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PREFACE

In the last decade, the use of digital computers for analyzing hydraulic transients
has increased by leaps and bounds, and the graphical and arithmetical methods
for such analyses have been replaced by sophisticated numerical techniques. Not
only has this change reduced the amount of laborious computations, but it has
resulted in more precise results and has made the analysis of complex systems
possible. Applied Hydraulic Transients provides a comprehensive and systematic
discussion of hydraulic transients and presents various methods of analyses
suitable for digital computer solution. The book is suitable as a reference for
practicing engineers and researchers and as a textbook for senior-level under-
graduate and graduate students. The field of application of the book is very
broad and diverse and covers areas such as hydroelectric projects, pumped-
storage schemes, water-supply systems, nuclear power plants, oil pipelines, and
industrial piping systems.

Each chapter of the book is developed in a systematic manner from first
principles. A very strong emphasis is given to the practical applications, and
advanted mathematics and unnecessary theoretical details have been avoided
as much as possible. However, wherever inclusion of such details was con-
sidered necessary from the point of view of researchers, they are presented in
such a manner that a practicing engineer can skip them without losing continuity
of the text. Several case studies, problems of applied nature, and design criteria
are included, which will be helpful to design engineers and will introduce stu-
dents to the design of real-life projects. Solved examples are given for illustra-
tion purposes, extensive lists of up-to-date references are included at the end of
each chapter for further study, and sample computer programs and flowcharts
are presented to familiarize the reader with digital computer applications.
Approximate methods and design charts are appended to the text for quick
computations during the preliminary design stages.

Because of the diverse nature of application, the various chapters have been
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vi Preface

written so that they can be read individually. Sometimes, however, other parts
of the book had to be referred to in order to avoid duplication. This has been
done in such a manner that only the section referred to may be read and not the
whole chapter. This mode of presentation will allow practicing engineers to read
only those parts of the book that are of their immediate interest, and will allow
teachers to select the chapters most relevant to their courses.

SI (Systéme Internationale) units are used throughout the book. However,
wherever empirical constants are involved or numerical constants are introduced
in the derivations, their corresponding values in the English units are given in the
footnotes. With these footnotes and the conversion table of Appendix F, any
reader preferring to use the English units may do so without much difficulty.

The sequence of presentation is as follows: In Chapter 1, commonly used
terms are defined, a brief history of hydraulic transients is presented, and funda-
mental concepts are introduced. The dynamic and continuity equations for a
one-dimensional flow in closed conduits are derived in Chapter 2, and various
numerical methods available for their solution are discussed. The details of the
method of characteristics are presented in Chapter 3. The next four chapters
are problem-oriented and discuss transients in pumping systems (Chapter 4), in
hydroelectric power plants (Chapter §), in nuclear power plants (Chapter 6),
and in oil pipelines (Chapter 7). The analysis of transients in homogeneous,
two-phase flows is also presented in Chapter 6. Resonance in pressurized piping
systems is discussed in Chapter 8, and the details of the transfer matrix method
are outlined. Transient cavitation and liquid column separation are discussed
in Chapter 9, and various methods for eliminating or alleviating undesirable
transients are presented in Chapter 10. The analysis of surge tanks using a
lumped-system approach is presented in Chapter 11. In Chapter 12, transients
in open channels are discussed, and the details of explicit and implicit finite-
difference methods are outlined. A number of design charts and sample com-
puter programs are presented in Appendixes A through D.

The book presents in a systematic manner a collection of my own contribu-
tions, some of which have not previously been published, as well as material
drawn from various sources. Every attempt has been made to identify the
source of material; any oversight in this regard is strictly unintentional.

M. H. Chaudhry, Ph.D.
Vancouver, B.C.
Canada
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CHAPTER 1

INTRODUCTION

In this chapter, a number of commonly used terms are defined, and a brief
history of the development of the knowledge of hydraulic transients is presented.
The basic waterhammer equations for the change in pressure caused by an in-
stantaneous change in flow velocity are then derived. A description of the
propagation and reflection of waves produced by closing a valve at the down-
stream end of a single pipeline is presented. This is followed by a discussion of
the classification and causes of hydraulic transients.

1.1 DEFINITIONS

Terms commonly used are defined in this section; less common terms are de-
fined in the text wherever they appear for the first time.

Steady and Unsteady Flow. If the flow conditions, such as pressure, velocity,
and discharge, at a point do not change with time, then the flow is said to be
steady. If the conditions change with time, the flow is termed unsieady.
Strictly speaking, turbulent flows are always unsteady since the conditions at a
point are changing continuously. However, by considering temporal mean
values over a short period, these flows are considered as steady if the temporal
mean conditions do not change with time. When referring to the steady or un-
steady turbulent flows herein, we will use the temporal mean conditions.

Transient-Siate or Transient Flow. The intermediate-stage flow, when the flow
conditions are changed from one steady-state condition to another steady state,
is called transient-state flow or transient flow.

Uniform and Nonuniform Flow. If the velocity 'is constant with respect to
distance -at any given time, the flow is called uniform flow, whereas if the veloc-
ity varies with distance, the flow is called nonuniform.

Steady-Oscillatory or Periodic Flow. If “the flow conditions are varying with
time and if they repeat after a fixed time interval, the flow is called sready-

1



2 Applied Hydraulic Transients

oscillatory flow and the time interval at which conditions are repeating is.

referred to as the period. If T is the period in seconds, then the frequency of
oscillations, £, in cycles/s and in rad/s is 1/T and 2n/T, respectively. Frequency
expressed in rad/s is called circular frequency and is usually designated by w.

Column Separation. 1f the pressure in a closed conduit drops below the vapor
pressure of a liquid, then cavities are formed in the liquid and the liquid column
may separate.

Waterhammer. In the past, terms such as waterhammer, oilhammer, and steam-
hammer referred to the pressure fluctuations caused by a flow change depending
upon the fluid involved. Nowadays, however, the term hydraulic transient is
used more frequently.

The following discussion will be helpful in clarifying the preceding definitions.
Let us assume that the downstream valve of the pipeline (see Fig. 1.1a) is
fully open, the water is flowing with velocity Vo, and at time, £ = ¢,, the valve is
suddenly closed. As a result of the valve closure, the flow through the valve is in-
stantly reduced to zero, and because of the conversion of the kinetic energy into
elastic energy, pressure rises at the valve, and a pressure wave travels in the up-
stream direction. This wave is reflected from the reservoir and travels back and
forth between the valve and the reservoi:. Due to friction losses, this wave is
dissipated as it travels in the pipeline, and finally—let us say, at time £, —the
pressure in the entire pipeline becomes equal to the reservoir head, and flow is
completely stopped.

Based upon the definitions given previously, the flow is steady when the con-
ditions are constant with respect to time (i.e., for t < t, and t > t,); and the
intermediate flow (ie., 1, <7< ¢,) when the conditions are changing from the
initial steady state to the final steady state is transient flow.

Now let us consider another situation. Let the valve be opened and closed
periodically at a frequency, wy. After a number of cycles, the flow conditions
in the pipeline will become periodic too, having frequency wy. This flow is
called steady-oscillatory flow.

1.2 HISTORICAL BACKGROUND*

=...The study of hydraulic transients began with the investigation of the propaga-

tion of sound waves in air, the propagation of waves in shallow water, and the
flow of blood in arteries. However, none of these problems could be solved
rigorously until the development of the theories of elasticity and calculus, and

*Most of the material presented in Section 1.2 is based on Ref. 1; readers interested in the
history of hydraulics should see Ref. 2.
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the solution of partial differential equations.  Newton presented, in his
Principia,® the results of his investigations on the propagation of sound waves in
air and on the propagation of water waves in canals. Both Newton and Lagrange
obtained theoretically the velocity of sound in air as 298.4 m/s as compared to
their experimental value of 348 m/s. Lagrange erroneously attributed this dif-
ference to experimental error, whereas Newton explained that the theoretical
velocity was incorrect and that this discrepancy was due to spacing of the solid
particles of air and the presence of vapors in air. By comparing the oscillations
of a liquid in a U-tube to that of a pendulum, Newton derived an incorrect ex-
pression for the celerity of water waves in a canal as n/L]g, where L = the
wavelength and g = acceleration due to gravity.

Euler® developed a detailed theory of the propagation of elastic waves and
derived the following partial differential equation for wave propagation:

Vy_ o3
ar? dx?

(1.1a)

in which a? = gh; x = the equilibrium position of a particle; y = the particle dis-

_ placement; and h = height of the air column. He also developed a general solu-

tion of this equation as
Y=F(x tat)+ flx - ar) (1.1b)

in which F and f = the travelling waves. Euler also tried, but failed, to obtain a
solution for the flow of blood through arteries.’

Lagrange analyzed® the flow of compressible and incompressible fluids. For
this purpose, he developed the concept of velocity potential. He also derived a
correct expression for the celerity of waves in a canal as ¢ = Vgd, in which
d = canal depth. In 1789, Monge developed a graphical method for integrating
the partial differential equations” and introduced the term method of charac-
teristics. About 1808, Laplace® pointed out the reasons for the difference be-
tween the theoretical and measured values of the velocity of sound in air. He
explained that the relationships derived by Newton and Lagrange were based on
Boyle’s law and that this law was not valid under varying pressures since the air
temperature did not remain constant. He reasoned that the theoretical velocity
would increase by about 20 percent if the adiabatic conditions were used instead
of the isothermal conditions.

Young® investigated the flow of bloodstreams, friction losses, bend losses, and
the propagation of pressure waves in pipes. Helmholtz appears to be the first to
point out that the velocity of pressure waves in water contained in a pipe was
less than that in unconfined water. He correctly attributed this difference to the
elasticity of pipe walls. In 1869, Riemann'® developed and applied a three-
dimensional equation of motion and its simplified one-dimensional form to such
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fields as vibrating rods and sound waves. Weber!! studied the flow of an incom-
pressible fluid in an elastic pipe and conducted experiments to determine the
velocity of pressure waves. He also developed the dynamic and continuity
equations that are the bases of our studies. Marey'? conducted extensive series
of tests to determine the velocity of pressure waves in water and in mercury and
concluded that the wave velocity was:

1. independent of the amplitude of the pressure waves
2. three times greater in mercury than in water
3. proportional to the elasticity of the tube. .

Resal'® developed the continuity and dynamic equations and a second-order
wave equation. He used Marey’s experimental results to verify his analytical
studies. In 1877, Lord Rayleigh published his book on the theory of sound,'
which summarized the earlier studies and his own research.

Korteweg'® was the first to determine the wave velocity considering the elas-
ticity of both the pipe wall and the fluid; earlier investigators had considered
only one of the two at a time.

Although Wood' lists Michaud'® as the first to deal with the problem of water-
hammer, recent investigations by Anderson'’ have shown that actually
Menabrea'® was the first to study this problem. Michaud!® studied the problem
of waterhammer, and the design and use of air chambers and safety valves.
Gromeka included the friction losses'® in the analysis of waterhammer for the
first time. He assumed, however, that the liquid was incompressible and that the
friction losses were directly proportional to the flow velocity.

Weston?® and Carpenter,® both American engineers, conducted a number of
experiments to develop a theoretical relationship between the velocity reduction
in a pipe and the corresponding pressure rise. However, neither one succeeded
because their pipelines were short. Frizeli*? presented an analysis of water-
hammer based on studies undertaken while acting as a consulting engineer for
the Ogden hydroelectric development in Utah. This power plant had a 9449-m-
long penstock. Frizell developed expressions for the velocity of waterhammer
waves and for the pressure rise due to instantaneous reduction of the flow. He
stated that the wave velocity would be the same as that of sound in unconfined
water if the modulus of elasticity of the pipe walls was infinite. He also dis-
cussed the effects of branch lines, wave reflections, and successive waves on
speed regulation. Unfortunately, Frizell’s work has not been appreciated as
much as that of his contemporaries, Joukowski and Allievi.

In 1897, Joukowski conducted extensive experiments in Moscow on pipes with
the foliowing dimensions (expressed in length and diameter, respectively):
7620 m, 50 mm; 305 m, 101.5 mm; and 305 m, 152.5 mm. Based on his
experimental and theoretical studies, he published his classic report?® on the
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basic theory of waterhammer. He developed a formula for the wave velocity,
taking into consideration the elasticity of both the water and the pipe walls, He
also developed the relationship between the velocity reduction and the resulting
pressure rise by using two methods: the conservation of energy and the con-
tinuity condition. He discussed the propagation of a pressure wave along the
pipe and the reflection of the pressure waves from the open end of a branch. He
studied the effects of air chambers, surge tanks, and spring safety valves on
waterhammer pressures. He also investigated the effects of the variation of
closing rates of a valve and found that the pressure rise was a maximum for
closing times, T<2L/a, in which L =length of the pipeline and a = wave
velocity.

Allievi developed the general theory of waterhammer from first principles and
published it in 1902.>* The dynamic equation that he derived was more accu-
rate than that of Korteweg. He showed that the term V(aV/dx) in the dynamic
equation was not important as compared to the other terms and could be
dropped. He introduced two dimensionless parameters,

av,
p=
2gH,
(1.2)
0= ﬂ )
21

in which a = waterhammer wave velocity; Vo = steady-state velocity; 1. = length
of the pipeline; T, = valve-closure time; p = one-half of the ratio of the kinetic
energy of the fluid to the potential energy stored in the fluid and the pipe walls
at pressure head f/,; and 6 = the valve-closure characteristics. For the valve-
closure time, T,, Allievi obtained an expression for the pressure rise at the valve
and presented charts for the pressure rise and drop caused by a uniformly
closing or opening valve. Braun®®?® presented equations similar to those pre-
sented by Allievi in his second publication.?” In a later publication, Braun?®
claimed priority over Allievi, and it appears that the so-called Allievi’s constant,
p, was actually introduced by Braun. However, Allievi is still considered to be
the originator of the basic waterhammer theory. Allievi?’ also studied the
rhythmic movement of a valve and proved that the pressure cannot exceed twice
the static head.*

Joukowski’s and Allievi’s theories were mainly used in the first two decades of
the 20th century. Camichel et al.*® demonstrated that doubling of pressure
head is not possible unless H, >aV,/g. Constantinescu® described 2 mecha-
nism to transmit mechanical energy by using the waterhammer waves. In World

*For details of Allievi’s work, interested readers should consult Refs. 24, 27, and 29,
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War I, British fighter planes were equipped with the Constantinescu gear for
firing the machine guns. Based on Joukowski’s theory, Gibson®? presented a
paper that included, for the first time, nonlinear friction losses in the analysis.
He also invented an apparatus®® to measure the turbine discharge using the
pressure-time history following a load rejection.

Strowger and Kerr presented®® a step-by-step computational procedure to de-
termine the speed changes of a hydraulic turbine caused by load changes.
Waterhammer pressures, changes in the turbine efficiency at various gate open-
ings, and the uniform and nonuniform gate movements were considered in the
analysis.

In his discussion of Strowger and Kerr’s analysis, Wood*® introduced the
graphical method for waterhammer analysis. Loéwy>® independently developed
and presented an identical graphical method in 1928. He also studied resonance
caused by periodic valve movements and pressure drop due to gradual opening of
valves and gates. He considered the friction losses in his analysis by including the
friction terms in the basic partial differential equations. Schnyder®’ included
compleie pump characteristics in his analysis of waterhammer in pipelines con-
nected to centrifugal pumps. Bergeron®® extended the graphical method to de-
termine the conditions at the intermediate sections of a pipeline, and Schnyder®
was the first to include the friction losses in the graphical analysis. At a sym-
posium*® sponsored jointly by the American Society of Civil Engineers and the
American Society of Mechanical Engineers in 1933 in Chicago, several papers
were presented on the analysis of waterhammer in penstocks and in discharge
pipelines.

Angus®' outlined basic theory and some applications of the graphical method
including “lumped” friction losses, and Bergeron*? presented a paper describing
the theory of plane elastic waves in various media. Another symposium** on
waterhammer was held in 1937 at the annual meeting of the American Society
of Mechanical Engineers. At this symposium, papers were presented on the
analysis of air chambers and valves, on the inclusion of complete pump charac-
teristics, and on the comparison of the computed and measured results. By
linearizing the friction term, Wood*® used Heaviside’s Operational Calculus, and
later Rich®® used Laplace transforms for the analysis of waterhammer in pipe-
lines. Angus®® presented in 1938 the analysis of compound and branching pipe-
lines and water-column separation. Other papers on water-column separation
were published by Lupton,*” Richard,*® and Duc.*® '

From 1940 to 1960, in addition to books by Rich,%® Jaeger,’’ and Par-
makian,’? numerous papers were published on the analysis of waterhammer.
Because of their large number, they are not listed herein. Instead, important
contributions are discussed and listed in the following chapters.

Ruus53253Y wag the first to present procedures for determining a valve-closure

1
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sequence, called optimum valve closure, so that the maximum pressure remained
within the prescribed limits. Later on, Cabelka and Franc,’® and Streeter’®
independently developed the concept and the latter extended and computerized
it for complex piping systems.

Gray®® introduced the method of characteristics for a computer-oriented
waterhammer analysis. Lai®” used it in his doctoral dissertation, and his joint
paper with Streeter®® was the pioneer publication that made this method and
the use of computers for the analysis of transients popular. Later on, Streeter
published numerous papers on the method of characteristics as well as a text®®
on hydraulic transients. These and important contributions of others are listed
in Chapter 3.

On the theory of surge tanks, early European contributions were made by
Léauté,®® Rateau,’' Prasil,% and Vogt.*® Calame and Gaden,®* and Frank and
Schiiller®® summarized the earlier investigations and their own research. Thoma®®
was the first to show that the surge tank of a governed hydraulic turbine would
be stable only if the cross-sectional area of the surge tank were more than a cer-
tain minimum value, now commonly known as the Thoma area. Johnson® in-
vented the differential surge tank to develop accelerating or decelerating heads
rapidly. Other counlributors. to the theory of surge tanks are Escande,®®
Jaeger,”"7° Gardel,®® Binnie,”! Evangelisti,”® Paynter,”>?* and Marris.”S

1.3 PRESSURE CHANGES CAUSED BY AN INSTANTANEOUS
VELOCITY CHANGE

Let us consider the piping system of Fig. 1.1, in which a fluid is flowing with
velocity V,, and the initial pressure upstream of the valve is p,. If the valve
setting is changed instantaneously at time ¢ = 0, the velocity changes to V,, + AV,
the pressure at the valve becomes p, + Ap, the fluid density p, is changed to
P, t Ap, and a pressure wave of magnitude Ap travels in the upstream direction.
Let us designate the velocity of propagation of the pressure wave (commonly
called waterhammer wave velocity) by a, and, to simplify the derivation, let us
assume that the pipe is rigid, i.e., its diameter does not change due to pressure
changes.

The unsteady flow situation of Fig. 1.1a is converted into a steady condition
by superimposing, on the control volume, velocity 4 in the downstream direction.
This is equivalent to assuming that an observer is traveling in the upstream
direction with velocity 4. To this observer, the moving wave front appears
stationary (Fig. 1.15), and the inflow and outflow velocities from the control
volume are (V, +a) and (V, + AV + a), respectively.

Let us consider distance, x, and velocity, V, as positive in the downstream
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Initial steady state Cﬂaw’ng wave fron!

hydraulic grade line

Reservoir Control volume Valve
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Velocity N, Vo +av
Density  p, Po t AP
Pressure p ° Po t AP
(a) Unsteady fiow
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Reservoir Contro! volume
Vota — D r
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Velocity  N,+a Vot avV+a
Density Po potap
Pressure P ° Potap

{b) Unsteady flow converted to steady flow
by superimposing velocity a

Figure 1.1, Pressure rise in a pipeline due to instantaneous reduction of velocity (Ap =
pgAH).
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direction. Then the rate of change of momentum in the positive x-direction
=po(Vo + ) A [(Vo + AV +a) - (V, +a)]
=p, (Vo ta)AAV (1.3)
Neglecting friction, the resultant force, F, acting on the fluid in the control
volume in the positive x-direction, is p,4 - (p, + Ap)A, ie.,
. F=-ApA (1.4)

According to Newton’s second law of motion, the time rate of change of mo-
mentum is equal to the net force. Hence, it follows from Egs. 1.3 and 1.4 that

Ap=-p,(Vo +a)AV (1.5)

We will see in Chapter 2 that in most of the transient conditions in metal or con-
crete pipes or in the rock tunnels, 2 (approximately 1000 m/s) is much greater
than V, (<10 m/s). Hence, V, in Eq. 1.5 may be neglected. Also, since

p = pgH, (1.6)
in which H is the piezometric head, Eq. 1.5 may be written as
Ap=-p,a AV | (1.7
or
aH =-2av | (1.8)

The negative sign on the right hand side of Eq. 1.8 indicates that the pressure
increases (i.e., AH is positive) for a reduction in velocity (i.e., for negative AV)
and vice versa. Also note that Eq. 1.8 was derived for the case of velocity
changes occurring at the downstream end of a pipe and for the wave front
moving in the upstream direction. Proceeding similarly, it can be proved that, if
the velocity was changed at the upstream end and the wave was moving in the
downstream direction, then

AH=§AV (1.9)

Note that there is no negative sign on the right-hand side of Eq. 1.9. This shows
that in this case, the pressure increases for an increase in velocity and the pres-
sure decreases with a decrease in velocity.

It was assumed previously that the fluid density changes to p, + Ap as a result
of the change in pressure. For the control volume of Fig. 1.1b,

Rate of mass inflow = p, 4 (V, +a) (1.10)
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Rate of mass outflow =(p, +Ap)A(V, + AV + a) (111

The increase in the mass of control volume due to density change is small and
may be neglected. Therefore, the rate of mass inflow is equal to the rate of

mass outflow. Hence,
poA(Vo +8)=(py + AP)A(V, + AV +a) (1.12)
which upon simplification becomes

AV=-éB(Vo+AV+a). (1.13)
P

(4]

Since (¥, + AV) <<a, Eq. 1.13 may be written as

av=-22, (1.14)
Po
The bulk modulus of elasticity, K, of a fluid is defined™ as
K= -2P (1.15)
Aplp,
It follows from Egs. 1.14 and 1.15 that
a=- Ay (1.16)
Ap
On the basis of Eq. 1.7, Eq. 1.16 becomes
=K (1.17)
ap,
which may be written as
ia = —K— (1.18)

[ Po

Note that the expression of Eq. 1.18 is the velocity of waterhammer waves in a
compressible fluid confined in a rigid pipe. In the next chapter, we will discuss
how this expression is modified if the pipe walls are elastic.

Example 1.1

Compute the velocity of pressure waves in a 0.5-m-diameter pipe conveying oil
from a reservoir to a valve. Determine the pressure rise if a steady flow of 0.4
m?/s is instantaneously stopped at the downstream end by closing the valve.

Introduction 11

Assume that the pipe is rigid; the density of the oil, p = 900 kg/m>; and the bulk
modulus of elasticity of the oil, K = 1.5 GPa,

Solution:
= 41 (0.5)* =0.196 m?

Vo= 0,/A=04/0.196 = 2.04 m/s

K

a= - Eq.1.18
P (Eq. 1.18)

/15X 10°
= —‘zlz
900 91 m/s

As the flow is completely stopped, AV =0 - 2.04 = -2.04 m/s; therefore,

AH=-2 Ay
g

1291
= - ——(-2.04)= 268.5
9.81(204) 68.5m

Since the sign of AH is positive, it is a pressure rise.

1.4 WAVE PROPAGATION AND REFLECTIONS
IN A SINGLE PIPELINE

Let us consider the piping system shown in Fig. 1.2, in which flow conditions
are steady and at time ¢ = 0, the valve is instantaneously closed. If the system
is assumed frictionless, then the initial steady-state pressure head along the
length of the pipeline is /,. Let the distance x and the velocity V be positive in
the downstream direction.

The sequence of events following the valve closure can be divided into four
parts (Fig. 1.2) as follows:
1. 0<t<Lla(Fig 1.2aand b)

As soon as the valve is closed, the flow velocity at the valve is reduced to
zero, which causes a pressure rise of AH = +(a/g)V,. Because of this pres-
sure rise, the pipe expands (in Fig. 1.2, the initial steady-state pipe diameter
is shown by dotted lines), the fluid is compressed thus increasing the fluid
density, and a positive pressure wave propagates toward the reservoir. Be-
hind this wave, the flow velocity is zero, and all the kinetic energy has been
converted into elastic energy. If a is the velocity of the waterhammer waves
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Hydroulic grade line
= I ( ________ 4H

Reservoir

H,. In other words, a negative wave travels toward the valve such that the
pressure behind the wave (i.e., on the upstream side) is H, and the fluid ve-
locity is -V,. At t=2L/a, the pressure head in the entire pipeline is H,,
and the fluid velocity is - V.
3. 2L/a<t<3Lja(Fig. 1.2e and f)
Ho , Since the valve is completely closed, a negative velocity cannot be main-
tained at the valve. Therefore, the velocity is instantaneously changed from
_____________ -V, to 0. Because of this, the pressure is reduced to H,- AH, and a nega-
- tive wave propagates in the upstream direction. Behind this wave, the pres-
: sure is H, - AH, and the fluid velocity is zero. At time ¢ = 3L/a, the pressure
) 3L : head in the entire pipeline is H, - AH, and the fluid velocity is zero.
(g) Conditions at t=S=+e 4. 3Lja<t<4Lla(Fig. 1.2g and h)
! As soon as this negative wave reaches the reservoir, an unbalanced condition
is created again at the upstream end. Now the pressure is higher on the
reservoir side than in the pipeline. Therefore, the fluid starts to flow towards
the valve with velocity ¥, and the pressure head is restored to H,. At time
Hydraulic grade line : t=4L/a, the pressure head in the entire pipeline is H,,, and the flow ve-
/ - locity is ¥,. Thus, the conditions in the pipeline are the same as during the
initial steady-state conditions.

- As the valve is completely closed, the preceding sequence of events starts
Hy again at t=4Lfa. Figure 1.2 illustrates the sequence of events along the
pipeline, while Fig. 1.3 shows the pressure variation at the valve end with
time. As we assumed the system is frictionless, this process continues and
- the conditions are repeated at an interval of 4L/a. This interval after which
I conditions are repeated is termed the theoretical period of the pipeline. In
’ real physical systems, however, pressure waves are dissipated due to friction

Reservorir

(h) Conditions at t-%

Figure 1.2. (Continued)
Reservoir [evel

—

and L is the length of the pipeline, then at time t=Lla, al‘ong the entire
length of the pipeline, the pipe is expanded, the flow velocity is zero, and the

pressure head is H, + AH.

< a(Fig. 1.2cand d) ] 3

* L/.Zs<t]':e\rezs£r/vo(ir livel is constant, the conditions are unstable at t}Te reservoir { T= % =

end when the wave reaches there because the pressure on a sc?ctlon on th.e

reservoir side is H, while the pressure on an adjacent §ection in the pipe is : ————

H, + AH. Because of this pressure differential, the fluid starts to flow 'froxjn ] o %L. —Ba"- _'i_l-
the pipeline into the reservoir with velocity -V,. Thus, the velocity is ;

changed from O to -V, which causes the pressure to drop from H, + AH to

Pressure head
AH

"AH

Time

Figure 1.3. Pressure variation at valve; friction losses neglected.
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Figure 1.4. Pressure variation at valve; friction losses considered.

losses as the waves propagate in the pipeline, and the fluid becomes stationary
after a short time.

If the friction losses are taken into consideration, then the pressure varia-
tion at the valve with time will be as shown in Fig. 1.4.

1.5 CLASSIFICATION OF HYDRAULIC TRANSIENTS

Depending upon the conduit in which the transient conditions are occurring,
transients may be classified into three categories:

. transients in closed conduits
. transients in open channels
. combined free-surface-pressurized transient flow.

[SS I NG

The analysis of transients in closed conduits may be further subdivided into two
types: distributed systems and lumped systems. In the former case, the fluid is
considered compressible, and the transient phenomenon occurs in the form of
traveling waves. Examples in which such transients occur are water-supply pipes,
power plant conduits, and gas-transmission lines. In the analysis of lumped sys-
tems, any change in the flow conditions is assumed to take place instantaneously
throughout the fluid, i.e., the fluid is considered as a solid body. Example of
such a system is the slow oscillations of water level in a surge tank following a
load change on the turbine.

Mathematically, the transients in the distributed systems are represented by
partial differential equations, whereas the transients in the lumped systems are
described by ordinary differential equations. If wL/a is much less than 1, then
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Figur'e L.5. View of burst penstock of Oigawa Power Station, Japan, due to excessive
tran:c,u;l;t pressures caused by operating errors and malfunctioning of equipment. (After
Bonin™ Courtesy of Ebasco Services Inc., New York.)

the system may be analyzed as a lumped system?”; otherwise, the system must
be analyzed as a distributed system. In the preceding expression, w = frequency
L =length of the pipeline, and e = wave velocity. ’

Transients in open channels may be divided into two types depending upon
the rate at which they occur: (1) gradually varied flow, such as flood waves in
rivers, and (2) rapidly varied flow, such as surges in power canals. If the wave
front in the rapidly varied flow is steep, it is referred to as a bore.

Sometimes a free-flow becomes pressurized due to priming of the conduits
during the transient-state conditions. Such flows are called combined free-
surface-pressurized flows. Examples of such flows are flow in sewers following a

-rainstorm, and flow in the tailrace tunnel of a hydroelectric power plant follow-
ing rapid acceptance of load on turbines.
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Figure 1.5. (Continued)

1.6 CAUSES OF TRANSIENTS

As defined previously, the intermediate-stage flow, when the conditions are
changed from one steady state to another, is termed transient-state flow. In
other words, the transient conditions are initiated whenever the steady-state
conditions are disturbed. Such a disturbance may be caused by changes,
planned or accidental, in the settings of the control equipment of a man-made
system and by changes in the inflow or outflow of a natural system.

Common examples of the causes of transients in engineering systems are:

1. Opening, closing, or “‘chattering” of valves in a pipeline

2. Starting or stopping the pumps in a pumping system

3. Starting-up a hydraulic turbine, accepting or rejecting load

4. Vibrations of the vanes of a runner or an impeller, or of the blades of a fan

Figure 1.6. View of collapsed section of penstock of Oigawa Power Station, Japan, caused
by vacuum upstream of the buist section. (After Bonin3® Courtesy of Ebasco Services Inc.,
New York.)

5. Sudden changes in the inflow or outflow of a canal by opening or closing
the control gate

6. Failure or collapse of a dam

7. Sudden increases in the inflow to a river or a sewer due to flash storm
runoff.

1.7 SYSTEM DESIGN AND OPERATION

To design a system, the system layout and parameters are first selected, and the
system is analyzed for transients caused by various possible operating conditions.
If the system response is not acceptable, such as the maximum and minimum
pressures are not within the prescribed limits, then either the system layout or
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Figure 1.6. (Continued)

the parameters are changed, or various control devices are provided and the sys-
tem is analyzed again. This procedure is repeated until a desired response is
obtained. For a particular system, a number of control devices may be suitable,
or it may be economical either to modify the operating conditions, if possible,
or to change the acceptable response. However, the final aim is always to have
an overall economical system that yields acceptable response.

The system must be designed for various normal operating conditions ex-
pected to occur during its life. And, similarly, it is mandatory that the system be
operated strictly according to the operating guidelines. Failure to do so has
caused spectacular accidents”"®? and has resulted in extensive property damage
and many times loss of life. Figures 1.5 and 1.6 show the burst and the collapsed
sections of the penstock of the Oigawa Power Station®® caused by operating
errors and malfunctioning equipment.
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Figure 1.6. (Continued)

If the data for a system are not precisely known, then the system should be
analyZed for the expected range of various variables.

During the commissioning of a newly built system or after major modifications
the system should be tested for various possible operating conditions. To avoici
catastrophes, it is usually advisable to conduct the tests in a progressive manner.
For example, if there are four parallel pumping-sets on a pipeline, the tests for

plcln;/er failure should begin with one pumping-set and progressively increase to
all four.

1.8 SUMMARY

Ir} thi.s chapter, the most commonly used terms were first defined. A brief
historical background of the development of the knowledge of hydraulic
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transients was presented, and expressions were derived for the pressure rise or
drop due to an instantaneous increase or decrease in the flow velocity. The
chapter was concluded by a discussion of the classification and causes of hy-

draulic transients.

PROBLEMS

1.1 Derive Eq. 1.9 from first principles.

1.2 Derive Eq. 1.8 assuming that the pipe is inclined to the horizontal at an
angle 9.

1.3 Compute the wave velocity in a 2-m-diameter pipe conveying seawater.
Assume the pipe is rigid.

1.4 What would be the pressure rise if an initial steady discharge of 10 m3/s
was instantaneously stopped at the downstream end of the pipeline of

Problem 1.3?

1.5 A valve is suddenly opened at the downstream end of a 1-m-diameter pipe-
line such that the flow velocity is increased from 2 to 4 n.1/s.. ?ompute
the pressure drop due to the opening of the valve. Assume the liquid is water.

1.6 Prove that if the fluid is incompressible and the pipe walls are assumed
rigid, then the pressure rise

in which L = length of the pipe and dV/dr = the rate of change of velocity
with respect to time. (Hint: Apply Newton’s second law of motion to the

fluid volume.)

1.7 Plot the pressure variation with time at the mid-length of the pipeline
shown in Fig. 1.2 following instantaneous closure of the valve. Assume the

system is frictionless.

ANSWERS

1.3 1488 m/s
1.4 48281 m
1.5 301.86 m
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CHAPTER 2

EQUATIONS OF UNSTEADY FLOW
THROUGH CLOSED CONDUITS

Unsteady flow through closed conduits is described by the dynamic and continu-
ity equations. In this chapter, the derivation of these equations is presented, and
methods available for their solution are discussed.

e 2.1 ASSUMPTIONS

The following assumptions are made in the derivation of the equations:

1. Flow in the conduit is one-dimensional,’™® and the velocity distribution is
uniform over the cross section of the conduit. I

2. The conduit walls and the fluid are linearly elastic, i.e., stress is proportional
to strain.* This is true for most conduits such as metal, concrete and wooden
pipes, and lined or unlined rock tunnels.

3. Formulas for computing the steady-state friction losses in conduits are valid
during the transient state. The validity of this assumption has not as yet been
verified. For computing frequency-dependent friction, Zielke® has developed
a procedure for laminar flows, and Hirose® has proposed an empirical proce-
dure for turbulent flows. However, these procedures are too complex and
cumbersome for general use, and we will not discuss them further.

® 2.2 DYNAMIC EQUATION

We will use the following notation: distance, x, discharge, @, and flow velocity,
V, are considered positive in the downstream direction (see Fig. 2.1), and H is
the piezometric head at the centerline of the conduit above the specified datum.

Let us consider a horizontal element of fluid having cross-sectional area 4 and
length 8x, within a conduit as shown in Fig. 2.1. If the piezometric head and
the velocity at distance x are A and V, then their corresponding values at x + x
are H + (0H/9x) 8x and V + (3V/dx) 8x, respectively. In the x-direction, three
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Figure 2.1, Notation for dynamic equatjon.
forces, F,, F,, and §, are acting on the element. F, and F, are .fc‘)rces 'due to
pressure while § is the shear force due to friction. If v = specific weight of

the fluid, A = cross-sectional area of conduit, and z = height of conduit above
datum, then

Fy=yA(H - 2) | @.1)

aH
F2=—y(H-z+——6x>A 22
ax
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If the Darcy-Weisbach formula' is used for computing the friction losses,
then the shear force

S==—aDéx 2.3)

in which g = acceleration due to gravity, f= friction factor, and D = diameter
of the conduit. The resultant force, F, acting on the element is given by the
equation

F=F, -F,-§ (2.4)

Substitution of the expressions for F|, F,, and S from Egs. 2.1 through 2.3
into Eq. 2.4 yields
oH v fV?
F=-yA—8x-———aD3$§ .
7axxg8-an (2.5)
According to Newton’s second law of motion,

Force = Mass X Acceleration. (2.6)

For the fluid element under consideration,

Mass of the element = A A bx
g

2.7
. av
Acceleration of the element = @
Substitution of Eqs. 2.5 and 2.7 into Eq. 2.6 and division by yA4 8x yield
av__ oM _fv? -
| i ax 2D (2:8)
We know from elementary calculus that the total derivative
dv_av avdx ’
dr at 9x dt (2.92)
or
av_av, ov oo
dt ot ox '

Substituting Eq. 2.9b into Eq. 2.8 and rearranging,

vV vV oH fV?
LA -l A
or Voax 8T op 0 (2.10)
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In most of the transient problems,” the term V(9 V/3x) is significantly smaller
than the term aV/3¢. Therefore, the former may be neglected. To account for
the reverse flow, the expression ¥? in Eq. 2.10 may be written as ¥[V], in which
|V] is the absolute value of V. By writing Eq. 2.10 in terms of discharge, 0, and
rearranging, we obtain

Q. JOH  f o
ar ¥4 5y T opy 2121=0 @.11)

In Eqgs. 2.3, 2.5, 2.8, 2.10, and 2.11, the Darcy-Weisbach forrmula has been
used for calculating the friction losses. If a general exponential formula had
been used for these losses, then the last term of Eq. 2.11 could be written as
kQ|Q|™ /D", with the values of k, m, and b depending upon the formula em-
ployed. For example, for the Hazen-Williams formula, m = 1.85 and 5 = 2.87,
while, as derived above, for the Darcy-Weisbach formula, m =1 and b=3. If
correct values of m and b are used,® the results are independent of the formula
employed, i.e., the Darcy-Weisbach and the Hazen-Williams formulas would give
comparable results.

2.3 CONTINUITY EQUATION

Let us consider the control volume shown in Fig. 2.2. The volume of fluid
inflow, ¥, , and outflow, ¥,,,, during time interval §¢ are

¥ =V 6t 2.12)
oV
Fout = (V+—a;6x)1rr2 8t (2.13)

in which r = radius of the conduit. The increase in the fluid volume, §¥;,, dur-
ing time 6¢ is

14
¥in = ¥in - Your = 'aax 8t nr? (2.14)

The pressure change, 8p, during time interval 8¢ is (dp/at) 8¢. This pressure
change causes the conduit walls to expand or contract radially and causes the
length of the fluid element to decrease or increase due to fluid compressibility
(see Fig. 2.2).

Let us first consider the volume change, §%,, due to the radial expansion or
contraction® of the conduit. The radial or hoop stress, o, in a conduit due to

*To simplify the derivation, we are neglecting the elongation or shortening of the fluid ele-

ment due to Poisson ratio effects. Any reader interested in the derivation of the continuity
equation including these effects should see Ref. 7.
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Figure 2.2. Notation for continuity equation.
the pressure p is given by the equation®
_pr
o= o (2.15)

in which e = the conduit wall thickness Hence i
. , the change in hoop st
caused by 8p may be written as ) plres, oo,

r op_ r
80=8p —~=—68t—
D paalew 6te (2.16)
Since the radius r has increased to r + 6r, the change in strain
ér
66 =
; (2.17)

If the conduit walls are assumed linearly elastic, then
6o
E= be (2.18)

in which £ = Young’s modulus of elasticity. Substitution of expressions for ¢
and ¢ from Egs. 2.16 and 2.17 into Eq. 2.18 yields

= (0019061 (rle)

orfr (2.19)

or

br=—r =8t (2.20)

The change in the volume of the eleme i
[ nt due to the radial expansion -
tion of the conduit is pasion or contrac

8V, =2ar dx 6r (2.21)
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Substituting for 8 from Eq. 2.20 yields
op r
¥, =21 — — 06t bx (2.22)
o¥, = 2m t ek

Let us now derive an expression for the change in volume, 5+, due to com-
pressibility of the fluid. The initial volume of the fluid element

¥ =nr? 6x (2.23)

The bulk modulus of elasticity of a fluid, K, is defined" as

-8p
= (2.24)
K sV ¥

By substituting for ¥ from Eq. 2.23 and noting that 8p = (3p/at) 8¢, Eq. 2.24
becomes

-op 6t
5¥ . = E— [—<' ar? 8x (2.25)

If we assume that the fluid density remains constant, then it follows from the
law of conservation of mass that
§Fin +8F, =6V, ‘ (2.26)

Substitution of expressions for 6%, 8+, and 8% from Egs. 2.14, 2.22, and
2.25 into the above equation and division by ar? 8x &t yield

v 1o 227
ox K ot eE ot
or
-a——li+a—p<—2—r—+l>=0 (2.28)
ox ot\efE K
Let us define
K

@t =———
p[! + (KDJeE)]

in which p = mass density of the fluid. Noting that p = pgH, rearranging the
terms, and substituting Q = VA, Eq. 2.28 becomes
a® 3Q . oH _
gA ox ot

(2.29)

(2.30)

It will be shown in the next chapter that a is the velocity of waterhammer
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waves. Expressions for a for various conduits and support conditions are pre-
sented in Section 2.6.

2.4 GENERAL REMARKS ON DYNAMIC AND
CONTINUITY EQUATIONS

The dynamic equation, Eq. 2.11, and the continuity equation, Eq. 2.30, are a
set of first-order partial differential equations. In these equations, there are two
independent variables, x and ¢, and two dependent variables, Q and A. Other
variables, A and D, are characteristics of the conduit system and are time-
invariant but may be functions of x. Although the wave velocity, a, depends
upon the characteristics of the system, laboratory tests have shown that it is sig-
nificantly reduced® by reduction of pressure even when it remains abave the
vapor pressure. The friction factor f varies with the Reynolds number. However,
f is considered constant herein because the effects of such a variation on the
transient-state conditions are negligible.

Discussion about the type of Eqs. 2.11 and 2.30 now follows; any reader not
interested in the mathematical details may proceed to Section 2.5.

Since the nonlinear terms in Eqgs. 2.1]1 and 2.30 involve only the first power
of the derivatives, the equations are called quasi-linear. These equations may be
further classified as elliptic, parabolic, or hyperbolic as follows:

Equations 2.11 and 2.30 may be written in matrix form as

2] e 2} e

in which
0 gA
B=| * (2.31)
— 0
gA
and
f@101
0

The eigenvalues, A, of matrix B determine the type of the set of equations.
The characteristic equation®® of matrix B is

A-a%=0 (2.33)
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Hence,

Since a is real, both eigenvalues are real and distinct, and hence Egs. 2.11 and
2.33 form a set of hyperbolic partial differential equations.

2.5 METHODS FOR SOLVING CONTINUITY AND
DYNAMIC EQUATIONS

As demonstrated previously, the dynamic and continuity equation§ are quasi-
linear, hyperbolic, partial differential equations. A c]ose‘d-for‘m.‘ solution of t.hese
gquations is impossible. However, by neglecting or linearizing the npnlmear
terms, various graphical ™! 1! and analytical’®™’® methods have been developed.
These methods are approximate and cannot be used to analyze large systems or
systems having complex boundary conditions. Although some of these methods
have been programmed for analysis on a digital computer,'é:!7 they are not pre-
sented herein because their programming is difficult. We will discuss techniques
that are more suitable for computer analysis, such as the implicit finite-difference
method!® and the method of characteristics.® 8724

In the implicit finite-difference method, the partial derivatives are replaced by
finite differences, and the resulting algebraic equations for the whole system are
then solved simultaneously. Depending upon the size of the system, this involves
a simultaneous solution of a large number of nonlinear equations. The analysis
by this method becomes even more complicated in systems having complex
boundary conditions, which must be solved by an iterative technique. The
method has the advantage that it is unconditionally stable. Therefore, larger
time steps can be used, which results in economizing computer time. quever,
the time step cannot be increased arbitrarily because it results in smoothing the
pressure peaks. Details of this method are presented in Section 6.7. ‘

In the method of characteristics, the partial differential equations are first con-
verted into ordinary differential equations, which are then solved by an exp]ic%t
finite-difference technique. Because each boundary condition and each <?ondu1t
section are analyzed separately during a time step, this method is particularly
suitable for systems with complex boundary conditions. The disadvantage qf
this method is that small time steps must be used to satisfy the Courant confh-
tion'® for stability. To overcome this, a combination of the implic%t finite
difference and the method of characteristics>® may be used. This is discussed
in detail in Chapter 3.

2.6 VELOCITY OF WATERHAMMER WAVES

An expression for the velocity of waterhammer waves in a rigid conduit was
derived in Section 1.2. However, in addition to the bulk modulus of elasticity,
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K, of the fluid, the velocity of waterthammer waves depends upon the elastic
properties of the conduit, as well as on the external constraints. Elastic proper-
ties include the conduit size, wall thickness, and wall material; the external
constraints include the type of supports and the freedom of conduit movement
in the longitudinal direction. The bulk modulus of elasticity of a fluid depends
upon its temperature, pressure, and the quantity of undissolved gases. Pearsall*’
has shown that the wave velocity changes by about 1 percent per S°C. The fluid
compressibility is increased by the presence of free gases, and it has been found?®
that 1 part of air in 10,000 parts of water by volume reduces the wave velocity
by about 50 percent.*

Solids in liquids have similar but less drastic influence, unless they are com-
pressible. Laboratory® and prototype tests?® have shown that the dissolved
gases tend to come out of solution when the pressure is reduced, even when it
remains above the vapor pressure. This causes a significant reduction in the wave
velocity. Therefore, the wave velocity for a positive wave may be higher than
that of a negative wave. Further prototype tests are needed to quantify the
reduction in the wave velocity due to reduction of pressures.

Halliwell?¢ presented the following general expression for the wave velocity:

a=]/ . S (2.35)
pll +(K/E) ¢} '

in which ¢ is a nondimensional parameter that depends upon the elastic proper-
ties of the conduit; £ = Young’s modulus of elasticity of the conduit walls; and
K and p are the bulk modulus of elasticity and density of the fluid, respectively.
The moduli of elasticity of commonly used materials for conduit walls and the
bulk moduli of elasticity and mass densities of various liquids are listed in Tables
2.1 and 2.2.

Expressions for ¢ for various conditions are as follows:

1. Rigid Conduits
v=0 (2.36)

2. Thick-Walled Elastic Conduits
a. Conduit anchored against longitudinal movement throughout its length

R2+R}  2uR?
V=214 0) e - (2.37)

o-Rx2 RC27-RI?

in which v = the Poisson’s ratio and R, and R; = the external and internal
radii of the conduit.

*Fora derivation of expressions for the wave velocity in gas-liquid mixtures, see Section 9.5.
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Table 2.1. Young’s modulus of elasticity and Poisson’s ratio for various
pipe materials *

Modulus of Elasticity, £**

Material (GPa) Poisson’s Ratio
Aluminum alloys 68-73 0.33
Asbestos cement, transite 24
Brass 78-110 0.36
Cast iron 80-170 0.25
Concrete 14-30 0.1-0.15
Copper 107-131 0.34
Glass 46-73 0.24
Lead 4.8-17 0.44
Mild steel 200-212 0.27
Plastics .

ABS 1.7 0.33
Nylon 1.4-2.75

Perspex ) 6.0 0.33
Polyethylene 0.8 0.46
Polystyrene 5.0 0.4
PVC rigid 2.4-2.75

Rocks

Granite 50 0.28
Limestone §S§ 0.21
Quartzite 24.0-44.8

Sandstone 2.75-4.8 0.28
Schist 6.5-18.6

*Compiled from Refs. 12, 25, and 31. ) ,
**To convert E into Ib/in.?, multiply the values given in this column by 145.038 X 10°.

b. Conduit anchored against longitudinal movement at the upper end

_[RZ+1.5R} + v(R2 - 3R}) (2.38)
v=2 2 _ p? R2 - R? L
Ro i o i
c. Conduit with frequent expansion joints
R? + R}
¥ = 2(—‘3—' + u) (2.39)
R} - R?

3. Thin-Walled Elastic Conduits
a. Conduit anchored against longitudinal movement throughout its length

Y= g (1-v% (2.40)

in which D = conduit diameter and e = wall thickness.
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Table 2.2. Bulk modulus of elasticity and density of common
liquids at atmospheric pressure.*

[y
Bulk Modulus of
Temperature Density, ot Elasticity, Kt

Liquid (o)) (kg/m?) (GPa)
Benzene 15 880 1.05
Ethyl alcohol 0 790 1.32
Glycerin 15 1,260 443
Kerosine 20 804 1.32
Mercury 20 13,570 26.2
0il 15 900 LS
Water, fresh 20 999 2.19
Water, sea 15 1,025 2.27

*Compiled from Refs. 12, 25, 32, and 33.
To determine the specific weight of the liquid, in lbf/ft’. multiply the
values given in this column by 62.427 X 10°?,

To convert X into 1b/in.?, multiply the values given in this column by
145.038 X 103,

b. Conduit anchored against longitudinal movement at the upper end

D
=—e-(1.25- v) (241)
c. Conduit with frequent expansion joints
-2 2.42
- (242)

4. Tunnels Through Solid Rock

Halliwell?® has derived long expressions for ¢ for lined and unlined rock
tunnels. Usually, the rock characteristics cannot be precisely estimated be-
cause of nonhomogeneous rock conditions and because of the presence of fis-
sures. Therefore, in our opinion, using Halliwell's expressions for practical
applications is unwarranted. Instead, the following expressions based on
Parmakian’s equations’ may be used.
a. Unlined tunnel

w=1}
Fec | | (2.43)

in which G = modulus of rigidity of the rock.
b. Steel-lined tunnel

DE

llJ:GDi»Ee

(2.44)
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in which e = thickness of the steel liner and £ = modulus of elasticity of

steel.
5. Reinforced Concrete Pipes ' ' '
The reinforced concrete pipe is replaced by an equivalent steel pipe having
equivalent thickness’

A
o= By, +5% (2.45)
£

in which e, = thickness of the concrete pipe; 4 and I are t.he cross-sectional
area and the spacing of steel bars, respectively; and £, = ratio of the rpodulus
of elasticity of concrete to that of steel. Usually the value ofl:?, varies frqm
0.06 to 0.1. However, to allow for any cracks in the concrete pipe, a value of
0.05 is suggested.” Having computed e,, the wave velocity may be deter-
mined from Eq. 2.35 using the modulus elasticity of steel.
6. Wood-Stave Pipes o
The thickness of a uniform steel pipe equivalent to the wood-stave pipe is
determined” from Eq. 245 using £, = 515, e, = thickness of wood staves, and
A, and I are the cross-sectional area and the spacing of the steel bands,
respectively. The wave velocity is then computed from Eq. 2.35.
] ! ] Plastic Pipe
7. Polyvinyl Chloride (PVC) and Reinforced _
Investigations reported in Ref. 27 show that Eq. 2.35 can b.e used for com
puting wave velocity in the polyvinyl chloride (PVC) and reinforced plastic
pipes, provided a proper value of the modulus of elasticity for the wall ma-
terial is used.
8. Noncircular Conduits .
The following expression for { is obtained from the equation for the wave

. . 28
velocity in the thin-walled rectangular conduits derived by Jenkner®® by
using the steady-state bending theory and by allowing the corners of the
conduit to rotate:

__be*

= (2.46)
15¢*d

¥

in which g = 0.5(6 - 5a) + 0.5(d/b)*[6 - 5(b/d)?*], a = [1 + (d/b)*]/[1 +
(d/b)], b = width of the conduit (longer side), and d = depth of the conduit
shorter side).

( Thorley and Guymer®® have included the influence of the shear force on
the bending deflection of the thick-walled (I/e < 20) rectangular f:()ndUItS
while deriving the equations for the wave velocity. From these equations, the

40 B s B e
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following expression is obtained for a thick-walled conduir having a square
cross section:

11V E
‘”‘E(‘E) *z(”z) (2:47)

in which e =wall thickness, (I - e) = inside dimension of the conduit, and
G = shear modulus of the wall material,

Based on the equations presented by Thorley and Twyman,?® the following
expression is obtained for ¥ for a thin-walled hexagonal conduit.

[ 3
¥ =0.0385 (—) (2.48)

e

in which / = mean width of one of the flat sides of the hexagonal section.

2.7 CASE STUDY

The data for the steel penstock of the Kootenay Canal hydroelectric power

plant, owned and operated by British Columbia Hydro and Power Authority, are
listed in the following table:

Wall
Length  Diameter Thickness,
Pipe No. (m) (m) (mm) Remarks
1 244. 6.71 19 Expansion coupling at one end
2 36.5 5.55 22 Encased in concrete

For conducting a transient analysis, the waterhammer wave velocity in each sec-
tion of the penstock was determined as follows. The values of £ for steel, G for

concrete, and K and p for water were taken as 207 GPa, 20.7 GPa, 2.19 GPa,
and 999 kg/m?, respectively.

Pipe No. 1
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As the pipe is anchored at one end,

¢=l—)(1.25- v) (Eq. 2.41)
e

=353(1.25 - 0.30)
=335.4

YA S—
Vool + KIEYW]

(Eq. 2.35)

2.19 X 10°
2= ¥ 999(1 + 0.0106 X 335.4)

= 694 m/s.

Pipe No. 2
Equations for a steel-lined tunnel may be used to compute the wave velocity in

pipe No. 2.

v= DE (Eq. 2.44)
GD+Ee

5.55X 207 X 10°
N 20.7 X 10° X 5.55 + 207 X 10® X .022

=9.62

2.19 X 10°
999(1 +0.0106 X 9.62)

1410 m/s.

2.8 SUMMARY

In this chapter, the derivation of the dynamic z?nd_continuity'equatlgnsltw:’;:
presented, and the assumptions used in the§e .derlvatlons were dlscusscl: d._ffe s
demonstrated that these equations are quasi-linear, hyperbol‘lc, partlad_ i us:ed
tial equations, and various methods available for thejxr solution gvere dlsi:S were.
Expressions for the velocity of waterhammer waves in the closed condu

presented.

3
*
#
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PROBLEMS

2.1. Derive the dynamic equation considering the conduit is inclined at angle 0
to the horizontal.

2.2. Compute the velocity of waterhammer waves in a 3.05-m-diameter steel
penstock having a wall thickness of 25 mm if it:

1. is embedded in a concrete dam
2. is anchored at the upstream end
3. has expansion joints throughout its length,

2.3. Determine the velocity of waterhammer waves in a reinforced concrete
pipe having 1.25-m diameter, 0.15-m wall thickness, and carrying water.
The 20-mm reinforcing bars have a spacing of 0.5 m, and the pipe has ex-
pansion joints throughout its length.

2.4. A 0.2-m-diameter copper pipe having a wall thickness of 25 mm is convey-
ing kerosene oil at 20°C from a container to a valve. If the valve is closed
instantly, at what velocity would the pressure waves propagate in the pipe?
Assume the pipe is anchored at the upper end.

2.5. Figure 5.10 shows the power conduits of an underground hydroelectric
power station. Compute the wave velocity in each section of the conduit.
Assume modulus of rigidity of rock = 5.24 GPa.

ANSWERS

2.2.
1. 1413 m/s
2. 992 m/s
3. 978 m/s

2.3. 913 m/s
24. 1232 m/s
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CHAPTER 3

METHOD OF CHARACTERISTICS

3.1 INTRODUCTION

In the last chapter, it was demonstrated that the equations describing the
transient-state flow in closed conduits are hyperbolic, partial differential equa-
tions, and a number of methods available for their solution were discussed. The
details of the method of characteristics are presented in this chapter. The equa-
tions for simulating a conduit are derived, and the boundary conditions for a
number of simple end conditions are developed. The stability and convergence
criteria for the stability of the finite-difference scheme are then presented, and a
procedure for the analysis of piping systems is outlined. The chapter concludes
with the presentation of a case study.

We will endeavor to keep the derivation of the equations free of advanced
mathematics. Readers having an elementary knowledge of partial differential
equations should be able to follow the development of these equations; those
interested in a rigorous treatment should refer to Refs. 1 through 9. In deriving
these equations, we will follow the general approach proposed by Lister'! and
later adopted by Streeter and Wylie.!® A number of innovations presented by
Evangelisti? will also be outlined.

3.2 CHARACTERISTIC EQUATIONS

To facilitate discussion, let us rewrite the dynamic and continuity equations
(Egs. 2.11 and 2.30) derived in the last chapter as

90 oH . f
= =4 — —a = .
:10)] oH
=q% 2= —==0 3.2
L,=a F tg4 EY: (3.2)
Let us consider a linear combination of Egs. 3.1 and 3.2,ie.,
L=L,+AL,

44

Method of Characteristics 45

or

Q9 g 3H . 1 3H
(at At ax) *hed <§*X‘a;)+ﬁQ|Q|=o (3.3)

Ifl?( = H(x, t) and Q = Q(x, 1) are solutions of Egs. 3.1 and 3.2, then the total
derivatives may be written as

4Q 930 , 3Q dx
ar o ox a (3.4)

and

dH _9oH  oH dx
dt  ar ' ox dr (3.5)

By defining the unknown multiplier A as

I_dx_, ,
X dr M (3.6)
or
=+ 1
A=t (3.7)

and by using Eqs. 3.4 and 3.5, Eq. 3.3 can be written as

40  gAdH __f :
ar ' a ar Tapg Q191=0 (3.8)
if
ax _
dr ©¢ (3.9)
and
40 gAdH f
if
ax _
a ' G.11)

Note .that Eq. 3.8 is valid if Eq. 3.9 is satisfied and that Eq. 3.10 is valid if Eq.
3.11 is satisfied. In other words, by imposing the relations given by Egs. 39
and 3.11, we have converted the partial differential equations (Egs. 3.1 and 3 é)
into ordinary differential equations in the independent variable ¢. .
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In the x-¢ plane, Egs. 3.9 and 3.11 represent two straight lines having slopes
*1/a. These are called characteristic lines. Mathematically, these lines divide the
x-t plane into two regions, which may be dominated by two different kinds of
solution, i.e., the solution may be discontinuous along these lines.” Physically,
they represent the path traversed by a disturbance. For example, a disturbance
at point 4 (Fig. 3.1) at time ¢, would reach point P after time Ar.

Prior to presenting a procedure for solving Eqs. 3.8 and 3.10, let us first dis-
cuss the physical significance of characteristic lines in the x-¢ plane. To facilitate
discussion, let us consider a single pipeline shown in Fig. 3.2. The compatibility
equations (Egs. 3.8 and 3.10) are valid along the pipe length (i.e., for 0 <x <L)
and special boundary conditions are required at the ends (ie., at x = 0 and at
x = L) (Fig. 3.3). In the example under consideration, there is a constant-head
reservoir at the upper end (at x = 0) and a valve at the downstream end (at x = L),
and the transient conditions are produced by closing the valve. Let us assume
that there is steady flow in the pipe at time ¢ = 0 when the valve is instanta-
neously closed. This reduces the flow through the valve to zero and results in a
pressure rise at the valve. Because of this pressure rise, a pressure wave travels in
the upstream direction. If the path of this wave is plotted on the x-z plane, it
will be represented by line BC as shown in Fig. 3.4. [t is clear from this figure
that the conditions in Region I depend only upon the initial conditions because
the upstream boundary conditions did not change, whereas in Region II they
depend upon the conditions imposed by the downstream boundary. Thus, the
characteristic line BC separates the two types of solutions. If excitations are im-
posed simultaneously at points 4 and B, then the region influenced by the initial
conditions is as shown in Fig. 3.5; the characteristic line AC separates the regions

l, + at . P
Characteristic Lines

at

A% = oat

Figure 3.1. Characteristic lines in x~ plane.
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Reservior

——— 1
A L JB
o }

Figure 3.2. Single pipeline.

influenced by the upstream boundary and the initial conditions, and the line BC
separates the regions influenced by the downstream boundary and the initial
conditions. In other words, the characteristic lines on the x-t plane represent
the traveling paths of perturbations initiated at various locations in the system.

t 4
Region of Validity

of Compatibility Eguations
{ £gs. 3.8 and 3./0)

[-Upsrream Boundary Conditions
Kﬂowﬂsl‘re'am Boundary Conditions

/-/n/'f/‘a/ Conditions

..
"
o
0

»
(-]
»

Figure 3.3. Regions of validity for a single pipeline.
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t= at

Region IT

Region I

Figure 3.4. Excitation at downstream end.

To solve Egs. 3.8 through 3.11, a number of finite-difference schemes have
been proposed: Streeter and Wylie'® use a first-order finite-difference technique;
Evangelisti® suggests a predictor-corrector method; and Lister!! employs both
first- and second-order finite-difference schemes. Because the time intervals used
in solving these equations for practical problems are usually small, a first-order
technique suggested by Streeter and Wylie is sufficiently accurate and is dis-
cussed here. However, if the friction losses are large, then a first-order approxi-
mation may yield unstable results. For such cases, a predictor-corrector method
or a second-order approximation (see Section 7.4) should be used to avoid
instability of the finite-difference scheme.

Referring to Fig. 3.1, let the conditions at time t = t, be known. These are
either initially known (i.e., at t = 0, these are initial steady-state conditions) or
have been calculated for the previous time step. We want to compute the
unknown conditions at 7, + At. Referring to Fig. 3.1, we can write along the
positive characteristic line AP,

dQ=Qp- Q4 (3.12)
t A
1 =at ¢
initial Conditions
t =0

X

Figure 3.5. Excitation at upstream and downstream ends.
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dH=Hp- H, (3.13)
Similarly, we can write along the negative characteristic line BP.

dQ=QP‘ 97} (3.14)

dH=Hp~ Hg (3.15)

The subscripts in Egs. 3.12 through 3.15 refer to the locations on the x-t
plane. Substituting Egs. 3.12 and 3.13 into Eq. 3.8 and Egs. 3.14 and 3.15 into
Eq. 3.10, computing the friction term at the points A and B, and multiplying
throughout by At, we obtain

gA fAt
(Qp~ 0a)+ E5(Hp - Ho) 4 55 041041 = (3.16)
and
gA fAt
(Qr - 08) -2 (Hp - Hp) + S50 051051 = (317)
Equation 3.16 can be written as
Qp=C, - CoHp (3.18)
and Eq. 3.17 as
Qp=C,+C,Hp (3.19)
in which
A At
C, =04 +52 g Hy - 2fDA 04104 (3.20)
A
Co =08 - £ 1y - £55 0,10,) (3:21)
and '
C, =_gl}4 (322)

Note that Eq. 3.18 is valid along the positive characteristic line AP and Eq. 3.19
along the negative characteristic line BP. The values of the constants C,, and C,
are known for each time step, and the constant C, depends upon the conduit
properties. We will refer to Eq. 3.18 as the positive characteristic equation and
Eq. 3.19 as the negative characteristic equation. In Eqs. 3.18 and 3.19, we have
two unknowns, namely, Hp and Qp. The values of these unknowns can be deter-
mined by simultaneously solving these equations, i.e.,

0p=0.5(C, + Cp) (3.23)
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o} Interior sections

Downstream boundary
° Upstream boundary

Figure 3.6. Characteristic grid.

Now the value of Hp can be determined either from Eq. 3.18 or Eq. 3.19. Thus,
by using Eqgs. 3.18 and 3.23, conditions at all interior points (see Fig. 3.6) at the
end of the time step can be determined. However, at the boundaries, either Eq.
3.18 or 3.19 is available. Therefore, as discussed above, we need special bound-
ary conditions to determine the condition at the boundaries at time ¢, + At.

To illustrate how to use the above equations, we will again consider the single
pipeline of Fig. 3.2. The pipeline is divided into n equal reaches (Fig. 3.6), and
the steady-state conditions at the grid points at ¢ = ¢, are first obtained. Then,
to determine the conditions at ¢t = ¢, + At, Egs. 3.18 and 3.23 are used for the
interior points, and special boundary conditions are used for the end condi-
tions. A close look at Fig. 3.6 shows that the conditions at the boundaries at
t =t, + At must be known for calculating the conditions at t = ¢, + 24t at the
interior points adjacent to the boundaries. Now conditions at ¢ =, + At are
known at all the grid points, and the conditions at t = ¢, + 2A¢ are determined
by following the procedure just outlined. In this manner, the computations pro-
ceed step-by-step until transient conditions for the required time are determined.

3.3 BOUNDARY CONDITIONS

In the last section we discussed that special boundary conditions are required to
determine the conditions at the boundaries. These are developed by solving
Eg. 3.18, 3.19, or both, and the conditions imposed by the boundary. Equation
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3.18 is used for the downstream boundaries and Eq. 3.19 for the upstream
boundaries.

A number of simple boundary conditions are developed in this section while
complex boundary conditions such as for pumps and turbines are derived in
Chapter 4 and 5 and for waterhammer control devices, in Chapter 10.

Constant-Head Reservoir at Upstream End (Fig. 3.7)

If the entrance losses as well as the velocity head are negligible, then
HP=Hres (324)

in which H,.s = height of the reservoir water surface above the datum. Equation
3.19 for the upper end thus becomes

QP = Cn + CaHres (3'25)

However, if the velocity head or the entrance losses are not small, then these
may be considered in the analysis as follows:

Let the entrance losses be given by the equation

kQp
h, = 3.26
4 2gA 2 ( )
2t ke Mal'q ™ IN< Energy Grade Line
;o gl|lo oo
N o

rEnergy Grade Line

e

lydraulic Grade Line
| g

Flow * Fiow

e —
; D 4T
N Datum Line Datum Line

h
{a) (b)

Figure 3.7. Constant-level upstream resexrvoir.

lydrauiic Grade Line
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in which k is the coefficient of entrance loss. Referring to Fig. 3.7,

- 0p
Hp =Hees= (140) 3 =05 (327

Solving Eq. 3.27 and the negative characteristic equation (Eq. 3.19)
simultaneously,

_-14+V1+4K(C, + C Hyes)

3.
0 2% (3:28)
in which
Cy(1 +k)
= — 3.29

Now Hp can be determined from Eq. 3.27.
For the reverse flow, k is assigned a negative value in Eqs. 3.27 and 3.29.

Constant-Head Reservoir at Downstream End (Fig. 3.8)

If the head losses at the entrance to the reservoir are

kQ?
he = —% (3.30)
2gA
Y
o
Energy Grode Line ™ P N %%
LERER
o
\ [« B
ﬁ Energy Grade Line- ¥ lj
Hydraulic Grade Line /’7—-——"
b )
o Hydraulic Grade Line =
Flow T Flow >
P —— —————
— | S
Daotum Line Datum Line
(a) (b}

Figure 3.8. Constant-level downstream reservoir.
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then referring to Fig. 3.8a

Hp=H s~ (1 - k) 2fi2 (3.31)
In Eq. 3.30, k is assigned a negative value for the reverse flow.
Elimination of Hp from Eqs. 3.31 and 3.18 yields
k03 - Qp+k;=0 (3.32)
in which
K, = C,,z(glA—zk)
and (3.33)
. k3 =Cp~ Coles
Solving Eq. 3.32 for Qp,
gp =11V 2k 'lz;cjkm (3.34)

Now Hp may be determined from Eq. 3.18. If the exit loss and the velocity
head are negligible, then

Hp=H, (3.35)
and it follows from Eq. 3.18 that
QP = Cp - CaHres (336)

Dead End at Downstream End (Fig. 3.9)

At the dead end, Op = 0. Hence, from the positive characteristic equation (Eq.
3.18), it follows that

Hp=-L (3.37)

Dead End w

Figure 3.9. Dead end.
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Valve at Downstream End (Fig. 3.10)

Steady-state flow through a valve can be written as
Qo = (CdAv)oV ZgHo (338)

in which subscript o indicates steady-state conditions, Cy = coefficient of dis-
charge, H, = head upstream of the valve, and 4, = area of the valve opening.
An equation similar to Eq. 3.38 may be written for the transient state as

Qp=(CqA,)V28Hp. (3.39)

Dividing Eq. 3.39 by Eq. 3.38, taking square of both sides and defining the rela-
tive valve opening 7 = (C44,)/(C44,),, we obtain

Q%= (—QILIO—T)—Z-H,, (3.40)

o

Substitution for Hp from the positive characteristic equation (Eq. 3.18) into Eq.
3.40yields

03 +C,0p- C,C, =0 (3.41)

Hydroulic Grade Line

Ho
Datum Line Valve
{ Flow ],/\
- = 1
(a)
T T
1.0 1.0
0 — o -—
!/ /

(6) Opening (c) Closing
Figure 3.10. Valve at downstream end.
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in which C, = (rQ,)*/(C,H,). Solving for Qp and neglecting the negative sign
with the radical term

Qp =05(-C, +VCZ+4C,C,) (3.42)

Now Hp may be determined from Eq. 3.18.

To compute the transient-state conditions for an opening or a closing valve, 7
versus ¢ curves (Fig. 3.10b and c¢) may be specified either in a tabular form or by
an algebraic expression. Note that 7 =1 corresponds to a valve opening at which
the flow through the valve is Q,, under a head of H,,.

Orifice at Lower End

For an orifice, the opening remains constant. Therefore, the above equations
may be used with 7 =1.

Series Junction (Fig. 3.11)

In the preceding discussion, we considered only one conduit, and the boundary
was either at the upstream or at the downstream end. Therefore, no special care
had to be taken to designate the variables at the boundary since there was only
one conduit section under consideration. However, if the boundary is at the
junction of two or more conduits, then the variables at different sections of
various conduits have to be specified. For this purpose, we will use two sub-
scripts. The first subscript will designate the conduit number, while the second
will indicate the section number. For example, Qp, . indicates flow at the jth
section of the ith conduit. For variables that have same value at all sections of a
conduit, only one subscript will be used. For example, C;, refers to constant C,
(Eq. 3.22) for the ith conduit. Although C, and C,, may have different values at
different sections of a conduit, only one subscript will be used with them to

indicate the conduit number. This simplifies presentation and at the same time

does not result in any ambiguity since each conduit can have only one end-section
at a boundary. As discussed previously, the subscript P will indicate the un-
known variables at the end of the time step.

o I }
Conduir 1 Ll Conduit i+]

Figure 3.11. Series junction.
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If the difference in the velocity heads at sections (7, n + 1) and (i + 1, 1) (Fig.
3.11) and the head losses at the junction are neglected, then

HPi,nH =HPi+1,x (343)

The positive and negative characteristic equations for sections (i, n + 1) and
(i+1,1)are

Qp e s Hp, net (3.44)
QPi+l,1 =C"¢'+1 +C"z+1HPi+1,l (3'45)
The continuity equation at the junction is

QPi,nH = QPi+1,1 (3.46)

It follows from Eqgs. 3.43 through 3.46 that

Cp. - Cp,
Pi Mi+g

Hp oy = 3.47
P(,n+1 Cai+Cai+1 ( )

Now HP,-“ " Qp’. nat? and Qp’.+1 , can be determ
3.45. ’ ' '

ined from Egs. 3.43 through

However, if the difference in the velocity heads at sections (i, » + 1) and
(i + 1, 1) or the head losses at the junction are not negligible, then Eq. 3.43 is
not valid. In such cases, the following equation for the total head may be used

instead of Eq. 3.43:
2
Pi n+1
HPi,n+1 2gA,~2

2

=Hp,, ,+( +k) fiv,1 (3.48)

284},

in which k = coefficient of head losses, h, at the junction

Simultaneous solution of Egs. 3.44 through 3.46, and 3 .48 yields

b++vb*- 4cd

Qrine =~ 3¢ (3.49)
in which
1 1 A
b= +
C"i C”H»l
1{1 1+«
c==—|—5- 3.50
oF (A? A:+1) e (3.50)
d= CPi + C"i+1
Cai C"i+l J
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Now Qp
3.46.

Hp and Hp,, | can be determined from Egs. 3.44 through

i+1,1"° i,n+1’

Branching Junction (Fig. 3.12)

For the branching junction shown in Fig. 3.12, the following equations can be
written:
1. Continuity equation

QPi,n+1 = QP('H,l * QP«'+2,1 (3:51)

2. Characteristic equations

Op; par = Coi = Catlp oy (3.52)
me,l =C”.'+1 Ca,ﬂ Piey 1 (3.53)
0pie2.1 = Criay * CapoyHpy, (3.54)
3. Equation for total head
Hp, oy =Hp,y =Hp,, | (355,3.56)

In Egs. 3.55 and 3.56, the head losses at the junction are neglected, and it is as-
sumed that the velocity heads in all conduits are equal.
Simultaneous solution of Egs. 3.51 through 3.55 yields

Co.~Cu,, - Cu;
H =t~ 122 57
Px n+t C + Ca,ﬂ Ca“.2 (3 )

Now Hp,, a1 and Hp, 5, Can be determined from Eqs. 3.55 and 3.56, and
Qpl nﬂ,Qp,+l , and QP v from Egs. 3.52 through 3.54.

i+l,
Conduit i

i,n+l/

i+2, |

Figure 3.12. Branching junction.
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Hp

|
0y |

Qp

Figure 3.13. Head-discharge curve for a centrifugal pump.

Centrifugal Pump at Upstream End

The head-discharge curve for a centrifugal pump running at constant speed is
shown in Fig. 3.13. This curve can be approximated by the equation

Hp=C;- CsQp (3.58)
Solving this equation simultaneously with Eq. 3.19,

_~1+V1+4C,G(C, + GiCr)
2C,Cy

Op (3.59)

Now Hp can be determined from Eq. 3.58.

Francis Turbine at Downstream End

The head-discharge curve for a Francis turbine running at constant speed (i.e.,
connected to a large system) and at constant gate opening can be approximated
as

Hp=Co+CioQ} (3.60)

Solving this equation simultaneously with the positive characteristic equation
(Eq. 3.18) yields

=1 +V1+4C,C10(C, - C,Co)
2C,Cio

Op=

(3.61)

Now Hp can be determined from Eq. 3.60.

3.4 STABILITY AND CONVERGENCE CONDITIONS

The finite-difference scheme presented in Section 3.2 is termed convergent if
the exact solution of the difference equations approaches that of the original
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differential equations as At and Ax approach zero. If the round-off error due to
representation of the irrational numbers by a finite number of significant digits
grows as the solution progresses, the scheme is called unstable; if this error de-
cays, the scheme is stable. It has been proved that convergence implies stability
and that stability implies convergence ®*'2

Methods for determining the convergence or stability criteria for nonlinear
equations are extremely difficult, if not impossible. Collatz!? suggests that the
convergence and stability may be studied by numerically solving the equations
for a number of Ax/At ratios and then examining the results. The convergence
and stability may, however, be studied analytically by linearizing the basic equa-
tions. If the nonlinear terms are relatively small, it is reasonable to assume that
the criteria applicable to the simplified equations are also valid for the original
nonlinear equations.

Using the procedure proposed by O’Brien et al.!* and considering the linearized
equations, Perkins et al.? showed that for the finite-difference scheme of Section
3.2 to be stable,

Ar 1

Ax < = (3.62)
This condition implies that the characteristics through point P in Fig. 3.1 should
not fall outside the segment AB. For a neutral scheme,

At

=1
A= (3.63)

The criteria for convergence indicate that the most accurate solutions are ob-
tained if Eq. 3.63 is satisfied. Thus, the convergence and/or stability criterion
for the finite-difference equations (Eqs. 3.16 and 3.17) is given by the expression

1
=< .
. (3.64)

This is called Courant’s stability condition.

3.5 SELECTION OF TIME INCREMENT FOR A COMPLEX PIPING
SYSTEM

For a complex system of two or more conduits, it is necessary that the same time
increment be used for all conduits so that boundary conditions at the junction
may be used. This time increment should be selected such that Courant’s stabil-
ity condition (Eq. 3.64) is satisfied.

If the time interval, At, is such that the reach length for any conduit in the
system is not equal to aAt, then Ax must be greater than aAt to satisfy Courant’s
stability criteria. In other words, the characteristics through P pass through R
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and S and not through the grid points 4 and B (Fig. 3.14). The conditions at
every time step are, however, computed at the grid points only while conditions
at R and S must be known to determine conditions at P.

Streeter and Lai in their pioneer paper!S and Streeter and Wylie!® proposed an
interpolation procedure for computing conditions at R and § from the known
conditions at A, B, and C. However, later investigations have shown that this pro-
cedure smooths the sharp transient peaks. To avoid this, Streeter'® suggests
that the original differential equations for short conduits may be written in an
implicit form, whereas Kaplan et al.!” propose a procedure called zooming in
which At for longer conduits may be integral multiples of At for shorter con-
duits of the system.

In the author’s opinion, the implicit method combined with the characteristic
method should be used if a number of conduits in the system are very short rela-
tive to others; otherwise, simple adjustment of wave velocities to satisfy the fol-
lowing equation should give sufficiently accurate results.

Ar=ti (i=1toN) (3.65)
a;n;

in which n; must be an integer and is equal to the number of reaches into which
ith conduit is divided, and N = number of pipes in the system. As the wave

velocity is not precisely known, minor adjustments in its value are acceptable.
Because of the limitations imposed on At by the Courant’s stability condition,
a large amount of computer time is required for analyzing systems having very
slowly varying transients. For the analysis of such systems, Yow'® has reported
a technique that allows larger time steps and at the same time satisfies the
Courant’s condition. In this technique, the inertial term of the dynamic equa-

t,+ At

AX AX

Figure 3.14. Notation for interpolation,
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tion is multiplied by an arbitrary factor &2, The resulting equation and the con-
tinuity equation are then converted into the characteristic form. Because of
multiplication by @2, a time step equal to aAf is permissible, in which At is the
time step given by the Courant’s condition. Different values of a may be used
for different conduits, and the value of a may be as large as 20. Yow’s tech-
nique, however, is applicable only to those systems in which the inertial term is
small as compared to the friction term such as gas flow in pipes,'®?! flow in
porous media,'® and floods in rivers. The validity of this technique is question-
able2® because the original governing equations are arbitrarily altered; thus, ex-
treme caution must be exercised while using this technique for the analysis of
these systems.

3.6 COMBINED IMPLICIT-CHARACTERISTIC METHOD

In the last section, it was pointed out that sometimes it is advantageous to use
a combination of the implicit and characteristic methods while analyzing certain
piping systems. Details of this follow.

Let us consider a piping system in which the ith reach of a conduit is to be
analyzed using the implicit method. In this method, the derivatives of the con-
tinuity and dynamic equations (Egs. 3.1 and 3.2) are replaced by the centered-
implicit finite differences'® as follows (Fig. 3.15):

O (Hp,, +Hi)- (Hp +H)

(3.66
ox 24x ( )
BH _ (Hp,,, *+ Hp) - (s *H) e
at 24t
b
' /
HPil QP; HPi+|' Qpi#l
Hn Q| Hl‘+ll QH—I

i i+l X

Figure 3.15. Notation for implicit method.
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?-g _ (QP,-_H + Qi+l) - (QP,'+ QI)

(3.68)
ax 2Ax
gg= Q@p,,, *0p) - (Qis + QD) (3.69)
ot 2At
0=05(0; +05) (3.70)

To simplify presentation, only one subscript is used in this section to designat.e
the variables. Substitution of Egs. 3.66 to 3.70 into Eqs. 3.1 and 3.2 and simpli-
fication of the resulting equations yield

Qp,* Qp,,, - CuHp + CiyHp, +Ca=0 3.7D
-Q0p, + Qp,,, * CisHp, + CisHp,  + Cia =0 (3.72)
in which
At
Cn = g4 (3.73)

Ax

At
Cia=Cri(Hp - HY) - (@i Qis) + j{—DZ(Qi + Qi N0+ Gl (374)

_ g48x (3.75)
i3 a’ At
Cra=Qin - @i~ Ca(H; + Hiyy) (3.76)

Note that there are four unknowns in Egs. 3.71 and 3.72, namely, Qp,, Qp,, >
Hp, and Hp, . For a unique solution of these equations, there should be four
equations. These other two equations, in addition to Egs. 3.71 and 3.72, are
provided by the end conditions of the reach. For example, if there is a conduit
at the upstream end and a constant-head reservoir at the downstream end, then
the negative characteristic equation (Eq. 3.19) and Hp, , = Hres are the other
two equations. For any other end conditions, similar equations are written.
Thus, there are four equations in four unknowns, and their values are deter-
mined by simultaneously solving these equations.

Note that the conditions imposed by the boundary are used for the additional
equations and not the boundary conditions developed in Section 3.3. Therefore,
while selecting the conduit or the conduit reach for which the implicit method is
being used, care should be taken that its end conditions are simple.
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3.7 ANALYSIS OF A PIPING SYSTEM

To compute transient-state conditions in a piping system, the shortest conduit
in the system is divided into a number of reaches so that a desired computa-
tional time interval, At, is obtained. According to Evangelisti, a time interval
of % to 7’; of the transit time, i.e., wave-travel time from one end of the system
to the other, should give sufficiently accurate results. In the author's opinion,
however, this criterion should be used as a rough guide, and Ar should be in-
creased or decreased depending upon the rate at which transients are produced.
Having selected the value of At, the remaining conduits in the system are divided
into reaches having equal lengths by using the procedure outlined in Section 3.5.
If necessary, the wave velocities are adjusted to satisfy Eq. 3.65 or the procedure
outlined in Section 3.6 is used so that characteristics pass through the grid points.
The steady-state discharge and pressure head at all the sections are then com-
puted, and their values are printed. The time is now incremented, and the tran-
sient conditions are computed at all the interior points from Egs. 3.23 and 3.18
and at the boundaries from the appropriate boundary conditions. This process is
continued until transient conditions for the required time are computed.

