CHAPTER 2:

CONVEX SETS

2.1

2.2

2.3

Let x € conv(S1 e Sz)' Then there exists 4 € [0,1] and X, X, € S1 N S2
such that x = Ax, + (1 - A)x, . Since x, and x, are both in S, > x must be
in conv(Sl). Similarly, x must be in conv(Sz). Therefore, x € conv(Sl) N
conv(Sz). (Alternatively, since S1 c conv(Sl) and S2 c conv(Sz), we
have S, NS, < conv(S)) Nconv(S,) or that comS, NS, ] <

conv(S;) N conv(Sz) )

An example in which conv(S1 N Sz) * conv(Sl) N conv(Sz) is given

)

below:

Here, conv(S1 N SZ) = J, while conv(Sl) N conv(Sz) = S1 in this case.

Let S be of the form S = {x : Ax < b} in general, where the constraints

might include bound restrictions. Since S is a polytope, it is bounded by
definition. To show that it is convex, let y and z be any points in S, and let
x=Ay+({1—-A)z, for 0< A <1. Then we have Ay <b and A4z < b,

which implies that
Ax = AAy + (1 - DAz < b+ (1 -AD)b=0b,
or that x € S. Hence, S is convex.
Finally, to show that S is closed, consider any sequence {xn} — x such

that x € S, Vn. Then we have Ax < b, Vn, or by taking limits as

n— o,weget Ax < b, 1i.e., x € S as well. Thus S'is closed.

Consider the closed set S shown below along with conv(S), where
conv(S§) is not closed:



2.7

2.8

-f
= |

Now, suppose that S < R” is closed. Toward this end, consider any

sequence {x } — x, where x € conv(S), Vn. We must show that

x € conv(S). Since X, € conv(S), by definition (using Theorem 2.1.6),
p+l

we have that we can write x, = > ﬂnrx;, where x; e S for
r=1

p+l1
r=1.,p+1, Vn, and where /Inr =1, Vn, with lnr >0, Vr,n.

r=1
Since the /Inr -values as well as the x; -points belong to compact sets,
there exists a subsequence K such that {inr} P /lr , Vr=1L..,p+1,
and {x;} — x", Vr =1,.,p +1. From above, we have taking limits as

n— o, neK,that

p+l p+l
x= 3 ﬂrxr,with YA =1,4 20, Vr=1.,p+1,
r=1 r=1

where x" €8, Vr=1,..,p+1 since S is closed. Thus by definition,

x € conv(S) and so conv(S) is closed. [

a. Let y] and y2 belong to AS. Thus, yl = Ax' for some x' € S and
y2 = Ax? for some x> € S. Consider y = /Iy1 +(1- /1)y2, for any
0<A<1. Then y=AAx'+(1-24)x*]. Thus, letting

x=Ax + 1- /1)x2, we have that x € S since S is convex and that
y = Ax. Thus y € A4S, and so, AS is convex.

b. If a =0, then aS = {0}, which is a convex set. Hence, suppose that
a#0.Let ax' and ax’ asS, where x' € S and x* € S. Consider
ax=Aax' + (1- /1)01x2 for any 0<A<1. Then, ax= 0([/1x1 +

(1—ﬂ)x2] . Since a # 0, we have that x = x4 1- /1)x2, or that
x € § since S is convex. Hence ax € @S for any 0 < A <1, and
thus aS is a convex set.

S1+S2 ={(X1,x2)50Sx1S1, 2Sx2 < 3.

5



2.12

S -, :«{(xl,xz):—ISx1 <0, -2<x, < -1}

Let §=358 +5,. Consider any y, z € S, and any A € (0,1) such that
Y=yt and z = z +z,, with .71 €S, and 5,1 8,
Then Ay +(1- A1)z = lyl + lyz +(1- ﬂu)z1 +(1- /1)22. Since both sets
S1 and S2 are convex, we have /’Lyl. +(1- /l)zl. € Sl., i =1, 2. Therefore,
Ay + (1= A)z is still a sum of a vector from S, and a vector from S,

and so it is in S. Thus S is a convex set.

Consider the following example, where S, and S, are closed, and convex.

//

sequence {y, } sequence {z, }

Letx =y +z, for the sequences v} and {z,} shown in the figure,
where {y } = S, and {z } c §,. Then {x } - 0 where x €S, Va,
but 0 ¢ S. Thus S is not closed.

Next, we show that if S1 is compact and S2 is closed, then S is closed.
Consider a convergent sequence {xn} of points from S, and let x denote its
limit. By definition, X, =y, tz., where for each n, y, € S, and
z €8, Since { yn} is a sequence of points from a compact set, it must be

bounded, and hence it has a convergent subsequence. For notational
simplicity and without loss of generality, assume that the sequence { yn}

itself is convergent, and let y denote its limit. Hence, y € Sl. This result
taken together with the convergence of the sequence {x } implies that
{z,} is convergent to z, say. The limit, z, of {zn} must be in S, since S,
is a closed set. Thus, x = y + z, where y € S, and z S, and therefore,

x € §. This completes the proof. [



2.15 a.

First, we show that conv(S) < S. For this purpose, let us begin by
showing that S, and S, both belong to S. Consider the case of S

(the case of S2 is similar). If x e Sl, then Ax < bl, and so, x € S
with y =x, z =0, /”Ll =1, and /12 = 0. Thus S1 uS2 C §, and since
S is convex, we have that conv[S1 U Sz] cS.

