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Foreword

As its name implies, the theory of fuzzy sets is, basically, a theory of graded con-
cepts—a theory in which everything is a matter of degree or, to put it figuratively,
everything has elasticity.

In the two decades since its inception, the theory has matured into a wide-
ranging collection of concepts and techniques for dealing with complex phe-
nomena that do not lend themselves to analysis by classical methods based on
probability theory and bivalent logic. Nevertheless, a question that is frequently
raised by the skeptics is: Are there, in fact, any significant problem-areas in which
the use of the theory of fuzzy sets leads to results that could not be obtained by
classical methods?

Professor Zimmermann’s treatise provides an affirmative answer to this ques-
tion. His comprehensive exposition of both the theory and its applications explains
in clear terms the basic concepts that underlie the theory and how they relate to
their classical counterparts. He shows through a wealth of examples the ways in
which the theory can be applied to the solution of realistic problems, particularly
in the realm of decision analysis, and motivates the theory by applications in
which fuzzy sets play an essential role.

An important issue in the theory of fuzzy sets that does not have a counter-
part in the theory of crisp sets relates to the combination of fuzzy sets through
disjunction and conjunction or, equivalently, union and intersection. Professor ;
Zimmermann and his associates at the Technical University of Aachen have
made many important contributions to this problem and were the first to intro-
duce the concept of a parametric family of connectives that can be chosen to fit
a particular application. In recent years, this issue has given rise to an extensive |
literature dealing with +-norms and related concepts that link some aspects of the :
theory of fuzzy sets to the theory of probabilistic metric spaces developed by
Karl Menger.

XV



Xxvi FOREWORD

Another important issue addressed in Professor Zimmermann’s treatise relates
to the distinction between the concepts of probability and possibility, with the
latter concept having a close connection with that of membership in a fuzzy set.
The concept of possibility plays a particularly important role in the representa-
tion of meaning, in the management of uncertainty in expert systems. and in
applications of the theory of fuzzy sets to decision analysis.

As one of the leading contributors to and practitioners of the use of fuzzy sets
in decision analysis, Professor Zimmermann is uniquely qualified to address the
complex issues arising in fuzzy optimization problems and, especially, fuzzy
mathematical programming and multicriterion decision making in a fuzzy environ-
ment. His treatment of these topics is comprehensive, up-to-date, and illuminating.

In sum, Professor Zimmermann’s treatise is a major contribution to the liter-
ature of fuzzy sets and decision analysis. It presents many original results and
incisive analyses. And, most importantly, it succeeds in providing an excellent
introduction to the theory of fuzzy sets—an introduction that makes it possible
for an uninitiated reader to obtain a clear view of the theory and learn about its
applications in a wide variety of fields.

The writing of this book was a difficult undertaking. Professor Zimmermann
deserves to be congratulated on his outstanding accomplishment and thanked for
contributing so much over the past decade to the advancement of the theory of
fuzzy sets as a scientist, educator, administrator, and organizer.

L.A. Zadeh



Preface

Since its inception 20 years ago, the theory of fuzzy sets has advanced in a
variety of ways and in many disciplines. Applications of this theory can be
found, for example, in artificial intelligence, computer science, control engineer- :
ing, decision theory, expert systems, logic, management science, operations
research, pattern recognition, and robotics. Theoretical advances have been made ‘
in many directions. In fact it is extremely difficult for a newcomer to the field
or for somebody who wants to apply fuzzy set theory to his problems to recog- !
nize properly the present “state of the art.” Therefore, many applications use
fuzzy set theory on a much more elementary level than appropriate and neces-
sary. On the other hand, theoretical publications are already so specialized and |
assume such a background in fuzzy set theory that they are hard to understand. 3
The more than 4,000 publications that exist in the field are widely scattered over
many areas and in many journals. Existing books are edited volumes containing
specialized contributions or monographs that focus only on specific areas of
fuzzy sets, such as pattern recognition [Bezdek 1981], switching functions [Kandel
and Lee 1979], or decision making [Kickert 1978]. Even the excellent survey
book by Dubois and Prade [1980a] is primarily intended as a research compen-
dium for insiders rather than an introduction to fuzzy set theory or a textbook.
This lack of a comprehensive and modern text is particularly recognized by
newcomers to the field and by those who want to teach fuzzy set theory and its
applications.

The primary goal of this book is to help to close this gap—to provide a text-
book for courses in fuzzy set theory and a book that can be used as an introduction.

One of the areas in which fuzzy sets have been applied most extensively .
is in modeling for managerial decision making. Therefore, this area has been |
selected for more detailed consideration. The information has been divided
into two volumes. The first volume contains the basic theory of fuzzy sets and -
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XViii PREFACE

some areas of application. It is intended to provide extensive coverage of the
theoretical and applicational approaches to fuzzy sets. Sophisticated formalisms
have not been included. 1 have tried to present the basic theory and its exten-
sions in enough detail to be comprehended by those who have not been exposed
to fuzzy set theory. Examples and exercises serve to illustrate the concepts even
more clearly. For the interested or more advanced reader, numerous references
to recent liter-ature are included that should facilitate studies of specific areas in
more detail and on a more advanced level.

The second volume is dedicated to the application of fuzzy set theory to the
area of human decision making. It is self-contained in the sense that all concepts
used are properly introduced and defined. Obviously this cannot be done in the
same breadth as in the first volume. Also the coverage of fuzzy concepts in the
second volume is restricted to those that are directly used in the models of
decision making.

It is advantageous but not absolutely necessary to go through the first volume
before studying the second. The material in both volumes has served as texts in
teaching classes in fuzzy set theory and decision making in the United States
and in Germany. Each time the material was used, refinements were made, but
the author welcomes suggestions for further improvements.

The target groups were students in business administration, management
science, operations research, engineering, and computer science. Even though no
specific mathematical background is necessary to understand the books, it is
assumed that the students have some background in calculus, set theory, oper-
ations research, and decision theory.

1 would like to acknowledge the help and encouragement of all the students,
particularly those at the Naval Postgraduate School in Monterey and at the
Institute of Technology in Aachen (F.R.G.), who improved the manuscripts
before they became textbooks. I also thank Mr. Hintz, who helped to modify the
different versions of the book, worked out the examples, and helped to make the
text as understandable as possible. Ms. Grefen typed the manuscript several
times without losing her patience. I am also indebted to Kluwer Academic
Publishers for making the publication of this book possible.

H.-J. Zimmermann



Preface to the Third Edition

The development of fuzzy set theory to fuzzy technology during the first half of
the 1990s has been very fast. More than 16,000 publications have appeared since

1965. Most of them have advanced the theory in many areas. Quite a number

of these publications describe, however, applications of fuzzy set theory to existing
methodology or to real problems. In addition, the transition from fuzzy set
theory to fuzzy technology has been achieved by providing numerous software

and hardware tools that considerably improve the design of fuzzy systems and
make them more applicable in practice. Since 1994, fuzzy set theory, artificial |

neural nets, and genetic algorithms have also moved closer together and are now
normally called “computational intelligence.” All these changes have made this

technology more powerful but also more complicated and have raised the “en-

trance barrier” even higher. This is particularly regrettable since more and more
universities and other educational institutions are including fuzzy set theory in'
their programs. In some countries, a large number of introductory books have

been published; in Germany, for instance, 25 such books were published in 1993
and 1994. English textbooks, however, are still very much lacking.
Therefore, I appreciate very much that Kluwer Academic Publishers has agreed |
to publish a third edition of this book, which updates the second revised edition.
New developments, to the extent that they are relevant for a basic textbook,
have been included. All chapters have been updated. Chapters 9, 10, 11, and 12
have been completely rewritten. Nevertheless, I have tried not to let the book

grow beyond a basic textbook. To reconcile the conflict between the nature of
a textbook and the fast growth of the area, many references have been added to
facilitate deeper insights for the interested reader.

XiX |




XX PREFACE TO THE THIRD EDITION

I would like to thank Mr. Tore Griinert for his active participation and contri-
butions, particularly to chapter 11, and all my coworkers for helping to proofread
the book and to prepare new figures. We all hope that this third edition will
benefit future students and accelerate the broader acceptance of fuzzy set theory.

Aachen, April 1995
H.-J. Zimmermann



1 ITRODUCTION TO
FUZZY SETS

1.1 Crispness, Vagueness, Fuzziness, Uncertainty

Most of our traditional tools for formal modeling, reasoning, and computing are
crisp, deterministic, and precise in character. By crisp we mean dichotomous,
that is, yes-or-no-type rather than more-or-less type. In conventional dual logic, for
instance, a statement can be true or false—and nothing in between. In set theory,
an element can either belong to a set or not; and in optimization, a solution is
either feasible or not. Precision assumes that the parameters of a model represent |
exactly either our perception of the phenomenon modeled or the features of the |
real system that has been modeled. Generally, precision also implies that the |
model is unequivocal, that is, that it contains no ambiguities.

Certainty eventually indicates that we assume the structures and parameters
of the model to be definitely known, and that there are no doubts about their
values or their occurrence. If the model under consideration is a formal model
[Zimmermann 1980, p. 127], that is, if it does not pretend to model reality
adequately, then the model assumptions are in a sense arbitrary, that is, the
model builder can freely decide which model characteristics he chooses. If,
however, the model or theory asserts factuality [Popper 1959; Zimmermann
19801, that is, if conclusions drawn from these models have a bearing on reality -

1



2 FUZZY SET THEORY—AND ITS APPLICATIONS

and are supposed to model reality adequately, then the modeling language has to
be suited to model the characteristics of the situation under study appropriately.

The utter importance of the modeling language is recognized by Apostel,
when he says:

The relationship between formal languages and domains in which they have models
must in the empirical sciences necessarily be guided by two considerations that are by
no means as important in the formal sciences:

(a) The relationship between the language and the domain must be closer because
they are in a sense produced through and for each other;

(b) extensions of formalisms and models must necessarily be considered because
everything introduced is introduced to make progress in the description of the
objects studied. Therefore we should say that the formalization of the concept of
approximate constructive necessary satisfaction is the main task of semantic study
of models in the empirical sciences. [Apostel 1961, p. 26]

Because we request that a modeling language be unequivocal and nonredundant
on one hand and, at the same time, catch semantically in its terms all that is
important and relevant for the model, we seem to have the following problem.
Human thinking and feeling, in which ideas, pictures, images, and value systems
are formed, first of all certainly has more concepts or comprehensions than our
daily language has words. If one considers, in addition, that for a number of
notions we use several words (synonyms), then it becomes quite obvious that the
power (in a set-theoretic sense) of our thinking and feeling is much higher than
the power of a living language. If in turn we compare the power of a living
language with the logical language, then we will find that logic is even poorer.
Therefore it seems to be impossible to guarantee a one-to-one mapping of pro-
blems and systems in our imagination and in a model using a mathematical or
logical language.

One might object that logical symbols can arbitrarily be filled with semantic
contents and that by doing so the logical language becomes much richer. It will
be shown that it is very often extremely difficult to appropriately assign seman-
tic contents to logical symbols.

The usefulness of the mathematical language for modeling purposes is undis-
puted. However, there are limits to the usefulness and the possibility of using
classical mathematical language, based on the dichotomous character of set
theory, to model particular systems and phenomena in the social sciences: “There
is no idea or proposition in the field, which can not be put into mathematical
language, although the utility of doing so can very well be doubted” [Brand
1961]. Schwarz [1962] brings up another argument against the nonreflective use
of mathematics when he states: “An argument, which is only convincing if it is
precise loses all its force if the assumptions on which it is based are slightly
changed, while an argument, which is convincing but imprecise may well be
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stable under small perturbations of its underlying axioms.” For factual models
or modeling languages, two major complications arise:

1. Real situations are very often not crisp and deterministic, and they cannot
be described precisely.

2. The complete description of a real system often would require far more
detailed data than a human being could ever recognize simultaneously,
process, and understand.

This situation has already been recognized by thinkers in the past. In 1923 the
philosopher B. Russell [1923] referred to the first point when he wrote:

All traditional logic habitually assumes that precise symbols are being employed.
It is therefore not applicable to this terrestrial life but only to an imagined celestial
existence.

L. Zadeh referred to the second point when he wrote, “As the complexity of
a system increases, our ability to make precise and yet significant statements
about its behaviour diminishes until a threshold is reached beyond which precision
and significance (or relevance) become almost mutually exclusive characteristics.”
[Zadeh 1973a]

Let us consider characteristic features of real-world systems again: Real situ-
ations are very often uncertain or vague in a number of ways. Due to lack of
information, the future state of the system might not be known completely. This
type of uncertainty (stochastic character) has long been handled appropriately by
probability theory and statistics. This Kolmogor off-type probability is essen-
tially frequentistic and is based on set-theoretic considerations. Koopman’s prob-
ability refers to the truth of statements and therefore is based on logic. In both
types of probabilistic approaches, however, it is assumed that the events (ele-
ments of sets) or the statements, respectively, are well defined. We shall call this
type of uncertainty or vagueness stochastic uncertainty in contrast to the vague-
ness concerning the description of the semantic meaning of the events, phenom-
ena, or statements themselves, which we shall call fuzziness.

Fuzziness can be found in many areas of daily life, such as in engineering
[see, for instance, Blockley 1980], medicine [see Vila and Delgado 1983],
meteorology [Cao and Chen 1983], manufacturing [Mamdani 1981], and others.
It is particularly frequent, however, in all areas in which human judgment,
evaluation, and decisions are important. These are the areas of decision making,
reasoning, learning, and so on. Some reasons for this fuzziness have already
been mentioned. Others are that most of our daily communication uses “natural
languages,” and a good part of our thinking is done in it. In these natural
languages, the meaning of words is very often vague. The meaning of a word
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might even be well defined, but when using the word as a label for a set, the
boundaries within which objects do or do not belong to the set become fuzzy or
vague. Examples are words such as “birds” (how about penguins, bats, etc.?) or
“red roses,” but also terms such as “tall men,” “beautiful women,” and “cred-
itworthy customers.” In this context we can probably distinguish two kinds of
fuzziness with respect to their origins: intrinsic fuzziness and informational
fuzziness. The former is the fuzziness to which Russell’s remark referred, and
it is illustrated by “tall men.” This term is fuzzy because the meaning of tall is
fuzzy and dependent on the context (height of observer, culture, etc.). An exam-
ple of the latter is the term “creditworthy customers”: A creditworthy customer
can possibly be described completely and crisply if we use a large number of
descriptors. These descriptors are more, however, than a human being could
handle simultaneously. Therefore the term, which in psychology is called a
“subjective category,” becomes fuzzy. One could imagine that the subjective
category “creditworthiness” is decomposed into two smaller subjective catego-
ries, each of which needs fewer descriptors to be completely described. This
process of decomposition could be continued until the descriptions of the sub-
jective categories generated are reasonably defined. On the other hand, the no-
tion “creditworthiness” could be constructed by starting with the smallest
subjective subcategories and aggregating them hierarchically.

For creditworthiness the following concept structure, which has a symmetri-
cal structure, was developed in consultation with 50 credit clerks of banks.

Credit experts distinguish between the financial basis and the personality of
an applicant. “Financial basis” comprises all realities, movables, assets, liquid
funds, and others. The evaluation of the economic situation depends on the
actual securities, that is, the difference between property and debts, and on the
liquidity, that is, the continuous difference between income and expenses.

On the other hand, “personality” denotes the collection of traits by which a
potent and serious person is distinguished. The achievement potential is based
on mental and physical capacity as well as on the individual’s motivation. The
business conduct includes economical standards. While the former means the
setting of realistic goals, reasonable planning, and criteria of economic success,
the latter is directed toward the applicant’s disposition to obey business laws and
mutual agreements. Hence a credit-worthy person lives in secure circumstances
and guarantees a successful, profit-oriented cooperation (see figure 1—1).

In chapter 14 we will return to this figure and elaborate on the type of aggregation.

1.2 Fuzzy Set Theory

The first publications in fuzzy set theory by Zadeh [1965] and Goguen [1967,
1969] show the intention of the authors to generalize the classical notion of
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Figure 1—1. Concept hierarchy of creditworthiness.

a set and a proposition [statement] to accommodate fuzziness in the sense
described in section 1.1.

Zadeh [1965, p. 339] writes, “The notion of a fuzzy set provides a convenient
point of departure for the construction of a conceptual frame-work which par-
allels in many respects the framework used in the case of ordinary sets, but is
more general than the latter and, potentially, may prove to have a much wider
scope of applicability, particularly in the fields of pattern classification and
information processing. Essentially, such a framework provides a natural way of
dealing with problems in which the source of imprecision is the absence of
sharply defined criteria of class membership rather than the presence of random
variables.”

“Imprecision” here is meant in the sense of vagueness rather than the lack of
knowledge about the value of a parameter (as in tolerance analysis). Fuzzy set
theory provides a strict mathematical framework (there is nothing fuzzy about
fuzzy set theory!) in which vague conceptual phenomena can be precisely and
rigorously studied. It can also be considered as a modeling language well suited
for situations in which fuzzy relations, criteria, and phenomena exist.

Fuzziness has so far not been defined uniquely semantically, and probably
never will be. It will mean different things, depending on the application area
and the way it is measured. In the meantime, numerous authors have contributed
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to this theory. In 1984, as many as 4,000 publications may have already existed.
The specialization of those publications conceivably increases, making it more
and more difficult for newcomers to this area to find a good entry and to under-
stand and appreciate the philosophy, formalism, and applications potential of
this theory. Roughly speaking, fuzzy set theory in the last two decades has
developed along two lines:

1. As a formal theory that, when maturing, became more sophisticated and
specified and was enlarged by original ideas and concepts as well as by
“embracing” classical mathematical areas such as algebra, graph theory,
topology, and so on by generalizing (fuzzifying) them.

2. As a very powerful modeling language that can cope with a large fraction
of uncertainties in real-life situations. Because of its generality, it can be
well adapted to different circumstances and contexts. In many cases, however,
this will mean the context-dependent modification and specification of the
original concepts of the formal fuzzy set theory. Regrettably, this adaption
has not yet progressed to a satisfactory level, leaving an abundance of
challenges for the ambitious researcher and practitioner.

It seems desirable that an introductory textbook be available to help students
get started and find their way around. Obviously, such a textbook cannot cover
the entire body of the theory in appropriate detail. The present book will there-
fore proceed as follows:

Part I of this book, containing chapters 2 to 8, will develop the formal frame-
work of fuzzy mathematics. Due to space limitations and for didactical reasons,
two restrictions will be observed:

1. Topics that are of high mathematical interest but require a very solid math-
ematical background and those that are not of obvious relevance to appli-
cations will not be discussed.

2. Most of the discussion will proceed along the lines of the early concepts of
fuzzy set theory. At appropriate times, however, the additional potential of
fuzzy set theory that arises by using other axiomatic frameworks resulting
in other operators will be indicated or described. The character of these
chapters will obviously have to be formal.

Part II of the book, chapters 9 to 15, will then survey the most interesting
applications of fuzzy set theory. At that stage the student should be in a position
to recognize possible extensions and improvements of the applications presented.
Chapter 12 on decision making in fuzzy environments might be considered as
unduly brief, compared with the available literature. This area, however, has
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been taken up in a second volume and discussed in much more detail. This divi-
sion seems justified, since on one hand the latter subject might not be of interest
to many people who are interested in fuzzy set theory from another angle and
on the other hand this subject can be considered to be the most advanced of the
application areas of fuzzy set theory.



| Fuzzy MATHEMATICS

This first part of this book is devoted to the formal framework of the
theory of fuzzy sets. Chapter 2 provides basic definitions of fuzzy sets and
algebraic operations that will then serve for further considerations. Even
though we shall use one version of terminology and one set of symbols
consistently throughout the book, alternative ways of denoting fuzzy
sets will be mentioned because they have become common. Chapter 3
extends the basic theory of fuzzy sets by introducing additional concepts
and alternative operators. Chapter 4 is devoted to fuzzy measures, measures
of fuzziness, and other important measures that are needed for applications
presented either in Part II of this book or in the second volume on
decision making in a fuzzy environment. Chapter 5 introduces the exten-
sion principle, which will be very useful for the following chapters and
covers fuzzy arithmetic. Chapters 6 and 7 will then treat fuzzy relations,
graphs, and functions. Chapter 8 focuses on some special topics, such as i
the relationship between fuzzy set theory, probability theory, and other
classical areas.



2 FUZZY SETS—
BASIC DEFINITIONS

2.1 Basic Definitions

A classical (crisp) set is normally defined as a collection of elements or objects -
x € X that can be finite, countable, or overcountable. Each single element can
either belong to or not belong to a set A, A C X. In the former case, the
statement “x belongs to A” is true, whereas in the latter case this statement is .
false. ‘

Such a classical set can be described in different ways: one can either enu-
merate (list) the elements that belong to the set; describe the set analytically, for
instance, by stating conditions for membership (A = {x | x = 5}); or define the
member elements by using the characteristic function, in which 1 indicates
membership and O nonmembership. For a fuzzy set, the characteristic function -
allows various degrees of membership for the elements of a given set.

Definition 2-1

If X is a collection of objects denoted generically by x, then a fuzzy set AinX
is a set of ordered pairs:

11
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A={(x i) | x e X)

WW; (x) is called the membership function or grade of membership (also degree of
compatibility or degree of truth) of x in A that maps X to the membership space
M (When M contains only the two points 0 and 1, A is nonfuzzy and i (x) is
identical to the characteristic function of a nonfuzzy set). The range of the
membership function is a subset of the nonnegative real numbers whose supremum
is finite. Elements with a zero degree of membership are normally not listed.

Example 2-1a

A realtor wants to classify the house he offers to his clients. One indicator of
comfort of these houses is the number of bedrooms in it. Lex X = {1, 2, 3,
4, ..., 10} be the set of available types of houses described by x = number of
bedrooms in a house. Then the fuzzy set “comfortable type of house for a four-
person family” may be described as

A=1{1,.2.2. 5,3 .8), 1,5 76, 3)
In the literature one finds different ways of denoting fuzzy sets:

/. A fuzzy set is denoted by an ordered set of pairs, the first element of
which denotes the element and the second the degree of membership (as in
definition 2—-1).

Example 2-1b

A = “real numbers considerably larger than 10"
A={(x w) | x eX)

where

_ 0, x=<10
Hp(0) = A+ x =100, x>10

Example 2-1c

A = “real numbers close to 10”
A= M) s = (1 + (x = 10037}
See figure 2-1.

2. A fuzzy set is represented solely by stating its membership function [for
instance, Negoita and Ralescu 1975].
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Figure 2-1. Real numbers close to 10.
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Example 2-1d

A = “integers close to 10”

A=01/7 +0.5/8 + 0.8/9 + 1/10 + 0.8/11 + 0.5/12 + 0.1/13

Example 2-1e

A = “real numbers close to 10”

- 1
A=R - 2/x
1+ (x—10)

It has already been mentioned that the membership function is not limited to
values between 0 and 1. If sup,u;(x) = 1, the fuzzy set A is called normal. A
nonempty fuzzy set A can always be normalized by dividing p;(x) by sup,pz(x):
As a matter of convenience, we will generally assume that fuzzy sets are nor-
malized. For the representation of fuzzy sets, we will use the notation 1 illus-
trated in examples 2—1b and 2-Ic, respectively.

A-fuzzy set is obviously a generalization of a classical set and the member-
ship function a generalization of the characteristic function. Since we are gener-
ally referring to a universal (crisp) set X, some elements of a fuzzy set may have
the degree of membership zero. Often it is appropriate to consider those ele-
ments of the universe that have a nonzero degree of membership in a fuzzy set.
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Definition 2-2

The support of a fuzzy set A, S(A), is the crisp set of all x € X such that
Wiy > 0.

Example 2-2

Let us consider example 2-1a again: The support of S(/i) ={1, 2, 3,4,5, 6}.
The elements (types of houses) {7, 8, 9, 10} are not part of the support of A!

A more general and even more useful notion is that of an o-level set.

Definition 2-3

The (crisp) set of elements that belong to the fuzzy set A at least to the degree
o is called the a-level set:

Ay = x € X | o) = o}
o= {x e X | ) > o is called “strong o-level set” or “strong o-cut.”
Example 2-3

We refer again to example 2—1a and list possible o-level sets:

A,=1{1,2,3,4,5,6}

As=1{2.3,4,5)
Ag = {3, 4}
A = {4}

The strong o-level set for o = .8 is A} = {4}.

Convexity also plays a role in fuzzy set theory. By contrast to classical set
theory, however, convexity conditions are defined with reference to the member-
ship function rather than the support of a fuzzy set.

Definition 2-4
A fuzzy set A is convex if
H/{(X“\‘l + (l - )\')-XZ) = min “‘lfi(x!)v (uﬁ(—‘é) }’ Xp, EX, )\' € [0, 1]

Alternatively, a fuzzy set is convex if all o-level sets are convex.
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Figure 2—2a. Convex fuzzy set.

Figure 2-2b. Nonconvex fuzzy set.

Example 2-4

Figure 2-2a depicts a convex fuzzy set, whereas figure 2-2b illustrates a non-
convex fuzzy set.

One final feature of a fuzzy set, which we will use frequently in later chapters,
is its cardinality or “power” [Zadeh 1981c].
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Definition 2-5
For a finite fuzzy set A, the cardinality | A| is defined as

A=Y mao)

veX

. [A | .
HA Il = X1 is called the relative cardinality of A.

Obviously, the relative cardinality of a fuzzy set depends on the cardinality of
the universe. So you have to choose the same universe if you want to compare
fuzzy sets by their relative cardinality.

Example 2-5

For the fuzzy set “comfortable type of house for a four-person family™ from
example 2-1a, the cardinality is

[Al=2+5+8+1+.7+.3=35

Its relative cardinality is
~ 35
A | =-—=035
10

The relative cardinality can be interpreted as the fraction of elements of X being
in A, weighted by their degrees of membership in A. For infinite X. the cardinality
is defined by | A | = [ u;(x) dx. Of course. | A | does not always exist.

2.2 Basic Set-Theoretic Operations for Fuzzy Sets

The membership function is obviously the crucial component of a fuzzy set. It
is therefore not surprising that operations with fuzzy sets are defined via their
membership functions. We shall first present the concepts suggested by Zadeh
in 1965 [Zadeh 1965, p. 310]. They constitute a consistent framework for the
theory of fuzzy sets. They are, however. not the only possible way to extend
classical set theory consistently. Zadeh and other authors have suggested alter-
native or additional definitions for set-theoretic operations, which will be dis-
cussed in chapter 3.

Definition 2—-6

The membership function ns(x) of the intersection C = A N B is pointwise
defined by

He(x) = min {pi(x), Hp(x)}, xeX
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Definition 2-7

The membership function p(x) of the union D = A U B is pointwise defined
by

Hp(x) = max {pz(x), u(x)}, x X

Definition 2-8

The membership function of the complement of a normalized fuzzy set A, Lei(x)
is defined by

|.L¢,;(x) =1- u,;(x), xeX

Example 2—-6

Let A be the fuzzy set “comfortable type of house for a four-person family”
from example 2—1a and B be the fuzzy set “large type of house” defined as

B=1{@3, 2), 4 4,6, .6), 6 8),71),E®8 1)}
The intersection C = A N B is then
C ={(3, .2), (4, 4), (5, 6), (6, .3)}
The union D = A U B is
D=1{,2), @ .5), 3 8),% 15 .76, .8, (71,6 1)}

The complement CB, which might be interpreted as “not large type of house,”
is

CB=1{Q,1), (21,3, .8),4 6),5, .4, 6, .2),0 1,10, 1)}

Example 2-7
Let us assume that

A = “x is considerable larger than 10,” and
B = “x is approximately 11,” characterized by

A= {(x p)) | x e X}
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5 10 11 X

Figure 2-3. Union and intersection of fuzzy sets.

where
0, x=10
pi(x) = {(I =102 x> 10
and
B = {(x, pp0) fxeX)
where
Me(x) = (1 + (x — 11y
Then
Hing(x) = {min [+ =10 (L + (x = 1DH™'] forx > 10
0 for x = 10

(x is considerably larger than 10 and approximately 11)
Hivg(0) = max [(I + (x = 1)), (1 + (x = 1D, xeX

Figure 2-3 depicts the above.

It has already been mentioned that min and max are not the only operators
that could have been chosen to model the intersection or union, respectively,
of fuzzy sets. The question arises, why those and not others? Bellman and
Giertz addressed this question axiomatically in 1973 [Bellman and Giertz 1973,
p- 151]. They argued from a logical point of view, interpreting the intersection
as “logical and,” the union as “logical or,” and the fuzzy set A as the statement
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“The element x belongs to set A,” which can be accepted as more or less true.
It is very instructive to follow their line of argument, which is an excellent
example for an axiomatic justification of specific mathematical models. We shall
therefore sketch their reasoning: Consider two statements, S and T, for which the
truth values are g and , respectively, Mg, Ly € [0, 1]. The truth value of the
“and” and “or” combination of these statements, W(S and T) and p(S or T), both
from the interval [0, 1], are interpreted as the values of the membership func-
tions of the intersection and union, respectively, of S and 7. We are now looking
for two real-valued functions f and g such that

W ana 7 = f(Mss B
Ws o 7 = g(Ws, TF%)

Bellman and Giertz feel that the following restrictions are reasonably imposed
on f and g:

i. fand g are nondecreasing and continuous in s and ;.
ii. fand g are symmetric, that is,

flus, up) =y, K1)
gus, 1y = (kg Ks)

fii. f(us, Ws) and g(is, W) are strictly increasing in .

iv. f(us, By =< min (U, Bp) and g, By) = max (U, ). This implies that
accepting the truth of the statement “S and T” requires more, and accept-
ing the truth of the statement “S or T less than accepting S or T alone as
true.

v. f(,1)=1 and g(0, 0) = 0.

vi. Logically equivalent statements must have equal truth values, and fuzzy
sets with the same contents must have the same membership functions, that
is,

S, and (S, or S3)
is equivalent to
(S, and S,) or (S; and S3)

and therefore must be equally true.
Bellman and Giertz now formalize the above assumptions as follows:

Using the symbols A for “and” (= intersection) and v for “or” (= union), these
assumptions amount to the following seven restrictions, to be imposed on the
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two commutative (see (ii)) and associative (see (vi)) binary compositions A and
v on the closed interval [0, 1], which are mutually distributive (see (vi)) with
respect to one another.

Lo Mg Al = lr A g
Mo vV U7 = Uy Vv U
20 (Mg AU AR =g A (U A Iy
(Ms v 1) vV = s v (U7 V)
3 Mg A (U V) = (Mg A U V(I A [y
Hs V(R A W) = (g Vv Up) A (g Vv Iy)
4. Ug A pyand g v U, are continuous and nondecreasing in each component
5. Mg A Mg and g v g are strictly increasing in L (see (iii))
6. Hg A Uy = min (U, Hy)
Hs Vv LUy = max (K, 1) (see (iv))
7. 1TAal=1
0 v O0=0 (see (v))

Bellman and Giertz then prove mathematically [see Bellman and Giertz 1973,
p. 154] that

s, = min (Us, Wy) and Wy, = max (Ug, Wy)

For the complement, it would be reasonable to assume that if statement “S” is
true, its complement “non S is false, or if [ty = 1 then Huons = 0 and vice versa.
The function 4 (as complement in analogy to f and g for intersection and union)
should also be continuous and monotonically decreasing, and we would like the
complement of the complement to be the original statement (in order to be in
line with traditional logic and set theory). These requirements, however, are not
enough to determine uniquely the mathematical form of the complement. Bellman
and Giertz require in addition that pz(1/2) = 1/2. Other assumptions are cer-
tainly possible and plausible.

Exercises

1. Model the following expressions as fuzzy sets:
Large integers

Very small numbers

Medium-sized men

Numbers approximately between 10 and 20
High speeds for racing cars

R0 o
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2.

Determine all a-level sets and all strong a-level sets for the following fuzzy
sets:
a. A={@3, 1), @ 2), 5, .3), 6, 4,7, .6), @8, .8, 10, 1), (12, .8),
(14, .6)}
b. B = {(x, p(x) = (1 + (x ~ 100*)™))
fora=23,.5 .8
c. €={(x pe() | x R}
where pes(x) = 0 for x = 10
pe(x) = (1 + (x — 102" for x > 10
Which of the fuzzy sets of exercise 2 are convex and which are not?
LexX=1{1,2,...,10}. Determine the cardinalities and relative cardinalities :
of the following fuzzy sets:
a. A from exercise 2a
b. B={(2, 4), (3, .6), 4, .8), (5, 1), (6, .8), (7, .6), 8, 4}
c. C=1{@2, 4,4, 8,6 0,7, .6}
Determine the intersections and unions of the following fuzzy sets:
a. The fuzzy sets A, B, and C from exercise 4
b. B and € from exercise 2
Determine the intersection and the union of the complements of fuzzy sets
B and € from exercise 4.



3 EXTENSIONS

3.1 Types of Fuzzy Sets

In chapter 2, the basic definition of a fuzzy set was given and the original set-
theoretic operations were discussed. The membership space was assumed to be the
space of real numbers, membership functions were crisp functions, and the oper-
ations corresponded essentially to the operations of dual logic or Boolean algebra.

Different extensions of the basic concept discussed in chapter 2 are possible.
They may concern the definition of a fuzzy set or they may concern the oper-
ations with fuzzy sets. With respect to the definition of a fuzzy set, different
structures may be imposed on the membership space and different assumptions
may be made concerning the membership function. These extensions will be
treated in section 3.1.

It was assumed in chapter 2 that the logical “and” corresponds to the set-
theoretic intersection, which in turn is modeled by the min-operator. The same
type of relationship was assumed for the logical “or,” the union, and the max-
operator. Departing from the well-established systems of dual logic and Boolean
algebra, alternative and additional definitions for terms such as intersection and
union, for their interpretation as “and” and “or,” and for their mathematical models
can be conceived. These concepts will be discussed in section 3.2.

23
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So far we have considered fuzzy sets with crisply defined membership functions
or degrees of membership. It is doubtful whether, for instance, human beings
have or can have a crisp image of membership functions in their minds. Zadeh
[1973a, p. 52] therefore suggested the notion of a fuzzy set whose membership
tunction itself is a fuzzy set. If we call fuzzy sets, such as those considered so
far, type | fuzzy sets, then a type 2 fuzzy set can be defined as follows.

Definition 3-1

A type 2 fuzzy set is a fuzzy set whose membership values are type 1 fuzzy sets
on [0, 1].

The operations intersection, union, and complement defined so far are no longer
adequate for type 2 fuzzy sets. We will, however, postpone the discussions of
adequate operators until section 5.2, that is, until we have presented the exten-
sion principle, which shall prove very useful for this purpose. By the same token
by which we introduced type 2 fuzzy sets, it could be argued that there is no
obvious reason why the membership functions of type 2 fuzzy sets should be
crisp. A natural extension of these type 2 fuzzy sets is therefore the definition
of type m fuzzy sets.

Definition 3-2

A type m fuzzy set is a fuzzy set in X whose membership values are type
m — 1, m > 1 fuzzy sets on [0, 1].

From a practical point of view, such type m fuzzy sets for large m (even for
m = 3) are hard to deal with, and it will be extremely difficult or even impos-
sible to measure them or to visualize them. We will, therefore, not even try to
define the usual operations on them.

There have been other attempts to include vagueness that goes beyond the
fuzziness of ordinary type 1 fuzzy sets. One example is the “stochastic fuzzy
model” of Norwich and Turksen [1981, 1984]. Those authors were mainly con-
cerned with the measurement and the scale level of membership functions. They
view a fuzzy set as a family of random variables whose density functions are
estimated by that stochasticity [Norwich and Turksen 1984, p. 21].

Hirota |1981] also considers fuzzy sets for which the “value of membership
functions is a random variable.”
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Definition 3-3 [Hirota 1981, p. 35]
A probabilistic set A on X is defined by a defining function W,,
L X X Q3 (x, ®) = Wlx, ®) € Q¢

where W,(x, -) is the (B, B.)-measurable function for each fixed x € X.

For Hirota, a probabilistic set A with the defining function W,(x, ®) is con-
tained in a probabilistic set B with Uz(x, ®) if for each x € X there exists a E
€ B that satisfies P(E) = 1 and W,(x, ®) = Ug(x, ®) for all ® € E. (Q, B, P) is
called the parameter space.

One of the main advantages of the notion of probabilistic sets in modeling fuzzy
and stochastic features of a system is asserted to be the applicability of moment
analysis, that is, the possibility of computing moments such as expectation and
variance. Figure 3-1 indicates the difference between the appearance of fuzzy
sets and probabilistic sets [Hirota 1981, p. 33]. Of course, the mathematical pro-
perties of probabilistic sets differ from those of fuzzy sets, and so do the math-
ematical models for intersection, union, and so on.

A more general definition of a fuzzy set than is given in definition 2-1 is that
of an L-fuzzy set [Goguen 1967; De Luca and Termini 1972]. In contrast to the
above definition, the membership function of an L-fuzzy set maps into a par-
tially ordered set, L. Since the interval [0, 1] is a poset (partially ordered set),
the fuzzy set in definition 2~1 is a special L-fuzzy set.

Further attempts at representing vague and uncertain data with different
types of fuzzy sets were made by Atanassov and Stoeva [Atanassov and Stoeva
1983; Atanassov 1986], who defined a generalization of the notion of fuzzy
sets—the intuitonistic fuzzy sets—and by Pawlak [Pawlak 1982], who devel-
oped the theory of rough sets, where grades of membership are expressed by a
concept of approximation.

Definition 3—4 [Atanassov and Stoeva 1983]

Given an underlying set X of objects, an intuitonistic fuzzy set (IFS) A is a set
of ordered triples,

A = {(x, (), ,(0) | x € X}

where [,(x) and V,(x) are functions mapping from X into [0, 1]. For each x € X, ‘
1L,(x) represents the degree of membership of the element x to the subset A of
X, and V,(x) gives the degree of nonmembership. For the functions u,(x) and
v,(x) mapping into [0, 1], the condition 0 = p,(x) + V,(x) = 1 holds.



's}es ansiigeqoid 'sa s)es Azzn4  Cj—¢ aunbiy

Lo -
L
Lo -
/\\ anfeA uesw
L
Lo -
4 uosoun; Buniep
1
I o -




EXTENSIONS 27

Ordinary fuzzy sets over X may be viewed as special intuitonistic fuzzy sets
with the nonmembership function v,(x) = 1 — p4(x). In the same way as fuzzy
sets, intuitonistic L-fuzzy sets were defined by mapping the membership func-
tions into a partially ordered set L [Atanassov and Stoeva 1984].

Definition 3-5 [Pawlak 1985, p. 99; Pawlak et al. 1988]

Let U denote a set of objects called universe and let R C U X U be an equi-
valence relation on U. The pair A = (U, R) is called an approximation space. For
u, v e U and (u, V) € R, u and v belong to the same equivalence class, and we
say that they are indistinguishable in A. Therefore the relation R is called an
indiscernibility relation. Let [x]; denote an equivalence class (elementary set of
A) of R containing element x; then lower and upper approximations for a subset
X C U in A—denoted A(X) and A(X), respectively—are defined as follows:

AX)={xeU]|[xlzy C X}
AX)={xeU|[xly N X = 06}

If an object x belongs to the lower approximation space of X in A, then “x surely -
belongs to X in A,” x € A(X) means that “x possibly belongs to X in A.”

For the subset X C U representing a concept of interest, the approximation
space A = (U, R) can be characterized by three distinct regions of X in A: the
so-called positive region A (X), the boundary region AX) - AX), and the
negative region U — A (X).

The characterization of objects in X by the indiscernibility relation R is not
precise enough if the boundary region A(X)~- A(X) is not empty. For this case
it may be impossible to say whether an object belongs to X or not, and so the
set X is said to be nondefinable in A, and X is a rough set.

Pawlak [1985] shows that the concept of approximation given by the equivalence
relation R and the approximation space may not, in general, be replaced by a
membership function similar to that introduced by Zadeh.

In order to take probabilistic informations crucial to nondeterministic classi-
fication problems into account, a natural probabilistic extension of the rough-set
model has been proposed [Pawlak et al. 1988].

3.2 Further Operations on Fuzzy Sets

For the time being we return to ordinary fuzzy sets (type 1 fuzzy sets) and
consider additional operations on them that have been defined in the literature
and that will be useful or even necessary for later chapters.
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3.2.1 Algebraic Operations

Definition 3-6

The Cartesian product of fuzzy sets is defined as follows: Let A,, . .., A, be
fuzzy sets in X, . .., X,. The Cartesian product is then a fuzzy set in the product
space X, X ... x X, with the membership function

U(Ah . ‘l/_i,,)(-x) = rﬂ[ln {u/i,('ri) | X = ("‘l’ e "‘n)’ X; € Xz}

Definition 3-7
The mth power of a fuzzy set A is a fuzzy set with the membership function
Wan(X) = [Us0))", xeX

Additional algebraic operations are defined as follows:

Definition 3-8

The algebraic sum (probabilistic sum) C = A + B is defined as
C = {(, pap0)) | ¥ € X}

where

Waa(x) = Wa(x) + Ha(x) — pi(x) - pg(x)

Definition 3-9
The bounded sum C = A @ B is defined as

€ = {(x Wiepv) | x € X}
where

Wigs(x) = min {1, p(x) + pz(x)}

Definition 3-10
The bounded difference C = A © B is defined as

C = {(v, Higs(0) | x € X}
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where

Hios (1) = max {0, pz(x) + Ha(x) — 1}

Definition 3-11
The algebraic product of two fuzzy sets C = A - B is defined as

C={(x m - W) | x € X}

Example 3-1

Let A(x) = {(3, .5), (5, 1), (7, .6)}

Bx) = {(3, 1), 5, .6)}
The above definitions are then illustrated by the following results:

AxB ={[(3;3), 5] [(5 3), 11, [(7; 3), .6]
[(3; 5), .5), [(5; 5), .6], [(7; 5), .61}
A? ={(3, .25), (5, 1), (7, .36)}
+B ={3, 1,65, 1,7, .6))
@B ={3, 1,6 1,37, .6))
© B =1{(@3, .5, 5, 6}
-B =1{@3, .5), 5, 6)}

3.2.2 Set-Theoretic Operations

In chapter 2 the intersection of fuzzy sets, interpreted as the logical “and,” was
modeled as the min-operator and the union, interpreted as “or,” as the max-
operator. Other operators have also been suggested. These suggestions vary with
respect to the generality or adaptibility of the operators as well as to the degree
to which and how they are justified. Justification ranges from intuitive argumen-
tation to empirical or axiomatic justification. Adaptability ranges from uniquely
defined (for example, nonadaptable) concepts via parameterized “families” of
operators to general classes of operators that satisfy certain properties.

We shall investigate the two basic classes of operators: operators for the
intersection and union of fuzzy sets—referred to as triangular norms and
conorms—and the class of averaging operators, which model connectives for
fuzzy sets between t-norms and t-conorms. Each class contains parameterized as
well as nonparameterized operators.

t-norms. For the intersection of fuzzy sets, Zadeh [Zadeh 1965] suggested the
min-operator and the algebraic product A - B. The “bold intersection” [Giles
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1976] was modeled by the “bounded™sum” as defined above. The min, product,
and bounded-sum operators belong to the so-called rriangular or t-norms. Oper-
ators belonging to this class have drawn a lot of interest in the recent past. They
can be characterized as follows:

Definition 3-12 [Dubois and Prade 1980a, p. 17]

t-norms are two-valued functions from [0, 1] x [0, 1] that satisfy the following
conditions:

Lo 10, 0) = 0; r(pz(x), 1) = £(1, pi(x)) = pg(x), xeX
2. 1(pg(x), Pp(x)) = H(Ue(x), pp(x))

if Pa(x) = pe(x) and  pa(x) = ppx) (monotonicity)
3.0t (ua(x), Ha(x)) = 1(Up(x), pa(x)) (commutativity)
4ot (uz00), tupx), Pa())) = 1), pa(x)), He(x)) (associativity)

The functions r define a general class of intersection operators for fuzzy sets.
The operators belonging to this class of t-norms are, in particular, associative
(see condition 4), and therefore it is possible to compute the membership values
for the intersection of more than two fuzzy sets by recursively applying a r-norm
operator [Bonissone and Decker 1986, p. 220].

t-conorms (or s-norms). For the union of fuzzy sets, the max-operator, the
algebraic sum [Zadeh 1965], and the “bold union” [Giles 1976]—modeled by
the “bounded sum”—have been suggested.

Corresponding to the class of intersection operators, a general class of aggre-
gation operators for the union of fuzzy sets called triangular conorms or -
conorms (sometimes referred to as s-norms) is defined analogously [Dubois and
Prade 1985, p. 90; Mizumoto 1989, p. 221|. The max-operator, algebraic sum,
and bounded sum considered above belong to this class.

Definition 3-13 [Dubois and Prade 1985, p. 90]

f-conorms or s-norms are associative, commutative, and monotonic two-placed
functions s that map from [0, 1] x [0, 1] into [0, 1]. These properties are
formulated with the following conditions:

Los( D=1 s(ug(o), 0) = 50, uix)) = pgx), xeX
2. s(ua0), Ha(x) = s(Ue(x), M)
if La(x) = pe(x) and  pglx) = pplx) (monotonicity)
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3. s(uat), Ha(x) = s(Ua(x), Mi(x)) (commutativity)
4. s(uaix), s(us(x), Pe(x))) = s(s(ua(x), Hz(x)), He(x)) (associativity)

t-norms and f-conorms are related in a sense of logical duality. Alsina [Alsina
1985] defined a r-conorm as a two-placed function s mapping from [0, 1] X
[0, 1] in [0, 1] such that the function ¢, defined as

t(z00, us()) = 1 = s(1 - wa(x), 1 = pa(x))

is a t-norm. So any ¢-conorm s can be generated from a ¢-norm ¢ through this
transformation. More generally, Bonissone and Decker [1986] showed that for
suitable negation operators like the complement operator for fuzzy sets—defined
as n(lz(x)) = 1 — J4(x) (see chapter 2)—pairs of -norms ¢ and t-conorms s sat-
isfy the following generalization of DeMorgan’s law [Bonissone and Decker
1986, p. 220]:

s(Ua(x), Ma(x)) = n(t(n(a(x)), n(Us(x)))) and
t(i(x), Wa(x)) = n(s(n(pgx)), n(us(x)))), xe€X

Typical dual pairs of nonparameterized t-norms and ¢-conorms are compiled below
[Bonissone and Decker 1986, p. 221; Mizumoto 1989, p. 220]:

0 otherwise product

L4, Ha(x) = {min {5 (%), Mp0) }if max {(x), pg(x) } =1 drastic

5 (400, () = {H;ax {1 (x), pg(x) } if min {p; (x), Ue(x) } = 0 drastic

otherwise sum
L (s (x), Me(x)) = max {0, pi(x) + ps(x) — 1} bounded
difference
51(1a(x), Mg(x)) = min {1, pa(x) + ps(x) } bounded
sum
_ M (x) - pg(x) Einstein
3000 BN = 5 T+ g0~ 100 5 0)] product
) ) (X)) + pp(x) Einstein
1500 Bp() = TE BT -
LX), pg(x)) = Wa(x) - pe(x) algebraic
product
S (Uz(x), Mp(x)) = Ma(x) + Mg(x) — Ma(x) - ps(x) algebraic

sum
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Wi () - pg() Hamacher
13 5(H; (%), pp(x)) =
R i (0) + pg(x) — pe () - () product
] i = M)+ (0 — 205 (x) - pg(x) Hamacher
S35 (U (), Hg(x)) |- 1y 1500 um
(M%), M) = min {pg(x), pax) ) minimum
$3(Mi(0), Wp(x)) = max {pa(x), pg(x)} maximum

These operators are ordered as follows:

L= =Hs=15L =h{=t

w 3

§$; = =85 =85S 8 =,

S25

We notice that this order implies that for any fuzzy sets A and B in X with mem-
bership values between 0 and 1, any intersection operator that is a z-norm is
bounded by the min-operator and the operator 1,. A ¢-conorm is bounded by the
max-operator and the operator s, respectively {Dubois and Prade 1982a, p. 42]:

L(Us(0), () = t(a(x), ua(x)) = min {pg(r), pg(x) }
max {px), Ha(0)} = s(p(x). pp(x)) = s, (50, pgx), xeX

It may be desirable to extend the range of the previously described operators in
order 1o adapt them to the context in which they are used. To this end, different
authors suggested parameterized families of -norms and t-conorms, often main-
taining the associativity property.

For illustration purposes, we review some interesting parameterized operators.
Some of these operators and their equivalence to the logical “and” and “or,”
respectively, have been justified axiomatically. We shall sketch the axioms on
which the Hamacher-operator rests in order to give the reader the opportunity to
compare the axiomatic system of Bellman and Giertz (min/max) on the one hand
with that of the Hamacher-operator (which is essentially a family of product
operators) on the other.

Definition 3-14 [Hamacher 1978}

The intersection of two fuzzy sets A and B is defined as
AN B ={(x Linpv) | x € X}

where

Wi (x) pa(x)
Y+ (= VWU + Pa(0) — pi(x) pa(x))’

Wing(x) =
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Hamacher wants to derive a mathematical model for the “and” operator. His
basic axioms are as follows:

Al. The operator A is associative, that is, A A (B A C)=(AAB) A C.
A2. The operator A is continuous.
A3. The operator A is injective in each argument, that is,

AAB=A~A0)=2B=C
AAB)=(CAB=2A=C
(this is the essential difference between the Hamacher-operator and the

Bellman—Giertz axioms).
A4 () =1 = pra) =1

He then proves that a function f: R — [0, 1] exists with 2

Wz s() = F(F 1)) + £ ()

If f is a rational function in p4(x) and pg(x), then the only possible operator is
that shown in definition 3—14. (For y = 1, this reduces to the algebraic product!)

Notice that the Hamacher-operator is the only H-strict -norm that can be
expressed as a rational function [Mizumoto 1989, p. 223].

Definition 3—15 [Hamacher 1978]

The union of two fuzzy sets A and B is defined as
AU B ={(x paus@) | x € X}

where

(' — D) ps(x) + pa(x) + ps(x)
1+ 7' i (x) puz(x)

Hius(x) = Y = -1

For y* = 0 the Hamacher-union-operator reduces to the algebraic sum.
Yager [1980] defined another triangular family of operators.

Definition 3—16 [Yager 1980]
The intersection of fuzzy sets A and B is defined as

AN B={(x pzs) |x €X})
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where
Hing(0) = I —min {1, (I = m(0))" + (1 = pg))NH'"*}, p =1
The union of fuzzy sets is defined as
AU B = {(x, W) | x eX)
where

Haup(x) = min {1, (Ui(0)" + pg(0)N'’}, p = 1

His intersection-operator converges to the min-operator for p — o and his union
operator to the max-operator for p — oo,

For p = | the Yager-intersection becomes the “bold-intersection” of definition
3-10. The union operator converges to the maximum-operator for p — oo and to
the bold union for p = 1. Both operators satisfy the DeMorgan laws and are com-
mutative, associative for all p, and monotonically nondecreasing in p(x); they
also include the classical cases of dual logic. They are, however, not distributive.

Dubois and Prade [1980c, 1982a] also proposed a commutative and associa-
tive parameterized family of aggregation operators:

Definition 3-17 [Dubois and Prade 1980c, 1982a]
The intersection of two fuzzy sets A and B is defined as
AN B = {( Wing0) | x € X)
where
W) - ()
max {u; (x), pz(x), )

This intersection-operator is decreasing with respect to o and lies between
min {}L;(x), Hz(x) } (which is the resulting operation for & = 0) and the algebraic
product pg(x) - puz(x) (for oo = 1). The parameter o is a kind of threshold, since
the following relationships hold for the defined intersection operation [Dubois
and Prade 1982a, p. 47]:

Wanp(x) = o [0, 1]

Wing(x) = min {pz(x), pa(x)}}  for pix), pa(x) € e, 1]
Wy (x) - pg ()
Ming(V) = ~ =72 for win), w(n) € [0, o
Definition 3-18 [Dubois and Prade 1980c, 1982a]

For the union of two fuzzy sets A and B, defined as

AU B = {(x, pis(0)) | x € X}
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Dubois and Prade suggested the following operation, where a & [0, 1]:

pa(x) + pg(x) — wa(x) - ps(x) — min {pz(x), pp(x), 1 — o)}
max {(1 - pz(x)), (1 - pz(x)), o}

Raus(x) =

All the operators mentioned so far include the case of dual logic as a special
case. The question may arise: Why are there unique definitions for intersection
(= and) and union (= or) in dual logic and traditional set theory and so many
suggested definitions in fuzzy set theory? The answer is simply that many op-
erators (for instance, product and min-operator) perform in exactly the same way
if the degrees of membership are restricted to the values 0 or 1. If this restriction
is no longer required, the operators lead to different results.

This triggers yet another question: Are the only ways to “combine” or aggregate
fuzzy sets the intersection or union—or the logical “and” or “or’—respectively?
Or are there other possibilities of aggregation? The answer to this latter question
is definitely yes. There are other ways of combining fuzzy sets with fuzzy state-
ments; “and” and “or” are only limiting special cases. Generalized models for
the logical “and” and “or” are given by the “fuzzy and” and “fuzzy or” [Werners
1984]. Furthermore, a number of authors have suggested general connectives,
which are (so far) of particular importance for decision analysis and for other
applications of fuzzy set theory. These operators are general in the sense that
they do not distinguish between the intersection and union of fuzzy sets.

Here we shall only mention some of these general connectives. A detailed
discussion of them and the description of still others can be found in volume 2
in the context of decision making in fuzzy environments.

Averaging Operators. A straightforward approach for aggregating fuzzy sets
(for instance, in the context of decision making) would be to use the aggregating
procedures frequently used in utility theory or multicriteria decision theory.
These procedures realize the idea of trade-offs betweenlconﬂicting goals |when
compensation is allowed, and the resulting trade-offs lie between the most op-
timistic lower bound and the most pessimistic upper bound, that is, they map
between the minimum and the maximum degree of membership of the aggre-
gated sets. Therefore they are called averaging operators. Operators such as the
weighted and unweighted arithmetic or geometric mean are examples of
nonparametric averaging operators. In fact, they are adequate models for human
aggregation procedures in decision environments and have empirically performed
quite well [Thole, Zimmermann, and Zysno 1979]. Procedures and results of
empirical research done in the context of human decision making are investigated
in section 14.3.

The fuzzy aggregation operators “fuzzy and” and “fuzzy or” suggested by
Werners [1984] combine the minimum and maximum operator, respectively,



mammad
Rectangle


36 FUZZY SET THEORY—AND ITS APPLICATIONS

with the arithmetic mean. The combination of these operators leads to very good
results with respect to empirical data [Zimmermann and Zysno 1983] and allows
compensation between the membership values of the aggregated sets.

Definition 3-19 [Werners 1988, p. 297]
The “fuzzy and” operator is defined as

L= y)(uz(x) + pg(x))
2

Hara(Mi(x0), Ma(x)) =y - min {pi(x), pa(x)} + (
xeX,yel0, 1]
The “fuzzy or” operator is defined as

I — y)(i(x) + pg(x))
2

M (A0, 1500) = ¥ - max {1400, ()} + ©
xeX, yel0, 1]

The parameter y indicates the degree of nearness to the strict logical meaning
of “and” and “or,” respectively. For y = 1, the “fuzzy and” becomes the mini-
mum operator, and the “fuzzy or” reduces to the maximum operator. y = 0 yields
for both the arithmetic mean.

Additional averaging aggregation procedures are symmetric summation
operators, which like the arithmetic or geometric mean operators indicate some
degree of compensation but in contrast to the latter are not associative. Exam-
ples of symmetric summation operators are the operators M,, M,, and N, N,,
known as symmetric summations and symmetric differences, respectively. Here
the aggregation of two fuzzy sets A and B is pointwise defined as follows:

Wa(x) + fa(x) — pg(x) - pg(x)
T+ Pz (0) + pa(x) = 2p(x) - pa(x)
wix) - pg(x)

I+ p(x) = () + 2u4(x) - pg(x)
max {5 (x), pz(x) }
L+ | ps(x) — py(x) |

M (00, pax)) =

My(Wa(x), 1a(x)) =

Ny(pi(x), pp(x)) =

min {p; (x), Pa(x) |
I+ g (x) = pa(x) |

A detailed description of the properties of nonparametric averaging operators
is reported by Dubois and Prade [1984]. For further details of symmetric sum-
mation operators, the reader is referred to Silvert [1979].

The above-mentioned averaging operators indicate a “fix” compensation
between the logical “and” and the logical “or.” In order to describe a variety of

Ny(ua(0), palx)) =
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phenomena in decision situations, several operators with different compensa-
tions are necessary. An operator that is more general in the sense that the
compensation between intersection and union is expressed by a parameter Y was
suggested and empirically tested by Zimmermann and Zysno [1980] under the
name “compensatory and.”

Definition 3-20 [Zimmermann and Zysno 1980]

The “compensatory and” operator is defined as follows:

m 1-y) m Y
M comp(%) = [Hw(x)J [1 -[Ia-w@ )] . xeX, 0=y=1
i=1

i=1

This “y-operator” is obviously a combination of the algebraic product (modeling
the logical “and”) and the algebraic sum (modeling the “or™). It is pointwise
injective (except at zero and one), continuous, monotonous, and commutative.
It also satisfies the DeMorgan laws and is in accordance with the truth tables of
dual logic. The parameter indicates where the actual operator is located between
the logical “and” and “or.”

Other operators following the idea of parameterized compensation are defined
by taking linear convex combinations of noncompensatory operators modeling
the logical “and” and “or.” The aggregation of two fuzzy sets A and B by the
convex combination between the min- and max-operator is defined as

Ly(ua(x), Mg(x)) =y - min {pa(x), B0} + (1 ~ 7)) - max {i(x), pg(x)}
yel0, 1]

Combining the algebraic product and algebraic sum, we obtain the following
operation:

M), () = yua(x) - pg(x) + (1 — v) - [ua(x) + pgx) — pg(x) - pa(x)]
yel0, 1]

This class of operators is again in accordance with the dual logic truth tables.
But Zimmermann and Zysno showed that the “compensatory and” operator is
more adequate in human decision making than are these operators [Zimmermann
and Zysno 1980, p. 50].

The relationships between different aggregation operators for aggregating
two fuzzy sets A and B with respect to the three classes of 7-norms, #-conorms,
and averaging operators are represented in figure 3-2.

A taxonomy with respect to the compensatory property of distinguishing
operators, which differentiate between the intersection and union of fuzzy sets,
and general operators is presented in table 3—1. Table 3—2 summarizes the
classes of aggregation operators for fuzzy sets reported in this chapter and
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averaging
operators

t-conorms M09

averaging
operators

t-norms M3t

Figure 3—2. Mapping of tnorms, t-conorms, and averaging operators.

Table 3-1. Classification of compensatory and noncompensatory operators.

Distinguishing General
operators operators
Compensatory fuzzy and compensatory and
fuzzy or convex combinations of min and max
symmetric summations
arithmetic mean
geometric mean
Noncompensatory t-norms
f-conorms
min
max

compiles some references. Table 3-3 represents the relationship between para-
meterized families of operators and the presented #-norms and z-conorms with
respect to special values of their parameters.

3.2.3 Criteria for Selecting Appropriate Aggregation

Operators

The variety of operators for the aggregation of fuzzy sets might be confusing
and might make it difficult to decide which one to use in a specific model or
situation. Which rules can be used for such a decision?
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The following eight impottant criteria according to which operators can be
classified are not quite disjunct; hopefully they may be helpful in selecting the
appropriate connective.

1. Axiomatic Strength. We have listed the axioms that Bellman-Giertz and
Hamacher, respectively, wanted their operators to satisfy. Obviously, everything
else being equal, an operator is the better the less limiting are the axioms it
satisfies.

2. Empirical Fit. If fuzzy set theory is used as a modeling language for real
situations or systems, not only it is important that the operators satisfy certain
axioms or have certain formal qualities (such as associativity, commutativity),
which are certainly of importance from a mathematical point of view, but also
the operators must be appropriate models of real-system behavior; and this can
normally be proven only by empirical testing.

3. Adaptability. It is rather unlikely that the type of aggregation is inde-
pendent of the context and semantic interpretation, that is, whether the aggre-
gation of fuzzy sets models a human decision, a fuzzy controller, a medical
diagnostic system, or a specific inference rule in fuzzy logic. If one wants to use
a very small number of operators to model many situations, then these operators
have to be adaptable to the specific context. This can, for instance, be achieved
by parameterization. Thus min- and max-operators cannot be adapted at all. They
are acceptable in situations in which they fit and under no other circumstances.
(Of course, they have other advantages, such as numerical efficiency.) By con-
trast, Yager’s operators or the y-operator can be adapted to certain contexts by
setting the p’s or ¥’s appropriately.

4. Numerical Efficiency. If one compares the min-operator with, for in-
stance, Yager’s intersection operator or the y-operator, it becomes quite obvious
that the latter two require considerably more computational effort than the former.
In practice, this might be quite important, in particular when large problems
have to be solved.

5. Compensation. The logical “and” does not allow for compensation at all;
that is, an element of the intérsection of two sets cannot compensate for a low
degree of belonging to one of the intersected sets by a higher degree of belong-
ing to another of them. In (dual) logic, one cannot compensate by the higher
truth of one statement for the lower truth of another statement when combining
them by “and.” By compensation, in the context of aggregation operators for
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fuzzy sets, we mean the following: Given that the degree of membership to the
aggregated fuzzy set is

Magelxn) = FUi(x), pmglx)) = k

f is compensatory if [, (x,) = k is obtainable for a different p(x,) by a change
in pg(xy). Thus the min-operator is not compensatory, while the product opera-
tor, the y-operator, and so forth are.

6. Range of Compensation. If one would use a convex combination of min-
and max-operator, a compensation could obviously occur in the range between
min and max. The product operator allows compensation in the open interval
(0, 1). In general, the larger the range of compensation, the better the compen-
satory operator.

7. Aggregating Behavior. If one considers normal or subnormal fuzzy sets,
the degree of membership in the aggregated set depends very frequently on the
number of sets combined. If one combines fuzzy sets by the product operator,
for instance, each additional fuzzy set “added” will normally decrease the result-
ing aggregate degrees of membership. This might be a desirable feature; it might,
however, also be inadequate. Goguen, for instance, argues that for formal reasons
the resulting degree of membership should be nonincreasing [Goguen 1967].

8. Required Scale Level of Membership Functions. The scale level (nomi-
nal, interval, ratio, or absolute) on which membership information can be ob-
tained depends on a number of factors. Different operators may require different
scale levels of membership information to be admissible. (For instance, the min-
operator is still admissible for ordinal information, while the product operator,
strictly speaking, is not!) In general, again all else being equal, the operator that
requires the lowest scale level is the most preferable from the point of view of
information gathering.

Exercises

1. The product and the bounded difference have both been suggested as mod-
els for the intersection. Compute the intersection of fuzzy sets B and € from
exercise 4 of chapter 2 and compare the three alternative models for the
intersection: Minimum, product, and bounded difference.

2. The bounded sum and the algebraic sum have been suggested as alternative
models for the union of fuzzy sets. Compute the union of the fuzzy sets B



EXTENSIONS 43

and € of exercise 4 of chapter 2 using the above-mentioned models, and
compare the result with the result of exercise 4 of chapter 2.

3. Determine the intersection of B and € in exercise 4 of chapter 2 by using
the
a. Hamacher operator with y = .25; .5; .75
b. Yager operator with p =1, 5, 10.

4. Which of the intersection operators mentioned in chapter 3 are compensa-
tory and which not? Are the “compensatory” operators compensatory for
the entire range [0, 1] and for the entire domain of their parameters (Y, p,
etc.)? If not, what are the limits of compensation?

5. Prove that the following properties are satisfied by Yager’s union operator:
a. Wiys(x) = pix) for pa(x) =0
b. Hausx) =1 for pax) =1
. Waus(x) = p(x) for  pz(x) = Wp(x)
d. For p — 0, the Yager union operator reduces to s,, (drastic sum).

6. Show for the parameterized families of fuzzy union defined by Hamacher,
Yager, and Dubois that the defining functions of these operators decrease
with any increase in the parameter.



4 FUZZY MEASURES AND
MEASURES OF FUZZINESS

4.1 Fuzzy Measures

In order to prevent confusion about fuzzy measures and measures of fuzziness,
we shall first briefly describe the meaning and features of fuzzy measures. In the
late 1970s, Sugeno defined a fuzzy measure as follows:

Sugeno [1977]: B is a Borel field of the arbitrary set (universe) X.

Definition 4-1

A set function g defined on B that has the following properties is called a fuzzy
measure:

1. g0) =0, gX) = 1.

2. IfA Be®and A C B, then g(A) = g(B).

3. A, eB, A CAC...,then lim g4,) = g(lim A).
n—eo n—oo

Sugeno’s measure differs from the classical measure essentially by relaxing the
additivity property [Murofushi and Sugeno 1989, p. 201]. A different approach,

45
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however, is used by Klement and Schwyhla [1982]. The interested reader is
referred to their article.

Banon [1981] shows that very many measures with finite universe, such as
probability measures, belief functions, plausibility measures, and so on, are fuzzy
measures in the sense of Sugeno. For this book, one measure—possibility—is
of particular interest {see Dubois and Prade 1988a, p. 7].

In the framework of fuzzy set theory, Zadeh introduced the notion of a
possibility distribution and the concept of a possibility measure, which is a
special type of the fuzzy measure proposed by Sugeno. A possibility measure is
defined as follows [Zadeh 1978; Higashi and Klir 1982]:

Definition 4-2

Let P(X) be the power set of a set X.
A possibility measure is a function IT: P(X) — [0, 1] with the properties

1. TIO) =0, II(X) =1

2. ACB=IlA) =IIB)

3. TI(UA) = sup II(A) with an index set /.
el

iel

It can be uniquely determined by a possibility distribution function f: X — [0, 1]
by IT(A) = sup,.. f(x), A C X. It follows directly that f is defined by f(x) =
IT({x}) ¥x € X [Klir and Folger 1988, p. 122].

A possibility is not always a fuzzy measure [Puri and Ralescu 1982]. It is,
however, a fuzzy measure if X is finite and if the possibility distribution is

normal—that is, a mapping into {0, 1].
Example 4-1
Let X =10, 1,..., 10}.

I1({x}): = Possibility that x is close to 8.

x 0 1 2 3 4 5 6 7 8 9 10
Igxh | 0 .0 .0 0 0 .1 5 .8 1 .8 5

T1(A): = Possibility that A contains an integer close to 8.
A C X = TII(A) = sup II({x})

x€A
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For A = {2, 5, 9} we compute:

II(A) = sup TI({x})

x€A

sup {IT({2}), TI({5}), TI({9}) }
sup (O, .1, .8}
.8

4.2 Measures of Fuzziness

Measures of fuzziness, in contrast to fuzzy measures, try to indicate the degree
of fuzziness of a fuzzy set. A number of approaches to this end have become
known. Some authors, strongly influenced by the Shannon entropy as a measure
of information, and following de Luca and Termini [1972], consider a measure
of fuzziness as a mapping d from the power set P(X) to [0, +<<] that satisfies
a number of conditions. Others [Kaufmann 1975] suggested an index of fuzziness
as a normalized distance, and others [Yager 1979; Higashi and Klir 1982] base
their concept of a measure of fuzziness on the degree of distinction between the
fuzzy set and its complement.

