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Preface

Structure of the Book

The book is divided into two parts: Circuit Design and System Design. The first part

deals with everything that goes directly inside the main code, while the second deals

with units that might be located in a library (for code sharing, reuse, and partitioning).

In summary, in Part I we study the entire background and coding techniques of

VHDL, which includes the following:

� Code structure: libraries, entity, architecture (chapter 2)

� Data types (chapter 3)

� Operators and attributes (chapter 4)

� Concurrent statements and concurrent code (chapter 5)

� Sequential statements and sequential code (chapter 6)

� Objects: signals, variables, constants (chapter 7)

� Design of finite state machines (chapter 8)

� And, finally, additional circuit designs are presented (chapter 9).

Then, in Part II we simply add new building blocks, which are intended mainly for

library allocation, to the material already presented. The structure of Part II is the

following:

� Packages and components (chapter 10)

� Functions and procedures (chapter 11)

� Finally, additional system designs are presented (chapter 12).

Distinguishing Features

The main distinguishing features of the book are the following:

� It teaches in detail all indispensable features of VHDL synthesis in a concise

format.

� The sequence is well established. For example, a clear distinction is made between

what is at the circuit level (Part I) versus what is at the system level (Part II). The

foundations of VHDL are studied in chapters 1 to 4, fundamental coding in chapters 5

to 9, and finally system coding in chapters 10 to 12.

� Each chapter is organized in such a way to collect together related information as

closely as possible. For instance, concurrent code is treated collectively in one chap-
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ter, while sequential code is treated in another; data types are discussed in one chap-

ter, while operators and attributes are in another; what is at the circuit level is seen in

one part of the book, while what is at the system level is in another.

� While books on VHDL give limited emphasis to digital design concepts, and books

on digital design discuss VHDL only briefly, the present work completely integrates

them. It is indeed a design-oriented approach.

� To achieve the above-mentioned integration between VHDL and digital design, the

following steps are taken:

� a large number of complete design examples (rather than sketchy or partial

solutions) are presented;

� illustrative top-level circuit diagrams are always shown;

� fundamental design concepts are reviewed;

� the solutions are explained and commented;

� the circuits are always physically implemented (using programmable logic devices);

� simulation results are always included, along with analysis and comments;

� finally, appendices on programmable devices and synthesis tools are also included.

Audience

The book is intended as a text for any of the following EE/CS courses:

� VHDL

� Automated Digital Design

� Programmable Logic Devices

� Digital Design (basic or advanced)

It is also a supporting text for in-house courses in any of the areas listed above,

particularly for vendor-provided courses on VHDL and/or programmable logic

devices.

Acknowledgments

To the anonymous reviewers for their invaluable comments and suggestions. Special

thanks also to Ricardo P. Jasinski and Bruno U. Pedroni for their reviews and

comments.
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1 Introduction

1.1 About VHDL

VHDL is a hardware description language. It describes the behavior of an electronic

circuit or system, from which the physical circuit or system can then be attained

(implemented).

VHDL stands for VHSIC Hardware Description Language. VHSIC is itself an

abbreviation for Very High Speed Integrated Circuits, an initiative funded by the

United States Department of Defense in the 1980s that led to the creation of VHDL.

Its first version was VHDL 87, later upgraded to the so-called VHDL 93. VHDL

was the original and first hardware description language to be standardized by the

Institute of Electrical and Electronics Engineers, through the IEEE 1076 standard.

An additional standard, the IEEE 1164, was later added to introduce a multi-valued

logic system.

VHDL is intended for circuit synthesis as well as circuit simulation. However,

though VHDL is fully simulatable, not all constructs are synthesizable. We will give

emphasis to those that are.

A fundamental motivation to use VHDL (or its competitor, Verilog) is that

VHDL is a standard, technology/vendor independent language, and is therefore

portable and reusable. The two main immediate applications of VHDL are in the

field of Programmable Logic Devices (including CPLDs—Complex Programmable

Logic Devices and FPGAs—Field Programmable Gate Arrays) and in the field of

ASICs (Application Specific Integrated Circuits). Once the VHDL code has been

written, it can be used either to implement the circuit in a programmable device

(from Altera, Xilinx, Atmel, etc.) or can be submitted to a foundry for fabrication

of an ASIC chip. Currently, many complex commercial chips (microcontrollers, for

example) are designed using such an approach.

A final note regarding VHDL is that, contrary to regular computer programs

which are sequential, its statements are inherently concurrent (parallel). For that

reason, VHDL is usually referred to as a code rather than a program. In VHDL,

only statements placed inside a PROCESS, FUNCTION, or PROCEDURE are

executed sequentially.

1.2 Design Flow

As mentioned above, one of the major utilities of VHDL is that it allows the syn-

thesis of a circuit or system in a programmable device (PLD or FPGA) or in an

ASIC. The steps followed during such a project are summarized in figure 1.1. We

start the design by writing the VHDL code, which is saved in a file with the extension
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.vhd and the same name as its ENTITY’s name. The first step in the synthesis pro-

cess is compilation. Compilation is the conversion of the high-level VHDL language,

which describes the circuit at the Register Transfer Level (RTL), into a netlist at the

gate level. The second step is optimization, which is performed on the gate-level net-

list for speed or for area. At this stage, the design can be simulated. Finally, a place-

and-route (fitter) software will generate the physical layout for a PLD/FPGA chip or

will generate the masks for an ASIC.

1.3 EDA Tools

There are several EDA (Electronic Design Automation) tools available for circuit

synthesis, implementation, and simulation using VHDL. Some tools (place and

route, for example) are o¤ered as part of a vendor’s design suite (e.g., Altera’s

Quartus II, which allows the synthesis of VHDL code onto Altera’s CPLD/FPGA

chips, or Xilinx’s ISE suite, for Xilinx’s CPLD/FPGA chips). Other tools (synthe-

Place & Route

Compilation

Optimization

Simulation

Simulation

VHDL entry
(RTL level)

Netlist
(Gate level)

Synthesis

Optimized netlist
(Gate level)

Physical
device

Figure 1.1
Summary of VHDL design flow.
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sizers, for example), besides being o¤ered as part of the design suites, can also be

provided by specialized EDA companies (Mentor Graphics, Synopsis, Synplicity,

etc.). Examples of the latter group are Leonardo Spectrum (a synthesizer from

Mentor Graphics), Synplify (a synthesizer from Synplicity), and ModelSim (a simu-

lator from Model Technology, a Mentor Graphics company).

The designs presented in the book were synthesized onto CPLD/FPGA devices

(appendix A) either from Altera or Xilinx. The tools used were either ISE combined

with ModelSim (for Xilinx chips—appendix B), MaxPlus II combined with Ad-

vanced Synthesis Software (for Altera CPLDs—appendix C), or Quartus II (also

for Altera devices—appendix D). Leonardo Spectrum was also used occasionally.

Although di¤erent EDA tools were used to implement and test the examples

presented in the book (see list of tools above), we decided to standardize the visual

presentation of all simulation graphs. Due to its clean appearance, the waveform

editor of MaxPlus II (appendix C) was employed. However, newer simulators, like

ISEþModelSim (appendix B) and Quartus II (appendix D), o¤er a much broader

set of features, which allow, for example, a more refined timing analysis. For that

reason, those tools were adopted when examining the fine details of each design.

1.4 Translation of VHDL Code into a Circuit

A full-adder unit is depicted in figure 1.2. In it, a and b represent the input bits to be

added, cin is the carry-in bit, s is the sum bit, and cout the carry-out bit. As shown in

the truth table, s must be high whenever the number of inputs that are high is odd,

while cout must be high when two or more inputs are high.

A VHDL code for the full adder of figure 1.2 is shown in figure 1.3. As can be

seen, it consists of an ENTITY, which is a description of the pins (PORTS) of the

Full
Adder

a

b

cin

s

cout

a b   cin s   cout
0 0    0
0 1    0
1 0    0
1 1    0

0     0
1     0
1     0
0     1

0 0    1
0 1    1
1 0    1
1 1    1

1     0
0     1
0     1
1 1

Figure 1.2
Full-adder diagram and truth table.
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circuit, and of an ARCHITECTURE, which describes how the circuit should func-

tion. We see in the latter that the sum bit is computed as s ¼ aaba cin, while cout

is obtained from cout ¼ a.bþ a.cinþ b.cin.

From the VHDL code shown on the left-hand side of figure 1.3, a physical circuit

is inferred, as indicated on the right-hand side of the figure. However, there are sev-

eral ways of implementing the equations described in the ARCHITECTURE of

figure 1.3, so the actual circuit will depend on the compiler/optimizer being used and,

more importantly, on the target technology. A few examples are presented in figure

1.4. For instance, if our target is a programmable logic device (PLD or FPGA—

appendix A), then two possible results (among many others) for cout are illustrated

in figures 1.4(b)–(c) (in both, of course, cout ¼ a.bþ a.cinþ b.cin). On the other

hand, if our target technology is an ASIC, then a possible CMOS implementation, at

the transistor level, is that of figure 1.4(d) (which makes use of MOS transistors and

clocked domino logic). Moreover, the synthesis tool can be set to optimize the layout

for area or for speed, which obviously also a¤ects the final circuitry.

Whatever the final circuit inferred from the code is, its operation should always be

verified still at the design level (after synthesis), as indicated in figure 1.1. Of course,

it must also be tested at the physical level, but then changes in the design might be

too costly.

When testing, waveforms similar to those depicted in figure 1.5 will be displayed

by the simulator. Indeed, figure 1.5 contains the simulation results from the circuit

synthesized with the VHDL code of figure 1.3, which implements the full-adder unit

of figure 1.2. As can be seen, the input pins (characterized by an inward arrow with

an I marked inside) and the output pins (characterized by an outward arrow with an

O marked inside) are those listed in the ENTITY of figure 1.3. We can freely estab-

ENTITY full_adder IS
PORT (a, b, cin: IN BIT;

s, cout: OUT BIT);
END full_adder;
--------------------------------------
ARCHITECTURE dataflow OF full_adder IS
BEGIN

s <= a XOR b XOR cin;
cout <= (a AND b) OR (a AND cin) OR
        (b AND cin);

END dataflow;

Circuit

Figure 1.3
Example of VHDL code for the full-adder unit of figure 1.2.
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a
b
cin

s

a

b

a

cin

b

cin

cout

a

cin

b

a

cin

cout

clk

a

b

a

cin

b

cin

cout

clk

(a) (b)

(c) (d)

Figure 1.4
Examples of possible circuits obtained from the full-adder VHDL code of figure 1.3.

Figure 1.5
Simulation results from the VHDL design of figure 1.3.
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lish the values of the input signals (a, b, and cin in this case), and the simulator will

compute and plot the output signals (s and cout). As can be observed in figure 1.5,

the outputs do behave as expected.

1.5 Design Examples

As mentioned in the preface, the book is indeed a design-oriented approach to the

task of teaching VHDL. The integration between VHDL and Digital Design is

achieved through a long series of well-detailed design examples. A summary of the

complete designs presented in the book is shown below.

� Adders (examples 3.3 and 6.8 and section 9.3)

� ALU (examples 5.5 and 6.10)

� Barrel shifters and vector shifters (examples 5.6 and 6.9 and section 9.1)

� Comparators (section 9.2)

� Controller, tra‰c light (example 8.5)

� Controller, vending machine (section 9.5)

� Count ones (examples 7.1 and 7.2)

� Counters (examples 6.2, 6.5, 6.7, 7.7, and 8.1)

� Decoder (example 4.1)

� Digital filters (section 12.4)

� Dividers, fixed point (section 9.4)

� Flip-flops and latches (examples 2.1, 5.7, 5.8, 6.1, 6.4, 6.6, 7.4, and 7.6)

� Encoder (example 5.4)

� Frequency divider (example 7.5)

� Function arith_shift (example 11.7)

� Function conv_integer (examples 11.2 and 11.5)

� Function multiplier (example 11.8)

� Function ‘‘þ’’ overloaded (example 11.6)

� Function positive_edge (examples 11.1, 11.3, and 11.4)

� Leading zeros counter (example 6.10)

� Multiplexers (examples 5.1, 5.2, and 7.3)

8 Chapter 1
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� Multipliers (example 11.8 and sections 12.1 and 12.2)

� MAC circuit (section 12.3)

� Neural networks (section 12.5)

� Parallel-to-serial converter (section 9.7)

� Parity detector (example 4.2)

� Parity generator (example 4.3)

� Playing with SSD (section 9.8)

� Procedure min_max (examples 11.9 and 11.10)

� RAM (example 6.11 and section 9.10)

� ROM (section 9.10)

� Serial data receiver (section 9.6)

� Shift registers (examples 6.3, 7.8, and 7.9)

� Signal generators (example 8.6 and section 9.9)

� String detector (example 8.4)

� Tri-state bu¤er/bus (example 5.3)

Moreover, several additional designs and experimental verifications are also pro-

posed as exercises:

� Adders and subtractors (problems 3.5, 5.4, 5.5, 6.14, 6.16, 10.2, and 10.3)

� Arithmetic-logic units (problems 6.13 and 10.1)

� Barrel and vector shifters (problems 5.7, 6.12, 9.1, and 12.2)

� Binary-to-Gray code converter (problem 5.6)

� Comparators (problems 5.8 and 6.15)

� Count ones (problem 6.9)

� Counters (problems 7.5 and 11.6)

� Data delay circuit (problem 7.2)

� Decoders (problems 4.4 and 7.6)

� DFFs (problems 6.17, 7.3, 7.4, and 7.7)

� Digital FIR filter (problem 12.4)

� Dividers (problems 5.3 and 9.2)

� Event counter (problem 6.1)

Introduction 9
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� Finite-state machine (problem 8.1)

� Frequency divider, generic (problem 6.4)

� Frequency multiplier (problem 6.5)

� Function conv_std_logic_vector (problem 11.1)

� Function ‘‘not’’ overloaded for integers (problem 11.2)

� Function shift for integers (problem 11.4)

� Function shift for std_logic_vector (problem 11.3)

� Function BCD-SSD converter (problem 11.6)

� Function ‘‘þ’’ overloaded for std_logic_vector (problem 11.8)

� Intensity encoder (problem 6.10)

� Keypad debouncer/encoder (problem 8.4)

� Multiplexers (problems 2.1, 5.1, and 6.11)

� Multipliers (problems 5.3, 11.5, and 12.1)

� Multiply-accumulate circuit (problem 12.3)

� Neural network (problem 12.5)

� Parity detector (problem 6.8)

� Playing with a seven-segment display (problem 9.6)

� Priority encoder (problems 5.2 and 6.3)

� Procedure statistics (problem 11.7)

� Random number generator plus SSD (problem 9.8)

� ROM (problem 3.4)

� Serial data receiver (problem 9.4)

� Serial data transmitter (problem 9.5)

� Shift register (problem 6.2)

� Signal generators (problems 8.2, 8.3, 8.6, and 8.7)

� Speed monitor (problem 9.7)

� Stop watch (problem 10.4)

� Timers (problems 6.6 and 6.7)

� Tra‰c-light controller (problem 8.5)

� Vending-machine controller (problem 9.3)

10 Chapter 1
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Additionally, four appendices on programmable logic devices and synthesis tools

are included:

� Appendix A: Programmable Logic Devices

� Appendix B: Xilinx ISEþModelSim Tutorial

� Appendix C: Altera MaxPlus IIþAdvanced Synthesis Software Tutorial

� Appendix D: Altera Quartus II Tutorial
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2 Code Structure

In this chapter, we describe the fundamental sections that comprise a piece of VHDL

code: LIBRARY declarations, ENTITY, and ARCHITECTURE.

2.1 Fundamental VHDL Units

As depicted in figure 2.1, a standalone piece of VHDL code is composed of at least

three fundamental sections:

� LIBRARY declarations: Contains a list of all libraries to be used in the design. For

example: ieee, std, work, etc.

� ENTITY: Specifies the I/O pins of the circuit.

� ARCHITECTURE: Contains the VHDL code proper, which describes how the

circuit should behave (function).

A LIBRARY is a collection of commonly used pieces of code. Placing such pieces

inside a library allows them to be reused or shared by other designs.

The typical structure of a library is illustrated in figure 2.2. The code is usually

written in the form of FUNCTIONS, PROCEDURES, or COMPONENTS, which

are placed inside PACKAGES, and then compiled into the destination library.

The fundamental units of VHDL (figure 2.1) will be studied in Part I of the book

(up to chapter 9), whereas the library-related sections (figure 2.2) will be seen in Part

II (chapters 10–12).

2.2 Library Declarations

To declare a LIBRARY (that is, to make it visible to the design) two lines of code

are needed, one containing the name of the library, and the other a use clause, as

shown in the syntax below.

LIBRARY library_name;
USE library_name.package_name.package_parts;

At least three packages, from three di¤erent libraries, are usually needed in a

design:

� ieee.std_logic_1164 (from the ieee library),

� standard (from the std library), and

� work (work library).

TLFeBOOK



LIBRARY
declarations

ENTITY

ARCHITECTURE

Basic
VHDL code

Figure 2.1
Fundamental sections of a basic VHDL code.

LIBRARY

PACKAGE

FUNCTIONS

COMPONENTS

PROCEDURES

CONSTANTS

TYPES

Figure 2.2
Fundamental parts of a LIBRARY.
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Their declarations are as follows:

LIBRARY ieee; -- A semi-colon (;) indicates

USE ieee.std_logic_1164.all; -- the end of a statement or

LIBRARY std; -- declaration, while a double

USE std.standard.all; -- dash (--) indicates a comment.

LIBRARY work;

USE work.all;

The libraries std and work shown above are made visible by default, so there is no

need to declare them; only the ieee library must be explicitly written. However, the

latter is only necessary when the STD_LOGIC (or STD_ULOGIC) data type is

employed in the design (data types will be studied in detail in the next chapter).

The purpose of the three packages/libraries mentioned above is the following: the

std_logic_1164 package of the ieee library specifies a multi-level logic system; std is a

resource library (data types, text i/o, etc.) for the VHDL design environment; and the

work library is where we save our design (the .vhd file, plus all files created by the

compiler, simulator, etc.).

Indeed, the ieee library contains several packages, including the following:

� std_logic_1164: Specifies the STD_LOGIC (8 levels) and STD_ULOGIC (9 levels)

multi-valued logic systems.

� std_logic_arith: Specifies the SIGNED and UNSIGNED data types and related

arithmetic and comparison operations. It also contains several data conversion

functions, which allow one type to be converted into another: conv_integer(p),

conv_unsigned(p, b), conv_signed(p, b), conv_std_logic_vector(p, b).

� std_logic_signed: Contains functions that allow operations with STD_LOGIC_

VECTOR data to be performed as if the data were of type SIGNED.

� std_logic_unsigned: Contains functions that allow operations with STD_LOGIC_

VECTOR data to be performed as if the data were of type UNSIGNED.

In chapter 3, all these libraries will be further described and used.

2.3 ENTITY

An ENTITY is a list with specifications of all input and output pins (PORTS) of the

circuit. Its syntax is shown below.

Code Structure 15
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ENTITY entity_name IS
PORT (

port_name : signal_mode signal_type;
port_name : signal_mode signal_type;
...);

END entity_name;

The mode of the signal can be IN, OUT, INOUT, or BUFFER. As illustrated in

figure 2.3, IN and OUT are truly unidirectional pins, while INOUT is bidirectional.

BUFFER, on the other hand, is employed when the output signal must be used

(read) internally.

The type of the signal can be BIT, STD_LOGIC, INTEGER, etc. Data types will

be discussed in detail in chapter 3.

Finally, the name of the entity can be basically any name, except VHDL reserved

words (VHDL reserved words are listed in appendix E).

Example: Let us consider the NAND gate of figure 2.4. Its ENTITY can be specified

as:

ENTITY nand_gate IS

PORT (a, b : IN BIT;

x : OUT BIT);

END nand_gate;

OUT

INOUT

BUFFER

IN Circuit

Figure 2.3
Signal modes.

a

b
x

Figure 2.4
NAND gate.
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The meaning of the ENTITY above is the following: the circuit has three I/O pins,

being two inputs (a and b, mode IN) and one output (x, mode OUT). All three signals

are of type BIT. The name chosen for the entity was nand_gate.

2.4 ARCHITECTURE

The ARCHITECTURE is a description of how the circuit should behave (function).

Its syntax is the following:

ARCHITECTURE architecture_name OF entity_name IS
[declarations]

BEGIN
(code)

END architecture_name;

As shown above, an architecture has two parts: a declarative part (optional), where

signals and constants (among others) are declared, and the code part (from BEGIN

down). Like in the case of an entity, the name of an architecture can be basically any

name (except VHDL reserved words), including the same name as the entity’s.

Example: Let us consider the NAND gate of figure 2.4 once again.

ARCHITECTURE myarch OF nand_gate IS

BEGIN

x <= a NAND b;

END myarch;

The meaning of the ARCHITECTURE above is the following: the circuit must

perform the NAND operation between the two input signals (a, b) and assign (‘‘<¼’’)

the result to the output pin (x). The name chosen for this architecture was myarch.

In this example, there is no declarative part, and the code contains just a single

assignment.

2.5 Introductory Examples

In this section, we will present two initial examples of VHDL code. Though we have

not yet studied the constructs that appear in the examples, they will help illustrate

fundamental aspects regarding the overall code structure. Each example is followed

by explanatory comments and simulation results.
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Example 2.1: DFF with Asynchronous Reset

Figure 2.5 shows the diagram of a D-type flip-flop (DFF), triggered at the rising-

edge of the clock signal (clk), and with an asynchronous reset input (rst). When

rst ¼ ‘1’, the output must be turned low, regardless of clk. Otherwise, the output

must copy the input (that is, q <¼ d) at the moment when clk changes from ‘0’ to ‘1’

(that is, when an upward event occurs on clk).

There are several ways of implementing the DFF of figure 2.5, one being the

solution presented below. One thing to remember, however, is that VHDL is inher-

ently concurrent (contrary to regular computer programs, which are sequential), so

to implement any clocked circuit (flip-flops, for example) we have to ‘‘force’’ VHDL

to be sequential. This can be done using a PROCESS, as shown below.

1 ---------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY dff IS

6 PORT ( d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END dff;

9 ---------------------------------------

10 ARCHITECTURE behavior OF dff IS

11 BEGIN

12 PROCESS (rst, clk)

13 BEGIN

14 IF (rst='1') THEN

15 q <= '0';

16 ELSIF (clk'EVENT AND clk='1') THEN

d

clk

rst

q

DFF

Figure 2.5
DFF with asynchronous reset.
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17 q <= d;

18 END IF;

19 END PROCESS;

20 END behavior;

21 ---------------------------------------

Comments:

Lines 2–3: Library declaration (library name and library use clause). Recall that the

other two indispensable libraries (std and work) are made visible by default.

Lines 5–8: Entity d¤.

Lines 10–20: Architecture behavior.

Line 6: Input ports (input mode can only be IN). In this example, all input signals are

of type STD_LOGIC.

Line 7: Output port (output mode can be OUT, INOUT, or BUFFER). Here, the

output is also of type STD_LOGIC.

Lines 11–19: Code part of the architecture (from word BEGIN on).

Lines 12–19: A PROCESS (inside it the code is executed sequentially).

Line 12: The PROCESS is executed every time a signal declared in its sensitivity list

changes. In this example, every time rst or clk changes the PROCESS is run.

Lines 14–15: Every time rst goes to ‘1’ the output is reset, regardless of clk (asyn-

chronous reset).

Lines 16–17: If rst is not active, plus clk has changed (an EVENT occurred on clk),

plus such event was a rising edge (clk ¼ ‘1’), then the input signal (d) is stored in the

flip-flop (q <¼ d).

Lines 15 and 17: The ‘‘<¼’’ operator is used to assign a value to a SIGNAL. In

contrast, ‘‘:¼’’ would be used for a VARIABLE. All ports in an entity are signals by

default.

Lines 1, 4, 9, and 21: Commented out (recall that ‘‘- -’’ indicates a comment). Used

only to better organize the design.

Note: VHDL is not case sensitive.

Simulation results:

Figure 2.6 presents simulation results regarding example 2.1. The graphs can be eas-

ily interpreted. The first column shows the signal names, as defined in the ENTITY.

It also shows the mode (direction) of the signals; notice that the arrows associated

Code Structure 19

TLFeBOOK



with rst, d, and clk are inward, and contain the letter I (input) inside, while that of q

is outward and has an O (output) marked inside. The second column has the value of

each signal in the position where the vertical cursor is placed. In the present case, the

cursor is at 0ns, where the signals have value 1, 0, 0, 0, respectively. In this example,

the values are simply ‘0’ or ‘1’, but when vectors are used, the values can be shown in

binary, decimal, or hexadecimal form. The third column shows the simulation

proper. The input signals (rst, d, clk) can be chosen freely, and the simulator will

determine the corresponding output (q). Comparing the results of figure 2.6 with

those expected from the circuit shown previously, we notice that it works properly.

As mentioned earlier, the designs presented in the book were synthesized onto CPLD/

FPGA devices (appendix A), either from Altera or Xilinx. The tools used were either

ISE combined with ModelSim (for Xilinx chips—appendix B), or MaxPlus II com-

bined with Advanced Synthesis Software (for Altera CPLDs—appendix C), or

Quartus II (also for Altera devices—appendix D). Leonardo Spectrum (from Mentor

Graphics) was also used occasionally.

Example 2.2: DFF plus NAND Gate

The circuit of figure 2.4 was purely combinational, while that of figure 2.5 was purely

sequential. The circuit of figure 2.7 is a mixture of both (without reset). In the

Figure 2.6
Simulation results of example 2.1.

a

b

clk

q
DFF

Figure 2.7
DFF plus NAND gate.
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solution that follows, we have purposely introduced an unnecessary signal (temp),

just to illustrate how a signal should be declared. Simulation results from the circuit

synthesized with the code below are shown in figure 2.8.

1 ---------------------------------------

2 ENTITY example IS

3 PORT ( a, b, clk: IN BIT;

4 q: OUT BIT);

5 END example;

6 ---------------------------------------

7 ARCHITECTURE example OF example IS

8 SIGNAL temp : BIT;

9 BEGIN

10 temp <= a NAND b;

11 PROCESS (clk)

12 BEGIN

13 IF (clk'EVENT AND clk='1') THEN q<=temp;

14 END IF;

15 END PROCESS;

16 END example;

17 ---------------------------------------

Comments:

Library declarations are not necessary in this case, because the data is of type BIT,

which is specified in the library std (recall that the libraries std and work are made

visible by default).

Lines 2–5: Entity example.

Lines 7–16: Architecture example.

Figure 2.8
Simulation results of example 2.2.
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Line 3: Input ports (all of type BIT).

Line 4: Output port (also of type BIT).

Line 8: Declarative part of the architecture (optional). The signal temp, of type BIT,

was declared. Notice that there is no mode declaration (mode is only used in entities).

Lines 9–15: Code part of the architecture (from word BEGIN on).

Lines 11–15: A PROCESS (sequential statements executed every time the signal clk

changes).

Lines 10 and 11–15: Though within a process the execution is sequential, the process,

as a whole, is concurrent with the other (external) statements; thus line 10 is executed

concurrently with the block 11–15.

Line 10: Logical NAND operation. Result is assigned to signal temp.

Lines 13–14: IF statement. At the rising edge of clk the value of temp is assigned to q.

Lines 10 and 13: The ‘‘<¼’’ operator is used to assign a value to a SIGNAL. In

contrast, ‘‘:¼’’ would be used for a VARIABLE.

Lines 8 and 10: Can be eliminated, changing ‘‘q <¼ a NAND b’’ in line 13.

Lines 1, 6, and 17: Commented out. Used only to better organize the design.

2.6 Problems

Problem 2.1: Multiplexer

The top-level diagram of a multiplexer is shown in figure P2.1. According to the

truth table, the output should be equal to one of the inputs if sel ¼ ‘‘01’’ (c ¼ a) or

sel ¼ ‘‘10’’ (c ¼ b), but it should be ‘0’ or Z (high impedance) if sel ¼ ‘‘00’’ or

sel ¼ ‘‘11’’, respectively.

sel
00
01
10
11

0
a
b
Z

sel (1:0)

a (7:0)

b (7:0)

c (7:0)MUX

c

Figure P2.1
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a) Complete the VHDL code below.

b) Write relevant comments regarding your solution (as in examples 2.1 and 2.2).

c) Compile and simulate your solution, checking whether it works as expected.

Note: A solution using IF was employed in the code below, because it is more intu-

itive. However, as will be seen later, a multiplexer can also be implemented with

other statements, like WHEN or CASE.

1 ---------------------------------------

2 LIBRARY ieee;

3 USE _________________________ ;

4 ---------------------------------------

5 ENTITY mux IS

6 PORT ( __ , __ : ___ STD_LOGIC_VECTOR (7 DOWNTO 0);

7 sel : IN ____________________________ ;

8 ___ : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END _____ ;

10 ---------------------------------------

11 ARCHITECTURE example OF _____ IS

12 BEGIN

13 PROCESS (a, b, ____ )

14 BEGIN

15 IF (sel = "00") THEN

16 c <= "00000000";

17 ELSIF (__________) THEN

18 c <= a;

19 _____ (sel = "10") THEN

20 c <= __;

21 ELSE

22 c <= (OTHERS => '__');

23 END ___ ;

24 END _________ ;

25 END _________ ;

26 ---------------------------------------
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Problem 2.2: Logic Gates

a) Write a VHDL code for the circuit of figure P2.2. Notice that it is purely combi-

national, so a PROCESS is not necessary. Write an expression for d using only logi-

cal operators (AND, OR, NAND, NOT, etc.).

b) Synthesize and simulate your circuit. After assuring that it works properly, open

the report file and check the actual expression implemented by the compiler. Com-

pare it with your expression.

a

b

c

d

Figure P2.2
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3 Data Types

In order to write VHDL code e‰ciently, it is essential to know what data types are

allowed, and how to specify and use them. In this chapter, all fundamental data

types are described, with special emphasis on those that are synthesizable. Discus-

sions on data compatibility and data conversion are also included.

3.1 Pre-Defined Data Types

VHDL contains a series of pre-defined data types, specified through the IEEE 1076

and IEEE 1164 standards. More specifically, such data type definitions can be found

in the following packages / libraries:

� Package standard of library std: Defines BIT, BOOLEAN, INTEGER, and REAL

data types.

� Package std_logic_1164 of library ieee: Defines STD_LOGIC and STD_ULOGIC

data types.

� Package std_logic_arith of library ieee: Defines SIGNED and UNSIGNED

data types, plus several data conversion functions, like conv_integer(p),

conv_unsigned(p, b), conv_signed(p, b), and conv_std_logic_vector(p, b).

� Packages std_logic_signed and std_logic_unsigned of library ieee: Contain functions

that allow operations with STD_LOGIC_VECTOR data to be performed as if the

data were of type SIGNED or UNSIGNED, respectively.

All pre-defined data types (specified in the packages/libraries listed above) are

described below.

� BIT (and BIT_VECTOR): 2-level logic (‘0’, ‘1’).

Examples:

SIGNAL x: BIT;

-- x is declared as a one-digit signal of type BIT.

SIGNAL y: BIT_VECTOR (3 DOWNTO 0);

-- y is a 4-bit vector, with the leftmost bit being the MSB.

SIGNAL w: BIT_VECTOR (0 TO 7);

-- w is an 8-bit vector, with the rightmost bit being the MSB.

Based on the signals above, the following assignments would be legal (to assign a

value to a signal, the ‘‘<¼’’ operator must be used):
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x <= '1';

-- x is a single-bit signal (as specified above), whose value is

-- '1'. Notice that single quotes (' ') are used for a single bit.

y <= "0111";

-- y is a 4-bit signal (as specified above), whose value is "0111"

-- (MSB='0'). Notice that double quotes (" ") are used for

-- vectors.

w <= "01110001";

-- w is an 8-bit signal, whose value is "01110001" (MSB='1').

� STD_LOGIC (and STD_LOGIC_VECTOR): 8-valued logic system introduced in

the IEEE 1164 standard.

‘X’ Forcing Unknown (synthesizable unknown)

‘0’ Forcing Low (synthesizable logic ‘1’)

‘1’ Forcing High (synthesizable logic ‘0’)

‘Z’ High impedance (synthesizable tri-state bu¤er)

‘W’ Weak unknown

‘L’ Weak low

‘H’ Weak high

‘–’ Don’t care

Examples:

SIGNAL x: STD_LOGIC;

-- x is declared as a one-digit (scalar) signal of type STD_LOGIC.

SIGNAL y: STD_LOGIC_VECTOR (3 DOWNTO 0) := "0001";

-- y is declared as a 4-bit vector, with the leftmost bit being

-- the MSB. The initial value (optional) of y is "0001". Notice

-- that the ":=" operator is used to establish the initial value.

Most of the std_logic levels are intended for simulation only. However, ‘0’, ‘1’, and

‘Z’ are synthesizable with no restrictions. With respect to the ‘‘weak’’ values, they are

resolved in favor of the ‘‘forcing’’ values in multiply-driven nodes (see table 3.1).

Indeed, if any two std_logic signals are connected to the same node, then conflicting

logic levels are automatically resolved according to table 3.1.

� STD_ULOGIC (STD_ULOGIC_VECTOR): 9-level logic system introduced in

the IEEE 1164 standard (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘–’). Indeed, the
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STD_LOGIC system described above is a subtype of STD_ULOGIC. The latter

includes an extra logic value, ‘U’, which stands for unresolved. Thus, contrary to

STD_LOGIC, conflicting logic levels are not automatically resolved here, so output

wires should never be connected together directly. However, if two output wires are

never supposed to be connected together, this logic system can be used to detect

design errors.

� BOOLEAN: True, False.

� INTEGER: 32-bit integers (from �2,147,483,647 to þ2,147,483,647).

� NATURAL: Non-negative integers (from 0 to þ2,147,483,647).

� REAL: Real numbers ranging from �1.0E38 to þ1.0E38. Not synthesizable.

� Physical literals: Used to inform physical quantities, like time, voltage, etc. Useful

in simulations. Not synthesizable.

� Character literals: Single ASCII character or a string of such characters. Not

synthesizable.

� SIGNED and UNSIGNED: data types defined in the std_logic_arith package of

the ieee library. They have the appearance of STD_LOGIC_VECTOR, but accept

arithmetic operations, which are typical of INTEGER data types (SIGNED and

UNSIGNED will be discussed in detail in section 3.6).

Examples:

x0 <= '0'; -- bit, std_logic, or std_ulogic value '0'

x1 <= "00011111"; -- bit_vector, std_logic_vector,

-- std_ulogic_vector, signed, or unsigned

x2 <= "0001_1111"; -- underscore allowed to ease visualization

x3 <= "101111" -- binary representation of decimal 47

Table 3.1
Resolved logic system (STD_LOGIC).

X 0 1 Z W L H -

X X X X X X X X X
0 X 0 X 0 0 0 0 X
1 X X 1 1 1 1 1 X
Z X 0 1 Z W L H X
W X 0 1 W W W W X
L X 0 1 L W L W X
H X 0 1 H W W H X
- X X X X X X X X
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x4 <= B"101111" -- binary representation of decimal 47

x5 <= O"57" -- octal representation of decimal 47

x6 <= X"2F" -- hexadecimal representation of decimal 47

n <= 1200; -- integer

m <= 1_200; -- integer, underscore allowed

IF ready THEN... -- Boolean, executed if ready=TRUE

y <= 1.2E-5; -- real, not synthesizable

q <= d after 10 ns; -- physical, not synthesizable

Example: Legal and illegal operations between data of di¤erent types.

SIGNAL a: BIT;

SIGNAL b: BIT_VECTOR(7 DOWNTO 0);

SIGNAL c: STD_LOGIC;

SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL e: INTEGER RANGE 0 TO 255;

...

a <= b(5); -- legal (same scalar type: BIT)

b(0) <= a; -- legal (same scalar type: BIT)

c <= d(5); -- legal (same scalar type: STD_LOGIC)

d(0) <= c; -- legal (same scalar type: STD_LOGIC)

a <= c; -- illegal (type mismatch: BIT x STD_LOGIC)

b <= d; -- illegal (type mismatch: BIT_VECTOR x

-- STD_LOGIC_VECTOR)

e <= b; -- illegal (type mismatch: INTEGER x BIT_VECTOR)

e <= d; -- illegal (type mismatch: INTEGER x

-- STD_LOGIC_VECTOR)

3.2 User-Defined Data Types

VHDL also allows the user to define his/her own data types. Two categories of user-

defined data types are shown below: integer and enumerated.

� User-defined integer types:

TYPE integer IS RANGE -2147483647 TO +2147483647;

-- This is indeed the pre-defined type INTEGER.

TYPE natural IS RANGE 0 TO +2147483647;

-- This is indeed the pre-defined type NATURAL.
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TYPE my_integer IS RANGE -32 TO 32;

-- A user-defined subset of integers.

TYPE student_grade IS RANGE 0 TO 100;

-- A user-defined subset of integers or naturals.

� User-defined enumerated types:

TYPE bit IS ('0', '1');

-- This is indeed the pre-defined type BIT

TYPE my_logic IS ('0', '1', 'Z');

-- A user-defined subset of std_logic.

TYPE bit_vector IS ARRAY (NATURAL RANGE <>) OF BIT;

-- This is indeed the pre-defined type BIT_VECTOR.

-- RANGE <> is used to indicate that the range is unconstrained.

-- NATURAL RANGE <>, on the other hand, indicates that the only

-- restriction is that the range must fall within the NATURAL

-- range.

TYPE state IS (idle, forward, backward, stop);

-- An enumerated data type, typical of finite state machines.

TYPE color IS (red, green, blue, white);

-- Another enumerated data type.

The encoding of enumerated types is done sequentially and automatically (unless

specified otherwise by a user-defined attribute, as will be shown in chapter 4). For

example, for the type color above, two bits are necessary (there are four states), being

‘‘00’’ assigned to the first state (red), ‘‘01’’ to the second (green), ‘‘10’’ to the next

(blue), and finally ‘‘11’’ to the last state (white).

3.3 Subtypes

A SUBTYPE is a TYPE with a constraint. The main reason for using a subtype

rather than specifying a new type is that, though operations between data of di¤erent

types are not allowed, they are allowed between a subtype and its corresponding base

type.

Examples: The subtypes below were derived from the types presented in the previous

examples.
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SUBTYPE natural IS INTEGER RANGE 0 TO INTEGER'HIGH;

-- As expected, NATURAL is a subtype (subset) of INTEGER.

SUBTYPE my_logic IS STD_LOGIC RANGE '0' TO 'Z';

-- Recall that STD_LOGIC=('X','0','1','Z','W','L','H','-').

-- Therefore, my_logic=('0','1','Z').

SUBTYPE my_color IS color RANGE red TO blue;

-- Since color=(red, green, blue, white), then

-- my_color=(red, green, blue).

SUBTYPE small_integer IS INTEGER RANGE -32 TO 32;

-- A subtype of INTEGER.

Example: Legal and illegal operations between types and subtypes.

SUBTYPE my_logic IS STD_LOGIC RANGE '0' TO '1';

SIGNAL a: BIT;

SIGNAL b: STD_LOGIC;

SIGNAL c: my_logic;

...

b <= a; -- illegal (type mismatch: BIT versus STD_LOGIC)

b <= c; -- legal (same "base" type: STD_LOGIC)

3.4 Arrays

Arrays are collections of objects of the same type. They can be one-dimensional

(1D), two-dimensional (2D), or one-dimensional-by-one-dimensional (1Dx1D). They

can also be of higher dimensions, but then they are generally not synthesizable.

Figure 3.1 illustrates the construction of data arrays. A single value (scalar) is

shown in (a), a vector (1D array) in (b), an array of vectors (1Dx1D array) in (c), and

an array of scalars (2D array) in (d).

Indeed, the pre-defined VHDL data types (seen in section 3.1) include only the

scalar (single bit) and vector (one-dimensional array of bits) categories. The pre-

defined synthesizable types in each of these categories are the following:

� Scalars: BIT, STD_LOGIC, STD_ULOGIC, and BOOLEAN.

� Vectors: BIT_VECTOR, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR,

INTEGER, SIGNED, and UNSIGNED.
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As can be seen, there are no pre-defined 2D or 1Dx1D arrays, which, when nec-

essary, must be specified by the user. To do so, the new TYPE must first be defined,

then the new SIGNAL, VARIABLE, or CONSTANT can be declared using that

data type. The syntax below should be used.

To specify a new array type:

TYPE type_name IS ARRAY (specification) OF data_type;

To make use of the new array type:

SIGNAL signal_name: type_name [:= initial_value];

In the syntax above, a SIGNAL was declared. However, it could also be a CON-

STANT or a VARIABLE. Notice that the initial value is optional (for simulation

only).

Example: 1Dx1D array.

Say that we want to build an array containing four vectors, each of size eight bits.

This is then an 1Dx1D array (see figure 3.1). Let us call each vector by row, and the

complete array by matrix. Additionally, say that we want the leftmost bit of each

vector to be its MSB (most significant bit), and that we want the top row to be row 0.

Then the array implementation would be the following (notice that a signal, called x,

of type matrix, was declared as an example):

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC; -- 1D array

TYPE matrix IS ARRAY (0 TO 3) OF row; -- 1Dx1D array

SIGNAL x: matrix; -- 1Dx1D signal

(a) (b) (c) (d)

0 1 0 0 0

1 0 0 1 0

1 1 0 0 11   1   0   0   1

1   0   0   1   0

0   1   0   0   0

0 0   1   0   0   0

Figure 3.1
Illustration of (a) scalar, (b) 1D, (c) 1Dx1D, and (d) 2D data arrays.
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Example: Another 1Dx1D array.

Another way of constructing the 1Dx1D array above would be the following:

TYPE matrix IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

From a data-compatibility point of view, the latter might be advantageous over

that in the previous example (see example 3.1).

Example: 2D array.

The array below is truly two-dimensional. Notice that its construction is not based

on vectors, but rather entirely on scalars.

TYPE matrix2D IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

-- 2D array

Example: Array initialization.

As shown in the syntax above, the initial value of a SIGNAL or VARIABLE is op-

tional. However, when initialization is required, it can be done as in the examples

below.

... :="0001"; -- for 1D array

... :=('0','0','0','1') -- for 1D array

... :=(('0','1','1','1'), ('1','1','1','0')); -- for 1Dx1D or

-- 2D array

Example: Legal and illegal array assignments.

The assignments in this example are based on the following type definitions and

signal declarations:

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;

-- 1D array

TYPE array1 IS ARRAY (0 TO 3) OF row;

-- 1Dx1D array

TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

-- 1Dx1D

TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

-- 2D array

SIGNAL x: row;

SIGNAL y: array1;

SIGNAL v: array2;

SIGNAL w: array3;
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--------- Legal scalar assignments: ---------------

-- The scalar (single bit) assignments below are all legal,

-- because the "base" (scalar) type is STD_LOGIC for all signals

-- (x,y,v,w).

x(0) <= y(1)(2); -- notice two pairs of parenthesis

-- (y is 1Dx1D)

x(1) <= v(2)(3); -- two pairs of parenthesis (v is 1Dx1D)

x(2) <= w(2,1); -- a single pair of parenthesis (w is 2D)

y(1)(1) <= x(6);

y(2)(0) <= v(0)(0);

y(0)(0) <= w(3,3);

w(1,1) <= x(7);

w(3,0) <= v(0)(3);

--------- Vector assignments: ---------------------

x <= y(0); -- legal (same data types: ROW)

x <= v(1); -- illegal (type mismatch: ROW x

-- STD_LOGIC_VECTOR)

x <= w(2); -- illegal (w must have 2D index)

x <= w(2, 2 DOWNTO 0); -- illegal (type mismatch: ROW x

-- STD_LOGIC)

v(0) <= w(2, 2 DOWNTO 0); -- illegal (mismatch: STD_LOGIC_VECTOR

-- x STD_LOGIC)

v(0) <= w(2); -- illegal (w must have 2D index)

y(1) <= v(3); -- illegal (type mismatch: ROW x

-- STD_LOGIC_VECTOR)

y(1)(7 DOWNTO 3) <= x(4 DOWNTO 0); -- legal (same type,

-- same size)

v(1)(7 DOWNTO 3) <= v(2)(4 DOWNTO 0); -- legal (same type,

-- same size)

w(1, 5 DOWNTO 1) <= v(2)(4 DOWNTO 0); -- illegal (type mismatch)

3.5 Port Array

As we have seen, there are no pre-defined data types of more than one dimension.

However, in the specification of the input or output pins (PORTS) of a circuit (which

is made in the ENTITY), we might need to specify the ports as arrays of vectors.

Since TYPE declarations are not allowed in an ENTITY, the solution is to declare
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user-defined data types in a PACKAGE, which will then be visible to the whole de-

sign (thus including the ENTITY). An example is shown below.

------- Package: --------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

----------------------------

PACKAGE my_data_types IS

TYPE vector_array IS ARRAY (NATURAL RANGE <>) OF

STD_LOGIC_VECTOR(7 DOWNTO 0);

END my_data_types;

--------------------------------------------

------- Main code: -------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE work.my_data_types.all; -- user-defined package

---------------------------

ENTITY mux IS

PORT (inp: IN VECTOR_ARRAY (0 TO 3);

... );

END mux;

... ;

--------------------------------------------

As can be seen in the example above, a user-defined data type, called vector_array,

was created, which can contain an indefinite number of vectors of size eight bits each

(NATURAL RANGE <> signifies that the range is not fixed, with the only restriction that

it must fall within the NATURAL range, which goes from 0 to þ2,147,483,647). The

data type was saved in a PACKAGE called my_data_types, and later used in an

ENTITY to specify a PORT called inp. Notice in the main code the inclusion of an

additional USE clause to make the user-defined package my_data_types visible to the

design.

Another option for the PACKAGE above would be that shown below, where a

CONSTANT declaration is included (a detailed study of PACKAGES will be pre-

sented in chapter 10).

------- Package: -------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;
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----------------------------

PACKAGE my_data_types IS

CONSTANT b: INTEGER := 7;

TYPE vector_array IS ARRAY (NATURAL RANGE <>) OF

STD_LOGIC_VECTOR(b DOWNTO 0);

END my_data_types;

-------------------------------------------------

3.6 Records

Records are similar to arrays, with the only di¤erence that they contain objects of

di¤erent types.

Example:

TYPE birthday IS RECORD

day: INTEGER RANGE 1 TO 31;

month: month_name;

END RECORD;

3.7 Signed and Unsigned Data Types

As mentioned earlier, these types are defined in the std_logic_arith package of the

ieee library. Their syntax is illustrated in the examples below.

Examples:

SIGNAL x: SIGNED (7 DOWNTO 0);

SIGNAL y: UNSIGNED (0 TO 3);

Notice that their syntax is similar to that of STD_LOGIC_VECTOR, not like that

of an INTEGER, as one might have expected.

An UNSIGNED value is a number never lower than zero. For example, ‘‘0101’’

represents the decimal 5, while ‘‘1101’’ signifies 13. If type SIGNED is used instead,

the value can be positive or negative (in two’s complement format). Therefore,

‘‘0101’’ would represent the decimal 5, while ‘‘1101’’ would mean �3.

To use SIGNED or UNSIGNED data types, the std_logic_arith package, of

the ieee library, must be declared. Despite their syntax, SIGNED and UNSIGNED

data types are intended mainly for arithmetic operations, that is, contrary to
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STD_LOGIC_VECTOR, they accept arithmetic operations. On the other hand,

logical operations are not allowed. With respect to relational (comparison) opera-

tions, there are no restrictions.

Example: Legal and illegal operations with signed/unsigned data types.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all; -- extra package necessary

...

SIGNAL a: IN SIGNED (7 DOWNTO 0);

SIGNAL b: IN SIGNED (7 DOWNTO 0);

SIGNAL x: OUT SIGNED (7 DOWNTO 0);

...

v <= a + b; -- legal (arithmetic operation OK)

w <= a AND b; -- illegal (logical operation not OK)

Example: Legal and illegal operations with std_logic_vector.

LIBRARY ieee;

USE ieee.std_logic_1164.all; -- no extra package required

...

SIGNAL a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

...

v <= a + b; -- illegal (arithmetic operation not OK)

w <= a AND b; -- legal (logical operation OK)

Despite the constraint mentioned above, there is a simple way of allowing data of

type STD_LOGIC_VECTOR to participate directly in arithmetic operations. For

that, the ieee library provides two packages, std_logic_signed and std_logic_unsigned,

which allow operations with STD_LOGIC_VECTOR data to be performed as if the

data were of type SIGNED or UNSIGNED, respectively.

Example: Arithmetic operations with std_logic_vector.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all; -- extra package included

...
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SIGNAL a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

...

v <= a + b; -- legal (arithmetic operation OK), unsigned

w <= a AND b; -- legal (logical operation OK)

3.8 Data Conversion

VHDL does not allow direct operations (arithmetic, logical, etc.) between data of

di¤erent types. Therefore, it is often necessary to convert data from one type to an-

other. This can be done in basically two ways: or we write a piece of VHDL code for

that, or we invoke a FUNCTION from a pre-defined PACKAGE which is capable

of doing it for us.

If the data are closely related (that is, both operands have the same base type,

despite being declared as belonging to two di¤erent type classes), then the

std_logic_1164 of the ieee library provides straightforward conversion functions. An

example is shown below.

Example: Legal and illegal operations with subsets.

TYPE long IS INTEGER RANGE -100 TO 100;

TYPE short IS INTEGER RANGE -10 TO 10;

SIGNAL x : short;

SIGNAL y : long;

...

y <= 2*x + 5; -- error, type mismatch

y <= long(2*x + 5); -- OK, result converted into type long

Several data conversion functions can be found in the std_logic_arith package of

the ieee library. They are:

� conv_integer(p) : Converts a parameter p of type INTEGER, UNSIGNED,

SIGNED, or STD_ULOGIC to an INTEGER value. Notice that STD_LOGIC_

VECTOR is not included.

� conv_unsigned(p, b): Converts a parameter p of type INTEGER, UNSIGNED,

SIGNED, or STD_ULOGIC to an UNSIGNED value with size b bits.

� conv_signed(p, b): Converts a parameter p of type INTEGER, UNSIGNED,

SIGNED, or STD_ULOGIC to a SIGNED value with size b bits.
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� conv_std_logic_vector(p, b): Converts a parameter p of type INTEGER, UN-

SIGNED, SIGNED, or STD_LOGIC to a STD_LOGIC_VECTOR value with size

b bits.

Example: Data conversion.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

...

SIGNAL a: IN UNSIGNED (7 DOWNTO 0);

SIGNAL b: IN UNSIGNED (7 DOWNTO 0);

SIGNAL y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

...

y <= CONV_STD_LOGIC_VECTOR ((a+b), 8);

-- Legal operation: a+b is converted from UNSIGNED to an

-- 8-bit STD_LOGIC_VECTOR value, then assigned to y.

Another alternative was already mentioned in the previous section. It consists of

using the std_logic_signed or the std_logic_unsigned package from the ieee library.

Such packages allow operations with STD_LOGIC_VECTOR data to be performed

as if the data were of type SIGNED or UNSIGNED, respectively.

Besides the data conversion functions described above, several others are often

o¤ered by synthesis tool vendors.

3.9 Summary

The fundamental synthesizable VHDL data types are summarized in table 3.2.

3.10 Additional Examples

We close this chapter with the presentation of additional examples illustrating the

specification and use of data types. The development of actual designs from scratch

will only be possible after we conclude laying out the basic foundations of VHDL

(chapters 1 to 4).

Example 3.1: Dealing with Data Types

The legal and illegal assignments presented next are based on the following type

definitions and signal declarations:
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TYPE byte IS ARRAY (7 DOWNTO 0) OF STD_LOGIC; -- 1D

-- array

TYPE mem1 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC; -- 2D

-- array

TYPE mem2 IS ARRAY (0 TO 3) OF byte; -- 1Dx1D

-- array

TYPE mem3 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(0 TO 7); -- 1Dx1D

-- array

SIGNAL a: STD_LOGIC; -- scalar signal

SIGNAL b: BIT; -- scalar signal

SIGNAL x: byte; -- 1D signal

SIGNAL y: STD_LOGIC_VECTOR (7 DOWNTO 0); -- 1D signal

SIGNAL v: BIT_VECTOR (3 DOWNTO 0); -- 1D signal

SIGNAL z: STD_LOGIC_VECTOR (x'HIGH DOWNTO 0); -- 1D signal

SIGNAL w1: mem1; -- 2D signal

SIGNAL w2: mem2; -- 1Dx1D signal

SIGNAL w3: mem3; -- 1Dx1D signal

-------- Legal scalar assignments: ---------------------

x(2) <= a; -- same types (STD_LOGIC), correct indexing

y(0) <= x(0); -- same types (STD_LOGIC), correct indexing

z(7) <= x(5); -- same types (STD_LOGIC), correct indexing

b <= v(3); -- same types (BIT), correct indexing

w1(0,0) <= x(3); -- same types (STD_LOGIC), correct indexing

Table 3.2
Synthesizable data types.

Data types Synthesizable values

BIT, BIT_VECTOR ‘0’, ‘1’

STD_LOGIC, STD_LOGIC_VECTOR ‘X’, ‘0’, ‘1’, ‘Z’ (resolved)

STD_ULOGIC, STD_ULOGIC_VECTOR ‘X’, ‘0’, ‘1’, ‘Z’ (unresolved)

BOOLEAN True, False

NATURAL From 0 to þ2, 147, 483, 647

INTEGER From �2,147,483,647 to þ2,147,483,647

SIGNED From �2,147,483,647 to þ2,147,483,647

UNSIGNED From 0 to þ2,147,483,647

User-defined integer type Subset of INTEGER

User-defined enumerated type Collection enumerated by user

SUBTYPE Subset of any type (pre- or user-defined)

ARRAY Single-type collection of any type above

RECORD Multiple-type collection of any types above
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w1(2,5) <= y(7); -- same types (STD_LOGIC), correct indexing

w2(0)(0) <= x(2); -- same types (STD_LOGIC), correct indexing

w2(2)(5) <= y(7); -- same types (STD_LOGIC), correct indexing

w1(2,5) <= w2(3)(7); -- same types (STD_LOGIC), correct indexing

------- Illegal scalar assignments: --------------------

b <= a; -- type mismatch (BIT x STD_LOGIC)

w1(0)(2) <= x(2); -- index of w1 must be 2D

w2(2,0) <= a; -- index of w2 must be 1Dx1D

------- Legal vector assignments: ----------------------

x <= "11111110";

y <= ('1','1','1','1','1','1','0','Z');

z <= "11111" & "000";

x <= (OTHERS => '1');

y <= (7 =>'0', 1 =>'0', OTHERS => '1');

z <= y;

y(2 DOWNTO 0) <= z(6 DOWNTO 4);

w2(0)(7 DOWNTO 0) <= "11110000";

w3(2) <= y;

z <= w3(1);

z(5 DOWNTO 0) <= w3(1)(2 TO 7);

w3(1) <= "00000000";

w3(1) <= (OTHERS => '0');

w2 <= ((OTHERS=>'0'),(OTHERS=>'0'),(OTHERS=>'0'),(OTHERS=>'0'));

w3 <= ("11111100", ('0','0','0','0','Z','Z','Z','Z',),

(OTHERS=>'0'), (OTHERS=>'0'));

w1 <= ((OTHERS=>'Z'), "11110000" ,"11110000", (OTHERS=>'0'));

------ Illegal array assignments: ----------------------

x <= y; -- type mismatch

y(5 TO 7) <= z(6 DOWNTO 0); -- wrong direction of y

w1 <= (OTHERS => '1'); -- w1 is a 2D array

w1(0, 7 DOWNTO 0) <="11111111"; -- w1 is a 2D array

w2 <= (OTHERS => 'Z'); -- w2 is a 1Dx1D array

w2(0, 7 DOWNTO 0) <= "11110000"; -- index should be 1Dx1D

-- Example of data type independent array initialization:

FOR i IN 0 TO 3 LOOP

FOR j IN 7 DOWNTO 0 LOOP

x(j) <= '0';

y(j) <= '0'
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z(j) <= '0';

w1(i,j) <= '0';

w2(i)(j) <= '0';

w3(i)(j) <= '0';

END LOOP;

END LOOP;

---------------------------------------------------------

Example 3.2: Single Bit Versus Bit Vector

This example illustrates the di¤erence between a single bit assignment and a bit

vector assignment (that is, BIT versus BIT_VECTOR, STD_LOGIC versus STD_

LOGIC_VECTOR, or STD_ULOGIC versus STD_ULOGIC_VECTOR).

