State Variables and the State Space
Description of Dynamic Systems

3.7 INTRODUCTION

In the previous two chapters mathematical models of systems have been presented and
discussed using differential or difference equations. In the linear, constant-coefficient
case, transfer functions were found to be convenient. In either form, these models
were directed toward an input-output description of the system. In this chapter the
concept of state is introduced and methods of writing state variable forms of the system
models are presented. The state variable model of a system includes a description of
the internal status of that system, in addition to the input-output behavior. Therefore,
state variable models represent a more complete description in general. The state
variable approach also applies to time-varying and nonlinear systems which cannot
easily be described by transfer functions. Before we begin, a few mathematical con-
ventions must be established.

Functions, Transformations, and Mappings

A function is a rule by which elements in one set are associated with elements in
another set. A function consists of three things: two specified sets of elements ¥ = {x;}
and ¥ = {y;} and a rule relating elements x; € ¥ to elements y; € Y.The rule must be
unambiguous. That is, for every x € ¥, there is associated a single element y € Y. The
rule is often written as

y =f(x)

The words function, transformation, and mapping will be used interchangeably. A
common notation which indicates all three aspects of a function is

fi€—->%
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This states that there is a rule, f, by which every element in & is mapped into some
element in Y. The set ¥ is called the domain of the function, and the set % is called the
codomain. For a particular x, y = f(x) is called the image of x, or conversely x is the
pre-image of y. When the function is applied to every element in ¥, a set of image
points in %Y is generated. This set of images is called the range of the function, and is
sometimes expressed as f(X).

The words into and onto are frequently used in conjunction with functions or
mappings. The set f(¥) is always contained within or possibly equal to %, written
f(&) C Y. Thus fis said to map & into Y. If every element in ¥ is the image of at least
one x €E¥, then f(¥) = %, and the function is said to map ¥ onto Y.

In order that the function be unambiguously defined, there is always just one y
associated with each x. However, it is possible that two or more distinct elementsx €%
have the same image point y € ¥. The special case for which distinct elements x €X
map into distinct elements y € ¥ is called a one-to-one mapping. That is, if f is one-to-
one, then x; # x, implies that f(x;) # f(x,). Implications such as this are more concisely
written as

X1 * X3 ?f(xl) * f(xz)

Asin all logical arguments, negating both propositions reverses the implication, so that
fis one-to-one if

fx) =flx)>x1=x;

If a function is both one-to-one and onto, then for each y €% there is a unique
pre-image x € ¥. The unique relation between y and x defines the inverse function
g =f"! with

g:Y—%, where g[f(x)]=x
Vector-Matrix Notation
The bookkeeping conveniences of vector-matrix notation will be used in this chapter.

An in-depth and systematic development of these subjects is presented in the following
two chapters. A few of the rudimentary notions are now presented. An ordered set of

n objects f1, f>, . . . ,f, can be arranged in various array forms, with the position in the
array preserving in some way the order of the set. For example, we could write
hi
2 h o f
[fi o fs =0 ful or |f5| or |fi fs [fs
fr]

Which of these forms to use depends on the intended purpose. It is more convenient to
refer to the entire array by a single symbol, such as R, C, or S. Ordered arrays of
objects (numbers, functions of time, polynomial functions of complex variables, etc.)
are called matrices. The first example displayed is a row matrix R and the second is a
column matrix C. R and C are related by a transpose—i.e., an interchange of rows and
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columns—written C” = R. Either of the first two could be thought of as vectors: a row
vector or a column vector. Actually, a vector is more general than just a column of
numbers, as is discussed in Chapter 5. The rectangular array S in the third representa-
tion would normally have its entries designated with two subscripts, a row number
and a column number j. When combining or manipulating arrays in terms of single
symbols such as R, C, or S, a logical algebra must be used if the results are to make
sense. The reader is probably familiar with the rules of matrix addition, subtraction,
multiplication, and transposition. If not, an occasional reference to Chapter 4 may be
useful, since those notions will be used in this chapter.

Vector Space

Let the ordered set of three physical position coordinates (with respect to some
coordinate system) be considered as a position vector. Then the set of all such possible
vectors can be thought of as a vector space, in this case the three-dimensional physical
space. This simple example of a vector space as a set of vectors can be generalized. An
ordered n-tuple can be thought of as a point in an n-dimensional space. Certain
technical requirements, presented in Chapter 5, are necessary in order to qualify as a
valid vector space. Certain relationships (linear functions, mappings, or transforma-
tions) between two vectors in finite-dimensional vector spaces can be expressed as a
product of a matrix and a vector. The form of the transformation matrix depends upon
the coordinate system being used. For example, a point in physical space can be
represented in spherical or rectangular coordinates. The column of three numbers that
represents this position vector would be very different in the two coordinate systems.
The form of the transformation matrix that relates two such vectors would also differ
greatly.

3.2 THE CONCEPT OF STATE

The concept of state occupies a central position in modern control theory. However, it
appears in many other technical and nontechnical contexts as well. In thermodynamics
the equations of state are prominently used. Binary sequential networks are normally
analyzed in terms of their states. In everyday life, monthly financial statements are
commonplace. The president’s state of the Union message is another familiar example.

In all these examples the concept of state is essentially the same. It is a complete
summary of the status of the system at a particular point in time. Knowledge of the
state at some initial time fy, plus knowledge of the system inputs after ¢,, allows the
determination of the state at a later time #,. As far as the state at ¢, is concerned, it
makes no difference how the initial state was attained. Thus the state at £, constitutes a
complete history of the system behavior prior to #y, insofar as that history affects future
behavior. Knowledge of the present state allows a sharp separation between the past
and the future.

At any fixed time the state of a system can be described by the values of a set of
variables x;, called state variables. One of the state variables of a thermodynamic system
is temperature and its value can range over the continuum of real numbers R. In a
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binary network state variables can take on only two discrete values, 0 or 1. Note that
the state of your checking account at the end of the month can be represented by a
single number, the balance. The state of the Union can be represented by such things
as gross national product, percent unemployment, the balance of trade deficit, etc. For
the systems considered in this book the state variables may take on any scalar value,
real or complex. That is, x; € &. Although some systems require an infinite number of
state variables, only systems which can be described by a finite number n of state
variables will be considered here. Then the state can be represented by an n com-
ponent state vector x=[x; x, -+ x,]%.

The state at a given time belongs to an n-dimensional vector space defined over
the field #. A general n-dimensional space will be denoted by ¥". However, because
of its great importance, the state space will be referred to as 2, from now on.

The systems of interest in this book are dynamic systems. Although a more
precise definition is given in the next section, usually the word dynamic refers to
something active or changing with time. Continuous-time systems have their state
defined for all times in some interval, for example, a continually varying temperature
or voltage. For discrete-time systems the state is defined only at discrete times, as with
the monthly financial statement or the annual state of the Union message. Continu-
ous-time and discrete-time systems can be discussed simultaneously by defining the
times of interest as J. For continuous-time systems J consists of the set of all real
numbers ¢ € [, t;]. For discrete-time systems J consists of a discrete set of times
{to,ti,t2, . .. ,tx, ..., tx}. In either case the initial time could be — and the final time
could be % in some circumstances.

The state vector x(¢) is defined only for those t € J. At any given ¢, it is simply an
ordered set of n numbers. However, the character of a system could change with time,
causing the number of required state variables (and not just the values) to change. If
the dimension of the state space varies with time, the notation 2, could be used. It is
assumed here that 2, is the same n-dimensional state space at allt € 7.

3.3 STATE SPACE REPRESENTATION OF DYNAMIC SYSTEMS

A general class of multivariable control systems is considered. There are r real-valued
inputs or control variables u;(¢), referred to collectively as the r X 1 vector u(?). For a
fixed time ¢t € J, u(¢) belongs to the real r-dimensional space U'. There are m real-
valued outputs y;(¢), referred to collectively as the m X 1 vector y(¢). Forany t € 7, y(¢)
belongs to the real m-dimensional space Y™. Let the subset of times ¢t € J which satisfy
t, =t =t, be denoted as [t,, t, 5. For continuous-time systems [t,, %, |5 = %, % ], and for
discrete-time systems [f,, 1, | is the intersection of [¢,,#,] and 7.

It is necessary to distinguish between an input function (the graph of u(#) versus
t €7) and the value of u(¢) at a particular time. The notation uy, ,; will be used to
indicate a segment of an input function over the set of times in [z,,]s. Similarly, a
segment of an output function will be indicated by y, ,;. The admissible input func-
tions (actually sequences in the discrete-time case) are elements of the input function
space A, that is, u: §— . The output functions (or sequences) are elements of the
output function space ¥, y: §— %Y. Heuristically, U" and Y™ can be thought of as
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“cross sections” through U and % at a particular time ¢. Similarly, the graph of x(¢)
versus ¢, the so-called state trajectory, could be considered as an element of a function
space &. The state space 2 can be visualized as a cross section through ¥ at a particular
ted. :
The primary interest in a control system may be in the relationship between
inputs, which can be manipulated, and outputs, which determine whether or not
system goals are met. This relationship may be thought of as a mapping or transforma-
tion W: U— Y, that is, y(¢) = W (u(¢)). Examples of this type of relationship have been
mentioned in Sec. 1.5. It is easy to show that a given u;_,; need not define a unique
output function yy, ;-

EXAMPLE 3.1 The input-output differential equation for the circuit of Figure 3.1 is dy/dt +
(/RC)y = u(t)/RC. The solution is

y(£) =e CTORCy (1) + (l/RC)f e ¢"RCy (1) dT
)

A given input function u (f) € U defines a family of output functions y (f) € ¥. In order to relate
one unique output with each input, additional information, such as the value of y (%), must be
specified. Unless this is done, the nonuniqueness prevents W' from being a transformation in the
strict sense. |

State variables are important because they resolve the nonuniqueness problem
illustrated in Example 3.1 and at the same time completely summarize the internal
status of the system.

Definition 3.1. The state variables of a system consist of a minimum set of
parameters which completely summarize the system’s status in the following sense. If
at any time # € J, the values of the state variables x;(%) are known, then the output
y(#;) and the values x;(#;) can be uniquely determined for any time #, € J,t, > t,
provided uy, ) is known.

