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An Introduction to Optimal
Control Theory

14.1 INTRODUCTION

The word optimal intuitively means doing a job in the best possible way. Before
beginning a search for such an optimal solution, the job must be defined, a mathe-
matical scale must be established for quantifying what best means, and the possible
alternatives must be spelled out. Unless there is agreement on these qualifiers, a claim
that a system is optimal is really meaningless. A crude, inaccurate system might be
considered optimal because it is inexpensive, 1s easy to fabricate, and gives adequate
performance. Conversely, a very precise and elegant system could be rejected as
nonoptimal because it is too expensive or is too heavy or would take too long to
develop.

An introductory account of a dynamic programming [1] approach to optimal
control problems is given in this chapter. The emphasis is on linear system, quadratic
cost problems, both discrete-time and continuous-time. Other optimization techniques
are discussed in many references, including References 2, 3, 4, and 5. A brief look at
one of thse techniques, the minimum principle, is included in Section 14.5 and related
problems. An elementary example of a minimum norm problem was given in Problem
5.36. Methods of generalizing this approach are suggested by Problem 14.1.

14.2 STATEMENT OF THE OPTIMAL CONTROL PROBLEM
A mathematical statement of the optimal control problem consists of

1. A description of the system to be controlled.

2. A description of system constraints and possible alternatives.
3. A description of the task-to be accomplished.

4. A statement of the criterion for judging optimal performance.
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The dynamic systems to be considered are described in state variable form by one
of the forms in Eq. (I4.1). It is assumed that all states are available as output measure-
ments, i.e., y(¢) = x(¢). If this is not the case, the state of an observable linear system
can be estimated by using an observer or a Kalman filter.

x = f(x(¢),u(r),r) or x(k +1)=1f(x(k),u(k)) (14.1)

Constraints will sometimes exist on allowable values of the state variables. How-
ever, in this chapter only control variable constraints are considered. The set of
admissible controls U is a subset of the r-dimensional input space U" of Chapter 3,
U CU'. For example, U could be defined as the set of all piecewise continuous vectors
u(f) € U satisfying |u,(f)| = M or [u(?)|| = M for all #, and for some positive constant M.
If there are no constraints, U = U'".

The task to be performed often takes the form of additional boundary conditions
on Eq. (14.1). An example might be to transfer the state from a known initial state x(¢,)
to a specified final state x(#;) = x, at a specified time #;, or the minimum possible #. The
task might be to transfer the state to a specified region of state space, called a target set,
rather than to a specified point. Often, the task to be performed is implicitly specified
by the performance criterion.

The most general continuous or discrete general performance criteria to be
considered are

T =S(x(t),1) + f " L(x(0), u(0), f) dt

or
J=Sx(N))+ éo L (x(k),u(k)) (14.2)

S and L are real, scalar-valued functions of the indicated arguments. S is the cost or
penalty associated with the error in the stopping or terminal state at time # (or N). L is
the cost or loss function associated with the transient state errors and control effort.
The functions S and L must be selected by the system designer to put more or less
emphasis on terminal accuracy, transient behavior, and the expended control effort in
the total cost function J.

EXAMPLE 141 Set S=0,L =1. ThenJ = f:ﬁdt =t;—to. This is the minimum time prob-
lem. |

EXAMPLE 14.2 Set S=0,L =u”u. Then J = L :uru dt is a measure of the control effort
expended. In many cases this term can be interpreted as control energy. This is called the
least-effort problem. [ ]

EXAMPLE 14.3 Set S = [x(f) — x4]"[x(t;}) — x4] and L = 0. Then minimizing J is equivalent to
minimizing the square of the norm of the error between the final state x(#) and a desired final
state x,. This is the minimum terminal error problem. |

EXAMPLE 14.4 Set S =0, L = [x(¢) — n(1)]"[x(t) — m(¢)]. Then minimizing J is equivalent to
minimizing the integral of the norm squared of the transient error between the actual state
trajectory x(f) and a desired trajectory m(¢). |



Sec. 14.3 Dynamic Programming 503

EXAMPLE 14.5 A general quadratic criterion which gives a weighted trade-off between the
previous three criteria uses S = [x(ty) ~ x4]” M[x () — x4] and L = [x(¢) — n()]” Q[x(¢) — m(1)] +
u(t)"Ru(?). The n X n weighting matrices M and Q are assumed to be positive semidefinite to
ensure a well-defined finite minimum for J. The r X r matrix R is assumed to be positive definite
because R™" will be required in future manipulations. Values for M, Q, and R should be selected
to give the desired trade-offs among terminal error, transient error, and control effort. |

The discrete-time versions of the above examples require obvious minor modifi-
cations. Other performance criteria would be appropriate in specific cases.
The optimal control problem is now stated as:

From among all admissible control functions (or sequences) u € U, find that one which
minimizes J of Eq. (14.2) subject to the dynamic system constraints of Eq. (I4.1) and all initial
and terminal boundary conditions that may be specified.

If the control is determined as a function of the initial state and other given system
parameters, the control is said to be open-loop. If the control is determined as a
function of the current state, then it is a closed-loop or feedback control law. Examples
of both types will be given in the sequel.

The importance of the property of controllability should be evident. If the system
is completely controllable, there is at least one control which will transfer any initial
state to any desired final state. If the system is not controllable, it is not meaningful to
search for the optimal control. However, controllability does not guarantee that a
solution exists for every optimal control problem. Whenever the admissible controls
are restricted to the set U, certain final states may not be attainable. Even though the
system is completely controllable, the required control may not belong to U (see
Problem 14.42).

14.3 DYNAMIC PROGRAMMING
14.3.1 General Introduction to the Principle of Optimality

Dynamic programming provides an efficient means for sequential decision-making. Its
basis is R. Bellman’s principle of optimality, “An optimal policy has the property that
whatever the initial state and the initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision.”
As used here, a “decision” is a choice of control at a particular time and the “policy” is
the entire control sequence (or function).

Consider the nodes in Figure 14.1 as states, in a general sense. A decision is the
choice of alternative paths leaving a given node. The goal is to move from state a to
state / with minimum cost. A cost is associated with each segment of the line graph.
Define J,, as the cost between a and b. J,, is the cost between b and d, etc. For path
a, b, d, | the total cost is J = J,;, + J,; + Ju, and the optimal path (policy) is defined by

minJ = min[]ab + de + ]dlw[ab + Jbe + Jel, Jac + Jch + Jhl, Jac + Jck + Jk]] (143)

If the initial state is a and if the initial decision is to go to b, then the path from b to /
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a

¢ Figure 14.1

must certainly be selected optimally if the overall path from a to [ is to be optimum. If
the final decision is to go to c, then the path from ¢ to / must then be selected optimally.

Let g, and g. be the minimum costs from b and c, respectively, to [. Then
g» = min[J,y + Jy, Jy + Jo] and g. = min{J, + Ju, J + Ju]. The principle of optimality al-
lows equation (14.3) to be written as

g. = minJ = min[J,, + g, Joc + & (14.4)

The key feature is that the quantity to be minimized consists of two parts:

1. The part directly attributable to the current decision, such as costs J,;, and J..

2. The part representing the minimum value of all future costs, starting with the
state which results from the first decision.

The principle of optimality replaces a choice between all alternatives (Eq. (14.3))
by a sequence of decisions between fewer alternatives (find g, g., and then g, from
Eq. (I14.4)). Dynamic programming allows us to concentrate on a sequence of current
decisions rather than being concerned about all decisions simultaneously.

Division of cost into the two parts, current and future, is typical, but these parts
do not necessarily appear as a sum. A simple example illustrates the sequential nature
of the method.

EXAMPLE 14.6 Given N numbers x;, X2, . . . , Xn, find the smallest one.
Rather than consider all N numbers simultaneously, define g, as the minimum of

xr through xy. Then gn=2xn, gyv-1=min{xy_ 1,8z}, gv-2=min{xn 2,8v-1},...,8=
min{x,, g«+1}. Continuing to choose between two alternatives eventually leads to g, =
min{x,, g} = min{x;, X2, . . . , Xn}.

The desired result g; need not be unique, since more than one number may have the same
smallest value. The recursive nature of the formula g, = min{xx, g« +1} is typical of all discrete
dynamic programming solutions. |

EXAMPLE 14.7 Use dynamic programming to find the minimum cost route between node a
and node / of Figure 14.2. The line segments can only be traversed from left to right, and the
travel costs are shown beside each segment.

Define g, as the minimum cost from a general node & to /. Obviously, g;= 0. Since there is
only one admissible path from A to ], g, = 4. Similarly, g;=5,8.=2+g,=6,andg,=6+ g, = 11.
The first point where a decision must be made is at node e. g.=min{3+g,,4+g;}=
min{3 + 4,4 + 5} = 7. The best route from e to [ passes through 4. Continuing, it is found that
g»=min{8 + g4,5+ g} =12, g.=min{4 +g.,6+g}=11,and g, = min{3 + g,,5 + g} = 15. The
minimum cost is 15, and the best pathis a, b, ¢, h, L.
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Figure 14.2 Simple routine
problem.

The preceding procedure has actually answered the sequence of questions: If past
decisions cause the route to be at point k, what is the best decision to make, starting at that
point? The answers to these questions must be stored for future use and are shown by the arrows
in Figure 14.3. The minimum cost path from any node to / is now obvious. For example, if the
path starts at c, then ¢, e, h, [ is cheapest. From f, the cheapest pathisf, j, /. |

14.3.2 Application to Discrete-Time Optimal Control

To make the transition from the simple graph to the more general control problems,
the following analogies are made. The graph of Figure 14.2 or 14.3 is a plot of possible
states (nodes) at discrete-time points #,. Point a is at ¢, b and c at ¢,, ...,/ at t;. The
choice of possible directions, say up or down from e, is analogous to the set of
admissible controls. Selecting a control u(k) is analogous to selecting a direction of
departure from a given node x(k). The line segments connecting nodes play the same
role as the difference Equation (14.1), since both determine the next node x(k + 1) to
be encountered.

EXAMPLE 14.8 Consider the scalar system x(k + 1) =x(k) + u(k) with boundary condi-
tions x(0)=0 and x(3) =3. Find the controls u(0), u(1), and u(2) which minimize J =
2

> {u(k)* + As?}. This performance criterion is the sum of the squares of three hypotenuses in
k=0

the #x plane. This is a form of a minimum distance problem and the optimal sequence of points
x (k) will lie on a straight line in the zx plane. Verifying this obvious result will serve to illustrate
the dynamic programming procedure.

Let g(x(k)) be the minimum cost from x(k) to the terminal point. Since x(3) is the
terminal point, g (x(3)) =0. Then

g(x(2)) = min{cost from x (2) to the terminal point} = m(1§1 {w)’+ A5 +g(x(3))}
u(2) u(2
This minimization is not without restriction since x (3) must equal 3. Using x (3) = x(2) + u(2), it

is found that u(2) = 3 — x(2). For any x (2), there is a uniquely required u (2). This is analogous to
the decisions at points 4 and j of Example 14.7.

Figure 14.3 The optimal
paths.
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For convenience, let At, =1. Then g(x(2)) =[3 —x(2)]* + 1. Moving back one stage,
glx(1))= mir)l {u(1)>+1+g(x(2))}. Using x(2) = x (1) + u(1) leads to
u(l

g(x(1)) =minfu (1 +2+ [3 ~x(1) ~u(DJ)

There are no restrictions on u(1), so the minimization can be accomplished by setting

O (u(1)*+2+[3—x(1) — u(1)]P} = 0. This gives u(1) = [3 — x(1)}/2, and then

u(l)
g(x(1)) = [3 ~x(1) —9—%@} +2+ [3—:32—"@]

This is used along with x (1) =x(0) + u(0) in g(x(0)) = Il}gl {u(0)*>+ 1+ g(x(1))}. Minimizing
again gives u(0) = [3 — x(0)})/3. Since x (0) = 0 is given, u(0) = 1. The difference equation gives
x(1)=1. This is used in the previously computed expression to give u(1) =1. Then x(2) =
x(1) +u(1)=2 and u(2) =3 —x(2) = 1. Finally, x(3) =x(2) + u(2) = 3 as required. Note that
the sequence x (0), x (1), x(2), x(3) lies on a straight line in #x space, as expected. |

Discrete dynamic programming solutions of optimal control problems usually
consist of two stage-by-stage passes through the time stages. First, a backward pass
answers the questions, ‘“What is the minimum cost if the problem is started at time #
with state x(k), and what is the optimal control as a function of x(k)?” If u(k) is
unrestricted and the criterion function is simple enough, the optimal u(k) can be
obtained in explicit equation form in terms of x(k). This can be done by setting the
gradient with respect to u(k) equal to zero as in Example 14.8. When this is not
possible, a discrete set of grid points for the state and control variables would be used.
A computer search routine would be used to find the optimal u(k), in tabular form, for
each discrete value of x(k). This is a generalization of the method in Example 14.7.

The backward pass is completed when time ¢, is reached. Since x(0) is known,
u(0) can be found in terms of that specific state. The second pass is in the forward
direction. The system difference equation uses x(0) and u(0) to obtain x(1). The pre-
viously computed function or table is used to determine the value of u(1) associated
with x(1). Then, in turn, u(1) gives x(2) and x(2) gives u(2), and so on.

The preceding verbal description is now expressed in equation form for the
discrete versions of Eqs. (I4.1) and (14.2). Define g(x(k)) as the minimum cost of the

process, starting at t, x(k). Obviously, g (x(N)) = S(x(N)). Then the principle of opti-
mality gives

gx(N —1))= Jmin {L(x(N = 1),u(N - 1)) +g(x(N))}

Equation (14.1) is used to eliminate x(N). The minimization with respect to u(N — 1)
is carried out by setting the gradient with respect to u(N — 1) equal to zero (if there are
no restrictions on u), or by a computer search routine. In either case the optimal
u(N — 1) must be stored for each possible x(N — 1). Also, g(x(N — 1)) must be stored
for use in the next stage. This continues, stage-by-stage, with a typical step being

g (x(k)) = min{L (x(k), u(k)) + g (x(k + 1))}
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= min {L (x(k), u(k)) + g (f(x (k), u(k)))} (14.5)

Equation (14.5) is an extremely powerful and general result. It is the key to the solution
of many discrete-time optimal control problems. This nonlinear difference equation
has the boundary condition g(x(N)) = S(x(N)). The solution of Eq. (14.5) yields the
optimal control u*(k)# at each time step, and also the optimal trajectory x*(k).

The most general case of Eq. (14.5) can be solved (in principle at least) by using
a tabular computational approach. That is, a discretized grid of possible x(k) and u(k)
values is determined at each time point. The results of the backward-in-time pass
through this grid will consist of a table of optimal u*(k) values for each possible x(k)
value. The storage requirements quickly become excessive for all but the lowest order
systems. The emphasis here will be on the case of linear systems with quadratic cost
functions.

714.3.3 The Discrete-Time Linear Quadratic Problem

The linear system, quadratic cost function (LQ) optimal control problem has received
special attention in the literature and in applications. This is because it can be solved
analytically, and the resulting optimal controller is expressed in easy-to-implement
state feedback form.

Consider the system x(k + 1) = Ax(k) + Bu(k) with x(0) known. The goal is to
find the control sequence u(k) which minimizes the quadratic cost function for the
finite-time regulator problem,

N-1

= Ix(N)"Mx(N) + %EO {x"(k)Qx(k) + u’(k)Ru(k)} (14.6)

M and Q are symmetric positive semidefinite » X n matrices and R is a symmetric
positive definite r X r matrix. No restrictions are placed on u(k).
Let g[x(k)] = min cost from k, x(k) to N, x(N). Equation (/4.5) gives

g[x(k)] = min {x"(k)Qx(k) + su”(k)Ru(k) + g [x(k + 1)]} (14.7)
This is a difference equation and the boundary condition is g[x(N)] = 3x(N)"Mx(N).
This equation is solved by assuming a solution

g[x(k)] =3x(k)TW(N — k)x(k) + x(k)"V(N —k)+ Z(N — k) (14.8)

where W, V, and Z are an n X n matrix, an n X 1 vector, and a scalar, respectively.
They will be selected so as to force Eq. (14.8) to satisfy Eq. (14.7). Equation (14.7)
becomes

x(k)TW(N — k)x(k) + x(k)" V(N — k) + Z(N — k)
= min {xT(k)Qx(k) + ”(k)Ru(k) + x(k + )TW(N —k —Dx(k +1)  (14.9)
+x(k+1)TV(N—k—1)+Z§N—k—1)}

1 The * on a vector, such as u*(k), indicates the optimal vector. It should not be confused with the
notation for an adjoint transformation, such as s{*.
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Substituting x(k + 1) = Ax(k) + Bu(k) and regrouping, the right-hand side of Eq.
(14.9) becomes
R.HS. = m(i? {x(k)[Q + ATW(N — k — 1)A]x(k)
u(k

+3u(k)’[R + BTW(N — k — 1)BJu(k)
+u(k)[BTV(N —k —1) + B"W(N — k — 1)Ax(k)]
+x(k)"ATV(N -k —1)+ Z(N —k — 1)}
Since there are no restrictions on u(k), the minimizing u(k) is found by setting
d{ }au(k) = 0. This yields
u*(k) = —[R + BTW(N — k — 1)B]"'BT[V(N — k — 1)
+ W(N — k — 1)Ax(k)] = F(k)V(N — k — 1) — G(k)x(k)
The problem remains to determine the feed-forward and feedback gain matrices F.(k)
and G(k) and the external input V(k). Rearranging and simplifying Eq. (14.10) gives
R.H.S. .
=(k)7[Q + ATW(N — k — 1)A — ATW(N — k — 1)BUB"W(N — k — 1)AJx(k)
+ x(k)"[ATV(N —k —1) - ATW(N —k —1)BUB" V(N — k — 1)]
+[Z(N—k —1)—3V(N —k — )TBUBTV(N — k —1)]
where U =[R + B"W(N — k — 1)B]"'. Equating the left-hand and right-hand sides,
the assumed form for g[x(k)] can be forced to be a solution for all x(k) by requiring

that the quadratic terms, the linear terms, and the terms not involving x all balance
individually. This requires

W(N -k)=Q+ATW(N —k —1)A

—ATW(N —k —1)BUB"W(N —k — 1)A
VIN-k)=ATV(N -k -1)-ATW(N -k —1)BUB'V(N -k —1)  (I4.13)
ZIN-k)=Z(N-k—1)—3V(N-k —1)"TBUB’V(N —k — 1) (14.14)

The boundary conditions are W(N —N)=M, V(N —=N)=0, and Z(N - N)=0. A
computer solution, backward in time, easily gives W(N — k). Normally (14.12) is
solved first. Then its solution W(N — k) is used as a known coefficient matrix while
solving (14.13) for V(N — k). Then V acts as a known forcing function in (14.14).
Actually, (14.14) never needs to be solved if the only interest is in finding the optimal
control. Z(N — k) is only needed if J,;, must be calculated. For the cost function
considered here (the so-called regulator problem), (14.13) is a homogeneous equation
with zero initial conditions, so V(N — k) is zero for all stages. Therefore, (14.13) is not
needed either.

Equation (I4.12) remains as the principal result. It is interesting to rewrite
(14.12) as follows: Let k'=N —k be a backward running time index and let

(14.10)

(14.11)

(14.12)
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W(N — k) =M(k’). Introducing two new intermediate variables K and P allows Eq.
(14.12) to be replaced by

M(k’) = ATP(k' - 1)A+ Q | (14.15)
K(k') = M(k')B[B"M(k")B + R] " (14.16)
P(k") = [1- K(k")BTM(k") (14.17)

These are exactly the same as (), (2), and (3) of Problem 6.18 (the Kalman filter
algorithm), except that B” replaces C, A’ replaces ®, and k' replaces k. The optimal
mean square estimator problem and the optimal regulator problem are duals of each
other. The initial condition on (14.15) is M(0) = M. The optimal feedback control is
given by

u*(k) = —K'(k' — 1)Ax(k)

so that the feedback gain matrix is G(k) = K’(k’ — 1)A. This duality has a practical
significance. If a computer program is available to compute the Kalman gain matrix
K(k) (Eq. (2) of Problem 6.18), then the same algorithm can be used to find the control
gains G(k). Just make the interchanges with B, C, A, and ® as mentioned above and
remember that time is reversed.

The optimal control sequence can next be found for the same linear system, but
with the more general cost function for the tracking problem,

J =3x(N) = x]"M[x(N) - x]
N-1 (14.18)
+ %/Z:o {[x(k) = n(K)]" Q[x(k) — n(k)] + (k)" Ru(k)}

This cost function attempts to make x(k) follow the specified sequence m(k).

Most of the solution details are the same as for the regulator problem and will not
be repeated. Expanding the quadratic terms in J shows that there are four additional
terms to deal with, due to x,(k) and n(k). Two of these terms become forcing functions
on Egs. (14.13) and (14.14), modified here as

V(N —k)=ATV(N —k —1)

~ATW(N —k —1)BUB’ V(N — k — 1) — Qq(k)
Z(IN-k)=Z(N-k—1)

~IVI(N —k — 1)BUBTV(N — k — 1) + (k)" Qu(k)

Equation (14.12)—or its expanded counterparts (14.15), (14.16) and (14.17)—remains
unchanged. The other two additional terms come into the boundary conditions, which
are

(14.19)

(14.20)

W(N —N)=M (unchanged)
V(N — N) = —Mx,
Z(N — N) =3xI Mx,
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A form of Eq. (14.19) that is consistent with the notation introduced in (14.15),
(14.16), and (14.17) is

V(k)=ATI-K"(k' - )BT]V(k' — 1) — Qu(k) (14.21)
The control law is
u*(k) = —K'(k’ = DAx(k) - Uk’ = 1)B'V(k' — 1) (14.22)

In both the regulator and tracking problems, the feedback gain
G(k)=[R+BTW(N —k —1)B]"'B"W(N —k - 1)A

and the feed-forward gain
F.(k)=—-[R+B"W(N —k — 1)B]"'B”

depend on the positive definite symmetric matrix W, which must be obtained by
solving Eq. (14.12) or the equivalent triple, Eqs. (14.15) through (14.17). This is called
the discrete-time Riccati equation. In terms of the backward running time index k',

this discrete Riccati equation is
W(k)=Q+ATW(k' - 1A

T ' T ' “1RpT ' (14.23)

—A"W(k'-1)B[R+B"W(k'—1)B] 'B"W(k' —1)A

Assume that A is nonsingular. Then this nonlinear difference equation can be reduced
to a pair of coupled linear equations by replacing the n X n nonsingular matrix W by
W(k')=E(k")F(k’)"'. Making this substitution in Eq. (I4.23) and then post-
multiplying by F(k’) and premultiplying by A~7 (the transpose of A™') gives

ATE(k) = ATQF(k") + W(k' — 1)AF(k)
_Wi(k' — 1)B[R + BTW(k’ — 1)B]"'B"W(k' — DAF(k) 429

If the judicious choice

E(k'—1)=ATE(k') — AT QF(k) (14.25)
is made, then Eq. (/4.24) becomes

E(k’ — 1) = W(k' — 1)AF(k")

— W(k’ — 1)B[R + BTW(k’ — 1)B] ' B W(k’ — 1)AF(k’)

Premultiplication by W(k' — 1) ={E(k’ — D)F(k’' — 1)} ! gives

F(k' — 1) = AF(k) — B[R + BT W(k’ — 1)B] ' B"W(k’ — 1)AF(k)

The matrix inversion lemma of Section 4.9, [R+B’WB]'=R'—-R'B[BR'B" +
W' BR™, is used to rewrite this as

F(k' — 1) = AF(k')
—{I-BR'B/[BR"'B" + W(k’ — 1)~ JBR'BTW(k' — 1)AF(k ")
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When the unit matrix is written
I=[BR'B"+W(k'—1)7"][BR'B"+W(k’'—1)7"]"!
the preceding equation can be rearranged to
F(k'—1)— AF(k") =
-W(k'=1)7'[BR'BT+ W(k' = 1) 'BR'B"W(k' — 1)AF(k")
Using WU BR'B"+W!]|"'=[BR'B"W+I]"' and then premultiplying by

[BR™!B’W + 1] and replacing the remaining W terms by EF ' allows the linear equa-
tion to be obtained:

F(k' —1) = AF(k") — BR'B7E(k’ — 1)
Using Eq. (14.25) to eliminate E(k’ — 1) gives the final form
F(k'—1)=[A +BR'B’ATQ|F(k’) — BR"'BTATE(k’) (14.26)
Equations (/4.25) and (14.26) can be combined into
F(k'—1)] [A+BR'B’A7Q —-BR'B’AT|[F(k’)
[E(k’ — 1)] Bl [ —ATQ AT ][E(k ')] (14.27)
The 2n X 2n coefficient matrix on the right side of Eq. (14.27) is often called the

Hamiltonian matrix H. When A, B, Q, and R (and hence H) are all constant, the
solution to Eq. (14.27) can be written as

sl

where the initial condition W(k’ = 0) = M was used to select E(0) =M and F(0) = 1.

In order to bring Eq. (14.27) into the standard form, it was premultiplied by H™*
before solving. This is what causes the negative power on the exponent of H in
Eq. (14.28). It is known [2] that if \ is an eigenvalue of H, then so is 1/\. That is, n of
the eigenvalues are stable (inside the unit circle) and »n are unstable (outside the
unit circle). The Jordan form of H is J = Diag[J, J.], where J; and J, are the n X n
blocks associated with the stable and unstable eigenvalues, respectively. In the case of
distinct eigenvalues, these will be diagonal blocks and J, = J; ! because the eigenvalues
occur in reciprocal pairs. Let the modal matrix of eigenvectors for H be written as
T= [%i %z] and let T = [X; z:j The columns of [’%ﬂ represent the eigen-
vectors associated with the stable eigenvalues. Then

Ty Js—ki Vi + Ty J;k: Vy Ty Js_k:Vu + Ty, J;ki sz]
Tud ¥ Vi +Tpd ¥ Va TuJi¥ Vi + Tl X Vo

Using this result in Eq. (14.28) and then using W = EF ' gives
W) =[TuJ* Vi + Tnd¥ Vo + (Tn Jo* Vio + T J X V)M *
[T J¥ Vi + T 32 Vo + (Tu J5% Vi + T 3% V)M ™!

H—k’ — TJ—k’T—l — [

(14.29)
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The solution for W(k') = W(N — k — 1) can then be used in the equations given previ-
ously for the feedback matrix G(k) and the feed-forward matrix F.(k), leading to the
implementations shown in Figure 14.4. Figure 14.4b is obtained by placing the factor
common to both G and F. in the forward path.

14.3.4 The Infinite Horizon, Constant Gain Solution

For constant coefficient systems whose operating time is very long compared with the
system time constants, it is often justifiable to assume that the terminal time is in-
finitely far in the future. This so-called infinite horizon case leads to a constant feed-
back gain matrix, with attendant implementation advantages. This approximation may
cause little or no degradation in optimality because the optimal time-varying gains
approach constant values in a few time constants (backward from the final time). Thus
the optimal gains are constant for most of the operating period. Furthermore, in the
regulator problem the states are driven to zero in a few time constants after the initial
time f,. Therefore, the control u = —Gx will be essentially zero during the final part of
the operation, regardless of whether a constant or time-varying G is used.

As the time remaining until the end of the problem approaches infinity, k' — o,
the general solution for the time-varying matrix W(k') simplifies to a constant. One
approach to finding the infinite-time-to-go solution is to set W(k') = W(k' — 1) in Eq.
(14.23) and solve the so-called discrete algebraic Riccati equation (DARE). This
solution is easily obtained from the general solution of Sec. 14.3.3, Eq. (14.29). Note
that J;¥ — 0 and J;¥ — = as k'— . The J, terms are dropped and the J, terms are
retained (although they too will be found to drop out), giving

W.. = [T % Vii + T I7F VM Ty J7% Vi + Ty J7% VipM| ™!

— Ty, Tﬁl (14.30)
Vext __u(k) utk — 1) _ x(k)
' XU~ x(k)=Ax(k— 1)
V(K')ym—— F, (k) ~O— Delay 2 T Bu(k - 1) C = y(k)
G(k) |t
(a)
+ u(k) u(k — 1) x(k)
V(K" [R + BTW(k)B] BT Delay System C | y(k)
W(k’) >y

(b)

Figure 14.4
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Thus the desired answer is found by determining the eigenvectors associated with the
stable eigenvalues of H and partitioning them into the two n X n blocks required in Eq.
(14.30). Another obvious way of calculating W.. without solving an eigenvalue problem
is to cycle through Eq. (14.23) or (14.27) until an unchanging result is obtained. In
either case, the constant feedback gain matrix is then given by

G.=[B"W.B+R] 'B"W_A
and the control law is
u(k) = —G.x(k) + F. V(k)

In the regulator problem the input term V(k) is zero. In tracking problems this extra
term must be evaluated from Eq. (14.13) or (14.21). When needed, the feed-forward
control matrix F. is given by

F.= —[B"W.B+R] !B’

EXAMPLE 14.9 Consider the second-order continuous-time plant shown in Figure 14.5. A
sample and zero-order hold is placed in each input path, so that a discrete-time controller can be
implemented. The continuous-time state equations are selected as

. |0 1 0 1 _
X_[O _0.5]x+[1 O]u and y=[1 0O]x

The results of Sec. 9.8 are used to derive discrete-time state equations x(k + 1) = A x(k) +
B, u(k) for three different sampling times T = 1, 3, and 75. Note that the system time constant is
T =2, so these will provide 2, 6, and 20 samples per time constant, respectively.

T A ] B,
1 1 0.786939 0.426123 1]

[0 0.606531] 0.786939 0
1 1 0.307036] [0.052593 0.333333]
3 [0 0.846482 10.307036 0
n (1 0.097541] [0.004918 0.1]
10 [0 0.951229 0.097541 0

To simplify notation, the subscripts on A; and B, will be omitted in the following. Figure 14.6
shows the transient behavior of the gain components derived from the discrete Riccati equation
plotted versus time remaining. For this example the parameters were T =3, Q = R = I, with the
boundary condition for W(k' = 0) = M = [0]. Note that the final constant values are essentially
achieved by ¢, = 4—that is, within just two system time constants. Similar results are found for

- uy (k)

Uy (1) » ZOH |

e up (k) X, 4+ 1 *
uy (1) ZOH 1/(s +0.5) (O] /s p=—x=y

Figure 14.5
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the other sampling times and for other choices of Q, R, and M. For most problems four times the
dominant time constant is a good conservative estimate of the time to settle. Note, however, that
the number of discrete cycles of Eq. (14.23) required to reach these constant levels is a function
of T.

The constant gain versions of the LQ state feedback controller are now used. To show the
effects of the weights Q and R, three choices for Q are used for each sample time 7. R = [ is used
in all nine cases. For the comparisons, a simple tracking problem is defined with m =[1 0]7,
which asks for a unit step in x; while maintaining x, at or near zero. This requires solution for the
infinite time-remaining version of V(k') and F.. By setting V(k')=V(k’'—1)=V. in Eq.
(14.21), it is found that

V.=—{I-A”+A"W..B[R + BTW..B] 'B”} ' Qnq

= —{I — AT[I + W, Bch]}fl QTI (1431)

The external input vector v, of Figure 14.44 is given by F... V... Table 14.1 gives the constant
feedback gains, the required external input, and the resulting closed-loop eigenvalues for each
case.

Note that in each case v.,, is just column one of G, that is, G.m. This is true here because
the selected m) happens to be an equilibrium point of the system; that is, it can be maintained
with zero control, as seen from m = An. In this special case, Figure 14.4 shows that F... V.. = G..m
if u is to be zero. To see that this is not generally true, the reader should rework a case from
Table 14.1 using = [0 1]". With T =1 and Q =R =1, it will be found that G.. is unchanged
but that v, =[0.4405 —0.27403]7, the state vector approaches [0 0.4444]7 rather than v,
and the control does not go to zero but rather to u = [0.2222 —0.4444]".

The transient responses for the cases of Table 14.1 are given in Figure 14.7a, b, and c.
Notice that as Q increases, which is equivalent to making R relatively smaller, the response gets
faster. This is also borne out by the magnitude of the eigenvalues becoming smaller in the
tabulated data. At the same time the gains generally get larger. This is most evident in the
off-diagonal components. The corresponding transient control signals would also get larger as Q
increases. Regarding variations in sampling time, it is seen that all three cases give about the
same results, except that the slower sampling rate gives a less smooth response due to the larger
but less frequent changes at sampling times. As a general rule of thumb, sampling rates in the
range of six to ten per dominant time constant are frequently used. n
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TABLE 14.1

515

T Q

G.

Vext

)\cl

1 101

0.11

101

W=

0.11

101

al=

0.11

0.89339

[0.17640
0.53973

[0.16088
0.18717

[0.19094
| 1.8740

[0.29835
0.76431

[0.19409
| 0.21669

[0.36152

12.6645

[0.36586
| 0.86783

[0.20775

1 0.22792

[0.053625 0.69693

0.45096

0.49114 |
0.38343 |

0.28932 ]
0.20982 |

1.6476 |
0.47914 |

0.72404 |
0.39803 |

0.33294 |
0.21348 |

2.3921 |
0.48467 |

0.82744 |
0.39982 |

0.34882 |
0.21390 |

]

[0.053625
| 0.89339

[0.17640 ]
0.53973 ]

[0.16088 |
0.18717 |

[0.19094 |
1.8740 |

[0.29835 |
0.76431 |

[0.19409 ]
0.21669 |

[0.36152]
2.6645 |

[0.36586 |
| 0.86783 |

[0.20775 |
0.22792 |

]

0.07091 +0.03848

0.30257 £j0.14195

0.56156 +j0.15516

0.35295 = j0.05835

0.67685 = j0.09853

0.83091 +j0.07419

0.72484 +j0.03560

0.89097 + j0.03861

0.94670 = j0.02527

14.4 DYNAMIC PROGRAMMING APPROACH TO CONTINUOUS-TIME

OPTIMAL CONTROL

Dynamic programming applies in a similar way to continuous-time systems. The cost
of operating the system from a general time and state ¢, x(¢) to the terminal time and
state #;, x(#;) is defined as

g0, 4= 1) & min {S(x(tf), 0+ [ L, u(),0) dt}

Breaking the integral into two segments gives

g(x(®), 4~ 1) = If.l(lz)n {S (x(tp), tp) + ft

L

iaz L (X(t)’ ll(t), t) dt

N J;t+8t L.(x(t)s u(?),1) dt]

The principle of optimality states that if the total cost is to be minimum, then the cost

(14.32)



516 An Introduction to Optimal Control Theory Chap. 14

1.200 1.200
101 101
X1
42 0.800 42 0.800
i) [
<] o
5] 5]
& =%
g g
8 3
o [
S s
2 0.400 &% 0.400
| | B
0.00 4.00 8.00 12.00 0.00 4.00 8.00 12.00
Time Time
(a) Sample time=1s (b) Sample time = 0.3333 s

1.200

X1

State components
o
[o¢]
o
S

o
S
o
S

4 i
0.00 4.00 8.00 12.00
Time

(¢) Sample time =0.1s

Figure 14.7 Transient response, constant LQ gains

from ¢ + 8¢, x(¢ + 8¢), must also be minimum. The first two terms on the right side of
Eq. (14.32) must therefore be equal to g(x(¢ + 8¢), ¢, — t — 8t), so that

g(x(1,4— 1) = min {g (e +80,—t~80+ [ L(x(0),u() 0 dt} (14.33)
For &t sufficiently small,

ft T L x(0), u(e), ) de = L(x(t), ut), )5t and  x(t +br) = x(£) + bt
Taylor series expansion gives

0
gx(t +0), =t = 81) =g (x(t), y— 1) + [Vag) k8t — ot
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where 1, = ty— t is the time remaining. Using these in Eq. (14.33) gives

g

a—St + L St} (14.34)

g(x(¢),t,) = min [g (x(2),t,) + [V.g]"x 8t —
u(f)
By definition, g(x(¢),¢,) is a function only of the current state and the time remain-
ing (and not a function of u(¢)). Therefore, Eq. (14.34) leads to the Hamilton-
Jacobi-Bellman (H.J.B.) partial differential equation [3]:
g

3 m(l)n {L (x(2),u(?),t) + [V.g]" x} (14.35)

The boundary condition is g (x(?), t,)|,, -0 = S (x(#y), ;). Equation (14.35) is the continu-
ous-time counterpart of Eq. (14.5). It is the major key to solving continuous-time
optimal control problems. Whether it can be solved or not, and with what difficulty
level, depends upon the class of systems, cost functions, admissible controls, and state
constraints. The optimal control is the one which minimizes the right side of Eq.
(14.35). If there are no restrictions on u(?), i.e., the admissible control set U is the
entire space U’, then the minimum can be found by differentiating with respect to u(¢)
and setting the resultant gradient vector to zero. This gives the necessary condition for
optimality.

9L + o V.g =0

Ju Jdu
If the system is linear, x = Ax + Bu and of/du = B’(¢). If the loss function L is quadratic,
i.e., L of Example 14.5, then dL/0u = 2Ru(¢) so that the optimal u(¢) for the continu-
ous version of the LQ problem is given by

u*(¢) = —3R'BTV,g(x(0),1,) (14.36)

The LQ problem is examined in detail next.
14.4.1 Linear-Quadratic (LQ) Problem, the Continuous Riccati Equation

Consider the linear system x = Ax + Bu. The optimal control is sought to minimize the
quadratic performance criterion of Example 14.5, i.e., the tracking problem. There
are no restrictions on u(¢), and #is fixed.