The flowchart of Fig. 3.16 shows the computational steps for determining
the transient conditions in a series piping system. To illustrate this proce-
dure, transient conditions in the piping system shown in Fig. 3.17a were deter-
mined. For this purpose, the computer program of Appendix B was developed
in FORTRAN IV language. Transient conditions were caused by closing the
valve according to the 7-¢ curve shown in Fig. 3.17b.

As the valve-closure time is rather large as compared to the wave-transit time
in the system, pipe No. 2 was divided into two reaches, thus giving At = 0.25 s.
Pipe No. 1 was also divided into two reaches to satisfy Eq. 3.65, and the initial
steady-state conditions were computed. Time was incremented by At, and the
conditions at the interior sections were determined using Egs. 3.23 and 3.18.
The boundary conditions for the reservoir (Eqs. 3.24 and 3.25) were used to
determine the conditions at the upstream end, and Eqs. 3.43, 3.44, 3.46, and
3.47 were used to determine conditions at the junction of pipes No. 1 and No. 2.
Seven points on the 7-f curve were stored in the computer, and the 7 values at
the intermediate times were parabolically interpolated. Equations 3.42 and 3.40
were used to determine the conditions at the valve.

Conditions at ¢+ = At at all sections of the system were now known. These
were stored as conditions at the beginning of the next time step. This procedure
was repeated until transients for the desired duration were computed. The con-
ditions were printed every second time step by specifying IPRINT = 2.
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3.8 CASE STUDY
RS Ne Figure 3.18 shows the schematic layout of the conduits of the Jordan River
Redevelopment??:23 jocated in British Columbia, Canada, and owned by the
. Figure 3.16. Flowchart for a serics piping system. British Columbia Hydro and Power Authority. It is a peaking power plant.
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The upstream conduit consists of a tunnel having a 5285-m-long, mainly D-shaped
section; 82-m-long, 3.96-m-diameter, and 451-m-long, 3.2-m-diameter sections;
and a 1400-m-long penstock reducing in diameter from 3.2 to 2.7 m. There is
only one Francis turbine rated at 154 MW and 265.5-m rated head. To reduce
the maximum transient-state pressures, a pressure-regulating valve (PRV) is pro-
vided. The rating curve for the PRV, at rated head (#,) of 265.5 m as deter-
mined from the prototype tests, is shown in Fig. 3.19.

To determine the transient conditions caused by opening or closing of PRV, a
computer program was developed by using the boundary conditions for the PRV
derived in this section.* Analysis of transients caused by various turbine opera-
tions is discussed in Chapter 5. Points on the PRV rating curve (Fig. 3.19) were
stored in the computer at 20 percent intervals of the valve stroke, and the dis-
charge at the intermediate valve openings was determined by linear interpolation.
Assuming that the valve characteristics obtained under steady-state operation
are valid during the transient state, the PRV discharge under net head H,, is given

by the equation
/H
Qu = Qr ;I':‘—

in which @, = PRV discharge under a net head of H,,, and Q, = discharge under
rated net head H,, both at valve opening 7. Note that both H, and H, are total
heads, ie., H, = Hp + Q2/(2gA?), in which 4 = cross-sectional area of the con-
duit just upstream of the PRV,

To develop the boundary condition for the PRV, Egs. 3.18 and 3.77 are
simultaneously solved. Noting that Op = Q, and eliminating 4, from these
equations,

(3.77)

- ~Cis +VCis +4C15Cy,y

3.78
Qr 20 (3.78)
in which 5
C =. 1- —Q}_
s 2gH, A*
2
Cig = == 3.79
o (3.79)
2
C
Cpp= ngp
a r )

Now Hp may be determined from Eq. 3.18.

*Boundary conditions for the simultaneous operation of the PRV and wicket gates are de-
veloped in Section 10.7.
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Figure 3.19. Discharge characteristics of pressure-regulating valve.

In the computer analysis, the upstream conduit was represented by 11 pipes
while the conduit downstream of the PRV was neglected because of its short
length. Lined and unlined segments of the tunnel were combined into two lined
and unlined reaches, and the D-shaped tunne! was replaced by a circular conduit
having the same cross-sectional area. The waterhammer wave velocity?* was
computed by taking the modulus of rigidity of the rock as 5.24 GPa, and assum-
ing the penstock to be anchored at the lower end and free for longitudinal ex-
pansion at the upper end. The friction factor for various conduits were com-
puted such that they included the friction and minor losses, such as expansion,
contraction, and bend losses. Thus, although the minor losses are concentrated
at various locations in the actual system, these are assumed to be distributed
along the conduit length. In the author’s opinion, this approximation should not
introduce large errors in the analysis. The head losses computed using these
values of friction factors and those measured on the prototype are in close
agreement.

A number of transient-state tests were conducted on the prototype. Steady-
state pressures were measured by a Budenberg deadweight gauge having a certi-
fied accuracy of 0.35 m. Transient-state pressures were measured with a strain-
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gauge-type pressure cell, which delivered linear output within 0.6 percent over
1ts entire range. The natural frequency of the cell was greater than 1000 Hz, and
it was calibrated against the deadweight gauge. A multiturn potentiometer
mechanically connected to the PRV-stroke mechanism was used to measure the
PRV opening, and a Westinghouse leading-edge flowmeter?S was used to measure
the transient-state flows.

The computed and measured transient-state pressures and flows are shown in
Fig. 3.20. In the prototype test, the PRV was first opened from 0 to 20 percent
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Figure 3.20. Comparison of computed and measured results.
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at a very slow rate and was kept at this opening until steady flow was establishfad
in the upstream conduit. The PRV was then closed from 20 percent to 0 (Fig.
3.20). The wicket gates were kept closed throughout the test. In the computer
analysis, however, the PRV was not completely closed but was held at 1 percent
opening to simulate the leakage through the wicket gates. .

As can be seen from Fig. 3.20, the computed and measured transient pressures
agree closely up to an elapsed time of about 18 s; afterward, there is good
agreement between the shapes of the pressure curves but the measured results
show that the pressure waves are dissipated more rapidly than that indicated by
the results of the mathematical model. In addition, the measured period of the
pressure oscillations is less than the computed period. These difference’s may be
due to using the steady-state friction formula for computing the transwnt-sta.te
friction losses and the reduction of wave velocity at low pressures as discussed in
Section 2.6. The computed and measured discharge agree closely.

3.9 SUMMARY

In this chapter, the details of the method of characteristics were presented, and
a number of simple boundary conditions were developed. Stability and con-
vergence conditions for the finite-difference scheme were discussed, and a proce-
dure was outlined for the selection of time interval for a complex system. For
illustration purposes, a computational procedure for analyzing transient condi-
tions caused by closing a valve in a series system was presented. The chapter was
concluded by comparing the computed and measured results for the transient
conditions caused by the closure of a pressure-regulating valve in a hydroelectric
generating station.

PROBLEMS

3.1. Prove that the equations of the characteristic curves are dx/dt = V £ a if the
term V(dV/dx) of the dynamic equation (Eq. 2.10} is not neglected and
there is an additional term V(38H/dx) in the continuity equation.

3.2. Develop the boundary conditions for a centrifugal pump running at rated
speed, taking into consideration transients in the suction line.

3.3. Write a computer program for the piping system shown in Fig. 3.17a. Run
' the program for various values of Ar and plot a graph between the com-
puted pressure at the valve and At.

3.4. Develop the boundary conditions for an opening or closing valve Jocated at
the junction of two conduits (Fig. 3.21). (Hint: The following four equa-
tions are available: the positive characteristic equation for section i, n + 1;
the negative characteristic equation for section i + 1, 1; the continuity equa-
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Figure 3.21. Valve at series junction.

tion, and the equation for flow through the valve. Solve these equations

simultaneously to obtain an expression for Qp‘. "“.)

3.5. Prove that if the valve in Fig. 3.21 is replaced by an orifice and the conduits
i and i + 1 have the same diameter, wall thickness, and wall material, then

= TN = Ry
QPl',nﬂ_QPiH,l =-CHVOT+ (G, +Cy)
in which C = Q3/(C,AH,) and AH, is the orifice head loss for Q,,.

3.6. Is the equation for Qp; ,., 8ivenin Problem 3.5 valid for the reverse flow?
If not, derive a similar equation for the reverse flow.

3.7. Develop the boundary conditions for the pressure-regulating valve and the
Francis turbine shown in Fig. 3.18. The transient conditions are caused
by opening or closing the valve. Assume that the turbine speed and the
wicket-gate opening remain constant during the transient-state conditions.

3.8. Prepare a flowchart for programming the boundary conditions developed in
Problem 3.7.

3.9. A procedure called zooming is presented in Ref. 17 in which the time step
for the long pipes may be an integral multiple of that for short pipes. How-
ever, the procedure requires extrapolation at the junction of pipes having
different time steps. Investigate the effect of extrapolation on the pressure
peaks for the piping system shown in Fig. 3.17a. Assume that pipe No. 2 is
90-m-long instead of 450 m as shown in the figure. (Hint: Solve the system
using the zooming procedure and then using the same At for the whole sys-
tem as determined by the Courant’s condition.)
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CHAPTER 4

TRANSIENTS CAUSED BY
CENTRIFUGAL PUMPS

4.1 INTRODUCTION

The starting or stopping of pumps causes transients in pumping instz'\llations. To
analyze these transients, the method of characteristics presented in Chapter 3
may be used. Since the pumping head and flow depend upon th‘e pump spee-d,
transient-state speed changes have to be taken into consideration in the ar}aly.sm.
For this purpose, special boundary conditions for the pump end of a pipeline
have to be developed. o

In this chapter, the analysis of transients caused by various pump operations 13
presented. A procedure for storing the pump characteristicsina digital compt{ter
is outlined, boundary conditions for a pump end are developed, and a typical
problem is solved. Design criteria for designing pipelines are then presented, and
the chapter concludes by a presentation of a case study.

4.2 TRANSIENT CONDITIONS CAUSED BY VARIOUS PUMP
OPERATIONS

During a pump start-up, the discharge valve is usually kept closed to reduce the
electrical load on the pump motor; and as the pump speed reaches the rated speed,
the valve is gradually opened. Usually, in a normal pump-stopping procedure,
the discharge valve is first closed slowly, and then the power supply to the pump
motor is switched off. Transients caused by both of these operations may be
analyzed by using the boundary conditions developed in Chapter. 3 since the
pump speed remains almost constant during the transients in the plplr‘lg system.
However, if the pumps are not started or stopped as previously outlmec_i, then
procedures outlined in this chapter should be used for the transient analysis.
Transients caused by emergency pump operations (e.g., sudden power failure)
are usually severe, and the pipeline should be designed to withstand positive and
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negative pressures caused by these operations. Following a power failure, the
pump speed reduces since the pump inertia is usually small compared to that of
the liquid in the discharge line. Because the flow and the pumping head at the
pump are reduced, negative pressure waves propagate downstream in the dis-
charge line, and positive pressure waves propagate upstream in the suction line.
Flow in the discharge line reduces rapidly to zero and then reverses through
the pump even though the latter may still be rotating in the normal direction. In
this condition (i.e., when there is reverse flow through the pump while it is rotat-
ing in the normal direction), the pump is said to be operating in the zone of en-
ergy dissipation. Because of the reverse flow, the pump slows down rapidly,
stops momentarily, and then reverses, i.e., the pump is now operating as a tur-
bine. The pump speed increases in the reverse direction until it reaches the run-
away speed. With the increase in the reverse speed, the reverse flow through the
pump is reduced due to choking effect, and positive and negative pressure waves
are produced in the discharge and suction lines, respectively.

If the pipeline profile is such that the transient-state hydraulic grade line falls
below the pipeline at any point, vacuum pressure may occur, and the water col-
umn in the pipeline may separate at that point. Excessive pressure will be pro-
duced when the two columns later rejoin. During the design stages, the possibility
of water-column separation should be investigated, and, if necessary, remedial
measures should be taken. This will be discussed in detail in Chapter 9.

4.3 MATHEMATICAL REPRESENTATION OF A PUMP

As discussed in Chapter 3, the relationship between the discharge, Q, and the
pressure head, /, at the boundary must be known in order to develop the bound-
ary conditions. The discharge of a centrifugal pump depends upon the rotational
speed, V, and the pumping head, H;and the transient-state speed changes depend
upon torque, T, and the combined moment of inertia of the pump, motor, and
liquid entrained in the pump impeller. Thus, four variables—namely, Q, H, N,
and T—have to be specified for the mathematical representation of a pump. The
curves showing the relationships between these variables are called the pump
characteristics. Various authors have presented these curves in different graphi-
cal forms suitable for graphical’~* or computer®=# analysis. Of all the methods
proposed for storing pump characteristics in a digital computer, the method used
by Marchal et al.® appears to be the most suitable and is used herein.

Although pump-characteristics data in the pumping zone are usually available,
little data, except that presented in Refs. 4 and 8, are available for either the zone
of energy dissipation or the zone of turbine operation. If the complete character-
istics data are not available, then the characteristics of a pump having about
the same specific speed may be used as an approximation.
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Data for prototype pump characteristics are obtained from model test results
by using homologous relationships.” Two pumps (or turbines) are considered
homologous if they are geometrically similar and the streamflow pattern through
them is also similar. For homologous pumps, the following ratios are valid

H —
N_zD_z = Constant
and 4.1)

i = Constant
oD?

in which D = diameter of impeller. Since D is constant for a particular unit, it
may be included in the constants of Eq. 4.1, 1ie.,

H
j—v—2=Constant
and 4.2)
i Constant
— = Constan
o

Equation 4.2 may be nondimensionalized by using the quantities for the rated
condition as reference values. Let us define the following dimensioniess variables:

_2)
v Or
h=—[1{i

R 43
=—N-} (43)
(3 NR
B=_T.

T )

In this equation, T = torque and the subscript R designates the value of the vari-
ables for the rated conditions. On the basis of Eq. 4.2, Eq.4.3 may be written as

h
— = Constant
o
4.4)

= Constant

< |R
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TABLE 4.1. Zones of pump operation.

E Sign of

Zone of Operation v a Range of ¢
Pump + + 0°<e< 90°
Energy dissipation - + 90° < 6 < 180°
Turbine - - 180° < 6 < 270°
Turbine energy

dissipation + - 270° <6 < 36Q°

Since a becomes zero while analyzing transients for all four zones of operation,
h/o® becomes infinite. To avoid this, the parameter /1 /(a® + v?) instead of /o
may be used.*

The signs of v and « depend upon the zones of operation. In addition to the
need to define a different characteristic curve for each zone of operation, a/v be-
comes infinite for v = 0. To avoid this, a new variable 8 may be defined® as

g =tan™! % 4.5)

and then the characteristic curve may be plotted between 8 and hf(a? + v?).
By definition, @ is always finite, and its value varies between 0° and 360° for the
four zones of operation (see Table 4.1).

Similar to the pressure-head curve, the torque characteristic curve may be
plotted between 8/(a® + v*) and .

Using the data presented by Thomas,® characteristic curves for pumps having
specific speed** of 25, 147, and 261 SI units (1276, 7600, and 13,500 gpm
units, respectively) are presented in Fig. 4.1 and in Appendix E.

4.4 BOUNDARY CONDITIONS FOR PUMP FAILURE

As discussed in Chapter 3, the characteristic equation (equations if the boundary
has pipes on both the upstream and downstream sides) and the conditions im-

*Marchal et al. suggest that sgn )V 1ht/(@? + v?) be used to increase accuracy for smaller
values of this parameter (sgn designates sign of k). However, #/(a? + v?) is used herein
because it simplifies the derivation of the boundary conditions for the pump end (see Sec-
tion 4.4).

**Specific speed =NR\/(_2;/HR3/4. In SI units, Np isin tpm, Qg isin m3/s, and Hp is in
m; in gpm units, N is in rpm, Qg is in gpm, and Hg is in ft. For a double-suction pump,
Qg is divided by 2 while computing the specific speed.

tSome authors erroneously use a specific speed of 35 SI units for this pump. As the pump
had a double suction, rated discharge should be divided by two to compute the specific
speed (see Closure of Ref. 8, p. A-124 and A-127).

ir,x
n, - L’TIJJ
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posed by the boundary are solved simultaneously to determine the boundary
conditions. For a pump end, the pump characteristics define the conditions im-
posed by the boundary, and a differential equation defines the variation of the
¢ pump speed with time following power failure. Thus, we have to simultaneously
solve these equations to develop the boundary conditions for the pump end.

To facilitate understanding of the derivation, let us first consider a simple sys-
tem having only one pump and a very short suction line. We will develop the
boundary conditions for more complex cases in the next section.

3.4

H

”
octe v2
73

Y7 ' — Equations of Conditions Imposed by Pump
P 80 20 160 00 \za0\ 21 i .
/ LN As we outlined in Section 4.3, pump characteristics may be mathematically rep-

0= tor 55in degress \ resented by curves between 6 and h/(a? + v?) and between 8 and B/(a® + v?), in

L which 8 = tan™! (¢/v). To use these curves in a mathematical model, discrete

\ points on these curves at equal intervals of @, between the range 8 =0 and 6 =

\ 360°, are stored in the computer. Each segment of these curves between the

N \ points stored in the computer may be approximated by straight lines (Fig. 4.2).

If a sufficient number of points (e.g., 73) are stored, then the error introduced
by approximating the curves by segmental straight lines is negligible.

L For any value of a and v (except when both a and v are simultaneously zero),

ol Ji.k“i 3. /—0\\ the value of 8 = tan™! (a/v) may be determined by using IBM function ATAN2.

S / VN However, this function computes the value of 8§ between 0 and 7 and between 0
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Figure 4.1. Characteristics of pumps of various specific speeds.
Figure 4.2. Approximation of pump characteristic curves by segmented straight lines.
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and -m, whereas our range of interest is between 0 and 2#. This limitation can
be circumvented by adding 27 to the computed value of 8 if § < 0;eg., if 8
given by this function is -30°, then the value of 6 to be used for determining the
point on the pump characteristic curve is 360 - 30 = 330°.

Let us assume that the calculation has progressed to the ith time step; that the
variables a, v, h, and § at the beginning of this time step are known; and that we
want to compute the values of these variables at the end of the time step. Let us
denote these unknown variables by ap, vp, kip, and Bp. To determine the value
of these variables, we have to first of all determine the equation of the segment
of pump characteristics corresponding to ap and vp. However, since the values
of these variables are initially unknown, we may use, as a first estimate, their
values determined by extrapolation from the known values for the previous time
steps, i.e.,

oze=a,-+A<x,-_,} @6)

Ve = v; + Av;,

in which a, and v, are the estimated values at the end of ith time step, a; and
v; refer to known values at the beginning of the ith time step, and Ae;_, and
Av;., are the variation of these variables during the (i - 1)th time step. Since
the pump speed and the pump discharge vary gradually, the preceding linear
extrapolation should yield sufficiently accurate estimates if the size of the com-
putational time step, A¢, is small. Now, the grid points on either side of @ = tan ™"
(ae/ve) are searched, and the ordinates #/(a” + v?) and B/(a?® + v?) for these grid
points are determined from the stored values. From these, the constants* for
the equation of the segmental straight line are determined. Now, assuming that
the points corresponding to ap, Up, hp, and Bp lie on these straight lines, then

h « )

3 £ > =a; +a; tan”! £ 4.7)
ap +vp Up
B o

5 P2=ag+a4tan’—}-’ (4.8)
ap +up Up

in which @, and a,, and a3 and a, are constants for the straight lines represent-
ing the head and torque characteristics, respectively.

Referring to Fig. 4.3, the following equation can be written for the total head
at the pump:

le.’l =Hsuc +Hp - AI‘IPU (49)

*If y =@y +a,x is the equation of a straight line passing through the points (xy, y,) and
(x3,y7), thenay = (yyx2 - yax)/(x2 ~x)anday = (y2 -y )/(xy - x;).
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Figure 4.3. Notation of boundary conditions for pump.

in which Hy,. = height of the liquid surface in the suction reservoir above datum,
Hp = pumping head at the end of the time step, and AHp = head loss in the dis-
charge valve. Note that the velocity head in the discharge pipe, which is usually
small, is not taken into consideration in Eq. 4.9. The valve head loss is given by
the equation:

AHPv =G, sz’i,l =G Qi’i,l |QPi,1| (4.10)

in which C, = coefficient of head losses in the valve. Note that in this equation,
Qp is written as Qp, X ]Qp, | to account for the reverse flow.
Equatlons 47 to 4. 10 represent the conditions imposed by the boundary.

Differential Equation of Rotating Masses

The accelerating torque for a rotational system is equal to the product of the
angular acceleration and the polar moment of inertia of the system. Since there
is no external torque acting on the pump following power failure, the decelerat-
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ing torque is the pump torque. Hence,

T=-wr? %%
dr
or
2n dN
T=-wr? = 22 ,
60 dr (@.11)

in which WR? =combined polar moment of inertia of the pump, motor, shaft,
and liquid entrained in the pump impeller, and w and AV are rotational speed of
the pump, in rad/s and in rpm, respectively. On the basis of Eq. 4.3, Eq. 4.11
may be written as:

20Ny da

= -WR?
d 60 Ty, dt

(4.12)
In this equation, Tp =60 YHp Qg /(27Ngng) in which v = specific weight of
liquid, and ng = pump efficiency at rated conditions. By using an average value
of § during the time step, this equation may be written in a finite-difference
form as:

ap—a__ 60TR ﬁ+BP

At 2nWRNg 2 (4.13)

which may be simplified to
ap_ Cﬁﬁp=a+C6ﬁ (414)

in which
-15 TR At
C = — %
6 TfWRzNR (4.15)

Characteristic Equation for Discharge Pipe

As the suction line is short, it may be neglected in the analysis. Therefore, we
need only the characteristic equation for the discharge line, i.e., for section (i, 1),

Op; = Cn t+ Coflp, | (4.16)

*In English units, the right-hand sides, of Eqs. 4.11 and 4.12 have to be divided by the ac-
celeration of gravity, g. In SI units, WR? is in kg m? and TR isin Nm;in the English units,
WR? is in 1b-ft2, and Tg is in Ib-ft. Ng in both SI and English units is in rpm. In English
units, the right-hand side of Eq. 4.15 has to be multiplied by g.
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Continuity Equation

Since there is no storage between the suction reservoir and section (i, 1)

0, , = 0p (4.17)
in which @p = flow through the pump at the end of the time step.

Solution of Governing Equations

To develop the boundary conditions, we have to solve Egs. 4.7 through 4.10,
4.14, 4.16, and 4.17 simultaneously. By eliminating le.'l, AHp, and QPi,l
from Eqs. 4.9,4.10,4.16, and 4.17 and by using Qr and Hp as reference values,
the resulting equation may be written as

Orvp = Cp, + CoHgy + CuHghp - C,C,Q% uplvpl (4.18)

Now we have four equations—i.e., Eqs. 4.7, 4.8, 4.14, and 4.18—in four un-
knowns—ap, Up, hp, Bp. To simplify the solution, we will first eliminate #p and
Bp from these equations as discussed in the following.

By substituting for hp from Eq. 4.7 into Eq. 4.18 and for Bp from Eq. 4.8 into
Eq. 4.14 and simplifying, we obtain

Fy = C,Hpa,(a} + v}) + C;Hga, (o} + v}) tan™! L Qrup
Up
- C,C,Q%vplvpl + Cy + CuHgyc =0 (4.19)

Fy=op - Coas(ap + vp) - Coaq(ap + vp) tan™ %’ -a-Cef=0
P
(4.20)
Equations 4.19 and 4.20 are nonlinear equations in two unknowns, ap and vp.
.These equations can be solved by using the Newton-Raphson method in which a
solution of the equations is first guessed, which is then refined to a required de-
gree of accuracy by successive iterations.
Let a},’) and ug) be the initially estimated values of solution, which may be
taken equal to a, and v, as determined from Eq.4.6.* Then, a better estimate
of the solution of Egs. 4.19 and 4.20 is

of? = oD + 8ap (4.21)**
09’ = vf:l) +8uvp (4.22)**

*Superscript (1) indicates estimated values and superscript (2) indicates values after first

iteration.
**These cquations may be deduced from the gencral derivation presented on p. 91.
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in which
oF, oF.
2 " 0p
v
Sap L £ (4.23)
a&p al)p aUp aap
oF, oF.
™
Sup d A (4.24)
dup Oap Oap OUp

In Eqs. 4.23 and 4.24, functions F, and F, and their derivatives with respect to
ap and vp are evaluated at af,') and vf,‘). Differentiation of Eqgs. 4.19 and 4.20
yields the following expressions for these derivatives:

oF
—L= CaHR(2a,ap +a,up + 2a,ap tan™! a—P> 4.25)
adfp Up
oF,
—1= C,Hp <2a,0p - ayap + 2a,vp tan”! £)~ Or
dvp vp

- 2C,C, Q% lup) (4.26)
oF;
—2=1- Ce <2a3ap +a,0p +2a40p tan™! 2) 4.27)
aap Up
oF.
—2= Ce (—2a3 vp +as0p - 2a4vp tan ! a—P> (4.28)
aUp Up

If |8apl and |8vp| are less than a specified tolerance (e.g., 0.001), then a}}) and
v@ are solutions of Eqs. 4.19 and 4.20. Otherwise, af and v{? are assumed
equal to of? and v, and the above procedure is repeated until a solution is ob-
tained. Having determined ap and vp, it is verified whether the segment of the
pump characteristic used in the computations corresponds to ap and vp. If it
does not, then q, and v, are assumed equal to ap and vp, and the abovementioned
procedure is repeated.

However, if the correct segment was used, then hp and fp are determined from
Egs. 4.7 and 4.8; Hp and Qp from Eq. 4.3; and Hp, | and Qpi’l from Egs. 4.9
and 4.17. The values of a and v are initialized for the next time step (i.e.,a =ap
and B = Bp), and the solution progresses to the next time step. To avoid an un-
limited number of iterations in the case of divergence of solution, a counter may
be used so that the computations are stopped if the number of iterations exceeds
a specified value (e.g., 30). The flowchart of Fig. 4.4, illustrates this procedure.
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4.5 BOUNDARY CONDITIONS FOR SPECIAL CASES

In Section 4.4, boundary conditions were developed for a system having only
one pump and a short suction line. Because of the short length, the propagation
of the waterhammer waves in the suction line was neglected. In this section, we
will develop boundary conditions for complex systems often found in practice.
Boundary conditions for systems not covered herein may be developed by fol-
lowing a similar procedure.

We will briefly describe the system configuration, and then present the govern-
ing equations and the expressions for F,, F,, 0F, [dap, 3F, [dvp, 3F,[0ap, and
dF,/dup. Using these expressions, the solutions may be determined as outlined
in Section 4.4.

Parallel Pumps

Systems having parallel pumps to which power fails simultaneously may be ana-
lyzed as follows: If the length of pipe between each pump and the discharge
manifold is long, then each pump may be handled as outlined in Section 4.4, and
the parallel piping system may be analyzed using the boundary conditions pre-
sented in Chapter 3 (note that the discharge manifold will be considered as a
junction of two or more pipes). However, if the pipe between each pump and
the discharge manifold is short, then this pipe may be neglected in the analysis,
and the combined discharge of all pumps may be considered as the flow at the
upstream side of the discharge manifold. Boundary conditions for the latter case
are developed in this section.
The continuity equation for this case is:

Qp; = npQp (4.29)

in which np = number of parallel pumps.
Depending upon the length of the suction line, boundary conditions for parallel
pumps may be divided into the following two cases:

1. Short suction line. If the suction line is short, then the waterhammer waves
in this line may be neglected. On the basis of Eq. 4.29, Eq. 4.18 becomes

npQrup =Cy + CoHgye + CoHghp - CanQIZZ vplupl (4.30)

Equations 4.7, 4.8, and 4.14 are valid for this case as well. Proceeding similarly
as in Section 4.4, the following expressions are obtained:

L, oa
F = CaHRa,(af: +vp) + C,,HRaz(a% + Ulz’) tan™! £ - npQrup
vp

N CaCquzQ UPI”P' + Cn + CaHsuc =0 (4.3 1)

pp————
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dF,

— .1 @p
Pl C,Hg (201 vp ~ ayap + 2a,vp tan™t —— |- npQp - 2C,C,0% vp|
P Up

(4.32)

Expression for F,, 3F, [dap, OF, [dap, and 8F, /dvp are given by Eqgs. 4.20, 4.25,
4.27, and 4.28, respectively.

2. Long suction line (Fig. 4.5). If the suction line is not short compared to
the discharge line, then waterhammer in the former has to be considered in the
analysis. Therefore, we have to include the characteristic equation for the suc-
tion line. Referring to Fig. 4.5,

Hp=Hp,, .~ Hp ., (4.33)
Qi ney = Co ™ Cayllpy (4.34)
Opiyy = Cn + Gy Hpy,, (435)
0p; ey = @piyy, =1 Q0p (4.36)

In addition, Eqs. 4.7, 4.8, and 4.14 are valid for this case.
By multiplying Eq. 4.34 by C,,, ,, Eq. 4.35 by C,,, substituting for Qp

and Qpi+1,l from Eq. 4.36, and adding the resulting equations, we obtain N
nPQP(Cai + Cai+1) = Cn Ca,' + CpCa,-+1 + CaiCai,”HP (43 7)
By using Qp and Hp as reference values, Eq. 4.37 may be written as
_ nP(Cai + Cai+l)QR bp~ CnCa,' - CpCa,-H
p= CC » (4.38)
a; ai”HR
a —
2 =
+
Instantane hydrauli .
yrad: //Zeaus yoraulie :2'
Discharge line
Pump
Pipe i 5 ( Pipe i+1 (
[ —— c L JC —40
= —
Suction /ine—/l j' Qi,nrln'I '/_ Datum

Figure 4.5. Pump with long suction line.
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Elimination of hp from Eqs. 4.7 and 4.38 yields

F, = a,(a3 + vp) +a,(ap + v3) tan™" %—P -Cqop+Cg=0 (4.39)
P
in which
= nP(Ca,- + Ca,-ﬂ )QR (4.40)
CaiC“iHHR
C,Cy, + CpC,,
Cy= ——t_F 2irL (441)
Ca;Cayu AR
By differentiating Eq. 4.39 with respect to «p and vp, we obtain
F o Q
Ll = 2a,ap + 2a,ap tan™ hal ta,vp (4.42)
3ap Up
3 | 2a,vp +2a,vp tan”" 2 _ a,0p - Cq (4.43)
aUP Up

Equations 4.20, 4.27, and 4.28 define the expressions for F3, aF, [dap, and
an/al)p.
Series Pumps (Fig. 4.6)

If the pipe length between the two pumping-sets is long, then each pumping-set
may be analyzed individually assuming the downstream pumps have a long suc-

/nstantaneous hydraulic
grade line

\:1 Main 'pump
Booster .
Suction line pump Discharge valve
! Aipei, Pipe (i+1)
uL ——— )
€ C C( N\ Discharge line
a (i,n+l) i+,1)
T Datum
{ Ja

Figure 4.6. Notation for series pumps.
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tion line. However, if the pipe length between the pumps is short, then this pipe

may be neglected in the analysis, and the combined boundary conditions for

both the pumping units may be developed as discussed in the following.
Referring to Fig. 4.6, the following equations may be written for the system:

1. Pumping head

HPiﬂ,l zHPi,nﬂ +HPb +HPm h AHPU (4'44)
2. Continuity equations
QPi,nu = "PQPD (445)
Qp, =Qp,, (4.46)
Op,,, , =npQp, (4.47)
3. Positive characteristic equation for suction line
QPi,rHl = CP - C“iHPi,nH (4.48)
4. Negative characteristic equation for discharge line
Qpiﬂ,l =C" +C‘11'+1HP1'+1,1 (449)

5. Equation for head loss in the valve

AHp, = C“QPi+1,1 |Q”i+1,1l (4.50)

6. Equations for the pump characteristics

ap,
hp, =ay, (o, +v,2,m)+a2m(a;2am +vp, )tan™! U—L"- (4.51)
Pm
hp, =a,,(ap, +vp,)+a,, (o} +vz)tan"m (4.52)
Py~ G1p\XPy T UPy) T A2, (A, T Vb vy .
- 2 2 2 2 -1 %Pm
Bp,, = a3, (a5, tvp, ) +aa, (ap, +vp,)tan . (4.53)
Pm
-y op
Bp, = a3b(¢1}’b + U}’b) +a4b(a12=b + vlz"b) tan™! U_b' (4.54)
; Py
7. Equation for the rotating masses (i.e., equations similar to Eq. 4.14)
ap,, = Cop,Bp,, =0m +Cs, Bm (4.55)
ap, = Co,Bp, = ap + Cs, By (4.56)
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In the preceding equations, subscripts &, m, and v refer to the booster and main
pump and to the valve, respectively; np = number of pumping-sets connected in
parallel; and C, = coefficient of head loss in the valve.

To solve these equations, let us first reduce the number of unknowns from 13
to three as follows:

Elimination of Hp, , ;> Qp,.,nﬂ, Hp,, o> Qpi+l,l, Qp,,and Hp, from Egs. 4.44
to 4.50 yields

npQp -C, Cp-npQp
Hp, +Hp, = C’" - o ™ +CynpQp 10p,| (4:57)
%+ aj

Using Hg,,,. Hg,,, and Qr,, as reference values, Eq. 4.57 may be written as

_npQg,, . npQg,,
thxHRm+thHRb— Caiﬂ P Ca,- VP
C Cp
+npC,Qk,, Ve, VP | - c r - o (4.58)
a; a;

i+1

By substituting expressions for hp  and hp, from Egs. 4.51 and 4.52 into Eq.
4.58 and simplifying the resulting equation, we obtain

op,
= 2 2 2 2 -1 _m
F, —almHRm(C!pm +Upm) +a2mHRm(apm + Upm) tan o
m
2 2 Vg H 2 43 )tan™! opp
+aleRb(an +va) aZb Rb(apb UPm an vp.
'm
C, 0k, p,, 0P, | Oy, MPLRy o L
-n - P~ Pm T A =
PY v Ry Py |“Pry Ca,-.,.l m Ca,- m Caiﬂ Ca,-
(4.59)

Note that in Eq. 4.59, we have replaced vp, by vp, since both are equal as
the number of main and booster pumping-sets are equal.

By eliminating Bp,, from Eqs. 4.53 and 4.55 and Bp, from Eqs. 4.54 and 4.56,
we obtain

ap,
2 -1 _Pm
F=ap - Cs, [aam(a}’m + U?’m) +ﬂ4m(0129m +vp, ) tan o ]
m
- am - Cﬁmﬁm (4.60)
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ap

= 2 2 2 2 -1 b
F3 - an - Cﬁb [aBb(an + va) + aQb(an + UPm) tan v ]
Pm

- ap = Ce\ By (4.61)
Now we have three nonlinear equations (Egs. 4.59-4.61) in three unknowns,

ep,., Up,,and ap . To solve these equations by the Newton-Raphson method,
we have to obtain a solution of the following equations:

oF, oF, oF, o5
<aap dap,, + _au,, bvp,, * _—aapb dap,| =-Fj (4.62)
m
oF, oF, oF, ORI
(Bap dap, + —avp dup, + -—-—aapb Sap,] =-F; (4.63)
m m
oF; oF;, oF; ® -
+ —=8vp t+ —— =- 4.64
<aapm dap,, o0, vp,, Sap, Sap, F3 (4.64)

In these equations, the functions Fy, F,, and F, and their derivatives, are eval-
uated for the estimated values of a}};, vgrl, and a(":, and a better estimate of
the solution is determined from the following equations:

ag‘gl = agrzx +8ap,, (4.65)
of) =of) +8up, (4.66)
off) = ofl) +5ap, (4.67)

As before, the superscript in the parentheses refers to the number of the itera-
tion. The expressions for the derivatives obtained by differentiating Eqs. 4.59
through 4.61 are

O w24, H +2a, H 4 P
da T e, ARy, 0py, a2, AR, Op,, tan v 22, IR VP
P P,y
(4.68)
oF, ap
= -1 _‘m _
3 2a,, Hg, vp, *2a;, Hg vp, tan " as, Hg, op,
Pm P
+2a, H +2a, H tan™! 28 g, j
Q1p TRy Py T 202y Ry VP, 1AN © T = A2y, MR, Oy,
Pm
npQg,, nrOR
2 m m
- 2npC, Ok, VP, | - - (4.69)
Caiﬂ C”i
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L @
EL =2a, HRbapb + 2a2bHRbapb tan~! = +a2bHRbUPm (470)
dap, b VP,
0 . 4.71)
aapb
oF, _ _ -1 %P
dar, =1-2Cs,43,2p,, 2C6ma4mapm tan on,
- Cﬁma4mvpm (472)
oF, _ -1 %Pm
avpm - -2C6ma3m va - 2C6ma4m Upm tan va + C6ma4mapm
4.73)
95 _, (4.74)
aapm
ap
oF, =1- 2Cs,a3,0p, - 2Cq,aa,0p, tan™! —2 - Ce,a, VP, 4.75)
Bapb Upm
oF; | -1 2P 476
2ur,, =-2Ce,a3,Vp,, ~ 2Cs, a4, Up,, tan o + Ce, 04, 0p, (4.76)

If |8ap,,, | |6anl, and lﬁvpml, obtained by simultaneously solving lzlgs 4(.32
through 4.64, are less than a specified tolerance (e.g., 0.001), then a 2? VP »
and a}.zl)’ are solutions of Eqgs. 4.59 through 4.61:; otherwise, aﬁ,‘; , vg;,and agg
are assumed equal to afp’) , vg) , and ag,zg, and the above procedure is repeated

m m
until a solution is obtained. Then, it is verified whether the segment of pump
characteristics used in the computations corresponded to ap and vp.( )If it does
2
not, then a, , a.,, and v, are assumed equal t? aﬁ%, agg, and Vpo s re?p‘ec-
tively, and the above procedure is repeated; otherwise, the values of the remaining
variables are obtained from Eqgs. 4.44 through 4.56, and the solution progresses
to the next time step. _ .

To avoid an unlimited number of iterations in the case of divergence of itera-
tions, a counter should be used so that the computations are stopped if the num-
ber of iterations exceeds a specified value (e.g., 30).

4.6 EXAMPLE

To illustrate the use of the above procedure, the piping system shown in Fig. 4.7
is analyzed. Initially, both pumps are operating at rated conditions, and the
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— |
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60m
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Ho

L =450m L =550m
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a = 900m/sec. o = 1100m/sec.
f = 00! f = 0.0I2
Qy = 0.5m3/sec
Pump Data
Qp = 0.25m%/sec.
Hgp = 60 m
Nr = OO rpm

WR2= 16.85kg-m2 per pump

Pump efficiency at raoted conditions = 0.84

Figure 4.7. Piping system.

transient-state ‘conditions are caused by simultaneous failure of power to both
pumps.

A computer program (Appendix C) was developed using the boundary condi-
tions derived in Section 4.5 for Paralle] Pumps and the flowchart shown in Fig.
4.4. The method of characteristics discussed in Chapter 3 and the boundary
conditions for the reservoir and series junction were used to analyze the transient
conditions in the discharge line. The waterhammer wave velocity for various sec-
tions of the discharge line was determined using the equations presented in Sec-
tion 2.6. The pump-characteristics data for N; = 25 SI units (1276 gpm units)
shown in Fig. 4.1 were used in the analysis. At rated discharge and rated pump
speed, the pressure head at the upstream end of the discharge line would be equal
to the rated head. Starting with this flow and pressure head at the upstream

e
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end, the steady-state conditions in the discharge line were determined. Then,
the power was assumed to fail, and the resulting transient conditions were com-
puted. As the inertia of the liquid between the pump and the discharge manifold
was small, the discharge of both pumps was lumped together and considered as
the flow at the upstream end of the system.

Computed results are presented in Appendix C.

4.7 PUMP START-UP

In some piping systems, there is no control valve downstream of the pump; there-
fore start-up procedures outlined in Section 4.2 cannot be used. Pump start-up
in such installations may produce very high pressures, especially if the motor is
of the induction type and is started across the line (i.e., without reducing the
voltage).

The transients caused by a pump start-up may be analyzed by selecting a start-
up time, T, and by assuming that the pump speed increases linearly from zero
to the rated speed in time T;. The motor manufacturer can supply the time taken
by the motor to reach the rated speed. The time specified by the motor manu-
facturer should be decreased by about 30 percent!! to obtain a value for 7.

Since the pump speed is known (it is assumed to increase from zero to Ng, in
time Tj), the data for the torque characteristics and moment of inertia, WR?2, of
the pump-motor are not required for the analysis. The pumping head and the
pump discharge may be computed as outlined in the following.

Estimate the nondimensional pump discharge, v,, at the end of the time step
by extrapolation from the known values of v for the previous time steps. From
the pump characteristics, determine kp for the known value of ap and for the esti-
mated value of the pump discharge, v,. Then,thl =hpHp, in which the sub-
script (1, 1) refers to the first section on the discharge line just downstream of
the pump. Now, using this value of HP-,:’ compute the discharge at section
(1, 1) from the negative characteristic equation (Eq. 3.19),

O, = Co + CuHp, 4.77)

and then determine vp = Op, ,/(n,Qr) in which np = number of parallel pumps.
If fup - v.|<e, in which € is a specified tolerance (e.g., 0.001), proceed to the
next time step. Otherwise, assume v, equal to the mean of the computed value
of vp and the estimated value, v,, during the previous iteration, and repeat the
procedure,

If the discharge line is under a static head prior to the pump start-up, then there
will be no flow into the discharge line until the pumping head exceeds this static
head. This condition can be included in the above analysis by assuming that
Op, , = 0.0 until le’l exceeds the static head.
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The pressure rise during a start-up may be reduced by having a slow start-up.,
This can be done by increasing the WR? of the pump motor, by reducing voltage,
or by having a part-winding start. The overall economy of decreasing the maxi-
mum pressure to reduce the pipe-wall thickness by these methods should be in-
vestigated prior to their selection.

4.8 DESIGN CRITERIA FOR PIPELINES

Once the layout and dimensions of a piping system have been selected, the maxi-
mum and minimum pressures for various operating conditions can be determined
by using the procedures outlined in Sections 4.4,4.5,and 4.7. In the safest de-
sign, all components of the system would be designed for the possible maximum
and minimum pressures with a liberal factor of safety. Such a design would,
however, be uneconomical. Therefore, a factor of safety is chosen depending
upon the risks and the probability of occurrence of a particular operating condi-
tion during the life of the project, i.., the higher the probability of occurrence,
the higher is the factor of safety.

Based upon the frequency of occurrence, various operating conditions may be
classified as normal, emergency, or catastrophic. A discussion of the operating
conditions included in each of these categories and the recommended factors of
safety!? follows.

Normal

All those operations that are likely to occur several times during the life of the
pumping system are termed normal, Appurtenances or devices (e.g., surge tanks,
Surge suppressors, and air valves) provided in the system to reduce severe tran-
sients are assumed to be properly designed and to function as designed during
these operations.

The following are considered to be normal operating conditions:

1. Automatic or manual starting or tripping of pumps throughout the entire
range of pumping head. If there is more than one pump on the line, all are
tripped simultaneously ; however, only one may be started at a time.

2. If a check valve is present near the pump, it closes instantly upon flow
reversal.

3. A surge tank does not drain and thus admit air into the pipeline, and it does
not overflow unless an overflow spillway is provided.

4. If there is an air chamber, it is assumed to have a minimum air volume during
a power failure.



96 Applied Hydraulic Transients

As a result of any of the above operations, the water column does not separate
at any point in the pipeline. However, if the water-column separation does
occur, then appurtenances such as air chambers, surge tanks, etc. should be pro-
vided to avoid it. But, if it is impractical or too costly, then special devices will
be provided to minimize the transient pressures when the columns subsequently
rejoin.

A factor of safety of three* based on the ultimate bursting strength of the
member and a suitable factor of safety against collapse are recommended for the
transient pressures caused by normal operations.

Emergency

The emergency operating conditions in pumping systems are those in which one
of the pressure-control devices malfunctions during power failure. These condi-
tions include:

1. One of the surge suppressors, surge tanks, or relief valves is inoperative.

2. Closure of one of the check valves provided for shutting off return flow
through the pumps is delayed and occurs at the time of maximum reverse flow.

3. Air-inlet valves, if present in the system, are inoperative.

Since the probability of occurrence of these conditions is rather small, a factor
of safety of two based on the ultimate bursting or collapsing strength is
suggested.

Catastrophic

Catastrophic conditions are those in which the protective equipment malfunc-
tions in the most unfavorable manner, such as loss of all air in the air chamber,
very rapid abnormal opening or closing of a valve or a gate, and pump-shaft
failure. Because the probability of occurrence of any of these conditions is
extremely remote, a factor of safety of slightly more than one, based on the
ultimate bursting or collapsing strength, may be used.

4.9 VERIFICATION OF MATHEMATICAL MODEL

The transient-state prototype test data obtained on the Wind Gap Pumping Plant
by the Mechanical Design Unit of the Department of Water Resources, State of
California, Sacramento, was used to verify a mathematical model based on the

* A factor of safety of four is recommended in Ref. 12.
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boundary conditions developed in Sections 4.4 and 4.5. In this section, plant
data are first presented; the tests, instrumentation, and mathematical mode] are
then briefly described. This is followed by a comparison of the computed and
measured results,

Plant Data

The Wind Gap Pumping Plant has five pumping units: three small units (Nos.
1-3) and two large units (Nos. 4, 5). Since test data for the large units only were
used for verification purposes, we will only list the parameters of these units and
of their discharge line. The large units (Nos. 4, 5) are manifolded together into a
3.81-m-diameter pipe. Each unit has a combined pump-motor WR? of 99, 366
kg m?, and is rated at 17.84 m®/s at a total head of 159.7 m when operating
at 360 rpm. The specific speed of the pump is 33.8 (SI units). The pipeline is
628 m long and varies in thickness from 11 to 27 mm. There is a discharge valve
on the downstream side of each pumping unit. This valve closes in 22 +2 s
following power failure to the unit. The minimum and maximum total pumping
heads are 159.06 and 160.03 m, respectively, and the friction loss in the pipeline
corresponding to a flow of both units is 1.8 m. To prevent backflow from the
downstream canal, a siphon is provided near the downstream end of the pipeline,
with the siphon having an air valve at its top. This valve opens as soon as power
fails to the pump-motors.

Tests and Instrumentation

Single- and multiple-unit tests were conducted on both the small and large units.
Runaway tests were conducted by subjecting the units to simulated power
failure, with the discharge-valve closure delayed until after the units had reached
the steady-state runaway speed.

The strain-gauge-type pressure transducers were used to measure the transient-
state pressures on the upstream and downstream sides of the discharge valve. A
valve position transducer (displacement) and an rpm (analog) transducer were
installed on all units tested to record the discharge-valve closure and the unit
speed.

Mathematical Model

A computer program was developed based on the boundary conditions for the
pump end derived in Sections 4.4 and 4.5 and on the flowchart of Fig. 4.4. The
closure of the discharge valve following power failure may be included in the
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analysis, if desired. The pumping stations may have several parallel pumps, and
the pumps may have long or short suction lines. To compute the transient con-
ditions in the pipeline, the method of characteristics of Chapter 3 and the bouqd-
ary conditions for the downstream and upstream reservoirs and for the series
junction, derived in Section 3.3, were used in the program.

Comparison of Computed and Measured Results

The computed and measured results were compared for the tests simulating
simultaneous power failure on Unit Nos. 4 and 5 with and without <.:]osure of the
discharge valve. Results for the case when the discharge valve remained open are
presented in Fig. 4.8a, and results for the case when the valve was closed are
shown in Fig. 4.8b. As can be seen from the figure, the agreement between the
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Figure 4.8. (Continued)

computed and measured results is satisfactory. However, the computed mini-
mum pressure is lower than the measured minimum pressure. This difference is
most probably due to the operation of the siphon valve, which was not simulated
in the mathematical model.

4.10 CASE STUDY

The hydraulic transient studies,'® carried out by the Hydroelectric Design Divi-
sion of British Columbia Hydro and Power Authority for the water supply con-
sultant* during the preliminary design of the makeup and cooling-water supply
system for the Hat Creek Project of the Authority, are presented in this section.

*Sandwell and Company Limited (Sandwell), Vancouver, British Columbia, Canada.

PUMP SPEED-RAPM
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N
Water-Supply System ?:’5 sg
o~
As presently planned, the water-supply system (see Fig. 4.9) for pumping water EE‘ ':l,“,‘
from the Thompson River to the plant reservoir would be comprised of an 800- '§‘§‘ Y
mm-diameter buried pipeline, approximately 23 km long; a pumping station \-”-/
with five pumping units at the river intake; two booster stations, each with four ' 2041253y JUDJe) il ; { T
IeIc OIS,

|
i
=

pumping units and a freesurface suction tank; and a reservoir near the power
plant. Each booster station would have the free-surface tank on the suction side.
The average and maximum discharges would be 0.725 and 1.60 m?/s, respec-
tively, and the maximum total static lift from the river intake to the plant
reservoir would be 1083 m. The river intake would be located on the right bank
of the Thompson River, 2.4 km northeast of Ashcroft, British Columbia.

Both booster stations have three-stage pumps, each rated at 0.4 m?/s, 670
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Figure 4.9. Hat Creek Thermal Power Plant: Pipeline profile of makeup cooling-water supply system.

m, and 3580 rpm. The specific speed of each pump is 39.2 (SI units), and the R .
moment of inertia of pump, motor, shaft, and entrained water in the impeller 2 N\
is equal to 62 kg m?. If required, total inertia for each unit can be increased to § -'-u%‘ N
420 kg m* without exceeding the limits set by the pump start-up time. The s &
pump manufacturer supplied the pump characteristics for the normal zone of ¥9947 10mui0) .qE; _‘i \
pump operation only. Since no data were available for the other zones and since N v S
these characteristics agreed closely with those of Fig. 4.1 for Ny =25 (SI units), LIS :’?&J
the characteristics of Fig. 4.1 were used for all zones of operation. < ne
H 8 5‘1/7/‘015‘&3
b1
: S ~
Analysis ]r .3{ ' \ < l"\"“ §m
N ~
Computer Program 2 ON vonois sysoog EH= §§ e =
. . R, S \ l 1%
A computer program for analyzing the transient conditions in a pipeline caused “ N E'.-'
by power failure and/or valve operation was developed. The boundary condi- t:é N
tions and solution procedures presented in Chapters 3, 4, and 10 were used to 1 Aomybiy ® §1 \
solve the characteristic form of the dynamic and continuity equations. To avoid -E ! s—\'—rg
errors introduced by interpolations, wave velocities were adjusted slightly, if N / : VIR .?;N
necessary, so that the characteristics passed through the grid points. Because S ¥ \ § ':?:
there is a free-surface tank on the suction side of each booster station, transients ‘71\‘ L B
in the discharge line were analyzed neglecting the effects of transients in the /J\-'s
suction line. I 1Uoyda;3 , l \/
. . : CBLSDIS | .
The program was verified by comparing the computed results with those mea- '] /,' ~ N
sured on a prototype (see Section 4.9) or those obtained by using other avail- { %_h’ga il .%
able, simpler, problem-oriented e . F ) 1
, simpler, problem-or computer programs I N vonpys s34500g _-_E-J.§m‘4 ~
Wwolyg Surdwny E:‘u-, ]
Selection of Control Devices SYoIUf 4301y UOSTWOY RN
Q
The procedure outlined on p. 102 was used to select appropriate waterhammer
control devices: 8 8 8 9 o o o o
8l 8 8 8 8 g 9 8 °
S3IHLIN - NOILYAI3
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1. Column separation. The system was analyzed for the case of §imu1taneous
power failure to all pumps, assuming there were no control d.evxces. “;ate;-
column separation occured in the pipeline between' Booster Stations No's.. an ;
2, and in the pipeline downstream of Booster Station No. 2. The pr0v1sul)n 0
a(’iditiona] inertia at the pumps and one-way surge tanks prevented column
separation. The data for these devices are listed subse'q}u.antly. . -

2. Maximum pressure. It was assumed during the initial demg.n (::fthe pipeline
that with appropriate control devices, the maximum pressure rise at the pump
end could be limited to 10 percent of the rated head. With chgck valves located
downstream of the pumps, the pressure rise following power failure exceeded.IO
percent. However, it could be reduced to less than 5 percent by slowly closing

the pump-discharge valves.

Results

The maximum and minimum hydraulic grade lines following power failure are
shown on Fig. 4.9 for the system containing suitable control equipment.

Column Separation

The following control devices would successfully prevent column separation in
the various segments of the pipeline: . ‘ .
1. Pipeline from Booster Station No. 1 to 2. Two a]te;natwes are.avallable.
(A) Increase the WR? of each pump motor to 115 kg m?, z.md provide a 4-m-
diameter one-way surge tank at the top of Elephant Ridge with the steady-state
water level in tank at El. 627 (10 m above the ground surface); and (B) I.m.:rease
the WR? of each pump motor to 390 kg m?. With these controls, the minimum
in the pipeline remain above atmospheric pressure.
prgfs;;;selline Dopwxizstream of Booster Station No. 2. Increase the WR? of each
pump motor to 370 kg m?; provide a 4-m-diameter one-way surge tank at
Station 114175 with steady-state water level in the tank at El. 1252 (‘IO m above
ground level); and provide a 4-m-diameter one-way surge tank at Station 17+480
with steady-state water level in the tank at El. 1345 (25 m ab9ve ground level).
With these measures, the minimum pressures along the pipeline were above

atmospheric pressures.

Maximum Pressures

The pressure rise following power failure could be reduced by slowly closing t.he
pump-discharge valves. With the closing times of about 100 s, the pressure rise

*Pressure rise = Maximum transient state pressure ~ Steady-state pressure.
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at the pump following power failure was less than 5 percent of the rated head.
A single rate closure was assumed in these computations. The maximum reverse
pump speed following power failure for the cases when the discharge valve
remained open and when the discharge valve was closed was less than the follow-
ing maximum permissible limits specified by the pump manufacturer: 130 per-
cent of rated speed for less than 30 s and 120 percent of rated speed for longer
periods.

Emergency Conditions

As an emergency condition, the discharge valves were assumed to remain open
following power failure. Because of the higher than normal inertia, the maxi-

. mum pressure at the pump in all cases remained less than the steady-state

pressure.

Discussion

The above results were obtained using assumed friction factors and assumed
pump characteristics. In addition, both the topographic information and the
data for the discharge valves were not precisely known. As the design operating
conditions for each pumping station were different from the specified rated con-
ditions for the pump, the water level in the suction reservoir had to be artificially
lowered to obtain the correct downstream head for the given pump speed.
Artificial lowering of the suction tank should have a negligible effect on the
computed pressures in the discharge line. However, test runs using different
pump characteristics showed that variation in the pump characteristics and/or
in the data for the discharge valve could substantially change the computed
maximum and minimum pressures. Similarly, significant changes in the ground
topography would change the hydraulic grade line relative to the pipeline, thus
possibly resulting in situations where column separation could occur. A differ-
ence in the friction losses could also affect the maximum and minimum
pressures.

With the available data, the maximum pressures at the pump could be kept
below 5 percent of the rated head. However, as discussed, the pressure rise may
be higher due to significant variations in the data for the system. If necessary,
the pressure rise could be decreased by increasing the discharge-valve closing
time, which would result in an increase in the time period for which the pump
runs in the reverse direction. Although the maximum reverse pump speed was
within the limits specified by the pump manufacturer, reverse flow through the
pumps for an extended period may partially drain the pipeline at high points.
Therefore, it was recommended that, until better data were available and a sensi-
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tivity analysis of the effects of changes in the variables affecting pressure rise was
made, the maximum pressure rise at the pump end should be taken equal to 10
percent of the rated head, and the elevation of the maximum hydraulic grade
line shown in Fig. 4.9 should be adjusted proportionately.

With the specified control measures, the minimum hydraulic grade line was
always above the pipeline. At Elephant Ridge and at the summits downstream
of Booster Station 2, the minimum hydraulic grade line was less than 5 m above
the pipeline. During the final design, however, when better data should be avail-
able, this should be investigated in detail; if necessary, the safety margin could
be increased.

Air valves should be provided at high points along the pipeline. These would
be helpful during filling and draining of the line and would prevent collapse of a
long length of the pipeline should a break occur in the pipeline at a lower eleva-
tion. In addition, valves could be provided along the line to isolate and drain
segments of the line for inspection, repair, etc. Transients caused by the opera-
tion of these valves, if provided, would be studied during the final design.

The one-way surge tanks should have two pipes for water outflow. This
should considerably reduce the possibility of a tank becoming inoperative due to
the failure of a check valve to open.

Two alternatives are available to prevent column separation in the pipeline
between Booster Stations Nos. 1 and 2. The alternative with increased inertia
only is better from an operational point of view because the one-way surge
tank is not as foolproof and in addition requires constant maintenance.

The inertia of the pump motors could be increased by adding flywheels or
by a custom design of the electric motors. In order to provide operational
flexibility and ease in exchanging spare parts, etc., it was decided that all units at
both the booster stations should be identical and that each would have a WR?
equal to 400 kg m?.

4.11 SUMMARY

In this chapter, a procedure for storing the pump characteristics in a digital
computer was presented, an iterative procedure for analyzing transients in piping
systems caused by various pump operations was outlined, and boundary con-
ditions for a number of cases usually found in practice were developed. Criteria
for the design of pipelines were presented, and the chapter was concluded by a
presentation of a case study.

PROBLEMS

4.1. Write a general-purpose computer program to determine the transient-state
pressures in a discharge line caused by power failure. Using the pump char-

4.2,

4.3.

4.4.

4.5.

4.6.
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acteristic ot‘" Appendix E, investigate the effect of increasing the value of WR?2
on the maximum and minimum pressures.

Using the program of Problem 4.1, prove that the maximum pressure at the
pump does not exceed® the pumping head if the friction losses are greater
than 0.7aV,/g, in which a = waterhammer wave velocity, V, = steady-
state flow velocity, and g = acceleration due to gravity. ne

DeYelop the bo_undary conditions for a system having n parallel pumps, in
which power fails to ny pumps and n, pumps keep operating. ,

Draw a flowchart for the boundary condition derived in Problem 4.3, and
develop a computer program. ’

To' reduce maximum pressures following a power failure, a pressure-regu-
lating valve is sometimes provided just downstream of the pump. This valve
open.s as the power fails and is closed slowly later, Develop the boundary
conditions for such asystem ; write a computer program and investigate the

effect of various rates of opening and closure of the pressure-regulating
valve.

A check valve is provided in a discharge line to prevent reverse flows
t.hrough the pumps. When power fails to the pump, water in the discharge
line decelerates, and the check valve closes. A check valve having no dash-

pot and having negligible bearing friction losses closes!® according to the
equation

d?6 BV 2 2 -
]F—wy;sin9+(_+£d—0) +(£d_0 + ﬂ =0
I3 Kf Kd dt Kd dt Kf

in which 8 = angle between the center of gravity of disk and vertical: / =
momen.t of inertia of the disk; W = weight of disk in water; 7 = distz;nce
from pivot to weight-center of gravity of disk; V = mean pipeline velocity;
ky = flow coefficient for stationary disk in moving water (function of 6);

kq = flow coefficient for moving disk in still water (function of 8); and
B, C, G, and F are constants. Expression for these constants are

AR 0.25
P3
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in which 4 = area of disk; R = distance from Pivot to cgnter of:_dis‘kt; P=
distance from pivot to the point of concentration c.>f fr. dA ',:I = dis .a:c;
from pivot to point of ;onc;entra(?olrcl of n:oment of inertia of disk area; an
= ured from disk pivot.
’ —Dl:voerlr:);ntt;ermb;nue:;ary conditions for the check valve, assuming that Ky
and K 4 are given in a tabular form. |
4.7. Write a computer program for the check valve, and run it for t~he fol%ou\jn_ng
. data: / = 0.235 b-ft-sec’ ; B = 0.548; C =0.357;F = 0.11;G = 2.07, 220—
10.74 1b-ft; § = 16.1° + c; initial steady-state  and o are 60.1° and 44°,
respectively. Krand Kg are listed in the following:

a kr kg
(degrees)

0 0. 0.0
4 0.16 0.23

8 0.28 0.40
12 0.40 0.49
16 0.49 0.55
20 0.56 0.58
24 0.62 0.54
28 0.67 0.49
32 0.71 0.44
36 0.77 0.38
40 0.84 0.27
44 0.95 0.09

Use the pipeline and pump data given in Ex. 4.1 (Section 4.6), except that
the diameter of the pipelinesis 9 in.
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CHAPTER 5

HYDRAULIC TRANSIENTS IN
HYDROELECTRIC POWER PLANTS

5.1 INTRODUCTION

In Chapter 3, boundary conditions for a Francis turbine connected to a large sys-
tem were derived. In this chapter, a mathematical model is developed for ana-
lyzing hydraulic transients caused by various turbine operations, such as start-up,
load acceptance, or load rejection.

The schematic representation of a typical hydroelectric power plant is first
presented. Details of the mathematical simulation of the conduit system,
turbogenerator, and governor are then outlined. Various turbine operations
that produce hydraulic transients in the water passages of a power plant are
discussed. Prototype test results used to verify the mathematical model are
then presented, followed by a discussion of the governing stability of hydro-
turbines, and the selection of generator WR? and optimum governor settings.
The chapter concludes with the case study of the governing stability studies
carried out for a 500-MW hydroelectric generating station.

5.2 SCHEMATIC OF A HYDROELECTRIC POWER PLANT

Figure 5.1 shows the schematic diagram of a typical hydropower plant. As
shown in the figure, the upstream conduits convey water from the upstream
source, such as a reservoir, lake, or canal, to the turbine. OQutflow from the
turbine is carried downstream through the downstream conduit system. An
electrical generator is mechanically coupled to the turbine, and the electrical
output of the generator is carried by the transmission lines to the load centers.
A governor is provided to correct any changes in the system frequency by
opening or closing the wicket gates of the turbine.

109
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Reservoir

Transmission line

Governor
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Figure 5.1. Schematic diagram of a hydroelectric power plant.

Thus, the following components have to be mathematically simulated to
develop the mathematical model of a hydroelectric power plant:

1. upstream and downstream water conduits
2. turbine and generator
3. governor.

Details of the simulation of these components are presented in the following
sections.

5.3 UPSTREAM AND DOWNSTREAM CONDUITS

As shown in Fig. 5.1, water is carried from the upstream reservoir or canal to
the turbine scroll case through a tunnel and/or a penstock, and the outflow
from the turbine is discharged through the draft tube to the downstream water
passages, which may consist of either a free-surface flow or a pressurized tunnel,
a tailrace canal, a river, or a downstream reservoir. Depending upon the conduit
lengths, surge tanks may be provided to improve the governing characteristics
or to reduce the maximum waterhammer pressures.*

The method of characteristics and the boundary conditions presented in
Chapter 3 are used to simulate the upstream and downstream conduits. If
the downstream conduit system is comprised of a free-surface flow tunnel, an
open channel, or a short pressurized conduit, then the draft tube as well as the
downstream conduit system may be neglected to simplify the analysis.

*This will be discussed in detail in Chapters 10 and 11.

-
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Boundary conditions to analyze the turbine end of the conduit system are de-
veloped in the following section.

5.4 SIMULATION OF TURBINE

The relationship between the net head and discharge has to be specified to
simulate a turbine in a hydraulic transient model. Flow through a turbine
depends upon various parameters: for example, the flow through a Francis
turbine depends upon the net head, rotational speed of the unit, and wicket-
gate opening, while the flow through a Kaplan turbine depends upon these
variables as well as the runner-blade angle. In an impulse turbine, however,
the flow is a function of the head and the nozzle opening only. Curves rep-
resenting the relationship between these parameters are called turbine
characteristics.

To the author’s knowledge, except for Krivehenko et al.,' no data have been
reported in the literature for the turbine characteristics during transient-state
conditions. Therefore, steady-state model test results are used to plot the ex-
pected prototype turbine characteristics and these are assumed to be valid during
the transient state as well. As shown by Perkin et al.,? this is a valid assumption.

The data for the turbine flow and power output, obtained from the model
tests, are presented in a graphical form known as hill charts (Fig. 5.2). The
prototype efficiency is usually more than that determined from model tests be-
cause of scale effects. Therefore, while plotting the prototype output, this fact
is taken into account by stepping up the model efficiency. Various empirical
formulas have been proposed for this purpose, of which the Moody formula®
appears to be the most suitable.

Usually very little data are available for small wicket-gate openings, and, to
cover this range, the characteristic curves are extrapolated. To do this, flow
should be known when the turbine rotational speed is zero, and the windage
and friction losses should be known at wicket-gate openings below the speed-no-
load gate (SNL). SNL gate is the lowest gate opening at which turbine rotates
at synchronous speed with zero output.

Typical characteristics for a Francis turbine are shown in Fig. 5.3. In this
figure, the abcissa is the unit speed, ¢, and the ordinates are the unit flow, g,
and the unit power, p. Definitions of ¢, p, and g are given in Table 5.1.

In the expressions of Table 5.1, D = diameter of the runner; N = rotational
speed; H, = net head; Q = turbine discharge; and P = power output. In En-
glish units, D is expressed in in., NV in rpm, H,, in ft, Q in ft3/sec, and P in hp.
In SI units, H,, and D are in m, N in rpm, P in kW, and Q in m’ /s,
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Figure 5.2, Typical hill chart for a Francis turbine (in ft-Ib-sec units).

At SNL gate, the turbine output is equal to the turbogenerator windage and
friction losses at the synchronous speed. Therefore, if the wicket gates are
steadily open at the SNL gate opening, the unit rotates at the synchronous
speed, and the net turbine output is zero. The abcissa axis on the unit power
curves (Fig. 5.3b) represents the conditions at SNL gate. It is clear from this
figure that the value of SNL gate varies with the net head. To keep the unit
running at the synchronous speed when the wicket gates are open less than the
SNL gate opening, power has to be supplied to the unit from an outside source
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Figure 5.3. Characteristics of a Francis turbine (in ft-Ib-sec units).

because the windage and friction losses are greater than the turbine output. This
is called motoring of the unit.

During steady-state model tests, unit speed cannot exceed the runaway speed
for a particular net head and gate opening. Therefore, model data are qot
obtained for ¢ higher than ¢ at runaway conditions (¢run)- However, during
the transient state, the prototype speed may exceed the runaway speed for a
short duration. To account for this, the curves are extended for ¢ values higher
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Table 5.1. Definition of unit values.

English Units SI Units
DN DN
¢ 1838 \/H, 84.45 /H,
Q Q
‘ 012y VH, D? JH,
P P
P 0/12)* H3? p3?

than ¢, assuming that they follow the same trend as that at ¢ values less than
Prun-

A grid of points on the characteristic curves for various gate openings are
stored in the computer, and the unit discharge and unit power at intermediate
gate opening and ¢ values are determined by parabolic interpolation.

The boundary conditions for a Francis turbine* are derived below. For a
Kaplan turbine, the variation of the turbine characteristics with the runner-
blade angle would have to be considered. For a Pelton turbine, however, bound-
ary conditions for a valve developed in Chapter 3 may be used.

Referring to Fig. 5.4,

0b

Hp =H, + Hy - 2eA”

(5.1)

in which Hp = instantaneous piezometric head at the scroll-case entrance; H,, =
instantaneous net head; Ay, = tailwater level above datum; Qp = instantaneous
flow at entrance to the scroll case; and A4 = cross-sectional area of the pressure
conduit at the turbine inlet. Hp, Qp, and H,, are the values of these variables at
the end of the time step under consideration. Note that the velocity head at
the draft-tube exit has been neglected in Eq. 5.1 during computation of the net
head. This is a valid assumption since the exit-velocity head is usually negligible.
However, if the velocity head is not small as compared to H,,, it should be in-
cluded in the analysis. Let the wicket-gate opening at the end of the time step
be 7p.

The values of four variables, namely, Qp, Hp, 7p, and Np are unknown at the
end of the time step under consideration and may be determined by the follow-
ing iterative procedure. Because the transient-state turbine speed and gate open-
ing vary gradually, these can be estimated as a first approximation by parabolic
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Figure 5.4. Notation for boundary conditions for a Francis turbine.

extrapolation. To determine the range of ¢ for which turbine characteristics
have to be used during the time step, H,, is also extrapolated.

Let the values of 7p, Np, and H,, estimated by extrapolation be 7., NV,, and
H,. and the value of ¢ for the estimated values of NV, and H,,, be ¢,. The char-
acteristics for 7, for ¢ between ¢, and ¢, may be approximated by the straight
line EF as shown in Fig. 5.5. The values at E are interpolated from the known
values at the grid points A and B, and the values at F are interpolated from the
known values at points C and D.

The equation of straight line EF may be written as

q=a,+a ¢ (5.2)

in which a, and a, are determined from the known coordinates of £ and F.
Substituting for ¢ and ¢ from Table 5.1 (SI units) into Eq. 5.2 and simplifying

llep11/2 =0p - a3 (5.3)
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Figure 5.5. Interpolation of turbine characteristics.
in which
a, = aoD2
and (5.4)*

ay =N.D3a,[84 .45
Combining Egs. 3.18 and 5.1,

Q=(C-CH-)+9ﬁ—CH (5.5)
P p afltail ngz allin .
Squaring both sides of Eq. 5.3, eliminating H,, from the resulting equation and
Eg. 5.5, and simplifying,

asQp +asQp+as=0 (5.6)
in which
Cﬂ Cﬂ
= - — 5.7
a4 2g4? 43 .7
2a5C,
as = =52 -1 (5.8)
az

*In English units, a3 = a,0%/144, and a5 = ND3a,/264,672.
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a}

2
a5 = (Cp - CoHpi - C,,a;,) (.9)

Solution of Eq. 5.6 yields

-as - Va? - d4aqa,

2(14

Qp = (5.10)
Note that the positive sign with the radical term is neglected. Now H,, is de-
termined from Eq. 5.3 and Hp from Eq.5.1.
Because of the instantaneous unbalanced torque, T, = Ty, - Ty, the speed
of the turbogenerator-set changes according to the equation

dw
T,=WR? — *
u dr (5.11)

or
2 27 dN

60 dt
in which Ty, = instantaneous turbine torque; Ty, = instantaneous generator
torque; w = rotational speed of the turbogenerator, in rad/s; N = speed, in rpm;
WR? = total moment of inertia of the turbine and generator, in kg m?. If

ng = generator efficiency, and assuming that the load is only resistive, then
Eq. 5.12 may be written as

Ttur B Tgen = WR (5.12)*

P 2r\* dN ‘
Py - 52 = WRZ(—) N=— (5.13)*
" Ngen 60/ " dt )
in which Py, = generator load, and Py, = power developed by the turbine, both
in kW.

Integrating both sides of Eq. 5.13,

tp P “Np
f Py - =522 |dt = 1.097 X 10'2WRZJ Nanv  (5.14)*

t gen Ny
Simplifying,
Py tP P +P
( turl ~ " turP _ gend je"”) Atr=0548 X 1072 WR? (N} —N?)
2 2Mgen ‘

(5.15)

*If WR? is in Ib-ft2, replace WR? of Eqs. 5.11 through 5.13 by WR?/g; if Py, and Pygep are
in horsepower, then divide the right-hand side of Eq. 5.13 by 550, and replace 1.097 X 107?
of Eq. 5.14 and 0.548 X 107 of Eq. 5.15 by 0.619 X 1076 and 0.3096 x 1078, respectively.
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in which subscripts 1 and P indicate the values of the variables at the beginning
and at the end of time step. Solving for Np,

At 05

0.5
Np= {le +182.38 'u—/R—z [O-S(Pturl"'PturP) - ;2;" (Pgenl +PgenP)]}

(5.16)*

In Egs. 5.15 and 5.16, it is assumed that the generator load is gradually varied.
However, if the transients are caused by a step change in the generator load,
then the above equation may be simplified as

At P 0.5
Np= {N,’ +182.38 ~—2[0.5(Pmrl + Pyyep) - 2L ] } (5.17*
WR Ngen
in which Pgens = final generator load.
A computation procedure for using Egs. 5.10 and 5.17 is presented in
Section 5 6.

5.5 HYDRAULIC TURBINE GOVERNORS

As discussed in Section 5.2, a governor is provided to keep the speed of the
turbogenerator at the synchronous speed. The main components of a governor
are a speed-sensing device and a servomechanism for opening or closing the
wicket gates.

Various mechanical and electrical speedsensor devices’ have been used.
Of the mechanical devices, a centrifugal ballhead in various configurations has
gained much popularity because of its simplicity, sensitivity, and ruggedness.
The electrical speed sensors include a dc generator with permanent magnetic
field, a permanent magnet alternator, a permanent magnet alternator feeding
into a frequency-sensitive network, and a speed-signal generator. The output of
these speed sensors is the deviation from the reference speed. This output is
usually small and is amplified by means of a pilot valve before feeding it into
the servo-mechanism provided for opening or closing the wicket gates. Since
a large force is required to move the wicket gates, a hydraulic servo is provided
for this purpose.

A governor, having a ballhead, pilot valve, and hydraulic servo, has only
one equilibrium position in which the ports of the pilot valve are closed so that
no oil is admitted into the servo. Such a governor is called an isochronous
governor and is inherently unstable. Therefore, for stability, speed droop is
grovided.

*.If WR? is in Ib-ft?, and Py, and Pgen are both in hp, then replace 182.38 in these equa-
tions by 3.23 x 106.
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The speed droop is a governor characteristic that requires a decrease in the
speed to produce an increase in the wicket-gate opening (Fig. 5.6). For hy-
draulic turbines, a large value of speed droop is required for stability. However,
this is not permissible from the point of view of system operation. Therefore,
two types of speed droop are provided: permanent and temporary. Permanent
speed droop is usually about 5 percent, is fixed during a transient, and is utilized
for sharing loads on parallel units. The value of temporary droop may be large.
It is made temporary by means of a dashpot.

Three types of governors are used for hydroelectric units: (1) dashpot, (2) ac-
celerometric, and (3) proportional-integral-derivative (PID). The dashpot gover-
nors have been more commonly used in North America, and the accelerometric
in Europe; the PID has been recently introduced. In the dashpot governor, the
corrective action of the governor is proportional to the speed deviation, n; in
the accelerometric governor, it is proportional to dn/dt; in the PID, it is pro-
portional to n, dn/dt, and time integral of n (see Problem 5.3). We will discuss
only the dashpot governor (Fig. 5.7) herein.

Following a load increase (decrease), the sequence of events is as follows:
The speed of the unit decreases (increases) because of the load change, and the
flyballs move inward (outward). This displaces the piston of the pilot valve,
and the oil is admitted into the hydraulic servo that opens (closes) the wicket
gates. As a result of the wicket-gate movement, the dashpot spring is com-
pressed, which changes the position of the pilot valve. After some time, the
dashpot spring returns to its original position because of oil flow through the
small orifice in the dashpot, even though the servo and the wicket gates are
now at a different position.

Droop Line
105 « f
—5% Droop
100 \\0<"

Speed

0 T ¥
50 100

Wicket Gate Opening

Figure 5.6. Speed droop.
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Flyball
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. | S—
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PR i
]
. | )
= T - To open gote

Servomotor—

Figure 5.7. Dashpot governor (permanent speed droop not shown).

Figure 5.8 shows the block diagram for a dashpot governor. In this diagram,
conventional notation of control systems® is used with different blocks repre-
senting various components of the governor. Input and output of various blocks
is shown by means of arrows, and the transfer functions listed in the blocks
show the relationship between the input and output of various components.
In the transfer functions, s is the Laplace variable. If initial conditions are zero,
then s is equivalent” to the time derivative d/dr.

The differential equations for different components of the governor can be
written using the transfer functions listed in Fig. 5.8. Readers not interested in
the derivation may proceed directly to Egs. 5.31 through 5.34.

The following notation is used in the block diagram shown in Fig. 5.8:

T, = actuator time constant
T, = dashpot time constant
8 = temporary speed droop
o = permanent speed droop
T, = distributing valve time constant
kg = distributing valve gain
k, = gate-servomotor gain
n = normalized transient-state turbine speed.

The synchronous speed of the turbogenerator-set, Vg, is used to normalize the
turbine speed, i.e., n = N/Ng. If 1, = initial steady-state wicket-gate opening,
then nr = 1.0 + g7,. The outputs of various governor components and their
saturation limits are shown in Fig. 5.8. Typical values of these constants are:

T,=0.05t00.1s
0=08105
0,03 Lo .05

Gate
position

Gate
speed
limits

Actvator

Nref

Gate

servw
limits

Actuartor

Distributing

.0
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Figure 5.8. Block diagram for a dashpot governor.
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T;=0.051t00.1s

kg =10to 15
k=02
e =02to 05
max

For a given set of power plant parameters, the optimum values of § and T, may
be selected by using the procedures outlined in Section 5.11.

Actuator
1
Vg = a e (5.18)
or
dv
e=Ta—d—t"- 0<y, <10 (5.19)
Dashpdt
_ b6T,s 5
&= Ty Ts U, (5.20)
or
de, dv,
e, + 7T, o —BT,E—O TCtmax S€rSep (5.21)
Permanent Drop
€qg-0U, =0 (5.22)
Distributing Valve
- _ka
Vg = m U; (5.23)
dvg =
Td ‘E' +Uug - kdv,- =0 vdmin < Vg < Udmax (524)

The gate-servomotor rate limits are often applied by restricting the maximum
travel of the distributing valve in the positive and negative directions. Therefore,
in the above inequality, we have

1

Ymax = T (5.25)
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and
-1
Ug_. =
mm k.\‘TL‘
in which T, and T, are the effective wicket-gate opening and closing times,

which are defined as twice the time taken by the wicket gates to open or close
between 25 and 75 percent openings.

(5.26)

Gate Servomotor

ks
T= —uy4 (5.27)
s
or
d
-C-I;-k_\.vd=0 0<7<1.0 (5.28)
The following equations may be written because of two feedbacks
€=Nyr-€eq-€-n (5.29)
and
Vi=Ug-T (5.30)

Note that the output of various components may saturate and that these
saturation limits must be taken into consideration in the analysis of large load
changes.

By eliminating e and e; from Egs. 5.19, 5.22, and 5.29, eliminating v; from
Eqs. 5.24 and 5.30, and rearranging Eqs. 5.24 and 5.28, we obtain

dv, 1

ar T—(n,ef -n-e; - 0v,) (5.3D)
a

de, 1 dv,

— = — I§T, — - 5.32
dt T,.('dt e') (5:32)

dv 1

—;’ =7 [kg(vg - 7) - vg] (5.33)
dr

E’t' = k_,vd (5.34)

The preceding four differential equations in four variables, namely, v, €,, vg4,
and 7, may be integrated by any standard numerical technique; a closed-form
solution is not possible because of nonlinearities introduced by the saturation of
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various variables. We have used the fourth-order Runge-Kutta method® in our
analysis.

5.6 COMPUTATIONAL PROCEDURE

Boundary conditions for a Francis turbine and equations tor a dashpot governor
were derived in the preceding sections. A computational procedure for using
these equations is presented in this section.