Definition 3.2. The state at any time £, is a set of the minimum number of
parameters x;(#,) which allows a unique output segment y;, 4 to be associated with each
input segment u, 4 for every L, € J and forall t >4, t €J.

The implications of Definitions 3.1 and 3.2 can be stated in terms of transforma-
tions on the input, state, and output spaces. Given (1) a pair of times, %, and £, in 7, (2)
x(t)) € 2, and (3) a segment uy,, ,; of an input in U, both the state and the output must
be uniquely determinable. This requires that there be a transformation g which maps
the elements (f, t;, X(%), ug, 1), Which can be treated collectively as a single element of

o b AAY
} R }
Input C =E y(t) = output
voltage u(1) voltage

(o Figure 3.1
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the product space (Section 5.10) I X J X 3, X AU, into a unique element in 3; that is, g:
T XTI X3 XU—> 2, where

X(t) = g(to, t1, X(f0), Uge,,1) (3.1)

Furthermore, since y(#) is uniquely determined, a second transformation exists,
T X3 XU — Y™ with ~»

y(t) = h(t1, x(t), u(t)) (3.2)

The transformation h has no memory, rather y(¢;) depends only on the instantaneous
values of x(#,), u(t;), and t,. The transformation g is nonanticipative (also called causal).
This means that the state, and hence the output at #, do not depend on inputs
occurring after ¢,.

Definition 3.3. The model of a physical system is called a dynamical system
[1, 2] if a set of times I, spaces U, %, and ¥, and transformations g and h can be
associated with it. The transformatlons are those of Egs. (3.1) and (3.2) and must have
the following properties:

X(to) = 8(to, to, X(%), W,,r,) foranyt, €T 3.3

If u €U and v € U with u = v over some segment [f,, t;]5, then

g(t(h tly X(t()), u[to,tl]) = g(t07 tl’ X(tO)’ v[to,tl]) (34)
Ifty,t;,,€J and 1, < t; < t,, then

x(,) = g(to, t2, X(f0), Uy, 1)
= g(tl, t27 X(tl)a u[tl,tz]) (35)
= g(tl’ b, g(tﬂa t, X(tﬂ)’ u[to:‘ﬂ)’ u[’ls’Z])

Equation (3.3) indicates that g is the identity transformation whenever its two
time arguments are the same. Equation (3.4), called the state transition property,
indicates that x(#;) does not depend on inputs prior to #, except insofar as the past is
summarized by x(f). It also indicates that x(¢,) does not depend on inputs after t.
Equation (3.5), called the semigroup property, states that it is immaterial whether x(,)
is computed directly from x(%) and wy, ., or if x(#;) is first obtained from x(#) and
uy, .., and then this state is used, along with uy,, ;.

Lumped-parameter continuous-time dynamical systems can be represented in
state space notation by a set of first-order differential- equatlons (3 6) and a set of
single-valued algebraic output equations (3.7):

x = f(x, u,?) (3.6)
y(®) =h(x,u,?) (3.7)

In order that x be a valid state vector, Eq. (3.6) must have a unique solution. In
essence, this means that the components of f are restricted so that Eq. (3.8) defines a
unique x(¢) for t = #;:
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x(t) = x(tg) + j f(x(r), u(x), 7) d (3.8)

The theory of differential equations [3] indicates that it is sufficient if f satisfies a
Lipschitz condition with respect to x, is continuous with respect to u, and is piecewise
continuous with respect to ¢. Then there will be a unique x(¢) for any #, x(t) provided
u(?) is piecewise continuous. The unique solution of Eq. (3.6) defines the trans-
formation g of Eq. (3.1).

EXAMPLE 3.2 Consider a point mass falling in a vacuum. The input is the constant gravita-
tional attraction a and the output is the altitude y(¢) shown in Figure 3.2. The input-output
relation is y = —a. Integrating gives

y(@) =y (to) = a(t — o)
Integrating again gives
Y (8) =y (o) + y (to)(t — o) — a(t — 10)*/2

The variable y does not constitute the state, since its initial value is not sufficient for uniquely
determining y(f). The set of variables y, y, and y does not form the state, since this is not the
minimum set of variables required to uniquely determine y (). The parameter y is not needed. A
valid state vector is x(£) = [y (t) Y (9)]". It is easily seen that the form of Egs. (3.1) and (3.2) for
this example is

x(f) = [(1) ‘ _lt‘]]x(to) - [(’ - "’)2/2]a, y(O=[ 0x® -

t_t()

Lumped-parameter discrete-time dynamical systems can be described in an anal-
ogous way by a set of first-order difference equations (3.9) and a set of algebraic output
equations (3.10):

X(te+1) = £(x(8), u(te), &) (3.9)
y(t) = h(x(t), u(ty), ) (3.10)

In general, the functions f and h of Egs. (3.6), (3.7), (3.9), and (3.10) can be nonlinear.
However, the linear case is of major importance and also lends itself to more detailed
analysis. The most general state space representation of a linear continuous-time
dynamical system is given by Eqgs. (3.11) and (3.12):

x = A(H)x(¢) + B(H)u(z) (3.11)
y(¢) = C(0)x(¥) + D(?)u(z) (3.12)

A, B, C, and D are matrices of dimensionn X n, n Xr, m X n, and m X r, respectively.
Equations (3.11) and (3.12) are shown in block diagram form in Figure 3.3. The

1]

y(r)

v 7SS Figure 3.2
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» D(s)

B(1) + y(t)

Figure 3.3 State space representation of continuous-time linear system.

heavier lines indicate that the signals are vectors, and the integrator symbol really
indicates n scalar integrators.

The state space representation of a discrete-time linear system is given by Eqgs.
(3.13) and (3.14). The simplified notation k refers to a general time #, € J:

x(k + 1) = A(k)x(k) + B(k)u(k) (3.13)
y(k) = C(k)x(k) + D(k)u(k) (3.14)

The matrices A, B, C, and D have the same dimensions as in the continuous-time case,
but their meanings are different. The block diagram representation of Egs. (3.13) and
(3.14) is given in Figure 3.4. The delay symbol is analogous to the integrator in Figure
3.3 and really symbolizes n scalar delays.

The notational choice of using the same symbols {A, B, C, D} in both cases carries
some potential for confusion in certain instances. The advantage of using the same
symbols is that many continuous and discrete concepts are revealed as being essentially
identical, not only in this chapter but throughout the book. One final word regarding
notational symbology seems appropriate. A sizable fraction of the literature uses F, G,
and H in place of A, B, and C in the continuous case. In the discrete case, ® and I' are
frequently used in the literature in place of A and B. It is hoped that with this note of
caution the concepts here and in other works can be appreciated and integrated
without being tied to a rigid notational standard.

D (k)

x(k) + y(k)

C(k)

Figure 3.4 State space representation of discrete-time linear system.
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Frequently, the discrete-time state variable system models, as in Egs. (3.9) and
(3.10) or Egs. (3.13) and (3.14), are the result of approximating a continuous system,
or, because of sampling, time-multiplexing of equipment or digital implementation
prevents continuous-time operation. Some systems are inherently discrete-time. Other
systems are partly discrete and partly continuous, such as a digital controller driving a
continuous motor. Some of these sampling and approximation problems will be dealt
with in Section 9.8. For present purposes it is assumed that the original system descrip-
tion is in discrete form, perhaps from an empirically obtained ARMA model of
Chapter 1 or as a result of taking the Z-transform of a continuous system.

The analysis of and solutions for linear system state equations are presented in
Chapter 9, after the necessary mathematical tools have been developed. The re-
mainder of this chapter develops methods of obtaining state space system representa-
tions such as those given in Eqs. (3.6), (3.7) or Egs. (3.9), (3.10) for nonlinear systems
or Egs. (3.11), (3.12) or Eqgs. (3.13), (3.14) for linear systems.

3.4 OBTAINING THE STATE EQUATIONS
3.4.1 From Input-Output Differential or Difference Equations

A class of single-input, single-output systems can be described by an nth-order linear
ordinary differential equation:

dny dn—ly dzy dy B
dtn+an_171—+---+a2—dt—2+aldt+aoy—u(t) (3.15)

This class of systems can be reduced to the form of n first-order state equations as
follows. Define the state variables as

dy _dZy _dn—ly
E: x3_Ez—a'--a xn"'dtn_l

X\ =Yy, X3= (3.16)
These particular state variables are often called phase variables. As a direct result
of this definition, n —1 first-order differential equations are x;=x,, %, =x;,...,
X,-1=X, The nth equation is X, = d"y/dt". Using the original differential equation
and the preceding definitions gives

Xn = —GoX1— Q1 X3 — " — Gy 1X, T U(f) » - (3.17)
so that
[0 1 0 0 0 ] [o]
0 -0 1 0 .- 0 0
0 0 0 B 0 0
X= o x| ju() = Ax + Bu(?) (3.18)
0 0 0 o - 1 0
|70 —a41 —a —as - —Qp-gf L
The outputis y(£) =x;(£) =[1 0 0 --- 0] x(¢) = Cx(¢). In this case the coefficient

matrix A is the companion matrix (see Section 7.9 and Problem 7.32).
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A comparable class of discrete-time systems is described by an nth-order differ-
ence equation
ytk+n)+ta,.;y(k+n—=1)+---+ay(k +2)
+ary(k +1) +ayy(k) =u(k).
Phase-variable-type states can be defined as
x(k)=y k), xk)=yk+1), xk)=yk+2),..., x.(k)=yk+n-1)

where the discrete time points #, are simply referred to as k. With these definitions, the
first n — 1 state equations are of the form |

xi(k +1) =x;41(k)

(3.19)

The original difference equation becomes
y(k +n)=x,(k +1) = —aoxy(k) — arxo(k) = -+ = @y 1%, (k) + u(k) (3.20)

Comparison of the continuous and discrete systems just considered shows that they
have the identical forms for the A, B, and C system matrices and both have D = [0].
The only difference is that x(k + 1) replaces x. In both cases the coefficients a; could be
functions of time, yielding time-variable A(f) or A(k) n X n system matrices.

