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Functions of Square Matrices
and the Cayley-Hamilton Theorem

8.1 INTRODUCTION

Functions of square matrices arise in connection with the solution of vector-matrix
differential and difference equations. Some scalar-valued functions of matrices have
already been considered, namely, |A|, Tr(A), ||A]l, etc. In this chapter matrix-valued
functions f(A) of square matrices A are considered. These functions are themselves
matrices of the same size as A, and their element values depend upon the particular
function as well as on the values of A. This chapter is devoted to explaining when these
functions can be defined, what these functions are, and how to compute them. Before
beginning, it may be helpful to state clearly what they are not. If A =[ag;], a matrix
function f(A) is not just the matrix made up of the elements f(a;) except in special
cases. '

Specific attention is given to the n X n matrix exponential function f(A) = e* and
to the matrix power function f(A) = A*. Solutions of continuous-time state variable
equations depend upon the matrix exponential. Solutions of discrete-time state equa-
tions depend in a similar way on powers of the A matrix. Methods of evaluating these
two functions are stressed because of their importance in the analysis of control
systems expressed in state variable format.

8.2 POWERS OF A MATRIX AND MATRIX POLYNOMIALS

A matrix is conformable with itself only if it is square. Only square, n X n matrices are
considered in this chapter. The product AA will be referred to as A® for obvious
reasons. The product of k such factors, AA--- A, is defined as A*. By definition,
A" = 1. With these definitions all the usual rules of exponents apply. That is,

A"A"=(AA---A)(AA---A)=A""
——— N —r

m factors  n factors
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(A™) = (AA---A)"=(A"A"-- - A")

m factors m factors

=(AA---A)(AA---A) - - (AA---A) = A™

n factors  n factors n factors

If A is nonsingular, then (A™")"=A"" and A"A"=A"A")"=(AA)"=TI"=1 or
A" "= A’=1 as agreed upon earlier.

The notion of matrix powers can be used to define matrix polynomials in a
natural way. For example, if P(x) =c,x™+ Cp_1x" '+ -+ c,x + ¢y is an mth de-
gree polynomial in the scalar variable x, then a corresponding matrix polynomial can
be defined as

PA)=c, A"+ Cp_ 1 A" '+ -+ A+ ¢l

If the scalar polynomial can be written in factored form as
Px)=c(x —a)(x —a)---(x —a,)

then this is also true for the matrix polynomial
PA)=c(A—1Ia)(A—1ay) - (A —1a,)

Thus a matrix polynomial of an n X n matrix A is just another n X n matrix whose
elements depend on A as well as on the coefficients of the polynomial. A clear
distinction should be made between the matrix polynomial function defined here as a
combination of powers of a matrix A, and the polynomial matrices (discussed in
Chapter 4 and in Section 6.3.1), which are matrices whose elements are polynomials in
some variable such as the Laplace transform variable s.

8.3 INFINITE SERIES AND ANALYTIC FUNCTIONS OF MATRICES

Let A be an n X n matrix with eigenvalues \j, \,, . . ., N,. Consider the infinite series in
a scalar variable x,

o(x)=a+ayx +ax*+---+axk+---

It is well known that a given infinite series may converge or diverge depending on the
value of x. For example, the geometric series

1+x +x24+x3+ o Hxk+...

converges for |x| < 1 and diverges otherwise. Some infinite series are convergent for all
values of x, such as

x2 x3 k

X

R TR TR A
Because this infinite series is so widely useful, it is given a special name, e*. The various
test for convergence of series will not be considered here. The following theorem is of
major importance.



284 Functions of Square Matrices and the Cayley-Hamilton Theorem Chap. 8

Theorem 8.1. Let A be an n X n matrix with eigenvalues \;. If the infinite series
o(x)=ay+a;x +ax*+ - - - is convergent for each of the n values x = \;, then the
corresponding matrix infinite series

0'(A)=aol+a1A+a2A2+---+akA"+---= > a, AF
k=0

converges.

Definition 8.1 [1]. A single-valued function f(z), with z a complex scalar, is said
to be analytic at a point z, if and only if its derivative exists at every point in some
neighborhood of z,. Points at which the function is not analytic are called singular
points. For example, f(z) =1/z has z =0 as its only singular point and is analytic at
every other point.

The result, which makes Theorem 8.1 useful for the purposes of this book, is
Theorem 8.2.

Theorem 8.2. If a function f(z) is analytic (contains no singularities) at every
point in some circle ) in the complex plane, then f(z) can be represented as a con-
vergent power series (the Taylor series) at every point z inside Q [1].

Taken together, Theorems 8.1 and 8.2 give Theorem 8.3.

Theorem 8.3. If f(z) is any function which is analytic within a circle in the
complex plane which contains all eigenvalues \; of A, then a corresponding matrix
function f(A) can be defined by a convergent power series.

EXAMPLE 8.1 The function e** is analytic for all values of x. Thus it has a convergent series
representation

2.2 3.3 k., k
wr _ x” xtatxt
e 1+oax + o0 + 3 + + ! +
The corresponding matrix function is defined as
2 A2 3443 k Ak
oA _ a’A° oA oA
e =I+aA+ o + 3 +eet Py + u

At any point within the circles of convergence, the power series representations
for two functions f(z) and g(z) can be added, differentiated, or integrated term by
term. Also, the product of the two series gives another series which converges to
f(2)g(z) [1]. Because of Theorems 8.1 and 8.2 the same properties are valid for
analytic functions of the matrix A. The usual cautions with matrix algebra must be
observed, however. In particular, matrix multiplication is not commutative.

EXAMPLE8.2 ¢*¢® =¢“*® ifand only if AB = BA. This is easily verified by multiplying out
the first few terms for e* and e™. [ |
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EXAMPLE 8.3 Find %[e“‘]. The series representation is

A% AP
2! * 3!

eM=1+Ar+ +oe

Term-by-term differentiation gives

Ar 2 3.2
de™ | _2A%t 3A’t
at 2! 3!

Since A can be factored out on either the left or the right,
_‘_i_e_A_t AZ t2 AZ t2
dt 2! 2!

EXAMPLE 8.4 Compute f;e‘“d 7. Using the series representation, term-by-term integration
gives

4o

= [I+At+ +---]=[I+At+ +--~]A=AeA’=eA'A ]

t g ' 2t 2 2.3
J‘eATdT=J‘IdT+Af’TdT+-1‘— 72d7+...:lt+A_t+At
0 0 0 2 Jo 2 3!

t
Therefore, Aj e*dr+1=e*or,if A" exists,
0

J’e‘“d~r=A'1[eA‘—I]=[eA’--I]A”1 |

0

Since the exponential function is analytic for all finite arguments, it is possible to
define

a?A? oB3A°

2 3!

Since A commutes with itself,

e A =1T—aA+

e—aAeuA — e(x(A~A) — ea[()] =1

which is analogous to the scalar result.

Although the exponential function of a matrix is the one which will be most useful
in this text, many other functions can be defined, for example:

A AN A A
s1nA—A—3!+—5—!—--~ s1nhA—A+§+§+---
. AT A o AT AY
COSA—I——2!+74-!'—"" COShA—I+E+4—!+---

Using these definitions, it can be verifed that relations analogous to the scalar results
hold. For example,

sin?A + cos’A =1
et —eA et tet

sinA=T, cos A= >
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cosh’A —sinh’A =1

. et—e et +e A
sinh A = > , cosh A >

Although all of the preceding matrix functions are defined in terms of their
power series representations, the series converge to n X n matrices. It is known from
Chapter 7 that every square matrix has a unique Jordan form J = M~' AM, from which
A=MJML. Thus (see Problem 8.5) for any integer k, A¥=MJ*M™'. Therefore,
f(A)=Mf(J)M™! for f any finite-degree polynomial or infinite series. Any analytic
function satisfying the conditions of Theorem 8.2 can be expressed in terms of the
modal matrix and the Jordan form. In those cases for which A is diagonalizable,

J= A =Diag[\,...,\,] and f(A)=Diag[f(\y),...,f(\)]

The Jordan form decomposition of A may not be the most efficient method of com-
puting f(A) because it requires determination of the modal matrix. Section 8.5 devel-
ops methods of determining the closed form expressions for analytic functions of
square matrices. However, the Jordan form-modal matrix approach does show several
useful results in a simple fashion. For example, if {\;} are the eigenvalues of A, then
f(\)) are the eigenvalues of f(A). This result is called Frobenius’ theorem. As applied
to the state equations, this indicates that if all eigenvalues of A are in the left-half
complex plane (stable poles) then all eigenvalues of e* will have magnitudes less than
one, that is, they are inside the unit circle. This is a result that could have been
anticipated from the Chapter 2 discussion of Z-transforms and the stability regions for
continuous and discrete systems.

8.4 THE CHARACTERISTIC POLYNOMIAL AND
CAYLEY-HAMILTON THEOREM

Although arbitrary matrix polynomials have been discussed, one very special poly-
nomial is the characteristic polynomial. If the characteristic polynomial for the matrix
A is written as

lA - I)\I = (_)\)n + Cn_l)\n—l + Cn_.z)\n_z + .-+ Clk + ¢y = A()\)
then the corresponding matrix polynomial is

AA)=(—1)"A"+ ¢, 1 A"+ 0 AP+ At o

Cayley-Hamilton Theorem. Every matrix satisfies its own characteristic equa-
tion; that is, A(A) = [0].

Proof. (Valid when A is similar to a diagonal matrix. For the general case, see
Problems 8.5 and 8.6.) A similarity transformation reduces A to the diagonal matrix A,
SO ‘

A=MAMT, A’=MA’M}, ..., A*=MA*M™!
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i

Therefore,
AA)=M[(—1)"A"+c, -1 A" T+ e A" P+ A+ 6 IIMT!

Each term inside the brackets is a diagonal matrix. The sum of a typical i, i element is
(=N + o N+ st Nt

which is zero because \; is a root of the characteristic equation. Therefore,
A(A) =M[0]M! =[0]

EXAMPLE8.5 LetA= B 3] |A—IN=(3~=N\)(2-N)—1=N—=5\+5.Then
A2 _[10 5]_ [3 1] [1 o]z[o o]

Definition 8.2 [2]. The minimum polynomial of a square matrix A is the lowest-
degree monic polynomial (that is, the coefficient of the highest power is normalized to
one) which satisfies

m(A) =[0]

It would be slightly more efficient to use the minimum polynomial rather than the
characteristic polynomial in some cases (in Section 8.5, for example). The minimum
polynomial 7 (A) and the characteristic polynomial A’(A) are often the same (if all A,
are distinct, or in the simple degeneracy case). In factored form the only possible
differences between m(A) and A'(A) are the powers of the terms involving repeated
roots. Since for the definitions given in Chapter 7 A(A\) = (—1)"A’(M), then

AN = (D" A= M)A = M)+ - (M= N)™
mA) = (A= M) = A2 (A= N,

In all cases k; = m,. In this text the characteristic polynomial will be used in most cases
rather than the minimum polynomial because it is more familiar, and only occasionally
requires a small amount of extra calculations (see Problem 8.18).

8.5 SOME USE OF THE CAYLEY-HAMILTON THEOREM
Matrix Inversion

Let A be an n Xn matrix with the characteristic equation A(N)=(—\)"+
Cnoit N1+ -+ ¢ N+ ¢ = 0. Recall that the constant ¢ = A\, - - -\, = |A| and is zero
if and only if A is singular. Using A(A) = (=1)"A"+ ¢, ;A" "'+ -- -+ A+ ¢ 1=0,
and assuming A ™! exists, multiplication by A™! gives ‘

(1)"A" '+ AT I+ AT =0
or

0
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EXAMPLE 8.6 LetA=ﬁ %],A()\)=)\2—5)\+5.Then
2 1 1 1| =2 1
AA)=A’-5A+5[=0, A =—;[A—SI]=—§[ ; _3] -

Reduction of a Polynomial in A to One of Degree n — 1 or Less

Let P(x) be a scalar polynomial of degree m. Let Pi(x) be another polynomial of
degree n, where n <m. Then P(x) can always be written P(x) = Q (x)Pi(x) + R(x),
where Q(x) is a polynomial of degree m — n and R(x) is a remainder polynomial of
degree n — 1 or less. For this scalar case, Q(x) and R(x) could be found by formally
dividing P (x) by P,(x), since this gives P(x)/Pi(x) = Q (x) + R(x)/Pi(x).

EXAMPLE 8.7 Let P(x) =3x*+2x*+x + 1 and Py(x) =x>— 3. Then it is easily verified that
P(x)=(3x*+11)(x*—=3) + (x +34)
so that Q(x) =3x?+ 11 and R(x) =x + 34. [ ]

Similarly, the matrix polynomial P(A) can be written
P(A)=Q(A)P(A) + R(A)

since it is always defined in the same manner as its scalar counterpart. If the arbitrary
polynomial P, used above is selected as the characteristic polynomial of A, then the

- scalar version of P is

P(x) = Q(x)Ax) + R(x)

Note that A(x) # 0 except for those specific values x = \;, the eigenvalues. The matrix
version of P is

P(A)=Q(A)A(A) + R(A)

By the Cayley-Hamilton theorem, A(A) =0, so P(A) = R(A). The coefficients of the
matrix remainder polynomial R can be found by long division of the corresponding
scalar polynomials. Alternatively, the Cayley-Hamilton theorem can be used to reduce
each individual term in P(A) to one of degree n — 1 or less.

3.1

EXAMPLE 8.8 LetA= [1 5

],A()\) =\ — 5\ +5. Compute P(A) = A*+3A° + 2A° + A + 1.

Method 1: By long division,

Px) 146x — 184
— =X’ 48 +3T
A(x) R x>—5x +5

Therefore, R(x)=146x —184 and the Cayley-Hamilton theorem guarantees that P(A)=
R(A) = 146A — 184I. ”

P(x) = (x*+ 8% + 37)A(x) + (146x — 184)

Method 2: From the Cayley-Hamilton theorem,
A’—5A+5I=[0] or A*’=5(A-1)
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Hence
A'=A’A’=25(A-I)(A-1)=25(A’-2A+ 1) =25[5(A-T) —2A + 1] = ‘25[3A —41]
A’ =A(A%) =5(A>— A) = 5[5(A —I) — A] = 5[4A - 51]
Thus
P(A) =25[3A —4I] + 15[4A — 5I] + 10(A —I) + A + I = 146A — 1841 |

Closed Form Solution for Analytic Functions of Matrices

Let f(x) be a function which is analytic in a region () of the complex plane and let A be
an n X n matrix whose eigenvalues \; € (). Then f(x) has a power series representation

fx)= 2 axt
k=0
It is possible to regroup the infinite series for f(x) so that
f()=Ax) 2 Bex* + R(x)
k=0

The remainder R will have degree less than or equal to n — 1. The analytic function of
the square matrix A is defined by the same series as its scalar counterpart, but with A
replacing x. Therefore, f(A) = R(A), since A(A) is always the null matrix.

Although the form of R(x) is known to be

R(x)=a0+a1x +0L2x2+ T +an,]x"_l

it is clearly impossible to find the coefficients o; by long division as in Example 8.8.
However, if the n eigenvalues \; are distinct, n equations for determining the » o; terms
are available. Since A(\,) =0, setting x = \; gives f(\) =R(\,),i =1,2,...,n.

EXAMPLE 8.9 Find the closed form expression for sin A if A = [_3 _ ;]

AN = (=3 —MN)(—2—1\),s0 N\ = =3, A\, = —2. Since A is a2 X 2 matrix, it is known that R
is of degree one (or less):

R(x)=oao+aix
Also, using x = \; and x = \, gives
sinh\; =R(\1) =ao+ a1 \q
sinh=R(\2) =0+ a1 N2
Solving gives

_Aisinh; — A sink,y _sinA; —sin\,
%o~ N\ R Vi W

or o = 3 sin (—2) — 2 sin (—3), a; = sin (—2) — sin (—3). Using these in f(A) = R(A) gives

. _fao—3a; o« | _[sin(=3) sin(—2)—-sin(—3)]
SmA"""”"“A‘[ 0 ao—2a1}_[ 0 sin (=2) u
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When \; is a repeated root, this procedure must be modified. Some of the
equations f(\;) = R(\;) will be repeated, so they do not form a set of n linearly

dA(\
independent equations. However, for \; a repeated root, —_d_()\_l =0 also, and so
)\=)\"
df(\) dA < . i d dR dR
= === N+ AN S [ZBe N —
ax |, ., d)\,zoﬁk () 1B ]M,_ dN=y  dN-y,

For an eigenvalue with algebraic multiplicity m;, the first m; — 1 derivatives of A all
vanish and thus

B df| _dR d*fl _d’R
JOV=RON. XL Tany o, T e
dm'fl _dm 'R
d)\mi—l N d)\mi—l N

form a set of m; linearly independent equations. Thus a full set of #n equations is always
available for finding the «; coefficients of the remainder term R.

0 10
EXAMPLE 8.10 Find the closed form expression for e* if A=| 0 0 1/
We have 27 =27 9

A—IN=AN) =N +IN -2\ +27=3—-\)
Therefore, A\; = A\, =\3 =13, and
eAI=R(A)=a()I+(X1A+Q2A2

where
€3t=01.0+ 3(11 +9(!2
de™ d ) 5 -
=—[ao+ Aos + N\ or te”=a;+6a
dX |, _s FT R N e
d’e™ da’ 2 2 3t
5 = ——[ao + Aa; + N o) or t'e”’ =2,
d\” |25 dX x=3
Solving for ao, oy, and a, gives
o, =3t%e”, oy = te> — 6o, = (t — 3t%)e¥,
ao=e"—3a; — 90, =(1-3t + %tz)e3’
Using these coefficients in R (A) gives
1—3¢t+32¢2 t —3¢2 1
et = Zr? 1-3t—9* t+31* |e* ]
27t + 842 2Tt =271 1+6t +3¢2

When some eigenvalues are repeated and others are simple roots, a full set of n
independent equations are still available for computing the a; coefficients.
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The method presented above for computing functions of a matrix requires a
knowledge of the eigenvalues. If the eigenvectors are also known, an alternative
method can be used (see Problem 8.21). For the particular function f(A) = e*, a third
alternative is available (see Problems 8.19 and 8.20). Finally, an aproximation can be
obtained by truncating the infinite series after a finite number of terms.

