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Preface

This book is developed from lecture notes of graduate courses taught over the years
by the authors at the Pennsylvania State University, Purdue University, Hong Kong
Baptist University and Nanyang Technological University of Singapore.

The aim of the book is to provide

• A detailed presentation of basic spectral algorithms
• A systematical presentation of basic convergence theory and error analysis for

spectral methods
• Some illustrative applications of spectral methods

For many basic algorithms presented in the book, we provide Matlab codes (which
will be made available online) which contain additional programming details be-
yond the mathematical formulas, so that the readers can easily use or modify these
codes to suite their need. We believe that these Matlab codes will help the read-
ers to have a better understanding of these spectral algorithms and provide a useful
starting point for developing their own application codes.

There are already quite a few monographs/books on spectral methods. The classi-
cal books by Gottlieb and Orszag (1977) and by Canuto et al. (1987)1 were intended
for researchers and advanced graduate students, and they are excellent references
for the historical aspects of spectral methods as well as in depth presentations of
various techniques and applications in computational fluid dynamics. The book by
Boyd (2001) focused on the Fourier and Chebyshev methods with emphasis on im-
plementations and applications. The book by Trefethen (2000) gave an excellent
exposition on the spectral-collocation methods through a set of elegant Matlab rou-
tines. The books by Deville et al. (2002) and by Karniadakis and Sherwin (2005)
concentrated on the spectral-element methods with details on parallel implementa-
tions and applications in fluid dynamics, while the more recent book by Hesthaven
and Warburton (2008) focused on the discontinuous Galerkin methods with a nodal
spectral-element approach. On the other hand, Hesthaven et al. (2007) focused on

1 An updated and expanded version of Canuto et al. (1987) is recently published. This new version
Canuto et al. (2006, 2007) incorporated many new developments made in the last 20 years and
provided a more systematical treatment for spectral methods.
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the spectral methods for time-dependent problems with a particular emphasis on
hyperbolic equations and problems with non-smooth solutions. The book length ar-
ticle by Bernardi and Maday (1997) and their monograph in French Bernardi and
Maday (1992a) provided an excellent exposition on the basic approximation theory
of spectral methods with a particular emphasis on Stokes equations, while the mono-
graph (Shen and Tang 2006) presented a basic introduction in a lecture note style
to the implementation and analysis of spectral methods. The emphasis of the book
by Guo (1998b), on the other hand, was on numerical analysis of spectral meth-
ods for nonlinear evolution problems. Finally, spectral methods have been playing a
very significant role in dealing with stochastic differential equations and uncertainty
quantifications, and we refer to the recent books by Le Maı̂tre and Knio (2010) and
by Xiu (2010) on these emerging topics.

The current book attempts to provide a self-contained presentation for the con-
struction, implementation and analysis of efficient spectral algorithms for some
model equations, of elliptic, dispersive and parabolic type, which have wide ap-
plications in science and engineering. It strives to provide a systematical approach
based on variational formulations for both algorithm development and numerical
analysis. Some of the unique features of the current book are

• Our analysis is based on the non-uniformly weighted Sobolev spaces which lead
to simplified analysis and more precise estimates, particularly for problems with
corner singularities. We also advocate the use of the generalized Jacobi polyno-
mials which are particularly useful for dealing with boundary value problems.

• We develop efficient spectral algorithms and present their error analysis for
Volterra integral equations, higher-order differential equations, problems in un-
bounded domains and in high-dimensional domains. These topics have rarely
been covered in detail in the existing books on spectral methods.

• We provide online a set of well structured Matlab codes which can be easily
modified and expanded or rewritten in other programming languages.

The Matlab codes as well as corrections/updates to the book will be available
at http://www.math.purdue.edu/∼shen/STWbook. In case this site becomes unavail-
able due to unforeseen circumstances in the future, the readers are advised to check
the Springer Web site for the updated Web link on the book.

We do not attempt to provide in this book an exhaustive account on the wide
range of topics that spectral methods have had impact on. In particular, we do not
include some important topics such as spectral methods for hyperbolic equations
and spectral-element methods, partly because these topics do not fit well in our
uniform framework, and mostly because there are already some excellent books
mentioned above on these topics. As such, no attempt is made to provide a compre-
hensive list of references on the spectral methods. The cited references reflect the
topics covered in the book, but inevitably, the authors’ bias. While we strive for cor-
rectness, it is most likely that errors still exist. We welcome comments, suggestions
and corrections.

The book can be used as a textbook for graduate students in both mathematics and
other science/engineering. Mathematical analysis and applications are organized
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mostly at the end of each chapter and presented in such a way that they can be
skipped without affecting the understanding of algorithms in the following chapters.
The first four chapters and Sects. 8.1–8.4 provide the basic ingredients on Fourier
and polynomial approximations and essential strategies for developing efficient
spectral-Galerkin and spectral-collocation algorithms. Section 8.5 deals with sparse
spectral methods for high-dimensional problems. The topics in Chaps. 5, 6 and 7
are independent of each other so the readers can choose according to their need.
Applications covered in Chap. 9, except for a slight dependence on Sects. 9.4–9.5,
are also independent of each other. For the readers’ convenience, we provide in the
Appendices some essential mathematical concepts, basic iterative algorithms and
commonly used time discretization schemes.

The book is also intended as a reference for active practitioners and researchers of
spectral methods. The prerequisite for the book includes standard entry-level grad-
uate courses in Numerical Analysis, Functional Analysis and Partial Differential
Equations (PDEs). Some knowledge on numerical approximations of PDEs will be
helpful in understanding the convergence theory and error analysis but hardly nec-
essary for understanding the numerical algorithms presented in this book.

The authors would like to thank all the people and organizations who have pro-
vided support for this endeavor. In particular, the authors acknowledge the general
support over the years by NSF and AFOSR of USA, Purdue University; Hong Kong
Research Grants Council, the National Natural Science Foundation of China, Hong
Kong Baptist University; Singapore Ministry of Education and Nanyang Technolog-
ical University. We are grateful to Mrs. Thanh-Ha Le Thi of Springer for her support
and for tolerating our multiple delays, and to Ms. Xiaodan Zhao of Nanyang Tech-
nological University for carefully checking the manuscript. Last but not the least,
we would like to thanks our wives and children for their love and support.

Indiana, USA Jie Shen
Hong Kong, China Tao Tang
Singapore Li-Lian Wang
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Chapter 1
Introduction

Numerical methods for partial differential equations can be classified into the local
and global categories. The finite-difference and finite-element methods are based
on local arguments, whereas the spectral method is global in character. In practice,
finite-element methods are particularly well suited to problems in complex geome-
tries, whereas spectral methods can provide superior accuracy, at the expense of
domain flexibility. We emphasize that there are many numerical approaches, such
as hp finite-elements and spectral-elements, which combine advantages of both the
global and local methods. However in this book, we shall restrict our attentions to
the global spectral methods.

Spectral methods, in the context of numerical schemes for differential equations,
belong to the family of weighted residual methods (WRMs), which are tradition-
ally regarded as the foundation of many numerical methods such as finite element,
spectral, finite volume, boundary element (cf. Finlayson (1972)). WRMs represent
a particular group of approximation techniques, in which the residuals (or errors)
are minimized in a certain way and thereby leading to specific methods including
Galerkin, Petrov-Galerkin, collocation and tau formulations.

The objective of this introductory chapter is to formulate spectral methods in a
general way by using the notion of residual. Several important tools, such as discrete
transform and spectral differentiation, will be introduced. These are basic ingredi-
ents for developing efficient spectral algorithms.

1.1 Weighted Residual Methods

Prior to introducing spectral methods, we first give a brief introduction to the WRM.
Consider the general problem:

∂tu(x, t)−L u(x, t) = N (u)(x, t), t > 0, x ∈ Ω , (1.1)

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 1
Springer Series in Computational Mathematics 41, DOI 10.1007/978-3-540-71041-7 1,
c© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

where L is a leading spatial derivative operator, and N is a lower-order linear or
nonlinear operator involving only spatial derivatives. Here, Ω denotes a bounded
domain of Rd , d = 1,2 or 3. Equation (1.1) is to be supplemented with an initial
condition and suitable boundary conditions.

We shall only consider the WRM for the spatial discretization, and assume that
the time derivative is discretized with a suitable time-stepping scheme. Among var-
ious time-stepping methods (cf. Appendix D), semi-implicit schemes or linearly-
implicit schemes, in which the principal linear operators are treated implicitly to
reduce the associated stability constraint, while the nonlinear terms are treated ex-
plicitly to avoid the expensive process of solving nonlinear equations at each time
step, are most frequently used in the context of spectral methods.

Let τ be the time step size, and uk(·) be an approximation of u(·,kτ). As an
example, we consider the Crank-Nicolson leap-frog scheme for (1.1):

un+1 − un−1

2τ
−L

(un+1 + un−1

2

)

= N (un), n ≥ 1. (1.2)

We can rewrite (1.2) as

Lu(x) := αu(x)−L u(x) = f (x), x ∈ Ω , (1.3)

where, with a slight abuse of notation, u = un+1+un−1

2 , α = τ−1 and f = αun−1 +
N (un). Hence, at each time step, we need to solve a steady-state problem of the
form (1.3).

At this point, it is important to emphasize that the construction of efficient numer-
ical solvers for some important equations in the form of (1.3), such as Poisson-type
equations and advection-diffusion equations, is an essential step in solving general
nonlinear PDEs. With this in mind, a particular emphasis of this book is to design
and analyze efficient spectral algorithms for equations of the form (1.3) where L is
a linear elliptic operator.

The starting point of the WRM is to approximate the solution u of (1.3) by a
finite sum

u(x)≈ uN(x) =
N

∑
k=0

akφk(x), (1.4)

where {φk} are the trial (or basis) functions, and the expansion coefficients {ak} are
to be determined. Substituting uN for u in (1.3) leads to the residual:

RN(x) = LuN(x)− f (x) �= 0, x ∈ Ω . (1.5)

The notion of the WRM is to force the residual to zero by requiring

(RN ,ψ j)ω :=
∫

Ω
RN(x)ψ j(x)ω(x)dx = 0, 0 ≤ j ≤ N, (1.6)

where {ψ j} are the test functions, and ω is a positive weight function; or



1.1 Weighted Residual Methods 3

〈RN ,ψ j〉N,ω :=
N

∑
k=0

RN(xk)ψ j(xk)ωk = 0, 0 ≤ j ≤ N, (1.7)

where {xk}N
k=0 are a set of preselected collocation points, and {ωk}N

k=0 are the
weights of a numerical quadrature formula.

The choice of trial/test functions is one of the main features that distinguishes
spectral methods from finite-element and finite-difference methods. In the latter two
methods, the trial/test functions are local in character with finite regularities. In con-
trast, spectral methods employ globally smooth functions as trial/test functions. The
most commonly used trial/test functions are trigonometric functions or orthogonal
polynomials (typically, the eigenfunctions of singular Sturm-Liouville problems),
which include

• φk(x) = eikx (Fourier spectral method)
• φk(x) = Tk(x) (Chebyshev spectral method)
• φk(x) = Lk(x) (Legendre spectral method)
• φk(x) = Lk(x) (Laguerre spectral method)
• φk(x) = Hk(x) (Hermite spectral method)

Here, Tk,Lk,Lk and Hk are the Chebyshev, Legendre, Laguerre and Hermite poly-
nomials of degree k, respectively.

The choice of test functions distinguishes the following formulations:

• Galerkin. The test functions are the same as the trial ones (i.e., φk = ψk in (1.6)
or (1.7)), assuming the boundary conditions are periodic or homogeneous.

• Petrov-Galerkin. The test functions are different from the trial ones.
• Collocation. The test functions {ψk} in (1.7) are the Lagrange basis polynomials

such that ψk(x j) = δ jk, where {x j} are preassigned collocation points. Hence,
the residual is forced to zero at {x j}, i.e., RN(x j) = 0.

Remark 1.1. In the literature, the term of pseudo-spectral method is often used to
describe any spectral method where some operations involve a collocation approach
or a numerical quadrature which produces aliasing errors (cf. Gottlieb and Orszag
(1977)). In this sense, almost all practical spectral methods are pseudo-spectral. In
this book, we shall not classify a method as pseudo-spectral or spectral. Instead, it
will be classified as Galerkin type or collocation type.

Remark 1.2. The so-called tau method is a particular class of Petrov-Galerkin
method. While the tau method offers some advantages in certain situations, for most
problems, it is usually better to use a well-designed Galerkin or Petrov-Galerkin
method. So in this book, we shall not touch on this topic, and refer to El-Daou and
Ortiz (1998), Canuto et al. (2006) and the references therein for a thorough discus-
sion of this approach.

In the forthcoming sections, we shall demonstrate how to construct spectral meth-
ods for solving differential equations by examining several spectral schemes based
on Galerkin, Petrov-Galerkin and collocation formulations in a general manner. We
shall revisit these illustrative examples in a more rigorous fashion in the main body
of the book.
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1.2 Spectral-Collocation Method

To fix the idea, we consider the following linear problem:

Lu(x) =−u′′(x)+ p(x)u′(x)+ q(x)u(x) = f (x), x ∈ (−1,1),

B±u(±1) = g±,
(1.8)

where B± are linear operators corresponding to Dirichlet, Neumann or Robin
boundary conditions (see Sect. 4.1), and the data p,q, f and g± are given such that
the above problem is well-posed.

As mentioned earlier, the collocation method forces the residual to vanish point-
wisely at a set of preassigned points. More precisely, let {x j}N

j=0 (with x0 =−1 and
xN = 1) be a set of Gauss-Lobatto points (see Chap. 3), and let PN be the set of all
real algebraic polynomials of degree ≤N. The spectral-collocation method for (1.8)
amounts to finding uN ∈ PN such that (a) the residual RN(x) = LuN(x)− f (x) equals
to zero at the interior collocation points, namely,

RN(xk) = LuN(xk)− f (xk) = 0, 1 ≤ k ≤ N − 1, (1.9)

(b) uN satisfies exactly the boundary conditions, i.e.,

B−uN(x0) = g−, B+uN(xN) = g+. (1.10)

The spectral-collocation method is usually implemented in the physical space by
seeking approximate solution in the form

uN(x) =
N

∑
j=0

uN(x j)h j(x), (1.11)

where {h j} are the Lagrange basis polynomials (also referred to as nodal basis
functions), i.e., h j ∈ PN and h j(xk) = δk j. Hence, inserting (1.11) into (1.9)-(1.10)
leads to the linear system

N

∑
j=0

[

Lh j(xk)
]

uN(x j) = f (xk), 1 ≤ k ≤ N − 1,

N

∑
j=0

[

B−h j(x0)
]

uN(x j) = g−,
N

∑
j=0

[

B+h j(xN)
]

uN(x j) = g+.

(1.12)

The above system contains N + 1 equations and N + 1 unknowns, so we can
rewrite it in a matrix form. To fix the idea, we consider (1.8) with Dirichlet boundary
conditions: u(±1) = g±. In this case, setting uN(x0) = g− and uN(xN) = g+ in the
first equation of (1.12), we find that the system (1.12) reduces to
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N−1

∑
j=1

[

Lh j(xk)
]

uN(x j) = f (xk)−
{[

Lh0(xk)
]

g−+
[

LhN(xk)
]

g+
}

, (1.13)

for 1 ≤ k ≤ N − 1. Differentiating (1.11) m times leads to

u(m)
N (xk) =

N

∑
j=0

d(m)
k j uN(x j) where d(m)

k j = h(m)
j (xk). (1.14)

The matrix D(m) =
(

d(m)
k j

)

k, j=0,...,N is called the differentiation matrix of order m

relative to {x j}N
j=0. If we denote by u(m) the vector whose components are the values

of u(m)
N at the collocation points, it follows from (1.14) that

u(m) = D(m)u(0), m ≥ 1. (1.15)

Hence, we have

Lh j(xk) =−d(2)
k j + p(xk)d

(1)
k j + q(xk)δk j. (1.16)

Denote by f the vector with N−1 components given by the right-hand side of (1.13).
Setting

˜Dm =
(

d(m)
k j

)

k, j=1,...,N−1, m = 1,2,

P = diag
(

p(x1), . . . , p(xN−1)
)

, Q = diag
(

q(x1), . . . ,q(xN−1)
)

,
(1.17)

the system (1.13) reduces to
(− ˜D2 +P˜D1 +Q

)

u(0) = f. (1.18)

Observe that the collocation method is easy to implement, once the differentia-
tion matrices are precomputed. Moreover, it is very convenient for solving problems
with variable coefficients and/or nonlinear problems, since we work in the physical
space and derivatives can be evaluated by (1.14) directly. As a result, the colloca-
tion method has been extensively used in practice. However, three important issues
should be considered in the implementation and analysis of a collocation method:

• The coefficient matrix of the collocation system is always full with a condition
number behaving like O(N2m) (m is the order of the differential equation).

• The choice of collocation points is crucial in terms of stability, accuracy and
ease of dealing with boundary conditions. In general, they are chosen as nodes
(typically, zeros of orthogonal polynomials) of Gauss-type quadrature formulas.

• The aforementioned collocation scheme is formulated in a strong form. In terms
of error analysis, it is more convenient to reformulate it as a (but not always
equivalent) weak form, see Sect. 1.3.3 and Chap. 4.
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1.3 Spectral Methods of Galerkin Type

The collocation method described in the previous section is implemented in the
physical space. In this section, we shall describe Galerkin-type spectral methods
in the frequency space, and present the basic principles of the spectral-Galerkin
method, spectral-Petrov-Galerkin method, and spectral-Galerkin method with nu-
merical integration.

1.3.1 Galerkin Method

Without loss of generality, we consider (1.8) with g± = 0. The non-homogeneous
boundary conditions can be easily handled by considering v = u − ũ, where
ũ is a “simple” function satisfying the non-homogeneous boundary conditions
(cf. Chap. 4).

Define the finite-dimensional approximation space:

XN =
{

φ ∈ PN : B±φ(±1) = 0
} ⇒ dim(XN) = N − 1.

Let {φk}N−2
k=0 be a set of basis functions of XN . We expand the approximate solu-

tion as

uN(x) =
N−2

∑
k=0

ûkφk(x) ∈ XN . (1.19)

Then, the expansion coefficients {ûk}N−2
k=0 can be determined by the residual equa-

tion (1.6) with {ψ j = φ j} :

∫ 1

−1

(

LuN(x)− f (x)
)

φ j(x)ω(x)dx = 0, 0 ≤ j ≤ N − 2, (1.20)

which is equivalent to
{

Find uN ∈ XN such that
(

LuN ,vN
)

ω =
(

f ,vN
)

ω , ∀vN ∈ XN .
(1.21)

Here, (·, ·)ω is the inner product of L2
ω(−1,1) (cf. Appendix B).

The linear system of the above scheme is obtained by substituting (1.19) into
(1.20). More precisely, setting

u =
(

û0, û1, . . . , ûN−2
)T

; f j = ( f ,φ j)ω , f =
(

f0, f1, . . . , fN−2
)T

;

s jk =
(

Lφk,φ j
)

ω , S = (s jk) j,k=0,...,N−2,

the system (1.20) reduces to
Su = f. (1.22)
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Therefore, it is crucial to choose basis functions {φ j} such that:

• The right-hand side ( f ,φ j)ω can be computed efficiently.
• The linear system (1.22) can be solved efficiently.

The key idea is to use compact combinations of orthogonal polynomials or orthogo-
nal functions to construct basis functions. To demonstrate the basic principle, we
consider the Legendre spectral approximation (i.e., ω ≡ 1 in (1.20)-(1.22)). Let
Lk(x) be the Legendre polynomial of degree k, and set

φk(x) = Lk(x)+αkLk+1(x)+βkLk+2(x), k ≥ 0, (1.23)

where the constants αk and βk are uniquely determined by the boundary conditions:
B±φk(±1) = 0 (cf. Sect. 4.1). We shall refer to such basis functions as modal basis
functions. Therefore, we have

XN = span
{

φ0,φ1, . . . ,φN−2
}

. (1.24)

Using the properties of Legendre polynomials (cf. Sect. 3.3), one verifies easily
that, if p(x) and q(x) are constants, the coefficient matrix S is sparse so the linear
system (1.22) can be solved efficiently. However, for more general p(x) and q(x),
the coefficient matrix S is full and one needs to resort to an iterative method (cf.
Sect. 4.4).

In the above, we just considered the Legendre case. In fact, the construc-
tion of such a basis is also feasible for the Chebyshev, Laguerre and Hermite
cases (see Chaps. 4–7). The notion of using compact combinations of orthogonal
polynomials/functions to develop efficient spectral solvers will be repeatedly em-
phasized in this book.

We now consider the evaluation of ( f ,φ j)ω . In general, this term can not
be computed exactly and is usually approximated by (IN f ,φ j)ω , where IN is an
interpolation operator upon PN relative to the Gauss-Lobatto points. Thus, we can
write

(IN f )(x) =
N

∑
k=0

f̃kϕk(x), (1.25)

where {ϕk} is an orthonormal polynomial basis of PN (orthogonal with respect to
ω , i.e., (ϕk,ϕ j)ω = δ jk). Thanks to the orthogonality, the discrete transforms be-
tween the physical values { f (x j)}N

j=0 and the expansion coefficients { f̃k}N
k=0 can

be computed efficiently. In particular, the computational complexity of the Fourier
and Chebyshev discrete transforms can be reduced to O(N log2 N) by using the fast
Fourier transform (FFT). An approach for implementing discrete transforms relative
to general orthogonal polynomials is given in Sect. 3.1.5.

It is important to point out that in solving time-dependent nonlinear problems, f
usually contains nonlinear terms involving derivatives of the numerical solution uN

at previous time steps (cf. (1.3)). Hence, numerical differentiations in the frequency
space and/or in the physical space are required. Differentiation techniques relative
to general orthogonal polynomials are addressed in Sects. 3.1.6 and 3.1.7.
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1.3.2 Petrov-Galerkin Method

As pointed out in Sect. 1.1, the use of different test and trial functions distinguishes
the Petrov-Galerkin method from the Galerkin method. Thanks to this flexibility,
the Petrov-Galerkin method can be very useful for some non-self-adjoint problems
such as odd-order equations.

As an illustrative example, we consider the following third-order equation:

Lu(x) := u′′′(x)+ u(x) = f (x), x ∈ (−1,1),

u(±1) = u′(1) = 0.
(1.26)

As with the Galerkin case, we enforce the boundary conditions on the approximate
solution. So we set

XN =
{

φ ∈ PN : φ(±1) = φ ′(1) = 0
} ⇒ dim(XN) = N − 2.

Assuming that {φk}N−3
k=0 is a basis of XN, we expand the approximate solution as

uN(x) =
N−3

∑
k=0

ûkφk(x) ∈ XN .

The expansion coefficients {ûk}N−3
k=0 are determined by the residual equation (1.6)

(with ω = 1):

∫ 1

−1

(

LuN(x)− f (x)
)

ψ j(x)dx = 0, 0 ≤ j ≤ N − 3. (1.27)

Since the leading third-order operator is not self-adjoint, it is natural to use a Petrov-
Galerkin method with the test function space:

X∗
N =

{

ψ ∈ PN : ψ(±1) = ψ ′(−1) = 0
} ⇒ dim(X∗

N) = N − 2.

