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Introduction
Turbulent flow governed by Navier-Stokes equation. Why modelling?

* DNS: Direct Numerical Simulation
- Solution of the 3D time dependent Navier-Stokes equations
- Computational effort scales rapidly with Reynolds number
- Used for low Reynolds number generic flows
- Gives detailed knowledge about turbulence
- Not (yet?) practically useful for “CFD applications”

» Computational effort for wall bounded turbulence
- Number of grid points
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- Number of time steps
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- Computational effort
33/10 3.3
CPU ~ N, qesNat ~ REP ~Re}

- Re, ~10% can be simulated (N ~ 108, one CPU-year on a PC).

nodes
Full scale airplane with Re, ~ 108 requires N~ 1018 and 1013

times more CPU. Can be done in year 2070 if the computers con-
tinue to develop according to Moorse’s law (doubled every 18
month).

Thus, turbulent flows need to be modelled.



Turbulence modelling

Reynolds averaged Navier-Stokes equations (RANS)

* Navier-Stokes equations (0, f denote instantaneous values)
- Conservation of mass

8ui 0 L
o (1)
- Conservation of momentum
o, o, ol
_|+[]k_|:_1'@+i V_I (2)
ot OXy poxX; OX{ OX

- Conservation of a passive scalar quantity 0

66, ab _ o (Daé)
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* Reynolds decomposition
0,(x, t) = U;(X) +u;(x, t)

where U;(x) = 0;(x,t) and u;(x,t) = 0

 The “mean” is time average, ensemble average or averaging in homo-
geneous directions. U;(x) may actually vary in time (U;(x, t)) with a
time scale much longer than the turbulent time scale.

» Take the mean of the Navier-Stokes equations -> RANS

ou; 0
- (4)
DU. ou. __
1 _ _1@ +i _I_u.uk (5)
Dt pox;  ox \ ox, !
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» Reynolds stresses, u;u; (and scalar flux vector u;0)
- Appears because of the non-linear term
- Not “small”
- Significant effects on the flow
- Needs to be modelled in terms of mean flow quantities
- Reduces the problem to steady (or slowly varying)
- 2D assumptions possible

The aim is to construct a closed system of equations for the one-point

quantities (U;, P, uiuj).
* Only one governing lengthscale

» Spectra are assumed to be self-similar

Equation for the Reynolds stress tensor, lTUJ (and for @)

» Can be derived from the Navier-Stokes equations

« Contains, however, higher order moments like u|“—1“k

» Equations for Uju; Uy contain even higher moments: the closure problem

* Modelling needed at some stage.



Equation for the Reynolds stress tensor, u J

Equation for the fluctuating velocity u; is derived by subtracting the RANS
equation (5) from the Navier-Stokes equation (2)

ou; AU +uy) au,

ot~ ot ot (7
Then, the equation for u; U; is derived by the following
8u|uJ auj Ou; o
B 6t_u'at ujﬁ_”' (8)
The equation for Ujy; is then derived by taking the mean of (8)
Du;y;
B - Bt i+ Oy ©)
where
* Production, transfers energi from mean flow to fluctuations
@ _8Uj __0U;
ij = VY uka % —U; “kaxk (10)
» Dissipation, transfers energy from fluctuations to heat
5, i ou; au
“ij T 8xkaxk (11)

* Pressure-strain, redistributes energy among the components (IT;; = 0)

.. = _+_
H p ax ax (12)

 Diffusion, redistributes fluctuations in space

_ 6u u.
O = -2 | i (u P8+ Uip8;)) —v J (13)
1] 5Xk i j jk ik Xk

The equation for the turbulent kinetic energy, K = uiui/2, is derived by tak-
ing half of the trace of the equation (9)
DK

D—t—q) e+ D (14)



where

P= _in (15)
auiaui (16)
e = y —
OX} OXy
o o0rl 1 oK
D = an[Zululuk+ up— vaxlj (17)