8.6 SOLUTION OF THE UNFORCED STATE EQUATIONS

Complete solutions of the state equations are considered in the next chapter. In order
to emphasize the importance of the matrix exponential and power functions, the initial
condition response of the state equations are considered briefly here. Only the con-
stant coefficient case is considered, that is the A matrix is not a function of time.

The Continuous-Time Case

When the control input u(¢) is zero, the state vector x(¢) evolves in time according to
solutions of

x(1) = Ax(?) (8.1)

starting with initial conditions x(0). One classic method of solving differential equa-
tions is to guess a solution form, perhaps with adjustable parameters, and then see if it
can be made to satisfy (a) the initial condition and (b) the differential equation. Here
the “guess” is x(#) = e* x(0), and we merely verify that this is correct. In Example 8.4
e!% =1 was introduced, so when ¢ = 0 is substituted, the assumed solution reduces to
Ix(0) and the initial conditions are satisfied. From Example 8.3 d[e*]/dt = Ae®, so
that substitution of the assumed solution into Eq. (8.1) gives the self-consistent result
x(2) = Ae'x(0) = Ax(¢).

In Chapter 4 it was stated that the Laplace transform of a matrix of time functions
can be calculated term by term on each element of the matrix. This provides an
alternative approach to solving Eq. (8.1). The state vector x(¢) is an example of a time-
variable column matrix. Let £{x(¢)} = X(s). Then £{x(¢)} = s X(s) — x(0), so that Eq.
(8.1) transforms to sX(s) — x(0) = AX(s). Solving for X(s) gives X(s) = [sI — A]"x(0).
The inverse Laplace transform then gives x(¢) = £~ Y{[sI — A]™'}x(0). Not only is this
the solution, but comparing it with the previous solution shows that

et =L H[sI-A]™Y}

(See also Problem 8.19.) One final method of solving Eq. (8.1) utilizes modal de-
coupling. The matrix A is assumed diagonalizable to keep the discussion simple.
Equation (8.1) can be written as x = MAM™'x. If a change of variables (change of
basis) M~'x = w is used, after premultiplying by M this becomes w = Aw. Because A is
diagonal this represents n scalar equations w; = \;w;. Each of these equations has a
solution wi(f) = e w;(0). The entire set of solution components can be written as
w(?) = Diag[e™’, e, ..., e*']w(0). The solution for x and not w is desired, but x(z) =
Mw(¢). The initial conditions are presumed given for x(0) and not w(0), but w(0) =
M~ x(0), so the final solution is x(f) = M Diag[e™’, e™". .., e*]M ' x(0). Comparison
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with the previous solutions shows that e* = Me™ M. This is an explicit verification of
the result given at the end of Sec. 8.3 for a general function f(A).

The Discrete-Time Case

The initial condition response of an unforced constant coefficient discrete-time system
evolves according to

x(k + 1) = Ax(k) (8.2)

The state at any general time point # is known to be (see Sec. 6.9) x(k) = A*x(0).
The Z-transform of any time-variable matrix, such as the column matrix x(k), is
obtained by transforming each scalar element in the matrix. If Z{ } represents the
Z-transform operator and if the column of transformed elements is defined as
X(z) = Z{x(k)}, then Z{x(k + 1)} = zX(z) — zx(0), and the transformed Eq. (8.2) can
be written as (zI — A)X(z) = zx(0). Solving for X(z) gives X(z) =[zI— A]™" zx(0).
Using Z Y } to represent the inverse Z-transform, the time domain solution is

x(k) = Z Y[zI — A] ' z}x(0)

Comparison with the previous solution shows that the kth power of a matrix can be
computed from A¥ = Z "{[zI — A] "' z}, which is similar to the Laplace transform result
for the continuous-time system. Writing A = MAM ™' and repeating the steps used in
decoupling the continuous-time system shows that A* = MA*M™ is an alternative way
of computing the power of a matrix, as was already known from Sec. 8.3.
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ILLUSTRATIVE PROBLEMS

Inversion of Matrices and Reduction of Polynomials

If A= H _ﬂ, use the Cayley-Hamilton theorem to compute a. A™' and b. P(A)=A°+
16A* +32A° + 16A* + 4A + 1.
(@) A(\) = |A — 1IN =\>— 2\ + 2. Therefore,

1

A>—2A+21=[0] or A-1=—§[A—21]=5[_} ﬂ
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(b) P(A) = R(A), where R is the remainder term in

P(x)_ 5 > 96x — 223
=it +66x + 112 + 222
A) x”+18x"+ 66x + 112 AG)
_ _ _|—127  -96
Therefore, P(A) = 96A — 2231 { 9% _127} .

A= B ﬂ Finda. A 'andb. P(A) =A%+ A®+ A + L
(@) A(\) =N*> — 5\ — 2. Therefore, A(A) = A>— 5A — 21 = [0] by the Cayley-Hamilton theorem
and A—5I-2A"'=[0]JorA™'=3[A-5I] = [-23 11]

2

-2

(b) P(x)/A(x) =x>+ 5x%+28x + 150 + [(807x + 301)/A(x)]. Therefore,
P(x) = A(x)[x> + 5x2 + 28x + 150] + 807x + 301

—_—
R(x)

o _[1108 1614
and P(A) = R(A) = 807A + 3011 = [2421 3529]'

Functions with Singularities

Comment on the following functions in view of Theorems 8.1, 8.2, and 8.3:

(@) f.(x) =1/(1 —x), and (b) fo(x) = tanx.

(a) f.(x) has a singularity (pole) at x = 1, but is analytic elsewhere. In particular, it is analytic at
all points x in the complex plane inside the circle |x| <1, and for these points

fa@)=1+x+x>+x>+---

If all the eigenvalues of A satisfy |\, <1, then f,(A) = (I — A) ™" exists and can be written as a
convergent series

f(A)=T+A+A+ A+

Note that (I — A)f,(A) =1+ (A — A) + (A>— A®) + - - - =1 as required. When A has A =1 as
an eigenvalue, then (I — A) is singular and the inverse does not exist. If A =1 is not an
eigenvalue, but at least one eigenvalue has a magnitude larger than unity, then (I— A)™"
exists but cannot be represented by the above infinite series.

(b) fo(x) =sinx/cosx has a singularity (pole) at each zero of cosx, that is, at x = =mw/2,
*+3m/2, ..., but is analytic elsewhere. If all eigenvalues of A satisfy [\| < w/2, then we could

define tanA = A + A>3+ 2A%/15+ - - - and be assured that this series is convergent (see
Problem 8.11).

Powers of a Jordan Block

Let J: be an m X m Jordan block. Show that for any integer £ >0,

p=

)\k k)\k—l lk(k__l))\k—Z lk(k“l)(k"Z)xk_?’ . k!xk—m-&l -
. 3 k —m + Digm —1)!
. k- — - k-2
0 A JoNE STk =D
0 0 )\k ) k)\k—l
0 0 0

T 9%
[0 0 0 A*
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With k =1, J; satisfies the preceding equation. To see this, it must be recalled that
(k =m +1)! =wif k —m +1<0. Multiplying gives J, squared:

A 10 0] NN 1 0 - 0
0 N 1 0 N 22 1 |
10 0 ,_ |0 0 A 2
=10 0 0 o Ji= ] 1
: 1 - 2\
L0 0 0 A L0 0 0 O A

Use induction, assuming the stated form holds for k, and show that it holds for k +1 by
computing

N1 o0 - 0[N RN —21—|k(k—1)>\"—2
0 x 1 0 A\ %
0 0 X 0 0 A" _
00 0 0 0 0
: : : kAN
0 0 0 AMLO 0 TN
N (K + DN %k(k—l))\"‘1+k)\"‘l %k(k—1)(k—2))\"‘2+—21—!k(k—1))\"‘2
A2 (k + DA
0 Ak+1
0 0
0 O )\k+1-

[%k(k -1 +k }x"“l :"2&'(" —14+2\'= (k ;1 kx’“l

[%k(k ~1)(k - 2) +%k(k ~ 1)}\“2 =§1;k(k =Dk + DN

etc.

so the stated result holds.

Proof of Cayley-Hamilton Theorem

Prove the Cayley-Hamilton theorem when A is not diagonalizable.

Any square A can be reduced to Jordan canonical form J=M 'AM, so that
A=MIM L A>’=MJM 'MJM '=MJFM ', A*=MJ*M". If the characteristic polynomial is
AN) =c,N"+cpo1 N7+ - -+ N+ o, then

A(A)=CnAn+cn__1An_l+ s +ClA+CQI
=M[c, I+ I e T+ IIMTY

It is to be shown that the matrix polynomial inside the brackets sums to the zero matrix. The
Jordan form is J = diag[J,, J2, . . ., J,], where J; are Jordan blocks. Also, J* = diag[J%,J5, . . .,
J%]. Therefore, to prove the theorem it is only necessary to show that ¢, J; + ¢, J; "' + - +
c1Ji + ¢oI = [0] for a typical block J;. Using the result of the previous problem, all terms below
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the main diagonal are zero. The sum of the terms in a typical main diagonal position is
CaN + ¢ N1+ -+ ¢ N+ ¢o and equals zero because this is just the characteristic poly-
nomial evaluated with a root \;. A typical term of the sum in the diagonal just above the
main diagonal is nc, A "' + (n — 1)c, -1 A} "2 + -+ - + ¢z \; + ¢1. This sum is zero since it equals

_C_i_g_()\_) . The root \; is a multiple root, so
A A=A;
_ m dA _
AN =c(A=M)"A=N)(A—\)..., and ==| =0
dN|r=x

If J;is an r X r block, \; is at least an rth-order root, so

1d2a0)) _ 1AW 1_d'am

2 dN\? e 3! dn? rene (r—1)! dx! N,

The successive diagonals above the main diagonal give terms which sum to these derivatives of
the characteristic equation. Hence

C,,J? + .. +C1Ji+COI=[0]
and so
A"+ ¢ AT A+ 1= 0]

Give a general proof of the Cayley-Hamilton theorem without using the Jordan form.
A is an n X n matrix with n eigenvalues \;, some of which may be equal. The characteristic
polynomial is

AN =[A=IN=(=N)"+ 1N Tt N2+ e hF oo (1)
We are to show that
A(A):(_1)"An+cn_lAn*1+Cn_2An*2+ "‘+C1A+COI:[0] (2)

Consider Adj[A —I\]. Its elements are formed from n — 1 X n — 1 determinants obtained by
deleting a row and a column of A —IN. Therefore, the highest power of A that can be in any
element of Adj[A —I\]is "', This means it is possible to write

Adj[A—I)\]:Bn_q)\n71+Bn_2)\n~2+"'+B1)\+B0 (3)

where the B, terms are n X n matrices not containing A, but are otherwise unknown. We use the
known result

[A —I\] Adj[A —I\] = |A — NI 4).
Substituting Eq. (3) into the left side of Eq. (4) gives
[A—I\] Adj[A —I\]= ~B,_;\"+ (AB,_1 —B,_))\" '+ (AB,_,— B, _3)\" 2
+ -+ + (AB, — B)A? + (AB; — B\ + AB,
Using Eq. (Z) on the right side of Eq. (4) gives
AMI=(=N)"T+c N ' T+ c N 72T+ -+ o N+ ool

The left side equals the right side, and the coefficients of like powers of A on the two sides must
be equal. This leads to the following set of equations:

——Bn_lz(—l)"l
Alsn—lm_BrL—chn»lI
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ABH—Z_Bn-E} =cn'21

ABz - B1 = Czl

AB] - B0= Cll
ABO = CQI

If the first of these equations is premultiplied by A", the second by A"~ ', etc., the sum of the
right-side terms is A(A). The left-side sum must also equal A(A), and takes the form

("‘Aan_1+ Aan-—l) + (—An_an—2+An_1Bn-2) + (_A"——an~—3+An_2Bn~3)
+ e 4 (—A2B1 + AZBl) + (_ABO + ABO) = [0]
Therefore, A(A) = [0].

Functions of a Jordan Block

If J1 is an m X m Jordan block with eigenvalue \;, find a general expression for the coefficients o,
for e™".

The characteristic equation is A(X) = (A — A\;)™ and

eV =aoltoaJitoalit o, JTT!

where
eM=opt oAt oA+ o, AP
de)\t R
Iy =teM =y + 200N + 303N+ -+ (M — Dy N] 72
A

More symmetry is achieved if the kth derivative term is divided by 1/k!:

%tze)‘”=a2+3a3)\1 + .- +%(m - 1)(m _2)(1”,_1}\’1”—3

%t3e“'=o¢3+4)\1+-'--k%(m—1)(m—2)(m—3)01,,._1}\’1”_4
1 m-—1_N1t __
m-ni° ¢ "o
or -
1
t ]. )\1 )\% K? se )\Tvl (s 13}
12 0 1 2xn 32 (m — NP2 o
1. =10 0 1 3\ 3m=D(m-2A\T || o |£Fa
2t : : :
3 00 0 0 St 1
1 tm—l
L (m =1
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= 1 =
t
at?
v — -1 At
a = [F] 1, e
3!
]- m-—1
ICED
But using Gaussian elimination, for example, gives
DR e S C RS (=a)™ ! ]
0 1 —=2xn 3N\ -4 (m =1 (=)™

Lm = 1)(m = 2)(—\)" >

0 0 1 =3n 6A
(m = 1)(m = 2)(m = 3)(-\)""*

F'=[0 0 0 1 —d, 1

3!
—(m =\,
L0 0 0 0 0 1 d
SO
)\ztz )\3t3 X4t4 (__)\ )m~ltm71
— p Mt _ 1 _ 1 1 . ASEAD VA S
Qp=2¢€ 1— Nt + ol 31 + . 41 (m — 1)'
i )\2t3 A3t4 tMAl(_x )m—Z
— A1t _ 2 _1____ 1 . _‘_____1____
oap=e t— Nt + ) 30 + + (m—2)!
i )\ t3 x2t4 tm—l(_x)m—ﬁi
—pMtfflp2 217  M° L L A
Ol e _zt 2 + 4 -+ 2(m _3)!
1 _ 1 _
— My L oom-2_ 4 tm 1
2w - }
Om—-1= eMl tm_l
(m—-1)!
8.8 Use the results of the previous problem to find e’'* if a. J; is a 3 X 3 Jordan block, and b. J, is a
4 X 4 Jordan block.
M o100 NI V|
(a) J]= 0 )\1 1 . Jf= 0 )\% 2)\1
0 0 M 0 0 A
eV =aol+a Ji + 012-]%
Qo + (21)\1 + (12}\% Qg + 2)\1(12 (s 5)
= 0 Qo + (11)\1 + azk% (s 51 + 2R1(12
0 0 o + ol + aN
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M 100 0 N2 10
lo n 1 0 , o oo 1
) L=1g o9 A 1 JiZlo 0 N2 ol
0 0 0 A 0 0 0 N

r}& 337 3 1
0 A 3\ 3\u
0 0 A 3\
0 0 0 A

SO

el =ool+ o Ji t+ Olzﬁ+ 013J?

12 1.3

1 ¢ 35t 3!t
=eM0 1 t 37
0 0 1 t

00 O 1

The pattern illustrated by these two cases continues for any m X m Jordan block.

Some Matrix Identities

8.9 (a) IfA= [_% _g] , compute the 2 X 2 matrices sin A and cos A.
(b) Verify that sin® A + cos’A = 1.
(a) From Problem 7.2, AA\)=N+2\A+1 and \;=X\,=—1. Now sinA =l +0o;A and
cosA = a1+ a3 A, where

SinA; = ap+ oy Ay } {al = cos(—1) = cos(1)
e _ _ '
d)\(sm N) . —cos A=y

ao = sinA\; + a; = cos(1) —sin(1)
Al

and
COSA; =0+ A\ 03 az =sin(1)
-c%\-(cos N) = —sinA\ = o3 > a, = cos(1) + a3 = cos(1) + sin(1)
A=A\
Therefore,
SinA = [2 cos (1) —sin (1) 2 cos (1) ]
—2cos (1) —2 cos (1) —sin (1)
and
_[cos (1) + 2 sin (1) 2 sin (1) ]
cos A [ “2sin(1)  cos (1) —2sin (1)
(b) Multiplication gives
Sin? A = [sin2 (1) =4 cos (1) sin (1) —4 cos (1) sin (1) ]
4 cos (1) sin (1) sin”® (1) + 4 cos (1) sin (1)
and
cos? A = [cos2 (1) + 4 cos (1) sin (1) 4 cos (1) sin (1) ]
—4 cos (1) sin (1) cos® (1) — 4 cos (1) sin (1)
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) 2
. 2« _ | sin® (1) + cos® (1) 0 ]—
so sin?A + cos?A = [ 0 sin? (1) + cos® (1) | — L

(a) Compute e*, e *, sinh At, and cosh At for A = B }:I

(b) Verify that sinh At = (e* — e "*")/2, cosh At = (e* + e "*")/2, and cosh® At — sinh®As = 1.
(a) The eigenvalues are \;=0 and A\, =2, so f(A)=al+ ;A= [ao T @ } The

(s %1 Qo + (s 5}
coefficients oo and «; are found from f(A\;)=a0 and f(\:) = ao+2a;. Therefore,
ar = [f(A2) —f(A))/2 and a0+ a1 = [f(Az) + f(A1))/2 for any analytic f(A). Letting f(\) be
each of the four required functions gives, in turn,

(6241 e*—1] (e 241 e 2—1
N 2 2 N 2 2
e = eX—1 e¥+1/ e = e ¥ 1 e 1
2 2] | 2 2
[sinh2¢ sinh 2f] (cosh2t +1 cosh2t —1
sinhAf=| 2 2 || coshAr= 2 2
sinh2¢ sinh?2¢ cosh2t —1 cosh2t +1
| 2 2 ] | 2 2

(b) Since (e* —e *)/2=sinh2¢t and (e* + e *)/2 =cosh2t, it is clear that (e* +e *)2=
cosh At and (e* — e ~*)/2 = sinh At. Computing

[cosh?2¢t +1 cosh?2t — 1

cosh? At = 2 2
cosh?2t —1 cosh?2t +1
2 2
[sinh®2¢ sinh?2¢
o 2 2
sinh™Af =\ G122 sinh?2s
2 2

and using cosh®2¢ — sinh®2¢ = 1 gives cosh® At — sinh® At = L.

-1 1
LetA—[ 1 1].

