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A b s t r a c t - - I n  this paper, a new condition for the controllability of higher-order linear dynamical 
systems is obtained. The suggested test contains rank conditions of suitably defined matrices and 
is based on the notion of compound matrices and the Binet-Cauchy formula. © 2004 Elsevier Ltd. 
All rights reserved. 
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1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

Consider  the  higher-order  linear sys tem 

Azq(O(t) + Az-lqq-1)(t) + . . .  + Alq(1)(t) + Aoq(t) = Bu(t), (1) 

where Aj C C n×n (j  = 0, 1 , . . . ,  l), t is t he  independent  t ime variable, q(t) E C n is the  unknown 

vector  function,  u(t) E C "~ is the piecewise cont inuous input (control) vector and B E C n×'~ 

is the  input matrix. (The  indices on q(t) denote  derivatives wi th  respect  to  t.) Apply ing  the  

Laplace t r ans fo rmat ion  to  (1) yields the matrix polynomial 

L(A) = AzA z + AI_IA z-1 + . . .  + A1A + A0, (2) 

where A is a complex variable. As a consequence, the  spectral  analysis of L(A) leads to  solutions 
of (1). The  suggested references on mat r ix  polynomials  and their  appl icat ions  to  differential 
equat ions  are [1,2]. 

*Author to whom all correspondence should be addressed. 
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A scalar Ao E C is said to be an eigenvalue of L(A) in (2) if the system L(Ao)y = 0 has a nonzero 
solution Y0 E C n. This solution y0 is known as an eigenvector of L(A) corresponding to A0, and the 
set of all eigenvalues of L(A) is the spectrum of L(A), namely, a(L) = {A e C :  det L(A) = 0}. At 
this point and for the remainder of this paper, we shall assume that  the matrix polynomial L(A) 
in (2) has a nonsingular leading coefficient Al, and thus, L(A) has exactly nl eigenvalues, counting 
multiplicities• 

The dynamical system (1) is equivalent to the first-order system 

(t) : cL (t) + (3) 

where 

e L  = 

0 
0 

0 
-A[-1Ao 

A 1B 

I 0 
0 I 
: 

0 0 
-A[1A1  - A l i A 2  

E C nl X rn, and 

. . .  0 

• • . 0 

• • • I 

. . .  -A71AI_ l  

q(t) 
q(1)(t) 

x(t)  : 

q(l-1)(t) 

e C ~l×nz, (4) 

e c (5) 

The nl × nl matrix CL in (4) is known as the (block) companion matrix of L(A) and its spectrum 
coincides with a(L),  and the vector x(t) in (5) is called the state vector of system (3) [1-3]• As 
a consequence, for a given initial condition x0 = x(0), the general solution of (1) is given by [1, 
Theorem 1.5] 

q(t) = Zr e tel  Xo + Zr e (t-s)cL ZcB u(s) ds, 

where Z~ = [ I0 . . . 0 ]  E C ~xnl and Zc = E C ~lx~. 

A 1 

The notion of the controllability of dynamical systems has at tracted attention for some years. 
It refers to the ability of a system to transfer the state vector from one specified vector value to 
another in finite time. In particular, systems (1) and (3) are called controllable if for every x0, 
w E C hi, there exist an input vector u(t) and a real to > 0, such tha t  x(0) = x0 and x(to) = w. 

In this article, we obtain an alternative test for the controllability of higher-order linear dy- 
namical systems. The important feature of the new rank condition (Theorem 2) is that  it is 
independent of A and requires no computation of the eigenvalues of L(A) (see Statements (ii) 
and (iii) in Theorem 1) or the inverse of the leading coeffÉcient A~ (see Statement (v) in Theo- 
rem 1). It is assumed that  the reader is familiar with the notion of compound matrices and the 
Binet-Cauehy formula. The suggested reference is [4]. 

2. T H E  N E W  T E S T  

One of the major concerns for a control engineer is to maintain the stability of certain systems. 
For this reason, in many cases, the behavior of the dynamical system (1) is modified by applying 
state feedback (i.e., input vector) of the form 

u(t) = v(t) -- Fl-lq (l-l) (t) ..... Flq (I) (t) - i~oq(t), 

where Fj E C m×~ (j -- 1, 2 , . . . ,  1 - 1) [3,5-7]. The new closed loop system 

Alq(O(t) + (Al-1 + BFl-Jq(l-1)(t)  + " "  + (Ao + BFo)q(t) = Bv(t) (6) 
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is associated with the matrix polynomial 

1 3 7 7  
/ 

LF(A) = L(A) + BF(A),  (7) 

where F(A) = FI_IA t-1 + - . -  + -ilia + E0. 
Classical results on the controllability of first-order dynamical systems (see for example [2,8,9] 

and the references therein) have been generalized to the higher-order systems (1) and (6) in a 
natural way. 

THEOREM 1. (See [3, Theorem 2.5 and Proposition 2.1], [7, Theorem V.2].) The [ollowing 
statements are equivalent. 

(i) System (1) is controllable. 
(ii) Ker B* n Ker L(A)* = {0}, for all A E a(L) .  

(iii) rank [L(A) B] = n, for all A e a(L).  
(iv) System (6) is controllable. 
(v) rank . . .  CZ -15] = n l .  

Observe now that  the matrix polynomial LF(A) in (7) is writ ten [i] 
Fl-1 

L F ( A ) = [ L ( A )  BA l - i  . . .  BA B] " . 