We shall, as an illustration, discuss two of those measures. Suppose for both
cases that the support of A is finite.

The first is as follows: Let: p4(x) be the membership function of the fuzzy set
A for x € X, X finite. It seems plausible that the measure of fuzziness d(A) should
then have the following properties [de Luca and Termini 1972]:

1. d(A) =0 if A is a crisp set in X.

2. d(A) assumes a unique maximum if pz(x) = 1+ Vx € X.

3. d(A) = d(A") if A’ is “crisper” than 4, ie., if pp(x) = pi(x) for p(x)
= 7 and () = () for s = 3.

4. d(QA) = d(A) where CA is the complement of A.

De Luca and Termini suggested as a measure of fuzziness the “entropy” of a
fuzzy set [de Luca and Termini 1972, p. 305], which they defined as follows:

! Also employed in thermodynamics, information theory, and statistics [Capocelli and de Luca
1973].
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Definition 4-3a
The entropy as a measure of a fuzzy set A = {(x, W;(v)} is defined as
d(A) = H(A) + HCA), x eX

n

H@A) = -K Zl.l/i (xi} In (Us(x))

i=1

where 7 is the number of elements in the support of A and K is a positive
constant.

Using Shannon’s function S(x) = — x In x — (1 — x) In (I — x), de Luca and
Termini simplify the expression in definition 4-3a to arrive at the following
definition.

Definition 4-3b

The entropy d as a measure of fuzziness of a fuzzy set A = {x, pLi(x) } is defined
as

d(A) = KY S(u; ().
i=1

Example 4-2
Let A = “integers close to 10” (see example 2-1d)

A=1{(T,.1), (8, .5), 9. .8), (10, 1), (11, .8), (12, .5), (13, .1)}
Let K =1, so

d(A) = 325 + .693 + 501 + 0 + .501 + .693 + .325 = 3.038
Furthermore, let B = “integers quite close to 10”

B ={(6,.1), (7, .3), (8, .4, (9,.7), (10, 1), (11, .8), (12, .5), (13, .3),
(14, .D}

dB) = 325 + 611 + .673 + .611 + 0 + .501 + .693 + 611 + .325
=435

The second measure is as follows: Knopfmacher [1975], Loo [1977], Gottwald
[1979b], and others based their contributions on the Luca and Termini’s sugges-
tion in some respects.

If A is a fuzzy set in X and CA is its complement, then in contrast to crisp
sets, it is not necessarily true that
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AUCA=X
ANCA=0
This means that fuzzy sets do not always satisfy the law of the excluded middle,
which is one of their major distinctions from traditional crisp sets. Some authors
[Yager 1979; Higashi and Klir 1982] consider the relationship between A and
CA to be the essence of fuzziness.
Yager [1979] notes that the requirement of distinction between A and CA is

not satisfied by fuzzy sets. He therefore suggests that any measure of fuzziness
should be a measure of the lack of distinction between A and CA or p4(x) and

Haa(x).
As a possible metric to measure the distance between a fuzzy set and its
complement, Yager suggests:

Definition 4-4

n Up
DA, CA) = | Y [wa(x) - MeiGx)1? | p=1,2,3,...

i=]

Let S = supp(A): D,S, CSH =1 S|I"*

Definition 4-5 [Yager 1979]

A measure of the fuzziness of A can be defined as

_ D (4,C4)
Il supp (A) ||

So f,(A) € [0, 1]. This measure also satisfies properties 1 to 4 required by de
Luca and Termini~(see~ab0ve).
For p = 1, D(A, CA) yields the Hamming metric

A =1

DA, CA)y = Y | () — Pga(x) |
i=1
Because pgi(x) = 1 — 4(x), this becomes

D\(A, CA) = Y | 204 (x) - 11

i=1
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For p = 2, we arrive at the Euclidean metric

n 12
Dy(A, CA) = [Z(HA(-’Q‘) “HQ“A(X:‘))zj

=]
and for Ugs(x) = 1 — py(x), we have

n 172
DyA, CA) = [Z(zug(,\‘i) - 1)2]
i=l .
Example 4-3

Let A = “integers close to 10” and
B = “integers quite close to 10” be defined as in example 4-2.
Applying the above derived formula, we compute for p = I:

DA.CAH=8+0+6+1+6+0+.8

=38
| supp (A) || =7
so fi(A) =1 - ? = 0.457.
Analogously,
DB, CB) = 4.6
Il supp (B) | =9

s0 f(B) =1 - % — 489,

Similarly, for p = 2, we obtain

DA, CA) = 1.73

Il supp (&) || '* = 2.65
s0 f(A) =1 — 173 0.347, and
2.65
DB, CB) = 1.78
Il supp (B) I|'* =1
sof5(BY=1 - g = 0.407.
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The reader should realize that the complement of a fuzzy set is not uniquely
defined [see Bellman and Giertz 1973; Dubois and Prade 1982a; Lowen 1978].
It is therefore not surprising that for other definitions of the complement and for
other measures of distance, other measures of fuzziness will result, even though
they all focus on the distinction between a fuzzy set and its complement [see,
for example, Klir 1987, p. 141]. Those variations, as well as extension of meas-
ures of fuzziness to nonfinite supports, will not be considered here; neither will
the approaches that define fuzzy measures of fuzzy sets [Yager 1979].

Exercises

1. Let A be defined as in example 4-2.
B ={(8, .5), 9,.9), (10, 1), (11, .8), (12, .5)}
¢ = {6, .1, 7, .1, B, .5, 9 8), 10, 1), (11, .8), (12, .5), (13, .1),
(14, .1)}
Is A crisper than B (or C)?
Compute as measures of fuzziness:
a. the entropy (with K = 1)
b. f;
c. f, for all three sets.
Compare the results.
2. Determine the maximum of the entropy of d(A) in dependence of the
cardinality of the support of A.
3. Consider A as in exercise 1. Determine A N CA and A U CA. For which
(special) fuzzy sets does the equality hold?
4. Consider example 4—1. Compute the possibilities of the following sets:

A =1{1,2,3,4,5 6}, A, ={L,5,8, 9}, A, = {7, 9}



5 THE EXTENSION PRINCIPLE
AND APPLICATIONS

5.1 The Extension Principle

One of the most basic concepts of fuzzy set theory that can be used to generalize
crisp mathematical concepts to fuzzy sets is the extension principle. In its ele-
mentary form, it was already implied in Zadeh’s first contribution [1965]. In the
meantime, modifications have been suggested [Zadeh 1973a; Zadeh et al. 1975;
Jain 1976]. Following Zadeh [1973a] and Dubois and Prade [1980a], we define
the extension principle as follows:

Definition 5-1

Let X be a Cartesian product of universes X = X,x...xX,, and 4,,..., A, be
r fuzzy sets in X, . .., X,, respectively. f is a mapping from X to a universe Y,
y =f(x,, ..., x,). Then the extension principle allows us to define a fuzzy set B
in Y by

B={0, ks |y =fla, ..., %), (x,...,x)€X}

53
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where

X x)EFTHY)

sup  min {5 (x). ... mg (6} 0 £ # 0
Ua(y) = ¢
otherwise

where f7' is the inverse of f.
For r = 1, the extension principle, of course, reduces to

B =fA) = {(nmsOM Iy=fl), xeX}

where
sup pi(x), if f7'(») =0
Lp(y) = qxef~n
otherwise
Example 5—1
Let A = {(~1,.5), (0, .8), (1, 1), (2, 4)}
f)=x*

Then by applying the extension principle, we obtain
B = f(A) = {(0, 8), (1, 1), (4, .4}
Figure 5—1 illustrates the relationship.
The extension principle as stated in definition 5—1 can and has been modified by
using the algebraic sum (definition 3—8) rather than sup, and the product rather

than min [Dubois and Prade 1980a]. Since, however, it is generally used as defined
in definition 5—1, we will restrict our considerations to this “classical” version.

5.2 Operations for Type 2 Fuzzy Sets

The extension principle can be used to define set-theoretic operations for type
2 fuzzy sets as defined in definition 3~1.

We shall consider only fuzzy sets of type 2 with discrete domains. Let two
fuzzy sets of type 2 be defined by

AW = {(6, i)} and B = {(x, pp(x))}
where
i) = {(u;, L () | x eX, u, px) [0, 11}
Ha() = { (v, L, () | x € X, v, p,(x) € [0, 11}
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4 4
3 3
2 2
1 1
0 0
-1 / + -1
S(A) S(B)

Figure 5-1. The extension principle.

The u; and v; are degrees of membership of type 1 fuzzy sets and the p,(x) and
K, (x), respectively, their membership functions. Using the extension principle,
the set-theoretic operations can be defined as follows [Mizumoto and Tanaka
1976]:

Definition 5-2

Let two fuzzy sets of type 2 be defined as above. The membership function of
their union is then defined by

Haus(®) = Hia(x) U pa(x)
= {(W, I'LAUE(W)) | w = max {uis vj}s U;, vj € [Os 1]}
where

MAUE(W) = Sup min {I'Lui(x)’ I'ij(x)}

w=max {u,v;}
Their intersection is defined by

Hins(®) = Ha(x) N p(x)
= {(W, WinsW)) | w = min {u, v;}, u;, v; € [0, 1]}

S ———
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where

HAQB(M]) = Sup min {l“lui(x)v l“l\'j(x)}

w=min{u ;v
and the complement of A by
Mg (0 = {10 = ), piup1}

Example 5-2
Let X=1,...,10, A = small integers

B = integers close to 4
defined by

{ O ma(0) }

A=
B = {(x, uz(x)

where, for x = 3,

wi(3) = {(u, u,B3NHi=1,...,3}
={(8, 1), (.7, .5), (.6, .4)}

w3 = (0w, BN 1j=1,..., 3]
= {(1, 1), (.8,.5), (7, .3)}

Compute iz

~
=

v, w =min {u, v} W,.(3) u,(3) min {L,(3), W3}

“~.

8 1 8 1 1 1

8 8 8 | 5 5
8 7 7 1 3 3
7 1 7 5 1 5
7 .8 7 5 5 5
7 i 7 5 3 3
6 1 6 4 I 4
6 8 6 4 5 4
6 7 6 4 3 3

Next, compute the supremum of the degrees of membership of all pairs (;, v))
that yield w as minimum:

sup {1, 5} =1

-8=min (1,1}
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sup {3,.5,.5.3/=25

7=min {u;, v}

sup {4, .4, 3}=4

.6=min{u,-,vjl
So we obtain the membership function of x = 3 as the fuzzy set
wing(3) = {(8, 1), (.7, .5), (.6, 4)}

Mizumoto and Tanaka [1976, p. 318] show that type 2 fuzzy sets as defined
above are idempotent, commutative, and associative and satisfy the DeMorgan
laws. They are, however, not distributive and do not satisfy the absorbtion laws,
the identity laws, or the complement laws.

Example 5-2 is a good indication of the computational effort involved in
operations with type 2 fuzzy sets. The reader should realize that in this exam-
ple the degrees of membership of only one element of the type 2 fuzzy set is
computed. For all other elements, such as x =4, x = 5, .. . etc. of the sets A %
B, the corresponding calculations would be necessary. Here “+” can be any set-
theoretic operation mentioned so far.

5.3 Algebraic Operations with Fuzzy Numbers

Definition 5-3

A fuzzy number M is a convex normalized fuzzy set M of the real line R such
that

1. It exists exactly one x, € R with ty;(x) = 1 (x, is called the mean value of
M).

2. wu(x) is piecewise continuous.

Nowadays, definition 5—3 is very often modified. For the sake of computational

efficiency and ease of data acquisition, trapezoidal membership functions are

often used. Figure 5—2 shows such a fuzzy set, which could be called “approxi- -

mately 5" and which would normally be defined as the quadrupel {3, 4, 6, 7}.

Strictly speaking, it is a fuzzy interval (see section 5.3.2). A triangular fuzzy

number is, of course, a special case of this.

Definition 54

A fuzzy number M is called positive (negative) if its membership function is
such that py(x) =0, Vx < 0 (Vx > 0).



58 FUZZY SET THEORY—AND ITS APPLICATIONS
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Figure 5-2. Trapezoidal “fuzzy number.”

Example 5-3
The following fuzzy sets are fuzzy numbers:

approximately 5 = {(3, .2), 4, .6), (5, 1), (6, .7), (7, .1)}
approximately 10 = {(8, .3), (9, .7), (10, 1), (11, .7), (12, .3)}

But {(3, .8), (4, 1), (5, 1), (6, .7)} is not a fuzzy number because [(4) and also
ne) = 1.

We are all familiar with algebraic operations with crisp numbers. If we want to
use fuzzy sets in applications, we will have to deal with fuzzy numbers, and the
extension principle is one way to extend algebraic operations from crisp to fuzzy
numbers.

We need a few more definitions: Let F(R) be the set of real fuzzy numbers
and X = X, X X,. We can define the following properties of binary operations:

Definition 5-5
A binary operation * in R is called increasing (decreasing) if

for x, >y and x, >y,
X ¥ X2y kY, (0 xx<y *y)
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Example 5-4
fex,y)=x+y is an increasing operation.
fxe,=x-y is an increasing operation on R".

f(x, ¥) = —(x + y) is a decreasing operation.

If the normal algebraic operations +, —, -, : are extended to operations on fuzzy
numbers, they shall be denoted by @, ©, O, ©.

Theorem 5—1 [See Dubois and Prade 1980a, p. 44]

If M and N are fuzzy numbers whose membership functions are continuous and
surjective from R to [0, 1] and * is a continuous increasing (decreasing) binary
operation, then M ® N is a fuzzy number whose membership function is con-
tinuous and surjective from R to [0, 1].

Dubois and Prade [1980a] present procedures to determine the membership
functions plyey on the basis of py and py.

Theorem 5-2

If M, N € F(R) with pg(x) and py(x) continuous membership functions, then by
application of the extension principle for the binary operation *: R®R - R,
the membership function of the fuzzy number M ® N is given by

Hien(z) = sup min {Hy(x), py(y)}

Z=Xxy
Properties of the Extended Operation ®

Remark 5—1 [Dubois and Prade 1980a, p. 45]

1. For any commutative operation *, the extended operation ® is also
commutative.
2. For any associative operation *, the extended operation ® is also associative.

5.3.1 Special Extended Operations

For unary operations f: X — Y, X = X, (see definitions 5—1), the extension
principle reduces for all M € F(R) to

Rean(2) = sup puy(x)
xef ()
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Example 5-5

1. For f(x) = —x, the opposite of a fuzzy number M is given by —M = {(x,
U y(x)) | x € X}, where U_y(x) = Wy(—x).

2. If f(x) = 1, then the inverse of a fuzzy number M is given by M~ = {(x,
U7 () | x € X}, where P (x) = p( ).

3. For A € R\(0} and f(x) = A - x, then the scalar multiplication of a fuzzy
number is given by AM = {(x, [, 5(x)) | x € X }, where [,4(x) = tg(A - x).

In the following, we shall apply the extension principle to binary operations.
A generalization to n-ary operations is straightforward.

Extended Addition. Since addition is an increasing operation according to
theorem 5—1, we get for the extended addition @ of fuzzy numbers that f(N, M)
=N ® M, N, M € F(R) is a fuzzy number—that is, N ® M e F(R).

Properties of ®

oM ® N) = (&M) @ (6N).

@ is commutative.

@ is associative.

0 e R C F(R) is the neutral element for @, thatis, M ® 0 = M, VM e F(R).
For @ there does not exist an inverse element, that is, VM € F(R\R: M &
eM) =0 eR.

Y.

One of the consequences [Yager 1980] is that fuzzy equations are very difficult
to solve because the variables cannot be eliminated as usual.

Extended Product. Multiplication is an increasing operation on R* and a
decreasing operation on R™. Hence, according to theorem 5-1, the product of
positive fuzzy numbers or of negative fuzzy numbers results in a positive fuzzy
number. Let M be a positive and N a negative fuzzy number. Then © M is also
negative and M O N = ©(@M O N) results in a negative fuzzy number.

Properties of ©
1. ©M) O N=0emMm O N).

2. © is commutative.
3. O is associative.
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4. MO 1=M, 1eR C F) is the neutral element for O, that is, M © 1 =
M, VM € F(R).

5. For O there does not exist an inverse element, that is, VM e F(R\R:
MOM!' =21

Theorem 5-3 [for the proof, see Dubois and Prade 1980a, p. 51]

If M is either a positive or a negative fuzzy number and N and P are both either
positive or negative fuzzy numbers, then

MOWN®P=MON)® MO P)

Extended Subtraction. Subtraction is neither an increasing nor a decreasing
operatlon Therefore theorem 5-1 is not 1mmed1ately apphcable The operation
M © N can, however, always be written as M © N=M & (&N).

Applying the extension principle [Dubois and Prade 1979] yields

Wien(z) = sup min (Ry(x), Py(y))
z=x-y

sup min (Ry(x), Hy(—»))

z=x+y

sup min (Ry(x), K_x(¥))

z=x+y

Thus M © N is a fuzzy number whenever M and N are.

I

Extended Division. Division is also neither an increasing nor a decreasing
operation. If M and N are strictly positive fuzzy numbers, however (that is, P (x)
=0 and pz(x) = 0 Vx < 0), we obtain in analogy to the extended subtraction

Wyron(2) = Su? min (W(x), Ly(y))
z=xly

= supmin (Ly(x), te(3))
z=xy

= supmin (Ru(x), HF(Y))
7=xy
N'isa positive fuzzy number. Hence theorem 5—1 can now be applied. The
same is true if M and N are both strictly negative fuzzy numbers.
Similar results can be obtained by using other than the min-max operations—
for instance, those of definitions 3—7 through 3-11.
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Extended operations with fuzzy numbers involve rather extensive computations
as long as no restrictions are put on the type of membership functions allowed.
Dubois and Prade [1979] propose a general algorithm for performing extended
operations. For practical purposes, however, it will generally be more appropriate
to resort to specific kinds of fuzzy numbers, as they are described in the next
section. The generality is not limited considerably by limiting extended operations
to fuzzy numbers in LR-representation or even to triangular fuzzy numbers [van
Laarhoven and Pedrycz 1983], and the computational effort is very much de-
creased. The reader should also realize that extended operations on the basis of
min-max cannot be directly applied to “fuzzy numbers” with discrete supports.
As illustrated by example 5—6, the resulting fuzzy sets may no longer be convex
and therefore no longer considered as fuzzy numbers.

Example 5-6

Let A? ={(1, 3), 2, 1), 3, 4}
N ={@2, 7)., 3, 1), @4, 2}
Then

MON={(@2 3),@3, 3,4 .7, 6 1), @8, .2, (9,.4), (12, .2)}

5.3.2 Extended Operations for LR-Representation of
Fuzzy Sets

Computational efficiency is of particular importance when using fuzzy set theory
to solve real problems, that is, problems of realistic size. In the following, there-
fore, we shall consider in detail the LR-representation of fuzzy sets, which
increases computational efficiency without limiting the generality beyond ac-
ceptable limits.

Dubois and Prade [1979] suggest a special type of representation for fuzzy
numbers of the following type: They call L (and R), which map R* — [0, 1],
and are decreasing, shape functions if L(0) = 1, L(x) < 1 for Vx > 0O: L{x) >
0 for Vx < 1; L(1) = 0 or [L(x) > 0, Vx and L(+ <) = 0].

Definition 5-6

A fuzzy number M is of LR-type if there exist reference functions L (for left),
R (for right), and scalars o, > 0, B > 0 with
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5 10

Figure 5-3. LRA-representation of fuzzy numbers.

m-x
L(——) forx<m
o

e =3 . _ .
R( B J for x=m
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m, called the mean value of M, is a real number, and o and [ are called the left
and right spreads, respectively. Symbolically, M is denoted by (m, o, B).g. (See

figure 5-3.)

For L(z), different functions can be chosen. Dubois and Prade [1988a, p. 50]
mention, for instance, L(x) = max (0, 1 — x)?, L(x) = max (0, 1 — x*), with p >
Oand L(x) = e or L(x) = e~* . These examples already give an impression of
the wide scope of L(z). One problem, of course, is to find the appropriate func-

tion in a specific context.

Example 5-7
Let

L& = 1+ x?

RO = 127 x)

a=2,p=3m=35
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Then

Hy (x) =

x=5 1
R{ )— ’2(}(‘_5)’ for x=5
3

If the m is not a real number but an interval [m, 7], then the fuzzy set M is
not a fuzzy number but a fuzzy interval. Accordingly, a fuzzy interval in LR-
representation can be defined as follows:

Definition 5-6a [Dubois and Prade 1988a, p. 48]

A fuzzy interval M is of LR-type if there exist shape functions £. and R and four
parameters (m, ) € R* U {—eo, +oo}, ct, B and the membership function of M
is

L(m—x) forx=m

o

Hy(x) = 41 form =x<m
R(Xgm] forx = m

The fuzzy interval is then denoted by
M = (mv ﬁv a’ B)LR

This definition is very general and allows quantification of quite different types
of information; for instance, if M is supposed to be a real crisp number for m
€ R,

M = (m, m, 0, 0),,, VL, VR
If M is a crisp interval,
M = (a, b, 0, 0),,, VL, VR

and if M is a “trapezoidal fuzzy number” (see definition 5-3), L{x) = R(x) =
max (0, 1 — x) is implied.

For LR fuzzy numbers, the computations necessary for the above-mentioned
operations are considerably simplified: Dubois and Prade [1979] showed that
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exact formulas can be given for ® and ©. They also suggested approximate
expressions for © and ® [Dubois and Prade 1979], which approximate better
when the spreads are smaller compared to the mean values.

Theorem 5—4
Let M, N be two fuzzy numbers of LR-type:
M = (m7 ay B)LR7 N~ = (n7 Y’ 8)LR
Then
1. m o, Bl ® (n, ¥, g=(m+n o+, B + &)z

2. —(m, o, B)LR = (_m7 B7 a)LR'
3. (m, 0, Br© (Y, 8)r=(m—n, 0+, B+ Yz

Example 5-8
L(x) = R(x) = e
M=qQ,.5, 8
N =@, .6, Qe
M®&N=(@3, 1.1, 1),
0 =@, .6, 2

6 0 =(=2, 2, .6)
MO O0=(1,.7 14,

Theorem 5—5 [Dubois and Prade 1980a, p. 55]
Let M, N be fuzzy numbers as in definition 5-3; then
(m, o, Bz © (n, ¥, &)z = (mn, my + na, md + nP).g
for M, N positive;
(m, o, Bz © (1, Y, Oz = (mn, no. — md, nP — mMY)x
for N positive, M negative, and
(m, o, B)r © (n, ¥, 8)x = (mn, — nB — md, not — MYz

for M, N negative.

The following example shows an application of theorem 5-5.
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Example 5-9

Let M = (2, .2, 1),
N =3, .1, .3),
be fuzzy numbers of LR-type with reference functions

1] -I1=:z=1

= 7 =

L(z)=R(z) = {

0 else

If we are interested in the LR-representation of M © N, we prove the conditions
of theorem 5-5 and apply it. Thus, with

L(z “x) x=2
2

Wy () = B
R(X 2

1 =2V 2y and =72
= 2 1
0 else
N 19=sx=21
0 else
it follows that M is positive.
3—x
L 0 =3
Hy(x) = .
R(x — %) x=3
3
_ 1 29=x=13]1
10 else

shows that N is positive.
Following theorem 5-5 for the case in which M and N are positive, we obtain

MON=(23,2.1+32 23 +3.1),, = (6, 8, 9, x

Exercises

I LetX=NxN
A= {(1,.6), (2, .8), (3, 1), (4, .6)}
Ay = {(0,.5), (1, . 1), (2, .9), 3, 1), 4. 4))
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f: N x N — N be defined by
f(xs )’)=Z,XEA19)’€A~2

Determine the image f(4, X A,) by the extension principle.
2. Compute Mz and pg; for A, B as in example 5-2.
3. Which of the following fuzzy sets are fuzzy numbers?
a. A= {(x wM) | xeR}
where

pi(x) =

b. B = ((x, p3(0) | x € R}

where
x xe€l[0,1]
pp =1 1 xell?2]
3—-x xel[2,3]

C. C~ = {(O, 4), (19 1)’ (2" 7)}

4. Which of the following functions are reference functions for x € R?
a fi)=lx+1]|
b. f,(x) =

1+ x2
Ix+1 xe[-20]

c. filx)=3-2x+1 x€l0,3]
0 else

1

d fix) = mpzl

5. Let M, L(x), R(x) be defined as in example 5—8. N = (-4, .1, .6);z Compute
Mo N.

6. Let M, N be defined as in example 5—8. Compute M O N.

7. Develop an approximate formula to compute M @ N, M = (m, 0 B)s,
N = (n, v, G).z (Remember how the formula was derived for the general
extended division.)



6 FUZZY RELATIONS
AND FUZZY GRAPHS

6.1 Fuzzy Relations on Sets and Fuzzy Sets

Fuzzy relations are fuzzy subsets of X X Y, that is, mappings from X — Y. They
have been studied by a number of authors, in particular by Zadeh [1965, 1971],
Kaufmann [1975], and Rosenfeld [1975]. Applications of fuzzy relations are
widespread and important. We shall consider some of them and point to more
possible uses at the end of this chapter. We shall exemplarily consider only
binary relations. A generalization to n-ary relations is straightforward.

Definition 6-1
Let X, Y C R be universal sets; then
R={((, y), pglx, ) | (x, y) € X X ¥}
is called a fuzzy relation on X X Y.
Example 6-1
Let X =Y = R and R: = “considerably larger than.” The membership function

of the fuzzy relation, which is, of course, a fuzzy set on X X ¥, can then be

69
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0 forx=y
Ue(x, ¥) = w-y fory <x=11ly
10y
1 for x > 11y

A different membership function for this relation could be

. - 0 forx=y
Hg(x, y) = I+(y-xy"! forx>y

For discrete supports, fuzzy relations can also be defined by matrixes.

Example 6-2

Let X = {x,, %, x5} and Y = {y, v» v ¥4}

Vi Y2 Y3 Ya
X 8 1 .1 7
R = “x considerably larger than v™: X, 0 8 0 0
X3 9 1 Vi .8
and
i Y2 V3 Ya
X 4 0 9 .6
Z = “y very close to x”: X, 9 4 5 i
X3 3 0 8 5

In definition 6—1 it was assumed that p; was a mapping from X x Y to [0, 1];
that is, the definition assigns to each pair (x, y) a degree of membership in the
unit interval. In some instances, such as in graph theory, it is useful to consider
fuzzy relations that map from fuzzy sets contained in the universal sets into the
unit interval. Then definition 61 has to be generalized [Rosenfeld 1975].
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Definition 6-2
Let X, Y C R and
A= {0 ) | x e X},
B={(, u(»)|ye Y} two fuzzy sets.

Then R = {[(x, y), We(x, M1 | (x, y) € X X Y} is a fuzzy relation on A and
B if

Pa(x, ) = ix), Vix, y) € X XY

and

Hz(x, ¥) = ps(»), Vix, y) € X x Y.

This definition will be particularly useful when defining fuzzy graphs: Let the
elements of the fuzzy relation of definition 6-2 be the nodes of a fuzzy graph
that is represented by this fuzzy relation. The degrees of membership of the ele-
ments of the related fuzzy sets define the “strength” of or the flow in the respec-
tive nodes of the graph, while the degrees of membership of the corresponding
pairs in the relation are the “flows™ or “capacities” of the edges. The additional
requirement of definition 6-2 (Mg(x, ) = min {p;(x), Hg(y)}) then ensures that
the “flows” in the edges of the graph can never exceed the flows in the respec-
tive nodes.

Fuzzy relations are obviously fuzzy sets in product spaces. Therefore set-
theoretic and algebraic operations can be defined for them in analogy to the
definitions in chapters 2 and 3 by utilizing the extension principle.

Definition 6-3

Let R and Z be two fuzzy relations in the same product space. The union/inter-
section of R with Z is then defined by

Hzuz(x, ¥) = max {Pz(x, y), ha(x, ») }, (v, y) € X XY
Hanz(x, ¥) = min {pe(x, ¥), Wz(x, »)}, (x, y) € X XY

Example 6-3

Let R and Z be the two fuzzy relations defined in example 6-2. The union of
R and Z, which can be interpreted as “x considerably larger or very close to y,”
is then given by
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i Y2 Yiooo W

x, 8 1 9 T

R U Z: x, 9 8 5 7
Xy 9 1 8 8

Y Y2 A% Ya
X, 4 0 1 6

RN Z 0 4|0 0
X, 3 0 7 5

So far, “min” and “max” have been used to define intersection and union. Since
fuzzy relations are fuzzy sets, operations can also be defined using the alterna-
tive definitions in section 3.2. Some additional concepts, such as the projection
and the cylindrical extension of fuzzy relations, have been shown to be useful.

Definition 6-4

Let R = { LG ¥), g, )11 (x, y) € X X Y} be a fuzzy binary relation. The first
projection of R is then defined as

RM = {(x, max Pg(x, ) | (x.y) € X X ¥}
¥
The second projection is defined as
R® = {(y, max g (x, ) | (x,y) € X x Y}

and the rotal projection as

RD = max max {pz(x, y) | (x,y) € X x Y}

Example 6-4

Let R be a fuzzy relation defined by the following relational matrix. The first,
second, and total projections are then shown at the appropriate places below.
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First projection

b4l Y2 Y3 Ya Vs Ye o (x) ]
X, 1 2 4 8 1 .8 1
Rix, | 2| 4 8 |1 8| 6 1
X3 4 8 1 8 4 2 1

Second projection:

e (x) ]

4 8 1 1 1 .8 1
Total projection

The relation resulting from applying an operation of projection to another relation
is also called a “shadow” [Zadeh 1973a]. Let us now consider a more general

space, namely, X = X, X ... x X,; and let ﬁq be a projection on X; X ... X X,

'
where (i,, . . . , i) is a subsequence of (1, . . ., n). It is obvious that distinct fuzzy
relations in the same universe can have the same projection. There must, how-
ever, be a uniquely defined largest relation ﬁqL(Xl, Xy with pg (X, ., X,)
for each projection. This largest relation is called the cylindrical extension of the
projection relation.

Definition 6-5

RqL C X is the largest relation in X of which the projection is I?q, ﬁqL is then called
the cylindrical extension of R, and R, is the base of R,;.

Example 6-5

The cylindrical extension of R® (example 6—4) is

N Y2 Yi W Ys  Ye
X 4 8 1 1 1 8

Ry x, 4 8 1 1 1 8
X3 4 8 1 1 1 8
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Definition 6-6

Let R be a fuzzy relation on X = X, X ...xX,and R, and R, be two fuzzy
prO_]eC[lOI‘lS onX; X...xX and X, x...xX, respectlvely, withs = r+ 1 and
R, Ry their respectlve cylindrical extensions.

The join of R, and R, is then defined as R, N R, and their meet as R,UR,,.

6.1.1 Compositions of Fuzzy Relations

Fuzzy relations in different product spaces can be combined with each other by
the operation “composition.” Different versions of “composition” have been
suggested, which differ in their results and also with respect to their mathemat-
ical properties. The max-min composition has become the best known and the
most frequently used one. However, often the so-called max-product or max-
average compositions lead to results that are more appealing.

Definition 6-7

Max-min composition: Let R e, y), (x, yy € X x Y and Rz(», _) v, 2)e YxZ
be two fuzzy relations. The max-min composition R, max-min R, is then the fuzzy
set

R R, ={[(x, 2), max {min {ug (x, y), kg (» 2} xeX,ye Y.z € Z)

Mz, 1S again the membership function of a fuzzy relation on fuzzy sets (de-
finition 6-2).

A more general definition of composition is the “max-* composition.”

Definition 6-8

Let R, and R, be defined as in definition 6—7. The max-* composition of R, and
R, is then defined as

R 3 R={1(x,2), max (uz (x, ) * U (v, 2] |xeX,ye ¥,z €2)

If * is an associative operation that is monotonically nondecreasing in each
argument, then the max-* composition corresponds essentially to the max-min
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composition. Two special cases of the max-* composition are proposed in the
next definition.

Definition 6-9

[Rosenfeld 1975]: Let R, and R,, respectively, be defined as in definition 6-7.
The max-prod composition R, ¢ R, and the max-av composition R, g, R, are then
defined as follows:

R 2 Ry(x,2) = {[(x,2), max (g y) My )} xeX,yeY, zeZ}
RI gv RZ (x, Z) = {[(x, Z), yZ - max {HE(X,Y) l»lﬁz(y, Z)}] |XGX,)’ € Y,ZGZ}

Example 6-6

Let R,(x, y) and Ry(», z) be defined by the following relational matrixes [Kaufmann
1975, p. 62]:

Z Z, Z3 Z4
Y Y2 Y3 Yo Ys N 910 3 4
x | 1 210 1 i Y2 2|1 810
R:x, | 3 510 211 Ry v, 810 711
x| 810 1 413 Va 4| 2 310
ys | O 1 0 8

We shall first compute the min-max-composition R, o Ry(x, z). We shall show
in detail the determination for x = x,, z = z; and leave it to the reader to verify
the total results shown in the matrix at the end of the detailed computations. We
first perform the min operation in the minor brackets of definition 6-7:
letx=x,z=z,andy=y,i=1,...,5:

min {pz,(x;, ¥1), Mg, (0 2D} = min {.1, 9} =.1

min {pz (X, Y1), R, (¥ 22) } = min {2, .2} =.2

min {Hz (X, ¥3), Bz, (¥s 21) } = min {0, .8} =0

min { Kz (X, ¥a), R, (¥ 2,)} = min {1, 4} =4

min {Wg,(x;, ¥s), Rg,(¥s, z) } = min {7,0} =0
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Rl ° RZ(x]v ) = (%), zy), Wer, (515 20))
= ((x, 7)), max {.1, .2, 0, 4, 0}) = ((x,, z,), .4))

In analogy to the above computation we now determine the grades of member-

ship for all pairs (x;, z),i=1,...,3,j=1,..., 4 and arrive at
7, I, Z4 24
X, 4 7 3 7
1?, o Rz X, 3 1 5 8
X3 .8 3 7 1

For the max-prod, we obtain

X=x,z=z,y=y,i=1...,5:
e (i, y) - Mg, z) =.1-.9=.09
uﬁ*(xlv y2) ’ p'léz(ylazl) = 2 " 2 = 04’

He(x, y3) - Ug(y3z) =0-.8 =0
Hea (X ye) Hg(ez) =1- 4 =4
R (x, ¥s) Mg (ys, ) =.7-0 =0

Hence

R 2 Ry(xi. zi) = (%, 1), (g (51 2)))
= ((x;, z), max {.09, .04, 0, 4, 0})
= ((x), 7,), 4)

After performing the remaining computations, we obtain

Z, Z, 24 Zy
Xy 4 7 3 .56

R °R: x, 27 |1 4 8
X 8 31711
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The max-av composition finally yields

i nixy, y) + Wy, z;)

1 1

2 4
3 .8
4 14
5 7

Hence

% max g G, y) + R z)t =14 (14) =7

7 2, 73 Z4
X N .85 .65 5

R o R, x, 6 1 .65 9
X3 9 65 .85 1

6.1.2 Properties of the Min-Max Composition
(For proofs and more details see, for instance, Rosenfeld 1975.)

Associativity. The max-min composition is associative, that is,
(Ry°R,) ° Ri=R,°(R, ° R)).
Hence R, ° R, R, = R3, and the third power of a fuzzy relation is defined.

Reflexivity

Definition 6-10
Let R be a fuzzy relation in X x X.

1. R is called reflexive [Zadeh 1971] if
He(x, x) =1 Vxe X
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2. R is called e-reflective [Yeh 1975] if

Ua(x, x) = e Vxe X
3. R is called weakly reflexive [Yeh 1975] if

He(x, y) =pz(x, x)

Yx, X.
e (v, X) = pglx, x)} %Y e

Example 6-7

Let X = {x;, x,, X3, 5} and ¥ = {y,, y5, 3, ¥ 1.
The following relation “y is close to x” is reflexive:

) v Y3 Vs
X 1 0 2 3

Riox, | 0 1 Bl 1
X 2 7|1 4
X3 0 1 4 1

If R, and R, are reflexive fuzzy relations, then the max-min composition R, © R,
is also reflexive.

Symmetry

Definition 6-11

A fuzzy relation R is called symmetric if R(x, y) = R(y, x) Vx, y € X.

Definition 6-12

A relation 1s called antisymmetric if for

x#y either  pp(x, v) # pg(y, x)

Vx,ye X
or Ue(x, ¥) = Hg(y, x) = 0} * Y€

[Kaufmann 1975, p. 105}].
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A relation is called perfectly antisymmetric if for x # y whenever
Ue(x, ¥) > 0 then pg(y, x) =0 Vx,ye X

[Zadeh 1971].

Example 6-8

X x, X X,
X 4 0 1 8

R x, 8|1 0 0
x | 0 .6 710

x| O 210 0

X X, X X,

X 4 0 7 0
Ry x, 0 1 9 6
X3 8 4 7 4

x | 0 1 0 0

x X, X X,
X 4 8 1 8
Ry x, 8 1 0 2
X3 1 7 1

x | 0 210 0

R, is a perfectly antisymmetric relation, while R, is an antisymmetric, but not
perfectly antisymmetric relation. R; is a nonsymmetric relation, that is, there

exist x, y € X with Jg(x, y) # lz(y, x), which is not antisymmetric and therefore

also not perfectly antisymmetric.
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One could certainly define other concepts, such as an o-antisymmetry (I uz(x, y)
— up(y, x) | = o ¥x, y € X). These concepts would probably be more in line
with the basic ideas of fuzzy set theory. Since we will not need this type of
definition for our further considerations, we will abstain from any further defi-
nition in this direction.

Example 6-9

Let X and Y be defined as in example 6-8. The following relation is then a
symmetric relation:

Vi V2 Vi Ve
x, |0 110 Ny

R(x, v): x, 1 1 2 3
x | 0 2 8 8
X4 N 3 8 1

Remark 6-1

For max-min composttions, the following properties hold:

1. If R, is reflexive and R, is an arbitrary fuzzy relation, then R, © R, D R, and
R,° R, DR,

2. If R is reflexive, then R C R o R.

3. If R, and R, are reflexive relations, so is R, ° R,.

4, If R, and R, are symmetric, then R, o R, is symmetric if R, ° R, = R, ¢ R,.
5. IfRis symmetric, so is each power of R.

Transitivity

Definition 6-13

A fuzzy relation R is called (max-min) transitive if
R-RCR

Example 6-10

Let the fuzzy relation R be defined as
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x X, X, X4
X, 2 1 4 4
R x, | O 6 3|10
X3 0 1 3 0
X, A 1 1 1
Then R o R is
X X, X3 X4
X 2 .6 4 2
x | 0 .6 3 0
X, 0 .6 3 0
X4 A 1 3 A

Now one can easily see that [lz.z(x, ¥) = Hg(x, y) holds for all x, y € X.

Remark 6-2

Combinations of the above properties give some interesting results for max-min
compositions:

1. If R is symmetric and transitive, then Ug(x, y) = pi(x, x) for all x, y € X.
2. If R is reflexive and transitive, then R < R = R.
3. If R, and R, are transitive and R, ° R, = R, ° R, then R, ° R, is transitive.

The properties mentioned in remarks 6—1 and 6-2 hold for the max-min composi-
tion. For the max-prod composition, property 3 of remark 6-2 is also true but not
properties 1 and 3 of remark 6—1 or property 1 of remark 6-2. For the max-av
composition, properties 1 and 3 of remark 6-1 hold as well as properties 1 and
3 of remark 6-2. Property 5 of remark 61 is true for any commutative operator.

6.2 Fuzzy Graphs

It was already mentioned that definitions 6—1 and 6-2 of a fuzzy relation can
also be interpreted as defining a fuzzy graph. In order to stay in line with the
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Figure 6—1. Fuzzy graphs.

terminology of traditional graph theory we shall use the following definition of
a fuzzy graph.

Definition 6-14
Let E be the (crisp) set of nodes. A fuzzy graph is then defined by

Glx x) = {((x, x), Ualx, X)) | (6, x) € E X E)

If £ is a fuzzy set, a fuzzy graph would have to be defined in analogy to
definition 6-2.

Example 6-11

a. LetE = {A, B, C}.
Considering only three possible degrees of membership, a graph could be
described as follows. (See figure 6-1.)

b. Let £ = {x|, x,, x5, x,}; then a fuzzy graph could be described as

( X, ,) = {[(x), xp), .31, [(x}, x3), .6], [Cx), x)), 1],
[(XZ’ X )’ 4]’ [(x3’ xl)’ 2]’ [('Y3’ '\‘2)' 5]-
[(xulv x%)- 8] }

Example 61 1a shows directed fuzzy binary graphs. Graphs can, of course, also
be defined in higher-dimension product spaces. We shall, however, focus our
attention on finite undirected binary graphs; that is, we shall assume in the fol-
lowing that the fuzzy relation representing a graph is symmetric. The arcs can
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then be considered as unordered pairs of nodes. In analogy to traditional graph i
theory, fuzzy graph theoretic concepts can be defined.

Definition 6-15
H(x,, x) is a fuzzy subgraph of G(x;, x) if
Ha(x, x) = U, x;) Vix;, x) € EXE

A(x;, x)) spans graph G(x;, x) if the node sets of A(x,, x) and G(x;, x) are equal, |
that is, if they differ only in their arc weights.

Example 6-12

Let G(x;, x;) be defined as in example 6-11b. A spanning subgraph of G(x;, x) |
is then

Ax, x) = {0, 5, 21, [(, x3), 4L [O 3, 4],
[(X4, x3)’ 7] }

Definition 6-16

A path in a fuzzy graph G(x;, x)) is a sequence of distinct nodes, X, X;, . . ., X, -
such that for all (x;, X;,.), Ha(x;, Xi1) > 0. The strength of the path is min {pa(x;, |
X,,,) } for all nodes contained in the path. The length of a path n > O is the number
of nodes contained in the path. Each pair of nodes (x;, X;1), W(x;, X)) > 0 is
called an edge (arc) of the graph. A path is called a cycle if x, = x, and n = 3.

It would be straightforward to call the length of the shortest path between two -
nodes of the graph the distance between these nodes. This definition, however, |
has some disadvantages. It is therefore more reasonable to define the distance
between two nodes as follows [Rosenfeld 1975, p. 58]:

Definition 6-17
The p-length of a path p = x,, ..., X, is equal to

n

L(p)=Y.

o B, Xi41)
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1/2
Q 1/2 0
) v
/ 18/ ; x
\ / / // ~J/2
1/2 /1 N

Figure 6-2. Fuzzy forests.

The p-distance d(x,. x,;) between two nodes x;, x; is the smallest p-length of any
path from x; to x;, x;, x; € G.

It can then be shown [see Rosenfeld 1975, p. 88] that d(x,, X;) 18 a metric (in
undirected graphs!).

Definition 6-18

Two nodes that are joined by a path are called connected nodes.
Connectedness is a relation that is also transitive.

Definition 6-19

A fuzzy graph is a forest if it has no cycles; that is, it is an acyclic fuzzy graph.
If the fuzzy forest is connected, it is called a tree. (A fuzzy graph that is a forest
has to be distinguished from a fuzzy graph that is a fuzzy forest. The latter shall
not be discussed here [see Rosenfeld 1975, p. 92].

Example 6-13

The fuzzy graphs shown in figure 62 are forests. The graphs shown in figure
6-3 are not.

6.3 Special Fuzzy Relations

Relations that are of particular interest to us are fuzzy relations that pertain to
the similarity of fuzzy sets and those that order fuzzy sets. All of the relations dis-
cussed below are reflexive, that is, [z(x, x) =1 Vx € X [Zadeh 1971], and they
are max-min transitive, that is, R ° R C Ror Mg(x, 2) = min {pg(x, v), We(y, 2) }



FUZZY RELATIONS AND FUZZY GRAPHS 85

1/2
1/2 1/2

1/2

Figure 6—3. Graphs that are not forests.

Vx, y, z € X. It should be noted that other kinds of transitivities have been
defined [see Bezdek and Harris 1978]. These, however, will not be discussed |
here. The main difference between similarity relations and order relations is the -
property of symmetry or antisymmetry, respectively. ‘

Definition 6-20
A similarity relation is a fuzzy relation p() that is reflexive, symmetrical, and -

max-min transitive.

Example 6-14

The following relation is a similarity relation [Zadeh 1971]:

X Xy X3 Xy Xs X
x |1 2 |1 6 2 6
X 2|1 2 2 8 2
R:x, | 1 2|1 6 2 6
X 6 2 6 | 1 2 .8
xs 2 8 2 2 |1 2

X 6 2 6 8 2 |1
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A similarity relation of a finite number of elements can also be represented by
a similarity tree, similar to a dendogram. In this tree, each level represents an
o-cut (o-level set) of the similarity relation. For the above similarity relation,
the similarity tree is shown below. The sets of elements on specific o-levels can
be considered as similarity classes of o-level.

{x X0 x5, Xy, X5, 6 ) Ry,
/ ~
{xy, x5, x4, X6} {x, x5} Roe
/N | ~
{x, o) {x, x6) {20, x5} Ry
/N N
{xn ot {xg) {x) {0t {x) R,

The properties of a similarity relation as defined in definition 620 are rather
restrictive and not quite in accordance with fuzzy set thinking: Reflexitivity
could be considered as being too restrictive and hence weakened by substituting
these requirements by e-reflexitivity or weak reflexitivity (cf. definition 6—10).
The max-min transitivity can be replaced by any max-* transitivity listed in
definition 6—10 or in remark 6-1.

We shall now turn to fuzzy order relations: As already mentioned, similarity
relations and order relations are primarily distinguished by their degree of sym-
metry. Roughly speaking, similarity relations are fuzzy relations that are reflex-
tve, (max-min) transitive, and symmetrical; order relations, however, are not
symmetrical. To be more precise, even different kinds of fuzzy order relations
differ by their degree of symmetry.

Definition 6-21

A fuzzy relation that is (max-min) transitive and reflexive is called a fuzzy preorder
relation.

Definition 6-22

A fuzzy relation that is (min-max) transitive, reflexive, and antisymmetric is
called a fuzzy order relation. If the relation is perfectly antisymmetrical, it is
called a perfect fuzzy order relation [Kaufmann 1975, p. 113]. It is also called
a fuzzy partial order relation [Zadeh 1971].
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Definition 6-23

A total fuzzy order relation [Kaufmann 1975, p. 112] or a fuzzy linear ordering
[Dubois and Prade 1980a, p. 82; Zadeh 1971] is a fuzzy order relation such that
Vx,y € X; x # y either Pg(x, y) > 0 or pg(y, x) > 0.

Any o-cut of a fuzzy linear order is a crisp linear order.

Example 6-15
Vi Y2 Y3 Ya

X, i 4 .8 8
R: x, 0 1 0 2
X5 0 610 4
x, | 0 0 0 7

R is a total fuzzy order relation.

Fuzzy order relations play a very important role in models for decision making
in fuzzy environments. We will therefore elaborate on some particularly inter-
esting properties in the second volume, and we shall also discuss some addi- !
tional concepts in this context. Some of the properties of the special fuzzy
relations defined in this chapter are summarized in table 6-1.

Table 6—1. Properties of fuzzy relations.

Perfect
Anti- anti-
Reflexivity ~Transitivity ~symmetry symmetry Linearity Symmetry .

Fuzzy
preorder X X
Similarity
relation X X X
Fuzzy order
relation X X X
Perfect fuzzy
order
relation X X X
Total
(linear)
fuzzy
order
relation X X X X




88 FUZZY SET THEORY-—AND ITS APPLICATIONS
Exercises

I. Given an example for the membership function of the fuzzy relation R: =
“considerably smaller than in R x R. Restrict R to the first ten natural
numbers and define the resulting matrix.

2. Let the two fuzzy sets A and B be defined as

A=1{(0,.2), (1, .3), 2, 4,3, .5)

B = {(0,.5), (1, 4, (2, 3), (3, .0 }.
Is the following set a fuzzy relation on A and B?

1000, 0), .2), ((0. 2), .2), ((2, 0), .2)}

Give an example of a fuzzy relation on A and B.
3. Consider the following matrix defining a fuzzy relation R on A x B.

Y Y2 Vs Ya ¥s
X, 510 1 9 9
R x, |1 4 5 3 1
0 7 8 [0 2 6
X, | 3 701 0

Given the first and the second projection with pzn(x) and pge(y) and the
cylindrical extensions of the projection relations with g, and pgo, .
4. Compose the following two fuzzy relations R, and R, by using the
= max-min composition,
= max-prod. composition, and
= max-av. composition.

R, v Va Vs V4 R, 7 Z, I3

X, 3 0 i 3 A2 1 0 1

X, 0 1 2 0 V) 0 S5 4
Vs 7 9 6
V4 0 0 0
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5. Discuss the reflexivity properties of the following fuzzy relation:

R Xy X, X
X 1 i 3
X, 4 S5 8
X3 i S 1

6. Give an example for a reflexive transitive relation and verify remark 6-2.2.
7. Consider the following fuzzy graph G:

Give an example for a spanning subgraph of G!
Give all paths from x, to x, and determine their strengths and their [ lengths. ]
Is the above graph a forest or a tree?

8. In example 6-2, two relations are defined without specifying for which
numerical values of {x,}, {y;} the relations are good interpretations of the |
verbal relations. Give examples of numerical vectors for {x;} and {y;} such
that the relations R and Z, respectively (in the matrixes), would express the
verbal description.
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7.1 Fuzzy Functions on Fuzzy Sets

A fuzzy function is a generalization of the concept of a classical function. A
classical function f is a mapping (correspondence) from the domain D of defini-
tion of the function into a space S; f(D) C S is called the range of f. Different |
features of the classical concept of a function can be considered to be fuzzy
rather than crisp. Therefore different “degrees” of fuzzification of the classical }
notion of a function are conceivable. ‘

1. There can be a crisp mapping from a fuzzy set that carries along the fuzzi-
ness of the domain and therefore generates a fuzzy set. The image of a crisp
argument would again be crisp.

2. The mapping itself can be fuzzy, thus blurring the image of a crisp argu-
ment. This we shall call a fuzzy function. These are called “fuzzifying
functions” by Dubois and Prade [1980a, p. 106]. |

3. Ordinary functions can have fuzzy properties or be constrained by fuzzy
constraints.

Naturally, hybrid types can be considered. We shall focus our considerations, |
however, only on frequently used pure cases. ‘

91!
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Definition 7-1 [Dubois and Prade 1980a; Negoita and Ralescu 1975]

A classical function f: X — Y maps from a fuzzy domain A in X into a fuzzy
range B in Y iff

Vx e X, lp(f(x)) = pax)

Given a classical function f: X — Y and a fuzzy domain A in X, the extension
principle (chapter 5.1) yields the fuzzy range B with the membership function

Ha(y) = sup pi(x)

vef Ny

Hence f is a function according to definition 7-1.

Example 7-1

Let X be the set of temperatures, Y the possible demands for energy of house-
holds, A the fuzzy set “low temperatures,” and B the fuzzy set “high energy
demands.” The assignment “low temperatures” — “high energy demands” is then
a fuzzy function, and the additional constraint in definition 7-1 means “the
lower the temperatures, the higher the energy demands.”

The correspondence between a fuzzy function and a fuzzy relation becomes
even more obvious when looking at the following definition.

Definition 7-2
Let X and Y be universes and P(Y) the set of all fuzzy sets in Y (power set).
£ X = P(Y) is a mapping
fis a fuzzy function iff
Hroy) = Ualx, ), V(x, y) € X x Y
where pg(x, y) is the membership function of a fuzzy relation.
Example 7-2

a.  Let X be the set of all workers of a plant, £ the daily output, and y the number
of processed work pieces. A fuzzy function could then be

foy=y
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c. X = set of all one-mile runners.
f = possible record times.
flx) = {y | y: achieved record times}.

7.2 Extrema of Fuzzy Functions

Traditionally, an extremum (maximum or minimum) of a crisp function f over
a given domain D is attained at a precise point X,. If the function f happens to
be the objective function of a decision model, possibly constrained by a set of
other functions, then the point x, at which the function attains the optimum is
generally called the optimal decision; that is, in classical theory there is an
almost unique relationship between the extremum of the objective function and
the notion of the optimal decision of a decision model.

In models in which fuzziness is involved, this unique relationship no longer
exists. The extremum of a function or the optimum of a decision model can be
interpreted in a number of ways: In decision models the “optimal decision” is
often considered to be the crisp set, D,,, that contains those elements of the fuzzy
set “decision” attaining the maximum degree of membership [Bellman and Zadeh
1970, p. 150]. We shall discuss this concept in more detail in chapter 13.

The notion of an “optimal decision” as mentioned above corresponds to the
concept of a “maximizing set” when considering functions in general.

Definition 7-3 [Zadeh 1972]

Let f be a real-valued function in X. Let f be bounded from below by inf (f) and
from above by sup (f). The fuzzy set M = {(x, py(x)}, x € X with ‘

@ -inf()
M) = G () = inf ()

is then called the maximizing set (see figure 7-1).

Example 7-3
f(x) =sin x
sin x — inf (sin) sin x — (—1)
My (x) = - — =
sup (sin) — inf (sin) 1-¢D
smx+1 1 . 1
= ——=—sinx+—

2 2 2
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f(x)

A
[
A

-1
Figure 7-1. Maximizing set.

In definition 7-3, fis a crisp real-valued function, similar to the membership
function of the fuzzy set “decision,” and the maximizing set provides informa-
tion about the neighborhood of the extremum of the function f, the domain of
which is also crisp. The case in which the domain of f is also fuzzy will be
considered in chapter 13.

Let us now consider the extrema of fuzzy functions according to definition
7-2, in which they are defined over a crisp domain: Since a fuzzy function f{x)
is a fuzzy set, say in R, the maximum will generally not be a point in R but also
a fuzzy set, which we shall call the “fuzzy maximum of f(x).”” A straightforward
approach is to define an extended max operation in analogy to the other ex-
tended operations defined in chapter 5. Max and min are increasing operations
in R. The maximum or minimum, respectively, of n fuzzy numbers, denoted by
max (M,, . .., M,) and min M, .. .,M),is again a fuzzy number. Dubois and
Prade [1980a, p. 58] present rules for computing max and min and also com-
ment on the properties of mix and min. The reader is referred to the above
reference for further details.

Definition 7-4

Let fix) be a fuzzy function from X to R, defined over a crisp and finite domain
D. The fuzzy maximum of f(x) is then defined as
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"}

Figure 7-2. A fuzzy function.

M = max f(x) = {(sup f(x). () | x € D}
For | D | = n, the membership function of max f(x) is given by

wu() = min pz,(f(x)), f(x)eD

=

Example 7-4 [Dubois and Prade 1980a, p. 105]
Let f(x) be a fuzzy function from R to R such that, for any x, f(x) is a triangular

fuzzy number. The domain D = {x;, X;, X3, X4 Xs}- Figure 7-2 sketches such a
function by showing for the domain D “level curves” of f(x): f; is the curve for

which s, (fi(x)) = 1, and for f& and f;, respectively,
uf(x)(ft;(x)) = "‘l’f-(x)(f;(x)) =

The triangular fuzzy numbers representing the function f(x) at x = x;, X,, X3, X4,
and x; are shown in figure 7-3.

We can make the following observation: Since the level curves in figure
7-2 are not parallel to each other, their maxima are attained at different x;: max .
fi=fi(x,), max fy(x) = fi(x;), and max f(x) = f(x,). Thus x, and x5 do certainly
not “belong” to the maximum of f(x). We can easily determine the fuzzy set |
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Figure 7-3. Triangular fuzzy numbers representing a fuzzy function.

“maximum of f(x)” as defined in definition 7—4 by looking at figure 7-4 and
observing that, for
€ [0, al: ) = fix) Vi
e [o, 1] fx) = filx) Vi
o e [of, 1]: ffay) = fix) Vi
o e [0, o] fTxy) = fix) Vi

with o and o' such that f;(x,) = f;(x,) and falxy) = falxy), respectively.
The maximum of f(x) is therefore

M= { (x 00), (0, 1), (v, o))

This set is indicated in figure 7-4 by the dashed line.
Dubois and Prade [1980a, p. 101] suggest additional possible interpretations
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3

1ax (Xi) IR
i=1,....5

Figure 7—4. The maximum of a fuzzy function.

of fuzzy extrema, which might be very appropriate in certain situations. How-
ever, we shall not discuss them here and rather shall proceed to consider pos-
sible notions of the integral of a fuzzy set or a fuzzy function.

7.3 Integration of Fuzzy Functions

Quite different suggestions have been made to define fuzzy integrals, integrals .
of fuzzy functions, and integrals of crisp functions over fuzzy domains or with
fuzzy ranges. ‘
One of the first concepts of a fuzzy integral was put forward by Sugeno
[1972, 1977], who considered fuzzy measures and suggested a definition of a
fuzzy integral that is a generalization of Lebesque integrals: “From the view- .
point of functionals, fuzzy integrals are merely a kind of nonlinear functionals
(precisely speaking, monotonous functionals), while Lebesque integrals are lin-
ear ones” [Sugeno 1977, p. 92]. ‘
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We shall focus our attention on approaches along the line of Riemann integ-
rals. The main references for the following are Dubois and Prade [1980a, 1982b].
Aumann [1965], and Nguyen [1978].

The classical concept of integration of a real-valued function over a closed
interval can be generalized in four ways: The function can be a fuzzy function
that is to be integrated over a crisp interval, or it can be integrated over a fuzzy
interval (that is, an interval with fuzzy foundations). Alternatively, we may
consider integrating a fuzzy function as defined in definitions 7—1 or 7—2 over
a crisp or a fuzzy interval.

7.3.1 Integration of a Fuzzy Function over a Crisp Interval

We shall now consider a fuzzy function f, according to definition 7-2, which
shall be integrated over the crisp interval [a, b]. The fuzzy function f(x) is sup-
posed to be a fuzzy number, that is, a piecewise continuous convex normalized
fuzzy set on R.

We shall further assume that the a-level curves (see definition 2.3) wry(¥) =
for all o € [0, 1] and o and x as parameters have exactly two continuous solu-
tions, y = f(x) and y = f,(x), for o # 1 and only one for o = 1. fo and f,, are
defined such that

fold) = fo) = floy = fy = f

for all o = a.
The integral of any continuous a-level curve of f over [a, b] always exists.
One may now define the integral /(a, b) of flx) over [a, b] as a fuzzy set in
which the degree of membership o is assigned to the integral of any a-level curve
off(x) over [a, b].

Definition 7-5

Let fix) be a fuzzy function from [a, ] C R to R such that Vx € = [a, b1fix)
is a fuzzy number and f;(x) and fo(x) are a-level curves as defined above. The
integral of f(x) over [a, b] is then defined to be the fuzzy set

" " b b
fa,b) = ( j fa(x) dy + j Fa(x) dv, oc)
This definition is consistent with the extension principle according to which

Uy O) = fnf o (8(0). 3 < R

=[5
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where y = {g: [a, b] - R | g integrable} see Dubois and Prade [1980a,
p. 107; 1982, p. 5]).

The determination of the integral I(a, b) becomes somewhat easier if the
fuzzy function is assumed to be of the LR type (see definition 5-6). We shall
therefore assume that fix) = (f(x), s(x), 1(x))x is a fuzzy number in LR repres-
entation for all x € [a, b. f, s, and ¢ are assumed to be positive integrable
functions on [a, b]. Dubois and Prade [1980a, p. 109] have shown that under
these conditions

I(a b) = U:f(x) dx, Lbs(x) dx, L”t(x) dx)LR

It is then sufficient to integrate the mean value and the spread functions of feo
over [a, b], and the result will again be an LR fuzzy number.
Example 7-5

Consider the fuzzy function fix) = (f(x), s(x), t(x))., with the mean function fx)
= x?, the spread functions s(x) = x/4, and

X
t(X)—E
L(x)=1+x2
RO = 70

4
Determine the integral from a = 1 to b = 4, that is, compute L f-
According to the above formula, we compute

j:f(x) dx =[x dx =21
[stx) ax = jf% dx = 1875
j:t(x) dx = ﬁ%dx =375

This yields the fuzzy number I(a, b) = (21, 1.875, 3.75),, as the value of the
fuzzy integral.

Some Properties of Integrals of f_‘uzzy__Functions.~ Let A, be the o-level set
of the fuzzy set A. The support S(A) of A is then S(A) = U A,. The fuzzy set i
A can now be written as oel0d] :
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A= U o= U {06 (0] x e Ag)

aef0l1] ae[01
where

_Joo for x € A,
Haa(¥) = {O for x ¢ A,

(see Nguyen [1978, p. 369]).
Let A represent a fuzzy integral, that is,

then

R il
ic
"2
—
!

Definition 7-6 [Dubois and Prade 1982a, p. 6}

J f satisfies the commutativity condition
1

iff Yoo e [0, 1] (jlf)a = [ 7

Dubois and Prade [1982a, pp. 6] have proved the following properties of fuzzy
integrals, which are partly a straightforward analogy of crisp analysis.

Theorem 7-1

Let £ be a fuzzy function; then
~ b d .
[7=]F=-]7
where the fuzzy integrals are fuzzy sets with the membership functions

Mooy ) = Wy (-u) Y

Theorem 7-2

Let / and I’ be two adjacent intervals I = [a, b], I’ = [h, ] and a fuzzy function
f [a, ¢] - P(R). Then
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C b . C .
JF=l7el7
where @ denotes the extended addition of fuzzy sets, which is defined in ana-

logy to the subtraction of fuzzy numbers (see chapter 5).
Let f and g be fuzzy functions. Then f ® g is pointwise defined by

(fF® Hw) =fw) ® §gw), ueX

(This is a straightforward application of the extension principle from chapter
5.1)

Theorem 7-3

Let f and g be fuzzy functions whose supports are bounded. Then
jFepa[re]s (7.1)
[Fop=[7o]s (7.2)

iff the commutativity condition is satisfied for I f and J;g.

7.3.2 |Integration of a (Crisp) Real-Valued Function over a
Fuzzy Interval

We now consider a case for which Dubois and Prade [1982a, p. 106] proposed
a quite interesting solution: A fuzzy domain ¥ of the real line R is assumed to
be bounded by two normalized convex fuzzy sets, the membership functions of
which are p;(x) and p;(x), respectively. (See figure 7-5.) p;(x) and p(x) can be
interpreted as the degrees (of confidence) to which x can be considered a lower
or upper bound of F.If a,and by are the lower/upper limits of the supports of
a or b, then g, or b, are related to each other by a, = inf S(a@) < sup Sy =

Definition 7-7

Let f be a real-valued function that is integrable in the interval J = [a,, b;]; then
according to the extension principle, the membership function of the integral
J.g f is given by

Wjs;(2) = sup min (1s(x), K5())

x,yeJ

Z=J.Xf
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w{
ot

a
3 by

Figure 7-5. Fuzzily bounded interval.

Let F(x) = J"ff(y) dy, ¢ € J (F is the antiderivative of /). Then, using the exten-
sion principle again, the membership function of F(d), @ € P(R), is given by

Ura(z) = sup Ws(x)

xz=F(x)

Proposition 7-1 [Dubois and Prade 1982b, p. 106]
.r =F®) e F@

where © denotes the extended subtraction of fuzzy sets.

Proofs of proposition 7-1 and of the following propositions can be found in
Dubois and Prade [1982b, pp. 107-109].

A possible interpretation of proposition 7-1 is as follows: If & and b are

normalized convex fuzzy sets, then J:} f 1is the interval between “worst” and “best”

values for different levels of confidence indicated by the respective degrees of
membership (see also Dubois and Prade [1988a, pp. 34-36]).
Example 7-6
Let
a=1{4,.8),5,1),(6, .4}
b=1{(6,.7,(7,1),(,.2))
flx) =2, x e la, b)) =14, 8]
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Then )
[.fe ax =j:2dx 2|’

The detailed computational results are:

b
@b [ min (@), mG)
4, 6) 4 7
“,7 6 8
4, 8) 8 2
5,6 2 )
5,7 4 1.0
5, 8) 6 2
(6, 6) 0 4
6,7 2 4
6, 8) 4 2

Hence choosing the maximum of the membership values for each value of
the integral yields J@bf = {(0, 4), 2, .7), (4, 1), (6, .8), (8, .2)}.

Some properties of the integral discussed above are listed in propositions
7-2 to 7-4 below. Their proofs, as well as descriptions of other approaches to
“fuzzy integration,” can again be found in Dubois and Prade {1982a, pp. 107-
108].

Proposition 7-2
Let f and g be two functions f, g: I — R, integrable on /. Then
Jurocirefs

where @ denotes the extended addition (see chapter 5).
Example 7-7
Let

f)=2x -3

gx)y=—-2x+5

a=1{{,.8),2,1),G3, 4}

b=1{@3,.7 41,5, .3))}



104 FUZZY SET THEORY—AND ITS APPLICATIONS

So
J.bf(‘) dx = [M\—Z _ 3\]:;

Jhg(.\‘) dy = [-x> + 5x]°
h
[ o+ g dr =21,

In analogy to example 7—-6, we obtain

ﬁf = {(0. 4. 2..7). (4 4), (6. ). (10. 3), (12, 3))

[le= 16,3 4. 3. 2000, 8, @ 7))

Applying the formula for the extended addition according to the extension prin-
ciple (see section 5.3) yields

h b
J"f + [0 = (=6, .3, (<4, 3), 2. 4.0, 7). 2. 7. @4, D). 6. 8),
(8..7), (10, .3), (12, .3), (14, .3)}
Similarly to example 7-6, we compute
h
[+ =10 9.2 7@ 1.6 8.6 3)

Now we can easily verify that

frofeafiro

Proposition 7-3

Iff,e:l >R orf, gl >R,
then equality holds:

Juso=lre;

Proposition 7-4
Let 9 = (4, b, 9’ =(a, &), and %" = (¢, b). Then the following relationships hold:

Js‘ffg.[}f‘ ®.[}f3 (7.3)
=LA@ L iffée R (7.4)
ff=fnel,
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7.4 Fuzzy Differentiation

In analogy to integration, differentiation can be extended to fuzzy mathematical
structures.

The results will, of course, depend on the type of function considered. In
terms of section 7.1, we will focus our attention on functions that are not fuzzy
themselves but that only “carry” the possible fuzziness of their arguments. Differ-
entiation of fuzzy functions is considered by Dubois and Prade [1980a, p. 116;
1982b, p. 227].

Here we shall consider only differentiation of a differentiable function f:
R D [a, b] — R at a “fuzzy point.” A “fuzzy point” X, [Dubois and Prade 1982b,
p. 225] is a convex fuzzy subset of the real line R (see definition 2—4).