(a) Find sin A, cos A, and tan A.
(b) Show that tan A = (sin A)(cos A) .
(a) The eigenvalues are \; = V2 and A, = —V2. Since both eigenvalues satisfy |\| < w/2, use of

the results for tan A of Problem 8.3 is justified. For all three functions, f(A) = ool + a; A,
where ao = (122)[f(V2) + f(—=V?2)] and o; = (1/V2)[ao — F(—=V?2)], s0

sin\@li—l 1 ],

Vo L 11
tan\/f[—l 1]
V3 L 11

(b) Using (cos A)~' = (1/cos V2)I shows that tan A = (sin A)(cos A) ",

sinA =

—_— O

], cos A = (cos \/i)[(l)

tanA =
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Closed Form for Functions of a Matrix

IfA= [_—% _g], what is sin Az?

Since A(\) =N+ 5\ + 4 = (A + 4)(\ + 1), the eigenvalues are \; = —1 and A\, = —4. The
general form of the solution is

sin At =aol+a1A

where
sin(—41) = ap — 4(x1} R {oq = —1[sin(—4¢) — sin(-1)]

sin(—1) = oo — oy oo = —3 [sin(—4¢) — 4 sin(—1)]

Then sin At = 1 [

sin (—4¢) +2 sin (—f) —2sin (—4¢) + 2 sin (—t)]
3 .

—sin (—4¢) + sin (—¢) 2 sin (—4¢) + sin (—1)

2 0 0
IfA=[0 -2 2|, finde*.
0 1 -3
Note that A is block diagonal and the lower block is the same matrix as in the previous
problem. Since the algebra involved in finding the «’s is the same when finding any analytic
function, the answer can be written down by replacing sin \; ¢ by e™*, so

e? | 0 0
T U
A=l 0 i (e +2") 2—e “+e™)
I 3 3
ol(ceTre™ (e +e)
L 3 3 i
A useful partial check is that e* must always equal I when ¢ = 0.
1 -1 1p
Compute [0 1 1| for any arbitrary integer k.
0 01

Computing A(\) = (1 =\)’ gives A; =\, =X;=1. Since A is 3x 3, A* can always be
written as a polynomial of degree 2 (or less):

Qo + [s 51 + QA -0 20.2 (s 5% + (6 53
Ak=(101+0L1A+OL2A2= 0 ao+a1+a2 a1+2a2
O O (Xo+(¥1+(¥2
where
()\])k=1=a0+a1+a2
k
dé(l);\) =k)\'f'1=k=o¢1+2a2
A=A
d*(\)*
d(v) = k(k = DN 2 =k(k — 1) =20
A=A\

Note that in this case all the individual a’s need not be found. Combining the last two equations
gives a; + an =k — k(k —1)/2 = k(3 — k)/2. All the combinations of o, that are required in A*
are now available, and
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1 —k kB-kPR
Ab=|0 1 k
0 0 1

Compute e if A = [_i ﬂ

We know that e = aoI + a; A = [ao — 1 ] Since this is the same A matrix as in
(s %] Qg + i

Problem 8.11, the coefficients are

o =%[e‘/§’+ e‘\/i’] =coshV2, o =M L sinh /2t
2V2 V2
N
cosh V2t — v sinh V2t N
s0 et = L sinh V2t V2 1 ’
V2 cosh V2t + —=sinh V2t
V2
0 -3 0
GivenA=|3 0 0/. a. Find A" using the Cayley-Hamilton theorem. b. Compute e*".
0 0 -1

(a) The characteristic polynomialis A(\) = (1 + A\)(A* +9) = A> + N>+ 9\ + 9. Therefore A(A) =
[0] =A%+ A%+ 9A +9Iso

1 0 5 0
Al= —§[A2+A+9I]= -3 0 0
0 0 -1
(b) The eigenvalues are roots of A(A) =0, so Ay = —1, A\, = 3j, A3 = —3j. Since A is block diago-
nal,
[o —3], ‘: 0
3 o
A _|€________ L0__
e T0TTT0 e
and /
0 —3]
[3 0. f _ 0 -3 _ | ™o “3(11
e =aol + a1[3 O:l = [30“ s ]

where e” = ao + o, 3j and e ~¥ = oy — a; 3j. From this,

e
oo = 3[e¥ + e ] = cos 3t

1 e3jt_e—3jt .
=Gl T =%s1n3t

3 2j
cos3t —sin3t O
andsoe®*=|sin3t cos3t O |.
0 0 e’
0 —QE a 0
; Arie oA Q____Q_,'hg____a__
Finde™if A= 000 =q
0O 0!'Q o
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The algebra can be simplified in this case if it is noted that

A—[%l—' BQJWL[.O_'_&] Ai+A, and AjAr=AsA, = [—0-'-“-131]

Since A, and A, commute, e*! " 42" = ¢A17¢42’, But A, is block diagonal, so

e = ayI + a; B; and eigenvalues of B are *j():

e,:mzao-{hjﬂal > Bltz[cosﬂt —-sith}
e "= ap— j Qo € sin Q¢ cos Ot

Consider A,: |A, — IN| = \*= 0. A; has \; = 0 with algebraic multiplicity of four:
A2 =Bl + B1 Az + B2 A3 + B3 A3

Since AJ = A3 = [0}, coefficients B, and B; are not needed. The remaining coefficients are found

At

to be e” —l—Boandd =t = Bs. Thus
d\ |, —o
1 Oiat 0
a0 110 at
e =100 0
0 0/0 1

cos {}t —sin Q¢ } atcos t —at sin Qt

Combining gives e Ar _ e Ayt e Apr _S_]I_l_QE — _C_O_S_ gl_t__ _ l_l!_ §1_n. __Q_t. — _a_t_C_.O_S_Q_t_ .

Minimum Polynomial

In computing ¢**‘ in the previous problem, it was found that only first-order terms in A, were
needed even though A, was a 4 X 4 matrix. This is a case where the minimum polynomial is of
lower order than the characteristic polynomial. Find the minimal polynomial of A,.

The minimal polynomial will have the same factors as the characteristic polynomial, but
perhaps raised to smaller powers. (There could also be a sign difference, depending on how the
characteristic polynomial is defined.)

Here A(\) = \*, so m(\) = \*, where k is the smallest integer for which m (A) = [0]. From
the results of the previous problem, k =2 and therefore m(\) = \°. If this had been known in
advance, then it would have been known that e*?* = B,I + B; A, and a slight amount of matrix
algebra would be avoided. This savings is usually offset by the effort required to find m (M), and
in this text the minimum polynomial is seldom used.

Alternative Methods

It was shown in the text that de*'/dt = Ae™ if A is a constant matrix. Use this result, plus the fact
that e*° = I, to derive an alternative method of computing e*

Let e“’ F(¢). Then F satisfies the matrix differential equation F = AF with initial
conditions F(0) = I. Laplace transforms can be used to solve this equation:

P{F(1)} = sF(s) — F(0) = sF(s) ~ I
PLAF(1)} = AL{F(1)} = AF(s)
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Therefore, [sI — AJF(s) =L or F(s) = [sI— A] ", and
eM=F() =L {s1-A]""}

-2 -2 0
8.20 Use the method of the previous problem to compute e* for A = |: 0 o0 ljl.

0 -3 —4
s+2 2 0
FormsI—A=| 0 s —1 |and|sI—A|=(s +2)(s*+4s +3)
0 3s+4

=(s + 1)(s +2)(s + 3). Then
F(s) =[sI—-A]™"

. [(s R e N
G626 g AR ALY

The inverse Laplace transforms are computed term by term:

Fi(t) = {—1—"} =e % Fi=FE;=0
2(S + 4) — -t =2t _ , =3t
Fa() =2 {(s D0 126 T 3)} Tlehde e
1 _,t -2t __ ,—3t
Fa()) =2 {(s 6 +2)(s n 3)} ¢t e
- 1 s +4 3 -t _ 1 -3t
EA)=3 {(s 1)+ 3)} €~
Ex()=27" =3¢ "+ 3
(s + 1)(s +3)
— 1 1 —r_ 1 -3¢
Es()=2%" {(s TG+ 3)} e
1l -t 3 -3t
By =2 {(s ) + 3)} et e
0 1 0 0
8.21 Find the closed-form expression for e*, where A = 8 8 (1) (1) .
=27 54 =36 10

Writing |A — I\ = A(N) = A* — 10A> + 362 — 54\ + 27 = (A — 1)(\ — 3)* shows that A, =1,
A2 = A3 =\s = 3. For the repeated eigenvalue, rank[A — IN;] =3 and g, = 1. Thus the Jordan

— . Using the results of Problem 8.8,
formis J = .
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3t 2,3

and e* =Me”M™', where M is the modal matrix consisting of two eigenvectors and two
generalized eigenvectors. The first column of Adj[A —I\] is

N2(10 — \) — 36\ + 54 | i
2277)\ , sowithA=1, x=|[1
27\ 1

andwithA=3,x,=[1 3 9 27]"is an eigenvector. Generalized elgenvectors are solutions of
Ax; = 3x; + X, and AX, = 3X, + x5. Solutions are x;=[1 4 15 54]"andx,=[0 1 7 36],

SO
1 1 1 0 27 =27 9 -1
1103 4 1 L 1|-8 133 =55 7
M=l g 15 7| and M7 =gl o« _106 46 -6
1 27 54 36 ~36 60 —28 4
"Thus
eAr — MeJtM~l —
Vet + (~19 +30f — 183)e™  —27e* + (27 — 46t + 30r2)e™
1| 27" + (=27 + 54 — 546%)e™ 27"+ (35 — 78¢ + 90t

8| 27e' + (=27 + 54t — 162t2)e™  ~27e’ + (27 — 54t + 270¢%)e™
27e" + (=27 — 162t — 486t%)e™ —27e" + (27 + 378t + 810¢%)e™

9e' + (—9 + 18t — 14t2)e3r —e'+ (1 -2t +2t)e”
9¢' + (—9 + 26t — 42t%)e™ —-e’ + (1 =2t + 6t%)e™
9¢'+ (—1—6t — 126t2)e3’ —e'+ (1 + 6t + 18t%)e”™

e’ + (=9 — 270t — 378t%)e® —e'+ (9 + 54t + 54t%)e™

Another method of computing an analytic function f(A) of an n X n matrix A with distinct
eigenvalues is given by

F8)= 2 F0ZO)

where \; are the eigenvalues of A and the n X n Z; matrices are given by

H (A-NI)
zo\)—’*’
H ()‘i _)\1)

This method is sometimes called Sylvester’s expansion and sometimes it is referred to as
Lagrange interpolation [2]. This is a restricted form, but it can be extended to the case of
repeated eigenvalues. Use it to compute e* for

2 -2 3
A=|1 1 1
1 3 -1
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The eigenvalues are \; = 1, —2, 3 (see Problem 7.39).

B 4 =2 3|[-1 -2 3 3 5
z,=- A +2DA 31)——%[1 3 1[ 1 -2 1}=—1[ 3 -5 2}
1

1+2)(1-3) 31|l 1 3 -4 3 -5 2

_(a-pa-3m _afg T Th
LT 2o n(2-)) 15[8 4

(A-p@a+ap 1|2 14
C B-1D)(3B+2) "102 % 3

Z,

Therefore,

1 3 =5 2 1 0 11 -11 1 51 4
e""=—6-e‘ -3 5 =2 +Ee_2' 0 1 -1 +iﬁe3t 51 4
3 5 -2 0 —14 14 5 1 4

Find A* for the A matrix of the previous problem.
The expansion matrices Z; depend only on A, not on the particular function of A that is
being computed. They are the same as in the previous problem, so with f(A) = A, the result is

3 -5 2 _n0 11 -11 K5 1 4
O R ) Rk R ) FRC F R
6l-3 5 -2 0 -14 14 51 4
. . arie 4 | —13 15 . .
Find the closed form expression for e™ if A= 15 -13| Investigate using the truncated

infinite series to get a numerical approximation, with ¢ = 1.
The eigenvalues of A are A =2 and —28. The closed form answer is

0.5 —05] . _s[05 0.5
0.5 0.5]” [0.5 0.5]

With ¢ = 1 this becomes

eAt — e2

~

oAops| € —ez]z[ 3.6945 —3.6945]
Pl-er €2 T[-3.6945  3.6946

Using the first 30 terms in the infinite series gives the bad answer e* = [2'435 2‘435] x 10",

2.435 2.435
Keeping more terms does not help. The problem is that successive terms in the series depend
upon (\;2)/j!. The alternating signs caused by (—28)/j! cause loss of all significance, due to small
differences of large numbers. A way to avoid this problem is to note that e*' = [¢*""]™. By
picking some integer m such that |\|t/m is sufficiently small, the series for e*”” will converge
rapidly. In fact the number of terms that need to be retained is K, where [|A|max2/m]*/K! <e.
Note specifically that this depends on the largest-magnitude eigenvalue and on t/m. Once this
truncated series is found, raising the answer to the mth power gives e*. By selecting m as a
power of 2, several successive doublings of e*”” efficiently give ¢, In this example it is found
that t/m = 0.25 (i.e., m = 4) gives the correct answer, with about 20 terms retained in the series.
Two successive doublings of e*”™ are required at the end. If t/m = 0.125 (m = 8) is used, only 7
or 8 terms are needed in the series. This savings more than makes up for the extra matrix product
(doubling) required to compute e* = [e**]® = {[(e*®)*]}*. (See Reference 3.)
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PROBLEMS
-1 2 0
Find the inverse of A=| 1 1 0| using the Cayley-Hamilton theorem.
2 -1 2
4 ke 15
Finde™if A= [ 0 1].
Find e with A [ 3 ]
0 -3
0 1 -t __ 3t 1/ —t —3t
3 s —
Show that e [ ’ 4] [2( ‘ . “3,) 12(6 Sy _,)]
e ) 2(3e )
Use A= [é g:] to compute e*".
5
Ar _ “'3 1
Compute e™ for A = [ > _2].
;o 1
Find|0 3 2
0 0 3|-
-5 -6 0
Compute e*forA=| 2 2 0
0 0 -3
0 1 0
Finde*withA=[0 0 1|.
1 -3 3
-10 0 -10 0
. At _ 0 -0.7 9 0
Find e for A = 0 —1 07 ol
1 0 0 0
Find a closed-form expression for
0 1 o |
AF=10 0 1
|0 —-0.5 1.5
0 1 0 k ’
Show that | 0 0 1 = (0.367955)*E + (0.665229)F + (0.675317)* G, where
0.1653 —0.9425 1.7085

L

=(1.809116*E + 00

4.916679*E + 00
6.656732*E — 01

—1.467152*E + 01 1.094444*E + 01
—5.398457*E + 00 4.027060*E + 00
—1.986389*E + 00 1.481777*E + 00
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F=|—-5511979*E + 01 2.314211*E + 02 —2.218225*E + 02

[ —8.285841*E + 01 3.478820*E +02 —3.334531*E + 02
| —3.666726*E + 01 1.539479*E + 02 —1.475626*E + 02

G =|5.331067*E + 01 —2.250226*E + 02 2.177954*E + 02

[7.804173*E + 01  —3.332105*E + 02 3.225086*E + 02
| 3.600158*E + 01 —1.519615*E + 02 1.470809*E + 02

iz of 0% 1- G 0
Show that | 0 113 0l = 0 1 01 -
2 -6 5] L (=9 2= -G -1 ()
4 -2 0]
The matrix A=|1 2 0] is known to have eigenvalues A ={6,3 +j, 3 —j} (see Problem
0 06

7.42). Find A, = e*" for T =0.2, and then verify that the eigenvalues of A, satisfy Frobenius’
theorem.

Prove that [e*]” = ¢™, where F= A".

The state of the unforced continuous-time system x = Ax is observed only at the periodic instants
t=0,T,2T,... kT, .... Use the exponent power law [e*”]* = e**” to show that the initial-
condition response can be described by either x(;) = e**” x(0) or x(k + 1) = [A;]*x(0).

Use the modal decomposition of Sec. 8.6 to relate the approximate settling time 7; of a stable

continuous-time system like the one in the previous problem to the eigenvalues of A. Settling is
defined here as being within 2% of the final value.

If A has complex eigenvalues in the previous problem, the imaginary parts w determine the
modal frequencies of oscillation. This system is to be approximated by its states at discrete
periodic times #. (perhaps because of sampling instrumentation or digital computer control).
What sampling time 7" = #; . ; — #, would you recommend? You may wish to reread Problem 2.21
at this point.



Analysis of Continuous-

and Discrete-Time Linear
State Equations

9.7 INTRODUCTION

The description of a physical system by a mathematical model was discussed in Chap-
ter 1. The model often takes the form of a set of coupled differential equations of
various orders. In other cases the original model takes the form of a set of discrete-time
difference equations, as was the case when fitting empirical data with an ARMA
model in Chapter 1. In Chapter 2, linear models were described by input-output
transfer functions. The continuous-time case used Laplace transfer functions and the
discrete-time case used Z-transforms. It was pointed out in Chapter 2 that the discrete-
time model may represent an approximation of a continuous-time system or it may be
necessitated because of sampling sensors or digital controllers. Chapter 3 developed
state variable models for these same classes of physical systems, starting from either
the coupled differential equation (difference equation) model or the Laplace trans-
form (Z-transform) transfer function description. Figure 9.1 presents the modeling
paradigm under discussion. It emphasizes that there are two distinct routes to the
determination of a discrete-time approximate state model for a continuous-time
system. This approximation problem is revisited in Sec. 9.8 because it is needed so
frequently in control applications.

This chapter is devoted to the solution of the resulting vector-matrix state vari-
able equations. It will be assumed here that the control input variable is known. In
later chapters the typical control system design problem, the determination of the
control inputs u(#) which will cause the states x(¢f) and/or outputs y(¢) to behave as
desired, will be discussed. The determination of the control for linear systems will be
considered from two different points of view. In Chapter 13 the controller is designed
to give specified closed-loop poles. This is the pole-placement problem. In Chapter 14
the controller is designed in order to minimize a quadratic cost function. This is a
widely used subclass of optimal control theory. Before considering the controller
design problem, the behavior of the system response for a known input should be

308
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Approximation
Continuous-time model: or sampling Discrete-time model:
differential equations (Chapter 2, Sec. 2.3) difference equations
(e.g., Eq. (3.15)) or (e.g., Eq. (3.19)) or
Transfer functions Transfer functions
(e.g., Eq. (3.23)) (e.g., Eq. (3.25))
Select states Select states
(Chapter 3, Sec. 3.4) (Chapter 3, Sec. 3.4)
\ y
Approximation

Continuous-time or sampling . . .
state equations: (Sec. 9.8) Discrete-time state equations:

x(k + 1) = A(k)x(k) + B(kyu(k)

X = A x + B{nu(1) | (k) = CCox(k) + DCou(k)

¥(8) = C(Ox(r) + D(1)u(r)

Figure 9.1 State variable modeling paradigm.

understood. The major effort is spent in solving the differential or difference equations
for x(¢) or x(k) in terms of u. Then the output y is related to the state x and the input u
in a simple algebraic fashion.