Next, we show that S c conv(S). Let x € S. Then, there exist

vectors y and z such that x = y + z, and Ay < bl/il, 4,z < b2/12 for
some (/11,/12) > (0 such that /ll +/12 =1.1If )“1 =0 or /12 =0, then

we readily obtain y = 0 or z = 0, respectively (by the boundedness of
S, and SZ), with x =z € S, or x=yes§, respectively, which

yields x € S, and so x € conv(S). If /11 >0 and /12 > 0, then

1 1 .
X = llyl + 1222, where = ﬂ—y and z, =——z. It can be easily
1 2

verified in this case that y €5, and z, €8, which implies that both
vectors y, and z, are in S. Therefore, x is a convex combination of

points in S, and so x € conv(S). This completes the proof [

Now, suppose that S, and S, are not necessarily bounded. As above,

it follows that conv(S) S, and since S is closed, we have that
cleonv(S) S. To complete the proof, we need to show that
S c cleconv(S). Let x e 5‘, where x = y+z with A1y < blﬂl,
Azz < b2/12, for some (/11,/12) >0 such that /11 +/12 =1. If
(/11,/12) > 0, then as above we have that x € conv(S), so that
x € clconv(S). Thus suppose that /11 = 0 so that /12 =1 (the case of
/11 =1 and /12 =0 is similar). Hence, we have 4y<0 and
A,z <b,, which implies that y is a recession direction of S and
zes§, af S is bounded, then y =0 and then x =z € S, yields
x € cleconv(S)). Let y € S, and consider the sequence

_ 1
x, = ﬂn[y +;L—y] +(1 —/1n)z, where 0 < /In <1 for all n.

n



2.21 a.

1
Note that 7+TyeSl, zeS

n

iy and so x € conv(S), Vn.

Moreover, letting {2 } — 0", we get that {x } - y +z = x, and so

x € cleconv(S) by definition. This completes the proof. [J

The extreme points of S are defined by the intersection of the two
defining constraints, which yield upon solving for x, and x, in terms

of X that

3—-x, F./5-2x 5
1+ [5-ox y = 3TN 3 5
x = 1+ /5 2x3,x2_ 5 ,wherex3£2.
For characterizing the extreme directions of S, first note that for any
fixed Xy, We have that S is bounded. Thus, any extreme direction must

have d3 # 0. Moreover, the maximum value of X, over S is readily
verified to be bounded. Thus, we can set a’3 = —1. Furthermore, if
x =(0,0,0) and d = (dl’dz’_l)’ then X + Ad € S, VA > 0, implies
that

d +2d, <1 (1)
and that 44d, > A°d], ie., 4d, > A°d}, VA > 0. Hence, if d, # 0,
then we will have d2 — o0, and so (for bounded direction
components) we must have al1 =0 and d2 > 0. Thus together with

(1), for extreme directions, we can take d2 =0 or d2 =1/2, yielding
(0,0,-1) and (0,%,—1) as the extreme directions of S.

Since S is a polyhedron in R3, its extreme points are feasible solutions
defined by the intersection of three linearly independent defining
hyperplanes, of which one must be the equality restriction

x +x, =1 Of the six possible choices of selecting two from the

remaining four defining constraints, we get extreme points defined by
four such choices (easily verified), which yields (0,1,%), (1,0,%),

(0,1,0), and (1,0,0) as the four extreme points of S. The extreme
directions of S are given by extreme points of D = {(dl,dz,d3):
d+d,+2d,<0,d +d,=0,d +d, +d, =1, d >0}, which is

empty. Thus, there are no extreme directions of S (i.e., S is bounded).



c. From a plot of S, it is readily seen that the extreme points of S are
given by (0, 0), plus all point on the circle boundary xl2 + xi = 2 that

lie between the points (—/2/5, 24/2/5) and (v2/5, 24/2/5),

including the two end-points. Furthermore, since S is bounded, it has
no extreme direction.

2.24 By plotting (or examining pairs of linearly independent active constraints),

2.31

we have that the extreme points of S are given by (0, 0), (3, 0), and (0, 2).
Furthermore, the extreme directions of S are given by extreme points of
D={(d.d,)): —-d +2d,<0 d -3d,<0, d +d,=1, d=0},

which are readily obtained as (%,%) and (%,%) . Now, let

[1]=[8 A v [ =[]+ a-0[3]

for (u,A) > 0. Solving, we get x = 7/9 and A = 20/9, which yields
41 _ 7131, 2[0], 20[3/4
1=l +sle)+ 5]

The following result from linear algebra is very useful in this proof:
(*) An (m +1) x (m + 1) matrix G with a row of ones is invertible if and

only if the remaining m rows of G are linearly independent. In other words,

itG=|52
e

a . . .
e where B is an m x m matrix, a is an m x 1 vector, and e

is an mx1 vector of ones, then G is invertible if and only if B is
invertible. Moreover, if G is invertible, then

- RS . 1
G = A/{ g ,whereMzBl(I+—ae’B ])’g:—_B 1a,
L f a o
= —letB_l,andf :l,andwhere a=1-¢B"4.

a a

By Theorem 2.6.4, an n-dimensional vector d is an extreme point of D

if and only if the matrix [;} can be decomposed into [B » Npl such that
5| where d, = 0 and d, = B-'b_ >0, where b =|°]. From
dN,weeN a 5 = Bpbp 20, where by =7 |. Fro

.14 .
Property (*) above, the matrix [ ,} can be decomposed into [BD N D]’
e

where B 5 is a nonsingular matrix, if and only if 4 can be decomposed into

[B N], where B is an m x m invertible matrix. Thus, the matrix B, must



2.42

245

t

a.
1/ }, where B is an m x m invertible
e

necessarily be of the form {

submatrix of 4. By applying the above equation for the inverse of G, we
obtain

1

-1
-—B a. -1
T P j|_1|-B a.
dB_BDbD_ 1 N { ]}’

(24

where o =1- etB_laj. Notice that dy 20 if and only if ¢ >0 and

B_laj < 0. This result, together with Theorem 2.6.6, leads to the

conclusion that d is an extreme point of D if and only if d is an extreme
direction of S.