The fact that the equations have the same form should not be used to conclude
that a discrete approximation to a continuous system can be obtained merely by
replacing x(¢f) with x(k +1). If Eq. (3.19) is an approximation of Eq. (3.15), the
individual a; coefficients will be quite different in the two cases.

EXAMPLE 3.3 A continuous-time system is described by

yt4y +y=u()
so that ao=1 and a, =4. Use the forward difference approximation for derivatives y (#) =
[y(t+1) —y(&)VT and y =[y(tx+1) —y(¢+))/T, where T = ;1 — 4 is the constant sampling
period. Find the approximate difference equation.

It follows that j (t.) =[y(k +2) — 2y (k + 1) + y (k))/T?, so that substitution into the dif-
ferential equation and regrouping terms gives

y(k +2)+ (4T - 2)y(k + 1) + (T*>— 4T + Dy (k) = T*u(k)

Thus the discrete coefficients are ap = 7> — 4T + 1 and a; = 4T — 2.
If a backward difference approximation to the derivatives is used, a very different set of
coefficients will be found. Also, the time argument on the u input term will change. |

3.4.2 Simultaneous Differential Equations

The same method of defining the state variables can be applied to multiple-input,
multiple-output systems described by several coupled differential equations if the
inputs are not differentiated.

EXAMPLE 3.4 A system has three inputs u;, u,, u; and three outputs yi,y>,ys. The input-
output equations are
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Vitayita(yi+y) tas(yr—ys) = ui(t)
Vot as(y2—y1+2y3) tas(y2—y1) = ux(t)
y3+ as(ys — y1) = us(?)

Notice that in the second equation y; can be eliminated by using the third equation. State
variables are selected as the outputs and their derivatives up to the (n — 1)th, where n is the
order of the highest derivative of a given output.

Select x;, = y1, x2 = Y1, X3 =1, X4 =Y2, Xs = Y2, X6 = y3. Then

X1=Xz, X2=X3, X4=2Xs
X3 = —a1 X3 — A2(x2 + X5) — as(x, — xe) + Uy
Xs = —as(xs =Xz + 2x) = as(xs — x1) +
X6 = —ag(xe— x1) + U3

Eliminating xe from the X5 equation leads to

= - p- - - p -

X1 0 1 0 0 0 0 iz 00 o0

X2 0 0 1 0 0 0 [{x2 0 0 O

x3 —as —a, —a 0 —a; as X3 1 0 0 U

w|=| o 0 0 0 1 0 [[x|Tl0o 0 o0 |[®

x.5 as — 20406 Qs 0 —Aas —Aau 2a4a6 Xs 0 1 “204 Us

Lx.ﬁ_ L (773 0 0 0 0 —a()_“x(,_ -0 0 1 i

The output equation is

» 1000 0O

Y21={0 0 0 1 0 Ojx

Y3 0 00 001 |

When derivatives of the input appear in the system differential equation, the
previous method of state variable selection must be modified. If the method is applied
without modification, a set of first-order differential equations is obtained as desired,
but the input derivatives will still be present. The state equations must express X as a
function of x and u (and not u). A serious mistake that is sometimes made is to define a
new vector u with components made up of u and its derivatives. This is wrong because
the inputs to the state equations must be the actual physical inputs to the system.
Arbitrary mathematical redefinitions are not allowed on these (or on the output
variables y). This differs from the situation for the internal state variables, which may
or may not correspond to real physical signals. The input components must be inde-
pendently selectable control variables. Clearly if u (¢) is specified, there is no freedom
left in specifying its derivative u(t). The correct method of dealing with input deriva-
tives is to somehow absorb the derivative terms into the definitions of the state
variables. In simple cases various ad hoc choices may be apparent. For example,
consider y + ay + by =u + cu. Rearranging gives y — cu = —ay — by + u. One could
use x; =y, x,=y —cu so that, assuming c is constant, X; =y =x, +cu and X, =
—alx, + cu] — bx; + u; or
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2 - ~g —ﬂ{z} + [1 —Cac}“
HY
y=[1 0]x

Since the selection of state variables is not a unique process, other choices could
be made. For complex higher-order and coupled equations, the ad hoc methods
become quite cumbersome. Straightforward systematic methods can be developed,
with simulation diagrams being a useful tool.

3.4.3 Using Simulation Diagrams

Equation (3.8) indicates that state variables for continuous-time systems are always
determined by integrating a function of state variables and inputs. The simulation
diagram approach makes use of this fact. Six ideal elements are used as building blocks
in the simulation diagrams. They are described in Table 3.1.

Note that a differentiating element —[d/df] — is not included. If the equations
for a continuous-time system can be simulated using any combination of these ele-
ments except the delay, and if no unnecessary integrators are used, then the output of
each integrator can be selected as a state variable.

An integrator sums up past inputs to form its present output and hence repre-
sents a memory element. For discrete-time systems the ideal delay is used instead of
the integrator as the ideal memory element. The close analogy between the integrator
and the delay is emphasized in Figure 3.5. The transform domain analogy between 1/s
and 1/z is especially clear. The outputs of delays in a discrete-time simulation diagram
constitute a valid choice of state variables. In both cases, the outputs of memory or
storage devices constitute states. This notion recurs in Section 3.4.5 where states will
be associated with energy storage devices.

EXAMPLE 3.5 One possible simulation diagram for y +ay + by =u + cu is given in Figure
3.6. Selecting the outputs of the integrators as x; and x; leads to the same state equations given
earlier for this system. |

Ad hoc use of the simulation diagram requires a degree of ingenuity in more
complicated systems if unnecessary integrators or delays are to be avoided. A system-
atic approach which is especially simple for constant coefficient systems is now
presented. It can be applied with only a modest amount of extra effort to linear,
time-variable systems. (See Problems 3.9 and 3.10.) The insight that the procedure
provides is also useful in dealing with certain nonlinear systems (see Problem 3.17).

1. Solve each differential equation for its highest derivative. In the case of a differ-
ence equation, solve for the most time-advanced term in each equation. A typical
nth-order equation is considered for discussion purposes.

2. Formally integrate each differential equation as many times as the highest deriva-
tive, here assumed to be n. For difference equations, n delays replace the n-fold
integration. In both cases the goal is to achieve the current y(f) or y(#) on the
left-hand side.
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TABLE 3-1
Element Symbol Input-output relation
y2(ty) t
. Integrator yi(r) ya(t) y2(1) = y2(1o) +f yi(7) dr
> to
. Delay w DeTlay 0, y2(t) =y, (1 —T)
. y: (1)
. Summing ' —() ZIUR y3(t) =y, (1) =y (¢)
junction —\Tﬁ
Y2 (1)
. Gain change no g e 0 y:(t) = ay, (1)
.Yl (’) R X Y'i(,)A
. Multiplier - ya(t) = y1(1)y, (1)
T}’z“)
. Single-valued ¥, (1) ) Y2 (1) Y1) = f (1))
function generator

3. Group terms on the right-hand side in the form of a nested sequence of integra-
tions (or delays). Use up integrations to remove all derivatives. Use delay oper-
ators to remove all advance terms. In constant coefficient cases the coefficients
move freely past either of these operators. Time-variable coefficients require use
of integration by parts. (See Problems 3.9 and 10.)

4. Draw the simulation diagram by inspection, using the fact that terms inside of an
integral sign or delay operator domain constitute inputs to that integrator or
delay. A term already containing an integral or delay is the output of another
such operator.

5. When the diagram is completed, there should be n integrators or delays. The
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(1) {D x(t): x(k+1) Delay x(k)%
ZL{x(1)} ] 1 L{x(t)} Z{x(k+1)} RER Z{X(k)}A
] os T B <>
(a) Ideal integrator (b) ldeal delay
Figure 3.5
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Figure 3.6 ]

output of each integrator is selected as a state x;(¢) in the continuous-time case.
The output of each delay in the discrete-time case is selected as a state x;(k).
Then state differential or difference equations can be written directly, using the
fact that x;(¢) (or x;(k + 1)) is the input to that integrator (or delay element).

This procedure leads to state equations in observable canonical form. The reason
for the name and the importance of the form become apparent in Chapter 11, where
properties of state equations are discussed. For now, just note that the C output matrix
is in an especially simple form, all Os and 1s, whereas B is more complicated. An
alternate state variable description is given shortly, in which the input matrix B has a
similarly simple form, containing all Os and 1s, but with elements of C being more
complicated. That form will be called the controllable canonical form. Note that the
first procedure of Section 3.4, where there were no input derivatives, led to a set of
state equations with both B and C having these simple forms.

EXAMPLE 3.6 Consider
dny dn -1 y

+a,- =
drn T g

d d ar
+---+alz}ti+a0y=Bou+31—£+---+[3m7"‘f.
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u(r)

Figure 3.7

The coefficients a; and B; are constant. Assume m = n. If m <n, then some of the B, terms
can be set to zero after the final result is obtained.

dn—l dn—l
+(Bn—1 u_an—lgt-;:_ly + ..