Two VHDL codes are presented below. Both perform the AND operation be-

tween the input signals and assign the result to the output signal. The only di¤erence

between them is the number of bits in the input and output ports (one bit in the first,

four bits in the second). The circuits inferred from these codes are shown in figure

3.2.

----------------------------

ENTITY and2 IS

PORT (a, b: IN BIT;

x: OUT BIT);

END and2;

-----------------------------------

ENTITY and2 IS

PORT (a, b: IN BIT_VECTOR (0 TO 3);

x: OUT BIT_VECTOR (0 TO 3));

END and2;

----------------------------

ARCHITECTURE and2 OF and2 IS

BEGIN

x <= a AND b;

END and2;

----------------------------

-----------------------------------

ARCHITECTURE and2 OF and2 IS

BEGIN

x <= a AND b;

END and2;

-----------------------------------

Example 3.3: Adder

Figure 3.3 shows the top-level diagram of a 4-bit adder. The circuit has two inputs

(a, b) and one output (sum). Two solutions are presented. In the first, all signals are

of type SIGNED, while in the second the output is of type INTEGER. Notice in

solution 2 that a conversion function was used in line 13, for the type of aþ b does

not match that of sum. Notice also the inclusion of the std_logic_arith package (line

4 of each solution), which specifies the SIGNED data type. Recall that a SIGNED

value is represented like a vector; that is, similar to STD_LOGIC_VECTOR, not

like an INTEGER.
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1 ----- Solution 1: in/out=SIGNED ----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 ------------------------------------------

6 ENTITY adder1 IS

7 PORT ( a, b : IN SIGNED (3 DOWNTO 0);

8 sum : OUT SIGNED (4 DOWNTO 0));

9 END adder1;

10 ------------------------------------------

11 ARCHITECTURE adder1 OF adder1 IS

12 BEGIN

13 sum <= a + b;

14 END adder1;

15 ------------------------------------------

a

b
x

a(0)

b(0)
x(0)

a(1)

b(1)
x(1)

a(2)

b(2)
x(2)

a(3)

b(3)
x(3)

Figure 3.2
Circuits inferred from the codes of example 3.2.

a (3:0)

b (3:0)
sum (4:0)+

Figure 3.3
4-bit adder of example 3.3.
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1 ------ Solution 2: out=INTEGER -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 ------------------------------------------

6 ENTITY adder2 IS

7 PORT ( a, b : IN SIGNED (3 DOWNTO 0);

8 sum : OUT INTEGER RANGE -16 TO 15);

9 END adder2;

10 ------------------------------------------

11 ARCHITECTURE adder2 OF adder2 IS

12 BEGIN

13 sum <= CONV_INTEGER(a + b);

14 END adder2;

15 ------------------------------------------

Simulation results (for either solution) are presented in figure 3.4. Notice that the

numbers are represented in hexadecimal 2’s complement form. Since the input range

is from �8 to 7, its representation is 7 ! 7, 6 ! 6, . . . , 0 ! 0, �1 ! 15, �2 ! 14,

. . . , �8 ! 8. Likewise, the output range is from �16 to 15, so its representation is

15 ! 15, . . . , 0 ! 0, �1 ! 31, . . . , �16 ! 16. Therefore, 2Hþ 4H ¼ 06H (that is,

2þ 4 ¼ 6), 4Hþ 8H ¼ 1CH (that is, 4þ (�8) ¼ �4), etc., where H ¼ Hexadecimal.

3.11 Problems

The problems below are based on the following TYPE definitions and SIGNAL

declarations:

TYPE array1 IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;

TYPE array2 IS ARRAY (3 DOWNTO 0, 7 DOWNTO 0) OF STD_LOGIC;

TYPE array3 IS ARRAY (3 DOWNTO 0) OF array1;

Figure 3.4
Simulation results of example 3.3.
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SIGNAL a : BIT;

SIGNAL b : STD_LOGIC;:

SIGNAL x : array1;

SIGNAL y : array2;

SIGNAL w : array3;

SIGNAL z : STD_LOGIC_VECTOR (7 DOWNTO 0);

Problem 3.1

Determine the dimensionality (scalar, 1D, 2D, or 1Dx1D) of the signals given. Also,

write down a numeric example for each signal.

Problem 3.2

Determine which among the assignments in table P3.2 are legal and which are illegal.

Briefly justify your answers. Also, determine the dimensionality of each assignment

(on both sides).

Problem 3.3: Subtypes

Consider the pre-defined data types INTEGER and STD_LOGIC_VECTOR. Con-

sider also the user-defined types ARRAY1 and ARRAY2 specified above. For each,

write down a possible SUBTYPE.

Problem 3.4: ROM

Consider the implementation of a ROM (read-only memory). It can be done utiliz-

ing a 1Dx1D CONSTANT. Say that the ROM must be organized as a pile of eight

words of four bits each. Create an array called rom, then define a signal of type

rom capable of solving this problem. Choose the values to be stored in the ROM

and declare them along with your CONSTANT, that is, ‘‘CONSTANT my_rom:

rom :=(values);’’.

Problem 3.5: Simple Adder

Rewrite solution 1 of example 3.3, but this time with all input and output signals of

type STD_LOGIC_VECTOR. (Suggestion: review section 3.8).
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Table P3.2

Assignment
Dimension
(on each side)

Legal or illegal
(why)

a <= x(2);
b <= x(2);
b <= y(3,5);
b <= w(5)(3);
y(1)(0) <= z(7);
x(0) <= y(0,0);

x <= "1110000";
a <= "0000000";
y(1) <= x;
w(0) <= y;
w(1) <= (7=>'1', OTHERS=>'0');
y(1) <= (0=>'0', OTHERS=>'1');

w(2)(7 DOWNTO 0) <= x;
w(0)(7 DOWNTO 6) <= z(5 DOWNTO 4);
x(3) <= x(5 DOWNTO 5);
b <= x(5 DOWNTO 5);
y <= ((OTHERS=>'0'), (OTHERS=>'0'),
(OTHERS=>'0'), "10000001");
z(6) <= x(5);
z(6 DOWNTO 4) <= x(5 DOWNTO 3);
z(6 DOWNTO 4) <= y(5 DOWNTO 3);
y(6 DOWNTO 4) <= z(3 TO 5);
y(0, 7 DOWNTO 0) <= z;
w(2,2) <= '1';
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4 Operators and Attributes

The purpose of this chapter, along with the preceding chapters, is to lay the basic

foundations of VHDL, so in the next chapter we can start dealing with actual circuit

designs. It is indeed impossible—or little productive, at least—to write any code ef-

ficiently without undertaking first the sacrifice of understanding data types, operators,

and attributes well.

Operators and attributes constitute a relatively long list of general VHDL con-

structs, which are often examined only sparsely. We have collected them together in

a specific chapter in order to provide a complete and more consistent view.

At the end of the chapter, a few design examples will be presented. However, due

to the fact that this is still a ‘‘foundation’’ chapter, the examples are merely illustra-

tive, like those in the preceding chapters. As mentioned above, we will start dealing

with actual designs in chapter 5.

4.1 Operators

VHDL provides several kinds of pre-defined operators:

� Assignment operators

� Logical operators

� Arithmetic operators

� Relational operators

� Shift operators

� Concatenation operators

Each of these categories is described below.

Assignment Operators

Are used to assign values to signals, variables, and constants. They are:

<¼ Used to assign a value to a SIGNAL.

:¼ Used to assign a value to a VARIABLE, CONSTANT, or GENERIC. Used

also for establishing initial values.

¼> Used to assign values to individual vector elements or with OTHERS.

Example: Consider the following signal and variable declarations:

SIGNAL x : STD_LOGIC;

VARIABLE y : STD_LOGIC_VECTOR(3 DOWNTO 0); -- Leftmost bit is MSB
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SIGNAL w: STD_LOGIC_VECTOR(0 TO 7); -- Rightmost bit is

-- MSB

Then the following assignments are legal:

x <= '1'; -- '1' is assigned to SIGNAL x using "<="

y := "0000"; -- "0000" is assigned to VARIABLE y using ":="

w <= "10000000"; -- LSB is '1', the others are '0'

w <= (0 =>'1', OTHERS =>'0'); -- LSB is '1', the others are '0'

Logical Operators

Used to perform logical operations. The data must be of type BIT, STD_LOGIC,

or STD_ULOGIC (or, obviously, their respective extensions, BIT_VECTOR,

STD_LOGIC_VECTOR, or STD_ULOGIC_VECTOR). The logical operators are:

� NOT

� AND

� OR

� NAND

� NOR

� XOR

� XNOR

Notes: The NOT operator has precedence over the others. The XNOR operator was

introduced in VHDL93.

Examples:

y <= NOT a AND b; -- (a'.b)

y <= NOT (a AND b); -- (a.b)'

y <= a NAND b; -- (a.b)'

Arithmetic Operators

Used to perform arithmetic operations. The data can be of type INTEGER,

SIGNED, UNSIGNED, or REAL (recall that the last cannot be synthesized di-

rectly). Also, if the std_logic_signed or the std_logic_unsigned package of the ieee

library is used, then STD_LOGIC_VECTOR can also be employed directly in addi-

tion and subtraction operations (as seen in section 3.6).
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þ Addition

� Subtraction

* Multiplication

/ Division

** Exponentiation

MOD Modulus

REM Remainder

ABS Absolute value

There are no synthesis restrictions regarding addition and subtraction, and the

same is generally true for multiplication. For division, only power of two dividers

(shift operation) are allowed. For exponentiation, only static values of base and ex-

ponent are accepted. Regarding the mod and rem operators, y mod x returns the re-

mainder of y/x with the signal of x, while y rem x returns the remainder of y/x with

the signal of y. Finally, abs returns the absolute value. With respect to the last three

operators (mod, rem, abs), there generally is little or no synthesis support.

Comparison Operators

Used for making comparisons. The data can be of any of the types listed above. The

relational (comparison) operators are:

¼ Equal to

=¼ Not equal to

< Less than

> Greater than

<¼ Less than or equal to

>¼ Greater than or equal to

Shift Operators

Used for shifting data. They were introduced in VHDL93. Their syntax is the fol-

lowing: 3left operand4 3shift operation4 3right operand4. The left operand must be

of type BIT_VECTOR, while the right operand must be an INTEGER (þ or � in

front of it is accepted). The shift operators are:

� sll Shift left logic – positions on the right are filled with ‘0’s

� srl Shift right logic – positions on the left are filled with ‘0’s
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Data Attributes

The pre-defined, synthesizable data attributes are the following:

� d’LOW: Returns lower array index

� d’HIGH: Returns upper array index

� d’LEFT: Returns leftmost array index

� d’RIGHT: Returns rightmost array index

� d’LENGTH: Returns vector size

� d’RANGE: Returns vector range

� d’REVERSE_RANGE: Returns vector range in reverse order

Example: Consider the following signal:

SIGNAL d : STD_LOGIC_VECTOR (7 DOWNTO 0);

Then:

d'LOW=0, d'HIGH=7, d'LEFT=7, d'RIGHT=0, d'LENGTH=8,

d'RANGE=(7 downto 0), d'REVERSE_RANGE=(0 to 7).

Example: Consider the following signal:

SIGNAL x: STD_LOGIC_VECTOR (0 TO 7);

Then all four LOOP statements below are synthesizable and equivalent.

FOR i IN RANGE (0 TO 7) LOOP ...

FOR i IN x'RANGE LOOP ...

FOR i IN RANGE (x'LOW TO x'HIGH) LOOP ...

FOR i IN RANGE (0 TO x'LENGTH-1) LOOP ...

If the signal is of enumerated type, then:

� d’VAL(pos): Returns value in the position specified

� d’POS(value): Returns position of the value specified

� d’LEFTOF(value): Returns value in the position to the left of the value specified

� d’VAL(row, column): Returns value in the position specified; etc.

There is little or no synthesis support for enumerated data type attributes.
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Signal Attributes

Let us consider a signal s. Then:

� s’EVENT: Returns true when an event occurs on s

� s’STABLE: Returns true if no event has occurred on s

� s’ACTIVE: Returns true if s ¼ ‘1’

� s’QUIET 3time4: Returns true if no event has occurred during the time specified

� s’LAST_EVENT: Returns the time elapsed since last event

� s’LAST_ACTIVE: Returns the time elapsed since last s ¼ ‘1’

� s’LAST_VALUE: Returns the value of s before the last event; etc.

Though most signal attributes are for simulation purposes only, the first two in the

list above are synthesizable, s’EVENT being the most often used of them all.

Example: All four assignments shown below are synthesizable and equivalent. They

return TRUE when an event (a change) occurs on clk, AND if such event is upward

(in other words, when a rising edge occurs on clk).

IF (clk'EVENT AND clk='1')... -- EVENT attribute used

-- with IF

IF (NOT clk'STABLE AND clk='1')... -- STABLE attribute used

-- with IF

WAIT UNTIL (clk'EVENT AND clk='1'); -- EVENT attribute used

-- with WAIT

IF RISING_EDGE(clk)... -- call to a function

4.3 User-Defined Attributes

We saw above attributes of the type HIGH, RANGE, EVENT, etc. Those are all

pre-defined in VHDL87. However, VHDL also allows the construction of user-

defined attributes.

To employ a user-defined attribute, it must be declared and specified. The syntax is

the following:

Attribute declaration:

ATTRIBUTE attribute_name: attribute_type;
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Attribute specification:

ATTRIBUTE attribute_name OF target_name: class IS value;

where:

attribute_type: any data type (BIT, INTEGER, STD_LOGIC_VECTOR, etc.)

class: TYPE, SIGNAL, FUNCTION, etc.

value: ‘0’, 27, ‘‘00 11 10 01’’, etc.

Example:

ATTRIBUTE number_of_inputs: INTEGER; -- declaration

ATTRIBUTE number_of_inputs OF nand3: SIGNAL IS 3; -- specification

...

inputs <= nand3'number_of_pins; -- attribute call, returns 3

Example: Enumerated encoding.

A popular user-defined attribute, which is provided by synthesis tool vendors, is the

enum_encoding attribute. By default, enumerated data types are encoded sequen-

tially. Thus, if we consider the enumerated data type color shown below:

TYPE color IS (red, green, blue, white);

its states will be encoded as red ¼ ‘‘00’’, green ¼ ‘‘01’’, blue ¼ ‘‘10’’, and white ¼
‘‘11’’. Enum_encoding allows the default encoding (sequential) to be changed. Thus

the following encoding scheme could be employed, for example:

ATTRIBUTE enum_encoding OF color: TYPE IS "11 00 10 01";

A user-defined attribute can be declared anywhere, except in a PACKAGE

BODY. When not recognized by the synthesis tool, it is simply ignored, or a warning

is issued.

4.4 Operator Overloading

We have just seen that attributes can be user-defined. The same is true for operators.

As an example, let us consider the pre-defined arithmetic operators seen in section

4.1 (þ, �, *, /, etc.). They specify arithmetic operations between data of certain types
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(INTEGER, for example). For instance, the pre-defined ‘‘þ’’ operator does not

allow addition between data of type BIT.

We can define our own operators, using the same name as the pre-defined ones.

For example, we could use ‘‘þ’’ to indicate a new kind of addition, this time between

values of type BIT_VECTOR. This technique is called operator overloading.

Example: Consider that we want to add an integer to a binary 1-bit number. Then

the following FUNCTION could be used (details on how to construct and use a

FUNCTION will be seen in chapter 11):

--------------------------------------

FUNCTION "+" (a: INTEGER, b: BIT) RETURN INTEGER IS

BEGIN

IF (b='1') THEN RETURN a+1;

ELSE RETURN a;

END IF;

END "+";

--------------------------------------

A call to the function above could thus be the following:

------------------------------

SIGNAL inp1, outp: INTEGER RANGE 0 TO 15;

SIGNAL inp2: BIT;

(...)

outp <= 3 + inp1 + inp2;

(...)

------------------------------

In ‘‘outp<=3+inp1+inp2;’’, the first ‘‘+’’ is the pre-defined addition operator

(adds two integers), while the second is the overloaded user-defined addition operator

(adds an integer and a bit).

4.5 GENERIC

As the name suggests, GENERIC is a way of specifying a generic parameter (that is,

a static parameter that can be easily modified and adapted to di¤erent applications).

The purpose is to confer the code more flexibility and reusability.

A GENERIC statement, when employed, must be declared in the ENTITY. The

specified parameter will then be truly global (that is, visible to the whole design,

including the ENTITY itself ). Its syntax is shown below.
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GENERIC (parameter_name : parameter_type := parameter_value);

Example: The GENERIC statement below specifies a parameter called n, of type

INTEGER, whose default value is 8. Therefore, whenever n is found in the ENTITY

itself or in the ARCHITECTURE (one or more) that follows, its value will be

assumed to be 8.

ENTITY my_entity IS

GENERIC (n : INTEGER := 8);

PORT (...);

END my_entity;

ARCHITECTURE my_architecture OF my_entity IS

...

END my_architecture:

More than one GENERIC parameter can be specified in an ENTITY. For

example:

GENERIC (n: INTEGER := 8; vector: BIT_VECTOR := "00001111");

Complete design examples, further illustrating the use of GENERIC and other

attributes and operators, are presented below.

4.6 Examples

We show now a few complete design examples, with the purpose of further illus-

trating the use of operators, attributes and GENERIC. Recall, however, that so

far we have just worked on establishing the basic foundations of VHDL, with

the formal discussion on coding techniques starting only in the next chapter (chap-

ter 5). Therefore, a first-time VHDL student should not feel discouraged if the

constructs in the examples look still unfamiliar. Instead, you may have a look at

the examples now, and then, after studying chapters 5 to 7, return and reexamine

them.

Example 4.1: Generic Decoder

Figure 4.1 shows the top-level diagram of a generic m-by-n decoder. The circuit has

two inputs, sel (m bits) and ena (single bit), and one output, x (n bits). We assume

that n is a power of two, so m ¼ log2n. If ena ¼ ‘0’, then all bits of x should be high;
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otherwise, the output bit selected by sel should be low, as illustrated in the truth table

of figure 4.1.

The ARCHITECTURE below is totally generic, for the only changes needed to

operate with di¤erent values of m and n are in the ENTITY (through sel, line 7, and

x, line 8, respectively). In this example, we have used m ¼ 3 and n ¼ 8. However,

though this works fine, the use of GENERIC would have made it clearer that m and

n are indeed generic parameters. That is indeed the procedure that we will adopt in

the other examples that follow (please refer to problem 4.4).

Notice in the code below the use of the following operators: ‘‘þ’’ (line 22), ‘‘*’’

(lines 22 and 24), ‘‘:¼’’ (lines 17, 18, 22, 24, and 27), ‘‘<¼’’ (line 29), and ‘‘¼>’’ (line

17). Notice also the use of the following attributes: HIGH (lines 14–15) and RANGE

(line 20).

1 ---------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY decoder IS

6 PORT ( ena : IN STD_LOGIC;

7 sel : IN STD_LOGIC_VECTOR (2 DOWNTO 0);

8 x : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END decoder;

10 ---------------------------------------------

11 ARCHITECTURE generic_decoder OF decoder IS

12 BEGIN

13 PROCESS (ena, sel)

14 VARIABLE temp1 : STD_LOGIC_VECTOR (x'HIGH DOWNTO 0);

15 VARIABLE temp2 : INTEGER RANGE 0 TO x'HIGH;

16 BEGIN

ena sel x

11110 00
001
01
10
11

1110
1101
1011
0111

sel (m-1:0)

ena

x(n-1)
x(n-2)
…
x(1)
x(0)

m x n 
DECODER

Figure 4.1
Decoder of example 4.1.
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17 temp1 := (OTHERS => '1');

18 temp2 := 0;

19 IF (ena='1') THEN

20 FOR i IN sel'RANGE LOOP -- sel range is 2 downto 0

21 IF (sel(i)='1') THEN -- Bin-to-Integer conversion

22 temp2:=2*temp2+1;

23 ELSE

24 temp2 := 2*temp2;

25 END IF;

26 END LOOP;

27 temp1(temp2):='0';

28 END IF;

29 x <= temp1;

30 END PROCESS;

31 END generic_decoder;

32 ---------------------------------------------

The functionality of the encoder above can be verified in the simulation results of

figure 4.2. As can be seen, all outputs are high, that is, x ¼ ‘‘11111111’’ (decimal

255), when ena ¼ ‘0’. After ena has been asserted, only one output bit (that selected

by sel) is turned low. For example, when sel ¼ ‘‘000’’ (decimal 0), x ¼ ‘‘11111110’’

(decimal 254); when sel ¼ ‘‘001’’ (decimal 1), x ¼ ‘‘11111101’’ (decimal 253); when

sel ¼ ‘‘010’’ (decimal 2), x ¼ ‘‘11111011’’ (decimal 251); and so on.

Example 4.2: Generic Parity Detector

Figure 4.3 shows the top-level diagram of a parity detector. The circuit must provide

output ¼ ‘0’ when the number of ‘1’s in the input vector is even, or output ¼ ‘1’

otherwise. Notice in the VHDL code below that the ENTITY contains a GENERIC

statement (line 3), which defines n as 7. This code would work for any other vector

Figure 4.2
Simulation results of example 4.1.
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size, being only necessary to change the value of n in that line. You are invited to

highlight the operators and attributes that appear in this design.

1 --------------------------------------------

2 ENTITY parity_det IS

3 GENERIC (n : INTEGER := 7);

4 PORT ( input: IN BIT_VECTOR (n DOWNTO 0);

5 output: OUT BIT);

6 END parity_det;

7 --------------------------------------------

8 ARCHITECTURE parity OF parity_det IS

9 BEGIN

10 PROCESS (input)

11 VARIABLE temp: BIT;

12 BEGIN

13 temp := '0';

14 FOR i IN input'RANGE LOOP

15 temp := temp XOR input(i);

16 END LOOP;

17 output <= temp;

18 END PROCESS;

19 END parity;

20 --------------------------------------------

input (n:0) outputPARITY
DETECTOR

Figure 4.3
Generic parity detector of example 4.2.

Figure 4.4
Simulation results of example 4.2.
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Simulation results from the circuit synthesized with the code above are shown in

figure 4.4. Notice that when input ¼ ‘‘00000000’’ (decimal 0), the output is ‘0’, be-

cause the number of ‘1’s is even; when input ¼ ‘‘00000001’’ (decimal 1), the output is

‘1’, because the number of ‘1’s is odd; and so on.

Example 4.3: Generic Parity Generator

The circuit of figure 4.5 must add one bit to the input vector (on its left). Such bit

must be a ‘0’ if the number of ‘1’s in the input vector is even, or a ‘1’ if it is odd, such

that the resulting vector will always contain an even number of ‘1’s (even parity).

A VHDL code for the parity generator is shown below. Once again, you are

invited to highlight the operators and attributes used in the design.

1 -----------------------------------------------

2 ENTITY parity_gen IS

3 GENERIC (n : INTEGER := 7);

4 PORT ( input: IN BIT_VECTOR (n-1 DOWNTO 0);

5 output: OUT BIT_VECTOR (n DOWNTO 0));

6 END parity_gen;

7 -----------------------------------------------

8 ARCHITECTURE parity OF parity_gen IS

9 BEGIN

10 PROCESS (input)

11 VARIABLE temp1: BIT;

12 VARIABLE temp2: BIT_VECTOR (output'RANGE);

13 BEGIN

14 temp1 := '0';

15 FOR i IN input'RANGE LOOP

16 temp1 := temp1 XOR input(i);

17 temp2(i) := input(i);

18 END LOOP;

input (n-1:0) PARITY
GENERATOR output (n:0)

Figure 4.5
Generic parity generator of example 4.3.
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19 temp2(output'HIGH) := temp1;

20 output <= temp2;

21 END PROCESS;

22 END parity;

23 -----------------------------------------------

Simulation results are presented in figure 4.6. As can be seen, when input ¼
‘‘0000000’’ (decimal 0, with seven bits), output ¼ ‘‘00000000’’ (decimal 0, with eight

bits); when input ¼ ‘‘0000001’’ (decimal 1, with seven bits), output ¼ ‘‘10000001’’

(decimal 129, with eight bits); and so on.

4.7 Summary

A summary of VHDL operators and attributes is presented in tables 4.1 and 4.2, re-

spectively. The constructs that are not synthesizable (or have little synthesis support)

are marked with the ‘‘) ’’ symbol.

Figure 4.6
Simulation results of example 4.3.

Table 4.1
Operators.

Operator type Operators Data types

Assignment <¼, :¼, ¼> Any

Logical NOT, AND, NAND,
OR, NOR, XOR, XNOR

BIT, BIT_VECTOR,
STD_LOGIC, STD_LOGIC_VECTOR,
STD_ULOGIC, STD_ULOGIC_VECTOR

Arithmetic þ, �, *, /, **
(mod, rem, abs))

INTEGER, SIGNED, UNSIGNED

Comparison ¼, =¼, <, >, <¼, >¼ All above

Shift sll, srl, sla, sra, rol, ror BIT_VECTOR

Concatenation &, ( , , , ) Same as for logical operators, plus SIGNED and
UNSIGNED
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4.8 Problems

Problems 4.1 to 4.3 are based on the following signal declarations:

SIGNAL a : BIT := '1';

SIGNAL b : BIT_VECTOR (3 DOWNTO 0) := "1100";

SIGNAL c : BIT_VECTOR (3 DOWNTO 0) := "0010";

SIGNAL d : BIT_VECTOR (7 DOWNTO 0);

SIGNAL e : INTEGER RANGE 0 TO 255;

SIGNAL f : INTEGER RANGE -128 TO 127;

Problem 4.1: Operators (fill in the blanks)

x1 <= a & c; -> x1 <= ________

x2 <= c & b; -> x2 <= ________

x3 <= b XOR c; -> x3 <= ________

x4 <= a NOR b(3); -> x4 <= ________

x5 <= b sll 2; -> x5 <= ________

x6 <= b sla 2; -> x6 <= ________

x7 <= b rol 2; -> x7 <= ________

x8 <= a AND NOT b(0) AND NOT c(1); -> x8 <= ________

d <= (5=>'0', OTHERS=>'1'); -> d <= ________

Table 4.2
Attributes.

Application Attributes Return value

For regular DATA d’LOW Lower array index

d’HIGH Upper array index

d’LEFT Leftmost array index

d’RIGHT Rightmost array index

d’LENGTH Vector size

d’RANGE Vector range

d’REVERSE_RANGE Reverse vector range

d’VAL(pos)) Value in the position specifiedFor enumerated
DATA d’POS(value)) Position of the value specified

d’LEFTOF(value)) Value in the position to the left of the value specified

d’VAL(row, column)) Value in the position specified

For a SIGNAL s’EVENT True when an event occurs on s

s’STABLE True if no event has occurred on s

s’ACTIVE) True if s is high
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Problem 4.2: Attributes (fill in the blanks)

c'LOW -> ______

d'HIGH -> ______

c'LEFT -> ______

d'RIGHT -> ______

c'RANGE -> ______

d'LENGTH -> ______

c'REVERSE_RANGE -> ______

Problem 4.3: Legal and Illegal Operations

Verify whether each of the operations below is legal or illegal. Briefly justify your

answers.

b(0) AND a

a + d(7)

NOT b XNOR c

c + d

e - f

IF (b<c) ...

IF (b>=a) ...

IF (f/=e) ...

IF (e>d) ...

b sra 1

c srl -2

f ror 3

e*3

5**5

f/4

e/3

d <= c

d(6 DOWNTO 3) := b

e <= d

f := 100

Problem 4.4: Generic Decoder

The questions below are related to decoder circuit designed in example 4.1.

(a) In order for that design to operate with another vector size, two values must be

changed: the range of sel (line 7) and the range of x (line 8). We want now to trans-
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form that design in a truly generic one. In order to do so, introduce a GENERIC

statement in the ENTITY, specifying the number of bits of sel (say, n ¼ 3), then re-

place the upper range limits of sel and x by an attribute which is a function of n.

Synthesize and simulate your circuit in order to verify its functionality.

(b) In example 4.1, a binary-to-integer conversion was implemented (lines 20–26).

This conversion could be avoided if sel had been declared as an INTEGER. Modify

the code, declaring sel as an INTEGER. The code should remain truly generic, so

the range of sel must be specified in terms of n. Synthesize and simulate your new

code.

Problem 4.5

List all operators, attributes and generics employed in examples 4.2 and 4.3.
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5 Concurrent Code

Having finished laying out the basic foundations of VHDL (chapters 1 to 4), we can

now concentrate on the design (code) itself.

VHDL code can be concurrent (parallel) or sequential. The former will be studied

in this chapter, while the latter will be seen in chapter 6. This division is very impor-

tant, for it allows a better understanding of which statements are intended for each

kind of code, as well as the consequences of using one or the other.

The concurrent statements in VHDL are WHEN and GENERATE. Besides them,

assignments using only operators (AND, NOT, þ, *, sll, etc.) can also be used to

construct concurrent code. Finally, a special kind of assignment, called BLOCK, can

also be employed in this kind of code.

5.1 Concurrent versus Sequential

We start this chapter by reviewing the fundamental di¤erences between combinational

logic and sequential logic, and by contrasting them with the di¤erences between con-

current code and sequential code.

Combinational versus Sequential Logic

By definition, combinational logic is that in which the output of the circuit depends

solely on the current inputs (figure 5.1(a)). It is then clear that, in principle, the system

requires no memory and can be implemented using conventional logic gates.

In contrast, sequential logic is defined as that in which the output does depend on

previous inputs (figure 5.1(b)). Therefore, storage elements are required, which are

connected to the combinational logic block through a feedback loop, such that now

the stored states (created by previous inputs) will also a¤ect the output of the circuit.

A common mistake is to think that any circuit that possesses storage elements

(flip-flops) is sequential. A RAM (Random Access Memory) is an example. A RAM

can be modeled as in figure 5.2. Notice that the storage elements appear in a forward

path rather than in a feedback loop. The memory-read operation depends only on

the address vector presently applied to the RAM input, with the retrieved value

having nothing to do with previous memory accesses.

Concurrent versus Sequential Code

VHDL code is inherently concurrent (parallel). Only statements placed inside a

PROCESS, FUNCTION, or PROCEDURE are sequential. Still, though within

these blocks the execution is sequential, the block, as a whole, is concurrent with any

other (external) statements. Concurrent code is also called dataflow code.
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As an example, let us consider a code with three concurrent statements (stat1,

stat2, stat3). Then any of the alternatives below will render the same physical circuit:

stat1 stat3 stat1

stat2 C stat2 C stat3 C etc.

stat3 stat1 stat2

It is then clear that, since the order does not matter, purely concurrent code can

not be used to implement synchronous circuits (the only exception is when a

GUARDED BLOCK is used). In other words, in general we can only build combi-

national logic circuits with concurrent code. To obtain sequential logic circuits,

sequential code (chapter 6) must be employed. Indeed, with the latter we can imple-

ment both, sequential as well as combinational circuits.

(a) (b)

input outputCombinational
Logic

input

present
state Storage

Elements

outputCombinational
Logic

next
state

Figure 5.1
Combinational (a) versus sequential (b) logic.

input

Storage
Elements

outputCombinational
Logic

Figure 5.2
RAM model.
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In this chapter, we will discuss concurrent code, that is, we will study the state-

ments that can only be used outside PROCESSES, FUNCTIONS, or PROCE-

DURES. They are the WHEN statement and the GENERATE statement. Besides

them, assignments using only operators (logical, arithmetic, etc) can obviously also

be used to create combinational circuits. Finally, a special kind of statement, called

BLOCK, can also be employed.

In summary, in concurrent code the following can be used:

� Operators;

� The WHEN statement (WHEN/ELSE or WITH/SELECT/WHEN);

� The GENERATE statement;

� The BLOCK statement.

Each of these cases is described below.

5.2 Using Operators

This is the most basic way of creating concurrent code. Operators (AND, OR, þ, �.

*, sll, sra, etc.) were discussed in section 4.1, being a summary repeated in table 5.1

below.

Operators can be used to implement any combinational circuit. However, as will

become apparent later, complex circuits are usually easier to write using sequential

code, even if the circuit does not contain sequential logic. In the example that fol-

lows, a design using only logical operators is presented.

Table 5.1
Operators.

Operator type Operators Data types

Logical NOT, AND, NAND,
OR, NOR, XOR, XNOR

BIT, BIT_VECTOR,
STD_LOGIC, STD_LOGIC_VECTOR,
STD_ULOGIC, STD_ULOGIC_VECTOR

Arithmetic þ, �, *, /, **
(mod, rem, abs)

INTEGER, SIGNED, UNSIGNED

Comparison ¼, =¼, <, >, <¼, >¼ All above

Shift sll, srl, sla, sra, rol, ror BIT_VECTOR

Concatenation &, ( , , , ) Same as for logical operators, plus SIGNED and
UNSIGNED
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Example 5.1: Multiplexer #1

Figure 5.3 shows a 4-input, one bit per input multiplexer. The output must be equal

to the input selected by the selection bits, s1-s0. Its implementation, using only logi-

cal operators, can be done as follows:

1 ---------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY mux IS

6 PORT ( a, b, c, d, s0, s1: IN STD_LOGIC;

7 y: OUT STD_LOGIC);

8 END mux;

9 ---------------------------------------

10 ARCHITECTURE pure_logic OF mux IS

11 BEGIN

12 y <= (a AND NOT s1 AND NOT s0) OR

13 (b AND NOT s1 AND s0) OR

14 (c AND s1 AND NOT s0) OR

15 (d AND s1 AND s0);

16 END pure_logic;

17 ---------------------------------------

Simulation results, confirming the functionality of the circuit, are shown in figure

5.4.

s1 s0

a

b

c

d

yMUX

Figure 5.3
Multiplexer of example 5.1.
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5.3 WHEN (Simple and Selected)

As mentioned above, WHEN is one of the fundamental concurrent statements (along

with operators and GENERATE). It appears in two forms: WHEN / ELSE (simple

WHEN) and WITH / SELECT / WHEN (selected WHEN). Its syntax is shown

below.

WHEN / ELSE:

assignment WHEN condition ELSE
assignment WHEN condition ELSE
...;

WITH / SELECT / WHEN:

WITH identifier SELECT
assignment WHEN value,
assignment WHEN value,
...;

Whenever WITH / SELECT / WHEN is used, all permutations must be tested,

so the keyword OTHERS is often useful. Another important keyword is UN-

AFFECTED, which should be used when no action is to take place.

Figure 5.4
Simulation results of example 5.1.

Concurrent Code 69

TLFeBOOK



Example:

------ With WHEN/ELSE -------------------------

outp <= "000" WHEN (inp='0' OR reset='1') ELSE

"001" WHEN ctl='1' ELSE

"010";

---- With WITH/SELECT/WHEN --------------------

WITH control SELECT

output <= "000" WHEN reset,

"111" WHEN set,

UNAFFECTED WHEN OTHERS;

-----------------------------------------------

Another important aspect related to the WHEN statement is that the ‘‘WHEN

value’’ shown in the syntax above can indeed take up three forms:

WHEN value -- single value

WHEN value1 to value2 -- range, for enumerated data types

-- only

WHEN value1 | value2 |... -- value1 or value2 or ...

Example 5.2: Multiplexer #2

This example shows the implementation of the same multiplexer of example 5.1, but

with a slightly di¤erent representation for the sel input (figure 5.5). However, in it

WHEN was employed instead of logical operators. Two solutions are presented: one

using WHEN/ELSE (simple WHEN) and the other with WITH/SELECT/WHEN

(selected WHEN). The experimental results are obviously similar to those obtained

in example 5.1.

sel (1:0)

a

b

c

d

yMUX

Figure 5.5
Multiplexer of example 5.2.
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1 ------- Solution 1: with WHEN/ELSE --------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------

5 ENTITY mux IS

6 PORT ( a, b, c, d: IN STD_LOGIC;

7 sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

8 y: OUT STD_LOGIC);

9 END mux;

10 -------------------------------------------

11 ARCHITECTURE mux1 OF mux IS

12 BEGIN

13 y <= a WHEN sel="00" ELSE

14 b WHEN sel="01" ELSE

15 c WHEN sel="10" ELSE

16 d;

17 END mux1;

18 -------------------------------------------

1 --- Solution 2: with WITH/SELECT/WHEN -----

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------

5 ENTITY mux IS

6 PORT ( a, b, c, d: IN STD_LOGIC;

7 sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

8 y: OUT STD_LOGIC);

9 END mux;

10 -------------------------------------------

11 ARCHITECTURE mux2 OF mux IS

12 BEGIN

13 WITH sel SELECT

14 y <= a WHEN "00", -- notice "," instead of ";"

15 b WHEN "01",

16 c WHEN "10",

17 d WHEN OTHERS; -- cannot be "d WHEN "11" "

18 END mux2;

19 --------------------------------------------
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In the solutions above, sel could have been declared as an INTEGER, in which

case the code would be the following:

1 ----------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------

5 ENTITY mux IS

6 PORT ( a, b, c, d: IN STD_LOGIC;

7 sel: IN INTEGER RANGE 0 TO 3;

8 y: OUT STD_LOGIC);

9 END mux;

10 ---- Solution 1: with WHEN/ELSE ---------------

11 ARCHITECTURE mux1 OF mux IS

12 BEGIN

13 y <= a WHEN sel=0 ELSE

14 b WHEN sel=1 ELSE

15 c WHEN sel=2 ELSE

16 d;

17 END mux1;

18 -- Solution 2: with WITH/SELECT/WHEN --------

19 ARCHITECTURE mux2 OF mux IS

20 BEGIN

21 WITH sel SELECT

22 y <= a WHEN 0,

23 b WHEN 1,

24 c WHEN 2,

25 d WHEN 3; -- here, 3 or OTHERS are equivalent,

26 END mux2; -- for all options are tested anyway

27 -----------------------------------------------

Note: Only one ARCHITECTURE can be synthesized at a time. Therefore, when-

ever we show more than one solution within the same overall code (like above), it is

implicit that all solutions but one must be commented out (with ‘‘- -’’), or a synthesis

script must be used, in order to synthesize the remaining solution. In simulations, the

CONFIGURATION statement can be used to select a specific architecture.

Note: For a generic mux, please refer to problem 5.1.
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Example 5.3: Tri-state Bu¤er

This is another example that illustrates the use of WHEN. The 3-state bu¤er of

figure 5.6 must provide output ¼ input when ena (enable) is low, or output ¼
‘‘ZZZZZZZZ’’ (high impedance) otherwise.

1 LIBRARY ieee;

2 USE ieee.std_logic_1164.all;

3 ----------------------------------------------

4 ENTITY tri_state IS

5 PORT ( ena: IN STD_LOGIC;

6 input: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 output: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

8 END tri_state;

9 ----------------------------------------------

10 ARCHITECTURE tri_state OF tri_state IS

11 BEGIN

12 output <= input WHEN (ena='0') ELSE

13 (OTHERS => 'Z');

14 END tri_state;

15 ----------------------------------------------

Simulation results from the circuit synthesized with the code above are shown in

figure 5.7. As expected, the output stays in the high-impedance state while ena is

high, being a copy of the input when ena is turned low.

Example 5.4: Encoder

The top-level diagram of an n-by-m encoder is shown in figure 5.8. We assume that n

is a power of two, so m ¼ log2n. One and only one input bit is expected to be high at

a time, whose address must be encoded at the output. Two solutions are presented,

one using WHEN / ELSE, and the other with WITH / SELECT / WHEN.

input (7:0) output (7:0)

ena

Figure 5.6
Tri-state bu¤er of example 5.3.
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1 ---- Solution 1: with WHEN/ELSE -------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY encoder IS

6 PORT ( x: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 y: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

8 END encoder;

9 ---------------------------------------------

10 ARCHITECTURE encoder1 OF encoder IS

11 BEGIN

12 y <= "000" WHEN x="00000001" ELSE

13 "001" WHEN x="00000010" ELSE

14 "010" WHEN x="00000100" ELSE

15 "011" WHEN x="00001000" ELSE

16 "100" WHEN x="00010000" ELSE

17 "101" WHEN x="00100000" ELSE

18 "110" WHEN x="01000000" ELSE

19 "111" WHEN x="10000000" ELSE

20 "ZZZ";

Figure 5.7
Simulation results of example 5.3.

x(n-1)
x(n-2)

…
x(1)
x(0)

(m-1:0)n x m 
ENCODER

Figure 5.8
Encoder of example 5.4.
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21 END encoder1;

22 ---------------------------------------------

1 ---- Solution 2: with WITH/SELECT/WHEN ------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY encoder IS

6 PORT ( x: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 y: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

8 END encoder;

9 ---------------------------------------------

10 ARCHITECTURE encoder2 OF encoder IS

11 BEGIN

12 WITH x SELECT

13 y <= "000" WHEN "00000001",

14 "001" WHEN "00000010",

15 "010" WHEN "00000100",

16 "011" WHEN "00001000",

17 "100" WHEN "00010000",

18 "101" WHEN "00100000",

19 "110" WHEN "01000000",

20 "111" WHEN "10000000",

21 "ZZZ" WHEN OTHERS;

22 END encoder2;

23 ---------------------------------------------

Notice that the code above has a long test list (lines 12–20 in solution 1, lines 13–

21 in solution 2). The situation becomes even more cumbersome when the number of

selection bits grows. In such a case, the GENERATE statement (section 5.4) or the

LOOP statement (section 6.6) can be employed.

Simulation results (from either solution) are shown in figure 5.9.

Example 5.5: ALU

An ALU (Arithmetic Logic Unit) is shown in figure 5.10. As the name says, it is a

circuit capable of executing both kinds of operations, arithmetic as well as logical. Its

operation is described in the truth table of figure 5.10. The output (arithmetic or

logical) is selected by the MSB of sel, while the specific operation is selected by sel’s

other three bits.
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Figure 5.9
Simulation results of example 5.4.

sel Operation Function Unit
0000
0001
0010
0011
0100
0101
0110
0111

y <= a
y <= a+1
y <= a-1
y <= b

y <= b+1
y <= b-1
y <= a+b

y <= a+b+cin

Transfer a
Increment a
Decrement a
Transfer b

Increment b
Decrement b
Add a and b

Add a and b with carry

Arithmetic

1000
1001
1010
1011
1100
1101
1110
1111

y <= NOT a
y <= NOT b

y <= a AND b
y <= a OR b

y <= a NAND b
y <= a NOR b
y <= a XOR b

y <= a XNOR b

Complement a
Complement b

AND
OR

NAND
NOR
XOR

XNOR

Logic

sel (3)

a (7:0)
b (7:0)

  cin

sel (3:0)

Logic
Unit

Arithmetic
Unit

Mux  y (7:0)

Figure 5.10
ALU of example 5.5.
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The solution presented below, besides using only concurrent code, also illustrates

the use of the same data type to perform both arithmetic and logical operations. That

is possible due to the presence of the std_logic_unsigned package of the ieee library

(discussed in section 3.6). Two signals, arith and logic, are used to hold the results

from the arithmetic and logic units, respectively, being the value passed to the output

selected by the multiplexer. Simulation results are shown in figure 5.11.

1 ----------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_unsigned.all;

5 ----------------------------------------------

6 ENTITY ALU IS

7 PORT (a, b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

8 sel: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

9 cin: IN STD_LOGIC;

10 y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

11 END ALU;

12 ----------------------------------------------

13 ARCHITECTURE dataflow OF ALU IS

14 SIGNAL arith, logic: STD_LOGIC_VECTOR (7 DOWNTO 0);

15 BEGIN

16 ----- Arithmetic unit: ------

17 WITH sel(2 DOWNTO 0) SELECT

18 arith <= a WHEN "000",

19 a+1 WHEN "001",

20 a-1 WHEN "010",

21 b WHEN "011",

22 b+1 WHEN "100",

Figure 5.11
Simulation results of example 5.5.
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23 b-1 WHEN "101",

24 a+b WHEN "110",

25 a+b+cin WHEN OTHERS;

26 ----- Logic unit: -----------

27 WITH sel(2 DOWNTO 0) SELECT

28 logic <= NOT a WHEN "000",

29 NOT b WHEN "001",

30 a AND b WHEN "010",

31 a OR b WHEN "011",

32 a NAND b WHEN "100",

33 a NOR b WHEN "101",

34 a XOR b WHEN "110",

35 NOT (a XOR b) WHEN OTHERS;

36 -------- Mux: ---------------

37 WITH sel(3) SELECT

38 y <= arith WHEN '0',

39 logic WHEN OTHERS;

40 END dataflow;

41 ----------------------------------------------

5.4 GENERATE

GENERATE is another concurrent statement (along with operators and WHEN). It

is equivalent to the sequential statement LOOP (chapter 6) in the sense that it allows

a section of code to be repeated a number of times, thus creating several instances of

the same assignments. Its regular form is the FOR / GENERATE construct, with

the syntax shown below. Notice that GENERATE must be labeled.

FOR / GENERATE:

label: FOR identifier IN range GENERATE
(concurrent assignments)

END GENERATE;

An irregular form is also available, which uses IF/GENERATE (with an IF

equivalent; recall that originally IF is a sequential statement). Here ELSE is not

allowed. In the same way that IF/GENERATE can be nested inside FOR/

GENERATE (syntax below), the opposite can also be done.
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IF / GENERATE nested inside FOR / GENERATE:

label1: FOR identifier IN range GENERATE
...
label2: IF condition GENERATE

(concurrent assignments)
END GENERATE;
...

END GENERATE;

Example:

SIGNAL x: BIT_VECTOR (7 DOWNTO 0);

SIGNAL y: BIT_VECTOR (15 DOWNTO 0);

SIGNAL z: BIT_VECTOR (7 DOWNTO 0);

...

G1: FOR i IN x'RANGE GENERATE

z(i) <= x(i) AND y(i+8);

END GENERATE;

One important remark about GENERATE (and the same is true for LOOP,

which will be seen in chapter 6) is that both limits of the range must be static. As

an example, let us consider the code below, where choice is an input (non-static)

parameter. This kind of code is generally not synthesizable.

NotOK: FOR i IN 0 TO choice GENERATE

(concurrent statements)

END GENERATE;

We also must to be aware of multiply-driven (unresolved) signals. For example,

OK: FOR i IN 0 TO 7 GENERATE

output(i)<='1' WHEN (a(i) AND b(i))='1' ELSE '0';

END GENERATE;

is fine. However, the compiler will complain that accum is multiply driven (and stop

compilation) in either of the following two cases:

NotOK: FOR i IN 0 TO 7 GENERATE

accum <="11111111" WHEN (a(i) AND b(i))='1' ELSE "00000000";

END GENERATE;
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NotOK: For i IN 0 to 7 GENERATE

accum <= accum + 1 WHEN x(i)='1';

END GENERATE;

Example 5.6: Vector Shifter

This example illustrates the use of GENERATE. In it, the output vector must be a

shifted version of the input vector, with twice its width and an amount of shift

specified by another input. For example, if the input bus has width 4, and the present

value is ‘‘1111’’, then the output should be one of the lines of the following matrix

(the original vector is underscored):

row(0): 0 0 0 0 1 1 1 1

row(1): 0 0 0 1 1 1 1 0

row(2): 0 0 1 1 1 1 0 0

row(3): 0 1 1 1 1 0 0 0

row(4): 1 1 1 1 0 0 0 0

The first row corresponds to the input itself, with no shift and the most significant

bits filled with ‘0’s. Each successive row is equal to the previous row shifted one

position to the left.

The solution below has input inp, output outp, and shift selection sel. Each row of

the array above (called matrix, line 14) is defined as subtype vector (line 12).

1 ------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------

5 ENTITY shifter IS

6 PORT ( inp: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

7 sel: IN INTEGER RANGE 0 TO 4;

8 outp: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END shifter;

10 ------------------------------------------------

11 ARCHITECTURE shifter OF shifter IS

12 SUBTYPE vector IS STD_LOGIC_VECTOR (7 DOWNTO 0);

13 TYPE matrix IS ARRAY (4 DOWNTO 0) OF vector;

14 SIGNAL row: matrix;

15 BEGIN
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16 row(0) <= "0000" & inp;

17 G1: FOR i IN 1 TO 4 GENERATE

18 row(i) <= row(i-1)(6 DOWNTO 0) & '0';

19 END GENERATE;

20 outp <= row(sel);

21 END shifter;

22 ------------------------------------------------

Simulation results are presented in figure 5.12. As can be seen, inp ¼ ‘‘0011’’

(decimal 3) was applied to the circuit. The result was outp ¼ ‘‘00000011’’ (decimal 3)

when sel ¼ 0 (no shift), outp ¼ ‘‘00000110’’ (decimal 6) when sel ¼ 1 (one shift to the

left), outp ¼ ‘‘00001100’’ (decimal 12) when sel ¼ 2 (two shifts to the left), and so on.

5.5 BLOCK

There are two kinds of BLOCK statements: Simple and Guarded.

Simple BLOCK

The BLOCK statement, in its simple form, represents only a way of locally parti-

tioning the code. It allows a set of concurrent statements to be clustered into a

BLOCK, with the purpose of turning the overall code more readable and more

manageable (which might be helpful when dealing with long codes). Its syntax is

shown below.

label: BLOCK
[declarative part]

BEGIN
(concurrent statements)

END BLOCK label;

Figure 5.12
Simulation results of example 5.6.
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Therefore, the overall aspect of a ‘‘blocked’’ code is the following:

------------------------

ARCHITECTURE example ...

BEGIN

...

block1: BLOCK

BEGIN

...

END BLOCK block1

...

block2: BLOCK

BEGIN

...

END BLOCK block2;

...

END example;

------------------------

Example:

b1: BLOCK

SIGNAL a: STD_LOGIC;

BEGIN

a <= input_sig WHEN ena='1' ELSE 'Z';

END BLOCK b1;

A BLOCK (simple or guarded) can be nested inside another BLOCK. The corre-

sponding syntax is shown below.

label1: BLOCK
[declarative part of top block]

BEGIN
[concurrent statements of top block]

label2: BLOCK
[declarative part nested block]

BEGIN
(concurrent statements of nested block)

END BLOCK label2;
[more concurrent statements of top block]

END BLOCK label1;
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Note: Although code partitioning techniques are the object of Part II of the book,

and the BLOCK statement seen above serves exactly to this purpose, BLOCK is

described in this section due to the fact that it is self-contained within the main code

(that is, it does not invoke any extra PACKAGE, COMPONENT, FUNCTION, or

PROCEDURE—these four units are the actual focus of Part II).

Guarded BLOCK

A guarded BLOCK is a special kind of BLOCK, which includes an additional ex-

pression, called guard expression. A guarded statement in a guarded BLOCK is exe-

cuted only when the guard expression is TRUE.

Guarded BLOCK:

label: BLOCK (guard expression)
[declarative part]

BEGIN
(concurrent guarded and unguarded statements)

END BLOCK label;

As the examples below illustrate, even though only concurrent statements can be

written within a BLOCK, with a guarded BLOCK even sequential circuits can be

constructed. This, however, is not a usual design approach.

Example 5.7: Latch Implemented with a Guarded BLOCK

The example presented below implements a transparent latch. In it, clk='1' (line

12) is the guard expression, while q<=GUARDED d (line 14) is a guarded statement.

Therefore, q<=d will only occur if clk='1'.

1 -------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------

5 ENTITY latch IS

6 PORT (d, clk: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END latch;

9 -------------------------------

10 ARCHITECTURE latch OF latch IS
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11 BEGIN

12 b1: BLOCK (clk='1')

13 BEGIN

14 q <= GUARDED d;

15 END BLOCK b1;

16 END latch;

17 -------------------------------

Example 5.8: DFF Implemented with a Guarded BLOCK

Here, a positive-edge sensitive D-type flip-flop, with synchronous reset, is designed.

The interpretation of the code is similar to that in the example above. In it,

clk'EVENT AND clk='1' (line 12) is the guard expression, while q <= GUARDED '0'

WHEN rst='1' (line 14) is a guarded statement. Therefore, q<='0' will occur when

the guard expression is true and rst is ‘1’.

1 -------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------

5 ENTITY dff IS

6 PORT ( d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END dff;

9 -------------------------------

10 ARCHITECTURE dff OF dff IS

11 BEGIN

12 b1: BLOCK (clk'EVENT AND clk='1')

13 BEGIN

14 q <= GUARDED '0' WHEN rst='1' ELSE d;

15 END BLOCK b1;

16 END dff;

17 ------------------------------

5.6 Problems

The problems proposed in this section are to be solved using only concurrent code

(operators, WHEN, GENERATE). After writing the VHDL code, synthesize and

simulate it, to make sure that it works as expected.
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Problem 5.1: Generic Multiplexer

We have seen the design of a multiplexer in examples 5.1 and 5.2. Those circuits were

for a pre-defined number of inputs (4 inputs) and a pre-defined number of bits per

input (1 bit). A truly generic mux is depicted in figure P5.1. In it, n represents the

number of bits of the selection input (sel), while m indicates the number of bits per

input. The circuit has 2n inputs (notice that there is no relationship between m and n).

Using a GENERIC statement to specify n, and assuming m ¼ 8, design this circuit.

Suggestion: The input should be specified as an array of vectors. Therefore, review

section 3.5. Does your solution (ARCHITECTURE) require more than one line of

actual code?