Example: Homogeneous shear flow

=5, V=W=0D5=D=0
oy
Gives equation for K
oK _ —
a5 uvS —¢
and equations for the Reynolds stresses
ou2
o2 _
5t - Hp—ep
ow2 _
at - Haz—2g3
ouv _
Zr - VSt ey

Note: all energy production in the u2 component and redistributed to the
other components by H to an asymptotic state (Tavoularis & Corrsin,
1981) where

) 2 2
u< Vv w _ SK
T OSSE< 0192—K 028f<_ 0.15 =6
which give
P_ WS _ LWSK _ 5 015x6 = 18
€ € 2K ¢



Eddy-viscosity models (EVM)
Boussinesq (1877) made the assumption

This was later generalized to the eddy-viscosity, or Boussinesq, assump-
tion

(18)

where the symmetric and antisymmetric parts of the velocity gradient are

2 axj OX; ij— 2 axj OX;

and the Reynolds stress anisotropy

u .
_ 25
a; = K 38” (19)
The eddy-viscosity assumption may be written
2v-|-

The scalar flux is modelled accordingly

00
_DTa_xi (21)
where the eddy diffusivity D may be related to the eddy viscosity by a tur-
bulent Schmidt number (of the order of unity).

e

D = — (22)
The RANS equation (5) can now be rewritten as

DU.

i _E(E 2 ) 9 y
where the turbulent kinetic energy, K, may be absorbed into an effective
pressure.



The following observations can be made:

Zero strain (S;; = 0) gives zero anisotropy (aij = 0). History effects are
not well described.

S;; and a;; are not in general aligned and the deviation is large. Thus,
the eddy-viscosity relation is only valid for one component in thin shear
layers (as originally proposed by Boussinesq). This is also the case for
the scalar flux that is not aligned with the gradient.

S;; Is invariant of rotation, which will only enter into Q;:. Since 3
depends on S;; but not on Q.. no rotational effects will enter into ;-
Also the K equation is unaffected by rotation. So, rotation effects are
not well described by eddy-viscosity models.

The eddy viscosity is related to the large scale (most energetic) turbulent
scales as

vp~V-L (24)

where V and L are the velocity and length scales respectivelly.

Classification of eddy-viscosity models:

Algebraic models or zero-equation models:

- V and L related to mean flow field and global geometry (wall dis-
tance, wake thickness, et.c.)

- Works well for attached boundary layers and other thin shear layers

- Not very general

One-equation models:

- One transport equation for K or v.

- Additional information from global conditions (typically wall distance)

- Works well for attached boundary layers and other thin shear layers

- Not very general, but more than algebraic models

- Example: Spalart-Allmaras (1992) (a reasonable and robust model
for external aerodynamics)



Two-equation models:

Two transport equations for the turbulence scales, typically K—¢ or
K-w.

Completely determined in terms of local quantities (except near-wall
corrections which may be dependent on wall distance)

Works well for attached boundary layers

Somewhat more general than algebraic and one-equation models.
Model transport equations loosely connected to the exact equations.
Examples:

Standard K —& model (Launder & Spalding 1974)

Wilcox (1988, ...) K—®» models

Menter (1994) SST K —» model (performing reasonable well also in
separated flows)



Zero-equation models
Constant turbulent viscosity, vy (and diffusivity D)

» [Fair assumption only in free shear flows

- elsewhere, no general constant v, can be found.

Mixing length models

ouU
V~Ima_y and L~
which gives:
— 12|0U =12 ouU|oU
N2 Ima_y or —uv = |s 3y |3y

* Free shear flows: Constant Im/8 is a common choice. EX:
- plane jet: 1,/6~0.9
- round jet: | /8 ~0.075
- plane wake: | /5~ 0.16

(25)

 Wall-bounded flows: | chosen as a ramp function with « = 0.4 and

A =01
I, A |, = Ad
&

I

/7 |
NS |
I

I

1

A/K y/d

» Lack of generality!

