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CHAPTER 2: 

 

CONVEX SETS 

2.1 Let 
1 2

( )x conv S S  . Then there exists [0,1]   and 
1 2 1 2
,x x S S   

such that 
1 2

(1 )x x x    . Since 
1

x  and 
2

x  are both in 
1

S , x must be 

in 
1

( )conv S . Similarly, x must be in 
2

( )conv S . Therefore, 
1

( )x conv S   

2
( )conv S . (Alternatively, since 

1 1
( )S conv S  and 

2 2
( )S conv S , we 

have 
1 2 1 2

( ) ( )S S conv S conv S    or that 
1 2

[ ]conv S S   

1
( )conv S 

2
( )conv S .)  

      An example in which 
1 2

( )conv S S   
1

( )conv S   
2

( )conv S  is given 

below: 

    

1
S

2
S

 
 
 Here, 

1 2
( )conv S S   , while 

1 2 1
( ) ( )conv S conv S S   in this case. 

 
2.2 Let S be of the form { : }S x Ax b   in general, where the constraints 

might include bound restrictions. Since S is a polytope, it is bounded by 
definition. To show that it is convex, let y and z be any points in S, and let 

(1 )x y z    , for 0 1  . Then we have Ay b  and Az b , 

which implies that 

   (1 ) (1 )Ax Ay Az b b b          , 

 or that x S . Hence, S is convex. 
 
      Finally, to show that S is closed, consider any sequence { }

n
x x  such 

that 
n

x S , n . Then we have 
n

Ax b , n , or by taking limits as 

n   , we get Ax b , i.e., x S  as well. Thus S is closed. 
 
2.3 Consider the closed set S shown below along with ( )conv S , where 

( )conv S  is not closed: 
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 Now, suppose that pS    is closed. Toward this end, consider any 
sequence { }

n
x x , where ( )

n
x conv S , n . We must show that 

( )x conv S . Since ( )
n

x conv S , by definition (using Theorem 2.1.6), 

we have that we can write 
1

1

p
r

n nr n
r

x x



  , where r

n
x S  for 

1,..., 1r p  , n , and where 
1

1
1

p

nr
r





 , n , with 0

nr
  , ,r n . 

Since the 
nr
 -values as well as the r

n
x -points belong to compact sets, 

there exists a subsequence K such that { }
nr K r
  , 1,..., 1r p   , 

and { }r r
n

x x , 1,..., 1r p   . From above, we have taking limits as 

n   , n K , that 

  
1

1

p
r

r
r

x x



  , with 

1

1
1

p

r
r





 , 0

r
  , 1,..., 1r p   , 

 where rx S , 1,..., 1r p    since S is closed. Thus by definition, 

( )x conv S  and so ( )conv S  is closed.     

 

2.7 a. Let 1y  and 2y  belong to AS. Thus, 1 1y Ax  for some 1x S  and 
2y  = 2Ax  for some 2x S . Consider 1 2(1 )y y y    , for any 

0 1  . Then 1 2[ (1 ) ]y A x x    . Thus, letting 
1 2(1 )x x x    , we have that x S  since S is convex and that 

y Ax . Thus y AS , and so, AS is convex. 

 
 b. If 0  , then {0}S  , which is a convex set. Hence, suppose that 

0  . Let 1x  and 2x S  , where 1x S  and 2x S . Consider 
1 2(1 )x x x       for any 0 1  . Then, 1[x x     

2(1 ) ]x . Since 0  , we have that 1 2(1 )x x x    , or that 

x S  since S is convex. Hence x S   for any 0 1  , and 
thus S  is a convex set. 

 
2.8 

1 2 1 2 1 2
{( , ) : 0 1, 2 3}.S S x x x x       
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1 2 1 2 1 2

{( , ) : 1 0, 2 1}.S S x x x x          

 
2.12 Let 

1 2
S S S  . Consider any y, z S , and any (0,1)   such that 

1 2
y y y   and 

1 2
z z z  , with 

1 1 1
{ , }y z S  and 

2 2 2
{ , }y z S . 

Then 
1 2 1 2

(1 ) (1 ) (1 )y z y y z z             . Since both sets 

1
S  and 

2
S  are convex, we have (1 )

i i i
y z S    , i = 1, 2. Therefore, 

(1 )y z    is still a sum of a vector from 
1

S  and a vector from 
2

S , 

and so it is in S. Thus S is a convex set.  
 
 Consider the following example, where 

1
S  and 

2
S  are closed, and convex. 

sequence { }
n

y sequence {z }
n

1
S 2

S

 
 
 Let 

n n n
x y z  , for the sequences { }

n
y  and { }

n
z  shown in the figure, 

where 
1

{ }
n

y S , and 
2

{ }
n

z S . Then { } 0
n

x   where 
n

x S , n , 

but 0 S . Thus S is not closed.  
 
      Next, we show that if 

1
S  is compact and 

2
S  is closed, then S is closed. 

Consider a convergent sequence { }
n

x  of points from S, and let x denote its 

limit. By definition, 
n n n

x y z  , where for each n, 
1n

y S  and 

2n
z S . Since { }

n
y  is a sequence of points from a compact set, it must be 

bounded, and hence it has a convergent subsequence. For notational 
simplicity and without loss of generality, assume that the sequence { }

n
y  

itself is convergent, and let y denote its limit. Hence, 
1

y S . This result 

taken together with the convergence of the sequence { }
n

x  implies that 

{ }
n

z  is convergent to z, say. The limit, z, of { }
n

z  must be in 
2

S , since 
2

S  

is a closed set. Thus, x y z  , where 
1

y S  and 
2

z S , and therefore, 

x S . This completes the proof.      
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2.15 a. First, we show that ˆ( )conv S S . For this purpose, let us begin by 

showing that 
1

S  and 
2

S  both belong to Ŝ . Consider the case of 
1

S  

(the case of 
2

S  is similar). If 
1

x S , then 
1 1

A x b , and so, ˆx S  

with y = x, z = 0, 
1

1  , and 
2

0  . Thus 
1 2

ˆS S S  , and since 

Ŝ  is convex, we have that 
1 2

ˆ[ ]conv S S S  .  