Let us assume that the transient-state conditions have been computed for (7 -
1) time steps. The values of N, 7., and H,,, at the end of the ith time step may
be estimated from the known values for the previous three time steps by
parabolic extrapolation from the equation

Yi=3ii1 ~ Wiea tYiaa (5.35)

in which y is the variable to be extrapolated® and the subscript indicates the
time step. Note that this equation is valid only if the time steps are equal. Since
there are no previous time steps at ¢ = 0, the steady-state values may be used for
previous time steps for extrapolation purposes. For the estimated values of H,,,,
N,, and 7., the grid points 4 through D (Fig. 5.5) are searched from the stored
characteristic data. The coefficients 4o and #; are computed, and the values of
coefficients a, to as are determined from Eqs. 5.4 and 5.7 through 5.9. Now
Eq. 5.10 is used to determined Qp, and Eq. 5.3 to determine H,. The value of
¢, is computed using the estimated value of N, and the computed value of H,,,
and the turbine output, Py, p, is then determined from the turbine characteristic
data for ¢, and 7. The turbine output, Py, p, and the generator load, Pgenp, nOW
being known, the value of Np is determined from Eq. 5.16 or 5.17. If INp -
N.1>0.002 Ny, then N, is assumed equal to Np, and the above procedure is
repeated; otherwise, the governor equations (Eqgs. 5.31-5.34) are solved for 7p
by the fourth-order Runge-Kutta method. If Irp - 7,1>>0.005, 7, is assumed
equal to 7p, and the above procedure is repeated; otherwise, time is incremented,
and the transient conditions are computed for the system. To avoid unlimited
repetition of iterations in the case of a divergence in solution, a counter is in-
troduced in both the iterative loops.
The flowchart of Fig. 5.9 illustrates the preceding computational procedure.

5.7 CAUSES OF TRANSIENTS

The following turbine operations produce transient-state conditions in the water
conduits of a hydroelectric power plant:

Gj@

[ PRINT €, % M. Q0 0, J

vEs

STORE YALUES OF o £, A 0
FOR PARABOLIC EXTRAPOLATION

(re-r') < 0.00s7

PRINT "ITERATIONS
FOR T FAILED"
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Figure 5.9. Flowchart for boundary conditions for a Francis turbine.
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1. Unit synchronized to a large system

a. load acceptance

b. load reduction or total load rejection
2. Isolated unit

a. unit start-up

b. load acceptance

¢. load reduction or total load rejection.

A unit connected to a large system runs at the synchronous speed during load
acceptance or rejection because of the large inertia of the system. However, the
speed of an isolated unit rises during load rejection and decreases during .load
acceptance. For Kaplan and Francis turbines, the turbine speed has a consider-
able influence on the transients. Speed changes should therefore be taken into
consideration in the transient-state computations for these turbines.

The boundary conditions and the computation procedure described in Sec- -

tions 5.4 through 5.6 are for the isolated units only. These conditions can be
used for units connected to a large system by keeping the speed constant and by
bypassing the loop for computing the speed changes.

While starting a unit, the wicket gates are opened to the breakaway gate
opening to give the unit a “kick” to overcome static friction. Gates are usually
kept at this opening until the unit speed is about 60 percent of the rated speed:
then the gates are closed to speed-no-load gate, and the unit is allowed to run at
the synchronous speed for a short period of time. It is then synchronized to the
system and is ready for load acceptance. ,

For load acceptance, the wicket gates are opened at the prescribed rate to the
opening at which turbine output will be equal to the final output. Similarly,
the gates are closed from one opening to another for a load reduction. Wicket-
gate closure following total load rejection, however, depends upon the type of
rejection.

5.8 VERIFICATION OF MATHEMATICAL MODEL

Prototype Tests

To obtain data for verifying the above mathematical model, load-rejection tests
were conducted on Unit No. 4 of the G. M. Shrum Generating Station, owned
and operated by British Columbia Hydro and Power Authority. The unit was
loaded to the amount to be rejected, and was kept at this load until pressure and
flow at the turbine inlet became steady. Then, to simulate an isolated load rejec-
tion, the speed-noJoad solenoid was blocked, and the load was rejected. Five
tests involving load rejections of 50, 115, 118, 202, and 250 MW were con-
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ducted. The upstream reservoir level during the tests was at an elevation of
671.0 m, and the downstream manifold level was at an elevation of 503.2 m.

The Westinghouse leading-edge flowmeter® was used to measure the steady as
well as the transient-state flows. Locations of the flow transducers are shown in
Fig. 5.10. The flowmeter display exhibited average flow every 2.1 s. As ob-
serving and recording the flowmeter readings at this rate was difficult, the
flowmeter digital display along with clock time were recorded on a videotape.
After each test, the tape was replayed at a slower speed in order to note the
readings.

The speed of the turbogenerator was measured by a dc tachometer generator.
A rubber-faced drive wheel was fastened to the shaft of the tachometer. The
tachometer was mounted on a horizontal arm, which was free to turn about a
vertical pivot anchored to the upper bearing of the turbine. A tensioning device
held the drive wheel of the tachometer in contact with the turbogenerator shaft.
The voltage output of the tachometer, which was proportional to the turbogen-
erator speed, was recorded on a Sanborn recorder.

The transient-state pressures were measured by a strain-gauge pressure cell
attached to the turbine-inlet piezometer manifold. The output of the trans-
ducer, when appropriately conditioned through its strain-gauge amplifier, was
recorded on a chart recorder.

The wicket-gate opening was recorded as follows. The motion of one of the
servomotors of the wicket-gate moving mechanism activated a precision voltage
divider (potentiometer). The change in voltage was then recorded on an oscillo-
graph, which was calibrated against 0 and 100 percent gate openings.

Prototype Data

G. M. Shrum Generating Station is located on the Peace River in British Colum-
bia, Canada. The power plant consists of 10 Francis units. Each unit has its
individual power conduit (penstock and power intake). In the tailrace, five
units discharge into one manifold, and a free-flow tunnel conveys water from
each manifold to the tailrace channel. A schematic of the upstream water pas-
sages is shown in Fig. 5.10, and of the downstream water passages in Fig. 12.20.
Data for Unit No. 4, on which tests were conducted, are given in Table 5.2.
The friction factors were calculated such that other minor losses were included
in the friction losses. The conduit between the trashrack and the downstream
end of the transition was replaced by an equivalent 5.49-m-diameter pipe.* The
length of the scroll case was taken as one-half of the actual length to account for

*See Appendix A.
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Table 5.2. Data for Unit 4, G. M. Shrum Generating Station.

(2
\_/
£1498.35

5 Turbine and Generator
g “ '
§ § ! Rated turbine output 231 MW
v ¥ -l Rated head 1524 m
§ § L Synchronous speed 150 rpm
T3S ' ) Flow at rated head for rated output 164 m3/s
§ Sew : WR? of turbine and generator 9.27 Ggm? (ie.,9.27 X 10¢ kg m?)
T as | &E/M .
r 33 ’;’_ Runner diameter 4.86m
T SSANNIY @ £ g
T\ E L 5 8 2 Governor Settings
T N *\fs & z 8 &
we'r i~ S ¥ < g = Dashpot time constant, T, 8.0s
s - - a oy b Temporary droop, & 0.4
3 f S g
x et = @ Permanent droop, o 0.05
< & y & Dashpot saturation limit, ;max 0.25
« 3 8 B Self-regulation constant, o 0.15
c 5\ ° U:a: §
o Al .
2 s : Conduits
Lo
I-‘—————’-‘] - =
wair/ g O. :
] « 5 t Wave Velocity
§£ é Pipe No. Diameter (m) Length (m) (m/s) Friction Factor
' ST X
_ | .‘S‘EE o 1 5.49 207 1244 0.016
» 02 LRSS =
° 2 5.49 78 1290 0.010
7n _— § ; 3 4.9 36.5 1300 0.009
' b=
s ) Q
S ) © - &
> % ,,3 / AN < reduction of flow along its length. Waterhammer wave velocities were computed
- () . . . .
S 3 / N § - : using the equations presented in Section 2.6.
s PN 2 . . . .
s 3 y o 8 @ The draft tube was not included in the analysis because of its short length.
S & ; x ° . y g
- N e Q E’ i This simplification should not introduce large errors. The downstream mani-
. ¢ ~ ‘ . .
— 1= 9 e < fold, being a free-surface area, was assumed as a constant-level reservoir.
. B @ g
- - 9| &
e = |
n w G x Comparison of Computed and Measured Results
S x oy
Qi ~ y . .

EQ 88 §8 lEE A computer program based on the preceding mathematical model was devel-
~ q d ~N . . . e
N E§ 8% oped. The flow in the conduit was analyzed using the method of characteristics

ow ¢ : . . .
38 §m §E of Chapter 3, and the turbogenerator and governor were simulated using the
equations derived in Sections 5.4 and 5.5. '

' Pipe No. 3 was divided into two reaches. To satisfy the Courant’s condition
for stability of the finite-difference scheme, i.e., At € Ax/a, a time interval of
0.014 s was used. The wave velocities in the upper pipes were slightly adjusted
so that there was no interpolation error. Static head and an estimated initial
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steady-state gate opening were the input data to the program. Corresponding
flow and turbine output were computed from the turbine characteristics. If
the power output was different from the actual value, the initial gate opening
was slightly changed, and the above procedure was repeated. By using this trial-
and-error procedure, the initial steady-state gate opening, which gave the re-
quired turbine output, was determined.

Load was rejected at time, £ = 0. As the unit was assumed to be isolated from
the system following load rejection, it was allowed to overspeed, and the wicket
gates were closed under governor control. Computed turbine speed, flow, gate
opening, and pressure at the downstream end of each pipe were printed after
every 35 time intervals, i.e., after every 0.5 s of prototype time.

Computed and measured results are plotted in Figs. 5.11 and 5.12. As can' be
seen, the computed and measured pressures agree closely. The computed and
measured maximum unit speed agree closely; however, the computed results
show a faster speed reduction than that shown by the measured results. It
should be noted that this deviation starts when the wicket-gate opening is small.
This difference may be due both to an error in the estimation of the windage
and friction losses and due to lack of data for the turbine characteristics at small
wicket-gate openings. The computed pressures show some oscillations that were
not recorded during field measurements. The cause of this difference has not

been explained.

5.9 DESIGN CRITERIA FOR PENSTOCKS

As discussed in Section 4.7, the factor of safety to be used during design de-
pends upon the risks involved and the probability of occurrence of a particular
operation during the life of the project. Based upon the frequency of occur-
rence, various operating conditions may be classified as normal, emergency, or
catastrophic.*®*'' A discussion of the operating conditions included in each
of these categories and recommended factors of safety!® follows.

Normal

All operations that are likely to occur several times during the life of the pen-
stock are termed normal. During these operations, appurtenances or devices—
such as surge tanks, pressure-regulating valves, and cushioning stroke devices—
provided for reducing excessive pressure-rise or pressure-drop function properly
for which they are designed. The following are considered to be normal opera-

tions:
1. Full-load rejection and closure of the wicket gates in effective gate-closing
time* with the static head on the turbine up to its maximum value.

*Effective wicket-gate opening and closing times are defined as twice the time taken by the
wicket gates to open or close berween 25 and 75 percent openings.
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Figure 5.11. 150-MW load rejection: comparison of computed and measured results.

2. Opening of the wicket gates from the speed-no-load to full opening in
effective gate-opening time, with the static head on the turbine as low as
its minimum value.

3. The surge tanks do not overflow, unless an overflow weir is provided, nor
do they drain.



132 Applied Hydraulic Transients Hydraulic Transients in Hydroelectric Power Plants 133

R® . - The penstock and scroll case are designed to withstand the maximum and
‘;100 Measured | ; minimum pressures caused by the preceding operations with a minimum factor
5 60 —=——— Computed ; of safety of four, based on the ultimate bursting and collapsing strength. ‘
§ sop> | (Cod ASME)
* v \\ ‘ Emergency
~ 4 g
S e S { The emergency conditions are those in which one of the pressure-control equip-
« 20 . ! . i s .

s A ! ment malfunctions. These conditions include:
8 '
%0 ‘ g r,-,,,,saf;,,- /fad rejalfn'on, s/fcands " * “ ; 1. The press.ure.-regulating val.ve %s %noperati.ve on one uni.t.
(a) Turbine gate opening ‘ 2. The cushioning stroke device is inoperative on one unit.
A factor of safety of two, based on the ultimate collapsing or bursting
strength, is recommended for pressures produced by emergency operations.

210 ‘ Mea.:urad | .

205 2R ~——— Computed Catastrophic

& 20 /I, \\\ ' Catastrophic conditions are those in which various control devices malfunction

< ,// (RN i in the most unfavorable manner. For example, if a pressure-regulating valve is

E /90 I/ \ ‘ provided, then the wicket-gate closing mechanism is designed such that the
. 185 Ii / ‘\\ [ wicket gates will close at a very slow rate in case the pressure-regulating valve is
§ 180 I/ \\ ' inoperative during a load rejection. However, if the pressure regulating valve
/75 ,I '-‘ malfunctions following a load rejection and the wicket“gates do not close at a
Q 170 H4 S V7 = :7?\7'\_;\.__ .y slow rate, then this operation 1s.§on31dered catastrophic. '

165 I : Because of very low probability of occurrence, a factor of safety of slightly
more than one, based upon the ultimate bursting or collapsing strength, is
160 ; z 7 6 ] 70 2 4 6 e suggested.
Time after load rejection, seconds !
(b) Penstock pressure f 5.10 GENERATOR INERTIA

{ For stable governing of a hydroelectric power plant and to keep the speed rise
210 P e i of the unit within permissible limits following a load rejection, it is necessary
g A’/— T TN~—— than an adequate amount of generator and turbine (unit) inertia be provided.
< 190 /4 : —— =] [ Turbine inertia is small compared to the generator inertia: therefore, if neces-
s / T sary, only the latter is increased. Increasing the generator inertia increases the
& / cost of the project. Although the increase in the generator cost due to increasing
L 170 - Measured its inertia may not be large, other associated costs, such as increasing the crane
g — = Computed capacity or increasing the powerhouse dimensions, are usually high. Therefore,
~ | L the generator inertia is kept as small as possible while still maintaining acceptable

1505 2 4 6 8 10 2 14 16 8 ) governing characteristics.

Time after load rejection, seconds J

The following factors are considered in-selecting the generator inertia:
(c) Turbine speed

1. Allowable frequency fluctuation. The allowable frequency fluctuation
Figure 5.12. 250-MW load rejection: comparison of computed and measured results. depends upon the type of load. For example, a frequency deviation of 0.1
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percent is not permissible for paper mills, while a deviation as large as 5 per-
cent may be allowed for mining equipment.

2. Size of the system. A unit should be designgd to be stable in isolated opera-
tion if it is supplying 40 percent or more of the system load, or if there are
possibilities of the unit becoming isolated because of failure of the transmis-
sion line. The overall stability of the system is increased if the majority of
the units in the system are stable in isolated operation.

3. Type of load. Periodically changing loads, such as electric trams and mining
shovels, contribute to system instability. Therefore, more inertia should be
provided if such loads are present in the system.

4. Water passages. One of the major factors in the selection of the inertia is the
size, length, and layout of the water passages of the power plant. By increas-
ing the size of the water passages, the generator inertia may be decreased.
However, the former is usually more costly. Therefore, the size of the water
passages is first selected based on the cost-benefit ratio of reducing the head
losses, and the required generator inertia is then determined.

5. Governor times. By decreasing the governor opening and closing times, the
stability of the system can be improved. However, they cannot be arbitrarily
decreased since they are set so that the waterhammer pressure is within the
design limits (Section 5.9), and so that the water column does not separate at
high points of the penstock or in the draft tube.

No analytical method is available for determining the generator inertia re-
quired for a given set of plant parameters. Therefore, a number of empirical
formulas and experience curves'>™'* have been proposed. The normal or stan-
dard generator inertia depends upon the unit rating’? and is given by the
equation,

1.25
k"“) (5.36)*

Normal generator WR? =15,970 (——1—;
N,
in which &, = the synchronous speed, in rev/min; kva = the generator rated out-
put; and WR? = moment of inertia, in kg m?.

Depending upon the factors just outlined, the value of WR? may be increased
or decreased. For good regulation, the United States Bureau of Reclamation
recommends’? that the ratio of the mechanical starting time, T, , and the water-
starting time, T,,, be greater than 8. Units with T,,/T,, of 5 or less may be
integrated into a system but it may be necessary to compensate this deficiency
on the other units of the system. T, is the time in seconds for the rated torque
to accelerate the rotating masses from zero to rated speed, and 7, is the time

*In English units, replace 15,970 by 379,000.

-4
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for the rated head to accelerate the flow from zero to rated velocity. Expres-
sions for T, and T, are

_ WRIXN? s 37y
™ 904 X 10° MW (5.37)
or L
T, = = )
v e T4 (5.38)

in which g = acceleration due to gravity; 0, and H, are turbine flow and net head
at rated conditions; L and A are the length and cross-sectional area of the water
passages; NV, = synchronous speed; and £ L/4 is computed from the upstream
intake to the downstream end of the draft tube. The cross-sectional area of the
scroll case at its upstream end is used for computing ZL/A, and its length is
taken as one-half to account for the reduction of flow along its length.
Experience curves proposed by the Tennesee Valley Authority relate T, and
T,, and show stability limits for various ratios of the unit size to that of the
system. Gordon'* has taken into consideration the effect of the governor times
while plotting his curves (see Fig. 5.13), which are based on experience with 40
Kaplan, Francis, and propeller turbine installations. In the author’s opinion,
Gordon’s stability curves should be used because they take into account most of
the factors upon which the generator inertia depends. During the final design
stages, however, the mathematical model developed in Sections 5.4 through 5.6
should be used to confirm the results of the preliminary analysis. To use these
curves, the wicket-gate opening time, T, is computed by adding the time of the
cushioning stroke (about 1.5 s) to the effective gate-opening time, T, .

5.11 GOVERNING STABILITY
General Remarks

As discussed previously, a dashpot, a PID, or an accelerometric governor is pro-
vided to control the speed oscillations of a turbogenerator of a hydroelectric
power plant. The speed oscillations are stable or unstable depending upon the
values of the parameters of the hydro-unit, penstock, and governor.

Paynter'® presented a stability limit curve and suggested optimum values of
the governor settings by solving the problem on an analog computer. Hovey!6:17
derived a similar stability curve theoretically. However, both Paynter and Hovey
neglected the permanent speed droop of the governor and the self-regulation of
the turbine and of the load. In most cases, permanent;’s_ﬁggd—&fb@is not zero

*If WR? isin1b ft? and the output is in hp, then T, = WR? X N2/(1.6 X 106 hp).
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Table 5.3. Values of self-regulation coefficient.”

o ®turb @ = o - Qpyrp

Turbine

In general - about -1 -

High specific speed - up to -0.6 -
Load

Grid loading: Motors only (constant torque) 0 - +1 -

Ohmic resistance only with voliage regulation -1 - 0.0

Ohmic resistance without voltage regulation 1to 4 - 2t05

2Taken from Ref, 18.

while the self-regulation coefficient, a;’a may or may not be zero depending

upon the type of load.* (For values of a, see Table 5.3.)

The stability criteria are formulated herein'® by taking into consideration the
permanent speed droop and self-regulation. It is found that, if ¢ and « are
allowed for, the stability is considerably increased, and the optimum values of
the temporary speed droop, 8, and the dashpot time constant, T, are reduced.

Differential Equations of the System

In formulating the differential equations, the following assumptions are made:

1. The changes in the turbine speed, head, and gate opening are small; thus,
nonlinear relationships can be assumed linear.

2. A single hydro-unit supplies power to an isolated load.

. The governor has no dead band, backlash, or hysteresis.

4. The walls of the penstock, and the water in the penstock and scroll case are
rigid. Thus, waterhammer pressure caused by changes in the gate opening
can be computed by using the rigid water-column theory.

w

By making these assumptions, the following differential equations'S™'® can be
written for the hydroelectric power plant shown in Fig. 5.1,

1. Machine acceleration

d
T,,,d—':=g+1.5h-an—Am (5.39)

*The turbine self-regulation coefficient, ayy,,, is defined as the slope of the graph relating
the per unit deviation of the turbine torque from the rated value, to the per unit deviation
of the turbine speed from the rated value. The load self-regulation coefficient ay, is defined
as the slope of the graph relating the per unit deviation of the torque of the electrical load
from the rated value, to the per unit deviation of the frequency of the electrical load from
the rated value. The self-regulation coefficient is defined as the algebraic difference between
the load self-regulation coefficient and the turbine self-regulation coefficient.
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2. Water acceleration

dh dg
- - = —+h 5.40)
0_'5 Twiar =T 4 (
3. Governor response
dg dn
(0+6)T,c—i;+og=—T,E—n (5.41)

in which n = relative speed deviation = (V - N,)/N,; h = relative pressure-head
rise = (H - H,)/H,; g = relative gate-opening change = (G - G,)/G,; Am = rela-
tive load-torque change = AM/M, ; AM = step-load torque change (negatfve for
load rejection); M,, = initial steady-state load torque; G = transient-state mst.an-
taneous gate opening; and NV = transient-state instantaneous speed of the turbine,
in rpm. The subscript o refers to the initial steady-state values.

Let s =d/dr. Then Eq. 5.41 may be written as

[(6+6)T,s+0lg=-(T,s+1)n (5.42)
or
g=—Trst n (5.43)
(0+8)T,s+0o
it follows from Eq. 5 .40 that .
-(05T,s+DHh=T,sg (5.44)
or
- T,s(T,s+ 1)n (5.45)
[(0+8)T,s+0} (05T,5+1)
Substitution of Egs. 5.43 and 5.45 into Eq. 5.39 yields
T, pn= -(T,s+ Dn 15 Tws(Tps+ n Can-Am (5.46)

T (@+8)T,sto [(0+8)T,s+0] (05 Tyos+ 1)

By simplifying and replacing s® by d®/dt®; s* by d?/dr*; and s by d/dt, Eq.
5.46 takes the form

d3
05 T\, T, T, (0 + 5) —dt—?+ [050T T + (0 +8) Ty T, - T T,

d*n dn
+0.5aT,,T,(c+06)] E;+ [6Tm +T,- T, +050aT,, +(0+8)aT,] ar

+(1 +oa)n=-0Am (5.47)
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Criteria for Stability

According to the Routh-Hurwitz criteria,2® the oscillations represented by the
third-order differential equation (Eq. 5.47) are stable if

1. 05T, T, (0+5)>0 (5 .48)
2. [050T,, Ty +(0+8) T,y T, - T, T, + 0.5aT,, T, (0 + 8)] >0 (5.49)
3. [T +T, - T, +0.5a0T,, +(ad+68)al,] >0 (5.50)
4. (1 +ag)>0 (5.51)

5. [0Tp +T, - T, +0.5 0aT,, + (0 + 8)aT,] [0.50T, T, +
(04+8)T,uT, - T,, T, +0.5aT,, T,(0 +5)] >
[0.5 T\ Ty Ty (0 + 6)] (1 + 0ct). (5.52)

The inequalities 5.48 and 5.51 are always satisfied. To plot the stability-limit
curves, we have to consider the expressions given by inequalities 5.49, 5.50, and
5.52. There are six parameters in these expressions, namely, o, 8, a, Ty, T\,
and 7,. To reduce the number of parameters and to present the criteria in a
nondimensional form, the following nondimensional parameters are introduced:

N
1y =L"_
6T,,
A, =2
2 T, &
(5.52)
aT,,
)\3 =
T
A = o,
T, )

By substituting the above parameters into inequalities 5.49, 5.50, and 5.52 and
simplifying the resulting expressions, we obtain the following equations for the
limit of stability:

0-5)\1)\2)\4 + 0.5)\17\37\4 + )\1)\4 + 05R3 - )\1 + ] =0. (553)

05NiANha + M Asha + 0ok = Mdg +2; #4520, (5.54)
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M (Ra + 050325 - 0.5A20, - 1+X, - 20,0, - 05057,
“Xahah FA3AE + 00500 + 0.5A3A2 + 0.25 0, AN
0250300 +0,A1) + X (1 - 1.5, + A, A4 + 2050,
FA2haha - 0505 - .50 05 +A2A, + 0.250,A21,)
+(A; +0.502) =0 (5.55)

Equations 5.53 through 5.55 represent the stability criteria. Based on these
equations, the stability limit curves for different values of A1, A2, A3, and A4 are
plotted in Fig. 5.14. Speed oscillations corresponding to those values of A, and
A,, which lie in the region enclosed by the stability limit curve and the positive
coordinate axes, are stable. For A; =0 and A, =0, Hovey’s stability curve is
obtained. This is shown as a dotted curve in Fig.5.14.

The following example illustrates that the results obtained by neglecting ¢ and
« are conservative.

Example 5.1

For the Kelsey hydroelectric plant, Tw = 124 sand T,, = 9.05s. Hovey
reported?! that, according to his criteria, the speed oscillations caused by a step
load change are unstable for § = 0.28 and T, = 2.25 5. The following analysis
shows that the oscillations are stable for these values of § and T, if the perma-
nent speed droop and the self-regulation are taken into consideration.

The Kelsey plant supplies power to an isolated load consisting of furnaces,
blowers, and compressors.!” Thus, may be taken equal to 1 (see Table 5.3).

As reported by Hovey in another paper,?? ¢ =0.035. Stability calculations can
be done as follows:

M =5TT:, =0.281 ﬁi.os =049

A, =TT—‘:=%=055
AT

\ - o;:,, : 0.035;‘>2<49.05 0255,

From Fig. 5.14, it follows that, for A, = 0.49,%, =0.55 and

1. A3 =0.0 and A4 = 0.0, oscillations are unstable (Hovey’s criteria)
2. A3 =00 and X4 = 0.255, oscillations are stable
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Figure 5.14. Stability limit curves.

3. A3 =0.1 and A4 = 0.0, oscillations are stable
4. A3 =0.1 and A4 = 0.255, oscillations are stable

To check the validity of these results, Eqs. 5.39 through 5.41 were solved on a
digital computer. The plotter output obtained from the computer is presented
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Figure 5.15. Unstable and stable speed oscillations.

in Fig. 5.15. In this figure, L1, L2, L3, and L4 denote A1, Ag, Ag, and A4,
respectively.

Transient Speed Curve

The differential equation, Eq. 5.47, may be solved as follows to determine an
expression for n:

Initial Conditions

Attime t=0,N=N,,G=G,,and H=H,,. Therefore,
Rlt=0=0; &lt=0=0; h|;20=00 (5.56)

i TR
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By substituting these values into Eq. 5.39, we obtain

dn
Tp —| =-4m
" dt |4=o
or
dn| __Am (5.57)
dt | =0 Tm

Note that for load-off condition, Am is negative. Differentiation of Eq. 5.39
yields

d*n _dg dh dn

—_—=—+15—- 5.58
™ drr dt dr Cadr (5:58)
By substituting Eq. 5.56 into Eq. 5.41, we obtain
dg dn
+8)T, — =-T,— 5.59
(a+9) F s Fdthoo (5.59)
which upon simplification becomes
d -1 d
e s T (5.60)
dtl=0 (0+8) dt|s=o
It follows from Egs. 5.40 and 5.60 that
dh 2 d
= = = (5.61)
dt|e=0 (0+8) dt|s=0

Substitution of Eqs. 5.57,5.60, and 5.61 into Eq. 5.58 and simplification of the
resulting equation yields
an

- 2- oa-da (CAm) (5.62)

t=0 0+6 T:q

Solution of the Differential Equation, Eq. 5.47

The general solution of the third-order differential equation, Eq. 5.47, is equal
to the sum of the complementary function, n,, and the particular integral, n,
(ie.,n=n, +n;).For Eq.547, .

-oAm
= 5.63
" = s ow) (5.63)
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To determine the complementary function, compute the roots of the char-

acteristic equation,

057, T, T,(6+0)1* + [0.5T,T,,0+ (8 +0) T, T, - T\ T,
+0.5aT,T,(6 + 0)]u* + [To+ T, ~ T, +0.5T,, 00
+(8+0)T,alu+(l +oa)=0 (5.64)

Let the roots of Eq. 5.64 be a', 8+ #y. Then,
n, =Ae® !+ DelB+iNt 4 po(B-int (5.65)
where 4, D, and E are arbitrary constants. Equation 5.65 can also be written as
n,=Ae®" + P (B sin vt + C cos ¥t) (5.66)
where A, B, and C are arbitrary constants. Therefore, the complete solution is

oAm
(1+ga)

n=Ae*t+ P (B sin vt + C cos v - (5.67)

The values of the arbitrary coefficients are determined from the initial conditions

oAm
Nigmog=A+C- =0
=0 (1 + 00) (5.68)
Hence,
cAm
A+C=
(0 + oa) (5.69)

By differentiating Eq. 5.67, substituting ¢ = 0, and using the initial condition
given by Eq. 5.57, we obtain

' Am
o A+yB+pC=-20" (5.70)

m

By differentiating Eq. 5.67 twice, substituting ¢ = 0, and using the initial condi-
tion given by Eq. 5.62, we obtain

2-g0a-8a(-Am)

oA +20yB+ (B - y¥)C=
ByB+(p* - v*) 15 )

(5.71)
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Solution of Egs. 5.69 to 5.71 for 4, B, and C yields

28 2-(0td)a o 2, a2 )
A—T'" ¥ (o +8)T2 (l+ooz)(7 v8Y) A
- @ - B 47 Cam
_|-am _ofAm |1 (5.72)
B= [T,,, (o - P4 1+aoz]'y r
_oAm_
14 J

Optimum Values of the Governor Parameters

For a specific value of A3 and a specific value of A4, Egs. 5.39 through 5.41 are
solved for various values of Ay and A,. Those values of A; and A, are considered
optimum values, which give the shortest settling time, but slightly underdamped
response. This procedure is repeated for A3 =0.0 and 0.25,and A, = 0.0 to 0.4.
The optimum values of A; and A, for different values of A5 and A4 are presented
in Fig. 5.16. The following example illustrates the procedure to select the opti-
mum values from this figure.

Example 5.2

Determine the optimum values of § and T, for Kelsey hydroelectric power' plant.
The following are the values of different parameters:

T,, = 1.24 s (computed from the dimensions and geometry of the penstock)
T, =9.05 s (computed from the known value of WR? and ratings of the
“turbine and generator)
a = 1.0 (determined from Table 5.3 for the type of load)
g =0.035.

1. The optimum values of § and T, may be determined as follows:
a. Compute A3 and Ay4:

. 24
7\3=aTw=10>< 124 o
T 9.05
oT,, 0.035X 9.05
= = =0.255.
As T, 1.24

b. Determine the optimum values of \; and A, from Fig. 5.16:
From this figure, A, =0.430 and A, = 0.27 for A; =0.137 and X\,4 = 0.255.
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A370.25 | e
L=t
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e
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0 o/ 0.2 03 o4

Figure 5.16. Optimum governor settings.

Pp—

2. Optimum values suggested by Hovey:

5o Tw _ 124
AMT,, 0430X9.05
T 1.24
T =—‘l=——~= K
TSN 027 468
2T, 2X1.24
8=—l=~*__
T, 9.05 0274

T,=4T, =4X 1.24=4965

=0.319
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Figure 5.17. Speed deviation for various governor settings.

3. Optimum values according to Paynter’s relationships:

o Tw __ 124 _ ..
04T, 04X905
T, 124
ML
rT0.17 017 s

For cases 1 through 3, n ~ ¢ curves for Am =-0.1 are presented in Fig. 5.17.
It is clear that, if 0 and a are taken into consideration, the optimum values
suggested by the author give a better transient response.

5.12 CASE STUDY

For illustration purposes, governing stability studies carried out for the Kootenay
Canal Development are presented in this section. Kootenay Canal Development
is a 500-MW hydroelectric power plant owned by British Columbia Hydro and
Power Authority. There are four units in the plant with each unit having its own
power intake and penstock.

Data for the turbine, generator, and penstock follow:

1. Turbine
Type: Francis
Specific speed:* 55 (English units), 209 (SI units)

*Specific speed = n/P{H'2. In the English units, P is in hp, # in ft, and # in rpm; in SI
units, P is in kW, H in m, and n in rpm.
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Rated turbine output: 127.5 MW

2y M2
Rated head: 74.6 m T, = %
Synchronous speed: 128.6 rpm ' '

Flow at rated conditions: 191 m?/s _ 483X 10° X (128.6)*
Runner-throat diameter: 495 m ' T 904X 10°X 1275

2. Generator

Rated output: 125 MW =6.93s
3. Penstock. The diameter of the penstock was determined from an economic 2. Water starting time, T,
analysis so that the incremental benefits from the decreased head losses were . h ional Area, 4 L
more than the increase in the penstock costs. The length, diameter, and wall Length, L Cross-sectional Area, )‘;
thickness for various sections of the penstock are listed in Section 2.7. Conduit (m) (m?) m™) Remarks
Computations were done as follows:
Intake 7.6 9.1xX 9.1=828 0.091
. 12.8 49x 7.3=3538 0.357
1. Mechanical starting time, T,, w
Penstock 244 z(5.71)2 =354 6.89
3
kva = W X 107 365  S(5.55)2=24.2 1.51
Power factor 4
Scroll case  14.5 1(5.55)2 =24.2 0.60  Total length of scroll
kva=125,000/0.95 =131579 4 case = 29 m.
" Draft tube  15.2 %(4.88)2 =18.7 0.81
kva 1.25
Normal genierator WR? = 15,970 —-) 13.7 0.5(18.7 + 14.6 X 5.33)
g NI (Eq. 5.36) =483 0.28
131,579 \!-25 Lo 058,
=15970 ( ——~— A T
((128.6)"5> :
L
. % — excluding draft tube = 9.45
=444 Ggm? A
L
kW 1.25 Tw = Q > -
Turbine WR? = 1446< W) gH, 4
’ 191X 10.54
]27’500 1.25 981X 74.6
= 1446 | = :
(128.6)"5 ' =275s
=039 Gg m? 3. Experience curves. Since there is a strong possibility of this power plant
’ & ! being isolated from the system, the generator inertia was selected such that
Total WR? = 4.4 +0.39 = 4 83 Gg m? the units would be stable in isolated operation. For this purpose, the follow-

ing empirical relationships and curves were used.
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a. U.S. Bureau of Reclamation criteria.'®* For the normal WR? of the
generator and turbine and for the selected conduit sizes, the values of 7'y,
and T,, were computed above as 6.93 and 2.75 s, respectively. Hence,

As this ratio is less than 8, the unit would be unstable in isolated
operation.

b. Tennessee Valley Authority curves. The values of T, and T,, com-
puted in (a) were plotted on the TVA experience curves. It was found
that the units would be unstable in isolated operation.

c. Gordon’s curves.'® As both the USBR criteria and the TVA experience
curves indicated that the units would be unstable in isolated operation
with the normal WR?, total WR? of 7.2 and 8 Gg m?, in addition to the
normal WR? of 4.83 Gg m?, were considered. The values of T}, for WR?
of 7.2 and 8.0 Gg m? are 10.3 and 11.5 s, respectively. Water starting
time, T,,, excluding that for the draft tube, is

13

191 X 9.45
Tw=coroo =246
w981 X 746 240

Let us assume that the wicket-gate opening and closing times are equal.
Then, allowing 1 sec for the cushioning stroke, T, = T, + 1.0, in which
T, = effective gate-closing time and T, = total opening time. Now for
different assumed values of T, and for total WR? equal to 4.83,7.2,and
8.0 Gg m?, points were plotted on the Gordon’s curves. Of these three
curves, the curve for 4.83 Gg m? did not intersect the curve dividing the
stable regions for the isolated and system operation. The values of T,
for WR? = 72 and 8.0 Gg m?, which would result in stable isolated
operation, were determined from the intersection of the other two curves.
These values were 8.6 and 10.2 s, respectively.

4. Speed rise. Using the procedure outlined in Ref. 12 (p. 29), speed rise for
full-load rejection was computed for various values of T, and T,,. The
computed values are listed in Table 5.4.

S. Waterhammer pressure. Waterhammer wave velocities in the penstock were
computed in Section 2.7. Wave velocity and cross-sectional area for an equiv-
alent 295-m-long (including half the length of scroll case) pipe?® was com-
puted as follows:

L

a.

L
=3 —
a
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Table 5.4. Speed rise.

Speed rise, percent

T,
(sc)‘ Tm=693s Ty =1027 s Ty = 11485

6 56.4 423 38.6

8 63.8 47 42.9
10 91.8 51.6 47.8

Therefore,
295
ae = =730 m/s

244+ 51 + 20
694 1410 1244

295
2—L=—9—=0.81 s
aeq 730
L
Ae=;z
A
_ 295
945
=3122m?
191
= ——=6.12
Vo= 122 m/s
N ¢ __aVo
Allievi’s parameter, p 2gH
- 730 X 6.12 =305
2X 981X 74.6

The waterhammer pressures for various values of 7, were computed from
the charts presented in Appendix A. The computed values are as follows:

. AH
T, Pressure rise, ——

r

6 048
8 0.36
10 0.27
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6. Selection of WR? and governor times. From the preceding computations,
the values of WR? and governor times were selected as follows:
a. The maximum effective governor time was selected as the minimum of
i. The governor time required for isolated stable governing from Gor-
don’s stability curves.
ii. The governor time so that the speed rise following total load rejection
does not exceed 60 percent.
b. The minimum value of the effective governor time is the maximum of
i. The gate-opening time such that negative pressures do not occur in the
penstock for the minimum forebay water level.
ii. The waterhammer pressure rise following total load rejection does not
exceed 50 percent of static head.
Based on these criteria, the following values were selected:

Total WR? of generator and turbine = 7.2 Gg m?
Turbine WR? = 0.2 Gg m? (specified by the turbine manufacturer)
Generator WR? =7.2- 0.2=7.0 Gg m?
Governor closing time = 8 s
7. Governor settings. For the selected conduit sizes and WR? of the generator,
Tw =2.75sand T,, = 10.27 s. Assuming the permanent speed droop, ¢
equal to 5 percent and the self-regulation constant, a, equal to 0.5,

3

Ny = W= 2 207
> T 10.27 13
T 005X 10.27
e = 2= =0.19

T, 2.75

For these values of X; and A4, optimum governor settings as determined from
Fig. 5.16 are

A, =043
and
Ay =027
Hence,
Temporary speed droop, & = Tw
p Yy sp P T
_ 2.75 =062
043X 1027
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T
Dashpot time constant, T, = K‘i
2

2.75

=——=10s
0.27

8. Final check. During the final design stages, the turbine characteristics were
available from the model tests conducted by the turbine manufacturer. The
mathematical model presented in Sections 5.3 through 5.6 was used to check
the maximum and minimum transient-state pressures, maximum speed rise
following total load rejection, and the speed deviation following large load
changes. The maximum and minimum pressures and speed rise were found to
be within the design limits, and the unit was stable following large load
changes.

5.13 SUMMARY

In this chapter, the details of the mathematical simulation of the conduit sys-
tem, hydraulic turbine, and governor were outlined. Various turbine operations
that produce the hydraulic transients were discussed. Prototype test results to
verify the mathematical model were presented. Procedures for the selection of
the generator inertia and for determining the optimum governor settings were
then described. The chapter was.concluded by the presentation of a case study.

PROBLEMS

5.1. Develop the boundary conditions for a Francis turbine having a long pres-
surized downstream conduit.

5.2. How would the boundary conditions of Problem 5.1 be modified if there
was a downstream surge tank?

5.3. The block diagram for a proportional-integral-derivative (PID) governor is
shown in Fig. 5.18. Proceeding similarly as in Section 5.5, derive the differ-
ential equations for this governor.

5.4. Figure 3.18 shows the layout for the Jordan River Power Plant in which a
pressure-regulating valve (PRV) is provided to reduce the transient pres-
sures. In a load-rejection test on the prototype, the wicket gates closed,
and the PRV opened as shown in Fig. 10.12. Develop a mathematical
model to analyze the transients caused by a load rejection, and compare the
computed results with those measured on the prototype (Fig. 10.13)
Assume that the unit is isolated from the system, and that there is a delay
of 0.4 s between the opening of the PRV and the closure of the wicket
gates, Use the turbine characteristics shown in Fig. 5.3.
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Figure 5.18. Block diagram for a PID governor.

5.5.

5.6.
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Develop the boundary conditions for a Kaplan turbine taking into con-
sideration the variation of the blade angle.

Determine the unit WR? required for stable governing of a hydroelectric
power plant in isolated operation. The data for the power plant follow:

Rated output = 39 MW

Synchronous speed = 500 rpm

Rated head = 240 m

Turbine discharge at rated conditions = 38 m’ /s

Length of the penstock = 640 m

Length of the scroll case = 36 m

Cross-sectional areas of the penstock, and the scroll case at the upstream

end = 7.9 m?

Governor opening and closing time = 5 s
Neglect the length of the draft tube and assume a power factor of 0.95
while computing the kva of the unit.

§.7. What are the optimum governor settings for the unit of Problem 5.6?
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CHAPTER 6

HYDRAULIC TRANSIENTS IN
NUCLEAR POWER PLANTS

6.1 INTRODUCTION

In nuclear power plants, various piping systems are used for cooling and for heat
transfer. It is necessary for the design and for the safe operation of these sys-
tems that the transient-state conditions caused by various operating conditions
be accurately known.

In this chapter, terminology is introduced first; various operations which may
produce transients are then outlined. Different methods for analysis are dis-
cussed, and special boundary conditions for the method of characteristics are
derived. The details of a numerical scheme, suitable for the analysis of two-
phase transient flows, are then presented.

Since various types of reactors are available and each reactor type differs in
details from one manufacturer to another, the analysis techniques are empha-
sized instead of the specifics of design details.

6.2 TERMINOLOGY

General

Figure 6.1 shows the schematic arrangement of a nuclear power plant. Thermal
energy, generated in the nuclear reactor by splitting the atoms, is transferred
from the reactor by a fluid medium called the reactor coolant. The reactor
coolant may be a liquid (e.g., ordinary water, heavy water [D,0], liquid
sodium); it may be a liquid-vapor mixture, (e.g., boiling ordinary water); or it
may be a gas (e.g., helium, carbon dioxide [CO, ).
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Figure 6.1. Schematic arrangement of a nuclear power plant.
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Types of Reactors

Reactors are classified! according to the type of fuel, reactor coolant, and the
type of medium, called moderator, used to slow down or moderate the high-
energy neutrons produced by the fission process. Three main types of liquid-
cooled reactors are:

1. Pressurized water reactor (PWR). In this reactor, ordinary water is used as
a reactor coolant and as a moderator. Water coolant is circulated at high pres-
sure (about 14 MPa) by the external pumps through the reactor vessel. Water
flows upward through the fuel clusters, then from the vessel into the heat ex-
changers and back to the pumps. This loop is called the primary loop. A
pressurizer? is provided in this loop to control the pressure of the coolant. The
temperature of the coolant rises as it flows through the reactor vessel. There-
fore, the pipe on the inlet side of the reactor is called the cold leg, and the pipe
on the exit side is called the hot leg (Fig. 6.2). In the secondary loop, water is

Pressurizer

Reactor vesse/ — Staam fto turbine

Steam generaltor

—Feedwater

Core

Reactor
coolan! pump

Figure 6.2. Pressurized water reactor.
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boiled in the heat exchangers forming saturated steam, which is used to drive
the steam turbine.

2. Boiling water reactor (BWR). This reactor is similar to the PWR except
that ordinary (light) water coolant is permitted to boil in the reactor core. The
steam thus produced is separated from the coolant by centrifugal separators
(Fig. 6.3) located in the reactor vessel above the core. This steam is then directly
fed into the turbine.

3. Liquid-metal fast breeder reactor (LMFBR). In this reactor, liquid sodium®
is used as the reactor coolant, which is cooled in the intermediate heat ex-
changers (Fig. 6.4) and is returned to the reactor. The intermediate heat ex-
changers are cooled by a second flow of liquid sodium, which in turn is cooled
in a second set of heat exchangers in which steam is produced for the turbine.

The steam exhausted from the turbine is condensed by means of a condenser,
and the condensed water is pumped back into the heat exchangers. A large
amount of water has to be pumped from a lake, river, or ocean to the condenser
loop (Fig. 6.1) for this purpose.

Emergency Core Cooling Systems

The emergency core cooling (ECC) systems? are used to provide coolant for
possible loss-of-coolant accident (LOCA). A number of subsystems are em-
ployed for this purpose:

. High-pressure coolant injection system. This system employs high-head,
low-capacity pumps and is intended to provide coolant during small-size breaks

Reactor vessel

Sream to turbine

Steam - warer
separator

Core

Fesdwarter

[ |
, |

Coolant pump

Figure 6.3. Boiling water reactor.
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Figure 6.4. Liquid-metal fast-breeder reactor.

in the primary loop. This system is activated during the early stages of depres-
surization.

2. Low-pressure coolant injection system. This system employs low-head,
high-capacity pumps; it is intended for supplying coolant following large-size
breaks in the primary loop and provides coolant during later stages of LOCA.

3. Accumulator System. This is a passive system and is intended to provide
large volumes for large-size breaks. A check valve, which isolates the accumu-
lator from the reactor system during normal operation, opens whenever the
pressure in the reactor system drops below the pressure of the accumulator and
provides coolant to the primary loop.

6.3 CAUSES OF TRANSIENTS

Transients in the piping systems of a nuclear power plant are caused by the
following (only events initiated in the hydraulic system are considered):! ™14

. Planned or accidental starting or stopping of pumps; power failure to pumps
. Planned or accidental opening or closing of the control valves

. Instability of pumps .

. Release of entrapped air or collapse of vapor bubbles

. Wave action at the reservoir water surface (for the condenser piping system)
. Rupture of pipeline.

AW A WK~

The starting or stopping of the pumps, the opening or closing of control
valves under controlled conditions, and power failure to the pumps are con-



162 Applied Hydraulic Transients

sidered normal operations. Flow variations may be caused by pump instability
due to abnormalities in the pump characteristics. If the pumps are started into
an empty pipeline or into a partly drained discharge line, severe pressure oscilla-
tions may be produced.

Waterhammer pressure generated by air release or due to collapse of vapor or
stearn bubbles has resulted in damage to the pipelines of a number of nuclear
power plants.!>!*

Rupture of a pipe in the primary loop? and the loss of reactor coolant, i.e.,
loss-of-coolant accident, is one of the worst conditions to be considered in the
design. Rupture of, or a leak in, the pipe in the secondary loop of a LMFBR
will result in sodium-water reaction; transients produced by such an incident
have to be considered in the design stages.

6.4 METHODS OF ANALYSIS
General Remarks

The fol]owing two approaches are available for the analysis of hydraulic tran-
sients in the piping systems of nuclear power plants:

1. Lumped-system approach
2. Distributed-system approach.

In a lumped-system approach, sometimes referred to as control-volume or
macroscopic approach,'® the system is divided into a number of control volumes,
and an integrated form of the continuity and momentum equations (and the
energy equation, if required) is used. Thus, there is no continuous spatial varia-
tion (i.e., with respect to distance x in a one-dimensional model) of various
variables, and they vary with respect to time only. Therefore, a system of
ordinary differential equations, instead of partial differential equations, describe
the transients.’® Since the initial steady-state conditions are specified, the
transient analysis using a lumped-system approach may be considered as an
initial value problem.

In a distributed-system approach, both the temporal and spatial variations of
various variables are taken into consideration. Thus, a system of partial differ-
ential equations subject to appropriate boundary conditions describe the behav-
ior of the system. If there is simultaneous flow of two phases (e.g., water and
vapor, air and water), then the flow is called a two-phase flow.!” Two-phase
flows may be further classified as homogeneous or separated flows. We will
consider only the homogenous two-phase flows in which the mixture of the two
phases may be treated as a pseudofluid. The separated flows are beyond the
scope of this book.
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If heat is added or removed from the system during a transient, then the
energy equation has to be considered in addition to the continuity and momen-
tum equations.

Formulation of Mathematical Models

Extreme caution must be exercised in formulating a mathematical model since a
model based on questionable simplifying assumptions may yield totally incorrect
results no matter how sophisticated are the numerical techniques employed to
solve the governing equations. Similarly, using too complex a model, where a
simplified model would suffice, results in waste of manpower as well as com-
puter time. A lumped-system one-dimensional model is one of the simplest,
whereas a multidimensional, distributed-system, two-phase model with heat
addition or removal is the most complicated.

The following factors are considered while selecting a model for the analysis
of a particular system:

1. For a slow transient phenomenon, the compressibility effects may be
neglected and the system may be analyzed by using a lumped-system approach.
This approach may be used'® for systems in which wifa << 1 (see p. 219). In
this expression w = forcing frequency; ! = length of the pipe, and 2 = wave
velocity. As a rough rule of thumb, wl/a = 0.05 may be considered as the upper
limit for the validity of the lumped-system approach.

2. If the void fraction, & (@ = volume of the gas and vapors per total volume
of the gas-vapor-liquid mixture), is small, then its effects can be totally neglected
or may be taken into consideration by reducing the waterhammer wave velocity.

3. Flows having a large void fraction, have to be analyzed as two-phase flows.
If the phases are not separated, then a homogeneous flow model may be used in
which the gas-vapor-liquid mixture is treated as a pseudofluid and the continuity,
momentum, and energy equations for a single-component flow are used in the
analysis. However, if the phases are separated, then the continuity, momentum,
and energy equation for each phase have to be used, and the transfer of mass,
momentum, and energy between the phases has to be considered. Such a model
is called a separated flow model.

4. If there is significant heat input or output from the system during the tran-
sient conditions under consideration, then it is necessary to include the energy
equation in addition to the continuity and momentum equations in the analysis.

Numerical Solution

The numerical method to be used for the solution of the equations describing
the system behavior depends upon whether a lumped-system or a distributed-
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system approach is being used. Various available methods are discussed in the
following paragraphs.

Lumped-System Approach

As discussed previously, a mathematical model based on a lumped-system ap-
proach is comprised of a system of ordinary differential equations. A number of
finite-difference methods'®~2° are available to solve these equations. The author’s
experience with the solution of these equations indicates that the fourth-order
Runge-Kutta method?®?! is quite versatile and accurate. In addition, most
computer installations have standard packages available for this method.

Distributed-System Approach

Distributed-system approaches may be further subdivided into two categories,
depending upon whether the flow is single-phase or two-phase:

1. Single-phase flows. The method of characteristics presented in Chapter 3
may be used for single-phase flows. To account for a small amount of gaseous
phase in the liquid, a reduced value of the waterhammer wave velocity (see
Section 9.5) may be used in the analysis.

The transients caused by opening or closing of valves, by starting or stopping
of pumps, or by power failure to the pump-motors may be analyzed by using
the method of characteristics. A number of commonly used boundary condi-
tions were derived in Chapters 3 and 4, and a few additional ones are developed
in the next section and in Chapter 10.

2. Two-phase flows. The two-phase flows may be analyzed by considering
them as homogeneous or separated flows. In the case of homogeneous flow, the
liquid mixture is treated as a pseudofluid, and the averaged values of the various
variables (such as pressure, flow velocity, and void fraction) over a cross section
are used. The spatial variation of void fraction may be included in the analysis.

In the analysis of separated flows, each phase is treated separately, and the
transfer of mass, momentum, and energy between each phase is taken into
consideration. Analyses of these flows are beyond the scope of this book.

The following numerical methods have been used for the analysis of homog-
eneous two-phase flows:

. Method of characteristics

Lax-Wendroff’s two-step finite-difference method
Explicit finite-difference methods

Implicit finite-difference methods.
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In the method of characteristics,2272% the discontinuities in the derivatives
can be handled, and the boundary conditions are properly posed. The method,
however, fails because of the convergence of characteristics curves if the wave
velocity is highly dependent upon pressure, and a shock is formed in the solu-
tion. In addition, if an explicit finite-difference scheme is used to solve the total
differential equations obtained by this method, the Courant-Fredrich-Levy
condition?S for the stability of the numerical scheme has to be satisfied. This
condition requires the use of small computational time steps, thus making the
method unsuitable for solving real-life large systems. The method may, however,
be used to verify other numerical schemes by analyzing small, simple systems.

The Lax-Wendroff twostep finite-difference scheme?® is the most suitable
for analyzing systems in which a shock forms. However, the scheme produces
oscillatory solution behind the wave front, and a smoothening parameter®” has
to be introduced to avoid this. This introduces numerical damping, which is not
present in the actual system and which, if not properly taken care of, may
smoothen the transient peaks. Because the Courant’s stability condition has to
be satisfied, the size of time steps is restricted, which makes the scheme un-
economical for general analyses.

Explicit finite-difference methods are very easy to program. However, as the
step size is limited by the Courant’s stability condition,?® a large amount of
computer time is required. Thus, the method is not suitable for analyzing large
systems.

In the implicit finite-difference methods, the size of the time step is governed
by accuracy only and not by the stability considerations.??"32 These methods
are therefore useful for the analysis of large systems. Details of this method are
presented in Section 6.7.

6.5 BOUNDARY CONDITIONS

To analyze a piping system by the method of characteristics, the boundary
conditions should be known. A number of boundary conditions commonly
found in the piping systems of nuclear power plants are derived in this section.
Note that these conditions are valid only for single-phase flows and are required
if the method of characteristics of Chapter 3 is used for the analysis.

Condenser

A condenser is comprised of a large number of tubes with water boxes on the
ends (Fig. 6.5). To derive the boundary condition, the cluster of tubes may be
replaced by an equivalent pipe having a cross-sectional area, 4,, equal to the
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Figure 6.5. Condenser.

combined area of all the tubes,ie., 4, =n,4,, in which A, = cross-sectional area
of one tube and n, = number of tubes in the condenser (Fig. 6.5). The head
loss in the equivalent pipe is, however, assumed equal to the head loss in an
individual tube. The water boxes may be considered as lumped capacitances,
and the compressibility of water and the elasticity of the walls of the boxes may
be taken into consideration.

Equations for the upstream water box are derived below; equations for the
downstream box may be derived in a similar manner.

Let the volume of water in the box be ¥, and let the combined effective bulk
modulus of water inside the box and the vessel walls be K. Then, by definition,

Ap
K=—
A¥ (6.1)

24
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in which A¥ is the change in volume due to change in pressure, Ap. For the
pressure changes usually encountered in practice, A¥ is small, and therefore #
may be assumed constant. The change in volume, A ¥, during a time step A¢,
may be determined from the continuity equation

A¥ = % At [(QP-, et T Qi,n+1) - (QP,-H.] + Qi+l,l)] (6.2)

in which Q and (p are discharges at the beginning and at the end of the time
step, and subscripts (/,7 + 1) and (i + 1, 1) refer to the section numbers (see Fig.
6.5). If it is assumed that the pressure is same throughout the box, then

Hp.,

in+l -HPiH,l

(6.3)
in which Hp = piezometric head above the datum at the end of time step. Now,

Ap=vAH=vHp, .. - Hinw) (64)

i,n+l

in which v = specific weight of water.
By substituting Eqs. 6.2 and 6.4 into Eq. 6.1 and simplifying the resulting
equation, we obtain

KAt
=H; iyt ‘2";5 Qi a1 = Qiny 1)+ (QP»',“l - QPi+1,1)] 6.5)

H

Hp

in+t

The positive and negative characteristic equations (Eqs. 3.18, 3.19) for sections
((,n+1)and ({+1,1)are

QPi,n+1 =Cp - Ca,'HP,',,H_l (66)

QP“.‘.] =Cn+Cai+1HP,'+l'1 (67)
in which Cp, Cp, and C, are as defined by Eqgs. 3.20 through 3.22. Substitution
of Egs. 6.3, 6.6, and 6.7 into Eq. 6.5 yields

KAt
HPi_n+1 =Hl',ﬂ+l+ 2_7; [(Qi.ﬂ+l - Qi+l,1)+ (Cp - Cn)]

KAt
i 2_’Y—‘[2(Cai+ CaiH)HPi,nn (6.8)

Hence,

H _ 2y¥
FPLnst “ oy ¥ 4+ KAKC,, + Gy, )

KAt
{Hi,nn + 2_7; [(Qi,n+1 - Qi+1,l)

+(C, - C,,)]} (69)
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Now, HPM . Qpl. nel’ and me , may be determined from Egs. 6.3, 6.6,
and 6.7, respectively.

Entrapped Air

Let us consider a volume of air entrapped in a pipe having liquid on either side
as shown in Fig. 6.6. If the entrapped air follows the polytropic law for perfect
gases, then

H;air m o o=C (6.10)

Pall‘
in which H,":air and ¥p_, are the absolute pressure head and volume of the en-
trapped air, respectively, and m = exponent in the polytropic gas law. The value
of the constant, C, in Eq. 6.10 is determined from the initial steady-state

conditions.
From the continuity equation, the following equation may be written for the
volume of the air:

¥poi, = ¥aie + 3 D {(Qiay 1 + Qpyyy )~ (Qiner +Qpy 0} (611)

The positive and negative characteristic equations (Eqs. 3.18, and 3.19) for
sections (i,n + 1)and (1 + 1, 1) are

»Qpl.,nﬂ =Cp- Ca.[-lp'.,’”l (6.12)
Qp’-“ 1 =Cn +C“x+1HPi+1,1 (6.13)

in which Cp, Cy, Cg;, and Gy, , are as defined by Eqs. 3.20 through 3.22. If
the pressure of air at any instant is assumed to be same throughout its volume,
then

Hp. .. =Hp, (6.14)

i,n+l i+1,1

In addition,
H}‘air =Hy, +Hp, _ - (6.15)

iyn+l

in which Hj, = barometric head, and z = height of the pipeline above datum.

Air

Pipe i+|

(i,n+1) (i+l, 1)
Figure 6.6. Entrapped air.
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Now we have six equations (Egs. 6.10-6.15) in six unknowns, namely, H,,a .
LI QP' ey QP:+1 . HP:+1 ,» and H_p +; - Elimination of the first five
unknowns from these equations yields

(Hp, - 2) [Car + 3 A1(Coy* Copy VP, 17 =C (6.16)

i,n+i i+1

in which
Cair = Fair + 3 3 81(Qur,1 ~ Qiner *Cn - Cp) 6.17)

Equation 6.16 may be solved for Hp, ,,,, by an iterative technique, such as the
bisection method.2° The values of the other unknowns may then be determined
from Egs. 6.10 through 6.15.

Pipe Rupture and Failure of Rupture Discs

Sometimes, rupture discs are installed, which fail if the pressure inside the pipe-
line exceeds a specified limit. Because of this controlled failure, extensive dam-
age to the pipeline is avoided.

The ruptured discs or pipe-break may be analyzed as an orifice, and the bound-
ary conditions derived in Chapter 3 may be used for this purpose. If there is
back pressure from outside the pipeline, then AH is the difference between the
pressure inside and outside the pipeline.

Total pipe-break may be analyzed considering it as a fixed- openmg valve
located at the ends of pipe at the location of the pipe-break.

6.6 LOSS-OF-COOLANT ACCIDENT

A sudden rupture of a pipe in the primary loop and the resulting loss of reactor
coolant is referred to as loss-of-coolant accident. The size and location of the
pipe-break in this hypothetical accident is selected, which results in the maxi-
mum cladding temperatures. In a PWR, a complete rupture of the pipe connect-
ing the pump to the reactor (i.e., cold leg) is assumed.> In a BWR, a complete
and instantaneous circumferential rupture is assumed? of the largest pipe in one
of the suction lines of the recirculation system.

The analysis of LOCA is done by using a number of mathematical models, and
the output of one model serves as input to the other model. For example, the
average conditions in the core, such as flow, pressure, and temperature, are
determined by a mathematical model of the primary loop. Using these com-
puted conditions as input, the maximum cladding temperature is determined
using another model. These two models are used in an iterative manner at
every time step or after a number of time steps.

In the mathematical model of the primary loop, the continuity, dynamic, and
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energy equations are solved. The heat addition in the core to the fluid of the
primary loop and the heat loss in the heat exchangers from the primary loop to
the secondary loop are assumed to be distributed along the pipe lengths repre-
senting the core and the heat exchangers. The secondary loop is considered as a
heat sink and is therefore decoupled from the primary loop. Similarly, the
containment vessel is decoupled by specifying a back pressure at the hypotheti-
cal pipe-break.

A numerical method is presented in the next section to solve the equations
describing the flow conditions in the primary loop following a pipe-break.

6.7 IMPLICIT FINITE-DIFFERENCE METHOD FOR ANALYZING
TWO-PHASE TRANSIENT FLOWS

General

In this section, the details of an implicit finite-difference method, presented by
Hancox et al.28:2%:31 are outlined. In this method, the characteristic form of
the equations governing the homogeneous two-phase flows are used. Therefore,
the method is as similar as possible to the method of characteristics. However,
as it is not necessary to satisfy the Courant’s stability condition, a larger size of
time steps can be used, thus making the method suitable for the analysis of large
systems.

Governing Equations

The following equations describe?®:3® the homogeneous, two-phase flow in
pipes including the heat addition or loss:

1. Momentum equation

v, v 1dp

—+ ¥V _—= .
or ax poax O (6.18)
2. Energy equation
oh av oh
—t?—tV—=
PYRLC a2 (6.19)
3. Continuity equation
ap , 9V op
+pa? —+V ——= .
at ax ax ° (6.20)

R —

P T
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in which
¢, =-F-gcosét (6.21)
dp| Vad
=q?|(qg+ VF) | - == 6.22
o a[(q )ap,,Adx (6.22)
op pV dAa
=-a?|(q+ VF)—| +— — 23
€3 a[(q )ahp Adx] (6.23)
19p]\™2
a=(22 s1o0 ) (6.24)
ap h p oh \p
q= KA (T, - Tp) (6.25)
af K\ vivi|
F=|l—7%+—)— 26
(d 7 1) 2 (6.26)

and in which a = wave velocity in the fluid; ¢ = wall-to-flow heat transfer; p =
density of the fluid; F = friction force per unit mass; k,, = wall-heat transfer
coefficient; T,, = wall temperature; Ty = temperature of the fluid; f = friction
factor; k/I = distributed loss coefficient; 4 = cross-sectional area of the pipe;
d, = equivalent pipe diameter; g = acceleration due to gravity; h = mixture
enthalpy; p = pressure; t = time; ¥ = fluid velocity; x = distance along the pipe
axis; and 6 = angle between the pipe axis and horizontal.
in addition,

=1 forx'<0 andx'>1
, (6.27)
¥ = appropriate two-phase multiplier for 0 <x" <1
f=0.046R3>* for Ry > 2000
64 (6.28)
f=5 for Ry <2000
Ry
h =x'hg+(l -x)hy (6.29)
p=apg+(1-a)p (6.30)

In these equations, x' = thermodynamic quality; Ry = Reynolds number; a =
void fraction = volume of vapor per total volume of the vapor-liquid mixture;
and the subscripts g and 1 refer to the vapor and the liquid, respectively.
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Conversion of Governing Equations into Characteristic Form

By following the procedure outlined in Section 2.4, it can be proved that Eqs.
6.18 through 6.20 form a set of hyperbolic partial differential equations. These
equations can be converted into ordinary differential equations by the method
of characteristics as follows:

Multiplying Eq. 6.18 by a linear multiplier, X, , adding the resulting equation
to Eq. 6.20, and rearranging the terms, we obtain

oV 002 14 ap YY)
—t\Vt— = [+ — KA/
Ml:a’ (V Aq )ax ]+[az+<V+ p>ax] c3t e (6.31)

Let
2
pa‘ dx A
Vi —=—=p+ L
N p (6.32)
or
A =%pa (6.33)
Substitution of A; = pa and A, =-pg into Eqgs. 6.31 and 6.32 yields
oV 14 op ap
pa[E—+(V+a) b?] +[5+(V+a)gx" =c3 + pac, (6.34)
if
dx
E;z V+a (6.35)
and
_ 14 14 op ap
pa[s;—+(V-a) §J+[§+(V— a)gx— =c¢3 - pac, (6.36)
if
dx
T =V-a (6.37)

Note that Eq. 6.34 is valid only if Eq. 6.35 is satisfied; i.e., Eq. 6.34 is valid
along characteristic curve, dx/dt = V +a, in the x—t plane. Similarly, Eq. 6.36 is
valid along the characteristic curve dx/dr = V - q.

Now, multiplying Eq. 6.20 by a linear multiplier (A;), adding the resulting
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equation to Eq. 6.19, and rearranging the terms, we obtain

oh ) 14
(a—h+ V_>+ XZ(a_p+ V_e>+az(1+p>\2)§=>\2C3+C2 (638)

ot ox ot ox
Let
a?(1+p2;)=0 (6.39)
or
Ay =- 1 (6.40)
P
Substitution of Eq. 6 .40 into Eq. 6.38 yields
<Z—i’+ Vg—ﬁ)—%(-g—?+ V-g%>=cz-%c3 (6.41)
and
dx
I (6.42)

Equation 6.41 is valid if Eq. 6.42 is satisfied. Note that, unlike Eqs. 6.34 and

6.36, which were valid along the characteristic curves dx/dr =V +a, Eq. 6.41 is

valid along the path of a particle in the x-¢ plane. ‘
Equations 6.34, 6.36, and 6.41 can be written as:

1. Alongdx/dt =V +a,

padV +dp=c;+pac, (6.43)
2. Alo.ng dx/dt=V - a,
-padV+dp=c,- pac, (6.44)
3. Alongdx/dt =V,
pdh-dp=pc,- ¢y {6.45)

These ordinary differential equations (Eqs. 6.43-6.45) are called compatibility
equations. Thus, Equations 6.34, 6.36, and 6.41 are in the so-called character-
istic form. These equations can be combined into matrix form as

ou ouU
B—+C—=D 6.46
ot ox ( )
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in which
v
U=< h (647
p
pa 0 1
1
B={ 0 1 -~ 6.48
; (648)
-pa 0 1
pa(V+a) 0 (V+a)
C= 0 Vv ——pI{- (6.49)
~pa(V-a) 0 (V-a)
c3 tpacy
D=<c;-Le, (6.50)
P
C3 = pacy

Formulation of Algebraic Equations

Referring to Fig. 6.7, Eq. 6.46 can be expressed in the finite-difference form as

. U]:'H - U/ . U}:'t-l _ U]:'H )
B/ i Lyl X -t =D/ 6.51
= v j (6.51)
MR I7ALISE §74 R (/50T IAR .
Bj ‘At Lyl le.‘ =Dj (6.52)
f

Note that the spatial derivatives are approximated by the left-hand finite differ-
ences (Fig. 6.7) in Eq. 6.51 and by the right-hand finite differences in Eq. 6.52.
Which of these two equations should be used, depends upon the flow direction
and whether the flow is subsonic or supersonic. For subsonic flows, the left-
hand finite differences are used for the positive characteristic (V + a equation),
and the right-hand finite differences for the negative characteristic (V- a equa-
tion); in the ¥ equation, the right- or left-hand finite differences are used depend-
ing upon the flow direction. This convention makes the finite-difference scheme
as similar as possible to the method of characteristics.

j*t
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By int.ro.ducipg a weighting matrix, W, and by using the preceding convention
for the finite-difference approximations, Egs. 6.51 and 6.52 may be combined as
Mi i ULZE+ M; U + M; . ULT =N, (6.53)

Usually, W =1, I?ut _where the property derivatives are changing rapidly, W may
be used as a weighting matrix. The components of the 3 X 3 matrices M, .
M; ;, and M; ;,, and the column vector N; are e

Ax;
M. . . =E|-WC. - i ol §
fit E[ WC; + (I W)( Y IB,_, - c,._lﬂ (6.54)
o o Ax; Ax;.
M,,i-w[(l E)A—IB,-+E A't‘ B,~—(I—2E)C,~J
+(I- W)[EC,, - (1- E) Cis1] (6.55)
- A 1
Mi'i+] _(l- E)[wck + (I" W)(A—j’ IBH,] +Cl'+l )] (656)
N;=W/[lI- E) Ax, + ) D+ - By A%, g AXie ;
[( ) Ax; EAx,_,) D; +((1 E) A:' +E—A’7—‘— B, U/

_ Ax;_ :
+(1 W)[EDiq Ax;; +(1- E) Dy, Ax; + T'tl EB;,_ U/,

Ax; )
t ”AT' (I- E) By, Ufu] (6.56)

The matrix E depends upon the ty

: pe (subsonic or supersonic) and the direc-
tion of flow as follows: P ) he direc

1. Supersonic flow
a. From left to right

E=1 (6.57)
b. From right to left
E=0 (6.58)
2. Subsonic flow
a. From left to right
1
E= 1 (6.59)
0
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b. From right to left

E=| 0 (6.60)

Equation 6.53 is also used at the boundaries except that those finite-difference
equations having subscripts of either O or n + 2 are dropped from the set and are
replaced by the appropriate conditions imposed by the boundary.

Computational Procedure

The pipeline is divided into a number of reaches. Equation 6.53 is used at the
interior points. This equation is also used at the boundaries except that the
equations having the terms with subscripts 0 and n + 2 are dropped and are re-
placed by the conditions imposed by the boundary. (If these conditions are
nonlinear, they are linearized.) Since the coefficients of these equations are ex-
pressed in terms of the known variables at the beginning of the time step, the
resulting algebraic equations are linear. If the pipe is divided into n reaches, then
writing Eq. 6.53 at the interior points and at the boundaries as described above
results in 3(n + 1) linear equations in 3(n + 1) unknowns. These equations have
a banded matrix structure as shown in Fig. 6.8. The structure of the band
matrices, showing the flow direction dependence, is given in Fig. 6.9. Due to
the banded structure, these equations can be efficiently solved using a special-
purpose algorithm based on the Gauss elimination method, which takes advan-
tage of the zero elements.

Verification

The preceding finite-difference scheme has been verified by comparing the
results computed by using this scheme for standard problems with those com-
puted by using the method of characteristics and with the experimental re-
sults.28:3%:31 Fjgure 6.10 shows the comparison with the experimental results
reported by Edwards and O’Brien.?® The experimental set-up was the blow-
down of a closed-end, cylindrical pipe filled with high enthalpy water, which
was suddenly opened to the atmosphere. The tube was 4 m long and had an
inside diameter of 32 mm. The initial pressure was 7 MPa, and the initial tem-
perature was 243°C. It is clear from Fig. 6.10 that the comparison between the
computed and measured results is satisfactory.
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Figure 6.8. Structure of system of algebraic equations.
6.8 CASE STUDY

Studies undertaken by the Westinghouse Electric Corporation,'®"! following the
‘rupture of a pipe (0.46-m diameter, 25-mm wall thickness) dl;e to waterhan%mer
in th,e feedwater line of Unit No. 2,Consolidated Edison Company of New
York’s nuclear power plant at Indian Point, are summarized in this section

Configuration of Feedwater Line

"l;he Indian Point Unit No. 2 is equipped with a fourloop Westinghouse PWR
steam supply system. There are two turbine-driven main-feed pumps, and two
motor-driven and one turbine-driven auxiliary feedwater pumps. The schematic
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Figure 6.9. Structure of diagonal elements. (After Banerjee et al,28)

layout of the motor-driven feedwater system is shown in Fig. 6.11; the turbine-
driven auxiliary feedwater system is not shown. The pipe-break in feedline No.
22 occurred inside the containment near the containment penetration (Fig. 6.12).
Description of Incident

On November 13, 1973, the Indian Point Unit No. 2 was operating at about
8 percent power, with one main boiler feed pump in service and the main turbine
running at 1750 rpm. At about 7:38 A.M., the main turbine and the operating
main boiler feed pump were tripped due to high level in Steam Generator (SG)
No. 23. Simultaneously, both motor-driven auxiliary pumps were started. At

~ 7:44:41 A.M., the reactor tripped due to low-low level in SG No. 21. Several

minutes after the reactor trip, there was a severe shock in the feedwater line No.
22, and water level in SG No. 22 could not be restored. At about 8:30 A.m,,
there were indications that the containment dew point and temperature were
rising, and a second shock was observed when some adjustments were made to
increase the auxiliary feedwater flow to SG No. 22. A third shock was observed
at about 8:40 a.m. when the steam-driven auxiliary was started up to feed SG
No. 22. Loop 22 was isolated, and cooldown was initiated at 10:10 A.m.
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Possible Causes of Shock

Three possible shock mechanisms were considered:

1. Waterhammer due to quick closure of a feedwater regulating valve,
2. Shock. due t.o. ba’ckﬂow of hot water into the main feedline from SG No. 22
3. Flow instability in the feedwater line when the feed ring was uncovered. .

A brief description of the investigation for each of these causes follows

Waterhammer

Since the line break occurred at about 8 percent power level, an instantane
closure. of a feedwater control valve or a feedwater check valv’e would not ca(l)luS
appreciable waterhammer. Thus, it would have to be assumed that the feedli::
was.dafnaged during a previous incident and that the pipe finally ruptured durin
the incident on November 13. Actually, shocks had been noted during a previoug

plant trip from 360 MW i
generatof_ e (30 percent power) due to low-low level in one steam
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A computer program was used to determine the maximum pressure due to:

1. instantaneous closure of the control valve with the check valve acting
2. control-valve closure in 50 ms with check valve acting
3. instantaneous control-valve closure without check valve.

Analytical investigations indicated that the maximum stress for 8 percent
power could not cause pipe rupture; but for 30 percent power, the pipe stress at
the containment penetration exceeded the specified minimum-yield strength of
the pipe.

Backflow

Field investigations indicated that backflow from SG No. 22 could occur under
conditions prevalent during the incident on November 13. The hot water could
flow into line No. 22 for a period of time, and when the reactor tripped, the
secondary side could have gradually depressurized, and the hot water could have
flashed into steam and produced a trapped steam bubble in feedline No. 22.
This trapped steam bubble could have collapsed abruptly when it came in con-
tact with the cold auxiliary feedwater, and the resulting shock could have rup-
tured the line.

Steam-Header Flow Instability

Following the fall in the steam-generator liquid level below the feedring, the
inlet sections of the feedline and the feedring could have been drained. If the
auxiliary pump does not keep these sections full of water, a free surface will
form, which will be available for condensation of counterflow steam moving up
through the feedwater-ring injection holes. If the flow of steam is sufficient,
ripples will form on the free surface, which will be followed by flooding of the
cross-section. This local flooding will cause isolation of a condensing steam
bubble, which will then collapse, causing a high-pressure pulse.

An analytical analysis of this phenomenon is impossible. Therefore, investi-
gations were carried out on a 1:12-scale model in which the low pressure of the
condensing steam was simulated by a vacuum line. These experiments revealed
that a periodic slug of water would form within the horizontal section of the
feedwater line.

Figure 6.13 shows the sequence of events. As the auxiliary feedwater is
initiated to compensate for the falling steam pressure, cold water pours into the
feedpipe, and a standing wave builds up at the juncture of the thermal sleeve
to the feedring (Fig. 6.13a). Depending upon the flow rate, the standing wave
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Figure 6.13. Schematic representation of a slugging mechanism. (After Pulling'%)

seals the feedring (Fig. 6.13b) yielding an entrapped steam bubble. This en-
trapped steam condenses due to rapid heat transfer, and a slug of water acceler-
ates from the steam generator into the feedwater pipe (Fig. 6.13c) until it hits an
obstruction, usually the first elbow in the feedpipe. A great amount of energy
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is dissipated at the sleeve, and the remainder is transmitted into the pipe. The
slug then returns to the steam generator, and the cycle is repeated with a dimin-
ishing energy (Fig. 6.13d and e).

Plant Modifications

Based on the results of the investigations, the following modifications were made
to prevent recurrence of the November incident:

1. The feedwater control valves were equipped with snubbers to increase the
closing time.

2. The main feedwater isolation valves were modified so that they will close
by motor-operated actuators when the possibility of backflow exists.

3. The long horizontal run of feedwater line No. 22 was modified (Fig. 6.14)
to reduce the entrapped steam volume in case the water level drops below
the feedwater ring.

Verification Tests

To verify the effectiveness of the plant modifications, a systematic series of tests
were conducted. [t was found that low-intensity shocks still occurred in some
cases. The tests indicated that the shock mechanism was related to the drainage
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Figure 6.14. Modified feedwater piping of steam generator No. 22. (After Aanstadla)
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of the feedring and that the shocks occurred only at higher auxiliary feedwater
flow rates. In addition, it was found that:

1. Prior to the shock, with the line partially drained, thermocouples located at
the top and at the bottom of the feedwater line showed steam and auxiliary
feedwater temperatures, respectively.

2. Shortly after the shock, the thermocouples located on the outside surface

of the pipe showed that the temperature inside the pipe changed suddenly
which is indicative of a sudden condensation. ’

To reduce drainage of the feedwater ring following normal plant trips, the
original nozzles in the bottom of the feedwater ring were plugged and the’n re-
placed with 35 larger holes in the top of the ring. A short J-bend pipe was
welded to each hole to direct the feedwater vertically downward. Extensive

tebsts conducted after making this modification showed that no shocks were
observed.

6.9 SUMMARY

In this chapter, the terminology was first introduced, and causes that may pro-
duce transient conditions were then outlined. Various numerical methods avail-
able for the transient analysis were discussed. A number of boundary conditions
commonly found in the piping systems of the nuclear power plants were derived
The loss-of-coolant accident was then briefly described. This was followed b);
thf: presentation of the details of an implicit finite-difference scheme that is
suitable for analyzing transients in homogeneous two-phase flows,

PROBLEMS

6.1 Derive the boundary conditions for an air pocket entrapped in a pipeline.

Assume that the air is released slowly through an air valve as the air pres-
sure increases.

6.2 Develop tl'1e boundary conditions for a condenser in which the condenser
tubes at I.ugher level are unsubmerged as the water level in the water boxes
falls. (Hint: Replace the condenser tubes with a number of paralle! pipes

lOCat at dlf l th.r Ollly tllose pipes that
e(l telent EVe]S. COllSldEI the ﬂow ou h
are SUb“lelged-) ’

6.3 For the il.'nplicit finite-difference method for analyzing two-phase flows
presented in Section 6.7, write the end equations for:

1. aseries junction
2. avalve
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3. a junction of three pipes
4. a constant-head reservoir.

Neglect the form losses for cases 1, 3, and 4, and linearize the equation for
case 2.
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CHAPTER 7

TRANSIENTS IN LONG OIL PIPELINES

7.1 INTRODUCTION

Cross-country pipelines transporting crude oil or refined products are usually
several hundred kilometers long and have several pumping stations located
along - their length (Fig. 7.1), with each having a number of pumps in series.
The pumping head of these stations is mainly used to overcome the friction
losses in the pipeline; in 2 mountainous terrain, however, some gravity lift may
be required in addition to the friction losses.

The analysis of transients in oil pipelines, sometimes called oil- hammer anal-
Ysis or surge analysis, is rather complex because the pipeline friction losses are
large compared to the instantaneous pressure changes caused by a sudden vari-
ation of the flow velocity. Prior to the availability of high-speed digital com-
puters, these analyses were approximate, and a large factor of safety had to
be used to allow for uncertainties in the computed results. Nowadays, pressures
for various operating conditions can be accurately predicted, thus allowing a
reduction in the factor of safety.

During the design of a pipeline, the maximum and minimum pressures are
computed in order to select the pipe-wall thickness necessary to withstand
these pressures. A small reduction in the pipe-wall thickness can result in sig-
nificant savings in the initial cost of the project; therefore, a detailed analysis of
the transients caused by various possible operating conditions is necessary for an
economic design. A detailed analysis of an existing pipeline may indicate the
possibility of increasing its throughput by increasing the normal working pres-
sures, which in the original design might have been set too low to allow for un-
certainties in the prediction of the maximum and minimum pressures.

A very important parameter in the design of an oil pipeline is the friction
factor, f, which should be precisely known to determine the initial steady-
state pressures along the pipeline and hence the required pumping heads of the
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Figure 7.1. Schematic diagram of a long oil pipeline.

pumping units. In addition to f, the values of the bulk modulus of elasticity,
K, and the density, p, of the oil should be known to compute the velocity of
the pressure waves. The friction factors can usually be estimated closely during
the design stages; the values of K and p, however, are unknown and may vary
from one oil batch to another. Therefore, a range of the expected values of
K and p should be used in the analysis during design, and the values that yield
worst conditions should be selected. As soon as the pipeline is commissioned,
the value of these variables should be determined by conducting prototype
tests. Based on the results of these tests, operating guidelines should be pre-
pared for a safe operation of the pipeline.

In this chapter, 2 number of terms commonly used in the oil industry are
first defined. Different operations of vajous appurtenances and control devices
that may produce transient conditions in the pipeline are discussed. A com-
putational procedure to analyze the transient conditions in long pipelines by
the method of characteristics is then presented.

7.2 DEFINITIONS
The following terms'~® are commonly used in the oil industry:

Potential Surge. The instantaneous pressure rise caused by instantaneously
stopping the flow (i.e., reducing the flow velocity to zero) is defined as potential
surge. The amplitude of the potential surge, Z, may be computed as follows:
If V, is the initial steady-state velocity, then AV =0- ¥, = -F,. Substituting
this value of AV into Eq. 1.8, we obtain »
z=at=-2av=2y (7.1)
g g
in which AH = instantaneous pressure rise due to reduction of flow velocity ¥,
to zero; a = velocity of pressure waves; and g = acceleration due to gravity. If
¥, and a are in m/s, g is in m/s?, then Z is in m.
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Line Packing. The increase in the storage capacity of a pipeline due to an
increase in pressure is called line packing. The following analogy will be helpful
in the understanding of this phenomenon.