Problem 5.2: Priority Encoder

Figure P5.2 shows the top-level diagram of a 7-level priority encoder. The circuit

must encode the address of the input bit of highest order that is active. ‘‘000’’ should

indicate that there is no request at the input (no bit active). Write two solutions for

this circuit:

x(0)

x(1)

x(2n-1)

2
n

sel

MUX
m

m

n

y

Figure P5.1

‘0’
‘1’
‘0’
‘0’
‘1’
’1’
‘0’

7
6
5
4
3
2
1

PRIORITY
ENCODER

‘1’
’1’
‘0’

2
1
0

Figure P5.2
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(a) Using only operators;

(b) Using WHEN/ELSE (simple WHEN);

Problem 5.3: Simple Multiplier/Divider

Using only concurrent code, design the multiplier/divider of figure P5.3. The circuit

has two 8-bit integer inputs (a, b) and two integer outputs (x, y), where x ¼ a*b and

y ¼ a/2.

Note: For a generic fixed-point divider, you may consult chapter 9.

Problem 5.4: Adder

Using only concurrent statements, design the 8-bit unsigned adder of figure P5.4.

Problem 5.5: Signed/Unsigned Adder/Subtractor

In figure P5.5, we have added an extra 2-bit input (sel) to the circuit of problem 5.4,

such that now the circuit can operate as a signed or unsigned adder/subtractor (see

truth table). Write a concurrent VHDL code for this circuit.

Note: After having solved this problem, you can compare your solution to a corre-

sponding example in chapter 9.

a

b

x=a*b

y=a/2

*

/

Figure P5.3

a (7:0)

b (7:0)
sum (7:0)

cin (carry in)

cout (carry out)

+

Figure P5.4
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Problem 5.6: Binary-to-Gray Code Converter

Binary code is the most often used of all digital codes. In it, the LSB (least significant

bit) has weight 20, with the weight increasing by a factor of two for each successive

bit, up to 2n�1 for the MSB (most significant bit), where n is the number of bits in the

codeword. The Gray code, on the other hand, is based on minimum Hamming dis-

tance between neighboring codewords, that is, only one bit changes when we move

from the j-th to the ( jþ 1)-th codeword. Both codes, for n ¼ 4, are listed in table

P5.6. Design a circuit capable of converting binary code to Gray code (for generic n).

If possible, present more than one solution.

cout

  a (7:0)

  b (7:0)

 sel (1:0)

sum (7:0)

cin

+

sel operation
00
01
10
11

add unsigned
add signed
sub unsigned
sub signed

Figure P5.5

Table P5.6

Binary code Gray code

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

1010 1111

1011 1110

1100 1010

1101 1011

1110 1001

1111 1000
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Problem 5.7: Simple Barrel Shifter

Figure P5.7 shows the diagram of a very simple barrel shifter. In this case, the cir-

cuit must shift the input vector (of size 8) either 0 or 1 position to the left. When

actually shifted (shift ¼ 1), the LSB bit must be filled with ‘0’ (shown in the bottom

left corner of the diagram). If shift ¼ 0, then outp ¼ inp; else, if shift ¼ 1, then

outp(0) ¼ ‘0’ and outp(i) ¼ inp(i� 1), for 1a ia 7. Write a concurrent code for this

circuit.

Note: A complete barrel shifter (with shift ¼ 0 to n� 1, where n is the number of

bits) will be seen in chapter 9.

shift

‘0’

outp(7)
inp(7)

MUX

inp(6)

outp(6)MUX

inp(5)

outp(5)MUX

inp(4)

outp(4)MUX

inp(3)

outp(3)MUX

inp(2)

outp(2)MUX

inp(1)

outp(1)MUX

inp(0)

outp(0)MUX

Figure P5.7
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Problem 5.8: Comparator

Construct a circuit capable of comparing two 8-bit vectors, a and b. A selection pin

(sel) should determine whether the comparison is signed (sel ¼ ‘1’) or unsigned

(sel ¼ ‘0’). The circuit must have three outputs, x1, x2, and x3, corresponding to

a > b, a ¼ b, and a < b, respectively (figure P5.8).

Note: After having solved this problem, you can compare your solution to a corre-

sponding example in chapter 9.

a (7:0)

b (7:0)

x1
x2
x3

a>b
a=b
a<b

sel

Figure P5.8
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6 Sequential Code

As mentioned in chapter 5, VHDL code is inherently concurrent. PROCESSES,

FUNCTIONS, and PROCEDURES are the only sections of code that are executed

sequentially. However, as a whole, any of these blocks is still concurrent with any

other statements placed outside it.

One important aspect of sequential code is that it is not limited to sequential logic.

Indeed, with it we can build sequential circuits as well as combinational circuits. Se-

quential code is also called behavioral code.

The statements discussed in this section are all sequential, that is, allowed only

inside PROCESSES, FUNCTIONS, or PROCEDURES. They are: IF, WAIT,

CASE, and LOOP.

VARIABLES are also restricted to be used in sequential code only (that is, inside

a PROCESS, FUNCTION, or PROCEDURE). Thus, contrary to a SIGNAL, a

VARIABLE can never be global, so its value can not be passed out directly.

We will concentrate on PROCESSES here. FUNCTIONS and PROCEDURES

are very similar, but are intended for system-level design, being therefore seen in Part

II of this book.

6.1 PROCESS

A PROCESS is a sequential section of VHDL code. It is characterized by the pres-

ence of IF, WAIT, CASE, or LOOP, and by a sensitivity list (except when WAIT is

used). A PROCESS must be installed in the main code, and is executed every time a

signal in the sensitivity list changes (or the condition related to WAIT is fulfilled). Its

syntax is shown below.

[label:] PROCESS (sensitivity list)
[VARIABLE name type [range] [:= initial_value;]]

BEGIN
(sequential code)

END PROCESS [label];

VARIABLES are optional. If used, they must be declared in the declarative part

of the PROCESS (before the word BEGIN, as indicated in the syntax above). The

initial value is not synthesizable, being only taken into consideration in simulations.

The use of a label is also optional. Its purpose is to improve code readability. The

label can be any word, except VHDL reserved words (appendix E).
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To construct a synchronous circuit, monitoring a signal (clock, for example) is

necessary. A common way of detecting a signal change is by means of the EVENT

attribute (seen in section 4.2). For instance, if clk is a signal to be monitored, then

clk’EVENT returns TRUE when a change on clk occurs (rising or falling edge). An

example, illustrating the use of EVENT and PROCESS, is shown next.

Example 6.1: DFF with Asynchronous Reset #1

A D-type flip-flop (DFF, figure 6.1) is the most basic building block in sequential

logic circuits. In it, the output must copy the input at either the positive or negative

transition of the clock signal (rising or falling edge).

In the code presented below, we make use of the IF statement (discussed in section

6.3) to design a DFF with asynchronous reset. If rst ¼ ‘1’, then the output must be

q ¼ ‘0’ (lines 14–15), regardless of the status of clk. Otherwise, the output must copy

the input (that is, q ¼ d) at the positive edge of clk (lines 16–17). The EVENT attri-

bute is used in line 16 to detect a clock transition. The PROCESS (lines 12–19) is run

every time any of the signals that appear in its sensitivity list (clk and rst, line 12)

changes. Simulation results, confirming the functionality of the synthesized circuit,

are presented in figure 6.2.

d

clk

q

DFF

rst

Figure 6.1
DFF with asynchronous reset of example 6.1.

Figure 6.2
Simulation results of example 6.1.
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1 --------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------

5 ENTITY dff IS

6 PORT (d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END dff;

9 --------------------------------------

10 ARCHITECTURE behavior OF dff IS

11 BEGIN

12 PROCESS (clk, rst)

13 BEGIN

14 IF (rst='1') THEN

15 q <= '0';

16 ELSIF (clk'EVENT AND clk='1') THEN

17 q <= d;

18 END IF;

19 END PROCESS;

20 END behavior;

21 --------------------------------------

6.2 Signals and Variables

Signals and variables will be studied in detail in the next chapter. However, it is

impossible to discuss sequential code without knowing at least their most basic

characteristics.

VHDL has two ways of passing non-static values around: by means of a SIGNAL

or by means of a VARIABLE. A SIGNAL can be declared in a PACKAGE,

ENTITY or ARCHITECTURE (in its declarative part), while a VARIABLE can

only be declared inside a piece of sequential code (in a PROCESS, for example).

Therefore, while the value of the former can be global, the latter is always local.

The value of a VARIABLE can never be passed out of the PROCESS directly; if

necessary, then it must be assigned to a SIGNAL. On the other hand, the update of a

VARIABLE is immediate, that is, we can promptly count on its new value in the

next line of code. That is not the case with a SIGNAL (when used in a PROCESS),

for its new value is generally only guaranteed to be available after the conclusion of

the present run of the PROCESS.
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Finally, recall from section 4.1 that the assignment operator for a SIGNAL is

‘‘<¼’’ (ex.: sig <¼ 5), while for a VARIABLE it is ‘‘:¼’’ (ex.: var :¼ 5).

6.3 IF

As mentioned earlier, IF, WAIT, CASE, and LOOP are the statements intended for

sequential code. Therefore, they can only be used inside a PROCESS, FUNCTION,

or PROCEDURE.

The natural tendency is for people to use IF more than any other statement.

Though this could, in principle, have a negative consequence (because the IF/ELSE

statement might infer the construction of an unnecessary priority decoder), the syn-

thesizer will optimize the structure and avoid the extra hardware. The syntax of IF is

shown below.

IF conditions THEN assignments;
ELSIF conditions THEN assignments;
...
ELSE assignments;
END IF;

Example:

IF (x<y) THEN temp:="11111111";

ELSIF (x=y AND w='0') THEN temp:="11110000";

ELSE temp:=(OTHERS =>'0');

Example 6.2: One-digit Counter #1

The code below implements a progressive 1-digit decimal counter (0 ! 9 ! 0). A

top-level diagram of the circuit is shown in figure 6.3. It contains a single-bit input

clk digit (3:0)

C
O
U
N
T
E
R

Figure 6.3
Counter of example 6.2.
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(clk) and a 4-bit output (digit). The IF statement is used in this example. A variable,

temp, was employed to create the four flip-flops necessary to store the 4-bit output

signal. Simulation results, confirming the correct operation of the synthesized circuit,

are shown in figure 6.4.

1 ---------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY counter IS

6 PORT (clk : IN STD_LOGIC;

7 digit : OUT INTEGER RANGE 0 TO 9);

8 END counter;

9 ---------------------------------------------

10 ARCHITECTURE counter OF counter IS

11 BEGIN

12 count: PROCESS(clk)

13 VARIABLE temp : INTEGER RANGE 0 TO 10;

14 BEGIN

15 IF (clk'EVENT AND clk='1') THEN

16 temp := temp + 1;

17 IF (temp=10) THEN temp := 0;

18 END IF;

19 END IF;

20 digit <= temp;

21 END PROCESS count;

22 END counter;

23 ---------------------------------------------

Comment: Note that the code above has neither a reset input nor any internal ini-

tialization scheme for temp (and digit, consequently). Therefore, the initial value of

Figure 6.4
Simulation results of example 6.2.
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temp in the physical circuit can be any 4-bit value. If such value is below 10 (see line

17), the circuit will count correctly from there. On the other hand, if the value is

above 10, a number of clock cycles will be used until temp reaches full count (that is,

15, or ‘‘1111’’), being thus automatically reset to zero, from where the correct oper-

ation then starts. The possibility of wasting a few clock cycles in the beginning is

generally not a problem. Still, if one does want to avoid that, temp ¼ 10, in line 17,

can be changed to temp ¼> 10, but this will increase the hardware. However, if

starting exactly from 0 is always necessary, then a reset input should be included (as

in example 6.7).

Notice in the code above that we increment temp and compare it to 10, with the

purpose of resetting temp once 10 is reached. This is a typical approach used in

counters. Notice that 10 is a constant, so a comparator to a constant is inferred by

the compiler, which is a relatively simple circuit to construct. However, if instead of a

constant we were using a programmable parameter, then a full comparator would

need to be implemented, which requires substantially more logic than a comparator

to a constant. In this case, a better solution would be to load temp with such a pa-

rameter, and then decrement it, reloading temp when the 0 value is reached. In this

case, our comparator would compare temp to 0 (a constant), thus avoiding the gen-

eration of a full comparator.

Example 6.3: Shift Register

Figure 6.5 shows a 4-bit shift register. The output bit (q) must be four positive clock

edges behind the input bit (d). It also contains an asynchronous reset, which must

force all flip-flop outputs to ‘0’ when asserted. In this example, the IF statement is

again employed.

1 --------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------

d

clk
rst

q

DFF DFF DFF DFF

Figure 6.5
Shift register of example 6.3.
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5 ENTITY shiftreg IS

6 GENERIC (n: INTEGER := 4); -- # of stages

7 PORT (d, clk, rst: IN STD_LOGIC;

8 q: OUT STD_LOGIC);

9 END shiftreg;

10 --------------------------------------------------

11 ARCHITECTURE behavior OF shiftreg IS

12 SIGNAL internal: STD_LOGIC_VECTOR (n-1 DOWNTO 0);

13 BEGIN

14 PROCESS (clk, rst)

15 BEGIN

16 IF (rst='1') THEN

17 internal <= (OTHERS => '0');

18 ELSIF (clk'EVENT AND clk='1') THEN

19 internal <= d & internal(internal'LEFT DOWNTO 1);

20 END IF;

21 END PROCESS;

22 q <= internal(0);

23 END behavior;

24 --------------------------------------------------

Simulation results are shown in figure 6.6. As can be seen, q is indeed four positive

clock edges behind d.

6.4 WAIT

The operation of WAIT is sometimes similar to that of IF. However, more than one

form of WAIT is available. Moreover, contrary to when IF, CASE, or LOOP are

Figure 6.6
Simulation results of example 6.3.
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used, the PROCESS cannot have a sensitivity list when WAIT is employed. Its syntax

(there are three forms of WAIT) is shown below.

WAIT UNTIL signal_condition;

WAIT ON signal1 [, signal2, ... ];

WAIT FOR time;

The WAIT UNTIL statement accepts only one signal, thus being more appropri-

ate for synchronous code than asynchronous. Since the PROCESS has no sensitivity

list in this case, WAIT UNTIL must be the first statement in the PROCESS. The

PROCESS will be executed every time the condition is met.

Example: 8-bit register with synchronous reset.

PROCESS -- no sensitivity list

BEGIN

WAIT UNTIL (clk'EVENT AND clk='1');

IF (rst='1') THEN

output <= "00000000";

ELSIF (clk'EVENT AND clk='1') THEN

output <= input;

END IF;

END PROCESS;

WAIT ON, on the other hand, accepts multiple signals. The PROCESS is put on

hold until any of the signals listed changes. In the example below, the PROCESS will

continue execution whenever a change in rst or clk occurs.

Example: 8-bit register with asynchronous reset.

PROCESS

BEGIN

WAIT ON clk, rst;

IF (rst='1') THEN
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output <= "00000000";

ELSIF (clk'EVENT AND clk='1') THEN

output <= input;

END IF;

END PROCESS;

Finally, WAIT FOR is intended for simulation only (waveform generation for

testbenches). Example: WAIT FOR 5ns;

Example 6.4: DFF with Asynchronous Reset #2

The code below implements the same DFF of example 6.1 (figures 6.1 and 6.2).

However, here WAIT ON is used instead of IF only.

1 --------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------

5 ENTITY dff IS

6 PORT (d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END dff;

9 --------------------------------------

10 ARCHITECTURE dff OF dff IS

11 BEGIN

12 PROCESS

13 BEGIN

14 WAIT ON rst, clk;

15 IF (rst='1') THEN

16 q <= '0';

17 ELSIF (clk'EVENT AND clk='1') THEN

18 q <= d;

19 END IF;

20 END PROCESS;

21 END dff;

22 --------------------------------------

Example 6.5: One-digit Counter #2

The code below implements the same progressive 1-digit decimal counter of example

6.2 (figures 6.3 and 6.4). However, WAIT UNTIL was used instead of IF only.
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1 ---------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY counter IS

6 PORT (clk : IN STD_LOGIC;

7 digit : OUT INTEGER RANGE 0 TO 9);

8 END counter;

9 ---------------------------------------------

10 ARCHITECTURE counter OF counter IS

11 BEGIN

12 PROCESS -- no sensitivity list

13 VARIABLE temp : INTEGER RANGE 0 TO 10;

14 BEGIN

15 WAIT UNTIL (clk'EVENT AND clk='1');

16 temp := temp + 1;

17 IF (temp=10) THEN temp := 0;

18 END IF;

19 digit <= temp;

20 END PROCESS;

21 END counter;

22 ---------------------------------------------

6.5 CASE

CASE is another statement intended exclusively for sequential code (along with IF,

LOOP, and WAIT). Its syntax is shown below.

CASE identifier IS
WHEN value => assignments;
WHEN value => assignments;
...

END CASE;

Example:

CASE control IS

WHEN "00" => x<=a; y<=b;
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WHEN "01" => x<=b; y<=c;

WHEN OTHERS => x<="0000"; y<="ZZZZ";

END CASE;

The CASE statement (sequential) is very similar to WHEN (combinational). Here

too all permutations must be tested, so the keyword OTHERS is often helpful.

Another important keyword is NULL (the counterpart of UNAFFECTED), which

should be used when no action is to take place. For example, WHEN OTHERS =>

NULL;. However, CASE allows multiple assignments for each test condition (as

shown in the example above), while WHEN allows only one.

Like in the case of WHEN (section 5.3), here too ‘‘WHEN value’’ can take up

three forms:

WHEN value -- single value

WHEN value1 to value2 -- range, for enumerated data types

-- only

WHEN value1 | value2 |... -- value1 or value2 or ...

Example 6.6: DFF with Asynchronous Reset #3

The code below implements the same DFF of example 6.1 (figures 6.1 and 6.2).

However, here CASE was used instead of IF only. Notice that a few unnecessary

declarations were intentionally included in the code to illustrate their usage.

1 ----------------------------------------------

2 LIBRARY ieee; -- Unnecessary declaration,

3 -- because

4 USE ieee.std_logic_1164.all; -- BIT was used instead of

5 -- STD_LOGIC

6 ----------------------------------------------

7 ENTITY dff IS

8 PORT (d, clk, rst: IN BIT;

9 q: OUT BIT);

10 END dff;

11 ----------------------------------------------

12 ARCHITECTURE dff3 OF dff IS

13 BEGIN

14 PROCESS (clk, rst)

15 BEGIN

16 CASE rst IS

Sequential Code 101

TLFeBOOK



17 WHEN '1' => q<='0';

18 WHEN '0' =>

19 IF (clk'EVENT AND clk='1') THEN

20 q <= d;

21 END IF;

22 WHEN OTHERS => NULL; -- Unnecessary, rst is of type

23 -- BIT

24 END CASE;

25 END PROCESS;

26 END dff3;

27 ----------------------------------------------

Example 6.7: Two-digit Counter with SSD Output

The code below implements a progressive 2-digit decimal counter (0 ! 99 ! 0), with

external asynchronous reset plus binary-coded decimal (BCD) to seven-segment dis-

play (SSD) conversion. Diagrams of the circuit and SSD are shown in figure 6.7. The

CASE statement (lines 31–56) was employed to determine the output signals that will

feed the SSDs. Notice that we have chosen the following connection between the

circuit and the SSD: xabcdefg (that is, the MSB feeds the decimal point, while the

LSB feeds segment g).

As can be seen, this circuit is a straight extension of that presented in example 6.2,

with the di¤erences that now two digits are necessary rather than one, and that the

outputs must be connected to SSD displays. The operation of the circuit can be

verified in the simulation results of figure 6.8.

digit2

digit1

 clk

C
O
U
N
T
E
R

reset

SSD

e

f

a

b

c

d

g

x

Input: “xabcdefg”

Figure 6.7
2-digit counter of example 6.7.
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1 --------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------

5 ENTITY counter IS

6 PORT (clk, reset : IN STD_LOGIC;

7 digit1, digit2 : OUT STD_LOGIC_VECTOR (6 DOWNTO 0));

8 END counter;

9 --------------------------------------------------

10 ARCHITECTURE counter OF counter IS

11 BEGIN

12 PROCESS(clk, reset)

13 VARIABLE temp1: INTEGER RANGE 0 TO 10;

14 VARIABLE temp2: INTEGER RANGE 0 TO 10;

15 BEGIN

16 ---- counter: ----------------------

17 IF (reset='1') THEN

18 temp1 := 0;

19 temp2 := 0;

20 ELSIF (clk'EVENT AND clk='1') THEN

21 temp1 := temp1 + 1;

22 IF (temp1=10) THEN

23 temp1 := 0;

24 temp2 := temp2 + 1;

25 IF (temp2=10) THEN

26 temp2 := 0;

Figure 6.8
Simulation results of example 6.7.
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27 END IF;

28 END IF;

29 END IF;

30 ---- BCD to SSD conversion: --------

31 CASE temp1 IS

32 WHEN 0 => digit1 <= "1111110"; --7E

33 WHEN 1 => digit1 <= "0110000"; --30

34 WHEN 2 => digit1 <= "1101101"; --6D

35 WHEN 3 => digit1 <= "1111001"; --79

36 WHEN 4 => digit1 <= "0110011"; --33

37 WHEN 5 => digit1 <= "1011011"; --5B

38 WHEN 6 => digit1 <= "1011111"; --5F

39 WHEN 7 => digit1 <= "1110000"; --70

40 WHEN 8 => digit1 <= "1111111"; --7F

41 WHEN 9 => digit1 <= "1111011"; --7B

42 WHEN OTHERS => NULL;

43 END CASE;

44 CASE temp2 IS

45 WHEN 0 => digit2 <= "1111110"; --7E

46 WHEN 1 => digit2 <= "0110000"; --30

47 WHEN 2 => digit2 <= "1101101"; --6D

48 WHEN 3 => digit2 <= "1111001"; --79

49 WHEN 4 => digit2 <= "0110011"; --33

50 WHEN 5 => digit2 <= "1011011"; --5B

51 WHEN 6 => digit2 <= "1011111"; --5F

52 WHEN 7 => digit2 <= "1110000"; --70

53 WHEN 8 => digit2 <= "1111111"; --7F

54 WHEN 9 => digit2 <= "1111011"; --7B

55 WHEN OTHERS => NULL;

56 END CASE;

57 END PROCESS;

58 END counter;

59 --------------------------------------------------

Comment: Notice above that the same routine was repeated twice (using CASE

statements). We will learn, in Part II, how to write and compile frequently used

pieces of code into user-defined libraries, so that such repetitions can be avoided.
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6.6 LOOP

As the name says, LOOP is useful when a piece of code must be instantiated several

times. Like IF, WAIT, and CASE, LOOP is intended exclusively for sequential code,

so it too can only be used inside a PROCESS, FUNCTION, or PROCEDURE.

There are several ways of using LOOP, as shown in the syntaxes below.

FOR / LOOP: The loop is repeated a fixed number of times.

[label:] FOR identifier IN range LOOP
(sequential statements)

END LOOP [label];

WHILE / LOOP: The loop is repeated until a condition no longer holds.

[label:] WHILE condition LOOP
(sequential statements)

END LOOP [label];

EXIT: Used for ending the loop.

[label:] EXIT [label] [WHEN condition];

NEXT: Used for skipping loop steps.

[label:] NEXT [loop_label] [WHEN condition];

Example of FOR / LOOP:

FOR i IN 0 TO 5 LOOP

x(i) <= enable AND w(i+2);

y(0, i) <= w(i);

END LOOP;

In the code above, the loop will be repeated unconditionally until i reaches 5 (that

is, six times).
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One important remark regarding FOR / LOOP (similar to that made for GEN-

ERATE, in chapter 5) is that both limits of the range must be static. Thus a decla-

ration of the type "FOR i IN 0 TO choice LOOP", where choice is an input (non-

static) parameter, is generally not synthesizable.

Example of WHILE / LOOP: In this example, LOOP will keep repeating while

i < 10.

WHILE (i < 10) LOOP

WAIT UNTIL clk'EVENT AND clk='1';

(other statements)

END LOOP;

Example with EXIT: In the code below, EXIT implies not an escape from the cur-

rent iteration of the loop, but rather a definite exit (that is, even if i is still within the

data range, the LOOP statement will be considered as concluded). In this case, the

loop will end as soon as a value di¤erent from ‘0’ is found in the data vector.

FOR i IN data'RANGE LOOP

CASE data(i) IS

WHEN '0' => count:=count+1;

WHEN OTHERS => EXIT;

END CASE;

END LOOP;

Example with NEXT: In the example below, NEXT causes LOOP to skip one iter-

ation when i ¼ skip.

FOR i IN 0 TO 15 LOOP

NEXT WHEN i=skip; -- jumps to next iteration

(...)

END LOOP;

Several complete design examples, illustrating various applications of LOOP, are

presented below.

Example 6.8: Carry Ripple Adder

Figure 6.9 shows an 8-bit unsigned carry ripple adder. The top-level diagram shows

the inputs and outputs of the circuit: a and b are the input vectors to be added, cin

is the carry-in bit, s is the sum vector, and cout is the carry-out bit. The one-level-

below-top diagram shows how the carry bits propagate (ripple).
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Each section of the latter diagram is a full-adder unit (section 1.4). Thus its out-

puts can be computed by means of:

sj ¼ aj XOR bj XOR cj

cjþ1 ¼ (aj AND bj) OR (aj AND cj) OR (bj AND cj)

Two solutions are presented, being one generic (that is, for any number of bits,

based on what we saw in chapter 4) and the other specific for 8-bit numbers. More-

over, we illustrate the use of vectors and FOR/LOOP in the first solution, and of

integers and IF in the second. Simulation results from either solution are shown in

figure 6.10.

Note: We will see more about adders in chapter 9.

1 ----- Solution 1: Generic, with VECTORS --------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

c0 c8
c7c1

s0

a0 b0

+
c2

s1

a1 b1

+

s7

a7 b7

+

(cin (cout)

One level below top:
Top level:

a

b

cin

s

cout

+

Figure 6.9
8-bit carry ripple adder of example 6.8

Figure 6.10
Simulation results of example 6.8.
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4 ------------------------------------------------

5 ENTITY adder IS

6 GENERIC (length : INTEGER := 8);

7 PORT ( a, b: IN STD_LOGIC_VECTOR (length-1 DOWNTO 0);

8 cin: IN STD_LOGIC;

9 s: OUT STD_LOGIC_VECTOR (length-1 DOWNTO 0);

10 cout: OUT STD_LOGIC);

11 END adder;

12 ------------------------------------------------

13 ARCHITECTURE adder OF adder IS

14 BEGIN

15 PROCESS (a, b, cin)

16 VARIABLE carry : STD_LOGIC_VECTOR (length DOWNTO 0);

17 BEGIN

18 carry(0) := cin;

19 FOR i IN 0 TO length-1 LOOP

20 s(i) <= a(i) XOR b(i) XOR carry(i);

21 carry(i+1) := (a(i) AND b(i)) OR (a(i) AND

22 carry(i)) OR (b(i) AND carry(i));

23 END LOOP;

24 cout <= carry(length);

25 END PROCESS;

26 END adder;

27 ------------------------------------------------

1 ---- Solution 2: non-generic, with INTEGERS ----

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------

5 ENTITY adder IS

6 PORT ( a, b: IN INTEGER RANGE 0 TO 255;

7 c0: IN STD_LOGIC;

8 s: OUT INTEGER RANGE 0 TO 255;

9 c8: OUT STD_LOGIC);

10 END adder;

11 ------------------------------------------------

12 ARCHITECTURE adder OF adder IS

13 BEGIN
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14 PROCESS (a, b, c0)

15 VARIABLE temp : INTEGER RANGE 0 TO 511;

16 BEGIN

17 IF (c0='1') THEN temp:=1;

18 ELSE temp:=0;

19 END IF;

20 temp := a + b + temp;

21 IF (temp > 255) THEN

22 c8 <= '1';

23 temp := temp---256;

24 ELSE c8 <= '0';

25 END IF;

26 s <= temp;

27 END PROCESS;

28 END adder;

29 ------------------------------------------------

Example 6.9: Simple Barrel Shifter

Figure 6.11 shows the diagram of a very simple barrel shifter. In this case, the circuit

must shift the input vector (of size 8) either 0 or 1 position to the left. When actually

shifted (shift ¼ 1), the LSB bit must be filled with ‘0’ (shown in the botton left corner

of the diagram). If shift ¼ 0, then outp ¼ inp; if shift ¼ 1, then outp(0) ¼ ‘0’ and

outp(i) ¼ inp(i� 1), for 1a ia 7.

A complete VHDL code is presented below, which illustrates the use of FOR/

LOOP. Simulation results appear in figure 6.12.

Note: A complete barrel shifter (with shift ¼ 0 to n� 1, where n is the size of the

input vector) will be seen in chapter 9.

1 ---------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY barrel IS

6 GENERIC (n: INTEGER := 8);

7 PORT ( inp: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

8 shift: IN INTEGER RANGE 0 TO 1;

9 outp: OUT STD_LOGIC_VECTOR (n-1 DOWNTO 0));
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shift

‘0’

outp(7)
inp(7)

MUX

inp(6)

outp(6)MUX

inp(5)

outp(5)MUX

inp(4)

outp(4)MUX

inp(3)

outp(3)MUX

inp(2)

outp(2)MUX

inp(1)

outp(1)MUX

inp(0)

outp(0)MUX

Figure 6.11
Simple barrel shifter of example 6.9.

Figure 6.12
Simulation results of example 6.9.
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10 END barrel;

11 ---------------------------------------------

12 ARCHITECTURE RTL OF barrel IS

13 BEGIN

14 PROCESS (inp, shift)

15 BEGIN

16 IF (shift=0) THEN

17 outp <= inp;

18 ELSE

19 outp(0) <= '0';

20 FOR i IN 1 TO inp'HIGH LOOP

21 outp(i) <= inp(i-1);

22 END LOOP;

23 END IF;

24 END PROCESS;

25 END RTL;

26 ---------------------------------------------

Example 6.10: Leading Zeros

The design below counts the number of leading zeros in a binary vector, starting

from the left end. The solution illustrates the use of LOOP / EXIT. Recall that EXIT

implies not a escape from the current iteration of the loop, but rather a definite exit

from it (that is, even if i is still within the specified range, the LOOP statement will be

considered as concluded). In this example, the loop will end as soon as a ‘1’ is found

in the data vector. Therefore, it is appropriate for counting the number of zeros that

precedes the first one.

1 --------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------

5 ENTITY LeadingZeros IS

6 PORT ( data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 zeros: OUT INTEGER RANGE 0 TO 8);

8 END LeadingZeros;

9 --------------------------------------------

10 ARCHITECTURE behavior OF LeadingZeros IS
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11 BEGIN

12 PROCESS (data)

13 VARIABLE count: INTEGER RANGE 0 TO 8;

14 BEGIN

15 count := 0;

16 FOR i IN data'RANGE LOOP

17 CASE data(i) IS

18 WHEN '0' => count := count + 1;

19 WHEN OTHERS => EXIT;

20 END CASE;

21 END LOOP;

22 zeros <= count;

23 END PROCESS;

24 END behavior;

25 --------------------------------------------

Simulation results, verifying the functionality of the circuit, are shown in figure

6.13. With data ¼ ‘‘00000000’’ (decimal 0), eight zeros are detected; when data ¼
‘‘00000001’’ (decimal 1), seven zeros are encountered; etc.

6.7 CASE versus IF

Though in principle the presence of ELSE in the IF/ELSE statement might infer the

implementation of a priority decoder (which would never occur with CASE), this will

generally not happen. For instance, when IF (a sequential statement) is used to im-

plement a fully combinational circuit, a multiplexer might be inferred instead. There-

fore, after optimization, the general tendency is for a circuit synthesized from a

VHDL code based on IF not to di¤er from that based on CASE.

Figure 6.13
Simulation results of example 6.10.
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Example: The codes below implement the same physical multiplexer circuit.

---- With IF: --------------

IF (sel="00") THEN x<=a;

ELSIF (sel="01") THEN x<=b;

ELSIF (sel="10") THEN x<=c;

ELSE x<=d;

---- With CASE: ------------

CASE sel IS

WHEN "00" => x<=a;

WHEN "01" => x<=b;

WHEN "10" => x<=c;

WHEN OTHERS => x<=d;

END CASE;

----------------------------

6.8 CASE versus WHEN

CASE and WHEN are very similar. However, while one is concurrent (WHEN), the

other is sequential (CASE). Their main similarities and di¤erences are summarized in

table 6.1.

Example: From a functional point of view, the two codes below are equivalent.

---- With WHEN: ----------------

WITH sel SELECT

Table 6.1
Comparison between WHEN and CASE.

WHEN CASE

Statement type Concurrent Sequential

Usage Only outside PROCESSES,
FUNCTIONS, or
PROCEDURES

Only inside PROCESSES,
FUNCTIONS, or
PROCEDURES

All permutations must be tested Yes for WITH/SELECT/WHEN Yes

Max. # of assignments per test 1 Any

No-action keyword UNAFFECTED NULL
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x <= a WHEN "000",

b WHEN "001",

c WHEN "010",

UNAFFECTED WHEN OTHERS;

---- With CASE: ----------------

CASE sel IS

WHEN "000" => x<=a;

WHEN "001" => x<=b;

WHEN "010" => x<=c;

WHEN OTHERS => NULL;

END CASE;

--------------------------------

6.9 Bad Clocking

The compiler will generally not be able to synthesize codes that contain assignments

to the same signal at both transitions of the reference (clock) signal (that is, at the

rising edge plus at the falling edge). This is particularly true when the target tech-

nology contains only single-edge flip-flops (CPLDs, for example—appendix A). In

this case, the compiler might display a message of the type ‘‘signal does not hold

value after clock edge’’ or similar.

As an example, let us consider the case of a counter that must be incremented

at every clock transition (rising plus falling edge). One alternative could be the

following:

PROCESS (clk)

BEGIN

IF(clk'EVENT AND clk='1') THEN

counter <= counter + 1;

ELSIF(clk'EVENT AND clk='0') THEN

counter <= counter + 1;

END IF;

...

END PROCESS;

In this case, besides the messages already described, the compiler might also com-

plain that the signal counter is multiply driven. In any case, compilation will be

suspended.
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Another important aspect is that the EVENT attribute must be related to a test

condition. For example, the statement IF(clk'EVENT AND clk='1') is correct, but

using simply IF(clk'EVENT) will either have the compiler assume a default test

value (say ‘‘AND clk='1'’’) or issue a message of the type ‘‘clock not locally stable’’.

As an example, let us consider again the case of a counter that must be incremented

at both transitions of clk. One could write:

PROCESS (clk)

BEGIN

IF(clk'EVENT) THEN

counter := counter + 1;

END IF;

...

END PROCESS;

Since the PROCESS above is supposed to be run every time clk changes, one

might expect the counter to be incremented twice per clock cycle. However, for the

reason already mentioned, this will not happen. If the compiler assumes a default

value, a wrong circuit will be synthesized, because only one edge of clk will be con-

sidered; if no default value is assumed, then an error message and no compilation

should be expected.

Finally, if a signal appears in the sensitivity list, but does not appear in any of the

assignments that compose the PROCESS, then it is likely that the compiler will

simply ignore it. This fact can be illustrated with the double-edge counter described

above once again. Say that the following code is used:

PROCESS (clk)

BEGIN

counter := counter + 1;

...

END PROCESS;

This code reinforces the desire that the signal counter be incremented whenever

an event occurs on clk (rising plus falling edge). However, a message of the type

‘‘ignored unnecessary pin clk’’ might be issued instead.

Example: Contrary to the cases described above, the 2-process code shown below

will be correctly synthesized by any compiler. However, notice that we have used a

di¤erent signal in each process.
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----------------------

PROCESS (clk)

BEGIN

IF(clk'EVENT AND clk='1') THEN

x <= d;

END IF;

END PROCESS;

----------------------

PROCESS (clk)

BEGIN

IF(clk'EVENT AND clk='0') THEN

y <= d;

END IF;

END PROCESS;

----------------------

Now that you know what you can and what you should not to do, you are invited

to solve problem 6.1.

Example 6.11: RAM

Below is another example using sequential code, particularly the IF statement. We

show the implementation of a RAM (random access memory).

As can be seen in figure 6.14(a), the circuit has a data input bus (data_in), a data

output bus (data_out), an address bus (addr), plus clock (clk) and write enable

(a) (b)

data in data_out

RAM

word 0

word 1

word 2

…

clk     wr ena

addr
clk

DFF

d q

wr_ena

wr_ena

Figure 6.14
RAM circuit of example 6.11.
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(wr_ena) pins. When wr_ena is asserted, at the next rising edge of clk the vector

present at data_in must be stored in the position specified by addr. The output,

data_out, on the other hand, must constantly display the data selected by addr.

From the register point-of-view, the circuit can be summarized as in figure 6.14(b).

When wr_ena is low, q is connected to the input of the flip-flop, and terminal d is

open, so no new data will be written into the memory. However, when wr_ena is

turned high, d is connected to the input of the register, so at the next rising edge of

clk d will overwrite its previous value.

A VHDL code that implements the circuit of figure 6.14 is shown below. The

capacity chosen for the RAM is 16 words of length 8 bits each. Notice that the code

is totally generic.

Note: Other memory implementations will be presented in section 9.10 of chapter 9.

1 ---------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------------

5 ENTITY ram IS

6 GENERIC ( bits: INTEGER := 8; -- # of bits per word

7 words: INTEGER := 16); -- # of words in the memory

8 PORT ( wr_ena, clk: IN STD_LOGIC;

9 addr: IN INTEGER RANGE 0 TO words-1;

10 data_in: IN STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

11 data_out: OUT STD_LOGIC_VECTOR (bits-1 DOWNTO 0));

12 END ram;

13 ---------------------------------------------------

14 ARCHITECTURE ram OF ram IS

15 TYPE vector_array IS ARRAY (0 TO words-1) OF

16 STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

17 SIGNAL memory: vector_array;

18 BEGIN

19 PROCESS (clk, wr_ena)

20 BEGIN

21 IF (wr_ena='1') THEN

22 IF (clk'EVENT AND clk='1') THEN

23 memory(addr) <= data_in;

24 END IF;

25 END IF;
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26 END PROCESS;

27 data_out <= memory(addr);

28 END ram;

29 ---------------------------------------------------

Simulation results from the circuit synthesizad with the code above are shown in

figure 6.15.

6.10 Using Sequential Code to Design Combinational Circuits

We have already seen that sequential code can be used to implement either sequential

or combinational circuits. In the former case, registers are necessary, so will be in-

ferred by the compiler. However, this should not happen in the latter case. More-

over, if the code is intended for a combinational circuit, then the complete truth-table

should be clearly specified in the code.

In order to satisfy the criteria above, the following rules should be observed:

Rule 1: Make sure that all input signals used (read) in the PROCESS appear in its

sensitivity list.

Rule 2: Make sure that all combinations of the input/output signals are included in

the code; that is, make sure that, by looking at the code, the circuit’s complete truth-

table can be obtained (indeed, this is true for both sequential as well as concurrent

code).

Failing to comply with rule 1 will generally cause the compiler to simply issue a

warning saying that a given input signal was not included in the sensitivity list, and

then proceed as if the signal were included. Even though no damage is caused to the

design in this case, it is a good design practice to always take rule 1 into consideration.

Figure 6.15
Simulation results of example 6.11.
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With respect to rule 2, however, the consequences can be more serious because

incomplete specifications of the output signals might cause the synthesizer to infer

latches in order to hold their previous values. This fact is illustrated in the example

below.

Example 6.12: Bad Combinational Design

Let us consider the circuit of figure 6.16, for which the following specifications have

been provided: x should behave as a multiplexer; that is, should be equal to the input

selected by sel; y, on the other hand, should be equal to ‘0’ when sel ¼ ‘‘00’’, or ‘1’ if

sel ¼ ‘‘01’’. These specifications are summarized in the truth-table of figure 6.16(b).

Notice that this is a combinational circuit. However, the specifications provided

for y are incomplete, as can be observed in the truth-table of figure 6.16(b). Using

just these specifications, the code could be the following:

1 --------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------

5 ENTITY example IS

6 PORT (a, b, c, d: IN STD_LOGIC;

7 sel: IN INTEGER RANGE 0 TO 3;

8 x, y: OUT STD_LOGIC);

9 END example;

10 --------------------------------------

    (a)   (b)  (c)    (d) 

sel x    y

00
01
10
11

a    0 
b    1 
c
d

sel (1:0)

a

b

c

d
y

x
sel x    y

00
01
10
11

a    0 
b    1 
c    y
d    y

sel x    y

00
01
10
11

a    0 
b    1 
c    X
d X

Figure 6.16
Circuit of example 6.12: (a) top-level diagram, (b) specifications provided, (c) implemented truth-table, and
(d) the right approach.
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11 ARCHITECTURE example OF example IS

12 BEGIN

13 PROCESS (a, b, c, d, sel)

14 BEGIN

15 IF (sel=0) THEN

16 x<=a;

17 y<='0';

18 ELSIF (sel=1) THEN

19 x<=b;

20 y<='1';

21 ELSIF (sel=2) THEN

22 x<=c;

23 ELSE

24 x<=d;

25 END IF;

26 END PROCESS;

27 END example;

28 --------------------------------------

After compiling this code, the report files show that no flip-flops were inferred (as

expected). However, when we look at the simulation results (figure 6.17), we notice

something peculiar about y. Observe that, for the same value of the input

(sel ¼ 3 ¼ ‘‘11’’), two di¤erent results are obtained for y (when sel ¼ 3 is preceded by

sel ¼ 0, y ¼ ‘0’ results, while y ¼ ‘1’ is obtained when sel ¼ 3 is preceded by sel ¼ 1).

This signifies that some sort of memory was indeed implemented by the compiler. In

fact, if we look at the equations obtained with Quartus II, for example (appendix D),

we verify that y was computed as y ¼ (sel(0) AND sel(1)) OR (sel(0) AND y) OR

Figure 6.17
Simulation results of example 6.12.
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(sel(1) AND y). Therefore, a latch (using AND/OR gates) was implemented, which

renders the truth-table of figure 6.16(c).

To avoid the extra logic required by the latch, the specifications of figure 6.16(d)

should be used (‘X’ was used for all unknown or ‘‘don’t care’’ values). Thus the line

y<='X'; must be included below lines 22 and 24 in the code above. Now, y can be as

simple as y ¼ sel(0).

6.11 Problems

Like the examples just seen, the purpose of the problems proposed in this section is

to further illustrate the construction of sequential code (that is, the use of IF, WAIT,

CASE, and LOOP, always inside a PROCESS). However, if you want to know more

about SIGNALS and VARIABLES before working on the problems below, you

may have a look at chapter 7, and then return to this section. Finally, recall that with

sequential code we can implement sequential as well as combinational logic circuits.

Though you will be using only sequential code in this section, you are invited to de-

termine whether each circuit in the problems below (and in the examples just seen,

for that matter) is actually a combinational or sequential circuit.

Problem 6.1: Event Counter

Design a circuit capable of counting the number of clock events (number of rising

edgesþ falling edges, figure P6.1).

Problem 6.2: Shift Register

Write a VHDL code that implements the 4-stage shift-register of figure P6.2. The

solution should be di¤erent from that of example 6.3.

Problem 6.3: Priority Encoder

Figure P6.3 shows the same priority encoder of problem 5.2. The circuit must encode

the address of the input bit of highest order that is active. The output ‘‘000’’ should

indicate that there is no request at the input (no bit active). Write a VHDL solution

for this circuit using only sequential code. Present two solutions:

clk

Figure P6.1
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(a) With IF.

(b) With CASE.

Problem 6.4: Generic Frequency Divider

Write a VHDL code for a circuit capable of dividing the frequency of an input clock

signal by an integer n (figure P6.4). The code should be generic; that is, n should be

defined using the GENERIC statement.

Problem 6.5: Frequency Multiplier

What about the opposite of problem 6.4, that is, say that we want to multiply the

clock frequency by n. Can it be done?

din

clk

dout

DFF DFF DFF DFF

Figure P6.2

‘0’
‘1’
‘0’
‘0’
‘1’
’1’
‘0’

7
6
5
4
3
2
1

2
1
0

PRIORITY
ENCODER

‘1’
’1’
‘0’

Figure P6.3

fclk fclk/n
FREQ.

DIVIDER

Figure P6.4
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Problem 6.6: Timer #1

Design a timer capable of running from 0min:00sec to 9min:59sec (figure P6.6). The

circuit must have start, stop, and reset buttons. The outputs must be SSD coded.

Consider that a reliable 1 Hz clock signal is available.

Problem 6.7: Timer #2

Consider the timer of problem 6.6. However, say that now only one button is avail-

able, which must perform the start and stop functions alternately, and it also resets

the circuit when pressed for more than 2 seconds. Write a VHDL code for such a

timer (figure P6.7). Again, consider that a reliable 1 Hz clock is available.

Problem 6.8: Parity Detector

Figure P6.8 shows the top-level diagram of a parity detector. The input vector has

eight bits. The output must be ‘0’ when the number of ‘1’s in the input vector is even,

or ‘1’ otherwise. Write a sequential code for this circuit. If possible, write more than

one solution.

min      sec   sec

clk

start

stop

reset

T
I

M
E
R

Figure P6.6

clk

start/
stop/
reset

min      sec   sec

T
I

M
E
R

Figure P6.7
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Problem 6.9: Count Ones

Say that we want to design a circuit that counts the number of ‘1’s in a given binary

vector (table P6.9). Write a VHDL code that implements such a circuit. Then syn-

thesize and test your solution.

Problem 6.10: Intensity Encoder

Design an encoder that receives as input a 7-bit vector din, and creates from it an

output vector dout whose bits are all ‘0’s, except the bit whose index corresponds to

the number of ‘1’s in din. All possible situations are summarized in table P6.10.

input (7:0) output
PARITY

DETECTOR

Figure P6.8

Table P6.9

Number of ones in din(7:1) count(2:0)

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Table P6.10

Number of ones in din(7:1) dout(7:0)

0 00000001

1 00000010

2 00000100

3 00001000

4 00010000

5 00100000

6 01000000

7 10000000
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Problem 6.11: Multiplexer

Write a sequential VHDL code for the circuit of problem 5.1. If possible, present

more than one solution.

Problem 6.12: Vector Shifter

Write a sequential VHDL code for the circuit of example 5.6. If possible, present

more than one solution.

Problem 6.13: ALU

Write a sequential VHDL code for the circuit of example 5.5. If possible, present

more than one solution.

Problem 6.14: Signed/Unsigned Adder/Subtractor

Solve problem 5.5 using sequential code. Make the code as generic as possible.

Problem 6.15: Comparator

Solve problem 5.8 using sequential code.

Problem 6.16: Carry Ripple Adder

Consider the carry ripple adder of example 6.8.

(a) Why cannot we replace the IF statement of lines 17–19 in solution 2 by simply

‘‘temp:=c0;’’?

(b) Notice that the circuit of example 6.8 is fully combinational, so it can also be

implemented using only concurrent code (that is, without a PROCESS). Write such a

code for it. Then simulate it and analyze the results.

Problem 6.17: DFF

Consider the DFF with asynchronous reset of figure 6.1. Below are several codes for

that circuit. Examine each of them and determine whether they should work prop-

erly. Briefly explain your answers.

--------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

--------------------------------------

ENTITY dff IS

Sequential Code 125

TLFeBOOK



PORT ( d, clk, rst: IN BIT;

q: OUT BIT);

END dff;

----- Solution 1 ---------------------

ARCHITECTURE arch1 OF dff IS

BEGIN

PROCESS (clk, rst)

BEGIN

IF (rst='1') THEN

q <= '0';

ELSIF (clk'EVENT AND clk='1') THEN

q <= d;

END IF;

END PROCESS;

END arch1;

----- Solution 2 ---------------------

ARCHITECTURE arch2 OF dff IS

BEGIN

PROCESS (clk)

BEGIN

IF (rst='1') THEN

q <= '0';

ELSIF (clk'EVENT AND clk='1') THEN

q <= d;

END IF;

END PROCESS;

END arch2;

----- Solution 3 ---------------------

ARCHITECTURE arch3 OF dff IS

BEGIN

PROCESS (clk)

BEGIN

IF (rst='1') THEN

q <= '0';

ELSIF (clk'EVENT) THEN

q <= d;

END IF;

END PROCESS;

END arch3;
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----- Solution 4 ---------------------

ARCHITECTURE arch4 OF dff IS

BEGIN

PROCESS (clk)

BEGIN

IF (rst='1') THEN

q <= '0';

ELSIF (clk='1') THEN

q <= d;

END IF;

END PROCESS;

END arch4;

----- Solution 5 ---------------------

ARCHITECTURE arch5 OF dff IS

BEGIN

PROCESS (clk, rst, d)

BEGIN

IF (rst='1') THEN

q <= '0';

ELSIF (clk='1') THEN

q <= d;

END IF;

END PROCESS;

END arch5;

--------------------------------------
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7 Signals and Variables

VHDL provides two objects for dealing with non-static data values: SIGNAL and

VARIABLE. It also provides means for establishing default (static) values: CON-

STANT and GENERIC. The last of these (the GENERIC attribute) was already

seen in chapter 4. SIGNAL, VARIABLE, and CONSTANT will be studied together

in this chapter.

CONSTANT and SIGNAL can be global (that is, seen by the whole code), and

can be used in either type of code, concurrent or sequential. A VARIABLE, on the

other hand, is local, for it can only be used inside a piece of sequential code (that is,

in a PROCESS, FUNCTION, or PROCEDURE) and its value can never be passed

out directly.

As will become apparent, the choice between a SIGNAL or a VARIABLE is not

always easy, so an entire section and several examples will be devoted to the matter.

Moreover, a discussion on the number of registers inferred by the compiler, based on

SIGNAL and VARIABLE assignments, will also be presented.

7.1 CONSTANT

CONSTANT serves to establish default values. Its syntax is shown below.

CONSTANT name : type := value;

Examples:

CONSTANT set_bit : BIT := '1';

CONSTANT datamemory : memory := (('0','0','0','0'),

('0','0','0','1'),

('0','0','1','1'));

A CONSTANT can be declared in a PACKAGE, ENTITY, or ARCHITEC-

TURE. When declared in a package, it is truly global, for the package can be

used by several entities. When declared in an entity (after PORT), it is global to all

architectures that follow that entity. Finally, when declared in an architecture (in its

declarative part), it is global only to that architecture’s code. The most common

places to find a CONSTANT declaration is in an ARCHITECTURE or in a

PACKAGE.
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7.2 SIGNAL

SIGNAL serves to pass values in and out the circuit, as well as between its internal

units. In other words, a signal represents circuit interconnects (wires). For instance,

all PORTS of an ENTITY are signals by default. Its syntax is the following:

SIGNAL name : type [range] [:= initial_value];

Examples:

SIGNAL control: BIT := '0';

SIGNAL count: INTEGER RANGE 0 TO 100;

SIGNAL y: STD_LOGIC_VECTOR (7 DOWNTO 0);

The declaration of a SIGNAL can be made in the same places as the declaration

of a CONSTANT (described above).

A very important aspect of a SIGNAL, when used inside a section of sequential

code (PROCESS, for example), is that its update is not immediate. In other words, its

new value should not be expected to be ready before the conclusion of the corre-

sponding PROCESS, FUNCTION or PROCEDURE.

Recall that the assignment operator for a SIGNAL is ‘‘<=’’ (Ex.: count<=35;).

Also, the initial value in the syntax above is not synthesizable, being only considered

in simulations.

Another aspect that might a¤ect the result is when multiple assignments are made

to the same SIGNAL. The compiler might complain and quit synthesis, or might

infer the wrong circuit (by considering only the last assignment, for example).

Therefore, establishing initial values, like in line 15 of the example below, should be

done with a VARIABLE.

Example 7.1: Count Ones #1 (not OK)

Say that we want to design a circuit that counts the number of ‘1’s in a binary vector

(problem 6.9). Let us consider the solution below, which uses only signals. This code

has multiple assignments to the same signal, temp, in lines 15 (once) and 18 (eight

times). Moreover, since the value of a signal is not updated immediately, line 18

conflicts with line 15, for the value assigned in line 15 might not be ready until the

conclusion of the PROCESS, in which case a wrong value would be computed in line

18. In this kind of situation, the use of a VARIABLE is recommended (example 7.2).
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1 ---------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY count_ones IS

6 PORT ( din: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 ones: OUT INTEGER RANGE 0 TO 8);

8 END count_ones;

9 ---------------------------------------

10 ARCHITECTURE not_ok OF count_ones IS

11 SIGNAL temp: INTEGER RANGE 0 TO 8;

12 BEGIN

13 PROCESS (din)

14 BEGIN

15 temp <= 0;

16 FOR i IN 0 TO 7 LOOP

17 IF (din(i)='1') THEN

18 temp <= temp + 1;

19 END IF;

20 END LOOP;

21 ones <= temp;

22 END PROCESS;

23 END not_ok;

24 ---------------------------------------

Notice also in the solution above that the internal signal temp (line 11) seems un-

necessary, because ones could have been used directly. However, to do so, the mode

of ones would need to be changed from OUT to BUFFER (line 7), because ones is

assigned a value and is also read (used) internally. Nevertheless, since ones is a gen-

uine unidirectional (OUT) signal, the use of an auxiliary signal (temp) is an adequate

design practice.

7.3 VARIABLE

Contrary to CONSTANT and SIGNAL, a VARIABLE represents only local infor-

mation. It can only be used inside a PROCESS, FUNCTION, or PROCEDURE

(that is, in sequential code), and its value can not be passed out directly. On the other

hand, its update is immediate, so the new value can be promptly used in the next line

of code.
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To declare a VARIABLE, the following syntax should be used:

VARIABLE name : type [range] [:= init_value];

Examples:

VARIABLE control: BIT := '0';

VARIABLE count: INTEGER RANGE 0 TO 100;

VARIABLE y: STD_LOGIC_VECTOR (7 DOWNTO 0) := "10001000";

Since a VARIABLE can only be used in sequential code, its declaration can only

be done in the declarative part of a PROCESS, FUNCTION, or PROCEDURE.

Recall that the assignment operator for a VARIABLE is ‘‘:=’’ (Ex.: count:=35;).

Also, like in the case of a SIGNAL, the initial value in the syntax above is not syn-

thesizable, being only considered in simulations.

Example 7.2: Count Ones #2 (OK)

Let us consider the problem of example 7.1 once again. The only di¤erence in the

solution below is that an internal VARIABLE is employed instead of a SIGNAL.

Since the update of a variable is immediate, the initial value is established correctly

and no complains regarding multiple assignments will be issued by the compiler.

Simulation results can be verified in figure 7.1.