Equation (14.35) specializes to

%i = min {{x() = 1@ QIX() = n®] + u() Ru(?) + (V:g) [Ax + Bu]}
with boundary conditions

8 [x(®), 2]l -0 = [x(59) — xa]"M[x(1y) — x4]

Since u(?) is unrestricted, taking the derivative with respect to u(f) and setting it equal
to zero gives u*(¢) = —3R ' BTV, g[x(?), #,]. The H.J.B. equation then reduces to

Z—i = [x(t) — n(O)]TQ[x() — ()] + (Vi) Ax(f) — ¥V g)"BR'B’V, g
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This nonlinear partial differential equation can be solved by assuming a solution
g[x(0), t,] = x"(O)W(&,)x(¢) + x"(H)V(¢,) + Z(t,), where W is an unknown symmetricn X n
matrix, V is an unknown n X 1 vector, and Z is an unknown scalar. Differentiating the
assumed answer, treating x(f) and ¢ as independent variables, gives

‘3“;' - xT(t) x(t) +x dV ‘;‘tz and Vg = 2W()x(1) + V(t)
Using these, the H.J.B. equation becomes
d V dZ _ (11Q + 2WA — WBR™' BT Wik

dt,
+x{-2Qm + ATV - WBR!B"V}
+{n"Qm —iVTBR !BV}

In order for the assumed form to actually be a solution for all x(¢), the quadratic
terms in x, the linear terms, and the terms not involving x must balance individually.
Therefore,

‘:ltz = q()TQn() — VT(L)BR'BTV()  (terms not involving x(1))  (14.37)
The linear terms in x(¢) require
4~ —2Qn(s) + ATV(r) ~ W()BR BTV () (14.38)

Each matrix involved in the quadratic terms is symmetric except x’{2WA}x, which is
rewritten as x’{WA + AT W}x + x’{WA — A" W}x. The second term is always zero since
the matrix is skew-symmetric. All quadratic terms in the H.J.B. equation can be
combined into the form x” Px = 0. Since every matrix term in P is now symmetric, it can
be concluded that P =0, or

dW
dt,

The boundary conditions for the three sets of differential equations are
W(t, = 0) =M, V(t, = 0) = —2Mx,, and Z (¢, = 0) = xj Mx,. Equation (14.39) is known
as the matrix Riccati differential equation. It can be solved first, and the result can
then be used in solving Eq. (14.38), after which Eq. (14.37) can be integrated. The
optimal feedback control system can be represented by either Figure 14.8a or b. The
equivalence is established by using the relations G(t,) =R'B’W(t,) and F(t,) =
—3R™'B7. Since the major effort involves solving the Riccati equation, it is considered
in detail next. The form of the matrix Riccati equation that is found most frequently in
the controls literature is

~W(t) = W(HA + ATW() — W(O)BR'B"W(f) + Q (14.40)

=Q+WA+ATW - WBR!B'W (14.39)

The alternate form expressed in terms of time remaining, #,, has a sign change on the
derivative term, since d{ }/dt, = —d{ }/dt. This nonlinear differential equation can be
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transformed into a pair of linear differential equations, in an analogous fashion to the
treatment of the discrete-time Riccati equation in Sec. 14.3.3. Let W = EF . Since
FF ' =1, d{FF '}/dt = [0], or

FF'+Fd{F Y/dt =[0] or d{F 'Ydt=—-F'FF"
From this, W = EF ' — EF ' FF~'. Using this in Eq. (I4.40) and then postmultiplying
by F gives

—(E—EF'F) —EF'AF + A”E — EF-'BR"'B'E + QF
If the terms linear in E and F are equated, that is,

—E=ATE + QF (14.41)
then the remaining nonlinear terms give

EF 'F=EF'AF - EF 'BR'B’E
When this is premultiplied by [EF ']}, the second linear equation is found to be

F = AF — BR™'B’E (14.42)

Equations (14.41) and (14.42) can be stacked into one homogeneous linear system of
coupled equations:

E-[% E (14.43)
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Note that the superior dots indicate d{ }/dt rather than d{ }/dt,. The 2n X 2n coeffi-
cient matrix on the right side of Eq. (14.43) is generally referred to as the Hamiltonian
matrix H. Its form is different from—and should not be confused with—the discrete-
time version of Sec. 14.3. However, similar to the discrete case, this H also has its
eigenvalues occurring in stable-unstable pairs. That is, if N is an eigenvalue of H, then
so is —\. Equation (Z4.43) has a solution in terms of the exponential matrix, that is,

[}41;8] = exp{(t — to)H}[ggg] (14.44)
for any ¢, £, pair. Since the “initial”” conditions on W—and hence E and F—are given at
time #;and not #,, Eq. (I14.44) does not appear ready for use. Two possible modification
methods exist, which show that it is possible to replace t, by #. The first method reverts
to the time-remaining variable ¢, and gives a sign change on the derivative terms. Since
t = t;implies ¢, = 0, this means that

-tz

The other method evaluates Eq. (14.44) with the general time ¢ replaced by the final
time #r and the initial time £, replaced by the current time ¢. This gives

F(t) | _ [F(¢)
[E(t];)] = expilly = ’)H}[E(t)] (14.46)

Inverting the exponential matrix, which just changes the sign in its exponent, to solve
for current values gives Eq. (14.44) with 1, replaced by #. Equation (14.45) gives the
same expression, provided it is recognized that the different methods of indexing time
arguments both refer to the same physical time instant. Since W(t = ) = M, we set
E(t =t)=E(t,=0) =M and F(t, = 0) = I. The similarity transformation relation be-
tween H and its Jordan form J = Diag[J, J.]is H=TJT!, where, as before, J; and J,,

Tll T12

T21 T22

eigenvectors of H, with the first n columns being associated with the stable eigen-

vectors. Let T™!= [z“ Xlz]. Since exp{—t,H} =T Diag[exp{—t,J;} exp{—t,J T},
21 22

the solution for W at a given time ¢ (or the same corresponding time-remaining value #,)

is found using essentially the same steps which lead to Eq. (14.29)

W(t,) = [T exp{—t,J} Vi + Tp, exp{—1, 1.} Va1
+ (T exp{—t,Js} Vi, + T, exp{—1,J.}V)M] *
[Ty exp{—t,J}Vus + Toy exp{—1, 3.}V (14.47)
+ (T exp{—1t,J}Vio + Ty, exp{—t, .}V )M]
Once W(t,) is determined, the control law is given by

u*(f) = —RIBHAW(,)x() + V(1)) (14.48)

contain the stable and unstable blocks and where T = [ } is the modal matrix of
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The external input command V(%) is zero for the regulator problem. In the tracking
problem it must be determined by solving Eq. (14.38) using the now-known matrix
W(t,) and the specified state trajectory n(f) which is to be tracked.

14.4.2 Infinite Time-to-Go Problem,; The Algebraic Riccati Equation

A commonly used simplification of the previous LQ solution is to let t,— «. This is
equivalent to letting the derivative W go to zero, leaving the so-called algebraic Riccati
equation (ARE)

ATW+ WA -WBR'B"W+Q=0 (14.49)

A number of ways of solving the ARE exist. For low-order problems, it may be feasible
to write out the components explicitly. Using the known symmetry of W will yield
n(n +1)/2 coupled quadratic equations. Since quadratics have multiple solutions, a
question arises about which, if any, of these solutions is the correct one for the problem
at hand. Under the assumptions that R is positive definite and that Q is at least positive
semidefinite, it is known that one unique positive definite solution for W exists pro-
vided that the system {A, B} is stabilizable and {A, C} is detectible, where C'C = Q. A
stronger and numerically safer set of requirements is sometimes given, namely: Either
A is asymptotically stable or {A, B} is controllable and {A, C} is observable.

If a positive definite solution is known to exist because of satisfaction of these
requirements, it could be found by numerical integration of Eq. (14.39), backward in
time, until W approaches its constant final value. This approach is discussed in
Problem 14.11, along with some suggestions for integration step-size selection. The
general solution found in the last section can be used to develop another approach to
finding the infinite-time-remaining solution W.. When ¢,— «, exp{—t,J}— « and
exp{—t,J.}— 0. The general results then reduce to

W., = [Ty exp{—t,J}Vi1 + Ty exp{—t,J}V,M] *
[Ty exp{—¢J}Vi1 + Ty exp{—¢t, I}V M]™*
which reduces to |
W, =T, Tj} (14.50)

It is of interest to note that if Eq. (14.44) is treated in a similar fashion but with ¢ — o,
it is found that a “steady-state’” solution for W is given by W, = T, T1;. This is not the
correct solution and explains why the commonly used terminology steady-state solution
must be used with care.

In calculating Eq. (14.50) and/or Eq. (14.30), the eigenvalues and eigenvectors of
H will often be complex. However, Problem 4.23 shows that only real arithmetic is
needed to calculate W... It is also pointed out that the n stable eigenvalues of H are
exactly the closed-loop eigenvalues of the system when the constant feedback gain
control law u(f) = —R™'B’W..x(f) = —G..x(?) is used. The following example uses
simple second-order systems to illustrate the determination of the optimal feedback
gains and several potential pitfalls. -
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EXAMPLE 14.10 Analyze the ARE for each of the following systems, with Q =1 and R = 1.

(a)

(b)

()

(d)

A= [_3 ﬂ , B= [(1)] This system is in the Kalman canonical form, which shows it to be

unstable, and the unstable mode is uncontrollable; hence it is not stabilizable. Ignoring
this fact, it is found that the eigenvalues of H are =2 and =3.16227. The eigenvectors
associated with the stable eigenvalues are found to be

0 -1

[_T_u_] |00
T, 0 —0.16228

-1 -0.13962
Clearly T, is singular, and the method of Eq. (14.50) fails, as well it should. If the
numerical integration method is attempted, it also fails because the solution never settles
to a constant matrix.
A= [“3 _;], B= [(1)] The uncontrollable mode is now stable; hence this system is
stabilizable. Using the eigenvalues-eigenvectors of H, it is found that W.=
[8(1)2%225 822%335], G..=[0.16228 0.031435], and the closed loop eigenvalues are
A = —2, —3.16228. Note that the uncontrollable mode has its eigenvalue unchanged from
the open-loop value of A = —2. This solution is also verified by using fourth-order Runge-
Kutta integration on Eq. (14.39).

A= [3 _ﬂ, B= [(1)] The same two eigenvalues occur here as in part (a), but now the

unstable mode is controllable; hence the system is stabilizable. Routine application of
4.23607 0.80902]

0.80902 0.32725])°

G..=[4.2361 0.80902], and the closed-loop eigenvalues are at A = —3, —2.23607. Again
the uncontrollable mode has its eigenvalue unchanged.

both the eigenvector method and numerical integration give W, = [

0 1 -1 0
{0 1L |1 o oo 0 =3 00 :
A—[O _3],8—[0].The Hamiltonian matrix is H= 1 0 o0 ol The eigen-
0 -1 -1 3

values are found to be at A = —1, 1, —3, and 3. The eigenvectors for —1 and —3 are
[-1 0 -1 -0.25]"and [0.375 —1 0.125 —0.145833]", respectively. These could
be used in Eq. (14.50) to find W... Since this system is stabilizable, it must have a unique
positive definite solution for W... The direct solution of the ARE will be used here to find
the result. A”W + WA — WBR™'B” W + Q = 0 expands to

2ol ezl 6
1 -3 Wiz Wao Wiz Wa 0 _3 0 1
ozl O -l
wiz wnll0 O0llwe wx 0 0
From the 1,1 term, wj; =1. W must be positive definite, so wy; =1. From the 1,2
or 2,1 terms, wy — 3w — wiawy =0, so wio = 0.25. From the 2,2 term, 2w, — 6w, —

wi + 1 =0 gives w,, = 0.23958. From this, the constant gain matrix is G.=[1 0.25], and
the closed-loop eigenvalues are at A = —1 and —3. Attempts to solve this problem with
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numerical integration gave mixed results. The correct answer was sometimes found and
other times not, depending upon the integration step size and the stopping criteria.

(e) A similar example, with pure integrators in the open-loop system, has A= [8 (1)]’

B= [ﬂ Note that B has been changed to make this system controllable. The Hamil-
0 1 0 0

. . 0 0 0 -1
tonian matrix is H= 1 0 0 0
0 -1 -1 0

—0.86615 = 0.5j and 0.86615 = 0.5j. Again, the clean separation into mirror-image stable
and unstable eigenvalues is noted. It is easy to use the expanded components of the ARE,

as in part (d), to find W.. = [\? \}§]’ G.=[1 V3], and the closed loop eigenvalues

. The eigenvalues are found to be at A\ =

are at A = —0.866 £ 0.5j. The same results are obtained by using the two stable eigen-
vectors & =[—0.5-0.866j 0.866+0.5; —j 1]” and its complex conjugate in Eq.
(14.50). To avoid inverting a complex matrix, the result of Problem 4.23 can be used to

. _ 10 -1} -0.5 -0.866 7" .. .
write W, = [1 0][ 0.866 0.5 ] . This problem can also be solved using numer-

ical integration, if appropriate step-size and stopping criterion are selected. The sug-

gestions given in Problem 14.11 are not useful when all the open-loop poles are at the

origin. |

For simple low-order problems, a variety of solution methods can be used, which
become impractical in realistic problems. The eigenvector method of Eq. (14.50) is
capable of solving most ARE problems for which unique solutions are known to exist.
There may be occasions where the 2n X 2n Hamiltonian matrix has eigenvalues on the
jw axis. The clean separation into stable and unstable values thus breaks down. In
these cases, a small change to Q, R, or even A might be used to allow the algorithm to
proceed successfully. The system of Example 14.10(e), with Q = [0], is one such case.
Essentially the same answer would be obtained by changing to a very small nonzero
matrix Q or by setting the diagonal terms of A to a small nonzero value e. Other
solution methods are also known [2].

Note that when the cost of control is very expensive—i.e., when R—> o—the
quadratic terms become vanishingly small and Eq. (14.49) reduces to a Lyapunov
equation. Solutions of the Lyapunov equation were examined in detail in Sec. 6.10.
This limiting result does not seem to be especially useful because it leads to a van-
ishingly small feedback gain G.=R™'B’W as well, so the system has no feedback
control.

14.5 PONTRYAGIN’S MINIMUM PRINCIPLE

Optimal control problems can be analyzed from a number of alternative viewpoints.
The continuous-time versions of Eqs. (I4.1) and (14.2) are considered again. If the set
of admissible controls is unrestricted, the calculus of variations [6] can be used to
derive necessary conditions which characterize the optimal solution. When the admis-
sible control set is bounded, unrestricted variations in u(¢) are not allowed. This situa-
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tion is analogous to the problem of finding the minimum of a function on a closed and
bounded interval. If the minimum occurs at a boundary point, then it is not necessarily
true that the first variation (analogous to the slope) vanishes at that minimal point.
Pontryagin’s minimum principle [5] is an extension of the methods of variational
calculus to problems with bounded control and/or state variables. The simple version
of the minimum principle presented next provides a set of necessary conditions for
optimality (see Problems 14.12 and 14.13). This brief introduction to the theory is
incomplete in that bounded states are not considered, sufficiency conditions are not
treated, etc. A heuristic relation to dynamic programming results is given.
The pre-Hamiltonian is defined as the scalar function

H(x,u,p, ) = L(x,u,f) + p (Of(x,u,t) (14.51)

where p(?) is the n X 1 costate vector and satisfies

. [af]T _
p=—|—1 p— ViL(x,u,1) (14.52)
ox

The minimum principle states that the optimal control u*(¢) is that member of the
admissible control set U which minimizes ¥ at every time. If u(¢) has » components,
then minimizing ¥ gives r algebraic equations which allow the determination of u*(z)
in terms of the still unknown p(#) and x(#). Then u(¢) can be eliminated from equations
(14.1) and (14.52). These equations can also be written in canonical form as

g=d% 5 8% (14.53)

op ox

Equation (14.53) consists of 2n first-order differential equations, so 2n boundary
conditions are required for solution. The initial conditions x(#,) = X, give n of them.
The remaining 7 conditions will apply at the final time #. Their exact nature depends
on the particular problem. x(#) will be specified directly in some cases. If x(#) is free,
then p(t) = V, S (x(?), )|t Combinations of these two kinds of conditions, as well as
others, can arise. If the final time # is not specified, an additional equation is required
to determine it (see Problem 14.13).

Equation (/4.53), along with n boundary conditions at #, and n more at #;, consti-
tutes a two-point boundary value problem. Linear two-point boundary value problems
are easily solved, at least in principle. Nonlinear two-point boundary value problems
are generally difficult to solve, even numerically. Much of the effort in optimal control
theory has been devoted to the development of efficient algorithms for computer
solution of these problems (Problem 14.14).

Note that if p is defined as V, g, then Eq. (14.35) of dynamic programming also
indicates that the pre-Hamiltonian must be minimized at each instant by proper choice
of u(r). When the pre-Hamiltonian is evaluated with all its arguments optimally se-
lected, it is called simply the Hamiltonian #*. (Often the * is omitted.) Equation
(14.35) gives physical meaning to 7€*. It is the rate of change of the cost g as time-
remaining changes, dg/at, = ¥*. If sufficient continuity properties are assumed for g,
the gradient with respect to the state x gives

V.(9g/dt,) = o{V,g}ot, =V, ¥*
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By reverting to ¢ instead of ¢,, using the definition p=V, g, and using the alternate
notation 8{ }/dx for the gradient, the second of Eq. (14.53) is obtained. The first of this
canonical pair is automatically satisfied because of the definition of #. Thus the
essential features of the minimum principle follow directly from the dynamic pro-
gramming approach presented earlier. In some problems, especially those involving
the exact satisfaction of terminal boundary conditions, the minimum principle formu-
lation seems more convenient. This is explored in the examples and problems.

EXAMPLE 14.11 A simplified model of the linear motion of an automobile is X = u, where
x (¢) is the vehicle velocity and u(?) is the acceleration or deceleration. The car is initially moving
at x, ft/sec. Find the optimal «(f) which brings the velocity x () to zero in minimum time t;.
Assume that acceleration and braking limitations require |u(#)] = M for all ¢.

The minimum time performance criterion is J = (;f 1 dt, so the Hamiltonian is
# =1+ p(H)u(?). In order to minimize ¥, it is obvious that u(f) = —M if p(t) >0 and u(¢) = M if
p () <O0. That is, u* () = —M sign (p (¢)). The optimal control has been found as a function of
the unknown p (¢). The differential equation for p is p = —3d%/ox =0, so p(¢) is constant. The
value of this constant must be determined from boundary conditions. (Actually only the sign of
the constant is needed for this problem.) The available boundary conditions are x(0) = xo,
x(t) = 0. The form of the solution for x(¢) is x () = x, + f(; u(t)dt, but u(r) is a constant, either
+M or —M. Therefore, x () =xo = Mt;=0. Clearly, if xo>0, then u = —M, maximum de-
celeration. If xo <0, then ¥ = M, maximum acceleration. That is, u*(f) = —M sign (xo). The
minimum stopping time is # = |xo|/M. Note that u*(f) is expressed in terms of x(f), so this
represents an open-loop control law. This is a typical result of using the minimum principle. B

EXAMPLE 14.12 Consider the linear, constant system x = Ax + Bu with u(¢) unrestricted.
Find u(#) which minimizes a trade-off between terminal error and control effort,
i

T = [x(t) = % Tx(t) — % + | W)

Time ¢ is fixed.
The Hamiltonian is % = u” u + p’[Ax + Bu]. ¥ is minimized by setting

B —0=2u+B"p or w()=-1B7B()
This is not yet a useful answer, since p(f) is unknown. However, p = —9%/9x = —A”p. Com-

bining this with the original system equation gives, after eliminating u(¢),

. b 1pnT
X A —BB || x
Sl = L2222 A
BN a5
Note that the 2n X 2n coefficient matrix is exactly the Hamiltonian matrix arising out of our
solution to the Riccati equation of Sec. 14.4, in the special case of R =1 and Q = [0]. The 2n

boundary conditions are x(0)=xo and p(t) = VS|, = 2[x(#) —x4]. This linear two-point
boundary value problem is treated in Problem 14.15. |

14.6 THE SEPARATION THEOREM

In previous sections of this chapter it has been assumed that the entire state vector x
can be measured and used in forming the feedback control signal. In Chapter 13 it was
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shown that if the system is linear and if the control law is linear, then a linear observer
can be used to estimate x from the available outputs y without changing the closed-
loop poles which the controller is designed to give.

Another version of the separation theorem is more commonly stated in conjunc-
tion with optimal control problems. It states that if

a. the system models are linear (both the dynamics of Eq. (3.11) or (3.13) and the
output equation of Eq. (3.12) or (3.14)) and

b. all measurement errors and disturbances have Gaussian probability density func-
tions, and

c. the cost function of Eq. (14.2) is quadratic,
then the expected value of the cost function J is minimized by

1. designing an optimal controller based on the assumption that all states are
available,

2. designing an optimal estimator to provide an estimate X of x,
3. using X in place of x in the control law of step 1.

These two versions of the separation principle are closely related because of the
following facts: The optimal control law for a linear system with a quadratic cost
function is a linear control law. The optimal estimator for a linear system subjected to
Gaussian noise is a linear estimator of the same form as the linear observer of Chapter
13. While version one is true for any linear controller and linear estimator, regardless
of how they were designed, and without any Gaussian assumptions, all that is guaran-
teed is that the desired closed-loop poles are still achieved. Version two guarantees the
optimality of J in a stochastic sense, but demands somewhat stricter assumptions. The
class of problems that meet these restrictions is referred to as LOG problems (linear,
quadratic, Gaussian). Most successful applications of optimal control theory so far
have been members of this class.

The implication of the separation theorem is that the assumption that the full
state is available can be relaxed. The optimal controllers in this chapter can be cas-
caded with an observer (as in Chapter 13) or a Kalman filter (Problem 6.18) to obtain
the overall design. This practice is generally not valid outside the LQG class, although
it is still sometimes used as a rather effective suboptimal scheme.

Intuitively, one might expect that if control inputs could be tailored in some way,
certain system modes would be more strongly excited, making their states easier to
estimate. This idea is the basis for “probing”’-type control signals. Likewise, it seems
intuitive that if one or more states are only known to within some level of uncertainty,
but the control system behaves as if it were exactly known, then overly bold or decisive
control actions might incorrectly be taken at times. A more cautious controller which
somehow takes into account its knowledge of the uncertainty in the state estimates
might give better overall performance. The notions of probing and caution come into
play in those cases where the separation theorem does not apply. This is still a subject
of active research. To give any more than the above intuitive definitions would go
beyond the scope of this book.
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14.7 ROBUSTNESS ISSUES

Kalman [7] first showed that a single input control system designed with the LQ theory
has a scalar return difference (first introduced in Sec. 2.4) which satisfies |Fy(jw)| =1
for all . Using Nyquist frequency response methods, it can be shown [7] that this
guarantees a phase margin PM = 60° and an upward gain margin GM = «, The down-
ward gain reduction margin is 0.5. This means that the LQ system will remain stable
for any arbitrary gain increase and for all gains at least half the nominal design value.

These reassuring stability margins have also been shown to apply to the multiple-
input case, at least for a diagonal R weighting matrix [8]. This was shown by using the
return difference matrix R, and by using its smallest singular value as the measure of
how close it approaches singularity. The gain margin portion of this result is easily
verified in the time-domain, state space domain by using Lyapunov stability theory of
Sec. 10.6. Suppose the positive definite matrix W., from the ARE is used to define a
Lyapunov function

V=x"W.x
for the closed-loop LQ regulator described by
x= (A - BG.)x

(Since the presence of an external input for the LQ tracking problem does not alter the
loop stability characteristics, only the regulator problem is considered for simplicity.)
Then

V=x"W.x+x"W.x
=x{ATW..+ W.A — GIB"W. — W BG.}x

Assume that the gain actually used in the feedback loop is G. = BR™'B' W, that is, it
equals the optimal LQ gain only when 3 = 1. Then

V =x"{ATW, + W,.A — 28W..BR BT W_}x
which can be regrouped into
V =x{ATW,.+ W,A— W.BR'B’"W..+ Q}x — x{Q + (28 — 1)W..BR ' BT W. }x

Since W, satisfies the ARE, the first quadratic form is zero. Since Q is at least positive
semidefinite, the second quadratic form will be at least positive semidefinite, provided
that 3 =0.5. Lyapunov’s theorem therefore guarantees that the gain-perturbed LQ
system remains stable provided that 3 < <.

While this simple verification gives insight into the robustness issue, most
thorough analyses of the subject are based on singular value analysis of the return
difference matrix. It should be pointed out that singular value analysis can sometimes
give overly conservative estimates of system robustness. The minimum singular value
is a measure of how close the matrix is to the nearest singular matrix. Actual per-
turbations in a physical model may restrict the kinds of changes that can occur in a
system matrix in such a way as to preclude the ‘“nearest singular matrix” from ever
occurring. For example, if a resistor value is the major unknown parameter, these

\ model perturbations may cause only a single matrix element to vary. This points up the



528 An Introduction to Optimal Control Theory Chap. 14

difference between unstructured model perturbations and structured perturbations
[9, 10]. Obviously, an analysis that uses more information about the form which model
perturbations might take is likely to give sharper answers.

A useful theorem [11, 12], which is valid for any arbitrary unstructured model
perturbations, gives the following bounds on the stability margins. Let o(w) be the
minimum singular value of a return difference matrix at any given frequency . If there
exists a bound a =< 1 such that o(w) = a for all , then

PM = +2sin"(a/2) and GM =1/(1%*a)

These margins apply for gain or phase perturbations introduced in the control loop at
the point for which the return difference matrix applies. Figure 14.9 shows the multi-
variable LQ regulator in block diagram form. The return difference of interest is
computed at the input to the plant as Ry(s) = I+ G.(sI — A)™'B. The bound a = 1 has
been shown to apply to this return difference matrix. The preceding theorem then
guarantees the previously stated stability margins for arbitrary gain-phase perturba-
tions introduced at the plant input.

When perfect full state feedback is not available for use in the LQ control loop,
the separation theorem allows estimates of the states to be used in forming the
feedback control signals. Figure 14.10a through d shows block diagram representa-
tions of the controller-observer system. These are obtained, one from another, by
standard block diagram manipulations. Figure 14.10 is the multivariable equivalent of
Figure 13.15, except here the control gain G.. is explicitly identified.

If perfect models were available, the resulting system would perform as designed,
except perhaps for a brief transient due to initial condition mismatches between
the true and estimated states. In fact, the transfer functions from v to y are the same
for Figures 14.9 and 14.10 for any arbitrary control gain G. For Figure 14.9,
x(s) = (sI=A)'Bu(s) = (sI - A)"{v—Gx}, so that x=[I+(sI—A)"'BG] !(sI—
A)"'Bv=[sI—A+BG] 'Bv. Since y=Cx, the full state transfer function is
H;=C[sI- A +BG]'B. From Figure 14.10, y=C(sI—-A)'Bu= W,(s)u. But
u=v—G(GI-A)'Bu—G(sI-A) 'Ly=v—GW;Bu— GW,y. Combining and
solving for y leads to the input-output transfer function

HO = {I + Wl[l + GW3]_1 GWz}_l Wl[l + GW3]_]

The claim is that Hy= H, when exact models are used. The proof uses a result from
Problem 4.4, which is restated here and is referred to as a gain rearrangement identity.
This identity is true for any conformable matrices F and G for which the indicated
inverses exist:

[I+FG]'F=F[I+ GF]!

+ u X
= - (sI— A)"!B C ey ¥

Figure 14.9
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Then a series of standard manipulations gives
H, = W{I + [I+GW;]"'GW, W} '[I + GW;] "
= Wi{[I+ GW;][I +[I+ GW;] 'GW, W,]}!
=W{Il+GW;+ GW, W,;}"..

In terms of the original system matrices this becomes H,= C(sI—A) 'B{I+
G(sI —A) '[I+LC(sI—A)'|B}". Replacing I by (sI — A)(sI— A)7" in the term in
brackets allows an (sI—A)™' to be factored out. Then using A.=A — LC gives
H,=C(sI-A)'B{I+ G(sI—A)"'B}"'. Using the gain rearrangement identity to
move B allows the two inverse terms to be combined, giving H,= C(sI— A+ BG)™'B
= H;. It is clear from Figure 14.10 that the combined system is of order 2 (or higher
with some rearrangements). Since the input-output transfer function equals that for an
nth-order system, some modes must be either uncontrollable, unobservable, or both.
In this case all the modes introduced by the observer are uncontrollable.

g _;],B=IZ,C= [1 0],
and D=[0 0]. Design a constant feedback LQ controller using Q =R =1I,. Then design an
observer by using the duality between controllers and observers. That is, replace A by A” and B
by C’, let Q=1I,, and R=r, and then solve the ARE for W.. The observer gain L is the
transpose of the dual control gain matrix. That is, L =W.,C"R™7. The separation theorem
assures us that the final 2nth-order system will have n poles determined by the Q, R weights—
i.e., the desired controller poles—and n poles determined by the observer. Select the scalar r so
that the observer poles are faster—i.e., further to the left in the complex plane—than the
closed-loop controller poles. Investigate the composite controller-observer system for control-
lability, observability, and eigenvalue locations. Then compare the step response of the full state
feedback system with the controller-observer system.

1.6012 0.4392
0.4392 0.26887
this gain with full state feedback gives the closed-loop eigenvalues A = —1.1818 and —3.6882.
Solving the dual problem with three values of r gives:

r=10>L=[1.1919 .66033]" and Ao= —0.62729, —3.5646
r=1>L=[1.6350 .8366]" and Ao=—1.0411,—3.5939
r=01>L=[3.5876 1.4353]" and \o= —2.487,—4.10

EXAMPLE 14.13 Consider the unstable system described by A = [

Solving Eq. (14.49) gives W, = [ ], and since Q =B =1, G.. = W... Using

Note that the observer gains get higher and its response gets faster as the value of r is decreased.
The same effect occurs as Q is made larger, since only the ratio Q/r is significant in minimizing
the quadratic performance function. The value r =0.1 is accepted, since it gives observer
eigenvalues somewhat faster than the controller eigenvalues. The composite system is described

[y

where v is an arbitrary external input and y={1 0 O 0][;]. The 4 X 4 composite system
matrix is
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0 1 -1.6012 —0.4392
2 -3 —-0.4392 -0.26887
3.5876 0 —5.1888  0.5608
1.4353 0  0.1255 —3.26887

Its eigenvalues are verified to consist of the desired controller and observer eigenvalues,
A= —1.1818, —3.6882, —2.487, and —4.100. The composite system is observable but not con-
trollable. In fact, the Kalman controllable canonical form for this fourth-order system has

T-1.6012  0.5608 | ~0.557862  5.17739
1.5608 —3.26887 | —0.311709  1.86785 |,
P T
A 0 0 29645 ~0.550433
L o 0 | _0.985733 —3.62310
r1.41421 0
0 1.41421
B =10 0
L0 0

and C’' =[0.707107 0 —0.016186 0.7070]. The 2 x 2 lower right corner of A’ describes the
uncontrollable modes, and the eigenvalues of this partition are A = —2.4869 and —4.100. These
are the observer modes. To test the transient performance, it is necessary to specify the inputs
v1(f) and v(¢) as well as the four initial conditions. Only one case is presented, with v; equal to a
unit step function, v, =0, and x,(0) = x,(0) = x,(0) =0, X,(0) = 1. Figure 14.11a shows the re-
sponse of x;, X1, and xi, where x{ is the response obtained with the same inputs and initial
conditions x(0), but with full state feedback. Figure 14.11b gives the same comparisons for the
second state variable and its estimate. The estimate, actual, and optimal curves all agree in the
limit. There is a transient difference between x(#) and X(¢) due to initial condition mismatch. This

0.80 0.40
x3
~ 0.40 — 0.20 -
L [}
) ) A
R & Xy
s 8
> Ed
[ [0
g 3
“ 0.00 “ 0.00 |- X2
—0.40 | | J -0.20 | | |
0.00 4.00 8.00 12.00 0.00 4.00 8.00 12.00
Time Time
(a) x; response < (b) x, responses

Figure 14.11 Comparison of full state step response with observer true and estimated.
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difference decays according to the observer eigenvalue response. The composite system re-
sponses deviate from the optimal full state feedback case because of this transient. Even with
zero input and all initial conditions zero except for X1, for example, the output y, which is just x4,
still shows a nonzero transient. This indicates that the observer modes’ initial condition re-
sponses are observable in the output, but as stated earlier, they are not controllable. ]

Since all models have some degree of iﬂaccuracy or oversimplification, the
question of robustness needs to be considered, here also. It has been shown [13, 14]
that the introduction of a poorly designed observer can cause the comfortable stability
margins of the LQ problem to be lost. The return difference matrix analysis is
somewhat more complicated for the observer system shown in Figure 14.10. Consider
a perturbation du entering at the input to the plant. From Figure 14.10, it will affect x,
x’, and % but not x” if the loop is opened at G.., for example. A comparison of Figures
14.9 and 14.10 shows that any such du will affect both x and x’ (and hence %) in the
same way, provided that

(sT—A)'B=(sI-A)'LC(sI—-A)'B (14.55)

This condition, after modest algebraic manipulations, leads to Eq. (14.56), which is
called the Doyle-Stein robust observer condition. It has been shown [13] that if the
extra freedom which exists in specifying observer poles and finding the observer gain L
is used to satisfy, or approach, the Doyle-Stein condition, then the stability robustness
associated with the full state LQ system of Figure 14.9 can be asymptotically recovered
in the LQG system of Figure 14.10. The original derivation of the Doyle-Stein condi-
tion assumed that there were r inputs and m =r outputs, so that C(sI—A)™'B is
square. Then postmultiplying by the inverse of this matrix and premultiplying by
(sI—A) alters Eq. (14.55) to

B[C(sI-A)"'B] '=(sI-A)(sI-A+LC)"'L

where the definition A, = A — LC has been used. The left side is in the desired final
form. The right side can be rearranged to give

(I-A){I+LCGI-A) }(sI-A)] 'L=[I+LCGI-A)']"'L
Again, using the gain rearrangement identity allows the two L terms to be rearranged,
giving

B[C(sI-A)'B] '=L[0I+C(sI-A)"'L]™" (14.56)

Other forms of Eq. (I4.55) which do not require the assumption that » = m can be
-written, such as

(sI-A)GI-A)'B=LC(sI-A)"'B
which leads to
[I+LC(GI-A)'B=LC(sI-A)'B

A full exploitation of the robust observer results is left to the references. One of the
major results that comes from this analysis is that the placement of all observer poles
far to the left in order to speed convergence of & to x is not always the best strategy
when the possibility of model errors exists. Rather, some of the observer poles should
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approach the stable plant zeros. The rest of the observer poles do migrate outward to
the left along the classical Butterworth configuration.

14.8 EXTENSIONS
Lower-Order Controllers via Projective Controls [15, 16, 17]

From results of the past two chapters, it is known that the closed-loop eigenvalues of a
completely controllable and observable system can be relocated as desired by using full
state feedback. In most practical problems, all states are not available for use. The
only signals that realistically can be assumed available for feedback are the outputs.
Static output feedback can control the location only of a subset of m eigenvalues. The
remaining n — m eigenvalues may or may not take on acceptable values. An observer
of order n, which is a dynamic feedback compensator, can be used with output
feedback and total discretion about eigenvalue locations is again possible. A reduced
order observer, which is a dynamic compensator of order n — m, where rank(C) = m,
can also be used. The order of these feedback compensators may be higher than
desired in many cases. One extension to the LQ feedback theory provides for sub-
optimal lower-order controllers, which preserve some of the optimal eigenstructure
associated with the full state LQ feedback solution. For simplicity the discussion is
restricted to constant, strictly proper systems (D = [0]) which are both controllable and
observable. Only the infinite control horizon is considered, so that the algebraic
Riccati equation governs the optimal solution. The method of projective controls
makes it possible to use output feedback through a dynamic feedback compensator of
order p, with 0 =p =n — m. The projective controls procedure allows for matching
p + m of the eigenvalues and eigenvectors of the suboptimal system with those of the
optimal LQ system. The case of static output feedback is considered first. The optimal
LQ closed-loop system dynamics, with optimal feedback gain Gy, are governed by the
matrix A — BGo=A —BR !B’ W. Let the eigenvalues of this matrix be {\;,i =1, n}
and the corresponding eigenvectors be §. Suppose that m of these eigenvalue-
eigenvector pairs, perhaps the dominant modes, must be retained in the output feed-
back solution. Form the n X m matrix X,, with columns made up of the selected
eigenvectors. The n X n projection matrix P =X, (CX,,)"'C (note P*>=P; see Sec.
5.13) can be shown to project any arbitrary state x onto the subspace spanned by the m
selected eigenvectors. If the feedback control law is

u=—GoPx = —G[X,,(CX,,) ' C]x = —G[X,n(CX,) ]y

then the suboptimal system will have the desired m eigenvalues and eigenvectors. The
balance of the eigenvalues-eigenvectors is determined by the matrix A, — NA},, where
A, is the lower right (n — m) X (n — m) partition of the original system matrix A, A, is
the m X (n — m) upper right partition, and N = X, X;'. The eigenvector matrix X, is
partitioned into the upper m rows, X,, and the lower n —m rows, X,. The obvious
restriction on choice of X, applies. If §; is complex and is selected for inclusion, then
the conjugate column must also be selected. There are many instances where the static
output controller will not be satisfactory. If only one output is available and both
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eigenvalues of an optimal second-order system are complex, the preceding procedure
cannot be used. In other cases the closed loop system will be unstable or otherwise
unsatisfactory due to the uncontrolled eigenvalues. In these cases a pth-order dynamic
controller can be considered with

z=Hz+Ly and u=—{G.,z+G,y} (14.57)

The controller parameters H and L as well as the two gain matrices must be deter-
mined. A composite (n + p)th-order system can be written as

RNCRYHEHS
| X | 0 A llx B
shortened to x, = A, x, + B, u, and
[z ] _ [I 0][1]

Ly 0 Cllx

notationally shortened toy, = C,x,. An augmented Q, = [

0 0
0 Q
the augmented problem has the same cost function J as the original problem.

The standard ARE could be applied to the augmented problem if H and L were
known. However, it can be shown that if H is asymptotically stable, the only possible
g ‘2,], where W is the
solution to the parent ARE equation. This means that the determination of H and L
can be postponed until later.The previous projection results for state output feedback
can be formally applied to the enlarged problem by defining the matrix of m + p
desired eigenvectors,

] is also defined so that

solution to the ARE for the enlarged problem is Wa;[

Xu Xp
X+ p= Xn Xp
X3 Xy

The eigenvectors desired for the original nth-order system are contained in the par-

titions [le Xzz] ={&, i=1, m + p} and are known. The pth-order controller re-
31 32

quires augmentation with the still unknown blocks X;; (p X p) and Xy, (p X m). It is

convenient to assume that the states and measurements are arranged so that C =

[L, 0]. Then the projection matrix for the augmented problem is

_ X X _I[I 0 0]
_ 10 — 11 12 p
Pa Xm +p[Ca Xm + p] Ca Xm +p|:X21 XZZ:I 0 Im 0
A Lass|lZ
Therefore, P, x, = P , where
N llx
_ X1 XlZ]_l _
N=[Xy Xu [X21 x| =N N (14.58)

The projective feedback control is G,x,= —R™'B! W,P,x,, which reduces to
G.x,= —{G,z + G,y}, where
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0
N,

L,

Gz - Gg[ N

] =G,N, and G,= Go[ } =G,'+ G,N,,

The original full state optimal gain G, = [G,, G,] has been partitioned into G,,, which
multiplies measured states, and G,, which multiplies unmeasured states. The
projective control form is now known, but the matrix N of Eq. (14.58) used in forming
the gains depends upon the still-unknown eigenvector blocks X;; and X;,. These are
directly related to the dynamics of the controller, H and L of Eq. (14.57), which have
not yet been specified. As long as the controller matrix H is asymptotically stable, any
Xi; and X, could be used, and the primary objective of retaining m + p eigenvalues
and eigenvectors of the optimal system will be met. The remaining n — m eigenvalues,
called the complementary, or residual, spectrum, are affected by the choice of the
remaining unknowns, since these eigenvalues are determined by the matrix

_ _ _ _ Xy Xp|™
A=An-NAz=An—[X: X[ 3" X7| Ac
21 22

This 1s similar to the problem encountered in pole placement using output feed-
back in Sec. 13.5. Thus the selection of X;; and X, can be used to give acceptable
eigenvalues to A,. As a minimum, all the residual eigenvalues must be stable. With X,
and X, determined, the gains G, and G, can be evaluated. The last task is to determine
the control matrices H and L. The augmented closed-loop eigenvector equation is
[A; —B.G.)X, s, =X, pApsp. It has m + p known, specified eigenvectors in X+,
and eigenvalues in A, ,,. By assumption we are dealing with the simple eigenvalues
cases I or II; of Sec. 7.4, so that A, ., will be diagonal. However, in the case of
complex eigenvalues and eigenvectors, it may be more convenient to work with purely
real arithmetic. Postmultiplication by a transformation T (see Problem 4.23) gives

[Aa_BaGa]Xm+pT=Xm+pTT-1Am+pT9 or [Aa_BaGa]Xr;z+p= r:'l+pAr:l+p

In the primed form only real numbers are required, but A,,,, will no longer be
diagonal. The prime is dropped below, and the expanded partitioned form of these
equations can be solved to give

H LI=[X, XA X Xel” 14.59
[ ]_[ 11 12] m+p le X22 ( . )

0 1 0 0 1
EXAMPLE 14.14 The third-order system with A = { 0 0 1}, B= {0}, and C” = {0}
-2 -1 -1 1 0
and with Q =I5, R = 5 has the optimal full state feedback gain G, = [0.04939 1.2591 0.92826]
and the closed-loop eigenvalues are \; = {—1.37085, —0.2787 + 1.1905;}, and the corresponding
eigenvectors are

0.729456  0.186430 F 0.79634j

—0.532106  0.599405 = 0.296929]}
-1 -1

If static output feedback is used, one eigenvalue-eigenvector from the optimal set can be
retained, and it must be the real eigenvalue because complex pairs cannot be split. It is easy to
calculate that G, = Go & [C&] ™" = 0.067813 will in fact retain the first eigenvalue-eigenvector.