Assume that {ψk}N−3
k=0 is a basis of X∗

N . Then, (1.27) is equivalent to the variational
formulation:

{

Find uN ∈ XN such that
(

LuN ,vN
)

=
(

f ,vN
)

, ∀vN ∈ X∗
N ,

(1.28)

where (·, ·) is the inner product of the usual L2-space.
The theoretical aspects of the above scheme will be examined in Chap. 6. We

now consider its implementation. Setting

u =
(

û0, û1, . . . , ûN−3
)T

; f j = ( f ,ψ j), f =
(

f0, f1, . . . , fN−3
)T

;

s jk = (φ ′
k,ψ

′′
j ), S =

(

s jk
)

j,k=0,...,N−3;

mjk = (φk,ψ j), M =
(

m jk
)

j,k=0,...,N−3,
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the linear system (1.28) becomes
(

S+M
)

u = f. (1.29)

As described in the previous section, we wish to construct basis functions for XN

and X∗
N , so that the linear system (1.29) can be inverted efficiently. Once again, this

goal can be achieved by using compact combinations of orthogonal polynomials. It
can be checked that for 0 ≤ k ≤ N − 3,

φk = Lk − 2k+ 3
2k+ 5

Lk+1 −Lk+2+
2k+ 3
2k+ 5

Lk+3 ∈ XN ;

ψk = Lk +
2k+ 3
2k+ 5

Lk+1 −Lk+2 − 2k+ 3
2k+ 5

Lk+3 ∈ X∗
N ,

(1.30)

where Ln is the Legendre polynomial of degree n (cf. Sect. 3.3). Hence, {φk}N−3
k=0

(resp. {ψ j}N−3
j=0 ) forms a basis of XN (resp. X∗

N). Moreover, using the properties of
the Legendre polynomials, one verifies easily that the matrix M is seven-diagonal,
i.e., mjk = 0 for all | j− k|> 3. More importantly, the matrix S is diagonal.

1.3.3 Galerkin Method with Numerical Integration

We considered previously Galerkin-type methods in the frequency space, which are
well suited for linear problems with constant (or polynomial) coefficients. However,
their implementations are not convenient for problems with general variable coef-
ficients. On the other hand, the collocation method is easy to implement, but it can
not always be reformulated as a suitable variational formulation (most convenient
for error analysis). A combination of these two approaches leads to the so-called
Galerkin method with numerical integration, or sometimes called the collocation
method in the weak form.

The key idea of this approach is to replace the continuous inner products in the
Galerkin formulation by the discrete ones. As an example, we consider again (1.8)
with g± = 0. The spectral-Galerkin method with numerical integration is

{

Find uN ∈ XN := {φ ∈ PN : B±φ(±1) = 0} such that

aN(uN ,vN) := 〈LuN ,vN〉N = 〈 f ,vN〉N , ∀vN ∈ XN ,
(1.31)

where the discrete inner product is defined by

〈u,v〉N =
N

∑
j=0

u(x j)v(x j)ω j,

with {x j,ω j}N
j=0 being the set of Legendre-Gauss-Lobatto quadrature nodes and

weights (cf. Theorem 3.29).
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For problems with variable coefficients, the above method is easier to implement,
thanks to the discrete inner product, than the spectral-Galerkin method (1.21). It is
also more convenient for error analysis, thanks to the weak formulation, than the
spectral-collocation method (1.12).

We note that in the particular case of homogeneous Dirichlet boundary condi-
tions, i.e., B±u(±1) = u(±1) = 0, by taking vN = h j, 1 ≤ j ≤ N − 1 in (1.31) and
using the exactness of Legendre-Gauss-Lobatto quadrature, i.e.,

〈u,v〉N = (u,v), ∀u · v ∈ P2N−1, (1.32)

we find that the formulation (1.31) is equivalent to the collocation formulation
(1.12). However, this is not true for general boundary conditions (see Chap. 4).

1.4 Fundamental Tools for Error Analysis

In the previous sections, we briefly described several families of spatial discretiza-
tion schemes using the notion of weighted residual methods. In this section, we
present some fundamental apparatuses for stability and convergence analysis of nu-
merical schemes based on weak (or variational) formulations.

We consider the linear boundary value problem (1.3):

Lu = f , in Ω ; Bu = 0, on ∂Ω , (1.33)

where L and B are linear operators, and f is a given function on Ω .
As shown before, the starting point is to reformulate (1.33) in a weak formulation:

{

Find u ∈ X such that

a(u,v) = F(v), ∀v ∈ Y,
(1.34)

where X is the space of trial functions, Y is the space of test functions, and F is a
linear functional on Y. The expression a(u,v) defines a bilinear form on X ×Y. It is
conventional to assume that X and Y are Hilbert spaces. We refer to Appendix B for
basic functional analysis settings.

Now, we consider what conditions should be placed on (1.34) to guarantee its
well-posedness in the sense that:

• Existence-uniqueness: There exists exactly one solution of the problem.
• Stability: The solution must be stable which means that it depends on the data

continuously. In other words, a small change of the given data produces a small
change of the solution correspondingly.

The first fundamental result concerning the existence-uniqueness and stability is
known as the Lax-Milgram lemma (see Theorem B.1) related to the abstract problem
(1.34) with X = Y, i.e.,
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{

Find u ∈ X such that

a(u,v) = F(v), ∀v ∈ X .
(1.35)

More precisely, if the bilinear form a(·, ·) : X ×X → R satisfies

• Continuity:
∃C > 0 such that |a(u,v)| ≤C‖u‖X‖v‖X , (1.36)

• Coercivity:
∃α > 0 such that a(u,u)≥ α‖u‖2

X , (1.37)

then for any F ∈ X ′ (the dual space of X as defined in Appendix B), the problem
(1.35) admits a unique solution u ∈ X , satisfying

‖u‖X ≤ 1
α
‖F‖X ′ . (1.38)

Remark 1.3. The constant

α = inf
0 �=u∈X

|a(u,u)|
‖u‖2

X

(1.39)

is referred to as the ellipticity constant of (1.35).

The above result can only be applied to the problem (1.34) with Y = X . We now
present a generalization of the Lax-Milgram lemma for the case X �= Y (see, e.g.,
Babuška and Aziz (1972)).

Theorem 1.1. Let X and Y be two real Hilbert spaces, equipped with norms ‖ · ‖X

and ‖ ·‖Y , respectively. Assume that a(·, ·) : X ×Y →R is a bilinear form and F(·) :
Y →R is a linear continuous functional, i.e., F ∈Y ′ (the dual space of Y ) satisfying

‖F‖Y ′ = sup
0 �=v∈Y

|F(v)|
‖v‖Y

< ∞. (1.40)

Further, assume that a(·, ·) satisfies

• Continuity:
∃C > 0 such that |a(u,v)| ≤C‖u‖X‖v‖Y , (1.41)

• Inf-sup condition:

∃β > 0 such that sup
0 �=v∈Y

|a(u,v)|
‖u‖X‖v‖Y

≥ β , ∀0 �= u ∈ X , (1.42)

• “Transposed” inf-sup condition:

sup
0 �=u∈X

|a(u,v)|> 0, ∀0 �= v ∈ Y. (1.43)

Then, for any F ∈ Y ′, the problem (1.34) admits a unique solution u ∈ X , which
satisfies
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‖u‖X ≤ 1
β
‖F‖Y ′ . (1.44)

Remark 1.4. The condition (1.42) is also known as the Babuška-Brezzi inf-sup con-
dition (cf. Babuška (1973), Brezzi (1974)), and the real number

β = inf
0 �=u∈X

sup
0 �=v∈Y

|a(u,v)|
‖u‖X‖v‖Y

(1.45)

is called the inf-sup constant.

Remark 1.5. Theorem 1.1 with X =Y is not equivalent to the Lax-Milgram lemma.
In fact, one can verify readily the relation between the ellipticity and inf-sup con-
stants: α ≤ β . Indeed, by (1.37),

α‖u‖X ≤ |a(u,u)|
‖u‖X

≤ sup
0 �=v∈X

|a(u,v)|
‖v‖X

, ∀0 �= u ∈ X ,

which implies

α ≤ inf
0 �=u∈X

sup
0 �=v∈X

|a(u,v)|
‖u‖X‖v‖X

= β .

This means that one can have α = 0 but β > 0. In other words, the bilinear form is
not coercive, but satisfies the inf-sup condition.

We review below the fundamental theory on convergence analysis of numerical
approximations to (1.34).

We first consider the case X = Y . Assume that XN ⊆ X and

∀v ∈ X , inf
vN∈XN

‖v− vN‖X → 0 as N → ∞. (1.46)

The Galerkin approximation to (1.35) is
{

Find uN ∈ XN such that

a(uN,vN) = F(vN), ∀vN ∈ XN.
(1.47)

The stability and convergence of this scheme can be established by using the fol-
lowing lemma (cf. Céa (1964)):

Theorem 1.2. (Céa Lemma). Under the assumptions of the Lax-Milgram lemma
(see Theorem B.1), the problem (1.47) admits a unique solution uN ∈ XN such that

‖uN‖X ≤ 1
α
‖F‖X ′ . (1.48)

Moreover, if u is the solution of (1.35), we have

‖u− uN‖X ≤ C
α

inf
vN∈XN

‖u− vN‖X . (1.49)

Here, the constants C and α are given in (1.36) and (1.37), respectively.
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Proof. Since XN is a subspace of X , applying the Lax-Milgram lemma to (1.47)
leads to the existence-uniqueness of uN and the stability result (1.48). Now, taking
v = vN in (1.35), and subtracting (1.47) from the resulting equation, we obtain the
error equation

a(u− uN,vN) = 0, ∀vN ∈ XN , (1.50)

which, together with (1.36)-(1.37), implies

α‖u− uN‖2
X ≤ a(u− uN,u− uN) = a(u− uN,u− vN)

≤C‖u− uN‖X‖u− vN‖X , ∀vN ∈ XN ,

from which (1.49) follows. ��
Remark 1.6. If, in addition, the bilinear form is symmetric, i.e., a(u,v) = a(v,u),
the Galerkin method is referred to as the Ritz method. In this case, the constant in
the upper bound of (1.49) can be improved to

√
Cα−1.

Remark 1.7. In performing error analysis of spectral methods, we usually take vN

in (1.49) to be a suitable orthogonal projection of u upon XN, denoted by πNu, which
leads to

‖u− uN‖X ≤ C
α
‖u−πNu‖X . (1.51)

Hence, the error estimate follows from the approximation result on ‖u− πNu‖X ,
which takes a typical form:

‖u−πNu‖X ≤ cN−σ(m)‖u‖Hm , (1.52)

where c is a generic positive constant independent of N and any function, σ(m)> 0
is the so-called order of convergence in terms of the regularity index m, and Hm

is a suitable Sobolev space with a norm involving derivatives of u up to m-th or-
der. The establishment of such approximation results for each family of orthogonal
polynomials/functions will be another emphasis of this book.

Typically, if u is sufficiently smooth, the estimate (1.52) is valid for every m.
However, for a finite-element method, the order of convergence is restricted by the
order of local basis functions. The explicit dependence of the estimates of (1.52)
type on the regularity index m will also be explored in this book.

Observe that the bilinear form and the functional F in the discrete problem (1.47)
are the same as those in the continuous problem (1.35). However, it is often conve-
nient to use suitable approximate bilinear forms and/or functionals (see, for exam-
ple, (1.31)). Hence, it is necessary to consider the following approximation to (1.35):

{

Find uN ∈ XN such that

aN(uN ,vN) = FN(vN), ∀vN ∈ XN ,
(1.53)

where XN still satisfies (1.46), and aN(·, ·) and FN(·) are suitable approximations
to a(·, ·) and F(·), respectively. In general, although XN is a subspace of X , the
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properties of the discrete bilinear form can not carry over from those of the
continuous one. Hence, they have to be derived separately.

The result below, known as the first Strang lemma (see, e.g., Strang and Fix
(1973), Ciarlet (1978)), is a generalization of Theorem 1.2.

Theorem 1.3. (First Strang lemma). Under the assumptions of the Lax-Milgram
lemma, suppose further that the discrete forms FN(·) and aN(·, ·) satisfy the same
properties in the subspace XN ⊂ X, and ∃α∗ > 0, independent of N, such that

aN(v,v)≥ α∗‖v‖2
X , ∀v ∈ XN . (1.54)

Then, the problem (1.53) admits a unique solution uN ∈ XN , satisfying

‖uN‖X ≤ 1
α∗

sup
0 �=vN∈XN

|FN(vN)|
‖vN‖X

. (1.55)

Moreover, if u is the solution of (1.35), we have

‖u− uN‖X ≤ inf
wN∈XN

{

(

1+
C
α∗

)

‖u−wN‖X

+
1

α∗
sup

0 �=vN∈XN

|a(wN ,vN)− aN(wN ,vN)|
‖vN‖X

}

+
1

α∗
sup

0 �=vN∈XN

|F(vN)−FN(vN)|
‖vN‖X

.

(1.56)

Here, the constant C is given in (1.36).

Proof. The existence-uniqueness and stability of (1.55) follow from the Lax-
Milgram lemma. The proof of (1.56) is slightly different from that of (1.49). For
any wN ∈ XN, let eN = uN −wN . Using (1.54), (1.35) and (1.53) leads to

α∗‖eN‖2
X ≤ aN(eN ,eN) = a(u−wN,eN)+ a(wN ,eN)

− aN(wN ,eN)+FN(eN)−F(eN).

Since the result is trivial for eN = 0, we derive from (1.36) that for eN �= 0,

α∗‖eN‖X ≤C‖u−wN‖X +
|a(wN ,eN)− aN(wN ,eN)|

‖eN‖X

+
|F(eN)−FN(eN)|

‖eN‖X

≤C‖u−wN‖X + sup
0 �=vN∈XN

|a(wN ,vN)− aN(wN ,vN)|
‖vN‖X

+ sup
0 �=vN∈XN

|F(vN)−FN(vN)|
‖vN‖X

,
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which, together with the triangle inequality, yields

‖u− uN‖X ≤ ‖u−wN‖X + ‖eN‖X .

Finally, taking the infimum over wN ∈ XN leads to the desired result. ��
The previous discussions were restricted to approximations of the abstract prob-

lem (1.35) based on Galerkin-type formulations. Similar analysis can be done for the
Petrov-Galerkin approximation of (1.34) by using Theorem 1.1. Indeed, let XN ⊆ X
and YN ⊆ Y . Consider the approximation to (1.34):

{

Find uN ∈ XN such that

a(uN,vN) = F(vN), ∀vN ∈YN .
(1.57)

Unlike the coercivity property, the inf-sup property can not carry over from the
whole space to the subspace. Indeed, the infimum in (1.39) will not decrease if it
is taken on a subspace, whereas the supremum in the inf-sup constant (1.45), in
general, becomes smaller on a subspace. Consequently, we have to prove

• Discrete inf-sup condition:

∃β∗ > 0 such that sup
0 �=vN∈YN

|a(uN,vN)|
‖uN‖X‖vN‖Y

≥ β∗, ∀0 �= uN ∈ XN , (1.58)

• Discrete “transposed” inf-sup condition:

sup
0 �=uN∈XN

|a(uN ,vN)|> 0, ∀0 �= vN ∈ YN . (1.59)

The following result, which is another generalization of Theorem 1.2, can be
found in Babuška and Aziz (1972).

Theorem 1.4. Under the assumptions of Theorem 1.1, assume further that (1.58)
and (1.59) hold. Then the discrete problem (1.57) admits a unique solution uN ∈ XN ,
satisfying

‖uN‖X ≤ 1
β∗

‖F‖Y ′ . (1.60)

Moreover, if u is the solution of (1.34), we have

‖u− uN‖X ≤
(

1+
C
β∗

)

inf
vN∈XN

‖u− vN‖X , (1.61)

where the constant C is given in (1.41).

Remark 1.8. If we consider the following approximation to (1.34):
{

Find uN ∈ XN such that

aN(uN ,vN) = FN(vN), ∀vN ∈YN ,
(1.62)

then a result similar to Theorem 1.3 can be derived, provided that (1.58) and (1.59)
hold in the subspaces XN and YN.
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1.5 Comparative Numerical Examples

The aim of this section is to provide some illustrative numerical examples for a
qualitative comparison of:

• Global versus local approximations
• Spectral-Galerkin versus spectral-collocation methods

in terms of accuracy, computational complexity and/or conditioning of the linear
systems.

1.5.1 Finite-Difference Versus Spectral-Collocation

In order to illustrate the main differences between the finite-difference and spectral
methods, we compare numerical differentiations of a periodic function u by using a
fourth-order finite-difference method and a spectral-collocation method.

Given h = 2π
N and a uniform grid {x0,x1, . . . ,xN} with x j = jh, and a set of

physical values {u0,u1, . . . ,uN} with u j = u(x j), a fourth-order centered finite-
difference approximation to u′(x j) is

wj :=
u j−2 − 8u j−1+ 8u j+1− u j+2

12h
. (1.63)

To account for periodicity of u, we set

u−2 = uN−1, u−1 = uN , u0 = uN+1, u1 = uN+2.

Then, the differentiation process (1.63) can be expressed as
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

. . . 1 −8

. . . −1 1

. . . 8
. . .

. . . 0
. . .

. . . −8
. . .

−1 1
. . .

8 −1
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u0

u1
...
...
...
...

uN−1

uN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (1.64)

Note that the coefficient matrix is sparse, reflecting the local nature of the finite-
difference method.
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On the other hand, the Fourier-collocation approximation of the function u is

φ(x) =
N−1

∑
k=0

hk(x)uk, (1.65)

where hk(x j) = δ jk and (cf. Lemma 2.2)

hk(x) =
1
N

sin
(

N(x− xk)/2
)

sin
(

(x− xk)/2
) cos

(

(x− xk)/2
)

. (1.66)

Then, we approximate u′(x j) by

wj = φ ′(x j) =
N−1

∑
k=0

h′k(x j)uk, j = 0,1, . . . ,N − 1, (1.67)

where we have the explicit formula (cf. (2.34)):

h′k(x j) =

{

(−1)k+ j

2 cot
[

( j−k)π
N

]

, if j �= k,

0, if j = k.
(1.68)

Thus, the matrix form of (1.67) becomes

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w0

w1
...
...
...
...

wN−2

wN−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

. . .
...

. . . −cot 2h
2

. . . cot h
2

0
. . .

−cot h
2

. . .

cot 2h
2

. . .
...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u0

u1
...
...
...
...

uN−2

uN−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (1.69)

Note that the coefficient matrix is full, reflecting the global nature of the spectral-
collocation method. More detailed discussions of the Fourier method will be con-
ducted in Chap. 2.

Next, we take u(x) = ln(2+ sinx), which is 2π-periodic, and compare the exact
derivative u′(x) = cosx/(2+ sinx) with the numerical derivative {wj} obtained by
the finite difference (1.64), and Fourier-collocation method (1.69) at the same grid.
In Fig. 1.1, we plot the error max0≤ j≤N−1 |u′(x j)−wj| against various N. We ob-
serve a fourth-order convergence O(h4) (or O(N−4)) of the finite difference (1.64).
We also observe that the Fourier-collocation method converges much faster than the
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Fig. 1.2 Convergence of Fourier-collocation (1.69) differentiation process

finite difference method. To have a clearer picture of the convergence of the Fourier-
collocation method (1.69), we plot in Fig. 1.2 the errors in the semi-log scale, which
indicates an exponential convergence rate O(e−cN) for some c > 0.

Remark 1.9. The typical convergence behavior of a spectral method is O(N−m)
where m is a regularity index of the underlying function. In other words, its
convergence rate is only limited by the regularity of the underlying function.
A method exhibiting such a convergence behavior is often said to have spectral
accuracy in the literature. On the other hand, the convergence rate of a finite ele-
ment/finite difference method is limited by the order of the method, regardless of the
regularity of the underlying function.
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A main advantage of a spectral method over a low-order finite element/finite dif-
ference method is that the former requires much fewer unknowns to resolve a given
problem to a fixed accuracy, leading to potentially significant savings in storage
and CPU time. For example, a rule of thumb (cf. Gottlieb and Orszag (1977)) is that
to achieve an engineering precision of 1%, a spectral method only needs π points
per wave-length, as opposed to roughly ten points per wave-length required by a
low-order method.

Another important feature of spectral methods is that the derivatives of discrete
functions are usually computed exactly (cf. (1.14)). Therefore, spectral methods are
usually free of phase errors, which can be very problematic for long-time integra-
tions of partial differential equations.

Remark 1.10. If a function is analytic in a strip of width 2β (containing the un-
derlying interval) in the complex plane, spectral approximations of such function
can achieve an exponential convergence rate of O(e−β N). We refer to Davis (1975),
Szegö (1975), and Gottlieb et al. (1992), Gottlieb and Shu (1997) for such results on
spectral projection errors, and to Tadmor (1986) for spectral differentiation errors
(see Reddy and Weideman (2005) for a simpler analysis which also improved the
estimates in Tadmor (1986)). Since the condition for an exponential convergence
of order O(e−β N) is quite generic, we shall not conduct analysis with exponential
convergence in this book.

1.5.2 Spectral-Galerkin Versus Spectral-Collocation

We compare in this section two versions of spectral methods: the Galerkin method
in the frequency space and the collocation method in the physical space, in terms of
the conditioning and round-off errors.

As an illustrative example, we consider the problem

u− uxx = f , u(±1) = 0

with the exact solution u(x)= sin(10πx). In the comparison, the collocation solution
is computed by (1.17)-(1.18) with p = 0,q = α and g± = 0, while the Galerkin
solution is obtained by solving (1.22) with the Legendre basis functions (cf. (1.23))

φk(x) =
1√

4k+ 6

(

Lk(x)−Lk+2(x)
)

, 0 ≤ k ≤ N − 2.

Let us first examine the conditioning of the two linear systems. In Table 1.1,
we list the condition numbers of the matrices resulted from the collocation method
(COL) and the Galerkin method (GAL).

We see that for various α , the condition numbers of the GAL systems are all
relatively small and independent of N, while those of the COL systems increase like
O
(

N4
)

.
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Table 1.1 Condition numbers of COL and GAL
N Method α = 0 α = 10 α = 100 α = 1,000
32 COL 1.04E+04 2.05E+03 2.50E+02 2.64E+01
32 GAL 1.00 5.07 41.6 396
64 COL 1.71E+05 3.37E+04 4.09E+03 4.18E+02
64 GAL 1.00 5.07 41.6 407
128 COL 2.77E+06 5.47E+05 6.63E+04 6.78E+03
128 GAL 1.00 5.07 41.7 408
256 COL 4.46E+07 8.81E+06 1.07E+06 1.09E+05
256 GAL 1.00 5.07 41.7 408
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Fig. 1.3 Convergence: COL (“�”) vs. GAL (“◦”)
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Fig. 1.4 Round-off errors: COL (“�”) vs. GAL (“◦”)

Next, we compare the effect of round-off errors. The maximum point-wise errors
of two methods against various N are depicted in Figs. 1.3 and 1.4. We observe from
Fig. 1.3 that, for relatively small N, both methods share essentially the same order of
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convergence rate. However, Fig. 1.4 indicates that the effect of roundoff errors may
become severer in a collocation method as N becomes large.

The above comparison is performed on a simple one-dimensional model
problem. It should be pointed out that similar behaviors can be expected for
multidimensional and/or higher-order problems. Finally, we want to emphasize
that in a collocation method, the choice of the collocation points (the quadrature
nodes) should be in agreement with underlying differential equations and boundary
conditions. For instance, the Gauss-Lobatto points are not suitable for third-order
equations (cf. Huang and Sloan (1992), Merryfield and Shizgal (1993)). However,
in a spectral-Galerkin method, the use of quadrature rules is merely to evaluate the
integrals, so the usual Gauss-Lobatto quadrature works for the third-order equation
as well.

Problems

1.1. Consider the heat equation

ut(x, t) = uxx(x, t), t > 0; u(x,0) = u0(x), (1.70)

where u0(x) is 2π-periodic. We expand the periodic solution u in terms of Fourier
series (cf. Sect. 2.1.1)

u(x, t) =
∞

∑
|k|=0

ak(t)e
ikx with ak(t) =

1
2π

∫ 2π

0
u(x, t)e−ikxdx, (1.71)

where i =
√−1 is the complex unit.