Thus, for characterizing the extreme points of D, we can examine bases of

[;}, which are limited by the number of ways we can select (m +1)

columns out of n, i.e.,

i) = G
m+1)" (m+D)n-m-1!

which is fewer by a factor of

than that of the Corollary to
m+

Theorem 2.6.6.

Problem P: Minimize {¢'x : Ax = b, x > 0}.

(Homogeneous) Problem D: Maximize {b'y : A’y < 0}.

Problem P has no feasible solution if and only if the system Ax = b,
x > 0, is inconsistent. That is, by Farkas’ Theorem (Theorem 2.4.5), this

occurs if and only if the system 4’y <0, b’y > 0 has a solution, i.., if
and only if the homogeneous version of the dual problem is unbounded.
O

Consider the following pair of primal and dual LPs, where e is a vector of

ones in R™ :
P: Max e'p D: Min 0'x
subjectto A'p =0 Ax > e

p=0. X unres.

Then, System 2 has a solution < P is unbounded (take any feasible
solution to System 2, multiply it by a scalar A, and take 1 > ©) < D

10
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2.49

is infeasible (since P is homogeneous) < 7 a solution to 4x > 0 <
A asolutionto Ax < 0. O

Consider the system 4’y = ¢, y > 0:

2y, +2y, =3
y+2y, =1
=3y, =2
(7,¥,)20.

The first equation is in conflict with ( VpaY,) 2 0. Therefore, this system
has no solution. By Farkas’ Theorem we then conclude that the system

Ax <0, ¢'x > 0 has a solution.

(=) We show that if System 2 has a solution, then System 1 is
inconsistent. Suppose that System 2 is consistent and let Yo be its solution.

If System 1 has a solution, X, > Sy, then we necessarily have x(t)At Yo = 0.

t

However, since x(t)At =¢", this result leads to Yo = 0, thus

contradicting ¢’ Yo = 1. Therefore, System 1 must be inconsistent.

(«=) In this part we show that if System 2 has no solution, then System 1
has one. Assume that System 2 has no solution, and let S = {(zl,zo) :
z, = ~A'y, Zy = c'y, y € R™}. Then S is a nonempty convex set, and

(zl,zo) = (0,1) ¢ S. Therefore, there exists a nonzero vector ( Py po) and
a real number & such that pltzl +pyzy Sa< plt0+p0 for any
(ZI’ZO) €S. By the definition of S, this implies that
—pltAty + pocty <a<p, forany ye R™. In particular, for y = 0, we
obtain 0 < a < Py Next, observe that since a is nonnegative and
(—pltAt + poct)y <a for any yeR"™, then we necessarily have
—pltA’ + poc’ =0 (or else y can be readily selected to violate this

inequality). We have thus shown that there exists a vector ( Py pO) where

. 1
Py >0, such that Ap, — pyc = 0. By letting x = —p), we concluce that
Py
x solves the system Ax — ¢ = 0. This shows that System 1 has a solution.
O

11



2.50 Consider the pair of primal and dual LPs below, where e is a vector of

2.51

ones in R? :
P: Max eu D: Min 0 x
subjectto  A'u + B'v =10 subjectto Ax > e
u > 0, vunres. Bx =0
X unres.

Hence, System 2 has a solution < P is unbounded (take any solution to
System 2 and multiply it with a scalar A and take 4 > ©) < Dis
infeasible (since Pis homogeneous) < there does not exist a solution
to Ax > 0, Bx =0 < System 1 has no solution. [

Consider the following two systems for each i € {l,...,m} :
System I: Ax > 0 with Ax > 0

System II: A’y =0, y >0, with Y, >0,

where 4 is the ith row of 4. Accordingly, consider the following pair of

primal and dual LPs:
P: Max e; y D: Min 0" x
subjectto A’y =0 subjectto  Ax > e
y20 X unres,

where e is the ith unit vector. Then, we have that System II has a solution

&> Pisunbounded < D is infeasible <> System I has no solution. Thus,
exactly one of the systems has a solution for each i e {l,...,m}. Let

I ={ie{l,.,m}: System I has a solution; say xi}, and let
12 ={ie{l,..,m}: System II has a solution; say, y[}. Note that

I1 u[2 ={l,...,m} with [1 mlz = J. Accordingly, let x = > ¥ and
iel
1

y=X ) ,where x=0if 7, =0 and y =0 if 7, =&. Then it is
iel
2

easily verified that X and y satisfy Systems 1 and 2, respectively, with

AX+7= Y A+ ¥ ' >0 since Ax' 20, Viel, and ) >0,
ie]1 ie]2

Vi e 12, and moreover, for each row 7 of this system, if Vi I1 then we

have Al.xi >0andifie I, then we have yi >0.

12



2.52 Let f(x) = e - X, Then S, ={x: f(x) £ 0}. Moreover, the Hessian
—X
of fis given by {eol 8}, which is positive semidefinite, and so, f'is a

convex function. Thus, S is a convex set since it is a lower-level set of a
convex function. Similarly, it is readily verified that S, is a convex set.