       Next, we show that ˆ ( )S conv S . Let ˆx S . Then, there exist 

vectors y and z such that x y z  , and 
1 1 1

A y b  , 
2 2 2

A z b   for 

some 
1 2

( , ) 0    such that 
1 2

1   . If 
1

0   or 
2

0  , then 

we readily obtain y = 0 or z = 0, respectively (by the boundedness of 

1
S  and 

2
S ), with 

2
x z S   or 

1
x y S  , respectively, which 

yields x S , and so ( )x conv S . If 
1

0   and 
2

0  , then 

1 1 2 2
x y z   , where 

1
1

1
y y


  and 

2
2

1
z z


 . It can be easily 

verified in this case that 
1 1

y S  and 
2 2

z S , which implies that both 

vectors 
1

y  and 
2

z  are in S. Therefore, x is a convex combination of 

points in S, and so ( )x conv S . This completes the proof      

 
 b. Now, suppose that 

1
S  and 

2
S  are not necessarily bounded. As above, 

it follows that ˆ( )conv S S , and since Ŝ  is closed, we have that 

ˆ( )c conv S S . To complete the proof, we need to show that 

ˆ ( )S c conv S  . Let ˆx S , where x y z   with 
1 1 1

A y b  , 

2 2 2
A z b  , for some 

1 2
( , ) 0    such that 

1 2
1   . If 

1 2
( , ) 0   , then as above we have that ( )x conv S , so that 

( )x c conv S  . Thus suppose that 
1

0   so that 
2

1   (the case of 

1
1   and 

2
0   is similar). Hence, we have 

1
0A y   and 

2 2
A z b , which implies that y is a recession direction of 

1
S  and 

2
z S  (if 

1
S  is bounded, then 0y   and then 

2
x z S   yields 

( )x c conv S  ). Let 
1

y S  and consider the sequence 

         
1

[ ] (1 ) ,
n n n

n

x y y z 


     where 0 1
n
   for all n. 
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  Note that 
1

1

n

y y S


  , 
2

z S , and so ( )
n

x conv S , n . 

Moreover, letting { } 0
n
  , we get that { }

n
x y z x   , and so 

( )x c conv S   by definition. This completes the proof.     

 
2.21 a. The extreme points of S are defined by the intersection of the two 

defining constraints, which yield upon solving for 
1

x  and 
2

x  in terms 

of 
3

x  that 

  
31

5 21 xx    , 3 3
2

3 5 2

2

x x
x

 



, where 

3
5

2
x  . 

  For characterizing the extreme directions of S, first note that for any 
fixed 

3
x , we have that S is bounded. Thus, any extreme direction must 

have 
3

0d  . Moreover, the maximum value of 
3

x  over S is readily 

verified to be bounded. Thus, we can set 
3

1d   . Furthermore, if 

(0,0,0)x   and 
1 2

( , , 1)d d d  , then x d S  , 0  , implies 

that  
                                     

1 2
2 1d d   (1) 

  and that 2 2
2 1

4 d d  , i.e., 2 2
2 1

4d d , 0  . Hence, if 
1

0d  , 

then we will have 
2

d   , and so (for bounded direction 

components) we must have 
1

0d   and 
2

0d  . Thus together with 

(1), for extreme directions, we can take 
2

0d   or 
2

1/2d  , yielding 

(0,0, 1)  and 
1

(0, , 1)
2
  as the extreme directions of S. 

 b. Since S is a polyhedron in 3R , its extreme points are feasible solutions 
defined by the intersection of three linearly independent defining 
hyperplanes, of which one must be the equality restriction 

1 2
1x x  . Of the six possible choices of selecting two from the 

remaining four defining constraints, we get extreme points defined by 

four such choices (easily verified), which yields 
3

(0,1, )
2

, 
3

(1,0, )
2

, 

(0,1,0) , and (1,0,0)  as the four extreme points of S. The extreme 

directions of S are given by extreme points of 
1 2 3

{( , , ) :D d d d  

1 2 3
2 0d d d   , 

1 2
0d d  , 

1 2 3
1d d d   , 0}d  , which is 

empty. Thus, there are no extreme directions of S (i.e., S is bounded). 
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 c. From a plot of S, it is readily seen that the extreme points of S are 

given by (0, 0), plus all point on the circle boundary 2 2
1 2

2x x   that 

lie between the points ( 2/5, 2 2/5)  and ( 2/5, 2 2/5) , 

including the two end-points. Furthermore, since S is bounded, it has 
no extreme direction.  

 
2.24 By plotting (or examining pairs of linearly independent active constraints), 

we have that the extreme points of S are given by (0, 0), (3, 0), and (0, 2). 
Furthermore, the extreme directions of S are given by extreme points of 

1 2
{( , ) :D d d  

1 2
2 0d d    

1 2
3 0d d  , 

1 2
1d d  , 0}d  , 

which are readily obtained as 
2 1

( , )
3 3

 and 
3 1

( , )
4 4

. Now, let 

  1

2

4 3/4 ,1 1/4
x
x              

 where 1

2

3 0(1 ) ,0 2
x
x                  

 

 for ( , ) 0   . Solving, we get 7/9   and 20/9,   which yields 

  
7 2 204 3 0 3/4

1 0 2 1/49 9 9
                       

. 

 
2.31 The following result from linear algebra is very useful in this proof: 
 ( )  An ( 1) ( 1)m m    matrix G with a row of ones is invertible if and 

only if the remaining m rows of G are linearly independent. In other words, 

if 
1t

B a
G

e
    

, where B is an m m  matrix, a is an 1m   vector, and e 

is an 1m   vector of ones, then G is invertible if and only if B is 
invertible. Moreover, if G is invertible, then  

 1
t

M g
G

h f
     

, where 1 11
( )tM B I ae B


   , 11

g B a


  , 

11t th e B


  , and 
1

f


 , and where 11 te B a   . 

      By Theorem 2.6.4, an n-dimensional vector d is an extreme point of D 

if and only if the matrix t
A
e
 
  

 can be decomposed into [ ]
D D

B N  such that 

B

N

d
d
 
 
 

, where 
N

d  = 0 and 1 0
B D D

d B b  , where 1D
b     

0 . From 

Property ( )  above, the matrix t
A
e
 
  

 can be decomposed into [ ]
D D

B N , 

where 
D

B  is a nonsingular matrix, if and only if A can be decomposed into 

[ ]B N , where B is an m m  invertible matrix. Thus, the matrix 
D

B  must 
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necessarily be of the form 
1

j
t

B a

e

 
 
 

, where B is an m m  invertible 

submatrix of A. By applying the above equation for the inverse of G, we 
obtain 

   

1
1

1

1
1

1 1

j
j

B D D

B a B ad B b 








          

  
 

, 

 where 11 t
j

e B a   . Notice that 0
B

d   if and only if 0   and 

1 0
j

B a  . This result, together with Theorem 2.6.6, leads to the 

conclusion that d is an extreme point of D if and only if d is an extreme 
direction of S. 

