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Introduction
Turbulent flow governed by Navier-Stokes equation. Why modelling?

• DNS: Direct Numerical Simulation
- Solution of the 3D time dependent Navier-Stokes equations
- Computational effort scales rapidly with Reynolds number
- Used for low Reynolds number generic flows
- Gives detailed knowledge about turbulence
- Not (yet?) practically useful for “CFD applications”

• Computational effort for wall bounded turbulence
- Number of grid points

- Number of time steps

- Computational effort

-  can be simulated ( , one CPU-year on a PC). 

Full scale airplane with  requires  and  
times more CPU. Can be done in year 2070 if the computers con-
tinue to develop according to Moorse’s law (doubled every 18 
month).

Thus, turbulent flows need to be modelled.
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Turbulence modelling

Reynolds averaged Navier-Stokes equations (RANS)
• Navier-Stokes equations (  denote instantaneous values)

- Conservation of mass

(1)

- Conservation of momentum

(2)

- Conservation of a passive scalar quantity 

(3)

• Reynolds decomposition

where  and 

• The “mean” is time average, ensemble average or averaging in homo-
geneous directions.  may actually vary in time ( ) with a 
time scale much longer than the turbulent time scale.

• Take the mean of the Navier-Stokes equations -> RANS

(4)

(5)

(6)
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Ui x( ) ũi x t,( )= ui x t,( ) 0=

Ui x( ) Ui x t,( )

xi∂

∂Ui 0=

DUi
Dt

---------- 1
ρ
--- P∂

xi∂
-------–

xk∂
∂ ν

xk∂

∂Ui uiuk–
⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

DΘ
Dt
---------

xk∂
∂ D∂Θ

∂xk
-------- ukθ–⎝ ⎠

⎛ ⎞=

D
Dt------ ∂

∂t---- Uk
∂
∂xk
--------+≡



4

• Reynolds stresses,  (and scalar flux vector )
- Appears because of the non-linear term
- Not “small”
- Significant effects on the flow
- Needs to be modelled in terms of mean flow quantities
- Reduces the problem to steady (or slowly varying)
- 2D assumptions possible

The aim is to construct a closed system of equations for the one-point 
quantities ( ).

• Only one governing lengthscale

• Spectra are assumed to be self-similar

Equation for the Reynolds stress tensor,  (and for )

• Can be derived from the Navier-Stokes equations

• Contains, however, higher order moments like 

• Equations for  contain even higher moments: the closure problem

• Modelling needed at some stage.
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Equation for the Reynolds stress tensor, 

Equation for the fluctuating velocity  is derived by subtracting the RANS 
equation (5) from the Navier-Stokes equation (2)

(7)

Then, the equation for  is derived by the following

(8)

The equation for  is then derived by taking the mean of (8)

(9)

where

• Production, transfers energi from mean flow to fluctuations

(10)

• Dissipation, transfers energy from fluctuations to heat

(11)

• Pressure-strain, redistributes energy among the components ( )

(12)

• Diffusion, redistributes fluctuations in space

(13)

The equation for the turbulent kinetic energy, , is derived by tak-
ing half of the trace of the equation (9)

(14)
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where

(15)

(16)

(17)

Example: Homogeneous shear flow

, , 

Gives equation for 

and equations for the Reynolds stresses

Note: all energy production in the  component and redistributed to the 
other components by  to an asymptotic state (Tavoularis & Corrsin, 
1981) where
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Eddy-viscosity models (EVM)
Boussinesq (1877) made the assumption

This was later generalized to the eddy-viscosity, or Boussinesq, assump-
tion

(18)

where the symmetric and antisymmetric parts of the velocity gradient are

, 

and the Reynolds stress anisotropy

(19)

The eddy-viscosity assumption may be written

(20)

The scalar flux is modelled accordingly

(21)

where the eddy diffusivity  may be related to the eddy viscosity by a tur-
bulent Schmidt number (of the order of unity).

(22)

The RANS equation (5) can now be rewritten as

(23)

where the turbulent kinetic energy, , may be absorbed into an effective 
pressure.
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The following observations can be made:

• Zero strain ( ) gives zero anisotropy ( ). History effects are 
not well described.

•  and  are not in general aligned and the deviation is large. Thus, 
the eddy-viscosity relation is only valid for one component in thin shear 
layers (as originally proposed by Boussinesq). This is also the case for 
the scalar flux that is not aligned with the gradient.

