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Preface

This is a text on state variable modelling, analysis and control of dynamical systems. The
analytical approach to many control problems consists of three major steps: (1) develop
an idealized mathematical representation of the real physical system, (2) apply mathe-
matical analysis and design techniques to the model and (3) interpret the mathematical
results in terms of implications on the real, physical system. If the resulting implications
are not acceptable or do not seem to match reality or experimental observations, one or
more of the above steps may need to be modified and repeated. This book attempts to
illustrate these steps and some of the tools that may be involved. While most of the steps
are mathematically based, this is intended as an engineering text. No abstract theorems/
proofs are included just to enhance the mathematical elegance.

The first two chapters are intended as a review of prerequisite introductory
courses on modelling and control of physical systems using primarily a transfer function
approach. These are not intended to be complete, stand-alone treatments. Rather, a
distilled summary of the essentials is presented. It has been observed that students often
get bogged down in the myriad of details of these prerequisite courses, thus losing sight
of the big picture. The intent here was to place the major points in perspective before
going on to the state variable approach.

State variables, state vectors, state space and linear system matrices are intro-
duced in Chapter 3. Methods of obtaining state variable models from other system
descriptions are provided. In previous editions this chapter came after a series of
chapters on matrix theory and linear algebra. The present, inverted approach provides
early motivation for the need to master the mathematics of matrices and linear algebra.
It also allows earlier introduction of control-related examples, which appear throughout
the subsequent chapters. Chapters 4 through 8 provide a thorough development of the
needed mathematical tools. The treatment has been considerably revised, based on
experience gained with previous editions, as well as helpful comments from reviewers.

xvii



Xviii Preface

The depth to which the mathematical topics need to be pursued depends upon the
preparation of the reader and the level of understanding needed. My recent experience
has been that most students approach this book after having had a first course in linear
algebra. It still appears fruitful to cover Chapters 4 through 8 fairly carefully, and
students gain new insights from the large number of engineering-motivated examples.
Not all of the more abstract topics need to be covered in an undergraduate course,
however. A more advance graduate level approach would merely skim the early sections
of these chapters, but put more emphasis on the extensions and proof found in the
problems.

In addition to reversing the order of presentation mentioned above, this book
deleted some interesting but peripheral topics, to make room for new material which is
more central to the controls field. Additional topics now covered include QR decom-
position of a matrix, which can be used to iteratively solve for eigenvalues and eigenvec-
tors. More importantly, it is useful in finding the Kalman controllable and/or observable
canonical forms. These provide a very satisfactory method of determining minimal
realizations in Chapter 11. A portion of the material on matrix fraction description of
systems, and application to controller/observer design is now included. This Diophan-
tine equation approach supplements and provides an insightful alternative to the state
variable approach. The treatment of optimal control has been revised to emphasize the
linear quadratic problem and the associated Riccati equations. The question of robust-
ness is addressed in an introductory manner. Two extensions to the LQ theory are
introduced; projective controls is a method of designing low order controllers which
preserve the dominant modes of a full order optimal controller, and frequency-weighted
cost functions which lead to dynamic controllers capable of coping with modelling
approximations.

More emphasis is given to stability of time varying linear systems and a new
chapter provides some tools for approaching nonlinear system problems.

As in the previous editions, the problems, especially the illustrative problems for
which complete solutions are given, should be considered as an integral part of each
chapter. Many useful results are derived and presented only in these problems.

This third edition has evolved from the first two, and thus all former users who sent
comments or filled out review forms for Prentice Hall have contributed to this work.
Those individuals who contributed more directly to the preparation of the previous
editions have had a lasting impact here too. During the manuscript preparation, student
feedback from several classes was very helpful. Steven Crammer, Saeed Karamooz and
L. Lane Sanford deserve special thanks. Professors John Boye and George Schade from
Nebraska, Hal Tharp of Arizona and Sahjendra Singh of UNLV provided comments or
suggestions. Production editors Patrice Fraccio and Bayani Mendoza de Leon who
handled the editorial supervision and interior design of the book, and the five anony-
mous reviewers who provided detailed comments to Prentice Hall editor Tim Bozik, are
especially thanked. Finally, I wish to acknowledge Mailliw Nagorb for typing the
‘manuscript.

William L. Brogan



=

Background and Preview

1.1 INTRODUCTION

Control theory is often regarded as a branch of the general, and somewhat more
abstract, subject of systems theory [1]. The boundaries between these disciplines are
often unclear, so a brief section is included to delineate the point of view of this book.

In order to put control theory into practice, a bridge must be built between the
real world and the mathematical theory. This bridge is the process of modeling, and a
summary review of modeling is included in this chapter [2, 3].

Control theory can be approached from a number of directions. The first sys-
tematic method of dealing with what is now called control theory began to emerge in
the 1930s. Transfer functions and frequency domain techniques were predominant in
these “classical” approaches to control theory. Starting in the late 1950s and early
1960s a time-domain approach using state variable descriptions came into prominence.

For a number of years the state variable approach was synonymous with ‘“modern
control theory.” At the present time the state variable approach and the various
transfer function-based methods are considered on an equal level, and nicely com-
plement each other. Distinctions exist, and the major one appears to be in the kinds of
mathematical tools used. The state variable approach uses linear algebra based on the
real or complex number field. The newer multivariable transfer function approaches
involve the algebra of polynomial matrices and related concepts. By defining the
number field properly, the major mathematical tool is once again linear algebra, but
on a somewhat less familiar level (see, for example, Sections 6.3.1 and 6.3.2). Some of
these concepts are pointed out and used throughout this book. The older classical
control theory point of view, using single-input, single-output transfer functions is

1 Reference citations are given humerically in the text in brackets. The references are listed at the end
of each chapter. :
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reviewed briefly in Chapter 2. However, for the most part this book is devoted to the
state variable point of view.

1.2 SYSTEMS, SYSTEMS THEORY, AND CONTROL THEORY

According to the Encyclopedia Americana, a system is ‘... an aggregation or assem-
blage of things so combined by nature or man as to form an integral and complex
whole . . ..” Mathematical systems theory is the study of the interactions and behavior
of such an assemblage of “things” when subjected to certain conditions or inputs. The
abstract nature of systems theory is due to the fact that it is concerned with mathe-
matical properties rather than the physical form of the constitutent parts.

Control theory is more often concerned with physical applications. A control
system is considered to be any system which exists for the purpose of regulating or
controlling the flow of energy, information, money, or other quantities in some desired
fashion. In more general terms, a control system is an interconnection of many com-
ponents or functional units in such a way as to produce a desired result. In this book
control theory is assumed to encompass all questions related to design and analysis of
control systems.

Figure 1.1 is a general representation of an open-loop control system. The input,
or control, u(?) is selected based on the goals for the system and all available a priori
knowledge about the system. The input is in no way influenced by the output of the
system, represented by y(¢). If unexpected disturbances act upon an open-loop system,
or if its behavior is not completely understood, then the output will not behave
precisely as expected.

Another general class of control systems is the closed-loop, or feedback, control
system, as illustrated in Figure 1.2. In the closed-loop system, the control u(¢) is
modified in some way by information about the behavior of the system output. A
feedback system is often better -able to cope with unexpected disturbances and uncer-
tainties about the system’s dynamic behavior. However, it need not be true that
closed-loop control is always superior to open-loop control. When the measured
outputs have errors which are sufficiently large and when unexpected disturbances are
relatively unimportant, closed-loop control can have a performance which is inferior to
open-loop control.

EXAMPLE 1.1 Inorder to provide financial security for the retirement years, a person arranges
to have $300 per month invested into an annuity account. The system “input” each month is
u(t) = $300. The system output y (¢) is the accrued value in the account. Since u () is not affected
by the current economic climate or by y (¢), this is an open-loop system. : |

Disturbances

|

Goals | Control | u(r).| The y(t)
| law 7| system Figure 1.1 An open-loop
control system.
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Disturbances

l

Goals
. Control u(r) |  The y (1)
law system
Sensors
I Figure 1.2 A closed-loop
Measurement errors control system.

EXAMPLE 1.2 Another person with the same goal of financial security plans to invest in the
stock market, by attempting to implement the strategy of buying-low and selling-high. The input
u(t) at any given time is influenced by the perceived market conditions, the past success of the
stock account, and so forth. This is a feedback or closed-loop system. ]

EXAMPLE 1.3 A typical industrial control system involves components from several engi-
neering disciplines. The automatic control of a machine shown in Figure 1.3 illustrates this. In
this example, the desired time history of the carriage motion is patterned into the shape of the
cam. As the cam-follower rises and falls, the potentiometer pick-off voltage is proportional to
the desired carriage position. This signal is compared with the actual position, as sensed by
another potentiometer. This difference, perhaps modified by a tachometer-generated rate sig-
nal, gives rise to an error signal at the output of the differential amplifier. The power level of this
signal is usually low and must be amplified by a second amplifier before it can be used for
corrective action by an electric motor or a servo valve and a hydraulic motor or some other prime
mover. The prime mover output would usually be modified by a precise gear train, a lead screw,
a chain and sprocket, or some other mechanism. Clearly, mechanical, electrical, electronic, and

hydraulic components play important roles in such a system. |
Ik External .
l"j-_—' energy Gear Moving tool
source box carmage

Differential Power f_l _E_ T e e e e e
amplifier amplifier ) = Lead
Prime = [l - screw
>_‘D— mover "% Tach I
= Tool
=~ bit
) Naw¥4

Rotating Rate feedback
cam

Position feedback

Figure 1.3
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Continuous
outputs

Numeric .| Continuous
inputs Computer >1D/A system

A/D =

Figure 1.4

EXAMPLE 1.4 The same ultimate purpose of controlling a machine tool could be approached
somewhat differently using a small computer in the loop. The continuous-time, or analog,
signals for position and velocity must still be controlled. Measurements of these quantities would
probably be made directly in the digital domain using some sort of optical pulse counting
circuitry. If analog measurements are made, then an analog-to-digital (A/D) conversion is
necessary. The desired position and velocity data would be available to the computer in numeric
form. The digital measurements would be compared and the differences would constitute inputs
into a corrective control algorithm. At the output of the computer a digital-to-analog (D/A)
conversion could be performed to obtain the control inputs to the same prime mover, as in
Example 1.3. Alternately, a stepper motor may be selected because it can be directly driven by a
series of pulses from the computer. Figure 1.4 shows a typical control system with a computer in
the loop. |

1.3 MODELING

Engineers and scientists are frequently confronted with the task of analyzing problems
in the real world, synthesizing solutions to these problems, or developing theories to
explain them. One of the first steps in any such task is the development of a mathe-
matical model of the phenomenon being studied. This model must not be over-
simplified, or conclusions drawn from it will not be valid in the real world. The model
should not be so complex as to complicate unnecessarily the analysis.

System models can be developed by two distinct methods. Analytical modeling
consists of a systematic application of basic physical laws to system components and
the interconnection of these components. Experimental modeling, or modeling by
synthesis, is the selection of mathematical relationships which seem to fit observed
input-output data. Analytical modeling is emphasized first. Some aspects of the other
approach are presented in Chapter 6 (least-squares data fitting).

1.3.1. Analytical Modeling

An outline of the analytical approach to modeling is presented in Figure 1.5. The steps
in this outline are discussed in the following paragraphs.

1. The intended purposes of the model must be clearly specified. There is no single
model of a complicated system which is appropriate for all purposes. If the
purpose is a detailed study of an individual machine tool, the model would be
very different from one used to study the dynamics of work flow through an
entire factory.
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Modeling
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-
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T

Manipulate
equations

T

Final form of
mathematical model

Modify model
if necessary

L

T

Analyzé. compare
with real world

I |

(b) Steps in modeling

Figure 1.5 Modeling considerations.

2. The system boundary is a real or imagined separation of the part of the real world
under study, called the system, and the rest of the real world, referred to as the
environment. The system boundary must enclose all components or subsystems
of primary interest, such as subsystems A, B, and C in Figure 1.5a.

A second requirement on the selection of the boundary is that all causative
actions or effects (called signals) crossing the boundary be more or less one-way
interactions. The environment can affect the system, and this is represented by
the input signal S;. The system output, represented by the signal S¢, should not
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affect the environment, at least not to the extent that it would modify S;. If there
is no interest in subsystem A, then a boundary enclosing B and C, and with inputs
S, and §4, could be used. Subsystem C should not be selected as an isolated
system because one of its outputs Ss modifies its input S; through subsystem B.
The requirement is that all inputs are known, or can be assumed known for the
purpose of the study, or can be controlled independently of the internal status of
the system.

EXAMPLE 1.5 The purpose of the models of Figure 1.6 is to study the flow of work and
information within a production system due to an input rate of orders. These orders could be an
input from the environment, as in Model I. If the purpose is to study the effects of an advertising
campaign, then orders are determined, at least in part, by a major system variable. In this case
the rate of orders should be an internal variable in the feedback system of Model II. n

Orders
m—

3.

All physical systems, whether they are of an electrical, mechanical, fluid, or ther-
mal nature, have mechanisms for storing, dissipating, or transferring energy, or
transforming energy from one form to another. The third step in modeling is one
of reducing the actual system to an interconnection of simple, idealized elements
which preserve the character of these operations on the various kinds of energy.
An electric circuit diagram illustrates such an idealization, with ideal sources
representing inputs. In mechanical systems, idealized connections of point
masses, springs, and dashpots are often used. In thermal or fluid systems, and to
a certain extent in economic, political, and social systems, similar idealizations
are possible. This process is referred to as physical modeling. The level of detail
required depends on the type of information expected from the model.

If the physical model is properly selected, it will exhibit the same major character-
istics as the real system. In order to proceed with development of a mathematical
model, variables must be assigned to all attributes of interest. If a quantity of
interest does not yet exist and thus cannot be labeled, a modification will be
required in Step 3 in order to include it. The classification of system types is
discussed in the next section. This book deals mainly with deterministic lumped-
parameter systems. In all lumped-parameter systems there are basically just two
types of variables. They are through variables (sometimes called path variables or
rate variables) and across variables (sometimes called point variables or level

External
effects
Production | Output Responseto | Orders Production Output
system ’ advertising system >
Adbvertising $
(a) Model 1 (b) Model 11

Figure 1.6
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variables). Through variables flow through two-terminal elements and have the
same value at both terminals. Examples are electric current, force or torque,
heat flow rate, fluid flow rate, and rate of work flow through a production
element. Across variables have different values at the two terminals of a device.
Examples are voltage, velocity, temperature, pressure, and inventory level.

5. Each two-terminal element in the idealized physical model will have one through
and one across variable associated with it. Multiterminal devices such as trans-
formers or controlled sources will have more. In every device, mathematical
relationships will exist between the two types of variables. These relationships,
called elemental equations, must be specified for each element in the model. This
step could uncover additional variables that need to be introduced. This would
mean a modification of Step 4. Common examples of elemental equations are the
current-voltage relationships for resistors, capacitors, and inductors. The form of
these relations may be algebraic, differential, or integral expressions, linear or
nonlinear, constant or time-varying.

6. After a system has been reduced to an interconnection of idealized elements, with
known elemental equations, equations must be developed to describe the inter-
connection effects. Regardless of the physical type of the system, there are just
two types of physical laws that are needed for this purpose. The first is a state-
ment of conservation or continuity of the through variables at each node where
two or more elements connect. Examples of this basic law are Kirchhoff’s node
equations, D’Alembert’s version of Newton’s second law, conservation of mass
in fluid flow problems, and heat balance equations. The second major law is a
compatibility condition relating across variables. Kirchhoff’s voltage law around
any closed loop is but one example. Similar laws regarding relative velocities,
pressure drops, and temperature drops must also hold. Both of these laws yield
linear equations in through or across variables, regardless of whether the elemen-
tal equations are linear or nonlinear. This fact is responsible for the name given
to linear graphs, an extremely useful tool in applying these two laws.

EXAMPLE 1.6 Consider the system with six elements, including a source vo, shown in Figure
1.7. Each element is represented as a branch of the linear graph, and the interconnection points
are nodes. Each node is identified by an across variable v;, and each branch has a through
variable, called f;, with the arrow establishing the sign convention for positive flow. Let

b (number of branches) = 6
s (number of sources) =1
n (number of nodes) =4

Two unknowns exist for each branch, except source branches have a single unknown.
Thus there are 2b — s = 11 unknowns, and 11 equations are needed. They are b — s =5 elemen-
tal equations, n — 1 = 3 continuity equations (node 1 is used as a reference and is redundant)

fo—fi—f2=0, L—f—fa=0, fa—fs=0
and b — (n — 1) = 3 compatibility (loop) equations. Letting v., = v, — vs, these are
Vo1 — Vo= O, Va3 + Vi1 + Viz2 :—— 0, V34 + Va1 + Viz = O

These 2b — s equations can be used to determine all unknowns. 1
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b Figure 1.7

7. This step consists of manipulating the elemental, continuity, and compatibility
equations into a desired final form. A further discussion of this step is presented
in Section 1.5.