 
 Thus, for characterizing the extreme points of D, we can examine bases of 

t
A
e
 
  

, which are limited by the number of ways we can select ( 1)m   

columns out of n, i.e.,  

     !
1 ( 1)!( 1)!

nn
m m n m

   
, 

 which is fewer by a factor of 
1

( 1)m 
 than that of the Corollary to 

Theorem 2.6.6. 
 

2.42 Problem P: Minimize { : , 0}.tc x Ax b x   

 (Homogeneous) Problem D: Maximize { : 0}t tb y A y  . 

 Problem P has no feasible solution if and only if the system Ax b , 
0x  , is inconsistent. That is, by Farkas’ Theorem (Theorem 2.4.5), this 

occurs if and only if the system 0tA y  , 0tb y   has a solution, i.e., if 

and only if the homogeneous version of the dual problem is unbounded.   
 

 
2.45 Consider the following pair of primal and dual LPs, where e is a vector of 

ones in m : 

  
: Max : Min 0

subject to 0
0.  unres.

t t

t
e p x
A p Ax e
p x

 


P D
 

 Then, System 2 has a solution  P	 is	 unbounded	 ሺtake	 any	 feasible	
solution	to	System	2,	multiply	it	by	a	scalar	λ,	and	take	   ሻ	 	D	
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is	infeasible	ሺsince	P		is	homogeneousሻ	 	∄	a	solution	to	 0Ax  	 	
∄	a	solution	to	 0Ax  .							 

 

2.47 Consider the system , 0tA y c y  : 

   
1 2

2 2 3y y    

   
1 2

2 1y y   

   
1

3 2y    

   
1 2

( , ) 0y y  . 

 The first equation is in conflict with 
1 2

( , ) 0y y  . Therefore, this system 

has no solution. By Farkas’ Theorem we then conclude that the system 

0Ax  , 0tc x   has a solution. 
 
2.49 ( )  We show that if System 2 has a solution, then System 1 is 

inconsistent. Suppose that System 2 is consistent and let 
0

y  be its solution. 

If System 1 has a solution, 
0

x , say, then we necessarily have 
0 0

0t tx A y  . 

However, since 
0
t t tx A c , this result leads to 

0
0tc y  , thus 

contradicting 
0

1tc y  . Therefore, System 1 must be inconsistent. 

 ( )  In this part we show that if System 2 has no solution, then System 1 

has one. Assume that System 2 has no solution, and let 
1 0

{( , ) :S z z  

1
tz A y  , 

0
tz c y , }my   . Then S is a nonempty convex set, and 

1 0
( , ) (0,1)z z S  . Therefore, there exists a nonzero vector 

1 0
( , )p p  and 

a real number ߙ such that 
1 1 0 0 1 0

0t tp z p z p p     for any 

1 0
( , )z z S . By the definition of S, this implies that 

1 0 0
t t tp A y p c y p     for any my   . In particular, for y = 0, we 

obtain 
0

0 p  . Next, observe that since α is nonnegative and 

1 0
( )t t tp A p c y     for any my   , then we necessarily have 

1 0
0t t tp A p c    (or else y can be readily selected to violate this 

inequality). We have thus shown that there exists a vector 
1 0

( , )p p  where 

0
0p  , such that 

1 0
0Ap p c  . By letting 

1
0

1
x p

p
 , we concluce that 

x solves the system 0Ax c  . This shows that System 1 has a solution. 

 
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2.50 Consider the pair of primal and dual LPs below, where e is a vector of 

ones in p : 

  

: Max : Min 0
subject to 0 subject to

0,  unres. 0
unres.

t t

t t
e u x
A u B v Ax e
u v Bx

x

  
 

P D

 

 Hence, System 2 has a solution P  is unbounded (take any solution to 
System 2 and multiply it with a scalar λ	 and	 take	    ሻ	  	 D	 is	
infeasible	ሺsince	P	is	homogeneousሻ	 	there	does	not	exist	a	solution	
to	 0Ax  ,	 0Bx  	 	System	1	has	no	solution.						 

 
2.51 Consider the following two systems for each {1,..., } :i m  

 System I:  0Ax   with 0
i

A x   

 System II: 0, 0tA y y  , with 0
i

y  , 

 where 
i

A  is the ith row of A. Accordingly, consider the following pair of 

primal and dual LPs: 
 

 

: Max : Min 0

subject to 0 subject to
0  unres,

t t
i
t

i

e y x

A y Ax e
y x

 


P D

 

 
 where 

i
e  is the ith unit vector. Then, we have that System II has a solution 

  P is unbounded   D is infeasible   System I has no solution. Thus, 
exactly one of the systems has a solution for each {1,..., }i m . Let 

1
{ {1,..., } :I i m   System I has a solution; say }ix , and let 

2
{ {1,..., } :I i m   System II has a solution; say, }iy . Note that 

1 2
{1,..., }I I m   with 

1 2
I I   . Accordingly, let 

1

i

i I
x x


   and 

2

i

i I
y y


  , where 0x   if 

1
I    and 0y   if 

2
I   . Then it is 

easily verified that x  and y  satisfy Systems 1 and 2, respectively, with 

1 2

0i i

i I i I
Ax y Ax y

 
      since 0iAx  , 

1
i I  , and 0iy  , 

2
i I  , and moreover, for each row i of this system, if 

1
i I   then we 

have 0i
i

A x   and if 
2

i I  then we have 0iy  . 
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2.52 Let 1
2

( )
x

f x e x


  . Then 
1

{ : ( ) 0}S x f x  . Moreover, the Hessian 

of f is given by 1 0
0 0

x
e
 

 
 

, which is positive semidefinite, and so, f is a 

convex function. Thus, S is a convex set since it is a lower-level set of a 
convex function. Similarly, it is readily verified that 

2
S  is a convex set. 

Furthermore, if 
1 2

x S S  , then we have 1 1
2

x x
e x e
 

    or 

12 0
x

e
  , which is achieved only in the limit as 

1
x   . Thus, 

1 2
S S  . A separating hyperplane is given by 

2
0x  , with 

1 2
{ : 0}S x x   and 

2 2
{ : 0}S x x  , but there does not exist any 

strongly separately hyperplane (since from above, both 
1

S  and 
2

S  contain 

points having 
2

0x  ). 

