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CHAPTER 4: 

 

THE FRITZ JOHN AND KARUSH-KUHN-TUCKER 

OPTIMALITY CONDITIONS 

4.1 2( ) .xf x xe  Then 2 2( ) 2 0x xf x xe e       implies that 
2 (1 2 ) 0xe x     1/2.x x   Also, 2( ) 4 ( 1).xf x e x    Hence, at 

1/2,x   we have that ( ) 0,f x   and so 1/2x   is a strict local max for 

f. This is also a global max and there does not exist a local/global min 
since from f  , the function is concave for 1x   with ( )f x    as 

,x    and f is convex and monotone decreasing for 1x   with 

( ) 0f x   as ).x    

4.4 Let 1 222 2
1 1 2 2 1

( ) 2 3 .
x x

f x x x x x x e


      

 a. The first-order necessary condition is ( ) 0,f x   that is: 

  
1 2

1 2

2
1 2

2
1 2

4 3 2 0
.

02

x x

x x

x x e

x x e





               

 

  The Hessian ( )H x  of ( )f x  is  

  
1 2 1 2

1 2 1 2

2 2

2 2
4 4 2 1

( ) ,
2 1 2

x x x x

x x x x
e e

H x
e e

 

 

   
   

 and as can be easily verified, 

( )H x  is a positive definite matrix for all x. Therefore, the first-order 

necessary condition is sufficient in this case. 
 

 b. (0,0)x   is not an optimal solution. ( ) [ 1 1] ,tf x    and any 

direction 
1 2

( , )d d d  such that 
1 2

0d d    (e.g., (1,0))d   is a 

descent direction of ( )f x  at x . 

 

 c. Consider (1,0).d   Then 2 2( ) 2 3 .f x d e        The 

minimum value of ( )f x d  over the interval [0, )  is 0.94 and is 

attained at 0.1175.   
 

 d. If the last term is dropped, 2 2
1 1 2 2 1

( ) 2 3 .f x x x x x x     Then the 

first-order necessary condition yields a unique solution 
1

6/7x   and 
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2
3/7.x   Again, the Hessian of ( )f x  is positive definite for all x, 

and so the foregoing values of 
1

x  and 
2

x  are optimal. The minimum 

value of ( )f x  is given by –63/49. 

 
4.5 The KKT system is given by: 
 

  3
1

4x  
1

24x  
2

x  
1

u  
2

2u  
3

u   1  

  3
2

4x  
2

12x  
1

x  
1

u  
2

u   
4

u  1  

  
1

x  
2

x       6  

  
1

2x  
2

x       3  

  
1 1 2
(6 ) 0,u x x        

2 1 2
(3 2 ) 0u x x    

  
3 1

0,u x     
4 2

0,u x   

  
1 2

0, 0, 0
i

x x u    for i = 1, 2, 3, 4. 

 
 If x  = (3, 3), then denoting the Lagrange multipliers by u , we have that 

3 4
0.u u   Consequently, the first two equations give 

1
152u   and 

2
12.u   Thus, all the KKT conditions are satisfied at x  = (3, 3). The 

Hessian of the objective function is positive definite, and so the problem 
involves minimizing a strictly convex function over a convex set. Thus, x  
= (3, 3) is the unique global optimum.  

 
4.6 a. In general, the problem seeks a vector y in the column space of A (i.e., 

y = Ax) that is the closest to the given vector b. If b is in the column 
space of A, then we need to find a solution of the system Ax = b. If in 
addition to this, the rank of A is n, then x is unique. If b is not in the 
column space of A, then a vector in the column space of A that is the 
closest to b is the projection of the vector b onto the column space of 
A. In this case, the problem seeks a solution to the system Ax = y, 
where y is the projection vector of b onto the column space of A. In 
answers to Parts (b), (c), and (d) below it is assumed that b is not in 
the column space of A, since otherwise the problem trivially reduces 
to “find a solution to the system Ax = b.” 

 
 b. Assume that 

2
  is used, and let ( )f x  denote the objective function 

for this optimization problem. Then, ( ) 2 ,t t t t tf x b b x A b x A Ax    

and the first-order necessary condition is .t tA Ax A b  The Hessian 

matrix of ( )f x  is ,tA A  which is positive semidefinite. Therefore, 
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( )f x  is a convex function. By Theorem 4.3.8 it then follows that the 

necessary condition is also sufficient for optimality. 
 
 c. The number of optimal solutions is exactly the same as the number of 

solutions to the system .t tA Ax A b  
 

 d. If the rank of A is n, then tA A  is positive definite and thus invertible. 

In this case, 1( )t tx A A A b  is the unique solution. If the rank of A is 

less than n, then the system t tA Ax A b  has infinitely many 
solutions. In this case, additional criteria can be used to select an 
appropriate optimal solution as needed. (For details see Linear 
Algebra and Its Applications by Gilbert Strang, Harcourt Brace 
Jovanovich, Publishers, San Diego, 1988, Third Edition.) 

 
 e. The rank of A is 3, therefore, a unique solution exists. 

5 2 1
( ) 2 6 4 ,

1 4 5

tA A
 

  
 
 

 and [4 12 12] .t tA b   The unique solution 

is 
20 2

[2 ] .
7 7

tx


  

 
4.7 a. The KKT system for the given problem is: 
 
  

1 1 1 2 3
2 2x u x u u          9/2  

  
2 1

2x u      
2

u            
4

u   = 4 

    2
1

x  – 
2

x  0  

     
1 2

6x x   

  2
1 1 2
( ) 0,u x x    

2 1 2
(6 ) 0,u x x     

1 3
0,x u   

2 4
0x u   

  
1

0,x   
2

0,x   0
i

u   for i = 1, 2, 3, 4. 

 

  At (3/2, 9/4) ,tx   denoting the Lagrange multipliers by u , we 

necessarily have 
2 3 4

0,u u u    which yields a unique value for 

1
u  namely, 

1
1/2.u   The above values for 

1
x , 

2
x , and 

i
u  for i = 1, 2, 

3, 4 satisfy the KKT system, and therefore x  is a KKT point. 
 
 b. Graphical illustration: 
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  From the graph, it follows that at ,x  the gradient of ( )f x  is a 

negative multiple of the gradient of 2
1 1 2
( ) ,g x x x   where 

1
( ) 0g x   is the only active constraint at .x  

2
x

x

( )f x

1
x

6

6

1
( )g x

9
( ,2)
4

 
 c. It can be easily verified that the objective function is strictly convex, 

and that the active constraint function is also convex (in fact, the 
entire feasible region is convex in this case). Hence, x  is the unique 
(global) optimal solution to this problem. 

 

4.8 a. The objective function 1 2
1 2

1 2

3 3
( , )

2 6

x x
f x x

x x

 


 
 is pesudoconvex 

over the feasible region (see the proof of Lemma 11.4.1). The 
constraint functions are linear, and are therefore quasiconvex and 
quasiconcave. Therefore, by Theorem 4.3.8, if x  is a KKT point for 
this problem, then x  is a global optimal solution. 

 
 b. First note that (0,0) (6,0) 1/2,f f   and moreover, [ (0,0)f    

(1 )(6,0)] = 1/2 for any [0,1].   Since (0, 0) and (6, 0) are 

feasible solutions, and the feasible region is a polyhedral set, any 
convex combination of (0, 0) and (6, 0) is also a feasible solution. It is 
thus sufficient to verify that one of these two points is a KKT point. 
Consider (6, 0). The KKT system for this problem is as follows:  
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  2
1 2 32

1 2

5
2

(2 6)

x
u u u

x x


  

 
  = 0 

  1
1 22

1 2

5 15
2

(2 6)

x
u u

x x


 

 
 

4
u  = 0 

  
1 2

2 12x x   

  
1 2

2 4x x    

  
1 2

0, 0, 0
i

x x u    for i = 1, 2, 3, 4 

  
1 1 2 2 1 2 3 1 4 2
(2 12) 0, ( 2 4) 0, 0, 0.u x x u x x u x u x          

 
  Substituting (6, 0) for 

1 2
( , )x x  into this KKT system yields the 

following unqiue values for the Lagrangian multipliers: 

1 2 3
0,u u u    and 

4
u   5/36. Since 0,

i
u   1,2,3,4,i   we 

conclude that (6, 0) is indeed a KKT point, and therefore, by Part (a), 
it solves the given problem. Hence, by the above argument, any point 
on the line segment joining (0, 0) and (6, 0) is an optimal solution. 

