

	Size hole				Area rock per	Pounds of explosive per lin. ft	Pounds of explosive per cu yd of rock' % of hole filled	
	(in.)	(ft)	(sq ft)	hole: (cu yd)	of hole⁺	100	75	50
	15	4×4	16	0.59	0.9	1.52	1.14	0.76
	-	5×5	25	0.93	0.9	0.97	0.73	0.48
		6×6	.36	1.33	0.9	0.68	0.51	0.34
		7×7	49	1.81	0.9	0.50	0.38	0.25
	2	5×5	25	0.93	1.7	1.83	1.37	0.92
		6×6	36	1.33	1.7	1.28	0.96	0.64
ble 1 (Table 12-4, Text)		7×7	49	1.81	1.7	0.94	0.71	0.47
$12^{-4}, 10X()$		8×8	64	2.37	1.7	0.72	0.54	0.36
	3	7×7	49	1.81	3.9	2.15	1.61	1.08
lling and Blasting Data		8×8	64	2.37	3.9	1.65	1.24	0.83
		9×9	81	3.00	3.9	1.30	0.97	0.65
		10×10	100	3.70	3.9	1.05	0.79	0.53
		П×П	121	4.48	3.9	0.87	0.65	0.44
	4	8×8	64	2.37	7.5	3.16	2.37	1.58
		10×10	100	3.70	7.5	2.03	1.52	1.02
		12×12	144	5.30	7.5	1.42	1.06	0.71
		14×14	196	7.25	7.5	1.03	0.77	0.52
		16×16	256	9.50	7.5	0.79	0.59	0.40
	5	12×12	144	5.30	10.9	2.05	1.54	1.02
		14×14	196	7.25	10.9	1.50	1.13	0.75
		16×16	256	9.50	10.9	1.15	0.86	0.58
		18×18	324	12.00	10.9	0.91	0.68	0.46
		20×20	400	14.85	10.9	0.73	0.55	0.37
	6	12×12	144	5.30	15.6	2.94	2.20	1.47
		14×14	196	7.25	15.6	2.05	1.54	1.02
		16×16	256	9.50	15.6	1.64	1.23	0.82
		18×18	324	12.00	15.6	1.30	0.97	0.65
		20×20	400	14.85	15.6	1.05	0.79	0.53
		24×24	576	21.35	15.6	0.73	0.55	0.37
	9	20×20	400	14.85	35.0	2.36	1.77	1.18
		24×24	576	21.35	35.0	1.64	1.23	0.82
		28×28	784	29.00	35.0	1.21	0.91	0.61
		30×30	900	33.30	35.0	1.05	0.79	0.53
		32×32	1,024	37.90	35.0	0.92	0.69	0.46

CHAPTER 12b. DRILLING ROO	CK AND EA	RTH				Slide No. 8
RATES OF			LIN	IG	RO	ENCE 420 ©Assak
	Metamorphi	c rock: Avera				
Table 3 (Table 12-6b, Text)	Drill bits (in.) Type	High silica LA < 35 (Quartzite) {ft)	Medium silica low mica (Schist) (Gneiss) (ft)	letamorphic rock Medium silica high mica (Schist) (Gneiss) (ft)	k silica LA < 25 (Metala-) (tite) (ft)	Low silica LA > 45 (Marble) (ft)
2	3 B 3 STD 3 ¹ / ₂ STD 3 ¹ / ₂ HD 3 ¹ / ₂ B 4 B	200 NR NR 450 600	1.200 800 1.300 1,800 3,000 3,300	1.500 900 1.700 2.200 3.500 3.800	800 400 850 1.200 2.000 2.300	1.300 850 1.600 2.100 3.300 3.700
	Rotary bits 5 ST 5 ST 6 ST 6 ST 6 ST 6 ST 6 ST 6 ST 6 ST	NR NR NR	NR NR NR NR	NR NR NR 750	NR NR NR NR	NR 1.200 2.000 4.500
	$\frac{6\frac{3}{2}}{7\frac{8}{5}} \frac{CB}{CB}$ $\frac{7\frac{8}{5}}{2} \frac{CB}{B}$ $\frac{6\frac{1}{2}}{2} \frac{B}{Drill}$	NR NR 500	3,700 5,500 2,700	4,200 6,500 3,200	1,200 2,200 1,500	9,000 13,000 4,500
	steel Shanks Couplings Steel 10 ft Steel 12 ft 5 in. 20 ft	5.000 900 1,700 3,000 50,000 carbide button, HD	5,700 1,000 2,100 3,300 90,000 heavy.duty.ST =	6,200 1,200 2,300 3,800 100,000 steel tooth	5.550 750 1.500 2.800 85,000	5,800 800 1,600 3,000 175,000

DRILLING PRODUCTION ESTIMATE

To begin a drilling production estimate it is first necessary to make an assumption about the type of equipment that will be used. Tables 12-5 & 12-6 provide information to guide that first decision.