536 An Introduction to Optimal Control Theory Chap. 14

However, the other two eigenvalues will be in the right-half plane, so this solution is not useful.
A dynamic controller of order p =1 can be designed which will retain the complex conjugate
eigenpair, as follows. The values X;; = —1 and X, = 1 were found to give stable complementary
1.76109 3.24908
—0.981661 —3.30605]’ G.=1.30615, G,=1.07144, H=
—3.806533, and L = —7.871706. It can be verified that these values do retain the complex
eigenvalue-eigenvector pair in the suboptimal solution. The two remaining eigenvalues are
at —0.23494 and —4.014. The first of these may be too close to the jw axis. A systematic search
for other values of X;; and X, which give a more satisfactory residual spectrum can be carried
out [16]. |

eigenvalues. Using these, N=[

Robustness Enhancement via Frequency-Weighted Cost Function [18, 19]

There are many situations where the system model used in control design is known to
be inaccurate at high frequencies. The steady-state D.C. error may be particularly
important in other cases. The suppression of certain vibration modes may be crucial in
other circumstances. All these criteria suggest that errors at certain frequencies may be
more costly than others. It is possible to extend the infinite time LQ optimization
theory to frequency-sensitive cost functions by applying Parseval’s theorem:

fo P =5 | IF(jw)Pdw (14.60)

where F(jw) is the Fourier transform of f(¢). The cost functional J can be written
in a similar way by defining f7(¢) = [(Q"*x)” (R**u)], because then

r I£()|*dt = Jw {xTQx + u’Ru} dt

- (14.61)
5| 5 ()QUjo)x(j0) + u*(jo)Ru(je)}do

where ( )* indicates the complex conjugate of the transpose of the quantity inside. Up
until now the weighting matrices Q and R have been constants. In order to obtain
frequency-dependent weighting while still being able to utilize the standard LQ re-
sults, we select Q(jw) = T*(jw)T(jw) and R(jw) = U*(jw)U(jw) and define two new
vector variables whose transforms are related to x and u according to

2(jw) =T(jo)x(jo) and w(jo) =U(jo)u(jo) (14.62)

The implication is that z is the output of a filter or dynamic system with transfer
function T(jw) and input x(jw). If T is a proper transfer function, then there is a
corresponding time domain relation involving new states z;,

z,=F,z,+G,x and z=H,z,+D,x (14.63)

A similar relationship can be written between u and w by introducing additional states
w; for the transfer function U using the methods of Chapters 3 and 12:

w, =F,w,+ G,u, w=H,w, +D,u (14.64)
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Equations (/4.63) and (14.64) can be combined with the original system state equa-
tions to give

X A 0 0 ||x B

Zz |=1G, F, 0 ||z, [+]0 |u (14.65)
| W, 0 0 F,Jlw] LG,

y C 0 0 |ix D

z|=|D, H, 0 ||z, [+|0 |u (14.66)
| w 0 0 H,jlw,] LD,

The cost function is now J = [{z7z+ w'w}dt. The z'z term can be written as a
quadratic in the new states x and z, by using Eq. (14.66). If the same approach is used
with the w’ w term, cross products of state and control terms arise. It is not difficult to
return to Sec. 14.4 and derive a modified Riccati equation to provide the solution in
the presence of these cross terms. An alternate approach is first to solve for the control
variable w that optimizes

J=[{xI'Q,x,+w/ R, w}dt (14.67)
with the definitions xI =[x’ z] w/]
DID, DIH, 0

Q.=(H/D, H/H, 0|, R,=I (14.68)
0 0 0

Equation (14.65) must be rewritten in terms of w rather than u. This is done by using
the last partition of Eq. (14.66), assuming that D, is invertible. This gives

u=D;'(w—H,w,) (14.69)
A 0 —~BD;'H, BD,'

x,=|G, F, 0 x+| 0 |w (14.70)
0 0 F,—G,D;'H, G.,D;!

Equations (14.67) and (I4.70) are in the standard forms used in the earlier LQ
problems, and the solution for the optimal w is obtained by solving an ARE for W,.
Then w = —R;' Bl W, x,, and using Eq. (14.69) givesu= —K,x - K,z, — K, w,.

EXAMPLE 14.15 A fourth-order system with input-output transfer function y(s)/u(s)=
(s +5)[s(s + 1)(s*w? +2lw,s +1)] is to be approximated by a second-order model
(s +5)/[s(s + 1)], which is a good low-frequency approximation if ,, >> 1. Assume { = 0.5 and
w,, = 10. Then the state variable equations for the true system and the model have the following
matrices.

1110 0 0

=110 01 0 1o -1 1 N

A= _100 0 0 1| B=|100 A'"“[ 0 0] B"’"[s]
0000 500

The full-state feedback optimal LQ solution for the fourth-order system with Q = Diag[1 1 0 0]
and R =1 has the feedback gains G.=[—4.9368 0.4406 0.09376 0.00822], and this gives
closed-loop \; = {—5.583 = 1.3338j; —6.659 + 11.102;}.
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When the second-order approximate model is used with a cost function containing
Q =Diag[1 1] and R =1, the resulting gains are G,.. = [0.41421 1], and the eigenvalues are
N ={—1.414, —5}. When these two approximate gains are used in the true fourth-order system,
the step response of Figure 14.12 shows a very strong ringing at the frequency of the unmodeled
modes. A frequency weighted cost function is selected in an attempt to suppress the oscillation.
Various approaches could be studied, such as weighting both diagonals in Q. This would mean at
least a second-order controller. Alternatively, a weighting on R could be introduced, and to
keep the example simple w(s) = [(10s + 1)/(s + 1)]u(s) is selected. As frequency (or s) gets
large, this weights the fluctuations in «® 100 times more than in the original R =1 case. The
dynamics of this weighting filter are described by w, = —w, — 9u and w = w, + 10u.

Augmenting the model as in Eqs. (14.65) through (14.70) gives the third-order design
system (no extra z, states are needed here):

X1 -1 1 0 ||x 0.1
[J&Z] = { 0 0 —O.Ssz} + [ O.S}W Q.=Diag[l 1 0], R.=1
Wy 0 0 —0.1dlxs -0.9

The ARE solution shows the optimal w = —[0.19968 1.2145 -—0.63393]x,. Converting back
to the actual control gives u = —[0.019968 0.12145 0.036607][x; x> w,]’. When this con-
troller is used with the true fourth-order model, the high-frequency oscillation is replaced by a
few cycles of a much lower frequency damped response. The step responses for (1) the true
system with full optimal feedback, (2) the true system with static feedback of only the first two
states (gains derived from the second-order model), and (3) the true system with the first-order
dynamic controller just derived are compared in Figure 14.12. |

The preceding example illustrates that the frequency weighting concept increases
the order of the design model and the resulting controller, although not necessarily to

2.00 —

1.60 - Static controller based on second-order model

Second-order model with frequency-weighted cost

o 120 |-
=
3
&
g 080

0.40 Optimal fourth-order, full state feedback

0.0 | | I | | |
0.0 0.80 1.60 2.40 3.20 4.00 4.80 5.60

Time

Figure 14.12
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the full order of the true model, which is usually unknown. The projective controls
approach reduces the order of the implemented controller. These two concepts were
introduced for different fundamental reasons, one for controller order reduction and
the other for enhancement of system robustness. Both concepts can be combined into
a single design methodology [20].

14.9 CONCLUDING COMMENTS

Dynamic programming can be applied to a wide variety of optimization problems. An
optimal assignment problem is described in Reference 21, and applications to control
of systems described by partial differential equations are described in Reference 22. In
principle, almost any optimal control problem can be solved numerically by using the
dynamic programming approach. Let time be divided into a sufficiently small set of
discrete points, and also quantize the allowable range of each state variable into a finite
set of points. The set of allowable controls at each state is also quantized to a finite
number of discrete possibilities. This means that the state-time space is then covered
by a multidimensional mesh of node points similar to those in Figures 14.1 through
14.3 and in Problem 14.2. The solution process will normally require an interpolation
step because an arbitrarily quantized set of controls at one time step will not neces-
sarily give states at the next time step which fall on the discrete state values. Stated
differently, the best control at a given state-time node will frequently fall between two
of the discrete controls. Note that in this purely numerical approach, bounds on
admissible controls and state variables are actually helpful, since they limit the range of
values that need to be quantized and searched over. The biggest limitation to this
method is what Bellman [1] called the “‘curse of dimensionality.” If there are n state
variables and if each is quantized into 100 points, there will be (100)" grid points for
each time step. At each of these, the best control u[x(k)] and the best cost g[x(k)] must
be found (usually by direct enumeration) and stored. Computer storage and solution
time become the limiting factors.

In terms of analytical solutions, dynamic programming yields the Hamilton-
Jacobi-Bellman equation (74.35). This is a nonlinear partial differential equation, and
general closed-form solutions are not known. When the set of admissible controls and
states are not constrained, the minimization required in the HIB equation can be
explicitly attempted. If the system is linear and if the cost is quadratic, this approach
leads to the Riccati equation, which is still nonlinear but is an ordinary differential
equation. The Riccati equation can be reduced to a coupled pair of linear differential
equations, essentially equivalent to those obtained using the minimum principle. In
the constant coefficient case, a closed-form solution can be written in terms of the
exponential matrix. The infinite time-to-go solution can be found by solving the
simpler algebraic Riccati equation, and the optimal control is expressed in terms of
state feedback with constant gains.

- Major emphasis here has been placed on the linear-quadratic problem and some
interesting extensions to it. Notice that even here, computational aides are essential.
Even a lowly second-order example becomes a fourth-order Hamiltonian system,
which is not conducive to hand solution. In solving optimal control problems, it seems
not to be a question of whether a computer will be used but how it will be used.
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Tools for solving the Riccati equation are widely available. Solutions also can be
obtained by using standard eigenvalue-eigenvector or numerical integration packages,
which are even more widely available. Thus the mechanics of basic LQ theory can be
applied by the controls practitioner in an easy fashion. Many extensions to the basic
theory, such as those of Sec. 14.8, assume knowledge of and a facility with LQ theory
as a starting point. Some adaptive and self-tuning control methods contain an inner
loop consisting of an LQ optimal controller or a pole placement controller. The LQ
theory is the most widely used aspect of optimal control theory, which is why it was
stressed here.

There is a significant learning benefit derived from developing the software tools
as needed rather than using canned packages. One reason for providing the many
numerical examples here was that they allow the reader to calibrate his or her pro-
grams against known results.
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ILLUSTRATIVE PROBLEMS

Linear, Time-Varying Minimum Norm Problem

Consider the general linear time-varying system x(f) = A(#)x(f) + B(¢)u(f). Find the control
which transfers the state from x(%) to x, at a fixed time ¢ while minimizing the control effort,
7= [Tu"()u(?) dt.
L&)
Since at the final time ¢, x(#;) must equal x,, the solution to the state equation must satisfy

xa — ®(ty, to)x(to) = f :cp(tf, 7)B(r)u(r) dt (1)

The right-hand side of equation (I) defines a linear operator ${(u) such that &¢: U— 2. The
left-hand side is a fixed vector in the state space 2. The input function wy,,.; is an element of the
infinite dimensional input function space U. The performance criterion is the norm squared of
an element in AU. The problem is therefore one of finding the minimum norm solution to a linear
operator equation. .

Results of Problem 6.26b are directly applicable, u*(f) = sd*(dd*) ™" [xa — ®(t7, to)x(10)].
The adjoint operator {* is defined by (d(u), v)z = (u, 4*v)o. Assuming @, B, and u are real, the
results of Sec. 11.6 give s¢* = B'(£)®"(t;, ). The optimal control is



542 An Introduction to Optimal Control Theory Chap. 14

-1

u*(t) = B7()) @7 (¢, t)[ ft Z(I)(tf, T)B(T)B (1)@ (tr, 1) dv| [xa— P&, to)x(t0)]

Note that the indicated inverse exists if the system is controllable. By making use of ®(#;, 1) =
(1, t))®(to, 7), the solution can be expressed in alternative but equivalent forms.

Other problems can be solved in the same way whenever the performance criterion J can
be interpreted as some more general norm of a function u(f) € U.

Discrete Dynamic Programming

14.2 Find the minimum cost path which starts at point a and ends at any one of the points 4, j, k, [ of

Figure 14.13. Travel costs are shown beside each path segment and toll charges are shown by
each node.

h

3]

4
{  Figure 14.13

Let g, be the minimum cost from node a to any one of the four possible termination
points.

Last stage: gn=2 gc=3
g=2 g=4

Next stage: gq=1+ min[6 + g, 4 + gj]
=1+ min[6+2,4+2]=7, from d to j
ge=3+min[4+g,5+g]=9, from e to j

gr=4+min[7 + g, 6 + g] = 14, from fto k or /

Next stage: g, =5+ min[2 + g4, 4 +g.] =14, from b to d
g.=2+min[7 +g.,1+g]=17, fromcto f

Initial stage: g, =0+ min[3 +g,,5 +g] =17, fromato b

The minimum total cost is g, = 17 and is achieved on path a, b, d, j.
14.3 A two-stage discrete-time system is described by x(k + 1) =x (k) + u(k) with x(0) = 10. Use
dynamic programming to find #(0) and (1) which minimize J = [x(2)—20]*+ >,

{x*(k) + u*(k)}. There are no restrictions on u (k). =0

glx (k)] is defined as the minimum cost from state x (k) at time k to some final state x (2).
Then g[x(2)] = [x(2) — 20)* and

gle(D] = min () + u(1) + g+ )]

= min {v*(1) + (1) + [ (1) + u(1) ~ 20}
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leferentlatmg with respect to u(1) and equating to zero glves u(l) =[20 —x(1)]/2, so that

glx(1)] =x*(1) + [20 — x(1)]*/2. Using this in g [x (0)] = min{x*(0) + u*(0) + g[x(1)]} and setting
o{ }ou(0) = 0 gives u(0) = [20 — 3x(0)]/5. This complete(sothe backward pass. Since it is known
that x (0) = 10, u(0) = —2. This, plus the difference equation, yields x (1) = 8. Using this in the
expression found for u (1) gives u (1) = 6. Finally, x(2) = x(1) + u(1) = 14. The minimum cost is

g[x(0)] = 240.

Apply the general recursive algorithm of Sec. 14.3.3 to recalculate the solution of Problem 14.3.

For this case A=B=M=Q=R =1 and q(k) =0. The final time is N =2. The initial
conditions at k =2 (or equivalently k' = 0) are M(0) = 1 and V(0) = —20. The calculations are
tabulated from left to right in the order performed. The table also indicates the correct starting
points and time sequencing relatlonshlps among the variables. The extra quantities U and
(I - KBY) are given for convenience since they are both used more than once per line of table

k kK'=N—k uk)=—KTAx(k)-UBTV V M U=[BTMB+R]-! K=MBU (I-KB7) P

2 0 — —-20 1 1/2 1/2 1/2 1/2
1 1 u(l)=—1/2x(1)+10  —10 372 2/5 3/5 2/5 3/5
0 2 u(0)=—3/5x(0) +4 —4 8/5 — — — —

entries in the optimal tracking problem. Once k =0 is reached on the backward pass, the
knowledge that x(O) = 10 is used to give u(0) = —3(10) + 4 = —2. This control gives x(1) = 8 and
then u(1) = —3(8) + 10=6. The final state is x(2) =x(1) + u(1) = 14. These all agree with
Problem 14.3.

The general mechanization of the optimal controller for the optimal tracker is given in
Figure 14.3.

Figure 14.14a gives a schematic for an industrial system [26] typical of many in the pulp and
paper industries. A linearized model of the fluidic control aspects will be treated here. The three
major system elements are (1) the variable speed pump, which controls total flow volume, (2)
the dilution valve, which determines the fraction of dilution water to concentrate, and (3) the
head box, which acts as a reservoir and applies the mixture to a moving substrate. Each of these
can be approximated by a first-order time lag. This leads to the block diagram of Figure 14.14b.
Use the values K =10, 1, =2, 7,=1, and 7, = 0.5 and obtain a discrete-time state model for a
sample time T = 0.2. Design a constant-gain LQ feedback controller which attempts to maintain
the state nearm =[4 0.6 1]". Maintaining the primary output x; near 4 is most important. It is
also important to keep u; small to avoid valve saturation.
The continuous-time state model is

- 1/Th —K/Th K/Th 0 0
X= 0 —1/7, 0 x+ |11 0 |u
0 0 =1/, 0

When numerical values are substituted, Eq. (9.27) and Problem 9.10 give the discrete model

0.904837 —0.781725 0.861067 —0.16990 0.09056
x(k +1) = 0.67032 0 x(k)+| 0.32968 0 u(k

0 0.818731 0 0.18127

A complete parametric study of the effect of O and R values is not possible here. Three
sets are presented. The value of O, was successively increased in an attempt to force a positive
value for x,. The DARE was solved to find the matrix W... Then the gains G, and F..., and the
input V., is calculated from Eq. (14.31). The total external input Vex = Fe. Vo is tabulated along
with G...
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Case 1: Q= Diag[10,1,1], R = Diag[10, 4]
Vo = [—2.035 ] G.= [ —0.41905 0.71697 —0.85416]
ext 3.2415] * 0.57808 —1.0044 1.4288 |
Case 2: Q= Diag[10,4,2], R = Diag[10, 4] )
_ | —1.8476 G. = —0.40645  0.7620 —0.80626
Vext 3.5009 | * L 0.58728 —0.96201 1.5118 |
Case 3: Q= Diag10,8,2], R = Diag[10, 4] )
Vo = [ —1.6562 ] G.= [ —0.38764 0.80754 —0.76125
ext 3.7437 | * 0.60643 —0.93136 1.5725 |

The transient responses for these cases are presented in Figure 14.15. The responses of x; are
almost indistinguishable, but the effect of Q on x; and x; is clearly evident.

In order to compare quadratic optimal controllers with earlier methods, the dc motor system of
Example 2.6 and Problems 2.22 through 2.24 is reconsidered. Using a sample time of T = 1 and

14.6
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a motor gain of K = 0.5 allows the following observable canonical form state equations to be
written for the open-loop system.

[ 1.6065 1 0.1065
x(k +1) = [—0.6065 0]"(") + [0.0902]E (k)

The first component x,(k) is the motor shaft position angle, and its measurement is assumed
available for use. It can be seen that the second state can be determined as x»(k)=
—0.6065x;(k — 1) + 0.0902E (k — 1). Therefore, it is justifiable to assume that both states are
available for use. Design a controller which minimizes the cost function J of Eq. (14.18).

Equations (14.15), (14.16), and (14.17), plus equations (14.21) and (14.22) were solved
with N =15 steps of T =1 s each. The first group of cases studied all had (k) =0 and x, = 0
(i.e., the regulator problem). For each case the steady-state feedback gain matrix is listed, along
with the closed-loop eigenvalue locations. In each case steady state was reached in about seven
steps, a little over three motor time constants.

Case M Q R G,=K"A Closed-loop Eigenvalues
1 I I 1 [2.106 1.9160] 0.6057 +j0.1756
2 0 I 1 [2.1060 1.9160] 0.6057 = j0.1756
3 201 1 1 [2.1060 1.9160] 0.6057 = j0.1756
4 1 1 10 [0.8163 0.7834] 0.6305, 0.8184 (real)
5 I 1 0.1 [4.516 3.810] 0.3909 = j0.2505

From this it is seen that the final results are independent of the initial M. For relatively smaller R
values, larger gains and a faster, more responsive system is obtained. Larger R values give
slower, smoother response and smaller gains. Smaller motor inputs will be required. The
function of the R weighting term is to prevent large control signals from being called for. The Q
weighting term is intended to get the state near to (k).

Another group of cases with q(k) =[1. —0.6065]" was run, and for simplicity M was set
to zero and R = 1 was held fixed. In addition to the steady-state feedback gains, the steady-state
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Vss Figure 14.16
values of the external inputs v=—UB’V are given, along with the scalar closed-loop transfer
function H(z) from v(z) to x,(z) (normalized as described below). The eigenvalues are, of
course, the denominator roots. The increase in Q is equivalent to a relative decrease in R. The
previous observation remains true: as Q gets bigger relative to R the system response gets faster,
but at the expense of larger control effort. The role of the external input needs to be clarified.
This input V is a two-component vector. By shifting gains around, an equivalent normalized
scalar input system can be obtained from Figure 14.4. The two steps used in shifting and
normalizing are shown in Figure 14.16. The transfer functions given above are from v' to x. The
final value theorem shows that each transfer function has a steady-state gain of one, meaning
that there will be no steady state error in the position x; after a unit input at v'. This means that
in steady state Gx must equal v.

Case Q Gain v Transfer Function
6 I [same as case 1] 0.9439 0.3971(z — 0.5324)/[(z — 0.6057 + j0.1756)]
7 1001 [7.1525 5.6840] 3.7052 1.2744(z — 0.4281)/[(z — 0.166 + j0.182)]
8 100001 [8.3299 6.4773] 4.4013 1.4714(z — 0.4116)/[(z — 0.0068)(z — 0.1283)]

The desired state (k) above happens to be a point of equilibrium where x; and x, are in
balance when the input E is zero. Two more cases are solved where this is not true. x; is selected
as unity and x; is chosen arbitrarily. In case 9 the errors in both states are equally weighted, and
in case 10 the error in x; is ignored so m, could have been any value without changing the results.
(This is not to say that the solution does not depend on O, however.)

We see from the preceding results that the closed-loop system poles can be moved around
by changing the relative importance of Q and R. If any one of the above sets of eigenvalues had
been selected a priori, then the pole-placement methods of Chapter 13 would give the same
feedback gain. Sometimes it may be more natural to select pole locations based on their relation

Case Q Gain v Transfer Function
9 1001 [7.1525 5.684] 1.06 1.2766(z — 0.4260)/[z — 0.1650 -+ j0.1883]
10  Diag[100, 0] [7.7430 5.696] 4288  1.3384(z — 0.3698)/[z — 0.1340 + ;0.3060]
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to a desired time response. Pole placement would easily give the gains. Sometimes it may seem
more natural to express the design goals in terms of a cost function to be minimized. In either
case, if extremes are requested, the magnitudes of the resultant control signals may become
excessive or even ridiculous. It is not possible to make a turbogenerator set, which normally
takes minutes to come up to rated speed, respond with a time constant in the microsecond range
just because “the math in Chapter 13 says you can put the poles anywhere you want.” Neither
can state variable feedback transform a light pleasure aircraft into a high-performance military
fighter. The fallacy is due to the validity of the linear models breaking down and due to state or
control limits being exceeded. The linear models are intended for use over a limited range of
values of the signals. Conductors tend to vaporize when their rated loads are drastically ex-
ceeded. Wings or control surfaces tend to get ripped off under excessive loads. Similar limita-
tions exist in other situations.

The step responses for the designs of cases 6, 7, 8, and 10 are shown in Figure 14.17 for
comparison with the Chapter 2 results. Perhaps case 7 gives the best response of any considered
here or in Chapter 2. Further parametric studies may uncover a better response between case 6
and case 7.

Find the optimal feedback control law for the unstable scalar system X = x + u which minimizes
J = Mx(t;)* + f;’ u (1)’ dt. There are no restrictions on u (), and ¢ is fixed.

Using the dynamic programming results of Sec. 14.4.1 with A =1, B=1,x,=0, Q =0,
R =1, the optimal control is u* (f) =3V, g[x (¢), t,], where V. g =2W (t,)x (t) + V (¢,).

The Riccati equation for W (t,) is dW/dt, = 2W — W?, with W(t, = 0) = M.

The equation for V(t,) is dV/dt, = [1 — W(t,)]V, but since V(¢,=0) =0, V(z,) =0 for all ¢,.

Using W(t,) = E(t,)/F(t,) for this scalar case leads to dE/dt,= E, dF/dt,= E — F, with
E(t,=0)= M, F(t,=0) = 1. Solving gives E(t,) =e"M and F(t,) = e "+ (e" — e ")M/2.

Since W(t,) = E(t,)/F(t,), it is seen that W — 2 for large ¢. This in turn gives u* () = —2x(¢)
and the stable closed-loop system x = —x (¢).

The general feedback control system is given in Figure 14.18.

A

L6~ Case 8 max = 1.47
%}/ Case 7 max = 1.274
L4 #‘2/
[} Case 10 max = 1,338
S 12f it <3 \’/
=, II,I \’t\\
® ]
R L EA S or s S
3 i -
© 0s A el
’ " g \Caseémax=l.015 at 8T
] »
o6 1 /
" //
"
oaln o
] 7/
(] /
0.2rp /
/
I/
| | ! ! L | ] 1 ! ! -
0 T 2T 3T 4T 5T 6T T 8T 9T 10T t

Figure 14.17 (Compare with Figures 2.29, 2.30, and 2.32.)
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Consider the scalar control system x = Ax + u. Investigate the constant state feedback control
system which minimizes

i
J=x(tf)2M+fo{Qx2+u2}dt as fr—s e

What is u* (¢) if Q = 0? What if Q = —A*?

The Riccati equation is dW/dt, = Q +2WA — W?>. In general, the steady-state solution
can be found by numerically integrating until steady state is reached, or by setting the derivative
equal to zero and solving a nonlinear algebraic equation for W. In this scalar case, setting
dW/dt, = 0 gives a simple quadratic equation for the steady-state values of W. Its solutions are
W=AxVA*+Q.

Since V(t,)=0, u*(t)=—-W(t,)x(f), the steady-state feedback system satisfies X =
Ax —[A +VA>+ QJx = FVA*+ Ox.

For a stable system, the plus sign in W must be selected, givingx = -V A*+ Qx. If Q =0,
x = —|A|x. If the original system was stable, —|A| = A, so this implies that u* =0. But Q =0
means that it does not matter what x (¢) is, so the optimal control strategy is to do nothing. This
gives a zero value to the integral part of J. Also, since t,— %, x (/) — 0 for a stable system. If the
original system is unstable, the feedback system is stabilized. If Q = —A?, then W = A in steady
state, so u™ (f) = —Ax. This gives X = 0, and the integral term in J is once again identically zero.

A building is divided into two zones, as shown in Figure 14.19a. Figure 14.19b shows the
analogous electric network, using the through variable/across variable analogies of Sec. 1.3. A
furnace with heat output gy is located in zone 1. If 7; is the ambient temperature and T; and T,
are the zone temperatures, the heat flow equations can be written as

=

0 To R, r, R 71,
o / T
/ \ Z
% T T, 7 5 f Ry = G Rzg
% fl TR
7

"

(@) (b)
Figure 14.19
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CiTi=gq;,— (T — T)/Ro— (Ti — T)/R,
C, = (T, — )R, — (I — To)/R,

where C; is the thermal capacitance of zone i. R; are the lumped thermal resistances shown in
Figure 14.19a. Let the control u be the furnace heat input g; and let x; and x, be zone temp-
eratures above ambient. The state equations become

‘= [—1/C1[1/R0+ 1/R1] 1/(CiR)) ]X N [1/C1]u

(a) Design a constant gain full state LQ controller which minimizes
7= (x—wTQx—m) + Ruar
0

where n=[1 1]” is the vector of desired zone temperatures above ambient, i.e., the set
points. For simplicity, let C; = C, =1, Ry=10, R, = .1, and R, = 2. Let R=1 and consider
Q = al for four values of a: .1, 1, 10, and 100.

(b) Show that if only one state is a measured output, an equivalent feedback transfer function
H.,(s) can be found which gives the same feedback signal as does full state feedback through
the gain matrix G.. In particular, if the thermostat measurement is in zone 2, H., is a PD-
(proportional-derivative-) type lead compensator. If the thermostat is in zone 1, then H., is
a lag compensator.

(a) For this tracking problem, an external input is required in addition to the feedback gains.
Setting V = 0 in Eq. (14.38) and solving for V gives

V=2[AT— WBR'B"]"!Qq
and since F..= —(;)R "' B, the composite term is
Vew = F. V= —G.[ATW — WBR™'B"W] "' Qn
=G.[WA+Q]'Qn

The last form used the ARE. It shows that if Q was large compared with WA, then the
control signal u depends on the total error x — v as in many error-nulling servo systems; i.e.,
u = G«(m — x). This situation does not happen exactly because as Q increases, so does W.
The key results for the four values of Q are as follows:

a Goo Vext )\cl
0.1 [0.077102 0.07317] 0.27004 -0.374, —20.30
1.0 [0.48751  0.45427] 1.30478 -0.773, —20.30
10.0 [2.0883 1.8273] 4.43 —2.2645, —20.42
100.0 [7.7286 5.7925] 14.126 —6.714, —21.61

(b) Since all states may not be available as measured outputs, an observer may be needed to
implement this controller. An alternative approximate method can often be used with
single-input, single-output systems. The Laplace transform of the feedback signal under full
state feedback is

F(s) = GoX(s) = Goo(sI — A) ' Bu(s)
If instead, y (s) is fed back through a transfer function H (s), the feedback signal is
F(s) = H(s)y (s) = Hs)Cx(s) = H(s)C(sI — A) "' Bu(s)

Equating gives H(s) = {G.(sI — A)"'B}{C(sI — A) ' B}. For this problem, if the thermo-
stat is in zone 2, C=[0 1], and then C(sI — A)"'B = 10/[(s + 0.298)(s + 20.302)]; for the
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case o =10, G.(sI—A)"'B=2.088(s + 19.25)/[(s + 0.298)(s + 20.302)], so that H(s)=
0.2088(s + 19.25). Since this is not a proper transfer function—that is, the numerator degree
is higher than the denominator—it is not physically realizable. It is clearly of the PD-type
lead compensator. A small time constant 7, say 1 = (0.01, could be used to form an approxi-
mation which is physically realizable, H (s) = 0.2088(s + 19.25)/(ts + 1). This can be shown
to give a response due to the ve. step input, which is very close to the full state feedback
response. If the thermostat is located in zone 1, then C=[1 0] leads to the physically
realizable transfer function H(s)=2.088(s + 19.25)/(s + 10). This is recognized as a lag
compensator.

The longitudinal dynamics of an aircraft cruising at constant speed can be approximated by
[3, pp- 171-172] (see Figure 14.20)

0=g
qz—wz(a—Sﬁ)
a=—a/ttgqg

Assume the values 1=0.25, o = 2.5, and § = 1.6. Then

01 O 0
x=|0 0 —625|x+|10|u
0 1 -4 0

Design a constant feedback LQ controller which attempts to maintain the velocity vector near
horizontal while keeping control effort small. That is, it is desired to minimize

) 10 -1
J= f {0(6 — a)* + R8%} dt Note: The matrix Q= Q [ 0 0 0}
0 -1 0 1

Select a Q/R ratio that gives fast response to a sudden 10° change in o due to a gust or wind shear
but that requires a maximum [3| =< 10°.

In this case Q and R are scalars and only the ratio is important. By trial and error, it is
found that a value Q/R = 2.8 is the maximum permissible value—i.e., the fastest response—for
which d stays within the specified limit for an initial perturbation x(0) =[10 0 10]". The
feedback gains for four trial cases are tabulated, and the transient responses for a, 6, and 8 are
shown in Figure 14.21q, b, and c.

Case QO/R G. )
1 0.1 [0.31623 0.14943 —0.20457] -1.982, —1.756 = j1.816
2 1.0 [1 0.33116 —0.45166] —3.429, —1.942 = j2.810
3 2.8 [1.6733  0.44895 —0.66554] —4.1098, —2.1898 +j3.1389
4 10.0 [3.1623  0.63169 —1.1671] —5.0872, —2.6148 +j4.2458

3/ Figure 14.20
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Applying the result of Problem 14.9 for an equivalent feedback transfer function to Case 3 and
assuming that 6 is the measured output gives

4.4895(s + 3.122 +j2.2715)(s +3.122 — j2.2715)
H(s) = s+4,

This is not physically realizable (is not proper), since the numerator is of higher degree than the
denominator. It may be acceptable to add a small time constant term (ts + 1) in the denomi-
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nator to give a realizable feedback transfer function. If 7 is sufficiently small (i.e., the added pole
is sufficiently far to the left), the contribution of the extra mode may be negligible.

A linearized aircraft model was introduced in Problem 11.9, where its controllability and
observability properties were examined. Its transfer functions were obtained in Problem 12.5
and pole placement feedback controllers for it were found in Problem 13.35. Design a controller
using the steady-state optimal regulator approach. For convenience, the system models are
repeated here.

10 0 -10 0 20 2.8

| 0 -07 9 o0 1o 313

A=l o -1 —o07 0| BT|lo o
1 0 0 0 0 0

The solution involves selecting the appropriate weighting matrices M, Q, and R and then
solving the Riccati Equation 14.39 until steady state is reached. The controller is given by

u*(f) = —G)R'B2Wx(¢) + V]

as shown in Figure 14.8. Two issues remain. What method is to be used to solve the Riccati
equation? Numerical integration of Eq. (14.39) is used until W effectively becomes constant.
For an asymptotically stable constant coefficient system, a reasonable estimate is that this will
occur within four time constants. The time constant is estimated as the reciprocal of the smallest
nonzero real part of the eigenvalues of A. The eigenvalues of A are 0, —0.7 = 3j, and —10, so the
time constant is estimated as 1/0.7 = 1.4 sec. The integration stepsize AT must not be too large,
or poor accuracy will result. If it is too small, excessive computer time is required. A method
which seems satisfactory is to select AT as about 1/(20|\max|), Which means that the number of
integration steps might be on the order of T/AT = 80|\ max)/|Amin|, Which can easily exceed 1000.
These are just estimates. The magnitudes of the changes in W must be monitored to determine
when all components have essentially stopped changing.

The second issue is selection of the weighting matrices. For small problems with only a few
parameters it may be feasible to parametrically examine the range of possibilities. For most
problems a more focused approach is desirable. The expanded quadratic will contain terms of
the form x? Qi + u/ R;;. Similar treatment of the final value terms can be done, but here M =0 is
selected because it will have no effect on steady-state answers. If x; is a position variable with a
magnitude of thousands of feet, and if u; is an angle of say 0.01 radian, it is clear that u; will have
no effect on J unless R; >> Q;. The point is that scaling units and variable magnitudes are
important, as well as the subjective choice of the importance of keeping u; small compared to
keeping x; small. If all variables in the quadratic cost function are intended to be equally
important, then one method is to estimate the maximum possible or allowable values of each
variable and use these estimates to select the weights. For the airplane model, suppose that
structural limits and prevention of pilot blackout require that the roll rate p be <300 deg/s and
the yaw rate r be <18 deg/s. The maximum side-slip angle is estimated as 8 <15 deg and the
maximum roll angle as ¢ <180 deg. Likewise, there are maximums for the control surface
deflection angles, and the hypothetical values assumed here are 8, <40 deg and 3, < 10 deg.
Then setting each term in J to unity when the variables are at their limits gives

Q= Diag[0.0011, 0.308,0.44, 0.003]
R = Diag[0.0626, 1]

The relative magnitudes are all that matter. The above components have been scaled so the
largest entry is unity. Considerable rounding off is probably justified because of the gross
approximations involved in estimating the maximums. Using the above values for Q and R, the
approximate steady-state feedback gain matrix and the closed-loop eigenvalues it yields are

G=[O.0358 0.0197 —0.0355 0.1942]
0.0001 —0.3072 —0.1191 —0.0001

N ={—0.376, —1.181 = 2.898j, —10.340}
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Cause X1 X2 X3 Xa

Commands

or 0.03 5.5 1.7 0.01

The resultant system has moved the open-loop pole from the origin to —0.376, which means that
the perturbations caused by any step disturbance will decay back to zero. The settling time and
damping ratio of the dominant complex poles have been improved considerably and the remain-
ing nondominant pole is not much changed.

If the maximum value of each state variable is multiplied by its two gain values, the
resultant commands for 3, and 3, can be estimated. These values are valid if only one state
variable is at its maximum and all others are zero. This shows that no maximum command is
exceeded, unlike the results that can occur if arbitrarily selected Q or R values are used, or if
extreme requests are made of a pole-placement design. In this particular example it is clear that
3. 1s primarily controlled by the roll rate x; and roll angle x4, and 8§, is primarily controlled by yaw
rate x, and side-slip angle x5 as expected from the physics of the problem.

A series of other sets of O and R have been analyzed for comparison. With Q=1 and
R=1,

G- 0.6587  0.0768 —0.2610 0.9909]
0.0802 —-0.7184 -0.2743 0.0729

N ={—0.889, —1.82 +j2.6, —22.5}

The dominant complex poles are about the same as the earlier case and the dominant real pole
has an improved settling time, but the major difference is the shift in the nondominant pole,
which will not be reflected much in system behavior. The required gains are much higher here
and commanded deflection angles could easily exceed their limits.
With Q = 10I and R = 0.1I the resultant eigenvalues are all real {—0.995, —1.27, —30.7,
and —202.2} and the gains are so high as to be ridiculous. Several are on the order of 9 or 10!
With Q = Diag[0.01,0.1,0.1,0.01] and R = Diag[0.1, 1] the results are

G [0.1160  0.0275 —0.0952 0.2956}
~10.0012 —0.1148 —0.0559 0.0004

N ={—0.5,—-0.8798 £ 2.965j, —11.823}

The dominant poles are less damped and have a poorer settling time than the first case in spite of
the fact that gains are typically higher and command limits could be exceeded.

The Minimum Principle

A system is described by x = f(x, u, 7), with x(t) given. Find the necessary conditions which x(f)
and u(?) must satisfy if they are to minimize

J =S(x(t), t) + ft th(x(t),u(t), 1) dt

The admissible controls must satisfy u(¢) € U. Assume s fixed.

Let x*(¢), u*(¢) be the optimal quantities and let x(#) be arbitrary and let u(f) be arbitrary
but admissible. Let p(f) be an n X 1 vector of Lagrange multipliers (also called the costate or
adjoint variables). Adjoin the differential constraints to J and call the result J:

J'=Sx(t), ty) + [f{L (x,u,?) + p"(O[f(x,u, ) — X} dt



14.13

554 An Introduction to Optimal Control Theory Chap. 14

Since x*, u* are optimal, AJ =J'(x,u) —J'(x*,u*) = 0 for x arbitrary and u € U.
Let x = x* + 3x. Using Taylor series expansion gives

J'(x* +8x,u) = S(x*(1), ty) + [V S17 |, 0x(ty) + ftf{L (x*,u,1)

+ [Vi L (x*,u,0)7] 8x + pT[f(x*, u,f) + g—iﬁx —-x* - BX]} dt
+ higher-order terms

Therefore,

i
Al = (V,‘S)T],fﬁx(tf) + f {L(x*,u,f) +p" f(x*,u,£) — L (x*,u*,1)
to

i

{[V,‘L (x*,u,£)]" dx + pTQESX - pTSi(} dt

- * *
p f(x*,u ,t)}dt+f ox

Lo

+ higher-order terms.

When the higher-order terms are dropped, the result is called &/, the first variation of J. The
condition for optimality is that AJ =0 for arbitrary 8x(¢) and u(r) € U. If x,u are sufficiently
close to x*,u*, then the sign of AJ is the same as the sign of 8/. By defining the Hamiltonian

as ¥(x*,u*,p,t) = L(x*,u*, )+ p()" f(x*,u*, ) and using integration by parts, Jj’;pTSi dt =

y
pox| - f ¥ pT8x dt, we obtain
to to

i
87 =[5 — pIEox(0) + | [0, u, s 1) = (x*, 0, p, )]

0

7
+ J’ ”:[VXL(X*,U, H]"+ pTQE + [')T] SX} dt
1o ox

In order for this to be nonnegative for arbitrary 8x, the coefficient of dx(¢) inside the integral
must vanish on the optimal trajectory.

. _|of |
P= [ax] P Vil

The term involving 8x(#;) must also vanish. If x(#) is fixed, then 8x(¢;) = 0. If x(#) is not fixed,
then dx(f) # 0, so p(t;) = V«S|,. The remaining integral term must be nonnegative for any
admissible u, including a u which equals u* for all except an infinitesimal time interval. There-
fore, it is concluded that

H(x*,u,p, 1) = H(x*,u*,p,1) foralls, allue U

This constitutes one version of the minimum principle, since u*(¢) is that u which minimizes #. If
there are no restrictions on u, this reduces to 0%/du = dL/ou + p’(of/du) = 0.

What modifications are necessary in the previous problem if ¢ is not fixed in advance, but must
be determined as part of the solution?

In forming AJ, variations in the final time must now be considered. Let #f be the optimal
stopping time and ¢, = £ + 3t is the perturbed time. Referring to Figure 14.22, it is apparent that
two different variations in x at the final time must be considered. dx(#) is the variation used in
Problem 14.12 and Ax(#) is the total variation.

AT =TJ'(x* +dx,u, tf +8t) —J'(x*,u*, tf)
=S(x*(1f ) + Axp, ff +dt)) — S(x*(tF ), 1)
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A x(1)

| l
{ l AX, = 8x(1;) + X1,

x* (1) +86x(1)

b T U ———
%L"“f"_—'———_
o
=
—
| S S bl

Figure 14.22

tf* + 8t
+ f {L(x* + dx,u,t) + p'[f(x* + dx,u, 1) — x* — 8x]} dt
t

0
7
- J {L(x*,u*, 1) + p'[f(x*,u*, 1) — x*]} dt
to
In computing 8/, the following relation is used:

[ yar= f{}dwfm{}dt f{}dt+8tf

1o

Then

Sty
g

= (Y« S)|, Ax, — p"(tp)x(1y) + [%é;_ + L(x*,u, f)]

+ ff [6(x*, u, ) — H(x*, u*, 1)) di
to

+ f,:{[[vxL(x*, u )] +p o ] 8"} a

From this, conclusion regarding the two integral terms are the same as in Problem 14.12. The
only changes are in the boundary terms. If x*(#) is free, then using 8x(tf) = Ax; — x*(t,)d¢ leads
to boundary terms [ "(t)]Ax, + [3S/0f) + L (x*,u, 1) + p” %*]|, 8. The conclusion is
that p(¢) = Vi S | as before and the additional scalar equation required for determining #f is
aS/at + |, = 0.