« Example:

- Baldwin-Lomax (1978) (rather accurate for attached boundary lay-

ers)
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One-equation models

The basic idea is to decouple the turbulent velocity scale, V, from the
mean strain field and determine it from a transport equation. If the trans-
port equation for the turbulent kinetic energy, K, is used the velocity scale
may be derived from that as V ~ /K (Kolmogorov & Pranditl)

vr = cllwﬁiL (26)
where c'ILl is an empirical constant and the equation for K (14) is
DK
—_ = —c + 27
Dt P—-ec+ D (27)
where the terms are modelled as
K3/2
©=

with the model coefficients oy = 1.0 and C'MCD = 0.09

The length scale, L, needs to be determined. This is a problem, as with
zero-equation models.

Assume local equilibrium ®P=~ ¢ and thin shear layers:

_ Y
- . K3/2 5 («/RL)B VT
eE= T~ L4 D 4.3

2 3
2 CpVv C
P=g => (8—U) = LS vy = _“L2|@|
oy L4c§ Cp oy

One-equation models when P~ ¢ is a mixing length model with

3\ 1/4
C
|, = (—EJ L
D
Or, |, hypothesis only suitable when ®= ¢. Fair in boundary layers.
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Spalart & Allmaras one-equation model.

One attempt to try to avoid the problem with the length scale is to form a
transport equation for vy directly. This has been proposed by Spalart & All-
maras (1994). The model reads (somewhat simplified)

Dv
_T_-p
Dt

Ve~ Ey. + (DVT (28)
The production of v is modelled as

(PVT = Cp1Svy
where S is the absolute value of the vorticity (reduces to |[0U/dy| in thin
shear layers). ¢, ; is a model constant.

The dissipation of v; is modelled as

_ V12
gvT - CwlfW(F)

where ¢, is a constant and f,, is a complex function taking care of the
outer part of the boundary layer. Here, a length scale is actually introduced
with d, which is the wall distance.

The Spalart & Allmaras model consists of a lot of different empirical correc-
tions and has been carefully calibrated for different flows and performs
well in many different cases.

12



Two-equation models (eddy viscosity)
» Eddy-viscosity assumption

2V
_ T
%j T TR (29)
Remember:;
u.u. oU. oU. oU. oU.
a..EJ—gS..,S..El_I+_J ’Q..El_l—_J
1] K 311 2 axj axi ] 2 axj axi

* Model equations (standard K —& model):
DK

— = P—e+D

Dt

De (30)
a = @8_88-}-@8

Modelling and calibration of the different terms

* The eddy-viscosity relation:
The standard form is derived from the natural velocity and length scales,
V ~ /K and L ~ K3/2/¢, which gives

vy = Cu? (31)
In thin shear flows P~ ¢, which gives
_vY
P_ . _ oy _ KoU __ KoU _ 1
—=1= = —Appm e T == = ——
€ € e oy gdy —aqp
used in the eddy-viscosity relations (29, 31)
VToU KoU u 2
-y = —— =06 —— = ——=>C = a
12— Koy Medy —ap, wo 12

In thin shear layers (e.g. boundary layers) —a,, ~ 0.3 (Bradshaw hypothe-
sis), which gives CILL = 0.09

* Production of K, ®:
The exact form reduces to the modelled by applying the eddy-viscosity
relation (29)

ou,
, modelled: P = 2v1S;:S

exact;: @ = _uiuka_xk iiSii

13



* Destruction terms ¢ and ¢_:

¢ in the K equation is modelled as a transport equation. The equation for
¢ Is derived from the Navier-Stokes equation and the production, destruc-
tion and diffusion terms all need modelling.

The destruction term in the ¢ equation, ¢_, is modelled by considering
homogeneous decaying turbulence

dK _ de

a - —€, a - _88
The assumption is that the decay rates of K and ¢ should be self similar
and differ by a constant factor

de

—/€

dt _ _ _ g2
dK/K - C82 => &, = CaZR
dt

The evolution of K can then be derived as

-N
K(t) _ ( Soj 1
AU - l1+c,-1)2| n=

and C_, is calibrated from experiments. C_, can also be derived from the-
oretical analyses of the energy spectra. “Standard” value C_, = 1.92.