•  is invariant of rotation, which will only enter into . Since  
depends on  but not on  no rotational effects will enter into . 
Also the  equation is unaffected by rotation. So, rotation effects are 
not well described by eddy-viscosity models.

The eddy viscosity is related to the large scale (most energetic) turbulent 
scales as

(24)
where  and  are the velocity and length scales respectivelly.

Classification of eddy-viscosity models:

• Algebraic models or zero-equation models:
-  and  related to mean flow field and global geometry (wall dis-

tance, wake thickness, et.c.)
- Works well for attached boundary layers and other thin shear layers
- Not very general

• One-equation models:
- One transport equation for  or .
- Additional information from global conditions (typically wall distance)
- Works well for attached boundary layers and other thin shear layers
- Not very general, but more than algebraic models
- Example: Spalart-Allmaras (1992) (a reasonable and robust model 

for external aerodynamics)
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• Two-equation models:
- Two transport equations for the turbulence scales, typically  or 

.
- Completely determined in terms of local quantities (except near-wall 

corrections which may be dependent on wall distance)
- Works well for attached boundary layers
- Somewhat more general than algebraic and one-equation models.
- Model transport equations loosely connected to the exact equations.
- Examples: 

Standard  model (Launder & Spalding 1974)
Wilcox (1988, ...)  models
Menter (1994) SST  model (performing reasonable well also in 
separated flows)

K ε–
K ω–

K ε–
K ω–

K ω–
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Zero-equation models
Constant turbulent viscosity,  (and diffusivity )

• Fair assumption only in free shear flows

• elsewhere, no general constant  can be found.

Mixing length models

 and 

which gives:

 or (25)

• Free shear flows: Constant  is a common choice. Ex:
- plane jet: 
- round jet: 
- plane wake: 

• Wall-bounded flows:  chosen as a ramp function with  and 

• Lack of generality!

• Example:
- Baldwin-Lomax (1978) (rather accurate for attached boundary lay-

ers)
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One-equation models
The basic idea is to decouple the turbulent velocity scale, , from the 
mean strain field and determine it from a transport equation. If the trans-
port equation for the turbulent kinetic energy, , is used the velocity scale 
may be derived from that as  (Kolmogorov & Prandtl)

(26)
where  is an empirical constant and the equation for  (14) is

(27)

where the terms are modelled as

with the model coefficients  and 

The length scale, , needs to be determined. This is a problem, as with 
zero-equation models.

Assume local equilibrium  and thin shear layers:

 =>  => 

One-equation models when  is a mixing length model with

Or,  hypothesis only suitable when . Fair in boundary layers.
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Spalart & Allmaras one-equation model.

One attempt to try to avoid the problem with the length scale is to form a 
transport equation for  directly. This has been proposed by Spalart & All-
maras (1994). The model reads (somewhat simplified)

(28)

The production of  is modelled as

where  is the absolute value of the vorticity (reduces to  in thin 
shear layers).  is a model constant.

The dissipation of  is modelled as

where  is a constant and  is a complex function taking care of the 
outer part of the boundary layer. Here, a length scale is actually introduced 
with , which is the wall distance.

The Spalart & Allmaras model consists of a lot of different empirical correc-
tions and has been carefully calibrated for different flows and performs 
well in many different cases.
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Two-equation models (eddy viscosity)
• Eddy-viscosity assumption

(29)

Remember:

, , 

• Model equations (standard  model):

(30)

Modelling and calibration of the different terms
• The eddy-viscosity relation:
The standard form is derived from the natural velocity and length scales, 

 and , which gives

(31)

In thin shear flows , which gives

 => 

used in the eddy-viscosity relations (29, 31)

 => 

In thin shear layers (e.g. boundary layers)  (Bradshaw hypothe-
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• Destruction terms  and :
 in the  equation is modelled as a transport equation. The equation for 
 is derived from the Navier-Stokes equation and the production, destruc-

tion and diffusion terms all need modelling.

The destruction term in the  equation, , is modelled by considering 
homogeneous decaying turbulence

, 

The assumption is that the decay rates of  and  should be self similar 
and differ by a constant factor

 => 

The evolution of  can then be derived as

, 

and  is calibrated from experiments.  can also be derived from the-
oretical analyses of the energy spectra. “Standard” value .

