
respect to the position of the source,

a- a
VW0 = 8xoi+ 3.

So, G(x, xo) is the influence function for the source term, while Vx0G(x, xo) n
is the influence function for the nonhomogeneous boundary conditions. Let us
attempt to give an understanding to the influence function for the nonhomogeneous
boundary conditions, Vx0G(x, xo) A. This is an ordinary derivative with respect
to the source position in the normal direction. Using the definition of a directional
derivative,

G* xo + ASA) - G(* , xo)
As

This yields an interpretation of this normal derivative of the Green's function.
G(x, xo + Asfi)/Os is the response to a positive source of strength 1/Os located
at xo + Asfi, while -G(x, xo)/As is the response to a negative source (strength
-1/Os) located at xo. The influence function for the nonhomogeneous boundary
condition consists of two concentrated sources of opposite effects whose strength is
1/Os and distance apart is As, in the limit as As --+ 0. This is called a dipole
source. Thus, this nonhomogeneous boundary condition has an equivalent effect as
a surface distribution of dipoles.

9.5.6 Infinite Space Green's Functions
In Sees. 9.5.2 through 9.5.4 we obtained representations of the Green's function for
Poisson's equation, V2G(x, xo) = 5(x - xo). However, these representations were
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complicated. The resulting infinite series do not give a very good understanding of
the effect at x of a concentrated source at xo. As we will show, the difficulty is
caused by the presence of boundaries.

In order to obtain simpler representations, we begin by considering solving Pois-
son's equation

O2u = f (x)
in infinite space with no boundaries. We introduce the Green's function G(x, xo)
defined by

O2G = 6(x - xo), (9.5.27)

to be valid for all x. Since this is a model of steady-state heat flow with a concen-
trated source located at x = xo with no boundaries, there should be a solution that
is symmetric around the source point x = xo. Our results are somewhat different
in two and three dimensions. We simultaneously solve both. We let r represent
radial distance (from x = xo) in two dimensions and p represent radial distance
(from x = xo) in three dimensions:

two
r = x-xo
r = Irl = Ix - xol

three
p = x - xo
P = IPI = Ix - xol

(x - XO)2-+(y
- yo)2 j - (x - xo) + (y - yo) + (z - zo)2.

(9.5.28)
Our derivation continues with three-dimensional results in parentheses and on the
right. We assume that G(x, xo) only depends on r(p):

G(x, xo) = G(r) = G(Ix - xol) I G(x, xo) = G(p) = G(Ix - xol)

Away from the source (r 0 0 or p 0 0), the forcing function is zero [V2G(x, xo) = 0].
In two dimensions we look for circularly symmetric solutions of Laplace's equation
for r 96 0 (in three dimensions the solutions should be spherically symmetric). From
our earlier work,

(r#0) rdr (r d_) =0 I (P 0) \p2dP/
-0.

The general solution can be obtained by integration:

G(r) = cl In r + c2 I G(p) =

P

+ c4 (9.5.29)

We will determine the constants that account for the singularity at the source.
We can obtain the appropriate singularity by integrating (9.5.27) around a small
circle (sphere) of radius r(p):

rrr
7V2GdV=1

ffV.(VG)dA=VG.nds=i 1 VG 9& dS = 1,
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where the divergence theorem has been used. In two dimensions the derivative
of the Green's function normal to a circle, VG A, is 8G/8r (in three dimensions
8G/8p). It only depends on the radial distance [see (9.5.29)]. On the circle (sphere)
the radius is constant. Thus,

21rr = 1 141rp2 = 1,
P

since the circumference of a circle is 21rr (the surface area of a sphere is 41rp2). In
other problems involving infinite space Green's functions, it may be necessary to
consider the limit of an infinitesimally small circle (sphere). Thus, we will express
the singularity condition as

lim r
8G = 1

r- O 8r 21r

From (9.5.29) and (9.5.30),

(9.5.30)lim P28G8p 4a

1 I 1
C1=27r C3=-41r

c2 and C4 are arbitrary, indicating that the infinite space Green's function for Pois-
son's equation is determined to within an arbitrary additive constant. For conve-
nience we let c2 = 0 and c4 = 0:

In rG(x, xo) = 1-
T7r

r= IM-X01

(x - xo)2 + (y - yo)2.

G(x,xo) _ -41rp

P= 1X-X01

(x - xo)2 + (y - yo)2 + (z - zp)2.

(9.5.31)

Note that these are symmetric. These infinite space Green's functions are them-
selves singular at the concentrated source. (This does not occur in one dimension.)

In order to obtain the solution of Poisson's equation, V2u = f (M), in infinite
space, using the infinite space Green's function, we need to utilize Green's formula:

if (uV2G - GV2u) dA J/J (uV2G - GV2u) dv
9 5 32( . . )

_i(u0G-GVu) nds =if (u0G-GOu) AdS.

The closed line integral f (closed surface integral .;f ) represents integrating over the
entire boundary. For infinite space problems with no boundaries, we must consider
large circles (spheres) and take the limit as the radius approaches infinity. We would
like the contribution to this closed integral "from infinity" to vanish:

lim (uVG-GVu) Ads=0 lim (uVG - GOu) fidS=0.
IxI- oo Ixl

(9.5.33)

1
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In this case, using the defining differential equations, integrating (9.5.32) with the
Dirac delta function, and reversing the roles of x and xo [using the symmetry of
G(x, xo)] yields a representation formula for a solution of Poisson's equation in
infinite space:

u(x) = fff(xo)G(x,xo) dAo (9.5.34)

where G(x, xo) is given by (9.5.31).
The condition necessary for (9.5.33) to be valid is obtained by integrating in

polar (spherical) coordinates centered at x = xo:

limr{u- -G-l =0 limp2 (UOG - G- 1 =0,roo 8p ap

since ds = r dO [dS = p2 sin ¢ do do]. By substituting the known Green's functions,
we obtain conditions that must be satisfied at oo in order for the "boundary" terms
to vanish there:

Jim Cu-rlnr- I =0r-.oo lim Cu + p u )
= 0.p'oo p

(9.5.35)

These are important conditions. For example, they are satisfied if u - 1/r(u - 1/p)
as r - oo(p -+ oo). There are solutions of Poisson's equation in infinite space other
than the solutions given by (9.5.34), but they do not satisfy these decay estimates
(9.5.35).

9.5.7 Green's Functions for Bounded Domains
Using Infinite Space Green's Functions

In this subsection we solve for the Green's function,

V2G = 8(x - xo), (9.5.36)

on a bounded two-dimensional domain, subject to homogeneous boundary condi-
tions. We have already discussed some methods of solution only for simple ge-
ometries, and even these involve a considerable amount of computation. However,
we now know a particular solution of (9.5.36), namely the infinite space Green's
function

Gp(x, xo) = 2r In r = 21r In ix - xoi = 2a In (x - xo)2 + (y - 1l0)2 (9.5.37)
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Unfortunately, this infinite space Green's function will not solve the homogeneous
boundary conditions. Instead, consider

G(x, xo) I In Ix - xol + v(x, xo). (9.5.38)

v(x, xo) represents the effect of the boundary. It will be a homogeneous solution,
solving Laplace's equation,

V2v=0
subject to some nonhomogeneous boundary condition. For example, if G = 0 on the
boundary, then v = -(1/21r) In Ix - xoI on the boundary. v(x, xo) may be solved
by standard methods for Laplace's equation based on separation of variables (if
the geometry allows). It may be quite involved to calculate v(x, xo); nevertheless,
this representation of the Green's function is quite important. In particular since
v(x, xo) will be well-behaved everywhere, including x = xo, (9.5.38) shows that
the Green's function on a finite domain will have the same singularity at
source location x = xo as does the infinite space Green's function. This
can be explained in a somewhat physical manner. The response at a point due to
a concentrated source nearby should not depend significantly on any boundaries.
This technique represented by (9.5.38) removes the singularity.

9.5.8 Green's Functions for a Semi-Infinite Plane (y > 0)
Using Infinite Space Green's Functions:
The Method of Images

The infinite space Green's function can be used to obtain Green's functions for
certain semi-infinite problems. Consider Poisson's equation in the two-dimensional
semi-infinite region y > 0

Vu = f (x),

subject to a nonhomogeneous condition (given temperature) on y = 0:

u(x,0) = h(x).

The defining problem for the Green's function,

V2G(x, xo) = b(x - xo),

satisfies the corresponding homogeneous boundary conditions,

G(x, 0; xo, yo) = 0,

(9.5.39)

(9.5.40)

(9.5.41)

(9.5.42)
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O

O
Figure 9.5.3 Image source for a semi-infinite plane.

as illustrated in Fig. 9.5.3. Here we use the notation G(x, xo) = G(x, y; xo, yo). The
semi-infinite space (y > 0) has no sources except a concentrated source at x = x0.
The infinite space Green's function, (1/27r) In Ix - xol, is not satisfactory since it
will not be zero at y = 0.

Image source. There is a simple way to obtain a solution that is zero at
y = 0. Consider an infinite space problem (i.e., no boundaries) with source 6(x-xo)
at x = xo, and a negative image source -6(x-xo) at x = xo (where xo = xoi+yoj
and xo* = xoi - yoj):

V2G = 6(x - xo) - 6(x - xo). (9.5.43)

According to the principle of superposition for nonhomogeneous problems, the re-
sponse should be the sum of two individual responses:

G= 2-r In Ix - xol - 2VlnIx-xol. (9.5.44)

By symmetry, the response at y = 0 due to the source at x = xo* should be minus
the response at y = 0 due to the source at z = zo. Thus, the sum should be zero
at y = 0 (as we will verify shortly). We call this the method of images. In this
way, we have obtained the Green's function for Poisson's equation on a semi-infinite
space (y > 0):

G(x,xo) - I
In

Ix - xoI = 1
In

(x - xo)2 + (Y - Yo)2

27r Ix - xoI 41r (x-x0)2+(y+yo)2. (9.5.45)

Let us check that this is the desired solution. Equation (9.5.43), which is satisfied by
(9.5.45), is not (9.5.41). However, in the upper half-plane (y > 0), 6(x - xo) = 0,
since x = xo* is in the lower half-plane. Thus, for y > 0, (9.5.41) is satisfied.
Furthermore, we now show that at y = 0, G(x, x0) = 0:

G(x, xo 1 In (x - x0)2 + yo = 1 In I = 0.)Iy_o = 4a (x - xo)2 + yo 4ir
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Solution. To solve Poisson's equation with nonhomogeneous boundary con-
ditions, we need the solution's representation in terms of this Green's function,
(9.5.45). We again use Green's formula. We need to consider a large semicircle (in
the limit as the radius tends to infinity):

if (uV2G - GV2u) dA = (uVG - GVu) A ds = J
0

00
0

(G!?
By 8V

- u I I dx,
y=o

since for the wall the outward unit normal is #1 _ -j and since the contribution at oo
tends to vanish if u --4 0 sufficiently fast [in particular, from (9.5.35) if lim,-.(u -
r In r &u/8r) = 0]. Substituting the defining differential equations and interchanging
x and x0 [using the symmetry of G(x, xo)] shows that

h(xo)
8 G(x, xo)I dxo,u(x) = Jff(zo)G(xxo) dAo - f-

00 8yo yo=o
(9.5.46)

since G = 0 on y = 0. This can be obtained directly from (9.5.26). G(x, xo) from
(9.5.45) is given by

G(x, xo) 1 [ln ((x - xo)2 + (y - yo)2) - In ((x - x0)2 + (y + yo)2)]

Thus,

G(x,xo) = 1
L (

-2(y-yo) _ 2(y
4j x -

xo)Z

+ (y - yo)2 (x - xo) + (y + yo)Z J

Evaluating this at yo = 0 (corresponding to the source point on the boundary)
yields

fto vo=o ! (x - XO)2 + y

This is an example of a dipole source (see Sec. 9.5.5).

(9.5.47)

Example. Consider Laplace's equation for the two-dimensional semi-infinite
space (y > 0):

V2u = 0
u(x,0) = h(x).

(9.5.48)

Equation (9.5.46) can be utilized with a zero source term. Here the solution is only
due to the nonhomogeneous boundary condition. Using the normal derivative of
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the Green's function, (9.5.47), we obtain

u(x,y) _ J h(xo)(x
- x )1 + y2

dxo. (9.5.49)

The influence function for the boundary condition h(x) is not the Green's function,
but

-aG(x x )I = Y

8yo '
o

ya=o Ir [(x - x0)2 + y2]
.

This is not only an influence function, but it is the dipole source described in
Sec. 9.5.5, which is an elementary solution of Laplace's equation corresponding to
the boundary condition itself being a delta function. In Chapter 10 we will ob-
tain the same answer using Fourier transform techniques rather than using Green's
functions.

Insulated boundaries. If the boundary condition for the Green's function
is the insulated kind at y = 0, 0/8y G(x, xo)1y=o = 0, then a positive image source
must be used for y < 0. In this way equal sources of thermal energy are located at
x = xo and x = x;. By symmetry no heat will flow across y = 0, as desired. The
resulting solution is obtained in an exercise.

9.5.9 Green's Functions for a Circle: The Method of Images
The Green's function for Poisson's equation for a circle of radius a (with zero bound-
ary conditions),

V2G(x, x0) = 6(x - xo) (9.5.50)

G(x, xo) = 0 for 1x1 = a, (9.5.51)

rather remarkably is obtained using the method of images. The idea is that for
geometric reasons there exists an image point x = x; (as sketched in Fig. 9.5.4)
such that the response along the circumference of a circle is constant. Consider an
infinite space Green's function corresponding to a source at x = xo and a negative
image source at x = x;, where we do not define x; yet:

V2G(x, x0) = 5(x - x0) - b(x - x;). (9.5.52)

According to the principle of superposition, the solution will be the sum of the
two infinite space Green's functions. We also introduce a constant homogeneous
solution of Laplace's equation so that

G(x, xo) = 1 In 1x - xo1 - 1 In 1x - x0*1 + c = 1 In 1x - xo12 + c. (9.5.53)
21r 2x 47r (x - x;12

We will show that there exists a point x;, such that G(x,xo) given by (9.5.53)
vanishes on the circle 1xj = a. In order for this to occur,

1x - xo12 = k1x - xo12 (9.5.54)
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Figure 9.5.4 Green's function for Poisson's
equation for a circle (image source).

when I x I = a (where c = - 1/41r In k).
We show that there is an image point xo along the same radial line as the source

point xo as illustrated in Fig. 9.5.4:

xo = yxo. (9.5.55)

We introduce the angle 0 between x and xo (the same as the angle between x and
xo). Therefore,

Ix-x012 =
1X II + Ixo12 - 2IxllxoIcos0

(9.5.56)
)x - x011 = (x - xo) xo

= I cos 0,

otherwise known as the law of cosines. Equation (9.5.54) will be valid on the circle
IxI = a [using (9.5.55)] only if

a2 + ro - 2aro cos 6 = k (a2 +'y2r2 - 2a'yro cos !d) ,

where ro = IxoI. This must hold for all angles 0, requiring y and k to satisfy the
following two equations:

a2 + r2 = k lag + y2r2)

-2aro = k (-2ayro) .
We obtain k = 1/-y, and thus

2 + ro = -a 2 +'yroa or
y

The image point is located at
a2xo = z xo.
r0

Note that IxoI = a2/ro (the product of the radii of the source and image points is
the radius squared of the circle). The closer xo is to the center of the circle, the
farther the image point moves away.
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Green's function. From k = l/y = ro/a2, we obtain the Green's function
z2

G* x0) 4 r In

_
Ix - xal2ro }

Using the law of cosines, (9.5.56),

G(x, xo) =
1

In C
a2 r2 + ro - 2rro cos 1J ,

4-7r ro r2 + roe - 2rro cos ¢

where r = IxI, ro = Ixol, and ra = Ixol. Since ra = a2/ro,

=
1 a2 r2 + r02 - 2rro cos

}
G(x' x0) 47r In (r2 r2 + a4/ro - 2ra2/ro cos o) '

or, equivalently,

G x x 1 In (a 2
r2 + ro - 2rro cos 0

( °) - 4rr \ r2ro + a4 - 2rroa2 cos
(9.5.57)

where 0 is the angle between x and xo and r = IxI and ro = Ixol In these forms
it can be seen that on the circle r = a, G(x, xo) = 0.

Solution. The solution of Poisson's equation is directly represented in terms
of the Green's function. In general, from (9.5.26),

u(x) = if f (xo)G(x, xo) dAo + i h(xo)Vx0G(x, xo) - , ds. (9.5.58)

This line integral on the circular boundary can be evaluated. It is best to use polar
coordinates (ds = a dOo), in which case

r2a

a dO0, (9.5.59)h(xo)Vx0G(x, xo) n ds = J h(9o)
a

G(x, xo) iro=a
0 O7o

where ro = Ixol. From (9.5.57),

8G _ 1 2r0 - 2r cos 2r2ro - 2ra2 cos
8ro 47r (r2 + r02 - 2rro cos 0 r2r2 + a4 - 2rroa2 cos 0

Evaluating this for source points on the circle ro = a yields

OG _
I

1 2a - 2r cos o - (2r2/a - 2r cos
ao ro=a 4ir r2 + a2 - 2ar cos ¢

(9.5.60)
a 1 - (r/a)2
27r r2 + a2 - 2ar cos

where 0 is the angle between x and xo. If polar coordinates are used for both x
and x0, then 0 = 9 - 0o, as indicated in Fig. 9.5.5.
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Figure 9.5.5 Polar coordinates.

Example. For Laplace's equation, V2u = 0 [i.e., f (x) = 0 in Poisson's equation]
inside a circle with u(x, y) = h(9) at r = a, we obtain from (9.5.58)-(9.5.60) in polar
coordinates

( )

°2,rh (00 a2 - r2
doo,u r, B =

27r
) r2 + a2 - 2ar cos(8 - 0o)

(9.5.61)

known as Poisson's formula. Previously, we obtained a solution of Laplace's
equation in this situation by the method of separation of variables (see Sec. 2.5.2).
It can be shown that the infinite series solution so obtained can be summed to yield
Poisson's formula (see Exercise 9.5.18).

EXERCISES 9.5

9.5.1. Consider (9.5.10), the eigenfunction expansion for G(x, xo). Assume that
V2G has some eigenfunction expansion. Using Green's formula, verify that
V2G may be obtained by term-by-term differentiation of (9.5.10).

9.5.2. (a) Solve

V2u = f(x, y)

on a rectangle (0 < x < L, 0 < y < H) with it = 0 on the boundary
using the method of eigenfunction expansion.

(b) Write the solution in the form

L H
U(X) = f f f(xo)G(x, xo) dxo dyo

0 0

Show that this G(x, xo) is the Green's function obtained previously.

9.5.3. Using the method of (multidimensional) eigenfunction expansion, determine
G(x, xo) if

V2G = b(x - xo)

and
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(a) on the rectangle (0 < x < L, 0 < y < H)

atx=0,G=0 aty=0, =0

atx=L, LG=O aty=H, =0.

(b) on the rectangular-shaped box (0 < x < L, 0 < y < H, 0 < z < W)
with G = 0 on the six sides

*(c) on the semicircle (0 < r < a, 0 < 0 < ir) with G = 0 on the entire
boundary

(d) on the quarter-circle (0 < r < a, 0 < 0 < it/2) with G = 0 on the
straight sides and 8G/09r = 0 at r = a

*9.5.4. Consider in some three-dimensional region

V2u=f
with u = h(x) on the boundary. Represent u(x) in terms of the Green's
function (assumed to be known).

9.5.5. Consider inside a circle of radius a
V2u=f

with

u(a,0) = h,(0) for 0 < 9 < 7r

5T(a,0) = h2(0) for -?r <0<0.

Represent u(r, 0) in terms of the Green's function (assumed to be known).

9.5.6. Consider V2u = f (x) in two dimensions, satisfying homogeneous boundary
conditions. Suppose that Oh is a homogeneous solution,

V2Oh = 0,

satisfying the same homogeneous boundary conditions. There may be more
than one function Oh.

(a) Show that there are no solutions u(x) if if f (x)Oh(x) dA # 0 for any
Oh(x)

(b) Show that there are an infinite number of solutions if ff f (x)¢h (x) dA =
0.

9.5.7. Consider in three dimensions

Vu = f (x)
with on the boundary (9.5.62)

Vu' = 0.
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(a) Show that Oh = 1 is a homogeneous solution satisfying homogeneous
boundary conditions.

(b) Under what condition is there a solution of (9.5.62)?
(c) What problem defines a generalized Green's function for (9.5.62)? (Do

not attempt to determine a generalized Green's function.)
(d) Assume that the generalized Green's function is symmetric. Derive a

representation formula for u(x) in terms of your generalized Green's
function.

9.5.8. Redo Exercise 9.5.7 if on the boundary Vu n = h(x).

9.5.9. Using the method of one-dimensional eigenfunction expansion, determine
G(x, xo) if

V2G = d(x - xo)
and

(a) on the rectangle (0 < x < L, 0 < y < H)

atx=0,G=0 aty=0, - =0

atx=L, 8 =0 at y=H, 0.

Use y-dependent eigenfunctions.
*(b) on the semicircle (0 < r < a, 0 < 9 < ir) with G = 0 on the entire

boundary. Use 0-dependent eigenfunctions.

*9.5.10. Consider the wave equation, with a periodic source of frequency w > 0
02

9t2 - C2020 +
9(x)e-i-l.

Show that a particular solution at the same frequency, 0 = u(x)e-iWt

satisfies a nonhomogeneous Helmholtz equation

V2u + k2u = f (X). [What are k2 and Ax)?]

The Green's function satisfies

V2G + k2G = 8(x - xo).

(a) What is Green's formula for the operator V2 + k2?
(b) In infinite three-dimensional space, show that

GCleikp + c2e-ikpG.
P

Choose cl and c2 so that the corresponding 4(x, t) is an outward-
propagating wave. [Hint: Make the unmotivated change of variables
G = h/p.]
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(c) In infinite two-dimensional space, show that the Green's function is
a linear combination of Bessel functions. Determine the constants so
that the corresponding O(x, t) is an outward-propagating wave for r
sufficiently large. [Hint: See (7.7.33) and (7.8.3).]

9.5.11. (a) Determine the Green's function for y > 0 (in two dimensions) for
V2G = b(x - xo) subject to OG/ey = 0 on y = 0. (Hint: Consider a
positive source at xo and a positive image source at xo.)

(b) Use part (a) to solve Vu = f (x) with

8u=h(x) aty=0.

Ignore the contribution at oo.

9.5.12. Modify Exercise 9.5.11 if the physical region is y < 0.

*9.5.13. Modify Exercise 9.5.11 if the region is three-dimensional with y > 0. [Note
that h(x) in part (b) becomes h(x, z)].

*9.5.14. Using the method of images, solve

02G=b(x-xo)

in the first quadrant (x > 0 and y > 0) with G = 0 on the boundaries.

9.5.15. (a) Reconsider Exercise 9.5.14 if G = 0 at x = 0 and 8G/8y = 0 at y = 0.
(b) Use part (a) to solve (x > 0 and y > 0)

Vu = f (x, y)
u(0, y) = 9(y)

ay (x, 0) = h(x).

9.5.16. (a) Using the method of images, solve

V2G = 5(x - xo)

in the 60° wedge-shaped region (0 < 8 < it/3, 0 < r < oo) with G = 0
on the boundaries.

(b) For what other angled wedges can the method of images be used?

9.5.17. A generalized Green's function G,,, (x, xo) satisfies

V2G,,, = a(x - xo) + c

with
VCm I1=0

on the boundary of the rectangle (0 < x < L, 0 < y < H).
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(a) Show that the method of eigenfunction expansion (two-dimensional)
only works for c = -1/LH. For this c, determine G,,,(x, xo). If
possible, make G.(x, xo) symmetric.

(b) Show that the method of eigenfunction expansion (one-dimensional)
works only for c = -1/LH. For this c, determine G,,,(x,x0) . If
possible, make G,,, (x, x0) symmetric.

9.5.18. Solve Vu = 0 inside a circle of radius a with u(x, y) = h(9) at r = a, using
the method of separation of variables. Show that

2ir

u(r,9) = J h(9o)I(r,9,9o) dOo

Show that the infinite series for I (r, 0, 90) can be summed yielding Poisson's
formula (9.5.61).

*9.5.19. Determine the Green's function G(x, xo) inside the semicircle (0 < r <
a,0<0<7r)

V2G = d(x - xo)
with G = 0 on the boundary.

9.5.20. Modify Exercise 9.5.19 if G = 0 on r = a, but 8G/89 = 0 on 0 = 0 and
9=ir.

9.5.21. Determine the Green's function G(x, x0) inside the sphere of radius a

v2G = 5(x - xo)

with G = 0 on the boundary.

9.5.22. Use the method of multiple images to obtain the Green's function G(x, xo)

V2 G = 6(x - xo)

(a) ontherectangle(0<x<L, 0<y<H)ifG=Oatx=Oandx=L
andG=Oaty=Oandy=H

(b) on the infinite strip (0 < x < L, -oo < y < oo) if G = 0 at x = 0 and
OG/8x=0atx=L

*(c) on the infinite strip (0 < x < L, -oo < y < oo, -oo < z < oo) if
G=0 at x=0andG=0 at x = L

(d) on the semi-infinite strip (0 < x < L, 0 < y < oo) if G = 0 along the
boundaries

(e) on the semi-infinite strip (0 < x < L, -oo < y < 0) if G = 0 at x = 0,
G=oat x=L,OG/oy=0at y = 0

9.5.23. Determine a particular solution of
V2u = f (X)

in infinite two-dimensional space if f (x) = g(r), where r = jxJ:



438 Chapter 9. Time-Independent Green's Fbnctions

(a) Use the infinite space Green's function (9.5.31).

(b) Use a Green's function for the ordinary differential equation

1 d (dul_9(r)
rdr rT .

(c) Compare parts (a) and (b).

9.5.24 Consider in two dimensions V2u = f (x)

(a) with u = h(x) on the boundary. How many solutions are there, and
how does this depend on f (x) and h(x)? Do not determine u(x, y).

(b) with Vu n = h(x) on the boundary. How many solutions are there,
and how does this depend on f (x) and h(x)? Do not determine
u(x, y).

9.6 Perturbed Eigenvalue Problems
9.6.1 Introduction
When a small change (called a perturbation) is made to a problem that we know
how to solve, then the resulting problem may not have a simple exact solution.
Here, we will develop an approximate (asymptotic) procedure to analyze perturbed
eigenvalue problems. Nonhomogeneous boundary value problems with nontrivial
homogeneous solutions will occur, and hence our development in Section 9.4 of the
Fredholm alternative will be helpful. We begin with an elementary mathemati-
cal example before considering the more interesting case of a perturbed circular
membrane.

9.6.2 Mathematical Example
The simplest example of a perturbed eigenvalue problem is

d 20

X2 +(A+Ef(x))0=0

with

(9.6.1)

0(0) = 0 and O(L) = 0. (9.6.2)

If f = 0, this is the usual eigenvalue problem (A = (na/L)2, sinn7rx/L). If
e is a small nonzero parameter, then the coefficient deviates from a constant by a
small given amount, c f (x). It is known that the eigenvalues and eigenfunctions are
well-behaved functions of e:

A=Ao+EA1+... and 46
=0o+Eo1+.... (9.6.3)
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This is called a perturbation expansion. By substituting (9.6.3) into (9.6.1), we
obtain

0. (9.6.4)

Equation (9.6.4) is valid for all e. The terms without a must equal zero (resulting
from letting e = 0). Thus,

d2O0

dx2
+ A0Q0 = U. (9.6.5)

The boundary conditions [obtained by substituting (9.6.3) into (9.6.2)] are 45o(0) = 0
and QSo(L) = 0. Consequently, as expected, the leading order eigenvalues A0 and
corresponding eigenfunctions 450 are the same as those of the unperturbed problem
(e = 0):

A° = (n7r) 2

L
and

n7rx45o = sin L , (9.6.6)

where n = 1, 2, 3, .... A more precise notation would be An(o)

The a terms in (9.6.4) must also vanish:

2 + Ao&i = -f (x)Oo - A1001

where

(9.6.7)

451(0) = 0 and 451(L) = 0 (9.6.8)

follows from (9.6.2). This is a nonhomogeneous differential equation with homo-
geneous boundary conditions. We note that 45o = sinn7rx/L is a nontrivial homo-
geneous solution satisfying the homogeneous boundary conditions. Thus, by the
F'redholm alternative, there is a solution to (9.6.7)-(9.6.8) only if the right-hand
side of (9.6.7) is orthogonal to 00:

f
0 = I f (x)g50 dx + Al

0o
dx. (9.6.9)

0

From (9.6.9) we determine the resulting perturbation of the eigenvalue:

L

I

f(x)0o dx

j

L

L = - L f (x)dx. (9.6.10)

J0 dx

Instead of using the Fredholm alternative, we could have applied the method of
eigenfunction expansion to (9.6.7) with (9.6.8). In this latter way, we obtain 01 as
well as Al given by (9.6.10).
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9.6.3 Vibrating Nearly Circular Membrane
For a physical problem involving similar ideas, consider the vibrations of a nearly
circular membrane with mass impurities. We have already determined (see Section
7.7) the natural frequencies for a circular membrane with constant mass density.
We want to know how these frequencies are changed due to small changes in both
the density and geometry. In general, a vibrating membrane satisfies the two-
dimensional wave equation

a2
!!

2
= c202u, (9.6.11)

where c2 = T/p may be a function of r and 9. We assume that u = 0 on the
boundary. By separating variables, u(r, 0, t) = O(r, 0)h(t), we obtain

dt2 = -Ah and V20 0. (9.6.12)

Here, the separation constants A are such that f are the natural frequencies of
oscillation. We know how to solve this problem (see Sec. 7.7) if c2 is constant and
the membrane is circular. However, we want to consider the case in which the
constant mass density is slightly perturbed (perhaps due to a small imperfection),
P = Po + Epl (r, 0), where the perturbation of the density epl (r, 9) is given and e is
a very small parameter (0 < lei << 1). Thus

1 p - Po + EPi(r,8) 1 Pi(r,9)

c2
= 7, T T CO + E T

where co is the sound speed for a uniform membrane. The perturbed eigenvalue
problem is to solve the partial differential equation

+EPi(T,0)
0

subject to ¢ = 0 on the boundary:

O(a + eg(0),0) = 0,

(9.6.13)

(9.6.14)

since we express a perturbed circle as r = a + eg(9) with g(6) given.

Boundary condition . The boundary condition (9.6.14) is somewhat dif-
ficult; we may wish to consider the simple case in which the boundary is circular
(r = a or g(9) = 0). In general, 0 = 0 along a complicated boundary, which is near
to the simpler boundary r = a. This suggests that we utilize a Taylor series, in
which case (9.6.14) may be replaced by

E292 (o),9 2,
+ eg(9)or +

2, are
= 0, (9.6.15)

evaluated at r = a.



9.6. Perturbed Eigenvalue Problems 441

Perturbation expansion. To solve (9.6.13) with (9.6.15), we assume the
eigenvalues and eigenfunctions depend on the small parameter such that

0=¢o+Eol+ and A=Ao+eA1+.... (9.6.16)

We substitute (9.6.16) into (9.6.13) and (9.6.15). The terms of order 0 ° are

V2.00=-
0

(9.6.17)

with 4o = 0 at r = a. Thus, Ao are known unperturbed eigenvalues and 00 are the
corresponding known eigenfunctions for a circular membrane with uniform density
PO (see Sec. 7.7). We are most interested in determining Al i the leading order change
of each eigenvalue due to the perturbed density and shape. We will determine Al
by considering the equations for 01 obtained by keeping only the e terms when the
perturbation expansions (9.6.16) are substituted into (9.6.13) and (9.6.15):

02 1 + '1 = - ('o - p,(r, o)wo, (9.6.18)
0

Tsubject to the boundary condition (at r = a)

1 = _g(8)?!. (9.6.19)

The right-hand side of (9.6.18) contains the known perturbation of the density pl
and the unknown perturbation of each eigenvalue A1, whereas the right-hand side
of (9.6.19) involves the known perturbation of the shape (r = a + eg(9)).

Compatibility condition. Boundary value problem (9.6.18) with (9.6.19)
is a nonhomogeneous partial differential equation with nonhomogeneous boundary
conditions. Most importantly, there is a nontrivial homogeneous solution, 01i, =
00; the leading order eigenfunction satisfies the corresponding homogeneous partial
differential equation and the homogeneous boundary conditions [see (9.6.17). Thus,
there is a solution to (9.6.18)-(9.6.19) only if the compatibility equation is valid.
This is most easily obtained using Green's formula (with u = 00 and v = 01):

I [OoL(O1) - O1L(Oo)] dA = J (moom1 - O1V O) n ds. (9.6.20)

The right-hand side of (9.6.20) does not vanish since 01 does not satisfy homoge-
neous boundary conditions. Using (9.6.17) and (9.6.18)-(9.6.19) yields the solvabil-
ity condition

- 00
(A,aOo+Lp1(r,O)Oo} dA= Jg(o) V (9.6.21)

We easily determine the perturbed eigenvalue Al from (9.6.21):

rf f
JJ pl (r, 0)r dr do + / g(o)

()2
a d9

a1 = (9.6.22)ffr °
- 1 dr do
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using f9 o/8r (evaluated at r = a), dA = r dr d9, and ds = a dB.
The eigenvalues decrease if the density is increased (pi > 0) or if the membrane is
enlarged [g(9) > 0].

As is elaborated on in the Exercises, this result is valid only if there is one eigen-
function 00 corresponding to the eigenvalue Ao. In fact, for a circular membrane,
usually there are two eigenfunctions corresponding to each eigenvalue (from sin mO
and cos m9). Both must be considered.

If we were interested in 01, it could now be obtained from (9.6.18) using the
method of eigenfunction expansion. However, in many applications it is the per-
turbed eigenvalues (here frequencies) that are of greater importance.

Fredholm alternative. If g(O) = 0, then 00 and 01 satisfy the same set of
homogeneous boundary conditions. Then (9.6.21) is equivalent to the Fredholm al-
ternative; that is, solutions exist to (9.6.18) with (9.6.19) if and only if the right-hand
side of (9.6.18) is orthogonal to the homogeneous solution 00. Equation (9.6.21)
shows the appropriate modification for nonhomogeneous boundary conditions.

EXERCISES 9.6

9.6.1. Consider the perturbed eigenvalue problem (9.6.1). Determine the pertur-
bations of the eigenvalue \1 if

(a) (0) = 0 and r. (L) = 0

(b) .0(0) = 0 and (L) = 0

9.6.2. Reconsider Exercise 9.6.1. Determine the perturbations of the eigenvalues
Al and the eigenfunctions 01 using the method of eigenfunction expansion:

(a) -2 (0) = 0 and It. (L) = 0

(b) 0(0) = 0 and (L) = 0
(c) 0(0) = 0 and O(L) = 0

9.6.3. Reconsider Exercise 9.6.1 subject to the periodic boundary conditions 0(-L)
= 46(L) and d4/dx (-L) = d¢/dx (L). For n # 0, the eigenvalue prob-
lem is degenerate if e = 0; that is, there is more than one eigenfunction
(sinnirx/L and cos n7rx/L) corresponding to the same eigenvalue. Deter-
mine the perturbed eigenvalues al. Show that the eigenvalue splits. This
means that if e 54 0, there is one eigenfunction for each eigenvalue, but
as a -y 0, two eigenvalues will approach each other (coalesce), yielding
eigenvalues with two eigenfunctions. [Hint: It is necessary to consider a
linear combination of both eigenfunctions (e = 0). For each eigenvalue, de-
termine the specific combination of these eigenfunctions that is the unique
eigenfunction when e # 0.]

9.6.4. Reconsider Exercise 9.6.1 subject to the boundary conditions,0(0) = 0 and
O(L) = 0. Do additional calculations to obtain A2. Insist that the eigen-
functions are normalized, fL 2 dx = 1. This is solved for A in the text.
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9.6.5. Consider the nonlinearly perturbed eigenvalue problem:

2
+ .x = f 03

with 0(0) = 0 and O(L) = 0. Determine the perturbation of the eigenvalue
A1. Since the problem is nonlinear, the amplitude is important. Assume
f L (k2 dx = a2. Sketch a as a function of A.

9.6.6. Consider a vibrating string with approximately uniform tension T and mass
density po + epl(x) subject to fixed boundary conditions. Determine the
changes in the natural frequencies induced by the mass variation.

9.6.7. Consider a uniform membrane of fixed shape with known frequencies and
known natural modes of vibration. Suppose the mass density is perturbed.
Determine how the frequencies are perturbed. You may assume there is
only one mode of vibration for each frequency.

9.6.8. For a circular membrane, determine the change in the natural frequencies
of the circularly symmetric (m = 0) eigenfunctions due to small mass and
shape variations.

9.6.9. Consider a circular membrane r = a. For noncircularly symmetric eigen-
functions (m # 0), (9.6.18) is valid with 0o = cllbol) + c,-O('), where ¢oll
and 0021 are two mutually orthogonal eigenfunctions corresponding to the
same eigenvalue \o. Here cl and c2 are arbitrary constants.

(a) Determine a homogeneous linear system of equations for cl and c2
derived from the fact that 01 has two homogeneous solutions ¢o) and
0a2). This will be the compatibility condition for (9.6.18) with (9.6.19).

(b) Solve the linear system of part (a) to determine the perturbed frequen-
cies and the corresponding natural modes of vibration.

9.7 Summary
We have calculated a few examples of time-independent Green's functions by some
different techniques:

1. Limit of time-dependent problem
2. Variation of parameter (ordinary differential equation only)
3. Eigenfunction expansion of Green's function
4. Direct solution of differential equation defining Green's function
5. Use of infinite space Green's function:

a. Removing singularity

b. Method of images
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For time-independent problems, perhaps the best techniques are based on infi-
nite space Green's functions. We will find the same to be true for time-dependent
problems. In that case we will need to discuss more techniques to solve partial
differential equations in an infinite domain. For that reason in Chapter 10, we
investigate solutions of homogeneous partial differential equations on infinite do-
mains using Fourier transforms. Then in Chapter 11 we return to nonhomogeneous
problems for time-dependent partial differential equations using Green's functions.



Chapter 10

Infinite Domain Problems:
Fourier Transform Solutions
of Partial Differential
Equations

10.1 Introduction
Most of the partial differential equations that we have analyzed previously were
defined on finite regions (e.g., heat flow in a finite one-dimensional rod or in en-
closed two- or three-dimensional regions). The solutions we obtained depended on
conditions at these boundaries. In this chapter we analyze problems that extend
indefinitely in at least one direction. Physical problems never are infinite, but by
introducing a mathematical model with infinite extent, we are able to determine
behavior of problems in situations in which the influence of actual boundaries is ex-
pected to be negligible. We will solve problems with infinite or semi-infinite extent
by generalizing the method of separation of variables.

10.2 Heat Equation on an Infinite Domain
We begin by considering heat conduction in one dimension, unimpeded by any
boundaries. For the simplest case with constant thermal properties and no sources,
the temperature u(x, t) satisfies the heat equation,

(10.2.1)

445
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defined for all x, -oo < x < 00. We impose an initial condition,

u(x,0) = f(x). (10.2.2)

We would like to use (10.2.1) to predict the future temperature.
For problems in a finite region, boundary conditions are needed at both ends

(usually x = 0 and x = L). Frequently, problems on an infinite domain (-oo <
x < oo) seem to be posed without any boundary conditions. However, usually
there are physical conditions at ±oo, even if they are not stated as such. In the
simplest case, suppose that the initial temperature distribution f (x) approaches 0
as x -p ±oo. This means that initially for all x sufficiently large, the temperature is
approximately 0. Physically, for all time the temperature approaches 0 as x -' ±0o:

u(-oo, t) = 0 and u(oo,t) = 0.

In this way, our problem has homogeneous "boundary" conditions.

Separation of variables. From our previous experience, we note that the
expression sin "tee-k( y)'t

solves the heat equation (10.2.1) for integer n,as well
as cos nGre-k(T)'t. In fact, it is clear that

u = e-iWXe-kw2t
(10.2.3)

solves the partial differential equation (10.2.1) for arbitrary real w both positive
and negative. We will superimpose solutions of this type (10.2.3) by integrating
over w the continuous spectrum, instead of summing over the discrete spectrum
corresponding to the Fourier series. This is the solution presented in (10.2.11). We
provide more details for the interested reader.

We separate variables as before:

u(x, t) = q5(x)h(t), (10.2.4)

so that 1dh_1d2q--
kh dt 0 dx2

This yields the same two ordinary differential equations as for a finite geometry,

dh dt= -Akh (10.2.5)

d20 _ -Ao. (10.2.6)
dx2

Determining the separation constant A is not difficult, but it is very subtle in
this case; doing the obvious will be wrong. We would expect that the bound-
ary conditions at ±oo for O(x) are 0(-oo) = 0 and O(oo) = 0. However, we
would quickly see that there are no values of A for which there are nontrivial
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solutions of d2(k/dx2 = -aqS that approach 0 at both x = ±00. For example,
for A > 0, ¢ = cl cos v/-Ax + c2 sin fx and these solutions do not approach 0 as
x - ±00. As we will verify later, the correct boundary condition for the separated
spatial part O(x) at x = ±o0 is different from the boundary condition for u(x, t) at
x = ±00. Instead, we specify that ¢(x) is just bounded at x = ±o0, I¢(-o0)! < 00
and 10(oc)I < oo. This is rather strange, but later we will how that although
10(±oo)l < oo, the eventual solution of the partial differential equation (after su-
perposition) will in fact satisfy u(±oo, t) = 0.

Eigenvalue problem. We thus claim that the boundary value problem of
interest on an infinite domain is

z

2
+ A = 0

I0(±oo)1 < 00.

(10.2.7)

(10.2.8)

Let us determine those values of A for which both I46(±oo)I < oo. If A < 0, the
solution is a linear combination of exponentially growing and exponentially decaying
solutions. It is impossible for both 10(±oo) I < oo; there are no negative eigenvalues.
However, if A > 0, then

46 = cl cos v ,\x + c2 sin V1,-\x.

This solution remains bounded for all x no matter what A is (A > 0). Thus, all
values of A(A > 0) are eigenvalues. Furthermore, the eigenfunctions are both sines
and cosines (since both cl and c2 are arbitrary). We can also verify that A = 0 is an
eigenvalue whose eigenfunction is a constant. This is very similar to a Fourier series
in that both sines and cosines (including a constant) are eigenfunctions. However, in
a Fourier series the eigenvalues were discrete, A = (nir/L)2, whereas here all non-
negative values of A are allowable. The set of eigenvalues for a problem is sometimes
referred to as the spectrum. In this case we have a continuous spectrum, A > 0
(rather than discrete).

Superposition principle. The time-dependent ordinary differential equa-
tion is easily solved, h = ce-akt, and thus we obtain the following product solutions:

sin v ,\-x a-,\k' and cos v/,\x e-\kt,

for all A _> 0. The principle of superposition suggests that we can form another
solution by the most general linear combination of these. Instead of summing over
all A > 0, we integrate:

u(x, t) = j[ci(A) cos akt + c2(a) sin e-e1 d.1,
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where c,(A) and c2(A) are arbitrary functions of A. This is a generalized principle
of superposition. It may be verified by direct computation that the integral satisfies
(10.2.1). It is usual to let A = w2, so that

u(x, t) =
J

00

[A(w) cos wx a-k_2t + B(w) sin wx e'k4 2t] dw,
0

(10.2.9)

where A(w) and B(w) are arbitrary functions.' This is analogous to the solution
for finite regions (with periodic boundary conditions):

t0, t) = a0 + 1: [an cos nLxe-k(nx/L)2t + bn sin nixk(na/L)2t
00

n=1

In order to solve for the arbitrary functions A(w) and B(w), we must insist that
(10.2.9) satisfies the initial condition u(x, 0) = f (x):

fo"o [A(w) cos wx + B(w) sin wx dw. (10.2.10)

In later sections we will explain that there exist A(w) and B(w) such that (10.2. 10) is
valid for most functions f (x). More importantly, we will discover how to determine
A(w) and B(w).

Complex exponentials. The x-dependent eigenfunctions were deter-
mined to be sin fx and cos fx for all A > 0. Sometimes different independent
solutions are utilized. One possibility is to use the complex functions e'\/"\-x and
e'"/'A-z for all \ > 0. If we introduce w = \/A-, then the x-dependent eigenfunctions
become e" and e'""x for all w > 0. Alternatively, we may consider only2 a-iWx,
but for all w (including both positive and negatives). Thus, as explained further in
Sec. 10.3, the product solutions are e-."xe-kW2t for all w. The generalized principle
of superposition implies that a solution of the heat equation on an infinite interval
is

00

u(x, t) = f c(w)e-iW:e-k"2t dw.
J 00

(10.2.11)

This can be shown to be equivalent to (10.2.9) using Euler's formulas [see Exercise
10.2.1]. In this form, the initial condition u(x, 0) = f (x) is satisfied if

AX) = J c(w)e`wx dw.00
ao

(10.2.12)

u(x, t) is real if f (x) is real (see Exercises 10.2.1 and 10.2.2). We need to understand
(10.2.12). In addition, we need to determine the "coefficients" c(w).

'To be precise, note that c1(A) da = c1(w2)2w dw = A(w) dw.
2It is conventional to use e-`1 rather than e1w'. Iwj is the wave number, the number of waves

in 2,r distance. It is a spatial frequency.
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EXERCISES 10.2
*10.2.1. Determine complex c(w) so that (10.2.11) is equivalent to (10.2.9) with real

A(w) and B(w). Show that c(-w) = -c(w), where the overbar denotes the
complex conjugate.

10.2.2. If c(-w) = c(w) (see Exercise 10.2.1), show that u(x,t) given by (10.2.11)
is real.

10.3 Fourier Transform Pair
10.3.1 Motivation from Fourier Series Identity
In solving boundary value problems on a finite interval (-L < x < L, with periodic
boundary conditions), we can use the complex form of a Fourier series (see Sec. 3.6):

00

Ef (x+) + AX-) = Cne-in7rx/L
2 n=-00

(10.3.1)

Here f (x) is represented by a linear combination of all possible sinusoidal functions
that are periodic with period 2L. The complex Fourier coefficients were determined
in Sec. 3.6,

1 L in(x)enx/L dx.cn =
2L

f/
-L

(10.3.2)

The entire region of interest -L < x < L is the domain of integration. We will
extend these ideas to functions defined for -oo < x < oo and apply it to the heat
equation (in the next section).

The Fourier series identity follows by eliminating c (and using a dummy
integration variable T to distinguish it from the spatial position x):

f(x+)
2

f(x-) _ 00

I2L L
dae-inax/L (10.3.3)

=-oo L J

For periodic functions, -L < x < L, the allowable wave numbers w (number of
waves in 27r distance) are the infinite set of discrete values (see Fig. 10.3.1),

n7rW= L =27r2L.

The wave lengths are 2L/n, integral partitions of the original region of length 2L.
The distance between successive values of the wave number is

_ (n + 1)7r nir. _ it' L L L'
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w
-7r/L 0 7r/L 27r/L 3ir/L

Figure 10.3.1 Discrete wave numbers.

they are equally spaced. From (10.3.3).

00f (x+) + f (x-) = Aw

f-L L f
(x)et", dT a-' `. (10.3.4)1:2 =- 2n

10.3.2 Fourier Transform
We will show that the fundamental Fourier integral identity may be roughly defined
as the limit of (10.3.3) or (10.3.4) as L --' oc. In other words, functions defined
for -oo < x < oo may be thought of in some sense as periodic functions with an
infinite period.

The values of w are the square root of the eigenvalues. As L -+ oo, they become
closer and closer, Aw -' 0. The eigenvalues approach a continuum; all possible
wave numbers are allowable. The function f (x) should be represented by a "sum"
(which we will show becomes an integral) of waves of all possible wave lengths.
Equation (10.3.4) represents a sum of rectangles (starting from w = -oo and going
tow = +oc) of base. Aw and height (1/2rr)(fLL f (x)e1"x dx] e-iwx. As L -' oo,
this height is not significantly different from

1
_00

f (x)e'"'= dT a-'",z
2Tr 0

Thus, we expect as L oe that the areas of the rectangles approach the Riemann
sum. Since Aw ---+ 0 as L oo, (10.3.4) becomes the Fourier integral identity:

f(x+) + f(x-) 1 00 V 00[Jf)"jZ a-t" dw.
2 27r f. (10.3.5)

A careful proof of this fundamental identity (see Exercise 10.3.9) closely parallels
the somewhat complicated proof for the convergence of a Fourier series.

Fourier transform. We now accept (10.3.5) as fact. We next introduce
F(w) and define it to be the Fourier transform of f (x):

F(w)
foo

f(x)e,= dz. I (10.3.6)2
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From (10.3.5), it then follows that

f (x+) + f (x-) = rao
F(w)e"1 dw. (10.3.7)

The multiplicative constant 2* in the definition (10.3.6) of the Fourier transform
is somewhat arbitrary. We can put any multiplicative factor in front of the integrals
inl (10.3.6) and (10.3.7) as long as there product is sn . Some other books choose

an in both, so that you must be careful in using tables to make sure the definitions
are the same.

If f (x) is continuous, then If (x+) + f (x-)]/2 = f (x). Equation (10.3.7) shows
that f (x) is composed of waves a-ill of all' wave numbers w (and all wave lengths);
it is known as the Fourier integral representation of f (x) or simply the F urier
integral. F(w), the Fourier transform of f (x), represents the amplitude of the wave
with wave number w; it is analogous to the Fourier coefficients of a Fourier series.
It is determined by integrating over the entire infinite domain. Compare this to
(10.3.2), where for periodic functions defined for -L < x < L, integration occurred
only over that finite interval. Similarly, f (x) may be determined from (10.3.7) if
the Fourier transform F(w) is known. f (x), as determined from (10.3.7), is called
the inverse Fourier transform of F(w).

These relationships, (10.3.6) and (10.3.7), are quite important. They are also
known as the Fourier transform pair. In (10.3.7) when you integrate over w
(called the transform variable), a function of x occurs, whereas in (10.3.6) when
you integrate over x, a function of w results. One integrand contains e-'`; the
other has e""x. It is difficult to remember which is which. It hardly matters, but
we must be consistent throughout. We claim that (10.3.6) and (10.3.7) are valid
if f (x) satisfies f . If (x) I dx < oo, in which case we say that f (x) is absolutely
integrable.4

An alternative notation F[ f (x)] is sometimes used for F(w), the Fourier trans-
form of f (x), given by (10.3.6). Similarly, the inverse Fourier transform of F(w) is
given the notation F-l [F(w)].

10.3.3 Inverse Fourier Transform of a Gaussian
In Sec. 10.4, in order to complete our solution of the heat equation, we will need
the inverse Fourier transform of the "bell-shaped" curve, known as a Gaussian,

G(w) = e'°"''

3Not just wave number nn/L as for periodic problem for -L < x < L.
"If f (x) is piecewise smooth and if f (x) -. 0 as x - too sufficiently fast, then f (x) is absolutely

integrable. However, there are other kinds of functions that are absolutely integrable and hence
for which the Fourier transform pair may be used.
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G(w) = exp(-awe)

Figure 10.3.2 Bell-shaped Gaussian.

sketched in Fig. 10.3.2. The function g(x), whose Fourier transform is G(w), is
given by

o°

g(x) =
J

oo

G(w)e-'"" dw = f
e-°",'e-:wx

dw, (10.3.8)
00 00

according to (10.3.7). By evaluating the integral in (10.3.8), we will derive shortly
(in the appendix to this section) that

g(x) = !e-z'/4°
VVVVVVcc

(10.3.9)

if G(w) = e-°"2. As a function of x, g(x) is also bellshaped. We will have shown
the unusual result that the inverse Fourier transform of a Gaussian is itself
a Gaussian.

Table 10.3.1: Fourier Transform of a Gaussian

f (x) =
J

F(w)e--- dw F(w) = 2 J f (x)e-- dx
00 _ 00

e_oxg

e-Z'/4°
a71

VT17r

e-anr2

This result can be used to obtain the Fourier transform F(w) of a Gaussian
e-Q22

. Due to the linearity of the Fourier transform pair, the Fourier transform
of a-22/4a

is 011 7re-°W2. Letting /3 = 1/4a, the Fourier transform of a-fix' is
1/ 4 e-"2/4A. Thus, the Fourier transform of a Gaussian is also a Gaussian.
We summarize these results in Table 10.3.1. If /3 is small, then f (x) is a "broadly
spread" Gaussian; its Fourier transform is "sharply peaked" near w = 0. On the
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other hand, if f (x) is a narrowly peaked Gaussian function corresponding to O being
large, its Fourier transform is broadly spread.

Appendix to 10.3: Derivation of the
Inverse Fourier Transform of a Gaussian
The inverse Fourier transform of a Gaussian e--aw2 is given by (10.3.8):

00

It turns out that g(x) solves an elementary ordinary differential equation, since

s
x) = -iwe-aw a-'wxdwg`(

roo
can be simplified using an integration by parts:

00
g/(x) _ 2a / d (e a(.+ )e-iw=d, -

2a
X 00

11:
e_QW2 a-i4+=d, 2 -g(x)

The solution of the initial value problem for this ordinary differential equation (by
separation) is

g(x) = 9(0)e

Here

9(0) = J e-aw'dw.00
00

The dependence on a in the preceding integral can be determined by the transfor-
mation z = %raw (dz = yr dw), in which case

1 °O _Z2g(0) _ = J
oo

e dz.

This yields the desired result, (10.3.9), since it is well known (but we will show)
that

1 =
J

e-' dz = ,/F. (10.3.10)
00

Perhaps you have not seen (10.3.10) derived. The jr e_' dz can be evaluated
by a remarkably unusual procedure. We do not know yet how to evaluate I, but
we will show that 12 is easy. Introducing different dummy integration variables for
each I, we obtain

00I2

= J e-=' J o e-v' dy =
f00 r e-(='+v') dx dy.

00 00 00 0
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We will evaluate this double integral, although each single integral is unknown.
Polar coordinates are suggested:

x = rcos9
y = rsinO x2 + y2 = r2 dx dy = r dr dB.

The region of integration is the entire two-dimensional plane. Thus,

j2l!jOOe2r 2
= dr dO =

f2,
dOJ re-' dr.

0

Both of these integrals are easily evaluated; 12 = 2ir 1 = 7r, completing the proof
of (10.3.10).

Derivation using complex variables. By completing the square, g(x)
becomes

g(x) = f-00 f .!L e-Q[W+i(xI2a)]2e-x2/4a

e-x2/4a f°O e-a(W+i(x/2a)J
J oo

The change of variables s = w + i(x/2a) (ds = dw) appears to simplify the calcula-
tion,

00
g(x) =

e_xz/4°

_
a-°a

2

ds.
o,

(10.3.11)

However, although (10.3.11) is correct, we have not given the correct reasons. Ac-
tually, the change of variables s = w + i(x/2a) introduces complex numbers into
the calculation. Since w is being integrated "along the real axis" from w = -oo to
w = +oo, the variable s has nonzero imaginary part and does not vary along the
real axis as indicated by (10.3.11). Instead,

z
ao+i(x/2a)

s
g(x) = e_x /4a

J
e-°° ds. (10.3.12)

ao+i(x/2a)

The full power of the theory of complex variables is necessary to show that (10.3.11)
is equivalent to (10.3.12).

This is not the place to attempt to teach complex variables, but a little hint of
what is involved may be of interest to many readers. We sketch a complex s-plane
in Fig. 10.3.3. To compute integrals from -oo to +oo, we integrate from a to b (and
later consider the limits as a - -oo and b +oo). Equation (10.3.11) involves
integrating along the real axis, while (10.3.12) involves shifting off the real axis
[with s equaling a constant imaginary part, Im(s) = ix/2a). According to Cauchy's
theorem (from complex variables), the closed line integral is zero, j e-Q°2 ds = 0,
since the integrand a-°°2 has no "singularities" inside (or on) the contour. Here,
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C4

a

Cl w + i 2-a Complex s-plane

C3

C2

b

Figure 10.3.3 Closed contour integral in the complex
plane.

we use a rectangular contour, as sketched in Fig. 10.3.3. The closed line integral is
composed of four simpler integrals, and hence

f +JC + f +j = 0.

It can be shown that in the limit as a - -oo and b - +oo, both L2 = 0 and
J' = 0, since the integrand is exponentially vanishing on that path (and these
paths are finite, of length x/2a). Thus,

+i(z/2a)
2

00
2e-a' ds + J e-a" dw = 0.

J-OoOo+i(z/2a) J.
This verifies that (10.3.11) is equivalent to (10.3.12) (where we use f o.).

EXERCISES 10.3

10.3.1. Show that the Fourier transform is a linear operator; that is, show that

(a) F[Cl f (x) + C29(x)] = ci F(w) + c2G(w)

(b) F[f (x)9(x)) F(w)G(w)

10.3.2. Show that the inverse Fourier transform is a linear operator; that is, show
that

(a) F-1[c1F(w) + c2G(w)) = Cif(x) + C29(X)

(b) .F-1 [F(w)G(w)) 0 f (x)9(x)

10.3.3. Let F(w) be the Fourier transform of f (x). Show that if f (x) is real, then
F'(w) = F(-w), where * denotes the complex conjugate.

10.3.4. Show that

.F'
L

/ f (x; a) dal = JF(w;cr) da.
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10.3.5. If F(w) is the Fourier transform of f (x), show that the inverse Fourier
transform of eiwOF(w) is f (x - )3). This result is known as the shift
theorem for Fourier transforms.

*10.3.6. If

f(x)=( 0 lxl>a
I 1 jxj < a,

determine the Fourier transform of f (x). [The answer is given in the table
of Fourier transforms in Section 10.4.4.]

*10.3.7. If F(w) = e-IWI°(a > 0), determine the inverse Fourier transform of F(w).
[The answer is given in the table of Fourier transforms in Section 10.4.4.]

10.3.8. If F(w) is the Fourier transform of f (x), show that -idF/dw is the Fourier
transform of xf (x).

10.3.9. (a) Multiply (10.3.6) (assuming that -y = 1) by e-"I and integrate from
-L to L to show that

L 1 2s- x)F()ex dw = - J°° f (Y) - x dx. (10.3.13)

(b) Derive (10.3.7). For simplicity, assume that f (x) is continuous. [Hints:
Let f (x) = f (x) + f (x) - f (x). Use the sine integral, fo °1e °° ds = 2
Integrate (10.3.13) by parts and then take the limit as L -. 00.1

*10.3.10. Consider the circularly symmetric heat equation on an infinite two-dimen-
sional domain:

au a aul
at r Or Or

u(0, t) bounded

u(r, 0) = f (r).

(a) Solve by separation. It is usual to let

u(r, t) = 1 °° A(s)Jo(sr)e_,2kts ds
0

in which case the initial condition is satisfied if

A(s)Jo(sr)s ds.f (r) = f

A(s) is called the Fourier-Bessel or Hankel transform of f (r).

(b) Use Green's formula to evaluate fL Jo(sr)Jo(slr)r dr. Determine an
approximate expression for large L using (7.8.3).

(c) Apply the answer of part (b) to part (a) to derive A(s) from f (r).
(Hint: See Exercise 10.3.9.)
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10.3.11. (a) If f (x) is a function with unit area, show that the scaled and stretched
function (1/a) f (x/a) also has unit area.

(b) If F(w) is the Fourier transform of f (x), show that F(aw) is the
Fourier transform of (11a) f (x/a).

(c) Show that part (b) implies that broadly spread functions have sharply
peaked Fourier transforms near w = 0, and vice versa.

10.3.12. Show that limb-,o fb+`x/2a e_°,,' ds = 0, where s = b+iy (0 < y < x/2a).

10.3.13. Evaluate I = fa e-k,,2t coswx dw in the following way. Determine 8I/8x,
and then integrate by parts.

10.3.14. The gamma function r(x) is defined as follows:

r(x) = f tx-le-t dt.
0

Show that

(a) r(1) = 1 (b) r(x + 1) = xr(x)

(c) r(n + 1) = n! (d) r(2) = 2 f o- e-t3 dt = f
(e) What is r(2)?

10.3.15. (a) Using the definition of the gamma function in Exercise 10.3.14, show
that

r(x) = 2 r u2Z-1e-"2 du.o
(b) Using double integrals in polar coordinates, show that

r(z)r(1 - z) = 7r

sin 7rz

(Hint: It is known from complex variables that

fir/2

2 (tan 9)2z-1 dO =
sin irz

*10.3.16. Evaluate
jyPe_tvv'

dy

in terms of the gamma function (see Exercise 10.3.14).

10.3.17. From complex variables, it is known that

e-:m'/s dw 0
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for any closed contour. By considering the limit as R o0 of the 30°
pie-shaped wedge (of radius R) sketched in Fig. 10.3.4, show that

f000 cos () dw = 'z3-2/3r
(1s)

J000 sin (3) dw = 13-2/3r (3)2

Exercise 10.3.16 may be helpful.

R

Re-iif/6

Figure 10.3.4

10.3.18. (a) For what a does ae-,3(x_30)2
have unit area for -oo < x < oo?

(b) Show that the limit as 0 -+ oo of the resulting function in part (a)
satisfies the properties of the Dirac delta function 6(x - xo).

(c) Obtain the Fourier transform of &(x - xo) in two ways:

1. Take the transform of part (a) and take the limit as ,3 - oo.
2. Use integration properties of the Dirac delta function.

(d) Show that the transform of b(x - xo) is consistent with the following
idea: "Transforms of sharply peaked functions are spread out (contain
a significant amount of many frequencies)."

(e) Show that the Fourier transform representation of the Dirac delta
function is

1 °Ob(x - xo) = 2- j
e-"'(x-x°) dw. (10.3.14)

Why is that not mathematically precise? However, what happens if
x = xo? Similarly,

b(w - wo) = T dx. (10.3.15)
1

J-0,0

(f) Equation (10.3.15) may be interpreted as an orthogonality relation
for the eigenfunctions e-4-11. If

.f (x) =
o

F(w)e-s'''x dw,'30

determine the "Fourier coefficient (transform)" F(w) using the or-
thogonality condition (10.3.15).
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10.4 Fourier Transform and the Heat Equation
10.4.1 Heat Equation
In this subsection we begin to illustrate how to use Fourier transforms to solve
the heat equation on an infinite interval. Earlier we showed that e-i"'xe-kw2t for
all w solves the heat equation, 8u/8t = k82u/8x2. A generalized principle of
superposition showed that the heat equation is solved by

u(x,t) = J c(w)e-iwxe-kw2t dw.00

0o

The initial condition u(x, 0) = f (x) is satisfied if

(10.4.1)

f (x) = Lao 00 c(w)e-wx dw. (10.4.2)

From the definition of the Fourier transform (ry = 1), we observe that (10.4.2) is a
Fourier integral representation of f (x). Thus, c(w) is the Fourier transform of the
initial temperature distribution f (x):

°°
C(W) = 2 J f (x)eiwx dx.

00

(10.4.3)

Equations (10.4.1) and (10.4.3) describe the solution of our initial value problem
for the heat equation.5

In this form, this solution is too complicated to be of frequent use. We therefore
describe a simplification. We substitute c(w) into the solution, recalling that the x
in (10.4.3) is a dummy variable (and hence we introduce z):

f (x)eiwi dy] e-iwxe-kw2t dw.u(x,
t) = J- 0 27r

100

Instead of doing the a integration first, we interchange the orders:
00 00 11

u(x, t) =
1

f f (Y) f e-kw2te-iw(x-=) d] dz.
00 00

Equation (10.4.4) shows the importance of g(x), the inverse Fourier
e-kw2t:

9(x)
1700

e-kw2te-iwx dw.

Thus, the integrand of (10.4.4) contains g(x - Y), not g(x).

(10.4.4)

transform of

(10.4.5)

51n particular, in Exercise 10.4.2 we show that u -. 0 as x --. no, even though a-iwxf 0 as
x-.00.
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Influence function. We need to determine the function g(x) whose Fourier
transform is a-k",'t [and then make it a function of x - x, g(x - a)]. a-k"'t is a
Gaussian. From the previous section (or most tables of Fourier transforms; see
Sec. 10.4.4), letting a = kt, we obtain the Gaussian g(x) = 6r/kt e-x2/4kt, and
thus the solution of the heat equation is

(10.4.6)

This form clearly shows the solution's dependence on the entire initial temperature
distribution, u(x, 0) = f (x). Each initial temperature "influences" the temperature
at time t. We define

G(x, t; :E, 0) = 1 e-(x-1)2/4kt

4irkt
(10.4.7)

and call it the influence function. Its relationship to an infinite space Green's
function for the heat equation will be explained in Chapter 11. Equation (10.4.7)
measures in some sense the effect of the initial (i = 0) temperature at position a on
the temperature at time t at location x. As t -+ 0, the influence function becomes
more and more concentrated. In fact, in Exercise 10.3.18 it is shown that

lim 1 e-(x-=)'/4kt = d(x - )
47rkt

(the Dirac delta function of Chapter 9), thus verifying that (10.4.6) satisfies the
initial conditions.

The solution (10.4.6) of the heat equation on an infinite domain was derived in
a complicated fashion using Fourier transforms. We required that f L If (x)IdY <
oo, a restriction on the initial temperature distribution, in order for the Fourier
transform to exist. However, the final form of the solution does not even refer to
Fourier transforms. Thus, we never need to calculate any Fourier transforms to
utilize (10.4.6). In fact, we claim that the restriction f f. if (x)ldx < oo on (10.4.6)
is not necessary. Equation (10.4.6) is valid (although the derivation we gave is not),
roughly speaking, whenever the integral in (10.4.6) converges.

Fundamental solution of the heat equation. We consider solving
the heat equation subject to an initial condition concentrated at x = 0, u(x,0) =
f (x) = 5(x), where 5(x) is the Dirac delta function with properties described in
section 9.3.4. According to (10.4.6), the solution of the heat equation with this
initial condition is

u x t f °O 6 1 e-(x-a)'/4kt dt = 1 e-x2/4kt
( ' ) = f. (a) 4, kt 4, kt ' (10.4.8)
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(4akt)-112exp[- (x-i)2/4kt]

x=x

Figure 10.4.1 Fundamental solution for the heat
equation.

using the basic property of the Dirac delta function. This is one of the most ele-
mentary solutions of the heat equation on an infinite domain, and it is called the
fundamental solution. It is sketched in Figure 10.4.1. The fundamental solution
of the heat equation is the same as the infinite space Green's function for the heat
equation, which will be explained in Chapter 11.

Example. To investigate how discontinuous initial conditions propagate, we
consider the following interesting initial value problem:

fu(x,0)= f(x)= 0 x < 0
106 x>0.

We thus ask how the thermal energy, initially uniformly concentrated in the right
half of a rod, diffuses into the entire rod. According to (10.4.6),

u(a, t) = 100 e-(=-s)2/4kt
47rkt JO,*

00 00

di = 1

I
e-Z2

dz,
z/ 4ktt

where the integral has been simplified by introducing the change of variables, z =
(I-x)/ 4kt (dz = dY/ 4kt). The integrand no longer depends on any parameters.
The integral represents the area under a Gaussian (or normal) curve as illustrated
in Fig. 10.4.2. Due to the evenness of a-;',

00 oo z/ 4kt

z/ 4kt

=
JO +O

Since, as shown earlier, f °° e-=' dz = v/7r/2,

z/ 4kt
Z

u(x,t) = 50 +
100

Or J
e-= dz. (10.4.9)

r

0
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exp(-z2)

-x/(4kt)1/2 0 x/(4kt)1/2

Figure 10.4.2 Area under a Gaussian.

z

The temperature is constant whenever x/ 4kt is constant, the parabolas sketched in
the x-t plane in Fig. 10.4.3. x/ 4kt is called the similarity variable. For example,
the distance between 60 and 75° increases proportional to f. The temperature
distribution spreads out, a phenomenon known as diffusion. The temperature
distribution given by (10.4.9) is sketched in Fig. 10.4.4 for various fixed values of t.

Figure 10.4.3 Constant temperatures.

We note that the temperature is nonzero at all x for any positive t (t > 0) even
though u = 0 for x < 0 at t = 0. The thermal energy spreads at an infinite
propagation speed. This is a fundamental property of the diffusion equation.
It contrasts with the finite propagation speed of the wave equation, described in
Chapter 12 (see also Sec. 10.6.1).

The area under the normal curve is well tabulated. We can express our solution
in terms of the error function, erf z = (2/f) J o e-2 dt, or the complementary
error function, erfc z = (2/ f) e-,2 dt = I - erf z. Using these functions,
the solution satisfying

u(x,0) -
0 x < 0

100 x > 0

is

u(x, t) = 50 11 + erf (
x\ )

J
.

111
\ )]=50[2_e

4kt
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5.0 NLI 0
-5

Figure 10.4.4 Temperature diffusion in an infinite rod.

5

Similarity solution. We seek very special solutions of the diffusion equa-
tion, = key, with the property that the solutions remain the same under the
elementary spatial scaling x = Lx'. The partial differential equation will remain
the same only if time is scaled t = L2t'. For the solution to be the same in both
scalings,

u(x,t) = f(x/tl/2),

and = x/t'/2 is called the similarity variable. Since g = - z and
z

= i f"(c), it follows that f (C) solves the following linear ordinary differential
equation:

- 1 I = kf

This is a first-order equation for f', whose general solution (following from separa-
tion) is

f' = cle-.
Integrating yields a similarity solution of the diffusion equation

fxt'2 ru(x,
t) = f (x/t2) = c2 + c1 eds = c2 + c3

J
e-z

2

dz.,
0

where the dimensionless form (s = 4kz) is better. This can also be derived by di-
mensional analysis. These self-similar solutions must have very special self-similar
initial conditions, which have a step at x = 0, so that these solutions correspond



464 Chapter 10. Fourier Transform Solutions of PDEs

precisely to (10.4.9). The fundamental solution (10.4.7) could be obtained by in-
stead assuming u = t-ig(l;), which can be shown to be correct for the Dirac delta
function initial condition. There are other solutions that can be obtained in related
ways, but we restrict our attention to these elementary results.

10.4.2 Fourier Transforming the Heat Equation:
Transforms of Derivatives

We have solved the heat equation on an infinite interval:

= ka 22 oo<x<oo
(10.4.10)

u(x,0) = f(x).

Using separation of variables, we motivated the introduction of Fourier transforms.
If we know that we should be using Fourier transforms, we can avoid separating
variables. Here we describe this simpler method; we Fourier transform in the spa-
tial variable the entire problem. From the heat equation, (10.4.10), the Fourier
transform of 8u/8t equals k times the Fourier transform of 82u/8x2:

.F Lot] -k.FL8 2]. (10.4.11)

Thus, we need to calculate Fourier transforms of derivatives of u(x, t). We begin by
defining the spatial Fourier transform of u(x, t),

.F[u]=U(w,t)=-J u(x,t) x (10.4.12)

Note that it is also a function of time; it is an ordinary Fourier transform with t
fixed. To obtain a Fourier transform (in space), we multiply by e" 'x and integrate.
Spatial Fourier transforms of time derivatives are not difficult:

f = f u(x, t)ezx dx
[Ou}

5iUp, t).
T7r J

(10.4.13)

The spatial Fourier transform of a time derivative equals the time
derivative of the Fourier transform.

More interesting (and useful) results occur for the spatial Fourier transform of
spatial derivatives:

ueiwx00 - xFI-1 = 1
JL 8x 2ir 00 8x

e'
2fr

14! °D

00
- i / u(x, t)e'-' dx, (10.4.14)
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which has been simplified using integration by parts:

df = dx g = e'WX

f = u dg = iwe"' dx.
If u - 0 as Y. -+ ±oo, then the endpoint contributions of integration by parts
vanish. Thus, (10.4.14) becomes

(10.4.15)

In a similar manner, Fourier transforms of higher derivatives may be obtained:
2

_ (-iw)ZU(W,t).'F
[8x2]

_
-iwf iX (10.4.16)

In general, the Fourier transform of the nth derivative of a function
with respect to x equals (-iw)" times the Fourier transform of the
function, assuming that u(x, t) 0 sufficiently fast as x --+ t00.6

By applying the Fourier transform to the heat equation, (10.4.10), we obtain
(10.4.11). Because of the properties of the Fourier transform of derivatives, (10.4.11)
becomes

at U(w, t) = k(-iw)2U(w, t) = -kw2U(w, t). (10.4.17)

The Fourier transform operation converts a linear partial differen-
tial equation with constant coefficients into an ordinary differential
equations, since spatial derivatives are transformed into algebraic
multiples of the transform.

Equation (10.4.17) is a first-order constant coefficient differential equation. Its
general solution is

U(w, t) = c e-k" 2t.

However, 8/cat is an ordinary derivative keeping w fixed, and thus c is constant if w
is fixed. For other fixed values of w, c may be a different constant; c depends on
w. c is actually an arbitrary function of w, c(w). Indeed, you may easily verify by
substitution that

U(w, t) = c(w)e-k4,2t (10.4.18)

6We also need higher derivatives to vanish as x -. ±oo. Furthermore, each integration by parts
is not valid unless the appropriate function is continuous.
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solves (10.4.17). To determine c(w) we note from (10.4.18) that c(w) equals the
initial value of the transform [obtained by transforming the initial condition, f (x)]
c(w) = 1/27r f f. f (x)e`W= dx. This is the same result as obtained by separation of
variables. We could reproduce the entire solution obtained earlier. Instead, we will
show a simpler way to obtain those results.

10.4.3 Convolution Theorem
We observe that U(w, t) is the product of two functions of w, c(w) and e-k")2t, both
transforms of other functions; c(w) is the transform of the initial condition f (x) and
e-k"'t is the transform of some function (fortunately, since a-km2t is a Gaussian,
we know that it is the transform of another Gaussian, i-r/kt e-x214kt). The math-

ematical problem of inverting a transform that is a product of transforms of known
functions occurs very frequently (especially in using the Fourier transform to solve
partial differential equations). Thus, we study this problem in some generality.

Suppose that F(w) and G(w) are the Fourier transforms of f (x) and g(x), re-
spectively:

F(w) = z,. f- f (x)e'" x dx G(w} = iw f . 9(x)e'",x dx

f(x) = f°«, F(w)e-iwx dw 9(x) = f 00
G(w)e--x dw.

(10.4.19)

We will determine the function h(x) whose Fourier transform H(w) equals the prod-
uct of the two transforms:

H(w) = F(w)G(w) (10.4.20)

0"h(x) = J H(w)e-`"'x dw = J : F(w)G(w)e-"' &a. (10.4.21)

We eliminate either F(w) or G(w) from (10.4.19); it does not matter which:

°° V°°
h(x) =

21rf F(w) g(a)e`2 dal a-`Wx dw.
0 0o J

Assuming that we can interchange orders of integration, we obtain

h(x) = 1 J

00

g(x) [f,
00

F(w)e-«,(x-z) dw] dx.