 
4.9 Note that 0,c   as given. 
 

 a. Let ( ) ,tf d c d   and ( ) 1.tg d d d   The KKT system for the 

given problem is as follows: 
 
   2c du   0  

        td d  1  

   ( 1)tu d d   0  

        0.u   
 

  /d d c c   and /2u u c   yields a solution to this system. 

Hence, d  is a KKT point. Moreover, d  is an optimal solution, 
because it is a KKT point and sufficiency conditions for optimality are 
met since ( )f d  is a linear function, hence it is pseudoconvex, and 

( )g d  is a convex function, hence it is quasiconvex. Furthermore, d  

is the unique global optimal solution since the KKT system provides 
necessary and sufficient conditions for optimality in this case, and 

/ ,d c c  /2u c  is its unique solution. To support this 

statement, notice that if u > 0, then 1,td d   which together with the 

first equation results in /d c c  and /2.u c  If u = 0, then the 

first equation is inconsistent regardless of d since 0.c   
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 b. The steepest ascent direction of a differentiable function ( )f x  at x  

can be found as an optimal solution d  to the following problem: 
 

   Maximize { ( ) : 1},t tf x d d d   

 
  which is identical to the problem considered in Part (a) with 

( ).c f x   Thus, if ( ) 0,f x   then the steepest ascent direction is 

given by ( )/ ( )d f x f x   . 

 
4.10 a. In order to determine whether a feasible solution x  is a KKT point, 

one needs to examine if there exists a feasible solution to the system: 
 
  ( ) ( ) 0, 0

i i i
i I

f x g x u u


      for ,i I  

 
  where I is the set of indices of constraints that are active at .x  
 

  Let ( )c f x   and let [ ( ), ].t
i

A g x i I    Then the KKT system 

can be rewritten as follows: 
 

   , 0.tA u c u   (1) 

 
  Therefore, x  is a KKT point if and only if System (1) has a solution. 

Note that System (1) is linear, and it has a solution if and only if the 
optimal objective value in the following problem is zero: 

 

  Minimize te y  

  subject to tA u y c   

   0, 0,u y   

 
  where e is a column vector of ones, y is a vector of artificial variables, 

and where y  denotes that the components of y are ascribed the same 

sign as that of the respective components of c. This problem is a Phase 

I LP for finding a nonnegative solution to .tA u c  
 
 b. In the presence of equality constraints ( ) 0,

i
h x   1,..., ,i    the KKT 

system is given by 
 

  
1

( ) ( ) ( ) 0, 0
i i i i i

i I i
f x g x u h x v u

 
       


 for ,i I  
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  where I is the set of indices of the inequality constraints that are active 

at .x  Let tA  be as defined in Part (a), and let 

[ ( ), 1,..., ]t
i

B h x i     be the n    Jacobian matrix at x  for the 

equality constraints. Then the corresponding Phase I problem is given 
as follows: 

 

  Minimize te y  

  subject to t tA u B v y c    

   0, 0.u y   

 

 c. In this example, we have (1, 2,5) ,tx   ( ) (8,3,23) .tc f x     

Furthermore, {1,3},I   and therefore,  

  
1 3

2 1
[ ( ) ( )] 4 1 .

1 0

tA g x g x
 

     
  

 Thus, (1,2,5)tx   is a KKT 

point if and only if the optimal objective value of the following 
problem is zero: 

 
  Minimize 

1
y  + 

2
y  +

3
y   

  subject to 
1

2u  + 
3

u  +
1

y    = 8 

   
1

4u  + 
3

u   
2

y   = 3 

       
1

u      
3

y  = 23 

       
1 3

0, 0, 0
i

u u y    for i = 1, 2, 3. 

     
  However, the optimal solution to this problem is given by 

1
u  = 2.5, 

3
u  = 13, 

1
y  = 

2
y  = 0, 

3
y  = 20.5, and the optimal objective value is 

positive (20.5), and so we conclude that (1, 2,5)tx   is not a KKT 

point. 
 

4.12 Let 
j

j j

a
y x

b
  and 

j j
j

c a
d

b
  for j = 1,…, n. Then the given 

optimization problem is equivalent to the following, re-written in a more 
convenient form: 

 

 Minimize  
1

n j

j j

d

y

 
 
 
 
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 subject to 
1

1
n

j
j

y


  

   0
j

y   for j = 1,…, n. 

 
 The KKT system for the above problem is given as follows: 
 

 
2

0
j

j
j

d
v u

y


    for j = 1,…, n 

 
 0, 0,

j j j
u y u   and 0

j
y   for j = 1,…, n. 

 
 Readily, for each j = 1,…, n, 

j
y  must take on a positive value, and hence 

0,
j

u   1,..., .j n   The KKT system thus yields ,
j

j

d
y

v
  ,j  

which upon summing and using 
1

1
n

j
j

y


  gives 

2

1
.

n

j
j

v d


 
  
  

 Thus 

( , , )y v u  given by 

1

,
j

j n

j
j

d
y

d





 1,..., ,j n   

2

1
,

n

j
j

v d


 
  
  

 and 

0,
j

u   1,..., ,j n   is the (unique) solution to the above KKT system. 

The unique KKT point for the original problem is thus given by  
 

    
j

x   

1

,
j j

n

j j j
j

b a c

a a c



 1,..., .j n   

 
4.15 Consider the problem 
 

 Minimize  
1

n

j
j

x

  

 subject to 
1

,
n

j
j

x b


  

   0, 1,..., ,
j

x j n    
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 where b is a positive constant. Since feasibility requires j
x  > 0, 

1,..., ,j n   the only active constraint is the equality restriction, and 

because of the linear independence constraint qualification, the KKT 
conditions are necessary for optimality. The KKT system for this problem 
is thus given as follows: 

 

   1 0
n

i
i j

v x


   for j = 1,…, n 

   
1

.
n

j
j

x b


  

 
 By multiplying the jth equation by 

j
x  for j = 1,…,n, and noting that 

1
,

n

j
j

x b


  we obtain 

   0
j

x vb   for j = 1,…, n. 

 

 Therefore, 
1

0,
n

j
j

x nbv


   which gives the unique value for the 

Lagrange multiplier 
1

/ .
n

j
j

v x nb


    By substituting this expression for v 

into each of the equations 0
j

x vb   for j = 1,…, n, we then obtain 

1

1 n

j k
k

x x
n 

   for j = 1,…, n. This necessarily implies that the values of 

j
x  are all identical, and since 

1
,

n

j
j

x b


  we have that 1/ ,n
j

x b  

1,...,j n   yields the unique KKT solution, and since the KKT 

conditions are necessary for optimality, this gives the unique optimum to 

the above problem. Therefore, 1/

1

1 n n
j

j
x b

n 
  is the optimal objective 

function value. We have thus shown that for any positive vector x such that 

1
,

n

j
j

x b


  we have that  

 
1

1 n

j
j

x
n 

  minimum 

1/
1/

1 1 1

1
: .

n
n nn n

j j j
j j j

x x b b x
n   

                
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 But, for any given positive vector x, the product of its components is a 

constant, and so the above inequality implies that 

1/

1 1

1
.

n
nn

j j
j j

x x
n  

 
   
 

 

Furthermore, if any component is zero, then this latter inequality holds 
trivially.    