Let us assume that the flow velocity in the canal shown in Fig. 7.2 is suddenly
reduced from ¥, to zero at the downstream end by closing a sluice gate. This
sudden reduction in the flow velocity produces a surge, which travels in the
upstream direction. For simplification purposes, let us assume that the surge
height does not change as it propagates in the upstream direction. If the water
surface behind the wave front does not change, then it will be parallel to the
initial steady-state water surface (line ¢d in Fig. 7.2), except that the water
surface will be at a higher level. Because of slope in the water surface, water
will keep on flowing toward the sluice gate even though the surge has passed a
particular point in the canal. As the velocity at the sluice gate is zero, the
water flowing behind the surge will be stored between the surge location and
the sluice gate. Due to this storage, the water surface downstream of the wave
will be almost horizontal. With further upstream movement of the surge from
be to fh, more water will flow behind the surge, and the water level at the sluice
gate will rise from e to j. Thus, the shaded area in Fig. 7.2 is due to storage of
water flowing downstream of the surge. At the downstream end, water level
rose from a to d due to initial or potential surge, whereas it rose first from d
to e and then from ¢ to j due to storage of water between the surge location
and the sluice gate.

Conditions are analogous in a long pipeline. Due to sudden closure of a down-
stream valve (Fig. 7.3), pressure rises instantaneously at the downstream end,
and a wave having amplitude equal to the potential surge travels in the up-
stream direction. Just like the flow behind the surge in the canal, oil flows
downstream of the wave front, pressure rises gradually at the downstream end,
the hydraulic grade line becomes almost horizontal, and more oil is stored
between the wavefront and the valve. This increase in storage is called line

Sluice gate

Reservoir

7

Figure 7.2. Propagation of surge in a canal.
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Figure 7.3. Potential surge and line packing.

packing. Referring to Fig. 7.3, the pressure rise at the valve is made up of two
parts: (1) potential surge, Z, produced due to instantaneous closure of the
valve, and (2) Ap, due to line packing,.

Depending upon the length of the pipeline, the pressure rise due to line pack-
ing may be several times greater than the potential surge.

Attenuation. As discussed previously, the oil flows toward the valve even
though the wave front has passed a particular location in the pipeline. In other
words, the velocity differential (AV) across the wavefront is reduced as the
wave propagates in the upstream direction. Hence, it follows from Eq. 7.1 that
the amplitude of the surge is reduced as it propagates along the pipeline due
to reduction in the velocity differential across the wave front. This reduction
in the surge amplitude is referred to as arrenuation.

The amplitude of the surge is also reduced due to friction losses. However,
this reduction is usually small as compared to that due to decrease in the ve-
locity differential across the wave front.

Pyramidal Effect. The superposition of one transient state pressure upon
another is referred to as pyramidal effect. For example, if a line were packed
due to closure of a downstream valve or due to power failure to the pumps
of a downstream pumping station, and the pumps of an upstream station were
started, then the pressure due to pump start-up will be superimposed on the
pressure due to line packing.

Put-and-Take Operation. In a put-and-take station operation, each station
pumps oil from a tank located on its suction side into a tank located on the
suction side of the next station.

Float-Tank Operation. Float-tank operation is similar to the put-and-take
station operation except that a float tank is open to the suction line of each
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station. The size of the float tank is usually small compared to those in the
put-and-take operation.

Tight-Line Operation. In tight-line station operation, each station pumps
directly into the suction. manifold of the downstream station, and no tanks
are provided on the suction side. Such a system is called a tight-line system
or a closed system.

Station Regulation. Maintenance of the pressures within the safe limits of
the pipe and equipment by means of pressure controllers at each pumping
station is called station regulation.

Line Regulation. Maintenance of an identical pumping rate at each pump
station of a tight-line or closed system is referred to as line regulation.

Rarefaction Control. Planned reduction of flow at an upstream station to
reduce pressure rise in the pipeline following a sudden accidental flow reduc-
tion at the downstream station is called rarefaction control. Flow at the pump-
ing stations may be reduced by shutting down a pump or by closing a valve,
By reducing flow at the upstream station, a negative wave is produced, which
travels toward the downstream station. This wave nullifies part of the pressure
rise caused by the upset at the downstream station.

7.3 CAUSES OF TRANSIENTS

The folIOang operation of various appurtenances or control devices' 7~ pro-
duces transient conditions in oil pipelines:

. Opening or closing the control valves

. Starting or stopping the pumps

. Power failure to the electric motors of pumping units

. Change in the pumping rate and discharge pressure of pumping stations
. Operation of the reciprocating pumps

Pipeline rupture.

kWD —

Starting a pump or opening a valve at an intermediate station produces a
pressure rise on the downstream side and a pressure drop on the upstream
side, whereas a pump shutdown or closure of a valve produces a pressure rise
on the upstream side and a pressure drop on the downstream side.

The flow and pressure on the suction and discharge sides of a reciprocating
pump are periodic. If the period of the flow or pressure oscillations matches
the natural period of the piping system, resonance will develop (see Chapter 8)
resu]lting in high-amplitude pressure fluctuations, which may damage the
pipeline.
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Air entrapped during filling or following major repairs may produce surges
of high magnitude.!® In addition, if air is present in the pipeline, there is
always a danger of an explosion, which may rupture the pipeline.

7.4 METHOD OF ANALYSIS

The dynamic and continuity equations (Egs. 2.11, 2.30) derived in Chapter 2
describe the transient-state flows in oil pipelines. Note that these equations
are not valid for a simultaneous flow of gas and oil in a pipeline for which
equations for a two-phase flow will have to be used.

To determine the transient conditions in a pipeline, the dynamic and con-
tinuity equations are solved subject to appropriate boundary conditions. As
discussed in Chapter 2, these equations can be integrated only by numerical
methods since a closed-form solution is not possible because of the presence
of nonlinear terms. The method of characteristics presented in Chapter 3 may
be used for the numerical integration of these equations. However, as the
friction losses in long oil pipelines are large compared to the potential surge,
a first-order approximation* of the friction term, fQ1Q|/(2DA), of Eqgs. 3.8
and 3.10 may yield an incorrect and unstable solution. An examination of the
computed results will reveal any instability, while the validity of the results
may be checked by comparing the results obtained by using larger and smaller
time steps. Since oil pipelines are usually very long, small time steps would
require excessive amount of computer time. To avoid this, the friction term
may be considered in the analysis by using either of the following procedures,
which allow use of larger time steps:

1. Second-order approximation* %11
2. Predictor-corrector scheme.'?:13

In a second-order approximation, an average value of the friction term com-
puted at points P and 4 (Fig. 3.1) is used for Eq. 3.8, and an average value of
the friction term computed at points P and B is used for Eq. 3.10. This results
in two nonlinear algebraic equations in Qp and Hp. These equations may be
solved by the Newton-Raphson method. In the predictor-corrector scheme,
presented by Evangelisti,'>*!® a first-order approximation is used to determine
the discharge at the end of the time step. This predicted value of the discharge
is then used in the corrector part to compute the friction term.

*
fxxl fx)dx = f(x,) (x| - x,) is called a first-order approximation, and
o

j;‘xl fOx)dx = % [fxo) + f(x1)] (x) = x,) is called a second-order approximation.
{¢]
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Because the predictor-corrector scheme is easy to program, requires less
computer time than the second-order approximation, and yields sufficiently
accurate results, details of this scheme are presented below.

Referring to Fig. 3.1, let us assume that the conditions (e.g., pressure and
flow) are known at time ¢, and that we have to determine the unknown con-
ditions at point P. (If #, =0, these are initial steady-state conditions, and if
f, > 0, then these are computed values for the previous time step.)

For the predictor part, integration of Eqgs. 3.8 and 3.10 by using a first-order
approximation yields

0F- Q4 +CaHE-Hy)+RQ,410,41=0 (72)
0F- Qg - Ca(HE-Hp)+RQ51051=0 (7.3)

in which R = fAt/(2DA). In these equations, the notation of Section 3.2 is used
except that an asterisk is used to designate the predicted values of various
variables.

Equations 7.2 and 7.3 can be written as

Qp=Cp - C,Hp (7:4)
and
Qr =Cp +C, H}p (7.5)

in which C; and C;; are equal to the right-hand sides of Eqs. 3.20 and 3.21,
respectively. Elimination of #} from Egs. 7.4 and 7.5 yields

Qp =05(Cy +CF) (7.6)

Now this value of O} may be used in the corrector part to calculate the friction
term. Integration of Eqs. 3.8 and 3.10, by using a second-order approximation
and by using QF for computing the friction term, yields

Qp - CQa + ColHp - Hy)+ 0.5R(Q4 1041+ Q108D =0 (7.7)
and
Op - Qp - Ca(Hp - Hp) t 0.5R(Qp 105 | + QF1QF) = 0 (7.8)
Equations 7.7 and 7.8 may be written as
Op=C, - C,Hp (7.9)
and
O0p=C, +C, Hp (7.10)
in which
Cp=Q4 +CuHy - 05R (041041 +0F102D (7.11)
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Cn=Qp-CaHs - 0.5R(Qpl0g! + QplQF) (7.12)
By eliminating Hp from Eqs. 7.9 and 7.10, we obtain
Qp=05(C, +Cp) (7.13)

Now Hp may be determined from either Eq. 7.9 or 7.10.

To determine conditions at the boundaries, the boundary conditions derived
in Chapters 3 and 10 are first used to compute Qp for the predictor part. Then,
this value of Qp is used to compute Cp and C, from Egs. 7.11 and 7.12, and
the same boundary conditions are used again to determine Qp and Hp in the
predictor part before proceeding to the next time step. The other computa-
tional procedure is the same as described in Section 3.2.

7.5 DESIGN CONSIDERATIONS

General Remarks

With a proper design and provision of automatic-control and protective devices,
such as pressure controllers, pump-shutdown switches, and relief valves, a pipe-
line can be safely operated to its maximum capacity. The main functions of
these devices are to detect a severe upset in the system and to take appropriate
corrective action so that the pipeline pressures remain within the design limits.
The time lag between the detection of an upset and the corrective action should
be as small as possible. In addition, the action of the protective facilities should
be rapid.

The maximum pressure in a blocked line having a centrifugal pump is equal
to the shutoff head. However, there is no such upper limit on the maximum
pressure in a blocked line having a reciprocating pump; the pressure in this
case keeps on rising until either the pipeline ruptures or the pump fails.

Power failure to the electric motors of a pumping station will shut down all
pumping units simultaneously. Since this condition may occur a number of
times during the life of the project, it should be considered as a normal opera-
tion during design. In an engine-powered pumping station, however, the proba-
bility of simultaneous shutdown of all pumping units is rather small under nor-
mal conditions although it is possible if some control equipment malfunctions.

While analyzing the controlling action of a valve, a proper flow versus valve-
opening curve should be used since the flow in certain types of valves does not
change until the valve has been opened or closed by approximately 20 to 30
percent. If it is assumed that the flow begins to change as soon as the valve
opening is changed, it may yield incorrect results.

Since normal transient operating conditions are likely to occur several times
during the life of the project, a factor of safety should be used that is larger
than that for the emergency conditions, whose probability of occurrence is
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rather small. Malfunctioning of the control equipment in the most unfavor-
able manner may be considered as an emergency condition.

Control and Surge Protective Devices

A discharge-pressure controller and a pump-shutdown switch are commonly
provided in a pumping station having centrifugal pumps. A pressure controller
controls the discharge pressure by reducing the pump speed or by closing a con-
trol valve. If the pressure exceeds the limits set on the controller, the pump-
shutdown switch shuts down the entire station.

In pumping stations having reciprocating pumps, a pressure controller is also
used to operate a bypass valve or to change the pump stroke or the pump
speed. As an added protection, a relief valve with a capacity equal to the pump
discharge should be installed. The resonance conditions may be avoided as
follows: In a pumping station with two or three pumps operating at 20 cycles/s
or less and having a discharge pressure of less than 6 MPa, tying the dis-
charge lines a short distance from the pump headers or providing an air chamber
has been reported” to be successful in reducing the pressure fluctuation by
about 90 percent. On high-speed multiplex pumps operating at more than
20 cycles/s or having discharge pressures more than 6 MPa, the provision
of air chambers does not adequately suppress the pressure fluctuations. In
such cases, pulsation dampeners of special design have been found to be
satisfactory.'®

The pressure caused by line packing in a closed system may be several times
greater than the potential surge, and it may stress the entire pipeline to the full
discharge pressure of the upstream station. These pressures can be kept low by
an advance action or rarefaction control, as discussed in the following. Pressure
monitors, provided on the suction side of a pump station, detect any excessive
pressure rise and transmit a signal to the supervisory control, which reduces
the discharge pressure and/or outflow of the upstream station. Due to reduc-
tion of the discharge pressure or flow of the upstream station, a negative wave
travels in the downstream direction and reduces pressure built up in the
pipeline. Another method for reducing the pressure rise is to provide a relief
valve at the downstream station,

Upon power failure to the pumping units of an intermediate pumping station,
pressure rises on the suction side and decreases on the discharge side. Excessive
pressure rise or drop may be prevented by providing a check valve in the pump
bypass. As soon as the rising pressure on the suction side exceeds the falling
pressure on the discharge side, oil begins to flow from the suction side to the
discharge side of the pump. This flow through the check valve helps in pre-
venting further increase and decrease in the pressure on the suction and dis-
charge sides, respectively.

TR
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In a mountainous terrain, a surge tank may be provided at the peaks to avoid
column separation following pump failure at the upstream station.

7.6 SUMMARY

In this chapter, a number of terms commonly used in the oil industry were
defined, and different causes of transient conditions in oil pipelines were out-
lined. A computational procedure was presented to analyze transients in long
pipelines by the method of characteristics. The chapter was concluded by
discussing the use of various protective and control devices to keep the pressures
within the design limits.

PROBLEMS

7.1 Write a computer program to analyze a long pipeline having a reservoir at
the upstream end and a valve at the downstream end. Include the friction
term of Eqs. 3.8 and 3.10 by using (1) a first-order finite-difference ap-
proximation outlined in Chapter 3 and (2) a predictor-corrector scheme
of Section 7.4.

7.2 Use the computer program of Problem 7.1 to compute the potential surge,
and the maximum transient-state pressures at the valve and at midlength
of a 32,000-m-long, 2-m-diameter pipeline carrying 3.14 m3/s of crude
oil. Assume that the downstream valve is instantaneously closed.

7.3 Compare the maximum pressures of Problem 7.2, obtained by including
the friction term, by using: (1) a first-order, finite-difference approxi-
mation and (2) a predictor-corrector scheme.

7.4 Develop the boundary conditions for a pumping station having a bypass
line fitted with a check valve. The check valve opens as soon as the pres-
sure on the suction side exceeds the pressure on the discharge side.
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CHAPTER 8

RESONANCE IN PRESSURIZED
PIPING SYSTEMS

8.1 INTRODUCTION

In Chapters 4 to 6, we considered transient-state flows that represented the inter-
mediate-flow conditions when the flow is changed from one steady state to
another. However, sometimes when a disturbance is introduced into a piping
system, it is amplified with time instead of decaying and results in severe pres-
sure and flow oscillations. This condition, which depends upon the character-
istics of the piping system and of the excitation, is termed resonance.

In this chapter, the development of resonating conditions and the available
methods for their analysis are discussed. The details of the transfer matrix
method, derivation of the field and point matrices, and procedures for de-
termining the natural frequencies and frequency response of piping systems are
then presented. To verify the transfer matrix method, its results are compared
with those of the characteristics and impedance methods and with those mea-
sured in the laboratory and on the prototype installations.

8.2 DEVELOPMENT OF RESONATING CONDITIONS

We know from fundamental mechanics’ that the natural frequency, w,,, of the
1

spring-mass system shown in Fig. 8.1 isequal to 2—n\/k/m, in which w,, = natural

frequency of the system in rad/s, m = mass, and k = spring constant. If a sinus-
oidal force having frequency wy (Fig. 8.1b) is applied to the mass, initially a beat
develops (transient state) and then the system starts to oscillate (Fig. 8.1¢) at
the forcing frequency wy and with a constant amplitude. These oscillations,
having a constant amplitude, are called steady vibrations. The amplitude of the

201
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Figure 8.1. Vibrations of a spring mass system.

vibrations depends upon the ratio w, = wr/wy. If the forcing frequency wyis
equal to the natural frequency w, and the system is frictionless, then the ampli-
tude of steady vibrations becomes infinite. The reason for this is that the total
energy of the system keeps on increasing with each cycle because no energy is

e e -
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dissipated in the system. Hence, the oscillations are amplified without any upper
bound. However, if the system is not frictionless, the amplitude of the oscilla-
tions grows until the energy input and energy dissipation during a cycle are
equal. Since at that time there is no additional energy input per cycle, the system
oscillates with a finite amplitude.

Now let us consider a pipeline having a reservoir at the upstream end and a
valve at the downstream end (Fig. 8.22). Let us assume that the valve is initially
in a closed position but that we open and close it sinusoidally at frequency wy
starting at time ¢t =0 (Fig. 8.2b). Similar to our spring-mass system, a beat de-
velops first (transient state), and then the flow and pressure oscillate at a con-
stant amplitude but with frequency wy (Fig. 8.2c). Such a periodic flow is
termed steady-oscillatory flow.

Let us compare the characteristics of the steady-oscillatory flow in our simple
hydraulic system with the steady vibrations of the spring-mass system. The dis-
placement of the spring at the fixed end in our spring-mass system is zero.
Similarly, the water level in the upstream reservoir of the hydraulic system is
constant. Therefore, the amplitude of pressure oscillations at the reservoir is
zero, or, in other words, there is a pressure node at the reservoir, In the spring-
mass system, there is only one mass and one spring; therefore, there is only one
mode of vibrations or one degree of freedom, and hence the system has only one
natural frequency (or natural period). If the compressibility of the fluid is taken
into consideration, the fluid in the pipeline of our hydraulic system is comprised
of an infinite number of masses and springs. Therefore, our hydraulic system has
infinite modes of oscillations or degrees of freedom* and hence has infinite
natural periods: the first is termed as fundamental, and the others are called
higher harmonics.

Figure 8.3 shows the variation of the amplitude of the pressure oscillations at
various harmonics along the piping system of Fig. 8.2. Since the reservoir level
is constant, a pressure node always exists at the reservoir end. At the valve, how-
ever, there is a pressure node during even harmonics and an antinode during odd
harmonics. The location of the nodes and antinodes along a pipeline depends
upon the harmonic at which the system is oscillating.

Let us now consider another significant difference between our spring-mass,
and hydraulic systems. In the former, the source of energy is the external peri-
odic force acting on the mass. In the hydraulic system, although the valve is the
forcing function, it is not the source of energy. The valve is just controlling the
efflux of energy from the system, whereas the upstream reservoir is the source of

*Distributed systems? represented by partial differential equations have infinite degrees of
freedom, whereas lumped systems represented by ordinary differential equations have finite
degrees of freedom.
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Figure 8.2. Development of steady-oscillatory flow in a single pipeline.

energy. Since the volume of the fluid in the pipeline is constant, the outflow per
cycle at the valve must be equal to the inflow per cycle at the reservoir. The
reservoir level being constant, the energy input into the system is at a constant
head. However, there is no such restriction on the energy efflux at the valve. If
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the valve operation is such that there is outflow when the pressure at the valve is
low and there is little or no outflow when the pressure is high, net influx of
energy occurs during each cycle. This causes the pressure oscillations to grow.
When the steady-oscillatory flow is fully developed, a discharge node exists at
the valve during oscillations at odd harmonics if the head losses in the system are
neglected. Once a discharge node is formed at the vaive, opening or closing of
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Figure 8.3. Pressure oscillations along pipeline at various harmonics.
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the valve has no effect on the energy efflux, and thus the amplitude of the pres-
sure oscillations does not increase further even though it is assumed that there is
no energy dissipation in the system.

Allievi® was the first to prove that the maximum possible amplitude of the
pressure oscillations at the valve was equal to the static head. However, later on,
Bergeron® proved graphically that for large values of Allievi’s parameter,
p=(aV,)/(2gH,), it is possible to have amplitude greater than the static head.
Also, Camichel® demonstrated that doubling of the pressure head is not possible
unless H, > (aV,)/g. In the preceding expressions, = waterhammer wave ve-
locity; g = acceleration due to gravity; H, = static head; and ¥, =steady-state
flow velocity.

8.3 FORCED AND SELF-EXCITED OSCILLATIONS

Steady-oscillatory flows in piping systems may be caused by a boundary that
acts as a periodic forcing function or by a self-excited excitation. The system
oscillates at the frequency of the forcing function during forced oscillations and
at one of the natural frequencies of the system during self-excited oscillations.

Forcing Functions

There are three common types of forcing functions in hydraulic systems: peri-
odic variation of the pressure, flow, and the relationship between the pressure
and the flow.

A typical example of the periodic pressure variation is a standing wave on the
reservoir water surface at a pipe intake. If the period of the surface waves corre-
sponds to one of the natural periods of the piping system, steady-oscillatory
conditions are developed in the system in just a few cycles.

A reciprocating pump has periodic inflow and outflow. If the period of a pre-
dominant harmonic of either the inflow or of the outflow corresponds to a
natural period of the suction or discharge lines, severe flow oscillations will
develop.

A periodically opening and closing valve is an example of a periodic variation
of the relationship between the pressure and the flow. The development of
steady-oscillatory flows by a periodic valve operation was discussed in Section 8.2.

Self-Excited Oscillations

In the self-excited or auto- oscillations, a component of the system acts as an
exciter, which causes the system energy to increase following a small disturbance
in the system. Resonance develops when the net energy influx to the system per
cycle is more than the energy dissipated per cycle.
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A typical example of an exciter is a leaking valve or a leaking seal.® Let us
examine how the oscillations develop. Figure 8.4 shows the valve characteristics
for a normal and for a leaking valve (Fig. 8.4a and b). For a normat valve, the
flow increases as the pressure increases; for a leaking valve, the flow decreases as
the pressure increases. In Chapter 1, we derived the following equation for the
change in pressure caused by a flow variation, i.e.,

a

AH=-—AV (1.8)
4
Valve characteristics
H 4 H 4

/ 5 / N
6, J 3 5\37
2 2

v, Vo, V. t
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Valve chaoracteristics

S
e

(b) Leaking valve

Figure 8.4. Self-excited oscillations.
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On the H ~ V diagram, this equation plots as straight lines having slopes ta/g for
a decrease or increase in velocity, respectively. Let us assume that the initial
steady-state velocity is ¥, and that, due to a disturbance, it is decreased to V.
The decay or amplification of this disturbance using the graphical waterhammer
analysis is shown in Fig. 8.4.7 It can be seen that the disturbance decays in a
few cycles for a normal valve whereas it amplifies for a leaking valve. As the
flow through a leaking valve cannot be less than zero and it cannot increase
infinitely, the amplification of the pressure oscillations is therefore finite.

Den Hartog® reported self-excited penstock vibrations caused by the dis-
turbances produced by the runner blades passing the guide vanes of a Francis
turbine. Based on a simplified theoretical analysis, which was confirmed by ob-
servations on eight hydroelectric installations, he concluded that such vibrations
are to be expected if the number of the runner blades is one less than the num-
ber of the guide vanes. Self-excited vibrations of the guide vanes of a centrifugal
pump is considered to be the cause of the accident at the Lac Blanc-Lac Noir
pumped storage plant,” in which several testing personnel died.

The possibility of the self-excited vibrations in a liquid rocket-engine-
propellant feed system were determined by a computer analysis;'® experimental
determination of such a possibility in the piping system of a control system is
described by Saito.!!

Improper settings of a hydraulic turbine governor can result in self-excited
oscillations called governor hunting.

Abbot et al.® measured self-excited vibrations in Bersimiss 11 power plant. A
slight leak in a 3.7-m-diameter penstock valve due to a reduction of seal pressure
resulted in the vibrations of the valve. The valve vibrations and pressure oscilla-
tions were sinusoidal and were eliminated by opening a bypass valve.

McCaig and Gibson'? reported vibrations in a pum p-discharge line caused by a
leak under the static head in a 0.25-m-diameter spring-cushioned check valve.
Measurements showed that the pressure oscillations were approximately sinu-
soidal with sharp impulses of large magnitude every third cycle. The vibrations
were prevented by installing a weaker cushioning spring in the check valve and
removing the air valves from-the pipeline.

8.4 METHODS OF ANALYSIS

The steady-oscillatory flows in a hydraulic system may be analyzed either in
the time domain or in the frequency domain’® by using the following methods:

1. Time domain: method of characteristics
2. Frequency domain: (a) Impedance method and (b) Transfer matrix method.

A discussion of the advantages and disadvantages of each method follows.

s
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Analysis in Time Domain—Method of Characteristics

As discussed in Chapter 3, in this method, the partial differential equations
describing the unsteady flow are converted into ordinary differential equations,
which are then solved by a finite-difference technique. Nonlinear friction losses
and the nonlinear boundary conditions may be included in the analysis.

To analyze the steady-oscillatory flows by this method," the initial steady-
state discharge and pressure head in the piping system are assumed equal to their
mean values or equal to zero-flow conditions. The specified forcing function is
then imposed as a boundary condition, and the system is analyzed by considering
one frequency at a time. When the initial transients are vanished and a steady-
oscillatory regime is established, the amplitudes of the pressure and discharge
fluctuation are determined. The process of convergence to the steady-
oscillatory conditions is slow (it takes about 150 cycles) and requires a con-
siderable amount of computer time, thus making the method uneconomical for
general studies. The main advantage is that the nonlinear relationships can be
included in the analyses.

Analysis in Frequency Domain

By assuming a sinusoidal variation of the pressure head and the flow, the
dynamic and continuity equations describing the unsteady flow in the time
domain are converted into the frequency domain. The friction term and the
nonlinear boundary conditions are linearized for solution by these methods. If
the amplitude of oscillations is small, the error introduced by linearization
is negligible.

Any periodic forcing function can be handled by these methods. The forcing
function is decomposed into various harmonics by Fourier analysis,'® and each
harmonic is analyzed separately. Since all the equations and relationships are
linear, the system response is determined by superposition'® of individual
responses.

As the frequency response is determined directly, the computer time required
for the analysis is small. Therefore, these methods are suitable for general
studies. The following two methods of analysis in the frequency domain are
available:

Impedance Method

The concept of impedance was introduced by Rocard® and was used later by
Paynter'” and Waller.'® Wylie'®'?° extended and systemized this method for

the analysis of complex systems.
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In this method, the terminal impedance, Z, which is the ratio of the oscilla-
tory pressure head and the discharge, is computed by using the known boundary
conditions. An impedance diagram between w, and |Z;| is plotted. The fre-
quencies at which [Z] is maximum are the resonant frequencies of the system.

Because of the lengthy algebraic equations involved, the method is suitable for
digital computer analysis only. For a parallel piping system, a procedure is sug-
gested that requires solution of a large number of simultaneous equations. This
becomes cumbersome if the system has many parallel loops. For example, eight
simultaneous equations have to be solved for systems having only two parallel
loops.'?

Transfer Matrix Method

The transfer matrix method has been used for analyzing structural and me-
chanical vibrations?!*?? and for analyzing the electrical systems.2* This method
was introduced®?”?7 by the author for the analysis of steady-oscillatory flows
and for determining the frequency response of hydraulic systems.

Similar to the impedance method, the transfer matrix method is based on the
linearized equations and on sinusoidal flow and pressure fluctuations. However,
in the author’s opinion, transfer matrix method is simpler and more systematic
than the impedance method. Other advantagesof the transfer matrix method are
(1) the analysis of the parallel systems does not require any special treatment;
(2) the method is suitable for both hand and digital computations; (3) the
stability of a system can be checked by the root locus technique;?® and (4) sys-
tems, in which oscillations of more than two variables (e.g., pressure, flow,
density, temperature) have to be considered, can be analyzed.

Details of the transfer matrix method are presented herein. Any reader having
an elementary knowledge of the matrix algebra should be able to follow the
derivation of matrices and their application. Block diagrams are used to achieve
an orderly and concise formulation and analysis of problems involving com-
plex systems.

8.5 TERMINOLOGY

The terminology established by Camichel et al.® and later used by Jaeger3®™
and Wylie'?-?° is followed herein.

Steady-Oscillatory Flow

A flow in which a permanent regime is established such that the conditions at a
point (e.g., pressure, discharge) are periodic functions of time is called sready-
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oscillatory flow. In the theory of vibrations, the steady-state oscillations refer to
the oscillations that have constant amplitude. However, the term steady-
oscillatory is used herein to avoid confusion with the steady flow in which con-
ditions at a point are constant with respect to time.

Instantaneous and Mean Discharge and Pressure Head
In a steady-oscillatory flow, the instantaneous discharge, @, and the instanta-
neous pressure head, H, can be divided into two parts:
0=0,+q" (8.1)
H=H,+h* 8.2)
in which Q, = average, or mean, discharge; q* = discharge deviation from the
mean (see Fig. 8.5); H, = average, or mean, pressure head; and h* = pressure
head deviation from the mean. Both h* and g* are functions of time, ¢, and
distance, x. It is assumed that #* and g* are sinusoidal in time, which, in prac-

tice, is often true or a satisfactory approximation.®'2:%+?! Hence, by using
complex algebra, we can write

g* =Re(q(x)e’") (83)

h* = Re (h(x)e’?) (84)
in which w = frequency in rad/s; j =+/-1; h and g are complex variables and
are functions of x only; and “Re” stands for real part of the complex variable.

Theoretical Period

For a series piping system,

Ty = 42 £ (8.5)

Figure 8.5. Instantaneous, mean, and oscillatory discharge.
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and

27 86
Wep =—
th Tth ( - )
in which T, = theoretical period; wy, = theoretical frequency; n = number of
pipes; and a = velocity of the waterhammer waves. . The subscript i denotes
quantities for the ith pipe. In a branch system, l;/g; is calculated along the
main pipeline.

Resonant Frequency

The frequency corresponding to the fundamental or one of the higher har-
monics of the system is called the resonant frequency .

State Vectors and Transfer Matrices

Let us consider a general system (Fig. 8.6) whose input variables x;,x,, - - - x,
and output variables y,,y,, -+, ¥y, are related by the following n simultaneous
equations:

Yi=unxy tupx; ¥ tuyx,

Y2 Sunxy tuspxy o tuyux,

Pt 8.7
YnZUny Xt YUpaXg + - oty x,
In the matrix notation, these equations can be written as
y=Ux ‘ (8.8)

xl ————t

X2 ——

Xp-| ——

Xn

aa—
| .
L .

—_ -
—— ¥Yn-1
[ Yn

Figure 8.6. Block diagram for one-component system.

™
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in which the input variables are combined into a single column vector, x, and
the output variables are combined into a column vector, y. In other words, it
can be said that the system converts, or transfers, the input variables x into the
output variables y, and the transfer takes place in accordance with Eq. 8.8. The
matrix U in Eq. 8.8 is called the transfer matrix, and x and y are called the
state vectors.

In the previous example, the system has only one component. The physical
systems, however, are usually made up of several subsystems or components. In
such cases, each component is represented by a transfer matrix, and the overall
transfer matrix for the system is obtained by multiplying the individual transfer
matrices in a proper sequence (see pp. 214-215).

The general system of Fig. 8.6 has n input and output variables. In hydraulic
systems, however, the quantities of interest at the section i of a pipeline are
usually 4 and g, which can be combined in the matrix notation as

_|a
;= {h}i (8.9)

The column vector z; is called the state vector at section i. The state
vectors just to the left and to the right of a section are designated by the super-
scripts L and R, respectively. For example, zF refers to the state vector just to
the left of the ith section (Fig. 8.7).

To combine the matrix terms in some cases (see p. 229) the state vector is
defined as '

q
z;=<h (8.10)
¥

Because of the additional element with unit value, the column vector z; is called

the extended state vector. A prime is used herein to designate an extended
state vector.

XxX=0 X'li
‘»»u

LR Pipe i LR
T .
|
i i +1
} I —

Figure 8.7. Single pipeline.
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A matrix relating two state vectors is called a transfer matrix. The upper-case
letters F, P, and U are used to designate the transfer matrices; the corresponding
lower-case letters with the double subscripts refer to the elements of the matrix:
the first subscript represents the row, and the second subscript represents the
column of the element. For example, the element in the second row and the
first column of the matrix Uis represented by u,;.

Transfer matrices are of three types:

1. Field transfer matrix, or field matrix, F. A field-transfer relates the
state vectors at two adjacent sections of a pipe. For example,in Fig. 8.7,
2}y = F; zf (8.11)

in which F; = field matrix for the ith pipe.

2. Point transfer matrix, or point matrix, P. The state vectors just to the
left and to the right of a discontinuity, such as at a series junction (Fig. 8.8) or
at a valve, are related by a point-transfer matrix, The type of the discontinuity
is designated by specifying a subscript with the letter . For example, in Fig. 8.8,

R _ L
Ziyg = P.chi+1

(8.12)
in which Pg, = point matrix for a series junction.

3. Qverall transfer marrix, U. The overall transfer matrix relates the state
vector at one end of a system, or a side branch, to that at the other end. For
example if n + 1 is the last section, then

zk,, =Uzf (8.13a)

in which U = overall transfer matrix. This is obtained by an ordered multiplica-
tion of all the intermediate field and point matrices as follows:

Pipe 1 Pipe i+

—_— —_—

-

WY U

i+l

Figure 8.8. Series junction.
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The intermediate field and point matrices are:

2b=Fzf )

z§=Pzz{‘

2§ =F,z%

) > (8.13b)
i S 4Z

2% =p;z}

2y =Py},

LA PS| Fnzﬁj

Elimination of z4,z%, ..., zL, and z® from Eq. 8.13b yields
25,y = (FiPu .. FiP;.. F3sPyFyP,Er)zf (8.13c)
g
Hence, it follows from Eqgs. 8.13a and 8.13c that
U=F,P,...FP,...F;P;F,P,F, (8.144)

8.6 BLOCK DIAGRAMS

A block diagram is a schematic representation of a system in which each com-
ponent, or a combination of components, of the system is represented by a
“black box.” The box representing a pipeline of constant cross-sectional area,
wall thickness, and wall material is characterized by a field matrix, while that
representing a discontinuity in the system geometry is represented by a point
matrix. The block diagram for a system can be simplified by representing a
block of individual boxes by a single box. This procedure is illustrated in the
following sections by a number of typical examples.

A section on a block diagram is shown by a small circle on the line joining the
two boxes. The number of the section is written below the circle and the left-
and right-hand sides of the section are designated by writing the letters L and R

ae al ordio

{
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R F L p R
H p—mr Ot . —a
i P | e

Figure 8.9. Block diagram.

above the circle. For example, in Fig. 8.9,/ and i + 1 denote the number of the
sections, and L and R denote the left- and right-hand sides of the section. In the
case of a branch pipe, the number of the section is written to the right of the
circle, and the left- and right-hand sides of the sections are identified by writing
the letters BL and BR to the left of the circle (see Fig. 8.13b).

The block diagrams are of great help for (1) the concise and orderly formula-
tion and analysis of problems involving complex systems, (2) an easy understand-
ing of the interaction of different parts of the system, and (3) determining the
sequence of multiplication of transfer matrices while doing the calculations by
hand or while writing a computer program,

8.7 DERIVATION OF TRANSFER MATRICES

To analyze the steady-oscillatory flows and to determine the resonating charac-
teristics of a piping system by the method presented herein, it is necessary that
the transfer matrices of the elements of the system be known. In this section,
field matrices for a simple pipeline and for a system of parallel loops are derived.
A numerical procedure is presented to determine the field matrix for a pipe
having variable characteristics along its length. The point matrices for a series
junction, for valves and orifices, and for the junction of a branch (branch with
various end conditions) and the main are developed.

Field Matrices
Single Conduit

The field matrix for a conduit having a constant cross-sectional area, constant
wall thickness, and the same wall material is derived in this section. In the deri-
vation, the system is considered to be distributed, and the friction-loss term is
linearized.

The continuity and dynamic equations describing the flow through closed con-
duits were derived in Chapter 2. For an easy reference, let us rewrite these equa-
tions as

1. Continuity equation
90 &4 M _

ax a* at (8.14)

i
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2. Dynamic equation

oH 1 9 n
__+__._Q+L"=O (815)

ox gA ot 2gDA
in which 4 = cross-sectional area of the pipeline; g = acceleration due to gravity;
D = inside diameter of the pipeline; f= Darcy-Weisbach friction factor; n = expo-
nent of velocity in the friction loss term; x = distance along the pipeline, mea-

sured positive in the downstream direction (see Fig. 8.7); and ¢ = time.

As the mean flow and pressure head are time-invariant and as the mean flow is
00, 99, H,
ipeline, —, —, and
constant along a pipeline, o ot or

follows from Egs. 8.1 and 8.2 that

3Q_3* 230 _d9*
ax  ox’ ot o

o okt O,  on*

ar ar’ ox ox ox

are all equal to zero. Hence, it

(8.16)

0H
. . . ‘o ar o .
However, since we are considering the friction losses, o is not equal to zero.
x

For turbulent flow,

oH, 105

ox  7gDA” (8.17)
and for laminar flow, '

3H, 3200

o gDt ©-18)

in which » = kinematic viscosity of the fluid. If ¢* << Q,, then
0" =(Q, +q*)' =03 +n Q5! ¢* (8.19)

in which higher-order terms are neglected.
It follows from Eqgs. 8.14 through 8.19 that

* *
3" gd O _

8.20
ax a*® ot (8.20)
ar* 1 ag*
+— —+ R * — 0 821
ox gA ot d ®.21)

in which R = (nfQ"~)/(2gDA"™) for turbulent flow and R = (32v)/(g4D?) for
laminar flow.
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The field matrix for a pipe can be derived by using the separation-of-variable
technique? or by using the Cayley-Hamilton theorem.2' The former is used
herein because of its simplicity.t

Elimination of A* from Egs. 8.20 and 8.21 yields

9%¢* 1 8%g* N gAR 3q*
ax? q* or? a® o

(8.22)

Now, if it is assumed that the variation of ¢* is sinusoidal with respect to t
then on the basis of Eq. 8.3, Eq. 8.22 takes the form

dq jgAwR
(- (823)
or
d%q
a;‘#’ q=0 (8.24)
in which
w? jgAwR
PEe—tt— (8.25)
The solution of Eq. 8.24 is
g=c,sinhuyx+c, coshpux (8.26)

in which ¢, and ¢, are arbitrary constants.
If h* is also assumed sinusoidal in ¢, then by substituting Eqgs. 8.26 and 8.4
into Eq. 8.20 and solving for /, we obtain

2

a’u .
h= _ngw(c' cosh u x + ¢, sinh g x) 8.27)

The field matrix relating the state vectors at the ith and at the (f + 1)th section
of the ith pipe (see Fig. 8. 7) of length /; lS to be derived. It is known that at the
ith section (at x = 0), h = hR andg= q, . Hence, it follows from Egs. 8.26 and
8.27 that
3 Bl i&:‘—‘{h{z
ai H;

and (8.28)
¢ = lInR

tFor the derivation using the Cayley-Hamilton theorem, interested readers should see Ref.
24 or 26.
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In addition, at the (i + 1)th section (at x ={;), h = hF,, and g =q%,,. The sub-
stitution of these values of & and g, and ¢, and ¢, from Eq. 8.28 into Egs. 8.26
and 8.27 vields

gk, = (cosh pil)qf - 5 _ (sinh il )R (8.29)
hE. | =-Z, (sinh u,l)q, % (cosh w;l;) kR (8.30)

in which characteristic impedance™® for the pipe|Z, r = (y, 2)/( ]ng )

Equations 8.29 and 8.30 can be expressed in the Tnatri matr1x notation as

q)* coshp;l; ;—1 sinh p;l; | {q) R
= ¢ (8.31)
hlin -Z. sinh y;l; cosh y;l; | | A |;
or
zt,, = FzR (8.32)
Hence, field matrix for the ith pipe is
1
. cosh u;{; - Z sinh u;l; (8.33)
-Z, sinh ul; cosh p;l;
If friction is neglected, i.e., R; = 0, then F; becomes
/.
F; = 08 bis i Ez H b’iw (8.34)
-jC; sin b;w cos b;w

in whichib; = I/a,}and iC; = a;/(gA;). Note that b; and C; are constants for a pipe
and are nwf—nctxons of G, and that C; is the character1st1c impedance!® for the
ith pipe if friction is neglected.
If wl;/a; << 1, then the system may be analyzed as a lumped system. In this
case, for a frictionless system, field matrix F; becomes
_gAiliwy
af
F;= (8.35)
i |
8A;

which follows from Eq. 8.34 since cos (wl;/a;) =~ 1 and sin (wl;/a;) = wi;fa; for
small values of wl;/a;.

While doing the analysis, one first calculates the elements of the field matrix
for each pipe. A comparison of the field matrices of Eqs. 8.34 and 8.35 shows
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that this idealization of a distributed system as a lumped system does not greatly
simplify the computations.

Example 8.1

For w =2.0 rad/s, compute the elements of the field matrix for a pipe that is
400-m-long and has a diameter of 0.5 m. The velocity of waterhaminer waves in
the pipe is 1000 m/s. Assume

. The liquid inside the pipe as a lumped mass.
2 The liquid inside the pipe as distributed, and consider the system is
frictionless.

Solution
Data:
=400 m
D=05m
= 1000 m/s
£=9.81 m/s?
w =2 rad/s

1. Lumped System
n 2
A= Z(O.S)“ =0.196 m?

From Eq. 8.35,

gAlwyj
fiz = BEEErE.

a
9.81 X 0.196 X 400 X 2 f
(1000)?

=-0.00154; -

2 "‘gj]

400X 2
9.81 X 0.196/

=-416.07f
2. Distributed System
b=1/a=400/1000=045s
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_ 1000
9.81 X 0.196

bw=04X2=08

=52008sm™

Substituting these values into Eq. 8.34,

fi1 = f22 = cos bw
=cos 0.8 =0.697

fia=- é—;sin bw
S sin 0.8 =-0.0014 §
520.08
Jf21 =-jCsin bw
=-j X 520.08 X sin 0.8 = 373.08

Conduit Having Variable Characteristics Along Its Length

A conduit is said to have variable characteristics if, 4, a, wall thickness, or wall
material vary along itslength. Equations8.14 and 8.15 describe the transient flow
through such conduits; the only difference is that 4 and/or a are functions of x
instead of being constants, i.e.,

30  gA(x) 3H _

ax  a*(x) ot (8.36)
H 1 3Q_
ax  gA(x) ot (8.37)

in which A(x) and a?(x) denote that 4 and a” are functions of x. In these equa-
tions, nonlinear terms of higher order and friction are neglected. By substituting
Egs. 8.1 through 8.4 into the preceding equations and simplifying, we obtain

9q | jgAXx)w

" ) =0 (8.38)

on, jo

gl (8.39)




222  Applied Hydraulic Transients

These equations can be expressed in the matrix notation as

dz
—=B .40
e Bz (8.40)

in which z is the column vector as defined in Eq. 8.9 and

0 _jgAx)w
2
a*(x)
B= ' (841)
jw
-~ 0
gA(x)
Since the elements of the matrix B are functions of x, the procedure that has
been outlined to determine the field matrix for the conduit fails. To analyze
such cases, recourse is made to either of the following procedures?”:

1. The actual pipeline is replaced by a substitute pipeline having piecewise
constant elements (see Fig. 8.10), and the system is analyzed by using the
field matrices given by Eq. 8.34. This gives satisfactory results at low
frequencies.?”

2. A numerical procedure is adopted to determine the elements of the field
matrix.

The determination of the field matrix for a pipeline having variable character-
istics is equivalent to integrating the differential equation, Eq. 8.40. This may
be done by the Runge-Kutta method?’ as follows.

The pipeline is divided into n reaches as shown in Fig. 8.10. First, the field
matrix for each reach is computed, and then the field matrix for the pipe is

Substitute pipe
Actual pipe

l 2 i i+l n n+i

Figure 8.10. Actual and substitute pipe for a pipe having variable characteristics along its
length,
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determined by multiplying these matrices in a proper sequence. If the length
of the reach between the sections i and i + 1 is s, then the fourth-order Runge-

Kutta method gives®
Zio1 2+ 3 (ko + 2Kk +2Kk, +k3) (8.42)
in which
ko =sB(x;)z;
ky =sB(x; +5/2) (z; + ko/2)
k, =sB(x; +5/2) (z; + k,/2)
ks =sB(x;. ) (zi t k3)

in which B(x;), B(x;+,), and B(x;+5/2) are, respectively, the values of the
matrix B(x) at section i, at i + 1, and at the middle of sectionsiand i + 1.
By substituting Egs. 8.43 into Eq. 8.42, we obtain

ziv1 =Fy02; (8.44)

in which the field matrix for a pipe having variable characteristics along its length
is

(8.43)

Foo =1+ [B(x)) +4B(x; +5/2) + B(¥.)]
+% [B(x; +5/2)B(x;) + B(x;s)B(x; + 5/2) + B2 (x; + 5/2)]
+ i—;‘ [B2(x; +5/2)B(x;) + B(x;.,)B*(x; + 5/2)]

4
+ 2 [BGxis1) B (xi+ s/2)BCx))] (8.45)
in which I = identity or unit matrix.

Parallel System
Let there be n loops in parallel (Fig. 8.11) whose overall transfer matrices are
utm = g¢e L IED) m=1,2,....n (8.46)

The superscript in the parentheses refers to the number of the loop. The matrix
U™ relates the state vectors at the 1,,st and at the (n,, + 1)th section of the
mth loop (see Fig. 8.11b), i.e.,

(ML = ymg {78 (8.47)

Zpip+l
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Pipe |/ ; . .
PE In Pipe 2n Pipe 3n | | Prioe np- 1 Pipe
—— —

— ! ! ? ; ] '
1 I ! '
! 2 3 n, ny+ |

Longitudinal section of n'" loop

(a) Piping system

R

(-

Wt n', 1) ny

R

R

2 ny Iy ny

R L

e = & 1S =5

it i T vt

Fin-0 I Fin=) R L

Fn -1 . Moot [ N >
n-f In-1 fn-1

87 — it "
n "a | [ '

(b} Block diagram

Figure 8.11. Parallel system.
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A prime on the subscript denotes a section on the parallel loop.
The elements of the field matrix, F,, for the parallel loops relating the state
vectors zﬁ, and zF (Fig. 8.11b) can be determined from the following

equations:??

fn""é )
n
fi2= %i -n
. > (8.48)
fa=—
n
fzz=£
n J

in which

=2 o f (8.49)

B Uz
(= 3 U
m=1 Ugrln) J

In deriving the above expressions, use has been made of the relation that
lumi=1 m=1,2,...,n (8.50a)

ie.,

7D - U U =

m=1,2,...n. (8.50b)

Note that Eq. 8.48 is valid only if the elements of the overall transfer matrix
for each parallel loop satisfy Eq. 8.50b. It is known from the theory of matrices
that, for square matrices, the determinant of the product of matrices is equal
to the product of the determinants of matrices. Hence, if IP,E’")I =1, k=
2,3,...,nm, and |F{™|=1,k=1,2,...,n,, for m=1,2,...,n, then
IU("')I =1. It is clear from Eqs. 8.33 and 8.34 that [F| = 1. Furthermore, the
determinants of the point matrices for series junctions and for valves and orifices
are also unity (see the point matrices derived in the following paragraphs). Thus,
if there is a discontinuity other than a series junction, valve, or orifice in any of
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the parallel loops, the determinant of the point matrix for the discontinuity
should be checked to ensure that it has unit value before using Eq. 8.48.

Point Matrices

When there is a discontinuity in the geometry of the system at a section (e.g.,
series junction, orifice, valve, branch junction), we have to derive a point matrix
relating the state vector to the left of the discontinuity with that to the right.
This point matrix is required in the calculation of the overall transfer matrix
for the system, which is then used to determine the resonant frequencies and/or
frequency response of the system.

Point matrices for various boundary conditions usually found in hydropower
and in water-supply schemes are derived in the following sections.

Series Junction

A junction of two pipes having different diameters (see Fig. 8.8), wall thick-
nesses, wall materials, or any combination of these variables is called a series
Junction.
It follows from the continuity equation that

qf = qf (8.51)
In addition,

hR =ht (8.52)
if the losses at the junction are neglected. These two equations can be expressed
in the matrix notation as

R L

zi =Ps.2; (8.53)
in which the point matrix for the series junction is
_ 1 0O
P, = [0 1] (8.54)

Since Py, is a unit matrix, it can be incorporated into the field matrix while
doing the calculations.

Valves and Orifices

The point matrix for a valve or an orifice can be derived by linearizing the gate
equation. This linearization does not introduce large errors if the pressure rise at
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the valve is small as compared to the static head. For an oscillating valve, a sinu-
soidal valve motion is assumed. It is possible, however, to analyze nonsinusoidal
periodic valve motions by this method. The periodic motion is decomposed into
a set of harmonics by Fourier analysis,? and the system response is determined
for each harmonic. The individual responses are then superimposed to determine
the total response for the given valve motion (since all the equations are linear,
the principle of superposition?’'® can be applied).

Oscillating Valve Discharging into Atmosphere. The instantaneous and mean
discharge through a vatve (Fig. 8.12a) are given by the equations

0k oy = CaA, (2gHE  )V? (8.55)
Qa = (CdAv)o (2gHo)1/2 (856)

in which Cy = coefficient of discharge, and A, = area of the valve opening. Divi-
sion of Eq. 8.55 by Eq. 8.56 yields

Qﬁn__"'_(”ﬁu)”z (8.57)
Qo 1o\ H, .

in which the instantaneous relative gate opening 7 = (C4yA4,)/(Cy44,);, and the
mean relative gate opening 7, =(Cy3A4,),/(C44,)s. The subscript s denotes
steady-state reference, or index, values,

The relative gate opening may be considered to be made up of two parts, i.e.,

T=T1,+1¥ (8.58)

in which 7* = deviation of the relative gate opening from the mean (Fig. 8.12b).
Substitution of Egs. 8.1, 8.2, and 8.58 into Eq. 8.57 yields

*L * RhEL \ 1/2
(1 +iﬂ} (1 +—T—) (1 +"—*‘) (8.59)
@, To H,
If the valve motion is assumed sinusoidal, then
™ = Re (ke/*?) (8.60)

in which k = amplitude of valve motion. The phase angle between any other
forcing function in the system and the oscillating valve can be taken into consid-
eration by making k a complex number; otherwise, k is real.

By expanding Eq. 8.59, neglecting terms of higher order (this is valid only if
|1¥% | <<H,), and substituting Eqs. 8.3, 8.4, and 8.60 into the resulting equa-
tion, we obtain

2H, 2H,k

L =
Moy =22 qhe -

dn+1
O To

(8.61)



228 Applied Hydraulic Transients

Valve

Pipe n

]

-]
+

{a) Valve at downstream end of pipeline

(b) Sinusoldal valve motion

Orifice
LR
Pipe i Pipe i+|

14
1

i+l

—

(c) Orifice at intermediate section

Figure 8.12. Valves.
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Since hfﬂ = 0, on the basis of Eq. 8.61, we can write

2k 2H,

R oy =hfy + g, e (8.62)
In addition, from the continuity equation it follows that
qner =dries (8.63)
Equations 8.62 and 8.63 may be expressed in the matrix notation as
R 1 0] (- 0
=| 24, | + 2H,k (8.64)
n+1 Q@ n+1 To
The two matrix terms on the right-hand side may be combined as follows:
q)k 1 0 0 q)-
h = —-ZQ% 1 2% h (8.65)

1 n+1 0 0 1 1 n+1

Note that the expansion of Eq. 8.65 yields Eqgs. 8.62 and 8.63,and 1 =1. Thus,

the additional element 1 in the column vector aids in writing the right-hand side

of Eq.8.64 in a compact form. As defined in Section 8.5 (Eq. 8.10), the column

vector with 1 as an additional element is called an extended-state vector,z’. The

extended-state vectors and extended-transfer matrices are denoted by a prime.
On the basis of Eq. 8.10, Eq. 8.65 may be written as

Z;tR+l ll 29 (8.66)
in which P_, = the extended point matrix for an oscillating valve and is given by
1 0 0
2H 2H,k
P,=|-—2 1 —= 8.67
ov Qo TO ( )
0 0 1

Valve Having Constant Gate Opening Discharging into Atmosphere, In this case,

k= 0. Hence, Eq. 8.64 takes the form
q R ] 0 q L

=| 2H (8.68)
h n+l - Qo 1 h n+1
[2]
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or

2R,y =Pk, (8.69)

in which P, = the point matrix for a valve or orifice discharging into atmosphere,
and is given by '

1 0
P,=| 24, 1 (8.70)
o

Note that P, is not an extended-point matrix.
If a valve of constant gate opening, or an orifice, is at an intermediate section
(Fig. 8.12¢) then Eq. 8.70 becomes

1 0
Poi= | 24H, : (8.71)
Qo

in which AH, = the mean head loss across the valve corresponding to the mean
discharge, Q,.
Branch Pipelines

In the piping systems shown in Fig. 8.13a, pipeline abc is the main branch, and
bd is the side branch. The transfer matrix for the pipeline ab can be computed

Main pipe

(a) Piping system

Figure 8.13. Branch system.

— e ————
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(b) Block diagram

Figure 8.13. (Continued)

by using the field and point matrices derived previously. To calculate the overall
transfer matrix for abc, the point matrix at the junction b, relating the state vec-
tors to the left and to the right of the junction, must be known. This matrix can
be obtained if the boundary conditions at point d are specified.

Point matrices for the junction of the main and the branch having various
boundary conditions are derived in this section.
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Let U be the overall transfer matrix for the branch (refer to Fig. 8.13b), i.e.,

ik, =U3k (8.72)
or
~|L ~ ~ ~|R
q Uy Uz |q
- ={ - - (8.73)
hnsr Uy g2 | |R],

.
in which U = l::,, F,, ...P, l?zﬁz El. The quantities relating to the branch are
designated by a tilde (7).
Expansion of Eq. 8.73 yields
R =i, GR +ii,,hR (8.74)

h:’fﬂ =i5,G7 “"722;{{2 (8.75)

If the flow direction is assumed positive as shown in Fig. 8.13a and the losses at
the junction are neglected, then the following equations can be written

af =qf +4f (8.76)
hf =hR = R (8.77)

By substituting appropriate boundary conditions into Egs. 8.74 and 8.75 and
making use of Egs. 8.76 and 8.77, the point matrices at the junction of the
main and the branch can be derived. The following examples illustrate the
procedure,

Dead-End Branch. In this case, Ei,’,‘,,, = 0. Hence, it follows from Eqgs. 8.74 and
8.77 that '

gR = -2 L (8.78)

aft =ar + = b (8.79)

Equation 8.77 can be written as
hE =0 qf +hf (8.80)

Equations 8.79 and 8.80 can be expressed in the matrix notation as

= (8.81)

—
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or

R _

2§ = Pyqezf (8:82)

in which Py4, = the point matrix for the side branch with dead end and is given
by

1 1_71_2
P i
bde ~ H (8.83)
0o 1

Branch_with Constant-Head Reservoir. In this case, ik, , =0. Hence, it fol-
lows from Eqs. 8.74 through 8.77 that

i
qf =qf + 2 nf (8.84)
Uy,

Equatijons 8.84 and 8.80 can be expressed in the matrix notation as

R Usz L
q 1 ==
="z, |4 (8.85)
h i 0 1 h i
or
z? = Pyres Zf‘ (8.86)

in which Py = the point matrix for the branch with constant-head reservoir
and is given by

1 172_2
Pyres = Uy (8.87)
0 1

Branch_with_Oscillating Valve at the Downstream End. If the frequency of the
oscillating valve on the branch is the same as that of the forcing function on the
main (these may not be in phase), the system can be analyzed by using the point
matrix derived in this section.” However, if the frequencies of the forcing func-
tions are not the same, then the system is analyzed considering each forcing
function at a time and the results are then superimposed to determine the total
response.

Since an extended overall transfer matrix relating the state vector at the first
and at the last section on the branch is required, the extended transfer matrices
will also have to be used for the main. Let the extended overall transfer matrix
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for the branch be

Uy, iy

Uy Uy O (8.88)
0 0 1

In writing U'in Eq. 8.88, it is assumed that there is no other forcing function on
the branch. If this is not the case, then at least one of the elements &3, #,3,
ti5;, and i3, is not equal to zero, and the point matrix derived in this section
should be modified accordingly.

For the branch pipeline,

IR, =P ik, (8.89)
and
ik, =UZR (8.90)

By substituting Py, from Eq. 8.67 and %,, from Eq. 8.90 into Eq. 8.89 and
expanding the resulting equation, we obtain

5§+1 =l7n¢75 "”'—712’7{2 891)
r [~ 28, o\ r o~ 2H, _\ . 20k
B =(“21 - Tg‘“u) ar +(“22 - Tgun) RE + 722 (8.92)
Qo Qo B To

All the notations defined in the previous sections apply except that the tilde (~)
refers to the branch. For example, 7, = the mean relative gate opening of the
valve on the branch. Any phase shift between the valve on the branch and the
forcing function on the main can be taken into ‘consideration by making ka
complex number; otherwise, k is real.

Since AR,, =0, and AR = hF it follows from Eq. 8.92 that

- Eﬁ =-Pn2 hz!‘ ~ P13 (8.93)
in which
i 2’75““
P12 = 2 8.94
iy - 2H, 1y, ( )
G
and
28, k/7,
P13 Y A% (8.95)
Uz -

ey

ST e
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By substituting 7% from Eq. 8.93 into Eq. 8.76, we obtain

af =qF +pahf +pys (8.96)
Moreover, we can write
1=0 gF +0 KF +1 (8.97)
Equations 8.80, 8.96, and 8.97 can be expressed in the matrix notation as
q)| % 1 pn P (a L
ht =|0 1 0 h (8.98)
1J; 0 0 1 1);
or
2% =Pyoyz (8.99)

in which Py, = the transfer matrix at the junction of the side branch having an
oscillating valve and is given by

1 P2 P13
Pooy =| 0 1 0 (8.100)
0 0 1

If there is an orifice, or a valve having constant-gate opening at the downstream
end of the branch, then k=0. Hence, p,3 =0, and the point matrix for the
branch can be written as

1 py

Poore = 0 1 (8-101)

Note that this is not an extended-point matrix.

8.8 FREQUENCY RESPONSE

The transfer matrix method can be. used to determine the frequency response
of a system having one or more periodic forcing functions. The equations
derived in this section can be directly used if the forcing functions are sinusoidal.
Nonharmonic periodic functions are decomposed into different harmonics by
Fourier analysis.? By considering each harmonic at its particular frequency, the

“system response is determined, and.the results are then superimposed to de-

termine the tatal response.

Systems having more than one exciter may be analyzed as follows: If all
exciters have the same frequency, then the system oscillates at this particular
frequency. To analyze such a system, the extended transfer matrices are used,
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which allows all the exciters to be considered simultaneously. The concept of
extending the matrices facilitates the development of a point matrix, which in-
cludes the effect of the forcing function. If, however, the forcing functions have
different frequencies, then the system response for each forcing function has to
be determined separately, and the concept of extended transfer matrices be-
comes invalid. The following explanation will further clarify this point. Systems
having more than one exciter can be classified into three categories as shown in
Fig. 8.14. The system of Fig. 8.14a can be analyzed considering all the exciters
simultaneously by using the extended transfer matrices with frequency w,. For
the system of Fig. 8.14b, the exciters are divided into groups, with each group
comprised of exciters that have the same frequency. Considering one group of
exciters at a time, the system is analyzed by using the extended-transfer matrices
with the frequency of the group. The results are then superimposed to deter-
mine the total response of the system. For the system of Fig. 8.14c, the system
response for each exciter is determined separately, and the total response is then

@y
@

2345

@y

{a) ANl exciters have same frequency

o) @,
alz (dz
/4 5"’/(‘4_ 5“”{“'/_'_/
2345 b6 (2345 2345 6
&4 Uy

(b) Exciters divided into two groups,
according to frequency ’

@ ay
;_—L;J_/%!—As+/x / + \ /4
23 457 — 23 457725 4 %
w2 ay

(c) Each exciter has o different frequency

Figure 8.14. Systems having more than one exciter.
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calculated by superposition. As in this case only one forcing function is con-
sidered at a time, and ordinary transfer matrices (ie.,2X 2) are .us'ed.

Expressions to determine the frequency response of ty_plcal piping systems f9r
the following exciters are derived in this section: ﬂuc.tuat.mg p.res.sure head, oscil-
lating valve, and fluctuating discharge. By proceeding in a similar manner, ex-
pression for other exciters can be derived.

Fluctuating Pressure Head

Consider the system shown in Fig. 8.15, which has a dead en.d at. the 'right end..
A wave on the surface of the reservoir produces pressure osc1llatnons.m thfa sys-
tem. Due to the wave, the pressure head at section 1 ﬂuctuate§ sinusoidally
about the mean-pressure head. Let this pressure-head variation be given by

H*R = Re (hR e/ ?) = K cos wt = Re(Ke/*") (8.102)
and let U be the transfer matrix relating the state vectors at the Ist and

(n + 1)th section, ie.,
k., =uzf (8.103)

[t is assumed that there is no other forcing function in the system; otherwise, an
extended-transfer matrix, U’, will have to be used. Expansion of Eq. 8.103

yields
qu7+1 =“nq{2 +’—‘uhilz (8.104)
hIriu Suy q? tup hll2 (8.105)
Since L., = 0 (dead end), it follows from Eq. 8.104 that
R . 22 pR (8.106)
qi o hy
Reservoir pead snd

Figure 8.15. Series system with dead end.
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which on the basis of Eq. 8.102 becomes

gR=- ek
Uy
Substitution of Eq. 8.107 into Eq. 8.105 and simplification of the resulting
equation gives

(8.107)

o = (1o - “22228) (8.108)
Uy
Hence, the amplitude of the pressure-head fluctuation at the dead end is
u
hg=\hG,, | = (un - —%) Kl (8.109)
11

The amplitude of the pressure head at the dead end may be nondimensional-

ized by dividing the amplitude of the pressure fluctuations at the reservoir end,
ie.,

h, = (8.110)

%' - 1“22 _ Upuy,

Uy

Fluctuating Discharge

Flows are periodic on the suction and on the discharge side of a reciprocating
pump. These fluctuations can be decomposed into a set of harmonics. Severe
pressure oscillations may develop if any of these harmonics has a period equal to
one of the natural periods of either the suction or discharge pipeline.

Expressions are derived below to determine, by the transfer matrix method,
the frequency response of systems having a reciprocating pump. The suction
and the discharge pipeline may have stepwise changes in diameter and/or wall
thickness and may have branches with reservoirs, dead ends, or orifices.

Suction Line

Let the transfer matrix relating the state vectors at the 1st and (n + Dth section
of the suction line (Fig. 8.16) be U, i.e., '

zk,, =UzR (8.111)
By expanding Eq. 8.111 and noting that k% = 0, we obtain

Grer =uy a7 (8.112)
and

Rt =uy qf (8.113)
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Raservoir

Reservoir

Pioe n-|  Pipe n

Figure 8.16. Suction and discharge pipelines.

Hence,
KL, = 2L gL (8.114)
" Uy

The inflow-versus-time curve for one period can be decomposed intF) a set of
harmonics by Fourier analysis.?> Let the discharge for the mth harmonic be

gk, = Ay, sin (mwt+ Y (8.115)

ashy = Re(Ay el ™) (8.116)

in which A4,,, =A,, exp [F(¥m - ;—n')] A, and {,, are the amplitude anfc} tEe
phase angle, respectively, for the mth harmonic; and Iw= freunncy _oh/; e
fundamental. It follows from Eqs. 8.3 and 8.116 thfxt _‘I’;+‘ =A,, in wl.u]cd m
is a complex constant. Substitution of this relationship into Eq. 8.114 yields

i, =22 4 (8.117)
uy,
Hence, the amplitude of pressure-head fluctuation at the suction flange is
“|uyp A
hm =Ih;l;+1|m= ,L”ﬂ (8.118)
and the phase angle for the pressure head is
lm(hrﬁrl)mJ 8.119)
=1 L e e Lk E4LLH ( .
¢m o [ Re(hrll‘ﬂ )m

The head-versus-time curve may be obtained by vectorially adding the head-
versus-time curve for each harmonic. For the mth harmonic,

h*l = Re - elimwitdy )] (8.120)

n+l
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or

hyk) = hy, cos (mewt + Gm) (8.121)

Hence, the pressure-head-versus-time curve may be computed from the equation
M
*L
hgdy = > hy cos (mwr+¢,)

m=1

(8.122)

in which M = number of harmonics i i
cs into which the inflow-v -t
the pump is docomaen, ersus-time curve for

Discharge Line '

By proceeding i imi i
p ng in a similar manner and noting that A%, = 0, the following equa-

tion is obtained for the pressure-head— i i
the pumn, p ad-versus-time curve at the discharge side of

h*R = M 3 ,
1 mz_:’ Py cos (met + ¢),) (8.123)
in which
B = |(HRY, | = [y A4, |

m Uiattys ~ i) (8.124)

' o [ Im@R

P =tan™! | —m)
" [Re(;,;;.)J (8.125)

and 4,,, = complex amplitude of i
the pump. : 7th harmonic of the discharge-time curve of

Oscillating Valve

eriod: ) )
:mr;otilfaglia); aSrlex;cg the %?te equa.tlon (Eq. 8.55) relating the head, discharge
ecedr e ].IIS nonlinear, t.hls case is more difficult to analyze than the’
neeing on . However, as d{Scussed in Section 8.7, this equation can b
W <<H,. In the derivation of expressions in this section, the poin:
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Ist and the (n + 1)th section of the system, i.e.,

2t , =UZR (8.126)
In addition,
Zner =Poyzity (8.127)
Hence,
R, =Py, U'ZR (8.128)

By substituting P, from Eq. 8.67; multiplying the matrices Py, and U’; and
expanding and noting that AR = 0,4%,, =0, and gk, = q,’f,,, ; we obtain

24, 2H,k
Uy ~ “Q—“xa + U
R o [4)
= - 129
@ 2H, 2,k (8.129)
Uy ~ uy t+ Uy
o To
QG =unqf vy, (8.130)

in which u,y,u,,,...,us; are the elements of the matrix, U". By expanding
Eq. 8.126 and noting that k% =0, we obtain

hfiu SUy qlle Ty (8.131)

To determine the frequency response, the extended field and point matrices

are first computed. Then, the extended overall transfer matrix is determined by
multiplying the field and point matrices starting at the downstream end, i.e.,

U' =F,P, .. .PyF; (8.132)

The value of g is determined from Eq. 8.129, and gk, and KL,, are com-
puted from Eqs. 8.130 and 8.131. The absolute values of A%, , and g%, are the
amplitudes of ‘pressure head and discharge fluctuations at the valve, and their
arguments are, respectively, the phase angles between head and 7* and between

discharge and 7*,
If there is no other forcing function except the oscillating valve at the down-

stream end of the system, ordinary field and point matrices may be used instead
of the extended ones. In this case, u,3 =u,3 Su3; =0 and w33 =1 in Egs.

8.129 through 8.131.

Procedure for Determining the Frequency Response

The frequency response of piping systems may be determined as follows:

1. Draw the block diagram and then the simplified block diagram for the
system. In the case of simple systems, this step may be omitted.
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monics by Fourier analysis, and consider one harmonic at a time. For the
specified frequency, compute the point and field matrices. To write an
extended transfer matrix, simply add the following elements to the ordinary
transfer matrix derived in Section 8.7: Uis SUy3 =uy; =uy, =0 and Uz =1,
Note that extended transfer matrices are ysed only if there is more than one
forcing function in the system and each has the same frequency.

3. Calculate the overall transfer matrix by an ordered multiplication of the
point and field matrices, starting at the downstream end. For thjs calculation,
the block diagram of step 1 is very helpful. For multiplication_ofmatrices, the
scheme outlined in Example 8.2 may be followed if the calculations are being
done by hand, slide rule, or desk calculator. This scheme reduces the amount
of computations.

4. Use the expressions developed in this section to determine the frequency
response.

5.Ifa frequency-response diagram is to be plotted, repeat steps 3 and 4 by
taking different frequencies.

The‘following example illustrates the preceding procedure for determining the
frequency fesponse at the valve end of a branch system having an oscillating
valve at the downstream end.

Example 8.2

Plot a frequency -response diagram for the valve end of the branch system
shown in Fig. 8.17a and for the following data:

0o =0314 m?/s T =305
R=00 k=0.2
76 =10 H,=100m

Do the calculations by using a slide rule or a desk calculator.

Computations for Wy =2.0 are summarized in the following. By taking dif-
ferent values of w, and proceeding similarly as for w, =2.0, the frequency-
response diagram shown in Fig. 8.17¢ can be plotted.

Components of T ransfer Matrices

s m 1%.6, Wen = 2m/3 = 2,094 rad/s
W= W, =2X2.094=4.189 rad/s
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f
|
|

Deod end

Reservoir
Oscillating valve

/ 2
/1= 500m 2% 280m
a;= 1000 m/s az= 1000 m/s
D)= 1.8Im Dz= LO5m

BLTZ

F

BR¢ I
R L{ R L
o—F’, Fz}_o
[ 2 2 3

R L
‘IL i ’_‘E_Pbde)_%_ 2 73
I

F—— U=F2Pblel —

{b) Block diagram

Figure 8.17. Frequency response of a branch piping system. Branch with dead end.
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O Method of characteristics
== Transfer matrix method

j
h.=2|hs|/H, 7}

9, =2/q5|/Qo
|

\‘ - =

(¢) Frequency response diagram

Figure 8.17, (Continued)

Pipe 1:

by =1,/a; =500/1000=05s
Ay =nD}/4=n(181)?/4=2.578 m?
Ci =a,/(g4,) = 1000/(9.81 X 2.578) = 39.542 s m~2

Substitution of these values into Eq. 8.34 yields

Ji1 =f =cos(0.5X 4.189) = -0.5
Jfan = -39.542 5in (0.5 X 4.189) j = -34.244;
S n=-jsin (0.5 X 4.189)/39.542 = -0.022;

Proceeding in a similar manne i i i
e 1, the following field matrix, F,, for pipe 2 is

0500  -0.007;
F2 =

-102.732; 0.500
Branch pipe:

Since the branch pipe is made up of a single pipe, U = F.
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Proceeding similarly, the following values of the elements of the field matrix
for the branch are obtained:
iI“ = 05
i, =-0.0154j
Substitution of these values into Eq. 8.83 yields the following point matrix for
the junction of the branch and the main:

1.0 -0.0308;

Pyge =
0.0 1.0

It is clear from the block diagram shown in Fig. 8.17b that
U= F2 PbdeFl
These matrices may be multiplied in a schematic manner as shown in Table 8.1.
Since A¥ =0 (constant-head reservoir), the second column in the matrices F,,
Poye Fy, and F,Py4.F, is multiplied by zero. Thus, the elements in the second
column of these matrices are unnecessary and therefore may be dropped. The
unnecessary elements in Table 8.1 are indicated by a horizontal dash.

Note that ordinary transfer matrices have been used because there is only one
forcing function. Hence, u,5, 4,3, and uy, are zero, and w3, is unity in Eqs.
8.129 through 8.131. Substitution of these values and those for u,; and u,,
calculated in Table 8.1 into Eq. 8.129 yields

gf =-0.584+0.0127;

Hence, it follows from Eqs. 8.130 and 8.131 that
g5 =0.0600- 0.0131;

Table 8.1. Scheme for multiplication of transfer matrices.
~0.500 -] [q]R
-34.244; | {of,

[1.000 -0.031 j} [—1.555 J[q1R
P = zR
bde 2

0.000 1.000 _34,244,"_d hly

[ 0.500 -0.0073 /] [-1.0273 q [q]|®
F =L
2 3

102.732; 0.500 142.595/ -] (& |1
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and
hy =-18134-83215j

Hence,

h,=2|h%|/H, =0.170
a,=21q%1/Q, = 0.390

The phase angle between the pressure head and the relative gate opening

-1 _8.3215

= tan —_—

-18134
=-102.29°

The phase angle between the discharge and the relative gate opening
- tan"! -0.0131
0.0600

=-1229°

8.9 PRESSURE AND DISCHARGE VARIATION ALONG A PIPELINE

The previous sections dealt with the determination of the pressure and discharge
oscillations at the end sections of a system. However, sometimes it is necessary
to determine the amplitudes of the discharge and pressure fluctuations along the
length of the pipeline. In this section, a procedure to determine the amplitudes
of the discharge and pressure fluctuations along the length of the pipeline is
outlined.

To analyze a piping system, two of the four quantities—discharge and pressure
or their relationship at either end of the system—must be known. The other two
quantities can then be calculated by using the equations derived in the last section.
The amplitudes of the discharge and pressure fluctuations at the upstream end
being known, their amplitudes along the pipeline may then be determined.
The procedure is illustrated by discussing a system that has a reservoir at the
upstreamn end and an oscillating valve at the downstream end. Similarly, equa-
tions for other systems having different boundary conditions can be developed.

Suppose that the amplitudes of the discharge and pressure oscillations at the
kth section on the ith pipe (see Fig. 8.18a) are to be determined. Let the transfer
matrix relating the state vectors at the first section of the first pipe and the first
section of the /th pipe be designated by W,ie.,

(z%); = Wk, (8.133)
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. Pipe | Pipe 2 Pipe 1-1 ! Pipe i || ¥ Pipe n
L T t s
li ki
{(0) Piping system
F P, —=-=--- Fi-1 Pi Fyx
I : z f ki
il
w Fy H—o——--
|| I| * ki
il
o— §
] ki

{b) Block diogrom

Figure 8.18. Designation of kth section on ith pipe.

and the field matrix relating the state vectors at the first and the kth section of

" the ith pipe by F,,ie.,

(z%)i = Fu(25); (8.134)

In these equations, the subscript within the parentheses refers to the pipe num-
ber. The matrix W is computed by muttiplying the point and field matrices for
the first (i - 1) pipes (see the block diagram of Fig. 8.18b),ie.,

w=l,’l‘Fl'—lPi-! e Fl (8135)

and the matrix F, is calculated by replacing I with x in Eq. 8.33. Note that the
elements of the matrix W for a specified frequency are constants, while those of
the matrix F, depend upon the value of x as well.

It follows from Egs. 8.133 and 8.134 that

(28)i =St (8.136)
in which
S=FxW=FxPiFi~lPi—l .‘.F‘ (8137)
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The value of (g%¥), is calculated from Eq. 8.129. Furthermore, it is known that
(#%), =0. Substitution of these values into the expanded form of Eq. 8.136
yields

(qli)i=311(Q1R)1 - (8.138)
and _
h)i = sa(at (8.139)

The amplitudes of the discharge and pressure fluctuations at any other section
can be determined by proceeding in a similar manner.

8.10 LOCATION OF PRESSURE NODES AND ANTINODES

The location of pressure nodes and antinodes is an important aspect of the
analysis of resonance in pipelines at higher harmonics. The amplitude of the
pressure fluctuation is a minimum at a node and a maximum at an antinode.
For a frictionless system, the amplitude of the pressure fluctuation at a node
is zero.

The pipelines may be subjected to severe pressure fluctuations at the antinodes.
Thus, the pipe may burst due to pressure in excess of the design pressure or may
collapse due to subatmospheric pressure. A surge tank becomes inoperative in
preventing the transmission of pressure waves upstream of the tank if a node is
formed at its base. Jaeper explained the development of fissures in the Kander-
grund tunnel®®3! due to the establishment of a pressure node at the tank, which
made the tank inoperative although it was overdesigned.

The locations of the nodes and antinodes may be determined as follows:

Equation 8.139 gives the amplitude of the pressure fluctuation at a point. By
making use of the fact that for a frictionless system, the amplitude of the pressure
fluctuations at a node is zero and ¢{ # 0 for nontrivial solutions, we obtain

su(¥)=0 (8.140)

The solution of this equation for x gives the location of the nodes on the ith
pipe.

The amplitude of the pressure fluctuation is a maximum at the antinodes.
The location of these points may be determined by differentiating Eq. 8.140
with respect to x, equating the result to zero, and then solving for x, ie., the
roots of the equation

d
—su(®)=0 (8.141)

give the location of the antinodes.
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By making use of Eqs. 8.140 and 8.141, expressions for the location of nodes
and antinodes in simple systems can be derived. The procedure is illustrated in
the following by deriving expressions for a single pipe and for two pipes in
series. Expressions for other systems may be derived in a similar manner. How-
ever, for complex systems, it is better to solve Eq. 8.140 and 8.141 numerically
rather than to derive the expressions and then solve them.

On the basis of Eq. 8.34, for a frictionless single pipeline having constant
cross-sectional area, Eq. 8.140 becomes

- jC, sin (wx/a;))=0 (8.142)
or
sin (cwx/a;))=0 (8.143)
whose solution gives
x=nngifw n=0,1,2,....) (8.144)

The values of x > J; represent the locations of the imaginary nodes, which are
discarded. It follows from Eqs. 8.141 and 8.143 that

cos (wx/fa;)=0 (8.145)
The solution of this equation gives the locations of the antinodes, i.e.,
x=(n+Hnrajw n=0,1,2,...) (8.146)

Again, the values of x >/; are the locations of the imaginary nodes and are

discarded.
Equations 8.143 and 8.145 show that a standing wave is formed along the

length of the pipeline,

Series System

In a series system having two pipes (Fig. 8.7), the locations of nodes and anti-
nodes in the pipe leading from the reservoir are given by Eqgs. 8.143 and 8.145.
However, their location in the second pipe can be.determined by using Eqs.
8.140 and 8.141.

By substituting the expressions for F,, F;, and P, into Eq. 8.135, multiplying
the matrices, and using Eq. 8.140, we obtain

{ [
- C, sin (ix)cos (&J—‘) - Cy cos (_wi) sin (—Uﬂ> =0 (8.147)
a; a; a; a;
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which upon simplification becomes

tan — =- — tan — (8.148)
. a2 24, a
Note that Eqs. 8.147 and 8.148 are valid for a frictionless system only. Solution
of Eq. 8.148 for x gives the location of the nodes.

8.11 DETERMINATION OF RESONANT FREQUENCIES

To reduce the possibility of resonance in piping systems, it is important to know
their resonant frequencies so that possible forcing functions or exciters having
similar frequencies can be avoided. However, if it is not possible to avoid these
frequencies, then remedial measures can be taken. As the forcing function is
usually unknown in the case of self-excited systems, the frequency response of
the system cannot be determined. For the investigation of such systems, reso-
nant frequencies can be calculated using the procedure presented by Zielke and
R&s132 or by using the transfer matrix method® as follows.

The transfer matrices for the system components are written for the free-
damped oscillations. This is done by replacing jw by the complex frequency
§ = 0 + jw in the transfer matrices presented in Section 8.7. By multiplying these
matrices, the overall-transfer matrix is obtained. Then, applying the free-end
conditions (e .g., constant-head reservoirs, dead ends, orifices), two homogeneous
equations in two unknowns are obtained. For a nontrivial solution, the deter-
minant of the coefficients of these equations should be zero. A trial-and-error
technique is used to solve the determinant equation to determine the resonant
frequencies of the system.