We now recognize the inner integral as f (x - a) [see (10.4.19)], and thus

h(x) = 2-
r00

9(z) f (x - x) dx. (10.4.22)
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The integral in (10.4.22) is called the convolution of g(x) and f (x); it is sometimes
denoted g * f . The inverse Fourier transform of the product of two Fourier
transforms is 1/21r times the convolution of the two functions.

If we let x - x = w (dx = -dw but .), we obtain an alternative
form,

h(x) = -- / f (w)g(x - w) dw,
!I o0

which would be denoted f * g. Thus, g * f = f * g.

(10.4.23)

Heat equation. We now apply the convolution theorem to our partial
differential equation. The transform U(w, t) of the solution u(x, t) is the product of
c(w) and a-k"2t, where c(w) is the transform of the initial temperature distribution
and a-k_2,

is the transform of rr/kt e-:2/4kt. Thus, according to the convolution
theorem,

This is the same result as obtained (and discussed) earlier. In summary, the proce-
dure as follows:

1. Fourier transform the partial differential equation.
2. Solve the ordinary differential equation.
3. Apply the initial conditions, determining the initial Fourier transform.
4. Use the convolution theorem.

By using the convolution theorem, we avoid for each problem substituting the in-
verse Fourier transform and interchanging the order of integration.

Parseval's identity. Since h(x) is the inverse Fourier transform of F(w)G(w),
the convolution theorem can be stated in the following form:

1 J 9(Y) f (x - x) dT = J 00 F(w)C(w)e-'wx dw. (10.4.24)2r 00

Equation (10.4.24) is valid for all x. In particular, at x = 0,

2- J g(x) f (-z) dx =j F(w)G(w) dw. (10.4.25)
00

An interesting result occurs if we pick g(x) such that

g*(x) = f (-x). (10.4.26)
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f (x) = f o. F(w)e-i' dw F(w) = if L f(x)e.: dx
n

at
of

ax

a2f
axe

21r
f(I)g(x - Y)dx

00

5(x - xo)

f(x-0)

xf(x)
2a

x2 + a2

f (x) =
0 Ixj > a

11 (xl<a

1 e-w2/4a
4na

e-0w2

OF
at

-iwF(w)

Reference

Gaussian
(Sec. 10.3.3)

Derivatives
(Sec. 10.4.2)

(-iw)2F(w)

F(w)G(w)

1 eiWxo
2ir

e"''317(w)

dF

e-Mck

Convolution
(Sec. 10.4.3)

Dirac delta function
(Exercise 10.3.18)

Shifting theorem
(Exercise 10.3.5)

Multiplication by x
(Exercise 10.3.8)

Exercise 10.3.7

1 sin aw
Tr w

Table 10.4.1: Fourier Transform

Exercise 10.3.6

Here ' is the complex conjugate. (For real functions g(x) is the reflection of f (x)
around x = 0.] In general, their Fourier transforms are related:

F(w) = 2r f-00 f (x)e" dx = 2x f00 f (-s)e-spa d8

2a fo.
g`(x)e-"'x dx =

where we let s = -x. Thus, (10.4.25) becomes Parseval's identity.

1 j 00

g(x)g-(x) dx =
J

'G(w)G*(w)
dw,

2a 00

(10.4.27)

(10.4.28)

where g(x)g'(x) = (g(x)(2 and G(w)G'(w) = IG(w)12. We showed a similar rela-
tionship for all generalized Fourier series (see Sec. 5.10). This result, (10.4.28), is
given the following interpretation. Often energy per unit distance is proportional to
(g(x)12, and thus 1/21r f Jg(x)12 dx represents the total energy. From (10.4.28),
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IG(w)12 may be defined as the energy per unit wave number (the spectral energy
density). All the energy is contained within all the wave numbers. The Fourier
transform G(w) of a function g(x) is a complex quantity whose magni-
tude squared is the spectral energy density (the amount of energy per
unit wave number).

10.4.4 Summary of Properties of the Fourier Transform
Tables of Fourier transforms exist and can be very helpful. The results we have
obtained are summarized in Table 10.4.1.

We list below some important and readily available tables of Fourier transforms.
Beware of various different notations.

F. Oberhettinger, Tabellen zur Fourier Tlnnsformation, Springer-Verlag, New
York, 1957.

R.V. Churchill, Operational Mathematics, 3rd ed., McGraw-Hill, New York,
1972.

G.A. Campbell and R. M. Foster, Fourier Integrals for Practical Applications,
Van Nostrand, Princeton, NJ, 1948.

EXERCISES 10.4

10.4.1. Using Green's formula, show that

r iwz

)
F

- iwf
700

F I d2)
= -w2F(w) + 27r

10.4.2. For the heat equation, u(x, t) is given by (10.4.1). Show that u --+ 0 as
x - oo even though O(x) = e-:' ' does not decay as x --i oo. (Hint:
Integrate by parts.)

10.4.3. *(a) Solve the diffusion equation with convection:

z

oo<x<oo

u(x,0) = f(x)

[Hint: Use the convolution theorem and the shift theorem (see Exercise
10.4.5).]

(b) Consider the initial condition to be 5(x). Sketch the corresponding
u(x, t) for various values of t > 0. Comment on the significance of the
convection term c Ou/Ox.

10.4.4. (a) Solve

k
0,2

22-ryu - oo<x<oo

u(x,0) = f(x).
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(b) Does your solution suggest a simplifying transformation?

10.4.5. Consider
kex2+Q(x,t) -oo<x<oo

u(x,0) = f(x)-

(a) Show that a particular solution for the Fourier transform U is

//
t

U = e-k.2t J Q(w,T)ek'2 dT.
0

(b) Determine U.
*(c) Solve for u(x, t) (in the simplest form possible).

*10.4.6. The Airy function Ai(x) is the unique solution of

d2y -xy=0
dx2

that satisfies

(1) limx.± y=0
(2) y(0) = 3-2/3/x(3) = 3-2/3r(3) f /21r = 1/7r f°O cos(w3/3) dw (it is

not necessary to look at Exercises 10.4.15 and 10.4.17).

Determine a Fourier transform representation of the solution of this prob-
lem, Ai(x). (Hint: See Exercise 10.4.8.)

10.4.7. (a) Solve the linearized Korteweg-deVries equation

-= k
33 -oo<x<oo

u(x,0) = f(x).

(b) Use the convolution theorem to simplify.
*(c) See Exercise 10.4.6 for a further simplification.
(d) Specialize your result to the case in which

x<0
x>0.

10.4.8. Solve

subject to

82u 82u 0 < x < L
8x2+8y2 0 -oo<y<oc

UAW = 9i(y)
u(L,y) = 92(y).



10.5. Fourier Sine and Cosine Transforms 471

10.4.9. Solve

subject to

82u 02u y > 0
8x2+ay2=0-o0<x< 00

u(x,0) = f(x).
(Hint: If necessary, see Sec. 10.7.3.)

10.4.10. Solve
2 2

0t2
C2 Fx2 - 00 < x < 00

u(x,0) = 1(x)

Ft (x, 0) = 0.

(Hint: If necessary, see Sec. 10.6.1.)

10.4.11. Derive an expression for the Fourier transform of the product f (x)g(x).

10.5 Fourier Sine and Cosine Transforms:
The Heat Equation on Semi-Infinite Intervals

10.5.1 Introduction
The Fourier series has been introduced to solve partial differential equations on
the finite interval -L < x < L with periodic boundary conditions. For problems
defined on the interval 0 < x < L, special cases of Fourier series, the sine and cosine
series, were analyzed in order to satisfy the appropriate boundary conditions.

On an infinite interval, -oo < x < oo, instead we use the Fourier transform. In
this section we show how to solve partial differential equations on a semi-infinite
interval, 0 < x < oo. We will introduce special cases of the Fourier transform, known
as the sine and cosine transforms. The modifications of the Fourier transform will
be similar to the ideas we used for series on finite intervals.

10.5.2 Heat Equation on a Semi-Infinite Interval I
We will motivate the introduction of Fourier sine and cosine transforms by consid-
ering a simple physical problem. If the temperature is fixed at 0° at x = 0, then
the mathematical problem for heat diffusion on a semi-infinite interval x > 0 is

PDE: =k 22, x>0

BC: u(0, t) = 0

(10.5.1)

(10.5.2)
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IC: u(x, 0) = f W. (10.5.3)

Here, we have one boundary condition, which is homogeneous.
If we separate variables,

u(x, t) = -O(x)h(t),

for the heat equation, we obtain as before

dhAkh
at

d2o = -At.
dx2

The boundary conditions to determine the allowable eigenvalues A are

.0(0) = 0

lim=- 10(x) < Co.

(10.5.4)

(10.5.5)

(10.5.6)

(10.5.7)

The latter condition corresponds to limy-,o u(x, t) = 0, since we usually assume
that limX. f (x) = 0.

There are nontrivial solutions of (10.5.5) with (10.5.6) and (10.5.7) only for all
positive A (A > 0),

O(x) = cl sin v/Xx = cl sinwx, (10.5.8)

where, as with the Fourier transform, we prefer the variable w = f. Here w > 0
only. The corresponding time-dependent part is

h(t) = ce-1kt = ce-kw,'

and thus product solutions are

u(x, t) = A sin wx
e-kt"'2.

(10.5.9)

(10.5.10)

The generalized principle of superposition implies that we should seek a solution
to the initial value problem in the form

A(w)sinwx e2tdw.u(x, t) = j (10.5.11)
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The initial condition u(x, 0) = f (x) is satisfied if

f (x) = J "O A(w) sinwx dw. (10.5.12)
0

In the next subsection, we will show that A(w) is the Fourier sine transform of f (x);
we will show that A(w) can be determined from (10.5.12):

00

A(w) = 7r f f (x) sinwx dx.
0

(10.5.13)

10.5.3 Fourier Sine and Cosine Transforms
In the preceding subsection we are asked to represent a function only using sine
functions. We already know how to represent a function using complex exponentials,
the Fourier transform:

f(x) = - f F(w)e-"
dw (10.5.14)

00

F(w) = 2
-
fm f (x)e" dx. (10.5.15)

Recall that (10.5.14)-(10.5.15) is valid for any -y.

Fourier sine transform. Since we only want to use sinwx (for all w), we
consider cases in which f (x) is an odd function. If our physical region is x > 0, then
our functions do not have physical meaning for x < 0. In this case we can define
these functions in any way we choose for x < 0; we introduce the odd extension of
the given f (x). If f (x) is odd in this way, then its Fourier transform F(w) can be
simplified:

F(w) = 2 foo
oo

f (x) (cos wx + i sin wx) dx = 2 ry f oo

f (x) sin wx dx, (10.5.16)
o

since f (x) coswx is odd in x and f (x) sinwx is even in x. Note that F(w) is an odd
function of w [when f (x) is an odd function of x]. Thus, in a similar manner,

f(X) 1 f F(w)(coswx-isinwx)dw=-2i f F(,) sinwx d. (10.5.17)
7 00 7 o

We can choose -y in any way that we wish. Note that the product of the coefficients
in front of both integrals must be (2iry/2ir) (-2i/-y) = 2/-7r rather than 1/21r for
Fourier transforms. For convenience, we let -2i/-y = 1 (i.e., ry = -2i) so that if
f (x) is odd,

F(w) sinwx dw (10.5.18)AX) = f
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(w) = f (x) sinwx dx.JF
1r

Others may prefer a symmetric definition, -2i/-y = 2/ir. These are called the
Fourier sine transform pair. F(w) is called the sine transform of f (x),
sometimes denoted S[f (x)], while f (x) is the inverse sine transform of F(w),
S-1[F(w)]. Equations (10.5.18) and (10.5.19) are related to the formulas for the
Fourier transform of an odd function of x.

If the sine transform representation of f (x) (10.5.18) is utilized, then zero is
always obtained at x = 0. This occurs even if lima .o f (x) # 0. Equation (10.5.18)
as written is not always valid at x = 0. Instead, the odd extension of f (x) has a
jump discontinuity at x = 0 [if limz.o f (x) 0], from -f (0) to f (0). The Fourier
sine transform representation of f(x) converges to the average, which is zero (at
x = 0).

Fourier cosine transform. Similarly, if f(x) is an even function, we can
derive the Fourier cosine transform pair:

f (x) = J 00F(w) cos wx dw (10.5.20)

F(w) = 2 J f (x) cos wx dx. (10.5.21)
0

Other forms are equivalent (as long as the product of the two numerical factors
is again 2/ir). F(w) is called the cosine transform of f (x), sometimes denoted
C[f (x)], while f (x) is the inverse cosine transform of F(w), C-i [F(w)]. Again
if f (x) is only defined for x > 0, then in order to use the Fourier cosine transform,
we must introduce the even extension of f (x).

Short tables of both the Fourier sine and cosine transforms appear at the end
of this section (Tables 10.5.1 and 10.5.2).

10.5.4 Transforms of Derivatives
In Sec. 10.5.2 we derived important properties of the Fourier transform of deriva-
tives. Here, similar results for the Fourier sine and cosine transform will be shown.

Our definitions of the Fourier cosine and sine transforms are

fC[f(x)] = n f(x)coswx dx (10.5.22)
o' o
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S[f(x)] = 2 fWf(x)sinwx
dx.

7r o

475

(10.5.23)

Integration by parts can be used to obtain formulas for the transforms of first
derivatives:

['] r'
C d-J

d
coswxdx=-f(x)coswx

0

1S d] = 2
fW

d sinwx dx = 2 f (x) sinwx
0

00

+w-2 f Wf(x)sinwx dx
iro

W
_w2 _JW f(x)coswxdx.

o ir

We have assumed that f (x) is continuous. We obtain the following formulas:

[L]=--f(0)+wS[f]

S I _ -wC[f],

(10.5.24)

(10.5.25)

assuming that f (x) - 0 as x - oo. Sine or cosine transforms of first derivatives
always involve the other type of semi-infinite transform. Thus, if a partial differ-
ential equation contains first derivatives with respect to a potential variable to be
transformed, the Fourier sine or Fourier cosine transform will never work. Do not
use Fourier sine or cosine transforms in this situation. Note that for the heat equa-
tion, 8u./8t = k 82U/8x2, the variable to be transformed is x. No first derivatives
in x appear.

Transforms of second derivatives have simpler formulas. According to (10.5.24)
and (10.5.25),

C [d 2 ] -7r dx
(0) + WS

[dxd'

] 7r dx (0) - 2C[f]

S [a ]
_ -WC [d

]
=

wf(0) - w2S[f].
-ir

(10.5.26)

(10.5.27)

We learn some important principles from (10.5.26) and (10.5.27). In order to use
the Fourier cosine transform to solve a partial differential equation (containing
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a second derivative) defined on a semi-infinite interval (x > 0), df/dx(0) must
be known. Similarly, the Fourier sine transform may be used for semi-
infinite problems if f (0) is given. Furthermore, problems are more readily
solved if the boundary conditions are homogeneous. If f (O) = 0, then a Fourier
sine transform will often yield a relatively simple solution. If df /dx(0) = 0, then a
Fourier cosine transform will often be extremely convenient. These conditions are
not surprising. If f (0) = 0, separation of variables motivates the use of sines only.
Similarly, df /dx(0) = 0 implies the use of cosines.

10.5.5 Heat Equation on a Semi-Infinite Interval II
Let us show how to utilize the formulas for the transforms of derivatives to solve
partial differential equations. We consider a problem that is somewhat more general
than the one presented earlier. Suppose that we are interested in the heat flow in a
semi-infinite region with the temperature prescribed as a function of time at x = 0:

PDE:
8u 82u
8t k axe

(10.5.28)

BC:

IC:

u(0, t) = g(t)

u(x,0) = f(x).

(10.5.29)

(10.5.30)

The boundary condition u(0, t) = g(t) is nonhomogeneous. We cannot use the
method of separation of variables. Since 0 < x < oo, we may wish to use a trans-
form. Since u is specified at x = 0, we should try to use Fourier sine transforms
(and not the Fourier cosine transform). Thus, we introduce U(w, t), the Fourier
sine transform of u(x, t):

u(x, t) sin wx dx.U(w, t) =
2

10"07r

The partial differential equation (10.5.28) becomes an ordinary differential equation,

8U 2 2-
8t

= k (wg(t) - U) (10.5.32)

using (10.5.27). The initial condition yields the initial value of the Fourier sine
transform:

(w, 0) = f (x) sin wx dx. (10.5.33)fU
ir

Solving (10.5.32) is somewhat complicated in general (involving the integrating
factor ek"2t; see Sec. 8.3). We leave discussion of this to the Exercises.
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Example. In the special case with homogeneous boundary conditions, g(t) = 0,
it follows from (10.5.32) that

U(w, t) = c(w)e-k"2t (10.5.34)

where from the initial condition

C(W) = - J2
f (x) sinwx dx. (10.5.35)

0

The solution is thus

u(x, t) = / "O c(w)e-kW2t sinwx dw. (10.5.36)
0

This is the solution obtained earlier by separation of variables. To simplify this
solution, we note that c(w) is an odd function of w. Thus,

If we introduce the odd extension of f (x), then

c(w) = 2 sinwx 1 r°° sinwx _ 1

2
f (Wxe-:Wx dx.

i L f (x) 2i
dx - - f (x) 2i dx 2-

foo
7r 7r w

(10.5.38)
We note that (10.5.37) and (10.5.38) are exactly the results for the heat equation
on an infinite interval. Thus,

u(x t) = 1 f(y)e-(Z-z)'/4ktdx
4irkt f.

Here, f (x) has been extended to -oo < x < oo as an odd function (f (-x) = -f (x)).
In order to only utilize f (x) for x > 0, we use the oddness property

u(x,
t)

[I.
-f

(-x)e-(z-x)2/4ktdY + 10"0 f (x)e-(:-Z)'/4ktd71-

In the first integral we let x = -x (and then we replace x by x). In this manner

u(x,
t) = 1 00

f (2) [e-(x-z)'/4kt - e-(=+=)2/4kt1 da. (10.5.39)
4-rkt Jo IL

J

The influence function for the initial condition is in brackets. We will discuss this
solution further in Chapter 11. An equivalent (and simpler) method to obtain
(10.5.39) from (10.5.34) and (10.5.35) is to use the convolution theorem for Fourier
sine transforms (see Exercise 10.6.6).
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Table 10.5.1: Fourier Sine Transform

f (x) = fo F(w) sin wx dw

df
dx

d2 f
dx2

x

1

1

f f (x) [9(x - y) - 9(x + y)1dzn f
f 9(y)[f(x+y) f(y -x)1dy

0

S[f (x)] = F(w)
2 "'

J f (x) sin wx dx
x o

22 wf (0) - w2F(w)

-wC[f (x)]

e`3

2 w
7r E2 + w2

2 1

It w

S[f (x)]C[9(x)]

Reference

Derivatives
(Sec. 10.5.4)

Exercise 10.5.1

Exercise 10.5.2

Exercise 10.5.9

Convolution
(Exercise 10.5.6)

Table 10.5.2: Fourier Cosine Transform

f (x) = f o" F(w) coswx dw

df

dx

d2f
dx2

e-Ex

C[f (x)] = F(w)

= 2 f f (x) cos wx dx Reference
u

-2 f(0)+WS[f(x)J

d (0) - w2F(w)

7r E2 -+W 2

2 1 e_WS/4a

4na

Derivatives
(Sec. 10.5.4)

Exercise 10.5.1

Exercise 10.5.2

Exercise 10.5.3

f Convolution°° 9(y)[f (x - x) + j(x + Y)]dx F(w)G(w) (Exercise 10.5.7)
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10.5.6 Tables of Fourier Sine and Cosine Transforms
We present short tables of the Fourier sine transform (Table 10.5.1) and Fourier
cosine transform (Table 10.5.2).

EXERCISES 10.5

10.5.1. Consider F(w) >0,(w > 0).

(a) Derive the inverse Fourier sine transform of F(w).

(b) Derive the inverse Fourier cosine transform of F(w).

10.5.2. Consider f (x) = e-°2, a > 0 (x > 0).

(a) Derive the Fourier sine transform of f (x).

(b) Derive the Fourier cosine transform of f (x).

*10.5.3. Derive either the Fourier cosine transform of e_Q22 or the Fourier sine
transform of a-°2:2

10.5.4. (a) Derive (10.5.26) using Green's formula.

(b) Do the same for (10.5.27).

10.5.5. (a) Show that the Fourier sine transform of f (x) is an odd function of w
(if defined for all w).

(b) Show that the Fourier cosine transform of f (x) is an even function of
w (if defined for all w).

10.5.6. There is an interesting convolution-type theorem for Fourier sine trans-
forms. Suppose that we want h(x), but know its sine transform H(w) to
be.a product

H(w) = S(w)C(w),

where S(w) is the sine transform of s(x) and C(w) is the cosine transform
of c(x). Assuming that c(x) is even and s(x) is odd, show that

h(x) = n J
oo

s(x)[c(x-x)-c(x+x)] dx = - J
oo

c(x)[s(x+x)-s(x-x)] dx.
0 0

10.5.7. Derive the following. If a Fourier cosine transform in x, H(w), is the prod-
uct of two Fourier cosine transforms,

H(w) = F(w)G(w),

then

h(x) = 1 I g(x) if (x - x) + f (x + x)] dz.it 0

In this result f and g can be interchanged.
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10.5.8. Solve (10.5.1)-(10.5.3) using the convolution theorem of Exercise 10.5.6.
Exercise 10.5.3 may be of some help.

10.5.9. Let S[f (x)] designate the Fourier sine transform.

(a) Show that
S[e-FyJ = 2 w

for E > 0.
Tr E2 + w2

Show that limE-o+ S[e-ES] = 2/7rw. We will let S[1] = 2/7rw. Why
isn't S[1] technically defined?

(b) Show that
S-1r2/7rl=2 0'sinzdz,

L W J it z

which is known to equal 1.

*10.5.10. Determine the inverse cosine transform of we-1001. (Hint: Use differentia-
tion with respect to a parameter.)

*10.5.11. Consider
8u 82u x > 0
Ot - k

8x2 t > 0
u(0, t) = 1

u(x,0) = f(x)

(a) Solve directly using sine transforms. (Hint: Use Exercise 10.5.8 and
the convolution theorem, Exercise 10.5.6.)

(b) If f(x) -4 1 as x oo,let v(x,t) = u(x,t) - 1 and solve for v(x,t).

(c) Compare part (b) to part (a).

10.5.12. Solve

N
= k 22

(x > 0)

ax(0,t) = 0
u(x,0) = f(x).

An

10.5.13. Solve (10.5.28)-(10.5.30) by solving (10.5.32).

10.5.14. Consider
2- kaxe - v0a (x > 0)i5T

u(0,t) = 0
u(x,0) = f(x).

(a) Show that the Fourier sine transform does not yield an immediate
solution.
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(b) Instead, introduce

and show that

U = e[2-(vo/2)i[vo/2kW,

Ow _ 02w
dt k 0x2

w(0, t) = 0
w(x, 0) = .f (x)e-7p2/2k

(c) Use part (b) to solve for u(x, t).

10.5.15. Solve
02u 02u 0 < x < L

0x2+0y2

0 0<y<oo
u(x,0) = 0
u(O,y) = 91(Y)
u(L,y) = 92(y)

(Hint: If necessary, see Sec. 10.7.2.)

10.5.16. Solve
02u 02u

+
0

0 < x < oc
0y2 -0x2 0 < y < 00

u(O,y) = 9(y)
u(x, 0) = 0.

481

(Hint: If necessary, see Sec. 10.7.4.)

10.5.17. The effect of periodic surface heating (either daily or seasonal) on the
interior of the earth may be modeled by

192Uk2 0<x<oo
0
Ae'o0 c

where the real part of u(x, t) is the temperature (and x measures distance
from the surface).

(a) Determine U(w, t), the Fourier sine transform of u(x, t).
*(b) Approximate U(w, t) for large t.

(c) Determine the inverse sine transform of part (b) in order to obtain
an approximation for u(x, t) valid for large t. (Hint: See Exercise
10.5.2(a) or Table 10.5.1.)

(d) Sketch the approximate temperature (for fixed large t).
(e) At what distance below the surface are temperature variations negli-

gible?

10.5.18. Reconsider Exercise 10.5.17. Determine u(x, t) exactly. (Hint: See Exer-
cise 10.5.6.)
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10.5.19. (a) Determine a particular solution of Exercise 10.5.17, satisfying the
boundary condition but not the initial condition, of the form u(x, t) _
F(x)G(t).

(b) Compare part (a) with either Exercise 10.5.17 or 10.5.18.

10.6 Worked Examples Using Transforms

10.6.1 One-Dimensional Wave Equation
on an Infinite Interval

Previously, we have analyzed vibrating strings on a finite interval, usually 0 < x <
L. Here we will study a vibrating string on an infinite interval. The best way
to analyze vibrating strings on an infinite (or semi-infinite) interval is to use the
method of characteristics, which we describe in Chapter 12. There concepts of
wave propagation are more completely discussed. Here we will analyze only the
following example, to show briefly how Fourier transforms can be used to solve the
one-dimensional wave equation:

PDE:
82u

IC1:

=c2ax2 -oo<x<o0

u(x,0) = f(x)

IC2: (x,0) = 0.

(10.6.1)

(10.6.2)

(10.6.3)

We give the initial position f (x) of the string but insist that the string is at rest,
8u/&(x, 0) = 0, in order to simplify the mathematics.

Product solutions can be obtained by separation of variables. Instead, we will
introduce the Fourier transform of u(x, t):

00

U(w, t) =
1

J u(x, t)
21r . xdx (10.6.4)

0
u(x,t) = U(w,t)e-'"x dw. (10.6.5)

J o0

Taking the Fourier transform of the one-dimensional wave equation yields

2 = -c2w2U, (10.6.6)

82u



10.6. Worked Examples Using Transforms 483

with the initial conditions becoming

U(w 0) = . f
2

f(x)ei"x dx (10.6.7)

atU(w,0) =

00

0. (10.6.8)

The general solution of (10.6.6) is a linear combination of sines and cosines:

U(w, t) = A(w) cos cwt + B(w) sincwt. (10.6.9)

The initial conditions imply that

B(w) = 0 (10.6.10)

A(w) = U(w,0) = 2 J_0052 dx. (10.6.11)

Using the inverse Fourier transform, the solution of the one-dimensional wave equa-
tion is

r010
u(x,t) = J U(w,0)coscwt a-`WZ dw, (10.6.12)

where U(w, 0) is the Fourier transform of the initial position.
The solution can be considerably simplified. Using Euler's formula,

00

u(x, t) juo> [e-'w(r-ct) + e-ud(x+ct)1 dw. (10.6.13)
L J

However, U(w, 0) is the Fourier transform of f (x), and hence
OOf

f (x) =
J U(w, 0)e-'"'zdw.

By comparing (10.6.13) and (10.6.14), we obtain

u(x,t) =
2

1
[f (x - ct) + f(x + ct)J.

(10.6.14)

(10.6.15)

For an infinite string (started at rest), the solution is the sum of two terms,
1 f (x - et) and

a
f (x + ct).

2
f (x - ct) is a waveform of fixed shape. Its height stays

fixed if x - ct = constant, and thus dx/dt = c. For example, the origin corresponds
to x = ct. Assuming that c > 0, this fixed shape moves to the right with velocity
c. It is called a traveling wave. Similarly,

z
f (x + ct) is a wave of fixed shape

traveling to the left (at velocity -c). Our interpretation of this result is that the
initial position of the string breaks in two, if started at rest, half moving to the left
and half moving to the right at equal speeds c; the solution is the simple sum of
these two traveling waves.
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10.6.2 Laplace's Equation in a Semi-Infinite Strip
The mathematical problem for steady-state heat conduction in a semi-infinite strip
(0<x<L, y>0) is

(10.6.16)

u(O,y) = 9i (y)

u(L,y) = 92(Y)

u(x,0) = f(x).

(10.6.17)

(10.6.18)

(10.6.19)

u(L,y) = 92(y) u1(L,y) = 92(y) u2(L,y) = 0

V2u=0

u(O,y) =91(y)

O2u1 = 0

u1(0,y) = 91(y)

u(x,0) = f(x) u1(x,0) = 0

V2u2=0

u2(x,0) = f(x)

Figure 10.6.1 Laplace's equation in a semi-infinite strip.

We assume that gl(y) and g2(y) approach zero as y -i oo. In Fig. 10.6.1 we
illustrate the three nonhomogeneous boundary conditions and the useful simplifica-
tion

u(x,y) = u1(x,y) + u2(x,y) (10.6.20)

Here both u1 and u2 satisfy Laplace's equation. Separation of variables for Laplace's
equation in the semi-infinite strip geometry provides motivation for our approach:

u(x,y) = b(x)O(y), (10.6.21)

u2(O,y) = 0
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in which case

d20 - -ash (10.6.22)
dx2

d20
= ae. (10.6.23)

aye

Two homogeneous boundary conditions are necessary for an eigenvalue problem.
That is why we divided our problem into two parts.

Zero-temperature sides. For the u2-problem, u2 = 0 at both x = 0 and
x = L. Thus, the differential equation in x is an eigenvalue problem, defined over
a finite interval. The boundary conditions are exactly those of a Fourier sine series
in x. The y-dependent solutions are exponentials. For u2, separated solutions are

u2(x, y) =sin n"xxe-nay/L and u2(x, y) = sin nLxe+nay/L

The principle of superposition implies that
00 00

u2(x, y) _ an sin nLxe-n,ry/L + C-` bn sin nLx en"y/L. (10.6.24)
n=1 n=1=1

There are two other conditions on u2:

u2(x,0) = f(x) (10.6.25)

lim u2(x,y) = 0. (10.6.26)
y-o0

Since u2 -# 0 as y -+ oo, bn = 0. The nonhomogeneous condition is

f (x) _ an sin nLx (10.6.27)
n=1

and thus an are the Fourier sine coefficients of the nonhomogeneous boundary con-
dition at y = 0:

j
L

= L f (x) sin nLx dx.

Using these coefficients, the solution is

=
U2 (X, y) _ an sin

n7rx
r e

-nay/L.

n=1

(10.6.28)

(10.6.29)

There is no need to use Fourier transforms for the u2-problem. The partial differ-
ential equation for u2 could have been analyzed much earlier in this text (e.g., in
Chapter 2).
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Zero-temperature bottom. For the ul-problem, the second homoge-
neous boundary condition is less apparent:

ui(x,0) = 0 (10.6.30)

lim ui (x, y) = 0. (10.6.31)

The y-dependent part is the boundary value problem. As y oo the "separated"
solution must remain bounded (they do not necessarily vanish). The appropriate
solutions of (10.6.23) are sines and cosines (corresponding to A < 0). The homo-
geneous boundary condition at y = 0, (10.6.30), implies that only sines should be
used. Instead of continuing to discuss the method of separation of variables, we
now introduce the Fourier sine transform in y:

ui(x,y)
00

U1(x,w)sinwy dw.
JJo

(10.6.32)

ui (x, y) sin wy dy. (10.6.33)U1(x, w) =
2

100"

We directly take the Fourier sine transform with respect to y of Laplace's equa-
tion, (10.6.16). The properties of the transform of derivatives shows that Laplace's
equation becomes an ordinary differential equation:

a2U-axz1(x,w) - w2Ui(x,w) = 0. (10.6.34)

The boundary condition at y = 0, ui (x, 0) = 0, has been used to simplify our result.
The solution of (10.6.34) is a linear combination of nonoscillatory (exponential)
functions. It is most convenient (although not necessary) to utilize the following
hyperbolic functions:

Ui (x, w) = a(w) sinhwx + b(w) sinhw(L - x).

The two nonhomogeneous conditions at x = 0 and x = L yield

U1(0, w) = b(w) sinh wL = f gi (y) sin wy dy

U1(L,w) = a(w)sinhwL = a r 92(y)sinwy dy.
0

(10.6.35)

(10.6.36)

(10.6.37)
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UI (x, w), the Fourier sine transform of u1 (x, y), is given by (10.6.35), where a(w)
and b(w) are obtained from (10.6.36) and (10.6.37).7 This completes the somewhat
complicated solution of Laplace's equation in a semi-infinite channel. It is the
sum of a solution obtained using a Fourier sine series and one using a Fourier sine
transform.

Nonhomogeneous boundary conditions. If desired, Laplace's equa-
tion (10.6.16) with three nonhomogeneous boundary conditions, (10.6.17)-(10.6.19),
can be solved by directly applying a Fourier sine transform in y without decompos-
ing the problem into two:

u(x, y) = J U(x, w) sinwy dw.
0

(10.6.38)

Since the boundary condition at y = 0, u(x, 0) = f (x), is nonhomogeneous, an extra
term is introduced into the Fourier sine transform of Laplace's equation (10.6.16):

8zU z 2,9yz -w U= -Vwf(x). (10.6.39)

In this case, the Fourier sine transform satisfies a second-order linear constant-
coefficient nonhomogeneous ordinary differential equation. This equation must be
solved with two nonhomogeneous boundary conditions at x = 0 and x = L. Equa-
tion (10.6.39) can be solved by variation of parameters. This solution is probably
more complicated than the one consisting of a sum of a series and a transform. F11r-
thermore, this solution has a jump discontinuity at y = 0; the integral in (10.6.38)
equals zero at y = 0 but converges to f (x) as y - 0. Usually, breaking the problem
into two problems is preferable.

10.6.3 Laplace's Equation in a Half-Plane
If the temperature is specified to equal f (x) on an infinite wall, y = 0, then the
steady-state temperature distribution for y > 0 satisfies Laplace's equation,

02U z
Vzu

8x2
+ ayz = 0,

subject to the boundary condition,

u(x,0) = f(x).

(10.6.40)

(10.6.41)

Unfortunately, U](x,w) is not the product of the transforms of two simple functions. Hence,
we do not use the convolution theorem.
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If f (x) --+ 0 as x -+ ±oo, then there are three other implied boundary conditions,

lim u(x, y) = 0 (10.6.42)

lim u(x, y) = 0 (10.6.43)xoo
lim u(x, y) = 0; (10.6.44)

the temperature approaches zero at large distances from the wall.
The method of separation of variables suggests the use of a Fourier transform

in x, since there are two homogeneous boundary conditions as x -+ ±oo:

u(x, y) _ /
J o0

U(w, y)e-'"'x dw (10.6.45)

U(w, y) =
2-ir

00

u(x, y)etiz dx. (10.6.46)

By taking the Fourier transform in x of (10.6.40), we obtain the ordinary differential
equation satisfied by the Fourier transform,

&y2 - w2U = 0. (10.6.47)

Since u(x, y) -+ 0 as y -' +oo, its Fourier transform in x also vanishes as y -+ +oo,

U(w, y) -, 0, as y +oo. (10.6.48)

In addition, at y = 0, U(w, 0) is the Fourier transform of the boundary condition,
00

U(w, 0) = 2a J f (x)e",x dx. (10.6.49)

We must be careful solving (10.6.47). The general solution is

U(w, y) = a(w)e°'y + b(w)e-' Y, (10.6.50)

which is of interest for all w [see (10.6.45)]. There are two boundary conditions to
determine the two arbitrary functions a(w) and b(w). Equation (10.6.48) states that
U(w, y) -+ 0 as y --+ +oo. At first you might think that this implies that a(w) = 0,
but that is not correct. Instead, for U(w, y) to vanish as y - 4 +oo, a(w) = 0 only for
w > 0. If w < 0, then b(w)e--l' grows exponentially as y --+ +oo. Thus, b(w) = 0
for w < 0. We have shown that

U(w, y) = a(w)e"'y for w < 0
1 b(w)e-°'y for w > 0,

where a(w) is arbitrary for w < 0 and b(w) is arbitrary for w > 0. It is more
convenient to note that this is equivalent to

U(w,y) = (10.6.51)
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for all w. The nonhomogeneous boundary condition (10.6.41) now shows that c(w)
is the Fourier transform of the temperature at the wall, f (x). This completes our
solution. However, we will determine a simpler representation of the solution.

Application of the convolution theorem. The easiest way to sim-
plify the solution is to note that U(w, y) is the product of two Fourier transforms.
f (x) has the Fourier transform c(w) and some function g(x, y), as yet unknown, has
the Fourier transform e-I',ly. Using the convolution theorem, the solution of our
problem is

u(x,y) = Zx /
00

f(z)g(x - x,y) dom. (10.6.52)
J

We now need to determine what function g(x, y) has the Fourier transform a-IWIy.
According to the inversion integral,

.00
9(x,]1) = J

e-IwIye-'wx
00

which may be integrated directly:

,

9
///. ///.00

g(x, y) = J e" a-mix dw + J e-Wr/e-t4/x J. .
0
00 o

1!(//

e-(y-ix) 0 e-m(y+ix) I00 _ 1 1 2y
y - ix _0+ -(y+ix)10 y - ix+y+ix x2+y2

Thus, the solution to Laplace's equation in semi-infinite space (y > 0) subject
to u(x, 0) = f (x) is

u(x, y) = 2- f f (x) (x - )2 + y2 dx.. (10.6.53)

This solution was derived assuming f (x) 0 as x - ±oo. In fact, it is valid
in other cases, roughly speaking as long as the integral is convergent. In Chapter
9 we obtained (10.6.53) through use of the Green's function. It was shown [see
(9.5.47)] that the influence function for the nonhomogeneous boundary condition
[see (10.6.53)] is the outward normal derivative (with respect to source points) of
the Green's function:

0G(x, 3/; x,11) LO - x (x - + y2'

where G(x, xo) is the Green's function, the influence function for sources in the
half-plane (y > 0).
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Example. A simple, but interesting, solution arises if

f(x) =
{

0 x < 0 (10.6.54)
1 x>0.

This boundary condition corresponds to the wall uniformly heated to two different
temperatures. We will determine the equilibrium temperature distribution for y >
0. From (10.6.53),

(

foo1 2y x
u x, y) r + x - dx tan- )

y2 ( )2 \ y / o
Itan'1(oo)-tan- 1

V /J - L2+tan
(XY)]7r 7r 1

Some care must be used in evaluating the inverse tangent function along a contin-
uous branch. Figure 10.6.2, in which the tangent and inverse tangent functions are
sketched, is helpful. If we introduce the usual angle 0 from the x-axis,

0 = tan-1 (y tan-1 (X J\x/ 2 y/
then the temperature distribution becomes

u(x,y)
0=1--
7

(10.6.56)

We can check this answer independently. Reconsider this problem, but pose it in
the usual polar coordinates. Laplace's equation is

1 a (aul 1 02u
Tar 5T ;72 a02 = ,

and the boundary conditions are u(r, 0) = 1 and u(r, -ir) = 0. The solution depends
only on the angle, u(r, 0) = u(9), in which case

dd2u

dO2 = 0,

tan z

-ir/2
n/2

z

tan-1z

-7r/2

rr/2

z

Figure 10.6.2 Tangent and inverse tangent functions.
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subject to u(0) = 1 and u(7r) = 0, confirming (10.6.56). This result and more
complicated ones for Laplace's equation can be obtained using conformal mappings
in the complex plane.

10.6.4 Laplace's Equation in a Quarter-Plane
In this subsection we consider the steady-state temperature distribution within a
quarter-plane (x > 0, y > 0) with the temperature given on one of the semi-infinite
walls and the heat flow given on the other:

V2u=a22+-
y
=0 (10.6.57)

u(0, y) = 9(y) y > 0

5i(x,0) = f(x) x > 0.

(10.6.58)

(10.6.59)

We assume that g(y) 0 as y -' oc and f (x) -+ 0 as x oc, such that u(x, y) -' 0
both as x oo and y oo. There are two nonhomogeneous boundary condi-
tions. Thus, it is convenient to decompose the problem into two, as illustrated in
Fig. 10.6.3:

U = ul(x,y) + u2(x,y),

where

V2u1 = 0

u1 (0,y) = 9(Y)

5yu1(x, 0) = 0

(10.6.60)

(10.6.61)

(10.6.62)

(10.6.63)

V2U2 = 0 1 (10.6.64)
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u(0,y) = 9(y) u1(0,y) = 9(y) u2(O,y) = 0

V2u=0 V2u1=0 v2u2=0

u(x,0) = f(x) - u1(x,0) = 0

b
u2(x,0) = f(x)

Figure 10.6.3 Laplace's equation in a quarter-plane.

u2(0,y) = 0

72(x,0) = f(x)

(10.6.65)

(10.6.66)

Here, we will only analyze the problem for u1, leaving the u2-problem for an exercise.

Cosine transform in y. The u1-problem can be analyzed in two different
ways. The problem is semi-infinite in both x and y. Since ul is given at x = 0, a
Fourier sine transform in x can be used. However, 8u1/8y is given at y = 0 and
hence a Fourier cosine transform in y can also be used. In fact, 8u1/8y = 0 at
y = 0. Thus, we prefer to use a Fourier cosine transform in y since we expect the
resulting ordinary differential equation to be homogeneous:

u1(x,y) = J U1(x,w)coswy dw (10.6.67)
n

U, (X, w) =
2

u1 (x, y) cos wy dy.
it J C'O

(10.6.68)

If the u1-problem is Fourier cosine transformed in y, then we obtain

82U1
- w2U1 = 0. (10.6.69)

8x2

The variable x ranges from 0 to oo. The two boundary conditions for this ordinary
differential equation are

C* T-(y) cos wy dy and limo U1(x, w) = 0. (10.6.70)U1(0, w) =
2

fo
g
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The general solution of (10.6.69) is

Ui(x,w) = a(w)e-Wx + b(w)ell, (10.6.71)

for x > 0 and w > 0 only. From the boundary conditions (10.6.70), it follows that

(w) = 0 and a(w) = n g(y) coswy dy.J6 (10.6.72)

Convolution theorem. A simpler form of the solution can be obtained
using a convolution theorem for Fourier cosine transforms. We derived the following
in Exercise 10.5.7, where we assume f (x) is even:

If a Fourier cosine transform in x, H(w), is the product of two
Fourier cosine transforms, H(w) = F(w)G(w), then

h(x) = -1 f g(a) [ f (x -Y) + f (x + a)J
0

(10.6.73)

In our problem, U1(x,w), the Fourier cosine transform of ul(x,y), is the product
of a(w), the Fourier cosine transform of g(y), and e'' :

Ul (x, w) = a(w)e-"We

use the cosine transform pair (see (10.6.67)) to obtain the function Q(y),
which has the Fourier cosine transform a-"x:

°° oo ei"+Y + e-"
Q(y) =

J
e-"xcoswy dw = f e-"x 2 dw

0 0

_1 1 1 _ x
2 x-iy+x+iy x2+y2'

Thus, according to the convolution theorem,

d y
1r 0

(10.6.74)

This result also could have been obtained using the Green's function method (see
Chapter 9). In this case appropriate image sources may be introduced so as to
utilize the infinite space Green's function for Laplace's equation.
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Sine transform in X. An alternative method to solve for ul (x, y) is to use
the Fourier sine transform in x:

u1(x,y) =

U1(w,y) =

fUi(wy)sinwx
2 /'°f ul(x, y) sinwx dx.
7r o

The ordinary differential equation for U1 (w, y) is nonhomogeneous:

82U1 2- 2
8y2 - w U1 = - wg(y)

This equation must be solved with the following boundary conditions at y = 0 and
y=oo:

8U1a
(w, 0) = 0 and lim Ul (w, y) = 0.

y
y-oo

This approach is further discussed in the Exercises.

10.6.5 Heat Equation in a Plane
(Two-Dimensional Fourier Transforms)

Transforms can be used to solve problems that are infinite in both x and y. Consider
the heat equation in the x - y plane, -oo < x < oo, -oo < y < oc:

8u _
k

82u

at

(02U

8x2 + 8y2)

subject to the initial condition

u(x,y,0) = f(T,y)

(10.6.75)

(10.6.76)

If we separate variables, we obtain product solutions of the form

u(x, y, t) = e-iw,ze-iwsye-k(w?+WZ)t

for all w1 and w2. Corresponding to u 0 as x -+ ±oo and y -+ ±oo are the
boundary conditions that the separated solutions remain bounded x -+ ±00 and
y --+ ±oo. Thus, these types of solutions are valid for all real w1 and w2. A general-
ized principle of superposition implies that the form of the integral representation
of the solution is

u(x, y, t) = - J- A(wl,w2)e- w1xe-sU'2ye-k(.'1 +W2)t dw1 dw2. (10.6.77)J x ao
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The initial condition is satisfied if

f(x,y) = ff A(wl,w2)e-'7xe-v`2y dwl d02.oo 00

We will show that we can determine A(wl, w2),

(10.6.78)

completing the solution. A(w1,w2) is called the double Fourier transform of
f(x,y).

Double Fourier transforms. We have used separation of variables to
motivate two-dimensional Fourier transforms. Suppose that we have a function
of two variables f (x, y) that decays sufficiently fast as x and y --, ±oo. The Fourier
transform in x (keeping y fixed, with transform variable wl) is

1 rF(wj,y) °O

= r J- f(x, y)e"W1 x dx,
27 00

its inverse is

f (x, y) = f F'(wl, y)e tW]x du),.00
00

F(wj, y) is a function of y that also can be Fourier transformed (here with transform
variable w2):

P°OF'(wl, w2) = 2a J-oo F(wl,
y)esW2 y dy

°°oo
F'(wl, y) = f F'(wl, w2)e-i1211

dw2.

Combining these, we obtain the two-dimensional (or double) Fourier trans-
form pair:

1 r°°(2x)2

f7. 00
f (x, y)e""=e`"'2Y dx dy (10.6.79)

W//p

ff (x, y) =
J _

F(wi,
w2)e-"I'e-iI12Y dw1 dw2.

m
(10.6.80)

Wave number vector. Let us motivate a more convenient notation. When
using eiWx we refer to w as the wave number (the number of waves in 2n distance).
Here we note that

eiwlxeiW2y = ei(W,x+W2Y) = e1w r

where r is a position vector8 and w is a wave number vector:

r=xi+yj (10.6.81)

W = U)12 + W23- (10.6.82)

81n other contexts, we use the notation x for the position vector. Thus r = x.
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Figure 10.0.4 Two-dimensional wave and its crests.

To interpret eiw r we discuss, for example, its real part, wcos(. r) = cos(wjx +
w2y). The crests are located at w1x + w2y = n(21r), sketched in Fig. 10.6.4. The
direction perpendicular to the crests is V(wlx + w2y) = w1i +w2j = w. This is
called the direction of the wave. Thus, the wave number vector is in the direction
of the wave. We introduce the magnitude w of the wave number vector

w2 = w w = Iw12 = wi +w2.

The unit vector in the wave direction is w/w. If we move a distance s in the wave
direction (from the origin), then r = sw/w. Thus,

w r = sw and cos(w r) = cos(ws).

Thus, w is the number of waves in 2ir distance (in the direction of the wave). We
have justified the name wave number vector for w; that is, the wave number
vector is in the direction of the wave and its magnitude is the number
of waves in 21r distance (in the direction of the wave).

Using the position vector r = x%+yj and the wave number vector w = w1i+w2j,
the double Fourier transform pair, (10.6.79) and (10.6.80), becomes

F(w) = 1
r00 f f(r)eiw r d2r

(2ir)2 f .l 00

f (r) =
J joo'"""o

r dew,:00 (10.6.84)

where f (r) = f (x, y), d2r = dx dy, d2w = dw1 dw2, and F(w) is the double Fourier
transform of f (r).
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Using the notation .F[u(x, y, t)] for the double spatial Fourier transform of
u(x, y, t), we have the following easily verified fundamental properties:

.F [
5 J

= 5i.F[u] (10.6.85)

a = -iwi.F[u] (10.6.86)

F 121 = -iw2F[u] (10.6.87)

.F [V2u] _ -w2f[u], (10.6.88)

where w2 = w w = w1 + wZ, as long as u decays sufficiently rapidly as x and
y --+ ±oo. A short table of the double Fourier transform appears at the end of this
subsection.

Heat equation. Instead of using the method of separation of variables, the
two-dimensional heat equation (10.6.75) can be directly solved by double Fourier
transforming it:

_ -kw2U,

where U is the double spatial Fourier transform of u(x, y, t):

(10.6.89)

.F[u] = U(w, t) = f oo f0o

u(x, y, t)eiw * dx dy. (10.6.90)
00 00

The elementary solution of (10.6.89) is

U(w, t) = A(w)e-k`"2t

Applying (10.6.76), A(w) is the Fourier transform of the initial condition:

A(w) = U(w, 0) = 1 2 f foo

f (x, y)eiw r dx dy.
o0 00

Thus, the solution of the two-dimensional heat equation is

f fU(wu(x, , t) = , t )e -`w . r dwj dw2

f
00 A(w)e`2te-iw r dwl dw2fao

(10.6.91)

(10.6.92)

(10.6.93)

This verifies what was suggested earlier by separation of variables.
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Application of convolution theorem. In an exercise we show that
a convolution theorem holds directly for double Fourier transforms: If H(w) _
F(w)G(w), then

h(r) = I 00

f(ro)9(r - ro) dxo dyo
x J00

(10.6.94)

For the two-dimensional heat equation, we have shown that U(w, t) is the product
of e-kW2t and A(w), the double Fourier transform of the initial condition. Thus, we
need to determine the function whose double Fourier transform is a-kw2t:

00 0o

FO

00

1 e-kW2te-iw - r dull dw2 ek,, to-iW1X / e-kW2te-iwyy
dW2

0000 o J
_ e-x2/4ki e-y2/4kt = !e-r2/4kt

kt kt Tit

The inverse transform of a-kW2t is the product of the two one-dimensional inverse
transforms; it is a two-dimensional Gaussian, (7r/kt)e-r2/4kt, where r2 = x2 + y2.
In this manner, the solution of the initial value problem for the two-dimensional
heat equation on an infinite plane is

u(x, y, t) =
J

oo fo0

f (xo, yo)
-rkt exp I

(x - xo) 4kt(y - yo)21 dxo dyo.

00 J

(10.6.95)

The influence function for the initial condition is

9(x, y, t; xo, yo, 0) =
1

exp I
(x - xo)z + (y - yo)2 1 = e-Ir-ro12/4kt

4,rkt 4kt J 47rkt

It expresses the effect at x, y (at time t) due to the initial heat energy at xo,
yo. The influence function is the fundamental solution of the two-dimensional
heat equation, obtained by letting the initial condition be a two-dimensional Dirac
delta function, f (x, y) = 6(x)6(y), concentrated at the origin. The fundamental
solution for the two-dimensional heat equation is the product of the
fundamental solutions of two one-dimensional heat equations.

10.6.6 Table of Double-Fourier Transforms
We present a short table of double-Fourier transforms (Table 10.6.1).

EXERCISES 10.6
10.6.1. Solve

f02u 821,
a 22 = 08x2+y

for0<y<H, -oo<x<oosubjectto
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Table 10.6.1: Double-Fourier Transform
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f(r)
F(w)t-i,d r dwt dw

00 oc

Reference
F(w)

1 00 f(2.R)2 100 J-00
f(r)e4.r r dz dy

Of Of -iw1F(w), -iw2F(w) 1 Derivatives
8xv28y -w2F(w)f

3e-r2/4Q a-OW2

f (r -)9) esw OF(w)

(2 57 f 00 f00 f (ro)9(r - ro) dxo dyo F(w)G(w)

*(a) u(x,0) = f, (x) and u(x, H) = f2(x)
(b) 'u(x, 0) = fi (x) and u(x, H) = f2(x)

(c) u(x, 0) = 0 and (x, H) + hu(x, H) = f (x)
YY-

10.6.2. Solve

(Sec. 10.6.5)

Gaussian
(Sec. 10.6.5)

Exercise 10.6.
Convolution
(Exercise 10.6.

02u 02uaxe+ay2 =0 for 0<x<L, y>0
subject to the following boundary conditions. If there is a solvability
condition, state it and explain it physically:

2FX K.y)
y)

g
(y),),

(L, y) =
02(J),

Ou 0)
f 0x)(0,0

* (b)
(c) (0, y) = 0, (L, y) = 0, N (x, 0) = f (x)yal
(d) (0, y) = 0, (L, y) = 9(y), (x, 0) = 0

10.6.3. (a) Solve
02u 82u

8x2 + aye = 0

for x < 0, -oo < y < oo subject to u(0, y) = g(y).
(b) Determine the simplest form of the solution if

9(y) =
f 0 lyl > 1
t 1 JyJ < 1.

10.6.4. Solve
82u 02u

8x2 +
= 0

aye

for x > 0, y > 0 subject to
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j-U.1*(a) u(0, y) = 0 and Ou (x, 0) = f (x) (Hint: Invert TV-

(b) u(O,y) = 0 and u(x,0) = f(x)

10.6.5. Reconsider Exercise 10.6.4(a). Let w = 8u/8y. Show that w satisfies
Exercise 10.6.4(b). In this manner solve both Exercises 10.6.4(a) and (b).

10.6.6. Consider (10.6.61) with (10.6.62)-(10.6.63). In the text we introduce the
Fourier cosine transform in y. Instead, here we introduce the Fourier sine
transform in x.

(a) Solve for Ul (w, y) if

- - - zUi = --,
W wg(y)

(w,0) = 0
limy._..".Ui (w, y) = 0.

[Hint: See (9.3.9)-(9.3.14) or (13.3.10), using exponentials.J
(b) Derive ul (x, y). Show that (10.6.74) is valid.

10.6.7. Derive the two-dimensional convolution theorem, (10.6.94).

10.6.8. Derive the following shift theorem for two-dimensional Fourier transforms:
The inverse transform of e'w ' AF(w) is f (r - A).

10.6.9. Solve

+ vo Vu = kV2u

subject to the initial condition

u(x,y,0) = f(x,y)

(Hint: See Exercise 10.6.7.) Show how the influence function is altered by
the convection term vo Vu.

10.6.10. Solve
z

8t
kl

57X-2
+ kz 57y2

subject to the initial condition

u(x,y,0) = f(x,y)

10.6.11. Consider
8u_

k
82u 82u x>0

87 (8xz + ay-2 y > 0
subject to the initial condition

u(x,y,0) = f(x,y)
Solve with the following boundary conditions:
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*(a) u(0,y,t) = 0 and u(x,0,t) = 0

(b) Tx-
(0,y,t) = 0 and Ou(x,0,t) = 0

(c) u(O,y,t) = 0 and Ou(x,0,t) = 0

10.6.12. Consider
au _ (a2U amu 0 < x < L

katax2+ay2/ y>0
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subject to the initial condition

u(x,y,0) = f(x,y)

Solve with the following boundary conditions:

*(a) u(0,y,t) = 0, u(L,y,t) = 0, u(x,0,t) = 0

(b) u(0,y,t) = 0, u(L,y,t) = 0, P(x,0,t) = 0

(c) R' (O, y, t) = 0, (L, y, t) = 0, (x, 0, t) = 0

10.6.13. Solve
aul. _

(a2U 092U) 0<y<H
at

k
8x2+ay2 -00<x<00

subject to the initial condition

u(x,y,0) = f(x,y)

and the boundary conditions

u(x,0,t) = 0

u(x, H, t) = 0.

10.6.14. (a) Without deriving or applying a convolution theorem, solve for
u(x, y, z, t):

au i92U i92U 02U)

at -'`
(ax

+ V + az2 aye 2
t > 0

such that
with -oo < x < 00

00 <
y

00
u(x,y,z,0) = f(x,y,z) 0

<-
z <

oo

.

u(x,y,0,t) = 0

(b) Simplify your answer (developing convolution ideas, as needed).

10.6.15. Consider
a2U a2u a2U

=
+ +

0 z>0
ax2 aye az2

u(x,y,0) = f(x,y)
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*(a) Determine the double Fourier transform of u.

*(b) Solve for u(x, y, z) by calculating the inversion integral in polar co-
ordinates. [Hints: It is easier first to solve for w, where u = Ow/Oz.
Then the following integral may be useful:

f2i dO _ 2a

a2sin29+b2cos20
_

ab

(This integral may be derived using the change of variables z =
and the theory of complex variables.)]

(c) Compare your result to the Green's function result.

10.6.16. Consider Laplace's equation

V2u=0

e*e

inside a quarter-circle (Fig. 10.6.5) (a finite region) subject to the boundary
conditions

u(a, 0) = f(0), u(r, 0) = 91(r), u (r, 2) = 92(r).

= f(0)

u = g2(r)

Figure 10.6.5

(a) Divide into three problems, u = u1 + u2 + u3 such that

ul(a,0) = 0, u2(a,0) = 0, u3(a,0) = f(0)
ul (r, 0) = gl (r), u2 (r, 0) = 0, u3 (r, 0) = 0
ul (r, Z) = 0. U2 (r, Z) = g2(r), u3 (r, 2) = 0.

Solve for u3(r, 0).

*(b) Solve for u2(r, 0). [Hints: Try to use the method of separation of
variables, u2(r,0) = ¢(r)h(9). Show that O(r) = sin[f ln(r/a)J for
all A > 0. It will be necessary to use a Fourier sine transform in the
variable p = - ln(r/a).] [Comments: Here, a singular Sturm-Liouville
problem on a finite interval occurs that has a continuous spectrum.
For the wave equation on a quarter-circle, the corresponding singular
Sturm-Liouville problem (involving Bessel functions) has a discrete
spectrum.]
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10.6.17. Reconsider the problem for u2(r, 8) described in Exercise 10.6.16(b). In-
troduce the independent variable p = - ln(r/a) instead of r. [Comment:
In complex variables this is the conformal transformation

zw= - In(a- , where z=x+iy

(i.e., ln(z/a) = In Iz/al + iO).]

(a) Determine the partial differential equation for u2 in the variables p
and 0. Sketch the boundary in Cartesian coordinates, p and 8.

(b) Solve this problem. (Hint: Section 10.6.2 may be helpful.)
(c) Compare to Exercise 10.6.16.

*10.6.18. Solve
_ u

c28x2 -oo<x<o0
= 0

9(x).

(Hint: Use the convolution theorem and see Exercise 10.4.6.)

10.6.19. For the problem in Sec. 10.6.1, we showed that

U(w, t) = F(w) cos cwt.

Obtain u(x, t) using the convolution theorem. (Hint: cos cwt does not
have an ordinary inverse Fourier transform. However, obtain the inverse
Fourier transform of cos cwt using Dirac delta functions.)

10.6.20. Consider Exercise 10.6.17 for u3(r, 0) rather than u2(r, 0).

10.7 Scattering and Inverse Scattering
In our previous work we have studied eigenvalue problems with a discrete spectrum
and eigenvalue problems with a continuous spectrum. In this section, we briefly
study an eigenvalue problem with both a continuous spectrum and a discrete spec-
trum. One motivation of this is from separation of variables (O(x, t) = e-'at0(x))
for the normalized version of the Schrodinger equation from quantum mechanics,

s
i t = - P. + u(x)O. If the potential u(x) is time independent, then we obtain the
boundary value problem

dd + (A - u(x))O = 0. (10.7.1)

We will assume u(x) decays sufficiently fast as x - ±oo so that we will be interested
in solutions to the partial differential equation that decay to zero as x -+ ±oo. If
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u(x) = 0, then A = k2 > 0 is the continuous spectrum so that O(x) = e+ikx
corresponds to the Fourier transform. If u(x) 0 0, then the differential equation
(10.7.1) usually cannot be solved exactly, so that we will discuss theoretical aspects
of (10.7.1). We claim that there is always a continuous spectrum analogous to the
Fourier transform and there may also be a discrete spectrum.

Continuous spectrum. If u(x) - 0 sufficiently fast as x - too, then
intuitively (which can be derived mathematically) i(x) should be approximated by
efikx as x - ±oo. It is helpful to imagine that a-ikx corresponds to a left-going
wave [since the corresponding time dependent solution e-'kxe-ik2 = e-ik(x+kt) is
left-going for k > 01 and that a+ikx corresponds to a right-going wave. We analyze
a special solution of (10.7.1) that corresponds to an incoming wave (left-going from
the right as x -+ +oo) of unit amplitude. The variable coefficient (potential) u(x)
causes some reflection and the amplitude transmitted is also changed so that

!d(x) -r a-ikx + R(k)e+ikx as x - +oo

46(x) - T(k)e-ikx as x -+ -oo,

(10.7.2)

(10.7.3)

where R(k) is called the reflection coefficient and T(k) the transmission coef-
ficient. The reflection and transmission coefficients are complex and can be shown
to satisfy a conservation of energy equation JRI2 + IT12 = 1. Other solutions to
(10.7.1) can be obtained.

Discrete spectrum. There can be a discrete set of negative eigenvalues A
that satisfy (10.7.1) subject to the boundary condition that O(x) -+ 0 as x - ±oo:

A = -rc,2,(with n > 0), n = 1, 2,...N. (10.7.4)

The corresponding eigenfunctions 0,,(x) are known as bound states and may be
chosen to satisfy

x - +00 (10.7.5)

f 02 (x) dx = 1. I (10.7.6)
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In order for the integral to be finite, the eigenfunction must decay exponentially
both as x --# ±oo. Other normalizations (10.7.6) of the bound states are possible.
In general for bound states (A < 0), it can be shown from differential equation
(10.7.1) that if the coefficient A - u(x) < 0 for all x, then the solution is like an
exponential of one kind for all x and cannot be a bound state. Thus we conclude
that a necessary (but not sufficient) condition for a bound state is that u(x) must
be less than zero somewhere.

Example of continuous spectrum: Delta function potential.
As an elementary example, we assume the potential u(x) is a Dirac delta function

u(x) = US(X), (10.7.7)

and we assume 0 is continuous and It satisfies the corresponding jump condition.
The differential equation is easy for x 0 so that (10.7.2) and (10.7.3) are valid
not only asymptotically but also for x > 0 and x < 0, respectively. Continuity of
O(x) at x = 0 implies

1 + R(k) = T(k). (10.7.8)

o+
The jump condition = UO(0) becomesI

o-

-ik + ikR(k) + ikT(k) = UT(k). (10.7.9)

Some elementary algebraic steps are necessary to show that R(k) = 2ik u and
T(k) = 2iz . In this example we can show that IR12 + IT1 2 = 1, which is a general
result.

Example of discrete eigenvalues and eigenfunctions: Delta
function potential. For the delta function potential (10.7.7), (10.7.5) is valid
for x > 0, while it is simpler to note that 0,,(x) = b,,eK^x for x < 0. Continuity

at x = 0 implies that b,a = c,,. The jump condition at x = 0,
o+

= Uon(0),41- I0-

becomes c,,, = Uc,.,. From this we obtain

(10.7.10)

Since rc > 0, there are no discrete eigenvalues for the delta function potential if
U > 0, but there is exactly one discrete negative eigenvalue if U < 0, namely

(10.7.11)

A bound state only exists for the negative delta function, which is consistent with
the necessary condition mentioned previously: that u(x) must be less than zero
somewhere for a bound state to exist.
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Inverse scattering. For a long time theorists wondered whether a unique
potential could be determined from the reflection and transmission coefficients. In
the early 1950s Gelfand and Levitan (19551 proved the remarkable result that the
potential could be uniquely determined if the reflection and transmission coefficients
were supplemented by the knowledge of the discrete spectrum. In particular, the
potential could be reconstructed from

u(x) = -2dzK(x,x), (10.7.12)

where K(x, y) is the unique solution of the Gelfand-Levitan-Marchenko nonhomo-
geneous linear integral equation

K(x, y) + F(x + y) + fs ° K(x, z)F(y + z)dz = 0, for y > x. (10.7.13)

The kernel and nonhomogeneous term F(s) is the generalized inverse Fourier trans-
form of the reflection coefficient R(k) (10.7.2) and hence includes contributions from
the discrete spectrum (10.7.5) as well:

F(s) =
F_n1

cne-K"'
+ 2,, f. R(k)e'k- dk. (10.7.14)

Here A = -Kn are the discrete eigenvalues, and c i are related to the bound states.

EXERCISES 10.7

10.7.1. Consider the step potential u(x) = U for -1 < x < I and u(x) = 0
otherwise.

(a) Find reflection and transmission coefficients if U < 0.

(b) By solving (10.7.1), determine the discrete spectrum (A = -c2 with
s: > 0). dints: (i) Since we claim A - u(x) must be greater than zero
somewhere, you may assume U < A = -k2. (ii) The algebra is easier
if even and odd bound states are analyzed separately.]

(c) Find reflection and transmission coefficients (for all positive A) if U > 0.

10.7.2. Show that JRI2 + IT12 = 1 for the delta function potential in the text.

10.7.3. (a) Show that the Wronskian W(4'1, 02) = 0102. - 0201. of two indepen-
dent solutions of (10.7.1) is a constant.

(b) 4(x) satisfying (10.7.2) and (10.7.3) and its complex conjugate 0 *(x)
are two linearly independent solutions of (10.7.1). By computing the
Wronskian of these two solutions using the asymptotic conditions as
x =Loo, show that JRI2 -i JTI2 = 1.
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10.7.4. Orthogonality conditions

(a) Show that the discrete eigenfunctions are orthogonal to eigenfunctions
of the continuous spectrum.

(b) Show that one discrete eigenfunction is orthogonal to another discrete
eigenfunction.

10.7.5. (a) Show that a pole of the transmission coefficient in the upper half com-
plex k-plane corresponds to a value of the discrete spectrum.

(b) Verify that this occurs for the delta function example in the text.

10.7.6. A reflectionless potential is one in which the reflection coefficient is
zero for all k. Find an example of a reflectionless potential by solving
the Gelfand-Levitan-Marchenko integral equation (10.7.13). Assume there
is one discrete eigenvalue A = -K2 and assume the corresponding coefficient
c2 is given. [Hint: The integral equation is separable.]



Chapter 11

Green's Functions for
Wave and Heat Equations

11.1 Introduction
In Chapter 9 we had some success in obtaining Green's functions for time-inde-
pendent problems. One particularly important idea was the use of infinite space
Green's functions. Here we will analyze Green's functions for the heat and wave
equations. Problems with one, two, and three spatial dimensions will be considered.
We will derive Green's formulas for the heat and wave equation and use them
to represent the solution of nonhomogeneous problems (nonhomogeneous sources
and nonhomogeneous boundary conditions) in terms of the Green's function. We
will obtain elementary formulas for these infinite space Green's functions. For the
wave equation, we will derive the one-dimensional infinite space Green's function
by utilizing the general solution of the one-dimensional wave equation. We will
derive the infinite space Green's function for the three-dimensional wave equation
by making a well-known transformation to a one-dimensional wave equation. For
the heat equation, we will derive the infinite space Green's function by comparing
the Green's function to the appropriate solution of the initial value problem for the
infinite space heat equation solved in Chapter 10.

11.2 Green's Functions for the Wave Equation
11.2.1 Introduction
In this section we solve the wave equation with possibly time-dependent sources,

02u

at2
= c2O2u + Q(x, t), (11.2.1)

508



11.2. Wave Equation 509

subject to the two initial conditions,

u(x,0) = f(x)

(x' 0) = 9(x)

(11.2.2)

(11.2.3)

If the problem is on a finite or semi-infinite region, then in general, u(x, t) will satisfy
nonhomogeneous conditions on the boundary. We will determine simultaneously
how to solve this problem in one, two, and three dimensions. (In one dimension
V2 =

We introduce the Green's function G(x, t; xo, to) as a solution due to a concen-
trated source at x = xo acting instantaneously only at t = to:

a2G

8t2
= c2V2G + b(x - xo)6(t - to), (11.2.4)

where d(x - xo) is the Dirac delta function of the appropriate dimension. For
finite or semi-infinite problems, G will satisfy the related homogeneous boundary
conditions corresponding to the nonhomogeneous ones satisfied by u(x, t).

The Green's function is the response at x at time t due to a source located at xo
at time to. Since we desire the Green's function G to be the response only due to
this source acting at t = to (not due to some nonzero earlier conditions), we insist
that the response G will be zero before the source acts (t < to):

G(x, t; xo, to) = 0 fort < to, (11.2.5)

known as the causality principle (see Sec. 9.2).
The Green's function G(x, t; xo, to) only depends on the time after the occur-

rence of the concentrated source. If we introduce the elapsed time, T = t - to,

aT2 = CZOZG + 6(x - xo)6(T)

G=0 for T<0,
then G is also seen to be the response due to a concentrated source at x = xo at
T = 0. We call this the translation property,

G(x, t; xo, to) = G(x, t - to; xo, 0). (11.2.6)
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11.2.2 Green's Formula
Before solving for the Green's function (in various dimensions), we will show how
the solution of the nonhomogeneous wave equation (11.2.1) (with nonhomogeneous
initial and boundary conditions) is obtained using the Green's function. For time-
independent problems (nonhomogeneous Sturm-Liouville type or the Poisson equa-
tion), the relationship between the nonhomogeneous solution and the Green's func-
tion was obtained using Green's formula:

Sturm-Liouville operator [L = d/dx(p d/dx) + q]:

rb

J [uL(v) - vL(u)] dx = p I UT - vdx
n

Three-dimensional Laplacian (L = V2):

b

a

(11.2.7)

fff[uL(v) - vL(u)] d3x = § (uVv - vVu) n dS, (11.2.8)

where d3x = dV = dx dy dz. There is a corresponding result for the two-dimensional
Laplacian.

To extend these ideas to the nonhomogeneous wave equation, we introduce the
appropriate linear differential operator:

L = 22 - c2v2.

Using this notation, the nonhomogeneous wave equation (11.2.1) satisfies

L(u) = Q(x, t),

while the Green's function (11.2.4) satisfies

L(G) = 8(x - xo)5(t - to).

(11.2.9)

(11.2.10)

(11.2.11)

For the wave operator L [see (11.2.9)] we will derive a Green's formula analogous to
(11.2.7) and (11.2.8). We will use a notation corresponding to three dimensions but
will make clear modifications (when necessary) for one and two dimensions. For
time-dependent problems L has both space and time variables. Formulas analogous
to (11.2.7) and (11.2.8) are expected to exist, but integration will occur over both
space x and time t. Since for the wave operator

uL(v) - vL(u) = ua22 -
v 922

- c2(uv2V - vV2u),
at at
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x

Figure 11.2.1 Space-time boundaries for a one-
dimensional wave equation.

the previous Green's formulas will yield the new "Green's formula":

fJfJ[uL(v) - vL(u)] d3x dt

_ rri dv du
-vdt tf d3x - c2

I
t'

\I

(uVv - vVu). dS) dt,
t; /to

(11.2.12)
where fff indicates integration over the three-dimensional space (fa for one-dimen-
sional problems) and # indicates integration over its boundary (I' for one-dimen-
sional problems). The terms on the right-hand side represent contributions from
the boundaries: the spatial boundaries for all time and the temporal boundaries
(t = t; and t = t1) for all space. These space-time boundaries are illustrated (for a
one-dimensional problem) in Fig. 11.2.1.

For example, if both u and v satisfy the usual type of homogeneous boundary
conditions (in space, for all time), then # (uVv - dS = 0, but

C 7u1 3Jff(uv at)It, d x

may not equal zero due to contributions from the "initial" time t; and "final" time
tf.

11.2.3 Reciprocity
For time-independent problems, we have shown that the Green's function is sym-
metric, G(x, xo) = G(xo, x). We proved this result using Green's formula for two
different Green's functions [G(x, xl) and G(x, x2)]. The result followed because
the boundary terms in Green's formula vanished.

For the wave equation there is a somewhat analogous property. The Green's
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function G(x, t; xo, to) satisfies

02
C - c202G = b(x - xo)b(t - to), (11.2.13)

subject to the causality principle,

G(x, t; xo, to) = 0 fort < to. (11.2.14)

G will be nonzero for t > to. To utilize Green's formula (to prove reciprocity),
we need a second Green's function. If we choose it to be G(x, t; xA, tA), then the
contribution ftt.' (uVv - vVu) n dS dt on the spatial boundary (or infinity)
vanishes, but the contribution

Ifi 8v Oul111 u - vat d3x

tf

t;

on the time boundary will not vanish at both t = ti and t = t f. In time our
problem is an initial value problem, not a boundary value problem. If we let t; < to
in Green's formula, the "initial" contribution will vanish.

For a second Green's function we are interested in varying the source time t,
G(x, tl; xi, t), what we call the source-varying Green's function. From the
translation property,

G(x, ti; xi, t) = G(x, -t; x1, -ti), (11.2.15)

since the elapsed times are the same [-t - (-t1) = tl - t]. By causality, these are
zero if tl < t (or, equivalently, -t < -tl):

G(x, tl; xl, t) = 0 t > tl. (11.2.16)

We call this the source-varying causality principle. By introducing this Green's
function, we will show that the "final" contribution from Green's formula may
vanish.

To determine the differential equation satisfied by the source-varying Green's
function, we let t = -r, in which case, from (11.2.15),

G(x, ti; xi, t) = G(x, r; x1, -t1).

This is the ordinary (variable response position) Green's function with -r being the
time variable. It has a concentrated source located at x = xl when r = -ti (t = ti):

02

2 - c2Q2) G(x, ti; xi, t) = 6(x - xl)b(t - t1).(
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Since r = -t, from the chain rule 8/8-r = -8/8t, but 82/0 2 = 82/812. Thus, the
wave operator is symmetric in time, and therefore

(22
2 - c202) G(x, ti; xl, t) = L[G(x, t1; x1, t)] = b(x - xl)b(t - ti ).

(11.2.17)

A reciprocity formula results from Green's formula (11.2.12) using two Green's
functions, one with varying response time,

u = G(x, t; xo, to),

and one with varying source time,

v = G(x, tl; xi, t).

(11.2.18)

(11.2.19)

Both satisfy partial differential equations involving the same wave operator, L =
82/8t2 - c2V2. We integrate from t = -oo to t = +oo in Green's formula (11.2.12)
(i.e., t; = -oo and t f = +oo). Since both Green's functions satisfy the same
homogeneous boundary conditions, Green's formula (11.2.12) yields

//J [u5(x - xl)b(t - t1) - vb(x - xo)b(t - to)] d3x dt

\ +oo
= Jff (tj v 1 d3x. (11.2.20)

From the causality principles, u and &u/8t vanish for t < to and v and 8v/et vanish
for t > ti. Thus, the r.h.s. of (11.2.20) vanishes. Consequently, using the properties
of the Dirac delta function, u at x = xl, t = ti equals vat x = xo, t = to:

G(xi, tl; xo, to) = G(xo, ti; x1, to), (11.2.21)

the reciprocity formula for the Green's function for the wave equation. Assuming
that tl > to, the response at xi (at time ti) due to a source at xo (at time to) is the
same as the response at xo (at time t1) due to a source at xi, as long as the elapsed
times from the sources are the same. In this case it is seen that interchanging the
source and location points has no effect, what we called Maxwell reciprocity for
time-independent Green's functions.