. — —X. — —X.
Furthermore, if x e S1 mSz, then we have —e 1 > X, 2e I or

2¢ 1 <0, which is achieved only in the limit as X, = . Thus,

§nS, = . A separating hyperplane is given by X,

S, cixrix, 20} and S, cix:x, <0}, but there does not exist any

=0, with

strongly separately hyperplane (since from above, both S, and S, contain

points having x, = 0).

253 Let f(x) :x12 +x22 —4. Let X = ~{)_c:)_cl2 +)_cz2 =4}. Then, for any

X € X, the first-order approximation to f(x) is given by
— _ _ _| 2% _ _
fro@ = fE) + (x =X Vf(X) = (x - %) [Hﬂ = (2%)x, +(2%,)x, - 8.
Thus S is described by the intersection of infinite halfspaces as follows:

(2)_c1)x1 + (ZEz)x2 <8, VxelX,

which represents replacing the constraint defining S by its first-order
approximation at all boundary points.

2.57 For the existence and uniqueness proof see, for example, Linear Algebra
and Its Applications by Gilbert Strang (Harcourt Brace Jovanovich, Inc.,
1988).

If L= {(xl,xz,x3) : 2x1 tX) =Xy = 0}, then L is the nullspace of
2

A =[2 1 —1], and its orthogonal complement is given by 4| 1 | for any
1

A € R. Therefore, x, and X, are orthogonal projections of x onto L, and

1

1 2
Lt respectively. If x=(1 2 3), then [2} =X X, where X, = /1[ 1 }
3 -1

13



22

17 2
Thus, |2 1 =41 :>/’L=l. Hence, x =l(41119) and
30| -1 | 6 e
-1 21 -1
Xz—g( _).

14



CHAPTER 3:

CONVEX FUNCTIONS AND GENERALIZATIONS

3.2

33

[_j _gJ is indefinite. Therefore, f(x) is neither convex nor

concave.
b. H(X):e_(x1+3x2)|: % =2 30D

3(x, — 1) 9y } Definiteness of the matrix

1
H(x) depends on X, Therefore, f(x) is neither convex nor concave

(over R? ).
c. H= _i _2} is indefinite since the determinant is negative.
Therefore, f(x) is neither convex nor concave.
[ 4 2 -5
d. H=| 2 2 0} is indefinite. Therefore, f(x) is neither convex
-5 0 4
nor concave.
-4 8 3
e. H=| 8 —6 4] isindefinite. Therefore, f(x) is neither convex
3 4 4

nor concave.

b
f"(x) = abx" 2™ [abx” - (b — 1)]. Hence, if b = 1, then f is convex

over {x:x > 0}. If 5> 1, then fis convex whenever abx? > b-1), ie.,

. [M}“_
ab

f(x)=10- 3(x2 - x]2 )2, and its Hessian matrix is

2
—6x1 +2x2 2x

H(x) = 6{ 11} . Thus, fis not convex anywhere and for fto
X
1

be concave, we need —6x12 + 2x2 <0 and 6x12 —2x2 —4x12 >0, ie.,

3x2>x, and x2>x ie., xl2 2 x,. Hence, if S = {(xl,xz):

—l1<x <1,-1<x, < 1}, then f(x) is neither convex nor concave on S.

15



34

3.9

3.10

3.11

If S is a convex set such that S < {(xl,xz) : xl2 > xz}, then H(x) is

negative semidefinite for all x € §. Therefore, f(x) is concave on S.

fx) =x*(> =1, f(x)=4x>-2x, and f"(x)=12x>-2>0 if
x? >1/6. Thus f is convex over S] ={x:x2 1/\/3} and over
S, ={x:x< —1/\/6}. Moreover, since f"(x) > 0 whenever x > 1/4/6 or

x < —1/+/6, and thus flies strictly above the tangent plane for all x S, as
well as for all x € S2,f is strictly convex over S, and over S, For all the
remaining values for x, f(x) is strictly concave.

Consider any X, X, € R", and let X, = /1x1 +(1—ﬂ)x2 for any

0< A <1. Then

f(xi) = max{f](x/l),...,fk(xi)} = fr(xﬂ) for some re{l,..,k},
whence fr(xi) SAf(x)+A-)f (x) by the convexity of /s ie.,
fx) < Af(x)+A=2)[(x,) since fx) = f(x) and
f (x2) > fr (xz). Thus f'is convex.

If fi,..., fk are concave functions, then — fl,...,— fk are convex functions

:>max{—f](x),...,—fk(x)} is convex 1i.e., —min{fl(x),...,fk(x)} is

convex, i.e., f(x) = min{f1 (x),...,fk (x)} is concave.

Let x, x, € R", 2 €[0,1], and let x, = Ax, + (1= A)x,. To establish the
convexity of f(-) we need to show that f(x/l) < /‘Lf(xl) +(1- l)f(xz).
Notice that
fx,) = glh(x,)] < g[Ah(x) + (1 - Dh(x,)]

< Aglh(x))] + (1 = A)glh(x,)]

= A1) + (1= DS (xy).
In this derivation, the first inequality follows since 4 is convex and g is
nondecreasing, and the second inequality follows from the convexity of g.
This completes the proof.
Let X, X, € S, 42 €[0,1], and let X, = /Ix] +(1- /1)x2. To establish the
convexity of f over S we need to show that

f(x /1) -Af (xl) -(1-A)f (x2) < 0. For notational convenience, let

16



3.16

3.18

D(x) = g(x)g(x,) ~ Ag(x,)g(x,) — (1 - Dg(x,)g(x,). Under the
assumption that g(x) > 0 for all x € S, our task reduces to demonstrating
that D(x) < 0 for any X, X, €S, and any A € [0,1]. By the concavity of
2(x) we have
D(x) < g(x)g(x,) — AAg(x) + (1 - Dg(x,)g(x,) -