If the final state had been restricted in some way, say to lie on a surface y(x(#), t;), then Ax;
and 9t are interrelated. Their coefficients cannot then be separately set equal to zero, but
instead, additional restrictions must be imposed [3, 5].

Develop an iterative method of solving the two-point boundary value problem which results
when the minimum principle is applied to:

x = f(x, u), x(to) known, tr fixed,
i
minimize J = 3[x(t;) — x,]" M[x(t) — x4] + J' Ldt
o

Minimizing ¥ allows u*(¢) to be found as a function of p(¢). Then the two-point boundary
value problem of Eq. (I4.53) can be written as x = f(x,p),p =h(x, p); x(t) = Xo, p(t;) =
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M[x(¢) — x4]. If p(t)) were known, the equations for x and p could be solved by numerical
integration.

One way to proceed is to assume a p(fo)”, numerically integrate to find x(¢,)® and p(¢).
Then the terminal conditions can be checked, and the error can be used to estimate a new
p(t)™. Figure 14.23 is used to illustrate the correction procedure [4]. Since p(¢)© and x(z)'® are
determined by p(t)®, an unknown functional relation exists among these variables, as implied
by the graph. The “slope” of the function multiplied by Ap(%) is set equal to the error in the
terminal conditions. That is, a Newton-Raphson correction scheme is used.

The new estimate is

P(10)® = p(0)” ~ Ap(to)
where
©
20 w0 ) )~ Mis)

The two n X n sensitivity matrices S,(t;) = ap(2,)/ap(to) and S,(t;) = 9x(¢,)/ap(to) can be found by
solving two sets of n X n matrix equations, obtained from the differential equations for x and p
by interchanging 9/0p(%) and d/dt. They are

: of of
—_— X + e , X —_—
S, = axS apSp S,(0) = [0]
: Jdh dh
S, = _axs" + —apS,,, Sp(0) =1,

These can be integrated along with the x and p equations. Only the terminal values are needed in
the correction scheme, which generalizes to

P(10)“ " = p(t0)“ — [Sp(t)® — MS,(t)®] {p(1)™ — M[x(t)® — x]}
Success of the method depends on a good initial estimate for p(#,) as well as the characteristics of
the functions f and h and their derivatives.

Assuming that matrices A and B and vectors x(to) = X, and x, are given, find the solution for the
optimal control in Example 14.12.
When A and B are constant, the form of the solution for Eq. (14.54) is

FAREE N R

Ar() —M[x(1;) —x4]

Error in terminal
conditions

p(:y

Figure 14.23
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For convenience, the 2n X 2n exponential matrix is written in partitioned form as
|:¢11(t; ) bt to)]
b2t o) b2, to)

This may be computed using the methods of Chapter 8. Actually b21(¢, t,) will be the n X n null
matrix for this problem, but the more general form is treated. At the final time,

X(t) = db1i(ty, to)Xo + bra(ty, o) p(to)
p(ty) = b2ty to)Xo + dbo(ty, t0)p(fo)
Using the boundary condition p() = 2[x(#) — x4 gives
2[11(t7, to)Xo + br2(ty, 10)P(f0) — Xa] = bas(ty, to)Xo + b2y, fo)p(fo)

The unknown p() can now be found:

P(to) = [b2a(t5, o) — 212t 10)] {21185, t0) — das(ty, to) X0 — 2xa}
With p(%) known, p(¢) and u*(¢) are given by
P(1) = d21(t, to)Xo + b1, f0)p(to0)
u*(r) = —3B7p(?)
The optimal control law is open loop since u*(z) is expressed as a function of x, and x,.

Convert the control law of Problem 14.15 to a closed-loop control law.
Instead of writing {x(tf)] = (1, to)[ Xo ], use [X(tf)] = ®(t;, t)l:x(t) J, for a general time ¢.
p(ty) p(to) p(%) p(?)
Repeating much of Problem 14.15 but solving for p(f) instead of p(t,) gives

P(t) = [ty 1) = 2dua(ty, )] {2 u(ty, 1) — (e, H]x(?) — 2%}

Once again u*(f) = —3B” p(#). The feedback control law is illustrated in Figure 14.24.
Use the minimum principle to find the input voltage u () which charges the capacitor of Figure
14.25 from x, at t = 0 to x, at a fixed ¢, while minimizing the energy dissipated in R. There are no

restrictions on u(t).
The state equation is ¥ = —x/RC + u/RC. The energy dissipated is

J=J:fi2Rdt= :M’;‘(’”—Zdt

The Hamiltonian is % = (u —x)* R + p(—x/RC + u/RC). Minimize # by setting
0H/ou =0, or 2(u — x)/R + p/RC = 0. Therefore, u*(t) = —p (1)12C + x(¢).

The costate equation is p = —d#/ox = 2(u — x)/R + p/RC.

Eliminating u*(f), and simplifying, the two-point boundary value problem is x =

x(1)

2x —p .
d [oe(tyy 1) =205 (1, 1) ] | IBT | System
" x = Ax+ Bu

20, (th 1) =y (1 1) 1

Figure 14.24
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Figure 14.25

—p/(2RC?),p =0, with x(0) = xo,x(¢}) = x,. This implies that p(¢f) = constant, a. Therefore,
x(£) = xo — at/(2RC?). From the terminal boundary condition, « = —2RC?*(x4 — xo)/t;. Therefore,
u* () = RC (x4 — xo)/ts + x (£). But x(f) = xo(1 — t/t)) + xatlty, s0 u*(t) = x0 + (xa — x0)(RC + t)/t;.
A spin-stabilized satellite is wobbling slightly, with components of angular velocity due to the
wobble being x,(f) and x»(¢). The state equations are (see Problems 3.16, and 9.6).

MR M e
.7&2 Q 0 X2 uz(t)
Find the control u*(¢) which drives x(#) to 0 at a fixed f; while minimizing the control energy
J = [YuTudr. There are no restrictions on u(z).
°The Hamiltonian is % = u”u + p’[Ax + u]. It is minimized by u*(s) = —3p(¢), where the

0 — , we have —AT= A,

costate vector satisfies p = —0%/9x = —A” p. Note that since A = Q0

The two-point boundary value problem is

[.ﬂ _ [_%Jf:;i_lz] [_;_] with x(0) = %o, X(t) = 0

From Problem 8.17, the 4 X 4 transition matrix for this system is

cos —sin{i ]

At __
where e [ sin (¢ cos (Ut

Using the terminal boundary condition gives 0=e*"x, — (£/2)e*’p(0), from which
p(0) = (2/t5)x,. Using p(0) gives p(¢) = e* p(0), so u*(¢) = —(1/t))e* xo. When this control is used,
the state satisfies x*(¢) = (1 — t/t;)e™ x, and the minimum cost is

i’
J = %j xg[eAt]TeAtxodt = xgxo/tf since [eAx]T= [eA,]_l
f 70

Consider a more general version of Example 14.11. Let the position of the automobile be x,(¢)
and the velocity be x,(f). The admissible controls must satisfy |u(¢)| =1 for all «. Find the u* (¢)
which drives the position and velocity to zero simultaneously, in mimimum time.

The system equations are X; = x,,%> = u. The Hamiltonian is # =1+ p, X, + pX, =1+
p1x2 + pou. ¥ is minimized by selecting u*(¢) = —sign|[ p»(¢)].

The equations for p(f) are p; = —9%/dx, = 0 and p, = —9H/dx, = —p,. Therefore, p,(t) =
constant, p,(0), and p»(f) = p»(0) — p1(0)z. This indicates that p,(¢) is a linear function of ¢ and
changes sign at most once (ignoring the exceptional case where p;(0) = p,(0) = 0). Therefore,
u* (f) changes sign at most once.

Rather than attempting to determine p;(0) and p»(0), the behavior of the system is inves-
tigated for u(f) = +1 and u(f) = —1. With u = +1, x>(f) = x2(0) + t and x,(¢) = x,(0) + x,(0)z +
t%/2, or x:(t) = 3x2(t) + x1(0) — 3x2(0). In the x;x, plane, this represents a family of parabolas
open toward the positive x; axis. Similarly with u = —1, x;(f) = —3x7(£) + x1(0) + 3x2(0). This is
a family of parabolas open toward the negative x; axis. Just one member of each family passes
through the specified terminal point x, = x, =0.
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X3

u=+I1

Switching curve

Figure 14.26

Figure 14.26 shows the portion of these two families that are of interest. Segments of the
two parabolas through the origin form the switching curve. For any initial state above this curve,
u = —1 is used until the state intersects the switching curve. Then u = +1 is used to reach the
origin. For initial states below the switching curve, u = +1 is used first, then u = —1.

This problem is an example of bang-bang control. It illustrates that the fastest method of
coming to a red light and stopping is to use maximum acceleration until the last possible
moment, and then use full braking to stop (hopefully) at the intersection. This example also
illustrates the remarks in Sec. 14.1. This control is certainly not optimal in terms of tire wear or
the number of traffic tickets received.

PROBLEMS

Dynamic Programming

Use dynamic programming to find the path which moves left to right from point a to point z of
Figure 14.27 while minimizing the sum of the costs on each path traveled.

A student has four hours available to study for four exams. He will earn the scores shown in

Table 14.2 for various study times. Use dynamic programming to find the optimal allocation of

time in order to maximize the sum of his four scores. Consider only integer numbers of hours.
1

Find the control sequence which minimizes J = [x(2) +2]* + > u(k)? for the scalar system

x(k + 1) =3x (k) + u(k),x(0) = 10, no restrictions on u(k). Also find the resulting sequence
x (k) and the minimum value of J.

The same system and initial conditions of Problem 14.22 are considered. Find the optimal
control and state sequences which minimize J = >, u(k)? and which give x(5) =0.

A scalar system is described by x (k+1y=3x (k)k: 02u (k), with x (0) = x,. Find x* (k) and u* (k)
which minimize J = 2, {x%(k) + u?(k — 1)}.

k=0
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a

1
Figure 14.27
An unstable discrete-time system is described by
1 2 1
x(k +1)= [_2 _3]x(k) + [O]u(k) (1)
y(k)=[0 1]x(k) @)

Find the steady-state feedback gain matrix for the optimal regulator problem, assuming all states
are available for use. Also determine the closed-loop eigenvalues that result.
Use the following weights

@ Q=LR=1
(b) Q=LR=10
(¢ Q=10LR=1

(d) Q=1000I,LR=1
The system of Problem 14.25 is now assumed to have additive white noises w(k) on equation (1)
and v(k) on equation (2). The noise covariance matrices are

Q= [g 2] and R =16, respectively

TABLE 14-2 TEST SCORES

Course No.

Study

Hours 1 2 3 4
0 20 40 40 80
1 45 45 52 91
2 65 57 62 95
3 75 61 71 97
4 83 69 78 98
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(a) A Kalman filter (recursive least-squares estimator) is to be used rather than a deterministic
observer. Find the steady-state Kalman gain K and the pole locations of the filter’s dynamics
(i.e., equivalent to the observer poles).

(b) The above filter is used along with the controllers found in Problem 14.25 as indicated by the
separation theorem. How do the presence of the filter and the use of estimated states rather
than actual states affect the overall system performance in each case? Remember that the
separation theorem guarantees that this approach is the best that can be done. But it does
not guarantee that the results will be what the controller asked for or that the system will
even work well.

Repeat Problem 14.26 if the measurement noise covariance is reduced to R = 0.1.
Find the optimal control sequence and the resulting state sequence for the system

x(k + 1) = {_(1):(5’ gzg]x(k) + [_ﬂu(k)

with initial conditions x(0) = [4 —2]”. The optimal control is to minimize the cost function J
defined in Example 14.5, with final time N =5 and

M = Diag[1000, 1000], Q = Diag[10, 10], R=1, xa=[8 -71,

n=[-1 1]"
Note the conflict being requested between x, and m. In general, fixed terminal conditions
x(N) = x, can be closely approximated by using a sufficiently large M final weighting matrix.

Use the discrete-time approximate model of the airplane in Example 13.6 and design a steady-
state optimal regulator with

Q = Diag[0.1,1.0,1.0,0.1] and R=1I

A commonly used simplification of the previous system is that 8, = 48,. This allows the simpler
single-input analysis to be carried out, using as the input matrix B four times column 1 plus
column 2 of the original B matrix. Using this simplification, find the feedback gains for
generating the equivalent control §, if

(@) Q=L,R=1
(b) Q=L R=0.1
(¢ Q=L R=25

(d) Q = Diag[0.1,1.0,1.0,0.1],R=1

0 1 oy
_9 _3],B—I. Solve the
algebraic Riccati equation to find W.. if Q = I and R = r1, for five cases: r =50, 10, 4, 1, and 0.2.
Also determine the constant full feedback gain matrices and the resulting closed-loop eigen-
values.

Solve the Lyapunov equation A”W + WA = —Q, using Q and A from the previous problem.
Compare the result with the “large r” case r = 50.

A system with A of Problem 14.31 and B=[—1 1] is uncontrollable, but since the eigenvalues
of A are A\ = —2, —1, the system is stabilizable. Solve the ARE for W.. and then find G.. and the
closed-loop eigenvalues. Use Q = 1 and R = 1. '

An unstable but controllable continuous-time system has A = [g _%],B =I. Let Q=1 and

R =rI. Find the feedback gain matrix G.. for r =50 and r = 1000. Also find the resulting
closed-loop eigenvalues. What happens-when the Lyapunov equation is used to approximate the
ARE for large r in this unstable case?

For the scalar system x = x + u, the ARE becomes a simple scalar quadratic. Let Q =1 and

A linear, constant continuous-time system is described by A = [
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R =1, and find both roots of this quadratic. Then form the 2 X 2 Hamiltonian matrix H and use
its eigenvectors to find both W.. and W,, defined in Sec. 14.4.2. Compare the results.

Combine the pole placement controller of Example 13.1 and the observer of Example 13.10 into
a composite fourth-order system. Find the Kalman observable canonical form to show that the
observer modes are not controllable. Also verify that the composite system is observable.

The Minimum Principle

Use the minimum principle to find the optimal control u* (¢) and the corresponding x* (¢) for the
system x = u(¢) with x(0) = 0,x(1) = 1 and no restrictions on u(¢). The performance criterion is
J=[ &+ u)dr

Use the minimum principle to solve the optimization problem: ¥ =x,, X, =u, x,(0)=1,
x(0) =1, x,(2) = 0, x2(2) = 0, minimize J = %foz u?(t) dt with u(¢) unrestricted.

Solve the following two-point boundary value problem on the interval 0=t =< 1: X = —2x — 3p,
p=-2x +2p, x(0) =10, p(1) = 4x(1).

The equations of motion for a rocket flying in a vertical plane under the influence of constant
gravity g and constant thrust 7 can be written as X, = x3, X = X4, X3 = (T/m) cos u(t), x4 = (T/m)
sinu(t) — g, where x; and x, are horizontal and vertical position components, x; and x4 are
horizontal and vertical velocity components, and the control u(¢) is the thrust angle measured
from the horizontal. The rocket is to be flown to a specified terminal altitude with zero vertical
velocity at t; and maximum horizontal velocity. Use the minimum principle to establish that the
optimal thrust angle follows the linear-tangent steering law.

tanu*(f) =at — B where a and 8 are constants

(Hint: Minimize J = —x5(t).)

Consider a system which is nonlinear with respect to x, but linear with respect to u, i.e., x =
f(x,t) + Bu. In each of the following cases, use the minimum principle to find the form of
u*(¢) in terms of p().

(@) J = [/ u"uds, x(1) = 0, 1, fixed, u”(t)u(?) = 1 for all 1.

(b) Drive x() to zero in minimum time, u’(f)u(?) = 1 for all ¢.

(c) Same as b except each component of u satisfies |u,(¢f)] <1 for all ¢.

@ J = [7 Slu(0)| dr, with ur)| = 1 for all £

A scalar system is described by ¥ =x + u with x(0) = 2. The admissible controls must satisfy
lu(#)] = 1. Use the minimum principle to find u* (f) which drives x (¢) to zero in minimum time.

Analyze an equivalent single-input model of the aircraft in Problem 14.11 by assuming that
8. = 43,. Use Q = Diag[0.1,1.0,1.0,0.1]and R = 1.
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An Introduction to Nonlinear
Control Systems

15.1 INTRODUCTION

Most of the text so far has dealt with linear systems. Yet when an engineer is faced with
a “real problem,” he or she invariably bumps into nonlinearities. Some typical exam-
ples are as follows:

1. In positioning a robotic device or in pointing a sensor at a target, the geometry of
coordinate transformations comes into play. Sines and cosines are nonlinear
functions of their arguments.

2. An actuating motor has inherent current—and hence torque—Ilimitations. Satu-
ration of the control commands is a common nonlinearity. Backlash, hysteresis,
and dead zone are other commonly encountered nonlinearities.

3. Many important physical processes are described by nonlinear models. Drag on a
moving vehicle is proportional to velocity squared, for example. The voltage-
current characteristics of most electronic devices are nonlinear. Coulomb friction
is of constant magnitude and always opposes motion, unlike the linear viscous
friction model often assumed. Gravitational and electrostatic attraction are
inversely proportional to distance squared.

4. Deliberate nonlinearities may be introduced by the control system. On-off relay
controllers are common examples.

What are the implications of nonlinearities on the control system analysis and design
techniques which have been presented thus far? Many aspects of former chapters are
still applicable:

1. The physical modeling techniques using linear graphs apply to nonlinear systems.
The individual elemental equations may be nonlinear, but the continuity and

compatibility laws apply as before (Chapter 1).

563
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. The general form of the state equations

x=f(x,u,f) and y=h(x,u,?)

are still valid (Chapter 3).

Knowledge of matrix theory and linear algebra is still essential. A rigorous treat-
ment of nonlinear systems would require much supplemental mathematics, how-
ever [1, 2].

The Lyapunov stability theory applies to nonlinear systems (Chapter 10).

. The general formulation of the optimal control problems, using either dynamic

programming or the minimum principle, is still valid (Chapter 14).
Many of the linear system results do not apply to nonlinear systems:

Superposition does not apply. Knowledge of the system response to initial condi-
tions or to individual inputs does not allow prediction of the total response due to
initial conditions plus several simultaneous inputs.

. Homogeneity does not apply. The response to an input au(?) is not just o times

the response to u(¢). The response to Bx(f) is not just B times the response to
x(t;). The whole concept of designing control systems based on typical test inputs
(unit steps, sinusoids, and so on) and then predicting behavior to an actual input
by scaling and superposition is generally invalid.

The nice correlation between transfer function pole and zero locations and time
response behavior is generally invalid.

Stability of a system is no longer just a simple function of eigenvalue locations. In
fact, it is not proper to speak about stability of a nonlinear system. Rather, the
stability of equilibrium points must be investigated, and nonlinear systems may
have multiple equilibrium points, some stable and others not.

An unforced nonlinear system can possess limit cycles and other behavior not
predicted by linear theory.

A periodically excited nonlinear system is not restricted to yielding steady-state
outputs of the same frequency as the input. Higher harmonics, subharmonics,
and even continuous spectra (chaos) can occur in the output of a nonlinear
system.

Jump resonance, beat phenomenon, and other behaviors not predicted by
linear theory can occur. Although these are of general interest in nonlinear system
dynamics, the design of control systems is usually directed toward the avoidance
of such behaviors.

. Many linear system properties were derived based on full knowledge of the

closed-form solution to the linear state equations. In the nonlinear case no known
analytical solutions are available except in very rare exceptional cases. In fact the
whole question of global existence and uniqueness of solutions to nonlinear
differential equations cannot be taken for granted in general [3].

Properties such as controllability and observability can no longer be tested for on
a global basis by using simple rank tests.
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The goal of this chapter is to provide some insight into nonlinear system behavior
and to give the engineer some useful tools for attacking certain classes of nonlinear
problems. A complete treatment of nonlinear systems and control is not possible.
Consideration is restricted to certain classes of nonlinear systems and certain kinds of
problems:

1. Many systems with mild, sufficiently smooth nonlinearities can be treated by
using a linear approximate model, obtained by linearizing about a known nomi-
nal solution or operating point. Most electronic circuit design is based on behav-
ior in the vicinity of an “operating point.”” Many aircraft, rocket, and spacecraft
control systems have been successfully designed using linear behavior in the
neighborhood of a nominal trajectory.

2. Some nonlinear systems can be linearized by using a nonlinear state variable
feedback controller. The principal advantage of this approach is that known
techniques and results for linear systems analysis can then be applied.

3. An introduction to describing functions is presented. This constitutes a useful,
albeit an approximate, approach for dealing with many of the unavoidable non-
linearities encountered in real system design.

4. Lyapunov stability theory can be used to analyze systems and even to design con-
trollers of certain types. Application of these very general methods is often
limited by the difficulties in finding suitable Lyapunov functions. By restricting
attention to systems which are linear except for one nonlinear element, some
easy-to-apply results such as the Popov criterion and the circle criterion can be
derived. Stability is always a major concern in control system design. It is imper-
ative that the effect of nonlinearities on system stability can be evaluated. The
assumptions made in deriving these results are general enough to fit many
engineering applications.

Phase-plane representations are used at various times because of the insight they
provide. Although general phase-plane analysis techniques exist, they are fully effec-
tive only for second-order systems and are not pursued in detail here.

Because of the lack of analytical solutions for nonlinear system equations, simu-
lation takes on much greater significance. Many numerical integration schemes will
diverge if the integration step size is too large for the frequency of the signal being
integrated. The major danger of applying fixed step-size integration schemes to non-
linear systems whose response frequencies may not be known in advance is that a
numerical algorithm instability may be falsely interpreted as a system instability. One
commonsense approach suggests that when a simulated response seems to be diverg-
ing, the simulation should be retried with a much smaller integration step size.

15.2 LINEARIZATION: ANALYSIS OF SMALL DEVIATIONS FROM NOMINAL

Consider the general nonlinear state variable model of Eqgs. (3.6) and (3.7):

x = f(x,u,?)

y=h(x, 1) (3-1)
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Suppose a nominal solution x,(¢), u,(#), and y,(#) is known. The difference between
these nominal vector functions and some slightly perturbed functions x(¢), u(¢), and y(¢)
can be defined by

dx = x(¢) — x,(?)
du = u(r) —u,(?)
dy = y(1) — yu(2)
Then Eq. (15.1) can be written as
x, + 8x = f(x, + dx,u, + du,?)
= f(X,,u,, 1) + [gﬂ,, o3x + [S—E] du + higher-order terms

y. + 3y = h(x, + 3%, u, + du, ?)

=h(x,,u,,?) + [Qh] ox + [@] du + higher-order terms
0xln oulyn
where [ ], means the derivatives are evaluated on the nominal solutions. Since the
nominal solutions satisfy Eq. (15.1), the first terms in the preceding Taylor series
expansions cancel. For sufficiently small 8x, du, and 8y perturbations, the higher-order
terms can be neglected, leaving the linear equations

ox = [—a—fJ ox + [a—f] du

ox ou
(15.2)
oy = [ﬂ!} ox + [—@—] ou
0x n oul,

If x,(f) = x, = constant and if u,(¢) =0 =23u(?), then the stability of the equilibrium
point x, is governed by

dx = [a—f] ox (15.3)
oxln
For this case, the Jacobian matrix [0f/0x] is constant and its eigenvalues determine
system stability in the neighborhood of x,, in the following sense. If all \; have negative
real parts, the equilibrium point is asymptotically stable for sufficiently small per-
turbations. If one or more eigenvalues have positive real parts, the equilibrium point is
unstable. If one or more of the eigenvalues are on the jw axis and all others are in the
left-half plane, no conclusion about stability can be drawn from this linear model.
Whether the actual behavior of the system is divergent or convergent will depend upon
the neglected higher-order terms in the Taylor series expansion. Thus, except for the
borderline jw axis case, stability of the nonlinear Eq. (15.1) is the same as the linear-
ized model Eq. (15.2), at least in a small neighborhood of the equilibrium point.
Problem 15.1 proves these results and gives precise conditions under which they apply.

EXAMPLE 15.1 Find the equilibrium points for the system described by
y+A+yy -2y +05°=0
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Then evaluate the linearized Jacobian matrix at each equilibrium point and determine the
stability characteristics from the eigenvalues.
Letting x; = y and x, = y gives the state variable model

] PP
X le - O.SXE - (1 + xl)x2_

Equilibrium points are solutions of f(x) =0, so each must have x, = 0 and 2x, — 0.5x7 = 0. The

three solutions are x.; = [8} , Xe2 = [(2) and x.; = [_g] The Jacobian matrix is

= f(x)

i
0./ 1

of _
- 3 2 .

ox 2——;—1——)@ ~(1+x)

so that
[of] _ [0 1]
Lox)y 12 -1

Its eigenvalues are at +1 and —2, so this is a saddle point (see Figure 10.3).
[of] _[ O 1}
Loxl. -4 -3

Its eigenvalues are at —3 + jV/7/2, so this point is a stable focus (see Figure 10.4).
[of] _[ 0O 1]
loxls [—4 1

Its eigenvalues are at 3 = j\V/15/2, so this point is an unstable focus (see Figure 10.4). If this
system has initial conditions exactly at any one of the three equilibrium points, the state will
remain there indefinitely in the absence of disturbances. For any other initial condition the state
will eventually settle to x=[2 0]". Figure 15.1 shows one representative phase plot which
begins near the unstable focus, with x(0) =[—2,0.1]” and settles at the stable focus. |

A

4.0

-2,0.1
-1.0 |

Y

| .
-30N”-20 -1.0 0 1.0 2.0 3.0 40
State 1 Figure 15.1
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If a time-varying nominal solution {x,(¢), u.(¢), y.(#)} is used (perhaps as obtained from
numerical solution of Eq. (15.1)), then the Jacobian matrices of Eq. (15.2) will also be
time-varying in general. As was pointed out in Sec. 10.7 the stability of linear time-
varying systems is not as straightforward as the linear, constant case.

With du(?) restricted to zero, Eq. (15.2) can be used to investigate the passive
behavior of perturbed trajectories. It is of interest to know whether a trajectory x(¢)
will passively return to x,(¢) (i.e., asymptotic stability) or will remain within some
bounded neighborhood of it (i.e., stability i.s.L.) or will diverge from it (i.e., unsta-
ble). These types of analysis must always be used with caution because of the assump-
tions made regarding 8x(¢) remaining small.

The input perturbation du(¢) can be used to actively control the behavior of x(t),
thus forcing it to return to and remain at or near zero. Thus the linearizing assumption
that 8x(¢) is small can be made somewhat self-fulfilling. A linear feedback control law,
du(?) = —Kbdx(#), could be used, and a typical implementation is shown in Figure 15.2.
The overall goal is to maintain the trajectory near the known, precomputed nominal in
spite of initial condition perturbations or input disturbances. The gain matrix K in the
control law could be computed using pole placement techniques of Sec. 13.4. If the
closed-loop poles are forced to be sufficiently stable, then 8x(¢) will rapidly return to 0
after any upset. Alternatively, the gain K could be found as the result of an optimal
regulator design problem, as discussed in Sec. 14.4.

EXAMPLE 15.2 The equations for the orbit-plane motion of a satellite in orbit about a planet
with an ideal inverse-square gravity field are

'r'—ézr=—-&2+a,
r

r9+2ré=a,

where a, and g, are the radial and in-track components of any acceleration terms due to thrust,
drag, gravitational anomalies, and the like. These will be treated as components of the input
vector u. Determine the equations that describe small perturbations about a circular orbit of
radius R.

Disturbances

u(t) . Nonlinear system x(2) > Sensors
x=1(x,u,1)
a(h) su()| Linear control 5x x(?)
VY u(t) problem, - ()
++ e.g.,6u=—K6X _+

u, (1) x, (1)

(From storage) (From storage) Figure 15.2
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Let the state vectorbe x=[r 6 # 6]”. Then the nonlinear state equations are
X3
Xa
X = X42X1 - |.L/x12 + U | = f(x’ u)
_Zoaxs
X1 X1

The Jacobian matrices are

0 0 1 0
0 0 0 1
A 12+ 0 0 2wm
ox X
ZX3X:4 U “2.X4 —ZX3
2 2 0
L X1 X1 X1 X1
and
[0 0
0 0
:—f= 10
u
0 L
L X1

For a circular nominal orbit, x;, = R, x5, = R= 0, and x4, = 8, = ». To maintain R constant, R
and R must be zero, which leads to the relation w = w/R>. x,, does not appear explicitly in the
linearized equations but clearly will increase linearly with time, since its derivative x4, = ® 1s
constant. The nominal values of both components of u are zero. Using these results gives the
linear perturbation model

0 0 1 0 0 0
1o o0 o 1 0 0
X=1302 0 0 2Ro|*T|1 o™
—2w 1
0 “20 1
0 — 0~

The eigenvalues of [3f/3x], can be found to be \; = {0, 0, jw, ~jw}. Since they are all on the
jw axis, the linear model gives inconclusive results regarding stability of the nonlinear system.
The linear model is very useful for studying the effect of perturbations away from the nominal
circular orbit and remains accurate for sizable changes in altitude, as long as &7 is small com-
pared to the (large) nominal R value. Rocket thrusters can be used to actively drive observed
perturbations back to zero. In order to predict the future effect of state perturbations, it is useful
to know that the transition matrix is

) i —-2R t—1)]
4—3coswt 0 SIn of (cos @ )
w (O]
6(sin wt — wf) —2(cos wt —1) 4 sin wt 3
®(1, 0) = R Rw o
3w sin wt 0 cos wt 2R sin wt
6w(cos ot — 1) —2 sin wt
7 0 R 4coswt =3 |
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The effect of the accelerations du over a period T is given by f OT (T, 7)[of/ou]du(t) d7, and for
du constant over the interval [0, T'], this can be integrated to obtain

1—coswT —2(sin oT — (.I)T) ]
o’ o
—2(sin o7 — oT) 4(1 —cos wT) 37
T of o’R Rw’ 2R
| e T)[é»]au(ﬂdf: su
0 u sin w7 2(1 — COS (.OT)
w w
—2(1 = cos T) 4 sin 0T 3T
B Rw Rw R _ u

15.3 DYNAMIC LINEARIZATION USING STATE FEEDBACK

In the previous section local linearization of a nonlinear system was investigated. We
now consider the problem of synthesizing a control input u(¢), which will cause the
system

%= f(x, u, ) (15.4)

to have a response which matches some specified template system. That is, let y(¢) =
Hx(¢). It is desired that y(f) match as closely as possible the response of the specified
template system

Ya=8(¥a,¥» 1) (15.5)
In a typical example, the g function might specify a linear system,
yd:Fyd+ Gv (156)

with v(#) being perhaps a step function input and with the response possessing certain
desirable transient characteristics. If a control input u(#) can be found to achieve the
goal y =y,, then the original system will behave as a linear system. This is what we
term dynamic linearization.

Define the error e(¢) = Hx(¢) — y4(¢). Then

é(r) = Hx(?) — ya(0)
= Hf(x,u,t) — g(ys, v, 1)

Suppose for the moment that H=I. When é is set to zero, it may be possible to solve
the resulting equation for the unknown input u in terms of known or measurable
quantities x, y,4, and v. If this is accomplished, the feedback-modified system will have
the same derivative as the template system. If the template system is linear, then the
original system will have been linearized. In essence the nonlinearities of the original
system are canceled and replaced by the desired linear terms. This form of dynamic
linearization has been known for many years [4, p. 560].

(15.7)
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EXAMPLE 15.3 [5-7] It is desired that the first-order nonlinear system
X=x+u+xu

behave like the linear system
Ya= —0Ya with initial condition y,(0) = 10

For this scalar system let y(¢) = x(¢). Setting x =y, leads to u(t) =[—x(t) — ay.(0)J/[1 + x(¢)],
provided x(r) # —1. At least two potential problems exist with this scheme. (1) Even if the
derivaties can be made to match exactly, the initial condition x(0) may not match y,(0) for a
variety of reasons. The exact initial conditions may not be known due to measurement error, or
the desire may be to have the system respond like the template system regardless of its initial
x(0) value. Of course, matching derivatives does not mean matching response curves. This will
be addressed in the sequel. (2) The resulting control law for u(¢) has a singularity at x (f) = —1.
An infinite amount of control would be required at this point. Truxal [4] pointed out that forcing
a nonlinear system to respond like a linear system generally means that components must be
overdesigned to allow the avoidance of nonlinear behavior. The singularity of this example is an
extreme case of this. u

The problem of initial condition mismatch, either deliberate or unintentional,
can be addressed by adding a convergence factor matrix S, as follows. Instead of
setting € = 0, we require that

é=Se (15.8)

In a similar manner to the development of Chapter 13 for state variable observers, the
matrix S is specified with asymptotically stable eigenvalues. Then e(¢f)— 0, and thus
Hx(t)— y,(?) at a rate controlled by choice of S. Note that the previous development is
a special case with S = [0]. The equation for finding the control u(?) is thus

HE(x, u, 1) = g(ya, v, 1) + S[Hx(?) — yu(1)] 59

The existence of a solution of Eq. (15.9) for u(¢) can be established in certain cases by
using the implicit function theorem [8], which establishes sufficient conditions on the
function f. The solvability is also influenced by the number of independent equations
that need to be satisfied relative to the number of unknown control components. This
explains the existence of the matrix H. It will not generally be possible to match all n
components of x to an n-dimensional y, vector when there are only » <n components
in the control vector u. General conditions for solvability are addressed in Problems
15.5, 15.6, and 15.7. For any specific problem, a direct attempt to solve for u will often
be the most expedient method of determining whether or not such a solution can be
found, and this is the approach presented in the example problems. Assuming the
existence of a solution, the control law will be of the feedback form

u(?) = u(x(?), y2), v(¢), H, S) (15.10)

and the procedure is obviously a model-matching or model-tracking scheme, as shown
in Figure 15.3.
Note that when a linear system is used as the template, then Eq. (15.9) becomes
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s ¥

Templat Ya u System X
V o :;r;ti;e » Controller %=f(x, u, ) H [————>Y
A J
Figure 15.3
Hf(x,u, ) = Fy, + Gv + S[Hx — y,]
(15.11)

= [F — S]y, + SHx + Gv

If the convergence matrix S is selected equal to F, then y, is not directly required, and
the need to synthesize the template system is removed. If S = [0] is selected, a major
feedback path is eliminated. Figure 15.4a shows the general form, with S presumably
being selected to be somewhat faster than F—i.e., eigenvalues more negative. Figure
15.4b shows the result when S =F, and Figure 15.4c shows the configuration with
S=[0]. In all cases the “solve” box refers to finding the input u which satisfies
Eq. (15.11).

EXAMPLE 15.4 The scalar system of Example 15.3 is reconsidered, but now the convergence
factor S is included so that for all initial conditions, x (0), x(¢) will ultimately approach the
desired response y,(t). Set ¢ =x — y,= Se, where S is a negative real number. Then

x+u+txu+oy.=S(x —ys)
from which, if x (¢) # —1,

_S[x(®) —ya(®)] —x(t) —oya
u() = 1+x(7)

Substituting this back into the system equations gives the coupled pair

HE s

The 2 X 2 transition matrix is easily found using methods of Chapter 8:

St e—ut__eSt
o 0= <%,

Then the system response is

x(8) = e""'ya(0) + [x (0) — ya(0)]e”™

This is the desired template response, ¢ ' y,(0), plus an initial condition mismatch term, which
dies out at a rate determined by the convergence factor S. If § << —o, this term will quickly die
out, leaving only the desired response. |
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+
- Hf u X
S Solve > System H y

-1 G
(a) General matrix S
v G
+
- Hf u X
F Solve - System T H y
h
(b) S=F
<+ A —
; y,; = Hf u X
v = G O)- d Solve System H oy
+T
y
F _Jd
(c) S=10]
Figure 15.4

15.4 HARMONIC LINEARIZATION: DESCRIBING FUNCTIONS (4, 9-11]

Harmonic linearization is an approximate method of analyzing certain kinds of non-
linear systems using well-understood linear methods. It differs from the small per-
turbation linearization method of Sec. 15.2 in that signal amplitudes are not restricted
to be small perturbations from known nominal values or equilibrium points. Rather,
large amplitude signals can be treated, provided they are nearly sinusoidal and certain
additional conditions are satisfied. Initially the systems under discussion will be limited
to nth-order unforced linear systems with one scalar-valued nonlinearity, z (x;), which
depends on a single state x; as its input.

x = Ax — Bn(x;) . : (15.12)
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The minus sign is arbitrary, since it could have been absorbed into the definition of the
input column matrix B. The chosen form allows representing Eq. (15.12) in the tradi-
tional single loop, negative-feedback block diagram form of Figure 15.5, with G (s) =
C[sI— A] 'B. G(s) is the linear transfer function from the output u of the nonlinearity
to x;, which plays the role of the system output y, and thus y = Cx determines the
appropriate matrix C. If the input e to the nonlinearity is assumed sinusoidal,

e(t) = E sinwt

the output u(¢) will generally also be periodic but not just a pure sinusoid. The first few
terms of its Fourier series expansion are given as

u(t) = by + a, sinwt + b, coswt + a, sin2wt + b, cos 2wt
) 15.13
+ a; sin 3wt + b; cos 3wt + - - - ( )

The coefficients are given by

ay = 1 fT sin(k wt)n (¢) dt where T =21
T -T w

T
by = —;—,f cos(kwt)n (1) dt fork >0
-T

1 T
by =5T —Tn(t) dt

The output of the linear portion of the system—namely, G (s)—will likewise be the
sum of terms, one from each component in the expansion for u. The essential assump-
tion upon which the validity of harmonic linearization is based is that G(s) is of a
sufficiently low-pass nature, so that all harmonics are attenuated to a negligible level.
Only the fundamental frequency terms survive the trip around the loop and have an
effect on the input to the nonlinearity. Furthermore, many interesting nonlinearities
have a zero average value, so that b, is zero. (This assumption can be removed.) Then
the important part of the time-domain nonlinearity output caused by the input E sin ¢
is just a; sinwt + by coswt. The ratio of the Laplace transforms of the nonlinearity
output and input is thus N(s) = [a; w + b, s]/E w. This ratio has no meaning except for
sinusoidal signals, and when s = jw it reduces to

a b1] _ V a12+ bf‘ej“’

N(](x)) = E + f E
where
b
¢= tan‘l(—l) (15.19)
a;
r(@)=0 NG TN n(e) U 60s) X;=y

Figure 15.5
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This is the describing function for the nonlinearity. It is the ratio of the magnitude of
the fundamental output component to the mangitude of the input to the nonlinearity
and as such plays the role of an equivalent gain. To emphasize that it depends on the
input magnitude E as well as the frequency, we will write it as N(E, w) from now on.
Notice that the phase shift ¢ will be zero and the describing function N will be purely
real for any single-valued odd symmetric nonlinearity, since then b, = 0. In this case all
even harmonic terms g, are also zero, by symmetry. Thus the first neglected term is the
as term, which (1) is usually much smaller than g, to begin with and (2) is more strongly
attenuated by G(s) because of its higher frequency. Many odd symmetric non-
linearities are very accurately accounted for using the describing function approach.

For many nonlinearities, N is not really a function of frequency but only of input
amplitude E. In those cases the nonlinearity is replaced by a real but signal-dependent
gain, N. Viewing the describing function as an equivalent gain is most helpful in the
applications of describing functions to stability analysis that follow.

EXAMPLE 15.5 Derivation of a Describing Function A large number of odd-symmetric
nonlinearities of engineering significance can be represented by three linear segments, as shown
in Figure 15.6a and as determined by three slopes K, K>, and K; and two breakpoints « and 3.
For example, the dead zone nonlinearity in Figure 15.6bhasa =0, =1, K, =0, K5 =1, and K,
arbitrary. The saturation characteristic of Figure 15.6c has B = «, K, =0, and Kj arbitrary. The
relay of Figure 15.6d (which has the same shape as coulomb friction and preload) has o =0,
B = 0 (or some small e to prevent a discontinuity), K; arbitrary, K, = 1/e, and K; = 0. Many other
combinations can be formed, such as a relay with dead zone, by proper choice of these five
parameters. In order to derive the describing function for this nonlinearity, ten separate time
increments must be considered for each full (normalized) cycle ¢’ = wt € [0, 27] in the most
general case. (Sketch the input sine wave and identify when its magnitude falls in each segment
of the nonlinearity.) In the following discussion, the prime is dropped from the normalized ¢’ for
convenience.