• Production of , :
Mainly dimensional arguments (weak coupling to the exact term) gives

 calibrated from homogeneous ( ) shear flow

(32)

For long times  approaches a constant, thus, from (32) it can be 
derived that

and from experiment (Tavoularis & Corrsin, 1981) . With 
 one can derive . “Standard” value .
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• Diffusion of  and ,  and 
The simplest assumption is to assume gradient diffusion

, 

The viscous diffusion is present also in the exact equations. The turbulent 
diffusion has to be modelled, and the gradient diffusion is not a very good 
approximation, but has been found to be a reasonable approximaion in 
thin shear flows. This will be discussed lated.

The Schmidt number in the  equation should be close to unity, .

The Schmidt number in the  equation, , is calibrated from the log-layer 
in boundary layers. The log-law

 => 

The RANS equation (23) in x-direction assuming  
and constant  is

integrating once give

and by applying the log law and neglecting 

(33)

 is assumed in the log law, which gives

(34)

Combining (33) and (34) gives the log-law relations

 and (35)
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The equation for  reads

and by pluggin in  and using (35) gives

Using the “standard” values and  gives . The standard 
value is .

Summary of the standard eddy-viscosity  model

(36)

Model coefficients (standard values):

, , , , 

The eddy-viscosity  model
Kolmogorov (1942), Wilcox (80:s and 90:s)

 is intepreted as the inverse time scale of the large eddies, and the  
model reads
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The model coefficients proposed by Wilcox (1988) are

, , , , 
The equation for  may also be derived from the  equation using the 
variable transformation 

(38)

This transformation relates the  and  coefficients to  and  as

 and 

The turbulent diffusion term from the transformed  model will, how-
ever, contain additional terms

(39)

which is the major difference between the  and  models. Also 
the coefficients are differently calibrated. Notably, is  compared 
with  in the  model.

One serious problem with the  model is that the model is (unphysi-
cally) sensitive for the free stream conditions on  and . This can be 
avoided by carefully calibration of the Schmidt numbers and by introducing 
a “cross diffusion term” (the last term in eq. 39). Such modifications have 
been proposed by Kok (1999) and Menter (1993).

Boundary conditions
The  model cannot be applied all the way down to the wall. Since 

 and  is finite at the wall, the  equation becomes singular at the 
wall because of the  term. There are two different solutions of this

• Log-law boundary conditions: The boundary condition is set in the log 
layer away from the wall according to the log-law relations. The prob-
lem is that the log-law is only strictly valid in equilibrium boundary layers 
and breaks down close to separation and reattachment points. How-
ever, the approach still works reasonable well also in separated flows.
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. The requirement on the resolution of the computational grid 
close to the wall is high.  for the first grid points at the wall. A lot 
of variant are availabe in the litterature.

The  model can be computed down to the wall and gives reasonable 
mean velocity profiles without any modifications. The turbulence proper-
ties in the viscous sub-layer is, however, not correctly captured. The  
model can also be used together with wall function boundary conditions.

Realizability considerations for two-equation eddy-viscosity models
A physical requirement on the Reynolds stresses is that the normal com-
ponents ( ,  and ) must be positive in all possible coordinate sys-
tems. This means that the Reynolds stress tensor must be positive definite 
(all eigenvalues must be positive). Translated to the Reynolds stress 
anisotropy, this means that

(no summation over Greek indices) and

 ( )
The linear eddy-viscosity relation gives

and it is easily understood that the anisotropy can reach large values that 
are physically unrealizable if  is large. In e.g. shear flows the  com-
ponent becomes

, 

which will give unrealizable  for .

The production term in the eddy-viscosity assumption is , 
which is proportional to the strain rate squared, while the exact production 
is , linear in . The eddy-viscosity model, thus, gives exces-
sive production in flows with strong strain rate.

In the Menter  SST model (Menter 1993), the  coefficient is limited 
for high shear rates (or for ) in order to limit  to  according to 
the Bradshaw assumption, preserving realizable values for . Moreover, 
it has been observed that in adverse pressure gradient where  the 
limitation of the  will be active, which will significantly improve the pre-
diction of adverse pressure gradient flows including flow separation.
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Differential Reynolds stress models (DRSM)
The exact equation for the Reynolds stress tensor is derived in (9), and 
reads

(40)

where the production term is exact and needs no further modelling

The production term is dependent on the strain- and rotation rate tensors 
(  and ). The dependency on  clearly improves the prediction of 
the influence of rotation. Moreover, the production is linearly dependent on 
the strain rate, and, thus the excessive production seen in eddy-viscosity 
models are here avoided.