In the following, fuzzy points will be considered for which the support is
contained in the interval [a, b], that is, S(¥) C [a, b].

Such a fuzzy point can be interpreted as the possibility distribution of a point
x whose precise location is only approximately known.

The uncertainty of the knowledge about the precise location of the point
induces an uncertainty about the derivative f’(x) of a function f(x) at this point.
The derivative might be the same for several x belonging to [a, b]. The pos-
sibility of f’(X,) is therefore defined [Zadeh 1978] to be the supremum of the
values of the possibilities of f'(x) = ¢, x € [a, b].

The “derivative” of a real-valued function at a fuzzy point can be interpreted
as the fuzzy set f'(X,), the membership function of which expresses the degree
to which a specific f'(x) is the first derivative of a function f at point X,

Definition 7-8

The membership function of the fuzzy set “derivative of a real-valued function
at a fuzzy point X,” is defined by the extension principle as

Wz (0) = SUIZ )llxo(x)
Ny

where X, is the fuzzy number that characterizes the fuzzy location.

Example 7-8
Let
foy=x
X, = {(-1, 4), (0, 1), (1, .6) }

be a fuzzy location.
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Because of f/(x) = 3%%, we obtain f'(X,) = { (0, 1), (3, .6) } as derivative of a real-
valued function at the fuzzy point X,

Proposition 7-5

The extended sum @ of the derivatives of two real-valued functions f and g at
the fuzzy point X, is defined by

Wirngan(¥) = sup Ug(x)

xy=f1x)+g(x)

Hence

f/(Xo) ® gl(Xo) 2+ gl)i()

Proposition 7-6 [Dubois and Prade 1982b, p. 227]

If " and g’ are continuous and both are nondecreasing or nonincreasing, then

FX) ® gXy) = (f + g)(Xy)

Proposition 7-7 (Chain rule of differentiation)

Lo (f - /(X)) = (g + f2)(X) C [F' Xy © gX)] @ [f(Xy) O g'(X,)]
2. Iff, g /', and g’ are continuous, f and g are both positive, and f’ and g’ are
both nondecreasing (f, g is negative and f’, g’ is nondecreasing) then

(f - @' (Xy) = (f'(X) © gX)] ® [f(Xy) O g'(X)]

Exercises

1. Determine the maximizing set of
v 2273 2=x=2
f@x) = {5 else
b
2. Show that computing uj b, according to the extension principle yields the

usual integral if fis a crisp function.
3. Let f(x) = (f(0), s(x), t(x)),z with
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f(x) = nx

st) = ] |1+1
) = s
b=
L(x) = o

Determine f(x) explicitly for x = .5, x = 1, and x = 2. Compute the integral
I(a, b).
4. Letf(x) =2 + (x — 1)

X, = { (-1, .5), (0, .8), (1, 1), (2, .6), 3, 4}

Compute f’(X,). Verify that proposition 7-6 holds.
5. Let XO = {(—1, 4), (0, 1), (1, 6) },

f)=x+2 gx)=2x+3
Compute f’(X,). Verify that proposition 7-6 holds.




8 POSSIBILITY THEORY,
PROBABILITY THEORY,
AND FUZZY SET THEORY

Since L. Zadeh proposed the concept of a fuzzy set in 1965, the relationships
between probability theory and fuzzy set theory have been further discussed.
Both theories seem to be similar in the sense that both are concerned with some
type of uncertainty and both use the [0, 1] interval for their measures as the
range of their respective functions (At least as long as one considers normalized
fuzzy sets only!). Other uncertainty measures, which were already mentioned in
chapter 4, also focus on uncertainty and could therefore be included in such a
discussion. The comparison between probability theory and fuzzy set theory is
difficult primarily for two reasons:

1. The comparison could be made on very different levels, that is, mathemati-
cally, semantically, linguistically, and so on.

2. Fuzzy set theory is not or is no longer a uniquely defined mathematical
structure, such as Boolean algebra or dual logic. It is rather a very general
family of theories (consider, for instance, all the possible operations defined
in chapter 3 or the different types of membership functions). In this respect,
fuzzy set theory could rather be compared with the different existing theo-
ries of multivalued logic.

109
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Further, there does not yet exist and probably never will exist a unique context-
independent definition of what fuzziness really means. On the other hand, nei-
ther is probability theory uniquely defined. There are different definitions and
different linguistic appearances of “probability.”

In recent years, some specific interpretations of fuzzy set theory have been
suggested. One of them, possibility theory, used to correspond, roughly speak-
ing, to the min-max version of fuzzy set theory—that is, to fuzzy set theory in
which the intersection is modeled by the min-operator and the union by the max-
operator. This interpretation of possibility theory, however, is no longer correct.
Rather, it has been developed into a well-founded and comprehensive theory.
After the basic articles by L. Zadeh [1978, 1981], most of the advances in
possibility theory have been due to Dubois and Prade. See, for instance, their
excellent book on this topic [Dubois and Prade 1988].

We shall first describe the essentials of possibility theory and then compare
it with other theories of uncertainty.

8.1 Possibility Theory

8.1.1 Fuzzy Sets and Possibility Distributions

Possibility theory focuses primarily on imprecision, which is intrinsic in natural
languages and is assumed to be “possibilistic” rather than probabilistic. There-
fore the term variable 1s very often used in a more linguistic sense than in a
strictly mathematical one. This is one reason why the terminology and the sym-
bolism of possibility theory differ in some respects from those of fuzzy set
theory. In order to facilitate the study of possibility theory, we will therefore use
the common possibilistic terminology but will always show the correspondence
to fuzzy set theory.

Suppose, for instance, we want to consider the proposition “X is F,” where
X 1s the name of an object, a variable, or a proposition. For instance, in “X is
a small integer,” X is the name of a variable. In “John is young,” John is the
name of an object. F (i.c., “small integer” or “young”) is a fuzzy set character-
ized by its membership function Lz

One of the central concepts of possibility theory is that of a possibility distri-
bution (as opposed to a probability distribution). In order to define a possibility
distribution, it is convenient first to introduce the notion of a fuzzy restriction.
To visualize a fuzzy restriction, the reader should imagine an elastic suitcase that



POSSIBILITY THEORY, PROBABILITY THEORY, & FUZZY SET THEORY 111

acts on the possible volume of its contents as a constraint. For a hardcover
suitcase, the volume is a crisp number. For a soft valise, the volume of its
contents depends to a certain degree on the strength that is used to stretch it. The
variable in this case would be the volume of the valise; the values this vari-
able can assume may be 1 € U, and the degree to which the variable (X) can
assume different values of u is expressed by [z(x). Zadeh [Zadeh et al. 1975,
p. 2; Zadeh 1978, p. 5] defines these relationships as follows.

Definition 8-1

Let F be a fuzzy set of the universe U characterized by a membership function
We(w). F is a fuzzy restriction on the variable X if ' acts as an elastic constraint
on the values that may be assigned to X, in the sense that the assignment of the
values u to X has the form

X = w Pp ()

Wz (u) is the degree to which the constraint represented by F is satisfied when u
is assigned to X. Equivalently, this implies that 1 — z(x) is the degree to which
the constraint has to be stretched in order to allow the assignment of the values
u to the variable X.

Whether a fuzzy set can be considered as a fuzzy restriction or not obviously
depends on its interpretation: This is only the case if it acts as a constraint on
the values of a variable, which might take the form of a linguistic term or a
classical variable.

Let R(X) be a fuzzy restriction associated with X, as defined in definition 8—1.
Then R(X) = F is called a relational assignment equation, which assigns the
fuzzy set F to the fuzzy restriction R(X).

Let us now assume that A(X) is an implied attribute of the variable X—for
instance, A(X) = “age of Jack,” and F is the fuzzy set “young.” The proposition
“Jack is young” (or better “the age of Jack is young™) can then be expressed as

RAX)) = F

Example 8—1 [Zadeh 1978, p. 5]

Let p be the proposition “John is young,” in which “young” is a fuzzy set of the
universe U = [0, 100] characterized by the membership function

Hyoung(t) = S(u; 20, 30, 40)
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where u is the numerical age and the S-function is defined by

1 foru<a
1—2[M_a] foro=u=p
-a
S(u; a, B, y) = b 5
2[14—7] forP<u=y
Y-
0 foru>vy

In this case, the implied attribute A(X) is Age (John), and the translation of
“John is young” has the form

John is young — R(Age (John)) = young

Zadeh [1978] related the concept of a fuzzy restriction to that of a possibility
distribution as follows:

Consider a numerical age, say u = 28, whose grade of membership in the fuzzy set
“young” is approximately 0.7. First we interpret 0.7 as the degree of compatibility of
28 with the concept labelled young. Then we postulate that the proposition “John
is young” converts the meaning of 0.7 from the degree of compatibility of 28
with young to the degree of possibility that John is 28 given the proposition “John is
young.” In short, the compatibility of a value of u with young becomes converted into
the possibility of that value of u given “John is young” [Zadeh 1978, p. 6].

The concept of a possibility distribution can now be defined as follows:

Definition 8-2 [Zadeh 1978, p. 6]

Let F be a fuzzy set in a universe of discourse U that is characterized by its
membership function pg(u), which is interpreted as the compatibility of u € U
with the concept labeled £.

Let X be a variable taking values in U, and let F act as a fuzzy restriction,
R(X), associated with X. Then the proposition “X is F” which translates into
R(X) =F, associates a possibility distribution, T, with X that is postulated to be
equal to R(X).

The possibility distribution function, (), characterizing the possibility dis-
tribution 7, is defined to be numerically equal to the membership function pz(u)
of F, that is,

T, = Wp

The symbol = will always stand for “denotes™ or “is defined to be.” In order
to stay in line with the common symbol of possibility theory, we will denote
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a possibility distribution with 7, rather than with ft,, even though it is a fuzzy
set.

Example 8-2 [Zadeh 1978, p. 7]

Let U be the universe of positive integers, and let F be the fuzzy set of small
integers defined by

F=1{Q,1D,@2 1,3, 8,4, .6), (S5, 4,6, .2)}

Then the proposition “X is a small integer” associates with X the possibility
distribution

n=F

in which a term such as (3, .8) signifies that the possibility that X is 3, given that
X is a small integer, is .8.

Even though definition 8—2 does not assert that our intuition of what we mean
by possibility agrees with the min-max fuzzy set theory, it might help to realize
their common origin. It might also make more obvious the difference between
possibility distribution and probability distribution. ‘

Zadeh [1978, p. 8] illustrates this difference by a simple but impressive
example.

Example 8-3

Consider the statement “Hans ate X eggs for breakfast,” X = {1, 2,...}. A ‘
possibility distribution as well as a probability distribution may be associated
with X. The possibility distribution 7,(«) can be interpreted as the degree of ease
with which Hans can eat u eggs while the probability distribution might have
been determined by observing Hans at breakfast for 100 days. The values of
7 () and P,(u) might be as shown in the following table:

u 1 2 3 4 5 6 7 8
7, (u) 1 1 1 1 8 6 4 2
P (u) 1 8 1 0 0 0 0 0

We observe that a high degree of possibility does not imply a high degree of
probability. If, however, an event is not possible, it is also improbable. Thus, in
a way, the possibility is an upper bound for the probability. A more detailed |
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discussion of this “possibility/probability consistency principle” can be found in
Zadeh [1978].

This principle is not intended as a crisp principle, from which exact probabili-
ties or possibilities can be computed, but rather as a heuristic principle, express-
ing the principle relationship between possibilities and probabilities.

8.1.2 Possibility and Necessity Measures

In chapter 4, a possibility measure was already defined (definition 4-2) for the
case in which A is a crisp set. If Ais a fuzzy set, a more general definition of
a possibility measure has to be given [Zadeh 1978, p. 9].

Definition §-3

Let A be a fuzzy set in the universe U, and let T, be a possibility distribution
associated with a variable X that takes values in U. The possibility measure. 7,(A),
of A is then defined by

poss {X is A} = n(A)

= supmin {p;(u), T (1)}
uel!

Example 8—-4 [Zadeh 1978]

Let us consider the possibility distribution induced by the proposition “X is a
small integer” (see example 8-2):

T, = {(I, D, (2, 1), (3, .8), (4, .6). (5, .4). (6, .2)}

and the crisp set A = {3, 4, 5}.
The possibility measure m(A) is then

TA) = max (.8, .6, 4)= .8

If A, on the other hand, is assumed to be the fuzzy set “integers which are
not small,” defined as

A=1{(3,2), 4 4, 5. .6).06 8,7 1,...}
then the possibility measure of “X is not a small integer” is
poss (X is not a small integer) = max {2, 4, 4, 2} = 4

Similar to probability theory, conditional possibilities also exist. Such a condi-
tional possibility distribution can be defined as follows [Zadeh 1981b, p. 81).
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Definition 8—4

Let X and ¥ be variables in the universes U and V, respectively. The conditional
possibility distribution of X given Y is then induced by a proposition of the form
“If X is F, then Y is G” and is denoted by uyy,(V/u). ‘

Proposition 81

Let Ty, be the conditional possibility distribution functions of X and Y, re-
spectively. The joint possibility distribution function of X and Y, Ty vy, is then
given by ‘

Ty, V) = min {7y(u), Tf(y/x)(V/u)}

Not quite settled yet seems to be the question of how to derive the conditional
possibility distribution functions from the joint possibility distribution function. |
Different views on this question are presented by Zadeh [1981b, p. 82], Hisdal

[1978], and Nguyen [1978]. ‘

Fuzzy measures as defined in definition 4-2 express the degree to which a certain
subset of a universe, Q, or an event is possible. Hence, we have ‘

g(0)=0and g(Q) =1
As a consequence of condition 2 of definition 4-2, that is,

A C B = g(A) = g(B)
we have :
g(A U B) = max (g(4), g(B)) and 8.1) |
g(A N B) = min (g(A), g(B)) for A, B C Q (8.2)
Possibility measures (definition 4-2) are defined for the limiting cases:
A U B) = max (n(4), ©(B)) (8.3)
A N B) = min ((4), ©(B)) ®.4)
If CA is the complement of A in Q, then :
(A U CA) = max (T(A), m(CA)) =1 (8.5)

which expresses the fact that either A or CA is completely possible.
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Table 8—1. Possibility functions.

Grade
Student A B C D E
1 8 1 7 0 0
2 1 8 6 . 0
3 .6 7 9 .1 0
4 0 8 9 5 0
5 0 0 3 1 2
6 3 i 3 0 0

In possibility theory, an additional measure is defined that uses the conjunc-
tive relationship and, in a sense, is dual to the possibility measure:

N(A N B) = min (N(A), N(B)) (8.6)

N 1s called the necessity measure. N(4) = | indicates that A4 is necessarily true
(A is sure). The dual relationship of possibility and necessity requires that

A =1 - NCA);, VACQ (8.7)
Necessity measures satisfy the condition
min (N(A), N(CA)) =0 (8.8)

The relationships between possibility measures and necessity measures sa-
tisty the following conditions [Dubois and Prade 1988, p. 10]:

m(A) = N(A), VA C Q (8.9)
NA) > 0 = n(A) = |
mA) <1 = NA)=0 (8.10)

Here Q is always assumed to be finite.

Example 8-5

Let us assume that we know, from past experience, the performance of six
students in written examinations. Table 81 exhibits the possibility functions for
the grades A through E and students 1 through 6.

First we observe that the membership function for the grades of student 4
is not a possibility function, since g(Q) # 1.

We can now ask different questions:

1. How reliable is the statement of student 1 that he will obtain a B in his next
exam?
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In this case, “A” is {B} and “CA” is {A, C, D, E}.
Hence, n(A) = 1
N@) =min {1 — =n;}
=min {.2, .3, 1, 1} = .2.

Hence, the possibility of student 1 getting a B is © = 1, the necessity N = .2.

2. If we want to know the truth of the statement “Either student 1 or 2 will
achieve an A or a B,” our Q has to be defined differently. It now contains
the elements of the first two rows. The result would be

n(A) = m(student 1 A or B or Student 2 A or B) = 1
N@A) =3

3. Let us finally determine the credibility of the statement “student 1 will get
aC”
In this case n(A) =.7
N@) = 0.

8.2 Probability of Fuzzy Events

By now it should have become clear that possibility is not a substitute for
probability, but rather another kind of uncertainty.

Let us now assume that an event is not crisply defined except by a possibility
distribution (a fuzzy set) and that we are in a classical situation of stochastic
uncertainty, that is, that the happening of this (fuzzily described) event is not
certain and that we want to express the probability of its occurence. Two views
on this probability can be adopted: Either this probability should be a scalar
(measure) or this probability can be considered as a fuzzy set also. We shall con-
sider both views briefly.

8.2.1 Probability of a Fuzzy Event as a Scalar

In classical probability theory, an event A is a member of an o-field a of subsets
of a sample space Q. A probability measure P is a normalized measure over a
measurable space (Q, a)—that is, P is a real-valued function that assigns to
every A in a a probability P(A) such that

1. PA)=0 Aea
2. PQ)=1
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3. IfA e a,ie [l CN, pairwise disjoint, then
P(U A) = Y P(A)

ief

If Q is, for instance, a Euclidean n-space and a the o-field of Borel sets in R”,
then the probability of A can be expressed as

P(A) = LdP

If p,(x) denotes the characteristic function of a crisp set of A and E,(u,) the
expectation of L,(x), then

P(A) = J::(,\')dP = Ep(ly)

If u,(x) does not denote the characteristic function of a crisp set but rather the
membership function of a fuzzy set, the basic definition of the probability of A
should not change. Zadeh [1968] therefore defined the probability of a fuzzy
event A (i.e., a fuzzy set A with membership function [;(x)) as follows.

Definition 8-5

Let (R", a, P) be a probability space in which a is the o-field of Borel sets in
R" and P is a probability measure over R". Then a fuzzy event in R" is a fuzzy
set A in R" whose membership function W;(x) is Borel measurable.

The probability of a fuzzy event A is then defined by the Lebesque-Stieltjes
integral

P(A) = [P = E(u)

In Zadeh [1968] the similarity of the probability of fuzzy events and the proba-
bility of crisp events is illustrated. His suggestions, though very plausible, were
not yet axiomatically justified in 1968. Smets [1982] showed, however, that an
axiomatic justification can be given for the case of crisp probabilities of fuzzy
events within nonfuzzy environments. Other authors consider other cases, such
as fuzzy probabilities, which we will not investigate in this book.

We shall rather turn to the definition of the probability of a fuzzy event as
a fuzzy set, which corresponds quite well to some approaches we have dis-
cussed, for example, for fuzzy integrals.

8.2.2 Probability of a Fuzzy Event as a Fuzzy Set

In the following we shall consider sets with a finite number of elements. Let us
assume that there exists a probability measure P defined on the set of all crisp
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subsets of (the universe) X, the Borel set. P(x;) shall denote the probability of
element x; € X.

Let A = {(x, ui(x) | x € X} be a fuzzy set representing a fuzzy event. The
degree of membership of element x; € A is denoted by p;(x,). o-level sets or
o-cuts as already defined in definition 2-3 shall be denoted by A,.

Yager [1979, 1984] suggests that it is quite natural to define the probability
of an a-level set as P(A,) = Z,c4 P(x). On the basis of this, the probability of
a fuzzy event is defined as follows [Yager 1984].

Definition 8-6

Let A, be the o-level set of a fuzzy set A representing a fuzzy event. Then the
probability of a fuzzy event A can be defined as

Py(A) = {(P(A), &) | o € [0, 1]}

with the interpretation “the probability of at least an o degree of satisfaction to
the condition A.”

The subscript Y of Py indicates that Py is a definition of probability due to
Yager that differs from Zadeh’s definition, which is denoted by P. It should be i
very clear that Yager considers o, which is used as the degree of membership
of the probabilities P(4,) in the fuzzy set P,(A), as a kind of significance level
for the probability of a fuzzy event. :

On the basis of private communication with Klement, Yager also suggests
another definition for the probability of a fuzzy event, which is derived as
follows.

Definition 8-7

The truth of the proposition “the probability A is at least w” is defined as the
fuzzy set P;"(A) with the membership function ‘

PrA)(w) = sup {0t | P(A) = w), we [0, 1]

The reader should realize that now the “indicator” of significance of the prob- |
ability measure is w and no longer a! The reader should also be aware of the
fact that we have used Yager’s terminology denoting the values of the member-
ship function by P’;(A)(w). This will facilitate reading Yager’s work [1984].

If we denote the complement of A by CA = {(x, 1 — pz(x)) | x € X} and the
o-level sets of CA by (CA),, then PHCA)w) = sup,{at | P(CA), = w}, and w
€ [0, 1] can be interpreted as the truth of the proposition “the probability of not -
A is at least w.” i
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Let us deﬁneP*(A) =1- P*((I,‘A) If P*(A)(w) is interpreted as the truth of
the proposition “probability of A is at most w,” then we can argue as follows:
The “and” combination of “the probability of A is at least w” and “the prob-
ablllty of A is at most w’ * might be considered as “the probability of A is exactly

D If P*(A) and P*(A) are considered as possibility distributions, then their
COI‘l_]Lll‘lCthl‘l is their intersection (modeled by applying the min-operator to the
respective membership functions). Hence the following definition [Yager 1984]:

Definition 8—-8 [Yager 1984]

Let P;‘f(A~) and Fj,‘ (A) be defined as above. The possibility distribution associated
with the proposition “the probability of A is exactly w” can be defined as

P.(A)(w) = min {P*(A)(w), P¥(A)(w)}

Example 8—6

Let A = | (xy, D), (. 7), (5, .6), (xy, .2) } be a fuzzy event with the probability
defined for the generic elements: P, = .1, P, = 4, P, = 3, and P, = .2; p{x,} is
4, where the element x, belongs to the fuzzy event A with a degree of .7.

First we compute Pj,‘(A~). We start by determining the o-level sets A, for all
o € [0, 1]. Then we compute the probability of the crisp events A, and give the
intervals of w for which P(A,) = w. We finally obtain P;’.‘(A) as the respective
supremum of o.

The computing is summarized in the following table:

o A, P(A) w P*A) = sup o
[0, .2] {x), X, x5, x4} 1 [.8, 1] 2
[.2, .6] X, X X3} 8 [.5. .8] 6
L.6. .71 {x,, X,} 5 [.1, 5] i
L7, 1] {x/} 1 [0, .1] 1

Analogously, we obtain for 17;',‘(14) =1- P;‘,‘((IA),

(CA), P(CA), w  PHCA) P*A) =1-P(CA)
0 (X, X0 X5 X, ) 1 (9, 1] 0 1
[0,.3] {x x5 1) 9 [.5..9] 3 i
1.3, 4] {x;, x,} 5 [.2, .5] 4 .6
[4,.8] {x} 2 [0., 2] 8 2

[.8, 1] 0 0 0 1 0
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The probability P, (A) of the fuzzy event A is now determined by the inter-
section of the fuzzy sets P*(A) and P*(A) modeled by the min-operator as in
definition 8—8:

0, w=0

2, wel0,.2]
6, wel.2,.8]
.2, wel.8,1]

B(A(w) =

Figure 8—1 illustrates the fuzzy sets P¥(A)w), P*(A) and P(A)(w).
7
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Figure 8-1. Probability of a fuzzy event.
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8.3 Possibility vs. Probability

Questions concerning the relationship between fuzzy set theory and probability
theory are very frequently raised, particularly by “newcomers™ to the area of
fuzzy sets. There are probably two major reasons for this. On the one hand, there
are certain formal similarities between fuzzy set theory (in particular when using
normalized fuzzy sets) and probability theory; on the other hand, in the past
probabilities have been the only means for expressing “uncertainty.” It seems
appropriate and helpful, therefore, to shed some more light on this question.

In the introduction to this chapter, it was already mentioned that such a com-
parison is difficult because of the lack of unique definitions of fuzzy sets. This
lack of a unique definition is due in part to the variety of suggested possibilities
for mathematically defining fuzzy sets as well as operations on them, as indi-
cated in chapters 2 and 3. It is also due to the many different kinds of fuzziness
that can be modeled with fuzzy sets, as described in chapter 1.

Another problem is the selection of the aspects with respect to which these
theories shall be compared (see the introduction to this chapter!).

In section 8.1, possibility theory was briefly explained. There it was men-
tioned that possibility theory is more than the min-max version of fuzzy set
theory. It was also shown that the “uncertainty measures” used in possibility
theory are the possibility measure and the necessity measure, two measures that
in a certain sense are dual to each other. In comparing possibility theory with
probability theory, we shall first consider only possibility functions—and mea-
sures (neglecting the existence of dual measures)—of possibility theory. At the
end of the chapter, we shall investigate the relationship between possibility
theory and probability theory.

Let us now turn to probabilities and try to characterize and classify available
notions of probabilities. Three aspects shall be of main concern:

The linguistic expression of probability.

The different information context of different types of probabilities.

The semantic interpretation of probabilities and its axiomatic and mathemati-
cal consequences.

W=

Linguistically, we can distinguish explicit from implicit formulations of prob-
ability. With respect to the information content, we can distinguish between
probabilities that are classificatory (given E, H is probable), comparative (given
E, H is more probable than K), partial (given E, the probability of K is in the
interval [a, b]), and quantitative (given E, the probability of H is b).

Finally, the interpretation of a probability can vary considerably. Let us consider
two very important and common interpretations of quantitative probabilities.
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Koopman [1940, pp. 269-292] and Carnap and Stegmiiller [1959] interpret (sub-
jective) probabilities essentially as degrees of truth of statements in dual logic.
Axiomatically, Koopman derives a concept of probability, g, which math-
ematically is a Boolean ring.

Kolmogoroff [1950] interprets probabilities “statistically.” He considers a set
Q and an associated c-algebra F, the elements of which are interpreted as events.
On the basis of measurement theory, he defines a (probability) function P: F —
[0, 1] with the following properties:

P: I — [0, 1] 8.11)

PQ) =1 (8.12)
VX) e FNVi,je Niizj—-> X, NX =0) P(_LLXi) = ZP(Xi) (8.13)
e ieN

From these properties, the following relationships can easily be derived: ‘
X, ¢Xe F > PCX)=1-PX) (8.14) |
X, Ye FoPXUY)=PX)+PX)-PXNY) (8.15)

where CX denotes the complement of X.

Table 8-2 illustrates the difference between Koopman’s and Koimogoroff’s
concept of probability, taking into account the different linguistic and informa-
tional possibilities mentioned above.

Now we are ready to compare “fuzzy sets” with “probabilities,” or at least
one certain version of fuzzy set theory with one of probability theory. Implicit |
probabilities are not comparable to fuzzy sets, since fuzzy set models try par-
ticularly to model uncertainty explicitly. Comparative and partial probabilities
are more comparable to probabilistic statements using “linguistic variables,”
which we will cover in chapter 9.

Hence, the most frequently used versions we shall compare now are quanti- |
tative, explicit Kolmogoroff probabilities with possibilities. ‘

Table 8—3 depicts some of the main mathematical differences between three
areas that are similar in many respects.

Let us now return to the “duality” aspect of possibility measures and neces-
sity measures. ;

A probability measure, P(A), satisfies the additivity axiom, that is, VA, B C
Q for which A N B = @: |

P(A U B) = P(A) + P(B) (8.16)

This measure is monotonic in the sense of condition 2 of definition 4-2.
Equation (8.12) is the probabilistic equivalent to (8.1) and (8.2).
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Table 8—2. Koopman’s vs. Kolmogoroff's probabilities.

Koopman Kolmogoroff
D, D', H, H are statements of dual W is a set of events, W, are subsets of
logic, Q is a nonnegative real number w.

(generally Q € [0, 1])

Classtficatory:

1. Implicit: D supports H t. W, is a nonempty subset of W

2. Explicit: H is probable on the basis of 2. If one throws the dice W times,
D probably no W, is empty.

Comparative:

1. Implicit: D supports H more than D’ 1. For W times one throws the dice.
supports H’ W, is of equal size as W,.

2. H is more probable given D than H’ 2. If one throws a coin W times, W, is
is, given D', as probable as W,.

Quantitative:

I. The degree of support for H on the 1. The ratio of the number of events in
basis of D is G. W, and W is Q.

2. The probability for H given D is Q. 2. The probability that the result of

throwing a dice is / when throwing
the dice M times is Q,.

The possibility theory conditions (8.5) and (8.8) imply
N(A) + N(CA) = 1 (8.17)
T(A) + T(CA) = 1 (8.18)
which is less stringent than the equivalent relation
P(A) + P(CA) = 1 (8.19)

of probability theory.

In this sense, possibility corresponds more to evidence theory {Shafer 1976]
than to classical probability theory, in which the probabilities of an element (a
subset) are uniquely related to the probability of the contrary element (com-
plement). In Shafer’s theory, which is probabilistic in nature, this relationship
is also relaxed by introducing an “upper probability” and a “lower probability,”
which are as “dual” to each other as are possibility and necessity.

In fact, possibility and necessity measures can be considered as limiting cases
of probability measures in the sense of Shafer, that is,

N@A) = P(A) = m(A) VA C Q (8.20)
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Table 8-3. Relationship between Boolean algebra, probabilities, and possibilities.

Probabilities
Boolean (quantitative
algebra explicit) Possibilities
Domain Set of (logic) o-algebra Any universe X
statements
Range of values {0, 1} [0, 1] [0, 1]
membership fuzzy: 0 < p < oo real
Special constraints 2 p) =1
Q
Union (independent, max 2 max
noninteractive)
Intersection min I1 min
Conditional yes no often
equal to joint?
What can be used conditional conditional conditional,
for inference? or joint often joint

This in turn links intuitively again with Zadeh’s “possibility/probability con-
sistency principle” mentioned in section 8.1.1. ‘

Concerning the theories considered in this chapter, we can conclude the fol- | |
lowing. Fuzzy set theory, possibility theory, and probability theory are no sub-
stitutes, but they complement each other. While fuzzy set theory has quite a
number of “degrees of freedom” with respect to intersection and union oper-
ators, kinds of fuzzy sets (membership functions), etc., the latter two theories |
are well developed and uniquely defined with respect to operation and struc-
ture. Fuzzy set theory seems to be more adaptable to different contexts. This,
of course, also implies the need to adapt the theory to a context if one wants it }
to be an appropriate modeling tool.

Exercises

1. Let U and F be defined as in example 8-2. Determine the possibility dis-
tribution associated with the statement “X is not a small integer.”
2. Define a probability distribution and a possibility distribution that could be
associated with the proposition “cars drive X mph on American freeways.”
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3. Compute the possibility measures (definition 8—3) for the following possi-
bility distributions:

A=1{6,7,...,13, 14}
“X is an integer close to 107
T = {(8,.6), (9, 8). (10, 1), (11, .8), (12, .6)}
or alternatively,

iz = {(6, .4), (7, .5), (8, .6), (9, .8), (10, 1), (11, .8), (12. .6),
(13, .5), (14, 4)}

Discuss the results.

4. Discuss the relationships between general measures, fuzzy measures, prob-
ability measures, and possibility measures.

5. Determine Yager's probability of a fuzzy event for the event “X is an inte-
ger close to 10” as defined in exercise 3 above.

6. List examples for each of the kinds of probabilistic statements given in table
8--2.

7. Analyze and discuss the assertion that P*(A )(w) can be interpreted as the
truth of the proposition “the probability of A is at most w.”



|l APPLICATIONS OF
FUZZY SET THEORY

Applications of fuzzy set theory can already be found in many different |
areas. One could probably classify those applications as follows: ‘

1. Applications to mathematics, that is, generalizations of traditional
mathematics such as topology, graph theory, algebra, logic, and so |
on. ﬁ
2. Applications to algorithms such as clustering methods, control algo- |
rithms, mathematical programming, and so on.
3. Applications to standard models such as “the transportation model,”
" “inventory control models,” “maintenance models,” and so on. ‘
4. Finally, applications to real-world problems of different kinds.

In this book, the first type of “applications” will be covered by looking

at fuzzy logic and approximate reasoning. The second type of applications
will be illustrated by considering fuzzy clustering, fuzzy linear program-
ming, and fuzzy dynamic programming. The third type will be covered
by looking at fuzzy versions of standard operations research models and
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at multicriteria approaches. The fourth type, eventually, will be illustrated
on the one hand by describing operations research (OR) models as well
as empirical research in chapter 15. On the other hand, chapter 10 has
entirely been devoted to fuzzy control and expert systems, the area in
which fuzzy set theory has probably been applied to the largest extent
and also which is closest to real applications. This topic is treated in still
more detail in the second volume of this book [Zimmermann 1987].



O Fuzzy Loaic anD
APPROXIMATE REASONING

9.1 Linguistic Variables

In retreating from precision in the face of overpowering complexity, it is natural to
explore the use of what might be called linguistic variables, that is, variables whose
values are not numbers but words or sentences in a natural or artificial language.

The motivation for the use of words or sentences rather than numbers is that lin-
guistic characterizations are, in general, less specific than numerical ones [Zadeh
1973a, p. 3].

This quotation presents in a nutshell the motivation and justification for fuzzy |
logic and approximate reasoning. Another quotation might be added, which is -
much older. The philosopher B. Russell noted: ‘

All traditional logic habitually assumes that precise symbols are being employed. It
is therefore not applicable to this terrestrial life but only to an imagined celestial |
existence [Russell 1923].

One of the basic tools for fuzzy logic and approximate reasoning is the notion
of a linguistic variable that in 1973 was called a variable of higher order rather

than a fuzzy variable and defined as follows [Zadeh 1973a, p. 751.
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Definition 9-1

A linguistic variable is characterized by a quintuple (x, T(x), U, G, M) in which
x is the name of the variable; T(x) (or simply T) denotes the term set of x, that
is, the set of names of linguistic values of x, with each value being a fuzzy variable
denoted generically by X and ranging over a universe of discourse U that is
associated with the base variable u; G is a syntactic rule (which usually has the
form of a grammar) for generating the name, X, of values of x; and M is a semantic
rule for associating with each X its meaning, M (X), which is a fuzzy subset of
U. A particular X—that is, a name generated by G—is called a term. It should
be noted that the base variable u can also be vector valued.

In order to facilitate the symbolism in what follows, some symbols will have
two meanings wherever clarity allows this: x will denote the name of the variable
(“the label”) and the generic name of its values. The same will be true for X and
M (X).

Example 9-1 [Zadeh 1973a, p. 77]

Let X be a linguistic variable with the label “Age” (i.e., the label of this variable
is “Age,” and the values of it will also be called “Age”) with U = [0, 100]. Terms
of this linguistic variable, which are again fuzzy sets, could be called “old,”
“young,” “very old,” and so on. The base-variable u is the age in years of life.
M (X) is the rule that assigns a meaning, that is, a fuzzy set, to the terms:

M (old) = { (u, Poe(w)) | u € [0, 100] }

where

0 u € [0, 50]
Hola () = [1 + (%) J u € (50, 100]

T(x) will define the term set of the variable x, for instance, in the case

T(Age) = {old, very old, not so old, more or less young,
quite young, very young}

where G(x) is a rule that generates the (labels of) terms in the term set.
Figure 9—1 sketches another way to represent the linguistic variable “age”™.
Two linguistic variables of particular interest in fuzzy logic and in (fuzzy)

probability theory are the two linguistic variables “Truth” and “Probability.” .

The linguistic variable “Probability” is depicted exemplarily in figure 9-2. ‘
The term set of the linguistic variable “Truth” has been defined differently by ‘
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Figure 9-3. Linguistic variable “Truth.”

different authors. Baldwin [1979, p. 316] defines some of the terms as shown in
figure 9-3. Here,

Huery weV) = (MeneW))* v € [0, 1]
u'fairly true(v) = (utrue(v))”z A\ [0’ 1]
and so on. Zadeh [1973a, p. 99] suggests for the term true the membership function

0 for0svsg

2
A ] a+1
) = 2(—) forasvs——
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Figure 9-4. Terms “True” and “False.”

where v = (1 + a)/2 is called the crossover point, and a € [0, 1] is a parameter
that indicates the subjective judgment about the minimum value of v in order to
consider a statement as “true” at all.

The membership function of “false” is considered as the mirror image of
“true,” that is,

l‘lfalsc(v) - l‘ln—u‘;(l — V) 0 =V = l

Figure 9-4 [Zadeh 1973a, p. 99] shows the terms true and false.

Of course, the membership functions of true and false, respectively, can also
be chosen from the finite universe of truth values. The term set of the linguistic
variable “Truth” is then defined as [Zadeh 1973a, p. 99]

T'(Truth) = {true, not true, very true, not very true, . .., false, not false,
very false, ..., not very true and not very false, . .. |

The fuzzy sets (possibility distribution) of those terms can essentially be
determined from the term true or the term false by applying appropriately the
below-mentioned modifiers (hedges).
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Definition 9-2

A linguistic variable x is called structured if the term set T'(x) and the meaning
M (x) can be characterized algorithmically. For a structured linguistic variable,
M (x) and T(x) can be regarded as algorithms that generate the terms of the term
set and associate meanings with them.

Before we illustrate this by an example, we need to define what we mean by
a “hedge” or a “modifier.”

Definition 9-3

A linguistic hedge or a modifier is an operation that modifies the meaning of a
term or, more generally, of a fuzzy set. If A is a fuzzy set, then the modifier m
generates the (composite) term B = m(A).

Mathematical models frequently used for modifiers are as follows:

concentration:
ucon(/i)(u) = (HA (u) )2
dilation:

Mangi)(u) = (HA(”))W

contrast intensification:

2wy’ for pz(u) €10, .5]

M () = {1 ~2(1 — wi(u))* otherwise

Generally the following linguistic hedges (modifiers) are associated with above-
mentioned mathematical operators:
If A is a term (a fuzzy set), then

very A = con (4)
more or less A = dil (4)
plus A = A'%
slightly A = int [plus A and not (very A)]

where “and” is interpreted possibilistically.

Example 9-2 [Zadeh 1973a, p. 83]

Let us reconsider from example 9-1 the linguistic variable “Age.” The term set
shall be assumed to be

T(Age) = {old, very old, very very old, ... }
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The term set can now be generated recursively by using the following rule
(algorithm):

1 = {old} U {very T")
that is,
1T°=¢
T = {old}
T? = {old, very old}
7 = {old, very old, very very old}

For the semantic rule, we only need to know the meaning of “old” and the
meaning of the modifier “very” in order to determine the meaning of an arbitrary
term of the term set. If one defines “very” as the concentration, then the terms
of the term set of the structured linguistic variable “Age” can be determined,
given that the membership function of the term “old” is known.

Definition 9-4 [Zadeh 1973a, p. 87]

A Boolean linguistic variable is a linguistic variable whose terms, X, are Boolean
expressions in variables of the form X,, m(X,) where X, is a primary term and
m is a modifier. m(X,) is a fuzzy set resulting from acting with 7 on X,

Example 9-3
Let “Age” be a Boolean linguistic variable with the term set

T'(Age) = {young, not young, old, not old, very young,
not young and not old, young or old, . .. }

FTPRgR L} e LE)

Identifying “‘and” with the intersection, “or” with the union, “not” with the
complementation, and “very” with the concentration, we can derive the meaning
of different terms of the term set as follows:

373

M (not young) = — young
M (not very young) = — (voung)’

M (young or old) = young U old
etc.

Given the two fuzzy sets (primary terms)

M (young) = { (i, Hypn, () | 1 € [0, 100] }
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where
1 U € [0, 25]
M young (4) = [1+("——52)2J_l u € (25,100]
and
M (old) = { (u, Poa(w)) | u € [0, 100]}
where

0 u & [0, 50]
Ko@) = [1 + (u 550) ) u € (50, 100]

then the membership function of the term “young or old” would, for instance,
be

1 if u € [0, 25]

2\-1
(1+(" ‘525)) if u € (25, 50]
-1
uyoungorold(u) = 1 max{ [1 + (u - 25)2] ’
5

9.2 Fuzzy Logic
9.2.1 Classical Logics Revisited

Logics as bases for reasoning can be distinguished essentially by their three
topic-neutral (context-independent) items: truth values, vocabulary (operators),
and reasoning procedure (tautologies, syllogisms).

In Boolean logic, truth values can be O (false) or 1 (true), and by means of
these truth values, the vocabulary (operators) is defined via truth tables.

Let us consider two statements, A and B, either of which can be true or false,
that is, have the truth value 1 or 0. We can construct the following truth tables:
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There are 22 = 16 truth tables, each defining an operator. Assigning meanings
(words) to these operators is not difficult for the first 4 or 5 columns: the first
obviously characterizes the “and,” the second the “inclusive or,” the third the
“exclusive or,” and the fourth and fifth the implication and the equivalence. We
will have difficulties, however, interpreting the remaining nine columns in terms
of our language. If we have three statements rather than two, this task of assigning
meanings to truth tables becomes even more difficult.

So far it has been assumed that each statement, A and B, could clearly be
classified as true or false. If this is no longer true, then additional truth values,
such as “undecided” or a similar description, can and have to be introduced,
which leads to the many existing systems of multivalued logic. It is not difficult
to see how the above-mentioned problems of two-valued logic in “calling” truth
tables or operators increase as we move to multivalued logic. For only two
statements and three possible truth values, there are already 3% =729 truth tables!
The uniqueness of interpretation of truth tables, which is so convenient in Boolean
logic, disappears immediately because many truth tables in three-valued logic
look very much alike.

The third topic-neutral item of logical systems is the reasoning procedure
itself, which is generally based on tautologies such as

modus ponens: (A A (A= B)) > B

modus tollens: ((A = B) A — B) => —A
syllogism: (A=>B)AB=>C)=>(4A=C)
contraposition: (A = B) = (—B = —A)

Let us consider the modus ponens, which could be interpreted as: “If A is true
and if the statement “If A is true then B is true” is also true, then B is true.”

The term true is used at different places and in two different senses: All but
the last “trues” are material trues, that is, they are taken as a matter of fact, while
the last “true” is a topic-neutral logical “true.” In Boolean logic, however, these
“trues” are all treated the same way [see Mamdani and Gaines 1981, p. xv]. A
distinction between material and logical (necessary) truth is made in so-called
extended logics: Modal logic [Hughes and Cresswell 1968] distinguishes between
necessary and possible truth, and tense logic between statements that were true
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in the past and those that will be true in the future. Epistemic logic deals with
knowledge and belief and deontic logic with what ought to be done and what
is permitted to be true. Modal logic, in particular, might be a very good basis
for applying different measures and theories of uncertainty, as indicated in
chapter 4.

Another extension of Boolean logic is predicate calculus, which is a set
theoretic logic using quantifiers (all, etc.) and predicates in addition to the operators
of Boolean logic.

Fuzzy logic [Zadeh 1973a, p. 101] is an extension of set-theoretic multivalued
logic in which the truth values are linguistic variables (or terms of the linguistic
variable truth).

Since operators, like v, A, —, = in fuzzy logic are also defined by using
truth tables, the extension principle can be applied to derive definitions of the
operators. So far, possibility theory (see section 8.1) has primarily been used in
order to define operators in fuzzy logic, even though other operators have also
been investigated (see, for instance, Mizumoto and Zimmermann [1982]), and
could also be used. In this book, we will limit considerations to possibilistic inter-
pretations of linguistic variables, and we will also stick to the original proposals
of Zadeh [1973a]. To the interested reader, however, we suggest supplemental
study of alternative approaches such as those by Baldwin [1979], Baldwin and
Pilsworth [1980], Giles {1979, 1980], and others.

If v(A) is a point in V = [0, 1], representing the truth value of the proposition
“y is A” or simply A, then the truth value of not A is given by

v(not A) = 1 — v(A)

Definition 9-5

If $(A) is a normalized fuzzy set, W(A) = {(v, w) |i=1,...,n, v, € [0, 11},
then by applying the extension principle, the truth value of ¥(not A) is defined
as

ot A ={(1-v, W) li=1....,n v, e [0 1]}
In particular, “false” is interpreted as “not true,” that is,

bfalse) = {(1 = v, ) |i=1,...,n v,€[0,1])

Example 9—-4

Let us consider the terms frue and false, respectively, defined as the following
possibility distributions:
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v(true) = {(.5,.6), (.6, .7), (.7, .8), (.8, .9), (.9, 1), (1, 1)}
V(false) = v(not true) = { (.5, .6), (.4..7), (.3, .8), (.2, .9), .1, ), 0, D}
Then
v(very true) = {(.5, .36), (.6, .49), (.7, .64), (.8, .81), (.9, 1), (1, 1}
v(very false) = {(.5, .36), (4, 49), (.3, .64), (.2, .81), (.1, 1), ©, D}

It has already been mentioned that fuzzy logic is essentially considered as an
application of possibility theory to logic. Hence the logical operators “and,”
“or,” and “not” are defined accordingly.

Definition 9-6

For numerical truth values v(A4) and v(B), the logical operations and, or, not, and
implied are defined as

V(A) AV(B) =V(A A B) =min {v(4), v(B)}
V(A) v v(B) =V(A v B) =max {v(4), v(B)}
1 —v(A)}

I

—Vv(A)
V(A) = v(B) = V(A = B) = —v(4) v v(B)
=max {1 — v(A), v(B)}

If
HA) = {(v, o)}, o€ [0, 1], v, e [0, 1]
V(B) ={w, B}, B, e [0, 1], o € [0, 1]
i=l....,mj=1,...,m
then

V(A and B) = V(A) A ¥(B) = {(u = min {v, w,}, max min {q, B:H I

w=min{v, ;)
i=1...,mj=1,...,m)
(This is equivalent to the intersection of two type 2 fuzzy sets.) The other
operators are defined accordingly.
Example 9-5
Let ¥(A) = true = {(.5, .6), (.6, .7), (.7, .8), (8, 9), (9, 1), (1, D}.
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Then

—w(A) = {(0, 1), (.1, D), (.2, 1), (3, 1), (4, 1), (.5, .4), (.6, .3), (7, .2),
(.8, . 1)}

9.2.2 Linguistic Truth Tables

As mentioned at the beginning of this section, binary connectives (operators)
in classical two- and many-valued logics are normally defined by the tabulation
of truth values in truth tables. In fuzzy logic, the number of truth values is, in
general, infinite. Hence tabulation of the truth values for operators is not pos-
sible. We can, however, tabulate truth values, that is, terms of the linguistic
variable “Truth,” for a finite number of terms, such as true, not true, very true,
false, more or less true, and so on.

Zadeh [1973a, p. 109] suggests truth tables for the determination of truth
values for operators using a four-valued logic including the truth values true,
false, undecided, and unknown. “Unknown” is then interpreted as “true or false”
(T + F), and “undecided” is denoted by ©.

Extending the normal Boolean logic with truth values true (1) and false (0)
to a (fuzzy) three-valued logic (true = T, false = F, unknown =T + F), with a
universe of truth values being two-valued (true and false), we obtain the following
truth tables, in which the first column contains the truth values for a statement
A and the first row those for a statement B [Zadeh 1973a, p. 116]:

A | T F T+F

T T F T+F

F F F F
T+F T+F F T+F
Truth table for “and”

v | T F T+F

T T T T

F T F T+F
T+F T T+F T+F

Truth table for “or”

-
T F
F T

T+F T+F

Truth table for “not”
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If the number of truth values (terms of the linguistic variable truth) increases,
one can still “tabulate” the truth table for operators by using definition 9-6 as
follows: Let us assume that the i" row of the table represents “not true” and the
J™ column “more or less true.” The (i, /)" entry in the truth table for “and”
would then contain the entry for “not true A more or less true.” The resulting
fuzzy set would, however, most likely not correspond to any fuzzy set assigned
to the terms of the term set of “truth.” In this case, one could try to find the fuzzy
set of the term that is most similar to the fuzzy set resulting from the computations.
Such a term would then be called linguistic approximation. This is an analogy
to statistics, where empirical distribution functions are often approximated by
well-known standard distribution functions.

Example 9—-6

Let V=1{0, .1, .2,..., 1} be the universe,

true = {(.8, .9), (.9, 1), (1, 1)},

more or less true = {(.6, .2), (7, .4), (.8, .7), (.9, 1), (1, 1)}, and
almost true = {(.8, .9), (.9, 1), (1, .8)}.

Let “more or less true” be the i™ row and ““almost true” the j™ column of the
truth table for “or.”
Then “more or less true v almost true” is the (i, /)™ entry in the table:

more or less true v almost true
={(.6,.2), (7, 4), (.8,.7), (9, 1), (1, D} v {(8, .9), (9, 1), (1, 8)}
={(.6,.2), (7, .4), (.8,.9), (9, D, (1, D}

Now we can approximate the right-hand side of this equation by
true = {(.8..9), (9, 1), (1, D}
This yields
“more or less true v almost true” = “true.”

Baldwin [1979] suggests another version of fuzzy logic—fuzzy truth tables, and
their determination: The truth values on which he bases his suggestions were
shown graphically in figure 9-3. They were defined as

true ={(V, He(V) = V) | v € [0, 1]}

false =V BaeW) = 1 = HeV)) | v € [0, 1]}
very true = {(V, (e (V))) | Vv € [0, 1]}

fairly true = {(v, (U (V)Y | v € [0, 1]}

undecided = {(v, 1) | v € [0, 1]}
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Very false and fairly false were defined correspondingly, and

absolutely true =

with [, (V)

{(v, paV) | v € [0, 1]}

{

1 forv=1
0 otherwise

absolutely false = {(v, B V) 1 v € [0, 1]}

with (V)

Hence

|

1 forv=0
0 otherwise

(very)'true — absolutely true as k — oo

(very)false — absolutely false as k — oo

(fairly)true — undecided as k — oo
(fairly)*false — undecided as k — oo

Using figure 9-3 and the interpretations of “and” and “or” as minimum and
maximum, respectively, the following truth table results [Baldwin 1979, p. 318]:

v(P) v(Q) V(P and Q) v(P or Q)
false false false false
true false false true
true true true true
undecided false false undecided
undecided true undecided true
undecided undecided undecided undecided
true very true true very true
true fairly true fairly true true

Some more considerations and assumptions are needed to derive the truth
table for the implication. Baldwin considers his fuzzy logic to rest on two pillars:
the denumberably infinite multivalued logic system of Lukasiewicz logic and

fuzzy set theory:

Implication statements are treated by a composition of fuzzy truth value restrictions
with a Lukasiewicz logic implication relation on a fuzzy truth space. Set theoretic
considerations are used to obtain fuzzy truth value restrictions from conditional fuzzy
linguistic statements using an inverse truth functional modification procedure. Finally
true functions modification is used to obtain the final conclusion [Baldwin 1979,

p. 309].
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9.3 Approximate and Plausible Reasoning

We already mentioned that in traditional logic the main tools of reasoning are
tautologies, such as, for instance, the modus ponens—that is (A A (4 = B)) =
B or

Premise A is true
Implication If A then B

Conclusion | B is true

Here A and B are crisply defined statements or propositions; the A's in the premise
and the implication are identical, and so are the B’s in the implication and
conclusion. The “implication” is defined via truth tables, as shown in section
92.1.

Approximate and plausible reasoning are ways of drawing conclusions from
hypotheses. They relax even more stringent assumptions of dual logic than fuzzy
logic does and try to approach human reasoning even more closely.

Three natural generalizations of the classical modus ponens are

I. To modify the definition of the “implication,”

2. To allow statements that are no longer crisp but contain a fuzzy set, such
as linguistic variables, and

3. To relax the identity of the A’s and B’s in the premise rule and conclusion
by substituting for “identical” the term “similar.”

Relaxations of point 2 lead to “approximate reasoning,” and relaxations of points
2 and 3 lead to “plausible reasoning.”

We shall first briefly consider point | and then turn to points 2 and 3.

The rule “if A then B” is often written as A—B. The symbol “—” is then often
interpreted as implication, whose meaning is formally defined in logic. Obviously.
there are at least “translations” between the three different levels involved: the
linguistic level (rule), the symbolic level (—), and the formal logical level.

The relationship between the linguistic expression “if A then B” and the
respective mathematical description cannot be derived formally, but only
empirically. This problem belongs in the area of psycholinguistics, and empirical
research in this direction is still very rare [Spiess 1989].

If “A — B” is interpreted as material implication, in which A is called the
premise and B the consequence, then the truth values v(A), v(B), and v(A — B)
can in dual logic be either O or 1. As shown in the truth table in section 9.2.1,
the truth value of (A — B) is 0 if A is true and B is false; otherwise, its truth
value is t. This corresponds to the view that the implication is true whenever
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the consequence is at least as true as the premise. In Boolean logic, A — B is
equivalent to —A Vv (A A B) (not A or (A and B)).

On the bases of these basic relationships, various implication operators have
been defined. Ruan [1991] has investigated 18 of these definitions, which are
all restricted to the min-max theory. We only show a selection of them in the
next table. x denotes the degree of truth (or degree of membership) of the premise,
y the respective values for the consequence, and / the resulting degree of truth
for the implication.

Name Definition of Implication Operator
Early Zadeh I(x, y) = max(l — x, min(x, y))
Lukasiewicz Lx,y) =min(l, 1 —x +y)
Minimum (Mamdani) I.(x, y) = min(x, y)
.. 1 ox=y

Standard Star (Godel) I(x,y) = {y elsewhere
Kleene—Dienes I(x, y) = max(1 — x, y)
Gai L(x, y) = 1 xX=y

atnes 8% ¥ =1y/z  elsewhere
Yager I(x, y)=y*

The “quality” of these implication operators could again be evaluated either
empirically or axiomatically. For the latter, a well-accepted axiomatic system
such as that of Smets and Magrez [1987] can be used. The authors assume that
the implication operator is truth functional, i.e., that the truth of “A — B” only
depends on the truth of A and B. They have formulated the following axioms:

1. v(A = B) =v(—B — —A)
(contrapositive symmetry)

2. VA B ->C)=vB>A->C))
(exchange principle)

3. v(A > B)=v({C > D)if
v(A) = v(C) and/or v(B) = v(D)
(monotonically)

4. v(A — B) =1if v(A) = v(B)
(boundary condition)

5. v(T — A) = v(A), where T stands for tautology
(neutrality principle)

6. v(A — B) is continuous in its arguments
(continuity)
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Table 9—1. Formal quality of implication operators.

1, 1, I 1, 1, I I
Al N Y N N Y N N
Contraposition
A2 N Y Y Y Y N Y
Exchange
Principle
A3 N Y N Y Y Y Y
Monotonicity
A4 N Y N Y N Y N
Boundary
Condition
A5 Y Y Y Y Y Y Y
Neutrality
Principle
A6 Y Y Y N Y N N
Continuity

Table 9-1 shows which of the implication operators satisfy (Y) or violate (N)
the above axioms.

If one uses the fraction of the axioms that are satisfied by the various
implications as their degree of membership in the fuzzy set “good implication
operators,” then one would obtain the following fuzzy set:

Good Implication Operators

{50 (13 13 B (3 (3]

For approximate and plausible reasoning as defined above, the modus ponens is
extended to the “generalized modus ponens” [Zadeh 1973a, p- 56; Mizumoto et
al. 1979; Mamdani 1977a].

Example 9-7

Let A, A, B, B’ be fuzzy statements; then the generalized modus ponens reads

Premise: xis A’
Implication: If x is A, then v is B

Conclusion: y is B’
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Premise: This tomato is very red.
Implication: If a tomato is red then the tomato is ripe.

Conclusion: This tomato is very ripe.

It should be mentioned, however, that the generalized modus ponens alone does
not allow us to obtain conclusions from unequal premises. Such an inference
presupposes or necessitates knowledge about modifications of the premises and
their consequences (for example, knowledge that an increase in “redness” indicates
an increase in “ripeness” [Dubois and Prade 1984b, p. 325].

In 1973, Zadeh suggested the compositional rule of inference for the above-
mentioned type of fuzzy conditional inference. In the meantime, other authors
(for instance, Baldwin [1979]; Baldwin and Pilsworth [1980]; Baldwin and Guild
[1980]; Mizumoto et al. [1979]; Mizumoto and Zimmermann [1982]; Tsukamoto
[1979]), have suggested different methods and have also investigated the modus
tollens, syllogism, and contraposition. In this book, however, we shall restrict
considerations to Zadeh’s compositional rule of inference.

Definition 9-7 [Zadeh 1973a, p. 148]

Let R(x), R(x, y), and ﬁ(y), x € X, y € Y, be fuzzy relations in X, X x Y, and
Y, respectively, that act as fuzzy restrictions on x, (x, y), and y, respectively. Let
A and B denote particular fuzzy sets in X and X X Y. Then the compositional rule
of inference asserts that the solution of the relational assignment equations (see
definition 8—1) R(x) = A and R(x, y) = B is given by R () = A o B, where A ©
B is the composition of A and B.

Example 9-8

Let the universe be X = {1, 2, 3, 4}.
A = little = {(1, 1), (2, .6), (3, .2), 4, 0)}.
R = “approximately equal” be a fuzzy relation defined by

n

HOWON
O .
th
L]
th
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For the formal inference, denote

R(,\') = A. R, V) = B, and ﬁ(y) =A°8
Applying the max-min composition for computing R(v) = A o B yields

R(y): max min {;(x), Ha(x, y)}

= {(1, . (2..6), (3, .5), (4, .2)}
A possible interpretation of the inference may be the following:

X is little
x and y are approximately equal

¥ is more or less little

A direct application of approximate reasoning is the fuzzy algorithm (an
ordered sequence of instructions in which some of the instructions may contain
labels of fuzzy sets) and the fuzzy flow chart. We shall consider both in more
detail in chapter 10. Here, however, we shall briefly describe fuzzy (formal)
languages.

9.4 Fuzzy Languages

Fuzzy languages are formal languages based on fuzzy logic and approximate
reasoning. Several of them have been developed by now, such as LPL [Adamo
1980], FLIP [Giles 1980], Fuzzy Planner [Kling 1973], and others. They are
based on LP1, FORTRAN, LISP, and other programming languages and differ in
their content as well as their aims. Here we shall sketch a meaning-representation
language developed by Zadeh [Zadeh 1981a].

PRUF (acronym for Possibilistic Relational {/niversal Fuzzy) is a meaning-
representation language for natural languages and is based on possibility theory.
PRUF may be employed as a language for the presentation of imprecise knowledge
and as a means of making precise the fuzzy propositions expressed in a natural
language. In essence, PRUF bears the same relationship to fuzzy logic that
predicate calculus does to two-valued logic. Thus it serves to translate a set of
premises expressed in natural language into expressions in PRUF to which the
rules of inference of fuzzy logic or approximate reasoning may be applied. This
yields other expressions in PRUF that can then be retranslated into natural
language and become the conclusions inferred from the original premises.
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The main constituents of PRUF are

1. a collection of translation rules, and
2. a set of rules of inference.

The latter corresponds essentially to fuzzy logic and approximate reasoning, as
described in sections 9.2 and 9.3. The former will be described in more detail
after the kind of representation in PRUF has been described and some more
definitions introduced.

In definition 8—1, the relational assignment equation was defined. In PRUF,
a possibility distribution m, is assigned via the

possibility assignment equation (PAE): , = F

to the fuzzy set F. The PAE corresponds to a proposition of the form “N is F”
where N is the name of a variable, a fuzzy set, a proposition, or an object. For
simplicity, the PAE will be written as in chapter 8 as

n,=F

Example 9-9

Let N be the proposition “Peter is old”; then N (the variable) is called “Peter,”
X e [0, 100] is the linguistic variable “Age,” “old” is, for instance, a term of the
term set of “Age,” and

Peter is old = Tazeperery = 0Id

where — stands for “translates into.”
There are two special types of possibility distributions that will be needed later.

Definition 9-8
The possibility distributions 7, with
mw=1 forue U
is called the unity possibility distribution m;, and with
m,(v)y=v forv e [0, 1]

is defined the unitary possibility distribution function [Zadeh 1981a, p. 10].

In chapter 6 (definition 6-4), the projection of a binary fuzzy relation was
defined. This definition holds not only for binary relations and numerical values
of the related variables but also for linguistic variables.
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Different fuzzy relations in a product space U, X U, X ...x U, can have
identical projections on U, X. .. x U,. Given a fuzzy relatlon R inU; . X
U,, there exists, however, a unique relatlon Rq, that contains all other relauons
whose projection on U; x...x U, is R RqL is then called the cylindrical extension
of R, the latter is the basns of RqL (see definitions 6—4, 6-5).

In PRUF, the operation “particularization” is also important: “By the particularization
of a fuzzy relation or a possibility distribution which is associated with a variable X
2 (X,,...,X,), is meant the effect of specification of the possibility distributions of
one or more subvariables (terms) of X. Particularization in PRUF may be viewed as
the result of forming the conjunction of a proposition of the form “X is F,” where X
is an n-ary variable with particularizing proposmons of the form “X, = G,” where X,
is a subvariable (term) of X and F and G, respectively, are fuzzy sets in U x U,

.U, and U, x...x U, respectively” [Zadeh 1981a, p. 13].
Definition 9-9 [Zadeh 1981a, p. 13}

Let iy 2 A(X,...X,)=F and #t, = X, .. X)) = G be possibility distri-
butions induced by the propositions “X is F” and “X, is G,” respectively. The
particularization of T, by X, = G is denoted by ft,( & Ty = G) and is defined as
the intersection of F and G, that is,

f(f, =G =FNG’
where G’ is the cylindrical extension of G.
Example 9-10

Consider the proposition “Porsche is an attractive car,” where attractiveness of
a car as a function of mileage and top speed is defined in the following table.

Top speed Mileage

Attractive cars (mph) (mpg) u
60 30 4
60 35 S
60 40 6
70 30 )
85 25 7
90 25 8
95 25 9
100 20 1.0
110 15 1.0
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A particularizing proposition is “Porsche is a fast car,” in which “fast” is defined
in the following table:

Top speed
Fast cars (mph)

60
70
85
90
95
100
110

cooxaor|F

[a—

“Porsche is an attractive car” can equivalently be written as “Porsche is a fast
car,” that is, “Top speed (Porsche) is high” and “mileage (Porsche) is high.”

Using definition 9-9, the particularized relation aztractive (Tg,.q = Fast) can
readily be computed, as shown in the next table:

Attractive cars Top speed Mileage n
60 30 4
60 35 4
60 40 4
70 30 6
85 25 )
90 25 .8
95 25 9
100 20 0.95
110 15 1

Translation Rules in PRUF. The following types of fuzzy expressions will
be considered:

1. Fuzzy propositions such as “All students are young,” “X is much larger than
Y,” and “If Hans is healthy then Biggi is happy.”

2. Fuzzy descriptors such as tall men, rich people, small integers, most, several,
or few.

3. Fuzzy questions.

Fuzzy questions are reformulated in such a way that additional translation
rules for questions are unnecessary. Questions such as “How A is B?” will be
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expressed in the form “B is ?A4,” where B is the body of the question and “?4”
indicates the form of an admissible answer, which can be a possibility distribution
(indicated as 7); a truth value (indicated as T); a probability value (indicated as
A); or a possibility value (indicated as ®).

The question “How tall is Paul?” to which a possibility distribution is expected
as an answer, is phrased “Paul is ?1” (rather than “How tall is Paul ?m). “Is it
true that Katrin is pretty?” would then be expressed as “Katrin is pretty 2t and
“Where is the car ?w” as “The car is ?w.”

PRUF is an intentional language, that is, an expression in PRUF is supposed
to convey the intended rather than the literal meaning of the corresponding
expression in a natural language. Transformations of expressions are also intended
to be meaning-preserving. Translation rules are applied singly or in combination
to yield an expression, E, in PRUF that is a translation of a given expression,
e, in a natural language.

The most important basic categories of translation rules in PRUF are

Type 1 Rules pertaining to modification
Type I Rules pertaining to composition
Type 11 Rules pertaining to quantification
Type IV Rules pertaining to qualification

Examples of propositions to which these rules apply are the following [Zadeh
1981a, p. 29]:

Type I X is very small.
X is much larger than Y.
Eleanor was very upset.
The man with the blond hair is very tall.

Type I X is small and Y is large. (conjunctive composition)
X is small or Y is large. (disjunctive composition)
If X is small, then Y is large. (conditional composition)
If X is small, then Y is large else |(conditional and conjunctive
Y is very large. composition)
Type Il Most Swedes are tall.
Many men are much taller than most men.
Most tall men are very intelligent.
Type IV Abe is young is not very true. (truth qualification)
Abe is young is quite probable. (probability qualification)
Abe is young is almost impossible. (possibility qualification)
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Rules of Type 1

Type I rules concern the modification of fuzzy sets representing propositions by
means of hedges or modifiers (see definition 9-3).
If the proposition

P2NisF

translates into the possibility assignment equation

then the translation of the modified proposition
P* 2 Nis mF is

—_ +
T, ..., x) = F

where F* is a modification of F by the modifier m. As mentioned in chapter 9.1,
the modifier “very” is defined to be the squaring operation, “more or less” the
dilation, and so on.

Example 9-11

Let p be the proposition “Hans is old,” where “old” may be the fuzzy set defined
in example 9-1. The translation of p* £ “Hans is very old,” assuming “very” to
be modeled by squaring, would then be

TCage(Hans) = (old)* = {(u, Wea2() | u € {0, 1001}

where

0 u € {0, 50]

2

Hoiar @) = {(1 + (%) j ] u € (50, 100]

Rules of Type 11
Rules of type II translate compound statements of the type
p=q*r

where = denotes a logical connective—for example, and (conjunction) or (dis-
junction), if . . . then (implication), and so on. Here, essentially the definitions of
connectives defined in section 9.1 and 9.2 are used in PRUF.
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If the statements ¢ and r are

It

q=MisF—omy  x =F

raNisG-m, =G

then
M is F) and N is G) > my  yy . y,=FxG
where
FxG= {(u, v), U, vy lue U, ve V)
and

Weee(ut, vy = min {p(u), Pe(vy}

“UMis F,thenNisG” — myx vy, =F]®G/ where £/ and G/
are the cylindrical extensions of F and G and @ is the bounded sum defined in
definition 3—9. Hence

Weeg (u, v} =min {1, W () + ps(v)}

Example 9-12 [Zadeh 1981a, pp. 32-33]
Assume that u =v=1,2,3and M £ X, N2 Y, and

F 2 small 2 {(1, 1), (2, .6), (3, .1)}
G = large = {(1, .1), (2, .6), (3, 1)}

1>

Then X is small and Y is large —
nx, y) = {1 1), 11 [, 2), .60 [(1, 3), 11, [(2, 1), .11, [(2, 2), .6],
[(2,3),.6], [(3, 1), .11, [(3, 2), .11, [(3, 3), .1]}
X is small or Y is large —
e y) = [, 1), 10, [T, 2), 1, (1 3), 10, [@2, 1), .61, [(2, 2), 6],
(2, 3), 11, [3. 1), .1}, [(3, 2). .6], [(3, 3), .11}
If X is small, then Y is large —
nix, y) = {11, D, 11 [, 2), .61, 11, 3), 1), [(2, 1), 5], [(2. 2), 1],
(2, 3), 11 [G3, D, 1], [(3, 2), 11, [(3, 3), 1]}

Translation rules of type II can, of course, also be applied to propositions con-
taining linguistic variables. In some applications, it is convenient to represent
fuzzy relations as tables (such as those shown in section 6.1). These tables can
also be processed in PRUF.
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Rules of Type III
Type III translation rules pertain to the translation of propositions of the form
P2QN are F

where N may also be a fuzzy set and Q is a so-called quantifier, for example,
a term such as most, many, few, some, and so on. Examples are

Most children are cheerful.
Few lazy boys are successful.
Some men are much richer than most men.