1 ---------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY count_ones IS

6 PORT ( din: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 ones: OUT INTEGER RANGE 0 TO 8);

Figure 7.1
Simulation results of example 7.2.
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8 END count_ones;

9 ---------------------------------------

10 ARCHITECTURE ok OF count_ones IS

11 BEGIN

12 PROCESS (din)

13 VARIABLE temp: INTEGER RANGE 0 TO 8;

14 BEGIN

15 temp := 0;

16 FOR i IN 0 TO 7 LOOP

17 IF (din(i)='1') THEN

18 temp := temp + 1;

19 END IF;

20 END LOOP;

21 ones <= temp;

22 END PROCESS;

23 END ok;

24 ---------------------------------------

7.4 SIGNAL versus VARIABLE

As already mentioned, choosing between a SIGNAL or a VARIABLE is not always

straightforward. Their main di¤erences are summarized in table 7.1.

Table 7.1
Comparison between SIGNAL and VARIABLE.

SIGNAL VARIABLE

Assignment <¼ :¼
Utility Represents circuit interconnects (wires) Represents local information

Scope Can be global (seen by entire code) Local (visible only inside the
corresponding PROCESS, FUNCTION,
or PROCEDURE)

Behavior Update is not immediate in sequential
code (new value generally only available
at the conclusion of the PROCESS,
FUNCTION, or PROCEDURE)

Updated immediately (new value can be
used in the next line of code)

Usage In a PACKAGE, ENTITY, or
ARCHITECTURE. In an ENTITY, all
PORTS are SIGNALS by default

Only in sequential code, that is, in a
PROCESS, FUNCTION, or
PROCEDURE
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We want to stress again that an assignment to a VARIABLE is immediate, but

that is not the case with a SIGNAL. In general, the new value of a SIGNAL will

only be available at the conclusion of the current run of the corresponding PRO-

CESS. Though this might not be always the case, it is a safe practice to consider it so.

The examples presented below will further illustrate this and other di¤erences be-

tween SIGNALS and VARIABLES.

Example 7.3: Bad versus Good Multiplexer

In this example, we will implement the same multiplexer of example 5.2 (repeated in

figure 7.2). This is, indeed, a classical example regarding the choice of a SIGNAL

versus a VARIABLE.

1 -- Solution 1: using a SIGNAL (not ok) --

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY mux IS

6 PORT ( a, b, c, d, s0, s1: IN STD_LOGIC;

7 y: OUT STD_LOGIC);

8 END mux;

9 -----------------------------------------

10 ARCHITECTURE not_ok OF mux IS

11 SIGNAL sel : INTEGER RANGE 0 TO 3;

12 BEGIN

13 PROCESS (a, b, c, d, s0, s1)

14 BEGIN

15 sel <= 0;

16 IF (s0='1') THEN sel <= sel + 1;

sel (1:0)

a

b

c

d

yMUX

Figure 7.2
Multiplexer of example 7.3.
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17 END IF;

18 IF (s1='1') THEN sel <= sel + 2;

19 END IF;

20 CASE sel IS

21 WHEN 0 => y<=a;

22 WHEN 1 => y<=b;

23 WHEN 2 => y<=c;

24 WHEN 3 => y<=d;

25 END CASE;

26 END PROCESS;

27 END not_ok;

28 -----------------------------------------

1 -- Solution 2: using a VARIABLE (ok) ----

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY mux IS

6 PORT ( a, b, c, d, s0, s1: IN STD_LOGIC;

7 y: OUT STD_LOGIC);

8 END mux;

9 -----------------------------------------

10 ARCHITECTURE ok OF mux IS

11 BEGIN

12 PROCESS (a, b, c, d, s0, s1)

13 VARIABLE sel : INTEGER RANGE 0 TO 3;

14 BEGIN

15 sel := 0;

16 IF (s0='1') THEN sel := sel + 1;

17 END IF;

18 IF (s1='1') THEN sel := sel + 2;

19 END IF;

20 CASE sel IS

21 WHEN 0 => y<=a;

22 WHEN 1 => y<=b;

23 WHEN 2 => y<=c;

24 WHEN 3 => y<=d;

25 END CASE;
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26 END PROCESS;

27 END ok;

28 ---------------------------------------

Comments:

A common mistake when using a SIGNAL is not to remember that it might require

a certain amount of time to be updated. Therefore, the assignment sel <¼ selþ 1 in

the first solution (line 16) will result in one plus whatever value had been previously

propagated to sel, for the assignment sel <¼ 0 (line 15) might not have had time to

propagate yet. The same is true for sel <¼ selþ 2 (line 18). This is not a problem

when using a VARIABLE, for its assignment is always immediate.

A second aspect that might be a problem in solution 1 is that more than one as-

signment is being made to the same SIGNAL (sel, lines 15, 16, and 18), which might

not be acceptable. Generally, only one assignment to a SIGNAL is allowed within a

PROCESS, so the software will either consider only the last one (sel <¼ selþ 2 in

solution 1) or simply issue an error message and stop compilation. Again, this is

never a problem when using a VARIABLE.

Figure 7.3
Simulation results of example 7.3.
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Simulation results from both solutions are shown in figure 7.3 (bad mux in the

upper graph, good mux in the lower graph). As can be seen, only solution 2 works

properly.

Example 7.4: DFF with q and qbar #1

We want to implement the DFF of figure 7.4. This circuit di¤ers from that of exam-

ple 6.1 by the absence of reset and the inclusion of qbar. The presence of qbar will

help understand how an assignment to a SIGNAL is made (recall that a PORT is a

SIGNAL by default).

1 ---- Solution 1: not OK ---------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY dff IS

6 PORT ( d, clk: IN STD_LOGIC;

7 q: BUFFER STD_LOGIC;

8 qbar: OUT STD_LOGIC);

9 END dff;

10 ---------------------------------------

11 ARCHITECTURE not_ok OF dff IS

12 BEGIN

13 PROCESS (clk)

14 BEGIN

15 IF (clk'EVENT AND clk='1') THEN

16 q <= d;

17 qbar <= NOT q;

18 END IF;

19 END PROCESS;

20 END not_ok;

21 ---------------------------------------

d

clk

q

qbar

DFF

Figure 7.4
DFF of example 7.4.
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1 ---- Solution 2: OK -------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY dff IS

6 PORT ( d, clk: IN STD_LOGIC;

7 q: BUFFER STD_LOGIC;

8 qbar: OUT STD_LOGIC);

9 END dff;

10 ---------------------------------------

11 ARCHITECTURE ok OF dff IS

12 BEGIN

13 PROCESS (clk)

14 BEGIN

15 IF (clk'EVENT AND clk='1') THEN

16 q <= d;

17 END IF;

18 END PROCESS;

19 qbar <= NOT q;

20 END ok;

21 ---------------------------------------

Comments:

In solution 1, the assignments q<=d (line 16) and qbar<=NOT q (line 17) are both

synchronous, so their new values will only be available at the conclusion of the

PROCESS. This is a problem for qbar, because the new value of q has not propa-

gated yet. Therefore, qbar will assume the reverse of the old value of q. In other

words, the right value of qbar will be one clock cycle delayed, thus causing the circuit

not to work correctly. This behavior can be observed in the upper graph of figure 7.5.

In solution 2, we have placed qbar<=NOT q (line 30) outside the PROCESS, thus

operating as a true concurrent expression. The behavior of the resulting circuit can

be observed in the lower graph of figure 7.5.

Example 7.5: Frequency Divider

In this example, we want to implement a circuit that divides the clock frequency by 6

(figure 7.6). Intentionally, we have implemented two outputs, one based on a SIG-

NAL (count1) and the other based on a VARIABLE (count2). Knowing that both

work properly (see simulation results in figure 7.7), you are invited to fill in the two

blanks and to explain your answers.
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Figure 7.5
Simulation results of example 7.4.

fclk fclk/6
FREQ.

DIVIDER

Figure 7.6
Frequency divider of example 7.5.

Figure 7.7
Simulation results of example 7.5.
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1 -----------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY freq_divider IS

6 PORT ( clk : IN STD_LOGIC;

7 out1, out2 : BUFFER STD_LOGIC);

8 END freq_divider;

9 -----------------------------------------

10 ARCHITECTURE example OF freq_divider IS

11 SIGNAL count1 : INTEGER RANGE 0 TO 7;

12 BEGIN

13 PROCESS (clk)

14 VARIABLE count2 : INTEGER RANGE 0 TO 7;

15 BEGIN

16 IF (clk'EVENT AND clk='1') THEN

17 count1 <= count1 + 1;

18 count2 := count2 + 1;

19 IF (count1 = ? ) THEN

20 out1 <= NOT out1;

21 count1 <= 0;

22 END IF;

23 IF (count2 = ? ) THEN

24 out2 <= NOT out2;

25 count2 := 0;

26 END IF;

27 END IF;

28 END PROCESS;

29 END example;

30 -----------------------------------------

7.5 Number of Registers

In this section, we will discuss the number of flip-flops inferred from the code

by the compiler. The purpose is not only to understand which approaches require

less registers, but also to make sure that the code does implement the expected

circuit.
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A SIGNAL generates a flip-flop whenever an assignment is made at the transition

of another signal; that is, when a synchronous assignment occurs. Such assignment,

being synchronous, can only happen inside a PROCESS, FUNCTION, or PRO-

CEDURE (usually following a declaration of the type ‘‘IF signal’EVENT . . .’’ or

‘‘WAIT UNTIL . . .’’).

A VARIABLE, on the other hand, will not necessarily generate flip-flops if its

value never leaves the PROCESS (or FUNCTION, or PROCEDURE). However, if

a value is assigned to a variable at the transition of another signal, and such value is

eventually passed to a signal (which leaves the process), then flip-flops will be in-

ferred. A VARIABLE also generates a register when it is used before a value has

been assigned to it. The examples presented below will illustrate these points.

Example: In the process shown below, output1 and output2 will both be stored (that

is, infer flip-flops), because both are assigned at the transition of another signal (clk).

PROCESS (clk)

BEGIN

IF (clk'EVENT AND clk='1') THEN

output1 <= temp; -- output1 stored

output2 <= a; -- output2 stored

END IF;

END PROCESS;

Example: In the next process, only output1 will be stored (output2 will make use of

logic gates).

PROCESS (clk)

BEGIN

IF (clk'EVENT AND clk='1') THEN

output1 <= temp; -- output1 stored

END IF;

output2 <= a; -- output2 not stored

END PROCESS;

Example: In the process below, temp (a variable) will cause x (a signal) to be stored.

PROCESS (clk)

VARIABLE temp: BIT;

BEGIN

IF (clk'EVENT AND clk='1') THEN
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temp <= a;

END IF;

x <= temp; -- temp causes x to be stored

END PROCESS;

Additional (complete) examples are presented next. The purpose is to further

illustrate when and why registers are inferred from SIGNAL and VARIABLE

assignments.

Example 7.6: DFF with q and qbar #2

Let us consider the DFF of figure 7.4 once again. Both solutions presented below

function properly. The di¤erence between them, however, resides in the number of

flip-flops needed in each case. Solution 1 has two synchronous SIGNAL assignments

(lines 16–17), so 2 flip-flops will be generated. This is not the case in solution 2,

where one of the assignments (line 19) is no longer synchronous. The resulting cir-

cuits are presented in figures 7.8(a)–(b), respectively.

1 ---- Solution 1: Two DFFs ---------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY dff IS

6 PORT ( d, clk: IN STD_LOGIC;

d

clk

q

(a) (b)

DFF

qbar

DFF

d

clk

q

qbar

DFF

Figure 7.8
Circuits inferred from the code of example 7.6: (a) solution 1, (b) solution 2.
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7 q: BUFFER STD_LOGIC;

8 qbar: OUT STD_LOGIC);

9 END dff;

10 -----------------------------------------

11 ARCHITECTURE two_dff OF dff IS

12 BEGIN

13 PROCESS (clk)

14 BEGIN

15 IF (clk'EVENT AND clk='1') THEN

16 q <= d; -- generates a register

17 qbar <= NOT d; -- generates a register

18 END IF;

19 END PROCESS;

20 END two_dff;

21 -----------------------------------------

1 ---- Solution 2: One DFF ----------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY dff IS

6 PORT ( d, clk: IN STD_LOGIC;

7 q: BUFFER STD_LOGIC;

8 qbar: OUT STD_LOGIC);

9 END dff;

10 -----------------------------------------

11 ARCHITECTURE one_dff OF dff IS

12 BEGIN

13 PROCESS (clk)

14 BEGIN

15 IF (clk'EVENT AND clk='1') THEN

16 q <= d; -- generates a register

17 END IF;

18 END PROCESS;

19 qbar <= NOT q; -- uses logic gate (no register)

20 END one_dff;

21 -----------------------------------------
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Comments:

Example 7.6 illustrates a very important situation, in which extra (unnecessary)

hardware might be inferred when the code is not assembled carefully. With solution

2, the synthesizer will always infer only one flip-flop. It is interesting to mention,

however, that for certain types of CPLD/FPGA devices, when the signals q and qbar

are connected directly to chip pins, the fitter (place & route) might still opt for two

flip-flops in the physical implementation. This does not mean that two flip-flops were

indeed necessary. In fact, though the fitter (place & route) report might mention two

registers in such cases, the synthesis report will invariably inform that only one reg-

ister was indeed required. A further discussion is presented in problem 7.7.

Example 7.7: Counter

Let us consider the 0-to-7 counter of figure 7.9. Two solutions are presented below.

In the first, a synchronous VARIABLE assignment is made (lines 14–15). In the

second, a synchronous SIGNAL assignment occurs (lines 13–14).

From either solution, three flip-flops are inferred (to hold the 3-bit output signal

count). Solution 1 is an example that a VARIABLE can indeed generate registers.

The reason is that its assignment (line 15) is at the transition of another signal (clk,

line 14) and its value does leave the PROCESS (line 17).

Solution 2, on the other hand, uses only SIGNALS. Notice that, since no auxiliary

signal was used, count needed to be declared as of mode BUFFER (line 4), because

it is assigned a value and is also read (used) internally (line 14). Still regarding line 14

of solution 2, notice that a SIGNAL, like a VARIABLE, can also be incremented

when used in a sequential code. Finally, notice that neither in solution 1 nor in solu-

tion 2 was the std_logic_1164 package declared, because we are not using std_logic

data types in this example.

1 ------ Solution 1: With a VARIABLE --------

2 ENTITY counter IS

clk count (2:0)

COUNTER

rst

Figure 7.9
0-to-7 counter of example 7.7.
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3 PORT ( clk, rst: IN BIT;

4 count: OUT INTEGER RANGE 0 TO 7);

5 END counter;

6 --------------------------------------------

7 ARCHITECTURE counter OF counter IS

8 BEGIN

9 PROCESS (clk, rst)

10 VARIABLE temp: INTEGER RANGE 0 TO 7;

11 BEGIN

12 IF (rst='1') THEN

13 temp:=0;

14 ELSIF (clk'EVENT AND clk='1') THEN

15 temp := temp+1;

16 END IF;

17 count <= temp;

18 END PROCESS;

19 END counter;

20 --------------------------------------------

1 ------ Solution 2: With SIGNALS only -------

2 ENTITY counter IS

3 PORT ( clk, rst: IN BIT;

4 count: BUFFER INTEGER RANGE 0 TO 7);

5 END counter;

6 --------------------------------------------

7 ARCHITECTURE counter OF counter IS

8 BEGIN

9 PROCESS (clk, rst)

10 BEGIN

11 IF (rst='1') THEN

12 count <= 0;

13 ELSIF (clk'EVENT AND clk='1') THEN

14 count <= count + 1;

15 END IF;

16 END PROCESS;

17 END counter;

18 --------------------------------------------

Simulation results (from either solution above) are shown in figure 7.10.
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Example 7.8: Shift Register #1

We are now interested in examining what happens to the 4-stage shift register of

figure 7.11 when di¤erent VARIABLE and SIGNAL assignments are made. Of

course, if the solution is correct, then the output signal (dout) should be four positive

clock edges behind the input signal (din).

In solution 1, three VARIABLES are used (a, b, and c, line 10). However, the

variables are used before values are assigned to them (that is, in reverse order, start-

ing with dout, line 13, and ending with din, line 16). Consequently, flip-flops will be

inferred, which store the values from the previous run of the PROCESS.

In solution 2, the variables were replaced by SIGNALS (line 8), and the assign-

ments are made in direct order (from din to dout, lines 13–16). Since signal assign-

ments at the transition of another signal do generate registers, here too the right

circuit will be inferred.

Finally, in solution 3, the same variables of solution 1 were employed, but in direct

order (from din to dout, lines 13–16). Recall, however, that an assignment to a vari-

able is immediate, and since the variables are being used in direct order (that is, after

values have been assigned to them), lines 13–15 collapse into one line, equivalent to

c :¼ din. The value of c does leave the process in the next line (line 16), however,

where a signal assignment (dout <¼ c) occurs at the transition of clk. Therefore, one

register will be inferred from solution 3, thus not resulting the correct circuit.

Figure 7.10
Simulation results of example 7.7.

din

clk

dout

DFF DFF DFF DFF

Figure 7.11
Shift-register of example 7.8.
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Note: More conventional solutions to the shift-register problem will be presented in

example 7.9.

1 -------- Solution 1: -----------------

2 ENTITY shift IS

3 PORT ( din, clk: IN BIT;

4 dout: OUT BIT);

5 END shift;

6 --------------------------------------

7 ARCHITECTURE shift OF shift IS

8 BEGIN

9 PROCESS (clk)

10 VARIABLE a, b, c: BIT;

11 BEGIN

12 IF (clk'EVENT AND clk='1') THEN

13 dout <= c;

14 c := b;

15 b := a;

16 a := din;

17 END IF;

18 END PROCESS;

19 END shift;

20 --------------------------------------

1 -------- Solution 2: -----------------

2 ENTITY shift IS

3 PORT ( din, clk: IN BIT;

4 dout: OUT BIT);

5 END shift;

6 --------------------------------------

7 ARCHITECTURE shift OF shift IS

8 SIGNAL a, b, c: BIT;

9 BEGIN

10 PROCESS (clk)

11 BEGIN

12 IF (clk'EVENT AND clk='1') THEN

13 a <= din;

14 b <= a;
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15 c <= b;

16 dout <= c;

17 END IF;

18 END PROCESS;

19 END shift;

20 --------------------------------------

1 -------- Solution 3: -----------------

2 ENTITY shift IS

3 PORT ( din, clk: IN BIT;

4 dout: OUT BIT);

5 END shift;

6 --------------------------------------

7 ARCHITECTURE shift OF shift IS

8 BEGIN

9 PROCESS (clk)

10 VARIABLE a, b, c: BIT;

11 BEGIN

12 IF (clk'EVENT AND clk='1') THEN

13 a := din;

14 b := a;

15 c := b;

16 dout <= c;

17 END IF;

18 END PROCESS;

19 END shift;

20 --------------------------------------

Simulation results from solution 1 or 2 are shown in the upper graph of figure

7.12, while the lower graph shows results from solution 3. As expected, dout is four

positive clock edges behind din in the former, but only one positive edge behind the

input in the latter.

Example 7.9: Shift Register #2

In this example, conventional approaches to the design of shift registers are presented.

Figure 7.13 shows a 4-bit shift register, similar to that of example 7.8, except for

the presence of a reset input (rst). As before, the output bit (q) should be four positive

clock edges behind the input bit (d). Reset should be asynchronous, forcing all flip-

flop outputs to ‘0’ when asserted.
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Two solutions are presented. One uses a SIGNAL to generate the flip-flops, while

the other uses a VARIABLE. The synthesized circuits are the same (that is, four flip-

flops are inferred from either solution). In solution 1, registers are created because an

assignment to a signal is made at the transition of another signal (lines 17–18). In

solution 2, the assignment at the transition of another signal is made to a variable

(lines 17–18), but since its value does leave the process (that is, it is passed to a port

in line 20), it too infers registers.

1 ---- Solution 1: With an internal SIGNAL ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------

5 ENTITY shiftreg IS

Figure 7.12
Simulation results of example 7.8 (solutions 1 and 2).

d

clk
rst

q

DFF DFF DFF DFF

Figure 7.13
Shift register of example 7.9.
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6 PORT ( d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END shiftreg;

9 --------------------------------------------

10 ARCHITECTURE behavior OF shiftreg IS

11 SIGNAL internal: STD_LOGIC_VECTOR (3 DOWNTO 0);

12 BEGIN

13 PROCESS (clk, rst)

14 BEGIN

15 IF (rst='1') THEN

16 internal <= (OTHERS => '0');

17 ELSIF (clk'EVENT AND clk='1') THEN

18 internal <= d & internal(3 DOWNTO 1);

19 END IF;

20 END PROCESS;

21 q <= internal(0);

22 END behavior;

23 --------------------------------------------

1 -- Solution 2: With an internal VARIABLE ---

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------

5 ENTITY shiftreg IS

6 PORT ( d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END shiftreg;

9 --------------------------------------------

10 ARCHITECTURE behavior OF shiftreg IS

11 BEGIN

12 PROCESS (clk, rst)

13 VARIABLE internal: STD_LOGIC_VECTOR (3 DOWNTO 0);

14 BEGIN

15 IF (rst='1') THEN

16 internal := (OTHERS => '0');

17 ELSIF (clk'EVENT AND clk='1') THEN

18 internal := d & internal(3 DOWNTO 1);

19 END IF;

20 q <= internal(0);
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21 END PROCESS;

22 END behavior;

23 --------------------------------------------

Simulation results (from either solution above) are shown in figure 7.14. As can be

seen, q is indeed four positive clock edges behind d.

You may now review the usage of SIGNALS and VARIABLES in all examples of

chapter 6. Moreover, in chapter 8, a series of design examples will be presented in

which the correct understanding of the di¤erences between signals and variables is

crucial, or the wrong circuit might be inferred.

7.6 Problems

Problem 7.1: VHDL ‘‘Numerical’’ Objects

Given the following VHDL objects:

CONSTANT max : INTEGER := 10;

SIGNAL x: INTEGER RANGE -10 TO 10;

SIGNAL y: BIT_VECTOR (15 DOWNTO 0);

VARIABLE z: BIT;

Determine which among the assignments below are legal (suggestion: review chap-

ter 3).

x <= 5;

x <= y(5);

z <= '1';

z := y(5);

WHILE i IN 0 TO max LOOP...

Figure 7.14
Simulation results of example 7.9.
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FOR i IN 0 TO x LOOP...

G1: FOR i IN 0 TO max GENERATE...

G1: FOR i IN 0 TO x GENERATE...

Problem 7.2: Data Delay

Figure P7.2 shows the diagram of a programmable data delay circuit. The input (d)

and output (q) are 4-bit buses. Depending on the value of sel (select), q should be

one, two, three, or four clock cycles delayed with respect to d.

(a) Write a VHDL code for this circuit;

(b) How many flip-flops do you expect your solution to contain?

(c) Synthesize your solution and open the report file. Verify whether the actual

number of flip-flops matches your prediction.

Problem 7.3: DFF with q and qbar #1

We want to implement the same flip-flop of example 7.4 (figure 7.4). However, we

have introduced an auxiliary signal (temp) in our code. You are asked to examine

each of the solutions below and determine whether q and qbar will work properly.

Briefly explain your answers.

---------------------------------------

ENTITY dff IS

PORT ( d, clk: IN BIT;

q, qbar: BUFFER BIT);

END dff;

q4q3q2q1

DFF

d

clk

DFF

q

sel

DFeDFF

MUX

Figure P7.2
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-------- Solution 1 -------------------

ARCHITECTURE arch1 OF dff IS

SIGNAL temp: BIT;

BEGIN

PROCESS (clk)

BEGIN

IF (clk'EVENT AND clk='1') THEN

temp <= d;

q <= temp;

qbar <= NOT temp;

END IF;

END PROCESS;

END arch1;

-------- Solution 2 -------------------

ARCHITECTURE arch2 OF dff IS

SIGNAL temp: BIT;

BEGIN

PROCESS (clk)

BEGIN

IF (clk'EVENT AND clk='1') THEN

temp <= d;

END IF;

q <= temp;

qbar <= NOT temp;

END PROCESS;

END arch2;

-------- Solution 3 -------------------

ARCHITECTURE arch3 OF dff IS

SIGNAL temp: BIT;

BEGIN

PROCESS (clk)

BEGIN

IF (clk'EVENT AND clk='1') THEN

temp <= d;

END IF;

END PROCESS;

q <= temp;

qbar <= NOT temp;
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END arch3;

---------------------------------------

Problem 7.4: DFF with q and qbar #2

This problem is similar to problem 7.3. However, here we have an auxiliary VARI-

ABLE instead of an auxiliary SIGNAL. You are asked to examine each of the

solutions below and determine whether q and qbar will work as expected. Briefly

explain your answers.

---------------------------------------

ENTITY dff IS

PORT ( d, clk: IN BIT;

q: BUFFER BIT;

qbar: OUT BIT);

END dff;

-------- Solution 1 -------------------

ARCHITECTURE arch1 OF dff IS

BEGIN

PROCESS (clk)

VARIABLE temp: BIT;

BEGIN

IF (clk'EVENT AND clk='1') THEN

temp := d;

q <= temp;

qbar <= NOT temp;

END IF;

END PROCESS;

END arch1;

-------- Solution 2 -------------------

ARCHITECTURE arch2 OF dff IS

BEGIN

PROCESS (clk)

VARIABLE temp: BIT;

BEGIN

IF (clk'EVENT AND clk='1') THEN

temp := d;

q <= temp;

qbar <= NOT q;
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END IF;

END PROCESS;

END arch2;

-------- Solution 3 -------------------

ARCHITECTURE arch3 OF dff IS

BEGIN

PROCESS (clk)

VARIABLE temp: BIT;

BEGIN

IF (clk'EVENT AND clk='1') THEN

temp := d;

q <= temp;

END IF;

END PROCESS;

qbar <= NOT q;

END arch3;

---------------------------------------

Problem 7.5: Counter

Consider the 4-bit counter of example 6.2. However, suppose that now it should

count from 0 (‘‘0000’’) to 15 (‘‘1111’’).

(a) Write a VHDL code for it, then synthesize and simulate your solution to verify

that it works as expected.

(b) Open the report file created by your synthesis tool and confirm that four flip-

flops were inferred.

(c) Still using the report file, observe whether the circuit looks like that of figure

P7.5. Are the equations implemented at the flip-flop inputs similar or equivalent to

those shown in figure P7.5? What is the missing equation (input of fourth flip-flop)?

clk

DFF

c0

c0

DFF

c1

c0.c1+c0.c1

DFF

c2

c0.c2+c1.c2+c0.c1.c2

DFF

?

c3

Figure P7.5
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Problem 7.6: Generic n-by-m Decoder

Let us consider the generic n-by-m decoder presented in example 4.1 (repeated in

figure P7.6). The code presented below, though very compact, contains a flaw in the

assignment ‘‘x<=(sel=>'0', OTHERS=>'1'’’. The reason is that sel is not a locally

stable signal (indeed, it appears in the sensitivity list of the PROCESS). You are

asked to correct the code.

---------------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

---------------------------------------------

ENTITY decoder IS

PORT ( ena : IN STD_LOGIC;

sel : IN INTEGER RANGE 0 TO 7;

x : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

END decoder;

---------------------------------------------

ARCHITECTURE not_ok OF decoder IS

BEGIN

PROCESS (ena, sel)

BEGIN

IF (ena='0') THEN

x <= (OTHERS => '1');

ELSE

x <= (sel=>'0', OTHERS => '1');

END IF;

END PROCESS;

END not_ok;

---------------------------------------------

sel (m-1:0)

         ena

x(n-1)
x(n-2)
…
x(1)
x(0)

m x n
DECODER

Figure P7.6
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Problem 7.7: DFF with q and qbar #3

Consider the DFF implemented in solution 2 of example 7.6. We are interested in

examining the number of registers required in its implementation. We already know

that the answer is one. However, as we mentioned in the comments of example 7.6,

even though the synthesizer tells us so, the fitter (place & route) might opt for two

registers in the final (physical) implementation when q and qbar are connected di-

rectly to output pins. This problem deals with this kind of situation.

(a) Compile the code of example 7.6 (solution 2) using Quartus II 3.0 (appendix D).

Select a device from the MAX3000A or Cyclone family. In the synthesis reports,

verify the number of registers inferred and the equations implemented by the syn-

thesizer (confirming the number of flip-flops). Next, repeat these verifications in the

fitter reports (number of registers and equations).

(b) Repeat the procedure above for another device. Select a chip from the

FLEX10K family.

(c) Compile now the code of example 7.6 (solution 2) using ISE 6.1 (appendix B).

Select a device from the XC9500 or CoolRunner II family. After compilation, make

the same verifications described above.

(d) Finally, consider the case when one of the outputs of the flip-flop is not con-

nected directly to a pin. In order to do so, we have introduced a signal called test in

the code below. Repeat all topics above for this new code.

1 ----------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------

5 ENTITY dff IS

6 PORT ( d, clk, test: IN STD_LOGIC;

7 q: BUFFER STD_LOGIC;

8 qbar: OUT STD_LOGIC);

9 END dff;

10 ----------------------------------------

11 ARCHITECTURE one_dff OF dff IS

12 BEGIN

13 PROCESS (clk)

14 BEGIN
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15 IF (clk'EVENT AND clk='1') THEN

16 q <= d;

17 END IF;

18 END PROCESS;

19 qbar <= NOT q AND test;

20 END one_dff;

21 ----------------------------------------
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8 State Machines

Finite state machines (FSM) constitute a special modeling technique for sequential

logic circuits. Such a model can be very helpful in the design of certain types of sys-

tems, particularly those whose tasks form a well-defined sequence (digital controllers,

for example). We start the chapter by reviewing fundamental concepts related to

FSM. We then introduce corresponding VHDL coding techniques, followed by

complete design examples.

8.1 Introduction

Figure 8.1 shows the block diagram of a single-phase state machine. As indicated in

the figure, the lower section contains the sequential logic (flip-flops), while the upper

section contains the combinational logic.

The combinational (upper) section has two inputs, being one pr_state (present

state) and the other the external input proper. It has also two outputs, nx_state (next

state) and the external output proper.

The sequential (lower) section has three inputs (clock, reset, and nx_state), and one

output (pr_state). Since all flip-flops are in this part of the system, clock and reset

must be connected to it.

If the output of the machine depends not only on the present state but also on the

current input, then it is called a Mealy machine. Otherwise, if it depends only on

the current state, it is called a Moore machine. Examples of both will be shown

later.

The separation of the circuit into two sections (figure 8.1) allows the design to be

broken into two parts as well. From a VHDL perspective, it is clear that the lower

part, being sequential, will require a PROCESS, while the upper part, being combi-

national, will not. However, recall that sequential code can implement both types of

logic, combinational as well as sequential. Hence, if desired, the upper part can also

be implemented using a PROCESS.

The signals clock and reset normally appear in the sensitivity list of the lower sec-

tion’s PROCESS (unless reset is synchronous or not used, or WAIT is used instead

of IF). When reset is asserted, pr_state will be set to the system’s initial state. Other-

wise, at the proper clock edge the flip-flops will store nx_state, thus transferring it to

the lower section’s output (pr_state).

One important aspect related to the FSM approach is that, though any sequential

circuit can in principle be modeled as a state machine, this is not always advantageous.

The reason is that the code might become longer, more complex, and more error

prone than in a conventional approach. This is often the case with simple registered
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circuits, like counters. As a simple rule of thumb, the FSM approach is advisable in

systems whose tasks constitute a well-structured list so all states can be easily enum-

erated. That is, in a typical state machine implementation, we will encounter, at the

beginning of the ARCHITECTURE, a user-defined enumerated data type, contain-

ing a list of all possible system states. Digital controllers are good examples of such

circuits.

Another important aspect, which was already emphasized at the beginning of

chapter 5, is that not all circuits that possess memory are necessarily sequential.

A RAM (Random Access Memory) was given as an example. In it, the

memory-read operation depends only on the address bits presently applied to the

RAM (current input), with the retrieved value having nothing to do with pre-

vious memory accesses (previous inputs). In such cases, the FSM approach is not

advisable.

8.2 Design Style #1

Several approaches can be conceived to design a FSM. We will describe in detail one

style that is well structured and easily applicable. In it, the design of the lower section

of the state machine (figure 8.1) is completely separated from that of the upper sec-

tion. All states of the machine are always explicitly declared using an enumerated

data type. After introducing such a design style, we will examine it from a data

input 

nx_state pr_state

output

reset

clock

Combinational 
logic 

Sequential 
logic

Figure 8.1
Mealy (Moore) state machine diagram.
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storage perspective, in order to further understand and refine its construction, which

will lead to design style #2.

Design of the Lower (Sequential) Section

In figure 8.1, the flip-flops are in the lower section, so clock and reset are connected

to it. The other lower section’s input is nx_state (next state), while pr_state (present

state) is its only output. Being the circuit of the lower section sequential, a PROCESS

is required, in which any of the sequential statements (IF, WAIT, CASE, or LOOP,

chapter 6) can be employed.

A typical design template for the lower section is the following:

PROCESS (reset, clock)

BEGIN

IF (reset='1') THEN

pr_state <= state0;

ELSIF (clock'EVENT AND clock='1') THEN

pr_state <= nx_state;

END IF;

END PROCESS;

The code shown above is very simple. It consists of an asynchronous reset, which

determines the initial state of the system (state0), followed by the synchronous stor-

age of nx_state (at the positive transition of clock), which will produce pr_state at the

lower section’s output (figure 8.1). One good thing about this approach is that the

design of the lower section is basically standard.

Another advantage of this design style is that the number of registers is mini-

mum. From section 7.5, we know that the number of flip-flops inferred from the

code above is simply equal to the number of bits needed to encode all states of

the FSM (because the only signal to which a value is assigned at the transition of

another signal is pr_state). Therefore, if the default (binary) encoding style (section

8.4) is used, just d log2ne flip-flops will then be needed, where n is the number of

states.

Design of the Upper (Combinational) Section

In figure 8.1, the upper section is fully combinational, so its code does not need to be

sequential; concurrent code can be used as well. Yet, in the design template shown

below, sequential code was employed, with the CASE statement playing the central

role. In this case, recall that rules 1 and 2 of section 6.10 must be observed.
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PROCESS (input, pr_state)

BEGIN

CASE pr_state IS

WHEN state0 =>

IF (input = ...) THEN

output <= <value>;

nx_state <= state1;

ELSE ...

END IF;

WHEN state1 =>

IF (input = ...) THEN

output <= <value>;

nx_state <= state2;

ELSE ...

END IF;

WHEN state2 =>

IF (input = ...) THEN

output <= <value>;

nx_state <= state2;

ELSE ...

END IF;

...

END CASE;

END PROCESS;

As can be seen, this code is also very simple, and does two things: (a) it assigns the

output value and (b) it establishes the next state. Notice also that it complies with

rules 1 and 2 of section 6.10, relative to the design of combinational circuits using

sequential statements, for all input signals are present in the sensitivity list and all

input/output combinations are specified. Finally, observe that no signal assign-

ment is made at the transition of another signal, so no flip-flops will be inferred

(section 7.5).

State Machine Template for Design Style #1

A complete template is shown below. Notice that, in addition to the two processes

presented above, it also contains a user-defined enumerated data type (here called

state), which lists all possible states of the machine.
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LIBRARY ieee;
USE ieee.std_logic_1164.all;
-----------------------------------------------------
ENTITY <entity_name> IS

PORT ( input: IN <data_type>;
reset, clock: IN STD_LOGIC;
output: OUT <data_type>);

END <entity_name>;
-----------------------------------------------------
ARCHITECTURE <arch_name> OF <entity_name> IS

TYPE state IS (state0, state1, state2, state3, ...);
SIGNAL pr_state, nx_state: state;

BEGIN
---------- Lower section: ------------------------
PROCESS (reset, clock)
BEGIN

IF (reset='1') THEN
pr_state <= state0;

ELSIF (clock'EVENT AND clock='1') THEN
pr_state <= nx_state;

END IF;
END PROCESS;
---------- Upper section: ------------------------
PROCESS (input, pr_state)
BEGIN

CASE pr_state IS
WHEN state0 =>

IF (input = ...) THEN
output <= <value>;
nx_state <= state1;

ELSE ...
END IF;

WHEN state1 =>
IF (input = ...) THEN

output <= <value>;
nx_state <= state2;

ELSE ...
END IF;

WHEN state2 =>
IF (input = ...) THEN

output <= <value>;
nx_state <= state3;

ELSE ...
END IF;

...
END CASE;

END PROCESS;
END <arch_name>;
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Example 8.1: BCD Counter

A counter is an example of Moore machine, for the output depends only on the

stored (present) state. As a simple registered circuit and as a sequencer, it can be

easily implemented in either approach: conventional (as we have already done in

previous chapters) or FSM type. The problem with the latter is that when the num-

ber of states is large it becomes cumbersome to enumerate them all, a problem easily

avoided using the LOOP statement in a conventional approach.

The state diagram of a 0-to-9 circular counter is shown in figure 8.2. The states

were called zero, one, . . . , nine, each name corresponding to the decimal value of the

output.

A VHDL code, directly resembling the design style #1 template, is presented be-

low. An enumerated data type (state) appears in lines 11–12. The design of the lower

(clocked) section is presented in lines 16–23, and that of the upper (combinational)

section, in lines 25–59. In this example, the number of registers is dlog210e ¼ 4.

Simulation results are shown in figure 8.3. As can be seen, the output (count)

grows from 0 to 9, and then restarts from 0 again.

1 -------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------

5 ENTITY counter IS

rst zero
(0000) 

one
(0001) 

two 
(0010) 

three
(0011) 

five 
(0101) 

four
(0100) 

nine 
(1001) 

six
(0110) 

eight 
(1000) 

seven 
(0111) 

Figure 8.2
States diagram of example 8.1.
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6 PORT ( clk, rst: IN STD_LOGIC;

7 count: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));

8 END counter;

9 -------------------------------------------------

10 ARCHITECTURE state_machine OF counter IS

11 TYPE state IS (zero, one, two, three, four,

12 five, six, seven, eight, nine);

13 SIGNAL pr_state, nx_state: state;

14 BEGIN

15 ------------- Lower section: -----------------

16 PROCESS (rst, clk)

17 BEGIN

18 IF (rst='1') THEN

19 pr_state <= zero;

20 ELSIF (clk'EVENT AND clk='1') THEN

21 pr_state <= nx_state;

22 END IF;

23 END PROCESS;

24 ------------- Upper section: -----------------

25 PROCESS (pr_state)

26 BEGIN

27 CASE pr_state IS

28 WHEN zero =>

29 count <= "0000";

30 nx_state <= one;

31 WHEN one =>

32 count <= "0001";

33 nx_state <= two;

Figure 8.3
Simulation results of example 8.1.
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34 WHEN two =>

35 count <= "0010";

36 nx_state <= three;

37 WHEN three =>

38 count <= "0011";

39 nx_state <= four;

40 WHEN four =>

41 count <= "0100";

42 nx_state <= five;

43 WHEN five =>

44 count <= "0101";

45 nx_state <= six;

46 WHEN six =>

47 count <= "0110";

48 nx_state <= seven;

49 WHEN seven =>

50 count <= "0111";

51 nx_state <= eight;

52 WHEN eight =>

53 count <= "1000";

54 nx_state <= nine;

55 WHEN nine =>

56 count <= "1001";

57 nx_state <= zero;

58 END CASE;

59 END PROCESS;

60 END state_machine;

61 -------------------------------------------------

Example 8.2: Simple FSM #1

Figure 8.4 shows the states diagram of a very simple FSM. The system has two states

(stateA and stateB), and must change from one to the other every time d ¼ ‘1’ is

received. The desired output is x ¼ a when the machine is in stateA, or x ¼ b when in

stateB. The initial (reset) state is stateA.

A VHDL code for this circuit, employing design style #1, is shown below.

1 ----------------------------------------------

2 ENTITY simple_fsm IS
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3 PORT ( a, b, d, clk, rst: IN BIT;

4 x: OUT BIT);

5 END simple_fsm;

6 ----------------------------------------------

7 ARCHITECTURE simple_fsm OF simple_fsm IS

8 TYPE state IS (stateA, stateB);

9 SIGNAL pr_state, nx_state: state;

10 BEGIN

11 ----- Lower section: ----------------------

12 PROCESS (rst, clk)

13 BEGIN

14 IF (rst='1') THEN

15 pr_state <= stateA;

16 ELSIF (clk'EVENT AND clk='1') THEN

17 pr_state <= nx_state;

18 END IF;

19 END PROCESS;

20 ---------- Upper section: -----------------

21 PROCESS (a, b, d, pr_state)

22 BEGIN

23 CASE pr_state IS

24 WHEN stateA =>

25 x <= a;

26 IF (d='1') THEN nx_state <= stateB;

27 ELSE nx_state <= stateA;

28 END IF;

29 WHEN stateB =>

30 x <= b;

a

b

d

xFSM

clk     rst 
rst

d=1

d=1

d=0
stateA 
(x=a)

stateB 
(x=b) d=0

Figure 8.4
State machine of example 8.1.
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31 IF (d='1') THEN nx_state <= stateA;

32 ELSE nx_state <= stateB;

33 END IF;

34 END CASE;

35 END PROCESS;

36 END simple_fsm;

37 ----------------------------------------------

Simulation results relative to the code above are shown in figure 8.5. Notice that

the circuit works as expected. Indeed, looking at the report files, one will verify that,

as expected, only one flip-flop was required to implement this circuit because there

are only two states to be encoded. Notice also that the upper section is indeed com-

binational, for the output (x), which in this case does depend on the inputs (a or b,

depending on which state the machine is in), varies when a or b vary, regardless of

clk. If a synchronous output were required, then design style #2 should be employed.

8.3 Design Style #2 (Stored Output)

As we have seen, in design style #1 only pr_state is stored. Therefore, the overall

circuit can be summarized as in figure 8.6(a). Notice that in this case, if it is a Mealy

machine (one whose output is dependent on the current input), the output might

change when the input changes (asynchronous output).

In many applications, the signals are required to be synchronous, so the output

should be updated only when the proper clock edge occurs. To make Mealy

machines synchronous, the output must be stored as well, as shown in figure 8.6(b).

This structure is the object of design style #2.

To implement this new structure, very few modifications are needed. For example,

we can use an additional signal (say, temp) to compute the output value (upper sec-

Figure 8.5
Simulation results of example 8.2
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tion), but only pass its value to the actual output signal when a clock event occurs

(lower section). These modifications can be observed in the template shown below.

State Machine Template for Design Style #2

LIBRARY ieee;
USE ieee.std_logic_1164.all;
-------------------------------------------------------
ENTITY <ent_name> IS

PORT (input: IN <data_type>;
reset, clock: IN STD_LOGIC;
output: OUT <data_type>);

END <ent_name>;
-------------------------------------------------------
ARCHITECTURE <arch_name> OF <ent_name> IS

TYPE states IS (state0, state1, state2, state3, ...);
SIGNAL pr_state, nx_state: states;
SIGNAL temp: <data_type>;

BEGIN
---------- Lower section: --------------------------
PROCESS (reset, clock)
BEGIN

IF (reset='1') THEN
pr_state <= state0;

ELSIF (clock'EVENT AND clock='1') THEN
output <= temp;
pr_state <= nx_state;

END IF;
END PROCESS;

(a) (b)

input output 
Logic gates 

Flip-flops

Flip-flops

input output 
Logic gates 

Flip-flops

Figure 8.6
Circuit diagrams for (a) Design Style #1 and (b) Design Style #2.
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---------- Upper section: --------------------------
PROCESS (pr_state)
BEGIN

CASE pr_state IS
WHEN state0 =>

temp <= <value>;
IF (condition) THEN nx_state <= state1;
...
END IF;

WHEN state1 =>
temp <= <value>;
IF (condition) THEN nx_state <= state2;
...
END IF;

WHEN state2 =>
temp <= <value>;
IF (condition) THEN nx_state <= state3;
...
END IF;

...
END CASE;

END PROCESS;
END <arch_name>;

Comparing the template of design style #2 with that of design style #1, we verify

that the only di¤erences are those related to the introduction of the internal signal

temp. This signal will cause the output of the state machine to be stored, for its value

is passed to the output only when clk’EVENT occurs.

Example 8.3: Simple FSM #2

Let us consider the design of example 8.2 once again. However, let us say that now

we want the output to be synchronous (to change only when clock rises). Since this is

a Mealy machine, design style #2 is required.

1 ----------------------------------------------

2 ENTITY simple_fsm IS

3 PORT ( a, b, d, clk, rst: IN BIT;

4 x: OUT BIT);

5 END simple_fsm;

6 ----------------------------------------------

7 ARCHITECTURE simple_fsm OF simple_fsm IS

8 TYPE state IS (stateA, stateB);

9 SIGNAL pr_state, nx_state: state;

10 SIGNAL temp: BIT;
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11 BEGIN

12 ----- Lower section: ----------------------

13 PROCESS (rst, clk)

14 BEGIN

15 IF (rst='1') THEN

16 pr_state <= stateA;

17 ELSIF (clk'EVENT AND clk='1') THEN

18 x <= temp;

19 pr_state <= nx_state;

20 END IF;

21 END PROCESS;

22 ---------- Upper section: -----------------

23 PROCESS (a, b, d, pr_state)

24 BEGIN

25 CASE pr_state IS

26 WHEN stateA =>

27 temp <= a;

28 IF (d='1') THEN nx_state <= stateB;

29 ELSE nx_state <= stateA;

30 END IF;

31 WHEN stateB =>

32 temp <= b;

33 IF (d='1') THEN nx_state <= stateA;

34 ELSE nx_state <= stateB;

35 END IF;

36 END CASE;

37 END PROCESS;

38 END simple_fsm;

39 ----------------------------------------------

Looking at the report files produced by the compiler, we observe that two flip-flops

were now inferred, one to encode the states of the machine, and the other to store the

output.

Simulation results are shown in figure 8.7. Recall that when a signal is stored, its

value will necessarily remain static between two consecutive clock edges. Therefore,

if the input (a or b in the example above) changes during this interval, the change

might not be observed by the circuit; moreover, when observed, it will be delayed

with respect to the input (which is proper of synchronous circuits).
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Example 8.4: String Detector

We want to design a circuit that takes as input a serial bit stream and outputs a ‘1’

whenever the sequence ‘‘111’’ occurs. Overlaps must also be considered, that is, if . . .

0111110 . . . occurs, than the output should remain active for three consecutive clock

cycles.

The state diagram of our machine is shown in figure 8.8. There are four states,

which we called zero, one, two, and three, with the name corresponding to the

number of consecutive ‘1’s detected. The solution shown below utilizes design style

#1.

Figure 8.7
Simulation results of example 8.3.

d=0

d=1

d=0

d=0

d=1d=0

d=1
d=1

rst
zero
(q=0)

three
(q=1)

two 
(q=0)

one
(q=0) 

Figure 8.8
States diagram for example 8.4.
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1 --------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------

5 ENTITY string_detector IS

6 PORT ( d, clk, rst: IN BIT;

7 q: OUT BIT);

8 END string_detector;

9 --------------------------------------------

10 ARCHITECTURE my_arch OF string_detector IS

11 TYPE state IS (zero, one, two, three);

12 SIGNAL pr_state, nx_state: state;

13 BEGIN

14 ----- Lower section: --------------------

15 PROCESS (rst, clk)

16 BEGIN

17 IF (rst='1') THEN

18 pr_state <= zero;

19 ELSIF (clk'EVENT AND clk='1') THEN

20 pr_state <= nx_state;

21 END IF;

22 END PROCESS;

23 ---------- Upper section: ---------------

24 PROCESS (d, pr_state)

25 BEGIN

26 CASE pr_state IS

27 WHEN zero =>

28 q <= '0';

29 IF (d='1') THEN nx_state <= one;

30 ELSE nx_state <= zero;

31 END IF;

32 WHEN one =>

33 q <= '0';

34 IF (d='1') THEN nx_state <= two;

35 ELSE nx_state <= zero;

36 END IF;

37 WHEN two =>

38 q <= '0';

39 IF (d='1') THEN nx_state <= three;
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40 ELSE nx_state <= zero;

41 END IF;

42 WHEN three =>

43 q <= '1';

44 IF (d='0') THEN nx_state <= zero;

45 ELSE nx_state <= three;

46 END IF;

47 END CASE;

48 END PROCESS;

49 END my_arch;

50 --------------------------------------------

Notice that in this example the output does not depend on the current input. This

fact can be observed in lines 28, 33, 38, and 43 of the code above, which show that all

assignments to q are unconditional (that is, do not depend on d). Therefore, the

output is automatically synchronous (a Moore machine), so the use of design style

#2 is unnecessary. The circuit requires two flip-flops, which encode the four states of

the state machine, from which q is computed.

Simulation results are shown in figure 8.9. As can be seen, the data sequence

d ¼ ‘‘011101100’’ was applied to the circuit, resulting the response q ¼ ‘‘000100000’’

at the output.

Example 8.5: Tra‰c Light Controller (TLC)

As mentioned earlier, digital controllers are good examples of circuits that can be

e‰ciently implemented when modeled as state machines. In the present example, we

want to design a TLC with the characteristics summarized in the table of figure 8.10,

that is:

� Three modes of operation: Regular, Test, and Standby.

� Regular mode: four states, each with an independent, programmable time, passed

to the circuit by means of a CONSTANT.

� Test mode: allows all pre-programmed times to be overwritten (by a manual

switch) with a small value, such that the system can be easily tested during mainte-

nance (1 second per state). This value should also be programmable and passed to

the circuit using a CONSTANT.

� Standby mode: if set (by a sensor accusing malfunctioning, for example, or a man-

ual switch) the system should activate the yellow lights in both directions and remain

so while the standby signal is active.

� Assume that a 60 Hz clock (obtained from the power line itself ) is available.
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Figure 8.9
Simulation results of example 8.4.
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Figure 8.10
Specifications and states diagram (regular mode) for example 8.5.
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Here, design style #1 can be employed, as shown in the code below.

1 -------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------

5 ENTITY tlc IS

6 PORT ( clk, stby, test: IN STD_LOGIC;

7 r1, r2, y1, y2, g1, g2: OUT STD_LOGIC);

8 END tlc;

9 -------------------------------------------------

10 ARCHITECTURE behavior OF tlc IS

11 CONSTANT timeMAX : INTEGER := 2700;

12 CONSTANT timeRG : INTEGER := 1800;

13 CONSTANT timeRY : INTEGER := 300;

14 CONSTANT timeGR : INTEGER := 2700;

15 CONSTANT timeYR : INTEGER := 300;

16 CONSTANT timeTEST : INTEGER := 60;

17 TYPE state IS (RG, RY, GR, YR, YY);

18 SIGNAL pr_state, nx_state: state;

19 SIGNAL time : INTEGER RANGE 0 TO timeMAX;

20 BEGIN

21 -------- Lower section of state machine: ----

22 PROCESS (clk, stby)

23 VARIABLE count : INTEGER RANGE 0 TO timeMAX;

24 BEGIN

25 IF (stby='1') THEN

26 pr_state <= YY;

27 count := 0;

28 ELSIF (clk'EVENT AND clk='1') THEN

29 count := count + 1;

30 IF (count = time) THEN

31 pr_state <= nx_state;

32 count := 0;

33 END IF;

34 END IF;

35 END PROCESS;
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36 -------- Upper section of state machine: ----

37 PROCESS (pr_state, test)

38 BEGIN

39 CASE pr_state IS

40 WHEN RG =>

41 r1<='1'; r2<='0'; y1<='0'; y2<='0'; g1<='0'; g2<='1';

42 nx_state <= RY;

43 IF (test='0') THEN time <= timeRG;

44 ELSE time <= timeTEST;

45 END IF;

46 WHEN RY =>

47 r1<='1'; r2<='0'; y1<='0'; y2<='1'; g1<='0'; g2<='0';

48 nx_state <= GR;

49 IF (test='0') THEN time <= timeRY;

50 ELSE time <= timeTEST;

51 END IF;

52 WHEN GR =>

53 r1<='0'; r2<='1'; y1<='0'; y2<='0'; g1<='1'; g2<='0';

54 nx_state <= YR;

55 IF (test='0') THEN time <= timeGR;

56 ELSE time <= timeTEST;

57 END IF;

58 WHEN YR =>

59 r1<='0'; r2<='1'; y1<='1'; y2<='0'; g1<='0'; g2<='0';

60 nx_state <= RG;

61 IF (test='0') THEN time <= timeYR;

62 ELSE time <= timeTEST;

63 END IF;

64 WHEN YY =>

65 r1<='0'; r2<='0'; y1<='1'; y2<='1'; g1<='0'; g2<='0';

66 nx_state <= RY;

67 END CASE;

68 END PROCESS;

69 END behavior;

70 ----------------------------------------------------

The expected number of flip-flops required to implement this circuit is 15; three

to store pr_state (the machine has five states, so three bits are needed to encode
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them), plus twelve for the counter (it is a 12-bit counter, for it must count up to

timeMAX ¼ 2700).

Simulation results are shown in figure 8.11. In order for the results to fit properly

in the graphs, we adopted small time values, with all CONSTANTS equal to 3 except

timeTEST, which was made equal to 1. Therefore, the system is expected to change

state every three clock cycles when in Regular operation, or every clock cycle if in

Test mode. These two cases can be observed in the first two graphs of figure 8.11,

respectively. The third graph shows the Standby mode being activated. As expected,

stby is asynchronous and has higher priority than test, causing the system to stay in

state YY (state 4) while stby is active. The test signal, on the other hand, is synchro-

nous, but does not need to wait for the current state timing to finish to be activated,

as can be observed in the second graph.

Example 8.6: Signal Generator

We want to design a circuit that, from a clock signal clk, gives origin to the signal

outp shown in figure 8.12(a). Notice that the circuit must operate at both edges

(rising and falling) of clk.

To circumvent the two-edge aspect (section 6.9), one alternative is to implement

two machines, one that operates exclusively at the positive transition of clk and an-

other that operates exclusively at the negative edge, thus generating the intermediate

signals out1 and out2 presented in figure 8.12(b). These signals can then be ANDed

to give origin to the desired signal outp. Notice that this circuit has no external

inputs (except for clk, of course), so the output can only change when clk changes

(synchronous output).

