[EXERCISES]

1.1 Show that the following sets satisfy the law of contradiction and law of excluded middle.

$$X = \{a, b, c, d, e, f, g\}$$

 $A = \{a, b, c, d\}$

1.2 $A = \sum_{i=1,n} \mu_A(x_i)/x_i$ is an another form of representation of fuzzy set.

Represent the following fuzzy sets by this form.

a)
$$A = \{(2, 1.0), (3, 0.4), (4, 0.5)\}$$

b)
$$B = \{(a, \mu_B(a)), (b, \mu_B(b)), (c, \mu_B(c)), (d, \mu_B(d))\}$$

1.3 Consider the fuzzy sets: short, middle, tall

cm	short	middle	tall
140	1	0	0
150	1	0	0
160	0.9	0.1	0
170	0.7	1	0
180	0.3	0.8	0.3
190	0	0	1

- a) Compare the support of each set.
- b) What is the normalized fuzzy set?
- c) Find the level set of each set.
- d) Compare α -cut set of each set where α =0.5 and α =0.3.
- 1.4 Determine whether the following fuzzy sets are convex or not.

a)
$$A = \int \mu_A(x)/x$$
 where $\mu_A(x) = 1/(1+x^2)$

b)
$$B = \int \mu_B(x)/x$$
 where $\mu_B(x) = 1/(1+10x)^{1/2}$

1.5 Prove that all the α -cuts of any fuzzy set A defined on R'' are convex if and only if

$$\mu_{A}(\lambda r + (1 - \lambda)s) \ge Min[\mu_{A}(r), \mu_{A}(s)]$$

such that $r, s \in \mathcal{H}^n$, $\lambda \in [0, 1]$

1.6 Compute the scalar cardinality and the fuzzy cardinality for each of the following fuzzy set.

a)
$$A = \{(x, 0.4), (y, 0.5), (z, 0.9), (w, 1)\}$$

b) B =
$$\{0.5/u + 0.8/v + 0.9/w + 0.1/x\}$$

a) A = {(x, 0.4), (y, 0.5), (z, 0.9), (w, 1)}
b) B = {0.5/u + 0.8/v + 0.9/w + 0.1/x}
c) C=
$$\sum \mu_C(x)/x$$
 where $\mu_C(x) = (x/(x+1))^2$ $x \in \{0,1,2,\cdots 10\}$

1.7 Show the following set is convex.

wing set is convex.

$$\mu_A(x) = \begin{cases} 0 & x \le 10 \\ (1 + (x - 10)^{-2})^{-1} & x > 10 \end{cases}$$

1.8 Determine α -cut sets of the above set for α =0.5, 0.8 and 0.9.

[EXERCISES]

2.1 Let sets A, B, and C be fuzzy sets defined on real numbers by the membership functions

$$\mu_A(x) = \frac{x}{x+1}, \ \mu_B(x) = \frac{1}{x^2+10}, \ \mu_C(x) = \frac{1}{10^x}$$

Determine mathematical membership functions and graphs of each of the followings:

- a) $A \cup B$, $B \cap C$,
- b) $A \cup B \cup C$, $A \cap B \cap C$
- c) $A \cap \overline{C}$, $\overline{B} \cup C$
- d) $\overline{A \cap B}$, $\overline{A} \cup \overline{B}$
- 2.2 Show the two fuzzy sets satisfy the De Morgan's Law.

$$\mu_{4}(x) = \frac{1}{1 + (x - 10)}$$

$$\mu_B(x) = \frac{1}{1+x^2}$$

2.3 Show that the following sets don't satisfy the law of contradiction and the law of excluded middle.

a)
$$\mu_4(x) = \frac{1}{1+x}$$

b)
$$A = \{(a, 0.4), (b, 0.5), (c, 0.9), (d, 1)\}$$

2.4 Determine complements, unions, and intersections of the following sets by using Yager's operators for $\omega = 1, 2$