A quantifier, Q, is in general a fuzzy set of which the universe is either the set
of integers, the unit interval, or the real line.

Some quantifiers, such as most, many, and so on, refer to propositions of sets
that may either be crisp or fuzzy. In this case, the definition of a quantifier
makes use of the cardinality or the relative cardinality, as defined in definition
2-5.

_ In PRUF, the notation prop (F/G) is used to express the proportion of F in
G where

count (FNG) 1FNGI

op (FIG) = _ _
prop (F/G) = — G Yl

where “count” corresponds to the above-mentioned cardinality. The quantifier .
“most” may then be a fuzzy set

0 = {[prop (F/G), Mmes(ts W1 | u € F, v € G}

Example 9-13
The quantifier “several” could, for instance, be represented by

0 2 several = {(3, .3), (4, .6), (5, 1), (6, .8), (7, .6), (8, .3)}

Rules of Type IV

In PRUF, the concept of truth serves to make statements about the relative truth
of a proposition p with respect to another reference proposition (and not with |
respect to reality!). Truth is taken to be a linguistic variable, as defined in section
9.1. Truth is then interpreted as the consistency of proposition p with proposition
q. If

N is Fom, =F
N is G-xn,=G

p
q

> 1p
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then the consistency of p with ¢ is given as

cons {N is F|N is G} Zposs{N is F|N is G}
sup {min (Ws(u), Pe(u))}

uel/

il

Example 9-14
Let

N is a small integer
N is not a small integer

<

11

where
small integer = {(0, 1), (1. 1), (2, .8), (3, .6), (4, .5), 5, 4, 6, D)}
Then

cons {p| g} =sup {[0,0,.2, 4, .5, 4, 2]}
=5

More in line with fuzzy set theory is the consideration of the truth of a
proposition as a fuzzy number. Therefore Zadeh defines in the context of PRUF
truth as follows:

Definition 9-10 [Zadeh 1981a, p. 42]

Let p be a proposition of the form “N is F.” and let r be a reference proposition,
r 2 Nis G, where F and G are subsets of . Then the truth, 1, of p relative to
r is defined as the compatibility of r with p, that is,

T2TrNis F|Nis G) comp (N is GIN is F)
us(G)

{(t.uGY [ Te [0, 1]}

bbb

with
up(G) = dnf AWe(0, Ho()), e U

The rule for truth qualification in PRUF can now be stated as follows [Zadeh
1981a, p. 44): Let p be a proposition of the form

pEN is F
and let ¢ be a truth-qualified version of p expressed as

gEN is F is 1



FUZZY LOGIC AND APPROXIMATE REASONING 157
where T is a linguistic truth value. g is semantically equivalent to the reference
proposition, that is,
Nis Fis to>N is G
where F, G, and T are related by
T = pi(G)
In analogy to truth qualification, translation rules for probability qualification

and possibility qualification have been developed in PRUF.

Example 9-15

Let
U=N,=1{0,1,2,...1}, N e N
p =N is small
r =N is approximately 4

where

small = {(0, 1), (1, 1), (2, .8), (3, .6), (4, 4), (5, .2)}
approximately 4 = {(1, .1), (2, .2), (3, .5), 4, 1), (5, .5), ®, 2), (7, .1)}

Then

t=Tr(N is small | N is approximately 4)
=comp (N is approximately 4 | N is small)

= {(Weman (), M4 ) | u € U}
= {(0, .2), (2, .5), (4, 1), (.6, .5), (8, .2), (1, .1)}

9.5 Support Logic Programming and Fril

9.5.1 Introduction

Fril is a logic programming style implementation of support logic programming

[Baldwin 1986, 1987, 1993]. It is a complete programming system with an incre-

mental compiler, on-line help, a step-by-step debugger, modular code devel- |

opment, and optimization [Baldwin, Martin, and Pilsworth 1995]. It is written
in C and is a Prolog system if no uncertainties are used. The style of programming

can include the object-oriented paradigm by introducing the concept of a fuzzy

object. A menu-driven window environment with dialogue boxes can be written
in Fril to provide the intelligent systems application with a friendly front end.
Fril can also be linked to Mathematica [Wolfram 1993], allowing mathematical



158 FUZZY SET THEORY-—AND ITS APPLICATIONS

equations to be solved as part of the inference process. Mathematical commands
can be sent from Fril directly to Mathematica, and answers received by Fril can
act as data for part of some inference process.

Fril is an ideal language for soft computing, since it is an efficient general
logic programming language with special structures to handle uncertainty and
imprecision. Four types of rules are allowed in Fril:

Prolog style rule

1.

2. Probabilistic fuzzy rule
3. Causal relational rule
4. Evidential logic rule

The popularity and success of fuzzy control, which uses simple IF ... THEN
rules, should motivate knowledge engineers to investigate the use of Fril and
fuzzy methods for intelligent systems. We would expect areas of application
such as expert systems for large-scale engineering systems, vision-understanding
systems, planning, robotics, military systems, medical and engineering diagnosis,
economic planning, human interface systems, and data compression to benefit
from this more general modeling approach.

The fuzzy sets representing possible feature values and the importance given
to these features can be automatically derived from a data set of examples. The
rules derived in this way provide a generalization of the specific instances given
in the data set. This, along with the Fril inference rules, provides a theory of
generalization and decision suitable for machine intelligence.

9.5.2 Fril Rules
The three Fril rules are of the form:
< head > IF < body > : < list of support pairs >

where the head of the rule can contain a fuzzy set. In the case of rules of types
IT and 111, the body of the rule can be a conjunction of terms, a disjunction of
terms, or a mixture of the two, and each term can contain a fuzzy set. The body
of the fourth rule is a list of weighted features, where a feature is simply a
condition that may contain a fuzzy set or the head of another rule. The list of
support pairs provides intervals containing conditional probabilities of some
instantiation of the head given some instantiation of the body.
An example of each type of rule is as follows:
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Example 9-16: Rule of Type II

((suitability place X for sports stadium Y is high)
(access X from other parts of city is easy) (cost_to_build Y at X is fairly
cheap)): 10.9, 1]

This rule states that there is a high probability that any place X is highly suitable
to build a sports stadium Y if X is easily accessed and ¥ can be built fairly cheaply
at X.

Example 9-17: Rules of Type 111

((shoe_size man X is large)
((height X is tall) (height X is average) (height X is small)):[0.8, 1]
[0.5, 0.6] [0, 0.1]

This rule states that the probability of a tall man wearing large shoes is greater
than 0.8. The probability that a man of average height wears large shoes is
between 0.5 and 0.6. The probability that a small man wears large shoes is less
than 0.1.

We can think of the rule as representing the relationship between two variables,
S and H, where S is shoe size and H is height of man. § is instantiated to large,
while H has three instantiations in the body of the rule. The rule expresses Pr(S
is large | H is h;) where h; is a particular fuzzy instantiation of H. This type of
rule is useful to represent fuzzy causal nets and many other types of applications. |

Example 9-18: Rules of Type IV

((suitability_as_secretary person X is good)

(evlog most ( (readability handwriting of X, high) 0.1
(neatness(X, fairly good)) 0.1
(qualifications X, applicable) 0.2
(concentration X, long) 0.1
(typing_skills X, very good) 0.3
(shorthand X, adequate) 0.2))): [1, 1] [0, 0]

This rule says that a person’s suitability as a secretary is good if most of the |
weighted features in the body of the rule are satisfied. The term “most” is a
fuzzy set that is chosen to provide optimism for those persons who satisfy the
criteria well and pessimism for those who satisfy the criteria badly. Type m
rules are evidential logic rules and can be used for vision understanding, !
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classification, and case-based reasoning. The satisfaction of features such as
(qualifications X applicable) is determined from another rule with satisfaction as
head. Methods can be used to determine near optimal weights and the fuzzy sets
in the body of the rules from a data set of examples [Baldwin 1994]. These are
discussed below.

Meta Rules

Types HI'and IV rules can be written in terms of types I and II rules. Other rules,
which we can call meta rules, can be similarly defined in Fril.

9.5.3 Inference Methods in Fril

Consider a statement such as
most tall persons wear large shoes

The words printed in italics are fuzzy sets representing the vagueness of the de-
finitions of these concepts.
This sentence can be replaced by the equivalent statement

Pr(a person X wears large shoes | X is tall) = 0.95

if we interpret “most” as the fuzzy set “greater_than_95%.” We can simplify
further if we replace the fuzzy set “greater_than_95%" with the support pair
[0.95, 1], where a support pair is an interval containing a probability.

This could be written as a Fril rule:

((shoe_size of X large)
(height of X tall)): [0.95 1]

The discrete fuzzy set large defined on the size domain and the continuous fuzzy
set fall defined on the height are represented as list structures in Fril. For example,

set (height_domain (4 8))

set (size_domain (4 56 7 8 9 10 11 12 13))

(tall [5.8: 0, 6: 1] height_domain)

(large {9 :0.3,10:0.5,11:09,12:1, 13 : '} size_domain)

The height domain is all heights in the range [4 ft, 8 ft], and the size domain
is the list of shoe sizes {4 56789 1011 12 13}. The membership of elements
in the discrete fuzzy set are given to the right of the colon. For the continuous
fuzzy set, the membership is O for all heights in the height domain smaller than
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5.8 and 1 for all heights in the height domain larger than 6, and linear interpola-
tion is used to determine the membership value for heights in the range [5.8, 6].
Assume we know the facts

((height of John average))
where the fuzzy set average is defined using the Fril statement
(average [5.8 : 0, 5.9 : 1, 6 : 0] height_domain)

Then we should be able to conclude something like shoe_size of John is
more_or_less_fairly_large. We would like to be able to provide an estimate from
the fuzzy set conclusion for the size of John’s shoes. This corresponds to defuz-
zifying the fuzzy set conclusion. We would only defuzzify if asked for a precise
value.

How can we determine the fuzzy set f for the conclusion
((shoe_size of X f))

and how can we defuzzify this conclusion to give us the conclusion
((shoe_size of John s))

corresponding to defuzzified value s?

The term in the body of the rule (height of X tall) is matched to (height of John ‘

tall) with X instantiated to John. There is only a partial match because average
only partially matches the term “tall.” The mass assignment theory allows us to
determine an interval containing the conditional probability

Pr{(height of John tall) | (height of John average)}

This interval can be denoted by [x,, x,]. The process of determining this interval

is called interval semantic unification. Fril automatically determines this inter-

val. There is also a point-version semantic unification in which a point value is ‘
determined by intelligent filling in for unknown information. A query can be !
asked in Fril such that point semantic unification is used. In this case, Fril

returns

Pr{(height of John tall) | (height of John average)} = x

We now know that the body of the rule is satisfied with a belief or probability :

given by the support pair [x,, x,] or point value x. x, gives the necessary support
for the body of the rule, and x, gives the possible support for the body of the
rule. 1 — x, gives the necessary support against the body of the rule being satisfied.

We can now use an interval version of Jeffrey’s rule of inference to determine -
a support pair for the consequence of the rule [Baldwin 1991]. Jeffrey’s rule is

of the form
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N
Prithy ="y Pr(h1b)Pr'(b,)

i=l1

where { Pr(h [ b)} represent conditional probabilities determined from a popu-
lation of objects and {P’r (b,)} are probabilities or beliefs about a given object
from the population. These primed probabilities are not determined with reference
to the population of objects. The primed probabilities are specific to the one
object under investigation. To make this more clear, consider the following
example. From past observations and examination results, it is known that in a
given school 90% of hardworking students obtain good passes in their final
examinations. The probability Pr(good pass | hardworking) is obtained from
population considerations. Consider a new boy to the school. By interviewing
the boy and from references, we estimate a belief that this boy will be hard-
working, say, 0.7. The probability P’r(new boy hardworking) = 0.7 is specific
to the new boy and is not related to the Pr(hardworking), which would be the
proportion of boys in the school who are hardworking. Jeffrey’s rule is similar
to the theorem of total probabilities but with a mixture of population-estimated
probabilities and specific beliefs.
In terms of the above example, Jeffrey’s rule is

Pr{(shoe_size of John large)} =

Pr{(shoe_size of John large) | (height of John tall)}Pr{ (height
of John tall)}

+ Pr{ (shoe_size of John large) | — (height of John tall) }Pr

{ (height of John tall)}

We know
Pr{(height of John tall) } is contained in the interval [x), x5].
From this we can deduce

Pr{ (shoe_size of John large)} is contained in the interval [ v, 1]
where y = 0.95x,

since we know

Pr{ (shoe_size of John large) | (height of John tall)} € [0.95, 1]
and

Pr{(shoe_size of John large) | — (height of John tall) } e [0, 1].

We must now convert this to a statement containing only a fuzzy set but no
probabilities.
From the basic concept of a support pair, we can state
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Pr{(shoe_size of John large)} =y
Pr{ (shoe_size of John — large)} =1 -1= 0
Pr{ (shoe_size of John any_possible_size)} =1 ~y

We use these three conclusions to determine a membership function for the
fuzzy set f in the statement

(shoe_size of John f)
by calculating f as the expected fuzzy set. Thus
He(S) = Hhigrge(s) + (1 — %) for all s

We can defuzzify this fuzzy set, as described later. Briefly, we use the fuzzy set
f to determine a least prejudiced probability distribution over the shoe_size
domain and choose the size with the highest probability. If the domain for
shoe_size had been a continuous domain, then we would defuzzify by choosing
the mean of the distribution.

If point semantic unification is used rather than the interval semantic unification,
then Fril would give the above solution but with y = 0.95x.

9.5.4 Fril Inference for a Single Rule

Consider the inference for a single Fril rule of the form
((WBY) ... (BIN): (V) (@t Vi)
when the following facts are given:
((®)): (0; By; all i

More generally, the facts will not completely match the terms in the rule and
the support pair (a; B); all i will be determined using semantic unification. A
generalized Jeffrey’s rule for support pairs is the basic inference rule of Fril, as
discussed above, so that &: (z, z,) where

7= minz u9; where o; =96, <p;
and ) 6, =1
Z = maxz v, where o; = 0, =B,

and 3,6, =1
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These are trivial optimization problems.

Each b, can be a conjunction of terms, a disjunction, and a mixture of the two.
A calculus based on probability theory is used to compute the support pair for
any b; with respect to the support pairs of its individual terms.

The inference rule for the basic rule is a special case of this, since the basic
rule is equivalent to

(DB N (e v) (> vy))
For the evidential logic rule of the form

((h)) (evlog f
(c; w) ... (c, w,))))
Ty v

with facts
((e)): (o B)
the support pair given to the body of the rule is

[2 25> MB]

The basic inference rule is then used to give the final support pair for the head
(h).

The point semantic unification case is only a special case of this where the
supports (a1, 3;) are replaced with point values.

9.5.5 Multiple Rule Case
More generally, Fril can use several rules with the same head predicate to
determine a given inference. Consider, for example, the fuzzy logic rules

((y value is f) (x, value is g,) (x, value is h))
((y value is f) (x; value is g,) (x, value is /,))

((y value is f,) (x; value is g,) (x, value is h,))

for determining the value of y given values for x;and x,. {f;}, {g,}, and {h,} are
fuzzy sets defined on the domains for y, X, and .x,, respectively. If we provide
the facts,

((x, is about_a))
((x, 1s about_p))
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where about_a is a fuzzy set defined on the domain for x; and about_b a fuzzy
set defined on the domain for x,. Then Fril uses each rule to obtain

(y value is fi): (x; ¥;)
(y value is f,): (x; y;)

(y value is f,): (x, ¥,)
Fril then determines

(y value is f,;)
(y value is f,5)

(y value is f,,)
where f,, is an expected fuzzy set determined as described previously. These are
intersected to give the final solution

(y value is f,)

where f, = f,, N f, N...N f,, and N is fuzzy intersection.
For multiple rules with the same head where the heads do not contain fuzzy
sets, then the support pairs are intersected.

9.5.6 Interval and Point Semantic Unification

We will first explain the concepts involved in the Fril semantic unification using
a simple example. This explanation will be in terms of discrete fuzzy sets. Fril
handles both discrete and continuous fuzzy sets, and the algorithm is optimized
for computational efficiency.

Consider the Fril program:

set (dice_dom (1, 2, 3, 4, 5, 6))
(small {1:1, 2:1, 3:0.3} dice_dom)
(about_2 {1:0.3, 2:1, 3:0.3} dice_dom)
((dice shows small))

If we ask the query
gs((dice shows about_2))
which asks for the support that the dice shows about_2, then Fril returns
((dice shows about_2)): (0.3 1)
The point semantic query

gs_p((dice shows about_2))
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returns
((dice shows about_2)): 0.615

In other words, Fril calculates Pr{(dice shows about_2) | (dice shows small)} €
[0.3, 1] for interval semantic unification and Pr{(dice shows about_2) | (dice shows
small)} = 0.615 for point semantic unification. How is this done?

The fuzzy sets small and about_2 can be written as mass assignments [Baldwin
1992], namely,

Mgy = {1’ 2} 07, {l, 2, 3} 03
mabouLZ = {2} 07’ {ls 2’ 3} 03

where a mass assignment is equivalent in this case to a Dempster/Shafer basic
probability assignment. We can depict these graphically as in the table below.
The given information is depicted at the top of the table. In each cell we can
denote the truth of the left-hand set given the top set. This truth value will be
t, f, or u, representing true, false, or uncertain, respectively. For example, the
truth of {2} given {1, 2} 1s uncertain since if the dice shows 1, then {2} will be
false, while if it shows 2, then {2} will be true. What mass should we asso-
ciate with each of the cells? Baldwin’s theory of semantic unification states that
the masses in the cells should satisfy the following row and column constraints:
The column cell masses should sum to the column mass, and the row cell masses
should sum to the corresponding row mass.

0.7 0.3
(1,2} {1,2 3}
07 | u
{2} mll m12
0.3 t !
{1, 2,3} m21 m22
[0.3, 1]

Thus
mll +ml2 =0.7
m2l + m22 = 0.3
mll + m21 = 0.7
ml2 + m22 =0.3
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This will not provide a unique solution. One solution is to multiply the column
and row masses to obtain the corresponding cell mass. This procedure can be
thought of as assuming independence of the mass assignment in the Fril program
and of that given in the query. Fril uses this multiplication model, giving

mll = 0.49, m12 = 0.21, m21 = 0.21, and m22 = 0.09.
Thus we have the truth mass assignment
t: 03, {1, f}: 0.7

so that the support for Pr(about_2 | small) = [0.3, 1].

A point semantic solution is obtained in the same way, but m11 and m12 are
modified to give their contributions to true, assuming an equally likely probability
distribution for dice values for the given information. Therefore we modify m11
to 0.5m11 and m12 to (1/3)m12, since {2} is true if 1 of {1, 2} is given and false
otherwise, and {2} is true if 1 of {1, 2, 3} is true and false otherwise. This
provides the modified table below:

0.7 03
{1,2}  {1,23)
0.7
0.245 0.07
{2}
(1 0; 3) 0.21 0.09
0.615

If there are cells with an f entry, then the upper support for interval semantic
unification will be less than 1.

The point semantic unification satisfies the normalization condition and the
Dubois/Prade consistency condition, i.e.,

Pr(flg) +Pr(f 18 =1
Pr(A]g) =TIA | g)

where f and g are fuzzy sets defined on the same domain, f, is the complement
of f, A is any subset of the domain, and IT is Zadeh’s possibility measure. The
multiplication model arises from relative entropy considerations discussed by
Baldwin [1991], as does the use of Jeffrey’s rule for inference. It should be
noted that if the prior on the domain elements is different to equally likely -
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distribution, then this will be taken into account when the point semantic uni-
fication is performed. Suppose in the above dice example it was known that the
dice was weighted and had the prior {1: 1/9, 2:2/9. 3: 1/9, 4:2/9, 5: 1/9, 6:2/9};
then

Pr(about_2 | small) = (0.49)2/3 + (0.07)1/2 + 0.3 = 0.6617

9.5.7 Least Prejudiced Distribution and Learning

The fuzzy sets occurring in the various Fril rules can be determined automati-
cally from a database of examples. For example, suppose we have a database of
values of y = F(x) for a range of values of x and we want to approximate the
function using the fuzzy logic rules

((y has value in f)(x has value in g))) fori=1,...,n

where {f;} and {g,} are fuzzy sets defined on the X and Y domains, respectively.
Suppose further that we choose the {f;} to be triangular fuzzy sets on the Y
domain. How should we choose {g;} to provide a good approximation to the
function? The inference method for a given input for X is that described in sections
4 and 5. Defuzzification using the mean of the least prejudiced distribution is
used as the estimate for F(x).

In this section, we will define what is meant by the least prejudiced distri-
bution, outline the method used to determine the fuzzy sets {g,}, and indicate
how this can be extended to the case of the evidential logic rule. The theory is
described by Baldwin [1994].

Consider a discrete fuzzy set small for the dice problem above. The statement
(dice score is small) provides a possibility distribution over the dice domain where
(i) = Ugna(D), I =1,..., 6.

According to Baldwin’s theory of mass assignments, this is equivalent to a
family of probability distributions given by the mass assignment

’nsmall = {ls 2} 07, {l, 2, 3} 03

The mass 0.7 can be distributed among the elements 1 and 2 in any way and the
mass 0.3 among 1, 2, 3 in any way. This gives the family of probability dis-
tributions. The least prejudiced distribution is the one given by allocating a mass
equally among the elements with which it is associated. Thus the least prejudiced
distribution for the fuzzy set small is
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Ipdgy =1:035+01,2:035+0.1,3:0.1
giving
Ipdgp =1 : 0.45,2:045,3:0.1

Fril extends this to the continuous case and provides a least prejudiced distrib-
ution for any fuzzy set.

Defuzzification instantiates the value to the mean value of this least preju-
diced distribution.

Suppose we have a frequency distribution f(x) for values of the attribute X
determined from a set of examples. Fril determines the appropriate fuzzy set for
F by ensuring that the least prejudiced distribution for this fuzzy set is f. If the
classification is fuzzy, as in the above rules for function approximation, then Fril
takes into account the fact that for some examples the classification will have a
membership in several rule heads.

If we have a set of examples and for each example we are provided with
attribute values for attributes F,, . . ., F, and a given classification (c, say), we
can use the above method to derive the fuzzy sets occurring as feature values
in the evidential logic rule. Fril can also determine near optimal weights for the
rule using a specialized discrimination algorithm.

This approach has been used for function approximation; several classifica-
tion-type problems, such as handwriting character recognition and underwater
sound recognition from acoustic spectra; and deriving fuzzy control rules. The
method is an alternative approach to neural supervised learning and can be used
for similar types of problems.

9.5.8 Applications of Fril

The Fril language is an uncertainty logic programming system that can be used
for fuzzy control, evidential logic reasoning, causal reasoning, classification, and
other Al applications that require reasoning with missing information, vague
information, or uncertain information.

It can be used to build expert systems, decision support systems, vision
understanding systems, fuzzy databases, and other Al knowledge engineering
applications [Baldwin and Martin 1993].

For example, Fril has been used to implement an intelligent data browser. A
window-environment front end is provided that allows the user to enter a database
or link to an existing database in Oracle, input rules, and ask any relevant
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queries concerning the database. The required evidential logic and other rules
required to answer a particular query will automatically be constructed. The user
can ask for an explanation and can investigate the sensitivity of any new rules
formed. Queries can be asked about any attribute of the database when given
information concerning other attributes of the database. The given information
need not be precise and can be in the form of fuzzy sets or intervals or sets of
values. The user can contribute to the establishment of the required rules in
various ways—for example, choosing the type of rule, the features in the body
of a rule, the weights in an evidential logic rule, or the fuzzy sets in a rule. These
decisions can be made by the intelligent browser automatically, but the user can
then make any changes if required. Rules formed are retained for future use.
When appropriate, the accuracy of a new rule can be tested by using the database
as test cases for which the answers are known.

This type of module has many applications from scientific, engineering,
financial, and business fields. The system can be used to provide a summary of
large amounts of data, interpolate between database instances, provide approximate
reasoning, derive classifiers, perform case-based reasoning, derive causal nets,
derive probabilistic fuzzy rules, and derive fuzzy controllers.

In the case of classification, for example, the classification could be the
suitability of a house for a given customer and the features would be the various
qualities of the house such as size of garden, number of bedrooms, size of
lounge, etc. A representative number of examples of suitable houses would be
chosen by the customer. A new house on the market could then be tested to see
for which customers it would be suitable. The database could be the classifica-
tion of creditworthiness of persons. The classification of creditworthiness could
be {very good, good, average, poor, very_poor}. The database would consist
of past customers with their details as features and subjective creditworthi-
ness estimated. Another example might be a classification of change in inter-
est rate with features representing economic measurable conditions. Classes
of {very_good, good, average, poor, very_poor} for the potential for oil at a
given place with geological measurement and other features is another obvious
example.

Fril has been successfully used to build an expert system for designing aircraft
structures using composite materials. This expert system calls various analysis
programs in different languages to help with the design and evaluation. Fril has
also been used for command and control studies, a dental expert system for
planning orthodontic treatment, design of a client administration expert system,
to produce a modeling tool for representing the behavior of aircrew in aircrew
and fixe wing operations, to build an intelligent manual for safety studies in the
disposal of nuclear waste, software dependability studies. and conceptual graph
implementation.
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Exercises

1. Consider the linguistic variable “Age.” Let the term “old” be defined by
0 if x € [0, 40]

Hoa(x) = [H(x 540) J if x € (40, 100]

Determine the membership functions of the terms “very old,” “not very
old,” “more or less old.”

2. Let the term “true” of the linguistic variable “Truth” be characterized by the
membership function

0 ifv=s=a
2
Z(V a] foa=sv=p
T(v; o, B, Y) = 4 LAy )
1—2["_7) fp=v=y
-o
L1 ifv=y

Draw the membership function of “true.” Determine the membership
functions of “rather true” and “very true.” What is the membership function
of “false” = not “true” and what of “very false”?

3. What is the essential difference between Baldwin’s definition of “true” and
Zadeh’s definition?

4. Let the primary terms “young” and “old” be defined as in example 9-3.
Determine the secondary terms “young and old,” “very young,” and “not
very old.”

5. Let “true” and “false” be defined as in example 9—4. Find the membershlp
function of “very very true.” Compare the fuzzy sets “false” and “not true.”

6. Let the universe X = {1, 2, 3, 4, 5} and “small integers” be defined as A=
{(da, 10, (2, .5), (3, 4), 4, .2)}. Let the fuzzy relation “almost equal” be
defined as follows:

X
AW N -

(=]

o0

L

o0
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What is the membership function of the fuzzy set B = “rather small inte-
gers” if it is interpreted as the composition A o R?

7. What is the relationship between a relational assignment equation and a
possibility assignment equation?

8. Which of the definitions of “true” amounts to unity possibility distributions
and which other important linguistic variables are represented by unity
possibility distribution?

9. Consider examples 9-10 and make propositions about cars like Mercedes,
Volvo, Chevy, and Rolls Royce.



1 O FUZZY SETS
AND EXPERT SYSTEMS

10.1 Introduction to Expert Systems

During the last three decades, the potential of electronic data processing (EDP)
has been used to an increasing degree to support human decision making in dif-
ferent ways. In the 1960s, the management information systems (MISs) created
probably exaggerated hopes for managers. Since the late 1970s and early 1980s,
decision support systems (DSSs) found their way into management and engineer-
ing. The youngest offspring of these developments are the so-called knowledge-
based expert systems or short expert systems, which have been applied since
the mid-1980s to solve management problems [Zimmermann 1987, p. 310]. It
is generally assumed that expert systems will increasingly influence decision-
making processes in business in the future.

If one interprets decisions rather generally, that is, including evaluation,
diagnosis, prediction, etc., then all three types could be classified as decision sup-
port systems that differ gradually with respect to the following properties:

1. Does the system “optimize” or just provide information?
2. Is it usable generally or just for specific purposes and areas?
3. Is it self-contained with respect to procedures and algorithms, or does it

173
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“learn” and “derive” inference and decision-making rules from knowledge
that is inquired from a human (expert) and analyzed within the system?

It can be expected that in the future these decision support systems will
contain to an increasing degree features of all three types of the above-mentioned
systems. Even though fuzzy set theory can be used in all three “prototypes,” we
shall concentrate on “expert systems” only because the need and problem of
managing uncertainty of many kinds is most apparent there; and hence the
application of fuzzy set theory is most promising and, in fact, most advanced.
In operations research (OR), the modeling of problems is normally being done
by the OR specialist. The user then provides input data, and the mathematical
model provides the solution to the problem by means of algorithms selected by
the OR specialist.

In expert systems, the domain knowledge is typically emphasized over formal
reasoning methods:

In attempting to match the performance of human experts, the key to solving the
problem often lies more in specific knowledge of how to use the relevant facts than
In generating a solution from some general logical principles. “Human experts achieve
outstanding performance because they are knowledgeable” [Kastner and Hong 1984].

Conventional software engineering is based on procedural programming lan-
guages. The tasks to be programmed have to be well understood, the global flow
of the procedure has to be determined, and the algorithmic details of each subtask
have to be known before actual programming may proceed. Debugging often
represents a huge investment of time, and there is little hope of automatically
explaining how the results are derived. Later modification or improvement of a
program becomes very difficult.

Most of the human activities concerning planning, designing, analyzing, or consulting
have not been considered practical for being programmed in conventional software.
Such tasks require processing of symbols and meanings rather than numbers. But
more importantly, it is extremely difficult to describe such tasks as a step-by-step
process. When asked, an expert usually cannot procedurally describe the entire pro-
cess of problem solving. However, an expert can state a general number of pieces of
knowledge, without a coherent global sequence, under persistent and trained interro-
gation. Early Al research concentrated on how one processes relevant relations that
hold true in a specific domain to solve a given problem. Important foundations have
been developed that enable, in principle, any and all logical consequences to be
generated from a given set of declared facts. Such general purpose problem solving
techniques, however, usually become impractical as the toy world used for demonstra-
tion is replaced by even a simple real one. The realization that knowledge of how
to solve problems in the specific domain should be a part of the basis from which
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inferences are drawn contributed heavily to making expert systems technology prac-
tical [Kastner and Hong 1984].

While the typical OR model or software package normally supports the ex-
pert, an expert system is supposed to model an expert and make his or her expert
knowledge available to nonexperts for purposes of decision making, consulting,
diagnosis, learning, or research.

The character of an expert system might become more apparent if we quote
some of the system characteristics considered to be attributes of expert systems
[Konopasek and Jayaraman 1984]. Attributes of expert systems include:

The expert system has separate domain-specific knowledge and problem-solving
methodology and includes the concepts of the knowledge base and the inference
engine.

The expert system should think the way the human expert does.

Its dynamic knowledge base should be expandable and modifiable and should
facilitate “plugging in” different knowledge modules.

The interactive knowledge transfer should minimize the time needed to transfer
the expert’s knowledge to the knowledge base.

The expert system should interact with the language “natural” to the domain
expert; it should allow the user to think in problem-oriented terms. The system
should adapt to the user and not the other way around. The user should be
insulated from the details of the implementation.

The principal bottleneck in the transfer of expertise—the knowledge engineer—
should be eliminated.

The control strategy should be simple and user-transparent; the user should be

able to understand and predict the effect of adding new items to the knowledge
base. At the same time, the strategy should be powerful enough to solve com-
plex problems.

There should be an inexpensive framework for building and experimenting with
expert systems.

The expert system should be able to reason under conditions of uncertainty and

insufficient information and should be capable of probabilistic reasoning.

An expert system should be able to explain “why” a fact is needed to complete

the line of reasoning and “how” a conclusion was arrived at.

Expert systems should be capable of learning from experience.
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Knowledge
Expert User
Engineer
Dialogue Module
Knowledge
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Expert System

Figure 10-1. Structure of an expert system.

Cutting a long story short, Kastner and Hong [1984] provide this definition:

An expert system is a computer program that solves problems that heretofore required
significant human expertise by using explicitly represented domain knowledge and
computational decision procedures [Kastner and Hong 1984].

A sample of some other definitions of an expert system can be found in the
work of Fordyce et al. [1989, p. 66]. The general structure of an expert system
is shown in figure 101 (see also Zimmermann [1987, p. 262]). In the following,
the five components of such a system are explained in more detail. The knowledge
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acquisition module supports the building of an expert system’s knowledge
base.

The subject of knowledge acquisition for knowledge-based systems falls conveniently
into two parts depending on whether the knowledge is elicited from the experts by
knowledge engineers or whether that knowledge is acquired automatically by the
computer using some form of automatic leamning strategy and algorithms [Graham
and Jones 1988, p. 279].

A module that aids the knowledge engineer during the process of knowledge
elicitation could consist of a user-friendly rule editor, an “‘automatic error-checking
when rules are being put in, and good online help facilities” [Ford 1987, p. 162].
(See also Buchanan et al. [1983, p. 129]). AQUINAS is such a system; it is
presented by Boose [1989, p. 7].

Another way to acquire domain-dependent knowledge is the application of
machine learning techniques to automatically generate a part of the knowledge
base. It is expected that rapid improvements will take place in the field of auto-
matic knowledge acquisition in the future. The interested reader is referred to
Michalski et al. [1986, p. 3] and Morik [1989, p. 107].

The knowledge base contains all the knowledge about a certain domain that
has been entered via the above-mentioned knowledge acquisition module. Apart
from special storage requirements and system-dependent structures, the knowledge
base can be exchanged in some expert systems. That means that there can be
several knowledge bases, each covering a different domain, which can be “plugged
into” the “‘shell” of the remaining expert system.

There are basically two types of knowledge that will need to be represented in the
system: declarative knowledge and procedural knowledge. The declarative part of the
knowledge base describes “what” the objects (facts, terms, concepts, . . . ) are that are
used by the expert (and the expert system). It also describes the relationships between
these objects. This part of the knowledge base is sometimes referred to as the “data
base” or “facts base.”

The procedural part of the knowledge base contains information on how these
objects can be used to infer new conclusions and ultimately arrive at a solution. Since
this “how-to” knowledge is usually expressed as (heuristic or other) rules, it is gen-
erally known as the rule-base [Rijckaert et al. 1988, p. 493].

A number of techniques for representing the expert knowledge have been
developed. These are described by Barr and Feigenbaum [1981/82] in greater
detail. The four methods most frequently used in expert systems are produc-
tion rules, semantic nets, frames, and predicate calculus (see Zimmermann [1987,
p. 266]). While we will investigate here the first three of these, the reader
is referred to Nilsson [1980, p. 132] for the latter.
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Figure 10-2. Semantic net.

Production Rules. Production rules are by far the most frequently used method
for representing procedural knowledge in an expert system. They are usually of
the form: “If a set of conditions is satisfied, then a set of consequences can
be produced.”

Production rules are used to capture the expert’s rule of thumb or heuristic as well as
useful relations among the facts in the domain. These if-then rules provide the bulk
of the domain-dependent knowledge in rule-based expert systems and a separate control
strategy is used to manipulate the rules.

if the car won’t start and
the car lights are dim
then the battery may be dead.

Many experts have found rules a convenient way to express their domain know-
ledge. Also, rule bases are easily augmented by simply adding more rules. The ability
to incrementally develop an expert system’s expertise is a major advantage of rule-
based schemes [Kastner and Hong 1984].

Semantic Nets. One method of encoding declarative knowledge is a seman-
tic net. Concepts, categories, or phenomena are presented by a number of nodes
associated with one another by links (edges). These links may represent causation,
similarity, propositional assertions, and the like. On the basis of these networks,
insight into structures can be gained, inferences can be made, and classifications
can be obtained. In figure 10-2, a semantic net is used to represent declarative
knowledge about the structure of some vehicles.

Frames. The concept of a frame for representing knowledge in an expert
system is introduced by Minsky [1975]: “A frame is a structure that collects
together knowledge about a particular concept and provides expectations and
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default knowledge about that concept.” Typically, the frame is represented in the .

computer as a group of slots and associated values. The values may themselves
be other frames.

Frame: vehicle
classes passenger, motorcycle, truck, bus, bicycle, . ..
wheels (integer)

propelled by motor, human feet. . ..

Frame: bicycle

is-a vehicle
wheels 2 (default)
capacity 1 person (default)

[Kastner and Hong 1984]

New concepts can often be represented by adding frames or by putting new
information in “slots” of existing frames. Slots in frames may also be used for
inference rules and empty slots might indicate missing information.

The inclusion of procedures in frames joins together in a single representational strategy
two complementary (and, historically, competing) ways to state and store facts: pro-
cedural and declarative representations [Harmon and King 1985, p. 44].

The inference engine is a mechanism for manipulating the encoded knowledge
from the knowledge base and to form inferences and draw conclusions. The
conclusions can be deduced in a number of ways that depend on the structure
of the engine and the method used to represent the knowledge. In the case of
production rules for knowledge encoding, different control strategies have been
used that direct input and output and select which rules to evaluate. Two very
popular strategies are “forward chaining” and “backward chaining.” In the former,
data-driven rules are evaluated for which the conditional parts are satisfied. The
latter strategy (goal-driven) selects a special rule for evaluation. The “goal” is
to satisfy the conditional part of this rule. If this cannot be achieved directly,
then subgoals are established on the basis of which a chain of rules can be
established such that eventually the conditional part of the first rule can be |
satisfied. Further information about inference strategies has been described by
Waterman [1986]. 1

The above-mentioned approaches can, of course, be combined. In addition |
to these techniques, expert systems may also contain rather sophisticated
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Table 10-1. Expert systems.

Name Domain of expertise Major technique
CADIAG-2 internal medicine rules*
[Adlassnig et al. 1985]
DENDRAL molecular structure rules
[Lindsay et al. 1980] elucidation
EMERGE chest pain analysis rules*
[Hudson and Cohen 1988
ESP strategic planning rules*
[Zimmermann 1989]
EXPERT rheumatology, rules*
[Weiss and Kulikowski 1981] ophthalmology hierarchies
FAULT financial accounting rules*
[Whalen et al. 1987]
MYCIN infectious disease rules
[Buchanan and Shortliffe 1984] diagnosis and treatment
OPAL job shop scheduling rules*
[Bensana et al. 1988]
PROSPECTOR mineral exploration inference
[Benson 1986 network
R1/XCON computer configuration rules
[McDermott 1982]
SPERIL earthquake engineering rules*

[Ishizuka et al. 1982]

* Includes fuzzy logic.

mathematical algorithms, such as cluster algorithms and optimization and search
techniques like tabu search (see Glover and Greenberg [1989, p. 119]). This
development is actually already in the direction of decision support systems, but
in many cases it will make the expert system more efficient and even more user-
friendly. Table 10-1 gives some indication in which area expert systems are
already available and what techniques they use. By no means does this table
claim to be exhaustive.

10.2 Uncertainty Modeling in Expert Systems

There are three main reasons for the use of fuzzy set theory in expert systems:

I The interfaces of the expert system on the expert side as well as on the
user side are with human beings. Therefore communication in a “natural”
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way seems to be the most appropriate; and “natural” means, generally, in ;
the language of the expert or user. This suggests the use of linguistic variables
as they were described in chapter 9.

2. The knowledge base of an expert system is a repository of human knowledge, -
and since much of human knowledge is imprecise in nature, it is usually the !
case that the knowledge base of an expert system is a collection of rules and
facts that, for the most part, are neither totally certain nor totally consistent |
[Zadeh 1983a, p. 200]. The storage of this vague and uncertain portion of |
the knowledge by using fuzzy sets seems much more appropriate than the
use of crisp concepts and symbolism.

3. As a consequence of what has been said in point 2, the “management of
uncertainty” plays a particularly important role. Uncertainty of information
in the knowledge base induces uncertainty in the conclusions, and therefore
the inference engine has to be equipped with computational capabilities to
analyze the transmission of uncertainty from the premises to the conclusions
and to associate the conclusion with some measure of uncertainty that is
understandable and properly interpretable by the user. The reader should
also recall from chapter 1 that imprecision in human thinking and communi-
cation is often a consequence of abundance of information, that is, the fact
that humans can often process the required amount of information efficiently
only by using aggregated (generic) information. This efficiency of human
thinking, when modeled in expert systems, might also increase efficiency,
that is, decrease answering time and so on. ‘

Most of the expert systems existing so far contain an inference engine on
the basis of dual logic. The uncertainty is taken care of by Bayesian probability
theory. The conclusions are normally associated with a certainty or uncertainty -
factor expressing stochastic uncertainty, confidence, likelihood, evidence, or belief. :
Only recently have the designers of expert systems become aware of the fact that
all of the types of uncertainty mentioned above cannot be treated the same way
and that a factor of, for example, .8 to express the uncertainty of a conclusion
does not mean very much to the user. The expert systems marked with an
asterisk in table 10-1 are already using fuzzy set approaches in different ways.
We shall illustrate some of them later. In addition, proposals have been published -
on how fuzzy set theory could be used meaningfully in expert systems.

The most relevant approaches in fuzzy set theory are fuzzy logic and approx-
imate reasoning for the inference engine [Lesmo et al. 1982; Sanchez 1979]; '
the presentation of conditions, indicators, or symptoms by fuzzy sets, especially .
linguistic variables, to arrive at judgements about secondary phenomena [Esogbue |
and Elder 1979; Moon et al. 1977; etc.]; the use of fuzzy clustering for diagnosis .
[Fordon and Bezdek 1979; Esogbue and Elder 1983]; and combinations of



182 FUZZY SET THEORY—AND ITS APPLICATIONS

fuzzy set theory with other approaches, for example, Dempster’s theory of
evidence [Ishizuka et al. 1982], to obtain justifiable and interpretable measures
of uncertainty.

We shall describe some more recent attempts to apply fuzzy set theory to
knowledge representation and inference mechanisms in expert systems.

Although, in a precise environment, production rules are adequate to repre-
sent procedural knowledge (as was seen in section 10.1), this is no longer true
in a fuzzy environment. One way to deal with imprecision is to use fuzzy pro-
duction rules, where the conditional part and/or the conclusions part contains lin-
guistic variables (see chapter 9). An application of this knowledge-representation
technique in the area of job-shop scheduling has been given by Dubois [1989,
p- 83]. Negoita [1985, p. 80] gives a basic introduction into fuzzy production
rules.

While little work has been done in the field of “fuzzy semantic nets,” sug-
gestions to fuzzify frames to represent uncertain declarative knowledge, and an
illustrative example, stem from Graham and Jones [1988, p. 67]. The two main
generalizations for arriving at a fuzzy frame are

1. allowing slots to contain fuzzy sets as values, in addition to text, list, and
numeric values,
2. allowing partial inheritance through is-a slots.

As a consequence of the representation of imprecise and uncertain knowledge,
it is necessary to develop adequate reasoning methods. Since 1973, when Zadeh
suggested the compositional rule of inference, a tot of work has been done in the
field of fuzzy inference mechanisms [Dubois and Prade 1988a, p. 67; Zimmermann
1988, p. 736].

Nevertheless, there does not yet exist—and probably never will—a generally
usable expert system shell that can be applied to all possible contexts. One of
the reasons is that human reasoning depends on the context, i.e., the person with
a specific educational background and the situation in which a problem has to
be solved. The selection of existing models for the “implication” in chapter 9 is
one indication of this. There are essentially two ways to circumvent this difficulty:
Either a fuzzy expert system shell has to be designed for a small subset of
contexts (i.e., medical diagnosis problems, technical diagnosis, or management
planning problems) or such a shell will be a toolbox including various ways of
reasoning, uncertainty representations, linguistic approximation, etc., from which
the appropriate approaches have to be selected in a certain context. Since the
second version does not yet exist, we shall turn towards considering exemplarily
some more dedicated expert systems.
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10.3 Applications

We shall now illustrate the use of fuzzy set theory in expert systems by sketching
some example “cases” (existing expert systems and published approaches that
could be used in expert systems).

Case 10-1: Linguistic Description of Human Judgments [Freksa 1982]

Freksa presents empirical results that suggest that more natural, especially
linguistic representations of cognitive observations yield more informative and
reliable interpretations than do traditional arithmomorphic representations. He
starts from the following assumed chain of cognitive transformations.

object
l

percept
l

mental representation

2

verbal description

2

formal description

2

interpretation.

The suggested representation system for “soft observations” is supported to have
the following properties [Freksa 1982, p. 302]: ‘

1. The resolution of the representation should be flexible to account for vary-
ing precision of individual observations.

2. The boundaries of the representing objects should not necessarily be sharp
and should be allowed to overlap with other representing objects.

3. Comparison between different levels of resolution of representation should
be possible.

4. Comparison between subjective observations of different observers should ‘
be possible. ‘

5. The representation should have a small ‘“cognitive distance” to the |
observation. ‘

6. It should be possible to construct representing objects empirically rather
than from theoretical considerations.
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membership

! ' feature
A B c D dimension

Figure 10-3. Linguistic descriptors.

The observations are expressed by simple fuzzy sets that can be described by the
quadruples {A, B, C, D}, illustrated in figure 10-3, with the following inter-
pretation: It is entirely possible that the actual feature value observed is in the
range [B, C; it may be possible that the actual value is in the ranges [A, B] or
[C, D], but more ecasily closer to [B, C] than further away; an actual value
outside of [A, D] is incompatible with the observation. [B, C] is called “core,”
and [A, B] and [C, D] are called “penumbra” of the possibility distribution.

The construction of a repertoire of semantic representations for linguistic

descriptors is done in the following way (see figure 10—4):

The observer selects a set of linguistic labels that allows for referencing all
possible values of the feature dimension to be described.

The repertoire of linguistic labels is arranged linearily or hierarchically in
accordance with their relative meaning in the given feature dimensions.
A set of examples containing a representative variety of feature values in the
given feature dimension is presented to the observer. The observer marks all
linguistic labels that definitively apply to the example feature value with
“yes” and the labels that definitely do not apply with “no.” The labels that
have not been marked may be applicable, but to a lesser extent than the ones
marked “‘yes.”

From the data thus obtained, simple membership functions are constructed
by arranging the example objects according to their feature values (using the
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Figure 10—4. Label sets for semantic representation.

same criterion by which the linguistic labels had been arranged). These
values form the domain for the assignment of membership values. ‘
5. Finally, we assign to a given label the membership value “yes” to the range
of examples in which the given label was marked “yes” for all examples and
the membership value “no” to the ranges in which the given label was
marked “no” for all examples. The break-off points between the regions
with membership value “no” and “yes” are connected by some continuous,
strongly monotonic function to indicate that the membership of label assign-
ment increases the closer one gets to the region with membership assign- |
ment “yes” [Freska 1982, p. 303). ‘

It is not difficult to imagine how the above technique could be used in expert
systems for knowledge acquisition and for the user interface.

Case 10-2: CADIAG-2, An Expert System for Medical Diagnosis

Expert knowledge in medicine is to a large extent vague. The use of objective
measurements for diagnostic purposes is only possible to a certain degree. The
assignment of laboratory test results to the ranges “normal” or “pathological” is ‘
arbitrary in borderline cases, and many observations are very subjective. The
intensity of pain, for instance, can only be described verbally and depends very
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much on the subjective estimation of the patient. Even the relationship between
symptoms and diseases is generally far from crisp and unique. Adlassnig and
Kolarz [1982, p. 220] mention a few typical statements from medical books that
should illustrate to readers who are not medical doctors the character of available
information:

Acute pancreatitis is almost always connected with sickness and vomiting.
Typically, acute pancreatitis begins with sudden aches in the abdomen.
The case history frequently reports about ulcus ventriculi and duodendi.

Bilirubinurie excludes the hemolytic icterus but bilirubin is detectable with
hepatocellular or cholestatic icterus.

They designed and implemented CADIAG-2, for which they stated the follow-
ing objectives [Adlassnig 1980, p. 143; Adlassnig et al. 1985]:

1. Medical knowledge should be stored as logical relationships between symp-
toms and diagnoses.

2. The logical relationships might be fuzzy. They are not obliged to corre-
spond to Boolean logic.

3. Frequent as well as rare diseases are offered after analyzing the patient’s
symptom pattern.

4. The diagnostic process can be performed iteratively.

5. Both proposals for further investigations of the patient and reasons for all
diagnostic results are put out on request.

To sketch their system, let us use the following symbols:

S =1{8.,...,8,}: = set of symptoms
D =1{D,,..., D,}: = set of diseases or diagnoses
P ={P, ..., P,}: = set of patients

All §;, D, and P, are fuzzy sets characterized by their respective membership
functions.

L expressed the intensity of symptom /
Wj, expresses the degree of membership of a patient to 15]-

Up, assigns to each diagnosis a degree of membership for P,.
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Two aspects of symptom S, with respect to disease Dj are of particular interest:

1. Occurrence of §; in case of D,, and
2. Confirmability of §; for D,
This leads to the definition of two fuzzy sets:
Ok), x=1{0,1,...,100} for occurrence of §; at D;
and

Cx), x=1{0,1,...,100} representing the frequency with which
S, has been confirmed for D,

The membership functions for these two fuzzy sets are defined to be
Hs(x) = f(x; 1,50,99) xe X
He(x) = f(x; 1,50,99) xe Y

where X is the occurrence space, Y is the confirmability space, and f is defined 3
as follows (see also figure 9—4!):

0 x=a
x—a)

2( ) a<x=bh
c—a

f(xa,b,0) = IR
1—2( ) forb<x=c
c—a
1 forx>c¢

The §,D; occurrence and confirmability relationships are acquired empirically
from medical experts using the following linguistic variables:

i Occurrence O, Confirmability C;
1 always always

2 almost always almost always

3 very often very often

4 often often

5 unspecific unspecific

6 seldom seldom

7 very seldom very seldom

8 almost never almost never

9 never never
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Figure 10-5. Linguistic variables for occurrence and confirmability.

The membership functions of O,and C, are shown in figure 10-5. They are arrived
at by applying modifiers (see definition 9-3) to “never” and “always.” For
details of the data acquisition process, see Adlassnig and Kolarz [1982, p. 226].

Other relationships such as symptom—symptom, disease—disease, and symp-
tom—disease are also defined as fuzzy sets (fuzzy relations). Possibilistic inter-
pretations of relations (min-max) are used. Given a patient’s symptom pattern,
the symptom | disease relationships, the symptom | combination-disease relation-
ships, and the disease | disease relationships yield fuzzy diagnostic indications
that are the basis for establishing confirmed and excluded diagnosis as well as
diagnostic hypotheses.

Three binary fuzzy relations are then introduced: The occurrence relation, R 5,
the confirmability relation, Rz, both in X ® Y, and the symptom relation, ﬁs which
is determined on the basis of the symptom patterns of the patients.

Finally, four different fuzzy indications are calculated by means of fuzzy
relation compositions [Adlassnig and Kolarz 1982, p. 237]:
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1. S~,15j occurrence indication R, = Rs ° Ry
Mz, (p, D) = max min (g (p. 5)). Uz, (Si- D)}
2. S~,15j confirmability indication R, = R; ° R
Mg, (p, D)) = max min {itz, (p: §0» uz, (Si» D)}
3. 8D, nonoccurrence indication Ry = Rs © (1 — Ry)
1z, (p, D) = max min (g, (P, S, 1~ Mz, (5, D))
4. SD; nonsymptom indication R, = (1 - R5) ° R;
Mg, (p, D)) = max min {1 -z, (p, 8§, Mz, (Si, D)}

Similar indications are determined for symptom | disease relationships, and

we arrive at 12 fuzzy relationships R;.
Three categories of diagnostic relationships are distinguished:

1. Confirmed diagnoses
2. Excluded diagnoses
3. Diagnostic hypotheses
Diagnoses are considered confirmed if
u,qj=1 for j=1 or 6

or if the max-min composition of them yields 1.
For excluded diagnosis, the decision rules are more involved; and for diagnostic

hypotheses, all diagnoses are used for which the maximum of the following pairs

of degrees of membership are smaller than .5:
max {ugz,Hg}=.5 for

{j, k}=1{1,2} or {S,6} or (9,10}

CADIAG-2 can be used for different purposes: for example, diagnosing dis-
eases, obtaining hints for further examinations of patients, and explanation of

patient symptoms by diagnostic results.

Case 10-3: SPERIL I, an Expert System to Assess Structural Damage
[Ishizuka et al. 1982]

Earthquake engineering has become an important discipline in areas in which
the risk of earthquake is quite high.
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Frequently, the safety and reliability of a particular or a number of existing structures
need to be evaluated either as part of a periodic inspection program or immediately
following a given hazardous event. Because only a few experienced engineers can
practice it well to date, it is planned to establish a systematic way for the damage
assessment of existing structures. SPERIL is a computerized damage assessment system
as designed by the authors particularly for building structures subjected to earthquake
excitation [Ishizuka et al. 1982, p. 262}

Useful information for the damage assessment comes mainly from the fol-
lowing two sources:

1. visual inspection at various portions of the structure
2. analysis of accelerometer records during the earthquake

The interpretation of these data is influenced to a large extent by the particular
kind of structure under study. Information for damage assessment is usually
collected in a framework depicted in figure 10-6.

It is practically impossible to express the inferential knowledge of damage
assessment precisely. Therefore the production rules in SPERIL I are fuzzy. A
two-stage procedure is used to arrive at fuzzy sets representing the degree of
damage. First the damage is assessed on a 10-point scale, and then the rating
is transformed into a set of terms of the linguistic variable “damage.”

Let d be the damage evaluated at a 10-point scale. Then the relationship
between the terms and the original ratings can be described as follows:

slight moderate severe destructive
T ={© D1 .9}
Tagd) = {(1, .5), 2, 1), 3, 5)}

Troterneld) = {3, .5), (4, 1), (5, 7), (6, .3)}

Tsevcre(d) = {(5~ 3)9 (6» 7), (7» 1)9 (89 7), (9. 3)}
Toenened) = { (8, 3), 9, 7). (10, 1)}
The rule associated with node 2 in figure 10—8, for instance, would then read

IF:  MAT is reinforced concrete,
THEN IF: STI is no,
THEN: GLO is no with 0.6,
ELSE IF: STI is slight,
THEN: GLO is slight with 0.6,
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Figure 10-6. Inference network for damage assessment of existing structures
[Ishizuka et al. 1982, p. 263].

ELSE IF: STI is moderate,

THEN: GLO is moderate with 0.6,
ELSE IF:. STI is severe,

THEN: GLO is severe with 0.6,
ELSE IF: STI is destructive,

THEN: GLO is destructive with 0.6,

ELSE: GLO is unknown with 1,
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where

MAT = structural material,

GLO = damage of global nature,

STI = diagnosis of stiffness, and

“unknown” stands for the universe set of damage grade.

To obtain a correct answer by using such knowledge, a rational inference
mechanism s required to process the rules expressed with fuzzy subsets along
with uncertainty in an effective manner.

To include uncertainty, first Dempster’s and Shafer’s probabilities were used
[Dempster 1967; Shafer 1976]. Thus the conclusions were accompanied by a
lower and upper probability indicating lower and upper bounds of subjective
probabilities. (For details, see Ishizuka et al. [1982, pp. 264 -266].)

It was felt that the rules as shown for node 2 could not necessarily be expressed
as crisp rules. Therefore fuzzy inference rules were introduced in order to arrive
at a fuzzy damage assessment together with upper and lower probabilities. For
details, the reader is again refereed to the above-mentioned source.

Improvements, particularly of the knowledge acquisition phase, have been
suggested [Fu et al. 1982; Watada et al. 1984]. They either use fuzzy clustering
or a kind of linguistic approximation.

Case 10-4: ESP, an Expert System for Strategic Planning [Zimmermann
1989]

Strategic planning is a large heterogeneous area with changing content over time
and without a closed theory such as is available in other areas of management
and economics. It deals with the long-range planning of a special company and
is frequently done for independent autonomous units, called strategic business
units (SBUs) [Hax and Majluf 1984, p. 15]. One technique for analyzing the
current and future business position is the business portfolio approach.

The original idea of portfolio analysis in strategic planning was to describe
the structure of a corporation by the positions of SBUs in a two-dimensional
portfolio matrix and to try to find strategies aimed at keeping this “portfolio”
balanced. Some of the major problems encountered are given below.

Dimensionality: It is obvious that two dimensions are insufficient to describe
adequately the strategic position of an SBU. Two dimensions are certainly pref-
erable for didactical reasons and for presentation, but for realistic description a
multidimensional vectorial positioning would be better.

Data Collection and Aggregation: Even for a two-dimensional matrix, the
dimensions of an SBU must be determined by a rather complex data-gathering
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and aggregation process. Factors such as ROI, market share, and market growth
can be obtained without too much difficult. Other factors to be considered are
combinations of many aspects. It is, therefore, not surprising that intuitive aggre-
gation and the use of scoring methods are rather common in this context, although
their weaknesses are quite obvious: Aggregation procedures are kept simple for
computational efficiency, but they are very often not justifiable. Different fac-
tors are considered to be independent without adequate verification. A lot of
subjective evaluations enter the analysis with very little control.

Strategy Assignment: In classical portfolio matrixes, broad strategic categories
have been defined to which basic strategies are assigned. It is obvious that these
categories are much too rough to really define operational strategies for them.
One of the most important factors in determining real strategies will be the
knowledge and experience of the strategic planners who transform those very
general strategic recommendations into operational strategies—a knowledge that
is not captured in the portfolio matrixes!

Modeling and Consideration of Uncertainty: In an area into which many ill-
structured factors, weak signals, and subjective evaluations enter, and which
extends so far into the future, uncertainty is obviously particularly relevant. Unfor-
tunately, however, uncertainty is hardly considered in most of the strategic planning
systems we know. The utmost that is done is to sometimes attach uncertainty
factors to an estimate and then to aggregate those together with the data in a
rather heuristic and arbitrary way.

ESP, an Expert System for Strategic Planning, tries to improve classical
approaches and to remedy some of their shortcomings. It also provides a frame-
work in which strategic planners can analyze strategic information and develop
more sophisticated strategic recommendations. Its characteristics are as follows:

Dimensionality. Multidimensional portfolio matrixes are used. For visual-
ization, two dimensions each can be chosen; the location of SBUs are defined
by vectors, however. As an example, let us consider the four following dimensions:

Technology Attactiveness
Technology Position
Market Attractiveness
Competitive Position

s

If we combine the first two and the last two dimensions we obtain two two- !
dimensional portfolio matrixes which, combined, correspond to a four-dimensional

matrix (see figure 10-7). If each of the two-dimensional matrixes consists
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Figure 10~7. Combination of two two-dimensional portfolios.

of nine strategic categories by having three intervals—low, medium, high—on
each axis, then the combined matrix contains 9 x 9 = 81 strategic positions.
Graphically, only the two-dimensional matrixes are shown. The positions of the
combined matrix are only stored vectorially and used for more sophisticated
policy assignment,

Data Collection and Aggregation. Each “dimension” is defined by a tree of
subcriteria and categories. Figure 10—8 shows a part of the tree for “Technology
Attractiveness.”

The input given by the user consists of one linguistic variable for all criteria
of the leaves (lowest subcriteria in each of the four trees). This linguistic variable
denotes the respective “degree of achievement™; it can be chosen from the terms
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not litle medium considerably full

Figure 10-9. Terms of “degree of achievement.”

“not at all,” “little,” “medium,” “considerably.” and “full.” These terms are
represented by trapezoidal membership functions that are characterized by their
four characteristic values on their supports (see figure 10-9).

To arrive at the root of each tree, these ratings of the leaves are aggregated
on every level of the tree by using the y-operator, described in chapter 3. There
the reader will find other operators (e.g.. minimum, product), which can also be
chosen by the user. It is suggested that this aggregation of linguistic terms. rather
than of numerical values, be done by aggregating the four characteristic values
of each trapezoid in order to obtain the respective characteristic value of the
resulting trapezoid. The last aggregation level of one tree is shown in figure 10—
10. Repeating this procedure for all characteristic values of the membership
functions of all aggregation steps of each of the four trees leads to a trapezoidal
membership function for each of the criteria.

Strategy Assignment. As already mentioned, strategy assignment is made on
the basis of the vectorially described position of an SBU. Two levels can be
distinguished:

1. General Policy Recommendation
This is assigned to the position of the SBU as it is defined by the values of
the roots of the trees. In our example, the position would be defined by
technology attractiveness, technology position. competitive position. and
market attractiveness.

2. Detailed Policy Recommendation
Policy recommendations based on the location in the portfolio matrix, which
in turn is determined by the values of the roots of the evaluation trees only,
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Figure 10—11. Portfolio with linguistic input.

can only be very rough guidelines. The same value at a root of the tree can
be obtained from very different vectors of values of the nodes of the first
level of the tree. The values of this vector are, therefore, used to make more
specific strategic recommendations in addition to the basic policy proposal
mentioned above. In the example tree shown in figure 10-8, for instance,
the ratings of “Acceptance,” “Technological Potential,” “Breadth of Appli-
cation,” and “Complementarity” would be used for such a specification of
the strategic recommendation.

Modeling and Consideration of Uncertainty. It is possible for the user of
ESP to interact with this system by defining a special a-level that results in
a rectangle in the portfolio matrixes, as shown in figure 10~11. The o-level
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Figure 10—12. Structure of ESP.

denotes the desired degree of certainty, and the corresponding area in the
matrix is a visualization of the possible position of the considered SBU.

ESP: Implementation. We had intended to design ESP by using one of the
available shells. It turned out, however, that none of the available shells offers
all the features we needed. Therefore, a combination of a shell (in this case
Leonardo 3.15) with a program (in Turbo Pascal) had to be used. The basic
structure of ESP is shown in figure 10-12.

Knowledge Base I contains primarily rules that assign basic strategy
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recommendations to locations of SBU in multidimensional portfolio matrixes
and detailed supplementary recommendations to profiles of the first levels of
trees. Together with the inference engine, it provides for the user the “if-then”
part and the explanatory function. For this part, the shell Leonardo 3.15 was
used.

Knowledge Base 1I contains the structures of the free defineable trees that
determine the location of an SBU in the different dimensions of the multi-
dimensional matrix. The “Aggregator” computes their values and characteristic
values for the linguistic values for all nodes of the trees on the basis of avail-
able structural knowledge (tree structure, o.-values, and y-values) and on the basis
of data (u-values) entered for each terminal leaf by the user. The information
provided by the “Aggregator” is then used for the visual presentation of two-
dimensional matrixes and profiles and also supports the explanatory module.

All aggregation and visual presentation functions could not be accommodated
by Leonardo 3.15. Therefore, an extra program in Turbo-Pascal and the
appropriate bridge programs to Leonardo had to be written.

ESP is fully menu driven. It could be considered as a second-generation
expert system that works with shallow knowledge (KB I) as well as with deep
knowledge (KB II).

Exercises

1. What are the differences between a decision support system and an expert
system?

2. Construct examples of domain knowledge represented in the form of rules,
frames, and networks. Discuss advantages and disadvantages of these three
approaches.

3. List, describe, and define at least four different types of uncertainty men-
tioned in this book. Associate appropriate theoretical approaches with them.

4. An expert in strategic planning has evaluated linguistically the degree of
achievement of the lowest subcriteria of the criterion “Technology Attractive-
ness.” He denotes the corresponding trapezoidal membership functions by
the vectors of the characteristic values. After the first aggregation step, the
evaluation of the first-level criteria results. The respective trapezoidal mem-
bership functions are given by the following vectors of the characteristic
values:

Acceptance: (.2, .3, .5, .7)
Technological Potential: (.6, .7, .9, 1)
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Breadth of Application: (.4, .5, .6, .7)
Complementarity: (.1, .3, 4, .6)

Compute the four characteristic values of the criterion “Technology Attrac-
tiveness” by using the y operator with ¥ = .5 and equal weights for all first-
level criteria for the four respective characteristic values given above. Draw
the resulting stripe in the portfolio matrix for o = .8.



1 1 FUZZY CONTROL

11.1 Origin and Objective

The objective of fuzzy logic control (FLC) systems is to control complex processes
by means of human experience. Thus fuzzy control systems and expert systems
both stem from the same origins. However, their important differences should
not be neglected. Whereas expert systems try to exploit uncertain knowledge
acquired from an expert to support users in a certain domain, FLC systems as
we consider them here are designed for the control of technical processes. The
complexity of these processes range from cameras [Wakami and Terai 1993]
and vacuum cleaners [Wakami and Terai 1993] to cement kilns [Larsen 1981],
model cars [Sugeno and Nishida 1985], and trains [Yasunobu and Miamoto
1985]. Furthermore, fuzzy control methods have shifted from the original trans-
lation of human experience into control rules to a more engineering-oriented
approach, where the goal is to tune the controller until the behavior is sufficient,
regardless of any human-like behavior.

Conventional (nonfuzzy) control systems are designed with the help of physical
models of the considered process. The design of appropriate models is time-
consuming and requires a solid theoretical background of the engineer. Since
modeling is a process of abstraction, the model is always a simplified version

203
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of the process. Errors are dealt with by means of noise signals, supplementary
model states, etc. Many processes can, however, be controlled by humans without
any model, and there are processes that cannot be controlled with conventional
control systems but are accessible to control by human operators—for example,
most people with a driving licence can drive a car without any model. The
formalization of the operator’s experience by the methods of fuzzy logic was the
main idea behind fuzzy logic control:

The basic idea behind this approach was to incorporate the “experience” of a human
process operator in the design of the controller. From a set of linguistic rules which
describe the operator’s control strategy a control algorithm is constructed where the
words are defined as fuzzy sets. The main advantages of this approach seem to be the
possibility of implementing “rule of the thumb” experience, intuition, heuristics, and
the fact that it does not need a model of the process {Kickert and Mamdani 1978,
p. 291].

Almost all designers of FLC systems agree that the theoretical origin of those
systems is the paper “Outline of a New Approach to the Analysis of Complex
Systems and Decision Processes” by Zadeh [1973b]. It plays almost the same
role that the Bellman—Zadeh [1970] paper titled “Decision Making in a Fuzzy
Environment” does for the area of decision analysis. In particular, the
compositional rule of inference (see definition 9-7) is considered to be the spine
of all FLC models. The original activities centered around Queen Mary College
in London. Key to that development was the work of E. Mamdani and his
students in the Department of Electrical and Electronic Engineering. Richard
Tong, of nearby Cambridge, was another key figure in the development of fuzzy
control theory. The first application of fuzzy set theory to the control of systems
was by Mamdani and Assilian {1975], who reported on the control of a laboratory
model steam engine. It is interesting to note that the first industrial application
of fuzzy control was the control of a cement kiln in Denmark [Holmblad and
Ostergaard 1982]. The area of fuzzy control was neglected by most European
and American control engineers and managers until the end of the 1980s, when
Japanese manufacturers launched a wide range of products with fuzzy controlled
parts and systems.