(a)Show that
ak(t) = e−k2t ak(0), ∀t ≥ 0, k ∈ Z,

where

ak(0) =
1

2π

∫ 2π

0
u0(x)e

−ikxdx.

(b) Let

uN(x, t) :=
N−1

∑
|k|=0

ak(t)e
ikx.

Show that
‖(u− uN)(·, t)‖∞ ≤ ct−1/2‖u0‖∞ erfc(

√
tN),

where ‖v‖∞ = maxx∈[0,2π] |v(x)|, and erfc(x) is the complementary error function
defined by

erfc(x) =
2√
π

∫ ∞

x
e−y2

dy.
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(c) Use the property

erfc(x)∼= e−x2

√
πx

, x � 1,

to prove that

‖(u− uN)(·, t)‖∞ ≤ ct−3/2N−1e−tN2
, ∀ t > 0.



Chapter 2
Fourier Spectral Methods for Periodic Problems

The spectral method was introduced in Orszag’s pioneer work on using Fourier
series for simulating incompressible flows about four decades ago (cf. Orszag
(1971)). The word “spectral” was probably originated from the fact that the Fourier
series are the eigenfunctions of the Laplace operator with periodic boundary condi-
tions. This fact and the availability of the fast Fourier transform (FFT) are two major
reasons for the extensive applications of Fourier methods to problems with periodic
boundary conditions. In practice, a variety of physical problems exhibit periodicity.
For instance, some problems are geometrically and physically periodic, such as crys-
tal structures and homogeneous turbulence. On the other hand, many problems of
scientific interest, such as the interaction of solitary waves and homogeneous tur-
bulence, can be modeled by PDEs with periodic boundary conditions. Furthermore,
even if an original problem is not periodic, the periodicity may be induced by using
coordinate transforms, such as polar, spherical and cylindrical coordinates. Indeed,
there are numerous circumstances where the problems are periodic in one or two
directions, and non-periodic in other directions. In such cases, it is natural to use
Fourier series in the periodic directions and other types of spectral expansions, such
as Legendre or Chebyshev polynomials, in the non-periodic directions (cf. Chap. 7).

The objective of this chapter is to study some computational and theoretical
aspects of Fourier spectral methods for periodic problems. In the first section, we
introduce the continuous and discrete Fourier series, and examine the fundamen-
tal spectral techniques including discrete Fourier transforms, Fourier differentiation
matrices and Fourier spectral differentiation based on FFT. The approximation prop-
erties of continuous and discrete Fourier series are surveyed in the second section.
The applications of Fourier spectral methods to some linear and nonlinear prob-
lems are presented in the last section. For more detail and other aspects of Fourier
approximations, we refer to Gottlieb and Orszag (1977), Gottlieb et al. (1984), Boyd
(2001) and the references therein.

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 23
Springer Series in Computational Mathematics 41, DOI 10.1007/978-3-540-71041-7 2,
c© Springer-Verlag Berlin Heidelberg 2011
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2.1 Continuous and Discrete Fourier Transforms

This section is devoted to a brief review of the properties of Fourier series and
Fourier transforms. Our focus is put on the discrete Fourier transforms and Fourier
differentiation techniques, which play an important role in the Fourier spectral
methods.

2.1.1 Continuous Fourier Series

We denote the complex exponentials by

Ek(x) := eikx = coskx+ i sinkx = (cosx+ i sinx)k, k ∈ Z, x ∈ R,

where i =
√−1. The set {eikx : k ∈ Z} forms a complete orthogonal system in the

complex Hilbert space L2(0,2π), equipped with the inner product and the norm

(u,v) =
1

2π

∫ 2π

0
u(x)v̄(x)dx, ‖u‖=

√

(u,u) ,

where v̄ is the complex conjugate of v. The orthogonality of {Ek : k ∈ Z} reads

(Ek,Em) =
1

2π

∫ 2π

0
ei(k−m)xdx = δkm, (2.1)

where δkm is the Kronecker Delta symbol.
For any complex-valued function u ∈ L2(0,2π), its Fourier series is defined by

u(x)∼ F (u)(x) :=
∞

∑
k=−∞

ûkeikx, (2.2)

where the Fourier coefficients are given by

ûk = (u,eikx) =
1

2π

∫ 2π

0
u(x)e−ikxdx. (2.3)

It is clear that if u is a real-valued function, its Fourier coefficients satisfy

û−k = ûk, k ∈ Z, (2.4)

and û0 is obviously real.
In fact, the Fourier series can be defined for general absolutely integrable

functions in (0,2π), and the convergence theory of Fourier expansions in dif-
ferent senses has been subjected to a rigorous and thorough investigation in Fourier
analysis (see, e.g., Zygmund (2002), Stein and Shakarchi (2003)). It is well-known
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that, for any u ∈ L2(0,2π), its truncated Fourier series FN(u) := ∑|k|≤N ûkeikx

converges to u in the L2-sense, and there holds the Parseval’s identity:

‖u‖2 =
∞

∑
k=−∞

|ûk|2. (2.5)

If u is continuous, periodic and of bounded variation on [0,2π ], then FN(u) uni-
formly converges to u.

Notice that the truncated Fourier series can also be expressed in the convolution
form, namely,

FN(u)(x) =
(

DN ∗ u
)

(x) =
1

2π

∫ 2π

0
DN(x− t)u(t)dt, (2.6)

where DN is known as the Dirichlet kernel given by

DN(x) :=
N

∑
k=−N

eikx = 1+ 2
N

∑
k=1

coskx =
sin((N + 1/2)x)

sin(x/2)
. (2.7)

It is sometimes convenient to express the Fourier series in terms of the trigono-
metric polynomials:

u(x)∼ S (u)(x) =
a0

2
+

∞

∑
k=1

(

ak coskx+ bk sinkx
)

, (2.8)

where the expansion coefficients are

ak =
1
π

∫ 2π

0
u(x)coskxdx, bk =

1
π

∫ 2π

0
u(x)sinkxdx.

The coefficients of the two different representations (2.2) and (2.8) are related by

û0 =
a0

2
, ûk =

⎧

⎪

⎨

⎪

⎩

ak − ibk

2
, if k ≥ 1,

a−k + ib−k

2
, if k ≤−1.

(2.9)

In particular, if u is a real-valued function, then

a0 = 2û0, ak = 2Re(ûk), bk =−2Im(ûk), k ≥ 1. (2.10)

2.1.2 Discrete Fourier Series

Given a positive integer N, let

x j = jh = j
2π
N

, 0 ≤ j ≤ N − 1, (2.11)
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be the N-equispaced grids in [0,2π), which are referred to as the Fourier collocation
points. We define the discrete inner product by

〈u,v〉N =
1
N

N−1

∑
j=0

u(x j)v̄(x j). (2.12)

The following lemma is the discrete counterpart of (2.1).

Lemma 2.1. Let El(x) = eilx. For any integer N ≥ 1, we have

〈

Ek,Em
〉

N =

{

1, if k−m = lN, ∀l ∈ Z,

0, otherwise.
(2.13)

Proof. Observe that if k−m is not divisible by N, then

〈

Ek,Em
〉

N =
1
N

N−1

∑
j=0

ei(k−m)xj =
1
N

N−1

∑
j=0

(

e2π i(k−m)/N
) j

=
1
N

e2π i(k−m)− 1

e2π i(k−m)/N − 1
= 0.

If k−m is divisible by N, we have e2πi(k−m)/N = 1, so the summation in the second
line above equals to 1. �

In general, the Fourier coefficients {ûk} in (2.3) can not be evaluated exactly, so
we have to resort to some quadrature formula. A simple and accurate quadrature
formula for 2π-periodic functions is the rectangular rule

1
2π

∫ 2π

0
v(x)dx ≈ 1

N

N−1

∑
j=0

v(x j), ∀v ∈C[0,2π), (2.14)

which is exact for all

v ∈ span
{

eikx : 0 ≤ |k| ≤ N − 1
}

.

Moreover, one verifies readily that (2.14) is also exact for v = sin(±Nx) but not for
v = cos(±Nx).

Applying (2.14) to (2.3) leads to the approximation

ûk ≈ ũk :=
1
N

N−1

∑
j=0

u(x j)e
−ikx j , k = 0,±1, . . . . (2.15)

Note that {ũk} are N-periodic, that is,

ũk±N =
1
N

N−1

∑
j=0

u(x j)e
−i(k±N)x j =

1
N

N−1

∑
j=0

u(x j)e
−ikx j e∓2π i j = ũk,
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which implies that for even N, we have

ũ−N/2 = ũN/2. (2.16)

Hence, for even N, the grids {x j}N−1
j=0 can not distinguish the modes: k = ±N/2,

since

eiNxj/2 = ei jπ = (−1) j = e−iNx j/2, 0 ≤ j ≤ N − 1. (2.17)

In other words, the two modes k =±N/2 are aliased.
In order to have an effective implementation of the discrete Fourier transform

(DFT), it is preferable to use an even N, and accordingly, a symmetric finite set of
modes: −N/2 ≤ k ≤ N/2 in the discrete Fourier series (cf. (2.20) below). In view
of (2.16)–(2.17), we redefine the approximation (2.15) by modifying the two modes
k =±N/2 :

ûk ≈ ũk =
1

Nck

N−1

∑
j=0

u(x j)e
−ikx j , k =−N/2, . . . ,N/2, (2.18)

where ck = 1 for |k| < N/2, and ck = 2 for k = ±N/2. The expression (2.18) is
referred to as the (forward) discrete Fourier transform of u(x) associated with the
grid points in (2.11).

Due to (2.16), there are only N independent coefficients. Hence, we set

TN =
{

u =
N/2

∑
k=−N/2

ũkeikx : ũ−N/2 = ũN/2

}

, (2.19)

and define the mapping IN : C[0,2π)→ TN by

(INu)(x) =
N/2

∑
k=−N/2

ũkeikx, (2.20)

with {ũk} given by (2.18). The following lemma shows that IN is the interpolation
operator from C[0,2π) to TN such that

(INu)(x j) = u(x j), x j =
2π j
N

, 0 ≤ j ≤ N − 1. (2.21)

Lemma 2.2. For any u ∈C[0,2π),

(INu)(x) =
N−1

∑
j=0

u(x j)h j(x), (2.22)

where

h j(x) =
1
N

sin

[

N
x− x j

2

]

cot

[

x− x j

2

]

∈ TN (2.23)
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satisfying

h j(xk) = δ jk, ∀ j,k = 0,1, . . . ,N − 1. (2.24)

Proof. By (2.18) and (2.20),

(INu)(x) =
N/2

∑
k=−N/2

(

1
Nck

N−1

∑
j=0

u(x j)e
−ikx j

)

eikx

=
N−1

∑
j=0

(

1
N

N/2

∑
k=−N/2

1
ck

eik(x−x j)

)

u(x j)

=:
N−1

∑
j=0

h j(x)u(x j).

We derive from (2.7) and a direct calculation that

h j(x) =
1
N

N/2

∑
k=−N/2

1
ck

eik(x−x j)

=
1
N

(

DN/2−1(x− x j)+ cos
[

N
x− x j

2

])

=
1
N

(

sin
[

(N − 1)
x−x j

2

]

sin
x−x j

2

+ cos
[

N
x− x j

2

]

)

=
1
N

sin

[

N
x− x j

2

]

cot

[

x− x j

2

]

.

(2.25)

Due to (2.17), we have h j(x)∈TN , and it is clear that h j(xi) = 0 for i �= j. Moreover,
taking x = x j in the first identity of (2.25) yields h j(x j) = 1. �

Taking x = x j in (2.20) and using (2.21), leads to the inverse (or backward)
discrete transform:

u(x j) =
N/2

∑
k=−N/2

ũkeikx j , j = 0,1, . . . ,N − 1. (2.26)

It is obvious that the discrete Fourier transforms (2.18) and its inverse (2.26) can
be carried out through matrix–vector multiplication with O(N2) operations. How-
ever, thanks to the fast Fourier transforms due to Cooley and Tukey (1965), such
processes can be accomplished with O(N log2 N) operations. Moreover, if u is a real
valued function, then ũ−k = ũk, so only half of the coefficients in (2.26) need to be
computed/stored.

The computational routines for FFT and IFFT are available in many software
packages. Here, we restrict our attentions to their implementations in MATLAB.
Given the data {v( j) = u(x j−1)}N

j=1 sampled at {xk = 2πk/N}N−1
k=0 , the command

“ṽ = fft(v)” returns the vector {ṽ(k)}N
k=1, defined by
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ṽ(k) =
N

∑
j=1

v( j)e−2πi( j−1)(k−1)/N, 1 ≤ k ≤ N, (2.27)

while the inverse FFT can be computed with the command “v = ifft(ṽ)” which
returns the physical values {v( j)}N

j=1 via

v( j) =
1
N

N

∑
k=1

ṽ(k)e2π i( j−1)(k−1)/N, 1 ≤ j ≤ N. (2.28)

Notice that some care has to be taken for the ordering of the modes. To illustrate
this, we examine the one-to-one correspondence of the transforms in (2.18) and
(2.26). More precisely, let

u(x j) = v( j+ 1), x j =
2π j
N

, 0 ≤ j ≤ N − 1. (2.29)

We find that

ũk =
1
N

ṽ(k+ 1), 0 ≤ k ≤ N
2
− 1,

ũk =
1
N

ṽ(k+N + 1), −N
2
+ 1 ≤ k ≤−1,

ũ−N/2 = ũN/2 =
1

2N
ṽ(N/2+ 1).

(2.30)

A tabulated view of the above relations is given in the following table.

Table 2.1 Correspondence of DFT and FFT & IFFT in MATLAB
j 1 2 . . . N/2−1 N/2 N/2+1 N/2+2 . . . N −1 N

u = v u0 u1 . . . . . . . . . . . . . . . . . . uN−2 uN−1
ũ = ṽ/N ũ0 ũ1 . . . ũN/2−2 2ũN/2−1 ũN/2 ũ−N/2+1 . . . ũ−2 ũ−1

k 0 1 . . . N/2−2 N/2−1 0 −N/2+1 . . . −2 −1

In the table, we denote {u j = u( j)}N−1
j=0 and {ũk = ũ(k)}N/2

k=−N/2. The last row gives
the frequency vector k for the Fourier-spectral differentiation based on FFT, see
Sect. 2.1.4 below. Note that the frequency −N/2 is aliased with the frequency N/2
in the discrete Fourier transform.

2.1.3 Differentiation in the Physical Space

In a Fourier spectral method, differentiation can be performed in the physical space
as well as in the frequency space.
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We start with differentiation in the physical space. Let {x j} and {h j} be defined
in (2.11) and (2.23), respectively. Setting

u(x) =
N−1

∑
j=0

u(x j)h j(x), (2.31)

and taking the m-th derivative, we get

u(m)(x) =
N−1

∑
j=0

u(x j)h
(m)
j (x). (2.32)

This process can be formulated as a matrix–vector multiplication

u(m) = D(m)u, m ≥ 0, (2.33)

where

D(m) =
(

d(m)
k j := h(m)

j (xk)
)

k, j=0,...,N−1,

u =
(

u(x0),u(x1), . . . ,u(xN−1)
)T

,

u(m) =
(

u(m)(x0),u
(m)(x1), . . . ,u

(m)(xN−1)
)T

.

In particular, we denote D=D(1). The compact form of the first-order differentiation
matrix is given below.

Lemma 2.3. The entries of the first-order Fourier differentiation matrix D are
determined by

d(1)
k j = h′j(xk) =

{

(−1)k+ j

2 cot
[

(k− j)π
N

]

, if k �= j,

0, if k = j.
(2.34)

Proof. Differentiating the Lagrange basis in (2.23) directly gives

h′j(x) =
1
2

cos

[

N
x− x j

2

]

cot

[

x− x j

2

]

− 1
2N

sin

[

N
x− x j

2

]

csc2
[

x− x j

2

]

.

It is clear that if x = xk �= x j, then the second term is 0 and the first term can be
simplified into the desired expression in (2.34).

We now consider the case k = j. For convenience, let θ = (x−x j)/2, and rewrite
the above formula as

h′j(x) =
1
2

cos(Nθ )cosθ sinθ −N−1 sin(Nθ)
sin2 θ

. (2.35)
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Using the Taylor expansion, we find

cos(Nθ )cosθ sinθ = θ +O(θ 3), N−1 sin(Nθ ) = θ +O(θ 3), |θ | � 1.

Hence, we derive from (2.35) that h′j(x j) = limx→x j h′j(x) = 0, since θ → 0 as x→ x j.
�
Remark 2.1. The first-order Fourier differentiation matrix has the following
properties:

• D is a real and skew-symmetric matrix, since cot(−x) =−cot(x) and dkk = 0.
• D is a circulant Toeplitz matrix, since dk j = dk+1, j+1.
• The distinct eigenvalues of D are

{

ik : −N/2+1≤ k ≤ N/2−1
}

, and the eigen-
value 0 has a multiplicity 2.

The approximation of higher-order derivatives follows the same procedure. From
the first relation in (2.25), we find

h(m)
j (xi) =

1
N

N/2

∑
k=−N/2

(ik)m

ck
e2π ik(i− j)/N. (2.36)

In particular, the entries of the second-order differentiation matrix D(2) are given by

d(2)
k j = h′′j (xk) =

⎧

⎪

⎨

⎪

⎩

− (−1)k+ j

2
sin−2

[ (k− j)π
N

]

, if k �= j,

−N2

12
− 1

6
, if k = j.

(2.37)

It is worthwhile to point out that D(2) �=D2. Indeed, we consider u= cos(Nx/2) and
denote u the vector that samples u at {x j}N−1

j=0 . Since u(x j) = (−1) j, one verifies

readily that Du = 0 and D2u = 0, while D(2)u =−N2u/4.
It is clear that the differentiation procedure through (2.33) requires O(N2)

operations. We shall demonstrate below how to perform the differentiation in the
frequency space with O(N log2 N) operations using FFT.

2.1.4 Differentiation in the Frequency Space

For a function given by (2.31), we can rewrite it as a finite Fourier series

u(x) =
N/2

∑
k=−N/2

ũkeikx, (2.38)
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where ũN/2 = ũ−N/2 as before. Thus, we have

u′(x j) =
N/2

∑
k=−N/2

ikũkeikx j , (2.39)

where {x j = 2π j/N}N−1
j=0 are the grids given by (2.11). Given the physical values

{u(x j)}N−1
j=0 , the approximation of the derivative values {wj = u′(x j)}N−1

j=0 can be
computed as follows:

• Call ṽ = fft(v), where the components of the input vector v are v( j) =
u(x j−1), j = 1, . . . ,N, and which returns the frequency vector:

ṽ =
(

ṽ1, ṽ2, . . . , ṽN
)

.

• Compute the coefficients of the expansion of the derivative:

ṽ(1) = ik.∗ ṽ

= i
(

0, ṽ2, . . . ,(N/2− 1)ṽN/2,0,(−N/2+ 1)ṽN/2+2, . . . ,−ṽN

)

,

where the multiplicative vector k is given in Table 2.1:

k =
(

0,1, . . . ,N/2− 1,0,−N/2+ 1, . . .,−1
)

. (2.40)

• Call w = ifft(ṽ(1)), which produces the desired derivative values {wj}N−1
j=0 .

As a striking contrast to the differentiation process described in the previous
section, the computational cost of the above procedure is O

(

N log2 N
)

. More-
over, higher-order derivatives can be computed using these three steps repeatedly.
Multi-dimensional cases can be implemented similarly by using available routines
such as fft2.m and ifft2.m in MATLAB.
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Convergence of Fourier−spectral differentiation

Fig. 2.1 Errors of Fourier-spectral differentiation of first-order (“◦”) and second-order (“�”)
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As a numerical illustration, we consider the Fourier spectral differentiation of
the 2π−periodic function u(x) = e1+sinx. In Fig. 2.1, we plot, in semi-log scale,
the maximum point-wise errors of the first- and second-order derivatives against
various N. The plots in Fig. 2.1 clearly indicate the exponential convergence of the
Fourier spectral differentiation process.

2.2 Fourier Approximation

In this section, we summarize some fundamental results on the approximation of
periodic functions by the continuous and discrete Fourier series.

2.2.1 Inverse Inequalities

Since all norms of a finite dimensional space are equivalent, we can bound a strong
norm by a weaker one with bounding constants depending on the dimension of the
space. This type of inequality is called inverse inequality. Our aim in this section is
to find the optimal constants in such inequalities.

For notational convenience, we use A � B to mean that there exists a generic
positive constant c, which is independent of N and any function, such that A ≤ cB.
We also use ∂ m

x u or u(m) to denote the ordinary derivative dmu
dxm . Let I := (0,2π), and

define the complex (2N + 1)-dimensional space

XN := span
{

eikx : −N ≤ k ≤ N
}

. (2.41)

The Banach space Lp(I) with 1 ≤ p ≤ ∞ and its norm ‖ · ‖Lp are defined as in
Appendix B.4.

We first recall the following Nikolski’s inequality.

Lemma 2.4. For any u ∈ XN and 1 ≤ p ≤ q ≤ ∞,

‖u‖Lq ≤
(N p0 + 1

2π

) 1
p− 1

q ‖u‖Lp, (2.42)

where p0 is the least even integer ≥ p.

Another type of inverse inequality, i.e., the so-called Bernstein inequality, relates
the Lp-norms of a function and its derivatives.

Lemma 2.5. For any u ∈ XN and 1 ≤ p ≤ ∞,

‖∂ m
x u‖Lp � Nm‖u‖Lp, m ≥ 1. (2.43)

In particular, for p = 2,

‖∂ m
x u‖� Nm‖u‖. (2.44)
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The proofs of these inverse inequalities can be found in Butzer and Nessel (1971)
(also see Guo (1998b)). In particular, the derivation of (2.44) is straightforward by
using ∂ m

x (eikx) = (ik)meikx, and the orthogonality of the Fourier series.

2.2.2 Orthogonal Projection

Let PN : L2(I) → XN be the L2-orthogonal projection, defined by
(

PNu− u,v
)

= 0, ∀v ∈ XN. (2.45)

It is obvious that PNu is the truncated Fourier series, namely,

(PNu)(x) =
N

∑
k=−N

ûkeikx,

where {ûk} are given by (2.3).
We next measure the errors between PNu and u in Sobolev spaces. For this pur-

pose, we denote by Hm
p (I) the subspace of Hm(I) (cf. Appendix B.4), which consists

of functions with derivatives of order up to m− 1 being 2π-periodic. In view of the
relation (eikx)′ = ikeikx, the norm and semi-norm of Hm

p (I) can be characterized in
the frequency space by

‖u‖m =

(

∞

∑
k=−∞

(1+ k2)m|ûk|2
)1/2

, |u|m =

(

∞

∑
k=−∞

|k|2m|ûk|2
)1/2

. (2.46)

We see that the space Hm
p (I) with fractional m is also well-defined.

Formally, for any u ∈ Hm
p (I), we can differentiate the Fourier series term-wisely,

and obtain

∂ l
xu(x) =

∞

∑
k=−∞

(ik)l ûkeikx, 0 ≤ l ≤ m,

which implies the commutability of the derivative and projection operators:

∂ l
x(PNu) = PN(∂ l

xu), 0 ≤ l ≤ m. (2.47)

The main approximation result is stated below (cf. Kreiss and Oliger (1979), Canuto
and Quarteroni (1982)).