8. Item 8 of Figure 1.5 is the end result of the modeling prdcess. It may be arrived at
by a process of iteration, as mentioned in Step 9.

9. The model developed in the preceding steps should never be confused with the
real world system being studied. Whenever possible, the results produced by
the real system should be compared with model results under similar conditions.
If unacceptable discrepancies exist, the model is inadequate and should be
modified.

1.3.2 Experimental Modeling

Time series models: autoregressive, moving average, and ARMA models.
In some experimental modeling situations the system structure may be based solidly on
the laws of physics, and perhaps only a few key parameter values are uncertain. Even
these unknown parameters may be known to some degree. Upper and lower bounds or
the mean and variance or other probabilistic descriptors may be available at the outset.

In other situations, notably in areas of socioeconomic or biological systems, the
only thing available is an assumed model form, which is convenient to work with and
which does a reasonable job of fitting observations. All the coefficients are usually
unknown and must be determined in these cases. When this situation applies, the
autoregressive moving average (ARMA) model is frequently used. A brief overview
follows.

A large variety of technical applications can be framed in a similar mathematical
form. Let y (k) be some variable of interest at a general time #,.. This might be the price
of a stock or similar commodity. This is the case of an economic time series problem.
In another situation y (k) could be the magnitude of the acoustic waveform of speech,
and the interest might be in either speech coding or synthetic speech generation. The
major interest here is in the identification of unknown systems, and y (k) is the sys-
tem output. In all these cases it is assumed that the next value in the time series,
y(k + 1), is influenced by the present value y (k) and past (lagged) values y (k — 1),
y(k = 2),...,y(k — n). In addition, the signal y(k + 1) is normally influenced by one
or more current and past input signals w;(k + 1), u; (k —j)forj =0,1,2,...,p — 1.
It is assumed here that the time series is generated by a linear difference equation with
a single input,
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yk+1)=ayk)+ay(k —1)+ay(k =2)+---+a,y(k —n)
+bou(k + 1)+ bu(k)+ -+ byu(k +1-p)+v(k) (1.1)

where v (k) is a random noise term. The identification problem is thus reduced to the
estimation of the system coefficients

e:[ao al...an bO bl...bp]T (1.2)

from a series of measurements of the inputs « (i) and the outputs y (i). Equation (1.1)
can be recast as

yk+1)=[yk) ytk=1)---u(k +1) wuik)---]0+v(k)
= C(k)0 + v (k)

If the measurements of past values of y (i) and u (i) are sufficiently accurate, C(k) can
be assumed known. Equation (7.3) is then in a form suitable for recursive least-squares
estimation of the unknown parameters 0. A series of equations can be stacked into one
larger equation:

(y(k+1) ] [Ck) 1 [vk
y(k +2) Clk +1) vik +1)

=l 0+| (1.4)

(1.3)

yk+N)] Lok +N-1)] vk +N-1)]

Equation (I.4) is suitable for use in a batch least-squares estimation procedure for
determining approximate values for the unknown constant parameters 8. Both batch
and recursive least-squares solutions are presented in Chapter 6.

The performance of such a parameter estimation scheme is dependent upon the
input signal. Sometimes, specially selected input signals can be used during the identi-
fication process. In other situations only the normal operating signals can be used. It
may be tolerable to add a small sinusoidal component, called a dither signal, to the
input to aid the identification process. It is intuitively clear that the input must excite
those modes of the system that are intended for identification. That is, if a constant
input is used and if the system has been operating sufficiently long for steady state to
be reached, little about the system can be identified, other than its steady-state gain.
The input must be “‘sufficiently exciting” or *“‘sufficiently rich” if the identification is to
be successful.

It is informative to take the Z-transform of Eq. (I.1). Z-transforms are defined
briefly and used in Problems 1.15 through 1.20. For present purposes it suffices to view
the variable z™' as a time-delay operator. Then Eq. (I.I) can be written in delay
operator—i.e., transformed—form as

y@)Nz—a—az' —az?— - —a,z"|=[boz + by + bzt 4+ -+ + b,z " Vu(z)
Then the input-output transfer function can be written
y(z)  botbiz7'+ -+ bz
u(z) 11— (az™ '+ -+ + a,z”"*Y)

—HE) L.5)



10 Background and Preview Chap. 1

Some commonly used nomenclature [4] is now defined. If y (k + 1) depends only
on the u terms and not on past y terms, all the a; coefficients would be zero and the
transfer function then would have zeros, but all p poles would be at the origin—i.e., a
pure time delay of p units. This is sometimes referred to as an all-zero model, or a
moving average (MA) model. If the only input is the random term v(k) (or perhaps a
single u( j) term), there is at most one non-zero b, term. This transfer function has poles,
but all zeros, if any, are at the origin. It is called an all-pole model, or alternatively,
an autoregressive (AR) model. The general case involves both poles and zeros and is
often referred to as an autogregressive moving average (ARMA) model.

In a multiple-input, multiple-output system, H(z) is, of course, a transfer func-
tion matrix. Scalar transfer functions are used in Chapters 2 and 3. The complete
treatment of state variable/transfer function relationships, including the matrix case,
begins in Chapter 3 and continues in Chapter 12.

Alternate Model Forms

Matrix fraction description [5]. Let P, N, and R be finite matrix polynomials
in the variable z ™!, which for present purposes can be treated as a delay operator. Then
the ARMA-type models can be simply expressed as

P(z Yy(k) = N(z Hu(k) + R(z )v(k) (1.6)

Of course, with just one input and one output, P, N, and R are scalar polynomials, and
division by the denominator P puts Eq. (Z.6) into the transfer function form. In the
multivariable case these terms are matrices, as is the transfer function H(z). P will
always be square. Taking its inverse gives the so-called left MFD (matrix fraction
description) form for the transfer function,

H(z) =P7'(2)N(2)
This and the alternative right MFD are discussed in future chapters.
State variables. It will be shown in Chapter 3 that the preceding discrete-time
models can be written in state variable form as
x(k + 1) = A(0)x(k) + B(0)u(k)
y(k+1)=C(0)x(k +1)+D(O)u(k +1)+v(k +1)

where

(1.7)

k denotes a discrete time point

x is the state

u is the input, deterministic or random
y is the output

v is a random noise

0 is a vector of unknown parameters
A, B, C, and D are system matrices

Most of the rest of this book will deal with state variable models, under the assumption
that the values of @ have been identified already, and hence {A,B,C,D} will be
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assumed known. In some adaptive and self-tuning control systems, the least-squares
estimation of model parameters, 0, is carried out in real time. This estimation process
constitutes an outer loop. The inner control loops then use the estimated models to
carry out control functions. Adaptive control is not treated in this book [6, 7.

Impulse response [4, 8]. Let the inverse Z-transform of H(z) be h(k); then
the inverse transform of y(z) can be written as a summation convolution:

y(k)=Zh(k —ju(j) +v(k)
= h(0)u(k) + h(Du(k — 1)+ hQu(k —2) + h(3u(k — 3) (1.8)
+ooe+ v (k)

Normally, as the time parameter k continues to increase, the preceding sum continues
to grow in length. Then the system description is called an infinite impulse response
(ITIR). The coefficients & (k) are values of the impulse response, and they could also be
calculated, at least in the scalar case, by long division of the transfer function. That is,
h(i) would be the coefficient of z ™ when the transfer function is written as a power
series in z ~'. For a stable system, h(i)— 0 as i — . This fact means that the power
series might be truncated after some finite number of terms. A system model with only
a finite number of past input terms is called a finite input response (FIR).

EXAMPLE 1.7 A specific second-order example of Eq. (1.1) is

y(k+1)=13y(k) - 0.4 y(k — 1) +u(k +1) (1.9
The input-output transfer function relation is
y(z)=u(z)/[(1-0.527)(1 - 0.8z7)] = H(2)u(z) (1.10)

The impulse response 4 (kT) is given by the inverse Z-transform
h(kT)=Z {H(z2)}
By using partial fraction expansion,
32 %2
z-08 z-05

Then h(kT) =%(0.8)* —3(0.5)* for any sample time k. A partial tabulation of this impulse
response function follows:

H(z) =

k h(kT)

0 1

1 1.3

2 1.29

3 1.157

4 0.9881
5 0.8217
10 0.2847
20 0.0512
30 0.0055
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These h (kT) values could also be evaluated as coefficients of z ™" in the infinite series obtained
by long division of

1
1-1327"14+04z72

H(z)=

Suppose that 4 (kT) is approximated as zero for k > 30. Then an approximate expression for
generating the outputs is

y(k) = u(k) + 1.3u(k — 1) + 1.29u (k —2) + 1.157u(k — 3)

T +0.0055u(k — 30) (1.11)

The original form of Eq. (1.10) (a second-order autoregressive model) has two poles. Equation
(1.11), a moving-average model, appears to have no nonzero poles but 30 zeros. These types of
approximate equivalencies illustrate the difficulty in experimental modeling. The same se-
quence of measured inputs and outputs could lead to either of these results, or others, de-
pending on the model structure which is assumed. The nonuniqueness of the answer may or may
not cause problems, depending on the purpose of the derived model. |

1.4 CLASSIFICATION OF SYSTEMS

As a result of the modeling discussion of Section 1.3, it can be seen that the types of
equations required to describe a system depend on the types of elemental equations
and the types of inputs from the environment. System models are classified according
to the types of equations used to describe them. The family tree shown in Figure 1.8
illustrates the major system classifications. Combinations of these classes can also
occur. The most significant combination is the continuous-time system, digital con-
troller of the type mentioned in Example 1.4. The digital signals are discrete-time in
nature, that is, they only change at discrete time points. The most common approach
to these problems is to represent the continuous-time part of the system by a discrete-
time approximate model and then proceed with a totally discrete problem. The experi-
mentally derived ARMA models of Section 1.3.2 are approximations of this type.
Other discrete approximations are given later (Problem 2.18 and Section 9.8).

In Figure 1.8 dashed lines indicate the existence of subdivisions similar to the
others shown on the same level.

Distributed parameter systems require partial differential equations [9] for their
description, for example, as in the description of currents and voltages at every spatial
point along a transmission line. These will not be considered further, but can often be
approximated by lumped-parameter models. Lumped-parameter systems are those for
which all energy storage or dissipation can be lumped into a finite number of discrete
spatial locations. They are described by ordinary difference equations, or in some
cases by purely algebraic equations. Discrete component electric circuits fall into this
category.

Systems containing parameters or signals (including inputs) which can only be
described in a probabilistic fashion (due to ignorance or actual random behavior) are
called stochastic, or random, systems. Because random process theory [10] is not an
assumed prerequisite for this text, emphasis will be on deterministic (nonrandom)



Sec. 1.4 Classification of Systems 13

Classes of
systems

Distributed Lumped
parameter parameter

1 1
[ |

Stochastic Deterministic

1 I
I I

Continuous Discrete
time time

I _1_
| | |

Nonlinear Linear

_L [
I |

Time Constant
varying coefficient

1 1

1

Nonhomogeneous Homogeneous

Figure 1.8 Major classes of system equations.

lumped-parameter systems. There will be a few occasions, such as in the discussion of
noisy measurements, where the random nature of certain error signals cannot be
totally ignored.

If all elemental equations are defined for all time, then the system is a continuous-
time system. If, as in sampling or digital systems, some elemental equations are
defined or used only at discrete points in time, a discrete-time system is the result.
Continuous-time systems are described by differential equations, discrete-time sys-
tems by difference equations.

If all elemental equations are linear, so is the system. If one or more elemental
equations are nonlinear, as is the case for a diode, then the overall system is nonlinear.
When all elemental equations can be described by a set of constant parameter values,
as in the familiar RLC circuit, the system is said to be stationary or time-invariant or
constant coefficient. If one or more parameters, or the very form of an elemental
equation, vary in a known fashion with time, the system is said to be time-varying.
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Finally, if there are no external inputs and the system behavior is determined entirely
by its initial conditions, the system is said to be homogeneous or unforced. With
forcing functions acting, a nonhomogeneous system must be considered.

One additional distinction not shown in Figure 1.8 could be made between
large-scale (many variables) systems and small-scale systems. The degree of difficulty
in analysis varies greatly among these system classifications. These differences have
motivated different methods of approach. Modern control theory provides one of the
most general approaches.

1.5 MATHEMATICAL REPRESENTATIONS OF SYSTEMS

During the analytical modeling process, equations are developed to describe the
behavior of each individual system element and also to describe the interconnections
of these elements. These equations, or for that matter the corresponding linear graph,
could be taken as the mathematical representation of the system. Normally, however,
additional manipulations will be performed before the mathematical representation of
the model is in final form.

Many forms are possible, but generally they divide into one of two categories:
(a) input-output equations, and (b) equations which reveal the internal behavior of the
system as well as input-output terminal characteristics.

Input-output equations are derived by a process of elimination of all system
variables except those constituting inputs and those considered as outputs. For the
system shown in Figure 1.5a, this would mean expressing signals S,, S;, S4, and S5 in
terms of the input signals S; and output signals Ss. This is done using the known
dynamic relations of the subsystems A, B, and C. For example, S, and S, are related to
S; through the dynamics of subsystem A. The input-output equations could constitute
one or more differential or difference equations in any of the classes shown in Figure
1.8. The independent variable is usually time, the dependent variables are the system
outputs, and the inputs act as forcing functions. Models developed experimentally
from measurements of inputs and outputs are almost invariably of the input-output
type. Subsequent conversions to other forms, such as state variable models, are always
possible. o .

- When the constituent equations are linear with constant coefficients, Laplace or
Z-transforms can be used to define input-output transfer functions. When more than
one input and more than one output must be treated, matrix notation and the concepts
of transfer matrices are convenient. It is assumed that the Laplace transform is a tool
familiar to most readers. The Z-transform [8] may be less familiar, and so a bare-
bones minimum introduction to it is contained in the problems. Although time-domain
methods will be stressed in this book, transforms and transfer functions will at times be
useful. A reader with no prior exposure should also consult the references.

~ Integral forms of the input-output equations, using the system weighting func-

tion, are also widely used. The weighting function, or system impulse response, is
obtained from the inverse Laplace or Z-transform of the input-output transfer func-
tion. v

Equations which reveal the internal behavior of the system, and not just the
terminal characteristics, can take several forms. Loop equations, involving all un-
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known loop currents (through variables), or node equations, involving all unknown
nodal voltages (across variables), can be written. The choice between alternatives may
depend on the number of loops versus the number of nodes. If everything is linear,
transform techniques lead to the concepts of impedance and admittance matrices.
Hybrid combinations of voltage and current equations are also used.

The state space approach [1] will be developed extensively in the remainder of
this book. At this time it is sufficient to say that state variables consist of some
minimum set of variables which are essential for completely describing the internal
status, i.e., state of the system.

1.6 MODERN CONTROL THEORY: THE PERSPECTIVE OF THIS BOOK

The most effective control theory makes use of good models of the real-world systems
being controlled. A goal of this chapter has been to stress the importance of the
modeling process. No attempt was made to present a complete, self-contained theory
of modeling. Rather, the intent was to build upon knowledge acquired in prior courses
on circuit theory, dynamics, kinematics, and so on. Some background knowledge in
introductory feedback control is also assumed. A summary review of this topic is
included in Chapter 2.

In some industrial control applications, good results are achieved even though
only a rudimentary knowledge of a process model is available. The widely used
proportional-integral-derivative (PID) controller can be tuned to give satisfactory
performance based solely on knowledge of dominant system time constants. This fact
does not violate the dictum that good models are required; it simply reinforces the
point that models should be suited to the intended purpose.

In other areas of control practice, systems are successfully designed and built
without use of mathematical models or analysis. This artisan, or craftsperson, ap-
proach can often work reasonably well when the designer is sufficiently experienced
and the system is only incrementally different from previous successful designs. How-
ever, when problems do arise, the same ad hoc approach to an attempted solution can
sometimes compound the difficulties. One such example occurred with an industrial
robotic system. The system exhibited unacceptable signal fluctuations on occasion,
which were erroneously diagnosed as a noise problem. Compensating capacitors were
added between key signal lines and ground to allow the high-frequency noise terms to
bleed off. An after-the-fact model revealed the true problem was caused by very low
stability margins. The “compensating” capacitors added additional phase lag and only
made the problem worse. {

Elegant mathematical results derived from an inappropriate model can likewise
yield negative results. Exact models of real systems are extremely rare. Therefore,
robustness is an important quality in control design. Robustness can be defined in
various ways, but generally the word implies the maintenance of adequate stability
margins or other performance levels in spite of model errors or deliberate over-
simplifications. The ability to operate in the presence of disturbance inputs is also
important. The widely used PID controllers owe much of the success to what today
would be called their robustness. The linear-quadratic (LQ) optimal controllers of
Chapter 14 have certain guaranteed robustness properties. The newer H” design
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techniques, which are basically worst-case analyses, represent another approach to
robustness in the face of model error. These are not pursued in this book [11].