@, @ yo =] f{s‘fh”

n integrals

dtn71

d
+ (Bl% _al_d%> + (Bou —-aoy)}dt...dt’

3) y()=Bnu +f{(Bn_1u —an-ly)+f[Bn—zu —an_2y

+j(---+f{[31u—a1y +J(Bou—aoy)dt}---)dt'}dt"}dt"’

(4) The simulation diagram is shown in Figure 3.7.
(5) Numbering outputs of integrators from the right gives

.X.:l = —a,,,l[x1+ B,,u] + B,,_lu + X5
= ~lp-1X1 T X2+ (Bro1—An-1Bn)u

Xo=—Gn-2X1t X3+t (Br-2—an—2Bx)u

Xn-1=—a1 X1+ X, + (B1— a1 Bn)u
Xn=—aox1+ (Bo— aoBn)u
The output equation is
y=xi+Bu=[1 0 0 --- O]x+B.u
This represents the observable canonical form of the state equations. [ ]
EXAMPLE 3.7 A system is described by the following equation:
yk+n)+a,_.ytk+n—-1)+ --+ayk +1)+aoy(k)=Bou(k)+Bulk +1)

+ o+ Buu(k +m)
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First solve for the most advanced output term (or terms if coupled equations are in-
volved):

Yk +n)=—a,y(k+n—=1) = —ayy(k +1) = aoy (k) + Bou(k) + Bru(k + 1)
+ -+ Bnulk + m)

Then delay every term in the equation » times so that y (k) is obtained on the left-hand
side. The symbol & will be used to represent the delay operation. As in Example 3.6, it is
assumed that m = n for convenience. If m <n, then some of the coefficients 8; can be set to
zero. It is impossible that m > n for physically realizable systems:

y(k) ==, D(y(K)) =+ =ar D" (y (k) — a0 D"(y (k) + Bo D"(u(k))
+ B D" (u(k) + -+ Buu(k)
Rearrange this expression as a nested sequence of delayed terms:
y (k) =Bnuu(k) + D{=an -1y (k) + Ba-1u(k) + D[~a,-2y (k) + Bn-2u(k)
+D(- -+ D{~aoy (k) + Bou(k)H]}

The simulation diagram of Figure 3.8 can now be drawn, noting that everything which is
operated upon by the delay operator & forms the input to that delay.

This diagram is exactly like the one of Figure 3.7 except that the integrators have been
replaced by delay elements. The state equations can be written down from the simulation
diagram by using the fact that if the output of a delay is x;(k), then its input signal must be
xi(k +1):

x1(k + 1) = —a,_1[xi(k) + B, u(k)] + x2(k) + B 1 u(k)
= —@n -1 X1(k) + x2(k) + [Br-1— an -1 B Ju(k)
Xo(k +1) = —a, 2 x1(k) + x3(k) + [Br-2— Gn-2Bn]u(k)

Xn-1(k +1) = —ayx1(k) + x,(k) + [B1 — a1 B Ju (k)
xn(k +1) = —gox:(k) + [Bo — a0 B Ju (k)

The output equation is

y(k) =xi(k) + B.u(k)=[1 0 0 --- O]x(k)+B.u(k) |
u(k) I I ;I
\
Bo B Bn-i Bn
+ + +
Xy (k) x, (k) N x; (k)
L G O e O o - ap -
ay él Up-y
v(k)

Figure 3.8



88 State Variables and the State Space Description of Dynamic Systems Chap. 3
3.4.4 State Equations from Transfer Functions

The discussion is restricted to single-input, single-output constant coefficient systems
described by a Laplace transform transfer function:

Y(S) ()_Bms +Bm lsm 1+ +Bls+BO
u(s) s"+ta,_1s" M+ tas +a
or a Z-transform transfer function
y(2) _ ~T(z )_Bmzm+Bm_1z’"‘1+---+Blz+|30
u(z) Z"+a, 12" Mt agz +ag

~For any physical system, causality (physical realizability) requires that m < n. Other-
wise, the output y (k) at time ¢, would depend upon future inputs u(j) at times ¢ with
j > k. The transfer function can also be written in terms of negative powers of z:

2" By + Bm-1z2 T Bz D+ Bz

14a,_1z ' ta,_ 2272+ - +az7 " V4gyz"

T(z)=

Since z 7! provides a delay of one sample period, this might be called the delay operator
form. It is clear that there is a delay of n — m sample periods from input to output.

The preceding transfer functions correspond exactly to the systems considered in
Examples 3.6 and 3.7. Therefore, the previous method of picking states obviously
applies. The reason for considering these systems further from the transfer function
point of view is that alternative forms of the transfer functions are easily written using
algebraic manipulations. The alternative forms can be used to find alternative state
variable models. In particular, four major categories of state variable models, called
realizations, will be presented. Each has its own particular set of advantages, disadvan-
tages, and implications in state variable applications.

1. Direct realizations are so named because they derive directly from the expanded
polynomial form of the transfer functions. The two major direct realizations are
(a) Observable canonical form
(b) Controllable canonical form

- 2. Cascade realizations are so named because they derive from the transfer function
written as a product of simple factored terms, which could be represented by a
series of cascaded blocks in a block diagram.

3. Parallel realizations are so named because they derive from the transfer function
written as a sum of partial fraction expansion terms, which would appear as
parallel blocks on a block diagram.

Within each of these categories there remains a certain amount of freedom of
choice, such as how factors are to be grouped in the cascade form. Actually, the
possibilities are infinite because if x is any valid state vector, then so is Sx for any
nonsingular transformation matrix S. Finally, there are other canonical realizations
not discussed here, such as the lattice and ladder network realizations.

The four major realizations discussed in this book are now illustrated for continu-
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ous-time systems. The observable canonical form has already been derived using the
nested integrator approach. Its simulation diagram is shown in Figure 3.7. The state
equation component equations are written in matrix form as

(—a,., 1 0 0 ... 0] (By1— Gy 1B]
—a,-» O1 1 ... 0 Bn-—2~an—2Bn
x()=| : x(#) + : u(?)
—-a, 0O 00 ... 1 B1—a, B
| — 4o 0 0 0 ... 0_ _BO — 4o Bn
and
y@®=[1 0 0 ... 0]x()+B.u() (3.21)

The controllable canonical form is obtained by artificially splitting the transfer
function denominator polynomial—call it a(s)—and the numerator polynomial—call
it b (s)—as shown in Figure 3.9. An intermediate variable g has been introduced. Now
the transfer function from u to g is exactly the same as the transfer function from u to y
for Eq. (3.15) considered earlier using phase variables. So once again the states can be
selectedasx; =g, x,=8,...,X, = <"g". As a result the differential equation part of the
controllable canonical state equations is given by Eq. (3.17). The block from g to the
output y in Figure 3.9 indicates that y () is a linear combination of g and its deriva-
tives, y(f) = Bog + B1€ + B2g + -+ Bn (§'). It is assumed that m = n in order to get
the most general result. If m is actually less than n, simply set the higher B; terms to
zero in the results to follow. When the state definitions are used, each g term except
the last (d"g/dt") is simply replaced by the appropriate state. The nth order derivative
of g is now x,, and this is a combination of all the states and the a; coefficients.
Regrouping terms gives the state output equation for the controllable canonical form as

y(t)=[Bo—aan Bl—aan BZ_aZBn Bn—l_an—an]x(t)
+ Bau(?)

When m <n, B, =0 and this takes on a deceptively simple form. In order to illustrate
the full generality of the result m = n has been assumed. The simulation diagram for
the controllable canonical form is given in Figure 3.10. All the feed-forward ; terms
are from b (s) and all the feedback terms are from a (s).

The nth-order s-domain transfer function can be written in factored form, Eq.
(3.23). If all poles p; are distinct and if m = n, the partial fractlon expansion form of
Eq. (3.24) can be obtained:

Bn(s +z)(s +22) (s +2n)

(3.22)

T(s)= 3.23

O = P +p) (s ) (3.23)
_ bl bz bn

T6)=bot 53t 55mt  * 550, (3.24)

‘ " g(s)
u(s) > 1/a(s) - > b(s) =>— y(s)

Figure 3.9
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(n) (n—-1) (n—2)
g=X, g g

p_2

a;

ay

ay

Figure 3.10

If some poles are repeated, the partial fraction expansion will contain additional terms
involving powers of the multiple pole (s + p;) in the denominator (see Problems 3.4
and 3.22). If m <n, b, = 0. For a dynamical system, m can never exceed n.

Equation (3.23) indicates that T'(s) can be written as the product of simple
factors 1/(s + p;) or (s + z;)/(s + p;). Quadratic terms could be considered as well. If a
denominator root p;is complex, it and its conjugate may be kept together in a quadratic
factor containing only real coefficients. In any case the system can be represented by a
series (cascade) connection of simple first- and/or second-order factors such as those
shown in Figure 3.11. The grouping of numerator factors with denominator factors is
not discussed here. Each block should be realizable (i.e., the power of the numerator
cannot exceed the power of the denominator). Beyond that restriction, how the factors
are grouped is left arbitrary, although it does affect the scaling of the signals passed
between the blocks. A simulation diagram can be determined for each block by any of
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Bm s+z s+2z, R 524+ 2Lw,5 + Wyt y
s+p, s+ps 2+ 20w, 5+ w? 52+ 20w, + wy?

Figure 3.11

the previous methods (see also Problem 3.1). The overall simulation diagram for the
cascade realization is the series connection of the diagrams found for each block. The
cascade realization of the state equations is then written by selecting integrator outputs
as state variables. An example follows shortly.

The partial fraction expanded form in Eq. (3.24) indicates that T(s) can be
represented as a parallel connection of simple terms (Figure 3.12).

The diagram of Figure 3.12 assumes p, - ; is a double pole. The system simulation
diagram is also a parallel connection of the individual terms.

EXAMPLE 3.8 Select a suitable set of state variables for the system whose transfer function is

s+3
s+ 9s%+24s + 20

T(s)=

Note that in factored form

s+3

T~ 26 9

v

,
[N S
3

b,
S+ Pnoy

by
(st Ppai)?

Figure 3.12
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and, using a partial fraction expansion,
2 1 2

T(s) = —2 L

+ 3 + 9
s+2 (s+2? s+5

Using the original form of the transfer function will lead to one possible direct realization.
First, it is noted that

§=—9y —24y —~20y + 1 +3u

or
y =J{—9y +f[—24y +u +J(—20y +3u)dt}dt’}dt"

from which the simulation diagram of Figure 3.13 is obtained.

r

3
+ .
X3 + X BVaY R X, y
T8
20 24 9

Figure 3.13

v

Using Figure 3.13, the observable canonical form of the state equations is

X1 -9 1 0flx 0

%z=-a40 1 x2|+]1]u

X3 -20 0 0]]|xs 3
and

y=[1 0 Ox

This could have been written directly from the general result of Eq. (3.21).