Modelling of the different terms
- Rotta (1951)
- LRR: Launder, Reece and Rodi (1975)
- SSG: Sarkar, Speziale and Gatski (1991)

• The dissipation rate tensor, 
Introduce the dissipation rate anisotropy

(41)

The dissipation rate  and is derived by a transport equation for , 
very similar to the  equation in the  model. Alternativelly, an  equa-
tion, similar to that in the  model, can be used.

The simplest model is that the dissipation rate is isotropic, or .

• The pressure strain rate term, 
The exact form of  is given by

A poisson equation for the pressure fluctuation is derived by taking the 
divergence of the equation for the velocity fluctuations. This equation may 
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be formally solved giving the principal form of the model for . This gives 
that the pressure strain term is divided into a slow and a rapid part,  
and , and modelled separatley. In the LRR model, the slow part as 
proposed by Rotta (1951) was modelled as

where the Rotta constant . The rapid part proposed by LRR

with the constant .

In later models, the connection to the exact Poisson equation is weaker, 
and the pressure strain term is lumped together with the dissipation rate 
anisotropy as

• Turbulent diffusion terms,  and :
In thin shear layers the vertical fluctuations  are most responsible for the 
turbulent mixing. A model that better responds to this, compared to the 
gradient diffusion, is the generalized gradient diffusion model (GGD) pro-
posed by Daly & Harlow (1970)

In thin shear layers where  is dominating these will reduce to

Standar values are  and .
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Explicit algebraic Reynolds stress models (EARSM)
The starting point is the DRSM

The equation for  is rewritten in terms of the anisotropy and 

which gives

(42)

The model for  that can be considered in EARSMs must be “quasi”-lin-
ear in , that is tensorially linear in  (e.g. the LRR model)

(43)

In this equation, and in the following concerning EARSM, the  and  
are normalized by the turbulent time scale 

, 

The resulting equation for 

(44)

and the  coefficients are directly related to the  coefficients. 
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Weak equilibrium condition
So far, we have only rewritten the equation for  as an equation for  
and an equation for . The major assumption in obtaining an algebraic 
relation for  is the so called weak equilibrium assumption. That is that 
the anisotropy is assumed to be constant in time and space. Thus, the 
l.h.s. in (44) vanishes, resulting in

(45)

where

(46)

Here, the bold matrix notation is used where e.g. ,  
denotes the trace of  ( ) and  is the identity matrix.

The weak equilibrium assumption is:

• exact in steady homogeneous flows (homogeneous shear flows)

• good approximation in fully developed shear flows

• good approximation even in flows with (slowly) varying  with high  
and  since (44) is then dominating by the source terms on the r.h.s.

• bad approximation in flows with low  and  since (44) is then dom-
inating by the transport terms on the l.h.s.

Formal solution of (44) => EARSM
The algebraic relation (44) (ARSM) is implicit in  and also non-linear in 

 since the ratio .

The first step is to solve the tensor equation by considering the  ratio 
(or ) as unknown. The non-linearity will be consider later.

The tensor relation is, thus, that . The most general expres-
sion consists of ten tensorially independent terms

(47)

uiuj aij
K

aij

Na A1S– aΩ Ωa–( ) A2 aS Sa 2
3--- aS{ }I–+⎝ ⎠

⎛ ⎞–+=

N A3 A4
P
ε
----+=

aΩ aikΩkj≡ aS{ }
aS aS{ } aklSlk≡ I δij≡

aij Sij
Ωij

Sij Ωij

aij
aij P ε⁄ aS{ }≡

P ε⁄
N

a a S Ω,( )=

a βiT
i( )

i 1=

10

∑=



23

where

(48)

The  coefficients may be functions of the five independent invariants

, , , , (49)
and are determined by inserting the ansatz (47) in the ARSM equation (45) 
and solving the resulting equation system for the  coefficients.

The Wallin & Johansson model in 2D flows
In the model proposed by Wallin & Johansson (2000), the  coefficient is 
choosen to be 0 in (45), which corresponds to the specific choice of 

 in the pressure strain rate model (43). With  only five of the 
ten terms in (48) will remain, and the algebra is, thus, significantly 
reduced.