11.2.4 Using the Green's Function
As with our earlier work, the relationship between the Green's function and the so-
lution of the nonhomogeneous problem is established using the appropriate Green's
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formula, (11.2.12). We let

u = u(x, t) (11.2.22)

v = G(x, to; xo, t) = G(xo, to; x, t) (11.2.23)

where u(x, t) is the solution of the nonhomogeneous wave equation satisfying

L(u) = Q(x, t)

subject to the given initial conditions for u(x, 0) and au/at(x, 0), and where
G(x, to; xo, t) is the source-varying Green's function satisfying (11.2.17):

L[G(x, to; xo, t)] = b(x - xo)b(t - to)

subject to the source-varying causality principle

G(x, to; xo, t) = 0 for t > to.

G satisfies homogeneous boundary conditions, but u may not. We use Green's
formula (11.2.12) with t; = 0 and t f = to+; we integrate just beyond the appearance
of a concentrated source at t = to:

to+
f If [U* t)5(x - xo)5(t - to) - G(x, to; xo, t)Q(x, t)]d3x dt

fff(u_v) Ito+
d3a - c2

fto+
dt.

0

At t = to+, v = 0 and av/at = 0, since we are using the source-varying Green's
function. We obtain, using the reciprocity formula (11.2.21),

u(xo, to) = f
to+fff

G(xo, to; x, t)Q(x, t) d3x dt

+fff
L 5t

(x, 0)G(xo, to; x, 0) - u(x, 0)G(xo, to; x, 0)J d3x

t+r rr
-c2zo I Q (u(x, t)VG(xo, to; x, t) - G(xo, to; x, t)Vu(x, t)) A dSJ dt.

Lll !!

It can be shown that to+ may be replaced by to in these limits. If the roles of x
and x0 are interchanged (as well as t and to), we obtain a representation formula
for u(x, t) in terms of the Green's function G(x, t; x0, to):

u(x, t) = f tJJf
G(x, t; xo, to)Q(xo, to) d3xo dto

0

r7[au a 1+ (xo, 0)G(x, t; xo, 0) - u(xo, 0) G(x, t; xo, 0) J d3xo
5i0- ato

11J'-c2f t [# (u(xo, to)VxoG(x, t; xo, to) - G(x, t; xo, to)Vxou(xo, to)) AdS0] dto.

(11.2.24)
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Note that V 0 means a derivative with respect to the source position. Equation
(11.2.24) expresses the response due to the three kinds of nonhomogeneous terms:
source terms, initial conditions, and nonhomogeneous boundary conditions. In par-
ticular, the initial position u(xo, 0) has an influence function

- G(x, t; xo, 0)
0

(meaning the source time derivative evaluated initially), while the influence function
for the initial velocity is G(x, t; xo, 0).

Furthermore, for example, if u is given on the boundary, then G satisfies the
related homogeneous boundary condition; that is, G = 0 on the boundary. In this
case the boundary term in (11.2.24) simplifies to

11

-c21t[
u(xo, to)Vx0G(x, t; x0, to) fi dSo] dto.

The influence function for this nonhomogeneous boundary condition is

-c2Vx0G(x, t; x0, to) n.

This is -c2 times the source outward normal derivative of the Green's function.

11.2.5 Green's Function for the Wave Equation
We recall that the Green's function for the wave equation satisfies (11.2.4) and
(11.2.5):

2G - c2V2G = 6(x - xo)6(t - to)

G(x, t; xo, to) = 0 for t < to,

(11.2.25)

(11.2.26)

subject to homogeneous boundary conditions. We will describe the Green's function
in a different way.

11.2.6 Alternate Differential Equation for the Green's
Function

Using Green's formula, the solution of the wave equation with homogeneous bound-
ary conditions and with no sources, Q(x, t) = 0, is represented in terms of the
Green's function by (11.2.24),

(xo, O)G(x, t; xo, 0) - u(xo, 0) o G(x, t; xo, 0)] d3xou(x,
t) =

JJf
I No- 5i-

From this we see that G is also the influence function for the initial condition for
the derivative Ft (,, while - is the influence function for the initial condition for
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U. If we solve the wave equation with the initial conditions u = 0 and o _
b(z - xo), the solution is the Green's function itself. Thus, the Green's function
G(x, t; xo, to) satisfies the ordinary wave equation with no sources,

eg3-c202G=0, (11.2.27)

subject to homogeneous boundary conditions and the specific concentrated initial
conditions at t = to:

G=0 (11.2.28)

8G = b(x - xo).
at

(11.2.29)

The Green's function for the wave equation can be determined directly from the ini-
tial value problem (11.2.27)-(11.2.29) rather than from its defining differential equa-
tion (11.2.4) or (11.2.26). Exercise 11.2.9 outlines another derivation of (11.2.27)-
(11.2.29) in which the defining equation (11.2.4) is integrated from to_ until to+.

11.2.7 Infinite Space Green's Function for the
One-Dimensional Wave Equation and d'Alembert's
Solution

We will determine the infinite space Green's function by solving the one-dimensional
wave equation, eS'T

C2020
= 0, subject to initial conditions (11.2.28) and (11.2.29).Azy

In Chapter 12 (briefly mentioned in Chapter 4) it is shown that there is a remarkable
general solution of the one-dimensional wave equation,

G = f (x - ct) + g(x + ct), (11.2.30)

where f (x - et) is an arbitrary function moving to the right with velocity c and
g(x + ct) is an arbitrary function moving to the left with velocity -c. It can be
verified by direct substitution that (11.2.30) solves the wave equation. For ease,
we assume to = 0 and xo = 0. Since from (11.2.28), G = 0 at t = 0, it follows
that in this case g(x) = - f (x), so that G = f (x - ct) - f (x + ct). We calcu-
late = _c]xee - c d +t . In order to satisfy the initial condition (11.2.29),

6(x) _ Oi it=o = -2c . By integration f (x) _ --LH(x) + k, where H(x) is thedx 2c
Heaviside step function (and k is an unimportant constant of integration):

G(x, t; 0, 0) = i (H(x + ct) - H(x - ct)] = j 0 1x, > ct

l 2 1xI < ct.
(11.2.31)

Thus, the infinite space Green's function for the one-dimensional wave
equation is an expanding rectangular pulse moving at the wave speed c,
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Figure 11.2.2 Green's function for the one-dimensional
wave equation.

as is sketched in Figure 11.2.2. Initially (in general, at t = to), it is located at one
point x = xo. Each end spreads out at velocity c. In general,

G(x, t; xo, to) = 2c{H[(x - x0) + c(t -to)] - H[(x - xa) - c(t - to)]}.

(11.2.32)

D'Alembert's solution. To illustrate the use of this Green's function,
consider the initial value problem for the wave equation without sources on an
infinite domain -oo < x < oo (see Sec. 9.7.1):

z
292U

8t2 c 8xz
(11.2.33)

u(x,0) = f(x) (11.2.34)

(x 0) = 9(x). (11.2.35),'ji
In the formula (11.2.24), the boundary contribution' vanishes since G = 0 for x
sufficiently large (positive or negative); see Fig. 11.2.2. Since there are no sources,
u(x, t) is caused only by the initial conditions:

u(x, t) = J o
[Y(xo)G(xt;xoO) - f (xo) o G(x, t; xo, 0)1 dxo.

We need to calculate 8/etoG(x, t; xo, 0) from (11.2.32). Using properties of the
derivative of a step function [see (9.3.32)), it follows that

0o G(x, t; xo, to) = 2 [-b (x - xo + c(t - to)) - d (x - xo - c(t - to))]

'The boundary contribution for an infinite problem is the limit as L -+ no of the boundaries of
a finite region, - L < x < L.



518 Chapter 11. Green's Functions

and thus,

(o G(x, t; xo, 0) = 2 (-5(x - xo + ct) - d(x - xo - ct)].

Finally, we obtain the solution of the initial value problem:

f(x+ct)+ f(x - ct) 1

y

z+`t

2 2c _ct
(11.2.36)

This is known as d'Alembert's solution of the wave equation. It can be obtained
more simply by the method of characteristics (see Chapter 12). There we will
discuss the physical interpretation of the one-dimensional wave equation.

Related problems. Semi-infinite or finite problems for the one-dimensional
wave equation can be solved by obtaining the Green's function by the method of
images. In some cases transform or series techniques may be used. Of greatest
usefulness is the method of characteristics.

11.2.8 Infinite Space Green's Function for the Three-
Dimensional Wave Equation (Huygens' Principle)

We solve the infinite space Green's function using (11.2.27)-(11.2.29). The solution
should be spherically symmetric and only depend on the distance p = Ix - I.

Thus, the Green's function satisfies the spherically symmetric wave equation, -
C2 v i p (p2 8G) = 0. Through an unmotivated but very well-known transformation,
G = v , the spherically symmetric wave equation simplifies,

182h c2 8 8h _ 1 82h 82h
0=P&2 -p29p(p8p-h)

.P(8t2
-c2ap2).

Thus, h satisfies the one dimensional wave equation. In chapter 12 it is shown that
the general solution of the one-dimensional wave equation can be represented by the
sum of left and right going waves moving at velocity c. Consequently, we obtain
the exceptionally significant result that the general solution of the spherically
symmetric wave equation is

G= AP-ct)+g(P+ct)
P

(11.2.37)

f (p - ct) is spherically expanding at velocity c, while g(p + ct) is spherically con-
tracting at velocity c. To satisfy the initial condition (11.2.28), G = 0 at t = 0,
g(p) _ -f (p), and hence G = 1lv-c9

of
(v+ctl . We calculate $- v v-Ct +

df (Pv+ t ]. Thus applying the initial condition (11.2.29) yields
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b(x-xo)= & It=op dd(P).

Here 6(x-xo) is a three-dimensional delta function. The function f will be constant,
which we set to zero away from p = 0. We integrate in three-dimensional space
over a sphere of radius R and obtain

r
1=-2c RIf41rp2dp=81rc JRfdp,JP dP o

after an integration by parts using f = 0 for p > 0 (one way to justify integrating
by parts is to introduce the even extensions of f for p < 0 so that ,f'R = 12 f RR )0
Thus, f = -a,b(p) where b(p) is the one-dimensional delta function that is even
and hence satisfies f R b(p) dp = i . Consequently,

G = acP [5(p - ct) - b(P + ct)]. (11.2.38)

However, since p > 0 and t > 0, the later Dirac delta function is always zero. To
be more general, t should be replaced by t - to. In this way we obtain the infinite
space Green's function for the three-dimensional wave equation:

G(x, t; xo, to) = a P [b(P - c(t - to)), (11.2.39)

where p = Ix - xoI. The Green's function for the three-dimensional wave equation
is a spherical shell impulse spreading out from the source (x = xo and t = to) at
radial velocity c with an intensity decaying proportional to p.

Huygens' principle. We have shown that a concentrated source at xo
(at time to) only influences the position x (at time t) if Ix - xol = c(t - to). The
distance from source to location equals c times the time. The point source emits a
wave moving in all directions at velocity c. At time t - to later, the source's effect is
located on a spherical shell a distance c(t - to) away. This is part of what is known
as Huygens' principle.

Example. To be more specific, let us analyze the effect of sources, Q(x, t).
Consider the wave equation with sources in infinite three-dimensional space with
zero initial conditions. According to Green's formula (11.2.24),

u(x, t) = j 5f G(x, t; xo, to)Q(xo, to) d3xo dto (11.2.40)

since the "boundary" contribution vanishes. Using the infinite three-dimensional
space Green's function,

fjju(x, t)
t Pb[P - c(t - to)]Q(xo, to) d3xo dto, (11.2.41)



520 Chapter 11. Green's Functions

where p = Ix-xoI. The only sources that contribute satisfy Ix-xoI = c(t-to). The
effect at x at time t is caused by all received sources; the velocity of propagation of
each source is c.

11.2.9 Two-Dimensional Infinite Space Green's Function
The two-dimensional Green's function for the wave equation is not as simple as the
one and three dimensional cases. In Exercise 11.2.12 the two-dimensional Green's
function is derived by the method of descent by using the three-dimensional solution
with a two-dimensional source. The signal again propagates with velocity c, so
that the solution is zero before the signal is received that is for the elapsed time
t - to < 1, where r = Ix - xol in two dimensions. However, once the signal is
received, it is largest (infinite) at the moment the signal is first received and then
the signal gradually decreases:

0 ifr > c(t - to)G(x, t; xo, to) = i 1 ifr < c(t - to)2,rc c'(t_to)2_,a

(11.2.42)

11.2.10 Summary
For the wave equation in any dimension, information propagates at velocity c. The
Green's functions for the wave equation in one and three dimensions are differ-
ent. Huygens' principle is only valid in three dimensions in which the influence
of a concentrated source is only felt on the surface of the expanding sphere prop-
agating at velocity c. In one dimension, the influence is felt uniformly inside the
expanding pulse. In two dimensions, the largest effect occurs on the circumference
corresponding to the propagation velocity c, but the effect diminishes behind the
pulse.

EXERCISES 11.2

11.2.1. (a) Show that for G(x, t; xo, to), 8G/8t = -8G/8to.
(b) Use part (a) to show that the response due to u(x, 0) = f (x) is the

time derivative of the response due to 8u/8t(x, 0) = f (x).

11.2.2. Express (11.2.24) for a one-dimensional problem.

11.2.3. If G(x, t; xo, to) = 0 for x on the boundary, explain why the corresponding
term in (11.2.24) vanishes (for any x).

11.2.4. For the one-dimensional wave equation, sketch G(x, t; xo, to) as a function
of

(a) T. with t fixed (xo, to fixed)
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(b) t with x fixed (xo, to fixed)

11.2.5. (a) For the one-dimensional wave equation, for what values of xo (x, t, to
fixed) is G(x, t; xo, to) # 0?

(b) Determine the answer to part (a) using the reciprocity property.

11.2.6. (a) Solve
82 - 2 2

8t2 = c 8x2 + Q(x, t) oo < x < 00

with u(x,0) = 0 and (x,0) = 0.

*(b) What space-time locations of the source Q(x, t) influence u at position
xl and time t1?

11.2.7. Reconsider Exercise 11.2.6 if Q(x, t) = g(x)e_ t

*(a) Solve for u(x, t). Show that the influence function for g(x) is an
outward-propagating wave.

(b) Instead, determine a particular solution of the form u(x, t) = i/i(x)e-'`t.
(See Exercise 8.3.13.)

(c) Compare parts (a) and (b).

11.2.8. *(a) In three-dimensional infinite space, solve

82u = c2V2u + g(x)e`'t-jt2

with zero initial conditions, u(z, 0) = 0 and 8u/&(x, 0) = 0. From
your solution, show that the influence function for g(x) is an outward-
propagating wave.

(b) Compare with Exercise 9.5.10.

11.2.9. Consider the Green's function G(x, t; xo, to) for the wave equation. From
(11.2.24) we easily obtain the influence functions for Q(xo, to), u(zo, 0), and
8u/8to(xo, 0). These results may be obtained in the following alternative
way:

(a) For t > to+ show that

202G2G = 2 43)(11C , ..

where (by integrating from to_ to to+)

G(x, to-,-; xo, to) = 0 (11.2.44)

6 (x, to+; xo, to) b(x - xo). (11.2.45)

From (11.2.32), briefly explain why G(x, t; xo, 0) is the influence func-
tion for 8u/8to(xo, 0).
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(b) Let q5 = 8G/8t. Show that for t > to+,

8z.0 z

82
= c-V Q (11.2.46)

O(x, to+; xo, to) = Ox - xo) (11.2.47)

a (x, to+; xo, to) = 0. (11.2.48)

From (11.2.46)-(11.2.48), briefly explain why -8G/8to(x, t; xo, 0) is
the influence function for u(xo, 0).

11.2.10. Consider
&U C2

2

8tz = 8x2
+ Q(x, t) x > 0

u(x,0) = f(x)

(x,0) = g(x)
u(0, t) = h(t).

(a) Determine the appropriate Green's function using the method of im-
ages.

*(b) Solve for u(x, t) if Q(x, t) = 0, f (x) = 0, and g(x) = 0.
(c) For what values of t does h(t) influence u(xl,tj)? Briefly interpret

physically.

11.2.11. Reconsider Exercise 11.2.10:

(a) if Q(x, t) # 0, but f (x) = 0, g(x) = 0 and h(t) = 0
(b) if f (x) # 0, but Q(x, t) = 0, g(x) = 0, and h(t) = 0
(c) if g(x) # 0, but Q(x, t) = 0, f (x) = 0, and h(t) = 0

11.2.12. Consider the Green's function G(x, t; xl, ti) for the two-dimensional wave
equation as the solution of the following three-dimensional wave equation:

u(x,0) = 0

j(x,0) = 0

Q(x,t) = 6(x - xn)6(y - yl)d(t - tl).

We will solve for the two-dimensional Green's function by this method of
descent (descending from three dimensions to two dimensions).

*(a) Solve for G(x, t; x1, t1) using the general solution of the three-dimen-
sional wave equation. Here, the source Q(x, t) may be interpreted
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either as a point source in two dimensions or a line source in three
dimensions. (Hint: f . . . dzo may be evaluated by introducing the
three-dimensional distance p from the point source,

P2 = (x - x1)2 + (y - y1)2 + (z - zo)2.]

(b) Show that G is only a function of the elapsed time t - t1 and the
two-dimensional distance r from the line source,

r2 = (x - x1)2 + (y - yt)2.

(c) Where is the effect of an impulse felt after a time -r has elapsed? Com-
pare to the one- and three-dimensional problems.

(d) Sketch G for t - t1 fixed.
(e) Sketch G for r fixed.

11.2.13. Consider the three-dimensional wave equation. Determine the response to
a unit point source moving at the constant velocity v:

Q(x, t) = S(x - Vt).

11.2.14. Solve the wave equation in infinite three-dimensional space without sources,
subject to the initial conditions

(a) u(x, 0) = 0 and i (x, 0) = g(x). The answer is called Kirchhoff's
formula, although it is due to Poisson (according to Weinberger
[1995]).

(b) u(x,0) = f(x) and g(x,0) = 0 [Hint: Use (11.2.24).]

(c) Solve part (b) in the following manner. Let v(x, t) = u(x, t), where
u(x, t) satisfies part (a). [Hint: Show that v(x, t) satisfies the wave
equation with v(x, 0) = g(x) and (x, 0) = 0 ].

11.2.15. Derive the one-dimensional Green's function for the wave equation by con-
sidering a three-dimensional problem with Q(x,t) = S(x - x1)S(t - t1).
[Hint: Use polar coordinates for the yo, zo integration centered at yo = y,
zo=z.]

11.3 Green's Functions for the Heat Equation
11.3.1 Introduction
We are interested in solving the heat equation with possibly time-dependent sources,

8u
= k02u + Q(x, t), (11.3.1)

8t
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subject to the initial condition u(x, 0) = g(x). We will analyze this problem in
one, two, and three spatial dimensions. In this subsection we do not specify the
geometric region or the possibly nonhomogeneous boundary conditions. There can
be three nonhomogeneous terms: the source Q(x, t), the initial condition, and the
boundary conditions.

We define the Green's function G(x, t; xo, to) as the solution of

aG = kV2G + 5(x - xo)d(t - to)
at

(11.3.2)

on the same region with the related homogeneous boundary conditions. Since the
Green's function represents the temperature response at x (at time t) due to a
concentrated thermal source at xo (at time to), we will insist that this Green's
function is zero before the source acts:

G(x, t; xo, to) = 0 for t < to, (11.3.3)

the causality principle.
Furthermore, we show that only the elapsed time t - to (from the initiation time

t = to) is needed:

G(x, t; xo, to) = G(x, t - to; x0, 0), (11.3.4)

the translation property. Equation (11.3.4) is shown by letting T = t - to, in
which case the Green's function G(x, t; xo, to) satisfies

aG
= kV2 G + 5(x - xo)b(T) with G=O for T < 0.aT

This is precisely the response due to a concentrated source at x = xo at T = 0,
implying (11.3.4).

We postpone until later subsections the actual calculation of the Green's func-
tion. For now, we will assume that the Green's function is known and ask how to
represent the temperature u(x, t) in terms of the Green's function.

11.3.2 Non-Self-Adjoint Nature of the Heat Equation
To show how this problem relates to others discussed in this book, we introduce the
linear operator notation,

L = a - kV2, (11.3.5)

called the heat or diffusion operator. In previous problems the relation between
the solution of the nonhomogeneous problem and its Green's function was based
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on Green's formulas. We have solved problems in which L is the Sturm-Liouville
operator, the Laplacian, and most recently the wave operator.

The heat operator L is composed of two parts. V2 is easily analyzed by Green's
formula for the Laplacian [see (11.2.8)]. However, as innocuous as a/at appears, it
is much harder to analyze than any of the other previous operators. To illustrate
the difficulty presented by first derivatives, consider

L = a.

For second-order Sturm-Liouville operators, elementary integrations yielded Green's
formula. The same idea for L = a/at will not work. In particular,

1 [uL(v) - vL(u)] dt = / I u5 - v5 ) dt

cannot be simplified. There is no formula to evaluate f [uL(v) - vL(u)) dt. The
operator L = a/at is not self-adjoint. Instead, by standard integration by parts,

and thus

b fbOvf uL(v) dt - udt =
a

b
rb-/ vOtdt,
0

b

a

For the operator L = a/at we introduce the adjoint operator,

(11.3.6)

(11.3.7)

From (11.3.6),

f6

J [uL`(v) - vL(u)] dt = -uv
a

This is analogous to Green's formula.'

11.3.3 Green's Formula
We now return to the nonhomogeneous heat problem:

L(u) = Q(x, t)

b

a

(11.3.8)

(11.3.9)

'For a first-order operator, typically there is only one "boundary condition," u(a) = 0. For the
integrated-by-parts term to vanish, we must introduce an adjoint boundary condition, v(b) = 0.



526 Chapter 11. Green's Functions

L(G) = 6(x - xo)6(t - to),

where

L = at -k02.

(11.3.10)

(11.3.11)

For the nonhomogeneous heat equation, our results are more complicated since we
must introduce the adjoint heat operator,

L'= - a -kV2.at

By a direct calculation

uL' (v) - vL(u) = -uaatv -vOnat + k(vV2u - u02v),

and thus

fffftuL*(v) - vL(u)) d3x dt

f
tI rti

uvIti d3x + k / (vVu - dS dt.
Jt;

(11.3.12)

(11.3.13)

We have integrated over all space and from some time t = t; to another time t = t f.
We have used (11.3.6) for the ,9/& terms and Green's formula (11.2.8) for the V2
operator. The "boundary contributions" are of two types, the spatial part (over

3) and a temporal part (at the initial t; and final t f times). If both u and v
satisfy the same homogeneous boundary condition (of the usual types), then the
spatial contributions vanish,

#
Equation (11.3.13) will involve initial contributions (at t = t;) and final contribu-
tions (t = t f).

3For infinite or semi-infinite geometries, we consider finite regions in some appropriate limit.
The boundary terms at infinity will vanish if u and v decay sufficiently fast.
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11.3.4 Adjoint Green's Function
In order to eventually derive a representation formula for u(x, t) in terms of the
Green's function G(x, t; xo, to), we must consider summing up various source times.
Thus, we consider the source-varying Green's function,

G(x, t1; xi, t) = G(x, -t; xi, -ti)

where the translation property has been used. This is precisely the procedure we
employed when analyzing the wave equation (see (11.2.15)]. By causality, these are
zero ift>t1:

G(x, ti; x1, t) = 0 for t > t1. (11.3.14)

Letting r = -t, we see that the source-varying Green's function G(x, ti; x1, t)
satisfies

N - k02 G(x, tl i xl, t)_ b(x - x1)b(t - tl), (11.3.15)

as well as the source-varying causality principle (11.3.14). The heat operator L does
not occur. Instead, the adjoint heat operator L` appears:

L'(G(x,ti;xiit)] =b(x-xi)b(t-t1). (11.3.16)

We see that G(x, t1i x1, t) is the Green's function for the adjoint heat operator
(with the source-varying causality principle). Sometimes it is called the adjoint
Green's function, G' (x, t; xi, ti ). However, it is unnecessary to ever calculate or
use it since

G*(x, t; x1, t1) = G(x, t1; x1, t) (11.3.17)

and both are zero for t > t1.

11.3.5 Reciprocity
As with the wave equation, we derive a reciprocity formula. Here, there are some
small differences because of the occurrence of the adjoint operator in Green's for-
mula, (11.3.13). In (11.3.13) we introduce

u = G(x, t; xo, to) (11.3.18)

v = G(x, t,; xi, t), (11.3.19)

the latter having been shown to be the source-varying or adjoint Green's function.
Thus, the defining properties for u and v are

L(u) = b(x - xo)b(t - to) L'(v) = 6(x - x1)b(t - t1)
u = 0 fort < to v = 0 fort > t1.
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We integrate from t = -oo to t = +oo [i.e., t; = -oc and t f = +oo in (11.3.13)],
obtaining

/ 'J/ [G(x, t; xo, to)b(x - xl)b(t - t,) - G(x, ti; x1, t)b(x - xo)b(t - to)] d3x dt
,o

G(x, t; xo, to)G(x, t1; xi, t)
t=oo

d3x,
t=-oo

since u and v both satisfy the same homogeneous boundary conditions, so that

(vVu - uVv) n dS

vanishes. The contributions also vanish at t = ±oo due to causality. Using the
properties of the Dirac delta function, we obtain reciprocity:

G(xi, ti; xo, to) = G(xo, ti; x1, to). (11.3.20)

As we have shown for the wave equation [see (11.2.21)], interchanging the source
and location positions does not alter the responses if the elapsed times from the
sources are the same. In this sense the Green's function for the heat (diffusion)
equation is symmetric.

11.3.6 Representation of the Solution
Using Green's Functions

To obtain the relationship between the solution of the nonhomogeneous problem and
the Green's function, we apply Green's formula (11.3.13) with u satisfying (11.3.1)
subject to nonhomogeneous boundary and initial conditions. We let v equal the
source-varying or adjoint Green's function, v = G(x, to; xo, t). Using the defining
differential equations (11.3.9) and (11.3.10), Green's formula (11.3.13) becomes

to+ rrrf //f [ub(x - xo)b(t - to) - G(x, to; xo, t)Q(x, t)] d3x dt

u(x, 0)G(x, t0; x0, 0)d3x

rto+ r
0+k / ¢ [G(x, to; xo, t)Du - uVG(x, to; xo, dS dt,

since G = 0 for t > to. Solving for u, we obtain

u(xo, to) = It'fG(x, to; xo, t)Q(x, t) d3x dt
0

, 0)G(x, to; xo, 0) d3x

fto ff
+k / # [G(x, to; xo, t)Vu - uVG(x, to; xo, t)] T1 dS dt.
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It can be shown that the limits to. may be replaced by to. We now (as before)
interchange x with xo and t with to. In addition, we use reciprocity and derive

u(x,t) = I
c G(x,

t; xo, to)Q(xo, to) d3xo dto
0

G(z, t; xo, 0)u(xo, 0) d3xo

re
+ k f Qj IG(x, t; xo, to) Vxou - u(xo, to)V OG(x, t; xo, to)) A dSo dto.

(11.3.21)

Equation (11.3.21) illustrates how the temperature u(x, t) is affected by the three
nonhomogeneous terms. The Green's function G(x, t; xo, to) is the influence func-
tion for the source term Q(xo, to) as well as for the initial temperature distribution
u(xo, 0) (if we evaluate the Green's function at to = 0, as is quite reasonable).
Furthermore, nonhomogeneous boundary conditions are accounted for by the term
k fo # (GVxou - uVx0G) A dSo dto. Equation (11.3.21) illustrates the causality
principle; at time t, the sources and boundary conditions have an effect only for
to < t. Equation (11.3.21) generalizes the results obtained by the method of eigen-
function expansion in Sec. 8.2 for the one-dimensional beat equation on a finite
interval with zero boundary conditions.

Example. Both u and its normal derivative seem to be needed on the boundary.
To clarify the effect of the nonhomogeneous boundary conditions, we consider an
example in which the temperature is specified along the entire boundary:

u(x, t) = uB(x, t) along the boundary.

The Green's function satisfies the related homogeneous boundary conditions, in this
case

G(x, t; xo, to) = 0 for all x along the boundary.

Thus, the effect of this imposed temperature distribution is

e-k f## uB (xo, to)V xoG(x, t; xo, to) is dSo dto.
Jo

The influence function for the nonhomogeneous boundary conditions is minus k
times the normal derivative of the Green's function (a dipole distribution).

One-dimensional case. It may be helpful to illustrate the modifications
n&essary for one-dimensional problems. Volume integrals d3xo become one-
dimensional integrals fa dxo. Boundary contributions on the closed surface ffi dSo
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become contributions at the two ends x = a and x = b. For example, if the
temperature is prescribed at both ends, u(a,t) = A(t) and u(b,t) = B(t), then
these nonhomogeneous boundary conditions influence the temperature u(x, t):

-kjc ¢p ua(xo, to)V 0G(x, t; xo, to) A dSo dto becomes

k [B(to).9_(x, t; b, to) - A(to) axo (x, t; a, to) J dto._ f c
1

0

This agrees with results that could be obtained by the method of eigenfunction
expansions (Chapter 9) for nonhomogeneous boundary conditions.

11.3.7 Alternate Differential Equation for the Green's
Function

Using Green's formula, we derived (11.3.21) which shows the influence of sources,
nonhomogeneous boundary conditions, and the initial condition for the heat equa-
tion. The Green's function for the heat equation is not only the influence function
for the sources, but also the influence function for the initial condition. If there are
no sources, if the boundary conditions are homogeneous, and if the initial condition
is a delta function, then the response is the Green's function itself. The Green's
function G(x, t; xo, to) may be determined directly from the diffusion equation with
no sources:

= kV2G,at- (11.3.22)

subject to homogeneous -boundary conditions and the concentrated initial conditions
at t = to:

G = o(x - xo), (11.3.23)

rather than its defining differential equation (11.3.2).

11.3.8 Infinite Space Green's Function for the Diffusion
Equation

If there are no boundaries and no sources, - = kV2u with initial conditions
u(x, 0) = f (x), then (11.3.21) represents the solution of the diffusion equation
in terms of its Green's function:

u(x,
t) = J f f u(xo, 0)G(x, t; xo, 0) d3xo = fJ J f (xo)G(x, t; xo, 0) d3xo.

(11.3.24)
Instead of solving (11.3.22), we note that this initial value problem was analyzed
using the Fourier transform in Chapter 10, and we obtained the one-dimensional
solution (10.4.6):
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u(x, t) = f
oo

f (xo) 1
e-(x-xo)2/4ktdxo. (11.3.25)

,0 4irkt
By comparing (11.3.24) and (11.3.25), we are able to determine the one-dimensional
infinite space Green's function for the diffusion equation;

C(x,t;xo,0) =
4nkt

1 e-(x-xo)2/4ke (11.3.26)

Due to translational invariance, the more general Green's function involves the
elapsed time:

G(x, t; xo, to) = 1 e-(x-xo)2/4k(t-to)
74,rk(t-to)

(11.3.27)

For n-dimensions (n = 1, 2, 3), the solution was also obtained in Chapter 10
(10.6.95), and hence the n-dimensional infinite space Green's function for
the diffusion equation is

G(x, t; xo, to) =(-(-]"le-Ix-xol'/4k(t-to)
4,,k t-to (11.3.28)

This Given's function shows the symmetry of the response and source positions as
long as the elapsed time is the same. As with one-dimensional problems discussed
in Sec. 10.4, the influence of a concentrated heat source diminishes exponentially as
one moves away from the source. For small times (t near to) the decay is especially
strong.

Example. In this manner we can obtain the solution of the heat equation with
sources on an infinite domain:

au
= kV2U + Q(x, t)

8t

u(x,0) = f(x)
According to (11.3.21) and (11.3.28), the solution is

I

(11.3.29)

U(x,
t) =

L
t r1 e.

ao o {41rk(t - to)
0o n/2

+ e-( X- xo)2/4kef(xo) dnxo.,f. 1

4a, )

(11.3.30)
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If Q(x, t) = 0, this simplifies to the solution obtained in Chapter 10 using Fourier
transforms directly without using the Green's function.

11.3.9 Green's Function for the Heat Equation
(Semi-Infinite Domain)

In this subsection we obtain the Green's function needed to solve the nonhomoge-
neous heat equation on the semi-infinite interval in one dimension (x > 0), subject
to a nonhomogeneous boundary condition at x = 0:

PDE: X= kO2 +Q(-T1 t

BC:

IC:

u(0, t) = A(t)

u(x,0) = f(x).

Equation (11.3.21) can be used to determine u(x, t) if we can obtain the Green's
function. The Green's function G(x, t; xo, to) is the response due to a concentrated
source:

= k 8 G + a(x - xo)d(t - to).

The Green's function satisfies the corresponding homogeneous boundary condition,

G(O, t; xo, to) = 0,

and the causality principle,

G(x, t; xo, to) = 0 fort < to.

The Green's function is determined by the method of images (see Sec. 9.5.8).
Instead of a semi-infinite interval with one concentrated positive source at x = xo,
we consider an infinite interval with an additional negative source (the Image source)
located at x = -xo. By symmetry the temperature G will be zero at x = 0 for all
t. The Green's function is thus the sum of two infinite space Green's functions,

G(x, t; xo, to) =
4ak(t - to) IeXp I 4k(t

z
to),

(x + xo)2
exp- [-4k(t _ to)l } .

(11.3.34)

We note that the boundary condition at x = 0 is automatically satisfied.
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11.3.10 Green's Function for the Heat Equation
(on a Finite Region)

For a one-dimensional rod, 0 < x < L, we have already determined in Chapter 9 the
Green's function for the heat equation by the method of eigenfunction expansions.
With zero boundary conditions at both ends,

00 2G(x, t; xo, to) = E

L

sin nix sin n
L ° e-k(na/L)'(t-to). (11.3.35)

We can obtain an alternative representation for this Green's function by utilizing
the method of images. By symmetry (see Fig. 11.3.1) the boundary conditions at
x = 0 and at x = L are satisfied if positive concentrated sources are located at
x = xo + 2Ln and negative concentrated sources are located at x = -xo + 2Ln (for
all integers n, -oo < n < oo). Using the infinite space Green's function, we have
an alternative representation of the Green's function for a one-dimensional rod:

°°
G x t x o,

1

je [ (x - xo - 2Ln)z 1
( o o)

47rk(t - to) n,
xp 4k(t - to) J

- 2Ln)l
exp -{..(x+xo

4k(t-to) ,}.

A
-2L -L I

I

I

x=0 x=L

U

2L 3L

V .

Figure 11.3.1 Multiple Image sources for the Green's
function for the heat equation for a finite one-
dimensional rod.

(11.3.36)

Each form has its own advantage. The eigenfunction expansion, (11.3.35), is an
infinite series which converges rapidly if (t - to)k/L2 is large. It is thus most useful
fort*to. In fact, ift>to,

G(x, t; xo, to) -- L I. L in L e-k(./L)'(t-t°).

However, if the elapsed time t - to is small, then many terms of the infinite series
are needed.
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Using the method of images, the Green's function is also represented by an infi-
nite series, (11.3.36). The infinite space Green's function (at fixed t) exponentially
decays away from the source position,

1 2 ALI.-c )-- ) /
4irk(t - to)

xoe o .%X

It decays in space very sharply if t is near to. If t is near to then only sources near
the response location x are important; sources far away will not be important (if
t is near to); see Fig. 11.3.1. Thus, the image sources can be neglected if t is near
to (and if x or xo is neither near the boundaries 0 or L, as is explained in Exercise
11.3.8). As an approximation,

IG(x, t; x0, t0) e-(z-yo) /4k(e-to).

4irk(t - to)

if t is near to the Green's function with boundaries can be approximated
(in regions away from the boundaries) by the infinite space Green's function.
This means that for small times the boundary can be neglected (away from the
boundary).

To be more precise, the effect of every image source is much smaller than the
actual source if L2/k(t - to) is large. This yields a better understanding of a "small
time" approximation. The Green's function may be approximated by the infinite
space Green's function if t - to is small (i.e., if t - to << L2/k, where L2/k is a ratio
of physically measurable quantities). Alternatively, this approximation is valid for
a "long rod" in the sense that L >> k(t - to).

In summary, the image method yields a rapidly convergent infinite series for the
Green's function if L2/k(t - to) >> 1, while the eigenfunction expansion yields a
rapidly convergent infinite series representation of the Green's function if L2/k(t -
to) << 1. If L2/k(t - to) is neither small nor large, then the two expansions are
competitive, but both require at least a moderate number of terms.

EXERCISES 11.3

11.3.1. Show that for the Green's functions defined by (11.3.2) with (11.3.3)

G'(x,t;xo,to) = G(xo,to;x,t).

11.3.2. Consider

(a)

(b)

*(c)

2

= k2 + Q(x, t) x > 0

u(0, t) = A(t)
u(x.0) = f(x).

Solve if A(t) = 0 and f (x) = 0. Simplify this result if Q(x, t) = 1.
Solve if Q(x, t) = 0 and A(t) = 0. Simplify this result if f (x) = 1.
Solve if Q(x, t) = 0 and f (x) = 0. Simplify this result if A(t) = 1.
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*11.3.3. Determine-the Green's function for

au

at

2

= k5- +Q(x,t) x > 0

»z (0, t) = A(t)
u(x,0) = f(x)

11.3.4. Consider (11.3.34), the Green's function for (11.3.31). Show that the Green's
function for this semi-infinite problem may beapprdximatedby the Green's
function for the infinite problem if

xxo
k(t - to) >> 1 (i.e., t - to small).

Explain physically why this approximation fails if x or xo is near the bound-
ary.

11.3.5. Consider
2

at kax2 + Q(x, t)

u(x,0) = f(x)

(L, t) = B(t).

(a) Solve for the appropriate Green's function using the method of eigcn-
function expansion.

(b) Approximate the Green's function of part (a). Under what conditions
is your approximation valid?

(c) Solve for the appropriate Green's function using the infinite space
Green's function.

(d) Approximate the Green's function of part (c). Under what conditions
is your approximation valid?

(e) Solve for u(x, t) in terms of the Green's function.

11.3.6. Determine the Green's function for the heat equation subject to zero bound-
ary conditions at x = 0 and x = L by applying the method of eigenfunction
expansions directly to the defining differential equation. [Hint The answer
is given by (11.3.35).]



Chapter 12

The Method of
Characteristics
for Linear and Quasilinear
Wave Equations

12.1 Introduction
In previous chapters, we obtained certain results concerning the one-dimensional
wave equation, u 02u2

= C (12.1.1)

subject to the initial conditions
5j2,ate

u(x,0) = f(x) (12.1.2)

(x,0) = g(x). (12.1.3)

For a vibrating string with zero displacement at x = 0 and x = L, we obtained
a somewhat complicated Fourier sine series solution by the method of separation of
variables in Chapter 4:

u(x, t) _
E

sin _Lx I an cas nL + bn sin nL ) . (12.1.4)
n=1

Further analysis of this solution [see (4.4.14) and Exercises 4.4.7 and 4.4.8] shows
that the solution can be represented as the sum of a forward- and backward-moving
wave. In particular,

f(x-ct)+f(x+ct) 1 x+cc
2u(x,t) = +

2c
J 9(xo) moo, (12.1.5)

536
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where f (x) and g(x) are the odd periodic extensions of the functions given in (12.1.2)
and (12.1.3). We also obtained (12.1.5) in Chapter 11 for the one-dimensional wave
equation without boundaries, using the infinite space Green's function.

In this chapter we introduce the more powerful method of characteristics to
solve the one-dimensional wave equation. We will show in general that u(x, t) =
F(x - ct) + G(x + ct), where F and G are arbitrary functions. We will show that
(12.1.5) follows for infinite space problems. Then we will discuss modifications
needed to solve semi-infinite and finite domain problems. In Sec. 12.6, the method
of characteristics will be applied to quasilinear partial differential equations. Traffic
flow models will be introduced in Sec. 12.6.2, and expansion waves will be discussed
(Sec. 12.6.3). When characteristics intersect, we will show that a shock wave must
occur, and we will derive an expression for the shock velocity. The dynamics of
shock waves will be discussed in considerable depth (Sec. 12.6.4). In Sec. 12.7, the
method of characteristics will be used to solve the eikonal equation, which we will
derive from the wave equation.

12.2 Characteristics for First-Order
Wave Equations

12.2.1 Introduction
The one-dimensional wave equation can be rewritten as

02u
9 O2u- 0= .&z 9X2

A short calculation shows that it can be "factored"\ in two ways:

C&+cFx) { -c i =0

(5ai -c8x1 I +cex) =0,

since the mixed second-derivative terms
\\\

vanish in both. If we let

au 8uW=
- - cOx

8u 8uV= +c
at ox'

(12.2.1)

(12.2.2)

(12.2.3)
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we see that the one-dimensional wave equation (involving second derivatives) yields
two first-order wave equations:

+cOx =0 (12.2.4)

(12.2.5)

12.2.2 Method of Characteristics for First-Order
Partial Differential Equations

We begin by discussing either one of these simple first-order partial differential
equations:

a Ox+c=0. (12.2.6)

The methods we will develop will be helpful in analyzing the one-dimensional wave
equation (12.2.1). We consider the rate of change of w(x(t),t) as measured by a
moving observer, x = x(t). The chain rule' implies that

d aw dx awd w(x(t), t) = at + dt ax
(12.2.7)

The first term Ow/at represents the change in w at the fixed position, while the
term (dx/dt)(aw/ax) represents the change due to the fact that the observer moves
into a region of possibly different w. Compare (12.2.7) with the partial differential
equation for w, equation (12.2.6). It is apparent that if the observer moves with
velocity c, that is, if

(12.2.8)

then

dw
dt=0.

(12.2.9)

Thus, w is constant. An observer moving with this special speed c would measure
no changes in w.

'Here d/dt as measured by a moving observer is sometimes called the substantial derivative.
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Characteristics. In this way, the partial differential equation (12.2.6) has
been replaced by two ordinary differential equations, (12.2.8) and (12.2.9). Inte-
grating (12.2.8) yields

x=ct+xo, (12.2.10)

the equation for the family of parallel characteristics2 of (12.2.6), sketched in
Fig. 12.2.1. Note that at t = 0, x = xo. w(x, t) is constant along this line (not
necessarily constant everywhere). w propagates as a wave with wave speed c
[see (12.2.8)].

xo

Figure 12.2.1 Characteristics for the first-order
wave equation.

General solution. If w(x, t) is given initially at t = 0,

w(x,0) = P(x), (12.2.11)

then let us determine w at the point (x, t). Since w is constant along the charac-
teristic,

w(x, t) = W(xo, 0) = P(xo).
Given x and t, the parameter is known from the characteristic, xo = x - et, and
thus

w(x, t) = P(x - ct), (12.2.12)

which we call the general solution of (12.2.6).
We can think of P(x) as being an arbitrary function. To verify this, we substitute

(12.2.12) back into the partial differential equation (12.2.6). Using the chain rule,

8w dP O(x - ct) dP
8x d(x - ct) 8x d(x - ct)

and
8w dP 8(x - ct) dP
at d(x - ct) 8t _ -cd(x - ct).

2A characteristic is a curve along which a PDE reduces to an ODE.
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Thus, it is verified that (12.2.6) is satisfied by (12.2.12). The general solution of
a first-order partial differential equation contains an arbitrary function, while the
general solution to ordinary differential equations contains arbitrary constants.

Example. Consider

subject to the initial condition

0W &W+28 =0,

0 x<0
w(x,0) 4x 0<x<1

10 x>1.

We have shown that w is constant along the characteristics x - 2t = constant,
keeping its same shape moving at velocity 2 (to the right). The important charac-
teristics, x = 2t + 0 and x = 2t + 1, as well as a sketch of the solution at various
times, appear in Fig. 12.2.2. w(x, t) = 0 if x > 2t + 1 or if x < 2t. Otherwise, by
shifting,

w(x, t) = 4(x - 2t) if 2t < x < 2t + 1.

To derive this analytic solution, we use the characteristic that starts at x = xo:

x = 2t + xo.

Along this characteristic, w(x, t) is constant. If 0 < xo < 1, then

w(x, t) = w(xo, 0) = 4xo = 4(x - 2t),

as before. This is valid if 0 < x0 < 1 or, equivalently, 0 < x - 2t < 1.

Figure 12.2.2 Propagation for the first-order wave equa-
tion.

Same shape. In general, w(x, t) = P(x - ct). At fixed t, the solution of the
first-order wave equation is the same shape shifted a distance ct (distance = velocity
times time). We illustrate this in Fig. 12.2.3.

Example to solve initial value problem and find general
solution. Consider

+ 3t2 8x = 2tw, (12.2.13)
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x=0 x = ctl

Figure 12.2.3 Shape invariance for the first-order wave equa-
tion.

subject to the initial conditions w(x, 0) = P(x). By the method of characteristics,

if d = 3t2,

dw

(12.2.14)

then dt = 2tw. (12.2.15)

The characteristics are not straight lines but satisfy

x = t3 + x0, (12.2.16)

where the characteristics start (t = 0) at x = xo. Along the characteristics, by
integrating the ODE (12.2.15), we obtain

w = ket2. (12.2.17)

To satisfy the initial condition at x0, w(xo, 0) = P(xo), we have P(x0) = k, so
that the solution of the initial value problem by the method of characteristics is

w(x, t) = P(xo)et2 = P(x - t3)e°2. (12.2.18)

Since P(x - t3) is an arbitrary function of (x - t3), (12.2.18) is the gen-
eral solution of the partial differential equation (12.2.13). The method
of characteristics can be used to determine the general solution in a
slightly different way. The arbitrary constants that solve the ordinary
differential equations are arbitrary functions of each other. In this way,
k in (12.2.17) is an arbitrary function of x0 = x - t3, and we obtain directly from
(12.2.17) the general solution of this partial differential equation:

w(x,t) = f(x - t3)et2, (12.2.19)

where f is an arbitrary function of x - t3. The initial value problem could now be
solved from the general solution (12.2.19).
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Summary. The method of characteristics solves the first-order wave equation
(12.2.6). In Sections 12.3-12.5, this method is applied to solve the wave equation
(12.1.1). The reader may proceed directly to Sec. 12.6, where the method of char-
acteristics is described for quasilinear partial differential equations.

EXERCISES 12.2

12.2.1. Show that the wave equation can be considered as the following system of
two coupled first-order partial differential equations:

au au

at - c ax = w

* 12.2.2. Solve
aw - 3 aw = 0 with w(x, 0) = cos x.

12.2.3. Solve

-57-+4-5
t

x = 0 with w(0, t) = sin 3t.

12.2.4. Solve

et + c = 0 (c > 0)

for x > 0 and t > 0 if

w(x,0) = f(x) x>0
w(0, t) = h(t) t > 0.

12.2.5. Solve using the method of characteristics (if necessary, see Sec. 12.6):

(a) + c = e2Z with w(x,0) = f(x)

*(b) 0' + xO = 1 with w(x, 0) = f (x)
(c) + t8 = 1 with w(x, 0) = f (x)

+3t =w with w(x,0) = f(x)*(d) 19 iT _5_X

*12.2.6. Consider (if necessary, see Sec. 12.6):

au au
8t

+ 2u
ax

= 0 with u(x, 0) = f (x).

Show that the characteristics are straight lines.

12.2.7. Consider Exercise 12.2.6 with

11 x<0
u(x, 0) = f (x) = 1 + x/L 0 < x < L

2 x > L.
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(a) Determine equations for the characteristics. Sketch the characteristics.

(b) Determine the solution u(x, t). Sketch u(x, t) for t fixed.

*12.2.8. Consider Exercise 12.2.6 with

u(x,0) = f(x) = r 1 x < 0

l 2 x>0.
Obtain the solution u(x, t) by considering the limit as L -+ 0 of the charac-
teristics obtained in Exercise 12.2.7. Sketch characteristics and u(x, t) for t
fixed.

12.2.9. As motivated by the analysis of a moving observer, make a change of inde-
pendent variables from (x, t) to a coordinate system moving with velocity
c, (l;, t'), where t; = x - ct and t' = t, in order to solve (12.2.6).

12.2.10. For the first-order "quasilinear" partial differential equation

aOx +b L9U
= c,

where a, b, and c are functions of x, y and u, show that the method of
characteristics (if necessary, see Sec. 12.6) yields

dx dy du

a b c

12.2.11. Do any of the following exercises from Sec. 12.6: 12.6.1, 12.6.2, 12.6.3,
12.6.8, 12.6.10, 12.6.11.

12.3 Method of Characteristics
for the One-Dimensional Wave Equation

12.3.1 General Solution
From the one-dimensional wave equation,

at2 - c2 a 22 = 0, (12.3.1)

we derived two first-order partial differential equations, 8w/8t + c8w/8x = 0 and
8v/8t - cOv/8x = 0, where w = 8u/8t - cOu/8x and v = 8u/8t + 69U/Ox. We
have shown that w remains the same shape moving at velocity c:

W = - c = P(x - ct). (12.3.2)
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The problem for v is identical (replace c by -c). Thus, we could have shown that
v is translated unchanged at velocity -c:

V =

5
+ cT = Q(x + CO. (12.3.3)

By combining (12.3.2) and (12.3.3) we obtain, for example,

49U OU
2 = P(x - ct) + Q(x + ct) and 2cx = Q(x + ct) - P(x - ct),

and thus

u(x, t) = F(x - ct) + G(x + ct), (12.3.4)

where F and G are arbitrary functions (-cF' = 2P and cG' = 1Q). This result
was obtained by d'Alembert in 1747. Equation (12.3.4) Is a remarkable result
as it is a general solution of the one-dimensional wave equation, (12.3.1),
a very nontrivial partial differential equation.

The general solution is the sum of F(x - ct), a wave of fixed shape moving to
the right with velocity c, and G(x + ct), a wave of fixed shape moving to the left
with velocity -c. The solution may be sketched if F(x) and G(x) are known. We
shift F(x) to the right a distance ct and shift G(x) to the left a distance ct and add
the two. Although each shape is unchanged, the sum will in general be a shape that
is changing in time. In Sec. 12.3.2 we will show how to determine F(x) and G(x)
from initial conditions.

Characteristics. Part of the solution is constant along the family of char-
acteristics x - ct = constant, while a different part of the solution is constant along
x + ct = constant. For the one-dimensional wave equation, (12.3.1), there are two
families of characteristic curves, as sketched in Fig. 12.3.1.

- ct=a

x
a 0

Figure 12.3.1 Characteristics for the one-dimensional wave
equation.

Alternate derivation of the general solution. We may derive the
general solution of the wave equation, by making a somewhat unmotivated change
of variables to "characteristic coordinates" £ = x - ct and r) = x + ct moving with
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the velocities ±c. Using the chain rule, first derivatives are given by i = a + a
and at = -ca + ca. Substituting the corresponding second derivatives into the
wave equation (12.3.1) yields

492U a2u 82u a2u .92U 492U

CZ 2
0772)

-+2-
9401q + 97i2

).

After canceling the terms
c2(,9+ 92U),

we obtain

2 a2u _4c
aean

- 0.

By integrating with respect to l; (fixed 17), we obtain = g(77), where g(77) is an
arbitrary function of 77. Now integrating with respect to q (fixed {) yields the
general solution (12.3.4) u = G(77) = F(x - ct) + G(x + ct), where F and G
are arbitrary functions.

12.3.2 Initial Value Problem (Infinite Domain)
In Sec. 12.3.1 we showed that the general solution of the one-dimensional wave
equation is

u(x, t) = F(x - ct) + G(x + ct). (12.3.5)

Here we will determine the arbitrary functions in order to satisfy the initial condi-
tions:

u(x,0) = f(x) -00<x<00 (12.3.6)

Ou
(x, 0) = g(x)

These initial conditions imply that

-00<5<00.

f (x) = F(x) + G(x)
g(x) dF dG

c - dx + dx

(12.3.7)

(12.3.8)

(12.3.9)

We solve for G(x) by eliminating F(x); for example, adding the derivative of (12.3.8)
to (12.3.9) yields

dG 1 c#f g(x)
dx

_
2 dx c

By integrating this, we obtain
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G(x) = 2 f (x) + 2c j 9(x) CM + k (12.3.10)

?(x) = 2 f (x) - 2c f = g(x) d
0

- k, (12.3.11)

where the latter equation was obtained from (12.3.8). k can be neglected since
u(x, t) is obtained from (12.3.5) by adding (12.3.10) and (12.3.11) (with appropriate
shifts).

Sketching technique. The solution u(x, t) can be graphed based on
(12.3.5) in the following straightforward manner:

1. Given f (x) and g(x), obtain the graphs of

2 f (x) and
1 fz

the latter by integrating first.
2. By addition and subtraction, form F(x) and G(x); see (12.3.10) and (12.3.11).
3. T anslate (shift) F(x) to the right a distance ct and G(x) to the left ct.
4. Add the two shifted functions, thus satisfying (12.3.5).

Initially at rest. If a vibrating string is initially at rest [8u/8t (x, 0) _
g(x) = 01, then from (12.3.10) and (12.3.11) F(x) = G(x) = if (x). Thus,

u(x, t) = 2 [f (x - ct) + f (x + ct)J. (12.3.12)

The initial condition u(x, 0) = f (x) splits into two parts; half moves to the left and
half to the right.

Example. Suppose that an infinite vibrating string is initially stretched into
the shape of a single rectangular pulse and is let go from rest. The corresponding
initial conditions are

u(x,0) = f(x) = { 1 [xI < h
0 jx[ > h.

and
alu

(x,0) = g(x) = 0.

The solution is given by (12.3.12). By adding together these two rectangular pulses,
we obtain Fig. 12.3.2. The pulses overlap until the left end of the right-moving one
passes the right end of the other. Since each is traveling at speed c, they are moving
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10

10

t

-h

-h-ct -h+ct ; h-ct h+ct

x

h

1/2

-h - ct h-ct -h+ct h+ct

t=0

0<t<h/c

t > h/c

Figure 12.3.2 Initial value problem for the one-dimensional
wave equation.
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t

x+d=h
x+d= -h

x - ct= -h
x- ct = h

F=O F= 1/2 (x0,10)
F=O NG =1/2 G=O F=O1,' 1G=O 1/2 11 1, C=0- - - - - - - - - - t-, n /c

F=G=O -h
_x

F=G=1/2 h F=G=O

Figure 12.3.3 Method of characteristics for the one-
dimensional wave equation.

apart at velocity 2c. The ends are initially a distance 2h apart, and hence the time
at which the two pulses separate is

t - distance 2h - h
velocity 2c c

Important characteristics are sketched in Fig. 12.3.3. F stays constant moving to
the right at velocity c, while G stays constant moving to the left. From (12.3.10)
and (12.3.11),

F(x) = G(x) = s lxl < h
0 jxj > h.

This information also appears in Fig. 12.3.3.

Example not at rest. Suppose that an infinite string is initially horizontally
stretched with prescribed initial velocity as follows:

u(x,0) = f(x) = 0

(x,0) = g(x) =
{ 0 jxj > h.

In Exercise 12.3.2 it is shown that this corresponds to instantaneously applying
a constant impulsive force to the entire region jxj < h, as though the string is
being struck by a broad (jxj < h) hammer. The calculation of the solution of the
wave equation with these initial conditions is more involved than in the preceding
example. From (12.3.10) and (12.3.11), we need f0 g(I) dx, representing the area
under g(x) from 0 to x:

fx f-h x < -h
2cG(x)=-2cF(x)=J g(i)da= x -h<x<h

° h x>h.
The solution u(x, t) is the sum of F(x) shifted to the right (at velocity c) and G(x)
shifted to the left (at velocity c). F(x) and G(x) are sketched in Fig. 12.3.4, as is
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1

10

Figure 12.3.4 Time evolution for a struck string.

t3<t=t4
h/c<t-t3
t = h/c
tl<t = t2<h/c
0<t = ti<h/c
t=o

their shifted sum. The striking of the broad hammer causes the displacement of the
string to gradually increase near where the hammer hit and to have this disturbance
spread out to the left and right as time increases. Eventually, the string reaches an
elevated rest position. Alternatively, the solution can be obtained in an algebraic
way (see Exercise 12.3.5). The characteristics sketched in Fig. 12.3.3 are helpful.

12.3.3 D'alembert's Solution
The general solution of the one-dimensional wave equation can be simplified some-
what. Substituting (12.3.10) and (12.3.11) into the general solution (12.3.5) yields

u(x, t) - f (x + ct)

2

f (x - C0 +-1c [f'+c'g(,) x - f Z-' g(a) dTJ
0

or

+
1

z+ct
u(x, t)

f(x-ct)+f(x+ct)
= 2c f g(x)

2
,

z-ct
(12.3.13)

known as d'Alembert's solution (obtained in Chapter 11 by using Green's for-
mula and the infinite space Green's function for the one-dimensional wave equation).
It is a very elegant result. However, for sketching solutions often it is easier to work
directly with (12.3.10) and (12.3.11), where these are shifted according to (12.3.5).

Domain of dependence and range of influence. The importance
of the characteristics x - ct = constant and x + ct = constant is clear. At position x
at time t the initial position data are needed at x f ct, while all the initial velocity
data between x-ct and x+ct is needed. The region between x-ct and x+ct is called
the domain of dependence of the solution at (x, t) as sketched in Fig. 12.3.5. In
addition, we sketch the range of influence, the region affected by the initial data
at one point.
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x=2 +ct

t
I

xp

(b)

Xx - ct x +ct
(a)

Figure 12.3.5 (a) Domain of dependence; (h) range of influence.

Space- and timelike boundaries. Two initial conditions (12.3.6) and
(12.3.7) are specified along t = 0, which is the x-axis, called a spacelike boundary.
In the next section, it is shown that one boundary condition is specified at a fixed
boundary-for example, x = 0-along which time varies, so that x = 0 is called a
timelike boundary. For a subsonic moving boundary, moving at a speed less
than the characteristic velocity c, I d, I < c, then one condition is specified on that
moving boundary, and the boundary is said to be timelike. For a supersonic
moving boundary, moving at a speed greater than the characteristic velocity c,
d' I > c, two conditions are specified (but sometimes information propagates out

of the region), and the boundary is said to be spacelike. The boundaries do not
have to move at constant velocities.

EXERCISES 12.3

12.3.1. Suppose that u(x, t) = F(x - ct) + G(x + ct), where F and G are sketched
in Fig. 12.3.6. Sketch the solution for various times.

2

FCx)

0 x=2

G(x)

Figure 12.3.6

12.3.2. Suppose that a stretched string is unperturbed (horizontal, u = 0) and at
rest (8u/8t = 0). If an impulsive force is applied at t = 0, the initial value
problem is

192U 2

ate `219x2 + Q(x)a(t)

u(x,t) = 0 t < 0.
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(a) Without using explicit solutions, show that this is equivalent to

0-2U
2Y2y2 t>0

subject to u(x,0) = 0 and au(x,0) = a(x).

Thus, the initial velocity a(x) is equivalent to an impulsive force.
(b) Do part (a) using the explicit solution of both problems.

12.3.3. An alternative way to solve the one-dimensional wave equation (12.3.1) is
based on (12.3.2) and (12.3.3). Solve the wave equation by introducing a
change of variables from (x, t) to two moving coordinates (1;, rl) one moving
to the left (with velocity -c) and one moving to the right (with velocity c):

1;=x-ct and q=x+ct.

*12.3.4. Suppose that u(x, t) = F(x - ct). Evaluate:

(a) (x,0)

(b) 8u(0,t)

12.3.5. Determine analytic formulas for u(x, t) if

u(x,0) = f(x) = 0
kut (x, 0) = 9(x) = f 0 JxJ > h.

(Hint: Using characteristics as sketched in Fig. 12.3.3, show there are two
distinct regions t < h/c and t > h/c. In each, show that the solution has
five different forms, depending on x.)

12.3.6. Consider the three-dimensional wave equation

a2u
= c2V2u.i§jY

Assume that the solution is spherically symmetric, so that

O2u
= (1/P2)(a/OP)(P2Ou/OP)

(a) Make the transformation u = (1/p)w(p, t) and verify that

82w 0-2w
2

at2
= c ape

(b) Show that the most general spherically symmetric solution of the wave
equation consists of the sum of two spherically symmetric waves, one
moving outward at speed c and the other inward at speed c. Note the
decay of the amplitude.
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12.4 Semi-Infinite Strings and Reflections
We will solve the one-dimensional wave equation on a semi-infinite interval, x > 0:

192U02u
PDE:

_
C2

(12.4.1)
8x29t2

IC1: u(x, 0) = f (x) (12.4.2)

IC2: 5 (x, 0) = g(x) (12.4.3)

A condition is necessary at the boundary x = 0. We suppose that the string is fixed
at x = 0:

BC: U(0' t) = 0. (12.4.4)

Although a Fourier sine transform can be used, we prefer to indicate how to use the
general solution and the method of characteristics:

u(x, t) = F(x - ct) + G(x + ct). (12.4.5)

As in Sec. 12.3, the initial conditions are satisfied if

f(x) + 1 f g(x) dx x > 0G(x) = (12.4.6)

0

2F(x)
= 2 f (x) - 2cf g(x) dx x > 0. (12.4.7)

However, it is very important to note that (unlike the case of the infinite string)
(12.4.6) and (12.4.7) are valid only for x > 0; the arbitrary functions are only de-
termined from the initial conditions for positive arguments. In the general solution,
G(x + ct) requires only positive arguments of G (since x > 0 and t > 0). On the
other hand, F(x - ct) requires positive arguments if x > ct, but requires negative
arguments if x < ct. As indicated by a space-time diagram, Fig. 12.4.1, the infor-
mation that there is a fixed end at x = 0 travels at a finite velocity c. Thus, if
x > ct, the string does not know that there is any boundary. In this case (x > ct),
the solution is obtained as before [using (12.4.6) and (12.4.7)],

f(x - ct) + f(x+ct) 1 /'x+`t
u(x, t) =

2
+

2c
f g(x) dam, x > d, (12.4.8)
x-ct
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x

Figure 12.4.1 Characteristic emanat-
ing from the boundary.

d'Alembert's solution. However, here this is not valid if x < ct. Since x + ct > 0,

x+ct
G(x + ct) =

1
f (x + ct) + 2c

J
g(z) d,

0

as determined earlier. To obtain F for negative arguments, we cannot use the initial
conditions. Instead, the boundary condition must be utilized. u(0, t) = 0 implies
that [from (12.4.5))

0 = F(-ct) + G(ct) for t > 0. (12.4.9)

Thus, F for negative arguments is -G of the corresponding positive argument:

F(z) _ -G(-z) for z < 0. (12.4.10)

Thus, the solution for x - ct < 0 is

u(x, t) = F(x - ct) + G(x + ct) = G(x + ct) - G(ct - x)

1 1
x+ct pct x

l
2

[.f (x + ct) - f (ct - x)] +
2c

[gm C M g(x) d
0 0

1 =+ct
2 [f (x + ct) - f (ct - x)J

+ 2c , 9(x) d.
ct-x

To interpret this solution, the method of characteristics is helpful. Recall that
for infinite problems u(x, t) is the sum of F (moving to the right) and G (moving to
the left). For semi-infinite problems with x > ct, the boundary does not affect the
characteristics (see Fig. 12.4.2). If x < ct, then Fig. 12.4.3 shows the left-moving
characteristic (G constant) not affected by the boundary, but the right-moving
characteristic emanates from the boundary. F is constant moving to the right. Due
to the boundary condition, F + G = 0 at x = 0, the right-moving wave is minus the
left-moving wave. The wave inverts as it "bounces off" the boundary. The resulting
right-moving wave -G(ct - x) is called the reflected wave. For x < ct, the total
solution is the reflected wave plus the as yet unreflected left-moving wave:

u(x, t) = G(x + ct) - G(-(x - ct)).
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t

x=ct

Figure 12.4.2 Characteristics.

Figure 12.4.3 Reflected characteristics.

The negatively reflected wave -G(-(x - ct)) moves to the right. It behaves as
if initially at t = 0 it were -G(-x). If there were no boundary, the right-moving
wave F(x - ct) would be initially F(x). Thus, the reflected wave is exactly the wave
that would have occurred if

F(x) = -G(-x) for x < 0,

or, equivalently,

2f(x) -- 19(x) da = 2f (-x) - 2c f g(T) d.Y.
0 0

One way to obtain this is to extend the initial position f (x) for x > 0 as an odd
function [such that f (-x) = -f (x)] and also extend the initial velocity g(x) for
x > 0 as an odd function [then its integral, fox g(Y) dY, will be an even function]. In
summary, the solution of the semi-infinite problem with u = 0 at x = 0 is
the same as an infinite problem with the initial positions and velocities
extended as odd functions.

As further explanation, suppose that u(x, t) is any solution of the wave equation.
Since the wave equation is unchanged when x is replaced by -x, u(-x, t) (and any
multiple of it) is also a solution of the wave equation. If the initial conditions
satisfied by u(x, t) are odd functions of x, then both u(x, t) and -u(-x, t) solve
these initial conditions and the wave equation. Since the initial value problem has
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a unique solution, u(x, t) = -u(-x, t); that is, u(x, t), which is odd initially, will
remain odd for all time. Thus, odd initial conditions yield a solution that will satisfy
a zero boundary condition at x = 0.

Example. Consider a semi-infinite string x > 0 with a fixed end u(0, t) = 0,
which is initially at rest, 8u/t9t(x, 0) = 0, with an initial unit rectangular pulse,

f(x) -
f 1 4<x<5
t 0 otherwise.

Since g(x) = 0, it follows that

1 1
2

4<x<5-F(x) = G(x) = 2 AX)
0 otherwise (with x > 0).

F moves to the right; G moves to the left, negatively reflecting off x = 0. This can
also be interpreted as an initial condition (on an infinite domain) with f (x) and
g(x) extended as odd functions. The solution is sketched in Fig. 12.4.4. Note the
negative reflection.

Problems with nonhomogeneous boundary conditions at x = 0 can be analyzed
in a similar way.

1

10

Figure 12.4.4 Reflected pulse.

EXERCISES 12.4

*12.4. L Solve by the method of characteristics:

82u 82u
8t2 c28x2

x > 0

subject to u(x, 0) = 0, wt- (x, 0) = 0, and u(0, t) = h(t).
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*12.4.2. Determine u(x, t) if

02u 202u
.9t2 = C 8x2

for x < 0 only,

where

u(x,0)=cosx x<0
OU(x,O)=0 x<0

u(0,t) = e-t t > 0.

Do not sketch the solution. However, draw a space-time diagram, including
all important characteristics.

12.4.3. Consider the wave equation on a semi-infinite interval

C72u 2 &2U

&2 =C 8x2 for 0<x<oo

with the free boundary condition

TX
(0, t) 0

and the initial conditions

10 0<x<2
u(x,0) = 1 2<x<3 8u(x,0)=0.

0 x>3
Determine the solution. Sketch the solution for various times. (Assume
that u is continuous at x = 0, t = 0.)

12.4.4. (a) Solve for x > 0, t > 0 (using the method of characteristics):

&2u _ 02u
8t2 ` C2 8x2

u(x,0) = 1(x)

5(x,0) = g(x)
x > 0

8 (O,t)=0 t>0.
(Assume that u is continuous at x = 0, t = 0.)

(b) Show that the solution of part (a) may be obtained by extending the
initial position and velocity as even functions (around x = 0).

(c) Sketch the solution if g(x) = 0 and

f(x)- J 1 4<x<5
l 0 otherwise.
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12.4.5. (a) Show that if u(x, t) and 8u/8t are initially even around x = x0, u(x, t)
will remain even for all time.

(b) Show that this type of even initial condition yields a solution that will
satisfy a zero derivative boundary condition at x = x0.

*12.4.6. Solve (x > O,t > 0)
82u 202uu

8t2 = C 8x2
subject to the conditions u(x, 0) = 0, '9u (x, 0) = 0, and .(0, t) = h(t).

*12.4.7. Solve
02u
9t2

282u x>0
-c axe t > 0

subject to u(x, 0) = f (x), (x, 0) = 0, and (0, t) = h(t). (Assume thatFt YX-

u is continuous at x = 0, t = 0.)

12.4.8. Solve
02U

2

2
c

02U

e
with u(x, 0) = 0 and

d
. (x, 0) = 0,

subject to u(x, t) = g(t) along x = 2t(c > 0).

12.5 Method of Characteristics
for a Vibrating String of Fixed Length

In Chapter 2 we solved for the vibration of a finite string satisfying

02U82u
PDE: _ C2

8t2 8x2
(12.5.1)

u(0 t) = 0
BC:

,
(12 2)5u(L, t) = 0 . .

IC:
u(x,0) = f(x)

(12.5.3)
(x, 0) = g(x),i4i

using Fourier series methods. We can obtain an equivalent, but in some ways more
useful, result by using the general solution of the one-dimensional wave equation:

u(x, t) = F(x - ct) + G(x + ct). (12.5.4)
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t

Figure 12.5.1 Characteristics.

The initial conditions are prescribed only for 0 < x < L, and hence the formulas
for F(x) and G(x) previously obtained are valid only for 0 < x < L:

F(x) = - f g(I) dx-2 f (x) - (12.5.5)
2 0

yG(x) = g(x) dd.2 f (x) +
2c j (12.5.6)

If 0 < x - ct < L and 0 < x + ct < L, as shown shaded in Fig. 12.5.1, then
d'Alembert's solution is valid:

u(x, t) - f (x - ct) + f (x + ct) + 1 /''+`t 9(I)
dx.

2 2c ._ct
(12.5.7)

In this region the string does not know that either boundary exists; the information
that there is a boundary propagates at velocity c from x = 0 and x = L.

If one's position and time is such that signals from the boundary have already
arrived, then modifications in (12.5.7) must be made. The boundary condition at
x = 0 implies that

0 = F(-ct) + G(ct) for t > 0, (12.5.8)

while at x = L we have

0 = F(L - ct) + G(L + ct) fort >0. (12.5.9)

These, in turn, imply reflections and multiple reflections, as illustrated in Fig. 12.5.2.
Alternatively, a solution on an infinite domain without boundaries can be con-

sidered that is odd around x = 0 and odd around x = L, as sketched in Fig. 12.5.3.
In this way, the zero condition at both x = 0 and x = L will be satisfied. We note
that u(x, t) is periodic with period 2L. In fact, we ignore the oddness around x = L,
since periodic functions that are odd around x = 0 are automatically odd around
x = L. Thus, the simplest way to obtain the solution is to extend the initial
conditions as odd functions (around x = 0) which are periodic (with pe-
riod 2L). With these odd periodic initial conditions, the method of characteristics
can be utilized as well as d'Alembert's solution (12.5.7).

Example. Suppose that a string is initially at rest with prescribed initial
conditions u(x, 0) = f (x). The string is fixed at x = 0 and x = L. Instead of using
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t

0

Figure 12.5.2 Multiply reflected character-
istics.

Figure 12.5.3 Odd periodic extension.

Fourier series methods, we extend the initial conditions as odd functions around
x = 0 and x = L. Equivalently, we introduce the odd periodic extension. (The odd
periodic extension is also used in the Fourier series solution.) Since the string is
initially at rest, g(x) = 0; the odd periodic extension is g(x) = 0 for all x. Thus,
the solution of the one-dimensional wave equation is the sum of two simple waves:

u(x, t) =
2

[.fext(x - ct) + fext(x + ct)

where feXt(x) is the odd periodic extension of the given initial position. This solution
is much simpler than the summation of the first 100 terms of its Fourier sine series.

Separation of variables. By separation of variables, the solution of the
wave equation with fixed boundary conditions (u(0, t) = 0 and u(L, t) = 0) satisfy-
ing the initial conditions u(x, 0) = f (x) and wt- = 0 is

00 rx nactu(x, t) = E ansin mL cos L ,

n=1

where the given initial conditions are only specified for [0, U. To be precise, the
infinite Fourier series f0,,t(x) equals the odd periodic extension (with peridd 2L)
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of f (x): fext (x) _ En 1 ao sin nLx

z
sin n, z-ct , we obtain

Using Sin nLx cOS n,ct = 2 Sin nmt xLi-ct+

u(x, t) =
2

fext (x + ct) + ,I fext (x - ct),

which is the same result obtained by the method of characteristics.

EXERCISES 12.5
12.5.1. Consider

82u 2 82t
8t2 = C 8x2

u(x,0) = f(x) 1 0 < x < L
R (x, 0) = g(x) f

u(o, t) = 0
u(L, t) = 0.

(a) Obtain the solution by Fourier series techniques.
*(b) If g(x) = 0, show that part (a) is equivalent to the results of Chapter

12.

(c) If f (x) = 0, show that part (a) is equivalent to the results of Chapter
12.

12.5.2. Solve using the method of characteristics:

82u
8t2

12.5.3. Consider

-C
282U

8x2

u(0, t) = h(t)

(x,0) = 0 u(L,t) = 0.

u(x,0) = 0

8u

8z z
z

2

_
-c axz 0<x<10

1 < x < 5
u(0, t) = 0u(x,0) = f(x) =

1

0

4
otherwise

a (X'0) = g(x) = 0 8x
(L, t) = 0.

(a) Sketch the solution using the method of characteristics.
(b) Obtain the solution using Fourier-series-type techniques.
(c) Obtain the solution by converting to an equivalent problem on an in-

finite domain.

12.5.4. How should initial conditions be extended if 8u/8x(0, t) = 0 and u(L, t)
0?
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12.6 The Method of Characteristics
for Quasilinear Partial Differential Equations

12.6.1 Method of Characteristics
Most of this text describes methods for solving linear partial differential equations
(separation of variables, eigenfunction expansions, Fourier and Laplace transforms,
Green's functions) that cannot be extended to nonlinear problems. However, the
method of characteristics, used to solve the wave equation, can be applied to partial
differential equations of the form

8p
+ cap = Q,at ax

(12.6.1)

where c and Q may be functions of x, t, and p. When Q is not a linear function
of p or, more important to us, when the coefficient c depends on the unknown
solution p, then (12.6.1) is not linear. Superposition is not valid. Nonetheless
(12.6.1) is called a quasilinear partial differential equation, since it is linear in the
first partial derivatives, 8p/8t and 8p/8x. To solve (12.6.1), we again consider an
observer moving in some prescribed way x(t). By comparing (12.2.7) and (12.6.1),
we obtain

dp
dt = Q(p, x, t),

if

dx

dt = c(p,x,t),

(12.6.2)

(12.6.3)

The partial differential equation (12.6.1) reduces to two coupled ordinary differen-
tial equations along the special trajectory or direction defined by (12.6.3), known
as a characteristic curve, or simply a characteristic for short. The velocity
defined by (12.6.3) is called the characteristic velocity, or local wave velocity.
A characteristic starting from x = xo, as illustrated in Fig. 12.6.1, is determined
from the coupled differential equations (12.6.2) and (12.6.3) using the initial condi-
tions p(x, 0) = f (x). Along the characteristic, the solution p changes according to
(12.6.2). Other initial positions yield other characteristics, generating a family of
characteristics.