a)
$$A = \{(a, 0.5), (b, 0.9), (c, 0.1), (d, 0.5)\}$$

b)
$$\mu_4(x) = \frac{1}{1+x}$$

2.5 Compute the complements of the following sets by Yager's complements w = 1, 2.

a)
$$A = \{(a, 0.5), (b, 0.9), (c, 0.3)\}$$

b)
$$\mu_{A}(x) = \frac{1}{1 + (x - 1)}$$

2.6 Compute the complements of the following sets by using Probabilistic, Bounded, Drastic, and Hamacher product.

a)
$$\mu_{\rm d}(x) = \frac{1}{1+x^2}$$

b)
$$\mu_4(x) = 2^{-x}$$

c)
$$A = \{(a, 0.4), (b, 0.5), (c, 0.9)\}$$

2.7 Compute the simple disjunctive sum, disjoint sum, simple difference, and bounded difference of the sets

$$A = \{(x, 0.5), (y, 0.4), (z, 0.9), (w, 0.1)\}$$

$$B = \{(x, 0.4), (y, 0.8), (z, 0.1), (w, 1)\}$$

2.8 Determine the distances (Hamming, Euclidean and Minkowski for $\omega =$

$$A = \{(x, 0.5), (y, 0.4), (z, 0.9), (w, 0.1)\}\$$

 $B = \{(x, 0.1), (y, 0.9), (z, 0.1), (w, 0.9)\}\$

- 2.9 Prove the following properties.
 - a) Let function Ta t-norm operation.

The following T'is a t-conorm operation.

b)
$$\overline{x} \perp \overline{y} = \overline{x + y}$$
 and $\overline{x} + \overline{y} = \overline{x \perp y}$

where
$$\overline{x} = 1 - x$$
, $\overline{y} = 1 - y$ and $\overline{x + y} = 1 + (x, y)$

where \perp represents t-conorm operator.

2.10 Determine the closet pair of sets among the following sets

$$A = \{(x_1, 0.4), (x_2, 0.4), (x_3, 0.9), (x_4, 0.5)\}$$

$$B = \{(x_1, 0.1), (x_2, 0.0), (x_3, 0.9)\}$$

$$C = \{(x_1, 0.5), (x_2, 0.5), (x_3, 0.9)\}$$

- 2.11 Show the Max operator satisfies the properties boundary condition, commutativity, associativity, continuity, and idempotency.
- 2.12 Prove the following equation.

$$0 \le \mu_{A \oplus B}(x) \le 0.5$$

where
$$A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$$

that is, \oplus is simple disjunctive sum operator.

[EXERCISES]

- 3.1 Find the transitive closure for $A = \{a, b, c, d\}$ and $R = \{(a, b), (b, c), (c, d), (d, b)\}.$
- 3.2 Obtain a partition of the set $A = \{a, b, c, d, e\}$ by the equivalence relation R.

R	a	b	С	d	e
a	1	1			1
b	1	1			1
c			1	1	
a b c d			1	1	
e	1	1			1

3.3 Compute the complements, intersection and union of the following fuzzy relations *R* and *S*.

		•		
R	a	b	С	d
	1.	0.	0.	0.
a	0	2	4	0
b	0.	0.	0.	0.
U	0	1	0	9
	0.	0.	1.	0.
С	1	0	0	0
d	0.	0.	0.	1.
<u>u</u>	0	4	0	0

S	a	b	С	d
a	1.	0.	0.	0.
	0	0	0	4
b	0.	0.	0.	0.
	0	0	4	9
C	0.	0.	0.	0.
	4	0	1	0
d	0.	1.	0.	0.
	5	0	0	0

3.4 Determine the composition relation $S \bullet R \subseteq A \times C$ where $R \subseteq A \times B$ and $S \subseteq B \times C$ are defined as follows

R a b c d 1 0. 0. 0. 1. 4 0 0 0 2 0. 0. 0. 0. 5 4 9 0 3 0. 0. 1. 0. 2 1 0 4 4 0. 0. 0. 1. 4 0. 2 0 0					
1	R	a	b	c	d
2 0. 0. 0. 0. 5 4 9 0 0. 0. 1. 0. 2 1 0 4 0. 0. 0. 1.	1	0.	0.	0.	1.
2 5 4 9 0 0 0 0 1 0 0 2 1 0 4 0 0 0 1 1	1	4	0	0	0
3 0. 0. 1. 0. 2 1 0 4 0. 0. 0. 1.	2	0.	0.	0.	0.
$\begin{bmatrix} 2 & 1 & 0 & 4 \\ 0. & 0. & 0. & 1. \end{bmatrix}$	2	5	4	9	0
$\begin{bmatrix} 2 & 1 & 0 & 4 \\ 0. & 0. & 0. & 1. \end{bmatrix}$	2	0.	0.	1.	0.
4	3	2	1	0	4
7 0 2 0 0	4	0.	0.	0.	1.
		0	2	0	0