(1= DAgx) + (1 - Dgx)lg(x,) -

After a rearrangement of terms on the right-hand side of this inequality we
obtain

D(x) < -A(1-A)g(x) +g(x,) 1+ 240 - Ag(x))g(x,)
= A1 = Dlg(x)” + g(x,)7 1+ 240 - Dg(x)g(x,)
= A1 - Dlg(x)” + g(x,)” = 2g(x)g(x,)]
= —A(1- Dlg(x,) - g(x,)I-
Therefore, D(x) <0 for any X, X, € S, and any A €[0,1], and thus

f(x) is a convex function.

. e 1
Symmetrically, if g is convex, S = {x : g(x) < 0}, then from above, —
-8
is convex over S, and so f(x) = 1/g(x) is concave over S. [

Let X, X, be any two vectors in R", and let A €[0,1]. Then, by the
definition of A(-), we obtain h(/‘tx1 +(1- /1)x2) = /I(Axl +b) +
(1= A)(4x, + b) = Ah(x)) + (1 = A)h(x,). Therefore,

SOy + (1= A)x,) = gTh(Ax, + (1= Ay = gLAh(x,) + (1 = h(x, )]

< AgThC)] + (1 = Aelh(x,)] = Af () + (1= A) [ (x,),

where the above inequality follows from the convexity of g. Hence, f(x)

is convex. [

By multivariate calculus, we obtain Vf(x) = A'Vg[h(x)], and H s (x) =

A’Hg[h(x)]A )

Assume that f(x) is convex. Consider any x, y € R", and let 4 € (0,1).
Then

- x I x - .
f(x+y)—f{/1(/1j+(l ﬂ)(l_ﬁﬂﬁﬂf(ljﬂl /t)f(l_ﬂj

17



3.21

3.22

3.26

=)+ (),

and so f'is subadditive.

Conversely, let f be a subadditive gauge function. Let x, y € R" and
A €[0,1]. Then

SAx+(A=A)y) < fAx) + fIA- Dyl = Af () + A - D) f(¥),

and so f'is convex.

See the answer to Exercise 6.4.

a. See the answer to Exercise 6.4.

b. If V<Y, then {x: g(x) < y,X € Stc{x:gx)< Yy X € St,
and s0 ¢(y,) = ¢(1,).

First assume that X = 0. Note that then f(X) =0 and &'X = 0 for any
vector & in R".
(=) If & is a subgradient of f(x) = ||x|| at x = 0, then by definition we

have ||x|| > &'x for all x € R". Thus in particular for x = £, we obtain
I€] = (€7, which yields |£] < 1.
(<) Suppose that ||§|| <1. By the Schwarz inequality, we then obtain

Elx < ||§|| ||x|| < ||x|| ,and so ¢ is a subgradient of f(x) = ||x|| atx=0.
This completes the proof for the case when x = 0. Now, consider X # 0.
(=) Suppose that & is a subgradient of f(x) = ||x|| at x. Then by

definition, we have
||x|| - ||3?|| > & (x —x) forall x e R". (1)

In particular, the above inequality holds for x = 0, for x = Ax , where
A>0, and for x=¢. If x = 0, then §tf > ||)?|| Furthermore, by

employing the Schwarz inequality we obtain
¥ < & < el I+ - @

If x=Ax, A>0, then ||x|| = ﬂ"f”, and Equation (1) yields
A-D|x|= A -D&EX. If A>1, then ||x]| > ¢'x, and if A <1, then
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3.27

||)_c|| < £'x . Therefore, in either case, if & is a subgradient at ¥ , then it

must satisfy the equation.
&y =x|. 3)

Finally, if x = &, then Equation (1) results in ||§||—||)?|| > e - Ex .
gla-|éph =o. This

However, by (2), we have &'X = ||f|| Therefore,

yields
. (4)

Combining (2) — (4), we conclude that if £ is a subgradient of f(x) = ||x||
at X # 0, then &'x = ||f|| and ||§|| =1.

(<) Consider a vector & € R" such that ||§|| =1 and &'x = ||¥||, where
X # 0. Then for any x, we have f(x)— f(X) - &' (x - %) = x| -|x] -
Ex-X) = ||x|| —&lx > ||x||(1 - ||§||) =0, where we have used the
Schwarz inequality (&'x < ||§|| ||x||) to derive the last inequality. Thus & is
a subgradient of f(x) = ||x|| at X # 0. This completes the proof. [

In order to derive the gradient of f(x) at X # 0, notice that ||§|| =1 and

&'x = |x| if and only if & = L Thus V@) = L.

I~ I~

Since f1 and f2 are convex and differentiable, we have

£, 2 fi(X) + (x = X)' V(X)) Vx.

L0 2 £, + (x =)' V/,(X), V.

Hence, f(x) = max{f;(x), /,(x)} and f(¥) = /,(%) = f,(X) give
S(X) 2 f@)+(x-%)Vf(X), Vx M
f() 2 [+ (x =%V, (@), x. @

Multiplying (1) and (2) by 4 and (1 — 1), respectively, where 0 < 4 <1,
yields upon summing:
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f() 2 f@) + (x = %) [AV/,(F) + (1 = YV, (X)), Vx,
= ¢= /1Vf1 xX)+1- A)sz (x), 0 < A <1, is asubgradient of fat X .