 
4.27 a. d = 0 is a feasible solution and it gives the objective function value 

equal to 0. Therefore, 0.z   
 

 b. If 0,z   then ( ) 0.tf x d   By Theorem 4.1.2, d  is a descent 

direction. Furthermore, by the concavity of ( )
i

g x  at ,x  ,i I  since 

( ) 0,
i

g x   there exists a 0   such that ( ) ( )t
i i

g x d g x d     

for (0, ).   Since the vector d  is a feasible solution to the given 

problem, we necessarily have ( ) 0t
i

g x d   for ,i I  and thus 

( ) 0
i

g x d   for (0, ).   All the remaining constraint functions 

are continuous at ,x  and so again there exists a 
1

0   such that 

( ) 0
i

g x d   for 
1

(0, ),   1,..., .i m   This shows that d  is a 

feasible descent direction at .x  
 
 c. If 0,z   then the dual to the given linear program has an optimal 

solution of objective function value zero. This dual problem can be 
formulated as follows: 

 

  Maximize 
1 2
t tv e v e   

  subject to  
1 2

( ) ( )
i i

i I
g x u v v f x


       

   0
i

u   for ,i I
1 2

0, 0,v v   

 

  where ne R  is a vector of ones. Thus if 0,z   then 
1

v  and 
2

v  are 

necessarily equal to 0 at an optimal dual solution, and so there exist 
nonnegative numbers ,

i
u  ,i I  such that ( )f x   ( )

i i
i I

g x u

   0. 

Thus, x  satisfies the KKT conditions. 
 

4.28 Consider the unit simplex { : 1, 0},tS y e y y    which is essentially 

an (n – 1)-dimensional body. Its center is given by 
0

1 1
( ,..., ) .ty
n n

  
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Examine a (maximal) sphere with center 0
y  and radius r that is inscribed 

with S. Then, r is the distance from 
0

y  to the center of the one less 

dimensional simplex, say, formed in the 
1 1

( ,..., )
n

y y  -space, where the 

latter center in the full y-space is thus given by 
1 1

( ,..., ,0).
1 1n n 

 Hence, 

we get 
 

   
2

2
2

1 1 1 1
( 1) .

( 1) ( 1)
r n

n n n nn

 
       

 

 
 Therefore, the given problem examines the (n – 1)-dimensional sphere 

formed by the intersection of the sphere given by 
2 2

0
y y r   with the 

hyperplane 1,te y   without the nonnegativity restrictions 0,y   and 

seeks the minimal value of any coordinate in this region, say, that of 
1

y . 

The KKT conditions for this problem are as follows: 
 
  

1 01 0
2( ) 1y y u v     

  
0 0

2( ) 0
i i

y y u v        for i = 2,…, n 

  
2

0
1/ ( 1)y y n n    

  1te y   

  
0

0,u   
2

0 0
1

0.
( 1)

u y y
n n

 
    

 

 

 Let 
1 1

[0, ,..., ] .
1 1

ty
n n


 

 To show that y  is a KKT point for this 

problem, all that one needs to do is to substitute y  for y in the foregoing 

KKT system and verify that the resulting system in 
0

( , )u v  has a solution. 

Readily, 
1

1,
1

t n
e y

n


 


 and 

0
y y  has (n – 1) coordinates equal to 

1
,

( 1)n n 
 and one coordinate (the first one) equal to 

1
,

n
  so that 

2

0
1

.
( 1)

y y
n n

 


 This means that y  is a feasible solution. 

Moreover, the equations for indices 2 through n of the KKT system yield 
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0
2

,
( 1)

u
v

n n
 


 which together with the first equation gives 

0
1

0.
2

n
u


   Thus, y  is a KKT point for this problem. Since the 

problem is a convex program, this is an optimal solution. Thus, since this 
is true for minimizing any coordinate of y, even without the nonnegativity 
constraints present explicitly, the intersection is embedded in the 
nonnegative orthant.  

 
4.30 Substitute y x x   to obtain the following equivalent form of Problem 

P:  

   Minimize  2 : 0 .y d Ay   

 
 a. Problem P  seeks a vector in the nullspace of A that is closest to the 

given vector d, i.e., to the vector ( ).f x  Since the rank of A is m, an 

optimal solution to the problem P  is the orthogonal projection of the 
vector ( )f x  onto the nullspace of A (i.e., start from ,x  take a unit 

step along ( ),f x  and then project the resulting point orthogonally 

back onto the constraint surface Ax = b). 
 
 b. The KKT conditions for Problem P  are as follows: 
 

   tx A v  = x d  
   Ax = b. 
 
  The objective function of P  is strictly convex, and the constraints are 

linear, and so the KKT conditions for Problem P  are both necessary 
and sufficient for optimality. 

 
 c. If x  is a KKT point for Problem P , then there exists a vector v  of 

Lagrange multipliers associated with the equations Ax = b, such that  
 

   ,tA v d  that is, ( ) 0.tf x A v    

 
  Hence, x  is a KKT point for Problem P provided 0.v   
 
 d. From the KKT system, we get 
 

    ˆ tx x d A v    (1) 
 
  Multiplying (1) by A and using ˆ ,Ax Ax b   we get 
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    .tAA v Ad  
 

  Since A is of full row rank, the ( )m m  matrix tAA  is nonsingular. 

Thus, 1( ) .tv AA Ad  Substituting this into (1), we get 
1ˆ ( ) .t tx x d A AA Ad    

 

4.31 Let 1( ) ( ) .t t t
N B

c f x f x B N     The considered direction finding 

problem is a linear program in which the function tc d  is to be minimized 
over the region { : 0 1, },

j
d d j J    where J is the set of indices for 

the nonbasic variables. It is easy to verify that 0t
N

c d   at optimality. In 

fact, an optimal solution to this problem is given by: 0
j

d   if 0,
j

c   

and 1
j

d   if 0,
j

c   .j J   To verify if d  is an improving direction, 

we need to examine if ( ) 0,tf x d   where  

 

  ( ) [ ( ) ( ) ]t t t B
B N

N

d
f x d f x f x

d

 
     

  
 

  1[ ( ) ( ) ] .t t t
B N N N

f x B N f x d c d     

 

 Therefore, 0t
N

c d   implies that ( ) 0.tf x d   Hence, if 0,d   then we 

must have 0
N

d   (else 0
B

d   as well), whence 0t
N

c d   from above. 

This means that d  is an improving direction at .x  Moreover, to show that 

d  is a feasible direction at ,x  first, note that 
 

 
1

[ ] 0,N
N N

N

B Nd
Ad B N Nd Nd

d

 
     
  

 and therefore, 

( )A x d b   for all 0.   Moreover,  

  
1 1

0N

N

B b B Nd
x d

d






  
   
  

  

 for 0   and sufficiently small since 1 0B b   and 0,
N

d   which 

implies that 0x d   for all 0 ,    where 0.   Thus, d  is a 
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feasible direction at .x  Hence, 0d   implies that d  is an improving 
feasible direction. 

 

 Finally, suppose that d  = 0, which means that 0.
N

d   Then 0.c   The 

KKT conditions at x  for the original problem can then be written as 
follows: 

 

  ( ) 0t
B B

f x u B v     

  ( ) 0t
N N

f x u N v     

  0, 0, 0, 0.t t
B B N N B N

u x u x u u     

 

 Let 0,
B

u   1( ) ,t t
B

v f x B   and 1( ) ( ) .t t t
N N B

u f x f x B N     

Simple algebra shows that ( , , )
B N

u u v  satisfies the above system (solve 

for v from the first equation and substitute it in the second equation). 

Therefore, x  is a KKT point whenever 0d   (and is optimal if, for 

example, f is pseudoconvex).     