Theorem 2.1. For any u ∈ Hm
p (I) and 0 ≤ μ ≤ m,

‖PNu− u‖μ � Nμ−m|u|m. (2.48)
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Proof. By (2.46),

‖PNu− u‖2
μ = ∑

|k|>N

(1+ k2)μ |ûk|2

� N2μ−2m ∑
|k|>N

|k|2m−2μ(1+ k2)μ |ûk|2

� N2μ−2m ∑
|k|>N

|k|2m|ûk|2

� N2μ−2m|u|2m.
This completes the proof. �

This theorem indicates that the projection PNu is the best approximation of u in
all Sobolev spaces Hm

p (I) (m ≥ 0).
The L∞-estimate of the projection errors is stated as follows.

Theorem 2.2. For any u ∈ Hm
p (I) with m > 1/2,

max
x∈[0,2π ]

∣

∣(PNu− u)(x)
∣

∣≤
√

1
2m− 1

N1/2−m|u|m. (2.49)

Proof. By the Cauchy–Schwarz inequality,

∣

∣(PNu− u)(x)
∣

∣≤ ∑
|k|>N

|ûk| ≤
(

∑
|k|>N

|k|−2m
)1/2(

∑
|k|>N

|k|2m|ûk|2
)1/2

≤
√

1
2m− 1

N1/2−m|u|m.

The last step is due to the fact that for m > 1/2,

∑
|k|>N

|k|−2m ≤
∫ ∞

N
x−2mdx ≤ N1−2m

2m− 1
.

This completes the proof. �

2.2.3 Interpolation

For the sake of consistency, we consider the Fourier interpolation on 2N collocation
points {x j = π j/N}2N−1

j=0 , but still denote the interpolation operator by IN . That is,

(INu)(x) =
N

∑
k=−N

ũkeikx (2.50)
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with ũN = ũ−N and

ũk =
1

2Nck

2N−1

∑
j=0

u(x j)e
−ikx j , −N ≤ k ≤ N. (2.51)

The interpolation error: INu− u is characterized by the following theorem (see also
Kreiss and Oliger (1979), Canuto and Quarteroni (1982)):

Theorem 2.3. For any u ∈ Hm
p (I) with m > 1/2,

‖∂ l
x(INu− u)‖� Nl−m|u|m, 0 ≤ l ≤ m. (2.52)

Proof. We first show that the expansion coefficients of the continuous (cf. (2.3)) and
discrete Fourier series (cf. (2.51)) are connected by

ckũk = ûk +
∞

∑
|p|>0

ûk+2pN. (2.53)

Indeed, plugging u(x j) = ∑∞
|p|=0 ûpeipx j into (2.51) gives

ckũk =
1

2N

2N−1

∑
j=0

( ∞

∑
|p|=0

ûpei(p−k)x j

)

=
1

2N

∞

∑
|p|=0

( 2N−1

∑
j=0

ei(p−k)x j

)

ûp,

where the constant ck = 1 for |k|< N and ck = 2 for k =±N.

We deduce from Lemma 2.1 that ei(p−k)x j = 1, if and only if p− k = 2lN with
l ∈ Z, otherwise, it equals to zero. Hence, we have

ckũk =
∞

∑
|p|=0

ûk+2pN = ûk +
∞

∑
|p|>0

ûk+2pN ,

which yields (2.53). Thus, a direct calculation leads to

‖PNu− INu‖2 = ∑
|k|≤N

|ûk − ũk|2

= ∑
|k|<N

|ûk − ũk|2 + 1
4 ∑

k=±N

|2ûk − 2ũk|2

≤ ∑
|k|<N

|ûk − ũk|2 + 1
2 ∑

k=±N

|ûk − 2ũk|2 + 1
2 ∑

k=±N

|ûk|2

≤ ∑
|k|≤N

|ûk − ckũk|2 + 1
2 ∑

k=±N

|ûk|2.

The last term is bounded by

|ûN|2 + |û−N|2 ≤ N−2m
∞

∑
|k|=N

|k|2m|ûk|2 ≤ N−2m|u|2m,
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and the first term can be estimated by using the relation (2.53) and the Cauchy–
Schwarz inequality:

∑
|k|≤N

|ûk − ckũk|2 = ∑
|k|≤N

∣

∣

∣

∞

∑
|p|>0

ûk+2pN

∣

∣

∣

2

≤ ∑
|k|≤N

{( ∞

∑
|p|>0

|k+ 2pN|−2m
)( ∞

∑
|p|>0

|k+ 2pN|2m|ûk+2pN|2
)}

≤ max
|k|≤N

{ ∞

∑
|p|>0

|k+ 2pN|−2m
}(

∑
|k|≤N

∞

∑
|p|>0

|k+ 2pN|2m|ûk+2pN|2
)

.

It is clear that

max
|k|≤N

{ ∞

∑
|p|>0

|k+ 2pN|−2m
}

≤ 1
N2m

∞

∑
|p|>0

1
|2p− 1|2m � N−2m,

and

∑
|k|≤N

∞

∑
|p|>0

|k+ 2pN|2m|ûk+2pN|2 ≤ 2|u|2m.

Hence, a combination of the above estimates leads to

‖PNu− INu‖� N−m|u|m.

Moreover, by the inverse inequality (2.44),

‖∂ l
x(PNu− INu)‖� Nl‖PNu− INu‖� Nl−m|u|m.

Finally, using the triangle inequality and Theorem 2.1 yields

‖∂ l
x(INu− u)‖ ≤ ‖∂ l

x(PNu− INu)‖+ ‖∂ l
x(PNu− u)‖� Nl−m|u|m.

This ends the proof. �
We presented above some basic Fourier approximations in the Sobolev spaces.

The interested readers are referred to the books on Fourier analysis (see, e.g., Körner
(1988), Folland (1992)) for a thorough discussion on the Fourier approximations in
different contexts.

2.3 Applications of Fourier Spectral Methods

In this section, we apply Fourier spectral methods to several nonlinear PDEs with
periodic boundary conditions, including the Korteweg–de Vries (KdV) equation
(cf. Korteweg and de Vries (1895)), the Kuramoto–Sivashinsky (KS) equation
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(cf. Kuramoto and Tsuzuki (1976)) and the Allen–Cahn equation (cf. Allen and
Cahn (1979)). The emphasis will be put on the treatment for nonlinear terms and
time discretizations.

2.3.1 Korteweg–de Vries (KdV) Equation

The KdV equation is a celebrated mathematical model of waves on shallow water
surfaces. A fascinating property of the KdV equation is that it admits soliton-type
solutions (cf. Zabusky and Galvin (1971)). Consider the KdV equation in the whole
space:

∂tu+ u∂yu+ ∂ 3
y u = 0, y ∈ (−∞,∞), t > 0,

u(y,0) = u0(y), y ∈ (−∞,∞),
(2.54)

which has the exact soliton solution

u(y, t) = 12κ2sech2(κ(y− y0)− 4κ3t
)

, (2.55)

where y0 is the center of the initial profile u(y,0), and κ is a constant related to the
traveling phase speed.

Since u(y, t) decays exponentially to zero as |y| → ∞, we can truncate the infi-
nite interval to a finite one (−πL,πL) with L > 0, and approximate the boundary
conditions by the periodic boundary conditions on (−πL,πL). It is expected that
the initial-boundary valued problem (2.54) with periodic boundary conditions can
provide a good approximation to the original initial-valued problem as long as the
soliton does not reach the boundaries.

For convenience, we map the interval [−πL,πL] to [0,2π ] through the coordinate
transform:

x =
y
L
+π , y = L(x−π), x ∈ [0,2π ], y ∈ [−πL,πL],

and denote
v(x, t) = u(y, t), v0(x) = u0(y). (2.56)

The transformed KdV equation reads

∂t v+
1
L

v∂xv+
1
L3 ∂ 3

x v = 0, x ∈ (0,2π), t > 0,

v(·, t) periodic on [0,2π), t ≥ 0; v(x,0) = v0(x), x ∈ [0,2π ].
(2.57)

Writing v(x, t) = ∑∞
|k|=0 v̂k(t)eikx, taking the inner product of the first equation with

eikx, and using (2.3) and the fact that v∂xv = 1
2 ∂x(v2), we obtain that

dv̂k

dt
− ik3

L3 v̂k +
ik
2L
̂(v2)k = 0, k = 0,±1, . . . , (2.58)



2.3 Applications of Fourier Spectral Methods 39

with the initial condition

v̂k(0) =
1

2π

∫ 2π

0
v0(x)e

−ikxdx. (2.59)

The ODE systems (2.58)–(2.59) can be solved by various numerical methods
such as the Runge–Kutta methods or the semi-implicit/linearly implicit schemes
in which the nonlinear terms are treated explicitly while the leading linear term is
treated implicitly.

Here, we use a combination of the integrating factor and Runge–Kutta methods
as suggested in Trefethen (2000). More precisely, multiplying (2.58) by the integrat-
ing factor e−ik3t/L3

, we can rewrite the resulting equation as

d
dt

[

e−ik3t/L3
v̂k

]

=− ik
2L

e−ik3t/L3
̂(v2)k, k = 0,±1, . . . . (2.60)

Such a treatment makes the linear term disappear and can relax the stiffness of the
system. The system (2.60) can then be solved by a standard ODE solver.

We now describe the Fourier approximation of (2.57) in MATLAB. Let k be the
vector as in (2.40), and denote

ṽ =
(

ṽ0, . . . , ṽN/2, ṽ−N/2+1, . . . , ṽ−1
)

, g = e−ik3t/L3
, ũ = g.∗ ṽ,

where the operations on the vectors are component-wise. Then, the Fourier approx-
imation scheme based on (2.60) is as follows:

dũ
dt

=− ik
2L

.∗ g.∗fft
([

ifft
(

g−1.∗ ũ
)

]2)

, t > 0. (2.61)

Therefore, a Runge–Kutta method, such as the fourth-order MATLAB routine rk4.m,
can be directly applied to (2.61).

We present below some numerical results obtained by Program 27 (with some
minor modifications) in Trefethen (2000). We first take κ = 0.3, y0 = −20 and
L= 15. On the left of Fig. 2.2, we plot the time evolution of the approximate solution
(with N = 256, time step size τ = 0.01 and t ∈ [0,60]), and on the right, we plot
the maximum errors at t = 1,30,60 for various N with τ = 0.001. Observe that
the errors decay like O(e−cN), which is typical for smooth solutions. The superior
accuracy for this soliton solution indicates that the KdV equation on a finite interval
can be used to effectively simulate the KdV equation on the whole space before the
solitary wave reaches the boundaries.

In the next example, we consider the interaction of five solitary waves. More
precisely, we consider the KdV equation (2.54) with the initial condition which
consists of five solitary waves,

u0(y) =
5

∑
j=1

12κ2
j sech2(κ j(y− y0)

)

, (2.62)
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Fig. 2.2 Left: time evolution of the numerical solution; right: maximum errors vs. N

with

κ1 = 0.3, κ2 = 0.25, κ3 = 0.2, κ4 = 0.15, κ5 = 0.1,

y1 =−120, y2 =−90, y3 =−60, y4 =−30, y5 = 0.
(2.63)

We fix L = 50,N = 512 and τ = 0.01. In Fig. 2.3, we plot the time evolution of the
approximate solution for t ∈ [0,600], and depict the initial profile and final profile at
t = 600 in Fig. 2.4. We observe that the soliton with large amplitude travels with a
faster speed, and the amplitudes of the five solitary waves are well preserved at the
final time. This indicates the scheme has an excellent conservation property.

Fig. 2.3 Interaction of five solitary waves

2.3.2 Kuramoto–Sivashinsky (KS) Equation

The KS equation has been used in the study of a variety of reaction-diffusion sys-
tems (cf. Kuramoto and Tsuzuki (1976)), and is also an interesting dynamical PDE
that can exhibit chaotic solutions (cf. Hyman and Nicolaenko (1986), Nicolaenko
et al. (1985)).



2.3 Applications of Fourier Spectral Methods 41

Fig. 2.4 Profiles at t = 0,600

We consider the KS equation of the form

∂t u+∂ 4
x u+ ∂ 2

x u+ uux = 0, x ∈ (−∞,∞), t > 0,

u(x, t) = u(x+ 2Lπ , t), ∂xu(x, t) = ∂xu(x+ 2Lπ , t), t ≥ 0,

u(x,0) = u0(x), x ∈ (−∞,∞),

(2.64)

where the given function u0 is 2Lπ-periodic.
Thanks to the periodicity, it suffices to consider (2.64) in the reference interval

[0,2Lπ ]. We discretize (2.64) in space by seeking the approximate solution

uN(x, t) =
N/2

∑
k=−N/2

ũk(t)e
ikx/L, t > 0, (2.65)

where ũN/2(t) = ũ−N/2(t). The N independent frequencies are determined by the
scheme

∂tuN + ∂ 4
x uN + ∂ 2

x uN =−1
2

∂xIN
(

u2
N

)

, t > 0, (2.66)

where IN is the interpolation operator associated with the grids
{

x j = 2Lπ j/N
}N−1

j=0 .

Thus, for each frequency k, we have

ũ′k(t)+
( k4

L4 − k2

L2

)

ũk(t) =− 1
2L

ikw̃k(t), t > 0, (2.67)

where w̃k(t) is the discrete Fourier coefficient of the nonlinear term, i.e.,

IN
(

u2
N

)

=
N/2

∑
k=−N/2

w̃k(t)e
ikx/L. (2.68)
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It is important to point out that, using the Fourier transform, linear operators with
constant coefficients can always be diagonalized (i.e., the frequencies are separable)
like (2.67). This leads to efficient time integrations for the resulting equation in the
frequency space. We refer to Kassam and Trefethen (2005) for a review of vari-
ous time-stepping schemes. Here, we use an exponential time-differencing (ETD)
method as suggested in Kassam and Trefethen (2005).

Denote by ũuu(t) the vector of the expansion coefficients as arranged in Table 2.1.
Let LLL be the diagonal matrix with the diagonal kkk2/L2 − kkk4/L4, where kkk is the index
vector given by Table 2.1, and NNN(t) := NNN(ũuu, t) be the vector of the nonlinear term in
(2.67)–(2.68). Then, we can rewrite (2.67)–(2.68) as a nonlinear ODE system

ũuu′(t) = LLLũuu(t)+NNN(t), t > 0. (2.69)

Let τ be the time step size. It is clear that (2.69) is equivalent to

ũuu(tn + τ) = eLLLτ ũuu(tn)+ eLLLτ
∫ τ

0
e−LLLsNNN

(

ũuu(tn + s), tn + s
)

ds. (2.70)

Based on how one approximates the integral, various ETD schemes may be con-
structed. For example, let ũuun be the approximation of ũuu(tn). The following modified
fourth-order ETD Runge–Kutta (ETDRK4) has been shown to be a very stable and
accurate scheme for stiff equations (cf. Kassam and Trefethen (2005)):

aaan = eLLLτ/2ũuun +LLL−1(eLLLτ/2 − III
)

NNN(ũuun, tn),

bbbn = eLLLτ/2ũuun +LLL−1(eLLLτ/2 − III
)

NNN(aaan, tn + τ/2),

cccn = eLLLτ/2aaan +LLL−1(eLLLτ/2 − III
)[

2NNN(bbbn, tn + τ/2)−NNN(ũuun, tn)
]

,

ũuun+1 = eLLLτ ũuun +
{

αNNN(ũuun, tn)+ 2β
[

NNN(aaan, tn + τ/2)

+NNN(bbbn, tn + τ/2)
]

+ γNNN(cn, tn + τ)
}

,

(2.71)

where the coefficients

α = τ−2LLL−3
[

− 4−LLLτ + eLLLτ(4− 3LLLτ +(LLLτ)2)
]

,

β = τ−2LLL−3
[

2+LLLτ + eLLLτ(− 2+LLLτ
)

]

,

γ = τ−2LLL−3
[

− 4− 3LLLτ + eLLLτ(4−LLLτ
)− (LLLτ)2

]

.

(2.72)

In the following computations, we take L = 16 and impose the initial condition:

u0(x) = cos(x/L)(1+ sin(x/L))

as in Kassam and Trefethen (2005). In Fig. 2.5, we depict the time evolution of the
KS equation (2.64) obtained by the above algorithm with τ = 10−4 and N = 128.We
plot in Fig. 2.6 the profiles of the numerical solution at various time in the waterfall
format. We can observe the same pattern of the deterministic chaos as illustrated in
Kassam and Trefethen (2005).
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Fig. 2.5 Time evolution of the KS equation. Time runs from 0 at the bottom to 300 at the top
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Fig. 2.6 Waterfall plot of the profiles of the numerical solution

2.3.3 Allen–Cahn Equation

The Allen–Cahn equation was originally introduced in Allen and Cahn (1979) to
describe the motion of anti-phase boundaries in crystalline solids. It has been widely
used in material science applications.

We consider the two-dimensional Allen–Cahn equation with periodic boundary
conditions:

∂t u− ε2Δu+ u3− u = 0, (x,y) ∈ Ω = (−1,1)2, t > 0,

u(−1,y, t) = u(1,y, t), u(x,−1, t) = u(x,1, t), t ≥ 0,

u(x,y,0) = u0(x,y), (x,y) ∈ Ω̄ ,

(2.73)
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where ε is a small parameter which describes the inter-facial width. We refer to
Sect. 9.3 for a more thorough discussion on the Allen–Cahn equation.

Let us write the Fourier approximation of the solution as

uN(x,y, t) =
N/2−1

∑
k,l=−N/2

ũkl(t)e
i(kx+ly)π , (2.74)

and denote by um
N the approximation of uN at time tm = mτ with τ being the time

step size. Then a second-order stabilized semi-implicit scheme in time is (cf. Shen
and Yang (2010)):

3um+1
N − 4um

N + um−1
N

2τ
− ε2Δum+1

N +
(

2FN(u
m
N)−FN(u

m−1
N )

)

+ s
(

um+1
N − 2um

N + um−1
N

)

= 0, m = 1,2, . . . ,
(2.75)

where s > 0 is an adjustable parameter, and FN(v) = IN(v3)− v with IN being the
two-dimensional tensorial interpolation operator on the computational grid. Notice
that the extra dissipative term s

(

um+1
N − 2um

N + um−1
N

)

(of order sτ2) is added to im-
prove the stability while preserving the simplicity. At each time step, we only need
to solve the linear problem

−2τε2Δum+1
N +(3+ 2sτ)um+1

N = NNN
(

um
N ,u

m−1
N

)

, (2.76)

where

NNN
(

um
N ,u

m−1
N

)

= 4
(

1+ τs+ τ
)

um
N − (1+ 2τs+ 2τ

)

um−1
N

− 2τIN
[

2(um
N)

3 − (um−1
N )3].

(2.77)

Applying the Fourier Galerkin method yields the equations in the frequency space:
(

2τε2(k2 + l2)π2 + 3+ 2sτ
)

ũm+1
kl = w̃kl , (2.78)

where {w̃kl} are the discrete Fourier coefficients of the nonlinear term NNN
(

um
N,u

m−1
N

)

.
The above semi-implicit scheme leads to an efficient implementation with the main
cost coming from the treatment for the nonlinear term, which can be manipulated
by FFT through a pseudo-spectral approach.

To test the numerical scheme, we consider the motion of a circular interface and
impose the initial condition:

u0(x,y) =

{

1, (x− 0.5)2+(y− 0.5)2 < 1,

−1, otherwise.
(2.79)

The motion of the interface is driven by the mean curvature of the circle, so the
circle will shrink and eventually disappear, see Fig. 2.7. Note that the rate at which
the diameter of the circle shrinks can be determined analytically (cf. Chen and Shen
(1998)).
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Fig. 2.7 Time evolution of a circular domain

Problems

2.1. Let DN(x) be the Dirichlet kernel defined in (2.7).
(a) Show that DN(x) is an even function, and it is symmetric about x = 1/2, namely,

DN(−x) = DN(x), DN(1/2+ x) = DN(1/2− x),

(b) Show that
1

2π

∫ 2π

0
DN(x)dx = 1,

and

1
2π

∫ 2π

0
D2

N(x)dx = 2N + 1.

(c) Show that
∫ 2π

0
|DN(x)|dx ≤ c lnN, N ≥ 2,

where c is a positive constant independent of N.
(d) Prove that for any φ ∈ XN (defined in (2.41)),

φ(x) =
1

2π

∫ 2π

0
φ(t)DN(x− t)dt,

and

‖φ‖∞ ≤√
2N + 1‖φ‖.
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2.2. The Fejér kernel is defined as the Nth arithmetic mean of the Dirichlet kernels:

FN(x) =
1
N

N−1

∑
n=0

Dn(x).

Show that

FN(x) =
sin2

(

Nx/2
)

N sin2 (x/2
) .

2.3. Use the Sobolev inequality (B.33) and Theorem 2.1 to prove Theorem 2.2 with
m ≥ 1 in place of m > 1/2.

2.4. Determine D(2) and D2 with N = 4 and confirm that D2 �= D(2).

2.5. Derive the formula (2.37) for the entries of the second-order differentiation
matrix D(2).

2.6. Describe and implement a fourth-order Runge–Kutta and Fourier method for
the Burger equation with periodic boundary conditions:

ut = εuxx + uux, x ∈ (−π ,π); u(x,0) = e−10sin2(x/2),

with ε = 0.03 and the simulation running up to t = 1.



Chapter 3
Orthogonal Polynomials and Related
Approximation Results

The Fourier spectral method is only appropriate for problems with periodic
boundary conditions. If a Fourier method is applied to a non-periodic problem,
it inevitably induces the so-called Gibbs phenomenon, and reduces the global
convergence rate to O(N−1) (cf. Gottlieb and Orszag (1977)). Consequently,
one should not apply a Fourier method to problems with non-periodic boundary
conditions. Instead, one should use orthogonal polynomials which are eigenfunc-
tions of some singular Sturm-Liouville problems. The commonly used orthogonal
polynomials include the Legendre, Chebyshev, Hermite and Laguerre polynomials.

The aim of this chapter is to present essential properties and fundamental
approximation results related to orthogonal polynomials. These results serve as
preparations for polynomial-based spectral methods in the forthcoming chapters.
This chapter is organized as follows. In the first section, we present relevant prop-
erties of general orthogonal polynomials, and set up a general framework for the
study of orthogonal polynomials. We then study the Jacobi polynomials in Sect. 3.2,
Legendre polynomials in Sect. 3.3 and Chebyshev polynomials in Sect. 3.4. In
Sect. 3.5, we present some general approximation results related to these families
of orthogonal polynomials. We refer to Szegö (1975), Davis and Rabinowitz (1984)
and Gautschi (2004) for other aspects of orthogonal polynomials.

3.1 Orthogonal Polynomials

Orthogonal polynomials play the most important role in spectral methods, so it is
necessary to have a thorough study of their relevant properties. Our starting point is
the generation of orthogonal polynomials by a three-term recurrence relation, which
leads to some very useful formulas such as the Christoffel-Darboux formula. We
then review some results on zeros of orthogonal polynomials, and present efficient
algorithms for their computations. We also devote several sections to discussing
some important topics such as Gauss-type quadrature formulas, polynomial inter-
polations, discrete transforms, and spectral differentiation techniques.

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 47
Springer Series in Computational Mathematics 41, DOI 10.1007/978-3-540-71041-7 3,
c© Springer-Verlag Berlin Heidelberg 2011
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3.1.1 Existence and Uniqueness

Given an open interval I := (a,b) (−∞ ≤ a < b ≤+∞), and a generic weight func-
tion ω such that

ω(x)> 0, ∀x ∈ I and ω ∈ L1(I), (3.1)

two functions f and g are said to be orthogonal to each other in L2
ω (a,b) or orthog-

onal with respect to ω if

( f ,g)ω :=
∫ b

a
f (x)g(x)ω(x)dx = 0.