The algebra is rather complex for 3D mean flows, and, thus, the method 
will here be described in 2D mean flows, where the number of indepen-
dent tensor groups in general are three, but with  they reduces to 
two:  and . Also only two independent invariants remain,  and 

. The Wallin & Johansson model is also build on the LRR model, 
slightly recalibrated, with  and , which gives the 
following model coefficients

, , , , 

The implicit algebraic relation (45) becomes

(50)

and with the ansatz (47)

(51)
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it becomes

(52)

In 2D mean flows, the term

and (52) becomes

(53)

sorting equal tensor terms gives

 => (54)

and the solution for  is given with (54) in (52) as

(55)

The consistency condition
The production to dissipation ratio, , can be written as

(56)

Using the solution (52) for the anisotropy this gives that

(57)

since . Using the solution for  in (54) and the rela-
tion for  in (46)

(58)

and rearranged
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Closed solutions can be obtained from cubic equations

(60)

Effective 

The first term in the solution (51) corresponds to the eddy-viscosity 
assumption where

(61)

here, the  is not a constant, thus the , and contain rotational effects 
as well as the possibility to adjust to the local flow conditions.

The boundary layer log region
Since ,  can be determined directly as

(62)

In parallell flows

(63)

and the  ratio is derived to
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The Reynolds stress anisotropy can now be derived

, where 

The  and  anisotropies and  are well predicted, but the  and 
 components are not that well. The reason is that  which 

gives that  in thin shear flows. The approximation is not that prob-
lematic, since the  and  components are the only components that 
enters into the balance equations.

High shear rates in parallell flow (homogeneous shear)
For high shear rates,  and the following holds

, , , , 
The anisotropy goes like

and the anisotropy will stay realizable (c.f. eddy viscosity models)

The production

and has the correct development

Rotational flows (rotating channel flow)
The rotational effects enter mainly into  through the dependency on 

In rotating channel flows the system rotation is added to the  tensor, 
used for . On the unstable side, the system rotation will decrease  
in magnitude (remember ) and  will increase. The same holds in 
curved flows, where a concave (unstable) curvature will decrease  in 
magnitude and  will increase.
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(ii) normal stresses

Homogeneous shear:

Boundary layers (log layer):

Model

Tavoularis & Corrsin 1981 -0.30 0.40 -0.28 -0.12 1.8

Recalibrated LRR (J&W) -0.30 0.31 -0.31 0 1.8

Linearized SSG -0.32 0.41 -0.30 -0.11 1.9

Model

Moser, Kim & Mansour 1998 -0.29 0.34 -0.26 -0.08 1.65

Recalibrated LRR (J&W) -0.30 0.25 -0.25 0 1.69

Linearized SSG -0.32 0.36 -0.26 -0.10 1.59

a12 a11 a22 a33 P ε⁄

a12 a11 a22 a33
SK
2ε
-------



deriving the measure of the co-ordinate system rotation rate

Ω
(r)
ij from the flow field. Only a few Galilean invariant meth-

ods have been proposed. Girimaji (1997) proposed to use the

rotation rate of the acceleration vector and Gatski & Jon-

gen (2000) used the rotation rate of the principal direction

of the strain-rate tensor. However, these methods were only

derived for 2D flows.

Hellsten (2002) has found that the acceleration based

method leads to problems in some situations of mild curva-

ture where the direction of the acceleration vector may vary

rapidly. This was demonstrated in a U-bend flow, which

showed an almost singular behaviour. For the same case,

the strain-rate based method behaves much better.

Recently, Wallin & Johansson (2002) proposed a fully

three-dimensional method based on the strain-rate tensor,

which will be examined and tested in this study. In two-

dimensional mean flows, the method by Wallin & Johansson

reduces to the Gatski & Jongen (2000) correction. In fully

developed swirling flows, which is fully three dimensional,

the proposed method has been shown to be identical to the

exact transformation.

Turbulent flows over curved surfaces, near stagnation

and separation points, in vortices and turbulent flows in

rotating frames of reference are all affected by streamline

curvature effects. Strong curvature and/or rotational ef-

fects form a major cornerstone problem also at the Reynolds

stress transport modelling level. Some of the effects of

streamline curvature or local rotation is captured already

in standard EARSMs. E.g. the Coriolis term that appears

when transforming the Reynolds stress transport model

equation to a rotating frame is composed by two equal parts

that originate from the transformation of the production and

the advection respectively. The production part is naturally

captured also in standard EARSMs while the advection part

is not.