 
4.33 In the first problem, the KKT system is given by: 
 

  0tc Hx A u     (1) 
  Ax y b    (2) 

  0tu y   

  0, 0, 0.x y u    

 
 Since the matrix H is invertible, Equation (1) yields 

1 1 0.tH c x H A u     By premultiplying this equation by A, we obtain 
1 1 0,tAH c Ax AH A u     which can be rewritten as 

 

  1 1 0.tAH c b Ax b AH A u       (3) 
 
 Next, note that from Equation (2), we have ,y b Ax   so that Equation 

(3) can be further rewritten as 

  0,h Gu y    where 0, 0, 0.tu y u y    (4) 

 
 In the second given problem, the KKT system is given by  
 

  0, 0, 0, 0,th Gv z v z v z       (5) 
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 where z is the vector of Lagrange multipliers. By comparing (4) and (5), 
we see that the two problems essentially have identical KKT systems, 
where u v  and ,y z  that is, the Lagrange multipliers in the first 

problem are decision variables in the second problem, while the Lagrange 
multipliers in the second problem are slack variables in the first problem. 

 

4.37 We switch to minimizing the function 2 2
1 2 1 1 2 2

( , ) 4 .f x x x x x x     

 
 a. The KKT system is as follows: 
 
 

1
2x  

2
4x  

1
2vx  = 0 

 
1

4x  
2

2x  
2

2vx  = 0 

 2
1

x  2
2

x   = 1. 

 
  There are four solutions to this system: 
 

   
1 2

( , ) (1/ 2, 1/ 2),x x   and v = 3 

   
1 2

( , ) ( 1/ 2, 1/ 2),x x     and v = 3 

   
1 2

( , ) (1/ 2, 1/ 2),x x    and v = –1 

   
1 2

( , ) ( 1/ 2, 1/ 2),x x    and v = –1. 

  
  The objective function 

1 2
( , )f x x  takes on the value of –3 for the first 

two points, and the value of 1 at the remaining two. Since the linear 
independence constraint qualification (CQ) holds, the KKT conditions 
are necessary for optimality. Hence, there are two optimal solutions: 

1
(1/ 2, 1/ 2)x   and 

2
( 1/ 2, 1/ 2).x     To support this 

statement, one can use a graphical display, or use the second-order 
sufficiency condition given in Part (b) below.  

 

 b. 2 2 2
1 1 2 1 2

( ) 4 ( 1).L x x x x v x x       Therefore, 

 

    2 1 2
( ) 2 .

2 1
v

L x
v

       
 

 

  For v = 3, 2 ( )L x  is a positive definite matrix and therefore, 

1
( 2 /2, 2/2)x   and 

2
( 2 /2, 2 /2)x     are both strict local 

optima. 
 



 

44 

 c. See answers to Parts (a) and (b). 
 
4.41 a. See the proof of Lemma 10.5.3. 
 
 b. See the proof of Theorem 10.5.4. 
 
 c. Let 

d
P  denote the given problem and note that since this problem is 

convex, the KKT conditions are sufficient for optimality. Hence, it is 
sufficient to produce a KKT solution to Problem 

d
P  of the given form 

d̂ . Toward this end, consider the KKT conditions for Problem 
d

P : 

 

   
1

( ) 2 0tf x A v du     (1) 

   
1

0A d   (2) 

   2 21, 0, ( 1) 0.d u u d     

 
  Premultiplying (1) by 

1
A  and using (2), we get 

 

   
1 1 1

( ) 0.tA f x A A v    

 

  Since 
1

A  is of full (row) rank, 
1 1

tA A  is nonsingular, and so we get 

 

   1
1 1 1

( ) ( ).tv A A A f x    (3) 

 
  Thus, (1) yields 
 

   2 ( ) .du P f x d     (4) 

 

  Hence, if d  = 0, we can take ˆ 0d d   and u = 0, which together 

with (3) yields ˆ 0d   as a KKT point (hence, an optimum to 
d

P , with 

say, 1).   On the other hand, if 0,d   then let ˆ ,
d

d
d

  

,
2

d
u   and let v be given by (3). Thus, noting that 

1
ˆ 0A d   since 

1
0,A P   we get that d̂  is a KKT point and hence an optimum to 

d
P  

(with 0).d    
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 d. If 
n

A I  , then 
1

A  is an m n  submatrix of 
n

I , where m is the 

number of variables that are equal to zero at the current solution .x  

Then 
1 1

,t
m

A A I  and 
1 1

0
.

0 0
t m

I
A A

 
  
 

 Therefore, 

0 0
,0

n m
P I 

 
  
 

 and 0
j

d   if 0
j

x  , and 
( )

j
j

f x
d

x


 


 if 

0.
j

x   Hence, d  is the projection of ( )f x  onto the nullspace of 

the active (nonnegativity) constraints. 
 
4.43 Note that { : 0}C d Ad   is the nullspace of A, and P is the projection 

matrix onto the nullspace of A. If ,d C  then Pd = d, and so, d = Pw with 

.w d  On the other hand, if d = Pw for some nw R , we have that Ad = 
APw = 0 since AP = 0. Hence, .d C  This shows that d C  if and only 

if there exists a nw R  such that Pw = d. Next, we show that if H is a 

symmetric matrix, then 0td Hd   for all d C  if and only if tP HP  is 
positive semidefinite. 

 ( ) Suppose that 0td Hd   for all .d C  Consider any nw R  and 
let d = Pw. Then Ad = APw = 0 since AP = 0, and so .d C  Thus 

0td Hd  , which yields 0t tw P HPw   for any .nw R  Hence, the 

matrix tP HP  is positive semidefinite. 

 ( ) If 0t tw P HPw   for all ,nw R  then in particular for any d C , 

we have 0,t td P HPd   which gives 0td Hd   since for any d C  we 

have Pd = d.     
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CHAPTER 5: 

 

CONSTRAINT QUALIFICATIONS 

 
5.1 Let T denote the cone of tangents of S at x  as given in Definition 5.1.1. 
 
 a. Let W denote the set of directions defined in this part of the exercise. 

That is, d W  if there exists a nonzero sequence { }
k

  convergent to 

zero, and a function : nR R   that converges to 0 as 0  , such 

that ( )
k k k

x d S       for any k. We need to show that W = T. 

First, note that 0 W  and 0 T . Now, let d be a nonzero vector 
from the set T. Then there exist a positive sequence { }

k
  and a 

sequence { }
k

x  of points from S convergent to x  such that 

lim ( )
k kk

d x x


  . Without loss of generality, assume that 

,
k

x x k   (since 0).d   Therefore, for this sequence { }
k

x , 

consider the nonzero sequence { }
k

  such that 
k
d  is the projection 

of 
k

x x  onto the vector d. Hence, { } 0 .
k

   Furthermore, let 

( ) .
k k k

y x x d    Because of the projection operation, we have 

that 
 

   
2 222 ,

k k k
x x d y    

 

  i.e., 

22

2
2 22

1 .

k
k

k k

x xy
d

d 

  
  

 
 

 (1) 

 

  But we have that cos( ),k
kk

d

x x





 where 

k
  is the angle between 

( )
k

x x  and d. Since d T , we have that 0
k
   and so 

cos( ) 1
k
   and thus 0k

k

y


  from (1). Consequently, we can 

define : nR R   such that ( )
k k k

y     so that 
k k

x x d    
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( ) , ,
k k

S k      with ( ) / 0
k k k

y     as 0
k

  . Hence, 

.d W  
 
  Next, we show that if ,d W  then .d T  For this purpose, let us 

note that if ,d W  then the sequence { } ,
k

x S  where 

( ),
k k k k

x x d       converges to ,x  and moreover, the 

sequence 
1

( )
k

k

x x d


    
  

 converges to the zero vector. This 

shows that there exists a sequence { },
k
  where 

1
,

k
k




  and a 

sequence { }
k

x  of points from S convergent to x  such that 

lim ( ).
k kk

d x x


   This means that ,d T  and so the proof is 

complete. 
 
 b. Again, let W denote the set of directions defined in this part of the 

exercise. That is, d W  if there exists a nonnegative scalar   and a 
sequence { }

k
x  of points from S convergent to ,x  

k
x x  for all k, 

such that lim .k

k
k

x x
d

x x








 Again in this case, we have 0 W  

and 0 ,T  and so let d be a nonzero vector in T. Then there exists a 

sequence { }
k

x  of points from S different from x  and a positive 

sequence { }
k
  such that ,

k
x x  and 

lim .k
k kk

k

x x
d x x

x x





 


 Under the assumption that ,d T  the 

sequence  k k
x x   is contained in a compact set. Therefore, it 

must have a convergent subsequence. Without loss of generality, 

assume that the sequence k

k

x x

x x

  
 

  
 itself is convergent. If so, then 

we conclude that lim ,k

k
k

x x
d

x x








 where .d   Hence, 

.d W   
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  Conversely, let ,d W  where again, 0.d   Then we can simply take 

0
k

k
x x

  


 to readily verify that .d T  This completes the 

proof.     