An algebraic polynomial of degree n is denoted by

pn(x) = knxn + kn−1xn−1 + . . .+ k1x+ k0, kn �= 0, (3.2)

where {ki} are real constants, and kn is the leading coefficient of pn.
A sequence of polynomials {pn}∞

n=0 with deg(pn) = n is said to be orthogonal
in L2

ω (a,b) if

(pn, pm)ω =

∫ b

a
pn(x)pm(x)ω(x)dx = γnδmn, (3.3)

where the constant γn = ‖pn‖2
ω is nonzero, and δmn is the Kronecker delta.

Throughout this section, {pn} denotes a sequence of polynomials orthogonal
with respect to the weight function ω , and pn is of degree n.

Denote by Pn the set of all algebraic polynomials of degree ≤ n, namely,

Pn := span
{

1,x,x2, . . . ,xn} . (3.4)

By a dimension argument,

Pn = span{p0, p1, . . . , pn} . (3.5)

A direct consequence is the following.

Lemma 3.1. pn+1 is orthogonal to any polynomial q ∈ Pn.

Proof. Thanks to (3.5), for any q ∈ Pn, we can write

q = bn pn + bn−1pn−1 + . . .+ b0p0.

Hence,

(pn+1, q)ω = bn(pn+1, pn)ω + bn−1(pn+1, pn−1)ω + . . .+ b0(pn+1, p0)ω = 0,

where we have used the orthogonality (3.3). ��
Hereafter, we denote the monic polynomial corresponding to pn by

p̄n(x) := pn(x)/kn = xn + a(n)n−1xn−1 + . . .+ a(n)0 . (3.6)
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We show below that for any given weight function ω(x) defined in (a,b), there
exists a unique family of monic orthogonal polynomials generated by a three-term
recurrence formula.

Theorem 3.1. For any given positive weight function ω ∈ L1(I), there exists a
unique sequence of monic orthogonal polynomials { p̄n} with deg(p̄n) = n, which
can be constructed as follows

p̄0 = 1, p̄1 = x−α0,

p̄n+1 = (x−αn)p̄n −βn p̄n−1, n ≥ 1,
(3.7)

where

αn =
(xp̄n, p̄n)ω
‖ p̄n‖2

ω
, n ≥ 0, (3.8a)

βn =
‖ p̄n‖2

ω
‖ p̄n−1‖2

ω
, n ≥ 1. (3.8b)

Proof. It is clear that the first two polynomials are

p̄0(x)≡ 1, p̄1(x) = x−α0.

To determine α0, we see that (p̄0, p̄1)ω = 0 if and only if

α0 =

∫ b

a
ω(x)xdx

/∫ b

a
ω(x)dx =

(xp̄0, p̄0)ω
‖ p̄0‖2

ω
,

where the denominator is positive due to (3.1).
We proceed with the proof by using an induction argument. Assuming that by a

similar construction, we have derived a sequence of monic orthogonal polynomials
{p̄k}n

k=0 . Next, we seek p̄n+1 of the form

p̄n+1 = xp̄n −αn p̄n −βn p̄n−1 −
n−2

∑
k=0

γ(n)k p̄k, (3.9)

with αn and βn given by (3.8), and we require
(

p̄n+1, p̄k
)

ω = 0, 0 ≤ k ≤ n. (3.10)

Taking the inner product with p̄k on both sides of (3.9), and using the orthogo-
nality of { p̄k}n

k=0, we find that (3.10) is fulfilled if and only if

(p̄n+1, p̄n)ω = (xp̄n, p̄n)ω −αn(p̄n, p̄n)ω = 0,

(p̄n+1, p̄n−1)ω = (xp̄n, p̄n−1)ω −βn(p̄n−1, p̄n−1)ω = 0,

(p̄n+1, p̄ j)ω = (xp̄n, p̄ j)ω −
n−2

∑
k=0

γ(n)k (p̄k, p̄ j)ω

(3.3)
= (xp̄n, p̄ j)ω − γ (n)j ‖ p̄ j‖2

ω = 0, 0 ≤ j ≤ n− 2.

(3.11)
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Hence, the first equality implies (3.8a), and by the second one,

βn =
(xp̄n, p̄n−1)ω
‖ p̄n−1‖2

ω
=

(p̄n,xp̄n−1)ω
‖ p̄n−1‖2

ω
=

‖ p̄n‖2
ω

‖ p̄n−1‖2
ω
,

where we have used the fact

xp̄n−1 = p̄n +
n−1

∑
k=0

δ (n)
k p̄k,

and the orthogonality of { p̄k}n
k=0 to deduce the last identity. It remains to show that

the coefficients {γ(n)k }n−2
k=0 in (3.9) are all zero. Indeed, we derive from Lemma 3.1

that (
xp̄n, p̄ j

)
ω = (p̄n, xp̄ j)ω = 0, 0 ≤ j ≤ n− 2,

which, together with the last equation of (3.11), implies γ(n)k ≡ 0 for 0 ≤ k ≤ n− 2,
in (3.9). This completes the induction.

Next, we show that the polynomial sequence generated by (3.7)–(3.8) is unique.
For this purpose, we assume that {q̄n}∞

n=0 is another sequence of monic orthogonal
polynomials. Since p̄n, given by (3.7), is also monic, we have deg

(
p̄n+1− q̄n+1

)≤ n.
By Lemma 3.1,

(p̄n+1, p̄n+1− q̄n+1)ω = 0, (q̄n+1, p̄n+1 − q̄n+1)ω = 0,

which implies(
p̄n+1 − q̄n+1, p̄n+1 − q̄n+1

)
ω = 0 ⇒ p̄n+1(x)− q̄n+1(x)≡ 0.

This proves the uniqueness. ��
The above theorem provides a general three-term recurrence relation to construct

orthogonal polynomials, and the constants αn and βn can be evaluated explicitly for
the commonly used families. The three-term recurrence relation (3.7) is essential
for deriving other properties of orthogonal polynomials. For convenience, we first
extend it to the orthogonal polynomials {pn}, which are not necessarily monic.

Corollary 3.1. Let {pn} be a sequence of orthogonal polynomials with the leading
coefficient kn �= 0. Then we have

pn+1 = (anx− bn)pn − cn pn−1, n ≥ 0, (3.12)

with p−1 := 0, p0 = k0 and

an =
kn+1

kn
, (3.13a)

bn =
kn+1

kn

(xpn, pn)ω

‖pn‖2
ω

, (3.13b)

cn =
kn−1kn+1

k2
n

‖pn‖2
ω

‖pn−1‖2
ω
. (3.13c)
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Proof. This result follows directly from Theorem 3.1 by inserting p̄l = pl/kl with
l = n− 1,n,n+ 1 into (3.7) and (3.8). ��

The orthogonal polynomials {pn} with leading coefficients {kn} are uniquely de-
termined by (3.12)–(3.13). Interestingly, the following result, which can be viewed
as the converse of Corollary 3.1, also holds. We leave its proof as an exercise (see
Problem 3.1).

Corollary 3.2. Let {kn �= 0} be a sequence of real numbers. The three-term re-
currence relation (3.12)–(3.13) generates a sequence of polynomials satisfying the
properties:

• the leading coefficient of pn is kn and deg(pn) = n;
• {pn} are orthogonal with respect to the weight function ω(x);
• the L2

ω -norm of pn is given by

γn = ‖pn‖2
ω = (a0/an)c1c2 . . .cnγ0, n ≥ 0, (3.14)

where γ0 = k2
0

∫ b
a ω(x)dx.

An important consequence of the three-term recurrence formula (3.12)–(3.13) is
the well-known Christoff-Darboux formula.

Corollary 3.3. Let {pn} be a sequence of orthogonal polynomials with deg(pn) = n.
Then,

pn+1(x)pn(y)− pn(x)pn+1(y)
x− y

=
kn+1

kn

n

∑
j=0

‖pn‖2
ω

‖p j‖2
ω

p j(x)p j(y), (3.15)

and

p′n+1(x)pn(x)− p′n(x)pn+1(x) =
kn+1

kn

n

∑
j=0

‖pn‖2
ω

‖p j‖2
ω

p2
j(x). (3.16)

Proof. We first prove (3.15). By Corollary 3.1,

p j+1(x)p j(y)− p j(x)p j+1(y)

= [(a jx− b j)p j(x)− c j p j−1(x)]p j(y)

− p j(x)[(a jy− b j)p j(y)− c j p j−1(y)]

= a j(x− y)p j(x)p j(y)+ c j[p j(x)p j−1(y)− p j−1(x)p j(y)].

Thus, by (3.13),

k j

k j+1‖p j‖2
ω

p j+1(x)p j(y)− p j(x)p j+1(y)

x− y

− k j−1

k j‖p j−1‖2
ω

p j(x)p j−1(y)− p j−1(x)p j(y)

x− y
=

1
‖p j‖2

ω
p j(x)p j(y).

This relation also holds for j = 0 by defining p−1 := 0. Summing the above identities
for 0 ≤ j ≤ n leads to (3.15).
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To prove (3.16), we observe that

pn+1(x)pn(y)− pn(x)pn+1(y)
x− y

=
pn+1(x)− pn+1(y)

x− y
pn(y)− pn(x)− pn(y)

x− y
pn+1(y).

Consequently, letting y → x, we obtain (3.16) from (3.15) and the definition of the
derivative. ��

Define the kernel

Kn(x,y) =
n

∑
j=0

p j(x)p j(y)

‖p j‖2
ω

. (3.17)

The Christoff-Darboux formula (3.15) can be rewritten as

Kn(x,y) =
kn

kn+1‖pn‖2
ω

pn+1(x)pn(y)− pn(x)pn+1(y)
x− y

. (3.18)

A remarkable property of {Kn} is stated in the following lemma.

Lemma 3.2. There holds the integral equation:

q(x) =
∫ b

a
q(t)Kn(x, t)ω(t)dt, ∀q ∈ Pn. (3.19)

Moreover, the polynomial sequence {Kn(x,a)} (resp. {Kn(x,b)}) is orthogonal with
respect to the weight function (x− a)ω (resp. (b− x)ω).

Proof. Thanks to (3.5), for any q ∈ Pn, we can write

q(x) =
n

∑
j=0

q̂ j p j(x) with q̂ j =
1

‖p j‖2
ω

∫ b

a
q(t)p j(t)ω(t)dt.

Thus, by definition (3.17),

q(x) =
n

∑
j=0

1
‖p j‖2

ω

∫ b

a
q(t)p j(x)p j(t)ω(t)dt =

∫ b

a
q(t)Kn(x, t)ω(t)dt,

which gives (3.19).
Next, taking x = a and q(t) = (t − a)r(t) for any r ∈ Pn−1 in (3.19) yields

0 = q(a) =
∫ b

a
Kn(t,a)r(t)(t − a)ω(t)dt, ∀r ∈ Pn−1,

which implies {Kn(x,a)} is orthogonal with respect to (x− a)ω.
Similarly, taking x = b and q(t) = (b− t)r(t) for any r ∈ Pn−1 in (3.19), we can

show that {Kn(x,b)} is orthogonal with respect to (b− x)ω . ��
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3.1.2 Zeros of Orthogonal Polynomials

Zeros of orthogonal polynomials play a fundamental role in spectral methods. For
example, they are chosen as the nodes of Gauss-type quadratures, and used to gen-
erate computational grids for spectral methods. Therefore, it is useful to derive their
essential properties.

Again, let {pn} (with deg(pn) = n) be a sequence of polynomials orthogonal
with respect to the weight function ω(x) in (a,b). The first important result about
the zeros of orthogonal polynomials is the following:

Theorem 3.2. The zeros of pn+1 are all real, simple, and lie in the interval (a,b).

Proof. We first show that the zeros of pn+1 are all real. Assuming α ± iβ are a pair
of complex roots of pn+1. Then pn+1/((x−α)2 +β 2) ∈ Pn−1, and by Lemma 3.1,

0 =
∫ b

a
pn+1

pn+1

(x−α)2 +β 2 ωdx =
∫ b

a

(
(x−α)2 +β 2)∣∣∣ pn+1

(x−α)2 +β 2

∣∣∣2ωdx,

which implies that β = 0. Hence, all zeros of pn+1 must be real.
Next, we prove that the n+ 1 zeros of pn+1 are simple, and lie in the interval

(a,b). By the orthogonality,

∫ b

a
pn+1(x)ω(x)dx = 0, ∀n ≥ 0,

there exists at least one zero of pn+1 in (a,b). In other words, pn+1(x) must change
sign in (a,b). Let x0,x1, . . . ,xk be all such points in (a,b) at which pn+1(x) changes
sign. If k = n, we are done, since {xi}n

i=0 are the n+ 1 simple real zeros of pn+1. If
k < n, we consider the polynomial

q(x) = (x− x0)(x− x1) . . . (x− xk).

Since deg(q) = k+ 1 < n+ 1, by orthogonality, we derive

(pn+1, q)ω = 0.

However, pn+1(x)q(x) cannot change sign on (a,b), since each sign change in
pn+1(x) is canceled by a corresponding sign change in q(x). It follows that

(pn+1, q)ω �= 0,

which leads to a contradiction. ��
Another important property is known as the separation theorem.

Theorem 3.3. Let x0 = a, xn+1 = b and x1 < x2 < .. . < xn be the zeros of pn. Then
there exists exactly one zero of pn+1 in each subinterval (x j, x j+1), j = 0,1, . . . ,n.
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Proof. It is obvious that the location of zeros is invariant with any nonzero constant
multiple of pn and pn+1, so we assume that the leading coefficients kn,kn+1 > 0.

We first show that each of the interior subintervals (x j, x j+1), j = 1,2, . . . ,n− 1,
contains at least one zero of pn+1, which is equivalent to proving

pn+1(x j)pn+1(x j+1)< 0, 1 ≤ j ≤ n− 1. (3.20)

Since pn can be written as

pn(x) = kn(x− x1)(x− x2) . . . (x− xn),

a direct calculation leads to

p′n(x j) = kn

j−1

∏
l=1

(x j − xl) ·
n

∏
l= j+1

(x j − xl). (3.21)

This implies

p′n(x j)p′n(x j+1) = Dn, j × (−1)n− j × (−1)n− j−1 < 0, (3.22)

where Dn, j is a positive constant. On the other hand, using the facts that pn(x j) =
pn(x j+1) = 0 and kn,kn+1 > 0, we find from (3.16) that

−p′n(x j)pn+1(x j)> 0, −p′n(x j+1)pn+1(x j+1)> 0. (3.23)

Consequently,

[
p′n(x j)p′n(x j+1)

][
pn+1(x j)pn+1(x j+1)

]
> 0

(3.22)
=⇒ pn+1(x j)pn+1(x j+1)< 0.

Next, we prove that there exists at least one zero of pn+1 in each of the boundary
subintervals (xn, b) and (a,x1). Since pn(xn) = 0 and p′n(xn) > 0 (cf. (3.21)), the
use of (3.16) again gives pn+1(xn) < 0. On the other hand, due to kn+1 > 0, we
have pn+1(b)> 0. Therefore, pn+1(xn)pn+1(b) < 0, which implies (xn,b) contains
at least one zero of pn+1. The existence of at least one zero of pn+1 in (a,x1) can be
justified in a similar fashion.

In summary, we have shown that each of the n+ 1 subintervals (x j,x j+1), 0 ≤
j ≤ n, contains at least one zero of pn+1. By Theorem 3.2, pn+1 has exactly n+ 1
real zeros, so each subinterval contains exactly one zero of pn+1. ��

A direct consequence of (3.22) is the following.

Corollary 3.4. Let {pn} be a sequence of orthogonal polynomials with deg(pn)= n.
Then the zeros of p′n are real and simple, and there exists exactly one zero of p′n
between two consecutive zeros of pn.
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3.1.3 Computation of Zeros of Orthogonal Polynomials

We present below two efficient algorithms for computing zeros of orthogonal poly-
nomials.

The first approach is the so-called Eigenvalue Method.

Theorem 3.4. The zeros {x j}n
j=0 of the orthogonal polynomial pn+1(x) are eigen-

values of the following symmetric tridiagonal matrix:

An+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 β1

β1 α1 β2

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.24)

where

α j =
b j

a j
, j ≥ 0; β j =

1
a j−1

√
a j−1c j

a j
, j ≥ 1, (3.25)

with {a j,b j,c j} being the coefficients of the three-term recurrence relation (3.12),
namely,

p j+1(x) = (a jx− b j)p j(x)− c j p j−1(x), j ≥ 0, (3.26)

with p−1 := 0.

Proof. We first normalize the orthogonal polynomials {p j} by defining

p̃ j(x) =
1√γ j

p j(x) with γ j = ‖p j‖2
ω ⇒ ‖ p̃ j‖ω = 1.

Thus, we have

xp̃ j
(3.26)
=

c j

a j

√γ j−1

γ j
p̃ j−1 +

b j

a j
p̃ j +

1
a j

√ γ j+1

γ j
p̃ j+1

(3.13)
=

1
a j−1

√ γ j

γ j−1
p̃ j−1 +

b j

a j
p̃ j +

1
a j

√
γ j+1

γ j
p̃ j+1

= β j p̃ j−1(x)+α j p̃ j(x)+β j+1 p̃ j+1(x), j ≥ 0,

(3.27)

where we denote

α j :=
b j

a j
, β j :=

1
a j−1

√
γ j

γ j−1
.
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By (3.13),
γ j

γ j−1
=

a j−1c j

a j
> 0 ⇒ β j =

1
a j−1

√
a j−1c j

a j
.

Then we rewrite the recurrence relation (3.27) as

xp̃ j(x) = β j p̃ j−1(x)+α j p̃ j(x)+β j+1 p̃ j+1(x), j ≥ 0.

We now take j = 0,1, . . . ,n to form a system with the matrix form

xP̃(x) = An+1P̃(x)+βn+1 p̃n+1(x)En+1, (3.28)

where An+1 is given by (3.24), and

P̃(x) =
(

p̃0(x), p̃1(x), . . . , p̃n(x)
)T

, En+1 = (0,0, . . . ,0,1)T .

Since p̃n+1(x j) = 0, 0 ≤ j ≤ n, the system (3.28) at x = x j becomes

x jP̃(x j) = An+1P̃(x j), 0 ≤ j ≤ n. (3.29)

Hence, {x j}n
j=0 are eigenvalues of the symmetric tridiagonal matrix An+1. ��

An alternative approach for finding zeros of orthogonal polynomials is to use an
iterative procedure. More precisely, let x0

j be an initial approximation to the zero x j

of pn+1(x). Then, one can construct an iterative scheme in the general form:

{
xk+1

j = xk
j +D(xk

j), 0 ≤ j ≤ n, k ≥ 0,

given
{

x0
j

}n
j=0, and a termination rule.

(3.30)

The deviation D(·) classifies different types of iterative schemes. For instance, the
Newton method is of second-order with

D(x) =− pn+1(x)
p′n+1(x)

, (3.31)

while the Laguerre method is a third-order scheme with

D(x) =− pn+1(x)
p′n+1(x)

− pn+1(x)p′′n+1(x)

2(p′n+1(x))
2 . (3.32)

Higher-order schemes can be constructed by using higher-order derivatives of pn+1.
The success of an iterative method often depends on how good is the initial guess.

If the initial approximation is not sufficiently close, the algorithm may converge to
other unwanted values or even diverge. For a thorough discussion on how to find
zeros of polynomials, we refer to Pan (1997) and the references therein.
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3.1.4 Gauss-Type Quadratures

We now discuss the relations between orthogonal polynomials and Gauss-type
integration formulas. The mechanism of a Gauss-type quadrature is to seek the best
numerical approximation of an integral by selecting optimal nodes at which the in-
tegrand is evaluated. It belongs to the family of the numerical quadratures:

∫ b

a
f (x)ω(x)dx =

N

∑
j=0

f (x j)ω j +EN[ f ], (3.33)

where {x j,ω j}N
j=0 are the quadrature nodes and weights, and EN [ f ] is the quadrature

error. If EN [ f ]≡ 0, we say the quadrature formula (3.33) is exact for f .
Hereafter, we assume that the nodes {x j}N

j=0 are distinct. If f (x) ∈ CN+1[a,b],
we have (see, e.g., Davis and Rabinowitz (1984)):

EN [ f ] =
1

(N + 1)!

∫ b

a
f (N+1)(ξ (x))

N

∏
i=0

(x− xi)dx, (3.34)

where ξ (x) ∈ [a,b]. The Lagrange basis polynomials associated with {x j}N
j=0 are

given by

h j(x) =
N

∏
i=0;i�= j

x− xi

x j − xi
, 0 ≤ j ≤ N, (3.35)

so taking f (x) = h j in (3.33) and using (3.34), we find the quadrature weights:

ω j =

∫ b

a
h j(x)ω(x)dx, 0 ≤ j ≤ N. (3.36)

We say that the integration formula (3.33)–(3.36) has a degree of precision (DOP)
m, if there holds

EN [p] = 0, ∀p ∈ Pm but ∃q ∈ Pm+1 such that EN [q] �= 0. (3.37)

In general, for any N + 1 distinct nodes {x j}N
j=0 ⊆ (a,b), the DOP of (3.33)–(3.36)

is between N and 2N + 1. Moreover, if the nodes {xk}N
k=0 are chosen as zeros of

the polynomial pN+1 orthogonal with respect to ω , this rule enjoys the maximum
degree of precision 2N + 1. Such a rule is known as the Gauss quadrature.

Theorem 3.5. (Gauss quadrature) Let {x j}N
j=0 be the set of zeros of the orthogonal

polynomial pN+1. Then there exists a unique set of quadrature weights {ω j}N
j=0,

defined by (3.36), such that

∫ b

a
p(x)ω(x)dx =

N

∑
j=0

p(x j)ω j, ∀p ∈ P2N+1, (3.38)
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where the quadrature weights are all positive and given by

ω j =
kN+1

kN

‖pN‖2
ω

pN(x j)p′N+1(x j)
, 0 ≤ j ≤ N, (3.39)

where k j is the leading coefficient of the polynomial p j.

Proof. Let {h j}N
j=0 be the Lagrange basis polynomials defined in (3.35). It is clear

that

PN = span
{

h j : 0 ≤ j ≤ N
} ⇒ p(x) =

N

∑
j=0

p(x j)h j(x), ∀p ∈ PN.

Hence,
∫ b

a
p(x)ω(x)dx =

N

∑
j=0

p(x j)
∫ b

a
h j(x)ω(x)dx

(3.36)
=

N

∑
j=0

p(x j)ω j, (3.40)

which implies (3.38) is exact for any p ∈ PN . In other words, the DOP of this rule is
not less than N.

Next, for any p ∈ P2N+1, we can write p = rpN+1 + s where r,s ∈ PN . In view of
pN+1(x j) = 0, we have p(x j) = s(x j) for 0 ≤ j ≤ N. Since pN+1 is orthogonal to r
(cf. Lemma 3.1) and s ∈ PN , we find

∫ b

a
p(x)ω(x)dx =

∫ b

a
s(x)ω(x)dx

=
N

∑
j=0

s(x j)ω j
(3.40)
=

N

∑
j=0

p(x j)ω j, ∀p ∈ P2N+1, (3.41)

which leads to (3.38).
Now, we show that ω j > 0 for 0 ≤ j ≤ N. Taking p(x) = h2

j(x) ∈ P2N in (3.41)
leads to

0 <
∫ b

a
h2

j(x)ω(x)dx =
N

∑
k=0

h2
j(xk)ωk = ω j, 0 ≤ j ≤ N.

It remains to establish (3.39). Since pN+1(x j) = 0, taking y = x j and n = N in the
Christoff-Darboux formula (3.15) yields

pN(x j)
pN+1(x)
x− x j

=
kN+1

kN

N

∑
i=0

‖pN‖2
ω

‖pi‖2
ω

pi(x j)pi(x).