Example. If the local wave velocity c is a constant co and Q = 0, then the
quasilinear partial differential equation (12.6.1) becomes the linear one, (12.2.6),
which arises in the analysis of the wave equation. In this example, the characteris-
tics may be obtained by directly integrating (12.6.3) without using (12.6.2). Each
characteristic has the same constant velocity, co. The family of characteristics are
parallel straight lines, as sketched in Fig. 12.2.1.
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t dx

x=S0
p=p(xo,0) = f(xo)

Figure 12.6.1 Characteristic starting
from x = xo at time t = 0.

Quasilinear in two-dimensional space. If the independent variables
are x and y instead of x and t, then a quasilinear first-order partial differential
equation is usually written in the form

8p + b ap = c,ay - ,

where a, b, c may be functions of x, y, p. The method of characteristics is

dp _ c

dx a'

if dyb
dx a'

This is written in the following (easy to memorize) equivalent form:

dxdy_dp
a b c

(12.6.4)

(12.6.5)

(12.6.6)

(12.6.7)

12.6.2 Traffic Flow
Traffic density and flow. As an approximation it is possible to model a
congested one-directional highway by a quasilinear partial differential equation. We
introduce the traffic density p(x, t), the number of cars per mile at time t located
at position x. An easily observed and measured quantity is the traffic flow q(x, t),
the number of cars per hour passing a fixed place x (at time t).

Conservation of cars. We consider an arbitrary section of roadway, be-
tween x = a and x = b. If there are neither entrances nor exits on this segment of
the road, then the number of cars between x = a and x = b [N = fa p(x, t) dx, the
definite integral of the density] might still change in time. The rate of change of
the number of cars, dN/dt, equals the number per unit time entering at x = a [the
traffic flow q(a, t) there] minus the number of cars per unit time leaving at x = b
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(the traffic flow q(b, t) there]:

dtjbp(x,t) dx = q(a, t) - q(b, t). (12.6.8)

Equation (12.6.8) is called the integral form of conservation of cars. As with heat
flow, a partial differential equation may be derived from (12.6.8) in several equivalent
ways. One way is to note that the boundary contribution may be expressed as an
integral over the region:

q(a, t) - q(b, t) _ -
J

6 -q(x,t) dx. (12.6.9)

Thus, by taking the time-derivative inside the integral (making it a partial deriva-
tive) and using (12.6.9), it follows that

Op 8q _
+8x-08t

(12.6.10)

since a and b are arbitrary (see Sec. 1.2). We call (12.6.10) conservation of cars.

Car velocity. The number of cars per hour passing a place equals the density
of cars times the velocity of cars. By introducing u(x, t) as the car velocity, we
have

q = pu. (12.6.11)

In the mid-1950s, Lighthill and Whitham and, independently, Richards made a
simplifying assumption, namely, that the car velocity depends only on the density,
u = u(p), with cars slowing down as the traffic density increases (i.e., du/dp < 0).
For further discussion, the interested reader is referred to Whitham (1999] and
Haberman (1998]. Under this assumption, the traffic flow is only a function of the
traffic density, q = q(p). In this case, conservation of cars (12.6.10) becomes

5 + c(P) 2P
= 0, (12.6.12)

where c(p) = q'(p), a quasilinear partial differential equation with Q = 0 [see
(12.6.1)]. Here c(p) is considered to be a known function of the unknown solution
p. In any physical problem in which a density p is conserved and the flow q is a
function of density, p satisfies (12.6.12).
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Elementary traffic model. In general, the car velocity u should be a
decreasing function of p. At zero density, cars move fastest, which we denote uma,,.
At some maximum density p,,,,,, the car velocity will be zero. The simplest relation-
ship which satisfies these properties is u(p) = in which case from
(12.6.11) the flow is given by q(p) = umaxp(1 - (P/Pmax)) = umax(P - (P2/Pmax)),
and the density wave velocity satisfies c(p) = q(p) = (2p/p,,,a)).

12.6.3 Method of Characteristics (Q = 0)
The equations for the characteristics for (12.6.12) are

dpdt = 0

along

(12.6.13)

dx
dt =

c(p). (12.6.14)

The characteristic velocity c is not constant but depends on the density p. It is
known as the density wave velocity. From (12.6.13), it follows that the density
p remains constant along each as yet undetermined characteristic. The velocity of
each characteristic, c(p), will be constant, since p is constant. Each characteristic
is thus a straight line (as in the case in which c(p) is a constant co). However,
different characteristics will move at different constant velocities because they may
start with different densities. The characteristics, though each is straight, are not
parallel to one another. Consider the characteristic that is initially at the position
x = xo, as shown in Fig. 12.6.2. Along the curve dx/dt = c(p), dp/dt = 0 or p is
constant. Initially p equals the value at x = xo (i.e., at t = 0). Thus, along this one
characteristic,

P(x,t) = P(xo,0) = f(xo), (12.6.15)

which is a known constant. The local wave velocity that determines the character-
istic is a constant, dx/dt = c(f (xo)). Consequently, this characteristic is a straight
line,

x = c(f (xo))t + xo, (12.6.16)

P(x,t) = f(xo)

Figure 12.6.2 Possibly
x nonparallel straight-line

characteristics.

since x = xo at t = 0. Different values of xo yield different straight-line charac-
teristics, perhaps as illustrated in Fig. 12.6.2. Along each characteristic, the traffic
density p is a constant; see (12.6.15). To determine the density at some later time,
the characteristic with parameter xo that goes through that space-time point must
be obtained from (12.6.16).
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Graphical solution. In practice, it is often difficult and not particularly
interesting actually to determine xo from (12.6.16) as an explicit function of x and
t. Instead, a graphical procedure may be used to determine p(x, t). Suppose the
initial density is as sketched in Fig. 12.6.3. We know that each density po stays the
same, moving at its own constant density wave velocity c(po). At time t, the density
po will have moved a distance c(po)t, as illustrated by the arrow in Fig. 12.6.3. This
process must be carried out for a large number of points (as is elementary to do on
any computer). In this way, we could obtain the density at time t.

xo xo + c(PO)t

Figure 12.6.3 Graphical solution.

X

Fanlike characteristics. As an example of the method of characteristics,
we consider the following initial value problem:

at + 2p ex = 0

= 1 3 x<0
p(x' 0) l 4 x>0.

The density p(x, t) is constant moving with the characteristic velocity 2p:

dx
dt = 2p.

Thus, the characteristics are given by

x = 2p(xo, 0)t + xo. (12.6.17)

If xo > 0, then p(xo, 0) = 4, while if xo < 0, then p(xo, 0) = 3. The characteristics,
sketched in Fig. 12.6.4, show that

= 1
p(x,t)

4 x>8t
3 x < 6t,

as illustrated in Fig. 12.6.5. The distance between p = 3 and p = 4 is increasing; we
refer to the solution as an expansion wave. But what happens for 6t < x < 80
The difficulty is caused by the initial density having a discontinuity at x = 0. We
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Figure 12.6.4 Characteristics (including
the fanlike ones).

imagine that all values of p between 3 and 4 are present initially at x = 0. There
will be a straight line characteristic along which p equals each value between 3 and
4. Since these characteristics start from x = 0 at t = 0, it follows from (12.6.17)
that the equation for these characteristics is

x=2pt, for3<p<4,

also sketched in Fig. 12.6.4. In this way, we obtain the density in the wedge-shaped
region

xP _
2t

for 6t < x < 8t,

which is linear in x (for fixed t). We note that the characteristics fan out from x = 6t
to x = 8t and hence are called fanlike characteristics. The resulting density is
sketched in Fig. 12.6.5. It could also be obtained by the graphical procedure.

p = x/2t

p=3

x=6t x=8t

p=4

Figure 12.6.5 Expansion wave.
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Red light turning green. We assume the elementary model of traffic
flow, so that the traffic density satisfies

ap Op

8t + umax(1 -
2p )T = 0.

Pmax

Behind a red light (x = 0), the traffic density is maximum, while ahead of the light
the traffic density is zero, so that at the moment (t = 0) the light turns green the
initial conditions are

P(x, 0) = {
Pmax x < 0
0 x>0.

The characteristic velocity is 7i = un,.x(1 - Pp-). The density is constant along
the characteristics so that the characteristics satisfy

x = umax(1 -
2p

)t + xp.
Pmax

The characteristic velocity is umax for p = 0, while the characteristic velocity is
-Umax for P = Pmax Thus

p(x, t) Pmax x < -umaxt
0 x > umaxt.

The information that the traffic light has turned green propagates backward at
density velocity -'Uumax. That is why you have to wait after a light turns green
before you can move. The characteristics are similar to Fig. 12.6.4. To obtain the
density elsewhere, we note that there is a family of fanlike characteristics that all
start at xo = 0. Thus, in this region, x = um(1 - -)t. Given x and tin this
region, we can solve for the density

Pmsx

p(x, t) = P 2 (1 - ux
) for - x <maxt

The solution is similar to the expansion wave shown in Fig. 12.6.5, but for an
expansion wave for traffic flow the higher density (slowly moving traffic) is behind
the lower density (faster moving traffic), as a result of the traffic light turning green.

12.6.4 Shock Waves
Intersecting characteristics. The method of characteristics will not always
work as we have previously described. For quasilinear partial differential equations,
it is quite usual for characteristics to intersect. The resolution will require the
introduction of moving discontinuities called shock waves. In order to make the
mathematical presentation relatively simple, we restrict our attention to quasilinear
partial differential equations with Q = 0, in which case

et + c(p) e = 0. (12.6.18)

In Fig. 12.6.6 two characteristics are sketched, one starting at x = x1, with p =
f (xl, 0) = pl and the other starting at x= x2 with p = f (X2, 0) ° p2. These
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x Figure 12.6.6 Intersecting charac-

teristics.

characteristics intersect if c(pl) > c(p2), the faster catching up to the slower. The
density is constant along characteristics. As time increases, the distance between the
densities pl and P2 decreases. Thus, this is called a compression wave. We sketch
the initial condition in Fig. 12.6.7(a). The density distribution becomes steeper as
time increases [Figs. 12.6.7(b) and (c)]. Eventually characteristics intersect; the
theory predicts the density is simultaneously pi and p2. If we continue to apply
the method of characteristics, the faster-moving characteristic passes the slower.
Then we obtain Fig. 12.6.7(d). The method of characteristics predicts that the
density becomes a "multivalued" function of position; that is, at some later time our
mathematics predicts there will be three densities at some positions [as illustrated
in Fig. 12.6.7(d)]. We say the density wave breaks. However, in many physical
problems (such as traffic flow) it makes no sense to have three values of density at
one place.' The density must be a single-valued function of position.

Figure 12.6.7 Density wave
steepens (density becomes
triple valued).

Discontinuous solutions. On the basis of the quasilinear partial differ-
ential equation (12.6.18), we predicted the physically impossible phenomenon that
the density becomes multivalued. Since the method of characteristics is mathemat-
ically justified, it is the partial differential equation itself that must not be entirely
valid. Some approximation or assumption that we used must at times be invalid.
We will assume that the density (as illustrated in Fig. 12.6.8) and velocity have a
jump discontinuity, which we call a shock wave, or simply a shock." The shock
occurs at some unknown position x, and propagates in time, so that x, (t). We

3The partial differential equations describing the height of water waves near the shore (i.e., in
shallow water) are similar to the equations for traffic density waves. In this situation the prediction
of breaking is then significant!

"The terminology shock wave is introduced because of the analogous behavior that occurs in
gas dynamics. There, changes in pressure and density of air, for example, propagate and are heard
(due to the sensitivity of the human ear). They are called sound waves. When fluctuations of
pressure and density are small, the equations describing sound waves can be linearized. Then
sound is propagated at a constant speed known as the sound speed. However, if the amplitudes of
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P(x, t) P(xs+,t)

Figure 12.6.8 Density discontinuity
at x = x,(t)_

introduce the notation x,- and x,+ for the position of the shock on the two sides
of the discontinuity. The shock velocity, dx,/dt, is as yet unknown.

Shock velocity. On either side of the shock, the quasilinear partial differ-
ential equation applies, 8p/8t + c(p)Op/8x = 0, where c(p) = dq(p)/dp. We need to
determine how the discontinuity propagates. If p is conserved even at a discontinu-
ity, then the flow relative to the moving shock on one side of the shock must equal
the flow relative to the moving shock on the other side. This statement of relative
inflow equaling relative outflow becomes

P(xs-, t) [u(xs_it) - dt = P(xe+, t) [u(xs+t) dte, ' (12.6.19)

since flow equals density times velocity (here relative velocity). Solving for the
shock velocity from (12.6.19) yields

dx, q(xs+, t) - q(xs-, t) __ [q]
dt

__

p(x,+,t) - P(xs-,t) [PJ'
(12.6.20)

where we recall that q = pu and where we introduce the notation [q] and [p] for the
jumps in q and p, respectively. In gas dynamics, (12.6.20) is called the Rankine-
Hugoniot condition. In summary, for the conservation law 8p/&+8q/8x =
0 (if the quantity f p dx is actually conserved), the shock velocity equals
the jump in the flow divided by the jump in the density of the conserved
quantity. At points of discontinuity, this shock condition replaces the use of the
partial differential equation, which is valid elsewhere. However, we have not yet
explained where shocks occur and how to determine p(x,+, t) and p(x,-, t).

Alternate derivation of the shock velocity. Let us consider the
conservation law, conservation of cars, (12.6.8), for a finite region (a < x < b) that
includes the moving shock, (a < x,(t) < b), (see Figure 12.6.8):

the fluctuations of pressure and density are not small, then the partial differential equations are
quasilinear. Characteristics may intersect. In this case, the pressure and density can be modeled
mathematically as being discontinuous, the result being called a shock wave. Examples are the
sound emitted from an explosion or the thunder resulting from lightning. If a shock wave results
from exceeding the sound barrier, it is known as a sonic boom.
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d
f b pdx = q(a, t) - q(b, t). (12.6.21)

Since there is a discontinuity in the density, it is best to break the integral up into
two pieces:

d srb
Wt

{fx(t)
P(x,t)dx +

J
P(xt)dx] = q(a,t) - q(b,t)

x. (t)

Using Leibnitz's rule for the derivative of integrals with variable limits, we obtain

f t) O dx + d' p(x,_, t) + f b(t) 8t dx - dt' P(x8+, t)] = q(a, t) - q(b, t).

However, away from the shock the solution is smooth and the partial differential
equation + ; = 0 is valid in each region a < x < x, and x, < x < b. The
integrals f 22dx are then easily computed so that

q(a, t) - q(x3-, t) + dta[p(xs-, t) - P(xs+, t)] + q(xe+, t) - q(b, t) = q(a, t) - q(b, t).

Canceling q(a, t) and q(b, t) then yields the fundamental equation for the shock
velocity (12.6.20):

dx, _ q(xa-, t) - q(x,+, t) [q]
dt - P(x, t) - P(x,+, t) [p]'

(12.6.22)

where [p] and [q] are notations for the jump in density across the discontinuous
shock and the jump in the flow.

Example. We consider the initial value problem

8t
2paax =0

Ax, 0)
4 x<O

= 3 x>0.

We assume that p is a conserved density. Putting the partial differential equation
in conservation form (8p/St + 8q/8x = 0) shows that the flow q = p2. Thus, if
there is a discontinuity, the shock velocity satisfies dx/dt = [qJ/[pJ = [p2J/[pJ. The
density p(x, t) is constant moving at the characteristic velocity 2p:

dx
dt = 2p.
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Figure 12.6.9 Shock caused by intersecting charac-
teristics.

Therefore, the equation for the characteristics is

x = 2P(xo, 0)t + xo.

If xo < 0, then p(xo, 0) = 4. This parallel group of characteristics intersects those
starting from x0 > 0 (with p(xo, 0) = 3) in the cross-hatched region in Fig. 12.6.9a.
The method of characteristics yields a multivalued solution of the partial differential
equation. This difficulty is remedied by introducing a shock wave (Fig. 12.6.9b),
a propagating wave indicating the path at which densities and velocities abruptly
change (i.e., are discontinuous). On one side of the shock, the method of character-
istics suggests the density is constant p = 4, and on the other side, p = 3. We do
not know as yet the path of the shock. The theory for such a discontinuous solution
implies that the path for any shock must satisfy the shock condition, (12.6.20).
Substituting the jumps in flow and density yields the following equation for the
shock velocity:

dxa _ q(4) - q(3) - 42 -3 2
dt 4-3 4-3 7'

since in this case q = p2. Thus, the shock moves at a constant velocity. The
initial position of the shock is known, giving a condition for this first-order ordinary
differential equation. In this case, the shock must initiate at x8 = 0 at t = 0.
Consequently, applying the initial condition results in the position of the shock,

xa = 7t.

The resulting space-time diagram is sketched in Fig. 12.6.9c. For any time t > 0,
the traffic density is discontinuous, as shown in Fig. 12.6.10.

Entropy condition. We note that as shown in Figure 12.6.9c, the char-
acteristics must flow into the shock on both sides. The characteristic velocity on
the left (2p = 8) must be greater than the shock velocity (-= = 7), and the charac-
teristic velocity on the right (2p = 6) must be less than the shock velocity. This is
a general principle, called the entropy condition,

C(P(xs-)) > dt > c(P(x,+)). (12.6.23)
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characteristic velocity is umax(1 - 2PO ) for p = po. The two parallel families of
characteristics will intersect because umax(1 - 2PO ) > -um x. A shock will form

Pmax
separating p = po from p = pma,,. The shock velocity is determined from (12.6.20):

dx, _ [q] q(Pmax) - q(po) -q(po)
dt [P] Pmax - P0 Pmax - Po '

where we have noted that q(pm.) = 0. Since the shock starts (t = 0)at x = 0, the
shock path is

xa = -q(PO)
Pmax - Po

The shock velocity is negative since q(po) > 0, and the shock propagates backward.
In this case there is a formula q(po) = umax(1 - -)po,but we do not need
it. The traffic density is po before the shock and increases to pm" at the shock
(unlike Fig. 12.6.10). Characteristics and the shock are qualitatively similar to
Fig. 12.6.9c, but traffic shocks occur when faster moving traffic (lower density) is
behind slower moving traffic (higher density). Here the shock velocity represents
the line of stopped cars due to the red light moving backward behind the light.
Many accidents are caused by the suddenness of traffic shock waves.

Conditions for shock formation. A shock forms if initially the char-
acteristic velocity c(p) = q(p) is a decreasing function of x (so that faster waves
are behind slower waves). Thus, a shock forms if initially q'(p) = q"(p) < 0.
It follows that for traffic problems, where q"(p) < 0, shocks form when the density
is an increasing function of x, and the density must increase with x at a shock.
However, if q"(p) > 0 , then shocks form only if < 0 so that the density must
decrease at a shock. Otherwise, characteristics do not intersect, and discontinuous
initial conditions correspond to expansion waves. If q"(p) does not change signs,
then discontinuous initial conditions result in either a shock or an expansion wave.

Example with a shock and an expansion wave. If q"(p) does
change sign at least once, then a discontinuous initial condition may result in both a
shock and an expansion wave. A simple mathematical example with this property
is q = 3p3, so that q' = p2 and q" = 2p. If p < 0, this is similar to a traffic problem,
but we will assume initially that p is both positive and negative. As an example
we assume the initial condition is increasing from negative to positive:

8P 2 OP
at +p

8x
=0

AX, 0)
- 1 x<0

= 2 x > 0.

Since p will be an increasing function of x, shocks can occur where q" = 2p < 0
(meaning -1 < p < 0) while an expansion wave occurs for p > 0. In general,
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Figure 12.6.11 Characteristics for
shock and expansion wave.

according to the method of characteristics, p is constant moving at velocity p2, so
that characteristics satisfy

x = p2(xo,O)t + xo.

Important characteristics that correspond to p = -1, p = 2, and (only at t = 0)
p = 0 are graphed in Fig. 12.6.11. The density p = 2 for x > 4t. The expansion
wave satisfies x = p2(xo, 0)t, so that there

x
Pfan=+ tV ,

where we have carefully noted that in this problem the expansion wave corresponds
to p > 0. (The characteristic x = Ot corresponding to p = 0 in some subtle sense
bounds the expansion wave ranging from p = 0 to p = 2.) However, the character-
istics from xo < 0 in which p = -1 moving at velocity +1 intersect characteristics
in the region of the expansion wave. A nonuniform shock (nonconstant velocity)
will form, separating the region with constant density p = -1 from the expansion
wave pfa = +. The path of the shock wave is determined from the shock
condition

dx - [9] - 11+(t)3/2
dt [P] 31+(t)1/2

It is somewhat complicated to solve exactly this ordinary differential equation. In
any event, the ordinary differential equation could be solved (with care) numerically
(let y = fl. It can be shown that this nonuniform shock persists for these initial
conditions. In other problems (but not this one), this shock might no longer persist
beyond some time, in which case it would be replaced by a simpler uniform shock
(constant velocity) separating p = -1 and p = 2.

Diffusive conservation law. Here we will introduce a different way
to understand the relationship between the unique shock velocity and the unique
conservation law. Suppose the partial differential equation was diffusive, but only
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slightly different from the one previously studied:

OP 2

+q'(P)19p = ea_ , (12.6.24)

where a is a very small positive parameter, 0 < e << 1. Note that p is conserved
in the sense that Jet+ a (q - e) = 0. Under most circumstances the partial
differential equation can be accurately approximated by the equation with e = 0,
which can be solved by the method of characteristics. The term a a would be
important only where e was large, near a region in which the density changes
rapidly in a short distance, what we have called a shock. This (12.6.24) could be
derived by assuming the car velocity satisfies u = v - e apl a' , which corresponds to

drivers slowing down if they see increased density ahead (O > 0). We are interesting
in solving (12.6.24) with initial conditions that approach two different constants pl
and P2 as x -* too. This would correspond to a transition wave between the two
constant states. There are two very different cases, one corresponding to shocklike
initial conditions and the other corresponding to expansion type initial conditions.
We will show that a traveling transition wave only exists for the shocklike case.

Velocity of traveling shock wave. There are no methods to find the
general solution of such nonlinear partial differential equations, (12.6.24), so we look
for very special traveling wave solutions with unknown traveling wave velocity c:

P=f(0 =.f(x-ct), (12.6.25)

where { is the spatial coordinate moving with velocity c. Substituting (12.6.25) into
(12.6.24) yields a second-order nonlinear ordinary differential equation:

2

(-c+q'(f))A = e 2 (12.6.26)

which can be integrated to yield a first-order nonlinear differential equation:

-A - cf + q(f) = edf , (12.6.27)

where -A a constant. We will determine the two constants c and A, though the
velocity is more important. To satisfy the condition that f -+ pt and P2 as x fx,
it follows that

-A - cpi + q(Pj) = 0 (12.6.28)

-A - cp2 + q(p2) = 0. (12.6.29)

By subtracting (12.6.28) from (12.6.29), we determine the traveling wave speed:

4(P2) - q(P1) = [q]c= (12.6.30)
P2 - Pi [P]

Thus, the traveling wave velocity equals the shock velocity, but we will
show that this is valid for the shock-like conditions and not valid for the expansion
wave-like conditions.
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Spatial structure of traveling shock wave. The first-order au-
tonomous differential equation (12.6.27) can be analyzed using a one-dimensional
phase portrait. We need to know properties of q(p). For the traffic flow problem
we assume, as graphed in Fig. 12.6.12, that q"(p) < 0, since that corresponds to
experiments for traffic flow as well as our simple example. We are concerned with
the difference between q(f) and the straight line A + cf. We adjust the constant A
so that there are two intersections which we call pi and p2. These are equilibrium
solutions and must satisfy (12.6.28) and (12.6.29). It is very important that we
label the solutions such that p2 > pi . For (12.6.27) 1 is a known function of f,
and it is graphed in the top portion of Fig. 12.6.12. The one-dimensional phase
portrait is graphed in the bottom portion of Fig. 12.6.12 for the autonomous first-
order ordinary differential equation (12.6.27). We note that in the upper half-plane
I > 0 and hence f is an increasing function of , and right arrows are introduced,
indicating that f increases as increases. Similarly, in the lower half-plane f is a
decreasing function of . Solutions with f > P2 or f < pl explode either forward or
backward in the traveling wave coordinate and are of no interest to us. The only
bounded traveling wave solutions correspond to pl < f < p2. Most important, f is
an increasing function of £ for pl < f < P2, and thus it is graphed in Fig. 12.6.13
as a traveling wave with the property that f -+ pi as x - ct - -oo and f - p2 as
x - ct -+ oo. This is important as it corresponds to the case corresponding to the
shock wave (P2 > pi) for traffic flow equations. It can be shown that if a is small,
then the transition from pl to p2 occurs in a thin region. The moving discontinuity
is a good approximation to the more precise continuous traveling wave. We have
shown that their velocities are the same. Thus, the traveling wave corresponds to
what we still call a shock wave. In fact, as a -+ 0, the spatial structure of the
continuous traveling wave approaches the discontinuous shock wave.

Figure 12.6.12 Phase line for trav-
eling shock wave.

Formation of a shock. We have described the propagation of shock waves.
In the examples previously considered, the density was initially discontinuous, and
the shock wave formed immediately. However, we will now show that shock waves
take a finite time to form if the initial density is continuous, and we will compute
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P2

P
I

=xct
Figure 12.6.13 Spatial structure
for traveling shock wave.

that finite time. Suppose the initial condition is such that characteristics intersect
as shown in Fig. 12.6.6 because faster moving characteristics are behind more slowly
moving characteristics. For the partial differential equation je, +c(p) f = 0, where
the density wave velocity is c(p) = q'(p), the family of straight-line characteristics
(along which the density p(x, t) = p(xo, 0) = f (xo) is constant determined from the
given initial conditions] satisfies

x = c(f (xo)]t + xo = F(xo)t + x0, (12.6.31)

where we have introduced a simplifying notation for the constant density wave ve-
locity F(xo) = c[f(xo)]. Any characteristic starting between the two intersecting
characteristics shown in Fig. 12.6.6 will almost certainly intersect one of the other
two characteristics at an earlier time. Thus, it is usual for neighboring character-
istics to intersect, and we first discuss that.

Caustic (envelope of a family of curves, rays, or characteris-
tics). The family of characteristics (12.6.31) for the quasilinear partial differential
equation may converge as shown in Fig. 12.6.6. We wish to explain the envelope of
the characteristics shown in Fig. 12.6.14. To be more general, we consider instead
of (12.6.31) any family of curves parameterized by xo:

G(x, t, xo) = 0. (12.6.32)

A caustic is an envelope of the family of curves, and we claim that it simultane-
ously satisfies (12.6.32) and the partial derivative of (12.6.32) with respect to the
parameter xo:

a
axo

G(x, t, xo) = 0. (12.6.33)

To prove that (12.6.33) is valid, we consider the intersection of neighboring curves,
namely (12.6.32) and G(x, t, xo + Oxo) = 0. Using the Taylor series, this becomes
G(x, t, xo) + Oxo-52.t, xo) + = 0. By using (12.6.32), dividing by Oxo, and
taking the limit Oxo 0, (12.6.33) is proved.
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X

Figure 12.6.14 Formation of caus-
tic, envelope of characteristics.

Caustic for the, characteristics for the partial differential
equation. In our example, the family of characteristics is straight lines, (12.6.31),
G(x, t, xo) = 0 = F(xo)t + xo - x, where F(xo) = c[f (xo)]. Thus, the caustic
(envelope of the characteristics or rays) is formed by simultaneously solving 0 =
F'(xo)t + 1. This gives the parametric representation of the caustic (easily graphed
numerically from given initial conditions):

F(xo)x=-F'(xo)+xo (12.6.34)

t = - (12 6 35)

Characteristics will intersect (t > 0) only if F'(xo) < 0. Since F(xo) = c[(f (xo)],
we conclude that neighboring characteristics will intersect if they emanate from
regions where the characteristic velocity is locally decreasing (faster moving char-
acteristics behind slower characteristics). The caustic is shown in Fig. 12.6.14. It
is shown in Sec. 14.6.2 that the caustic has a cusp.

Initiation of a shock. The solution stays continuous until the finite time
at which the caustic appears. A shock wave begins at this time. The times for
the caustic are given by (12.6.35). To determine the first time that characteristics
intersect, we must minimize the intersection times. The absolute minimum of
t given by (12.6.35) corresponds to an absolution minimum of F'(xo) since F'(xo) <
0. Hence, the shock starts at t given by (12.6.35), where xo corresponds to the
minimurr -f F'(xo) and satisfies F"(xo) = 0.

Triple valuedness. Inside the caustic (after the caustic has formed), look
carefully at Fig. 12.6.14 to see that three different characteristics go through each
space-time point, corresponding to the solution of the partial differential equation
being triple valued as shown in Figure 12.6.15 or 12.6.7(d). Outside the caustic,
a unique characteristic goes through each point, and the solution is single valued.
The caustic is the boundary between these two regions. We will show that the slope
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x9(t)

Figure 12.6.15 Whitham's equal-area prin-
ciple.

of the solution is infinite (see Fig. 12.6.15) along the caustic. Since p(x, t) = f (xo),
we have

8p - 8xo f'(xo)
8x f (xo) 8x - F'(xo)t + 1'

using the partial derivative of (12.6.31) with respect to x, 1 = [F'(xo)t + 1]V.

The slope is infinite at the caustic, satisfying (12.6.35).

Shock dynamics. The triple-valued folded-over solution (within the caus-
tic) makes no sense. Instead, as discussed earlier, a shock wave exists satisfying the
shock condition dxt = f, but here the shock wave begins at the cusp of the caustic
at a time determined by minimizing the time in (12.6.35). This gives a differen-
tial equation for the position of the shock, but the shock does not necessarily have
constant velocity. The shock is located somewhere within the caustic. Whitham
[1999] has shown that the correct location of the shock may be det-imined by cut-
ting off the lobes to form equal areas (Fig. 12.6.15). The rea. -Nn for this is that
the method of characteristics conserves cars and that, when a shock is introduced,
the number of cars (represented by the area f p dx) must also be the same as it is
initially.

12.6.5 Quasilinear Example
Consider the quasilinear example

- P5- - -2P,

subject to the initial conditions

(12.6.36)

P(x,0) = f(x) (12.6.37)

This could model a traffic flow problem (with p a scaled version of the density),
where cars are not conserved but instead leave the roadway (at exits) at a rate
proportional to the density (as though cars exit the highway to avoid congestion).
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The method of characteristics yields

dp -
dt -2P,

along the characteristic
dx
dt

=
-p.

These equations are sometimes written in the equivalent form

(12.6.38)

(12.6.39)

dp = dx = dt. (12.6.40)-2p -p
Sometimes the coupled system of ordinary differential equations can be directly

solved. In this case the ordinary differential equation for p may be solved first, and
its solution used to determine the characteristic x. Because of the initial condi-
tion (12.6.37), we introduce the parameter xo representing the characteristic that
emanates from x = xo (at t = 0). From (12.6.38), along the characteristic, we
obtain

P(x,t) = P(xo,0)e-2t = f(xo)e-2t. (12.6.41)

The parameter xo is constant along each characteristic. The solution (density) expo-
nentially decays along the characteristic as time increases. Thus, the characteristic
velocity becomes

dx f(xo)e-2t
dt

By integrating the velocity, we obtain the position of the characteristic:

x= 2 f (xo)e-2t - 2 A TO) + xo, (12.6.42)

since x must equal xo at t = 0. Here, the characteristics are not straight lines.
The parametric representation of the solution is obtained from (12.6.41), where xo
should be considered as a function of x and t from (12.6.42). Usually an explicit
solution is impractical.

Explicit solution of an initial value problem. For the quasilinear
partial differential equation (12.6.36), suppose the initial conditions are

P(x,0) = f(x) = X.

In this case, from (12.6.42), the characteristics satisfy

x = 1 x0e-2t + 2xo.

Thus, an explicit solution can be obtained:

2x

x0 1 + -e-2t
.
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Note that for each x and t there is only one characteristic xo (because the initial
condition was chosen such that the family of characteristics does not intersect itself.)
From (12.6.41), the solution of the initial value problem for the partial differential
equation is

2xe-2t 2x
p(x, t) = T+ -e-2t = 1 + e2t

General solution. Quasilinear partial differential equations have general
solutions (as with the linear wave equation). Without specifying initial conditions,
integrating (12.6.38) and (12.6.39) yields

p(x,t) = cle-2tx = cle-2t + c2.

In general, one constant can be an arbitrary function of the other constant. Thus,
we obtain the general solution of (12.6.36),

x = p + f (pelt)
.

EXERCISES 12.6

12.6.1. Determine the solution p(x, t) satisfying the initial condition p(x, 0) = f (x)
if

* (a) 2t = 0 (b) _ -3p + 4e7t
* (c) i1e = -3xp (d) Jot = x2tp

*12.6.2. Determine the solution of 8p/8t = p that satisfies p(x, t) = 1 + sin x along
x = -2t.

12.6.3. Suppose + co = 0 with co constant.

*(a) Determine p(x, t) if p(x, 0) = sin x.

*(b) If co > 0, determine p(x, t) for x > 0 and t > 0, where p(x, 0) = f (x)
forx>0andp(0,t)=g(t) fort >0.

(c) Show that part (b) cannot be solved if co < 0.

*12.6.4. If u(p) = a+/3p, determine a and /3 such that u(0) = umax and u(pm ) = 0.

(a) What is the flow as a function of density? Graph the flow as a function
of the density.

(b) At what density is the flow maximum? What is the corresponding
velocity? What is the maximum flow (called the capacity)?

12.6.5. Redo Exercise 12.6.4 if u(p) = um.(1 - p3/p3,aJ)
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12.6.6. Consider the traffic flow problem

5 + C(P) ax = 0.

Assume u(p) = u,,,,t. (1 - p/pm..). Solve for p(x, t) if the initial conditions
are

(a) p(x, 0) = Pmax for x < 0 and p(x, 0) = 0 for x > 0. This corresponds
to the traffic density that results after an infinite line of stopped traffic
is started by a red light turning green.

Pmax x < 0
(b) p(x,0) = P2 -Ix 0 < x < a

0 x>a

5(c) P(x,0) =

P5 x < 0

p 5 x > 0

12.6.7. Solve the following problems:

(a)
a+ p2 = 0 P(x,0)

3= x< O
4 x>0

E = 0+ 4p;(b) d p(x,0)
2 x < 1

o X 3 x>1
1 x<0

(c) +3pe =0 p(x,0) 2 0<x<1
4 x>1

(d) ec + 6pp. = 0 for x > 0 only. P(x,0) = 5 x > 0
p(0, t) = 2 t > 0

12.6.8. Solve subject to the initial condition p(x, 0) = f (x)

* (a) a + ck = e-3x (b) f + 3.r = 4

*(c) kk+te =5 (d) + 5t = 3p

* (e)

*(g)

et - t2 z = -p
+xe =t

(f) +t28 =0

12.6.9. Determine a parametric representation of the solution satisfying p(x, 0) _
f (x):

*(a) -p2 = 3p (b) +pd =t
* (c) + t2Pe = -P (d) + p _ -xp
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12.6.10. Solve +t2 = 4p for x > 0 and t > 0 with p(0, t) = h(t) and p(x, 0) = 0.

12.6.11. Solve + (1 + t) = 3p for t > 0 and x > -t/2 with p(x, 0) = f (t) for
x > 0 and p(x, t) = g(t) along x = -t/2.

12.6.12. Consider (12.6.8) if there is a moving shock x, such that a < x,(t) < b. By
differentiating the integral [with a discontinuous integrand at x, (t)], derive
(12.6.20).

12.6.13. Suppose that, instead of u = U(p), a car's velocity u is

u = U(P) - P 8y

where v is a constant.

(a) What sign should v have for this expression to be physically reason-
able?

(b) What equation now describes conservation of cars?
(c) Assume that U(p) = umax(1 - p/pmax). Derive Burgers' equation:

O + umax I I - 2P ] ap = va 22 .
L Pmsx

12.6.14. Consider Burgers' equation as derived in Exercise 11.6.13. Suppose that a
solution exists as a density wave moving without change of shape at velocity
V, p(x, t) = f (x - V0.

*(a) What ordinary differential equation is satisfied by f?
(b) Integrate this differential equation once. By graphical techniques show

that a solution exists such that f -i p2 as x - +oo and f -+ pi as
x -- -oo only if p2 > pl. Roughly sketch this solution. Give a physical
interpretation of this result.

*(c) Show that the velocity of wave propagation, V, is the same as the
shock velocity separating p = pl from p = p2 (occurring if v = 0).

12.6.15. Consider Burgers' equation as derived in Exercise 11.6.13. Show that the
change of dependent variables

UPmax 4':

umax

introduced independently by E. Hopf in 1950 and J. D. Cole in 1951, trans-forms

Burgers' equation into a diffusion equation, V +ume, = v;' . Use
this to solve the initial value problem p(x, 0) = f (x) for -oo < x < oo. [In
Whitham [1999] it is shown that this exact solution can be asymptotically
analyzed as v - 0 using Laplace's method for exponential integrals to show
that p(x, t) approaches the solution obtained for v = 0 using the method of
characteristics with shock dynamics.]
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12.6.16. Suppose that the initial traffic density is p(x, 0) = po for x < 0 and
p(x,0) = pi for x > 0. Consider the two cases, Po < pi and pi < Po
For which of the preceding cases is a density shock necessary? Briefly ex-
plain.

12.6.17. Consider a traffic problem, with u(p) = um,,,,(1 - p/pm.x). Determine
P(x,t) if

* (a) p(x, 0)
2 5

.a x > 0 (b) p(x, 0) 2 3.: x > 0

12.6.18. Assume that u(p) = um&X(1 - p2/pm.). Determine the traffic density p
(fort > 0) if p(x, 0) = pi for x < 0 and p(x, 0) = p2 for x > 0.

(a) Assume that p2 > pi. * (b) Assume that p2 < pl.

12.6.19. Solve the following problems (assuming p is conserved):

(a) + p2 if = 0 p(x' 0) = {

(b) je, + 4pj.E = 0 p(x,0) = {

(c) V + 3pe = 0 p(x, 0) _

(d) 6p;xe =0forx>0only

4 x<0
3 x>0
3 x<1
2 x>1
4 x<0
2 0<x<1
1 x>1

p(x,0) = 2 x>0
p(0,t)=5 t>0

12.6.20. Redo Exercise 12.6.19, assuming that p2 is conserved.

12.6.21. Compare Exercise 12.6.19(a) with 12.6.20(a). Show that the shock veloci-
ties are different.

12.6.22. Solve +p2 = 0. If a nonuniform shock occurs, only give its differential
equation. Do you believe the nonuniform shock persists or is eventually
replaced by a uniform shock?

(a) P(x,0) _ ! x<0
(b) p(x, 0) = j i2 x<0

3 x>0 x>0

x<0 2 x < 0
(c) P(x,0) _ { 13 x>0 (d) p(x,0) -1 x>0



12.7. First-Order Nonlinear Partial Differential Equations 585

12.6.23. Solve - p2 = 0. If a nonuniform shock occurs, only give its differen-
tial equation. Do you believe the nonuniform shock persists or is eventually
replaced by a uniform shock?

(a) p(x,0) _ { 12 x
x<O

> 0 (b) p(x,0) = { 41 x > 0

(c)p(x,0)={ 13 x>0 (d)p(x,0)={ -2 x>0

12.7 First-Order Nonlinear
Partial Differential Equations

12.7.1 Eikonal Equation Derived from the Wave Equation
For simplicity we consider the two-dimensional wave equation

02E 2 02E 02E
ate ='C (ax2+sy2). (12.7.1)

Plane waves and their reflections were analyzed in Sec. 4.6. Nearly plane waves
exist under many circumstances. If the coefficient c is not constant but varies
slowly, then over a few wave lengths the wave sees nearly constant c. However, over
long distances (relative to short wave lengths) we may be interested in the effects of
variable c. Another situation in which nearly plane waves arise is the reflection of a
plane wave by a curved boundary (or reflection and refraction by a curved interface
between two medics with different indices of refraction). We assume the radius of
curvature of the boundary is much longer than typical wave lengths. In many of
these situations the temporal frequency w is fixed (by an incoming plane wave).
Thus,

E = A(x, y)e-.Wt, (12.7.2)

where that A(x, y) satisfies the Helmholtz or reduced wave equation:

-w2A = c2(8ax22A + 82Aaye
). (12.7.3)

Again the temporal frequency w is fixed (and given), but c = c(x, y) for inhomoge-
neous media or c = constant for uniform media. In uniform media (c = constant),
plane waves of the form E = Aoei(k'=+k2i,-Wt) or

A = Aoe'(k,x+ksy) (12.7.4)

exist if
w2 = c2(ki + k2). (12.7.5)

For nearly plane waves, we introduce the phase u(x, y) of the reduced wave equation:

A(x, y) = R(x, y)e+u(x.v) (12.7.6)
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The wave numbers kl and k2 for uniform media are usually called p and q, respec-
tively, and are defined by

8uP =
8x

(12.7.7)

8u
q = ay . (12.7.8)

As an approximation (which can be derived using perturbation methods), it can
be shown that the (slowly varying) wave numbers satisfy (12.7.5), corresponding to
the given temporal frequency associated with plane waves,

w2 = c2(p2 + q2). (12.7.9)

This is a first-order nonlinear partial differential equation (not quasilinear) for the
phase u(x, y), known as the eikonal equation:

(12.7.10)

where w is a fixed reference temporal frequency and c = c(x, y) for inhomogeneous
media or c = constant for uniform media. Sometimes the index of refraction
n(x, y) is introduced proportional to 1 . The amplitude R(x, y) solves equations
(which we do not discuss) known as the transport equations, which describe the
propagation of energy of these nearly plane waves.

12.7.2 Solving the Eikonal Equation in Uniform Media
and Reflected Waves

The simplest example of the eikonal equation (12.7.10) occurs in uniform media (c
= constant):

2

(a )2 + (sy)z = c2 (12.7.11)

where w and c are constants. Rather than solve for u(x, y) directly, we will show
that it is easier to solve first for p = yx- and q = . Thus, we consider

W2
pz +q z = C2 . (12.7.12)

Differentiating (12.7.11) or (12.7.12) with respect to x yields

pap
+ qOq =ax e 0.
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Since 2 = ,
p satisfies a first-order quasilinear partial differential equation:

PL + q2E = 0. (12.7.13)

Equation (12.7.13) may be solved by the method of characteristics [see specifically
(12.6.7)]:

dx dy dp

p q 0
(12.7.14)

If there is a boundary condition for p, then (12.7.14) can be solved for p since
q=f - p2 [from (12.7.12]. Since (12.7.14) shows that p is constant along each
characteristic, it also follows from (12.7.14) that each characteristic is a straightline.
In this way p can be determined. However, given p integrating for u is not
completely straightforward.

We have differentiated the eikonal equation with respect to x. If instead we
differentiate with respect to y, we obtain

apay +qay =0.

A first-order quasilinear partial differential equation for q can be obtained by again
using e-
Thus, Ax - _d=
result

p q

pLq + qLq = 0. (12.7.15)

which when combined with (12.7.14) yields the more general

dx_dy - dp - dq
(12.7.16)

p q 0 0*

I
0

However, usually we want to determine u so that we wish to determine how u
varies along this characteristic: du = dx + dy = pdx + qdy = p2 px + 241

v
=

(p2 + q2)

n
= 3 P where we have used (12.7.16) and (12.7.12). Thus, for the

eikonal equation,
dx = 0 = 4 dup = q4 0 0 = w2/c2 (12.7.17)

The characteristics are straight lines since p and q are constants along the charac-
teristics.

Reflected waves. We consider ei(kt -x-"t), an elementary incoming plane
wave where kr represents the given constant incoming wave number vector and
where w = c 1kr 1. We assume the plane wave reflects off a curved boundary (as
illustrated in Fig. 12.7.1), which we represent with a parameter r as x = xo(r) and
y = yo(r). We introduce the unknown reflected wave, R(x, y)ei,.(x,y)e-iwt and we
wish to determine the phase u(x, y) of the reflected wave. The eikonal equation

w2
p2 + q2 =

CZ
= jkl12
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Figure 12.7.1 Reflected wave from curved
boundary.

can be interpreted as saying the slowly varying reflected wave number vector (p, q)
has the same length as the constant incoming wave number vector (physically the
slowly varying reflected wave will always have the same wave length as the incident
wave). We assume the boundary condition on the curved boundary is that the total
field is zero (other boundary conditions yield the same equations for the phase):
0 = e'ik' _"'t) + R(x, on the boundary the phase of the
incoming wave and the phase of the reflected wave must be the same:

u(xo, yo) = kt x0, (12.7.18)

Taking the derivative of (12.7.18) with respect to the parameter T shows that

c9u dxo 9u dyo _ dxo dyo = dxo dxo
8x dT + (9y dT = p dT + q

_WT kR dT = kf dT , (12.7.19)

where we have noted that the vector (p, q) is the unknown reflected wave number
vector kR (because p and q are constant along the characteristic). Since do is a
vector tangent to the boundary, (12.7.19) shows that the tangential component of
the incoming and reflecting wave numbers must be the same. Since the magnitude
of the incident and reflecting wave number vectors are the same, it follows that the
normal component of the reflected wave must be minus the normal component of
the incident wave. Thus, the angle of reflection off a curved boundary is the same
as the angle of incidence. Thus at any point along the boundary the constant value
of p and q is known for the reflected wave. Because q = ± 3 - p2, there are two
solutions of the eikonal equation; one represents the incoming wave and the other
(of interest to us) the reflected wave. To obtain the phase of the reflected wave, we
must solve the characteristic equations (12.7.17) for the eikonal equation with the
boundary condition specified by (12.7.18). Since for uniform media , = Ik1I2 is a

constant, the differential equation for u along the characteristic, d-° = "-
dx c p p

can be integrated (since p is constant) using the boundary condition to give
2

u(x, y) =
-kr I (x - xo) + kr . xo,

P

along a specific characteristic. The equation for the characteristics p(y - yo) _
q(x - xo) corresponds to the angle of reflection equaling the angle of incidence.
Since p2 + q2 = IkI 12, the more pleasing representation of the phase (solution of the
eikonal equation) follows along a specific characteristic:

u(x,y) = p(x - xo) + q(y - yo) + k, - xo, (12.7.20)
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where u(xo,1lo) = kt xo is the phase of the incident wave on the boundary.

Wave front. The characteristic direction is the direction the light propagates.
For the eikonal equation, according to (12.7.14), px = 9 . This is also valid for
nonuniform media. Light propagates (characteristic direction) in the direction of
the gradient of the phase, emu, since Vu = y i + 3Y j = pi + qj = (dx i + dy j ).
Thus, light rays propagate normal to the wave fronts.

12.7.3 First-Order Nonlinear Partial Differential Equations
Any first-order nonlinear partial differential equation can be put in the form

F(x, y, u, , ) = 0. (12.7.21)

As with the eikonal equation example of the previous subsection, we show that
p = Ou and q = Ou solve quasilinear partial differential equations, and hence
(12.7.21) can be solved by the method of characteristics. Using p and q gives

F(x, y, u, p, q) = 0. (12.7.22)

Taking the partial derivative of (12.7.22) with respect to x, we obtain

Fx + Fup + Fp + Fq 9q = 0,

where we use the subscript notation for partial derivatives. For example, Fu == O
keeping x, y, p, q constant. Since jxI = , we obtain a quasilinear partial differential
equation for p:

Fp 8x +
Fq! _ Fx - Fup.

Thus, the method of characteristics for p yields

dx dy dp

Fp Fq -Fx - Fup (12.7.23)

Similarly, taking the partial derivative of (12.7.22) with respect to y yields

Fp+Fuq+Fp Fq'oq =0.
ay &Y

Here _ yields a quasilinear partial differential equation for q:

Fpax+Fq Fp-Fuq.
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The characteristic direction is the same as in (12.7.23), so that (12.7.23) is amended
to become

dx _ dy _ dp _ dq
(12 7 24)

Fp Fq -F. - Fup -Fy - Fuq'
. .

In order to solve for u, we want to derive a differential equation for u(x, y) along
the characteristics:

cAu 8u dx dy dx
du = 8x

dx + ay dy = p dx + q dy = pFp dx + qFq
Fq = (pFp + qFq) dx

The complete system to solve for p, q, and u is

dx dy dp _ dq _ du
FP Fq -F. - Fup - Fy - Fuq pFp + qFq '

EXERCISES 12.7

(12.7.25)

12.7.1. Show that light rays propagate normal to the wave fronts for nonuniform
media.

12.7.2. For the normalized eikonal equation for uniform media, (au)2+(0')2 = 1,

(a) Derive a partial differential equation for q without using (12.7.25).

(b) Use the method of characteristics for q, assuming q is given at y = 0.
(c) Show that the result is the same as using (12.7.25).



Chapter 13

Laplace Transform
Solution of Partial
Differential Equations

13.1 Introduction
We have introduced some techniques to solve linear partial differential equations.
For problems with a simple geometry, the method of separation of variables moti-
vates using Fourier series, its various generalizations, or variants of the Fourier trans-
form. Of most importance is the type of boundary condition, including whether the
domain is finite, infinite or semi-infinite. In some problems a Green's function can
be utilized, while for the one-dimensional wave equation the method of character-
istics exists. Whether or not any of these methods may be appropriate, numerical
methods (introduced in Chapter 6) are often most efficient.

Another technique, to be elaborated on in this chapter, relies on the use of
Laplace transforms. Most problems in partial differential equations that can be an-
alyzed by Laplace transforms also can be analyzed by one of our earlier techniques,
and substantially equivalent answers can be obtained. The use of Laplace trans-
forms is advocated by those who feel more comfortable with them than with our
other methods. Instead of taking sides, we will present the elementary aspects of
Laplace transforms in order to enable the reader to become somewhat familiar with
them. However, whole books' have been written concerning their use in partial
differential equations. Consequently, in this chapter we only briefly discuss Laplace
transforms and describe their application to partial differential equations with only
a few examples.

1 Fbr example, Churchill [1972).

591
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13.2 Properties of the Laplace Transform
13.2.1 Introduction
Definition. One technique for solving ordinary differential equations (mostly
with constant coefficients) is to introduce the Laplace transform of f (t) as fol-
lows:

G[f (t)] = F(s) = J
"o f (t)e-"t dt.

0
(13.2.1)

For the Laplace transform to be defined, the integral in (13.2.1) must converge. For
many functions, f (t), s is restricted. For example, if f (t) approaches a nonzero
constant as t - oo, then the integral converges only if s > 0. If s is complex,
s = Re(s) + i Im(s) and e'at = e- Re(s)t [cos(Im(s)t) - i sin(Im(s)t)], then it follows
in this case that Re(s) > 0 for convergence.

We will assume that the reader has studied (at least briefly) Laplace transforms.
We will review quickly the important properties of Laplace transforms. Tables
exist, and we include a short one here. The Laplace transform of some elementary
functions can be obtained by direct integration. Some fundamental properties can
be derived from the definition; these and others are summarized in Table 13.2.1.

From the definition of the Laplace transform, f (t) is only needed for t > 0. So
that there is no confusion, we usually define f (t) to be zero for t < 0. One formula
(13.2.21) requires the Heaviside unit step function:

H(t - b) 0
t > b. (13.2.2)

Inverse Laplace transforms. If instead we are given F(s) and want
to calculate f (t), then we can also use the same tables. f (t) is called the in-
verse Laplace transform of F(s). The notation f(t) = G-1[F(s)] is also used.
For example, from Table 13.2.1 the inverse Laplace transform of 1/(s - 3) is e 3t,
G-1[11(s - 3)] = eat.

Not all functions of s have inverse Laplace transforms. From (13.2.1) we notice
that if f (t) is any type of ordinary function, then F(8) -+ 0 as s -, oo. All functions
in our table have this property.

13.2.2 Singularities of the Laplace Transform
We note that when f (t) is a simple exponential, f(t) = ent, the growth rate a is also
the point at which its Laplace transform F(s) = 1/(s - a) has a singularity. As
s -, a, the Laplace transform approaches oo. We claim in general that as a check in
any calculation the singularities of a Laplace transform F(8) (the zeros of its

2Some better ones are in Churchill [1972]; CRC Standard Mathematical Tables [2002] (from
Churchill's table); Abramowitz and Stegun [1974] (also has Churchill's table); and Roberts and
Kaufman [1966].
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Table 13.2.1: Laplace Transforms (short table of formulas and properties)
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f(t) F(s) = tlf(t)) = f, f(t)e-" dt

1
1 (13.2.2a)

t'(n > -1)
s

nls-'+tl (13.2.2b)

.9 1

Elementary functions
(Exercises 13.2.1

e

sin wt

s-a (13.2.2c)

(13.2.2d)
and 13.2.2) s2+w2

coe wt
s

(13.2.2e)a2+w2

sinhat = } (e°t - e-ot) (13 2f)2. .

°t+h t = 4 ( -°t) - - A 2 )(13 2cos ea e j i T g. .

df
sF(s) - f(0) (13.2.2h)

dt

Fundamental properties d2f
(0)s2F(s) - of (0) - d (13.2.2i)

(Sec. 13.2.3 and
Exercise 13.2.3)

dt2

-tf(t)
t

dF
W (13.2.2j)

e°t f(t) F(s - a) (13.2.2k)

H(t - b) f(t - b) (b > 0) (13.2.21)

Convolution (Sec. 13.2.4) Itf(t - i)9(i dt F(s)G(s) (13.2.2m)

Dirac delta function
(Sec. 13.2.4) S(t - b) e-b'(b > 0) (13.2.2n)

Inverse transform
J"+ioo

(Sec. 13.7) F(s)eat ds F(s) (13.2.2o)
2wi

Miscellaneous t-t/2e_n2/4t

c
e-Ov" (a > 0) (13.2.2p)

(Exercise 13.2.9) t-3/2e-o2/4t 3 'e-°`/'- (a > 0) (13.2.2q)

denominator) correspond (in some way) to the exponential growth rates of
f (t). We refer to this as the singularity property of Laplace transforms. Later
we will show this using complex variables. Throughout this chapter we illustrate
this correspondence.

Examples. For now we briefly discuss some examples. Both the Laplace
transforms w/(s2+w2) and 8/(92+w2) have singularities at 82+w2 = 0 or 8 = ±1w.
Thus, their inverse Laplace transforms will involve exponentials eat, where s =
±1w. According to Table 13.2.1 their inverse Laplace transforms are, respectively,
sin wt and cos wt, which we know from Euler's formulas can be represented as linear
combinations of efi''t.

As another example, consider the Laplace transform F(s) = 3/[8(82 + 4)]. One
method to determine f (t) is to use partial fractions (with real factors):

3 _ a bs + c - 3/4 + -(3/4)s
8(82 + 4) 3

+
82 + 4 8 82 + 4
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Now the inverse transform is easy to obtain using tables:

At) =
3

4
- 3

4
cos 2t.

As a check we note that 3/[s(s2 + 4)] has singularities at s = 0 and 8 = ±2i. The
singularity property of Laplace transforms then implies that its inverse Laplace
transform must be a linear combination of a°t and e±2it, as we have already seen.

Partial fractions. In doing inverse Laplace transforms, we are frequently
faced with the ratio of two polynomials q(s)/p(s). To be a Laplace transform, it
must approach 0 as a --' oo. Thus, we can assume that the degree of p is greater
than the degree of q. A partial fraction expansion will yield immediately the desired
inverse Laplace transform. We only describe this technique in the case in which the
roots of the denominator are simple; there are no repeated or multiple roots. First
we factor the denominator:

p(8) = a (S - 81)(8 - 82)...(8 - Sn),

where al, ... , s,a are the n distinct roots of p(s), also called the simple poles of
q(a)/p(s). The partial fraction expansion of q(s)/p(s) is

C2Clq(8) Cn= + + ... +
p(s) 8-S1 8-82 S - an

(13.2.3)

The coefficients ci of the partial fraction expansion can be obtained by cumber-
some algebraic manipulations using a common denominator. A more elegant and
sometimes quicker method utilizes the singularities si of p(s). To determine ci, we
multiply (13.2.3) by s - si and then take the limit as s --+ ai. All the terms except
ci vanish on the right:

ci = lim (s - si)q(s)
s-si p(s) (13.2.4)

Often, this limit is easy to evaluate. Since s - si is a factor of p(8), we cancel it in
(13.2.4) and then evaluate the limit.

Example. Using complex roots,
3 cl c2 C3

8(82+4) s 8+2i+s-2i'
where

=
3 _3

Cl
al
0 8 8(92+4) 4

C2 = lim (9 + 2i) 3 - lim (s + 2i) 3 =-3
a 2i a(s2+4) s-.-2i s(s + 2i)(a - 2i) 8

c3 = lim(s-2i) 3 = lim (a-2i) 3 -3
s(s2 +4) a-.2i s(s + 2i) (s - 2i) 8'



13.2. Properties of the Laplace Ttansform 595

Simple poles. In some problems, we can make the algebra even easier. The
limit in (13.2.4) is 0/0 since p(ai) = 0 [s = si is a root of p(s)]. L'Hopital's rule for
evaluating 0/0 yields

cs = lim
d/ds[(s - si)q(s)] = q(si)

a-.s, d/ds p(8) p1(80

Equation (13.2.5) is valid only for simple poles.
Once we have a partial fraction expansion of a Laplace transform, its inverse

transform may be easily obtained. In summary, if

F(s) = p(8),

then by inverting (13.2.3),

f(t) _ q8i es.t
p'(8i)

where we assumed that p(s) has only simple poles at s = si.

(13.2.6)

(13.2.7)

Example . To apply this formula for q(s)/p(s) = 3/[s(82 + 4)], we let q(s) = 3
and p(s) = s(s2 + 4) = 33 + 4s. We need p(s) = 382 + 4. Thus, if

3
=

Cl

+
c2 C3F(s) = 8(82+4) s s + 2i + s - 2i'

then

q(0) _ 3 q(-2i) - 3 q(2i) - - 3Cl = , C2 and C3 = ,
P(o) 4 p'(-2i) -8 p'(2i) 8

as before. For this example,

f (t)
= 4 - 8

e-sic -
8

e2it = 4 - 4 cos 2t.

Quadratic expressions (completing the square). Inverse Laplace
transforms for quadratic expressions

F(s) = as +
as2+bs+c
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can be obtained by partial fractions if the roots are real or complex. However, if the
roots are complex, it is often easier to complete the square. For example, consider

F(s) =
1 _ 1

82+2s+8 (s+1)2+7'

whose roots are s = -1 ±if. Since a function of s+ 1 appears, we use the shift
theorem, G-O°[G(f - -1)] = I- u}(U):

F(s) = G(s + 11 where G(s) = 82+7'

According to the shift theorem the inverse transform of G(s + 1) is (using a = -1)
f (t) = e-tg(t), where g(t) is the inverse transform of 11(82 + 7). From Table 13.2.1,
g(t) = (1/ f) in /t and thus

At) = 1 e-t sin VVt.

This result is consistent with the singularity property; the solution is a linear com-
bination of eat, where s = -1 ± iv'7-.

13.2.3 Transforms of Derivatives

1

One of the most useful properties of the Laplace transform is the way in which it
operates on derivatives. For example, by elementary integration by parts,

, 1dJ
f00

4
00r _e-at dt = fe-at1'0* +8 f fe-'t dt

o dt o
= 8F(s) - f (0).

Similarly,

= sL []-'(o) = 8(8F(s)-f (0))- d (0)

(13.2.8)

= 82F(s) - a f (0) - dt (0).

(13.2.9)
This property shows that the transform of derivatives can be evaluated in terms
of the transform of the function. Certain "initial" conditions are needed. For
the transform of the first derivative c(f /dt, f (0) is needed. For the transform of
the second derivative d2 f /dt2, f (0) and df /dt(0) are needed. These are just the
types of information that are known if the variable t is time. Usually, if a"Laplace
transform is used, the independent variable t is time. Furthermore, the Laplace
transform method will often simplify if the initial conditions are all zero.
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Application to ordinary differential equations. For ordinary
differential equations, the use of the Laplace transform reduces the problem to an
algebraic equation. For example, consider

3

1

5.

Taking the Laplace transform of the differential equation yields

s2Y(s) - a - 5 + 4Y(s) = 3
8

where Y(s) is the Laplace transform of y(t). Thus,

_ 1 3 3 8 5
Y(8) 82+4(e+8+5 =8(82+4)+s2+4+82+4'

The inverse transforms of s/(s2 + 4) and 5/(s2 + 4) are easily found in tables. The
function whose transform is 3/[8(82 + 4)] has been obtained in different ways. Thus,

y(t) = 4 - 4cos2t+cos2t+ 2sin2t.

13.2.4 Convolution Theorem
Another method to obtain the inverse Laplace transform of 3/[8(82+4)) is to use the
convolution theorem. We begin by stating and deriving the convolution theorem.
Often, as in this example, we need to obtain the function whose Laplace transform
is the product of two transforms, F(s)G(s). The convolution theorem states
that

4-'[F(s)G(s)] = g * f = f g(i)f (t - t) dt,t
0

(13.2.10)

where g * f is called the convolution of g and f. Here f(t) = G-1[F(a)] and
g(t) = C-'[G(s)1. Equivalently, the convolution theorem states

G eg(t)f(t - i) dJ = F(s)G(8) (13.2.11)

By letting t - t = to, we also derive that g * f = f * g; the order is of no importance.
Earlier, when studying Fourier transforms (see Sec. 10.4), we also introduced the
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convolution of g and f in a slightly different way,

g * f = f f (t - i)g(t) dt.
00

However, in the context of Laplace transforms, both f (t) and g(t) are zero for t < 0,
and thus (13.2.10) follows since f (t - t) = 0 fort > t and g(l) = 0 fort < 0.

Laplace transform of Dirac delta functions. One derivation of the
convolution theorem uses the Laplace transform of a Dirac delta function:

L [6(t - b)] = jo(t - b)et dt =

if b > 0. Thus, the inverse Laplace transform of an exponential is a Dirac delta
function:

G-1 [e-s"] = 6(t - b). (13.2.13)

In the limit as b - 0, we also obtain

L [6(t - 0+)] = 1 and G-1 [1] = 6(t - 0+). (13.2.14)

Derivation of convolution theorem. To derive the convolution the-
orem, we introduce two transforms F(s) and G(s) and their product F(s)G(s):

F(s) = f 00 f (t)e-'t dt (13.2.15)
0

G(s) = j9(t)e' dt (13.2.16)

F(s)G(s) =
10001000

f(i)g(T)e-'(i+T) dT dt. (13.2.17)

h(t) is the inverse Laplace transform of F(s)G(s):

h(t) = L-'[F(s)G(s)J = f f f(t)g(T)L-1 [e-s(i+T)1 dt dT,
0 o L JJ

where the linearity of the inverse Laplace transform has been utilized. However,
the inverse Laplace transform of an exponential is a Dirac delta function (13.2.13),
and thus

h(t) = f
r fr

f (1)g(T)6[t - (i + T)] di dT.
0 0

Performing the T integration first, we obtain a contribution only at T = t -
Therefore, the fundamental property of Dirac delta functions implies that

h(t) = f f (i)g(t - i) dt,t
0

the convolution theorem for Laplace transforms.
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Example. Determine the function whose Laplace transform is 3/[8(82+4)],
using the convolution theorem. We introduce

F(8) = 3 [so that f (t) = 3] and G(s) = [so that g(t) = 1 sin 2t].
s 82 +4 2

It follows from the convolution theorem that the inverse transform of (3/8) [1/(s2 + 4)]
is fo f (t -1)g(t) dt:

j3.sin 2d= - cos 2
t

= 4 (1 - cos 2t),
0

as we obtained earlier using the partial fraction expansion.

EXERCISES 13.2

13.2.1. From the definition of the Laplace transform (i.e., using explicit integration),
determine the Laplace transform of f (t) =:

(a) 1 (b) eat

(c) sinwt [Hint: sin wt = Im(e"'t).] (d) coswt [Hint: coswt = Re(e''t
(e) sinh at (f) cosh at
(g) H(t - to), to > 0

13.2.2. The gamma function I'(x) was defined in Exercise 10.3.14. Derive that
G[tn] = I'(n + 1)/sn+l for n > -1. Why is this not valid for n < -1?

13.2.3. Derive the following fundamental properties of Laplace transforms:

(a) G[-t f (t)] = dF/ds
(b) C[e*t f (t)j = F(s - a)
(c) G[H(t - b) f (t - b)] = e-'8F(s) (b > 0)

13.2.4. Using Table 13.2.1, determine the Laplace transform of f (t) dtt in termsf*

of F(8).

13.2.5. Using Table 13.2.1, determine the Laplace transform of f (t)

(a) tae-2t * (b) t sin 4t
(c) H(t - 3) * (d) e3t sin 4t

10 t<5
(e) to-4t cos 6t * (f) f (t) = t2 5 < t < 8

0 8<t
(g) t2H(t - 1) * (h) (t - 1)4H(t - 1)
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13.2.6. Using Table 13.2.1, determine the inverse Laplace transform of F(s) _:

1

82+ s+7

11 hO ,-3 4a_a

*0) s+2
8(82+9)

(1 - 5e-4s)

1 1 1

T.-T-17 ( ) (82+1)2

s +1 s +4

°
7s)(1 - 4e-

s2 -4s-S

13.2.7. Solve the following ordinary differential equations using Laplace transforms:

(a) di, + 3Y+ y = t3 with y(0) = 7 and Itk(0) = 5

*(b) ? + y = 1 with y(0) = 2

(c) ?t + 3y =
4e-'

t > 8 with y(O) = 1
2

*(d) d2 + 5!& t - 6y = j
e

0
t> 3

t
< 3 with y(O) = 3

z `
(e) di; + y = cost with y(0) = 0 and (0) = 0

*(f)
d + 4y = sin t with y(0) = 0 and a(0) = 0t

13.2.8. Derive the convolution theorem for Laplace transforms without using the
Dirac delta function. [Hint: Introduce the variable z = t + T in order to
evaluate the double integral (13.2.17).]

13.2.9. In this exercise we will determine

I = L{t-3/2e-a2/4t} and J = G{t-1/2e-a2/4t}.

(a) Determine a relationship between I and J by substituting the expres-
sion u = a1/2t1/2 - (a/2)t-1J2 into f e-u' du = Fir.

(b) Determine a relationship between I and J by introducing the change
of variables aw = (a2/4)t-1 into the definition of I.

(c) Derive that I = (2f/a)e-4f and J = ( ir/a)e-a' using parts (a)
and (b).
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13.3 Green's Functions for Initial Value Problems
for Ordinary Differential Equations

The convolution theorem is very useful in solving nonhomogeneous ordinary differ-
ential equations. For example, consider

y +,ljd +ryy = f(t),
dt2 dt

subject to zero3 initial conditions

(13.3.1)

y(0) = 0 (13.3.2)

dt (0) = 0.

Taking the Laplace transform of the differential equation (13.3.1) yields

(13.3.3)

(as2 + 3s + - )Y(s) = F(s) or Y(s) = F(s) 4)3(13, y
as2 +,Os + ry'

. .

where Y(s) and F(s) are the Laplace transforms of y(t) and f (t), respectively. The
solution y(t) can be obtained using the convolution theorem:

y(t) = f f (to)q(t - to) dto,e

0
(13.3.5)

where q(t) is the inverse Laplace transform of 1/(as2 + Qa + y). We can determine
q(t) using tables and/or partial fractions. This result, (13.3.5), will be equivalent to
the solution of nonhomogeneous problems as is usually obtained by the method of
variation of parameters in most elementary texts on ordinary differential equations.

There is an important alternative interpretation of this result. q(t) is the solution
of (13.3.1) if F(s) = 1. The inverse Laplace transform of F(s) = 1 is f (t) = 6(t-0+)
[see (13.2.14). Thus, q(t) is the response due to an impulse at t = 0+:

ad2 +,349+ryq = b(t-0+)
q(0) = 0 (13.3.6)

dq (0) = 0.

We can introduce the terminology of Chapters 9 and 11. We call q(t) the Green's
function for the initial value problem, the response at t due to a concentrated
source at t = 0:

q(t) = G(t, 0).

The convolution theorem shows that we are interested in q(t - to):

q(t - to) = G(t - to, 0).
3Nonzero initial conditions can be analyzed by adding appropriate homogeneous solutions of

the differential equation.
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However, due to the constant coefficients present in (13.3.6), the response at t
due to an impulse at to, G(t, to), is the same as the response due to an impulse
at 0, if the elapsed time is the same,

G(t, to) = G(t - to, 0), (13.3.7)

the translation property of the Green's function. Thus,

q(t - to) = G(t, to).

Therefore, from (13.3.5), through the use of Laplace transforms, we have obtained a
representation of the solution of the nonhomogeneous initial value problem (13.3.1)-
(13.3.3) involving the Green's function

y(t) = f f (to)G(t, to) dto.c
0

(13.3.8)

The solution is the generalized superposition of all sources acting before the time
t, an example of the causality principle for initial value problems for ordinary
differential equations. In this form the result appears quite similar to our results
concerning Green's functions for boundary value problems for ordinary and partial
differential equations. Here the Green's function h(t) = G(t, 0) is simply the inverse
Laplace transform of 1/(as2 + Qa +'y).
Example. Consider the differential equation

a2 dt2 - 72y = f (t). (13.3.9)

The solution that satisfies zero initial conditions is
c

y(t) = f f (to)G(t, to) dto,
0

where the Green's function G(t, to) satisfies q(t - to) = G(t, to). We introduce the
Laplace transform of q(t):

1 1

fq(t)] = x282 -'y2 = a2(s2 -.y2/a2)

Directly from tables, we may obtain the Green's function, G(t, 0),

G(t, 0) = q(t) = 1 a sinh 7 t.
a2 ry a

Thus, the solution of (13.3.9) is

jf(to)sinh(t_to)
c

y(t) = 7 dto, (13.3.10)

where y(O) = 0 and dy/dt(0) = 0.
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EXERCISES 13.3

13.3.1. By using Laplace transforms, determine the effect of the initial conditions
in terms of the Green's function for the initial value problem,

«dtz +0dy
+ 7y = 0,

subject to y(O) = yo and a (0) = vo.

*13.3.2. What is the Green's function for

dt2 + y = f (t)

with y(O) = 0 and Y(0) = 0? Solve for y(t).

13.3.3. (a) Do Exercise 9.3.25(a).

(b) Do Exercise 9.3.25(b).

13.3.4. Show that for t > to, G(t, to) for (13.3.1)-(13.3.3) satisfies

a7t2 +Q +ryG=O

with G(to, to) = 0 and 0- (to, to) = a .

13.3.5. Solve Exercise 13.3.2 using Exercise 13.3.4.

13.4 A Signal Problem
for the Wave Equation

Using Laplace transforms to solve partial differential equations often requires great
skill in the use of Laplace transforms. We only pursue some relatively simple ex
amples.4 Consider a semi-infinite string (x > 0), whose motion is caused only by a
time-dependent boundary condition at x = 0:

PDE:
02u _ 8u
8t2 8x2

(13.4.1)

BC: u(O,t) = f(t) (13.4.2)

4For more difficult examples, see Churchill 119721 and Weinberger [1995].
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IC:

u(x,0) = 0

8- t
(x, 0) = 0.

(13.4.3)

The string is initially horizontal and at rest. The left end is being moved vertically
(while maintaining the large tension). Since the problem is defined for all x > 0,
we need a boundary condition as x -+ oo:

lim u(x, t) = 0.
X-00

(13.4.4)

All the initial conditions of this problem are zero. Consequently, the use of
Laplace transforms in the time variable is expected to yield a simple solution:

G[u(x, t)1 = U(x, a) =
J

oo u(x, t)e-'t dt.
0

As with ordinary differential equations, we take the Laplace transform in the time
variable of (13.4.1),

G ["U] = s2G[u] - su(x, 0) - (x, 0) = s2L [u]. (13.4.5)

Here, we also need the Laplace transforms in the time variable of partial derivatives
with respect to x. We obtain

G [&2u] = f-'92ue-'t dt =
8x2 .l u(x,

t)e-at dt = -C u]. (13.4.6)
0

In this manner, the Laplace transform of a partial differential equation yields an
"ordinary" differential equation

82U(x, s) = c2
827
8x2 ,

(13.4.7)

defined for 0 < x < oo. At x = 0, u(x, t) is given for all t, and thus its Laplace
transform is known:

r r
7(0, s) =

J '* u(0, t)e-'t dt = / f (t)e-"' dt = F(s), - (13.4.8)
0 0

where F(s) is the Laplace transform of the boundary condition. Also since u(x, t)
0 as x -- i oo (for all fixed t), we have the same result for its Laplace transform,

lim U(x, s) = 0.xoo

The general solution of (13.4.7) is

(13.4.9)

U(x, 8) = A(s)e-('/c)' + B(s)e('/`)x,
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where A(s) and B(s) are arbitrary functions of the transform variable s. For s > 0
[more precisely Re(s) > 0], B(s) = 0 to satisfy the decay as x -- oo, (13.4.9). In
addition, the boundary condition at x = 0, (13.4.8), implies that A(s) = F(s), and
thus

U(x, s) = F(s)e-('1')x (13.4.10)

To invert this transform, we could use the convolution theorem. Instead, a quick
glance at Table 13.2.1 shows that an exponential multiple in the transform yields a
time shift in the solution. Consequently,

u(x,t)=H(t- -) f(t - % (13.4.11)

where H is the Heaviside unit step function. The solution is zero for x > ct. In fact,
the solution is constant whenever x - ct is constant. The solution travels as a wave
of fixed shape at velocity c. We obtained similar results in Chapter 12, using the
method of characteristics. We illustrate this in a space-time diagram in Fig. 13.4.1.
The signal propagates with velocity c, and thus at time t it has traveled only a
distance ct. If x > ct, the "wiggling" of the string at x = 0 has not been noticed.

u(0

Figure 13.4.1 Signal prob-
lem for the one-dimensional
wave equation.

However, it is educational to obtain the same result using the convolution the-
orem. Since U(x, s) = F(s)e-(3/0x,

u(x,t) = f f(to)g(t - to) dto,
0

where e-(O/c)z is the Laplace transform of g(t). From a table of Laplace transforms
(as can be easily verified), g(t) = b(t - x/c). Thus,

u(x,t) = t f(to)b t - to -
x

dto = 0 t < x/c

1 ( c) { f(t - x/c) t > x/c,

which is equivalent to (13.4.11).
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EXERCISES 13.4

13.4.1. Solve
02u - 202u
8t2 T c 8x2

subject to Ou (0, t) = f (t), u(x, 0) = 0 and Ou (x, 0) = 0.