 
5.12 a. See the proof of Theorem 10.1.7. 
 
 b. By Part (a), x  is a FJ point. Therefore, there exist scalars 

0
u  and 

i
u  

for ,i I  such that 
 
  

0
( ) ( ) 0,

i i
i I

u f x u g x


     

  
0

0, 0
i

u u   for ,i I  
0

( ,
i

u u  for ) 0.i I   

 
  If 

0
0,u   then the system 

 
  ( ) 0,

i i
i I

u g x


   

  0
i

u   for i I  

 
  has a nonzero solution. Then, by Gordan’s Theorem, no vector d 

exists such that ( ) 0t
i

g x d   for all .i I  This means that 

0
,G    and so 

0
( ) ,c G    whereas G    (since 0 ).G  This 

contradicts Cottle’s constraint qualification. 
 

5.13 a. [1 0] ,tx   {1, 2},I   
1
( ) [2 0] ,tg x 

2
( ) [0 1] .tg x    The 

gradients of the binding constraints are linearly independent; hence, 
the linear independence constraint qualification holds. This implies 
that Kuhn-Tucker’s constraint qualification also holds (see Figure 5.2 
in the text and its associated comments). 

 

 b. If [1 0] ,tx   then the KKT conditions yields: 

 
   –1 + 

1
2u   = 0 

     – 
2

u  = 0, 

 

  i.e., 
1

1

2
u   and 

2
0.u   Since the Lagrange multipliers are 

nonnegative, we conclude that x  is a KKT point. 
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  Note that a feasible solution must be in the unit circle centered at the 
origin; hence no feasible solution can have its first coordinate greater 
than 1. Therefore, x  (which yields the objective value of –1) is the 
global optimal solution. 

 
5.15 X is an open set, the functions of nonbinding constraints are continuous at 

,x  and the functions whose indices are in the set J are pseudoconcave at 
.x  Therefore, by the same arguments as those used in the proof of Lemma 

4.2.4, any vector d that satisfies the inequalities ( ) 0t
i

g x d   for ,i J  

and ( ) 0t
i

g x d   for i I J   is a feasible direction at .x  Hence, if x  

is a local minimum, then the following system has no solution: 
 

  ( ) 0tf x d   

  ( ) 0t
i

g x d   for i I J   

  ( ) 0t
i

g x d   for .i J  

 
 Accordingly, consider the following pair of primal and dual programs P 

and D, where 
0

y R  is a dummy variable: 

 
 P: Maximize 

0
y   

  subject to 
0

( ) 0tf x d y    

   
0

( ) 0,t
i

g x d y     i I J    

   ( ) 0,t
i

g x d    .i J   

 
 D: Minimize 0 
  subject to 

0
( ) ( ) 0

i i
i I

u f x u g x


     (1) 

   
0

1
i

i I J
u u

 
    (2) 

   
0

( ,
i

u u  for ) 0.i I    (3) 

 
 Then, since the foregoing system has no solution, then we must have that P 

has an optimal value of zero (since if 
0

0y   for a feasible solution 

0
( , ),y d  then P is unbounded), which means that D is feasible, i.e., (1) – 

(3) has a solution. If 
0

0u   in any such solution, then x  is a KKT point 

and we are done. Else, suppose that 
0

0,u   which implies by (2) that 

.I J    Furthermore, letting d belong to the given nonempty set in the 
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exercise such that ( ) 0t
i

g x d   for ,i J  and ( ) 0t
i

g x d   for 

,i I J     we have by taking the inner product of (2) with d that  
 

   ( ) ( ) 0,t t
i i i i

i J i I J
u g x d u g x d

  
      

 
 which yields a contradiction since the first term above is nonpositive and 

the second term above is strictly negative because 
i

u  > 0 for at least one 

.i I J     Thus 
0

u  > 0, and so x  is a KKT point.      

 

5.20 Let ( ) 1 0tg d d d    be the nonlinear defining constraint. Then 

( ) 2 .t tg d d d d   Hence 
1

G  is the set G  defined in the text, and so by 

Lemma 5.2.1, we have that 
1
.T G  Therefore, we need to show that 

1
.G T  Let d be a nonzero vector from 

1
.G  If 0,td d   i.e., 

( ) 0,tg d d   then we readily have that d D  (see the proof of Lemma 

4.2.4 for details), and hence, .d T  Thus, suppose that 0.td d   Then d 

is tangential to the sphere 1.td d   Hence, since 
2

0,C d   and 
1

0C d   

with ,d d  there exists a sequence { }
k

d  of feasible points ,
k

d d  

,
k

d d  and 1t
k k

d d   such that lim .k

k
k

d dd

d d d





 Therefore, 

.d T  
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CHAPTER 6: 

 

LAGRANGIAN DUALITY AND SADDLE POINT OPTIMALITY 

CONDITIONS 

 
6.2 For the problem illustrated in Figure 4.13, a possible sketch of the 

perturbation function ( )v y  and the set G are very much similar to that 

shown in Figure 6.1 (note that the upper envelope of G also increases with 
y, and only a partial view of G (from above) is shaded in Figure 6.1. 
Hence, as in Figure 6.1, there is no duality gap for this case. 

 
6.3 Let the left-hand side of the inequality be given by ˆ ˆ( , ).x y  Hence, we get 

 
 ˆ ˆ ˆsup inf ( , ) ( , ) inf ( , ) inf sup ( , ).

x X x X x Xy Y y Y
x y x y x y x y   

   
        

 

6.4 Let 
1 2

(1 ) ,y y y      where 
1

y  and 
2

my R    and where 

[0,1].   We need to show that 
1 2

( ) ( ) (1 ) ( ).v y v y v y      For this 

purpose, let 
 

1 1 1,
( ) { : ( ) , 1,..., , ( ) , 1,..., , }

i i i m i
X y x g x y i m h x y i x X       

2 2 2,
( ) { : ( ) , 1,..., , ( ) , 1,..., , }

i i i m i
X y x g x y i m h x y i x X       

,
( ) { : ( ) , 1,..., , ( ) , 1,..., , }

i i i m i
X y x g x y i m h x y i x X          

( ) ( ),
k k

v y f x  where 
k

x  optimizes (6.9) when ,
k

y y  for k = 1, 2, and let 

( ) ( ),v y f x
  where x  optimizes (6.9) when .y y  

 
 By the definition of the perturbation function ( ),v y  this means that  

 
 ( )

k k
x X y  and ( ) min{ ( ) : ( )}

k k
f x f x x X y   for k = 1, 2, and 

 ( )x X y
   and ( ) min{ ( ) : ( ).f x f x x X y

    

 
 Under the given assumptions (the functions ( )

i
g x  are convex, the 

functions ( )
i

h x  are affine, and the set X is convex) we have from the 

definition of convexity that 
1 2

(1 ) ( )x x x X y       for any 

[0,1].   But ( ) min{ ( ) : ( )},f x f x x X y
    and so ( ) ( ),f x f x

   
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which together with the convexity of ( )f x  implies that ( ) ( )v y f x
   

1 2 1 2
( ) ( ) (1 ) ( ) ( ) (1 ) ( ).f x f x f x v y v y           This completes 

the proof.     