Many real systems are nonlinear and/or time-varying. Yet, approximately 80% of
this book is devoted to linear, constant systems. Perhaps 10% is devoted explicitly to
linear time-varying systems and another 10% (primarily Chapter 15) is devoted to
nonlinear systems. The purpose of this book is to build a foundation for specialized
study that may follow, and linear systems theory is the major part of that foundation.
The treatment of nonlinear systems in Chapter 15 is restricted mainly to extensions of
the linear theory that follow easily from earlier developments in this book. Several
useful approaches to the control of some classes of nonlinear systems are presented.

Chapters 4 through 8 present a large amount of linear algebra for controls rather
than control theory per se. An attempt has been made to motivate the linear algebraic
developments by bringing in related control topics, even though the same topics may
be developed more fully later. Some algorithmic considerations are also included.
Liberal use of computer algorithms has been made throughout the book. One advan-
tage of the state variable approach to control problems is that the structure remains the
same whether there are 2, 20, or 100 states. The fact is, however, that only the smallest
problems can be solved without a computer. Many solutions provided in this book
were carried out using code acquired from the literature [12], perhaps with modifica-
tions, or with programs developed during the years of teaching this material. There
are now several commercially available packages which have the needed capabilities
[13, 14].

A large number of diverse problems and examples are included in each chapter.
The intention is to show not only how a given problem is worked but why it is worked
in a certain way and what the ramifications are. For example, knowing how to compute
the feedback gains to achieve certain closed-loop poles is a mathematical result.
Additional engineering insight is needed in order to decide whether a pole placement
approach should be used and, if so, what constitutes good pole locations. Alternatives
are classical feedback design or an optimal control design. In these, intelligent trade-
offs must be made between response time, control effort, or disturbance rejection.
The problems are intended to give some insight into these issues, in addition to
illustrating the mechanics of a given method.

Closely related technical areas include self-tuning and adaptive control [7, 8],
learning systems and artificial intelligence [7, 15], neural networks [16], and robotics
[17]. A short chapter or two at the end of the present book could not do justice to any
of these important topics. Therefore, this book concentrates on developing a basic
foundation which would be useful to the broadest class of readers. Those wishing to
pursue one of these special topics later will be able to do so more effectively after
mastering the materlal given here.
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ILLUSTRATIVE PROBLEMS

Explain why it would be inappropriate to consider a single branch of an electric network a
system, even if the only variable of interest is the current through that branch.

The current in one branch affects the currents and voltages in other parts of the network.

This, in turn, affects the current in the first branch. Because of the two-way coupling, the
network must be considered as a whole, and must be solved using simultaneous equations.
Develop an electromechanical model of the fixed field, armature-controlled dc motor. Consider
the voltage supplied to the armature as‘the input and account for the observed dissipation of
electrical energy and mechanical energy.

The dissipation of electrical energy can be accounted for by lumping all armature resist-
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ance into a resistor R. A noticeable phase shift between the supply voltage and the current
through the armature windings can be accounted for by a lumped inductor L. The load and all
rotating parts can be represented as a lumped inertia element J. Mechanical energy losses are
accounted for by adding an ideal damper b between the rotating load and some fixed reference.
The connection between the electrical and the mechanical aspects is obtained from Maxwell’s
equations. A moving charge in a magnetic field has a force exerted upon it, so that the armature
torque T is a function of the armature current i,. Likewise, a conductor moving in a magnetic
field has a voltage induced in it, the back emf e,. The model is shown schematically in Figure 1.9.

The torque and the back emf are often approximated by the linear relationships T = Ki,
and e, = K(), where K is a constant for a particular motor. For the linear case the transfer
function between the input voltage u(f) and the output angle y(¢) = [Qd! is derived as follows.
The Joop equation for the electrical circuit is u(f) = L (di./dt) + Ri, + e,. The mechanical torque
balance is T'(f) = Jy + by. The Laplace transforms of these equations are u(s) = (Ls + R)i.(s) +
e,(s) and T(s) (Js* + bs)y (). Solving gives i, (8) = [u(s) — es(s))/(R + Ls). The electromecha-
nical conversion equation then gives T(s) = K[u(s) — e»(s)}J/(R + Ls). Equating the two forms
for T(s) and using e, (s) = Ksy (s) gives (Js> + bs)y (s) = K[u(s) — Ksy (s)]J/(R + Ls). The input-
output transfer function is found from this:

y(s)/u(s) = K/[(Js* + bs)(R + Ls) + K*s]

Some electronic test gear (Figure 1.10) is mounted near a large tank of liquid gas at —350°F.
Develop a simple model which would be useful in estimating the coldest temperature at which
the electronic equipment will need to operate.

Because of the insulation material, heat is allowed to flow only in one dlI‘CCthIl from the
70° air through the electronic package to the —350° liquid gas. The environment, con51st1ng of
the two constant temperatures of 70 and —350, is represented by two ide&l sources. There is a
single unknown temperature T (across varlable) that of the electronic package interior. The

_-Electronics

Al B

Ll Ll

—350°F )
Airat 70°F

Vi L L L L

SONNN

I

i '\Perfect insulation  Figure 1.10
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Figure 1.11

package has some thermal capacitance C and its end walls and the tank wall present thermal
resistance, R, and R,, to heat flow Q. The linear graph is shown in Figure 1.11.

In steady state no heat flows in the branch representing the capacitance. Thus
70— T =QR, and T — (—350) = Q(R, + R,). Eliminating the heat flow Q gives

0-T_T+350 5 _T0(R,+R)=350R,
R, R,+R 2R, + R,

If the thermal resistivity R, of each end of the electronic package is 1°F s/Btu and if the thermal
resistivity R, of the adjacent area of the tank is 2°F s/Btu, then T = [70(3) — 350(1)]/4 = —35°F.

In many ways the flow of work through a factory is similar to fluid flow in a piping network.
Figure 1.12 shows such a network. Two pumps deliver fluid at constant pressure P, and P,,
respectively. Six lumped approximations for fluid resistance R; are indicated. They account for
the pressure drop in each segment of pipe proportional to the flow Q through the segment.
Three fluid capacitances C; are indicated. The pressure at their base is proportional to the height
of the standing fluid, that is, proportional to the integral of the flow into them. Two ideal
elements, called fluid inertances I; and I,, are included to account for inertia effects. They cause
a pressure drop proportional to the rate of change of flow. a. Draw the linear graph, label all
variables; b. write the elemental equations; c. write the continuity equations; d. write the
compatibility equations. Neglect all changes in height except in the capacitances, and use
atmospheric pressure as the reference node.
(a) Each distinct pressure (across variable) will form a system node. Between each pair of nodes
a branch will represent the ideal element that accounts for the pressure change. This allows
the construction of the linear graph of Figure 1.13.

Qr
(Finished
product)

(Raw materials)

Figure 1.12
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Q’lvRs PB

Figure 1.13

(b) There are n =9 nodes, b =13 branches, and s = 2 sources. The b —s =11 elemental
equations are ‘

, d d
Ps=R: Q> Puu=R, O | Py=1,—7- ‘%l Pis= gz
dP: dP,

G d;O = Q4 G d;O =0s Ps; = R4 Qs Po=R.Qs

‘Prg=Rs O Cs dtso—Qs Pyy=RsQOr
(©) The n - 1 = 8 continuity equations are -

o=0Q ' (twice) since O, flows 'ih three separai‘,é branches

0:=0: (twice) since 0, flows in three separate branches -

QI_Q3 QS"‘O .’ Q :Q4* Qs—o QS+Q6 Q7‘—'0

01— Qs—Qr =0

(d) The b — (n — 1) =5 compatibility equatlons are -
P, =P+ P+ P P,= P+ Pss+ Py
Psy = Ps; + Pys+ Pgo Pso=FPe7 + Pis + Py
Pos+ Pyo=0

By eliminating variables in Various,wa);su,,a set of differential equa.tiohs involving only flow
rates Q;, or only nodal pressures P;, or a combination of both could be obtained.

(a) Write equatlons ‘describing the lumped parameter approximate model for the transmission
line shown in Figure 1.14.

(b) Find the input- output transfer functton y (s)/u(s). The input u (¢) is the source voltage v, and
the output y (¢) is the load voltage v;.

(a) For simplicity, the line is segmented into three equal lengths as shown. The leakage conduc-
tance G is the reciprocal of the leakage resistance. More segments could be used in the same
manner.

The values of R and L are obviously 1/3 that for the entire line, while G and C each
have values equal to 1/2 that for the entire line. Since the source voltage is known, there are
six unknowns: i, i1, iz, V1, V2, and v;.
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Figure 1.14

(b) Writing loop equations, using the Laplace transforms of the elemental equations, gives
vs =[R + Lslio + v vi=[R + Ls}i, + v2
Vo = [R + LS]iz +vL ; VL = RL i2

The nodal equations are i, = (G + Cs)v; +i; and i; = (G + Cs)v, + i,. Letting
A =R+ Lsand B =G + Cs gives

Vs =Ai0+ V1=(AB + 1)V1+Al1=(AB +1)V2+(A2B +2A)11

By continuing this process of substitution, a final expression containing only v; = u
and v, =y is obtained:

y(s) _ R,
u(s) (A°B*+4A’B +3A)+RL(A’B +3AB +1)

1.6 Derive a difference equation for the purely resistive ladder network shown in Figure 1.15
(perhaps a dc version of the lumped approximation for a transmission line).
The difference equation for a typical (k + 1)st loop is obtained by writing a loop equation

(27‘ +R)ik+1 —rik —-rik+2=0

This holds for 1 = k +1 = N — 1. Itis a second-order difference equation, and two boundary
conditions are needed in order to uniquely specify the solution. The first and the last loops,
which do not satisfy the general equation, provide the two necessary conditions:

Vs =(R +r)io-—ri1
O=(r +R +RL)iN—riN_1

Figure 1.15
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Figure 1.16

A pair of dams in a flood-control project is shown in Figure 1.16. The water level at dam 1 at a
given time #, is x1(k), and x,(k) is the height at dam 2 at the same time. The amount of run-off
water collected in reservoir 1 between times # and # + 1 is Qo(k). The water released from dams 1

and 2 during this period is denoted by Q:(k) and Q,(k). Develop a discrete-time model for this
system.

Conservation of flow requires
xi(k +1) = x1(k) + a[Qo(k) — Q1(K)]
xa(k +1) = x5(k) + B[Q:(k) — Qx(K)]

These represent lumped-parameter discrete-time equations. If the amount of controlled spill-
ages (O, and Q, are selected as functions of the water heights x; and x,, a discrete feedback
control system obviously results. Z-transform theory could be used to analyze such a system.
Draw the linear graph for the ideal transformer circuit of Figure 1.17 noting that the transformer
is a four-terminal element.

The linear graph is shown in Figure 1.18a with the transformer represented as shown in
Figure 1.18b.

The equations for this circuit are

Node equations: iy = Iy, Iz = —I, I3=14
Elemental equations: v, = Nvy, i1= —Ni, (transformer)
‘ V. —v3=103R (resistance)
Cvs=1i, (capacitance)

Turns ratio = N Figure 1.17
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Note that the transformer requires two equations for its specification. Similar multiterminal
elements are required whenever energy is transformed from one form to another. Transformers,

transducers, and gyrators all have similar representation. Note also that an ideal transformer has
zero instantaneous power flow into it, i.e.,

viii+ V2l = vi(=Nix) + (Nv1)i, =0

Iy

(a) b

Figure 1.18

Develop a model of an automobile which would be appropriate for studying the effectiveness of
the suspension system, tire characteristics, and seat design on passenger comfort.

For simplicity, lateral rolling motions are ignored. An idealized model might be repre-
sented as shown in Figure 1.19. The displacements x; and x, are inputs from the environment
(road surface). Masses m; and m; represent the wheels, whereas M and J represent the mass and
pitching inertia of the main car body. The seat and passenger mass are represented by m,. The
elasticity and energy dissipation properties of the tires are represented by k1, k», b1, and b,. The
suspension system is represented by ks, ks, b3, and b,. The seat characteristics are represented
by k,. Newton’s second law is applied to the wheels, giving

my %3 = ki(x1 — x3) + bi(¥1 — x3) + ks(xs — x3) + b3(%Xs — X3)
m2f4 = kz(Xz - X4) + bz()&z - JC4) + k4(X5 - X4) + b4(.X'35 - X4)

Letting /; be the distance from the left end to the center of gravity cg and letting /> be the distance
to the seat mount, the following geometric relations can be obtained. Assuming small angles,

Xp

Road
surface

4

Reference

Figure 1.19
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l
Xeg = X5+ %(x(, = Xs)

xs=x5+172(x6—x5) and 9=)£6—;—)‘c—5

where [ is the total length (wheel base). Summing forces on M gives
Mg = k(x5 — xs5) + ka(xa — x6) + ks (xp — X5 ) + b3(X3 — X5) + ba(Xa — Xs)
Summing torques gives
T8 = =1 ks(xs — x5) + (I = L)ka(xa — x6) — (I — L)ks (x, — x,)
=1 bs(%3 — %s5) + (I = l)ba(Xs — X6)

Finally, summing forces on m, gives m, %, = k;(x; — x,). This set of five coupled second-order
differential equations, along with the geometric constraints, constitutes an approximate model
for this system.

A typical common base amplifier circuit, using a pnp transistor, is shown in Figure 1.20a. The
h-parameter equivalent circuit for small signals within the amplifier mid-band frequency range is
given in Figure 1.20b. Draw the linear graph for the amplifier.

The input signal voltage is replaced by an ideal source v, in series with the source
resistance R,. The three-terminal transistor device is described by the four hybrid parameters
hiv, B, hgw, and h,,, which are straight line approximations to the various nonlinear device
characteristics in the vicinity of the operating point.

In this example there are two dependent, or controlled, sources, described by v, = h,,v3
and iy = hpi,. Using the equations implied by the linear graph, Figure 1.21,

vi=lhip + hpvs (E-B loop equation) (D)
hpis +is+is+i7=0 (C node equation) 2
CI C2
o i} - 0
| . T
Uy § R3 U3
o T T o

a)

|
hwl.r-
anI:-

R, T R =hy hpi, isl R,

s —»0

-—
x
o™
I
|-
-—
bl

Figure 1.20
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Figure 1.21
or
hppiz + Vaho, +v3/Ra + v3/R3 =0 (using elemental equations) €)]
From equation (3),
. _TV3 1 1
= — e + —
2 hﬂ, (h-ob + R2 R3) (4)

Using equation (4) in equation () gives the voltage input-output equation:

_ —hﬂ,v1
h,'b (hob + 1/R2 + 1/R3) - hrb hﬂ,

V3

Draw a block diagram for the motor system of Problem 1.2, preserving the individual identity of
the electrical, mechanical, and conversion aspects, and illustrating the feedback nature of this
system. ' '

The block diagram of Figure 1.22 is drawn directly from the constituent equations of
Problem 1.2.

Classify the systems described by the following equations:

(@) y+1*y — 6y =u(f) (b)  +yy +4y =0
© -2 @ § +ay +by*=u()
(e y +ay =u(y) ifr<n ® y +amax(0,y)=0

y + by = u(r) ift =1

(a) Lumped parameter, linear, continuous time, time variable coefficient (#*), nonhomo-
geneous.

(b) Lumped parameter, nonlinear (due to yy term), continuous time.

(c¢) Distributed parameter.

(d) Lumped parameter, nonlinear (due to y* term).

(¢) Lumped parameter, linear, time variable.

(f) Lumped parameter, nonlinear.

u(s) 4+ 1 ol LTGs) 1 Q(s)
R+Ls ' M Js+b -

G |-

—les(s)

‘K e

Figure 1.22
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Changing of system characteristics, through switching at predetermined times, does not
make a system nonlinear. However, if the switching depends on the magnitude of the dependent
variable y, the system is nonlinear.

1.13  Use the concepts of Figure 1.5, page 5, to discuss the development of a mathematical model for

a rocket vehicle.

1. With such a vague problem statement, many purposes for this model could be considered,
such as the structural adequacy of the design, or the temperature history of a component
within the vehicle. Suppose that the purpose is to study the trajectory of the vehicle.

2. The boundary of the system is the physical envelope of the vehicle. The inputs from the
external environment consist of atmospheric and gravitational effects, as well as a thrust
force caused by the gases being expelled across the system boundary. Additional inputs are
the mission data, which specify key characteristics that the trajectory should possess. Outputs
are the components of position and velocity along the resulting trajectory.