* Production of ¢, ®,:
Mainly dimensional arguments (weak coupling to the exact term) gives

_ €
P, = CSlRQ’
C., calibrated from homogeneous (D = D, = 0) shear flow
dK _
E - QD—S
S , (32)
¢=c tp-c b

Dt elK e2K
For long times K/¢ approaches a constant, thus, from (32) it can be
derived that

d (lﬂ 1dK KDeg P
—_ -] = ee——— - = — — — + — =
dt\e edt 2Dt (Cep= D3+ (€D =0

and from experiment (Tavoularis & Corrsin, 1981) ®/¢ ~ 1.8. With

ng = 1.92 one can derive Cglz 1.5. “Standard” value C81 = 144.

14



« Diffusion of K and ¢, @ and D,
The simplest assumption is to assume gradient diffusion

_ 0 VT | oK _ @ V1) e

The viscous diffusion is present also in the exact equations. The turbulent
diffusion has to be modelled, and the gradient diffusion is not a very good
approximation, but has been found to be a reasonable approximaion in
thin shear flows. This will be discussed lated.

The Schmidt number in the K equation should be close to unity, 5, = 1.0.

The Schmidt number in the ¢ equation, o, is calibrated from the log-layer
in boundary layers. The log-law

u 1, Yu, du _ Ug

— =In—+C=>— = —
u K v dy «xy

T

The RANS equation (23) in x-direction assuming 6/0t = 8/0x =V =0
and constant P is

integrating once give

and by applying the log law and neglecting v

K2U, _
e xy T (33)
P~ ¢ is assumed in the log law, which gives
_ o (0UN2 | KZ(Up?
= o= w3 - L) 2
Combining (33) and (34) gives the log-law relations
u2 u3
K= ——ande = = (35)

BT

D = 0 since K is constant, and the equation for K is fulfilled by ® = «.

15



The equation for ¢ reads

0= Cap-Cuty ol 1%
and by pluggin in @ = ¢ and using (35) gives
_ K2
® (C,-C, Jc:

Using the “standard” values and k = 0.41 gives ¢, = 1.2. The standard
value is 6, = 1.3.

(¢

Summary of the standard eddy-viscosity K—¢ model

DK 0 VT oK

De _ 0 VT |0e (36)
bt = (CaP~Cootlg * 55 KVJ’ Jaxk}
K2
P = 2v1S;;S;i vr = CM?

Model coefficients (standard values):

C, =009,Cy,y =144,C, = 192, 0 = 10,0, = 1.3

The eddy-viscosity K—o» model
Kolmogorov (1942), Wilcox (80:s and 90:s)

o Is intepreted as the inverse time scale of the large eddies, and the K- o
model reads
DK 0 VT oK

Do a2, 0 VT | 0w (37)
bt - 2%%ij%i—he ’La_xiﬂV Jaxk}

eIX

16



The model coefficients proposed by Wilcox (1988) are

C, = 0.09, a = 5/9~056, p = 0075, o = 20,6, = 20

The equation for ® may also be derived from the ¢ equation using the
variable transformation o = ‘C’/CMK

Do _ B(_SK) - i(l&g_iD_ — (38)
Dt ~ Dt\C, C,\KDt g2Dt/ ~

This transformation relates the o and B coefficientsto C_, and C_, as

_ _ _ B _
C81 = 1+a = 1.56 and C((32 = 1+C_ = 1.83
il

The turbulent diffusion term from the transformed K —¢ model will, how-
ever, contain additional terms

o[ Vten | o o (1 1)8K 2VT 6K b
= | —— |+ =" —- = +
De 8xk{cgaxk} Kaxk{VT o, og axk} Ko, 0%, 0%, (39)

which is the major difference between the K—-¢ and K —®» models. Also
the coefficients are differently calibrated. Notably, is o, = 2.0 compared
with 6, = 1.0 in the K—¢ model.