A second direct form of the transfer function will now be developed. The numerator and
denominator of the transfer function are separated, as shown in Figure 3.14. The intermediate
variable thus created is labeled g for convenience. The relationship between u and g is given by

§+9¢ +248 +20g =u

u 1 ‘ g y
$3 + 952 4 245 + 20

Figure 3.14

This means that the A matrix will be in companion form and the B matrix will assume its simplest
possible form—all Os or 1s.

The relationship between the fictitious g and the output y depends only on the numerator
of T'(s). In this simple case

y=g+3g
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Noting that since the s variable indicates differentiation, y is seen to be a linear combination of g
and its various derivatives. These derivatives are available as inputs to the various integrators.
Using this reasoning leads to the simulation diagram of Figure 3.15. Then, by picking outputs of
integrators as states, the controllable canonical form of the state equations is as follows:

0 1 0 0

X= 0 0 1x+|0|u
=20 -24 -9 1

y=[3 1 0OJ]x+[0]u

20

Figure 3.15

These could have been written directly from Egs. (3.18) and (3.22).

~ Using the factored form of T'(s), the simulation diagram of Figure 3.16 is obtained. From
Figure 3.16, one possible cascade realization is

X1 -5 1 0] x 0
Y20=| 0 -2 1||*2|+|1]u and y=[1 0 O]x
X3 0 0 —2f[xs 1
s+3
\ s+2

Xy

oS

Figure 3.16
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Using the partial fraction expansion, the simulation diagram of Figure 3.17 is obtained. From
Figure 3.17, the parallel realization is

ol [-5 0o ol|[x] [1
X20=| 0 -2 1||%|+|0fu and y=[-3 } ix
X3 0 0 =-2]|x 1 |

Xy

W=

1/3

» 2/9

Figure 3.17

Four different sets of valid state equations have been derived for this system. In
the third and fourth forms, the diagonal terms of the matrix A are the same, the system
poles (and, as we see in Chapter 7, the eigenvalues of A).The fourth form gives A in
Jordan canonical form (see Chapter 7). All four representations are different, but all
have the same number of state variables, and this is the order of the system. They also
all have the same eigenvalues (poles). Note that if separate parallel paths had been
used for the terms 1/(s + 2)*and 1/(s + 2), one unnecessary integrator would have been
used. This should be avoided, since unnecessary integrators means unnecessary state
variables. This relates to the topic of minimal realizations in Chapter 12 and control-
lability and observability properties of Chapter 11.

The same four realizations can be found for discrete-time systems described by
Z-transform transfer functions. Much of the work is exactly the same, with delay
operators replacing integrators. Therefore, the major points are presented by way of
an example. To give a comparison with the continuous-system results, the third-order
system of Example 3.8 is used. When it is preceded by a zero-order hold and then
Z-transformed with a sampling period of 0.2, the resulting discrete transfer function is

0.013667z* + 0.00167z — 0.0050
z>—1.7085z% + 0.9425z — 0.1653

T(z) = (3.25)

EXAMPLE 3.9 Direct Realization, Observable Canonical Form The delay operator form of
the transfer function converts immediately to the difference equation considered in Example
3.7. The result of the previous example is a set of observable canonical form state equations
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—an -1 1 0 0 00 Bn—l_an—IBn
—Qn-2 0180 00 Bn*2—-an—ZBn
x(k+1)=| xR+ u (k)
—a 0 0 0 01 B] - 01[3,,
—ay 0 00 0 0 Bo — aoBn
yk)y=[1 0 0 0 ... 0 O]x(k)+B.u(k)
For the specific third-order example, the observable canonical state equations are therefore
17085 1 O 0.01361
x(k +1)=1-0.9425 0 1|x(k)+| 0.00167 |u(k)
0.1653 0 0 -0.0050
y(k)=[1 0 O0Jx(k) -

EXAMPLE 3.10 Direct Realization, Controllable Canonical Form The previous transfer
function is artificially split into two parts with the fictitious variable g (k) in between, < shown in
Figure 3.18. The simulation diagram for determining g (k) is first developed using

g(k +3)=1.7085g (k +2) — 0.9425g (k + 1) + 0.1653g (k) + u(k)

u(k) 1 g(k) X y(k)
23— 1708522 + 0.94252 — 0.1653 =1 0,013667z< 4+ 0.00167z — 0,005  [roesnemiy-—

=

Figure 3.18

Then three successive delay elements give g(k + 2), g(k + 1), and g (k). This constitutes part of
the diagram in Figure 3.19. The second transfer function in Figure 3.18 states that

y (k) = —0.0050g (k) + 0.00167g (k + 1) + 0.013667g (k + 2)

This relationship constitutes the rest of Figure 3.19. Numbering the outputs of the delays as
states in the order shown immediately gives a controllable canonical form of the state equations

0.013667
0.00167
x3(k) x,(k)
gk +2) gk +1) xy (k) H\ 4
utk) + gk +3) (k) - y(k)
—> > D > D D 0.005 >_ <>
+ 4 +
1.7085
0.9425
0.1653

Figure 3.19
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0 1 0 0
x(k+1)=10 0 1 x(k) + [ 0|u(k)
0.1653 —0.9425 1.7085 1
y (k) =[—0.0050 0.00167 0.013667]x(k) [

EXAMPLE 3.11 Cascade Realization The same transfer function is again considered, but
this time in factored form (and grouped in the way terms will be cascaded together):

T(z) = [ 1 ][z —0.5488] [z +0.6714
z —0.36791Lz - 0.6703]Lz - 0.6703

}[0.013667]

+a . .
b’ as shown in Figure

e . . z
There are at least two valid simulation diagrams for factors such as

3.20a and b. Using the second form, the total simulation diagram for a cascade realization is as
shown in Figure 3.21. Using state variables numbered as shown, the state equations are

0.6703 0.1215 1 0
x(k+1)=10 0.6703 1 x(k) + |0 |u(k)
0 0 0.3679 1
y (k) =0.013667[1.3417 0.1215 1]x(k)
=[0.01834 0.00166 0.013667]x(k) |
+ + + +
a D D a
+ + + +
b |- b
() (b)
Figure 3.20

EXAMPLE 3.12 Parallel Realization A parallel realization of the same transfer function is
now developed using partial fraction expansions. If 7'(z)/z is expanded and that result is then
multiplied by z, the result is

Z V4 V4
T(z) = 0.0305 — 0.07637 ——2—— + 0.011 ——Z——— + 0.0459 ——=——
@) (z — 0.3679) (z — 0.6703)? (z — 0.6703)

Although there is often good reason for going through the extra steps to put an expanded
Z-transfer function into this form, there is no reason to do so in the present context. A direct
expansion of T'(z) in the usual manner gives

0.0074 _ , _ 0.0418 _ _ 0.0281
(z —0.6703)> * (z —0.6703) (z —0.3679)

A simulation diagram of this is shown in Figure 3.22. The state equations are written directly
from this as

T(2)=
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0.6703 1 0 0
x(k +1)=0 0.6703 0 x(k) + | 1 |u()
0 0 0.3679 1

y(k) =[0.0074 0.0418 —0.0281]x(k)

»10,0418
x5 (k) k +

+ 2 xy (k) + y(k)

D D 0.0074
+ +

+ -1

0.6703 | 0.6703

+ x3(k)
D > 0.0281

+

0.3679

Figure 3.22

As in the continuous-time case, the partial fraction procedure has given an A matrix in Jordan
canonical form.

The alternative form of the partial fraction expansion equation leads to exactly the same
final state equations. It would be a good exercise for the reader to verify this. The apparent
direct path from u to y through the gain of 0.0305 will cancel out in the manipulations, and a zero
D term does in fact result. There is no path from input to output with less than a one sample
period delay. ]

3.4.5 State Equations Directly from the System’s Linear Graph [4, 5]

Linear graphs were used in Chapter 1 in connection with system modeling. Recall that
linear graph techniques are not restricted to linear or constant-coefficient systems. A
method of obtaining state equations directly from the system graph is now presented.
This is a powerful method because it avoids many of the intermediate manipulations
with transfer functions and input-output differential equations, which are restricted to
linear, constant systems. Furthermore, the linear graph technique often gives greater
engineering insight because the state variables thus obtained are usually related to the
energy stored in the system. Before describing the method, a few additional definitions
regarding linear graphs are required.

A tree is a set of branches of the graph that (1) contains every node of the graph, (2)
is connected, and (3) contains no loops. A tree is formed from a graph by removing
certain branches. A branch of the graph included in the tree is called a tree branch.
Those branches which were deleted while forming a tree are called links. Each time a
link is added to a tree, one loop is formed. A loop consisting of one link plus a number
of tree branches is called the fundamental loop associated with that link. For a given
tree, if any one tree branch is cut, the tree is separated into two parts. A fundamental
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cutset of a given tree branch consists of that one cut tree branch plus all links that
connect between nodes of the two halves of the severed tree. In other words, if a line is
drawn through the original graph in such a way as to (1) divide the graph into two parts
and (2) cut only one tree branch, then that branch plus all links cut by the dividing line
form a fundamental cutset.

The following procedure is a systematic method of obtaining state equations
from a linear graph:

1. Form a tree from the graph which includes: (a) all across variable (voltage)
sources; (b) as many elements as possible which store energy by virtue of their
across variable (capacitors or the analogous elements in other disciplines), that
is, elements whose elemental equation has the across variable differentiated; (c)
elements with algebraic elemental equations (resistors and their analogs); (d) as
few elements as possible which store energy by virtue of their through variable
and have the through variable differentiated in their elemental equation (in-
ductors and their analogs); and (e) no through variable (current) sources. (f) If
ideal transformers are included in the graph, one side of the transformer should
be treated like a through variable source and the other side like an across variable
source. There will usually be several trees which satisfy these rules.

2. Choose as state variables the across variables of all capacitor-like elements in-
cluded in the tree and the through variables of all inductor-like elements not
included in the tree.

3. The elemental equations for elements involving the selected state variables will be
of the form

x; = function of through or across variables and inputs

Use the compatibility laws (Kirchhoff’s voltage laws) around the fundamental
loops and the conservation laws (Kirchhoff’s current laws) into the fundamental
cutsets to eliminate nonstate variables from these functional equations.