3. The structure of this system consists of several subsystems. One of these is the vehicle
dynamics subsystem, which relates forces and torques to the vehicle acceleration. Another is
the kinematic subsystem, which relates accelerations to vehicle positions and velocities. A
third subsystem is the navigation subsystem, which takes measurements of position, velocity,
or acceleration and provides useful signals containing present position and velocity infor-
mation. A fourth subsystem, the guidance system, accepts the position-velocity data, com-
pares it with mission goals, and computes guidance commands. The final subsystem is the
control subsystem. It accepts guidance commands as inputs, and its outputs are commanded
body attitude angles or angular rates which will cause the vehicle to steer to the desired
trajectory. The control system also turns the thrust on and off. The overall system is shown in
Figure 1.23.

4. A wide diversity of models could be developed. If only position and velocity are of interest,
the vehicle may be represented as a point mass and the attitude control system might be
assumed perfect. If angular attitude information is desired, detailed equations for rotational
motion may be required. The description could include elastic vehicle bending, spurious
torques due to fuel sloshing, the dynamics of hydraulic control actuators, etc. Each of the
other subsystems could be broken down into very fine detail, if required.

Atmospheric Gravitational
Thrust properties field
- - T -
- - t [ A I
. -~
Environment ~ Aerodynamic Acceleration
'> '& forces of gravity
/ System
/ 0/
/ ! ¥
| . o
/ I Vebhicle
1 dynamics
Mission | Guidance L
data = Guidance commands - Control 3
\ Kinematics —?—»
Measured Actual position,
position Navigation ¢ velocity, or acceleration
velocity

Figure 1.23
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information 4th level
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received . .
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Production scheduling
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4

Overall
process control 2nd level
Infq ti _-E- T | N
" Ormaalgg — A B C D Finished products ;
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Figure 1.24

5. The remaining steps in Figure 1.5 are relatively straightforward if the preceding steps have
been carried out correctly. The resulting equations will be nonlinear and involve many
variables, coordinate transformations, etc. Except in certain simple cases, computer simu-
lation will be required.

Discuss the various levels at which control techniques can be applied in industrial systems.

Harold Chestnut [18] gives the four-level representation to control activities in the busi-
ness environment shown in Figure 1.24.

Individual operations A, B, C, and D might represent automatic machine tools, as in
Example 1.3. At this level, a very complete model is required to study detailed behavior. The
overall sequence A, B, C, D could represent a process such as an automated steel mill or
chemical plant. The general characteristics of the sequence might be modeled in a way similar to
the system of Problem 1.4. The characteristics of the interacting sequence would be described by
the level 2 model, but details of individual elements need no longer be apparent. At level 3 a still
broader view is taken. The model might be used to determine how work schedules should be set
in order to efficiently use the system capability while maintaining optimum inventory, avoiding
premium overtime pay, and meeting delivery schedules. At the fourth level, the broadest view is
taken. A complete production line might be viewed as a simple time delay. Broader questions
regarding market forecasts, new product development, plant expanswn and customer relations
become dominant.

According to Mr. Chestnut, “Traditionally the automatic control engineers have focused
their attention on the first and second levels of control, which are those associated with the fast
control functions in the energy and materials ends of the industrial spectrum. With the current
emphasis being developed in the systems aspect of the overall industrial process, more attention
is being given to the third and fourth levels of control where significant economies in time and
money and resources can and are being realized and can be more readily brought to the
attention of the customers.” Some of these “big picture” economic systems models are now
being facilitated by the various spread sheet and data base management programs which are
widely available on management’s personal microcomputers.

Define the Z-transform of a continuous-time signal y (¢).

The Z-transform of y (¢), written Z{y(¢)} = Y (2), is defined as the result of a three-step
operation:



28 Background and Preview Chap. 1

(i) Modulate y (¢) with a periodic train of Dirac delta functions, i.e.,

YO =y(@®) S 8(—nT)

n= —o N

where T is the sample period. Since 3( ) is zero, except when its argument is zero,
y(®)= 2 y(nT)8(t = nT)
n=0

assuming y (¢) = 0 for ¢ <0.
(ii) Laplace transform the impulse-modulated signal

V(9 2 Hy(0) = T y(aT)e ™

Note that y(nT) is no longer a function, but just a set of sample values. These act as
constants as far as & is concerned.
(iii) Make a change of variables z = ¢™. Thus

Y(2) = ¥* ($))emc” = ioy(nr)z -

The reason for the change of variables is to allow working with polynomials in z rather than
transcendental functions in s.

1.16  What is the significance of the Z-transform as expressed in the previous problem?

The Z-transform of a function can be written in various other forms such as ratios of
polynomials in z or z~'. However, if a function’s Z-transform can be manipulated into an
infinite series in z ~', then we can pick off the function’s value at time ¢ = nT as the coefficient
multiplying z 7. This series form can be found by long division or by using knowledge of some
standard infinite series results.

If y (¢) is a unit step, then all y(nT) = 1, so

1
1-2z71

Y(2)= i z7 "=

Conversely, if Y(z) = 7 _ZO 5 then long division gives

Y(z)=1+05z"'+0.25z72+---
From this it is immediately known that
y(0)=1,y(T)=0.5,y(2T) =0.25, ..., etc.

1.17  What are some other methods of determining the inverse Z-transform?

(i) There are extensive tables of transform pairs available [19]. It should be pointed out that
the a function has unique Z-transform, but the inverse transform is not unique. Many
functions have the same sample values, but are different between samples.

(ii) A complicated transform expression can often be written as the sum of several simple
terms, using a variation of partial fraction expansion. Then each simple term can be
inverted.

(iii) The formal definition of the inverse transform is

y(nT) = %m.g(}Y(z)z" “ldz

The contour integral is around a closed path that encloses all singularities of Y (z). This
integral can be evaluated using Cauchy’s residue theory of complex variables.
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Why are Z-transforms useful when dealing with constant coefficient dlfference equations and
sampled-data signals?

The Z-transform possesses all the advantages for these systems as does the Laplace
transform with differential equations. It allows much of the solution effort to be carried out with
only algebraic manipulations in z. After the transform of the desired output variable Y (2) is
isolated algebraically, then its inverse can be calculated to give y (nT).

Analyze the difference equation

y(t) + a2y (te-1) + ary (te-2) + a0y (te-3) = box (tx) + bix (tx-1)

x () is a known input sequence.
Let Y(z) and X (z) be the Z-transforms of y and x, respectively. Since the Z-transform
is a linear operator, it can be applied to each individual term in the sum, giving

Y(2)+a:z27'Y(2)+aiz72Y(2) +acz > Y(2) = b X(2) + blz_lX(z)

The ““delay operator” nature of z ™' has been used here. As should be apparent from Problems
1.15 and 1.16, a shift of n sample periods in the time domain is achieved by multiplying by z ™"
in the Z-domain. Thus

‘ bo+b12—1

Y(2)=
(@) 1+az ' vaz 2+ apz

= X (2)

The output transform Y (z) is the input transform X (z) multiplied by a rational function of z ~*
(or z). This rational function is the Z-domain transfer function H (z).

What is the significance of the poles and zeros of H(z)?

Just as in the Laplace s-domain, the behavior of the system depends very heavily on the
roots of the denominator of H(z), i.e., the poles. A stable system must not have any s-plane
roots with positive real parts. Since z = ¢™ this means that in the z-plane all poles of a stable
system must be inside the unit circle.

The zeros of the transfer function affect the magnitude of the various terms in the
time-domain output. That is, the poles determine the system modes and the zeros help deter-
mine how strongly the modes will contribute to the total response. This is evident if H(z) is
expanded in partial fraction form.

PROBLEMS

Derive the elemental equation for the fluid storage tank of Figure 1.25 and show that it is
analogous to an electric capacitance. Let Q be the volume flow rate, P the pressure at the base of
the tank of cross sectional area A, and A the height of the fluid.

Show that an inventory storage unit can be modeled by an elemental equation analogous to an
electric capacitance. Let the net flow of goods into inventory be Q items per unit time, and let
the number of items in inventory at time ¢ be v (¢).

| f

Q— . P
- Yy Figure 1.25
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If branch 1 of Figure 1.26 contains an ideal capacitance C, branch 2 an ideal inductance L, and
branch 3 an ideal resistance R, find the input-output equation relating v, and f5.

Derive the input-output differential equation for the network of Figure 1.27. Treat u(f) as the
input voltage and y(¢f) as the output voltage. Also give the input-output transfer function
y (8)/u(s).

A government agency would like a model for studying the effectiveness of its air pollution
monitoring and control program. Discuss the factors involved in such a model.

Derive the Z-transform of y (¢) = ¢ "*". For ¢t <0, y (f) = 0. Use a sample time of T =2.0s.
The following values apply to the system in Problem 1.19.

ao=—0.064, a,=0.56, a,=-14, by=10.0, and b;=5.0

Find the poles and zeros of H(z). Does this represent a stable system?

For the system of Problem 1.19, find y (nT) if the input x(nT) is the sampled version of a unit
step function starting at ¢ = 0.



Highlights of Classical
Control Theory

2.1 INTRODUCTION

Classical control theory, at the introductory level, deals primarily with linear, constant
coefficient systems. Few real systems are exactly linear over their whole operating
range, and few systems have parameter values that are precisely constant forever. But
many systems approximately satisfy these conditions over a sufficiently narrow operat-
ing range. This chapter reviews the classical methods, which are applicable to linear,
constant coefficient systems. More extensive discussions are in References 1 through S.

2.2 SYSTEM REPRESENTATION

The consideration of linear, stationary systems is greatly simplified by the use of
transform techniques and frequency domain methods. For continuous-time systems
this means Laplace transforms (or sometimes Fourier transforms) [4]. Z-transforms
provide equivalent advantages for discrete-time systems [6, 7]. These methods are
basic in classical control systems analysis. Thus algebraic equations in the transformed
variables are dealt with rather than the system’s differential or difference equations.
Manipulation of the algebraic cause and effect relations is facilitated by the use of
transfer functions and block diagrams or signal flow graphs [1].

2.3 FEEDBACK

Most systems considered in classical control theory are feedback control systems. A
typical single-input, single-output continuous-time (totally analog) system is shown in
Figure 2.1a. Figure 2.1 shows a typical feedback arrangement for controlling a
continuous-time process using a digital controller. Notation commonly used in classical

31
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R(S) :,-\ E(S)- KG(S) C(S);

+
—1F(s)

H(s) Figure 2.1a Elementary
feedback control system.

Digital world -<—§ — Analog world

+
R £ 16.¢2) bdD/a Gs) o
. H(z) |- A/D |-
§ Figure 2.15

control theory will be used in this chapter. In both cases the input or reference signal is
R, the output or controlled signal is C, the actuating or error signal is E, and the
feedback signal is F. This should cause no confusion with the parameters R and C used
in resistance and capacitance networks.

While there are many similarities between these two types of systems, the differ-
ences are significant enough to merit a brief separate discussion of each.

Continuous-Time Systems

The forward transfer function is KG(s), where K is an adjustable gain. The forward
transfer function often consists of two factors G (s) = G.(s)G, (s), where G, (s) is fixed
by the nature of the plant or process to be controlled. G.(s) is a compensation or
controller transfer function, which the designer can specify (within certain limits) to
achieve desired system behavior. The feedback transfer function is H(s). This often
represents the dynamics of the instrumentation used to form the feedback signals, but
it can also include signal conditioning or compensation networks. The designer may be
able to at least partially specify H (s) in some cases, and in other cases it may be totally
fixed, or even just unity. In any case, the open-loop transfer function is KG (s)H (s). It
represents the transfer function around the loop, say from E to F, when the feedback
signal is disconnected from the summing junction.

In the feedback system of Figure 2.1a and b the actuating 81gnal is determined by
comparing the feedback signal with the input signal. When H (s) = 1, the unity feed-
back case, the comparison is directly between the output and the input. Then the
difference E is truly an error signal.

A major part of classical control theory for continuous-time systems is devoted to
the analysis of feedback systems like the one shown in Figure 2.1a. Multiple input-
output systems and multi-loop systems can also be considered using transfer function
techniques (see Problems 4.2 through 4.7), although most of this book is devoted to a
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state variable approach instead. It is beneficial to have a thorough understanding of
single-input, single-output systems before the multivariable case is considered. This
chapter provides a review of the methods used in studying the behavior of C and E as
influenced by R.

EXAMPLE 2.1 Relations, in the Laplace transform domain, between the input R and the
output C and between R and the error E are derived algebraically as follows. At the summing
junction, R — HC = E. The relation between E and C is KGE = C. Elimination of E gives
KGR — KGHC = C, so that C = KGR/(1 + KGH). Using E = C/KG gives E = R/(1+ KGH).

|

The system of Figure 2.1a is the prototype for all continuous system discussions
in this chapter. The following terminology will be used frequently. In general, G (s) =
8.(s)/g.(s) and H(s) = h,(s)/hy(s) will be ratios of polynomials in s. The values of s
which are roots of the numerator are called zeros. Roots of the denominator are called
poles. In particular, the open-loop zeros are values of s which are roots of the numer-
ator of the open-loop transfer function KG (s)H (s) = Kg,(s)h,(s)/[ga(s)ha(s)]. The
open-loop poles are roots of the denominator of KG(s)H (s). Since the closed-loop
transfer function is C(s)/R(s) = KG(s)/[1 + KG (s)H (s)] = Kg,(s)hi(s)/[ ga(s)ha(s) +
Kgn(s)h,(s)], the closed-loop zeros are all the roots of g, (s)h,(s). The closed-loop poles
are roots of 1 + KG (s)H (s) = 0 or equivalently, roots of g,(s)h,(s) + Kg,(s)h,(s) = 0.

Discrete-Time Systems

There is a richer variety of possibilities when dealing with the digital control of continu-
ous systems. The points of conversion from continuous-time signals to discrete-time
signals (A/D) and back again (D/A) can vary from one application to the next. An
analog feedback sensor could be used and then its output sampled, or a direct digital
measurement may be used. The reference input R could be a continuous-time signal
that needs to be sampled before being sent to the control computer, or it might be a
direct digital input. Figure 2.1b is just one possible arrangement. Other configurations
can be analyzed in a similar way. Before proceeding with the analysis, models of the
A/D and D/A conversion processes are required. These conversions are also referred
to as sampling and desampling or signal reconstruction, respectively. ‘

Sampling. Assume a periodic sampler with period 7. A convenient model of
the A/D conversion is an impulse modulator, usually shown symbolically as a switch
like the one of Figure 2.2, where a general signal y(¢) is being sampled. Impulse
modulation is not really what physically occurs, since no infinite amplitude signals such
as y* () actually exist in the system. This series of impulse functions have infinite
amplitude at the sample times, but it is their areas or strengths that represent the real
signal amplitudes y (#;,) mathematically. This artificial representation is used because

1. It allows the use of Z-transforms, which simplify much of the analysis.

2. The correct answers are obtained (except for quantization effects) as long as it is
understood that within the digital portion it is the strengths of the impulses, not
their amplitudes, that describe the signals.
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Figure 2.2

3. The correct effect on the continuous-time part of the system is obtained provided
some sort of “hold” circuit is used on the impulse train before the signal reenters
the analog world. There are various versions of hold devices. One function
common to them all is an integration, which eliminates the impulses and once
again gives a finite amplitude physical signal. This is the desampling function of
the D/A.

Desampling. The only model of the D/A process to be considered here is
another sampler (perfect time synchronization assumed), followed by a zero order hold
(ZOH). The zero order hold integrates the difference between two consecutive im-
pulses in the periodic impulse train shown in Figure 2.2 and repeated in Figure 2.3.
Therefore, the output is a piecewise constant signal whose value between ¢, and ¢ . ; is
clamped at y (#,) (again, ignoring quantization errors). If the computer made no modi-
fication to the signal between the A/D and D/A, the end-to-end effect of this sampling-
desampling operation would be to create a piecewise constant approximation to the
continuous input signal. From Chapter 1, the Laplace transform of an impulse-
modulated signal is (after a change of variable) the Z-transform of the signal. Any
linear operation that the computer algorithm performs on the signal samples between
the A/D and D/A can be represented by a Z-transform domain transfer function,
sometimes called a pulse transfer function. G.(z) and H(z) in Figure 2.1b are exam-
ples of this.