1 -----------------------------------------

2 ENTITY signal_gen IS

3 PORT ( clk: IN BIT;

4 outp: OUT BIT);

5 END signal_gen;

6 -----------------------------------------

7 ARCHITECTURE fsm OF signal_gen IS

8 TYPE state IS (one, two, three);

9 SIGNAL pr_state1, nx_state1: state;

10 SIGNAL pr_state2, nx_state2: state;

11 SIGNAL out1, out2: BIT;

12 BEGIN
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Figure 8.11
Simulation results of example 8.5.
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13 ----- Lower section of machine #1: ---

14 PROCESS(clk)

15 BEGIN

16 IF (clk'EVENT AND clk='1') THEN

17 pr_state1 <= nx_state1;

18 END IF;

19 END PROCESS;

20 ----- Lower section of machine #2: ---

21 PROCESS(clk)

22 BEGIN

23 IF (clk'EVENT AND clk='0') THEN

24 pr_state2 <= nx_state2;

25 END IF;

26 END PROCESS;

27 ---- Upper section of machine #1: -----

28 PROCESS (pr_state1)

29 BEGIN

(a)

(b)

clk

outp

st1         st2         st3

clk

out1

out2

outp

st1         st2        st3

Figure 8.12
Waveforms of example 8.6: (a) signal outp to be generated from clk and (b) intermediate signals out1 and
out2 (outp ¼ out1 AND out2).
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30 CASE pr_state1 IS

31 WHEN one =>

32 out1 <= '0';

33 nx_state1 <= two;

34 WHEN two =>

35 out1 <= '1';

36 nx_state1 <= three;

37 WHEN three =>

38 out1 <= '1';

39 nx_state1 <= one;

40 END CASE;

41 END PROCESS;

42 ---- Upper section of machine #2: -----

43 PROCESS (pr_state2)

44 BEGIN

45 CASE pr_state2 IS

46 WHEN one =>

47 out2 <= '1';

48 nx_state2 <= two;

49 WHEN two =>

50 out2 <= '0';

51 nx_state2 <= three;

52 WHEN three =>

53 out2 <= '1';

54 nx_state2 <= one;

55 END CASE;

56 END PROCESS;

57 outp <= out1 AND out2;

58 END fsm;

59 ------------------------------------------

Simulation results from the circuit synthesized with the code above are shown in

figure 8.13.

8.4 Encoding Style: From Binary to OneHot

To encode the states of a state machine, we can select one among several available

styles. The default style is binary. Its advantage is that it requires the least number of
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flip-flops. In this case, with n flip-flops (n bits), up to 2n states can be encoded. The

disadvantage of this encoding scheme is that it requires more logic and is slower than

the others.

At the other extreme is the onehot encoding style, which uses one flip-flop per state.

Therefore, it demands the largest number of flip-flops. In this case, with n flip-flops

(n bits), only n states can be encoded. On the other hand, this approach requires the

least amount of extra logic and is the fastest.

An style that is inbetween the two styles above is the twohot encoding scheme,

which presents two bits active per state. Therefore, with n flip-flops (n bits), up to

n(n� 1)/2 states can be encoded.

The onehot style is recommended in applications where flip-flops are abundant,

like in FPGAs (Field Programmable Gate Arrays). On the other hand, in ASICs

(Application Specific Integrated Circuits) the binary style is generally preferred.

As an example, say that our state machine has eight states. Then the encoding

would be that shown table 8.1. The number of flip-flops required in each case is three

(for binary), five (twohot), or eight (onehot). Other details are also presented in the

table.

Figure 8.13
Simulation results of example 8.6.

Table 8.1
State encoding of an 8-state FSM.

Encoding Style

STATE BINARY TWOHOT ONEHOT

state0 000 00011 00000001

state1 001 00101 00000010

state2 010 01001 00000100

state3 011 10001 00001000

state4 100 00110 00010000

state5 101 01010 00100000

state6 110 10010 01000000

state7 111 01100 10000000
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8.5 Problems

Each solution to the problems proposed below should be accompanied by synthesis

and simulation results. Verify, at least, the following: number of flip-flops inferred

and circuit functionality.

Problem 8.1: FSM

Write a VHDL code that implements the FSM described by the states diagram of

figure P8.1.

Problem 8.2: Signal Generator #1

Using the FSM approach, design a circuit capable of generating the two signals

depicted in figure P8.2 (out1, out2) from a clock signal clk. The signals are periodic

and have the same period. However, while one changes only at the rising edge of clk,

the other has changes at both edges.

Problem 8.3: Signal Generator #2

Design a finite state machine capable of generating two signals, UP and DOWN, as

illustrated in figure P8.3. These signals are controlled by two inputs, GO and STOP.

When GO changes from ‘0’ to ‘1’, the output UP must go to ‘1’ too, but T ¼ 10 ms

later. If GO returns to ‘0’, then UP must return to ‘0’ immediately. However, the

output DOWN must now go to ‘1’, again 10 ms later, returning to ‘0’ immediately if

inp=0

inp=0

state1
(outp=00)

state4
(outp=11)

state3
(outp=10)

state2
(outp=01)

rst

inp

inp=1 

inp=1 

inp=1 

inp=1 

inp=0 

inp=0 

Figure P8.1

State Machines 183

TLFeBOOK



GO changes to ‘1’. If the input STOP is asserted, then both outputs must go to ‘0’

immediately and unconditionally. Assume that a 10 kHz clock is available.

Problem 8.4: Keypad Debouncer and Encoder

Consider the keypad shown in the diagram of figure P8.4. A common way of reading

a key press is by means of a technique called scanning or polling, which reduces the

number of wires needed to interconnect the keypad to the main circuit. It consists of

sending one column low at a time, while reading each row sequentially. If a key is

pressed, then the corresponding row will be low, while the others remain high (due to

the pull-up resistors).

 clk 

out1

out2

1  period 

Figure P8.2

GO

STOP

clk

UP

DOWN

Signal 
Generator 

STOP 

 GO

  UP

DOWN 
T

T T

Figure P8.3
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outp inp digit data
ASCII

011 0111 
1011 
1101 
1110 

1
4
7
*

31h
34h
37h
2Ah

101 0111 
1011 
1101 
1110 

2
5
8
0

32h
35h
38h
30h

110 0111 
1011 
1101 
1110 

3
6
9
#

33h
36h
39h
23h

1

4

7

2

5

8

3

6

9

* 0 #

inp1 

inp2  

inp3  

inp4 

VDD

data6
 ... 

data1
data0

new_data

outp2
outp1
outp0

Figure P8.4
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Encoding: Each digit must be encoded using the ASCII code (7 bits, with the cor-

responding hexadecimal values listed in the table of figure P8.4). When a new reading

is available at the output, the new_data bit should be set to ‘1’. This will avoid

interpreting a key pressed for a long time as a long series of the same character.

Debouncing: A problem inherent to mechanical switches is switch bounces, which

occur before a firm contact is finally established. The settling generally takes up to a

few milliseconds. Therefore, the choice of the clock frequency is very important. You

are asked to choose it such that at least three readings occur in a 5 ms interval. Thus

the new_data bit should be turned high only when the same result is obtained in all

consecutive readings within a 5 ms interval.

Problem 8.5: Tra‰c Light Controller

Using your synthesis tool plus a CPLD/FPGA development kit, implement the TLC

of example 8.5. Verify, in the report files generated by your software, which pins of

the chip were assigned to the inputs (clk, stby, test) and to the outputs (r1, y1, g1, r2,

y2, g2). Then make the following physical connections in your board:

� a 60 Hz square wave signal (from a signal generator), with the appropriate logic

levels, to the clk pin.

� a VDD/GND switch to pin stby.

� a VDD/GND switch to pin test.

� an LED (red, if possible), with a 330-1kohm series resistor, to pin r1 (resistor con-

nected between r1 and the anode of the LED, and cathode connected to GND).

� an LED (yellow, if possible) to pin y1, with a series resistor like above.

� an LED (green, if possible) to pin g1, with a series resistor like above.

� finally, install other 3 LEDs, like those above, for r2, y2, and g2.

Now download the program file from your PC to the development kit and verify

the operation of the TLC. Play with the switches in order to test all modes of opera-

tion. You can also increase the clock frequency to speed up the transition from red to

yellow, etc.

Problem 8.6: Signal Generator #3

Solve problem 8.2 without using the finite state machine approach.

Problem 8.7: Signal Generator #4

Solve example 8.6 without using the FSM approach.

For further work is this area, see problems 9.3, 9.4, and 9.6 of chapter 9.
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9 Additional Circuit Designs

In the preceding chapters, we saw a series of complete design examples utilizing

VHDL code. Each design included:

� Top-level diagram of the circuit, with description;

� Review of basic concepts whenever necessary;

� Complete VHDL code;

� Simulation results; and

� Additional comments when needed.

This chapter concludes Part I of the book. In it, a series of additional design

examples are presented. These examples, like all the other designs shown so far, are

also at the circuit level (that is, self-contained in the main code). In Part II, we will do

the same; that is, we will conclude Part II with a chapter containing additional system

design examples.

The designs presented in this chapter are the following:

� Barrel shifter (section 9.1)

� Signed and unsigned comparators (section 9.2)

� Carry ripple and carry look ahead adders (section 9.3)

� Fixed-point division (section 9.4)

� Vending machine controller (section 9.5)

� Serial data receiver (section 9.6)

� Parallel-to-serial converter (section 9.7)

� Playing with a SSD (section 9.8)

� Signal generators (section 9.9)

� Memories (section 9.10)

� Finally, a list of problems is also included (section 9.11).

Note: A complete list of all designs presented in the book is shown in section 1.5.

9.1 Barrel Shifter

The diagram of a barrel shifter is shown in figure 9.1. The input is an 8-bit vector.

The output is a shifted version of the input, with the amount of shift defined by the

‘‘shift’’ input (from 0 to 7). The circuit consists of three individual barrel shifters,

each similar to that seen in example 6.9. Notice that the first barrel has only one ‘0’

TLFeBOOK



outp(7)

outp(6)

outp(5)

outp(4)

outp(3)

outp(2)

outp(1)

outp(0)
shift(0)
shift(1)
shift(2)

‘0’

inp(7)
MUX

inp(6)

MUX

inp(5)

MUX

inp(4)

MUX

inp(3)

MUX

inp(2)

MUX

inp(1)

MUX

inp(0)

MUX

‘0’

MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

‘0’

‘0’

MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

‘0’

‘0’

‘0’

Figure 9.1
Barrel shifter.
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connected to one of the multiplexers (bottom left corner), while the second has two,

and the third has four. For larger vectors, we would just keep doubling the number

of ‘0’ inputs. If shift ¼ ‘‘001’’, for example, then only the first barrel should cause a

shift; on the other hand, if shift ¼ ‘‘111’’, then all barrels should cause a shift.

A VHDL code for the circuit of figure 9.1 is presented below. Simulation results,

verifying the functionality of the circuit, are shown in figure 9.2. As can be seen in

the latter, the output is equal to the input when shift ¼ 0 (that is, shift ¼ ‘‘000’’). It

can also be seen that, as long as no bit of value ‘1’ is shifted out of the barrel, the

output is equal to the input multiplied by 2 (1 shift) when shift ¼ 1 (‘‘001’’), multi-

plied by 4 (2 shifts) when shift ¼ 2 (‘‘010’’), multiplied by 8 (3 shifts) when shift ¼ 3

(‘‘011’’), and so on.

1 ---------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY barrel IS

6 PORT ( inp: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 shift: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

8 outp: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END barrel;

10 ---------------------------------------------

11 ARCHITECTURE behavior OF barrel IS

12 BEGIN

13 PROCESS (inp, shift)

14 VARIABLE temp1: STD_LOGIC_VECTOR (7 DOWNTO 0);

15 VARIABLE temp2: STD_LOGIC_VECTOR (7 DOWNTO 0);

16 BEGIN

Figure 9.2
Simulation results from barrel shifter of figure 9.1.

Additional Circuit Designs 189

TLFeBOOK



17 ---- 1st shifter -----

18 IF (shift(0)='0') THEN

19 temp1 := inp;

20 ELSE

21 temp1(0) := '0';

22 FOR i IN 1 TO inp'HIGH LOOP

23 temp1(i) := inp(i-1);

24 END LOOP;

25 END IF;

26 ---- 2nd shifter -----

27 IF (shift(1)='0') THEN

28 temp2 := temp1;

29 ELSE

30 FOR i IN 0 TO 1 LOOP

31 temp2(i) := '0';

32 END LOOP;

33 FOR i IN 2 TO inp'HIGH LOOP

34 temp2(i) := temp1(i-2);

35 END LOOP;

36 END IF;

37 ---- 3rd shifter -----

38 IF (shift(2)='0') THEN

39 outp <= temp2;

40 ELSE

41 FOR i IN 0 TO 3 LOOP

42 outp(i) <= '0';

43 END LOOP;

44 FOR i IN 4 TO inp'HIGH LOOP

45 outp(i) <= temp2(i-4);

46 END LOOP;

47 END IF;

48 END PROCESS;

49 END behavior;

50 ---------------------------------------------
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9.2 Signed and Unsigned Comparators

Figure 9.3 shows the top-level diagram of a comparator. The size of the vectors to be

compared is generic (nþ 1). Three outputs must be provided: one corresponding to

a > b, another to a ¼ b, and finally one relative to a < b. Three solutions are pre-

sented: the first considers a and b as signed numbers, while the other two consider

them as unsigned values. Simulation results are also included.

Signed Comparator

Notice the presence of the std_logic_arith package in the code below (line 4), which is

necessary to operate with SIGNED (or UNSIGNED) data types (a and b were

declared as SIGNED numbers in line 8).

1 ---- Signed Comparator: ----------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all; -- necessary!

5 ----------------------------------------

6 ENTITY comparator IS

7 GENERIC (n: INTEGER := 7);

8 PORT (a, b: IN SIGNED (n DOWNTO 0);

9 x1, x2, x3: OUT STD_LOGIC);

10 END comparator;

11 ----------------------------------------

12 ARCHITECTURE signed OF comparator IS

13 BEGIN

14 x1 <= '1' WHEN a > b ELSE '0';

15 x2 <= '1' WHEN a = b ELSE '0';

16 x3 <= '1' WHEN a < b ELSE '0';

17 END signed;

18 ----------------------------------------

x1
x2
x3

a (n:0)

b (n:0)

a>b
a=b
a<b

Figure 9.3
Comparator.
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Simulation results are shown in figure 9.4. As can be seen, 127 > 0, but 128 < 0

and also 255 < 0 (because in 2’s complement notation 127 is the decimal 127 itself,

but 128 is the decimal �128, and 255 is indeed �1).

Unsigned Comparator #1

The VHDL code below is the counterpart of the code just presented (signed com-

parator). Notice again the presence of the std_logic_arith package (line 4), which is

necessary to operate with UNSIGNED (or SIGNED) data types (a and b were

declared as UNSIGNED numbers in line 8).

1 ---- Unsigned Comparator #1: -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all; -- necessary!

5 ----------------------------------------

6 ENTITY comparator IS

7 GENERIC (n: INTEGER := 7);

8 PORT (a, b: IN UNSIGNED (n DOWNTO 0);

9 x1, x2, x3: OUT STD_LOGIC);

10 END comparator;

11 ----------------------------------------

12 ARCHITECTURE unsigned OF comparator IS

13 BEGIN

14 x1 <= '1' WHEN a > b ELSE '0';

15 x2 <= '1' WHEN a = b ELSE '0';

16 x3 <= '1' WHEN a < b ELSE '0';

17 END unsigned;

18 ----------------------------------------

Figure 9.4
Simulation result of signed comparator of figure 9.3.
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Unsigned Comparator #2

Unsigned comparators can also be implemented with STD_LOGIC_VECTORS, in

which case there is no need to declare the std_logic_arith package. A solution of this

kind is presented below.

1 ---- Unsigned Comparator #2: -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------

5 ENTITY comparator IS

6 GENERIC (n: INTEGER := 7);

7 PORT (a, b: IN STD_LOGIC_VECTOR (n DOWNTO 0);

8 x1, x2, x3: OUT STD_LOGIC);

9 END comparator;

10 ----------------------------------------

11 ARCHITECTURE unsigned OF comparator IS

12 BEGIN

13 x1 <= '1' WHEN a > b ELSE '0';

14 x2 <= '1' WHEN a = b ELSE '0';

15 x3 <= '1' WHEN a < b ELSE '0';

16 END unsigned;

17 ----------------------------------------

Simulation results (from either unsigned comparator) are shown in figure 9.5.

Contrary to figure 9.4, now 128 and 255 are indeed bigger than zero.

Figure 9.5
Simulation result of unsigned comparator of figure 9.3.
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9.3 Carry Ripple and Carry Look Ahead Adders

Carry ripple and carry look ahead are two classical approaches to the design of

adders. The former has the advantage of requiring less hardware, while the latter is

faster. Both approaches are discussed below.

Carry Ripple Adder

Figure 9.6 shows a 4-bit unsigned carry ripple adder. For each bit, a full adder unit

(FAU, section 1.4) is employed. The truth table of the FAU is also shown. In it, a

and b represent the input bits, cin is the carry-in bit, s is the sum bit, and cout is the

carry-out bit. s must be high whenever the number of inputs that are high is odd

(parity function), while cout must be high when two or more inputs are high (ma-

jority function). Notice in figure 9.6 that each FAU relies on the carry bit produced

by the previous stage. This approach minimizes the size of the circuitry, at the ex-

pense of increased propagation delay.

Based on the truth table of figure 9.6, a very simple way of computing s and cout is

the following:

s ¼ a XOR b XOR cin

cout ¼ (a AND b) OR (a AND cin) OR (b AND cin)

Therefore, a VHDL implementation of the carry ripple adder is straightforward.

The solution shown below works for any number (n) of input bits, defined by means

of a GENERIC statement in line 5. Simulation results from the circuit synthesized

with the code below are shown in figure 9.7.

1 LIBRARY ieee;

2 USE ieee.std_logic_1164.all;

a(2) b(2)

coutcin FAU

a(1) b(1) a(3) b(3)

s(2)s(0) s(1) s(3)

c(0) c(4)c(3)
FAU

c(2)c(1)

a(0) b(0)

FAU FAU

a b   cin s   cout
0 0    0
0 1    0
1 0    0
1 1    0

0     0
1     0
1     0
0 1

0 0    1
0 1    1
1 0    1
1 1    1

1     0
0     1
0     1
1 1

Figure 9.6
4-bit carry ripple adder and truth table of Full Adder Unit (FAU).
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3 ---------------------------------------------

4 ENTITY adder_cripple IS

5 GENERIC (n: INTEGER := 4);

6 PORT ( a, b: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

7 cin: IN STD_LOGIC;

8 s: OUT STD_LOGIC_VECTOR (n-1 DOWNTO 0);

9 cout: OUT STD_LOGIC);

10 END adder_cripple;

11 ---------------------------------------------

12 ARCHITECTURE adder OF adder_cripple IS

13 SIGNAL c: STD_LOGIC_VECTOR (n DOWNTO 0);

14 BEGIN

15 c(0) <= cin;

16 G1: FOR i IN 0 TO n-1 GENERATE

17 s(i) <= a(i) XOR b(i) XOR c(i);

18 c(i+1) <= (a(i) AND b(i)) OR

19 (a(i) AND c(i)) OR

20 (b(i) AND c(i));

21 END GENERATE;

22 cout <= c(n);

23 END adder;

24 ---------------------------------------------

Pre-defined ‘‘B’’ Operator

We have already seen that an adder can be implemented directly with the ‘‘þ’’

(addition) operator (section 4.1). In this case, a carry ripple type of solution will be

normally implemented by the synthesizer. If, however, if we want the solution to be

of a certain type (like the one presented next), then an explicit code must be written.

Figure 9.7
Simulation results from the carry ripple adder of figure 9.6.
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Carry Look Ahead Adder

A diagram of a 4-bit carry look ahead adder is shown in figure 9.8. Its implementa-

tion is based on the generate and propagate concept, which gives the circuit higher

speed than its carry ripple adder counterpart (at the expense of more silicon area).

Consider two input bits, a and b. The generate (g) and propagate (p) signals are

defined as:

g ¼ a AND b

p ¼ a XOR b

Notice that such signals can be computed in advance, because neither depends on

the carry bit.

If we consider now two input vectors, a ¼ a(n� 1) . . . a(1)a(0) and b ¼ b(n� 1)

. . . b(1)b(0), then the corresponding generate and propagate vectors are g ¼ g(n� 1)

. . . g(1)g(0) and p ¼ p(n� 1) . . . p(1)p(0), where

g( j) ¼ a( j) AND b( j)

p( j) ¼ a( j) XOR b( j)

Let us consider now the carry vector, c ¼ c(n� 1) . . . c(1)c(0). The carry bits can

be computed from g and p:

c(0)C cin

c(1) ¼ c(0)p(0) þ g(0)

cout

PGU

s(0)

p(0) g(0)

a(0) b(0)

PGU

s(1)

p(1) g(1)

a(1) b(1)

PGU

s(2)

p(2) g(2)

a(2) b(2)

PGU

s(3)

p(3) g(3)

a(3) b(3)

cin
c(1) c(2) c(3)

c(4)c(0)
CLAU

Figure 9.8
4-bit carry look ahead adder.
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c(2) ¼ c(0)p(0)p(1)þ g(0)p(1) þ g(1)

c(3) ¼ c(0)p(0)p(1)p(2)þ g(0)p(1)p(2)þ g(1)p(2) þ g(2), etc.

Notice that, contrary to the carry ripple adder, each carry bit above is computed

independently; that is, none of the expressions above depends on preceding carry

computations, and that is the reason why this circuit is faster. On the other hand, the

hardware complexity grows very fast, limiting this approach to just a few bits (typi-

cally four). Larger carry look ahead adders can be implemented by associating such

4-bit-or-so units.

The implementation of the adder of figure 9.8 is now straightforward. The PGU

(Propagate—Generate Unit) computes p and g (four units are required), plus the

actual sum (s), while the CLAU (Carry Look Ahead Unit) computes the carry bits.

Note: In order to construct bigger carry look ahead adders, the CLAU block of

figure 9.8 must posses Group Propagate (GP) and Group Generate (GG) outputs,

which were omitted in the figure because this implementation is intended for four bits

only.

1 ---------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY CLA_Adder IS

6 PORT ( a, b: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

7 cin: IN STD_LOGIC;

8 s: OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

9 cout: OUT STD_LOGIC);

10 END CLA_Adder;

11 ---------------------------------------------

12 ARCHITECTURE CLA_Adder OF CLA_Adder IS

13 SIGNAL c: STD_LOGIC_VECTOR (4 DOWNTO 0);

14 SIGNAL p: STD_LOGIC_VECTOR (3 DOWNTO 0);

15 SIGNAL g: STD_LOGIC_VECTOR (3 DOWNTO 0);

16 BEGIN

17 ---- PGU: ---------------------------------

18 G1: FOR i IN 0 TO 3 GENERATE

19 p(i) <= a(i) XOR b(i);

20 g(i) <= a(i) AND b(i);

21 s(i) <= p(i) XOR c(i);
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22 END GENERATE;

23 ---- CLAU: --------------------------------

24 c(0) <= cin;

25 c(1) <= (cin AND p(0)) OR

26 g(0);

27 c(2) <= (cin AND p(0) AND p(1)) OR

28 (g(0) AND p(1)) OR

29 g(1);

30 c(3) <= (cin AND p(0) AND p(1) AND p(2)) OR

31 (g(0) AND p(1) AND p(2)) OR

32 (g(1) AND p(2)) OR

33 g(2);

34 c(4) <= (cin AND p(0) AND p(1) AND p(2) AND p(3)) OR

35 (g(0) AND p(1) AND p(2) AND p(3)) OR

36 (g(1) AND p(2) AND p(3)) OR

37 (g(2) AND p(3)) OR

38 g(3);

39 cout <= c(4);

40 END CLA_Adder;

41 ---------------------------------------------

Qualitatively, the simulation results obtained from the circuit synthesized with the

code above are similar to those from the carry ripple adder presented in figure 9.7.

9.4 Fixed-Point Division

We saw in chapter 4 that the pre-defined ‘‘/’’ (division) operator accepts only power

of two divisors, that is, it is indeed a ‘‘shift’’ operator. In this section, we will discuss

the implementation of generic division, in which the dividend and divisor can be any

integer. We start by describing the division algorithm, then we present two VHDL

solutions followed by simulation results.

Division Algorithm

Say that we want to calculate y ¼ a/b, where a, b, and y have the same number

(nþ 1) of bits. The algorithm is illustrated in figure 9.9, for a ¼ ‘‘1011’’ (decimal 11)

and b ¼ ‘‘0011’’ (decimal 3), from which we expect y ¼ ‘‘0011’’ (decimal 3) and re-

mainder ‘‘0010’’ (decimal 2). We first create a shifted version of b, whose length is

2nþ 1 bits (shown in the b-related column in figure 9.9). b_inp(i) is simply b shifted

to the left by i positions (notice the underscored characters in the b-related column).
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The computation of the quotient is performed as follows. Starting from the top of

the table, we compare a_inp(i) with b_inp(i). If the former is bigger than or equal

to the latter, than y(i) ¼ ‘1’ and b_inp(i) is subtracted from a_inp(i); otherwise,

y(i) ¼ ‘0’ and we simply proceed to the next line. After nþ 1 iterations, the compu-

tation is completed and the value left in a_inp is the remainder.

Note: It is obvious that, to subtract b_inp from a_inp, the number of bits of a_inp

cannot be less than that of b_inp, so the actual length of a_inp must be increased,

which is attained by simply filling a_inp with n ‘0’s on its left-hand side (‘0’s not

shown in figure 9.9).

Another way of presenting the division algorithm is the following. We multiply b

by 2**n, where nþ 1 is the number of bits. This, of course, corresponds to shifting b

n positions to the left, but without throwing out any of its bits (so the new b-vector

must be n bits longer than the original vector). If a is bigger than the new b, then

y(n) ¼ ‘1’, and b (the new value) must be subtracted from a; otherwise, y(n) ¼ ‘0’.

Now we move to the next iteration. We multiply b (the original value) by 2**(n� 1),

which is equivalent to shifting the original vector n� 1 positions to the left, or shift-

ing the value of b just used in the previous computation back one position to the

right. Then we compare it to a, as we did before, to decide whether y(n� 1) should

be ‘1’ or ‘0’, and so on.

VHDL Dividers

Below are two solutions for the division problem. Both use sequential code: IF is

used in the first, while LOOP plus IF are employed in the second. The first solution is

a step-by-step code, so the division algorithm described above can be clearly

observed. The second is more compact and is also generic (notice that n was defined

Index
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Figure 9.9
Division algorithm.
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by means of a GENERIC statement in line 6). The solutions include also a b ¼ 0

check routine.

Simulation results are shown in figure 9.10.

1 ----- Solution 1: step-by-step -------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------

5 ENTITY divider IS

6 PORT ( a, b: IN INTEGER RANGE 0 TO 15;

7 y: OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

8 rest: OUT INTEGER RANGE 0 TO 15;

9 err : OUT STD_LOGIC);

10 END divider;

11 --------------------------------------------------

12 ARCHITECTURE rtl OF divider IS

13 BEGIN

14 PROCESS (a, b)

15 VARIABLE temp1: INTEGER RANGE 0 TO 15;

16 VARIABLE temp2: INTEGER RANGE 0 TO 15;

17 BEGIN

18 ----- Error and initialization: -------

19 temp1 := a;

20 temp2 := b;

21 IF (b=0) THEN err <= '1';

22 ELSE err <= '0';

23 END IF;

24 ----- y(3): ---------------------------

Figure 9.10
Simulation results of divider (for 4-bit operands).
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25 IF (temp1 >= temp2 * 8) THEN

26 y(3) <= '1';

27 temp1 := temp1 - temp2*8;

28 ELSE y(3) <= '0';

29 END IF;

30 ----- y(2): ---------------------------

31 IF (temp1 >= temp2 * 4) THEN

32 y(2) <= '1';

33 temp1 := temp1 - temp2 * 4;

34 ELSE y(2) <= '0';

35 END IF;

36 ----- y(1): ---------------------------

37 IF (temp1 >= temp2 * 2) THEN

38 y(1) <= '1';

39 temp1 := temp1 - temp2 * 2;

40 ELSE y(1) <= '0';

41 END IF;

42 ----- y(0): ---------------------------

43 IF (temp1 >= temp2) THEN

44 y(0) <= '1';

45 temp1 := temp1 - temp2;

46 ELSE y(0) <= '0';

47 END IF;

48 ----- Remainder: ----------------------

49 rest <= temp1;

50 END PROCESS;

51 END rtl;

52 --------------------------------------------------

1 ------ Solution 2: compact and generic -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------

5 ENTITY divider IS

6 GENERIC(n: INTEGER := 3);

7 PORT ( a, b: IN INTEGER RANGE 0 TO 15;

8 y: OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

9 rest: OUT INTEGER RANGE 0 TO 15;
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10 err : OUT STD_LOGIC);

11 END divider;

12 --------------------------------------------------

13 ARCHITECTURE rtl OF divider IS

14 BEGIN

15 PROCESS (a, b)

16 VARIABLE temp1: INTEGER RANGE 0 TO 15;

17 VARIABLE temp2: INTEGER RANGE 0 TO 15;

18 BEGIN

19 ----- Error and initialization: -------

20 temp1 := a;

21 temp2 := b;

22 IF (b=0) THEN err <= '1';

23 ELSE err <= '0';

24 END IF;

25 ----- y: ------------------------------

26 FOR i IN n DOWNTO 0 LOOP

27 IF(temp1 >= temp2 * 2**i) THEN

28 y(i) <= '1';

29 temp1 := temp1 - temp2 * 2**I;

30 ELSE y(i) <= '0';

31 END IF;

32 END LOOP;

33 ----- Remainder: ----------------------

34 rest <= temp1;

35 END PROCESS;

36 END rtl;

37 --------------------------------------------------

9.5 Vending-Machine Controller

In this example, we will design a controller for a vending machine, which sells candy

bars for twenty-five cents. As seen in chapter 8, this is the type of design where the

FSM (finite state machine) model is helpful.

The inputs and outputs of the controller are shown in figure 9.11. The input signals

nickel_in, dime_in, and quarter_in indicate that a corresponding coin has been

deposited. Two additional inputs, clk (clock) and rst (reset), are also necessary. The
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Figure 9.11
Vending-machine controller (top-level and states diagrams). The signals are. ni ¼ nickel_in, di ¼ dime_in,
qi ¼ quarter_in, no ¼ nickel_out, do ¼ dime_out, and co ¼ candy_out.
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controller responds with three outputs: candy_out, to dispense a candy bar, plus

nickel_out and dime_out, asserted when change is due.

Figure 9.11 also shows the states of the corresponding FSM. The numbers inside

the circles represent the total amount deposited by the customer (only nickels, dimes,

and quarters are accepted). State 0 is the idle state. From it, if a nickel is deposited,

the machine moves to state 5; if a dime, to state 10; or if a quarter, to state 25. Sim-

ilar situations are repeated for all states, up to state 20. If state 25 is reached, then a

candy bar is dispensed, with no change. However, if state 40 is reached, for example,

then a nickel is delivered, passing therefore the system to state 35, from which a dime

is delivered and a candy bar dispensed. The three states marked with double circles

are those from which a candy bar is delivered and the machine returns to state 0.

This problem will be divided into two parts: in the first, the fundamental aspects

related to the design of the vending machine controller (figure 9.11) are treated; in

the second, additional (and indispensable) features are added. The first part is studied

in this section, while the second is proposed as a problem (problem 9.3). The intro-

duction of such additional features is necessary for safety reasons; since we are deal-

ing with money, we must assure that none of the parts (machine or customer) will be

hurt in the transaction.

A VHDL code, treating only the basic features of the problem depicted in figure

9.11, is presented below. We have assumed that the additional features proposed in

problem 9.3 will indeed be implemented, in which case glitches are acceptable in the

first part of the solution. Therefore, design style #1 (section 8.2) can be employed.

The enumerated type state (line 12) contains a list of all states shown in the FSM

diagram of figure 9.11. There are ten states, so four bits are necessary to encode them

(so four flip-flops will be inferred). Recall that the compiler encodes such states in the

order that they are listed, so st0 ¼ ‘‘0000’’ (decimal 0), st5 ¼ ‘‘0001’’ (decimal 1), . . . ,

st45 ¼ ‘‘1001’’ (decimal 9). Therefore, in the simulations, such numbers are shown

instead of the state names.

1 ------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------

5 ENTITY vending_machine IS

6 PORT ( clk, rst: IN STD_LOGIC;

7 nickel_in, dime_in, quarter_in: IN BOOLEAN;

8 candy_out, nickel_out, dime_out: OUT STD_LOGIC);

9 END vending_machine;
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10 ------------------------------------------------------

11 ARCHITECTURE fsm OF vending_machine IS

12 TYPE state IS (st0, st5, st10, st15, st20, st25,

13 st30, st35, st40, st45);

14 SIGNAL present_state, next_state: STATE;

15 BEGIN

16 ---- Lower section of the FSM (Sec. 8.2): ---------

17 PROCESS (rst, clk)

18 BEGIN

19 IF (rst='1') THEN

20 present_state <= st0;

21 ELSIF (clk'EVENT AND clk='1') THEN

22 present_state <= next_state;

23 END IF;

24 END PROCESS;

25 ---- Upper section of the FSM (Sec. 8.2): ---------

26 PROCESS (present_state, nickel_in, dime_in, quarter_in)

27 BEGIN

28 CASE present_state IS

29 WHEN st0 =>

30 candy_out <= '0';

31 nickel_out <= '0';

32 dime_out <= '0';

33 IF (nickel_in) THEN next_state <= st5;

34 ELSIF (dime_in) THEN next_state <= st10;

35 ELSIF (quarter_in) THEN next_state <= st25;

36 ELSE next_state <= st0;

37 END IF;

38 WHEN st5 =>

39 candy_out <= '0';

40 nickel_out <= '0';

41 dime_out <= '0';

42 IF (nickel_in) THEN next_state <= st10;

43 ELSIF (dime_in) THEN next_state <= st15;

44 ELSIF (quarter_in) THEN next_state <= st30;

45 ELSE next_state <= st5;

46 END IF;
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47 WHEN st10 =>

48 candy_out <= '0';

49 nickel_out <= '0';

50 dime_out <= '0';

51 IF (nickel_in) THEN next_state <= st15;

52 ELSIF (dime_in) THEN next_state <= st20;

53 ELSIF (quarter_in) THEN next_state <= st35;

54 ELSE next_state <= st10;

55 END IF;

56 WHEN st15 =>

57 candy_out <= '0';

58 nickel_out <= '0';

59 dime_out <= '0';

60 IF (nickel_in) THEN next_state <= st20;

61 ELSIF (dime_in) THEN next_state <= st25;

62 ELSIF (quarter_in) THEN next_state <= st40;

63 ELSE next_state <= st15;

64 END IF;

65 WHEN st20 =>

66 candy_out <= '0';

67 nickel_out <= '0';

68 dime_out <= '0';

69 IF (nickel_in) THEN next_state <= st25;

70 ELSIF (dime_in) THEN next_state <= st30;

71 ELSIF (quarter_in) THEN next_state <= st45;

72 ELSE next_state <= st20;

73 END IF;

74 WHEN st25 =>

75 candy_out <= '1';

76 nickel_out <= '0';

77 dime_out <= '0';

78 next_state <= st0;

79 WHEN st30 =>

80 candy_out <= '1';

81 nickel_out <= '1';

82 dime_out <= '0';

83 next_state <= st0;
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84 WHEN st35 =>

85 candy_out <= '1';

86 nickel_out <= '0';

87 dime_out <= '1';

88 next_state <= st0;

89 WHEN st40 =>

90 candy_out <= '0';

91 nickel_out <= '1';

92 dime_out <= '0';

93 next_state <= st35;

94 WHEN st45 =>

95 candy_out <= '0';

96 nickel_out <= '0';

97 dime_out <= '1';

98 next_state <= st35;

99 END CASE;

100 END PROCESS;

101

102 END fsm;

103 ------------------------------------------------------

Simulation results are presented in figure 9.12. As can be seen, three nickels and

one quarter were deposited. Notice that, at the first positive clock edge after the first

nickel was deposited, the FSM moves from state st0 (decimal 0) to st5 (decimal 1);

Figure 9.12
Simulation results from the vending-machine controller.
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after de second nickel, to state st10 (decimal 2); after de third, to state st15 (decimal

3); and, after de quarter has been deposited, to state st40 (decimal 8). After that, a

nickel is returned to the customer (nickel_out ¼ ‘1’), causing the FSM to move to

state st35 (decimal 7), at which a dime is delivered (dime_out ¼ ‘1’) and a candy bar

is dispensed (candy_out ¼ ‘1’). The system returns then to its idle state (st0).

As mentioned above, additional features (like handshake) are necessary to increase

the security of the transactions. Please refer to problem 9.3 for a continuation of this

design.

9.6 Serial Data Receiver

The diagram of a serial data receiver is shown in figure 9.13. It contains a serial data

input, din, and a parallel data output, data(6:0). A clock signal is also needed at the

input. Two supervision signals are generated by the circuit: err (error) and data_valid.

The input train consists of ten bits. The first bit is a start bit, which, when high,

must cause the circuit to start receiving data. The next seven are the actual data bits.

The ninth bit is a parity bit, whose status must be ‘0’ if the number of ones in data is

even, or ‘1’ otherwise. Finally, the tenth is a stop bit, which must be high if the

transmission is correct. An error is detected when either the parity does not check or

the stop bit is not a ‘1’. When reception is concluded and if no error has been

detected, then the data stored in the internal registers (reg) is transferred to data(6:0)

and the data_valid output is asserted.

A VHDL code for this circuit is presented below. A few variables were used:

count, to determine the number of bits received; reg, which stores the data; and temp,

to compute the error. Notice in line 37 that reg(0) ¼ din was used instead of

reg(0) ¼ ‘0’, because we want the time slot immediately after the stop bit to be con-

sidered as possibly containing a start bit for the next input train.

err

data_valid

data (0)  (1) (2) (3)  (4) (5) (6) 

data

 din

 clk

start                                                             parity  stop

reg

Figure 9.13
Serial data receiver.
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1 ---------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY receiver IS

6 PORT ( din, clk, rst: IN BIT;

7 data: OUT BIT_VECTOR (6 DOWNTO 0);

8 err, data_valid: OUT BIT);

9 END receiver;

10 ---------------------------------------------

11 ARCHITECTURE rtl OF receiver IS

12 BEGIN

13 PROCESS (rst, clk)

14 VARIABLE count: INTEGER RANGE 0 TO 10;

15 VARIABLE reg: BIT_VECTOR (10 DOWNTO 0);

16 VARIABLE temp : BIT;

17 BEGIN

18 IF (rst='1') THEN

19 count:=0;

20 reg := (reg'RANGE => '0');

21 temp := '0';

22 err <= '0';

23 data_valid <= '0';

24 ELSIF (clk'EVENT AND clk='1') THEN

25 IF (reg(0)='0' AND din='1') THEN

26 reg(0) := '1';

27 ELSIF (reg(0)='1') THEN

28 count := count + 1;

29 IF (count < 10) THEN

30 reg(count) := din;

31 ELSIF (count = 10) THEN

32 temp := (reg(1) XOR reg(2) XOR reg(3) XOR

33 reg(4) XOR reg(5) XOR reg(6) XOR

34 reg(7) XOR reg(8)) OR NOT reg(9);

35 err <= temp;

36 count := 0;

37 reg(0) := din;

38 IF (temp = '0') THEN
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39 data_valid <= '1';

40 data <= reg(7 DOWNTO 1);

41 END IF;

42 END IF;

43 END IF;

44 END IF;

45 END PROCESS;

46 END rtl;

47 -------------------------------------------------

Simulation results are presented in figure 9.14. The input sequence is din ¼
{start ¼ 1, din ¼ 0111001, parity ¼ 0, stop ¼ 1}. As can be seen in the upper graph,

no error was detected in this case, because the parity and stop bits are correct. Hence,

after count reaches 9, the data is made available, that is, data ¼ 0111001, from

data(0) to data(6), which corresponds to the decimal 78, and the data_valid bit is

Figure 9.14
Simulation results of serial data receivers.
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asserted. Notice that the output remains so indefinitely, unless a new input train is

received.

The only di¤erence in the lower graph is that a start bit appears immediately after

the stop bit. As can be seen, the count variable starts then to count and the whole

process is repeated.

9.7 Parallel-to-Serial Converter

A parallel-to-serial converter is a typical application of shift registers. It consists of

sending out a block of data serially. The need for such converters arises, for example,

in ASIC chips when there are not enough pins available to output all data bits

simultaneously.

A diagram of a parallel-to-serial converter is presented in figure 9.15. d(7:0) is the

data vector to be sent out, while dout is the actual output. There are also two other

inputs: clk and load. When load is asserted, d is synchronously stored in the shift

register reg. While load stays high, the MSB, d(7), remains available at the output.

Once load is returned to ‘0’, the subsequent bits are presented at the output at each

positive edge of clk. After all eight bits have been sent out, the output remains low

until the next transmission.

1 -------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------

5 ENTITY serial_converter IS

6 PORT ( d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 clk, load: IN STD_LOGIC;

8 dout: OUT STD_LOGIC);

9 END serial_converter;

10 -------------------------------------------------

d(0) d(1) d(2) d(3) d(4) d(5) d(6) d(7)

dout clk
load

reg

Figure 9.15
Parallel-to-serial converter.
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11 ARCHITECTURE serial_converter OF serial_converter IS

12 SIGNAL reg: STD_LOGIC_VECTOR (7 DOWNTO 0);

13 BEGIN

14 PROCESS (clk)

15 BEGIN

16 IF (clk'EVENT AND clk='1') THEN

17 IF (load='1') THEN reg <= d;

18 ELSE reg <= reg(6 DOWNTO 0) & '0';

19 END IF;

20 END IF;

21 END PROCESS;

22 dout <= reg(7);

23 END serial_converter;

24 -------------------------------------------------

Simulation results from the circuit synthesized with the code above are shown in

figure 9.16. d ¼ ‘‘11011011’’ (decimal 219) was chosen. As can be seen, d(7) ¼ ‘1’ is

presented at the output at the first rising edge of clk after load has been asserted,

staying there while load remains high (to illustrate this fact, load was kept high

during two clock cycles). The other bits follow as soon as load returns to ‘0’. Notice

that after all bits have been transmitted, the output stays low.

9.8 Playing with a Seven-Segment Display

We want to design a little game with an SSD (seven-segment display). The top-level

diagram of the circuit is shown in figure 9.17. It contains two inputs, clk and stop,

and one output, dout(6:0), which feeds the SSD. Assume that fclk ¼ 1 kHz.

Figure 9.16
Simulation results of parallel-to-serial converter.
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Our circuit should cause a continuous clockwise movement of the SSD segments.

Also, in order to make the circulatory movement more realistic, we want to mo-

mentarily overlap neighboring segments. Consequently, the sequence should be

a ! ab ! b ! bc ! c ! cd ! d ! de ! e ! ef ! f ! fa ! a, with the combined

states (ab, bc, etc.) lasting only a few milliseconds. If stop is asserted, then the circuit

should return to state a and remain so until stop is turned low again.

From chapter 8, it is clear that this is a circuit for which the FSM approach is

appropriate. The states diagram is presented in figure 9.18. We want the system to

remain in states a, b, c, etc. for time1 ¼ 80 ms, and in the combined states, ab, bc,

etc., for time2 ¼ 30 ms. Therefore, a counter counting up to 80 (the clock period is

1 ms) or up to 30 can be employed to determine when to move to the next state.

A VHDL solution is shown below. Notice that it is a straight implementation of

the FSM template seen in section 8.2. In lines 11–12, time1 and time2 were declared

as two constants. Small values (4 and 2, respectively) were here used in order for the

simulation results to fit well in one plot, but 80 and 30, respectively, were used in the

actual physical implementation. A signal called flip was used to switch from time1 to

time2, and vice-versa. Notice that the corresponding decimals are marked beside

each value of dout, so they can be easily verified in the simulation results.

1 --------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------------

5 ENTITY ssd_game2 IS

6 PORT ( clk, stop: IN BIT;

dout (6:0)

clk

stop

Little
game

SSD

e

f

a

b

c

d

g

x

Input: “xabcdefg”

Figure 9.17
Playing with an SSD.
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7 dout: OUT BIT_VECTOR (6 DOWNTO 0));

8 END ssd_game2;

9 --------------------------------------------------------

10 ARCHITECTURE fsm OF ssd_game2 IS

11 CONSTANT time1: INTEGER := 4; -- actual value is 80

12 CONSTANT time2: INTEGER := 2; -- actual value is 30

13 TYPE states IS (a, ab, b, bc, c, cd, d, de, e, ef, f, fa);

14 SIGNAL present_state, next_state: STATES;

15 SIGNAL count: INTEGER RANGE 0 TO 5;

16 SIGNAL flip: BIT;

17 BEGIN

18 ------- Lower section of FSM (Sec. 8.2): ------------

19 PROCESS (clk, stop)

20 BEGIN

21 IF (stop='1') THEN

22 present_state <= a;

23 ELSIF (clk'EVENT AND clk='1') THEN

24 IF ((flip='1' AND count=time1) OR

25 (flip='0' AND count=time2)) THEN

26 count <= 0;

time2

a

time1

d

ab cd

b cbc

fa de

f
e

ef

time2time1

time1

time1

time1
time1

time2

time2

time2

time2

stop

Figure 9.18
States diagram for the circuit of figure 9.17.
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27 present_state <= next_state;

28 ELSE count <= count + 1;

29 END IF;

30 END IF;

31 END PROCESS;

32 ------- Upper section of FSM (Sec. 8.2): ------------

33 PROCESS (present_state)

34 BEGIN

35 CASE present_state IS

36 WHEN a =>

37 dout <= "1000000"; -- Decimal 64

38 flip<='1';

39 next_state <= ab;

40 WHEN ab =>

41 dout <= "1100000"; -- Decimal 96

42 flip<='0';

43 next_state <= b;

44 WHEN b =>

45 dout <= "0100000"; -- Decimal 32

46 flip<='1';

47 next_state <= bc;

48 WHEN bc =>

49 dout <= "0110000"; -- Decimal 48

50 flip<='0';

51 next_state <= c;

52 WHEN c =>

53 dout <= "0010000"; -- Decimal 16

54 flip<='1';

55 next_state <= cd;

56 WHEN cd =>

57 dout <= "0011000"; -- Decimal 24

58 flip<='0';

59 next_state <= d;

60 WHEN d =>

61 dout <= "0001000"; -- Decimal 8

62 flip<='1';

63 next_state <= de;
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64 WHEN de =>

65 dout <= "0001100"; -- Decimal 12

66 flip<='0';

67 next_state <= e;

68 WHEN e =>

69 dout <= "0000100"; -- Decimal 4

70 flip<='1';

71 next_state <= ef;

72 WHEN ef =>

73 dout <= "0000110"; -- Decimal 6

74 flip<='0';

75 next_state <= f;

76 WHEN f =>

77 dout <= "0000010"; -- Decimal 2

78 flip<='1';

79 next_state <= fa;

80 WHEN fa =>

81 dout <= "1000010"; -- Decimal 66

82 flip<='0';

83 next_state <= a;

84 END CASE;

85 END PROCESS;

86 END fsm;

87 --------------------------------------------------------

Simulation results are presented in figure 9.19. As can be seen, the system stays in

the single states, a, b, etc., for four clock cycles (time1 ¼ 4 here) and in the combined

states, ab, bc, etc., for two clock cycles (time2 ¼ 2). Observe also that the decimals

detected by the simulator match the decimals listed in the VHDL code.

Figure 9.19
Simulation results of little SSD game of figure 9.17.
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9.9 Signal Generators

Say that, from a clock signal (clk), we want to obtain the waveform shown in figure

9.20. In this kind of problem, we can use either the FSM approach or a conventional

approach. Both kinds of solutions are illustrated below.

FSM Approach

The signal of figure 9.20 can be modeled as an 8-state FSM. Using a counter from

0 to 7, we can establish that wave ¼ ‘0’ (1st pulse) when count ¼ 0, wave ¼ ‘1’ (2nd

pulse) when count ¼ 1, and so on, thus creating the signal shown in the figure. This

implementation requires a total of four flip-flops: three to store count (three bits),

plus one to store wave (one bit). Recall from chapter 8, sections 8.2–8.3, that the

output of a FSM will only be registered if design style #2 is employed, which is nec-

essary here, because glitches are not acceptable in a signal generator.

The corresponding VHDL code, using dsign style #2 (section 8.3), is shown below.

Simulation results appear in figure 9.21. Checking the report file created by the syn-

thesis tool, we verify that a total of four flip-flops were indeed inferred from this code.

1 -----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

clk

wave

1 period

Figure 9.20
Signal generator problem.

Figure 9.21
Simulation results of signal generator (FSM approach).
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4 -----------------------------------------------------

5 ENTITY signal_gen IS

6 PORT (clk: IN STD_LOGIC;

7 wave: OUT STD_LOGIC);

8 END signal_gen;

9 -----------------------------------------------------

10 ARCHITECTURE fsm OF signal_gen IS

11 TYPE states IS (zero, one, two, three, four, five, six,

12 seven);

13 SIGNAL present_state, next_state: STATES;

14 SIGNAL temp: STD_LOGIC;

15 BEGIN

16

17 --- Lower section of FSM (Sec. 8.3): ---

18 PROCESS (clk)

19 BEGIN

20 IF (clk'EVENT AND clk='1') THEN

21 present_state <= next_state;

22 wave <= temp;

23 END IF;

24 END PROCESS;

25

26 --- Upper section of FSM (Sec. 8.3): ---

27 PROCESS (present_state)

28 BEGIN

29 CASE present_state IS

30 WHEN zero => temp<='0'; next_state <= one;

31 WHEN one => temp<='1'; next_state <= two;

32 WHEN two => temp<='0'; next_state <= three;

33 WHEN three => temp<='1'; next_state <= four;

34 WHEN four => temp<='1'; next_state <= five;

35 WHEN five => temp<='1'; next_state <= six;

36 WHEN six => temp<='0'; next_state <= seven;

37 WHEN seven => temp<='0'; next_state <= zero;

38 END CASE;

39 END PROCESS;

40 END fsm;

41 -----------------------------------------------------
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Conventional Approach

A conventional design, with the IF statement, is shown next. Notice that count and

wave are both assigned at the transition of another signal (clk). Therefore, according

to what you saw in section 7.5, both will be stored (that is, four flip-flops will be in-

ferred, three for count and one for wave). Simulation results are shown in figure 9.22.

1 ---------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY signal_gen1 IS

6 PORT (clk: IN BIT;

7 wave: OUT BIT);

8 END signal_gen1;

9 ---------------------------------------

10 ARCHITECTURE arch1 OF signal_gen1 IS

11 BEGIN

12 PROCESS

13 VARIABLE count: INTEGER RANGE 0 TO 7;

14 BEGIN

15 WAIT UNTIL (clk'EVENT AND clk='1');

16 CASE count IS

17 WHEN 0 => wave <= '0';

18 WHEN 1 => wave <= '1';

19 WHEN 2 => wave <= '0';

20 WHEN 3 => wave <= '1';

21 WHEN 4 => wave <= '1';

22 WHEN 5 => wave <= '1';

23 WHEN 6 => wave <= '0';

Figure 9.22
Simulation results of signal generator (conventional approach).
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24 WHEN 7 => wave <= '0';

25 END CASE;

26 count := count + 1;

27 END PROCESS;

28 END arch1;

29 ---------------------------------------

9.10 Memory Design

In this section, the design of the following memory circuits is presented:

� ROM

� RAM with separate in/out data buses

� RAM with bidirectional in/out data bus

ROM (Read Only Memory)

Figure 9.23 shows the diagram of a ROM. Since it is a read-only memory, no clock

signal or write-enable pin is necessary. As can be seen, the circuit contains a pile of

pre-stored words, being the one selected by the address input (addr) presented at the

output (data).

In the code shown below, words (line 7) represents the number of words stored in

the memory, while bits (line 6) represents the size of each word. To create a ROM,

an array of CONSTANT values can be used (lines 15–22). First, a new TYPE, called

vector_array, was defined (lines 13–14), which was then used in the declaration of a

CONSTANT named memory (line 15). An 8� 8 ROM is illustrated in this example,

with the following (decimal) values stored in addresses 0 to 7: 0, 2, 4, 8, 16, 32, 64,

and 128 (lines 15–22). Line 24 shows an example of call to the memory; the output

(data) is equal to the word stored at address addr. When implementing a ROM, no

data

ROM

word 0

word 1

word 2

…

addr

Figure 9.23
ROM diagram.
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registers are inferred, because no signal assignment occurs at the transition of an-

other signal. Logical gates, forming an LUT (lookup table), are used instead.

1 ---------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------------

5 ENTITY rom IS

6 GENERIC ( bits: INTEGER := 8; -- # of bits per word

7 words: INTEGER := 8); -- # of words in the memory

8 PORT ( addr: IN INTEGER RANGE 0 TO words-1;

9 data: OUT STD_LOGIC_VECTOR (bits-1 DOWNTO 0));

10 END rom;

11 ---------------------------------------------------

12 ARCHITECTURE rom OF rom IS

13 TYPE vector_array IS ARRAY (0 TO words-1) OF

14 STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

15 CONSTANT memory: vector_array := ( "00000000",

16 "00000010",

17 "00000100",

18 "00001000",

19 "00010000",

20 "00100000",

21 "01000000",

22 "10000000");

23 BEGIN

24 data <= memory(addr);

25 END rom;

26 ---------------------------------------------------

Simulation results are shown in figure 9.24. As can be seen, the address changes

from 0 to 7, then restarts from 0, with the outputs matching the values listed in the

code above.

RAM with Separate Input and Output Data Buses

A RAM (Random Access Memory), with separate input and output data buses, is

illustrated in figure 9.25. Indeed, this circuit was already discussed in example 6.11,

but was repeated here to ease the comparison with the other memory circuits pre-

sented in this section.
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As can be seen in figure 9.25(a), the circuit has a data input bus (data_in), a data

output bus (data_out), an address bus (addr), plus clock (clk) and write enable

(wr_ena) pins. When wr_enable is asserted, at the next rising edge of clk the vector

present at data_in must be stored in the position specified by addr. data_out, on the

other hand, must constantly display the data selected by addr.

From the register point-of-view, the circuit can be summarized as in figure 9.25(b).

When wr_ena is low, q is connected to the input of the flip-flop, and terminal d is

open, so no new data will be written into the memory. However, when wr_ena is

turned high, d is connected to the input of the register, so at the next rising edge of

clk d will be stored.

A VHDL code that implements the circuit of figure 9.25 is shown below. The

chosen capacity was 16 words of length eight bits each. Notice that the code is totally

generic. Simulation results are shown in figure 9.26.

1 ---------------------------------------------------

2 LIBRARY ieee;

Figure 9.24
Simulation results from the 8� 8 ROM code shown above.

(a) (b)

clk

DFF
d q

wr_ena

wr_ena

data_outdata_in

RAM

word 0

word 1

word 2

…

clk

addr

wr_ena

Figure 9.25
RAM with separate in/out data buses.
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3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------------

5 ENTITY ram IS

6 GENERIC ( bits: INTEGER := 8; -- # of bits per word

7 words: INTEGER := 16); -- # of words in the

8 -- memory

9 PORT ( wr_ena, clk: IN STD_LOGIC;

10 addr: IN INTEGER RANGE 0 TO words-1;

11 data_in: IN STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

12 data_out: OUT STD_LOGIC_VECTOR (bits-1 DOWNTO 0));

13 END ram;

14 ---------------------------------------------------

15 ARCHITECTURE ram OF ram IS

16 TYPE vector_array IS ARRAY (0 TO words-1) OF

17 STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

18 SIGNAL memory: vector_array;

19 BEGIN

20 PROCESS (clk, wr_ena)

21 BEGIN

22 IF (wr_ena='1') THEN

23 IF (clk'EVENT AND clk='1') THEN

24 memory(addr) <= data_in;

25 END IF;

26 END IF;

27 END PROCESS;

28 data_out <= memory(addr);

29 END ram;

30 ---------------------------------------------------

Figure 9.26
Simulation results of 16� 8 RAM with separate in/out data buses.
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RAM with Bidirectional In/Out Data Bus

A RAM with bidirectional in/out data bus is illustrated in figure 9.27. The overall

structure is similar to that of figure 9.25, except for the fact that now the same bus

(bidir) is used to write data into the memory as well to read data from it.