The following example of a dead-end system having a constant-head reservoir
at the upper end is presented for illustration purposes:

Let U be the overall transfer matrix for the system,i.e.,

R, =U2R (8.149)

By substituting the free-end conditions, i.e., kR = 0 and ¢Z,, = 0, Eq. 8.149
becomes

upgy =0 (8.150)

Note that u,; and qR are complex variables. By using the superscripts r and i
to represent the real and imaginary parts of a complex variable,ie.,u;, =uj; +
juiy and simplifying, Eq. 8.150 takes the form

@l q® - uligi®) + il 'R +uf1qiR)=0 (8.151)

For a complex number to be zero, the real and imaginary parts must be zero.
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Hence,
ufy qi% - ui qif =0 (8.152)
uf, ¢ +ufig® =0 (8.153)
For a nontrivial solution of Eqs. 8.152 and 8.153,
ufy 'uil
=0 (8.154)
“{1 upy
which upon simplification becomes
@h)? + @l)?=0 (8.155)
Equation 8.155 can be satisfied if and only if
uy =0 (8.156)
and
ul; =0 (8.157)

The Newton-Rapson method? may be used to determine the values of ¢ and
w that satisfy Eqs. 8.156 and 8.157. If o, and wy are the values after kth
iteration, then a better estimate of the solution, g;,, and wy,,; of Egs. 8.156
and 8.157 is

i r
a“u_ ; oury

ow “ ow

r
Un

Ok+y =0k~ dul; ul, oul, (8.158)
do0 0w Odw do
oul . oul
uh 5, Ul

(8.159)

W TWg ~ - -
4 duiy duy;  duj; dul,

ow Jo 0o dw

In Eqs. 8.158 and 8.159, u}, and uf, and their partial derivatives are computed
for o) and wy. If log,, - 0x ] and |wy4; - wy | are less than a specified toler-
ance, then 0y, and wy,, are solutions of Eqs. 8.156 and 8.157; otherwise, Oy
and wy are assumed equal to 0y, , and wy.,, and this process is continued until
the difference between the two successive values of ¢ and  is less than the
specified tolerance.

This procedure is general and is not limited to simple and frictionless systems.
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Also, note that the intermediate-state vectors have been eliminated by multiply-
ing the transfer matrices, and only a second-order determinant has to be solved
as compared to an n X n determinant (value of n depends upon the number of
pipes and appurtenances in the system) in Zielke and Résl’s method.

The above procedure is simplified considerably for a frictionless system since
u is a function of w only. In a frictionless system having a constant-head reser-
voir at the upstream end and an oscillating valve at the downstream end, the am-
plitude of the discharge fluctuation at the valve is zero during resonating condi-
tions at the fundamental or one of the higher odd harmonics. This was observed
by Camichel et al.® and reported to be true by Jaeger.3®3' The frequency-
response diagrams obtained by theoretical analysis of a number of series, parallel,
and branch systems (a branch system with a side branch having an orifice or an
oscillating valve being an exception) done by Wylie'®?® and by the author?
confirm this result. Expressions for the resonant frequencies of the simple fric-
tionless systems and their numerical values for the simple or complex systems
can be determined by using this result as follows:

Let U be the overall transfer matrix for a system having a constant-head reser-
voir at the upstream end (section 1) and an oscillating valve at the downstream
end (sectionn + 1),ie.,

25, =Uz} (8.160)

By expanding Eq. 8.160 and noting that AR = 0 (constant-head reservoir), and
qk,, =0 (discharge fluctuation node) at a resonant frequency, we obtain

ungf=0 (8.161)

Recall that u;, is the element in the first row and the first column of the matrix
U. For a nontrivial solution,q’,2 # 0; therefore,

uy =0 (8.162)

To determine the resonant frequencies, we have to solve Eq. 8.162. To do this,
uy, is computed for different trial values of w, and the u,, -versus-w curve is
plotted. If the chosen value of w is equal to one of the resonant frequencies,
then u;; =0. This requirement is not normally met by the first guess for w,
and the resulting numerical value of 1, is referred to as the residual. The points
of intersection of the wu,,-versus-w curve and the w-axis are the resonant
frequencies.

Example 8.3

Derive an expression for the frequencies of the fundamental and odd harmonics
of the system shown in Fig. 8.19. Assume that the system is frictionless.
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—_—__L_—_
Reservoir Hg o
/Osc:///afmg valve
, Pipe / Pipe 2 j[
I |
/ 2 3

Figure 8.19. Series piping system.

For the series system shown in Fig. 8.19,
U=F,P,F, (8.163)

By substituting F, and F, from Eq. 8.34 and P, from Eq. 8.54, multiplying the
matrices, and using Eq. 8.162, we obtain

D 2
cosb,co.cosbzcu*a—l (—2) sinb;wsinb,w=0 (8.164)
a; \Dy

in which b, and b, are constants for pipe No. 1 and No. 2, respectively, as de-
fined in Eq. 8.34.

Example 8.4
Determine the frequencies of the fundamental and odd harmonics of the Toulouse
pipeline shown in Fig. 8.20.

Pipe | Pipe 2
R s
t = 20163 m | » 10585 m
D =80 mm D= 40 mm
a= 1300 m/s a = 1356 m/s

- (a) Toulouse pipeline

Pipe | Pips 2
—
| = 227.8 m i="2349m
D=06m D=05m
a =1256 m/s

a= 1075 m/s
V (b) Fully pipeline

Figure 8.20. Longitudinal profile. (After Camichel et al.%)



255

Resonance in Pressurized Piping Systems

(panupuo)) 0’8 2indiy
£d ouyjedid (P)

wig 9re wibusy (040L

ol T e T " " pz007 M S/W Ul '18A PADHM
wZ] = J8jewplp 8pisyl A\\Q\Nm | 060/ _ 020/ I
B G T e T N T 1 w o yibuey
<ot ~£6 R 4
\,\oﬂm \ \_w\/mm /Y\\J\\\“| = |_r 7 | cww u seauyan
AN e P I _ _
\aAn \oo.n. \ \\/ \ 1 L mu
0% \ £\ \V\/__ \
A CRYR
o8
J10A1950Y
L ik . " "
(panupuo)) -7’8 2andyy
Yo sugedid  (92)
_ =T T S/w ul 14 aaoM
\/ﬂaﬂ.A/ P \\“| —gs9e 1 LW U ybud
Pl \m\. ! |
\MA oA \,ﬂﬂ \L:IllIL W Ul SSeUYINYL
<"\ \W»% \ 3| I~
w9E'9ES = yibusl [oios %" SATANP
\.ﬂ/ \ \.\c_/n \/\m_ \
ww QOle = Iejdwoip pISul P AR 4 P N

254 Applied Hydraulic Transients

11004353



256 Applied Hydraulic Transients

.003 4

4 ’ 885 858
\ -.003 4
Enlargsment AA

o

Residua! —
N
>
j/
|
ya
~J -
o
L @
\
Sl.o\
~L-

-2 \ .
\ Enlorgement BB
-4
0 5 0 p—_— 20 25 30 oI5 .

008
000 515 3/8 w
008
.or6
Enlargement CC

Figure 8.21. Plot of residual versus w for Toulouse system.

The overall transfer matrix, U, for the system of Fig. 8.20 is given by Eq.
8.163. For an assumed value of w, the elements of the matrices F,,P,,and F,
are computed from Egs. 8.34 and 8.54 using the system dimensions shown in
Fig. 8.20, and these matrices are multiplied to compute the elements of U
matrix. The value of u,; is the residual. By assuming different values of w, the
values of the residual are determined, and the residual-versus-w curve is plotted
as shown in Fig. 8.21. The intersection of this curve with the w-axis yields the
following frequencies in rad/s:

1. Fundamental: 8.863
2. Third harmonic: 20.14
3. Fifth harmonic: 31.6

8.12 VERIFICATION OF TRANSFER-MATRIX METHOD

To demonstrate the validity of the method presented herein, the results ob-
tained by the transfer matrix method are compared with the experimental
values and with those determined by the method of characteristics, by the
impedance theory, and by energy concepts.
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Experimental Results

Except for the laboratory and field tests reported by Camichel et al.,® few
experimental results on the resonating characteristics of pipes are available in
the literature. In the tests reported by Camichel et al., the resonating conditions
in series pipes were established by a rotating cock located at the downstream end
of the pipeline. Each system had a constant-head reservoir at the upstream end.
The data for these systems are given in Fig. 8.20.

The values of the periods of the fundamental and higher harmonics determined
experimentally and by the procedure outlined in Section 8.11 are listed in Table
8.2. As can be seen, close agreement is found between the experimental values
and those determined by the transfer matrix method.

Method of Characteristics

A number of systems—series, parallel, and branch systems with the side branch
having various boundary conditions—were analyzed using the transfer-matrix
method and the method of characteristics. The data for four of these systems
and the frequency-response diagrams are presented in Figs. 8.22 through 8.25.

The frequency-response diagrams are presented in a nondimensional form.
The frequency ratio, w,, is defined as w/w,y; the pressure head ratio, ,, as
2Ih,l,‘,,l |/H,; and the discharge ratio, g,, as 2lq,’;,,l|/Qo. The values of A, and
g, determined by the method of characteristics represent the amplitude of the
swing from the minimum to the maximum value. The frequency of the forcing
function is designated by w.

The oscillating valves are the forcing functions in all the systems except the
dead-end series system of Fig. 8.22 in which the fluctuating pressure head at
the upstream end is the forcing function. The valve movement is taken as
sinusoidal with 7, =1.0 and k=0.2. The fluctuating pressure head in Fig.
822 is also sinusoidal with K=1.0. In the branch systems of Fig. 825,
7,=10and £=02.

If the friction losses are taken into consideration, the analysis of various
systems by the method of characteristics showed that the amplitudes of the
positive swing of pressure head and negative swing of the discharge are larger
than the corresponding negative and positive swings. This is caused by the
friction loss term of the governing differential equations. In the transfer
matrix method, however, the amplitudes of the positive and negative oscillations
are equal because a sinusoidal solution is assumed.

To check the values of the phase angles between different quantities of interest,
the oscillatory discharge and pressure head at the valve are computed by using
the method of characteristics. The g ~ ¢, h}¥ ~ ¢, and 7* ~ ¢ curves are plotted
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Table 8.2. Calculated and measured periods.

Period (s)

11th Harmonic

Fundamental 3rd Harmonic  Sth Harmonic  7th Harmonic 9th Harmonic

Theoretical

Period

No.

System Pipes

Meas. Calc. Meas. Cale. Meas. Calc. Meas. Calc. Meas. Calc, Meas.

Calc.

(s)

a

0.198 0.19

069 0311 031

13.50

0.708
13.719

0.932

15.96

2
2
15

Toulouse

1.882

1.887
1.405

2.008
1.464

1.368 0.502 0.505 0.296 0.310 0.2117 0.2150 0.1650 0.1667 0.1338 0.1420

9

aNot available.
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Reservoir

| =304.8m |l =609.6m | = 4877 m 1= 6553 m
D=1.22 m D=1llm D= 0.91m D=0.76m
a= 1219 m/s a=9l4 m/s a= 6096m/s a=1310.6 m/s

(a) Piping system

40
30
NCY
0

N—

°5 2 3 4 5 5 7

w (Radians/s)
{b) Frequency response diagram

Figure 8.22. Frequency response of a series piping system with dead end.

in Fig. 8.26. In this diagram, b} =h*/H, and q} =q*/Q,. The phase angles
determined by the transfer matrix method and by the method of characteristics
are presented in Table 8.3. Close agreement is found between the results ob-

tained by the two methods.
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Impedance Method

Thc? data and the solution, by the impedance method, of examples used for com-
parison purposes in this study have been taken from the literature 1!° The first

example is that of a 490.7-m-long, 0.61-m-diameter, simple pipeline connected

—_ |
Reservoir Ho (05017/0//[Iy valve
L L ., peez ]
/ 2 3
Iy = 609.6 m l,=228.6 m
a, = 1219 m/s 0= 914.4 m/s
D= 0.6l m D= 03 m

(a) Piping system

Ty~ Tronsfer matrix method
O Method of characteristics
08 hr=2Ihl3'l/Ho': q,=2[q'5|/0°
" 06 /
2
=
o4
\
by
0.z ‘| l’ “ 4 /
| i ]
I Wy ]
! ]
, i
0.0
05 / 2 3 4 5 5 7

wp = wlwgy ——
(b) Frequency response diagram

Figure 8.23. Frequency response of a series piping system.
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%
| =670.6 m )
Reservoir a=1295 m/s Oscillating valve
D=03m \
| : I 1
T T T —
/ 2 3 4
1= 3353 m | =3353 m l=762 m
a=1295 m/s a=1295 m/s a = 1097 m/s
D=06lm D=0.6Im D=06lm
{a) Piping system
o8 I l 1
h, =2 nk|7H,
& q, =2 al/Q,
206
L—h,
("
o4
\‘\ (, N f, \‘ / =
'\
I\ }“\ U
0z lI, tt I
i 1] I,
i 1} ll
Il 1] ! 1
[ / i 7 !
o0 1 1 ] !
05 / 2 J 4 5 [ 7

{b) Frequency respanse diagram

Figure 8.24. Frequency response of a parallel piping system.

to a reservoir. There is an oscillating valve at the downstream end with 7, = 0.5
and k=0.5. The steady-state mean discharge is 0.89 m3/s; the wave speed,q =
981.5 m/s; and the static head, 30.5 m. Using the Paynter’s diagram,!” the
following values are obtained: h, = 1.92, and the phase angle between the pres-
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___V____(
Reservoir Oscillating vaive No. 2
Hq ” .q’ ’\6. A
\/ »
S,
Q Oscillating valve No. /
Pipe |
-1 —_— I
/ 3
l,=609.5 m I =228.5 m
q,= 1219 m/s a; = 914 m/s
D= 08I m D,=03 m

{a) Piping system

~—,—— Transfer matrix method
O Merhod of characters

he=2in5|7Hy; q,22]d5]/Q,

08 ‘r‘

06
\/h'
04 —=
o
/
/
/
!
{
|
I
I

he . q,

.

e

|

y,
/

~ S

/

\
s
/

gy e
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o
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———— e e e

\
\
\
|

[

[

|
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w fw/wpy T

S
3
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O
~
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(b) Frequency response diagram (valves No.! and No. 2 are in phass)

Figure 8.25. Frequency response of a branch piping system. Branch with oscillating valve.
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Figure 8.26. Time history of &}, g}, and T*.

Table 8.3. Phase angles.

Phase Angles, ¢ (in degrees)

Between h and 7*

Between q and 7*

Transfer Transfer
Frequency Matrix Method of Matrix Methad of
System Ratio,w, Method Characteristics Method Characteristics
Series (Fig. 8.23a) 2.5 -110.99 ~-110.50 -20.99 -20.5
3.0 -180.01 -180.00 -270.01 -

Branch (Fig. 8.17a) 2.5 -117.90 -119.00 -27.90 -29.50

(Side branch with 3.0 -180.01 -180.00 -270.01 -

dead end)
Branch (Fig. 8.25a) 2.5 -117.13 -118.00 -18.17 -18.00

(Side branch with 3.0 -180.01 -180.00 -270.01 -

oscillating valve)
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sure head and the relative-gate opening, ¢, = 164°. The analysis by the transfer

matrix method gives A, = 1.929 and ¢, = 164.5°, which are in close agreement

with those obtained from the Paynter’s diagram. The piping systems presented \
i
|
|
|

——_%

by Wylie in Ref. 19 are solved by the transfer-matrix method. The impedance,
Z, at the valve is determined by computing the ratio KL, /L., . Approximately
the same values of the impedance are obtained as those given by Wylie. Two of
these piping systems and the impedance diagrams are presented in Figs. 8.27 and
8.28. The normalized impedance, z,, was computed by dividing |Z| by the char-
acteristic impedance, Z,, at the valve,ie., z, = |Z|/Z,.

Reservoir Osciflating valve

/ 2 3

579 m Tlp= 1097 m
1158 m/s a,= 1097 m/s
0.6l m D= 0.3 m

e
" n N

Energy Concepts

. .. . . . {a) Piping system
In steady-oscillatory flows in piping systems, the energy input during a cycle is ping sys

|
equal to the energy output plus the losses in the system. If the losses in the sys- 1
temn are neglected, then the energy input is equal to the energy output during l
|
|
i
|

one period. This result may be used as follows to verify the numerical values of
the amplitudes of the pressure head and discharge oscillations, and of the phase
angles obtained by the transfer-matrix method.

The energy entering the system during time interval At is

Ej, =yQHA!t (8.165)

2= |25] /2¢
a2

in which v = specific weight of the fluid and the subscript in refers to the input
quantities. Substitution of Eqs. 8.1 and 8.2 into Eq. 8.165 and expansion of the
resulting equation yield

Ein = Y(QoHy *+ @inHy + hin Qo + qinhin)At (8.166)
hin = hin cos wt (8.167)
qx\ = qin cOS (w2t - ¢in) (8.168)

in which ¢;, = phase angle between g}, and A}, and hi, and gi, are the ampli-
tudes of the pressure and discharge fluctuations. Note that both hj, and q;, are
real quantities. The energy input during one cycle may be calculated by substi-
tuting Eqs. 8.167 and 8.168 into Eq. 8.166 and by integrating the resulting { o 2 3 P 5 P
equation over period, 7. This process gives ( ' we=w/wgy "

!
Let g, and hi% be sinusoidal, ie., 1 2 } \
|
|
|

{b) Impedance diagram

T
Ein=7v0,H, T+ 7qi'nh{nf cos w! cos (wt - ¢;q)dt (8.169)

0 Figure 8.27. Impedance diagram for series piping system.
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Dead end
.
P .
eservoir (05&'/7/0//'/79 valve
i —_— [
"
/ 3
l, =3048m l,=304.8 m
a) = 1219.2 m/s 0= 1219.2 m/s
D, =09Im D;= 0.6l m
(a) Piping sysiem
~
NU
X
N4
s
S
J
2
/ —_
(7]
o5 1.0 20 3.0 40 5.0 6.0 70
w, = w/w'h_".
(b) Impedance diagrem
Figure 8.28.

Impedance diagram for branch piping system, Branch has dead end.
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If there is a constant-level reservoir at the upstream end, then k], = 0. Hence,
Eq. 8.169 becomes

Ein=vQ0,H,T (8.170)

By proceeding in a similar manner,

T
Equ =7QoH, T+ 7h¢,)thZmQ./‘ cos wit cos (Wt ~ Py )dt  (8.171)
0

The subscript out designates output quantities.
If the losses in the system are neglected, then E;, = E,,,;. Hence, it follows

from Eqs. 8.170 and 8.171 that

T
f cos wt ¢0s (wt = Pyu) dt =0 8.171)
0

which yields
Pout = 90° (8.172)

For all the systems analyzed in this study, ¢,u Was 90°. The only exceptions
were the branch systems in which the side branch had an orifice or an oscillating
valve. Equations 8.171 and 8.172 do not hold in these cases because there is
energy output at more than one point (see Problem 8.6).

8.13. STUDIES ON PIPELINE WITH VARIABLE CHARACTERISTICS

The resonating characteristics of a pipeline with linearly variable characteristics—
A and g—along its length, a constant-head reservoir at the upstream end, and an
oscillating valve at the downstream end (Fig. 8.29a) are studied by using the
transfer matrix method. Frequency response is determined by using the transfer
matrix given in Eq. 8.45. Then the actual pipe is replaced by a substitute
pipe having stepwise changes in characteristics, as shown in Fig. 8.29a.
The expressions presented in Section 8.8 are used to determine the frequency
response. To compute w,, the theoretical period is calculated from the equation

41
T = — (8.173)

am
in which a,, = velocity of waterhammer waves at the midpoint of the pipeline,
and /= length of the pipeline. The results for both these cases are presented in
Fig. 8.29b.
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Data for actual pipe - D(x) =1.22 - 0.004x
A(y) = 975.4 +1.6x

Reservoir
Substiture pipe volve
E
2 |—————-;——-—a-—~-———o-.——~o——-—+we
— —F
I—L KAr:rua/ pipe
152.5 m
l= 1305 m 30.5 m 305 m 305 m 305 m
D= [l.I6 m .04 m 08l m 079 m 067 m
6= |9997m/s [lI04B5m/s |I0S73m/s l146.1 m/s  |1194.8 m/s
(a) Piping system
I
Actual pipe
O-—-0  Substitute pipe
[2X-4

he.q,

vol ]

o4

o2

{b) Frequency response diagram

Figure 8.29. Frequency response of pipeline having variable characteristics.
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Table 8 4. Resonant frequencies of piping system of Fig. 8.29a.

Resonant Frequencies (rad/s)

Transfer Matrix Method

Mode Favre’s Expression Actual Pipe Substitute Pipe
Fundamental 15,127 15.075 14.905
Third 35683 35.702 35.001
Fifth 57.647 57.856 56.375
Seventh 79.963 74.130 77.749

Resonant frequencies for the system of Fig. 8.29a were determined by con-
sidering the pipe per se and then replacing it with a substitute pipe (shown by
dotted lines in Fig. 8.29a), and by using the following expression for the resonant
frequencies of a pipeline having linearly variable characteristics derived by
Favre3¢:

L (8.174)

ay, a,0

in which o= (1 + ¢/2) [u(1 + ¥/2) + ¥]; ¥ =(a, - am)/am;and p={(Dy - D,)/
D, . The subscripts 0, m, and A refer to the values at the valve, at the midpoint,
and at the reservoir end of the pipe, respectively. The results are tabulated in
Table 8.4. Close agreement is found between the results obtained in these cases
up to the fifth harmonic. The higher harmonics can be predicted to a reasonable
degree of accuracy by increasing the number of reaches into which the pipeline

is divided.

8.14. SUMMARY

In this chapter, the development of the resonating conditions in piping system
was discussed; available methods for determining the frequency response and
the resonant frequencies were presented; and the details of the transfer matrix
method were outlined. The transfer matrix method was verified by comparing
its results with those of the characteristics and impedance methods and with
those measured in the laboratory and on the prototype installations.

PROBLEMS

8.1 Prove that if (wl/a) << 1, then the system may be analyzed as a lumped
system. Assume the system is frictionless. (Hint: Compute and compare
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8.2

83

84

8.5

8.6

8.7
838

8.9

the elements of the field matrix for a lumped system [Eq. 8.35] and for
a distributed system [Eq. 8.34] for wl/a = 0.01.)

Qerive the point matrix for an orifice located at the junction of ith and
(i + 1)th pipe (Fig. 8.12c). The mean head loss, AH,, across the orifice
corresponds to the mean discharge, Q.

Compute the elements of the field matrices for the pipes of the system
shown in Fig. 8.22 for w, = 2.0, and compute the overall transfer matrix.

Derive expressions for the location of the nodes and antinodes for a system
having three pipes in series, a constant-level reservoir at the upstream end
and an oscillating valve at the downstream end. Assume the system to be’
frictionless. (Hint.: Proceed as in Section 8.10.)

Derive an expression for the natural frequencies corresponding to:the odd
harmonics of a frictionless system having three pipes in series, a constant-
level reservoir at the upstream end, and an oscillating valve at the downstream
end.

Prove that for a branch system having an oscillating valve or an orifice on

‘the branch

’ 12 T ~p ~
hout dout €08 Pout + AoutGuur €OS Pout =0

in which hgy, and gy are the amplitudes of the pressure and discharge os-
cillations, and ¢,,; is the phase angle between the pressure head and dis-
charge. A tilde (™) on various variables refers to the branch; other variables
are for the main. (Hint: Ejg = Egyy + E . Substitute expressions for Ejy,,
Eouts and E gy in terms of the mean and oscillatory parts, integrate over the
period T, and simplify the resulting equation.)

Derive a point matrix for a simple surge tank and for an air chamber.

Figure 8.30 shows a Helmholtz resonator.
resonator.

Derive a point matrix for the

A short dea.nd-end pipe, called tuner, is sometimes connected to a pipeline
to change its frequency response at a particular frequency. Determine

S >

.

L |

-

Figure 8.30. Helmholtz resonator.
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the length, diameter, and wave velocity of a tuner to be connected at the
junction of pipes No. 1 and No. 2 of the series system of Fig. 8.23 so that
the resonating conditions do not occur at w, = 3.0. (Hint: Select arbitrar-
ily the length, diameter, and wave velocity of a tuner, and analyze the sys-
tem as a branch system with the branch having a dead end. If the resonating
conditions still occur at w, = 3.0, change the characteristics of the tuner,
and repeat the above procedure until a suitable tuner is obtained.)
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CHAPTER 9

TRANSIENT CAVITATION AND
COLUMN SEPARATION

9.1 INTRODUCTION

In the previous chapters, we assumed that the transient-state pressures through-
out the system remained above the vapor pressure of the liquid. However,
this is not always the case. In many low-head systems or systems in which
transients are produced rapidly, the pressure may be reduced to the vapor
pressure of the liquid. This may produce vapor cavities in the flow or may
cause the liquid column to separate. Rejoining of the separated columns or
collapse of the cavities results in a large pressure rise, which may damage the
piping system.

The term transient cavitation is used herein to refer to the phenomenon of the
formation and growth of cavities within a liquid due to reduction of transient-
state pressures to the vapor pressure of the liquid. Depending upon the pipeline
geometry and the velocity gradient, the cavity may become so large as to fill
the entire cross section of the pipe. This is called column separation. The
liquid is divided into two columns at the location of column separation (see
Fig. 9.1). Some authors also refer to the formation of a large cavity at the top
of a pipe as column separation.

In this chapter, column separation and transient cavitation are briefly de-
scribed. Various causes that may reduce the liquid pressures to the vapor
pressure are then discussed. Expressions for the dissipation and for the velocity
of pressure waves in a gas-liquid mixture are presented. Various methods avail-
able for the analysis of cavitating flows or flows in which column separation may
occur are listed, and the details of two of these methods are presented. The
chapter concludes with a case study.
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Figure 9.1. Column separation.

9.2 GENERAL REMARKS

Almost all industrial liquids and especially natural water contain a small gaseous
phase either in the form of free bubbles or as nuclei adhering to or hidden in
the fissures of solids. The solids may form a boundary containing the liquid,
or they may be present as contaminants in the liquid. The nuclei grow in size
when the liquid pressure is reduced to the vapor pressure and may become bub-
bles of sufficient size to act as nuclei for cavitation. The growth of a bubble
depends upon the force acting on the bubble due to surface tension, the ambient
liquid pressure, the vapor pressure of the liquid, the gas pressure inside the bubble,
and the time-pressure history to which the bubble has been exposed. Further-
more, the molecules of free gases may enter the bubble, and two or more bub-
bles may coalesce to form a large cavity. The size of this cavity increases until
the difference between its internal pressure and the decreasing external pressure
is sufficient to offset the surface tension. Once this critical size is reached,
the vapor-filled cavity becomes unstable and expands explosively. This hypoth-
esized sequence of events, i.e., from the pressure reduction to the onset of ex-
plosivé cavitation, occurs in a very short time period, probably in a few milli-
seconds.!

Depending upon the system geometry and the velocity gradient, the cavity
may become so large as to fill the entire cross section of the pipe and thus divide
the liquid into two columns. This usually occurs in vertical pipes, pipes having
steep slopes, or pipes having “knees” in their profile. Experimental investiga-
tions?™® have shown that bubbles are dispersed in the pipeline over a consider-
able distance on either side of the location of the column separation.

In horizontal pipes or pipes having mild slopes, a thin cavity confining to the
top of the pipe and extending over a long distance may be formed. In addition,
in this case, cavitation bubbles are produced over a considerable length of the
pipe. Such a flow is referred to as cavitating flow.
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Figure 9.2. Time history of pressure following column separation.

The low pressures that may lead to column separation or cavitating flows are
produced by negative or rarefaction waves. These waves are reflected as positive
waves from various boundaries (e.g., a reservoir) in the system, and compress
the bubbles in the cavitation-flow region and progressively reduce the size of
the cavity where column separation had occurred. When the cavities collapse or
when the separated columns rejoin, very high pressures are produced. These
pressures may burst the pipe if they are not allowed for in the design.

The pressure inside a cavity is equal to the sum of the partial pressures of the
liquid vapors and the released gases. If the temperature of the liquid is assumed
constant, the partial pressure of the liquid vapors is constant. The partial pres-
sure of the gases can, however, increase or decrease if their mole fraction in the
cavity increases or decreases. If a cavity forms and collapses several times during
a transient, Weyler’s experimental measurements® show that the pressure within
the cavity increases with successive cavity formations.

If water-column separation occurs at more than one location, Tanahashi and
Kasahara’s experimental results®> show that the second pressure peak may be
higher than the first pressure peak, ie., Apax, > Hmax, (Fig. 9.2), although
generally the first pressure peak is the highest.

9.3 CAUSES OF REDUCTION OF PRESSURE TO VAPOR PRESSURE

The transient-state pressure in a pipeline may be reduced to vapor pressure by
power failure to a pump or by rapid closure of a valve. The sequence of events
for these cases follows.

Upon power failure, negative-pressure waves generated at the pump travel in
the downstream direction. If the pumping head is small and the pump has a
small moment of inertia, the pressure in the pipeline may be reduced to vapor
pressure. For high-head pumping systems, the pressure at a high point of the
pipeline may be reduced to vapor pressure (Fig.9.3a) .
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If a valve is closed rapidly at the upstream end of a pipeline (Fig. 9.3b),
the pressure downstream of the valve may be reduced to vapor pressure. Simi-
larly, the pressure upstream of a rapidly closing valve located at the downstream
end of a pipeline may be reduced to vapor pressure 2L/a s after the valve closure
(a = velocity of waterhammer waves, and L = length of the pipeline). The se-
quence of events is as follows: A positive pressure wave produced by the closure
of the valve travels in the upstream direction. It is reflected as a negative wave
from the reservoir. This negative wave is again reflected as a negative wave at the
valve. If the initial steady-state pressure were low or if the magnitude of the
pressure waves were large, the pressures at the valve may be reduced to vapor
pressure,

A rapid opening of a valve at the downstream end of a pipeline may reduce the
pipeline pressures to vapor pressure.

9.4 ENERGY DISSIPATION IN CAVITATING FLOWS

Because of the presence of the bubbles, the liquid in a cavitating flow is a
mixture of the released gases and the liquid. Experimental investigations have
shown that there is more dissipation of the pressure waves in a gas-liquid mixture
than in a pure liquid. This additional dissipation is due to the heat transfer to
the liquid when the bubbles are expanded and compressed. Bernardis et al.”
showed how mechanical work is transferred in the form of heat energy into the
liquid during each compression-and-expansion cycle of a single spherical bubble
containing a perfect gas, confined in an unbound incompressible liquid, and sub-
jected to a sudden pressure impulse of short duration.

Weyler® developed the following equation for the shear stress due to non-
adiabatic behavior of a spherical bubble

1%
=C D|AH| ———
7y = Ca,pgD]A IAlel 9.1

in which a, = void fraction at reservoir pressure; p = mass density of the liquid;
g = acceleration due to gravity; D =inside diameter of the pipe; Ax = fixed
length of the pipe; AH =change in the piezometric head; V = flow velocity;
and C=an unknown constant. The void fraction, «, for a gas-liquid mixture
is defined as

V
a=——E— .2)
V.t 1

in which ¥, and ¥ are the volumes of the gas and the liquid in the mixture.
Weyler determined the value of C by trial and error by comparing his computed
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results with Baltzer’s experimental data.! It was found that Ce, varied slightly
for a wide range of a,, thus allowing the use of a mean value of Ca, = 225.

To compute energy dissipation in the cavitating flows, the total shear stress, 7,
is determined by adding 7, to the wall shear stress, 7,,1.e.,7=7p + 7,.

9.5 WAVE VELOCITY IN A GAS-LIQUID MIXTURE

The wave velocity in a liquid having a small quantity of undissolved gases is con-
siderably less®™'? than in the pure liquid. Pearsall, based on measurements taken
on two sewage plants,'! reported that this reduction in the wave velocity!'? can
be as much as 75 percent depending upon the gas content.

By making the following assumptions, we can derive!?:1*
the wave velocity in a gas-liquid mixture:

an expression for

1. The gas-liquid mixture is homogeneous, ie., the gas bubbles are uniformly
distributed in the liquid. '

2. The gas bubbles follow an isothermal law.

3. The pressure within the bubbles is independent of the surface tension and
the vapor pressure.

Let us consider a volume of gas-liquid mixture at pressure p, confined in an
elastic conduit, and assume that the pressure is instantaneously increased by

dp. Then,
av,, =d¥, +d¥,+d¥, (9.3)

in which the subscripts m, g,/, and ¢, respectively, refer to the quantities for the
gas-liquid mixture, gas, liquid, and conduit. ‘The symbol ¥ denotes volume, aer
the letter d in front of ¥ indicates the change in the volume due to increase in
pressure, dp. For example, d¥y is the change in the volume of gas, ¥,. Now,

Vo = ¥+ ¥, 94
Hence, Eq. 9.2 becomes
. fg 9.5)
Vin

Since ¥, is a function of pressure p, is also a function of p. If the bubble
expansion follows an isothermal law, then

ap = 0gPo (9.6}

in which subscript o indicates initial conditions, and variables without any sub-
script refer to conditions at pressure p.
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If M and p refer to the mass and the mass density, then

M, =M+ M, 0.7
It follows from Eq. 9.4 and 9.5 that
VI = (1 - a) Vm (98)
Dividing Eq. 9.7 by ¥,,, and making use of Eqs.9.5 and 9.8, we can write
Pm =P (1-a)+ap, (99)

On the basis of Eq. 9.6 and the fact that p¥, =p,,Vgo, Eq.9 9 becomes

= %P
Pm = 0 (l - ‘;°>+ Pe, %o (9.10)

Let us now write expressions for a¥,, d¥,, and d¥,. If the conduit walls
are thin, then
D.¥
av. = - e m d
¢ E.e D (8.11)
in which E, = modulus of elasticity of the conduit walls, and D, = diameter of
the conduit. If the void fraction is small and K; = bulk modulus of elasticity of
the liquid, then
- dp
avy = -¥,, E 9.12)
Since the gas bubbles are assumed to follow the isothermal law, p¥, = p, ¥, .
Differentiating this equation, we obtain fo

dp
av, =-Vg—p- (9.13)

Making use of the fact that Ve =0, Vgo/p and Vgo =a,¥,,, Eq.9.13 becomes

= _ %P :
d¥, = - ;20 ¥, dp (9.14)
The bulk modulus of the gas-liquid mixture, K,, . may be defined as
dp
Ky=— 9.15
" d¥m 19
¥

Substituting expressions for d¥,, d¥, and d¥, from Egs. 9.11,9.12,and 9.14
into 9.3, substituting the resulting expression for d¥,, into Eq. 9.5, and
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simplifying, we obtain
1
K, = —— .16
" P, 1 Do )
p2 KI Ece

In Chapter 1, we derived the following expression for the wave velocity (sub-
script m is added to denote values for the gas-liquid mixture)

_ . /Km » (.17

am =1/ —
Pm

Substituting expression for p,, from Eq. 9.10 and for X,,, from Eq. 9.16 into
Eq.9.17, we obtain

1
ay =
AP a,p, 1 D,
1- £ +p, —ofo , "~ 4+ £
[pl < p ) gopo] < p2 Kl Ece
If the compressibility of the liquid, the elasticity of the conduit walls, and the

terms of smaller magnitude are neglected, then the preceding expression, on the
basis of Eq.9.6, may be written as

YA A ‘
Oy = }/pz 0 e (9.19)

In this derivation, we assumed that the pressure inside the bubble did not
depend upon the surface tension as well as on the vapor pressure. Raiteri and
Siccardi'® derived an expression for the wave velocity without making this
assumption. Kalkwijk and Kranenburg!® presented a similar, but simplified
expression.

(9.18)

9.6 ANALYSIS OF CAVITATING FLOWS AND COLUMN SEPARATION

From the preceding discussion, it is clear that a system in which cavitating flow
and column separation occur can be divided into three regions or phases: (1)
waterhammer, (2) cavitation, and (3) column separation.

In the waterhammer region, the void fraction is so small that it can be ne-
glected. Hence, the velocity of the pressure waves does not depend upon the
pressure. In the cavitation region, gas bubbles are dispersed throughout the
liquid. Thus, the liquid behaves like a gas-liquid mixture. In such flows, there is
additional damping due to thermodynamic effects (see Section 9.4). In addi-
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curred at only one critical location were less than those measured on the pro-
totype. However, he obtained better agreement between the computed and
measured results when discrete air cavities were assumed along the pipeline.

For horizontal pipes, Baltzer,! Dijkman and Vreugdenhil,”® and Siemons®
assumed that a thin cavity was formed at the top of the pipe, and analyzed the
flow below the cavity, considering it as an open-channel flow. Vreugdenhil
et al.?® presented two mathematical models for the analysis of cavitation in long
horizontal pipelines: In the first model, a homogeneous gas-liquid mixture was
assumed in the cavitation region, while the regular continuity and dynamic
equations of waterhammer were used for the waterhammer region. In the
second model, called separated flow model, a thin cavity was assumed at the top
of the pipe in the cavitation region. Gas release into the cavities was neglected in
both the models. Based on experimental observations, Weyler et al.> developed
a semiempirical formula for predicting additional momentum loss in the cavita-
tion region.

Kranenburg?’ presented a mathematical model in which all three regions—
namely, column separation, cavitation, and waterhammer—were considered.
Equations were derived such that they are valid both in the cavitation region
and in the waterhammer region. A finite-difference scheme was outlined that is
suitable for the analysis of shocks. Comparison of the computed and measured

results showed good agreement.

Of all the methods listed previously, Kranenburg’s mathematical model*’
appears to be the best because of the inclusion of gas release, consideration of
all three possible regions, and its suitability for the analysis of shocks without
isolating them. (A shock is a steep wave front.) We will present the details of
this model in Section 9.8. In addition, the procedure outlined by Brown'® is
very simple, and the comparison of the computed results with those measured
on the pipeline of two pumping stations has shown good agreement. Details
of this method will be presented in Section 9.10. '

9.7 DERIVATION OF EQUATIONS

In this section, we will present the continuity and momentum equations that
describe the flow in the cavitation region, and the equations of state for the gas
release. These equations were derived by Kranenburg in Ref. 27.

The continuity and momentum equations presented in this section become the
continuity and momentum equations for the waterhammer region if the void
fraction, a, approaches zero. Hence, these equations can be used for both the

cavitation and the waterhammer regions.
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Assumptions
The following assumptions are made in the derivation of the equations:

. The flow is one-dimensional.

. The gas-vapor-liquid mixture is homogeneous.

. The vapor pressure and the gas temperature in the cavities are constant.
This is a valid assumption since the heat-transfer processes related to
the cavities are fast processes compared to the time span of the pressure
changes.

4. The momentum of the gas and vapor phases is small compared to that of

the liquid phase and may be neglected.

5. The gravity term for the density gradient of the fluid along the pipeline is

small and may be neglected.

6. The bubbles are spherical.

W D) -

Continuity Equation

Applying the law of conservation of mass to a control volume comprising of a
segment of the pipe yields

: f : f |
— - + = 1- =
a J (1-a)p dA 5% 4 (1-a)p,VdA =0 (9.20)

in which «=local void fraction; x = distance along the pipeline; r = time; V' =
liquid velocity; and 4 = cross-sectional area of the pipe. Note that a is a func-
tion of x, ¢, and the position in the cross section.

The mean void ratio, @, for a cross section may be written as

_ 1 f
=7 J adA (9.21)

The equations of state for the liquid phase and for a circular pipe are

doy _pu
dp KI
and
dA YA
- = 9.2
dp eE/D .22)

in which K, = modulus of compressibility of the liquid; £ = modulus of elasticity
of pipe-wall material; e = wall thickness of the pipe; and ¢ =a coefficient ac-
counting for the anchorage system of the pipeline. By substituting Egs. 9.21
and 9.22 into Eq. 9.20, neglecting higher-order terms, and simplifying, we
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X P A Y ) _—(L)]=
ot [(1 ?) <1+Pla%)]+ax [(l %) 1+p,a% g 0

in which g, = wave velocity in the liquid (assuming no gas release) and is given by

the expression
Kilp
= —_——— 924
al . / wDKI ( )
1+ ——
ek

and p = absolute pressure in the top of the cross section of the pipe.

obtain

(9.23)

Momentum Equation

Applying the law of conservation of momentum in the positive x-direction

— - +— [ (1- Vida+ | — a4
5 J, (1-p Vda+—= A( a) o ) Bx

=—f(l-a)(p,gsinlelVl)dA (9.25)
), 2D

in which 6 =angle of inclination of the pipeline, and A = friction parameter.
By substituting Eqs. 9.21 and 9.22 into Eq. 9 25, neglecting higher-order terms,
and simplifying, we obtain

3 o+ \vls 2 [a-m (1LY s 2
5[(1-&) <l+pla}>V]+ax [(1 a)<1+p,a})V +P;]

= (1-7) (g sin 0 + % v IVI) (9.26)

Note that Eqs. 9.23 and 9.26 are in the conservation form.

Cavitating Flow

As discussed previously, small bubbles or cavities are present in the region of
cavitating flow. Assuming the gas inside the cavity follows the perfect gas law
and neglecting surface tension, we can write for the dynamic equilibrium of a
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spherical bubble,
4
®-p) 3 7R3 = N,kT .27

in which p, = vapor pressure of the liquid; R = radius of the bubble; k = universal
gas constant; T = absolute temperature; and V, = quantity of gas in a bubble.
Let us assume that the bubbles are spherical, uniformly distributed, and of
the same size. Then, the average void fraction
ng 4 3

a=——nR

e (9.28)

in which n,, = number of bubbles per unit length of the pipeline.
Because of release or re-solution, the quantity of gas, N, in a bubble is a
function of time, ie.,

Ny
dt

dR (1)
dt ’

=v(ps-P)VBF [R (M, U(T)] (9.29)

in which v = proportionality constant in Henry’s law relating the gas pressure

and equilibrium concentration of the dissolved gas; p; = saturation pressure of

the liquid; § = diffusion coefficient; 7 = dummy variable with respect to time;

and U = bubble velocity with respect to the surrounding liquid.

~ If ldR/dt| << U and UR/B>> 1, then the function £ may be approximated®®
as

F~ 4 R()\2rOOR®) (9.30)

The value of the bubble velocity, U, may be selected?’ as follows: If the
bubble is not influenced by the wall of the pipe, then U may be assumed equal
to the rise velocity of the bubble. If the bubble is attached to the wall, U is
approximately equal to the liquid velocity V;but, if the bubble is in the topmost
part of the pipe without being attached, then U is considerably less. Experi-
mental measurements show that /=~ 0.01 m/s.

Column Separation

As previously discussed, liquid column separates only at the critical sections,
such as sharp vertical bends, of a pipeline. Thus, it is 2 local phenomenon and
is governed by the continuity equation only,ie.,

av
A Ve = Ver) (©31)
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in which ¥, = volume of the cavity at the location of column separation; ¥V,
and V,, are the velocities of the liquid column on the upstream and downstream
sides of the cavity, respectively. According to the perfect gas law,

(p. - p,) ¥ = NAT (9.32)
in which p, = pressure at column separation and N, = quantity of the released

gas at the column separation. Gas release or re-solution is represented by

an, _ dy
dt ¢ dt

(9.33)

in which n, = number of bubbles that together form the column separation and
dN,/dt is determined from Eq. 9.29, assuming p = p,..

9.8 NUMERICAL SOLUTION
Wave Equations

In the last section, we developed equations that describe the transient conditions
in the cavitating flows. If the transient-state pressure is significantly higher than
the vapor pressure, then the bubble size, and hence the void fraction, become so
small that the free-gas content may be neglected. In this case, Eqs. 9.23 and
9.26 reduce to equations describing the transient-state conditions in closed con-
duits without cavitation. Hence, Eqs. 9.23 and 9.26 may be used in both the
waterhammer and cavitation regions.

Equations 9.23, and 9.26 through 9.29 form a nonlinear, second-order, hyper-
bolic system. The following numerical methods are available for the solution of
Egs. 9.23 and 9.26: ‘

1. Method of characteristics.
2. Finite-difference methods.

As the velocity of waterhammer waves in the cavitation region depends upon
the pressure, a fixed grid cannot be used in the method of characteristics, since a
fixed grid requires interpolations at each time step which smoothen the sharp
peaks. Interpolations can be eliminated by using a flexible grid. However, if a
shock is formed, the method fails because of the convergence of the characteris-
tic curves.?® This difficulty can be circumvented by isolating the shock inthe
computations. Although, isolation of the shock may be feasible for the analysis
of a simple system,!’ the procedure is too cumbersome to be practical.

Only those finite-difference methods are suitable for the numerical integration
of Egs. 9.23 and 9.26, in which isolation of the shock is not necessary and which
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add some numerical dissipation terms®® so that the nonlinear instability due to
the pressure dependence of the waterhammer wave velocity is damped. Two
such schemes are available: Lax’s diffusive scheme and Lax-Wendroff’s twostep
scheme. Lax’s scheme®! is of first-order accuracy and introduces additional dif-
fusion terms, which are not present in the original differential equations. This
may result in reducing the maximum pressures. Lax-Wendroff’s scheme?? is of
second-order accuracy. It can be shown that the resulting difference equations,
based on this scheme, are consistent with the original differential equations. De-
tails of this scheme are presented herein.

To apply the Lax-Wendroff’s scheme, it is necessary that the governing equa-
tions be in the so-called conservation or divergence form. The continuity and
momentum equations, Egs. 9.23 and 9.26, are in conservation form and may be
written as

OV1i ,

PR £ T (9:34)
in which y; (= 1,2, 3 and i = 1,2) is a function of the pressure, velocity, and
void fraction. By replacing the partial derivatives of Eq. 9.34 by finite differ-
ences (Fig. 9.4a) as given by the Lax scheme, we obtain

yri(x + Ax, 1+ Ar)=05[y;(x + 24x, 1) + y,(x, 1)}

-At
+{E [Vai(x + 2Ax, 1) - y4i(x, 1)]

+ ‘Aéi [¥3i0c + 24x, 1) + y3;(x, t)]} (9.35)

in which Ax = length of a reach into which a pipeline is divided and At = com-
putational time step. By adding the following second step to Eq. 9.35, a second-
order accuracy can be obtained:

At
.yll'(xa t+ ZAt) =y1i(x) t)— -A—)-C- [.yZi(x + Ax’ t+ At)- )’Zi(x - Ax5t+ At)]

+ At[ysi(x + Ax, t+ A + y5;(x - Ax, 1+ Ar)] (9.36)

Equations 9.35 and 9.36 are known as Lax-Wendroff's two-step scheme. The
numerical damping introduced by this scheme is acceptable®® provided Ax is
small.

The above finite-difference scheme is stable if

Ax > At(a, + V) (937
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and

D

At<m

(9.38)

If the transient-state pressures drop to the vapor pressure of the liquid, then the
solution obtained by using the Lax-Wendroff’s scheme show some oscillations,
which are caused by the nonlinearities of the governing equations. These oscilla-
tions can be suppressed by applying a smoothing operator at those grid points at
which a parameter, 0;, characterizing the oscillations in the variable y,;, exceeds
a prescribed value, 6, . The parameter 6; is defined as

- 0.5y i(x +2Ax, )+ y,i{x - 28x,0)) - yi(x, 1)
Yri

in which y,; = reference interval of the variable y,;(x, ). (See Fig. 9.4b.) If
16,1 > 8,, the smoothened value of y,; is determined from the equation

Pule, ) =yi(x, )+ 0.5y,;8;(x, 1) (9.40)

However, if 16;| <8,, the value of y,;(x, t) is not smoothened. Kranenburg used
16.] =0.01 in his computations.

8,(x, 1) (9.39)

Column Separation

As discussed previously, liquid column separates only at the critical locations of
a pipeline. This can, therefore, be explicitly taken into account at the points
where it is expected to occur. The differential equations describing the column
separation, Eqs. 9.31 and 9.32, can be integrated by using an explicit finite-
difference scheme. However, the time steps required for such a scheme for
small amounts of free gas, V., is considerably less than that given by Eq.9.37.
This difficulty can be overcome by eliminating V,, and V,, by using the com-
patibility equations?”3%3 for the characteristic directions following from Egs.
9.23 and 9.26.

1 1 A .
Ve + —— (o, - D) = B4 =[V+E;—(p—pu)+At(3—D— VIV|-gsin¢

PiaR
o kT ‘-jivl’)] (9.41)
A(p-p,) dt /g

1 1 -A .
ch— (pc_pu)=BZ=[V__';a_(p_pv)*'At(EVlVl“gsm(p

Pias
anykT dNb>]
-— 9.42)
A(p-py) dt [ls (
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in which the subscripts R and § denote conditions at points R and S, which are
assumed equal to those at the grid points A and B on either side of column
separation (Fig. 9.5). By eliminating V,,, V,,, and p, from Egs. 9.31, 9.32,
9.41, and 9.42 and integrating over a time step, 2A¢, assuming N, to be constant
we obtain

’

V. (t+2A0) =¥ (£) + 24t (B, - B,) A

+ Cw In [ Cwt pl(Bl _ Bz) -Vc(t + 2At) (9'43)
(B, - B,) Cw tp)(By - B)) ¥()
in which
c =L+ L\Nir 9.44
N ©.44)

Equation 9.43 allows larger time steps without leading to instability.

Gas Release

A simple explicit finite-difference scheme may be used to integrate Egs. 9.29
and 9.33 describing the gas release and re-solution,

© Grid points

t } /-Ca/umn separation
t, + 24t 4
t :
o A S B

Figure 9.5. Notation for liquid-column separation.
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Results

Kranenburg?? compared the results computed by using the mathematical model
of Sections 9.7 and 9.8 with Baltzer’s experimental results! and with those mea-
sured on a laboratory pipeline.?® The agreement between the computed and
measured results was satisfactory.

Based on the results of his studies, Kranenburg concluded that:

1. Including the gas release has insignificant influence in cases where only
cavitating flow occurs; however, the influence is considerable in cases in which
both column separation and cavitating flow occur.

2. Gas release in the cavitating flow adjacent to the column separation reduces
the duration of the subsequent column separations and hence the maximum
pressures following column separation.

3. Gas release at the separation cavity increases the duration of column separa-
tion and slightly increases the pressure.

4. For a quantitative prediction of the gas release, further investigations,
probably on prototypes, are required of various parameters, such as number of
bubbles, n, and n,, and relative bubble velocity.

9.9 DESIGN CONSIDERATIONS

If the analysis of transient conditions shows that the liquid column will separate
or transient cavitation will occur in a pipeline, then it has to be decided whether
the pressures generated when the separated columns rejoin or when the cavities
collapse are acceptable. Of course, it is possible to design a pipeline to withstand
any pressure. Such a design will, however, be uneconomical. Therefore, pro-
vision of various control devices or appurtenances should be investigated to
obtain an overall economic design.

The following are some of the common appurtenances usually employed to
prevent column separation or to reduce the pressure rise when the separated
columns rejoin:

Air chambers

Surge tanks

One-way surge tanks

Flywheel

Air-inlet valves

Pressure-relief or pressure-regulating valve.

R

Providing an air chamber or a surge tank is usually costly. Increasing the WR?
of the pump-motor by means of a flywheel increases the space requirements
and may require a separate starter for the motor, thus increasing the initial
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costs. Caution must be exercised if air-inlet valves are used, because once
air is admitted into a pipeline, it has to be removed from the line prior to refilling
since entrapped air can result in very high pressures. By providing a pressure-
relief valve or a pressure-regulating valve, the pressure rise can be reduced by
letting the columns rejoin under controlled conditions.

In addition to the initial costs, the cost and ease of maintenance should be
taken into consideration while selecting any of the preceding appurtenances for
a particular installation.

9.10 CASE STUDY

Brown'® reported analytical studies and prototype test results on the water-
column separation in the discharge lines of two pumping plants designed by the
United States Bureau of Reclamation. Details of the mathematical model and
comparison of the computed and measured results for one of the pumping
plants are presented in this section.

Project Details

The pipeline profile for the 7.2 Mile Pumping Plant is shown in Fig. 9.6. Other
data for the pumping plant are:

Type of pump: Single stage, double suction
Rated head: 7224 m
Flow at rated head: 0237 m3/s
Rated speed: 1770 rpm
Peak efficiency: 86 percent
Specific speed of equivalent
single suction pump: 1270 (gpm units); 25 (SI units)
Length of pipeline: 1078 m :
Diameter of pipeline: 0.6l m
Thickness of steel pipe: 4.8 mm
Output of motors: 224 kW
WR? of one motor: 10.11 kg m?
WR? of one pump: 1.59 kg m?
No. pumping units: 2 '

The pump characteristics were obtained from a double suction-type pump 35:36

and therefore its equivalent, single-suction, specific speed is 1270 (gpm units)
instead of the listed value of 1800.
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Figure 9.6. Profile of 7.2-mile pumping plant. (After Brown'®)

Field Tests

The locations of the test stations are marked in Fig. 9.6. The pumping-plant
station is located essentially at the pumping units, and station 3 and 4 bracket
the “knee” in the pipeline where the water column was expected to separate.
The resistance-type pressure cells were used to measure the pressure, and a
photoelectric revolution counter was used to measure the pump speed. High-
speed oscillographs were used to record the data.
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Mathematical Model

A mathematical model was developed based on the method of characteristics.
The upstream boundary condition was a centrifugal pump. The pump charac-
teristics for all four zones of operation were stored in the computer. The down-
stream boundary condition was a constant-head reservoir. The effect of the
entrained air and column separation was taken into consideration as outlined
below. In order to be compatible with the text, the notation used herein is dif-
ferent from that of Ref. 19. ,

The total volume of the entrained air in the pipeline is assumed to be concen-
trated at discrete air cavities. Let us consider the air cavity located at the ith
junction (see Fig. 9.7). The volume of this air cavity is

¥i=ad;l, (9.45)

in which a = void fraction and L; and A4; are the length and cross-sectional area
of the ith pipe, respectively.
The expansion and contraction of the air pocket is assumed to follow the

Detail Z

Figure 9.7. Notation for air cavity. (After Brownlg)
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in which ¥p, = volume of the air pocket at the end of time Sth,Hp' ne1 = Pi€Z0- < T\ N =Curve No 3
metric head above the datum at section’ (i, n + 1) at the end of time step; C = a 1T ATest No. 9
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and it is equal to 1.4 for a fast adiabatic process. An average value of m=1.22 |
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The continuity equation at the cavity may be written as {a) Pumping plant station

VP~ ='Vi+ At[(QPH-l 1t Qier,1) - (QPI n+1 Qi'””)] (47)

in which Az = size of the time step; #; and ¥, are the volumes of the air cavity e Measured ———
at the beginning and at the end of the time step Qi,n+1 and Qp; , are the flow Computed ————
rates at the upstream end of the air cavity at the beginning and at the end of the & T Carve No. 3 | A-Test_no. 4]
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Pedd : . 400 T [0 40 7.
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1300
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Figure 9.8. Comparison of computed and measured results. (After Brownlg)
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the effective head range. If the hydraulic grade line was above h,,;, the effects of

the air at that location were neglected. An effective head range, h,,; - Ay, of'

104 m was used in the computations.

The measured and computed results are shown in Fig. 9.8. In one case, shown
as Curve No. 2, a very small amount of air was considered only at the critical
point, i.e., at the knee in the pipeline profile. This was done to determine the
effects of the air entrainment. For Curve No. 3, a = 0.0001 was assumed. It
is clear from these figures that a better agreement is obtained between the
computed and measured results if the effects of entrained air are taken into
consideration.

9.11 SUMMARY

In this chapter, flows in which liquid-column separation and cavitating flows
may occur were considered, and the causes of the reduction of pressure that may
produce these flows were outlined. The continuity and momentum equations
describing the cavitating flows were derived, and the methods available for their
solution were listed. Details of one of these methods were presented. The
chapter concluded with a case study.

PROBLEMS

9.1 Derive Eq. 9.19 from first principles.

9.2 At low pressures and temperatures, the expansion of the entrained gases in a
gas-liquid mixture is isothermal, and thus the bulk modulus of the gas, K, is
equal to the absolute pressure of the gas, pg.16 From first principles, prove
that, for a low gas content (i.e., void fraction, a < 0.001),

a _ pg
a, aK;+pg

in which a, = wave velocity in a gas-free liquid. Neglect the effect of the
pipeline anchorage system. (Hint: For small values of a, ap, << (1- @) p
and (1 - &) p; = py.)

9.3 Assuming different values of &, compute the wave velocity, a, in an air-water
mixture at atmospheric pressure. Plot a graph between ¢ and a.

9.4 Write a computer program for the analysis of the piping system shown in
Fig. 9.3a. Transient conditions are produced by power failure to the pump-
motors. Assume that the water-column separation occurs as soon as the
pressure at the summit of the pipeline is reduced to the vapor pressure of
the liquid.

i

[~y

AT b e iR LR T  PF L T
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9.5 By using the program of Problem 9.4, investigate the effect of increasing the
WR? of the pump-motors on the duration of column separation and on the
maximum pressures in the pipeline.
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CHAPTER 10

METHODS FOR CONTROLLING
TRANSIENTS

10.1 INTRODUCTION

A piping system can be designed with a liberal factor of safety to withstand the
maximum and minimum pressures caused by any possible operating condition
expected to occur during the life of the system. Such a design in most cases
will, however, be very uneconomical. Therefore, various devices and/or control
procedures are used to reduce or eliminate undesirable transients, e.g., excessive
pressure rise or drop, column separation, pump or turbine overspeed. Such
devices are usually costly, and there is no single device that is suitable for all
systems or for all operating conditions. Therefore, while designing a piping
system, a number of alternatives should be considered. The alternative that
gives an acceptable system response and an overall economical system should
be selected. An acceptable system response may be defined by specifying
limits on the maximum and minimum pressures, maximum turbine speed fol-
lowing full-load rejection, or maximum reverse pump speed following power
failure,

In Chapter 1, we derived the following equation for pressure change, AH, asa
result of an instantaneous change in the flow velocity, AV,

AH=-2 Ap (10.1)
4

in which a = waterhammer wave velocity and & = acceleration due to gravity.
This equation indicates that the main function of a device used for the reduction
of the magnitude of pressure rise or pressure drop would be to reduce AV
and/or a. In addition, the flow velocity, V, may be varied in such a manner
that the pressures are kept within the prescribed limits. Such a controlled
variation of the flow conditions, which results in a required system response,
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is referred to as optimal control of transient flows. A discussion of the optimal
control of transient flows will be presented in Section 10.6.

In this chapter, we will first present various devices available to reduce or to
eliminate undesirable transients. Boundary conditions for these devices will be
developed, which are required for the analysis of a system by the method of
characteristics presented in Chapter 3. The chapter concludes with a case study.

10.2 AVAILABLE DEVICES AND METHODS FOR CONTROLLING
TRANSIENTS

The following devices are commonly used to reduce or to eliminate the unde-
sirable transients, such as excessive pressures, column separation, and pump or
turbine overspeed following a power failure or a load rejection: (1) surge tanks,
(2) air chambers, and (3) valves.

In addition, the severity of undesirable transients may be reduced by changing
the pipeline profile, by increasing the diameter of the pipeline, or by reducing
the waterhammer wave velocity.

A brief description of and the boundary conditions for the three devices are
presented in the following sections.

In the derivation of the boundary conditions, the notation of Chapter 3 is
used. Two subscripts are used with the variables to designate their values at a
section of a pipe: the first subscript refers to the pipe, while the second refers
to the section. The subscript P is used to designate an unknown variable at the
end of the time step under consideration, i.e., at time ¢, + Ar, while a variable
without the subscript P refers to its known value at the beginning of the time
step, i.e., at time, ¢, (see Fig. 3.1).

10.3 SURGE TANKS

Description

A surge tank is an open chamber or a tank connected to the pipeline. This
tank reflects the pressure waves, and supplies or stores excess liquid. Various
types of surge tanks are presented in Section 11.2.

The transients in a piping system having a surge tank may be analyzed by
using the method of characteristics if the transients are rapid and are of short
duration—e.g., waterhammer. However, for slow transients—e.g., oscillations
of the water level in a surge tank following a load rejection on a turbine—this
method requires an excessive amount of computer time and is not suitable,
In such cases, the system may be analyzed as a lumped system, details of which
are given in Chapter 11. In this section, we will derive the boundary conditions
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for a surge tank. These boundary conditions are required for the analysis of
a system having a surge tank by the method of characteristics.

Boundary Conditions

Let us consider a surge tank having a standpipe, as shown in Fig. 10.1. The
length of the standpipe is usually short as compared to the lengths of the pipes
of the system. Therefore, the liquid inside the standpipe may be considered

as a lumped mass.
The following equations may be written for the junction of the standpipe

with the pipeline (see Fig. 10.1a):

1. Positive characteristic equation (Eq. 3.18) for section (i, n + 1)

QPi,nﬂ = Cp - C"i HPi,n+1 (10'2)
2. Negative characteristic equation (Eq. 3.19) for section (i + 1, 1)
QP,-,,,,l =Cn + Gy, Hp;,, o (10.3)
3. Continuity equation
Qpi,nﬂ - Qpi+l,1 + QPsp (10'4)

in which Op,, = flow in the standpipe (flow in the upward direction is con-
sidered positive) at the end of the time step; Qp = discharge at the end of time
step; Hp = piezometric head above datum; C,, C,, and C, are constants as de-
fined by Egs. 3.20 through 3.23. The subscripts i and i+ 1 refer to the pipe
numbers, and the subscripts 1 and n + 1 refer to the section numbers.

4. If the losses at the junction are neglected, then

Hp; oy = Hepyy - (10.5)

H
5. Referring to the freebody diagram of Fig. 10.1b, the following differential
equation may be written for the acceleration of the liquid in the standpipe at
the end of the time step:
Ly dQgp
YAgp Z‘E d_t =vAgp [Hp‘.'n+l - (zp _Lsp)] -W-Fr (10.6)
in which v = specific weight of the liquid; W = weight of the liquid in the stand-
pipe = YAy, Lgp; Fy = force due to friction = vAg, fLg stp Istp 1/(2gDgpA%);
and Dg, = diameter of the standpipe. Substituting expressions for W and Fy into
Eq. 10.6 and dividing by 74 g,, we obtain

Lsp dQsp . fLsp

. - - — 10.7
g4, dr Pipet ~ 2P 2845,D,, Qp,,10p,, | (10.7)
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Figure 10.1. Notation for surge tank with standpipe.
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6. Let z and zp be the heights of the liquid surface in the tank above the
datum at the beginning and at the end of the time step. Then,
0.5 Ar
Ag

Zp=z+ (stp +0p) (10.8)
in which A = horizontal cross-sectional area of the tank; Qg = flow in the
standpipe at the beginning of the time step; and At is the size of the compu-
tational time step.

If the size of the time step is small, then dQy,/dt =~ (stp - Op)/At. In
addition, since the variation of the flow in the standpipe is usually gradual,
the friction term may be approximated as fLsmeIQspl/(2gDspA§p). Sub-
stitution of these relationships into Eq. 10.7 yields

Op,, = —F (HPi,nH T~ Zp - Csp) + Qsp (109)

in which Cy, = fLp Q1 Qp l/(2gA§po).

Now we have six linear equations, i.e., Eqs. 10.2 to 10.5, 10.8, and 10.9, in
six unknowns—namely, Qpi‘n“, QPi+1,1’ Hpi'n“, me, HP,~+1,,’ and zp.
These equations may be solved simultaneously by any standard numerical
method.

Note that if we had not written the friction term in terms of the known
discharge at the beginning of the time step, we would have a nonlinear system
of equations. In that case, the Newton-Raphson method may be used to solve

the system of equations.

104 AIR CHAMBERS
Description

An air chamber (Fig. 10.2) is a vessel having compressed air at its top and
having liquid in its lower part. To restrict the inflow into or outflow from
the chamber, an orifice is usually provided between the chamber and the pipe-
line. An orifice, which is shaped such that it produces more head loss for
inflow into the chamber than for a corresponding outflow from the chamber, is
referred to as differential orifice (Fig. 10.2). To prevent very low minimum
pressures in the pipeline and hence column separation, the outflow from the
chamber should be as free as possible, while the inflow may be restricted to
reduce the size of the chamber. A ratio of 2.5:1 between the orifice head
losses for the same inflow and outflow is commonly used.! As the air volume
may be reduced due to leakage or due to solution in the liquid, an air com-
pressor is used to keep the volume of the air within the prescribed limits.
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Figure 10.2. Air chamber.

It is a common practice to provide a check valve between the pump and the air
chamber (see Fig. 10.2). Upon power failure, the pressure in the pipeline drops,
and the liquid is supplied from the chamber into the pipeline. When the flow in
the pipeline reverses, the check valve closes instantaneously, and the liquid flows
into the chamber. Because of the inflow or outflow from the chamber, the air
in the chamber contracts or expands, and the magnitude of the pressure rise and
drop are reduced due to gradual variation of the flow velocity in the pipeline.

An air chamber has the following advantages over a surge tank:

1. The volume of an air chamber required for keeping the maximum and
minimum pressures within the prescribed limits is smaller than that of an equiv-
alent surge tank.

2. An air chamber can be installed with its axis parallel to the ground slope.
This reduces the foundation costs and provides better resistance to both wind and
earthquake loads.

3. An air chamber can be provided near the pump, which may not be practical
in the case of a surge tank because of excessive height. This reduces the pressure
rise and the pressure drop in the pipeline.

4. To prevent freezing in cold climates, it is cheaper to heat the liquid in an
air chamber than in a surge tank because of smaller size and because of prox-
imity to the pumphouse.

The main disedvantage of an air chamber is the necessity to provide air com-
pressors and auxiliary equipment, which require constant maintenance.

Engler,? Allievi® and Angus*® discussed the use of air chambers in pumping
systems to control transients generated by power failure to the pumps. Charts
(see Appendix A) to determine the size of an air chamber for a pipeline to keep
the maximum and minimum pressures within design limits are reported in the
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literature.!*>~® These charts may be used to determine the approximate size
of a chamber for a pipeline, During the final design stages, however, a detailed
transient analysis should be carried out. The method of characteristics incor-
porating the following boundary conditions may be used for this analysis.

Boundary Conditions

Referring to Fig. 10.3, the following equations are available at the junction of
the chamber with the pipeline:

1. Positive characteristic equation (Eq. 3.18) for section (i, n + 1):

Op; per =Cp = Ca;fp; 4y (10.10)
2. Negative characteristic equation (Eq. 3.19) for section (/ + 1, 1):
Qpiyyy =Cnt Capyy Hpyy (10.11)
3. If the losses at the junction are neglected, then
Hp; woy =Hpiy (10.12)

4. Continuity equation

Op;ner = CPiyy t Crort (10.13)

in which Qp_ = flow through the orifice (considered positive into the chamber).
Assuming that the air enclosed at the top of the chamber follows the poly-
tropic relation for a perfect gas, i.e.,

Hp ¥p. =C (10.14)
[ ——Air
i ]

a
NN Pipe i Pipe i+|

_L:L, RE———

(i, n+i) i+, 1)
,/—Datum

Figure 10.3. Notation for air chamber.
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in which H}’fair and ¥#p_, are the absolute pressure head and the volume of the
enclosed air at the end of the time step; m is the exponent in the polytropic
gas equation; C is a constant whose value is determined from the initial con-
ditions, i.e., C=¥7 . H:ﬂir; and the subscript o refers to the initial steady-
state conditions. The values of m are equal to 1.0 and 1.4 for an isothermal
and for an adiabatic expansion or contraction of the air. The expansion or
contraction process is almost adiabatic for small-size chambers and rapid tran-
sients, and it is almost isothermal for slow transients and large air volumes.
For design calculations, an average value of m = 1.2 may be used because the
transients are usually rapid at the beginning and they are slow at the end.

For modeling the behavior of the air volume, Graze®~!! recommends using
a differential equation based on rational heat transfer rather than using the
polytropic equation, Eq. 10.14. The main difficulty in using the equation
recommended by Graze is that the rate of heat transfer is not precisely known
and has to be assumed.

The orifice losses may be expressed as

hPorf = Corf QPorlePm-fI (]0‘]5)

in which Cys = coefficient of orifice losses, and hp o = head loss in the orifice
for a flow of Qp_.. Note that if the orifice is of differential type, then Co
has different values for the inflow into and outflow from the chamber.

The following equations may be written for the enclosed air volume:

* 0 _
Hpy = Hp, o) Y Hy - 2p = hp g (10.16-2)
¥pyir = Yair ~Ac (2p - 2) (10.16-b)
At
zp =2+ 0.5 (Qors + Qporg) 4, (10.16-c)

in which H, = barometric pressure head; 4, = horizontal cross-sectional area of
the chamber; z and zp are the heights of the liquid surface in the chamber above
the datum at the beginning and at the end of the time step (measured positive
upwards); Qs = orifice flow at the beginning of time step; and #,;, = volume of
air at beginning of time step.

We have nine equations, Eq. 10.10 to 10.16 in nine unknowns—namely,
*
QPi,nH 4 QPi+l,l ’ QPorf’ HPi,nH’ HPiﬂ,l ? hPorf’ VPair’ Hpair’ and Zp- A

number of these unknowns may be eliminated as follows: Substituting Egs.
10.10 through 10.12 into Eq. 10.13, we obtain ‘

Qpoet = (Cp = Cp) = (Cay + Cayy ) Hpy oy (10.17)
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It follows from Egs. 10.14 through 10.16b that
(Hp +Hp = 2p = Cot Qp o5 |10p g ) Faic ~ Ac @p - 2] =C
(10.18)

In Eqgs. 10.16c through 10.18, we have three unknowns, namely, Op .
Hp, .., and zp. The value of these three unknowns may be determined by
solving these equations by an iterative technique, such as the Newton-Raphson
method. The known values of these variables at the beginning of the time step
may be used as a first estimate for starting the iterations.

Sometimes, the air chamber is connected to the pipeline by ‘a standpipe as
shown in Fig. 10.4. In such a case, the length of the standpipe should be as
short as possible, and it should be sized so that there is little delay between
the pressure change in the pipeline and the start of inflow or outflow from the
chamber. To account for the liquid in the standpipe, the preceding equations
for an air chamber having a standpipe are modified as discussed in the following.

Let us consider the flow in the standpipe in the upward direction as positive
(Fig. 10.4) and assume the liquid inside the standpipe as a lumped mass. Then,
the dynamic equation for the standpipe may be written as

TLpAyp dQgp

i,n+1

=14y [HP-',,,,,I - (H;;air - Hy)- (zp - Lsp)] - Fp- w

gAsp dt !
(10.19)
Air chamber ’“\m__,/udir
—_———— __-__J_
r—J“‘——T
Stondpipe —
a o
w
4 | N[N
> Asp
Pipe i . Pipe i+l
—_—
(i,n+t)  (i+l, 1)
Darum\

Figure 10.4. Notation for air chamber with standpipe.
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in which W = weight of the liquid in the standpipe; Ly, and 4g, are the length
and cross-sectional area of standpipe, respectively; zp = height of the liquid sur-
face in the chamber above the datum; and Fj = frictional force in the standpipe
including the entrance or exit losses from the chamber into the standpipe and
is equal to vA g, hpf. In this expression,

h = i‘.ﬂ?_ +C | | 0.20

Pr~ \2gngan * Cot Qp,,19p,, (10.20)

in which D, = diameter of the standpipe and Cy¢ = coefficient of the orifice

head losses. If the size of the time step, At, is small, then hpf may be approxi-
mated as

hpy =k Qe Q| (10.21)

in which k=(fLg,)/(2gDgA%) + Corr-  Substituting W=yLg, A, and the
expression for hp. from Eq. 10.21 into Eq. 10.19, approximating dQ,,/dt =
(stp - Q,p)/At, and simplifying the resulting equation, we obtain

gAt Ag "
L (HPi,rH-l - [Ipail' - ZP) +
sp p

gAr Ay,

QP_‘.p = Qsp + (Hb -k Qsplep ,)

(10.22)

The continuity equation at the junction of the standpipe and the pipeline,
and the equation for the liquid level in the chamber, may be written as

Op; pay = Qpg, * Qpyy (10.23)

At
zp=z+0Q05 (stp + Q) i (10.24)
c
Elimination of Qp'.'n+1 , Qpi+l,l , and HP:‘+1,1 from Eqgs. 10.10 through 10.12
and 10.23 yields

o _ Cp, - Cy ~ 1 0 (10.25)
Pin+1 Ca,' + C”iﬂ Cai + Ca,'+1 Fr .

It follows from Eqs. 10.14 and 10.16b that
H;air Fair - zp - 241" =C (10.26)

Now we have four equations (i.e., Eqs. 10.22, 10.24, 10.25, and 10.26) in four
unknowns, namely, stp, H;air, zp, and Hp, .. . Because Eq. 10.26 is non-
linear, the Newton-Raphson method may be used to solve these equations.
The value OfHPiH,l , QP,~,,,+1 , me, ,» and ¥p . may then be determined from
Egs. 10.12,10.10,10.11, and 10.16b, respectively.
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10.5 VALVES
Description

Depending upon the type, a valve is used to control the transients by either of
the following operations:

1. The valve opens or closes to reduce the rate of net change in the flow
velocity in the pipeline.

2. It allows rapid outflow of the liquid from the pipeline if the pressure ex-
ceeds a set limit. This outflow causes a pressure drop, thus reducing the maxi-
mum pressure.

3. The valve opens to admit air into the pipeline, thus preventing the pressure
from dropping to the liquid vapor pressure.

A number of valves commonly used to control transients are:

Safety valves
Pressure-relief valves

. Pressure-regulating valves
. Air-inlet valves

. Check valves.

A safety valve or an overpressure pop-off valve (Fig. 10.5a) is a spring or
weight-loaded valve, which opens as soon as the pressure inside the pipeline ex-
ceeds the pressure head set on the valve. The valve closes abruptly when the
pressure drops below the limit set on the valve (Fig. 10.6a). A safety valve is
either fully open or fully closed.

The operation of a pressure-relief valve or surge suppressor (Fig. 10.5b) is
similar to that of a safety valve except that its opening is proportional to the
amount by which the pressure in the pipeline just upstream of the valve exceeds
the prescribed limits. The valve closes when the pipeline pressure drops and
is fully closed when the pressure is below the limit set on the valve. There is
usually some hysteresis in the opening and the closing of the valve, as shown
in Fig. 10.6b."?

For a pumping system having more than one pump discharging into 2 common
header, a battery of smaller-size relief valves or surge suppressors may be used!?
instead of one large surge suppressor. A suppressor may be installed on each
pump or the entire battery of the suppressors may be mounted on the main
discharge line. In the latter arrangement, the overpressure setting of each valve
should be set such that the valves open in sequence one after the other rather
than simultaneously.
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Figure 10.5. Schematic diagrams of safety, relief, and pressure-regulating valves.
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A pressure-regulating valve (PRV) is a pilot-controlled throttling valve, which
is opened or closed by a servomotor, and the opening and closing times of this
valve can be individually set. It is installed just downstream of a pump in a
pumping system and upstream of a turbine in a hydropower scheme. Following
power failure to the pump-motor, this valve rapidly opens and then gradually
closes (Fig. 10.6¢) to reduce the pressure rise. The operation of this valve in
a hydropower scheme is as follows: If the power plant is isolated from the
grid system, the PRV is kept partly open to provide for the maximum antici-
pated rapid load increase. When accepting rapid load changes, the PRV is
closed in approximate synchronism with the turbine wicket gates to maintain
an essentially constant flow velocity in the penstock. Following a load rejec-
tion, the PRV is opened as the wicket gates are closed, and then the PRV is
closed at a slow rate. In such an operation, some water is wasted. However,
as isolated operation is an emergency condition, the amount of water wasted
is insignificant.

Upon full-load rejection, either in the normal or isolated operation of the
turbine, all the turbine flow is switched from the turbine to the PRV, which
is then closed slowly.

Figure 10.7 illustrates the synchronous operation of a PRV and a turbine.
Figs. 10.7a and b are for a turbine isolated from the grid system. Figure 10.7¢
is for a turbine connected to or isolated from the grid system.

Ideally, the net change in the penstock flow may be reduced to zero by
matching the discharge characteristics of the PRV with that of the turbine.
However, this is usually not possible because of the nonlinear flow charac-
teristics of the turbines and valves and because of the dead or delay time be-
tween the opening (closing) of the pressure regulator and the closing (opening)
of the wicket gates. This dead time should be as small as possible to minimize
pressure rise or drop in the penstock.

Air-inlet valves are installed to admit air into the pipeline whenever the pres-
sure inside the pipeline drops below the atmospheric pressure. Therefore, the
pressure differential between the outside atmospheric pressure and the pressure
inside the pipeline is reduced, thus preventing the collapse of the pipeline. Air-
inlet valves are also used to reduce the generation of high pressures when the
liquid columns rejoin following column separation by providing an air cushion
in the pipe.

Once air has been admitted into the pipeline, extreme care must be exercised
while refilling the line. The air pockets should be eliminated gradually from the
line because the entrapped air can result in very high pressures.!*~!7

Check valves are used to prevent reverse flow through a pump and to prevent
inflow into a one-way surge tank from the pipeline. They are installed imme-
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Figure 10.7. Synchronous operation of turbine and pressure-regulating valve.
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diately downstream of a pump or at the bottom of a one-way surge tank (see
Section 11.2). A check valve in its simplest form is a flap valve, although some-
times dashpots and springs are provided to prevent slamming of the valve.

Boundary Conditions

For the analysis of a system in which a valve is used to control transients, the
boundary conditions and the time history of the valve opening, 7, should be
known.

Boundary conditions for a valve (developed in Section 3.3) may be used for
safety and relief valves, and for a PRV if the pump is isolated from the pipeline
following power failure by means of a check valve. The boundary conditions
for a PRV become slightly more complex if simultaneous flow is permitted
through the valve as well as through the pump or the turbine. Boundary con-
ditions for a pump and a PRV are derived in this section; and for a Francis
turbine and a PRV in Section 10.6.

A check valve may be considered as a dead end for negative flows, while its
presence may be ignored for positive flows. For a more elaborate analysis,
however, the differential equation of Problem 4.6 for the closure of a check
valve when the flow in the discharge line decelerates may be used.

To use the boundary conditions, the variation of valve opening, 7, with time
should be known. For a pressure relief valve or surge suppressor, 7 is a function
of the pressure in the pipeline just upstream of the valve. Therefore, the value of
7 is determined as the calculations progress. The r-versus-time ¢urve for a PRV is
specified. Discrete values on this 7-t curve may be stored in the computer, and
the 7 values at intermediate times may be determined by parabolic interpolation.

PRV and a Pump

Let us consider the PRV and pump arrangement shown in Fig. 10.8 in which
the pipes between the pump and section (i, 1) and between the valve and section
(i, 1) are very short and therefore may be neglected. Assuming the downstream
flow direction as positive, the continuity equation at section (i, 1) may be
written as

Qp; = 1pQp, - Cp, (10.27)
in which Qp = discharge at the end of the time step; the subscripts p, v, and
(i, 1) refer to the pump, PRV, and section (i, 1); and 7, = number of parallel
pumps.

Referring to Fig. 10.8,

HPl',l =pr +Hsuc - AHPd (1028)
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Figure 10.8. Notation for a pressure-regulating valve— centrifugal pump system.

in which Hy,c = height of the suction reservoir above the datum; Hp, , = piezo-
metric head at section (i, 1) above datum; AHp, =head loss at the discharge
valve; and Hp_ = pumping head.

The flow through the PRV, Qp , is given by the equation

qu = CpuTP VHPi,l =2, (1029)

in which Cp, = QouVH, - 25 ; @y = flow through the fully open valve under
a head of (H, - z,); 7p = effective valve opening at the end of time step =
(CaAN(CzA,),: Cq = coefficient of discharge; A4, =area of valve opening;
z, = height above the datum of the reservoir into which PRV is discharging;
and the subscript o refers to steady-state conditions. If the PRV is discharging
into the suction reservoir, then z, = Hg,., and if the PRV is discharging into
atmosphere, then z, = height of PRV above datum.
The following equations are available for the pump-PRV end:

1. negative characteristic equation for section (i, 1), Eq. 4.16
2. equations for the head and torque characteristics, Eqs. 4.7 and 4.8
3. equation for the rotating masses, Eq. 4.14.

Now, we have seven equations in seven unknowns, i.e., Qpp, Op; I,va,Hpi T
ap, hp, and Bp. To simplify their solution, let us eliminate all other variables
except two so that we have two equations in two unknowns. Then, we can use
the Newton-Raphson method to solve these equations. In this section, we will
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only derive the expressions for F; and F, and for their derivatives; the pro-
cedure for using these expressions in the Newton-Raphson method was out-
lined in Section 4 4.