13.4.2. Solve

*13.4.3. Solve

*13.4.4. Consider

5 = c8x c>0, x>0, t>0
w(0, t) = f (t)
w(x, 0) = 0.

,92

5j2
= C2

02U

2 - 00
< x < 00

u(x, 0) = sin x

5 (x,0) = 0.

z- x>0
u(x,0) = 0
u(0, t) = At)-

Determine the Laplace transform of u(x, t). Invert to obtain u(x, t). (Hint:
See Table 13.2.1 of Laplace transforms.)

13.4.5. Reconsider Exercise 13.4.4 if instead the boundary and initial conditions are

u(x,0) = 0 and (0, t) = f(t).

13.4.6. Reconsider Exercise 13.4.4 if f (t) = Aei Ot (see Exercise 10.5.17).

(a) Determine an expression for u(x, t) using Laplace transforms.

(b) Simplify part (a) with the change of variables w = x/2v/t -i, where t
is the variable of integration in part (a).

(c) Approximate u(x, t) if t is large.

13.5 A Signal Problem for a Vibrating String
of Finite Length

In partial differential equations the Laplace inversion integrals that are needed are
often not as simple as in Sec. 13.4. We illustrate this for a vibrating string of length
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L initially at rest in the horizontal equilibrium position subject to the following
time-dependent boundary condition at one end x = L:

PDE:

BC:

IC:

&2 = c2 82u
8x2

u(0,t) = 0
u(L, t) = b(t)

u(x,0) = 0

(x, 0) = 0.

(13.5.1)

(13.5.2)

(13.5.3)

The zero initial conditions facilitate the use of the Laplace transform in t of
u(x, t):

U(x, S) = J "O e-atu(x, t) dt. (13.5.4)
0

By transforming (13.5.1), U(x, s) satisfies the ordinary differential equation

82U
82U=c2 (13.5.5)

8x2

subject to the boundary conditions

U(0, s) = 0 (13.5.6)

U(L, s) = B(s), (13.5.7)

where B(s) is the Laplace transform of b(t). We can easily determine U(x, s):

U(x, s) = B(s)
sinh(s/c)x

(13.5.8)sinh(a/c)L

The convolution theorem implies that

e

u(x, t) = f b(to)f (t - to) dto, 13.5.9)
0

where f (t) is the inverse Laplace transform of

F(s) = sinh(s/c)x

'
(13.5.10)

sinh(s/c)L
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To obtain this inverse Laplace transform is not straightforward. One method to
obtain the inverse transform of (13.5.10) is to attempt to use our elementary tables,
in which primarily exponentials appear. We note that

sinh(s/c)x _ e(8/0x - e-(s/`)x _ (8/c)x - e-(8/`)x
sinh(s/c)L e(s/')L - e(8/c)L e(e/O)L(1 - e-(2e/c)L).

However, due to the denominator, this cannot be analyzed in a simple way. Instead,
we can introduce an infinite series of exponentials based on the geometric series

F(s) =
e(8/O)x - e-(e/`)x

e(s/°)L(1 - e-(28/°)L)
-(s1c)L(,(*1c)x - e-(8/`)x)(1 + e-(2L/c)s + e-(4L/c)s + ... )

'0 jexp -s (2nL Cx + L 1 ] - exp [_, ( 2nL +cx + L l

n=OL L f J
/(1j3.5.11)

These are all decaying exponentials since x < L, and hence each can be inverted us-
ing formula (13.2.2n) in Table 13.2.1. The Laplace transform is a linear combination
of

exp
[_., (2nL f x + L)]

(n > 0).
c J

The inverse Laplace transform of F(s) is thus a linear combination of Dirac delta
functions, 6[t - (2nL ± x + L)/c]:

°° 2nL-x+Ll / 2nL+x+Llf(t)=>2 [b(t - c / b1 t c /]
Since f (t - to) in (13.5.9) is the influence

function

for the boundary condition,
these Dirca delta functions represent signals whose travel times are (2nL ± x + L)/c
[elapsed from the signal time to]. These can be interpreted as direct signals and
their reflections off the boundaries xo = 0 and xo = L. Since the nonhomogeneous
boundary condition is at xo = L, we imagine these signals are initiated there (at
t = to). The signal can travel to x in different ways, as illustrated in Fig. 13.5.1. The
direct signal must travel a distance L - x at velocity c, yielding the retarded time
(L - x)/c (corresponding to n = 0). A signal can also arrive at x by additionally
making an integral number of complete circuits, an added travel distance of 2Ln.
The other terms correspond to waves first reflecting off the wall xo = 0 before
impinging on x. In this case the total travel distance is L + x + 2nL (n > 0).
Further details of the solution are left as exercises.

Using Laplace transforms (and inverting in the way described in this section)
yields a representation of the solution as an infinite sequence of reflecting waves.
Similar results can be obtained by the method of characteristics (see Chapter 12) or
(in some cases) by using the method of images (sequences of infinite space Green's
functions).
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Figure 13.5.1 Space-time signal paths.
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Alternatively, in subsequent sections, we will describe the use of contour integrals
in the complex plane to invert Laplace transforms. This technique will yield a
significantly different representation of the same solution.

EXERCISES 13.5

13.5.1. Consider
02u _ 02u

8t2 8x2u(x,0) = f(x)
8 (x, 0) = g(x).

Solve using Laplace transforms:

(a) if g(x) = 0

(b) if f (x) = 0

-oo<x<00

13.5.2. (a) Using the results of this section, invert (13.5.8) based on the convolu-
tion theorem. Solve for u(x, t).

(b) Without using the convolution theorem, from (13.5.8) and (13.5.11),
determine u(x, t).

*13.5.3. Solve for u(x, t) using Laplace transforms:

82u _ 82u

8t2 8x2

u(0,t) = 0 u(x,0) = 0

8 (L, t) = b(t) (x, 0) =i§j 0.

(a) Ou (0, t) = 0 and u(L, t) = b(t)

(b) Ou (0, t) = 0 and P. (L, t) = b(t)
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13.5.5. Solve for u(x, t) using Laplace transforms

2=k2 -00<5<oo

u(x, 0) = f W.

(Hint See Table 13.2.1 of Laplace transforms.)

13.5.6. Solve for u(x, t) using Laplace transforms:

au _ a2u
at k

axe

subject to u(x, 0) = f (x), u(0, t) = 0, and u(L, t) = 0. By what other
method(s) can this representation of the solution be obtained?

13.6 The Wave Equation and its Green's Function
The Laplace transform can be used to determine the relationship between solu-
tions of nonhomogeneous partial differential equations and its corresponding Green's
function. Consider the wave equation on a finite interval (0 < x < L) with sources
and time-dependent boundary conditions

PDE:
192U = 192U

ate c axe + q(x,t) (13.6.1)

BC:

IC:

u(0, t) = a(t)
u(L, t) = b(t)

u(x,0) = f(x)

i§i(x,O) = 9(x)

(13.6.2)

(13.6.3)

Green's function. The Green's function G(x, t; xo, to) satisfies

a2G
ate

G(0, t; xo, to)
G(L, t; xo, to)

c2 ax + a(x - xo)b(t - to)

0

0

(13.6.4)

(13.6.5)

(13.6.6)

subject to the causality principle

G(x, t; xo, to) = 0 for t < to. (13.6.7)
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Laplace transform of Green's function. In this section we deter-
mine the Green's function using the Laplace transform. The transform of (13.6.4)-
(13.6.6) yields

82
2G -2 ) -°t0+ 8( (13 6 8)8 c x xo e

8x2
. .

G(0, s; xo, to) = 0 (13.6.9)

G(L, s; xo, to) = 0, (13.6.10)

where Z7(x, a; xo, to) is the Laplace transform in time of G(x, t; xo, to). The transform
of (13.6.4) simplifies because the causality principle implies that G satisfies zero
initial conditions (if to > 0).

The Laplace transform of the Green's function satisfies (13.6.8), an ordinary dif-
ferential equation of the Green's function type. To satisfy the boundary conditions,
G(x, a; xo, to) must be proportional to sinh(s/c)x for x < xo and proportional to
sinh(a/c)(L - x) for x > xo. Since it will be symmetric, we know that

^y sinh 1 (L - xo) sinh
c
x x < xo

G(x, s; xo, to) = l ry sinh i xo sinh
o

(L - x) x > xo,
(13.6.11)

where -y is a constant (independent of x and xo). In this manner the continuity of
G at x = xo is automatically satisfied. The additional jump condition,

=o+

0 = c2 d I + e-eto,
yo

determines ry:

0 = -c2rys [sinh sxo cosh
s

(L - xo) + sinh
s

(L - xo) cosh sxo, + e-'t0.
C c c c c

By using an addition formula for hyperbolic functions [sinh(a + b) = sinh a cosh b +
cosh a sink b], we obtain

e-at0
ry - casinh(a/c)L' (13.6.12)

In Exercise 13.6.2 the Green's function itself is obtained by determining the inverse
Laplace transform of (13.6.11) with (13.6.12). JO

Representation of solution in terms of the Green's function.
We investigate further using Laplace transforms the relationships between u(x, t)
and its Green's function. To simplify some of our work, we consider the special case
of Sec. 13.5, q(x, t) = 0, a(t) = 0, f (x) = 0, and g(x) = 0; the only nonhomogeneous
term is the boundary condition at x = L. In the preceding section we showed
(13.5.8) that

U(x, s) = B(s) sinh(a/c)x
(13.6.13)

smh(s/c)L
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Here we will relate this to the Laplace transform of the Green's function (13.6.11)
with (13.6.12). Since the source satisfies xo = L, we need U for x < xo:

e-
t. sinh(s/c)(L - xo) sinh(s/c)x

G(x, s; xo, to) = (13.6.14)
cs sinh(s/c)L

To compare this with (13.6.13), we take the derivative with respect to xo:

8?7
(x, s; xo, to) = -

e-at0 cosh(s/c)(L - xo) sinh(s/c)x
8x0 c2 sinh(s/c)L

We note that at xo = L and to = 0,

8q7 (x s L 0) = - sinh(s/c)x
(13.6.15)

8x0 ' c2 sinh(s/c)L'

similar to the term appearing in (13.6.13). Thus,

U(x, s) = -c2B(s) 8-
(x, a; L, 0).

Using the convolution theorem, we obtain

u(x, t) = -c2 J b(to) 8 (x, t - to; L, 0) dto,o
which may be replaced by the more usual expression,

tu(x, t) = -c2J b(to) (x, t; L, to) dto,
0

(13.6.16)

due to the time-translation invariance of the Green's function. Equation (13.6.16),
obtained using Laplace transforms, is equivalent to the representation formula
(11.2.24) obtained using Green's formula for the special case q(x, t) = 0, a(t) = 0,
f (x) = 0, and g(x) = 0. The general case (11.2.24) may be derived in the same
way.

EXERCISES 13.6
13.6.1. (a) Determine the Laplace transform of u(x, t) satisfying (13.6.1)-(13.6.3).

(b) Represent u(x, t) in terms of its Green's function using Laplace trans-
forms [i.e., use (13.6.11) with (13.6.12)].

13.6.2. Determine the Green's function by inverting (13.6.11) with (13.6.12). Show
that signals are appropriately reflected.

13.6.3. Determine the Laplace transform of the Green's function for the waveequa-
tion if the boundary conditions are
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(a) u(0, t) = a(t) and 381- (L, t) = b(t)

(b) Ou (0, t) = a(t) and J.M (L, t) = b(t)

13.6.4. Consider
z

- n. OX2 + q(x't)
t > 0

u(0, t) = h(t)

u(x,0) = f(x).

*(a) Determine the Laplace transform of the Green's function for this ex-
ercise.

(b) Determine U(x, s) 'if f (x) = 0 and q(x, t) = 0 (see Exercise 13.4.4).

(c) By comparing parts (a) and (b), derive a representation of u(x, t) in
terms of the Green's function (if f (x) = 0 and q(x, t) = 01. Compare
to (11.3.21).

(d) From part (a), determine the Green's function. (Hint: See Table 13.2.1
of Laplace transforms.)

13.6.5. Reconsider Exercise 13.6.4 if

(a) h(t) = 0 and q(x,t) = 0

(b) h(t) = 0 and f (x) = 0

13.6.6. Reconsider Exercise 13.6.4 if, instead, the boundary condition were

8 (0, t) = h(t).

[Restrict attention to f(x) = 0 and q(x, t) = 0.]

13.7 Inversion of Laplace Transforms Using
Contour Integrals in the Complex Plane

Laplace transforms sometimes can be inverted by using tables. However, one of the
most important properties of Laplace transforms is that they can be inverted by a
contour integral in the complex plane. Furthermore, we will show how to evaluate
this integral using results from the theory of functions of a complex variable.

Fourier and Laplace transforms. First we show that the Laplace
transform can be considered a special case of the Fourier transform. As a review
we introduce g(x) and its Fourier transform G(w):

G(w) = 2x
r00

g(x)e"- dx (13.7.1)
J
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g(x) = J dui. (13.7.2)
00

Suppose, as is usual for functions that will be Laplace transformed, we discuss
functions g(x) that are zero for x < 0:

(0 x<0
g(x) = 1 2,s f(x)e-7x x > 0. (13.7.3)

The a-7x is introduced (and -y chosen) so that g(x) automatically decays sufficiently
rapidly as x --- oo for certain f (x). For this function, the Fourier transform pair
(13.7.1)-(13.7.2) becomes

G(w) = f °O f (x)e-(-iw+7)x dx

27r f (x)e--f-" = f G(w)e'"''x dw (x > 0).

If we introduce

and

s=y-iw (ds=-idw)

F(s)-G(w)=G(s

then using t instead of x (x = t) yields \

F(s) =
J

"o f (t)e-'t dt
0

1 7+ioO
f (t) = - / F(s)e-' ds

(13.7.4)

(13.7.5)

(t > 0). (13.7.6).

Equation (13.7.5) shows that F(s) is the Laplace transform of f (t). (We usually
use t instead of x when discussing Laplace transforms.) F(s) is also the Fourier
transform of

g(t) 0 t < 0
2a f (t)e'it t > 0.

More importantly, given the Laplace transform F(s), (13.7.6) shows how
to compute Its Inverse Laplace transform. It involves a line integral in the
complex a-plane, as illustrated in Fig. 13.7.1. From the theory of complex variables,
it can be shown that the line integral is to the right of all singularities of F(s).
Other than that, the evaluation of the integral is independent of the value of y. All
singularities are in the "left half-plane."
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Complex s-plane

-yl

Figure 13.7.1 Line integral in complex
s-plane for inverse Laplace transforms.

Cauchy's theorem and residues. We give only an extremely brief
discussion of evaluating integrals using the theory of complex variables. The fun-
damental tool is Cauchy's theorem, which states that if g(s) is analytic (no
singularities) at all points inside and on a closed contour C, then the closed line
integral is zero:

J. g(s) ds = 0. (13.7.7)

Closed line integrals are nonzero only due to singularities of g(s). The residue
theorem states that the closed line integral (counterclockwise) can be evaluated in
terms of contributions (called residues) of the singularities sn inside the contour
(if there are no branch points, which usually are square-root or logarithmic-type
singularities):

g(s) d8 = 2rri E res (se). (13.7.8)
n

The evaluation of residues is often straightforward. If g(s) = R(s)/Q(s) has simple
poles at simple zeros an of Q(s) inside the contour, then in complex variables it is
shown that

res (sn) =
Q (9n)'

and thus

ig(s) ds = 2lri> R(sn)
c n Q'(Sn)

(13.7.9)

(13.7.10)

Inversion integral. The inversion integral for Laplace transforms is not a
closed line integral but instead an infinite straight line (with constant real part ry)
to the right of all singularities. In order to utilize a finite closed line integral, we
can consider either of the two large semicircles illustrated in Fig. 13.7.2. We will
allow the radius to approach infinity so that the straight part of the closed contour
approaches the desired infinite straight line. We want the line integral along the arc
of the circle to vanish as the radius approaches infinity. The integrand F(s)e°t in the
inversion integral (13.7.6) must be sufficiently small. Since F(s) -+ 0 as s -+ oo (see
Sec. 13.2 or (13.7.5)1, we will need e$t to vanish as the radius approaches infinity.



616 Chapter 13. Laplace Transform Solution of PDEs

Figure 13.7.2 Closing the line integrals.

If t < 0, eat exponentially decays as the radius increases only on the right-facing
semicircle (real part of s > 0). Thus, if t < 0, we "close the contour" to the
right. Since there are no singularities to the right and the contribution of the large
semicircle vanishes, we conclude that

1 7+f (t) = - j F(s)e't ds = 0
2902 _ ioo

if t < 0; when we use Laplace transforms, we insist that f (t) = 0 for t < 0. Of more
immediate importance is our analysis of the inversion integral (13.7.6) for t > 0. If
t > 0, e't exponentially decays in the left half-plane (real part of s < 0). Thus, if
t > 0, we close the contour to the left. There is a contribution to the integral from
all the singularities. For t > 0, the inverse Laplace transform of F(s) is

1
7+ioo

f (t) = 29ri
F(8)e't ds 2- JF(s)eat ds = res (8,0. (13.7.11)

j_ioo 7ri n

This is valid if F(s) has no branch points. The summation includes all singularities
(since the path is to the right of all singularities).

Simple poles. If F(s) = p(s)/q(s) [so that g(s) = p(s)e't/q(s)] and if all
the singularities of the Laplace transform F(s) are simple poles [at simple zeros of
q(s)], then res (se) = p(sn)e'"t/q'(sn) and thus

f(t) = E p(sn) e". (13.7.12)
n q,(S-)

Equation (13.7.12) is the same result we derived earlier by partial fractions if F(s)
is a rational function [i.e., if p(s) and q(s) are polynomials].

Example of the calculation of the inverse Laplace transform.
Consider F(s) = (82+2s+4) /[.9(82 + 1)]. The inverse transform yields

f(t) = 1: res (.9n)
n
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The poles of F(s) are the zeros of 8(82 + 1), namely s = 0, fi. The residues at these
simple poles are

res (0) = 4eot = 4

- s,,+2s,,+4 = 3 + 28n e tres (s,, = fi) - 3s2 +1 e' -2 en

Thus,

f (t) = 4+
C-

2- i 1 e`t + l- 2+ i) e-it = 4- 2. 2 cos t- i- 2i sin t
= 4-3cost+22sint, \\

using Euler's formulas. In the next section we apply these ideas to solve for the
inverse Laplace transform that arises in a partial differential equation's problem.

EXERCISES 13.7

13.7.1. Use the inverse theory for Laplace transforms to determine f (t) if F(s)

(a) 1/(8 -a)
*(b) 1/(s2 + 9)

(c) (8 + 3)/(82 + 16)

13.7.2. The residue b_1 at a singularity so of f (s) is the coefficient of 1/(s - so) in
an expansion of f(8) valid near s = so. In general,

00

A8) = E bm(s - s0)m,
m=-00

called a Laurent series or expansion.

(a) For a simple pole, the most negative power is m = -1 (b,n = 0 for m <
-1). In this case, show that

res (so) = lim (s - so) f (s).
& 80

(b) If so is a simple pole and f (s) = R(s)/Q(s) [with Q(so) = 0, R(so) 516 0,
and dQ/ds(so) $ 0), show that

res (so) = R(so) Q'(8o),

assuming that both R(s) and Q(s) have Taylor series around so.
(c) For an Mth-order pole, the most negative power is m = -M (bn =

0 for m < -M). In this case, show that

1 dM-1
res (so) = (M - 1y dsM-1 [(s - so)Mf (s)] I - . (13.7.13)

s-a0
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(d) In part (c), show that the M appearing in (13.7.13) may be replaced
by any integer greater than M.

13.7.3. Using Exercise 13.7.2, determine f (t) if F(s) =

(a) 1/ 6 .

(b) 1/(82 + 4)2

13.7.4. If IF(s)I < a/r2 for large r =- IsI, prove that

L F(s)e" ds_0 as r-+oofort>0,

where CR is any arc of a circle in the left half-plane (Re s <0). [If IF(s)I <
a/r instead, it is more difficult to prove the same conclusion. The latter
case is equivalent to Jordan's lemma in complex variables.]

13.8 Solving the Wave Equation Using
Laplace Transforms (with Complex Variables)

In Sec. 13.6 we showed that

82u 82u
PDE: _ c2 (13.8.1)

8t2 8x2

BC:
u(O,t) = 0

(13.8.2)u(L, t) = b(t)

u(x,0) = 0
IC: Ou (13.8.3)

(x, 0) = 0

could be analyzed by introducing U(x, s), the Laplace transform in t of u(x, t). We
obtained u(x,t),

u(x, t) = -c2 / b(to) axon (x, t; L, to) dto, (13.8.4)

in terms of the Green's function. The Laplace transform of this influence function
was known [see (13.6.15)]:

MO
o (x, s; L, 0) = F(s) c2 nnh(L )s (13.8.5)
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In this section we use the complex inversion integral for the Laplace transform:

aG 1

I
ry+'°° _ sinh(x/c)s

axo
(x, t; L, 0) =

c2 snh(L/c)s
e't ds. (13.8.6)

-ioo

The singularities of F(s) only are simple poles sn, located at the zeros of the de-
nominator:

sinh L sn = 0. (13.8.7)
c

However, s = 0 is not a pole since, near a = 0,F(s) -(x/c)s/[c2(L/c)s] 4 oo.
There is an infinite number of these poles located on the imaginary axis:

L
c

sn = inir, n = ±1, ±2, ±-3,.... (13.8.8)

The location of the poles, en = ic(nir/L), corresponds to the eigenvalues, A =
(nir/L)2. This follows from the singularity property of Laplace transforms (see
Sec. 13.2). The singularity of the Laplace transform [s = ic(nir/L)] corresponds to
a complex exponential solution [eic(na/L)t]

The residue at each pole may be evaluated:

R(sn) - -i sin n7rx/Lei(nwct/L)res (sn) =
4,-(s-n) cLcosh(L/c)sn cLcosnir

since sinh ix = i sin x and cosh ix = cos x. Thus, the influence function for this
problem is

a
axo

G(x, t; L, 0) _ -i sin n7rx/Lei(nact/L)
cL cos nir

(..so)
00
:(-1)n sin

nLx
sin

n7rctc 1
n=1

(13.8.9)

where the positive and negative n contributions have been combined into one term.
Finally, using (13.8.4), we obtain

re
u(x, t) _ An(t) sin nLx, where An = -(-1)n L J b(to) sin Lc(t - to) dto,

n=

the same result as would be obtained by the method of eigenfunction expansion.
The influence function is an infinite series of the eigenfunctions. For homo-

geneous problems with homogeneous boundary conditions, inverting the Laplace
transform using an infinite sequence of poles also will yield a series of eigenfune-
tions, the same result as obtained by separation of variables. In fact, it is the
Laplace transform method that is often used to prove the validity of the method of
separation of variables.
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EXERCISES 13.8

*13.8.1. Solve for u(x, t) using Laplace transforms

82u _ 2 02u
8t2 = C 8x2

u(x,0) = f(x) (x,0) = 0 u(0,t) = 0 u(L,t) = 0.

Invert the Laplace transform of u(x, t) using the residue theorem for contour
integrals in the s-plane. Show that this yields the same result as derivable
by separation of variables.

13.8.2. Modify Exercise 13.8.1 if instead

(a) u(x,0) = 0 and
WO'T

(x,0) = g(x)

(b) u(0, t) = 0 and (L, t) = 0

(c)
YX_

(0,t) = 0 and (L,t) = 0

13.8.3. Solve for u(x, t) using Laplace transforms

Ou 02u
8t

_
k0x2

subject to u(x, 0) = f (x), u(0, t) = 0, and u(L, t) = 0.
Invert the Laplace transform of u(x, t) using the residue theorem for contour
integrals in the complex a-plane. By what other method can this represen-
tation of the solution be obtained? (Compare to Exercise 13.5.6.)

13.8.4. Consider
02u 02u
8t2 = c 8x2 + sin aot

u(x,0) = 0 u(0, t) = 0

(x,0) = 0 u(L,t) = 0.

(a) Solve using Laplace transforms (with contour inversion) if oo 511- c(m7r/L).

(b) Solve if oo = c(3ir/L). Show that resonance occurs (see Sec. 8.5).



Chapter 14

Dispersive Waves:
Slow. Variations,
Stability, Nonlinearity, and
Perturbation Methods

14.1 Introduction
This chapter is intentionally concise, giving the instructor or reader just an overview
of many more advanced and important topics in partial differential equations. In
Sec. 14.2, we introduce the dispersion relation, a relationship between the wave
number and frequency, and show the important distinction between phase velocity
and group velocity. Examples of dispersive waves discussed are water waves (14.2)
and, more extensively, wave guides (14.3) and fiber optics (14.4). In Sec. 14.5,
the importance of group velocity in the propagation of linear dispersive waves is
developed using the method of stationary phase. In Sec. 14.6, we show that disper-
sive waves may be more easily analyzed by allowing the amplitude, wave number,
and frequency to be slowly varying functions of space and time. Slowly varying
waves are shown (14.6) to be solved by the method of characteristics, which may
form caustics, as we describe. By assuming that the wave number and frequency
are nearly constant, we derive in Sec. 14.7 a wave envelope equation known as the
Schrodinger equation. We also derive the linearized Korteweg-de Vries equation
and show its application to the caustic of a rainbow. We analyze solitary waves for
the corresponding nonlinear dispersive wave equations and briefly discuss solitons
and the inverse scattering transform. Sec. 14.8 describes bifurcation phenomena
and stability analysis for partial differential equations, including an introduction
(14.8.1) to dynamical systems for ordinary differential equations. We discuss a typ-
ical unstable equilibrium for a partial differential equation in Sec. 14.8.3, giving
rise to a neutral stability curve and showing how patterns arise in partial differ-

621
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ential equations. Such slightly unstable dispersive wave situations are analyzed
in Sec. 14.8.5, deriving in a simple way the linearized complex Ginzburg-Landau
equation. We describe in Sec. 14.8.6 bifurcation phenomena for partial differential
equations. Nonlinear terms give rise to the complex Ginzburg-Landau equation,
and we analyze the modulational instability. Sec. 14.8.7 introduces the long wave
instability. Pattern formation for reaction-diffusion equations and the Turing in-
stability are presented in considerable detail in Sec. 14.8.8. The last two sections
describe singular perturbation methods, independent from most of the rest of the
text. To facilitate learning these perturbation methods, we begin by presenting a
few simpler examples from ordinary differential equations. We introduce in Sec. 14.9
singular perturbation problems that are solved by the method of multiple scales,
doing the wave equation in a slowly varying media (14.9.4) and slowly varying dis-
persive waves (14.9.5). Boundary layer problems are solved in Sec. 14.10 by the
method of matched asymptotic expansions. Sec. 14.10.2 presents a partial differ-
ential equation example that corresponds to diffusion of a pollutant dominated by
convection.

14.2 Dispersive Waves and Group Velocity
14.2.1 'Raveling Waves and the Dispersion Relation
Solutions for linear partial differential equations in uniform media (constant co-
efficients), when the boundary conditions are particularly simple, often may be
obtained in a way that is equivalent to but perhaps simpler than the method of
separation of variables. Since the form of the solution is known from our experi-
ence in separating variables, we may directly substitute into the partial differential
equation

wave propagation non wave propagation
one dim ei(kx-"t) eikxeot
two dim e`(k - x- ,t) e'kxeot

In finite rectangular geometries with homogenous boundary conditions such as zero-
ends, zero-slope, or periodic, k(k) represents one of the discrete wave number (vec-
tor) permitted by the appropriate Fourier series. The wave length is 2, and hence
the wave number k is the number of periods in 2ir distance. In infinite geometries (or
semi-infinite with appropriate homogenous boundary condition), k(k) represents a
continuous wave number (vector) permitted by the appropriate Fourier transform.
In these problems, w is the temporal frequency or or represent the exponential time
dependence of the solution of the partial differential equation. (In this chapter we
use k for wave number and w for temporal frequency, while in the rest of the book
we use k is the diffusivity for the heat equation and w is the spatial wave number.
We hope this does note cause confusion.)

In general, to solve partial differential equations which correspond to wave-
propagation problems, we will find that the temporal frequency is a real function
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of the wave number

w = w(k), (14.2.1)

which we call the dispersion relation. In multidimensional problems w = w(k),
meaning w = w(kl, k2, W. We will do a few examples shortly. For one-dimensional
wave propagation, ei(kx-Wt) = eik(x-ft), so that this substitution represents a trav-
eling wave with wave or phase velocity=. If the velocity really depends
on the wave number, then waves of different lengths will move at different veloc-
ities. Since initial conditions are composed of many different wave lengths (via
Fourier analysis), initial conditions will generally spread out or disperse. This will
be shown more clearly later. Meanwhile, we say a wave propagation problem is
dispersive if the wave velocity depends on the wave number, and specifically if
the wave velocity is not constant. To be nondispersive, "Kk) =constant, so that
w(k) = constantxk. More technically, we say a one dimensional problem is dis-
persive if T 54constant. In higher dimensions, a partial differential equation is
dispersive if w = eW ew ew) # constant vector.

Example: Real solutions . Consider the partial differential equation
(considered in Chapter 12)

8u 8u
(14.2.2)

St
= ca.-,

to be solved as an initial value problem for all x. By substituting u = ei(k:-Wt), we

obtain first -iw = cik, and then the dispersion relation

w = -ck.

The velocity =
k

= -c is constant for all k, so we say that (14.2.2) is nondispersive.
Each wave number moves at the same velocity -c. Thus, we expect an arbitrary
initial condition to move as a permanent wave without change of shape, moving
at velocity -c. This can be shown using the Fourier transform:

u(x, t) = J . A(k)ei(kx-Wt)dk

= J . A(k)eik(x+ct)dk, (14.2.3)+00 +00

using (14.2.2). To relate this to the initial condition u(x, 0) = f (x):

u(x, 0) = f (x) =
+00

A(k)eikxdk. (14.2.4)+
J o0

We can solve for A(k), but it is not necessary. From (14.2.3) and (14.2.4), we see
that

u(x, t) = f (x + ct). (14.2.5)

This is shown by the method of characteristics in Chapter 12.
One solution is Aei(kx-w(k)t), with A a constant. You may not like this solution

because it is not real. To show how real solutions of this kind can be derived, we
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simply note that both k and -k are allowable wave numbers. Thus, by superposition
an allowable solution of the differential equation is Aei(kx-W(k)t)+Aei(-kx-W(-k)t) =

A(ei(kx-w(k)t) + e-i(kx-W(k)t) = 2A cos(kx - w(k)t), since w(k) is an odd function
of k. In many problems (but not all) it is possible to create real solutions in this
way. Thus, most physical scientists use the notation Aei(kx-",t) to represent a real
wave. Be careful if the partial differential equation itself is nonlinear or not real.

Example: Linearized Korteweg-de Vries equation. This linear
partial differential equation arises in many physical situations, especially as an ap-
proximation for long waves (waves whose wave lengths are long compared to other
length scales in a physical problem) when more general dispersion exists:

au au MU
8t +CBx

=Q8
3

We will discuss its derivation later in this chapter. The traveling wave assumption,
u = ei(kx-wt), yields -iw + c(ik) = ,C(ik)3, from which we obtain the dispersion
relation:

w = ck +/k3. (14.2.6)

The wave velocity is not a constant but depends on the wave number: = c+,0k2.
Here, g 34constant, so we have our first example of a dispersive wave. Using a
Fourier transform,

u(x, t) _ /+oo
A(k)ei(kx-Wt)dk = I+ A(k)ei(k(x-ct)-RkSt)dk.

J o0 00

We cannot learn much directly from this exact solution, which is typical of dispersive
wave problems. Later in this chapter, we show a method to analyze dispersive wave
problems based on approximating the exact solution for long distances and large
times.

Operator result for dispersion relations. For an elementary trav-
eling wave solution of a linear dispersive wave, u(x, t) = Aei(kx-Wt), where A repre-
sents a constant amplitude. Note that

Ou

at
au

8x

= -iwu

= iku.

Thus, it is often useful to note that wave number and frequency are equivalent to
the appropriate multiplication of the spatial and temporal differential operators:

= -iw(k) or w(k) i5 (14.2.7)
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8x
ikor k=-i-. (14.2.8)

We will find these observations useful when we discuss wave envelope equations.

14.2.2 Group Velocity I
Linear dispersive waves e'(kz-"e) are characterized by the frequency depending on
the wave number so that the phase velocity " k depends on the wave number.
Waves of different lengths have different phase velocities. However, it turns out
that for dispersive waves there is a more important velocity, the group velocity,
important because energy moves at this velocity (not the phase velocity). This is
not particularly easy to show, so we begin by discussing a simple example. Instead
of considering a continuum of waves of all wave numbers (using Fourier transforms),
we consider a solution that consists of just two waves with nearby wave numbers,
k and k + Ak, where Ak is very small. For convenience we choose waves of the
form cos(kx - w(k)t), and for simplicity we assume that both waves have the same
constant amplitude A:

u(x, t) = A cos(kx - w(k)t) + A cos[(k + Ak)x - w(k + Ak)t].

Using the trigonometric addition formula for cosines (cos B + cos 0 = 2 cos (6 +
0) cos

z
(9 - 0)), we obtain

u(x, t)
( Ak w(k) + w(k + Ak) 1 [Akx w(k + Ak) - w(k) 1

2A cos (k +
2

)x - 2 t cos 2 - 2
w(k)t]

The sum is a product of two trigonometric functions whose spatial behavior differs.
One wave number is k + 2k nearly the same as the original two wave numbers,
while the other has a very small wave number zk corresponding to a very large wave
length. The solution has two vastly different length scales. To graph the solution (at
fixed t) we first graph the very long sinusoidal wave. Periodically (with a relatively
short wave length) the solution lies on this long wave and its negative, as graphed
in Fig. 14.2.1. The rapidly oscillating waves have their amplitude slowly changing
in space. The two waves alternatively interfere constructively or destructively. The
long wave acts as an wave envelope of the short waves. Between each.zero of the
wave envelope, there appears a group of short waves. The short waves are nearly
the individual dispersive waves with one wave number k + AA and a phase velocity
nearly the phase velocity of an individual dispersive wave

w(k + °2k) N w(k) + w(k + Ak) N w(k)
k+Ak 2(k+ 2k) k
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Figure 14.2.1 Group and phase velocity.

However, the wave envelope or the group of waves moves with an entirely different
velocity k+&k -w k In the limit as Ok - O,this is called the group velocity:

group velocity =
dw
dk

. (14.2.9)

In some sense, to be discussed later in more detail, the amplitude of a group of
dispersive waves moves with the group velocity. Energy moves with the group
velocity. The individual waves appear to move through the wave envelope since the
phase velocity is usually different from the group velocity.

Example. For the linearized KdV equation, the dispersion relation is (14.2.6),
w = ck + /3k3. In this case

phase velocity = = c + /3k2

group velocity =
dwk

= c + 3,Ok2

It is even possible that the group velocity is in the opposite direction from the phase
velocity. This could occur, for example, if c + 3/3k2 > 0, while c + /3k2 < 0.

Water waves. For surface water waves, it is known that the dispersion
relation is w2 = gk tanh kh, where g = 9.8 m/s2 is the gravitational constant and
h is the constant depth of the water. For deep water waves, kh >> 1, so that
tanh kh = 1, the dispersion relation can be approximated by w2 = gk or w = fem.
For deep water waves, = t VIf while the group velocity is d" = f 1 For
deep water waves, the group velocity is half the phase velocity. Most of the waves
at a beach are generated from storms far away. Most of these waves are deep water

waves since the typical depth of the ocean is 5 km. The group velocity = z z
since the wave number can be related to the wave length L = . The longer
waves have larger group velocities. If a localized storm generates waves of all wave
lengths, the longer waves move faster and will arrive at a distant shoreline sooner.
Thus, the changing frequencies at the shoreline are due to these different arrival
times. (The frequency observed at a beach is meaningful since the frequency of a
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wave stays the same as the depth changes slowly.) Thus, at the beach the longer
waves with smaller frequencies (longer periods) will be observed first and will be a
precursor to the other waves (and perhaps the storm system itself coming ashore).
The interested reader is referred to Kinsman [1984].

EXERCISES 14.2

14.2.1. For the following one-dimensional partial differential equations, find the
dispersion relation:

8u 82u
(a) 2 _ YXII

(b) e'u - 28`u&2 - -y 8z
* 8u - 82u(c) i-Ft - 8XT

WtIru = C2 82u -i 7t(d) 82

14.2.2. For the following two-dimensional partial differential equations, find the
dispersion relation:

(a) eNr=c2(er+e)

WtT =
c e

YZY +
a37

(b)
e

14.2.3. Show that any linear partial differential equation with a one mode dispersion
relation w = w(k) will have real solutions if the dispersion relation is odd,
w(-k) = -w(k).

14.2.4. Show that any linear partial differential equation (with higher spatial di-
mensions) with a one mode dispersion relation w = w(k) will have real
solutions if the dispersion relation is odd, w(-k) = -w(k).

*14.2.5. Water waves satisfy e' + egy = 0 for y < 0, where -0 is a velocity potential
such that the fluid velocity can be found from u = V. The boundary
condition at a flat bottom y = -h is R = 0 there. For water waves of very
small amplitude (still of great physical interest), the boundary condition at
the unknown free surface y = s(x, t) can be approximated by the two condi-
tions, +gs = 0 and applied at y = 0, where g is the gravitational
constant. Find the dispersion relation by assuming 0 = A(y)e`lkx-Wt) and

s = Bei(kz-Wt)

14.2.6. Determine the dispersion relation for water waves with surface tension by
= 0, where ry is the coefficient ofreplacing a + gs = 0 bytf + gs - o YX-T

surface tension and p is the constant mass density of water [Whitham(1999)].

*14.2.7. Determine the dispersion relation for deep water waves bay solving Exercise
14.2.5 with the condition - 0 as y -oo instead of Y = 0 at y = -h.
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14.2.8. Derive the dispersion relation for an internal wave assuming a two-fluid
model with density pl for y > 0 and density p2 for y < 0. In Exercise
14.2.5 one of the boundary conditions corresponding to zero pressure is now
replaced by the pressure being continuous: pi (8 + 98) = p2 ( + gs) at
y = 0. The other condition at y = 0 holds for both fluids. Assume y -+ ±oo.

14.2.9. Compare phase and group velocities for

a 8u B3u()-=Q TXT

(b) i8u - 82u
wt YX-T

(c) a = c2 e - U. Show that the phase velocity is greater than the
WtIr NY
sound speed c, but the group velocity is less than the sound speed c.

14.2.10. Determine the group velocity for water waves satisfying w2 = gk tanh kh.

14.2.11. Tsunamis (water waves generated by earthquakes) are long waves with
kh << 1. Show that long waves satisfy w = ±k . Approximate the phase
(and group velocity) for tsunamis assuming the ocean is 5 km deep.

14.3 Wave Guides
In wave propagation problems (where physical phenomena are described by the wave
equation or other partial differential equations), local disturbances decay rapidly in
three-dimensional space. In order to communicate efficiently in a three-dimensional
world, energy must be confined to two or one dimension. Wave guides are introduced
for this purpose for electromagnetic (light) or acoustic (sound) waves. Typical wave
guides are long, hollow tubes with circular cross section that (as we will show) can
be designed to permit the propagation of electromagnetic or acoustic waves in one
dimension. Acoustic waves solve the three-dimensional wave equation

2 =
C2 (82U 192U

)-&a-2 + a+ 9Z2

Electromagnetic waves satisfy a system of wave equations, more complicated be-
cause the different components of the electric and magnetic fields are coupled
through various boundary conditions. However, the mathematical procedures to
analyze these electromagnetic waves are the same as for acoustic waves so that
to simplify the presentation we will restrict our attention to the three-dimensional
wave equation (14.3.1).

There are a few new ideas in analyzing wave guides, so we wish to make our
mathematical analysis as easy to follow as possible. Therefore, we will analyze a
wave guide with a rectangular cross section rather than the more realistic circular
cross section (see Fig. 14.3.1). The analysis of rectangular wave guides (0 < y <
L, 0 < z < H) uses the trigonometric functions of a Fourier series, while circular
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(a) (b)

Figure 14.3.1 (a) Rectangular and (b) circular wave
guides.

wave guides require Bessel functions. We leave circular wave guides to the Exercises,
but we assure the reader that the circular problem presents no new problems once
the rectangular wave guide is understood.

For electromagnetic waves, different boundary conditions apply for different phe-
nomena. We choose to study the boundary condition that u = 0 on the boundary
of the wave guide. Solutions of the partial differential equation (14.3.1) will be in
the form

i(k1-11) sin Wiry m7rz
u = e

L
sin H , n = 1, 2, 3,... and m = 1, 2, 3, ... , (14.3.2)

corresponding to Fourier sine series in y and z due to the boundary conditions. The
traveling wave e'(kz-"t) in the x-direction corresponds to a Fourier transform in x.
Solutions to the initial value problem for (14.3.1) are obtained by summing over
n and m and integrating over k. Substituting (14.3.2) into (14.3.1) yields the all
natural frequencies of vibration w for the wave guide, the dispersion relation

2 2 nir 2 mn 2W = c2[k + (L) + (H) ], n = 1, 2, 3.... and m = 1, 2, 3,.... (14.3.3)

This also follows by separation of variables. It is important to distinguish between
the continuous nature of k and the discrete nature of n and m. Each solution
(14.3.2) is called a mode of the wave guide. There is a doubly infinite set of modes,
n = 1, 2,3,... and m = 1, 2, 3, .... Each mode (fixed m and n) is dispersive. The
group velocity can be obtained by differentiating (14.3.3) with respect to the wave
number k, 2wd' = c22k, so that

dw _ 2kdk-cw.

For wave guides the group velocity is in the same direction as the phase velocity
. For wave guides, waves whose phase travels to the left have energy that travels

to the left. (For other partial differential equations, the phase and the energy do
not have to travel in the same direction.) In Fig. 14.3.2 we graph the frequency as
a function of the wave number for the first few modes. There is a lowest natural
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Figure 14.3.2 Dispersion relation for various modes
of a wave guide.

frequency, which is called a cut-off frequency for reasons to be described. It occurs
for n = 1, m = 1 with k = 0 (infinitely long waves):

wc- = c (L)2 + (H)a. (14.3.4)

The propagation of waves in wave guides occurs by forcing the wave guide in some
way with a forcing frequency w f. Roughly speaking, resonance is involved. We will
show that if the forcing frequency is greater than the cut-off frequency (w f > wj,
then some kind of resonance is possible in which a wave propagates along the wave
guide with constant amplitude. Given a specific forcing frequency w = w f, the
dispersion relation (14.3.3) determines the wave number k f (for each n and m) that
will propagate:

/w2

The number of waves that can propagate depends on w f, and from Fig. 14.3.2 the
larger w f the more modes that can propagate. We will show that if the forcing
frequency is less than the cut-off frequency (wf < wc), then the response of the
system is much smaller.

14.3.1 Response to Concentrated Periodic Sources
with F-equency w f

To understand how a wave guide responds to periodic forcing, we consider a periodic
source concentrated inside the wave guide at x = xo, y = yo, z = zo with forcing
frequency w f:

O-U 092 U
8-t2 = C2 (ax2

+ aye + az + e-;wfib(x - xo)b(y - yo)b(z - re). I (14.3.5)
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We assume the same boundary conditions u = 0 on the boundary. Because of the
boundary conditions, we seek a solution as a double Fourier sine series in y and z:

ao r nary mirz
u(x, y, z, t) =

EnoI
u-1 Anm(x, t) sin L sin H (14.3.6)

The equation that the amplitudes Anm satisfy (dropping subscripts for convenience)
is

02A
= c2

82A
- c2,(

nor
)2 +

(M')2)A + 4 e-t"'ft6(x - xo) sin
niryo

sin
m7rzo

8t2 8x2 L H LH L H
(14.3.7)

The amplitude of each mode satisfies (14.3.7), a one-dimensional wave equation (in
the propagation direction x of the wave guide) with an extra restoring force and
a concentrated periodic source. Since (14.3.7) has simple periodic forcing, we can
find a particular solution of (14.3.7) with the same periodic forcing:

A(x, t) = G(x, xo)e-"f t, (14.3.8)

where the one-dimensional Green's function G(x, xo) for each mode (fixed n and
m) along the wave guide satisfies

c2
d2G

+ {w2 - C2 nrr 2
+ G = 4 b(x - xo) sin "Yo sin mirzo

dx2 f I() H) LH L H
(14.3.9)

14.3.2 Green's Function If Mode Propagates
Since the right-hand side of (14.3.9) is a Dirac delta function in space, the differential
equation is solved by using homogenous solutions for x < xo and for x > xo and
applying the jump condition as described in Chapter 8. There are two cases for the
homogeneous solutions depending on whether the forcing frequency (wf) is greater
than or less than the natural frequency of the nmth mode.

If the forcing frequency is greater than the natural frequency of the particular
mode (n and m fixed), then homogenous solutions are sin k fx and cos k fx, where
kf: is precisely the wave number that would occur using the dispersion relation

C
"111F4 R

- (( L)2 + ( )2].(14.3.3) if the frequency was prescribed to be wf.: kf =-
However, the differential equation in x (14.3.9) does not have any boundary con-
ditions in x. Even if we insist the solution is bounded in.x, all of these solutions
are bounded in x. There is no easy, mathematically precise way to derive a unique
Green's function. Instead we apply a radiation condition (which follows from
more advanced mathematics). It is clearer, using equivalent homogenous solutions,
that e±tkf(x-xo). According to (14.3.8), to obtain the amplitude of the n - mth
mode, we must multiply by a-"'ft. Thus, the homogeneous solutions for the n-mth
mode correspond to e±ik1(x_xo)-iwft. These are seen to be one-dimensional waves
whose energy is propagating to the left and right. Since we have a source at x = xo,
the radiation condition asserts that we have waves with energy moving to the
right for x > xo and waves with energy moving to the left for x < xo. In this way
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(if wf is greater than the natural frequency of the n - mth mode), we derive that
the Green's function

4 niryo mirzo eif(x-xo) for x > xoG(x,xo) =
2ikfLHc2

sin L sin fl= e_ik1(x_xo) for x < xo,

where we have also applied the jump condition following from (14.3.9) that

dG
dx

z_xo+
4 niryo mirz°

x=xo-
=

LHc2
sin L sin H

Thus the amplitude of the (m-n)th mode is quite simple and corresponds to a
wave with energy propagating outward in the wave guide (due to the concentrated
source) if the forcing frequency is greater than the natural frequency of that mode.
Since wf is given, the wave number is discrete. From (14.3.6), the solution in the
wave guide consists of a sum of all electromagnetic or acoustic waves with energy
traveling outward with wave numbers k f corresponding to a given forcing frequency
wf. These solutions are traveling waves; they do not decay in space or time as they
travel away from the source.

14.3.3 Green's Function If Mode Does Not Propagate
We continue to consider part of the response that generates the (m-n)th mode with
structure sin ++iv sin "' transverse to the wave guide. The amplitude of this mode
due to the concentrated periodic source satisfies (14.3.9). If the forcing frequency
is less than the natural frequency of the (m-n)th mode, then the homogeneous
solutions of (14.3.9) are not sinusoidal but are growing and decaying exponentials

x, where f3 = (L )2 + (H )2 - > 0. We insist our solution is bounded
for all x. Thus, the solution must exponentially decay both for x > xo and for
x < xo. Thus, the Green's function (14.3.9) is given by

= 4 niryo m7rzo f e-Of(x-xo) for x > xoG(x, x°) -2fjfLHc2 sin L sin H epf(x-xo) for x < xo

For example, for x > x0, we have a simple exact elementary solution of the three-
dimensional wave equation, u = Be-19f Hcalled an evanes-
cent wave.

14.3.4 Design Considerations
Often it is desirable to design a wave guide such that only one wave propagates at
a given frequency. Otherwise the signal is more complicated, composed of two or
more waves with different wave lengths but the same frequency. This can only be
accomplished easily for the mode with the lowest frequency (here n = 1, m = 1).
We design the wave guide such that the desired frequency is slightly greater than the
cut-off frequency. For a square (L = H) wave guide, satisfying the three-dimensional
wave equation, we = Z f < w f. The next lowest frequency corresponds to n = 1
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and m = 2 (or m = 1 and n = 2): W2 = " "- f. To guarantee that only one wave of
frequency w f propagates, we insist that

If we assume that the material through which the electromagnetic or acoustic wave
travels is fixed, then we would know c. The lengths of the sides would satisfy

cm f<L<`" r,.
wf wf

EXERCISES 14.3

14.3.1. Consider a two-dimensional wave equation e = c( 8z + e) with u = 0
aty=Dandy=L.
(a) Determine the dispersion relation.
(b) Determine a cut-off frequency.

(c) For what forcing frequencies will only one mode propagate?

14.3.2. Redo Exercise 14.3.1 with the boundary condition = 0 at y = 0 and
y = L. (Do not call n = 0 a propagating wave.)

14.3.3. Consider the three-dimensional wave equation a = c2 (37X-7 Z7+ 8 + P
inside a circular conductor (y2 + z2 = a2) with u = 0 at r = a. Only
consider circularly symmetric solutions where u = u(r, x, t) propagating in
the x-direction.

(a) Determine the dispersion relation.
(b) Determine a cut-off frequency.

(c) For what forcing frequencies will only one mode propagate?

14.3.4. Redo Exercise 14.3.3, but do not make the assumption that the solution is
circularly symmetric.

= c2( zu + '9' U + e14.3.5. Consider the three-dimensional wave equation a
WFT YI G7 MY

inside a rectangular conductor with u = 0 at y = 0 and y = L and OU = 0
at z = 0 and z = H. Answer the same questions as for Exercise 14.3.1.

14.3.6. Determine the Green's function corresponding to a propagating mode for

(a) Exercise 14.3.1

(b) Exercise 14.3.2

(c) Exercise 14.3.4
(d) Exercise 14.3.5

14.3.7. Determine the Green's function when a mode is not propagating for



634 Chapter 14. Dispersive Waves

(a) Exercise 14.3.1

(b) Exercise 14.3.2
(c) Exercise 14.3.4

(d) Exercise 14.3.5

14.3.8. Show that allowable traveling wave modes that can propagate in a rect-
angular wave guide of this section have zero amplitude if the concentrated
source is located at a node of that mode.

14.3.9. Using the radiation condition (involving group velocity), determine the
Green's function for the following partial differential equations:

*(a) &U = egyr+ e-"'',6(x)
(b) 8u _ 83r+ e-iwftb(x)

(c) i Wt- = ez+ e-i",,tb(x) (analyze both cases wf > 0 and wf < 0)

14.4 Fiber Optics
In wave guides of the previous section, energy is confined to one dimension by a
hollow metallic conductor. In this section we will show that energy can be confined
to one dimension in a fundamentally different way. Information in the form of
electromagnetic waves can also be propagated in a wave guide made up of a non-
conducting (dielectric) material such as glass. Typically a fiber consists of a narrow
glass core surrounded by a thicker glass clad with different optical properties with
a protective jacket, as shown in Fig. 14.4.1. To make the problem a little simpler,
we assume the cladding is infinitely thick. We will show that a small glass core can
be designed so that most of the light energy propagates in the thin core. To enable
us to obtain interesting results quickly, we will assume incorrectly that the physics
of fiber optics is described by the three-dimensional wave equation.

Figure 14.4.1 Fiber with circular cross-
section.

A realistic problem with polar coordinates is analyzed in the Exercises. Here, we
simplify the problem further. We imagine a two-dimensional region with an inner
core (from y = -L to y = L) and an outer core that extends to infinity in both
directions y -* ±oo. This geometric region is symmetric around y = 0. We claim
that all solutions can be made either symmetric or antisymmetric around y = 0. We
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Cladding utt = cV2uy=L

utt = c V2u

Inner core ---------- ----- y=0
Antisymmetric modes

(u=0aty=0)

Cladding

Figure 14.4.2 Fiber with plane cross-section.

analyze here only one of these problems, namely the antisymmetric modes. Thus
we solve a two-dimensional wave guide for y > 0, subject to the antisymmetry
boundary condition:

u=oat y=0.

y= -L

y=L

(14.4.1)

We assume the two-dimensional wave equation is valid in each region (as shown in
Fig. 14.4.2) with different propagation constants, so that there is velocity for each
region cl and c2:

82u

8t2
C2 5x2

+
ay2 , y > L2

Case

82-1
(14.4.2)

2UC2

8y2 } L>y>0. (14.4.3)

Conditions depending on the physics occur on the boundary between the two dif-
ferent media. We assume that

u and are both continuous at y = L (14.4.4)

(often in electromagnetic wave propagation 8u/8y is not continuous, but some
physical constant in each region times 8u/8y is continuous).

We want waves to propagate in the x-direction, e'(kz--'). One of our goals is
to determine the dispersion relation w = w(k). The boundary condition forces the
horizontal and time structure of the solution to be the same in both materials:

u = B(y)ei(k:-"t), y > L (14.4.5)

u = A(y)e`(kz-"t), L > y > 0. (14.4.6)
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Substituting the traveling wave assumption (14.4.5) and (14.4.6) into the wave equa-
tions, (14.4.2) and (14.4.3), yields ordinary differential equations for the transverse
structure in each material of the wave guide:

2d - k2B)-w2B = c3( y> L d2 B = (k2 )B
-w2A = (d- - k2A) L > y > 0

v
ddy = (k2 )A.

(14.4.7 )

We want to investigate those frequencies for which most of the energy propagates
in the core 0 < y < L. Thus, we assume that w is such that the transverse behavior
is oscillatory in the core and exponential in the "cladding":

k2 ``' 2 ``'--Z > 0 but k--2 <0. (14.4.8)
C2 Cl

From (14.4.8), the frequency must satisfy

cljkl < IwI < c21kl.

To have this kind of wave guide, it is necessary (but not sufficient) that cl < c2.
The wave speed in the core must be smaller than the wave speed in the cladding.
Under conditions (14.4.8), the solutions of (14.4.7) show that in the core and the
cladding

u = Boe k've.(k2-We) y > L
2

U = Ao sin - k2ye'(k:-wt) L > y > 0,
1

where Ao and Bo are constants. We have assumed the solution exponentially decays
in the cladding, and we have used the antisymmetric boundary condition (14.4.1)
at y = 0.

The dispersion relation is determined by satisfying the two continuity conditions
(14.4.4) at the interface between the two media:

Boe
k

2 L = Ao sin - k2L
1

-Bo k2 -
kR-L

= Ao cl - k2 cos cl - k2L.

These are two linear homogeneous equations in two unknowns (Ao and Bo). By
elimination or the determinant condition, the solution will usually be zero except
when

sin - k2L
-e- 42- L

k2- L
- k2 cos - k2L k2 - 3e 9
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This condition will be the dispersion relation

FV2 2 -k2cosiJ -k2L=0,- c2 sin L+

or, equivalently,

w2 -
k2

2
C21

k2L

637

(14.4.9)=-tan -T k2 2

Solutions w of (14.4.9) for a given k are the dispersion relation.
In designing wave guides, we specify w and determine k from (14.4.9). To

determine solutions of (14.4.9) we graph in Fig. 14.4.3 the ordinary tangent function
as a function of Q = 3 - k2L and the right-hand side of (14.4.9) also as a
function of 3. Intersections are solutions. The qualitative features of the right-
hand side are not difficult since the right-hand side is always negative. In addition,
the right-hand side is 0 at ,0 = 0, and the right-hand side is infinite at k =
(which means )0 = wL - r), as graphed in Fig. 14.4.3. From the figure, we

conclude that if wL - < a , there are no intersections so that there areAi _J1.
no modes that propagate in the inner core. This gives a cut-off frequency w, _

` below which there are no wave guide-type modes. However,= Z `L / 1 -j VC-cl
the desirable situation of only one mode propagating in the core of the fiber occurs

0

1 1/2
Q=wL -

CzQ
Figure 14.4.3 Graphical solution of traveling wave
modes in fiber.



638 Chapter 14. Dispersive Waves

x 1 1 1E n c c 3,r c cif i < wL - < z or c'_ci < w <
4-C;

. It is interesting to note

that if c2 is only slightly greater than cl, a large range of large frequencies will
support one wave that travels with its energy focused in the core of the fiber. All
the other solutions will not be traveling waves along the fiber.

EXERCISES 14.4
14.4.1. Determine the dispersion relation for materials described by (14.4.2) and

(14.4.3) with the energy primarily in the core:

(a) For symmetric modes
(b) For antisymmetric modes with the boundary conditions at the interface

of the two materials that u and cau are continuous
(c) For antisymmetric modes where the cladding goes to y = H > L with

u = 0 there
(d) For symmetric modes where the cladding goes to y = H > L with

u = 0 there

14.4.2. For antisymmetric modes, determine the dispersion relation for materials
described by (14.4.2) and (14.4.3) with the energy distributed throughout
the core and the cladding?

14.4.3. Consider antisymmetric modes described by (14.4.2) and (14.4.3). For what
frequencies will waves not propagate in the core and not propagate in the
cladding.

14.4.4. Determine the dispersion relation for a fiber with a circular cross section
solving the three-dimensional wave equation with coefficient cl for r < L
and c2 for r > L: (with u and continuous at r = L) with energy primarily
in the core:

(a) Assuming the solutions are circularly symmetric
(b) Assuming the solutions are not circularly symmetric
(c) Assuming the solutions are circularly symmetric but the cladding stops

at r = H, where u = 0

14.5 Group Velocity II
and the Method of Stationary Phase

The solution of linear dispersive partial differential equations with a dispersion
relation w = w(k) is of the form

u(x,t) =
l
r G(k)e'ikx-`iki`idk = G(k)e'e[ki-"ikildk. (14.5.1)

oo roo
The function G(k) is related to the Fourier transform of the initial condition u(x, 0).
Although this integral can be numerically evaluated for fixed x and t, this is a tedious
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process and little would be learned about the partial differential equation. There
are some well-known analytic approximations based on t being large (with i fixed),
which we now discuss.

14.5.1 Method of Stationary Phase
We begin by analyzing integrals depending on a parameter t:

b1(t) = j G(k)eimkd. (14.5.2)

Later we will specialize our results to linear dispersive waves where the integral is
specifically described by (14.5.1). For large values of t, the integrand in (14.5.2)
oscillates quickly, as shown in Fig. 14.5.1. We expect significant cancellation, so
that we expect I(t) to be small for large t. In the Exercises (by integration by
parts) it is shown that

I(t) = O ( t) if 0'(k) 54 0.

G(k) cos[tO(k)]
G(k)

k=a

k=b

Figure 14.5.1 Oscillatory integral cancellation (t large).

The formula by integration by parts includes a boundary contribution and an
integral. For infinite domains of integration, often the integral is much smaller
since the boundary contribution vanishes and the integral can be integrated by
parts again, making it smaller. If O(k) is flat somewhere [0'(ko) = 0), then there is
less cancellation. That part of the integrand contributes the most. We claim that
for large t the largest contribution to the integral (14.5.2) comes from points near
where the phase is stationary, places ko where

4'(ko) = 0. (14.5.3)
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We begin by assuming that 46(k) has one stationary point between a and b. We
claim that the largest contribution to the integral comes from a small neighborhood
of ko, so that for large t

ko+e
I(t) G(k)eu4(k)dk,

ko -e

where e is small (and to justify this approximation we must let a vanish in some
way as t - oo). Furthermore, G(k) can be approximated by G(ko) [if G(ko) 0 0],
and O(k) can be approximated by its Taylor series around k = ko:

ko+e
1(t)

-
G(ko) fkO

(ko)+...J
dk e

- e

using (14.5.3). If we assume that e is small enough for large t such that sat is small,
3

then the cubic multiplicative term
eit (r-kn) 0. .(ko)

can be approximated by 1. Thus,

I(t) G(ko)eitm(ko)
eit Ik_!r-4"(ko) A.

Jk-,ko+c

o

The following linear change of variables simplifies the exponent in the integrand:

y = (k -
ko)(t0"((ko)I)},

2

in which case

fG k eitO(ko) +e(` a )II(t) ti (o) ei(si9no' (ko))Y2 dy.
(t 10" (ko)1)' Je(_____` (ko) )'}

We can choose a so that et i is large as t oo. However, recall that eat must
be small. (For those of you who are skeptical, we can satisfy both by choosing
e = t-pfor any p between 3 and z.) In this way, the limits approach ±oo as t - oo.
Thus,

212-G(ko)eito(ko) lOO
Ict> J

(t 1011 (ko)I) o

The integral is just a number, albeit an interesting one. It is known that

c'O0I cos(y2) dy = I am(yl) dy 200 1 Vf'o

Thus, with a little gamesmanship (algebra based on 1 + i we can obtain
what is called the
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Method of Stationary Phase
The asymptotic expansion of the integral 1(t) = J. G(k)e'tm(k)dk
as t - oo is given by

1(t) - ( 21r )iG(ko)eit4(ko)ei(sign46"(ko))
t I0' (ko)I

(14.5.4)

[assuming there is a simple stationary point ko satisfying /'(ko) = 0
with 0"(ko) # 0)].

The symbol - (read "is asymptotic to") means that the right-hand side is a good
approximation to the left and that approximation improves as t increases. The most
important part of this result is that I(t) is small for large t but much larger than
the contribution for regions without stationary points:

I(t) = O(ti ),

for a simple stationary point [assuming O'(ko) = 0 with ."(ko) # 0]. The asymptotic
approximation to the integral is just the integrand of the integral evaluated at the
stationary point multiplied by an amplitude factor and a phase factor. In many
applications the phase shift is not particularly important.

If there is more than one stationary point, the approximation to the integral is
the sum of the contribution from each stationary point since the integral can be
broken up into pieces with one stationary point each.

14.5.2 Application to Linear Dispersive Waves
Here, we consider a linear dispersive partial differential equation that has elementary
solutions of the form ei(kz-Wt), where w satisfies the dispersion relation w = w(k).
Each mode of the solution to the initial value problem has the form

00
u(x, t) = J_ooAIkx-",(k)tldk =

J o0
(14.5.5)

where A(k) is related to the Fourier transform of the initial condition. Usually
this integral cannot be evaluated explicitly. Numerical methods could be used,
but little can be learned this way concerning the underlying physical processes.
However, important approximate behavior for large x and t can be derived using
the method of stationary phase. To use the method of stationary phase, we assume t
is large (and i is fixed). For large t, destructive interference occurs and the integral
is small. The largest contribution to the integral (14.5.5) occurs from any point ko
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x

Figure 14.5.2 Wave number moves with group ve-
locity.

where the phase is stationary:

X
=

t (14.5.6)

Given x and t, (14.5.6) determines the stationary point ko, as shown in Fig. 14.5.2.
According to the method of stationary phase (14.5.4), the following is a good ap-
proximation for large x and t:

u(x,t) ti A(ko) es'kox-w(ko)t]e-s{signw kko))3 (14.5.7)

since 0" = -w", where ko satisfies (14.5.6). (We ignore in our discussion the
usually constant phase factor.) The solution (14.5.7) looks like an elementary plane
traveling wave with wave number ko and frequency w(ko), whose amplitude decays.
The solution is somewhat more complicated as the wave number and frequency
are not constant. The wave number and frequency depend on x and t, satisfying
(14.5.6). However, the wave number and frequency are nearly constant since they
change slowly in space and time. Thus, the solution is said to be a slowly varying
dispersive wave. The solution is a relatively elementary sinusoidal wave with a
specific wave length at any particular place, but the wavelength changes appreciably
only over many wave lengths (see Fig. 14.5.3).

Equation (14.5.6) shows the importance of the group velocity. The wave number
is a function of x and t. To understand how the wave number travels, imagine an
initial condition in which all the wave numbers are simultaneously concentrated

2-7r I 1 11
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Figure 14.5.3 Slowly varying dispersive wave.

near x = 0 at t = 0. (This is a reasonable assumption since we are approximating
the solution for large values of x, and from that point of view the initial condition
is localized near x = 0.) Equation (14.5.6) shows that at later times each wave
number is located at a position that is understood if the wave number moves
at its group velocity w'(ko). In more advanced discussions, it can be shown that
the energy propagates with the group velocity (not the phase velocity). Energy is
propagated with all wave numbers. If there is a largest group velocity, then energy
cannot travel faster than it. If one is located at a position such that

i
is greater

than the largest group velocity, then there are no stationary points. If there are
no stationary points, the solution (14.5.5) is much smaller than the results (14.5.7)
obtained by the method of stationary phase. It is possible for more than one point
to be stationary (in which case the solution is the sum of terms of the form to be
presented).

The amplitude decays (as t - oo) because the partial differential equation
is dispersive. The solution is composed of waves of different wave lengths, and
their corresponding phase velocities are different. The wave then spreads apart
(disperses).

EXERCISES 14.5

14.5.1. Consider u, = ux=y.

(a) Solve the initial value problem.

(b) Approximate the solution for large x and t using the method of sta-
tionary phase.

(c) From (b), solve for the wave number as a function of x and t.

(d) From (b), graph lines in space-time along which the wave number is
constant.

(e) From (b), graph lines in space-time along which the phase is constant
(called phase lines).
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14.5.2. Consider ut = iusx.

(a) Solve the initial value problem.
(b) Approximate the solution for large x and t using the method of star

tionary phase.
(c) From (b), solve for the wave number as a function of x and t.
(d) From (b), graph lines in space-time along which the wave number is

constant.
(e) From (b), graph lines in space-time along which the phase is constant

(called phase lines).

14.5.3. Consider the dispersion relation w =
s

k3 - z k2.

(a) Find a partial differential equation with this dispersion relation.
*(b) Where in space-time are there 0, 1, 2,3.... waves?

14.5.4. Assume (14.5.5) is valid for a dispersive wave. Suppose the maximum
of the group velocity w'(k) occurs at k = kl . This also corresponds to a
rainbow caustic (see Fig. 14.6.8).

(a) Show that there are two stationary points if x < w'(kl)t and no sta-
tionary points if x > w'(kl)t.

(b) State (but do not prove) the order of magnitude of the wave envelope
in each region.

(c) Show that w"(kl) = 0 with usually w"'(kl) < 0.
(d) Approximate the integral in (14.5.5) by the region near kl to derive

u(x t) , A(kl)et(k- :-W(k1)t)
k,+c

x r eif(k-kj)(=-W (k.)t)-= (k-k1)3tl dk. (14.5.8)
kl -c

(e) Introduce instead the integration variable s, k - kl = ()) , and
show that the following integral is important: f o. e'(P°+* 3) da, where

z-W' kl tp = fl. , k% A )

(f) The Airy function is defined as Ai(z) _- f °O cos(zs + 3s3) ds. Do
not show that it satisfies the ordinary differential equation Ai"(z) _
z Ai(z). Express the wave solution in terms of this Airy function.

(g) As z -+ ±oo, the Airy function has the following well-known properties:

Ai(z)
IZ 1 exp(3

1Z zi+ 4)
z +oo.

(14.5.9)
277z P(-3 )

Using this, show that the solution decays at the appropriate rates in
each region.
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14.5.5. By integrating by parts, show that I(t) given by (14.5.2) is O(f) if ¢'(k) ,6 0.

14.5.6. Approximate (for large t) I(t) given by (14.5.2) if there is one stationary
point ko with 4'(ko) = 0 and 4"(ko) = 0 but 41"(ko) # 0. Do not prove
your result. What is the order of magnitude for large t?

14.5.7. The coefficients of Fourier sine and cosine series can be observed to decay
for large n. If f (x) is continuous [and f'(x) is piecewise smooth], show by
integrating by parts (twice) that for large n

(a) Zf f(x)Cos dx=O(n)
(b) f L f (x) O(n) if f(0)=f(L)=0

14.5.8. Consider utt = uxx - u.

(a) Solve the initial value problem.
(b) Approximate the solution for large x and large t using the method of

stationary phase.
(c) Assume the group velocity is zero at k = 0, the group velocity steadily

increases, and the group velocity approaches one as k --4 oo. How
many wave numbers are there as a function of x and t?

14.6 Slowly Varying Dispersive Waves
(Group Velocity and Caustics)

14.6.1 Approximate Solutions of
Dispersive Partial Differential Equations

In this section we will show how to obtain approximate solutions to dispersive
partial differential equations. Some of these results follow from the method of sta-
tionary phase (and generalizations). However, we attempt here to develop material
independent of the section on the method of stationary phase.

Linear dispersive waves have solutions of the form u(x, t) = Aei(kx-Wt), where

the dispersion relation w = w(k) is known from the partial differential equation.
Arbitrary initial conditions can be satisfied by expressions such as

u(x, t) = I A(k)e`(kx-w(k)t) dk,

00

which are often too complicated to be directly useful. We wish to consider classes
of solutions that are slightly more complicated than an elementary traveling wave
u(x, t) = Aei(kx-"t). For these elementary traveling waves, the wave is purely
periodic with a constant amplitude A and a constant 0(1) wave number (wave
length). We want to imagine that over very long distances and very large times
there are solutions in which the amplitude and the wave number might change. For
example, this might be due to initial conditions in which the wave number and/or
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amplitude are not constant but slowly change over long distances. We introduce a
slowly varying wave train with a slowly varying amplitude A(x, t) and a phase
0(x, t):

u(x, t) = A(x, t)eie(x,t). (14.6.1)

The wave number and frequency will be slowly varying, and they are defined in the
manner that would be used if the wave were a simple traveling wave:

slowly wave number k = 00
Ym8 8x

slowly varying frequency w

From (14.6.2) and (14.6.3), we derive a conservation law

8k 8w
8t+8x=0.

(14.6.2)

(14.6.3)

(14.6.4)

which is called conservation of waves (see Exercises 14.6.3 and 14.6.4 for further
discussion of this). We claim that with uniform media, the frequency w will satisfy
the usual dispersion relation

w = w(k), (14.6.5)

even though the solution (14.6.1) is not an elementary traveling wave upon which
(14.6.5) was derived. This can be derived using perturbation methods, but the
derivation involves more technical details than we have time here to discuss.

If the dispersion relation (14.6.5) is substituted into conservation of waves (14.6.4),
we determine a first-order quasi-linear (really nonlinear) partial differential equation
that the wave number k(x, t) must satisfy:

Ok dw 8k
=8t + dk 8x 0. (14.6.6)

The initial value problem can be solved using the method of characteristics (Sec.
12.6):

if dt = dk , then d = 0, (14.6.7)

showing that the wave number stays constant moving with the group velocity. The
characteristics are straight lines but not parallel in general (see Fig. 14.6.1), since the
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dj +t y

t 1

x

x(0) _ Y

Figure 14.6.1 Characteristics for propogation of
dispersive waves.

characteristic velocity, the group velocity, dk , depends on k. The coupled system
of ordinary differential equations is easy to solve. If the characteristic (moving
observer) is parameterized by its initial position C, x(0) then the solution of
(14.6.7) is

k(x, t) = k(l;, 0), (14.6.8)

where the equation for the straight-line characteristics follows from (14.6.7):

x = dk 0))t + (14.6.9)

Given x and t, we can try to solve for t from (14.6.9), so that is considered a
function of x and t. Once k(x, t) is obtained, the phase can be determined by
integrating (14.6.2) and (14.6.3).

The dispersion relation w = w(k) can be interpreted using (14.6.2) and (14.6.3)
as a nonlinear partial differential equation for the unknown phase:

00
j-t- =w(B), (14.6.10)

called the Hamilton-Jacobi equation. In the specific case in which the original
partial differential equation is the two-dimensional wave equation, then (14.6.10) is
called the eikonal equation. However, the simplest way to solve (14.6.10) for 0 is
to use the method of characteristics as preceding (see also Sec. 12.7):

=Ot+Ordt =-w+kd`-`'k.

Since w and a depend only on k, and k is a constant moving with the group
velocity,

9(x, t) _ (-w + k c1-``'k )t +
0(C'0)'
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where 9(t;, 0) is the initial phase which should be given. The phase can be expressed
in a more physically intuitive way using (14.6.9):

9(x, t) = k(x -{) -wt+9(1,0).

14.6.2 Formation of a Caustic
We consider a linear partial differential equation with a dispersion relation w = w(k).
We assume a slowly varying wave exists of the form u(x, t) = A(x, t)e'e(x,t) with

k = 80 and w - . The wave number propagates according to the nonlinear
partial differential equation

St
+w'(k)ax = 0, (14.6.11)

which approximates the original linear partial differential equation. Eq. (14.6.11)
can be solved by the method of characteristics, but here we consider problems in
which the characteristics intersect (see Fig. 14.6.2). We assume the initial condition
is such that k is a smooth function of x. We will show that initial conditions can
be chosen so that the wave number evolves from being single valued to being triple
valued. Using the method of characteristics [ J = 0 if T = w' (k)] yields

k(x,t) = k(t,0), (14.6.12)

where l; is the location of the characteristic at t = 0 and where we assume that the
initial distribution for k is given. The equation for the characteristics is

x = w'(k(t, 0))t + £ = F(l;)t + l;, (14.6.13)

where we introduce F(t;) as the velocity of the characteristics. The characteristics
are straight lines, and some of them are graphed in Fig. 14.6.2. Characteristics
intersect if characteristics to the right move more slowly, P(t) < 0, as shown in
Fig. 14.6.2.

Figure 14.6.2 Intersection of characteristics.
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Figure 14.6.3 Caustic formed from charac-
teristics.

Figure 14.6.4 Caustic formed by reflected rays of nonparabolic
reflector.

Neighboring characteristics intersect (and are visible as the boundary between
lighter and darker regions) at a curve called a caustic. In Fig. 14.6.3 we show the
caustic generated by a computer drawn plot of a family of straight-line characteris-
tics satisfying (14.6.13). [It can be shown that the amplitude A(x, t) predicted by
the appropriate slow variation or geometrical optics or ray theory becomes infinite
on a caustic.] This is the same focusing process for light waves, which is why it is
called a caustic (caustic means "capable of burning," as the location where light
can be focused to bum material). Light waves can focus and form a caustic as
they bounce off a nonparabolic reflector (using the angle of incidence equaling the
angle of reflection as shown in Fig. 14.6.4). If you look carefully, you will see three
reflected rays reaching each point within the caustic, while only one reflected ray
reaches points outside the caustic.