Fo 

By taking the n th  compound matrix Cn(.) of both sides in the above equation, and using the 
Binet-Cauchy formula for compound matrices [4], it follows 

det LF(A) = C~(LF(A)) 

=C~( [Z(X)  BA I-1 . . .  BA B ] ) C ~  
(8) 

Moreover, it is clear that  

Cn([L(A) BA l-1 . . .  BA B ] ) - - [ p l ( A )  p2(A) . . .  p~(A)], 

where ~ = [n~-nrn), and pI(A),p2(A),... ,p~(A) are scalar polynomials of degree no more than nl. 
For every j -- 1,2~...~, 

where rj  C C nt+l is the vector of the (corresponding) coefficients of pj(A). Hence, for the (nl + 
1) × ~ complex matrix 

P ( L ( A ) , B ) = [ r l  ~'2 . . .  r~],  (9) 

which is known as the Pliicker matrix of system (1) [10,11], it follows 

Cn([L(A) BA t-i . . .  BA B ] ) = [ 1  A A 2 . . .  A~Z]P(L(A) ,B) .  (10) 
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THEOREM 2. The higher-order dynamical system (1) is controllable if and only if the Pliicker 
matrix P(L(A), B) in (9) has full (row) rank, i .e. ,  

rank P(L(A), B) = nl + 1. 

PROOF. Suppose that  system (1) is controllable. Then by applying [9, Theorem 2.1] to the 
first-order system (3), we have that system (1) is controllable if and only if the spectrum of the 
closed loop system (6) can be assigned arbitrarily by suitable choice of F0, F 1 , . . . ,  Fl-1. Hence, 
for every monic scalar polynomial d(A) of degree nl, there exist m x n matrices F0, F 1 , . . . ,  Fl-1 
such that the matrix polynomial LF (A) in (7) satisfies (recall that  det At # 0) 

Hence, equation (8) yields 

det LF(A) = det At d(A). 

I'l I Fl-1 

C~([L(A) BA I-1 . . .  BA B ] ) C ~  " = d e t A , [ 1  

F0 

where Zd is the vector of the (corresponding) coefficients of d(A). Denoting 

Fz-1 

gF = Cn " , 

Fo 

by the above discussion, it follows that 

[1 A a 2 ... A ~ l ] p ( L ( A ) , B ) g F = d e t A l  [1 ), A2 . . .  )~nl ] Zd ' 

)~nl ] Zd, 

for every A E C, which implies that  

P(L(),),  B) gF = det Al Zd. (11) 

system has nl + 1  equations and ~ = (~+~m) unknowns, and since n, m, l  > 1, one can see This 

that  ~ > nl + 1. As a consequence, (11) has solutions for every vector Zd E C nz+l (with its first 
g 

coordinate equal to 1) if and only if the Pliicker matrix P(L(),), B) has full (row) rank. 
Conversely, assume that  rank P(L(A), B) = nl + 1 and that  the dynamical system (1) is not 

controllable. Then by Theorem 1, there is a A0 E C, such that  rank [L(Ao) B]  < n. Moreover, 

rank [L(),o) BAlo -1 . . .  BAo B]  < n, 

which means that  all the n x n minors of the matrix [L(A0) BAl0 -1 . . .  BAo B]  are zero. 
Hence, 

Cn ([L(.~0) g/~/0 - 1  . . .  g)~0 B ] )  = 0, 

and by (10), 

S i n c e ~ > _ n l + l  and [1 

[1 Ao Ao 2 . . .  A~t] P(L(A) ,B)=O.  

Ao Ao 2 . . .  A~z]#0 ,  it is clear that  

rank P(L(A), B) < nl + 1, 

that  is a contradiction. Thus, system (1) is controllable. | 
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Notice that the above method involves no computation of the spectrum or(L) or the matrix A~-1. 
Our result is illustrated in the following example. 

EXAMPLE. Let L(A) be the 2 x 2 matrix polynomial 

A2+I A--I ] 
L(A)=/A S+AIA+Ao= [A_I A S-1 ' 

and. let B 1 = [0 1 IT and B2 = [1 0 ]T. Consider the second-order linear systems 

q(2)(t) ÷ Alq(1)(t) + Aoq(t) = Blu( t )  (12) 

and[ 
q(2) (t) + Alq O) (t) + Aoq(t) = B2u(t), (13) 

where u(t) is the 1 x 1 input vector. For every A E C, 

[ A 2 + l  A-I 01] = 2  . 
rank[L(A) B 1 ] = r a n k  [ A _ I  A S - 1  

On the other hand, for A0 = 1, 

2 0 1 1 rank[L(Ao) B 2 ] = r a n k  0 0 0 = 1 < 2 .  

Thus, by Theorem 1, system (12) is controllable but system (13) is not. Furthermore, we can see 
that 

C2([L(A) BIA ( [ ~ 2 + :  A _ I  0 011) 
B , ] ) = C 2  A S - 1  A 

= [ A 4 - A 2 + 2 A - 2 ,  Aa+A, A 2 + l ,  A2-A,  A - l ,  0] 

and 

C2([L(A) B2A 
1]) 

B2])=C2 A-I A 2 - 1  0 0 

= [ k  4 - A  2 + 2 A - 2 ,  -A 2+A,  -A + 1, --A 3 ~- A, --A 2 + 1, o]. 

As a consequence, 

rank P(L(A), B1) = rank 

1 0 --1 
1 0 - 1  1 

1 0 1 1 0 = 5  
1 0 0 0 
0 0 0 0 

and 

rank P(L(A), B2) = rank 

[--(0 0 
1 -1  1 0 

1 -1  0 0 -1  
0 0 -1  0 
0 0 0 0 

= 4 < 5 ,  

confirming Theorem 2. | 
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