Extensive tables of Z-transforms are available [7]. Use of these tables, plus a few
simple rules, will allow systems like Figure 2.1b to be analyzed almost as easily as, and



Sec. 2.3 Feedback 35

yie) |

Yyt o —
o 7OH  [r—— /
' . J’L‘IJJ-

¢ t  Figure 2.3

vt A

with a great deal of similarity to, those of Figure 2.1a. Of course, a complete under-
standing and appreciation will require a more thorough treatment, as can be found in
the references. Some key rules of manipulation are:

1. As a signal passes through the “switch,” it is Z-transformed.
y(yorys) - y*pory()

2. The transform of the signal out of a transfer function block is the product of that
transfer function and the transform of the input signal.

y(z) w(z) = G(2)y(z) y(s) w = G(z2)y(s)

] G(2) e —] G(Z) [—
and/or

3. Sampling a signal that is already sampled does not change it.

y@) s y*@) =) Z{y@) = y(2)

4. Pulsed or Z-transformed signals (and transfer functions) and s-domain signals
(and transfer functions) will appear together in the same expression at times. The
action of a sampler (or a Z-transform) on these mixed signals is illustrated next.

Z \G(2)y(s)} = G(2)y(2)

G(z2)y(s) e G(2)y(z)

5. The Z-transform operator is not associative for products. The placement of
“switches’’ in a block diagram is important.

w(2) = Z{y ()G ()G (s)} # wy(2) = Z{G (5)y(s)} G4 (2)

¥(s) w, (2) y(s) e

—] G (5) > G,(s) | — | G (5)

G,(s) _./_MZSZ)

6. When working with closed-loop systems like Figure 2.1b, it is generally best to
follow a two-step process. First, algebraically solve for the variable at the input of
a sampler in terms of external inputs and/or outputs of that sampler. Second,
“close the loop” by passing through the sampler, i.e., taking the Z-transform.
This will give a result, entirely in the Z-domain, which can be used to solve for
the system output sequence at the sample times. If the sampling period is small
enough compared to the rate of change of the signal, this approximation may be
all that is needed to describe the continuous system output.
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EXAMPLE 2.2 The system of Figure 2.1b is redrawn in Figure 2.4, using symbolism just
introduced for A/D and D/A operations. The transfer function for a ZOH is also used,
G() = (1 —Z _1)/S.

The input to the forward path sampler is first isolated:

Ei(2) = Ge(2)[R(2) — F(2)]
= G.(D[R(2) - Ex(2)Z{(1 - 2 )G (s)/s}H (2)]
Define the Z-transform of G (s)/s times (1 —z ") as G'(z). Then
Ei(z) = G:(2)[R(2) — Ex(2)G'(2)H (2)]
Solving gives
Ei(2) = G.(2)R(2)/[1 + G.(2)G'(2)H(z)]

In this case the input to the selected sampler was already sampled, so the second step of passing
through the sampler has no effect, i.e. E¥(z) = Ei(z). The full two-step process is better illus-
trated by selecting the feedback sampler instead.

Before doing that, note that

C(s) = E(2)[(1 = z7)G(5)/s)]
and that
C(z) = Ei(2)G'(2)
= G.(2)G'(2)R(2)/[1 + G.(2)G'(2)H(2)],

an expression very similar to the continuous system result.
The same example is reworked by isolating the input to the feedback sampler first:

C(s) =[R(2) —H(2)C(2)]G:(2)(1 =z )G (s)/s
Then the traverse around the loop is completed by passing through the sampler to obtain
C(2) =[R(2) — H(2)C(2)]G:(2)G'(2)

Solving this for C(z) gives the same result as above.

In order to dispel the idea that a discrete system result can always be written from the
continuous system result by substituting all the individual Z-transfer functions for their Laplace
transform counterparts, the reader is urged to work through Problems 2.38, 2.39, and 2.41,
which have different sampling arrangements. n

Once C(z) is found, the values of the output C(¢) can be determined at the sample
times t, by finding the inverse Z-transform. While this will not give the values of C(¢)

K E}@) 208
R(2) z) E z -
z 6.(2) 1(2){ e 1_szl o ¢ C(s)
F(z)
o } Figure 2.4
igure 2.
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between sample points, it often gives a sufficiently accurate representation of the
continuous signal.

Control systems like those of Figure 2.1a and b are used extensively because of
the advantages that can be obtained by using feedback. The advantages of feedback
control are:

1. The system output can be made to follow or track the specified input function in
an automatic fashion. The name automatic control theory is frequently used for
this reason.

2. System performance is less sensitive to variations of parameter values (see Prob-
lem 2.1).

3. System performance is less sensitive to unwanted disturbances (see Problem 2.4).

4. Use of feedback makes it easier to achieve the desired transient and steady-state
response (see Problem 2.5).

The advantages of feedback are gained at the expense of certain disadvantages,
the principal ones being:

1. The possibility of instability is introduced and stability becomes a major design
concern. Actually, feedback can either stabilize or destabilize a system.

2. There is a loss of system gain, and additional stages of amplification may be
required to compensate for this.

3. Additional components of high precision are usually required to provide the
feedback signals (see Problems 2.2 and 2.3).

Once the system models are specified in terms of transfer functions and block
diagrams, classical control theory is devoted to answering three general questions:

(a) What are appropriate measures of system performance that can be easily applied
to feedback control systems?

(b) How can a feedback control system be easily analyzed in terms of these per-
formance measures?

(¢) How should the system be modified if its performance is not satisfactory?

2.4 MEASURES OF PERFORMANCE AND METHODS OF ANALYSIS
IN CLASSICAL CONTROL THEORY

If the complete solutions for the system output C(f) were available in analytical form
for every conceivable input, system performance could be assessed. To obtain an
analytical expression for C(¢), the inverse Laplace transform of

KG(5)R(s)

CO) =TT RGHHE)

(2.1a)



38 ; Highlights of Classical Control Theory Chap. 2

is required. To determine C(t) in the discrete-time case or in the mixed discrete-
continuous case, the inverse Z -transform of

GA(2)G'(2)R(2)
1+ GA(2)G'(2)H(2)

(or a similar expression) is needed. In both cases, if the denominators can be factored,
partial fraction expansion can be used to obtain a sum of easily invertible terms.
However, the denominator of equation (2.1) may be a high-degree polynomial. Also,
an infinite number of possible inputs R(s) or R(z) could be considered. Rather than
seek complete analytical solutions, classical control theory uses only certain desirable
features, which C should possess, in order to evaluate performance. Methods of classi-
cal control theory were developed before the widespread availability of digital com-
puters. As a result, all the techniques seek as much information as possible about the
behavior of C(r) or C(t,) without actually solving for them. The methods have been
developed for ease of application and stress graphical techniques. They are still useful
methods of analysis and design because of the insight they provide.

The problem of infinite variety for possible inputs is dealt with by considering
important aperiodic and periodic signals as test inputs. Step functions, ramps, and
sinusoids are common examples.

The general characteristics a well-designed control system should possess are (1)
stability, (2) steady-state accuracy, (3) satisfactory transient response, (4) satisfactory
frequency response, and (5) reduced sensitivity to model parameter variations and
disturbance inputs. These requirements are interrelated in various ways and often
present conflicting goals. For example, decreasing response times generally requires
increasing system bandwidth, which increases suceptibility to high-frequency noise. A
key concept in many aspects of feedback system’s performance is the so-called return
difference function, which happens to be the denominators of Eqgs. (2.1a) and (2.1b).
These are both of the form R,({) = 1 + KF({), with the complex variable { being either
s or z. The name return difference arises as follows. If a feedback loop is broken at a
given point, the difference between a signal v inserted into the loop at that point and
the resulting signal r, which returns to the broken point after traversing the loop, is

y —r=[1+KFQ]v = Ri{)v

C(z)= (2.1b)

A graphical interpretation of the return difference will be given after polar plots—i.e.,
Nyquist plots—are introduced.

1. Stability means that C(t) or C(t,) must not grow without bound due to a
bounded input, initial condition, or unwanted disturbance. (This intuitive definition is
expanded upon in Chapters 10 and 15.) For linear constant coefficient systems, sta-
bility depends only on the locations of the roots of the closed-loop characteristic
equation. The continuous system’s characteristic equation is the denominator of
equation (2.1a) set to zero. The discrete case uses the denominator of equation (2.1b).
Both of these are of the form

RA¥)=1+KF() =0 (2.2)
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with the complex variable { being either s or z. The principal difference is the stability
region. The roots must be in the left-half s-plane for a stable continuous system. Since
z =e”, the entire left-half s-plane maps into the interior of the unit circle in the
Z-plane. A stable discrete system must have all roots of its characteristic equation
inside the unit circle. Methods of determining stability are discussed below.

a. Routh’s criterion determines how many roots have positive real parts directly
from the coefficients of the characteristic polynomial. The actual root locations are not
found. The number of unstable roots of a continuous system are obtained directly.
Routh’s criterion can also be applied to a discrete system, but first a bilinear transfor-
mation z = (w + 1)/(w — 1) is used to map the inside of the unit circle in the Z-plane
into the left half of a new complex w-plane. This converts the characteristic equation
into a polynomial in w, to which Routh’s criterion can be applied.

b. Root locus is a graphical means of factoring the characteristic equation (or any
algebraic polynomial of similar form). Both continuous and discrete systems can be
described simultaneously by using Eq. (2.2) as the characteristic equation. The essence
of the method is to consider KF({) = —1. Since F({) is a complex number with a
magnitude and a phase angle, this implies two conditions, which are considered sepa-
rately. They are, assuming the gain is positive and real,

LF()=(1+2m)180° for any integer m (2.3a)

and
KIF(Q|=1 (2.3b)

Thus root locus determines the closed-loop roots (and therefore stability) by working
with the open-loop transfer function KF({), which is normally available in factored
form.

¢. Bode plots are another graphical method which provides stability information
for minimum phase systems (systems with no open-loop poles or zeros in the unstable
region). Magnitude and phase angle are considered separately, as in Eqgs. (2.3a4) and
(2.3b), but the only values of { considered are on the stability boundary. This tech-
nique is widely used with continuous systems, in which case the stability boundary is
defined by s = jw. This corresponds to the consideration of sinusoidal input functions
with frequencies w. This method is greatly simplified by using decibel units for mag-
nitude and a logarithmic frequency scale for plotting. This allows for rapid construc-
tion of straight line asymptotic approximations of the magnitude plot. The critical point
for stability, —1, becomes the point of 0 db and —180° phase shift. Bode techniques
can also be applied to discrete systems by first using the same bilinear transformation
as was mentioned under Routh’s criterion. The stability boundary in the w-plane can
also be characterized by the purely imaginary values w =jw,. This ‘“transformed”
frequency w, is generally badly distorted from the true sinusoidal frequency, so
intuition is of less value in this approach, insofar as stability margins, bandwidths, and
similar concepts are concerned. For this reason, Bode methods are probably used less
often with discrete systems, and they will not be pursued here. The same is more or less
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true for the following two frequency domain methods as well, so they are only
discussed for continuous systems.

d. Polar plots and Nyquist's stability criterion. Polar plots convey much the same
information as Bode plots, but the term KG (jw)H (jo) is plotted as a locus of phasors
with w as the parameter. The critical point is again —1. Note that the return difference
Ri(jw) (or Ry(e’7) in the discrete case) can be represented as a phasor from the
critical —1 point to a point on a plot of the loop transfer function KG (jw)H (jw). (See
Problem 2.1 and, in particular, Figure 2.9¢.) Nyquist’s stability criterion, which applies
to nonminimum phase systems as well, states that the number of unstable closed-loop
poles is Zr = P — N, where N is the number of encirclements of the critical point —1
made by the locus of phasors. Counterclockwise encirclements are considered posi-
tive. Py is the number of open-loop poles in the right-half plane.

e. Log magnitude versus angle plots are sometimes used for stability analysis.
They contain the same information as Bode plots, but magnitude and angle are
combined on a single graph with w as a parameter.

2. Steady-state accuracy requires that the signal E (t), which is often an error signal,
approach a sufficiently small value for large values of time. The final value theorem
facilitates analyzing the requirement without actually finding inverse transforms. That
is, for continuous systems '

limm {E()}= lirré {sE(s)} (2.4a)

For discrete systems, the Z-transform version of the final value theorem is used,

lim {E (t,)} = Jim {(z -DE(2)} (2.4b)

Both versions of the final value theorem are only valid when the indicated limits exist.
By considering step, ramp, and parabolic test inputs, the useful parameters called
position, velocity, and acceleration (or step, ramp, and parabolic) error constants are

developed. These provide direct indications of steady-state accuracy (see Problem
2.8).

3. Satisfactory transient response means there is no excessive overshoot for abrupt
inputs, an acceptable level of oscillation in an acceptable frequency range, and satisfac-
tory speed of response and settling time, among other things. These are actually ques-
tions of relative stability, and depend upon the location of the closed-loop poles in the
s-plane or Z-plane and their proximity to the stability boundary. Questions regarding
transient response are best studied using root locus, since it is the only classical method
which actually determines closed-loop pole locations. Bode, Nyquist, and log-
magnitude plot methods also give information regarding transient response, at least
indirectly. Gain margin GM is a measure of additional gain a system can tolerate with
no change in phase, while remaining stable. Phase margin PM is the additional phase
shift that can be tolerated, with no gain change, while remaining stable. Note that
these stability margins are measures of the magnitude of the minimum return differ-
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ence phasor. Experience has shown that acceptable transient response will usually
require stability margins on the order of

PM > 30°, GM >6db

These frequency domain stability margins can often be used to draw conclusions re-
garding transient performance, because many control systems have their response
characteristics dominated by a pair of underdamped complex poles. For this case
known correlations exist between frequency domain and time domain characteristics.
A few approximate rules of thumb are

damping ratio =0.01 PM (in degrees)
% overshoot + PM =75
(rise time)(closed-loop bandwidth in rad/s) = 0.45 (27)

Other response times have similar inverse relationships with bandwidth. The frequency
of 0 db magnitude for the open-loop KGH term has an effect similar to bandwidth.
Increasing this crossover frequency increases bandwidth and decreases response times.

4. Satisfactory frequency response implies such things as satisfactory bandwidth,
limits on maximum input-to-output magnification, frequency at which this magnifica-
tion occurs, as well as gain and phase margin specifications. Bode, Nyquist, and
log-magnitude-angle plots all are frequency response methods, and they deal with the
open-loop transfer function. If the closed-loop characteristics, such as closed-loop
bandwidth, must be determined, then the Nichol’s chart [1] can be used. The Nichol’s
chart is a graphical conversion from open-loop magnitude-phase characteristics to
closed-loop characteristics. Normally, one of the open-loop graphical methods is first
used and the results are then transferred to a Nichol’s chart. From this, the closed-loop
frequency response characteristics can be read off directly.

5. Since perfect models are never available, either because of intentional simplifi-
cations or because of unavoidable ignorance, time variations, or noise corruption, a
good control system must be at least somewhat forgiving of these errors. Problems 2.1
through 2.4 briefly review how feedback can lead to reduced sensitivity to external
disturbances and internal parameter variations. The concept of return difference plays
a prominent role [8, 9].

2.5 METHODS OF IMPROVING SYSTEM PERFORMANCE

Whenever the performance of a feedback control system is not satisfactory, the follow-
ing possible approaches should be considered.

1. A simple adjustment of the gain parameter K. This could be considered by using
any of the analysis methods mentioned in the preceding paragraphs. From a
consideration of the system’s root locus, it is obvious that gain adjustment can
only shift the closed-loop poles along well-defined loci. Perhaps no points on
these loci give satisfactory results.
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2. Minor changes in the system’s structure, such as adding additional measurements
to be used as feedback signals. Addition of minor feedback loops can alter the
loci of possible pole locations as K is varied. The inclusion of a rate feedback
loop, using a tachometer for example, is a common means of improving stability.

3. Major changes in the system’s structure or components. A hydraulic motor may
perform better than an electric motor in some cases. A higher capacity pump or a
more streamlined aerodynamic shape may be the answer in other cases.

4. Addition of compensating networks—i.e., G.(s) or H (s)—or digital algorithms—
i.e., G.(z) or H(z)—to alter the root locus or to change the magnitude and phase
characteristics in a critical frequency range.

Of these four techniques for improvement, only the second and fourth constitute
what are usually referred to as compensation techniques. The advantages of root locus,
Bode, and Nyquist methods of analysis are that compensating changes in the open-
loop transfer function can be rapidly taken into account. The modifications may be
made in order to reshape the locus, improve gain or phase margins, or increase the
error constants. The classical methods thus constitute design techniques as well as
analysis techniques. A process of design by analysis is usually used. That is, a compen-
sating network is selected and then analyzed. However, a little experience gives great
insight into the kinds of compensation that are needed. If the major problem is to
improve relative stability with less concern for error constants, lead compensation
networks are usually tried. If the system has acceptable stability margins, but poor
steady-state accuracy, lag compensation networks will usually be appropriate. If a
combination of both improvements is needed, a lag-lead network may give the desired
results. More complicated networks, such as the bridged-T network, Butterworth
filters, and so on, can be used to effectively cancel undesirable left-half-plane poles
and replace them with more favorable ones. Cancellation compensation should never
be used to eliminate unstable poles, because parameter tolerances will preclude exact
cancellation. Even an infinitesimal error in cancellation will leave an unstable closed-
loop pole. The form of the desired specifications and the personal preference of the
designer will influence the choice of the analysis method. Extra insight can usually be
gained by looking at a compensation problem from both the root locus and one of the
frequency domain techniques.