This caustic [envelope of a family of curves (14.6.13)] can be obtained ana-
lytically by simultaneously solving (14.6.13) with the derivative of (14.6.13) with
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respect to £ (as described in Sec. 12.6):

0 = F'(C)t + 1 or, equivalently, t = F,'( ), (14.6.14)

which determines the time at which the caustic occurs (for a given characteristic).
We must assume the initial conditions are such that F'(1;) < 0 in order for the time
to be positive. (The spatial position of the caustic is x = - F t + C, giving the
parametric representation of the caustic.) It can be shown that is infinite at the
caustic, so that the caustic is the location of the turning points of the triple-valued
wave-number curve. Two solutions coalesce on the caustic.

The caustic first forms at

tc and xc = (14.6.15)

where c is the position where F(f) has a negative minimum (see Fig. 14.6.5), so
that

F"(£c) = 0 (14.6.16)

with
0. (14.6.17)

Figure 14.6.5 Minimum (first intersection).

We will show that the caustic is cusped shaped in the neighborhood of its for-
mation. We will assume that x is near x,, and t is near tc so that the parameter
is near c. The solution can be determined in terms of C:

k(x,t) = k(f,0) = k(C,,0) + g,) +.... (14.6.18)

Thus, the wave number is approximately a constant, and the spatial and temporal
dependence of the wave number is approximately proportional to - tc. To deter-
mine how C - r;r depends on x and t (near the first focusing time of the caustic),
we approximate the characteristics (14.6.13) for C near Cc. Using a Taylor series for
F(£), we obtain

x = F(Cc)t + c + (C - 1] + ( - c)2 F "(Cc)t + (C - Sc)3 F,,"(Cc)t....
2! 3!

(14.6.19)
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If we note that t = tc + t - tc, then using (14.6.15) and (14.6.16), (14.6.19) becomes

F(Sc)(t - tc) c)F'(Cc)(t - tc) + (C 3Sc)3 F,,i(Cc)tc, (14.6.20)

where in the last expression we have approximated t by tc since t - tc is small.
Equation (14.6.20) shows the importance of F(lc), the (group) velocity of the critical
characteristic.

Equation (14.6.20) is a cubic equation. Each root corresponds to a char-
acteristic for a given 'x and t. To understand the cubic, we introduce X =
x - xc - tc), T = t - tc, and s = l; - c. We recall 0 and
F"(l;'c) > 0, so that for convenience we choose F'(&) = -1 and 2, so
that X is an elementary cubic function of s,

X = -sT+ 383. (14.6.21)

For elementary graphing for fixed T, we need ds = -T + s2. We see that there
are no critical points if T < 0 (t < tc), so that X(s) is graphed on its side in
Fig. 14.6.6 and s(X) is single valued corresponding to one root for t < tc. However,
if T > 0 (t > tc), two elementary critical points, as seen in Fig. 14.6.6, are located
at s = ±T1/2, which corresponds to the caustic. For t > tc there are three real
roots within the caustic region shown in Figs. 14.6.6 and 14.6.7. In this scaling the
caustic satisfies 0 = -T + s2, so that s = ±T1/2. Using (14.6.21), the caustic
is located at X = s(-T + 182) = 3sT = ±2T312 and is cusped shaped (see
Fig. 14.6.7) because = F(t ) at t = 0.

The characteristics form a caustic. Reflected waves from a nonparabolic reflector
form this kind of caustic, as shown in Fig. 14.6.3. Near the caustic the approxima-
tions that yielded the nonlinear partial differential equations (14.6.11) are no longer
valid. Instead, near the caustic we must return to the original linear partial differ-
ential equation and obtain a different solution. The triple-valued solution predicted
by the method of characteristics is meaningful and corresponds to the linear super-
position of three slowly varying waves. We explain this in the next sections. (When
characteristics intersect and form a caustic, the energy focuses and the amplitude
increases dramatically though not to infinity as predicted by slow variation theory
or ray theory or geometrical optics.)

The curved portions of caustics (away from the cusp) are described in Exercises
14.6.5 and 14.7.1. In exercise 14.5.4 and in subsection 14.7.2, we describe a straight-
line caustic that separates a region with two rays from a region with no rays.
This is the explanation of the rainbow. Parallel light rays from the sun (see
Fig. 14.6.8) pass through water droplets (using Snell's law of refraction) before
reflecting internally. There is a minimum angle at which the intensity is large. The
wave speed of light in the water depends a little bit on the wave length (color) so
that the minimum angle is slightly different for the different colors. This gives rise
to the common rainbow.
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t<tc t=tc t > tc

Figure 14.6.6 Smooth
solution becoming
triple valued.

Figure 14.6.7 Cusped
caustic.

Water droplet

Rays
of the sun

Figure 14.6.8
Caustic formed
by refraction
and reflection
through water
droplet.
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EXERCISES 14.6
*14.6.1. The solution (14.5.7) obtained by the method of stationary phase has the

phase 9(x, t) = kox - w(ko)t, where ko is a function of x and t given by the
formula (14.5.6) for a stationary point. Determine the k and w defined by
(14.6.2) and (14.6.3).

14.6.2. In a uniform rectangular wave guide, we have learned that for a particular
mode, w2 = C2[k2 + ( )2 + ( )2]. Let us consider a slowly varying rect-
angular wave guide in a uniform media, where the width L = L(x) varies
slowly in the propagation direction. We claim that

w2 = c2 [k2+()2+()2}.
What partial differential equation (do not solve it) does the wave number
k(x, t) satisfy?

14.6.3. Assume the number of wave is conserved. Z is the number of waves per
unit spatial distance and z- is the number of waves per unit time. Consider
the number of waves between two fixed points x = a and x = b.

(a) Explain why the number of waves between x = a and x = b is
fa k(x, t) dx.

(b) If the number of waves is conserved, show that jt f ,, k(x, t) dx = w(a, t)-
w(b, t).

(c) From part (b), derive that O + aw = 0.

14.6.4. Reconsider Exercise 14.6.3:

(a) Why does ai fZ') k(x, t) dx = 0 if the endpoints are not constant but
move with the phase velocity?

(b) By differentiating the integral in part (a) , derive Ok + = 0.TZ_

14.6.5. Curved caustic. We wish to analyze any one small portion of the curved
caustic (see Fig. 14.6.3) away from the cusp. Characteristics of a disper-
sive wave problem (14.6.11) satisfy (14.6.12) and (14.6.13). At each point
(xe, tj in space and time along the curved caustic, there is a specific char-
acteristic fc. We analyze the region near this point, and we will determine
the region in which there are two and zero characteristics. The caustic will
satisfy (14.6.14), so that (14.6.15) is also valid. However, we will assume
F"(fc)9' 0. Assuming that f is near f,, it follows that (14.6.18) is still
valid.

(a) If x is near xc and t is near tc, derive that the following quadratic is
valid instead of the cubic (14.6.20):

x - x. - F(f.)(t t,) + (f 2fC)2

(14.6.22)
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(b) Using (14.6.22), in what region are there two and zero characteristics?
Show that your answer depends on the sign of F"(£,).

14.6.6. Consider = /3(x, t) gx; , where $(x, t) is a slowly varying coefficient. Wewt-
assume the dispersion relation is w = i3(x, t)k3.

(a) If 3(x, t) is constant, determine k and the characteristics.
(b) If O (x, t) is constant, determine the phase B along characteristics.
(c) If (3(x, t) is not constant, what differential equations determine k and

the characteristics?
(d) If ,8(x, t) is not constant, what differential equations determine 0 along

characteristics?
(e) If 3(t) only, determine the characteristics and 0.

14.7 Wave Envelope Equations
(Concentrated Wave Number)

For linear dispersive partial differential equations, plane traveling waves of the form
u(x, t) = Aei(kx-w(k)t) exist with constant wave number k. The most general situ-
ations are somewhat difficult to analyze since they involve the superposition of all
wave numbers using a Fourier transform. A greater understanding can be achieved
by considering some important special situations.

In Sec. 14.6 we assume that the wave number is slowly varying. Here, instead
we assume most of the energy is concentrated in one wave number ko. We assume
the solution of the original partial differential equation is in the form

u(x t) = A(x, t)ei(kox-W(ko)t). (14.7.1)

We assume the amplitude A(x, t) is not constant but varies slowly in space and time.
The amplitude A(x, t) acts as an wave envelope of the traveling wave, and our
goal is to determine a partial differential equation that describes the propagation
of that wave envelope A(x, t). Some ways in which energy can be concentrated into
one wave number are as follows:

1. The initial conditions can be chosen with one wave number but with the
amplitude slowly varying as in (14.7.1).

2. It is known that arbitrary initial conditions with all wave numbers disperse
(spread out). The wave number is known to move with the group velocity. If one
is investigating the solution in some special region of space and time, then in that
region most of the energy may be concentrated in one wave number.

3. Rays along which the wave number is constant may focus and form a caustic.
In a caustic energy is focused in one wave number.

We will determine partial differential equations that the wave envelope A(x, t)
will always satisfy for any dispersive wave equation. We first note that since u(x, t)
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has the exact solution u(x, t) = ei(kz-W(k)e), for all k, it follows that the partial
differential equation for A(x, t) must have the very special but simple exact solution

A(x, t) = ei(k-ka)x-i(W-WO)C

where w = w(k) and wo = w(ko). We note that f = i(k - ko)A and 3i =
-i(w -wo)A. In this way we have shown that first- and higher-derivative operators
acting on the amplitude correspond to elementary multiplications:

-a . (k - k ) (14 7 2)
8x

o ..

i (w - wo). (14.7.3)

The partial differential equation for the wave amplitude follows from the dis-
persion relation w = w(k). Since we assume energy is focused in the wave number
ko, we can use a Taylor series for the dispersion relation around the special wave
number ko:

w = w(ko) + (k - ko)w'(ko) + (k - ko)2
w"2ko)

± (k -
ko)3""3ko) +.... (14.7.4)

Moving w(ko) to the left-hand side, using the operator relations, and dividing by i
yields the wave envelope equation in all cases:

8A 8A w"(ko) 82A w"'(ko) 83A
at

+ w'(ko) 8x = i 2! axe + 3! ax3
+ ... . (14.7.5)

This shows the importance of the group velocity c9 = w'(ko). These results can also
be obtained by perturbation methods.

14.7.1 Schrodinger Equation
To truncate the Taylor expansion (14.7.4) in a useful and accurate way, we must
assume that k - ko is small. From (14.7.2) it follows that the spatial derivatives of
the wave envelope must be small. This corresponds to the assumptions of a slowly
varying wave amplitude alluded to earlier. The wave amplitude must not change
much over one wave length ko for the wave envelope equation (14.7.5) to be valid.
Each spatial derivative of the amplitude in (14.7.5) is smaller. Thus, if w"(ko) 7- 0,
we are justified in using the Schrodinger equation,

BA+ w'(ko)8Aiw (ko) 492 A

8t 8x 2! axe
(14.7.6)

the approximation that results from ignoring the third and higher derivatives. Any-
time energy is focused in one wave number (the so-called nearly monochromatic
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approximation), u(x,t) A(x, t)et(k°x-, (k°)t), the wave amplitude or wave enve-
lope satisfies the Schrodinger equation (14.7.6). The Schrodinger equation is a
linear partial differential equation with plane wave solutions A = ei(ax-st(«)t) so
that its dispersion relation is quadratic: 0(a) = w'(ko)a + Ww co) The solution
of the Schrodinger equation corresponding to an infinite domain can be obtained
by Fourier transforms:

G(a)e'J°(=-w'(ko)t)- da.A(x,tr (14.7.7)

In this nearly monochromatic approximation the dispersive term is small. How-
ever, the dispersion cannot be ignored if we wish to understand the behavior for
relatively long times. Perhaps the relations between space and time are better un-
derstood, making a change of variables to a coordinate system moving with the
group velocity:

X = x - w'(ko)t (14.7.8)

T = t. (14.7.9)

In this moving coordinate system the Schrodinger equation has the following simpler
form:

8A 8A 8A 8A w"(ko) 82A
5y; -``' (ko)8X +w (k0)8X = t3'1 =

i
2! 0X2

In this way small spatial derivatives are balanced by small time derivatives (in the
moving coordinate system).

Caustics. Away from caustics, slowly varying linear dispersive waves can be
analyzed approximately by the method of characteristics. However, this approxima-
tion fails near the caustic, where characteristics focus the energy. Near a caustic the
solution is more complicated. In the region near this caustic (x near x, and t near
tc) , the wave energy is focused in one wave number [the critical value k0 = k(e,, 0)]
so that u(x, t) Pt: A(x, t)

the linear Schrodinger equation whose solutions are given by
(14.7.7). We may replace x by x - xc and t by t - tc in (14.7.7), though this corre-
sponds to a different arbitrary function G(a). We wish to determine the complex
function G(a) = R(a)e`(°), which agrees with the known caustic behavior:

A(x t) = da.f70

(14.7.10)

This exact solution can be approximated by evaluating the phase at the value of a
at which the phase is stationary:

x - xC - w'(kc)(t - t,:) - La"(k0)a(t - tc) + 4?'(a) = 0. (14.7.11)

By comparing (14.7.11) with the fundamental cubic equation (14.6.20), first we see
that a = kE( - ), since from (14.6.13), F' = w"kt. It follows that 4'(a) =
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-3r FF te, so that (a) = -T F kf t'. In this way we derive an integral
representation of the solution in the neighborhood of a cusped caustic:

A x t =
00 t ICIa

( ) a , (14.7.12)

where for simplicity we have taken R(a) = 1. Equation (14.7.12) is known as
the Pearcey integral though Brillouin seems to have been the first to study it.
Stationary points for (14.7.12) satisfy the cubic (14.7.11), so that asymptotically
the number of oscillatory phases varies from one outside the cusped caustic to three
inside.

14.7.2 Linearized Korteweg-de Vries Equation
Usually the wave envelope satisfies the Schrodinger equation (14.7.6). However, if
wave energy is focused in one wave number and that wave number corresponds to a
maximum or minimum of the group velocity w'(k), then w"(ko) = 0. Usually when
the group velocity is at an extrema, then the wave envelope is approximated by the
linearized Korteweg-de Vries equation:

8A 8A _ w"'(ko) 83A
8t

+ w (ko)
8x 3! 8x3 '

(14.7.13)

which follows directly from (14.7.5). The dispersive term is small, but over large
times its effects must be keep. [The transformation (14.7.8) and (14.7.9) corre-
sponding to moving with the group velocity could be used.]

Long waves. Partial differential equations arising from physical problems
usually have odd dispersion relations w(-k) = -w(k) so that the phase velocities
corresponding to k and -k are the same. For that reason, here we assume the
dispersion relation is odd. Long waves are waves with wave lengths much longer
than any other length scale in the problem. For long waves, the wave number k will
be small. The approximate dispersion relation for long waves can be obtained from
the Taylor series of the dispersion relation:

(14.7.14)

since for odd dispersion relations w(0) = 0 and w"(0) = 0. Thus, because of the
usual operator assumptions (14.2.7) and (14.2.8) (k = -i0 and w = i8), long
waves should satisfy the linearized Korteweg-de Vries (linearized KdV) equation:

8u eu _ w"'(0) 83u
8t

+w'(0)8x
3! 8x3
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This can be understood in another way. If energy is focused in one wave (long wave)
ka = 0, then the wave amplitude equation follows from (14.7.5):

,,,()OA
(0)

OA

8t 8x 3! 8x3

Here the solution and the wave envelope are the same, satisfying the same partial
differential equation because for nearly monochromatic waves

u(x, t) = A(x, t)e'(kpx-"'(k°)t) = A(x, t)

since ko = 0 and w(0) = 0. The group velocity for long waves (with an odd disper-
sion relation) is obtained by differentiating (14.7.14), w' (k) = u)'(0) + W (0)2 k2 + .

Thus, the group velocity has a minimum or maximum for long waves (k = 0). Thus,
the first or last waves often observed will be long waves. To understand how long
waves propagate, we just study the linearized Korteweg-de Vries equation. Since
it is dispersive, the amplitudes observed should be very small (as shown by the
method of stationary phase). Large amplitude long dispersive waves must have an
alternate explanation (see the next section).

Maximum group velocity and rainbow caustic. We briefly in-
vestigate the solution that occurs (from the method of stationary phase) when the
group velocity w'(k) has a maximum. Thus w"(kl) = 0, in which case the linearized
KdV (14.7.13) governs. Specifically, following from (14.5.8) in Exercise 14.5.4, the
wave envelope satisfies:

oo

A(x, t) = -w (k1)t) dk.f 00

From this it can be seen that A(x, t) satisfies the linearized KdV (14.7.13) as should
follow theoretically from (14.7.14). This is perhaps easier to see using a coordinate
system moving with the group velocity in which case roughly

AT = -Axxx

(since w"'(kl) < 0]. Further analysis in Exercise 14.5.4 shows that

1 x - w'(kl)t
A(x, t) = t173 Al( t1/3

where Ai is an Airy function. Thus, A(x, t) should be a similarity solution of the
linearized KdV. It will be instructive to show the form taken by similarity solutions
of the linearized KdV:

IA(X,t) = - f(tX3) = t1/3f(S)

where the similarity variable t: is given by

X
1; = t1/3.
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Derivatives with respect to X are straightforward (j cii ), but we3(- A
must be more careful with t-derivatives. The linearized KdV (AT = -Axxx)
becomes

1 1 1 , 11; 1 1 ,,,

3t4/3f+t'/3f ( 3t)--t1'3tf ,

which after multiplying by 0°/3 becomes a third-order ordinary differential equation
(-If f - 3 f' = -f...) that can be integrated to - s + c. The constant
c = 0 (since want f 0 as -+ +oo), and hence the similarity solution of the
linearized KdV is related to Airy's equation:

f"-3f1;=0.
Here, regions with two and zero characteristics are caused by a maximum group
velocity. Regions with two and zero characteristics are separated by a straight line
characteristic (caustic) x = w'(kl)t with w"(k1) = 0. This is the same situation
that occurs for the characteristics for a rainbow (see Fig. 14.6.8) where there is a
maximum group velocity.

14.7.3 Nonlinear Dispersive Waves:
Korteweg-deVries Equation

These amplitude equations, the Schrodinger equation (14.7.6) or the linearized
Korteweg-de Vries equation (14.7.13), balance small spatial and temporal changes
(especially when viewed from moving coordinate systems). Often in physical prob-
lems small nonlinear terms have been neglected, and they are often just as important
as the small dispersive terms. The specific nonlinear terms can be derived for each
specific application using multiple-scale singular perturbation methods (which are
beyond the scope of this text). In different physical problems, the nonlinear terms
frequently have similar forms (since they are derived as small but finite amplitude
expansions much like Taylor series approximations for the amplitude).

For long waves, the usual nonlinearity that occurs yields the Korteweg-de
Vries (KdV) equation:

[w'(0) +,3u] ax =
w3!

8x3
(14.7.15)

If for the moment we ignore the dispersive term ey;, then (14.7.15) is a quasi-
linear partial differential equation solvable by the method of characteristics. The
characteristic velocity, w'(0) + /3u, can be thought of as the linearization around
u = 0 (small amplitude approximation) of some unknown characteristic velocity
f (u). Taller waves move faster or slower (depending on /3) and smooth initial con-
ditions steepened (and eventually break). Some significant effort (usually using
perturbation methods corresponding to long waves) is required to derive the coef-
ficient 0 from the equations of motion for a specific physical problem. Korteweg
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and de Vries first derived (14.7.15) in 1895 when trying to understand unusually
persistent surface water waves observed in canals.

The KdV equation is an interesting model nonlinear partial differential equation
because two different physical effects are present. There is an expectation that
solutions of the KdV equation decay due to the dispersive term. However, the
nonlinear term causes waves to steepen. By moving with the linearized group
velocity and scaling x and u , we obtain the standard form of the KdV equation:

3

a + 6u 8x + 5x3 = 0. (14.7.16)

We limit our discussion here to elementary traveling wave solutions of the KdV
equation:

u(x, t) = f (C), wherel; = x - ct. (14.7.17)

When (14.7.17) is substituted into (14.7.16), a third-order ordinary differential equa-
tion arises:

f"' - cf'+ 6ff' = 0.

This can be integrated to yield a nonlinear second-order ordinary differential equa-
tion (of the type corresponding to F = ma in mechanics, where a = f"):

f"+3f2-cf -A=O, (14.7.18)

where A is a constant. Multiplying by f and integrating with respect to t;, yields
an equation corresponding to conservation of energy [if (14.7.18) were Newton's
law):

1(f')2+f3- 2cf2-Af = E, (14.7.19)

where E is the constant total energy [and
2

(f')2 represents kinetic energy and
f3 -

2
c f 2 - A f potential energy]. In Fig. 14.7.1 we graph the potential energy

as a function of f. Critical points for the potential occur if 3f2 - c f - A = 0, corre-
sponding to equilibrium solutions of (14.7.18). The discriminant of this quadratic
(b2 - 4ac) is c2 + 12A. If c2 + 12A < 0, then the potential energy is monotonically
increasing, and it can be shown that the traveling waves are not bounded. Thus,
we assume c2 + 12A > 0, in which case two equilibria exist. Constant energy lines
(in. the potential energy sketch) enable us to draw the phase portrait in Fig. 14.7.1.
We note that one equilibria is a saddle point and the other is a center.

Periodic traveling waves (cnoidal waves). Most of the bounded
traveling waves are periodic. Some analysis is performed in the Exercises.
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V= f3 - 0.5f2 - Af
(c2 + 12A > 0) Potential

Figure 14.7.1 Potential and phase portrait for traveling
wave for the KdV equation.

Solitary traveling waves. If the constant energy E is just right, then the
traveling wave has an infinite period. The cubic potential energy has two coincident
roots at fmin and a larger single root at frnax > fmin, so that

1 (fl)2 = -(f - fmax)(f - fmin)2 (14.7.20)

The phase portrait shows that solution has a single maximum at f = fmax and
tails off exponentially to f = fmin It is graphed in Fig. 14.7.2 and is called a
solitary wave. This permanent traveling wave exists when the steepening effects
of the nonlinearity balance the dispersive term. An expression for the wave speed
can be obtained by comparing the quadratic terms in (14.7.19) and (14.7.20): 1c =
fmax + 2fmin = 3fmin + (fmax - fmin) The simplest example is when fmin = 0,
requiring fmax > 0, in which case

c2 = fmax (14.7.21)

These solitary waves only occur for fmax > 0, as sketched in Fig. 14.7.2. Thus,
taller waves move faster (to the right). There is an analytic formula for these
solitary waves. If fmin = 0, it can be shown that

(14.7.22)

where c > 0 is given by (14.7.21). This shows that the taller waves (which move
faster) are more sharply peaked.
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fmin

=x - Ct

Figure 14.7.2 Solitary wave for the KdV equation.

14.7.4 Solitons and Inverse Scattering
For many other nonlinear partial differential equations, solitary waves exist. For
most nonlinear dispersive wave equations, no additional analytic results are known
since the equations are nonlinear. Modern numerical experiments usually show that
solitary waves of different velocities interact in a somewhat complex way. However,
for the KdV equation (14.7.16) Zabusky and Kruskal [1965] showed that different
solitary waves interact like particles (preserving their amplitude exactly after inter-
action) and hence are called solitons. These solitons have become quite important
because it has been shown that solutions of this form develop even if the initial
conditions are not in this shape and that this property also holds for many other
nonlinear partial differential equations that describe other physically interesting
nonlinear dispersive waves. In attempting to understand these numerical experi-
ments, Gardner, Greene, Kruskal, and Miura [1967] showed that the nonlinear KdV
equation could be related to a scattering problem associated with the Schrodinger
eigenvalue problem (see Sec. 10.7) and the time evolution of the scattering problem.
Lax [1968] generalized this to two linear nonconstant differential operators L and
M that depend on an unknown function u(x, t):

LO = AO (14.7.23)
8o
49t

= M4. (14.7.24)

The operator L describes the spectral (scattering) problem with 0 the usual eigen-
function, and M describes how the ei5enfunctions evolve in time. The consistency
of these equations [solving both for LJ by taking the time derivative of (14.7.23)1
yields L =LMT = -!2-LO +AV8t + !LAO = -LL-0 + ML¢ + ¢, where (14.7.23)
and (14.7.24) have been used. The spectral parameter is constant (di = 0) if
and only if an equation known as Lax's equation holds:

O + LM - ML = 0, (14.7.25)

which in practice will be a nonlinear partial differential equation for u(x, t) since
the commutator LM - ML of two nonconstant operators is usually nonzero.
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In an exercise, it is shown that for the specific operators

L=-

au a a3M=-y- ax +6u ax 4 8x3

(14.7.26)

(14.7.27)

where y is a constant, Lax's equation is a version of the Korteweg-de Vries equation

au au 03u
at - 6u ax + ax3 =0. (14.7.28)

Inverse scattering transform. The initial value problem for the KdV
equation on the infinite interval -oo < x < oo is solved by utilizing the difficult
relationships between the nonlinear KdV equation and the linear scattering problem
for -oo < x < oo. The eigenfunction 0 satisfies the Schrodinger eigenvalue problem

020 + (A - u(x WA = 0 (14.7.29)

Here time is an unusual parameter. In the brief Sec. 10.7 on inverse scattering, we
claimed that the potential u(x, t) for fixed t can be reconstructed from the scattering
data at that fixed t:

u(x, t) = K
ax

(14.7.30)

using the unique solution of the Gelfand-Levitan-Marchenko integral equation:

K(x, y, t) + F(x + y, t) + f.c* K(x, z, t)F(y + z, t) dz = 0, for y > x. (14.7.31)

Here the nonhomogeneous term and the kernel are related to the inverse Fourier
transform of the reflection coefficient R(k, t) (defined in Sec. 10.7), including a
contribution from the bound states (discrete eigenvalues A = -r.'):

N 00

F(s, t) _ cn(t)e-K-, + 1

_
R(k t)e'k°dk.

21r
(14.7.32)
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Here the scattering data depend on a parameter, time. Unfortunately, we do not
know the time-dependent scattering data since only u(x, 0) is given as the initial
condition for the KdV equation. Thus, at least the initial scattering data can be
determined, and we assume those data are known. If the initial condition has
discrete eigenvalues, then these discrete eigenvalues for the time evolution u(x, t)
of the KdV equation miraculously do not change in time because we have shown
that ai = 0 for the KdV equation. However, for the KdV equation it has also been
shown that the time-dependent scattering data can be determined easily from the
initial scattering data only using (14.7.29) with (14.7.26) and (14.7.27):

R(k, t) = R(k, 0)essk3t (14.7.33)

cn(t) = (14.7.34)

This method is called the inverse scattering transform. The initial condition
is transformed to the scattering data and the scattering data, satisfy simple time-
dependent linear ordinary differential equation whose solution appears in (14.7.33)
and (14.7.34). The time-dependent solution is then obtained by an inverse scattering
procedure.

It can be shown that the solution of the inverse scattering transform corre-
sponding to a initial condition that is a reflectionless potential with one discrete
eigenvalue yields the solitary wave solution discussed earlier. However, solutions
can be obtained corresponding to initial conditions that are reflectionless poten-
tials with two or more discrete eigenvalues. The corresponding solutions to the
KdV equation are interacting strongly nonlinear solitary waves with exact interac-
tion properties first observed numerically by Zabusky and Kruskal [1965]. We have
been very brief. Ablowitz, Kaup, Newell, and Segur developed a somewhat simpler
procedure, equivalent to (14.7.23) and (14.7.24), which is described (among many
other things) in the books by Ablowitz and Segur [1981] and Ablowitz and Clarkson
[1991].

14.7.5 Nonlinear Schrodinger Equation
When wave energy is focused in one wave number, u(x, t) = A(x, t)e'(kax-W(ko)t), the

wave amplitude of a linear dispersive wave can be approximated by (14.7.6). Small
temporal changes are balanced by small spatial changes. If the underlying physical
equations are nonlinear, small but finite amplitude effects can be developed using
perturbations methods. In many situations, the nonlinearity and spatial dispersion
balance in the following way. The amplitude is said to solve the (cubic) nonlinear
Schrodinger equation (NLS):

O + w'(ko)aA =

ax
+ iO JAI' A. (14.7.35)

To understand the nonlinear aspects of this equation, first note that there is a
solution with the wave amplitude constant in space: u(x, t) = A(t)e`(kOz--(ko)t) if
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OT = i/3 JAl2 A. To solve this differential equation, we let A = re'e, in which case
by equating the real and imaginary parts, we obtain di = are and di = 0. Thus,
A(t) = roe'a'0t , which corresponds to u(x, t) = roe'pot Here the
frequency w(ko, IAA) = w(ko) - /31A12 depends on the amplitude ro = JAI. It is fairly
typical that the frequency depends on the amplitude of the wave in this way as an
approximation for small wave amplitudes. When spatial dependence is included the
nonlinear dispersive wave equation, (14.7.35) results.

We will show that the NLS has solutions that correspond to an oscillatory trav-
eling wave with a wave envelope shaped like a solitary wave. We let

A(x, t) = r(x, t)ei(e(z.t)) = r(x, t)ei(a=-nt),

where r(x, t) is real and represents the amplitude of an elementary traveling wave
with wave number a and frequency Sl. The wave number a is arbitrary, but we
will determine the frequency 11 corresponding to this solitary wave envelope. Since
A. = (r= + iar)e'(az-f0 it follows that A_= = (rx= + 2iar2 - az r)ei(a:-nt) .The

real part of the NLS (14.7.35) yields

rt + [w'(ko) + aw"(ko)Jr. = 0. (14.7.36)

The method of tharacteristics can be applied to (14.7.36), and it shows that

r(x, t) = r(x - ct),

where the wave speed of the solitary wave envelope satisfies

c = w'(ko) + aw"(ko). (14.7.37)

This shows the magnitude of the complex amplitude stays constant moving with
the group velocity. Since a represents a small perturbed wave number, this is just
an approximation to the group velocity at the wave number ko + a. The imaginary
part of the NLS (14.7.35) yields

-Or + w'(ko)ar =
2kp)

(rax - a2r) +,0r3

We can rewrite this as the nonlinear ordinary differential equation

0 = rT2, + or + yr3, (14.7.38)

where y =
W

2 and 5 = -a2 + 2n
W` ( a . Multiplying (14.7.38) by rr and

integrating yields the energy equation:

2(r., )2+2 r2+4r4=E=0.

We have chosen E = 0 in order to look for a wave envelope with the property that
r -b 0 as x - oo. The potential

z
r2 +

a
r4 is graphed in Fig. 14.7.3. From the
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V= 0.5br2 + 0.25'yr4

Potential (a < 0, 7 > 0)

Figure 14.T.3 Potential and phase
portrait for NLS.

potential, the phase portrait (rx as a function of r) is obtained (Fig. 14.7.3), which
shows that a solitary wave (Fig. 14.7.4) only exists if ry > 0 [corresponding to 0
having the same sign as w"(ko)] and 5 < 0. Here the nonlinearity prevents the wave
packet from dispersing.

The maximum value of r, the amplitude of the solitary wave envelope, is given
by rn, _ -27 = This equation can be used to determine the frequency
Sl if rmax is known:

n = w'(ko)a + Zrm... (14.7.39)

In addition to the frequency caused by the perturbed wave number, there is an
amplitude dependence of the frequency. It can be shown that this wave envelope
soliton with r 0 as x -+ oo for the NLS (14.7.35) is given by

A(x, t) = rmax sech [v'"ko) rmax(x - ct)] ei(ax_0t),

J

where fl is given by (14.7.39) and c given by (14.7.37). (Note that a and rmax are
arbitrary.) The real part of A(x, t) is sketched in Fig. 14.7.4. Note that the phase
velocity of the individual waves is different from the velocity of the wave envelope.
These wave envelope solitary waves are known as wave envelope solitons because
of surprising exact nonlinear interaction properties.

Figure 14.7.4 Solitary wave for
the amplitude is used to obtain wave
envelope soliton for the NLS equation.
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EXERCISES 14.7

14.7.1. Curved caustic. Near a curved caustic the wave number is approximately
a constant ko = kc = k(£,, 0) so that the Schrodinger equation (14.7.6)
applies.

(a) From (14.7.7) [assuming R(a) = 1], using the fundamental quadratic
(14.6.22), derive that

J
-

A(x, t) = e t da.

To make the algebra easier for (b)-(d) consider

B(z r) - eifp=+ti'T+!33/31

(b) Show that B satisfies a dimensionless form of the Schrodinger equation
BT = -iBZ=.

(c) Show that the quadratic term in the integrand can be transformed
away by letting /3 = -y - 7-, in which case

o0

B(z, r) = et(-TL+J T3) / etlry(2-T2)+'73/31fL-t.J 0O

(e)

(d) This describes the intensity of light inside the caustic. The remaining
integral is an Airy function usually defined as

Ai(x) etil7=+73/3) dy.
27r _oo

Express B(z, r) in terms of an Airy function. (It can be shown that
this Airy function satisfies w" - xw = 0. The asymptotic expansion
for large arguments of the Airy function can be used to show that the
curved caustic (related to the Airy function) separates a region with
two rays from a region with zero rays.)
Determine A(x, t) in terms of the Airy function.

14.7.2. The dispersion relation for water waves is w2 = gk tanh kh, where g is the
usual gravitational acceleration and h is the constant depth. Determine
the coefficients of the linearized KdV equation that is valid for long waves.

14.7.3. Sketch a phase portrait that shows that periodic and solitary nonlinear
waves exist:

(a) Modified KdV equation: +6u2 + eYXT = 0

(b) Klein-Gordon equation: a - a +U-U3 = 0



668 Chapter 14. Dispersive Waves

U 2U
(c) Sine-Gordon equation: aWT y.-T- a + sin u = 0

14.7.4. Determine an integral formula for the period of periodic solutions of the
KdV equation. Determine the wave speed in terms of the three roots of
the cubic equation. Periodic solutions cannot be represented in terms of
sinusoidal functions. Instead it can be shown that the solution is related
to the Jacobian elliptic function cn and hence are called cnoidal waves. If
you wish a project, study Jacobian elliptic functions in Abramowitz and
Stegun [1974] or elsewhere.

14.7.5. Derive (using integral tables) the formula in the text for the solitary wave
for

(a) the KdV equation

(b) the nonlinear Schrodinger equation

(c) Modified KdV (see Exercise 14.7.3a) with formula for solution

14.7.6. Using differentiation formulas and identities for hyperbolic functions, verify
the formula in the text for the solitary wave for

(a) the KdV equation
(b) the nonlinear Schrodinger equation

14.7.7. If the eigenfunction satisfies the Schrodiner equation but the time evolu-
tion of the eigenfunction satisfies Stt = PPX +Q4, show that the equations
are consistent only if Q = - z and u(x, t) satisfies the partial differential
equation ut 2 P,,., + 2Px (u - A) + Pux.

*14.7.8. Refer to Exercise 14.7.7. If P = A+BA+CA2 with C constant, determine
A and B and a nonlinear partial differential equation for u(x, t).

14.7.9. Show that Lax's equation is the Korteweg-de Vries equation for operators L
and M given by (14.7.26) and (14.7.27). [Hint: Compute the compatibility
of (14.7.23) and (14.7.24) directly using (14.7.26) and (14.7.27).]

14.7.10. Using the definitions of the reflection and transmission coefficients in Sec.
10.7, derive (14.7.33). In doing so, you should also derive that -y = 4ik3 in
(14.7.27). The bound states are more complicated.

14.7.11. Assume the initial condition for the KdV equation is a reflectionless poten-
tial R(k, 0) = 0 with one discrete eigenvalue. Solve the Gelfand-Levitan-
Marchenko integral equation (it is separable) and show that u(x, t) is the
solitary (soliton) wave described earlier.

14.7.12. Generalize Exercise 14.7.11 to the case of a reflectionless potential with two
discrete eigenvalues. The integral equation is still separable. The solution
represents the interaction of two solitons.



14.8. Stability and Instability 669

14.8 Stability and Instability
14.8.1 Brief Ordinary Differential Equations

and Bifurcation Theory
Equilibrium solutions of partial differential equations may be stable or unstable.
We will briefly develop these ideas first for ordinary differential equations, which
are more fully discussed in many recent books on dynamical systems, such as the
ones by Glendinning [1994), Strogatz [19941, and Verhulst [1997].

First-order ordinary differential equations. The concepts of equi-
librium and stability are perhaps simplest in the case of autonomous first-order
ordinary differential equations:

dx f(x)

dt

An equilibrium solution x0 is a solution of (14.8.1) independent of time:

0 = f(xo)

(14.8.1)

(14.8.2)

An equilibrium solution is stable if all nearby initial conditions stay near the equi-
librium. If there exists a nearby initial condition for which the solution goes away
from the equilibrium, we say the equilibrium is unstable.

To analyze whether xo is stable or unstable requires only considering the differ-
ential equation (14.8.1) near x0. We approximate the differential equation using a
Taylor series of f (x) around x0 [the linearization or tangent line approximation for
f (x) near xo]:

dt =
f(x) = f(xo) + (x - xo)f'(xo) + ....

We usually can ignore the nonlinear terms since we assume x is near xo. Since xo
is an equilibrium, f (xo) = 0, and the differential equation (14.8.1) can be approxi-
mated by a linear differential equation (with constant coefficients):

dx = (x
- xo)f'(xo).

dt
(14.8.3)

The solution of (14.8.3) is straightforward: x - xo = cef'( o)t. We conclude that

the equilibrium x0 is stable if f'(xo) < 0
the equilibrium x0 is unstable if f'(xo) > 0.
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If f'(xo) = 0, the neglected nonlinear terms are needed to determine the stability
of XO.

Example of bifurcation point. We wish to study how solutions of
differential equations depend on a parameter R. As a specific elementary example,
we begin by considering

(14.8.4)
dt =R-x2.

For an equilibrium, x2 = R. If R > 0, there are two equilibria x = ±v "R-. These
two equilibria coalesce to x = 0 when R = 0. If R < 0, there are no equilibria.
R = 0 is called a bifurcation point because the number of equilibria changes there.
In other examples, different kinds of bifurcation occur. Sometimes a bifurcation
diagram (as in Fig. 14.8.1) is drawn in which the equilibria are graphed as a
function of the parameter R. The stability of the equilibria can be determined
using the linearization (see the Exercises). However, in the figure we illustrate the
determination of stability using a one-dimensional phase portrait. We fix the
parameter R (drawing a vertical line). If de > 0, we introduce upward arrows (and
downward arrows if ae < 0). In this example (14.8.4), if x is large and positive,
then ai < 0 (and the sign of ae changes each time an equilibria is reached since
in this example the roots are simple roots). Thus we see in this example that the
upper branch (x > 0) is stable and the lower branch (x < 0) is unstable.

X

R

Figure 14.8.1 One dimensional phase por-
trait and bifurcation diagram for an example
of a saddle-node bifurcation.

Definition of a bifurcation point. First-order differential equations
which depend on a parameter R may be written:

dx
dt. = f(x,R) (14.8.5)

First we just study equilibrium solutions xo:

0 = f(xo,R)
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Generally, the equilibrium xo will depend on the parameter R. From our previ-
ous discussion, xo will be stable if fx(xo, R) < 0 and unstable if fz(xo, R) > 0.
(In specific examples the stability can be determined using one-dimensional phase
portraits, as in the previous example.)

We wish to investigate how one specific equilibrium changes as the parameter
changes a small amount. We assume there is a special value of the parameter of
interest R, and we know an equilibrium corresponding to that value x, so that

0= f(xc,Rc)
If R is near R, we assume that xo will be near xc. Thus, we use a Taylor series for
a function of two variables:

,)fR(x,:, R + .. .0 = f (xo, R) = f (xc, Rj + (xo - x.)f=(x., Rc) + (R - Rr

As an approximation, for R near Rc we conclude that usually the equilibrium is
changed by a small amount:

xo - x.=- fR(R-Rr)+ (14.8.6)

This is guaranteed to occur if fx # 0. Thus, the number of equilibria cannot change
if fx 0 0. Equation (14.8.6) is the tangent line approximation to the bifurcation
diagram.

The only intemst:ng things can happen when f , = 0. A point (x, R) is called a
bifurcation point if

f (x, R) = 0 at the same time fx (x, R) = 0. (14.8.7)

The number of equilibria can only change at a bifurcation point. Also, stability
of an equilibria may change at a bifurcation point since an equilibrium is stable if
f= < 0 and unstable if ff > 0.

We reconsider the previous example (14.8.4), in which 0 = f (x, R) = R-x2. The
bifurcation point can be determined by insisting that simultaneously fx = -2x = 0.
We see the bifurcation point is x = 0 in which case R = 0.

Saddle-node bifurcation. In this subsection, we will show that the type
of bifurcation illustrated by (14.8.4) is typical. We consider the first-order problem
depending on the parameter R:

dx =
dtf(x, R).

We assume that we have found a bifurcation point (xe, Rc) satisfying

(14.8.8)

f (xc, Re) = 0 and f. (x, &) = 0. 1 (14.8.9)
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Since we are interested in solving the differential equation if R is near R, we will, in
addition, assume that x is near x,. Thus, we approximate the differential equation
using the Taylor series of f (x, R) around (xc, Rc):

= f (x, R)T
= f (xc, R.) + (x - x.)fx(xc, Rc) + (R - R.)fR(x., Re)

+ 2 (x - xc)'fxx(xc, Rc) + .. .

This simplifies since (xc, R,) is a bifurcation point satisfying (14.8.9):

dt = (R - Rc)fR(xc, Rc) + 2
(x - xc)2fxx(xc, Rc) + ... . (14.8.10)

It can be shown that the other terms in the Taylor series are much smaller, such as
terms containing (R-R,)2, (x-x,)(R-Rc), (x-xc)3 because we will be assuming R
is near Rc and x is near xc with O(R-RJ. Thus, we will be justified (as
an approximation valid near the bifurcation point) in ignoring these other higher-
order terms. The bifurcation diagram near (xe, Rc) will be approximately parabolic
(similar to Fig. 14.8.1), which is derived by considering the equilibrium associated
with the simple approximate differential equation (14.8.10). Here, the bifurcation
point is (xc, Rc). The parabola can open to the left or right depending on the signs
of fR and fxx. For this to be a good approximation, we assume fR(xc, Rc) # 0
and fxx(x., Rr) 0. Whenever fR(xc, R,) # 0 and fxx(x,, R.) 5A 0, the bifurcation
point is a turning point which is also known as a saddle-node bifurcation
(for complicated reasons discussed briefly later). The stability of the equilibria
can be determined in each case by a one-dimensional phase portrait. One branch
(depending again on the signs of the Taylor coefficients) of equilibrium will be stable
and the other branch unstable.

Other bifurcations. Other kinds of bifurcations (see the Exercises) such
as transcritical (exchange of stabilities) and pitchfork will occur if fR(xc, Rc) = 0
or if fxx(x., Rc) = 0.

Systems of first-order differential equations. Consider a system
of first-order autonomous differential equations:

`f(x)= fx)d 9_) (14.8.11)

Equilibria io satisfy f (zo) = 0. To analyze the stability of an equilibrium, we
consider 1 near io, and thus use a Taylor series. The displacement from equilibrium
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is introduced, y = z - io, and we obtain the linear system instead of (14.8.3)
involving the Jacobian matrix J evaluated at the equilibrium

where

j = J11 J12 1 = [ :.
JJ21 22I R

(14.8.12)

(14.8.13)

To solve the linear systems of differential equation, we substitute y(t) = ea=v, in
which case

Jv = AV or (J - AI)v = 0, (14.8.14)

so that A are the eigenvalues of the Jacobian matrix J and v the corre-
sponding eigenvectors. For nontrivial solutions, the eigenvalues are obtained from
the determinant condition

0=det(J-,\I)=det[ J11-A J12 1

L J21 J22-A J'

so that

A2-TA +D=(A-A1)(A-A2)=\2-(A1+A2)A+A11\2=0,

(14.8.15)

(14.8.16)

where the trace J = T = J11 + J22 and determinant J = D = J11J22 -
J12J21 have been introduced and where the quadratic has been factored with two
roots Al and A2, which are the two eigenvalues. By comparing the two forms of
the quadratic, the product of the eigenvalues equals the determinant and the sum
of the eigenvalues equals the trace:

fl Al=detJ

EA1=trJ.

(14.8.17)

(14.8.18)

This is also valid for n-by-n matrices.
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Stability for systems. To be unstable, the displacement from the equilib-
rium must grow for some initial condition. To be stable, the displacement should
stay near the equilibrium for all initial conditions. Since solutions are proportional
to eat and A may be real or complex:

The equilibrium is unstable if one eigenvalue has the Re(A) > 0.

The equilibrium is stable, if all eigenvalues satisfy Re(A) < 0.

Furthermore, the trace and determinant are particularly useful to analyze the sta-
bility of the equilibrium for 2-by-2 matrices, as summarized in Fig. 14.8.2. The
well-known result (as we will explain) is that the equilibrium is stable if and
only if both tr J < 0 and det J > 0. This is particularly useful when we study
the Turing bifurcation For real eigenvalues the change from stable to unstable can
only occur with one eigenvalue negative and other eigenvalue zero (changing from
negative to positive), so that 11 Ai = det J = 0 and E Ai = tr J < 0, which cor-
responds to a saddle-node (described later), transcritical, or pitchfork bifurcation.
For complex eigenvalues, the change from stable to unstable can only occur with
imaginary eigenvalues so that 11 Ai = det J > 0 and E Ai = tr J = 0, which corre-
sponds to the Hopf bifurcation described later. In detail, 0 = det(J - Al) = det

Jll - A J12
1 = A2 - TA + D = 0, and thus A = TA: -4D. If the eigen-

J2i J22 -A 2

values are real (4D < T2), the stable case (both A negative whose phase portrait is
a stable node) has f j Ai = det J > 0 and E Ai = tr J < 0, the unstable node
(both A positive) has fl Ai = det J > 0 and E Ai = tr J > 0, and the unstable
saddle point (one A positive and the other negative) has r l Ai = det J < 0 with

(Unstable) saddle
trace

Figure 14.8.2 Stability (and phase por-
trait) of 2-by-2 matrices in terms of the de-
terminant and trace
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positive or negative trace. If the eigenvalues are complex (4D > T2), fl .k = 1Al2 =
det J > 0, and unstable spirals have F_,\; = tr J > 0 while stable spirals have
EA1=trJ<0.

Bifurcation theory for systems. Suppose there is a first-order system
that depends on a parameter R:

41
ai

= f (1, R) (14.8.19)

An equilibrium solution satisfies f (: o, R) = 0 so that, in general, the equilibrium io
depends on the parameter R. Suppose, at some value of the parameter R = & = 0,
the equilibrium is known to be at xe = 0, for convenience, so that f(0,0) = 0.
We first ask how the equilibrium changes as we vary R near 0. Using a Taylor series,
we have 0 = R f R + Jio, where J is again the Jacobian matrix (evaluated at the
known equilibrium). We can solve for the equilibrium xo uniquely, io = -RJ-1

fR (known as the implicit function theorem), except if J_1 doesn't exist. The
case in which J-1 doesn't exist corresponds to det J = 0, so that one eigenvalue
(A = 0) of the Jacobian matrix is zero. We analyze 2-by-2 systems, and we assume
the second eigenvalue is negative. It can be shown that the two-dimensional system
is reduced to a one-dimensional system because the solutions exponentially decay
in one direction. The solutions decay to the other direction (called the center
manifold), on which a first-order equation such as (14.8.8) is valid. We assume
a turning point occurs, but transcritical and pitchfork bifurcations are also
possible. Each branch of the turning point bifurcation for our first-order differential
equation represents an equilibrium, one stable (a negative growth rate) and one
unstable (with a positive growth rate). For the two-dimensional problem, the stable
branch of equilibria has two negative growth rates or eigenvalues (one hidden) and
is called a stable node. An unstable equilibrium has one visible positive growth
rate (and one hidden negative growth rate). The unstable equilibrium is called a
saddle point (growing in one direction, decaying in the other direction). Thus, the
turning point bifurcation is called a saddle-node bifurcation because the stable
branch is a branch of (stable) nodes and the unstable branch is a branch of saddle
points. The two branches coalesce at the bifurcation point. The importance of
(14.8.8) is that it describes bifurcation phenomena even for higher-order systems
provided one eigenvalue is zero and the others have negative real parts.

Hopf bifurcation. For systems, at some value of the parameter Rh, called
a Hopf bifurcation, it is possible that an equilibrium exists with the eigenvalues
of the Jacobian matrix purely imaginary A = ±iw, corresponding to a frequency w.
According to the implicit function theorem, the equilibrium will exist for R near
Rh since ,\ 0 0. In general the equilibrium changes from being stable to unstable
since the growth rate (e.\t) is complex (A = s ± iw) with the real part changing
from negative (s < 0) to positive (s > 0). The careful nonlinear analysis of Hopf
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bifurcation is too involved and would divert us from our main purposes. Hopf
bifurcation is similar to the stability problem for the partial differential equation,
which we will discuss shortly. We only give a crude analysis of the nonlinearity
in Subsection 14.8.6, to which we refer the reader. There are two cases of Hopf
bifurcation (see Fig. 14.8.5). In one case, called supercritical Hopf bifurcation, a
stable periodic solution exists (R > Rh) only when the equilibrium is unstable, and
for subcritical Hopf bifurcation, an unstable periodic solution only exists (R < Rh)
when the equilibrium is stable.

14.8.2 Elementary Example of a Stable Equilibrium
for a Partial Differential Equation

In this book, all the equilibrium solutions of partial differential equations that have
been considered so far are stable. For example, consider the heat equation

8u _ 82u
8t K 8a.2

with prescribed nonzero temperature at two ends, u(0, t) = A and u(L, t) = B. The
equilibrium solution is ue(x) = A+(B-A) f. To determine whether the equilibrium
is stable, we consider initial conditions that are near to this: u(x, 0) = ue(x)+g(x),
where g(x) is small. We let

u(x, t) = U. (x) + v(x, t),

where v(x, t) is the displacement from the equilibrium. We determine that
v(x, t) satisfies

5= Ka2, with v(0, t) = 0, v(L, t) = 0, and v(x, 0) = g(x).

Using our earlier results, we have

00

v(x,t) _ ansin-Lxe-K( )'t,
n=1

where an can be determined from the initial conditions (but we do not need it here).
Since v(x, t) - 0 as t - oo, it follows that u(x, t) - ue (x) as t - oo. We say that
the equilibrium solution ue(x) is (asymptotically) stable.

If u(x, t) - ue(x) is bounded as t oo [and we assume initially u is near ue(x)],
then we say the equilibrium solution is stable. If for some initial condition [near
ue(x)] u(x, t) - ue(x) is large as t- oo, then we say ue(x) is unstable.

In general, the displacement from an equilibrium satisfies a linear partial differ-
ential equation that will have an infinite number of degrees of freedom (modes). If
one or more of the modes exponentially increases in time, the equilibrium will be
unstable. To be stable, all the modes must have time dependence that exponentially
decays or oscillates.
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14.8.3 Typical Unstable Equilibrium for a Partial
Differential Equation and Pattern Formation

One physical example of an instability is the heating from below of a fluid between
two parallel plates. The interest for this type of problem is generated from mete-
orology in which much of the interesting weather phenomena are due to the sun's
heating at the surface of the earth. For the simpler situation of heating the bottom
plate, it can be observed in simple experiments that if the bottom plate is gently
heated, then a simple state of conductive heat flow arises [solving the usual heat
equation, so that the conductive state satisfies u = u(0) + f(u(L) - u(0)) if the
bottom is y = 0 and the top y = L]. Heating the bottom of the fluid causes the
bottom portions of the fluid to be less dense than the top. Due to buoyancy, there
is a tendency for the fluid to move (the less dense hot fluid raising and the more
dense cold falling). The partial differential equations that describe this must include
Newton's laws for the velocity of the fluid in addition to the heat equation for the
temperature. The gravitational force tends to stabilize the situation and the buoy-
ant force tends to destabilize the situation. Experimentally it is observed that if
the bottom is heated sufficiently, then the conductive state becomes unstable. The
fluid tends to move more dramatically and rotating cells of fluid are formed between
the plates (reminiscent of large-scale atmospheric motions). A preferred horizontal
length scale of motion is observed when no horizontal length scales are present to be-
gin with. This process of pattern formation is fundamental in physical and natural
sciences. We wish to explain these types of features. However, a good mathematical
model of this buoyancy instability is perhaps a little too difficult for a first example.

We will analyze the following partial differential equation (which will have many
desirable features), which is related to the linearized Kuramoto-Sivashinsky
equation:

a2

2
84_-u-R8x - (14.8.20)

We note that u = 0 is considered to be an equilibrium solution of (14.8.20). We
assume R > 0 is a parameter of interest. To understand this equation, we substitute
u = e:(k") or u = eoteikx. In either way, we find

a=-1+Rk2-k4. (14.8.21)

The growth rate is a function of R and k. In this example, the exponential growth
rate a is real for all values of the wave number k (for all wave lengths). It is
very important to distinguish between a > 0 (exponential growth) and o < 0
(exponential decay). In Fig. 14.8.2, we graph regions of exponential growth and
exponential decay by graphing a = 0:

a=OifR=k2+k2.

This neutral stability curve that separates stable from unstable (see Fig. 14.8.3)
has a vertical asymptote at k = 0 and for large k is approximately the parabola
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kc,= 1 k

Figure 14.8.3 Neutral stability curve.

R = V. There is only one critical point, an absolute minimum, where dk = 0. To
determine the minimum, we note that 0 = -2 + 2k yields k, = 1, in which case
R, = 1 + 1 = 2. If R < R,, then we say u = 0 is stable because the time dependence
of all modes (all values of k) exponentially decays. If R > R, then there is a band
of wave numbers that grow exponentially. If any of these wave numbers occurs,
then we say u = 0 is unstable. For example, if the partial differential equation
(14.8.20) is to be solved on the infinite interval, then all values of k are relevant
(from the Fourier transform), and we say that u = 0 is unstable if R > R.. Typically
experiments are performed in which R is gradually increased from a value in which
u = 0 is stable to a value in which u = 0 is unstable. If R is slightly greater than the
critical value Rc, then we expect waves to grow for wave numbers in a small band
surrounding k,, = 1. Thus, we expect the solution to involve the wave length k",
a preferred wave length. This is the way that patterns form in nature from rather
arbitrary initial conditions.

However (this is a little subtle), if the boundary conditions (after separation)
are u(0) = u"(0) = 0 and u(L) = u"(L) = 0, then it can be shown that the
eigenfunctions are sin', so that k takes on the discrete values k = 'L . If R is not
much greater than R,, then there is only a thin band of unstable wave numbers, and
it is possible that it = 0 is stable. The first instability could occur when R is some
specific value greater than R, and would correspond to specific value of n = n,.
Patterns would be expected to be formed with this different wave length nL. In the
rest of this chapter we will assume we are solving partial differential equations on
the infinite interval.

In Fig. 14.8.4, an alternate method is used to illustrate the growth rate. We
graph the growth rate a = o(k, R) given by (14.8.21) for fixed R. We note that
o < 0 for all k if R < R = 2. At R = Rc = 2, the growth rate first becomes zero
atk=kc=1:

a(k., R.) = 0 (14.8.22)

,, R.) =vk(kc 0 (14.8.23)

,, k) <okk(kc 0. (14.8.24)
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k

Figure 14.8.4 Growth rate as function of wave num-
ber.

If R is slightly greater than R, then there is a band of wave numbers near k, in
which a > 0. This is the same band of unstable wave numbers shown in Fig. 14.8.3.
This band of unstable wave numbers can be estimated (if R is slightly greater than
R,) using the Taylor series of a function of two variables for a(k, R) around k = k,
and R = Rc:

a(k, R) = a(k,, Rj + ak(kc, &) (k - kj + 2akk(kc, Rj(k - k,: )2+

Rr)(R-Rc)+ .

This simplifies due to (14.8.22) and (14.8.23),

a(k, R) = 2akk(kc, R,)(k - kc)2 + aR(kc, Rc)(R - Rc) + .... (14.8.25)

It can be shown that other terms in the Taylor series can be neglected. Since
the band of unstable wave numbers terminates at a(k, R) = 0, we have as an
approximation that unstable wave numbers satisfy for R > R,

Ik - k,I < 2drR

ak
We also need to assume that

Rc) > 0, (14.8.26)

since (at fixed k = kr.) we want a to be increasing at R = R,, (from a < 0 to a > 0).
In other linear partial differential equations, the exponential time dependence is

complex, e°t = e(°-iu,)t. Thus, a is the real part of s and -w is the imaginary part
of s, where w(k) is a frequency.

14.8.4 111 posed Problems
A linear time-dependent partial differential equation is said to be ill posed if the
largest exponential growth rate is positive but unbounded for allowable wave num-
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bers. When a problem is in posed, it suggests that the partial differential equation
does not correctly model some physical phenomena. Instead some important physics
has been ignored or incorrectly modeled.

We show that the backward (in time) heat equation

8u 02n
et = -axe (14.8.27)

is in posed because the exponential growth rate (u = et teikx) is

a=k2.

u = 0 is unstable because a > 0 for values of k of interest. However, the growth
rate is positive and unbounded as k -, oo, and thus (14.8.27) is in posed. This
difficulty occurs when k -' oo, which corresponds to indefinitely short waves (the
wave lengths approaching zero). The backward heat equation is even in posed with
zero boundary conditions at x = 0 and x = L, since then k = Z and the growth
rate is positive and unbounded as n -+ oo. (If indefinitely short wave lengths could
be excluded, then the backward heat equation would not be ill posed.)

Without the fourth derivative, (14.8.20) would be in posed like the backward
heat equation. However, the fourth derivative term in (14.8.20) prevents short waves
from growing. Although u = 0 is unstable for (14.8.20), for fixed R > & = 2 the
largest growth rate is bounded. From (14.8.21), -1 + 4R2 (which is finite).

14.8.5 Slightly Unstable Dispersive Waves and the
Linearized Complex Ginzburg-Landau Equation

For linear purely dispersive waves, solutions of the partial differential equation
are in the form ei(kx-"t), where the frequency w is real and said to satisfy the
dispersion relation w = w(k). For other partial differential equations, the frequency
is not real. We prefer to analyze these more general problems using the complex
growth rate s = a - iw: e'kxeet = e'kxe(°-'")t. If or > 0 for some allowable k, we
say that u = 0 is unstable. Often the partial differential equation depends on a
parameter R in which the solution u = 0 is stable for R < R, and becomes unstable
at R = R,. As in Sec. 14.7, we assume there is a preferred wave number kc such
that the real exponential growth rate a(k, R) satisfies (14.8.22), (14.8.23), (14.8.24),
and (14.8.26) near k = kc and R = Rc.

In this section we will assume R is slightly greater than R. so that u = 0
is unstable, but the largest positive value of a will be small, so we call u = 0
slightly unstable. In this case, there is a small band of unstable wave numbers
near k,,. We expect that energy is focused in one wave number kc. We have discussed
(in Sec. 14.6) the nearly monochromatic assumption u(x, t) = A(x, t)e'(kox-"(ko)t)
for purely dispersive waves and have shown that the wave envelope approximately
satisfies the linear Schrodinger equation, Tt- + w'(ko) ex = e

F.T. Here, we
wish to generalize that result to the case of slightly unstable waves, where the time
dependence is oscillatory and exponential, a°t = e(°-`")t. At R = R, and k = ke,
the exponential growth is zero a(k., R,) = 0, but often there is a nonzero critical
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frequency w(k, R.). Thus, as before, we expect A(x, t) to be the wave envelope of
an elementary oscillatory traveling wave:

u(x, t) = A(x, t)eikexe8(kc,Rc)t = A(x, t)e;lkcx_w(ke.Re)tl (14.8.28)

There are elementary solutions for u of the form u = eikxelv(k,R)-iw(k,R))t If we
apply our earlier ideas concerning spatial and temporal derivatives, (14.7.2) and
(14.7.3), we have here

.8

-Z8x
a

at

(k - kj (14.8.29)

s(k, R) - s(k, Rc) = s(k, R) + iw(k, Re). (14.8.30)

We can derive a partial differential equation that the amplitude A(x, t) satisfies by
considering the Taylor expansion of s(k, R) around k = k, and R = R,:

s(k, R) = s(k, Rc)+sk(k-kc)+ 2 (k-k,)2+ +SR(R-R,)+ . (14.8.31)

All partial derivatives are to be evaluated at k = k, and R = R, We will assume
(k - kc)2 = O(R - R.), so that it can be shown that other terms in the Taylor
series are smaller than the ones kept. Recall that s(k, R) is complex, s(k, R) =
o(k, R) - iw(k, R), so that SR and skk are complex. However, sk = ok - zwk = -wwk
since ok = 0 at k = k, and R = R, from (14.8.23). From (14.8.31), using (14.8.29)
and (14.8.30), we obtain

aA 6A - skk a2A= -isk
sx 2! 67X2

+ SR-
Since isk = Wk is the usual real group velocity, the complex wave amplitude solves a
partial differential equation known as the linearized complex Ginzburg-Landau
(LCGL) equation:

8A aA skk a2A
)A.at + wk =

_
ax 2 6x2 + sR(R - Re (14.8.32)

The diffusion coefficient (the coefficient in front of the second derivative) is complex
since skk = akk - iwkk. In order for LCGL (14.8.32) to be well posed, the real part
of the diffusion coefficient -okk/2 must be positive. This occurs because the real
growth rate a has a local maximum there (14.8.24). Equation (14.8.32) is the wave
envelope equation that generalizes the linear Schrodinger equation to virtually any
physical situation (in any discipline) where u = 0 is slightly unstable. Wavelike
solutions of (14.8.32) grow exponentially in time.
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Two spatial dimensions. It can be shown that in two-dimensional
problems, s(ki, k2, R), so that (14.8.29) is generalized to kl - kio = -i0 and
k2 - k20 = -i i v. We can orient our coordinate system so that the basic wave is in
the x-direction, in which case k20 = 0 and thus klo = k,:

kl-k,=-i8x (14.8.33)

k2 = -ip. (14.8.34)

It can be shown that very little change is needed in (14.8.32). The linear term
sk(k - kc) in (14.8.31) yields the group velocity term in (14.8.32) so that wkaA

8A 8Ain one dimension becomes wkI Sx- + Wk2 in two dimensions. We must be more
careful with the quadratic term. We assume the original physical partial differential
equation has no preferential direction, so that s(k) where k = I k I = k ++ k2. The
Taylor series in (14.8.31) remains valid. We must only evaluate the quadratic term
(k - k,)2, where from (14.8.33) and (14.8.34) kl is near k. but k2 is near zero.
Using the Taylor series of two variables (k1, k2) around (kc, 0) as an approximation,

k= ki+k2=kC+2(kl-k`)+2k k2+...

It is perhaps easier to first derive an expression for V. It is very important to note
that we are assuming that (k1- ke.) has the same small size as k2. In particular, we
are assuming (k1 - kj2 = O(k2) = O(R - Re). In this way, we derive the equation
known as the linearized Newell-Whitehead-Segel equation:

8A + wk18A +
WO

OA = - skk (8 - i 82 )2A.O Ox Oy .2 ax 2k; V
When nonlinear terms are included using perturbation methods, the complex cubic
nonlinearity'yAfAj2 is added to right-hand side.

14.8.6 Nonlinear Complex Ginzburg-Landau Equation
The LCGL (14.8.32) describes the wave amplitude of a solution to a linear partial
differential equation when the solution u = 0 is slightly unstable. Linear partial
differential equations are often small amplitude approximations of the real nonlinear
partial differential equations of nature. Since solutions of (14.8.32) grow exponen-
tially in time, eventually the solution is sufficiently large so that the linearization
approximation is no longer valid. Using perturbation methods, it can be shown
that for most physical problems with a slightly unstable solution, (14.8.32) must
be modified to account for small nonlinear terms. In this way u(x, t) can be ap-
proximated by A(x, t)e`[kez-"'(k_R,)t] as before, but A(x, t) satisfies the complex
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Ginzburg-Landau (CGL) equation:

OA OA = skk a2A
at

+wkax --F -57X-2 +sR(R-Rc)A+1(AJAIZ, (14.8.36)

where 1( = a + i/3 is an important complex coefficient that can be derived with
considerable effort for specific physical problems using perturbation methods. Note
that the CGL equation (14.8.36) generalizes the NLS equation (14.7.35) by having a
complex coefficient (skk = Qkk - iwkk with (7kk < 0) in front of the second derivative
instead of an imaginary coefficient, by having the instability term sR(R - Rc)A,
and by the. nonlinear coefficient being complex. As with nearly all nonlinear partial
differential equations, a complete analysis of the initial value problem for CGL
(14.8.36) is impossible. We will only discuss some simpler results.

Bifurcation diagrams and the Landau equation. The amplitude
equation (14.8.36) has no spatial dependence if the original unstable problem is an
ordinary differential equation or if the wave number is fixed at kc (as would occur
if the partial differential equation was solved in a finite geometry). With no spatial
dependence the CGL amplitude equation becomes an ordinary differential equation,
the Landau equation,

dA
= SR(R - Rc)A + 1(A IAI2dt (14.8.37)

The solution u = 0 becomes unstable [u(x, t) = with the fre-
quency w(k,, Rc) at R = R,. This is characteristic of a phenomenon in ordinary
differential equations known as Hopf bifurcation. We should recall that the coef-
ficients SR = aR - iwR and y = a +i,0 are complex with aR > 0 [see (14.8.26)]. The
Landau equation can be solved by introducing polar coordinates A(t) = r(t)ete(t)
Since

di
LA = eA(t) (dr + it do ), it follows by appropriately taking real and imaginary

parts that (14.8.37) becomes two equations for the magnitude r and phase 0:

dr
dt = °R(R - Rc)r + ar3

dO

dt = -WR(R - R.) +,3r2.

(14.8.38)

(14.8.39)

We assume oR > 0 corresponding to the solution u = 0 being stable for R < R,, and
unstable for R > R,. The radial equation (14.8.38) is most important and can be
solved independent of the phase equation. First we look for equilibrium solutions
re of the radial equation (14.8.38):

0=oR(R-R,)re+are.
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The equilibrium solution re = 0 corresponds to A = 0 or u = 0. We will shortly
verify what we should already know that it = 0 (re = 0) is stable for R < R,. and
unstable for R > R,,. There is another important (nearby) equilibrium satisfying

For this nonzero equilibrium to exist, °R(a R`) < 0. If a < 0, the nonzero equilib-
rium exists if R > R, (and vice versa). We graph two cases (depending on whether
a > 0 or a < 0) in Fig. 14.8.5; the equilibrium re as a function of the parameter R
is known as a bifurcation diagram. R = Rc is called a bifurcation point since
the number of equilibrium solutions changes (bifurcates) there. Since r = Al,Cwe
restrict our attention to r > 0. However, these are only equilibrium solutions of the
first-order nonlinear differential equation (14.8.38).

To determine all solutions (not just equilibrium solutions) and whether these
equilibrium solutions are stable or unstable, we graph one-dimensional phase
portraits in Fig. 14.8.5. It is best to draw vertical lines (corresponding to fixing
R) and introduce arrows upward if r is increasing (Tt > 0) and arrows downward
if r is decreasing (d, < 0). The sign of di is determined from the differential
equation (14.8.38). There are two cases depending on the sign of a (the real part
of y). In words, we describe only the case in which a < 0, but both figures are
presented. We note from (14.8.38) that di < 0 (and introduce downward arrows) if
r is sufficiently large in the case a < 0. The direction of the arrows changes at the
equilibria (if the equilibria are a simple root). We now see that r = 0 (corresponding
to u = 0) is stable if R < R,, since all nearby solutions approach the equilibria as
time increases, and r = 0 is unstable if R > Rc. The bifurcated nonzero equilibria
(which coalesce on r = 0 as R R,) only exist for R > R, and are stable (if
a < 0). If a < 0 (a > 0), this is called supercritical (subcritical) Hopf bifurcation
because the nonzero equilibria exist for R greater (less) than Rc. It is usual in
bifurcation diagrams to mark unstable equilibria with dashed lines (and stable with
solid lines), and we have done so in Fig. 14.8.6. The nonlinearity has two possible
effects: If the nonlinearity is stabilizing (a < 0), then a stable solution is created
for R > Rc. This stable solution has small amplitude since re is proportional to
(R - R,)1/2 consistent with our analysis based on Taylor series assuming R - R,:
is small and r is near zero. If the nonlinearity is destabilizing (a > 0), then an
unstable solution is created for R < R,. If the nonlinearity is destabilizing (a > 0),
a better question is what occurs if R > R,. In this case the linear dynamics are
unstable, but the nonlinear terms do not stabilize the solution. Instead it can be
shown that the solution explodes (goes to infinity in a finite time). If R > R, (and
a > 0), there are no stable solutions with small amplitudes amenable to a linear or
weakly nonlinear analysis; we must understand the original fully nonlinear problem.

The bifurcated equilibrium solution (stable or unstable) has r equalling a spe-
cific constant (depending on R - Re). From (14.8.39) this bifurcated equilibrium
solution (A = reie = reeie) is actually a periodic solution with frequency wR(R -
Rj - /3r2 = (R - R,)(awR - /3cR)/a. For the original partial differential equation
[u = A(x, t)e`lk°x-a(kc,Rc)t1) the frequency is w(kr., R,)+ (R - Re)(awR - /3aR)/a
corresponding to dependence of the frequency on the parameter R and the equi-
librium amplitude JA12 = r2. The bifurcated solution is periodic in time (with an
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'a<0

Rc R

a>0

Rc R

Figure 14.8.5 Bifurcation diagram and one-
dimensional phase portrait for Hopf bifurcation.

Figure 14.8.6 Bifurcation diagram (including stabil-
ity) for Hopf bifurcation.

unchanged wave number). For this relatively simple Landau equation (14.8.37), the
bifurcated solution is stable when the zero solution is unstable (and vice versa).

Bifurcated solutions for complex Ginzburg-Landau equa-
tion. We will show that the CGL equation (14.8.36) has elementary nonzero
plane traveling wave solutions

A(x, t) = Aoei(Kx-slt+mo( (14.8.40)

where Ao and 00 are real constants. Since u = A(x, t)e'(k°x-w(k_&)t(, it follows
that the wave number for u(x, t) is ke + K. Previously we have called k the wave
number for u(x, t), and thus

K=k-k,::
and the frequency is w(k,, R,) +St. For CGL (14.8.36) to be valid, K must be small
(corresponding to the wave number being near k,). We show (14.8.40) are solutions
by substituting (14.8.40) into (14.8.36):

-ift + iwkK = s2k K2 + sR(R - Re) + ryAo.



686 Chapter 14. Dispersive Waves

Since skk = akk-Zwkk (with akk < 0), sR = aR-iwR (with aR > 0), and -y = a+i/3
are complex, we must take real and imaginary parts:

aAo = -[a2k K2 + aR(R - Rc)] (14.8.41)

Q ) - QAoK2 (R - RK + (14 42)8= wk + wR c2 . .

Solutions of the form (14.8.40) exist only if the right-hand side of (14.8.41)
has the same sign of a. In (14.8.41), we recognize C2k K2 + aR(R - R,,) as the
Taylor expansion (14.8.25) of the growth rate a(k, r). As before, there are two
completely different cases depending on the sign of a, the real part of the nonlinear
coefficient -y. If a < 0 (the case in which the nonlinearity is stabilizing for the
simpler Landau equation), solutions exist only if CZk K2 + aR(R - Rc) > 0, which
corresponds to the growth rate being positive (the small band of exponentially
growing wave numbers near k, that only occurs for R > Re). If a > 0 (the case in
which the bifurcated solution is unstable for the simpler Landau equation), solutions
exist if a2k K2 + aR(R - Rc) < 0 which corresponds to the growth rate being
negative (excluding the small band of exponentially growing wave numbers near
k.). However, it is not easy to determine whether these solutions are stable. We
will briefly comment on this in the next subsection.

We should comment on (14.8.42) though it is probably less important than
(14.8.41). Equation (14.8.42) shows that the frequency for solutions (14.8.40)
changes because the frequency depends on the wave number, the parameter R,
and the amplitude.

Stability of bifurcated solutions for complex Ginzburg-Lan-
dau equation. It is difficult to determine the stability of these elementary trav-
eling wave solutions of the CGL equation (14.8.36) First we derive the modulational
instability for the nonlinear Schrodinger equation (the CGL when the coefficients
are purely imaginary) and then outline some results for the case in which the coef-
ficients are real. The general case (which we omit) is closer to the real case.

Modulational (Benjamin-Feir) instability. When the coefficients
of the CGL equation are purely imaginary (skk = -iwkk with akk = 0, 8R =
aR - iwR with aR = 0, and -y = i/3 with a = 0), the CGL equation reduces to the
nonlinear Schrodinger equation (NLS):

2OA OA
+ wk

8x
= i 2k a2 + i/3A ]A]2 . (14.8.43)

'jF

Actually there is an additional term -i.R(R - RC)A on the right-hand side of
(14.8.43), but we ignore it since that term can be shown to only contribute a
frequency shift corresponding to changing the parameter R. This does not cor-
respond to the instability of u = 0 but instead describes a situation in which the
energy is focused in one wave number ko. The elementary traveling wave solu-
tion A(x, t) = Ape;(KX-ste+mol always exists for arbitrary A0. Equation (14.8.41)
becomes 0 = 0, so that the amplitude AO is arbitrary, while (14.8.42) determines
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the frequency Q. (A special example, frequently discussed in optics, occurs with
K = 0, in which case S2 = -)3A02.) We will show (not easily) that these solutions
are stable if Q has a different sign from wkk, and thus in some cases these nonlinear
traveling waves will be observed. However, if /3 has the same sign as wkk, then these
traveling waves are unstable, as first shown by Benjamin and Feir in 1967. We
follow Newell [1985]. We move with the group velocity so that the wk term can be
neglected in (14.8.43). We substitute A = retO into (14.8.43), assuming noncon-
stant wave number k = 0x and frequency H = -Ot. We note Ay = (rz + ikr)et4,
At = (rt - icZr)e''. and A,.x = Jr., - Or + i(2kr-- + kxr)]et'. Thus, the imagi-
nary part gives -Pr = Zk (r== - Or) + Or'. the exact dispersion relation for the
nonlinear Schrodinger equation, and the real part yields an exact equation for the
modulation of the amplitude:

rt + 2k(2kry + kxr) = 0.

Using the dispersion relation, conservation of waves kt + Q., = 0 becomes

kt + [ Wkk k2) _
/7.2], = 0.