From the register point-of-view, the circuit can be summarized as in figure 9.27(b).

When wr_ena is low, the output of the register is connected to its input, so no change

on the store data will occur. On the other hand, when wr_ena is asserted, q is con-

nected to d, allowing new data to be stored at the next rising edge of clk.

A VHDL code that implements the circuit of figure 9.27 is shown below. The

chosen capacity was 16 words of length eight bits each. Notice that this code is also

totally generic. Simulation results are shown in figure 9.28.

(a) (b)

bidir

RAM

word 0

word 1

word 2

…

clk

addr

clk

DFF

(d)
q

wr_ena

wr_ena

Figure 9.27
RAM with bidirectional in/out data bus.

Figure 9.28
Simulation results of 16� 8 RAM with bidirectional in/out data bus.
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1 -------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------

5 ENTITY ram4 IS

6 GENERIC ( bits: INTEGER := 8; -- # of bits per word

7 words: INTEGER := 16); -- # of words in the

8 -- memory

9 PORT ( clk, wr_ena: IN STD_LOGIC;

10 addr: IN INTEGER RANGE 0 TO words-1;

11 bidir: INOUT STD_LOGIC_VECTOR (bits-1 DOWNTO 0));

12 END ram4;

13 -------------------------------------------------

14 ARCHITECTURE ram OF ram4 IS

15 TYPE vector_array IS ARRAY (0 TO words-1) OF

16 STD_LOGIC_VECTOR (bits-1 DOWNTO 0);

17 SIGNAL memory: vector_array;

18 BEGIN

19 PROCESS (clk, wr_ena)

20 BEGIN

21 IF (wr_ena='0') THEN

22 bidir <= memory(addr);

23 ELSE

24 bidir <= (OTHERS => 'Z');

25 IF (clk'EVENT AND clk='1') THEN

26 memory(addr) <= bidir;

27 END IF;

28 END IF;

29 END PROCESS;

30 END ram;

31 -------------------------------------------------

9.11 Problems

Problem 9.1: Barrel Shifter

Why can we not replace the ARCHITECTURE of the barrel shifter presented in

section 9.1 by that shown below, which is much shorter?

Additional Circuit Designs 225

TLFeBOOK



---------------------------------------------

ARCHITECTURE barrel OF barrel IS

BEGIN

PROCESS (inp, shift)

BEGIN

IF (shift=0) THEN

outp <= inp;

ELSE

FOR i IN 0 TO shift-1 LOOP

outp(i) <= '0';

END LOOP;

FOR i IN shift TO inp'HIGH LOOP

outp(i) <= inp(i-1);

END LOOP;

END IF;

END PROCESS;

END barrel;

---------------------------------------------

Problem 9.2: Divider

In section 9.4, we studied the design of fixed-point dividers. Two solutions were pre-

sented, both using sequential statements (IF and LOOP). Moreover, the codes

implemented the second description of the division algorithm presented in that sec-

tion. You are asked to write a concurrent solution for the division problem (with

GENERATE). Additionally, your code should resemble the first description of the

division algorithm (figure 9.9). In order to do so, we suggest the creation and use of

the following types and signal:

SUBTYPE long IS STD_LOGIC_VECTOR (2n DOWNTO 0);

TYPE vec_array IS ARRAY (n DOWNTO 0) OF long;

SIGNAL a_input, b_input: vec_array;

where n should be declared as a GENERIC parameter.

Problem 9.3: Vending-Machine Controller

Consider the vending-machine controller designed in section 9.5. We want to intro-

duce some sophistications in it.
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(a) In order to provide the necessary security, introduce some kind of handshake

between the controller and the external circuitry. As an example, the handshake

could include the following:

(i) an ‘‘input valid’’ signal (call it coin_valid), from the external circuit to the con-

troller, informing that a new input is ready to be read. This signal should return to ‘0’

as soon as it has been processed by the controller, so a new input will only be con-

sidered by the controller at its rising edge. This is important to avoid possible con-

fusion which may occur when nickel_in, dime_in, or quarter_in stays present at the

input of the FSM for more than one clock cycle (so it will not be interpreted as a

second coin, as in the design of section 9.5)

(ii) an ‘‘input accepted’’ signal (call it coin_accepted), from the controller to the ex-

ternal circuit, informing that the present input has already been processed. Upon

receiving this signal, the external circuit should cause coin_valid to return to ‘0’.

(b) Consider that the nickel or the dime box in the vending machine might run out

of coins. Design alternative return paths taking such possibilities into consideration.

(Suggestion: simply include new arrows between st45 ! st40 and st35 ! st30 in the

FSM diagram of figure 9.11).

(c) Finally, consider the situation where a customer might continue depositing coins

even when the necessary amount has already been reached. What should be done in

such a situation?

Problem 9.4: Serial Data Receiver

Try to model and design the serial data receiver of section 9.6 utilizing the FSM

(finite state machine) approach (chapter 8). Before you start writing you VHDL

code, present a clear states diagram of the system.

Problem 9.5: Serial Data Transmitter

This problem is the counterpart of that treated in section 9.6. Here, the stored data

must be transmitted serially. A diagram of the circuit is shown in figure P9.5. The

start                                                             parity  stop

dout

data in

data_ready

        clk
‘1’ (0)  (1) (2) (3)  (4) (5) (6)     p     ‘1’

Figure P9.5
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protocol is the same 10-bit structure of section 9.6; that is, a start bit (high), followed

by seven bits of actual data, plus a parity bit, computed such that the total number of

‘1’s in positions 2 to 9 is even, and finally a stop bit (also ‘1’). Consider that a

data_ready signal is available to inform when the data can be loaded into the regis-

ters and sent out.

Problem 9.6: Playing with an SSD

You are asked to introduce additional features in the little seven-segment display

(SSD) game of section 9.8.

(a) Add a 2-bit input, called ‘‘speed’’, which should be able to select four di¤erent

speeds for the circulatory movement. Keep the overlap time (time2) fixed at 30 ms,

changing only time1. Choose four di¤erent circulatory periods and physically verify

whether the circuit behaves as expected.

(b) Change the functionality of the stop input, such that instead of going to state

when a stop is asserted, it freezes in whatever state it was when stop was activated,

proceeding from there when stop returns to zero.

(c) Finally, add a ‘‘direction’’ pin. When low, the circuit should behave as above, but

when high, it should circulate in the opposite direction (counterclockwise).

(d) Physical verification: After synthesizing and simulating your design, physically

implement it in you PLD/FPGA development kit, following the steps below.

(i) First, verify in the report file generated by the compiler which pins of the chip

were assigned to the inputs (clock and switches) and to the outputs (SSD).

(ii) Next, connect the signal generator (set to 1 kHz, with the appropriate logic lev-

els, but leave it OFF while you make the connection) and the switches (which should

provide VDD and GND levels) to the inputs of the circuit (your development kit

board is normally equipped with test switches).

(iii) Connect the outputs of the chip to the SSD (your development kit board is

normally equipped with seven-segment displays).

(iv) Finally, download the compiled file from your computer to the development kit,

turn ON the signal generator, and verify the operation of your circuit. Play with the

switches in order to test all operation modes.

Problem 9.7: Speed Monitor

Figure P9.7 shows a possible view of a car speed monitor. The specifications of the

system are the following:
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� Speed selection button (SPEED), which, at each touch, selects the next speed to be

monitored (35, 45, 55, 60, 65, 70, 75, or 80 miles/hour).

� Set of eight LEDs, one for each speed. The LED corresponding to the selected

speed should be ON.

� Two SSDs, which show the actual speed of the car. The car’s electronic speedome-

ter provides a clock signal whose frequency is proportional to the speed. You may

check the data sheet of the speedometer that you are going to use, or you can start

with a simple round number, which you can provide with a signal generator to test

your circuit (say, 100 Hz per mile/hour).

� Buzzer, which emits alarm signals as the car approaches the selected speed. A 2 Hz

signal should be emitted when the speed is three miles/hour or less from the selected

speed, or a continuous alarm when at or above the selected speed. Consider a buzzer

with internal oscillator, so only a DC signal must be provided in the latter case, or a

square wave with frequency 2 Hz in the former case.

Write a VHDL code for such a circuit. Synthesize and simulate it. Finally, physically

implement it in your PLD/FPGA development kit, using a signal generator for clock

and following steps similar to those in problem 9.6.

Problem 9.8: Random Number Generator

Design a 1-digit random number generator. The number should be from ‘‘0000’’

(display ¼ 0) to ‘‘1111’’ (display ¼ F). Use the circuit of section 9.8, with a modified

function for the stop switch. The SSD should remain in a circular motion until the

switch is pressed. When pressed, a random number should be displayed, being the

circular movement resumed at the next touch of the switch. After compiling and

simulating your circuit, physically implement it in your PDD/FPGA development

kit.

35    45    55    60    65    70    75    80

SPEED

ON/OFF

Figure P9.7
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10 Packages and Components

10.1 Introduction

In Part I of the book, we studied the entire background and coding techniques of

VHDL, which included the following:

� Code structure: library declarations, entity, architecture (chapter 2)

� Data types (chapter 3)

� Operators and attributes (chapter 4)

� Concurrent statements and concurrent code (chapter 5)

� Sequential statements and sequential code (chapter 6)

� Signals, variables, and constants (chapter 7)

� Design of finite state machines (chapter 8)

� Additional circuit designs (chapter 9)

Thus, in terms of figure 10.1, we may say that we have covered in detail all that is

needed to construct the type of code depicted on its left-hand side. A good under-

standing of that material is indispensable, regardless of the design being just a small

circuit or a very large system.

In Part II, we will simply add new building blocks to the material already pre-

sented. These new building blocks are intended mainly for library allocation, being

shown on the right-hand side of figure 10.1. They are:

� Packages (chapter 10)

� Components (chapter 10)

� Functions (chapter 11)

� Procedures (chapter 11)

These new units can be located in the main code itself (that is, on the left-hand side

of figure 10.1). However, since their main purpose is to allow common pieces of code

to be reused and shared, it is more usual to place them in a LIBRARY. This also

leads to code partitioning, which is helpful when dealing with long codes. In sum-

mary, frequently used pieces of code can be written in the form of COMPONENTS,

FUNCTIONS, or PROCEDURES, then placed in a PACKAGE, which is finally

compiled into the destination LIBRARY.

We have already seen (chapter 2) that at least three LIBRARIES are generally

needed in a design: ieee, std, and work. After studying Part II, we will be able to

construct our own libraries, which can then be added to the list above.
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10.2 PACKAGE

As mentioned above, frequently used pieces of VHDL code are usually written in the

form of COMPONENTS, FUNCTIONS, or PROCEDURES. Such codes are then

placed inside a PACKAGE and compiled into the destination LIBRARY. The im-

portance of this technique is that it allows code partitioning, code sharing, and code

reuse.

We start by describing the structure of a PACKAGE. Besides COMPONENTS,

FUNCTIONS, and PROCEDURES, it can also contain TYPE and CONSTANT

definitions, among others. Its syntax is presented below.

PACKAGE package_name IS
(declarations)

END package_name;

[PACKAGE BODY package_name IS
(FUNCTION and PROCEDURE descriptions)

END package_name;]

As can be seen, the syntax is composed of two parts: PACKAGE and PACKAGE

BODY. The first part is mandatory and contains all declarations, while the second

Library
declarations

ENTITY

ARCHITECTURE

Main code LIBRARY

PACKAGE

FUNCTION

COMPONENT

PROCEDURE

Figure 10.1
Fundamental units of VHDL code.
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part is necessary only when one or more subprograms (FUNCTION or PROCE-

DURE) are declared in the upper part, in which case it must contain the descriptions

(bodies) of the subprograms. PACKAGE and PACKAGE BODY must have the

same name.

The declarations list can contain the following: COMPONENT, FUNCTION,

PROCEDURE, TYPE, CONSTANT, etc.

Example 10.1: Simple Package

The example below shows a PACKAGE called my_package. It contains only TYPE

and CONSTANT declarations, so a PACKAGE BODY is not necessary.

1 ------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------

5 PACKAGE my_package IS

6 TYPE state IS (st1, st2, st3, st4);

7 TYPE color IS (red, green, blue);

8 CONSTANT vec: STD_LOGIC_VECTOR(7 DOWNTO 0) := "11111111";

9 END my_package;

10 ------------------------------------------------

Example 10.2: Package with a Function

This example contains, besides TYPE and CONSTANT declarations, a FUNC-

TION. Therefore, a PACKAGE BODY is now needed (details on how to write a

FUNCTION will be seen in chapter 11). This function returns TRUE when a posi-

tive edge occurs on clk.

1 -------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------

5 PACKAGE my_package IS

6 TYPE state IS (st1, st2, st3, st4);

7 TYPE color IS (red, green, blue);

8 CONSTANT vec: STD_LOGIC_VECTOR(7 DOWNTO 0) := "11111111";

9 FUNCTION positive_edge(SIGNAL s: STD_LOGIC) RETURN BOOLEAN;

10 END my_package;
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11 -------------------------------------------------

12 PACKAGE BODY my_package IS

13 FUNCTION positive_edge(SIGNAL s: STD_LOGIC) RETURN BOOLEAN IS

14 BEGIN

15 RETURN (s'EVENT AND s='1');

16 END positive_edge;

17 END my_package;

18 -------------------------------------------------

Any of the PACKAGES above (example 10.1 or example 10.2) can now be

compiled, becoming then part of our work LIBRARY (or any other). To make use

of it in a VHDL code, we have to add a new USE clause to the main code (USE

work.my_package.all), as shown below.

------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE work.my_package.all;

------------------------------------

ENTITY...

...

ARCHITECTURE...

...

------------------------------------

10.3 COMPONENT

A COMPONENT is simply a piece of conventional code (that is, LIBRARY

declarationsþ ENTITYþARCHITECTURE, as seen in chapter 2). However, by

declaring such code as being a COMPONENT, it can then be used within another

circuit, thus allowing the construction of hierarchical designs.

A COMPONENT is also another way of partitioning a code and providing code

sharing and code reuse. For example, commonly used circuits, like flip-flops, multi-

plexers, adders, basic gates, etc., can be placed in a LIBRARY, so any project can

make use of them without having to explicitly rewrite such codes.

To use (instantiate) a COMPONENT, it must first be declared. The corresponding

syntaxes are shown below.
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COMPONENT declaration:

COMPONENT component_name IS
PORT (

port_name : signal_mode signal_type;
port_name : signal_mode signal_type;
...);

END COMPONENT;

COMPONENT instantiation:

label: component_name PORT MAP (port_list);

As can be seen, the syntax of the declaration is similar to that of an ENTITY

(section 2.3); that is, the names of the ports must be specified, along with their modes

(IN, OUT, BUFFER, or INOUT) and data types (STD_LOGIC_VECTOR, IN-

TEGER, BOOLEAN, etc.). To instantiate a component a label is required, followed

by the component’s name and a PORT MAP declaration. Finally, port_list is just a

list relating the ports of the actual circuit to the ports of the pre-designed component

which is being instantiated.

Example: Let us consider an inverter, which has been previously designed

(inverter.vhd) and compiled into the work library. We can make use of it by means

of the code shown below. The label chosen for this component was U1. The names of

the ports in the actual circuit are x and y, which are being assigned to a and b, re-

spectively, of the pre-designed inverter (this is called positional mapping, for the first

signal in one corresponds to the first signal in the other, the second in one to the

second in the other, and so on).

----- COMPONENT declaration: -----------

COMPONENT inverter IS

PORT (a: IN STD_LOGIC; b: OUT STD_LOGIC);

END COMPONENT;

----- COMPONENT instantiation: -----------

U1: inverter PORT MAP (x, y);

There are two basic ways to declare a COMPONENT (figure 10.2). Once we have

designed it and placed it in the destination LIBRARY, we can declare it in the
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main code itself, as shown in figure 10.2(a), or we can declare it using a PACKAGE,

as in figure 10.2(b). The latter avoids the repetition of the declaration every time

the COMPONENT is instantiated. Examples of both approaches are presented

below.

Example 10.3: Components Declared in the Main Code

We want to implement the circuit of figure 10.3 employing only COMPONENTS

(inverter, nand_2, and nand_3), but without creating a specific PACKAGE to de-

clare them, thus as in figure 10.2(a). Then four pieces of VHDL code are needed: one

for each component, plus one for the project (main code). All four files are shown

below. Notice that, since we have not created a PACKAGE, the COMPONENTS

must be declared in the main code (in the declarative part of the ARCHITEC-

TURE). Simulation results are presented in figure 10.4.

1 ------ File inverter.vhd: -------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------

5 ENTITY inverter IS

6 PORT (a: IN STD_LOGIC; b: OUT STD_LOGIC);

7 END inverter;

8 ------------------------------------

9 ARCHITECTURE inverter OF inverter IS

10 BEGIN

11 b <= NOT a;

12 END inverter;

13 ---------------------------------------------

1 ------ File nand_2.vhd: ---------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------

5 ENTITY nand_2 IS

6 PORT (a, b: IN STD_LOGIC; c: OUT STD_LOGIC);

7 END nand_2;

8 ------------------------------------

9 ARCHITECTURE nand_2 OF nand_2 IS
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Component
Declarations
-------------
Component

Instantiations

Main code

COMPONENT
Inverter

COMPONENT
Nand_2

COMPONENT
Nand_3

LIBRARY

Component
Instantiations

Main code

COMPONENT
Inverter

COMPONENT
Nand_2

COMPONENT
Nand_3

LIBRARY

PACKAGE

Component
Declarations

Figure 10.2
Basic ways of declaring COMPONENTS: (a) declarations in the main code itself, (b) declarations in a
PACKAGE.
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10 BEGIN

11 c <= NOT (a AND b);

12 END nand_2;

13 ---------------------------------------------

1 ----- File nand_3.vhd: ----------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------

5 ENTITY nand_3 IS

6 PORT (a, b, c: IN STD_LOGIC; d: OUT STD_LOGIC);

7 END nand_3;

8 ------------------------------------

9 ARCHITECTURE nand_3 OF nand_3 IS

10 BEGIN

11 d <= NOT (a AND b AND c);

12 END nand_3;

13 ---------------------------------------------

1 ----- File project.vhd: ---------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------

5 ENTITY project IS

6 PORT (a, b, c, d: IN STD_LOGIC;

7 x, y: OUT STD_LOGIC);

8 END project;

9 ------------------------------------

x

y

a

b

c

d

Figure 10.3
Circuit of example 10.3.
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10 ARCHITECTURE structural OF project IS

11 -------------

12 COMPONENT inverter IS

13 PORT (a: IN STD_LOGIC; b: OUT STD_LOGIC);

14 END COMPONENT;

15 -------------

16 COMPONENT nand_2 IS

17 PORT (a, b: IN STD_LOGIC; c: OUT STD_LOGIC);

18 END COMPONENT;

19 -------------

20 COMPONENT nand_3 IS

21 PORT (a, b, c: IN STD_LOGIC; d: OUT STD_LOGIC);

22 END COMPONENT;

23 -------------

24 SIGNAL w: STD_LOGIC;

25 BEGIN

26 U1: inverter PORT MAP (b, w);

27 U2: nand_2 PORT MAP (a, b, x);

28 U3: nand_3 PORT MAP (w, c, d, y);

29 END structural;

30 ---------------------------------------------

Example 10.4: Components Declared in a Package

We want to implement the same project of the previous example (figure 10.3). How-

ever, we will now create a PACKAGE where all the COMPONENTS (inverter,

nand_2, and nand_3) will be declared, like in figure 10.2(b). Thus now five pieces

of VHDL code are needed: one for each component, one for the PACKAGE, and

finally one for the project. Despite having an extra file (PACKAGE), such extra file

needs to be created only once, thus avoiding the need to declare the components in

the main code every time they are instantiated.

Notice that an extra USE clause (USE work.my_components.all) is now neces-

sary, in order to make the PACKAGE my_components visible to the design. The

simulation results are obviously the same as those of figure 10.4.

1 ------ File inverter.vhd: -------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------
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5 ENTITY inverter IS

6 PORT (a: IN STD_LOGIC; b: OUT STD_LOGIC);

7 END inverter;

8 ------------------------------------

9 ARCHITECTURE inverter OF inverter IS

10 BEGIN

11 b <= NOT a;

12 END inverter;

13 ---------------------------------------------

1 ------ File nand_2.vhd: ---------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------

5 ENTITY nand_2 IS

6 PORT (a, b: IN STD_LOGIC; c: OUT STD_LOGIC);

7 END nand_2;

8 ------------------------------------

9 ARCHITECTURE nand_2 OF nand_2 IS

10 BEGIN

11 c <= NOT (a AND b);

12 END nand_2;

13 ---------------------------------------------

1 ----- File nand_3.vhd: ----------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------

Figure 10.4
Experimental results of example 10.3.
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5 ENTITY nand_3 IS

6 PORT (a, b, c: IN STD_LOGIC; d: OUT STD_LOGIC);

7 END nand_3;

8 ------------------------------------

9 ARCHITECTURE nand_3 OF nand_3 IS

10 BEGIN

11 d <= NOT (a AND b AND c);

12 END nand_3;

13 ---------------------------------------------

1 ----- File my_components.vhd: ---------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------

5 PACKAGE my_components IS

6 ------ inverter: -------

7 COMPONENT inverter IS

8 PORT (a: IN STD_LOGIC; b: OUT STD_LOGIC);

9 END COMPONENT;

10 ------ 2-input nand: ---

11 COMPONENT nand_2 IS

12 PORT (a, b: IN STD_LOGIC; c: OUT STD_LOGIC);

13 END COMPONENT;

14 ------ 3-input nand: ---

15 COMPONENT nand_3 IS

16 PORT (a, b, c: IN STD_LOGIC; d: OUT STD_LOGIC);

17 END COMPONENT;

18 ------------------------

19 END my_components;

20 ---------------------------------------------

1 ----- File project.vhd: ---------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_components.all;

5 ---------------------------------

6 ENTITY project IS

7 PORT ( a, b, c, d: IN STD_LOGIC;

8 x, y: OUT STD_LOGIC);
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9 END project;

10 ---------------------------------

11 ARCHITECTURE structural OF project IS

12 SIGNAL w: STD_LOGIC;

13 BEGIN

14 U1: inverter PORT MAP (b, w);

15 U2: nand_2 PORT MAP (a, b, x);

16 U3: nand_3 PORT MAP (w, c, d, y);

17 END structural;

18 ---------------------------------------------

10.4 PORT MAP

There are two ways to map the PORTS of a COMPONENT during its in-

stantiation: positional mapping and nominal mapping. Let us consider the following

example:

COMPONENT inverter IS

PORT (a: IN STD_LOGIC; b: OUT STD_LOGIC);

END COMPONENT;

...

U1: inverter PORT MAP (x, y);

In it, the mapping is positional; that is, PORTS x and y correspond to a and b,

respectively. On the other hand, a nominal mapping would be the following:

U1: inverter PORT MAP (x=>a, y=>b);

Positional mapping is easier to write, but nominal mapping is less error-prone.

Ports can also be left unconnected (using the keyword OPEN). For example:

U2: my_circuit PORT MAP (x=>a, y=>b, w=>OPEN, z=>d);

10.5 GENERIC MAP

GENERIC units (discussed in section 4.5) can also be instantiated. In that case, a

GENERIC MAP must be used in the COMPONENT instantiation to pass infor-

mation to the GENERIC parameters. The new syntax is shown below.

244 Chapter 10

TLFeBOOK



label: compon_name GENERIC MAP (param. list) PORT MAP (port list);

As can be seen, the only di¤erences from the syntax already presented are the

inclusion of the word GENERIC and of a parameter list. The purpose is to inform

that those parameters are to be considered as generic. The usage of GENERIC MAP

is illustrated in the example below.

Example 10.5: Instantiating a Generic Component

Let us consider the generic parity generator of example 4.3 (repeated in figure 10.5),

which adds one bit to the input vector (on its left-hand side). Such bit must be a ‘0’ if

the number of ‘1’s in the input vector is even, or a ‘1’ if it is odd, such that the

resulting vector will always contain an even number of ‘1’s.

The code presented below is generic (that is, works for any positive integer n). Two

files are shown: one relative to the COMPONENT (par_generator, which, indeed,

we can assume as previously designed and available in the work library), and one

relative to the project itself (main code), where the component par_generator is

instantiated.

Notice that the default value (n ¼ 7) of GENERIC in the COMPONENT file

(parity_gen) will be overwritten by the value n ¼ 2 passed to it by means of the

GENERIC MAP statement in the COMPONENT instantiation. Notice also that the

GENERIC declaration that appears along with the COMPONENT declaration in

the second file is necessary, for it is part of the original (the component’s) ENTITY.

However, it is not necessary to declare its default value again. Simulation results

from the circuit synthesized with the code below are shown in figure 10.6.

1 ------ File parity_gen.vhd (component): -------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------

input (n-1:0) PARITY
GENERATOR

output (n:0)

Figure 10.5
Generic parity generator to be instantiated in example 10.5.
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5 ENTITY parity_gen IS

6 GENERIC (n : INTEGER := 7); -- default is 7

7 PORT ( input: IN BIT_VECTOR (n DOWNTO 0);

8 output: OUT BIT_VECTOR (n+1 DOWNTO 0));

9 END parity_gen;

10 -----------------------------------

11 ARCHITECTURE parity OF parity_gen IS

12 BEGIN

13 PROCESS (input)

14 VARIABLE temp1: BIT;

15 VARIABLE temp2: BIT_VECTOR (output'RANGE);

16 BEGIN

17 temp1 := '0';

18 FOR i IN input'RANGE LOOP

19 temp1 := temp1 XOR input(i);

20 temp2(i) := input(i);

21 END LOOP;

22 temp2(output'HIGH) := temp1;

23 output <= temp2;

24 END PROCESS;

25 END parity;

26 ------------------------------------------------------

1 ------ File my_code.vhd (actual project): ------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------

5 ENTITY my_code IS

6 GENERIC (n : POSITIVE := 2); -- 2 will overwrite 7

7 PORT ( inp: IN BIT_VECTOR (n DOWNTO 0);

Figure 10.6
Simulation results of example 10.5.
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8 outp: OUT BIT_VECTOR (n+1 DOWNTO 0));

9 END my_code;

10 -----------------------------------

11 ARCHITECTURE my_arch OF my_code IS

12 ------------------------

13 COMPONENT parity_gen IS

14 GENERIC (n : POSITIVE);

15 PORT (input: IN BIT_VECTOR (n DOWNTO 0);

16 output: OUT BIT_VECTOR (n+1 DOWNTO 0));

17 END COMPONENT;

18 ------------------------

19 BEGIN

20 C1: parity_gen GENERIC MAP(n) PORT MAP(inp, outp);

21 END my_arch;

22 ------------------------------------------------------

Example 10.6: ALU Made of COMPONENTS

In example 5.5, the design of an ALU (Arithmetic Logic Unit) was presented (dia-

gram repeated in figure 10.7). In that example, the code was self-contained (that is,

no external COMPONENT, FUNCTION, or PROCEDURE was called). In the

present example, however, we will assume that our library contains the three com-

ponents (logic_unit, arith_unit, and mux) with which the ALU can be constructed.

In the code shown below, besides the main code (alu.vhd), we have also included

the design of the three components mentioned above. As can be seen, the COMPO-

NENTS were declared in the main code itself. Simulation results are shown in figure

10.8, which are similar to those of example 5.5.

1 -------- COMPONENT arith_unit: --------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_unsigned.all;

5 -----------------------------------------

6 ENTITY arith_unit IS

7 PORT ( a, b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

8 sel: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

9 cin: IN STD_LOGIC;

10 x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

11 END arith_unit;
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sel Operation Function Unit
0000
0001
0010
0011
0100
0101
0110
0111

y <= a
y <= a+1
y <= a-1
y <= b

y <= b+1
y <= b-1
y <= a+b

y <= a+b+cin

Transfer a
Increment a
Decrement a
Transfer b

Increment b
Decrement b
Add a and b

Add a and b with carry

Arithmetic

1000
1001
1010
1011
1100
1101
1110
1111

y <= NOT a
y <= NOT b

y <= a AND b
y <= a OR b

y <= a NAND b
y <= a NOR b
y <= a XOR b

y <= a XNOR b

Complement a
Complement b

AND
OR

NAND
NOR
XOR

XNOR

Logic

sel (3)

a (7:0)
b (7:0)

  cin

sel (3:0)

logic_unit

arith_unit

mux  y (7:0)

Figure 10.7
ALU constructed from three COMPONENTS.
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12 -----------------------------------------

13 ARCHITECTURE arith_unit OF arith_unit IS

14 SIGNAL arith, logic: STD_LOGIC_VECTOR (7 DOWNTO 0);

15 BEGIN

16 WITH sel SELECT

17 x <= a WHEN "000",

18 a+1 WHEN "001",

19 a-1 WHEN "010",

20 b WHEN "011",

21 b+1 WHEN "100",

22 b-1 WHEN "101",

23 a+b WHEN "110",

24 a+b+cin WHEN OTHERS;

25 END arith_unit;

26 ---------------------------------------------------

1 -------- COMPONENT logic_unit: --------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY logic_unit IS

6 PORT ( a, b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 sel: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

8 x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END logic_unit;

10 -----------------------------------------

11 ARCHITECTURE logic_unit OF logic_unit IS

12 BEGIN

Figure 10.8
Simulation results of example 10.6.
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13 WITH sel SELECT

14 x <= NOT a WHEN "000",

15 NOT b WHEN "001",

16 a AND b WHEN "010",

17 a OR b WHEN "011",

18 a NAND b WHEN "100",

19 a NOR b WHEN "101",

20 a XOR b WHEN "110",

21 NOT (a XOR b) WHEN OTHERS;

22 END logic_unit;

23 ---------------------------------------------------

1 -------- COMPONENT mux: ---------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY mux IS

6 PORT ( a, b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 sel: IN STD_LOGIC;

8 x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END mux;

10 -----------------------------------------

11 ARCHITECTURE mux OF mux IS

12 BEGIN

13 WITH sel SELECT

14 x <= a WHEN '0',

15 b WHEN OTHERS;

16 END mux;

17 ---------------------------------------------------

1 -------- Project ALU (main code): -----------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY alu IS

6 PORT ( a, b: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

7 cin: IN STD_LOGIC;

8 sel: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

9 y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
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10 END alu;

11 -----------------------------------------

12 ARCHITECTURE alu OF alu IS

13 -----------------------

14 COMPONENT arith_unit IS

15 PORT ( a, b: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

16 cin: IN STD_LOGIC;

17 sel: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

18 x: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

19 END COMPONENT;

20 -----------------------

21 COMPONENT logic_unit IS

22 PORT ( a, b: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

23 sel: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

24 x: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

25 END COMPONENT;

26 -----------------------

27 COMPONENT mux IS

28 PORT ( a, b: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

29 sel: IN STD_LOGIC;

30 x: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

31 END COMPONENT;

32 -----------------------

33 SIGNAL x1, x2: STD_LOGIC_VECTOR(7 DOWNTO 0);

34 -----------------------

35 BEGIN

36 U1: arith_unit PORT MAP (a, b, cin, sel(2 DOWNTO 0), x1);

37 U2: logic_unit PORT MAP (a, b, sel(2 DOWNTO 0), x2);

38 U3: mux PORT MAP (x1, x2, sel(3), y);

39 END alu;

40 ---------------------------------------------------

10.6 Problems

Problem 10.1: ALU with Components Declared in a Package

Redo example 10.6. This time, create a PACKAGE containing all COMPONENT

declarations. Then make the changes needed in the main code and recompile it.

Synthesize and simulate your solution to fully verify its functionality.
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Problem 10.2: Carry Ripple Adder Constructed From Components

Consider the carry ripple adder discussed in section 9.3 (figure 9.6). Design a FAU

(full adder unit), to be used as a COMPONENT. Compile it into the work LI-

BRARY. Then write a code for the complete carry ripple adder containing instan-

tiations of FAU. Compile your project and simulate the synthesized circuit, com-

paring the results with those obtained in section 9.3.

Problem 10.3: Carry Look Ahead Adder Constructed from Components

Consider now the carry look ahead adder of section 9.3 (figure 9.8). Design a PGU

(propagate-generate unit) and a CLAU (carry look ahead unit), to be used as

COMPONENTS. Compile them into the work LIBRARY. Then write a code for

the complete carry look ahead adder containing instantiations of PGU and CLAU.

You can choose whether to declare the COMPONENTS in a specific PACKAGE or

in the main code itself (in the declarative part of the ARCHITECTURE). Compile

your project and simulate the synthesized circuit, comparing the results with those

obtained in section 9.3.

Problem 10.4: Registered Counter

Figure P10.4 illustrates the construction of a hierarchical design. Two sub-circuits

(that is, ‘‘components’’), called counter and register, are used to construct a higher-

level circuit, called stop_watch. The system consists of a free-running counter, which

is reset every time the stop input is asserted. The status of the counter must be stored

in the sub-circuit register just before reset occurs. Once stop returns to ‘0’, the

counter resumes counting (from zero), while the register holds the previous count.

Design the two components of figure P10.4, then instantiate them in the main code to

produce the complete stop_watch circuit.

 clk

stop

store

inp

REGISTERCOUNTER

rst

STOP_WATCH

inp outp reg

Figure P10.4
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11Functions and Procedures

FUNCTIONS and PROCEDURES are collectively called subprograms. From a

construction point of view, they are very similar to a PROCESS (studied in chapter

6), for they are the only pieces of sequential VHDL code, and thus employ the same

sequential statements seen there (IF, CASE, and LOOP; WAIT is not allowed).

However, from the applications point of view, there is a fundamental di¤erence be-

tween a PROCESS and a FUNCTION or PROCEDURE. While the first is intended

for immediate use in the main code, the others are intended mainly for LIBRARY

allocation, that is, their purpose is to store commonly used pieces of code, so they

can be reused or shared by other projects. Nevertheless, if desired, a FUNCTION or

PROCEDURE can also be installed in the main code itself.

11.1 FUNCTION

A FUNCTION is a section of sequential code. Its purpose is to create new functions

to deal with commonly encountered problems, like data type conversions, logical

operations, arithmetic computations, and new operators and attributes. By writing

such code as a FUNCTION, it can be shared and reused, also propitiating the main

code to be shorter and easier to understand.

As already mentioned, a FUNCTION is very similar to a PROCESS (section 6.1).

The same statements that can be used in a process (IF, WAIT, CASE, and LOOP)

can also be used in a function, with the exception of WAIT. Other two prohibitions

in a function are SIGNAL declarations and COMPONENT instantiations.

To construct and use a function, two parts are necessary: the function itself (func-

tion body) and a call to the function. Their syntaxes are shown below.

Function Body

FUNCTION function_name [<parameter list>] RETURN data_type IS
[declarations]

BEGIN
(sequential statements)

END function_name;

In the syntax above, 3parameter list4 specifies the function’s input parameters,

that is:

3parameter list4 ¼ [CONSTANT] constant_name: constant_type; or

3parameter list4 ¼ SIGNAL signal_name: signal_type;
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There can be any number of such parameters (even zero), which, as shown above,

can only be CONSTANT (default) or SIGNAL (VARIABLES are not allowed).

Their types can be any of the synthesizable data types studied in chapter 3 (BOO-

LEAN, STD_LOGIC, INTEGER, etc.). However, no range specification should be

included (for example, do not enter RANGE when using INTEGER, or TO/

DOWNTO when using STD_LOGIC_VECTOR). On the other hand, there is only

one return value, whose type is specified by data_type.

Example: The function below, named f1, receives three parameters (a, b, and

c). a and b are CONSTANTS (notice that the word CONSTANT can be omitted,

for it is the default object), while c is a SIGNAL. a and b are of type INTEGER,

while c is of type STD_LOGIC_VECTOR. Notice that neither RANGE nor

DOWNTO was specified. The output parameter (there can be only one) is of type

BOOLEAN.

FUNCTION f1 (a, b: INTEGER; SIGNAL c: STD_LOGIC_VECTOR)

RETURN BOOLEAN IS

BEGIN

(sequential statements)

END f1;

Function Call

A function is called as part of an expression. The expression can obviously appear by

itself or associated to a statement (either concurrent or sequential).

Examples of function calls:

x <= conv_integer(a); -- converts a to an integer

-- (expression appears by itself)

y <= maximum(a, b); -- returns the largest of a and b

-- (expression appears by itself)

IF x > maximum(a, b) ... -- compares x to the largest of a, b

-- (expression associated to a

-- statement)

Example 11.1: Function positive_edge( )

The FUNCTION below detects a positive (rising) clock edge. It is similar to the

IF(clk’EVENT and clk ¼ ‘1’) statement. This function could be used, for example, in

the implementation of a DFF.
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------ Function body: -------------------------------

FUNCTION positive_edge(SIGNAL s: STD_LOGIC) RETURN BOOLEAN IS

BEGIN

RETURN (s'EVENT AND s='1');

END positive_edge;

------ Function call: -------------------------------

...

IF positive_edge(clk) THEN...

...

-----------------------------------------------------

Example 11.2: Function conv_integer( )

The FUNCTION presented next converts a parameter of type STD_LOGIC_

VECTOR into an INTEGER. Notice that the code is generic, that is, it works for

any range or order (TO/DOWNTO) of the input STD_LOGIC_VECTOR parame-

ter. A typical call to the function is also shown.

------ Function body: -------------------------------

FUNCTION conv_integer (SIGNAL vector: STD_LOGIC_VECTOR)

RETURN INTEGER IS

VARIABLE result: INTEGER RANGE 0 TO 2**vector'LENGTH-1;

BEGIN

IF (vector(vector'HIGH)='1') THEN result:=1;

ELSE result:=0;

END IF;

FOR i IN (vector'HIGH-1) DOWNTO (vector'LOW) LOOP

result:=result*2;

IF(vector(i)='1') THEN result:=result+1;

END IF;

END LOOP;

RETURN result;

END conv_integer;

------ Function call: -------------------------------

...

y <= conv_integer(a);

...

-----------------------------------------------------
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11.2 Function Location

The typical locations of a FUNCTION (or PROCEDURE) are depicted in figure

11.1. Though a FUNCTION is usually placed in a PACKAGE (for code partition-

ing, code reuse, and code sharing purposes), it can also be located in the main code

(either inside the ARCHITECTURE or inside the ENTITY).

When placed in a PACKAGE, then a PACKAGE BODY is necessary, which

must contain the body of each FUNCTION (or PROCEDURE) declared in the de-

clarative part of the PACKAGE. Examples of both cases are presented below.

Example 11.3: FUNCTION Located in the Main Code

Let us consider the positive_edge( ) function of example 11.1 As mentioned above,

when installed in the main code itself, the function can be located either in the

ENTITY or in the declarative part of the ARCHITECTURE. In the present exam-

ple, the function appears in the latter, and is used to construct a DFF.

1 ---------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY dff IS

6 PORT ( d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END dff;

9 ---------------------------------------------

10 ARCHITECTURE my_arch OF dff IS

11 ------------------------------------------

                                           PACKAGE               LIBRARY
(+ PACKAGE BODY)

 FUNCTION /
 PROCEDURE                                                         ARCHITECTURE
 location  (declarative part)

Main code
                                                                                    ENTITY

Figure 11.1
Typical locations of a FUNCTION or PROCEDURE.
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12 FUNCTION positive_edge(SIGNAL s: STD_LOGIC)

13 RETURN BOOLEAN IS

14 BEGIN

15 RETURN s'EVENT AND s='1';

16 END positive_edge;

17 ------------------------------------------

18 BEGIN

19 PROCESS (clk, rst)

20 BEGIN

21 IF (rst='1') THEN q <= '0';

22 ELSIF positive_edge(clk) THEN q <= d;

23 END IF;

24 END PROCESS;

25 END my_arch;

26 ---------------------------------------------

Example 11.4: FUNCTION Located in a PACKAGE

This example is similar to example 11.3, with the only di¤erence being that the

FUNCTION located in a PACKAGE can now be reused and shared by other proj-

ects. Notice that, when placed in a PACKAGE, the function is indeed declared in the

PACKAGE, but described in the PACKAGE BODY.

Below two VHDL codes are presented, being one relative to the construction of

the FUNCTION / PACKAGE, while the other is an example where a call to the

FUNCTION is made. The two codes can be compiled as two separate files, or can be

compiled as a single file (saved as d¤.vhd, which is the ENTITY’s name). Notice the

inclusion of ‘‘USE work.my_package.all;’’ in the main code (line 4).

1 ------- Package: -----------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------

5 PACKAGE my_package IS

6 FUNCTION positive_edge(SIGNAL s: STD_LOGIC) RETURN BOOLEAN;

7 END my_package;

8 ----------------------------------------------

9 PACKAGE BODY my_package IS

10 FUNCTION positive_edge(SIGNAL s: STD_LOGIC)

11 RETURN BOOLEAN IS
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12 BEGIN

13 RETURN s'EVENT AND s='1';

14 END positive_edge;

15 END my_package;

16 ----------------------------------------------

1 ------ Main code: ----------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_package.all;

5 ----------------------------------------------

6 ENTITY dff IS

7 PORT ( d, clk, rst: IN STD_LOGIC;

8 q: OUT STD_LOGIC);

9 END dff;

10 ----------------------------------------------

11 ARCHITECTURE my_arch OF dff IS

12 BEGIN

13 PROCESS (clk, rst)

14 BEGIN

15 IF (rst='1') THEN q <= '0';

16 ELSIF positive_edge(clk) THEN q <= d;

17 END IF;

18 END PROCESS;

19 END my_arch;

20 ----------------------------------------------

Example 11.5: Function conv_integer( )

The conv_integer( ) function shown below was already seen in example 11.2; it con-

verts a STD_LOGIC_VECTOR value into an INTEGER value. Below, the function

was placed in a PACKAGE (plus PACKAGE BODY). A call to this function

appears in the main code that follows the function implementation.

1 --------- Package: ---------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------

5 PACKAGE my_package IS
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6 FUNCTION conv_integer (SIGNAL vector: STD_LOGIC_VECTOR)

7 RETURN INTEGER;

8 END my_package;

9 ----------------------------------------------

10 PACKAGE BODY my_package IS

11 FUNCTION conv_integer (SIGNAL vector: STD_LOGIC_VECTOR)

12 RETURN INTEGER IS

13 VARIABLE result: INTEGER RANGE 0 TO 2**vector'LENGTH-1;

14 BEGIN

15 IF (vector(vector'HIGH)='1') THEN result:=1;

16 ELSE result:=0;

17 END IF;

18 FOR i IN (vector'HIGH-1) DOWNTO (vector'LOW) LOOP

19 result:=result*2;

20 IF(vector(i)='1') THEN result:=result+1;

21 END IF;

22 END LOOP;

23 RETURN result;

24 END conv_integer;

25 END my_package;

26 ----------------------------------------------

1 -------- Main code: --------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_package.all;

5 ----------------------------------------------

6 ENTITY conv_int2 IS

7 PORT ( a: IN STD_LOGIC_VECTOR(0 TO 3);

8 y: OUT INTEGER RANGE 0 TO 15);

9 END conv_int2;

10 ----------------------------------------------

11 ARCHITECTURE my_arch OF conv_int2 IS

12 BEGIN

13 y <= conv_integer(a);

14 END my_arch;

15 ----------------------------------------------
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Example 11.6: Overloaded ‘‘B’’ Operator

The function shown below, called ‘‘þ’’, overloads the pre-defined ‘‘þ’’ (addition)

operator (section 4.1 and section 4.4). Recall that the latter accepts only INTEGER,

SIGNED, or UNSIGNED values. However, we are interested in writing a function

which should allow the sum of STD_LOGIC_VECTOR values as well (thus over-

loading the ‘‘þ’’ operator).

The function shown below was placed in a PACKAGE (plus PACKAGE BODY).

An example utilizing this function is also presented in the main code that follows the

function implementation. Notice that the two parameters passed to the function, as

well as the return value, are all of type STD_LOGIC_VECTOR. We assume that

they all have the same number of bits (an extension to this example is presented in

problem 11.8).

1 -------- Package: ----------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------

5 PACKAGE my_package IS

6 FUNCTION "+" (a, b: STD_LOGIC_VECTOR)

7 RETURN STD_LOGIC_VECTOR;

8 END my_package;

9 ----------------------------------------------

10 PACKAGE BODY my_package IS

11 FUNCTION "+" (a, b: STD_LOGIC_VECTOR)

12 RETURN STD_LOGIC_VECTOR IS

13 VARIABLE result: STD_LOGIC_VECTOR;

14 VARIABLE carry: STD_LOGIC;

15 BEGIN

16 carry := '0';

17 FOR i IN a'REVERSE_RANGE LOOP

18 result(i) := a(i) XOR b(i) XOR carry;

19 carry := (a(i) AND b(i)) OR (a(i) AND carry) OR

20 (b(i) AND carry);

21 END LOOP;

22 RETURN result;

23 END "+";

24 END my_package;

25 ----------------------------------------------
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1 --------- Main code: -------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_package.all;

5 ----------------------------------------------

6 ENTITY add_bit IS

7 PORT ( a: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

8 y: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

9 END add_bit;

10 ----------------------------------------------

11 ARCHITECTURE my_arch OF add_bit IS

12 CONSTANT b: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0011";

13 CONSTANT c: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0110";

14 BEGIN

15 y <= a + b + c; -- overloaded "+" operator

16 END my_arch;

17 ----------------------------------------------

Simulation results, for 4-bit numbers, are presented in figure 11.2. We have entered

b ¼ 3 and c ¼ 6 as two constants, which are added to the input signal a. The

expected results is then y ¼ aþ 9.

Example 11.7: Arithmetic Shift Function

The function shown below arithmetically shifts a STD_LOGIC_VECTOR value to

the left. Two arguments are passed to the function: arg1 and arg2. The first is the

vector to be shifted, while the second specifies the amount of shift. Notice that the

function (lines 13–26) is totally generic; that is, it works for any size (number of bits)

or order (TO/DOWNTO) of the input vector. In this example, the function was

located in the main code instead of in a package.

Figure 11.2
Simulation results of example 11.6.
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1 --------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY shift_left IS

6 GENERIC (size: INTEGER := 4);

7 PORT ( a: IN STD_LOGIC_VECTOR(size-1 DOWNTO 0);

8 x, y, z: OUT STD_LOGIC_VECTOR(size-1 DOWNTO 0));

9 END shift_left;

10 ---------------------------------------------

11 ARCHITECTURE behavior OF shift_left IS

12 ------------------------------------------

13 FUNCTION slar (arg1: STD_LOGIC_VECTOR; arg2: NATURAL)

14 RETURN STD_LOGIC_VECTOR IS

15 VARIABLE input: STD_LOGIC_VECTOR(size-1 DOWNTO 0) := arg1;

16 CONSTANT size : INTEGER := arg1'LENGTH;

17 VARIABLE copy: STD_LOGIC_VECTOR(size-1 DOWNTO 0)

18 := (OTHERS => arg1(arg1'RIGHT));

19 VARIABLE result: STD_LOGIC_VECTOR(size-1 DOWNTO 0);

20 BEGIN

21 IF (arg2 >= size-1) THEN result := copy;

22 ELSE result := input(size-1-arg2 DOWNTO 1) &

23 copy(arg2 DOWNTO 0);

24 END IF;

25 RETURN result;

26 END slar;

27 ------------------------------------------

28 BEGIN

29 x <= slar(a, 0);

30 y <= slar(a, 1);

31 z <= slar(a, 2);

32 END behavior;

33 ------------------------------------------

Simulation results are shown in figure 11.3 (for y only). The upper set of curves

corresponds to the a(size-1 DOWNTO 0) specification, as shown above in line 7 (that

is, a(3) is the MSB), while the second set refers to the reverse order, that is, a(0 TO

3), in which case a(0) is the MSB.
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Example 11.8: Multiplier

In this example, a function called mult( ) is presented. It multiplies two UNSIGNED

values, returning their UNSIGNED product. The parameters passed to the function

do not need to have the same number of bits, and their order (TO/DOWNTO) can

be any. The function was installed in a package called pack. An application example

(main code) is also presented. Simulation results are shown in figure 11.4.

1 --------- Package: -----------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 ---------------------------------------------

6 PACKAGE pack IS

7 FUNCTION mult(a, b: UNSIGNED) RETURN UNSIGNED;

Figure 11.3
Simulation results of example 11.7.
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8 END pack;

9 ---------------------------------------------

10 PACKAGE BODY pack IS

11 FUNCTION mult(a, b: UNSIGNED) RETURN UNSIGNED IS

12 CONSTANT max: INTEGER := a'LENGTH + b'LENGTH - 1;

13 VARIABLE aa: UNSIGNED(max DOWNTO 0) :=

14 (max DOWNTO a'LENGTH => '0')

15 & a(a'LENGTH-1 DOWNTO 0);

16 VARIABLE prod: UNSIGNED(max DOWNTO 0) := (OTHERS => '0');

17 BEGIN

18 FOR i IN 0 TO a'LENGTH-1 LOOP

19 IF (b(i)='1') THEN prod := prod + aa;

20 END IF;

21 aa := aa(max-1 DOWNTO 0) & '0';

22 END LOOP;

23 RETURN prod;

24 END mult;

25 END pack;

26 --------------------------------------------------------

1 -------- Main code: ------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 USE work.my_package.all;

6 ---------------------------------------------

7 ENTITY multiplier IS

8 GENERIC (size: INTEGER := 4);

9 PORT ( a, b: IN UNSIGNED(size-1 DOWNTO 0);

Figure 11.4
Simulation results of example 11.8.
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10 y: OUT UNSIGNED(2*size-1 DOWNTO 0));

11 END multiplier;

12 ---------------------------------------------

13 ARCHITECTURE behavior OF multiplier IS

14 BEGIN

15 y <= mult(a,b);

16 END behavior;

17 ---------------------------------------------------------

11.3 PROCEDURE

A PROCEDURE is very similar to a FUNCTION and has the same basic purposes.

However, a procedure can return more than one value.

Like a FUNCTION, two parts are necessary to construct and use a PROCE-

DURE: the procedure itself (procedure body) and a procedure call.

Procedure Body

PROCEDURE procedure_name [<parameter list>] IS
[declarations]

BEGIN
(sequential statements)

END procedure_name;

In the syntax above, <parameter list> specifies the procedure’s input and output

parameters; that is:

3parameter list4 ¼ [CONSTANT] constant_name: mode type;

3parameter list4 ¼ SIGNAL signal_name: mode type; or

3parameter list4 ¼ VARIABLE variable_name: mode type;

A PROCEDURE can have any number of IN, OUT, or INOUT parameters,

which can be SIGNALS, VARIABLES, or CONSTANTS. For input signals (mode

IN), the default is CONSTANT, whereas for output signals (mode OUT or INOUT)

the default is VARIABLE.

As seen before, WAIT, SIGNAL declarations, and COMPONENTS are not syn-

thesizable when used in a FUNCTION. The same is true for a PROCEDURE, with
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the exception that a SIGNAL can be declared, but then the PROCEDURE must be

declared in a PROCESS. Moreover, besides WAIT, any other edge detection is also

not synthesizable with a PROCEDURE (that is, contrary to a function, a synthesiz-

able procedure should not infer registers).

In section 11.5, a summary comparing FUNCTIONS and PROCEDURES will be

presented.

Example: The PROCEDURE below has three inputs, a, b, and c (mode IN). a is a

CONSTANT of type BIT, while b and c are SIGNALS, also of type BIT. Notice

that the word CONSTANT can be omitted for input parameters, for it is the default

object (recall, however, that for outputs the default object is VARIABLE). There are

also two return signals, x (mode OUT, type BIT_VECTOR) and y (mode INOUT,

type INTEGER).

PROCEDURE my_procedure ( a: IN BIT; SIGNAL b, c: IN BIT;

SIGNAL x: OUT BIT_VECTOR(7 DOWNTO 0);

SIGNAL y: INOUT INTEGER RANGE 0 TO 99) IS

BEGIN

...

END my_procedure;

Procedure Call

Contrary to a FUNCTION, which is called as part of an expression, a PROCE-

DURE call is a statement on its own. It can appear by itself or associated to a

statement (either concurrent or sequential).

Examples of procedure calls:

compute_min_max(in1, in2, 1n3, out1, out2);

-- statement by itself

divide(dividend, divisor, quotient, remainder);

-- statement by itself

IF (a>b) THEN compute_min_max(in1, in2, 1n3, out1, out2);

-- procedure call associated to another statement

11.4 Procedure Location

The typical locations of a PROCEDURE are the same as those of a FUNCTION

(see figure 11.1). Again, though it is usually placed in a PACKAGE (for code parti-
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tioning, code reuse, and code sharing purposes), it can also be located in the main

code (either in the ENTITY or in the declarative part of the ARCHITECTURE).

When placed in a PACKAGE, a PACKAGE BODY is then necessary, which must

contain the body of each PROCEDURE declared in the declarative part of the

PACKAGE. Examples of both cases are shown below.

Example 11.9: PROCEDURE Located in the Main Code

The min_max code below makes use of a PROCEDURE called sort. It takes two

8-bit unsigned integers as inputs (inp1, inp2), sorts them, then outputs the smaller

value at min_out and the higher value at max_out (figure 11.5). The PROCEDURE

is located in the declarative part of the ARCHITECTURE (main code). Notice that

the PROCEDURE call, sort(inp1,inp2,min_out,max_out), is a statement on its own.

Simulation results are shown in figure 11.6.

1 ------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

inp1

inp2

ena

min_max

min_out

max_out

Figure 11.5
min_max circuit of example 11.9.