Multiplying the above formula by ω(x) and integrating the resulting identity over
(a,b), we deduce from the orthogonality (pi,1)ω = 0, i ≥ 1, that

pN(x j)
∫ b

a

pN+1(x)
x− x j

ω(x)dx

=
kN+1

kN
‖pN‖2

ω
(p0(x j), p0)ω

‖p0‖2
ω

=
kN+1

kN
‖pN‖2

ω .

(3.42)
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Note that the Lagrange basis polynomial h j(x) in (3.35) can be expressed as

h j(x) =
pN+1(x)

p′N+1(x j)(x− x j)
. (3.43)

Plugging it into (3.42) gives

pN(x j)
∫ b

a

pN+1(x)
x− x j

ω(x)dx = pN(x j)p′N+1(x j)
∫ b

a
h j(x)ω(x)dx

= pN(x j)p′N+1(x j)ω j =
kN+1

kN
‖pN‖2

ω ,

(3.44)

which implies (3.39). ��
The above fundamental theorem reveals that the optimal abscissas of the Gauss

quadrature formula are precisely the zeros of the orthogonal polynomial for the
same interval and weight function. The Gauss quadrature is optimal because it fits
all polynomials up to degree 2N + 1 exactly, and it is impossible to find any set of
{x j, ω j}N

j=0 such that (3.38) holds for all p ∈ P2N+2 (see Problem 3.3).
With the exception of a few special cases, like the Chebyshev polynomials, no

explicit expressions of the quadrature nodes and weights are available. Theorem 3.4
provides an efficient approach to compute the nodes {x j}N

j=0, through finding the
eigenvalues of the symmetric tridiagonal matrix AN+1 defined in (3.24). The fol-
lowing result indicates that the weights {ω j}N

j=0 can be computed from the first
component of the eigenvectors of AN+1.

Theorem 3.6. Let

Q(x j) =
(
Q0(x j),Q1(x j), . . . ,QN(x j)

)T

be the orthonormal eigenvector of AN+1 corresponding to the eigenvalue x j, i.e.,

AN+1Q(x j) = x jQ(x j) with Q(x j)
T Q(x j) = 1.

Then the weights {ω j}N
j=0 can be computed from the first component of the eigen-

vector Q(x j) by using the formula:

ω j =
[
Q0(x j)

]2
∫ b

a
ω(x)dx, 0 ≤ j ≤ N. (3.45)

Proof. Using the Christoffel-Darboux formula (3.16) and the fact that pN+1(x j) = 0,
we derive from (3.39) the following alternative expression of the weights:

ω−1
j

(3.39)
=

kN

kN+1

pN(x j)p′N+1(x j)

‖pN‖2
ω

(3.16)
=

N

∑
n=0

p2
n(x j)

‖pn‖2
ω

= P̃(x j)
T P̃(x j), 0 ≤ j ≤ N,

(3.46)
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where
P̃(x j) =

(
p̃0(x j), p̃1(x j), . . . , p̃N(x j)

)T
with p̃n =

pn

‖pn‖ω
.

The identity (3.46) can be rewritten as

ω jP̃(x j)
T P̃(x j) = 1, 0 ≤ j ≤ N.

On the other hand, we deduce from (3.29) that P̃(x j) is an eigenvector corresponding
to the eigenvalue x j. Therefore,

Q(x j) =
√ω j P̃(x j), 0 ≤ j ≤ N, (3.47)

is the unit eigenvector corresponding to the eigenvalue x j. Equating the first com-
ponents (3.47) yields

ω j =

[
Q0(x j)

p̃0(x j)

]2

=
‖p0‖2

ω[
p0(x j)

]2

[
Q0(x j)

]2
=
[
Q0(x j)

]2
∫ b

a
ω(x)dx, 0 ≤ j ≤ N.

This completes the proof. ��
Notice that all the nodes of the Gauss formula lie in the interior of the interval

(a,b). This makes it difficult to impose boundary conditions. Below, we consider
the Gauss-Radau or Gauss-Lobatto quadratures which include either one or both
endpoints as a node(s).

We start with the Gauss-Radau quadrature. Assuming we would like to include
the left endpoint x = a in the quadrature, we define

qN(x) =
pN+1(x)+αN pN(x)

x− a
with αN =− pN+1(a)

pN(a)
. (3.48)

It is obvious that qN ∈ PN , and for any rN−1 ∈ PN−1, we derive from Lemma 3.1 that

∫ b

a
qN(x)rN−1(x)ω(x)(x− a)dx

=
∫ b

a
(pN+1(x)+αN pN(x)) rN−1(x)ω(x)dx = 0.

(3.49)

Hence,
{

qN : N ≥ 0
}

defines a sequence of polynomials orthogonal with respect to
the weight function ω̃(x) := ω(x)(x− a), and the leading coefficient of qN is kN+1.

Theorem 3.7. (Gauss-Radau quadrature) Let x0 = a and {x j}N
j=1 be the zeros of

qN defined in (3.48). Then there exists a unique set of quadrature weights {ω j}N
j=0,

defined by (3.36), such that

∫ b

a
p(x)ω(x)dx =

N

∑
j=0

p(x j)ω j, ∀p ∈ P2N. (3.50)
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Moreover, the quadrature weights are all positive and can be expressed as

ω0 =
1

qN(a)

∫ b

a
qN(x)ω(x)dx, (3.51a)

ω j =
1

x j − a
kN+1

kN

‖qN−1‖2
ω̃

qN−1(x j)q′N(x j)
, 1 ≤ j ≤ N. (3.51b)

Proof. The proof is similar to that of Theorem 3.5, so we shall only sketch it below.
Obviously, for any p ∈ PN ,

∫ b

a
p(x)ω(x)dx =

N

∑
j=0

p(x j)

∫ b

a
h j(x)ω(x)dx

(3.36)
=

N

∑
j=0

p(x j)ω j. (3.52)

Hence, the DOP is at least N.
Next, for any p ∈ P2N , we write

p = (x− a)rqN + s, r ∈ PN−1, s ∈ PN .

Since (x− a)qN(x)
∣∣
x=x j

= 0, we have p(x j) = s(x j) for 0 ≤ j ≤ N. Therefore, we

deduce from (3.49) that

∫ b

a
p(x)ω(x)dx =

∫ b

a
s(x)ω(x)dx

=
N

∑
j=0

s(x j)ω j =
N

∑
j=0

p(x j)ω j, ∀p ∈ P2N.

Taking p(x) = h2
k(x) ∈ P2N in the above identities, we conclude that ωk > 0 for

0 ≤ k ≤ N.
Note that the Lagrange basis polynomials take the form

h j(x) =
(x− a)qN(x)(

(x− a)qN(x)
)′∣∣∣

x=x j
(x− x j)

=
(x− a)qN(x)(

qN(x j)+ (x j − a)q′N(x j)
)
(x− x j)

, 0 ≤ j ≤ N.

Hence, letting j = 0, we derive (3.51a) from the definition of ω0, and for 1 ≤ j ≤ N,

ω j =

∫ b

a
h j(x)ω(x)dx =

1
x j − a

∫ b

a

qN(x)
q′N(x j)(x− x j)

ω̃(x)dx.

Recall that {qn} are orthogonal with respect to ω̃, so the integral part turns out to
be the weight of the Gauss quadrature associated with N nodes being the zeros of
qN(x). Hence, (3.51b) follows from the formula (3.39). ��
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Remark 3.1. Similarly, a second Gauss-Radau quadrature can be constructed if we
want to include the right endpoint x = b instead of the left endpoint x = a.

We now turn to the Gauss-Lobatto quadrature, whose nodes include two end-
points x = a,b. In this case, we choose αN and βN such that

pN+1(x)+αN pN(x)+βN pN−1(x) = 0 for x = a,b, (3.53)

and set

zN−1(x) =
pN+1(x)+αN pN(x)+βN pN−1(x)

(x− a)(b− x)
. (3.54)

It is clear that zN−1 ∈ PN−1 and for any rN−2 ∈ PN−2, we derive from Lemma 3.1
that

∫ b

a
zN−1rN−2(x− a)(b− x)ω dx

=
∫ b

a

(
pN+1 +αN pN +βN pN−1

)
rN−2ω dx = 0.

(3.55)

Hence,
{

zN−1 : N ≥ 1
}

defines a sequence of polynomials orthogonal with respect
to the weight function ω̂(x) := (x− a)(b− x)ω(x), and the leading coefficient of
zN−1 is −kN+1.

Theorem 3.8. (Gauss-Lobatto quadrature) Let x0 = a, xN = b and {x j}N−1
j=1 be the

zeros of zN−1 in (3.53)–(3.54). Then there exists a unique set of quadrature weights
{ω j}N

j=0, defined by (3.36), such that

∫ b

a
p(x)ω(x)dx =

N

∑
j=0

p(x j)ω j, ∀p ∈ P2N−1, (3.56)

where the quadrature weights are expressed as

ω0 =
1

(b− a)zN−1(a)

∫ b

a
(b− x)zN−1(x)ω(x)dx, (3.57a)

ω j =
1

(x j − a)(b− x j)

kN+1

kN

‖zN−2‖2
ω̂

zN−2(x j)z′N−1(x j)
, 1 ≤ j ≤ N − 1, (3.57b)

ωN =
1

(b− a)zN−1(b)

∫ b

a
(x− a)zN−1(x)ω(x)dx. (3.57c)

Moreover, we have ω j > 0 for 1 ≤ j ≤ N − 1.

Proof. The exactness (3.56) and the formulas of the weights can be derived in a
similar fashion as in Theorem 3.7, so we skip the details. Here, we just verify ω j > 0
for 1 ≤ j ≤ N − 1 by using a different approach. Since {zN−1} are orthogonal with
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respect to the weight function ω̂, and zN−1(x j) = 0 for 1 ≤ j ≤ N − 1, we obtain
from the Christoff-Darboux formula (3.16) that

kN

kN+1
zN−2(x j)z

′
N−1(x j) =

N−2

∑
j=0

‖zN−2‖2
ω̂

‖z j‖2
ω̂

z2
j(x j)> 0, 1 ≤ j ≤ N − 1.

Inserting it into the formula (3.57b) leads to ω j > 0 for 1 ≤ j ≤ N − 1. ��
The Gauss-type quadrature formulas provide powerful tools for evaluating

integrals and inner products in a spectral method. They also play an important role
in spectral differentiations as to be shown later.

3.1.5 Interpolation and Discrete Transforms

Let
{

x j,ω j
}N

j=0 be a set of Gauss, Gauss-Radau or Gauss-Lobatto quadrature nodes
and weights. We define the corresponding discrete inner product and norm as

〈u,v〉N,ω :=
N

∑
j=0

u(x j)v(x j)ω j, ‖u‖N,ω :=
√

〈u,u〉N,ω . (3.58)

Note that 〈·, ·〉N,ω is an approximation to the continuous inner product (·, ·)ω , and
the exactness of Gauss-type quadrature formulas implies

〈u,v〉N,ω = (u,v)ω , ∀u · v ∈ P2N+δ , (3.59)

where δ = 1, 0 and −1 for the Gauss, Gauss-Radau and Gauss-Lobatto quadrature,
respectively.

Definition 3.1. For any u ∈C(Λ), we define the interpolation operator IN : C(Λ)→
PN such that

(INu)(x j) = u(x j), 0 ≤ j ≤ N, (3.60)

where Λ = (a,b), [a,b), [a,b] for the Gauss, Gauss-Radau and Gauss-Lobatto
quadrature, respectively.

The interpolation condition (3.60) implies that IN p = p for all p ∈ PN . On the other
hand, since INu ∈ PN , we can write

(INu)(x) =
N

∑
n=0

ũn pn(x), (3.61)

which is the counterpart of the discrete Fourier series (2.20) and may be referred to
as the discrete polynomial series. By taking the discrete inner product of (3.61) with
{pk}N

k=0, we can determine the coefficients {ũn} by using (3.60) and (3.59). More
precisely, we have
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Theorem 3.9.

ũn =
1
γn

N

∑
j=0

u(x j)pn(x j)ω j, 0 ≤ n ≤ N, (3.62)

where γn = ‖pn‖2
ω for 0 ≤ n ≤ N − 1, and

γN =

{
‖pN‖2

ω , for Gauss and Gauss-Radau,

〈pN , pN〉N,ω , for Gauss-Lobatto.
(3.63)

The formula (3.62)-(3.63) defines the forward discrete polynomial transform as in
the Fourier case, which transforms the physical values {u(x j)}N

j=0 to the expansion

coefficients {ũn}N
n=0. Conversely, the backward (or inverse) discrete polynomial

transform is formulated by

u(x j) = (INu)(x j) =
N

∑
n=0

ũn pn(x j), 0 ≤ j ≤ N, (3.64)

which takes the expansion coefficients {ũn}N
n=0 to the physical values {u(x j)}N

j=0.

We see that if the matrices
(

pn(x j)
)

0≤n, j≤N and/or
(
γ−1

n pn(x j)ω j
)

0≤n, j≤N are
precomputed, then the discrete transforms (3.62) and (3.64) can be manipulated
directly by a standard matrix–vector multiplication routine in about N2 flops. Since
discrete transforms are frequently used in spectral codes, it is desirable to reduce
the computational complexity, especially for multidimensional cases. In particu-
lar, the Fast Fourier Transform (FFT) (cf. Cooley and Tukey (1965)) and discrete
Chebyshev transform (treated as a Fourier-cosine transform) can be accomplished
by O(N log2 N) operations. However, with the advent of more powerful computers,
this aspect should not be a big concern for moderate scale problems.

3.1.6 Differentiation in the Physical Space

Now, we are ready to address an important issue – polynomial-based spectral differ-
entiation techniques. As with the Fourier cases, they can be performed in either the
physical space or the frequency space.

Let us start with the implementation in the physical space. Assume that u ∈ PN

is an approximation of the unknown solution U. Let {h j}N
j=0 be the Lagrange basis

polynomials associated with a set of Gauss-type points {x j}N
j=0. Clearly,

u(x) =
N

∑
j=0

u(x j)h j(x). (3.65)

Hence, differentiating it m times leads to

u(m)(xk) =
N

∑
j=0

h(m)
j (xk)u(x j), 0 ≤ k ≤ N. (3.66)
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Let us denote

u(m) :=
(
u(m)(x0), u(m)(x1), . . . ,u

(m)(xN)
)T

, u := u(0);

D(m) :=
(

d(m)
k j

)
0≤k, j≤N

, D := D(1).
(3.67)

Different from the Fourier case, the higher-order differentiation matrix in this
context can be computed by a product of the first-order one.

Theorem 3.10.
D(m) = DD . . .D = Dm, m ≥ 1, (3.68)

and

u(m) = Dmu, m ≥ 1. (3.69)

Proof. Differentiating (3.65) gives

u′(x) =
N

∑
l=0

u(xl)h
′
l(x). (3.70)

Taking u = h′j ∈ PN−1 in the above equation leads to

h′′j (x) =
N

∑
l=0

h′l(x)h
′
j(xl).

Hence,

d(2)
k j = h′′j (xk) =

N

∑
l=0

h′l(xk)h
′
j(xl) =

N

∑
l=0

d(1)
kl d(1)

l j ,

which implies

D(2) = DD = D2. (3.71)

Similarly, taking u = h(i)j in (3.70) leads to

d(i+1)
k j = h(i+1)

j (xk) =
N

∑
l=0

h′l(xk)h
(i)
j (xl) =

N

∑
l=0

d(1)
kl d(i)

l j .

Therefore,
D(i+1) = DD(i), i ≥ 1, (3.72)

which yields (3.68).
Finally, (3.69) can be written in matrix form as in (3.66). ��
Thanks to Theorem 3.10, it suffices to compute the first-order differentiation

matrix D. We present below the explicit formulas for the entries of D.
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Theorem 3.11. The entries of D are determined by

dk j = h′j(xk) =

⎧⎪⎪⎨
⎪⎪⎩

Q′(xk)

Q′(x j)

1
xk − x j

, if k �= j,

Q′′(xk)

2Q′(xk)
, if k = j,

(3.73)

where
Q(x) = pN+1(x), (x− a)qN(x), (x− a)(b− x)zN−1(x) (3.74)

are the quadrature polynomials (cf. (3.48) and (3.54)) of the Gauss, Gauss-Radau
and Gauss-Lobatto quadrature, respectively.

Proof. The Lagrange basis polynomials can be expressed as

h j(x) =
Q(x)

Q′(x j)(x− x j)
, 0 ≤ j ≤ N. (3.75)

Differentiating (3.75) and using the fact Q(x j) = 0 lead to

dk j = h′j(xk) =
Q′(xk)

Q′(x j)

1
xk − x j

, ∀k �= j.

Applying the L’Hopital’s rule twice yields

dkk = lim
x→xk

h′k(x) =
1

Q′(xk)
lim

x→xk

Q′(x)(x− xk)−Q(x)
(x− xk)2 =

Q′′(xk)

2Q′(xk)
.

This completes the proof. ��
Therefore, having precomputed the first-order differentiation matrix, the differ-

entiation in the physical space can be carried out through matrix–matrix and matrix–
vector multiplications.

3.1.7 Differentiation in the Frequency Space

Differentiation in the frequency space is to express the expansion coefficients of the
derivatives of a function in terms of expansion coefficients of the function itself.
More precisely, given u ∈ PN, instead of using the Lagrange basis polynomials, we
expand u in terms of the orthogonal polynomials:

u(x) =
N

∑
n=0

ûn pn(x). (3.76)
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Using the orthogonality, we can determine the coefficients by

ûn =
1

‖pn‖2
ω

∫ b

a
u(x)pn(x)ω(x)dx, 0 ≤ n ≤ N. (3.77)

Since u′ ∈ PN−1, we have

u′(x) =
N

∑
n=0

û(1)n pn(x) with û(1)N = 0. (3.78)

In order to express {û(1)n }N
n=0 in terms of {ûn}N

n=0, we assume that {p′n} are also
orthogonal. Indeed, this property holds for the classical orthogonal polynomials
such as the Legendre, Chebyshev, Jacobi, Laguerre and Hermite polynomials. In
other words, {p′n} satisfy the three-term recurrence relation due to Corollary 3.1:

p′n+1(x) =
(
a(1)n x− b(1)n

)
p′n(x)− c(1)n p′n−1(x). (3.79)

Differentiating the three-term recurrence relation (3.12) and using (3.79), we derive

pn(x) = ãn p′n−1(x)+ b̃n p′n(x)+ c̃n p′n+1(x). (3.80)

The coefficients
{

û(1)n
}

in (3.78) can be computed by the following backward recur-
rence formulas.

Theorem 3.12.

û(1)n−1 =
1

c̃n−1

[
ûn − b̃nû(1)n − ãn+1û(1)n+1

]
, n = N − 1, . . . ,1,

û(1)N = 0, û(1)N−1 =
1

c̃N−1
ûN .

(3.81)

Proof. By (3.78) and (3.80),

u′ =
N−1

∑
n=0

û(1)n pn =
N−1

∑
n=0

û(1)n [ãn p′n−1 + b̃np′n + c̃n p′n+1]

=
N−1

∑
n=1

[c̃n−1û(1)n−1 + b̃nû(1)n + ãn+1û(1)n+1]p
′
n + c̃N−1û(1)N−1 p′N .

On the other hand, by (3.76),

u′(x) =
N

∑
n=1

ûn p′n(x).

By the (assumed) orthogonality of {p′n}, we are able to equate the coefficients of p′n
in the above two expressions, which leads to (3.81). ��
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Higher-order differentiations in the frequency space can be carried out by using
the formula (3.81) repeatedly. It is important to point out that spectral differentiations
together with discrete transforms form the basic ingredients for the so-called
“pseudo-spectral technique” (particularly useful for nonlinear problems): the
differentiations are manipulated in the frequency space, the inner products are
computed in the physical space, and both spaces are communicated through discrete
transforms.

3.1.8 Approximability of Orthogonal Polynomials

We now briefly review some general polynomial approximation results. One can
find their proofs from standard books on approximation theory (see, for instance,
Timan (1994), Cheney (1998)).

The first fundamental result is the remarkable Weierstrass Theorem, which states
that any continuous function in a finite interval can be uniformly approximated by
an algebraic polynomial.

Theorem 3.13. Let (a,b) be a finite interval. Then for any u∈C[a,b], and any ε > 0,
there exist n ∈ N and pn ∈ Pn such that

‖u− pn‖L∞(a,b) < ε. (3.82)

This theorem forms the cornerstone of the classical polynomial approxima-
tion theory. The construction of pn essentially relies on the solution of the best
approximation problem:

⎧⎨
⎩

Given a fixed n ∈N, find p∗n ∈ Pn, such that

‖u− p∗n‖L∞(a,b) = inf
pn∈Pn

‖u− pn‖L∞(a,b).
(3.83)

This problem admits a unique solution, and as a consequence of Theorem 3.13,
p∗n uniformly converges to u as n → ∞. However, the derivation of the best uni-
form approximation polynomial p∗n is nontrivial, since a strong uniform norm is in-
volved in (3.83), whereas the best approximation problem in the L2-sense is easier to
solve.

Theorem 3.14. Let I = (a,b) be a finite or an infinite interval. Then for any u ∈
L2

ω(I) and n ∈ N, there exists a unique q∗n ∈ Pn, such that

‖u− q∗n‖ω = inf
qn∈Pn

‖u− qn‖ω , (3.84)
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where

q∗n(x) =
n

∑
k=0

ûk pk(x) with ûk =
(u, pk)ω
‖pk‖2

ω
, (3.85)

and {pk}n
k=0 forms an L2

ω -orthogonal basis of Pn.

In particular, we denote the best approximation polynomial q∗n by πnu, which is
the L2

ω -orthogonal projection of u, and is characterized by the projection theorem

‖u−πnu‖ω = inf
qn∈Pn

‖u− qn‖ω . (3.86)

Equivalently, the L2
ω -orthogonal projection can be defined by

(u−πnu,φ)ω = 0, ∀φ ∈ Pn, (3.87)

so πnu is the first n+ 1-term truncation of the series u = ∑∞
k=0 ûk pk(x).

It is interesting to notice that a result similar to the Weierstrass theorem holds
on infinite intervals, if suitable conditions are imposed on the growth of the given
function u (cf. Funaro (1992)).

Theorem 3.15. If u ∈C[0,∞) and for certain δ > 0, u satisfies

u(x)e−δ x → 0, as x → ∞,

then for any ε > 0, there exist an n ∈ N and pn ∈ Pn such that

|u(x)− pn(x)|e−δ x ≤ ε, ∀x ∈ [0,∞).

Similar result holds on (−∞,∞), if we replace e−δ x by e−δx2
.

3.1.8.1 A Short Summary of this Section

We presented some basic knowledge of orthogonal polynomials, which is mostly
relevant to spectral approximations. We also set up a general framework for the
study of each specific family of orthogonal polynomials to be presented in the
forthcoming sections as tabulated in Table 3.1.

Table 3.1 List of orthogonal polynomials
Symbol Interval Weight function Section

Jacobi Jα,β
n (−1,1) (1− x)α (1+ x)β ,α ,β >−1 3.2

Legendre Ln (−1,1) 1 3.3
Chebyshev Tn (−1,1) 1/

√
1− x2 3.4

Laguerre L
(α)

n (0,+∞) xα e−x,α >−1 7.1
Hermite Hn (−∞,+∞) e−x2

7.2
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3.2 Jacobi Polynomials

3.2.1 Basic Properties

The Jacobi polynomials, denoted by Jα ,β
n (x), are orthogonal with respect to the

Jacobi weight function ωα ,β (x) := (1− x)α(1+ x)β over I := (−1,1), namely,
∫ 1

−1
Jα ,β

n (x)Jα ,β
m (x)ωα ,β (x)dx = γα ,β

n δmn, (3.88)

where γα ,β
n = ‖Jα ,β

n ‖2
ωα,β . The weight function ωα ,β belongs to L1(I) if and only if

α,β >−1 (to be assumed throughout this section).
Let kα ,β

n be the leading coefficient of Jα ,β
n (x). According to Theorem 3.1, there

exists a unique sequence of monic orthogonal polynomials {Jα ,β
n (x)/kα ,β

n
}
.