(14.8.44)

(14.8.45)

Equations (14.8.44) and (14.8.45) give an exact representation of solutions of the
nonlinear Schrodinger equation. We note the simple exact solution k = 0, r = ro.
From the dispersion relation. -9 = pro, which corresponds to the exact solution
A =roe-tprot of the nonlinear Schrodinger equation. To investigate the stability of
this solution, we linearize the nonlinear system by letting k = µk1 and r = ro+µr1,
where p is small, and obtain (after dropping the-subscripts 1)

+
Wkk

k r = 0r (14 46)8oxt . .

wkk rxxx - 2/3rorx = 0.kt - (14.8.47)
2 r0

Eliminating kzt yields the linear constant coefficient dispersive partial differential
equation

rtt =
Zk

(-wkk rzz== - 2/3r2rx=). (14.8.48)

We analyze (14.8.48) in the usual way by letting r = e'("(11t), where a cor-
responds to a sideband wave number. The dispersion relation for (14.8.48) is
S21 = ( )2a4 - wkk/3ro2a2. If wkk and ,3 have opposite signs, the frequency hit
is real for all a, and this solution is stable (to sidebands). The Benjamin-Feir
sideband instability occurs when wkk and 0 have the same sign (called the focus-
ing nonlinear Schrodinger) in which waves are unstable for wave numbers satisfying

0 < a < 2 L]roJ. Sufficiently long wave sideband perturbations are unstable.

Recurrence for nonlinear Schrodinger equation. Analysis of the
initial value problem for (14.8.43) with periodic boundary conditions shows that
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(see Ablowitz and Clarkson [1991]) more than one wave length corresponding to an
elementary Fourier series may be unstable. At first, these unstable waves will grow
exponentially in the manner associated with a linear partial differential equation.
However, eventually, the nonlinearity prevents the growth from continuing. For
the case in which the elementary solution is unstable (,Q has the same sign as
wkk), experiments (Yuen and Lake [1975]), numerical solutions (Yuen and Ferguson
[1978]), and advanced theory remarkably show that the solution nearly returns to
its initial condition after a long time, and then the instability nearly repeats over
and over again. This phenomenon is called recurrence.

Stable and unstable finite amplitude waves. If u = 0 becomes
unstable at R = Rc with a preferred wave number k = k, but the growth rate is
real (Skk = Ukk with Ukk < 0 and Wkk = 0, SR = UR with aR > 0 and WR = 0) and
the nonlinear coefficient is real -y = a), then the CGL (14.8.36) becomes

at
--2k

a--
a2 A

+ aR(R - Rc)A + aA JAI2 .

where we have also assumed wk = 0. The elementary traveling wave solution
A(x, t) = A0eilxx-Sgt+oo] corresponds to K = k - kc. Using our earlier result,
(14.8.41) and (14.8.42), solutions exist if

aAo _ a2k K2 + aR(R - Rc)] (14.8.49)

(14.8.50)= 0.

This solution is periodic in space and constant in time. As in the general case,
if a < 0, solutions only exist in the small band of exponentially growing wave
numbers ([k - kc < 2vR(OkkR<)) that occur for R > R. However, Eckhaus in
1965 showed that these waves are only stable in the smaller bandwidth Ik - k,I <

E,(R-Rc)
Okk73'

14.8.7 Long Wave Instabilities
We again consider linear partial differential equations with solutions of the form
u(x, t) = eikxest = eikxe(o-2W)1, allowing for unstable growth (a > 0) or decay
(U < 0). If waves first become unstable with wave number k # 0, then usually
the complex Ginzburg-Landau equation (14.8.32) or (14.8.36) is valid. However,
long waves k = O usually become unstable in a different manner. Usually the
growth rate o(0) = 0 for k = 0. Otherwise, a spatially uniform solution would
grow or decay exponentially. The growth rate will be an even function of k since
waves with positive and negative wave numbers should grow at the same rate. We
use the Taylor series for small k and obtain (we will be more accurate shortly)
a(k) - If long waves are stable, then Ukk < 0. The simplest way that long
waves can become unstable, as we vary a parameter R, is for akk to change signs
at R,, so that for long waves near R,, a(k, R) - 'R" k2(R - &), with aRkk > 0.
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Since we wish to investigate long waves for R near R,,, it is best to include the next
term in the Taylor series

aRkk 2 akkkk k
q

, (14.8.51)a(k, R)
2

k (R -
4!

with aRkk > 0. If the fourth-order term is stabilizing akkkk < 0, then we see that
for R > Rc there is a band of unstable (a < 0) long waves k2 < - l2kkkkk (R - Re).
Since w is an odd function of k (for the phase velocity to be even),

3
w(k, R) [Wk +WkR(R - &) + ...]k +

3!
k (14.8.52)

The term in brackets is an improved approximation for the group velocity. To find
the corresponding partial differential equation for long waves in the most general
situation, we allow purely dispersive terms. Since s = a - iw = and k = -i ax
we obtain (after moving with the group velocity)

a

2
k (R - Rc)uxx + ak k uxxxx + W31k uxxx. (14.8.53)

Using perturbations methods, the appropriate nonlinear term may be as simple as
in the Korteweg-de Vries equation (14.7.15) or more complicated, as in the long
wave instability of thin liquid films, as shown by Benney [1966].

14.8.8 Pattern Formation for Reaction-Diffusion Equations
and the Miring Instability

In 1952 Turing (also known for breaking the German code for England in World War
II and Turing machine in computer science) suggested that patterns in biological
organisms (morphogenesis) might emerge from an instability of spatially dependent
chemical concentrations described by partial differential equations. Particularly
extensive and well-written presentations are given by Murray 11993] and Nicolis
[1995]. General theory exists, but we prefer to add spatial diffusion to a well-known
example with two reacting chemicals, known as the Brusselator due to Prigogine
and Lefever [1968]:

au = 1 - (b + +au2v+D V2u8t ( 1
(14.8.54)

0 AV = bu - au2v + D2V2v. (14.8.55)at
There are four parameters, a > 0, b > 0, Dl > 0, D2 > 0, but we wish only to vary b.
We first determine all spatially uniform steady state equilibria, which must satisfy
both 1 - u[(b + 1) - auv] = 0 and u(b - auv) = 0. The second equation suggests
u = 0, but that cannot satisfy the first equation. Thus, the second yields auv = b,
and the first now yields u = 1. For this example, there is a unique uniform steady
state u = 1 and v = k, corresponding to a chemical balance. In this example,
there cannot be a bifurcation to a different uniform steady state.
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Linearization. To analyze the stability of the uniform steady state, we
approximate the system of partial differential equations near the steady state. We
introduce small displacements from the uniform steady state: u - 1 = ul and
v - a = vi. As in the stability analysis of equilibria for systems of ordinary
differential equations (see subsection 14.8.1), we linearize each chemical reaction,
including the linear terms of the Taylor series for functions of two variables. We
must include the diffusive term, but that is elementary since the equilibria are
spatially constant. In this way we obtain a linear system of partial differential

equations that the displacements ul = [ vl ] must satisfy:
1

8t1
Jui + [ 0 2 I Vet , (14.8.56)

where J is the usual Jacobian matrix evaluated at the uniform steady state,

_ 1 (b f 1) + 2auv au2 _ b - 1 au vj-
[ ] - [ b - 2auv au2 - [ _b _a ] (14.8.57)

Spatial and time dependence. The linear partial differential equa-
tion (14.8.56) has constant coefficients, so elementary Fourier analysis based on
separation of variables is valid:

ui = e'k =w(t) (14.8.58)

If there are no boundaries, k is arbitrary, corresponding to using a Fourier trans-
form. Note that 02i = -k2e''`' rw(t), where k = jkl. In this way the time-
dependent part satisfies a linear system of ordinary differential equations with con-
stant coefficients:

dw
dt = Aw,

where the matrix A is related to the Jacobian,

A=J- D1k2 0

]{b_1_D'k2
a

0 D2k2 - -b -a - D2k2

(14.8.59)

(14.8.60)

Linear system. The linear system (14.8.59) is solved by letting w(t) = easy,
in which case A v = A. so that A are the eigenvalues of the matrix A and v the
corresponding eigenvectors. The eigenvalues are determined from

0=det(A-AI) b-1-D1k2-A a
14.8.61-b -a-D2k2-a( )

The two eigenvalues satisfy

A2+A(a--b-+ 1+(D1+D2)k2)+a+aDlk2-(b-1)D2k2+DjD2k4 = 0. (14.8.62)
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The goal is to determine when the uniform state is stable or unstable as a function
of the four parameters and a function of the wave number k. The stability of the
uniform state is determined by the eigenvalues \ since solutions are proportional to
e.\t. The uniform state is unstable if one eigenvalue is positive or has positive real
part Re(A) > 0. The uniform state is stable if all eigenvalues have negative real
parts Re (A) < 0. For 2 x 2 matrices A, it is best to note (see subsection 14.8.1)
that the solution is stable if and only if both its trace < 0 and its determinant > 0.
However, we first do a somewhat easier procedure (which can also be used in higher-
order problems but which has serious limitations). There are two ways in which
the solutions can change from stable to unstable.

One eigenvalue with A = 0 (and all other eigenvalues with
Re(A) < 0). If A = 0, then from (14.8.62) it follows that we think of b being a
function of the wave number k:

The parameter b is graphed as function of the wave number k in Fig. 14.8.7 (note
the asymptotic behavior as k -+ 0 and k oc). The function has a minimum
bmin = D1k2 + 1 + U + Dak7 at a critical wave number k,

k4 - a
D 1 D2

(14.8.64)

Along this curve A = 0, so that this curve may not be on the boundary of stabil-
ity if the other eigenvalue is positive. Another important question is which side
of this curve is stable and which side unstable. It is not easy to answer these
questions. First determine (perhaps numerically) the other eigenvalue at one point
on this curve. Stability will remain the same until this curve intersects any other
curve for which stability changes. For the portion of the curve in which stability
changes, determine stability everywhere by computing (perhaps numerically) all the
eigenvalues at one point on each side of the curve.

One set of complex conjugate eigenvalues satisfying A =
fiw since Re(A) = 0 [and any other eigenvalues with Re(A) <
01. Complex conjugate eigenvalues can be determined by substituting A = ±iw
into (14.8.62). The imaginary part of (14.8.62) must vanish, so that b is a different
function of k

ba+1+ (D1+D2)k2, (14.8.65)

and the frequency satisfies w2 = a+aD1k2-(b-1)D2k2+D1D2k4. Thus, (14.8.65)
is not valid for all k, but only those values where w2 > 0. For the curve (14.8.65),
b has a minimum b = a + 1 at k = 0. The portion of the curve with real frequency
will separate stable from unstable, but again in this way we do not know which side
is stable and which side unstable.
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b

k

Figure 14.8.7 Turing instability.

Necessary and sufficient (trace and determinant) condition
for stability. We will be careful in determining where the uniform state is
stable. As shown in Fig. 14.8.2, an equilibrium is stable if and only if for the
matrix both its trace < 0 and its determinant > 0. To be stable, both inequalities
must be satisfied:

trA=b-a-1-(D1+D2)k2<0 (14.8.66)

det A = a + aD1k2 - (b - 1)D2k2 + D1D2k4 > 0. (14.8.67)

This is more accurate than (14.8.63) and (14.8.65). (The determinant condition
relates to A = 0 while the trace condition relates to complex eigenvalues.) By
solving each inequality in (14.8.66) and (14.8.67) for b, we see that the stable region
is below the intersection of the two curves (14.8.63) and (14.8.65).

Pattern formation. There is a competition between these two minimums
a + 1 and bmjn. If the parameter b is less than both, then the uniform state is
stable. We assume that we gradually increase b from the stable region. If the first
instability occurs at k = 0 (infinite wave length), this corresponds to an instability
in the equilibrium solution of the partial differential equation identical to the or-
dinary differential equation in which the uniform state becomes unstable without
developing any spatial structure. If the first instability occurs at k = k, given by
(14.8.64), there is a preferred wave number (preferred wave length 2' ). From a
uniform state, a pattern emerges with predictable wave length from the
theory of the instability of the uniform state, and this would be called a Tur-
ing instability. The case of a Turing instability is philosophically significant since
the spatial wave length of patterns is predicted from the mathematical equations for
arbitrary initial conditions without spatial structure, explaining spatial structures
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observed in nature. The pattern is a one-dimensional approximately linear wave
with a predicable wave length k' .

Complex Ginzburg-Landau. If the Turing instability occurs and the
parameter b is slightly greater than its critical value, then there is a small band of
unstable wave numbers around k.. Energy will be focused in these wave numbers,
and as discussed in subsections 14.8.5 and 14.8.6, the amplitude can be approxi-
mated by the complex Ginzburg-Landau (CGL) equation (14.8.36) with the typical
cubic nonlinearity yAIAI2, which can be derived using perturbation methods. The
complex coefficient y = a + i,(I. To get a crude understanding of the effect of the
nonlinearity, we discuss the more elementary Landau equation (14.8.37) associated
with Hopf bifurcation for ordinary differential equations. In this way it is seen
that if a > 0, the nonlinearity is destabilizing, while if a < 0, the nonlinearity is
stabilizing. It is not particularly easy to use perturbation methods to determine
whether a > 0 or a < 0. Is the pitchfork bifurcation subcritical or supercritical?
This can sometimes be determined by numerically computing the original nonlinear
partial differential equation for the parameter slightly greater than the value of the
instability. If there is an equilibrated solution with simple spatial structure, it can
often be seen from the numerics, and the pattern that is formed is due to this type
of pitchfork bifurcation. On the other hand, if numerics do not show a solution
with simple spatial structure as predicted by the nonlinear analysis, it is possible
that the nonlinearity is destabilizing, and the simple solution is unstable.

Two-dimensional patterns. In two-dimensional instability problems,
there is a preferred wave number [k[ = kc. Since k is a vector, waves with any
direction are possible, though they are all characterized by the same wave length.
This is a difficult subject, and we only make a few brief remarks. The linear theory
predicts that the solution can be a complicated superposition of many of these waves.
Hexagonal patterns are observed in nature in a variety of different disciplines, and
it is believed that they result from the superposition of six k differing each by 60 ° .

The wave length of the hexagonal patterns is predicted from the linear instability
theory. Many systems of reaction diffusion equations seem to be characterized by
having spiral wave patterns as are now frequently observed in the laboratory.
Three-dimensional generalizations (see Scott [1999]) are called scroll waves and
scroll rings. According to Winfree [1987], human cardiac arrhythmias preceding
heart attacks are characterized by waves with electrical activity like scroll rings.
The study of spiral and scroll wave solutions of partial differential equations and
their stability is an area of contemporary research.

EXERCISES 14.8
14.8.1. The (nonlinear) pendulum satisfies the ordinary differential equation dT +

sin x = 0, where x is the angle. Equilibrium solutions satisfy sin x0 = 0.
The natural position is xe = 0 and the inverted position is xa = ir. Deter-
mine whether an equilibrium solution is stable or unstable by considering
initial conditions near the equilibrium and approximating the differential
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equation there. [Hint: Since x is near xo, we use the Taylor series of sinx
around x = xo.)

14.8.2. (a) Graph four bifurcation diagrams for saddle-node bifurcation at (xc, Rc)
= (0.0) corresponding to different choices of signs of fR and .'x.

(b) Determine stability using one-dimensional phase diagrams.

14.8.3. Assume that at a bifurcation point (xc, Rc) = (0, 0), in addition to the
usual criteria for a bifurcation point, fR = 0 and fxx 3' 0. Using a Taylor
series analysis, show that as an approximation

dx _ LLx x2 + fxRRx + fRR R2
dt 2 2

(a) If ffR > fxxfRR, then the bifurcation is called transcritical. Analyze
stability using one-dimensional phase diagrams (assuming fxx > 0).
Explain why the transcritical bifurcation is also called exchange of
stabilities.

(b) If fxR < fxxfRR, then show that the equilibrium is isolated to R = R,:
only.

,) _ (0, 0), in addition to the14.8.4. Assume that at a bifurcation point (xe, Rr
usual criteria for a bifurcation point, fR = 0 and fxx = 0. Using a Taylor
series analysis, show that as an approximation,

dx fRRR 3

dt
= fxRRx +

6
R + .

Assume fxR > 0. Show there are two cases depending on the sign of fRRR.
Analyze stability using one-dimensional phase diagrams (assuming fxx >
0). Explain why this bifurcation is called pitchfork bifurcation.

14.8.5. For the following examples, draw bifurcation diagrams examples and de-
termine stability using one-dimensional phase portraits:

(a) dt = 2x + 5R (g)

(b) !Lx = -5x + 2R (h)

(c) d = 2x2 + 5R (i)

(d) dt = -2x2 - 5R 0)

=Rx-x3
= Rx+x3

= -(x - 4)(x - eR)

=1+(R-1)x+x2

dx
dt

dx
dt

dx
dt
dxd

(e) dt = xR + x2 , (k)

(graph R as a function of x first)

dt =R2+Rx+x2
(f) dx = -(x - 3R)(x - 5R) (1) dt = R2 + 4Rx + x2
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Find (e't = e(o-`w)t) the exponential decay rate a and the frequency w for

the following partial differential equations:

8u - 82U 84u 8uat --u - R- T- cam
8u 82u 04u 03uat = -u - R - O+8
8u 1 82u
Ft =u+ RYx-r

14.8.7. Find (e't = e('-;w)t) the exponential decay rate a and the frequency w.
Briefly explain why the following partial differential equations are ill posed
or not:

8u = 48u
7F
au

8'CTX

ua=te
8u - 8u
Ft X-
8u za2uat -
8u + i 8u = 82u
Wt- ax l

8u 8u _ 83u

8u - 84u
Wt dz
8u - 84u
Ft TXT

14.8.8. Derive (14.8.20) and (14.8.21).

14.8.9. Determine the dispersion relation for the linearized complex Ginzburg-
Landau equation.

14.8.10. Draw bifurcation diagrams and determine stability of the solutions using
a one-dimensional phase portrait for di = QR(R - Rc)r + ar3:

(a) Assume aR < 0 and a > 0.

(b) Assume aR < 0 and a < 0.

14.8.11. Under what circumstances (parameters) does the Turing bifurcation occur
for lower b than the bifurcation of the uniform state?

14.8.12. Consider the dynamical system that arises by ignoring diffusion in the
model that exhibits the Turing bifurcation.

(a) Show that a Hopf bifurcation occurs at b = 1 + a.

(b) Investigate numerically the dynamical system.
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14.9 Singular Perturbation Methods:
Multiple Scales

Often problems of physical interest can be expressed as difficult mathematical prob-
lems that are near (in some sense) to a problem that is easy to solve. For example,
as in Sec. 9.6, the geometric region may be nearly circular, and we wish to determine
the effect of the small perturbation. There we determined how the solution differs
from the solution corresponding to a circular geometry. We usually have (or can
introduce) a small parameter e, and the solution (for example) u(x, y, t, e) depends
on e. If

u(x, y, t, c) = UO(X, y, t) + eui(x, y, t) + ... (14.9.1)

the solution is said to be a regular perturbation problem. The first term (called
the leading-order term) uo(x, y, t) is often a well-known solution corresponding to
the unperturbed problem e = 0. Usually only the first few additional terms are
needed, and the higher-order terms such as ul (x, y, t) can be successively determined
by substituting the regular expansion into the original partial differential equation.

More difficult (and interesting) situations arise when a regular perturbation
expansion is not valid, in which case we call the problem a singular perturbation
problem. Whole books (for example, see the one by Kevorkian and Cole [19961)
exist on the subject. Sometimes simple expansions exist like (14.9.1), but expansions
of different forms are valid in different regions. In this case, boundary layer
methods can be developed (see Sec. 14.10). Sometimes different scaled variables (to
be defined shortly) are simultaneously valid, in which case we use the method of
multiple scales.

14.9.1 Ordinary Differential Equation:
Weakly Nonlinearly Damped Oscillator

As a motivating example to learn the method of multiple scales in its simplest
context (ordinary differential equations), we consider a linear oscillator with small
nonlinear damping (proportional to the velocity cubed). We introduce dimensionless
variables so that the model ordinary differential equation is

d2U fdul3
dt2

+ u = -E
dt JJ ,

(14.9.2)

where a is a small positive parameter, 0 < e << 1. The perturbation corresponds
to some form of nonlinear damping because it is an odd function of the velocity di .

Regular perturbation expansion (naive). We begin by assuming
the solution has a regular perturbation expansion:

u(t, e) = uo(t) + eul (t) + , (14.9.3)
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By substituting (14.9.3) into (14.9.2) and comparing coefficients of e to different
powers, we obtain

S C

d 2!!2
+ = 0 (14 4)9

(E
uo

dt
. .

3
d

O l - -
(

) 5)(14 9
(e ):

+.J
dt2

.

dt
. .

The leading-order terms yield the unperturbed equation (14.9.4). The solution
of the unperturbed equation is periodic, a linear combination of sin t and cost.
We will use instead complex exponentials (in order to simplify some of the later
nonlinear calculations):

uo(t) = Ae't + A*e-'t (14.9.6)

We use the complex amplitude A, and in order for the solution to be real we let the
other coefficient be A* the complex conjugate of A.

Using this leading-order solution (14.9.6), we obtain the differential equation for
the most important perturbed term ul :

d2u, + ul = i(Ae't - A*e-'t)3 = i(Ase3it - 3A2
2

A*e`t) + (*), (14.9.7)dt

where (*) stands for the complex conjugate of the other terms presented on the
right-hand side of (14.9.7). The right-hand side contains third harmonic terms
e±3't and the fundamental ef`t. Using the method of undetermined coefficients,
a particular solution is easy to obtain corresponding to the third harmonic term.
However, here in the regular perturbation method, the forcing frequency associated
with e't equals the natural frequency, and thus resonance occurs. The corresponding
solution grows linearly in time and is said to be secular. In this way, a particular
solution of (14.9.7) is

3

ul(t)=ilA 9es't+i#A2A*te`t+(*),

where # is a number that could be computed (with some effort using the method
of undetermined coefficients), but we do not need to know its value. Homogeneous
solutions should also be included.

The regular expansion of the solution uo(t)+Eul (t)+ is a valid approximation
if et is small. However, if t is large enough so that et is an order one quantity or
larger, then the regular expansion is no longer valid because of the secular term.

The method of multiple scales. The regular perturbation expansion is
not valid for large times. However, the regular perturbation expansion suggests that
interesting dynamics occur when et = 0(1). If we are interested in the solution on
that long time scale, then we assume the solution u(t, T, e) depends on two variables,
a fast variable t and a slow variable

T = et, 1 (14.9.8)
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known as the method of multiple scales. (Sometimes this is called the method
of slow variation.) We may use the chain rule

d 8 8
Wt dt

+e5,, (14.9.9)

where derivatives are now treated as partial derivatives (and a subscript notation
for partial derivatives will be used). In this case the equation for the nonlinearly
damped oscillator (14.9.2) becomes

utt + 2EUtT + E2UTT + U = -E(Ut + EUT)3. (14.9.10)

Now the regular expansion, u(t, T, e) = uo(t, T) + Eul (t, T) + , yields

0(r°) a2UO +uo
= 0 (14.9.11)

O(e) 8t21 + ul = -( )3 - 2a ( moo ). (14.9.12)

Only the order a term -2 ( )differs from the naive perturbation expansion
(14.9.4) and (14.9.5).

The leading-order equation is the unperturbed linear oscillator, but we must
remember that a means keeping T fixed. Thus, the general solution of (14.9.11) is

uo(t,T) = A(T)eit +A*(T)e-it

where A(T) is an arbitrary complex function of the slow time variable.
Using (14.9.13), the first perturbed term satisfies

d2u,
dt2

+ ul i(Aeit - A*e-;t)3 - 2i (eit -
dT

a-it

i(A3e3it - 3A2A*eit) - 2idTeit + (*) J

(14.9.13)

(14.9.14)

We will determine A(T) by eliminating secular terms in the perturbed problem.
The multiply scaled variables are introduced in order for the solution to be valid
for long times t = 0(1). The secular terms (resonant terms on the right-hand side
proportional to eit) are not allowable, in which case we derive

2dT = _3A2A*. I (14.9.15)
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Equation (14.9.15) can be derived in another way. Equation (14.9.14) is a nonhomo-
geneous linear differential equation with two homogenous boundary conditions (here
the periodicity constraint). According to the R edholm alternative, periodic solu-
tions to (14.9.14) only exist if the right-hand side is orthogonal to the solutions of
the homogenous differential equation satisfying homogeneous boundary conditions,
in this case ett and e-`t. Equation (14.9.15) follows from this Fredholm alternative
since from the theory of Fourier series e3it is orthogonal to efit on the interval 0 to
27r.

The differential equation for the slow variation of the complex amplitude can be
solved using the amplitude and phase form of a complex quantity

A(T) = r(T)e`O(T), (14.9.16)

in which case

uo(t,T) = r(T)e'(t+m(T)) + r(T)e-`(t+¢(T)) = 2r(T) cos(t + 4(T)).

Thus 2r(T) is the real amplitude of oscillation, which slowly varies, and the phase
of the oscillation is t + (P(T). Physically the derivative of the phase with respect to
time is the frequency, and thus the frequency is 1 + e

Since dT = (dT + i dT and A2 A' = r3eto(T ), it follows from (14.9.15),
using the real and imaginary parts, that

2dr = -3r3 (14.9.17)

rdo = 0. (14.9.18)

The one complex equation (14.9.15) is equivalent to two real equations (14.9.17) and
(14.9.18). In this specific example the phase shift O(T) is a constant. However, the
amplitude of oscillation decays due to the nonlinear damping satisfying (14.9.17).
By separation, = - 3 dT. It follows after some algebra that the amplitude of
oscillation algebraically decays due to the small nonlinear damping:

r(T) = r(0)
1 + 3r2 (0)T

Typically the phase (t + (b(T)) varies quickly while the amplitude (r(T)] varies
slowly. This is typical of problems with multiple scales. A graph of the solution
is illuminating since it shows the simultaneous appearance of two scaled variables.
We call the oscillator a slowly varying oscillator as the amplitude decays slowly.

14.9.2 Ordinary Differential Equation:
Slowly Varying Oscillator

Solutions of oscillatory ordinary differential equations also may require the method
of multiple scales if the coefficients are slowly varying. Consider the spring-mass
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system with slowly varying spring constant:

d s

dt2
+ w2(et)u = 0 (14.9.19)

This can also represent the propagation of light with a slowly varying index of
refraction w(et). The one-dimensional wave equation [aat = c2(x)a2] in a vari-
able spatial medium with fixed temporal frequency w f [E = u(x)e-"''ft] becomes
-wf u = c2(x) ate. This is an ordinary differential equation in x which can be shown
equivalent to the time-dependent (14.9.19). If the typical length over which c(x)
varies is much longer than a typical wave length

Wf
of solutions, then the medium

is slowly varying.
Solutions of (14.9.19) depend on two variables, a fast phase 9 and the slow time

T = Et. If the coefficient w(et) were a constant, then the frequency of vibration
would be w. Intuitively, if w varies very slowly, then the frequency of oscillations
should change slowly but be precisely w(et). Our notions of frequency are such that
if we have a phase 0, then di is the frequency. Thus, we postulate that the fast
phase satisfies exactly

dB = w(et).
dt

(14.9.20)

[It can be shown that perturbation methods based on phases that do not satisfy
(14.9.20) will not work.] The following expressions for the fast phase are equivalent:

9 = Jw(et)dt = f w(T) dT

We assume the solution u(9,T,e) depends on two variables: a fast phase 9
[satisfying (14.9.20)] and a slow time T = et. According to the chain rule (the
method of multiply scaled variables),

dt
= w(T)To + e5T. (14.9.22)

Since the operator in (14.9.22) does not have constant coefficients, we must calculate
the second derivative with care:

d2
- (.(T) a9+e / \w(T)8

+e )
w2O92 +e C2w(T)_ 0 +w ( T ) +e2

09 2

.z
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The differential equation (14.9.19) becomes

w2ae2+e2w(T)aTaB+w'(T)B I+ez"z+wzu=0. (14.9.23)

We now assume a perturbation expansion in the multiply scaled variables:

u(9, T, e) = u° (0, T) + eul (B, T) + - - . (14.9.24)

By substituting (14.9.24) into (14.9.23), we obtain a sequence of equations of which
we only need the first two:

z
0(e°): w2( aB + u°) = 0 (14.9.25)

1 2 a2u, a au° 0O(e ): w (
1902

+u,) = -2w(T)aT
190 -w (T) 190 .

(14.9.26)

To leading order, the solution is an elementary slowly varying oscillator in the phase
variable 0:

u°(0,T) = A(T)e'B + A* (T)e-", (14.9.27)

where A(T) is an arbitrary function of the slow time variable T = et, which we
will determine shortly. Equation (14.9.27). with (14.9.20), shows that the slowly
varying frequency is w, as we have insisted.

We substitute our form of solution (14.9.27) into (14.9.26) and obtain

z
w2 (ae2' + ul) _ -[2w(7')A'(T) +w'(T)A(T)jieie + (*).

Coefficients on the right hand side proportional to e+ O are secular (resonant since
the forcing frequency equals the natural frequency) and must be eliminated:

2w(T)A'(T) + w'(T)A(T) = 0. (14.9.28)

Equation (14.9.28) is a differential equation for the slowly varying complex ampli-
tude. Since A(T) may be complex,

A(T) = r(T)e' . (14.9.29)

However, it may be shown that Vi is a constant (in this problem), and the amplitude
satisfies

2w(T)r'(T) + w'(T)r(T) = 0. (14.9.30)



702 Chapter 14. Dispersive Waves

This equation can be solved by separation or usual linear techniques or by just
noticing that

T(WIT) = 0

is equivalent to (14.9.30). Thus, by integration,

r(T) = cw-l,

(14.9.31)

(14.9.32)

where c is an arbitrary constant.
This example illustrates the conservation of action first investigated by Ein-

stein. We will show that with slowly varying coefficients the energy is not conserved.
However, the action is conserved:

dT (action) = 0, where action =
frequency'equey

The energy is defined to be the energy that would occur if the coefficients were
constant. If w in our differential equation were constant, d= + w2u = 0, then
we would define the energy as follows: E =

z
(dt )2 + 4u2 (kinetic energy plus

potential energy). The solution of the differential equation (in our complex nota-
tion) would be u = A& t + A*e-ill = 2rcos(wt + 4o). In this case the energy
E = a (2r)2(cos2 +sin2) = 2w2r2. Thus, according to the conservation of action,

d

dT \ 2

wr2 \

J1 0,

equivalent to (14.9.32), which we have derived using the method of multiply scaled
variables. In more difficult problems, physicists use conservation of action to deter-
mine the slow variation of the amplitude. Note that energy is not conserved,

dT dT
(w2r2) # U,

according to (14.9.32). It is not easy to figure out how a slowly varying restoring
force puts energy into the system or takes energy out of the system. That is why
conservation of action is quite useful.

In summary, we have analyzed the linear differential equation with slowly varying
coefficients:

d2U
2 ( t) = 0+ (14 9 33)w E u .

dt2
. .

We have obtained the following approximate solution:

u(t) uo(0,T) = cw-"eie++G + (*) = 2c 4 cos (fw(Et)dt + ik) (14.9.34)
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where c and ?p are arbitrary constants since 8 satisfies

dB = w(Et).
dt

(14.9.35)

This is not difficult to memorize as the derivative of the phase can be obtained
from the physically intuitive notions of frequency. We just need to memorize the
magical amplitude factor of w-4 (or use conservation of action). This is a well-
known formula for wave propagation problems with variable media. It can also be
used to approximate the eigenfunctions of any Sturm-Liouville problem for large
eigenvalues (see Sec. 6.9). This method is sometimes incorrectly called the WKB
method, while perhaps Liouville-Green (working independently in 1837) would be
more appropriate. WKB (Wentzel, Kramers, Brillouin) in the 1920s solved prob-
lems in which the coefficient w2 evolves from positive to negative (in the context
of tunnelling in quantum mechanics), obtaining connection formulas between the
oscillatory solutions as in (14.9.34) and the corresponding exponential solutions.

14.9.3 Slightly Unstable Partial Differential Equation
on Fixed Spatial Domain

We consider the following model weakly nonlinear partial differential equation:

8u a2u
3 ,

8t
Ru - cu (14.9.36)

subject to the boundary conditions u(0, t) = 0 and u(L, t) = 0. The linearized
problem (e = 0) has solutions sin 'e", where a = R - k(!)2. Some modes
(fixed n) grow exponentially depending on the parameter R. For n sufficiently large,
the modes decay exponentially (similar to the heat equation). The first instability
(of u = 0) occurs when R is slightly greater than k(1)2, in which case only the
mode n = 1 exponentially grows; all the other modes decay exponentially. Thus,
we assume R = k(m)2 +,-R1 with R1 > 0 so that

C7t k522 + [k \L/2 +ER1J U - Eu3. (14.9.37)

It can be shown that a naive perturbation expansion fails on the long time scale:

T= et.
i

Thus, we use the method of multiple scales:

(14.9.38)

dt
= + e (14.9.39)



704 Chapter 14. Dispersive Waves

Using (14.9.39), the partial differential equation (14.9.37) becomes

8t =kax2 +k(L)2U+e
[-

+Rlu-u3] . (14.9.40)

Substituting the perturbation expansion u = uo + eul + into (14.9.40) yields

O(e0) : + k(L )2uo (14.9.41)

82u10(e): 8u u1
k

8x2
+k()2u1 - +R1uo-uo. (14.9.42)

49t O^T

We use an elementary solution of the leading-order equation (14.9.41),

uo = A(T) sin
x
T' (14.9.43)

The other modes can be included, but the other modes quickly decay exponentially
in time. The amplitude A(T) of the slightly unstable mode sin is an arbitrary
function of the slow time. We will determine A(T) by eliminating secular terms
from the 0(e) equation.

Using (14.9.43), the perturbed equation (14.9.42) becomes

8u1 = k82u1 + k(7T)2u1 - dA
si n

x
+ RIAsin

-x - A3 sin3
7rx, (14.9.44)

8t 8x2 L dT L L L

to be solved with homogeneous boundary conditions u1(0,t) = 0 and u1(L,t) = 0.
Since (from trigonometric tables) sin3 Z = a sin L - a sin 3Lx, the nonlinearity
generates the third harmonic in x. The right-hand side of (14.9.44) involves only
the first and third harmonics, and thus (the method of eigenfunction expansion),

ul = B1 sin L + B3 sin 3Lx (14.9.45)

Substituting (14.9.45) into (14.9.44) yields ordinary differential equations for the
coefficients:

8B1 dA + R1A - 3A3 (14.9.46)
8t dT 4

0%0

B +8k(L)2B3 = 1A3.

at

82uo

ax,

(14.9.47)

A particular solution f B3 = th (A)2 A3] for the third harmonic is not needed since
it is not secular. Homogeneous solutions for the third harmonic in x decay expo-
nentially.
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We consider (14.9.46) the higher-order term for the first harmonic. The terms
on the right-hand side of (14.9.46) are functions of the slow time T = Et and
hence constant with respect to the fast time variable t on the left-hand side. If a
constant c were on the right-hand side, the solution corresponding to it would be
B1 = ct, algebraic growth in time. This algebraic growth is not acceptable in the
asymptotic expansion u = uo + eul + . All the first harmonic in space terms
on the right-hand side of (14.9.46) are secular, giving rise to algebraic growth in
time (proportional to t). The secular terms must be zero (eliminating them), which
implies that the amplitude A(T) varies slowly and satisfies (what we have called
the Landau equation in Subsection 14.8.6)

dT
=R1A-4A (14.9.48)

According to the linear theory (A small), the amplitude grows exponentially (if
R1 > 0). However, as shown in Fig. 14.9.1 using a one-dimensional phase portrait,
the nonlinearity prevents this growth. The amplitude A(T) equilibrates (the
limit as t -+ oo) to A = f a3 (depending on the initial condition). This is
referred to as pitchfork bifurcation, as can be seen from the bifurcation diagram
in Fig. 14.9.1 (where the equilibrated amplitude is graphed as a function of the
parameter RI). If R1 > 0, A = 0 is unstable, but A = f 3 are stable. The
parameter R1 measures the distance from the critical value of the parameter R,
ER1 = R - k(f )2.

A

R,

Figure 14.9.1 One-dimensional phase por-
trait and bifurcation diagram for pitchfork bi-
furcation (Landau equation).

14.9.4 Slowly Varying Medium for the Wave Equation
The wave equation in a spatially variable two- or three-dimensional medium is

&E = c2(x, y, z)V2E.
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Plane waves in a uniform medium (c constant) satisfy E = Eoet(k,x+k2y+k3Z-tWt)

where k = k I = . For uniform medium, the spatial part of the phase can be
defined as follows: 6 klx + key + k3z. Thus, the wave number vector satisfies
kl 80, k2 80, k3 which can be summarized ask = VO.

TV-

For nonuniform medium (spatially varying c), often the temporal frequency
w is fixed (perhaps due to some incoming wave at infinity), E = ue-t"'t, so that u
satisfies the reduced wave equation (also called the Helmholtz equation)

O2u + n2u = 0, (14.9.49)

where n = is the index of refraction. Here, it is assumed that we have a slowly
varying medium which means that the medium varies over a much longer distance
than typical wave lengths, so that n2 = n2(ex, ey, Ez). For example, when x varies
by a very long distance O(1) (many wave lengths), then the index of refraction can
change. The analogous one-dimensional problem was discussed in subsection 14.9.2.

For a slowly varying wave train, we introduce a fast unknown phase 9 and
define the wave number as we did for uniform media kl e, k2 k3
Thus, the wave number vector is defined as follows:

k = VO. (14.9.50)

We assume the solution depends on this fast phase 9 and the slow spatial scales
X = ex, Y = Ey, Z = Ez. In the method of multiply scaled variables (by the chain
rule),

a 19 19

8x kla +E X
2

a2_(kl5t9- aX)(k'BB+EaX)

= ki 802 + (2k1 X a + kl
X TO + E2 X2 .

In general, using the vector notation (subscripts on the gradient operator mean
spatial derivatives with respect to the slow spatial variables),

V2=k2 B2+E(2k-Vx0 +V. keg)+E2V . (14.9.51)
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Thus, the reduced wave equation (14.9.49) becomes

k2ae2 +e (2k -Vxea +V k a9) +e2VXu+nzu = 0.

707

(14.9.52)

It can be shown (not easily) that the perturbation methods to follow will only
work if the eikonal equation is satisfied:

k = k I. As described in Sec. 12.7, the eikonal equation says that the wave
number of a slowly varying wave is always the wave number associated with the infi-
nite plane wave (k = = n). The eikonal equation describes refraction for slowly
varying media (and is the basis of geometrical optics). The eikonal equation can
be solved for the phase 8 by the method of characteristics (see Sec. 12.6).

Assuming the eikonal equation (14.9.53) is valid, (14.9.52) becomes

z
nz002 +6 2k Vxae +V k e I +ezVXu+nzu=0. (14.9.54)

We now introduce the perturbation expansion u = no + eul + and obtain

z
O(eo) : nz a02 + uo 1 = 0 (14.9.55)

O(e) nz a9zi + u1 f = -2 k Vx aB - V k . (14.9.56)

The leading-order solution of (14.9.55) is a slowly varying plane wave

uo = A(X, Y, Z)eie (14.9.57)

We will determine the slow dependence of the amplitude A by eliminating secular
terms from the next term in the perturbation expansion.

By substituting (14.9.57) into (14.9.56), the first perturbation satisfies

("2U1nz z+ ul 1 = -(2 k . VxA + V (14.9.58)

All the terms on the right-hand side of (14.9.58) are secular terms (resonant with
forcing frequency equaling the natural frequency). Thus, to obtain a valid asymp-
totic expansion over the long distances associated with the slowly varying coefficient,
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the amplitude A must satisfy the transport equation:

2k V A+V. kA=O.

Since k = VO , an equivalent expression for the transport equation is

2V9 VxA+V20A=0.

(14.9.59)

(14.9.60)

Elegant expressions (see, for example, Bleistein [1984]) for the amplitude A and
phase 8 can be obtained using the method of characteristics. These equations are
the basis of Keller's geometric theory of diffraction of plane waves by blunt objects
(such as cylinders or airplanes or submarines).

In summary, the leading-order solution of the reduced wave equation (Ozu +
nzu = 0) for slowly varying media is

uQ = Ae`B, (14.9.61)

where 9 satisfies the eikonal equation (14.9.53) and A solves the transport equation
(14.9.59) or (14.9.60). Higher-order terms may be obtained.

14.9.5 Slowly Varying Linear Dispersive Waves
(Including Weak Nonlinear Effects)

As a simple example of the method of multiply scaled variables for partial dif-
ferential equations, we consider the following model linear dispersive wave (with
dimensionless variables) with a weakly nonlinear perturbation:

a2 U

at2 -
192U

2
+ u = e(3u3. (14.9.62)

The unperturbed partial differential equation (e = 0) is a linear wave equation
with an additional restoring force -u. Plane wave solutions of the unperturbed
problem u = e'(Ix-11) satisfy the dispersion relation wz = k2 + 1, and hence the
unperturbed problem is a linear dispersive wave. For plane waves, we introduce the
phase 0 = kx - wt such that the wave number k = 00 and frequency w = - .

We seek slowly varying plane wave solutions due either to initial conditions that
are slowly varying or to the perturbation. We introduce the unknown phase 0 and
define the wave number and frequency as for plane waves:

(14.9.63)
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a0
(14.9.64)

We assume initially that the wave number k may not be constant but may vary
slowly, only changing appreciably over many wave lengths. We assume that there
are slow spatial and temporal scales,

X = EX

T = Et,

(14.9.65)

(14.9.66)

of the same order of magnitude as induced by the perturbation to the partial dif-
ferential equation. We use the method of multiply scaled variables with the
fast phase 0 and the slow spatial and temporal scales X, T. According to the chain
rule,

ax k Yo- + s aX

a a a
at = ae

+ 5,.

For the partial differential equation, we need the second derivatives

(14.9.67)

(14.9.68)

aX2
(kao +e -57 ) (k e +E6X } = kz570 +e (2kaX

aB +kxa9)
z

+E2 a2 (14.9.69)

a2 a 8)( a a z a2 a s a52 = C-wae +Ea-wae +EjjT ) = w
ae2

+E (-2waTae -`` ae)
02+E22 (14.9.70)

Substituting these expressions (14.9.69) and (14.9.70) into the partial differential
equation (14.9.62) yields

z

(wz - k2) a02 + u + c -2w
a8 - IT ae - 2kaX

a - kX TO )
z z

+E2 (aT2 aX2) -Eau3. (14.9.71)
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We claim that the perturbation method that follows will not work unless the fre-
quency of the slowly varying wave satisfies the dispersion relation for elementary
plane waves:

w2=k2+1. (14.9.72)

The slowly varying wave number k and frequency w (and phase 9) can be solved
by the method of characteristics from given initial conditions, as we outline later
(and have shown in Sec. 14.6). In particular, conservation of waves follows from the
definitions of k and w [(14.9.63) and (14.9.64)]:

kT+w) =0. (14.9.73)

A quasilinear partial differential equation for the wave number k follows from
(14.9.73) using the dispersion relation (14.9.72):

kT + wkkX = 0. (14.9.74)

Thus, the wave number stays constant moving with the group velocity (where in
this problem WWk = k).

Using the dispersion relation (14.9.72), equation (14.9.71) simplifies to

02u a au au a au au\ 2 ( a2u a2u \ 3
70 WekX

-
I +E 2 - dX2 I = 6,3u

aB2
+u+E 2wa!' a- ``'T aB 2kaX a-

(14.9.75)
Using a perturbation expansion u = uo + Eul + we obtain from (14.9.75)

z
O(e°).

a62
+uo = 0 (14.9.76)

O(E) :
z

1 + u1 = CWT + 2w ) a8a02

+ (kx + 2k
a ) auo + ,3uo. (14.9.77)aX a

The solution of the leading order equation (14.9.76) is a slowly varying (modu-
lating) plane wave

uo = A(X T)e`o + (*), (14.9.78)

where (*) represents the complex conjugate. In general, A(X, T) is the complex
wave amplitude and will be determined by eliminating secular terms from the next
order equation.

We now consider the O(E) equation (14.9.77), whose right-hand side includes
the effect of the nonlinear perturbation and the slow variation assumptions. If
the nonlinearity is present ((3 54 0), then the nonlinearity generates first and third
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harmonics since uo = 3A2A*e'O + (*). Substituting (14.9.78) into the
right-hand side of (14.9.77) yields
02U,

+ul = i(w7-A+ 2waA)e'e+i(kxA+2k8A)e'e+,3(A3e3'e+3A2A'ei9)+(*)
002 aX

(14.9.79)
The first harmonic terms e`e on the right-hand side of (14.9.79) are secular (resonant
with forcing frequency equaling the natural frequency). Eliminating the secular
terms yields a partial differential equation the wave amplitude A(X, T) must satisfy:

2w OA + 2ka + (w7 + kx )A - i,63A2 A` = 0. (14.9.80)

From this equation we see that the amplitude moves with the group velocity (since
for this dispersion relation w2 = k2 + 1 the group velocity is given by wk = w) but
the amplitude is not constant, moving with the group velocity.

Multiplying (14.9.80) by A* and adding the complex conjugate yields an equa-
tion which represents an important nontrivial physical concept:

5T (w IAI2) + dX (k IA[2)
(14.9.81)

where we have used IAI2 = AA*. Equation (14.9.81) is called conservation of
wave action and is a general principal. Conservation laws can be put in the
form di + d = 0, where p is the conserved quantity and q its flux. Differential
conservation laws follow from integral conservation laws (as is briefly discussed in
Sec. 1.2). Sometimes on infinite domains it can be shown that A pdx = 0, anddt _.f C'O

hence for all time f00 pdx equals its initial value (and is thus constant in time or
conserved). The general statement of conservation of wave action for linear
dispersive partial differential equations even when the coefficients in the
partial differential equation are slowly varying is

ST (w) +d (e ) =0. (14.9.82)

The wave action is conserved, where E is defined to be the average energy den-
sity and c9 is the usual group velocity. It can be shown for our example that
E = w2 IAI2. Consequently, the flux of wave action satisfies c9 f = kJA 12 since in
our example Wk = . [If 3 = 0 and thus A could be real, this result would fol-
low by just multiplying (14.9.80) by A.] Wave action provides a generalization to
linear partial differential equations of the idea of action for linear ordinary differen-
tial equations. Action has been further generalized to nonlinear dispersive partial
differential equations by Whitham (1999].
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In this example, the nonlinearity only affects the phase since the nonlinear force
here is just a restoring force. If the nonlinearity had been a damping force, the
nonlinearity would have affected the amplitude (see the Exercises). To see how the
nonlinear perturbation effects the phase, we let

A = re`O, (14.9.83)

where r = JAI has already been analyzed. Substituting (14.9.83) into (14.9.80) and
keeping only the imaginary part yields the equation for the phase (of the complex
amplitude A):

2w LO + 2kX = 30r2, (14.9.84)

which shows that the phase moves with the group velocity but evolves depending
on r2 = +AI2. Since 8T is a frequency and a a spatial wave number, (14.9.84)
represents the dependence of the spatial and temporal frequencies on the amplitude
r = CAI due to the nonlinear perturbation. (If Q = 0, the phase 0 would be constant
if it were initially constant.)

Typically, small perturbations of oscillatory phenomena cause small modulations
(slow variations) of the amplitude (as in subsection 14.9.1) and the phase (as in this
subsection).

EXERCISES 14.9
In all of the following exercises, assume 0 < e << 1. In Exercises 14.9.1-14.9.7, use
the method of multiple scales to obtain equations for the amplitude and phase.

14.9.1.

14.9.2.

* 14.9.3.

14.9.4.

*14.9-5.

dj-tT + u = -e d (compare to approximations of exact solution)

d + w2(Et)a = -du

d + w2(et)u = -E(dt )3

d-
z3+u=E(u3-

di)

A linearized pendulum with varying length L can be shown to satisfy the
following equation:

d2u g _ 1 dL du
Wt-2

+ Lu -2L dt dt
Note that the right-hand side is not zero. Suppose L is a slowly varying
length L = L(et). Use the method of multiple scales to obtain a solution
valid when et = 0(1). [Hint: Z di = 1 dd-T, where T = et.]

14.9.6. Consider the system

Ey3

4Exy2.
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(a) By discussing the frequencies, show why the slow time is T = et.

(b) Obtain the leading-order equations (but do not solve them) that are
valid for T = 0(1), describing the long time behavior of this system.

14.9.7. Approximate the solution of Airy's differential equation d +xy = 0 in the
region of oscillation (assume large x can be interpreted as a slowly varying
coefficient) using the Liouville-Green approximation.

In Exercises 14.9.8-14.9.10, use the method of multiply scaled variables to obtain
the equation for the slowly varying amplitude and phase.

*14.9.8. - -5-X-T

14.9.9. et - e + U = 6,3(19U)3

14.9.10. e - c2 a + flu = 0, assuming c and 3 depend slowly on X and T. You
may assume the dispersion relation is still valid for slowly varying media.

14.9.11. Because the reduced wave equation (14.9.49) is linear, we can simple let
u = A(X, Y, Z)eie, where 0 solves the eikonal equation (14.9.53). Find the
exact equation for A and the leading-order equation.

14.10 Singular Perturbation Methods:
Boundary Layers Method
of Matched Asymptotic Expansions

A large variety of significant physical problems [see Kevorkian and Cole (1996)] is
described by ordinary or partial differential equations, where different approxima-
tions are valid in different regions (of space and/or time). Often one of the regions
is much smaller than another and is located at a boundary, and thus this thin
region is referred to as a boundary layer. Perturbation expansions can be deter-
mined in each region, but they must be related by a procedure called the method
of matched asymptotic expansions. We begin with an elementary example
of an ordinary differential equation to explain the method of matched asymptotic
expansions in its simplest context. Our second (and last) example is a partial dif-
ferential equation representing the convection of a pollutant where diffusion is only
important near a boundary.

14.10.1 Boundary Layer in an
Ordinary Differential Equation

As an example to motivate the method of matched asymptotic expansions, we con-
sider the boundary value problem for the following second-order ordinary differential
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equation:

d2u du
e

dx2
-

dx
+ 2xu = 0, (14.10.1)

subject to the two boundary conditions u(O) = 3 and u(1) = 2. We assume e is
a small positive parameter, 0 < e << 1. Even this elementary problem cannot
be solved analytically because of the variable coefficient. Numerical methods are
difficult to apply if a is small (and impossible if a is sufficiently small). In addition.
numerical methods often do not add any insight into the boundary layer behavior
we will derive.

Reduced problem. Intuitively, we expect that if a is very small (10-8
for example), then for all practical purposes the reduced first-order differential
equation should he a very good approximation:

-du+2xu=0. (14.10.2)

The general solution of the reduced equation (14.10.2) (by separation or by an
integrating factor) has one arbitrary constant:

x
z

u = ce . (14.10.3)

Unfortunately, this solution has one arbitrary constant, which cannot be used to
solve these two boundary conditions (see Fig. 14.10.1). We will show that this
solution is approximately valid almost everywhere. The constant c can be deter-
mined from one of the boundary conditions, and we will determine which of the
two boundary conditions should be used to determine c. There is a thin region near
one of the boundaries (called a boundary layer) where (14.10.3) is not a good
approximation.

Boundary layer location and thickness. We are in trouble if e is
small since neglecting the a dd term reduces the differential equation to first order.
Somewhere e =d. cannot be neglected even though E is small. We conclude that our
simplifying approximation (14.10.2) or (14.10.3) may fail if somewhere d is large.
There are many possibilities, some of which are that: d -XT is large only near the left
boundary x = 0, large only near the right boundary x = 1, large only near some
interior point, large only near both boundaries, or large everywhere. The main idea
of a boundary layer will be a region where the derivatives are large. Derivatives can
be large if the solution u changes by an order one amount in a short distance x - xo
near some (unknown) point x0. The small distance near x0 is called the boundary
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0
(a)

1 0
(b)

Figure 14.10.1 (a) Solution of reduced equation can only satisfy one
boundary condition; (b) boundary layer at x = 1.

layer thickness, which we assume is O(e ), where p > 0 in order for the distance
to be small:

x - xo=EPX,

or, equivalently,

z - zoX=
EP

(14.10.4)

(14.10.5)

Here, we are resealing the independent variable x. The new variable X is called
the boundary layer variable. Derivatives will be large because of the chain
rule ds = e-Pd"

,
where we assume dX is 0(1) in the boundary layer. Using the

boundary layer variable (14.10.5), the differential equation (14.10.1) becomes

E1-2pd 2U
Z - E-Pdu + 2(xo + e'X )u = 0. (14.10.6)

Since E is small, the middle term is large O(E-P), much larger than the term 2(xo +
EPX )u. In order for the differential equation to imply some nontrivial balance, in
this example, the first and second terms must have the same order of magnitude:

1-2p=-p.
We therefore conclude in this example that

p = 1,

(14.10.7)

(14.10.8)

so that in this example the boundary layer thickness is 0(e'), x - xo = EX.
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However, we need to determine the location of the boundary layer. In the bound-
ary layer the first and second terms are both O(e-1) larger than the remaining term.
Roughly (we will improve this later), the leading-order boundary layer equation is

d2u du
dX2dX0.

The general solution of (14.10.9) is

u = A + Bex =A+BeEP.

(14.10.9)

(14.10.10)

which is valid in the boundary layer. One term exponentially grows as x increases
with very large growth rate O(1) on the x-scale. If x is more than 0(e) greater than
x0, the exponential term will be so large it cannot connect to the solution of the
reduced equation. This kind of nearly unlimited exponential growth of the solution
in a boundary layer must be prevented. One way to prevent this fast exponential
growth is to let B = 0. If B = 0, the solution in the boundary layer is a constant,
which is not acceptable since derivatives of the solution are usually large in the
boundary layer. Thus, we must include Be

==o
in the boundary layer solution. In

this problem, xo cannot be some interior point (or the left endpoint x0 = 0) since
the solution in the boundary layer exponentially grows too large if x > xo. Only
if the boundary layer is located at the right endpoint xo = 1 will the undesirable
large exponential growth not occur. If xo = 1, then x cannot be greater than x0:

x-1ex. (14.10.11)

In this case, the leading-order boundary layer solution (14.10.10) (near x = 1) is

u=A+Be (14.10.12)

and decays exponentially (not grows) as the solution leaves the boundary layer. If
x - 1 is negative, then e is transcendentally small. The solution varies quickly
(in a small region), desirable for a boundary layer. Now that we know that the
boundary layer in this problem is located at the right end, we can proceed with the
mathematical solution.

Outer expansion. We begin by determining an asymptotic expansion of the
solution of the differential equation away from any boundary layer. We introduce
a perturbation expansion (which we assume is in the following elementary form):

u(x,e) = uo(x) + eu1(x) + (14.10.13)

We call this the outer expansion, since it is valid away from a boundary layer.
Since a is very small, we may only need a few terms in this expansion [sometimes only
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the leading-order term uo(x)]. Substituting the perturbation expansion (14.10.13)
into the differential equation (14.10.1) yields

O o - 2xu = 0d (14 10 14)(e ): o
x

. .

2

O ' l - 2 = d 2
15)(14 10(e ): xul .

dx
. .

We will restrict our attention to the leading-order inner equation (14.10.14).
whose solution (as before) is

uo(x) =
ce?s.

(14.10.16)

However, now we know there is a boundary layer at x = 1, so that the outer solution
must solve the boundary condition at x = 0:

uo(0) = c = 3. (14.10.17)

The leading-order outer solution

uo(x) = 3ex2 (14.10.18)

satisfies the boundary condition at x = 0 but does not satisfy the boundary condi-
tion at x = 1.

Inner (boundary layer) expansion. In the boundary layer near x = 1,
we introduce the inner variable x = 1 + eX (14.10.11). The exact inner (boundary
layer) equation follows by multiplying (14.10.6) by e:

d2U

dX2 dX
+ 2e(1 +sX)u = 0. (14.10.19)

We can introduce a perturbation expansion of the solution valid in the boundary
layer. This is called the inner expansion or boundary layer expansion:

u=Uo(X)+rU1(X)+ . (14.10.20)

By substituting (14.10.20) into (14.10.19), we obtain

d2Uo dUo = 0 (14 10 21)
dX2 dX

. .

d2 U1 dUl =- _2U (14 10 22)
dX2 dX

(,. . .

As we obtained earlier, the solution of the leading order equation (14.10.21) is

Uo(X)=A+BeX =A+Be ,1,
(14.10.23)

when expressed in terms of the usual inner variable x. The boundary layer equation
should satisfy the boundary condition at x = 1. u(x = 1) = 2 becomes Uo(X =
0) = 2. From this we conclude that

2 = A + B. (14.10.24)
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In this example the boundary layer equation is a second-order equation with two ar-
bitrary constants. In this example, one condition is a boundary condition, while the
second condition will be that the outer solution must match to the inner (boundary
layer) solution.

Matching. We have obtained an outer expansion valid away from the bound-
ary layer

u = 3es2 + eul(x) + (14.10.25)

and an inner expansion valid in the boundary layer

u=A+BeX+rU1(X)+ , (14.10.26)

where from the boundary condition 2 = A + B. These two asymptotic expansions
must be expansions of the same solution of the differential equation. We assume
there is an overlap region where both expansions are simultaneously valid. Thus,
we equate the two expansions in a manner that is called the method of matched
asymptotic expansions. The overlap region is near to the boundary layer (from
the point of view of the outer solution) and far from the boundary layer (from the
point of view of the scales in the boundary layer). In simple examples (such as this
one), the matching principle states that

the inner limit of the outer solution
the outer limit of the inner solution. (14.10.27)

From the point of view of the outer solution, the inner limit is the limit as x -- 1.
In this example, the outer limit means X -oo. In this example,

lim uo(x) +eui(x) = lim Uo(X) +eU1(X). (14.10.28)x-.-o0
Using only the leading-order terms, we have

lim 3ex2 = lim A + BeX .=-1 x--00 (14.10.29)

Thus 3e = A. Since A + B = 2, we also have B = 2 - 3e. Consequently, in summary
Leading-order outer solution (away from x = 1): u = 3e=2
Leading-order inner solution (near x = 1): u = 3e + (2 - 3e)eX,

which is graphed in Fig. 14.10.1.
Often these inner and outer limits do not exist, and must be replaced by the

corresponding asymptotic expansions:

the inner asymptotic expansion of the outer solution --
the outer asymptotic expansion of the inner solution. (14.10.30)

These are two very different calculations that must be the same. In the case where
x - 1 = eX, the two expansions are as follows:
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1. Fixing x and letting e - 0. (This means X - -oo, the outer expansion
of the inner solution.)
2. Fixing X and letting e - 0. (This means x 1, the inner expansion of
the outer solution.)
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There are practical procedures that take into account that often only the first few
terms are worth the effort of computation. Remember that e is very small and
higher-order terms are often negligible.

The form of the inner and outer expansions may have to be adjusted in other
problems. Higher-order terms can be included and matched, but that is an impor-
tant (and often necessary) process that we do not have the time to develop. The
asymptotic expansions of the inner and outer solutions are often doable, but more
effort is required than in the elementary example here. Nonlinear problems can be
more difficult and interesting.

14.10.2 Diffusion of a Pollutant Dominated by Convection
We will analyze one elementary example of a singular perturbation problem for a
partial differential equation by the boundary layer method (the method of matched
asymptotic expansions). We consider a pollutant with unknown chemical concentra-
tion u(x, y, t). Without convection (the motion of a fluid) the concentration satisfies
the diffusion equation = k(eTX- 7 + ear ). If the fluid moves at a known velocity vTaut-

(where in fluid dynamics it is shown that usually V - v = 0), then the time deriva-
tive in the diffusion equation should be replaced by the convective derivation

= + v Vu:(the time derivative moving with the fluid) di = ee + de az + do au ou

/ 2 2

&
+v-Vu=k5-2+&y2 J. (14.10.31)

We consider an idealized situation in which the pollution is caused by a series
of smoke stacks (industrial parks), which we assume each produce a known (but
perhaps different) level of pollution that does not change in time. Thus we know
the level of pollution on the boundary of some region, and we wish to determine
the steady-state level of pollution inside the large region:

/ 2 92U
V Vu=ki-+ 2 I. (14.10.32)aX2 y /

We first assume the convective atmospheric velocity is constant and in a somewhat
general direction v = a+bj. In this case the steady equation for diffusion becomes

2

, (14.10.33)aax + ba =
E

(a2xe

+ aye
)

where (for the convenience of singular perturbation methods) we have introduced
e as a small (in some sense) diffusion coefficient. This is not an easy mathematical
problem especially if the geometric region is not a rectangle.
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Outer expansion. If s is a very small parameter, we expect (as a good
approximation) that the following reduced first-order partial differential equation
should he important:

8uo a+b8u o =0. (14.10.34)ax

We justify this by introducing into (14.10.33) a regular perturbation expansion:

u=uo+EU1+..., (14.10.35)

whose leading-order term satisfies (14.10.34). Equation (14.10.34) can be solved by
the method of characteristics. If d = b, then -d = 0 or uo = constant. The
characteristics of the reduced equation (14.10.34) are ay - bx = constant. Thus,

uo = f (ay - bx), (14.10.36)

where the arbitrary function f should be determined from one boundary condition.
However, for the diffusion equation we have two boundary conditions (determined
by the manner in which the characteristics divide the boundary of the closed two-
dimensional region, as will be clearer by the specific example to follow). We will
show that (14.10.36) is valid away from a boundary layer (region where derivatives
are large). In addition, we will show that the boundary layer is located only at
a specific portion of the boundary. We call (14.10.35) the outer expansion and
(14.10.36) the leading-order outer solution since it is valid away from the boundary
layer.

Simple example. For the rest of this subsection, we assume the fluid
velocity is in the positive y-direction v = (0, 1) so that the partial differential
equation (14.10.33) for steady diffusion becomes

8u 02u 02u
8y axe + V /I (14.10.37)

The solution of the leading-order outer equation = 0 is

uo = f (x), (14.10.38)

an arbitrary function of x. We assume the characteristics (of the reduced equation)
x = constant divide the boundary of the geometric region into two pieces, which
we call the top y = yT(x) and bottom y = yB(x) (see Fig. 14.10.2). The boundary
condition for the diffusive partial differential equation is that the level of pollution is
specified on the entire boundary. We introduce two functions, the level of pollution
on the top

u=UT(x)ony=yT(x)
and the level of pollution on the bottom

(14.10.39)

U = UB(x) on y = YB(x). (14.10.40)
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U =UT(x)

U =uB(x)

(a)

U =UB(x)

(b)

Figure 14.10.2 (a) Characteristics; (b) convection domi-
nates (boundary layer at the top).

The one arbitrary functioh can satisfy one but not both of these conditions. On
the basis of physical intuition, we expect that since the atmosphere is moving in the
positive vertical direction, the wind caries the pollutant upward. We expect that
the solution of the reduced problem satisfies the boundary condition on the bottom:

uo = AX) = uB(x). (14.10.41)

Since this does not solve the boundary condition on the top, we expect that there
is a thin region near the top where derivatives are large and cannot be neglected.
In the next subsection, we show mathematically that the boundary layer is located
on the top and determine its thickness.

Boundary layer (inner) expansion. We want to develop a procedure
to determine where a boundary layer is allowed (and determine its thickness). We
first analyze the possibility that the boundary layer is located near the top. How-
ever, our mathematical analysis will be general enough to show that the boundary
layer in this example cannot be located on the bottom. We introduce as a scaled
set of independent spatial variables (x,71) with unknown thickness O(eP) with p > 0:

1

x
_ y - YT(x)

EP

(14.10.42)

Since the boundary is not necessarily straight, both x- and y-derivatives are large:

Ou YT(x) Ouau
Ox 8 ep on

1 OuOu

EP O71.Oy
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Second derivatives are needed:

02u a yT(x) C7 Cu yT(x) Ou _ [yT(x)]2 &U

aX2 - (ac EP a7)) (a EP 8'n E2p a, + (14.10.43)

a2u _ 1 a2u
(14.10.44)

V E2p (37)2

If only the leading-order terms are needed (in the boundary layer), we can avoid
the more complicated expressions for the second derivative. Substituting these
expressions (14.10.43) and (14.10.44) into our example (14.10.37), we obtain the
leading-order equation u = 7)) + ... in a boundary layer:

1

E O - E1_2pkTS)
a2 o

EP a 2 (14.10.45)

where the important coefficient is positive:

1 + [y,(x)]2. (14.10.46)

By balancing order of magnitudes of the largest terms in (14.10.45), we obtain

p = 1, (14.10.47)

so that the thickness of the boundary layer is O(e'). Because derivatives are
largest in one direction, the partial differential equation to leading order reduces to
an ordinary differential equation:

oUo 2

= kT
a72

The general solution of (14.10.48) is

A(.) +

(14.10.48)

(14.10.49)

where and B(i;) are arbitrary functions of 1; since involves fixed.
77

Now it is possible to determine whether or not a boundary layer exists at the
top (or the bottom). The method of matched asymptotic expansions states that
the boundary layer solution must match to the interior (outer) solution. Since

ri= y - yT(x) (14.10.50)
E

the interior is approached by the limit process:

77 - -oc if the boundary layer is at the top
77 - +oo if the boundary layer is at the bottom.
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Fast exponential growth (14.10.49) in a boundary layer is not allowed as the solu-
tion becomes transcendentally large. However, exponential decay is typical. Since
kT(e) > 0 and the corresponding kBW > 0, in this example we must prevent
r) -a +oo as one leaves a boundary layer. This can only be prevented if the bound-
ary layer for this problem is located at the top. This is the same conclusion that
we reached based on the physical intuition that the pollution levels ;are convected
into the interior of the region by the given upward atmospheric velocity.

In this way we have obtained the leading-order solution in the boundary layer
located at the top:

Uo(£,i7) = B(C)e . (14.10.51)

If the boundary layer is at the top, then the solution in the boundary layer should
satisfy the boundary condition at the top, which is u = UT(x) at y = yT(x). Since
y = YT(x) corresponds to ij = 0, we satisfy the top boundary condition with

A(4) + B(i;) = tT(0. (14.10.52)

The top boundary condition prescribes one condition for the two arbitrary functions
A(f) and B({). The second condition (needed to determine the boundary layer
solution) is that the inner and outer solutions must match.

Matching of the inner and outer expansions. In summary, the
leading-order (outer) solution is valid away from a thin boundary layer near the top
portion of the boundary:

uo = UB(x). (14.10.53)

The leading-order (inner) solution in the boundary layer near the top is

Uo = A(x) + B(x)eT , (14.10.54)

where the boundary layer variable is 77 = VT(X) and where A(x) + B(x) = u7,(x)
to satisfy the boundary condition at the top.

These two asymptotic expansions represent a good approximation to the solution
of the original partial differential equation in different regions. Since there is an
overlap region where both expansions are valid, the matching principle states
that

the inner limit of the outer solution = the outer limit of the inner solution.

In this example, the inner limit is y yT(x) and the outer limit is 77 -oo. Thus,
matching the leading-order inner and outer solutions yields

lim uB(x) = lim A(x) + B(x)e', (14.10.55)
Y-YT( x) n-oc

or, equivalently,
uB(x) = A(x). (14.10.56)



724 Chapter 14. Dispersive Waves

Since A(x) + B(x) = UT(x), we have B(x) = UT(x) - UB(x). The-leading-order
solution in the boundary layer is

Uo = UB(x) + [UT(x) - UB(x)Iey () (14.10.57)

The concentration of the pollutant is convected from the bottom into the interior,
as described by the leading-order outer solution (14.10.53). The leading-order inner
solution (14.10.57) shows that a thin boundary layer at the top exists (illustrated
in Fig. 14.10.2) in which diffusion dominates and the level of pollution suddenly
changes from level in the interior (convected from the bottom) to the level specified
by the top boundary condition.

EXERCISES 14.10
In Exercises 14.10.1-14.10.7, find one term of the inner and outer expansions and
match them:

14.10.1. ed -24 +3u=0with u(0)=1andu(1)=2

14.10.2. e d4 -3u=0with u(0)=1 andu(1)=2

*14.10.3. ed - 4u = x with u(0) = 1 and u(1) = 2

14.10.4. edk+eay-9u=0with u(0)=1andu(1)=2

14.10.5. ed + 2e-xu = 8 with u(0) = 1 and u(1) = 2d.T

*14.10.6. ed +(2x+1)d?+2u=0with u(0)=1andu(1)=2

14.10.7. a d + 2e-xu = 8 with u(0) = 1 and u(1) = 25.7

14.10.8. Find an exact solution of Exercise 14.10.1 (and graph using software).

14.10.9. Sometimes there can be a boundary layer within the boundary layer. Con-
sider for0<x<1 with 0<e<< 1:

e4
d-

22 + x2 d - ey = 0 with y(O) = 1 and y(l) = 2.

You may assume (without verifying) that there is no boundary layer at
x = 1. Solve this problem, including two terms of the outer expansion.
Show that two different scalings near x = 0 are valid, a thin and thick one.
Determine only one term of these two other expansions. Match the outer
solution to the thicker inner solution and match the thicker inner solution
to the thinner inner solution.

14.10.10. Consider e(e + e ) - 4P.- + 8, with u specified on the boundaries
37"Y TY-T

of the square 0 < x < 1, 0 < y < 1. Using physical reasoning, where will
there be a boundary layer?
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14.10.11. e(aTx- + ey ) = u - f (X,
y) with boundary conditions on the unit square:

u(x, 0) = g(x), u(x,1) = h(x), u(0, y) = r(y), and u(1, y) = s(y). Deter-
mine the leading-order outer solution. To save time, just determine the
leading-order inner solution in one boundary layer (since the others are
quite similar). Match these.
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Selected Answers
to Starred Exercises

1.2.8. fLcpuAdx

1.2.9. (e) u(t) = uo exp [- t]

1.3.2. Ko(xo_)Ou(xo-,t) = Ko(xo+)Ou(xo+,t)

1.3.3. Vcfpf(L,t) = -Ko(L)u(L,t)A, where V is the volume of the bath

1.4.1. (a) u(x) =
(d) u = T + ax
(f) u(x)_- s+3x+T
(h) u = T + a(x + 1)

1.4.2. (a)

1.4.7. (a) 3=1-L

1.5.2. t + kV2u - (often physically V v = 0)

r+T2 In r ri1.5.9. (a) u = Ti in r2
nr2 rl

1.5.11. Q = a

1.5.13. u(r) = (1 (1 - r)

2.3.1. (a) di = -.1kh and 11. d (r d)

e =d2.3.1. (c) -AO and y=Ah

= 1 d2.3.1. (e) U

2.3.1. (f) c-7-- Z A
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732 Starred Exercises

2.3.2. (b) A = (nir/L)2 with L = 1 so that A = n2x2, n = 1, 2, .. .
2

2.3.2. (d) A = [ (n- J)7r, ], n = 1, 2,3,-

22.3.2. (f)ay ), n=1,2,3,

2.3.3. (c) u(x, t) = EO°_1 An sin n e-k(na/L) t, where
An = L f L 2 COS 3Lx sin nix dx

2.3.4. (a) cpA>_1 Bn e-k(y )'t n7r )
n_

2.3.4. (c) Heat energy equals initial heat energy plus the time integral of the flow
in of the heat energy at the boundaries.

2.3.6. 0(n #m), 2(n=m 00),L(n=m=0)

2.3.8. (a) u = 0

2.3.8. (b) u = e-at E°O 1 6n sin nLxe-k(n7r/L)'t

2.3.9. (a) If k L = nzr, then u(x) = A since.

2.3.9. (b) If - k = (Z)2 , u(x, t) --+ B sin L , as t --+ oo. If _ k < (L)2, then u -+ 0

as t - oo. However, if - k > (Z)2 'U - 00 as t -+ oo.
2

2.3.10. (c) [ f A(x)B(x) dx, < (0A dx) (fo B2 dx)

2.4.1. u = Ao + F,n 1
An cos L e-k(n,rx/L)zt

(a) Ao = 2, An = -, sin 2 (n 0)
(b) Ao = 6, A3 = 4, others = 0

(c) Ao = - ! ,An = z fo sin T cos nix dx can easily be evaluated using
trigonometric identities or tables of integrals.

2.4.2. u(x t) = cos
(n-L),rxeEn'=1

cn = T f O f (x) COs
(n-L )nx

dx

where

2.4.3. A = n2, ¢ = sin nx and cos nx, n = 0, 1, 2, 3 ...

2.5.1. (a) u(x, y) = Aoy + Zn-1 An cos "' sinh nLv

2.5.1. (c) u(x, y) = An1 An cosh of sin H , where
An cosh n'LL = H fH g(y) sin H dy

2.5.1. (e) u(x, y) = Et1 Anhn(y) sin L, Anhn(H) = L .)0 f(x) sin' dx,
where hn(y) = cosh niv + n sinh ZK
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2.5.2. (a) f L f (x) dx = 0

2.5.3. u(r, 9) = En_o Anr-" cos n9 + Ett_1
sin n9

(a) AO = In 2, A3a-3 = 4, other An = 0, B" = 0

(b) See (2.5.47) with an replaced by a-".

2.5.4. u(r, 0) = a
2,rrrZ f", a2 +r2

f (O)
cos(9-9)

2.5.5. (a) u(r, 9) = El Anr 2n-1

2.5.5. (c) u(r, 9) = E°°_1 Anr2n sin 2n9, An =
n

g /2 f (9) sin 2n9 dB

2.5.6. (a) u(r, 9) = En
1 Bnrn sin n9

2.5.7. (b) u(r, 0) = F_°_o Anr3n cos 3n0

733

= l//n(r/a)
(a

n = 0 ln(r/b)
/

n = 0
2.5.8. (a) 01 (r)

l a )
(r)" n 0 02(r)= ( )"-(b)" n0

u(r, 9) a cos n9 [Ang1(r) + Bn02(r)]+Er°,°_1 sin n9 [Cng1(r) + Dn02(r))
Dn02 (a)

n, f (9) sin n9 d9, etc.
7r -

2.5.9. (a) u(r,9) _ F_,°O_1 An [(a) 2n - (r) 2n] sin 2n0, where An I (a)2n - (a)2n] =

fo /2 f (9) sin 2n9 d9 L

2.5.9. (b) u(r, 9)( _ F_°r0 An sinh In b a sin mr 1n b a ] + where An sinh 2 n
a a =

Fn b/a fa + (r) sin J n7r In b a) ] dr/r

3.2.1.

x

-3L -L L 3L -3L -L L if
(b) (d)
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-3L

3.2.2. (a)

x tc x

L 3L
(f)

Starred Exercises

an = 0, bn = 2L (-1)n+t
na

3.2.2. (c)

(a)

bl = 1, all others = 0

3.2.2. (f)
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-3L -L

3.3.1. (d)

3.3.1. (d)

Fourier series

(f)

I

L 3L

ao = 2 , other a,, = 0
b, = - (n odd), other b = 0n7r

Sine series

3--g
-L I L

T

3L

(b)

Cosine series

735

3L-3L -L (d) L-3L -L O L 3L
c
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3.3.2.