An alternative method of design, through synthesis rather than analysis, is also
possible. In this approach, the design specifications are translated into a desired
closed-loop transfer function which satisfies them. Let the closed-loop transfer func-
tion be M (z). This can be related to the compensator G.(z). For example, the system
of Example 2.2 has '

M(z) = G.(2)G'(2)/[1 + Gc(2)G'(2)H(2)]
which can be solved to give
M(z)
[1-M(2)H(2)]G'(2)

Because of this result it is clear that certain restrictions must be imposed on M (z) if the
resulting compensator is to be physically realizable. This is discussed in Problems 2.23

G.(2)=

2.5)
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and 2.24. More details on this method can be found in References 6 and 7. Since
discrete system compensators are just computer algorithms, there is no concern about
synthesizing the results in terms of passive electrical components R, C, and maybe an
occasional L that dominated classical control compensation in the early years. It is
perhaps for this reason that the algebraic synthesis methods seem to be more widely
used in discrete system design, although the continuous system version was described
years earlier by Truxal [10]. Even in the continuous system domain the definition
of what is practical now is quite different from the early years because of progress
in technology, such as operational amplifiers and large-scale integrated circuit
technology.

One final design parameter in discrete systems is the sampling period 7. It can
have a profound effect on system performance. Nyquist’s sampling theorem tells us
that a signal must be sampled at least twice per cycle of the highest frequency present
in order to avoid losing information about the signal. The highest frequency present is
often interpreted as the highest frequency of interest, and the sampler is generally
preceded by a low pass filter. This prevents the high-frequency terms from being
aliased as low-frequency signals as a result of sampling. Frequencies of interest are
related to system bandwidth, since that is what determines which frequencies the
system is capable of passing or responding to. The “twice” is strictly a theoretical limit
based on an unachievable ideal low pass filter, which would be needed to reconstruct
the original signal from its sampled version. In reality, a cushion is provided by
sampling at a considerably higher rate if possible. Frequently a sampling rate of three
to five times the Nyquist rate is more appropriate. The reason for the sampling in the
first place might be because of time-shared or multiplexed equipment, so possible T
values may be restricted in many cases. In closed-loop systems 7T has another effect
beyond the sampling theorem considerations. The value of T interacts with the loop
gain K (and, of course, pole-zero locations, too) to determine system stability.

EXAMPLE 2.3 Investigate the system of Figure 2.5 for stability.
The characteristic equation is

+ K
(s — 10)(s +20)(s + 100)
The Routhian array is a table with one more row than the highest power of s in the characteristic
equation. The first two rows are filled in a sawtooth pattern with the coefficients of the charac-
teristic equation. Each succeeding row is computed from terms in the two rows just above it. The

pattern for the computed rows is as follows. Suppose two typical rows with a; and b; coefficients
are available as in Table 2.1a. Then the c; terms are given by

=0 or s>+ 110s%>+800s —20,000+ K =0

Ci = (b] a, — dq bz)/bl, Cy = (b1 as— b3)/b1, C3 = (b1 As — A b4)/b1
R(s) o~ E(s) K C(s)_
ey y (s—10) (s +20) (s + 100) i

Figure 2.5
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TABLE 2.1a TABLE 2.1
a as as a, s3 1 1 800
bl b2 b3 b4
c1 c2 c3 cs 52 110 K — 20,000
s 108,000 — K
110
50 K — 20,000

Each row is filled in from left to right until all remaining terms are zero. In this case ¢, and all
higher c; terms are zero because of blanks in the a; and b, rows.

Table 2.1b gives the array for the system of Figure 2.5. Routh’s criterion states that the
number of sign changes in the first column is equal to the number of roots in the right-half plane.
For stability the first column must have all entries positive. Therefore, the system is stable if
20,000 < K =< 108,000. If K < 20,000, one sign change exists in column one and there will be one
unstable root. If K > 108,000, there ‘are two sign changes and therefore two unstable roots. If
K = 108,000, the s row is zero. Whenever an entire row is zero, the coefficients of the preced-
ing row are used to define the auxiliary equation. Roots of the auxiliary equation are also
roots of the original characteristic equation. With K =108,000, the auxiliary equation is
110s2 + 88,000 = 0, indicating poles at s = +jV/800. With K at this maximum value, the system
oscillates to w = V800 rad/s. |

EXAMPLE 2.4 Investigate the steady-state following error for the system of Figure 2.5 if
K =100,000 and the input is a unit step.
The error is

1/s
K -
(s — 10)(s +20)(s + 100)

Using the final value theorem, the steady-state error is

1

E(s)=

1+

EQ@)|s = =-0.25
Ob=——%
(—10)(20)(100)
Since the input is unity, the steady-state output has a 25% error. ' ]

EXAMPLE 2.5 Add compensation to the previous system in order to achieve a steady-state
error of less than 10%. The oscillatory poles should have a dampmg ratio of 0.7<{<0.9 and a
damped natural frequency of about 10 to 20 rad/s.

In order to meet the steady-state error specifications, a gain increase by a factor of 2.2 is
required. This would give an unstable system and then the final value theorem cannot be used.
Compensation is required, and it will be added in the forward loop. Because of the form of the
specifications, root locus will be used. First, the locus of points satisfying Eq. (2.2) is found. The
following rules greatly simplify this procedure.

1. The number of branches of the root locus equals the number of open-loop poles. One
closed-loop pole will exist on each branch.

2. One branch of the locus starts at each open-loop pole. One branch terminates at each
open-loop zero and the remaining branches.approach infinity.
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3. The part of the locus on the real axis lies to the left of an odd number of pojeg plus zeros.

4. With K =0, open and closed-loop poles coincide. As K increases, the ClOSed-loop poles
move along the loci. As K — = each closed-loop pole approaches either an open-loop zero
or infinity.

5. Branches that go to infinity do so along asymptotes with angles given by ¢; = 180°(1 + 2k)/

(n —m)fork =0,=1,=2,..., and where n and m are the number of open-loop poles ang
zeros respectively.

6. The asymptotes emanate from the center of gravity given by cg = [(sum of real parts of al)
open-loop poles) — (sum of real parts of all open-loop zeros)]/(n — m).

7. The loci are symmetric with respect to the real axis.

By using these rules and by testing the angle criterion at a few additional points off the real
axis, the uncompensated root locus of Figure 2.6 is obtained. It is obvious that the locus must be
reshaped in order to meet the specifications. The angle criterion at points inside the desired
region indicates that an additional 30-70° of phase lead is needed if the locus is to pass through
this region. By placing a zero at s = —20 and a pole at s = —45, adequate phase lead is obtained.
However, the lead network transfer function G¢i(s) = (s + 20)/(s + 45) introduces a decrease in
the error constant by a factor of 3 = 0.445. This decrease can be made up, and the additional
increase gained by using a lag filter, such as

_(s+0.1)
(s +0.01)
This pole-zero pair near the origin will have only a small effect on the locus in the region of

interest since their angle contributions almost cancel each other. Using the compensator transfer
function G¢(s) = (s +0.1)(s +20)/[(s + 0.01)(s + 45)], the compensated root locus of Figure

Cc2

Jjo
(=07 T
(=09
(wc= 28.3
K = 108,000
wg = 20

Region of
desired pole

wd=10

SN g

)

8 X
¢
<

~100 , _

Figure 2.6 Approximate sketch of uncompensated root locus.
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Figure 2.7

2.7 is obtained. Applying Eq. (2.3) at the point [-] indicates that the required gain is approxi-
mately K = 80,000. Using this result,

£k =——am
1+
(—10)(45)(100)(0.01)

= —0.06 = 6% error u

EXAMPLE 2.6 Consider the error-sampled system of Figure 2.8, which represents a linearized
model of a position control system using an armature controlled dc motor with a time constant
T =2 seconds.

1. Find expressions for C(s), C(z), and E(2).
2. Show that the steady-state error is zero for a step input and approaches a constant for

.- Q)

‘——-I - -

|

R(s) +~ E(s) ~ E@@) 7O K ' @)

T s(2s + 1)

Figure 2.8
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ramp inputs, with the constant decreasing inversely with K, so long as the system remains
stable.

3. Show that the maximum allowable gain for stability is inversely related to the sampling
period T.

4. With T =2 s, find the maximum gain for stability.

5. Set the gain to K =0.5 and find the steady-state error for a ramp input R(¢) =t The
sampling period is T = 2.

1. Using the two-step procedure of Section 2.3,

E(s) = R(s) — E(z)(1 - z )K/[s*(2s + 1)]

E(z)=R(z) - E(2)(1 -z HKZ{l/[s*(2s + 1)]}
Define (1 — z7")Z{.5K/[s*(s + 0.5)]} = G'(z). Using Z-transform tables,
K{z[T-2(1-¢7*")]+[20 —e~*°) — Te *°T]}

G'(z)= TG (2.6)
Therefore,
C(s) = E(2)(1 -z HK/[s*(2s + 1)]
and
C(2) = E(2)G'(2)
_G'@RE) @7)

1+ G'(2)

Note that the sampled signal C(#:) does not exist at any point in this system, so a fictitious
sampler is added at the output to facilitate finding it. This sampler does not affect actual system
operation.

2. If R(¢) is a unit step, then R(z) = z/(z — 1) and the final value theorem gives
I}im E(t)=1[1+1lim G'(z)]=0
—> 0 z—1
since G'(z) > asz—1.
If R(¢) =¢, then R(z) = Tz/(z — 1)* and the final value theorem now gives
3im E(t)=lim Tz/[(z —1)G'(2)]=T/[KT]= UK
—> 0 z—1

This result holds as long as all limits exist, which requires that the system be stable.

3. Stability requires that the roots of the characteristic equation

1+G'(z2)=0
be inside the unit circle. The characteristic equation can be reduced to

F(z)=z*4+az+B=0 . (2.8)
where the a and B coefficients are '

a=K[T-2(1-e %) - 1+ %) 2.9
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B=e "T(1—-KT)+2K(1 -7 . (2.10)

Rather than factor this quadratic directly, use the bilinear transformation z = (w + 1)/(w — 1) to
find a quadratic in w:

l+a+Bw’+20-B)w+[1+B—a]=0 (2.11)
Applying Routh’s criterion to the w quadratic shows that for stability,

l1+a+B>0, 21-B)>0, and 1+B—a>0
are required. In terms of the original z quadratic, these requirements are

F(1)>0, F(0)<1, and F(-1)>0

These requirements are true for any second-order characteristic equation F(z) =0, and are an
example of the Schur-Cohn stability test [7]. For this problem F(1) = KT (1 — e ") is positive
for all positive T and K.

The second condition states that B <1, or

K[2-2¢ % T = Te % T+ ¢ %7 < 1 (2.12)

If T =0, then B =1, but T will never be zero. As T— o, B— 2K, so this condition must be
checked in detail when specific values are given in part 4.
Finally, F(—1) > 0leads to

2(1+e7%7)
T(l + e—O.ST) _ 4(1 - e—O.ST)

For very small T this gives K <2/T, and for very large T it gives K <2/(T —4). This demon-
strates the inverse relationship between Kn.x and T.

4. With T =2, the requirement of Eq. (2.12) gives Kuax = 1.196, and Eq. (2.13) gives
K <13.19. The most constraining result is the one which is operable.

5. With T =2
G'(z) = 0.7357588K (z + 0.71828)/[(z — 1)(z — 0.36788)] 2.14)
With K = 0.5, the steady-state error ,lim E(t) = 1/K = 2. This motor control system will follow
—1

K< (2.13)

a commanded ramp in position, but the actual position will be offset by two units from the
command. This may not be accurate enough. Even if the gain is increased to near its limit, the
error only decreases to around one unit, and the transients will be very slow to die out with the
system being that close to the stability limits. This system will need to have some form of
compensation if the sampling time cannot be decreased. Note that if 7 = 1, then

G'(z) =0.21306K (z + 0.84675)/[(z — 1)(z — 0.6065)] (2.15)
and the maximum allowable stable gain increases to 2.18. The steady-state error due to a ramp
input is still 1/K independent of T. |

2.6 EXTENSION OF CLASSICAL TECHNIQUES TO MORE
COMPLEX SYSTEMS

When multiple loops or multiple inputs and outputs must be considered, signal flow
graph techniques can be used to reduce the problem to one of single-loop analysis.
However, the resulting “open-loop” transfer function will usually not be in the con-
venient factored form. Even the simple techniques can become tedious in this case.
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Linear multiple-input, multiple-output systems can be treated systematically
using various transfer function matrix representations. Pursuing the subject in that
direction quickly leads to the theory of polynomial matrices and the so-called matrix
fraction description of systems. In this book, with very few exceptions, the alternate
approach of using state space methods is pursued.

Simulation has long served as a supplement and extension to the classical analyti-
cal techniques, especially when dealing with complex and nonlinear systems. Analog
computers were first historically, then came digital and hybrid methods. At present,
the strong trend toward the digital computer continues. Computer-aided design (CAD)
tools, which ease or even automate many of the tasks described in this chapter, are
now widely available. Further, computers are frequently used as components in the
control loop. The controllers or compensators G.(z) are routinely implemented in
microprocessor form.
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ILLUSTRATIVE PROBLEMS

Properties of Feedback

Compare the open-loop and feedback control systems of Figure 2.9 in terms of the sensitivity of
the output C to variations in system parameters.

In the open-loop case C = G; R and 3C/3G, = R, so that a change 8G produces a change
in the output 8C = R3G. System sensitivity S is defined as percentage change in C/R divided by
the percentage change in the process transfer function. For the open-loop system,

_3GIG _

S_BG/G_

1
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For the closed-loop feedback system C = G, R/(1 + G, H),
oC _ RJdG, G.RHJG, R3G,

3G. 1+G:H (1+G,H? (1 +G,H)
The sensitivity is

3CR)G, ___ 838G, (+GH)G, ___ 1 _ 1
C/IR 3G (1+G,H)) G. 3G: 1+G,H R,

If the magnitude of the return difference is greater than unity at all frequencies w, i.e.,
IRa(jw)|>1 (1)

then the closed-loop configuration (b) is always less sensitive to parameter variations than the
open-loop configuration (a). Equation (I) requires that the polar plot of G,(jw)H (jw) never
enters the unit-radius disk centered at —1. Figure 2.9¢ shows polar plots for two possible systems
which satisfy this requirement. System 1 has an infinite gain margin (increase or decrease). With
system 2 the gain can be increased an infinite amount or decreased by at least 50% while
remaining stable. Consideration of the equilateral triangles formed by points (4, —1,0) or
(b, —1,0) make it clear that systems which do not penetrate the unit disk also have phase
margins of at least 60°. Certain linear-quadratic optimal systems are guaranteed to have these
desirable properties, as is discussed in Sec. 14.7. For other systems, the design goal is often to
shape the polar plot and/or use a high loop gain in order to satisfy Eq. (1) at all frequencies
within the system bandwidth but perhaps not at all frequencies. Satisfactory reduction of
sensitivity to the most problematic parameter variations is thus achieved.

Show how precise feedback coefficients can give precision feedback control even if gross errors
exist in the forward loop system being controlled.

3G,

S =
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As the loop gain increases, the feedback transfer function becomes
C KG 1

C_ L
R 1+KGH H
Thus for very high loop gain the response is largely determined by H rather than G.

Show that the sensitivity of the output to errors in H approaches unity for high loop gain.
This could easily be shown by starting with the result of the last problem. Alternatively,
define sensitivity to H as
_3C/R)(C/IR)  —G*3H 1+GH H _ GH

Su=""JHIH ~(+GHE G oH 1+GH L 2 [GH>=

This indicates the need for precision components in the feedback loop.

Compare performance of the systems shown in Figure 2.10a,b as degraded by the unwanted
disturbance D.

In the open-loop case, C(s) = KG1 G2 R(s) + G, D(s).

KG1 GzR(S) + GzD(S)
1+KG,G,H 1+KG,GH’

In the second case the contribution of the disturbance to the output can be made small by
increasing the gain K. More generally, this is accomplished by increasing the return difference
magnitude over the frequency range of interest, and this should be done by increasing the
magnitude of KG,. Notice that feedback also introduces a loss of useful gain between C and R.
For example, if H =1 and G, and G; are ideal amplifiers with constant gains, the open-loop
system gain is KG; G,. The feedback system gain KG, G»/(1 + KG, G,) would then be less than
unity.