One serious problem with the K- model is that the model is (unphysi-
cally) sensitive for the free stream conditions on K and «. This can be
avoided by carefully calibration of the Schmidt numbers and by introducing
a “cross diffusion term” (the last term in eq. 39). Such modifications have
been proposed by Kok (1999) and Menter (1993).

Boundary conditions

The K —¢ model cannot be applied all the way down to the wall. Since
K — 0 and ¢ is finite at the wall, the ¢ equation becomes singular at the
wall because of the ¢/K term. There are two different solutions of this

» Log-law boundary conditions: The boundary condition is set in the log
layer away from the wall according to the log-law relations. The prob-
lem is that the log-law is only strictly valid in equilibrium boundary layers
and breaks down close to separation and reattachment points. How-
ever, the approach still works reasonable well also in separated flows.

» Near-wall corrections (or low-Reynolds number corrections): The K —¢
m+odel equations are modified with “wall damping functions” based on
y"=yu./v, y* =y /K/v or Re; =K?/ve active in the inner part up to

17



y* ~50. The requirement on the resolution of the computational grid
close to the wall is high. Ay* ~ 1 for the first grid points at the wall. A lot
of variant are availabe in the litterature.
The K- o model can be computed down to the wall and gives reasonable
mean velocity profiles without any modifications. The turbulence proper-
ties in the viscous sub-layer is, however, not correctly captured. The K-
model can also be used together with wall function boundary conditions.

Realizability considerations for two-equation eddy-viscosity models

A physical requirement on the Reynolds stresses is that the normal com-
ponents (u2, v2 and w2) must be positive in all possible coordinate sys-
tems. This means that the Reynolds stress tensor must be positive definite
(all eigenvalues must be positive). Translated to the Reynolds stress
anisotropy, this means that

2
_c<
3_a

A
wWiph

(no summation over Greek indices) and
|aotl3’ <1 (a#pB)
The linear eddy-viscosity relation gives

_ K
aj = 205 Si
and it is easily understood that the anisotropy can reach large values that
are physically unrealizable if S is large. In e.g. shear flows the a,, com-

ponent becomes

ap = —ZCMG, G = =-——
which will give unrealizable a,, for ¢ >1/(2C )z 5.6.

The production term in the eddy-viscosity assumption is @ = 2vS;. S
which is proportional to the strain rate squared, while the exact pro uctlon
is @ = —Ka;;S;;, linear in S;;. The eddy-viscosity model, thus, gives exces-
sive production in flows with strong strain rate.

In the Menter K—®» SST model (Menter 1993), the C  coefficient is limited
for high shear rates (or for /¢ > 1) in order to limit a,, to 0.3 according to
the Bradshaw assumption, preserving realizable values for a,,. Moreover,
it has been observed that in adverse pressure gradient where ®@/¢ > 1 the
limitation of the a,, will be active, which will significantly improve the pre-
diction of adverse pressure gradient flows including flow separation.

18



Differential Reynolds stress models (DRSM)

The exact equation for the Reynolds stress tensor is derived in (9), and
reads

Du.u:
') - . . "
Dt = By + I+ Dy (40)

De _ €
where the production term is exact and needs no further modelling
B = Uitk TVi%ax, - 8(§Sij 8 S * Sik@kj — &k * Qikakj)

The production term is dependent on the strain- and rotation rate tensors
(S;; and Q;;). The dependency on Q.: clearly improves the prediction of
the influence of rotation. Moreover, thé production is linearly dependent on
the strain rate, and, thus the excessive production seen in eddy-viscosity
models are here avoided.