 

2.53 Let 2 2
1 2

( ) 4f x x x   . Let 2 2
1 2

{ : 4}X x x x   . Then, for any 

x X , the first-order approximation to ( )f x  is given by 

    1
1 1 2 2

2

2
( ) ( ) ( ) ( ) ( ) (2 ) (2 ) 82

t t
FO

x
f x f x x x f x x x x x x xx

 
         

 
. 

 Thus S is described by the intersection of infinite halfspaces as follows: 
 
    

1 1 2 2
(2 ) (2 ) 8x x x x  , x X  , 

 
 which represents replacing the constraint defining S by its first-order 

approximation at all boundary points. 
 
 
2.57 For the existence and uniqueness proof see, for example, Linear Algebra 

and Its Applications by Gilbert Strang (Harcourt Brace Jovanovich, Inc., 
1988). 

 
 If 

1 2 3 1 2 3
{( , , ) : 2 0}L x x x x x x    , then L is the nullspace of 

[2 1 1]A   , and its orthogonal complement is given by 
2
1
1


 
 
  

 for any 

   . Therefore, 
1

x  and 
2

x  are orthogonal projections of x onto L, and 

L , respectively. If x = (1   2   3), then 
1 2

1
2
3

 
 

  
x + x  where 

2

2
1
1


 

  
  

x . 
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Thus, 

21 2 2 1
2 1 1

63 1 1

t

 
   

    
       

= . Hence, 
1

1
(4 11 19)

6
x =  and 

2
1

(2 1 1)
6

x = . 
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CHAPTER 3: 

 

CONVEX FUNCTIONS AND GENERALIZATIONS 

3.1 a. 
4 4
4 0

 
  

 is indefinite. Therefore, ( )f x  is neither convex nor 

concave.  

 b. 1 2( 3 ) 1 1

1 1

2 3( 1)
( )

3( 1) 9
x x x x

H x e
x x

    
   

. Definiteness of the matrix 

( )H x  depends on 
1

x . Therefore, ( )f x  is neither convex nor concave 

(over 2R ). 

 c. 
2 4
4 6

H
    

 is indefinite since the determinant is negative. 

Therefore, ( )f x  is neither convex nor concave. 

 d. 
4 2 5
2 2 0
5 0 4

H
 

 
  

 is indefinite. Therefore, ( )f x  is neither convex 

nor concave. 

 e. 
4 8 3
8 6 4
3 4 4

H
 
  
  

 is indefinite. Therefore, ( )f x  is neither convex 

nor concave. 
 

3.2 2( ) [ ( 1)].
bb ax bf x abx e abx b      Hence, if b = 1, then f is convex 

over { : 0}.x x   If b > 1, then f is convex whenever ( 1),babx b   i.e., 
1/( 1)

.
bb

x
ab

    
 

 

3.3 2 2
2 1

( ) 10 3( )f x x x   , and its Hessian matrix is 

2
1 2 1

1

6 2 2
( ) 6

2 1

x x x
H x

x

  
  

  
. Thus, f is not convex anywhere and for f to 

be concave, we need 2
1 2

6 2 0x x    and 2 2
1 2 1

6 2 4 0,x x x    i.e., 

2
1 2

3x x  and 2
1 2

x x , i.e., 2
1 2

x x . Hence, if 
1 2

{( , ) :S x x  

1
1 1x   , 

2
1 1}x   , then ( )f x  is neither convex nor concave on S. 
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If S is a convex set such that 2
1 2 1 2

{( , ) : }S x x x x  , then ( )H x  is 

negative semidefinite for all x S . Therefore, ( )f x  is concave on S. 

 

3.4 2 2( ) ( 1)f x x x  , 3( ) 4 2f x x x   , and 2( ) 12 2 0f x x     if 
2 1/6x  . Thus f is convex over 

1
{ : 1/ 6}S x x   and over 

2
{ : 1/ 6}.S x x    Moreover, since ( ) 0f x   whenever 1/ 6x   or 

1/ 6x   , and thus f lies strictly above the tangent plane for all 
1

x S  as 

well as for all 
2

,x S  f is strictly convex over 
1

S  and over 
2

S . For all the 

remaining values for x, ( )f x  is strictly concave. 

 

3.9 Consider any 
1
,x  

2
,nx R  and let 

1 2
(1 )x x x      for any 

0 1.   Then 
 
 

1
( ) max{ ( ),..., ( )} ( )

k r
f x f x f x f x      for some {1,..., },r k  

whence 
1 2

( ) ( ) (1 ) ( )
r r r

f x f x f x      by the convexity of 
r

f , i.e., 

1 2
( ) ( ) (1 ) ( )f x f x f x      since 

1 1
( ) ( )

r
f x f x  and 

2 2
( ) ( ).

r
f x f x  Thus f is convex.  

 
 If 

1
,...,

k
f f  are concave functions, then 

1
,...,

k
f f   are convex functions 

1
max{ ( ),..., ( )}

k
f x f x    is convex i.e., 

1
min{ ( ),..., ( )}

k
f x f x  is 

convex, i.e., 
1

( ) min{ ( ),..., ( )}
k

f x f x f x  is concave. 

 

3.10 Let 
1

x , 
2

nx   , [0,1]  , and let 
1 2

(1 )x x x     . To establish the 

convexity of ( )f   we need to show that 
1 2

( ) ( ) (1 ) ( )f x f x f x     . 

Notice that 
 ( )f x  

1 2
[ ( )] [ ( ) (1 ) ( )]g h x g h x h x       

  
1 2

[ ( )] (1 ) [ ( )]g h x g h x     

  
1 2

( ) (1 ) ( ).f x f x     

 In this derivation, the first inequality follows since h is convex and g is 
nondecreasing, and the second inequality follows from the convexity of g. 
This completes the proof. 