1. 0<t <t,, input sinusoid value e(f) < a, output n(e) = ni(f) = K, E sint

2, t,<t<tg,a<e(t)<B,n(e)=ny(t) = K; E[sint —sint,] + K E sint,

3. <t <ty,e(t)>P,n(e) =ns(t)= K E[sint —sintg] + K> E[sintz —sint,] + K; E sint,
4. tg <t <ty,,a<e(t) <P (same as region 2)

5. to <t <m,0<e(t) <a(same as region 1)

The last five regions divide the negative half-cycle [, 2#] into the same regions as (1) through
(5). The values for ¢, and ¢, are functions of the input amplitude E and are given by

t,= sinl(%) if E>a and t,=—otherwise

R o

tp = sin_l(%> if E>B and tz=— otherwise

Symmetry gives the other times, such as
tﬁ'z‘ﬂ'_tﬁ and o =T — 1y

The kth harmonic coefficient can be evaluated from

/2

ap = e){ J(: anl(t) sin(kt) dt + 4[ T n,(t) sin(kt) dt + J: . ns(r) sin(kt) dt]
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Figure 15.6 Some common single-valued odd symmetric nonlinearities.

Evaluation of these integrals for kK =1 gives the describing function, which is independent of
frequency w:

N(E) = % _ 2K - K[t sin(2t,)/2]

™

2K Kty = sinQ@up)/2] o 2K Si:l(ztg,)

™

Note that if E is less than a, then both ¢, and #; are equal to w/2, and N(E) reduces to just K; as
it should. If ¢, = 0 and 3 = w/2, then N(E) reduces to K,. A computer is helpful in evaluating all
except these special limiting cases. ]
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The describing functions for the preceding class of nonlinearities are real and
independent of the excitation frequency. This is not always true, as demonstrated by
the following multiple-valued nonlinearity and by the example in Problem 15.10.

EXAMPLE 15.6 Relay with Hysteresis Figure 15.7 shows a common model for a relay with
hysteresis. Assuming E > «, there are three critical time periods during a typical cycle of the
input sine wave:

0<t<t;: O0<e(t)<a, e(t)risingto o, for which N(e) = - M
h<t<ty -—-a<e(f)<a, e(¢) fallingtoward —a, for which N(e) = M

L<t<2m e(f)<a, e(f)againrisingtoward a, N(e)=—-M

From Figure 15.7 it is seen that t, =sin"'(«/E) and £, = sin”'(—a/E) = 7 + t;. The two funda-
mental Fourier coefficients are thus

" 2 27
a_@_d){_f sinede + [ sineas - | d]M
e

0 11 ta v
(-
™ E
n (73 21 4AM si
b1=(M){—J costdt+[ costdt—f costdt}=——————S—II-I—(EI-2
1

0 tq %) ™
_ _4Ma
wE

so that the describing function is

N(m,E)=(f:T—Aé){ 1—(%)2—%} for E >a

When E < a, a4, by, and N are all zero. |

n(e)
A

> ¢ (1)

Figure 15.7
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Other examples of describing functions are given in the problems. Extensive
tabulations for every conceivable type of nonlinearity can be found in the references
[9, 13]. For actual system components, describing functions can be determined experi-
mentally.

15.5 APPLICATIONS OF DESCRIBING FUNCTIONS

A distinctive characteristic of nonlinear systems is the possibility of exhibiting limit
cycles. A limit cycle is a self-excited, self-sustaining periodic oscillation. A stable limit
cycle is one for which trajectories slightly perturbed from it are attracted back to it. An
unstable limit cycle is one for which perturbed trajectories do not return to it. Rather,
they approach other limit cycles, equilibrium points, grow without bound, or approach
some other bounded but nonperiodic trajectories. The later case is now referred to as
chaos [14-17]. The major uses of describing functions are (1) to investigate the stability
of systems like the one in Figure 15.5, (2) to investigate the possible existence of limit
cycles and to predict their amplitude and frequency when they exist, and (3) to modify
or compensate the linear system to prevent the occurrence of undesirable limit cycles
(or chaos?). A limit cycle is by definition periodic, although the waveform is not
necessarily sinusoidal. If the limit cycle has a strong fundamental Fourier component,
then describing functions can provide acceptably accurate results in their analysis.
Consider the system described by Eq. (15.12), with the nonlinearity replaced by its
describing function approximation, N. The unforced closed-loop system is described by

%= (A — B[N]C)x (15.15)

The output matrix C is used to select the components of x which are input to the
nonlinearities. At this point the factor [N] could be a matrix of describing functions
representing multiple nonlinearities, n(x) = [N]Cx. The closed-loop eigenvalues satisfy

|IN— (A —=B[N]C)|=0 (15.16)
This can be rearranged as
IIN — A|-[T+ (IN — A)7'BC[N]| = [IN — A]-[I + [N]JC(Ix — A) ' B
=|IN—A|-[I+[N]JG(N)|=0

The whole concept of describing functions is based on periodic solutions, so this result
has meaning only for complex conjugate sets of A values. Thus the condition for
existence of periodic solutions is that

[+ [N]G(jow)|=0 (15.17)

In the simplest case of one nonlinearity, this determinant is just a scalar equation
1+ NG(jw) = 0. Points at which NG (jw) = —1 identify potential limit cycles. These
points can be determined either analytically or graphically (by using Nyquist, Bode,
or log magnitude versus angle plots of G(jw) and comparing them with the critical
point —1/N from the describing function, rather than the usual point —1). That is,

G (jo) = —1/N can be analyzed, or alternatively inverse Nyquist plots can be used with
N =-1/G(jo).
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Real, Frequency-Independent Describing Functions

In cases such as Example 15.5, where N is purely real and independent of frequency,
all the usual conclusions apply. In particular, the number of unstable closed-loop poles
Z, (called Z because they are zeros of the characteristic equation) can be determined
from Nyquist’s criterion as

Z,=P.—N, (15.18)

where P, is the number of right-half plane open-loop poles of G and N, is the number of
counterclockwise encirclement of the critical point —1/N by the polar plot of G (jw) as
o ranges over — to «. In the case of real, frequency-independent N(E, w), root locus
techniques can also be used (with caution) on NG (s) = —1. The describing function N
plays the role of a varying gain. Since this is valid only for s = jw, the root locus results
are helpful only in predicting behavior near the jw axis crossover points. Attempts to
correlate frequency response results with transient response behavior using known
root locus methods are generally not very satisfactory.

The General Case

When N (E, w) is complex and frequency-dependent, the Nyquist or Bode method can
be applied without modification to find the limit cycle locations. Stability conclusions
drawn from Eq. (I5.18) can be wrong, however. The number of encirclements of
NG (jw) is no longer determined solely by the behavior of G (jw). The safest approach
is always to rely on the basic equation NG (jw) = —1, but this means the advantage of
seeing separately the effects of the linear G and the nonlinearity is lost. In some cases it
may be possible to separate N(E, w) into a product N(E, w) = N;(E)N,(»), with N,
real. Then a modified G'(jw) = G(jw)N,(w) can be used in G'(jw) = —1/Ny(E).
Equation (15.18) can now be used again with G'(jw), which will generally not have the
same number of encirclements as G (jw). See Problems 15.11 and 15.12 for an exam-
ple. The root locus procedure must be similarly modified. The polar form of
N(E, jw) = Ke’ shows that if a root locus approach were to be attempted using G (jw),
the 180° locus would not suffice. It would need to be modified by the phase shift o,
which is generally frequency-dependent. This approach is usually not worth the re-
quired effort. In those cases where it is possible to form G'(s), the root locus approach
can be useful.

EXAMPLE 15.7 A single-loop system has G (s) = 2/[s(s + p)] cascaded with the hysteresis-
type relay of Example 15.6, with o = M = 1. If this system can exhibit a limit cycle, find its
approximate amplitude and frequency by using describing functions.

For this scalar case Eq. (15.17) gives the limit cycle requirement as 4/(wE){V 1 - 1/E* -
JIE}Y=—jw(jo + p)2 = (o* — jop)/2. From the imaginary part we find that mwp/8 = 1/E*. From
the real part we find w*/2 = 4/(wE)V1 — 1/E2. Combining gives

8p
3 2 B
w+tpw - 0

Table 15.1 gives the results for three different pole locations p, as well as numerical results
obtained by simulating the actual nonlinear system.
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TABLE 15.1
p 4 1 0.5
Describing function predictions:
o (rad/s) 0.62161 1.1245 1.0071
Period T =27/ (8) 10.1079 5.5875 6.239
E 1.012 1.5 2.2487
Simulation results:
Period T 9.3 5.6 6.4
E 1.044 1.6 2.32
Percent error in:
T 8.7 0.22 2.5
E 3.06 6.25 3.1

Figure 15.8 shows the time response of the input to the nonlinearity for the cases with p =4 and
p = 0.5. The later case is much more nearly sinusoidal, and this explains the higher accuracy of
the describing function in predicting the period in this case. Figure 15.9 shows the phase-plane
plot of the limit cycle behavior, with p = 0.5, for initial conditions inside and outside the limit
cycle. Note that a simple root locus plot shows that this system is always asymptotically stable
for any real gain N. A real equivalent gain cannot explain the sustained oscillations exhibited
here. |

Although some interesting and useful aspects of describing function analysis of
nonlinear systems have been presented here and in the chapter-end problems, space

Time Figure 15.8
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limitations have forced omission of several additional considerations, which can be
found in references such as 9 and 11. Nonsymmetrical nonlinearities which yield a
nonzero average value is one such topic. Another has to do with nonzero external in-
puts. Harmonic analysis techiques can be applied to such forced, closed-loop systems,
and additional interesting phenomena such as jump resonances and subharmonic
responses then arise. Significant space has been devoted in the problems to the
application of describing functions to systems with (potentially) chaotic behavior. The
field of chaos in dynamic systems is still evolving, and only a small segment of it has
been discussed here. In control problems the usual goal would be to avoid such chaotic
behavior (although it can inadvertently creep into various adaptive and self-learning
control systems, which are invariably nonlinear [18, 19]). Describing functions are
presented here as a tool for understanding and predicting the possibility of chaos in
some nonlinear systems. Then, compensation or redesign techniques can be used to
avoid such potentially troublesome behavior. Finally, the very useful topic of dual
input describing functions has not been developed here. The concept involves the
deliberate insertion of a second sinusoidal input, dither, to a nonlinearity. Dither is
usually of a much higher frequency than the fundamental frequencies of interest. If the
assumed low-pass nature of the linear system is present, the high-frequency dither
component will have negligible direct effect on most of the system. It can have a
pronounced effect on the behavior of the nonlinearity. For example a nonlinearity with
deadband, as in Figure 15.6b, will have no output until the amplitude of the input e ()
exceeds B. If a high-frequency dither signal d (¢) is superimposed onto e(¢), then some
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output will appear whenever e(f) + d(f) exceeds B, so the effective gain of the non-
linearity has been changed. The low-pass filtered envelope of this e(¢) + d(¢) output
can provide positive benefits to system behavior [9, 11].

15.6 LYAPUNOV STABILITY THEORY AND RELATED FREQUENCY
DOMAIN RESULTS

The direct method of Lyapunov [20-23] was presented in Sec. 10.6 with sufficient
generality to allow application to nonlinear systems being considered here. Although
all the stability and instability theorems apply without change, the determination of
suitable Lyapunov functions is less straightforward. The solution of Lyapunov’s equa-
tion, Eq. (10.22), to find quadratic Lyapunov functions is generally not adequate. A
variety of methods for obtaining Lyapunov functions have been proposed [12, 24-26],
and a few of these are illustrated in Problems 15.17 through 15.20. The variable
gradient method [27, 28] introduced in Problem 10.14 and illustrated in Problem 10.15
is one fairly general approach. Problems 15.21 through 15.23 demonstrate the variable
gradient method on several nonlinear systems.

Lyapunov analysis of nonlinear systems differs from linear systems in that linear
system stability conclusions are global. In nonlinear problems, a given equilibrium
point may have a finite or local domain of attraction. That is, initial states within that
domain will converge to the equilibrium point. Initial points outside the domain of
attraction will diverge from it, settle into some sort of limit cycle around it, or perhaps
undergo some other more complex behavior (chaos). Lyapunov stability theorems can
be used to estimate the extent of the domains of stable attraction. Lyapunov instability
theorems can be used to estimate the extent of the unstable (repulsive) behavior
around an equilibrium point. We now use the variable gradient method to illustrate
this.

EXAMPLE 15.8 Consider the Van der Pol equation y + w(y? — 1)y + By = 0. In state variable
form the system equations are

X-fl = X2 and .x‘z = —u(xlz - l)xz - Bxl

This system has a single equilibrium point at the origin. Assume that the gradient of the still
unknown Lyapunov function V is

VY = [(!11 X+ Otlzxz]

021 X1 + Q2 X>

The final coefficient a,, can be set to 2 without loss of generality, and this will be seen to ensure
that V is quadratic in x,. This will be done here. Assuming that V is not an explicit function of
time, the time rate of change of V'is

V =[VV]Tx = [an; — 2B — oz (x2 — 1)]x1 X2 — 0tz P2
— oz = 2p(x? — D3
The troublesome cross terms can be eliminated by selecting

11 = 2B + |,LQ21(X12 - l)
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leaving
V = —o B2 + oz — 2u(x2 — 1)]x2

One easy way to proceed would be to select ai> = az; = 0. Then, if p> 0, there is a region de-
fined by x7 < 1in which V will be positive. With these choices, VV7 = [2Bx; 2x.]. The so-called
curl equations d(VV),/dx; = 3(VV);/ax; are automatically satisfied, and the line integral easily
gives V = [(VV) dx, + [ (VV).dx, = Bx{ + x;. This is a positive definite function, and a given
value of V defines an ellipse. The largest such ellipse which satisfies x{ < 1 defines the region (2,
where V and V are both positive. The equation for the family of ellipses has no x; x, term so x;
and x, are principal axes. Setting x, = 0 shows that the maximum value of V is B. Then setting
x; = 0 shows that the maximum x, = VB. By the instability theorem, Theorem 10.6, the system
is unstable and () is an estimate of the region of repulsion. If p is negative, the origin is a point of
stable equilibrium. The same region ) would then be an estimate of the region of attraction,
since at all points within it, we have V >0 and V <0. |

EXAMPLE 15.9 A different estimate of the regions of attraction or repulsion for the Van der
Pol equation can be found by selecting different coefficients for the gradient of V. The same
selection for ay; is again made to eliminate the cross terms. Now, a tentative choice for
a2 = a = —2p will give V = —2p[x, — BJx{. The selected gradient is

VY = [[‘Zuz(xlz —1) + 2B - ZMz}
—2px; + 2x;

The curl equations are again satisfied automatically, and a line integral gives

2
V = I:B“f' pz—%—l}xlz—prlx2+x22

If we define w = [B + w?> — px{/2], then

V= XT[ i —”]x
- 1
Using principle minors, this is seen to be positive definite provided w >0 and w — p* > 0—that
is, as long as x{ <2P/w. Likewise, (when w. > 0) V =0 provided that x; < B. It is seen that the
limit on x; is different here than in the previous example, and the limit on x; is the same. Here
the figure determined by V' = constant is no longer a simple ellipse. The estimate of (1 is given by
the largest closed contour V = constant that satisfies the stated limits on x; and x,. The actual
boundary of () is the interior of a limit cycle. It is of irregular shape, somewhat similar to the
limit cycle in Figure 15.9. See Reference 11 or 12 for the precise shape. u

As demonstrated here and in the problems, finding a suitable Lyapunov function
may require a bit of ingenuity. If attention is restricted to a certain subclass of non-
linear systems, then fairly general sufficient conditions for stability can be, and have
been, derived by using Lyapunov methods. One such approach, valid for systems with
a single nonlinearity, uses a Lyapunov function which is a quadratic (as in the linear
system case) plus an integral of the nonlinearity. This approach is usually associated
with the name Lur’e [20, 23, 28]. One simple demonstration is given.

Consider the system x = Ax — Bn(y), where y = Cx is a scalar input to the non-
linearity. Assume that A is asymptotically stable. It is also assumed that n(0) =0,
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so that the origin is the only equilibrium point. Then by setting Q =1 and solving
Lyapunov’s equation (10.22), a positive definite matrix P can be found. In order to
study the stability of the nonlinear system, a Lyapunov function is selected as

V=x"Px+ f: n(&) d&. Clearly, if the integral term is nonnegative for all x, then V will
be positive definite. The time-derivative is given by
V =x"[ATP + PA]x — 2n(y)B"Px + n(y)y
= —x"x—n(y)[2B"P — CA]x — CBn(y)*

The question of stability for this class of problems reduces to a determination of
whether the nonlinear term n(y) can cause V to lose the negative-definiteness which
the quadratic term in x would give. Other strategies for selecting P may also be used.

EXAMPLE 15.10 Consider the system

| gt

The solution of AP + PA = —I gives

ER
8 16
P= 13

16 32

Since the input ton( )is x;, C=[1 0], so CB =0; then
. n(x;)x 13
V=—xl—xi- (—81)—1 - X2[X2 + <'ig)n(x1)]

This can be rearranged into

( ) 1 13’l(xl)

o __n X1)X1 T 32x,

V= 8 X113n(x)) . X
32X1

The first term is negative for all x; except 0 for any nonlinearity which lies in the first and third
quadrant of n(x;) versus x; space and which satisfies n(0) =0. The quadratic-form term is
negative definite, and hence the system is asymptotically stable, provided n(x;)* <x7(33)°>. W

The preceding result is extremely conservative. Recall that Lyapunov theorems
give sufficient conditions, not necessary conditions. Problem 15.20 uses the variable
gradient method and includes this system as a special case, with f(x;) = 6 and g(x;) =
8x; + n(x,). There it is shown that a sufficient condition for global asymptotic stability
is that n(x;)x; > 0—that is, any nonlinearity in the first and third quadrants. An even
more general result is given in Reference 28, where the condition is that [ n(§) d¢> 0.
This would include, for example, a nonlinearity such as n(x;) = e ™ sin(x;) which
does not stay within the first and third quadrants. The results derived from the Lur’e
approach of using a quadratic plus integral Lyapunov function obviously depend upon
the particular quadratic selected. It has been shown that the strongest results that
can be obtained by using a Lur’e-type Lyapunov function are those contained in the
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Popov criterion [9, 12, 23]. The Popov criterion and the closely similar circle criterion
are examples of frequency domain stability conditions. The interested reader should
consult Reference 23 and the references therein for proofs and to learn about the
difficult step of converting standard Lyapunov function results into frequency domain
conditions for stability. There are several advantages of the frequency domain results
to be given next: (1) They circumvent the difficult step of finding a Lyapunov function;
(2) they apply without special regard to the order of the system; and (3) they rely on
Nyquist-type stability analysis methods, which are well known from linear systems
analysis. The principle disadvantage is that they do not always apply. These conditions
are applicable to so-called sector nonlinearities—that is, linearities that are contained
between two straight lines through the origin. Hysteresis-type nonlinearities and non-
linearities involving products of several state variables are notable examples that
cannot be treated by these methods. To be specific, attention is restricted to systems
like the one in Figure 15.5. The nonlinearity is assumed to be a single-valued, piece-
wise continuous function which satisfies n (0) = 0 and K, < n(e)/e < K, for e # 0, where
K, and K, are slopes of the straight lines which provide the lower and upper bounds of
the nonlinearity. This is sometimes stated as 7 (e) belongs to the sector [K;, K,].

Popov’s Stability Criterion

If the linear portion of the system G (s) is a proper, asymptotically stable transfer
function and if K; = 0, K, < and n (e) is not an explicit function of time, then Popov’s
criterion can be applied. It ensures that the system is globally asymptotically stable if a
real number g and an arbitrarily small positive 3 can be found such that

Re{(1 +jwq)G (jo)} + VK, =58>0 (15.19)

If G(s) has simple poles on the jw axis, Popov’s criterion remains valid provided the
lower bounding slope K; is larger than some arbitrarily small positive e. Popov’s
criterion can be given a useful graphical interpretation. To do so we define a Popov
locus for the system, which is a modification of the familiar Nyquist locus. The
real part is unchanged, and the imaginary part is multiplied by w. That is, define
G*(jo) =Re{G(jo)} +jo Im{G (jw)}. Then, Eq. (15.19) becomes Re{G*(jw)}—
q Im{G* (jw)} + 1/K, =8> 0. This indicates that a plot of the Popov locus must lie
entirely to the right of a straight line through the point —1/K, and having a finite
slope 1/g.

EXAMPLE 15.11 Find the maximum upper sector bound K, for the nonlinearity n(e) of
Figure 15.5 for which Popov’s criterion can assure stability if G(s) =[s> + 135® + 72s + 160]/
[s(s*+ 65>+ 2652 + 565 + 80)].

A portion of the Popov locus is shown in Figure 15.10. The real-axis crossover occurs at
o =2.866, with |G* (jw)| = 0.965. Thus any value of —1/K, more negative than —0.965 admits a
finite positive sloping line that is totally to the left of the locus. That is, K, = 1/0.965 = 1.036 is
the maximum slope of the upper sector bound for which Popov can guarantee stability. Note
that since G (s) has one pole on the jw axis, the lower sector slope must be larger than some
positive €. ' [ |
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It is pointed out [9] that the output of the system in Figure 15.5 will still asymp-
totically approach zero for nonzero reference inputs 7 (¢) into the system, provided that
r(¢) is bounded, uniformly continuous, and square integrable. This rules out any type
of constant or bias input component, but in such a case a zero asymptotic output would
not be a reasonable expectation on purely intuitive grounds.

The Circle Criterion

The circle stability criterion applies to the same general type of system as discussed
before, but with somewhat different specific conditions. The nonlinearity may now be
a function of time, n(e, f), but for all time it remains inside the bounding sector
[K), K,]. The linear system need not be stable, but it is assumed that G(s) is strictly
proper (i.e., the state model matrix D is zero) and there are no common numerator
and denominator factors (i.e., the full-order state model is both controllable and
observable). A critical circle or disk will be utilized in place of the critical point —1 + j0
of the Nyquist criterion for linear system stability. The critical circle cuts the real axis
at points —1/K, and —1/K; and has a diameter given by 1/K; — 1/K,,. The usual Nyquist
polar plot, and not the modified Popov locus, is used with the circle criterion. The
circle criterion states that the polar plot of G (jw) must not cut the critical circle, and
the encirclements or lack of encirclements of the critical circle by the locus follow the
usual rules associated with the point —1 for linear systems. Several subcases are
possible:

(a) If both K;and K, are positive, the critical circle is entirely to the left of the origin.

(b) Ifboth K;and K|, are negative, the critical circle will be entirely to the right of the
origin.
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(¢) When K; and K, have opposite signs, the critical circle will have the origin as an
internal point.

If the open-loop system G (s) has no right-half plane poles (P, = 0in Eq. (15.18)),
then stability requires that the critical circle not be encircled. This means that in cases
(a) and (b), the polar plot must stay outside the critical circle. In case (c) the polar plot
must stay entirely within the critical circle. If G (s) has unstable poles, then the polar
plot still must not intersect the critical circle but must have the correct number of
encirclements of it, N.= P, as given by Eq. (15.18), in order to give Z,= 0 and thus
assure asymptotic stability.

EXAMPLE 15.12 Examine the system of Example 15.11 using the circle criterion. The
positive-frequency portion of the Nyquist polar plot is shown in Figure 15.11. Since the open-
loop system has no unstable poles, the critical circle must not be encircled by the polar plot; i.e.,
N:.=0 is required. The real-axis crossover is the same as in the previous example because
G*(jw) and G (jw) have equal real parts. Thus the limit on the upper-sector slope must be less
than 1.036. The exact limit depends on the lower-sector bound K. If K;= 0, then an infinite-
radius circle (i.e., a vertical line) results. This vertical line would need to be positioned further to
the left than —1.036 to avoid intersecting the locus. Also note that if both sector bounds have
negative slopes, the locus will not intersect the critical circle but will encircle it once in the
clockwise direction. The sufficient conditions for stability cannot be satisfied by this system with
any negative slope. n

Sector-type nonlinearities contain all linear gains between K, and K, as special
cases. Stability for any nonlinearity in this class then necessarily requires that the
system be stable for this range of linear gains. The Nyquist stability criterion must
therefore hold for all critical points [—~1/K;, —1/K,]. These are all the points along the
real-axis diameter of the critical circle. Aizerman’s conjecture [9, 12, 23] was that a
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nonlinear system with a sector nonlinearity would be stable if the linear system was
stable for the entire range of gains in the sector. Aizerman’s conjecture is generally
false. The circle criterion indicates that not just the real-axis diameter but rather the
entire critical circle must be checked for intersections with, or encirclements by, the
polar plot.

Some extensions of these single nonlinearity results to systems with multiple non-
linearities are available. A brief survey may be found in Appendix C of Reference 9.
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ILLUSTRATIVE PROBLEMS
Nonlinear System Stability

Let the origin be an equilibrium point of a slightly nonlinear system x = f(x). If this system is
linearized about the origin, perhaps using Taylor’s series, then x = Ax + h(x), where A is the
Jacobian matrix [0f/0x] evaluated at x = 0, and h(x) represents higher-order terms. Show that if
llh(x)|| = a/x|| for some positive constant o, then asymptotic stability of the linear equation x = Ax
implies asymptotic stability of the nonlinear equation as well [21, 23].

Let ®(t, ) = e*“ ™" be the transition matrix of the linear equation. Then treating h(x) as a
forcing term, the solution for the nonlinear system can be written as

x(f) = D(1, to)x(to) + f " ®(t, h(x(7)) d=
Therefore,
(O =100 Wl + | 196 Dl

Asymptotic stability of the linear part ensures that |®(¢, 7)|| is bounded by a decaying exponent-
ial, |®(t, 7)|| < Me *¢~" for all t =1, all T = t,. Using this and the bound on |}h(x)|| leads to

t
Ix(2)ll = Me ™~ llx(to)l| + f aMe ™ |x(r)| d=
to <
Multiplying by the positive function e* leaves the sense of the inequality unchanged, so

IO = Me (] + || aMeIx(m)ldx )
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Call the right-hand side of equation (I) U(f) for convenience. Note that U(r) = aMe"“|x(t)| =
aM times left-hand side of equation (7). Hence

UaM)<U or dU/U=<aMdt

Integrating both sides gives In(U(¢)/C) =< aM (¢t — t;), where the integration constant C is the
value of U at t = ty, namely, C = Me"“||x(t,)||. Then

U(f) < Ce®M 0 < Me*|x(to)|je M~

is an explicit upper bound for the right-hand side of equation (). Therefore,
eMIx(0)|| = Me* |x(to)le =M~ ©

or
k(O = Me ==~ Dl (z)]

Thus [|[x(¢)|| — 0 provided the bound on |h(x)|| is sufficiently small, i.e., if « < k/M. The constant
a must satisfy o = |[h(x)|/|[x]|. Since h(x) is composed of second- or higher-order terms in compo-
nents of x, this restriction can be made as small as we please by restricting ||x|| to be sufficiently
small.

Thus asymptotic stability of the linear part of the system implies asymptotic stability of the
nonlinear system in a sufficiently small neighborhood of the origin. It can also be shown that if
the Jacobian matrix has one or more right-half plane eigenvalues, then the equilibrium point is
unstable. In summary, the stability of the nonlinear system in the neighborhood of an equili-
brium point is the same as the linearized portion, with one exception. If one or more eigenvalues
are on the imaginary axis and all others are in the left-half plane, the linearized system gives no
definite information about stability. Second-order (and higher) terms need to be evaluated in
this case.

Derive the nonlinear differential equation which relates the angle 6 of the inverted pendulum
[29] mounted on a cart to the input force f, on the cart. See Figure 15.12a4 and the free-body
diagrams of the two members in Figure 15.12b and c. The pendulum is of length L and mass m,
and its moment of inertia about the center of gravity is J. The cart has mass M. The horizontal
and vertical displacements of the center of gravity of the pendulum are x = X + L/2 sin6 and
y = L/2 cos 0. Letting the reaction forces at the pendulum support point be E, and F,, summing
forces on the pendulum gives '

a
A\
o

mg

(a) v (b) (©)

Figure 15.12
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E=mX +"E§ coso — L@ sing 0))]

2 2
Fy—mg=—m—2Lésin6—m—2L-ézcose )]
f'V2—Lsin9—-1%!‘-cos()=J'€') 3

The external force imparted to the cart by its drive wheels is f,. By summing horizontal forces on
the cart, one obtains

Substituting Eq. (4) into (/) and then combining that result with Eq. (2) and (3) gives a non-
linear second-order differential equation relating the input force f, to the pendulum angle 6,

mL? . mML? - mgL . m2L? -, . mL cos 6f,
J 4 = 2 + —_— 2 = Tt = a2 —
{ sin” @ cos 9}9 > sin @ 2Am + )6 sin(26) 2(M +m)

If the pendulum has a uniform mass distribution, J = mL?12, and then Eq. (5) reduces to

b= {2g sin® —mL/[2(m + M)]é2 sin(20) — 2 cos 0f./(M + m)} ]
4L/3 —mL cos’6/(M + m) (©)

If the length L is written as twice the half-length, Eq. (6) becomes identical to the result in [29].

15.3 (a) Let x; =0, x, =0, and u =f,. Derive the state equations for linear perturbations of the
pendulum in Problem 15.2. Use 6 = 6 = u = 0 as the nominal status.

(b) Use the linearized constant-coefficient perturbations to design state feedback control gains
that yield closed-loop poles at A = —4 and —5. Use the parameter values [29] m =2 kg,
M=8kg,L =1m,and g =9.8 m/s.

(c) Use the linear state feedback gains of part (b) with the actual nonlinear system given in part
(a). Use computer simulation to investigate the transient response of 6, 6, and u for initial
values of 6 of 0.5, 1, 1.2, and 1.25 rad. Let 6(0) = 0.

(a) The nonlinear state equations are

X2

x = | 2g sinx; —mL/[2(m + M)]x; sin(2x,) — 2 cos x,f/(M + m)
D

= f(x, u) (1)
where the denominator is D = 4L/3 — mL cos*8/(M + m). Then

0 1 0
4l S ST [ S
XIn L4L3 —mLI(M + m) Wi 4L (M + m)3—mL

(b) Using the pole placement algorithm of Sec. 13.4, the feedback gain matrix is found
to be K=[-211.333 -51]. If, instead, an infinite horizon LQ optimum problem
(Sec. 14.4.2) had been specified with weights Q=1 and R =1, the gain would then be
K=[-196 —47.142], and the resulting closed-loop poles of the linear system would be
A =[—4.07 and —4.24]. )

(c) When the first set of gains is used to form u(f) = —Kx in Eq. (Z) with values x,(0) =0.5, 1,
and 1.2 and with x,(0) =0, the three response curves of Figure 15.13a are obtained for
x1 = 6(¢f). Figure 15.13b gives the corresponding x,(¢) = 6(¢). Figure 15.13¢ shows the input
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Figure 15.13

force u(t) = f, for these cases. When 6(0) = 1.25 rad was attempted, the controller failed to
balance the pendulum, as shown in Figure 15.13d. The maximum allowable control mag-
nitude was set to 1000 N, and in the last case the commanded control saturated at this limit.
A larger limit will allow a larger initial angle to be driven to zero successfully.
The two-link mechanism in Figure 15.14 demonstrates nonlinearities typical of many robot
devices. The equations governing the motion as a function of the two input joint torques can be

derived by any of several methods [30]. By summing forces and torques on each link it can be
shown that

L= [% + mz}ng cos 0 + Tiig—l-'—zcosmb
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Figure 15.14

¥ e{% ¥ mz{Lf yhafacos® o ‘”H " \p{ [Lz Ly cos(b ~ e)]}

_ lIJz m L1 14112 Sin(\l} - 9) + 62 L] Lz 8211'1(\'1 - G) (1)

and

m; ng COS(lJJ) + émz L1 Lz COS(lIJ - 9) + ms Lzzlll + my L1 L2 (")2 Sin(lb - 9)

L= 2 2 3 2 @)

Let x; =0, x, =, x3 = 0, and x, = s and write equations (I) and (2) in state variable form.
Since X3 and X, appear in both equations, we must first separate out these variables.
Rewrite Egs. (1) and (2) as

Dn(x)0 + Dp(x)f = F(x) + T
Dy (x)8 + Dn(x)f = B(x) + T

where the coefficients of the second derivatives have been redefined as D; and where all other
terms except the torques have been combined into the definitions of the two F,; terms. The state
equations can then be written as

)61 X3

)Ez _ | X4

.X.fe, B |:D11 D12:|‘1 |:F1(X) + T]] = f(X, T)
X4 D;; Dy E(x)+ T,

These nonlinear equations can be linearized for analyzing small motions about some nominal
conditions by using the methods of Sec. 15.2, leading to ~

8% = [0f/9x], 8x + [0f/9T], OT

Details of evaluating the partial derivatives df/dx and of/dT are left as an exercise; they may also
be found in [30].

Consider an nth-order nonlinear system which is linear in the r control components,
x = f(x) + Bu. Investigate conditions under which it is possible to find a control function satis-
fying f(x) + Bu — Fy, — Gv = S(x — y.) as required in dynamic linearization.

Rewriting this as Bu = w, where w = —f(x) + Fy, + Gv + S(x — y.), the results of Chapter 6
indicate that a unique solution exists for any arbitrary w if and only if B is square and non-
singular. This is a very restrictive condition which is rarely met with control systems of order
higher than one. Again from Chapter 6 results, for a specific w, solutions will exist if rank[B] =
rank[B  w|. A unique u will exist for w if, in addltlon rank[B] = r, the number of control com-
ponents Some influence can be exerted'on w through choice of F, G, and S. What is desired is an
ability to find u for arbitrary x and y,, and this can be achieved under certain conditions if
compatible choices are made for the forms of F, G, and S. For example, consider an nth-order
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system in phase variable form, with one input, 3')') =f(y,¥,---, (")7- Doy u, which becomes in
state variable form
e 1 To]
X3 O
x=|7 |+ O u
Xn 0
Lf(x)] L1

|
Clearly rank[B] = 1 and [B | (F — S)y, + Sx — f(x) + Gv] will also have rank = 1 for all x and y, if
both F and S are in companion form and if the first n — 1 rows of Gv are zero. This ensures that
the first n — 1 rows of Bu = w are identically zero. The last row gives a scalar equation that can
be solved for u ().
The preceding results easily generalize to any number r of coupled pth-order scalar
differential equations. We illustrate with just two equations in terms of two input variables,

V1= fi(¥1, Y1, Y1, Y2, ¥2) + by + biou,
V2= foa(¥1, Y1, Y1, Y2, ¥2) + bar g + bz Uz

By picking state variables x; = yi, X2 = y1, X3 = 1, X4 = 2, and xs = y,, the state equations take
the form

X2
X3
x=| fi(x) + buus + brau,
Xa
fo(x) + baruy + b us

Since rows 1, 2, and 4 of thp matrix B are zero, rank[B] =2. Consideration of the solvability
condition rank[B] = rank[B | w] suggests a compatible choice for F, G, and S should make rows
1, 2, and 4 of w zero also. This can be accomplished by selecting

0 1 0O 0 0 0 1 0 0 O 0 0

0 O 1 0 O 0o 0 1 0 o0 0 0
F=|F Fs» Fs; F Fss|, S=[8n S22 Sz S Sss , G=|Gs Gz

O 0 o0 o 1 O 0 0 0 1 0 0

Fsi, Fs; Fs3 Fsi Fiss Ss1 Ss2 Ssz Ssa Sss Gs1 Gs

Thus there are only two nontrivial rows which contribute to the solution for u, and a unique
solution exists for all x, y,, and v provided the 2 X 2 matrix [b;] is nonsingular.

The system in Problem 15.5 is now generalized to allow it to be nonlinear in the control vari-
ables: x = f(x, u). What can be said about the existence of a dynamic linearizing control law?

If the function f(x, u) is continuous in some region % containing the point xo, uo, and if it is
continuously differentiable in R, the results of Problem 15.5 remain valid in the region R, with
[0f/0u]o replacing the previous matrix B. This follows from the implicit function theorem [8]. If
there are r input components and » states with r < n, then the n X r matrix [3f/du], must have full
rank r. The augmented matrix W must also have rank r. This can sometimes be ensured by
selecting F, G, and S in a form compatible with the given nonlinear state equations, just as in the
case of linear control terms in Problem 15.5. This restricts the number and location of the
nonlinear terms which can be dealt with in the state equations. Problem 15.7 shows a system
where this condition cannot be met.When rank[B] # rank[W], the linearizing equations are
inconsistent and no exact solution exists. Two choices may be considered in this situation.
Certain equations can be ignored or combined so that a smaller set of consistent equations
remains. This can be accomplished by premultiplying f(x, u) by an r X n matrix H. This means
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that only r states, or combinations of states, are being matched to an rth-order template system.
Of course the resulting nth-order closed-loop system will generally not be linear in this case. The
second possibility is to use a least-squares approximate solution to the full nth-order template-
matching problem. This can be done provided B is of full rank, but the result will not be exactly

linear, and its performance may not be satisfactory. Both possibilities are demonstrated in
Problem 15.7.

Consider the problem of applying dynamic linearization to the system

0 -1 -1 0
x=11 0 0x+ Ux,
0 0 —4 2+X1X3

For this system, of/ou =[0 x, 0]” has rank 1, except at x, = 0. Clearly any choice for u(f) will
have no effect on the third component of x in this case, so exact linearization by matching to a
third-order linear template is not possible. By selecting

100 100
H‘[010] or H’[011]

we can match a second-order template system to either the first two components of x, or with the

second H, we would match x, to y,, and x, + x3 to y4,. The second H is selected, along with a
template system described by

. 0 -1 0

Ya= [2 ~3]yd ' HV
This is a stable system with eigenvalues at A = —1 and —2. The steady-state solution for a step
input of magnitude Vis y,=[—V/2 0]". The convergence matrix is initially selected as

_{ 0 -1
§= [25 - 10]
but S = F will also be tested. Except when x, = 0, the control is given by

u(t) _ 2yd1 - 3yd2 +v + S21(X1 ".Vd1) + Szz(Xz + x3— de) —-x1t 4x3 -2 X1X3
X2

The nonlinear system equations were numerically integrated using fourth-order Runge-Kutta
with a step size of 0.02. The magnitude of u(#) was limited to 100. Figure 15.15a compares y,,
and the state x; obtained with the two matrices S mentioned. Figure 15.15b shows y,, along with
two sets of x,,x; responses. The control command is shown in Figure 15.15¢. It saturated
immediately with the fast S and remained at either 100 or —100 for the first second and there-
after remained well within the bounds. When S = F was selected, the system response was much
slower and smoother. The commanded control signal gradually increased until saturation oc-
curred at about 3 s. *

Attempting to least-squares fit to a third-order template system in this problem is not

productive, since u = [BB”]"'B’{. ..} amounts to ignoring the first and third components of the
matching equations.

Use the method of dynamic linearization to control the inverted pendulum of Problems 15.2 and
15.3. Compare the results with the linear perturbation controller of Problem 15.3.

The controller in Problem 15.3 was designed to yield closed-loop eigenvalues at A = —4
and —5. For comparison purposes, a linear template system which has these same eigenvalues is
specified, namely,

.2[ 0 1] +[0]v
Ya=l-20 -9 [1]"
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Figure 15.15

The nonzero convergence matrix S will also be specified to be in the companion form

10 1
S‘[sm szz]

This is not a totally arbitrary choice. The first component of Eq. (15.11) here requires that
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the first rows of F and S agree so that x, = y4, + x2 — y4,. The second component of Eq. (15.11)
is the only one containing the unknown control u(f). If we define w = (F; — Sx)yq, +
(F2 — $22)Ya, + S21x1 + S22x> + v and the denominator D of Problem 15.3, this second com-
ponent can be written as

mL x3 sin(2x;) 2 cosx,u
2(m +M) M+m
from which, if cosx; # 0, i.e., if x; = 0 # w/2, the control law is

Y= (m + M){2g sinx, — mL/[2(m + M)]x; sin(2x,) — Dw}
COS X1

2g sinx; — = Dw

Unless stated otherwise, v = 0 in the following simulation tests of this control law. Three values
of the matrix S are tested.