Starred Exercises

repeat periodically,
bn=-L(1-Cos a)

(d)

3.3.10.
fe(x) = z[f(x)+f(-x)J = 2

fo(x) = 2 [f (x) - f (-x)l = 2

x2+ex x<0
x2+e-x x>0

X2 ex x<0
e-x-x2 x>0

3.3.13. bn = f f L f (x) sin n7rx/L dx, bn = 0 for n even, since sin nirx/L is odd around
L/2 for n even

b

3.4.1. (a) fa udy dx = uvl
+uvlC_

- fQ vAu dx

3.4.3. (a) bn = i sin nix (a - 6) - L an

dx3.4.9. d + k ()2bn = Z f L4(x,t)sin n,
3.4.12. u = >°_0 An (t) cos nirx/L,

n O 0, 3 An(t) = An(O)e-k(na/L)2t
Ao(t) = Ao(0) + 1 - e-t
A3(t) = A O C-k(3a/L)2t + e2t-e-k(3n/L)2t

3( ) k(

with Ao (0) = f f f (x) dx and (n # 0) An (0) = L fL f (X) COs nLx dx

3.5.1. (c) 4 + F,- 1 6 nx + 12 1 nsrl n } Cos nLx 0 < x < L

3.5.4.

3.5.7.

3.6.1.

4.4.1.

bn=n.-S[l-{-1)ncosh LJ
7r3/32

Cm = m1 eimn/L(xo+0/2) sin m
Z 2T

4.4.1. (b) (m -
z
)7rc/H, m = 1, 2, 3, .. .
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= (na/LpoTo-4.4.2. (c) Frequencies of vibration are vl-\-,

4.4.3. (b) u = e-0t/2p0 En°=1 (an cos wet + be sin wet) sin "Lx, where
TQ (na) sI

-9L) -4pow+'= po

5.3.1. ToV+aO+ApoO=0

5.3.3. H = cl exp [f x a(t) dt] , let cl = 1. Then p(x) = H, q(x) = yH, and
a(x) = /3H.

5.3.4. (b) u = eWx no An sin a-,\^t, where A. = i faL f (x)esin eiy dx.
2 2

Note that A _ + k (n)

5.3.9. (c) n = 1, 2, .....1 = (nir/ In b)2

5.4.2. u = En t anOn(x)e-A,t(with Al = 0, 01 = 1)

kt - f(r)O,(r)r dr
5.4.3. u = En-1 an¢e(r)e- ,where an-

o dr

,1nt5.4.6. u = E0 1 AnOn(x) cos

5.5.1. (g)c5-/3y=1

- f'o'
2

dx
5.5.9. = Io e.02 dx

5.5.11. (a) H(x)=p(u -vdy)+uv(d -r)

35.5A.4. (a) v(t) = 5 1 1 1
ert _ 5 r -2 e2t

5.5A.5. (b) A=2f f
L J

5.6.1. (c) UT = ax + bx2 with a = 3, b = -2, al < 46

5.7.1. The circular frequency (cycles per 21r units of time) is /X,
but the actual frequency is f/21r (cycles per 1 unit of time):

1+a2.
2 2ir 2

5.8.2. (c) By extension of Fig. 5.8.2a, (n - 1)7r < FeL < (n - 2) 7r.

5.8.3. (b) (n - 1)7r < JL < (n - 2) 7r, n = 1, 2, 3, .. .

5.8.7. (b) A = 1/4 (c) none (d) no (e) yes

5.8.8. (c) anti (n - 1)7r
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5.8.10. (a) Al -- 4.12. (b) Al = 4.11586...

5.8.13. cos fL = 71771h-) . Thus A L sine Vf-x dx = z + Mr, 7

5.9.1. (b) \1/2 fo (a/P)1/2 dxo (n + 2) it

5.9.3. (a) A" + ia1/2 (2A'al/2 + 2a-1/2a'A) + qA = 0.

5.9.3. (e) An+1 =
Za-1/4

fox a-1/4 (An + qAn) dxo

5.10.2. (b)=1++5 +i+...
6.2.6. 8i 4 lx [u(x+Ax, y+Ay)-u(x-Ox, y+Ay)-u(x+Ox, y-Dy)+

6.3.4.

u(x - Ox, y - Ay)] assuming that Ox = Ay

(a)
On =

E .' f, sin n,rj/N
n E'-'910 nirj/N

6.3.4. (b) N2 11

6.3.6. (d) Stable if s < 0.5125

6.3.9. (b) A _ 1
2
1

11
-2J

6.3.10. (b) W = e

6.3.14. (c) A=0, 3, 4; IA - ii 5, IA-4f <8, IA-21 < 3

6.4.1 kLt [ o. + ny < 2

6.5.5. (b) Unstable

6.5.6.

7.3.1.

oxot < 1(b) Stable if /

(a) u =
n

1 Em=1 anm sin n sin e-Jln-kt,

where Anm = (!)` + (H )`
7.3.1. (c)

7.3.2.

Co 00 n
L L, - -ate kt ( l2 ( l2U = anm cos

Lx sin H e where nm = \ L / + ` 1n=0 m=1

(b) u =
0o [" ao 00

n=0 Lm=o 0 anml cos nLx cos H cos firz

whereAnmt=(L)2+(p)2+(w)2
u(x, y, z, t) -+ Qooo = fwfH L

Z7 w
f f(x, y, z) dx dy dz as t - oo
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7.3.4. (b)
[0'x [00

u(x, y, t) = L L Anm Cos
nLx

cos Hyhnm(t)
m=0 n=0

hnm(t) = f t n 0, m = 0 where w2m = c2Ir' [(n/L)2 + (r/H)2]t sin wn,t otherwise,

nxs ma
fo

fl
f cos cos H dx dy

Anmhnm(0) f0 f0 cost mrz cost H dx dy

7.3.6. (b) u = n 1 /m=1 Anm sin "LZ sin W cosh fix,
where \nm = (n7r/L)2 + (mir/W)2

7.3.7. (c)(d) u(x, y, z) = E' 0 Em=0 Anm COS
n Cos COShinmx,

where Qnm = (n7r/W) + (m7r/H)2

For (c) a solution only exists if f H f W f (y, z) dy dz = 0,
in which case A00 is arbitrary and otherwise

fH fw fcos" cos dydz
Anmfnm slnh/3nmL - 0 0

fH f0 cost W cost Hs dy dz

For (d) Anm COSh NnmL = f w 9 cos = cos ° dy dz
f0 fo C092 = 0062 dy dz

7.4.1. (a) Anm = (n7r/H)2 + (mir/L)2, where n = 1, 2,3.... and m = 0, 1, 2, .. .

7.7.1. u(r, 0, t) _ En_1 r) sin 30 sin c A3nt

7.7.2. (d) u(r, 0, t) = F_,n=o
1 (Amn cos mO + Bmn sin m0) H,,,n(r, t), where

Hmn(r, t) =
t m = 0, n = 1

J , , (v r) sin c / t otherwise with J,' (v/X a) =0

f7 fo/3(r,0)Omn(r)CosmO r dr d9
Amn

7r 0

f", f 02nn (r) cost mO rdr dO

where

Ybmn(r) =
1 n=0,m=1

1 C Amn Jm ( TmnT otherwise

and Bmn is the same as Amn with cos mO above replaced by sin m0.

7.7.3. (a) c / , where J2,,, (Va) = 0
7.7.5. The frequencies are cf,

where J2m (v119 Y2m J2m (v Y2m 0.
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7.7.8. For the heat equation, Sec. 7.7 is valid with (7.7.5) replaced by dh/dt = -Akh.
The boundary condition introduces more substantial changes. The Rayleigh
quotient shows A > 0 with A = 0 only when ¢(r, 9) is constant, which means
m = 0. The other eigenfunctions still satisfy (7.7.38) with the boundary
condition f(a) = 0 yielding J;,, (fa) = 0. Thus

1 m=0,n= 1
Omn (r, 9) = Jm (f r) cos m9 otherwise.

As t -+ oo, a-am^kt , 0 except for m = 0, n = 1 since then Amn = 0. Thus
u(r, 0, t) - A01, where Aol = (f' fo f (r, 9)r dr d9) / (ira2).

7.7.9. (b)
00 00

u(r, 9, t) = E Amn-nn(r) cosm9e-A-nkt, where

n=1 m=0

/ 1 m=0,n=1
Omn(r) = Jm (fir) otherwise, where J;,(fa) = 0

7.7.10. u(r, t) _ °_1 anJo ( vTn-r) a-a^kt, where Jo ( a) = 0

7.7.12. (c) y = cl [cos(21n x) + ...] + c2 [sin(21n x) + ...]

7.7.12. (e) y = cl (x2 +...) + c2 (x3 + ...)

7.8.1. (b) Jm (f) Ym (2f) - Jm (2f) Ym (f) = 0

7.8.1. (d) 2a2 < Al < 27r2

00 "07.8.2. (d) u(r, 9, t) = E > c,,,nJ2m (/r) sin 2m8e-am^kt,
n=1 m=1

J2m ( mna) = 0

where

7.8.8. J112 (z) = 217rx sin z

7.9.1. (b) u(r, 9, z) _ n 1 An sinh /3(H - z) sin 79J7 ( 7nr) , where
J7 (tea) = 0

7.9.2. (b) u(r, 9, z) _ r,n i Amnlm [(n -
2)

-fr] sin (n -
2)

A sinm9

7.9.3. (b) u(r, 0, z, t) = E OD E°° ( ) =n=1 - 0 t=0 AtmnOtmn r, 0, z e-a^`^k', where X nn -
(e7r/H)2 + .1;,,n and J2m ( A:nna) = 0

A, = 1 1 m=0,e=0,n=1Y'!mn (r, 9, z} l cos tH cos 2m9J2m ( X;,,nr) otherwise
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r 010 - ,,7.9.4. (a) u(r, z, t) = F,m=1
1

AnmJA ( Xnr) sin
where J = V+ (mn/H)2 and Jo (/a) = 0. Here,

Anm =
JJf(rz)Jo

fJJ(vr)sin2!!r
( r) sin" r dr dz

r dr dz

8.2.1. (a) u(x, t) = A + Bx + E,0,0_1 an sin (n -
z)

Max e-[(n-1/2)a/L)2kt

where an = z f L 9(x) sin (n - 2) Ir dx

8.2.1. (d) uE(x) = - i + (BLA + L) x + A.

8.2.2. (a) r(x, t) = A(t)x + 1B(t) 2L(t)1x'

8.2.2. (c) r(x, t) = A(t)x + B(t) - LA(t)

8.2.6. (a) u(x,t) = A+(B-A) L +Za_1since (Ancosh+Bnsince),
where An=

L
LL If (x) - [A + (B - A)L] } sin dx and

Bn = nac J' g(x) sin "Lx dxJo

(d) uE(x)
z_ sin L

8.3.1. (c) u(x, t) = A(t) + E,n 1 Bn(t) sin (n L )ax

8.3.1. (f) u(x, t) _ E.no An(t) cam
L

Q(x,t) coo n,rx/L dx
where ddt + k (L) 2 A. =

r
Jo

coe2 nirx/L dx

L

° t) h A(
Zn 1 a,l( ere - = - rran +wn x), w

fo

1,8.3.4. (a) uE(x) = A+ (B - A)

o
d3/Ko(=)

8.3.5. u(r, t) _ n 1 An(t)JO(an/2r), Where Jo(an/2a) = 0
ra

f(r,t)Jo(a;,12r)r dr

.'n1 dx

0,2,cp dx

and where d+ kA\nAn = o
o

10

Jp(a;,/ 2r)r dr
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8.3.7. r(x,t)=6L+(i-sx
8.4.1. (b) u(x, t) _ E°°=0 An(t) Cos "', where

An(t) = e-k(n,r/L)2t (A(o)

+ f t ek(na/L)2t {n() + [(-1)B(E) - A()]} d)
Jo

/L

fo

L

f (x) cos "- dx - Q(x,t) coo-fa dx
with An(0) = and qn(t) = -LJ

co92 L dx cost !IF dx

and In
1 n=0
2 n#0

8.5.2. (b) w2 = (n7rc)2
L

8.5.5. (c) u(r, O, t) _ Em=1 E"o I Anm (t)Jm sin m9 with Jm 0,

where Ann, = 1 fo Qnm (t) sin dt + Cnm Cos cy fit,

Q(x,y,t)Jm (fr) sin mB r dr dB f (x,y)J,, (fr) sin mB r dr dB

Qnm = , Cnm =
Jn (fr) sine mB r dr dB ff J_, (fr) sin2 mB r dr dB

g¢r dr dBf " f8.5.6. (a) 3
+

\a = where dr J. (A1/2a) = 0

8.6.1.

fo fo
02r dr dB

(b) u(x y) = E°O E A sin nnx sin may wheren=1 m=1 nm L-2 L -1"nn L2
Anm = "(nn/L +(ma H)

(d) If ff Q dx dy = 0, then u = >0n0_-0 Em=0 An.. cos n,, cos H , where
A00 is arbitrary and the others are given by

nirx miry

-Anm
n7r) 2

+
m,,r 2 _ ffQ cos L cos H dx dy

.[(T \ H) ] 2 n7rx
Cost

m?ry
dx dyp L H

8.6.3. (a) u(r, 0) -Em=0En I Amn coo mOJ,n(v r)+Em=1E+ 1 Bmn sin mOJm(y nr),
1

ffQ

sCs mo
in m9

J-(fr)r dr dB
where J. (f a) = 0 and Am n

////
Bmn / rf COS2 MO

J!J/
sine mB
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8.6.6. u(x,y) _ EO°_1 an(y)sinnx, where an(y) = 3e2ybn, +ansinhny+Oncoshny

andbnl 1 n=1
0 n#1

9.2.1. (d) G(x, t; xo, 0) = o j* Cos nLx COS n

Where In = L n = 0
{ L/2 n#0

u(x, t) = f g(xo)G(x, t; xo, to)dxo + f f
t
Q(xo, to)G(x, t; xo, to) dto dxoL L

0 0 0

+ f t kB(to)G(x, t; L, to) dto - f kA(t)G(x, t; 0, to) dto
0 o

00 2 nax nax sin nac t-to L9.2.3. G(x, t; xo, to) = n= L sin sin L nac L

u(x, t) = fo f Q(xo, to)G(x, t; xo, to)dto dxo + fo g(xo)G(x, t; xo, 0) dxo
+ f0f (xo) 0' (x, t; xo, 0) dxo

9.3.5. (a), (b) u(x) = fo(x - xo)f(xo) dxo - x fL f(xo) dxo

9.3.5. (c) G(x, xo) _ -x x < xo
xo x > xo

9.3.6. (a) See answer to 9.3.5(c).

9.3.6. (b)
x

G(xo, x1 G(x1, xo) G(x, xo)

9.3.9. (b) See answer to 9.3.11.

sin(xo -ppL) sin x
9.3.11. (a) G(x,xo) = sin ___ ein xo

sin L

G(x, x1)

x<xo
x>xo

9.3.13. (b) G(x,xo) = Z-I eiklx-xol

9.3.14. (d) u(x) = f L G(x, xo)f (xo) dxo - ap(0) (x, xo), - /3p(L)G(x, L)
xo=0
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9.3.15. (a) G(x, xo) k y1(x)Y2(xx) x < xo,
where k is a constant

9.3.21. G(x, xo)
0 x<xo

=
1 x > xo

9.3.25. (b) u(x) =
s
fo f (to)(x - to)3 dto

,,,,9.4.2. (a) 0 = fo Oh(x)f (x) dx - ap(0) ) +,3p(L)
ddAkI

x=L

9.4.3. (b) Infinite number of solutions

9.4.6. (a) u = 1 + c1 cos x + C2 sin x; no solutions

9.4.6. (b) c2 = 0, cl arbitrary

9.4.6. (c) c1 and c2 arbitrary

9.4.8. (a) u = Zx sinx + c2 Sin X

9.4.10. G,,, (x, xo) = a sin x sin xo+ q
(x cos x sin xo + xo cos xo sin x) - cos xo sin x, x < xo
(xo cos xo sinx + x cos x sin xo) - cos x sin xo, x > xo

u(x) = fo f(xo)Gm(x,xo)dxo-0(xcosx+sinx)-a [,(sin x+xcosx) - cosx]+
k sin x, where k is an arbitrary constants

9.4.11. (a),(b) c = 1

9.4.11. (d) G. (x, xo) = a + I Xo x <
Xo,

where a is an arbitrary constant

9.4.11. (e) u(x) L f (xo)G0(x, xo) dxo + kl, where k1 is arbitrary

CO 00
ein m9 sin mOo J,, fr J,, fro9.5.3. (c) G(T, 8; ro, Bp) _

M=1 n-1 _A ff J,_ ( ar) sin2 m9 r dr dO

where Jm (va) = 0

9.5.4. See (9.5.23) with extra integral signs

r
[00 sinm9sinm9o 1 (r)m [(Q )m - (-e-

m

9.5.9. (b) G(x, xo) = L.m-1 ma 1 f{Jnn

mm
1

L(a) - \r) ]( a )

r<ro
r>r0

9.5.10. (a) L = V2 + k2, fff [uL(v) - vL(u)) dV = ffi (uVv - vVu) ft dS

9.5.10. (b) c2 = 0, c1 = 4a (c) G = 1 (Yo(kr) - iJo(kr))

9.5.13. (a) G(x, xo) = - 1 r 1 + 1

4, l ,/(Xyou)2+(U-yo)2+(x-xo) (x-xo)2+(Y+Lo)2+(2-zo)2

19.5.14. G(x, xo) = In i(=-xo)2+(y-yo)21 [(z+xo)2+(y+yo2
41r l(x-xo)1+(y+yo)2 l(x+xo)2+(y-yo)21
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9.5.19.

9.5.22.

10.2.1.

1 2 r2+r' 2rrocoe O-0o 1

in
2 r'+r-2rrocos(9+9o)

4,r [a r o+a-2rroa toe -90 ] [a r2ro+2cos(B+9o)

(c) C(x,xo) - -L4n Eo0
n=-oo 2;-

1a - 1

I '

where Qn = (x0 + 2Ln, yo, zo) and An = (-xo + 2Ln, yo, zo)

( 1 [A(-w) - iB(-w)] w<0
w>0

10.3.6. See Table 10.4.1

10.3.7. See Table 10.4.1

10.3.10. (b) fo Jo(sr)Jo(sjr)r dr

.. 2 - s, /s cos sL-n/4 sin al L-n/4+ coe sl L-n/4 ein sL-,r/4

10.3.10.

10.3.16.

10.4.3.

10.4.5.

(c) A(sl) = fo f (r)Jo(sir)r dr

fo yPe-kv"dy = nk-(l+P)/nr (1111)

(a) u(x, t) = 1 f °° f (x)e-(x+ct-z)3/4ktdT

4nkt

(c) u(x, t) = 2r f-oo f (Y) kt
e-(z-x)'/4kt CM

f
+ -2 J t f° Q(x T) n e-(x-:)'/4k(t-T) (

dr
n 0 00 ' t-r

10.4.6. Ai(x) = 11 fo cos (3 + wx dw

10.4.7. (c) u(x, t) _ (3kt)-7- f-oo f (x)Ai [ (3k ] d2

10.5.3. C[e-ax'] = 2 4n0 a-W'/4a

s z
10.5.10. C-1(we-Wa) = +x

10.5.11. u(x, t) = 1 +
4nkt f-oo (f 1) (e

/4kt _ e-(z+z)'/4kt) dx-

10.5.17. (b) U(w,t) : 2wn+ioo'k
t

10.6.1. (a) u(w, y) = F'2(w) sinheinw + F,1(w)einhW(H-y) where 1-t w y) is the Fourierw sinhwH
transform of u(x,y)

10.6.2. (b) u(x, co) = G'(' cosh w L-x where u(x> w) is the cosine transform of u(x> y)cos W

Z Z

10.6.4. (a) u(x,t) = 2n foo f(x)In
x_+Y

+v dx
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(x-xo-(U-YO)2
10.6.11. (a) u(x, y, t) =

fo00 fo00

f (xo, yo) j {eXp [ 4 t

+exp [-(x+xo
)2_(v+yo)'1ll-eXp [-(x+xo 2_(Y-Lo)2l

4kt

-exp
I4kt

t( J1 J dxo Ldyo J

10.6.12. (a) u(x, y, t) = fo L°n°1 A,I(w, t) sin L sinwy dw, where=

An(w, t) = c(w)e-kIW'+(n,r/L)')t

and

c(w) = f o' fL f (x, y) sin n- sinwy dx dyrw- r-

10.6.15. (a) U = F(w)e-" z

10.6.15. (b) u(x, y) = 2 f00 f 0 f(Zo,yo)dxo d

10.6.16. (b) u(r, 8) = f o° A(w) sinh w8 sin (w In
a)

dw

10.6.18. u(x, t) = 2c fx ct g(x) dz

11.2.6. (b)
to

(x,t)

X -

11.2.7.

x+ct

(a) u(x, t) = fx matt
g(xo)1-`-,W2i",c -Ovf)

dxo

11.2.8. (a) Influence function =
0

Wc
if Ix - xol > ct

where r = Ix - xol
l 4rc2 if Ix - xol < d

..... ,. ,.. , f 0 if x > ct

11.2.12. (a) G(x, t; x1, t1) =

) ifx<ct

0 ifr>c(t-tt)
2,rc c2(t t,)2_r2 if r < c(t - t1)

11.3.2. (c) If A = 1, u(x, t) = T f /,-j -t e_,72
dii

11.3.3. G(x, t; xo, to) = 4.-to) {exp [ 4 xi to J + exp [ 4k tto
s

] }
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12.2.2. w(x,t) = cos(x + 3t)

12.2.5. (b) w(x, t) = t + f(xe-t)

12.2.5. (d) w(x,t) = etf(x - It2)

12.2.6. x=2f(xo)t+xo

1 x<2t
12.2.8. u(x, t) = at 2t < x < 4t

12 x>4t

12.3.4. (a) at (x, 0) = -cd )

12.3.4. (b) au (0, t) _ -1 !E
-t-ct

12.4.1. u(x,t)=(

12.4.2. u(x, t) = {

12.4.6. u(x, t) = {

12.4.7. u(x, t) = <

12.5.1.

12.6.1.

12.6.1.

12.6.2.

12.6.3.

0 ifx>ct
h(t - S) ifx <ct

cos x cos ct if x < -ct
e-(t+x/c) + sin x sin ct 0 > x > -ct

0 x>ct
-c fo-x/` h(t) dt x < ct

2 [f (x - ct) + P x + ct)1 ifx>ct
2 if (x + ct) + f (ct - x)1 - c fo-x/` h(t) dt ifx < ct

(b) u(x, t) =
2

[f (x - ct) + f (x + ct)1

(a) P(x,t) = f(x)

(c) P(x,t) =
f(x)e-3xt

p(x, t) = (1 + sin x)et+x/2

(a) p(x,t) = sin(x - cot)

12.6.3. (b) p(x, t) = g (t - o) x < cot
f(x-cot) x > cot

12.6.4. (a) q = umaxP (1 -Ptemax

= Pm. 4 ..12.6.4. (b) p = Pmax/2, u = u2 --, q

12.6.8. (a) P(x, t) = 3c (1 - e-act) + f (x - ct)

(c) P(x,t) = 5t + f (x - 2t2)

(e) P(x, t) = e-If (x + 3 t3)
(g) P(x,t) =

.1t2
+ f(xe-t)

747
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12.6.9. (a) p(x, t) = e3tf(xo), where x = xo - s 6t(e - 1) f2(xo)

12.6.9. (c) p(x,t) = e-tf(xo), where x = xo + f(xo)fo rte-T dr

12.6.11. u(x, t) =
l

eat f x - t -
e3(t-r)g(r), where x

12.6.14. (a) -Vf'+umax(1-- ) fl =vf"

12.6.14. (c) V =
IPJ

= umax (1 - pe )

12.6.17. (a) p(x, t) _ 3 sax x < umaxt/5
p5 X > um&Xt/5

Starred Exercises

=t+ 2 - Zr - 2 x<t+ 2

z

Pi x<uma 1-3P°,'- t

12.6.18. (b) p(x,t) .xt otherwise

P2

13.2.4. C[fo f(t)df] =EFe .

ZX > umax 3
t1 -

8a
+16

4
as 6 +25

e-5a (a +1 0+)e1-5-8a
(a 6 )

24e--
S

13.2.6. (e) se-7t - 'e-t

(j) 2 sin 3(t - 4) - 2 cos 3(t - 4)]9 5+1sin 3t-2cos3t-5H(t-4) [9 + 13 9

13.2.7. (b) y = 1 + e-t
2 et

-,71
e-6t

(d) 1/ = - oe-+ et (25 + lae-6) + e-6t (35e15 - 4)
(f) y = s sin t - e sin 2t

13.3.2. G(t, to) = sin(t - to)

13.4.3. u(x, t) = sin x cos ct

13.4.4. U(x, s) = F(s)e- a/kx

c13.5.3. U(x, a) = si

0<t<3
t>3

13.6.4. (a) O (x, s; xo, to)
.eo e a/k xp sinh /x x < xo
ak

( e17 k x sinkxo x > xo
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13.7.1. (b) f (t) = 3 sin 3t

13.8.1. u(x, t) _ E0n0_1 a sin nLx cos ni , where a = L LL f (x) sin ntx dx

14.2.1. (c) w = -k2

14.2.5. w2 = gk tanh kh

14.2.7. w2 =gIki

14.3.9. (a) Let k = w113 and s = sign(w f). G(x, 0) =
3
!(is/ + 1)e-ikx/2+flklx/2,

for x < 0. G(x, 0) = 2e'kx + 3 (isf - 1)e-ikx/2- for x > 0.

14.5.3. (b) two waves if x > - it and zero waves if x < - it4 4

14.6.1. k=ko and w = w(ko)

14.7.8. 2B = Cu + 2B0, 8A = -Cu,, + 3Cu2 + 4Bou + 8Ao,
tut = -Axxx + 4uAx + 2Aux

14.8.6. (b) o =-1+Rk2-k4,w=k3

14.8.7. (c) Q = k, w = 0 ill-posed since o, - oo as k -+ +oo

14.9.3. iP =constant, and 2w Jk + d"r r + 3w3r3 = 0

14.9.5. u = cL-3/4 cos(f t dt + 70

14.9.8. k = 0x,w = -Bt, kT + 3k2kx = 0, uo = Ae's + (*), AT + 3k2Ax + 3kkxA = 0

14.10.3. Outer uo = - 4. Inner (right) Uo = -i4 + 2e2X, where x - 1 = e112X.
Inner (left) Uo = e- 2X, where x = e112X.

14.10.6. Outer uo = 6(2x + 1)-1. Inner Uo = 6 - 5e-X, where x = eX.





Index

A
Ablowitz, M.J., 664, 688
Abramowitz, M., 310, 319, 334, 342,

592, 668
Acheson, D.J., 80
Acoustics, 1, 276
Action, 702, 703, 711
Adjoint, 174, 181, 183, 184, 212, 295,

296, 407, 408, 524-527
Adjoint Green's function, 527
Adjoint heat operator, 526, 527
Adjoint operator, 183, 184, 525, 527
Adjoint problem, 184
Airplane, 80, 370, see asoLift, Drag750
Airy function, 470, 644, 658, 667
Airy's differential equation, 713
Aki, K., 336
Antman, A. A., 136
Applied mathematics, 1
Approximations

asymptotic expansions, 622, 713,
718, 719, 722, 723

first derivative, 224, 228
nearly monochromatic, 655, 656,

658, 680
partial derivatives, 226, 227, 229
polynomial, 223
quadratic, 223, 228

Assembling, 272
Associated Legendre functions, 338,

340, 342, 343
Asymptotic expansions, 622, 713, 718,

719, 722, 723
Asymptotic formulas

Bessel functions, 308-314, 318-
320

Asymptotic techniques, 214
Average, 18 (see also Mean value)
Average energy, 711
Average value, 83
Axially symmetric, 28

B
Backward difference, 224, 225
Backward heat equation, 680
Bell-shaped curve, (see also Gaussian)
Bender, C., 214, 325
Benjamin, 686, 687
Benney, D.J., 689
Berg, P.W., 311
Bernoulli's condition, 81
Bessel functions, 303, 308-314, 318-

320, 322, 324, 331-334, 341,
342, 389, 436, 502, 629, (see
also Fourier-Bessel series)

normalization integrals, 311
qualitative properties, 318
series representation, 322

Bessel's differential equation, 306-3 10,
314, 318, 322, 323, 325, 331,
341, 346

Bessel's inequality, 219
Bifurcation, 621, 622, 669-672, 674-

676, 683-685, 689, 693-695,
705

diagram, 670-672, 684, 685, 705
Hopf, 583, 674-676, 683-685, 693,

695
pitchfork, 672, 674, 675, 693, 694,

705
point, 670-672, 675, 684, 694

Binomial probability distribution, 240
Bleistein, N., 708

751
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Bound states, 504-506, 663,
668

Boundary condition
adjoint, 524-527
bounded temperature, 162
boundedness, 76
elastic, 135, 137, 140, 151, 162,

173, 190, 198, 279
finite difference, 256
first kind, 162
fixed, 137, 139
free end, 141
heat equation, 10-12
homogeneous, 35, 37-42
insulated, 3, 11-14, 16--19, 25, 30,

31
linear, 35-39
mixed, 162, 180
Neumann, 162, 235, 412, 415, 420
Newton's law of cooling, 12-14,

26, 87, 140, 141, 162, 190,
279

nonhomogeneous, 347, 350-429,
484--530

nonlinear, 36, 37
nonphysical, 199, 201--207
perfect thermal contact, 14, 19,

64, 77, 142, 162
periodic, 65, 77, 163, 177, 179,

180
perturbed, 440-443

Robin, 162
second kind, 162
singular, 163, 179, 305-307
singularity condition, 177, 190, 305,

314, 329, 331, 425
third kind, 162, 198-209
vibrating string, 138, 139, 141-

143

Boundary layers
inner expansion, 717-719
location, 714, 716
outer expansion, 716, 718-720, 724
thicknes, 714, 715, 721, 722
variable, 714, 715, 717, 723

Index

Boundary value problem, 42, 43, 60-
74 (see also Sturm-Liouville
eigenvalue problem)

infinite domain, 444-447
Boundedness, 76
Brillouin, 657, 703
Brusselator, 689
Buoyancy, 677
Burgers' equation, 583

C
Campbell, G.A., 469
Capacity, 6, 581
Car, see Traffic
Cauchy equation, (see also Equidimen-

sional equation)
Cauchy's theorem, 454, 615
Causality principle, 509, 512, 514, 524,

527, 532, 602, 610, 611
initial value problems, 601, 602
source-varying, 512, 514, 527

Caustic, 577-579, 621, 644, 648-654,
656- 659, 667

cusped shaped, 650, 651
Center manifold, 675
Centered difference, 225-229, 235, 247-

260
Characteristic values, (see also Eigen-

values)
Characteristic velocity, 550, 564-573,

578, 580, 647, 659
Characteristics, 482, 518, 536-591, 646-

659, 665, 707-721

envelope, 577, 578, 621-626, 654-
658, 665, 666, 680, 681

fanlike, 565-567
first-order wave equation, 539-542
intersecting, 567, 568, 571, 577
one-dimensional wave, 536-538, 543-

559, 591, 605, 623
reflection, 555

Chemical concentration, 9, 10, 21, 689,
719

Chemical pollutant, 9, 11
Cholesky decomposition, 270



Index

Churchill, R. V., 311, 469, 591, 592,
603

Circle theorem, 246
Circularly symmetric, 30, 159-162, 313,

317, 353, 424, 443, 456, 633,
638

Circulation, 81, 82, 88
Clarkson, P.A., 664, 688
Cole, J.D., 214, 583, 696, 713
Compatibility condition, 441, 443
Complementary error function, 462
Complete, 163, 169, 173, 187, 295
Completing the square, 218, 454, 595
Complex conjugates, 42, 178, 257
Complex Ginzburg-Landau, 681, 682,

693
Complex variables, 454-457, 502, 503,

614--618
Cauchy's theorem, 454, 615
conformal transformation, 503
Jordan's lemma, 618
Laurent series, 617
poles, 594, 595, 615-617, 619
residues, 615, 617
singularities, 592-594, 614-616, 619

Compression wave, 568
Concentrated source, 392--397, 403, 417,

424--428, 509-524, 532, 601,
632, 634

Condition for stability, 692
Conduction, 2, 7
Conductive state, 677
Conductivity, 7, 8, 24, 32, 64
Conformal transformation, 503
Conservation law, 9, 10, 20, 23, 31,

302, 569, 572, 574, 646
Conservation of cars, 562, 563, 569,

583
Conservation of energy, 149, 504, 660
Conservation of heat, 3, 4, 21-23
Conservation of waves, 646, 687, 710
Consistent, 225, 239
Continuous dependence, 84
Continuous spectrum, 446, 447, 502-

505, 507
Contour integrals, 609, 613, 620

753

Convection, 2, 12, 13, 29, 168, 469,
500, 622, 713, 719, 721

Convection coefficient, 13
Convergence

iteration, 261-266
mean, 217, 219, 220, 224, 261,

290, 294
numerical method, 239, 248

Convergent oscillation, 237
Convolution theorem

double Fourier transform, 495-498,
502

Fourier cosine transform, 474 479,
492, 493,500

Fourier sine transform, 473-481,
486, 487, 492-494, 500, 502

Fourier transform, 464-474
Laplace transform, 597-602

Coordinate system
cylindrical, 27-32
moving, 540-544
polar, 27-29

Cosine series, see Fourier cosine series
Cosine transform, see Fourier cosine

transform
Cosines

law of, 431, 432
orthogonal, 58, 59

Courant stability condition, 258, 259
Courant, R., 197, 258, 259
Crank, 248, 249, 252
Crank-Nicolson scheme, 248, 249, 252
Crashes, 370
Cubic equation, 668
Cut-off frequency, 630, 632, 633
Cylindrical coordinates, 27, 31, 32, 326

D
d'Alembert, 516-518, 544, 549, 553,

558
damped oscillator, 318, 696, 698
Davis, P.J., 228
Del operator, 25
Delta function, see Dirac delta func-

tion
Dependence, domain of, 549, 550
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Derivative, (see also Differentiation)
directional, 26, 32-34, 423

Descent, method of, 520, 522
Determinant, 636, 673, 674, 691, 692
Deviation

mean-square, 217, 219, 220
Difference equation (ordinary)

analytic solutions, 241
convergent oscillation, 237
divergent oscillation, 237, 238
first-order, 241, 242
oscillation, 237, 238
second-order, 241, 243

Difference methods, 222-272 (see also
Finite difference methods)

Differential equations, see Differential
equations (ordinary), Partial
differential equations

Differential equations (ordinary), (see
also Bessel's and equidimen-
sional)

Fredholm alternative, 405-420, 438-
442

Green's function, 380-438
indicial equation, 308, 322, 323,

332
initial value problems, 601, 602
integrating factor, 476, 714
linear systems, 187, 673
nonhomogeneous, 397-399 (see also

Green's functions)
ordinary point, 307, 322
reduction of order, 386
series solutions, 322, 339
singular point, 307, 322, 325, 332
undetermined coefficients, 367, 408,

413, 697
variation of parameter, 443
Wronskian, 387, 506

Differentiation
eigenfunctions, 354-366
Fourier series, 116-127
Fourier transform, 464-474
Laplace transform, 591-602

Diffusion, 9-11, 29, 262, 266, 302, 462-
471, 524, 528 531, 583, 622,

Index

681, 689-695, 713, 719-724
pollutant, 9, 11, 29, 622, 713, 719-

724
Diffusion equation (see also Heat equa-

tion)
Diffusion operator, 524
Diffusivity, 8, 10, 25, 622
Dipole source, 423, 429, 430
Dirac delta function, 391-394, 398, 404,

411, 417, 418, 426 , 458-461,
464, 468, 498, 505 , 509, 519,
528, 593, 598, 600 , 631

Directional derivative, 26, 32-34, 423
Discontinuities

propagation, 232, 233
Discrete eigenvalues, 133, 174, 505,

506, 663-668

Discrete problems, see Finite differ-
ence methods

Discrete spectrum, 446, 502-507
Discretization error, (see also Trunca-

tion error)
Discretization time, 230
Dispersion relation, 621-648, 654-658,

667, 680, 687, 695, 708-713
Dispersive waves, 621-626, 639-647,

656-662,680, 708
slightly unstable, 680

Disturbances
propagation speed, 232, 233, 258,

462
Divergence, 23-27

product rule, 300, 306
Divergence theorem, 23, 27, 30, 85,

87, 268, 296, 301, 425
Domain of dependence, 549, 550
Double Fourier transform

convolution, 493, 498-501
derivatives, 499
Laplace's equation, 502
shift theorem, 500

Double integrals, 457
Douglas, 265
Drag, 81-83, 88
Dynamical systems, 621, 669



Index

E
Eckhaus, 688
Eigenfunction expansion, 122, 126, 148,

165, 187, 193, 219, 245, 354,
357-384, 389-414, 419, 433-

443, 529-535, 619, 704, (see
also Eigenfunctions)

egenvector expansion, 245
Eigenfunctions, 43-55, 61 74, 163-221,

290-320, 338-342, 357--378.
438-507 (see also Eigenfunc-
tion expansion)

complete, 163, 169, 173, 187, 290,
295

complex, 448, 449
differentiation, 355, 363, 365, 367
discrete, 236, 237, 250
discrete orthogonality, 236
length, 219, 220
nodal curves, 283, 284, 292, 320,

321
nonunique, 180

orthogonal, 58, 59, 163 189, 290
300, 338-340,407-415

partial difference equations, 258
two-dimensional, 276-312

Eigenvalue problems
Bessel functions, 308-314
degenerate, 442
infinite domain, 444-447
matrix, 184-189
multidimensional, 289, 293, 295

307
nonlinear, 443
perturbed, 438, 440--443
Sturm-Liouville, 157-222
two-dimensional, 276-304

Eigenvalues, 42 -46, 54, 55, 60, 61, 65,
66

asymptotic behavior, 212
asymptotic formula, 201, 202, 213-

215
bounds, 197, 206, 209
coalesce, 442
continuous, 446, 447

755

degenerac.ies, 244, 292
discrete, 446, 447, 449, 450
graphical technique, 200
large, 209-215
lowest, 191-198, 206, 207
matrix, 184-189, 243-246, 251,

673, 675, 690, 692
minimization principle, 191
multiple, 244, 245, 291,
negative, 43, 45, 46, 169. 203-211
nonnegative, 190, 218
positive, 43-50, 166-174, 199-210,

293, 306.
Rayleigh quotient, 45, 163-172,

189-197, 205-212, 290, 300-
302. 307, 314, 317, 325, 345,
376, 377

real, 163, 164, 174-189, 290-298,
smallest, 163-169, 191-197, 290
splits, 442
zero, 43-49, 167, 200-207, 406

Eigenvector expansion, 245
Eigenvectors, 184--189, 244, 245, 673,

690
independent, 187, 188
matrix, 243-246
orthogonal, 177-189

Eikonal equation, 537, 585-590, 707,
708

Einstein, 702

Elapsed time, 383, 520, 523, 524, 531,
533, 602

Elastic boundary condition
membrane, 149-151

Electromagnetic waves, 152, 628, 629,
634

Elliptic function, 668
Energy

conservation of, 660
kinetic, 2, 149, 660, 702
potential, 149, 660, 661, 702
spectral, 469
vibrating string, 147-150

Entropy condition, 571
Envelope

characteristics, 564-569
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wave, 653-668
Envelope equation, 621, 655
Envelope soliton, 666
Equation

homogeneous, 37
linear, 36
nonhomogeneous, 37

Equidimensional equation, 169, 307,
323

Equilibrium, 14--21, 348-353, 669-677,
692-694

displacement from, 348, 350, 357,
672-676

stable, 669-693, 705
unstable, 669-693, 703-705

Equilibrium temperature, 18, 348
Error, 215-266

discretization, 230, 236, 239, 243,
247,248,258-262

mean-square, 217, 219, 220
pointwise, 221
truncation, 223-230, 247-252, 256,

269
Error function, 462
Euler's constant, 323
Even functions, 106, 556
Even part, 110, 111, 115
Exothermic reaction, 159
Expansion (see also Eigenfunction ex-

pansion)
asymptotic, 691, 713-723
inner, 717-725
matching, 718, 723
outer, 30, 31, 160, 323, 634, 716

720, 722-725

F
Family of curves, 577, 649
Fanlike characteristics, 563-565
Ferguson, W.E., 688
Fiber optics, 621, 634
Finite difference methods

backward difference, 224, 225
boundary conditions, 248-250
centered difference, 225-229, 235,

247-260

Index

consistent, 225, 239
convergence, 239, 258-265
Courant stability condition, 258,

259
first derivative, 224, 228, 260
forward difference, 224, 229, 235,

247-249, 253, 259, 260
heat equation, 222, 229-239, 247,

250-256, 262,
implicit, 249
Laplace's equation, 260-266
Laplacian, 227, 228, 253
Lax equivalency theorem, 239
nonhomogeneous problems, 247
numerical instability, 238
propagation speed, 232, 233, 258,

462
Richardson's scheme, 248
S-O-R, 264-266
second derivative, 226-228, 248
stability analysis, 235, 239, 247,

253, 257
stable, 234, 237-240, 246-248, 254,

258
step size, 239, 259
unstable, 234, 237-239, 246-250,

253, 258
wave equation, 256-260, 270
weights, 227, 228, 342

Finite element method, 267, 272
triangular, 270, 272, 274
triangular finite elements, 270
weak form, 267, 268, 270

Finite series, 101, 103
Flexible, see Vibrating string
Flow, see Heat Flow, Traffic Flow
Flux, see Heat flux
Force

impulsive
Forcing

periodic, 368, 371
Forcing frequencies

membrane, 364, 365-372
Forward difference, 224, 229, 235, 247-

249, 253, 259, 260
Foster, R. M., 469
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Fourier coefficients, 91-99, 127-134
Fourier cosine series, 106-131 (see also

Fourier series, Fourier sine se-
ries)

continuous, 111-129
differentiation, 116-123
integration, 121-130
sketching, 101

Fourier cosine transform, 474-479, 492,
493, 500, (see also Fourier trans-
form, Fourier sine transform)

convolution theorem, 477, 480, 498-
503

derivatives, 474-478
Laplace's equation, 484-493

Fourier integral, 450, 451, 459, (see
also Fourier transform)

identity, 449, 450
Fourier series, 49, 89-134 (see also Fourier

cosine series, Fourier sine se-
ries)

continuous, 111-127
convergence, 91, 92
cosine series, 106-131
definition, 90, 91
differentiation, 116-123
discrete, 236, 237, 250
double, 285
even part, 110, 111, 115
finite series, 101, 103,
generalized, 163-166, 196, 216, 289,

290
Gibbs phenomenon, 100, 101, 103
identity, 449, 450
integration, 121-130

linear, 96
odd part, 110, 115
other intervals, 115
overshoot, 101, 103
sine series, 96-131
sketching, 93
wave equation, 557-561

Fourier sine series, (see also Fourier
series, Fourier cosine series)

continuous, 111-113
Green's functions, 391
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heat equation, 99
integration, 127-130
Laplace's equation, 484
sketching, 98
wave equation,145 149

Fourier sine transform, 473-481, 486--
502, 552 (see also Fourier tans-
form, Fourier cosine transform)

convolution, 477 480
derivatives, 474-476
Laplace's equation, 484, 489--493
semi-infinite strip, 484

Fourier transform, 449-474, 482-506,
530, 591, 613, 614, 622-624,
629, 638, 641, 654, 663, 678.
690, (see also Fourier cosine
transform, Fourier sine trans-
form, Double Fourier trans-
form)

Airy function, 470
causality principle, 514
convolution theorem, 466-- 470, 489
definition, 451
Dirac delta function, 458-461, 464,

468, 509, 519
Fourier integral, 450, 451, 459
Gaussian, 451-453, 460-462, 466,

468, 498, 499
half-plane, 487, 489
heat equation, 459 -477, 529 -533
integral, 448-455
inverse, 451-453
Laplace transform, 610-614
linear, 447, 449
pair, 449
product, 466, 467
shift theorem, 456, 469
spectral energy density, 469
variable, 449
vibrating string, 482
wave equation, 482, 483

Fourier's theorem, 92, 93, 97- 100, 105-
107

Fourier, Joseph, 89
Fourier-Bessel series, 311
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Fredholm alternative, 184, 405-420,
438-442

Free end, 141
Frequency, 145, 152-155, 196-198, 212-

214, 368-370, 621-646, 665-
712

local, 212-214
membrane, 367-372
perturbed, 438, 440-443
slowly varying, 213, 214, 586, 588,

642-656,699-702,705-713
spatial, 447-449

Functions
length, 219, 220

Fundamental, 145
Fundamental solution, 460, 461, 464,

498

C.
Galerkin method, 270
Galerkin numerical approximation, 270
Gamma function, 457, 599
Gardner, C.S., 662
Gartland, E. C., Jr., 215
Gas dynamics, 568, 569
Gauss's theorem, 23, (see also Diver-

gence theorem)
Gaussian, 451-453, 460-468, 498, 499

Fourier transform, 449-460
two-dimensional, 494-498

Gaussian elimination, 260
Gelfand, I.M., 506, 507, 663, 668
Geometrical optics, 651, 707
Gibbs phenomenon, 100, 101, 103
Ginzburg-Landau equation, 622, 680,

682, 685, 688, 695
Glendinning, P., 669
Gradient, 24, 25, 29, 31-34
Gram-Schmidt orthogonalization, 180,

299
Green, see Liouville-Green
Green's formula, 175-177, 359-375, 404--

425,510-515,525-530
adjoint heat operator, 526, 527
adjoint operator, 183, 184, 525,

527

Index

Dirac. delta function, 404
discrete, 250
heat operator, 525-527
Laplacian, 416,510
linear algebra, 184
Sturm-Liouville operator, 510
two-dimensional, 374-379
wave operator, 510, 513, 525

Green's function
adjoint, 524-527
bounded domains, 426
causality, 509, 512-514
circle, 430-434
defining differential equation, 394,

396
differential equations, 385-399
Dirac delta function, 391-394
discrete, 250
eigenfunction expansion, 389, 394,

399-414
Fourier transform, 430
Fredholm alternative 411-414, 418,

420, 438-442
generalized, 405-415
heat equation, 380-386, 459-461,

523-535
Helmholtz equation, 401, 435
infinite space, 401, 423-430, 438-

444, 516-521, 530-537
infinite strip, 437
jump conditions, 395, 396
Laplace transform, 610-614
Laplace's equation, 417-433, 486-

493
matrix, 251
Maxwell's reciprocity, 394, 397
modified, 405-415
Neumann function, 412, 415, 420
normal derivative, 423, 489, 515,

529
Poisson's equation, 416-433
reciprocity, 394, 397, 511-514, 521,

527-529
rectangle, 433-437

response, 393, 394

semi-infinite, 532, 535, 537
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semi-infinite plane, 427, 428
singularity, 424-427
source, 383-403, 423-436, 509-

534, 601, 630---634
source-varying, 512, 514, 527

sphere, 437
Sturm-Liouville, 389
symmetric, 528
time-dependent problems, 508-535
translation property, 512, 524, 527,

602
variation of parameter, 443
wave equation, 508-523
wedge-shaped region, 436

Green's theorem, 30
Greene, J.M., 662
Group velocity, 621-647, 654-660, 681,

682, 687, 689, 710-712
Growth rate, 592, 675-680, 686, 688,

716
unbounded,680

H
Haberman, R., 563
Hankel transform, 456
Harmonics, 145, 147, 403, 704
Heat capacity, (see also Specific heat)
Heat conduction

any region, 278
circular ring, 63, 70
insulated ends, 17, 18, 59

Heat energy, 1-14, 19-33, 53, 56, 83,
158, 172, 383, 412, 420, 498

conservation of, 3, 4, 11, 21-23,
29

sources, 3-31
total, 2, 4, 6, 9-11, 19-31

Heat equation (see also Heat flow)
backward, 87
boundary conditions, 9-19
circular, 316
conduction, 2, 7, 21, 24, 29 35
convection, 2, 12, 13, 29, 168, 469,

500, 622, 713, 719, 721
convolution theorem, 466-470
cylinder, 332 -336
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finite difference methods, 229-256
finite region, 533
Fourier transform, 449-474,
Green's functions, 380, 385, 523,

528-534
infinite domain, 444-447, 451, 461,

517, 531, 532
influence function, 460, 477, 489,

529,530
initial condition, 15-20
insulated ends, 17, 18, 59
long rod, 534
nonconstant thermal properties,

170, 198, 298
nonhomogeneous, 126
numerical methods, 229-256
parabolic, 222
plane, 494, 498
product solutions, 47, 48
propagation speed, 232, 233, 462
ring, 63, 70
semi-infinite, 471, 475, 476, 482,

532, 535, 537
small time, 534
steady-sources, (see also Poisson's

equation)
surface heating, 481
three-dimensional, 286
two-dimensional, 252-254, 278-281,

283, 286,
zero temperature ends, 97

Heat flow, (see also Heat equation)
circle, 160, 161
circular annulus, 160, 161
convection, 2, 12, 13, 29, 168, 469,

500, 622, 713, 719, 721
equilibrium temperature, 14-20,

70-76, 301, 302, 348, 349, 373,
406, 490

exothermic reaction, 159
nonuniform rod, 158-161, 170

Heat flux, 3-7, 13, 22-25, 29, 64, 298
Heat flux vector, 22-25, 29

convection, 29
Heat operator, 36, 525-527

adjoint, 524-527
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Green's formula, 527, 528
Heat transfer coefficient, 13
Heaviside unit step function, 393, 592,

605
Helmholtz equation, 401, 435, 706

Green's function, 435
nonhomogeneous, 401, 435

Hexagonal patterns, 693
Hilbert, D., 197
Hooke's law, 47, 139
Hopf bifurcation

subcritical, 676, 684, 693
supercritical, 676, 684, 693

Hopf, E., 583, 674-676, 683-685, 693,
695

Hyperbolic functions, 45, 46, 203
addition formula, 422, 611

I
Images, method of, 427-430, 436, 443,

518, 522, 532-534, 608

Implicit, 249
Implicit function theorem, 675
Impulsive force, 392, 548-551
Index of refraction, 156, 586, 700, 706
Indicial equation, 308, 322, 323, 332
Infinite space Green's function

seealsoGreen's function, 750
Influence functions, 381-386 (see also

Green's function)
boundary conditions, 397-399, 514-

516, 528-530
heat equation, 459-498

Influence, range of, 549, 550
Initial condition

heat equation, 8
Newton's law of motion, 42

Initial value problems, 42
Inner expansion, 717-719
Inner products, 58
Insulate, 2, 52
Insulation, 8, 13
Integral equation, 506, 507, 663, 668

Gelfand-Levitan-Marchenko, 506,
507, 663, 668

Integrating factor, 476, 714

Index

Integration
Fourier series, 127-130

Integration by parts, 104, 108, 121,

122

Inverse cosine transform, see Fourier
cosine transform

Inverse Fourier transform, see Fourier
transform

Inverse Laplace transform, see Laplace
transform

Inverse scattering, 503, 506, 621, 662-
664

Inverse scattering transform, 621, 663,
664

Inverse sine transform, see Fourier sine
transform

Isobars, 31
Isotropic, 32
Iteration

convergence, 258, 262-265
Gauss-Seidel, 263-266
Jacobi, 261-266
S-O-R, 264-266

J
Jackson, J.D., 344
Jacobi iteration, 261-266
Jordan's lemma, 618
Jump conditions

Green's functions, 394-397
Jump discontinuity, 90-93, 98-104, (see

also Gibbs phenomenon)

K
Kaplan, W., 149
Kaufman, H., 592
Keller. J.B., 708
Kevorkian, J., 214, 696, 713
Kinetic energy, 2, 149, 660, 702
Kinsman, B., 627
Klein-Gordon equation, 667
Korteweg-de Vries equation (KdV), 659-

663
linearized, 657 - 660

Kramers, 703
Kruskal, M.D., 662, 664
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L
Lagrange's identity

differential form, 175, 179
integral form, 175

Lake, B.M., 688
Landau equation, 622, 680-688, 693,

695, 705
Landau-Ginzburg equation, see Ginzburg-

Landau equation
Laplace transform, 591-620

contour integrals, 609, 613, 620
convolution, 593, 597-601, 605,

607, 609, 612
definition, 592
derivative, 596, 612
Dirac delta function, 593, 598, 600
eigenfunction expansion, 619
Fourier transform, 613, 614
gamma function, 599
Green's function, 601-603, 610-

613, 618
partial fractions, 593-596, 601, 616
poles, 594, 595, 615-619
separation of variables, 619, 620
shift theorem, 596
singularity property, 593-596
wave equation, 603, 605, 610, 612,

618
Laplace's equation, 26-30, 70-88, 260-

266, 326-336, 343-346, 417--
433,484-493

circle, 437
circular annulus, 87
circular disk, 76, 86
cylinder, 287, 326-336
discretization, 258-262
elliptic, 222
finite difference, 256, 260
Fourier cosine transform, 492, 493
Fourier sine transform, 486, 487
Fourier transform, 488, 489
Green's function, 416-436,
maximum principle, 83, 84
mean value theorem, 83, 224
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nonhomogeneous, see Poisson's equa
tion

polar coordinates, 490
qualitative properties, 83, 84
rectangle, 71, 72, 75-77, 85, 88
solvability condition, 84, 87, 88
spherical cavity, 343
spherical coordinates, 28-32, 336-

342
uniqueness, 84

Laplacian, 25-28
cylindrical coordinates, 27, 31, 32
finite difference, 227
Green's formula, 416, 418, 419,

510
polar coordinates, 29

Laurent series, 617
Law of cosines, 431, 432
Lax's equation, 662, 663, 668
Lax, P.D., 239, 662, 663, 668
Lefever, 689
Legendre polynomials, 339-346

Rodrigues' formula, 340, 346
Lift, 80-83
Light waves, 649
Lighthill, M. J., 563
Linear differential equations

constant coefficients, 123, 187, 197,
198

Linear equation, 36
Linear operator, 36-38, 175, 185, 455,

524
Fourier transform, 455

Linear system, 184, 248, 260, 443, 669
differential equations, 187, 669-

675
Gaussian elimination, 260
numerical methods, 259-265

Linearity, 36, 37
Fourier series, 95

Linearized Korteweg-de Vries equation,
470, 621, 624, 657, 658

Liouville, see Sturm-Liouville
Liouville-Green method, 214
Long waves, 624, 628, 630, 657-659,

667, 688, 689
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M
Mass density, 6 -8

vibrating string, 135
Matched asymptotic expansions, (see

also boundary layers)
Matching principle, 718, 723
Matrix, 184-189, 243-246, 268-274,

673, 675, 690, 692
defective, 245
degeneracies, 244, 292
eigenvalues,, 183-186, 244-246
eigenvectors, 184-189, 244, 245
Gaussian elimination, 260
Hermitian, 189
sparse, 270-272
stiffness, 268-274
symmetric, 186-188, 268, 270
transpose, 186, 189
tridiagonal, 244, 248

Matrix eigenvalue problem, 184, 187
Maximum principle, 83, 84

Laplace's equation, 83, 84
McGregor, J. L., 311
Mean value theorem

extended, 224
Laplace's equation, 83

Mean-square deviation, 217, 219, 220
Membranes, see Vibrating membranes
Mesh, 230-232, 250-263, 270 -273
Mesh refinement, 273
Minimization principle

eigenvalues, 189-191
Rayleigh quotient, 189-197

Minimum principle
Laplace's equation, 83, 84

Miura, R.M., 662
Modes of vibration, 146, 147, 222, 342,

443
Modulational instability, 622, 686
Multiple scales, 214, 622, 696-713,
Murray, 689
Musical instruments, 135, 145

N
Natural frequencies, 145-147, 368-370,

440--443

Index

membrane, xvii, 149-151, 367-372,
440-443

Nayfeh, A.H., 214
Neumann function, 412, 415, 420
Neutral stability curve, 621, 677, 678
Newell, A.C., 664, 682, 687
Newton's law, 12-14, 42, 136-143, 660

spring-mass system, 139-141
vibrating string, 135-150

Newton's law of cooling, 12--14, 26,
87, 140, 141, 162, 190, 279

Nicolis, 689
Nodal curves, 283, 284, 292, 320, 321
Nodes, 145, 321, 403, 634, 670-675,

694
Nonhomogeneous equation, 332
Nonhomogeneous problems, 347-379

(see also Green's functions)
Fredholm alternative, 184, 405-

420, 438-442
Nonisotropic, 32
Nonlinear partial differential equation,

586, 589, 647, 648, 659-668,
682-695, (see also Quasi-linear)

Nonlinear Schrodinger equation (NLS),
664, 668, 686, 687

recurrence, 687, 688
Nonorthogonal functions, 267
Nonuniform media, 589, 590
Normal, 22-26
Normal curve, see Gaussian
Normal vector, 22

outward, 22-26
Normalization integrals, 311, 342
Numerical instability, 231-267

0
Oberhettinger, F., 469
Odd extension, 97-99, 104, 105, 113,

115, 473, 477
Odd functions, 96, 97, 554-559
Odd part, 110, 115
One-dimensional phase portrait, 576,

670, 672, 685, 695, 705
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One-dimensional rod, 2-59
Operators

adjoint, 174, 181-184, 212, 295,
296, 407, 408, 524-527

diffusion, 528-531
Dirac delta function, 391
heat, 36
linear, 35-39, 174

Optics
fiber, 621, 634, 635, 637, 638
geometrical, 651, 707

Order, 223-225
Ordinary differential equations, see Dif-

ferential equations(ordinary)
Ordinary point, 307, 322
Orszag, S. A., 214, 325
Orthogonal curvilinear coordinates, 31

divergence, 32
gradient, 31
Laplacian, 32
scale factor, 31

Orthogonality
basis, 220
cosines, 61-67
eigenfunctions, 46-55, 178-184,

250
eigenfunctions (discrete), 183-188

unique, 179, 180
eigenvectors, 184-189
Fourier transform, 458
functions, 57-59
Gram-Schmidt, 180,187,290,297-

300,340
sines, 50

Oscillation
amplitude, 213-215
convergent, 237, 245
divergent, 237, 238, 245
phase, 213

Oscillator, 318, 319, 696-701
damped, 318, 696, 698
slowly varying, 213, 214, 586, 588,

621, 622, 642-656, 699-713
Outer expansion, 716, 718-720,

724
Overshoot, 101, 103
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P
Parseval's equality, 219-221
Partial difference equation, 229, 235-

262
eigenfunctions, 235-237, 250, 267
Laplace's equation, 260-266
product solutions, 235, 236, 241
random walk, 240, 251, 252
separation of variables, 235, 239,

241
Partial differential equations

eigenfunction expansion method,
121-124

elliptic, 222
finite difference methods, 222-272
hyperbolic, 222
infinite series, 116-119, 126-128
linear, 35-39
nonlinear, 36, 37, 561-589, 646-

651, 659-712
numerical methods, 222-274
parabolic, 222
quasilinear, 536-543, 561-569, 577-

589
see alsoHeat equation, Laplace's

equation, Poisson's equation,
Wave equation, Separation of
variables, Fourier transform,
Laplace transform, 750

Partial fractions, 593-596, 601, 616
Pascal's triangle, 240
Pattern formation, 622, 677, 689, 692
Peaceman, 265
Pendulum, 693, 712
Perfect thermal contact, 14, 19, 64,

77, 142, 162
Perfectly insulated, (see also Insular

tion)
Period

infinite, 656, 661, 663
slowly varying, 213, 214

Periodic extension, 91-93, 98-113, 148,
559

Periodic forcing, 368, 371, 630, 631
Periodicity conditions, 77
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Perturbation
boundary condition, 440, 441
expansion, 696-710, 716-721, 724
frequencies, 440-443

Perturbation methods, 696-725
Phase portrait, 576, 661, 666, 667, 670-

674, 685, 695, 705
one-dimensional, 693-695

Phase velocity, 621-629, 643, 653, 666,
689

Piecewise smooth function, 90, 126,
163, 165, 174, 216, 290, 311,
354, 360, 389

Poisson's equation, 26, 87, 266, 267,
372-379,416-433

circle, 424, 425, 430-434, 437
Fredholm alternative, 418, 420
Green's function, 416-437
infinite space, 423 -430
infinite strip, 437
Neumann function, 412, 415, 420
rectangle, 419-421, 433-437
sphere, 424, 425, 437
uniqueness, 84
wedge-shaped region, 436

Poisson's formula, 433, 437
Polar coordinates, 29, 70, 76, 81, 83,

303--305, 432, 433, 454, 457,
490, 502, 523, 634, 683

Poles, 594, 595, 615-619
Poles of Laplace transform, 592-595
Pollutant, 9, 11, 29, 622, 713, 719,

721, 724

Polonsky, I., 228
Polynomial approximation, 223
Position vector, 495, 496
Potential, 80, 149, 343-346, 503-507,

627, 660-668, 702
Potential energy, 149, 660, 661, 702
Potential equation, (see also Laplace's

equation)
Pressure, 81, 82, 152, 276, 568, 569,

628

Prigogine, 689
Principle of superposition, see Super-

position

Index

Probability problem, 240
Product solutions, 41, 47, 48, 54, 60,

61, 66, 73-79 (see also Sepa-
ration of variables)

partial difference equation, 229,
235-241

Protter, M.H., 84

Q
Qualitative properties

Laplace's equation, 83-85

R
Rachford, 265
Radiation condition, 631, 634
Rainbow, 621, 644, 651, 658, 659
Random walk, 240, 251, 252
Range of influence, 549, 550
Rayleigh quotient, 45, 163-172, 189-

197, 205-212, 290, 300-302,
307, 314, 317, 325, 345, 376,
377

derived, 189
minimization principle, 191

Rays, 321, 577, 578, 589, 590, 649-
654, 667

Reciprocity, 394, 397, 511-514, 521,

527-529, (see also Maxwell's
reciprocity)

Reference temperature distribution, 351
Reflection coefficient, 156, 504-507, 663
Reflections, 552, 558, 585, 608
Refraction, 151-156, 585, 586, 651,

652, 700, 706, 707
Snell's law, 152-156, 651

Relaxation parameter, 265, 266
seealsoS-O-R750

Remainder, 160, 223, 225, 420
Residues, 615, 617
Resonance, 364, 369-371, 620, 630
Response, see Green's function
Restoring force, 47, 151, 190, 198, 212,

318, 702, 708, 712
Richards, P. I., 563
Richards, P. G., 336
Richardson's scheme, 248
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R.iemann sum, 450
Roberts, G. E., 592

S

S-O-R, 264-266
Scattering, 336, 503, 506, 621, 662-

664

inverse, 503, 506, 621, 662-664
Scattering data, 663, 664
Schmidt, see Gram-Schmidt
Schrodinger equation, 667, 668, 687

linear, 655
nonlinear, 664-668

Schwarz's inequality, 221
Scott, 693
Scroll rings, 693
Scroll waves, 693
Secular, 697, 698, 701, 704, 707, 710,

711
Segel, 682
Segur, H., 664
Seidel, see Gauss-Seidel
Self-adjoint

operator, 174-178, 182-185, 435
Self-similar, 463
Separation constant, 40-42

second, 281
Separation of variables, 35-88

infinite domain, 444-447
Laplace transform, 616-620
partial difference equation, 235-

241
summary, 54
time, 275-286
wave equation, 142, 143, 145

Shift theorem
Fourier transform, 457
Laplace transform, 591-592

Shock velocity, 537, 569-575, 583
Shock waves, 537, 567, 573, 576

dynamics, 537, 568, 569, 579, 583
explosion, 569
initiation, 578
sonic boom, 569

Sideband instability, 687
Signals

765

reflections, 552, 558, 585, 608
Similarity solution, 463, 658, 659
Sine functions

eigenfunctions, 43, 46-51
orthogonal, 51

Sine series, see Fourier sine series
Sine transform, see Fourier sine trans-

form
Singular perturbation methods, 622,

659,696-719
Singular point, 307, 322, 325, 332
Singularity, 592-596, 617-619

Laplace transform, 592-596
logarithmic, 314

Singularity condition, 177, 190, 305,
314, 329, 331, 425

Green's function, 425, 631-634
Slinky, 145
Slow variation, see multiply scaled vari-

ables
Slowly varying

amplitude, 213-215,
dispersive waves, 645-668
frequency, 212-214, 645-653
media, 585-590, 703, 706 708, 713
oscillator, 696-701
period, 213 215
wave train, 646, 706

Snell's law of refraction, 152-154
Solitons, 621, 662, 666, 668

envelope, 665, 666
Solvability condition

Laplace's equation, 85
Sound, 145, 151, 152, 440, 568, 569,

628
Sound waves, 152, 568
Source, (see also Images)

concentrated, 392-397, 423-425,
509-524, 530-533, 630-634,

dipole, 423, 429, 430, 529
heat energy, 1-14
line, 523
point, 523

Spectral energy density, 469
Spectral parameter, 662
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Spectrum
continuous, 447, 502-505, 507
discrete, 446-450, 502-507

Spherical coordinates, 28-32, 336-338,
342

Spherical problems, 336
Spiral telephone cord, 145
Spirals, 675
Spring-mass system, 47, 139-141, 318,

699
Stability analysis, 235, 239, 247, 253,

257, 621, 690
Stable (see also Stability analysis)

numerical scheme, 237-239
Standing waves, 145, 147
Steady, 15-19
Steady-state, 15-18, 26-31, 385-399,

484-491
approach to, 16
temperature distribution, 14-20,

(see also Laplace's equation)
Stegun, I.A., 228, 310, 319, 323, 334,

342, 592, 668
Step function, 393, 516, 517, 592, 605,

(see also Heaviside)
Strang, G., 246, 267, 270
Stream function, 80, 81, 88
Streamlines, 80, 88
Stretching

vibrating string, 135
Strings, see Vibrating strings
Strogatz, S.H., 669
Sturm-Liouville eigenvalue problem, 157-

221,294-296
approximation properties, 216
Bessel's differential equation, 306-

310
continuous spectrum, 502
differential equation, 157- 162
eigenfunctions, 163-187, 193-195,

204-221
eigenvalues, 159, 163-215
Green's function, 390
nonuniform vibrating string, 195-

197

Index

Rayleigh quotient, 163, 167-172,
189-197, 205, 206, 210, 212

regular, 176-179
singular, 305-307
smallest eigenvalue, 163, 164, 191,

197, 290
theorems, 163, 164, 169-171

Sturm-Liouville operator
Green's formula, 361, 362, 510

Successive over-relaxation, see S-O-R
Superposition (principle of), 37, 47

integral, 448
nonhomogeneous, 71-73

Surface tension, 627
Symmetric

axially, 28
circularly, 28, 30
matrix, 184,185

Symmetry, see Reciprocity

T
Tacoma bridge, 370
Taylor series, 116, 223-229, 655-659,

669-694
Telephone cord, 145
Temperature, 6-9, 11-21, 24-28, 30-

33, 35, 41, 51, 53-55, 57, 63-
65, 70, 71, 76, 77, 79, 80, 83,
84, 87, 97, 99, 100, 140, 149,
158-160, 162, 170, 172, 198,
207,231,238,249,251,254-
256, 261, 263, 280, 286, 298,
301, 302, 316, 324, 326, 328,
330, 332, 335, 347-351, 373,
381, 383, 386, 396, 406, 427,
445, 446, 459, 460, 462, 463,
467, 471, 476, 481, 485-491,
524, 529, 530, 532, 676, 677,
(see also Heat equation)

average, 18, 29, 83
bounded,162
differences, 7, 8, 32
equilibrium, 14-21, 26-30, 348-

353

isobars, 31
maximum, 83, 84, 87, 88
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minimum, 83, 84, 87, 88
prescribed, 12-15
steady, 15-19, 80-84
steady-state, 15-31, 385-389 (see

also Equilibrium, Laplace's
equation)

Tension, see Vibrating string, Vibrat-
ing membrane

Term-by-term differentiation
Fourier series, 116-126
parameter, 125

Term-by-term integration
Fourier series, 127--130

Thermal contact
perfect, 14, 19, 64, 77, 142, 162

Thermal energy; 1-31 see also Heat
energy

density, 2, 3, 6-9
propagation speed, 462
spread, 457, 458

Trace, 673-675, 691, 692
Traffic

capacity, 581
car velocity, 563, 564, 575
density, 562-584
flow, 562-582

Transform, see Fourier transform, Laplace
transform, Hankel transform,
Fourier sine transform, Fourier
cosine transform

Translation invariance, 612
Transmission coefficient, 504, 507
Transport equation, 708
Traveling waves, 483, 622, 632, 638,

645, 654, 660, 661, 687
Trial function, 191, 192, 268, 272, 324,

325
Trivial solution, 42-45, 65
Tsunamis, 628
Turing, xviii, 622, 674, 689-695
Turing instability, 622, 689-693
Turning pointsee saddle-node 750
Two-dimensional Fourier transform, see

Double Fourier transform
Two-dimensional problems, 27

767

U
Undershoot, 101
Undetermined coefficients, 367, 408,

413, 697
Uniqueness

Laplace's equation, 84
Poisson's equation, 87

Unstable (see also Stability analysis)
numerical scheme, 237-239

V
Variation of parameters, 367, 375, 386-

388, 399-402, 408, 601

Vectors, 22-26, 185-189
eigenvectors, 184-189, 244, 245,

673, 690
position, 495, 496
wave number, 495, 496

Vibrating membrane
annular, 323
any shape, 276-279
circular, 303-325, 440-443
forced, 364-372
frequencies, 283, 297, 316, 325,

342,368-370,440-443
modes, 283, 284, 292, 342, 369,

370, 443
Newton's law, 149, 279, 333
nonuniform, 297
pie-shaped, 316
rectangular, 276, 277, 280, 284-

288, 291
resonance, 364, 369-371

tensile force, 137-141, 150
Vibrating string, 135-150, 162, 198,

199, 283, 371, 443, 482, 536,
546, 557, 606, (see also Wave
equation)

boundary conditions, 135, 138-
148

damped, 148
derivation, 135-138
destabilizing force, 199
energy, 149
fixed end, 139
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Fourier transform, 482, 483
free end, 141
frequency, 145, 196-198
friction, 370, 371
fundamental, 145
gravity, 138
harmonics, 145, 147
infinite interval, 482
jump condition, 141
local stretching, 137
Newton's law, 136-143
nodes, 145
nonuniform, 195, 198
perfectly flexible, 137, 138
reflections, 552, 558
resonance, 364, 369-371
signal problem, 603-606
spring-mass system, 139-141
standing waves, 145, 147
tension, 137-139, 145-150
time-dependent forcing, 371
traveling waves, 146
wave equation, 135, 138-155

w
W. K. B. (J.) method, 214
Water waves, 568, 621, 626-628, 660,

667
Watson, G.N., 310
Wave equation, 135, 138, 142, 143,

145, 147-149, 151, 152, 155,
222, 256-260, 270, 276, 280,
281, 287, 289, 303, 304, 311,
320, 336, 342, 345, 353, 370,
401, 435, 440, 462, 482, 483,
502, 508, 510, 511, 513-523,
527, 528, 536-545, 547-549,
551, 552, 554, 556, 557, 559,
561, 581, 585, 591, 603, 605,
610,612,618,622,628,632--
635, 638, 647, 654, 665, 700,
705-708, 713

characteristics, 482, 518, 536-591,
646-659, 665, 707-721

Courant stability condition, 258,
259

Index

d'Alembert's solution, 517, 518,
549, 553, 558

descent, 520, 522
domain of dependence, 549, 550
finite difference, 256, 260
Fourier series, 142-148, 557-560
Fourier transform, 482, 483
Green's function, 386, 508--522
hyperbolic, 222
infinite interval, 482-484, 516--519
Laplace transform, 603-621
nonhomogeneous, 510
nonlinear, see quasiinear
numerical methods, 256-259
one-dimensional, 135-157, 401, 508-

522, 543-560 (see also Vibrat-
ing string)

propagation speed, 462
range of influence, 549, 550
reflections, 552, 558, 585, 608
separation of variables, 142-148
shape invariance, 541
signal problem, 603 606
sketching, 546, 549
three-dimensional, 518-521
traveling waves, 148, 516, 517, 549-

551
two-dimensions, (see also Vibrat-

ing membrane)
Wave front, 589
Wave guide, 628-636, 653
Wave number, 152-155, 448-451, 495,

496,587,588,621-632,642-
657, 664-667, 677-693, 706-
712

discrete, 446-450
vector, 150, 152, 495, 496, 587,

588, 622, 623, 693, 706
Wave operator

Green's formula, 510-515
Wave velocity

characteristic, 539-553,561-581, 587-
590, 647-653, 659, 683

density, 562-584, 627, 628, 711
local, 561, 564, 628
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sound, 145, 151, 152, 440, 568,
569, 628

Waves, (see also Wave equation)
acoustic, 151, 628, 632, 633
breaking, 487, 568, 689
cnoidal, 660, 668
compression, 568
crests, 305, 496
diffraction, 708
dispersive, 621- 629, 638-647, 653-

665, 680, 687, 689, 708, 711
electromagnetic, 151, 152, 628-

635
envelope, 214, 577, 578, 621--626,

644, 649, 654-658, 665, 666,
680, 681

evanescent, 154, 156, 632
expansion, 565--567, 573-575
light, 151-156, 567-573, 582, 589,

590, 628, 634, 649, 651, 667,
700

plane, 152-159, 507, 585-587
reflection, 151-156, 468, 504--507,

555, 585, 588, 649, 652, 663,
668

refraction, 151-156, 585, 586, 651,
652, 700, 706, 707

shape
reflected, 553--555

shock, 537, 567-585
slowly varying, 642-656, 699-713

769

solitary, 621, 661-668
sound, 145, 151, 152, 440, 568,

569, 628
standing, 145, 147, 240, 283
transmitted, 153-155, 504
traveling, 145-152, 483, 546, 575-

577, 622 665, 681- 688
water, 568, 621, 626--628, 651, 652,

660, 667
wave speed, 152, 516. 575, 636,

651, 661, 665, 668
Weinberger, H.F., 84, 136, 197, 221,

222, 523, 603
Wentzel, 703
Whitehead, 682
Whitham, G. B., 563, 579, 583, 627,

711
Winfree, 693
WKB, see Liouville-Green
Wronskian, 387, 506

Y
Yuen, 1-i.C., 688

Z
Zabusky, N.J., 662, 664
Zeros

Bessel functions, 309. 313, 320,
321

eigenfunctions, 164. 165 206
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