(=) Let & be a subgradient of fat x . Then, we have,

f) = fE)+(x-% & A3)
But f(x) = max{f (x), f, (x)} =
max{f, (%) + (x - X)' Vf,(®) + |x - X[ 0,(x > %),

f@) +(x = %) Vf, (X) + Jx - f||o2 (x > X)}, 4)
where 0,(x = X) and 0,(x > X) are functions that approach zero as
x — X . Since L&) = f,(3) = f(%), putting (3) and (4) together yields
max{(x - X)'[Vf, () = &] + [[x - [0, (x - %),

(x = XY [V, (%) = &1+ [[x = %[0, (x > %)} 2 0, V. (5)

Now, on the contrary, suppose that £ ¢ conv{Vf1 (x), sz (X)}. Then, there
exists a strictly separating hyperplane ax = f such that | =1 and

a'é > fand {a'Vf,(F) < B, &'V, (X) < B}, ie.,
a'[¢ - Vfi(¥)] > 0 and &'[£ - Vf,(X)] > 0. (6)

Letting (x — X) = e in (5), with & — 0", we get upon dividing with
e>0:

max{a'[Vf, (%) - £]+ 0,(¢ > 0),
at[sz()_c) —¢1+0,(6 > 0)} 20, Ve > 0. (7)
But the first terms in both maxands in (7) are negative by (6), while the

second terms — 0. Hence we get a contradiction. Thus & e conv{Vfi (%),

sz (%)}, i.e., it is of the given form.
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3.28

3.31

Similarly, if f(x):max{fl(x),...,fm(x)}, where fl,...,fm are
differentiable convex functions and X is such that f(¥) = fl_(a_c),

Viel c{l,..,m}, then & is a subgradient of [ at
xe e conv{Vfi (%), i € I}. A likewise result holds for the minimum

of differentiable concave functions.

a. See Theorem 6.3.1 and its proof. (Alternatively, since € is the
minimum of several affine functions, one for each extreme point of X,
we have that @ is a piecewise linear and concave.)

b. See Theorem 6.3.7. In particular, for a given vector u , let
X@w) = {xl,...,xk} denote the set of all extreme points of the set X

that are optimal solutions for the problem to minimize
{¢'x +u'(Ax —b): x € X}. Then &(r) is a subgradient of O(x) at
u if and only if £() is in the convex hull of Ax; = b,...,Ax, = b,
where x. € X(u) for i =1,..,k. That is, £(u) is a subgradient of

k
O(u) at u if and only if S(w) = A Al. X, = b for some nonnegative
i=1

k
Al,...,/lk, such that > 4. =1.
i=1 '

Let P : min{f(x):x € S} and P, : min{fs(x) :xe S}, and let
S1 ={x"eS: f(x")< f(x),vxe S} and S2 ={x" e S:fs(x*) <
fs (x),Vx € S}. Consider any x" e S,. Hence, x" solves Problem P

Define h(x) = f(x*),Vx € S. Thus, the constant function / is a convex
underestimating function for f over S, and so by the definition of fs , We
have that

[,(x) 2 h(x) = f(x"),Vx € S. (1)

But fs(x*) < f(x") since fs(x) < f(x),Vx € S. This, together with (1),
thus yields fs(x*) = f(x") and that x* solves Problem P, (since (1)

asserts that f° (x") is a lower bound on Problem P2 ). Therefore, x* e S2.
Thus, we have shown that the optimal values of Problems P and P,

match, and that S1 c S2. O
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3.37

3.39

4 2 3 T -
| T [

2_2|8x% +2 —4xx_ _
) = 2675 | B 2, Hm _ 2@[5)‘ 14}
—4x1x2 2x2 -1

with f[” =e+2.
Thus, the linear (first-order) approximation of fat E} is given by
f1(x) = (e+2) + (x; —)(4e = 3) + (x, —1)(2e + ),
and the second-order approximation of f at E} is given by
f2 xX)=(e+2)+ (x] —1(4e—-3)+ ()c2 —1)(-2e+5)+
e[lo(x1 ~1)? ~8(x, ~ D(x, ~ ) + (x, - 1)2]
f1 is both convex and concave (since it is affine). The Hessian of f2 is
given by H [”, which is indefinite, and so /, s neither convex nor
concave.
The function f(x) = x’ Ax can be represented in a more convenient form
as f(x)= %xt(A + A"x, where (4+ A") is symmetric. Hence, the

Hessian matrix of f(x) is H = A+ A'. By the superdiagonalization

4 3 4
procedure, we can readily verify that H =3 6 3 |. H is positive
4 3 20

semidefinite if and only if @ > 2, and is positive definite for 6 > 2.
Therefore, if 8 > 2, then f(x) is strictly convex. To examine the case
when € = 2, consider the following three points: X = (1,0,0), x, = 0,0,

1
f (xl) =f (xz) =2, and f(x) = 2. This shows that f(x) is not strictly

convex (although it is still convex) when 6 = 2.

_ 1 1 . o .
1), and x = Ex +5x2. As a result of direct substitution, we obtain
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3.40

341

3.45

fx)=x= fi(x)=3x* and f'(x)=6x=0, Vx € S. Hence f is
convex on S. Moreover, f"(x) >0, Vx e int(S), and so f is strictly

convex on int(S). To show that f is strictly convex on S, note that
f"(x) =0 only for x =0 € S, and so following the argument given after

Theorem 3.3.8, any supporting hyperplane to the epigraph of f over S at
any point X must touch it only at [x, f(x)], or else this would contradict

the strict convexity of fover int(S). Note that the first nonzero derivative of
order greater than or equal to 2 at x = 0 is f"(X) = 6, but Theorem 3.3.9

does not apply here since x =0 € 0(S). Indeed, this shows that

f(x) = x> is neither convex nor concave over R. But Theorem 3.3.9
applies (and holds) over int(S) in this case.