In cases with moderately curved streamlines the neglec-

tion of the advection part has a rather minor effect, see e.g.

Rumsey, Gatski & Morrison (1999) for flow over an airfoil,

but in other cases the inclusion of the curvature correction

is significant. That is the case in e.g. vortices (Wallin &

Girimaji 2000), in rotating flows like rotating homogeneous

shear and rotating channel (Wallin & Johansson 2002) and

in curved channels as well as in swirling flows, as will be seen

in this paper.

CURVATURE-CORRECTED MODEL

The curvature corrected EARSM (CC-EARSM) pro-

posed by Wallin & Johansson (2002) will be repeated herein

for clarity. It is based on a formal approximation of a

Reynolds stress transport model including an approximation

of the advection of the anisotropy.

General quasi-linear Reynolds stress transport models

may be written in terms of a transport equation for the

anisotropy tensor

τ
(

D aij

Dt
−D

(a)
ij

)

= A0

[

(

A3 + A4
P

ε

)

aij

+A1Sij −
(

aikΩkj − Ωikakj

)

+A2

(

aikSkj + Sikakj −
2
3
aklSlkδij

)

]

(3)

see Wallin & Johansson (2000). D
(a)
ij is the diffusion of aij

and τ = K/ε is the turbulent time-scale. The strain and

rotation rate tensors, Sij and Ωij , are normalized by τ .

This relation results from the general quasi-linear model for

the pressure-strain rate and dissipation rate anisotropy, eij ,

y
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Figure 1: Computed rotating channel flow for Ro = 0.77

compared to DNS of Alvelius & Johansson (2000). Curva-

ture corrected original ( ) and recalibrated ( ) WJ

EARSM compared to the non-corrected EARSM ( ).

U ′ = 2ω
(r)
z ( ) is also shown. (figure taken from Wallin

& Johansson, 2002)

lumped together
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The A coefficients are related to the C coefficients through
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Introducing the curvature correction for the original

choice of the A0 coefficient in the Wallin & Johansson (2000)

model leads to a model that predicts rotational effects poorly

as shown by Wallin & Johansson (2002) and also observed

by Wallin & Girimaji (2000) for the vortex flow. Wallin &

Girimaji found that the WJ model behaviour was improved

by increasing A0 to a value closer to that of the linearized

SSG.

A more thorough analysis of the effect of the A0 coeffi-

cient was done by Wallin & Johansson (2002), where the long

time asymptotic behaviour in rotating homogeneous shear

flow was considered. Depending on the rotation number the

turbulent kinetic energy grows exponentially with constant

P/ε or follows a power-law solution where ε/(UyK) → 0

(Speziale & Mac Giolla Mhuiris 1989). The bifurcation

points between the two solution branches correspond to the

points where C
(eff)
µ becomes zero or where the flow is close

to neutral stability. Neutral stability occurs near rotation

number Ro = 0.5 and is also likely associated with the lin-

ear velocity profile in the core of a rotating channel (local

Ro≈0.5) according to Pettersson-Reif et al. (1999). Thus,

the model coefficients are calibrated such that the required

bifurcation point Ro = 0.5 is obtained. The A coefficients

proposed by Wallin & Johansson (2002) are A0 = −0.72,

A1 = 1.20, A2 = 0, A3 = 1.80 and A4 = 2.25.

The recalibrated model is tested in rotating channel flow

in figure 1. Both the curvature correction and the recalibra-

tion are of significant importance in predicting the slope of

the mean flow velocity profile in the centre of the channel.

Also the relaminarization at the stabilized side is captured.

Strain rate based curvature correction

The advection of the strain rate tensor S may, similarly

to the advection of the anisotropy tensor (1), be expressed as

a differential plus an algebraic term arising from the trans-



Figure 2: The skin-friction coefficient along the convex wall, the velocity profile and turbulent shear stress at s = 71 in.