Modelling of the different terms

- Rotta (1951)
- LRR: Launder, Reece and Rodi (1975)
- SSG: Sarkar, Speziale and Gatski (1991)

» The dissipation rate tensor, ij
Introduce the dissipation rate anisotropy
_Bij 2
%= % 30
The dissipation rate ¢ =¢;;/2 and is derived by a transport equation for ¢,
very similar to the ¢ equation in the K —e model. Alternativelly, an ® equa-
tion, similar to that in the K—® model, can be used.

(41)

The simplest model is that the dissipation rate is isotropic, or &ij = 0.

e The pressure strain rate term, Hij
The exact form of Hij IS given by

ou. Ou;
II.. = l'p ! + _

A poisson equation for the pressure fluctuation is derived by taking the
divergence of the equation for the velocity fluctuations. This equation may

19



be formally solved giving the principal form of the model for IT;;. This glves
that the Pressure strain term is divided into a slow and a rapldJ part, H
and HJ and modelled separatley. In the LRR model, the slow part as
proposed by Rotta (1951) was modelled as

(s) _
Hij ClaaIJ
where the Rotta constant ¢, = 1.5-1.8. The rapid part proposed by LRR
9c,+6
(ry _ 4 2 2
e @t Qidy)

with the constant Cy = 04-0.6.

In later models, the connection to the exact Poisson equation is weaker,
and the pressure strain term is lumped together with the dissipation rate
anisotropy as

IT..
Cii_g . = Ks. K )
ey = Gy 555 5y

¢ Turbulent diffusion terms, (DJ and @O, :

In thin shear layers the vertical fluctuatlons v2 are most responsible for the
turbulent mixing. A model that better responds to this, compared to the
gradient diffusion, is the generalized gradient diffusion model (GGD) pro-
posed by Daly & Harlow (1970)

_ 0 K— OUgly

_ @ ( ~ E—>88
@’3_6_xk_ v, —C.=~uu ax}

In thin shear layers where 0/0y is dominating these will reduce to

D, = 2[(v-c SR)%]

Standar values are C, = 0.25 and C. = 0.15.
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Explicit algebraic Reynolds stress models (EARSM)
The starting point is the DRSM

Du.u.
_ 1] o= P —
_ e
D—t—@g - (Csl@_CSZS)R

The equation for u;u; is rewritten in terms of the anisotropy and K

)

bayj _ D Uit 2, | 1PUiYj UiYiDK _
K 3 K Dt k2 Dt

DK _ 1Puu; 1

ot = > o - 3 Bi—sit D)
which gives
KPaji (a 2 \(P Bij —&ij + j;
Bt = ~(ay+ 33) (5 -1+ 2= (42)

The model for IT;; that can be considered in EARSMs must be “quasi™lin-
ear in aj , that is {ensorlally linear in aj (e.g. the LRR model)

Bij o - C+CT) +C,S 3(s+s 25)43
— - "“‘ ajj ik Skj + Sikkj ~ 33k15ki%j) (43)

(aIkaj Qiayj)

In this equation, and in the following concerning EARSM, the S and Q
are normalized by the turbulent time scale K/¢

C_ak(Yi Yy o ak(Yi Y,
1] 2¢ 8X 8Xi I

The resulting equation for 3j;

@(a)

15(%
Dt 'J

Age A3+A (P)a +A S (aikaj+Qikakj) (44)

2
+ Az(aikskj * S~ §aklslk6ij>

and the A coefficients are directly related to the C coefficients.
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Weak equilibrium condition

So far, we have only rewritten the equation for u;u; as an equation for 3
and an equation for K. The major assumption in obtaining an algebraic
relation for a;; is the so called weak equilibrium assumption. That is that
the anisotropy is assumed to be constant in time and space. Thus, the
l.h.s. in (44) vanishes, resulting in

2
Na = —A18+(aQ—Qa)—A2(aS+Sa—§{a8}l) (45)
where
P
N = A3+A4E (46)

Here, the bold matrix notation is used where e.g. aQ=a; Q,:, {aS}

denotes the trace of aS ({aS}=4a,S, ) and I = Sij is the identity matrix.