Figure 11.6
Simulation results of example 11.9.
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4 ------------------------------------------------------

5 ENTITY min_max IS

6 GENERIC (limit : INTEGER := 255);

7 PORT ( ena: IN BIT;

8 inp1, inp2: IN INTEGER RANGE 0 TO limit;

9 min_out, max_out: OUT INTEGER RANGE 0 TO limit);

10 END min_max;

11 ------------------------------------------------------

12 ARCHITECTURE my_architecture OF min_max IS

13 --------------------------

14 PROCEDURE sort (SIGNAL in1, in2: IN INTEGER RANGE 0 TO limit;

15 SIGNAL min, max: OUT INTEGER RANGE 0 TO limit) IS

16 BEGIN

17 IF (in1 > in2) THEN

18 max <= in1;

19 min <= in2;

20 ELSE

21 max <= in2;

22 min <= in1;

23 END IF;

24 END sort;

25 --------------------------

26 BEGIN

27 PROCESS (ena)

28 BEGIN

29 IF (ena='1') THEN sort (inp1, inp2, min_out, max_out);

30 END IF;

31 END PROCESS;

32 END my_architecture;

33 ------------------------------------------------------

Example 11.10: PROCEDURE Located in a PACKAGE

This example is similar to example 11.9, with the only di¤erence being that now the

PROCEDURE (called sort) is placed in a PACKAGE (called my_package). Thus

the PROCEDURE can now be reused and shared with other designs. The code

below can be compiled as two separate files, or can be compiled as a single file (called

min_max.vhd, which is the ENTITY’s name).
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1 ------------ Package: ---------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------

5 PACKAGE my_package IS

6 CONSTANT limit: INTEGER := 255;

7 PROCEDURE sort (SIGNAL in1, in2: IN INTEGER RANGE 0 TO limit;

8 SIGNAL min, max: OUT INTEGER RANGE 0 TO limit);

9 END my_package;

10 -------------------------------------

11 PACKAGE BODY my_package IS

12 PROCEDURE sort (SIGNAL in1, in2: IN INTEGER RANGE 0 TO limit;

13 SIGNAL min, max: OUT INTEGER RANGE 0 TO limit) IS

14 BEGIN

15 IF (in1 > in2) THEN

16 max <= in1;

17 min <= in2;

18 ELSE

19 max <= in2;

20 min <= in1;

21 END IF;

22 END sort;

23 END my_package;

24 -------------------------------------------------

1 --------- Main code: ----------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_package.all;

5 -------------------------------------

6 ENTITY min_max IS

7 GENERIC (limit: INTEGER := 255);

8 PORT ( ena: IN BIT;

9 inp1, inp2: IN INTEGER RANGE 0 TO limit;

10 min_out, max_out: OUT INTEGER RANGE 0 TO limit);

11 END min_max;

12 -------------------------------------
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13 ARCHITECTURE my_architecture OF min_max IS

14 BEGIN

15 PROCESS (ena)

16 BEGIN

17 IF (ena='1') THEN sort (inp1, inp2, min_out, max_out);

18 END IF;

19 END PROCESS;

20 END my_architecture;

21 ----------------------------------------------

The simulation results are obviously the same as those of example 11.9 (figure

11.6).

11.5 FUNCTION versus PROCEDURE Summary

� A FUNCTION has zero or more input parameters and a single return value. The

input parameters can only be CONSTANTS (default) or SIGNALS (VARIABLES

are not allowed).

� A PROCEDURE can have any number of IN, OUT, and INOUT parameters,

which can be SIGNALS, VARIABLES, or CONSTANTS. For input parameters

(mode IN) the default is CONSTANT, whereas for output parameters (mode OUT

or INOUT) the default is VARIABLE.

� A FUNCTION is called as part of an expression, while a PROCEDURE is a

statement on its own.

� In both, WAIT and COMPONENTS are not synthesizable.

� The possible locations of FUNCTIONS and PROCEDURES are the same (figure

11.1). Though they are usually placed in PACKAGES (for code partitioning, code

sharing, and code reuse purposes), they can also be located in the main code (either

inside the ARCHITECTURE or inside the ENTITY). When placed in a PACK-

AGE, then a PACKAGE BODY is necessary, which should contain the body of

each FUNCTION and/or PROCEDURE declared in the PACKAGE.

11.6 ASSERT

ASSERT is a non-synthesizable statement whose purpose is to write out messages

(on the screen, for example) when problems are found during simulation. Depending
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on the severity of the problem, the simulator is instructed to halt. Its syntax is the

following:

ASSERT condition
[REPORT "message"]
[SEVERITY severity_level];

The severity level can be: Note, Warning, Error (default), or Failure. The message

is written when the condition is FALSE.

Example: Say that we have written a function to add two binary numbers (like in

example 11.6), where it was assumed that the input parameters must have the same

number of bits. In order to check such an assumption, the following ASSERT state-

ment could be included in the function body:

ASSERT a'LENGTH = b'LENGTH

REPORT "Error: vectors do not have same length!"

SEVERITY failure;

Again, ASSERT does not generate hardware. Synthesis tools will simply ignore it

or give a warning.

11.7 Problems

The purpose of the problems proposed in this section is to reinforce the main aspects

related to the construction and use of subprograms (FUNCTIONS and PROCE-

DURES).

Problem 11.1: Conversion to std_logic_vector

Write a function capable of converting an INTEGER to a STD_LOGIC_VECTOR

value. Call it conv_std_logic( ). Then write an application example, containing a call

to your function, in order to test it. Construct two solutions: one with the function in

the main code itself, and one with it in a package.

Problem 11.2: Overloaded ‘‘not’’ Operator

The NOT operator allows the inversion of binary values. For example, if x ¼ ‘‘1000’’

is a STD_LOGIC_VECTOR value, then NOT x could be used, producing ‘‘0111’’.

Functions and Procedures 271

TLFeBOOK



However, if x had been declared as an INTEGER, such operation would not be

allowed. Write a ‘‘not’’ function capable of inverting integers. (Suggestion: See sec-

tion 4.4 and example 11.6.)

Problem 11.3: Logic Shift of std_logic_vector

The pre-defined shift operators (specified in VHDL93, section 4.1) work only with

type BIT_VECTOR. Write a function capable of logically shifting a STD_LOGC_

VECTOR signal to the left by a specified amount. Two arguments must be passed to

the function: the value to be shifted (STD_LOGIC_VECTOR), plus a NATURAL

value specifying the amount of shift. Place your function in a package. Then write an

application with a call to your function in order to test it (suggestion: review example

11.7).

Problem 11.4: Logic Shift of an Integer

This problem is an extension of problem 11.3. Write a function capable of shifting an

INTEGER value to the left by an specified amount. Place your function in a pack-

age. Then write an application with a call to your function in order to test it.

Problem 11.5: Signed Multiplier

Write a function similar to that of example 11.8. However, it should now operate

with SIGNED input and output values.

Problem 11.6: Two-digit Counter with SSD Output

In example 6.7, a progressive 2-digit decimal counter (0 ! 99 ! 0), with external

asynchronous reset plus binary-coded decimal (BCD) to seven-segment display

(SSD) conversion, was designed. In it, a routine to convert a signal from BCD to

SSD format was used twice. This kind of repetition can be avoided with a FUNC-

TION. Write a function (call it bcd_to_ssd) capable of making such a conversion

and place it in a PACKAGE. Then redo the design of example 6.7, using a call to

your function whenever such conversion is needed. Then synthesize and test your

solution.

Problem 11.7: Statistical Procedure

Write a PROCEDURE that receives eight signed values and returns their average,

the largest value, and the lowest value. Call the return values ave, max, and min.

Place your procedure in a package. Then write an application with a call to it in

order to test its functionality.
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Problem 11.8: Overloaded ‘‘B’’ Operator

In example 11.6, a function that overloads the ‘‘þ’’ (addition) operator was pre-

sented. Its purpose was to allow the direct addition of STD_LOGIC_VECTOR

values. In that example, the return parameter had the same number of bits as the two

input parameters. Write a similar function, but with the return vector having one

extra bit corresponding to the carry out bit such that overflow can then be easily

detected.
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12 Additional System Designs

In this chapter, additional designs are presented, with the purpose of further illus-

trating the usage of the VHDL units that are intended for system-level design:

PACKAGES, COMPONENTS, FUNCTIONS, and PROCEDURES.

12.1 Serial-Parallel Multiplier

Figure 12.1 shows the RTL diagram of a serial-parallel multiplier. One of the input

vectors (a) is applied serially to the circuit (one bit at a time, starting from the LSB),

while the other (b) is applied in parallel (all bits simultaneously). Say that a has M

bits, while b has N. Then, after all M bits of a have been presented to the system, a

string of M ‘0’s must follow, in order to complete the (MþN)-bit output product.

As can be seen in figure 12.1, the system is pipelined, and is constructed using

AND gates, full-adder units, plus registers (flip-flops). Each unit of the pipeline

(except the leftmost one) requires one adder and two registers, plus an AND gate to

compute one of the inputs. Thus for an M�N multiplier, O(N) of such units are

required.

The solution presented below is of structural type (only COMPONENTS were

used). Notice that there is more than one level of instantiation (the unit called pipe

instantiates other components, while in the final code, pipe is instantiated as well

(besides other components).

The design of each component is shown below, along with the PACKAGE con-

taining all COMPONENT declarations, followed by the project proper (main code).

Simulation results were also included.

1 ------ and_2.vhd (component): ---------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY and_2 IS

6 PORT ( a, b: IN STD_LOGIC;

7 y: OUT STD_LOGIC);

8 END and_2;

9 ---------------------------------------

10 ARCHITECTURE and_2 OF and_2 IS

11 BEGIN

12 y <= a AND b;

13 END and_2;

14 ---------------------------------------
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1 ------ reg.vhd (component): -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY reg IS

6 PORT ( d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END reg;

9 ---------------------------------------

10 ARCHITECTURE reg OF reg IS

11 BEGIN

12 PROCESS (clk, rst)

13 BEGIN

14 IF (rst='1') THEN q<='0';

15 ELSIF (clk'EVENT AND clk='1') THEN q<=d;

16 END IF;

17 END PROCESS;

18 END reg;

19 ---------------------------------------

1 ------ fau.vhd (component): -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 ENTITY fau IS

+

D

D +

D

+

D

b(3) b(2) b(1) b(0)

a(0)
a(1)
a(2)
a(3)

a

prodD D D

Figure 12.1
Serial-parallel multiplier.
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6 PORT ( a, b, cin: IN STD_LOGIC;

7 s, cout: OUT STD_LOGIC);

8 END fau;

9 ---------------------------------------

10 ARCHITECTURE fau OF fau IS

11 BEGIN

12 s <= a XOR b XOR cin;

13 cout <= (a AND b) OR (a AND cin) OR (b AND cin);

14 END fau;

15 ---------------------------------------

1 ------ pipe.vhd (component): ----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_components.all;

5 ---------------------------------------

6 ENTITY pipe IS

7 PORT ( a, b, clk, rst: IN STD_LOGIC;

8 q: OUT STD_LOGIC);

9 END pipe;

10 ---------------------------------------

11 ARCHITECTURE structural OF pipe IS

12 SIGNAL s, cin, cout: STD_LOGIC;

13 BEGIN

14 U1: COMPONENT fau PORT MAP (a, b, cin, s, cout);

15 U2: COMPONENT reg PORT MAP (cout, clk, rst, cin);

16 U3: COMPONENT reg PORT MAP (s, clk, rst, q);

17 END structural;

18 ---------------------------------------

1 ----- my_components.vhd (package):-----

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------

5 PACKAGE my_components IS

6 --------------------------

7 COMPONENT and_2 IS

8 PORT (a, b: IN STD_LOGIC; y: OUT STD_LOGIC);
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9 END COMPONENT;

10 --------------------------

11 COMPONENT fau IS

12 PORT (a, b, cin: IN STD_LOGIC; s, cout: OUT STD_LOGIC);

13 END COMPONENT;

14 --------------------------

15 COMPONENT reg IS

16 PORT (d, clk, rst: IN STD_LOGIC; q: OUT STD_LOGIC);

17 END COMPONENT;

18 --------------------------

19 COMPONENT pipe IS

20 PORT (a, b, clk, rst: IN STD_LOGIC; q: OUT STD_LOGIC);

21 END COMPONENT;

22 --------------------------

23 END my_components;

24 ---------------------------------------

1 ----- multiplier.vhd (project): -------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_components.all;

5 ---------------------------------------

6 ENTITY multiplier IS

7 PORT ( a, clk, rst: IN STD_LOGIC;

8 b: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

9 prod: OUT STD_LOGIC);

10 END multiplier;

11 ---------------------------------------

12 ARCHITECTURE structural OF multiplier IS

13 SIGNAL and_out, reg_out: STD_LOGIC_VECTOR (3 DOWNTO 0);

14 BEGIN

15 U1: COMPONENT and_2 PORT MAP (a, b(3), and_out(3));

16 U2: COMPONENT and_2 PORT MAP (a, b(2), and_out(2));

17 U3: COMPONENT and_2 PORT MAP (a, b(1), and_out(1));

18 U4: COMPONENT and_2 PORT MAP (a, b(0), and_out(0));

19 U5: COMPONENT reg PORT MAP (and_out(3), clk, rst,

20 reg_out(3));
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21 U6: COMPONENT pipe PORT MAP (and_out(2), reg_out(3),

22 clk, rst, reg_out(2));

23 U7: COMPONENT pipe PORT MAP (and_out(1), reg_out(2),

24 clk, rst, reg_out(1));

25 U8: COMPONENT pipe PORT MAP (and_out(0), reg_out(1),

26 clk, rst, reg_out(0));

27 prod <= reg_out(0);

28 END structural;

29 ---------------------------------------

Simulation results are shown in figure 12.2. a ¼ ‘‘1100’’ (decimal 12) was applied

to the serial input. Notice that this input must start with the LSB (a(0) ¼ ‘0’), which

appears in the time slot 100 ns–200 ns, while the MSB (a(3) ¼ ‘1’) is situated in

400 ns–500 ns. Recall that four zeros must then follow. On the other hand, at the

parallel input, b ¼ ‘‘1101’’ (decimal 13) was applied. The expected result, prod ¼
‘‘10011100’’ (decimal 156), can be observed in the lower plot. Recall that the first

bit out is the LSB; that is, prod(0) ¼ ‘0’, which appears in the time slot immediately

after the first rising edge of clock; (that is, 150 ns–250 ns), while the last bit (MSB)

of prod is situated in 850 ns–950 ns.

12.2 Parallel Multiplier

Figure 12.3 shows the diagram of a 4-bit parallel multiplier. Contrary to the case of

figure 12.1, here all input bits are applied to the system simultaneously. Therefore,

registers are not required. Notice in figure 12.3 that only AND gates and FAU (full

adder units) are necessary to construct a parallel multiplier. The operands are a and

b (each of four bits), and the resulting product is prod (eight bits).

Figure 12.2
Simulation results of serial-parallel multiplier.
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Figure 12.3
Parallel multiplier.
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The VHDL code shown below was based on COMPONENT instantiation. Notice

that two basic components, AND_2 and FAU, were first specified (shown in section

12.1). These components were then instantiated to construct higher-level compo-

nents, top_row, mid_row, and lower_row. All of these components were then declared

in a PACKAGE called my_components, and finally used in the project called multi-

plier to implement the circuit of figure 12.3. Simulation results are shown in figure

12.4.

1 ------- top_row.vhd (component): -------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_components.all;

5 ---------------------------------------

6 ENTITY top_row IS

7 PORT ( a: IN STD_LOGIC;

8 b: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

9 sout, cout: OUT STD_LOGIC_VECTOR (2 DOWNTO 0);

10 p: OUT STD_LOGIC);

11 END top_row;

12 ---------------------------------------

13 ARCHITECTURE structural OF top_row IS

14 BEGIN

15 U1: COMPONENT and_2 PORT MAP (a, b(3), sout(2));

16 U2: COMPONENT and_2 PORT MAP (a, b(2), sout(1));

17 U3: COMPONENT and_2 PORT MAP (a, b(1), sout(0));

18 U4: COMPONENT and_2 PORT MAP (a, b(0), p);

19 cout(2)<='0'; cout(1)<='0'; cout(0)<='0';

20 END structural;

21 ----------------------------------------------

Figure 12.4
Simulation results of parallel multiplier.
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1 ------- mid_row.vhd (component): -------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_components.all;

5 ---------------------------------------

6 ENTITY mid_row IS

7 PORT ( a: IN STD_LOGIC;

8 b: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

9 sin, cin: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

10 sout, cout: OUT STD_LOGIC_VECTOR (2 DOWNTO 0);

11 p: OUT STD_LOGIC);

12 END mid_row;

13 ---------------------------------------

14 ARCHITECTURE structural OF mid_row IS

15 SIGNAL and_out: STD_LOGIC_VECTOR (2 DOWNTO 0);

16 BEGIN

17 U1: COMPONENT and_2 PORT MAP (a, b(3), sout(2));

18 U2: COMPONENT and_2 PORT MAP (a, b(2), and_out(2));

19 U3: COMPONENT and_2 PORT MAP (a, b(1), and_out(1));

20 U4: COMPONENT and_2 PORT MAP (a, b(0), and_out(0));

21 U5: COMPONENT fau PORT MAP (sin(2), cin(2), and_out(2),

22 sout(1), cout(2));

23 U6: COMPONENT fau PORT MAP (sin(1), cin(1), and_out(1),

24 sout(0), cout(1));

25 U7: COMPONENT fau PORT MAP (sin(0), cin(0), and_out(0),

26 p, cout(0));

27 END structural;

28 ----------------------------------------------

1 ------- lower_row.vhd (component): -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_components.all;

5 ---------------------------------------

6 ENTITY lower_row IS

7 PORT ( sin, cin: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

8 p: OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

9 END lower_row;

10 ---------------------------------------
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11 ARCHITECTURE structural OF lower_row IS

12 SIGNAL local: STD_LOGIC_VECTOR (2 DOWNTO 0);

13 BEGIN

14 local(0)<='0';

15 U1: COMPONENT fau PORT MAP (sin(0), cin(0), local(0),

16 p(0), local(1));

17 U2: COMPONENT fau PORT MAP (sin(1), cin(1), local(1),

18 p(1), local(2));

19 U3: COMPONENT fau PORT MAP (sin(2), cin(2), local(2),

20 p(2), p(3));

21 END structural;

22 ----------------------------------------------

1 ----- my_components.vhd (package): -----------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------

5 PACKAGE my_components IS

6 -----------------------

7 COMPONENT and_2 IS

8 PORT ( a, b: IN STD_LOGIC; y: OUT STD_LOGIC);

9 END COMPONENT;

10 -----------------------

11 COMPONENT fau IS -- full adder unit

12 PORT ( a, b, cin: IN STD_LOGIC; s, cout: OUT STD_LOGIC);

13 END COMPONENT;

14 -----------------------

15 COMPONENT top_row IS

16 PORT ( a: IN STD_LOGIC;

17 b: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

18 sout, cout: OUT STD_LOGIC_VECTOR (2 DOWNTO 0);

19 p: OUT STD_LOGIC);

20 END COMPONENT;

21 -----------------------

22 COMPONENT mid_row IS

23 PORT ( a: IN STD_LOGIC;

24 b: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

25 sin, cin: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

26 sout, cout: OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
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27 p: OUT STD_LOGIC);

28 END COMPONENT;

29 -----------------------

30 COMPONENT lower_row IS

31 PORT ( sin, cin: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

32 p: OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

33 END COMPONENT;

34 -----------------------

35 END my_components;

36 ----------------------------------------------

1 ------- multiplier.vhd (project): ------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_components.all;

5 ---------------------------------------

6 ENTITY multiplier IS

7 PORT ( a, b: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

8 prod: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

9 END multiplier;

10 ---------------------------------------

11 ARCHITECTURE structural OF multiplier IS

12 TYPE matrix IS ARRAY (0 TO 3) OF

13 STD_LOGIC_VECTOR (2 DOWNTO 0);

14 SIGNAL s, c: matrix;

15 BEGIN

16 U1: COMPONENT top_row PORT MAP (a(0), b, s(0), c(0),

17 prod(0));

18 U2: COMPONENT mid_row PORT MAP (a(1), b, s(0), c(0), s(1),

19 c(1), prod(1));

20 U3: COMPONENT mid_row PORT MAP (a(2), b, s(1), c(1), s(2),

21 c(2), prod(2));

22 U4: COMPONENT mid_row PORT MAP (a(3), b, s(2), c(2), s(3),

23 c(3), prod(3));

24 U5: COMPONENT lower_row PORT MAP (s(3), c(3),

25 prod(7 DOWNTO 4));

26 END structural;

27 ----------------------------------------------
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A Simpler Approach

The example above had the purpose of exploring several aspects related to system

design using VHDL. However, for the particular case of a parallel multiplier, it can

be immediately inferred by means of the pre-defined ‘‘*’’ (multiplication) operator.

Therefore, the circuit above can be represented using the compact form of figure

12.5, and the whole code above can be replaced by the following code:

1 ---------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 ---------------------------------------

6 ENTITY multiplier3 IS

7 PORT ( a, b: IN SIGNED(3 DOWNTO 0);

8 prod: OUT SIGNED(7 DOWNTO 0));

9 END multiplier3;

10 ---------------------------------------

11 ARCHITECTURE behavior OF multiplier3 IS

12 BEGIN

13 prod <= a * b;

14 END behavior;

15 ---------------------------------------

12.3 Multiply-Accumulate Circuits

Multiplication followed by accumulation is a common operation in many digital

systems, particularly those highly interconnected, like digital filters, neural networks,

data quantizers, etc.

Figure 12.5
Parallel multiplier inferred from the pre-defined ‘‘*’’ operator.
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One typical MAC (multiply-accumulate) architecture is illustrated in figure 12.6. It

consists of multiplying two values, then adding the result to the previously accumu-

lated value, which must then be re-stored in the registers for future accumulations.

Another feature of a MAC circuit is that it must check for overflow, which might

happen when the number of MAC operations is large.

This design can be done using COMPONENTS, because we have already

designed each of the units shown in figure 12.6. However, since it is a relatively sim-

ple circuit, it can also be designed directly. The latter approach is illustrated below,

while the former is treated in problem 12.2. In any case, the MAC circuit, as a whole,

can be used as a COMPONENT in applications like digital filters and neural net-

works (next sections).

Overflow: In the implementation (code) shown below, a FUNCTION was written to

detect overflow and truncate the result in case overflow happens. Overflow in a

signed adder occurs when two operands with the same signal (leftmost bit) produce a

result with a di¤erent signal from them. If it occurs, the largest value (positive or

negative) should be assigned to the result. For example, if eight bits are used to en-

code the values, the addition of two positive numbers must fall in the interval from 0

to 127, while the addition of two negative numbers must fall between �128 (that is,

þ128 in unsigned representation) and �1 (255 in unsigned representation). For ex-

ample, 65þ 65 ¼ 130, which is indeed �126 (overflow), so the result should be

truncated to the largest positive value (127). Likewise, (�70)þ (�70) ¼ �140, which

is, indeed, 116 (overflow), so the result should be truncated to the most negative

value (�128). On the other hand, when the operands have di¤erent signals, overflow

cannot happen.

The add_truncate( ) function was placed in a PACKAGE (chapter 10) called

my_functions. The function receives two signals, adds them, then checks for overflow

Figure 12.6
MAC circuit.
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and truncates the result if necessary, returning the processed result to the main code.

Notice that the function is generic, for the number of bits of the operands is passed to

it by means of a parameter called size. Notice also in the main code that the param-

eters passed to the function were declared as signals (line 14), because variables are

not allowed (chapter 11).

1 ------- PACKAGE my_functions: -----------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 ----------------------------------------------------------

6 PACKAGE my_functions IS

7 FUNCTION add_truncate (SIGNAL a, b: SIGNED; size: INTEGER)

8 RETURN SIGNED;

9 END my_functions;

10 ----------------------------------------------------------

11 PACKAGE BODY my_functions IS

12 FUNCTION add_truncate (SIGNAL a, b: SIGNED; size: INTEGER)

13 RETURN SIGNED IS

14 VARIABLE result: SIGNED (7 DOWNTO 0);

15 BEGIN

16 result := a + b;

17 IF (a(a'left)=b(b'left)) AND

18 (result(result'LEFT)/=a(a'left)) THEN

19 result := (result'LEFT => a(a'LEFT),

20 OTHERS => NOT a(a'left));

21 END IF;

22 RETURN result;

23 END add_truncate;

24 END my_functions;

25 ----------------------------------------------------------

1 ------- Main code: -----------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 USE work.my_functions.all;

6 ------------------------------------------
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7 ENTITY mac IS

8 PORT ( a, b: IN SIGNED(3 DOWNTO 0);

9 clk, rst: IN STD_LOGIC;

10 acc: OUT SIGNED(7 DOWNTO 0));

11 END mac;

12 ------------------------------------------

13 ARCHITECTURE rtl OF mac IS

14 SIGNAL prod, reg: SIGNED(7 DOWNTO 0);

15 BEGIN

16 PROCESS (rst, clk)

17 VARIABLE sum: SIGNED(7 DOWNTO 0);

18 BEGIN

19 prod <= a * b;

20 IF (rst='1') THEN

21 reg <= (OTHERS=>'0');

22 ELSIF (clk'EVENT AND clk='1') THEN

23 sum := add_truncate (prod, reg, 8);

24 reg <= sum;

25 END IF;

26 acc <= reg;

27 END PROCESS;

28 END rtl;

29 ------------------------------------------

Simulation results are presented in figure 12.7. Notice that the following sequence

of signals was presented to the MAC circuit: a ¼ (0, 2, 4, 6, �8, �6, �4, �2), b ¼
(0, 3, 6, �7, �8, �8, �8). Therefore, the expected output sequence is acc ¼ (0, 6, 30,

�12, 52, 100, 148) (recall that �12 is represented in the graph as 256� 12 ¼ 244).

Figure 12.7
Simulation results of MAC circuit.
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All the values are OK, except the last one, for it is above the maximum positive value

allowed for 8-bit signed numbers (127). Therefore, this result was kept at 127.

12.4 Digital Filters

Digital signal processing (DSP) finds innumerable applications in the fields of audio,

video, and communications, among others. Such applications are generally based on

LTI (linear time invariant) systems, which can be implemented with digital circuitry.

Any LTI system be represented by the following equation:

XN

k¼0

aky[n� k] ¼
XM

k¼0

bkx[n� k]

where ak and bk are the filter coe‰cients, and x[n� k], y[n� k] are the current (for

k ¼ 0) and earlier (for k > 0) input and output values, respectively. To implement

this expression, registers are necessary to store x[n� k] and/or y[n� k] (for k > 0),

besides multipliers and adders, which are well-known building blocks in the digital

domain.

The impulse response of a digital filter can be divided into two categories: IIR

(infinite impulse response) and FIR (finite impulse response). The former corre-

sponds to the general case described by the equation above, while the latter occurs

when N ¼ 0. Only FIR filters can exhibit linear phase, so they are indispensable

when linear phase is required, like in many telecom applications. With N ¼ 0, the

equation above becomes

y[n] ¼
XM

k¼0

ckx[n� k]

where ck ¼ bk/a0 are the coe‰cients of the FIR filter. This equation can be imple-

mented by the system of figure 12.8, where D (delay) represents a register (flip-flops),

a triangle is a multiplier, and a circle means an adder.

An equivalent RTL representation is shown in figure 12.9. As shown, the values of

x are stored in a shift register, whose outputs are connected to multipliers and then to

adders. The coe‰cients must also be stored on chip. However, if the coe‰cients are

always the same (that is, if it is a dedicated filter), their values can be implemented by

means of logic gates rather than registers (we just need to store CONSTANTS). On

the other hand, if it is a general purpose filter, then registers are required for the

coe‰cients. In the architecture of figure 12.9, the output vector (y) was also stored, in

order to provide a clean, synchronous output.
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The circuit of figure 12.9 can be constructed in several ways. However, if it is

intended for future reuse or sharing, than it should be as generic as possible. In the

code presented below, two GENERIC parameters are specified (line 7): n defines the

number of filter coe‰cients, while m specifies the number of bits used to represent

the input and coe‰cients. For the output, 2 m bits were used. Thus, for example,

16 bits could be used for x, coef, and reg, while 32 bits could be used for all other

signals (from the outputs of the multipliers all the way to y).

Notice that the lower section of the filter contains a MAC (multiply-accumulate)

pipeline. This circuit is closely related to the MAC circuit discussed in section 12.3.

Here too, overflow can happen, so an add/truncate procedure must be included in

the design.

x[n]
co

D

c1

+

+

c2

+

c3

D

D

y[n]

x[n-1]

x[n-2]

x[n-3]

Figure 12.8
FIR filter diagram (with 4 coe‰cients).

Figure 12.9
RTL representation of a FIR filter.
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In the solution below, the coe‰cients were considered as CONSTANTS (line 19),

thus inferring no flip-flops. The values chosen were coef(0) ¼ 4, coef(1) ¼ 3,

coef(2) ¼ 2, and coef(3) ¼ 1. Small values were chosen for n and m (4 for both) in

order to make the simulation results easy to visualize. With n ¼ m ¼ 4, the synthe-

sized circuit required 20 flip-flops (four for each stage of the shift register, plus eight

for the output). As described in chapter 7, flip-flops are inferred when a signal as-

signment is made on the transition of another signal, which occurs in lines 33–45 of

the code below (notice that indeed VARIABLE assignments are made in lines 33–38,

but since their values are then passed to a SIGNAL (y), registers are inferred).

1 -----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all; -- package needed for SIGNED

5 -----------------------------------------------------------

6 ENTITY fir2 IS

7 GENERIC (n: INTEGER := 4; m: INTEGER := 4);

8 -- n = # of coef., m = # of bits of input and coef.

9 -- Besides n and m, CONSTANT (line 19) also need adjust

10 PORT ( x: IN SIGNED(m-1 DOWNTO 0);

11 clk, rst: IN STD_LOGIC;

12 y: OUT SIGNED(2*m-1 DOWNTO 0));

13 END fir2;

14 -----------------------------------------------------------

15 ARCHITECTURE rtl OF fir2 IS

16 TYPE registers IS ARRAY (n-2 DOWNTO 0) OF

17 SIGNED(m-1 DOWNTO 0);

18 TYPE coefficients IS ARRAY (n-1 DOWNTO 0) OF

19 SIGNED(m-1 DOWNTO 0);

20 SIGNAL reg: registers;

21 CONSTANT coef: coefficients := ("0001", "0010", "0011",

22 "0100");

23 BEGIN

24 PROCESS (clk, rst)

25 VARIABLE acc, prod:

26 SIGNED(2*m-1 DOWNTO 0) := (OTHERS=>'0');

27 VARIABLE sign: STD_LOGIC;

28 BEGIN

29 ----- reset: --------------------------
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30 IF (rst='1') THEN

31 FOR i IN n-2 DOWNTO 0 LOOP

32 FOR j IN m-1 DOWNTO 0 LOOP

33 reg(i)(j) <= '0';

34 END LOOP;

35 END LOOP;

36 ----- register inference + MAC: -------

37 ELSIF (clk'EVENT AND clk='1') THEN

38 acc := coef(0)*x;

39 FOR i IN 1 TO n-1 LOOP

40 sign := acc(2*m-1);

41 prod := coef(i)*reg(n-1-i);

42 acc := acc + prod;

43 ---- overflow check: ------------

44 IF (sign=prod(prod'left)) AND

45 (acc(acc'left) /= sign)

46 THEN

47 acc := (acc'LEFT => sign, OTHERS => NOT sign);

48 END IF;

49 END LOOP;

50 reg <= x & reg(n-2 DOWNTO 1);

51 END IF;

52 y <= acc;

53 END PROCESS;

54 END rtl;

55 -----------------------------------------------------------

Simulation results are shown in figure 12.10. Recall that the coe‰cients are

coef(0) ¼ 4, coef(1) ¼ 3, coef(2) ¼ 2, and coef(3) ¼ 1, and that the numbers are

Figure 12.10
Simulation results of FIR filter of figure 12.9.
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SIGNED (therefore, with 4-bit values, the range is from �8 to þ7). The sequence

applied to the input was x[0] ¼ 0, x[1] ¼ 5, x[2] ¼ �6 (16� 6 ¼ 10 in the graph),

x[3] ¼ �1 (16� 1 ¼ 15 in the graph), x[4] ¼ 4, x[5] ¼ �7 (16� 7 ¼ 9 in the graph),

and x[6] ¼ �2 (16� 2 ¼ 14 in the graph). Therefore, with all flip-flops previously

reset, at the first positive edge of clk the expected output is y[0] ¼ coef(0)*x[0] ¼ 0,

which coincides with the first result for y in figure 12.10. At the next upward transi-

tion of clk, the expected value is y[1] ¼ coef(0)*x[1]þ coef(1)*x[0] ¼ 20. And one

clock cycle later, y[1] ¼ coef(0)*x[2]þ coef(1)*x[1] þ coef(2)*x[0] ¼ �9 (256� 9 ¼
247 in the graph), and so on.

General Purpose FIR Filter

The design presented above contained fixed coe‰cients, and is therefore adequate for

an ASIC with a dedicated filter. For a general purpose implementation (that is, with

programmable coe‰cients), the architecture of figure 12.11 can be used instead. As

can be seen, this structure is modular and allows several chips to be cascaded, which

might be helpful in some applications, because FIR filters tend to have many taps

(coe‰cients).

In this structure, there are two shift registers, one for storing the inputs (x) and the

other for the coe‰cients (coef ). The structure is divided into n equal modules, called

TAP1, . . . , TAPn. Each module (TAP) contains a slice of the shift registers, plus a

multiplier and an adder. It also contains an output register, but this is optional (could

be used at the last TAP only). This would, however, increase the ripple propagation

Figure 12.11
General purpose FIR filter.
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between the adders. Of course, all coe‰cients must be loaded before the computation

starts. This FIR architecture will be object of problem 12.4.

12.5 Neural Networks

Neural Networks (NN) are highly parallel, highly interconnected systems. Such

characteristics make their implementation very challenging, and also very costly, due

to the large amount of hardware required.

A feedforward NN is shown in figure 12.12(a). In this example, the circuit has

three layers, with three 3-input neurons in each layer. Internal details of each layer

are depicted in figure 12.12(b). xi represents the ith input, wij is the weight between

input i and neuron j, and yj is the jth output. Therefore, y1 ¼ f(x1.w11þ x2.w21þ
x3.w31), y2 ¼ f(x1.w12þ x2.w22þ x3.w32), and y3 ¼ f(x1.w13þ x2.w23þ x3.w33),

where f( ) is the activation function (linear threshold, sigmoid, etc.).

A ‘‘ring’’ architecture for the NN of figure 12.12 is presented in figure 12.13, which

implements one layer of the NN. Each box represents one neuron. As shown, there

are several circular shift registers, one for each neuron (vertical shifters) plus one for

the whole set (horizontal shifter). The vertical shifters hold the weights, while the

horizontal one holds the inputs (shift registers with ‘data_load’ capability). Notice

(a) (b)

Input                          Hidden layers                Output layer

x1

x2

x3

y1

y2

y3

w11

w12

w13

1

2

3

Figure 12.12
Feedforward neural network.
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that the relative position of the weights in their respective registers must match that

of the input values. At the output of a vertical shifter there is a MAC circuit (section

12.3), which accumulates the product between the weights and the inputs. All shifters

use the same clock signal. Therefore, after one complete circulation, the following

values will be available at the output of the MAC circuits: x1.w11þ x2.w21þ
x3.w31, x1.w12þ x2.w22þ x3.w32, and x1.w13þ x2.w23þ x3.w33. These values

are then applied to a LUT (lookup table), which implements the activation function

(sigmoid, for example), thus producing the actual outputs, yi, of the NN.

In this kind of circuit, truncation must be considered. Say that the inputs and

weights are 16 bits long. Then at the output of the MAC cells 32-bit numbers would

be the natural choice. However, since the actual outputs (after the LUT) might be

connected to another layer of neurons, truncation to 16 bits is required. This can be

done in the LUT or in the MAC circuit.

Another approach is presented in figure 12.14, which is appropriate for general-

purpose NNs (that is, with programmable weights). It employs only one input to

load all weights (thus saving on chip pins). In figure 12.14, the weights are shifted in

sequentially until each register is loaded with its respective weight. The weights are

then multiplied by the inputs and accumulated to produce the desired outputs.

Figure 12.13
Ring architecture for NN implementation.
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Two VHDL codes are presented below, both implementing the architecture of

figure 12.14. However, in both solutions the LUT was not included (this will be

treated in problem 12.5). The main di¤erence between these two solutions is

that the first code is not as generic, and is therefore adequate for specific, small

designs. The second solution, being generic, is reusable and easily adaptable to any

NN size.

Solution 1: For Small Neural Networks

The solution below has the advantage of being simple, easily understandable, and

self-contained in the main code. Its only limitation is that the inputs (x) and outputs

(y) are specified one by one rather than using some kind of two-dimensional array,

thus making it inappropriate for large NNs. Everything else is generic.

1 -----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all; -- package needed for SIGNED

5 -----------------------------------------------------------

Figure 12.14
NN implementation with only one input for the weights.
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6 ENTITY nn IS

7 GENERIC ( n: INTEGER := 3; -- # of neurons

8 m: INTEGER := 3; -- # of inputs or weights per neuron

9 b: INTEGER := 4); -- # of bits per input or weight

10 PORT ( x1: IN SIGNED(b-1 DOWNTO 0);

11 x2: IN SIGNED(b-1 DOWNTO 0);

12 x3: IN SIGNED(b-1 DOWNTO 0);

13 w: IN SIGNED(b-1 DOWNTO 0);

14 clk: IN STD_LOGIC;

15 test: OUT SIGNED(b-1 DOWNTO 0); -- register test output

16 y1: OUT SIGNED(2*b-1 DOWNTO 0);

17 y2: OUT SIGNED(2*b-1 DOWNTO 0);

18 y3: OUT SIGNED(2*b-1 DOWNTO 0));

19 END nn;

20 -----------------------------------------------------------

21 ARCHITECTURE neural OF nn IS

22 TYPE weights IS ARRAY (1 TO n*m) OF SIGNED(b-1 DOWNTO 0);

23 TYPE inputs IS ARRAY (1 TO m) OF SIGNED(b-1 DOWNTO 0);

24 TYPE outputs IS ARRAY (1 TO m) OF SIGNED(2*b-1 DOWNTO 0);

25 BEGIN

26 PROCESS (clk, w, x1, x2, x3)

27 VARIABLE weight: weights;

28 VARIABLE input: inputs;

29 VARIABLE output: outputs;

30 VARIABLE prod, acc: SIGNED(2*b-1 DOWNTO 0);

31 VARIABLE sign: STD_LOGIC;

32 BEGIN

33 ----- shift register inference: -------------

34 IF (clk'EVENT AND clk='1') THEN

35 weight := w & weight(1 TO n*m-1);

36 END IF;

37 --------- initialization: -------------------

38 input(1) := x1;

39 input(2) := x2;

40 input(3) := x3;

41 ------ multiply-accumulate: -----------------

42 L1: FOR i IN 1 TO n LOOP

43 acc := (OTHERS => '0');
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44 L2: FOR j IN 1 TO m LOOP

45 prod := input(j)*weigth(m*(i-1)+j);

46 sign := acc(acc'LEFT);

47 acc := acc + prod;

48 ---- overflow check: -----------------

49 IF (sign=prod(prod'left)) AND

50 (acc(acc'left) /= sign) THEN

51 acc := (acc'LEFT => sign, OTHERS => NOT sign);

52 END IF;

53 END LOOP L2;

54 output(i) := acc;

55 END LOOP L1;

56 --------- outputs: --------------------------

57 test <= weight(n*m);

58 y1 <= output(1);

59 y2 <= output(2);

60 y3 <= output(3);

61 END PROCESS;

62 END neural;

63 -----------------------------------------------------------------

Simulation results are shown in figure 12.15. Notice that a small number of bits

and a small quantity of neurons were used in order to ease the visualization of the

simulation results. As can be seen in lines 7–9 of the code above, the NN has three

neurons with three 4-bit inputs each. Since type SIGNED was employed, the range

Figure 12.15
Simulation results of NN implemented in solution 1.
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of the input values and weights runs from �8 to 7, and the range of the outputs

(8 bits) runs from �128 to 127. The inputs were kept fixed at x1 ¼ 3, x2 ¼ 4, and

x3 ¼ 5. Since there are nine weights, nine clock cycles are needed to shift them in, as

shown in figure 12.5. The values chosen for the weights were w9 ¼ 1, w8 ¼ 2, . . . ,

w1 ¼ 9 (notice that the first weight in is indeed w9, for it is shifted nine positions

over). Recall, however, that 9 is indeed �7, and 8 is �8, because our data type is

SIGNED. Therefore, after the weights have been all loaded, the system immediately

furnishes its first set of outputs; that is: y1 ¼ x1.w1þ x2.w2þ x3.w3 ¼ (3)(�7)þ
(4)(�8)þ (5)(7) ¼ �18 (represented as 256� 18 ¼ 238); y2 ¼ x1.w4þ x2.w5þ
x3.w6 ¼ (3)(6)þ (4)(5)þ (5)(4) ¼ 58; and y3 ¼ x1.w7þ x2.w8þ x3.w9 ¼ (3)(3)þ
(4)(2)þ (5)(1) ¼ 22. These values (238, 58, and 22) can be seen at the right end of

figure 12.15.

Solution 2: For Large Neural Networks

The code below is generic. Moreover, the inputs and outputs were declared as two-

dimensional arrays (section 3.5), thus easily allowing the construction of NNs of any

size.

To specify the arrays needed in the design, a PACKAGE named my_data_types

was employed. As can be seen, it contains two user-defined data types, vector_

array_in and vector_array_out. The PACKAGE was then made visible to the design

by means of a USE clause (line 5 of the main code). In this way, the new data types

are truly global, and so can be used even in the ENTITY of the main code (that is, in

the specification of PORT). These data types were used to specify the inputs and

outputs of the systems (lines 11 and 15, respectively). Therefore, all parameters are

now generic and easily modifiable, regardless of the size of the NN to be constructed.

Notice in the code below that this solution was divided into two very short parts:

sequential logic (shift register implementation) in lines 26–28, followed by combina-

tional logic (MAC) implementation. A test output (for checking the last register) was

also included, which is obviously optional. As in all our previous MAC circuit

implementations, a routine to check for overflow was also included (lines 39–41).

1 -------- Package my_data_types: ----------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all; -- package needed for SIGNED

5 ----------------------------

6 PACKAGE my_data_types IS

7 CONSTANT b: INTEGER := 3; -- # of bits per input or weight
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8 TYPE vector_array_in IS ARRAY (NATURAL RANGE <>) OF

9 SIGNED(b-1 DOWNTO 0);

10 TYPE vector_array_out IS ARRAY (NATURAL RANGE <>) OF

11 SIGNED(2*b-1 DOWNTO 0);

12 END my_data_types;

13 ------------------------------------------------------------

1 --------- Project nn (main code): --------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all; -- package needed for SIGNED

5 USE work.my_data_types.all; -- package of user-defined types

6 ------------------------------------------------------------

7 ENTITY nn3 IS

8 GENERIC ( n: INTEGER := 3; -- # of neurons

9 m: INTEGER := 3; -- # of inputs or weights per

10 -- neuron

11 b: INTEGER := 3); -- # of bits per input or

12 -- weight

13 PORT ( x: IN VECTOR_ARRAY_IN (1 TO m);

14 w: IN SIGNED(b-1 DOWNTO 0);

15 clk: IN STD_LOGIC;

16 test: OUT SIGNED(b-1 DOWNTO 0); -- register test

17 -- output

18 y: OUT VECTOR_ARRAY_OUT(1 TO n));

19 END nn3;

20 ----------------------------------------------------------------

21 ARCHITECTURE neural OF nn3 IS

22 BEGIN

23 PROCESS (clk, w, x)

24 VARIABLE weight: VECTOR_ARRAY_IN (1 TO m*n);

25 VARIABLE prod, acc: SIGNED(2*b-1 DOWNTO 0);

26 VARIABLE sign: STD_LOGIC;

27 BEGIN

28 ----- shift register inference: --------------

29 IF (clk'EVENT AND clk='1') THEN

30 weight := w & weight(1 TO n*m-1);

31 END IF;
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32 test <= weight(n*m);

33 ---- initialization: -------------------------

34 acc := (OTHERS => '0');

35 ------ multiply-accumulate: ------------------

36 L1: FOR i IN 1 TO n LOOP

37 L2: FOR j IN 1 TO m LOOP

38 prod := x(j)*weight(m*(i-1)+j);

39 sign := acc(acc'LEFT);

40 acc := acc + prod;

41 ---- overflow check: ------------------

42 IF (sign=prod(prod'LEFT)) AND

43 (acc(acc'LEFT)/=sign) THEN

44 acc := (acc’LEFT => sign, OTHERS => NOT sign);

45 END IF;

46 END LOOP L2;

47 ------ output: ---------------------------

48 y(i) <= acc;

49 acc := (OTHERS => ’0’);

50 END LOOP L1;

51 END PROCESS;

52 END neural;

53 -----------------------------------------------------------------

Other aspects related to the design of NNs will be treated in problem 12.5.

12.6 Problems

This section contains a series of problems regarding the use of system-level VHDL

units (PACKAGES, COMPONENTS, FUNCTIONS, and PROCEDURES).

Problem 12.1: Parallel Multiplier

We have seen, in section 12.2, the implementation of a parallel multiplier from

scratch. It was also mentioned that the pre-defined ‘‘*’’ (multiplication) operator

implements a parallel multiplier too. Though there are several architectures for such

a circuit (one was shown in figure 12.3), it is reasonable to assume that the amount of

hardware necessary to implement either solution presented in section 12.2 (from

scratch or using ‘‘*’’) should not di¤er substantially. You are asked to synthesize
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both solutions and compare the resulting report files. Choose several PLD/FPGA

target chips. What is the number of product terms and logic cells required in each

case? Are their quantities of the same order?

Problem 12.2: Shifter

Consider the 4-stage shift register of figure P12.2, whose actual output (q) is selected

by means of a multiplexer. Say that the data bus is eight-bit wide (thus each register

is composed of eight D-type flip-flops).

(a) Create two COMPONENTS, reg and mux, and then make use of them to con-

struct the complete circuit of figure P12.2.

(b) Assume now that we want to implement only the shift register, without the

multiplexer, but that all registered values (q0, q1, q2, and q3) must be available at

the output. Write a VHDL code for such a circuit.

(c) Let us consider the same situation of (b) above. However, we now want the de-

sign to be generic (that is, to have n stages, and b bits per stage, with such parameters

specified by means of a GENERIC statement). In this case, an user-defined array will

be necessary to specify the outputs (call the outputs qout). Write such a code. (Sug-

gestion: review section 3.5 and/or examine the second design of section 12.5).

(d) Finally, in continuation to the design of (c) above, assume that we want to add

‘data load’ capability to the shift register. Add an extra input (call it x) to each reg-

ister and an extra pin to (call it load ), such that when load is asserted all registers are

overwritten with the values presented at the inputs. For x, the same user-defined

TYPE created for qout can (and should) be used.

q0q1q2q3

DFF

d

clk

DFF

q

sel

DFFDFF

MUX

Figure P12.2.
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Problem 12.3: MAC Circuit

In section 12.3, we studied the implementation of a MAC (multiply-accumulate) cir-

cuit (figure 12.6). In the implementation shown there, a FUNCTION was employed,

but COMPONENTS were not. Write another solution, this time using COMPO-

NENTS (multiplier, adder, and register). Create the components, then instantiate

them in the main code. Compile and simulate your project, comparing your results

with those obtained in figure 12.7

Problem 12.4: General Purpose FIR Filter

In section 12.4, we discussed the implementation of FIR filters. One complete design

was presented, in which the coe‰cients of the filter were fixed (figure 12.9). For a

general purpose filter (programmable coe‰cients), a modular architecture was sug-

gested in figure 12.11. You are asked to write a VHDL code for that filter. As a

suggestion, review first sections 12.3 and 12.4. Do not forget to include overflow

check in your design. Consider that the number of bits of all signals from the input

(x and coef ) up to the multiplier inputs is m, and 2m from there on (that is, from the

multiplier outputs up to y). Consider also that the number of taps (stages) is n. Write

a code as generic as possible. Then synthesize and simulate your circuit.

Problem 12.5: Neural Network

In section 12.5, we discussed the implementation of a highly interconnected system:

a neural network. Two architectures were presented, and two VHDL codes were

written regarding the second architecture. However, the LUT was not included in

those solutions. In this problem, the following is asked:

(a) Write a VHDL code that implements a LUT (you can choose the function to be

implemented, because what we want to practice here is how to implement a LUT).

Recall that a lookup table is simply a ROM (section 9.10).

(b) Write a VHDL code that implements the neural architecture depicted in figure

12.13. Then synthesize and simulate your solution to verify whether it works as

expected.

(c) There certainly are other ways of implementing a NN besides the two approaches

presented in section 12.5. Can you suggest another one? Can you suggest improve-

ments on the architectures and solutions presented there?
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Appendix A: Programmable Logic Devices

A1. Introduction

Programmable Logic Devices (PLDs) were introduced in the mid 1970s. The idea

was to construct combinational logic circuits that were programmable. However,

contrary to microprocessors, which can run a program but posses a fixed hardware,

the programmability of PLDs was intended at the hardware level. In other words, a

PLD is a general purpose chip whose hardware can be reconfigured to meat particular

specifications.

The first PLDs were called PAL (Programmable Array Logic) or PLA (Program-

mable Logic Array), depending on the programming scheme (discussed later). They

used only logic gates (no flip-flops), thus allowing only the implementation of com-

binational circuits. To circumvent this problem, registered PLDs were launched soon

after, which included one flip-flop at each output of the circuit. With them, simple

sequential functions could then be implemented as well.

In the beginning of the 1980s, additional logic circuitry was added to each PLD

output. The new output cell, called Macrocell, contained (besides the flip-flop) logic

gates and multiplexers. Moreover, the cell itself was programmable, allowing several

modes of operation. Additionally, it provided a ‘return’ (feedback) signal from the

output of the circuit to the programmable array, which gave the PLD greater flexi-

bility. This new PLD structure was called generic PAL (GAL). A similar architecture

was known as PALCE (PAL CMOS Electrically erasable/programmable) device.

All these chips (PAL, PLA, registered PLD, and GAL/PALCE) are now collec-

tively referred to as SPLDs (Simple PLDs). The GAL/PALCE device is the only still

manufactured in a standalone package.

Later, several GAL devices were fabricated on the same chip, using a more so-

phisticated routing scheme, more advanced silicon technology, and several additional

features (like JTAG support and interface to several logic standards). This approach

became known as CPLD (Complex PLD). CPLDs are currently very popular due to

their high density, high performance, and low cost (CPLDs under a dollar can be

found).

Finally, in the mid 1980s, FPGAs (Field Programmable Gate Arrays) were intro-

duced. FPGAs di¤er from CPLDs in architecture, technology, built-in features, and

cost. They are aimed mainly at the implementation of large size, high-performance

circuits.
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A summary of the evolution of PLDs is presented in the table below.

PLDs

Simple PLD (SPLD)

PAL

PLA

Registered PAL/PLA

GAL

Complex PLD (CPLD)

FPGA

A final remark: all PLDs (simple or complex) are non-volatile. They can be OTP

(one-time programmable), in which case fuses or antifuses are used, or can be

reprogrammable, with EEPROM or Flash memory (Flash is the technology of

choice in most new devices). FPGAs, on the other hand, are mostly volatile, for they

make use of SRAM to store the connections, in which case a configuration ROM is

necessary to load the interconnects at power up. There are, however, non-volatile

options, like the use of antifuse. Examples of each alternative will be shown later.

A2. SPLDs (Simple PLDs)

As mentioned above, PAL, PLA, and GAL devices are collectively called Simple

PLDs (SPLDs). A description of each of these architectures follows.

PAL Devices

PAL (Programmable Array Logic) chips were introduced by Monolithic Memories

in the mid 1970s. Its basic architecture is illustrated symbolically in figure A1, where

the little circles represent programmable connections. As can be seen, the circuit is

composed of a programmable array of AND gates, followed by a fixed array of OR

gates.

The implementation of figure A1 was based on the fact that any combinational

function can be represented by a Sum-of-Products (SOP); that is, if a1, a2, . . . , aN are

the logic inputs, then any combinational output x can be computed as

x ¼ m1 þm2 þ � � � þmM ;

where mi ¼ fi (a1, a2, . . . , aN ) are the minterms of the function x. For example

x ¼ a1a2 þ a2a3a4 þ a1a2a3a4a5:
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Hence, the products (minterms) can be obtained by means of AND gates, whose

outputs are then connected to an OR gate to compute their sum, thus implementing

the SOP equation described above.

The main limitation of this approach was the fact that it allowed only the imple-

mentation of combinational functions. To circumvent this problem, registered PALs

were launched toward the end of the 1970s. These included a flip-flop at each output

(after the OR gates in figure A1), thus allowing the implementation of sequential

functions as well (though only very simple ones).

An example of a then popular PAL chip is the PAL16L8 device, which contained

16 inputs and 8 outputs (though only 18 I/O pins were indeed available, because it

was a 20-pin DIP package; there were ten IN pins, two OUT pins, and six IN/OUT

outputs

inputs

programmable
interconnects

Figure A1
Illustration of PAL architecture.
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pins (bidirectional), plus VCC and GND). Its registered counterpart was the 16R8

chip (where R stands for Registered).

The early technology employed in the fabrication of PAL devices was bipolar,

with 5 V supply and current consumption (with open outputs) around 200 mA. The

maximum frequency was of the order of 100 MHz, and the programmable cells were

of PROM (fuse links) or EPROM (20min UV erase time) type.

PLA Devices

PLA (Programmable Logic Array) chips were also introduced in the mid 1970s (by

Signetics). The basic architecture of a PLA is illustrated symbolically in figure A2.

Comparing it with figure A1, we observe that the only fundamental di¤erence be-

tween them is that while a PAL has programmable AND connections and fixed OR

outputs

inputs

programmable
interconnects

programmable
interconnects

Figure A2
Illustration of PLA architecture.
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connections, both are programmable in a PLA. The obvious advantage was greater

flexibility. However, higher time constants at the internal nodes lowered the circuit

speed.

An example of a then popular PLA chip is the Signetics PLS161 device. It con-

tained 12 inputs and 8 outputs, being the AND inputs and the OR inputs all pro-

grammable. A total of 48 12-input AND gates were available, followed by a total of

8 48-input OR gates. At the outputs, additional programmable XOR gates were also

available.

The technology then employed in the fabrication of PLAs was the same as that of

PALs. Though PLAs are also obsolete now, they reappeared recently as a building

block in the first family of low power CPLDs, the CoolRunner family (from

Xilinx—to be described later).

GAL Devices

The GAL (Generic PAL) architecture was introduced by Lattice in the beginning of

the 1980s. It contained several important improvements over the first PAL devices:

first, a more sophisticated output cell (Macrocell) was constructed, which included,

besides the flip-flop, several gates and multiplexers; second, the Macrocell itself was

programmable, allowing several modes of operation; third, a ‘return’ signal from the

output of the Macrocell to the programmable array was also included, conferring the

circuit more versatility; fourth, EEPROM was employed instead of PROM or

EPROM. An electronic signature for identification was also included.

As mentioned earlier, GAL is the only SPLD (Simple PLD) still manufactured in a

standalone package. Additionally, it also serves as the basic building block in the

construction of most CPLDs (there are exceptions, however, like the CoolRunner

CPLD mentioned above, which employs PLAs instead).