 
6.5 The perturbation function from Equation (6.9) for Example 6.3.5 is given 

by  
 
 

1 2 1 2
( ) min{ : 2 3 ,v y x x x x y       with 

1 2
, {0,1,2,3}}.x x   

 
 Hence, by examining the different combinations of discrete solutions in the 

1 2
( , )x x -space, we get  

 

 

1 2

1 2

1 2

1 2

1

if 3
0 if 3 2 [evaluated at   ( , ) (0,0)]

1 if 2 1 [evaluated at   ( , ) (1,0)]

2 if 1 0 [evaluated at   ( , ) (2,0)]
( ) 3 if 0 2 [evaluated at   ( , ) (3,0)]

4 if 2 4 [evaluated at   (

y
y x x

y x x

y x x
v y y x x

y x

  
    

     
    

    
  

2

1 2

1 2

, ) (3,1)]

5 if 4 6 [evaluated at   ( , ) (3,2)]

6 if 6 [evaluated at   ( , ) (3,3)]

x

y x x

y x x











   
  

 

 
 Note that the optimal primal solution is given by 

1 2
( , ) (3,0)x x   of 

objective value –3, which also happens to be the optimum to the 
underlying linear programming relaxation in which we restrict 

1
x  and 

2
x  

to lie in [0, 3], thus portending the existence of a saddle point solution. 
Indeed, for 1,u   we see from Example 6.3.5 that ( ) 3,u    and so 

1 2
( , , )x x u  is a saddle point solution and there does not exist a duality gap 

in this example. Moreover, we see that  
 
   ( ) 3 ,v y y y    

 
 as in Equation (6.10) of Theorem 6.2.7, thus verifying the necessary and 

sufficient condition for the absence of a duality gap.  
 
6.7 Denote { : },S conv x X Dx d    and note that since X is a compact 

discrete set, we have that S is a polytope. Hence, for any linear function 
( ),f x  we have min ( ) : , } min{ ( ) : }.f x Dx d x X f x x S     

Therefore, for each fixed ,mR   we get 
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 ( ) min{ ( ) : , }t tc x Ax b Dx d x X        

                        min{ ( ) : }.t tc x Ax b x S     

 

 Now, consider the LP : min{ : , }.tc x Ax b x S   Then, by strong 

duality for LPs, we get 
 

min{ : , } max min { ( )} max ( ).
m m

t t t

x SR R
c x Ax b x S c x Ax b

 
  

 
       (1) 

 
 This establishes the required result. Moreover, the optimal value of 

Problem DP is given by min{ : },tv c x x S    where 

 

 { : , , } { : , }.S conv x Ax b Dx d x X x Ax b x S         (2) 

 

 Thus, we get min{ : , },tv c x Ax b x S     which yields from (1) that 

max ( ),
mR

v


 


  where a duality gap exists if this inequality is strict. 

Therefore, the disparity in (2) potentially causes such a duality gap.     

 
6.8 Interchanging the role of x and y as stated in the exercise for convenience, 

and noting Exercise 6.7 and Section 6.4, we have 
 

1 ( , )
max ( ) max min{ ( ) : ,  ,  ,  }t t

x y
v c x x y Ay b y Y Dx d x X

 
           

and 

2
max ( ) max min{ ( ) : ,  }.t t

x
v c x Ax b Dx d x X

 
         

 
 Let 

1
{ : }S conv x X Dx d    and 

2
{ : }.S conv y Y Ay b    

 Then from Exercise 6.7 (see also Section 6.4), we have that 
 

  
1 1 2

min{ : ,  ,  }tv c x x S y S x y     (1) 

 
  and 
 

  
2 1

min{ : ,  }.tv c x Ax b x S     (2) 

 
 Hence, we get 
 

 
2 1

min{ : ,  ,  }tv c x Ay b x y x S     
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1 2 1

min{ : , , } ,tc x x S y S x y v      where the inequality follows 

since 
2

{ : }.S y Ay b   This proves the stated result, where (1) and (2) 

provide the required partial convex hull relationships. 
 
6.9 First, we show that if ( , ) (0,0),

u v
d d   then ( , )u v  solves Problem (D). 

Problem (D) seeks the maximum of a concave function ( , )u v  over 

{( , ) : 0},u v u   and so the KKT conditions are sufficient for optimality. 

To show that ( , )u v  is a KKT point for (D), we need to demonstrate that 

there exists a vector 
1

z  such that 

 
 

1
( , ) 0

u
u v z    

 ( , ) 0
v

u v   

    
1 1

0, 0.tz u z   

 
 By assumption, we have ( , ) ( ) 0,

v
u v h x    and ( , ) ( ).

u
u v g x   

Moreover, since 0,
u

d   we necessarily have ( ) 0g x   and ( ) 0.tg x u   

Thus, 
1

( )z g x   solves the KKT system, which implies that ( , )u v  

solves (D). (Alternatively, note from above that if x  evaluates ( , ),u v  

then the given condition implies that x  is feasible to P with ( ) 0,tu g x   

and hence ( , , )x u v  is a saddle point, and so by Theorem 6.2.5, x  and 

( , )u v  respectively solve P and D with no duality gap.) 

 
 Next, we need to show that if ( , ) (0,0),

u v
d d   then ( , )

u v
d d  is a feasible 

ascent direction of ( , )u v  at ( , ).u v  Notice that v is a vector of 

unrestricted variables, and by construction 0
ui

d   whenever 0.
i

u   

Hence, ( , )
u v

d d  is a feasible direction at ( , ).u v  To show that it is also an 

ascent direction, let us consider ( , )tu v d : 

 

( , )tu v d  ˆ( , ) ( , ) ( ) ( ) ( ) ( )t t t t
u u v v

u v d u v d g x g x h x h x        

  2

: 0 : 0
( ) ( ) ( ) ( ) max{0, ( )}.

i i

t
i i i

i u i u
h x h x g x g x g x

 
     

 
 All the foregoing terms are nonnegative and at least one of these is 

positive, for otherwise, we would have ( , ) (0,0).
u v

d d   
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Thus, ( , ) 0.tu v d   This demonstrates that ( , )
u v

d d  is an ascent 

direction of ( , )u v  at ( , ).u v     

 
 In the given numerical example,  
 
 

 2 2
1 2 1 2 1 1 2 2 1 2

( , ) min{ ( 4) ( 2 8)u u x x u x x u x x          : 

               2
1 2

( , ) }.x x R  

 
 Iteration 1: 

1 2
( ,  ) (0,  0).u u   

 
 At 

1 2
( ,  ) (0,  0)u u   we have (0,  0) 0,   with 

1 2
0.x x   Thus, 

1
max{0,  4} 4,d    and 

2
max{0,  8} 0.d     Next, we need to 

maximize the function 
1 2

( , )u u  from (0, 0) along the direction (4, 0). 

Notice that  
 
 [(0,  0) (4,  0)] (4 ,  0)      

 2 2 2
1 2 1 2 1 2

min{ 4 ( 4) : ( ,  ) }x x x x x x R        

 2
1 1 1

min{ 4 : }x x x R    

 2
2 2 2

min{ 4 : } 16x x x R      

 28 16 ,      

 and max{ (4 ,  0) : 0}     is achieved at 1.   Hence, the new iterate 

is (4, 0). 
 