Use the dc motor of Problem 1.2, page 17, to demonstrate how feedback can favorably improve
transient response. Neglect the inductance L.
When L =0, the transfer function can be written as

QG)__ KUR
V(s) s+ (bR +K?/JR ,

This is considered as the open-loop system. If a step voltage V (s) = V/s is applied, the open-loop
speed response is, letting K’ = K/JR and a = (bR + K?)/JR,

’

In the feedback case, C(s) =

Q(s) = or w(f)= Y—a&a — e )

s(s +a)

The speed of response is determined by a, which is determined by the load and motor charac-
teristics. If response is too slow for a given load, a new motor with a larger value of K could be

D D

+ +
.R__-. KGI _+$—‘ Gg C; R +; 1KG, 4——‘ Gz c
H
(a) Open loop . ) (b) Feedback

Figure 2.10
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+ s+a o

K,

Figure 2.11

installed. Alternatively, consider the tachometer feedback system of Figure 2.11. Here
Q(s) = [K'/(s + a + K'K,)]V (s). The system response time is now determined by a’ =a + K'K;
and can obviously be improved by proper choice of K..

Routh’s Criterion

Use Routh’s criterion to determine the number of roots of
§°+ 554 =253 +8s% +10s +3=0

which have positive real parts.
The Routhian array is given in Table 2.2

Note that any row can be normalized by multiplying or dividing by a positive constant,
as in the s> row. For the terms in column 1, the sign changes from row s* to row s> and again from
row s> to row s°. Two sign changes indicate there are two right-half-plane roots to this equation.

Does the following equation have any roots in the right-half plane?
s*+25°+4s*+8 +a =0
The Routhian array is shown in Table 2.3.

Note that the leading term in the s® row is zero. Whenever this happens, the zero is re-
placed by a small number e and the rest of the array is computed as usual. The limiting behavior
as e— 0 is used to determine stability. Here the first column reduces to {1,2,0, lin}) (—2a/e), o}

If a <0, there is just one sign change between the s and s° rows, and, therefore, just one
right-half-plane root. If o > 0, there are two sign changes and two right-half-plane roots.

Steady-State Error and Error Constants

Derive expressions for the steady-state value of E(f) for the system of Figure 2.1a when the
input R (s) is a step, ramp, and parabolic function, respectively.

The Laplace transform of the error is E(s) = R(s)/[1 + KG(s)H (s)]. For a unit step,
R(s) = /s. Using the final value theorem and assuming a constant steady-state error exists,

TABLE 2.2
54 5 8 3
o —18(8) — 5(47) _ 379 3 B
—18 18
s (379/18)(47) — (—18)(3) __ 18785 .
379/18 379
50 3
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TABLE 2.3
s4 1 4 o
s3 . 2 8
sz g_(_% = 0 € o
s 8¢ — 2u
€
s0 o

E.= tlim {E(}=1[1+K lirrtl) {GH}]. Similarly, for a ramp input, R(s)=1/s*> and E, =
VK lim {sGH}. If the input is the parabola t*/2, R(s) = 1/s” and E,, = 1/K lim {s*GH}.

To proceed, we must know the system type. The system type is the number of s terms that
factor out of the denominator of G (s)H (s). For a type 0 system there are no such factors, so
K 1iné {GH} = K,, the Bode gain. Likewise, for type 0, K lin% {sGH}=0and K liné {s*GH}=0.
For type 1 systems K ling {GH}==, K lirré {sGH}= K, and K lir% {s*GH}=0. Similar results
hold for type 2 and higher systems. The three limiting values for each system are called the
position, velocity, and acceleration error constants K,, K,, and K,. These are summarized in

Table 2.4, along with the steady-state error values. Note that larger error constants give smaller
steady-state error.

Miscellaneous Methods

Sketch the root locus for a system with

K
s(s +8)(s*+8s +32)°

The open-loop poles, plotted as X, are located at s =0, —8, —4 + 4j, and —4 — 4j. The
open-loop zero O is at s = —4. There are four branches of the lcci, and Rule 3 gives the real axis
portion, shown in Figure 2.12. Thre¢ branches must approach § = as K—». One is on the
negative real axis, and the others are at £60°, since

(bl _(_H__Zk_)l& (1 + 2k)600

KG(s)= H(s)=s +4

=+60 (k=0), —60 (k=-1), and 180° (k=1)

Other values of k give multiples of the same three asymptotic angles. Rule 6 gives

=310 -8-4-4)—(~4)] = ~4

TABLE 2.4

Error constants Steady-state error

System type | Kp K,, K, | Step input | Ramp input | Parabolic input

Ky 0 0 1/(1 + Kp) (=) [eS)
‘ 0 1/Ky 0

8
&
o
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Figure 2.12

In general, the phase angle of the transfer function, equation (2.2), can be written as
LGH(S)=¢21+¢22+ "'—¢p1_¢P2="'=(1+2k)180°

where ¢, is the angle of the line segment from the zero z; to a point s and &,, is the angle from
pole p; to s. In order to determine the angle of departure of the locus from a complex pole, a test
point s, is used, which is infinitesimally close to the pole. The angles of the vectors from all zeros
and poles except one are easily measured. The remaining angle, associated with that complex
pole, can be computed. This is the angle of departure and in this case it is 0°. With this
information, a few more test points allow an accurate sketch of the complete locus.

For the system shown in Figure 2.13, select K so that the phase margin is greater than 30° and the
gain margin is greater than 10 db.
In Bode form,

_ 50K (0.025 +1)
200 5(0.1s + 1)(0.05s + 1)

The Bode plots are drawn in Figure 2.14 with the Bode gain K,, = K/4 set to unity. At w = 10, the
phase is —150° and the gain is —24 db. This means that K, could be increased from 0 db to +24
db, and the phase margin specification would just be satisfied. If this were done, then at w = 24
rad/s, where the phase is —180°, the gain would increase from —39 db to —15 db. This gain
margin of 15 db satisfies the specifications, so K, = 24 db, which converts to a real gain of about
15. This means that K = 4K, = 60 can be used to satisfy both specifications.

KGH

R(s) _~ K(s+50) C(s)
+ v s(s+10)

1
s+20
Figure 2.13
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Use root locus to determine the closed-loop poles of Problem 2.10 when K = 60 is used.

The upper half of the locus is sketched in Figure 2.15 using the rules of Example 2.4 and a
spirule to check Eq. (2.2) at a few additional points. The closed-loop poles are shown as [.
Notice that the complex poles lie almost exactly on the { = 0.3 damping line. For this example,
the rule of thumb { = 0.01 PM is verified.

Polar Plots and Nyquist’s Criterion

What information is readily available from a polar plot of KG (jw)H (jw)?

The number of closed-loop poles in the right half plane can be determined in terms of the
number of encirclements of —1, using Nyquist’s criterion. The system type is indicated, assum-
ing a minimum phase system, by the phase angle at w = 0. Type 0 systems have a finite magnitude
and zero phase angle. Type 1 systems approach infinite magnitude at an angle of —90°, type 2
systems aproach infinite magnitude at an angle of —180°, etc. The excess of open-loop poles
compared to zeros is indicated by the behavior as w— . If there is an equal number of poles and
zeros, the magnitude approaches a finite constant. In all other cases the magnitude approaches
zero, but if there is one more pole than zero, the approach is along the —90° axis. For two more
poles than zeros, it is along the —180° axis, etc. Relative stability, in terms of gain and phase
margins, is also readily apparent. For example, in the plot shown in Figure 2.16 the system is
type 1, and it has three more poles than zeros. Assuming no open-loop, right-half-plane poles,
the system is stable, since the plot does not encircle the point —1. The phase margin is 60° and
the gain margin is 1.25, since the gain could be increased by that factor without causing the plot
to encircle the —1 point.

Draw the polar plot for

K(s +0.5)(s +10)

KGH =6 1 2) (57 + 25 9)




56 Highlights of Classical Control Theory Chap. 2

A

_ Asymptote
(=03 +90
Closed-loop
poles for K = 60
5 : < e = i »
—50 K increasing -20 —-10 +10 o
Figure 2.15

Determine the gain and phase margins when K =2.

The polar plot for this type 0 system is given in Figure 2.17. The —1 point is not encircled,
so N =0. Since there are no open-loop, right-half-plane poles, Pr = 0. Therefore, Nyquist’s
criterion indicates that there are no unstable closed-loop poles. The phase margin is approxi-
mately 50°. The magnitude at 180° phase is 0.32, so the gain margin is 1/0.32 =3.1.

The smallest magnitude of the return difference, which occurs here at approximately
o = 3, is an excellent measure of stability margins. This is the basis for the constant M -circle
concepts in classical control analysis. The larger the minimum return difference is, the more
robust the system is to modeling errors and parameter variations, which may cause gain changes
or phase shifts.

Plot for w < Qis
the mirror image
of w > 0 plot /

/

/

//
unit 98
circle

N

PM = 60°

w positive,
increasing

w=0 | Figure 2.16
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Figure 2.17

2.14  Analyze the polar plot for the nonminimum phase system with

~ K(s +10)(s +20)
kGH = s(s — 10)(s + 40)

Even though this is a type 1 system, the phase angle approaches —270° as w— 0 since the
minus sign on the unstable pole contributes —180° phase. The general shape of the polar plot is
shown in Figure 2.18a. :

The —1 point could be encircled by either the a-d-c-b-a circuit, counterclockwise, or by

w=0+A A
,/’— e
//
7
Ve
/7
/
/
/
/
/ A L0.64
| b I' .
f: “ N - 8 Ow= -
‘ a w = 30
\ | 4 15
Inﬁnite\\ |
radius \
\ \
\
\ \
\\\ \
w=0"

(a) ) (b)

Figure 2.18
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the infinite a-g-f-e-a circuit, clockwise. Which circumstance prevails depends upon K. If —1 is
inside the small circuit, then N =1. Since Pr=1, there would be Zz =1—1=0 unstable
closed-loop poles. If —1 is to the left of point a, then there is one clockwise encirclement so
N = —1 and, therefore, Zz =1 — (—1) =2, indicating two unstable closed-loop poles. An en-
larged plot is also given in Figure 2.18b for K = 10. The magnitude of 0.64 at —180° indicates
that the system is unstable for values of K < 10/0.64 = 15.6, and stable if K > 15.6. This problem
illustrates that the usual visualization of gain and phase margin is incorrect for nonminimum
phase systems. This is why Bode plots should not be used with nonminimum phase transfer
functions.

Compensation

Explain the essence of classical compensation using root locus techniques.

The basis for compensation is a knowledge of the correspondence between closed-loop
pole locations and the type of transient time response terms they yield. Some typical closed-loop
pole locations are indicated by []in Figure 2.19, and the corresponding time response terms are
shown.

Poles farther to the left of the imaginary axis give terms which die out faster, i.e., faster
response times. Complex poles give oscillating terms with a frequency equal to the distance from
the real axis and decay time inversely proportional to the real part of the pole, ¢. The damping
ratio, related to overshoot, is defined in terms of the angle +y as { = sin+y. The undamped natural
frequency w, is the radial distance from the origin, so that o; = {w, and the damped frequency is
w; =w, \/1-.

Based on these relations, the desired locations of the most dominant closed-loop poles are
selected. Checking the root locus angle criterion at that point indicates whether additional lag or
lead is needed and how much. Compensating poles and zeros are then selected to provide this
phase shift.

Suppose a damping ratio of { = 0.707 and a frequency of 10 rad/s are desired. Then a pair
of complex closed-loop poles must be located as shown in Figure 2.20. If the angle for the
uncompensated KGH is —160° at that point, then an additional —20° phase must be provided by
compensation. It is common practice to place the compensator zero directly below the desired
closed-loop pole. Obviously, a single pole zero pair can provide up to 60-65° phase shift. If a
greater shift is needed, more complicated compensation is required.

Discuss the compensation characteristics of the phase-lag and phase-lead circuits of Figure 2.21
using Bode plots.

bjo
4 -1 jw4
| .
3 |=-—+—1Jus
| 1. ¢c,e7
| Y3
: 2. c,e ¥
1 2 e d
03 T4 g 3. cse” 7 sin (wyt + @y)
-0, —02
4. ceem sin (wal + dy)
3
4

Figure 2.19
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The lag circuit lowers the gain at high frequencies and leaves the phase unchanged for
o >> 1/7, (Figure 2.22a). The corner frequencies 1/7; and 1/7, would be chosen well below the
critical crossover frequency. This means the dc gain can be raised in order to improve steady-
state accuracy. This increase in gain returns the high frequency gain to its uncompensated level
and thus leaves the stability margins relatively unchanged.

The lead circuit Bode plot assumes an additional dc gain has been added to compensate
for the /1, reduction. By proper choice of 1/7; and 1/7, relative to the cross-over frequencies,
the phase lead can be used to increase phase margin. This circuit also delays the 0 db crossover
frequency, thus increasing bandwidth and speed of response. It leaves the low frequency charac-
teristics, such as steady-state error, unchanged.

Discrete-Time Problems

In the process of designing a digital control system, it was determined that the following
compensator was desired:

10(z +0.4)(z — 0.5)
(z+0.5)(z+1)
Determine an algorithm which can be coded on the computer to implement G, (z).

There are several possible answers, two of which follow. Writing G, in expanded poly-
nomial form gives :

10(z* = 0.1z —0.2) _10(1-0.1z2""'— 0.2z %)

G.(2)=

Ge(z) =

z°+1.5z2+0.5 1+1.527"+0.5z72
R, C
o NV N it
R, o AVAYAY; 0
Uin Dout Rl
Vin R, Vout
-I- C
o _ o] O O
Vout — I +Tls Vnul — (:r_‘_’) 1 +T|S
Ve 1+7,s T 2T Vin 7.) 14108 T T
(«) Phase-lag circuit ) : (b) Phase-lead circuit

Figure 2.21
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If the input to G, is E(t) and the output is y (&), then using z ™' as the delay operator, cross
multiplication gives the so-called direct form realization

1+1.5z7'+0.5279)Y(z2) = (10— z ' =2z ?)E(2)

or, in the time domain
y(t) =10E(te) — E(tx-1) = 2E(te-2) — 1.5y (te 1) — 0.5y (tx - 2)

If G.(z)/z is expanded in partial fractions and the result is then multiplied by z, one obtains
G.(z)=—-4—-4z/(z +0.5)+18z/(z + 1)

This represents three separate paths through the compensator, as shown in Figure 2.23. This is
the so-called parallel realization.

The algorithm thus consists of
y1(te) = 4E (1)
ya(te) = E(t) — 0.5y5(tk - 1)

Y1
> 4
E(2) z Y2 e Y(Z)‘
1 z+.5 > 4 TN g
+ 4
z Y3
o z+1 18

Figure 2.23
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y3(te) = E(te) — ya(te-1)

and

y () = 18ys(te) — y(te) — dy2(te)
Other forms are possible.

Derive the transfer function for the device which outputs the piecewise constant approximation
to a continuous-time function E (f) as shown in Figure 2.24.

Let the unit step function starting at time ¢ = 0 be u(¢). Then a shifted unit step function starting
at time #, is u (¢ — t;). The piecewise constant function can be written as

Y*@)=EQu@)+[EQ)-EQO)]u(t—t)+[EQ—EMD)]u(t—t)+---
+[E(Mt)—E(tc-)]u@—te)+---

o

= 2 [E(t) = E(te-)]u(t — t)

k=0

Since du(t — t,)/dt = d(t — tx), the derivative of the device output is
x() =dY*(¢)ldt = 2 [E(t) — E(te—1)]3(t — 1)
k=0

Using the definition of the Z-transform in Problem 1.15, the transform of x(#) is X(z) =
E(z)—z'E(z)=(1—-z"")E(z). The final relationship among these variables is shown in
Figure 2.25.

Since y(¢) is the integral of x(¢), Y(s) =[(1 — z7')/s]E(z). Clearly, then, the transfer

function of the zero order hold is Go(s) = (1 — z')/s.

Investigate methods of obtaining a Z-transfer function G '(z) which has approximately the same

behavior as an s-transfer function G (s). There are several approaches to this question.

(a) One way is to determine the exact Z-transform that corresponds to the product of G (s) and
the ZOH transfer function Go(s), perhaps using transform tables. The ZOH should be
included in most cases involving combined continuous and discrete systems, as shown in
Figure 2.1b. The reason is that Z-transforms are always applied to everything between two
samplers (or the same sampler around a complete loop). For most physical systems of
interest, a D/A will be included in this segment of the system.