EXAMPLE 3.13 Consider the linear graph shown in Figure 3.23. The symbols L, C, and R; are
used to indicate the type elements in each branch, although they need not be of an electrical
nature.

Using the given rules, the tree of Figure 3.24 is selected. The state variables are the
voltage x; across C and the current x, through L. It is assumed that the elemental equations are
nonlinear,

Cx'l =f1(lc) and LX2 =f2(vs - Vl)

Figure 3.23



100  State Variables and the State Space Description of Dynamic Systems Chap. 3

Figure 3.24

To complete the state description, ic and v, must be expressed as functions of x1, x2, v, and .

The fundamental cutset associated with branch C is given in Figure 3.25 and thus
ic =i, +i;. The cutset associated with R, is given in Figure 3.26, from which i, = x, — i,. The
fundamental loop formed with link R, gives the compatibility equation v, — i; R, = x;, assuming
R, is a linear resistor. If R; is also linear, vi = R1 ;.

Figure 3.25

Figure 3.26

These equations are solved simultaneously to give

-4 Rle — X1
€=k TR TR,
_ RiRyx> + Ruixy’
"TTR+R,
so that the state equations are
. 1 ( Rix> — x1>
== -
i Cf1 ts Ri+R;

¢ =lf <V __R1R2x2+R1x1>
2 L 2 s R1+R2

If L and C are also linear, then letting u; = v, and u, = i; reduces the equations to

_ 1 R,
] _ C(Ri+R;) C(Ri+R)) xl, 0 UC\ u
.x.z Rl R1R2 X2 1/L 0 Uz

"L(Ri+R) L(Ri+Ry)
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If the voltage across R; is considered to be the output y, then

[ R RiR,
Y=NMTH= I TR TR, R +R ¥

3.5 INTERCONNECTION OF SUBSYSTEMS

Suppose that two subsystems i and j have been modeled in state variable format:
X, = A,’X,' + Biui X] = A, X; + B]u}
y; = Cixi + Dilli Y, = ijj + D,-u,-

Suppose that the input to subsystem j is the output from subsystem i—that is, u; = y,—
and assume that y; and y; are both considered outputs of the composite system (see Fig.
3.27). The first subsystem’s state equations remain unchanged, and by substitution the
second set can be written as

X; = Aij + Bj[CiXi + D,-u,-]
yj = Cij + Dj[CiXi + D,-ui]

i

Vi = U l
Uj cmmmmp—{ Subsystem i | Subsystem ] jrmmep );

Figure 3.27

The composite system state vector and output vector are
=[x} vy
Xl Y=y

and they satisfy

| A o] [B
X=|BC, A" |BD "

[e o] [
Y=Ip,c ¢|* |pD, "

Notice that the upper right partitions of the composite system matrices A and C are
both zero. This is because there is no path from subsystem j into i. This substitution
approach can be extended to various interconnection topologies. Consider the four-
subsystem arrangement of Figure 3.28. The overall system has two groups of inputs
and four groups of outputs

u=[ul ul)" and y=[yl yI ¥ yiJ”

The state vector x is also the “‘stacked-up’’ composite of x;, x,, X3, and x,. After tedious
substitution and rearrangement, it is found that the comp031te system can be described
by the state equations
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—— Y]
u Vi + u,
| e Subsystem 1 Subsystem 2 Y2
+4 |
[ o > V3
A 2
U3 emmeepi Subsystem 3 £ .-»('\ﬁu4 Subsystem 4 peemm——Y 4
+ Figure 3.28
%] [ AL 0 L 0 to] [_B i 0 -
k| | BCi | A BG 10| | BD | B, o]
Xl | 0 10 1 Ay L . ¢ . B _____ us
_i4_ _"'B4D2C] :r"‘B4C: ! B4C3 - B4D2C3: LA4 _B4D2D1 ! B4D3 - B4D2D3
and
v] [LC {0 {0 o) [ D i 0
V| | DG | C T DG 10| | DD | DD [“1]
yal |0 1 0 i G 10/ | 0 | Dy _____ us
'y.] |—-D.D,C,| -D,C; D,C;—D.D,C;!Cy -D,D,D,!D,D; — D,D,D;

There is obviously a pattern in these matrices that derives from the subsystem inter-
connection topology, but this is not pursued here. Also note the absence of closed-
feedback loops in both these examples. These and other more complicated inter-
connections are best left until after a more thorough presentation of matrix algebra,
including inversion, is presented in the next chapter. Finally, the interconnection
procedure just presented can yield a nonminimal state realization in some cases. One
such case is when poles and zeros of cascaded blocks cancel. The presumption has been
made here that each subsystem represents a real, physical system whose modes and
signals are to be preserved in the final model. If doing this results in extra states, so be
it. The implications of this shall be made clear in Chapter 11.

3.6 COMMENTS ON THE STATE SPACE REPRESENTATION

The selection of state variables is not a unique process. Various sets of state variables
can be used. Some are easier to derive, whereas others are easier to work with once
they are obtained. These comments all relate to mathematics. Some physical consid-
erations also exist. It may be that the starting information about a system is derived
from an experimentally obtained transfer function, perhaps by fitting straight-line
approximations to a frequency response plot (Bode plot). It could be that an ARMA
model has been constructed by fitting to historical data. The procedure you follow in a
real situation depends upon what data you have at the start. There is often good reason
to select states which have physical significance. These can then at least potentially be
measured, perhaps by adding additional instrumentation.

The state equations consist of two generic parts. The differential or difference
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equation represents the so-called dynamics of the system, and the algebraic output
equation is often referred to as the output or measurement equation. This can be
misleading, since most real sensors have their own inherent dynamical responses. For
example, a temperature sensor invariably has some time constant which prevents the
instantaneous measurement of the temperature state. Whenever these kinds of instru-
ment dynamics are significant, they must be included in the “dynamical” part of the
state equations. That is, they will add states, just as in Section 3.5 when subsystems
were cascaded together.

At the risk of oversimplification, it can be said that control theory started and
flourished using transfer function methods. Then the state variable approach was
developed, and for many years it was synonymous with modern control. Some of the
advantages of the state variable approach are as follows:

1. It provides a convenient, compact notation and allows the application of the
powerful vector-matrix theory, which is developed in the next few chapters of this
book.

2. The uniform notation for all systenis, regardless of order, makes possible a
uniform set of solution techniques and computer algorithms. This is in sharp contrast
with, for example, phase-plane methods, which give great insight into the behavior of
second-order systems.

3. The state space representation is in an ideal format for computer solution,
either analog or digital. In fact, the simulation diagrams used here to write the state
equations are ideal starting points for system simulation. This is important because
computers are invariably needed in the analysis of all but the most trivial systems.

4. The state space approach originally was able to define and explain more
completely many system characteristics and attributes. Currently, most of the advan-
tages and insights gained by use of state variable methods in the early years have been
found to have counterparts in the new and expanded input-output transfer function
methods of multivariable systems. The two approaches are now both being used. They
require somewhat different mathematical tools, but they complement each other in
various ways. Some of the newer aspects of transfer function methods appear in later
chapters, but this book stresses state variable methods and the linear algebra and
matrix theory upon which they depend.
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ILLUSTRATIVE PROBLEMS

Linear, Continuous-Time, Constant Coefficients

Four input-output transfer functions y (s)/u(s) are given. Describe the systems they represent in

state variable form:

(@ U(s +a) (b) (s +B)/(s + )

(C) (S + B)/(Sz + 2§G)S + (.02) (d) (SZ + 2C1 w s + (J.)%)/(Sz + 2@2 w8 + (1)%)
The solutions are obtained by writing the input-output differential equation, drawing the

simulation diagram, and selecting the integrator outputs as state variables.

(a) The differential equation is y + ay =u. This is simulated in Figure 3.294, from which
X=-ox tuandy =x.

(b) The differential equation is y + oy = Bu + . This is simulated in Figure 3.29b, from which
i=—-oxt+(B—-oa)uandy =x +u.

(a) (b)
Figure 3.29 (a) and (b)

(c) The differential equation is y + 2{wy + w’y = Bu + 1, and is simulated in Figure 3.29¢. The
state equations are X; = —2{wx; + X2+ u, X = —w’x; + By, andy =[1 O]x.

: 3
L

Figure 3.29 (c)
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(d) The differential equation is j + 2w,y + w3y = ii + 20 0,4 + i u. Integrating twice al-
lows this to be written as

y=u +j{2§1w1u —2C20)2y +J[w§u —w%y]dt}dt'

The simulation diagram of Figure 3.29d gives X1 = —2{, w2 X1 + x2 + (2§ 01 — 2L wo)u, X2 =
—wixy + (i —@3)u, andy =1 Ox +u. , ‘

12 !

Figure 3.29 (d)

3.2 A system with two inputs and two outputs is described by
Yr+ 391+ 2y, =us +2up + 21, and  J, + 4y, + 3y, =iy + 31y + 1y

Select a set of state variables and find the state space equations for this system.
Integrating each equation twice gives

= ff{_3y1 —-2y2+u1 +2L22+2U2}dtdt'

yzsz{_4};1 —3y2+ ii2+3d2+u1}dtdt'

or

y1= j{_:;yl + 2u, +f[—ZYz+ ur + 2uy] df} dr’

Y2 = U, + f{—4y1 +3u2+f[—3y2+ u1] dt} dt’

The simulation diagram of Figure 3.30 can now be drawn.
The state equations are

X1==3x1+x2+ 2u, -3 1 00 0 2
CXo= =23t U or ‘f(= 0 0 -2 Ox+ 1 Oll
X3 = —4x1 + x4+ 3u, -4 0 01 0 3
Xs=—3x3+u; — 3u, 0 0 -3 0 1 -3
and
=y1=100'0] [00]
y [yz] [0 01 0o 1™
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U, ?

u, Y1

v

Figure 3.30

A single-input, single-out system has the transfer function

y(s) _ 1
u(s) s>+10s*+27s +18

Find three different state variable representations.
(a) The transfer function represents the differential equation y + 10y + 27y + 18y = u. Setting
X1=Y,X2=Y,X3=Y gives

=T(s)

x.l 0 1 0 X1 0
X | = 0 0 1{{x2|+|0ju and y=[1 0 O]x
X3 —-18 =27 -10||xs3 1

(b) In factored form T'(s) = 1/[(s + 6)(s + 1)(s + 3)], and a simulation diagram is given in Figure
3.31.