By eliminating Qpl.’1 and Qp, from Egs. 10.27, 10.29, and 4.16, and writing
AHp, = CquplQppl, we obtain

anPP = CP"TP\/HPP t Hyye - CuQPp|QPp| =24 +Cy
+ Coy(Hp, + Hoe - C,0p,10p,1) (1030)

By using the relationships, vp = Qp/Qg and hp = Hp/Hg, Eq. 10.30 may be
written as

npQrvp = CpuTP\/HRhP + Hgye - CuQ}QUPIUPI -z, +C,
+ Ca,-(HRhP + Hsuc - CUQ?Q vP'”PI) (10-3 1)

By eliminating hp from Eqs. 4.7 and 10.31, and simplifying the resulting equa-
tion, we obtain

Fl = CpuTP

a
X alHR(aiz’ + v%’) + aZHR(alz’ + U%) tan~! _Uf N CUQ}?vPIUPI + Hsuc 2o
+ CoHray (@ + vB) + €y Hrar(eh + vB) tan™! 52
P
- Ca,-CuQ}22 vplupl - npQptpt+Cy + CaHyy =0 (10.32a)
Differentiation of Eq. 10.32a with respect to ap and vp yields

aF, 1
—L=—15Cp,|as Hp(ah + v3) + 2 Hg (b + v3) tan! 2
Bap 2 Up

-1/2
- C,Qkvplup| + Hyy - Zo} (2010!PHR taHpup

-1 &p a2
+ 2a, Hpop tan ’v—)+2a1CaiHRap+2a2CaiHRap tan™! £
P Up

+a,C, Hpop (10.32b)
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oF; 1 . o
5;‘1’= ETPva [axHR(O‘I% +vp) + a,Hp(op + v}) tan™" “l')ﬁ - C,Qkvplupl
P P

-1/2 P
+ Hye - ZOJ X [2UPHR (al +a, tan™! ';)f)‘ a,Hpap - 2CuQ}2|UP|]

[4
+ 22, CyHRvp + 22, CoyHg vp tan ™! v—” - a,C, Hrop - 2C,,C,Q% lvpl
P

- n,0r (10.32¢)

Expressions for £, 8F,/8ap, and 0F,/dup are given by Egs. 4.20, 4.27, and

428, respectively.

The value of 7p is determined from the specified valve-opening-versus-time
curve, and then Egs. 10.32a-c, 4.20, 4.27, and 4.28 are used to determine the
values of ap and vp by following the procedure outlined in Section 4.4 (see Fig,

10.9).

Air-Inlet Valve

Let the air-inlet valve be located at the junction of the ith and (i + 1)th pipe as
shown in Fig. 10.10. Then the positive and negative characteristic equations for
sections ({,n+ 1)and (i + 1, 1) are

Qpl.,n+l =Cp CaIle a1 (10.33)
Oy = =Ca+ Coy, Hp Pivy 1 (10.34)

In addition, if the head losses in the pipeline at the valve are neglected, then
Hpi 1 HPHI . (10.35)

In the subsequent discussion, we will use HP , s the piezometric head at the

valve location.

When Hp , drops below a predetermined value, y, set on the valve, 18 the
valve opens, and the air flows into the pipeline. Later, when Hp, ney =Y, the
valve closes and entraps air inside the pipeline. Thus, dependmg upon the
history of the pressure at the valve location, the valve may open or close several
times during a transient. The mass of the entrapped air will increase with each
opening of the valve.

We will make the following assumptions in the derivation of the boundary
conditions:

1. The airflow into the pipeline is isentropic.

2. The entrapped air remains at the valve location and is not carried away by
the flowing liquid.

3. The expansion or contraction of the entrapped air is isothermal.

o T
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Figure 10.10. Notation for air-inlet valve.

If Ar is small and m, is the mass of the air entrapped in the pipeline at the
beginning of the time step, then the mass of air, mp at the end of time step is

+8Ma (10.36)

mp, =Ny dt

in which dm,/dt is the time rate of mass inflow of air through the valve into the
pipeline. .
The entrapped air volume should satisfy the continuity equation,ie.,
oy = ¥oir 4 0.5 A LQpyyy |+ Qinn1) = @y sy *+ Qimes)] (1037)
By substituting Eqs. 10.33 through 10.35 into Eq. 10.37, we obtain
Vpail' = Cair +0.5A: (C"i + Cai+l )le.’ n+1 (1038)

in which Cy;p = ¥, + 0.5 At (Cy +0iy,y - Cp = Qinsi) o
If the expansion and contraction of the air volume inside the pipeline is iso-
thermal, then

pVPair = mPaRT (1039)
in which R = unijversal gas constant; and p and T are the absolute pressure and
temperature of the air volume inside the pipeline. The absolute pressure, p, is
related to Hp, . through the equation

p=')r(Hp,.n+1 -z+H,) (10 40)

in which z = height of the valve throat above the datum; vy = specific weight of
the liquid inside the pipeline; and A}, = barometric pressure head.

Substituting fp, ., from Eq. 10.40 into Eq. 10.38, eliminating ¥p, from
the resulting equation and Eq. 10.39, we obtain

mp, RT =p [Cai, +0541(C,,* Capyy) (% tz- H,,)] (10.41)

s bt TN vt g e
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Elimination of mp, from Eqs. 10.36 and 10.41 yields

dm
(ma + T;At) RT=p [Cair +0.5 At (Cai + Ca,'.u )<§+ z- Hb)] (1042)

In this equation, all variables are known except p and dm,/dt. If the absolute
pressure, p, inside the pipeline is less than 0.53 p, (p, = barometric pressure),
then the airflow through the valve is at sonic velocity, and, if p is greater than
0.53 p, but less than p,, then the air velocity through the valve is subsonic. The
expressions for dm,/dr are:®

1. Subsonic air velocity through the valve (p,>p>053p,)
dm, p\ 14 ( P )o.zse
—==C44 7 — 1-[— 1043
dr d u‘/ paPa(pﬂ) Pa ( )

drmy 10.44

ar VRT, (1044)
in which C; = coefficient of discharge of the valve; A, = area of the valve open-
ing at its throat; p, = mass density of air at absolute atmospheric pressure, p,,
and absolute temperature, T,, outside the pipeline. Equations 10.43 and 10.44
are obtained by substituting k = 1.4 into the equations presented in Ref. 19 in
which k is the ratio of the specific heats for air.

Substitution of Eq. 10.43 or 10.44 into Eq. 1042 yields a nonlinear equation
in p, which may be solved by an iterative technique such as the Newton-Raphson
method. The values OfHP,-,,,H , Vpair,mpa,Hpi+l'l , Qp,.'"+1 , and me'l may
then be determined from Egs. 10.40, 10.38, 10.39, 10.35, 10.33, and '10.34,
respectively.

Prior to the time the air-inlet valve opens for the first time, m, =0. After-
ward, however, the value of m, increases with subsequent valve openings.

Note that in the development of above boundary conditions, it was assumed
that there is no air outflow through the valve. However, if the air is allowed to
escape through the air-inlet valve when the pressure inside the pipeline exceeds
the outside pressure, then this should be taken into consideration in the deriva-
tion of the boundary conditions (see Problem 10.6).

=0.686 C4A,

10.6 OPTIMAL CONTROL OF TRANSIENT FLOWS

The mode of operation of various appurtenances and control devices such that
a desired system response is obtained is called optimal flow control. A desired
system response may be keeping the maximum and minimum transient-state
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pressures within specified limits, changing the flow conditions from one steady
state to another steady state in a minimum of time, changing the flow conditions
from one steady state to another without flow oscillations, and so on. For
example, a valve at the downstream end of a pipeline may be closed such that
the pressure does not exceed a specified limit and the transients in the pipeline
are vanished as soon as the valve movement ceases. Such a valve operation has
been referred to as optimum valve closure®® and valve stroking.*'

Optimal flow control is a design or synthesis approach in which the variations
of boundary conditions are determined to obtain a desired system response.
This approach is different from the usual analysis approach in which the varia-
tions of the boundary conditions are specified and the system response is
computed.

Following are some of the practical applications of optimal control of tran-

sient flows:

1. Changing the outflow at different locations in water supply or oil pipelines
without affecting the outflow to other clients.

2. Establishing flow in the conduits of a pumped-storage scheme in minimum
time while switching from generation to pumping mode or vice versa.

3. Opening or closing the control valves in a piping system without violating
the upper or lower pressure limits.

4. Closing the wicket gates of hydraulic turbines to minimize pressure and
speed rise following load rejection.

5. Accepting or rejecting load on hydraulic turbines in a minimum of time
without exceeding the specified pressure drop or pressure rise.

6. Utilizing the storage capacity of sewer systems to obtain constant outflow
for treatment by properly operating the control devices.?

To conserve space, we are not presenting details of computational procedures
for determining optimal flow control;interested readers should see Refs. 15 and
20 through 25 for problem-oriented procedures, and Refs. 25 and 26 for appli-
cation of various operations-research techniques.

10.7 CASE STUDY

Studies carried out for the analysis of transients in the power conduit of the
Jordan River Redevelopment, reported earlier by the author,2”?® are presented
in this section.

Design

During the design of this power plant, a number of plant layouts were con-
sidered.?® The project layout as shown in Fig. 3.18 was selected because it was
the most economic.

PO

Methods for Controlling Transients 325

In the optimization studies, a waterhammer pressure rise equal to 30 percent
of the static head was assumed. However, subsequent studies indicated that
substantial savings would result from a reduction in the pressure rise without
greatly affecting the plant regulation. Therefore, a 20 percent pressure rise was
adopted for the final design.

‘ To keep the maximum transient pressures within the design limits, the follow-
ing two alternatives were considered:

1. Provision of an upstream surge tank.
2. Provision of a PRV.

The topography at Jordan River does not favor locating a surge tank near the
powerhouse, as the cost of a tower-type surge tank would be very high. In
addition, computer studies indicated that, with a surge tank more than 1585 m
away from the powerhouse, the plant would not be stable under isolated opera-
tion up to its full generating capacity.

In comparison to a surge tank, it was found that a PRV operating in syn-
chronous operation with the turbine would provide good governing characteris-
tics. The estimated cost of the PRV was about the same as that of a 90-m-high
surge tank. However, the PRV was selected because it alone would meet the
operational requirements.

Mathematical Model

A mathematical model was developed?” 28 to analyze the transient conditions in
the power conduit of the power plant. The method of characteristics was used
for the analysis. Special boundary conditions, which are presented hereafter,
were developed for the synchronous operation of the turbine and the PRV.
(Boundary conditions for the PRV acting alone are presented in Section 3.8.)

Let us designate the last section on the penstock adjacent to the turbine as
(i, n +1). Then, referring to Fig. 10.11, the continuity equation may be written
as

QPi,nﬂ =QPtur+QPu (10‘45)
QPV Pressure. regulating vaolve
(i,n+1)
o \ Turbine
Pipe |
—
Joe,) T
Q
QPi' n+l Ptur

Figure 10.11. Notation for pressure-regulating valve and Francis turbine.
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in which Qp, and Qp  are the turbine and PRV discharge at the end of time
ur . I3 . . I3
step. The positive characteristic equation for section (i,n + 1) is

QPI','H'I =Cp - CaHPi,rH'l' (1046)
Equation 10.46 may be written in terms of the net head, H,, as

0%, .
QP,- n+1 =Cp -G (Hn - 2;/;21> (1047)
! i

in which A; = cross-sectional area of the penstock at turbine inlet. '
If the turbine characteristics are used in the analysis as outlined in Section 5.4,
then

Qp,,, =a3 ta; VH, (1048)

in which a, and a5 are constants as defined by Eq. 5.4
The flow through the PRV is

Hy

H,

in which Q, and Qp _ are the PRV discharges, both for valve opening, 7p, under

net heads of H, and H,,, respectively; and the subscript r refers to the rated

conditions. .
Substituting Eqs. 10.48 and 10.49 into Eq. 1045, we obtain

QPi n+t =a; ta, \/Hn (10.50)

0p, =0, (1049)

in which aq =a, + Q,/VH,.
Elimination of H,, from Eqs. 10.47 and 10.50 yields

asQ%i',,H taQp; g ta37=0 (10.51)

in which a5 = C,[1/(2gA?) - 1/a3); as = 2a3C,/a} - 1;and a; = C,, - C,a}/a3.

Solution of Eq. 10.51 gives
_ T " Va§ - dasa (1052)
QPi.nH 2a5

Now the values of #,, Qp, ., Cp,» and HP‘.‘“"-I are determined from Eqgs. 10.50,

10.48, and 10.49, and 10.46, respectively. .
The iterative procedure of Section 5.6 was used to refine the solution and to

determine the turbine speed.

Results

The transient-staté pressures computed by using the preceding mathematical
model were compared with those measured on the prototype following 150-MW
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Figure 10.12. Time history of wicket gates and pressure-regulating valve opening follow-
ing 150-MW load rejection.

load rejection. The PRV and the turbine wicket-gate-opening-versus-time
curves (Fig. 10.12) recorded during the prototype tests were used in the analysis.
The turbine and generator WR? was taken equal to 1.81 X 10° kg m? to com-
pute the transient-state turbine speed.

The computed and measured transient-state pressures at the turbine inlet are
shown in Fig. 10.13. There is close agreement between the computed and mea-
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Figure 10.13. Comparison of computed and measured pressure head at turbine inlet.
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sured maximum pressures; however, there is some phase shift, and the measured
results show more rapid dissipation of transient pressure than that indicated by
the computed results. Probably, the phase shift is caused by incorrect values of
the wave velocity, and the difference in the dissipation is due to computing the
transient-state head losses by using the steady-state friction formula.

10.7 SUMMARY

In this chapter, a number of devices and methods were presented to control the
transient conditions in pipelines. A brief description of the operation of these
devices was given,and the boundary conditions for these devices were developed.
The chapter concluded with a case study.

PROBLEMS

10.1 Derive the boundary condition for an orifice surge tank. In this tank,
an orifice is provided between the pipeline and the surge tank.

10.2 How would the boundary conditions for the simple surge tank of Fig.
10.1 be modified if there were no standpipe?

10.3 Write a computer program for the analysis of a piping system having an
air chamber as shown in Fig. 10.2. Assume that the check valve closes
as soon as power fails. The pipeline has a constant-head reservoir at the
downstream end.

10.4 Prove that an air chamber behaves like a virtual surge tank'? having a

cross-sectional area
1

*
Ho
n+1

+H,] ™

R4

Oair

1
AS:E

[Hp,

f,n+1
in which the variables are as defined in Section 10.4.

10.5 Develop the boundary conditions for the centrifugal-pump-PRYV system
shown in Fig. 10.8. Assume that the PRV is discharging into the suction
line of the pump. (Hint: Equation 10.29 will be modified to qu=
7p0, \f(le ) Hp_‘_)/Ho in which Hp‘r is the piezometric head on the
suction side of the pump, and A, = steady-state pumping head.)

10.6 Develop the boundary conditions for an air-inlet valve that allows outflow
of air, but not of liquid, from the pipeline when the pressure inside the
pipeline exceeds the outside atmospheric pressure. (Hint: Use expressions
similar to Eqs. 10.43 and 10.44 for the time rate of mass outflow of air
through the valve. As the air inflow was assumed positive in Egs. 10.36
and 10.42, dm,/dt for air outflow should be considered negative in these
equations.)

Methods for Controlling Transients 329

REFERENCES

1. Evans, W. E. and Crawford, C. C., “Design Charts for Air Chambers on Pump Lines,”
Trans. Amer. Soc. of Civil Engrs.,vol. 119, 1954, pp. 1025-1045.

2. Cngler, M. L., “Relief Valves and Air Chambers,” Symposium on Waterhammer, Amer.
Soc. of Mech. Engrs. and Amer. Soc. of Civil Engrs., 1933, pp. 97-115.

3. Allievi, L., “Air Chamber for Discharge Lines,” Trans. Amer. Soc. of Mech. Engrs., vol.
59, Nov. 1937, pp. 651-659.

4. Angus, R. W,, “Air Chambers and Valves in Relation to Waterthammer,” Trans. Amer.
Soc. of Mech. Engrs., vol. 59, Nov. 1937, pp. 661-668.

S. Combes, G. and Borot, G., “New Chart for the Calculation of Air Vessels Allowing for
Friction Losses,” LaHouille Blanche, 1952, pp. 723-729.

6. Tucker, D. M. and Young, G. A. J., “Estimation of the Size of Air Vessels,” British
Hydromechanics Research Assoc., Report SP 670, 1962.

7. Graze, H. R. and Forrest, J. A., “New Design Charts for Air Chambers,” Fifth Austra-
lasian Conference on Hydraulics and Fluid Mechanics, Christchurch, New Zealand,
1974, pp. 34-41.

8. Ruus, E., “Charts for Waterhammer in Pipelines with Air Chamber,” Canadian Jour.
of Civil Engineering, vol. 4, no. 3, Sept. 1977, pp. 293-313.

9. Graze, H. R., “A Rational Thermodynamic Equation for Air Chamber Design,” Proc.
Third Australasian Conference on Hydraulics and Fluid Mechanics, Sydney, Australia,
1968, pp. 57-61.

10. Graze, H. R., Discussion of “Pressure Surge Attenuation Utilizing an Air Chamber,”
by Wood, D. I, Jour., Hyd. Div., Amer. Soc. of Civil Engrs., vol. 97, March 1971, ppP.
455-459,

11. Graze, H. R., “The Importance of Temperature in Air Chamber Operations,” Proc.
First International Conference on Pressure Surges, British Hydromechanic Research
Assoc., England, 1972, pp. F2-13-F2-21, ‘

12. Evangelisti, G., “Waterhammer Analysis by the Method of Characteristics,” L’Energia
Elettrica, no. 12, 1969, pp. 839-858.

13. Lescovich, J. E., “The Control of Water Hammer by Automatic Valves,” Jour. Amer.
Water Works Assoc., May 1967, pp. 832-844.

14. Gadenberger, W., “Grundlagen der graphischen Ermittlung der Druckschwankungen
in Wasserversorgungsleitungen,” R. Oldenbourg Verley, 1950.

15. Streeter, V. L. and Wylie, E. B., Hydraulic Transients, McGraw-Hill Book Co., New
York, 1967.

16. Albertson, M. L. and Andrews, J. S., “Transients Caused by Air Release,” in Control of
Flow in Closed Conduits, edited by Tullis, J. P., Colorado State University, 1971.

17. Martin, C. S., “Entrapped Air in Pipelines,” Proc. Second Conference on Pressure
Surges, British Hydromechanic Research Assoc., England, 1976.

18. Papadakis, C. N. and Hsu, S. T., “Transient Analysis of Air Vessels and Air Inlet Valves,”
Jour., Fluid Engineering, Amer. Soc. of Mech. Engrs., 1977.

19. Streeter, V. L., Fluid Mechanics, McGraw-Hill Book Co., 4th edition, 1966, p. 304.

20. Ruus, E., “Optimum Rate of Closure of Hydraulic Turbine Gates,” presented at Amier.
Soc. of Mech. Engrs.—Engineering Inst. of Canada Conference, Denver, Colorado,
April 1966.

21. Streeter, V. L., “Valve Stroking to Control Water Hammer,” Jour., Hyd. Div., Amer.
Soc. of Civil Engineers, vol. 89, March 1963, pp. 39-66.

22. Streeter, V. L., “Valve Stroking for Complex Piping Systems,” Jour., Hyd. Div., Amer.
Soc. of Civ. Engrs., vol. 93, May 1967, pp. 81-98.



330 Applied Hydraulic Transients

23. Driel, M., “Valve Stroking in Separated Pipe Flow,” Jour., Hyd. Div., Amer. Soc. of
Civ. Engrs., vol. 100, Nov. 1974, pp. 1549-1563.

24. Ikeo, S. and Kobori, T., “Waterhammer Caused by Valve Stroking in Pipeline With Two
Valves,” Bull. Japan Soc. of Mech. Engrs., vol. 18, October 1975, pp. 1151-1157.

25. Driels, M., “Predicting Optimum Two-Stage Valve Closure,” Paper No. 75-WA/FE-2,
Amer. Soc. of Mech. Engrs., 1975,7 pp.

26. Bell, W. W., Johnson, G., and Winn, C. B., “Control Logic for Real Time Control of
Flow in Combined Sewers,” Proc., 9th Canadian Symp., Water Poll. Res., Canada,
1974, pp. 217-234.

27. Portfors, E. A. and Chaudhry, M. H., “Analysis and Prototype Verification of Hydraulic
Transients in Jordan River Power Plant,” Proc. First Conference on Pressure Surges,
published by British Hydromechanics Research Assoc., England, Sept. 1972, pp. E4-57-
E4-72.

28. Chaudhry, M. H. and Portfors, E. A., “A Mathematical Model for Analyzing Hydraulic
Transients in a Hydro Power Plant,” Proc. First Canadian Hydraulic Conference, pub-
lished by the University of Alberta, Edmonton, Alberta, Canada, May 1973, pp. 298-
314.

29. Forster, J. W., Kadak, A., and Salmon, G. M., “Planning of the Jordan River Redevelop-
ment,” Engineering Jour., Engineering Inst. of Canada, Oct. 1970, pp. 34-43.

ADDITIONAL REFERENCES

Strowger, E. B., “Relation of Relief Valve and Turbine Characteristics in the Determination
of Waterthammer,” Trans. Amer. Soc. of Mech. Engrs., vol. 59, Nov. 1937, pp. 701-705.
Parmakian, J., “Air Inlet Valves for Steel Pipe Lines,” Trans. Amer. Soc. of Civ. Engrs.,

vol. 115, 1950, pp. 438-443.

Jacobson, R. S., “Charts for Analysis of Surge Tanks in Turbine or Pump Installations,™
Special Report 104, Bureau of Reclamation, Denver, Colorado, Feb. 1952.

Parmakian, J., “Pressure Surge Control at Tracy Pumping Plant,” Proc. Amer. Soc. of Civil
Engrs., vol. 79, Separate No. 361, Dec. 1953,

Parmakian, J., “Pressure Surge at Large Installations,” Trans. Amer. Soc. of Mech. Engrs.,
1953, p. 995.

Lindros, E., “Grand Coulee Model—Pump Investigation of Transient Pressures and Methods
for Their Reduction,” Trans. Amer. Soc. of Mech. Engrs., 1954, p. 775.

Parmakian, J., “One-Way Surge Tanks for Pumping Plants,” Trans. Amer. Soc. of Mech.
Engrs., 1958, pp. 1563-1573.

Kerr, S. L., “Effect of Valve Operation on Waterhammer,” Jour. Amer. Water Works Assoc.,
vol. 52, Jan. 1960.

Lundgren, C. W., “Charts for Determining Size of Surge Suppressors for Pump-Discharge
Lines,” Jour. Engineering for Power, Amer. Soc. of Mech. Engrs., Jan. 1961, pp. 43-46.
Whiteman, K. J., and Pearsall, 1. S., “Reflex Valve and Surge Tests at a Pumping Station,”

Fluid Handling, vol. 152, Sept. and Oct. 1962, pp. 248-250, 282-286.

Widmann, R., “The Interaction Between Waterhammer and Surge Tank Oscillations,”
International Symposium on Waterhammer in Pumped Storage Projects, Amer. Soc. of
Mech. Engrs., Chicago Nov., 1965, pp. 1-7.

Bechteler, W., *Surge Tank and Water Hammer Calculations on Digital and Analog Com-
puters,” Water Power, vol. 21, no. 10, Oct. 1969, pp. 386-390.

Ruus, E., and Chaudhry, M. H., “Boundary Conditions for Air Chambers and Surge Tanks,”
Trans., Engineering Inst. of Canada, Engineering Jour., Nov. 1969, pp. I-VL

Methods for Controlling Transients 331

Meeks, D. R. and Bradley, M. J., “The Effect of Differential Throttling on Air Vessel
Performance,” Symposium on Pressure Transients, The City University, London, Nov
1970. , .

Wood, D. J., “Pressure Surge Attenuation Utilizing an Air Chamter,” Jour., Hyd. Div.
Amer. Soc. of Civil Engrs.,vol. 96, May 1970, pp. 1143-1156. '

Kinno, H., “Waterhammer Control in Centrifugal Pump Systems,” Jour., Hyd. Div., Amer.
Soc. of Civ. Engrs., May 1968, pp. 619-639. '

Chaudhry, M. H., “Boundary Conditions for Waterhammer Analysis,” thesis submitted to

the Univ. of British Columbia, Vancouver, Canada, in partial fulfillment of the require-
ments of M.A.Sc., April 1968.



CHAPTER 11

SURGE TANKS

11.1 INTRODUCTION

A surge tank is an open standpipe or a shaft connected to the conduits of a
hydroelectric power plant or to the pipeline of a piping system. This is also
referred to as a surge shaft or surge chamber.

The main functions of a surge tank are:

1. It reduces the amplitude of pressure fluctuations by reflecting the incoming
pressure waves. For example, the waterhammer waves produced in a penstock
by load changes on a turbine (Fig. 11.1) are reflected back at the surge tank.
Thus, the conduit length to be used in the waterhammer analysis is between the
turbine and the surge tank rather than between the turbine and the upstream
reservoir. Due to this reduction in the conduit length, the pressure rise or drop
is less than if the surge tank were not provided. In addition, if a surge tank were
not present at the junction of the penstock and the tunnel, then the tunnel
would have to be designed to withstand the waterhammer pressures.

2. A surge tank improves the regulating characteristics of a hydraulic turbine.
Because of the surge tank, the length of the power conduit to be used for de-
termining the water-starting time (see Section 5.10) is up to the surge tank
rather than up to the upstream reservoir. The water-starting time of a hydro-
power scheme is therefore reduced, thus improving the regulating characteristics
of the power plant.

3. A surge tank acts as a storage for excess water during load reduction in
a hydropower plant and during start-up of the pumps in a pumping system.
Similarly, it provides water during load acceptance in a hydropower plant
and during power failure in a pumping system. Therefore, the water is ac-
celerated or decelerated in the pipeline slowly, and the amplitude of the pressure
fluctuations in the system is reduced.

In this chapter, various types of surge tanks are reviewed. Differential equa-
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— I=— Surge tonk
Reservorr

Tunnel/

Tailrace

Figure 11.1. Schematic diagram of a hydroelectric power plant.

tions describing the oscillations of the water level in a simple surge tank are de-
rived, and methods available for their solution are presented. The phase plane
method is then used to study the stability of a simple surge tank. This is fol-
lowed by the analysis of orifice, differential, and a system of surge tanks. The
chapter is concluded by summarizing the studies carried out for the design of the
Chute-des-Passes surge-tank system.

11.2 TYPES OF SURGE TANKS

Depending upon its configuration, a surge tank may be classified as simple,
orifice, differential, one-way , or closed. A brief description of each follows.

A simple surge tank is just a shaft or standpipe connected to the pipeline.
If the entrance to the surge tank is restricted by means of an orifice, it is called
an orifice tank. An orifice tank having a riser is termed differential. In a one-
way surge tank, the liquid flows from the tank into the pipeline only when the
pressure in the pipeline drops below the liquid level in the surge tank. Foliow-
ing the transient-state conditions, the tank is filled from the pipeline. If the top
of the tank is closed or if there is a valve or orifice in the vent stack connecting
the tank to the outer atmosphere, the tank is called a closed surge tank. De-
pending upon the requirement that the tank must fulfill, a simple tank may
have upper or lower galleries. Figure 11.2 shows a number of typical surge
tanks.

If necessary, a combination of different types of surge tanks may be provided
in an installation.



334 Applied Hydraulic Transients

Orifice
(a) Simple tank (b) Orifice tank

Orifice check volve

{c) Differential tank {(d) One-way tank

Throtlling =

valve
Air shaft ;I
Upper gallery

= ELower galtery

(e) Closed tank (f) Tank with galieries

Figure 11.2. Types of surge tanks.

11.3 DERIVATION OF EQUATIONS

Figure 11.3a shows a typical surge-tank system in which a control valve is used
to represent a pump or a hydraulic turbine. A change in the valve opening
causes the flow variation, which results in the oscillations of the liquid level in
the surge tank.

To simplify the derivation of the dynamic and continuity equations, let us
make the following assumptions:

1. The conduit walls are rigid, and the liquid is incompressible. This means
that a flow change is felt throughout the system instantaneously and that
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Figure 11.3. Simple surge tank: notation for dynamic and continuity equatjons.

the liquid in the conduit is moving like a solid slug.

2. The inertia of the liquid in the surge tank is small compared to that of the
liquid in the tunnel and can therefore be neglected.

3. The head losses in the system during the transient state can be computed
by using the steady-state formulas for the corresponding flow velocities.

Dynamic Equation

A freebody diagram of a horizontal conduit having constant cross-sectional area
is shown in Fig. 11.3b. Forces acting on the liquid are:

F, =1A4,H, - hy - hy) (11.1)
F; =v4{H, + 2) (112)
Fy=v4:hy (11.3)
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In these equations, A, = cross=sectional area of the tunnel; H, = static head;
v = specific weight of liquid; h, = velocity head at the intake; h; = intake head
losses; hf= friction and form losses in the tunnel between the intake and the
surge tank; and z = water level in the surge tank above the reservoir level (posi-
tive upward). Considering the downstream flow direction as positive, the net
force acting on the liquid element in the positive direction is SF=F,-F, - F;.
Hence, from Eqs. 11.1 to 11.3,

SF=yA, (-2~ hy - hi- hy) (11.4)

The mass of the liquid element is y4,L/g, in which L = length of the tunnel and
g = acceleration due to gravity. If Q; is the tunnel flow and t = time, then the
rate of change of momentum of the element may be written as

4L d (O
g dt \A;

or

vl d9

g dt

According to Newton’s second law of motion, the rate of change of momentum
is equal to the net applied force. Therefore,

L d
oL 49 =qyA,(-z - hy - h; - hy). (11.5)
dt
By defining h =h, + h; + by = c0,10Q,!, in which ¢ is a coefficient, Eq. 10.5 may
be written as

do, _ g4,
ar L (-z - cQ:10:1) (11.6)
Note that A is expressed as ¢Q, Q.| to account for the reverse flow.

In the preceding derivation, the tunnel was assumed to be horizontal and
to have constant cross-sectional area throughout its length. Equation 11.6 is
also valid for a sloping tunnel (see Problem 11.3). However, for a tunnel having
different cross-sectional areas for various lengths, the term 4,/L of Eq. 11.6 is

replaced by Z(4,/L); (see Problem 11.5).
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Continuity Equation

Referring to Fig. 11.3, the continuity equation for the junction of the tunnel
and the surge tank may be written as

0r =05+ Quur (11.7)

in which Q= flow into the surge tank (positive into the tank), and Q=
turbine flow. Note that Eq. 11.7 is equally valid for the pumpingsystem if the flow
of the pump is designated as Qy,,,. Writing Q; as A (dz/dt), Eq. 11.7 becomes

EI_Z' = i (Qt - Qwr) (11.8)

dt  Ag
Note that Eqs. 11.6 and 11.8 are for a surge tank located at the upstream side
of a turbine. These equations are valid for a tailrace surge tank (i.e., a tank lo-
cated on the downstream of the turbine), provided the velocity head, h,,, is prop-
erly taken into consideration.

11.4 AVAILABLE METHODS FOR SOLVING DYNAMIC AND
CONTINUITY EQUATIONS

Due to the assumption that the tunnel and the liquid inside are rigid,we do not
have spatial derivatives (i.e., variation with respect to x) in the dynamic and
continuity equations, and the flow and the liquid level in the tank vary with
respect to time only. Therefore, Eqs. 11.6 and 11.8 are a set of ordinary differ-
ential equations. Because of the presence of the term cQ,1Q,|, Eq. 11.6 is non-
linear. Also, note that turbine flow may be a function of time.

A closed-form solution of Eqs. 11.6 and 11.8 is available only for a few special
cases.! Therefore, graphical?*? and arithmetical methods suitable for hand com-
putations**$ have been used in the past to integrate these equations. However,
with the invention of the analog and digital computers, graphical and arithmeti-
cal methods of integration have been superseded by analog simulation or digital
computation. When a large number of parameters have to be optimized, analog
computers are very handy®:7; with these, once the required circuitry has been
wired, it is just a matter of twisting various knobs to change various parameters.
As compared to the analog, digital computers are more readily accessible. There-
fore, we will discuss only the methods suitable for digital computer analysis.

A number of finite-difference techniques are available®® to solve the dynamic
and continuity equations on a digital computer. Although more sophisticated
and accurate methods ! are reported in the literature, in the author’s opinion,
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the fourth-order Runge-Kutta method*?> may be used, which yields sufficiently
accurate results that are of the same order of accuracy as that of the input data.
In addition to being simpler to program than other methods, subroutines are
available as a standard package for this method at most of the computer
installations.

11.5 PERIOD AND AMPLITUDE OF OSCILLATIONS OF A
FRICTIONLESS SYSTEM

The head losses were taken into consideration while deriving the dynamic equa-
tions. If the system is considered frictionless,i.e.,c = 0, then Eq. 11.6 becomes

d 4
0, _ &4y,

CEE
dr L (11.9)

Let us assume that an initial steady-state turbine flow, Q,, is instantaneously
reduced to zeroat =0, ie.,

at 1<0, Qu=0, (11.10)
and
at 120, Qu =0 (11.11)
On the basis of Eq. 11.11, Eq. 11.8 can be written as
dz 1
—=— 1.
SRS (11.12)

Differentiating Eq. 11.12 with respect to ¢ and eliminating dQ,/dt from the
resulting equation and Eq. 11.9, we obtain
Lz g4,
dr* LA

z2=0 (11.13)

As the coefficient of z in Eq. 11.13 is a positive real constant, we know from
the theory of ordinary differential equations'® that a general solution of

Eq.11.13is
/&4, /g4,
=C t+C = 11.14
z=C, cos LA, 5 sin L4, t ( )

in which C; and C, are arbitrary constants and are determined from the initial
conditions. For this case,at ¢t =0,

z2=0 (11.15)
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and
gj— = % (11.16)
Substituting these conditions into Eq. 11.14,
C =0
and
(11.17)

L
C, =
2 =0 l/ A,

Hence, it follows from Eq. 11.14 and 11.17 that

_ L . gA
z Q"]/gA;ArSl"]/LAst (11.18)

Equation 11.18 describes the oscillations of the water surface in the surge tank.
The period, T, and the amplitude, Z, of these oscillations (Fig. 11.4) are

/L A
T=2ny/ == 11.19
/L
Z=0 (11.20)
° gAsAt

The amplitude, Z, is referred to as free surge for load rejection.

and

L Period, T )

N

Amplitude, Z

Figure 11.4. Period and amplitude of oscillations of a frictionless system.
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11.6 STABILITY

If the hydraulic system of Fig. 11.3 is disturbed (e.g., by changing the turbine
flow), the water level in the surge tank begins to oscillate. These oscillations
are stable or unstable depending upon the parameters of the power plant and
the type and magnitude of the disturbance. Oscillations are said to be swable
if they dampen to the final steady state in a reasonable time and unstable if
their magnitude increases with time (see Fig. 11.5).

In addition to oscillatory instability, a condition called tank drainage has to be
avoided. In thiscase, following alarge load increase, the water in the tunnel does

AN
\/\\/\/t

(a) Stable oscillations

\//\\//\\//\ |

(b) Unstable oscillations

Figure 11.5. Stable and unstable oscillations.
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not accelerate fast enough to meet the turbine demand. Therefore, the surge
tank supplies the water, and its water level keeps on falling until the tank drains.
This condition usually occurs if the tunnel losses are large.

The following four cases of change in the turbine flow are of interest:

1. Constant Flow. The turbine flow is changed from one steady-state value
O, to another steady-state value, Q,. Since the turbine flow varies with the
change in the surge-tank level, constant flow is possible only on very high head
installations where oscillations in the surge tank are small compared to the static
head.

2. Constant-Gate Opening. Constant-gate opening occurs when the plant is
under manual control after a load change, or when the governor is inoperative
due to malfunctioning of some of its parts, or when the turbine gates are opened
to the maximum position following a load increase while the governor is trying
to maintain constant power.

3. Constant Power. In this case, it is assumed that an ideal governor main-
tains constant power input to the turbine or maintains constant turbine output
if the turbine efficiency is considered constant. Following a load increase, the
governor opens the wicket gates to increase the flow. As a result, the water
level in the surge tank is lowered, and the net head on the turbine is reduced.
Therefore, the governor has to open the gates further to keep the power con-
stant. No restriction on the turbine-gate opening is assumed, which implies
that the turbine discharge can be increased to any required amount to main-
tain constant power. Thus, it can be seen that the action of the governor is
destabilizing.

4. Constant Power Combined with Full Gate Opening. In case 3, we assumed
that the turbine gates can be opened to any value to maintain constant power.
On actual installations, however, gates cannot be opened to more than their fully
open position. Therefore, the governor maintains constant power if the net head
on the turbine is more than or equal to the rated head. When the net head is
less than the rated head, the case of constant-gate opening applies. Note that
for the net heads less than the rated head, the turbine power output decreases
with the lowering of the surge-tank level, and, as a result, the system frequency
decreases if the plant is isolated. Usually the load is tripped if the system fre-
quency drops below a prescribed value. In our analysis, however, we are assum-
ing that the load is not tripped, and the turbine keeps on generating power irre-
spective of the system frequency. .

By integrating Eqs. 11.6 and 11.8 graphically, Frank and Schiiller? demon-
strated that the oscillations are always stable in case 2 and stable in case 1 if the
tunnel friction losses are taken into consideration. Case 3 has been studied by a
number of investigators: Thoma'!?® linearized the governing differential equa-
tions and demonstrated that the oscillations are unstable if the tank area is less
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than a minimum. This minimum area is now called the Thoma area, Ay.
Paynter'®' !¢ solved the equations analytically and on an analog computer and
presented a stability diagram. Using the phase-plane method,!”"® Marris'**2°
and Sideriades?!'?? demonstrated that Thoma’s stability criteria do not hold
for large oscillations. Ruus?? analyzed case 4 on a digital computer and showed
that small, rather than large, oscillations are critical for the stability of a tank.
The author and Ruus®* used the phase-plane method to investigate the stability
for all four cases listed. These studies are presented herein. A number of quan-
titative results are obtained from the analysis of the singularities, and a number
of phase portraits are presented to show the effect of the changes in different
parameters on the qualitative behavior of the system.

11.7 NORMALIZATION OF EQUATIONS

In order to reduce the number of parameters, we will normalize Eqs. 11.6 and
11.8 as follows:

Let
y=z{Z
x=0dlCo (11.21)
q= Qtur/Qo
T=2ntT

By substituting these variables into Eqs. 11.8 and 11.6, and simplifying the
resulting equations, we obtain

Yoy q (11.22)
ar
dx
E= -y - ~21-Rx2 (11.23)

in which R =2h,/Z = 2¢Q%/Z; and hy, = head loss corresponding to flow @,
in the tunnel.
11.8 PHASE-PLANE METHOD*

To facilitate discussion in the following section, a summary of the necessary
equations follows; for a detailed description of the method, see Ref. 17.

*Readers who are not interested in the mathematical details may proceed directly to the
conclusions summarized at the end of Section 1.9, p. 360.
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Let the differential equations describing a system be

dx
;1;=P(x,y) (11.24)
and
d
7= 0(x.5) (11.25)
-

in which the functions P(x, y) and/or Q(x, y) may be nonlinear. By combining
Eqgs. 11.24 and 11.25, we obtain

dy _Q(x,)

& PED) (11.26)

Fe

dy O
The points (xg, yg) for whicl d—i = 0 are called singular points. The location

of these points is obtained by simultantously solving the equations P(x, y) =0,
and Q(x, y)=0. The type of singularity may be determined by substituting

x =xgtuandy =y, +vinto Eq. 11.26, which after simplification yields
g‘i _ Q(xssys) + c'u + d’u + C"u2 + duvz
du P(xsays)'{'a'u“"b’u-i-a”uz +b”UZ

(11.27)

in which a',a"’, b', 8", c',c"”,d’, and d" are real constants. If both the linear
terms and the higher-power terms in u and v are present in the denominator
and in the numerator, the singularity is called a simple singularity. For such
a singularity, the higher-power terms can be neglected because their effect on
the solution in the neighborhood of the singularity is small compared to that of
the linear terms. However, if the linear terms are missing, the singularity is
nonsimple, and the higher-power terms cannot be neglected.

To study the properties of the solution in the neighborhood of a simple singu-

larity, Eq. 11.27 may be written as
dv cu+dv
— _—I . 8
du du+b (11.28)

The characteristic roots, A, and X, , of the two equations equivalent to the above
equation, i.e., :

;1—'; =cu+d (11.29)
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and
25 =q'u +b' (11.30)
are
LA = S l@ +d) V@ +d) A - dd)] (11.31)

The roots, Ay and A, , determine the type of a singularity as follows:

1. Node, if both roots are real and have the same sign.

2. Saddle, if both roots are real and have the opposite signs.
3. Vortex, if both roots are imaginary.

4. Focus,if the roots are complex conjugates.

If the real part of the roots is negative, the singularity of node and focus is
termed stable; if positive, it is called unstable. Note that Eqs. 11.28 through
11.31 are valid only for simple singularities.

11.9 ANALYSIS OF DIFFERENT CASES OF FLOW DEMAND

For the cases discussed in Section 11.6, the normalized flow demand characteris-
tics are shown in Fig. 11.6. Stability of these cases may be studied as discussed
in the following.

Constant Flow

Let the initjal steady-state flow be @, and the final steady-state flow, Q,. Then
in normalized form, ¢ =x*, in which x* = Q,/0Q,. By substituting this into Eq.
11.22, and dividing the resulting equation by Eq. 11.23, we obtain

Z_i’=—__y’_“%’:x2 (11.32)
The coordinates of the singularity are obtained by solving the equations
x-x*=0 (11.33)
and
-y- 1Rx?*=0 (11.34)

simultaneously. This yields x; = x* and y; = -2 Rx*2,
Substitution of x=x*+wu and y = —%Rx*2 + v into Eq. 11.32 and following
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Figure 11.6. Flow demand characteristics.

the procedure outlined in Section 11.8 yield

do___#

du -Rx*u-v
By comparing this equation with Eq. 11.28,a" = -Rx*, b'=~1,¢'=1,andd' = 0
are obtained. Therefore, it follows from Eq. 11.31 that

Ao A; = 4 [FRx* 2V (Rx*)? - 4] (11.36)

Both roots are real and negative if Rx* >2. The singularity is then a stable
node (Fig. 11.7a). If the final steady-state flow, @, is used as the reference
flow, (@, # Q), then Rx* > 2 impiles that hpo >Z. If Rx* < 2, then the roots
are complex conjugates with negative real parts. Therefore, the singularity is a
stable focus (Fig. 11.7b). If the friction losses are neglected, i.e., R = 0, then
the roots are imaginary, and the singularity is a vortex.

(11.35)
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(a) k=035, R =28

Figure 11.7. Phase portrait for constant discharge.

This analysis confirms the results obtained by Frank and Schiiller? who
solved the differential equations by graphical integration.

In the equation corresponding to Eq. 11.27 for the case of total rejection (i.e.,
x*=0), there is a u? term in the denominator, but there is no linear term in

e
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(b)) k=0025, R=02
Figure 11.7. (Continued)

u. Thus, the equation represents a nonsimple singularity. To solve this case,
isoclines may be plotted as described subsequently, and thereafter the solution
trajectories may be drawn. From the shape of the trajectories, the type of the
singularity can be ascertained. .

The phase portraits may be plotted by the method of isoclines.!” An
isocline is the locus of the points at which the solution trajectories have the
same slope. Let m be the slope of the solution trajectories for an isocline.
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Then, it follows from Eq. 11.32 that

dy x-x*
- = = 11.37
dx -y- IRx? " ( )
or
1 x-x¥*
=- — Rx? - 11.38
y=- o Rx o (11.38)

is the equation of the isocline. To obtain a graphical solution, the isoclines are
first plotted for different values of m. Once this has been done, the solution
trajectories for any initial conditions can be drawn. This procedure is illustrated
by the phase portraits of Figs. 11.7 through 11.10. The data for plotting the
phase portraits have been selected to illustrate the different types of singularities.

Constant-Gate Opening

The head-discharge relationship for a reaction turbine running at constant speed
cannot be represented by a simple mathematical function. As can be seen from
the turbine characteristics given in Ref. 25, the net head acting on and the dis-
charge through the turbine are approximately linearly related for a constant-
gate opening. To simplify the analysis, the head-discharge relationship is as-
sumed as indicated in Fig. 11.6.

The equation for the flow through a reaction turbine may be written as

q =b(1 +sy) (11.39)
in which b= 1/(1 - k);s = Z/H,;k = hpo[H,; and H,, = static head.
From Eqs. 11.22,11.23, and 11.39, it follows that

Z_i - %i_(;_;)i{_) (11.40)
The coordinates of the singular points are determined by solving simultaneously
x-b(1+sp)=0 (11.41)
and
-iRx*-y=0 (11.42)
The solution of these two equations give the coordinates of two singular points:
a, - %R) and [-1/k, -1/(ks)]. The second singular point is virtual because

Egs. 11.22 and 11.23 are valid only for x > 0. A singular point is virtual if it
does not lie in the region to which it belongs. The effect of a virtual singular
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point on the stability of the system depends upon its distance from the stable
singularities.

Singularity (1,- %R)

By substituting x =1 +u and y =- LR +v into Eq. 11.40, and following the
procedure outlined previously for determining the type of a singular point, the

following equation is obtained:
dv _u - bsv
—= 1143
du -Ru-v ( )

Comparison of Eqs. 1143 and 11.28 yieldsa'=~R;b'=-1;¢'=1;and d' = - bs.
Thus,

AR = 3[R + bs) £ V(R + bs)? - 4(1 + Rbs)] (11.44)

Since R, b, and s are all positive constants, both roots are real and negative if
(R + bs)* > 4(1 + Rbs)—i.e., (R - bs)>* 2. The roots are complex conjugates

*with negative real part if (R - bs) < *2. In the former case, the singular point is

a stable node (Fig. 11.8a); in the latter, it is a stable focus (Fig. 11.8b).

Note that the singular point is a stable node for bs > * 2, and a stable focus
(Fig. 11.8¢) for bs >+ 2, even if flow is considered frictionless,i.e., R = 0. This
is because of the damping effect of the turbine gates being held in a fixed
position., ‘

Singularity [- 1]k, - (1/ks)]
Substitution of x = -(1/k) + u, and y = ~1/(ks) + v into Eq. 11.40 results in

dv u- bsv

FRRTITTR (11.45)

Comparison of Egs. 1145 and 11.28 yields @' =R/k; b'=-1;¢'=1;and d' =
-bs. Hence,

A Ay =% [(% bs) i‘/(% - bs)2 + 4(—1 +5:—s)] (11.46)

which upon simplification becomes

A A =%[(§ - bs) i‘/(% - bs>2 +4(2b - 1)} (11.47)
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Since 2b > 1, both the roots are real with opposite signs. Hence, the singular
point is a saddle point. It is a virtual singularity because Eqs. 11.22 and 11.23
are not valid for x <0, The effect of this singular point on the stability of os-
cillations depends upon its location. For small friction losses, 1/k and 1/ks are
large quantities, and thus the point lies at a substantial distance from the stable
singular point (1, - %R). Hence, its destabilizing effect is negligible. For large
friction losses, however, this virtual singularity affects the stability of the sys-
tem because of its proximity to the stable singularity (1, - %R). For a friction-
less flow, the singular point [-1/k, -~ 1/(ks)] lies at an infinite distance from
the origin and thus has no destabilizing effect on the system.

Constant Power

In this case, it is assumed that an *ideal governor” ensures constant power
input to the turbine. From Fig. 11.6, it can be seen that, as the water level in
the tank is lowered, the governor has to open the gates to increase the discharge
for maintaining constant hydraulic power. No restriction on turbine-gate open-
ing is assumed, which implies that the turbine discharge can be increased to any
required amount to maintain constant hydraulic power.

The variables of interest are x and y. Therefore, instead of using the y -
dy/dr plane, as done by Marris,'?*2° the x - y plane is used herein. In addition
to giving the variables of interest, the use of the x - y plane has the advantage
that one can clearly see the region in which Eqs. 11.22 and 11.23 are valid.

If the efficiency of the turbine is assumed constant and the penstock friction
losses are neglected, then, for constant hydraulic power,

Qtur(Ho +Z)=Q0(Ho - hfo) (1148)
From Eq. 11 .48, it follows that

0 H,-h
= ___tll_r = u (1 1 .49)
QO HO +2z
which upon simplification becomes
1-k
= 11.50
= Tv sy (11.50)

in which % and s have the same meaning as defined previously. By substituting
Eq. 11.50 into Eq. 11.22, dividing the resulting equation by Eq. 11.23, and

simplifying,
dy x+tsxy-1+k

== 1.51
dx -sp? - (1 +kx?)y - LRx? (11.31)
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To determine the coordinates of the singular points, the following two equations,
xtsxy-1+k=0 (11.52)
s+ (1 +kx?)y+ Rx? =0 (11.53)

are solved simultaneously. The solution of these equations gives the coordinates
of the following three singular points:

I.(1,- %R)
2. {- %‘*"31,' %R(cz -¢y)]
3. [-%-Cly_ %R(Cz +e)l

in which ¢; =V/(1/k) - 3,and ¢; = (1/k) - 3.
By substituting x =xg+u and y =y, +v into Eq. 11.51, and neglecting the
terms in u and v of power higher than one, the equation

dv _ (1 +spgdu +sxpv 1154
du  ~(R+2kyg)xgu - (kx? + 25y, + Do (11.54)
is obtained. Comparison of Eqgs. 11.28 and 11.54 yields
a'=-(R +2kyg)x,
b'=-(kx} +2sps+ 1)
, (11.55)
¢ =(1+sy5) :
d' = sx;.

Singularity (1, - %R)

Substituting x, =1 and y,; =~ %R into Eq. 11.55, noting that k= %Rs, and
simplifying, we obtain: ¢’ =R(k-1); ' =k-1;¢'=1-k;and d’' =5. Hence,

MuAe = 3 RK- 1) +sV[R(K- 1) +5]? +4[-(k - )* - sR(k - )]}
(11.56)

or
Mo = L[RK- 1) +s£/Dy ] (11.57)

in which D; = [R(k - 1) + s)* + 4[2k(} - k) - (k - D?]. If 2k(1 - k) -
(k- 1)>>0 (ie., k>1), then the singularity is a saddle (Fig. 11.9a). For
k< %, the singularity is a node if D, >0, and a spiral if D, <0. The node
or spiral is stable if R(k - 1) + s < 0. For small friction, this inequality takes the
form s <R, or 2k, H, >Z?. The following expression for the Thoma area,
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Figure 11.9. Phase portrait for constant power.
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Ay , may be obtained froms = R:

L
2cgA,

If 2hs H, < Z?, the singularity is unstable (Fig. 11.9b).

A (11.58)

Singularity [¢; - 4,- 1R(c; - ¢})]

Substitution of the coordinates of the singularity into Eq. 11.55 and simplifica-
tion of the resulting expressions give: a'=-R(1 -k); b'=-k(} +c,); ¢'=
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k(}+c;);andd’ =s(c, - 1). Hence,
A,A = SR - k) +s(e, - )=V, ] (11.59)

inwhichD, = [-R(1 - k) +s(c; - $)1% +4[-&k%(c, + 1)? + 2k(1 - k) (c, - 1)].
The singularity is a saddle if 2k(1 - k) (¢, - 3)> k*(c, + ), which reduces to
k<1 (Fig. 11.9b). Note that for k=3, this singularity shifts to the pre-
vious point, i.e., to (1,- %R). For k> %, the singular point is a node if D, >
0, and a focus if D, <0. The node or focus is stable if R(1 - k) >s(c, - 1),
and unstable if R(1 - k) <s(c, - ).

It is apparent from Fig. 11.9a that all trajectories starting inside the separatrix
reach the stable node. For initial conditions such that the corresponding point
on the phase portrait lies outside the separatrix, the tank will drain.

Singularity [(-c, - —;—), - %R (c2 +¢1)]

Because Eqs. 11.22 and 11.23 are not valid for x <0, the singularity is virtual.
By substituting the coordinates of the singularity into Eq. 11.55, we obtain
a =R(k-1);b"=-k(3-c\);c' =k(§ - cy);and d' = -s(c, + 1). Hence,

AoAg = 2[R - k) - s(3+e,) +/Ds ) (11.60)

in which D3 = [R(1-k)+s(3+c))]?-4[k2(3-c))? +2k(1 - k) (X +¢))].
Since 0<k <1, s5>0, and R >0, both roots are real and negative if D3 > 0,
and complex conjugates with negative real part if D3 < 0. In the former case,
the singularity is a stable node; in the latter, a stable focus.

Constant Power Combined With Constant-Gate Opening

In the last section, it was assumed that the turbine gates can be opened to any
value to maintain constant power. On an actual installation, however, the gates
cannot be opened beyond their fully open position, and therefore the discharge
cannot be increased indefinitely to maintain constant power as the level in the
surge tank falls.

Referring to Fig. 11.6, for heads greater than the rated head—i.e., fory > -y,,
in which y, = final steady-state water level in the tank—the governor operates
the gates in such a manner that turbine discharge corresponding to constant
power is obtained. For heads less than the rated head, ie., for y <-y,, the
governor keeps the gate open at the maximum value, and the discharge through
the gate is determined by the maximum gate characteristics (Fig. 11.6). The
flow in this case is less than that required for constant power. Thus, power
output cannot be maintained constant for y <-y,, and the oscillations for this
condition should be analyzed considering the gate opening as constant.
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For this combined governing case, the phase plane is divided into two regions:
(1) constant power region for y >-y,, and (2) constant-gate-opening region
for y <-y,. There are five singular points: two in the constant gate, two in
the constant power region, and the singular point at (1, -%R), which is com-
mon to both the constant-gate and constant-power regions. The latter is called
a compound singularity.  All the singular points have been analyzed above for
constant-gate opening and constant power, and the results are summarized in
Table 11.1.

For k <4, there is only one real singular point at (1, -3 R), hereafter called
the first singularity. This is a compound singular point: for y <-y, (region of
maximum gate opening), it is always stable; for y > -y, (region of constant
power), it may be stable or unstable depending upon whether the Thoma cri-
terion is satisfied or not (see Table 11.1). Thus, if the Thoma criterion is satis-
fied, the oscillations are stable whether they are large or small. In the case of
the sub-Thoma area, the oscillations may be stable, unstable, or of constant

Table 11.1. Characteristics of singular points.

Stable
Coordinates of or
Singularity Type Unstable Required Conditions Miscellaneous
Constant gate opening (y < - ;-R):
(1, -4R) Node Stable (R - bs) > 2 Real
Focus Stable (R-bs)<?2 Real
(-1/k, -1/ks) Saddle - Always Virtual
Constant power (y > ~%R):
(1,-3R) Saddle - k>4 Real
Node - k < %, and D; >0 Real
Stable Rk-1)+s5s<0
Unstable Rk-1)+5s>0
Focus k<3%andD; <0 Real
Stable Rk-1)+s<0
Unstable Rk-1)+s>0
(c; -4, Saddle - k<4 Virtual
-4R(c; -¢))]  Node - k>% andD, >0 Real
Stable R(1-k)>s(c; - b
Focus - k> %, and D}, <0 Real
Stable R -K)>s(c; -H
Unstable  R(1 - k) <s(c, - $)
[~y - &, Node Stable D3>0 Virtual
—%R(c; +cp)] Focus Stable D3 <0 Virtual




358 Applied Hydraulic Transients

magnitude (called the limit cycle in phase-plane terminology) depending upon
the stabilizing action of the gate and the point from which the trajectory ema-
nates. The trajectories emanating inside the limit cycle are unstable, and t.helr
amplitude increases until it is equal to that of the limit cycle. The oscillations

Constant! power
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Figure 11.10. Phase portrait for constant power combined with constant gate opening.
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outside the limit cycle are stable and their amplitude decreases until it is equal
to that of the limit cycle.

For k> %, the second singularity becomes real and is either a stable or un-
stable node or focus, while the first singularity is a saddle (see Table 11.1).
Since such a high value of friction loss is not economical, this case is usually
of little practical importance.

Phase portraits for ¥ =0.35 and R =2.8, and k =0.025 and R = 0.2 are pre-
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sented in Fig. 11.10. Oscillations in the latter case are unstable (Fig. 11.9b)
as given by Paynter’s stability diagram,® if it is assumed that the constant power
is always maintained. If, however, it is considered that the governor can open
the gates up to a maximum limit, and then the gates remain fully open as long
as y < -¥g, then the oscillations are stable as shown in Fig. 11.10a.

Conclusions

From the preceding analysis of the oscillations in a simple surge tank by the
phase-plane method, the following conclusions can be drawn:

1. Oscillations are always stable in the cases of constant-discharge and constant-
gate opening. This conclusion has been drawn by earlier investigators by using
other methods.

2. For the case of an ideal governor, which ensures constant power but can
open the gates only to their specified maximum limit, the phase plane is divided
into two regions: (1) The region in which power can be maintained constant, i.e.,
Y >-yo, and (2) the region of maximum gate opening in which power cannot
be maintained constant, i.e., y <-¥;. The solution trajectories in the former
region correspond to the stable oscillations if 4;,> 4, and to the unstable
oscillations if 4; <A4,;,, while in the latter region they are always stable. Hence,
the oscillations, large or small, are stable if 4;>A,,. For A, <A,,, the solu-
tion trajectories in the phase plane correspond to stable oscillations for y < -y,
and to unstable oscillations for y > -y,. Due to these stabilizing and destabiliz-
ing effects, a solution trajectory corresponding to perpetual oscillations is ob-
tained, which in the phase-plane terminology is called a limit cycle. The region en-
closed by the limit cycle depends upon the stabilizing effect of the constant-
gate opening and upon the destabilizing effect of the governor. The oscillations
inside the limit cycle are unstable, and their amplitude increases until it is equal
to that of the limit cycle. The oscillations outside the limit cycle are stable, and
their amplitude decreases until it is equal to that of the limit cycle.

3. The danger of drainage of the tank for the case of constant power com-
bined with constant-gate opening is considerably less than that indicated by the
stability analysis assuming constant power only.

11.10. ORIFICE TANK

Description

In an orifice tank, there is an orifice between the tunnel and the tank (Fig.
11.2b). As this orifice restricts the inflow into the tank or outflow from it,
the amplitude of the oscillations of the liquid level in the tank is less than
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that of an equivalent simple tank, and the development of the accelerating or
decelerating head on the tunnel is more rapid than in the case of a simple tank,
If the orifice area is the same as that of the tunnel, then the orifice losses are
negligible and the tank acts like a simple surge tank. However, if the orifice
size is very small, then there is very little inflow or outflow, and the system
behaves as if there were no surge tank.

Because of the restrictive effects of the orifice, the volume of inflow or out-
flow from the tank is small compared to a simple tank, and therefore the tank
size can be reduced. This reduction in the tank area, however, depends upon
the orifice size. Disadvantages of an orifice tank are: (1) the waterhammer
waves are not completely reflected back at the tank and are partly transmitted
into the tunnel (this must be taken into consideration while designing the
tunnel), and (2) the governing of turbines with an orifice tank is not as good
as with a simple surge tank because of the more rapid development of accelerat-
ing and decelerating heads following a change in the turbine flow.

Derivation of Dynamic Equation

Let us consider the orifice tank shown in Fig. 11.11a in which the orifice fric-
tion loss, A, ¢ = ¢yr Qs Qsl. The following forces are acting on the liquid in the
conduit (see the freebody diagram of Fig. 11.11b):

Fy=vA{H,- h;- h,) (1161)
Fy =7A,(H0+Z +h0rf) (11-62)
F3=yAh, (11.63)

In the above equations, the notation of Section 11.3 is used. Considering the
downstream direction as positive, the net force acting on the liquid element
in the positive direction is ZF =F| - F, - F3. As shown in Section 11.3, the
rate of change of momentum of the liquid in the tunnel is (yL/g) (dQ,/d?).
Applying Newton’s second law of motion and substituting expressions for £, ,
F3,and F; from Eqs. 11.61 to 11.63, we obtain

yL dQ
T ar YAz ke i by o) (11.64)

By defining h=h, + h; + hy = cQ,1Q,! in which ¢ is a coefficient, substituting
expression for k¢, and simplifying, Eq. 11.64 becomes

40, _ g4,

dt L (—Z - CQ!'QtI = Corf QlesI) (1165)
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Figure 11.11. Orifice tank: notation for dynamic equation.

The continuity equation for the simple tank (Eq. 11.8) is also valid for the
orifice tank.

The fourth-order Runge-Kutta method may be used to solve the dynamic
and continuity equations for an orifice tank.

11.11. DIFFERENTIAL SURGE TANK
Description

In a differential tank (Fig. 11.2c), the riser acts like a simple tank while the main
tank acts like an orifice tank. Thus, a differential tank is a compromise between
a simple tank and an orifice tank. In this tank, following a change in"the pen-
stock flow, the accelerating or decelerating head on the tunnel develops slower
than in an orifice tank but faster than in a simple tank. Because of this, the area
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of the outer tank can be reduced as compared to that of an equivalent simple
tank, and the regulation capabilities of the turbine are not as adversely affected
as in an orifice tank.

As shown in Fig. 11.2c, an orifice is provided between the tunnel and the
outer tank. During initial steady state, the water surface in the riser and that
in the tank are at the same level. If the turbine gates are opened to accept
load on the turbogenerator set, the water is initially provided by the riser. Be-
cause of small cross-sectional area, the water level in the riser falls rapidly,
thus creating an accelerating head on the tunnel in a short period. The water
level in the tank falls slowly to supply additional water. If the turbine gates
are closed to reject load, then the water level in the riser rises rapidly to store
water, thus creating in a short period a decelerating head on the tunnel and a
differential head on the orifice of the outer tank. The water rejected by the
turbine is then forced through the orifice into the tank.

Depending upon the terrain, the riser and the main tank may not be as close
to each other as shown in Fig. 11.2c.

Derivation of Equations

Referring to Fig. 11.12 and proceeding similarly as for the simple and orifice
tanks, the dynamic equation may be written as

— =2, - cQy| Qi (11.66)

in which z,= water level in the riser above the reservoir level (positive up-
wards) and c is a coefficient as defined in Section 11.3. The continuity equa-
tion at the junction of the tunnel and the tank is

Qr = Qs + Qr + Qtur (1 1 67)
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Figure 11.12. Differential tank: notation for dynantic equation.
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in which Q, = flow into or outflow from the riser, and Qg = flow into or out-
flow from the outer tank. The value of Q; depends upon the difference of
water levels in the riser and in the tank, and upon the size and characteristics
of the orifice at the bottom of the tank, and may be computed from the fol-

lowing equation:

Qs =2CyAorr V2812, - 2| (11.68)

in which C, = coefficient of discharge of the orifice, and A4 ¢ = cross-sectional
area of the orifice. If z, >z, the flow is into the tank and @, is positive;if z, <
z, then Q, is negative. The coefficient of discharge may have different values
for flow into or out of the tank. In addition, note that in the Eq. 11.68, it is
assumed that there is no spill from the riser into the tank.

To compute the variation of the level in the riser and in the tank, the fol-

lowing equations are available:

dz
SE= Q..\' (1169)
and
dz
ArE!=Qr_ Os - Cuur (11.70)

11.12. MULTIPLE SURGE TANKS

The hydraulic system of a turbine or pump may have more than one surge tank.
Such a system is referred to as a multiple surge tank system or a system of surge
tanks. Multiple surge tanks are used in the following situations:

1. To provide additional water into the tunnel upstream of the main surge
tank through adits.

2. To increase the cross-sectional area of the tank in order to increase the out-
put of the turbogenerator. This increase may be accomplished more easily
by adding another tank than by increasing the area of the existing tank.

3. To provide a tank on the tailrace tunnel of an underground hydroelectric
power plant or a pumped storage project to reduce waterhammer pressures
and/or to improve the governing characteristics of the turbogenerators.

4. To split the main surge tank into two or more shafts for the economy of
construction or to suit the rock conditions.

To conserve space and due to a large number of possible configurations of the
multiple-surge-tank systems, the equations describing the tank oscillations are
not derived in this section. Two typical systems usually found in practice are
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presented in the problems at the end of the chapter. Equations for these systems

may be easily derived in a manner simi i i
may r similar to that used for a simple or an orifice

11.13. DESIGN CONSIDERATIONS
Necessity of a Tank

The first question that arises is whether a surge tank is required. For this purpose
the following criteria®® may be used: ’

1, }Slurge tanks should be provided where the resulting reduction in the water-
ammer pressure provides a more economical pen
! st - -
installation. penstock-surge-tank
2. A surge tank shpuld be provided if the maximum speed rise following rejec-
tion of the maximum turbine output cannot be reduced to less than 45 per-
cent of tht? ratf:d speed by other practical methods, such as increasing the
generator. Inertia or penstock diameter or decreasing the effective wicket-
gate c?osmg tlrl:le. The speed rise will be computed assuming one unit
; operating alone if there is more than one unit on the penstock
- As a rough rule of thumb, the isi :
, provision of a surge tank sh in-
vestigated if ’ ould be
2iVi s 3105
I 0

n

(S1 units)*

in.v{hich ZL;V;is computed from the intake to the turbine, and H,, is the
minimum net head. In general, a surge tank should be preferred to a pres-

sure regulator although the latter may be preferred for high-head plants
for economic reasons.

Location

A surge tank should be located as near to the turbine as the local topography
permits,

Size

The cross-sectional area of a tank is determined to satisfy the following criteria:

1. The tank is stable.
2. The tank does not drain (i.e., the water level does not fall to the tunnel

*In the English units, zf;:" > 10 to 20.
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crown) following maximum possible load acceptance with the reservoir at
its minimum level,

3. The tank does not overflow following load rejection unless an overflow
weir is provided.

The minimum cross-sectional area required for stability has been a matter of
great discussion. Jaeger’®'?”7 proposed a safety factor n such that the area of
the surge tank should be n times the Thoma area, Ayp, with n> 1. As arough
guide for preliminary design, n may be taken as 1.5 for a simple tank, and 1.25
for an orifice and a differential tank. During the final design when various
plant parameters have been selected, detailed investigations should be con-
ducted to check the stability of the tank by using digital or analog computers
or by arithmetical or graphical integration. In these investigations, the varia-
tion of the turbine efficiency with head and gate opening and the fact that the
turbine gates cannot be opened more than their maximum opening should be
taken into consideration. If these calculations show that the tank is unstable
or that the dissipation of the tank oscillations is very slow, then the tank area
may be increased and the above procedure repeated. If, however, the tank is
stable, and the oscillations are dissipated at a faster than an acceptable rate,
then the possibility of decreasing the tank area should be investigated.

Figure 11.13 may be used to determine the type of instability to be expected,
i.e., oscillatory or drainage. In this figure, compiled by Forster?® using re-
sults of various investigators, the abcissa, h, is heo/H,, and the ordinate, y, is
hso/Z; the curves represent the condition of critical stability where oscilla-
tions, once begun, continue with constant amplitude. This figure should be
used for the most critical operating conditions, i.e., minimum reservoir level and
maximum possible turbine output at that level. In general, if 4 and y for a sys-
tem plot above the upper envelope of curves, the system will be free of both
oscillatory instability and tank drainage for all conditions including full-load
acceptance from zero load. A system plotting below the lower envelope will be
subject to instability or tank drainage, or both.

To determine the maximum tank level, the turbine should be assumed to re-
ject maximum possible load. If there is more than one unit on the pen-
stock, then all units should be assumed to reject load simultaneously. Such
unloading conditions are possible if there is a fault on the transmission line. Ex-
perience with the operation of large grid systems shows that such severe unload-
ing conditions occur a number of times during the life of the project.

The selection of the critical loading conditions is more complex and difficult
than the unloading conditions. Some authors suggest that a load acceptance of
50 to 100 percent of the rated load be used for determining the maximum down-
surge. In the auther’s opinion, however, no set criteria can be recommended be-
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Figure 11.13. Types of instabitity for various values of # and y. (After Forsterza)

cause they depend upon the size of the grid system, the amount and the rate of
maximum load that the plant may be required to accept because of isolation from
the grid system, and the maximum load that can be added to the system at a
given rate. Therefore, the maximum load and the rate of acceptance for which
the tank should be designed should be decided in consultation with the engi-
neers responsible for operating the grid system.

If the tunnel head losses are not precisely known, then the minimum probable
value of friction factor should be used for computing the maximum upsurge, and
the maximum probable value of friction factor for computing the maximum
downsurge.

If the tank area has to be increased to keep the maximum upsurge or the
minimum downsurge within acceptable limits, then the provision of upper
or lower gallery may be economical instead of increasing the area of the tank.

The size of the orifice of an orifice tank or a differential tank should be
selected with care. For the orifice tank, the orifice is usually designed?® so
that the initial retarding head for full-load rejection is approximately equal to
the maximum upsurge. Johnson’s charts’®*! may be used to determine the
approximate dimensions of the tank, riser, and the ports.
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11.14. CASE STUDY

Design studies, carried out for the Chute-des-Passes surge-tank system and re-
ported in Ref. 28 by Forster, are presented herein for illustration purposes.

Project Details

Figures 11.14 and 11.15 show the plant layout and the details of the hydraulic
elements. The upstream tunnel is 9.82-km long, is concretelined, and has a
diameter of 1046 m. The 2.73-km-long downstream tunnel is also pres-
surized, is unlined, and has a diameter of 14.63 m. The maximum and mini-
mum reservoir elevations are 378.2 m and 347.7 m, respectively. There are
five units rated at 149.2 MW each at a net head of 164.6 m.

The plant supplies power to electric smelters that have a capacity of 746 MW
or more and that are used for the production of aluminum. The nature of the
smelters is such that power shutdown of a few hours could impose great op-
erating difficulties in addition to large monetary losses. The plant could be
isolated from the system due to major system disturbances, although the pos-
sibility of such an event occurring was considered remote.

At the upstream end of the tailrace tunnel, the 144.9-by-14.64-m tailrace
manifold running parallel to the 144.9-m-long powerhouse served as the down-
stream surge tank.
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Figure 11.14. Project layout of Chute-Des-Passes development (After Forster")
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Preliminary Investigations

1. As the downstream surge tank is about seven times the Thoma area, the
variation of water level of the tank was considered to be of secondary importance
and could be neglected in the preliminary analysis. Similarly, the losses in the
orifice of the upstream tank could be neglected, and the tank could be con-
sidered a simple tank.

For full plant output and at the minimum reservoir level, the value of 4 was



370 Applied Hydraulic Transients

computed as 0.065 for the minimum expected head losses and 0.091 for the
maximum expected losses. On Fig. 11.13, these values lie within the range
where the oscillatory and the drainage types of instability overlap, thus indicat-
ing that both types of instability were possible.

2. Analysis using the procedure outlined by Jaeger®? for a double surge-tank
system showed that if the system was to be stable, the area of either tank could
not be reduced significantly below its corresponding Thoma area even if the area
of the other tank were enlarged.

3. Preliminary analysis showed that, for a stable system and for a 144.9-by-
14.64-m downstream surge tank, the diameter of the upstream tank would
range from 33.5 to 52 m, and detailed studies were necessary for determining
the most economical tank diameter.

Selection of Method of Analysis
The following methods were available for a detailed investigation:

1. Arithmetical or graphical integration methods
2. Hydraulic mode] studies

3. Digital computer simulation

4. Analog computer simulation.

Because of a large number of cases to be studied, the arithmetical or graphical
integration methods would have been time-consuming and were therefore re-
jected. In the hydraulic model studies, regulating the turbine flow for main-
taining constant power is difficult. Such studies are desirable for those systems
in which the velocity head and the form losses are comparable in magnitude to
the tunnel! friction losses. Since this was not the case for the Chute-des-Passes
system, hydraulic model studies were not considered suitable. Digital computer
simulations were rather rare at that time, and difficulties had been reported by
Barbarossa®?® for the analysis of tank oscillations following small load changes.
However, the use of analog computers for such studies had been demonstrated
by Paynter.>!'® Since a large number of cases involving variation of many
variables had to be analyzed, this method was considered to be the most eco-
nomic and was selected for the detailed investigations.

Program of Investigations

For the assumed values of various variables, the following information had to
be obtained:

1. Maximum and minimum water levels in the upstream and in the down-
stream surge tank
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2. Stability of the system and the rate of surge damping

3. Discharge and volume of overflow over the spillway of the upstream
tank

4. Permissible load acceptance for different tank sizes over full operating
range of the reservoir.

Selection of Range of Various Variables

Size of Upstream and Downstream Tanks

For the downstream surge tank comprising the tailrace manifold, the area was
assumed to be fixed at 1449 by 14,64 m.

Preliminary analysis had indicated that upstream tank diameters should
range from 33.5 to 52 m. Based on preliminary computer investigations, three
tank diameters, 33.5,39.7 m, and 45.75 m, were selected for a detailed analysis.

Tunnel Resistance

From the data published* on the Niagara Falls Development,®S Appalachia
tunnel,®® and Swedish unlined tunnels,?” the following maximum and mini-
mum values for Manning’s n were selected:

Tunnel Maximum  Minimum
Concrete-lined upstream tunnel 0013 0.011
Unlined downstream tunnel 0.038 0.035

Orifice Size

The orifice size was selected such that the waterhammer pressure head in the
tunnel did not exceed 0.5 of the rock cover.

The orifice loss coefficient for the flow into the tank was computed from
the expansion losses for the flow from the orifice into the standpipe and from the
standpipe into the tank. The loss coefficient for the outflow from the tank was
dfetermined from the contraction losses for the flow from the tank into the stand-
pipe, from the standpipe into the orifice, and a 45° cone-diffuser expansion. Dou-
bling these estimated loss coefficients or assuming them equal to zero had a
negligible effect on the stability of the system.

Reservoir Levels

Four rfes?rvoir levels—El. 347.7, 356.8, 366 and 378.2 m—were selected for
determining the permissible amounts of load acceptance.

*For more up-to-date data on head losses in tunnels, see Ref. 34.
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Table 11.2. Assumed conditions.

Assumption
Tunnel Loss Reservoir
Critical Condition Coefficient Level

Stability Minimum Minimum
Possibility of drainage
of upstream tank following
load acceptance Maximum Minimum
Maximum upstream tank
level following full load
rejection Minimum Maximum

Table 11.2 summarizes the assumptions made regarding the reservoir level
and the tunnel losses for determining different critical conditions.

Derivation of Equations
The following equations were derived for the double-surge-tank system:

The dynamic equation for the upstream tunnel

The dynamic equation for the tailrace tunnel

Continuity equation at the upstream tank

. Continuity equation at the downstream tank

. Equation for turbine flow to maintain constant power at various net heads,
taking into consideration the variation of the turbine efficiency and the re-
action time of the wicket gates

6. Equation for the net head on the turbine.

TR W N -

Analog Simulation

A model-400 Reeves “REAC” electronic analog computer was used. Changes
in the value of the tank area, reservoir elevation, and losses in the tunnels and
in the tank orifice could be made easily and quickly. The variation of six
variables—namely, z,, @y , 23, @2, and Qy,*—and net head on the turbine with
time were recorded on a Sanborn recorder. In addition, plots of z, versus O,
and z, versus O, were recorded by an oscillographic recorder. These were
similar to the phase portrait presented in Fig. 11.10a and were especially useful
in showing the stability of the system.

*For notation, see Fig. 11.18a.
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Results
Permissible Load Acceptance

Figure 11.16 shows curves between the permissible amount of load, AP, ax-
that may be accepted and the initial load, P. Figure 11.16a is for minimum
reservoir level of El. 347.7 m and a range of tank diameters, and Fig. 11.16b is
for 39.65-m tank diameter and a range of reservoir levels. These curves were de-
termined by trial and error so that the maximum permissible load, APy .y, for
the given initial load, P, yielded critical stable oscillations, i.e., surges of con-
stant amplitude, or tank drainage, whichever occurred first.
From these curves, the following observations can be made:

1. At low reservoir level, an undersized tank reduces the effective plant ca-
pacity. For example, for 33.55-m tank diameter, the maximum per-
missible base load (i.e., load increment, AP ,,, approaches zero) is
582 MW, whereas with a 45.75-m diameter tank, the plant is stable to full
output.

2. The tank drainage condition becomes critical at low base load and with
large load increments, whereas instability becomes critical at large base
load and with small load increments.
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3. The advantages of larger tank diameter decreases as the reservoir level

increases.
4. As the reservoir level increases, the limitation on the load increment gradu-

ally changes from instability to tank drainage.

Effect of Tank Area on Damping

Data listed in Table 11.3 show the effect of the tank diameter on surge damping
for the critical case of minimum reservoir level and minimum tunnel losses. For
each tank diameter, the number of surge cycles, the period of each cycle, and
the time for the surge to be damped to one tenth of the amplitude of the t.‘lrst
cycle are listed. It is clear from this table that, for full-load rejecti‘on, the time
for surge damping is independent of tank diameter since the turbine gates are
not reacting to the changes in the tank level. For normal load changes, how-
ever, increasing the tank size reduces the time required for damping and hence
increases stability.

Effect of Tank Area on Overflow

Table 11.4 shows the maximum overflow rate and the volume of overflow for
various tank diameters. It is clear that increasing the tank size does not signifi-
cantly reduce the overflow volume.

Effect of Tank Area on Excavation

Because the range between the maximum and minimum surge levels decreases
with increase in the horizontal tank area, the volume of excavation is not pro-
portional to the tank area. Due to overflow, the maximum water level was un-

Table 11.3. Variation of surge damping with tank size.

149-MW Load Increase Full-Load Rejection

Tank Base a .
Diameter Load No.  Period Time No.  Period Time
(m) (MW) Cycles (s) (s) Cycles (s) (s)
33.55 407 7.6 630 4860 13.7 580 8400
39.65 425 4.0 770 3060 11.8 700 8400
45.75 440 2.8 930 2580 10.1 800 8400

8Time required for surge to be damped down to one-tenth of the amplitude of
first cycle.
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Table 11.4. Volume of overflow.?

Maximum Water Maximum Overflow

Tank Diameter Levelin Tank Rate Volume of Overflow
(m) (m) (m3/s) (x 103 m?)
33.55 388.94 358 53.5
39.65 388.78 328 50.7
45.75 388.57 300 47.0

3 Following full-load rejection (746 MW) at maximum reservoir level (EL 378.2 m)
and assuming minimum tunnet losses.

affected by variation in the tank area. The minimum water level, however,
varied with increase in the tank diameter. Table 11.5 lists the required volume
of excavation for various tank diameters.

Selection of Tank Size

Upstream Tank

As discussed previously, increasing the tank diameter from 33.55 to 39.65 m in-
creases the firm capacity of the isolated plant at low reservoir levels by about
37.3 MW. This advantage decreases rapidly as the tank diameter is increased
above 39.65 m and disappears entirely at higher reservoir levels. Considering
such factors as permissible amount of load acceptance, degree of surge damping,
and effective plant capacity, a tank diameter of 39.65 m was selected. The
bottom elevation of the tank was set at El. 321.5 m. This level allowed sudden
acceptance of one unit or a small amount of load acceptance following full-load

Table 11.5. Effect of tank area on required excavation volumes.

149-MW Load
Full Load Rejection? Acceptance

Tank Minimum Tank Minimum Tank
Diameter Water Level Volume Water Level Volume

(m) (m) (m3) (m) (m?%)
33.55 320.34 63,200 325.07 59,000
3965 325.0 82,500 326.81 80,200
45.75 3294 102,700 32845 104,300

8 At minimum reservoir level and assuming minimum tunnet losses.
From maximum permissible base load at minimum reservoir level and

assuming maximum tunnel losses,
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rejection. A surge-tank-level indicator was installed in the control room so that
the operators could avoid accepting the load during that part of the surge cycle
that would cause excessive downsurge.

Overflow from the tank would have been carried by a stream course through
the permanent town site for the project. Because of the potential danger associ-
ated with sudden rushes of water through an inhabited area, it was later decided®®
to excavate a basin in rock at the upper level to retain the overflow until it
could discharge back into the surge tank.

Downstream Tank

As outlined above, the tailrace manifold was selected to act as the tailrace surge
tank. For normal operation, the maximum and minimum water levels in this
tank were computed to be at EI. 192.15 m and El. 181.2 m, respectively. The
floor was set at El. 170.5 m. To avoid letting the water level fall so low as to
unwater the draft tubes following total-load rejection, a weir was constructed in
the tailrace tunnel downstream of the manifold.

11.15 SUMMARY

In this chapter, the description and analysis of various types of surge tanks were
presented. The phase-plane method was used to investigate the stability of a
simple surge tank. Design criteria for determining the necessity of a surge tank
and for selecting the tank size were presented, and the details of the studies
carried out for the design of the Chute-des-Passes surge-tank system were
outlined.

PROBLEMS

11.1. Compute the free surge and the period of oscillations of a simple surge
tank following sudden total rejection if the initial steady flow is 1200
m3/s. The length of the tunnel is 1760 m, and the cross-sectional area
of the tunnel and of the tank are 200 m? and 600 m?, respectively.