Fuzzy control was (and still is) treated with mistrust by many control engineers.
This attitude towards fuzzy control is changing, and most of the progress in this
area is due to control engineers who started with conventional control theory
(and still apply it). “Fuzzy logic” became a marketing argument in Japan at the
end of the 1980s, and popular press articles gave the impression that fuzzy
control systems are cheap, easy to design, very robust, and capable of outper-
forming conventional control systems. This is certainly not generally true; the
real situation depends heavily on the system to be controlled. The lack of practical
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Figure 11—1. Automatic feedback control.

experience in FLC design and well-trained engineers in the field must also be
considered when one decides to implement fuzzy controllers. FLC is, however,
beginning to establish itself as a recognized control paradigm and will play a
major role in control theory in the future.

11.2 Automatic Control

The process of automatic control of a technical process relies mainly on the
comparison of desired states of the process with some measured or evaluated
states. The controller tries to reach the desired states (setpoints) by adjustment
of the input values of the process that are identical to the translated output values
of the controller. Due to the continuous comparison of these values, one gets a
closed-loop system. Usually a noise signal leads to deviations from the set-
points and thus to dynamically changing controller outputs. Figure 11-1 depicts
an automatic feedback control system.

Conventional control strategies use process models or experimental results as
a basis for the design of the control strategies. The well-known PID controllers
are widely used design paradigms. They use information about the input—output
behavior of the process to generate the control action. The behavior of the closed
loop is controlled by different gain values that can be adjusted independently by
the control engineer. Modern computer-controlled (direct digital control, DDC)
systems have to deal with sampled values and are therefore modeled as time-
discrete control systems with sampling units. Thus the control action is a function
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of the error vector of recent errors ¢: = [e(k), e(k - 1), ..., e(k — r)], where k
is the sampling time, and the vector of the last control outputs u: = [u(k — 1),
utk — 2),..., utk — s)1. We derive the current control action as u(k): = f(e, u).

Note that e(k) and u(k) can be vectors in systems with many inputs and outputs
(MIMO).

11.3 The Fuzzy Controller

Fuzzy controllers are special DDC systems that use rules to model process
knowledge in an explicit way. Instead of designing algorithms that explicitly
define the control action as a function of the controller input variables, the
designer of a fuzzy controller writes rules that link the input variables with
the control variables by terms of linguistic variables. Consider, for example,
the heating system in your living room. If the temperature is slightly too low,
then you would probably want to increase the heating power a bit. If you now
want to control the room temperature by a fuzzy controller, you just interpret
the terms “slightly too low” and *“a bit” as terms of linguistic variables and write
rules that link these vanables, e.g.,

If temp = “slightly too low,”
then change of power = “increased by a bit”

After all rules have been defined, the control process starts with the computation
of all rule-consequences. Then the consequences are aggregated into one fuzzy
set describing the possible control actions, which in this case are different values
of the change of power. These computations are done with the computational
unit. Since our heating system doesn’t understand a control action like “increased
by a bit,”” the corresponding fuzzy set has to be defuzzified into one crisp con-
trol action using the defuzzification module. This simple example illustrates the
main ingrediences of a fuzzy controller: the rule base that operates on linguistic
variables, the fuzzification module that generates terms as functions of the crisp
input values (temperature, in this case), and the computational unit that generates
the terms of the output variables as a function of the input terms and the rules
of the rule base. Since the controlled process has to be fed with a crisp signal
(instead of increased by a bit in the example), the result of the computational
unit that is a term of a linguistic variable has to be transformed into a crisp
value. Figure 11-2 depicts a generic so-called “Mamdani” fuzzy controller.
Modifications of this scheme are possible and will be explicitly discussed later.

When designing fuzzy controllers, several decisions regarding the structure
and the methodology have to be made. It is possible to view a fuzzy controller
as a 7-tuple with the entries (input/fuzzification/rules/rule evaluation/aggregation/
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defuzzification /output) {compare Buckley 1992]. Possible decision parameters
are as follows:

Input: number of input signals. number of derived states of each input signal.
scaling of the input signal

Fuzzification: type of membership functions, mean, spread and peak of mem-
bership functions, symmetry. crosspoints. continuous or discrete support. granularity
(number of membership functions)

Rules: number of rules, number of antecedents, structure of rule base, tvpe of
membership functions in consequences. rule weights

Rule evaluation: aggregation operator in the antecedent, inference operator

Aggregation: aggregation operator combining the results of the individual rules,
individual rule-based inference (functional approach). or composition-based
inference (relational approach)

Defuzzification: defuzzification procedure

Output: number of output signals (usually determined by problem structure),
scaling

We will return to these parameters in more detail later. This classification, how-
ever, shows that a fuzzy controller is the result of a sequence of decisions by
the designer. It is therefore not appropriate to talk about the fuzzy controller;
one should rather explicate which type of controller is under consideration.
Many modifications of Mamdani’s original controller [Mamdani and Assilian
1975] have been proposed since the publication of the original paper in 1975, One
important and often used modification was introduced by Sugeno [1985b] and
will be described after the discussion of Mamdani’s original controller.

11.4 Types of Fuzzy Controllers
11.4.1 The Mamdani Controller

The main idea of the Mamdani controller is to describe process states by means
of linguistic variables and to use these variables as inputs to control rules. We
start with the assignment of terms to input variables. The base variable is an
input variable that can be measured or derived from a measured signal or an
output variable of the controller. In the heating system example, possible base
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Figure 11-3. Linguistic variable “Temperature.”

variables are room temperature, change of room temperature, number of open
windows, outdoor temperature, change of power, etc. This example illustrates
that the number of input signals is far from obvious. The terms of the linguistic
variables are fuzzy sets with a certain shape. It is popular to use trapezoidal or
triangular fuzzy sets due to computational efficiency, but other shapes are possible.
The linguistic variable “temperature” could, for example, consist of the terms
“very low” (v1), “low” (1), “comfortable” (c), “high” (h), and “very high” (vh),
as shown in figure 11-3.

Formally, we describe the terms of each linguistic variable LV, ..., LV, by
their membership functions p/ (x), where i indicates the linguistic variable, i =
1,..., n; j indicates the term of the linguistic variable i, j = 1,..., m(i), and

m(i) is the number of terms of the linguistic variable i. The number of linguistic
variables and the number of terms of each linguistic variable determine the
number of possible rules. In most applications, certain states can be neglected
either because they are impossible or because a control action would not be
helpful. It is therefore sufficient to write rules that cover only parts of the state
space.

The rules connect the input variables with the output variables and are based
on the fuzzy state description that is obtained by the definition of the linguistic
variables. Formally, the rules can be written as

rule r: if x, is Af' and x, is Af and...and x, is Aj, then u is A’

where A/ is the jth term of linguistic variable i corresponding to the membership
function ¥ (x,) and A’ corresponds to the membership function p/(u) representing
a term of the contro] action variable. A reasonable rule in the heating system
example is

if temperature is low and change_of_temperature is negative small,
then power is medium
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Table 11-1. Rule base.

templ/change_te nb ns ot ps pb
vi b b m m
1 b m m 8 S
c m $ N
h S S S
vh m S $

The rule base in systems with two inputs and one output can be visualized by
a rule table where the rows and columns are partitioned according to the terms
of the input variables and the entries are the rule consequences. Assume that we
have defined five terms of the linguistic variable “change_of _temperature™: “nega-
tive big” (nb), “negative small” (ns), “zero” (z), “positive small” (ps), “positive
big” (pb), and three control action terms for the “power™: “small” (s), “medium”
(m) and “big” (b). A possible rule base is then visualized in table 11-1.
Empty entries refer to states with no explicitly defined rules. The first empty
entry (vl, nb) in table 11-1 refers to a state where the temperature is very low
and falling rapidly. Since the heating system has limited power, even maximal
power would not lead to a comfortable temperature. A rule that covers this
situation is therefore superfluous. One should, however, define a default value
that is used as a controller output if neither of the rules fires.

The definition of linguistic variables and rules are the main design steps when
implementing a Mamdani controller. Before elaborating on the last design step.
which is the choice of an appropriate defuzzification procedure, we show how
input values trigger the computation of the control action. The computational
core can be described as a three-step process consisting of

1. determination of the degree of membership of the input in the rule-antecedent.
2. computation of the rule consequences, and
3. aggregation of rule consequences to the fuzzy set “control action.”

The first step is to compute the degrees of membership of the input values in the
rule antecedents. Employing the minimum-operator as a model for the “and,” we
compute the degree of match of rule » as

o, = minl:]uv . { MJ/(\ i(lpul) }

This concept enables us to obtain the validity of the rule consequences. We
assume that rules with a low degree of membership in the antecedent also have
little validity and therefore clip the consequence fuzzy sets at the height of the
antecedent degree of membership. Formally,
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usoan (1) = min {0, l»lj(u)}

The result of this evaluation process is obtained by aggregation of all consequences
using the maximum operator. We compute the fuzzy set of the control action:

l‘Lconseq (u) = max, {urconseq (u) }

This computation is a special case of an inference process described in chapter
10, and other inference methods can be applied. It is important to note that Mam-
dani’s method takes into account all rules in a single stage and that no chaining
occurs. Thus the inference process in fuzzy control is much simpler than in most
expert systems.

In our heating system example, we assume that the current temperature is
22°C and that the change_of_temperature is —0.6°C/min. Thus we get that tem-
perature is “comfortable” with degree 0.4 and “high” with degree 0.3 (see figure
11-3). A similar definition of the linguistic variables in the change_of_temperature
case yields “negative small” with degree 0.6 and “zero” with degree 0.2. In table
11-1, we see that four rules have a degree of match greater than zero:

r10: if temp = “comfortable” and change_of temp = “negative small,” then power
= “medium”
r11: if temp = “comfortable” and change_of temp = “zero,” then power = “small”

r13: if temp = “high” and change_of temp = “negative small,” then power =
“small”

rl4: if temp = “high” and change_of temp = “zero,” then power = “small”

The degree of membership is
oo = min {0.4, 0.6} = 0.4
o, = min {04, 0.2} = 0.2
o,;; = min {0.3, 0.6} = 0.3
o, = min {0.3, 0.2} = 0.2
Accordingly, the consequences of the rules are
5™ (u) = min (0.4, ™" (1))
U5 (1) = min {0.2, p** ()}
Wi () = min {0.3, P ()}
Ui (u) = min {0.2, p™ ()}
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Figure 11—4. Rule consequences in the heating system example.

Figure 11-4 depicts the resulting fuzzy set of control action
HCOHSL‘q (u) — max {ui‘gmcq (ll), uT(l)nSCq (Il), ul]:gnSCq (u)’ ulligllSCq (Ll)]

Since technical processes require crisp control actions, a procedure that generates
a crisp value out of the given fuzzy set is required. These defuzzification methods
are based on heuristic ideas like “take the action that corresponds to the maximum
membership,” “take the action that is midway between two peaks or at the center
of the plateau,” etc. We will present three often-used methods: center of area
(COA), center of sums (COS), and mean of maxima (MOM). Many other defuzzi-
fication methods exist but are not discussed here in detail (see, for example, Driankov
et al. [1993], Yager and Filev [1994], and Lee [1990] for more methods).

Center of Area. The COA or Center of Gravity (COG) method chooses the
control action that corresponds to the center of the area with membership greater
than zero. The area is weighted with the value of the membership function. The
idea of this method is to aggregate the information about possible control actions
that is represented by the membership function. The solution is a compromise,
due to the fuzziness of the consequences. Formally, the control action is computed
as
Ju SO (1) du
COA . U

Juconscq (Ll) du
v

U

The procedure can be computationally complex and can lead to unwanted results
if the fuzzy set is not unimodal. The result of the COA defuzzification for the
heating system example is depicted in figure 11-5.

Center of Sums. The center of sums method is a simplified version of the
COA method that does not take into account the aggregated consequence fuzzy
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Figure 11-5. COA defuzzification.

Figure 11-6. COS defuzzification.

set but considers the resulting fuzzy set of each rule evaluation individually.
Thus overlapping areas that usually exist due to the fuzziness of the rules are
considered more than once. The algorithm corresponding to this method has the
advantage of being much faster to compute and has therefore been implemented
in most fuzzy control algorithms and tools. Formally, the COS method is given
by

Ju- Zucr"m (u) du
S_U__r
|2 ur o) du
v or

The resulting control action in the COS case is shown in figure 11-6. Note that
the resulting control action is shifted to the right due to the overlapping of the
clipped fuzzy sets “small” and “medium.”

CO!

u

Mean of Maxima. The Mean of Maxima (MOM) defuzzification considers
only the part of the consequence fuzzy set with maximal degree of membership.
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Figure 11-7. MOM defuzzification.

The result is the mean of the corresponding interval of possible control actions.
The idea behind this method is to take the most plausible control action (the
control action with highest membership), but the method can lead to unplausible
results in the case of multimodal fuzzy sets where the chosen control action may
lie between two peaks. In the formal definition, we consider the interval between
the first value of the control action with maximal degree of membership and the
last value of the control action with maximal membership:

u™ = inf, fu e U : P (1) = max, {p"9 ()} )
w™ = sup, {u e U 1 p () = max, {p™ (u)})
We now choose the control action as the mean of these values, i.e.,

umin 4 ggimax

2

LMOM

Since we have a unimodal fuzzy set of control in our heating system
example, the resulting control action seems plausible and lies at the center of the
plateau with maximal degree of membership. The control action and the auxiliary
variables 4™ and 4™ are depicted in figure 11-7.

On the Suitability of Defuzzification Methods. We close the discussion of
defuzzification methods with some remarks on the suitability of different methods
in a certain control application. Defuzzification is a widely used method not only
in fuzzy control but also in decision analysis, data analysis, and other related
areas. The aim is always to transform a vector or a function (a fuzzy set) into
a crisp number. Thus certain features of the fuzzy set should be aggregated into
that number. In this sense, defuzzification can be regarded as an information-
aggregation process. The choice of an appropriate defuzzification method can be
based on an axiomatic and/or an empirical justification and should also take into
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account the computational effort. Therefore an optimal defuzzification method
does not exist. Rather, a good method should consider the following criteria:

1. Computational Effort: Is the method slow or fast when implemented as an
algorithm? Does my fuzzy control tool support this method?

2. Representation of Objective: Should a certain objective (e.g., consideration
of all rule results, elimination of disambiguous results) be pursued?

3. Continuity: In some applications it is preferable to have a continuous change
in the control action rather than discrete steps.

4. Plausiblity: Does the defuzzification method yield a plausible control action,
i.e., does the control action correspond closely to the inference result?

Other criteria are possible (see, e.g., Driankov et al. [1993] and Pfluger, Yen,
and Langari [1992]) and depend on the application under consideration. The
choice of an appropriate defuzzification procedure can therefore be compared to
the choice of an appropriate aggregation operator as discussed in chapter 3.

11.4.2 The Sugeno Controller

An often-used modification of Mamdani’s controller was presented by Sugeno
[1985b] and Sugeno and Nishida [1985]. The idea is to write rules that have fuzzy
antecedents, equivalent to the Mamdani controller, and crisp consequences that
are functions of the input variables. The rule results are aggregated as weighted
sums of the control actions corresponding to each rule. The weight of each rule
is the degree of membership of the input value in the rule antecedent as computed
in the Mamdani controller. A defuzzification procedure is therefore superfluous.
A rule can formally be written as

rule r: if x, is A} and x, is AP and...and x, is Aj, then u is
[l Xoy oo v s X))

where the variables are defined as in the Mamdani case. The consequence function,
which depends on the input variables, is usually linear, but other types may be
used. In the heating system example, we may write a rule like

if temperature is low and change_of temperature is negative small
then power = 400 — 120 - temp-23 - delta_temp [W]

The definition of a functional relationship is not straightforward but allows the
identification of parameter values in the consequence function.

The control action is computed with the help of the degrees of membership
that are evaluated exactly as in the Mamdani controller. We obtain
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It is possible to view the linear Sugeno controller as a linear controller that is
valid around a fuzzily defined operating point. The control algorithm in the
operating point is perfectly valid and loses validity with decreasing degree of
membership, which is computed with the help of the rule antecedents. Thus the
control strategy is a combination of several linear control strategies defined at
different points in the state space.

MSugeno —

11.5 Design Parameters

The design of a fuzzy controller involves decisions about 2 number of important
design parameters that can be determined before the actual control starts and/or
on-line. Important design parameters are the fuzzy sets in the rules, the rules
themselves, scaling factors in input and output, inference methods, and defuzzi-
fication procedures. Although other design parameters also play important roles,
we want to focus on the parameters that have to be defined in almost all control
applications. Defuzzification has already been discussed thoroughly and inference
is discussed in connection with expert systems (chapter 10).

11.5.1 Scaling Factors

The casiest-to-change parameters are the scaling factors. The scaling factors
scale the base variables of the linguistic variables. Formally, the input and output
variables are calculated as x;” = sf, - x,, where the x,’ is the variable that is used
in the rule and sf; is the scaling factor of rule i. Scaling factors allow the definition
of normalized base variables of the corresponding linguistic variables and play
a role similar to the gain in conventional control systems. It is obvious that
alternation of the scaling factors has a significant impact on the closed loop
behavior of an FL.C system.

11.5.2 Fuzzy Sets

The fuzzy sets describe terms of linguistic variables. When the shape of the
fuzzy sets are determined, several other parameters have to be adjusted. Here,
we will assume that the membership functions have a triangular shape, which by
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Figure 11—-8. Parameters describing the fuzzy sets.

no means is necessary but is often done in fuzzy control applications. The modal
value or peak value of a membership function is the value of the base variable
where the membership function is equal to one. The left and right width of the
membership function is the first value of the base variable on the left or right
side of the peak value, respectively, that has a zero membership. The cross point
between two membership functions is the value of the base variable where both
membership functions assume the same membership value greater than zero.
The cross point level is the membership at the cross point. Clearly, two
membership functions may have more than one cross point. We therefore define
the cross point ratio as the number of cross points between two membership
functions. Figure 11-8 depicts a linguistic variable with three fuzzy sets and the
corresponding parameters.

Several rules of thumb can be formulated using the above definitions. The
reader should, however, be aware of the empirical character of these rules, i.e.,
there are no globally valid proofs showing their validity. A common rule claims
that all values of the base variable should have a membership greater than zero
in at least one membership function corresponding to one of the terms. It is also
usual to demand that two adjacent membership functions interact, i.e., that the
crosspoint ratio is equal to one for those membership functions. It is therefore
often assumed that the cross point value between neighboring membership
functions is equal to one and that the cross point level is 0.5 [Driankov et al.
1993, p. 120].

Next, we will focus on symmetry, which is achieved if the left and the right
width are equal. Assume that we have designed a fuzzy controller with a single
input, a single rule with a one-term linguistic variable in the consequence, and
COA defuzzification. Then the Mamdani controller will clip the membership
function of the rule consequence in the height of the membership function in the



218 FUZZY SET THEORY—AND ITS APPLICATIONS

rule antecedent rule consequence

uCOA

|
|
|
I
|

Figure 11-9. Influence of symmetry.

Figure 11-10. Condition width.

rule antecedent. If the input matches the rule antecedent with membership one,
then we would expect to get the peak value of the rule consequence. This would
only be the case if the membership function of the rule consequence is symme-
trical. This dependency is shown in figure 11-9 for a non symmetrical fuzzy set
in the rule consequence.

The condition width states that the left-width of the right membership function
is equal to the right-width of the left membership function and that they are both
equal to the length of the interval between the peak values of the two adjacent
membership functions [Driankov et al. 1993, p. 122]. This rule yields smoothly
changing control values and avoids large steps. A linguistic variable that satisfies
this condition is shown in figure 11-10.

11.5.3 Rules

The entire knowledge of the system designer about the process to be controlled
is stored as rules in the knowledge base. Thus the rules have a basic influence
on the closed-loop behavior of the system and should therefore be acquired
thoroughly. The development of rules may be time-consuming, and designers
often have to translate process knowledge into appropriate rules. Sugeno and
Nishida [1985] mention four ways to find fuzzy control rules:
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1. the operator’s experience

2. the control engineer’s knowledge

3. fuzzy modeling of the operator’s control actions
4. fuzzy modeling of the process

We add the following sources that may also be used:

5. crisp modeling of the process
6. heuristic design rules
7. on-line adaptation of the rules

Usually a combination of some of these methods is necessary to obtain good
results. As in conventional control, increased experience in the design of fuzzy
controllers leads to decreasing development times.

11.6 Adaptive Fuzzy Control

Many processes have time-variant parameters due to continuous alternation of
the process itself. This well-known phenomenon has led to the development of
adaptive controllers that change their control behavior as the process changes.
This adjustment is called adaptation. It is natural for adaptive fuzzy controllers
to change the same controller parameters that a designer may change. Therefore
most adaptive FLC systems change the shape of the membership functions, the
scaling factors, etc. It is common to distinguish between controllers that modify
their rules; these are called self-organizing controllers [Procyk and Mamdani
19791, and self-tuning controllers [e.g., Bartolini et al. 1982] that modify essen-
tially the fuzzy set definitions. Since adaptive controllers work automatically, a
monitor has to be found that detects changes in the process. Two common methods
can be distinguished:

1. The performance measure approach, where the closed-loop behavior is
evaluated by certain performance criteria such as overshoot, rise-time, etc.

2. The parameter estimator approach, where a process model is continuously
updated due to sampled process information.

It is usually easier to define appropriate performance measures than to find
process models that can be updated continuously and that are valid over a wide
range of the state space. An overview of the area of adaptive fuzzy controllers
is given by Driankov et al. [1993], and researchers continue to work actively in
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the field. Popular design methods currently include the combination of fuzzy
controllers with neural network methods [e.g., Berenji 1992; Berenji and Khedar
1992] and genetic algorithms [e.g., Hopf and Klawonn 1993; Lee and Tagaki
1993].

11.7 Applications

Fuzzy control certainly is the branch of fuzzy set theory with the most applica-
tions, and their number is steadily growing. The application boom was started
by Japanese manufacturers who applied fuzzy logic to processes ranging from
home appliances to industrial control. The first major book containing applications
of FLC was edited by M. Sugeno {1985a] and shows that the term “fuzzy
control™ is not narrowly interpreted as applications of the Mamdani or Sugeno
controller to a certain process but includes other fuzzy logic techniques such as
fuzzy algebra as well. Tt is also worthwhile to mention that most successful
applications combine FLC systems with conventional control strategies to hybrid
systems.

We now present several applications of fuzzy control without going into
detail. Interested readers may consult the original literature.

11.7.1 Crane Contro/

Cranes are widely used in industrial assembly systems where heavy loads have
to be transported. Today, modern cranes reach a top speed of 160 m/min and
an acceleration of up to 2 m/s* [Behr 1994]. A container crane is depicted in
figure 11-11. One of the main problems that have to be taken into account in
the control of such a crane system is that the load may start to swing. This can
be avoided with the help of mechanical constructions such as telescopes and
stays or electronic loss control. These methods are, however, expensive, and the
construction depends on the specific crane under consideration. In contrast, it
was observed that an experienced operator was able to control a crane satisfactorily
without such advanced devices. This was the motivation for the design of an
FLC system for crane control.

The crane control depends on the mode of operation: one distinguishes between
manual operation, where an operator controls the crane and the objective of the
fuzzy controller is to avoid swinging, and automatic operation, where a certain
position has to be reached. Here we focus on automatic operation.
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Figure 11-11. Container crane [von Altrock 1993].
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. The automatic operation mode can be divided into three different phases of
motion: acceleration, normal motion, and positioning. Figure 11-12 depicts the
typical behavior of the speed in the different phases.

Different controllers were designed for the three phases. Input values were
the position, the speed, the length of the pendulum, the angle of the pendulum,
and in some cases the mass of the load. When the mass was unknown, a fuzzy
estimator system was activated that calculates the mass as a function of the
observed system behavior. The controllers were implemented on a fuzzy processor
for real-time control of the crane.
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Figure 11-13. Input variables [Sugeno and Nishida 1985, p. 106].

11.7.2 Control of a Model Car

One of the most difficult processes to control with conventional control methods
is a car. The mathematical models are large and nonlinear, and simple controllers
such as PID controllers do not yield satisfactory results. Most people can, however,
drive a car without any mathematical model, and it is clear that they use their
knowledge to control the car.

Sugeno and Nishida [1985] were the first to implement and publish the results
they obtained with a fuzzy-controlled model car. The fuzzy control rules were
derived by modeling an expert’s driving actions. Four input variables were used:
X, = distance from entrance of corner, .x, = distance from inner wall, x, = direction
(angle) of car, and x, = distance from outer wall. The four variables are depicted
in figure 11-13.

These four input variables are used as inputs to a Sugeno controller with 20
rules. The results were very encouraging and are depicted in figure 11-14. It is
worthwhile to mention that all rules were derived from an experienced driver’s
control actions with an identification procedure.

Whereas the study by Sugeno and Nishida treated static problems von Altrock
et al. [1992] considered the control of a model car in extreme situations that are
inherently dynamic. Typical dynamical situations are sliding and skidding. The
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Figure 11-14. Trajectories of the fuzzy controlled model car [Sugeno and Nishida
1985, p. 112].
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Figure 11-15.  Fuzzy model car [von Altrock et al. 1992, p. 42].

model car has a one-horsepower electric motor and can accelerate to 20 mph
in 3.5 seconds. Furthermore it has advanced features such as individual wheel
suspension, disk brakes, and differential and shock absorbers. Three polaroid
sensors are used for orientation (front, left, and right), and additional infrared
sensors are mounted in each wheel to measure the individual speed. The model
car is shown in figure 1]1-15.

Since the conventional Mamdani max-min operators were not sufficient in
this case, compensatory operators such as the Y-operator were used (see chapter
3). Another modification was the introduction of “rule weights™ that are used
to describe the plausibility of each rule. The objective of the car was to reach
a target as fast as possible without hitting the walls or any obstacle. A typical
experimental design is depicted in figure 11-16.

Most of the results were very encouraging. However, in some situations the
car lost its orientation due to the limited information obtained from the sensors.
This can only be avoided if some sort of memory is used to compute the current
orientation [cf. von Altrock et al. 1992, p. 48].

11.7.3 Control of a Diesel Engine

Murayama et al. [1985] designed a fuzzy controller for a marine diesel engine.
The objective here was to minimize the fuel consumption rate (FCR). The engine
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Figure 11-16. Experimenta! design [von Aitrock et al. 1992. p. 48].

is controlled by fuel flow rate (Q), fuel injection timing (U), fuel injection duration
(T), and inner pressure of the fuel pipe (P). Special attention was paid to the fuel
injection timing, which influences the FCR directly. Figure 11-17 depicts the
FCR as a function of the fuel injection timing.

Since the data are noisy, gradient methods cannot be employed directly.
Therefore the authors use an adaptive method to verify the results obtained by
the gradient search. Fuzzy numbers and an adjustment method that uses a fuzzy
set to assess the credibility of the computed results are employed. The control
algorithm is depicted in figure 11-18.

No rules are used to calculate the actual control output as in the Mamdani
and the Sugeno controller. Therefore one may also consider this application as
an application of fuzzy data analysis to a control problem. The results that were
obtained with this simple method were, however, very encouraging. The fuzzy
control method outperformed the conventional method clearly, as is shown in
figure 11-19.

11.7.4 Fuzzy Control of a Cement Kiln

In this case, we will consider a physical process as the object of control. Let us
first describe briefly the process itself [King and Karonis 1988, pp. 323].
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Figure 11-17. FCR vs. fuel injection timing [Murayama et al. 1985, p. 64].

Cement is manufactured by heating a slurry consisting of clay, limestone,
sand, and iron ore to a temperature that will permit the formation of the complex
compounds of cement, dicalcium silicate (C,S), tricalcium silicate (C,S), tricalcium
aluminate (C;Al), and tetracalcium aluminoferrite (C,AlF). In the first stage of
the kilning process, the slurry is dried and excess water is driven off. In the
second stage, calcining takes place, with the calcium carbonate decomposing to
calcium oxide and carbon dioxide. In the final stage, burning takes place at
1250-1450°C, and free lime (CaO) combines with the other ingredients to form
the cement compounds. The end product of the burning process is referred to as
clinker.

The kiln consists of a long steel shell about 130m in length and 5m in
diameter. The shell is mounted at a slight inclination to the horizontal, and is
lined with fire bricks. The shell rotates slowly, at approximately 1 rev/min. and
the slurry is fed in at the upper or back end of the kiln. The inclination of the
shell and its rotation transports the material through the kiln in about 3 hours 15
minutes with a further 45 minutes spent in the clinker cooler.

The heat in the kiln is provided by pulverized coal mixed with air, referred
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Figure 11-20. Schematic diagram of rotary cement kiln [Umbers and King 1981,
p. 371].

to as primary air. The hot combustion gases are sucked through the kiln by an
induction fan at the back end of the kiln [Umbers and King 1981, p. 370].

Figure 11-20 illustrates the production process. The main problem in math-
ematically modeling a control strategy is that the relationships between input
variables (measured characteristics of the process) and control variables are com-
plex and nonlinear and contain time lags and inter-relationships; in addition, the
kiln’s response to control inputs depends on the prevailing kiln conditions. These
were certainly reasons why a fuzzy control system was designed and used—which
eventually even led to a commercially available fuzzy controller.
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From the many possible input and control variables, the following were chosen
as particularly relevant. Input variables include

exhaust gas temperature—back-end temperature (BT);
intermediate gas temperature—ring temperature (RT);
burning-zone temperature (BZ);

oxygen percentage in exhaust gases (O,); and

liter weight (LW)—indicates clinker quality.

bdlF bl

The process is controlled by varying the following control variables:

1. kiln process (KS);
2. coal feed (CS)—fuel; and
3. induced draught-fan speed (BF).

The calculation of the control action was composed of the following four
stages:

calculate the present error and its rate of change;

convert the error values to fuzzy variables;

evaluate the decision rules using the compositional rule of inference; and
calculate the deterministic input required to regulate the process.

Rl S

Concerning the control strategies used, let us quote Larsen:

The aim of the computerized kiln control system is to automate the routine control
strategy of an experienced kiln operator. The applied strategies are based on detailed
studies of the process operator experiences which include a qualitative model of
influence of the control variables on the measured variables [Larsen 1981, p. 337].

1. If the coal-feed rate is increased, the kiln drive load and the temperature in
the smoke chamber will increase, while the oxygen percentage and the free
lime content will decrease.

2. If the air flow is increased, the temperature in the smoke chamber and the
free lime content will increase, while the kiln drive load and the oxygen
percentage will decrease.

On the basis of thorough discussions with the operators, Jensen [1976] defined
75 operating conditions as fuzzy conditional statements of the type:
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IF drive load gradient is (DL,SL,OK,SH,DH)

AND  dnve load 1s (DL,SL,OK,SH,DH)

AND  smoke chamber temperature 1s (L,OK,H)

THEN change oxygen percentage is (VN,N,SN,ZN,OK,ZP,SP,P,VP)
PLUS change air flow is (VN,N,SN,ZN,OK,ZP.SP,P,VP)

The following fuzzy primary terms are used for the measured variables:

I. DL = drastically low 5. SH = slightly high

2. L = low 6. H = high

3. SL = shghtly low 7. DH = drastically high
4. OK = ok

The following fuzzy primary terms are used for the control variables:

VN = very negative
N = negative

SN = small negative

ZN = zero negative

OK = ok

ZP = zero positive

SP = small positive
P = positive

VP = very positive

R R
Rl ci =)

The linguistic terms are represented by membership functions with four discrete
values in the interval [0, 1] associated with 15 discrete values of the scaled
variables in the interval [~1, +1].

In order to simplify the implementation of the fuzzy logic controller, Ostergaard
[1977] defined 13 operating conditions as fuzzy conditional statements of the

type:

IF drive load gradient is (SN,ZE,SP)
AND  drive load is (LN,LP)
AND free lime content (LO,OK HI)

THEN change burning zone temperature (LN.MN,SN,ZE,SP.MP,LP)

The following fuzzy primary terms are used:

1 LP = large positive 7. SN = small negative

2. MP = medium positive 8. MN = medium negative
3. SP = small positive 9. LN = large negative

4. ZP = zero positive 10.  HI = high

5. ZE = zero I1. OK = ok

6. ZN = zero negative 2. LO = low

The 13 operating conditions are defined by taking only some of the com-
binations into account, and by including also the previous values of the drive
load gradient, the latter being calculated from the changes in the drive load. In
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order to decide whether the oxygen percentage set point or the air flow should be
changed, three additional fuzzy rules for each operating condition are formulated
based on the actual values of the oxygen percentage and the smoke chamber
temperature, resulting in 39 control rules.

Details of membership functions used can be found in Holmblad and
Ostergaard [1982] and results of testing the system in Umbers and King [1981]
and Larsen [1981]. We shall not describe these details here, primarily because
they are not of high general interest.

Before we turn to a quite different type of control, it should be mentioned,
however, that the reader can find descriptions and references to more than 10
further projects of the type described here in Mamdani [1981], in Pun [1977],
and in Sugeno [1985a].

11.8 Tools

Fast and easy implementation of control systems requires adequate tools that
assist the system designer in the design and coding, which would be time-
consuming if performed by hand. An increasing number of tools exist both for
conventional and fuzzy logic control. Modern tools use graphical animation and
offer interactive on-line development capabilities instead of precompiling.
Precompiler tools precompile the linguistically designed controller into a code,
e.g., in C. This can then be combined with other codes. Then the controller is
started and the closed-loop behavior is observed. If the behavior isn’t sufficient—
which usually is the case—the control is interrupted and a new, modified,
controller is defined and precompiled. This controller is linked to the process
and so on. This method is inefficient and time-consuming, since every modification
implies interruption of the control and compiling and linking.

The interactive approach is much more efficient because the designer is enabled
to study the direct consequences of modifications of design parameters such as
rules and fuzzy sets. Here we shall consider, as an example, the fizzy TECH design
tool by INFORM [Inform 1995]. Figure 11-21 shows the development philosophy
of fuzzy TECH.

This tool runs on most hardware platforms and can be used for on-line
optimization of a fuzzy control system.

The system introduces the concept of “normalized rule bases” that makes
even large rule bases easy to comprehend. A screenshot of a rule base for the
model car [von Altrock et al. 1992] is shown in figure 11-22.

The whole inference process is visualized in different windows on-line, and
auxiliary screens visualizing the phase plane and transfer characteristics help the
designer in tracing erroneous rules or term definitions. Figure 11-23 shows the
simulation screen of the model car presented at the FUZZ-IEEE conference in
1992.
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Figure 11-21. Controller development in fuzzy TECH [von Altrock et al. 1992].
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Figure 11-23. Simulation screen [von Altrock et al. 1992].

We sum up by stating that FLC design is accelerated and made more efficient
by the use of modern graphical development tools. Such tools can also be used
effectively for training purposes in connection with simulation models or
laboratory processes.

11.9 Stability

Stability and performance of the closed-loop system are considered by many
control engineers to be the main criteria assessing the quality of a control system.
In many cases it is desirable to prove the stability of the controlled system. It
is, of course, only possible to prove the stability of the process model and not
of the process itself; however, stability can often be proved for a wide range of
model] parameters, and the risk of instability can thus be minimized. The lack
of formal techniques for stability analysis has been a main point of criticism of
FLC systems. There do, however, already exist many approaches to prove the
stability of a closed-loop FL.C system.

When studying the stability of FLC systems, one has to use a model of the
process that can be fuzzy or crisp. Most methods use crisp process models and
conventional nonlinear control theory to prove stability. In this context, the
fuzzy controller is considered as a nonlinear transfer element, i.e., the output is
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Figure 11—24. Fuzzy controller as a nonlinear transfer element.

determined as a function of the input variables, # = ®(r) [Kickert and Mamdani
1978]. Such a system is depicted in figure 11-24. Set-point values and noise can
be neglected because stability is a system property. This means that the control
action for a known input value can be derived by calculating the result of rule
firing, rule aggregation, and defuzzification. The problem is often to find a
suitable representation of the fuzzy controller in this context.

In the case of a nonlinear crisp process model, one can distinguish between
time-domain and frequency-domain models [Bretthauer and Opitz 1994]. The
time-domain models include the state-space approach, Ljapunov theory,
hyperstability theory, and the bifurcation theory approach. The class of frequency-
domain methods include the harmonic-balance approach and the circle and Popov
criteria. Figure 11-25 summarizes the different approaches.

A graphical approach to stability analysis is the state-space approach, where
the trajectory of the closed-loop system is displayed in the two-dimensional state
space. Naturally, this approach is limited to two-dimensional systems. The main
idea is to partition the space that is defined by the input base variables of the
rules, which is called the linguistic state space, according to the terms of the
linguistic variables. This leads to sections of the state space where the degree of
membership of an input variable x; in one term—say, term k—is higher than the
degree of membership in the other terms, i.e., p' (x;) = p (x,) forall j, # k.. Since
the rule base was defined in terms of these input variables (see table 11-1), we
can infer which term of the output variable is dominant in the corresponding
sector of the state space. Figure 11-26 shows the linguistic state space that
corresponds to our heating system example. Note that every input consisting of
a temperature and a change of temperature can be located in the state space.

Suppose that we start the controller with an input temperature of 13 degrees
and a change of temperature of —1° per minute. The controller starts the heating
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Figure 11-25. Classification of stability analysis approaches.

system with approximately medium power, and the temperature rises. Due to
this control action, other regions of the state space are reached and other rules
get dominant. The sequence of regions that are reached in the state space depends
on the fuzzy controller and the system to be controlled and is called the linguistic
trajectory. A possible linguistic trajectory of the heating system example is
depicted in figure 11-27. The corresponding linguistic trajectory is (L,nb),(1,ns),
(1,2),(,ps),(c,ps),(h,ps), (h,z),(c,z) where the first entry is the term of the linguistic
variable temperature and the second entry is the term of the linguistic variable
change of temperature, e.g., (1,ns) means the region with low temperature and neg-
atively small change of temperature. The linguistic trajectory shows that the system
reaches an equilibrium point, namely, (c,z), where the temperature is comfortable
and does not change. If an equilibrium point is reached for all possible starting
configurations in the state space, then the system is stable. The state space ap-
proach has the advantage of being easy to understand and is of great help when
designing a fuzzy controller, since the impact of rules can be seen directly in the
state space. Some software tools offer the possibility of plotting the linguistic
trajectory of the system on the computer screen. We close the discussion of this
approach by noting that a system that reaches an equilibrium point in the linguistic
state space may have underlying oscillations which cannot be detected by this
method due to the coarseness of the partition induced by the membership functions
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Figure 11-26. Linguistic state space.

of the terms of the linguistic variables. The heating system may, as an example,
lead to temperatures varying between 18° and 19° Celsius and small negative
and positive changes of temperature if the power can only be adjusted discretely.
The activated region in the state space would, however, always be (c,z).
Since the introduction of the formal methods of FLC stability analysis requires
a solid background in nonlinear control theory, a detailed discussion of the
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approaches is not possible in this book. We limit ourselves to the specification
of the different approaches and request interested readers to consult the literature.
Topics and references include the following: controller as relay [Kickert and
Mamdani 1978], limit theorems [Bouslama and Ichikawa 1992], fuzzy sliding
mode control [Hwang and Lin 1992], Ljapunov theory [Langari and Tomizuka
1990; Tanaka and Sugeno 1992; Kiendl and Riiger 1993], harmonic balance
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[Kiend] and Riiger 1993], circle criterion [Ray and Majunder 1984], conicity
criterion [Aracil et al. 1991], and vector fields [Aracil et al. 1988, 1989].

An overview of some of these approaches is found in Driankov et al. [1993],
and a literature survey is given by Bretthauer and Opitz [1994].

11.10 Extensions

Most of the basic problems of FLC have been resolved, and researchers are now
investigating advanced topics such as stability, adaptive fuzzy control, hybrid
systems, neuro-fuzzy systems, and FLC systems tuned by genetic algorithms
(GAs) that are inherently adaptive systems. Progress is fast in these areas, and
promising experimental results have been obtained.

With the rising popularity of FLC, more engineers will be trained in this area
in the future. This training will lead to more applications of FLC systems and
to rising field experience of the involved engineers. Fuzzy logic control is an
integral part of modern control theory, not replacing conventional methods but
rather complementing them.

Since the literature in fuzzy control is too vast to be discussed in its entirety
in this textbook, a summary is given below. It is primarily intended for those
who have an extended interest in this area:

One of the first books on fuzzy logic control was written by W. Pedrycz in
1989 [Pedrycz 1989] and focuses on many concepts of FLC. The use of fuzzy
relations in connection with FLC systems is discussed thoroughly. A second
edition of this popular book appeared in 1993 [Pedrycz 1993] and covers also
new directions, such as neural network methods. Many survey articles on FLC
have appeared in control journals in the last years, and we very much recommend
the survey of Lee [1990], which covers all basic aspects. The first major book
on applications was the one edited by Sugeno [1985a]. Zimmermann and von.
Altrock [1994] provide a more recent collection of applications, most of them
describing German industrial projects. Jamshidi et al. [1993] also cover a wide
area of different applications, including robotics and flight control, most of
which have been realized in the United States. An interesting collection of the
now-famous Japanese applications of fuzzy control is provided by Hirota [1993].
Many articles do describe practical implementations of FLC systems and can be
found in journals covering mainly fuzzy sets as well as in journals on automatic
control. From an engineer’s point of view, the book written by Driankov,
Hellendoorn, and Reinfrank [1993] covers all major aspects of fuzzy control. A
background in conventional control theory is, however, necessary to understand
some of the chapters.
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1. a. Draw the block diagram of a Mamdani/Sugeno controller and explain each

function separately.

b. What are the differences between the Mamdani and the Sugeno control-

ler?

2. Which design parameters can be varied in a fuzzy controller?
3. A Mamdani controller has the following rule base:

error/change of error negative Zero positive
negative big
Zero big medium medium
positive small small
The linguistic variables are defined as follows:
Error:
u (error)
negative positive
| | | | ] | | | | | —»
1 T T 1 I A N N | »>
-7 6 5 4 3 -2 1 1 2 4 5 6 7 error
Change of error:
. A 1 (change of error) "
negative zero positive
I | »
T 1 I | =

-7 -6 -5 -4 -3

|
I
7 change of

error
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Control action:

u {control action)

small medium bi
1.0 g
0.75
0.5
0.25
| | | 1 | | | | »
| | 1 1 [ | I [ 1 [ | | [ g
1 2 3 4 5 6 7 8 9 10 11 12 13 14 control

action

a. Calculate the fuzzy set of control, when error = 2 and change of error =
4.

b. Calculate the control action when
(1) mean of maxima
(ii) center of sums

is used as a defuzzification procedure.

4. Which operators can be varied in the Mamdani controller? Discuss the
choice of operators in connection with fuzzy controllers.



1 2 FUZZY DATA ANALYSIS

12.1 Introduction

The terms data analysis, pattern recognition, and data mining are often used
synonymously, and we shall do the same here. On the one hand, this area is
one of the oldest and most obvious application areas for fuzzy set theory. On
the other hand, pattern recognition existed long before fuzzy sets became
known.

This topic embraces a very large and diversified literature. It includes research
in the areas of artificial intelligence, interactive graphic computers, computer
aided design, psychological and biological pattern recognition, linguistic and
structural pattern recognition, and a variety of other research topics. One could
possibly distinguish between mathematical pattern recognition (primarily cluster
analysis) and nonmathematical pattern recognition. One of the major differences
between these two areas is that the latter is far more context dependent than the
former: a heuristic computer program that is able to select features of chromo-
somal abnormalities according to a physician’s experience will have little use
for the selection of wheat fields from a photo-interpretation viewpoint. In contrast
to this example, a well-designed cluster algorithm will be applicable to a large
variety of problems from many different areas. The problems will again be

241
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different for structural pattern recognition—when, for instance, handwritten H’s
should be distinguished from handwritten A’s, and so on.

Verhagen [1975] presents a survey of definitions of pattern recognition that
also cites the difficulties of any attempt to define this area properly. Bezdek
[1981, p. 1] defines pattern recognition simply as “A search for structure in
data.”

The most effective search procedure—in those instances in which it is
applicable—is still the “eyeball” technique applied by human “searchers.” Their
limitations, however, are strong in some directions: Whenever the dimensionality
of the volume of data exceeds a limit, and the human senses, especially the
vision, are not able to recognize data or features, the “eyeball” technique cannot
be applied.

One of the advantages of human search techniques is the ability to recognize
and classify patterns in a nondichotomous way. One way to imitate this strength
is the development of statistical methods in mathematical pattern recognition,
which in connection with high-speed computers have shown very impressive
results. There are data structures, however, that are not probabilistic in nature
or not even approximately stochastic. Given the power of existing EDP, it seems
very appropriate and promising to find nonprobabilistic, nondichotomous models
and structures that enable us to recognize and transmit in a usable form patterns
of this type, which humans cannot find without the help of more powerful
methods than “eyeball-search.” Here, obviously, fuzzy set theory offers some
promise. Fuzzy set theory has already been successfully applied in different
areas of pattern search and at different stages of the search process. In the
references, we cite cases of linguistic pattern search, of character recognition
[Chatterji 1982], of visual scene description [Jain and Nagel 1977], and of
texture classification [Hajnal and Koczy 1982}. We also give references for the
application of fuzzy pattern recognition to medical diagnosis [Fordon and Bezdek
1979; Sanchez et al. 1982], to earthquake engineering [Fu et al. 1982], and to
pattern search in demand [Carlucci and Donati 1977].

Another way to describe the main goal of data analysis is complexity reduction,
in the sense that data masses that cannot be comprehended by human beings are
reduced to lower-dimensional information that can be used, for instance, by
human decision makers to support their decisions.

In data analysis, objects are considered that are described by some attributes.
Objects can, for example, be persons, things (machines, products, ... ), time
series, sensor signals, process states, and so on. The specific values of the attributes
are the data to be analyzed. The overall goal is to find structure (information)
about these data. This can be achieved by classifying the huge amount of data
into relatively few classes of similar objects. This leads to a complexity reduction
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in the considered application, which allows for improved decisions based on the
information gained.

The process of data analysis normally starts with the description of the process
or the set of data that is to be analyzed. This process is very nontrivial, often
least supported by tools, and generally leads to a high-dimensional model (one
dimension corresponding to one property of the data or process). In feature
analysis, the first reduction of complexity (dimension) is reached by reducing
the number of properties to those that are most important, i.e., that contribute
most to the description of the process or data set. Since this reduction is generally
not yet sufficient, an additional reduction is achieved by defining in feature
space a small number of classes. This stage is called classifier design, and it
more or less terminates the preparatory steps of data analysis. These classes are
now used, either in a batch type operation or continuously, to assign single
objects or data to classes and thus to extract manageable information for human
operators or subsequent systems. Figure 121 shows the interdependent steps of
data analysis as described above.

The methods mentioned in the boxes in figure 121 indicate that numerous
“classical” methods are already available. The process of data analysis described
so far is not necessarily connected with fuzzy concepts.

If, however, either features or classes are fuzzy, the use of fuzzy approaches
is desirable. In figure 12-1, for example, objects, features, and classes are
considered. Both features and classes can be represented in crisp or fuzzy terms.
An object is said to be fuzzy if at least one of its features is fuzzy. This leads
to the following four cases:

+ crisp objects and crisp classes

» crisp objects and fuzzy classes
« fuzzy objects and crisp classes
« fuzzy objects and fuzzy classes

Obviously, the first case is the domain of classical pattern recognition, while the -
latter three cases are the subject of fuzzy data analysis.

12.2 Methods for Fuzzy Data Analysis

Figure 12-1 indicates that some boxes—particularly those of feature analysis
and classifier design— contain quite a number of classical dichotomous methods, -
such as clustering, regression analysis, etc., which for fuzzy data analysis have
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Figure 12-1. Scope of data analysis.

been fuzzified, i.e., modified to suit problem structures with fuzzy elements. The
box “classification,” in contrast, lists some approaches that originate in fuzzy set
theory and that did not exist before.

In modern fuzzy data analysis, three types of approaches can be distinguished.
The first class is algorithmic approaches, which in general are fuzzified versions
of classical methods, such as fuzzy clustering, fuzzy regression, etc.. The second
class is knowledge-based approaches, which are similar to fuzzy control or
fuzzy expert systems. The third class, (fuzzy) neural net approaches, is growing
rapidly in number and power. Increasingly combined with these approaches, but
not discussed in this book, are evolutionary algorithms and genetic algorithms
(see Zimmermann [1994]).

The major three classes mentioned above will be discussed in the following
sections of this chapter.
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12.2.1 Algorithmic Approaches

For feature analysis, fuzzy regression methods have been used. Recommended
publications concerning this approach (which will not be discussed in this
book) are, e.g., Bardossey et al. [1992, 1993], Diamond [1993], Ishibuchi [1992],
Kacprzyk [1992], Peters [1994], and Tanaka [1987].

Here we shall focus our attention on clustering methods.

12.2.1.1 Fuzzy Clustering

122.1.1.1 Clustering Methods. Let us assume that the important problem of
feature extraction—that is, the determination of the characteristics of the physical
process, the image of other phenomena that are significant indicators of structural
organization, and how to obtain these—has been solved. Our task is then to
divide n objects x € X characterized by p indicators into ¢, 2 < ¢ << n, categorically
homogenous subsets called “clusters.” The objects belonging to any one of the
clusters should be similar and the objects of different clusters as dissimilar as
possible. The number of clusters, ¢, is normally not known in advance.

The most important question to be answered before applying any clustering
procedure is which mathematical properties of the data set (for example, distance,
connectivity, intensity, and so on) should be used and in what way they should
be used in order to identify clusters. This question will have to be answered for
each specific data set, since there are no universally optimal cluster criteria.
Figure 12-2 shows a few possible shapes of clusters; and it should be immediately
obvious that a cluster criterion that works in figure 12—2a will show a very bad
performance in figures 12-2b or 12-2c. More examples can, for instance, be
found in Bezdek [1981] or Roubens [1978] and in many other publications on
cluster analysis and pattern recognition [Ismail 1988, p. 446; Gu and Dubuisson
1990, p. 213].

For further illustration of this point, let us look at an example from Bezdek

[1981, p. 45]. Figure 12-3 shows two data sets, which have been clustered by

a distance-based objective function algorithm (the within-group sum-of-spared-
error criterion) and by applying a distance-based graph-theoretic method (single-
linkage algorithm). Obviously, the criterion that leads to good results in one case
performs very badly in the other case and vice versa. (Crisp) clustering methods
are commonly categorized according to the type of clustering criterion used in
hierarchical, graph-theoretic, and objective-functional methods.

Hierarchical clustering methods generate a hierarchy of partitions by means
of a successive merging (agglomerative) or splitting (diverse) of clusters
[Dimitrescu 1988, p. 145]. Such a hierarchy can easily be represented by a dendo-
gram, which might be used to estimate an appropriate number of clusters, c,
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Figure 12—2. Possible data structures in the plane.

for other clustering methods. On each level of agglomeration or splitting, a
locally optimal strategy can be used without taking into consideration the policies
used on preceding levels. These methods are not iterative; they cannot change
the assignment of objects to clusters made on preceding levels. Figure 12—4 shows
a dendogram that could be the result of a hierarchical clustering algorithm. The
main advantage of these methods is their conceptual and computational simplicity.
In fuzzy set theory, this type of clustering method would correspond to the
determination of “similarity trees” such as those shown in example 6—14.
Graph-theoretic clustering methods are normally based on some kind of
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Figure 12-3. Performance of cluster criteria.

connectivity of the nodes of a graph representing the data set. The cluster-
ing strategy is often breaking edges in a minimal spanning tree to form subgraphs.
If the graph representing the data structure is a fuzzy graph such as those discussed
in chapter 6, then different notions of connectivity lead to different types of
clusters, which in turn can be represented as dendograms. Yeh and Bang [1975],
for instance, define four different kinds of clusters. For the purpose of illustrating
this approach, we shall consider one of the types of clusters suggested there.

Definition 12-1 {Yeh and Bang 1975]

Let G = [V, R] be a symmetric fuzzy graph. Then the degree of a vertex v is
defined as d(v) = .. Mz(). The minimum degree of G is 8(G) = min,., {d(V)}.

Let G = [V, R] be a symmetric fuzzy graph. G is said to be connected if, for
each pair of vertices u and v in V, pg(u, v) > 0. G is called t-degree connected
for some T = 0 if 8(G) = 7 and G is connected. ‘
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Figure 12—4. Dendogram for hierarchical clusters.

Definition 12-2

Let G =[V, R] be a symmetric fuzzy graph. Clusters are then defined as maximal
T-degree connected subgraphs of G.

Example 12-1 [Yeh and Bang 1975, p. 145]

Let G be the symmetric fuzzy graph shown in figure 12-5. The dendogram in
figure 12-6 shows all clusters for different levels of 1. For further details, see
Yeh and Bang [1975].

Objective-function methods allow the most precise formulation of the clustering
criterion. The “desirability” of clustering candidates is measured for each ¢. the
number of clusters, by an objective function. Typically, local extrema of the
objective function are defined as optimal clusterings. Many different objective
functions have been suggested for clustering (crisp clustering as well as fuzzy
clustering). The interested reader is referred in particular to the excellent book
by Bezdek [1981] for more details and many references. We shall limit our
considerations to one frequently used type of (fuzzy) clustering method, the so-
called ¢-means algorithm.
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Figure 12-5." Fuzzy graph.
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Figure 12-6. Dendogram for graph-theoretic clusters.

Classical (crisp) clustering algorithms generate partitions such that each object
is assigned to exactly one cluster. Often, however, objects cannot adequately be
assigned to strictly one cluster (because they are located “between” clusters). In
these cases, fuzzy clustering methods provide a much more adequate tool for
representing real-data structures.

To illustrate the difference between the results of crisp and fuzzy clustering

T S
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Figure 12—7. The butterfly.

methods let us look at one example used in the clustering literature very exten-
sively: the butterfly.

Example 12-2

The data set X consists of 15 points in the plane, as depicted in figure 12-7.
Clustering these points by a crisp objective-function algorithm might yield the
picture shown in figure 12-8, in which “1” indicates membership of the point
in the left-hand cluster and “0” membership in the right-hand cluster. The x’s
indicate the centers of the clusters. Figures 12-9 and 12-10, respectively, show
the degrees of membership the points might have to the two clusters when using
a fuzzy clustering algorithm.

We observe that, even though the butterfly is symmetric, the clusters in figure
12-8 are not symmetric because point xg, the point “between” the clusters, has
to be (fully) assigned to either cluster 1 or cluster 2. In figures 12-9 and 12-10,
this point has the degree of membership .5 in both clusters, which seems to be
more appropriate. Details of the methods used to arrive at figures 12—-8 to 12—
10 can be found in Bezdek [1981, p. 52] or Ruspini [1973].

Let us now consider the clustering methods themselves.

Let the data set X = {x,. .., x,} C R’ be a subset of the real p-dimensional
vector space R”. Each x, = (xy, ..., x) € R 1s called a feature vector. Xy, 18
the jth feature of observation x,.

Since the elements of a cluster shall be as similar to each other as possible
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clustercenters £ X

Figure 12-8. Crisp clusters of the butterfly.

and the clusters as dissimilar as possible, the clustering process is controlled by
use of similarity measures. One normally defines the “dissimilarity” or “distance”
of two objects x, and x; as a real-valued function d: X X X — R” that satisfies

dx, x)=dy =0
dy, =06 x =x
dy=d,
If additionally d satisfies the triangle equality, that is,
dy =< d; + d,

then d is a metric, a property that is not always required. If each feature vector -

is considered as a point in the p-dimensional space, then the dissimilarity dj, of
two points x, and x, can be interpreted as the distance between these points.

Each partition of the set X = {x,, ..., x,} into crisp or fuzzy subsets S, (=
1,..., ¢) can fully be described by an indicator function i or a membership
function s, respectively. In order to stay in line with the terminology of the
preceding chapters, we shall use, for crisp clustering methods,

ug: X — {0, 1}
and, for fuzzy cases,

Ms: X > [0, 1]
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where u, and [, denote the degree of membership of object v, in the subset S,
that is,
Up: = s (xy)

Mit = Hg(x)
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Definition 12-3

Let X = {x,, ..., x,} be any finite set. V,, is the set of all real ¢ X n matrices,
and 2 < ¢ < n is an integer. The matrix U = [u] € V,, is called a crisp c-partition
if it satisfies the following conditions:

1. upe{0, 1} 1=i=c,1=k=n

2. Yup=1 1=<k=n

=1

n
3. 0< zuik<n 1=i=c
k=1

The set of all matrices that satisfy these conditions is called M..

Example 12-3

Let X = {x,, X,, X;}. Then there are the following three crisp 2-partitions:

X X, X
u=lo o Y
X, X, X3
v=lo 1Y
X, X, X3

1 0 1
Us = [o 1 0]
Obviously, conditions (2) and (3) of the definition rule out the following par-
titions:

X X X3
1 1 0
0 1 1
X X X3

Definition 12-4

X, V., and c are as in definition 12-3. U = [uyl € V., is called a fuzzy-c partition
if it satisfies the following conditions [Bezdek 1981, p. 26]:
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IA
o~
A
=

. pe (0,11 1 =i<c¢

2. Zu,x:l, l=k=n
=l p
3.0<Zuik<n l=i=c¢

k=1

M, will denote the set of all matrices satisfying the above conditions. By con-
trast to the crisp c-partition, elements can now belong to several clusters and to
different degrees. Conditions (2) and (3) just require that the “total membership”
of an element is normalized to 1 and that the element cannot belong to more
clusters than exist.

Example 12-4

Let X = {x,, x,, x3}. Then there exist infinitely many possible fuzzy 2-
partitions, such as

Xl )(2 X3
5 o0
M=o 50

Xy X Xz
. [8 5 2
=12 5 3

,Xf] xZ X3
(8 1 9
=2 00

and so on.

Our butterfly example (figure 12-7), for instance, could have the following
partition:

KoXa XXy X5 Xy Xy Xg X9 Xyg A Xy X3 Ay o

U=<86 97 86 94 99 94 8 5 .14 06 .0l 06 .14 03 .14
14 .03 14 06 01 06 .14 5 86 94 99 94 86 97 86
The location of a cluster is represented by its “cluster center” Vi=(Vis o .a V)
e R, i=1,..., ¢, around which its objects are concentrated.
Let v =(v,,..., v.) € R? be the vector of all cluster centers. where the \Z

in general do not correspond to elements of X.
One of the frequently used criteria to improve an initial partition is the so-
called variance criterion. This criterion measures the dissimilarity between the
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points in a cluster and its cluster center by the Euclidean distance. This distance,
d,, is then [Bezdek 1981, p. 54].

dy = d(x, V)

I — vl

1
4 /2

2 (x5 — vy )&

j=l

The variance criterion for crisp partitions corresponds to minimizing the sum
of the variances of all variables j in each cluster i, with | S; | = n, and yields

c P
minzzl_sf_l 3 (g - ViR ©

i=1 j=I1 xES;
c
1 . )
min— 3 > (% = Vi)
Rl xes, =1

As indicated by the above transformation, the variance criterion corresponds—
except for the ‘factor 1/n—to minimizing the sum of the squared Euclidean
distances. The criterion itself amounts to solving the following problem:

minz(Sl,...,Sc;V)=2 lexk—\’.- II?

i=] x €S
such that
1
V=Y,
l Si I X€S;

Using definition 12-3, the variance criterion for crisp c-partitions can be written
as

c n
minz U, v) = 22 u |l % —v; |12

=1 k=1

such that

Vi== ! 2 (Ui )Xy

k=1
>

k=1
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For fuzzy c-partitions according to definition 12—4, the variance criterion
amounts to solving the following problem:

¢ n

minz @, v) = 33 ()" ly - v, || 2

=l k=1

such that

1 n
vV, == Z (g Y'x,, m > 1

k=1
Uy
k=1

Here v, is the mean of the x, m-weighted by their degrees of membership.
That means that the x; with high degrees of membership have a higher influence
on v, than those with low degrees of membership. This tendency is strengthened
by m, the importance of which we will discuss in more detail at a later time. It
was shown (see, for instance, Bock [1979a, p. 144]) that, given a partition U,
v; is best represented by the clusters S, as described above.

If we generalize the criterion concerning the used norm, the crisp clustering
problem can be stated as follows: Let G be a (p x p) matrix, which is symmetric
and positive-definite. Then we can define a general norm

lxe = v |l g; =(x = V)T G(x, - v;)

The possible influence of the chosen norm, determined by the choice of G,
will be discussed later. This yields the formulation of the problem:

n ¢
minz(U,v) = 33wy llx - v, ||

k=t =l
such that

Ue M,

v € R7

This is a combinatorial optimization problem that is hard to solve, even for
rather small values of ¢ and #. In fact, the number of distinct ways to partition
X into nonempty subsets is

(M, | = (1/(?!)[2 (;3)(*1)“”‘/'}

7=l
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which for ¢ = 10 and n = 25 is already roughly 10" distinct 10-partitions of the
25 points [Bezdek 1981, p. 29].
The basic definition of the fuzzy partitioning problem for m > 1 is

minz, (0; v) = 3, 3 ()"l x = vi I 5 P,

k=l =l
such that
Ue M,
v € R?

(P,) is an analytical problem, which has the advantage that by using differential
calculus one can determine necessary conditions for local optima. Differentiating
the objective function with respect to v; (for fixed U) and to p, (for fixed v) and

applying the condition Zp,,-k =1, one obtains (see [Bezdek 1981, p. 67]):

i=1

Vi Sy i= L. (12.1)
Y )
k=1

( 1 ]ll(m—l)
2
Xy — V; .
Ix —vill ek

=1
Tom=1)° 1 3o
i 1
=1 [ x, —v; s

Let us now comment on the role and importance of m: It is called the ex-
ponential weight, and it reduces the influence of “noise” when computing the
cluster centers in equation (12.1) (see Windham [1982, p. 358]) and the value
of the objective function z,(U; v). m reduces the influence of small p,; (points
further away from v;) compared to that of large p; (points close to v,). The larger
m > 1, the stronger is this influence.

The systems described by equations (12.1) and (12.2) cannot be solved
analytically. There exist, however, iterative algorithms (nonhierarchical) that
approximate the minimum of the objective function, starting from a given position.

Wi =

One of the best-known algorithms for the crisp clustering problem is the (hard) |

c-means algorithm or (basic) ISODATA-algorithm. Similarly, the fuzzy clustering
problem can be solved by using the fuzzy ¢-means algorithm, which shall be
described in more detail in the following.

The fuzzy c-means algorithm [Bezdek 1981, p. 69]. For each m € (0, =), a
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fuzzy c¢-means algorithm can be designed that iteratively solves the necessary
conditions (12.1) and (12.2) above and converges to a local optimum (for proofs
of convergence, see Bezdek [1981] and Bock [1979]).

The algorithm comprises the following steps:

Step 1. Choose c2=c=n,m(l<m=< o0), and the (p, p)-matrix G with
G symmetric and positive-definite. Initialize J© e M;.. set [ = 0.

Step 2. Calculate the ¢ fuzzy cluster centers {v?} by using U"' from condition
(12.1).

Step 3. Calculate the new membership matrix " by using {v!"} from
condition (12.2) if x, # v, Else set

1 forj=i
Mo = 0 forj#i

Step 4. Choose a suitable matrix norm and calculate A = || /1 = O || G
IfA>£,setl:I+landgotostepZ.IfASz—:,——)stop.

For the fuzzy ¢-means algorithm, a number of parameters have to be chosen:

the number of clusters ¢, 2 = ¢ < n;

the exponential weight m, 1 < m < oo;

the (p. p) matrix G (G symmetric and positive-definite), which induces a norm;
the method to initialize the membership matrix T'©;

the termination criteria A = || UV — " || . < g,

Example 12-5 [Bezdek 1981, p. 74]

The data of the butterfly shown in figure 12—7 were processed with a fuzzy 2-
means algorithm, using as a starting partition

po [ 854 .146 854 ... 854
“L146 854 146 ... 146,

€ was chosen to be .01; the Euclidean norm was used for G; and m was set
to 1.25. Termination in six iterations resulted in the memberships and cluster
centers shown in figure 12-11. For m = 2, the resulting clusters are shown in
figure 12—12.

As for other iterative algorithms for improving starting partitions, the number ¢
has to be chosen suitably. If there does not exist any information about a good
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Figure 12-11. Clusters for m = 1.25.

¢, the computations are carried out for several values of c. In a second step, the
best of these partitions is selected.

The exponential weight m influences the membership matrix. The larger the
m, the fuzzier becomes the membership matrix of the final partition. For m —
o, U approaches U= [L1]. This is, of course, a very undesirable solution, because
each x, is assigned to each cluster with the same degree of membership.

Basically, less fuzzy membership matrices are preferable because higher
degrees of membership indicate a higher concentration of the points around the
respective cluster centers. No theoretically justified rule for choosing m exists.
Usually m = 2 is chosen.

G determines the shape of the cluster, which can be identified by the fuzzy
c-means algorithm. If one chooses the Euclidean norm N, then G is the identity
matrix 7, and the shape of the clusters is assumed to be an equally sized hyper-
sphere. Other frequently used norms are the diagonal norm or the Mahalanobis
norm for which G, = [diag (6] and G, = [cov ()T, respectively, where 62 de-
notes the variance of feature j.

The final partition depends on the initially chosen starting position. When .
choosing an appropriate c, if there exists a good clustering structure, the final
partitions generated by a fuzzy c-means algorithm are rather stable.

A number of variations of the above algorithm are described in Bezdek
[1981]. The interested reader is referred to this reference for further details.
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Figure 12-12. Clusters for m = 2.

Numerical results for a number of algorithms are also presented in Roubens
[1978].

122112 Cluster Validity.

Complex algorithms stand squarely between the data for which substructure is
hypothesized and the solutions they generate; hence it is all but impossible to transfer
a theoretical null hypothesis about X to U e M, which can be used to statistically
substantiate or repudiate the validity of algorithmically suggested clusters. As a result
a number of scalar measures of partition fuzziness (which are interesting in their own
right) have been used as heuristic validity indicants [Bezdek 1981, p. 95}.

Actually, the so-called cluster validity problem concerns the quality or the
degree to which the final partition of a cluster algorithm approximates the real
or hypothesized structure of a set of data. Most often this question is reduced,
however, to the search for a “correct’” ¢. Cluster validity is also relevant when
deciding which of a number of starting partitions should be selected for
improvement.

For measuring cluster validity in fuzzy clustering, some criteria from crisp
cluster analysis have been adapted to fuzzy clustering. In particular, the so-
called validity functionals used express the quality of a solution by measuring
its degree of fuzziness. While criteria for cluster valdity are closely related to
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the mathematical formulation of the problem, criteria to judge the real “appro-
priateness” of a final partition consider primarily real rather than mathematical
features.

Let us first consider some criteria taken from traditional crisp clustering.

One of the most straightforward criteria is the value of the objective function.
Since it decreases monotonically with increasing number of clusters, c, that is,
it reaches its minimum for ¢ = n, one chooses the ¢* for which a large decrease
is obtained when going from c* to c¢* + 1. Another criterion is the rate of
convergence. This is justified because experience has shown that, for a good
clustering structure and for an appropriate c, a high rate of convergence can
generally be obtained.