(b) An approximate conversion is obtained by treating s as a derivative operator and using a
forward finite difference approximation on the sampled signal:

Y@ =[yte+1) —y@VT

E®
r*(@)
2 E(tk) - E(tk—l)

k / E(tyy) = E(t;_3)
/ }E(zT) BT Lé } k-1 k-2
/ ET)
| 1 | | ‘L 1 1 ] | L

0 T - 2T 3T . 4T = ST (k=T kT ((k+DT

~Y

Figure 2.24
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In the transform domain this means that s = (z — 1)/7, since z is the advance operator. If this
approximation for s is used in G (s), the approximate transfer function G,(z) is obtained.
Note that this result is also given directly from z = e ™ =1 + Ts, which is approximately true
for small Ts.

(¢) A backward difference approximation is also possible. y(£)=[y(t)—y(t&-1))/T leads
to s=(1-2z"")/T and to G/(z). This result is also obtainable from z =e¢™ =1/e " =
U[1 - Ts].

(d) If[ z is 1vritten as z =e™?/e ™2 =[1+ Ts/2)/[1 — Ts/2], then s can be solved for as
s = (2/T)[z — 1)/[z + 1]. Using this gives G(z).

All the above results can also be derived by approximating the integration operator

instead of the derivative operator [6].

Apply the above techniques to determine discrete approximations for G(s) = 1/(s + a).
@1 Z{(1-z"HG@G)si=[1—e“Ya(z —e*N)] = G.i(z)

Note that the pole is the exact s- to z-plane mapping of s = —a, so stability properties are
preserved. »
(a.2) For comparison, the transform without the zero order hold is Z{G (s)} = z/[z — e *].

Even though the denominators are the same, there is a one-period delay difference and a
gain difference. Unless one is working with true pulsed circuits, form a.1 is the appropri-
© ate one to use.

(b) With s =(z —1)/T, G{(z)=T/[z —1+aT]. The z-plane pole can be in the unstable
region (outside the unit circle) even if the s-plane pole is stable. '

(¢) Withs=(z —-1)/(Tz),G!(z) =[T/(1+aT))z{z —[1/(1 + aT)]}. Here the z-plane pole is
always stable (inside the unit circle) whenever the s-plane pole is stable (and sometimes
even when the s-plane pole is unstable).

(d) With s =Q/T)[z —1)/[z +1], Gi(z) =[T/(aT + 1)]z/[z — 1/(1 + aT)]. In this case the
z-plane pole is inside the unit circle if a <0, is on the unit circle if a = 0, and is outside if
a > 0. Thus G4(z) inherits the exact stability properties of G (s). It can be shown that this
is true for all transfer functions formed using approximation (d). That is,

z=[1+Ts2)[1 - Ts/2]

exactly maps the left-hand s-plane into the interior of the unit circle. Approximations
(a) and (d) both preserve stability properties, while (b) and (c) do not. However, the
behavior in (c) is preferable to that of () in this regard.

By using the mapping z = e, determine how the pole locations discussed in Problem 2.15 map
into the Z-plane.

_For poles [ and & or any other on the negative real axis, z = e °" is a positive number
between 0 and 1. Therefore, Z-plane poles on the positive real axis correspond to exponential
time functions. These are stable (decaying) exponentials for poles inside the unit circle. Poles on
the positive real axis in the s-plane also give positive real axis Z-plane poles that are outside the
unit circle. These correspond to unstable (growing) exponentials.

Poles like B] and & give z =e °Te/*" = e ""[cos (wT) = j sin (wT)]. These will always
occur in conjugate pairs, and are on the unit circle if ¢ =0 and give persistent oscillations. If
o >0, they are inside the unit circle and give damped oscillations. For o <0, the poles are
outside the unit circle and correspond to growing oscillations. The decay or growth rate depends
directly on the radial distance of the poles from the unit circle. The frequency of oscillation is
directly related to their angular position w7. Note that if T = 1, the poles are on the negative
real axis. No s-plane pole with w > =/T will occur if the sampling rate satisfies the Nyquist
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sampling theorem. If such higher frequency poles do occur, they map into the Z-plane at points
which also correspond to lower frequency poles. This ambiguity is called aliasing, and can be
avoided by sampling at least twice per period of the highest frequency pole in the system.

As any s-plane pole’s real part approaches —, the Z-plane pole approaches the origin.
Polesats =0 mapinto z = 1.

It is informative to consider several familiar contours in the s-plane and see how they map
into the Z-plane. In Figure 2.26a, a closed contour is considered, with arrows indicating the
traverse direction and numbered points showing the correspondence at eight key points. In
Figure 2.26b, lines of constant frequency, constant settling time, and lines of constant damping
ratio are shown for the s- and Z-planes.

The dc motor controller of Example 2.6 is to be designed using root locus. The sampling period
is T =1 s. Closed-loop Z-plane poles at z = 0.19877 £ 0.30956; are desired. These are the
images of s = —1%xj. They are selected because of the desirable properties they give to
continuous-time systems, namely, a settling time of about 4 seconds and the damping ratio of
0.7, which gives about 5% overshoot. The open-loop transfer function is given in Eq. (2.15).
The uncompensated root locus is sketched in Figure 2.27a. To achieve the desired
root locations, compensation is required to reshape the locus. A forward-path cascade

e Ajw

@F—Q"L < @ w=% @
@‘{\‘“5’% |

@ @ » Real @

Okl > _n
T
(a)
Constant l s-plane Z-plane
damping
ratio ,
Constant Constant
damping frequency
‘ ratio /
Constant * o
frequency 1
| / \
Real t
Constant \
settling N Constant
time T~ settling
time
(b)

Figure 2.26
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Figure 2.27

compensator of the form G.(z) = K.(z —0.60653)/(z + a) is selected. The value of a will be
selected so that the locus will be shifted over, as shown in Fig. 2.27b. This is a lead-type

compensator. As shown in Figure 2.28, if the desired point is to be on the locus, it must be true
that ¢s— &, — ¢, = —180. But ¢, = 180 — tan"[0.30956/(1 — 0.19877)] = 158.88°. Likewise,
¢ = tan"'[0.30956/(0.84675 + 0.19877)] = 16.49°. Therefore, ¢ must be 37.61°. This means
that the compensator pole must be at z = —0.203. The required root locus gain is computed as
the product of the vector lengths from the poles, divided by the product of the vector len lgths
from the zeros to the desired root location []. This gives Kg, = [(0.7378)(0.2572)/1.1889]">
0.3995. The total root locus gain for this sytem is Kz, = K.(0.21306K), so if, for example, the
gain KX in the open-loop transfer function has a value of 0.5, then K. = 3.7501, giving the final
compensator

G.(z) =3.7501(z — 0.6065)/(z + 0.2030).

The compensated system’s response to a step input is shown in Figure 2.29. It shows about
4% overshoot, just what might have been expected from the s-plane roots. This result is not
necessarily typical. Quite often the discrete system will have far more overshoot than expected
from the s-plane pole positions. This is due to the fact that the sampled system is essentially
running open-loop for the intersample periods 7. This allows larger overshoot to build up before
corrective feedback action can occur. Also, the location of the zero is a major factor in determin-
ing the response [6]. The final value theorem shows that this system will have a steady-state error
of 3.26 when the input is a ramp.

0.19877 + j(0.30956)

7

-0.84675  -a 1

Figure 2.28
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Design a cascade compensator for the system of Example 2.6 so that the steady-state value of the
error E(t) is zero for a ramp input, and such that E goes to zero in the minimum number of
sampling periods. This is referred to as the deadbeat response controller.

The transfer function for the error is

E(z)=W(2)R(2)

where W(z) = 1/[1 + G.(2)G'(2)].

If E(t) is to go to and remain at zero in some finite time, then W(z)R (z) must be a finite
polynomial in z ~*. Since steps, ramps, and other typically used inputs contain a denominator
factor of (1 — z ')*, W(z) must contain as a factor (1 — z ')*. Otherwise, an infinite series in z ~*
would result for E(z). In this particular case of a ramp input, o =2 and W(z) must have the
factor (1 —z~")% It is generally necessary that W(z) contain another factor F(z ") as well. If
W (z) is given, then it is easy to show that G.(z) =[1 — W(2)}/[W(2)G'(z)]. The reason why the
extra factor F may be required is that the resulting G.(z) must be forced to be physically
realizable if it doesn’t come out that way initially. The general rules for doing this are:

1. If G'(z) has no poles or zeros on or outside the unit circle (a single pole at z =1 is
acceptable), then F(z ') =1 is all that is required. A leading 1 is always assumed for the
polynomial F, and if any unnecessary extra powers of z ™' are included, they only delay the
time at which E reaches zero. Otherwise, the following three additional dictums must be met:

2. F(z") must contain as zeros all the unstable poles of G'(z).

3. 1-— W(z) must contain as zeros all the zeros of G'(z) on or outside the unit circle.

4. 1— W(z) must contain z ~' as a factor.

In the present case G'(z) has no poles or zeros outside the unit circle so it is permissible to use
F =1. Then W(z) = (1 — z™')? and the compensator is

G.(2) = 2z — 1)(z — 0.6065)/[0.21306K (z + 0.84675)(z — 1)]

When this compensator is used, the closed-loop transfer function is M(z) =2z"'—z 7% The
responses to step and ramp inputs are as shown in Figs. 2.30 and 2.31, respectively. Note that the
design objectives are met for the ramp input, but the step response may not be acceptable since
it has 100% overshoot. This illustrates one drawback of deadbeat response controllers: they are
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tuned to specific inputs. The other potential drawback is that the intersample error is not
necessarily zero just because E(f) is zero. There are other methods of suppressing intersample
ripple [7].

2.24  Consider the same system as in the previous two problems. This time a cascade compensator is
sought which meets the followng specs: (1) closed-loop poles at z = 0.19877 + 0.30956j, (2) zero
steady-state error for a step input, and (3) a velocity error constant K, of 5 to insure an ability to
follow ramp inputs with acceptably small error. This is an example of a direct synthesis method
[7], sometimes called the method of Raggazini [6].

A summary of the rules associated with this design method is given before applying them
to this specific problem. Let the final closed-loop transfer function be called M (z).

1. In order to ensure that the final compensator is physically realizable, M (z) must have at least
as many more poles than zeros as G'(z) does.



Chap. 2 Illustrative Problems 67

2. To ensure a stable closed-loop system, M (z) must contain as zeros all zeros of G'(z) which
are on or outside the unit circle. To see this, let the plant transfer function be written
G'(z) = N,1 N,2/D,, where N,, contains all zeros on or outside the unit circle. Let

G: = N./D.. Then
N:N,1N
M (z) — p1iV¥p2
Dc Dp + Nchl Np2
The only way to prevent M from having the zeros in question is to select the compensator
denominator to have the factor N,,. But that leaves N,, as a common factor in the denomi-

nator of M, thus constituting unstable closed-loop poles. Since perfect cancellation is never
possible, this approach is not satisfactory. N,, must be a factor in M (z).

3. Of necessity, if M(z) is to be stable, 1 — M (z) must have as zeros all the unstable poles of
G'(z). (Those on or outside the unit circle—a single pole at z = 1 is not considered unstable.)
The reason why this is necessary is clear from a consideration of Eq. (2.5), rearranged as
M=G.G'(1-M).

4. In order to have zero steady-state error, the final value theorem indicates that
lim {(z ~ DR(2)[1 — M (2)]} = 0. The implication of this depends on what R(z) is, but for a
step input, since R(z) = z/(z — 1), it means that lim M (2)=1

5. The velocity error coefficient is defined as :

K. = (UT) lim {(z = )G.(2)G"(2)} = (VT) lim (z = HM(2)[1 -~ M(2)]

For the case where a step input was used in (4), M(1) =1, so the expression for the error
constant is indeterminant of the form 0/0. Use of L’Hospital’s rule gives K, = —1{Td[M(z)]/
dz}|, 1. Solving gives a requirement on M(z) in terms of a specified K,:
dM(z _—1
dz K, T

Now for the specific problem here, M (z) must have at least one more pole than zero,
since G '(z) does. The open-loop system G '(z) has no poles or zeros outside the unit circle. In
view of this and the desired closed-loop poles, a tentative M (z) is selected, which satisfies (1),
(2), and (3). :

A(z +a)
z?—0.39754z + 0.13534

There are two free design parameters A and a that can be used to satisfy (4) and (5). From
(4), A(1 +a)/0.737797 = 1 and from (5)

A/0.737797 — A(1 + a)(2 — 0.39754)/(0.737797)* = —1/5

From these two equations the two unknowns are found to be A = 1.4549 and a = —0.492888.
The compensated closed-loop transfer function is

M (z) = 1.4549(z — 0.492888)/(z* — 0.39754z + 0.135337)
Using this, Eq. (2.5) gives the following compensator, after algebraic simplification:

6.82859(z — 0.60653)(z — 0.492888)
K(z — 0.85244)(z + 0.84675)

The transient response of the closed-loop system to step and ramp inputs are shown in
Figures 2.32 and 2.33, respectively. Note that the maximum percent overshoot (at the
sampling times) due to a step input is 45.5% and the settling time is about 47, i.e., 4s. A
different set of design specifications may lead to improved performance.

z=1

M(z)=

G.(2)=
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PROBL'EM'S”

225 A smgle 1nput single- output system is descnbed by V. + y + 6y + (K 3)y = u(#). What is the
range of values of K for stability? -

2.26  Find the gain K and the frequency o at which the system of Figure 2.34 becomes unstable.
Consider only positive gains.
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Use Routh’s criterion to accurately compute the gain and frequency at the imaginary axis
crossover for the system of Problem 2.9.

The asymptotic gain portions of three Bode plots are shown in Figure 2.35. Identify the system
types and their error coefficients.

Use Bode’s method to show that the system with KGH = K/[s*(s + 1)(s® + 25 + 225)] is unsta-
ble for all positive K.
Sketch the polar plot and use Nyquist’s criterion to investigate the stability of a system with
KGH = K (s + 10)/s>.

Sketch the polar plot and use Nyquist’s criterion to investigate the stability of a system with
KGH = K(s + 10)(s + 30)/s°.

~ Use the polar plot to determine the gain-phase margins for the system described by

5000(s +2)
KGH = 3077 10)(s + 30)

A feedback control system has an open-loop transfer function

_ 65,000K

s(s +25)(s*+ 100s + 2600)
Find the value of K such that the exponential envelope of the dominant terms decays to 0.15% of
its maximum value in 1 s. Also find the frequency of this damped oscillation.

Why should Bode plots not be used to infer stability margins for the system in Example 2.3,
page 43.
Give three different algorithms for realizing a digital compensator

G.(2) = (z = 0.5)[z(z +0.5)]

whose input and output/ are E and Y, respectively.

Determine an expression for the output sequence C(nT), valid for any nonnegative n, if
C(2) =10z/[(z = 1)(z — 0.5)(z + 0.5)].
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2.37

For C(z) = (z —a)(z = b)/[(z — o)(z — B)], with a, b, a, and B all distinct:
(a) Find C(0), C (T) and C(2T) using long division.
(b) Find an expression for C(nT) valid for all n > 0.

(¢) Apply the final value theorem (assume |o| and || are less than 1), and from its results verify
the limiting value of your part (b) answer as n — «,

2.38

The system of Figure 2.36 is open-loop unstable.

(a) Determine the closed-loop transfer function C(z)/R(z), assuming that G.(z) = 1.

(b) Sketch the root locus for the uncompensated system. From this sketch, show that the
closed-loop system will be stable for some narrow range of K values, but that the resulting
system’s transient response will not be very desirable. Compensation will probably be

required.
2.39

Determine E(z), C(s), and C(z) for the system of Figure 2.37.
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Consider the widely used PID controller (proportional, integral, and derivative control action)
shown in Figure 2.38. Use the stable forward difference approximation for s and determine an -
equivalent digital controller transfer function. Note that a pure derivative does not have a
physically realizable transfer function, so a small time-constant term 7 is included.

The wide and persistent appeal of PID controllers, especially in the process control
industries, can be attributed to their robustness. That is, a properly tuned PID controller can
give a good compromise between acceptable time response and disturbance rejection, even with
significant model errors present.

Using the sample and zero-order hold models suggested for A/D and D/A converters, show that
the cascade connection of a D/A followed by an A/D has a Z-transfer function of 1, meaning no
alteration of a digital signal sequence passing through it.

A simple one-dimensional model of a digital tracking loop is shown in Figure 2.39. The purpose
of the control loop is to keep the angular rate of the antenna w, approximately equal to the
angular rate w, that the line of sight to the tracked object is making. The integrated angular rate
difference is a pointing angle error E. This error angle is sampled, because of a time-shared
control computer, and then used to command an antenna rate proportional to the error. The
dynamics of the antenna drive system are so rapid that they are neglected, meaning that the
actual w, is equal to its commanded value. Show that this loop is stable for 0 < KT < 2.