 Iteration 2: 

1 2
( ,  ) (4,  0).u u   

 
 At 

1 2
( ,  ) (4,  0)u u   we readily obtain that  

 

 2 2 2
1 2 1 2 1 2

(4,  0) min{ 4( 4) : ( ,  ) } 8,x x x x x x R          

 
 with 

1 2
2.x x   Thus, 

1 1
(2,  2) 0,d g   and 

2
max{0,  2} 0.d     

Based on the property of the dual problem, we conclude that at 

1 2
( ,  ) (4,  0)u u   the Lagrangian dual function 

1 2
( , )u u  attains its 

maximum value. Thus 
1 2

( ,  ) (4,  0)u u   is an optimal solution to Problem 

D.  
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6.14 Let 
1 0
( , )v v  be the Lagrangian dual function for the transformed problem. 

That is, 
1 0 0
( , ) inf{ ( ) ( ( ) ) ( ) : ( , ) }.t tv v f x v g x s v h x x s X        

 The above formulation is separable in the variables x and s, which yields  

 
1 0 0 0
( , ) inf{ ( ) ( ) ( ) : } inf{ : 0}.t t tv v f x v g x v h x x X v s s        

 Note that if 
0

0,v   then 
0

inf{ : 0} 0,tv s s    and otherwise, we get 

0
inf{ : 0} .tv s s     Therefore, the dual problem seeks the 

unconstrained maximum of 
1 0
( , ),v v  where 

 

 0 0
1 0

inf{ ( ) ( ) ( ) : } if 0
( , )

otherwise.

t tf x v g x v h x x X v
v v

     


 

 
 This representation of 

1 0
( , )v v  shows that the two dual problems are 

equivalent (with 
0

).v u  

 
6.15 For simplicity, we switch to the minimization of 

1 2 3
( ) 3 2 .f x x x x     

 
 a. 

1 2 1 1
( ) 4 3 min{( 3 )u u u u x         

              
1 2 2 3

( 2 2 ) ( 1 ) : }.u x u x x X       (1) 

 
  The set X has three extreme points 

1
x  = (0, 0, 0), 

2
x  = (1, 0, 0), and 

3
x  = (0, 2, 0), and three extreme directions 

1
d  = (0, 0, 1), 

2
d  = 

1 1
(0, , ),

2 2
 and 

3
1 2

( , 0, ).
3 3

d   Hence, for ( ) ,u    we must 

have (examining the extreme directions) that  
 
  

1 2 2 1 2 1 2
{( , ) : 1, 2 3, 2 5}.u U u u u u u u u        (2) 

 
  Hence, any 0u   such that u U  will achieve the minimum in (1) 

at an extreme point, whence, 
 
  

1 2 1 2 2
( ) min{ 4 3 , 3 3 3, 3 4}.u u u u u u          (3) 

 
  Putting (2) and (3) together and simplifying the conditions, we get 
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1 2 1 2

1 2 1 2 1 2 1 2

2 1 1 2

4 3  if  3 and 1

1
3 3 3 if 3, 1, 2 3,  and 2 5

3( )
1

3 4 if  and 2 3
3

  otherwise.

u u u u

u u u u u u u u
u

u u u u



   

          
    



 
 b. In this case, we get  
 
 

1 2 1 1 1 2 1 2 3
( ) 2 3 min{( 3 2 ) ( 2 ) ( 1 ) }

x X
u u u u x u x u u x


            

 
 
  i.e., 
 
  

1 2 1 1 1 2
( ) 2 3 min{( 3 2 ) ( 2 ) :u u u u x u x           

                           
1 2 1 2

2 4, ( , ) 0}x x x x    

              
1 2 3 3

min{( 1 ) : 0}.u u x x      

 
  Noting that the extreme points of the polytope in the first 

minimization problem in 
1 2

( , )x x  are (0, 0), (4, 0), and (0, 2), and that 

the second minimization problem yields an optimal objective function 
value of zero if 

1 2
1u u    and goes to   otherwise, we get that  

 
  

1 2 1 1
( ) 2 3 min{0, 12 8 , 4 2 }u u u u u          if 

1 2
1,u u    

 
  and is   otherwise. Thus, 
 

  

1 2 1 1 2

1 2 1 1 2

2 1 1 2

2 3  if  2 and 1

12 6 3  if  4/3 and  1
( )

4 3  if  4/3 2 and 1

  otherwise.

u u u u u

u u u u u
u

u u u u


     
             


 

 
 c. We can select those constraints to define X that will make the 

minimization over this set relatively easy, e.g., when the minimization 
problem decomposes into a finite number of simpler, lower 
dimensional, independent problems. 

 



 

58 

6.21 Let inf{ ( ) : ( ) 0,f x g x    ( ) 0,h x   }.x X  Readily,   is a finite 

number, since x  solves Problem P: minimize ( )f x  subject to ( ) 0,g x   

( ) 0, .h x x X   Moreover, the system 

 
  ( ) 0, ( ) 0, ( ) 0,f x g x h x x X      

 
 has no solution. By Lemma 6.2.3, it then follows that there exists a 

nonzero vector 
0

( , , ),u u v  such that 
0

( , ) 0,u u   and 

 

  
0

( ( ) ) ( ) ( ) 0t tu f x u g x v h x     for all .x X  (1) 

 
 That is, 

0 0
( , , , )u u v x u   for all .x X  But, since x  solves 

Problem P, we have ( ).f x   Moreover, ( ) 0h x   and ( ) 0,g x   so 

that ( ) 0tv h x   and ( ) 0.tu g x   Therefore, for any x in X 

 

 
0 0 0

( , , , ) ( ) ( ) ( ) ( , , , ).t tu u v x u f x u g x v h x u u v x      

 
 This establishes the second inequality. To prove the first inequality, note 

that for any 0,u   we have 
 

  
0 0

( , , , ) ( , , , ) ( ) ( )tu u v x u u v x u u g x      

  ( ) ( ) ( ) ( ) ( ).t t tv v h x u u g x u g x     (2) 

 

 Now, from (1) for ,x x  since ( ) ,f x   we get ( ) ( ) 0,t tu g x v h x   

i.e., ( ) 0.tu g x   But ( ) 0g x   since x  is a feasible solution, and 0,u   

which necessarily implies that ( ) 0.tu g x   Thus, (2) implies that for any 

0u   and ,v R   we have that 
0 0

( , , , ) ( , , , ) 0.u u v x u u v x      

 
6.23 a. ( )u   

1 2 3 4 1 1 2 3 4
min{ 2 2 3 ( 8)x x x x u x x x x           

    
2 1 3 4

( 2 4 2) : }u x x x x X     

   
1 2 1 1 2

min{ 2 ) (2 ) :u u x u x       

    
1 2 1 2

8, 0, 0}x x x x     

   
1 2 3 1 2 4

min{1 2 ) ( 3 4 ) :u u x u u x        

    
3 4 3 4 1 2

2 6, 0, 0} 8 2 .x x x x u u       
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  The extreme points of 
1 2 1 2

{( , ) 0 : 8}x x x x    are (0, 0), (8, 0), 

and (0, 8) in the 
1 2

( , )x x -space, and the extreme points of 

3 4 3 4
{( , ) 0 : 2 6}x x x x    are (0, 0), (6, 0), and (0, 3) in the 

3 4
( , )x x -space. Thus,  

 
  

1 2 1 2 1
( ) 8 2 min{0, 16 8 8 ,16 8 }u u u u u u          

                      
1 2 1 2

min{0,6 6 12 , 9 3 12 }.u u u u       (1) 

 
  Noting that 

1 2
( , ) 0,u u   we get that 

 

1 2
1 2 1

1 2 1 2

0 if 2
min{0, 16 8 8 ,16 8 }

16 8 8  if 2.

u u
u u u

u u u u

          
 (2) 

 
  Similarly, 
 
  

1 2 1 2
min{0,6 6 12 ,9 3 12 }u u u u      

        

1 2 1 2

1 2 1 2

1 2

1 2 1 2

1 2

0 if 2 1 and 4 3

6 6 12  if 2 1 and

                           8 5

9 3 12  if 4 3 and

                          8 5.

u u u u

u u u u

u u

u u u u

u u

    
     


  
    
   

 (3) 