Because the “optimal” final portion depends on the initialization of the starting
partition U/, the “stability” of the final partition with respect to different starting
partitions can also be used as an indication of a “correct” number of clusters c.

All three criteria serve to determine the “correct” number of clusters. They
are heuristic in nature and therefore might lead to final partitions that do not
correctly identify existing clusters. Bezdek shows, for instance, that the global
minimum of the objective function is not necessarily reached for the correct
partition [Bezdek 1981, pp. 96 ff]. Therefore other measures of cluster validity
are needed in order to judge the quality of a partition.

The following criteria calculate cluster validity functionals that assign to each
fuzzy final partition a scalar that is supposed to indicate the quality of the
clustering solution. When designing such criteria, one assumes that the clustering
structure is better identified when more points concentrate around the cluster
centers, that is, the crisper (unfuzzier) is the membership matrix of the final
partition generated by the fuzzy c-means algorithm.

The best-known measures for judging the fuzziness of a clustering solution
are

the partition coefficient, F (17 , C)
the partition entropy, H(U, ¢), and
the proportion exponent, P(U, ¢).

Definition 12-5 [Bezdek 1981, p. 100]

Let Ue M,, be a fuzzy c-partition of n data points. The partition coefficient of
U is the scalar

F(lj, ) = 22 (Ha)?

k=1izt 1
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Definition 12—6 [Bezdek 1981, p. 111]

The partition entropy of any fuzzy c-partition U € M, of X, where | X | = n,
isforl =c¢=n

- 1 n o
HWU, ¢) = =—3 3 Wilog.(Hy)
k=1 i=l

(see definition 4-3a, b, where the entropy was already used as a measure of
fuzziness.)

Definition 12-7 {Windham 1981, p. 178; Bezdek 1981, p. 119]

LetUe (M;\M ) be a fuzzy c-partition of X; | X | = n; 2 < ¢ < n. For column
kof U, 1 =k =n,let

M; = max {uik}

I=i=¢

1
[H;‘] = greatest integer =< (_ﬁj
78

The proportion exponent of U is the scalar

k=t | j=t

no| g
P, ¢) = ~log, H{Z(_l)m(;)(l _juk)u-_l)}

The above-mentioned measures have the following properties:
1 ~
—=FU,c)<= 1
c

0 =< H(U, ¢) = log,c)
0=PU, ¢) <o

The partition coefficient and the partition entropy are similar in so far as they
attain their extrema for crisp partitions U € M.,:

FU c)=1oHU o)=0Ue M,

F(U, ¢) = LI HU, ¢) =log(¢) & U = [l}
¢ .
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The (heuristic) rules for selecting the “correct” or best partitions are

max {max {F({U,¢)}} ¢=2,...,n-1

c UeQ,
min {min (HU,®)}} ¢=2,...,n-1
¢ Ued,

where Q, is the set of all “optimal” solutions for given c.

The limitations of F(U, c) and H(U, ¢) are mainly their monotonicity and the
lack of any suitable benchmark that would allow a judgment as to the acceptability
of a final partition. The monotonicity will usually tend to indicate that the
“correct” partition is the 2-partition. This problem can be solved, for instance,
by choosing the i* partition for which the value of H(U, ¢) lies below the trend
when going from ¢* ~ 1 to c*.

H(U, ¢) is normally more sensitive with respect to a change of the partition
than is F(U, ¢). This is particularly so if m is varied.

While F(U, ¢) and H(U, ) depend on all ¢ - n elements, the proportion exponent
P(U, ¢) depends on the maximum degree of membership of the n elements. P( U,c)
converges towards oo with increasing M,, and it is not defined for p, = 1.

The heuristic for choosing a good partition is

max {max {PU,c)}} c=2,...,n-1
¢ UeQ,

By contrast to F(U, ¢) and H(U, c), P(U, c) has the advantage that it is not
monotone in ¢. There exist, however, no benchmarks such that one can judge the
quality of a portion c* from the value of P(U*, c*).

The heuristic for P(U, ¢) possibly leads to an “optimal” final partition other
than the heuristics of F(U, c¢) and/or of H(U, c). This might necessitate the use
of other decision aids derived from the data themselves or from other considera-
tions. Bezdek [1981] describes quite a number of other approaches in his book.

Even though the fuzzy c-means algorithm (FCM) performs better in practice
than crisp clustering methods, problems may still have features that cannot be
accommodated by the FCM. Exemplarily, two of them shall be looked at briefly.

Most crisp and fuzzy clustering algorithms seek in a set of data one or the other
type of clustershape (prototype). The type of prototype used determines the
distance measurement criteria used in the objective function. Windham [1983]
presented a general procedure that unifies and allows the construction of differ-
ent algorithms using points, lines, planes, etc. as prototypes. These algorithms,
however, normally fail, if the pattern looked for is not in a sense compact. For
instance, the patterns shown figures 12-2b and 12-2c will hardly be found. Dave
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[1990] suggested an algorithm that can find rings or, in general, spherical shells
in higher dimensions. His fuzzy shell clustering (FSC) algorithm modifies the
variance criterion mentioned above (after example 12-4) by introducing the radius
of the “ring” searched for, arriving at
min z,(u, v, r) = ZZ(H“}")”I(DM')I
i=l k=l
where

Dy =1llxy —vill -7

r; is the radius of the cluster prototype shell, and all other symbols are as defined
for the FCM algorithm. The algorithm itself has to be adjusted accordingly by
including r,.

Details are given in Dave [1990]. This algorithm also finds circles if the data
are incomplete. Figure 12-13 shows examples of it from Dave.

oA,

&

§ o
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@] o § Oo ¢
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Figure 12-13. Clusters by the FSC. (a) Data set; (b) circles found by FSC;
(c) data set; (d) circles found by FSC
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Figure 12-14. Data sets [Krishnapuram and Keller 1993].

Interesting applications can be found in Dave and Fu [1994].
The FCM as well as the FSC satisfies the constraint

Spp=1, 1<k=n
i=1

which was used in definition 12—4 of a fuzzy c-partition. Considering data sets
shown in figure 12-14, this constraint would enforce that, for instance, two
cluster points A and B would get the same degree of membership, U = .5, in
clusters 1 and 2.

The p; would then express a kind of “relative membership” to the clusters,
i.e., the membership of point B in cluster 1 compared to the membership of
point B in cluster 2 (see also figure 12-14). From an observer’s point of view
it might, however, be inappropriate to assign the same degrees of membership
to points A and B because he interprets those as (absolute) degrees of member-
ship, e.g., degrees to which points A or B belong to clusters 1 or 2, respectively.
Krishnapuram and Keller [1993] suggest their possibilistic c-means algorithm
(PCM) to compute the latter kind of degrees of membership for elements in
clusters by modifying the definition of a fuzzy c-partition and, as a consequence,
the objective function of the cluster algorithm.

Definition 12-4 is modified to

1. mpee 0,1, 1=sisc¢ 1=k=n

2. 0<Ypuz=n, l=i<c
k=1
3. maxp, >0 forall £
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Simply relaxing condition 2 in definition 12-4 in the FCM would produce the
trivial solution, i.e., the objective function would drive all degrees of membership
to 0. This result is certainly not meaningful. One would rather try to have the
degrees of membership of data that belong strongly to clusters appropriately
high and those that do not represent the features of the clusters well very low.
This is achieved by the following objective function:

min Z(ﬁ’ V)= 22(“’1]{)’"‘1 + 2 n; 2 1 - sz

i=1 k=1 i=1 k=1

Here d, can be the same distance as in the FCM, |, are now the “absolute”
degrees of memberships, and m, are appropriately chosen positive numbers (see
Krishnapuram and Keller [1993]). When applying such an algorithm to data sets
as shown in figure 12—14, point A would obtain considerably higher degrees of
membership than point B.

12.2.2 Knowledge-Based Approaches

Knowledge-based approaches resemble very much those procedures described
in chapters 10 and 11. Figure 12-15 indicated the basic structure of knowledge-
based classification.

After the preprocessing, the data describing the elements are fed into an
expert system. This contains in the knowledge base—in an appropriate fuzzy
description—the relevant features, which in the inference engine are aggregated
per element. The results are either membership functions or possibly singletons.
The “matching” function contains the description of the classes (fuzzy or crisp)
and determines the similarity of the expert system output with the class description.
An assignment of elements to classes occurs then either according to the respective
degrees of similarity or to the class with the highest degree of similarity.

An example of such a data-mining system is described by Fei and Jawahir
[1992]. The basic structure is given below.

In a turning situation, the finish-turning operation involving the machining
of a component at small feeds and at small depths of cut requires a number of
major issues to be solved before the process can begin. The process of finish
turning itself is so complex that it is practically impossible to establish any
theoretical model that could precisely predict the machinability parameters. Here
we shall only consider the relationship between depth of cut and feed on one
hand and the resulting surface roughness on the other hand.

Figure 12—16 shows the linguistic variables defining the relevant features on
the input side.
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Figure 12-16. Linguistic variables “Depth of Cut” and “Feed.”

In this case the classes, i.e., surface roughness, are defined as intervals with
linguistic labels as follows:

Label Excellent Good Fair Acceptable Poor

R, (um) 0-.6 6-1.1 1.1-1.5 1.5-2.0 2.0-3.0

The authors have modeled the uncertainty in this case by computing a kind of
“uncertainty factor” that applies to the respective terms of the linguistic vari-
able (classes). Alternatively, the classes could, of course, have been modeled by
fuzzy sets, rather than by intervals, possibly in multidimensional space.

The knowledge base of this system is shown in figure 12—17 and the structure
of the entire system in figure 12~18.

12.2.3 Neural Net Approaches

Artificial neural nets (ANNs) have proven to be a very efficient and powerful
tool for pattern recognition. The literature on types of ANNs and their applications
to data analysis is abundant, and it would exceed the scope of this book to
introduce the reader to this area. Since the beginning of the 1990s the relationship
and the cross-fertilization of fuzzy set theory and artificial neural nets have
grown stronger and stronger (see, for example, Lee [1975], Huntsberger [1990],
Kosko [1992], Nauck et al. [1994], Kim and Choo [1994], and Kunchera [1994]).
There are two reasons for this: (1) artificial neural nets are “classical” in the
sense that originally their structure was dichotomous and a fuzzification has
turned out to be useful in many cases, and (2) fuzzy set systems and ANNs are
complementary in the sense that fuzzy systems are interpretable, plausible, and
in a sense transparent (knowledge-based) systems, which, however, in general
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Figure 12-17. Knowledge base.

cannot learn. In other words, the knowledge has to be acquired first and then
fed into the systems in the form of if-then rules or otherwise. ANNSs, by contrast,
have the “black box” character, i.e., they cannot be interpreted easily, but they
can learn in a supervised or unsupervised fashion.

It is obvious that it makes sense to combine the attractive features of these
two approaches while trying to avoid their weaknesses. Unfortunately, it is also
beyond the scope of this book to describe the various ways in which these two
approaches have been combined.

12.3 Tools for Fuzzy Data Analysis

12.3.1 Requirements for FDA Tools

In section 12.2, three classes of methods, primarily for classifier design and
classification, were described in various degrees of detail. Each of these classes
contains numerous methods, the suitability of which depends on the structure of
the problem to be solved. In addition, and not described here, one needs methods
for feature analysis such as fuzzy regression analysis, fuzzy discriminant analysis,
etc. (for more details, see, for example, Bezdek and Pal [1992]). In other words,
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Figure 12—18. Basic structure of the knowledge-based system.

the tools needed for FDA are much more heterogeneous than those needed for
fuzzy control as described in chapter 11.

One of the most serious problems is that very often one only knows which
tool is the most suitable one after the problem has been solved. Only general
guidelines are known, such as: If the shape and the number of patterns one is
looking for i1s known, then an appropriate cluster method might best be employed.
If the knowledge is available as expert knowledge but not mathematically, then
a knowledge-based approach might be the best. And if this information is hidden
in a large mass of available data, then an ANN might be trainable to solve the
problem.
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The only possible way, then, to perform FDA efficiently is to have a variety
of methods readily available on a computer in order to find out by an intelligent
trial-and-error method which of the methods is best suited to a specific case.
This approach, however, amounts to having case tools similar to those already
described for fuzzy control in chapter 11. There are only two differences: (1)
Instead of only a shell for knowledge-based inference, now the methods of all
three groups described in section 12.2, have to be induced, and (2) since the
input data themselves are often the object of analysis and since they often are
not in a suitable form to be analyzed, methods for data preprocessing also have
to be included.

Data preprocessing. If, for example, in quality control some acoustic signals
have to be investigated, it becomes necessary to filter these data in order to
overcome the problems of noisy input. In addition to these filter methods, some
transformations of the measured data such as, for example, fast Fourier trans-
formation (FFT) could improve the respective results. Both filter methods and
FFT belong to the class of signal processing techniques. Data preprocessing in-
cludes signal processing and also conventional statistical methods.

Statistical approaches could be used to detect relationships within a data set
describing a special kind of application. Here correlation analysis, regression
analysis, and discrimination analysis can be applied adequately. These methods
could be used, for example, to facilitate the process of feature extraction. If, say,
two features from the set of available features are highly correlated, it could
be sufficient for a classification to consider just one of these.

The differences between an FC tool and an FDA tool are probably responsible
for the fact that hardly any FDA tools are yet available on the market. In the
following section, we briefly describe the only one known so far.

12.3.2 DataEngine

DataEngine is a software tool that contains methods for data analysis described
above (see figure 12-19). In particular, the combination of signal processing,
statistical analysis, and intelligent systems for classifier design and classifica-
tion, leads to a powerful software tool that can be used in a very broad range
of applications.

DataEngine is written in an object-oriented concept in C++ and runs on all
usual hardware platforms. Interactive and automatic operation supported by an
efficient and comfortable graphical user interface facilitates the application of
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data analysis methods. In general, such applications are performed in the following
three steps:

1. Modeling a specific application with DataEngine. Each subtask in an
overall data analysis application is represented by a so-called function block in
DataEngine. Such function blocks represent software modules that are specified
by their input interfaces, output interfaces, and function. Examples include a
certain filter method or a specific cluster algorithm. Function blocks could also
be hardware modules such as neural network accelerator boards. This leads to
a very high performance in time-critical applications.

2. Classifier design (off-line data analysis). After having modeled the ap-
plication in DataEngine, off-line analysis has to be performed with given data
sets to design the classifier. This task is done without process integration.

3. Classification. Once the classifier design is finished, the classification of
new objects can be executed. Depending on specific requirements, this step can
be performed in an on-line or off-line mode. If data analysis is used for decision
support (e.g., in diagnosis or evaluation tasks), objects are classified off-line.
Data analysis could also be applied to process monitoring and other problems
where on-line classification is crucial. In such cases, direct process integration
is possible by the configuration of function blocks for hardware interfaces (see
figure 12-20).

12.4 Applications of FDA

Applications of data analysis abound. Recently, fuzzy data analysis of various
kinds has been applied to character recognition [Shao and Wu 1990], intelligence
[Guo and Zhang 1990], market segmentation, and many other areas. Here, two
applications shall be described in which the tool described above has been used.

12.4.1 Maintenance Management in Petrochemical Plants

Problem Formulation. Over 97% of the worldwide annual commercial
production of ethylene is based on thermal cracking of petroleum hydrocarbons
with steam. This process is commonly called pyrolysis or steam cracking. Naphtha,
which is obtained by the distillation of crude oil, is the principal raw ethylene
material. Boiling ranges, densities, and compositions of naphtha depend on crude
oil quality.

Naphtha is heated in cracking furnaces up to 820°C—840°C, where the chemical
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reaction starts. The residence time of the gas stream in the furnace is determined
by the severity of the cracking process. The residence time for low severity is
about 1 s and for high severity 0.5 s. The severity of the cracking process speci-
fies the product distribution. With high-severity cracking, the amount of ethylene
in the product stream is increased and the amount of propylene is decreased
significantly.

During the cracking process, acetylenic, diolefenic, and aromatic compounds
are also produced, which are known to deposit coke on the inside surfaces of the
furnace tubes. This coke layer inhibits heat transfer from the tube to the process
gas, and therefore at some time the furnace must be shut down to remove the
coke. To guarantee a continuous run of the whole plant, several furnaces are
parallel integrated into the production process. The crude on-line measured process
data is not suitable for determining the degree of coking. About 20 different
measurements of different indicators, such as temperatures, pressures, or flows,
are taken every minute. On the basis of these data only, it is not possible for the
operator to decide whether the furnace is coked or not. His or her experience and
the running time of the regarded furnace is the basis for this decision.

Solution by Data Analysis. Clustering methods compress the information in
data sets by finding classes that can be used for classification. Similar objects are
assigned to the same class. In the present case, “objects” are different states of
a cracking furnace during a production period. Objects are described by different
features. Features are the on-line measured quantities, such as temperatures, etc.

Figure 12-21 shows the structure of the cracking furnace under considera-
tion. Features describing the process are primarily temperatures and flows. The
classes are “coked state” and “decoked state.” Fuzzy cluster methods were used
to determine the coking of 10 cracking furnaces of a thermal cracker. The data
of one year have been analyzed. The process of coking lasts about 60 days.
Therefore only mean values of a day of the measured quantities were considered.
For different furnaces, the centers of coked and decoked classes were found by
searching for coked and decoked states in the data set. Figure 12-22 shows the
temperature profile of a furnace during the whole year. Characteristic peaks,
where temperature decreases significantly, result from decoking processes. K1
and K2 describe decoked and coked states of the furnace.

The temperature profile shows no characteristic shape that results from coking.
Furnace temperature is only one of the features shown in figure 12-22. There
are dependencies between features, so a determination of coking through considera-
tion of only the feature “temperature” is not possible.

Figure 12-23 shows the membership values of a furnace state during a
production period using the classifier. The values describe the membership of
the current furnace state in the coked class. The membership values increase
continuously and reach nearly 1 at the end of the production period.

The classifier works on-line and classifies the current furnace state with
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Figure 12—22. Furnace temperature.

reference to the coking problem. The operator can use this information to check
how long the furnace under consideration will be able to run until it has to be
decoked. As a result, it becomes easier to make arrangements concerning logistical
questions, €.g., ordering the correct amounts of raw material or not being under-
staffed at certain times.

12.4.2 Acoustic Quality Control

In acoustic quality control, many efforts have been undertaken to automate the
respective control tasks that are usually performed by humans.

Even if there are many computerized systems for automatic quality control
via analysis of acoustic signals, some of the problems cannot be solved adequately -
yet. Below, an example of acoustic control of ceramic goods is presented to
show the potentials of fuzzy data analysis in this respect.

Problem Formulation. In cooperation with a producer of tiles, a prototype
has been built that shows the potentials of automatic quality control. At this
point, an employee of this company has to check the quality of the final product



278 FUZZY SET THEORY—AND ITS APPLICATIONS
membership
(i)
1.0 7
0.8
coked
0.6 -

0.4
i transition
- state
0.2 decoked
0-0 v T T S T T v T )
40 50 60 70 80 90 100

days

Figure 12—23. Fuzzy classification of a continuous process.

by hitting it with a hammer and deciding about the quality of the tile based on
the resulting sound. Since cracks in the tile cause an unusual sound, an experienced
worker can distinguish between good and bad tiles.

Solution Process. In this application, algorithmic methods for classifier design
and classification were used to detect cracks in tiles. In the experiments, the tiles
are hit automatically, and the resulting sound is recorded via a microphone and
an A/D-converter.

Then signal processing methods like filtering and fast Fourier transformations
(FFT) transform these sound data into a spectrum that can be analyzed. For
example, the time signal is transformed by an FFT into the frequency spectrum.
From this frequency spectrum, several characteristic features are extracted that
could be used to distinguish between good and bad tiles. The feature values are
the sum of amplitude values in some specified frequency intervals. In the
experiments, a six-dimensional feature vector showed best results. After this
feature extraction, the fuzzy c-means algorithm found fuzzy classes that couid
be interpreted as good and bad tiles. Since a crisp distinction between these two
classes is not always possible, fuzzy cluster techniques have an advantage: not
only do they distinguish bad from good tiles but also the intermediate qualities
can be defined (see figure 12-24).
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Exercises

1. Describe three example problems from the areas of engineering and manage-
ment, each of which can be considered as a problem of pattern recognition.
How is the dimensionality of the data space reduced in pattern recognition?
What is the center of a cluster and how can it be defined?

Which basic types of objective-function algorithms exist in cluster analysis?
Consider the following fuzzy graph:

ok

Determine the clusters of the graph in dependence of the T-degree (cf. figure
12--6).

6. Let X ={x,, x,, x;, x,} and let each x; be a point in three-dimensional space.
Determine all 3-partitions that are possible and display them as shown in
example 12—1.

7. Give three possible fuzzy three-partitions for the problem given in exercise
6.

8. LetX={(1, D), (1, 3),10, 1, (10, 3), (5, 2)} be a set of points in the plane.
Determine a crisp 3-partition that groups together (1, 3) and (10, 3) and that
minimizes the Euclidean norm metric. Do the same for the variance criterion.

9. Determine the cluster validity of the clusters shown in figures 1211 and
12-12 by computing the partition coefficient and the partition entropy.



1 3 DECISION MAKING IN
FUZZY ENVIRONMENTS

13.1 Fuzzy Decisions

The term decision can have very many different meanings, depending on whether
it is used by a lawyer, a businessman, a general, a psychologist, or a statistician.
In one case it might be a legal construct, and in another a mathematical model;
it might also be a behavioral action or a specific kind of information processing.
While some notions of a “decision” have a formal character, others try to describe
decision making in reality.

In classical (normative, statistical) decision theory, a decision can be charac-
terized by a set of decision alternatives (the decision space); a set of states of
nature (the state space); a relation assigning to each pair of a decision and state
a result; and finally, the utility function that orders the results according to their
desirability. When deciding under certainty, the decision maker knows which
state to expect and chooses the decision alternative with the highest utility, given
the prevailing state of nature. When deciding under risk, he does not know
exactly which state will occur; he only knows a probability function of the
states. Then decision making becomes more difficult. We shall restrict our atten-
tion to decision making under certainty. In this instance, the model of decision
making is nonsymmetric in the following sense: The decision space can be

281
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Utility
Constraint
0 1 2 3 4 5 6 Dividend (%)
Optimal
Decis,

Figure 13—-1. A classical decision under certainty.

described either by enumeration or by a number of constraints. The utility func-
tion orders the decision space via the one-to-one relationship of results to deci-
sion alternatives. Hence we can only have one utility function, supplying the
order, but we may have several constraints defining the decision space.

Example 13-1

Let us assume that the board of directors wants to determine the optimal dividend.
Their objective function (utility function) is to maximize the dividend. The con-
straint defining the decision space is that the dividend be between zero and 6%.
Hence the optimal dividend is “Between 0 and 6%” and “maximal.” (The con-
straint does not impose an order on the decision space!) The optimal dividend
will obviously be 6%. Assigning a linear utility function, figure 13—1 illustrates
these relationships.

In 1970 Bellman and Zadeh considered this classical model of a decision and
suggested a model for decision making in a fuzzy environment that has served
as a point of departure for most of the authors in “fuzzy” decision theory.
They consider a situation of decision making under certainty, in which the
objective function as well as the constraint(s) are fuzzy, and argue as follows:
The fuzzy objective function is characterized by its membership function, and
so are the constraints. Since we want to satisfy (optimize) the objective function
as well as the constraints, a decision in a fuzzy environment is defined by
analogy to nonfuzzy environments as the selection of activities that simultan-
cously satisfy objective function(s) and constraints. According to the above
definition and assuming that the constraints are “‘noninteractive,” the logical
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“and” corresponds to the intersection. The *“decision” in a fuzzy environment
can therefore be viewed as the intersection of fuzzy constraints and fuzzy objec-
tive function(s). The relationship between constraints and objective functions in
a fuzzy environment is therefore fully symmetric, that is, there is no longer a
difference between the former and the latter.

This concept is illustrated by the following example [Bellman and Zadeh
1970, B-148]:

Example 132

Objective function “x should be substantially larger than 10,” characterized by
the membership function

N 0 x=10
Mol =11 4 (x= 102" x> 10

Constraint “x should be in the vicinity of 11,” characterized by the member-
ship function

He() = (1 + (x = 1Y
The membership function p;(x) of the decision is then

Ws(X) = Us(x) A Helx)

) = min {(1 +(x- 102y, Q1 +(x—-1D*"'} forx>10
Holx) = 0 forx=10
_Ja+x=-1)H1 forx>11.75
~ 0 for 10 < x < 11.75
forx =10

This relation is depicted in figure 13-2. Let us now modify example 13-1
accordingly.

Example 13-3

The board of directors is trying to find the “optimal” dividend to be paid to the
shareholders. For financial reasons this dividend ought to be attractive, and for
reasons of wage negotiations it should be modest.

The fuzzy set of the objective function “attractive dividend” could, for instance,
be defined by:

1 x=58
;[—29x3 —366x2 - 877x+540] 1<x<538

2100
0 x=1

Ko(x) =
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Figure 13-2. A fuzzy decision.

The fuzzy set (constraint) “modest dividend” could be represented by

1 =12
(X)) = {——[-2947 — 243x + 16x+ 2388] 12<yv<6
peCr) o OO[ X Y ] v
0 X=6

The fuzzy set “decision” is then characterized by its membership function
Up(v) = min {ps(x), 1e(x) |}

If the decision maker wants to have a “crisp” decision proposal, it seems appro-
priate to suggest the dividend with the highest degree of membership in the
fuzzy set “decision.” Let us call this the “maximizing decision,” defined by

Xpax = a@rg (max min {{5(x), ge(x)})

Figure 13-3 sketches this situation.

After these introductory remarks and examples, we shall formally define a deci-
sion in a fuzzy environment in the sense of Bellman and Zadeh.

Definition 13-1 [Bellman and Zadeh 1970, B-148]

Assume that we are given a fuzzy goal G and a fuzzy constraint C in a space
of alternatives X. Then G and € combine to form a decision., D. which is a
fuzzy set resulting from intersection of G and C. In symbols, D = G N C, and
correspondingly,
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w(x)

!

1.0 i

0.0

Figure 13-3. Optimal dividend as maximizing decision.

ps = min {Kg, Ke}

More generally, suppose that we have n goals G,, ..., G, and m constraints
C,, ..., C,. Then the resultant decision is the intersection of the given goals
G,, ..., G, and the given constraints C,, ..., C,. That is,

p=6,nGn..n6nénén...NnC,

and correspondingly

Wp = min (UG, He,» - - - » KG,s Hao ey - - - o MG,
min {pg, K¢} = min {1}

Definition 13-1 implies essentially three assumptions:

1. The “and” connecting goals and constraints in the model corresponds to the
“logical and.”

2. The logical “and” corresponds to the set-theoretic intersection.

3. The intersection of fuzzy sets is defined in the possibilistic sense by the
min-operator.
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Bellman and Zadeh indicated in their 1970 paper that the min-interpretation
of the intersection might have to be modified depending on the context. “In
short, a broad definition of the concept of decision may be stated as: Decision
= Confluence of Goals and Constraints” [Bellman and Zadeh 1970, B-149].

The question arises whether even the intersection interpretation is a generally
acceptable assumption or whether “confluence” has to be interpreted in an even
more general way. Let us consider the following example.

Example 13-4

An instructor at a university must decide how to grade written test papers. Let
us assume that the problem to be solved in the test was a linear programming
problem and that the student was free to solve it either graphically or using the
simplex method. The student has done both. The student’s performance is
expressed—for graphical solution as well as for the algebraic solution—as the
achieved degree of membership in the fuzzy sets “good graphical solution” (G)
and “good simplex solution” (S), respectively. Let us assume that he reaches

U = 09 and Mg = 0.7

If the grade to be awarded by the instructor corresponds to the degree of mem-
bership of the fuzzy set “good solutions of linear programming problems” it
would be quite conceivable that his grade M7y could be determined by

Mip = max {Hg, U} = max {0.9, 0.7} = 09

The two definitions of decisions—as the intersection or the union of fuzzy sets—
imply essentially the following: The interpretation of a decision as the intersec-
tion of fuzzy sets implies no positive compensation (trade-off) between the
degrees of membership of the fuzzy sets in question, if either the minimum or
the product is used as an operator. Each of them yields a degree of membership
of the resulting fuzzy set (decision), which is on or below the lowest degree of
membership of all intersecting fuzzy sets (see example 13-3).

The interpretation of a decision as the union of fuzzy sets, using the max-
operator, leads to the maximum degree of membership achieved by any of the
fuzzy sets representing objectives or constraints. This amounts to a full compen-
sation of lower degrees of membership by the maximum degree of membership
(see example 13-4).

Observing managerial decisions, one finds that there are hardly any decisions
with no compensation between either different degrees of goal achievement or
the degrees to which restrictions are limiting the scope of decisions. The com-
pensation, however, rarely ever seems to be “complete,” as would be assumed
using the max-operator. It may be argued that compensatory tendencies in human
aggregation are responsible for the failure of some classical operators (min,
product, max) in empirical investigations.
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Two conclusions can probably be drawn: Neither the noncompensatory “and”
represented by operators that map between zero and the minimum degree of
membership (min-operator, product-operator, Hamacher’s conjunction operator
[definition 3—15], Yager’s conjunction operator [definition 3—16]) nor the fully
compensatory “or” represented by the operators that map between the maximum
degree of membership and 1 (maximum, algebraic sum, Hamacher’s disjunction
operator, Yager’s disjunction operator) are appropriate to model the aggregation
of fuzzy sets representing managerial decisions.

“Confluence of Goals and Constraints” should therefore be interpreted as in
definition 13-2.

Definition 13-2

Let ps(x),i=1,...,m x € X, be membership functions of constraints, de-
fining the decision space, and let u@]_(x), j=1,...,n,x€ Xbethe membership
functions of objective (utility) functions or goals.

A decision is then defined by its membership function

Hp(x) = B pe(x) * Bug(x), i=1,..., mj=1,...,n

where *, ®;, ®; denote appropriate, possibly context-dependent “aggregators”
(connectives).

We shall discuss the question of appropriate connectives in more detail in chap-
ter fifteen. Before we turn to fuzzy mathematical programming, it should be
mentioned that the symmetry that is a property of all definitions based on Bellman-
Zadeh’s concept (irrespective of the operators used) is not considered adequate
by all authors (for example, see Asai et al. [1975]).

13.2 Fuzzy Linear Programming

Linear programming models shall be considered as a special kind of decision
model: The decision space is defined by the constraints; the “goal” (utility func-
tion) is defined by the objective function; and the type of decision is decision mak-
ing under certainty. The classical model of linear programming can be stated as

maximize  f(x) = c'x

such that Ax =< b
x=0

withe, x e R, be R", A e R™ (13.1)
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Let us now depart from the classical assumptions that all coefficients of A, b, and
¢ are crisp numbers, that = is meant in a crisp sense, and that “maximize” is a
strict imperative!

If we assume that the LP-decision has to be made in fuzzy environments,
quite a number of possible modifications of model (13.1) exist. First of all, the
decision maker might not really want to actually maximize or minimize the
objective function. Rather, he or she might want to reach some aspiration levels
that might not even be definable crisply. Thus he or she might want to “improve
the present cost situation considerably,” and so on.

Secondly, the constraints might be vague in one of the following ways: The
= sign might not be meant in the strictly mathematical sense, but smaller viola-
tions might well be acceptable. This can happen if the constraints represent
aspiration levels as mentioned above or if, for instance, the constraints represent
sensory requirements (taste, color, smell, etc.) that cannot adequately be approx-
imated by a crisp constraint. Of course, the coefficients of the vectors b or ¢ or
of the matrix A itself can have a fuzzy character either because they are fuzzy
n nature or because perception of them is fuzzy.

Finally, the role of the constraints can be different from that in classical linear
programming, where the violation of any single constraint by any amount renders
the solution infeasable. The decision maker might accept small violations of
constraints but might also attach different (crisp or fuzzy) degrees of importance
to violations of different constraints. Fuzzy linear programming offers a number
of ways to allow for all these types of vagueness. and we shall discuss some of
them below.

First of all, one can either accept Bellman—Zadeh’s concept of a symmetrical
decision model (see definition 13—1) or develop specific models on the basis of
a nonsymmetrical basic model of a “fuzzy” decision [Orlovsky 1980; Asai et al.
1975]. Here we shall adopt the former, more common, approach. Secondly, one
has to decide how a fuzzy “maximize” is to be interpreted, or whether to stick
to a crisp “maximize.” In the latter case, complications arise on how to connect
a crisp objective function with a fuzzy solution space. We will discuss one
approach for a fuzzy goal and one approach for a crisp objective function.

Finally, one has to decide where and how fuzziness enters the constraints.
Some authors [Tanaka and Asai 1984] consider the coefficients of A, b, ¢ as fuzzy
numbers and the constraints as fuzzy functions. We shall here adapt another
approach that seems to be more efficient computationally and more closely
resembles Bellman—Zadeh’s model in definition 13—1; We shall represent the
goal and the constraints by fuzzy sets and then aggregate them in order to derive
a maximizing decision.

In both approaches, one also has to decide on the type of membership func-
tion characterizing either the fuzzy numbers or the fuzzy sets representing goal
and constraints.
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In classical LP, the “violation” of any constraint in model (13.1) renders the
solution infeasible. Hence all constraints are considered to be of equal weight or
importance. When departing from classical LP, this conclusion is no longer true,
and one also has to worry about the relative weights attached to the constraints.

Before we develop a specific model of linear programming in a fuzzy environ-
ment, it should have become clear that in contrast to classical linear program-
ming, “fuzzy linear programming” is not a uniquely defined type of model; many
variations are possible, depending on the assumptions or features of the real
situation to be modeled.

13.2.1 Symmetric Fuzzy LP

Let us now turn to a first basic model for “fuzzy linear programming.” In model
(13.1), we shall assume that the decision maker can establish an aspiration level,
z, for the value of the objective function he or she wants to achieve and that each
of the constraints is modeled as a fuzzy set. Our fuzzy LP then becomes:

Find x such that

>
v

z
b
0 (13.2)

&
U

v

X

Here < denotes the fuzzified version of < and has the linguistic interpreta-
tion “essentially smaller than or equal to.” = denotes the fuzzified version of =
and has the linguistic interpretation “essentially greater than or equal to.” The
objective function in model (13.1) might have to be written as a minimizing goal

in order to consider z as an upper bound. thus: minimize

-CX=-Z

We see that model (13.2) is fully symmetric with respect to objective func-
tion and constraints, and we want to make that even more obvious by substitut-
ing ("4) = B and ("5) = d. Then model (13.2) becomes:

Find x such that
Bx=d
x=0 (13.3)

Each of the (m + 1) rows of model (13.3) shall now be represented by a fuzzy
set, the membership functions of which are p,(x). Following definition 13-1, the
membership function of the fuzzy set “decision” of model (13.3) is

1500 = min (i ()] (13.4)
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H,(x) can be interpreted as the degree to which x fulfills (satisfies) the fuzzy
unequality B.x = d; (where B, denotes the ith row of B).

Assuming that the decision maker is interested not in a fuzzy set but in a crisp
“optimal” solution, we could suggest the “maximizing solution” to equation (13.4),
which is the solution to the possibly nonlinear programming problem

maxmin {p,; ()} = max p(-x) (13.5)

Now we have to specify the membership functions p(v). p,(x) should be 0
if the constraints (including the objective function) are strongly violated, and |
if they are very well satisfied (i.e., satisfied in the crisp sense); and {.(x) should
increase monotonously from 0 to 1, that is,

| if Bx=d,
W) =<e[0.1] if d<Bx=<d+p i=1.. . .m+l
0 if Bx>d +p, (13.6)

Using the simplest type of membership function, we assume them to be linearly
increasing over the “tolerance interval” pi

1 it Ba=d,
Bx~d,
W) =31- 8 i g < Bi=dap izl .om+l
Pi
0 if Bx>d +p (13.7)

The p, are subjectively chosen constants of admissible violations of the con-
straints and the objective function. Substituting equation (13.7) into problem
(13.5) yields, after some rearrangements [Zimmermann 1976] and with some
additional assumptions,

(13.8)

x=0 /

max min [l —

Introducing one new variable, A, which corresponds essentially to equation
(13.4), we arrive at

maximize A

such that  Ap;+Ba<=d +p, i=1,...,.m+ 1
x=0 (13.9)

If the optimal solution to problem (13.9) is the vector (A, Xo), then x, is the
maximizing solution (13.5) of model (13.2), assuming membership functions as
specified in (13.7).

The reader should realize that this maximizing solution can be found by
solving one standard (crisp) LP with only one more variable and one more
constraint than in model (13.3). Consequently, this approach is computationally
very efficient.
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A slightly modified version of models (13.8) and (13.9), respectively, results
if the membership functions are defined as follows: A variable £, i=1,...,m
+1,0 <t < p, is defined that measures the degree of violation of the ith
constraint: The membership function of the ith row is then

ww=1- 4+ (13.10)

The crisp equivalent model is then
maximize A
such that A +t=p i=1...,m+1
Bx -t =d,
L=p
xt=0 (13.11)
This model is larger than model (13.9), even though the set of constraints
t, < p, is actually redundant. Model (13.11) has some advantages, however, in

particular when performing sensitivity analysis, which will be discussed in
the second volume on decisions in fuzzy environments.

Example 13-5

A company wanted to decide on the size and structure of its truck fleet. Four
differently sized trucks (x, through x,) were considered. The objective was to
minimize cost, and the constraints were to supply all customers (who have a
strong seasonally fluctuating demand). This meant certain quantities had to be
moved (quantity constraint) and a minimum number of customers per day had
to be contacted (routing constraint). For other reasons, it was required that at
least six of the smallest trucks be included in the fleet. The management wanted
to use quantitative analysis and agreed to the following suggested linear pro-
gramming approach:

minimize
41,400x, + 44,300x, + 48,100x; + 49,100x,
subject to constraints

0.84x, + 1.44x, + 2.16x; + 2.4x, = 170
16x, + 16x, + 16x; + 16x, = 1,300
Xy =6
Xy X3, X3 = 0

The solution was x; = 6, x, = 16.29, x; = 0, x, = 58.96, and Min Cost =
3,864,975. When the results were presented to management, it turned out that
the findings were considered acceptable but that the management would rather
have some “leeway” in the constraints. Management felt that because demand
forecasts had been used to formulate the constraints (and because forecasts never
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turn out to be correct!), there was a danger of not being able to meet higher
demands by their customers.

When they were asked whether or not they really wanted to “minimize trans-
portation cost,” they answered: Now you are joking. A few months ago you told
us that we have to minimize cost; otherwise, you could not model our problem.
Nobody knows minimum cost anyway. The budget shows a cost figure of $4.2
million, a figure that must not be exceeded. If you want to keep your contract,
you better stay considerably below this figure.

Since management felt forced into giving precise constraints (because of the
model) in spite of the fact that it would rather have given some intervals, model
(13.3) was selected to model the management’s perceptions of the problem
satisfactorily. The following parameters were estimated:

Lower bounds of the tolerance interval:

d, = 3,700,000 d, =170 dy = 1,300 d,=6
Spreads of tolerance intervals:
P, = 500,000 P> =10 py = 100 ps=6

After dividing all rows by their respective pi’s and rearranging in such a way
that only A remains on the left-hand side, our problem in the form of (13.9)
became:

Maximize A subject to constraints

0.083x, + 0.089x, + 0.096x, + 0.098, + A = 8.4
0.084x, + 0.144x, + 0216x, + 0.24x, — A = 17
0.16x, + 0.16x, + 0.16x,+ 0.16x, - A = 13
0.167x, A=

A Xy, X, X a2 0

The solution is as Follows:

Unfuzzy Fuzzy
X =6 x, =17414
X, = 16.29 x5 =0
x, = 58.96 X, = 66.54

= 3,864,975 Z = 3,988,250
Constraints:
1. 170 174.33
2. 1,300 1,343.328
3. 6 17.414
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As can be seen from the solution, “leeway” has been provided with respect to
all constraints and at additional cost of 3.2%.

The main advantage, compared to the unfuzzy problem formulation, is the
fact that the decision maker is not forced into a precise formulation because of
mathematical reasons even though he or she might only be able or willing to
describe the problem in fuzzy terms. Linear membership functions are obviously
only a very rough approximation. Membership functions that monotonically
increase or decrease, respectively, in the interval of [d,, d; + p,] can also be handled
quite easily, as will be shown later.

So far, the objective function and all constraints were considered fuzzy. If
some of the constraints are crisp, Dx =< b, then these constraints can easily be
added to formulations (13.9) or (13.11), respectively. Thus problem (13.9) would,
for instance, become:

maximize A

such that Ap,+Bx=d +p, i=1,....,m+1
Dx=b
xh=0 (13.12)

Let us now turn to the case in which the objective function is crisp and the
solution space is fuzzy.

13.2.2 Fuzzy LP with Crisp Objective Function

A model in which the objective function is crisp—that is, has to be maximized
or minimized—and in which the constraints are all or partially fuzzy is no
longer symmetrical. The roles of objective functions and constraints are differ-
ent; the latter define the decision space in a crisp or fuzzy way, and the former
induce an order of the decision alternatives. Therefore the approach of models
(13.3)-(13.5) is not applicable. The main problem is the scaling of the objective
function (the domain of which is not normalized) when aggregating it with the
(normalized) constraints. In very rare real cases, a scaling factor can be found
that has a real justification.

The problem we face is the determination of an extremum of a crisp function
over a fuzzy domain, which we have already discussed in section 7.2 of this
book. In definition 7-3, we defined the notion of a maximizing set that we will
specify here and use as a vehicle to solve our LP problem. Two approaches are
conceivable:

1. The determination of the fuzzy set “decision.”
2. The determination of a crisp “maximizing decision” by aggregating the
objective function after appropriate transformations with the constraints.
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1. The Determination of a Fuzzy Set “Decision.” Orlovski [1977] suggests
computing, for all a-level sets of the solution space, the corresponding optimal
values of the objective function and considering as the fuzzy set “decision” the
optimal values of the objective functions, with the degree of membership equal
to the corresponding «a-level of the solution space.

Definition 13-3 [Werners 1984]

Let R, = {x [ x € X, uy(x) = a} be the a-level sets of the solution space and
N(a) = {x | x € Ry, f(x) = sup ., f(x)} the set of optimal solutions for each
a-level set.

The fuzzy set “decision” is then defined by the membership function

xeN(o)

sup oo if xe U N(o)
uopt(x) — o>
else

The fuzzy set “optimal values of the objective function” has the membership
function

xef U

sup  Mou(x) if reRy A (N2 Q0
Hy(r) =
else

fix) 1s the objective function with functional values r.

For the case of linear programming, the determination of the r’s and [,,(x)
can be obtained by parametric programming [Chanas 1983]. For each o, an LP
of the following kind would have to be solved:

maximize flx)

such that oa=Wx)y i=1,...,m
ye X (13.13)

The reader should realize, however, that the result is a fuzzy set and that the
decision maker would have to decide which pair (r, W, f(r)) he or she considers
optimal 1f he or she wants to arrive at a crisp optimal solution.

Example 13-6 [Werners 1984
Consider the LP-Model

maximize z=2x + 1,
such that =3
X +x =4
S+ x, =3
X, X, =0
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%

\é \1'0 X,

Figure 13—4. Feasible regions for ps(x) = 0 and pa(x) = 1.

The “tolerance intervals™ of the constraints are p, = 6, p, = 4, p; = 2.
The parametric linear program for determining the relationships between
f(x) = r and degree of membership is then

maximize z=2x +x,

such that X =9 - 60
x +x, =8 -40
5%, + x, = 5 - 20

X, % =0

Figure 13—4 shows the feasible regions for R, and R, for pz(x) = 0 and px(x) = 1.
Figure 13-5 shows the resulting membership function u.(r). Additionally, figure
13-5 shows the membership function of the goal and the fuzzy decision that will
be discussed below.

Obviously, the decision maker has to decide which combination (r, us(r)) he
or she considers best.

Decision aids in this respect either can be derived from external sources or may
depend on the problem itself. In the following, we shall consider an approach
that suggests a crisp solution dependent on the solution space.

2. The Determination of a Crisp Maximizing Decision Some authors [Kickert
1978; Nguyen 1979; Zadeh 1972] suggest approaches based on the notion of a
maximizing set, which seem to have some disadvantages (see Werners [1984]).
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Figure 13-5. Fuzzy decision.

We shall therefore present a model that is particularly suitable for the type of

linear programming model we are considering here. Werners [1984] suggests the
following definition.

Definition 13-4

Let f: X = R' be the objective function, Ra fuzzy region (solution space), and
S(R) the support of this region. The maximizing set over the fuzzy region, MR (f).
1s then defined by its membership function

0 if f(x)=<inff
S(R)

f() ~inff
~ S S 1€ if  inff<f(x)<su
Mtk 1(X) supf— inf f ! ;m‘f fo S(Igf

S(R) S(R)

1 if  supf=f(x)

SCR)

The intersection of this maximizing set with the fuzzy set “decision™ (figure 13~
5) could then be used to compute a maximizing decision x, as the solution with
the highest degree of membership in this fuzzy set. It does not seem reasonable
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that the judgment of the decision maker is calibrated by looking at the smallest
value of f over the feasable region. A better benchmark would be the largest
value for f that can be obtained at a degree of membership of 1 of the feasible
region. This leads to the following definition.

Definition 13-5 [Wermers 1984]

Let £ X — R! be the objective function, R = fuzzy feasible region, S(R) =
support of R, and R, = o-level cut of R for o = 1. The membership function of
the goal (objective function) given solution space R is then defined as

0 if f(x) <supf
R
£(x) - supf
Pe(x) = —— R if supf<f(x) <supf
1 supf — supf R SR

S(R) R

1 if supf=f(x)

S(B

The corresponding membership function in functional space is then

sup ps(x) if reRf(r) =D
R (r): = {70
0

else
Example 13-7
Consider the model of example 13—6. For this model, R, is the region defined by
=3
n+x=4
Sk, +x, =3
x=0
The supremum of f over this region is

sup 2x; +x, =7
R
Figure 135 shows the membership functions |.L,(r) and ps(r). Using the min-

max approach, the resulting solution is x} = 5.84, x% = .05, ry=11.73, and the
attained degree of membership is Wz(xo) = .53.
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Let us now return to model (13.2) and modify it by considering the objective
function to be crisp and by adding a set of crisp constraints Dx =< b’

maximize fo) = x
such that Av= b
Dy=b:R
=0 (13.4)

Let the membership functions of the fuzzy sets representing the fuzzy con-
straints be defined in analogy to equation (13.7) as

1 if Av=bh
bo+p —Ax
wi(x) = s LT b < Ax<=bh +p,
Pi
0 it Ax> b +p, (13.15)

The membership function of the objective function (13.5) can be determined by
solving the following two LPs:

maximize  f(v) = ¢'x

such that Ax = b
Dx = b
=0 (13.16)
yielding supg f = (¢'x),, = f;; and
maximize  f(x) = ¢'x
such that Av = b +p
Dy =V
=0 (13.17)
yielding supg g, f = (¢'x)o = fi.
The membership function of the objective function is therefore
1 if  fi=c'x
crx—f .. )
Ho(w) =q——= if  fi<cIu<f
j() _fl »
0 if clx=j (13.18)

Now we have again achieved “symmetry” between constraints and the objec-
tive function, and we can employ the approach we used to derive model (13.9)
as an equivalent formulation of model (13.2).
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The equivalent model to (13.6) is

maximize A
such that Mf - f) - c'x = —f;
Ap +Ax=b+p
Dx =V
A =1
Ax=0 (13.19)

Example 13-8

We shall again consider the model in example 13—6. In example 13-7, we have
computed f, = 7. By solving problem (13.17), we obtain f, = 16. Therefore problem
(13.19) is

maximize A
such that N — 2x; —x, = T
6A + x =9
AA+x +x, =8
2L+ 5x,+x, =5
A =1
Ax,x=0

The solution to this problem is x§ = 5.84, x3 = 0, A, = .52.

Before we turn to fuzzy dynamic programming, it should be mentioned that on
the basis of the approach described so far, suggestions have been published for
a duality theory [Rodder and Zimmermann 1980], for sensitivity analysis in
fuzzy linear programming [Hamacher, Leberling, and Zimmermann 1978], for
integer fuzzy programming [Zimmermann and Pollatschek 1984], and for the
use of other than linear membership functions and other operators [Werners
19881. These topics will not, however, be discussed here. They have been dis-
cussed in more detail in Zimmermann [1987]. Other approaches introducing
fuzziness into mathematical programming have been published by a number of
authors. Often these approaches have been developed in the context of multi-
objective decision making. In order to avoid duplication, these approaches will
be mentioned at the end of the discussion of the vector-maximum problem in
section 13.4.
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to(dy) t,.(d

|

)

N-1

xN-1

[J TN

Figure 13-6. Basic structure of a dynamic programming model.

13.3 Fuzzy Dynamic Programming

Traditional dynamic programming [Bellman 1957] is a technique well known
In operations research and used to solve optimization problems that can be
composed into subproblems of one variable (decision-variable) each. The idea
underlying dynamic programming is to view the problem as a multistage deci-
sion process, the optimal policy to which can be determined recursively.
Generally the problem is formulated in terms of state variables, x;; decision
variables, d;; stage rewards, r,(x,, d); a reward function, R{dy, ... ,dy_,, xy); and
a transformation function, 7,(d, x;). Figure 13—6 illustrates the basic structure.
The problem is solved by solving recursively the following:

max Ri(x;, d;) = max r(x;, d;) ° R, (x;,;)
d, d,
such that
‘\"/Jrl = Ii(x[’ dl)
i=1....N-1
or

m/ax Ri(x;, d;) = m/ax {n(x, di) o Ri(t(x;, d)) )

All variables, rewards, and transformations are supposed to be crisp.

13.3.1 Fuzzy Dynamic Programming with Crisp State
Transformation Function

In their famous paper, Bellman and Zadeh [1970] suggested for the first time a
fuzzy approach to this type of problem. Conceivably they based their considera-
tions on the symmetrical model of a decision as defined in definitions 13—1 and
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13-2. The following terms will be used to define the fuzzy dynamic program-
ming model [Bellman and Zadeh 1970, B-151]: X, € X, i =0, ..., N: (crisp)
state variable where X = {Ty,..., Ty} is the set of values permitted for the state
variables; d; € D,i=1,...,N: (crisp) decision variable where D = {«, ...,
a,,} is the set of possible decisions.

X = t(x;, d)): (crisp) transformation function

For each stage ¢, t =0,..., N — 1, we define:

1. a fuzzy constraint C, limiting the decision space and characterized by its
membership function

K¢ (dt)

2. a fuzzy goal Gy characterized by the membership function
Hg, (xy)

The problem is to determine the maximizing decision

D°=1{d’ i=0,...,N, fora given x,

The Model. According to definition 13-1, the fuzzy set decision is the “con-
fluence” of the constraints and the goal(s), that is,
N-1
b= ¢ NG,
t=0
Using the min-operator for the aggregation of the fuzzy constraints and the
goal, the membership function of the fuzzy set decision is

Ws(dy, ..., dyy) = min {Ue (do), - . ., Ue, (dnag), Bg, ()} (13.20)
The membership function of the maximizing decision is then
Mpo(dg, ..., d3) = p ma’z I?ax [min {pe (do), - - -, Bg, @n(xngs dva))}]
s« - <s N-2 AN
(13.21)

where d? denotes the optimal decision on stage i. If K is a constant and g is any
function of dy_,, we can write

max min { g(dy_,), K} = min {K, max g(dy_)}
dn, dyy

and equation (13.21) can be expressed as

M. dip= max min{ug(dy).. ... Kg,, ()} (1322)

,,,,, dy-1
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with

Ue, (xy) = mdax min {Ue (dy) W, Uy (Xnogs dy o))} (13.23)

N—i

We can thus determine D° recursively.

Example 13-9 [Bellman and Zadeh 1970, B-153]

Let d,, d, be the two decision variables, the possible values of which can be o,
o,. The state variables are x,, t =0, ..., 2 with a finite range X = {1,, T, T;}.
The fuzzy constraints for r = 0 and 7 = | are

Coloy) = { (04, 7). (0, 1))
Ci(oy) = {(a, 1), (0, 6))
The fuzzy goal is specified as
G~(X2) = ({1, .3). (15, 1), (75 .8} )

and the crisp transformation function is defined by the following matrix:

X,
d, T, T, T,
Q, T, T T
o, T, T, T

Solution. Using equation (13.23), we can compute the fuzzy goal induced at
t = 1 as follows: We start at stage ¢ = 2. The state-decision combinations that
yield T, on state ¢ = | are obtained from the above matrix.

So we can compute:

e (T) = max {min[pe (dy), He, (1T, 04)) ]
“ minfpe (d), Le, (1T, 0)) 1}
= max {min [l, .3], min [.6, 1]}
=max {.3, .6} = .6
—di=a,

U (T2) = max {min [1, .8], min [.6, .3]}
=max {.8, 3} = .8
—di=q,

K¢ (T3) = max {min (1, .3], min [.6, 8]}
=max {.3, .6} =.6
> d =,
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W, (1) = max {min [.7, .6], min [1, .8]}
=.8
> dd=a,
M, (Tr) = max {min [.7, .6], min [1, .6] }
=.6
- dS=0, or o,
Mg, (T3) = max {min [.7, .6]
=.6
>di=0, or o

min [1, .6]}

Thus for

X=T:dy=0, di=o
with pge = .8

X%=1:di=0, di=oa, or
0 0 _
dy=0, di=o0,
with Mg =.6

X =T: dy=0,, di=o0, or
dy=0, di=o,
both with pg = .6

13.4 Fuzzy Multicriteria Analysis

In the recent past, it has become more and more obvious that comparing the
desirability of different means of action, judging the suitability of products, or
determining *“optimal” solutions in decision problems cannot be done in many
cases by using a single criterion or a single objective function. This area, multi-
criteria decision making, has led to numerous evaluation schemes (e.g., in the
areas of cost—benefit analysis and marketing) and to the formulation of vector-
maximum problems in mathematical programming.

Two major areas have evolved, both of which concentrate on decision making
with several criteria: Multi Objective Decision Making (MODM) and Multi
Attribute Decision Making (MADM). The main difference between these two
directions is that the former concentrates on continuous decision spaces, pri-
marily on mathematical programming with several objective functions, and the
latter focuses on problems with discrete decision spaces. There are some excep-
tions to this rule (e.g., integer programming with multiple objectives), but for
our purposes this distinction seems to be appropriate.

The literature on multicriteria decision making has grown tremendously in
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the recent past. We shall only mention one survey reference for each of these
two areas: Hwang and Yoon [1981] for MADM and Hwang and Masud [1979]
for MODM. Fuzzy set theory has contributed to MODM as well as to MADM.
We shall illustrate these contributions by describing one model in each of these
areas. This topic has been treated in much more detail in the volume on fuzzy
sets and decision analysis.

13.4.1  Muilti Objective Decision Making (MODM)

In mathematical programming, the MODM problem is often called the “vector-
maximum” problem, and was first mentioned by Kuhn and Tucker [1951].

Definition 13-6
The vector-maximum problem is defined as
“maximize” {Z(x) | x € X}

where Z(x) = (z,(x), . . ., z;(x)) is a vector-valued function of x € R” into R* and
X is the “solution space.”

Two stages can generally be distinguished, at least categorically, in vector-
maximum optimization:

1. the determination of efficient solutions, and
2. the determination of an optimal compromise solution.

Definition 13-7

Let “max” {Z(x) | x € X} be a vector-maximum problem as defined in definition
13-6. X is an efficient solution if there is no ¥ € X such that

(X)) = (%) i=1,...,k
and

z{X) > z(X) foratleastonei=1,...,k

The set of all efficient solutions is generally called the “complete solution.”
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Definition 13-8

An optimal compromise solution of a vector-maximum problem is a solution x
€ X that is preferred by the decision maker to all other solutions, taking into
consideration all criteria contained in the vector-valued objective function. It is
generally accepted that an optimal compromise solution has to be an efficient
solution according to definition 13-7.

In the following, we shall restrict our considerations to the determination of
optimal compromise solutions in linear programming problems with vector-
valued objective functions.

Three major approaches are known to single out one specific solution from the
set of efficient solutions which qualifies as an “optimal” compromise solution:

1. the utility approach [see, e.g., Keeney and Raiffa 1976],
2. goal programming [see, e.g., Charnes and Cooper 1961], and
3. interactive approaches [see, e.g., Dyer 1973]

The first two of these approaches assume that the decision maker can specify his
or her “preference function” with respect to the combination of the individual
objective functions in advance, either as “weights” (utilities) or as “distance
functions” (concerning the distance from an “ideal solution,” for example). Gen-
erally these two approaches assume that the combination of the individual objec-
tive functions that arrives at the compromise solution with the highest overall
utility is achieved by linear combinations (i.e., adding the weighted individual
objective functions). The third approach uses only local information in order to
arrive at an acceptable compromise solution.
The following example illustrates a fuzzy approach to this problem.

Example 13-10

A company manufactures two products 1 and 2 on given capacities. Product 1
yields a profit of $2 per piece and product 2 of $1 per piece. Product 2 can be
exported, yielding a revenue of $2 per piece in foreign countries; product 1
needs imported raw materials of $1 per piece. Two goals are established: (1)
profit maximization and (2) maximum improvement of the balance of trade, that
is, maximum difference of exports minus imports. This problem can be modeled
as follows:

« e e -1 2\(x (effect on balance of trade)
maximize” Z(x) = 2 1lx (profit)
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Figure 13-7. The vector-maximum problem.

such that
—x; + 3x, = 21
X+ 3x, = 27
4x, + 3x, = 45
3, + x, = 30
X, x =0

Figure 137 shows the solution space of this problem. The “complete solution”
is the edge x' — x* — x* — x*. x' is optimal with respect to objective function z,(x)
=—x, + 2x, (i.e., best improvement of balance of trade). x* is optimal with respect
1o objective function z,(x) = 2x, + x, (profit). The “optimal” values are z,(x') = 14
(maximum net export) and z,(x*) = 21 (maximum profit), respectively. For x' =
(7, 0)7, total profit is z,(x') = 7 and x* = (9; 3)" yields z,(x*) = -3, that is, a net
import of 3. Solution x° = (3.4; 0.2)" is the solution that yields z,(x*) = =3, z,(x")
=7, which is the lowest “justifiable” value of the objective functions in the sense
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that a further decrease of the value of one objective function cannot be balanced
or even counteracted by an increase in the value of the other objective function.

To solve problems of the kind shown in example 13-10, we can use the
following approach. We first assume that either the decision maker can specify
aspiration levels for the objective functions or we define properties of the solu- ‘
tion space for “calibration” of the objective functions. Let us consider the object-
ive functions as fuzzy sets of the type “solutions acceptable with respect to
objective function 1.” In example 13-10, we would have to construct two fuzzy
sets: “Solutions acceptable with respect to objective function 1” and “solutions
acceptable with respect to objective function 2.” As calibration points, we shall
use the respective “individual optima” and the “least justifiable solution.”

The membership functions p,(x) and p,(x) of the fuzzy sets characterizing the
objective functions rise linearly from O to 1 at the highest achievable values of
z;(x) = 14 and z,(x) = 21, respectively.

This means that we assume that the level of satisfaction with respect to the '
improvement of the balance of trade rises from O for imports of 3 units or more
to 1 for exports of 14 and more; and the satisfaction level rises with respect to -
profit from O if the profit is 7 or less to 1 if total profit is 21 or more.

0 for z(x)=-3
W (x) = —Z% for —3<z(x)=14
1 for 14 <z (x)
0 for z,(x)=7
y(x) = % for 7 <z,(x) <21
1 for 21 <z,(x)

We are now faced with a problem of type (13.3) in which crisp constraints have
been added (i.e., the problem consists of two rows representing our fuzzified
objectives and four crisp constraints). We can now employ formulation (13.12).

Example 13-10 (continuation)

In analogy to formulation (13.12) and including the crisp constraints, we arrive
at the following problem formulation:

maximize A
such that A = —0.05882x, + 0.117x, + 0.1764
A = +0.1429 x, + 0.714x, — 0.5
21 = -x; + 3x,,
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10 X2

Figure 13—-8. Fuzzy LP with min-operator.

27 = X+ 3x,,
45 = 4x, + 3x,,
30 = 3x, + X3,
x = 0,

depicted in figure 13--8.

The maximum degree of “overall satisfaction™ (A, = 0.74) is achieved for
the solution x, = (5.03; 7.32)". This is the “maximizing solution,” which in our
example yields a profit of $17.38 and an export contribution of $4.58. The basic
solution x' and x* yield A = 0.

In contrast to the usual vector-maximum models, the efficient solutions con-
tained in the “complete solution” are ordered (distinguishable) by their degree
of membership to the fuzzy set decision. It should be obvious that the approach
described above can only be applied if the “symmetrical model” of a decision
(definition 13—1) is accepted. Otherwise, we will have to use approaches applic-
able to problem (13.13), these, however, will not be discussed in this volume.

At the beginning of section 13.2, many simplifying assumptions were pointed
out that are generally accepted in traditional linear programming models. These
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assumptions concerned the use of real numbers rather than fuzzy numbers for
the coefficients of linear programming as well as the use of crisp relations rather -
than fuzzy. One approach used in section 13.2 for the fuzzification of crisp
mathematical programming problems seems to be computationally very efficient,
well applicable in practice, and understandable by practioners. In the literature,
the reader will find numerous different approaches that, from a mathematical
point of view, are quite interesting. It would certainly exceed the scope of this
book to describe the majority of these suggestions. We shall, however, mention
a few of them. The reader will find quite a number of references to other ap-
proaches in the bibliography at the end of the book.

Approaches that use fuzzy sets to describe the parameter of linear program-
ming models can be traced, in particular, to the paper by Negoita, Minouiu, and
Stan [1976]. They use fuzzy sets to describe the parameters of the matrix A and
the capacity vector b and then formulate for each o the respective a-cuts. The
resulting crisp problem can then be solved by the usual LP codes. If the mem-
bership functions have only a finite number of values, an optimal alternative and
an objective function value can be determined for each case. This approach,
however, is connected with a high computational effort. Afterwards the decision
maker has to choose a desirable degree of membership and the associated solu-
tion. Kacprzyk and Orlovski [1987], in their review article, mention a number
of additional references in which special representations of fuzzy parameters are
used. Here we shall mention only the work of Tanaka and Asai [1984], who use
triangular membership functions, and Ramik and Rimanek [1985, 1989], who
use fuzzy parameters in LR representation and replace each resulting fuzzy
relation by four strict relations.

Other authors consider nonlinear vector-maximum problems in which all
parameters are defined fuzzily. Sakawa and Yano [1987], for instance, formulate
a fuzzy nonlinear vector-maximum problem with fuzzy parametersd,,L=1, ...,
k in the & objective functions and 5,», i=1,...,min the m constraints. Here the
fuzzy parameters are regarded as real-valued fuzzy numbers. For each a-degree,
a crisp equivalent model can be formulated for which the values of the fuzzy
numbers can be considered as variables subject to the condition that they belong
to the fuzzy number at least with the degree of membership . Sakawa and Jano
[1987] define the notion of an o-pareto-optimal solution in generalizing the
classical pareto-optimality with respect to the crisp equivalent models. The authors
suggest an interactive algorithm that leads the decision maker to a satisfying
solution. The decision maker has to provide as starting values the desired o and
the aspiration level for the objective function. The algorithm then solves an
equivalent model that minimizes for a given o the deviation from the aspiration
level and supplies additional trade-off information to the decision maker. This
approach assumes that the decision maker can choose the states that are
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expressed in the fuzzy numbers. Therefore, this approach seems to be only suit-
able if the decision maker can really influence these values, that is, if they are
not dependent on the environment. Because it is assumed that the parameters
are variables, the resulting o-model is at least quadratic, even if the basic model
is linear.

If the fuzzy coefficients are the result of insufficient information that can be
improved by additional effort, an optimal context-dependent allocation of addi-
tional effort is of interest. Tanaka, Ishihashi, and Asai [1986] discuss the value
of additional information and suggest a model for the allocation of information
on the basis of sensitivity analysis. In the recent past, fuzzy models have also
been suggested for fractional programming, integer programming, geometric
programming, and other versions of mathematical programming problems. Of
particular interest is the application of possibility theory to mathematical pro-
gramming suggested by Buckley [1988a, 1988b].

13.4.2 Multi Attributive Decision Making (MADM)

The general multi attributive decision-making model can be defined as follows.

Definition 13-9

Let X = {x;|i=1,..., n} be a (finite) set of decision alternatives and G = {g;
|j=1...., m} a (finite) set of goals according to which the desirability of an
action is judged. Determine the optimal alternative x° with the highest degree of
desirability with respect to all relevant goals g..

Most approaches in MADM consist of two stages:

1. the aggregation of the judgments with respect to all goals and per decision
alternative, and

2. the rank ordering of the decision alternatives according to the aggregated
judgments.

In crisp MADM models, it is usually assumed that the final judgments of the
alternatives are expressed as real numbers. In this case, the second stage does
not pose any particular problems and suggested algorithms concentrate on the
first stage. Fuzzy models are sometimes justified by the argument that the goals,
g» or their attainment by the alternatives, x;, respectively, cannot be defined or
judged crisply but only as fuzzy sets. In this case, the final judgments are also
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represented by fuzzy sets, which have to be ordered to determine the optimal
alternative. Then the second stage is, of course, by far not trivial.

In the following, we shall describe two fuzzy MADM models—the first one,
by Yager, because it shows very clearly the general structure of the problem and
the second, by Baas and Kwakernaak, because many of the publications refer to
this model, which is one of the first of this kind published.

Model 13-1 [Yager 1978]

Let X = {x,,..., x,} be a set of alternatives. The goals are represented by the
fuzzy sets G~}-, j=1,..., m. The “importance” (weight) of goal j is expressed
by w;. The “attainment” of goal G; by alternative x; is expressed by the degree
of membership Mg, (x;).

The decision is defined in line with definition 13-1 as the intersection of all
fuzzy goals, that is,

D=G"nGyN---NGyr

and the optimal alternative is defined as that achieving the highest degree of
membership in D.

The rationale behind using the weights as exponents to express the importance
of a goal can be found in definition 9-3: There the modifier “very” was defined
as the squaring operation. Thus the higher the importance of a goal, the larger
should be the exponent of its representing fuzzy set, at least for normalized
fuzzy sets and when using the min-operator for the intersection of the fuzzy
goals. Yager concentrates on the problem of determining the weights of the goals.
As a solution to that problem, he suggests Saaty’s hierarchical procedure for
determining weights by computing the eigenvectors of the matrix M of relative
weights of subjective estimates [Saaty 1978]:

The membership grade in all objectives having little importance (w << 1) becomes larger,
and while those in objectives having more importance (w > 1) become smaller. This
has the effect of making the membership function of the decision subset D, which is
the min value of each X over all objectives, being more determined by the important
objectives, which is as it should be. Furthermore, this operation (min) makes particu-
larly small those alternatives that are bad in important objectives, therefore when we
select the x; that maximizes D, we will be very unlikely to pick one of these [Yager
1978, p. 90].