 
3.11 Let 

1
x , 

2
x S , [0,1]  , and let 

1 2
(1 )x x x     . To establish the 

convexity of f over S we need to show that 

1 2
( ) ( ) (1 ) ( ) 0f x f x f x      . For notational convenience, let 
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1 2 2 2
( ) ( ) ( ) ( ) ( ) (1 ) ( ) ( )D x g x g x g x g x g x g x      . Under the 

assumption that ( ) 0g x   for all x S , our task reduces to demonstrating 

that ( ) 0D x   for any 
1

x , 
2

x S , and any [0,1]  . By the concavity of 

( )g x  we have 

 
1 2 1 2 2

( ) ( ) ( ) [ ( ) (1 ) ( )] ( )D x g x g x g x g x g x        

            
1 2 1

(1 )[ ( ) (1 ) ( )] ( )g x g x g x     . 

 After a rearrangement of terms on the right-hand side of this inequality we 
obtain 

 ( )D x  2 2
1 2 1 2

(1 )[ ( ) ( ) ] 2 (1 ) ( ) ( )g x g x g x g x          

  2 2
1 2 1 2

(1 )[ ( ) ( ) ] 2 (1 ) ( ) ( )g x g x g x g x          

  2 2
1 2 1 2

(1 )[ ( ) ( ) 2 ( ) ( )]g x g x g x g x       

  2
1 2

(1 )[ ( ) ( )] .g x g x      

 Therefore, ( ) 0D x   for any 
1

x , 
2

x S , and any [0,1]  , and thus 

( )f x  is a convex function.  

 

 Symmetrically, if g is convex, { : ( ) 0}S x g x  , then from above, 
1

g
 

is convex over S, and so ( ) 1/ ( )f x g x  is concave over S.      

 

3.16 Let 
1

x , 
2

x  be any two vectors in nR , and let [0,1]  . Then, by the 

definition of ( )h  , we obtain 
1 2 1

( (1 ) ) ( )h x x Ax b        

2
(1 )( )Ax b  

1 2
( ) (1 ) ( )h x h x   . Therefore, 

 
1 2 1 2 1 2

( (1 ) ) [ ( (1 ) )] [ ( ) (1 ) ( )]f x x g h x x g h x h x              

 
1 2 1 2

[ ( )] (1 ) [ ( )] ( ) (1 ) ( ),g h x g h x f x f x          

 where the above inequality follows from the convexity of g. Hence, ( )f x  

is convex.      

 By multivariate calculus, we obtain ( ) [ ( )]tf x A g h x   , and ( )
f

H x   

[ ( )]t
g

A H h x A . 

 

3.18 Assume that ( )f x  is convex. Consider any x, ny R , and let (0,1)  . 

Then  

 ( ) (1 ) (1 )
1 1

x y x y
f x y f f f   

   
                               
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                 ( ) ( )f x f y  , 

 and so f is subadditive. 
 

 Conversely, let f be a subadditive gauge function. Let x, ny R  and 

[0,1]  . Then 

 ( (1 ) ) ( ) [(1 ) ] ( ) (1 ) ( )f x y f x f y f x f y             , 

 and so f is convex.  
 
3.21 See the answer to Exercise 6.4. 
 
3.22 a. See the answer to Exercise 6.4. 
 
 b. If 

1 2
,y y  then 

1 2
{ : ( ) , } { : ( ) , },x g x y x S x g x y x S      

and so 
1 2

( ) ( ).y y   

 

3.26 First assume that 0x  . Note that then ( ) 0f x   and 0t x   for any 

vector   in nR .  

 ( ) If   is a subgradient of ( )f x x  at x = 0, then by definition we 

have tx x  for all nx R . Thus in particular for x  , we obtain 

2  , which yields 1  . 

 ( ) Suppose that 1  . By the Schwarz inequality, we then obtain 

t x   x x , and so   is a subgradient of ( )f x x  at x = 0. 

 This completes the proof for the case when 0.x   Now, consider 0.x   

 ( ) Suppose that   is a subgradient of ( )f x x  at x . Then by 

definition, we have 
 

  ( )tx x x x    for all nx R . (1) 

 
 In particular, the above inequality holds for x = 0, for x x , where 

0  , and for x  . If x = 0, then t x x  . Furthermore, by 

employing the Schwarz inequality we obtain  
 

  tx x x   . (2) 

 
 If x x , 0  , then x x , and Equation (1) yields 

( 1) ( 1) tx x     . If 1  , then tx x , and if 1  , then 
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tx x . Therefore, in either case, if   is a subgradient at x , then it 

must satisfy the equation. 
 

  t x x  . (3) 

 

 Finally, if x  , then Equation (1) results in t tx x      . 

However, by (2), we have t x x  . Therefore, (1 ) 0   . This 

yields 
 
  1 0   (4) 

 
 Combining (2) – (4), we conclude that if   is a subgradient of ( )f x x  

at 0x  , then t x x   and 1  . 

 ( ) Consider a vector nR   such that 1   and t x x  , where 

0x  . Then for any x, we have ( ) ( ) ( )tf x f x x x x x       

( ) (1 ) 0t tx x x x x        , where we have used the 

Schwarz inequality ( )t x x   to derive the last inequality. Thus   is 

a subgradient of ( )f x x  at 0x  . This completes the proof.   

 In order to derive the gradient of ( )f x  at 0x  , notice that 1   and 

t x x   if and only if 
1

x
x

  . Thus 
1

( )f x x
x

  . 

 
3.27 Since 

1
f  and 

2
f  are convex and differentiable, we have 

 

 
1 1 1
( ) ( ) ( ) ( ), .tf x f x x x f x x      

 
2 2 2

( ) ( ) ( ) ( ), .tf x f x x x f x x      

 Hence, 
1 2

( ) max{ ( ), ( )}f x f x f x  and 
1 2

( ) ( ) ( )f x f x f x   give 

 

  
1

( ) ( ) ( ) ( ),tf x f x x x f x x      (1) 

  
2

( ) ( ) ( ) ( ), .tf x f x x x f x x      (2) 

 
 Multiplying (1) and (2) by   and (1 ) , respectively, where 0 1  , 

yields upon summing: 
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 1 2
( ) ( ) ( ) [ ( ) (1 ) ( )], ,tf x f x x x f x f x x          

  
1 2
( ) (1 ) ( ), 0 1,f x f x           is a subgradient of f at x . 