9.2 FIRST-ORDER SCALAR DIFFERENTIAL EQUATIONS

The familiar scalar differential equation
x=a(®x(@®)+b(u(®) (9.1)

is reviewed before considering the nth-order matrix case. When the input u (¢) is zero,
the differential equation for x is said to be homogeneous. In this case,

L ax() or E=a@ar

In the latter form the dependent variable x and the independent variable ¢ are sepa-
rated so that both sides of the equation represent an exact differential and can be
integrated:

x(2)
f dx _ In(x)

x(t 0) X

()

=fta('r)d~r

x(tg) 70

or
lnx(t)—lnx(to)=J:ta('r)d'r

Using Inx (£) — Inx (t,) = In[x (¢)/x (t,)] and the fact that e™* = x gives
x() = x (t)e """ (9.24)
In the particular case where a(¢) = a'is constant, this reduces to

x(f) = x (e~ (9.2b)
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As expected, the initial condition x (z,) must be specified before a unique solution x (¢)
can be determined.

When the nonhomogeneous Eq. (9.1) is considered, a solution can still be ob-
tained by reducing the equation to a form which can be easily integrated. One extra
step is required first. Consider

Lk (0 (0] = k(D) + K Ox ()
If Eq. (9.1) is multiplied by & (¢) and rearranged, the result is
k(0)x () — k(Ha@)x () =k@)b(Du(r)

The left-hand side can be made an exact differential provided a function k() is
selected that satisfies k(f) = —k(f)a(t). This requirement on k(t) represents a first-
order homogeneous equation of the type just considered. Its solution is k(f) =
k(f)e Ji0*™ % Using this, the nonhomogeneous equation for x(t) can be written in
terms of exact differentials,

dlk(®x@)]=k@®b(O)u(t)dt
Carrying out the integration of both sides and solving for x (¢) gives

x(f) = [—I;—((Eto)—)]x(to) + %((—:)1 b(v)u(r)dr

Using the agreed-upon form for k (¢), the general solution becomes

2 () = 1 ¥ x (1) + f ;ef:"@dé b(v)u(s) dr (9.34)
If the coefficient a is constant, this reduces to

x () = e D x (1) + f ;e@-ﬂab(T)u(T)dT (9.3b)

The last result can be derived directly using Laplace transforms and the convolution
theorem (see Problem 9.1). A direct verification that this represents a solution of the
differential equation is given in Problem 9.2.

When b is constant as well as a, Eq. (9.3b) indicates that x () depends only on the
time difference ¢ — #, and so the starting time #, is often replaced by 0 for simplicity.
When both a and b are constant, the system is said to be time-invariant because the
response due to a given input is always the same regardless of the label attached to the
starting time.

9.3 THE CONSTANT COEFFICIENT MATRIX CASE

The homogeneous set of n state equations

x=Ax, x(t) given, A constant (9.9
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has a solution which is completely analogous to the scalar result of equation (9.2b):
x(f) = e x(1)) (9.5)

There are several methods of verifying that this is a solution to the state equations (see
Problems 9.3 and 9.4). First, note that the initial conditions are satisfied. That is,

x(ty ) = e~ WA x(1)) = e x(ty) = x(to)

Differentiating both sides of Eq. (9.5) and using the result of Example 8.3, it is easily
verified that x = Ax(#). Since Eq. (9.5) satisfies the initial conditions and the differen-
tial equation, it represents a unique solution (see page 20 of Reference 1) of Eq. (9.4).

The nonhomogeneous set of state equations is now considered. The system
matrix A is still constant, but B(¢) may be time-varying. Components of B(¢)u(¢) are
assumed to be piecewise continuous to guarantee a unique solution (see page 74 of
Reference 1):

x = Ax + B(H)u(t), x(%) given (9.6)

The technique used in solving the scalar equation is repeated with only minor dimen-
sional modifications. Let K(¢) be an n X n matrix. Premuitiplying Eq. (9.6) by K(¢) and
rearranging gives

K(0)x(r) — K(1)Ax(f) = K(1)B(?)u(?)

Since d[K(f)x(¢)])/dt = Kx + Kx, the left-hand side can be written as an exact (vector)
differential provided K = —K(¢)A. One such matrix is K(f) = ¢ ‘"4 Agreeing that
this is the K matrix to be used, the differential equation can be written

d[K()x(1)] = K()B(?)u(r) dt

Integration gives

K()x(0) - K(w)x(6) = | Ko)B@u(x) dr
The selected form for K always has an inverse, so
() = K OK(@x(n) + || K OK@BEU) dr
or
(1) = e x(t) + et MB(u(r) d 9.7)

This represents the solution for any system equation in the form of Eq. (9.6). Note that
it is composed of a term depending only on the initial state and a convolution integral
involving the input but not the initial state. These two terms are known by various
names such as the homogeneous solution and the particular integral, the force-free
response and the forced response, the zero input response and the zero state response,
etc. ‘
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9.4 SYSTEM MODES AND MODAL DECOMPOSITION |2, 3]

Equation (9.6) is considered again. It is emphasized that the matrix A is constant, but
B(t) may be time-varying. Assume that the n eigenvalues \; and n independent vectors,
either eigenvectors or generalized eigenvectors, have been found for the matrix A.
These vectors are denoted by &, to avoid confusion with the state vector x. Since the set
{&} is linearly independent, it can be used as a basis for the state space 2. Thus at any
given time ¢, the state x(¢) can be expressed as

X() = qi(0)& + (D& + - -+ + qa(1)E, (9.8)

The time variation of x is contained in the expansion coefficients g; since A, and hence
the &, are constant. At any given time ¢, the vector B(r)u(¢) € % and therefore it, too,
can be expanded as

B(Hu(r) = B1(D& + BA)& + - - - + Ba(?)En

In fact, B.(¢) = (r;, B(t)u()), where {r;} is the set of reciprocal basis vectors.
Using the above expansion, Eq. (9.6) becomes

G &+ et G, =q AL+ A+ -
+an§n+Blgl+BZ§2+"'+Bn§n

Assume for the moment that A is normal (see Sec. 5.12, page 184, and Problem 7.28,
page 276) so that all & are eigenvectors rather than generalized eigenvectors. Then
Agi =N\ g,', so that

(ql —Nig— Bl)gl + (qz —Ng— Bz)§2 +oeeet (qn —~ NG — Bn)gn =0
Since the set {&} is linearly independent, this requires that
q-izhiqi-f_Bi fori‘—’1,2,...,n

This demonstrates that when A is constant and has a full set of eigenvectors, the system
is completely described by a set of n uncoupled scalar equations whose solutions are of
the form ;

t
a(0) = e qt) + [ g, (x) dx
to
Of course, g,(t)) = (r;, x(#)). The state vector is given by
X(t) = Q1(t)§1 + Q2(t)§2 toeeet qn(t)gn

The terms in this sum are called the system modes. The general response of a com-
plicated system can be broken down into the sum of » simple modal responses.

It should be recognized that Eq. (9.8) can be written in terms of the modal matrix
M=[¢§...&,] as x=Mq, and as such, represents a change of basis. Using this nota-
tion, Eq. (9.6) is considered again:

x becomes M(, since M is constant

Ax becomes AMq and Bu remains unchanged
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Therefore,
Mq = AMgq + Bu
or
G=M"'AMq+M'Bu=Jq+B,u

where B, = M~' B and the assumption regarding a full set of eigenvectors is dropped.
J is the Jordan canonical form (or the diagonal matrix A in many cases). If the same
change of basis is used in the output equation, then the system is described by the pair
of normal form equations

q=Jq+B,u (9.9)
y=C,q+Du (9.10)

where C, = CM. One advantage of the normal form is that the state equations are as
nearly uncoupled as possible. Each component of q is coupled to at most one other
component because of the nature of the Jordan form matrix J. The solution for Eq.
(9.9) can be written as

q(t) = e q(t) + j e~ B, (t)u(r)dr

o

Relating this to the original state vector gives
t
x(£) = Mq(f) = Me“ I M x(t) + ft Me“ "M B(1)u(t) dt (9.11)
0

The preceding equation used the fact that M™' is the matrix of transposed reciprocal
basis vectors, which means that

q(t) = M ™" x(t)
Comparing Eqs. (9.11) and (9.7) shows that
o= 10A = Me oI M-

a result given earlier in Chapter 8.

Modal decomposition is useful because of the insight it gives regarding the
intrinsic properties of the system. The properties of controllability, observability, sta-
bilizability, and detectability (Chapter 11) are more easily understood and evaluated.
The stability properties (Chapter 10) of the system are also more clearly revealed.
Modal decomposition provides a simple geometrical picture for the motion of the state
vector versus time. By retaining only the dominant modes, a high-order system can be
approximated by a lower-order system.

It should be kept in mind that the modal decomposition technique is useful only if
A, and thus &, \; are constant. It is the invariance of the vector parts of x(¢), that is, the
& terms, that gives value to the method, If the modal matrix were time-varying and had
to be continually reevaluated, most of the advantages of modal decomposition would
be lost.
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EXAMPLE 9.1 A system is described by
ARARIANG
[xz]‘[s s EA RN Rl
y@=[4 1xO
The initial conditions are x(0) = [1I —4]”. Assume that u(f) = 0 and analyze this system.

g __%], the eigenvalues are Ay = —4, A\, = 2.

The eigenvectors are & = [1  —4],"&=[1 2]".

With A = [

. o 111 12 -1
The modal matrix and its inverse are M = [_ 4 2],M = 6[ 4 1].

Any one of several methods gives

Ax_l 2e—4t+4621 _e—4t+e2t]
—8e ¥+ 8e% de M+ 2e*

6
so the homogeneous solution is x(f) =e*x(0) =[e ™ —4e™*]", and the output is y(r) =
de ¥ —de *=0forallt. [ |

EXAMPLE 9.2 Modal decomposition is now applied in an attempt to gain insight into the
unusual result of Example 9.1.
Since the eigenvalues are distinct, M~ AM = A for this system, and Eq. (9.9) becomes

2 =175 Sl Li

l:éh 0 2 gz % “

The initial conditions are q(0) =M~'x(0) =[1 0]”. Equation (9.10) becomes y =[0 6]q. The
state vector x(f) can be written as the sum of two modes,

x(1) = q:(0)e ““[_ﬂ ¥ qz“’)ez'm

The particular initial condition selected here has no component along the direction of mode 2, as
evidenced by ¢»(0) =0. Thus the second mode is not excited, since the input u(#) has been
assumed zero. The output of this system consists only of the second mode contribution, as
evidenced by C,, = [0 6]. Mode 1 contributes nothing to the output and mode 2 is not excited,
so the output remains identically zero. |

9.5 THE TIME-VARYING MATRIX CASE

The time-varying homogeneous state equations
x = A(0)x (9.12)

are considered first. In order that this qualify as a valid state equation, it is required
that there be a unique solution for every x(#,) € 2. This places some restriction on the
kind of time variation allowed on the matrix A. A sufficient condition for the existence
of unique solutions is to require that all elements a;(¢) of A(¢) be continuous. Weaker
conditions may be found in textbooks on differential equations [1, 4].
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Since dim(2) = n, n linearly independent initial vectors x,(¢,) can be found, and
each one defines a unique solution of Eq. (9.12), called x,(¢), t = t,. Define an n X n
matrix U(#) with columns formed by the independent initial condition vectors x;(z)). (A
particular set U(%) = /1, is sometimes used, but that restriction is unnecessary.) The n
solutions corresponding to these initial conditions are used as the columns in forming
an n X n matrix U(¢t) = [x,(t)] x(f) ... x,(¢)]. Any matrix U(z) satisfying

U(r) = A(H)U(r) (9.13)

is called a fundamental solution matrix, provided that |U(t)| # 0. Assuming that the
fundamental solution matrix is available, the solution to Eq. (9.12) with an arbitrary
initial condition vector x(#)) is

x(£) = U()U™(1)x(to) (9.14)

This is easily verified. Checking initial conditions,
x(to) = U(t) U™ (to)x(t0) = L, x(t5) = x(t,)

Checking to see that this solution satisfies the differential equation,
(1) = U(OU (to)x(to) = A()U()U(1)x(to) = A(£)x(¢)

Both the initial conditions and the differential equation are satisfied, so this represents
the unique solution to the homogeneous problem.

The nonhomogeneous time-varying state equation is solved in an analogous man-
ner to the scalar and constant matrix cases. That is, the equation is reduced to exact
differentials so that it can be integrated. Preliminary to this, it is noted that U™!(¢) can
be shown to exist for all £ = ¢, and that

UOU () =1, so that dit UOU(0) = [0]

or
dU du- AU . dU
ar v a [0 or =g =-U"TrU
Therefore,
-1
4B~ AW 9.15)

Note that the matrix K(¢) of Sec. 9.3 is an example of U~'(¢). Premultiplying the
time-varying version of Eq. (9.6) by U™'(¢), postmultiplying Eq. (9.15) by x(¢), and
adding the results gives

- x(t) = U ()B()u(?)

O T g"
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or

21U ()] = U OB(u()

The nonhomogeneous solution is obtained by integrating both sides from ¢, to ¢, that is,

U (Ox() - U (o)x(t0) = | U (B d

or

x(2) = U()U Hto)x(2o) + ft ;U(t)U_l(T)B(T)u(T) dr (9.16)

The result again takes the form of a term depending on the initial state and a convo-
lution integral involving the input function. In fact, the first term is the same homo-
geneous solution given by Eq. (9.14). This result shows the form of the solution, but
it may not be immediately useful. It assumes knowledge of the fundamental solution
matrix U(¢), and actually finding U has not yet been addressed.

9.6 THE TRANSITION MATRIX

The preceding results prompt the definition of an important matrix that can be associ-
ated with any linear system, namely, the transition matrix:

d(1, 1) = U()U'(7) (9.17)

This n X n matrix is a linear transformation or mapping of 2, onto itself. That is, in the
absence of any input u(¢), given the state x() at any time 7, the state at any other time
tis given by the mapping

x(t) = ®(¢t, T)x(7)
The mapping of x(7) into itself requires that
®(t,71)=1, foranyr (9.18)

This is obviously true from Eq. (9.17). Differentiating ®(z, T) with respect to its first
argument ¢ gives

d®(, 1) _dU()

U™l(7) = A(HU(HU'(7)

dt dt
SO
d®( 1) ‘I’Z’ ™) _ A, 7) (9.19)

The set of differential equations (9.19), along with the initial condition, Eq. (9.18), is
often considered as the definition for ®(¢, 7).

Two other important properties of the transition matrix are the semigroup prop-
erty, mentioned in Chapter 3 while defining state,
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(D(tz, to) = (D(tz, f])q’(tl, t()) for any &, 4, t
and the relationship between ® ' and ®:
D (¢, t)) = B(ty,t) for any £, ¢t

Both of these propeties are immediately obvious if the definition of Eq. (9.17) is
considered.

Methods of Computing the Transition Matrix

If the matrix A is constant, then
®(f, 1) =e""P*  (Compare Egs. (9.7) and (9.16).)
Therefore, all the methods of Chapter 8 are applicable for finding ®, including

1. ®(t, 0) =L Y[Is — A]"'}. ®(¢, 1) is then found by replacing ¢ by ¢ — 7, since
®(t, 7) = ®(¢t — 7,0) when A is constant.

2. ®(t, )=l + oA+ -+, ;A" L, where eM T =g+ o\ F oy AL
and, if some eigenvalues are repeated, derivatives of the above expression with
respect to A must be used.

3. ®(¢, 7) = Me’* M, where J is the Jordan form (or the diagonal matrix A), and
M is the modal matrix.

4. ®(t, 7) = 2, eM"IZ()\), where the n X n matrices Z; are defined in Problem 8.22.

i=1
5. ®(t, 1) =T+ At — 1) + % A*(¢ =) +5- A%(¢ =)’ + - This infinite series can

be truncated after a finite number of terms to obtain an approximation for the
transition matrix. See Problem 9.10 for a more efficient computational form of
this series.

A modification of method 1, using signal flow graphs to avoid the matrix
inversion, can also be used. Since ¢;(s) = $L{d;(t, 0)} is the transfer function from the
input to the jth integrator to the output of the ith integrator, that is, the ith state
variable x;, Mason’s gain rule [5] can be used to write the components &;(s) directly.
Inverse Laplace transformations then give the elements of ®(z, 0).

When A(¢) is time-varying, the choices for finding ®(z, 7) are more restricted:

1. Computer solution of ® = A(£)® with ®(t, t) = L. This is expensive in terms of
computer time if the transition matrix is required for all # and 7. It means solving the
matrix differential equation many times, using a large set of different 7 values as initial
times.

2. Let B(t, 7) = ['A({) d{. Unlike the time-varying scalar case, ®(t, 7) # e"¢"
unless B(#, ) and A(f) commute. Unfortunately, they generally do not commute, but
two cases for which they do are when A is constant and when A is diagonal. Whenever
BA = AB, any method may be used for computing ®(z, 1) = e3¢,
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3. Successive approximations may be used to obtain an approximate transition
matrix, as derived in Problem 9.5:

(I)(t, to) = I,, + f A(To) dTO + f A(T()) f OA(Tl) dTl d‘Tg
to to o

+f A(To) ITOA(Tl) F A(t)drydridrg+ -+
to to to

4. In some special cases closed form solutions to the equations may be possible.

In many cases it is necessary or desirable to select aset of discrete time points, #,
such that A(¢) can be approximated by a constant matrix over each interval [#, 1]
Then a set of difference equations can be used to describe the state of the system at
these discrete times. The approximating difference equation is derived in Sec. 9.8 and
Problem 9.10. Solutions of this type of equation are discussed in Sec. 9.9.