Experiment by So & Mellor (1973). The stresses are transformed into the local wall-tangential and -normal coordinate system,

and Upw is the theoretical potential velocity on the wall.

formation to the curvilinear co-ordinate system, es
i

D Sij

Dt
= T t

ip

D Ss
pq

Dt
Tqj −

(

SikΩ
(r)
kj

− Ω
(r)
ik

Skj

)

(6)

The assumption made by Wallin & Johansson (2002) was

that, since the anisotropy and the strain rate tensors are re-

lated, the co-ordinate system for which the differential part

of the advection of S is minimized is used also for transform-

ing the advection of the anisotropy. This may be obtained

by finding the solution for the Ω
(r) tensor from (6) where

the first term on the r.h.s. is set to zero. However, that

equation system is overdetermined since there are five (two

in 2D) independent equations for DS/Dt and three (one in

2D) independent components of Ω
(r).

By using that Ω
(r)
ij ≡ −εijkω

(r)
k

the equation for the ad-

vection of the transformed Sij in (6)) becomes

eij ≡ T t
ip

D Ss
pq

Dt
Tqj =

D Sij

Dt
−

(

Silεljk + Sjlεlik

)

ω
(r)
k

(7)

eij may be minimized in a least square sense by minimiz-

ing the norm eijeij , which, for this case, is equivalent with

Splelqεpqi = 0. That results in the following expression for

the rotation vector ω
(r)
i

ω
(r)
i = AijSpl

D Slq

Dt
εpqj (8)

where

Aij =
II2

Sδij + 12IIISSij + 6IISSikSkj

2II3
S − 12III2

S

. (9)

The denominator in (9) may become zero when two of

the eigenvalues are equal or all eigenvalues are zero. The

singularities at these points may be avoided by adding a

small number to the denominator.

In two-dimensional incompressible mean flows, ω
(S)
i re-

duces to

ω
(r)
3 =

S11Ṡ12 − S12Ṡ11

2S2
11 + 2S2

12

(10)

which is identical to the Spalart & Shur (1997) and the

Gatski & Jongen (2000) corrections.

Implementation aspects

The strain-rate based curvature correction methods in-

volve numerical approximation of DS/Dt. In steady-state

problems (time-dependent problems not considered here) the

derivative of the S tensor may be expressed in conservative

form as

Uk

∂Sij

∂xk

=
1

ρ

∂

∂xk

(ρSijUk) =
1

ρV

∮

S

ρSijUkn̂kdS (11)

where S is the control volume surface and n̂i is the unit

normal vector of the control surface. In this formulation,

the different components of DS/Dt may be computed di-

rectly without the need of evaluating all components of the

gradient of S.

The velocity gradient components are computed onto

each face of a control-volume or cell using local staggered

cells. The derivatives of the strain-rate components are then

computed in the cell centrepoints. This way the numerical

error can, in principle, be kept small. However, spatially os-

cillating distribution of DS/Dt may be obtained, especially

when high-resolution grids are employed. Presently, this

problem is handled by applying a spatial filter for the com-

puted rotation vector ω(r). A top-hat filter of the width of

three computational cells in each direction is employed. This

turned out to be a sufficient remedy in the two-dimensional

flows considered in this study. In the three-dimensional

swirling flow, some spatial oscillation still occurs in the recir-

culation zone, but this neither prevents the iteration from

converging nor spoils the results. It is felt, however, that

the numerical computation of DS/Dt still needs some fur-

ther attention.

TEST CASES

Two-Dimensional Boundary Layer on a Convex Wall

A convex curved boundary layer experimentally studied

by So & Mellor (1973) will be used for basic validation of

the curvature corrected EARS-modelling. The concave outer

wall is contoured to obtain a nearly constant pressure dis-

tribution on the inner wall. The CC-EARSM will be tested

using two different ways to obtain ω
(r)
3 : the Wallin & Johans-

son (2002) strain-rate based method (8), which reduces to

Eq. (10) in two-dimensional mean flows, and the streamline

method in which ω
(r)
3 is simply the rotation rate of the veloc-

ity vector following a streamline. The latter method is not

generalizable due to its lack of Galilean invariance, but can

be used as a reference here because the coordinate system

can be attached to the apparatus. The results will be com-

pared with the experimental data, with the results obtained

with the standard EARSM derived in the inertial coordi-

nate system (iWJ), and with full differential Reynolds stress

model (RSM) predictions using the corresponding pressure-

strain model, see Hellsten et al. (2002) and Salo (2003).

The skin-friction coefficient along the convex wall is

shown in figure 2. Clearly, both CC-EARSMs as well as

the RSM agree well with the measurements while the stan-

dard EARSM slightly overestimates the wall shear-stress as

expected. The velocity and turbulent shear-stress distribu-

tions are also shown in the figure. The differences in the