Figure 3.31
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Then
x'1 -3 1 0 X1 0
X|=| 0 -1 1|lx2|+|0fu and y=[1 0 O]x

(c) Using partial fractions, T'(s) =a/(s + 6) + b/(s + 1) + ¢/(s + 3), where
a=(s+6)T(s)s=-6=1s c=(s +3)T(s)=s=—1
=@+ DTEk--1=1%

so the simulation diagram of Figure 3.32 is obtained.

X3

€
~ 15

L 4

| ul 1
+ - 1 6

Figure 3.32
The state equations are

-3 0 0 1
x=| 0 -1 OIx+|1lu
0 0 -6 1

y=[-s 1w wux

Note that smce Flgure 3.33a and b are equivalent, an alternative form for the matrices B
andCisB=[-; 1 15]’andC=[1 1 1].

(a) (b)

Figure 3.33

3.4 A system input-output transfer function is T(s) = 1/[s*(s + 3)*(s + 1)]. Find a state variable

representation, using the partial fraction expansion of 7'(s).
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The expansion is

T(s) = a/s® + aofs + as/(s +3)* + adl(s + 3)* + as/(s + 3) + as/(s + 1)
where

a1=5> (=0 = 5 4 =4 + P TEMHs - 5=~
=L (0= -2 =L+ T = L

5= (s +3)° T(s)=_s = ‘ilg as=(s + DT(S)s o1 =

Using this expansion gives the simulation diagram of Figure 3.34.

00 | =

2/27

Chap. 3

4

o

11/216
X4
+
3 |
»> ali 178
+
Figure 3.34
From the diagram,
0 110 0o o0 0] [0
00,0 0 0 0 1
.10 0/{-3 1 01 0 0 -
X=19g 0! 0 -3 ll: o Xt]olx (note A is in Jordan form)
000 0 3. 0| |L
(00 0 0 o0;-1J) |1]
y=lr —% —% —is —as X

Find the state space representation for a system described by T'(s) = (s + 1)/(s>+ 7s + 6).

Even though T'(s) = (s + 1)/[(s + 1)(s + 6)], the common factor should not be canceled,
or the system will be mistaken for a first-order system. Rather, use j + 7y + 6y =u + u, from
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. )21 _ '_7 1 X1 1 _
which [-’&2] = [-—6 O] [xz] + [l]u andy =[1 O]x.

Linear Discrete-Time State Equations

A system has three inputs, u,(k), u,(k), and u(k), and three outputs, y:(k), y2(k), and ys(k). The
input-output difference equations are

yilk +3) + 6[ yi(k +2) — ys(k +2)] +2y:1(k +1) +y(k +1)

+ y1(k) = 2y3(k) = uy(k) + un(k + 1) ()
ya(k +2) + 3ya(k + 1) — ya(k + 1) + Sya(k) + ys(k) = ui(k) + ua(k) + us(k) @)
ya(k + 1)+ 2y3(k) — ya(k) = us(k) — uz(k) + Tus(k +1) 6)

Draw a simulation diagram, select state variables, and write the matrix state equations.
Delaying each term in equation (7) three times gives

yi(k) = D{=6[y1(k) — ys(k)] + D[uz(k) = 2y1(k) = y2(k)
+ B[ua(k) = ya(k) + 2ys(0)]1}
Delaying each term in equation (2) twice gives
ya(k) = D{=3y2(k) + y1(k) + Dur(k) + ua(k) + us(k) — 5y2(k) — ys(k)]}
and from equation (3), delayed once,
ya(k) = Tus(k) + D{us(k) — ua(k) = 2ys(k) + y2(k)}

The simulation diagram can be represented as shown in Figure 3.35.
Labeling x; through x as shown in Figure 3.35 gives

-610 00 6 0 0 42]
-201 -10 0 0 1 0 {[uy (k)
_|-1 00 00 2 10 14| uyk
k+D="1 90 -3 1 of®*|g o o|lwd
000 -50 ~1 1 1 -6
| 000 1 0 -2 0 -1 -13

and

[1 0000 0} [0 0 01[u1(k)}
yk)=10 0 0 1 0 Olx(k)+|0 0 O} u(k)
000001 0 0 7]{us(k)

‘A system is described by the input-output equation

y(k +3)+2y(k +2)+4y(k +1) +y(k) = u(k)

This case is analogous to the simplest continuous-time problem where the input is not differ-
entiated. Consequently, state variables can be selected as the output y(k) and the output
advanced by one and by two time steps. That is,

x1(k) =y (k), x(k) =y (k +1), x3(k) =y(k +2)
Then .
xlk +1) = xa(k), xa(k + 1) = x3(k)
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6
+
u; (k) Delay Xy . )’1(/();
* 3
N\
uz(k) > Delay X44 )2(/\);
2 e 9
uy (k) s Delay Xg +:f\ d .V:x(k):
+
» 7

Figure 3.35

The final component of the state vector equation comes from the original difference

equation and is

xs(k + 1) = =2x3(k) — dxa(k) — x2(k) + u (k)

Although its use is unnecessary in this simple problem, a possible simulation diagram is shown in

Figure 3.36.

u(k) S~

Delay

X3 (k)

Delay

X, (k)

x, (k)

y(k)

Delay

Figure 3.36

>
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U(l) e by (1) — l;l(t) = [D
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The state equations for this example are

xl(k + 1) 0 1 0 xl(k) 0 k
wk+) =] 0 0 1| x®]|+|oF®
X3(k + 1) —1 -4 -2 x3(k) 1

y(k)=[1 0 0Jx(k)+ Ou(k)

Time-Varying Coefficients

Obtainza state variable representation for the linear system with time-varying coefficients
y+te “y+tey=u
Letx; =y, x>, =y, then X, =Y, so

[;;] - [—2’ —el‘ﬂ] [2] + {?]u and y=[1 Ox

Apply the integration method of Section 3.4.3 to find a state variable model for
y ta()y =bo(H)u + b u

Solving for y and integrating once gives
y() = fbludt + f[bou —ay)dt

Using formal integration by parts on the first integral gives [ by i dt = by u(f) — [ byu dt, so that
y(#) =biu + [[bou —ay — b,u] dt. The simulation diagram of Figure 3.37 is drawn from this.

b
}:
@, y()

y +
¥+

a(t) |-

Figure 3.37

Using the integrator output as x =y — b, u gives the state equations
2(6) = ~a()x (1) + [bo() = ba(t) = ba(Da(B)]u ()
y () = x (1) + ba()u ()
Find a state variable model for the second-order time-varying system
¥y +ai(t)y + ao(t)y = bo(H)u + bi(t)u + ba(f)ii
Solving for y and integrating twice gives
y(@) = ”{bou —aoyydtdt’ + f{f{blu —aly]dt}dt’ + ”bzu‘dtdt’
The first integrand on the right contains no derivatives and therefore is in final form. The second

term on the right contains first derivatives of y and u, so integration by parts is needed to
eliminate them. The innermost integral becomes
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f[b1u —al)"]dt =b1u —a,y —[[l;lu _aly]dt

Since the third term in the expression for y(f) contains #, integration by parts must be used
twice.

”bzadtdz'=f{b2u —Jbzudt}dt'
=b,u —fl;zudt —f[ﬁzu —fl;zudt] dt’

Recombining all terms into one nested integrator equation gives
y()=bu +J'[b1u —ay —2b,u +f[bou — a0y —biu+ay +132u]dt}dt'
The simulation diagram in Figure 3.38 is drawn from this. The state equations are

-a1(t) 1 b 2b2 a bz
[ ~[ao(t) — ()] o} [bo — by + b, — bafao - al)}“(’)

y@=[1 0]x(®)+ b()u(?)

. . + ‘ +
u(t) by~ by + by : =

X2 X2

y()

ao—al o L

- Figure 3.38

Linear Graph Method

Write the differential equations for the circuit of Figure 3.39 in state variable form Consider the
voltage across R; as the output. '
The tree selected is shown in Figure 3.40.
- The state variables are selected as the capacitor voltage x; and the inductor current x;, so
that X, = (1/C)ic, X, = (1/L)(v1 = v2). To express ic, vi, and v, in terms of x1,x, and inputs, use
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R3 xz
AVAYAY, Uy - Ug Xy
L R, . 1
/IO —\\V\V—¢
. R R C ‘H‘
iy [ﬂ R, R, Iz =C § ! : T
Figure 3.39 Figure 3.40
ic =ir, Tt Ir, (cutset equation for tree branch C)
gy =1~ Irs— X2 (cutset equation for tree branch R;)
iR, = X2+ I — iR, (cutset equation for tree branch R,)
Rsir,=vi—x; (fundamental loop equation using link R3)
Riyir,=v2—x1 (fundamental loop equation using link Ry)
=Ry iR1
v2=R, iR2

These are seven equations with seven unknowns. Solving for all the resistor currents gives

i = R; . + X1 _ R;x; o= — X1 _ Rix, + R. i,
Ri"R,+Rs' Ri+R; R.+R; R3 Ri+Rs Ri+R;s Ri+Rs
X1 Rix, R.i, . X1 R;x, Ry i,

R R +R. TR, +R. R,+R, IRy =

"R:+Ry R:+Ri R:+R,
Using these to determine ic, v, and v, gives
—(R1+R2+R3+R4) R2R3"R1R4
C(Ri+R3)(R;+Rs) C(R;+Ry)(Ri+R5)
(RiRi—R:Rs) 1 [ RiR; R2R4] X2

x'l X1

LR +R)(R:+R) L|R+RYR,+R,
R1 - R2
C(Ri+R;) C(Rs+R.)