9.7 SUMMARY OF CONTINUOUS-TIME LINEAR SYSTEM SOLUTIONS
The most general state space description of a linear system is given by
x() = A(@)x(?) + B(H)u(r)
y(2) = C()x(?) + D(2)u(z)

The form of the solution for x(¢) has been shown to be
x(1) = D(t, to)x(to) + f ®(t, 7)B(T)u(r)d (9.20)
to

Equation (9.20) is the explicit form of the (linear system) transformation
x(2) = g(x(t0), u(t), 10, )

introduced in Chapter 3 when defining state. When the system matrix A is constant,

the transition matrix can always be found in closed form, although it may be tedious to

do so for high-order systems. In the time-varying case numerical solutions or approxi-

mations must be relied upon. When considering certain questions, it is valuable to

know that a solution exists in the stated form, even if it cannot be easily computed.
When the solution for x(#) is used, the expression for the output becomes

y(t) = C(t)P(¢, to)x(ty) + J; ;C(t)q)(t, 7)B(7)u(t) dT + D(t)u(t)

or

t
¥() = COB(, t)x(r0) + | [COB( DBE) +8(t — HD(D)u() dr
o
The term inside the integral is an explicit expression for the weighting matrix W(z, 7)
used in the integral form of the input-output description for the system:

v0) = | Wt () s
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It is seen that this input-output description is only valid when x(%)) = 0, the so-called
zero state response case. This difficulty can be overcome by considering the initial state
part of y(¢) as having arisen because of some input between ¢t = — and ¢t = ¢,. Then

v =| W D@ dr

9.8 DISCRETE-TIME MODELS OF CONTINUOUS-TIME SYSTEMS

A multivariable continuous-time system with  inputs u,(#) and m outputs y,(¢) is con-
sidered. The mathematical model for such a system may originally be given in various
forms, including transfer functions, coupled differential equations in y; variables, or
state variable format. These options correspond to the left side of Figure 9.1. There
are at least three possible reasons for being interested in a discrete-time model of such
a system, as suggested by Figure 9.2.

1. Sampled outputs: Sampling or time-shared sensors may provide output data
only at discrete time points #. A scanning radar gives measurements to a target only
once per scan cycle as the transmitted beam sweeps across the object being tracked. A
digital voltmeter may be monitoring several signals via a multiplexed A/D input
channel. No information is available between the sample times.

2. Sampled inputs: A digital controller calculates new values for the control
inputs only once per control cycle. A zero-order hold converts the digital commands
into a sequence of piecewise constant analog levels. These levels change only at the
discrete time points #.

3. Digital simulation: Even though all the actual system input and output signals
are continuous, a digital simulation may be desired to study the time response. This
inherently involves discrete approximations of all the signals, and hence it is equivalent
to a combination of sampled outputs and inputs. The goal is to pick a stepsize which is
sufficiently small so that the continuous signals u, y, and x can be represented by
piecewise constant approximations within an acceptable error.

Regardless of the reason for using the discrete model, the goal is to make the
sampled values of system variables at times %, 4, ..., #, ... be an acceptably accurate
representation of the corresponding continuous signals. Several methods of obtaining
a discrete Z-transfer function from a continuous Laplace transfer function have been
discussed in Chapter 2. See Problems 2.17 through 2.21 or the references on sampled-
data control systems. The approximation of differential equations by difference

r————"— T —-—-—-— - Srleetutats
Digital controller r Sampling

‘ sensor I

|
Zero order | | Continuous y(0) | oY) |
. hold system | |
|

/ U; (fk)

Computer

Figure 9.2
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equations—or, equivalently, the various numerical integration techniques—is a stan-
dard topic in texts on numerical methods. Thus it is assumed that the top-level left-to-
right transition in our modeling paradigm is understood. Chapter 3 gave details of
finding state variable models from transfer functions and differential or difference
equations. Thus both the continuous and sampled versions of the vertical transitions in
Figure 9.1 have been explained. The last link in Figure 9.1, the lower-level horizontal
transition from continuous-time to discrete-time state equations, is now discussed.
Consider the system

x = A(H)x(¢) + B(Hu(r) with x(t)) known

Assume that {t, t1, . . . , &, . . . } is a set of discrete time points sufficiently close together
so that during any interval [#, # . ;] the input vector u(¢) can be approximated by wu(#).
Note that if the inputs are processed through a zero-order hold as part of a digital
controller, then they are automatically constant over the sampling interval. Equation
(9.20) can be used to write the solution at # . ; by treating x(#) as the initial condition.
T +1

K(tee1) = Dltes 1, 1X(1) + | T B, 7)) drue) 9.21)
Equation (9.21) is an approximating difference equation for the states. Note that the
input u(7) has been replaced by u(z,) and taken out of the integral sign because of its
piecewise constant behavior. If A(¢) and/or B(¢) are also approximately constant over
[#, t+1], further simplifications can be made. For example, if A is (approximately)
constant, then ®(; . 1, &) = e*”, where T = t;,, — t, and where A is the value of A(z,). If
B is (approximately) constant over [t 1, %], then it can be removed from the integral
sign. This leads to a commonly used approximation for the discrete state equations,

x(k +1)=A;x(k) + Bu(k) (9.22)

where A, and B, are used in the discrete model to distinguish them from the continuous
model matrices A and B. The relationships are

A =e*T and B,=[eAr&+1"74B

Even though these results have been referred to as discrete approximations, they are
exact for constant-coefficient systems whose inputs pass through a zero-order hold, as
is common in digital controllers. A further analytical simplification can be made in the
special case where A(#)™! exists by using results from Chapter 8 for integrating the
exponential matrix,

B, = [Ai(t) — TIJA7'(4)B(%)

Although the sample times ¢, are usually equally spaced, this is not required by Eq.
(9.21). Reevaluation of A; and B; would be necessary for each cycle of Eq. (9.22) in the
variable sample-rate case. Problem 9.10 gives an efficient algorithm for evaluating A,
and B, using a truncated infinite series approximation.

EXAMPLE 9.3 Consider the second-order system y + 3y + 2y = u(¢), which has the transfer
function y (s)/u(s) = 1/[s*+3s +2]=1/[(s + 1)(s +2)]. Use this model as the starting point in
the upper left corner of the paradigm of Figure 9.1. Obtain approximate discrete state models by
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going around both transition paths in Figure 9.1. Use T =t —t, = 0.2 seconds. A continu-
ous-state model is selected first. Recall from Chapter 3 that there are many different methods
for picking states, and each method will give a different model. The controllable canonical form
of the state equations is

AR
R R H O
with y (¢) = x(¢). Since A and B are constant and it is assumed that u(¢) will be piecewise constant

over each sample period T, the discrete matrices A; and B, can be calculated as shown before. A
truncated infinite series is used in the numerical evaluation (see Problem 9.10) and gives

) .1484
0.967141 0.148 11]x(k)+[0.016429

x(k +1) = [—0.296821 0.521909 0.148411]“(k)

(9.23)

The sampled output equation is
y(k)y=[1 0Jx(k)

To find the second form of the discrete model, a discrete Z-transfer function is found first. As
discussed in Chapter 2, there are several ways of performing this step, such as approximating
derivatives by forward or backward differences. In this example the exact conversion of the
zero-order hold—continuous system combination gives

G(z)=(1-z"HZ{G(s)/s}
= (0.01643z + 0.013452)/(z* — 1.48905z + 0.548811) (9.249)

The denominator of this transfer function factors into (z — e~ 7)(z — e *"), where T =0.2 has
been used. There are many ways of picking a state model from this transfer function, as
discussed in Chapter 3. Here the observable canonical form is used because then the discrete
state x; will be the same physical variable as was the continuous state x;. To see this, the
simulation diagrams for the two models should be drawn. If this system model represents an
armature-controlled dc motor, for example, x; is the motor shaft angle in both the preceding
continuous- and discrete-state models and in the model from the current approach,

[xl(k+1)]_[ 1.48905 1][x1(k)] [0.01643

xa(k +1)) ~ | -0.548811 0]{x2(k) 0.013452]“(")

y(k)=[1 0]x(k) (9.25)

Equations (9.23) and (9.25) are both valid discrete models of the same system, with the same
sampling rate and same assumptions, yet they are obviously different. Both models have the
same input-output characteristics—namely, those described by the transfer function of Eq.
(9.24). Their internal descriptions differ because different state variables were selected. Many
other forms of the model could also be found. If a close correspondence with the continuous
physical variables is desired, then the first procedure would be preferred. That is, if the continu-
ous variable x,(f) represents the angular velocity of a motor shaft, then x»(k) of Eq. (9.23) is an
approximation of that same variable. In Eq. (9.25) the meaning of x; is totally different and its
time behavior, say for a step input, is completely different. n

The sample rate used in developing a discrete model is often fixed by the sensor
or controller cycle time. However, when a choice is still possible, such as early in the
system design or in the case of digital simulation, a rough order of magnitude guide is
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useful. The piecewise constant approximations used before for A and B may be
adequate if 6 to 10 samples occur per period of the highest-system modal frequency or
per fastest time constant. The input frequency content also must be considered, and
again the factor of 6 to 10 is a suggested starting range. Note that the theoretical lower
limit on sample rate, the Nyquist rate of Sec. 2.5, is only two samples per period. Such
slow sampling is never adequate in real systems. For a finer-tuned answer regarding
sample rate, each case should be analyzed separately. The meaning of “acceptable”
accuracy will be problem- and system-dependent. Furthermore, accuracy versus com-
puter burden is a common design trade-off.

9.9 ANALYSIS OF CONSTANT COEFFICIENT DISCRETE-TIME STATE
EQUATIONS

In this and subsequent sections the subscripts on the matrices A; and B, of the discrete
state models will be dropped for convenience. It is assumed here that A(k) is constant,
so the index k can be omitted. The homogeneous case is first considered:

x(k + 1) = Ax(k)

The initial conditions x(0) are assumed known, so that x(1) = Ax(0). Using this in the
difference equation gives x(2) = Ax(1) = A>x(0). Continuing this process, the solution
at a general time ¢, is expressed in terms of x(0) as

x(k) = A*x(0) (9.26)

The methods of Chapter 8 can be used to determine A* as a general function of k, so
that repeated matrix multiplications are unnecessary.

The nonhomogeneous case is now considered. A sequence of input vectors u(0),
u(1), u(2), ... is given, as well as the initial conditions x(0). Then

x(1) = Ax(0) + B(0)u(0)

x(2) = Ax(1) + B(1)u(1) = A*x(0) + AB(0)u(0) + B(1)u(1)

x(3) = Ax(2) + B(2)u(2) = A’x(0) + A>B(0)u(0) + AB(1)u(1) + B(2)u(2)
At a general time #, this leads to

k-1

x(k) = A*x(0) + 20 AF1TB(u(f) (9.27)

A change in the dummy summation index allows this result to be written in the alter-
native form

x(k) = A*x(0) + >, A*/B(j — Du(j — 1) (9.28)

=1

Either of these forms may be used. The close analogy with the continuous-time system
results is made more apparent by using the definition for the discrete system transition
matrix. Whenever A is constant, the discrete transition matrix is given by

D(k, j) = A
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Then
k
x(k) = ®(k, 0)x(0) + > ®(k, j)B(j — Du(j — 1) (9.29)
j=1
and the only difference from the continuous result is the replacement of the convo-

lution integration by a discrete summation.

9.10 MODAL DECOMPOSITION

The system matrix A is still considered constant, and its eigenvalues and eigenvectors
(or generalized eigenvectors) are \; and &, respectively. Then, if the change of basis
x(k) =Mq(k) isused, where M=[§& & --- §,], the state equations reduce to

Mq(k + 1) = AMq(k) + B(k)u(k)

or

q(k +1) = Jq(k) + B,(k)u(k) (9.30)
and

y(k) = C(k)Mq(k) + D(k)u(k)
or

y(k) = Cu(k)q(k) + D(k)u(k) (9.31)

where J =M AM, B,(k) = M"'B(k), and C,(k) = C(k)M. Just as in the continuous
case, the equations in q are as nearly uncoupled as possible and provide the same
advantages. When A has a full set of eigenvectors, then J will be the diagonal matrix A.
A typical equation for the ¢; components then takes the form

gk +1)=N\ C]i(k) + (r;, B(k)u(k))

The solution is
k
qi(k) = N qi(0) + 2 N, B(j — Du(j — 1))
ji=1
so that

a(k) = A*q(0) + 3 A*MB(j ~ Du(j - 1)

]

Using x(k) = Mq(k) and q(0) =M™'x(0) gives

k
x(k) = MA*M™'x(0) + >, MA*/"M™'B(j — Du(j — 1)
ji=1
This demonstrates again that A*=MA*M™! and provides a means of computing the
transiton matrix, provided A has a full set of eigenvectors.
The modal decomposition technique provides geometrical insight into the sys-
tem’s structure. The behavior of x(k) versus the time index k can be represented as the
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vector sum of the eigenvectors & multiplied by the easily evaluated time-variable
coefficients g;(k). That is,

x(k) = Mq(k) = & qi(k) + & .g2(k) + -+ - + &, ga(k)

9.11 TIME-VARIABLE COEFFICIENTS

When A(k) is a time-variable matrix, then the solution technique of Sec. 9.9 must be
modified slightly. Rather than the powers of A, products of A evaluated at suc-
cessive time points k are obtained. That is, the solution for x(k) at a general time #
becomes

k [k-1
x(k) = A(k — DAk —2) - A(0)x(0) + 2 [H A(p)]B(i —Du(j-1) (9.32)
j=tlp=j
k=1
In Eq. (9.32) the notation H A(p) indicates that the product A(k — 1)A(k —2)...
A(j + DA()). It is understood that if j =k —1, the product is just A(k —1) and if
k—1

j =k, then [] A(p)=1,. The transition matrix for the time-varying case is given by

ok /)= T1 A(p) ©9.33)

When this definition is used, the solution for the time-variable case, Eq. (9.32), is
exactly that given in Eq. (9.29). Evaluation of the transition matrix is much more
cumbersome for the time-variable case, however.

9.12 THE DISCRETE-TIME TRANSITION MATRIX

The discrete-time transition matrix has been defined and used in the previous sections.
The principal properties of this important matrix are summarized here. For the most
part, the same properties hold for both the continuous-time and discrete-time
transition matrices. In particular, the transition matrix ®(k, j) represents the mapping
of the state at time ¢ into the state at time ¢, provided the input sequence u is zero in
that interval. It completely describes the unforced behavior of the state vector.

The semigroup property applies, that is, ®(k, m)®(m, j) = ®(k, j) for any k, m, j
satisfying j =m = k. The identity property holds, that is, ®(k, k) =1, for any time
index k. '

One major difference for the discrete-time transition matrix is that its inverse
need not exist. When the inverse does exist, then the reversed time property holds:

D7(k, j) = ®(j, k)
The inverse will exist if the discrete system is correctly derived as an approximation to

a continuous system, since then A(k) = ®(t.1, %) and D(k, j) = (¢, ¢;) and the con-
tinuous system transition matrix is always nonsingular.
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In Problem 5.66, page 206, the formal adjoint for the discrete-time system
operator was shown to be

w(k — 1) = A7(k)w(k)

Notice the backward time indexing. If the transition matrix for this adjoint system is
defined as @(k, j), then many (but not all) of the relationships existing between ® and
O in the continuous case (Problems 9.16, 9.17, 9.19) will also be true in the discrete
case. These properties are less useful in the discrete case and are not presented.

9.13 SUMMARY OF DISCRETE-TIME LINEAR SYSTEM SOLUTIONS

9.1

The most general solution for the linear discrete-time state Eq. (9.22) is given by Eq.
(9.29), repeated here:

x(k) = ®(k, 0)x(0) + 21 @k, )B(j — Du(j — 1) (9.29)
The output is given by
y(k) = C()@(k, 0)x(0) + 2 C(k)P(k, j)B(j = Du(j = 1) + D(kyu(k)

When the discrete-time system matrix A is constant, then the transition matrix
®(k,j) = A*"7 can be computed by any one of the several methods presented in
Chapter 8. When A(k) is time-varying, no simple method exists for evaluating ® other
than the direct calculation of the products indicated in Eq. (9.33). One hopes a digital
computer would be available for this task.
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ILLUSTRATIVE PROBLEMS

Derivation and Verification of Solutions

Use Laplace transforms to solve X = ax(f) + b(f)u(f), with the initial condition x(0), and a is
constant.
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Transforming gives

sx(s) —x(0) = ax(s) + £ @Ou(®)} or x(s) = x(0)  £b@u@)}

s—a s—a
The inverse transform gives

x(f) = L Me(s)} =x(0)e” + z{w}

s—a
Using the convolution theorem £7'{g1(s)g2(s)} = [} g1(f — 7)g2(7) d on the last term gives

58_1{58{1) (Hu (t)}} _ J:ea(t—'r)b(,r)u () d‘T\

s —d

so that
x(t)=e“x(0)+ j e’ “ " b(tu(r)dr
0

If b is also constant, the system is time-invariant. The solution due to any other initial condition
x(t) at time fy is

x()= e 9x (1) + | O b(u(x)dr
to
Verify that Eq. (9.3a) is the solution of Eq. (9.1).
Verification requires showing that the postulated solution x(¢) satisfies the initial con-
dition and the differential equation.
Initial condition check: With t = t,,

o,
(1) = (eSO Y (1) + [ O (2)u (1) dn
to

Since a(?) is continuous, | rsa(t)dr=0s0 el =1,

Likewise, [;°e”*®%b(t)u(t) d =0 provided that b(f) and u(f) remain finite. Therefore,
X (to) =X (to)

Differential equation check: Differentiating the postulated solution gives
i =4 f a(7)dr |efio @ x (1) + L j F“O% b () (7) dr
dt 10 dt 1 41)
Using the general formula for differentiating an integral term,

g(1) 2(7) .
%U h(, T)d7]= .‘”Aat;_)d-ﬁh(t,g(t))%—h(t,f(t))édé

4§ D)
gives

f}tUt;a(T)dT] = a(¥)
d

0 [ f 0% (pu() dT] = el “O%b(u () + f % [e“©“Ib(ryu(r) dr

=b(O)u(l) +a(f) f , el “O% b (D () dr
so that

x() = a(t)[efio““”*x(to) + f ;efi““""b(T)u(T)dT] +b(Hu(?)

/
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The term in brackets is the postulated solut1on for x(t), so x =a()x(¢) + b()u(f) and the
equation is satisfied.

Solve x = Ax + B(#)u(#) using Laplace transforms.

Let the vector B(f)u(#) = f(¢) for convenience. sx(s) — x(0) = Ax(s) + f(s) or [sI — Alx(s) =
x(0) + f(s) so that x(s) = [sI — A] 7' x(0) + [sI — A] ' f(s). Taking the inverse transform gives
x() =L Y[s1-A]” l}x(O) + ¥~ 1{[sI A] '} £(0), where g(#) * f(#) is used to indicate convolu-
tion. Since £ Y{[sI — A] '} =e*

X(()=ex(0) + [ XM dr=eMx(0) + [ A OB(Iu(r) dr
Verify that Eq. (9.7) is the solution of Eq. (9.6).