11.2. Prove that dynamic equation (Eq. 11.6) is valid for an inclined surge tank
(Fig. 11.17) if A = horizontal area of the tank.

11.3. Derive the dynamic equations for simple, orifice, and differential tanks
assuming that the tunnel is inclined at an angle § to the horizontal. (Hint:
Draw a freebody diagram of the tunnel, and apply Newton’s second law
of motion. Because of the cancellation of the component of the weight of
water in the tunnel by the difference in the datum head on the ends of
tunnel, Egs. 11.6, 11.65, and 11.66 are valid.)

114,

11.6.
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Figure 11.17. Inclined surge tank.

Prove that the oscillations of the tunnel flow and the water level in a
simple tank following load rejection are 90° out of phase. Is the flow

leading the water level or vice versa? Assume that the system is
frictionless.

. If the cross-sectional area of a tunnel varies in steps along its length, prove

that the actual tunnel may be replaced by an equivalent tunnel having
length, L., and area, 4,, such that

L

Le Li
Ae

1 A

M=

i
in which L; and 4; are the length and the cross-sectional area of the ith

section of the tunnel ( = 1 to n).

If the inertia of the water in the tank is taken into consideration, prove
that the expression for the free surge (Eq. 11.20) for a simple tank is
valid; however, the expression for the period, T, becomes

| >
|2

A
g A

T=2r

in which A=L + H,A4,/A;, and H, = height of the tank.

. Figure 11.18 shows two multiple-surge-tank systems usually found in

practice. Derive the dynamic and continuity equations for these systems.

. Prove that the critical area, 4,, for perpetual oscillations in a closed surge

tank (Fig. 11.19) is

Aep=Age[1+n ko
Y2q,



378 Applied Hydraulic Transients

Reservolr

Sl

Tunne!

Tank No./ “y

Reservorr

-

As,

Tunnel! No_/

——

Upstream
surge tank

Penstock

in which A, is critical area for an open surge tank and is given by the

I

.

Figure 11.18. Multiple surge tanks.

ex pression

LA,

Ase =

1 ( v ) v?
— I Hy~hy +—|+2 —
2g> ° o2 22
P, = steady-state air pressure, and z, = distance between the roof of the
tank and the initial steady-state water surface in the tank. Assume that

Downslreom
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Figure 11.19. Closed surge tank.

the expansion and contraction of the air follow the law, p v, = constant;
the governor maintains constant power; and the efficiency of turbine is
constant. (Hint: Write the dynamic equation for the tunnel, the con-
tinuity equation, and the governor equation in terms of small deviations,
Az, AQy, and AQy,,,, from the steady-state values; neglect terms of second
and higher order, and combine the resulting equations by eliminating AQ,
and AQy,,,. For perpetual oscillations, the coefficient of the term d[Az }/dt
of this equation should be equal to zero.)

11.9. Write a computer program for determining the water-level oscillations in a
simple tank following a load acceptance or rejection. Using this program,
compute the minimum downsurge for a surge-tank system in which flow is
suddenly increased from 56 to 112 m®/s. The length of the tunnel is
1964 m, the cross-sectional area of the tunnel and the surge tank are 23.25
and 148.8 m?, and the initial steady-state tunnel losses are equal to 1.22 m.

Answers

11.1. Free surge,Z = 46.42 m; period T'= 145 84 s,
11.9. 16.05 m below the reservoir level.
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CHAPTER 12

TRANSIENT FLOWS IN
OPEN CHANNELS

12.1 INTRODUCTION

In the previous chapters, we considered transient-state ﬂo?)vs in the closid
conduits. In this chapter, we will discuss the transient flows in open channels.
A flow having a free surface is considered open-channel QOW even though the
channel may be closed at the top,e.g.,a tunnel flowing partl‘ally full.

In this chapter, a number of commonly used terms are first <'1eﬁ.ned, and.the
causes of transient flows are discussed. The dynamic and contm.mty equatxoqs
describing such flows are then derived, and various method.s .avallszle .for their
solution are discussed. Details of two of these—the explicit ﬁmte-dszere.nc.e
method and the implicit finite-difference method—are then presented. This is
followed by a discussion of a number of special topics on open-channel tran-
sients. The chapter concludes with a case study.

12.2 DEFINITIONS

If the depth and/or velocity varies at a point with tir.ne,.the ﬂ9w i.s termed
unsteady flow. Examples of unsteady flow are: floods lfl rivers, tides in oceans
and in estuaries, surges in power canals, and storm runoff in sewers.

Depending upon the rate of variation of the flow and ﬂ:le depth,lthe unsteady
flows may be classified as rapidly varied or gradually 1{ar1ed flow.! In the case
of rapidly varied flows, the water-surface variation is rapid; and u§ually, the water
surface has a discontinuity called bore or shock. Examples of sth flows.are
surges in power canals that are caused by load changes_ on turbines or tidal
bores in estuaries. In the gradually varied flows, the variation of the free surface
is gradual—e.g., river floods, tides without bore formation_ . .

Transient flows in the open channels are usually associated with the p‘ropaga-
tion of waves. A wave is defined as a temporal (i.e., with respect to time) or
spatial (i.e., with respect to distance) variation of flow or water surface. The
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Figure 12.1. Wavelength and amplitude.

wavelength, ), is the distance from one crest to the next, and the amplitude of
a wave is the difference between the maximum level and the still water level (see
Fig. 12.1).

The wave speed relative to the medium in which it is traveling is called wave
celerity, c. Note that it is different from the flow velocity, V, with which the
particles of the fluid move as a result of the wave propagation. The absolute

wave velocity, V,,, is equal to the vectorial sum of the wave celerity and the flow
velocity, ie.,

Vw =V +ec (12.1)

in which boldface type indicates that the variables are vectors. In a one-
dimensional flow, there is only one flow direction. Therefore, the wave celerity
is either in the direction of the flow (downstream), or it is opposite to the flow

(upstream). Considering the downstream direction as positive, Eq. 12.1 may be
written as

Vw=Vic (122)

In this equation, the positive sign is used for a wave traveling in the downstream
direction, and the negative sign is used for a wave traveling upstream.

By using different characteristics as the criterion of classification, the waves
may be classified as described in the following.

A wave having a wavelength more than twice the flow depth is termed a
shallow-water wave, and a wave having a wavelength less than twice the flow
depth is called a deep-water wave. Note that it is the ratio of the wavelength,
A, to the depth, y;, and not the flow depth alone, which defines the type of
wave.>  For example, depending upon the ratio of the wavelength to the flow
depth, a short wave, such as a ripple, can be a deep-water wave in otherwise

shallow water; a long wave, such as a tide, in the deepest part of an ocean can
be a shallow-water wave.
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In a shallow-water wave, the fluid particles at a cross-section have the same
flow velocity; the wave celerity depends upon the flow depth, and the vertical
acceleration of the fluid particles is usually negligible compared to the horizontal
acceleration. The wave celerity of a deep-water wave depends upon the wave-
length; the particle motion is negligible at depths equal to the wavelength from
the surface; and the horizontal and vertical accelerations are comparable in
magnitude and decrease rapidly with distance from the surface.

If the wave surface is higher than the initial steady-state surface, the wave is
called a positive wave, while if the wave surface is lower than the steady-state
surface, it is called a negative wave.

If the fluid particles translate spatially with the wave, the wave is called
translatory (e.g., surges, tides, floods), while, if their is no such translation, the
wave is called a stationary wave (e.g., a sea wave).

A wave having just one rising or falling limb is called a monoclinal wave. A
solitary wave has gradually rising and falling (or recession) limbs. A number of
waves traveling in succession are called a wave train.

12.3 CAUSES OF TRANSIENTS

Transient-state conditions are produced in open channels whenever either the
flow or the depth of flow or both are changed at a section. These changes may
be planned or accidental; they may be natural or produced by human action.
Following are some of the most common examples and causes of open-channel
transients:

1. Floods in the rivers, streams, and lakes caused by snow-melt, rainstorm, or
opening or closing of control gates

. Surges in the channels caused by loading or unloading the turbines, starting
or stopping the pumps, opening or closing the control gates

. Surges in the navigation canpals caused by the operation of locks

. Waves in a river or a reservoir created by a dam-break

. Lake and reservoir circulation caused by wind or density currents

. Storm-runoff in sewers

. Tides in estuaries or inlets.

N
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Depending upon the rate at which the flow or the depth changes, a bore or
shock may be formed during the transient-state conditions.

12.4 SURGE HEIGHT AND CELERITY

In the last section, celerity was defined as the wave speed relative to the fluid
in which it is traveling. Let us now derive expressions for the celerity and height
of a surge.
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Referring to Fig. 12.2a, let the flow in the channel be steady at time ¢t =0
when a sluice gate located at the upstream end of the channel is suddenly opened
and the flow is suddenly increased from Q, to Q,. This increase in flow pro-
duces a wave of height, z, which travels in the downstream direction.

{a) Unsteady flow

Sluice gate

r I |
[
! | |
' 1 Vo=V, iv-v
Y. 2 Yw | V)™ Vw
e - In
— .
r4 /
e {b)} Equivalent steady flow
1y B
F2=YAzY, g h
I = ‘F|=TA,YI

‘ weight, W

(c) Freebody diagram of control volume

Figure 12.2. Wave height and celerity.
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Let us designate the flow depth and the flow velocity to the right of the wave
front (i.e., undisturbed conditions) by y, and V,, and the corresponding vari-
ables to the left of the wave front by y, and V, (Fig. 12.2a). If ¥, is the
absolute wave velocity, then the unsteady flow (Fig. 12.2a) can be converted
into a steady flow by superimposing velocity V,, on the control volume in -the
upstream direction (Fig. 12.2b). The velocity in the downstream flow direction

is considered positive. .
Referring to Fig. 12.2b, the continuity equation may be written as

AV - V) =4,V - V) (12.3)

Assuming that the pressure distribution at section 1 and 2 is hydrostatic and
that the channel is horizontal, and neglecting friction, the forces acting on the
control volume (Fig. 12.2¢) are:

Force in the upstream direction, F, =7y A, (12.4)
Force in the downstream direction, F, =7y,4, (12.5)

in which 7, and J, are the depths of the centroids of areas 4, and 4,.
The rate of change of momentum of the water in the control volume

=§A,(V, V) - V) - (Ve - V)]

=g1A1(Vx -V (V- V) (12.6)

The resultant force, F, acting on the water in the control volume in the down-
stream direction, is

F=F, - F, =75, - A\ J) (12.7)

Applying Newton’s second law of motion,
Y4,V - V) () = V) =7 (Aads - A1) (128)
g

Eliminating V, from Eqs. 12.3 and 12.8 and rearranging the resulting equation,

we obtain 24,

————— (A3, - Ay¥ 129)
Al(Az‘A1)( 2V2 171) (

(Vl - Vw)2 =
Since the wave is moving in the downstream direction, its velocity must be
greater than the initial flow velocity V. Hence, it follows from Eq. 12.9 that

gA,
AI(AZ_AI)

V=t t (A27, - A1J1) (12.10)
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If there is no initial flow in the channel (i.e., V'; = 0), then the absolute wave
velocity V,, is equal to the radical term of Eq. 12.10. Transposing V, to the
left-hand side,

gA, — _
V,-V = _— 0y — )
w 1 ‘/AI(AZ_AI)(Az)z Ayy) (12.11)

We previously defined the celerity, ¢, of a wave as its velocity relative to the
medium in which it is traveling. Since V,, - V| is the velocity of the wave rela-
tive to the initial flow velocity V;, the following general expression for ¢ is ob-
tained from Eq. 12.11:

8A, - -
=z ——— (A5, -4 .
¢ 1/4‘(‘42_‘4‘)( 2V2 171) (12.12)

A positive sign is used if the wave is traveling in the downstream direction, and a
negative sign is used if it is traveling upstream.

The relationship between the velocities and the depths of flow at sections 1
and 2 is obtained by eliminating V,, from Eqs. 12.3 and 12.8, i.e.,

A4,
E(Az "Al)

The height of the wave, z, is equal to y, - ;. If y; >y, then the wave is a
positive wave, and if y, <y, then it is a negative wave.

There are five variables—namely, y,, V,, y;, V2, and V,,—in Egs. 12.3 and
12.13. The value of ¥, or y, may be determined by trial and error from these
equations if the values of other three independent variables are known.

Note that Eqgs. 12.12 and 12.13 are general and may be used for channels
having any cross-sectional shape. Let us see how these equations are simplified
for a rectangular channel.

Ay, - Ay = 7 - n)? (12.13)

Rectangular Channel

For a rectangular channel having width B, , =1 y,; 5, =1 y,;4, =By,; and
A, = By,. Substituting these expressions into Eq. 12.12 and simplifying the

resulting equation,
c=]/——gy2 (31 +72) (12.14-a)
2y

If the wave height is small as compared to the flow depth, y, then y; =y, =y.
Hence, it follows from Eq. 12.14a that

c=gy (12.14-b)
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For a rectangular channel, the continuity equation (Eq. 12.3) may be written

as

By (Vy - V) =By, (Vy = V) (12.15)
from which it follows that
y, = 21V122aVa (12.16)
Y1~ Y2

Noting that for a wave traveling in the downstream direction, V,, = V) te,
substituting expression for ¢ from Eq. 12.14a and eliminating V,, from the
resulting equation and Eq. 12.16, we obtain

, - e -
: g(yl - yZ) 2 2y |
F(Vy - Vy) (1 - y3) | (12.17)
O R
This equation®* was derived by Johnson and may be solved by trial and error

to determine the surge height. .
Figure 12.3 shows a positive wave. Because the depth at the leading edge of

2

N

(a)

2
\\

(b)

Figure 12.3. Variation of the wave front of a positive wave.
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the wave front (point 1) is smaller than at the trailing edge (point 2), it follows
from Eq. 12.14b that the wave celerity is higher at point 2 than that at point 1.
Thus, as the wave travels, the trailing edge of the wave front tends to overtake
the front edge. Therefore, the wave front gradually becomes steeper until a
bore forms. Using a similar argument, it is clear that a negative wave front
flattens as it travels in a channel.

We know that for the subcritical flows, the Froude number, F <11, i.e.,

72—‘/; <1 (12.18)
or
V<+zy (12.19)
On the basis of Eq. 12.14b, Eq. 12.19 can be written as
V<e (12.20)

Hence, it follows from Eq. 12.2 and 12.20 that V,, is negative if the wave is
traveling in the upstream direction. In other words, a disturbance travels both
in the upstream and in the downstream direction. For supercritical flows
(F > 1), however, a wave can travel only in the downstream direction, since
the flow velocity is more than the wave celerity and V,, is always positive.

12.5 DERIVATION OF EQUATIONS

The dynamic and continuity equations* describing the one-dimensional transient
flows are derived in this section.
The following assumptions are made in deriving these equations:

1. The slope, 8, of the channel bottom is small so that sin 8§ ~tan § ~6 and
cosf =1.

2. The pressure distribution at a section is hydrostatic. This is true if the
vertical acceleration is small, i.e., if the water-surface variation is gradual.

3. The transient-state friction losses may be computed using formulas for
the steady-state friction losses.

4, The velocity distribution at a channel cross section is uniform.

5. The channel is straight and prismatic.

Let us consider the control volume shown in Fig. 12.4. The x-axis lies along
the bottom of the channel and is positive in the downstream direction. The
depth of flow, y, is measured vertically from the channel bottom. Thus, the

*These equations are usually referred to as Saint-Venant equations.5 For a general deriva-
tion of these equations, see Refs. 6 through 8.
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Water surface
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F, = YAj Fo=7A§
; -Fa

(b) Freebody diagram

Figure 12.4. Notation for dynamic and continuity equations.

x and y axes are not orthogonal. However, as the channel is assumed to have a
small bottom slope, this discrepancy does not introduce significant errors.

Continuity Equation
If v is the specific weight of the water, then referring to Fig. 12.4:

The rate of mass inflow into the control volume

=Tqy
g

(12.21)
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The rate of mass outflow from the control volume
0A oV
=2 (A + ——Ax) (V+ —Ax) (12.22)
g ox ox
Hence, the net rate of mass inflow
04 |4
=Xay-X (A + —Ax) (V+ a—Ax)
g g ox o0x
Neglecting second-order terms,

04 1%
Net rate of mass inflow = - Yy 2 ax-Ta—= ax (12.23)
g ox g ox

The rate of increase of the mass of the control volume

a4
=gla—tAx (12.24)

As the time rate of increase of the mass of the control volume must equal the
net rate of mass inflow into the control volume, it follows from Eqs. 12.23 and
12.24 that

a4 14
Ax=-Ty 22 ax- T4 25 Ax (12.25)
g Ox g Ox

x4
g ot
Dividing both sides by (y/g) Ax and rearranging, Eq. 12.25 becomes

0A4 04 oV
—+V—+A—=0 12.26
ot ox ox ( )

Since the channel is assumed prismatic, the flow area, 4, is 2 known function of
depth,y. Therefore, the derivatives of A may be expressed in terms of y as follows:

0 dy o b

(12.27)
4_dAdy o
ot dy ot Y ot

For a channel having continuous side slopes, d4/dy is equal to the channel width
B at depth y. If the values of 4(y) and B(y) are obtained by independent mea-
surements, the measurement error may cause B(y) to be different from the values
of channel width obtained by differentiating area A(y) with respect to depth, y.
For numerical stability,’ it is important that 4(y) and B(») should be com-
patible—i.e., if either A(y) or B(y) is obtained by measurement, then the other
should be determined by calculus.
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Substituting Eq. 12.27 into Eq. 12.26, we obtain
y AW, o
ot B ox ox

Since discharge Q = VA, we can write

30 _ 94 3V

=0 (12.28)

—~=V—+4 .
ox ox ox (12.29)
On the basis of Eq. 12.27, Eq. 12.29 becomes
ag ay av
— =BV ——+4 — .
ax ox ox (12.30)
Hence, it follows from Eqs. 12.28 and 12.30 that
g dy
—+B—=0 .
o ar (12.31)

Dynamic Equation

The following forces are acting on the water in the control volume shown in
Fig. 12.4b:

F, =F, =4y (12.32)
ay
Fy=94——A .
s =74 Ox (12.33)
Fq =yAS;Ax (12.34)

Note that the pressure force acting on the downstream face is divided into two
components, F, and F;, and the terms of higher order are not included in the
expression for F3. In Fig. 124b, F,, F,, and F; are forces due to pressure;
F4 = force due to friction; Fs =x-component of the weight of the water in the
control ‘'volume; § = angle between the channel bottom and horizontal axis (posi-
tive downward); and Sy = slope of the energy grade line.

The value of Sy may be computed using any standard formula for the steady-
state losses. such as Manning’s or Chezy’s formula. Since 8 is assumed small,
sin @ =0 =S, in which §, = bottom slope. Hence,

Fs =vAAXS, (12.35)

Referring to Fig. 12.4b, the resultant force acting on the water in the control
volume in the positive x-direction is F=Z F=F, - F, - F3 - F4 +Fs. Sub-

RN
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stituting expressions for F'; to Fs from Eqs. 12.32 to 12.35, we obtain

ay
F=-74 —(,;; Ax +YAS,Ax - YAS;Ax (12.36)

Momentum entering the control volume = Yyp2 (12.37)
4

Momentum leaving the control volume = X [A V2 4+ ai Avh) ax ]
g x

(12.38)
Therefore, net influx of momentun into the control volume
Yy @
=-——(AVHA .
2 o ( )Ax (12.39)
The time rate of increase of momentum
[y
=—/[—4VA .
oL <g x) (12.40)

According to the law of conservation of momentum, the time rate of increase
of momentum is equal to the net rate of momentum influx plus the sum of the
forces acting on the water in the control volume. Hence, it follows from Egs.
12.36,12.39, and 12.40 that

0 /v Yy 0 2 ay

—(—AVAx |=- = —(AV*)Ax - YA—Ax + yAS_Ax - YAS

at(g x) gax( )x‘yaxxyoxyfo

(12.41)
Dividing throughout by (y/g)Ax and simplifying, Eq. 12.41 becomes

d ] oy
- +—(AV?)+gd — = -5 42
or “v P 4v*)+e ™ 8A(S, - Sy) (12.42)

Expansion of two terms on the left-hand side, division by A, and rearrangement
of the terms yields
I L 4

g—+V

04 04 oV
—+ V—+A = _S. 4
ax x ar A( ) &S, - Sp)  (12.43)

o ax  ax

On the basis of the continuity equation, Eq. 12.26, the sum of the terms within
the brackets on the left-hand side of Eq. 12.43 is equal to zero. Hence, Eq. 12.43
becomes

dy. Vv
—_—+ — —= -S.
8ot TV o T5Ge - Sp) (12.44)
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By expanding the terms and making use of the fact that Q = VA, Eq. 12.42
may be expressed®'? in the following form

0Q 90 2 oy
— + 2V.___+ 1 - F A —_— = - .
o1 o ( )g % g8A(S, - Sp) (12.45)

in which F? = V?/(gA/B).

Equations 12.28 and 12 .44 are referred to as St. Venant equations.

Note that Equations 12.31 and 12.44 are derived assuming that the channel
is prismatic and that there is no lateral inflow or outflow. Proceeding as before,
the dynamic and continuity equations can be derived for nonprismatic channels
having lateral inflow or outflow (Problem 12 .8). '

12.6 METHODS OF SOLUTION

The following numerical methods suitable for a computer analysis are available
to solve the continuity and dynamic equations describing the unsteady flow in
open channels:

1. Method of characteristics!!-22
2. Finite-difference methods®12-1420,22-33
3. Finite-element method.?*-36

In the method of characteristics, the equations are first converted into charac-
teristic form, which are then solved by a finite-difference scheme. In the finite-
difference methods, the partial derivatives are replaced by finite-difference
quotients, and the resulting algebraic equations are then solved to determine
the transient conditions. In the finite-element method, the system is divided
into a number of elements, and the partial differential equations are integrated
at the nodal points of the elements.

The finite-element method is in the infancy stage for application to open-
channel transients and will not be discussed further herein. The method of
characteristics fails due to convergence of the characteristic curves once a bore
forms. Therefore, the bore has to be isolated and treated separately in the
computational procedures. Using the advances made in gas dynamic and the
fact that the equations of gas dynamics and St. Venant equations are analogous,
a number of finite-difference schemes have been proposed in which it is not
necessary to isolate the bore.

The isolation of a bore in automatic computations is very cumbersome and
complex, especially if there are several geometrical changes in the system since
the transmission and reflection of the bore at each change has to be considered.
Therefore, it is highly desirable to have a computational procedure in which no
special treatment is required if a bore forms during the transient conditions.
Such a scheme is presented in Section 12.9.
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12.7 METHOD OF CHARACTERISTICS

As described previously, in the method of characteristics, the St. Venant equa-
tions are converted into characteristic equations, which are then solved by a
finite-difference scheme. This method is not suitable for systems having numer-
ous geometrical changes, and it fails because of the convergence of the charac-
teristic curves whenever a bore or a shock forms. Although this method was
quite popular in the 1960s, it is being replaced by the finite-difference methods,
However, in the latter methods and especially in the explicit finite-difference
methods, the characteristic equations are required to develop the boundary con-
ditions. Herein, we will not present the details of the method but will develop
only those equations that will be used in the next section. Readers interested
in the details of the method should see Refs. 11 through 15; and for its appli-
cation to the open-channel transients, they should see Refs. 16 through 19.

Multiplying Eq. 12.28 by tcB[A, adding it to Eq. 12,44, and rearranging the
terms, we obtain the following so-called characteristic equations

k14 oy, &9y 3y
{at +(V+C)E;]+°;[5;‘+(V+c)-‘,§ =g(So-Sp)  (1246)

and
av oV 1 gloy oy
—+(V-c)— [-&|=+W-0) 2= i}
[a, V- ax} c[at+(V ) ==|=eSo-5p  (1247)

in which ¢ =+/g4/B . Equation 12.46 can be converted into an ordinary differ-
ential equation by defining dx/dt = V + c; similarly, Eq. 12 47 can be converted
into an ordinary differential equation by defining dx/dr =V - ¢. Since dx/dt =
V + c is the equation of a positive characteristic curve in the x-r plane, Eq. 12.46
is called the forward or positive characteristic equation. Similarly, dx/dt = V -
¢ is the equation of a negative characteristic curve in the x- plane, and Eq.
12.47 is called the negative characteristic equation. Referring to Fig. 12.5, these
equations may be expressed! in the finite-difference form as

sz;t M, Vg + ) VMA- Vi

+ c_f; [yPAtyM +(Var +cpp) M ;yLJ=g(S0 - SfM) (12.48)
and
VPA‘tVM +(Vhy - ea) Ve - Vi

- Cg [.vatyM (Vi - cpp) 28 J’M}= &Sy - Sp,,) (12.49)
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Figure 12.5. Notation for positive and negative characteristic equations.

In these equations, the subscripts L, M, P, and R refer to the variables at various
points in the x-f plane (Fig. 12.5).

The terms of Egs. 12.49 and 12.48 can be rearranged to yield the following
equations:

1. Negative characteristic equation (Fig. 12.5a):
Vp=CntCayp (12.50)
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in which
At g At
Co=Vyt e Vag - ep) (Vg - Vr) - ‘C‘;[}w - ‘A‘;(VM -em) Or - yM)]

+g(S, - Sy, )Ar (1251)

g &
C, = o and ¢y, = 79;’—”— (12.52)
2. Positive characteristic equation (Fig. 12.5b)
Vp=Cp - Coyp (12.53)

in which

At g At .
Co=Vu- A_X(VM tey) (V- Vi) + a [J’M - X;(VM +topy) Oy - }’L)]

+&(S, - S5, At (12.54)

In Eq. 12.50 through 12.54, conditions at M are those at the boundary at the
beginning of the time step. Since the values of all variables are known at L, M,
and R, the value of constants C, and C, can therefore be computed. In Eq.
12.50 or Eq. 12.53, there are two unknowns (i.e., ypand Vp). These equations
and the conditions imposed by a boundary will be solved simultaneously in
Section 12.9 and 12.12 to develop boundary conditions for the finite-difference
schemes.

12.8 EXPLICIT FINITE-DIFFERENCE METHOD

In the explicit finite-difference method, the partial derivatives of the St. Venant
equations are replaced by finite differences such that the unknown conditions at
a point at the end of a time step are expressed in terms of the known conditions
at the beginning of the time step. The following explicit finite-difference
schemes are available to solve the St. Venant equations:

. diffusive scheme
. two-step Lax-Wendroff scheme
3. Dronker’s scheme.

[ I

Of these, the diffusive scheme is the simplest and easiest to program, and it gives
satisfactory results.”?%2%30.31.33 1 addition, a bore does not have to be isolated
in the computations. Details of this scheme are presented here. Readers inter-
ested in the other schemes should see Refs. 7, 23, 31, and 37 for the Lax-
Wendroff scheme, and Refs. 7 and 38 for Dronker’s scheme.
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12.9. DIFFUSIVE SCHEME
Formulation of Algebraic Equations

In this scheme, the partial derivatives of the St. Venant equations are replaced
by the following finite differences (Fig. 12.6):

 _yp-yy 3V _Ve-Vy (12.55)
3t At Bt At '
O _yr-y, ¥V _Ve-Vp (12.56)

ax  246x 7 oax 24x
and Sy is replaced by Sy, . The conditions at point M are calculated from
Vi =3 (VL + Vg)
ym =3 tyr) (12.57)
‘ S =7 (SrL * Sp)
Substituting Eqs. 12.55 and 12.56 into Eqs. 12.31 and 12.44 and solving for

Vp and y,, we obtain:

At
Vep=Vu+3 e VMV - Ve)tg(yy - yr)]

+gAt[Se - 5 Sy, +Sep)l (12.58)
Ar ]
yp=ymts 5 g @ Or) (12.59)
M
t
P
t,+at
at
o L M IR
AX AX
Xo X

Figure 12.6. Notation for diffusive scheme.
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Note that the unknown conditions at point P are expressed in terms of the
known conditions at points L and R. These two equations, Eq. 12.58 and
12.59, are used to determine Vp and yp at the interior sections.

It is clear from Fig. 12.6 that the coordinates of points P, M, L, and R are
(xp,20 + A1), (x,, 1), (x, - Ax, t,), and (x, + Ax, 1,). By expanding the terms
of Egs. 12.58 and 12.59 into a Taylor series—e.g., ¥p = y(x,, t,) + Ar{(dy/01) +
{l[tan?)2'] (8*yj3r*)} —and comparing with Egs. 12.31 and 12.44, it can be
proved that this difference scheme introduces additional diffusionlike terms,
1 [(Ax)?/Ar) (3%p/3x?) and 1 [(Ax)?/Af] (3%y/9x?). Therefore, this scheme
is called a diffusive scheme.

Boundary Conditions

As discussed above, Eqs. 12.58 and 12.59 are used to determine the conditions
at the interior sections. At the boundaries, however, special boundary condi-
tions are developed by solving the positive or negative characteristic equations,
or both, simultaneously with the conditions imposed by the boundary. The
positive characteristic equation, Eq. 12.53, is used for a downstream boundary,
and the negative characteristic equation, Eq. 12.50, is used for an upstream
boundary.

Two subscripts are used in this section to designate variables at various sec-
tions. The first subscript refers to the channel, and the second refers to the
section number. For example, subscripts (7, 1) refer to the first section on the ith
channel. To designate the last section on the jth channel, which is assumed to
be divided into n reaches, subscripts (i, n + 1) are used. Note that subscript P is
used for the unknown quantities at time ¢, + At (Fig. 12.6).

Four common boundary conditions are derived in this section; other boundary
conditions may be developed similarly.

Constant-Head Reservoir at Upstream End

If the entrance loss at the reservoir is k V}a,. 1/(2g), then, referring to Fig. 12.7a,

V3.
Yees =¥p;, *(11k) —2—;}. (12.60)

Substituting for yp, , from Eq. 12.50 into Eq. 12.60 and solving for Vp; > we
obtain ' '

_14V174C(C, + C
Voi, = Z’C('" 2Yres) (12.61)
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Figure 12.7. Notation for boundary conditions.
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in which
C, =G (1 +K)/(2g) (12.62)

Now Yp; , can be determined from Eq. 12.50.

If the head losses and the velocity head at the entrance are negligible, then
Yp; = Vress Vo, , may be computed from Eq. 12.50.

Note that Eqs. 12.60 and 12.61 are valid for the positive flows only; similar
equations may be written for the negative flows.

Constant-Head Reservoir at Downstream End
If the head loss is C, V3, . /28, then, referring to Fig. 12.7b,

(1- G) V}’iznﬂ

12.
r (12.63)

yP,-',,H =Vres t
in which y;es = water depth in the reservoir, and C, = coefficient of head loss.
Simultaneous solution of Eqs. 12.53 and 12.63 yields

1+ V1-4C,(Cp - Cres)

VPi,n+1 - 2C. (1264)

inwhichC, =(1 - C,) C,/2g.

If the total velocity head is lost, then C, =1, and Eq. 12.64 cannot be
used since it will involve division by zero. In such a case, the following equation
should be used:

yPi,,,H =Vres (12-65)

Vp; p4q is then determined from Eq. 12.53.

Discharge Change at Upstream or Downstream End

Discharge changes may result from load acceptance or rejection by hydraulic
turbines, starting or stopping of pumps, or opening or closing of control gates.

Discharge is specified as a function of time, i.e., the function Q =Q(?) is
known. Hence,

Qr,; = AUp, ) Ve, ;= 0(tp) (12.66)

Note that A(ypl.'l.) denotes area at depth ye; and @(tp) denotes discharge at
time tp. To determine Ypij and Vp,.’]., Egs. 12.53 and 12.66 are solved by an
iterative procedure for the downstream end and Eqs. 12.50 and 12.66 for the
upstream end.
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Junction of Two Channels

At the junction of the channels (Fig. 12.7¢c), the energy equation can be written
as

Bimes _ + +(1+k) K}%i;‘ﬂ— (12.67)
yPi,n+1+ 28 BARGEN ( 2g ’

in which k is the coefficient of head losses at the junction, and z; = rise or drop
in the channel bottom = [invert elevation of the (i + 1)th channel] - (invert ele-
vation of the ith channel). s

The following other equations are available:

Verin =Cnt Capoy Ypiay (12.68)
VPi,n+1 =CP - Ca,'yP,"n+1 (1269)
AWy i) Vet g =40y ) VPiar - (12.70)

Thére are four unknowns—namely,yp‘.,n” VPisy s Vpi‘n+l , and VI':H“ —in
Egs. 12.67 to 12.70. These unknowns may be determined by solving these
equations by the Newton-Raphson method®®+*° as follows:

To simplify the notation, let us designate

YPinsy =1

YPig %2

(12.71)
VPi,n+1 X3
VPi+1,1 =%a )
Equations 12.67 to 12.70 may then be written as
x3 x3
F,=x,-x2+ilg-(l+k)£—z,-=0 (12.72)
F,=-Copp Xy ¥ X4 = C,=0 (12.73)
Fy=Coxy tx3-Cp =0 (12.74)
Fq =A;(x))x3 - Ajs1 (x3) x4 =0 (12.75)

in which F,, F,, F3, and F, are functions of x,,x,, x3, and x, , and Ai(xy)
and A;,, (x,) denote that 4; and 4;,, are functions of x, and x, , respectively.

Neglecting the second- and higher-order terms, F may be expanded in the
Taylor series as

(0)
oF oF oF oF .
F=F(0) +{aT' Ax, +EAX2+BX_3 Ax3 +‘&:AX,; =0 (12.76)
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or

aF oF aF oF ©)
— Ax,; + — Ax, + — Axy; + — A = -F©)
{ ax, X ax, X2 ax, X3 3%g X4} F (12.77)

in which the derivatives 8F/dx,, 0F/dx,, 0F/dx;, 0F/dx,, and the function
F () are evaluated for the estimated values of x; to x,.

On the basis of Eq. 12.77, Eqgs. 12.72 through 12.75 may be written as

(@ (o)
x l1+k
Axy - Ax, + ; Axy - (A *kxs g)x“ Ax, = -F© (12.78)
- oy, Axa+ Ax, =-FP (12.79)

Cysxy + Axy=-F)  (12.80)
BixPAx, - By xS Axy + AiAxy - Ay Bxy = -F2  (12.81)

InEq.12.81, areas A; and A;,, are computed for x? and x?, and it is assumed
that

04; 0A4;
—L~pB. and el o ~ B,
ax; X,

The coefficients of Eq. 12.81 are much larger than the coefficients of Eq.
12.78 through 12.80. To reduce their magnitude, both the left- and the right-
hand sides of Eq. 12.81 may be divided by B;. Thus, Eq. 12.81 becomes

B; A "
x§0) Ax, - i1 xgo)sz + ——"Ax3 _Ax 1

1
Ax, = - — plo)
Bi B‘ B,’ Xa B 4 (1 2 82)

i

Equations 12.78 to 12.80 and 12.82 are a set of four linear equations in four
unknowns—namely, Ax, to Ax,. These equations may be solved by any
standard numerical technique, such as the Gauss elimination scheme.?® Then,

)= + 4,
1 2 (9
x; =x7 +Ax
Do) a (12.83)
x3 ' =x3" +Ax,
x{0 =x{ + Ax,
in which xf') to xﬁl) are better approximations of the solution of the non-
linear equations, Eqgs. 12.67 through 12.70, than the initial estimated values of

x$ 1o 2§, 1f |Ax, |, |Ax, 1, 1A%, ], and | Ax, | are smaller than a specified
tolerance, then xf‘ to x§' are solutions of Eqs. 12.67 through 12.70; otherwise,
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assume

xgo) =x$l)

2 =
(12.84)

£ = (0

() = x(1)

and repeat the foregoing procedure until a solution is obtained. To avoid an un-
limited number of iterations in the case of divergence, introduce a counter in the
iterative loop so that the computations are stopped if the number of iterations
exceed a specified value, e.g., 30. To start the iterations, the first estimated
values ofxg") to xff’) may be taken equal to the known values at the beginning
of the time step.

Stability Conditions

The finite-difference scheme presented above is said to be stable3® if small
numerical errors due to truncation and round-off introduced at time ¢, are not
amplified during successive applications of the difference equations, and the
error at subsequent time r are not grown so large as to obscure the valid part of
the solution.

Using the technique presented by Courant et a
that the diffusive scheme is stable if

41 7,20,30
1,

it has been shown

Ax
|Vite

Arg (12.85)
This is called the Courant-Friedrichs-Lewy condition or simply the Courant
condition.

Computational Procedure

To determine the transient conditions, the channel is divided into n equal
reaches such that, if the first section is called 1, then the last section will be
n+ 1 (see Fig. 12.8). Initial steady-state conditions (i.e., V,y, and Q) are com-
puted at these sections. The time step, Az, is selected so that Eq. 12.85 is satis-
fied. Equations 12.58 and 12.59 are used to determine yp and Vp at section
numbers 2 to n, and the special boundary conditions are used to compute Vp
and yp at the upstream and at the downstream ends, i.e., at section 1 andn + 1.
Thus, yp and Vp, at time £t =0 + At, are known at all the sections, and the value
of Qp is computed by multiplying Vp by the flow area corresponding to yp.
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Figure 12.8. Division of channel into n reaches.

Now, assuming these computed values of Vp, yp,and Qp as V, v, and @, the
values of yp and Vp at time 24t are computed. This procedure is continued
until the transient conditions for the required time are computed. _

If there are two or more channels in the system, then the time step Ar is
selected for the shortest channel, and each remaining channel is divided into
equal-length reaches such that Eq. 12.85 is satisfied.

It is necessary that the Courant stability condition (Eq. 12.85) is satisfied at
each time step. If it is not satisfied, then the time step is reduced (e.g., 0.75 of
the previous value), and the conditions at the end of the time step are recom-
puted before incrementing the time. To avoid making Ar too small in this
process, its current value is compared at each time step to the value required for
stability, and, if permissible, At is increased (e.g., by 15 percent) for the next
time step.

12.10 INITIAL CONDITIONS

To compute the transient-state conditions, it is necessary that the initial
steady-state flow depth and velocity are known at all the sections of the system.
If these conditions are not compatible with the St. Venant equations, then
small waves will be generated at each section as the transient conditions are
computed. These hypothetical disturbances may mask the actual solution of the
system. To avoid this, either of the following procedures may be used:

1. Any initial conditions, such as zero velocity and a constant depth, through-
out the system are assumed, and the boundary conditions are set equal to the
initial steady-state conditions. Using the St. Venant equations, the system con-
ditions are computed for a sufficient length of time until the variation of flow
conditions is negligible and the conditions have converged to the steady values
corresponding to the initial boundary conditions. The boundary conditions are
then set equal to the values for which transient conditions are to be computed.
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2. The initial conditions are determined by solving the ordinary differential
equatijon describing the gradually varied flow in open channels.

The former procedure requires a large amount of computer time. In addition,
in some finite-difference schemes, the solution may converge to incorrect initial
conditions. Therefore, in the author’s opinion, the second procedure should be
used for determining the initial conditions. Details of this procedure follow.

The steady-state gradually varied flow in open channels is described by the
following equation:!

dy So‘Sf

— = 12.8

dx 1_923 (12.86)
gd’?

Equation 12.86 is a first-order differential equation. The flow depth along the
channe] may be computed by integrating this equation. For this purpose, the
fourth-order Runge-Kutta method may be used as follows:

Let the depth of flow, y; at x =x;, be known (Fig. 12.9a); then the depth of
flow atx =x;,, is

Yier =Yit §(a, +2a, +2a; +a,) : (12.87)
in which
N
a, = Ax flx;, 1)
a, =Dxf(x;+ 1 Ax,y,+ 1a,)
ay = Axf(x;+ $Ax,y;+ 4a)) (12.88)

ag =Bxflx;+ Ax,y; +a3)

dy
fxe,y)=— J

By starting from the known depth at a control section, and by repeated appli-
cation of Eq. 12.87, the flow profile along the whole channel is computed in
steps of length, Ax,

The above procedure is used to determine the water profile in a prismatic
reach of a channel. However, at the junction of two channels, the depth in one
of the channels is initially known, and the depth in the other channel may be
calculated from the energy equation as follows:

Let us assume that, at the junction of channelsiand i + 1, y;,, , is known and
Yi,n+y has to be determined (Fig. 12.9b). Let the head losses at the junction be
given by k V2, ,/2g. In this expression, the first subscript represents the num-
ber of the channel, while the second subscript represents the number of the
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Figure 12.9. Notation for computing steady-state conditions.

section on the channel. Unlike the actual water-surface profile, the computed

water-surface profile will have a sudden rise or drop at the junction because the

losses and the velocity head are assumed to change abruptly at the junction.
Energy equation at the junction may be written as

Vi2.n+l Vi2+l,
22 =2t Yig, t(1 1K) 22

Yinsr * (12.89)
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in which z; =drop in channel bottom at junction i. In this equation, a rise is
considered positive, and a drop as negative. Equation 12.89 can be written as

=z,+y, +(1+k)£f‘;'—z’?’i*-‘— (12.90)
Yin+t i TVisi 22 22 R

and then solved by an iterative technique to determine Yin+i-

12.11 VERIFICATION OF EXPLICIT FINITE-DIFFERENCE
METHOD-DIFFUSIVE SCHEME

To verify the diffusive scheme of Section 12.9, a mathematical model was
developed using this scheme, and its results were compared with the prototype
test results. A brief description of the mathematical model, prototype tests, and
comparison of the computed and measured results reported earlier®® by the

author are presented in this section.

Mathematical Model

The mathematical model was developed using the equations derived in Section
12.9. The following boundary conditions were included in the model:

1. Flow or stage changes at the upstream or at the downstream end
2. Constant-head reservoir at the upstream or at the downstream end
3. Junction of two channels having different cross sections, friction factors,

and/or bottom slopes.

The model was designed to analyze transient conditions in a system having up to
20 prismatic channels in series. As outlined in Computational Procedure (Sec-
tion 12.9), the value of Ar was checked at each time step and its value was in-
creased by 15 percent or decreased by 25 percent, so that the Courant’s stability
condition was always satisfied and at the same time At did not become too small.

Prototype Tests

Prototype tests were conducted in 1971 on the Seton Canal owned and
operated by British Columbia Hydro and Power Authority, Vancouver, Canada.
A brief description of the project and the tests is given below:

Project Data

The Seton Canal, concrete-lined throughout its 3820-m lengih and designed for
a flow of 113 m3/s, conveys water from the Seton Lake to the Seton Generat-
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ing Station. The alignment and typical cross sections of the canal are shown in
Fig. 12.10.

The Seton Generating Station has one 44-MW, vertical reaction turbine rated at
44.8-m net head with the centerline of the unit at El. 187.45 m. The effective
wicket-gate opening and closing times are 15 and 13 s, respectively.

While starting the turbine from rest, wicket gates are opened to 15 percent
(breakaway gate). At this opening, the turbine begins to rotate, and the gates
are then closed to speed-no-load gate of 9 percent. The wicket gates are kept at
this opening until the unit is synchronized to the system.

Tests

Transient-state conditions in the canal were produced by accepting or rejecting
load on the turbine. The following tests were conducted:

1. Acceptance of 44 MW

2. Rejection of 44 MW

3. Acceptance of 44 MW followed by rejection of 44 MW after 42 min and
then acceptance of 44 MW after 37 min.

After total-load rejection, turbine gates were kept open at speed-no-load gate
(approximately 9 percent). :

Instrumentation

To record water-level changes, a special gauge was developed. This gauge con-
sisted of a 12.5-mm-diameter vertical aluminum tube, sealed and weighted at the
lower end. The tube was suspended inside a 100-mm-diameter tube from a
cantilever. The outer tube was open at both ends and was fastened to the canal
bank in a vertical position. Strain gauges were installed on the cantilever to de-
termine its deflection. Waterdevel fluctuations changed the buoyant force on
the bottom of the inner aluminum tube, thus resulting in a change in the deflec-
tion of the cantilever, which was picked up by the strain gauges and recorded on
a brush-recorder. The gauge was calibrated prior to the tests.

In addition to continuous recording, the transient-state water levels were also
read at intervals of 30 s to 1 min from the gauge plates attached to the vertical
or inclined side walls. Countdown for the start of the test was given over a
VHF/UHF radio. In case there was any disagreement between the recorded and
observed water levels, the latter were assumed to be more reliable.

To determine the water levels, five stations were established along the length
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Comparison of Computed and Measured Results

The observed and the computed water levels at various stations are shown in
Figs. 12.11 and 12.12. In the computations, the canal was represented by six
channels, each having a constant cross section along its length. The Manning
formula was used to calculate friction losses, and the load acceptance or rejec-
tion on the turbine was simulated by assuming a linear discharge variation at the
downstream end of the canal. Seton Lake was represented by a constant-head
teservoir at the upstream end.

The secondary fluctuations of the water surface (Favre waves) could not be
computed by the program because of the inherent lirnitations of the governing
equations (Egs. 12.31 and 12.44). Therefore, to determine the maximum water
levels, the amplitude of the secondary fluctuations were computed using data
presented by Benet and Cunge®*? and were superimposed on the maximum-water
levels computed by the program. The maximum level of the computed surge
fluctuations is marked in Fig. 12.12a-c.

It is clear from these figures that the computed and the measured results agree
closely for water levels following the initial surge and for maximum water level
of the secondary fluctuations at the upper end of the canal. The computed
results for the maximum water level of the fluctuations at Station 3 are, how-
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Figure 12.11. Comparison of computed and measured transient-state water levels at Station

of the canal. The location of these stations is shown in Fig. 12.10. 5 following 44-MW load acceptance.
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ever, too high, because the fluctuations were developed in the prototype as the
initial wave propagated upstream.

12.12 IMPLICIT FINITE-DIFFERENCE METHODS

Description

In the explicit finite-difference method, we replaced the x-derivatives of the
St. Venant equations by finite-difference quotients evaluated at time ¢, (Fig.
12.6). The other coefficients, B and S, were also evaluated at time £,. Thus,
we had two linear algebraic equations relating the two unknowns, ¥ and y, at
point P to the known conditions at points L, M, and R. Because of this explicit
relationship, the method was called explicit finite-difference method.

In the finite-difference method presented in this section, we will replace the
xderivatives in terms of finite differences evaluated at time ¢, + At; thus, the
unknowns will appear implicitly (hence, the name, implicit finite-difference
method) in the resulting algebraic equations, which are usually nonlinear. Solu-

LT
% falifg e
[
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tion of these algebraic equations is more complex than that in the explicit
method. However, the implicit method has the advantage that it is uncondi-
tionally stable. This allows the use of larger values of the computational time
step, At, thus economizing computer time. We will compare the advantages and
disadvantages of the explicit and implicit methods in the next section.

Available Implicit Schemes

Various implicit schemes have been reported in the literature. Of these, the fol-
lowing have been used for studying the open-<hannel transients: Priessmann’s
scheme,”*2%  Amein’s scheme,”*? Vasiliev’s scheme?>* and Strelkoff’s
scheme.°

While writing the finite-difference quotients for the x-partial derivative, a
weighting factor, a, is introduced in the Priessmann’s and in the Amein’s
schemes. The presence of a in the difference schemes introduces artificial damp-
ing in addition to the damping due to friction and other losses. To make the
scheme stable, the value of a must be greater than 0.5 and less than or equal to 1.
Since the value of a is arbitrarily selected, care must be exercised so that an ex-
cessive amount of damping is not unintentionally introduced into the system.
Vasiliev’s scheme has two steps and thus is more complicated and requires more
computer time. Compared to the preceding schemes, in the author’s opinion,
Strelkoff’s scheme is the simplest and is easy to program. In addition, the com-
parison of the results computed by using this scheme with those measured on
the prototype and on a hydraulic model has shown good agreement (see Section
12.15). Details of this scheme are presented herein; readers interested in the
other schemes should refer to Refs. 7,9, 24, 26, 30, 32, 43, and 44,

Strelkoff’s Implicit Scheme

In Strelkoff’s scheme,?° the partial derivatives of the St. Venant equations are
replaced by finite-difference quotients as follows (see Fig. 12.13a):

90 Qpiy ~Qpiy )

ox 20x

dy Ypi~Ji

or At (1291)
> .

y_QP,'—Qi

ot At

_al_ yPi+1 _ypi—l

ox 2Ax J
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Figure 12.13. Notation for implicit finite-difference scheme.
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In this equation, the subscript P refers to the variables at time £, + Ar. All
coefficients of the equations are evaluated at time ¢, except the friction slope,
Sy, which is evaluated at time ¢, + Ar. However, if we use the value of Sy at time
t, then the implicit scheme is not unconditionally stable,>® and the condition,
At <K ,/(Ag\/S,), has to be satisfied for stability requirements. In this expres-
sion, K, = conveyance factor at normal depth. If the Manning formula is used
to compute Sfp, and R = hydraulic radius, then

OplQpl
Sp = KB (12.92)

in which the conveyance factor, Kp, in the SI units* may be written as

1
Kp=—ARY?

" (12.93)

y=yp

The resulting algebraic equations will be nonlinear if the expression for Sep
given by Eq. 12.92 is used. We can linearize Eq. 12.92 as follows:
an aK
oK |;

Note that 35;/3Q and 35,/3K in Eq. 12.94 are evaluated at time ¢, and the ex-
pressions for these derivatives may be obtained by differentiating Eq. 12.92, i.e.,

(yp »i) (12.94)

SfPi:: i BQ’ (QP Q)

aSy 25f ‘
EV- R 12.95
0 0 ( )
3Ss
K 28¢/K (12.96)
3K _dK _K (58 2 dP

——————— R 97
ay dy A(3 3 dy) (12.97)

In Eq. 12.97, dP/dy is the rate of change of the wetted perimeter, and its value
depends upon the side slopes of the channel. As the derivatives are evaluated at
time ¢,, subscript P is dropped in Eqs. 12.95 through 12.97.

Replacing the partial derivatives of Eqs. 12.31 and 12.45 by the finite differ-
ences listed in Eq. 12.91, replacing Sy of Eq. 12.45 by the expression given in
Eq. 12.94 and substituting expressions for 3S,/dQ and 8S,/9K from Egs. 12.95
and 12.96, and simplifying the resulting equation, we obtain

a;Qp;,, ~4;Qp;_, *biyp;=C; (12.98)

*In the English units, Kp = (1.486/n) AR2/3ly=yP,
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e;Qp,,, + fiQp,~ €iQp;_, +kivp,,, +1lyp, -~ ke, =Di (12.99)

In these equations, the variables with subscript P are unknowns, and the coeffi-

cients a;, b;, C;, €i, fi» kirli, and D; are evaluated in terms of the known quanti-
i H ? ’ 3’

ties at time 7,. The expressions for these coefficients are

4= — (12.100)
'o2Ax
_Bi (12.101)
At
c =52 (12.102)
At
V:
o= ok (12.103)
f’,=L+2ffﬁf_i (12.104)
At Q;
_gAi-BVE (12.105)
! 2Ax
,,=_2_g§£‘2(‘1’i) (12.106)
! K,' dy,
2y Qi
Di=gAi{So+Sfi[l 2 )2 (12.107)

For the upstream boundary, the negative characteristic equation (Eq. 12.47 writ-
ten in terms of Q instead of ¥)* may be written as

alQP, '*'leP2 +ely_pl +f1yp1 =D1 (12.108)
in which
! At Ql Ax
La (12.110)
b Ax

*[¥+(V_C)ZQ:| (V+c)Bl: +(V—C)—]‘3A(s -Sp
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] _ y
o o Witesy | (Vi B, _2g[ 15 (ﬂf” (2.111)
ay /1

At Ax K1
_ ‘(Vf"'%)Bl
fI_T (12.112)
2y, {dK 0, (Vy+c)Byy,
=gA 1S, + S [1-Z=—) (p+2- L7101
Di=e { ° Sfl[ K(y)” AT A

(12.113)

In the preceding equations, the variables with subscript P refer to the unknown
conditions at time ¢, + At, and the coefficients a,, b, , ey, fi, and D, are ex-
pressed in terms of the known conditions at time t,. In addition, the conditions
imposed by the upstream boundary may be written in a generalized form as

E\Qp *Fiyp =J, (12.114)

If the conditions imposed by the boundary are nonlinear, these are linearized
and expressed in the above form. Usually, either E, is zero and F, is unity, or
F, is zero and E| is unity,

Proceeding similarly for the downstream boundary at section (z + 1), the posi-
tive characteristic equation (Eq. 12.46 written in terms of Q instead of V)*
may be written as

@y +1Qp, tby.10p, w1 Yena e, thhe e =Dn.y (12.115)

n+1

in which

- (Vn+l +Cn+l)

Aney =" T Ar (12.116)

An+1Sf,,+1)+Vn+1+cn+l (12.117)

1
bpay =-—+2
ALY g( On 1 Ax

(Vn+1 cr2|+1 )Bnay
Ax

~Vner ~ a1 )Bray _ (Vi1 - €k )Bnay
At Ax

Stp+1 [dK
—Zg[A . ’”’(—) } 12.119
m Ko \dy n+t . ( )

(12.118)

L

fane1 =

*I:Q+(V+c)aQJ - c)B[ +(V+c)—:|—gA(S0—Sf)
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2y dK
D"+1 =gAn+l {SO +an+l [1 - Kn+1l (E}T) l}}
n+ n+

+Qn+1_(Vn+1 —cn+1)Bn+1yn+1 (12.]20)
At At

The conditions imposed by the downstream boundary may be written as

En+lQP"+l +Fn+1)’pn” =Jn+] (12121)

If the channel is divided into n reaches, then there are (n + 1) sections and since
there are two unknowns (namely, yp and Qp) for each section, the total number
of unknowns is 2{(n + 1). For a unique solution, there must be 2(n + 1) equa-
tions. As discussed above, two equations (Eqs. 12.108 and 12.114) are provided
by the upstream boundary, two equations (Eqgs. 12.115 and 12.121) are pro-
vided by the downstream boundary, and there are two equations (Egs. 12.98
and 12.99) for each interior section i, i =2, n. Since there are (n ~ 1) interior
sections, we have 2(n ~ 1) +2+2=2(n+ 1) equations. Hence, a unique solu-
tion can be obtained for each time step. These equations for a system may be
expressed in the matrix notation as

Ax=b (12.122)

in which A is a coefficient matrix, x is a column vector comprised of the un-
known quantities Qp and yp, and b is a column vector comprised of the con-
stants on the right-hand side of Eqs. 12.98,12.99, 12.108,12.114, 12.115, and
12.121. Equation 12.122 may be solved by any standard numerical technique,
such as the Gauss elimination technique.®

A close examination of matrix A shows that the nonzero coefficients lie near
the diagonal, and thus A is a banded matrix. Special standard computer pro-
grams are available for the solution of such a system of linear equations. Such
programs not only save computer time and storage requirements, but they also
give more accurate results. We used a subroutine called GELB developed by IBM
for the case study presented in Section 12.15.

Systems Having Branch and Parallel Channels

The coefficients matrix, A, is banded only for a system of channels connected
in series. For a branching system (Fig. 12.14), a number of coefficients do not
lie on the diagonal, and the procedure for solving a banded matrix cannot be
used. In such cases, however, if the channel sections are numbered as shown in
Fig. 12.14, the resulting matrix is a banded matrix.*® Note that the numbering
of the channel sections on the branch channel increases in the upstream direc-
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& Serres junction
*  Branching junction

i+ 7
4 Section number

/42 i+4 iv6 i+10 i+I2
A i+8 -i+|4
Mgain channel

Figure 12.14. Designation of channel sections on a branch system.

tion, and the difference between the consecutive section numbers of a channel
is 2. These factors have to be properly taken into consideration in the
computations.

Similarly, a matrix for systems having parallel channels (Fig. 12.15) is not
banded. For such systems, a procedure*® may be used in which the matrix A is
first reduced to the upper triangular form, and then back substitution is done to
solve the system of equations; or the sections may be numbered as shown in
Fig. 12.15, which results in a banded matrix.4*

. Channel junction

i+t4 .
——— Section number

Moain channe! i Moin chonnel

1+19 i+20

i+8  i+I0  +[2

Figure 12.15. Designation of channel sections on a parallel system.
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Stability Conditions

Unlike the explicit scheme of Section 12.9, the implicit scheme presented in this
section is unconditionally stable, i.e., any arbitrary value of At may be used in
the computations without making the solution unstable. This fact can be
utilized as follows:

1. The channel need not be divided into reaches of equal ]en.gth. (NoFe th;ft
Eq. 12.91 and hence the coefficients of Eqs. 12.98 and 12.99 will be modified if
the value of Ax is not the same for all reaches of a channel.) ‘ '

2. The size of the time step may be varied during the computations, ie., when
the conditions are varying rapidly, a smaller value of At may pe used to 1n§re2}se
the accuracy of the results, and, when the conditions are varying slowly, the size

of the time step may be increased.

Note that the computational time step, At, cannot be arbitrarily incre?sed even
though the difference scheme is unconditionally stable. Actually, the size of the
step is selected taking into consideration both the‘accuracy. of the results and the
stability of the scheme. If too large a value of time step is used, the.n‘the finite
differences no longer approximate the partial derivatives of the orlgu.lal equa-
tions. Particularly, if there are sharp peaks, then these are truncated if a large
value of Az is used. Therefore, while investigating a particular case, the ?Cf:uracy
of the results should be checked by reducing the size of Ar and determining the
difference between the computed results obtained by using larger and reduced
vatue of Ar. If this difference is negligible, then a larger value of Ar may be

used.

12.13 COMPARISON OF EXPLICIT AND IMPLICIT
FINITE-DIF FERENCE METHODS

The advantages and disadvantages of the difference methods presented previously
are compared in this section. .

1. Stability. Courant’s stability criterion (Eq. 12.85), i.e., At < éx/(l Vit C_),
must be satisfied in the explicit method. There is no such restriction on At in
the implicit method. ‘ .

2. Ease of Programming. The explicit method is easier to program than th.e
implicit method. Therefore, when the time available for developing a program 1s
limited, the explicit method should be used. N ' el

3. Economy. Because the size of At for an implicit scheme is not rf:s.tncte
by any stability criterion, a larger value of At is permissible, thu§ requiring less
computer time as compared to the explicit scheme in which At is restricted by

the Courant’s stability condition.

Transient Flows in Open Channels 423

4. Computer-Memory Requirements. The computer storage required in an
implicit method is usually more than that required in an explicit method. Thus,
if the storage capacity of the computer is limited, one may have to use magnetic
tapes or discs to increase the effective storage for the implicit method. This may
result in more computer time than that required for an explicit scheme because
of reading and writing on the tapes during each time step even though a larger
value of At may be permissible in the implicit method.

5. Simulation of Special Cases. Explicit methods are not suitable for con-
duits having closed tops in which the transient-state water surface either primes
or reaches the top of the conduit. In such a situation, the free-water-surface
width becomes zero or very small, and the size of At has to be reduced to a very
small value. Examples of such cases are sewers and tailrace tunnels in hydroelec-
tric power plants. The implicit method should be used for the anlaysis of these
cases.

6. Simulation of Sharp Peaks. Because of the usually smaller size of Ar, the
explicit methods are more suitable for the analysis of transients in which sharp
peaks of short duration occur. In the implicit methods, such peaks are usually
smoothed out. If, however, time steps of the same size as that in the explicit
method are used, the peaks would be reproduced, but the computer time re-
quired in the implicit method would be greater than that in the explicit method.

7. Formation of Bores and Shocks. The explicit method is more suitable
than the implicit method for the analysis of transients in which a bore forms.
Lax-Wendroff’s two-step explicit scheme™3! presented in Chapter 9 may be
used to obtain more accurate results.

12.14 SPECIAL TOPICS

A number of special topics are discussed in this section.

Dam-break

The investigation of the dam-break problem is similar to the analysis of open-
channel transients in which a bore forms. Stoker®? studied it for those cases in
which there is water in the channel below the dam. He assumed an instant bore
formation and a rectangular, horizontal, and frictionless channel. Dronkers®®
used the method of characteristics to determine the gradually varied flow on
both sides of the bore and used the conservation equations at the bore. Amein*®
studied this problem both analytically and experimentally, and Shen®° verified
Stoker’s theory by conducting experiments on bores created by piston move-
ment or by suddenly opening a gate. Terzidis and Strelkoff®>! showed that the
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diffusive scheme presented in Section 12.9 and a two-step Lax-Wendroff-
Richtmyer explicit scheme can be used for the analysis of flows in which a bore
forms without isolation of the bore. In these schemes, the positive and negative
characteristic equations (Eqs. 12.50 and 12.53) are used at the boundaries if the
flow there is subcritical, and both the depth and discharge are specified if the
flow is supercritical. (If a shock forms, only one of these is specified; the jump
conditions yield the other.) Comparison of the computed results using these
schemes with the experimental results showed good agreement. It was also
shown that the solution of St. Venant equations in their usual form, without
inclusion of special dissipation terms, gave erroneous results when applied to
flow with bores of height greater than one-half the flow depth. For a bore of
smaller height, however, the St. Venant equation yielded satisfactory results,
Martin and Zovne’! showed that the propagation and reflection of bores from a
solid wall can be analyzed using the diffusive explicit scheme, and that the iso-
lation of the bore and its treatment as an internal boundary is more of an aca-
demic interest than required in real-life practical applications.

In the dam-break investigations, the size of the breach and the time in which it
occurs when the dam fails have to be assumed. Instantaneous failure of the total
dam has been used by a number of investigators. Such an assumption, however,
appears to be rather unrealistic.

When a dam fails, a positive wave propagates downstream, and a negative wave
travels upstream in the reservoir. While using a finite-difference method, the
boundary conditions at the dam site have to be developed. For this purpose, the
relationships (given in Chapter 15 of Ref. 7) for various sizes of the opening in
the dam may be used.

Tidal Oscillations

Riverflows influenced by tides can be analyzed by solving the St. Venant equa-
tion using the finite-difference methods. The main decision to be made in such
investigations is whether a one-dimensional model can be used or not. Two-
dimensional models are necessary if the flow conditions cannot be represented
by one-dimensional flows.

Various finite-difference schemes have been used successfully for the analysis
of tidal flows: the U.S. Geological Survey!'®'!? used an explicit method based on
the characteristic equations on a rectangular grid and an implicit method. Com-
parison of the computed results with those measured on the Three-Mile Slough,
California, and on the Delaware River showed satisfactory agreement. The
National Research Council of Canada used an explicit leapfrog scheme and an
implicit scheme®® to investigate the effects of various channel improvements on
navigation in the St. Lawrence River and estuary. The upstream boundary
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was a discharge hydrograph, and the downstream boundary was a tidal stage
curve. Even though the variation of the channel geometry was rather large (the
width varies by a factor of 75, and the cross-sectional area by a factor of 4000),
it is claimed that the one-dimensional mathematical models based on the afore-
mentioned finite-difference schemes could be calibrated to yield results close to
the observed results.

Unlike the analysis of transients in power canals, rivers, and so on, it is not
necessary to determine the initial conditions while studying tidal oscillations.
Any initial conditions are assumed, and the System is subjected to tidal cycle a
number of times until periodic flows are established. This is similar to the inves-
tigation of the steady-oscillatory flows in pipes by the method of characteristics
(see Section 8.4),

Secondary Oscillations or Favre’s Waves

We discussed in Section 12.4 that the wave front of a positive wave becomes
steep as it propagates in a channel. If the energy of the wave is large, then the
wave breaks and becomes a moving hydraulic jump or a bore (Fig. 12.16a).
However, if the energy of the wave is not large, then the wave front assumes an
undular form as shown in Fig. 12.16b. In other words, this is similar to a sta-
tionary hydraulic jump in which a strong jump is formed for Froude number
F>9 and an undular jump for £ <1.7. These secondary water-surface oscilla-
tions are called Favre waves,? as Favre described them first in 1935,

In the case of a bore, the discontinuity in the water surface occurs over a very
short distance, and the flow may be assumed to be gradually varied in front of
and behind the bore. The length of this discontinuity is usually small compared
with the reach length into which the channel is divided. Since the St. Venant
equations are valid on both sides of the bore, quite satisfactory results are ob-
tained using these equations, as long as one is not interested in the wave front
itself. However, the situation is quite different if the wave front has secondary
oscillations. In this case, the water surface has undulations for a long distance,
the assumption of hydrostatic-pressure distribution is not valid, and the water
levels computed by using the St. Venant equations are the average levels and
not the maximum levels. In addition, experience has shown that these oscilla-
tions are higher near the banks than in the middle of the channel. Figure 12.17
show the secondary oscillations of the water surface near the wave front. These
photographs were taken during the prototype tests conducted on the Seton
Canal in British Columbia. (For a description of these tests, see Section 12.11)

To design power canals or other channels in which the wave fronts have sec-
ondary oscillations, the maximum water level near the banks should be known.
However, very little data on these waves have been reported in the literature.
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Figure 12.16. Variation of water surface at wave front.

Figure 12.18 taken from Ref. 42 may be used to determine the approximate
height of these waves.

S E

Free-Surface-Pressurized Flows

Free-surface flows that may pressurize the conduit during the transient-state
conditions are called free-surface-pressurized flows. Such flows may occur in
sewers or in the tailrace tunnel of a hydroelectric power plant.

Meyer-Peter’® and Calame®® studied this type of flow while investigating
surges in the tailrace tunnel of the Wettingen Hydroelectric Power Plant. Their
computed results were in close agreement with those measured on a hydraulic

Figure 12.17. Seton Canal, secondary oscillations at wave front. (Courtesy of British
Columbia Hydro and Power Authority, Vancouver, Canada).
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Figure 12.18. Amplitude of secondary oscillations. (After Benet, F., and Cunge, JLAAY,

model. In 1937, Drioli®® reported his observations on the translation of waves
in an industrial canal. Jaeger®® discussed this problem and presented a number
of expressions for various possible cases. Priessmann,?* Cunge,’” Cunge and
Wegner,2% Amorocho and Strelkoff,*® and Wiggert>®:*® studied such flows using
digital computers.

To facilitate comparison, let us write the equations describing the transient-
state flows in open channels and in closed conduits:
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1. Open channels:
a. Continuity equation

¥, 407

+ 0 12.28
ot ax B dx ( )
b. Dynamic equation
ay oV 1%
—+—+V—=g6,-S 12.44
Baxtar Ve £ S) (12.44)
2. Closed conduits:
a. Continuity equation
2
LR LA (12.123)
ot ox g Ox
b. Dynamic equation
oH oV av
—t—+V —=g(S,- S 12.124
83 otV ax ¢SS (12.124)

in which H = piezometeric head and ¢ = waterhammer wave velocity.
Comparison of Eqgs. 12.28 and 12.123, and 12.44 and 12.124 shows that these
equations are indentical if the depth of flow, y, is assumed equal to the piezo-
metric head, H, and if 2 =+/g4 /B = ¢, in which ¢ = the celerity of surface waves.
We can analyze pressurized flow by solving the St. Venant equations by using an
interesting technique conceived by Priessmann.>* In this technique, a very nar-
row slot is assumed at the top of the conduit (Fig. 12.19) such that this slot does
not increase either the cross-sectional area or the hydraulic radius of the pressur-
ized conduit. The width of the slot is selected such that ¢ =a. Thus, the free-

Hypothetical

slot Hypothetical

Water surfoce stot

Warer surfaoce

AN

A,R,B

Free flow Conduit characteristics Pressurized flow

Figure 12.19.. Hypothetical slot for analyzing free-surface-pressurized flows.
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surface and the pressurized flows do not have to be analyzed separately. Once
the conduit primes, then the depth, y, determined by using the St. Venant equa-
tion, is the pressure head acting on the conduit walls at that location. This tech-
nique has been successfully used for the analysis of storm sewers’ and for the
analysis of surges in the tailrace tunnels of a hydroelectric power plant (see Sec-
tion 12.15).

Landslide-Generated Waves

If a landslide occurs into a body of water, waves are generated due to displace-
ment of water and due to impact of the landslide. These waves, sometimes
referred to as impulse waves, have caused destruction®'~%% and loss of human
life. For example, the waves generated by the Vaijont slide, in Italy, killed about
2300 people.

Landslide-generated waves have been studied on two-dimensional hydraulic
models by Wiegel,%¢ Prins,” Law and Brebner,® Kamphuis and Bowering,°
Noda,”® Das and Wiegel,”' and Babcock’. Based on the model results. these
authors presented empirical relationships or graphs for determining the charac-
teristics of these waves such as initial wave height, wavelength, and type.

Three-dimensional hydraulic model studies were conducted to investigate the
waves generated by the movement of slides into reservoirs created by the
Mica,”® Libby,”® and Revelstoke?®~77 dams. The diffusive scheme of Section
12.9 was used””?® for the propagation of slide-generated waves approximately
67 km along the reservoir in both the upstream and downstream directions from
the slide site.

The empirical relationships given by Kamphuis and Bowering®® are presented
herein (for similar relationships derived by others, see Refs. 66 through 72).
These were derived from data for waves generated by loaded trays sliding down
an inclined roller ramp into a 45-m-long, 1-m wide flume. The slides were simu-
lated in the direction of the longitudinal axis of the flume from various heights
and various slide angles. The waves were measured at three locations on the
flume. It was found that the waves became stable at or upstream of a point
located about 17-m from the point of slide impact.

The following equations were presented:

1. Maximum height of the stable wave:

H

}—c = F°7(0.31 + 0.2 log q) (12.125)

in which
H, = maximum stable wave height above the still water level
d = water depth
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Vs

Ved

V, = slide velocity upon impact with water
g = acceleration due to gravity

F=

I h
g = slide volume per unit width in dimensionless form, b
I = length of slide up the slope
h = thickness of slide normal to the slope.
2. Wave-height attenuation:
-0.08x
Hfeyosse @ (12.126)
d d

in which
H = maximum wave height above still water level at distance x from the slide;
and
x = distance downstream from the point of slide impact.
For a given slide, the maximum stable wave height, A, can be determined from
Eq. 12.125, and height, A, at any point downstream from the slide impact can
then be computed by using Eq. 12.126.

3. Wave period:
L=11+0.225§- (12.127)

Vzd
in which
T, = period of the first wave (i.e., the time required by the wave to pass any
one point).

During the experiments, the waves were produced by small slides falling from
above the water level. These waves varied from a pure oscillatory wave train to a
wave approaching a solitary wave followed by an oscillatory wave train. No
bores were formed. The wave height became stable relatively quickly. Kamphuis
and Bowering state that Eq. 12.125 gives a good estimate of the stable wave
height for 0.05 <g < 1.0, as long as the slide is thick (i.e., h/d > 0.5); the front
angle, B, of the slide is 90° or greater; and the angle of the slide plane, 8 is about
30°. However, the wave heights determined from Eq. 12.125 are higher for
£ <90° and 8 > 30° but low for § < 30°.

Raney and Butler”® have developed a two-dimensional mathematical model to
determine the characteristics of the slide-generated waves. Comparison of the
computed results with those measured on a three-dimensional hydraulic model”*
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show satisfactory agreement. The finite element method®® is used to predict
landslide-generated waves in a one-dimensional reservoir.

12.15 CASE STUDY

In this section, studies carried out to determine the operating guidelines neces-
sary to keep the surges in the tailrace system of the G. M. Shrum Hydroelectric
Generating Station below a critical level®' are summarized. A brief description
is presented of the mathematical model, its verification, and data for surges
caused by various loading and unloading operations. Based on the results of this
model, the power plant operating guidelines are then summarized.

Project Details

The tailrace system of the G. M. Shrum Generating Station, owned and operated
by British Columbia Hydro and Power Authority, Vancouver, Canada, is com-
prised of two manifolds, two tunnels, a tailrace channel, and a rockfill weir.
Units No. 1 to 5 discharge into Manifold No. 1, while Units No. 5 through 9
discharge into Manifold No. 2 (as will Unit No. 10 when it is installed). Water
from each manifold is carried to the tailrace channel by a concrete-lined tunnel
(see Fig. 12.20). Essential data for the tailrace system are listed in Table 12.1.
Surge levels above the tailrace manifold deck (El. 510.5 m) would cause both a
water-pressure loading and an air-pressure differential across the doors, which
might lead to their collapse and the subsequent flooding of the powerhouse.
Therefore, a mathematical model was developed to determine what, if any,
operating restrictions should be applied during periods of high tailwater levels.

Mathgmatical Model
Description

The dynamic and continuity equations derived in Section 12.5 were solved
numerically using Strelkoff’s implicit finite-difference scheme (presented in
Section 12.12). Because of the branch tunnel, the channels were numbered*® as
shown in Fig. 12.14 so that a banded matrix was obtained. The subroutine
GELB, developed by IBM, was used to solve the system of linear equations.
Boundary conditions for the manifold, junctions of two or three channels, and
the downstream weir were developed and incorporated in the model. As dis-
cussed in the last section, the primed tunnel was simulated by the open-channel-
flow equations by assuming a very narrow vertical slot at the top of the tunnel.
This slot allowed the depth of flow to exceed the tunnel height, thus represent-
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Figure 12.20. Plan and profile of tailrace system of G. M. Shrum Generating Station.
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Table 12.1. G. M. Shrum Generating Station, data for
tailrace system.

General
No. of tailrace tunnels 2
No. of manifolds 2
Units on Manifold No.1 1to5
Units on Manifold No. 2 61to 10

Tailrace Tunnels

Shape Modified horseshoe

Size 19.96 m high, 13.72 m wide

Lining Concrete

Length Tunnel No. 1,405 m;No. 2,573 m

Manifold size

Tailrace Channel
For the length and cross sections of the channel, see Fig. 12.20.
Weir length = 192 m.

13.71 by 99.67 m

Turbines
Maximum Discharge® per
Unit No. Output? (MW) Turbine (m3/s)
1to5 261 178
6to8 275 190
9 and 10 300 204

3At a net head of 164.6 m.

ing the pressure on the tunnel crown due to priming, but at the same time did
not increase either the flow area or the hydraulic radius.

A new dam, called Peace Canyon, is being constructed 22.5 km downstream of
the G. M. Shrum Generating Station. The reservoir created by this dam will extend
to the rockfill weir. To simulate this reservoir, about 1200 m of its length down-
stream of the existing rockfill weir was included in the analysis, and the water
levels in this reservoir were varied by adjusting the height of a hypothetical weir
at its downstream end. Since the return wave-propagation time between the
manifolds and this hypothetical weir is more than the time of the transient-state
conditions of interest, this weir does not affect the manifold surge levels.

Load acceptance or rejection was simulated by varying the total inflow to each
manifold at the rate at which the wicket gates open or close. Since total outflow
from all the turbines on each manifold is lumped as inflow to the manifold, load
variation on individual units was not simulated.

Verification

The mathematical model was verified prior to the production runs by comparing

the computed results with those measured on the prototype or on the hydraulic
model.
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Comparison with Prototype Results. Load-rejection tests were conducted on
the prototype to obtain data to verify the mathematical model. Computed and
measured water levels at various gauges for these tests were compared. The re-
sults for the largest load rejection (1020 MW) are shown in Fig. 12.21. In this
test, the inflow to Manifold No. 1 was reduced from 810 to 133 m?/s in 8 sec-
onds, and the inflow to Manifold No. 2 remained steady at 240 m?/s.

As can be seen from this figure, there is good agreement between the com-
puted and measured transient-state water levels, even though there was a slight
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Figure 12.21. Comparison of computed and measured prototype water levels following
reduction of inflow to manifold No. 1 from 810 to 133 m3/s in 8 s. Inflow to manifold
No. 2 remained steady at 240 m3/s.
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difference between the computed and measured steady-state water levels. If this
difference in the steady-state water levels is taken into consideration, the agree-
ment between the computed and measured water levels would be further im-
proved. The comparisons for the other tests were equally satisfactory.
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Figure 12.22. Comparison of computed and measured water levels on hydraulic model
following simultaneous reduction of inflow to both manifolds from 990 to 0 m3/s in 8 s.
Initial steady-state water level at Gauge No. 8 = El. 507.5 m.

Comparison with Hydraulic Model Results. Limited results were available of
the tests conducted on an undistorted, 1:96-scale hydraulic model. Computed
and measured water levels are shown in Figs. 12.22 and 12.23.

As can be seen from these comparisons, the agreement between the hydraulic
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model and computed water levels is satisfactory but is not as good as that be-
tween the prototype and computed results. The difference may be dge to ap-
proximation of the channel configuration. This was change.d se:veral times dur-
ing testing, and no records are available of the configuration in use when the

surge results shown were obtained.

Results

Prototype transient-state conditions were computed for the following total and
partial load changes over a range of steady-state manifold levels:

1. load rejection

2. load acceptance

3. load rejection followed by load acceptance
4. load acceptance followed by load rejection.

Although the load acceptance period is usually much more than 8 s, both the
load acceptance and rejection periods were assumed to be 8 s because load
acceptance at this rate is possible. Slower operating rates were assumed only
while investigating the effects of increasing these periods on the maximum surge
levels. Since the units would be synchronized to the system prior to load accep-
tance, the wicket gates would be at speed-no-load (SNL) gate (about 6 percent).
In the analysis, however, it was assumed that the wicket gates are opened from
the fully closed position to their final steady-state values. The computed levels
are, therefore, slightly higher than would be expected from the actual proto-
type operation.

y[gor Y:he multiple-turbine operations (i.e., load acceptance followed by.k_)ad
rejection or vice versa), the second operation was started at the most critical
time, which is defined as the time between the start of two operations that
produces maximum upsurge. For example, for a load acceptance following
a load rejection, the load was accepted at points a, &, ¢, and d of Fig. 12.23a. It
was found that the maximum upsurge was produced when the load was accepted
at point ¢ and not when it was accepted at point d. Tests on the hydraulic
model gave the same result.

Operating Guidelines

The operating guidelines were formulated so that the maximum upsurge would
not exceed El. 511.5 m, ie., the top of the manifold parapet wall. A large
number of operating conditions were considered in order to identify those that
produce the highest upsurges.

mErTE TS
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The rate of loading, or reloading following a load rejection could be easily
restricted. For a load rejection, however, such restrictions could not be imposed
without modifying the existing control equipment. The unit goes to runaway
speed if the wicket gates are closed slowly following a load rejection, and, as
letting the unit operate at runaway speed for long periods was unacceptable,
increasing the wicket-gate closing time did not appear to be attractive. A more
reasonable alternative was to impose a limit on the initia] steady-state load so
that, if the load was rejected, the upsurge would remain within the allowable
limits.

For reloading following a load rejection, either the rate of reloading could be
restricted or reloading could be done at the 8s rate once the surges in the
manifold due to load rejection had subsided. Because of the inherent dangers,
no consideration was given to the possibility of reloading on the optimum part
of a cycle as a means of allowing more rapid reloading.

High upsurges may be produced even at low tailwater levels depending upon
the number, sequence, and size of the loading and unloading operations. There-
fore, such multiple loading and unloading operations must be avoided. For
example, in case of synchronizing difficulties, or load rejection during a load
acceptance, the manifold water level should be allowed to become steady
before another attempt is made to load the units.

The operating guidelines showing the allowable amount of load that can be
accepted or rejected are presented in Fig. 12.24. This figure also shows, based
on the condition of total load rejection, the maximum permissible initial Joad
for various initial manifold levels. Different operating conditions are designated
as follows:

Curve No. Description

Total load rejection; maximum allowable initial load
Load acceptance from steady state

Load rejection following 300-MW acceptance
Load rejection following 600-MW acceptance
Load rejection following 900-MW acceptance
Load rejection following 1200-MW acceptance
Load acceptance following 300-MW rejection
Load acceptance following 600-MW rejection
Load acceptance following 900-MW rejection
Load acceptance following 1200-MW rejection
Load acceptance following 1500-MW rejection

— OV IO LA WN —

——
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12.16 SUMMARY

In this chapter, transient flows in open channels were discussed. A number of
terms were first defined, the continuity and dynamic equations were derived,
and numerical methods available for their solution were discussed. Details of
the explicit and implicit finite-difference methods were presented. The chapter
concluded with a case study.

PROBLEMS

12.1. A 6.1-m-wide rectangular canal is carrying 28 m?/sec at a depth of 3.04
m. The gates at the downstream end are suddenly closed. Determine the
initial surge height, z, and the velocity, V,,, of the surge wave.

12.2. An initial steady-state flow of 16.8 m3/sec in a 3-m-wide rectangular
power canal is suddenly reduced to 11.2 m3/sec at the downstream end.
If the initial depth was 1.83 m, determine the height and the velocity of
the initial surge wave.