1. With S, = =100, S5, = —20 (A = —10is a double root). The typical result of Figure 15.16a
is obtained, using x(0) =[—0.5 0]” and y,(0) =[0.5 0]". It is seen that x(¢) and y.(¢)
come together in a fraction of a second, as determined by S, and that they both settle to
zero in less than 2 s, as determined by F.

2. With S =F but all other parameters as before, the response of Figure 15.16b is obtained.
The settling times are noticeably longer.

3. With S = [0] and all other parameters as before, x,(f) — y4,(f), but the first component of
x—i.e., 80—does not go to zero, as shown in Figure 15.16¢. The derivatives of x and y, do
match, and since the second components have equal initial conditions, these terms remain
in perfect agreement. Having 6 converge to —1 rad is not a satisfactory solution to the
balancing problem. This points out the utility of the convergence matrix S.

The preceding three tests were repeated with the template input v(#) being a periodic
square wave. Results are shown in Figures 15.17a, b, c. Again, the first two cases successfully
track the desired response, but (2) is considerably slower and allows a much bigger transient
error to build up before settling. With S = [0], the pendulum fails to achieve vertical balance.
When the original angle error is allowed to increase to 1.48 rad, the controller is no longer able
to balance the pendulum (the first S was used), but at 6(0) = 1.47 rad, it performed correctly.
Note that this is a much larger error that could be nulled by the linear controller of Problem 15.3.
The actual response is shown in Figure 15.18, with 6 oscillating around m/2; the input force
history commanded by the controller is a square wave oscillating between the =1000-N limits.

Find the describing function for the general hysteresis-type nonlinearity in Figure 15.19a, which
can be described by the five parameters a, B, K, K>, and K;. Note that the symmetry of the
parallelogram gives the expression vy = [Ki(B + a) + K»(B — a)}/2. Assume the amplitude E of
the input sinusoid is larger than B.

There are seven time segments of interest in each cycle of the sine wave in Figure 15.195.
0<t<t;0<e(®)<a,n(e)=-—vy+ KiB + e(t)]

h<t<th;a<e(t)<B,n(e)=—vy+ Kifa+B] + Ki[e(t) — a]
n<t<t;B<e(r),n(e)=vy+Kie(r) - B]

Lh<t<ty—a<e()<B,n(e)=+vy+ Ki[e(t) —B]

L<t<ts; —B<e(®)<—a,n(e)=—vy+ Ke(t) + B]

ts<t<ts;e(t)y<—B,n(e) = —y+ Ki[e(t) + B]

te<t<2m,—B<e(®)<0,n(e)=—vy+ Ki[e(t) + B]

AR el e

where Hh= sin_l(a/E), t, = Sinul(B/E), L=mw—h,hLh=m+th,ls=m + b, le= 2T — t3. These times
are all normalized times.

The actual times are obtained by dividing by the frequency w. Using e(f) = E sin(¢), the
Fourier coefficient a; is composed of the sum of seven terms, each of the form

(%) J{[Co+ Ci sint] sint} dt = (%){Cg(cos t,—costy) + Ci(ty — 1) + %[sin(Zta) - sin(2tb)]}
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Figure 15.16

This will be defined as a function S{(t., t,, Co, C1) to avoid repetition. Then a; is the sum of seven
S¢( ) functions, each with appropriate arguments. For example, on the first interval, ¢, =1,
=10, C() =Y + K1 B, and C1 = K1 E. Oninterval 2, =0, =1, Co =Y + K}((I + B) - Kza,
and C, = K; E. The others are similar. The coefficient b, is given similarly by the sum of seven
terms, each of the form
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(i) H{[Co+ Cy sint] costhdt = (%) (sint, —sint,) + (f—;) [cos(2t,) — cos(2t,)]

= Cy(ta, ts, Co, C1)

The same arguments are used to evaluate the seven cosine coefficients C;( ) and the sine
coefficients S¢( ) on each interval.
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State response

Time Figure 15.18

Certain nonlinearities with multiple but related inputs can be treated as if there were a single
input, and the previous methods of finding describing functions can be applied. Demonstrate
this by finding the describing function for n(e, ¢) = e’ e.

If e(f) = E sin(wt), then é(f) = Ew cos(wt), so that n (e, €) can be treated as having a single
input n(e) = E> w sin’(of) cos(wf). In this case no integration is required to find the describing
function. Trigonometric identities give

3 3

n(e) = (E2 ‘”) sin(ef) sin(2wf) = (E : ‘*’) [cos(wf) — cos(3wt)]

The fundamental component is now obvious. It has a 90° phase shift relative to the input. Thus
the describing function is

NG o= (Ex2)ora - B2

This example is frequency-dependent and purely imaginary.

Since the product of two sinusoids of frequencies w; and w, produces terms with fre-
quencies w; — o, and w; + w,, the foregoing procedure will fail to produce a valid describing
function in many cases. For example e ()’ = E* sin’(wt) gives a dc term and a double-frequency
term but no fundamental component.

Use the describing function of Problem 15.10 to analyze the Van der Pol equation for possible
limit cycles.

¥ + w(y*>—1)y + By =0; both w and B are positive.

Separating the linear and nonlinear parts gives y —py + By = —wy’y, which has the
representation of Figure 15.5, with n(e) = py*y and G(s) = 1/[s* — ps + B]. Thus the condition
for existence of a limit cycle is that —1/G(jw) = N(E, »). Equating imaginary parts gives
wo = pwE?4, from which the approximate amplitude of the limit cycle is E = 2. By equating
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e(t)=FEsint

(b) The input function Figure 15.19

real parts, it is found that the limit cycle frequency (at least the fundamental) is o = VB.
Sketches of the Nyquist plot and the —1/N locus are given in Figure 15.20. The solution just
found identifies the intersection of these two curves.

15.12  Is the limit cycle of Problem 15.11 stable or unstable?

Any critical point inside the closed contour formed by the plot of G (jw) in Figure 15.20,
for —oo <@ <, is encircled once in the counterclockwise direction—i.e., N.= 1. Any critical
point outside the closed contour has N, = 0. Since G (s) has two open- loop r1ght -half plane poles,
P, = 2. Thus application of Nyquist’s criterion (Eq. (15.18)) to G (jw), using —1/N as the critical
point, indicates the following:

1. The closed-loop system is unstable with Z, = 2 if —1/N is outside the closed contour. This

is correct.
2. The closed-loop system is unstable with Z, = 1 if —1/N is inside the closed contour. This is

incorrect.
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Note that N(E, ») factors into N;(E)N,(w). To analyze this system correctly, a modified
i — J®

which incorporates the frequency-dependent part of N(E, w), is defined. The remaining
Ny(E) = E*/4 will be used to define a real critical point —1/N,. The polar plot of G'(jw) is a
double loop, one as w varies from 0 to « and the other, the mirror image for negative w. Figure
15.21 shows the modified plot. Now critical points inside the contour have N, =2, and hence
Z, =0, indicating stability. Critical points outside the contour are unstable. Thus stability of
the equivalent gain closed-loop system requires that the critical point —1/N must be inside the
contour. (This is opposite the usual situation.) Now the stability of the limit cycle can be
determined. Assume that E and w are at the intersection point, i.e., we have a limit cycle. Then
if the amplitude E increases slightly, —1/N moves inside the contour, causing the system to
become asymptotically stable and causing E to decrease back toward the limit cycle value. If E
decreases a little, 1/N increases, and the critical point —1/N moves outside the Nyquist contour.
This gives an unstable system, causing E to grow back toward the intersection point. Thus the
limit cycle is stable.

The circuit of Figure 15.22 has been widely used as an example of chaotic behavior [16, 17]. It is
linear except for one nonlinear resistor. Its current will be modeled as a nonlinear function of the
voltage across it, i = n(vci). The nonlinearity is piecewise linear, of the type treated in Example
15.5. Selecting states shown in the diagram, the state equations for this system are

A () am
2= (RC)(xl x2)+cz

X - (l>x
3 i L 2
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¢ J example

Use Chua’s values, C; =35, C,=1,L =3, a=1, K;= —0.8, R = 1/0.7, K, = —0.5, B =, and K3
arbitrary. Find the equilibrium points of this nonlinear system and determine their stability (for
small perturbations).

Using the given values, the state equations reduce to

-63 63 0 9
x=| 07 =07 1|x—10|n(x;)=Ax—Bn(x,)
0 -7 0 0

x = 0 implies that x, =0, —6.3x; — 9n(x;) = 0 and that 0.7x; + x3 = 0. One equilibrium point is
x., = 0. Other solutions are found from x; = —9n(x,)/6.3. On the first linear segment, n(x,) =
—0.8x;, and the only solution is x; = 0. On the second segment, n(x;) = —0.8 — 0.5(x; — 1) from
which we find x, = £1.5. This gives x.,=[1.5 0 -1.05]" and x.,=[-1.5 0 1.05]". The
Jacobian matrix is just A with A; changed to A1, — 99n/dx;. Since dn/dx, is just K;, the Jacobian
at x., is

09 63 0
[of/ox];=[0.7 —-0.7 1
0 -7 0
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and the eigenvalues are A = 1.552, —0.676 = j1.897. At both x., and x.,, on (x1)/9x; = K, = —0.5,
so the Jacobian at both these points is

-1.8 63 0
[a—f] = { 0.7 —0.7 1},
0x |2 0 -7 0
and the eigenvalues are A = —2.759,0.1297 + j2.1329. All three equilibrium points are unstable,
but their behavior would be expected to be different. Perturbations from the first would be

expected to be dominated by a growing exponential e'***, whereas the other two would be
expected to exhibit growing oscillations of the form e%'*” sin(2.1329¢).

Use the describing function approach to analyze the Chua circuit of Problem 15.13.

The results of Example 15.5 are used to calculate the describing function N(E) for the
nonlinearity #(x;). It is convenient here to examine G (jw)= —1/N(E), and for that purpose
—1/N(E) is plotted in Figure 15.23. The transfer function from the output of the nonlinearity to
x, is found by using C=[1 0 0], along with A and B of Problem 15.13. This gives

9s>+0.7s +7]
[s%+ 7s% + 7s + 44.1]

The poles are at s = —6.9105 and s = —0.0447 = j2.526. The zeros are at s = —0.35 £ j2.6225.
Because of the lightly damped complex poles and zeros at frequencies rather close together,
rapid changes in the magnitude and phase of the transfer function can be expected at nearby
frequencies. The real-axis crossover points are crucial and are found analytically.

v (=0 +T)+0.7jw}
CU) = 1= 7) + (0 — ) @)

Multiplication by the complex conjugate of the denominator and setting the imaginary com-
ponent to zero gives the equation for real axis crossover points, 0.70(44.1 - 7w?) —
(—w®+ 7)(7w — ’) = 0. One root of this equation is »; = 0. Factoring this term out and rear-
ranging gives ' — 9.1w” + 18.13 = 0. This quadratic in »” has two real roots, and their square
roots give the positive frequencies at which G(jw) crosses the real axis, w,=1.71642 and
w3 = 2.4807. Using these in the real component of (/) gives the magnitudes at the crossover
points as G(0) =1.42, G(jw,;) = 1.554, and G (jws) = 7.4455. A sketch of the Nyquist polar plot

G(s)=C[sI-A]"'B=

2.2 Negative inverse
for a 3-segment symmetric nonlinearity
2.0
L8
-]
Z
T
1.6
1.4
1.2 i | | | { | |
0 4 8 12 16 20 24 28

Input amplitude, E Figure 15.23
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(not to scale) is given in Figure 15.24. The Nyquist criterion, Eq. (15.18), indicates that stability
requires no encirclements of the critical point. For this system there are zero encirclements if the
critical point is outside the entire plot or inside the small loop between crossover points 1 and 2.
There are two clockwise encirclements (N, = —2) for all critical points between crossover points
2 and 3, and N, = —1 for all critical points between the origin and the first crossover point. For
the Chua nonlinearity, the plot of —1/N in Figure 15.23 shows a continuum of critical points
between 1.25 and 2. In this range there are two intersections of G (jw) and —1/N. The first one
occurs for o =0, and the second occurs for w = 1.71642. These intersections indicate potential
limit cycles according to the describing function approximations. To check the stability of these
two limit cycle points, assume we are at point 1 and a small increase occurs in the amplitude of
x1. This moves the critical point into a stable region, and the perturbed amplitude should decay
back toward point 1. A small decrease in amplitude moves —1/N into an unstable region, and the
amplitude would be expected to increase back toward point 1. Thus point 1 appears to indicate a
stable dc “limit cycle.” Similar considerations at intersection point 2 show this to be an unstable
limit cycle condition. In particular if the amplitude is perturbed away from point 2 to the right, it
will not return to point 2, but neither can it proceed to another limit cycle, since point 3 is not an
intersection of G and —1/N. Some more complicated behavior is indicated for a range of
frequencies above w =1.7164 but below » =2.4807. The actual response to this system with
the selected values is chaotic. The response contains a continuous spectrum of frequencies, not
just discrete limit cycle frequencies. A small segment of the time response, starting with
x(0)=[0.01 0 0] is shown in Figure 15.25. Although clearly not sinusoidal, counting peaks
in various regions shows about 4 cycles in 10 s, or a period of 2.5 s. This crudely indicates some
frequency content at about the frequency of crossover point 3. Superimposed are a range of
lower modulating frequencies. Two-dimensional phase-plane plots of various pairs of states are
given in Figures 15.264a, b, and c. Tendencies to oscillate about the equilibrium points x., and x.,
found in Problem 15.13 are clearly evident.

Add a modifying gain K to Chua’s system of Problem 15.14 so that we now have Kn(x,) being
fed into the same linear system. Use the describing function technique to predict behavior for
various values of K.

The effect of K could be included in a modified G (jw) plot or a modified N’ = KN. We

~ select the latter case for discussion. The real axis crossover frequencies are unchanged, and by

selecting K we can cause —1/N' to intersect with the crossover points in various ways:
1. If K <1.25/7.445 =0.1679, the entire interval —1/N" is to the right of point 3, and stable
behavior is predicted (no intersections, no limit cycles predicted).
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Time response for
Chua circuit, nomimial (gain = 1)
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2. If K >2/1.42 = 1.408, the entire interval —1/N" falls between the origin and point 1, giving
an unambiguous prediction of an unstable system (no intersections, no limit cycles pre-
dicted).

3. If 1.287 < K < 1.408, the interval —1/N' has just one intersection with G (jw) at point 1,
and some sort of stable dc (w = 0) behavior is predicted in steady state. The amplitude £
required to make this happen can be predicted by using Figure 15.23 to find E for which
~1/N'=1.42. With K =1.3, for example, this means —1/N =1.3(1.42) = 1.846. This
corresponds to E =~ 8 or 9, but it is not clear what this might mean for w = 0.

4. 1f 0.16789 < K < 0.2686, —1/N' has a single intersection with G (jw) at point 3, and this
predicts that a stable limit cycle with a frequency of w = 2.4807 rad/s. The amplitude E is
also predicted by using Figure 15.23 to estimate the value of E at which —1/N'(E) takes on
the value 7.4455, that is, where —1/N =7.4455(K). With K =0.188, the estimate is
E=1.7.

One simulation case in each of these categories is provided in Figures 15.27a, b, ¢, and d. In each
case the general character of the describing function predictions are borne out reasonably well.
The precision of the demarcation points is not clear, since a very slow growth or decay in
amplitude takes a long time to notice. Also recall that the amplitude predictions are only for
state x;.

Use describing functions to investigate the possibility of limit cycles for the control loop of
Figure 15.5 if G(s) =(s +20)/[s(s +2)(s +4)] and the nonlinearity is of the type given in
Problem 15.9, witha=0,B=1,K;=1, K, =2,and K5 =1.

The result in Problem 15.9 assumed that the amplitude E exceeded B. To analyze this
system, the nonlinearity behavior must also be specified for amplitudes smaller than 3. Here it is
assumed that a set of smaller parallelograms nested inside the one shown in Figure 15.19a
applies. The slope changes occur whenever e changes sign (at the maximum and minimum
amplitudes) and whenever e changes sign. Under these assumptions the polar plot of —1/N of
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Figure 15.28 is obtained. Superimposed on it is a portion of the polar plot for G(jw). There is
one intersection, and it indicates existence of a stable limit cycle with an amplitude of £ = 0.8
and a frequency of w =~ 1.85 rad/s. A simulation of this system generated the time response
shown in Figure 15.29. This shows an x; amplitude of the expected magnitude, about 0.8, but the
period of oscillation is 2.8 s, indicating w = 2.24, about 20% higher than predicted by the polar
plot intersection. The probable reason is that the behavior of n(e) is not really determined by e
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alone, nor even by both e and e. Figure 15.30 shows four different signals, all having the same
instantaneous value of e(f). Two have positive ¢ and two have negative ¢. In order to determine
correctly which parallelogram is being traversed, more history about e(¢) is required. In the
simulation the most recent sign change in ¢ () was used to determine the maximum amplitude of
the current parallelogram being traversed. Other similar errors of approximation in hysteresis-
type nonlinearities are discussed more fully in Reference 9.
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Investigate the following nonlinear system for stability:

X1=X2,  X2= —g(x2) —f(x1) (1)

The stability of an equilibrium point must be investigated. Since there could be several, it
is not really proper to speak of system stability. Equilibrium points satisfy x =0, so x,, =0 is
required, and then f(x;,) = —g(0). It is assumed that g(0) =0 and that f(x;) = 0 only at x; = 0.
Thus the origin is the only equilibrium point, by assumption.

If x, is thought of as a position, then x. is a velocity, and the above equations might
represent a unit mass connected to a nonlinear spring and damper. The spring force is f(x;) and
the damper force is g(x,). This analogy suggests trying a Lyapunov function composed of a

kinetic energy-like term with x; and a potential spring energy term (equal to work done by

fx1):
V(x)=cix; + szf(ﬁ) g

This term is positive definite if ¢; >0, ¢, >0 and if f(x;) always has the same sign as x;, for
example, any odd function of x;. Then

V = 2C1 X2.X:,'2 + C2f(xl)x.1
Using equation (1) gives
V = 2¢130[—g (x2) = f(x1)] + c2f (x1)x2

Selecting ¢, = 2¢, gives V(x) —C2 X2 g(xz) V is negative semidefinite if g(x,) always has the
same sign as x,. If this is true, stability i.s.L. is ensured by Theorem 10.1. Actually a slight
generalization of Theorem 10.2 is possible. If, instead of V(x) being negative definite, V (x) can
be shown to be always negative along any trajectory of the system, asymptotic stability can still be
concluded [20].

In this problem V = 0 only if x, = 0, and is negative otherwise. But, ifx2=0, thenx,=0
also and this requires that f(x;) = 0. By assumption, this means x, = 0, so V <0 for all possible
x(?) trajectories, except at the equilibrium point x=0. It is concluded that this system is
asymptotically stable if f(x;)x; >0 and g(x,)x,>0 for all x # 0. Further, since V(x)—>x as
|[x||— oo, the stability is global.
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Use Lyapunov’s direct method to study the stability of the origin x =0 for the system [21]
described by

X1 = x; — ax,(x7 + x3)
X2 = —x1 — axa(x] + x3) ()
A trial Lyapunov function is assumed as V (x) = ¢, x{ + ¢, x5, with ¢, and ¢, unspecified but
positive constants. Then V (x) is positive definite and V' (x) — = as ||x||— . The time derivative is
V(X) =2¢1 %1% + 2¢, %2 %,
Using Eq. (), this becomes
V(x) = 2¢1 x1[x2 — axa(x2 + x2)] + 2c20[— %1 — axo(x? + x3)]

If the selection ¢; =c, is made, then the troublesome x;x, product terms cancel, leaving
V(x) = —2ac,(x{ + x3)°. If the constant a is positive, V(x) is negative definite and the origin is
globally asymptotically stable by Theorem 10.3.

Derive conditions which ensure asymptotic stability of the origin for the system in Eq. (1) [24].
Use the integration technique of Problem 10.11 to determine a suitable Lyapunov function:

)21 = X2, )37_=x3, )é3= _(X1 +cx2)"—bx3 (1)
| Try V(x) = —x2. Then V(x) = J' V(x)dt = — f X3 X dt. Integration by parts gives
151 151

V(X) = =x3x2 + [x2X3dt = —x3x;, — [ x2(x1 + cx2)"dt — b [x,x3dt
t

X2
But x5 = X, so f X2x3dt = j x,dx> = x3/2. Adding and subtracting [ cx;(x; + cx2)” df gives
1 0

t

2
V(x) = —x3x2 — [ (X2 + cx3)(x1 + cx2)" dt + [ cxs(x1 + cx2)" dt — %3

From Eq. (1), x> + cx3 = X1 + cX, and (x1 + cx2)” = —¥3 — bxs. Therefore,

(x1+cx2)""' bx;

V(X)=—X3xz——‘m———i—~cfx3x3dt—bcfx;"dt
x1+ex)'tt bx? ox?
——*xsxz—(—l-m-zi)—-——z—z——zi—bcfx_%dt

This V (x) is not positive definite; in fact, it can be made negative definite. Therefore, a modified
function is selected as
‘ _(atex)ttt bxg | cx;

V'(x)= ~V(X)—bCJ;1x§dt——ﬂ_1—+ 5 +-2—+x2x3

_(at cxy)"t! . Q(Xz +)2)2 + (bc —1)x3
n+1 2 b 2b
This is positive definite if b >0,bc —1>0 and if n + 1 is any even positive integer. Also,
V'(x) = —V(x) — bcx3 = —(bc — 1)x3. The same conditions ensure that V'(x) < 0 for all x. Since
x3=0requires X3 = 0 and X, = 0, x; = constant, it is seen that x; = 0 holds along a solution only at
the point x = 0. The above conditions thus ensure asymptotic stability.
For another direct-integration method of generating Lyapunov functions, see the dis-
cussion of Parks’ method [12].

Consider the nonlinear system x = f(x), and assume that f(x) equals zero only at x =0. Then
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f(x)” f(x) is a positive definite function of x and can serve as a potential Lyapunov function. Find
sufficient conditions for asymptotic stability.

Since V = f(x)7f(x), V = f(x)7f(x) + f(x)” f(x). But f(x) = [0f/dx]x = [8f/x]f, so that

T af]T [af]}
= = 4+ 1=
V=t {{ax 0x f
Thus, by Theorem 10.3 the origin is asymptotically stable if [of/ax]” + [0f/0x] is negative
definite—i.e., has all its eigenvalues strictly in the left-half plane for all x. Furthermore, if

f(x)” f(x) — = as ||x||—> «, then the origin is globally asymptotically stable. This result is attrib-
uted to Krasovskii [23, 28].

Use the variable gradient technique to investigate the stability of the nonlinear system (see pages
59 and 67 of Reference 20) described by

*1= X2, X2 = —f(x1)x2 — g (x1) (1)

It is known that g (0) = 0 and that x = 0 is the only equilibrium point. The gradient is assumed to
be of the form

Q11 X; T apX
V.V = %X 12X2
o1 X1+ X2

The curl equations require aVVi/ox, = dVV,/dx,, or

X dom tTaptx douz _ X o
L ox, 27 20x, T T ox

+ Q21

Using the assumed gradient and Eq. (1) gives

—f(x1)xzz—g(x1)}

= 011 X1 X2 + 012 X5 — Qo1 f(X1)x1 %2 — f(x1)x5 — g (x1) ez x1 — g (x1)x2

V = (Y, V)T[

This expression should be made at least negative semidefinite.

One possible solution begins by setting a,; = 0. Then the curl equations are satisfied if
as2 = 0 and if ay; is not a function of x,. By setting a1; = g (x1)/x1, we obtain V = —f(x;)x;, which
is negative semidefinite if f(x,) =0 for all x;. Then V,V =[g(x1) x2]” and

v=["s@a+ [ eae=[ g@ar+Z

Thus V is positive definite, and hence a Lyapunov function, if g (x:)x; > 0 for all x; # 0.
The following conclusions regarding stability can be drawn:
1. Stablei.s.L. if g(x1)x; >0, f(x:) =0, for all x # 0 by Theorem 10.1.
2. Asymptotically stable if, in addition, f(x;) and g(x;) = 0 only at x; = 0. This ensures that
V # 0 on any solution of equation (/) except at x = 0.
X1
3. Globally asymptotically stable if, in addition, Jo g(§)dE— x as |x;|— .
Use Lyapunov’s direct method to investigate the stability of the nonlinear time-varying system
[27] % + ax + g(x, t)x = 0.
The state equations are X; = x,, X, = —ax, — g(x1, t)x;.

+ . .. . .
Assume that V, V = al(;xlx flﬁxz . Then since V(x) may be an explicit function of time,
21 A1 2

V(x)= (Y V) %+ oV/ot

=X X2 + Q2 X5 — A0 X1 X2 — g (X1, Dx{ oz — ax3 — g (x4, Hx1 X, + 9V /ot
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In order to remove the x; x, product terms, set ai; = aa; + g(x1, £). The curl equations can then
be satisfied if a1 = a1, = constant. Then

X1 X2
V(X) = L [aa21 + g(xl, t)].xldX1 + J;) [(X21 X1 + X2] de

X 1 = constant

2

x x; (™
:aa21_22'+(121x1x2+_2'2—+f0 g(X1,t)X1dX1

X1
Ifj g (x1,8)x1 dx; >0 for all x; and ¢, then V(x) > 5(x; + 021 X1)* + 3(@az — o3))x7. Thus V(x) is
1]

positive definite if a >0 and aa,; > a3;. This is ensured by selecting a; = a — €, where € is a
small positive number. Checking the time derivative,

dav
dt
Using az; = a — € and the differential equations for x; and x, gives

1og(xy,t
g(atl ) 1dx1

_ 5 . . . . hb ag(xl,t)
= Qo X1 X+ oo X1 X2+ e X1 X + XX, + g (X, X1 % + X Y, X1 dx,

V=—exi—(a - g, nxi+

This expression is negative definite if g (x1, f) > 0 for all x,, ¢t and if the integral term is sufficiently
small. That is, if

*19g(x1,1)

=2y dxy < ag (x,, £)x1
0 ot

This will be true, for example, if max [0g (x1,1)/3t] <2ag(x1,?) for all x, and ¢t. Additionally, if

g(x1,1) is bounded for all x; and ¢, "then V (x,t) can be bounded as required by condition (4) of
Theorem 10.5. If these conditions are satisfied, the system is uniformly globally asymptotically
stable.

PROBLEMS

Use dynamic linearization to design a controller for the first order nonlinear system X =x*u
so that the resulting response mimics the linear system y,= —2y,+ v, where v is a unit step
function. Investigate various initial conditions for the actual system and for the template system.
What impact do these have on potential singularities in the linearizing control law?

The desired response for the second-order nonlinear system described by
X¥1=x5;+u and X,=xu

is intended to mimic the uncoupled linear system
Ya, = —Ya, TV, Yar, = —4ya, + v

Investigate the dynamic linearization procedure, noting that a single control variable is being
asked to satisfy two conflicting equations. Use a least-squares approximation to find a control
law, and test its response in a simulation. Let v(#) be a unit step function and set y.(0) = 0.

Use dynamic linearization to design a controller for the nonlinear orbit equations of Example
15.2. Select a linear template system satisfying # + a7 + Br =BR and 6 + k6 + 06 = out/R’.
Select values for a, 8, k, and o so that r and 6 smoothly approach their steady-state values in
about one-fourth of an orbit revolution.

Verify that the limit cycle found in Example 15.7 is stable.

Repeat the analysis of Problem 15.13 of the system equilibrium points, but reverse the order of

the two slopes in the nonlinearity, so that K; = —0.5 and K, = —0.8.
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Use describing functions to investigate the possibility of limit cycles (and chaotic behavior), as
was done in Problem 15.14, but with the modified nonlinearity of Problem 15.27. Results
derived in Example 15.5 yield the plot of —1/N given in Figure 15.31.

Repeat the analysis of Problem 15.15 but with the nonlinearity of Problems 15.27 and 15.28.

Another version of Chua’s chaotic circuit [31] has a three-segment nonlinearity of the type
treated in Example 15.5. The breakpoints and slopes are now a=1, =5, K;=—0.8,
K, = —0.5, and K5 = +2. The linear part of the circuit is the same as in Problem 15.13, with all
the same values. Find the equilibrium points and investigate their stability. Use describing
functions to investigate the possibility of limit cycles or other strange oscillations. A plot of the
describing function is given in Figure 15.32.

Repeat Problem 15.30, but with new parameters values R =0.71, L =1, C;=C,=0.1, a = 1,
B=2, Ki=—-6, K;= -5, and K3 = +10. The describing function is plotted in Figure 15.33.

A system with the configuration of Figure 15.5 has a nonlinearity with dead zone and saturation,
described by Figure 15.6a with a =0.25, 3 = 2.5, K; = K53 =0, and K; = 1. The linear portion is
described by G(s) = K(s + 8)/[s(s +2)(s + 4)(s + 6)]. Find the range of gain values K for which
the linear system, without the nonlinearity, is unstable. Show that the presence of the non-
linearity can stabilize the system. Also find a value of K where limit cycles can exist. Determine
the amplitude and frequency of the stable limit cycle.

Consider the nonlinearity of Problem 15.32 along with G (s) = 10(s* + 4s + 68)/[s (s + 2)(s + 4)].
Use root locus analysis to find the amplitude and frequency of a stable limit cycle by treating the
describing function N(E) as a part of the root locus gain KN(E) and finding the jw axis
crossover points.

(a) Using precisely the same steps as in Problem 10.11c, find a Lyapunov function and its time
derivative for the nonlinear system [20].

)&1=x2, x'2:x3, x.3= _F(X2)X3_GX2_bX1

(b) Determine sufficient conditions for asymptotic stability.

A special case of the Lorenz equation, widely used as an example of chaotic behavior, is given by
[14, 15]

22

2.0

1.8 I~

—1/N(E)

1.2 | | | | | J i
0 4 8 12 16 20 24 28

Input amplitude, E Figure 15.31
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N(E)

12 14
Input amplitude, £ Figure 15.32
12
-8 | | I | | | |
0 2 4 6 8 10 12 14
Input amplitude, E Figure 15.33
| |—-10 10 off* 0
X | = ro—=1  0f[*2| +| —xixs
X3 0 o0 -3jI* X1X2

(a) Show that if r <1, there is only one equilibrium point located at the origin, and it is locally
stable.

(b) Use a suitable Lyapunov function to estimate the domain of stable attraction to this
equilibrium point. Set r = 0.5 for simplicity.

(c) The more interesting, chaotic behavior occurs for values of r near 28. Show that there are
then three equilibrium points, all of which are locally unstable.

~ (d) Estimate the domain of instability which surrounds the origin by using Lyapunov

techniques.
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The divergence theorem [8] states that for a sufficiently smooth vector field f(x) defined over a
sufficiently smooth closed volume Y with surface area S composed of incremental area elements
dA with outward pointing normal vectors n(x),

J[[ awoav =[] 19 as

where div(f) = dfi/dx; + dfo/ox, + - - - + 9f./0x, is the divergence of f. Let f=x and note that
JTf(x) -n(x)dA = [[ XAt -n(x) dA/At— dY/dt. Apply this to the vector f of the Lorenz equa-
tions and show that the volume Y containing an arbitrary set of initial states satisfies
dY/dt = —%Y. This means that the volume that contains the solution trajectories through these
initial states is always decreasing according to Y(£) = Y(0)e ~“*” [15].

Apply the divergence theorem of the previous problem to a linear system x = Ax and show that
the trajectories which originally occupy a volume Y (0) satisfy Y(¢) = Y(0)e™, where a = trace{A}.
From this show that ‘“bounded volume” result for solution trajectories does not in any way imply
bounded norms for x(f) and hence does not imply any kind of stability. Hint: Consider a specific
unstable case such as A = diag[2 + 2j, 2 — 2j, —10]. Trajectories initially in a three-dimensional
volume diverge to infinity, but in a planar subspace, with zero volume.
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CHAPTER 1

A .
1.21 Q==—P
Q Pg

1.22 v(H) =v(t) + J:OQ(T) dt

1.23 vo = L(dfs/dt) + Rf;

1.24 y(s)/lu(s) =[Cs + 1/R,}/[Cs + (1/Ry + 1/R,)]
= S —0.nT —nsT _ 1 - Z

1.26 Y(2)= g e e =7 e 02 5 — o
_ 10z%(z +0.5)

127 H(2) =20 2)z - 0.4)(z = 0.8)

Polesat z =0.2,0.4, 0.8

Zeros at 0., 0., —0.5

Stable

1.28 y(nT) = 156.25 — 2.916(0.2)" + 30(0.4)" — 173.33(0.8)"

0.2

CHAPTER 2

225 3<K <9
2.26 K =20, w =2rad/s

2.27 With K =V 327,680 =572, the s row of Routh’s array is zero. The auxiliary equation then
is 44.2s + 2288 = 0, indicating the cross-over frequency is o = 7.19 radss.

2.28 (a) Type0,K,=20db=10,K,=0,K,=0 (b) Typel,K,=,K,=—-20db=0.1,K,=0
(¢) Type 2, K, =, K, =, K,=—60db=0.001
2.30 Stable for all K, but very low stability margins for small values of K.

2.31 For K >7.5 there is one clockwise and one counterclockwise encirclement. Therefore,
N =0 and system is stable. There are two unstable roots for 0 < K <7.5.

2.32 Gain margin =1.76, i.e., K > 8800 causes system instability. Phase margin = 13°. w =15
rad/s for a —180° phase angle.

2.33 K=9.65, w=11.8 rad/s (Hint: Dominant roots at —-a*jw; e *=0.0015.)

618
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2.34 Nonminimum phase
2.35 Direct realization: y(tx) = —0.5y (tc - 1) + E(tx—1) — 0.5E (tx ->)

Parallel realization: y,(tx) = E (tx-1)
yz(tk) = _O.Syz(tkf 1) + E(tk; 1)
y (te) = —y1(te) + 2y2(t)
Cascade realization: E1(t) = E(tx-1)
y (1) = Ex(te) = 0.5[Ea(tc—1) +y (b -1)]
2.36 C(nT)=13.3333 - 20(0.5)" + 6.6667(—0.5)"
237 (@) C(z2)=1+(a+B—a—-b)z'+(ab+o’*+ap+p*—ac—ba—aB—-bB)z >+ ---
Therefore, C(0)=1, C(T)=(a+B—a—»b) and CQRT)=ab +o’*+af+p*—aa—ba—
aB—bp.

_ab o —aa—boatab| ., |B*—aB—bB+ab|,.
®) C(”T)_asa"”{ a(a ~ B) }‘”[ BB~ ) ]B

where 8, = {? g Z i 8

(¢) C(nT)—>0asn—>o

2.38 (a) C(z) _ 0.004845K (z + 0.9672)

(t;) R(z) z?—1(1.9239 —0.00484K)z + (0.90484 + 0.004686K )

Stable for
2< K< 20.3
Use Schur-Cohn stability
test of Example 2.6

) - @.8187 11052

2.39 Let [ ]* indicate the Z-transform of whatever is inside [ ].
[RG,]*
1 + [G1 G2 H}]* + [G] Gz G3H2]*
C( ):: [RG1]*G2 G3 Gs/[l + G5H3] + RG4 G5
) T14[G. G H|* +[G:G. G- Hy)* ' 1+ GsH,
C(z) is the same except put an * on [G, G5 Gs/[1 + Gs H3]] and [RG4 Gs/[1 + Gs Hs]]
_ Az?’+Bz+D
240 Gd2) = T2~ 2oiT + Dz + 0T

where A = Kp/T + Kp(1 +7/T) + KT + 7)
B = _2(KD/T + KPT/T) - Kp_ K['T
D = Kp/T + Kp/T )
For simplicity, let T— 0. Then one obtains an algorithm of the form

Ei(ti) = Ex(tx—1) + aE(te) — BE(tc—1) + YE (- 2)

Figure A2.38

E(z)=
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CHAPTER 3

1],B1=[0],C1=[1 0], D=0

_[ o
3.19 Al—[_b . .

Azz[:la) 1:I,B2=B1, C2=C1,D2=D1

3.20 Letx; = Y1, X2 =Y2, X3 =_)}2, X = [x1 X2 x3]T, Y= [YI yz]T; u= [ul u2]T;

-3 -3 0 10

a0 0 Ao oles[3 0 g0 4]
0 -3 —4 0 1

3.21 Of the many possible answers, one is obtained by setting x; = y1, X, = y1 — Uy, X3 = y> — 2U;.

0 1 0 0 1
ThenA={—2 -3 2},13:[ 5 —3},c=[(1) 8 g],n=[g 8}
30 -3 6 1

X -1 15 01]x1 0 . L
3.22 [%2|=]| 0 -1 0||x2|+|1l|# and y=[5 -3 =z
X3 0 0! —61Lxs 1

3.23 With x; = voltage across Ci, x, = current through L, x3 = current through L,,

X1 0 WCi+C) —1(Ci+Cy)lx 0
u=i, |X|=|-1L, —R/L, 0 X2 |+ | R/L,
X3 1/L, 0 0 X3 0

3.24 x,,x, = voltage across C;, C;. x3 = current through L. Then

u

Ml l—=L R X1 0
Cl(Rl + R3) Cl(Rl + R3)

. NK 1 0 x| | -DK
2= RG R.C; Tl RCo s
3 —R; 0 —(RiR; + RiR; + R:R5) X3 1
] LR+ Ry) L(R,+R5) ] L L]

y=[0 1 O0O]x
1] s R :(f)
3B L= "R+R R +R TR+ RJ
xz = __1Lt2(t)
2

. ____1_ Rix: _(R] R2+R1R3 +R2R3)x3 R2 B
X3 = L LR1 + R, R, + R, + R+ Rzul(t) Rsux(r)

3.26 xi(k) = yi(k), x2(k) = yi(k + 1) + 10y:1(k) — 2u1(k) — y2(k), x3(k) = y»(k). Then

-10 1 1 2 0
x(k+1)=[ -3 0 —2}x(k)+{ 1 0]u(k)
4 0 —4 -1 2

=[5 Yxew
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3.27 Letxi(k) =y (k),ix2(k) =y(k +1). Then
xk+1)=|_) _ﬂx(k) + mu(k), y() =11 0x(k)
Let x,(k) = y (k), x2(k) =y(k + 1) + 3y (k). Then

(-3 1

xk+1=| 3 O]x(k)+[(1]]u(k), y(ky=[1 OJx(k)

CHAPTER 4
R, + —-h
4.35 il = thZ—AL_l)_vl’ i2 = %VI, V= ZRLV1, where A = (hu hzz - h12 h21)RL + h11

.. had .
4.36 Vi = i[hn(l + hzzRL) - h12h21 RL]l1,lz = "%ll, Vy = "%hz] RL 11, where A=1+ hzzRL

4.37 |A| = —468

59 2 3 4 5

1[ 3 4 —3] (|1 60 3 4 5
438 A'=-——| 7 —-19 10|,B'=-=|-4 -8 46 -16 -20
2 3 2 82 -4 -6 50 -10

-8 -16 -24 -32 18

1 -2 | .
'5' —5—': 0 O :, 0 0
2 440 00 0
= 00 *;_6'"1" 0 0
0 0l S0 o
_______ 2 i
-3 8
| [ O
0 o 1:0 0 !ISS 55
! '8 =3
-0 010 055 55 -
F 1 1 -
Ky Ky s B
2 2 2 2
_ 1 bB B _ s _B N '—B
4.39 A(s) Tt a e , B(s) 1 2 2s 2
2 s+ 1 (s ta) s°+B
s (s +1)?+ P
-t _ "2t _ —t+ze—21
4.40 A7) = [t* tcoth],B(t)=[e Oe e?)(t) ]
2 =05 1
4.41 (a) S=1|0 2.78388 1.61645| (b) Not possible, A not positive definite.
0 0 2.32101
4 1 0.25 -0.25 0.75
0 3 1.25 0.75 . -0.91666
(¢ S=|0 0 4.83477 0.64636 0.40505
0 0O 3.15551 2.41267
0 00 0 3.10035
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wanmo=[§ {007 L[0T ]

_ -1
4.43 H(s) = [ ! _1] [(S + l)és t2) 2+ 3)] . Other valid answers may be found.

s+1 s+3
4.44 Using the observable canonical form for each subsystem gives
-3 1 0 0 1
_|-6 0 0 0 15 _|1 0 0 0O _
A=l 10 -4 1B~ o’C‘[o 0 1 o]’D‘[O]'
[ 2 0 -3 0 0
Using the controllable canonical form for each subsystem gives
0 1 0 O 0 a
(-6 -3 0 O _11 !5 100 _
A=l g o o 1B o’C‘[o 0o 2 1)-P=M0k
| 5 1 -3 -4 0
0o 1 0 o o o o [o o
4.45 -6 -3 0 0 0 0 O 10
0o 0 o 1 0 o0 O 00
A= 5 1 -3 -4 10 0 0[,B=|{0 0|,D=]0],and
0o 0 0 o0 -6 0 O 01
0o 0 0o o o0 o0 1 00
. 0 0 -2 -1 10 -1 -1 L0 0
[5 1.0 0 0 0 0]
C= 0021 0 00
0 000 10 00O
[0 000 0 -2 1]
0o 1 0 0 [0
_|-6 -3 -2 -1 _|1 _/5 100
446 4= o o o 1|B7 o’C’[o 0 2 1]
S 1 -3 —4 KU

4.47 Q = Q.+ (c/2)Vpg/h,dh, where h = h,, + dh and Q,, = ¢V pgh,
(1= %), (12— 91

4.48 (a) 6 =cos™’
e — x||{Ir> — x|

(b) 30 =[V,90]] dx. Letting ry — x =u and r, — x = v, the three components of V, 8 are given by
00 _ (ui+ vo)lfull vl — (il + uilv]®) cos

ox; ul?{lvi* sin 6
CHAPTER 5
5.39 (a) |G| =16
(b) e‘z—\/lTZ[l 2 3, oF%[l -5 37, vs=\—}—1_0[—3 0 1"
oot § Are[3 3 Pt 0w
5.41 2= ——4, - 22, — 21

NGV ARV ACRVET A
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542 z= 341x1 - %xz —21xs

5.43 r=11—0[3 1 0, =[-7 19 -10]% =230 -1 2]

1

7
T T

5.44 r1=[0 % %],n:[o -1 l],r3=[1 0 —1]", 2= 2% — % + 5xs

5.46 2.5784502E + 03 6.3518805E + 02 —1.1518515E +02  3.3449918E + 02
G| 0351880SE+02 6.2262292E+02  6.9457092E+01  8.6028557E + 01
—1.1518515E + 02 6.9457092E + 01  2.9569002E + 01 —1.9252985E + 01
3.3449918E + 02 8.6028557E + 01 —1.9252985E +01  1.1678545E + 02

|G| =3.12183 x 108
The orthonormal basis vectors v; are

8.7438685E — 01| [ —1.4671828E — 01| { —3.4713072E — 01 3.0564949E — 01
2.5207549E - 01 8.4976387E — 01 4.2903343E - 01 1.7403936E — 01
2.9540095E — 02 [* | 4.4605288E — 01 |’ [ —6.5270102E — 01 | [ —6.1167425E — 01
—4.1356131E — 01 2.3960790E — 01§ | —5.1904905E — 01 7.0862055E — 01

Then x = —0.6777v, + 12.712v, — 14.736v; + 31.548v,. Note that the sum of the squares of the
components of x in the original and the new coordinates is 1374.5.