The matrix H is symmetric, and therefore, it is diagonalizable. That is,
there exists an orthogonal n x n matrix O, and a diagonal n x n matrix D

such that H = QDQ". The columns of the matrix O are simply normalized

eigenvectors of the matrix H, and the diagonal elements of the matrix D
are the eigenvalues of H. By the positive semidefiniteness of H, we have

diag{D} > 0, and hence there exists a square root matrix D2 of D (that

If x = 0, then readily Hx = 0. Suppose that x'Hx = 0 for some x # 0.
Below we show that then Hx is necessarily 0. For notational convenience

let z= Dl/thx. Then the following equations are equivalent to
x'Hx =0:

xtQD1/2D1/2th -0

o zZlz=0,1e, "2"2 =0

& z=0.
By premultiplying the last equation by QDl/ 2, we obtain QDI/ 2= 0,
which by the definition of z gives ODQ'x = 0. Thus Hx = 0, which
completes the proof. [

Consider the problem

P: Minimize (x, —4)° + (x, — 6)°
subject to X, 2 X

<
x2_4
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3.48

Note that the feasible region (denote this by X) of Problem P is convex.
Hence, a necessary condition for x € X to be an optimal solution for
Problem P is that

VFE) (x-X)>0, Vx € X, (1)

because if there exists an % € X such that V/(X)'(X —X) <0, then
d = (x — X) would be an improving (since f'is differentiable) and feasible
(since X is convex) direction.

For ¥ = (2,4), we have Vf(¥) = Bg - gﬂ = [:ﬂ-

Hence,

V(%) (x - X) = [-4,-4] = {;‘1 iﬂ = —4x, —4x, + 24. 2)
2

But xlzﬁx <4 VxeX=x,<4 and -2<yx <2 and so

2 2 1
—4x, = -8 and —4x, = —16. Hence, V) (x —X) = 0 from (2).

Furthermore, observe that the objective function of Problem P (denoted by
f(x)) is (strictly) convex since its Hessian is given by B (2)} which is

positive definite. Hence, by Corollary 2 to Theorem 3.4.3, we have that (1)

is also sufficient for optimality to P, and so x = (2,4)" (uniquely) solves
Problem P.

Suppose that ll and 12 are in the interval (0, o), and such that 12 > 11.
We need to show that f(x + Ayd) 2 flx+ Ad).

Let o= /11 /12. Note that « € (0,1), and x+ /lld =a(x+ /lzd) +
(1 = a)x. Therefore, by the convexity of f, we obtain f(x + /11d) <
af(x+2A,d)+ (1 —-a)f(x), which leads to f(x+ A4d) < f(x+A4,d)
since, by assumption, f(x) < f(x + Ad) forany A € (0, 9).
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3.51

3.54

3.56

When f is strictly convex, we can simply replace the weak inequalities
above with strict inequalities to conclude that f(x+ Ad) is strictly

increasing over the interval (0, 0).

(<) If the vector d is a descent direction of f'at X, then f(X + Ad) —
f(x)<0 for all A e (0,0). Moreover, since f is a convex and

differentiable function, we have that f(x + Ad) - f(X) > AV/(X)'d.

Therefore, Vf(x)'d < 0.
(<) See the proof of Theorem 4.1.2. [

Note: If the function f(x) is not convex, then it is not true that

Vf(x)'d <0 whenever d is a descent direction of f(x) at X. For

example, if f(x) = X , thend = —1 is a descent direction of fat x = 0,
but f'(x)d = 0.

(=) If x is an optimal solution, then we must have f'(x;d) >0,
Vd € D, since f'(x;d) <0 for any d € D implies the existence of

improving feasible solutions by Exercise 3.5.1.
(<) Suppose f'(x;d) >0, Vd € D, but on the contrary, x is not an

optimal solution, i.e., there exists x € § with f(x) < f(x). Consider
d =(x—X). Then d € D since S is convex. Moreover, f(x + Ad) =
fAx+ (A=) < Af@X)+(1-)f(x) < f(X), VO< A <1. Thus d is
a feasible, descent direction, and so f'(x;d) <0 by Exercise 3.51, a
contradiction.

Theorem 3.4.3 similarly deals with nondifferentiable convex functions.

If § = R", then X is optimal < Vf(x)'d >0, Vd € R"
& Vf(x) =0 (else, pick d = —=Vf(X) to get a contradiction).

Let x,, x, € R". Without loss of generality assume that h(xl) > h(x2 ).

Since the function g is nondecreasing, the foregoing assumption implies
that g[h(x,)] = gl[h(x,)], or equivalently, that f(x) = f(x,). By the

quasiconvexity of ks, we have hax, + (1 —-a)x,) < h(x)) for any
a €[0,1]. Since the function g is nondecreasing, we therefore have,
flax, + (- a)x)) = glh(ax, + (1 - a)x,)] < glh(x)] = f(x). This

shows that f(x) is quasiconvex. [
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3.61

f(ﬂucl +(1- ﬂ)xz) =

3.62

Let a be an arbitrary real number, and let S ={x: f(x) < a}.
Furthermore, let x, and x, be any two elements of S. By Theorem 3.5.2,
we need to show that S is a convex set, that is, f(/bc1 +(1- ﬂ)xz) < a for

any A € [0,1]. By the definition of f(x), we have

glx + (1= Ax)) _2g(x) + (1= Dg(x,)

h(Ax, + (1= A)x,) — Ah(x) + (1= Dh(x,) ’ M

where the inequality follows from the assumed properties of the functions
g and h. Furthermore, since f (x)<a and f (x,) < a,we obtain

/’Lg(xl) < lah(xl) and (1 - ﬂ)g(xz) <(1- l)ah(xz).