The weak equilibrium assumption is:
» exact in steady homogeneous flows (homogeneous shear flows)
» good approximation in fully developed shear flows

» good approximation even in flows with (slowly) varying 3 with high S;.
and Qij since (44) is then dominating by the source terms on the r.h.s.

* bad approximation in flows with low S;; and Qij since (44) is then dom-
inating by the transport terms on the I.Hs.

Formal solution of (44) => EARSM

The algebraic relation (44) (ARSM) is implicit in a;; and also non-linear in

aj since the ratio P/e={aS}. .

The first step is to solve the tensor equation by considering the ®/¢ ratio
(or N) as unknown. The non-linearity will be consider later.

The tensor relation is, thus, that a = a(S, Q). The most general expres-
sion consists of ten tensorially independent terms

10 _
a= Y BT (47)

=1
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where

D _g 7@ _ 32—%|ISI
13 = QZ_%||Q| 7™ = sa-as
T35 Z 520 _ 052 T _ SQ2+QZS—§|VI (48)
(7 _ Szgz+9252_§v| T® = 5052_5205

19 = asa2_a2sa 119 = 9520202520
The B; coefficients may be functions of the five independent invariants

llg = {S2}, Il = {Q2}, 1l = {S3}, IV = {SQ?},V = {S20?} (49)

and are determined by inserting the ansatz (47) in the ARSM equation (45)
and solving the resulting equation system for the B; coefficients.

The Wallin & Johansson model in 2D flows

In the model proposed by Wallin & Johansson (2000), the A, coefficient is
choosen to be 0 in (45), which corresponds to the specific choice of

C, = 2inthe pressure strain rate model (43). With A, = 0 only five of the
ten terms in (48) will remain, and the algebra is, thus, significantly
reduced.

The algebra is rather complex for 3D mean flows, and, thus, the method
will here be described in 2D mean flows, where the number of indepen-
dent te(rir)sor groups in general are three, but with A, = 0 they reduces to
two: T""" and T" . Also only two independent invariants remain, Il and
Il . The Wallin & Johansson model is also build on the LRR model,
slightly recalibrated, with ¢, = 1.8 and ¢, = 5/9~ 0.56, which gives the
following model coefficients

_ 4 _ 6 _ _9 _9
AO = —é, Al = 5, A2 = O, A3 = Z(Cl—l), A4 = Z]-
The implicit algebraic relation (45) becomes
Na = —gS +(aQQ—Qa) (50)
and with the ansatz (47)
a = B1S+B,4(SQ-QS) (51)
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it becomes

N(B4S +B4(SQ-QS)) = (52)

_6

5

In 2D mean flows, the term

S +B1(SQ-QS) +B,4(SQ?-2QSQ + Q?S)

SQ2-2Q8Q +0?S = 21,5
and (52) becomes

N(B1S +B4(SQ-QS)) = —gS+B1(SQ—QS)+2B4IIQS (53)
sorting equal tensor terms gives
NB, = —2+ 2,11
1 5 4770 => @, = NB, = 6_ N (54)
_ 1 4 5N2-2

and the solution for 3 Is given with (54) in (52) as

6(NS +SQ —QS)

a=— (55)
2
S N2-2llg,
The consistency condition
The production to dissipation ratio, /¢, can be written as
QD : Ka”S'JI B B
Using the solution (52) for the anisotropy this gives that
P _ 2 20\ —
= T ByiST +B4({SQS;—{QS%}) = Byllg (57)

since {SQS} = {QS2} = 0. Using the solution for B, in (54) and the rela-
tion for N in (46)

4 6 Nllg
-(N-A,)) = =————— 58
and rearranged
3 o (27 _
N —AgN —(EIIS+2IIQ)N+2A3IIQ =0 (59)
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Closed solutions can be obtained from cubic equations

A
3
= +(Py+ PHY3+ (P - [PY3 P,>0

N = A3 o e . 3
+ —
3 (PT—P,)~""cos 3acos A/ﬁ P,<0 (60)
1

A 2 3
3,9 2 A 9 2
—= - p2 :
P17 [27 *20''s 3" jA3 P2 = Pl_(g "10''s*3'lo

Effective Cu

The first term in the solution (51) corresponds to the eddy-viscosity
assumption where

ff P13 N
Cu T2 _5N2 2|| (61)

here, the C Is not a constant, thus the C and contain rotational effects
as well as tHe possibility to adjust to the Iocal flow conditions.