Setting t = £, gives x(t) = e x(t,) = x(t,), assuming that B(f)u(f) remains finite, i.e., con-
tains no impulse functions.

Differentiating Eq. (9.7) gives

x = Ae U 9O x(t,) + B(Hu(t) + AJ e* "I B(t)u(r)dr

L40]

Using Eq. (9.7) reduces this to x = Ax(¢) + B(¢)u(?), indicating that Eq. (9.7) does satisfy the
differential equation.

Use a sequence of approximations for the solution of x = A(£)x(f), x(%) given, and derive an
approximation for the transition matrix ®(z, t,).

As the zeroth approximation, let xX”(f) = x(#). Then use the differential equation to find
the next approximation x (¢) by solving X () = A()x (¢). The solution is

xD(f) = x(t) + J XV (1) dt= [I + j A(7o) d'ro]x(to)
Let x® = A()x™(¢). Then
x(0) = x(r0) + | () dr
= x(ts) + [ f A(ro)dro+ f A(7o) f N d»ro]x(to)
= [I +J; A(To) dT() +J; A(TO)J: A(Tl) d'Tl dTo]X(to)
Continuing this procedure with x** V() = A(£)x¥(¢) leads to
t t T0
x(f) = [I + J‘ A(7o) d7o +f A(70)J A(T1)dTid7o
+ f A(70) f A(r) f A(ry) drydrrdro+ - - - ]x(to)

Truncating the series in the brackets after a finite number of terms gives an approximation for
D(1, to).

Miscellaneous Applications

The satellite of Problem 3.16 is considered. If the two input torques are programmed to give
ui(t) = (111,) T,(¢) = C sinat, and ux(t) = (1/,) T.(¢t) = C cosat, find the resultant time history of
the state x(f) = [w, w.]”. Use arbitrary initial conditions at time ¢ = 0.
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The state equations are x = [((Jl —%]x + [Z;Eg] From Problem 8.17, the transition ma-

cos{lt —sin Qt] d
sin (¢ cos Ot

x(f) = B(t, 0)x(0) + fo ®(t, Pu(r)dr

trix is ®(¢, 0) = [

The transition matrix properties can be used to write ®(¢, 7) = ®(¢, 0)®(0,7) and ®(0,7) =
®(—1,0), so

_ I cos Qr sin ar + sin Q1 cosar
x(1) = @(t, 0) {X(O) + CJ;[—sin Q7 sinat + cos (7 cos orr] dT}

The trigonometric identities cos a sin b + sin a cos b = sin(a + b) and cos a cos b —sin a sin
b = cos(a + b) are used inside the integral to give

x(f) = ®(t, O){x(O) + 5%;[1 ;rcl?;z(? :)(:)t]}

The input to the circuit of Figure 9.3 is an ideal current source u(f). The output (and also the
state) is the voltage across the capacitor x (¢). If

i

Figure 9.3

JRC 10 —e —tf/li’Cx0
R sinh(z/RC)

and if x (0) = xo, find the output x (¢, at some final time ¢ = ¢;.
The state equation is ¥ = —x/RC + u/C. The solution is

u(t)=e

t
x(f)=e "Rxo + lf e TRy (1) dr
Clo
Letting u(f) = Ke"* for simplicity gives

- K _ ‘o
x()=e x/chO+Ee t/RCJ’ e27RC go
0

— ,~t/RC K —t/RC{R_C 2t/RC __ } — ,—tRC . (_t_)
e Xotoe ) [e 1} =e X0+ KR sinh RC
Using K =[10 — e "% x,)/[R sinh(#;/RC)] and evaluating at ¢ = ; gives x () = 10.
Although not proven here, the specified input u (¢) is the one which charges the capacitor
from x (0) = x, to x (¢;) = 10 while minimizing the energy dissipated in R.

Xy -2 =2 0llx 1 0 ()
A system is described by | X[ =] 0 0 1x{+10 1 [ 1 (t)]
X3 0 -3 —4lilxs 1 1%

(a) Find the change of variables x = Mq which uncouples this system.

() Ifx(0)=[10 5 2]"andifu()=[t 1], find x(¢).

(a) The modal matrix M must be found. |A —I\| = —(\ + 1)(A + 2)(\ + 3), so the eigenvalues
are \;,= —1,-2, -3:



Chap.9 Ilustrative Problems 329

NM+H4AN+3 20+ 4) -2
Adj[A-I\]= 0 AN+2)(A+4) 2+
0 =3(2+XN)  AN2+)N)
From this, the eigenvectorsare & =[-2 1 -1],, &=[1 0 0], and&=[-2 -1 37,
(2 1 -2
sothatx=| 1 0 —1|qis the decoupling transformation. Using this substitution along
-1 0 3
0 3 1
withM™'=|1 4 2|[leadsto
0 3 3

QI NI=

-1 0 0 2
a=| 0 -2 olg+ 6[“1]
0 0 -3 T L

(b) The three uncoupled equations and their solutions are
Gi=—q+3t+2>q) =e"q0) +3 +H1-e7)
G2=—2q2+3t +6>q()=e ¥ q(0) +3t +3(1 —e™ %)
3= 3@+ +1>q()=e ¥ qs(0) + 5t + (1 —e ™)
Since q(0) =M™'x(0) =[Z 34 3], and since x(f) = Mq(¢), the solution is

—14e-'+(127)e-2' (e >+ @ —%
x() = ety
I+( ) 3t 3

9.9 The motor-generator system of Problem 3.13, page 114, has been driving the load at a con-
stant speed ) =100 rad/sec for some time. At time ¢ =0 the input voltage e{t) is suddenly
removed, that is, e{f) =0 for ¢t =0. Find the resulting motion of the system. Assume the
linear relation e, = K, i and use the parameter values b/J =1,K,./J =2,K,/(Lg+ L,) =2.5,
(Rg+R,)/I(Lg+ L,,)=T7,Ke/(Lg+ L) =4,Rs/Ly=5,Ls= 1.

121 -1 2 0 X1 0
The state equa’uons are | X2 |=|—2.5 =7 4{x2|+|0[u(®).
X3 0 0 -5 X3 1

The desired solution is x(f) = ®(¢, 0)x(0) = e*'x(0). The initial value of Q = x,(0) is 100.
The initial values of the other state variables can be determined from the fact that the system
was initially in steady-state, =0 and T(0) = bQ(0) = K,».i,x(0). From this, %2(0) = i,,(0) =
(b/K,)Q0) = (bI)(J/K,,)Q0) =50. Also di,/dt =0 for t =<0, so e, =(R; + R,)i,, at
t = 0. Therefore, €,(0) = €,,(0) + (R + R.»)i(0) and i{0) = x5(0) = eg(O)/K x3(0) [K.. Q(0) +
(R + Rm)zm(O)]/K = 2.5(100)/4 + 7(50)/4 = 150 or x(0) =[100 50 150]".

To find ®(¢, 0), the eigenvalues of A are found.

2
-\=17

)\1 = _2, K2= —'5, )\3= '_6
Using the Cayley-Hamilton remainder technique,

PPN ES |
JA—I\| = (—)\ 5){ s

=(=A=5\+2)(A+6);

Og— 01— 4o, 20, — 160, 8a,
eA' = aol + (!1A + a2A2 = —2.5a1 + 20(!2 Qo — 7(!1 + 44(!2 4(11 - 48@2
0 0 Olp — 5(!1 + 25(12
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where

e~ = 0 — 20, + 4o oo = (5/2)e ¥ — de > + (5/2)e
e = Qo — Sy + 25(12 ? ay = (11/12)6 - (8/3)6 o (7/4)6 o
e ¥ =a—6a; +3602) lay=(1/12)e > ~ (1/3)e > + (1/4)e ™

Using these gives

5 - - [ - 1 - [ - 8 — —
2e 2’—%e 61 : le 2t_§e 6t } Ze 2t_§e 5t+2e 6t
5 - S S 5 — 1 - 16 — -6
(I)(t,O)-—- -3¢ 2t+%e Gt}““ze 2t+ze 6ti_§e 2t+?e St__Se 13
—5t
0 : 0 | e

Then x(f) = ®(¢, 0)x(0); and since Q) =y =[1 0 O0]x(¥), () = 250e ~* ~ 400e ~> + 250e ~*.
A system is described by x = Ax + Bu, with A and B constant. Develop an efficient computa-
tional procedure for finding x(7), assuming u(¢) is constant over [0, T'].

Setting . + 1 = T and . = 0 in Eq. (9.21) gives the form of x(T)

T
x(t) = (T, 0)x(0) + fo ®(T, 7) d7Bu
It is known that ®(7, 0) = e*” and the series form is
®(T, 0) = 1+ AT + (AT)?2 + (ATY/3! + (AT)/4! + - - -

=TI+ AT{I+AT2 + (AT)%3! + (AT)*/4! + - - -}

=T+ AT{I+ATR[I+ AT31 + ATAI + - -- 1+ AT/N)]}

This nested form for ®(7, 0) does not require the direct computation of increasingly high
powers of AT and therefore avoids many overflow and underflow problems. How many terms
need to be retained depends upon |Amax| T, Where |A\ma is the largest magnitude eigenvalue of A.
This test is not normally used, however. On the Nth step in the nested sequence, the first
neglected term would be (AT)*[(N)(N + 1)], and this should be acceptably small compared
with AT/N.

The previous problem gave a result for B; which depends on the existence of A™*. That is
too restrictive in many cases, so another form which is better suited to machine computation is
sought. Clearly,

T (4] T
B1=j er T VdrB = -—[ eAgng-——f et diB
0 0

T
Direct term-by-term integration of the exponential matrix gives
B, ={IT + AT?2+ A*T°/3! +---}B
=T{I+AT/2+ (AT)*/3!+--- 1B

Note that the series inside { } is the same as the one which appeared in the calculation of
®(T, 0). Therefore, the same nested form is possible. Define this part of the solution as W. That
is,

W =1+ AT2[1+AT/3(1+AT/A(I+ ...(I1+ AT/N)))]

This partial result is then used to obtain the desired approximations
B, =TVB
O=1+ATY¥

These are widely used in obtaining discrete approximations to continuous-time systems.
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A second-order system is described by ¥ + 2xX + 4x = u(#). Using x = x; and x, = X as states, find
the state equations and evaluate the exact transition matrix ®(7, 0) and input matrix B, using
the results of Sec. 9.8 and Chapter 8 with 7 = 0.2. Then use results of Problem 9.10 to obtain
approximate numerical results. Compare these.

The state equation is

<[4 e[

The exact state transition matrix is found to be

d(7T, 0) = [C_ZSS C ’i S ], where C = e~ cos(V3T) and § = e 7 sin(V3T)/V3

Using T'=0.2 gives ® = [_823(2)8 8%882} Since A is nonsingular,

B, =A"'[®(T, 0) - I]B = [0-017}

0.160

The truncated series defined as ¥ in Problem 9.10 is now used. Note that for an Nth order
approximation in 7 for ® and By, an (N — 1)st order approximation in W is used.

Highest power of T v D(T, 0) B,
| (1 0 [ 1 0.2] K ]

0 1 | —0.8 0.6 0.2

5 1 01 [ 0.92 0.16] ‘0.02}

| -0.4 0.8 | —0.64 0.60 0.16
3 [ 0.9733 0.0867] [ 0.931 0.160] ‘0.017}

| —0.3467 0.8 | —0.64 0.611 [ 0.160

Depending on the application, the second- or third-order approximation may suffice. The
first-order approximation probably would not, because very large differences between (1)* and
(0.93)* will quickly appear in ®(k, 0) as the approximate difference equations are solved over k
time steps. ’

Find a discrete-time approximate model for the system of Figure 9.4. Use tx+1 — tx = At =1 and
approximate u; and u, as piecewise constant functions.

u;

u, > K Xy + > l X2 .
s+1 s Figure 9.4
The continuous-time state equations are
s ] B R A
)22 1 0 X2 0 -1 Uy
and the transition matrix is . s 0
1 s+1

D, 0)=er =L Y[sI- A]“{}, D(s) =
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or

@ 0) = [(1 ey (1)]

The state at time #, +1 = f, + At can be written as

X(te+1) = Pt + 1, t)x(t) + f: ) Plter.7) dT[lg “(1)] [5;83]

But

-1
(I)(tk+ 1,tk) = (D(tk+1 - tkao) = [1 -e— e ! (l):l = [8233 (1)]

and

T +1 -1
(I)(tk-f- 15 T) dT = |:1 e——el (i)] = [g'ggg ?:I
17 .

The approximating difference equation is

(i) < [0368 9] zea] £ [0632K _O[ut)]

Chap.9

The system of Figure 9.4 represents a simple model of a production and inventory control
system. The input u,(¢) represents the scheduled production rate, x;(f) represents the actual
production rate, u,(f) represents the sales rate, and x,(¢) represents the current inventory level.
Suppose that the production schedule is selected as u:(f) = ¢ — x,(f), where c is the desired
inventory level. This is a feedback control policy. The system is originally in equilibrium with
x1(0) equal to the sales rate and x,(0) = c. At time ¢ = 0 the sales rate suddenly increases by 10%.

That is, u(£) = 1.1x,(0) for ¢ = 0. Find the resulting system response. Use K = 3.
The simulation diagram for the feedback system is shown in Figure 9.5.

uy(t)

Figure 9.5

The state equations are x = [—i -Ig]x+ [Ig _0] [; ] The eigenvalues are deter-

1

2

mined from |A — I\ =\?+ A + K = 0so that, with K =, \; = —jand \, = —3

The transition matrix is

N Qo ~ —3a1/16]
D, 0)=e =aoI+0L1A=[ o -

Using the eigenvalues to solve for o, and a; gives

1 - 3 - 3, — _
—Ze t/4+_2_e 3t/4 —§(e t/4__e 31/4)]

@1, 0) = [2(8 —th _ g —3:/4) %e ~t/4 _ %e ~31/4

4
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The solution is

x(1) = d(s, 0)[x1£0)] n fotq)(t, ) dTB[ 1'1;(0)}

Using ®(t, 7) = ®(¢ — 7,0), carrying out the integration, and simplifying give
x1(f) = x:1(0){1.1 — (4.32)e " + (4.1/2)e >}
x:(£) = ¢ + x,(0){—17.6/3 + 8.6¢ ™" — (8.2/3)e "%}

Additional Properties of the Transition Matrix

Assume that the eigenvectors of the constant system matrix A form a basis and show that
D(1, 1p) = > ettt £)(r;, where \;, &, and r; are eigenvalues, eigenvectors, and reciprocal basis

vectors of Zl, respectively.
The modal decomposition developed in Sec. 9.4 led to the expression

X0 = @06+ 60+ + 006 = 3 ()8

For the homogeneous system x = Ax,

40) = €M~V g (1) = e, (i)
so that

x(t) = i eNCT O, x(t))Es = [i ehtmo §i)(l'i]x(t0)

Comparing this with the known solution x(f) = ®(t, 1,)x(%) gives the desired result.

For fixed times #, and ¢, the transition matrix is a transformation of the state space % onto itself.
A linear transformation which possesses a full set of n linearly independent eigenvectors has a
spectral representation

D(t, to) = g Yi M)V

where v;, n); are the eigenvalues and eigenvectors of ®(¢, t,) and v; are reciprocal to ;. This is the
result of Eq. (7.5), page 263, with notational changes. Comparing this with the previous
problem, draw conclusions about the relationships between eigenvalues and eigenvectors of A
and of ®(, ).

The indicated comparison suggests the following relationship between eigenvalues, a
result known as Frobenius’ theorem. If A, X, . .., A, are eigenvalues of the n X n matrix A, and
if f(x) is a function which is analytic inside a circle in the complex plane which contains all the \;,
then f(\1),f(\2), . ..,f(\,) are the eigenvalues of the matrix function f(A). In the present case
the eigenvalues of ®(¢, t)) =e*“~ ™ are vy, = ¢¢~ . Furthermore, it can be verified that the
eigenvectors of A and of ®(1, ) are the same, that is, & = ;.

The Adjoint Equations

The formal adjoint of the differential equation x = Ax is y = —A”y (see Problem 5.30). Let the
transition matrix for the adjoint equation be @(t, ). Show that O(z, 7) = ®’(r, £), where ®(t, 7)
is the transition matrix for the equation in x.
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Since (¢, 7) is the transition matrix, it satisfies
2104, 7)] = -AT0(, 1),  Or,7) =1

The desired result is established by showing that ®”(7, f) satisfies the same differential equation
and initial conditions, since these equations define a unique solution. Since ®(r, ) = ®~'(¢, 1),

L@@, 0) = Lo, ] = -7, D LD D@ )

But d%[d’(t, 7)] = A®(t, 7). Therefore, ‘% [®(7,1) = —®7'(t, T)A = —®(7, 1)A. Transposing shows
that g—t[fb('r, )]" = —A7[®(1,1)]". This, plus the fact that ®(r, 7) = I, establishes that

O, 1) =D(7,1)

It follows that the adjoint transition matrix can be expressed in terms of the fundamental matrix
U(f) as ®7(¢, 1) = U(T)U'(¢).

Suppose a simulation of the system x = Ax is available, as well as a simulation of the adjoint
system y = —A”y. Interpret the meaning of the vector functions x(¢) and y(¢) which are obtained
if the initial conditions used are x(tp) =[1 0 0 --- 0] andy(t)=[1 0 0 --- 0]

Since the solutions are x(¢) = ®(t, £o)x(f) and y(£) = O(t, £)y(%), the first simulation gener-
ates the first column of ®(, t,) for all # = £, and the second generates the first column of @(z, #,)
for all t = ,. But the first column of O(s, t,) equals the first row of ®(t,, 1).

The adjoint system simulation provides a means of reversing the roles of #, and ¢. In a
sense, a reversed time impulse response for the original system can be generated. The complete
matrix ®(#, t) can be obtained, one row at a time, by modifying the initial conditions for the
adjoint simulation. This property has several uses (see pages 379-394 of Reference 2).

State Equations as Linear Transformations

Consider the operator si(x) = [I(d/dt) — A]x as a transformation on infinite dimensional func-
tion spaces. Discuss the form of the solution for s{(x) = Bu(¢) given by Eq. (9.20) in terms of the
results of Problem 6.22, page 240.