By adding these two inequalities, we obtain ig(xl) +(1 —/1)g(x2) <
a[/Ih(xl)+ (l—l)h(xz)]. Since 4 is assumed to be a positive-valued

function, the last inequality yields

A8(x) + (L= Dg(x,)
Ah(x) + (1= Dh(x))

>

or by (1), f(Ax; +(1—2)x,) < a. Thus, Sis a convex set, and therefore,
f(x) is a quasiconvex function. [

Alternative proof: For any o € R, let S, = {x e S:gx)h(x)<a}. We
need to show that Sa is a convex set. If a <0, then Sa = since
g(x)>20 and A(x) >0, Vx €S, and so Sa is convex. If a > 0, then
Sa ={xeS:g(x)—ah(x) <0} is convex since g(x)—- ah(x) is a

convex function, and Sa is a lower level set of this function. [

We need to prove that if g(x) is a convex nonpositive-valued function on
S and Ah(x) is a convex and positive-valued function on S, then
f(x) = g(x)/h(x) is a quasiconvex function on S. For this purpose we
show that for any X, X, € S, if f(xl) > f(xz), then f(xﬁ) < f(xl),
where x 4= /1x1 +(1- /‘L)xz, and A4 €[0,1]. Note that by the definition of
fand the assumption that s(x) > 0 for all x € S, it suffices to show that
g(x 1 )h(xl) - g()c1 )h(xi) < 0. Towards this end, observe that
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3.63

3.64

g(xi)h(xl) < [ig(xl) +(1- A)g(xz)]h(xl) since g(x) is convex and
h(x) > 0 on S;

g(xl)h(x/i) > g(xl)[ih(x]) +(1- ﬂ)h(xz)] since A(x) is convex and
g(x)£0onsS;

g(xz)h(xl) - g(xl)h(xz) <0, since f(xl) > f(xz) and A(x) > 0 on S.

From the foregoing inequalities we obtain

g(x h(x,) ~ g0 h(x,)

<[Ag(x) + (1 = D)g(ry h(x) — g(x)[Ah(x,) + (1= Ah(x, )]
= (1= g, )h(x) — g(x)h(x,)] < 0,

which implies that f(xﬂ) < max{f(xl),f(xz)} = f(xl). (]

Note: See also the alternative proof technique for Exercise 3.61 for a
similar simpler proof of this result.

By assumption, 4(x) # 0, and so the function f(x) can be rewritten as
f(x) = g(x)/p(x), where p(x) = 1/h(x). Furthermore, since h(x) is a
concave and positive-valued function, we conclude that p(x) is convex
and positive-valued on S (see Exercise 3.11). Therefore, the result given in
Exercise 3.62 applies. This completes the proof. [

Let us show that if g(x) and 4(x) are differentiable, then the function

defined in Exercise 3.61 is pseudoconvex. (The cases of Exercises 3.62
and 3.63 are similar.) To prove this, we show that for any X, X, € S, if

Vf (x, ) (x, —x) 20, then f (x)) = f(x)). From the assumption that
h(x)>0, it follows that Vf(x)'(x,—-x)20 if and only if
[h(x1 )Vg(xl) - g(x1 )Vh()c1 ) (x2 - xl) > (0. Furthermore, note that
Vg(xl)t (x2 - xl) < g(xz) - g(xl), since g(x) is a convex and
differentiable function on S, and Vh(x1 ) (x2 - xl) > h(xz) - h(x1 ), since
h(x) is a concave and differentiable function on S. By multiplying the

latter inequality by —g(x) <0, and the former one by h(x) > 0, and

adding the resulting inequalities, we obtain (after rearrangement of terms):
[h(xl )Vg(xl ) - g(xl )Vh(xl )][ (x2 - xl ) < h('xl )g(x2 ) - g(xl )h(x2 )
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3.65

The left-hand side expression is nonegative by our assumption, and
therefore, h(xl) g(xz) - g(xl)h(xz) >0, which implies that

f (xz) > f (xl). This completes the proof. [

For notational convenience let g(x) = clt x+a, and let A(x) = c;x +a,.

g(x)

In order to prove pseudoconvexity of f(x)= P on the set
X

S ={x:h(x) >0} we need to show that for any x, x, €8, if

1’ 2
Vf(x) (x, = %) 2 0, then f(x,) > f(x)).

Assume that Vf (xl)t ()c2 - xl) > 0 for some x X, € S. By the definition

1°

of f, we have Vf (Jc)z;z[h(x)cl - g(x)e, 1. Therefore, our
x)

assumption yields [h()cl)c1 - g()cl)c2 I ()c2 - xl) > 0. Furthermore, by
adding and subtracting alh(xl) +a, g(xl) we obtain g()c2 )h(xl) -
h(xz)g(xl) > 0. Finally, by dividing this inequality by h(xl)h(xz) (> 0),
we obtain f (xz) > f (xl), which completes the proof of pseudoconvexity
of f(x). The psueoconcavity of f(x) on S can be shown in a similar way.

Thus, f'is pseudolinear. [
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