Figure A3 shows an example of GAL device, the GAL16V8 (where V stands for

Versatile). It is a 16-input, 8-output circuit in a 20-pin package. As can be seen, the

actual configuration is eight IN pins (pis 2–9) and eight IN/OUT pins (pins 12–19),

plus CLK (pin 1), /OE (–Output Enable, pin 11), VDD (pin 20), and GND (pin 10).

At each output there is a Macrocell (after the OR gate), which contains, besides the

flip-flop, logic gates and multiplexers. A feedback signal from the Macrocell to the

programmable array can also be observed. The programmable interconnections are

represented by small circles. Notice that this architecture directly resembles that of a

PAL (figure A1), except for the presence of a macrocell at each output and the feed-

back signal.

Current GAL devices use CMOS technology, 3.3 V supply, EEPROM or Flash

technology, and maximum frequency around 250 MHz. Several companies manu-

facture them (Lattice, Atmel, TI, etc.).
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Figure A3
GAL 16V8 chip.
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A3. CPLD (Complex PLD)

The basic approach in the construction of a CPLD is illustrated in figure A4. As

shown, it consists of several PLDs (in general of GAL type) fabricated on a single

chip, with a programmable switch matrix used to connect them together and to the

I/O pins. Moreover, CPLDs normally contain a few additional features, like JTAG

support and interface to other logic standards (1.8 V, 2.5 V, 5 V, etc.).

Regarding figure A4, as an example we can mention the Xilinx XC9500 CPLD. It

consists of n PLDs, each resembling a 36V18 GAL device (therefore similar to the

16V8 architecture of figure A3, but with 36 inputs and 18 outputs, instead of 16

inputs and 8 outputs, thus with 18 Macrocells each), where n ¼ 2, 4, 6, 8, 12, or 16.

Several companies manufacture CPLDs, like Altera, Xilinx, Lattice, Atmel, Cy-

press, etc. Examples from two companies (Altera and Xilinx) are illustrated in tables

A1 and A2. As can be seen, over 500 macrocells and over 10,000 gates can be found

in these devices.

A4. FPGA

Field Programmable Gate Array (FPGA) devices were introduced by Xilinx in the

mid 1980s. They di¤er from CPLDs in architecture, storage technology, number of

built-in features, and cost, and are aimed at the implementation of high performance,

large-size circuits.

Figure A4
CPLD architecture.
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Table A1
Altera CPLDs.

Family Max7000 (B, AE, S) MAX3000 (A) MAX II (G)

Macrocells/
LUTs

32–512 macrocells 32–512 macrocells 240–2,210 LUTs
(192–1,700 equiv. macrocells)

System gates 600–10,000 600–10,000

I/O pins 32–512 34–208 80–272

Max. internal
clock freq.

303 MHz 227 MHz 304 MHz
(I/O limited)

Supply voltage 2.5 V (B), 3.3 V (AE), 5 V (S) 3.3 V 1.8 V (G), 2.5 V, 3.3 V

Interconnects EEPROM EEPROM Flashþ SRAM

Static current 9 mA–450 mA 9 mA–150 mA 2 mA–50 mA

Technology 0.22 u CMOS EEPROM
4-layer metal (7000 B)

0.3 u,
4-layer metal

0.18 u, 6-layer metal

Table A2
Xilinx CPLDs.

Family XC9500 (XV, XL, �) CoolRunner XPLA3 CoolRunner II

Macrocells 36–288 32–512 32–512

System gates 800–6,400 750–12,000 750–12,000

I/O pins 34–192 36–260 33–270

Max. internal clock
frequency

222 MHz 213 MHz 385 MHz

Building block GAL 54V18 (XV, XL)
GAL 36V18 (�)

PLA block PLA block

Supply voltage 2.5 V (XV), 3.3 V
(XL), 5 V

3.3 V 1.8 V

Interconnects Flash EEPROM

Technology 0.35 u CMOS 0.35 u CMOS 0.18 u CMOS

Static current 11–500 mA <0.1 mA 22 uA–1 mA
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The basic architecture of an FPGA is illustrated in figure A5. It consists of a

matrix of CLBs (Configurable Logic Blocks), interconnected by an array of switch

matrices.

The internal architecture of a CLB (figure A5) is di¤erent from that of a PLD

(figure A4). First, instead of implementing SOP expressions with AND gates fol-

lowed by OR gates (like in SPLDs), its operation is normally based on a LUT

(lookup table). Moreover, in an FPGA the number of flip-flops is much more abun-

dant than in a CPLD, thus allowing the construction of more sophisticated sequen-

tial circuits. Besides JTAG support and interface to diverse logic levels, other addi-

tional features are also included in FPGA chips, like SRAM memory, clock

multiplication (PLL or DLL), PCI interface, etc. Some chips also include dedicated

blocks, like multipliers, DSPs, and microprocessors.

Another fundamental di¤erence between an FPGA and a CPLD refers to the

storage of the interconnects. While CPLDs are non-volatile (that is, they make use of

antifuse, EEPROM, Flash, etc.), most FPGAs use SRAM, and are therefore volatile.

This approach saves space and lowers the cost of the chip because FPGAs present a

very large number of programmable interconnections, but requires an external

ROM. There are, however, non-volatile FPGAs (with antifuse), which might be ad-

vantageous when reprogramming is not necessary.

Figure A5
FPGA architecture.
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Figure A6
Examples of FPGA packages.

Table A3
Xilinx FPGAs.

Family
Virtex II
Pro (X) Virtex II Virtex E Virtex

Spartan
3

Spartan
IIE

Spartan
II

Logic blocks
(CLBs)

352–
11,024

64–
11,648

384–
16,224

384–
6,144

192–
8,320

384–
3,456

96–
1,176

Logic cells 3,168–
125,136

576–
104,882

1,728–
73,008

1,728–
27,648

1,728–
74,880

1,728–
15,552

432–
5,292

System gates 40 k–
8 M

72 k–
4 M

58 k–
1.1 M

50 k–
5 M

23 k–
600 k

15 k–
200 k

I/O pins 204–
1,200

88–1108 176–804 180–512 124–784 182–514 86–284

Flip-flops 2,816–
88,192

512–
93,184

1,392–
64,896

1,392–
24,576

1,536–
66,560

1,536–
13,824

384–
4,704

Max. internal
frequency

547
MHz

420
MHz

240
MHz

200
MHz

326
MHz

200
MHz

200
MHz

Supply
voltage

1.5 V 1.5 V 1.8 V 2.5 V 1.2 V 1.8 V 2.5 V

Interconnects SRAM SRAM SRAM SRAM SRAM SRAM SRAM

Technology 0.13 u
9-layer
copper
CMOS

0.15 u
8-layer
metal
CMOS

0.18 u
6-layer
metal
CMOS

0.22 u
5-layer
metal
CMOS

0.09 u
8-layer
metal
CMOS

SRAM bits
(Block RAM)

216 k–
8 M

72 k–
3 M

64 k–
832 k

32 k–
128 k

72 k–
1.8 M

32 k–
288 k

16 k–
56 k
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FPGAs can be very sophisticated. Chips manufactured with state-of-the-art

0.09 mm CMOS technology, with nine copper layers and over 1,000 I/O pins, are

currently available. A few examples of FPGA packages are illustrated in figure A6,

which shows one of the smallest FPGA packages on the left (64 pins), a medium-size

package in the middle (324 pins), and a large package (1,152 pins) on the right.

Several companies manufacture FPGAs, like Xilinx, Actel, Altera, QuickLogic,

Atmel, etc. Examples from two companies (Xilinx and Actel) are illustrated in tables

A3 and A4. As can be seen, they can contain thousands of flip-flops and several

million gates.

Notice that all Xilinx FPGAs use SRAM to store the interconnects, so are re-

programmable, but volatile (thus requiring external ROM). On the other hand, Actel

FPGAs are non-volatile (they use antifuse), but are non-reprogrammable (except one

family, which uses Flash memory). Since each approach has its own advantages

and disadvantages, the actual application will dictate which chip architecture is most

appropriate.

Table A4
Actel FPGAs.

Family Accelerator ProASIC MX SX eX

Logic modules 2,016–32,256 5,376–56,320 295–2,438 768–6,036 192–768

System gates 125 k–2 M 75 k–1 M 3 k–54 k 12 k–108 k 3 k–12 k

I/O pins 168–684 204–712 57–202 130–360 84–132

Flip-flops 1,344–21,504 5,376–26,880 147–1,822 512–4,024 128–512

Max. internal
frequency

500 MHz 250 MHz 250 MHz 350 MHz 350 MHz

Supply voltage 1.5 V 2.5 V, 3.3 V 3.3 V, 5 V 2.5 V, 3.3 V,
5 V

2.5 V, 3.3 V,
5 V

Interconnects Antifuse Flash Antifuse Antifuse Antifuse

Technology 0.15 u
7-layer metal
CMOS

0.22 u
4-layer metal
CMOS

0.45 um
3-layer metal
CMOS

0.22 u
CMOS

0.22 u
CMOS

SRAM bits 29 k–339 k 14 k–198 k 2.56 k n.a. n.a.
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Appendix B: Xilinx ISEBModelSim Tutorial

The following synthesis, placement, and simulation tools are described in the tuto-

rials presented in the Appendices:

Tools Application Appendix

ISE 6.1þModelSim 5.7c Xilinx CPLDs and FPGAs B

MaxPlus II 10.2þAdvanced

Synthesis Software

Altera CPLDs and some FPGAs C

Quartus II 3.0 Altera CPLDs and FPGAs D

XiIinx ISE 6.1 is a comprehensive synthesis and implementation environment for

Xilinx programmable devices. ModelSim XE 5.7c (from Model Technology) is also

provided as part of the package. The former is employed for circuit synthesis and

design implementation, while the latter is used for simulation.

Xilinx ISE 6.1 WebPack, along with ModelSim XE II 5.7c Starter, can be down-

loaded cost-free from www.xilinx.com.

This is a very brief tutorial, which is divided into five parts:

B1. Entering VHDL Code

B2. Synthesis and Implementation

B3. Creating Testbenches

B4. Simulation (with ModelSim)

B5. Physical Realization

B1. Entering VHDL Code

� Launch ISE 6.1 Project Navigator. A screen like that of figure B1 will be displayed.

� Start a new project (File ! New Project). The dialog box of figure B2 will be

shown. In the Project Name field, type the name of the ENTITY of the VHDL

code to be entered (flipflop, in this example). In the Project Location field, choose

the working directory. Finally, select HDL as the top level module type. Click on

Next.

� In the dialog box of figure B3, select the device (Spartan 3, for example). Then

select XST (Xilinx Synthesis Technology) as the synthesis tool, ModelSim as the

simulator, and VHDL as the language. Click on Next.
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Figure B1

Figure B2
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� In the dialog box of figure B4, select VHDL Module, then type the file name

(flipflop.vhd, in this example), and choose its location. Click on Next and Finish

until the text editor is displayed, as in figure B.5.

� Enter your VHDL code (figure B5) and save it. The project is now ready to be

synthesized.

B2. Synthesis and Implementation

� In the Processes for Source window, select Synthesize-XST. Then go to Process !
Properties. The box of figure B6 will be shown. Select Optimization Goal ¼ Area

and Optimization E¤ort ¼ Normal, then click on OK.

� To synthesize the design, select Process ! Run, or click on , or double-click on

Synthesize-XST. However, if desired, the syntax can be checked before synthesis is

invoked. Just click on the ‘‘þ’’ sign before the word Synthesize-XST to expand it (see

figure B7) and double-click on Check Syntax.

� After synthesis is concluded, view the synthesis report. Double-click on View Syn-

thesis Report, under Synthesize-XST, in the Processes for Source window (figure B7).

To better view the report, you can use the toggle tool . A section of such a report is

presented in figure B8. Check, for example, the number of flip-flops inferred by the

compiler.

� Check also the RTL diagram. Double-click on View RTL Schematic, under the

Synthesize-XST directory. The diagram of figure B9 will be presented.

Figure B3
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Figure B4

Figure B5
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� Now the design can be implemented. Double-click on the Implement Design option

in the Processes for Source window (figure B7).

� After the implementation is concluded, expand the Implement Design option and

check the several reports produced, particularly the Pad Report (under the Place &

Route directory). Check which pin was assigned to each signal.

� Play with the Floorplanner. Double-click on View/Edit Placed Design (Floor-

planner), under the Place & Route directory. Select View ! Hierarchy, View !
Floorplan, View ! Placement, View ! Package Pins. Now examine each one of

windows created. Move the cursor over the pins of the chip to see their descriptions.

Figure B6

Figure B7

Xilinx ISEþModelSim Tutorial 321

TLFeBOOK



Note: Had a CPLD (CoolRunner, for example) been chosen instead of an FPGA

(Spartan 3, in this example), the list of options in the Processes for Source window

would be a little di¤erent. Try, for example, to double-click on the device description

(xc3-s50. . .) in the Sources in Project window. This will bring back the dialog box of

figure B3. Change the device to CoolRunner 2. Press OK and then observe the new

list of options displayed in the Processes for Source window.

B3. Creating Testbenches (with HDL Bencher)

HDL Bencher allows the creation of testbenches (waveforms). Then ModelSim can

be invoked to perform the actual simulation (ModelSim XE II 5.7c Starter is one of

the cost-free third-party softwares provided along with Xilinx ISE 6.1 WebPack).

Release 6.1i - xst G.23 
=============================== 
Input File Name: flipflop.prj
Output File Name : flipflop
Output Format: NGC 
Target Device: xc3s50-4-pq208 
Optimization Goal: Area 
Optimization Effort: 1 
Keep Hierarchy: NO 
Global Optimization: AllClockNets 
RTL Output: Yes 
=============================== 
Synthesizing Unit <flipflop>. 
Related source file is 
c:/xilinx6.1/my_projects/flipflop.vhd.
Found 1-bit register for signal <q>.
Summary: inferred   1 D-type flip-flop(s). 
Unit <flipflop> synthesized.

HDL Synthesis Report
Macro Statistics
# Registers: 1 
1-bit register: 1 
=============================== 
Cell Usage :
# FlipFlops/Latches: 1
# FDC: 1 
# Clock Buffers: 1 
# BUFGP: 1 
# IO Buffers: 3
# IBUF: 2
# OBUF: 1 
=============================== 
Device utilization summary: 
Selected Device : 3s50pq208-4  
Number of Slices: 1 out of  768     0%

Figure B8

Figure B9
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� Select Project ! New Source. The dialog box of figure B10 will be displayed. Select

Test Bench Waveform, then type the desired file name (flipflop_tbw, for example).

Finally, check whether the project location is correct and click on Next until HDL

Bencher is launched (figure B11).

� When HDL Bencher starts, a screen like that of figure B11 is displayed, which

allows the clock signal to be set. Notice that the input signal clk was chosen as the

master clock. Type in its parameters and then click on OK. The waveforms screen

shown in figure B12 is then displayed.

� The position of any signal in figure B12 can be changed by just dragging it up or

down. Also, if the clk waveform must be changed, click on or click the right

mouse button in the area under the waveforms, which will cause the dialog box of

figure B11 to be presented again.

� We must now set up the values of the other signals in figure B12 (rst and d). To do

so, just click on the vertical grid line after which you want the value of the signal to

be changed. An example, after all input signals have been set up, is shown in figure

B13.

� Define the end time of the testbenches. To do so, click the right mouse button in the

area under the curves and select Set End of Testbench, then drag the blue line to the

desired position.

Figure B10
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Figure B11

Figure B12

Figure B13
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� Save the testbenches file. Observe that a new file (flipflop_tbw.tbw) is then added to

the Sources in Project window.

B4. Simulation (with ModelSim)

Having finished creating the testbenches, ModelSim can now be invoked to perform

the simulation. Indeed, several levels of simulation are available, including the fol-

lowing (see the complete list in the lower part of figure B14, under ModelSim Simu-

lator):

� Expected simulation results: Logical verification.

� Behavioral simulation: Logical and timing verification.

� Post-place & route simulation: Logical and timing verification after placement.

Figure B14
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Two of these simulation levels will be employed in the steps below.

� In the Sources in Project window, select the testbench file (flipflop_tbw.tbw). Notice

then the several simulation options available under ModelSim Simulator in the Pro-

cesses for Source window (figure B14).

� Double-click on Generate Expected Simulation Results. This will run a back-

ground logical simulator, which will compute the output signals and then auto-

matically launch HDL Bencher with the computed signals included in it. An

example is shown in figure B15. Examine whether your project works as ex-

pected (from a logical point of view). Then exit HDL Bencher without saving the

waveforms.

� Now double-click on Simulate Post-Place & Route VHDL Model. ModelSim is

launched and a detailed simulation is performed. Maximize the waveforms window

and select Zoom ! Zoom Full. Examine again the results (figure B16).

Figure B15

Figure B16
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B5. Physical Realization

To physically implement the design in a CPLD or FPGA chip, a development kit is

necessary. Inexpensive alternatives are generally available through manufacturer’s

university programs, which o¤er design kits at low prices. Xilinx Digilab XC2, for

example, is a development kit for Xilinx CoolRunner II devices. The development kit

must be connected to a PC running ISE in order for the chip to be programmed.

Since the overall procedure of programming a chip is relatively similar from one

manufacturer to another, a detailed description will be presented in only two of the

appendices (C and D).
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Appendix C: Altera MaxPlus IIBAdvanced Synthesis Software Tutorial

The following synthesis, placement, and simulation tools are described in the tuto-

rials presented in the Appendices:

Tools Application Appendix

ISE 6.1þModelSim 5.7c Xilinx CPLDs and FPGAs B

MaxPlus II 10.2þAdvanced

Synthesis Software

Altera CPLDs and some FPGAs C

Quartus II 3.0 Altera CPLDs and FPGAs D

MaxPlus II 10.2 Baseline from Altera is a very simple, user-friendly synthesis and

simulation tool. Its main drawback is that it does not support several VHDL con-

structs, so only relatively simple code can be synthesized without the help of an ex-

ternal synthesis tool (like Leonardo Spectrum or Advanced Synthesis Software).

Additionally, it only covers Altera’s basic devices (its successor, Quartus II, described

in appendix D, covers all current devices). Still, due to its simplicity, it may be an

adequate starting point for first-time VHDL users. Moreover, with the recent release

of Advanced Synthesis Software, also a cost-free synthesis tool from Altera, using

MaxPlus II became more e¤ective because Advanced Synthesis Software does sup-

port most VHDL constructs. It can be used to synthesize the VHDL code, generating

an EDIF (.edf ) file which can then be imported by MaxPlus II for design imple-

mentation and simulation.

MaxPlus II 10.2 Baseline and Advanced Synthesis Software can be downloaded

cost-free from www.altera.com.

This is a very brief tutorial, which is divided into five parts:

C1. Entering VHDL Code

C2. Compilation

C3. Simulation

C4. Synthesis with Advanced Synthesis Software

C5. Physical Implementation
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C1. Entering VHDL Code

� Launch MaxPlus II 10.2 Baseline.

� Open the text editor (MaxPlus II ! Text Editor), or open an existing project

(File !Open). A blank screen (like that of figure C1, but without the text) will be

displayed.

� Enter your VHDL code (a D-type flip-flop is shown in figure C1). Save it with

the extension .vhd and using the same name as the ENTITY’s (flipflop.vhd, in this

example).

C2. Compilation

� Set the project to the current file: File ! Project ! Set Project to Current File.

� Choose the target device (Assign ! Device). A pull down menu will be displayed

(figure C2). Select the desired device (say, Family ¼ MAX3000A, Device ¼ AUTO).

Figure C1
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� Set up the optimizer. The implementation can be optimized for speed or for area.

Select Assign ! Global Project Logic Synthesis and move the Optimize cursor all

the way to the left (value ¼ 0) to optimize for area, or all the way to the right

(value ¼ 10) to optimize for speed. Values in between can also be used.

� Click on the Compiler icon , then on Start, in order to execute the compilation.

� If no errors are detected, a screen like that of figure C3 is shown. It displays the files

created during the compilation in the upper part (notice, for example, the report

‘‘rpt’’ file icon), and information regarding the chip and fitter in the lower part.

� Open the report (.rpt) file (double-click on its icon, shown in figure C3). Verify at

least the following: pin assignments and number of logic cells and flip-flops used to

Figure C2

Figure C3
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  R      R  
  E      E  
  S        V     S  
  E        C       E  
  R        C     R  
  V  r     I  G  G  G  c  G     V  
  E  s     N  N  N  N  l  N     E  
  D  t  d  T  D  D  D  k  D  q  D  
-----------------------------------_  

    /   6  5  4  3  2  1 44 43 42 41 40   |  
#TDI |  7         39 | RESERVED  

RESERVED |  8         38 | #TDO 
RESERVED |  9         37 | RESERVED  

 GND | 10   36 | GND  
RESERVED | 11    35 | VCCIO 
RESERVED | 12    EPM3032ALC44-4         34 | RESERVED  

#TMS | 13    33 | RESERVED  
RESERVED | 14    32 | #TCK 
   VCCIO | 15    31 | RESERVED  
RESERVED | 16    30 | GND  

 GND | 17    29 | RESERVED  
     |_  18 19 20 21 22 23 24 25 26 27 28  _|

------------------------------------
  R  R  R  R  G  V  R  R  R  R  R  
  E  E  E  E  N  C  E  E  E  E  E  
  S  S  S  S  D  C  S  S  S  S  S  
  E  E  E  E     I  E  E  E  E  E  
  R  R  R  R     N  R  R  R  R  R  
  V  V  V  V     T  V  V  V  V  V  
  E  E  E  E        E  E  E  E  E  
  D  D  D  D        D  D  D  D  D  

Total bidirectional pins required: 0
Total reserved pins required      4
Total logic cells required:       1 
Total flipflops required:  1
Total product terms required:     2
Total logic cells lending parallel expanders:    0
Total shareable expanders in database:           0

Synthesized logic cells: 0/32   (0%)

Figure C4
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construct the circuit. A little section of the report file from the design of figure C1 is

shown in figure C4.

C3. Simulation

� Open the waveform editor (MaxPlus II ! Waveform Editor). A blank screen like

that of figure C5 will be displayed (without the box in the center).

� With the cursor inside the window of figure C5, press the right mouse button. A

pull down menu like that in the center of figure C5 will be shown. Select Enter Nodes

from SNF. The dialog box of figure C6 will then be presented. Click on List, then

Figure C5

Figure C6
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on ¼>, and finally on OK. All signals listed in the ENTITY of the VHDL code will

appear in the waveform window (see figure C7). Notice that the default value for the

input signals is 0, while for the outputs it is X (unknown).

� Before establishing the values of the signals, define the length of the waveforms and

the grid size. To set the length, select File ! End Time and type 1us. To set the grid,

select Options ! Grid Size and type 50 ns. Finally, select View ! Fit in Window.

You can also change the order of the signals by just dragging them up or down. For

example, to have clk as the first signal, just place the cursor on the arrow that pre-

cedes the word clk, then press and hold the left mouse button and drag clk to the

desired position. The window will then look like that of figure C8.

� We must now define the input signals, so the tools of figure C9 can be used. The

clock icon is used for pulse generators, to set the logic value 0, for logic

Figure C7

Figure C8
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value 1, for counters (incremental bus values), and for a group value (bus with

a fixed value).

� Start with clk. Select the corresponding line (click the left mouse button on the

word clk), then click on (figure C9), which will cause the dialog box of figure C10

to be displayed. Type Starting Value 0 and Multiplied By 1, then click on OK

(Multiplied by 1 means that the period corresponds to one pair of time slots, with

each time slot corresponding to one grid space; in this case, period ¼ 100 ns).

� Set up the other input signals. For rst, select the first two time slots (0 to 100 ns).

Then click on to change its value to 1 in this interval. Next, select the entire line

of d (click the left mouse button on the word d) and click on again. Type Multi-

plied By 4 and click on OK. The waveforms should then look like those in figure

C11.

� Save your waveforms with the extension .scf (flipflop.scf ).

� Now the design is ready to be simulated. Click on the simulator icon and on

Start. The simulator will automatically fill in all output signals in the waveform edi-

tor (q, in this example). The result is shown in figure C12.

Figure C9

Figure C10
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C4. Synthesis with Advanced Synthesis Software

To overcome the limitations of MaxPlus II, which does not support several VHDL

constructs, Advanced Synthesis Software was recently released. It can be used to

synthesize the VHDL code, giving origin to an EDIF (.edf ) file, which can then be

imported by MaxPlus II to finish the design (fitting, simulation, programming). As

mentioned earlier, Advanced Synthesis Software can also be downloaded cost-free

from www.altera.com.

� Using a text editor, type your VHDL code. Suggestion: Since MaxPlus II will be

used for fitting and simulation anyway, launch it and type the VHDL code using

Figure C11

Figure C12

336 Appendix C

TLFeBOOK



MaxPlus II’s own text editor, as described in section C1 above. Save the file with the

extension .vhd and the same name as the ENTITY’s (flipflop.vhd).

� Launch Advanced Synthesis Software. A screen like that of figure C13 will be

displayed.

� Open a new project (File ! New Project). In the dialog box, type the name of the

project (same as the ENTITY’s). The project will be saved with the extension

.max2syn (flipflop.max2syn)

� Assign the VHDL file to the project (Assign ! Add/remove HDL files). The box

of figure C14 will be displayed. Click on Add, select the file, then click on Open and

OK.

� Click on the synthesis settings icon . The dialog box of figure C15 will be pre-

sented. Choose the target device (MAX3000A, for example) and VHDL93.

� Click on the synthesis icon . If no syntax errors are detected, an EDIF file will be

generated, with the extension .edf and the same name as the project’s (flipflop.edf ).

� Return to MaxPlus II and import the EDIF file just created by Advanced Synthesis

Software (File ! Open). Then start from the beginning of section C2 above, in order

to compile the new design.

Figure C13
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C5. Physical Implementation

In this section, we will describe the process of physically implementing a circuit on a

CPLD. In this description, Altera’s UP1 development kit will be utilized, which is

furnished as part of their University Program. Other options are also available, either

from Altera or other companies. Indeed, most CPLD/FPGA manufacturers o¤er

low-cost development kits as part of their university programs.

The Altera UP1 Board

A view of the Altera UP1 kit is shown in figure C16. As can be seen, it contains two

devices:

Figure C14

Figure C15

338 Appendix C

TLFeBOOK



� EPM7128SLC84-7 (from the MAX7000S family): This is a CPLD (appendix A) in

an 84-pin package. It contains 128 macrocells, each having a PAL-type architecture

and one flip-flop.

� EPF10K20RC240-4 (from the FLEK10K family): This is an FPGA (appendix A)

in a 240-pin package. It consists of 1,152 LEs (logic elements), each with a 4-bit LUT

(lookup table) and one flip-flop.

For testing the CPLD, the board contains eight LEDs (light emitting diodes), two

SSDs (seven-segment displays), and two eight-bit dip switches (figure C16). And, for

testing the FPGA, 2 more SSDs and another eight-bit dip switch. The LEDs and the

segments of the SSDs use negative logic, thus being turned on when 0 V is applied.

The switches, on the other hand, provide 5 V signals when moved up or 0 V when

moved down.

The LEDs and switches are not connected to any of the chip pins, so they can be

freely wired to the devices to satisfy any particular setup. However, the segments of

the SSDs are already connected, thus requiring the implemented circuit to have spe-

cific pin assignments. In the case of the CPLD, the pins to which the SSDs are con-

nected are those listed in figure C17.

The board also contains a 25.175 MHz clock, which is connected to the devices

(the global clock pin of the CPLD is pin 83).

Figure C16
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The complete specifications of the board are available at www.altera.com/

literature/univ/upds.pdf.

Setting up the UP1 Board

� In the description presented below, the CPLD (EPM7128SLC84-7) will be used as

the target device. Therefore, the jumpers in the TDO, TDI, DEVICE, and BOARD

columns (see figure C16, right above the EPM7128S device) should all be installed in

the upper position (that is, between the upper two pins, C1 and C2, of each column

of pins, as indicated in the table of figure C18).

� Connect the ByteBlaster cable provided with the kit between the board and the

parallel port of the PC.

� Connect the DC supply (9 V) to the board. Notice that the Power LED and two

SSDs are lit.

Figure C17

Table 2. JTAG Jumper Settings 

Desired Action TDI TDO DEVICE BOARD

Program EPM7128S device 
only 

C1 & C2 C1 & C2 C1 & C2 C1 & C2 

Configure FLEX 10k device 
only 

C2 & C3 C2 & C3 C1 & C2 C1 & C2 

Program/configure both 
devices 

C2 & C3 C1 & C2 C2 & C3 C1 & C2 

Connect multiple boards 
together 

C2 & C3 OPEN C2 & C3 C2 & C3 

Figure C18
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Implementing the Design

We will assume that MaxPlus II 10.2 Baseline is open and that the VHDL code has

already been entered and debugged, following the steps described in the previous

sections of this appendix.

� Assign the target device by selecting Assign ! Device and choosing Family ¼
MAX7000S and Device ¼ EPM7128SLC84-7 (do not check the Select Only Fastest

Speed Grade box).

� Compile the circuit as before (click on ).

� Open the report (rpt) file and check which pin was assigned to each signal. If no

changes are required, proceed to the next section. To change pins, proceed in the

paragraph below.

� To choose a pin for clock di¤erent from the automatic global clock assignment (pin

83), first go to Assign ! Global Project Logic Synthesis and unmark the box Clock

under Automatic Global.

� To choose the pins, select Assign ! Pin/Location/Chip ! Search ! List. A dialog

box like that on the left of figure C19 will be displayed. Select a signal and click on

OK, thus displaying the box on the right of figure C19. Choose the pin number and

the pin type (input, output, etc.), then click on OK if that is the only pin to be

changed, or on Add to continue the procedure.

� Upon returning to the main window of MaxPlus II, recompile your design. Then

open the report (rpt) file (by clicking on the ‘rpt’ icon) and confirm that the pins were

indeed assigned as expected.

Figure C19
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Downloading the Design

Your design is now ready to be downloaded onto the chip.

� Double-click on the pof (program object file) icon (shown at the end of compila-

tion, figure C3). A box like that of figure C20 will be displayed.

� Select, in the main menu, Options ! Hardware Setup ! ByteBlaster(MV), then

click on OK.

� Finally, in the screen of figure C20, click on Program to program the device. After

a few moments, the chip will be ready to be physically tested and/or used.

Figure C20

342 Appendix C

TLFeBOOK



Appendix D: Altera Quartus II Tutorial

The following synthesis, placement, and simulation tools are described in the tuto-

rials presented in the Appendices:

Tools Application Appendix

ISE 6.1þModelSim 5.7c Xilinx CPLDs and FPGAs B

MaxPlus II 10.2þAdvanced

Synthesis Software

Altera CPLDs and some FPGAs C

Quartus II 3.0 Altera CPLDs and FPGAs D

Quartus II 3.0 from Altera is a comprehensive integrated compiler, placement, and

simulation tool. It allows the complete design, from VHDL code to physical imple-

mentation, of projects using any of Altera’s FPGA or CPLD devices. Quartus II is

the successor of MaxPlus II (Appendix C).

Quartus II 3.0 Web Edition can be downloaded cost-free from www.altera.com.

This is a very brief tutorial, which is divided into four parts:

D1. Entering VHDL Code

D2. Compilation

D3. Simulation

D4. Physical Implementation

D1. Entering VHDL Code

� Launch Quartus II 3.0. A window like that of figure D1 will be displayed.

� Create a new project (File ! New Project Wizard). The dialog box of figure D2

will appear. Select the working directory in the first field, and the project name (same

as the ENTITY’s) in the second. The last field will be automatically filled with the

project name (you may change it if you want). In the example below, the working

directory is d:\altera\my_circuits, and the project name is flipflop. A new project,

called flipflop.quartus, is then created in the working directory, which will contain

the flipflop.vhd file to be created.

� Open the text editor (File ! New, or click on ). The menu of figure D3 will then

be displayed. Select VHDL File. A blank screen will be presented.
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Figure D1

Figure D2
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� Enter your VHDL code (as in figure D4). Save it with the extension .vhd (the same

name as the ENTITY’s will be automatically assigned to the file, that is, flipflop.vhd

in this example).

� Check for syntax errors. Select Processing ! Analyze Current File, or simply click

on the analysis icon . Any error detected by the compiler will be described in the

bottom window.

D2. Compilation

� Select the target device (Assignments ! Devices). A menu like that of figure D5

will be displayed. Choose the desired device Family (MAX3000A, for example). In

the Target device option, you may select Auto device. In the Package, Pin count, and

Speed grade options, select Any.

� To compile your VHDL code, select Processing ! Start Compilation, or click on

. If successful, a window like that of figure D6 will be displayed.

� Examine the compilation reports (listed on the left of figure D6). Check at least the

following:

(a) Flow Summary: This report is displayed automatically at the end of compilation,

as shown in figure D6. It contains the part number of the device, the number of pins

used, and the usage of the device (number of logic cells used / total number of logic

cells).

Figure D3
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Figure D4

Figure D5
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(b) Resource Usage Summary (Fitter ! Resource Section ! Resource Usage Sum-

mary): This report (figure D7) shows details regarding the number of registers in-

ferred from the code, logic cells used, I/O pins, etc.

(c) Input and Output Pins (Fitter ! Resource Section ! Input Pins, Fitter !
Resource Section ! Output Pins): These two reports show the I/O pin assignments.

(d) Floorplan View (Fitter ! Floorplan View): Shows a layout of the logic cells,

which logic cells were used and how, etc. (see figure D8).

(e) Analysis and Synthesis Equations (Analysis and Synthesis ! Analysis and Syn-

thesis Equations): Contains the logical equations implemented by the compiler (logi-

cal operationsþ registers).

D3. Simulation

� Open the Waveform Editor. To do so, select File ! New ! Other File ! Vector

Waveform File, or simply click on . A screen like that of figure D9 will be

displayed.

� In order to define the size of the waveforms (figure D9), do:

Edit ! End Time (select 500 ns, for example).

Edit ! Grid Size (select Period ¼ 50 ns, Duty Cycle ¼ 50%).

Finally, select View ! Fit in Window.

Note: To change the default values, go to Tools ! Options ! Waveform Editor !
General.

Figure D6
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Figure D7

Figure D8
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� Add the input and output signals to the waveform window. To do so, click the

right mouse button inside the white area under Name (figure D9) and select Insert

Node or Bus. In the next box, select Node Finder. A screen like that of figure D10

will then be shown. Make sure that Filter is set to Pins: all. Click on Start, then on

X, and finally on OK. The waveforms window will now contain a list of all signals

described in the ENTITY of the VHDL code, as shown in figure D11. Notice that

the input signals (clk, rst, d) are indicated by an inward arrow with an ‘‘I’’ inside,

while the output signal (q) is represented by an outward arrow with an ‘‘O’’ inside.

The position of the signals can be rearranged by simply dragging them up or down

(for example, one might want rst to come right below clk).

Figure D9

Figure D10
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� We have to set now the values of the input signals (clk, rst, and d in figure D11).

The easiest way is by using the waveform menu (shown on the left-hand side of figure

D11). To set up the clock signal, select the entire clk line (by clicking on the arrow

with an I inside beside the word clk) and then click on . A setup box will be dis-

played. Choose Period ¼ 100 ns.

� For rst, select only its first portion (from 0 to 25 ns), then click on , which will

cause the selected portion to change its logic level from 0 to 1.

� Finally, we have to set up the value of d. Select the entire d line, then click on .

Choose Period ¼ 200 ns and Phase ¼ 75 ns. The result is shown in figure D12.

Figure D11

Figure D12
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Notice that q is not available yet, for it will be determined by the simulator. Save the

waveform as flipflop.vwf.

� The system is now ready for simulation. Select Processing ! Start Simulation, or

just click on . The result should look like that in figure D13.

D4. Physical Implementation

� Development kit: To perform the physical implementation, we will assume that an

Altera UP1 (or UP2) kit is available (this development kit was described in section

C5 of appendix C). The kit must be connected to the parallel port of the PC by

means of a ByteBlaster cable (provided with the kit).

� Device selection: The kit (Altera UP1 or UP2) contains two devices,

EPM7128SLC84-7 (a CPLD from the MAX7000S family) and EPF10K70RC240-4

(an FPGA from the FLEX10K family). Therefore, in the Assignments ! Devices

step of section D2, one of these two devices must be selected.

� Changing pin assignments: The I/O pins are automatically assigned during compi-

lation. However, if desired, the assignments can be changed. Select Assignments !
Assign Pins, which will cause the window of figure D14 to be opened. Say that we

want rst to be connected to pin 4, for example. Select pin 4, then click on , which

will open the window of figure D10. Click on Start, select rst on the left column, then

click on > and OK. Upon returning to the window of figure D14, click on Add.

Repeat this process for any other changes of pin assignments.

Figure D13
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Figure D14

Figure D15
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� Setting up the Programmer: To download the program to the kit (device), first

select Tools ! Programmer, or click on . The window of figure D15 will be

shown. In the Hardware option, ByteBlasterMV (LPT1) should appear. If not, click

on Hardware, then on Select Hardware, select ByteBlasterMV, and finally click on

Add Hardware. Returning to the window of figure D15, in the File column verify

that the design file, with the extension .pof (program object file), is present. Then

check the box under Program/Configure.

� Programming the device: Finally, the device can be programmed. Just select

Processing ! Start Programming. After a few moments, programming will be con-

cluded and the chip ready to be physically tested and/or used.
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Appendix E: VHDL Reserved Words

From VHDL 87:

ABS

ACCESS

AFTER

ALIAS

ALL

AND

ARCHITECTURE

ARRAY

ASSERT

ATTRIBUTE

BEGIN

BLOCK

BODY

BUFFER

BUS

CASE

COMPONENT

CONFIGURATION

CONSTANT

DISCONNECT

DOWNTO

ELSE

ELSIF

END

ENTITY

EXIT

FILE

FOR

FUNCTION

GENERATE

GENERIC

GUARDED

IF

IN

INOUT

IS

LABEL

LIBRARY

LINKAGE

LOOP

MAP

MOD

NAND

NEW

NEXT

NOR

NOT

NULL

OF

ON

OPEN

OR

OTHERS

OUT

PACKAGE

PORT

PROCEDURE

PROCESS

RANGE

RECORD

REGISTER

REM

REPORT

RETURN

SELECT

SEVERITY

SIGNAL

SUBTYPE

THEN

TO

TRANSPORT

TYPE

UNITS

UNTIL

USE

VARIABLE

WAIT

WHEN

WHILE

WITH

XOR

From VHDL 93:

GROUP

IMPURE

INERTIAL

LITERAL

POSTPONED

PURE

REJECT

ROL

ROR

SHARED

SLA

SLL

SRA

SRL

UNAFFECTED

XNOR
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Index

þ Addition operator, 49, 54, 60, 195
¼> Assignment operator for OTHERS, 47, 60
<¼ Assignment operator for SIGNAL, 47, 60
:¼ Assignment operator for VARIABLE,

CONSTANT, or GENERIC, 47, 60
= Division operator, 49, 60
¼ Equal-to operator, 49, 60
�� Exponentiation operator, 49, 60
> Greater-than operator, 49, 60
>¼ Greater-than-or-equal-to operator, 49, 60
< Less-than operator, 49, 60
<¼ Less-than-or-equal-to operator, 49, 60
� Multiplication operator, 49, 60
=¼ Not-equal-to operator, 49, 60
� Subtraction operator, 49, 60

ABS operator, 49, 60
Absolute value operator, 49, 60
Accumulate (multiply-and-), 285–288, 290, 292,

295, 299
Actel FPGAs, 315
ACTIVE attribute, 52, 61
Adder circuits, 5–7, 42–43, 106–109, 194–198
Basic adder, 42–43
Carry-look-ahead adder, 196–198
Carry-ripple adder, 106–109, 194–196
Full-adder, 5–7, 279, 282–283
MAC (multiply-and-accumulate), 285–288, 290,
292, 295, 299
Overflow, 286

Addition operator, 49, 54, 60, 195
Advanced Synthesis Software, 329, 336–338
AFTER clause, 28
Altera
Advanced Synthesis Software, 329, 336–338
CPLDs, 312
MaxPlus II software, 5, 20, 329–342
Quartus II software, 4–5, 20, 343–353

ALU, 75–78, 247–251
AND operator, 36–37, 41–42, 48, 60
Antifuse, 306, 313, 315
Application Specific Integrated Circuit. See ASIC
ARCHITECTURE
Description, 17
Introductory examples, 6, 17–22
Usage, 13–14

Arithmetic logic unit. See ALU
Arithmetic operators, 48–49, 60
ARRAY, 30–33, 39
Array indexes, 51
ASIC, 3, 4, 6, 211, 293
ASSERT statement, 270–271
Assignment operators, 47–48, 60
ATTRIBUTE statement, 52–53
Attributes, 50–53, 61

Data attributes, 51, 61
Signal attributes, 52, 61
Summary, 61
User-defined attributes, 52–53

Barrel/vector shifter circuits, 80–81, 109–111,
187–190

Base type, 29–30
BEGIN keyword
with ARCHITECTURE, 17
with BLOCK, 81–83
with FUNCTION, 253
with PROCEDURE, 265
with PROCESS, 91
Behavioral description, 91
Binary versus one-hot and two-hot encoding,
181–182

Binary-to-Gray-code converter, 87
BIT. See Data types
BIT_VECTOR. See Data types
BIT versus BIT_VECTOR, 41–42
BLOCK statement
Guarded, 83–84
Simple, 81–83
BODY. See PACKAGE BODY
BOOLEAN. See Data types
Bu¤er circuit, 73
BUFFER mode, 16, 37–138, 140, 143, 145, 152,
154, 157

Carry-look-ahead adder circuit. See Adder circuits
Carry-ripple adder circuits. See Adder circuits
CASE statement, 91, 100–104
CASE versus IF, 112–113
CASE versus WHEN, 113–114
Combinational versus sequential circuits, 65–66
Comparator circuits, 191–194
Comparison operators, 49, 60
Complex programmable logic devices. See CPLDs
COMPONENT, 234, 236–244
Concatenation operators, 50, 60
Concurrent code, 65–84
Concurrent statements
BLOCK, 65, 81–84
GENERATE, 65, 78–81, 195, 197–198
WHEN, 65, 69–78
WHEN versus CASE, 113–114
Concurrent versus sequential code, 65–67
CONFIGURATION statement, 72
CONSTANT, 31, 47, 129–131, 174–176, 220–221,
234–235, 270

Controller circuit for tra‰c light, 174–178, 186
Controller circuit for vending machine, 202–208,
226–227

Conv_integer function, 25, 37, 43, 255, 258–259
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Conv_signed function, 25, 37
Conv_std_logic_vector function, 25, 38
Conv_unsigned function, 25, 37
Conversion functions. See Data conversion

functions
Count ones circuits, 130–133
Counter circuits, 94–96, 99–100, 102–104, 144–

146, 155, 164–166, 272
CPLDs, 3–4, 305–306, 311–313, 317, 338–340

Data attributes, 51, 61
Data conversion functions, 25, 37–38
Data objects. See Objects
Data types, 25–43
ARRAY, 30–33, 39
BIT, 16–17, 21–22, 25–26, 39, 48–49, 54–55
BIT_VECTOR, 25–26, 28–30, 39, 48–49, 54–
55
BIT versus BIT_VECTOR, 41–42
BOOLEAN, 25, 27–28, 30, 39, 204, 235–237,
254–257
Enumerated data types, 28–29, 39, 51, 53, 61, 70,
101, 160, 162, 164, 204
INTEGER, 25, 27–28, 30, 35, 37–39, 48–49
NATURAL, 27, 29–30, 34–35, 262, 300
Physical data types, 27
Port array, 33–34
REAL, 25, 27, 39
RECORD, 35, 39
SIGNED, 25, 27, 30, 35–39, 42–43, 48, 191, 285,
291, 297
STD_LOGIC, 25–27, 39
STD_LOGIC_VECTOR, 25–27, 39
STD_ULOGIC, 25–27, 39
STD_ULOGIC_VECTOR, 26, 39
SUBTYPE, 29–30, 39, 80, 226
UNSIGNED, 25, 27, 30, 35–39, 48, 191, 263–
265
User-defined, 28–29, 34, 39, 299

Decoder circuits, 55–57, 62–63, 156
Delay circuit, 152
DFF, 18–22, 83–84, 92–93, 99, 101–102, 125–127,

137–138, 142–143, 152–155, 157–158, 254–255
Digital filter circuit, 289–294, 303
Divider circuit, fixed-point, 198–202
Division operator, 49, 60
Don’t care, 26
D-type flip-flop. See DFF

EDIF, 329, 336, 337
EEPROM, 306, 309, 312–313
ELSE
with WHEN, 69
with IF, 94

ELSIF, 94
Encoder circuit, 73–75
END keyword
with ARCHITECTURE, 17
with BLOCK, 81–83
with CASE, 100
with FUNCTION, 253
with GENERATE, 78–79
with IF, 94
with LOOP, 105
with PROCEDURE, 265
with PROCESS, 91
ENTITY
Description, 15–17
Introductory examples, 6, 17–22
Usage, 13–14
Enum_encoding attribute, 53
Enumerated data types. See Data types
EPROM, 308–309
Equal-to operator, 49, 60
Error message. See ASSERT statement
EVENT attribute, 52, 61
Event counter circuit, 121
Exclusive-NOR operator, 48, 60
Exclusive-OR operator, 48, 60
EXIT statement, 105–106, 111–112
Exponentiation operator, 49, 60

Field Programmable Gate Arrays. See FPGAs
Finite State Machine. See FSM
FIR filter. See Digital filter circuit
Flip-flop. See DFF
FOR statement
with GENERATE, 78–81
with LOOP, 105–112
with WAIT, 98–99
FPGAs, 3–4, 305–306, 311–315, 317, 338–339
Frequency divider circuit, 122, 138–140
FSM, 159–182, 202–208, 213–218
Full-adder. See Adder circuits
FUNCTION, 253–265
Arithmetic shift function, 261–262
Convert-to-integer function, 37, 43, 255, 258–259
Definition and syntax, 253–254
Function location, 256–258
Multiplication function, 263–265
Multiplier function, 263–265
Overloaded ‘‘þ’’ operator function, 260–261
Positive_edge function, 254–258
FUNCTION versus PROCEDURE, 270

GAL devices, 305–306, 309–312
GENERATE statement, 65, 78–81, 195, 197–198
GENERIC MAP, 244–247
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GENERIC statement, 54–60, 97, 108–109, 117,
191–195, 201, 221, 223, 225

Gray code, 87
Greater-than operator, 49, 60
Greater-than-or-equal-to operator, 49, 60
GUARDED BLOCK, 83–84

Hexadecimal, 28, 43
HIGH attribute, 51, 61
High-impedance, 26, 73

IEEE library, 13–15, 25–27, 35–38
IEEE standards for VHDL, 25
IF statement, 91, 94–97
IF versus CASE, 112–113
IF-GENERATE, 78–79
IN mode, 16–17
Inferred registers, number of, 140–151
INOUT mode, 16, 225
INTEGER. See Data types
Intensity encoder circuit, 124
IS keyword
with ARCHITECTURE, 17
with ATTRIBUTE, 53
with CASE, 100
with COMPONENT, 237
with ENTITY, 16
with FUNCTION, 253
with PACKAGE, 234
with PACKAGE BODY, 234
with PROCEDURE, 265
with SUBTYPE, 29–30
with TYPE, 28–29

ISE software, 4–5, 20, 317–327

Keypad debouncer/encoder circuit, 184–186

LAST_ACTIVE attribute, 52
LAST_EVENT attribute, 52
LAST_VALUE attribute, 52
Latch, 83–84, 119, 121 (see also DFF)
Leading zeros counter circuit, 111–112
LEFT attribute, 51, 61
LEFTOF attribute, 51, 61
LENGTH attribute, 51, 61
Less-than operator, 49, 60
Less-than-or-equal-to operator, 49, 60
Library
Declaration, 13–15
IEEE library, 13, 15, 25–27, 35–38
Introductory examples, 18–22
Standard library, 13, 15, 25
Std_logic_1164 package, 13, 15, 25–27
Std_ulogic_1164 package, 25–27

Std_logic_arith package, 15, 25, 27, 35–38, 42–
43, 191, 263, 285, 287, 291, 296, 299
Std_logic_signed package, 15, 25, 27, 36, 38, 48
Std_logic_unsigned package, 15, 25, 27, 36, 38,
48
Work library, 13, 15
Logic systems
Binary (std library), 25
STD_LOGIC, 25–27
STD_ULOGIC, 25–27
Logical operators, 48, 60
LOOP statement, 91, 105–112
LOW attribute, 51, 61

MAC circuits, 285–288, 290, 292, 295, 299
MAP
GENERIC MAP, 244–247
PORT MAP, 237, 241, 244–245, 251, 277–279,
281–284

MaxPlus II software, 5, 20, 329–342
Min_max procedure, 267–270
MOD operator, 49, 60
Mode
BUFFER, 16, 137–138, 140, 143, 145, 152, 154,
157
IN, 16–22
INOUT, 16, 225, 266
OUT, 16–22
ModelSim software, 5, 20, 317, 325–326
Modulus operator, 49, 60
Multiplexer circuits, 68, 70–72, 85, 134–137
Multiplication operator, 49, 60
Multiplier circuits, 263–265, 275–285
Multiply-and-accumulate circuit. See MAC
circuits

Multivalued logic systems
STD_LOGIC, 25–27
STD_ULOGIC, 25–27
MUX. See Multiplexer circuits

NAND operator, 48, 60
NATURAL. See Data types
Neural networks, 294–301, 303
NEXT statement, 105–106
NOR operator, 48, 60
NOT operator, 48, 60
Not-equal-to operator, 49, 60
NULL statement, 101–102, 104, 113–114
Number of registers inferred, 140–151
Numeric data types. See Data types

Objects
CONSTANT, 31, 47, 129–131, 174–176, 220–
221, 234–235, 270
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Objects (cont.)
SIGNAL, 19, 21–22, 129–132
SIGNAL versus VARIABLE, 133–140
VARIABLE, 129–133

ON keyword, 98–99
One-hot encoding, 181–182
Operator overloading, 53–54, 260–261
Operators
Arithmetic, 48–49, 60
Assignment, 47–48, 60
Comparison, 49, 60
Concatenation, 50, 60
Logical, 48, 60
Shift, 49–50, 60
Summary, 60

OR operator, 48, 60
OTHERS clause, 40, 47–48, 69–73, 94, 101–102,

112–114
OUT mode, 16–22
Overloading, 53–54, 260–261

PACKAGE
Description, 13–14, 93, 133, 233–236, 256,
266–270
Examples, 34–35, 235–236, 239, 241–244, 257–
260, 263–264, 268–270, 275–284, 287, 299

PACKAGE BODY, 234–236, 256–260, 269–270,
287

PAL devices, 305–308, 339
PALCE devices, 305
Parity detector circuit, 57–59, 123
Parity generator circuit, 59–60
Physical data types, 27
PLA devices, 305–306, 308–309, 312
Playing with a seven-segment display, 212–216,

228
PLDs
CPLD, 3–4, 305–306, 311–313, 317, 338–340
FPGA, 3–4, 305–306, 311–315, 317, 338–339
GAL, 305–306, 309–312
PAL, 305–308, 339
PLA, 305–306, 308–309, 312

PORT
Introductory examples, 5–6, 18–22
Modes. See Mode

Port array, 33–35
PORT MAP, 237, 241, 244, 251, 277–279,

281–284
Pre-defined data attributes, 51, 61
Pre-defined data types, 25–28, 39
Pre-defined operators, 47–50, 60
Pre-defined signal attributes, 52, 61
Priority encoder circuit, 85, 121–122
PROCEDURE, 13–14, 91, 94, 105, 113, 130–133,

233–235, 265–270

PROCEDURE versus FUNCTION, 270
PROCESS
Description, 91–94
Introductory examples, 18–22, 56–60, 92–120
Programmable array logic. See PAL
Programmable logic array. See PLA
Programmable logic devices. See PLDs

Quartus II software, 4–5, 20, 343–353
QUIET attribute, 52

RAM circuits, 116–118, 221–225
Random access memory. See RAM circuits
RANGE attribute, 28–30, 34–35, 37, 51, 61
Read-only memory. See ROM circuits
REAL. See Data types
RECORD, 35, 39
Registers. See DFF
Registers inferred, number of, 140–151
Relational operators. See Operators
REM operator, 49, 60
Remainder operator, 49, 60
REPORT statement, 271
Reserved words, 355
Resolved data type, 26–27, 39
REVERSE_RANGE attribute, 51, 61
RIGHT attribute, 51, 61, 262
ROL operator, 50, 60
ROM circuits, 44, 220–221
ROR operator, 50, 60
Rotate left logic operator, 50, 60
Rotate right logic operator, 50, 60
RTL, 4

SELECT statement, 67, 69–73, 113
Sequential code, 65, 91–121
Sequential statements
CASE, 91, 100–104, 112–114
IF, 91, 94–97, 112–113
LOOP, 91, 105–112
WAIT, 91, 97–100
Serial data receiver circuit, 208–211, 227
Seven-segment display, 212–216, 228
Shift left arithmetic operator, 50, 60
Shift left logic operator, 49–50, 60
Shift operators, 49–50, 60
Shift register circuits, 96–97, 121, 146–151
Shift right arithmetic operator, 50, 60
Shift right logic operator, 49–50, 60
SIGNAL, 19, 21–22, 129–132
Signal attributes, 52, 61
Signal generator circuits, 178–181, 183–184, 186,

217–220
SIGNAL versus VARIABLE, 133–140
SIGNED. See Data types
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SLA operator, 50, 60
SLL operator, 49–50, 60
Speed monitor circuit, 228–229
SRA operator, 50, 60
SRL operator, 49–50, 60
STD_LOGIC, 25–27, 39
STD_LOGIC_VECTOR, 25–27, 39
STD_ULOGIC, 25–27, 39
STD_ULOGIC_VECTOR, 26–27, 39
Stop-watch circuit, 252
String detector circuit, 172–174
Subtype, 29–30, 39

Timer circuits, 123
Tra‰c light controller circuit, 174–178, 186
Tri-state bu¤er circuit, 73
Two-hot encoding, 181–182
Types. See Data types

UNAFFECTED statement, 69–70, 101, 113–114
Unresolved data type, 27, 39
UNSIGNED. See Data types
UNTIL, 52, 98–100
USE clause, 13, 15
User-defined attributes, 52–53
User-defined data types, 28–29, 34, 39, 299

VARIABLE, 129–133
VARIABLE versus SIGNAL, 133–140
Vending machine controller circuit, 202–208,

226–227
VHDL acronym, 3
VHDL reserved words, 355

WAIT statement, 91, 97–100
WHEN statement, 65, 69–78
WHEN versus CASE, 113–114
WHILE statement, 105–106
WITH, 67, 69–73, 113
Work library, 13, 15

Xilinx
CPLDs, 312
FPGAs, 314
ISE software, 4–5, 20, 317–327

XNOR operator, 48, 60
XOR operator, 48, 60

‘‘Z’’ logic state, 26–27, 39, 73
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