Contra Co	CHAPTER 12b. DRILLING ROCK	AND EARTH	Slide No. 94
- AL	HARDNE	SS	ENCE 420 ©Assakkaf
			Scratch Test
	Diamond	10.0	
1	Schist	5.0	Knife
	Granite	4.0	Knife
	Limestone	3.0	Copper coin
	Potash	2.0	Fingernail
	Gypsum	1.5	Fingernail
Mc Scaw			

	in a	HAPTER 12b. DRILLING ROCK AN	ENCE 420 Ø	No. 95 ©Assakkaf						
	Hardness affects drilling speed.									
		HARDNESS	DRILLING SPEED							
		1-2	FAST							
		3-4	FAST - MEDIUM							
		5	MEDIUM							
		6-7	SLOW - MEDIUM							
		8-9	SLOW							
Mc			<u> </u>							

Service of	CHAPTER 12b. DRILLING ROCK AND EARTH Slide No. 102 PERCUSSION DRILLING
	Hardness
	Quartzite 7.0
	Trap Rock 6.0
	Schist 5.0
	Granite 4.0
	Dolomite 3.5
	Limestone 3.0
Me	Galena 2.5

		LINES						C
DR		NG PF	ROL	DUC	TIC	JN		
	Table ?	Drilling F	Produc	tion Re	ates (T	ahle 1	12_5 Та	vt)
		Dinnig I	rouuc	uon Ka	1105 (1	aut	12-5, 10	л
	-	Ref Shell	146.00 11.00	n isadaal	Estir	nated	NOAR DESERTION	
		ini salisterini Sandina Mate		irect ation rate	produc	tion rate	- Finia and mining ann	
	Bit size	Drill type Compressed air	Granite (ft/hr)	Dolomite (ft/hr)	Granite (ft/hr)	Dolomite (ft/hr)	nitien en o	
		Rotary-percussion	65	125	35	55	fichese hiph	
	3 ¹ / ₂ 3 ¹ / ₂	750 cfm @ 100 psi 900 cfm @ 100 psi	85	175	40	65		
	- 2	Downhole drill	Sector 10				DE CITECT O	
	4 1/2	600 cfm @ 250 psi	70	110	45	75	out logathe	
	$6\frac{1}{2}$	900 cfm @ 350 psi	100	185	65	90	at give the	
	6 1	Rotary 30,000 pulldown	· NR	100	NR	65	le frens survitay	
	$6\frac{1}{4}$ $6\frac{3}{4}$	40,000 pulldown	75	120	30	75	(increasing	
	71	50,000 pulldown	95	150	45	85	ii lii galeen	
		recommended.	-				noininos se	
	INR-INO	ted productions are for ideal		hav do account for	all delaws inclu	dine blastine	11500000000000000000000000000000000000	

Sector of	CHAPTER 12b. DRILLING ROCK AND EARTH Slide No. 114 STEP 4 CHANGE STEEL									
	Steel, approximate weights:									
	SIZE	LENGTH	WEIGHT							
	INCHES	FEET	POUNDS							
	1.5	10	53							
	1.5	12	64							
	1.75	10	60							
	1.75	12	71							
Mc			- 							

STEP 8 CHANGE BIT

The time allowance for replacement is a factor of both the actual *time to remove* and replace, and the *frequency* of such changes. Table 12- 6 provides frequency information.

DRILLING F		~ ~				
	Igneous rock	: Average life	e, in feet, for dril I	l bits and ste gneous rock	el	the second second
ble 4 (Table 12-6a, Text)	Drill bits (in.) Type	High silica LA < 20 (Rhyolite) (ft)	High silica 20 < LA < 50 (Granite) (ft)	Medium silica LA < 50 (Granite) (ft)	Low silica LA < 20 (Basalt) (ft)	Low silica LA > 20 (Diabase) (ft)
	3 B 3 STD	250 NR	500 NR	750 NR	750 NR	1,000 750
	31 STD	NR	NR	NR	750	1,500
	31/2 HD	200	575	1,000	1,400	2,000
	3 ¹ / ₂ B , 4 B	550 750	1,200 1,500	2,500	2,700	3,200
	Rotary bits			2,800	3,000	3,500
	5 ST 5% ST	NR	NR	NR	NR	NR
	5% ST 61 ST	NR NR	NR NR	NR	NR NR	NR
	61 ST	NR	NR	NR	NR	NR 800
	63 CB	NR	NR	1.500	2.000	4.000
	7 ⁷ / ₈ CB Down hole bits	NR	1,700	2,400	3,500	6,000
	61 B	500	1,000	1.800	2.200	3,000
	Drill steel					
	Shanks	2,500	4,500	5,800	5,850	6,000
	Couplings	700	700	800	950	1,100
	Steel 10 ft Steel 12 ft	1,450 2.200	1,500 2,600	1,600 3,000	1,650 3,500	2,200 5,000
	5 in. 20 ft	25,000	52,000	60,000	75.000	100,000