The boundary layer log region
Since ® = ¢, N can be determined directly as

P 9( Q’) 9cy
= + —_ = - - 14+—-| = — =
N = Ag+As— = 2{c — 1+ 5 = 405 (62)
In parallell flows
_ KdU)
g = -l = (de (63)
and the @/¢ ratio is derived to
P _ 6 Nlis N2 KdU
— => = ~ = e =
;= Pulls = g o = 1=y = gr—~574=> 20 = 339
S — -2
5
also
6 N 6 1 eff
= ——~-0.174, = ——~-0.043, C~ = 0.087.
1 5N2-211, 4 5N2-211, a
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The Reynolds stress anisotropy can now be derived

190 899 8yp a3z O 1KdU

here 6 ==——

DNS —0.29 0.34 —0.26 —0.08 1.65 ' W 2% dy
WJ -0.300.25-025 0 169

The a;, and a,, anisotropies and ¢ are well predicted, but the a,;, and
as3 components are not that well. The reason is that ¢, = 5/9 which
gives that az5 = 0 in thin shear flows. The approximation is not that prob-
lematic, since the a,, and a,, components are the only components that
enters into the balance equations.

High shear rates in parallell flow (homogeneous shear)
For high shear rates, o — « and the following holds

P1—>62, P2—>—G6, N—>o, B1—>G_1, B4—>G_2

The anisotropy goes like

a = B1S+PB4(SQ-Q3) > o lo + 67262 = const
and the anisotropy will stay realizable (c.f. eddy viscosity models)

The production

P = Bllls—>c_102 =0
and has the correct development

Rotational flows (rotating channel flow)
The rotational effects enter mainly into 8, through the dependency on Il

SN
2
SN2 =211,

In rotating channel flows the system rotation is added to the Q;; tensor,
used for Il . On the unstable side, the system rotation will decrease |1
in magnitude (remember 11, <0) and B, will increase. The same holds in
curved flows, where a concave (unstable) curvature will decrease 11, in
magnitude and B, will increase.

B =
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Rapidly sheared homogeneous flow
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(1) 3D mean flows: Rotating pipe, swirl velocity
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(i) normal stresses

Homogeneous shear:

Model d1p 817 Yy d33 P/e
Tavoularis & Corrsin 1981 -0.30 0.40 -0.28 -0.12 1.8
Recalibrated LRR (J&W) -0.30 0.31 -0.31 0 1.8
Linearized SSG -0.32 041 -0.30 -0.11 1.9
Boundary layers (log layer):
Model a5, Ay 8y Ay 2N
2¢
Moser, Kim & Mansour 1998 -0.29 0.34 -0.26 -0.08 1.65
Recalibrated LRR (J&W) -0.30 0.25 -0.25 0 1.69
Linearized SSG -0.32 0.36 -0.26 -0.10 1.59




Figure 1: Computed rotating channel flow for Ro = 0.77
compared to DNS of Alvelius & Johansson (2000). Curva-
ture corrected original (——-) and recalibrated (——) WJ
EARSM compared to the non-corrected EARSM (------ ).
U = 2w§r) (=-—-) is also shown. (figure taken from Wallin
& Johansson, 2002)
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Figure 2: The skin-friction coefficient along the convex wall, the velocity profile and turbulent shear stress at s = 71 in.

Experiment by So & Mellor (1973). The stresses are transformed into the local wall-tangential and -normal coordinate system,
and Upy is the theoretical potential velocity on the wall.