The solution procedure can now be described as follows: Given the set
X = {3cl, ..., x,} and the degrees of membership p¢ (x;) of all x; in the fuzzy
sets G; representing the goals,
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1. Establish by pairwise comparison the relative importance, o, of the goals
among themselves. Arrange the o in a matrix M.

[0y oy o ]
al (xl (xn
o,
M =
oy
(xn (xn
_al (xn__

2. Determine consistent weights w; for each goal by employing Saaty’s
eigenvector method.

3. Weight the degrees of goal attainment, g (x;) exponentially by the re-
spective w;. The resulting fuzzy sets are (G~_,.(x,~))wj

4. Determine the intersection of all (CHEAIE

D= {(x;,min(ug (x| i=1 ... .mj=1.... m)
J

5. Select the x; with largest degree of membership in D as the optimal alternative.

Example 13-11 [ Yager 1978, p. 94}

Let X = {Xx,, x,. x3}. and let the goals be given as
G(x) =1, 7)), (x5, (x5, 4) )
Go(x) = | (x1, 3), (0, 8) (X3, 6) )
Gyx) = { (), .2), (xy .3), (X3, .8)}
Gyux) = {(x, .5), (x5, 1), (x5, 2)}

The subjective evaluations have resulted in the following matrix of weights:

G, G, G, G,
G, 1 3 7 9
G, 4 1 6 7
M= H 1 1 3
3 7 [3) ~
G, L + + 4 !

Via Saaty’s method, we obtain the vector
w = {wy, wy, wy, wel o as

w= {232, 1.2, .32, .16}
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Exponential weighting of Gj(xi) by their respective weight yields
G(x)*2 = ((x), 44), (x5, :2), (x5, .12)}
G,(x)'? = {(x), .24), (x,, .76), (x3, .54)}
Gy(x)* = {(x,, .6), (x,, .68), (x;, .93)}
Gi(x)"® = {(x;, .9), (x5, .69), (x5, 77)}
The fuzzy set decision D, as the intersection of the G}’(x;), becomes
D = {(x), .24), (x5, .2), (x5, .12) }

and the optimal alternative is x, with a degree of membership in D of p;(x,) =
24,

Model 13-2 [Baas and Kwakernaak 1977]

Letagain X = {x;|i=1, ..., n} be the set of altemativesand G = {g;|j=1, .. .,
m} the set of goals. r; is the “rating” of alternative i with respect to goal j, and
w; € R is the weight (importance) of goal j. It is assumed that the rating of
alternative { with respect to goal j is fuzzy and is represented by the membership
function pg (7;) on R'.

Similarly, the weight (relative importance) of goal j is represented by a fuzzy
set w; with membership function p,(w)). All fuzzy sets are assumed to be nor-
malized (i.e., have finite supports and take on the value 1 at least once!).

Step 1. The evaluation of an alternative x; is, by contrast to model 13.1,
assumed to be a fuzzy set that is computed on the basis of the r;; and w; as follows:
Consider a function g: R*" — R defined by

m
Z Wi}

gz) = = (13.24)

Z Wi

=1

with z=(w, ..., W, I'seoos T

On the product space R*, a membership function p; is defined as

M(2) =min [ min (1, 0v), min (g, ())) (1325

,,,,,,,,,,

Through the function g, the fuzzy set Z = (R™", u.) induces a fuzzy set R = (R,
Kz) with the membership function

Mz (F)= sup p(z) TeR (13.26)

z:8(z)=F
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Wz (7) is the final rating of alternative x; on the basis of which the “rank order-
ing” 1s performed in step 2.

Step 2. For the final ranking of the x,, Baas and Kwakernaak start from the
observation that if the x, had received crisp rating r, then a reasonable procedure
would select the x; that have received the highest rating, that is, would determine
the set of preferred alternatives as {i e I|r, = r, Vje I}, 1 ={1,..., n}.

Since here the final ratings are fuzzy, the problem is somewhat more com-
plicated. The authors suggest in their model two different fuzzy sets in addition
to R,, which supply different kinds of information about the preferability of an
alternative.

a. They first determine the conditional set (/ | R) with the characteristic
function

Ul R, .. )= '

oy 17 0 else (13.27)
This “membership function” expresses that a given alternative x; belongs to the
preferred set iff

The final fuzzy ratings R define on R" a fuzzy set R = (R", pz) with the
membership function
He(fs ..o ) = min g, (7}) (13.28)
=0 n !

This fuzzy set together with the conditional fuzzy set (13.27) induces a fuzzy set
I = (I, W) with the membership function

W)= sup (min WG 7. ) Mg 7D (13.29)
which can be interpreted as the degree to which alternative x; is the best alter-
native. If there is a unique i, then x; corresponds to the alternative that maxi-
mizes equation (13.29) if the w; and r;; are set to the values at which Wy (w;) and
Uz (r;), respectively, attain their supremum, namely 1.

b. This is, of course, not all the information that can be provided. x; might not
be the unique best alternative, but there might be some x; attaining their
maximum degree of membership at r*. They might, however, be repre-
sented by different fuzzy sets 7.

Baas and Kwakernaak therefore try to establish another criterion that might be
able to distinguish such “preferable” alternatives from each other and rank them:
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If the final ratings are crisp, 7, ..., T,, then

1 n

pi="- Z,Fj
n-1 ‘=
i

for fixed i, can be used as a measure of preferability of alternative x; over all
others.

If the ratings 7; are fuzzy, then the mapping #: R” — R induces a fuzzy set
P, = (R, p;) with the membership function

Hz(p) = sup  Uz(A,....7,) (13.30)
L CIRE f=p
in which i is defined by equation (13.28).

This fuzzy set can be used to judge the degree of preferability x; over all other
alternatives.

The computational aspects for determining all the fuzzy sets mentioned above
shall not be discussed here; models 1 and 2 have been described because of their
illustrative value. Baas and Kwakernaak mention and prove special conditions
for the membership functions to make computations possible.

To summarize: Three kinds of informations are provided:

1. Wz (F) as the fuzzy rating of x,.
2. M;(i) as the degree to which x; is best alternative, and
3. up(p) as the degree of preferability of x; over all other alternatives.

Example 13—12 [Baas and Kwakernaak 1977, p. 54]

Let X = {x,, x,, x;} be the set of available alternatives and G = {g,, &, &3, &4}
the set of goals. The weights and the ratings of the alternatives with respect
to the goals are given as normalized fuzzy sets that resemble the terms of a
linguistic variable (see definition 9-1). Figure 13-9 depicts the fuzzy sets repres-
enting weights and ratings. Table 131 gives the assumed ratings for all alterna-
tives and goals and the respective weights. Figure 13—10 shows the iz (;) (final
ratings for alternatives x,, x,, Xx3).

The degrees of membership of the alternatives to the fuzzy set (/, W), that is,
the degrees to which alternatives x; are best, are

Alternative u;(x;)

1 95
2 1
3 7




8]
1 4 1+
*Good* *Fair*
\
0.5 + 0.5
0 02 04 06 08 1 4 0 02 04 06 08
221
1 -
*Very good*
0.5+
— e
0 02 04 06 08 1 r
B ]
1T 1 +
*Fair to good* *Poor*
05 1 o5 +
j \ \
L + / t + \ - + } + + +
0 02 04 06 08 1 r 0 02 04 06 08 1

Figure 13—-9. Fuzzy sets representing weights and ratings.
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*Rather unimportamt®

Bw Bra
1 ¢ 3 4
“Very important'
05 1 05 1
0 02 04 06 08 1 w 0
b

05 1

02 04 08 08 1 w

*Moderately important®

0 02 04 06 08

Figure 13-9. (continued)

1 w

Table 13-1. Ratings and weights of alternative goals.
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Rating F; for alternative x,

Goal Weight

g w; i=1 2 3

1 very important good very good fair
2 moderately important poor poor poor
3 moderately important poor fair to good fair
4 rather unimportant good not clear fair

The fuzzy set P,(p) indicating the degree to which alternative 2 is preferred to
all others is shown in figure 13—11. p, is calculated as p, = % — 17 + 7).
Many other fuzzy methods and models have been suggested to solve the
MADM problem. They differ by their assumptions concerning the input data
and by the measures used for aggregation and ranking. Also, they concentrate
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ui Alternative 2
1.0 +
Alternative 3 Alternative 1
05 + v
/", \\
1/" ‘\\\
/'/ \‘\
/ \
0 0.2 .
Figure 13-10. Final ratings of alternatives.

-

either on the first step (aggregation of ratings), or the second step (ranking),

Cattermole [1987].

An interesting example of a more engineering-type application of multi-

or both. Obviously all of them have advantages and disadvantages. They will.
criteria decision making using fuzzy sets is described by Muifioz-Rodriguez and

however, not be discussed here but will be in the second volume.

Exercises

1.

Explain the (mathematical) difference between the symmetric and nonsym-
metric model of a decision in a fuzzy environment.

Consider example 13—4. What grade would the student get if the “and” was
interpreted as the “bold intersection” (definition 3—6), the “bounded dif-
ference” (definition 3—8), or the “bold union™?
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a

1.0 +

05 +

: \ 1
1

: '
t T

} 3
T T T T t

-1.0 -08 -08 -04 -02 O 02 04 06 08 10 P,

Figure 13—11. Preferability of alternative 2 over all others.

3. Consider the following problem:
Minimize z = 4x, + 5x, + 2x,

such that 3x, + 2x, + 2x; = 60
3+ x+ x =30
ZX2 + X3 = 10

X X3, X3 = 0

Determine the optimal solution. Now assume that the decision maker has

the following preferences:
a. He has a linear preference function for the objective function between

the minimum and 1.5.
b. The tolerance intervals can be established as

p =10, p,=12, p;=3

Now use model (13.9) to determine the optimal solution and compare it
with the crisp optimal solution.

4. Solve the example of exercise 3 by assuming the objective function to be
crisp and by using equation (13.18).
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5. Consider the problem:

. - —X = 3x
“maximize” Z(x) = { 1 5:,1 ) 5/:,2}
. I ot 2

such that -+ 2x, =
4x, + 3x, = 40
3, + x, =25
X, xn =0

Determine an optimal compromise solution by using the model from exam-
ple 13—10 (continuation).

6. What is the optimal alterative in the following situation (use Yager’s
method!)?

Alternatives: X = {x}, x,, x5, 1)

Goals: (:;,(x,) = {(x, .8), (x; .6), (x1, 4), (x,, 2)}
(52(/\‘1‘) = { ('\‘h 4)# (-)CZ 6)'« (X}’ 6)7 (/\.4# 8) }
G3(Xf) = { (X]# 6)7 ("’2 8)7 (X;, x)w (-\—4’ 6) }

The relative weights of the goals have been established as: G:G,:G, = 1:4:6.



1 4 FUZZY SET MODELS
IN OPERATIONS RESEARCH

14.1 Introduction

The contents and scope of operations research has been described and defined
in many different ways. Most of the people working in operations research will
agree, however, that the modeling of problem situations and the search for
optimal solutions to these models are undoubtedly important parts of it. The
latter activity is more algorithmic, mathematical, or formal in character. The for-
mer comprises many more disciplines than mathematics, has been more neglected
than mathematical research in operations research, and, therefore, would prob-
ably need more new advances in theory and practice.

Considering that operations research is to a large extent applied in areas
closely related to human evaluations, decisions, and perceptions, the need for a
modeling language geared to the social sciences (such as traditional mathemat-
ics) becomes apparent.

If the model does not consist of crisply defined mathematical statements and
relations—if it is, for instance, a verbal model or a model containing fuzzy sets,
fuzzy numbers, fuzzy statements, or fuzzy relations—then traditional mathematical
methods cannot be applied directly. Either fuzzy algorithms—that is, algorithms
that can deal with fuzzy entities or algorithms the procedure of which is “fuzzily”

321
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described—can be applied or one has to find crisp mathematical models that are
in some specific sense equivalent to the original fuzzy model and to which
available crisp algorithms can then be applied.

All cases in which fuzzy set theory is properly used as a modeling tool are
characterized by three features:

1. Fuzzy phenomena, relations, or evaluations are modeled by a well-defined
and founded theory. (There is nothing fuzzy about fuzzy theory!)

2. By doing so, a better approximation of real phenomena by formal models
is achieved.

3. A better modeling of real phenomena normally requires more and more
detailed information—more, in fact, than is needed for rather rough dicho-
tomous modeling.

The theory of fuzzy sets, even though still very young, has already been applied
to quite a number of operations research problems. As can be expected for a
theory of this age, the majority of these “applications” are applications to “model
problems” rather than to real-world problems. Exceptions are the areas of clas-
sification (structuring), control, logistics, and blending. For these areas there is
already considerable software commercially available. The same is true for
planning languages (decision support systems), for instance, in the area of financial
planning. The reader should realize that the lack of real applications cannot
necessarily be blamed on the theory. A real application of a certain theory
normally requires that the practitioner who has the problem to be solved is also
familiar with and understands, or at least accepts, the theoretical framework of
the theory before it can really be applied. This obviously takes some more time.

Real applications, particularly the commercially successful ones, very often
either are not published or are published after a long delay. This is partially due
to competitive considerations and partly to the fact that practitioners normally
do not consider publications as one of their prime concerns.

Table 141 surveys the major applications of fuzzy set theory in operations
research (OR) so far. The table, of course, does not claim to be complete; rather,
it attempts to indicate major areas of applications. Furthermore, some areas
of OR to which fuzzy set theory has been applied extensively—for instance,
decision and game theory—have not been included (mainly because they are not
100 close to real applications). On the other hand, some of the areas included in
the table, such as media planning and structuring, might not be considered to be
part of OR.

We shall describe some of the uses of fuzzy set theory in order to show the
scope of its real and potential applications. The selection criterion for the
applications presented was didactical utility rather than coverage of that full
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Table 14—1. Applications of fuzzy set theory in operations research.

~
Methodological - § 3 Ky §°i ~ § S
approach S §° § § §~ = § § 2 %o 2
~ S 8 g Tk =
Functional g E '§ % ;g % g '§ é 3 §
area 58 S8 &+ OF & T o=
Media selection X
Blending X
Logistics X
Maintenance X X
Production and
process control X X X X
Project management X
Inventory control X X X X
Assignment X X
X X

Structuring

scope. Also, for reasons of space economy, we will present only the parts of the
applications relevant to the contents of this book. The remainder of this chapter
is structured according to major areas and illustrates the use of different meth-
odological approaches to these problem areas.

14.2 Fuzzy Set Models in Logistics

OR has been applied extensively to the area of logistics in the past. In the
following, two applications of fuzzy set theory are presented. At first, we show
the “fuzzification” of a standard problem in OR: the transportation problem.
Second—as an example of existing projects—we show a decision support sys-
tem based on a fuzzy model.

14.2.1 Fuzzy Approach to the Transportation Problem
[Chanas et al. 1984]

The analysis of “fuzzy counterparts” of linear programming problems of some
special structure—for example, problems of flows in networks, transportation
problems, and so on—appears to be an interesting task. The following model
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a0

—

_—

1 1 X

1 2 2 .2
8- a; a, a,+a,

Figure 14—1. The trapezoidal form of a fuzzy number 4, = (a), a, a%, a™).

considers a transportation problem with fuzzy supply values of the suppliers and
with fuzzy demand values of the receivers. For the solution of the problem, para-
metric programming is used.

Model 14-1

minimize c= 2 2 €y

such that XpEa i=1,2,.000,m
=
"
x,=b, j=1,2,... . n
=]
;=20 i=12,....omj=12...,n

d; and 51 denote nonnegative fuzzy numbers of trapezoidal form. Note the slight
difference between definition 5—3 and the definition shown in figure 14-1, which
is only used for this section. The value of HAZx,)(Ug(Zx;)) is interpreted as a
feasibility degree of the solution with respect to the ith (jth) constraint in model
14—1. With the objective function of model 14—1, a fuzzy number G is asso-
ciated, expressing the “admissible” total transportation costs. The membership
function, p;, of the G is assumed to be of the form

ool fr x<q,
Holx) = flxy for x=¢,

where f(x) is a continuous function, decreasing to zero and achieving the value
I for x = C, (see figure 14-2). In particular, f(x) may be a linear function. p(x)
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et

Co X
Figure 14-2. The membership function of the fuzzy goal G.

determines the degree of the decision maker’s satisfaction with the achieved
level of the total transportation costs.

Model 14—1 now can be reduced to the symmetrical decision model 14-2,
assuming goal and constraints are aggregated via the min-operator.

Model 14-2

maximize A
such that Ua(c(X)) = A

uﬁi[szJB}\' l=1, 2,...,m
i
ub-,(lej]Z}\‘ _]=1, 2,...,n

A=0 x;=0

Here, however, this problem shall be solved by parametric programming. For
each level of a constraint’s fulfillment A, A € [0, 1], one has to find the cheapest
transportation plan. This plan satisfies the goal G to the maximum degree for the
respective A. Hence in analogy to definition 13—5 and example 13-7, we shall
determine

max {Hg(x) A Pe(x)}

where ps(x) will first be determined by an appropriate linear programming model.
Here the min-operator is assumed to be acceptable. For the subsequent aggrega-
tion of pe(x) and pe(x), any nondecreasing operator and any decreasing function
for f(x) can be employed. Let us first turn to the determination of pes(x): The
parameter of our parametric LP shall be denoted by r, r € [0, 1], and rather than
determining A-cuts we shall consider (1 — r)-cuts. Using the definition given
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in figure 14-1 for the fuzzy numbers specifying supplies and demands, the
(1 — r)-cuts are intervals of the form:

ar’ = {x|u; (x) = 1-r}=lal —ral,a? +ra?]

bl ={x|u; (x) =1 —rb=[bl —rbl, bl +rb?]

Our problem can then be modeled as follows:

Model 14-3
m n
minimize ZZC,-]-X,:,
i=l j=}
n
such that Zx,:/-e [@=ral,at+ra?l i=1,2,...,m

J=l
Yx el =rbl b2 +rb3] j=1,2,...,n
=]

;=20 rel-r, 1]

where F = supyll,;(x), that is, the maximum value of us(x) that can be achieved
for a given r. Solving this model either as a parametric LP or with special
algorithms for parametric transportation models, we obtain Us(+) for r € [1 ~ F,
1]. This can now be combined with U (r) to define the membership function of
the fuzzy set “decision.”
Example 14-1 [Chanas et al. 1984}
There are two suppliers with supply values:

a =(10,5,10,5) and a,= (16,5, 16,5) (triangular fuzzy numbers)

and three receivers with demand values:

b, =(10,5,10,5), 5, =(9.4,9, 4y by =(,1,1,1
(also triangular fuzzy numbers), respectively. The unit transport costs are
=10 ¢,=20 ¢,;=30
;=20 ¢ =50 ¢,y =60
The membership function of the fuzzy goal is linear:

0 for x= 800

P! for x =300
’J'(?(x) - 800 —x

500

for x e [300, 800]
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Table 14-2. Table of the parametric transportation problem.

Receivers
Suppliers 1 2 3 1* 2% 3% FR Supply
1 10 20 30 10 20 30 M 10 — 5r
20 50 60 20 50 60 M 16 — 5r
1* 10 20 30 10 20 30 0 10r
2% 20 50 60 20 50 60 0 10r
FD M M M 0 0 0 0 20r

Demand 10 — 5r 9 —4r 1-r 10r 8r 2r 6 + 20r

Model 14 -3 for this example becomes:
minimize ¢ = 10x;, + 20x,, + 30x;5 + 20x; + 50xy + 60x,,

such that Xy + X + X3 = 10 = 5r
Xy + X+ x3 = 10 + 5r
Xy + Xgp + Xp3 = 16 — 5r
Xpp + Xgp + Xp3 = 16 + 5r
Xy + Xy = 10 = 5r
Xy + Xy = 10 + 5r
Xppt+ X =9 -4r
Xp+Xp =9+ 4r
Xp+xpn=1-7r
Xg+x3=1+7r

;=0 Vi j

Table 14-2 shows the parametric transportation problem table. Column FR
denotes a “fictitious” receiver, row FD a “fictitious” supplier, and M a large real
number. The rows and columns without an asterisk correspond to the suppliers
having supply values settled at the minimum level. In this section the FD and
FR are blocked by assigning a large transport cost M to their cells. The rows and
columns with an asterisk correspond to the maximum surplus of the product that
may be sent additionally (but not necessarily, and therefore the respective trans-
port costs to the “fictious” receiver and suppliers are equal to zero) if the con-
straints are to be satisfied at least to the degree 1 — r.

It should be observed that the joint supply value of all the suppliers is
equal to @ = (26, 10, 26, 10) and the joint demand value of all the receivers is
equal to b = (20, 10, 20, 10). The maximum degree to which the constraints
could be satisfied is equal to 7 = .7. Therefore the relevant interval for analysis
isre [.3,1].

The solution of this example is shown in table 14-3. The membership func-
tion pg(r) takes the form
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Table 14-3. Solution to transportation problem.

I=srs=sl Nhsr<s6 b=<r=]
Xpa 3+ 14r 9~ 4r 9 — 4r
X 7 - 19r 1 - S
Xy 10 + 5r 10+ 5r 16 — 5r
X3 6 — 10r 6 — 10r

06+ 138+ for rel.3,4]

Iy T .
Wa(r) =4.18+1.02r for rel[t 6],
54 +042r for rel.6, 1]

The maximizing solution is obtained for r = 4059 and pn(.4059) = .5941. Figure
14 -3 depicts this situation in analogy to figure 13-5.

Har 1E

0,98

0,792 ¢

0,5941 -

0,52
0,474

0 T T T

0 0,3 0,4059 0,6 1 r
1/3

Figure 14-3. The solution of the numerical example.
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14.2.2 Fuzzy Linear Programming in Logistics

Ernst [1982] suggests a fuzzy model for the determination of time schedules for
containerships, which can be solved by branch and bound, and a model for the
scheduling of containers on containerships, which results eventually in an LP.
We shall only consider the last model (a real project).

The model contained in a realistic setting approximately 2,000 constraints
and originally 21,000 variables, which could then be reduced to approximately
500 variables. Thus it could be handled adequately on a modern computer. It is
obvious, however, that a description of this model in a textbook would not be
possible. We shall, therefore, sketch the contents of the modeling verbally and
then concentrate on the aspects that included fuzziness.

The system is the core of a decision support system for the purpose of
scheduling properly the inventory, movement, and availability of containers,
especially empty containers, in and between 15 harbors. The containers were
shipped according to known time schedules on approximately 10 big container-
ships worldwide on 40 routes. The demand for container space in those harbors
was to a high extent stochastic. Thus the demand for empty containers in different
harbors could either be satisfied by large inventories of empty containers in all
harbors, causing high inventory costs, or they could be shipped from their locations
to the locations where they were needed, causing high shipping costs and time
delays.

Thus the system tries to control optimally primarily the movements and in-
ventories of empty containers, given the demand in ports, the available number
of containers, the capacities of the ships, and the predetermined time schedule
of the ships.

This problem was formulated as a large LP model. The objective function
maximized profit (from shipping full containers) minus cost of moving empty
containers minus inventory costs of empty containers. When comparing data of
past periods with the model, it turned out that very often ships had transported
more containers than their specific maximum capacity. This, after further in-
vestigations, led to a fuzzification of the ship’s capacity constraints, which will
be described in the next model.

Model 14—4 [Emst 1982, p. 90]
Let

z = c'x the net profit to be maximized
Bx < b the set of crisp constraints
Ax =d the set of capacity constraints for which a crisp formulation turned
out to be inappropriate
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Then the problem to be solved is

T

maximize z=¢'x
such that Ax =d
Bx =p
x=0 (14.1)

This corresponds to model (13.14). Rather than using model (13.19) to arrive
at a crisp equivalent LP model, the following approach was used: Based on
equation (13.10) and model (13.11), the following membership functions were
defined for those constraints that were fuzzy:

I
wit)=—— 0=rn=<p ~-d, iel,
Pi— di
I = Index set of fuzzy constraints.
As the equivalent crisp model to (13.1), the following LP was used:

maximize =Ty - Zs[(p,- = b ()
el

d+1

b

such that Ax

%o
~ =

p—>b
0 (14.2)

VoIA A IA

X,

where the s; are problem-dependent scaling factors with penalty character.

Formulation (14-2) only makes sense if problem-dependent penalty terms s,,
which also have the required scaling property, can be found and justified.

In this case the following definitions performed successfully: First the crisp
constraints Bx = b were replaced by Bx = 9p, providing a 10% leeway of
capacity, which was desirable for reasons of safety. Then “tolerance” variables
¢t were introduced:

Bx—1= 9b
= .1h
The objection function became
maximize z = ¢'x — s
where s was defined to be

average profit of shipping a full container
5= average number of time periods that elapsed
between departure and arrival of a container
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Because of this definition, more than 90% of the capacity of the ships was used
only if and when very profitable full containers were available for shipping at
the ports, a policy that seemed to be very desirable to the decision makers.

Before turning to another application area, it should be mentioned that other
applications of fuzzy set theory can be found in the literature [Oh Eigeartaigh
1982] and that the development of model (13-9) was initially triggered by a real
problem in logistics described by Zimmermann [1976].

14.3 Fuzzy Set Models in Production Control and
Scheduling

Production control and scheduling is one of the main functional areas to which
traditional OR has been extensively applied. Hence a lot of interesting cases
have been reported. We will focus on six applications in this area that cover the
wide range from slight modifications of standard OR approaches to highly soph-
isticated modular systems that employ multiple fuzzy models.

14.3.1 A Fuzzy Set Decision Model as Optimization
Criterion [von Altrock 1990]

In the following case, a fuzzy decision model is employed as the optimization
criterion for a search algorithm. The model proved to better reflect human judg-
ment in a scheduling problem when due dates were tight. Within an optimizing
algorithm, decisions have to be made about which of a given set of schedules
is to be prefered. Measures commonly used to rate schedules with respect to
their degree of lateness proved to be poor approximations to human judgment.
The described decision model can be used in both precise and heuristic algorithms.
It either better directs the computation toward a solution that satisfies all due
dates or allows the determination of a schedule with the smallest degree of
lateness.

The problem, which arose in the chemical industry, is to schedule a given set
of jobs on a single machine. Each job is associated with a due date (DD) set by
the customer and a makespan estimated by the producer’s decision maker. The
set-up times are sequence-dependent and on average of the same order of mag-
nitude as the makespans. A prime objective of the scheduling is to maximize
overall customer satisfaction. Customer satisfaction is achieved by job completion
before or at its DD.

The standard OR approach is to model the tardiness of a schedule as the
objective function to be minimized, defined by
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* the number of late jobs

» the sum of delays of all late jobs

» the delay of the latest job

* the weighted sum of late jobs (penalty cost approach)

All these rules aggregate the lateness of a given schedule to a real number. This
characterizing number is then used to compare schedules and to direct the algo-
rithm’s search. Thus, those rules only depict a very rough image of a decision
maker’s rating. Therefore the resulting solution may not reflect the decision
maker’s concept of an optimal schedule. While discussing the problem with the
decision maker, some observations were made:

* DDs are not equally important. The importance of satisfying the customer-
given DD hinges on the customer himself and on the product.

* Most of the aggregation rules presented above assume a linear relation
between the lateness of a completion date (CD) and the associated loss of
satisfaction. This implication could not be found in the decision maker’s
judgment.

* Rather than something like penalty costs the decision maker consideres a con-
cept of a latest due date (LDD) in rating schedules. The LDD is an estimate
of the ultimate latest CD by the decision maker or the marketing department.

Those observations led to the formulation of a fuzzy decision model. Two fuzzy
sets were defined. One describes the membership of a given schedule to the fuzzy
set of fully satisfying schedules, ug. The schedule with the highest membership
in this set is the one with the best overall customer satisfaction and will be
selected by the algorithm for further evaluation.

For each job in the schedule, the other fuzzy set p1; describes the membership
of a given CD to the fuzzy set D of fully satisfying CDs. This fuzzy set is shown
in figure 14—4. Every CD prior and equal to the DD belongs to the fuzzy set of

bp
1

DD LDD CD

Figure 14—4. Membership function of CDs in the set of fully satisfying CDs.
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fully satisfying completion dates with the membership ps = 1. Every CD later
than the LDD has the degree of membership [ = 0. The degree of membership
of CDs between DD and LDD is assumed to be linear.

To find the degree of membership for all schedules in the set of fully satis-
fying schedules |i;, for every schedule the uy’s of every job’s CD have to be
aggregated. The linguistic formulation to maximize the overall customer satis-
faction implies that EVERY customer has to be satisfied. The semantic concept
of the decision maker’s EVERY corresponds to a compensatory AND. For this
reason, the y-operator was chosen. The degree of compensation was determined
by generating sets of different schedules with the same s for different values
of y. The decision maker was asked to choose that set of schedules which in his
or her judgment only contained schedules that were equal with respect to their
overall customer satisfaction. It was observed that the decision maker rated the
set of different schedules with the same i and y = .2 as very much alike.

A greedy-type algorithm was employed. Starting from a tentative schedule,
made up using a priority rule, the algorithm modifies this schedule by system-
atically exchanging jobs. The tentative schedule is then compared with the
modified schedule by the fuzzy decision model. If the modified schedule is rated
better than the tentative schedule, the tentative is replaced by the modified.

Once the algorithm finds a schedule with [z = 1, the schedule meets all due
dates and is consequently optimal. From then on, the schedule can be further
optimized with respect to secondary objectives.

14.3.2 Job-Shop Scheduling with Expert Systems
[Bensana et al. 1988]

In the following, we will present a job shop scheduling approach where concepts
from the field of artificial intelligence and concepts of fuzzy set theory enrich
traditional OR.

Different kinds of knowledge cooperate in the determination of feasible
schedules. One kind of knowledge is represented by rules. Relevances of rules
with respect to facts and goals are expressed by concepts of fuzzy set theory.
First, we will sketch the system. Second, we will focus on the application of
fuzzy set theory within the system.

The scheduling problem in a workshop can be stated as follows: Given a set
of machines and technological constraints, and given production requirements
expressed in terms of quantities, product quality, and time constraints expressed
by means of earliest starting times and due dates for jobs, find a feasible sequence
of processing operations.

A set of K jobs must be performed by a set of M machines. Each job k
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Figure 14-5. Structure of OPAL.

is characterized by a set of operations O, assigned to machines on which they
have to be performed. A schedule is described by means of a precedence graph,
expressed by a set of pairs (0, 0) denoting that U, must precede O,

The system, implemented in LISP and named OPAL, consists of two planning
modules—the “constraint-based” analysis module and the ‘“decision-support”
module—whose interaction is guided by a “supervisor” module. The supervisor
module plays the role of the inference engine and guides the search process. The
structure of the system is shown in figure 14-5.

The constraint-based analysis (CBA) module deals with a partial order of
operations derived from the processing sequence of parts and the schedule in
progress on one side and the time constraints for job processing on the other. By
subsequent systematic comparisons of the existing precedence constraints, new
precedence constraints are generated. This procedure stops in one of the follow-
ing states:

success: A feasible and complete schedule is derived.

failure: Due to conflicting precedence constraints, a feasible schedule does not
exist.

wait: The schedule in progress is incomplete (i.e., the set of precedence con-
straints does not form a complete order), and no more precedence constraints
can be generated.

If the CBA module reaches a “wait” state, the decision pertaining to operation
ranking is no longer dictated by feasibility considerations with respect to due
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dates. Such a decision can be made according to other kinds of criteria of a
technological nature (e.g., it is better not to cut a workpiece made of metal M
before a workpiece made of metal M), or related to productivity (facilitate material
flow, avoid filling up machine input buffers, avoid long set-up times. .. ).

According to these criteria, a decision-support module (DS) generates new
precedence constraints. First, it selects a subset C of the set of all unordered
pairs of operations. Second, it choses one element of C and forms a new prec-
edence constraint.

The selection can be based on criteria like specific machines, specific opera-
tions, temporal location, influence on the quality of the schedule, or influence on
the resolution speed. The grades of membership of the unfixed pairs of operations
in the sets defined by those criteria may be expressed fuzzily. If more than one
criterion is used for selection, the corresponding fuzzy sets are intersected by the
minimum-operator.

In the second step, one element of this fuzzy set is chosen to be fixed, that
is, to be the new precedence constraint. This step is carried out by using a
collection of pieces of advice expressed as “if . . . then” rules. Rules differ by
their origin and by their range of application (general or application-dedicated).
Moreover, their efficiency is more or less well known and depends upon the
prescribed goal, or the state of completion of the schedule. These rules can
express antagonistic points of view. Lastly, they are usually pervaded by impre-
cision and fuzziness, because their relevance in a given situation cannot be
determined in an all-or-nothing manner.

To take these features into account, each rule r is assigned a grade of relev-
ance T,(k) with respect to goal k. 1t,(k) can be viewed as the grade of member-
ship of rule r to the fuzzy set of relevant rules for goal k. The aim of these
coefficients is basically to create an order on the set of rules. For every pair of
operations, the “if” part of a rule is evaluated as to the extent to which O; should
precede O, according to the attribute of the rule. Let v be the index qualifying
this attribute, and let v; be the value of this index when O, precedes O, The

Vi
v + v
sets H = high ratio, M = mediom ratio, and S = small ratio are defined (see figure
14—6). Hence the relation appearing in the rule is a fuzzy relation.

The “then” part of all rules is of the same format. It provides advice about
whether O; should precede O; (i < j) or if the rule does not know (i ~ j). This
advice is expressed by three numbers:

1 (0 < j) = min (Us(x;), 7,(k))
M, (J ~ @) = min (Ry(xy), (k)
1 (j < i)=min (Ua(xy), 7 (k))

ratio x; = is then evaluated. To avoid thresholding effects, three fuzzy
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Figure 14—6. Fuzzy sets for the ratio in the “if” part of the rules.

The rules relevant for goal & are all triggered and applied to all facts in the set
C. The proportions of relevant triggered rules preferring / << j, j < i, i ~ j are
obtained as relative cardinalities (see definition 2—5):

Pl <)) = Zp, (i < j)/Em k)
Pl < =T, < D/ETK)
Pl ~ ) = TG ~ Em(K)

When p(i ~ j) is close to 1, it is not possible to decide which of the two opera-
tions should precede the other because the rules are indifferent. In contrast,
when p(i ~ /) is close to 0, but p(i < j) is close to p(j < i), the set of rules
is strongly conflicting. The preference index for decision i < j is defined as
min {p(i <j), | —p( ~ )} in terms of fuzzy logic, it expresses to what extent
most of the triggered rules prescribe / < j, and most are not indifferent about
O; preceding O,

The schedule is gradually built up by adding precedence constraints between
operations. The search graph is developed as follows: each time the CBA mod-
ule stops, a new node is generated and the current schedule is stored. The DS
module then generates a new precedence constraint to the schedule graph, and
the CBA module checks for consequent precedence constraints. Backtracking
occurs if the explored path leads to a failure state. When no feasible schedule
at all exists, the data must be modified in order to recover feasibility.

14.3.3 A Method to Control Flexible Manufacturing Systems
[Hintz and Zimmermann 1989]

The following application shows the usage of multiple concepts of fuzzy set
theory within a hybrid system for production planning and control (PPC) in
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Figure 14—7. Example of an FMS [Hartley 1984, p. 194].

flexible manufacturing systems (FMSs). FMSs are integrated manufacturing
systems consisting of highly automated work stations linked by a computerized
material-handling system making it possible for jobs to follow diverse routes
through the system (see figure 14-7). They facilitate small batch sizes, high
quality standards, and efficiency of the production process at the same time.

Decentralized PPC systems for each FMS are provided with schedules of com-
plete orders by an aggregate planning system. They are responsible for meeting
the due dates, minimizing flow times, and maximizing ‘machine utilizations.
Generally, these objectives are conflicting. The planning process is carried out
by subsequently solving the subproblems:

Master scheduling
Tool loading
Releasing scheduling
Machine scheduling

S

Subproblem 1 is solved by using fuzzy linear programming (FLP), subproblem
2 is solved by a heuristic algorithm, and subproblems 3 and 4 are solved using
approximate reasoning (AR). We will just sketch the master scheduling, omit
the tool loading, and focus on the release and machine scheduling.

Master Scheduling. The objective of the master schedule is to determine a
short-term production program with a well-balanced machine utilization that
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optimally meets all due dates. Its determination is a quite well-structured prob-
lem, although some important input data are rather uncertain. Since nearly the
complete manufacturing of a part can be performed within an FMS, a simultan-
eous approach using FLP (as defined in section 13.2.1) has been employed for
the master scheduling. Restrictions to be considered in the master schedule are
as follows:

1. Parts can only be processed when they are released from earlier production
stages.

2. They have to meet given due dates in order to match the following opera-
tions and assembling.

3. The capacity of the FMS must not be exceeded. Because the machines may
partially be substituted by each other, they have to be classified into appro-
priate groups.

4. There is only a limited number of (expensive) fixtures and pallets available.

In restrictions 1 and 2, release and due dates are often rough estimates that
include safety buffers and unnecessary work-in-process inventories. In practice
it is often possible to supply some parts earlier than initially planned (i.e., by
overtime) or to violate the due dates only for a portion of an order (for instance,
by lot-size splitting) without seriously disturbing processing or assembling. On
the other hand, if release dates or due dates are chosen too stringently, there may
be no feasible solution at all.

For these reasons, restrictions | and 2 are modeled as fuzzy constraints while
restrictions 3 and 4 are modeled as crisp constraints. The solution of the FLP
yields a solution

+ that is feasible according to restrictions 1-4, it possible, or

« that minimizes the deviations from given due dates and distributes them
uniformly among the different orders. The value of the maximized variable
then denotes the degree of membership of the optimal solution in the set of
feasible and optimal solutions.

Release and Machine Scheduling. Decisions concerning the parts schedule
for both releasing and machining are arrived at by AR. This is considered to be
an appropriate way to model a very complex situation with many interdepend-
encies. The decision criteria are formulated in terms of production rules, which
have been shown to lead to quite stable decisions. It will be shown later that this
approach also leads at least to a very good compromise of the three mentioned
conflicting goals of scheduling. In addition, this method is very suitable for
interactive decision making, where the decision maker can employ familiar lin-
guistic descriptions of the situations.

The basic release scheduling procedure can be regarded as dispatching parts
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Figure 14-8. Criteria hierarchies.

for a single capacity unit (the FMS) with several work stations: As long as
unused working places and appropriate pallets with fixtures are available, new
parts can be released into the FMS. Once the upper limit of parts has been
reached, the remaining parts have to wait in a queue until one of the parts leaves
the FMS. Then the decision of which part should be released next will be made
using an AR procedure.

The machine scheduling procedure is very similar to dispatching when using
priority rules. This means that no machine is allowed to wait if there is a part
that can be processed on that machine. If there are several parts at a time waiting
for a machine, then another AR procedure is used to choose a part from the
waiting line.

For both AR procedures, a hierarchy of decision criteria is defined (see figure
14-8). This hierarchy corresponds to stepwise operationalizing the decision
criteria until they can easily be used by the decision maker. On the other hand,
such a hierarchy can be considered as the combination of elementary local-
priority rules in a more comprehensive global-priority or decision rule. The
single elements or concepts of the hierarchy may in general consist of arithmetic
or linguistic terms. Both the hierarchy and the ways to make the concepts opera-
tional are heuristic in nature. Hence no optimal solution can be guaranteed.

Let us further concentrate on the criteria hierarchy depicted in figure 14—8a
for the release scheduling. The decision of which part to release next mainly
depends on date criteria of the parts under consideration or the impact of parts
on machine utilization, or it may depend on some kind of external priority. For
the date criteria, we furthermore distinguish between the slack time of a part and
the time the part has already waited for processing.

The impact on the effect on machine utilization can be twofold. First, we
have to take care that the machines are used as uniformly as possible, thus trying
to avoid bottlenecks. For this purpose, we define a criterion “uniformity of
utilization.” On the other hand, we want to ensure a good utilization in the shift
with reduced personnel, during which no parts can be fixed on pallets. On the
contrary, parts can only be processed as long as they do not need any manual
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operation, be it for changing a pallet or in any case of failure. We shall take this
into consideration by using the concept **processing time until the next fixturing.”
The external priority can be given by the plant manager or some other person
responsible.

To illustrate the AR process, we will look at the definitions of the concepts
of the hierarchy and the aggregation of concepts by the rule set. We will focus
on the derivation of the date criterion of the slack time and the waiting time cri-
teria. Slack time and waiting time are considered linguistic variables as defined
in section 9.1:

Linguistic variable Term set

slack time critically_short, short
waiting time short, medium, long
date criterion urgent, not_urgent

The base variable is defined for all possible values for the indicator, that is, in
general, all real numbers within a reasonable interval. The meaning of the terms
can be defined by giving the degree of membership as a function of the above-
defined indicator as base variable. As membership functions, piecewise linear
functions are used. The parameters were obtained by extensive simulation stud-
tes for a specific structure of orders to be processed in a specific FMS.

An essential task before aggregating these two criteria with the date criteria
is the assignment of degrees of sensibleness to each element (rule) of the Cartesian
product defined by the assumptions and the conclusion: {long, medium, short}
@ {critically_short, short} ® {urgent, not_urgent}. This can be done by an expert
(scheduler) and results in the “degrees of sensibleness” shown in parentheses for
each rule above.

An example rule set might be (degree of sensibleness given in parentheses):

1. IF waiting time is long AND slack time is critically_short THEN date
criterion is urgent (1.0)

2. IF waiting time is medium AND slack time is critically_short THEN date
criterion is urgent (0.8)

3. IF waiting time is short AND slack time is critically_short THEN date
criterion is urgent (0.6)

4. IF waiting time is long AND slack time is short THEN date criterion is
urgent (0.5)

5. IF waiting time is medium AND slack time is short THEN date criterion
is urgent (0.2)

6. IF waiting time is medium AND slack time is short THEN date criterion
is not_urgent (0.7)
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Figure 14-9. Principle of approximate reasoning.

Each of these rules can now be interpreted as one possible aggregation of the
two criteria “slack time” and “waiting time” with the “date criteria” (see figure
14—8a). Only rules with a nonzero degree of sensibleness are considered. The
AR procedure applied is depicted in figure 14-9. That is, first the conditional
parts of the rules connected by “AND” or “OR” are aggregated by using the ¥
operator. The “THEN” of the rule is then interpreted as “the conditions hold and
the rule is valid,” where this “AND” is also modeled by the y operator. In this
case, however, v is taken to be zero, since no compensation is assumed between
the truth of the rule and the validity of its conditions. If more than one rule leads
to a certain condition, the maximum of the respective degrees of membership
determines the final result.

Example 14-2

We want to compute the values (degrees of membership) of the terms of the
“date criteria” in figure 14-—8a. Consider three parts, whose slack time and
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Table 14—4. Membership grades for slack time and waiting time.

Membership grade of part

1 2 3
Waiting time: long 0.7 0 0.7
medium 0.2 0.8 0.3

short 0 0.4 0
Slack time: critically_short 0.4 0.8 0.7
short 0.6 0.2 0.3

Table 14-5. Membership grades for conditional parts of the rules.

Part
1 2 3
Condition 1 0.58 0.00 0.67
Condition 2 0.20 0.78 0.41
Condition 3 0.00 0.53 0.00
Condition 4 0.72 0.00 0.41
Condition 5 0.29 0.37 0.21
Condition 6 0.29 0.37 0.21

waiting time are linguistic variables as described above. The grades of member-
ship in terms of the linguistic variables are given in table 14-4.

In the first step, the conditional parts of the rules are aggregated by using
the ¥ operator. In this example, ¥ = .5 is used. The results are depicted in table
14-5. In the second step, the rules are evaluated. The use of the y operator with
Y = 0 is equivalent to the multiplication of the degree of membership of the
condition and the degree of sensibleness. The results are summarized in table
14—6, where the maxima of the respective degree of membership for the two
terms (urgent, not_urgent) of the linguistic variable “date criteria” are printed in
bold. Part 3 in the table shows the highest degree of membership in the fuzzy
set of parts with urgent date criteria and the lowest degree of membership in the
fuzzy set of parts with not_urgent date criteria.

Results. The approach described above has been programmed, and its per-
formance has been compared to systems with no master scheduling and employ-
ing only simple priority rules for release and machine scheduling using a general
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Table 14—6. Membership grades for the rules.

Part
1 2 3
Date criterion is urgent:
conclusion 1 0.58 0.00 0.67
conclusion 2 0.16 0.62 0.33
conclusion 3 0.00 0.32 0.00
conclusion 4 0.36 0.00 0.21
conclusion 5 0.06 0.07 0.04
Date criterion is not urgent:
conclusion 6 0.20 0.26 0.15
Table 14-7. Results.
Suggested Priority rule
Criteria approach approach
Mean in-process waiting time [min] 2884 3369
Part of lots that have met their due dates [%] 97 28
Mean machine utilization [%] 80 79

simulation program for FMS. The results are shown in table 14-7. The sug-
gested approach dominated the classical priority scheduling with respect to all
three objectives.

14.3.4 Aggregate Production and Inventory Planning
[Rinks 1982a, b]

The “HMMS-model” [Holt et al. 1960] is one of the best-known classical models
in aggregate production planning. It assumes that the main objective of the pro-
duction planner is to minimize total cost, which is assumed to consist of costs
of regular payroll, overtime and layoffs, inventory, stock-outs, and machine setup.
The model assumes quadratic cost functions and then derives linear decision
rules for the production level and the work-force level. The following termino-
logy is used:

Fs,
W

sales forecast for period ¢
work force level in period ¢ — 1
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I_, = inventory level at the end of period ¢ — 1
AW, = change in work force level in period ¢
P, = production level in period ¢

In general, the decision variables are related to the cue variables as
P.' :f(FSH ‘/Vf—l‘ 11—])
AW, = g(FS,. 1)

By contrast to most other models, the HMMS-model was tested empirically for
a paint factory. The cost coefficients were derived in different ways (statistically,
heuristically, etc.), and the performance of the decision rules was compared to
the actual performance of the paint factory managers [Holt et al. 1960].

The following model resulted for the paint factory.

Model 14-5
minimize C,, = minimize ZC,
=]
where
C, = [340W] Regular payroll costs
+ [64.3(W, — W) Hiring and layoff costs
+ [0.20(P, - 5.67W)* + 51.2P — 281W.] Overtime costs
+ {0.0825(1, — 320)* Inventory-connected costs

and subject to restraints
L., +P-S=1 t=12....N

Even though the HMMS-model performed quite well and is used as a com-
mon benchmark for later models, it was rarely used in practice. The main objec-
tion was generally that managers would not use it, roughly speaking, because
too much mathematics was involved.

Rinks tries to avoid this lack of acceptance by suggesting a model based
on the concepts described in chapters 9 and 10 of this book. He developed one
production and one work-force algorithm that consist of a series of relational
assignment statements (rules) of the form

If FS,is...and [,;is...
and W,_ is...then P, 1s. ..
Else ...
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Table 14-8. Definition of linguistic variables [Rinks 1982].

Base Membership
Linguistic terms Acronym variable* function expression®*
VERY HIGH VH x HIGH x = HIGH x
(POSITIVE, VERY BIG) (PVB) (dx)
HIGH H x 1 — elm@5M=s]
(POSITIVE BIG) (PB) (dx)
RATHER HIGH RH x 1 — l-025/107-5"]
(POSITIVE, RATHER BIG) (PRB) (dx)
SORTOF HIGH SH x 1 — gl-O2/104=xD™)
(POSITIVE, SORTOF BIG) (PSB) (dx)
AVERAGE A x 1 — el
(ZERO) (2) (dx)
SORTOF LOW SL x 1 — ef~(025/1-04-x1")
(NEGATIVE, SORTOF BIG) (NSB) (dx)
RATHER LOW RL x 1 — el O2/1-07-xp"]
(NEGATIVE, RATHER BIG) (NRB) (dx)
LOW L x 1 — el @3-+
(NEGATIVE BIG) (NB) (dx)
VERY LOW VL x LOW x * LOW x
(NEGATIVE, VERY BIG) (NVB) (dx)
AT LEAST AVERAGE ALA x 1-ePH 1 =<sx=<0
1 O0<x=1
AT MOST AVERAGE AMA x 1 -1=sx=<0
1- e[—5|X|] 0<x=1

x is any one of the following variables: W,_;, FS, W,, and P, dx is AW,.
® All variables are scaled to be placed in the [~1, 1] interval.
¢ dx replaces x in the membership function expression for use with AW,

and
IfFS,is...and [, is ...
and W,_, is...then AW, is. ..
Else . ..

respectively

He uses the definition (given in table 14-38) of the terms of linguistic vari-
ables. Figure 14-10 sketches the membership functions of the terms of the lin-
guistic variables used. Forty decision rules were suggested (see table 14-9); these
were not claimed to be optimal but rather heuristic in character and acceptable
to the manager.
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Figure 14-10. Membership functions for several linguistic terms.

To test the performance of the suggested approach, the data of the paint
factory of the HMMS-model were used. In order to apply Rinks decision rules,
the membership functions of the terms, as shown in figure 14-10, had to be
calibrated. In fact the range [-1, 1] on the horizontal axis of this figure had to
be calibrated to the data. For test purposes, lower and upper bounds as shown
in the following tabulation were derived from available historical data (HMMS):

Variable Lower bound Upper bound

W, 60 115
AW, ~10 10
P, 250 750
I 150 490
FS, 250 750

In the absence of historical data, the manager would use his or her judgment
to make the determinations. For computations, the max-min compositions were
used, resulting in fuzzy sets as representing the “conclusion” or “decision.” Since,
however, a decision concerning the workforce, production, or inventory of next
period should be a crisp decision, Rinks used the maximum rule if possible. If
the membership function did not have a unique maximum he used other, heuristic
rules to choose the crisp decision to be implemented.

For the 60 months of data for the HMMS-model (1949-1953), the results of
the work-force algorithm are shown in figure 14—11. The cost results are shown
in table 14-10.



Table 14-9. Membership functions.

Cue variables

Decision variables

Rule no. FS, I, W._, P, AW,
1 H AMA H H Z
2 H AMA A RH PRB
3 H AMA L SH PVB
4 SH L H H Z
5 SH L A RH PRB
6 SH L L SH PVB
7 SH SH H SH NRB
8 SH SH A A Z
9 SH SH L A PRB
10 A A H SH NRB
11 A A A A Z
12 A A L A PRB
13 SL SL H SH NRB
14 SL SL A A Z
15 SL SL L SL PRB
16 RL L H SH NRB
17 RL L A A Z
18 RL L L A PRB
19 L ALA H SL NVB
20 L ALA A RL NRB
21 L ALA L L Z
22 SL H H SL NVB
23 SL H A RL NRB
24 SL H L RL Z
25 H AMA SH H PSB
26 H AMA SL SH PB
27 SH L SH H PSB
28 SH L SL SH PB
29 SH SH SH A Z
30 SH SH SL A PSB
31 A A SH A NSB
32 A A SL A PSB
33 SL SL SH A NSB
34 SL SL SL A Z
35 RL L SH A NSB
36 RL L SL A Z
37 L ALA SH RL NB
38 L ALA SL L NSB
39 SL H SH RL NB
40 SL H SL RL Z
1. Acronyms for the values of the linguistic variables are defined in table 14-8.
2. Each production rule is a fuzzy relational assignment statement of the form “IF FS, is AND
I, is AND W, is THEN P, is e
3. Each work force rule is a fuzzy relational assignment statement of the form “IF F, is AND

I, is AND W,_, is THEN AW, is
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Figure 14—11. Comparison of work force algorithms.

Table 14—10. Cost resulits.

Costs Linear DR Fuzzy

(10003%) HMMS (optimal) algorithm
Regular payroll 1879 1814
Hiring and layoff 20 22
Overtime 129 251
Inventory 25 43
Total cost 2053 2130

Rink’s own evaluation of the simulation results reads as follows:

While the 5.0 per cent cost penalty evidenced by the production scheduling fuzzy
algorithms is somewhat greater than that reported by other heuristics—Search Deci-
sion Rule [Taubert 1967} and Parametric Production Planning [Jones 1967] reported
cost penalties of less than one percent for the paint factory——it must be remembered
that the fuzzy algorithms do not even require an explicit cost function. For situations
where restrictive assumptions cannot be rationalized and sufficient data is not avail-
able to construct a cost function, approximate reasoning based models would seem to
offer an appealing alternative [Rinks 1982b, p. 579].

If Rinks had compared his results to other benchmarks, he would probably have
been more optimistic. Table 14—11 is from Bowman [1963, p. 104] and shows
the real performance and the performance of another heuristic, the management
coefficient approach, in the case of the HMMS paint factory and three other
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Table 14—-11. Comparison of performances.

Ice cream Chocolate Candy Paint
Decision rule 100% 100% 100% 100%
(perfect)
Decision rule 104.9% 102.0% 103.3% 110%
(moving average)
Company 105.3% 105.3% 114.4% 139.5%
performance
Management 102.3% 100.0% 124.1% 124.7%
coefficients
Correlation w = .78 W = .57 w = .73 W' = 40
P = 97 P =93 P = 86 PY = 66

plants. Compared to the 139% and 124.7% performance of these two approaches,
the 105% performance of the fuzzy algorithm would look even better.

14.3.5 Fuzzy Mathematical Programming for Maintenance
Scheduling

The following application, basing on a master thesis from Zittau, Germany, is
of interest because the effects of different operators were investigated and
because parametrized membership functions were used.

Model 14-6 [Holtz and Desonki 1981]

The problem objective here is to determine optimal maintenance cycles in elec-
trical power plants. Stochastic models had been used before, but because of the
very low frequency of breakdowns, it seemed that a model based on frequentistic
arguments was not appropriate.

T, . Cycle times of maintenance operations for j=1,..., N maintenance
crews (decision variable)

X; Coefficients of the crisp cost function, i = 1, 2, 3;j=1,..., N

Yi . Coefficients of the manpower requirement function, i = 1, 2, 3; j=
1,...,N

zZ; Coefficients of the breakdown function, i =1,2,3;j=1,..., N

Mh : Number of manhours available for maintenance per year

B - Number of breakdowns per year

B, : Maximum of acceptable breakdowns per year
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Crisp Mathematical Model. For N = 2 and C = total cost, the following crisp
model was the point of departure:

N
minimize C=C,....Ty) = Z[XUTJ +y, + }_1]

=1 i

S

|

\]

3"] = Mh

J

N
such that Z[yUTj + Y, +
=1

[

3 <B

M=

max

(leT; + sz +

>~

J=1

;=0
The requirements were as follows:
1. Cost should not exceed 500 considerably—and in no case should exceed an
upper bound that could be varied.

2. Manpower Mh should generally not exceed 1100, and by no means 1200.
3. The number of breakdowns can exceed 50 but never 300 (Boay)-

Fuzzy Mathematical Model. The symmetrical concept of a decision (defini-
tion 13-1) was used, and the optimal decision was defined to be

T.

in = TjoHg, = max min ,(T)

Two types of membership functions were investigated: a linear membership
function and a nonlinear two-parameter membership function.

Type 1 Membership Functions

! Cy-C
we(;) = E{[l +sgn (C;, —C)]+ 1 + sgn (C—CL)].(hJ}

where C; and C;, represent the lower and upper bounds for total cost.

1
Mz (T}) = 5{“ +sgn (Mhy ~ Mh)]
Mh, — Mh
+ 11+ sgn (Mh - Mhy )| - | v = Mh
Mh; — Mhy,
with Mh; and Mh,, the lower and upper bounds.

1 Br“B
u(7;) = 5{[1 +sgn (B = B)l +[1 +sgn (By ~ By)]- (BLT)}

with B, and B, the lower and upper bounds.
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Type 2 Membership Function. We shall only show the membership function
for the objective function. The others are defined accordingly:

1+sgn(C-C;)
1+ 1_ 1 C-C
b, a
b, and c, serve as means of better fitting the membership function to the real
situation. On the other hand, they obviously increase the computational effort.
Detailed numerical results, as well as a comparison of the performance of the

min-operator versus the product operator as a model for the intersection, can be
found in Holtz [1981].

1
ey = [1+sgn(C, - O]+

14.3.6 Scheduling Courses, Instructors, and Classrooms

It is well known that the determination of time schedules in which several
resources have to be combined belongs to the most difficult combinatorial prob-
lems in operations research. Rarely does one ever try to determine optimal
schedules. The determination of feasible schedules is very often the best one can
hope for. The difficulty of obtaining such schedules by formal algorithms might
partly be due to the fact that constraints are treated as crisp requirements even
though in reality they often are flexible. The following case indicates how a
combination of fuzzy set theory and heuristics can lead to quite acceptable
results.

Model 14-7 [Prade 1979]

Problem Description. A quarterly schedule in a French university is to be
determined. There are N (here N = 4) instruction programs; each lasts one year,
and a student can only attend one of them. Each instruction program I consists
of M(I) courses (here, 10 = M(I) = 14). Each course contains lectures, lab
work, and a final examination.

A course is taught by one instructor, supported by several teaching assistants.
An instructor may teach several courses in one or several instruction programs.
The availability of an instructor differs from person to person. An instructor may
be present for only some predetermined days of a week; another may be avail-
able for only some weeks during the quarter. Information about the availability
of instructors is only known approximately beforehand.
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*

A schedule has to satisfy seven “global” constraints:

Each instruction program must be completely planned for the entire school
year.

There are precedence constraints between courses (or sometimes parts of
courses) that are elements of the same instruction program.

It is not desirable that more than four weeks elapse between the first lecture
of a course and its final examination.

It is not desirable that any course that has already begun is interrupted for
more than a week.

Some courses can be in common in several instruction programs.

An instructor is not always available.

It is very desirable that several courses (three or four) are planned during
the course of the same week.

Constraints 1, 2, 5, and 6 are considered as “hard.” 3, 4, and 7 as “soft” con-
straints. More local constraints will be considered later.

Solution. The flow time of a course is considered as a fuzzy number with a
membership function similar to that shown in figure 14—12. These fuzzy numbers

0.5 t

" ¢ 4
+ t Uy

0 1 2 3 4 5 Weeks

0

Figure 14-12. Flowtime of a course.
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in L-R representation (see definition 5—-6) are used to compute via fuzzy PERT
a fuzzy early starting date 7, and a late ending date d,. If x denotes time, then
the interval [, in which the course i will be taught is a fuzzily bounded interval
(see figure 7-5), bounded by ; and d,, respectively.

The membership function of these intervals I is

Mi(x) for x=r
ur(x) =41 for xelrn,d]
Hz(x) for x=d

where r,, d, are the mean values of 7, and d,, respectively.

The “global” constraints are taken into consideration successively: Constraints
1 and 2 are used as a basis for PERT; constraint 4 is used to compute whole
programs from single courses. And if constraint 5 is relevant, the intersection of
the different possibility intervals for all relevant courses in all effected instruction
programs is computed. Constraint 6 is taken care of similarly.

So far, the slack time for each course, the work load of each instructor, and
the number of courses per week for each instruction program have been deter-
mined. Modifications of this schedule due to the availability of the instructors
can now be made, and the following “local” constraints are considered by inter-
actively changing schedules that have been generated automatically via heuristic
priority assignment. Figure 14-13 summarizes the entire process.

“Local” constraints are as follows:

1. There exist precedence constraints between lectures and lab work inside a
course (the graph of these constraints is not the same for all the courses).

2. An instructor can teach only one lecture at a given moment.

3. Itis generally desirable to plan two lectures of the same course in succession,
but not three.

4. Tt is not desirable that an instructor teach more than two lectures of different
courses in the same morning.

5. It is desirable to give priority to lectures in the morning and lab work in the
afternoon.

Example 14-2

The following tables and figures can only serve to visualize the process. Details
can be found in Prade [1977]. Figure 14—14 presents the data of one of the four
instruction programs that were considered. All courses had to be scheduled
within one quarter of 11 weeks. Table 1412 gives the node number, name of
courses, instructor number, and category (1 to 4 indicate different availabilities
of the instructor). p, ¢, and B are the mean values of the left and right spreads
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Data
Fuzzy Subsets of
Fuzzy P.E.R.T.
tructors’ Weeks When a Course
! Availability Can Be Planned
Computation of Slack Time .
Instructors' Work Load and A"Ra"s‘sl‘*m the
Busy Level of the Weeks
Modification of the Data
Actualization During the Quarter
[¢]
Heuristics Priority Evaluation p
e
r
a
t
Heuristics Week Schedule o
r

Figure 14-13. The scheduling process.

of the processing time for each course. The availability for each instructor is
given in table 14—13. Table 14—14 gives course numbers, initialized by the name
of the instructor and early start and late finish times.

As reference (membership) functions for the fuzzy numbers in L-R-represen-
tation representing the “flowlines” of the course, Prade used L(x) = exp [-x’] and
R(x) = max [0, 1 — x?].

The intersection of the availability schedule (table 14—13) and the PERT sched-
ule yields the possibility schedule of weeks in which courses can be scheduled
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Figure 14-14. Courses of one instruction program.



356 FUZZY SET THEORY-—AND ITS APPLICATIONS

Table 14-12.  Structure of instruction program.

Instructor Processing time
category
N Name number o p B
1 A231(LI to 6) 9 3 0.5 2 1
2 A231(L7 to 10) 9 3 0.5 1 1
3 Al41(LI to 6) 12 3 0.5 2 1
4 Al41(L7 to 10) 12 3 0.5 1 1
5 Al21 12 3 1 3 1.5
6 A241 12 3 1 3 1.5
7 A510 9 3 1 3 1.5
8 M317(L1to 8) 17 4 I 3 1.5
9 M3I7(LY to 10) 17 4 1 3 1.5
10 PSI6 8 1 0 4 0
11 V231 21 2 0 1 0
12 V211 1 4 1 3 1.5
13 E541 23 4 1 3 1.5
14 E551 23 4 1 3 1.5
15 M361 13 3 1 3 1.5
16 E531 11 ! 0 4 0
17 ES532 11 1 0 4 0

(table 14-15). Table 14—16 shows an example of the final schedule for the first
week.

14.4 Fuzzy Set Models in Inventory Control

There exist a large number of inventory models in operations research using a
great variety of methods for their solution. For inventory models using linear or
integer linear models, the approach of section 13.2 or an algorithm described in
Zimmermann and Pollatschek [1984] may be used. For solutions basing on
differential calculus, the models in chapter 7 might be useful. Kacprzyk and
Staniewksi [1982] present a very interesting approach for aggregate inventory
planning, using primarily the concept presented in chapters 3 and 5 of this book.
We shall present a model that uses Bellman and Zadeh’s approach to fuzzy
dynamic programming discussed in section 13.3.

Model 14-8 [Sommer 1981]

The management of a company wants to close down a certain plant within a
definite ume interval. Therefore production levels should decrease to zero as
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Table 14-13. Availability of instructors.

Weeks

Instructor
number
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Table 14—14. PERT output.

Name d
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steadily as possible and the stock level at the end of the planning horizon should
be as low as possible. The demand is assumed to be deterministic.
Mathematical model. Let

d e D,i=1,..., N be the decision variable representing the
production level in period i,

where

D={a,...,0,} is the set of values permitted for the decisions.
%€ X,i=1,...,N+1 be the state variable representing the inventory level
at the beginning of period 7,



358 FUZZY SET THEORY—AND ITS APPLICATIONS

Table 14-15. Availability of weeks for courses.

Weeks
Name 1 2 3 4 A} 6 7 8 9 10 11
A231 1 1 1 1 1 1 1 1 0 1 1
Al4l 1 1 0.5 0 1 1 0.8 0.4 0 0 0
Al21 1 1 0.5 0 0.4 0 0 0 0 0 0
A241 0 0 0.4 0 1 1 1 1 1 1 1
M510 0 0 0.4 1 1 I 1 0 0 0 0
M317 1 1 1 1 1 1 0.5 0 0.5 1 1
PS16 0 0 0 0 04 0.8 1 1 1 0.5 0.5
V231 1 1 0.5 0 0 0 0 0 0 0 0
V211 0 0 0 0 0.5 1 1 1 1 1 0.5
E541 1 1 1 1 1 1 04 0 0 0 0
E551 0 0 0.4 1 1 1 0.5 0.5 0.5 0 0
M361 1 1 1 0.5 0 1 1 1 1 0.5 0.5
E531 0 0 0 0.5 1 1 1 0 0 0 0
E532 0 0 0 0 0 0 0 1 1 1 1
Table 14-16. First week’s final schedule.
Morning Afternoon

Monday Al4l Al4l Al2l —

L.1 L2 L.1
Tuesday A231 A231 M317 —

L.1 L.2 L.1
Wednesday A231 A231 M317 A231

L3 L4 L2 LW.1
Thursday Al4l Al4l Al2l Sports
Friday Al2l Al2l M317 Al4l
and

X = {1,,...,71,} is the set of possible state values,
a;; = 1,..., N is the deterministic demand in period i,

X, = Xx; +d; — a; is the crisp transformation function,
¢ Ad) = {(d, e (d,)} are fuzzy constraints on the decision variables represent-
ing the goal “production should decrease as steadily as possible,”
i=1,...,N,and
Gi(xny) = {Xnays W¢ (xn4p)} s the fuzzy goal, representing the decision to have
as low a stock level as possible at the end of the planning horizon.
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Then, using equation (13.20), the membership function of the decision on stage i is

Hp(d;) = min {We (dy), Ryl
and the membership function of the maximizing decision on stage i is
u%(d;) = max{min {s(d;, Re(xnaa)
d;eD

which can be determined recursively using equation (13.23).

As will be shown in the following numerical example, the state spaces can
sometimes be reduced even further by introducing a bound on the basis of
heuristic considerations.

Example 14-3

Let
0 if 0 =d, =60 -10i
() = -3+.5i+d;/20 if 60-10i <d;,=80-10:
Hel@)=V5_ 54,20 if 80-10i <d,=100— 10i
0 if 100-10i <d,
and

. _ 1- XN+1/20 if 0= XN+1 =20
uGNﬂ(xNH) - {0 else

a =45 a,=50, a;=45 a,=60, and N=4
x, the stock level at the beginning, is supposed to be 0.
t,=1{0,5,10,...}
o, =10, 5, 10,...}

Only {d; | uc_(d,.) > 0} are of interest. Hence we can put a bound on the decision
variables as follows:

i d! d*
1 55 85
2 45 75
3 35 65
4 25 55

Also, 0 < x5 = 20.