CHAPTER 12b. DRILLING ROCK AND EARTH

Example 1

A project utilizing experienced drillers will require the drilling and blasting of high silica, fine-grained sandstone rock. From field drilling tests it was determined that a direct drilling rate of 120 ft per hour could be achieved with a 3 1/2 HD bit on a rotary percussion drill @ 100 psi. The drills to be used take 10-ft steel. The blasting pattern will be a 10 X 10-ft grid with 2 ft of sub-drilling required. On the average the specified finish grade is 16 ft below the existing ground surface. Determine the drilling production.

and a state	CHAPTER 12b. DRILLING ROC	K AND EARTH	Slide No. 129
. N.	Example 1 (cont'd)	ENCE 420 ©Assakkaf
	Example 1 (cont a)	
	Using the format of	Figure 4.	
	(1) Depth of hole	U	(b) 18-ft drill (16 + 2)
		2.00 ft/min	$(120 \text{ ft} \div 60)$
	(2) renormation	2.00 10 1111	(12010 000)
1.08	(3) Drilling Time:	9.00 min	(18 ft ÷ 2 ft/min)
		0.00 min	(d<20 ft)
	· · · ·	0.10 min	· · · ·
	(6) Move to Next Hole	0.45 min	$(10 \text{ ft} \div 0.25 \text{ mph})$
	(7) Align Steel:	1.00 min	· · · · ·
	(8) Change Bit:	0.08 min	(4 X 18/850)
	(9) Total Time	10.63 min	×
	Note: 950	a abtained from "	Table 6
	<u>Note: 850 wa</u>	s obtained from	<u>1 able 5</u>
Grawn			

Example 1 (
	Sedimentary	rock: Average	life, in feet, fo	r drill bits and Sedimentary	d steel	all.
	Drill bits (in.) Type	High silica fine grain (Sandstone) (ft)	Medium silica coarse grain (Sandstone) (ft)	Low silica fine grain (Dolomite) (ft)	Low silica fine-med. grain (Shale) (ft)	Low silica coarse grain (Conglomerate) (ft)
Table 5 (Table 12-6c, Text)	3 B 3 STD 3 ¹ / ₂ STD	800 NR NR	1,200 850 1,500	1,300 900 1,800	2,000 1,500 3,000	1,800 1,200 2,500
	31 HD	850	2,000	2,200	3,500	3,000
	3 <u>1</u> B	2,000	3,100	3,500	4,500	4,000
	4 B Rotary bits	2,500	3,500	2,000	5,000	4,800
	5 ST	NR	1,000	NR	8,000	6.000
	57 ST	NR	2,500	NR	15,000	13,000
	6 <u>1</u> ST	NR	4,000	4,000	18,000	14,000
	63 ST	500	6,000	8,000	20,000	15,000
	6 ³ / ₄ CB	2,000	8,000	10,000	25,000	20,000
	7 ⁷ ₈ CB Down hole bits 6 ¹ / ₃ B	3,000	10,000 3,500	15,000	25,000	20,000
	Drill steel	2,500	5,500	5,500	7,500	6,000
	Shanks Couplings Steel 10 ft	5,000 1,000 2,000	5,500 1,200 2,300	6,000 1,500 2,500	7,000 2,000 4,000	6,500 1,750 3,500
	Steel 12 ft 5 in. 20 ft	4,500 65,000	5,000 250,000	6,000 200,000	7,500 300,000	3,500 7,000 250,000

	CHAPTER 12b. DRILLING ROCK AND EARTH		Slide No. 131
A AN	Example 1 (cont?	'd)	ENCE 420 ©Assakkaf
	(10) Operating Pate:	1.69 ft/min	(18 + 10.62)
12	(10) Operating Rate:	1.09 11/11111	$(18 \div 10.63)$
	(11) Production Efficiency.:	50 min/hr	
	(12) Hourly Production	84.5 ft/hr	(50×1.55)