 
( ) Let   be a subgradient of f at x . Then, we have, 

 

  ( ) ( ) ( ) , .tf x f x x x x     (3) 

 
 But 

1 2
( ) max{ ( ), ( )}f x f x f x                 

                            
1 1 1

max{ ( ) ( ) ( ) 0 ( ),tf x x x f x x x x x       

                                    
2 2 2

( ) ( ) ( ) 0 ( )},tf x x x f x x x x x       (4) 

 
 where 

1
0 ( )x x  and 

2
0 ( )x x  are functions that approach zero as 

x x . Since 
1 2
( ) ( ) ( )f x f x f x  , putting (3) and (4) together yields 

 

 
1 1

max{( ) [ ( ) ] 0 ( ),tx x f x x x x x       

          
2 2

( ) [ ( ) ] 0 ( )} 0, .tx x f x x x x x x         (5) 

 
 Now, on the contrary, suppose that 

1 2
{ ( ), ( )}conv f x f x    . Then, there 

exists a strictly separating hyperplane x   such that 1   and 

t    and 
1 2

{ ( ) , ( ) },t tf x f x        i.e., 

 

                   
1

[ ( )] 0t f x      and 
2

[ ( )] 0t f x     . (6) 

 

 Letting ( )x x    in (5), with 0  , we get upon dividing with 

0  : 
 

 
1 1

max{ [ ( ) ] 0 ( 0),t f x       

         
2 2

[ ( ) ] 0 ( 0)} 0, 0.t f x           (7) 

 
 But the first terms in both maxands in (7) are negative by (6), while the 

second terms 0 . Hence we get a contradiction. Thus 
1

{ ( ),conv f x    

2
( )}f x , i.e., it is of the given form.  
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 Similarly, if 
1

( ) max{ ( ),..., ( )}
m

f x f x f x , where 
1
,...,

m
f f  are 

differentiable convex functions and x  is such that ( ) ( ),
i

f x f x  

{1,..., },i I m    then   is a subgradient of f at 

{ ( ), }.
i

x conv f x i I     A likewise result holds for the minimum 

of differentiable concave functions. 
 
3.28 a. See Theorem 6.3.1 and its proof. (Alternatively, since   is the 

minimum of several affine functions, one for each extreme point of X, 
we have that   is a piecewise linear and concave.) 

 
 b. See Theorem 6.3.7. In particular, for a given vector u , let 

1
( ) { ,..., }

k
X u x x  denote the set of all extreme points of the set X 

that are optimal solutions for the problem to minimize 

{ ( ) : }.t tc x u Ax b x X    Then ( )u  is a subgradient of ( )u  at 

u  if and only if ( )u  is in the convex hull of 
1

,..., ,
k

Ax b Ax b   

where ( )
i

x X u  for 1,..., .i k  That is, ( )u  is a subgradient of 

( )u  at u  if and only if 
1

( )
k

i i
i

u A x b 


   for some nonnegative 

1
,..., ,

k
   such that 

1
1.

k

i
i




  

 
3.31 Let 

1
: min{ ( ) : }f x x SP  and 

2
: min{ ( ) : },

s
f x x SP  and let 

1
{ : ( ) ( ), }S x S f x f x x S       and 

2
{ : ( )

s
S x S f x     

( ), }.
s

f x x S   Consider any 
1
.x S   Hence, x  solves Problem 

1
P . 

Define ( ) ( ), .h x f x x S    Thus, the constant function h is a convex 

underestimating function for f over S, and so by the definition of 
s

f , we 

have that 
 

 ( ) ( ) ( ), .
s

f x h x f x x S     (1) 

 

 But ( ) ( )
s

f x f x   since ( ) ( ), .
s

f x f x x S    This, together with (1), 

thus yields ( ) ( )
s

f x f x   and that x  solves Problem 
2

P  (since (1) 

asserts that ( )f x  is a lower bound on Problem 
2

P ). Therefore, 
2
.x S   

Thus, we have shown that the optimal values of Problems 
1

P  and 
2

P  

match, and that 
1 2

.S S     
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3.37 

2 2
1 2

2 2
1 2

2
1

2
2

4 3 1 4 3
( ) ,

1 2 5
2 5

x x

x x

x e e
f x f

e
x e





 
                     

 

 
2 2
1 2

2
2 1 1 2

2
1 2 2

8 2 4 1 10 4
( ) 2 , 2 ,

1 4 14 2 1

x x x x x
H x e H e

x x x

                   
 

 with 
1

2.
1

f e     
 

 Thus, the linear (first-order) approximation of f at 
1
1
 
  

 is given by 

 
1 1 2
( ) ( 2) ( 1)(4 3) ( 1)( 2 5),f x e x e x e           

 and the second-order approximation of f at 
1
1
 
  

 is given by  

 
2 1 2

( ) ( 2) ( 1)(4 3) ( 1)( 2 5)f x e x e x e           

                2 2
1 1 2 2

10( 1) 8( 1)( 1) ( 1) .e x x x x         

 
 

1
f  is both convex and concave (since it is affine). The Hessian of 

2
f  is 

given by 
1

,
1

H  
  

 which is indefinite, and so 
2

f  is neither convex nor 

concave. 
 

3.39 The function ( ) tf x x Ax  can be represented in a more convenient form 

as 
1

( ) ( )
2

t tf x x A A x  , where ( )tA A  is symmetric. Hence, the 

Hessian matrix of ( )f x  is tH A A  . By the superdiagonalization 

procedure, we can readily verify that 
4 3 4
3 6 3
4 3 2

H


 
 
 
 

. H is positive 

semidefinite if and only if 2,   and is positive definite for 2.   

Therefore, if 2,   then ( )f x  is strictly convex. To examine the case 

when 2,   consider the following three points: 
1

x  = (1, 0, 0), 
2

x  = (0, 0, 

1), and 
1 2

1 1
.

2 2
x x x   As a result of direct substitution, we obtain 

1 2
( ) ( ) 2,f x f x   and ( ) 2.f x   This shows that ( )f x  is not strictly 

convex (although it is still convex) when 2.   
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3.40 3 2( ) ( ) 3f x x f x x    and ( ) 6 0,f x x x S     . Hence f is 

convex on S. Moreover, ( ) 0, int( )f x x S    , and so f is strictly 

convex on int(S). To show that f is strictly convex on S, note that 
( ) 0f x   only for 0 ,x S   and so following the argument given after 

Theorem 3.3.8, any supporting hyperplane to the epigraph of f over S at 
any point x  must touch it only at [ , ( )],x f x  or else this would contradict 

the strict convexity of f over int(S). Note that the first nonzero derivative of 
order greater than or equal to 2 at 0x   is ( ) 6,f x   but Theorem 3.3.9 

does not apply here since 0 ( ).x S    Indeed, this shows that 
3( )f x x  is neither convex nor concave over R. But Theorem 3.3.9 

applies (and holds) over int(S) in this case.  
 