Using the transformation function, we can also find upper and lower bounds
for the state variables on the different intermediate stages. We proceed in three
steps: First we determine upper bounds x¥ and lower bounds x! from the
forward calculation. The according bounds x*" and x!” from backward calcula-
tion are computed in the second step. Then we can obtain the final bounds by
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x¥ = min {x¢, ¥}

x!=max {x!/, x!"}

The lower bound for the state variable x, can be calculated as
xl=max {0, x[, +dl, —a} i=2,....4
The appropriate upper bound is
=i +dl —a, i=2,...,4

For the different stages we obtain, for x, = 0,

i x! X
1 — -
2 10 40
3 s 65
4 0 85
5 —_ —

Starting with x5 and assuming x{" = 0 and x¢" = 20, we obtain recursively the
following upper and lower bounds:

i Xl x
1 _ _
2 0 65
3 0 60
4 5 50
5 . _

The final upper and lower bounds can be determined by
xp=max {x/, x['}
x = min {x¥, x¥")

Hence

~.
-

Db W —
wu s o
"o
238

<
—
W
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Now we can determine the optimal d; and x; within the lower and upper bounds
computed above:

Stage 1: Using equation (13.23), we obtain
M, (x4) = max {min [He(dy), Ho(xs, dy)}l}

= max {min [Le(dy), Re(xs + ds — ag) 1}

d,

X, 25 30 35 40 45 50 55 e, (xa)

5 1/4 1/4
10 172 1/4 12
15 3/4 1/2 1/4 3/4
20 1 3/4 172 1/4 1
25 3/4 3/4 12 1/4 3/4
30 1/2 3/4 1/2 1/4 3/4
35 1/4 12 12 1/4 1/2
40 1/4 1/2 1/4 1/2
45 1/4 1/4 1/4
50 1/4 1/4

Stage 2:  Wp(x3) = max {min [La(ds), R(x; + d; — a3)1}

d,

X, 35 40 45 50 55 60 65 e (x3)

5 V4 12 ¥4 12 14 3/4
10 14 12 34 34 12 14 3/4
15 14 12 34 1 4 12 14 1
20 14 12 34 34 34 12 14 3/4
25 Y4 12 34 34 12 12 1/4 3/4
30 14 12 34 12 12 U4 14 3/4
5 y4 12 12 12 14 14 12
40 14 12 12 14 14 12
45 14 12 14 14 12
50 14 14 1/4 1/4
ss 14 1/ 1/4

60 1/4 1/4
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Stage 3. Up(xy)= max {min [pe(dy), tp(xs +dy — ay) 1}

d,
X 45 50 55 60 65 70 75 Mg, ()
10 1/4 12 34 34 3/4 12 1/4 3/4
15 1/4 12 34 34 3/4 12 1/4 3/4
20 1/4 12 34 34 12 12 1/4 3/4
25 1/4 12 34 12 12 12 1/4 3/4
30 1/4 12 12 12 12 1/4 1/4 12
35 1/4 12 12 12 1/4 1/4 1/4 12
40 1/4 12 12 1/4 1/4 1/4 12

Stage 4: pp(x) = max {min [ue(n), 1oy +d —a)l)

d,
X 55 60 65 70 75 80 85
0 1/4 1/2 3/4 3/4 1/2 12 1/4

14.5 A Discrete Location Model [Darzentas 1987]

For quite a number of years, there has been a widespread interest in location
models. For specific types of these problems, excellent review papers exist. One
of the most popular models is the “simple plant location model” (SPLP) for
which, for instance, Krarup and Pruzan {1983] summarize the existing literature
through the mid-1980s. In this paper, the authors also establish some relation-
ships between SPLP, other location problems, set-covering problems, and inte-
ger programming. One of the problems, the discrete location problem (DLP),
can be formulated as a set-covering problem and principally solved by pure
zero-one programming algorithms. In this type of problem, a number of facilit-
les are to be located at specific points within an area, according to precisely
quantified criteria. This results in a districting, that is, a plan that shows where
the facilitics have to be located and what locations they serve. However, in
many location problems, especially those associated with social policies,
noncrisply defined criteria are used such as how “near” or “accessible” a facil-
ity is or how “important” certain issues are, etc. In these cases, a fuzzy sets
approach is more appropriate.



FUZZY SET MODELS IN OPERATIONS RESEARCH 363

In such a problem, the decision maker’s main task is the identification and
evaluation of criteria on the basis of which an optimum will be obtained. The
choice of specific locations can only be based on questions like:

o How “far” should people travel to reach a service point?

» How “important” are “bad” and “good” roads and public transport?

« Is “homogeneity” of social class and income within a subset important?
« Is it “very unfair” to locate two major facilities in one point?

The fuzzy nature of the problem can be accepted and introduced at various
stages in the analysis.

There are two major obstacles to finding “optimal” solutions to DLPs: It is
necessary but difficult to define all possible covers, that is, subsets of locations,
which have to enter even the crisp DLP-model. For readers who are not aquainted
with this type of problem, the above-mentioned paper by Krarup and Pruzan or
the work of Darzentas [1987, pp. 330-337] are recommended. The second
problem is the “evaluation” of the covers in order to select the best one.

The aim of a location project is easy to state: find the “best” districting—
which means that the objective itself is a fuzzy set. There may also be a num-
ber of restrictions, such as “the budget allows for approximately M facilities” or
“it is preferable that village i serves village m,” and vice-versa, or “it is very
important that i and j belong to the same district,” and so on. Hence constraints
can be formulated as fuzzy sets.

In a crisp model, the determination of the optimal districting can be per-
formed by using integer programming algorithms. If the problem is of reason-
able size, heuristic versions have to be used.

In fuzzy DLPs, possibly even with multiple criteria, this approach is not pos-
sible. One could then use either fuzzy integer programming (see, for example,
Fabian and Stoica [1984] or Zimmermann and Pollatschek [1984]), or one could
try to reduce the number of possible districtings to a reasonable size by elim-
inating nonfeasible and dominated covers. The remaining covers could be evalu-
ated with respect to relevant criteria (yielding a fuzzy set for each criterion) and
then ordered in analogy to methods described in section 13.4.

Example 14-4

Consider the road network shown in figure 14—15, which is part of a real road
network. The points 1, . .., 4 represent villages whose populations are givea in
table 14—17a. The distances between the villages are given in table 14—17b.
The problem is to optimally locate three facilities in order to serve (cover)
each village with only one facility. This problem in its nonfuzzy form can be
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Figure 14-15. Road network.

Table 14—-17a. Populations. Table 14-17b. Distances between villages.

Miles
Village Population / 2 3 4
1 1,100 1 — 11 7 9
2 650 2 11 — — 14
3 1,350 3 — —
4 730 4 9 14 — _

formulated as a set-partitioning problem. The fuzzy version of the problem can
be formulated as a symmetric fuzzy-decision model (see definition 13—1).
Suppose the three covers shown in figure 1416 are the only covers feasible
due to crisp constraints, which are omitted here. In figure 14-16, the villages
hosting a facility are hatched. For the determination of the “best” cover, the
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@ @ @

Figure 14—16. Feasible covers.

Table 14-18. Determination of the fuzzy set decision.

Covers

¢ &) )
It is a better policy to locate this type
of facility in villages with high
population: 9 8 i
The facilities should not be located in
polluted areas: .6 S 2
The distance between a village
without a facility and a facility should
not exceed 8 miles considerably: .6 9 .6
Membership values of the decision: .6 5 2

grades of membership of all three covers to every fuzzy criterion are rated.
These ratings and the fuzzy criteria are given in table 14—18. In this example,
the degrees of membership of the covers in the fuzzy set “decision” are obtained
using the min-operator. These degrees imply an order on the set of covers. If a
crisp decision has to be made, the cover with the maximum degree of member-
ship (¢,, us(c;) = .6) is chosen.

Exercises

1. In what ways and for what purposes can fuzzy sets be used in operations
research?
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Explain why in model 14-3 every nondecreasing operator can be used to
combine the goal with all of the constraints.

Could approaches (13.9) or (13.18) have been used in model 14-27? If so,
what would have been the consequences?

In section 14.3.1, a fuzzy decision model has been employed as an optim-
ization criterion. Can this approach be used for both precise and heuristic
algorithms?

In the system presented in section 14.3.2, the decision support module
picks one precedence constraint out of the subset C of the set of all unordered
pairs of operations. Consider multiple criteria for the selection of the sub-
set C. Discuss possible fuzzy aggregation models for the derivation of the
subset C.

Assume in model 14-7 that the instructors’ availability is given by the
following table:

Weeks
[nstructor
number 1 2 3 4 5 6 7 8 9 10 11
1 0 0 0 5 05 1 1 1 S50 0
8 0 0 S 1 1 1 1 5 S 0 0
9 S 1 1 1 1 1 1 5 S 0 0
It 0 0 0 5 S 1 1 .5 S5 0
12 1 1 .5 5 1 1 1 1 1 1 1
13 0 1 1 5 S5 01 1 1 S0 0
17 1 1 1 1 1 1 1 1 1 1 1
21 5 S5 01 ] S50 0 0 0 0 0
23 1 1 1 | 5 5 50 0 0 0

Determine a new table 1415 of available weeks for courses, and try to
determine heuristically a first week’s final schedule.

Discuss approaches, and their advantages and disadvantages, for PERT
networks in which activity times are fuzzy and stochastically uncertain.
Determine the critical path for the network shown in table 1414 by
substituting for the addition of activity time in the normal critical path
method the extended addition (section 5.3.1).

Determine an optimal policy for model 14—8 modified as follows: the
demands are «, = {40, 40, 45, 50}, and the fuzzy set goal 1s characterized
by the membership function

Xyl s
1 — it 0=x,y, <10
He,., = 10 s
0 else
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10.

11.

In the example shown in table 14-18, the membership degrees of the
districtings were evaluated subjectively by the decision maker. Consider
fuzzy accessibility measures for the “nearness” or “accessibility” of a ser-
vice point to every other point in a district for a location problem greater
than that shown in figure 14-15. Develop a model in which these access-
ibility measures are aggregated to a fuzzy measure for the “acceptability”
of every district and are further aggregated to a fuzzy measure for the
membership degree of every districting to the fuzzy set of “best districtings.”
Discuss the sensitivity of such an approach to the choice of the intersection
operator.

Discuss the possible use of expert systems and FLC model in operations
research. Do those approaches satisfy sound OR principles?



1 5 EMPIRICAL RESEARCH IN
FUZZY SET THEORY

15.1 Formal Theories vs. Factual Theories vs. Decision
Technologies

The terms model, theory, and law have been used with a variety of meanings,
for a number of purposes, and in many different areas of our lives. It is therefore
necessary to define more accurately what we mean by models, theories, and
laws in order to describe their interrelationships and to indicate their use before
we can specify the requirements they have to satisfy and the purposes for which
they can be used. To facilitate our task, we shall distinguish between definitions
given and used in the scientific area and definitions and interpretations as they
can be found in more applicationoriented areas, which we will call “technolo-
gies” in contrast to “scientific disciplines.” By technologies we mean areas such
as operations research, decision analysis, and information processing, even though
these areas call themselves sometimes theories (i.e., decision theory) and some-
times science (i.e., computer science, management science, etc.). This statement
is by no means a value judgment; we only want to indicate that the main goals
of these areas are different. While the main purpose of a scientific discipline is
to generate knowledge and to come closer to truth without making any value
judgments, technologies normally try to generate tools for solving problems

369
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better, very often by either accepting or being based on given value schemes. Let
us first turn to the area of scientific inquiry and consider the following quotation
concerning the definition of the term model: “A possible realization in which all
valid sentences of a theory T are satisfied is called a model of T.”

Harré [1967, p. 86] states, “A model, a, of a thing, A, is in one of many
possible ways a replica or an analogue of A.” And a few years later, “In certain
formal sciences such as logic and mathematics a model for or of a theory is a
set of sentences, which can be matched with the sentences in which the theory
is expressed, according to some matching rule. . . . The other meaning of ‘model’
is that of some real or imagined thing or process, which behave similarly to
some other thing or process, or in some other way than in its behavior is similar
to it” [Harré, 1972, p. 173]. He sees two major purposes of models in science:
(1) logical: to enable certain inferences to be made that would not otherwise be
possible; and (2) epistemological: to express and enable us to extend our know-
ledge of the world. Models, according to Harré, are used either as a heuristic to
simplify a phenomenon or to make it more readily manageable and explanatory
where a model i1s a model of the real causal mechanism.

Leo Apostel [1961, p. 4] provides us with a very good example for various
definitions of models as tuples of a number of components in the following
definition: “Let then R (S, P, M, T) indicate the main variables of the modelling
relationship. The subject S takes, in view of the purpose P, the entity M as a
model of the prototype T.” For the four components of the definition, he gives
a number of examples that are quite informative concerning the use of models
in science and that can be summarized as follows:

Subjects (S) and purposes (P):

1. For a certain domain of facts, let no theory be known. If we replace our
study of this domain by the study of another set of facts for which a theory
is well known and that has certain important characteristics in common with
the field under investigation, then we use a model to develop our knowledge
from a zero (or near zero) starting point.

2. For a domain D of facts, we do have a full-fledged theory, but one too
difficult mathematically to yield solutions, given our present techniques. We
then interpret the fundamental notions of the theory in a model, in such a
way that simplifying assumptions can express this assignment.

3. If two theories are without contact with each other, we can try to use the
one as model for the other or introduce a common model interpreting both
and thus relating both languages to each other.

4. If a theory is well confirmed but incomplete, we can assign a model in the
hope of achieving completeness through the study of this model.
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Conversely, if new information is obtained about a domain, to assure our-
selves that the new and more general theory still concerns our eatlier domain,
we construct the earlier domain as a model of the later theory and show that
all models of this theory are related to the initial domain, constructed as
model, in a specific way.
Even if we have a theory about a set of facts, this does not mean that we
have explained those facts. Models can yield such explanations.
Let a theory be needed about an object that is too big or too small, too far
away, or too dangerous to be observed or experimented upon. Systems are
then constructed that can be used as practical models, experiments that can
be taken as sufficiently representative of the first system to yield the desired
information.

Often we need to have a theory present to our mind as a whole for
practical or theoretical purposes. A model realizes this globalization through
either visualization or realization of a closed formal structure.

Thus, models can be used for theory formation, simplification, reduction,

extension, adequateness, explanation, concretization, globalization, action, or
experimentation.

Entity (M) and model type (T):
M and T are both images or both perceptions or both drawings or both

formalisms (calculi) or both languages or both physical systems. M can also be
a calculus and T a theory or language, or vice versa.

Apostel believes that all models that can be constructed by varying the contents of the
four components form a systematic whole: Models are used for system restructuration
because of their relations with the system (partial discrepancy); because of their re-
lationship among each other (partial inconsistency at least multiplicity); because of
their relationship with themselves (locally inconsistent or locally vague).

By now two things should have become obvious:

There is a very large variety of types of models, which can be classified
according to a number of criteria. For our deliberation, one classification
seems to be particularly important: The interpretation of a model as a “for-
mal model” and the interpretation as a “factual, descriptive model.” This
corresponds to Rudolph Carnap’s distinction between a logical and a de-
scriptive interpretation of a calculus [Carnap 1946]. For him, a logically true
interpretation of a model exists if, whenever a sentence is true, the second
is equally true and if a whenever a sentence is refutable in the calculus, it
is also false in the model. An interpretation is factual interpretation if it is
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not a logical interpretation, which means that whether a model is true or
false does not depend only on its logical consistency but also on the (empiri-
cal) relationship of the sentences (axioms of the model) to the properties
of the factual system of which the model is supposed to be an image.
The second interpretation of a model is the one that is quite common in the
empirical sciences and it is the one we will primarily be referring to in the
following.

2. There is certainly a relationship between a model and a theory. This rela-
tionship, however, is seen differently by different scientists and by different
scientific disciplines. We will now try to specify this relationship because
theories, to our mind, are the focal point of all scientific activities.

For Harré [1972, p. 174] “A theory is often nothing but the description and
exploitation of some model,” or “Development of a theory on the other involves
the superimposing of one model on another” [1967, p. 99].

White [1975] eventually simply points out that

There is a need to logically separate a model and a theory and that they play support-
ing roles in decision analysis, viz., some theory is needed so that aspects of models
can be tested and that some model is needed so that the affects of some changes can
be examined. In particular validation of a model needs a theory.

Thus, there seems to be a very intimate relationship between a model and
a theory in scientific inquiry. Both, probably to varying degrees, are based on
hypotheses, and these hypotheses can either be formal axioms or scientific laws.
These scientific laws seem to us to fundamentally distinguish models and theo-
ries in scientific disciplines from the type of models (sometimes also called
theories) in the more applied areas: “An experimental law, unlike a theoretical
statement invariably possesses a determinate empirical content which in principal
can always be controlled by observational evidence obtained by those procedures™
[Nagel 1969, p. 83].

These laws as scientific laws assert invariance with respect to time and space.
The tests to which such hypotheses have to be put before they can claim to be
a law depend on the philosophical direction of the scientist. Karl Popper, as
probably the most prominent representative of “critical rationalism,” believes
that laws are only testable by the fact of their falsifiability. Popper holds further
that a hypothesis is “corroborated” (rather than confirmed) to the degree of
severity of such tests. Such a corroborated hypothesis may be said to have stood
up to the test thus far without being eliminated. But the test does not confirm
its truth. A good hypothesis in science, therefore, is one that lends itself to the
severest test, that is, one that generates the widest range of falsifiable conse-
quences [Popper 1959].



EMPIRICAL RESEARCH IN FUZ ZY SET THEORY 373

15.1.1 Models in Operations Research and Management
Science

The area of operations research will be considered as an example of a more
application-oriented discipline, which is here called “technology,” in which
modeling plays a predominant role. Even though one might dispute whether
operations research is a science or a technology, this discussion will follow
Symonds, who, as the President of the Institute of Management Science, stated,
“Operations Research is the development of general scientific knowledge”
[Symonds 1965, p. 385].

What, now, is a model in operations research? Most authors using the term
model take it for granted that the reader knows what a model is and what it
means. Arrow, for instance, uses the term model as a specific part of a theory
when he says, “Thus the model of rational choice as built up from pairwise
comparisons does not seem to suit well the case of rational behaviour in the
described game situation” [Arrow 1951]. He presumably refers to the model of
rational choice, because the theory he has in mind does not give a very adequate
description of the phenomena with which it is concerned, but only provides a
highly simplified schema. In the social and behavioral sciences as well as in the
technologies, it is very common that a certain theory is stated in rather broad and
general terms while models, which are sometimes required to perform experi-
ments in order to test the theory, have to be more specific than the theories
themselves. “In the language of logicians it would be more appropriate to say
that rather than constructing a mode! they are interested in constructing a quan-
titative theory to match the intuitive ideas of the original theory” [Suppes 1961].
Rivett, in his book Principles of Model Building [1972], offers three different
kinds of classifications of models; when enumerating the models that he sug-
gests be put into the different classes, he no longer uses the term model but talks
of “problems in this area” and “the theory of this area” as a not-too-well-defined
entity of knowledge. Ackoff suggests as a model of decision making a six-phases
process that is supposed to be a good picture (model) of the real decision-making
process [Ackoff 1962]. This is only one example of quite a number of very
similar models of decision making.

If we consider the size of some of the models used in operations research,
containing more than 10,000 variables and thousands of constraints, we can
easily see what does not distinguish a theory from a model: It is not the com-
plexity, it is not the size, it is not the language, and it is not even the purpose.
In fact, there seems to be only a gradual distinction between theory and model.
While a theory normally denotes an entire area or type of problem, it is more
comprehensive but less specific than a model (e.g., decision theory, inventory
theory, queueing theory, etc.); a model most often refers to a specific context or
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situation and is meant to be a mapping of a problem, a system, or a process. In
contrast to a scientific theory, containing scientific laws as hypotheses, a model
normally does not assert invariance with respect to time and space but requires
modifications whenever the specific context for which the model was constructed
changes.

In the following, we will concentrate on models rather than on theories.
Realizing that there is quite a variety of types of models, we do not think that
it is important and necessary for our purposes to distinguish models by their lan-
guage (mathematics or logic is considered to be a modeling language), by area,
by problem type, by size, and so on. One classification, however, seems to be
important: the distinction of models by their character. Scientific theories were
already divided into formal theories and factual theories. For models, particularly
in the area of the technology in which values and preferences enter our
considerations, we will have to distinguish among the following:

. Formal models. These are models that are purely axiomatic systems from
which we can derive if-then statements and the hypotheses of which are
purely fictitious. These models can only be checked for consistency; they
can neither be verified nor falsified by empirical arguments.

2. Factual models. These models include in their basic hypotheses falsifiable
assumptions about the object system; that is, conclusions drawn from these
models have a bearing on reality and they, or their basic hypotheses, have
to be verified or can be falsified by empirical evidence.

3. Prescriptive models. These are models that postulate rules according to
which processes have to be performed or people have to behave. This type
of model will not be found in science, but it is a common type of model in
practice.

The distinction between these three different kinds of models is particularly
important when using them: All three kinds of models can look exactly the
same, but the “value” of their outputs is quite different. It is therefore rather
dangerous not to realize which type of model is being used, because we might
take a formal model to be a factual model or a prescriptive model to be a factual
model, and this could have quite severe consequences for the resulting decision.

As an example, let us look at the above-mentioned Ackoff model of decision
making. Is it a formal, a factual, or a prescriptive model? If it is a formal model,
we cannot derive from it any conclusion for real decision making. If it is a
factual model, then it would have to be verified or falsified before we can take
it as a description of real decision making. The assertion, however, that decision
making proceeds in phases was already empirically falsified in 1966 [Witte
1968]. Still, a number of authors stick to this type of model. Do they want to
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interpret their model as a prescriptive model? This would only be justified if
they could show that, for instance, decision making can be performed more
efficiently when done in phases. This, however, has never been shown empiri-
cally. Therefore, we can only conclude that authors suggesting a multiphase scheme
as a model for decision making take their suggestion as a formal model and do
not want to make any statement about reality, or that they are using a falsified,
that is, invalid and false, factual model.

15.1.2 Testing Factual Models

The quality of a model depends on the properties of the model and the func-
tions for which the model is designed. In general, models will have to have at
least the following three major properties: logical consistency, usefulness, and
efficiency. By logical consistency, we mean that all operations and transformations
have been performed properly and that all conclusions follow from the hypo-
thesis. This consistency has to be demanded of all types of models, whether they
are formal, factual, or prescriptive. By usefulness, we mean that the model has
to be helpful for the function for which it has been designed. By efficiency, we
mean that the model, as the tool to achieve an end, has to fulfill the desired
function at a minimum of effort, time, and cost.

In decision making and problem solving, factual models will be needed to
describe, to explain, and to predict phenomena and consequences. For “condi-
tional predictions,” formal models will also be useful in order to obtain if-then
statements, for instance, in the framework of simulation. Formal models will
also be useful and necessary for the area of communication within the decision-
making process and for relaying the resolutions or conclusions of the decision
or problem-solving process to the “actors.” One should assume that prescriptive
models are the most common in decision making. This, however, is only true if
one calls all “decision models”—that is, models that contain an objective func-
tion by which an optimal solution can be determined—prescriptive models. To
our mind, this is not quite appropriate because these kinds of models only pre-
pare suggestions for possible decisions; the normative or prescriptive character
is acquired only after the “solution” has been declared a decision by the authorized
decision maker. A much more important feature of these models, it seems to Uus,
is that they have to describe or define properly the conditions that limit the
action space (such as capacities, financial resources, legal restrictions, etc.).

We can now restate the notion of the quality of a model more precisely: we
already mentioned that consistency is one of the necessary conditions for qual-
ity. Usefulness of a model will have to be defined for each of the three different
types of models differently:
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I. While a factual model can be called useful, if it is “factually true” (by
contrast to logically true), that is, if it maps the object system with an
appropriate precision (which can only be tested empirically), the model also
has to generate knowledge—that is, the user of a model should gain know-
ledge he or she would not have gained without using the model or which
he or she did not have available before using the model.

2. Formal models can be neither verified nor falsified empirically. Such a
model will be considered useful if activities such as teaching, explaining,
and communication become more efficient with the model than without it.

3. Prescriptive models also cannot be verified or falsified. They are the more
useful the more effectively they help to enforce the desired behavior, to
control predefined performance measured, and to define ranges within which
decision makers have freedom to decide.

Two prime factors in modeling are the modeling language and the quality of
input data. The type of modeling language appropriate for models in decision
making was already discussed in chapter 1. Here we shall claborate some more
on the quality of input data.

The saying “garbage in—garbage out” is well known and speaks for itself.
The following quotation from Josiah Stamp [1975, p. 236] points in the same
direction: “Governments are very keen in amassing statistics. They collect them,
add them, raise them to the nth power, take the cube root and make wonderful
diagrams. But what you must never forget is that every one of these figures
comes in the first instance from the village watchman who just puts down what
he damn pleases.”

It must, however, be borne in mind that the effort put into deriving and
obtaining numerical values or relations must be geared to the value of the model,
and that when data are scarce it may still be useful to draw conclusions from not
fully satisfactory input data. In this case, a tentative look at the dependence of
the solution upon the quality of the input data may be very advisable.

The quality of the input data is closely related to the question of operational
definitions for the relevant variables. The processes of defining variables and
their operational indicators and measurement are intertwined. To quote White
[1975, p. 102], “We take ‘measurement’ to be a special aspect of a ‘definition’.”
One might take the view that measurement is the actual procedure for assigning
the real numbers that constitute the measure. However, as pointed out in a
previous section, this is the quantification process and in itself does not consti-
tute a measure unless it is a homomorphism. The homomorphism then defines
the measure. Very often when modeling in the area of social sciences, one will
find that relations, data, or values are stated in very vague ways. Goals, for
instance, may be stated as “trying to achieve satisfactory profits,” data as “the
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Table 15-1. Hierarchy of scale levels.

Permissible transformation

Type of scale Verbal Formal Invariance Example
Nominal One-to-one X Ex—>x #x Uniqueness License
scale function of values plates
Ordinal Monotonic x; <x;— x/<x/ Rank order of = Marks
scale increasing values
function
Interval Affine X=a-x+b Ratio of Temperature
scale function differences C, F)
Ratio scale Similarity X=a- x Ratio of Length
function values (cm, inch)
Absolute Identity X =x Values Frequency

South of the country is much poorer than the North,” and relations as “his
investment strategies were much more risky than those of his competitors.” Very
often these variables are measured subjectively, and point scales are used to
transform the “measurements” into numerical values. Even though it is necessary
to include in the model variables that are considered important but that are very
hard to operationalize and measure, the quality of the input data might have very
limiting effects on the degree of transformation of these variables that can be
permitted in the model. Rather than neglecting these kinds of data, one should
consciously determine which scale quality these data have and then make sure
that only admissible transformations are being used when processing these data
in the model. Table 15—1 sketches the hierarchy of scale levels including the per-
missible transformations for each of the levels.

The testability of the components of a model—in the scientific and in the
practical context—depends largely on the operational definition of the hypo-
theses. In this sense, observation and formal analysis prior to model building
can very often improve the testability of hypotheses. Let us illustrate this with the
following example. In decision analysis, one normally distinguishes among deci-
sion making under certainty, decision making under risk, and decision making under
uncertainty. One assumes that in decision making under risk the decision maker
is able to store and process probability distribution functions. Here probabilities
ought to be interpreted as Koopman-type probabilities—that is, probabilities as
expressions of belief rather than in the frequentistic sense. This hypothesis is
hardly testable because a situation of decision making under risk is not homog-
enous with respect to the available information at all. An improvement in the
testability of hypotheses could be achieved if one would distinguish, for instance,
among the following:
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Decision making when quantitative probabilities are known (intervalscale)

Decisions when interval probabilities are known (hyperordinal scale)

Decisions when qualitative probabilities are known (ordinal scale)

Decisions when partially ordered nominal probabilities are known (ordinal

scale)

5. Decisions when nominal probabilities are known (states are known but not
truth ratable)

6. Decisions when only some of the nominal probabilities are known

Lol S

It is obvious that the information storage and processing requirements that a
human would need in order to decide “rationally” are quite different in the above
cases and that the permissible operations in the model will also be different
depending on the type of probability that can be assumed to exist.

If the testing is done on the basis of the outputs of the analysis, the decision
maker might already be able to indicate that the output of the analysis is not
satisfactory, probably because important relations or variables have been omit-
ted. If the decision maker or expert rates the output of the model as satisfactory,
it gains the status of face-validity, sometimes in practice the most we can hope
for.

Ideally a model should now be tested by implementation, that is, by compar-
ing actual with predicted results. This, however, in many instances is impossible
for several reasons.

1. Changes of environment. Factors such as sales, price levels, and so on might
have changed while the model was built and implemented, and therefore the
observed results after implementation of the model can no longer be com-
pared with the predicted results.

2. Changes in performance: If, for instance, the model is tested after imple-
mentation by running the old procedure parallel to the model and if the old
procedure included human activities, the performance of these activities
might be improved by the persons because they know that the “new” model
is being compared with their performance, which would probably drop again,
if and when the operation of the new procedures would be terminated.

3. Risk and uncertainty: It is obvious that if procedures have been designed
to optimally decide in situations of risk or uncertainty, the *“real” results can-
not meaningfully be compared with the probabilistic prediction.

4. Optimality: If only one solution is actually implemented, there is, of course,
no way to compare this with other alternatives. In many cases, the optimal
solution with which the model solution could be compared is not known at
all because it is not computable or because optimality was defined subjec-
tively in a way that is not objectively reproducible.
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It has already been pointed out that all kinds of theories and models can
be and ought to be tested for consistency. In formal analysis, it might even
be possible to prove consistency, which does not mean that models and theories
for which consistency has not yet been proven are not formally correct. For
“factual” or “‘substantial” theories and models, empirical testing of basic hypoth-
eses, relations, and resulting outputs is absolutely necessary in order to achieve
a certain degree of confirmation of the theory or the model. This fact is often
neglected when working with theories and models. If, for instance, the hypoth-
esis of “rationality” in decision-making models is “justified” by defining rationality
by more basic axioms such as transitivity, reflexibility, existence of an ordering,
and so on, which seem quite plausible and natural, then the model or the theory
might become more testable but certainly not better confirmed. To confirm the
model would require empirically testing either the main hypothesis or the pre-
sumably more operational basic axioms. This, of course, still does not determine
uniquely the methods that can be used for testing hypotheses. These methods
will depend on the area in which the model is being used (physics, engineering,
management) and the purposes for which the model has been built. Thus, in
scientific inquiry, probabilistic tests might not be acceptable because scientific
laws assert deterministic invariance. These methods, however, might be the only
available ones for testing models in areas such as management, sociology, and
political decision making.

In the following we shall report on empirical research concerning two main
components of fuzzy set theory: Membership functions and operators (connec-
tives, aggregators).

15.2 Empirical Research on Membership Functions

Measurement means assigning numbers to objects such that certain relations
between numbers reflect analogous relations between objects. In other words,
measurement is the mapping of object relations into numerical relations of the
same type.

If it is possible to prove that there is a homomorphic mapping f: E — N from
an empirical relational structure (E, P, ..., P,) with a set of objects E and an
n-tuple of relations P; into a numerical relational structure (N, @, . . ., Q,) with
a set of numbers N and relations Q,, then a scale {(E, N, f)) exists. By specifying
the admissible transformations, the grade of uniqueness is determined.

Therefore measurement starts by formulating the properties of the empirical
structure; implicitly, the intended object space is modeled on a nonnumerical
level. Strictly speaking, at the very beginning there should be a semantic defi-
nition of the central concepts; this would considerably facilitate the consistent



380 FUZZY SET THEORY-AND ITS APPLICATION

use of the relevant principles. Unfortunately, this definition has not yet been
possible for the concept of membership. Membership has a clear-cut formal
definition. However, explicit requirements for its empirical/experimental meas-
urement are still missing. Under these circumstances, it is not surprising that
apart from first steps by Norwich and Turksen [1981], genuine measurement struc-
tures have not yet been developed.

Under these circumstances, one could wait and see, until a satisfactory defi-
nition is available. However, one should remember that up to the beginning of
the twenticth century, even in the “hard sciences,” measures were used without
being equipped with adequate measurement theories. Usually the measurement
tools used were based on not much more than plausible reasons. Nevertheless,
the success of the natural sciences is undisputed. Hence, for the purpose of
empirical research, it may be tolerable to use plausible techniques.

Firstly, such a scale can serve as an operational definition of membership.
Secondly, a specific concept can be criticized and hence may help to obtain use-
ful improvements. We shall present two models for membership functions. Let us
call the first “Type A-model” and the second “Type B-model.”

15.2.1 Type A-Membership Model

Of prime importance is the determination of the lowest necessary scale level of
membership for a specific application. The purpose of the model A-membership
was to empirically investigate aggregation operators. In this instance, it was
sufficient to determine degrees of membership for a predefined set of objects
rather than continuous membership functions. The requested scale level should
be as Jow as possible in order to facilitate data acquisition, which usually in-
volves the participation of human beings. On the other hand, a suitable numerical
handling is desirable in order to insure mathematically appropriate operating.
Regarding the five classical scale types—nominal, ordinal, interval, ratio, and
absolute scale—the interval scale level seems to be most adequate. In this re-
spect, we cannot follow Sticha, Weiss, and Donnell [1979], who assert that
membership has to be measured on an ordinal scale. Usually the intended math-
ematical operations require at least interval-scale quality.

The easiest way to obtain data is to ask some subjects directly for member-
ship values. However, it is well known that scales that are developed by using
the so-called direct methods may be distorted by a number of response biases
[Cronbach 1950]. On the other hand, indirect methods work on the basis of
much weaker assumptions using ordinal judgments only. Their advantages are
simplicity and robustness with respect to response biases.

Their disadvantage is that many judgments are needed, since the ordinal
judgment provides relatively little information. This drawback seemed acceptable
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Table 15-2. Empirically determined grades of membership.

Stimulus x Hu(x) He(x) Umnc(0)
1. bag 0.000 0.985 0.007
2. baking tin 0.908 0.419 0517
3. ballpoint pen 0.215 0.149 0.170
4. bathtub 0.552 0.804 0.674
5. book wrapper 0.023 0.454 0.007
6. car 0.501 0.437 0.493
7. cash register 0.692 0.400 0.537
8. container 0.847 1.000 1.000
9. fridge 0.424 0.623 0.460

10. Hollywood swing 0.318 0212 0.142

11. kerosene lamp 0.481 0.310 0.401

12. nail 1.000 0.000 0.000

13. parkometer 0.663 0.335 0.437

14. pram 0.283 0.448 0.239

15. press 0.130 0.512 0.101

16. shovel 0.325 0.239 0.301

17. silver spoon 0.969 0.256 0.330

18. sledgehammer 0.480 0.012 0.023

19. water bottle 0.564 0.961 0.714

20. wine barrel 0.127 0.980 0.185

in order to avoid distortions of the data. Thus we decided to use a method that
yields an interval scale on the basis of ordinal ratings: After a set of suitable
objects has been established, subjects are asked for the grades of membership on
a percentage scale. People are accustomed to this type of judgment, and division
by 100 provides the normalized O—1 values. The obtained data are interpreted
as ranks. The subsequent scaling procedure refers mainly to a method suggested
by Diederich, Messick, and Tucker [1957] based on Thurstone’s “Law of Cat-
egorical Judgment” [Thurstone 1927].

A detailed description of the method can be found in Thole, Zimmermann,
and Zysno [1979]. Table 15-2 illustrates the type of membership information
that was obtained and the type of objects used for experimentation. The trans-
formation of the observed information to degrees fo membership was performed
by a computer program written for this purpose.

15.2.2 Type B-Membership Model

Often a certain concept can be considered as a context-specific version of a more
general feature. For instance, the set of young men is a subset of all objects with
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the feature age. We shall call this general feature the “base variable.” This
coincides with the definition of a base variable in definition 9—1. The scale of
the base variable that is normally generally accepted (here age in years) will be
called a *“judgmental scale.” In contrast to the scale of the base variable, the
scale of the “specific version” is contextdependent. Thus a term in definition 9—
1 does not necessarily correspond to “the specific version” of the base variable,
because “terms” did not explicitly assume a specific context. If the term young
refers to the age of men (by contrast to the age of flies, cars, houses, or dino-
saurs), then we can assume that the observer has some idea about what “young”
means with respect to men. He has a “standard” with respect to which he
evaluates age in terms of “young,” “old,” etc. We shall, therefore, call this
specific context-dependent scale an “evaluational scale.” If there exist a judg-
mental scale and an evaluational scale, both referring to the same empirical
relational structure, then a mapping from one numerical relative into the other
that reflects the differences of the basic empirical relational structure with re-
spect of the same set of elements would be possible. If, on the other hand, the
scale of (for instance) the base variable and the mapping (function) was known,
then the scale of the special feature could be determined. The mapping (func-
tion) can be considered as the membership function, which has to be determined.
The required scale level of the membership function essentially remains the
same as for type A model. In contrast to model A, however, we used direct
scaling methods. These involve less effort and are justified by the existence of
the base variable, which provides extra control with respect to judgmental errors
of the subjects. The judgmental (valuation) of membership can be regarded as
the comparison of object x with a standard (ideal), which results in a distance
d(x). If the object corresponds fully with the standard, the distance shall be zero;
if no similarity between standard and object exists, the distance shall be “c0.” If
the evaluation concept is represented formally by a fuzzy set P C X, then a certain
degree of membership Ls(x) is assigned to each element x. We shall assume that
this degree of membership is a function of the “distance,” d, between the two
above-mentioned scales (P representing a fuzzy set defined context-dependently
as a subset of the universe X).
Thus we define

Hp(x) = ———— 5.1)
X

where d(x) is the “distance” of the two scales for the element x € X. The
distance function now has to be specified. A specific monotonic function of the
similarity with the ideal could, as a first approximation, be d’(x) = 1/x.
Experience shows, however, that ideals are very rarely fully realized. As an
aid to determine the relative position, very often a context-dependent standard
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b is created. It facilitates a fast and rough preevaluation such as “rather posi-
tive,” “rather negative,” and so on. As another context-dependent parameter, we
can use the evaluation unit a, similar to a unit of length such as feet, meters,
yards, and so on. If one realizes furthermore that the relationship between a
physical unit and perceptions is generally exponential [Helson 1964], then the
following distance function seems appropriate:

d(x) = (15.2)

ea(x—b)

Substituting equation (15.2) into model (15.1) yields the logistic function

1
Hp(x) = TTT) (15.3)

It is S-shaped, as demanded by several authors [Goguen 1969; Zadeh 1971].
Formally, b is the inflexion point and a is the slope of the function.

From the point of view of linear programming, model (15.3) has the addi-
tional advantage that it can easily be linearized by the following transformation:
il A (15.4)
B l-p

—In

where | stands for p;(x).

The parameters a and b will have to be interpreted differently depending on
the situation that is modeled. From a linguistic point of view, a and b can be
considered as semantic parameters.

Model (15.3) is still too general to fit subjective models of different per-
sons. Frequently only a certain part of the logistic function is needed to represent
a perceived situation. This is also true for measuring devices such as scales,
thermometers, and so on, which are designed for specific measuring intervals
only.

In order to allow for such a calibration of our model, we assume that only
a certain interval of the physical scale is mapped into the open interval (0, 1)
(see figure 15—1). Whenever stimuli are smaller than or equal to the lower bound
or larger than or equal to the upper bound, the grade of membership of 0 or 1,
respectively, is assigned to them. This is achieved by changing the range by
legitimate scale transformations such that the desired interval is mapped into
[0, 11.

Since we regested an interval scale, the interval of the degrees of membership
may be transformed linearly. On this scale level, the ratios of two distances are
invariant. Let [T and W, respectively, be the upper and lower bounds of the
normalized membership scale, let i, be a degree of membership between these
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Figure 15-1. Calibration of the interval for measurement.

bounds, p < p, < [, and let W, u/, i’ be the corresponding values on the
transformed scale. Then

Hi-p R (15.5)

Bop B

=

For the normalized membership function, we have p=0and @ = L
Hence

Hi= (= ) + (15.6)

Generally it is preferable to define the range of validity by specifying the inter-
val d with the center ¢ as shown in figure 15-1.
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Hence

=d+w (15.7)
and

Ww=2c-p (15.8)
Substituting equation (15.7) into equation (15.8) yields

Ww=2c-d-w (15.9)

Solving equation (15.9) for p’ gives

w=c-dsp (15.10)

and inserting equations (15.10) and (15.7) into equation (15.6) yields
no=dy, - 1/2)+c (15.11)

The general model ot membership (15.3) is specified by two parameters of
calibration, if L, is repla. ed by ;. Solving this equality for 1, leads to the complete
model of membership:

0 1

_ ( 1 _C)l+l (15.12)
M= Tv e " Ja 7 2

["-] indicates that values outside of the interval [0, 1] have no real meaning. The
measurement instrument does not differentiate there. Hence

x<x->Dux)=0

x> ux) =1 (15.13)
The determination of the parameters from empirical databases does not pose any
difficulties in the general model (15.3). It should be mentioned that not only
monotonic functions, such as those discussed so far, can be described, but so
can unimodal functions—by representing them by an increasing (S,) and a de-

creasing (Sp) part. Formally, they can be represented as the minimum or maxi-
mum, respectively, of two monotonic membership functions each:

4] 1

s, (X) = min l—lis, (x), s, (x)-|

(i} 1
s, (¥) = max [, (3), 1, ()]

A computer program was written to process the observed data.
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Figure 15-2. Subject 34, “Old Man.”

The type B-model for membership functions, which provides a membership
function rather than degrees of membership for single elements of a fuzzy set
(as Type A does), was also empirically tested.

We shall present results concerning a very common fuzzy set, “‘young men,”
“old men,” and so on. Having available membership functions, we could also
test models of modifiers such as “very.”

The evaluation of the data showed a good fit of the model. Figures 15-2
through 15-7 show the membership functions given by six different persons.
As can be seen, the concepts “very young men” and “young men” are realized in
the monotonic type as well as in the unimodal. The detailed data and results can
be found in a major report of the authors [Zimmermann and Zysno 1982].

One may ask whether a general membership function for each of the four sets
can be established. Though the variety of conceptual comprehension is rather
remarkable, there should be an overall membership function at least in order to
have a standard of comparison for the individuals. This is achieved by determin-
ing the common parameter values a, b, ¢, and d for each set. Obviously, the
general membership functions of “old man” and “very old man” are rather
similar (see figures 15-8 and 15-9). Practically, they differ only with respect to
their inflection points, indicating a difference of about five years between “old
man” and “very old man.” The same holds for the monotonic type of “very
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Figure 15—-8. Empirical membership functions “Very Young Man,” “Young Man,”
“Old Man,” “Very Old Man.”



390 FUZZY SET THEORY—AND ITS APPLICATION

u(x)

1.0 9

w
A

vym - ym

= R R N V)

- Y Y T v A T T 4 T T v T T T

10 20 30 40 50 60 70 80 30 100

Figure 15-9. Empirical unimodal membership functions “Very Young Man”,
“Young Man.”

young man” and “young man”; their inflection points differ by nearly 15 years.
It is interesting to note that the modifier “very” has a greater effect on “young”
than on “old,” but in both cases it can be formally represented by a constant.
Several subjects provided the unimodal type in connection with “very young”
and “young.” Again the functions show a striking congruency.

15.3 Empirical Research on Aggregators

In section 3.2.2, a number of possible operators were mentioned. We saw that
they were assigned in various ways to set-theoretic operations, such as inter-
section, union, etc. For some of these operators, axiomatic formal Jjustifications
were also given. In definition 13—1, the triple decision-intersection-min-operator
was used. Some indication was given there that, from a factual point of view,
this triple might turn out not to be true. After what has been said in section 15.1,
it should be obvious that for a factual use of fuzzy set models only empirical
verification of models for the aggregators is appropriate. This can only be done
in specific contexts, and the results will therefore be of limited validity.

Some empirical testing of aggregators has been performed in the context of
fuzzy control. We shall report on empirical research done in the context of
human evaluation and decision making, that is, concerning the question, “How
do human beings aggregate subjective categories, and which mathematical models
describe this procedure adequately?”

As already mentioned, the term decision has been defined in many different
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ways. A decision also has many different aspects, for example, the logical
aspect, the information-processing aspect, etc. We shall focus our attention on
the last aspect: The search for and the modeling, processing, and aggregation of
information. A decision in the sense of definition 13—1, rather than being some
kind of optimization, is the search for an action that satisfies all constraints and
all aspiration levels representing goals. “Deciding” about the creditworthiness of
a person might be called an “evaluation” rather than a decision. It means, how-
ever, checking on whether a person satisfies all aspiration levels concerning
security, liquidity, business behavior, and so on.

In the following, we will give a rough description of two experiments and
their results. The first experimental design started from the triple “decision-
intersection-min-operator” and tried to find out whether the min-operator was
adequate for modeling the intersection. However, it did not question the pair
“decision-intersection.” The second experiment is no longer limited to consider-
ing a decision as the intersection; it relinquishes the set-theoretic interpretation
of a decision altogether.

Test 1: Intersection-min-operator [Thole et al. 1979]

Two fuzzy sets, A and B, were considered. It seems reasonable to demand that
the following conditions concering the judgmental “material” are satisfied:

1. The attributes characterizing the members of the sets A and B are inde-
pendent, that is, some magnitude of i is not affected by some magnitude
of iz and vice versa. As an operational criterion for this kind of independ-
ence, a correlation of zero is demanded:

=0

Tusng
2. If pyn; represents the aggregation of p;and s, modeling the intersection,
and if w; and w; are weights, then p;n; can be described by

Wing = (Wala) © (WzHg)
Where o stands for some algebraic operation. But since the models proposed

do not take into account the different importance of the sets with respect to
their intersection, equal weights are demanded:

Wi = Wp

As an operational criterion for equal weights, equal correlations are
demanded: ‘

Tusins = Tusting
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With regard to these conditions, three fuzzy sets were chosen: “metallic object”
[Metallgegenstand], “container” [Behdlter], and “metallic container” [Metall-
behdlter].' It has to be proved that these sets satisfy the conditions mentioned
above,

Now the following hypotheses may be formulated: Let p1,;(x) be the grade of
membership of some object x in the set “metallic object” and p (x) be the grade
of membership of x in the set “container”; then the grade of membership of x
in the intersection set “metallic container” can be predicted by

Hy:opg (x) = min {p (x), u ()}
Hz: ulhm"('x) = “/ﬁ(x) ' “t‘("x)

A pretest was carried out in order to guarantee that these assumptions were
justified.

Sixty students at the RWTH Aachen from 21 to 33 years of age, all of them
native speakers of the German language, served as unpaid subjects in the main
experiment. Each subject was run individually through two experimental ses-
sions, the first one taking about 20 minutes, the second one about 40 minutes.
In order to eliminate influences of memory as much as possible, the interviews
were performed at an interval of approximately three days.

Each subject was asked to evaluate each of the objects with respect to being
a member of A (metallic object), B (container), and A N B {metallic container).
The three resulting membership scales are shown in table 15-2.

Now, what about the prediction of the empirical data for “metallic container”
by the two candidate rules? Table 15-3 shows the empirical results together with
the grades of membership computed by using the min-operator and the product-
operator, respectively.

Figures 15-10 and 15-11 show graphically the relationship between empiri-
cal and theoretical grades of membership. The straight line indicates locations
of perfect prediction—that is, if the operator makes perfect predictions and the
data are free of error, then all points lie on the straight line.

The question arises: Are the observed deviations small enough to be toler-
able? To answer this question we chose two criteria:

1. if the mean difference between observed and predicted values is not differ-
ent from zero (o = 0.25; two-tailed), and

' This investigation has been carried out in Germany. The corresponding German word is given
in brackets. It should be realized that the German language allows the forming of compound word:
hence the interscction is Jabeled by one word.
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Table 15-3. Empirical vs. predicted grades of membership.

Stimulus x Hygre(x) Hine(x) | min Hyane(x) | prod.
1. bag 0.007 0.000 0.000
2. baking tin 0.517 0.419 0.380
3. ballpoint pen 0.170 0.149 0.032
4. bathtub 0.674 0.552 0.444
5. book wrapper 0.007 0.023 0.010
6. car 0.493 0.437 0.219
7. cash register 0.537 0.400 0.252
8. container 1.000 0.847 0.847
9. fridge 0.460 0.424 0.264

10. Hollywood swing 0.142 0.212 0.067

11. kerosene lamp 0.401 0.310 0.149

12. nail 0.000 0.000 0.000

13. parkometer 0.437 0.335 0.222

14. pram 0.239 0.283 0.127

15. press 0.101 0.130 0.067

16. shovel 0.301 0.293 0.078

17. silver spoon 0.330 0.256 0.248

18. sledgehammer 0.023 0.012 0.006

19. water bottle 0.714 0.546 0.525

20. wine barrel 0.185 0.127 0.124

2. if the correlation between observed and predicted values is higher than 0.95,
the connective operator in question should be accepted.

Since the observed differences are normally distributed, we used the stu-
dent 7 = test as a statistic. It is entered by the mean of the population (in this
case, 0), the mean of the sample (0.052 for the min-operator and 0.134 for the
product-operator), the observed standard deviation (0.067 for the minimum and
0.096 for the product), and the sample size (20). For the min-rules, the result
is ¢t = 3.471, which is significant (df = 19; p, the probability of transition, is
less than 0.01). For the product rule, the result is # = 6.242, which is also signi-
ficant (df = 19; p is less than 0.001). Thus, both hypotheses H, and H, have to
be rejected.

Despite the fact that none of the connective operators tested seems to be a
really suitable model for the intersection of subjective categories, there is a
slight superiority of the min-rule, as can be seen from the figures. If one were
forced to use one of these aggregation rules, then the minimum certainly would
be the better choice.

The results of this experiment indicate that both product and minimum fail to
be perfect models for the intersection operation in human categorizing processes.
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Figure 15~10. Min-operator: Observed vs. expected grades of membership.

Test 2 {Zimmermann and Zysno 1980]

The interpretation of a decision as the intersection of fuzzy sets implies no
positive compensation (trade-off) between the degrees of membership of the
fuzzy sets in question if either the minimum or the product is used as an opera-
tor. Each of them yields degrees of membership of the resulting fuzzy set (de-
cision) that are on or below the lowest degree of membership of all intersecting
fuzzy sets (see test).

The interpretation of a decision as the union of fuzzy sets, using the max-
operator, leads to the maximum degree of membership achieved by any of the
fuzzy sets representing objectives or constraints. This amounts to a full compen-
sation of lower degrees of membership by the maximum degree of membership
(see example 13-4).

Observing managerial decisions, one finds that there are hardly any decisions
with no compensation between different degrees of goal achievement or between
the degrees to which restrictions are limiting the scope of decisions. The compen-
sation, however, rarely seems to be “complete,” as would be assumed using the
max-operator. It may be argued that compensatory tendencies in human aggregation
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Figure 15-11. Product-operator: Observed vs. expected grades of membership.

are responsible for the failure of some classical operators (min, product, max)
in empirical investigations.

Two conclusions can probably be drawn: Neither the noncompensatory “and”
represented by operators that map between zero and the minimum degree of
membership (min-operator, product-operator, Hamacher’s conjunction operator
(see definition 3—15), Yager’s conjunction operator (see definition 3-16) nor the
fuzzy compensatory “or’” represented by operators that map between the maxi-
mum degree of membership and 1 (maximum, algebraic sum, Hamacher’s dis-
junction operator, Yager’s disjunction operator) are appropriate to model the
aggregation of fuzzy sets representing managerial decisions. It is necessary to
define new additional operators that imply some degree of compensation, that is,
that map also between the minimum degree of membership and the maximum
degree of membership of the aggregated sets. In contrast to modeling the non-
compensatory “and” or the fully compensatory “or,” they should represent types
of aggregation that we shall call “compensatory and.”

It is possible that human beings use many nonverbal connectives in their
thinking and reasoning. One type of these connectives may be called “merging
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connectives,” which may be represented by the “compensatory and.” Being
forced to verbalize them, people may possibly map the set of “merging connec-
tives” into the set of the corresponding language connectives (“and,” “or”).
Hence, when talking, they use the verbal connective they feel to be closest to
their “real” nonverbal connective.

In analogy to the verbal connectives, the logicians defined the connectives A
and v, assigning certain properties to each of them. By this, compound sentences
can be examined for their truth values. In contrast to this constructive process,
the empirical researcher has to analyze a given structure. Therefore, in order to
induce subjects to use their own connectives, we avoided the verbal connec-
tives *and™ and “or™ in our experiment, but tried to ask for combined member-
ship values implicitly presenting a suitable experimental design and instruction,
respectively.

We shall not describe in detail the experimental work in which different
compensatory operators were tested and in which the y-operator (see definition
3-19) turned out to perform best. The reader is referred to Zimmermann and
Zysno [1980] for details. We shall return to figure 1-1 and explain how credit
clerks arrive at a decision concerning the creditworthiness of customers by
aggregating their judgments conceming the determinants of creditworthiness.
For details, see Zimmermann and Zysno [1983]. A number of possible compen-
satory and noncompensatory models were tested.

Searching for an appropriate decision situation, our choice fell on the rating
of creditworthiness for the following reasons:

I. This is a decision problem that is complex enough though it is still relatively
transparent and definable. In addition, this situation is highly standardized.
Even though test subjects come from different organizations, similar evalu-
ation schemes can be assessed.

2. A sufficiently large number of decision makers is available with about the
same training background and similar levels of competence.

3. The decision problem to be solved can be formulated and presented in a
realistic manner with respect to contents and appearance.

First, the creditworthiness hierarchy shown in figure 1-1 was developed together
with I8 credit clerks.

Testing the predictive quality of the proposed models required a suitable
basis of stimuli that were to be rated with respect to the creditworthiness criteria
and a weighting system that allowed a differentiated aggregation of these criteria.

The natural basis of information for evaluating creditworthiness is the credit
file. Therefore, we would have liked to analyze original bank files. However, a
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selection of finished cases is always a biased sample, since the initially rejected
applicants are missing. Moreover, we wanted to avoid unnecessary troubles with
banking secrecy. Therefore, it was decided to prepare 50 fictitious applicants for
credit,

A credit application form usually contains about 30 continuous or discrete
attributes of applicants. If each variable were dichotomized, 2% different bor-
rowers could be produced. Clearly, one cannot realize all possible variations.
Therefore, a sample was drawn that satisfied the following two conditions: The
50 applicants (stimuli) should

1. be distributed as evenly as possible along the continuum of each aspect, and
2. be typical for consumer credits.

The files were produced in three stages:

1. One hundred and twenty applications were completed randomly with re-
spect to the grade of extension of the 30 attributes.

2. The resulting 30 x 120 data matrix was purged of 40 cases most unlikely
and least typical. The remaining 80 files were completed using information
of an inquiry agency (Schufa) and a short record of a conversation between
the client concerned and a credit clerk.

3. The applicants should represent the variability of the eight concepts. If each
aspect is dichotomized into two classes (4 < 0.5 - 0, u > 0.5 > 1), then
the resulting 28 = 256 patterns of evaluation can be put in a 16 x 16 matrix.
With the assistance of two credit experts, the 80 credit files were placed into
this tableau. Finally, 30 files were eliminated in order to obtain equal fre-
quencies in rows and columns.

We could now expect that the 50 applicants varied evenly along each attribute
and each criterion. Only one attribute was constant: the credit amount was fixed
at DM 8,000, because the judgment “creditworthy” is only meaningful with
respect to a certain amount. A borrower might be good for DM 8,000, but not
for DM 15,000.

Surely it would be interesting to include the credit amount as a variable in
this investigation. But in order to receive a stable basis for scaling and interpre-
tation, a serious enlargement of the sample of credit experts would be necessary.
This, however, would have considerably exceeded our budget.

The predictive quality of each model can be evaluated by comparing ob-
served [l-grades with theoretical p-grades. The latter can be computed for
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Figure 15—12. Predicted vs. observed data: Min-operator.

higher-level concepts by aggregation of the lower-level concepts using the can-
didate formula. The membership values for higher-level concepts should be
predicted sufficiently well by any lower level of the corresponding branch. The
quality of a model can be illustrated by a two-dimensional system, the axes of
which represent the observed versus theoretical p-values. Each applicant is
represented by a point. In the case of exact prognosis, all points must be located
on a straight diagonal line. As our data are corrected empirically, there will be
deviations from this ideal. Figures 15-12 to 15-15 depict some of the typical
results of the tests for security as being determined by fourth-level determinants.

Unfortunately, the weighted geometric mean fails drastically in predicting
security by unmortgaged real estate and other net properties. In our view, this
is due to the fact that the model does not regard different grades of compensa-
tion. The inclusion of different weights for the concepts does not seem to be
sufficient for describing the human aggregation process adequately. Consequently,
it comes as no surprise that the y-model, comprising different weights as well
as different grades of compensation, yields the best results.

It should be kept in mind, however, that y has not been determined empiri-
cally. This would have required a further experimental study, based on a theory
describing the dependence of y-values between higher and lower levels. For the
present, we are content with estimations derived from the data. At least it has
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Figure 15-15. Predicted vs. observed data: y-operator.

been shown that the judgmental behavior of credit clerks can be described quite
well if this parameter is taken into account.

Finally, the complete hierarchy of creditworthiness is presented together with
the elaborated weighting system and the y values for each level of aggregation
(figure 15-16).

15.4 Conclusions

Our example analysis of the process of rating creditworthiness yields a criteria
structure that is concept oriented and self-explanatory. The y-model, which was
from the beginning designed to satisfy mathematical requirements as well as to
describe human aggregation behavior, proved most adequate with respect to
prognostic power. This class of operators is continuous, monotonic, injective,
commutative, and in accordance with classical truth tables, which manifests
their relationship to formal logic and set theory. They aggregate partial judg-
ments such that the formal result of the aggregation ought to make them attrac-
tive for empirically working scientists and useful for the practitioner.
Banking managers not only evaluate but also decide. In order to complete the
description of a decision process, we therefore had asked the managers to
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Figure 15-16. Concept hierarchy of creditworthiness together with individual
weights 3 and y-values for each level of aggregation.

arrive at a decision for each fictitious credit application. If the creditworthiness
were an attribute of the all-or-none type and all credit managers followed the
same decision-making process, then two homogenous blocks of credit decisions
(one block with 100% yes decisions and one block with 100% no decisions)
would result. The number of positive decisions, however, varied over the entire
range from 45 to 0. Obviously, there existed a considerable individual decision

space.



1 6 FUTURE PERSPECTIVES

In the first nine chapters of this book, we covered the basic foundations of the
theory of fuzzy sets as they can be considered today in an undisputed fashion.
Many more concepts and theories could not be discussed, either because of
space limitations or because they cannot yet be considered ready for a textbook.
In a recent book by Kandel [1982], 3064 references are listed that supposedly
are “Key references in fuzzy pattern recognition” [Kandel 1982, p. 209]. In a
recent bibliography, Ma Jiliang [1989] lists approximately 2800 references in
the area of fuzzy sets, including 50 books. In the Journal for Fuzzy Sets and
Systems alone, almost 3,000 articles have been published so far. Even though
this might overestimate somewhat the total knowledge available in the area of
fuzzy set theory today, it is indication of rather vivid research and, particularly,
publication activities. The databank CITE contains at present approximately
12,000 publications in the area of fuzzy sets.

Fuzzy set theory is certainly not a philosopher’s stone that solves all the
problems that confront us today. But it has considerable potential for practical
as well as for mathematical applications, the latter of which have not been
discussed at all in this book.

To indicate the scope of future applications of fuzzy set theory, we shall point
to some of the most relevant subject areas. Researchers have become more and
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more conscious that we should be less certain about uncertainty than we have
been in the past. The management of uncertainty—that is, uncertainty due to lack
of knowledge or evidence, due to an abundance of complexity and information,
or due to the fast and unpredictable development of scientific, political, social,
and other structures nowadays—will be of growing importance in the future.

In fact, in practice the “fuzzy epoch” has already begun. There already exist
quite a number of expert systems and expert-system shells that use fuzzy sets
either in the form of linguistic variables or in the inference process (see chapter
10 and Gupta and Yamakawa [1988b] ). Fuzzy computers were exhibited as early
as 1987 in Tokyo. Gupta and Yamakawa [1988a] provide a very good descrip-
tion of the present state of development.

One of the advantages of fuzzy set theory is its extreme generality, which
will enable it to accommodate quite a number of the new developments necessary
for coping with existing and emerging problems and challenges. Some areas are
already well developed, such as possibility theory [Dubois and Prade 1988a],
fuzzy clustering, fuzzy control, fuzzy mathematical programming, etc. Other areas,
however, have still ample space for further development.

One of the most thriving areas of fuzzy set applications is certainly that of
fuzzy control. Some indications are given in chapter 11. The state of affairs
around 1985 is well described by Sugeno [1985a]. The fact that since then not
too many new publications have appeared is not an indication of a slowing
down of the development. On the contrary: Most of the successful commercial
applications do not—for competitive reasons—lead to publications.

Considerably more research—formal as well as empirical-—will be necessary
in order to cope with these challenges. Much of this research will only be pos-
sible through interdisciplinary team efforts. Let us indicate some of the research
that is needed. Fuzzy set theory can be considered as a modeling language for
vague and complex formal and factual structures. So far, mainly the min-max
version of fuzzy set theory has been used and applied, even though many other
connectives, concepts, and operations have been suggested in the literature. Member-
ship functions generally are supposed “to be given.” Therefore, much empirical
research and good modeling effort is needed on connectives and on the meas-
urement of membership functions to be able to use fuzzy set theory adequately
as a modeling language. Great opportunities, not yet exploited, exist in the field
of artificial intelligence. Most of the approaches and methods offered there so far
have been dichotomous. If artificial intelligence really wants to be useful in
capturing human thinking and perception, the phenomenon of uncertainty will
have to be modeled much more adequately than has been done so far. Here, of
course, fuzzy set theory offers many different opportunities.

Another (at least potential) strength of fuzzy set theory is its algorithmic,
computational promise. The more we realize that there are problems—the reader
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might, for instance, think of NP-complete problem structures, which are far
too complex for existing traditional approaches (combinatorial programming,
etc.) to cope with—the more the need for new computational avenues becomes
apparent. So far, fuzzy set theory has not yet proved to be computationally
able to solve large and complex problems efficiently. Reasons for this are that
for computation, either we still have to resort to traditional techniques (linear
programming, branch and bound. traditional inference) or the additional infor-
mation contained in fuzzy set models makes computations excessively volu-
minous. Here prudent standardization (support fuzzy logic, etc.) as well as good
algorithmic combinations of heuristics and fuzzy set theory might offer some
real promise. In other words, research in the direction of fuzzy algorithms is also
urgently needed.

The second volume of this book, which appeared in 1987, presents and
discusses some of that type of development in one specific area—namely, de-
cision analysis. It can only be hoped that other efforts in this direction will
follow to help fuzzy set theory progress and mature in a number of ways for
the sake of further remarkable contributions to applications in many areas.
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objective function, 282, 289, 329
operations research, 321

opposite of a fuzzy number, 60
optimal compromise solution, 305
optimal decision, 93

optimal schedule, 351

parameter space, 25

parameterized membership function, 349
parameterized operators, 32

parametric programming, 294, 325, 327
partially ordered nominal probability, 377
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particularization, 150

partition, 249

partition coefficient, 261

partition entropy, 261, 262

path, 83

pattern recognition, 241

penalty, 332

perfect fuzzy order relation, 86, 87

perfect prediction, 392

permissible information, 377

permissible transformation, 376

physical scale, 383

plausibility measure, 46

point semantic unification, 166

portfolio analysis, 192, 193, 198

positive fuzzy number, 57

possibilistic c-means algorithm, 265

possibility assignment equation, 149, 153

possibility distribution, 46, 110, 112, 139,
149

possibility distribution function, 46

possibility measure, 46, 114, 125

possibility qualification, 152, 157

possibility theory, 110, 139

possibility value, 152

possibility/probability consistency principle,

114,126
power of a fuzzy set, 16, 28
precedence constraint, 334
precision, 1
predicate calculus, 139
predictive quality, 396
preferability, 315
premise, 144
prescriptive model, 372, 374
primary detector, 205
primary term. 136
probabilistic set, 25
probability, 3, 123, 132
probability measure, 46, 125
probability of fuzzy event, 118, 119, 120
probability qualification, 152, 157
probability theory, 109, 131
probability value, 152
Production Planning and Control, 331, 336
production rules, 178
project management, 323
proportion, 155
proportion exponent, 237, 238

proposition, 144, [52
PRUF. 148, 149, 150. 152

qualification, 52
qualitative probability, 378
quality control, 277

quality of a model, 397
quantification, 152
quantification process, 376
quantifier, 139, 155
quantitative probability, 378
quantitative theory, 373

range of compensation, 42
rank ordering, 314

rating, 313

rational choice, 373
rationality, 379

real phenomena, 322
reference function, 62, 63
reference proposition, 155
reflexive, 78

relational assignment equation, 111
relational matrices, 75
relative cardinatity, 16
relative importance, 312
relative truth, 153

required scale level, 42, 382
rough set, 25, 27

rule-base, 175, 207
rule-based systems, 340
rule of inference, 149

scalar multiplication, 60

scale level, 42, 375, 376, 379, 384
scaling factors, 330

scheduling, 331, 335, 351
scientific law, 372

search algorithm, 331
second-generation expert system, 200
second projection, 72
self-organizing controller, 219
self-tuning controller, 219
semantic net, 178

semantic rule, 131, 136

shadow, 73
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Shannon entropy, 47, 48
shape function, 62
similarity measure, 251
similarity relation, 85, 86
similarity tree, 86
simulation, 343

solution space, 304
spanning subgraph, 83
SPERIL, 180, 189
spread function, 99
spreads, 63

stability of FCL’s, 233
state space, 234
statement, 138

stochastic uncertainty, 3
strategic planning, 192
strength, 83

structured term set, 135
subjective category, 4
subjective probability, 192
substantial theory, 377
Sugeno Controller, 215
support, 14

syllogism, 138
symmetric, 78, 82
symmetric difference, 36
symmetric fuzzy LP, 289
symmetric relation, 78, 80
symmetric summation, 36

tabu search, 180

t-conorms (s-norms), 30
technology, 373

tense logic, 139

term, 131, 380

term-set, 131

testing factual models, 375
theory, 373, 374

3-value logic, 14, 141
t-norm, 29

tolerance interval, 290, 292
total fuzzy order relation, 87
total projection, 72
tansitive fuzzy relation, 81
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translation rules, 149, 151, 155
transportation, 323

trapezoidal fuzzy number, 57, 58
tree, 84

triangular fuzzy number, 57, 62, 96
true, 137, 142

truth, 133

truth of the proposition, 119

truth qualification, 152

truth tables, 138, 139, 141, 142
two-parameter membership function, 350
type A-membership, 380

type B-membership, 381

type m fuzzy set, 24

type 1 fuzzy set, 24

type 2 fuzzy set, 24, 54, 55

type of models, 334

uncertainty, 3

undecided, 141, 142

union, 29, 71, 136

union of fuzzy sets, 17, 29, 30, 33, 34, 35

union of type 2 fuzzy sets, 55

unitary possibility distribution function,
149

unity possibility distribution, 149

unknown, 141

upper probability, 126, 192

vague, 4

vagueness, 3, 6

value statement, 369

variance criterion, 254, 255
vector-maximum problem, 304
verbal connective, 395

very true, 142

weakly reflexive, 78

Yager-intersection-operator, 33
Yager-union-operator, 34