5.47 The Grammian is

4.0000000E + 00  4.0008001E + 00 —7.9900002E + 00
4.0008001E + 00  4.0016012E +00 —7.9916024E + 00
—7.9900002E + 00 —-7.9916024E +00  1.5960100E + 01

Its determinant is not zero, but very small, because the three vectors are very nearly colinear. To
proceed with these poorly conditioned vectors as a basis set would produce very unreliable
results.

5.48 An orthonormal basis for the subspace is, from Gram-Schmidt,

- 7.3127246E — 017 [—1.1037266E — 01 5.2741766E — 01
3.6563623E — 01 | [ —2.8796402E — 01 1.2584069E — 01
—3.6563623E — 01 |, | —7.9833186E — 01 |, | 2.0743863E — 01
7.3127240E — 02 | | —4.9211112E — 01 | | —2.8101894E — 01
| 4.3876347E — 01] | —1.5933463E — 01 [—7.6419383E — 01

The components of x; and x,, expressed in these coordinates, are

1.2431632E + 00] [ 4.8995252E + 00
—1.8481143E+ 00|, | 3.3418725E + 00
| —1.8451571E — 01 | —1.1238300E + 01

5.49 Dimension is 2.

B S T

5.50 Il = =2 n =T =1y
T
5.51 y,,=[% 2 -92-]

5.52 The sine and/or cosine functions form an orthogonal basis set, {v;,i = 1, »}. The reciprocal
basis {r;} differs only by normalizing constants. The inner product is that defined in Problem 5.22
and the Fourier coefficients can be thought of as components of an infinite dimensional vector.
5.53 A must be an n X n real matrix which satisfies x” Ax > 0 for all x # 0. This last condition is
the definition of a positive definite matrix.
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5.5 (6,0 = | F(e(r)d, It = (6,0

0 -1 2
5,58 A=|-3 2 2
0 2 3
5.59 No, it depends upon the fact that B™' = B.

1 [8I=9l cosa
-1 _ 2T AT
560 A" =—=—|V -1 cosa

sin“a|TT T
. 0 W, —w
5.61 Tpr=|~w, 0 oy |Tse, where w =[w, ®, .]” is the angular velocity of the
Wy, —o 0

body coordinates with respect to the inertial coordinates, which could be measured with body-
mounted rate gyros. (Hint: Let x,=[1 0 0]” be a fixed inertial vector. The same vector
expressed in body coordinates is xp, the first column of Tse. Then use Euler’s formula for
differentiating a vector in rotating coordinates,

dx | _dx

dt |1 dt
Repeat for two other vectors y; and z; and use the result of Problem 5.6 for the cross product.)
5.62y.=36 19 32y, =34 5 53"

5.65 (a) Hint: Result of Problem 7.37 will be helpful. (b) Hint: Results of Problem 7.26 will be
helpful.

5.66 Ignoring the boundary terms, the formal adjoint equation is y(k — 1) = A y(k). Note that
the time index k on the adjoint equation runs backward.

+0,)><XB
B

CHAPTER 6
6.30 x=5[40 —49 48]7
6.31 x,(0) = &, (T)[x2(T) — b21(T)x4(0)], where ®(T) is partitioned into [?_11@2)_}_?32_(_7_‘)].
$d21(T) | b2(T)

6.33 x=[—4a 0 «]7, o an arbitrary scalar
634 x,=[-1 0 1], x,=[-1 1 0]” and any linear combination of these.
6.35 Yes,sincers=1,x=[-2a «a]’, a arbitrary.
6.36 The degeneracy of A is 3.; the null space basis is

(0.0000000E + 007 [—1.0000000E + 00 0.0000000E + 00

—1.0000000E + 00 0.0000000E + 00 0.0000000E + 00

1.1764708E — 01 |, | —7.6470608E — 01 |,| 6.4705873E — 01

4.1176471E - 01 8.2352948E — 01 7.6470590E — 01

0.0000000E + 00 0.0000000E + 00 [ —1.0000000E + 00
6.37 (@) 11 =%, 02=3 ) 1 =5, x.=3
6.38 x = 2. Column space is one dimensional with basis [2 1]”. y — Ax is perpendicular to this
line, i.e., Ax is the orthogonal projection of y onto this line.
640 a=1,b =3
641 a=%b=" =5
6.42 a =15, b =155
6.43 i(0)=17.3
6.44 a=[2.6286 0.082145 —0.003572]", |ly.| = 0.4326, and the estimated final GPA is 3.057,
which is probably more realistic even though the residual error is larger here.
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6.45 C =5.3704, o = 1.077, estimated mile time is 5 min, 22 s
6.46 After processing first four equations x,=[—-.566 —.033 .533]7, and after five xs=

[-.472 —.127 .627]". Roughly these same values were obtained usiﬁg several initial esti-
mates for x, as long as the first P is very large. Disagreement with Example 6.7 after k = 4 would
not be surprising since unreliable results can be given by the recursive equations whenever A is

not full rank.
6.47 Introduction of a suitable weighting matrix can be handled by defining a weighted inner

product, (X;,X2)o =X; Qx,. This new inner product modifies the meaning of #*, since
(¥, d(x))o = (4*(y), X)o. With this definition for {*, the previous results still apply.

-0.5 0.25]
0.25 —0.25]

6.49 No solution exists. B has +1 as an eigenvalue and A has —1 as an eigenvalue. The 4 X 4 Q
matrix is singular, of rank 3 and the augmented W matrix has rank 4. The equations are
inconsistent and no solution exists.

6.48 X = [

CHAPTER 7

739 \,=1,-2,3.x,=[-1 1 1]5,[11 1 -14]", and[1 1 1]". J=diag[1,-2,3]

740 M =Nn=2,m=2,qg=2,x=[1 0]",x=[0 1]7

7.41 |A —I\| = 0=>\’(2 — \) = 0. Therefore, A = 0 is an eigenvalue with algebraic multiplicity 3
and index k = 2. Rank(A —I\)|y-o = 2. Therefore, g =2, so there are two eigenvectors x;, X3

and one generalized eigenvector associated with X = 0, and they are solutions of A>x = 0. Ay =2
has the eigenvector x4. These are shown as columns of

00 11
110 o0 o0
M=15 0 -2 0
01 0 0

7.42 M =3+j, M=3-j, =6, xi=[6-2] 2—-4 0], =%, x3=[0 0 1]7, J=
diag[3 +j, 3—, 6]

7.43 No. Although both matrices have \; = A\, = 2, the Jordan form for Ais J = [3 %] Since B
is already in Jordan form and since J # B, they are not similar.

744 =15, x,=[1 1 -1, 0n=9x=1 -2 -1, M:=3,x=[1 0 1]"

7.45 N\, =5.049, \, =0.643, A5 =0.308, x; =[1  0.802 0.445]", x,=[1 —0.555 —1.247]",
x;=[1 —2.247 1.802]"

7.46 (a) Hint: Set A =0 in the definition of A(N\) and in A’(N). (b) Use results of Problem
7.15 and note: (i) the only factor in A(N) which involves all the diagonal elements a;, and
which gives rise to all A~ ' terms, is of the form (a;; — A)(az — \) - * - (@., — \), and (ii) the form
of the coefficient of \* ™', and (iil) ¢/ = (—=1)"c..

7.47 N, ={—4.33945, 2.169727 = 2.4745}}, x, =[0.69505 —0.355598 —1]7, x,=[0.863702 —
0.181845] —j 0.1867736 —0.116646/]" and x; = X,. J = Diag[\1, A2, As]

7.48 \;={1.48431,6.257845 = 1.123484;}, x,=[0.97929 -1 —0.4636]", x,=[-0.5107 -
0.41175; —0.30786 —0.17794 —1]7, and x3 =X,. J = Diag[\1, A2, \3]

7.49 (a) Negative definite, (b) positive semidefinite, (c) negative semidefinite, (d) positive
definite, (e) indefinite

7.50 x=(1/V2)[-1 1]" (an eigenvector), Qmax = 4 = Amax = €igenvalue associated with x.

7.51 From equation (7.5), E; = x;X(r;. This is a projection since E;E; = E; and E,E; = 0 with i #j.
7.52 Similar to the preceding problem except the eigenspaces are now mutually orthogonal.
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CHAPTER 8

-2 40
8.25 A‘1=%[—A2+2A+3I]=é[ 2 2 o]
3 -3 3

g.26 |¢ " i _,e_t)]

| 0 e
_e—3t 2te—3t]
8-27 | O e—3t

[1, 7t -t S/ Tt —t1
e +e™) Fe'—e )]
8.29 _‘2’(67‘—6—') _12_(67t+e—t)

1l e "+2e™ e '—e ™™
8.30 3[2(8 Tr—e %) 2e7'+ e"“’]
(G k() kQ-R)E)
831 0 G) kg%)"“2
- 0 0 (i)k
—3e"+4e* —6(e"—e ) 0
832 | 2(e'—e™¥) 4e -3 0
L 0 0 e
[ @, oy o ap=e'—te'+it%e’
8.33 (S Qg — 30Lz o + 301.2 with a; = te’ - tz e’
Loy + 302 —30; —8az  ag + 3a; + 6y o, =3t2e
8.34
0 0 0 0 1 0.1047 0.9739 0
|00 0 0 |,,4 0 0 0 0
0 0 0 0 0 0 0 0
0.1 0.1054 -0.0738 0.1 ~0.1 —-0.0105 -0.0974 O

0 03246 -0.3142 0

~0.7t s 0 0 3 0
teTsin(30l g 9333 0
0 —00571 —0.2847 0

0 -0.1047 -0.9739 0

—0.7¢ 0 1 0 0
+e cos(31) 0 0 1 0
0

0 -0.0949 0.1712

04 -4 [o -1 2
8.35 A*=(0.5%0 2 -2[+[0 -1 2

01 -1l lo -1 2
8.38

At

et = e*sin(f) e*[cos(f) —sin()] 0

[e3’[cos(t) + sin(#)] —2e”'sin(f) 0 }
0 0 e®
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2.147797 -0.72399 0
With ¢ = 0.2 this gives A; = [ 0.361999  1.423799 0 with
0 0 3.320117

A = {3.320117,1.785798 + 0.36199j} = {e'?, €*°[c0s(0.2) = sin(0.2);]}

8.41 An easy approximation is given by using the dominant eigenvalue, A,, that is, the eigen-
value with the smallest nonzero real part. This mode is called dominant since it will take longest
to decay. Let the real part of A be —r. Then, solving e " = 0.02 gives T, = —In(0.02)/r = 4/r. The
term 1/r is an approximation of the dominant time constant 7,. A 1% definition of settling is
often used, and this changes the 4 to 4.6. This rough approximation may not be sufficiently
accurate if the one mode is not truly dominant [4].

8.42 Nyquist’s sampling theorem requires that wmax 7’ <r, that is, there must be at least two
samples per period of the highest frequency to avoid aliasing [4] and loss of information. This
theoretical limit is almost never enough in controls problems. For adequate representation of
states a rough rule of thumb is more like 6 to 10 samples per period, or T < 27/6wmax. The same
6 to 10 rule is often applied to the number of samples per dominant time constant as well. The
value used for wma.x is usually interpreted as the highest significant modal frequency to be
retained in the model. The distinction is necessary because some physical problems involve
many or even an infinite number of frequencies due to structural vibration or other causes [5].

Other modes may have such a large negative real part of A that they rapidly decay to insignif-
icance.

CHAPTER 9

9.29 y,(f) = +3te ¥+ e —Ze T yf) =T — e
9.30 y,() =1le ¥ —3e > —Te s y:(f) =3¢ =3~

9.31 x(f) = [((110__9951"’:]

83 —t 25, —t 7 2t
Bet—2te " +1e
9.32 x(f) = [gen,_ 3 o ]

8o~ —Zte " + 5

9.33 x(ty) = 0. Note that u(f) = —tlcb(z, 0)x(0).
f
3 1 3 5 .3

_ -2 COS 5t —3 SInj3t —3sm 5t
9.35 @1, 0) =e [ 2 sin3t cos3t + 3sin %t]
9.37 x1(k) = 2 — 5k + 5k(3 — k), xa(k) = 5 + 10k, x3(k) = 10

k

9.38 x(k) = [18] > (0.632)(0.368)“[_“

j=1
_| 10 - _ |1
9.39 x(k) = 11 q(k) gives q(k +1) = 0
y(k)=[4 1]q(k)
9.40 No. The system matrix A is singular and consequently ®~' does not exist.

._ 10 1 0
9.41 x = [O —1/T]X+[K/'r]u(t)

x(k + 1) = [}) 4e eii,/fm)]x(k) . [A’ P M)]Ku(k)

aco+ | uw

SIS

1
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— __ At _ At/
9.42 x(k+1)=[1 fI?(’f_Ii'i&lﬂ,)e ) - )JX(k)

At_ 1_ —Atlx
+[ e, )]Kr(k)

0(k)=[1 Olx(k)

0.3666 0.1010 0.0110 0.0136
9.43 A=|0 0.6703 0.1341|,B=0.1802
0 0 0.6703 0.1648
9.44 One of many possible answers, obtained by using a parallel realization, is
0.04979 0 0 0.2121
x(k+1)=|0 0.22313 0 x(k) + [ 0.1934 |u (k)
0 0 0.60653 0.0649

y(k) =[0.04979 —0.22313 0.60653]x(k)

CHAPTER 10

10.16 (a) Eigenvalues are \; = —4,\, = 2. Every term in ®— «, as e when ¢ — «. Therefore,
[@(2, 0)||— o and the system is unstable. (b) Eigenvalues are A\ = —1, =2, and —3. ||<I>(1t, 0))|—0
as t — o and the system is globally asymptotically stable. (¢) Eigenvalues are A\ = —3 and —3.
The system is asymptotically stable.

10.17 (a) \; =1, \, = 3. Stable i.s.L. but not asymptotically stable; observable but not control-
lable. (b) A= —1,A, = =3, A3 = —5. Asymptotically stable, uncontrollable and unobservable.
() A=1=V21. System is unstable, completely controllable and observable. These results
illustrate that stability, controllability and observability are independent system properties. One
property does not imply or require any of the others.

10.18 uy(f) = —M; sign[7x1(f) — x2(8)], u2(t) = — M, sign[—8x1(¢) + 19x()]

“_HAPTER 11

11.26 System is completely controllable and completely observable.

11.27 (a) Completely controllable, (b) completely controllable, (¢) not completely control-
lable.

11.28 (a) Not controllable, not observable. This system will reappear in Example 12.2. (b) Not
controllable; it is observable. This system is a special case of Problem 12.1b witha = 1. (¢) Both
controllable and observable. See also Problems 12.8 and 12.9.

11.29 Yes. When put into state variable form, the system is completely controllable.

11.30 Completely controllable and completely observable for all finite values of &k, and b, except
when k1 bz =1.

11.31 Controllable, unless R3 C; = R, C;. Observable unless R; =0. In these cases pole-zero
cancellation occurs.

11.32 (a) Uncontrollable and unobservable. Two identical RLC systems in parallel. (b) Not
completely controllable, due to pole-zero cancellation. Completely observable.

11.33 Hint: Use the semigroup property of transition matrices.

11.34 No. Rank of P is only 2.
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11.35 The system is observable. The Kalman observable canonical form matrices are

0.5 0.866  2.4495 3.5355 2.1213 14142 0 0
A=|-0.283867 —0.5 2.8284 |, B =[2.8577 1.2247 ,C=[0‘7071 1.2247 0]
-0.8165 —1.4142 2.0 1.1547 0 ' '

11.36 (a) Controllable. The Kalman controllable canonical matrices are

[ —4. —1.9466 —1.4868 1.5275 0.43643
A= —0.64888 —6.1053 —3.1355|,B=0 1.3452 |,
L 0.84958  4.0657  1.1053 0 0

C= [0.6546  2.01778 3.0822
~10.65465 4.99134 5.3533

(b) Not observable. Kalman observable canonical matrices are

_ [3.74165 0 0]

A=1-4925 —3.9286 0 —0.66865 0.87438 7916 13887 0

| —5.5549 —1.06905 -4 1.34715 0.7698

[-1.0714  0.37115 0} [0.26726 0.80178}
,B= , C

CHAPTER 12
12.19 ﬁ=[_1/R1€/Z”R2C —%)/C]x-k[_ll//RLzC]u,y:[l 0]x + 1,
H(s) =57 (1/RT(CS’ i gﬁ: g;s +1LC
~1CR, 0 vc o 0 0
D I P B U 3 o A [ R PR ]
0 UL  —RJL —RoL 0 UL

0 ., 0
12.21 H(s) = [1/(5 +3) 0]

12.22 First-order state equation ¥, = [—x1/Ry + ui/R1 + wo)/C, y1 = x1, y2=x1 + Uz R,

VR, 1
1/Ri 1+R,C(s + IR, C)

H(s) = G TR, CO)C
{0 0 1 . . )
12.23 D= 00 1 . One possible choice for {A, B, C} is
-1 0 0 O 11 -1
1 0 -1 0 0 10 1 0l ~_|1 0 -1 0
A=l o o0 -2 ofBT|o 1 o’c‘[o 1o —%]
0 0 o0 -3 01 4

12.24 (a) is reducible since it is completely observable but not controllable. (b) is reducible
since it is completely controllable but not observable. (c) is irreducible. It is completely control-
lable and observable.
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12.25 D= [(1) 8 8] One possible solution for {A, B, C} is
-1 0 00 -1 10
{0 =2 00 | 010 |1 =110
A=l 0 o0 -3 oB=| 0 o 1’C‘[1 10 1]
0 0 0 0 0 01

~1 15 00 00 o
1.0 -1 0 0l o_|1 Of ~_|1 21110
S 0l =1 o BT ’C‘[O 05151]
0 0 010 10
-1 1
: 1.1 0 11 0:/010 . L.
Another solution has the same A, but B = 11 and C = 0 0111 . A third solution is
““““““ | |
1 6

given by Chen (see page 251 of Reference 4).

12.27 One eighth-order irreducible realization is

[0 1 0 0] B 00 O]
00 1 0f -10 1
00 0 1i 00 0
x= |90.00 0, _______ <+ L.l =20,
01 01 0700
0 10 0 1. 2 0 -2
100 01 1.0 1
_ 0 L1 il
10 000 0011
y=11 00! 3 0 01} 1fx
10 -1 0/-1 -5 1110

See Reference 4 for a detailed solution.

0.5z —1.32 +1.245 —(z +0.3)

- (z—=-1) 1
1228 T(2)=| 15,2210+ 0.145 2(z - 0.5) | (z7=z £ 0.89)
(z-1)
12.29 One possible answer is
10 0 0 1
o 03679 0 0|, | 1 31641 -2.1762 1 0] g _
A=10 0 1 1B -0.9878|C~ [1.8984 ~0.8984 0 o] D =[0]
0 0 ~0.5 0 ~1.3761
[z -1z -0.5) 0 ]—1[ 0.2z 3z(z +0.3) ]
12.30 H(z) = [ 0 (z =057z -0.7)] |z+08 z(z~0.5)z—0.7)
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1.5 1 0 00 0.2 5.4
-05 0 0 00 0 -1.5
A=] 0 0 1.7 1 0,B=|0 0.5 |,
0 0 -095 0 1 1 -0.6
| 0 0 0175 0 O 0.8 0.175
[t 000 0], _[03
C=loo1o0 0]’1"[0 1]
12.31 Original eighth-order system: Same as in Problem 12.10 except for the 2,2 block
representation of h1,. Those blocks change to A; = [_g 5 i 5] and C; =T“(1)'5 84] Band D

are unchanged. Original Rank(P) = 6, Rank(Q) = 5. Use Q to select fifth-order reduced system
with

1.263911 0 0.150202 0
0 0.489418 0 8.13180
A= —1.34220 0 0.236089 0 ,

0 —0.78092 0 1.220540

| 0 0.2418970 0 0.164580
0.035663  0.962905 5.608 0

0 0.363697 0 1.3748

B=|0.56055 —0.267254|,C"=|0 0 ,
0.894503  0.004733 0 0
[0.438318  0.174045 0 0

and D= [8 ﬂ This realization is also controllable and hence irreducible.
12.32 H'=[ 3 2s(s2+2s+10)(s+5)][(s2+2s+10)(s +5) 0 ]-‘
) s+1 (s +1D(s*+2s +10) 0 (s*+2s +10)(s +5)
2 -1
can be reduced to H' = 3 % [(S T2 +10)s +5) 0 from which a minimal
RO s+1 s+1 0 s+5
realization is
0 1 0 O 00 15 1 [
- 0 0 1 0 {0 O] ~7_ 3 1 _10 2
A=l_s0 —20 =7 o[B=|1 o€ | o ofP7|o 1]
0 0 0 -5 01 -10 -4
12.33 The original eighth-order realization is
"0 1 0 0 0 0 0 0T 0 0] [ 3 0 ]
0 0 1 0 0 0 0 O 00 0 0
-50 =20 -7 0 0 0 0 O 10 0 O
0 0 0 0 1 0 0 O 0 0 0 1
A= 0 0 0 0 0 1 0 o0}|,B={0 0],C'= 0 1
0 0 0 -5 -20 -7 0 O 1 0 0 0
0 0 0 0 0 0 -5 0 0 1 -10 O
L 0 0 O 0 0 0 0 -5 L0 1 ] L 0 -4
and D= {8 ﬂ For this system, Rank(P) = 4 and Rank(Q) = 6. The fourth-order controllable
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realization is

-7 0 -2 -5 1.4142 0 0 0
A= 0 -5 0 0 B= 0 1.4142 CcT= -7.071 —2.8284
1 0 0 or 0 0 ’ o 0.7071
0 0 1 0 0 0 2.1213 0.7071
and D = [8 ﬂ This realization is observable and hence irreducible.

12.34 After reduction to the minimal determinant degree, one answer is

H(s)= [ T D6 +3) —25(s +2)(3s + 5)]*‘[ ~1.5(s +2)  .25(s - 1)]
0 +DE+2)(s+5)] [2(s+2)(s+5) (s +1)
From this, a fifth-order realization is
-4 1 =025 0 O [—1.5 0.25 1 0
-3 0 025 0 0 -3 -0.25 0 0
A=| 0 0 -8 1 0f,B=| 2 1 ,CT=10.75 1{,D=]0]
0 0 -17 01 14 2 0" 0
0 0 —-10 00 | 20 1 0 0
+2)%s+5 -1 |70 (s +2)
12.35 H(s) = [(S )o(s : (s + 2)] 1 ¢ 0 : ]
-9 10 O 0 1]
_|-24 01 O _|0 4 _{170 0 0
A=l 000 180 4’C‘[0;0 0 1}
0 00 -2 1 0]
CHAPTER 13
13.22 K= [1 =2 _1] (Hint' Define a = 1 and let \— —3 after finding G™!
. o 9 3l ; 13 g .
13.24 One solution is K' =[17 0]7, anotheris K'=[0 17]".
13.25 One solution is K’ = [8 8} For another solution ‘using a élightly different method,

see [6].
13.26 K' =[—1/€* 1/€?]

13.27 No, because N = [8 ﬂ is singular [11].

13.28 No, N = [} 8] is singular [11].

1 -1 -2 -2
13.29 Fd=[0 1],Kd=[ 0 3 _g],n(s)z[l{)s 1952}
13.30 K=[1 0.5]
13.31 K=[1.34 0.4]
13.32 Two choices are

K=[0.4 0.3 ]and 03 -04
025  0.15 0.15  0.25
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13.33 Using the nested integrator method (Example 3.6) gives

3 1 00 0 10 L0000

2 =2 210 00 0100 0[D=[0
A=20—601B=ooc=00100‘]

4 -4 00 0 5 1

0 0 -1 0 0 01

One choice for K is

[—2.1251 —67.1349 —26.9825 —12.045 -15.107
4.8752  171.368 70.0198  34.4558 40.8934

A choice for the full state observer is

6.3127 1.0443 -0.0136

—35.2083  13.0842  1.5313

L=| —-43.6735 -2.2322  9.6030

—288.0065  49.2646 —2.4314
—367.7839 —17.7946 59.789

13.36 p(z) =2z?>+ 0.3z —0.009; g(z) = 0.3990z — 0.1515; e(z) = 0.3z — 0.001
13.37 p(z) =z +0.09; g(z) = 0.31z — 0.035; e(2) = p(2) — d(2) = 0.01

CHAPTER 14

14.20 g, =21 is minimum cost. Optimal pathis a, b, ¢, [, r, z.

14.21 2 hr on course 1, score = 65; 0 hr on course 2, score = 40; 1 hr on course 3, score = 52; 1 hr
on course 4, score = 91. Total max. score = 248.

14.22 w*(0)=-1,u*(1) = —-2,x*(0) =10,x*(1) =4, x*(2) =0, J* =9. For comparison, if no
control is used, u(k) =0, x(0) =10, x(1) =5, x(2) = 2.5, and J = 20.25.

14.23
k = 0 1 2 3 4 5
u*(k)  —0.0147  —0.0293  —0.0587 —0.1173  —0.2346 —
x*(k) 10.0 4.985 2.463 1.173 0.469 0.0

14.24 u* (0) = —21x0/104, u* (1) = —x0/52, x* (0) = x0, x* (1) = 5x0/52, x* (2) = x0/104

14.25 The gain matrices and eigenvalues are: (a) [—1.620 —1.959], 0.190+;0.148
(b) [-1.199 -1.413], —0.4%;0.26 (c) [-1.755 -2.136], —0.033, —0.0212 (both real)
@) [-1.775 —2.162],0.0044, —0.229 (both real)

14.26 (a) KZ =[—0.5202 0.8588]. Filter eigenvalues are 0.2319 * j0.2956. (b) Based on the
filter pole locations, the filter will be much slower than controllers ¢ and d and a little slower
than a. Therefore, the filter will have a major impact on system response, maybe even be the
dominant effect. In case b the filter is somewhat faster than the controller, and the total system
will act more nearly like the full state controller.

14.27 (a) KJ =[—0.4561 0.9977]. Eigenvalues are 0.0404 *j0.0257. (b) Because of the
lower noise level, the filter response is much faster. The effect on the control loop will be
essentially negligible and the controller will work about as well as if it had the actual state to
work with rather than estimate. Stated differently, with this low noise level the estimated states
will agree very closely with the true values.
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14.28 On backward pass find

k K GT v = —FV
5 0 — —

4 1 [0.74963 —0.24988] 7.4963
3 2 [0.72159 —0.23296] —0.5684
2 3 {0.72140 —0.23305] —0.9369
1 4 [0.72140 —0.23305] —0.9537
0 5 [0.72140 —0.23305] —0.9544

Then on the forward pass, starting with the given x(0), find

k x(k)T u(k) = —Gk)x(k) + v(k)
0 [4 -2] —4.3061

1 [—0.3061 1.3061] —0.4284

2 [—0.7345 1.2345] —0.1192

3 [—0.8538 1.1038] 0.3048

4 [—0.5490 0.6740] 8.0762

5 [7.5273 —7.4648] —

0.0422  0.0484 —0.1059 0.2630]
0.0013 —0.4759 —0.7321 —0.0005

\: = {0.104,0.898, 0.6068 = j0.3519}

The feedback matrix G and the resulting eigenvalues are:

(a) [0.0271 —0.0032 —0.1099 0.1255], {0.0025,0.8196,0.721 + j0.479}

(b) [0.0276 —0.0039 —0.1119 0.1292], {2.76 x 107*,0.818,0.721 + j0.4788}

(c) [0.0208  0.0004 —0.0833 0.1052], {0.0447,0.8437,0.7197 + j0.4819}

(d) [0.0227 -0.1097 —0.1507 0.1120], {0.0222,0.8306,0.699 + j0.455}. For reference the
open-loop eigenvalues are {1.0,0.135,0.7175 + j0.4909]

14.29 G = [

14.31
’ [ W. G- )\cl
>0 (1)%? 8%2%9] W./50  —1.9896, —1.0398
E ' ) . note: open-loop A = =2, —1
1.1508  0.21573
10 [021573 023686) W10 —1.939%,-1.19%
1.04327  0.17995 |
4 017905 0.22322|  We  —1.6583,-1.6583
[0.42801  0.20482 ] '
02 10.20482 0.76754] SW.  —2.9535+/1.10677
_[125 0.25
14.32 W‘[o.zs 0.25]

0.80127 0.14102

14.33 W.. = [



Answers to Problems 635

1.0582 0. 29701]

14.34 With r =50, G-= [0 29701 0.08639 |

—0.5805, —3.564. With r =1000, G.=

[1 0419~ 0.2925 ] ~0.5625, —3.560. Note: Open-loop eigenvalues are at A = +0.56155,

0.2925 0.08229 )’

—3.5616
14.35 The roots of the quadratic are W =1 and —3. Only one solution is positive definite. The
eigenvector method gives W..= 1 and W,, = —3.

14.36 The canonical A matrixis A’ = [A“ Alz]. AlsoB’' = [Bl}
0 Ax 0

andC=[0 0.7071 -0.56904 0.41975]

where A =[—7 —6} A =[—59.4519 31.42803]
n=| 2 o AT |-152002 11.2787 |

_1—39.19376 33.12394]. e —_2 _
Ay = [—29.37606 23 19376] is uncontrollable and has A = —8, —8. A;; has A 3,—4.

" cosht o _sinht
14.37 w () = h(1) 0= sinh(1)
14.38 u* ()= —2+3t, xF() =1+t = T4+ 212, x3() = 1 — Tt/2 + 3t%/2
14.39 x(#) =10 cosh V/5¢ — 10.065 sinh V/5¢, p (f) = 5.011 cosh V/5t — 4.462 sinh /5t
14.41 (a) u* (1) = —3B7p(¢) if |5B7 p()|| = 1; u*(f) = —B” p(¢)/|B” p(¢)|| otherwise. Linear control
with saturation. (b) u*(f) = —B” p(¢)/|B” p(?)|| for all ¢ unless B” p(f) = 0 on a finite time interval
(singular control case). Optimal control is always on the boundary of U except in the case of
singular control. (c¢) Each component satisfies u;* (f) = —sign[B” p(¢)];, where [B” p(¢)]; is the ith
component of B” p(¢). This is the so-called bang-bang control and is valid provided [B7 p(¢)]; # 0.
If [B” p(¢)]: = 0 on a finite interval, we have singular control. (d) u} (f) =0 when |[B” p(¢)]| = 1:
u} (f) = —sign[B” p(¢)]: otherwise.
14.42 No solution exists. It is not possible to reach the origin with this unstable system and the
bounded admissible controls unless |x(0)| < 1. The minimum principle provides only necessary
conditions. It does not guarantee existence of a solution.

14.43 G =[0.2215 -0.3735 0.2227 0.3162], A, ={—0.926, —28.15, —0.9165 * j2.88}

CHAPTER 15

15.23 Withe = x — y,, and using é = —ae, the controlis u(¢) = {—2y.(f) + v(¢) — a[x () — y ()]}
x(t)* provided x # 0. For x(0) > 0 the singularity at x (f) = 0 causes no problem in reaching the
desired response.

.. . . . 1 _|v -x22—y41+Su(x1—yd1)]
15.24 The error equation é = Se, with diagonal S, gives I:xz]u [ V = 4y, + Sn(6s — yas) |

Least squares solution gives u(f) ={v —x3 — ya, + Su(x1 — ya,) + %2[v — 4ya, + S22(x2 — ya,) I}/
(1+x3)

15.25 Pick all S; =0 except ;13 = 5,4 =1 and S3;, 33, S42 and S.s. The first two error equations
are automatically satisfied and the last two give

uy(t) = S31(x1 —yl) + Ss3(x3 —Y3) _x42x1 + l-'-/xlz —ays — By: + BR
uz(t) = X1{S42(X2 - yz) + S44(X4 - y4) + 2x3 x4/x1 —KYys4— Oy — O'I.Lt/R 3}

Parameter values must be selected. The orbit period is T = 2wR*/p.. The time constants 7 for the
template system are selected to give 41 = T/4. For simplicity set a = k and B = o. Damping of
{=0.707 gives B = {8V2w/(wR*)} and a = 16u/(wR>). The convergence factors are selected so
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that the error settles twice as fast as the template system. This gives S3; =S4 = 4B and
833 = S44 = 2a. There are many other acceptable answers.

15.27 x.,=0,x,and x.; =[=3 0 2.1]". The Jacobian matrix evaluated at x., here is the same
as in Problem 15.13 evaluated at x.,, and likewise the Jacobian here for x., is the same as in
Problem 15.13 at x.;.

15.28 The plot of —1/N(E) still ranges from 1.25 to 2, but in the opposite direction as a function
of E. Intersections with G (jw) indicate a stable limit cycle at o = 1.71642 with E =2.7 and an
unstable limit cycle at v =0, E =4. Simulation indicates that for small initial conditions a
response very similar to the predicted limit cycle (but with a small dc offset) develops. For x,(0)
larger than about 1.7 an unstable growth ensues.

15.29 Refer to Figure 15.24.

Range of K Intersections of G (jw) and —1/N Predicted Behavior

K <0.16788 None. —1/N to right of point 3 Stable for all I.C.
0.16788, 0.2686 Intersects point 3 Unstable limit cycles
0.2686, 0.804 None. —1/N between pts. 2,3 Unstable for all I.C.
0.804, 0.880 Intersects point 2 Stable limit cycle o = 1.7164
0.880, 1.287 Intersects both 1 and 2 Chaotic?
1.287, 1.408 Intersects 1. Unstable limit cyclei
K >1.408 None. —1/N between 0 and 1 Unstable for all I.C.

1 Whether actual behavior is stable or unstable is dependent upon initial conditions (I.C.)

15.30 The plot of —1/N now continues along the positive real axis, approaching « for an
amplitude E somewhat larger than 5 (the point where the effective gain N(E) crosses through
0). The —1/N plot then resumes at — and proceeds to —0.5 as E continues to increase. One new
intersection with G (jw) at o = 2.4807 indicates a stable limit cycle. Simulation shows behavior is
the same as that of Problem 15.14 for smaller initial conditions, because the second nonlinearity
breakpoint occurs at a large amplitude. For initial conditions sufficiently large the predicted
stable limit cycle is observed here, whereas the system of Problem 15.14 goes unstable.

15.31 The circuit still appears to be chaotic for some initial conditions.

15.32 Routh’s criterion shows the system is unstable for K >30.69. The auxiliary equation
shows the frequency at which the jw axis is crossed is w =2.56. Example 15.5 results yield a
describing function which increases from 0 at an amplitude E = 0.25 to a maximum of 0.873 at
E =2.51 and then decreases again. For 30.69 < K < 35.15 the effective gain N(E)K is less than
30.69 and the system is stabilized by the nonlinearity. For each K > 35.15 there are two ampli-
tudes E which give the critical N(E)K = 30.69, and thus two potential limit cycles. The larger E,
where N(E) is decreasing, gives a stable limit cycle. One example has K =40, w =2.56 and
E = 3.3 as a stable limit cycle, excited if y (0) > 1.35.

15.33 The root locus has two jw axis crossings and at each there are two amplitudes E which give
the critical gain values.

® 10N(E) N(E) approximate E (see Example 15.5)
6.1127 7.372 0.7372 1.2 (stable) or 3.5 (unstable)
3.8096 1.628 0.1628 0.345 (unstable) or 17.0 (stable)

Two stable limit cycles are possible, as noted. Initial conditions will determine which one,
if any, is excited. ;



Answers to Problems 637

X2
15.34 (a) V'(x) = i(axz + bx,)* + Z—iz(axg, + bx,)* + J; [F (x2) — g]xz dx;

- b
V'(x) = —% [F(xz) - ;]xf
(b) Asymptotically stable if a >0, b >0, and F(x;) > b/a for all x,.

15.35 (a) f(x) =0=>(r — 1 —x3)x; =0 and 8x3/3 =x{. One solution is x., = 0. If x; # 0, then
x3=r —1and x; = =[8(r — 1)/3]°°. For r <1 the only real solution is x., = 0.

—-10 10 O
offox=|" _ 1 -1 A
X2 X1 -3

Atx =0, |[I\ — 3f/ox| = (A + H[\> + 11\ + 10(1 — r)]. All roots stable if r <1. .

(b) One answer, using variable gradient is VV = [x; + 0.1x, 0.1x; +2x> 2xs]", V is negative
definite if x2 <20(%). V=x7/2 + 0.1x,x, + x7 + xZ is positive definite for all x.

(c) With r =28, part (a) gives two more equilibrium points. x, =[£8.485 +8.485 27|
Eigenvalues of df/dx are: at x.,; A= —3,11.828, —22.828 (saddle point) at x., and X.s;
A= —13.845,0.0892 = j10.165

(unstable focus).