R1 R3 —R2R4 Uz
L(Ri+Rs) L(R, +Ry)

U
+

where u;, =iy, u, = i, are the inputs. The output is

—pi _|_—Rs —RiRs RiR, ]
y—Rasz—[R1+R3 R1+Rz]x+[R1+R3 0]u

3.12  Describe the hydraulic system of Problem 1.4, page 19, in state variable form.
The linear graph is redrawn as Fig. 3.41 using the analogous RLC symbols for the
elements.
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Q.

Figure 3.41

The tree is shown in heavy lines. The state variables are chosen as the pressures x; = P,
X2 = Ps, X3 = Pg and the flow rates X4 = Qz, Xs — Q1. Then x1 = (1/C1) Q3, )Ez = (1/C2) Q4, x'3 =
(1/C3) Qs, )&4 = (1/[2) P35, x.5 = (1/11) P45.

The last two are the easiest to complete and this is done first: Pss= P, — R3x4— X2,
P46=P1—R1X5—X1.

In order to express Qs, O, and Qs in terms of the state variables, the following simultane-
ous equations must be solved:

1 0011 0 0|25 Xs
01 0/0 1 00 X4
0.0 110 0 _=1/|Qs|_|=xRs
0 0 0! 1 1 —-1)Os| 0
0 0 0; 0 R:i Rs[Ds X2~ X3
LO 0 0 : "Rz R4 0 Q7 X2 — X1

The required solutions are

Q3 =Xxs5+ Z]&“[_R4(X2 - X3) + (R4 + R5)(X2 - xl)]

Qs=x4+ %[‘Rz(xz —x3) = Rs(x2 — x1)]

Qsg=— %1 + %[(R4 + Rz)(xz _xs) - R4(x2 - xl)]

where A= R,;R;+ R4sRs+ R.Rs. Using these relations allows the system equations to be
put in the form x = Ax + Bu, where u=[P, P,]". The output is Qr =y and is given by
y=[0 0 1/Rs 0 O]x.

Nonlinear State Models

A schematic of a motor-generator system driving an inertia load J, with viscous damping b, at an
angular velocity (2 is shown in Fig. 3.42. Derive a state space model of this system.
The pertinent equations are

1. Lf%f + Ryiy = ¢ 4. T = Kpin
2. e, =1 (if) 5. T=JQ+bQ

3. ¢, —em = (Ry + Run)im + (L, +L,,,)‘Z—'t" 6. em=K,Q
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A
R,
€y
iy
L,

The simulation diagram of Fig. 3.43 can be constructed directly from these equations.

115

R,, La R, L, Fixed field

T [

Figure 3.42

1 ly .
T 1: ﬁ Sy)
— R,
b
Figure 3.43
Selecting integrator outputs as state variables, x; = () (indicates kinetic energy in load),
x> = i,, (indicates magnetic energy in motor inductance), and x; = ir (indicates magnetic energy in
the generator field), and letting the input be e, = u(¢) gives
LT T b m T
X1 - 7x1 + 7x2
. K R, +R f (X3)
x - — m _ g m
’ L+ L, T L+L,2 L, L,
: R u
X3 - X3 +
s o o Lf Lf =
If it can be assumed that the generator characteristics are linear, i.e., if e, = K,i;, then the above
equations can be written in the standard linear form x = Ax + Bu. If the speed (1 is considered to
be the output y, theny =[1 0 O0]x.
3.14 Develop a state space model of a rocket vehicle (Figure 3.44) moving vertically above the earth.

The vehicle thrust is T = Kri1, where m is the rate of mass expulsion and can be controlled.
Assume a drag force is given as a nonlinear function of velocity.

Letting the instantaneous mass of the vehicle be m (f) and letting D = f(h) be the drag,
Newton’s second law gives the dynamic force balance mh = T(f) — f(h) — [m (t)kzgol(k + h)?],
where an inverse square gravity law has been assumed. A simulation diagram is given in Figure
3.45.



3.15

116  State Variables and the State Space Description of Dynamic Systems Chap. 3

Thrust 4 m(t)
m(t) g(h) k*go
, : k+hE [
Weight | ®
/ v il(fo) h (1)
} T 1
+ —— K |— o
h(1)  Drag u=rh _
D fih le
yod
Figure 3.4 " Figure 3.45

This is a nonlinear, time-variable system, but as before, outputs of the integrators are
selected as state variables; x; = h, x, = h, x; = m. Then

)21 X2

¥ = 5&31@2~ga0 :
3

)53 u

In this case it is not possible to obtain the linear form x = Ax + Bu, but the preceding result is of
the more general form x = f(x, u, 7).

Derive the equations of motion for a satellite rotating in free space under the influence of gas
jets mounted along three mutually orthogonal body-fixed axes.

Let w=[w, ®, ;] be the three components‘of angular velocity expressed with re-
spect to the body-fixed axes. Let T=[7, T, T.]" be the three components of input control
torques. Newton’s second law, as applied to-a rotating body, states that dH/dt = T, where H is
the angular momentum vector, and the time rate of change d/dt is with respect to a fixed inertial
reference. The vector H can be expressed in body coordinates as H=[L o, Jw, Jo.]%,
where the constants J; are moments of inertia of the body and x, y, z are assumed to be principal
axes of inertia. The inertial rate of change dH/dt is related to the apparent rate [H] as seen by an
observer moving with the body by dH/dt = [H] + o X H. Therefore,

T.=Jo, + (), —J)w,o, T,=J,0, +({;—])o, 0,
712 =Jz(bz + (Jy —Jx)wxwy ‘ ‘

These equations are often referred to as Euler’s dynamical equations. Rearranging gives

. Jy - Jz . ‘-Tx-
Wy Jx Wy, W; 7;
IRV AR T,
w, | = "]'y w,w, | + ?’—y—
. e Jx"'.’y* Tz |
(O 73 7 Wy Wy J—

-

This obviously is in the state variable form and is linear in the control variables 7; but nonlinear
in the state variables w; due to the products w; w;.
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Apply the results of the preceding problem to the satellite of Figure 3.46, which is spin stabilized
about the x axis. That is, w, = § is a large value, w, and w, << § represent small wobbling errors.
Assume the satellite is rotationally symmetric about the x axis. Find a linear approximation for
the state equation.

Figure 3.46

Due to symmetry J, =/, S0 Wy = 7}/Jx. If T. =0, in the absence of any other torques, w, =
constant. If the definition [(J, — J,)/;]S = Q is introduced, then the linear relations between the
control torques T, T, and the small wobbling errors w,, . are

(;)y _ 0 —Q (x)y 1 ) Ty
o] 710 0 Jlo.|TT|T.
A nonlinear time-varying second-order system is described by
y+g(yyu)+f(y,Hu=0

Assunie that the function f( ) is sufficiently smooth so that the first derivatives with respect to
each of its arguments exist and are well behaved. Derive a state variable model for this system.
Solving for y and integrating twice gives

y(t)=jf —g(y,y,u, 'r)d'rdt’—jff(y, Tudtdt’

= [[eyu mdrar ~ [y euar + [ [uaparazar

The chain-rule expanded form df/dt = [of/dy]y + [of/d¢] is used in the preceding equation, which
is used to draw the simulation diagram shown in Figure 3.47. The blocks in this diagram are
general functional evaluation boxes, and the outputs depend upon all the signals shown as inputs
in a way described by the equation inside the box. The state equations cannot be written as
simple matrix products as in the linear case.

.fl = X2 —f(xl, t)u(t)
x.z = u(t)[af/at + x5 Bf/axl] - g(xl,xz, t, u)

T ¥

Fxy, Du(@)

ulx,df/dx, + 3f/ o1
—g(xy, X9, u, 1)

1

U (1) e——pemaip y(t)

Figure 3.47
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and
y=[1 0x

Draw a simulation diagram and express the following nonlinear, time-varying system in state
space form:

y(k+3)+yk +2)y(k +1) + o sin (wk)y*(k) + y (k) = u(k) — 3u(k + 1)
Rewriting the equation as
y(k +3)+3u(k +1) =u(k) —y(k +2)y(k +1) ~ a sin (0k)y*(k) — y (k)

allows the simulation diagram to be drawn as shown in Figure 3.48.

><A

vik+3)+ x‘(k)(k:)
Skt )y |2k Delay |2 Delay gt
5_" K yk+2)

A 4
w

J\,+ >< & a sin (wk) lo—d

Figure 3.48

Labeling x; through x3 as shown, the state equations are

x1(k + 1) = x2(k)

x2(k + 1) = x3(k) — 3u (k)

x3(k + 1) = —x2(k)xs(k) + 3x2(k)u (k) — o sin (wk)xi(k) — x1(k) + u (k)
and the output equationis y(k)=[1 0 O0]x(k).

PROBLEMS

Convince yourself that both Figure 3.49a and b represent the system described by
y+ay +by=u

and find the matrices A, B, C, and D for each case.
Find a state space representation for the system described by

yi+t3(nity)=u
yz + 4_)}2 + 3y2 = U
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Figure 3.49

3.21 Find a state space representation for the system described by
Vit +t2(yi—y)=ut+ i

)32 + 3(y2 _y1) =u, + 2u1
3.22  Find the state variable equations for a system described by

T(s)=1/(s>+8s”+ 135 + 6)

using the partial fraction expansion.
3.23  Describe the circuit of Figure 3.50 in state variable form.

L L
S A

Figure 3.50

L,
B0

L,

Q20

3.24  Represent the circuit of Figure 3.51 in state variable form. Assume that the amplifier is an ideal
voltage amplifier, that is vs = Kv, and the amplifier draws no current. The transformer ratio is N.
The output is the voltage across Cs.

R,
b |«

Figure 3.51

3.25  Use as state variables the voltages x; and x, and the current x5 as shown in Figure 3.52. Derive
the state equations, letting v; = u; and i; = u,.
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Figure 3.52

3.26 A system has two inputs and two outputs. The input-output equations are
ya(k +1) + 4[y2(k) = y(k)] = 2ua(k) — ur(k)

Select state variables and write the vector matrix state equations.

3.27 Draw two different simulation diagrams and obtain two different state variable representations
for the system described by

y(k +2)+3y(k + 1) +2y(k) =u(k)