3.41 The matrix H is symmetric, and therefore, it is diagonalizable. That is, 

there exists an orthogonal n n  matrix Q, and a diagonal n n  matrix D 

such that .tH QDQ  The columns of the matrix Q are simply normalized 

eigenvectors of the matrix H, and the diagonal elements of the matrix D 
are the eigenvalues of H. By the positive semidefiniteness of H, we have 

{ } 0,diag D   and hence there exists a square root matrix 1/2D  of D (that 

is 1/2 1/2 ).D D D  

 

 If 0,x   then readily Hx = 0. Suppose that 0tx Hx   for some 0x  . 
Below we show that then Hx is necessarily 0. For notational convenience 

let 1/2 .tz D Q x  Then the following equations are equivalent to 

0tx Hx  : 

    1/2 1/2 0t tx QD D Q x   

    0tz z  , i.e., 2 0z   

    0.z   

 By premultiplying the last equation by 1/2 ,QD  we obtain 1/2 0,QD z   

which by the definition of z gives 0.tQDQ x   Thus Hx = 0, which 

completes the proof.     

 
3.45 Consider the problem 
 

  P: Minimize 2 2
1 2

( 4) ( 6)x x    

   subject to 2
2 1

x x  

    
2

4.x   
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 Note that the feasible region (denote this by X) of Problem P is convex. 

Hence, a necessary condition for x X  to be an optimal solution for 
Problem P is that 

 

  ( ) ( ) 0, ,tf x x x x X      (1) 

 

 because if there exists an x̂ X such that ˆ( ) ( ) 0,tf x x x    then 

ˆ( )d x x   would be an improving (since f is differentiable) and feasible 

(since X is convex) direction. 
 

 For (2, 4) ,tx   we have 
2(2 4) 4

( ) .
2(4 6) 4

f x
             

 

 
 Hence, 
 

 1
1 2

2

2
( ) ( ) [ 4, 4] 4 4 24.

4
t x

f x x x x x
x

 
           

 (2) 

 

 But 2
1 2

4,x x   
2

4x X x     and 
1

2 2,x    and so 

1
4 8x    and 

2
4 16.x    Hence, ( ) ( ) 0tf x x x    from (2). 

 
 Furthermore, observe that the objective function of Problem P (denoted by 

( ))f x  is (strictly) convex since its Hessian is given by 
2 0

,
0 2
 
  

 which is 

positive definite. Hence, by Corollary 2 to Theorem 3.4.3, we have that (1) 

is also sufficient for optimality to P, and so (2, 4)tx   (uniquely) solves 

Problem P. 
 
3.48 Suppose that 

1
  and 

2
  are in the interval (0, ),  and such that 

2 1
.   

We need to show that 
2 1

( ) ( ).f x d f x d     

 
 Let 

1 2
/ .    Note that (0,1),   and 

1 2
( )x d x d       

(1 ) .x  Therefore, by the convexity of f, we obtain 
1

( )f x d   

2
( ) (1 ) ( ),f x d f x      which leads to 

1 2
( ) ( )f x d f x d     

since, by assumption, ( ) ( )f x f x d   for any (0, ).   

 



 

25 

 When f is strictly convex, we can simply replace the weak inequalities 
above with strict inequalities to conclude that ( )f x d  is strictly 

increasing over the interval (0, ).  

 
3.51 ( ) If the vector d is a descent direction of f at x , then ( )f x d   

( ) 0f x   for all (0, ).   Moreover, since f is a convex and 

differentiable function, we have that ( ) ( ) ( ) .tf x d f x f x d      

Therefore, ( ) 0.tf x d   

 ( ) See the proof of Theorem 4.1.2.     

 Note: If the function ( )f x  is not convex, then it is not true that 

( ) 0tf x d   whenever d is a descent direction of ( )f x  at x . For 

example, if 3( ) ,f x x  then 1d    is a descent direction of f at 0,x   

but ( ) 0.f x d   

 
3.54 ( ) If x  is an optimal solution, then we must have ( ; ) 0,f x d   

,d D   since ( ; ) 0f x d   for any d D  implies the existence of 

improving feasible solutions by Exercise 3.5.1. 
 ( ) Suppose ( ; ) 0,f x d   ,d D   but on the contrary, x  is not an 

optimal solution, i.e., there exists x̂ S  with ˆ( ) ( ).f x f x  Consider 

ˆ( ).d x x   Then d D  since S is convex. Moreover, ( )f x d   

ˆ ˆ( (1 ) ) ( ) (1 ) ( ) ( ),f x x f x f x f x          0 1.    Thus d is 

a feasible, descent direction, and so ( ; ) 0f x d   by Exercise 3.51, a 

contradiction. 
 
 Theorem 3.4.3 similarly deals with nondifferentiable convex functions. 
 

 If ,nS R  then x  is optimal   ( ) 0,tf x d   nd R   

   ( ) 0f x   (else, pick ( )d f x   to get a contradiction). 

 

3.56 Let 
1
,x  

2
.nx R  Without loss of generality assume that 

1 2
( ) ( ).h x h x  

Since the function g is nondecreasing, the foregoing assumption implies 
that 

1 2
[ ( )] [ ( )],g h x g h x  or equivalently, that 

1 2
( ) ( ).f x f x  By the 

quasiconvexity of h, we have 
1 2 1

( (1 ) ) ( )h x x h x     for any 

[0,1].   Since the function g is nondecreasing, we therefore have, 

1 2 1 2 1 1
( (1 ) ) [ ( (1 ) )] [ ( )] ( ).f x x g h x x g h x f x           This 

shows that ( )f x  is quasiconvex.     
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3.61 Let   be an arbitrary real number, and let { : ( ) }.S x f x    

Furthermore, let 
1

x  and 
2

x  be any two elements of S. By Theorem 3.5.2, 

we need to show that S is a convex set, that is, 
1 2

( (1 ) )f x x      for 

any [0,1].   By the definition of ( )f x , we have 

 

1 2 1 2
1 2

1 2 1 2

( (1 ) ) ( ) (1 ) ( )
( (1 ) ) ,

( (1 ) ) ( ) (1 ) ( )

g x x g x g x
f x x

h x x h x h x

   
 

   

   
   

   
 (1) 

 
 where the inequality follows from the assumed properties of the functions 

g and h. Furthermore, since 
1

( )f x   and 
2

( )f x  , we obtain 

 
  

1 1
( ) ( )g x h x   and 

2 2
(1 ) ( ) (1 ) ( ).g x h x      

 
 By adding these two inequalities, we obtain 

1 2
( ) (1 ) ( )g x g x     

1 2
[ ( ) (1 ) ( )].h x h x     Since h is assumed to be a positive-valued 

function, the last inequality yields 
 

1 2

1 2

( ) (1 ) ( )
,

( ) (1 ) ( )

g x g x

h x h x

 


 

 


 
 

 
 or by (1), 

1 2
( (1 ) ) .f x x      Thus, S is a convex set, and therefore, 

( )f x  is a quasiconvex function.    