 
  Examining the six possible combinations given by (2) and (3), and 

incorporating these within (1), we get that (upon eliminating 
redundant conditions on 

1 2
( , )),u u  ( ) ( )

i
u u   if ,

i
u U  i = 1,…,6, 

where  
 

1 1 2
( ) 8 2u u u    and 

  
1 1 2 1 2 1 2 1 2

{( , ) 0 : 2 1, 2, 4 3}U u u u u u u u u          

2 1 2
( ) 6 2 14u u u     and 

  
2 1 2 1 2 1 2

{( , ) 0 : 2, 2 1}U u u u u u u        

3 1 2
( ) 9 5 10u u u      and 

  
3 1 2 1 2 1 2

{( , ) 0 : 4 3, 2}U u u u u u u       

4 2
( ) 16 6u u     and 

  
4 1 2 1 2 1 2 1 2

{( , ) 0 : 2 1, 2, 4 3}U u u u u u u u u          



 

60 

5 1 2
( ) 10 6 6u u u      and 

  
5 1 2 1 2 1 2 1 2

{( , ) 0 : 2, 2 1, 8 5}U u u u u u u u u           

6 1 2
( ) 25 3 18u u u      and 

  
6 1 2 1 2 1 2 1 2

{( , ) 0 : 8 5, 4 3, 2}U u u u u u u u u          

 
 b. Note that u = (4, 0) belongs to 

1
U  alone. Thus,   is differentiable at 

(4, 0), with (4,0) ( 8, 2).     

 c. When u = (4, 0) and ( 8, 2),d     the second coordinate of 

(4,0) ( 8, 2)u d       is 2 ,  which is negative for all 

0.   Since 
2

0,u   we have that the gradient of ( )u  at (4, 0) is 

not a feasible direction at (4, 0). However, projecting d onto 

2
( 0),d d   we get that ( 8,0)d     is a feasible direction of 

( )u  at (4, 0). Moreoever, (4,0) 64 0.t d     Thus, d   is an 

improving, feasible direction. 
 d. To maintain feasibility, we must have 4 8 0,   i.e.,   should be 

restricted to values in the interval [0, 1/2]. Moreoever,  
 
  ( ) [(4,0) ( 8,0)] [(4 8 ,0)]u d            

  
1 2 1 2 1 2

min{(2 8 ) (6 8 ) : 8, 0, 0}x x x x x x          

  
3 4 3 4 3 4

min{(5 8 ) (1 8 ) : 2 6, 0, 0}x x x x x x          

  32(1 2 )   

  32(1 2 ) min{0,16(1 4 ),16(3 4 )}         

  min{0,6(5 8 ),3(1 8 )}     

  32(1 2 ) min{0,16(1 4 )}       

  min{0,3(1 8 )}   when 0 1/2.   

 
  Thus, we get 
 

  
32 64 for 0 1/8

( ) 29 40 for 1/8 1/4
13 24 for 1/4 1/2.

u d
 

   
 

        
   

 

 
  The maximum of ( ) [(4 8 ,0)]u d       over [0, 1/2]   is 

19,  and is attained at 1/4.   
 
6.27 For any 0,u   we have 
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0

( ) min{ ( )}.
x

u x ug x


   

 
 a. For this case, we have (over 0x  ): 
 

   
2

for 0
( )

0 for 0.

u
x x

x ug x x
x

    
 

 

 
  When u = 0, we get ( ) 0u   (achieved uniquely at x = 0). 

  When u > 0, we get ( )u    (as 0 ).x   

 
  Moreover,   is a subgradient of   at u = 0 if and only if  

 
  ( ) (0) ,  0u u u       

 
  i.e., ( ) ,  0.u u u     

 
  Noting the form of ,  we get that any R   is a subgradient. (Note 

that at u = 0, we get ( )u  is evaluated by only x = 0, where 

(0) 0,g   which is a subgradient, but Theorem 6.3.3 does not apply 

since g is not continuous at x = 0. Furthermore, if we consider all 
,u R  then any ( ) 0u   for u < 0, and any 0   is a subgradient 

of   at u = 0.) 
 
 b. For this case, we have (over 0)x  : 

 

  
2

for 0
( )

for 0.

u
x x

x ug x x
u x

    
  

 

 
  When u = 0, we get ( ) 0u   evaluated (uniquely) at x = 0. 

 

  When u > 0, we get ( )u    (as 0 ).x   

 
  As above, any R   is a subgradient of   at u = 0. Moreover, if we 

consider all of ,u R  then for 8 0,u    it can be verified that 

( )u u    (see Part (c) below), so then any 1    is a subgradient 

of   at u = 0. 
 
 c. In this case, we get 
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2

for 0
( )

for 0.

u
x x

x ug x x
u x

    
 

 

 
  When u = 0, we get ( ) 0,u   evaluated uniquely at x = 0.  

  When u > 0, we get 
0

2
( ) min{ , min{ }}.

x

u
u u x

x



   

 

  The convex function 
2u

x
x

  over x > 0 achieves a minimum at 

2x u  of value 2 2 .u  Hence, when u > 0, we get 

( ) min{ ,2 2 },u u u   i.e., 

 

  
0 if 0

( ) if 8

2 2 if 8.

u
u u u

u u


 
 
 

 

 
  Moreover, any 1   is a subgradient, considering either just 0u   

or all of ,u R  since in this case, ( )u    when u < 0. 

 
6.29 Assume that .X    
 
 a. The dual problem is: maximize ( ),v  where ( ) min{ ( )v f x    

( ) : }.tv Ax b x X   

 
 b. The proof of concavity of ( )v  is identical to that of Theorem 6.3.1. 

Alternatively, since X is a nonempty compact polyhedral set, and for 

each fixed v, since the function ( ) ( )tf x v Ax b   is concave, we 

have by Theorem 3.4.7 that there exists an extreme point of X that 
evaluates ( ).v  Thus, if ( )vert X  denotes the finite set of extreme 

points of X, we have that 
ˆ ( )

ˆ ˆ( ) min { ( ) ( )}.t

x vert X
v f x v Ax b


    Thus, 

the dual function ( )v  is given by the minimum of a finite number of 

affine functions, and so is piecewise linear and concave [see also 
Exercise 3.9]. 

 
 c. For a given ˆ,v  let ˆ( )X v  denote the set of optimal extreme point 

solutions to the problem of minimizing ˆ( ) ( )tf x v Ax b   over X. 
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Then, by Theorem 6.3.7, ˆ( )v  is a subgradient of ( )v  at v̂  if and 

only if ˆ( )v Ax b    for some x in the convex hull of ˆ( ).X v  

Moreoever, denoting ˆ( )v  as the subdifferential (set of 

subgradients) of   at ˆ,v  we have that d is an ascent direction for   at 

v̂  if and only if ˆinf{ : ( )} 0,t d v      i.e., if and only if 

ˆ ˆ ˆmin{ ( ) : ( )} 0.td Ax b x X v    Hence, if Ax = b for some 

ˆ( ),x X v  then the set of ascent directions of ( )v  at v is empty. 

Otherwise, an ascent direction exists. In this case, the steepest ascent 

direction, ˆ,d  can be found by employing Theorem 6.3.11. Namely, 

ˆ ˆ ˆ/ ,d    where ̂  is a subgradient of ( )v  at v̂  with the smallest 

Euclidean norm. To find ˆ,  we can solve the following problem: 

minimize Ax b  subject to ˆ[ ( )].x conv X v  If x̂  is an optimal 

solution for this problem, then ˆ ˆ .Ax b    

 
 d. If X is not bounded, then it is not necessarily true that for each v there 

exists an optimal solution for the problem to minimize 

( ) ( )tf x v Ax b   subject to .x X  For all such vectors the dual 

function value ( )v  is .  However, ( )v  is still concave and 

piecewise linear over the set of all vectors v for which 

min{ ( ) ( ) : }tf x v Ax b x X    exists. 

 