Problem 6.22 indicates that if x; is a nonzero solution of the homogeneous equation
A(x) =0, then the most general solution of s(x)=Bu takes the form x + x;, where x is a
solution to the nonhomogeneous equation. This is precisely the form of Eq. (9.20), with
x; = D(t, 1))x(t,) being the homogeneous solution. A unique solution is not possible without
specifying initial conditions.
Discuss the implications of Problem 6.23, page 240, in the context of linear state equations.

Problem 6.23 indicates that s{(x) = Bu will have a solution for all Bu(¢) if and only if the
only solution to {*(y) = 0 is the trivial solution. This poses an apparent contradiction, since
nontrivial solutions to the adjoint equation have been discussed in Problem 9.17 and since
solutions to #(x) = Bu(f) have been explicitly displayed in Eq. (9.20). The difficulty arises
because of the differences between the adjoint transformation of Chapters 5 and 6 and the
formal adjoint as used in this chapter.

A heuristic reconciliation is provided in a nonrigorous, formal manner. In Problem 5.30,
page 199, it is shown that

(30, A () = YT )x(1) ~ Y (tox(to) ~ (2 + Ay, x(0))

The formal adjoint was defined by dropping the two boundary terms. These two terms auto-
matically cancel if u(¢) = 0 (see Problem 5.31). Generally, they are nonzero and can be included
as follows:
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y' (t)x(ty) — y" (to)x(t0) — j [ +y'(r )A]X(T) dt
7 dy'(v
- [—y—df—) - YA+ Y680~ ) - ¥ B - m)}xm dx
The term in brackets is the transpose of the adjoint transformation, that is,
d

A*(¥) = ~5r ~ ATY(O) + ()3~ ) = y()3(t ~ to) (1)
Then treating the two impulse terms as forcing terms, the solution of Eq. (1) is

() = O 0)y(1) + | O DY)~ 7) ~ (1o — )]
But

f o, 1)y(t)d(tr—7)dT=0 forall t <t

and

f t O, 7)y(t)d(7 — to) dv = O, t,)y(t)

because of the sifting property of the impulse function. Therefore, the solution is y(¢) = 0 for all
t <t. At the final time an identity is obtained, y(#) = y(#;). The solution y(¢) is therefore zero for
all  except possibly at the single time ¢ = #.. Such a function will be considered 0, since its norm is
zero (the Hilbert inner product norm, for example). Thus the only solution to *(y) = 0 is the
trivial solution, and the results of Problem 6.23 are still true and do not lead to a contradiction.

Solution of Linear Discrete-Time State Equations

Solve for x(k) if
xk +1)= %xl(k) "'%xz(k) + x3(k) x3(k +1) = %x3(k)
Xz(k + 1) = %z(k) + ZX3(k) X(O) = [2 4 6]T ;
111
2 2
When put in matrix form x(k + 1) = Ax(k), the system matrix is A=[0 5 2/|. The
0 0 ;
solution for this homogeneous system is x(k) = A*x(0). The matrix A* was found in Problem

8.31, page 306. Using that result,
(k) =2()“ — 4k () + 6k (2 - K)G)*
xa(k) = 4G)* + 6k (5)*

x3(k) = 6()"
Write the solution for the homogeneous discrete-time system

FEB-al slz@) o[

2
in the modal expansion form x(k) = 2, {r;, x(0))\* &..
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115 1 1
ﬁ[l 5] has as its eigenvalues \; =3,
£=[1 1)"and&=[-1 1]". ThusM= H ]and M= [

The rows of M™ gwe the reciprocal basis vectors r; =
(r1,x(0)) =3, (r,, x(0)) = —3, the solution is

-0

Consider the discrete-time system

0
X2(k + 1) - % i X2(k) 1 uz(k)
y (k) = x1(k) + 2x2(k)

Find y (k) if x1(0) = —1, x(0) = 3. The input u,(k) is obtained by sampling the ramp function ¢ at
times to=0,t, =1, ..., 4% = k, and u,(k) is obtained by sampling e ™’ at the same set of discrete
times. ’

The transition matrix is first found:

The matrix A= =3. The eigenvectors are

1
1.

517, ro=[—3 3]". Since

NlH’—"—‘

A —(XoI+(XlA [

1
(!0+2(11 g1
1
8(11 a0+5a1

The eigenvalues are required. |A — IN| = \* — X\ + & so A\, = 3, \> =3. Solving for o, and a,
Q= a0+ (%>a1} ﬁ{ 4G - Q)= o
G = a0t Q) 71O - O = 0
Thus
_ REGRI R O (%)k]]
. 0) [%[(%)" -1 1O+ G
Using this and the fact that ®(k, j) = A* ~/ gives
_6r-26r ] [ 4O+ YO - (%)""']][f - 1]
x(k) [(%)" +20r] ,21 HOF = @F ) HE T+ @ ler
The outputis y (k) =[1 2]x(k).

Express the following discrete-time state equations in normal form using the modal matrix in a
change of basis:

1k +1 ] _% % 0 1(k 3 1
x(k+1)] |3 ; -1 1

o] _[-1 3 170k
AR ;2(")}

When the equations are expressed as in Eqgs. (9.30) and (9.31), they are said to be in
normal form. To put the equations in this form, the eigenvalues and eigenvectors must be
determined:

A-IN=(1-NG-N(—3-))
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The eigenvectorsare &, =[1 1 —-1], &=[1 0 1], &=[0 0 1]% sothat

| 110 0 10
M=| 1 0 0| and M'=| 1 -1 0
-1 1 1 -1 21
10 O 20
A=M'AM=(0 3 0|, B.,=M!'B=|1 1|,
00 -3 00
_ 11 0 1
Cn—CM—[Oll]

Collecting and using these results in q(k + 1) = Aq(k) + B,u(k) and y(k) = C, q(k) gives the
normal form equations.

9.24 Find an expression for y(k), valid for all time ¢, for the system of Problem 9.23. Use x(0) =
1 2 1) wk)=[k -1-k]"
Using the normal form equations,

q0)=M"'x(0)=[2 -1 4]

0(k) = (0 + 2 2m(j - 1) =2+k(k ~ 1)

4:(k) = @ @:(0) + 2 O (i ~ 1) +ualj = D] = —(%)"[1 t2 2!]
q3(k) = (=3)" 4:(0) = 4(—3)"

Using the output equation y(k) = C, q(k) yields
yi(k) = qi(k) + gs(k) =2+ k(k — 1) + 4(—3)"

k
ya(k) = q2(k) + gs(k) = (—%)"[1 + 2 2’] +4(—3)"
j=1
9.25 Consider a homogeneous discrete-time system described by x(k + 1) = Ax(k).

(a) Show that if a nontrivial steady-state (constant) solution is to exist, the matrix A must have
unity as an eigenvalue.

(b) Construct a2 X 2 nondiagonal, symmetric matrix with this property and find the steady-state
solution.

(a) A constant steady-state solution implies that for k sufficiently large, x(k + 1) = x(k). Call
this solution x.. Then the difference equation requires that x. = Ax.. But this is just the
eigenvalue equation Ax, = \x., with A = 1.

(b) LetA= [Z“ alz]. Then

12 Qx
|A —IN =N = (a1 + az)\ + (a1 a2 — a%) =0

The roots are

A2 = %(011 +ax) * \/[%(au + a2)]* — (an a2 — ay)

There are many possible solutions..One is obtained by arbitrarily setting a,; = a» = 2.

Then N, =2+V4 -4+ at. If a root is to be A =1, then ap, = 1. Using A = [% 5], the
steady-state solution x. is just the eigenvector associated with the root A = 1:
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N

The steady-state solution will be proportional to x, = [_ﬂ

Assume that a system is described by Eqgs. (3.13) and (3.14) with A, B, C, and D constant. Use
Z -transforms to find the transforms of x(k) and y(k). Then use the inverse Z-transform to find
x(k). The initial condition x(0) is known and the input u(k) is zero for £ <0.

The Z-transform introduced in Chapters 1 and 2 applies to vector-matrix equations on an
obvious component-by-component basis. If Z {x(k)} = X(2), then Z{x(k + 1)} = zX(z) — zx(0).
Note the z multiplier on x(0), which deviates from the analogy expected from the Laplace
transform of a derivative term. With this result and the linearity of the Z-transform operator,
Eq. (3.13) gives

zX(z) — zx(0) = AX(z) + BU(z2)

2>\—1]
-1 2-\

Adj[A —I\]| = 1-—[

or
X(z) =[zI - A]7{BU(z) + zx(0)} (1)

Since the form of the initial condition response is known from earlier time-domain analysis, it is
noted that

@k, 0) = Z Y[zI-A] "' 2}
Using this definition allows the forcing function term to be written as
[z1-A]'BU(2) = [z1 — A] ' zz 7' BU(2) = Z{®(k, 0)}Z{Bu(k — 1)}
Then the convolution theorem of Z-transforms gives the inverse as
k
Z{[z1- A]'BU(z)} = X ®(k, j)Bu(j — 1)
j=0

Since u(j — 1) = 0 for j <0, the lower summation limit is changed to j = 1. The solution for x(k)
is then exactly Eq. (9.29). Note that the assumption that B was constant is unnecessary. From the
transform of Eq. (3.14),

Y(z) = CX(z) + DU(2) )
Combined with (1) this gives
Y(z) ={C[zI - A]"'B + D}U(2) + [zI — A] " zx(0) €))

Note that a useful formula for computing input-output transfer functions has been found,
namely,

T(z) =C[zI-A]"'B+D

Finally, the sequence y(k) could be computed by inverse transforming (3) or by first finding x(k)
as the inverse transform of () and then using that result in Eq. (3.14).

Approximation of a Continuous-Time System

A simple scalar system is described by x = —x + u, x(0) = 10.

(@) Solve for x(¢) if u(¢) =e".

(b) Derive a discrete approximation for the above system, using # + 1 — #& = 1. Solve this discrete
system and compare the results with the continuous solution.

(a) By inspection, &(f, ) =e ¢~ 7, s0

x(t)=10e"+L =M edr=10e " +sinh¢
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(b) Using the scalar transition matrix, the relation between x (k + 1) and x (k) is

e +1

x(k+1)=e_1x(k)+f e 1 Dy () dr

tk
Assuming u (1) is constant over the interval [, % + 1] and carrying out the integration gives
x(k+1)=e'x(k)+[1—e "u(k)=0.368x (k) + 0.632u (k)
The solution for the discrete system is
k
x (k) = 10(0.368)* + 2, (0.368)* ~/[0.632u(j — 1)]
j=1

The initial condition term is the same for both the continuous and the discrete cases. A
comparison of the forced response for the first five sampling periods is given in Table 9.1. The
two separate approximations of Figure 9.6 are used for u (k).

TABLE 9.1
t=k=0lt=k=1|t=k=2t=k=3|t=k=4
Continuous result:
sinh ¢ 0 1.1752 3.6269 10.018 27.290
Discrete result: input
k (a) 0 0.632 1.951 5.388 14.677
21 (0.368)%~/[0.632u(j — 1)]
= input
b) 0 1.175 3.626 10.016 27.286
$u(r) b u (1)
u(2)
u(2) k k+1
u(k) = ek u(l) w(k) =1
u(l) o 2
u
u(0) )
1 1 1 > 1 1 1 >
0 I 2 3 ! 0 1 2 3 !
Approximation (a) Approximation (b)
Figure 9.6

The accuracy of the discrete approximation depends on how closely the piecewise con-
stant discrete input matches the continuous input. The accuracy can be good or poor as demon-
strated in the example, but improves as the discrete step-size is decreased.

Apply the method of Problem 9.10 to the observable canonical form of the continuous-time
system in Example 3.8 to obtain discrete state equations.

9.28
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To facilitate comparisons, 7 = 0.2 is again used. Keeping fifth-order terms leads to

0.0056  0.0793 0.1100 0.0136
®(T, 0)=| —2.1224  0.7194 0.1779 |, B, =|0.2347
—1.581 —0.2191 0.9823 0.5797 |

The output matrixisstil C=[1 0 0],and D=0.

PROBLEMS

A system has two inputs u = [u; u,]", and two outputs y =[y; y,]". The input-output equa-
tions are y; + 3(y; + y2) = u; and y, + 4y, + 3y> = u,. Find y(¢) if y1(0) =1, y2(0) =2, y,(0) =1,
and u(?) = 0.

A system is described by the coupled input-output equations y; +2(y: +y,) = u; and y, +

4}}2 + 3y2 = Us. Find the voutput y(t) = [yl(t) yz(t)]T if yl(O) = 1,y2(0) = 2,_)72(0) = 0, ul(t) = O,
ux(t) = 3(¢) (i.e., an impulse at ¢ = 0).

A system is described by [xl] = [:? (1)] [xl] + B]u(t). If x(0) =[10 1]7 and if u(f) =0, find
x(1). 2 2
If the input to the system of the previous problem is u () = e%, what is x(£)?

The wobbling satellite of Problems 3.16, page 117, and 9.6, page 327, has the initial state
x(0) = [w,(0) ®.(0)]". If the input torques are programmed as

ur(1) = ~3[,(0) cos 1 — .(0) sin 0]
i
and
u(t) = —%—[wy(O) sin Q¢ + w,(0) cos Q]
f
find the state (wobble) x at time ¢ = ;.
Show that the approximate numerical solution of
x = Ax + Bu ()
at time 7, expressed as
x(T) =x(0) + x(0)T + %(0)T?/2 + X(0)T°/3! + - - -

leads to exactly the same series representation for ®(7, 0) and B, as found in Problem 9.10.
Hint: Repeatedly use Eq. (7) and its derivatives to express all derivatives of x in terms of x and u.
Treat A, B, and u as constants. Notice that the first-order approximation is just rectangular
integration of x, the second-order approximation is trapezoidal integration of x, etc.

Find the transition matrix ®(¢, 0) for the feedback system of Problem 9.13 if K is increased to 2.5

Let A be a constant n X n matrix with n linearly independent eigenvectors. Use the Cayley-
Hamilton remainder form for ®(, t,) = e*“ ™" to verify the results stated in Problem 9.15. That
is, show that ®(¢, £)&; = ™~ &, where \; and & are eigenvalues and eigenvectors of A.

Solve the following homogeneous difference equations:
x1(k + 1) = x1(k) — x2(k) + x3(k)
x2(k + 1) = x2(k) + x3(k)
x3(k +1) = x;3(k)

with x;(0) = 2, x,(0) = 5, x5(0) = 10.
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Find the time response of the discrete model developed in Problem 9.12 if x,(0) = (0), x»(0) = 10,
u (k) = UK, and u,(k) =1.
A single-input, single-output system is described by
x(k +1) = [_{ g}x(k) + [_i u(k) and y(k)=[5 1]x(k)
2 2

Use a change of basis to determine the normal form equations.

(3 2 3
If a system is described by x(k + 1) =2 1 1 |x(k), is it true that ®(j, k) = D~ '(k, j)?
1 1 2

L

A simplified model of a motor is given by the transfer function 6(s)/u(s) = K/[s(7s + 1)]. Let
x1=0,x,=0 and develop the continuous state equations. Then determine the approximate
discrete-time state equations, using time points separated by #¢ .1 — tx = At.

The motor of Problem 9.41 is used in a sampled-data feedback system as shown in Figure 9.7.
The signal u (k) is e(t) = r(t) — 6(k). Write the discrete state equations, using r(2) as the input
and 6(#,) as the output.

r(1) o~ e(t) | Sample u(k) | Motor 6(1)
+ ~ 7] andhold v g
Figure 9.7

Apply the method of Problem 9.10 to the cascade realization of the continuous-time system in
Example 3.8. Use T =0.2 and keep terms through fifth order. After finding the approximate
discrete models for A and B, find the transfer function by using

T(z)=C[zI-A]'B
Find a discrete-time state variable model for a system with transfer function

7(z) = —L006T45(z +0.0672)(z + 1.2416)
2= (2 =0.04979)(z — 0.22313)(z — 0.60653)
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Stability

10.7 INTRODUCTION

Stability of single-input, single-output linear time-invariant systems was discussed
from the transfer function point of view in Chapter 2. There the conditions for stability
were given in terms of pole locations. The left half of the complex s-plane was found to
be the stable region for continuous-time systems. The interior of the unit circle,
centered at the origin of the Z-plane, was the stable region for discrete-time systems.
Classical methods of stability analysis, including those of Nyquist, Bode, and root-
locus, were presented in Chapter 2.

The goal of this chapter is to extend the previous stability concepts to multi-
variable systems described by state variable models. Although this chapter is primarily
concerned with linear system stability, much of the machinery needed for nonlinear
systems is also established here. Chapter 15 is devoted to several aspects of nonlinear
control system analysis, including additional applications of stability theory.

In earlier discussions a system was either said to be stable nr unstable, with
perhaps some uncertainty about how to label systems which fall on the dividing line.
Actually there are many different definitions of stability. A few of the more common
ones are given here, along with methods of investigating them. Furthermore, a given
system can exhibit behavior that is considered stable in some region of state space and
unstable in other regions. Thus the question of stability should properly be addressed
to the various equilibrium points (sometimes called critical points) of a system rather
than to the system itself. This distinction is largely unnecessary for linear systems, as
will be seen, but it is stressed here in preparation for nonlinear systems.

A sampling of the many treatments of stability from various points of view may
be found in References 1 through 6.

342



Sec. 10.2 Equilibrium Points and Stability Concepts 343
10.2 EQUILIBRIUM POINTS AND STABILITY CONCEPTS

A heuristic discussion of stability is first given to help make the later mathematical
treatment more intuitive. Consider the ball which is free to roll on the surface shown in
Figure 10.1. The ball could be made to rest at points A, E, F, and G and anywhere
between points B and D, such as at C. Each of these points is an equilibrium point of
the system.

In state space, an equilibrium point for a continuous-time system is a point at
which x is zero in the absence of all inputs and disruptive disturbances. Thus if the
system is placed in that state, it will remain there. For discrete-time systems, an
equilibrium point is one for which x(k + 1) = x(k) in the absence of all control inputs
or disturbances.

An infinitesimal perturbation away from points A or F will cause the ball to di-
verge from these points. This behavior intuitively justifies labeling A and F as unstable
equilibrium points. After small perturbations away from E or G, the ball will even-
tually return to rest at these points. Thus E and G are labeled as stable equilibrium
points. If the ball is displaced slightly from point C, in the absence of an initial velocity
it will stay at the new position. Points like C are sometimes said to be neutrally stable.