This class of Jacobi weight functions leads to Jacobi polynomials with many
attractive properties that are not shared by general orthogonal polynomials.

3.2.1.1 Sturm-Liouville Equation

We first show that the Jacobi polynomials are the eigenfunctions of a singular Sturm-
Liouville operator defined by

Lα ,β u : =−(1− x)−α(1+ x)−β ∂x
(
(1− x)α+1(1+ x)β+1∂xu(x)

)
= (x2 − 1)∂ 2

x u(x)+
{

α −β +(α +β + 2)x
}

∂xu(x).
(3.89)

More precisely, we have

Theorem 3.16. The Jacobi polynomials are the eigenfunctions of the singular
Sturm-Liouville problem:

Lα,β Jα ,β
n (x) = λ α ,β

n Jα ,β
n (x), (3.90)

and the corresponding eigenvalues are

λ α ,β
n = n(n+α+β + 1). (3.91)

Proof. For any u ∈ Pn, we have Lα ,β u ∈ Pn. Using integration by parts twice, we
find that for any φ ∈ Pn−1,

(
Lα ,β Jα ,β

n ,φ
)

ωα,β =
(
∂xJα ,β

n ,∂xφ
)

ωα+1,β+1 =
(
Jα ,β

n ,Lα ,β φ
)

ωα,β
(3.88)
= 0.

Since Lα ,β Jα ,β
n ∈ Pn, the uniqueness of orthogonal polynomials implies that there

exists a constant λ α ,β
n such that

Lα ,β Jα ,β
n = λ α ,β

n Jα ,β
n .
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To determine λ α ,β
n , we compare the coefficient of the leading term xn on both sides,

and find
kα,β

n n(n+α +β + 1) = kα ,β
n λ α,β

n ,

where kα ,β
n is the leading coefficient of Jα ,β

n . Hence, we have λ α ,β
n = n(n+ α+

β + 1). ��
Remark 3.2. Observe from integration by parts that the Sturm-Liouville operator
Lα ,β is self-adjoint with respect to the inner product (·, ·)ωα,β , i.e.,

(Lα ,β φ ,ψ)ωα,β = (φ ,Lα,β ψ)ωα,β , (3.92)

for any φ ,ψ ∈ {u : Lα ,β u ∈ L2
ωα,β (I)

}
.

As pointed out in Theorem 4.2.2 of Szegö (1975), the differential equation

Lα,β u = λ u,

has a polynomial solution not identically zero if and only if λ has the form n(n+

α + β + 1). This solution is Jα ,β
n (x) (up to a constant), and no solution which is

linearly independent of Jα ,β
n (x) can be a polynomial. Moreover, we can show that

Jα,β
n (x) =

n

∑
k=0

an
k (x− 1)k,

where
an

k+1

an
k

=
γα ,β

n − k(k+α +β + 1)
2(k+ 1)(k+α+ 1)

. (3.93)

Assume that the Jacobi polynomials are normalized such that

an
0 = Jα ,β

n (1) =

(
n+α

n

)
=

Γ (n+α + 1)
n!Γ (α + 1)

, (3.94)

where Γ (·) is the Gamma function (cf. Appendix A). We can derive from (3.93) the
leading coefficient

an
n = kα ,β

n =
Γ (2n+α+β + 1)

2nn!Γ (n+α +β + 1)
. (3.95)

Moreover, working out {an
k} by using (3.93), we find

Jα ,β
n (x) =

Γ (n+α + 1)
n!Γ (n+α +β + 1)

n

∑
k=0

(
n
k

)
Γ (n+ k+α+β + 1)

Γ (k+α + 1)

(x− 1
2

)k
. (3.96)

A direct consequence of Theorem 3.16 is the orthogonality of
{

∂xJα ,β
n
}
.

Corollary 3.5.

∫ 1

−1
∂xJα ,β

n ∂xJα ,β
m ωα+1,β+1dx = λ α,β

n γα ,β
n δnm. (3.97)
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Proof. Using integration by parts, Theorem 3.16 and the orthogonality of
{

Jα ,β
n
}
,

we obtain

(
∂xJα ,β

n , ∂xJα ,β
m

)
ωα+1,β+1 =

(
Jα ,β

n ,Lα ,β Jα,β
m

)
ωα,β

(3.90)
= λ α ,β

n ‖Jα,β
n ‖2

ωα,β δnm.

This ends the proof. ��
Since {∂xJα ,β

n } is orthogonal with respect to the weight ωα+1,β+1, by Theorem

3.1, ∂xJα ,β
n must be proportional to Jα+1,β+1

n−1 , namely,

∂xJα ,β
n (x) = μα,β

n Jα+1,β+1
n−1 (x). (3.98)

Comparing the leading coefficients on both sides leads to the proportionality con-
stant:

μα ,β
n =

nkα ,β
n

kα+1,β+1
n−1

(3.95)
=

1
2
(n+α +β + 1). (3.99)

This gives the following important derivative relation:

∂xJα ,β
n (x) =

1
2
(n+α +β + 1)Jα+1,β+1

n−1 (x). (3.100)

Applying this formula recursively yields

∂ k
x Jα ,β

n (x) = dα ,β
n,k Jα+k,β+k

n−k (x), n ≥ k, (3.101)

where

dα ,β
n,k =

Γ (n+ k+α +β + 1)
2kΓ (n+α +β + 1)

. (3.102)

3.2.1.2 Rodrigues’ Formula

The Rodrigues’ formula for the Jacobi polynomials is stated below.

Theorem 3.17.

(1− x)α(1+ x)β Jα ,β
n (x) =

(−1)n

2nn!
dn

dxn

[
(1− x)n+α(1+ x)n+β

]
. (3.103)

Proof. For any φ ∈ Pn−1, using integration by parts leads to

∫ 1

−1
∂ n

x

(
(1− x)n+α(1+ x)n+β

)
φdx = . . .

= (−1)n
∫ 1

−1

(
(1− x)n+α(1+ x)n+β

)
∂ n

x φdx = 0.
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Hence, by Theorem 3.1, there exists a constant cn such that

∂ n
x

(
(1− x)n+α(1+ x)n+β

)
= cn(1− x)α(1+ x)β Jα ,β

n (x). (3.104)

Letting x → 1 and using (3.94) leads to

cn =
1

Jα ,β
n (1)

{
1

(1− x)α(1+ x)β ∂ n
x

(
(1− x)n+α(1+ x)n+β

)}∣∣∣
x=1

= (−1)nn!2n.

The proof is complete. ��

We now present some consequences of the Rodrigues’ formula. First, expanding
the nth-order derivative in (3.103) yields the explicit formula

Jα ,β
n (x) = 2−n

n

∑
j=0

(
n+α

j

)(
n+β
n− j

)
(x− 1)n− j(x+ 1) j. (3.105)

Second, replacing x by −x in (3.103) immediately leads to the symmetric relation

Jα ,β
n (−x) = (−1)nJβ ,α

n (x). (3.106)

Therefore, the special Jacobi polynomial Jα,α
n (x) (up to a constant, is referred to as

the Gegenbauer or ultra-spherical polynomial), is an odd function for odd n and an
even function for even n. Moreover, using (3.94) and (3.106) leads to

Jα,β
n (−1) = (−1)n Γ (n+β + 1)

n!Γ (β + 1)
, (3.107)

and by the Stirling’s formula (A.7),

Jα ,β
n (1)∼ nα and |Jα ,β

n (−1)| ∼ nβ for n � 1. (3.108)

As another consequence of (3.103), we derive the explicit formula of the normaliza-
tion constant γα ,β

n in (3.88).

Corollary 3.6.

∫ 1

−1

[
Jα ,β

n (x)
]2

ωα ,β (x)dx = γα,β
n

=
2α+β+1Γ (n+α + 1)Γ (n+β + 1)
(2n+α +β + 1)n!Γ (n+α +β + 1)

.

(3.109)
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Proof. Multiplying (3.103) by Jα ,β
n and integrating the resulting equality over

(−1,1), we derive from integration by parts that

∫ 1

−1
(1− x)α(1+ x)β [Jα ,β

n (x)]2dx

=
(−1)n

2nn!

∫ 1

−1
∂ n

x

{
(1− x)n+α(1+ x)n+β

}
Jα ,β

n (x)dx

=
(−1)2n

2nn!

∫ 1

−1
(1− x)n+α(1+ x)n+β ∂ n

x Jα,β
n (x)dx

=
kα,β

n

2n

∫ 1

−1
(1− x)n+α(1+ x)n+β dx

(3.95)
=

(A.6)

2α+β+1Γ (n+α + 1)Γ (n+β + 1)
(2n+α +β + 1)n!Γ (n+α +β + 1)

.

This ends the proof. ��

3.2.1.3 Recurrence Formulas

The Jacobi polynomials are generated by the three-term recurrence relation:

Jα ,β
n+1(x) =

(
aα ,β

n x− bα,β
n

)
Jα ,β

n (x)− cα ,β
n Jα ,β

n−1(x), n ≥ 1,

Jα ,β
0 (x) = 1, Jα,β

1 (x) =
1
2
(α +β + 2)x+

1
2
(α −β ),

(3.110)

where

aα ,β
n =

(2n+α +β + 1)(2n+α +β + 2)
2(n+ 1)(n+α+β + 1)

, (3.111a)

bα ,β
n =

(β 2 −α2)(2n+α +β + 1)
2(n+ 1)(n+α+β + 1)(2n+α +β )

, (3.111b)

cα ,β
n =

(n+α)(n+β )(2n+α+β + 2)
(n+ 1)(n+α+β + 1)(2n+α+β )

. (3.111c)

This relation allows us to evaluate the Jacobi polynomials at any given abscissa
x ∈ [−1,1], and it is the starting point to derive other properties.

Next, we state several useful recurrence formulas involving different pairs of
(α,β ).

Theorem 3.18. The Jacobi polynomial Jα+1,β
n (x) is a linear combination of

Jα ,β
l (x), l = 0,1, . . . ,n, i.e.,
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Jα+1,β
n (x) =

Γ (n+β + 1)
Γ (n+α +β + 2)

×
n

∑
l=0

(2l+α +β + 1)Γ (l +α +β + 1)
Γ (l +β + 1)

Jα ,β
l (x).

(3.112)

Proof. In the Jacobi case, the kernel polynomial (3.17) takes the form

Kn(x,y) =
n

∑
l=0

1

γα ,β
l

Jα ,β
l (x)Jα,β

l (y). (3.113)

By Lemma 3.2, {Kn(x,1)} are orthogonal with respect to ωα+1,β . By the unique-
ness of orthogonal polynomials (cf. Theorem 3.1), Kn(x,1) must be proportional to

Jα+1,β
n , i.e.,

Kn(x,1) =
n

∑
l=0

Jα ,β
l (1)

γα,β
l

Jα ,β
l (x) = dα ,β

n Jα+1,β
n (x). (3.114)

The proportionality constant dα,β
n is determined by comparing the leading coeffi-

cients of both sides of (3.114) and working out the constants, namely,

dα ,β
n =

kα ,β
n Jα,β

n (1)

kα+1,β
n γα ,β

n

= 2−α−β−1 Γ (n+α +β + 2)
Γ (α + 1)Γ (n+β + 1)

.

Inserting this constant into (3.114), we obtain (3.112) directly from (3.94) and
(3.109). ��
Remark 3.3. Thanks to (3.106), it follows from (3.112) that

Jα ,β+1
n (x) =

Γ (n+α + 1)
Γ (n+α +β + 2)

×
n

∑
l=0

(−1)n−l (2l+α +β + 1)Γ (l +α +β + 1)
Γ (l +α + 1)

Jα ,β
l (x).

(3.115)

Theorem 3.19. The Jacobi polynomials satisfy

Jα+1,β
n =

2
2n+α +β + 2

(n+α + 1)Jα ,β
n − (n+ 1)Jα ,β

n+1

1− x
, (3.116a)

Jα ,β+1
n =

2
2n+α +β + 2

(n+β + 1)Jα ,β
n +(n+ 1)Jα ,β

n+1

1+ x
. (3.116b)

Proof. In the Jacobi case, the Christoffel-Darboux formula (3.15) reads

Kn(x,y) =
kα ,β

n

kα ,β
n+1γα ,β

n

Jα ,β
n+1(x)J

α ,β
n (y)− Jα,β

n (x)Jα ,β
n+1(y)

x− y
, (3.117)
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which, together with (3.114), leads to

Jα+1,β
n (x) =

1

dα,β
n

Kn(x,1)

=
kα,β

n

dα,β
n kα ,β

n+1γα ,β
n

Jα,β
n+1(x)J

α ,β
n (1)− Jα ,β

n (x)Jα ,β
n+1(1)

x− 1
.

Working out the constants yields (3.116a).
Replacing x in (3.116a) by −x and using the symmetric property (3.106), we

derive (3.116b) immediately. ��
We state below two useful formulas and leave their derivation as an excise (see

Problem 3.7).

Theorem 3.20.

Jα ,β
n−1(x) = Jα ,β−1

n (x)− Jα−1,β
n (x), (3.118a)

Jα ,β
n (x) =

1
n+α +β

[
(n+β )Jα,β−1

n (x)+ (n+α)Jα−1,β
n (x)

]
. (3.118b)

More generally, we can express Jα ,β
n in terms of {Ja,b

k }n
k=0, where the expansion

coefficients are known as the connection coefficients.

Theorem 3.21. Suppose that

Jα ,β
n (x) =

n

∑
k=0

ĉn
kJa,b

k (x), a,b,α,β >−1. (3.119)

Then

ĉn
k =

Γ (n+α + 1)
Γ (n+α +β + 1)

(2k+ a+ b+ 1)Γ(k+ a+ b+ 1)
Γ (k+ a+ 1)

×
n−k

∑
m=0

(−1)mΓ (n+ k+m+α+β + 1)Γ (m+ k+ a+ 1)
m!(n− k−m)!Γ (k+m+α + 1)Γ (m+ 2k+ a+ b+2)

.

(3.120)

Proof. By the Rodrigues’ formula and integration by parts,

ĉn
k =

1

γa,b
k

∫ 1

−1
Jα ,β

n (x)Ja,b
k (x)ωa,b(x)dx

=
(−1)k

2kk!γa,b
k

∫ 1

−1
Jα ,β

n (x)∂ k
x

[
ωa+k,b+k(x)

]
dx

=
1

2kk!γa,b
k

∫ 1

−1
∂ k

x Jα,β
n (x)ωa+k,b+k(x)dx.



3.2 Jacobi Polynomials 77

Using (3.101) and (3.96) yields

ĉn
k =

dα,β
n,k

2kk!γa,b
k

∫ 1

−1
Jα+k,β+k

n−k (x)ωa+k,b+k(x)dx

=
dα ,β

n,k Γ (n+α + 1)

2kk!γa,b
k Γ (n+ k+α +β + 1)

×
n−k

∑
m=0

(−1)mΓ (n+ k+m+α+β + 1)
2mm!(n− k−m)!Γ (k+m+α + 1)

∫ 1

−1
ωa+m+k,b+kdx.

Working out γa,b
k ,dα ,β

n,k and the integral respectively by (3.109), (3.102) and (A.6)
leads to (3.120). ��

Next, we derive some recurrence formulas between {Jα ,β
n } and {∂xJα ,β

n }.
Theorem 3.22. The Jacobi polynomials satisfy

(1− x2)∂xJα ,β
n = Aα,β

n Jα ,β
n−1 +Bα ,β

n Jα ,β
n +Cα ,β

n Jα ,β
n+1, (3.121)

where

Aα ,β
n =

2(n+α)(n+β )(n+α+β + 1)
(2n+α +β )(2n+α +β + 1)

, (3.122a)

Bα ,β
n = (α −β )

2n(n+α +β + 1)
(2n+α+β )(2n+α+β + 2)

, (3.122b)

Cα,β
n =− 2n(n+ 1)(n+α+β + 1)

(2n+α +β + 1)(2n+α+β + 2)
. (3.122c)

Proof. This formula follows from (3.100) and (3.116) directly. ��
In the Jacobi case, the relation (3.80) takes the following form.

Theorem 3.23.

Jα ,β
n = Âα ,β

n ∂xJα ,β
n−1 + B̂α ,β

n ∂xJα ,β
n + Ĉα ,β

n ∂xJα ,β
n+1, (3.123)

where

Âα ,β
n =

−2(n+α)(n+β )
(n+α +β )(2n+α +β )(2n+α+β + 1)

, (3.124a)

B̂α ,β
n =

2(α −β )
(2n+α +β )(2n+α +β + 2)

, (3.124b)

Ĉα ,β
n =

2(n+α +β + 1)
(2n+α +β + 1)(2n+α+β + 2)

. (3.124c)
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Proof. We observe from Corollary 3.16 that {∂xJα ,β
l }n+1

l=1 forms an orthogonal basis

of Pn. Hence, we can express Jα ,β
n (x) as

Jα ,β
n (x) =

n+1

∑
l=1

eα,β
l ∂xJα,β

l (x),

where

eα,β
l =

1

γα ,β
l λ α ,β

l

∫ 1

−1
Jα ,β

n (x)(1− x2)∂xJα ,β
l (x)ωα ,β (x)dx.

Inserting (3.121) into the above integral and using the orthogonality of {Jα ,β
n }, we

find that

Ĉα ,β
n = eα ,β

n+1 =
Aα ,β

n+1γα ,β
n

γα ,β
n+1λ α,β

n+1

, B̂α ,β
n = eα ,β

n =
Bα ,β

n

λ α,β
n

,

Âα,β
n = eα ,β

n−1 =
Cα ,β

n−1γα ,β
n

γα,β
n−1λ α ,β

n−1

, eα ,β
l = 0, 0 ≤ l ≤ n− 2.

Working out the constants yields the coefficients in (3.124). ��

3.2.1.4 Maximum Value

Theorem 3.24. For α,β >−1, set

x0 =
β −α

α +β + 1
, q = max(α,β ).

Then we have

max
|x|≤1

|Jα,β
n (x)|=

⎧⎨
⎩

max
{∣∣Jα ,β

n (±1)
∣∣}∼ nq, if q ≥− 1

2 ,

|Jα,β
n (x′)| ∼ n−

1
2 , if q <− 1

2 ,
(3.125)

where x′ is one of the two maximum points nearest x0.

Proof. Define

fn(x) :=
[
Jα ,β

n (x)
]2
+

1

λ α ,β
n

(1− x2)
[
∂xJα ,β

n (x)
]2
, n ≥ 1. (3.126)
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A direct calculation by using (3.90) leads to

f ′n(x) =
2

λ α,β
n

{
(α −β )+ (α +β + 1)x

}[
∂xJα ,β

n (x)
]2

=
2

λ α,β
n

(α +β + 1)(x− x0)
[
∂xJα ,β

n (x)
]2
.

Notice that we have the equivalence

−1 < x0 < 1 ⇐⇒
(

α +
1
2

)(
β +

1
2

)
> 0.

We proceed by dividing the parameter range of (α,β ) into four different cases.

• Case I : α,β > − 1
2 . In this case, f ′n(x) ≤ 0 (resp. f ′n(x) ≥ 0) for all x ∈ [−1,x0]

(resp. x ∈ [x0,1]). Hence, fn(x) attains its maximum at x =±1, so we have

max
|x|≤1

|Jα,β
n (x)|= max

{∣∣Jα ,β
n (±1)

∣∣} (3.108)∼
(3.106)

nmax{α,β}, α,β >−1
2
. (3.127)

• Case II : α ≥− 1
2 and −1 < β ≤− 1

2 . In this case, the linear function

(α −β )+ (α +β + 1)x ≥ 0, ∀x ∈ [−1,1],

which implies f ′n(x)≥ 0 for all x ∈ [−1,1]. Hence, we have

max
|x|≤1

|Jα ,β
n (x)|= |Jα,β

n (1)| ∼ nα , α ≥−1
2
, −1 < β ≤−1

2
. (3.128)

• Case III : −1 < α ≤ − 1
2 and β ≥ − 1

2 . This situation is opposite to Case II, i.e.,
(α −β )+ (α+β + 1)x ≤ 0 and f ′n(x)≤ 0 for all x ∈ [−1,1]. Thus, we have

max
|x|≤1

|Jα ,β
n (x)|= |Jα ,β

n (−1)| ∼ nβ , −1 < α ≤−1
2
, β ≥−1

2
. (3.129)

• Case IV : −1 < α <− 1
2 and −1 < β <− 1

2 . In this case, we have −1 < x0 < 1,
and f ′n(x) ≥ 0 (resp. f ′n(x) ≤ 0) for all x ∈ [−1,x0] (resp. x ∈ [x0,1]). Therefore,

the maximum of fn(x) is attained at x0. Notice that the extreme point of Jα ,β
n (x)

in (−1,1) is the zero of ∂xJα ,β
n (x). Thus, we find from (3.126) that the maximum

of |Jα ,β
n (x)| can be attained at one of the zero of ∂xJα ,β

n (x) nearest x0 on the left
or on the right of x0.

The proof is complete. ��
In Fig. 3.1, we plot the first six Jacobi polynomials J1,1

n (x) and J1,0
n (x). It is seen

that the maximum values are attained at the endpoints. We also observe that J1,1
n (x)

is an odd (resp. even) function for odd (resp. even) n, while the non-symmetric
Jacobi polynomial J1,0

n (x) does not have this property.
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Fig. 3.1 Jacobi polynomials J1,1
n (x) (left) and J1,0

n (x) (right) with n = 0,1, . . .,5

3.2.2 Jacobi-Gauss-Type Quadratures

It is straightforward to derive the Jacobi-Gauss-type (i.e., Jacobi-Gauss (JG), Jacobi-
Gauss-Radau (JGR) and Jacobi-Gauss-Lobatto (JGL)) integration formulas from the
general rules in Sect. 3.1.4. In the Jacobi case, the general quadrature formula (3.33)
reads ∫ 1

−1
p(x)ωα,β (x)dx =

N

∑
j=0

p(x j)ω j +EN [p]. (3.130)

Recall that if the quadrature error EN [p] = 0, we say (3.130) is exact for p.

Theorem 3.25. (Jacobi-Gauss quadrature) The JG quadrature formula (3.130) is
exact for any p ∈ P2N+1 with the JG nodes

{
x j
}N

j=0 being the zeros of Jα,β
N+1(x) and

the corresponding weights given by

ω j =
Gα,β

N

Jα,β
N (x j)∂xJα ,β

N+1(x j)
(3.131a)

=
G̃α ,β

N

(1− x2
j)
[
∂xJα ,β

N+1(x j)
]2 , (3.131b)

where

Gα ,β
N =

2α+β (2N +α +β + 2)Γ (N +α + 1)Γ (N +β + 1)
(N + 1)!Γ (N +α +β + 2)

, (3.132a)

G̃α ,β
N =

2α+β+1Γ (N +α + 2)Γ (N +β + 2)
(N + 1)!Γ (N +α +β + 2)

. (3.132b)
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Proof. The formula (3.131a) with (3.132a) follows directly from (3.39), and the
constant

Gα ,β
N =

kα ,β
N+1

kα ,β
N

γα ,β
N

can be worked out by using (3.95) and (3.109).
In order to derive the alternative formula (3.131b) with (3.132b), we first use

(3.110) and (3.121) to obtain the recurrence relation

(2N +α +β + 2)(1− x2)∂xJα ,β
N+1(x)

=−(N + 1)
[
(2N +α +β + 2)x+β −α

]
Jα ,β

N+1(x)

+ 2(N +α + 1)(N +β + 1)Jα ,β
N (x).