S a b c a 0. 0. 0. 4 1 0 b 0. 0. 0. 2 0 9 c 0. 0. 0. 2 0 5 d 0. 0. 0. 1 0 9				
b	S	a	b	c
b 0. 0. 0. 2 0 9 c 0. 0. 0. 2 0 5 d 0. 0. 0.	a	0.	0.	0.
c 2 0 9 0. 0. 0. 2 0 5 d 0. 0. 0.		4	1	0
c 0. 0. 0. 2 0 5 d 0. 0. 0.	b	0.	0.	0.
d 2 0 5 0. 0. 0.		2	0	9
d 0. 0. 0.	c	0.	0.	0.
		2	0	5
1 0 9	d	0.	0.	0.
		1	0	9

3.5 Determine the α -cut relation for the following fuzzy relation where α = 0.4 and 0.8.

R	1	2	3	4
	0.	0.	0.	0.
a	4	0	5	8
b	0.	0.	0.	0.
U	4	0	9	1
	0.	0.	0.	0.
С	0	4	0	2
d	0.	0.	0.	1.
a	0	8	0	0

3.6 Consider a fuzzy set A and a crisp set B

$$A = \{(x, 0.4), (y, 0.9), (z, 1.0), (w, 0.1)\}$$

$$B = \{a, b, c\}$$

Determine a fuzzy set $B' \subseteq B$ induced by A and the relation $R \subseteq A \times B$.

R	a	b	c
X	0.	0.	0.
	0	4	8
y	0.	0.	0.
	9	9	7
Z	1.	0.	0.
	0	0	5
\mathbf{w}	0.	0.	0.
	0	1	8

3.7 Consider a fuzzy relation $R \subseteq A \times A$ where $A = \{a, b, c\}$.

R	a	b	С	d	e
a	1	1	0	0	1
b	0	1	1	0	0
C	0	0	1	0	0
d	0	0	0	1	0
e	0	0	1	1	1

- a) Determine the characteristic of this relation.
- b) Show an ordinal function of the relation if it is an order relation.
- 3.8 Determine the fuzzy set B induced by A and $f(x) = x^2$

$$A = \{(-2, 0.8), (-5, 0.5), (0, 0.8), (1, 1.0), (2, 0.4), (3, 0.1)\}$$

$$B = \left\{ y \mid y = f(x), \mu_B(y) = \max_{xy = f(x)} \mu_A(x) \right\}$$

3.9 There are fuzzy set A, crisp set B and fuzzy relation R

$$A = \{(x, \mu_A(x)) \mid 0 \le x \le 1, \mu_A(x) = x^2\}$$

$$B = \{(y, \mu_B(y)) \mid 0 \le y \le 1\}$$

$$R = \{((x, y), \mu_R(x, y)) \mid 0 \le x + y = 1, x \in A, y \in B\}$$
where $\mu_R(x, y) = \min[x^2, y^2]$

Determine the fuzzy set $B' \subseteq B$ induced by A, B and R

3.10 There is a relation
$$R_{123}$$
. $R_{123} \subset X_1 \times X_2 \times X_3 = 0.9 / (x, a, \alpha) + 0.4 / (x, b, \alpha) + 1.0 / (y, a, \alpha) + 0.7 / (y, a, \beta)$

$$R_{123} \subset X_1 \times X_2 \times X_3$$
 where $X_1 = \{x, y\}, X_2 = \{a, b\}, X_3 = \{\alpha, \beta\}$

- a) Determine $R_{12} \subset X_1 \times X_2$ and $R_{23} \subset X_2 \times X_3$ by projection.
- b) Obtain R_{123} by cylindrical extension of R_{12} and R_{23} .
- c) Obtain $R_{1234} \subseteq X_1 \times X_2 \times X_3 \times X_4$ by cylindrical extension where $X_4 = \{p,q\}$