Assume that the shape of the surface in Figure 10.1 changes with time. Specifi-
cally, assume that point E moves vertically so that the slope at that point is always zero,
but the surface is sometimes concave upward (as shown) and sometimes concave
downward. Point E is still an equilibrium point, but whether it is stable or not now
depends upon time.

Thus far only local stability has been considered, since the perturbations were
assumed to be small. If the ball were displaced sufficiently far from point G, it would
not return to that point. Stability therefore depends on the size of the original per-
turbation and on the nature of any disturbances which may be acting. These intuitive
notions are now developed for dynamical systems.

A particular point x, €2, is an equilibrium point of a dynamical system if the
system’s state at f, is x, and x(¢) = x, for all £ =¢, in the absence of inputs or disturb-
ances. For the continuous-time system x = f(x(¢), u(?), #), this means that f(x,,0,7) =0
for t =t,. For the discrete-time system x(k + 1) = f(x(k), u(k), k), this means that
f(x,, 0, k) = x, for all k£ >0.

The origin of the state space is always an equilibrium point for linear systems,
although it need not be the only one. In the continuous-time case, if the system matrix

E

Figure 10.1
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A has a zero eigenvalue, then there is an infinity of vectors (eigenvectors) satisfying
Ax, = 0. In the discrete-time case a unity eigenvalue of A means there is an infinity of
vectors satisfying Ax, = x,. These points loosely correspond to points between B and D
of Figure 10.1. Only isolated equilibrium points will be considered in this text, and for
linear systems the only isolated equilibrium point is the origin.

Any isolated singular point can be transferred to the origin by a change of
variables, X' = x — x,. For this reason it is often assumed in the sequel that x, = 0.

Stability deals with the following questions. If at time #, the state is perturbed
from its equilibrium point, does the state return to x,, or remain close to x,, or diverge
from it? Similar questions could be raised if system inputs or disturbances are allowed.
Another class of stability questions deals with the state trajectories of an unperturbed
system and of a perturbed system. Let the solution to x; = f(x,(¢), u(z), t), with x;(t)
given, define the unperturbed trajectory x,(¢). Let the perturbed trajectory x,(¢) be
defined by x, = f(x,(¢), u(?) + v(z), £), where x,(t,) = x,(%,) + e(%). The initial state and
control perturbations are e(f;) and v(), respectively. Does x,(f) return to x,(¢), or
remain close to it, or diverge from it? These questions can be studied by considering
the difference e(f) = x,(f) — x;(¢), which satisfies & =f(x;(¢) +e(?), u(t) +v(2),1) —
f(x1(7), u(?), £) or simply é = f'(e(), v(¢), ) with e(ty), x,(¢), and u(#) given. Now e = 0 is an
equilibrium point and the questions regarding the perturbed motion can be studied in
terms of perturbations about the origin, as before.

Whether an equilibrium point is stable or not depends upon what is meant by
remaining close, the magnitude of state or input disturbances, and their time of appli-
cation. These qualifying conditions are the reasons for the existence of a variety of
stability definitions.

10.3 STABILITY DEFINITIONS

Consider the continuous-time system with the input set to zero,
x = f(x, 0, 1), x(%) = X (10.1)

As was pointed out in Sec. 3.3, page 78, there will exist a unique solution to these
differential equations provided that the function f(x, 0, ¢) satisfies a Lipschitz condition
[7] with respect to x and is at least piecewise continuous with respect to ¢ throughout
some region of the product space X X 1, which contains xq, f,. Furthermore, the solu-
tion depends on its arguments in a continuous fashion. The solution is frequently
written as ®(¢; x, tp) to show its arguments explicitly, but we often refer to it simply as
x(#). Note that in the linear case discussed in Chapter 9, ®(t; xo, ty) = D(¢, ty)xo.

It is assumed that an equilibrium point for system (10.1) is at or has been trans-
ferred to the origin. Then the following definitions apply. For the continuous-time case
with zero input

X = f(X, 0, t), X(t()) =X

with the origin an equilibrium point, the following apply.
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Definition 10.1. The origin is a stable equilibrium point if for any given value
e > (0 there exists a number 8(e, £y) > 0 such that if ||x(#)|| < 8, then the resultant motion
x(?) satisfies |[x(7)|| < e for all £ > ,.

This definition of stability is sometimes called stability in the sense of Lyapunov,
abbreviated as stable i.s.L. If a system possesses this type of stability, then it is ensured
that the state can be kept within €, in norm, of the origin by restricting the initial
perturbation to be less than 8, in norm. Note that it is necessarily true that d <e.

Definition 10.2 The origin is an asymptotically stable equilibrium point if (a) it
is stable, and if in addition, (b) there exists a number &'(#) > 0 such that whenever
[x(%)|| < &'(#,) the resultant motion satisfies 111_)11.10 Ix(2)l| = 0.

Figure 10.2a illustrates these definitions for the two-dimensional state space 3.
The same notions conceptually apply in higher dimensions. Two examples of possible
trajectories are shown in Figure 10.2a, one for a system which is stable i.s.L. and the
other for an asymptotically stable system. A projection onto the state space 2, is shown
in Figure 10.2b. An unstable trajectory—i.e., one which is not stable—has been added
to the original two.

Xy Asymptotically stable trajectory

T / Cylinder of radius €
2

Stable i.s.L.
Disk of radius &
(2)
X2
Unstable
Asymptotically stable
Disk of radius e
Stable i.s.L.
> Xy
Disk of radius &
(b)

Figure 10.2a Illustrations of stable trajectories in 3, X 7.
Figure 10.2b Illustrations of possible trajectories in 2.
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The two most basic definitions of stability have been given for unforced continu-
ous-time systems. Variations upon these are defined by adding additional qualifying
adjectives [2]. If & and &' are not functions of £, then the origin is said to be uniformly
stable and uniformly asymptotically stable, respectively. If 8 (t,) in Definition 10.2 can
be made arbitrarily large—i.e., if all x(#) converge to 0—then the origin is said to be
globally asymptotically stable or asymptotically stable in the large.

Stability definitions for the discrete-time system with zero input

x(k +1) =1f(x(k),0,k), x(0) =xo (10.2)

are identical to those given earlier, provided the discrete-time index k is used in place
of t. As before, it is assumed that the coordinates have been chosen so that the origin is
an equilibrium state.

When nonzero inputs u(f) or u(k) are considered, two additional types of stability
are often used.

Definition 10.3. (Bounded input, bounded state stability.) If there is a fixed,
finite constant K such that |ju]|= K for every ¢ (or k), then the input is said to be
bounded. If for every bounded input, and for arbitrary initial conditions x(z,), there
exists a scalar 0 <3(K, 1, x(%)) such that the resultant state satisfies [|x]| < 8, then the
system is bounded input, bounded state stable, abbreviated as BIBS stable.

All the previous definitions of stability deal with the behavior of the state vector
relative to an equilibrium state. Frequently, the main interest is in the system output
behavior. This motivates the final stability definition.

Definition 10.4. (Bounded input, bounded output stability.) Let u be a
bounded input with K, as the least upper bound. If there exists a scalar o such that
for every t (or k), the output satisfies |ly|| < aK,,, then the system is bounded input,
bounded ouptut stable, abbreviated as BIBO stable.

10.4 LINEAR SYSTEM STABILITY

The following linear continuous-time system is considered:

x = A(H)x(¢) + B(t)u(r)

y()) = C(HX(0) + D(Hu) {10:3)
The unforced case is treated first. With u(¢) = 0, the state vector is givén by

x(1) = D(z, ty)x(t) (10.4)
The norm of x(¢) is a measure of the distance of the state from the origin:

(D)l = 1D(, 20)x(8)ll = [P (2, )l [x(20) (10.5)

Suppose there exists a number N (t,), possibly depending on #y, such that
(¢, )| = N(t) forallt =t (10.6)
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Then the conditions of Definition 10.1 can be satisfied for any € >0 by letting
3(t, €) = €/N(t). It follows from Eq. (10.5) that Eq. (10.6) is sufficient to ensure that
the origin is stable in the sense of Lyapunov. It is easy to show that this condition is also
necessary. The origin is asymptotically stable if and only if Eq. (10.6) holds, and if in
addition, [|®(t, ty)||— 0 for t— . Note that for a linear system, asymptotic stability
does not depend on x(%). If a linear system is asymptotically stable, it is globally
asymptotically stable.

The stability types which depend upon the input u(#) are now considered. For the
linear continuous-time system, the state vector is given by

x(£) = DL, 10)x(tg) + j " ®(t, 1)B(r)u(r) d (10.7)

BIBS stability requires that x(¢) remain bounded for all bounded inputs. Since u(z) = 0
1s bounded, it is clear that stability i.s.L. is a necessary condition for BIBS stability. By
taking the norm of both sides of Eq. (10.7) and using well-known properties of the
norm, it is found that ||x(#)|| remains bounded, and thus the origin is BIBS stable, if Eq.
(10.6) holds and if in addition there exists a number N;(%) such that

[0, DBIdr=Ni@) forall =1 (10.8)
tO 4

Similar arguments show that a linear discret%-time system is BIBS stable if the discrete
transition matrix satisfies Eq. (10.6) and if >, |[®(k,, k)B(k — 1) = M.

BIBO stability is investigated by cons]icggring the output of a linear system

y(2) = C(H)x(¢) + D(t)u(r) (10.9)
Substitution of Eq. (10.7) into Eq. (10.9) and viewing the initial state x(z;) as having
arisen because of a bounded input over the interval (—, ;) gives

y© = | W D@ de (10.10)

Only bounded inputs are considered, that is,
[u(t)|=K forallr (10.11)

The output remains bounded in norm if there exists a constant M >0 such that the
impulse response or weighting matrix W(¢, 7) satisfies

f_ [W(t, 7)ldr=M forallt (10.12)

Equation (10.12) is the necessary and sufficient condition for BIBO stability of contin-
uous-time systems. The analogous result, with a summation replacing the integration,
holds for discrete-time systems.

The matrix norm ||®(¢, t,)|| plays a central role in the stability conditions. This
norm can be defined in various ways, including the inner product defmltlon

ID(2, 1o)]” = max {(P(t, to)x, D(t, t0)x)(x, x) = 1} (10.13)
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By introducing the adjoint of ®(t, 1), it is found that Eq. (10.13) leads to

|®(t, t,)|> = max eigenvalue of D(t, t,)®(t, ;) (10.14)
If ®(, t,) is normal, then ®(z, t,)B(t, 1) = P(1, 1,)®'(%, 1) and then

|®(t, 1)l = max o (10.15)
where «; is an eigenvalue of ®(¢, ty). In all cases a useful lower bound on the norm is
given by

|®(t, )P =|af* for any eigenvalue o; of ®(t, 1) (10.16)

10.5 LINEAR CONSTANT SYSTEMS

Whenever the system under consideration has a constant system matrix A, the follow-
ing results hold:

®(, t,) =e**"@  (continuous-time) (10.17)
®(k, 0) = A* (discrete-time) (10.18)

By virtue of the Cayley-Hamilton theorem, Chapter 8, both of these results can be
expressed as polynomials in A. Then by Frobenius’ theorem (Problem 9.15, page 333)
the eigenvalues a; of ® are related to the eigenvalues \; of A by

o= e)‘i(t_ 1) or o= )\{‘

for the continuous-time and discrete-time cases, respectively. It is relatively simple to
express the previous stability conditions in terms of the eigenvalues of the system
matrix A. Letting these eigenvalues be \; = B; * jw;, the resulting conditions are sum-
marized in Table 10.1.

The results of Table 10.1 again show the left-half plane and the interior of the unit
circle as stability regions, this time in terms of locations of the eigenvalues of the A
matrix instead of transfer function poles. The consistency between the continuous-

TABLE 10-1 STABILITY CRITERIA FOR LINEAR CONSTANT SYSTEMS

(Eigenvalues of A are 1; = B; + jw;)

Continuous Time Discrete Time
X = Ax x(k + 1) = Ax(k)

Unstable If B; > 0 for any simple root If | A;] > 1 for any simple root

or f§; = 0 for any repeated root or | A;| =1 for any repeated root
Stable i.s.L. If B; << 0 for all simple roots If | A;] < 1 for all simple roots

and f; < 0 for all repeated roots and | 4;| < 1 for all repeated roots
Asymptotically If B; < 0O for all roots [4:] < 1 for all roots

Stable
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time and discrete-time columns of Table 10.1 is noted. Recall from Problem 2.21 that
any s-plane pole with a negative real part maps into a complex number in the Z-plane
with a magnitude less than unity.

Classification of Equilibrium Points. Equilibrium points can be classified
into several types, beyond just labeling them stable or unstable. For this purpose it is
useful to expand the initial condition response, using the eigenvectors & of A as basis
vectors:

x(f) = w1(0) exp{\; 8} + w,(0) exp{\, 8}&; + - - - + w,(0) exp{X, 1}&, (10.19)
where w(0) = M~'x, and M is the modal matrix.

Equation (10.19) is used to discuss the initial condition response of a second-
order system. The two eigenvalues could both be real or a complex conjugate pair. In
the real case, if both eigenvalues are stable, the equilibrium point is called a stable
node, and the phase portrait for various initial conditions is shown in Figure 10.3a. If
one eigenvalue is stable and the other is unstable, the behavior is as shown in Figure
10.3b, and this is called a saddle point. When both eigenvalues are unstable, tra-
jectories such as those in Figure_ 10.3c result, and this is called an unstable node. When
the eigenvalues are complex, Eq. (10.19) can be rewritten as

x(f) = exp{BtH{[a cos(wt) + b sin(w?)]&r + [b cos(wt) — a sin(w?)]E;}

where & and §; are the real and imaginary parts of € and g, b are real constants
dependent upon the initial conditions. If the real part of the eigenvalue, 3, is negative
the phase portraits of Figure 10.4a result, and this is called a stable focus. If 3 >0, the
unstable focus of Figure 10.4b results. If B = 0, the equilibrium point is called a center,
and the phase portraits are as shown in Figure 10.4c. Generally, graphical display
of trajectories becomes difficult or impossible in higher dimensions. However, Eq.
(10.19) is still useful for conceptualizing the response. For example, if a third-order
system has two stable complex eigenvalues and one real, unstable eigenvalue with
eigenvector &;, a three-dimensional phase trajectory would look somewhat like Figure
10.4a but with the center stretched out along the vector &;, as sketched in Figure 10.5.

Phase-space methods have proven very useful in analyzing linear and nonlinear
second-order systems. A method of extending many of phase-plane advantages to
higher-order systems is called the center manifold theory [4]. This approach essentially
selects the two modes that are providing the dominant action, those with eigenvalues
nearest the stability boundary. The full development of classical phase plane methods
and their more recent extensions are left for the references.

10.6 THE DIRECT METHOD OF LYAPUNOV

The general stability results for linear systems have been presented in Sec. 10.4 in
terms of the properties of the transition matrix ®(¢, #). In effect this means that the
solution of the system’s differential or difference equations needs to be known before
stability conclusions can be drawn. In the case of linear constant systems, this does not
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appear to be so because Sec. 10.5 expresses the stability conditions in terms of the
eigenvalues of the system matrix A. Late in the nineteenth century the Russian mathe-
matician A. M. Lyapunov developed an approach to stability analysis, now known as
the direct method (or second method) of Lyapunov. The unique thing about this
method is that only the form of the differential or difference equations need be known,
not their solutions. Lyapunov’s direct method is now widely used for stability analysis
of linear and nonlinear systems, both time-invariant and time-varying. Although this
chapter is primarily concerned with linear systems, Lyapunov’s method is presented in
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sufficient detail so that it can be later applied to nonlinear systems as well. The
approach will be to present an intuitive discussion of the method first. Then a few of
the main and most useful theorems will be presented without proof. Uses of the
theorems are illustrated in the problems and in Chapter 15. The mathematical over-
head may seem excessive for dealing with linear systems. However, for time-varying
linear systems, reliable answers to stability questions, which might otherwise be diffi-
cult to obtain, can be found. Even for constant linear systems, the Lyapunov method
provides an informative alternative approach.

Energy concepts are widely used and easily understood by engineers. Lyapunov’s
direct method can be viewed as a generalized energy method. Consider a second-order
system, such as the unforced LC circuit of Figure 10.6a or the mass-spring system of
Figure 10.6b.

In the first case the capacitor voltage v and inductor current i can be used as state
variables x, and the total energy (magnetic plus electric) in the system at any time is
Li*/2 + Cv?2. In the second case the position y (measured from the free length of the
spring) and the velocity y can be used as state variables x, and the total energy (kinetic
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plus potential) at any time is my*?2 + ky?%2. In both cases the energy € is a quadratic
function of the state variables. Thus €(x) > 0 if x # 0, and € = 0 if and only if x = 0. If
the time rate of change of the energy € is always negative, except at x = 0, then € will
be continually decreasing and will eventually approach zero. Because of the nature of
the energy function, € =0 implies x = 0. Therefore, if € <0 for all ¢, except when
x = 0, it is concluded that x(#) — 0 for sufficiently large ¢. The close relationship of this
conclusion to asymptotic stability, Definition 10.2, is obvious.

If the time rate of change of energy is never positive, that is, € <0, then € can
never increase, but it need not approach zero either. It can then be concluded that €,
and hence x, remain bounded in some sense. This situation is related in an obvious way
to stability i.s.L., Definition 10.1.

For both systems of Figure 10.6, the energy can be expressed in the form
B(x) = 3a, x? + 3a,x3. Assuming for the present that the coefficients a, and a, are con-
stant, the time rate of change is given by

% =a1 X1 .X.fl + azxzx.z (1020)

Knowledge of the form of the differential equations x; = fi(x) and X, = f5(x) allows both
¢ and € to be expressed as a function of the state x. No knowledge of the solutions of
the differential equations is required in order to draw conclusions regarding stability.
Lyapunov’s direct method is a generalization of these ideas.

Notice that in Figure 10.1 those points E and G that were described as stable in
the earlier discussion are points of relative minimum total energy. If the ball is at rest at
one of these points, its kinetic energy is zero and its potential energy is at a relative
minimum. A small displacement would increase the potential energy slightly. In the
absence of all surface and air friction or any other dissipative phenomenon, the total
energy would remain constant after release, being passed back and forth between
potential and kinetic energy. The ball would oscillate forever with constant amplitude.
This is an example of stability i.s.L. In t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>