12.3.

12.4.

12.5.

12.6.

12.7.

12.8.
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A trapezoidal canal having a bottom width of 6.1 m and side slopes of 1.5
horizontal to 1 vertical is carrying 126 m3/sec at a depth of 5.79 m. If
the flow is suddenly stopped at the downstream end, what would be the
surge height and the wave velocity?

Prove that if the surge height, z, is small as compared to the initial flow

depth, y,, then
A
c= g( 2415 z)
Yo

in which 4, = initial steady-state flow area.

Develop the boundary conditions for the junction of three channels for
the diffusive scheme based on the explicit finite differences. Neglect the
friction losses at the junction.

In Eq. 12.121, conditions imposed by the boundary were written in a
general form. Determine the values of coefficients for a reservoir, a
control gate, and a rating curve. Linearize the relationships if they are
nonlinear.

Plot the variation of water surface at the downstream end of a canal with
time following sudden closure of the control gates at the downstream end.
Assume the canal is short, horizontal, and frictionless.

Derive the dynamic and continuity equations for nonprismatic channels
having lateral outflow ¢ per unit length of channel. Assume (1) gradual
bulk outflow, e.g., over a side spillway; (2) outflow has negligible velocity,
e.g., seepage; and (3) gradual inflow, e.g., from tributaries, having velocity
component in the positive x-direction as u,.

Answers

12.1.
12.3.
12.8.

2=0.9m;V,, =-5.13 m/sec.
=093 m; V,, =-5.52 m/sec.
1. Continuity equation:

a 04 (x,
A gy 2 g2, Y&,
Ox ox ar ox

2. Dynamic equation:

aV+Va—V+ . So-Sp)+D
3 ax Cax EWeTor)to

in which

D; =0 for case |
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14
D;=-— for case 2
24

- (V‘ u,)q

D, for case 3
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APPENDIX A

FORMULAS AND DESIGN CHARTS FOR
PRELIMINARY ANALYSIS

Design charts and approximate formulas are presented in this appendix. These
may be used for quick computations during the preliminary design stages when
a large number of alternatives are considered to have an economical design or to
approximately select the parameters of a system for a detailed analysis.

A-1 EQUIVALENT PIPE

If the diameter, wall thickness, or wall material varies along the length of a
pipeline, then the pipeline may be replaced by an ‘“‘equivalent pipe” for an ap-
proximate analysis. By using an equivalent pipe, the partial wave reflections and
the spatial variation of the friction losses and of the elastic and inertial effects
are not correctly taken into consideration. The approximation is useful, how-
ever, and gives satisfactory results provided that the changes in the properties of
the original pipeline are minor.

The total friction losses, the wave travel time, and the inertial effects of the
equivalent pipe should be equal to those of the pipeline. These characteristics
for the equivalent pipe of a pipeline having n pipes in series may be determined
from the following equations:

(A-1)

(A-2)

fe= Le Z DlAlz (A'3)
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in which ¢ is the waterhammer wave velocity, and 4, L, D, and f are the cross-
sectional area, length, diameter, and Darcy-Weisbach friction factor for the pipe,
respectively. The subscripts e and i refer to the equivalent pipe and to the ith
pipe of the pipeline. ‘

A-2 MAXIMUM PRESSURE DUE TO VALVE CLOSURE

Figures A-1 and A-2 show the maximum pressure rise above the upstream
reservoir level at the valve and at the midlength of a pipeline caused by the
closure of a downstream valve discharging into atmosphere. The valve closure is
assumed to be uniform, i.e., valve-opening versus time curve is a straight line.

The following notation is used:
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(a) At valve

Figure A-1. ‘Maximum pressure tise due to uniform valve closure; frictionless system
(h=0).
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Figure A-1. (Continued)

v e - ]l”/- C.‘f:;l:‘tk\!-:.) ;ZJMR,
aV, _ : - . s
p= 2gl; - [ I Trestpo f»’«#«?‘/-&op
o
T
(2L/a)

a = waterhammer wave velocity
g = acceleration due to gravity
H, = static head (elevation of the reservoir level - elevation of the valve)
L =length of the pipeline
V, = initial steady-state velocity in the pipeline
T, = valve closure time
AH, = maximum pressure rise at the midlength above the reservoir level
A Hy = maximum pressure rise at the valve above the reservoir level
h 1= initial steady-state head loss in the pipeline corresponding to velocity
o
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Figure A-2, Maximum pressure rise due to uniform valve closure; friction losses taken into
consideration (h = 0.25).

h=hys [H,
Hinax = maximum pressure head = H, + AH, at the valve
=H, + AH,, at midlength of the pipeline.

A-3 MINIMUM PRESSURE DUE TO VALVE OPENING

Minimum pressure head, Hp,;,, at the valve caused by uniformly opening the
valve from the completely closed position may be determined from the follow-
ing equation:'

Hpin = Ho (= k +k% +1)? (A-4)

in which k=LV¢/(gH,T,); L =length of the pipeline; V= final steady-state
velocity in the pipeline; T, = valve opening time; and H, = static.head. The
minimum pressure occurs 2L/a seconds after the start of the valve movement.
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Figure A-2. (Continued)
Equation A-4 is applicable if T, > 2L/a. For T, < 2L/a,

a
Hmin=Ha"—AV (A-5)
g

in which A ¥V = change in the flow velocity due to valve opening.
A-4 POWER FAILURE TO CENTRIFUGAL PUMPS

Graphs? are presented in Figs. A-3 through A-7 for the minimum and maximum
pressure heads at the pump, and at the midlength of a pipeline, and for the time
of flow reversal following power failure to the centrifugal pump units. The
graphs are applicable to pumps with specific speed of less than 49 (SI units), i.e.,
2700 (gpm units); they are not applicable to systems in which there is a valve
closure during the transient state or to systems that contain waterhammer con-
trol devices other than large surge tanks. In the analysis, the latter are consid-
ered as the upstream reservoirs.
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Figure A-3. Minimum head following power failure. (After Kinno and Kennedy?2) mH: = mr;):{mﬁm transient-state head at the pump
hr = Hr/HR
The following notation is used: ¢ = 322770 Hg Op (in SI units)*
. : =" (in
a = waterhammer wave velocity Ep WR* N} units)

Ep = pump efficiency at rated conditions
g = acceleration due to gravity

Hp =rated head of the pump : *Op, Hp, WR? in m3
- . ) R, IR, WR*, and Ng are in m3/s, m, kg m2, and ively is i .
Hg = friction losses in the discharge line tional form, e.g., 0.8, R / & m*, and rpm, respectively; and Eg is in the frac
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Figure A-5. Time of flow reversal at pump following power failure. (After Kinno and
Kennedy?)

_ 183 200 Hg Or
Eg WR? N}
L =length of the discharge line
= rated pump speed
Qg = rated pump discharge
= time

(in English units)*

=
I

..,
|

t, = elapsed time from power failure to flow reversal at the pump
Vg = fluid velocity in the discharge line for rated pump discharge
WR? = moment of inertia of rotating components of the pump and motor, and

entrained fluid
p=aVg/(2gHR)

A-5 AIR CHAMBERS

Charts® are presented in Fig. A-8 for the maximum 1‘1psurge and dowr}sque a';
the pump end, at the midlength, and at the quarter point on the reservoir side od
a discharge line following power failure to the pumps.. These charts may be use
to determine the required air volume for a discharge line.

*0p, Hg, WR?, and Ng are in ft¥/sec, ft, Ib-ft2, and rpm, respectively; and Eg is in the
fractional form, e.g., 0.8.

iy mp g
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The charts are based on the following assumptions:

—

. Air chamber is located near the pump.

2. Check valve closes simultaneously with the power failure,

3. Darcy-Weisbach formula for computing the steady-state friction losses is
valid during the transient state.

4. The absolute pressure head, H*, and the volume of air, C, inside the air

chamber follow the relationship #*C!*2 = constant.

The following notation is used:

a = waterhammer wave velocity
V, = initial steady-state velocity in the discharge pipe
g = acceleration due to gravity
H, = static head (Elevation of the reservoir ~ Elevation of the air chamber)
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Figure A-6. Maximum head following power failure. (After Kinno and Kennedy?)
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& = absolute static head = H, + 10.36 (in the English units, #, + 34)
. aVl,
P (g + Hy)
Hfo = initial steady-state head losses in the discharge line = fL V3 /(2gD)
C, = initial steady-state air volume in the chamber
Q, = initial steady-state discharge in the pipe
L = length of the discharge line :
D = diameter of the discharge line. \

The maximum upsurge and downsurge are above and below the downstream
reservoir level, and the absolute pressure heads are obtained by subtracting or
adding the downsurge or upsurge to the reservoir level plus the barometric head.

The air-chamber size for a pipeline may be determined as follows: For the
maximum allowable downsurge at any critical point along the pipeline—e.g., a
vertical bend—determine 2C,a/(Q,L) from Fig. A-8. Linear interpolation may be
used if the bend is not located either at the midlength or at the quarterpoint.
From the expression 2C,a/(Q,L), compute the minimum initial steady-state air
volume, C, i, This volume corresponds to the upper emergency level in the
air chamber. To this minimum air volume, add the volume of the chamber be-
tween the upper and the lower emergency levels—for example, 10 percent of
Co min for large size chambers and 20 percent for small chambers. For this new
air volume, Cy, max, determirie the maximum downsurge at the pump end from
Fig. A-8a, and then determine the absolute minimum head, H ., at the pump
end by subtracting the maximum downsurge at the pump from the absolute
static head, H}. The maximum transient-state air volume, Cp,,x, may then be
determined from the equation

H*+ H 1/1.2
Cmax = Co max ( 2 0) (A-6)

*
Hmin

in which H} + Hy, is the absolute initial steady-state head. To prevent air from
entering the pipeline, a suitable amount of submergence should be provided at
the chamber bottom. For this purpose, the chamber volume may be selected as
about 120 percent of the maximum air volume, Cp,,,, for small air chambers
and about 110 percent, for large air chambers.

A-6 SIMPLE SURGE TANKS

Figure A-9 shows the maximum upsurge in a simple surge tank following uni-
form gate closure from 100 percent to O percent, and Fig. A-10 shows the maxi-
mum downsurge in a tank following uniform gate opening from 0 to 100 percent
and from 50 to 100 percent.*

In these figures, in region 4, only one maximum occurs and that also after the
end of the gate movement; in region B, the largest of the maxima is the second
one and that occurs after the end of the gate operation; in region C, the largest
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Figure A-9. Maximum upsurge in a simple surge tank for uniform gate closure from 100 to
0 percent. (After Ruus and El-Fitiany?)

of the two maxima is the first one and that occurs prior to the end of the gate
movement. :
The following notation is used in these figures:

A, = cross-sectional area of the tunnel
Ajs = cross-sectional area of the surge tank
g = acceleration due to gravity
h, = head losses plus velocity head in the tunnel corresponding to a steady
flow of @,
L =length of the tunne! from the upstream reservoir to the surge tank
T, = gate-closing time '
T, = gate-opening time
T* =2m+/LAy/(gA,) = period of surge oscillations following instantaneously
stopping a flow of Q,, in a corresponding frictionless system
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Figure A-10. Maximum downsurge in a simple surge tank for uniform gate opening from 0
to 100 percent and from 50 to 100 percent. (After Ruus and El-Fitiany*)

Zmax = maximum upsurge (or downsurge) above (or below) the upstream
reservoir level
Z* = Q,/L[(gA; Ag)= maximum surge following instantaneously stopping a
flow of Q, in a corresponding frictionless system.

A-7 SURGES IN OPEN CHANNELS

The height and the celerity of a surge in a trapezoidal or rectangular open chan-
nel® produced by instantaneously reducing flow at the downstream end of the
channel may be computed from Fig. A-11. The height of this wave is reduced as
it propagates upstream. Figure A-12 may be used to determine the wave height
at any location along the channel.

i

Wi =B £ 1 e i oA ey
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Fig. A-10. (Continued)

For the selection of the top elevation of the channel banks, the water surface
behind the wave front may be assumed horizontal (see Section 7.2).
The following notation is used in Figs. A-11 and A-12:

b, = bottom width of channel
¢ = celerity of surge wave
F, = Froude number corresponding to initial steady-state conditions, V,,/\/g¥,
g = acceleration due to gravity
k = dimensionless parameter = b,/(my,)
K = dimensionless parameter =1+ 1/(1 + k)
m = channel side slope, m horizontal to [ vertical;
@, = initial steady-state discharge
Oy = final steady-state discharge
S, = channel bottom slope
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Figure A-11. Height and absolute velocity of a surge in a rectangular or trapezoigal open-
channel caused by instantaneous flow reduction at the downstream end. (After Wu>)
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Figure A-12. Variation of wave height of a positive surge propagating in a trapezoidal
open channel. (After Wu5)

V, = initial steady-state flow velocity
V,, = absolute wave velocity = V +¢
x = distance along the channel bottom from the control gates
Yo = initial steady-state flow depth
z = surge wave height at distance x
z, = initial surge wave height at downstream end
$ = dimensionless parameter = z olYo
A = dimensionless parameter = VwolVo.
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APPENDIX B*

B-1 PROGRAM LISTING

CHex
C
[#

[aNalaNel

20

25

27

30

40

50

55
56

1
2

1

ANALYSIS OF TRANSIENTS IN A PIPELINE CAUSED BY OPENING OR
CLOSING OF A VALVE

REAL L

DIMENSION 0(10,100)+H(10,1001,QP(104100}+HP(10,100),CA(10},F(LO),

CF(10),AR(10)+A(10}sL(10)4NUL0)4D(L0},Y(20),HMAX(10,100),
HMIN(10,100)

DATA G/9.81/

READING AND WRITING OF INPUT DATA

GENERAL DATA

READ(5410} NP,NRLP,IPRINT,COsHRES, TLAST

FORMAT(313,5F10.2)

WRITEU6420) NP,NRLP,QO,HRES,TLAST

FORMAT (X, *NUMBER OF PIPES =',13/8X,'NUMBER OF REACHES ON LAST PIP
E =*,13/8X,'STEADY STATE DISCH. *,F7.3,' M3/SEL' /BX,"RESERVOIR LE

2VEL ="4F7.1, * M'/8X,*'TIME FOR WHICH TRANSI{ENTS AKE TO BE COMPUTED
3 ='4FT7.1, ' SEC'/)

1
2

2

DATA FOR VALVE

READ(5+25) MyTV4DXToTAUO,TAUF (Y1) 41=1,M)

FORMAT ([24FB.243F10.2/12F6.2)

WRITE(6527) MyTV,DXT,(Y(])o1=1,M)

FORMAT (8 X, *NUMBER OF POINTS ON TAU VS TIME CURVE =',12/8X,
'VALVE OPERATION TIME =',FB8.2," SEC'/8X,*TIME INTERVAL FOR STURING
TAU CURVE =',F6.3," SEC'/8Xy*'STORED TAU VALUES'/8X,15F8.3/)
DATA FOR PIPES

READ(S5+30) (L{T)4DUL)+ALT) 4 F(I)yI=1,NP)

FORMAT (4F10.3)

WRITEL6,40)

FORMAT(/8X,*PIPE NO', 5X, YLENGTH® ,5Xs'DIA",5X,"WAVE VEL.'sSX,y 'FKI

C FACTOR®*/2L1Xs (M) "3 TXy " (M} ?',6X,* {M/SEC)"/)

WRITE(6450 (Lo LUT)sDCI}ALE),FLI)sI=1,NP)

FORMAT(L1OXs13¢6XeFTel 43XeF5.245XFTelyl1XsF5.3)

BT=LINP)/{NRLP*A(NP}}

WRITE(6451)

FORMAT (/8X,*PIPE NO'y5X,"ADJUSTED WAVE VEL'/25X,'(M/SEC)*/)

CALCULATION OF PIPE CONSTANTS

00 60 I=1.NP

AR{I}=0,7854%D( 1) *%2

AUNADJ=ALT)

AN=L(1)/7(DT*A{1))

N{I)=AN

AN1=N(I])

ITFC(AN-ANL) «GELOL5) N{II=N{I}+1

ALT)=L{I)/(DT*N(]I))

WRITE(6455) 1,A(1)

FORMAT (10X, 13412X4F7.1)

CALT)=G*AR(II)/AL(I)

CF{TI=F{1)%DT/ (2. *D(1)}*AR(1))}

FITI=FOI)}*L(1)}/(2.%G*D(I)*NI{T}*AR(TI )%%2)

*The author or publisher shall have no liability, consequential or otherwise, of any kind
arising from the use of the computer programs or any parts thereof presented in Appen-
dixes B through D.
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CONTINUE

CALCULATION OF STEADY STATE CONDITIONS
H{1le1l)=HRES

DO BO I=1,NP

NN=N{T)+1

DO 70 J=1,NN

HUT,J)=H{I,1)-(J-1)*F (1) *QO**2

Q(I,J)=0Q0

CONTINUE

H{I+1,1)=H(1,NN)

CONTINUE

NN=N{NP) +1

HS=H{NP,NN)

Qs=Q0

DO 85 I=1,NP

NN=N{T}+1

DO 85 J=1.NN

HMAXCT s i=H{T4J)

HMIN(T ¢J)=H{1,J)

CONTINUE

T=0.0

TAU=TAUO

WRITE(6,88)

FORMAT {/8X s P TIMEY 3 2X, "TAU® 2Xs "PIPEY, TXy *HEAD (M) ,7X,*0DISCH. ¢,
1P (M3/S) /20X NO®* s SXy P (1) " 45Xs *AN+L}* 4 5Xe* (L) "45Xs *(N+1)*/)
K=0

I=1

NN=N{I)+1

WRITE{6,100) TsTAU,LoH(T14L)HOTNN),Q(Is13,Q(1,NN}
FORMAT (F12.14F6e34y1492F9.2¢F9.3,F10.3)

IF {NP.EQ.1) GO TO 150

DO 140 I=2,NP

NN=N(I)+1

WRITE(64120) 1,H{E+1)+HIT4NN}),Q(I+1)+Q(1,NN)
FORMAT(20X,12+2F9.2+F9.3,F10.3)

CONTINUE

T=T+0T

K=K+1

IF{T.GT.TLAST) GO TO 240

UPSTREAM RESERVOIR

HP{1,1}=HRES
CN=Ql1,21-H(1,2)%CALL)-CFUL}*Q(1,1)*ABS(Q(L1,1))
QP(1,1)=CN+CA(1}*HRES

INTERIOR POINTS

DO 170 1=1+NP

NN=N(T1}

DO 160 J=2,NN
CN=QU14J+1)—CA{T}*H{T1,J+1}=CF{I1)}*QUI,J+1)*ABS(Q(I,J+1))
CP=QUI,J—LI+CALL)*H(T,J-2)=CF{T)*Q( 1, J=1)*ABS(C{I,J-1))
QP{1,J)=0.5%(CP+CN)}

HP(I,d)=(CP=QP{I,J))/CALL)

160
170

175

178

190

200

210

220
230

240
250

260

Appendix B

CONTINUE
CONTINUE

SERIES JUNCTION

NP1=NP-1

IF(NP.EQ.1) GO TO 178

DO 175 I=1,NP1

Nl= N(I)

NN=N(I}+1
CN=Q{I+142)-CA(I+1)*H(E+1,2)-CFUI+1)*QII+1,2)*ABS(Q(1+],2)
1)

CP=QUI NL)+CA{TI)*H{ L NL)-LF{T)*QII,NL}*ABS{Q(I,N1)}
HP (T +NN}=(CP-CN)/(CALTI)+CA{i+]1))

HP{I+141)=HPUI,NN)

QP LI NN}=CP-CALI}*HP(I,NN}

QP I+l 41 )=CN+CA(T+L)*HP(I+1,1)

CONTINUE

VALVE AT DOWNSTREAM END

NN=N{NP)+1
CP=QINPyNN=1)+CA(NP)*H(NP, NN=1 )~CF NP} #Q{NP, NN—1 1 *ABS (L (NP,
1 NN=-1))

1IF(T.GE.TV) GO TO 180

CALL PARAB(T,DXT,Y,TaU}

GO TO 190

TAU=TAUF

IF (TAU.LE.0.0) GO TG 200
CV=(QS*TAU)*#2/ (HS*CA (NP) }

QP (NP, NN)=0.5%(—CV+SQRT(CVECV+4 . %CP*CV })
HP (NP, NN)={CP~QP NP NN)}/CA(NP)

GO TO 210

QP (NPsNN1=0.0

HP (NP, NN)=CP/CAINP)

STORING VARIABLES FOR NEXT TIME STEP

DO 230 I=14NP

NN=N(NP)+1

D0 220 J=1,NN

QUL E,31=QP(1,J)

HUL43)=HP(I,J)

IF (HUIsJ)eGToHMAXIToJ)) HMAX(Ted)=H{1,4J)
IF {(HUL,J)aLTJHMINGI J3 )} HMIN(ISJ)=H(I,J)
CONTINUE

CONT INUE

IF{K.FQ.TPRINT) GO TO 90

GO TO 150

WRITE(64250)

FORMAT (/8X+'PIPE NO®,43X,*SECTION NO®*,3X, "MAX PRESS.',3X,
1 *MIN. PRESS.'/])

DO 270 I=1,NP

NN=N([)+1

DO 270 J=1,.NN

WRITE(6+4260) I4JsHMAX(T,J) HMIN(I I}
FORMAT(9Xy12+13Xs12+42F13.2)
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270 CONT INUE
sTapP

END
SUBROUTINE PARAB{X,DX,Y,Z)

DIMENSION Y (201

1=X/DX

R=(X-1#DX}/DX

IF(T.EQ.0) R=R-1l.

[=1+1

IF(1.LT.2) I=2 )
Z=Y(l)+0.5*R*(Y(1fll—Y([-ll+R*(Y([+ll+Y(1—1)-2.*((1)))
RETURN

END

B-2 INPUT DATA

002002002 1. 67.7 10.

07 6. 1. 1. 0.
1. .9 o7 «5 -3 o1 .0
550. .15 1100. .010
450. «60 900. -012

B-3 PROGRAM OUTPUT

NUMBER OF PIPES = 2

NUMBER OF REACHES ON LAST PIPE = 2

STEADY STATE DISCH. 1.000 M3/SEC

RESERVOIR LEVEL = 6T.7T M

TIME FOP WHICH TRANSIENTS ARE TO BE COMPUTED = 10.0 SEC
NUMBER OF POINTS ON TAU VS TIME CURVE = 7

VALVE OPERATION TIME = 6.00 SEC

TIME INTERVAL FOR STORING TAU CURVE = 1.000 SEC

STORED TAU VALUES
1.000 0.300 0.700C 0.500 0.300 0.100 0.0

PIPE NO LENGTH DIA Aed WAVE VEL. FRIC FACTOR
M) M) {M/SEC)

1 550.0 0.75 02 1100.0 0.010

2 450.0 0.60477  500.0 0.012
PIPE NO ADJUSTED WAVE VEL

(M/SEC)
1 1100.0
2 900.0

LETyene———rr——y

TIME

PIPE

NN N =

TAU

1.000
0.963
0.900
0.813
0.700
0.600
0.5300
0.400
0.300
0.200
0.100
0.038
0.0

0.0

0.0

0.0

NG

PIPE H
(88

z
(=)

67.70
65.78
67.70
65.78
67.70
68.73
67.70
T4.16
67.70
79.92
67.70
88.25
67.70
94.95
67.70
99.18
67T.70
104.40
67.70
108.47
67.70
111.20
67.70
113.07
&7.70
96.01
67.70
63.25
67.70
34.25
67.70
23.55
67.70
4T.63
67.70
82.89
67.70
105.95
67.70
108.01
67.70
78.38

NN v R RO PN = N R N N e NS = N B R PO B N = R R N N N e N

SECTION NO

WA W N -

EAD (M)
(N+1])

65.78
60.05
65.78
63 .46
68.73
69.78
T4.16
79.88
19.92
95.83
88.25
110.41
94 .95
125.13
99.18
139.20
104 .40
149.14
108.47
158.61
111.20
165.65
113.07
149 .46
96.01
1l4.28
63.25
61.79
34..5
12.33
23.55

6.75
47.63
34.76
82.89
88 .45
105.95
13G.93
138.01
123 .42
78.38
A5.12

MAX PRESS.

6T.70
91.18
113.07
113.07
140.26
165. €5

DISCH.
(1)

1.000
1.000
1.000
1.000
1.000
0.988
0.977
0.967
0.935
0.922
0.867
0.847
0.761
0.755
0.643
D.633
J.506
0.496
0.350
0.344
0.183
0.177
0.006
0.004
-0.175
-0.106
-0.217
-0.157
-0.139
-0.085
0,047
0.035
0.208
0.126
0.205
0.148
0.088
0.054
-0.097
-0.071
-0.229
-0.139
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(M3/5)
(N+11)

1.000
1.000
1.000
0.989
0.98&
0.970
0.967
0.937
0.922
0.884
0. 847
0.814
0.755
0.722
0.633
0.609
0.496
0.473
0. 344
0.325
0.177
0.166
0.004
0.059
-0.106
0.0
-0.157
0.0
-0.085
0.0
0.035
0.0
0.126
3.0
0.148
0.0
0.054
0.0
~0.071
0.0
-0.139
0.0

MIN. PRESS.

67.70
44,05
23.55
23.55
9,54
2442



APPENDIX C

C-1 PROGRAM LISTING

c
Cx%% ANALYSIS OF TRANSIENTS IN A PIPELINE CAUSED BY PUMPS

C
REAL Ls+NR,yNO
DIMENSION Q(10,20)4H{10,20},QP(10,20),HP(10+,20),CA{10},F(10},

1 CF(LOI+ARILOI A(20),L({10)N{10},D(10}FH{60),FB(601HMAX(10],

2 HMIN(10])
COMMON /CP/ALPHA,QR,V,CNyDALPHA,DV,BETA,C54C&4NPP,T

COMMON /PAR/FH, FB4DTH
DATA G/9.81/

READING AND WRITING OF INPUT DATA

[aNeNaNal

GENERAL DATA
READ(5,10) NP,NRLP,IPRINTNPP,Q0,NO,TLAST
10 FORMATI(412,5F10.2)

WRITE(6,20) NP,NRLP,QO+NO+TLAST,+NPP
20 FORMAT{8X,*NUMBER OF PIPES =',13/8X,*NUMBER OF REACHES ON LAST PIp
lE =*,13/8X, "' STEADY STATE DISCH. =* ,F6.3," M3/S*'/BX,"STEADY STATE
2 PUMP SPEED =', F6.1," RPM'/BX,"'TIME FOR WHICH TRANS. STATE COND.
3ARE TO BE COMPUTED =*,F5.1, * S*'/8X,'NUMBER QOF PARALLEL PUMPS =!

4 413/7)
c
C READING AND WRITING OF PUMP DATA
c
READ(5421) NPCyDTHyQR,HRyNR,ER,WR2,(FH{I),1=1,NPC)
21 FORMAT(12,6F10.2/(7F10.31))
READ(5,22) (FB{1},I=1,NPC)
22 FORMAT(T7F10.3)
WRITE(6423)NPC+DTH,QRyHRyNR4ER, WR24(FH(I1),1=1,NPC)
23 FORMAT({8X,*NUMBER OF POINTS ON CHARACTERISTIC CURVE =',14/
1 BX,'THETA INTERVAL FOR STORING CHARACTERISTIC CURVE =1',F4.0/8X,
2 'RATED DISCH. =*,F5.2,*' M3/S'/BX,*RATED HEAD =',F6.1,* M'/8X, o
3 YRATED PUMP SPEED =%,F6.1,' RPM®' /B8X,'PUMP EFFICIENCY =',F6.3/8X,
4*WR2=",FT7.2,"' KG-M2'//8X,"PCINTS ON HEAD CHARAC'/(8X,10F7.3)}
WRITE(6,25) (FB(I),I=1,NPC)
25 FORMAT{/8X, *POINTS ON TORQUE CHARACTERISTIC'/ (8X,10F7.3})
c DATA FOR PIPES

READ(5+30) (LUT},DII),ALIY+FL{T),I=14NP)
30 FORMAT(4F10.3)

WRITE(6440)
40 FORMAT{/8X,"PIPE NO*, 5X, 'LENGTH',5X,*DIA*,5X, "WAVE VEL."',15X,'FRI

2C FACTOR' /22Xy " {MIY,6Xy P (M)' 4 TXy" (M/S)E )
WRITE(6,50) (T1+L{I)4D(I},ALL)+F(I},y1=1,NP)
50 FORMAT(10Xy I3+6XsFT.143X,F5.245XsFT7.1+11X,F5.3)
DT=L{NPI)/(NRLP*A(NP)}

WRITE(6,51)
51 FORMAT (78X, *PIPE NO",5X,*ADJUSTED WAVE VFL'/26X,"'(M/S)?)

c CALCULATION OF PIPE CONSTANTS
DO 60 I=1.NP
AR(T}=0.7854%D(1)%%2
AUNADJ=ALT)

AN=L{T}/(DT*AL1))
N(T}=AN

474
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[gEaNaEaN.

aao

65
68

70

80

85

90

86
87
89
150
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ANL=N(T)

[FLUAN-ANL].GE.0.5) N{I)=N{I)+1
ALT)=L(T)/(DTANI(T))

WRITE{6455) I.A(I)
FORMAT(10Xy13,12X,F7.1)
CA(L)=G*AR(T}/ZA(1)
CEUT)=F(I)*DT/(2.%D(1)*AR(I))
FOIN=FOI)RL 1)/ (2. %G*DUII*NLT)*AR( T )*%2)
CONTINUE

$OSPUTATIDN OF CONSTANTS FOR PUMP

HE FOLLOWING CONSTANTS ARE FOR ST UNITS. FOR EN

REPLACE 93604.59 BY 595.875 AND 4.775 BY 153.74ELISH ONITS
TR={93604.99*HR*QR}/ ( NR=ER)

C5=CA{1}*HR

Co6==(4.TT5%TRADT)/{NR*WR2)

ALPHA=NO/NR

V=Q0/ (NPP*QR}

DV=0.0

DALPHA=0.0

CALCULATION OF STEADY STATE CONDITIONS

IF(V.EQ.0.0) GO TQ 65

TH=ATAN2 (ALPHA, V)

TH=57.296%TH

GO TO &8

TH=0.0

CALL PARAB(TH,1,2)

HO=ZEHR* (ALPHA%#24V%%2)

H{141)=HO

CALL PARAB(TH,2,2)

BETA=Z*(ALPHA*%2+v%%2)

DO 80 I=1,NP

NN=N(T)+1

DO 70 J=1,NN

HUTo 1 =H(T, 1)=(J-1)%F (1} %Q0%%2

IF(TNE.NP.AND. J.EQ.NN} H{I+1,1)=H(T,NN)

QlT,J)=Qo0

CONT INUE

HMAX(T}=H(TI,1)

HMIN(I}=H(1,1)

CONT INUE

NN=N(NP) +1

HRES=H(NP,NN)

7=0.0

WRITE(6485)

FORMAT {/BXs " TIME® y2X¢ "ALPHA" 44X 'V ,4X, *PIPE , TX,
1 *HEAD (M)*',7X,'DISCH. {M3/S)*/29Xs "NOW* 45X+ * (1} *,5X, ' [N+1)?
1e5Xe ' {1) 45X, *(N+1) /)

K=0

I=1

NN=N(1)+1

WRITE(64B6) T,ALPHA,V,I,H
DO 85 1o2 up Vel HIL, 1) HIT,NN) ,QUL,1),Q(1,NN}

NN=N{T}+1
WRITE(6,87) 1, HUTo 1) oHUT NN 4 QUI5 1) 4Q( 14NN

FORMAT(FIZ-1.F7.2,F7.2'I5vF9.1'F9.1'F9.3'F10.3)

FORMAT (26X41542F9.1,F9.3,F10.3)

CONTINUE

T=T+DT
K=K+1
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[aEaNul

[N aXel

160
170

175

178

nAaOo

220

230
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IFIT.GT.TLAST) GO TO 240 240
250

PUMP AT UPSTREAM END

CN=Q(1'2)—H(lyZ)*CAll)—Cfll)*Ql1.1)*ABS(Q(1:1)) 260

CALL PUMP

QP(1lyl)=NPP*V*QR
HP(1,11=(QP (1,1 }-CNI/CA(L)

INTERIDR POINTS
DO 170 [=1,NP

NN=N{T}
DO 160 J=2.NN

- ABS{Q(T,J+1)) ¢
=QU L J#LI—CACTI*H{T 4 J+11-CFU1}*QII, J+1)*
E§=giI:J-1)+CA(II*H(lyJ-I)-CF(l)*Q(l'J-l)*ABS(QlIyJ—l)) ¢
QPI1,J1=0.5%(CP+CNJ p
HP{1,J)=(CP-QP{1,4}}/CALD)
CONT INUE 5
CONTINUE ?o
SERIES JUNCTION
NP 1=NP~1
IFINP.EQ.1)} GO YO 178
DO 175 T1=14NP1
Nl= N(1} v o
NN=N(T1)+1
CN=Q(I+1.Z)—CA(l*l)*H(l*leI—CF(l+l)*Q(i*l'Zl*ABS(Q(I*l'Zl
30
léP=Q(l.N1)+CAll)*H(Ile)—CF(IJ*Q(l;Nl)*ABS(Q(Ierl)
HP (T ¢NNT=(CP-CN)}/Z{CALII+CALT+1})
HP(I+1,L)1=HP(TsNN}
QP LT +NN)=CP-CALT)I*HP [ T,NN}
QP (1+1,11=CN+CA(I+1)*HP{I+1,11
CONTINUE
RESERVOIR AT DOWNSTREAM END .
Y
NN=N{NPI+1
P(NP,NN)=HRES
EPLQ(&P'NN~1)+CA(NPI*H(NP'NN—1l*CF(NP)*Q(NPvNN-l)*ABS(QINPv
1 NN—-1))
QP (NP, NN} =CP-CA{NP)*HPINP,NN)
STORING MAX. ANC MIN. PRESSURES AND VARTABLES FOR NEXT T{MF STEP
D0 230 T=1l.NP
NN=N(NPI+1
DO 220 J=1,NN
Qi{l1,41=QP(1,J)
H(T,JI=HP{T,J} 50

TINUE
%EN(L(‘vI)-GT-HMAX(I)) HMAX (T1=H(T,1)
1F (H{I,1).LT.HMINGI)) HMINIT)I=HUL,1)
CONT INUE
[F(K.EQ.IPRINT} GO TO 90
GO TO 150
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WRITE(6,250)

FORMAT{//10X+'PIPE ND.',5X,'MAX. PRESS."5X, "MIN. PRESS.'/27X
1 "M, 16X, MY/)

WRITEL64260) (I HMAX(I) HMINCI} yI=1 NP}

FORMAT{L2Xs [3¢TXyFTolyIXsFTal}

sTop

END

SUBROUTINE PUMP

DIMENSION FH(60),FB{60)

COMMON /CP/ALPHASQR4V yCNyDALPHA ,DV,BETA,L5,C6+NPP,T
1 /PAR/FH,FB,DTH

KK=0

Jd=0

COMPUTATION OF PUMP DISCHARGE

VE=V+DV

ALPHAE=ALPHA+DALPHA

Jd=JJ+1

IF [VE.EQ.0.0.AND.ALPHAE.EQ.0.0} GO TO 20
TH=ATAN2 { ALPHAE , VE}

TH1=TH

TH=TH%*5T.296

IF (TH.LT.0.0) TH=TH+360.

IF (TH1.LT.0.0) THL=THLl+6.28318

GO TD 30
TH= 0.0
TH1=0.0

M=TH/DTH+1.

AL=FH{M) *M=FH{M+1}*({M-1)

A2={ FH{M+1)~FH{M) )/ (DTH*0.017453)

A3=FB(M} *M-FB(M+1}%(M-1)
A4=(FB(M+1)—FB{M) )/ (DTH*0.017453)
ALPSQ=ALPHAE*AL PHAE

VESQ=VE*VE

ALPV=ALPSQ+VESQ

FL=C5%AL*ALPVHC S*A2%ALPVETHL -QR*VE*NPP+(CN
F2=ALPHAE—-C6+A3*ALPV-CO6*A4*ALPVETHI-ALPHA~CG*BETA
FLAL=C5% (2. %A1# ALPHAE+A2*VE+2. *A2*ALPHAE*THL }
FlV=C5%( 2 %A 1*VE~A2%ALPHAE+2,%A2*VEXTHL } -QR=NPP
FRAL=1.~Co% (2. *A3XALPHAE“AG*VE+2. *A4*ALPHAEXTHL }

- F2V=C6# (2. AIXVE+A4=ALPHAE-2 . # A4*VEXTHL )

DENOM=F1AL%*F2V-F1V#F2AL
DALPHA=(F2%F1V~-FL1%F2V)/DENDM
DV={F1*F2AL-F2*F1AL)/DENOM
ALPHAE=ALPHAE+DALPHA
VE=VE+DV

IF (ABSIDV).LE.Q.00L.AND.ABS(DALPHA) .LE.0.001} GO TO 50
IF (JJ.6T.30) GC TO 70

GO YO 8

TH=ATAN2 (ALPHAE ,VE)
TH=57.296%TH

IF {TH.LT.0.0) TH=TH+360.
CALL PARABITH,2,BETA)

IF (MB.EQ.M} GO TQ 60
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MB=TH/DTH+1
[F (MB.EQ.M} GO TO 60
GO TO 8
60 DALPHA=ALPHAE—ALPHA
DV=VE-V
ALPHA=ALPHAE
v=VE
BETA= BETA * (ALPHA*ALPHA+V*V)
RETURN
T0 WRITE(6,80) T,ALPHAE,VE
80 FORMAT (8X, ' *#* I TERATIONS IN PUMP SUBROUTINE FATLED® /8X,'T=
2/BXy " ALPHAE =% F6.3/BX,*'VP =',F6.3)
STOP
END

SUBROUTINE PARAB(X;J,Z}
COMMON /P AR/FH, FB, DX
DIMENSIDN FH(60) ,FB(60)
1=X/DX
R={X-[*DX1/DX
1¢£(1.EQ.0) R=R-1.
I=1+1
IF(1.LT.2) I=2
GO TO (10,2014J
10 Z=FHIT)+0.S*R¥{FHUI+1)—FH{T=L)+R*=(FH{I+1)+FH{ I-1)-2.%FH{T} )}
RETURN .
20 7=FB(])+0.5%R*(FBII+L1-FBII-1)4R*{FBII+1)+FB(I-1)~2.¢FB(T}})
RETURN
END

C-2 INPUT DATA

02320202 + 500 1100. 1%.
55 £. 253 60.00 1100. . B4 16. 859

-.52 - 0T -.392 ~.261 ~-.150 -.037
200 345 500 . 655 s 777 . 900
1.115% 1.1e6 1.245 1.278 1.290 1.287
L.240 1.201 1.162 1.115 1.069 1.025
. 945 -928 .875 . 848 .819 . 788
.723 . 690 .650 .619 .583 555
<519 «502 500 . 505 «520 +539
.593 .61°% .634 - 640 «638 630
~.350 -4 74 -.180 -.062 =037 .135
320 . 425 .500 540 .588 612
500 «5¢9 . 530 « 479 « 440 402
«352 « 340 340 «350 280 «437
«&05 <682 <750 . 802 . 845 «R72
.878 .80 -823 . 780 . 725 «660
490 <397 « 310 230 «155 .085
-e)R2 ~.123 -.220 -.348 -.490 -.680

453.0 -750 900.0 .01

550.0 <750 1108d0.00 .012

'wFB.2

.075
1.007
1.269
.992
. 155
«531
«565

.228
615
.373
520
.883
.580
.018
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C-3 PROGRAM OUTPUT

NUMBER OF PIPES = 2

NUMBER OF REACHES ON LAST PIPE = 2

STEADY STATE DISCH. = 0.500 M3/S

STEADY STATE PUMP SPEED =1100.0 RPM

TIME FOR WHICH TRANS. STATE COND. ARE TO BE COMPUTED = 15.0 §
NUMBER OF PARALLEL PUMPS = 2

NUMBER OF POINTS ON CHARACTERISTIC CURVE = 55

THETA INTERVAL FOR STORING CHARACTERISTIC CURVE = 5.
RATED DISCH. = 0.25 M3/S§

RATED HEAD = 60.0 M

RATED PUMP SPEED =1100.0 RPM

PUMP EFFICIENCY = 0.840

WR2= 16.85 KG-M2

POINTS ON HEAD CHARAC

-0.530 -0.476 -0.392 -0.291 -0.150 -0.037 0.075 0.209 0.345 0.500
0.655 0.777 0.900 1.007 1.115 1.188 1.245 1.278 1.290 1.287
1.269 1.240 1.201 1.162 1.115 1.069 1.025 0.992 0.945 0.908
0.875 0.848 0.819 0.788 0.755 0.723 0.690 0.656 0.619 0.583
0.555 0.531 0.510 0.502 0.503 0.505 0.520 0.539 0.565 0.593
0.615 0.634 0.640 0.638 0.632

POINTS ON TORQUE CHARACTERISTIC

-0.350 -0.474 —0.180 -0.062 0.037 0.135 0.228 0.320 0.425 0.500
0.548 0.588 0.612 0.615 0.600 0.569 0.530 0.479 0.430 0.402
0.373 0.350 0.340 0.340 0.350 0.380 0.437 0.520 0.605 0.683
0.750 0.802 0.845 0.872 0.883 0.878 0.860 0.823 0.780 0.725
0.660 0.580 0.490 0.397 0.310 0.230 0.155 0.085 0.018 -0.052

-0.123 -0.220 -0.348 -0.490 -0.680

PIPE NO LENGTH DIA WAVE VEL. FRIC FACTQOR
M) (M) tM/5)
1 450.0 0.75 900.0 0.010
2 550.0 0.75 1100.0 0.012
PIPE NO ADJUSTED WAVE VEL
(M/5}
1 900.0
2 1100.0
TIME ALPHA v PIPE HEAD (M) DISCH. (M3/5)
NO. (1 {(N+1) (L {N+1)
0.0 1.00 1.00 1 6C.0 59.6 0.500 0.500
2 55.6 59.0 0.500 0.500
0.5 0.72 0.72 1 30.7 59.6 0.359 3.500
2 5.6 59.0 0.500 0.500
1.0 0.56 0.59 1 17.7 27.5 0.297 0.374
2 27.5 59.0 0.374 0.500
1.5 0.46 0.57 1 9.7 13.2 0.287 0.318
2 13.2 59.0 0.318 0.248
2.0 0.39 0.56 1 5.3 36.3 0.279 0.158
2 3¢.3 59.0 0.158 2.137
2.5 0.34 0.05 1 9.1 45.8 0.027 0.084
2 45.8 59.0 0.084 0.068
3.0 0.32 -0.18 1 5.3 26.9 -0.091 -0.059
2 26.9 59.0 -0.059 N.9232



480 Appendix C

3.5 0.30
4.0 0.26
4.5 0.15
5.0 -0.05
5.5 =-0.30
6.0 -0.55
6.5 ~N.79
7.0 -1.01
7.5 =-1.18
8.0 -1.30
8.5 -1.37
9.0 -1.39
9.5 =-1.37
10.0 -1.33
10.5 -1.27
1.0 -1.21
11.5 -1.15
12.0 -1.11
12.5 -1.08
13.0 =-1.06
13.5 -1.05 .
14.0 ~-1.06
14.5 =-1.07
15.0 ~1.09
PIPE NO.
1
2

-0.28
-0.34
-0.68
-0.85
~0.93
-0.95
-1.04
-1.04
-1.00
-0.93
-0.86
-0.76
-0.66
-0.59
~0.53
-0.49
~0.48
~0.49
-0.52
-0.55
-0.58
-0.61
-0.64

-0.66

N NN NN NN N N N N = N N =N =R NN N RN PR RN RN e

MAX. PRESS.
M

87.4
76.1

10.1 17.7
17.7 59.0
10.1 37.4
37.4 59.0
22.6 46.5
4€.5 59.0
29.0 40.6
40.6 59.0
32.4 38.6
38.6 59.0
37.0 48.0
48.0 59.0
51.3 55.1
55.1 59.0
62.4 61.3
61.3 59.0
T4.8 6T.7
67T.7 59.0
82.5 73.9
73.9 59.0
87.1 76.1
T6.1 59.0
B86.6 T4.9
74.9 59.0
82.2 72.2
72.2 59.0
15.4 68.6
68.6 59.0
68.3 63.8
63.8 59.0
61.7 59.7
59.7 59.0
56.3 57.1
57.1 59.0
52.5 55.3
55.3 59.0
50.4 53.8
53.8 59.0
4G.4 53.2
53.2 59.0
49.6 53.6
53.6 59.0
50.7 54.4
S54.4 59.0
52.6 55.3
55.3 59.0
54.7 56.5
5¢6.5 59.0

MIN. PRESS.
M

5.3
13.2

-0.139
-0.131
-0.168
-0.270
-0.341
~0.342
-0.425
-0.426
~0.464
-0.470
-0.476
-0.538
-0.520
-0.561
-0.519
-~0.566
-0.499
-0.537
~0.464
-0.493
-0.428
-0.431
-0.379
-0.368
-0.332
-0.309
-0.293
-0.266
-0.267
-0.237
-0.247
~0.225
-0.241
~0.225
-0.247
-0.236
-0.259
-0.252
~0.273
-0.273
-0.290
-0.293
-0.306
-0.312
-0.320
~-0.327
-0.329
-0.338

-0.131
-0.185
-0.270
-0.294
-0.342
-0.355
—0.426
-0.391
-0.470
=0.497
-0.538
-0.548
-0.561
-0.579
-0.566
-2.574
-0.537
-0.554
-0.493
-0.500
-0.431
~0.433
—~0.368
-0.363
-0.309
-0.305
—-0.266
-0.257
-0.237
~0.228
-0.225
-0.218
-0.225
~0.222
-0.236
-0.232
-D0.252
-0.250
-0.273
-0.272
~0.293
-0.295
~J.312
-0.313
-0.327
-0.330
-0.338
—3.341

TR
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APPENDIX D

D-1 PROGRAM LISTING

C
C
c

7

FREQUENCY RESPONSE (F A SERIES PIPING SYSTEM HAVING RESERVDIK AT
THE UPSTREAM END ANUD AN CUSULLATING VALVE AT THE ULWKNSTREAM ENC
CIMPLEX Ayt yCyHVyQV,CCCMPLX
REAL L
DIMUNSION LIZO) ¢WVIZO)ZLUZO )y 2REZUDHPLZO Per Af{cy? (292
1 C121210F130) ) ' cW)oPLIOYCPLIG), (21 4E(2420,
FEAD(S,10) NyM14M2,13,FEAC
FURMAT(413,F10.7)
REAL (5420) TAUO,HO 4 Qi g AMP y THPEK
FORMAT{7F10.3)
WRITE16930) TAUNGHO 0 g AMP, THEER o N
FIRMAT (X e *MEAN VILVE GPENING =%,r5.2 /EX.'STATIC HERD =0, 7.0,
T ' ME/OX,*MEAN DISCHANGE TV FTa2y Y M2/S® SUXGYAMPLITULE L+ VALVE
cOSCTLATIONS =20,F5.2 /X, sTREORETICAL FERLIGD CF THt FIPELINE =¢,
2 F6a3, " SE/UX,INUMEEE CF PIFES =%, 12/)
FEAGISy40) (LU1Do0CI) oWVl 1=1,N1
FURMATI3F10.2)
WEITE(6y U}
FORMAT(UXy *LLMGTH (M) 3X "1 1A (M)%, 02X, "WaVL VEL., (M7} )
DO &0 I=1,N
WRITE(655) LIL YU t1)onWVI])
FORMAT(F16.23F11.24F15o)
FEI)=LEII/WVEL)
COUT)=ToT04LTHULT) 2% /WVI])
IN FNGLISH UNITL, FFRLALE T.70G47 bY 5. 89
CUNTINUE
VC=~{c o tn0* aMP ) /TALID
TWz0.2822/THPER
WhITEL6,65)
FORMATI/ZEX g YWEZHT P v X g P/ HO Y s X g B0 /000 446X g VEHASE 1Yy AN, YPLASE (/)
0N S0 J=MY My M2
Ad=J
WFCACTLJETH
Allyl)=CHMFLY{luyt'e}
ELY1,2 ) =CMPLX(O, 1y, 1t)
AL24 1 =CMPLR (L griyitein)
ATy )=0MPLX L sUyGall )
G 70 1=1,N
Lz=Wxb (1)
ELL e )=LMPLXICLSI) 40l
EAly2)=CMPLXICLUy=T1a/CF LTI INTL))
BU2y LY SCMPLX L0y ~CHLID#SINIC))
B2, 0)=CMPLXICCS () ,0,0)
CALL MILT(B ¢AyCoiy2)
Cell, COPY{CsAv2y2)
CONTINUE
CO=VL/ZIC Ly 2)=D o *HORC (2,7 ) /1 u)
HV=CCxC(Yy2)
WV=CCRCL242)
WH=W/TW
H=LAE S {HV ) ZHO

481
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(=CAsS (V) /L0

ANGH=5T . 29578 ¥ ATAN2{AIMAGIHV) JREALIHV) )
ANLEL=ST 295 TEXATAN2 LAIMAGICVY) yREALIGV) )

WEITELGyCS) WRyH by ANGHy ANGE
CONTINUE )
FORMATI3X5F10.3)

STUP

END

SUFFOUTINE MULT(A4E yCyNyM)
COMFLEX A,ByLyCMPLX
UIMENSIUN AUNGN)2BINGNDI,CIN,N)
00 & T=14N

N6 J=1.N
CLIZJ)I=CMPLX(0.040.0)

L0 & K=14N
CUIZI)=ALL,K)I$BIKeJ) + C(1,4)
FETURN

END

SUFRLUTINE (OFY{CyA4N4¥)
COMFLEX A,C
DIMENSION AUNGN) C(MyN)
LO & XI=14N
LY & J=1,4N
AlT,J)=ClI,J)
RYTURN
END

D-2 INPUT DATA

002401020001 -5

1. 30.48 - 0089 Y4
6Gve5 «61 121v.
228.6 3 Gla.s

D-3 PROGRAM OUTPUT

MEAN VALVE OPENING =1.000
STATIC HEAD =

MEAN DISCHARGE =
AMPLITUDE OF VALVE DSCILATIONS

30.48 M
0.009 M3/S

THEORETICAL PERIOD OF THE PIPELINE

NUMBER OF

LENGTH (M)
609.50
228.60

WE/NT

0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
L.00C0
5.500
6.000
6.500
7.000
7.500
8.000
8.500
9.000
9.500
10.000

PIPES

DIA (M)
0.61
0.30

H/HO

0.037
0.123
0.076
0.0406
0.149
0.400
0.149
0.046
0.076
D.123
0.037
0.000
0.037
0.123
n.n16
0.046
0.149
0.400
0.149
0.046

WAVE VEL. (M/S)
1219.00
914.40
Q/Q0 PHASE H
0.199 -95.257
0.190 -107.887
0.196 100.897
0.199 -96.552
0.186 -111.940
0.C00 179.999
0.186 111.940
0.199 96.551
0.196 -100.898
0.190 107.886
0.199 99.257
0.200 -90.000
0.199 -95.2%8
0.190 ~107,888
0.196 100.396
0,199 -96.552
0.186 -111.941
0.000 179.995
Nn.186 111.930
0.199 96.551

=0,200
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3.000 S

PHASE Q

-5.251
-17.887
10.897
-6.5h2
-21.940
89.999
21.940
6.551
-10.898
17.886
5.257
-0.000
-5.2%8
-17.888
10,896
-6.552
~21.941
890,905
21.v39
6.551
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H

RISTIC DATA*

PUMP C

ARACTE
25

E = =147 R_= 261
= tan | h F h E n g
{Degrees) f + v2 o+ \7{ az + v2 o+ oy «2 + v2 2 4 2
0 - 0.530 - 0.350 - 1.560 - 1.560 - 1.000 - 0.560
5 - 0.476 - 0.474 - 1.290 - 1.200 - 0.948 - 0.600
10 - 0.392 - 0.180 -1.035 - 0.895 - 0.892 - 0.605
15 - 0.291 - 0.062 - 0.795 - 0.500 - 0.820 - 0.580
20 - 0.150 0.037 - 0.540 - 0.355 - 0.665 - 0.503
25 - 0.037 0.135 - 0.308 - 0.135 - 0.475 - 0.355
30 0.075 0.228 - 0.082 0.060 - 0.275 - 0.160
35 0.200 0.320 +0.122 0.235 - 0.055 +0.070
40 0.345 0.425 0.310 0.380 +0.200 0.320
45 0.500 0.500 0.500 0.500 0.500 0.500
50 0.655 0.548 0.635 0.580 0.785 0.620
55 0.777 0.588 0.745 0.645 1.035 0.708
60 0.900 0.612 0.860 0.695 1.280 “0.825
65 1.007 0.615 0.992 0.755 1.508 0.955
70 1.115 0.600 1.140 0.850 1.730 1.150
75 1.188 0.569 1.365 0.970 1.970 1.433
80 1.245 0.530 1.595 1.115 2.225 1.608
85 1.278 0.479 1.790 1.300 2.485 1.780
90 1.290 0.440 1.960 1.485 2.740 1.960
95 1.287 0.402 2.048 1.518 2.980 2.150
100 1.263 0.373 2.110 1.540 3.195 2.345
105 1.240 0.350 2.158 1.545 3.380 2.525
10 1.201 0.340 2.203 1.560 3.515 2.710
115 1.162 0.340 2.250 1.592 3.572 2.900
120 1.115 0.350 2.315 1.642 3.570 3.000
125 1.068 0.380 2.390 1.720 3.490 3.010
130 1.025 0.437 2.495 1.900 3.350 2.925
135 0.992 0.520 2.630 2.090 3.140 2.760
140 0.945 0.605 2.735 2.5 2.875 2.500
145 0.908 0.683 2.905 2.530 2.570 2.245
150 0.875 0.750 3.000 2.650 2.300 1.990
155 0.848 0.802 3.020 2.720 2.065 1.750
160 0.819 0.845 2.975 2.740 1.840 1.518
165 0.788 0.872 2.825 2.635 1.633 1.300
1 0.755 0.883 2.652 2.535 1.440 1.085
175 0.723 0.878 2.442 2.310 1.260 0.870
180 0.690 0.860 2.195 2.090 1.080 0.660
185 0.656 0.823 1.890 1.850 0.920 0.500
150 0.619 0.780 1.525 1.570 0.780 0.505
195 0.583 0.725 1.195 1.250 0.710 0.555
200 0.555 0.660 0.935 0.955 0.670 0.615
205 0.531 0.580 0.695 0.730 0.660 0.630
210 0.510 0.490 0.500 0.530 0.555 0.500
215 0.502 0.397 0.374 0.350 0.410 0.315
220 | 0.500 0.310 0.277 0.175 0.265 0.100
225 ' 0.505 0.230 0.190 0.000 0.065 - 0.075
230 ! 0.520 0.155 0.114 - 0.160 - 0.140 - 0.315
235 0.539 0.085 0.058 - 0.295 - 0.345 - 0.515
240 0.565 0.018 - 0.015 - 0.425 - 0.550 - 0.715
245 0.593 - 0.052 - 0.110 - 0.550 - 0.745 - 0.880
250 | 0.615 - 0.123 - 0.220 - 0.670 - 0.960 - 1.030
255 0.634 - 0.220 - 0.334 - 0.820 - 1.200 - 1,225
260 , 0.640 - 0.348 - 0.44p - 0.992 - 1.480 - 1.450
265 0.638 - 0.490 - 0.550 - 1.213 - 1.810 - 1.860
270 | 0.630 - 0.680 - 0.670 - 1.500 - 2.200 - 2.200

*These pump characteristic

data are based on
For notation, see Section 4.3.

data presented

by Thomas! and Donsky.?
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APPENDIX F

SI AND ENGLISH UNITS AND
CONVERSION FACTORS

SI (Systéme Internationale) units for various physical quantities are listed in
Section E-1, and the factors for converting them to the English units are pre-
sented in Section E-2.

E-1 SI UNITS

Physical Quantity Name of Unit Symbol Definition
Length Meter m -
Mass Kilogram kg -
Force Newton N 1 kg m/s?
Energy Joule J I Nm
Pressure, stress Pascal Pa 1 N/m?
Power Watt w 1J/s
Bulk modulus '

of elasticity Pascal Pa 1 N/m?

The multiples and fractions of the preceding units are denoted by the follow-
ing letters:

1073 milli m
107! deci d
10° kilo k
10¢ mega M
10° Giga G

Forexample, 2.1 GPa =2.1 X 10° Pa; 1.95 Gg m? = 1.95 X 10° kg m?.

486
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F-2 CONVERSION FACTORS

Multiply by

To Convert
Quantity From SI unit To English unit
Acceleration m/s? ft/sec?
Area m? ft2
Density kg/m3 b/ft3
kg/m?3 stug/ft3
Discharge m3/s f ta/sec
m¥/s gal/min (U.S.)
m3/s gal/min (Imperial)
Force N Ibs
Length m ft
Mass kg Ib
kg slug
Moment of inertia kg m? 1b-ft2
Momentum (Angular) kg m?/s . 1b-ft%/sec
(Linear) kg m/s 1b-ft/sec
Power w ft-lbg/sec
w hp
Torque Nm Ibg-ft
Velocity m/s ft/sec
m/s mile/hr
Volume m3 ft3
m3 yd3
m3 in.
Specific weight N/m3 Ibf/ft?
Temperature °C °F

3.28084
10.7639
62.4278x 1073
1.94032 x 1073
35.3147
15.8503 x 103
13.1981 x 103
224.809 x 1073
3.28084
2.20462
68.5218 x 1073
23.7304
23.7304
723301
0.737561
1.34102 x 1073
737.562 x 1073
3.28084
2.23694
35.3147
1.30795
61.0237 x 103
6.36587 X 1073
1.8;and

add 32

I HE = 55010 14,5
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Homologous relationships, 76
Hydraulic gradeline, 8, 12-14, 28, 51, 52,
54, 81, 88,93, 101-104, 115, 277,
298, 305, 318, 335, 362, 363
Hydraulic jump, 425
Hydraulic model, 111, 431,432, 435,
438-440
Hydraulic radius, 417, 430, 435
Hydraulic transients, 1, 7, 16, 99, 109, 153
causes of, 18, 124, 161, 194
in closed conduits, 16, 382, 429
in hydroelectric power plants, 109
in nuclear power plants, 158
in oil pipelines, 190
in open channels, 16, 382, 384,415,429
methods of controlling, 302, 303

Hydroelectric power plants, 17, 109, 110, |

133, 137, 155, 208, 315,332, 333,
364,426,431
transients in, 109
Hydraulic turbine, 16, 111, 145, 147, 153,
324, 332, 334,352, 363, 365
characteristics of, 114, 130, 326, 348
efficiency of, 366, 372
motoring of, 113
operations, 109
load acceptance, 17, 18, 109, 384, 401
load rejection, 17, 18, 109, 130, 384,
401
start-up, 109
rated head, 129, 148, 341
rated output, 129, 148
runner, 18, 129, 148
speed rise, 150-154, 302, 303, 324
types
Francis, 58, 67, 71, 109, 111, 114, 124,
126, 127, 135, 147,153, 208
Kaplan, 111, 126, 135, 155
Pelton, 114

—_————

impulse, 111, 114
propeller, 135
reaction, 348, 410

Impedance, characteristic, 219
Impedance diagram, 265, 266
Impedance method, 201, 208-210, 256,
260, 269
Impedance, terminal, 210
Implicit finite-difference method, 34, 164,
165, 170, 175, 382, 414-416, 422~
424,442
Inertia
generator, 133, 149
normal generator, 148
pump-motor, 75, 81, 100, 103, 276, 293,
456
turbine and generator, 117, 129, 133, 327
Inflow, lateral, 394
Initial conditions, 142, 144, 405,425
Intake, 336, 365
pipe, 206
power, 127, 147
Integration
arithmetic, 366, 370
graphical, 366, 370
Interpolation
parabolic, 114, 317
Interior sections, 63, 399, 420
Isoclines, 347, 348
Isothermal process, 279, 280, 296, 309,
320, 322

Johnson’s charts for differential tank, 367
Junction

of two channels, 402, 406-408

of two pipes (see Series junction)

of three pipes, 57

series, 55, 214, 216, 226,402

Kaplan turbine, 111, 126, 135, 155

Lake, 109, 384

Landslide-generated waves, 431, 432
height, 431
period, 432

Lax Wendroff finite-difference scheme, 164,

165, 288-290, 423
Limit cycle, 358, 360
Line packing, 192, 193, 198
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Liquid-column separation (see Water-
column separation, Column separa-
tion)

Liquid-vapor mixture, 158

Load, 117,118, 134,137, 140, 145

base, 373

Load acceptance, 126, 366, 371, 373, 375,
410,411, 435,440,441

Load rejection, 126, 130-133, 153, 315,
327, 346, 366, 367, 374-376, 410,
411,435, 436,440

Long pipeline, 191, 192, 199

Loop
primary, 159, 169, 170
secondary, 159, 170
Loss-of-coolant-accident (LOCA), 160, 169,
186
Lumped-system approach, 162-164

Manning’s formula, 392, 411, 417
Manning’sn, 371
Mathematical model, 96, 97, 109, 110, 129,
135, 153, 162, 163, 169, 283, 295,
325,326, 408,425, 432,433,435
Maximum pressure, charts for, 450-453,
457,458
Matrices
banded, 177, 420, 433
field (see Field matrices)
point (see Point matrices)
transfer (see Transfer matrices)
overall, 212, 213, 214, 223, 225, 226,
231, 233, 242, 250, 256, 270
unity, 223
Mechanical starting time, 134, 136, 148
Method
bisection, 169
explicit finite-difference, 164, 290, 291,
382, 395, 397,414, 415,422-424,
433,442
finite-eclement, 394, 433
impedance, 201, 208-210, 256, 260, 269
implicit finite-difference, 34, 164, 165,
170, 175, 382, 414-416, 422-424,
442
phase-plane, 333, 342, 360, 376
Newton-Raphson, 83, 91, 195, 251, 306,
310,311, 402
Runge-Kutta, 124, 222, 223, 338, 362,
406
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Method (Continued)
predictor-corrector, 48, 195, 196
transfer matrix, 201, 208, 210, 235, 238,
250, 256, 257, 259, 263, 264, 267,
269

Method of characteristics, 7, 34, 44, 74, 93,

98, 110, 164, 165,172, 174,177,
191, 195, 199, 201, 208, 209, 256,
257,259, 263, 269, 282, 287, 295,
296, 394, 395,423,425
Model
homogeneous-flow, 163
hydraulic, 111, 183,431,432, 435,
438-440
lumped-system, 163
separated-flow, 163, 283
Momentum equation, 170, 285, 288, 298
Moody formula, 111

Net head, 111, 114
Newton's second law of motion, 336, 361,
386
Node, 203, 2085, 248, 249, 250, 252
Normal depth, 417
Nuclei, 275
Number
Froude, 389, 425, 465
Reynolds, 33, 171

Oil-hammer, 2, 190
Oil pipeline, 190, 191, 194
One-dimensional flow, 27, 284, 383, 389
One-way surge tank, 102, 104, 292, 315,
333,334
Open channels, 17, 382, 384, 406
transients in, 16, 382, 384,415
Operation, 193, 194, 325
isolated, 325
float-tank, 193
put-and-take, 193
tightline, 194
Operations-research techniques, 324
Operating conditions, 19, 21, 158, 190
catastrophic, 95, 96, 130, 133
critical, 366
emergency, 95, 96, 103, 130, 133, 197
normal, 20, 95, 130, 197
Operating guidelines, 191, 440-442
Optimal control of transient flows, 303,
323

Optimum valve closure, 7, 324
Orifice, 216, 250, 306, 308
boundary conditions for, 55
differential, 306
losses, 306, 371

surge tank, 333, 334, 335, 360-363, 365-

367
Oscillating valve, 227, 240, 246, 252, 257,
261, 262, 267
transfer matrix for, 229
Oscillations
auto- or self-excited, 206, 207
free-damped, 250
perpetual, 360, 377
stable, 340, 360
unstable, 340, 360
Outflow, lateral, 394

Parallel
channels, 420, 421
loops, 216, 223, 225, 226
pumps, 21, 86, 93, 98, 317
system, 223, 224
Pelton turbine, 114
Penstock, 67, 110, 127, 133, 135, 145,
147, 148, 326, 332, 365, 366
design criteria, 130
Perfect gas law, 168, 287, 296, 308, 309
Period, 2, 238, 239, 258, 338, 339, 376
natural, 194, 203, 206, 238
of fundamental, 212, 239, 252, 253, 256
257, 264, 338
of higher harmonics, 257
of surge-tank oscillationis, 339, 463
theoretical, 15, 211, 212, 267
Periodic flow, 203, 425
Phase angle, 239, 241, 246, 257, 261, 263,
264,270
Phase portraits, 342, 347, 348, 350, 351,
354, 355, 358, 359, 372
Pilot valve, 118,119
Pipe
concrete, 9, 27, 38
metal, 9, 27
PVC, 38
rigid, 10
water supply, 16
Pipeline
with variable characteristics, 221, 222,
267, 268, 269
rupture, 161, 169, 170, 178, 194

~

Piping systems
branch, 212
parallel, 216, 223, 225, 226
series, 63, 64, 65, 253, 260, 263
Point matrices, 201, 214, 215, 226, 231,
240, 241, 242, 247
for air chamber, 270
for branch junction, 233, 235, 245
for orifice, 225, 226, 270
for oscillating valve, 229
for series junction, 225, 226
for simple surge tank, 270
for valve, 225, 226, 229, 230
Poisson’s ratio, 30, 36
Positive surge, 467
Potential surge, 191, 192, 195
Power failure to pumps, 21, 74, 75, 77, 97,
98, 100, 102-104, 161, 164, 193,
194, 197, 198, 276, 302, 307, 456
charts for maximum and minimum pres-
sures, 454-458
Power intake, 127, 147
Power plants, 109
“hydroelectric, 17, 109, 110, 133, 137,
155, 208, 315, 332, 333, 364, 426,
431
nuclear, 158, 162, 186
Pressure
charts for maximum and minimum, 450-
458
fluctuating, 257
partial, 276, 282
saturation, 286
vacuum, 75
Pressure controllers, 197, 198
Pressure regulating valve, 67, 70, 105, 130,
133, 153, 292, 293, 312-315, 317,
325
Pressure regulator, 365
Pressure relief valve, 96, 197, 198, 293,
312-314, 317
Pressure rise, 4, 3, 10, 21, 95, 102-104,
151, 152, 191, 274, 302, 307, 325,
332,450, 451
Pressure wave, 3, 4,7, 11, 46, 191, 281,
303, 332
velocity of (see Waterhammer wave
velocity)
Pressurizer, 159
Primary loop, 159, 169, 170
Principle of superposition, 227
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Propeller turbine, 135
Prototype, 414, 440
Prototype tests, 35, 109, 126, 153, 408,
436,437 (see also Field tests)
Puisation damper, 198
Pump, centrifugal, 6, 18, 74, 75, 197, 198,
208, 295, 307, 315, 334
boundary conditions for, 74, 77, 79
characteristics, 6, 74, 75, 77, 79, 80, 89,
100, 103, 104, 162, 293, 295, 484
discharge line, 74, 75, 94, 100, 105, 206,
238, 249, 454, 456,457,462
events following power failure, 75
impeller, 18, 76
inertia, 75, 81, 100, 103, 276, 293, 456
instability of, 161
power failure, 21, 74, 75, 77, 97, 98, 100,
102-104, 161, 164
pressure characteristics, 77, 80, 94, 318
rated conditions, 76
head, 103, 104, 293,454
speed, 74-76, 93, 103, 293, 456
torque, 76
runaway speed, 75, 100
shutoff head, 197
specific speed, 77, 97, 293, 453
start-up, 74, 94, 95
start-up time, 100
stoppage, 75, 95
torque characteristics, 77, 80, 94, 318
zones of operation, 295
energy dissipation, 75, 77
pump operation, 75, 77, 100
turbine operation, 77
Pumps
centrifugal (see Pump, centrifugal)
multiplex, 198
parallel, 21, 86, 93, 98, 317
reciprocating, 194, 198, 206, 238
series, 88
starting and stopping, 74, 161, 164, 194,
384,401 :
Pumping mode, 324
Pumped-storage scheme, 324, 364
Pumping head, 190, 276, 318
Pumping stations, 190, 193, 194, 197
Pumping systems, 332
Pyramidal effect, 193

Rapidly-varied flow, 17, 382
Rarefaction control, 194, 198



500 Index

Rarefaction waves, 276
Reactor coolants, 158-160, 169
Reaction turbine, 348, 410
Reactors, 158, 159, 179, 183
boiling water, 160
liquid-metal fast breeder, 160
pressurized water, 159
Regulating characteristics, 332, 363
Regulation
line, 194
station, 194
Reinforced-concrete pipe, 38
Reservoir
constant-level, 187, 204, 237, 245, 249,
250, 252, 257, 267, 295, 399, 400,
408,411
downstream, 52, 110, 129
upstream, 2, 10, 11, 14, 15, 51, 109, 110,
203, 246, 332,450,463
Residual, 252, 256
Resonance, 6, 194, 198, 201, 206, 250
Resonant frequency, 210, 212, 250, 252,
257, 269
Resonating characteristics, 216, 257, 267
Resonating conditions, 201, 252
Resonator, Helmholtz, 270
Reynolds number, 33, 171
Rigid water-column theory, 137
Riser, surge tank, 363, 364, 367
Rivers, 18, 110
Root locus technique, 210
Runner, turbine, 111, 129, 208
Runge-Kutta method, 124, 222, 223, 338,
362, 406
Rhythmic opening and closing of valve, 5,
6, 204, 227

Safety valve, 4, 5, 312, 313, 314, 317

Saint-Venant equations, 389, 394, 395,
397, 398,405, 414,415, 424, 425,
430,431

Scroll case, turbine, 114, 133

Secondary water-surface fluctuations, 411,
425,427,429

Secondary loop, 159, 170

Self-excited oscillations, 206, 207

Self-regulation constant, 129, 135, 137,
140, 152

Series junction, 55, 214, 216, 226,402

Series system, 63, 64, 249, 252, 253, 257,
259, 260, 263, 265, 271
Servomechanism, 118
Sewers, 17, 18, 384,426
Singular point (or singularity), 342, 343,
348, 349, 353, 355-357, 359
compound, 357
nonsimple, 343, 347
simple, 343
types
focus, 344, 345, 349, 356, 357, 359
node, 344, 345, 349, 353, 356, 357,
359
saddle, 344, 352, 353, 356,357
vortex, 344, 345
virtual, 348, 352
Slide velocity, 432
Sluice gate, 192, 385
Smoothing operator, 290
Solution trajectory, 347, 348
Specific speed
pump, 77, 97, 293,453
turbine, 147
Specific weight, 28, 167, 264, 304, 322,
336, 390
Speed droop, 118, 119
temporary, 119, 120, 129, 137, 152
permanent, 119, 120, 122, 129, 135,
137, 140, 152
Speed-no-load gate, 111, 126, 131, 410, 440
Speed rise, 133, 150-153, 365
Spring-mass system, 201-203
Stability diagram, 342, 360
Stability limit curve, 135, 136, 139-141
Stability of finite-difference scheme, 44, 58,
59, 70,404,415,417,422
Standpipe, 304, 305, 310, 312,371
State vectors, 212, 223, 238, 240, 252
extended, 213, 229
Static head, 206, 227, 325, 326, 348,457
Starting time
mechanical, 134, 136, 148
pump, 94, 100
water, 134, 136, 149, 332
Steady flow, 1, 46, 385, 386
Steady-oscillatory flow, 1, 203, 204-206,
208-210, 216, 264,425
Steam-generator, 179, 183
Steamhammer, 2
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Steel-lined tunnel, 37, 40
Strain, 27, 31
Stress, 27, 279
Subcritical flow, 389, 424
Suction line, 74, 79, 82, 86, 87, 98, 100,
206, 238
Supercritical flow, 389, 424
Surface tension, 275, 279, 281, 285
Surge, 195, 382, 384, 426, 431, 433, 464~
467
absolute velocity of, 383, 386, 387, 466,
4617
charts for surges in open channels, 464-
467
free (for surge tank), 339, 376,377
height, 384, 388, 443, 466, 467
potential, 191, 192, 195
suppressor, 95, 96
Surge tanks (or surge chambers), 5, 7, 16,
95,96, 110, 130, 131, 199, 248, 292,
303-305, 307, 325, 332-334, 337,
341, 360, 362, 364, 365, 376, 453
closed, 333, 337
differential, 7, 333, 334, 362, 366, 367
downstream, 368-371
double, 370
inclined, 376, 377
multiple, 378
one-way, 102, 104, 292, 315, 333, 334
orifice, 333, 334, 360-363, 365-367
simple, 333-33S, 360-363, 365, 366,
369,462, 463-465
system of, 333, 364
tailrace, 376
upstream, 369-371
virtual, 328
Surge tank
charts for upsurges and downsurges in,
463-465
dynamic and continuity equations
for differential tank, 363
for orifice-tank, 361
for simple tank, 335, 336
gallery, 334, 367
period of oscillations, 339, 374, 463
Surge wave
absolute velocity of, 383, 386, 387, 466,
467
celerity of, 3, 383, 384, 387, 389, 465
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negative, 384, 387
positive, 384, 387,425
Synchronous operation, 315, 325
Synchronous speed, 112, 118, 129, 134,
135, 148
System response, 236, 240
Systems
branch, 252, 257, 262, 263, 265, 271
distributed, 16, 17, 203, 220
lumped, 16, 17, 203, 219, 220, 269, 270,
303, 310
parallel, 223, 224, 252, 257, 261, 263
pressure-regulating valve-centrifugal pump,
318,321
series, 63, 64, 249, 252, 253, 257, 259,
260, 263, 265, 271

Tailrace channel, 127, 433-435
Tailrace manifold, 129, 368, 371, 376, 433
Tailrace tunnel, 17, 364, 368, 426, 431,
433-435
Tailwater level, 433
Thick-walled pipe, 35
Throughput, 190
Thoma area, 7, 342, 353, 357, 366
Tides, 382, 383, 384, 424
Tidal oscillations, 424
Time constant
actuator, 120
dashpot, 120
distributing valve, 120
Time domain, 208
Trajectory, solution, 358, 360
Transfer function, 120
Transfer matrices, 212-214, 216, 238, 245,
250, 252
extended, 235-237, 242, 246
extended overall, 240, 241
field (see Field matrices)
overall, 213, 214, 223, 225, 226, 231,
233, 242, 250, 256, 270
point. (see Point matrices)
Transfer matrix method, 201, 208, 210,
235, 238, 250, 256, 257, 259, 263,
264, 267, 269
Transient analysis, 39, 162, 186
Transient cavitation, 274, 275, 281, 282,
292
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Transient flow, 1, 2, 18, 44, 127, 195, 201,
282,442
Transients, 1, 7, 16, 99, 109, 153
causes of, 18, 124,161,194
caused by centrifugal pumps, 74, 93
in closed conduits, 16, 382, 429
in long oil pipelines, 190
in hydroelectric power plants, 109
in nuclear power plants, 158
in open channels, 16, 382, 384,415,429
in power canals, 425
in rivers, 425
methods of controlling, 302, 303
Transmission line, 109
Traveling waves, 16
Tuner, 270, 271
Tunnels, 110, 335, 336, 340, 435,463
concrete-lined, 368, 433
free-flow, 127 .
rock, 9, 27, 37
steel-lined, 37, 40
taitrace, 17, 364, 368, 426, 431, 433-435
unlined, 37, 368
Turbine, 16, 111, 145, 147, 153, 324, 332,
334, 352, 363, 365
characteristics of, 114, 130, 326, 348
efficiency, 366, 372
motoring, 113
operations
load acceptance, 17, 18, 109, 384, 401
load rejection, 17, 18, 109, 130, 384,
401
start-up, 109
rated head, 129, 148, 341
rated load, 366
rated output, 129, 148
runner, 18, 129, 148
scroll case, 110
speed rise, 150, 153, 302, 303, 324
unit flow, 111, 114
unit power, 111, 112,114
unit speed, 111-113
Turbine flow-demand characteristics, 341,
344, 345
constant flow, 341, 344
constant gate opening, 341, 348, 357
constant power, 341, 352, 357
constant power combined with full-gate,
341, 356, 357

Turbines

Francis, 58, 67, 71, 109, 111, 114, 124,
126, 127, 135, 147, 153, 208

impulse, 111, 114

Kaplan, 111, 126, 135, 155

Pelton, 114

propeller, 135

reaction, 348, 410

Turbogenerator, 109, 111, 117, 118, 127,

363, 364

Two-phase flows, 158, 164, 170, 186, 195

homogeneous, 162, 164
separated, 162, 164

Undissolved gases, 35
Unsteady flow, 1, 7, 27, 382, 394
Upsurge, 367, 440, 442, 456, 459-463

Valve, 2,6,7,10, 11, 18,185,193, 194,

203, 205, 206, 208, 216, 228, 276,
278,303, 312,450

boundary conditions for, 54

characteristics, 206

control, 161, 182, 183, 185, 194

optimum closure, 7, 324

rhythmic or periodic movements, 5, 6,
204, 2217

stroking, 324

uniform closure, 450

Valves

air, 95-97, 104, 186, 208, 292, 293, 312,
315, 320, 332,323

by-pass, 198, 208

check, 95, 96, 102, 104, 105, 161, 182,
183, 198, 208, 307, 312, 315, 317,
457

discharge, 74, 81, 97, 102, 103, 208

leaking, 207, 208

pressure-regulating, 67, 70, 105, 130, 133,

153, 292, 293, 312-315, 317, 325
pressure-relief, 96, 197, 198, 293, 312-
314,317
safety, 4, 5, 312-314, 317
Vapor pressure, 2, 35, 274-277, 279, 281,
282, 284, 286, 287
Velocity potential, 3
Velocity of pressure waves (see Water-
hammer wave velocity)
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Vibrations
forced, 206
mode of, 203
mechanical, 210
self-excited, 206, 208
steady, 201-203
Void fraction, 163, 164, 171, 278, 280~
284, 286

Water-boxes, 165
Water-column separation, 6, 75, 96 (see
also Column separation)
Water passages, 134
Waterhammer, 2, 4, 6, 178, 182
pressures, 1, 110, 134, 137, 150, 162,
364, 365,371
waves, 33, 86, 332
Waterhammer wave velocity, 5, 7, 10, 11,

17, 33-35, 39, 60, 68, 100, 129, 163,

164,171, 206, 212, 220, 267, 278,
281, 285, 287, 288, 298, 302, 328,
430,451, 457

in gas-liquid mixture, 274, 279

in noncircular conduits, 38

in PVC pipes, 38

in reinforced-concrete pipe, 38

in rock tunnels, 37

in steel-lined tunnels, 37

in thick-walled conduits, 35

in thin-walled conduits, 36

in woodstave pipes, 38

Water starting time, 134, 136, 149, 332
Wave

absolute velocity of, 383, 386, 387, 466,
467

amplitude, 383

attenuation, 193

celerity, 3, 383, 384, 387, 389, 465

propagation, 1, 2, 5, 11

reflection, 1, 4, 5, 11, 282, 449
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Wavefront, 7,9, 193, 283, 286, 388, 389,
425,465
Wavelength, 383, 384
Waves, 237, 382, 384, 386, 431
deep-water, 383, 384
elastic, 3
impulse, 431
landslide-generated, 431, 432
negative, 384, 387
positive, 384, 387, 425
pressure, 3,4, 7,11, 46, 191, 281, 303,
332
shallow-water, 383, 384
solitary, 384, 432
standing, 206, 249
stationary, 384
sound, 2, 4
surface, 206
translatory, 384
water, 8
Weir, 433-435
Wicket gates, 70, 109, 111, 114, 118,119,
126, 127, 130, 315, 324, 327, 372,
435, 440, 441
breakaway gate, 126, 410
effective closing time, 123, 130, 136,
150, 365, 410
effective opening time, 123, 131, 135,
136, 150, 410
speed-no-load gate, 111, 126, 131, 410,
440
Windage losses, 111-113, 130

Young’s modulus of elasticity, 31, 36, 280,
284

Zone of energy dissipation, 75, 77
Zone of pump operation, 75, 77, 100
Zone of turbine operation, 77