 Alternative proof: For any ,R   let { : ( )/ ( ) }.S x S g x h x     We 

need to show that S  is a convex set. If 0  , then S    since 

( ) 0g x   and ( ) 0h x  , x S  , and so S  is convex. If 0,   then 

{ : ( ) ( ) 0}S x S g x h x      is convex since ( ) ( )g x h x  is a 

convex function, and S  is a lower level set of this function.      

 
3.62 We need to prove that if ( )g x  is a convex nonpositive-valued function on 

S and ( )h x  is a convex and positive-valued function on S, then 

( ) ( )/ ( )f x g x h x  is a quasiconvex function on S. For this purpose we 

show that for any 
1

x , 
2

,x S  if 
1 2

( ) ( ),f x f x  then 
1

( ) ( ),f x f x   

where 
1 2

(1 ) ,x x x      and [0,1].   Note that by the definition of 

f and the assumption that ( ) 0h x   for all ,x S  it suffices to show that 

1 1
( ) ( ) ( ) ( ) 0.g x h x g x h x    Towards this end, observe that 
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1 1 2 1

( ) ( ) [ ( ) (1 ) ( )] ( )g x h x g x g x h x      since ( )g x  is convex and 

( ) 0h x   on S; 

 
1 1 1 2

( ) ( ) ( )[ ( ) (1 ) ( )]g x h x g x h x h x      since ( )h x  is convex and 

( ) 0g x   on S; 

 
2 1 1 2

( ) ( ) ( ) ( ) 0,g x h x g x h x   since 
1 2

( ) ( )f x f x  and ( ) 0h x   on S. 

 
 From the foregoing inequalities we obtain 
 

1 1
( ) ( ) ( ) ( )g x h x g x h x   

 
1 2 1 1 1

[ ( ) (1 ) ( )] ( ) ( )[ ( )g x g x h x g x h x      
2

(1 ) ( )]h x  

 
2 1 1 2

(1 )[ ( ) ( ) ( ) ( )] 0,g x h x g x h x     

 
 which implies that 

1 2 1
( ) max{ ( ), ( )} ( ).f x f x f x f x           

 
 Note: See also the alternative proof technique for Exercise 3.61 for a 

similar simpler proof of this result. 
 
3.63 By assumption, ( ) 0,h x   and so the function ( )f x  can be rewritten as 

( ) ( )/ ( ),f x g x p x  where ( ) 1/ ( ).p x h x  Furthermore, since ( )h x  is a 

concave and positive-valued function, we conclude that ( )p x  is convex 

and positive-valued on S (see Exercise 3.11). Therefore, the result given in 
Exercise 3.62 applies. This completes the proof.     

 
3.64 Let us show that if ( )g x  and ( )h x  are differentiable, then the function 

defined in Exercise 3.61 is pseudoconvex. (The cases of Exercises 3.62 
and 3.63 are similar.) To prove this, we show that for any 

1
x , 

2
x S , if 

1 2 1
( ) ( ) 0tf x x x   , then 

2 1
( ) ( ).f x f x  From the assumption that 

( ) 0h x  , it follows that 
1 2 1

( ) ( ) 0tf x x x    if and only if 

1 1
[ ( ) ( )h x g x 

1 1 2 1
( ) ( )] ( ) 0.tg x h x x x    Furthermore, note that 

1 2 1 2 1
( ) ( ) ( ) ( ),tg x x x g x g x     since ( )g x  is a convex and 

differentiable function on S, and 
1 2 1 2 1

( ) ( ) ( ) ( ),th x x x h x h x     since 

( )h x  is a concave and differentiable function on S. By multiplying the 

latter inequality by 
1

( ) 0,g x   and the former one by 
1

( ) 0,h x   and 

adding the resulting inequalities, we obtain (after rearrangement of terms): 
 

1 1 1 1 2 1 1 2 1 2
[ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( ) ( ).th x g x g x h x x x h x g x g x h x       
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 The left-hand side expression is nonegative by our assumption, and 
therefore, 

1 2 1 2
( ) ( ) ( ) ( ) 0,h x g x g x h x   which implies that 

2 1
( ) ( ).f x f x  This completes the proof.    

 

3.65 For notational convenience let 
1 1

( ) ,tg x c x    and let 
2 2

( ) .th x c x    

In order to prove pseudoconvexity of 
( )

( )
( )

g x
f x

h x
  on the set 

{ : ( ) 0}S x h x   we need to show that for any 
1
,x  

2
,x S  if 

1 2 1
( ) ( ) 0,tf x x x    then 

2 1
( ) ( ).f x f x  

 

 Assume that 
1 2 1

( ) ( ) 0tf x x x    for some 
1
,x  

2
.x S  By the definition 

of f, we have 
1 22

1
( ) [ ( ) ( ) ].

[ ( )]
f x h x c g x c

h x
    Therefore, our 

assumption yields 
1 1 1 2 2 1

[ ( ) ( ) ] ( ) 0.th x c g x c x x    Furthermore, by 

adding and subtracting 
1 1 2 1

( ) ( )h x g x   we obtain 
2 1

( ) ( )g x h x   

2 1
( ) ( )h x g x 0.  Finally, by dividing this inequality by 

1 2
( ) ( ) ( 0),h x h x   

we obtain 
2 1

( ) ( ),f x f x  which completes the proof of pseudoconvexity 

of ( ).f x  The psueoconcavity of ( )f x  on S can be shown in a similar way. 

Thus, f is pseudolinear.    

 
 
 