15.37 The trace of A can be negative while still having one or more unstable eigenvalues. The
suggested example has Tr(A) = —6, yet the solution diverges as an unstable focus in the xi, x,
plane as e*. Even though |[x(¢)||— %, the infinite oscillatory growth is confined to a zero volume
(plane).
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A

Across variable, 6, 7, 99-100

Adaptive control, 16, 540, 581

Adjoint equations, 200, 333-335

reversed time property of, 325, 334

Adjoint matrix, 130, 183

Adjoint operator, adjoint transformation,
183-184, 199, 208, 348

Adjoint system, 333, 334, 365

Adjoint transformation, formal, 334, 380

Admissible controls, 75, 517

Admittance matrix, 15 /

Aircraft example, 390-392, 428, 454-456,
550-553, 561

Aizerman’s conjecture, 587

Algebra (See Matrix algebra, Scalar algebra
or Vector algebra)

Algebraic multiplicity, 250

Algebraic Riccati equation, (ARE), 521-523,
534, 536-537, 539, 549

Aliasing, 43

Amplifier, 24

Analog feedback sensor, 33

Analog system, 4, 31

Analog-to-digital (A/D) conversion, 4, 319

Analytical modeling (See also Mathematical
representation of systems; and
Modeling), 4

Analytic function, 283
of a matrix, 284, 289-291
Angle:
of departure (root locus), 54
generalized to n-dimensional space, 161, 167
Aperiodic signals, 38
ARMA models, 8, 10, 12, 80, 102, 308
Assignment of poles (See Pole placement)
Associate matrix, 125
Associative law, 125
Asymptote, 39, 45, 53
Asymptotic sample length (ASL), 225
Asymptotic stability, 345, 347, 462, 535, 568,
611
Attainable state, 503
Attitude:
control, 116-117, 327-328, 340, 363
determination, 202-204
Augmented matrix, 208, 534
Autoregressive, 8, 10, 80
Auxiliary equations, 44

Backlash, 563

Backward difference approximation, 81

Banachiewicz and Dwyer method, 150
(See also Cholesky decomposition)

639
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Banach space, 197
Bandwidth, 38, 39, 41, 43
Bang-bang control, 558-559
Basis, change of, 312, 323, 336
Basis set, 165, 189, 253
othonormal, 172, 215 (See also Basis
vectors, Change of basis; Orthogonal
set and Orthonormal basis set)
Basis vector expansion of state equations, 165,
172-174
Basis vectors, 164, 165, 208, 222, 245, 266,
312
orthonormal, 169
reciprocal, 172, 174-175
Basis vectors/spanning vectors, 164-165
Batch least squares, 9, 223
Beat phenomenon, 564
Bellman’s principle of optimality, 503
Bessel’s inequality, 206
Bilinear forms, 135
Bilinear transformation, 39
Block diagonal matrix, 132, 300, 301, 486
Bode gain, Bode method, 39, 54-55, 69,
102, 578
Boundary conditions, 5, 502, 507, 524, 555
Bounded-input, bounded-output (BIBO), 347,
366
Bounded-input, bounded-state (BIBS), 347,
366 .
Bounded linear transformation, 182
Bridged-T network, 42
Butterworth configuration, 533
Butterworth filter, 42

C

Cancellation of nonlinearities, 570
Cancellation, pole-zero, 45-46, 214, 388,
422, 423
Cancellation compensation, 42
Canonical form:
controllable, 321
Jordan, 313, 323, 377
Kalman, 383-387
observable, 321
Cascade realization, 88, 96
Cauchy-Schwarz inequality, 167, 199,
202

Index

Causal system, 77, 88
Cayley-Hamilton theorem, 130, 286
proof, 294-296
uses, 287-293, 329, 340, 381, 486
Center manifold theory, 349
Center, 349 '
Change of basis, 173, 181, 198-199, 291,
312, 313
(See also Basis set and Basis vectors)
Chaos, 564, 578, 581, 615
Characteristic equations, 38, 39, 44, 154, 246,
265, 286-288, 296
Characteristic polynomial, 246, 286, 295,
405
Characterization, complete, 409
Chio, method of, 127-128
Cholesky decomposition, 150, 236
Chua’s chaotic circuit, 602-606, 615
Circle criterion (stability), 358, 565, 585-
588
Classification of systems, 12, 25
Closed-form solution of matrix function, 289,
300-302
Closed-loop control, 2-4, 188, 502
(See also Feedback control system) -
Closed-loop eigenvectors, 450, 453
Closed-loop generalized eigenvectors, 453
Closed-loop poles (roots), 33, 40, 41, 375
Closed-loop system, 3, 35, 43
Closed-loop transfer function, 33, 42
Closed-loop zeros, 33, 456-457, 497-498
Codomain, 73, 179
Cofactor, 126—-127, 129-131, 139
Column matrix; 73, 74, 122, 158
Column space, 181, 208, 215, 222
Commutative law, 125
Companion form, 249, 251
Companion matrix, 265, 279
Compatibility laws, 7-8, 563
Compensation, 42, 44, 58-59, 63-67, 481,
482, 484, 498, 581
Completely characterized, 409
Complex matrix inversion, 149-150, 490
Complimentary spectrum, residual spectrum,
535
Computer-aided-design CAD, 49, 103, 540
Conditions for solving (dynamic linearization),
571, 593-595
Conformability, 123, 129, 141, 160
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Conservation laws, 7

Constant-coefficient system, 13, 310-311,
322-323

Constraints, 502

Continuity laws (equation), 7-8, 563

Continuous-time system, 13, 32, 75, 282, 286,

308-319
controllability and observability of,
373-403
state-space representation of, 75, 104 109
308, 311-318 :
Continuous-time transition matrix, 316—318
Controllable canonical form, 85, 88, 89, 95,
173, 251, 375, 389, 448-449
Controllability, complete controllability,
226-227, 313, 366, 373-403, 446
irreducible realization and, 408,
'439-440
Jordan form, 376-377, 394, 398
Kalman canonical form, 373, 399-401
matrix, 377, 421
output, 374
Controllability index, 391, 392
Control-estimation duality, 462
Control law, 557
Control perturbations from known nominal,
566, 568
Control theory, 1, 2, 226-228
classical, 1, 31-71, 498
modern, 1, 498
optimal, 501-561
Convergence factor, 571
Convergence of infinite series, 283-284
Conversion:
analog-to-digital (A/D), 33-36
digital-to-analog (D/A), 33-36
Convolution theorem, 311, 323, 326, 338
Corner frequency, 59
Costate equations, 524, 553
Costate vector, 524
Coulomb friction, 563
Covariance matrix, 560-561
Cramer’s rule, 144-147
Critical points, 342-343, 578
Cross-over frequency, 41, 59
Cross product, 159, 188, 192, 202-204
Cross-product/skew-symmetric matrix, 168
Curse of dimensionality, 539
Cutset, fundamental, 99, 100

641
D

D’Alembert’s principle, 7
Damping ratio, 41, 44
Data deweighting (least squares), 225
dc motor, 17-18, 25, 46, 63-68, 201-202,
321, 341, 544
Dead band, dead zone, 563, 576, 581
Deadbeat response, 65
Decomposition, 176
Cholesky, 150, 236
modal (See Modes, modal decomposition)
orthogonal, 178, 184, 219, 222
QR, 170-172, 249, 252, 262, 399, 419
singular value (SVD), 221, 247, 252, 259,
271, 419
spectral, 263264, 278
Decoupling, 494
continuous-time systems, 249, 312, 486
discrete-time systems, 249, 312
partial, 486
simultaneous equations, 253
triangular, 486
Decoupling and noninteracting system,
486—-488, 494—495
Definiteness of a matrix, 265, 266, 368, 507
Degeneracy, 129, 163, 193-194, 215, 232, 245
full, simple, 250, 253, 263
Sylvester’s law of, 163, 171
Degeneracy, nullity, geometric multiplicity,
129, 250
Delay element, 9, 10, 79, 83, 84, 86—87, 94,
109, 468
Denominator of a matrix, 422
Desampling, sampling, 33-34, 43,.309, 321-32:
Describing function, 565, 573-582, 614-615
application, 578, 604—611 '
derivation, 574-575, 597-600
and Nyquist plot, 579, 601-603
Design specifications, 361, 498
Detectability, 313, 373, 375-376, 387, 400
Determinant, 126, 132, 144-147, 162, 424
differentiation of, 134, 139
evaluation of, 146
Grammian (See Grammian)
identities, 142-143
Laplace expansion, 127, 144-145
pivot element and, 127-128
properties of, 128
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Deterministic system, 6, 13, 561
Deweighting, data, 225 (See also Weighting
function and Weighting matrix)
Diagonal matrix, 94, 132, 286, 313, 317, 323

Difference equations, 8, 12, 78, 81, 322,
335-338, 507
steady-state solution, 337-338, 507
Differential equations, 12, 190, 308-318,
325-327
adjoint, 325, 333-338
first-order, 77-78, 309
homogeneous, 309-311
matrix, 302, 308, 310
nonhomogeneous, 309, 310, 314, 315-316
scalar, 309
simultaneous, 81
Differential, exact, 309-311
Differential transformation, 190
Differentiation of a determinant, 134, 139
Differentiation of matrices and vectors, 133,
134-137, 285
Digital algorithm, 80
Digital controller, 4, 80
Digital-to-analog (D/A) conversion, 4, 33-36
Dimensionality, curse of, 539
Diophantine equation, 478—485
Dirac delta function, 28
Direct realization, 88, 92, 94-95
Direct sum, 177, 184, 208, 209, 219, 263, 384
Direct synthesis method (Raggazini’s
method), 66
Discrete algebraic Riccati equation (DARE),
521, 543
Discrete dynamic programming, 542
Discrete-time approximation of continuous-
time system, 62, 308, 319-322,
330-332, 338-340, 543
Discrete-time optimal control, 505
Discrete-time Riccati equation, 510, 513
Discrete-time signal, 33
Discrete-time system, 13, 33, 59-68, 79, 282,
286, 292
analysis, 94, 322-323
state space representation of, 75, 109-111,
226, 308, 318-325
transition matrix, 322
Distance measure, 161, 167
Distributed system, distributed parameter
system, 13

Index

Distributive law, 125
Disturbances, disturbance rejection, 37, 51,
143
Dither, 9, 581
Domain:
frequency, 41, 582
time, 40
of a transformation, 73, 179, 180
Domain of attraction/repulsion, 582-583
Dominant poles, 55, 58, 533
Dominant time constant approximation,
361-362
Dot (vector) product, 158, 161, 166
Doyle-Stein robust observer condition, 532
Drag, 563
Dual basis vector (See Reciprocal basis
vector)
Dual input describing function, 581
Dyad product (See Outer product)
Dynamic linearization, 570-573, 593-597,
614
Dynamic programming, 501, 503, 539, 559,
564
continuous-time, 515-523, 547-553
discrete-time, 505-515, 542-547
Dynamical system, 72, 75, 77, 157, 173

E

Echelon form of a matrix, 210
Eigenspace, 263
Eigenvalue-eigenvector assignment, 453-454,
533
Eigenvalue-eigenvector properties, 247, 256,
265, 273
Eigenvalues, 94, 245-281, 286, 312, 332, 511,
520
algebraic multiplicity, 247, 250, 253
geometric multiplicity, 250
index of, 258-260
relation to poles, 94, 250, 266, 348, 365,
410
repeated (multiple), 245, 247, 250, 290, 412
specified, 375
Eigenvectors, 163, 245-281, 312, 323
determination of, 247-249, 252-254, 256,
260, 267-273, 280
generalized, 312, 453, 490
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normalized, 247-248
orthogonal, 248, 275-276
orthonormal, 248
state variable feedback and, 448-450
Elemental equations, 7-8, 13
Elementary matrix, 132-133, 153
Elementary (row, column) operations, 132,
133, 147-149, 155, 210-213
Elementary operations on polynomial matrix,
212-214, 424
Equilibrium points, 342-343, 349, 564
stability of 566—-567
Error constants, 40, 52, 67
Error equations, 462, 467
Error signal, 3, 32
Error vector, 222
Estimation error, 228-229
Euclidean norm, 166
Euclidean space, 166-167
Euler angles, 184
Euler’s dynamical equations, 116
Exact differential, 309-310
Experimental modeling, 4, 8
Exponential matrix, 283-285, 290-292,
300-305, 393

F

Feedback, 2, 31, 102

advantages and disadvantages, 37

compensation, 42

effects on system properties, 446

output, 444

rate, 3

state, 444

incomplete, 457 (See also State feedback
matrix)

Feedback control system, 31-33

design of, 42, 51, 361, 375, 443-500
Feedback gain matrix, 16, 510
Feedback transfer function, 32
Feedforward matrix, 89, 510
Field, number field, 121-122, 132
Filter, filtering

Butterworth, 42

Kalman, 226, 238-239, 375, 509, 561

Least-squares, 9, 221, 223-224, 561
Final value theorem, 40, 47, 52-53, 67
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Finite impulse response, FIR, 11

Finite dimensional transformation, 74
Fixed-point smoothing, 238

Fluid flow, 19-20, 22, 156, 543

Focus, 349, 567

Forgetting factor, 225

Formal adjoint transformation, 333

Forward difference approximation, 81
Forward transfer function, 32

Fourier series, 160, 189, 574-578

Fourier transform, 31, 536

Frequency response, 41, 102

Frequency domain, 41, 55-58
Frequency-weighted cost functions, 536—539
Frobenius’ theorem, 286, 307, 333, 348
Full-state observer (See Observers)
Functions, mappings, transformations, 72, 75
Fundamental cutset, 99-100

Fundamental loop, 98-100

Fundamental solution matrix, 315-316, 334

G

Gain, 32, 39, 41, 50, 575

Gain formula, Mason’s, 317, 428, 471

Gain margin, (GM), 39-41, 50, 528

(See also Phase margin and Stability
margins)

Gain rearrangement identity, 528, 532

Gain matrix, 510

Gaussian elimination, 130, 147-149, 210,
215, 297

Generalized eigenvectors, 245, 250, 253-254,
256, 264,490

Generalized inverse, 175, 178, 223

Geometric multiplicity of eigenvalues, 250

Geometric series, 283

Geometry in n-dimensional space, 167

Global stability, 358, 611

Gradient matrix, 139, 140

Gradient vector, 134, 135

Grammian (determinant, matrix), 163, 193,
393

Gram-Schmidt expansion method (GSE),
215-218, 221, 236, 246, 247, 379

Gram-Schmidt process, 169-170, 194-196,
261, 419, 454

(See also Modified Gram-Schmidt process)
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Graphs, 75
linear, 7-8, 98, 112-114
state equations from 98-101
signal flow, 31, 317
Guidance system, 26

H

Hamiltonian matrix, 511, 520

Hamiltonian, pre-Hamiltonian, 524, 554

Hamiltonian system, 539

Hamilton-Jacobi-Bellman equation, 517 518,
539 »

Harmonics, 564, 573, 581

Hermite normal form, 133, 210, 212-214

Hermitian, skew, 126, 264

Hessian matrix, 136

Hilbert space, 190, 197

Homogeneity, 654

Homogeneous equations, 13, 218, 310, 467

Homogeneous systems, 13, 335

Hybrid (h-) parameter model, 24, 150-151,
155

Hydraulic system, 3, 113-114

Hyperplane, 186, 237 -

Hysteresis 563, 577 597-598, 606—-607, 610

H", 15

[deal element, 6, 83, 84

[dentity matrix, 125 v

[dentity observer (full state observer), 461

[dentity transformation, 179, 246

[mage (of transformation), 73

[mage (optical), 186—189

[mpedance matrix, 15

[mplicit function theorem, 571, 594

[mpulse modulation (51gnal) 33

[mpulse response, 11 :

[ncomplete state feedback, 456, 460

[nconsistent simultaneous linear equations,
218 o

[ndex of eigenvalue, 258

[ndustrial system, 3, 15, 27, 543

[nertance, 19

[nfinite impulse response IIF, 11

Index

Infinite dimensional transformation, 189-190
Infinite series:
convergence, 283
of a matrix, 283-285, 317
Initial conditions, 133, 134, 291, 310-311,
394
Inner product, 158, 161, 166, 237, 393
Inner product space, 161, 166
Input-output equations, 14, 318
Input-output transfer function, 126-127, 134,
266, 308, 338
Inputs, 2, 5, 32, 82, 122
determination of, 226, 394
Input space, 374
Instability theorem (Lyapunov), 358
Integration by parts method (Lyapunov
functions), 367
Integration of matrices and vectors, 133, 285
Integrator decoupled form, 487, 495
Interconnection of subsystems, 5, 100-102,
154
Inverted pendulum example, 590-591,
595-597
Internal variables, 76, 321, 408
Interpolation, Lagrange, 304
Into-onto transformation, 73, 179
Invariance properties, 157
Inventory example, 332
Inverse:
generalized, 175, 178
of matrices, 130-132, 147-150, 155, 287,
292, 293
of product, 130
Inverse transform, 11, 133, 179, 317 327, 338
Involutory matrix, 131
Irreducible realization, 411-421
relation to controllability and observability,
408
Iteration, iterative methods, 260-262, 555

¥

Jacobian matrix, Jacobi matrix, 136, 566—569
Jordan form controllability and observability,
376-377, 395
Jordan block, 254, 395, 414
functions of, 286, 296-298
powers of, 286, 293
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Jordan canonical form, 94, 98, 108, 253, 264,
266—273, 286, 313, 317, 373, 511, 520
controllability and observability for,
395-396
realizations and, 411, 429-433
Jordan chain, 417
Jump resonance, 564, 581

K

Kalman gain matrix, 224, 238-239

Kalman canonical form, 373, 383-386,
398-401, 416, 419, 433-435

Kalman filtering, 226, 238-239, 375, 509, 561

Kirchhoff’s laws, 7, 99—-100

Krasovskii’s method (Lyapunov), 613

Kronecker delta, 168

Kronecker product, 124, 229-230, 271,
355356, 366

L

Lag network, compensator, 42, 45, 58-59,
549
Lagrange interpolation, 304
Lagrange multiplier, 220, 553
Laplace expansion and determinants, 126,
127, 144-145, 480
Laplace transform, 14, 31, 88
of matrices and vectors, 133, 156, 291, 310,
317, 326-327, 404
Large-scale system, 14
Lead-lag network, compensator, 42, 45,
58-59 :
Lead network, compensator, 42, 45, 484, 549
Least effort problem, 502
Least squares, 175, 221-223, 228, 234-237,
243-244
data deweighting, 224, 225
observability, 392
recursive weighted, 9, 221, 223-224,
234-237 ,
Left inverse, 175
Level variable (See Across variable), 6
L’Hospital’s rule, 67
Liapunov (See Lyapunov)
Limit cycle, 564, 578, 579, 600
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Linear dependence and independence,
161-162, 165, 227, 312, 412, 416
geometric significance of, 162, 163
tests for, 162
Linear equations, 207-242
homogeneous, 218
simultaneous, 207-208
Linear functional, 183
Linear graphs, 7-8, 19-20, 98-101,
112-114, 311-314, 563
state equations from, 98, 112, 409
Linear homogeneous equations, 218-219,
246, 310-311
Linear manifold, 177
Linear perturbation control near nominal
trajectory, 565-570
Linear programming, 220
Linear, quadratic (LQ) control, 15, 507, 517,
526
infinite horizon, 512, 521
Linear, quadratic optimal control, discrete,
507
Linear, quadratic regulator problem, 507, 508
Linear quadratic tracking problem, 509
Linear system, 13, 31, 78-82
controllability and observability of,
373-403
and Lyapunov’s method, 355-357
most general solution to, 318
stability of, 348, 365-366
Linear transformation, 316
bounded, 182
change of basis, 179-182
matrix representation of, 74, 180
normal, 184, 263
properties of, 240-242
self-adjoint, 184, 200, 275
simple, 263
state equations and, 334
unbounded, 190
Linearization, 150-152, 156, 565-570,
591-593
Link, 98
Lipschitz condition, 78, 344
Loop, fundamental, 98-100
Loop equations, 14
Loop gain, 43, 51
Lower triangular matrix, 132
Lumped-parameter system, 6, 13, 77
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Lur’e-type Lyapunov function, 358, 583-584
Lyapunov controller design, 361-363
Lyapunov equation, 138, 229-230, 244, 271,
355, 561
Lyapunov function, 353, 368, 527
Lyapunov’s method, 349-358, 366
for control system design, 361
for estimating time constants, 361
for linear systems, 355-357
for nonlinear systems, 349-355, 582-585
stability (i.s.L.), 568
Lyapunov stability theory, 564, 565, 582-585,
611-614

M

Machine control, 3, 27

Machine zero, 217, 379

Manifold, linear, 177

Mapping, 208

Mason’s gain formula, 317, 428, 471

Mathematical representation of systems,
14

Matrix, 73 (See also specific types of matrix,
e.g. positive definite matrix, etc.)

Matrix algebra, 121-126 (See also specific
operations, e€.g. matrix multiplication,
etc.)

Matrix calculus, 121, 134-135

Matrix denominator, 422-423

Matrix differential, 311

Matrix exponential, 283-285, 290-292,
300-305, 393

Matrix fraction description MFD, 10, 49, 134,
152-154, 156, 214-215, 411, 422-423,
435-439

Matrix function, 283-286, 300-302

Matrix identities, 298-299

Matrix infinite series, 282, 283

Matrix inversion, 124, 129-131, 287-288,
292-293

Matrix inversion lemma, 131-132, 224, 446,
510

Matrix polynomial, 282-283

Matrix polynomial versus polynomial matrix,
283

Matrix power, 227, 282-283, 292

Index
Matrix remainder, 287-290
Matrix return difference, 142-143
Matrix trace, 128-129, 140, 155
Maximum and minimum, 266, 279-280
Maxwell’s equations, 18
Metric, 167
Minimal realization, 94, 102, 154, 373, 408,
411

from MFD, 422-424, 435-439
Jordan form approach to, 411-419,
429-433
Kalman canonical form approach to,
419-422, 433-435
Minimum cost problem, 506
Minimum norm problems, 219, 221, 227,
233-234, 501, 541
Minimum phase system, 39
Minimum polynomial, 287, 302
Minimum principle, Pontryagin’s, 501,
523-525, 539, 553, 562, 564
Minimum realization, 153 (See also
Irreducible realization)
Minimum terminal error problem, 502
Minimum time problems, 363, 502, 525,
558 |
Minimum total energy, 352
Minors, 126, 127, 422
Modal decomposition (See Modes, modal
decomposition)
Modal matrix, 248, 286, 312, 317, 413, 511
Modeling, 1
analytical, 4
empirical, experimental, 8
physical, 6
Modes, modal decomposition, 245, 291,
312-313, 323, 335, 377, 387, 398
Modified Gram-Schmidt process, 170,
195-196, 379, 384
Monic polynomial, 212, 287
Motor-generator, 114-115, 329-330
Moving average, 8, 10
Multiple eigenvalues (See Repeated
eigenvalues)
Multiple input-output systems, multiple
variable system, 48, 134, 141, 476
Multiplicity of eigenvalues:
algebraic, 247, 250, 253
geometric, 250
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N

n-dimensional space, geometry, in, 167
Navigation problem, 26, 156
Necessary conditions for optimality, 523
Negative definite, negative semi-definite, 265
Nested integrators, 84—-86, 89, 105, 111-112,
424
Neutrally stable, 343
Newton-Raphson technique, Newton’s
method, 260, 556
Nichol’s chart, 41
Node equations, 7, 15
Node:
of graph, 98
of system, 349
Nominal solution, 565
Nonanticipative (causal) system, 77
Nonhomogeneous system, 13, 310, 315
Noninteracting (decoupled) system, 486
Nonlinear equations, 152
linearization of, 565-570
Nonlinear state models, 78, 114-118
Nonlinear state feedback, 565
Nonlinear system, 13, 563-617
and Lyapunov’s method, 613
stability of, 613
Nonminimum phase, 40, 57, 102
Nonsingular and singular matrices, 129, 171
Nontrivial solution, 218, 231-233, 334-335
Norm, 170
Euclidean, 183
Hilbert inner product, 347
quadratic, 166
residual error, 216, 217
of transformation, 347
of vector, 166
Normal form equations, 313, 336-337, 393
Normal transformation, 184, 251, 275
Normed linear space, 197
Nullity (See also Degeneracy), 129, 232
Null-space, left null-space, 179, 209, 218, 281,
380
Null transformation, 183
Null (zero) matrix, 125, 129, 289
Number field, 132, 160
scalar, 179
Numerical integration step-size, 522, 565
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Nyquist sampling rate (theorem), 43
Nyquist stability criterion (method), 40,
55-57, 69, 358, 578-579

(0]

Observability, complete, 313, 366, 375, 396,
445, 467
with distinct eigenvalues, 377
effect of sampling on, 389
irreducible realization and, 408, 439-440
Jordan form, 376-377
Kalman canonical form, 385-386
and least squares, 228, 392
matrix, 378, 421
Observability index, 392
Observable canonical form, 85, 88, 92, 94,
152, 173, 375, 389
Observer/Kalman filter, 461, 502
Observers, 226, 461-474, 492-493, 561
continuous time, full state, 461
continuous-time, reduced order, 461, 470
discrete-time, delayed input, 464
discrete-time, full state, 461, 464, 484
discrete-time, no input delay, 467
discrete-time, reduced order, 471-474, 482,
485
Odd-symmetric nonlinearity, 575
One-to-one transformation, 73
Onto-into transformation, 73, 179
Open-loop control, 2, 525
Open-loop poles, 33, 53
Open-loop system, 2, 49
Open-loop transfer function, 32, 39
Open-loop zeros, 33, 53
Operating point, 565
Operator, 168, 208
Optical imaging example, 186—189
Optimal control, discrete-time, 505
Optimal control problem, 501-503, 539
Optimal control theory, 140, 308, 375,
501-561
Optimal regulator problem, 509, 510, 513
Optimal tracking problem, 509, 510, 513, 517,
549
Optimality, Bellman’s principle of, 503
Orthogonal complement, 208
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Orthogonal decomposition, 222, 384, 419

Orthogonal eigenvectors, 452

Orthogonal matrix, 131

Orthogonal projection, 223

Orthogonal set (See also Basis set and
Orthonormal basis set), 158

Orthogonal transformation, 182, 248, 266,
400, 420

Orthogonal vectors, 158, 168-170

Orthonormal basis set (basis vectors), 165,
168, 170

Outer product, 159, 168

Output feedback, 443, 460, 482, 491

Output space, 75, 374

Outputs, 2-4, 6, 32, 35, 48, 77-78, 103, 122

P

Paper machine example, 543-544

Parallel realization, 88, 91, 94, 96

Parallelogram law, 158, 163

Parameter identification, 9

Parseval’s theorem, 536

Partial decoupling (See Decoupling and
Noninteracting systems)

Partial fractions, 11, 38, 89, 91, 92, 94, 96,
107, 413

Partial pole placement, static output feedback,
457, 460

Partitioned matrix, 130-132, 214, 224, 227,
470, 472

Path variable (See Through variable)

Performance criterion (measures), 37-38, 502

Periodic signals, 38, 160

Perturbation theory, nonlinear equations and,
569, 589

Perturbations, 343-344, 528, 565-570

Phase margin (PM) (See also Gain margin
and Stability margins), 39-41, 50,
58-59, 528

Phase plane (method), 103, 349, 565

Phase variables, 80, 81, 92-93

Phase-lag, phase lead, phase shift, 45, 58-60,
575

Physical modeling (See also Modeling), 6

Physically realizable, 87

PID controller, 15, 71, 549

Piogram, 185, 202

Index

Pivot element, 128
Pivotal condensation, 126—-128, 155
Point variable (See Across variable)
Polar plots, 40, 55-57
Pole assignment, eigenvalue assignment,
447-457
Pole locations, Z-plane, 62-63
Pole placement, Pole assignment, algorithm,
16, 308, 453-454, 535
Poles, 39, 89-91, 127, 142
closed-loop, 33, 40-43, 55, 58
dominant, 55, 58
and eigenvalue, 94, 365, 410
open-loop, 33, 40, 44-45, 53-54
Poles and zeros, 10, 12, 33, 129-131, 154,
447-448
Pole-zero cancellation, 45-46, 214, 388,
422, 423, 480
Polynomial, 89, 122, 124, 160, 478
characteristic, 246, 286, 295, 405
matrix, 214
minimum, 287
reduction of, 212-214
remainder, 213
Pontryagin’s minimum principle, 523-525
Popov line, 586
Popov locus, 585, 586
Popov stability criterion, 358, 565, 584-586
Position feedback, 3
Positive definite, positive semidefinite matrix,
353, 507
Power flow, 23
Power series expansion, 284
Powers of a square matrix, 282-283,
288-289, 293-294, 300, 305
Pre-image, 73, 179
Principle minors, 265, 357, 359
Product space, 77, 178, 344
Production system, 19, 27, 332
Projected solution, 218, 220
Projection matrix, 261, 533
Projection, orthogonal, 223
Projections, 177-178, 186-189, 201, 221,
281, 397
Projection theorem, 178
Projective controls, 533-536
Proper rational matrix, 405, 476
Pseudo-inverse, 175, 178, 223
Pythagorean theorem, 167
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Q

QR matrix decomposition, 170-172, 247,
249-252, 262, 373, 379, 384-386, 419

QR method of eigenvalue/eigenvector
determination, 262

Quadratic criterion, 308, 501, 503

Quadratic form, 135, 264, 279-280, 353, 355

Quadratic Lyapunov function, 355, 368

Quadratic norm, 166

Quasidiagonal matrix, 132

R

Raggazini’s method, 66
Random variable, Random process, theory,
12, 223
Range space, 73, 180, 208-209, 227, 245
Rank, matrix, 128-129, 133, 144-147, 163,
180, 208, 223, 227, 228, 246, 379, 468
Rate variable (See Through variable)
Rational polynomial function, 122, 152-154, 160
Realization, 88, 102, 374, 406
cascade, 415
direct, 88, 92, 94, 95
with complex poles, 90, 432-433
irreducible, 408
Jordan form and, 411, 414, 421, 429-433
minimal (See Irreducible realization)
parallel, 88, 94
Reciprocal basis vector, 222, 263, 312, 336
Reconstruction, state '
Recursive weighted least squares, 9, 132,
223-224, 234-237, 561
Reduced order observers, 470, 471, 494
Reduction:
of a polynomial, 288
to sum of squares, 155, 266
Reference signal, 32
Reflections, 185189
Regulator problem, 507, 508, 527, 545
Relay, 563, 576-577
Remainder polynomial (matrix), 213,
288-289, 393
Repeated (multiple) eigenvalues, 290, 452
Representation of systems, 75, 374
mathematical, 14
spectral, 246, 263 (See also Modeling)
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Residual error (norm), 216, 217
Response:
deadbeat, 65
frequency, 38, 41
impulse, 11
transient, 37, 51
zero input, 311
zero state, 311, 319
Resolvent (adjoint) matrix, 252-253,
257-258
Return difference, 38, 40, 50, 56, 142, 498,
527
Reversed time property of adjoint system,
325, 334
Riccati equation, continuous, 518-521, 537,
539
Robot two-link mechanism, 563, 592—-593
Robustness, 15, 143, 452, 454, 527, 533
Rocket vehicle, 26, 115-116, 562
Root locus, 39, 40, 44-46, 53-55, 63, 579
Rotations, 184-189
Routh’s criterion, 39, 52, 69, 357, 365, 368
Routhian array (table), 43-44
Routing problem, 504
Row matrix, 73
Row operations, elementary, 128
Row vector, 122
Row-reduced echelon (RRE) method,
209-211, 218, 220, 233, 236, 246-250,
252, 379
Row-space, 208, 209, 219

S

Saddle point, 266, 349, 567

Sampled-data system, 33-36, 59-68, 319

Sampling, desampling, 33-34, 43, 309,
321-322, 389, 514

Sampling theorem, Nyquist’s, 321

Satellite attitude, 116—117, 327-328, 363,
558

Satellite dynamics, nonlinear and linearized,
568-570, 614

Satellite tracking, 151, 186—189, 235

Saturation, 563, 576

Scalar, definition, 121

Scalar number field, 121, 179

Scalar (vector) product, 158
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Schur-Cohn stability test, 48
Sector-type nonlinearities, 576, 585, 587
Selection of states, 83
Self-adjoint transformation, 184, 200, 275
Self-learning control, 540, 581
Self-sustained oscillation, 578
Self-tuning control, 16
Semigroup property, 77, 316, 324
Sensitivity, 37, 38, 49-51, 143, 452
matrix, 556
Separation principle, theorem, 474, 482, 496,
525-526, 528
Series approximation of e** by time scaling,
305, 330-331
Settling time, 40, 307, 361, 514
Signal flow graphs, 31, 48, 317
Similar matrices, 273, 280
Similarity transformation, 182, 248, 251, 253,
262, 373, 413, 420
Simple transformations, 263
Simulation diagram, 83-84, 89-93,
104-112, 321, 332, 406-407, 415
Simultaneous linear equations, 207-242
decoupling of, 266
homogeneous, 218, 231-233, 242-243
inconsistent, 208, 217, 228
matrix notation of, 207
nonhomogeneous, 218
overdetermined, 208, 217, 221
solutions of, 208, 214, 218, 231-233
underdetermined, 217, 219
Single input-output system, 31, 475
Singular and nonsingular matrices, 178, 468
Singular point, 284, 293
Singular vectors, right and left, 277
Singular-value decomposition (SVD), 221,
247, 252, 259, 271, 276-278, 379, 419,
454, 527
Skew-Hermitian matrix, 126, 264
Skew-symmetric, symmetric matrix, 126, 155,
168, 368
Smoothing, 238
Solution of linear, homogeneous matrix
difference equation, 80, 282, 291,
335-338
Spanning vectors, 164, 208
Spectral decomposition, representation, 246,
263
Spectrum, 246

Index

Square matrix, 122, 282-307
powers of, 282-283
Stability, 38, 313, 342-372, 445
asymptotic, 345, 347, 353
bounded-input, bounded-output, 347
bounded-input, bounded-state, 347
definitions, 343
global, 346-347, 353-354, 358
of linear systems, 227, 245, 265-266, 313,
342, 346-348, 365-366
of nonlinear systems, 563—617
in the sense of Lyapunov (i.s.L.), 345, 353
uniform, 346
Stability margins (See also Gain margin and
Phase margin), 50, 56, 143
Stability of linearized nonlinear system, 566,
589-590
Stability of time-varying linear systems,
358-361, 568
Stability region, 39, 286, 342, 348, 511
Stability test:
Lyapunov, 349-358
Routh, 39, 357, 368
Schur-Cohn, 48
Stability theorems (Lyapunov), 353-358
Stabilizable, 313, 373, 375, 386, 399, 498, 561
Stable, asymptotically, 344-345
State, state variables, 10, 72-76, 133
definition, 76
State equations, 291, 308, 320
from input-output equations, 80
from linear graphs, 98
from simulation diagrams (See also
Simulation diagram), 83, 84, 91
from transfer functions, 88, 406—408,
426-429
from Z-transfer functions, 88, 94
linear transformations and, 334
State feedback, 375, 443-445, 489-491
incomplete, 444
State feedback (gain) matrix, 444, 448
State reconstruction, approximation, 375, 461
State space, 15, 75, 79, 157, 374
description of continuous-time systems,
308-319
description of discrete-time systems, 319,
325
description of dynamical systems, 72-120
State trajectory, 76
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State transition property, 77
State vectors, 75, 122, 131, 157
Steady-state accuracy, 38, 40, 44
Steady-state control, 512, 521, 548
Steady-state error, 44, 46, 47, 52, 59
Steady-state solution of difference equations,
337, 521
Stepper motor, 4
Stochastic process, variable, 13
Strictly proper rational matrix, 405
Subspace, 177, 208, 264, 384, 396, 419 (See
also Linear manifold and Vector space)
Subsystem, 5, 100-102, 131, 154, 156, 398,
410, 419
Sufficiently exciting, 9
Sum of squares, reduction to, 155, 266
Superposition, 564
Supremum, 182
Suspension system, 23
Sweep matrix, 261
Sylvester’s expansion, 304
Sylvester’s law of degeneracy, 163, 171, 381
Symmetric, skew-symmetric matrix, 126, 155,
168, 368
Synthesis, direct, 66—68
System, 103, 157
classification of, 12, 35
definition, 2
improving performance of, 41-42
measures of performance, 37-41, 76
modeling, 4
modes, 312-313
representation, 31, 374
type, 55
System theory, 1, 2

T

Tachometer, 3, 42

Target set, 502

Taylor series, 137, 284, 516, 554, 566, 589
Template system, 570

Terminal error, 502, 503

Test inputs, 38

Thermal example, 18-19, 548-550

Through variable, 6, 7, 99-100

Time constant, estimation of, 512-514
Time-domain characteristics, methods, 41, 338
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Time-invariant system, 310, 326
Time series, 8
Time-variable coefficients, systems, 13,
111-112, 324, 357-361, 380

Time-varying matrix, 314
Trace of a matrix, 128-129, 140, 155
Trajectory, 26, 344, 353-354
Transducer, 23
Transfer function, 14, 32, 404-406

closed-loop, 28-29, 31-33, 476

feedback, 32

forward, 32

input-output, 126-127, 308, 404, 476

nonminimum phase, 57

open-loop, 32

pulse, 34, 319

state equations from, 88, 406, 408
Transfer function approach, 475, 478,

481-482, 497
to discrete pole-placement/observer, 484,
497

to discrete reduced order observer, 485

to pole placement/observer design, 475

to reduced order observers, 482, 485
Transfer (function) matrix, 14, 141, 152,

404-406

state equations and, 341, 404-442
Transformations, mappings, 168, 179, 245

adjoint, 183, 333

bilinear, 39

bounded, 182

change of basis, 181, 291

differential, 334

domain, codomain of, 245

finite dimensional, 180, 184

formal adjoint, 334

identity, 179

infinite dimensional, 189

inverse, 179

linear (See Linear transformation)

matrix representation of, 74, 180

norm of, 182

normal, 184, 263

null, 183

null space of, 179, 184, 380

one-to-one, 179

onto-into, 73, 179

orthogonal, 182

range, 180, 184, 245
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Transformation, mappings (cont.)
self-adjoint, 184
similarity, 182, 248, 251, 286
simple, 263
unbounded, 190
Transformer, 7, 22, 99-100, 119
Transform methods (See Laplace transforms
and Z-transforms)
Transient response, 37, 51, 502, 503
Transition matrix, 318, 332-333, 569
continuous-time, 316, 323, 324, 328, 330
discrete-time, 324-325
methods of computing, 317, 324
properties of, 316-317, 324
Transmission line, 20-21
Transpose, transposition of a matrix, 126
conjugate, 208
Tree, 98
Triangle inequality, 167
Triangular matrix, 132, 216, 475, 486
Trivial solution, 218, 334
Two-point boundary value problem, 524

U

Unbounded transformation, 190

Uncontrollability (See Controllability, com-
plete controllability)

Uncoupled system equations, 245, 313, 329

Underdetermined simultaneous linear
equations, 217, 219

Uniform stability (See also Asymptotic stabil-
ity, Global stability, and Stability), 358

Unique solution, 76, 78, 207-208, 310-311,
315, 334, 344

Unitary matrix, 131

Unit circle, 47, 62-64, 286, 342

Unit matrix, 125, 132

Unit vector, 167, 185, 216

Unstable focus, 349, 567

Upper triangular matrix (See also Triangular
matrix), 132, 156, 170, 171, 253, 262

\

Van der Pol equation, 582-583, 600-601
Vandermonde matrix, 249

Index

Variable gradient method (Lyapunov),
368-369, 582-583, 613-614
Vector space/field definitions, 159-161
Vector:
abstract, definition, 159-160 (See also
specific topics such as Costate vector,
Differentiation of matrices and
vectors, Orthogonal vectors, Row
vector, etc.)
Vector algebra, 136
addition, 158
inversion, 161
multiplication, 158
subtraction, 158
Vector expansions, 165, 172
Vector product, 158
cross, 159
dot (inner, scalar), 158, 161, 166
outer, 159, 168
Vector space, 74, 157-206, 208
definition of, 166, 192-193
dimension of, 165
inner product, 161, 166
linear, 157-206
linear manifold and, 177
normed linear, 197
subspace and (See also Linear manifold),
201
Vectorizing a matrix, 138, 229, 271, 355-356

W

Weighted norm, 244

Weighted least squares, 9

Weighting matrix, 224, 318, 347

Weighting function (scalar or matrix valued),
14

Weighting matrices Q, R, effect of, 548-553

y 4

Zero, zeros, 10, 127, 130
closed-loop, 33
machine, 217, 379
open-loop, 33, 39, 45, 53
Zero input response, 134, 291
Zero (null) matrix, 289
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Zero order hold (ZOH), 36, 61, 71, 319, 321 Z-transfer function, 9, 10, 60-62
Zero state equivalent, 409 state equations and, 80, 88, 94, 442, 484
Zero state response, 134, 311, 319, 420 Z-transforms, 9, 14, 27-29, 31, 34-36, 133,

Zero-like behavior of a matrix, 125, 126, 129 286, 292, 319, 321, 338