(3.133)

Using the fact Jα ,β
N+1(x j) = 0, yields

Jα,β
N (x j) =

2N +α +β + 2
2(N +α + 1)(N +β + 1)

(1− x2
j)∂xJα ,β

N+1(x j).

Plugging it into (3.131a) leads to (3.131b). ��
We now consider the Jacobi-Gauss-Radau (JGR) quadrature with the fixed end-

point x0 =−1.

Theorem 3.26. (Jacobi-Gauss-Radau quadrature) Let x0 = −1 and
{

x j
}N

j=1 be

the zeros of Jα ,β+1
N (x), and

ω0 =
2α+β+1(β + 1)Γ 2(β + 1)N!Γ (N +α + 1)

Γ (N +β + 2)Γ (N +α +β + 2)
, (3.134a)

ω j =
1

1+ x j

Gα ,β+1
N−1

Jα ,β+1
N−1 (x j)∂xJα,β+1

N (x j)
,

=
1

(1− x j)(1+ x j)2

G̃α ,β+1
N−1

[∂xJα ,β+1
N (x j)]2

, 1 ≤ j ≤ N.

(3.134b)

where the constants Gα ,β+1
N−1 and G̃α,β+1

N−1 are defined in (3.132). Then, the quadrature
formula (3.130) is exact for any p ∈ P2N .

Proof. In the Jacobi case, the quadrature polynomial qN defined in (3.48) is
orthogonal with respect to the weight function ωα ,β+1, so it must be proportional
to Jα ,β+1

N . Therefore, the interior nodes {x j}N
j=1 are the zeros of Jα,β+1

N .
We now prove (3.134a). The general formula (3.51a) in the Jacobi case reads

ω0 =
1

Jα ,β+1
N (−1)

∫ 1

−1
Jα,β+1

N (x)ωα ,β (x)dy. (3.135)
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The formula (3.115) implies

Jα ,β+1
N (x) = aα ,β

N,0 Jα ,β
0 (x)+

{
linear combination of {Jα ,β

l }N
l=1

}
, (3.136)

where

aα ,β
N,0 = (−1)N Γ (α +β + 2)Γ (N +α + 1)

Γ (α + 1)Γ (N +α +β + 2)
.

In view of Jα ,β
0 (x)≡ 1, we find from the orthogonality (3.88) that

ω0 =
aα ,β

N,0 γα ,β
0

Jα ,β+1
N (−1)

=
2α+β+1(β + 1)Γ 2(β + 1)N!Γ (N +α + 1)

Γ (N +β + 2)Γ (N +α +β + 2)
,

where we have worked out the constants by using (3.107) and (3.109).
We next prove (3.134b). The Lagrange basis polynomial related to x j is

h j(x) =
(1+ x)Jα,β+1

N (x)

∂x
[
(1+ x)Jα ,β+1

N (x)
]∣∣

x=x j
(x− x j)

=
(1+ x)Jα ,β+1

N (x)

(1+ x j)∂xJα ,β+1
N (x j)(x− x j)

=
1+ x
1+ x j

h̃ j(x), 1 ≤ j ≤ N,

(3.137)

where {h̃ j}N
j=1 are the Lagrange basis polynomials associated with the Jacobi-Gauss

points
{

x j
}N

j=1 (zeros of Jα ,β+1
N ) with the parameters (α,β + 1). Replacing N and

β in (3.131a) and (3.132a) by N − 1 and β + 1, yields

ω j =

∫ 1

−1
h j(x)ωα ,β (x)dx =

1
1+ x j

∫ 1

−1
h̃ j(x)ωα ,β+1(x)dx

=
1

1+ x j

Gα ,β+1
N−1

Jα ,β+1
N−1 (x j)∂xJα ,β+1

N (x j)

=
1

(1− x j)(1+ x j)2

G̃α ,β+1
N−1

[∂xJα ,β+1
N (x j)]2

, 1 ≤ j ≤ N.

(3.138)

This ends the proof. ��
Remark 3.4. A second Jacobi-Gauss-Radau quadrature with a fixed right endpoint
xN = 1 can be established in a similar manner.

Finally, we consider the Jacobi-Gauss-Lobatto quadrature, which includes two
endpoints x =±1 as the nodes.
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Theorem 3.27. (Jacobi-Gauss-Lobatto quadrature) Let x0 = −1, xN = 1 and{
x j
}N−1

j=1 be the zeros of ∂xJα ,β
N (x), and let

ω0 =
2α+β+1(β + 1)Γ 2(β + 1)Γ (N)Γ (N +α + 1)

Γ (N +β + 1)Γ (N +α +β + 2)
, (3.139a)

ωN =
2α+β+1(α + 1)Γ 2(α + 1)Γ (N)Γ (N +β + 1)

Γ (N +α + 1)Γ (N +α +β + 2)
, (3.139b)

ω j =
1

1− x2
j

Gα+1,β+1
N−2

Jα+1,β+1
N−2 (x j)∂xJα+1,β+1

N−1 (x j)
,

=
1

(1− x2
j)

2

G̃α+1,β+1
N−2[

∂xJα+1,β+1
N−1 (x j)

]2 , 1 ≤ j ≤ N − 1,

(3.139c)

where the constants Gα ,β+1
N−1 and G̃α,β+1

N−1 are defined in (3.132). Then, the quadrature
formula (3.130) is exact for any p ∈ P2N−1.

The proof is similar to that of Theorem 3.26 and is left as an exercise (see
Problem 3.8).

Remark 3.5. The quadrature nodes and weights of these three types of Gaussian
formulas have close relations. Indeed, denote by

{
ξ α ,β

Z,N, j,ω
α ,β
Z,N, j

}N
j=0 with

Z = G,R,L the Jacobi-Gauss, Jacobi-Gauss-Radau and Jacobi-Gauss-Lobatto
quadrature nodes and weights, respectively. Then there hold

ξ α ,β
R,N, j = ξ α ,β+1

G,N−1, j−1, ωα ,β
R,N, j =

ωα ,β+1
G,N−1, j−1

1+ ξ α ,β+1
G,N−1, j−1

, 1 ≤ j ≤ N, (3.140)

and

ξ α ,β
L,N, j = ξ α+1,β+1

G,N−2, j−1, ωα ,β
L,N, j =

ωα+1,β+1
G,N−2, j−1

1− (ξ α+1,β+1
G,N−2, j−1

)2 , 1 ≤ j ≤ N − 1. (3.141)

This connection allows us to compute the interior nodes and weights of the JGR and
JGL quadratures from the JG rule. Moreover, it makes the analysis of JGR and JGL
(e.g., the interpolation error) easier by extending the results for JG case.

3.2.3 Computation of Nodes and Weights

Except for the Chebyshev case (see Sect. 3.4), the explicit expressions of the nodes
and weights of the general Jacobi-Gauss quadrature are not available, so they have
to be computed by numerical means. An efficient algorithm is to use the eigenvalue
method described in Theorems 3.4 and 3.6.
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Thanks to the relations (3.140) and (3.141), it suffices to compute the Jacobi-
Gauss nodes and weights. Indeed, as a direct consequence of Theorem 3.4, the ze-
ros of the Jacobi polynomial Jα ,β

N+1 are the eigenvalues of the following symmetric
tridiagonal matrix

AN+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
√

b1
√

b1 a1
√

b2

. . .
. . .

. . .
√

bN−1 aN−1
√

bN
√

bN aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.142)

where the entries are derived from (3.25) and the three-term recurrence relation
(3.110):

a j =
β 2 −α2

(2 j+α +β )(2 j+α +β + 2)
, (3.143a)

b j =
4 j( j+α)( j+β )( j+α +β )

(2 j+α +β − 1)(2 j+α +β )2(2 j+α +β + 1)
. (3.143b)

Moreover, by Theorem 3.6, the Jacobi-Gauss weights {ω j}N
j=0 can be obtained by

computing the eigenvectors of AN+1, namely,

ω j = γα ,β
0

[
Q0(x j)

]2
=

2α+β+1Γ (α + 1)Γ (β + 1)
Γ (α +β + 2)

[
Q0(x j)

]2
, (3.144)

where Q0(x j) is the first component of the orthonormal eigenvector corresponding
to the eigenvalue x j. Notice that weights {ω j}N

j=0 may also be computed by using
the formula (3.131).

Alternatively, the zeros of the Jacobi polynomials can be computed by the
Newton’s iteration method described in (3.30) and (3.31). The initial approxima-
tion can be chosen as some estimates presented below, see, e.g., (3.145).

We depict in Fig. 3.2 the distributions of zeros of some sample Jacobi
polynomials:

• In (a), the zeros of J1,1
N (x) with various N

• In (b), the zeros
{

θ j = cos−1 x j
}N−1

j=0 of J1,1
N (cosθ) with various N

• In (c), the zeros of Jα ,α
15 (x) with various α

• In (d), the zeros of Jα ,0
15 (x) with various α

We observe from (a) and (b) in Fig. 3.2 that the zeros {x j} (arranged in
descending order) of the Jacobi polynomials are nonuniformly distributed in
(−1,1), while {θ j = cos−1 x j} are nearly equidistantly located in (0,π). More pre-
cisely, the nodes (in x) cluster near the endpoints with spacing density like O(N−2),
and are considerably sparser in the inner part with spacing O(N−1). This feature is
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quantitatively characterized by Theorem 8.9.1 of Szegö (1975), which states that
for α,β >−1,
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Fig. 3.2 Distributions of Jacobi-Gauss quadrature nodes

cos−1 x j = θ j =
1

N + 1

(
( j+ 1)π +O(1)

)
, j = 0,1, . . . ,N, (3.145)

where O(1) is uniformly bounded for all values j = 0,1, . . . ,N, and N = 1,2,3, . . . .
We see that near the endpoints x =±1 (i.e., θ = 0,π),

1− x2
j = sin2 θ j = O(N−2), j = 0,N.

Hence, the node spacing in the neighborhood of x = ±1 behaves like O(N−2).
In particular, for the case

−1
2
≤ α ≤ 1

2
, −1

2
≤ β ≤ 1

2
, (3.146)



86 3 Orthogonal Polynomials and Related Approximation Results

Theorem 6.21.2 of Szegö (1975) provides the bounds

2 j+ 1
2N + 3

≤ θ j ≤ 2 j+ 2
2N + 3

, 0 ≤ j ≤ N, (3.147)

where the equality holds only when α =−β =− 1
2 or α =−β = 1

2 .
For a fixed j, we can view x j = x j(N;α,β ) as a function of N,α and β , and

observe from (c) and (d) in Fig. 3.2 that for a given N, the nodes exhibit a tendency
to move towards the center of the interval as α and/or β increases. This is predicted
by Theorem 6.21.1 of Szegö (1975):

∂x j

∂α
< 0,

∂x j

∂β
> 0, 0 ≤ j ≤ N. (3.148)

In particular, if α = β ,

∂x j

∂α
< 0, j = 0,1, . . . , [N/2]. (3.149)

3.2.4 Interpolation and Discrete Jacobi Transforms

Let {x j,ω j}N
j=0 be a set of Jacobi-Gauss-type nodes and weights. As in Sect. 3.1.5,

we can define the corresponding interpolation operator, discrete inner product and
discrete norm, denoted by Iα ,β

N , 〈·, ·〉N,ωα,β and ‖ · ‖N,ωα,β , respectively.
The exactness of the quadratures implies

〈u,v〉N,ωα,β = (u,v)ωα,β , ∀u · v ∈ P2N+δ , (3.150)

where δ = 1,0,−1 for JG, JGR and JGL, respectively. Accordingly, we have

‖u‖N,ωα,β = ‖u‖ωα,β , ∀u ∈ PN , for JG and JGR. (3.151)

Although the above identity does not hold for the JGL case, we have the following
equivalence.

Lemma 3.3.

‖u‖ωα,β ≤ ‖u‖N,ωα,β ≤
√

2+
α +β + 1

N
‖u‖ωα,β , ∀u ∈ PN . (3.152)

Proof. For any u ∈ PN, we write

u(x) =
N

∑
l=0

ûlJ
α ,β
l (x), with ûl =

1

γα ,β
l

(
u,Jα ,β

l

)
ωα,β .
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By the orthogonality of the Jacobi polynomials and the exactness (3.150),

‖u‖2
ωα,β =

N

∑
l=0

û2
l γα ,β

l ,

‖u‖2
N,ωα,β =

N−1

∑
l=0

û2
l γα ,β

l + û2
N〈Jα ,β

N , Jα ,β
N 〉N,ωα,β .

(3.153)

To estimate the last term, we define

ψ(x) = [Jα ,β
N (x)]2 +

1
N2 (1− x2)

[
∂xJα ,β

N (x)
]2
.

One verifies readily that ψ ∈ P2N−1, since the leading term x2N cancels out. There-
fore, using the fact (1− x2

j)∂xJα ,β
N (x j) = 0, and the exactness (3.150), we derive

〈
Jα ,β

N , Jα ,β
N

〉
N,ωα,β = 〈1,ψ〉N,ωα,β = (1,ψ)ωα,β =

(
Jα ,β

N , Jα ,β
N

)
ωα,β

+
1

N2

(
∂xJα ,β

N , ∂xJα ,β
N

)
ωα+1,β+1

(3.97)
=

[
1+

λ α ,β
N

N2

]
γα,β

N .

Hence, by (3.91),

〈
Jα,β

N , Jα ,β
N

〉
N,ωα,β =

(
2+

α +β + 1
N

)
γα ,β

N . (3.154)

Inserting it into (3.153) leads to the desired result. ��
We now turn to the discrete Jacobi transforms. Since the interpolation polynomial

Iα ,β
N u ∈ PN , we write

(
Iα,β
N u

)
(x) =

N

∑
n=0

ũα ,β
n Jα,β

n (x), (3.155)

where the coefficients {ũα,β
n }N

n=0 are determined by the forward discrete Jacobi
transform.

Theorem 3.28.

ũα ,β
n =

1

δ α ,β
n

N

∑
j=0

u(x j)J
α ,β
n (x j)ω j, (3.156)

where δ α ,β
n = γα ,β

n for 0 ≤ n ≤ N − 1, and

δ α ,β
N =

⎧⎨
⎩

γα ,β
N , for JG and JGR,(
2+ α+β+1

N

)
γα ,β

N , for JGL.
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Proof. This formula follows directly from Theorem 3.9 and (3.154). ��
By taking x = x j in (3.155), the backward discrete Jacobi transform is carried out by

u(x j) = (Iα ,β
N u)(x j) =

N

∑
n=0

ũα ,β
n Jα ,β

n (x j), 0 ≤ j ≤ N. (3.157)

In general, the discrete transforms (3.156)-(3.157) can be performed by a matrix–
vector multiplication routine in about N2 flops. Some techniques to reduce the com-
putational complexity to N(logN)α (with some positive α) are suggested in Potts
et al. (1998), Tygert (2010).

3.2.5 Differentiation in the Physical Space

Let {x j}N
j=0 be a set of Jacobi-Gauss-type points, and let {h j}N

j=0 be the associ-
ated Lagrange basis polynomials. Suppose that u ∈ PN is an approximation to the
underlying solution, and we write

u(x) =
N

∑
j=0

u(x j)h j(x).

As shown in Sect. 3.1.6, the differentiation of u can be done through a matrix–vector
multiplication:

u(m) = Dmu, m ≥ 1, (3.158)

where u(k) = (u(k)(x0),u(k)(x1), . . . ,u(k)(xN))
T , u = u(0), and the first-order differ-

entiation matrix:
D =

(
dk j = h′j(xk)

)
k, j=0,1,...,N .

Hence, it suffices to compute the entries of the first-order differentiation matrix D,
whose explicit formulas can be derived from Theorem 3.11.

3.2.5.1 Jacobi-Gauss-Lobatto Differentiation Matrix

In this case, the quadrature polynomial defined in (3.74) reads

Q(x) = (1− x2)Jα+1,β+1
N−1 (x).

To simplify the notation, we write

J(x) := ∂xJα+1,β+1
N−1 (x). (3.159)
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One verifies readily that (note: x0 =−1 and xN = 1):

Q′(x j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(−1)N−1Γ (N +β + 1)
Γ (N)Γ (β + 2)

, j = 0,

(1− x2
j)J(x j), 1 ≤ j ≤ N − 1,

−2Γ (N +α + 1)
Γ (N)Γ (α + 2)

, j = N.

Differentiating Q(x) yields

Q′′(x) =−2Jα+1,β+1
N−1 (x)− 4x∂xJα+1,β+1

N−1 (x)+ (1− x2)∂ 2
x Jα+1,β+1

N−1 (x)

(3.90)
= [(α −β )+ (α +β )x]J(x)− (λ α+1,β+1

N−1 + 2)Jα+1,β+1
N−1 (x).

Recalling that {Jα+1,β+1
N−1 (x j) = 0}N−1

j=1 , and using the formulas (3.94), (3.107) and
(3.100) to work out the constants, we find

Q′′(x j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
[
α −N(N +α +β + 1)

]
Γ (N +β + 1)

(−1)N+1Γ (N)Γ (β + 3)
, j = 0,

[
α −β +(α +β )x j

]
J(x j), 1 ≤ j ≤ N − 1,

2
[
β −N(N +α +β + 1)

]
Γ (N +α + 1)

Γ (N)Γ (α + 3)
, j = N.

Applying the general formulas in Theorem 3.11, the entries of the first-order JGL
differentiation matrix D are expressed as follows.

(a). The first column ( j = 0):

dk0 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α −N(N +α +β + 1)
2(β + 2)

, k = 0,

(−1)N−1Γ (N)Γ (β + 2)
2Γ (N +β + 1)

(1− xk)J(xk), 1 ≤ k ≤ N − 1,

(−1)N

2
Γ (β + 2)Γ (N +α + 1)
Γ (α + 2)Γ (N +β + 1)

, k = N.

(3.160)

(b). The second to the N-th column (1 ≤ j ≤ N − 1):

dk j=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(−1)NΓ (N+β+1)
Γ (N)Γ (β+2)(1−x j)(1+x j)2J(x j)

, k = 0,

(1−x2
k)J(xk)

(1−x2
j)J(x j)

1
xk−x j

, k �= j, 1 ≤ k ≤ N−1,

α−β+(α+β )xk

2(1−x2
k)

, 1 ≤ k= j ≤ N−1,

−2Γ (N+α+1)
Γ (N)Γ (α+2)(1−x j)2(1+x j)J(x j)

, k=N.

(3.161)
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(c). The last column ( j = N):

dkN =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)N+1

2
Γ (α + 2)Γ (N +β + 1)
Γ (β + 2)Γ (N +α + 1)

, k = 0,

Γ (N)Γ (α + 2)
2Γ (N +α + 1)

(1+ xk)J(xk), 1 ≤ k ≤ N − 1,

N(N +α +β + 1)−β
2(α + 2)

, k = N.

(3.162)

3.2.5.2 Jacobi-Gauss-Radau Differentiation Matrix

In this case, the quadrature polynomial in (3.74) is Q(x) = (1+x)Jα ,β+1
N (x). Denot-

ing J(x) = ∂xJα,β+1
N (x), one verifies that

Q′(x j) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)NΓ (N +β + 2)
N!Γ (β + 2)

, j = 0,

(1+ x j)J(x j), 1 ≤ j ≤ N.

We obtain from (3.100) and (3.107) that

Q′′(x0) = 2∂xJα ,β+1
N (−1) =

(−1)N−1(N +α +β + 2)Γ (N +β + 2)
Γ (N)Γ (β + 3)

.

Moreover, by (3.90),

Q′′(x) = 2∂xJα ,β+1
N (x)+ (1+ x)∂ 2

x Jα ,β+1
N (x) = 2∂xJα,β+1

N (x)

+
1

1− x

[(
α −β − 1+(α +β + 3)x

)
∂xJα ,β+1

N (x)−λ α ,β+1
N Jα ,β+1

N (x)
]
.

In view of
{

Jα,β+1
N (x j) = 0

}N
j=1, we derive that

Q′′(x j) =
1

1− x j

(
α −β + 1+(α +β + 1)x j

)
J(x j), 1 ≤ j ≤ N.
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Applying the general results in Theorem 3.11 leads to

dk j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−N(N +α +β + 2)
2(β + 2)

, k = j = 0,

N!Γ (β + 2)
(−1)NΓ (N +β + 2)

J(xk), 1 ≤ k ≤ N, j = 0,

(−1)N+1Γ (N +β + 2)
N!Γ (β + 2)

1
(1+ x j)2J(x j)

, k = 0, 1 ≤ j ≤ N,

(1+ xk)J(xk)

(1+ x j)J(x j)

1
xk − x j

, 1 ≤ k �= j ≤ N,

α −β + 1+(α +β + 1)xk

2(1− x2
k)

, 1 ≤ k = j ≤ N.

(3.163)

3.2.5.3 Jacobi-Gauss Differentiation Matrix

In this case, the quadrature polynomial in (3.74) is Q(x) = Jα ,β
N+1(x). One verifies

by using (3.90) that

∂ 2
x Jα ,β

N+1(x j) =
1

1− x2
j

(
α −β +(α +β + 2)x j

)
∂xJα,β

N+1(x j), 0 ≤ j ≤ N.

Once again, we derive from Theorem 3.11 that

dk j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂xJα,β
N+1(xk)

∂xJα,β
N+1(x j)

1
xk − x j

, 0 ≤ k �= j ≤ N,

α −β +(α +β + 2)xk

2(1− x2
k)

, 1 ≤ k = j ≤ N.

(3.164)

As a numerical illustration, we consider the approximation of the derivatives of
u(x) = sin(4πx), x ∈ [−1,1] by the Jacobi-Gauss-Lobatto interpolation associated
with {x j}N

j=0 with α = β = 1. More precisely, let

u(x)≈ uN(x) = I1,1
N u(x) =

N

∑
j=0

u(x j)h j(x) ∈ PN. (3.165)

In Fig. 3.3a, we plot u′ (solid line) versus u′N(x) (“·”) and u′′ (solid line) versus
u′′N(x) (“�”) at {x j}N

j=0 with N = 38. In Fig. 3.3b, we depict the errors log10

(‖u′ −
u′N‖N,ω1,1

)
(“◦”) and log10

(‖u′′ − u′′N‖N,ω1,1

)
(“�”) against various N. We observe

that the errors decay exponentially.
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Fig. 3.3 Convergence of Jacobi differentiation in the physical space

3.2.6 Differentiation in the Frequency Space

We now describe the spectral differentiation by manipulating the expansion coeffi-
cients as in Sect. 3.1.7. For any u ∈ PN, we write

u(x) =
N

∑
n=0

ûnJα ,β
n (x) ∈ PN, u′(x) =

N−1

∑
n=0

û(1)n Jα ,β
n (x) ∈ PN−1.

The process of differentiation in the frequency space is to express {û(1)n } in terms
of {ûn}.

Thanks to the recurrence formula (3.123), the corresponding coefficients in the
relation (3.80) are

ãn = Âα ,β
n , b̃n = B̂α ,β

n , c̃n = Ĉα ,β
n ,

where Âα ,β
n , B̂α ,β

n and Ĉα ,β
n are given in (3.124a)–(3.124c), respectively.

Hence, by Theorem 3.12, the coefficients {û(1)n }N
n=0 can be exactly evaluated by

the backward recurrence formula
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

û(1)N = 0, û(1)N−1 =
ûN

Ĉα ,β
N−1

,

û(1)n−1 =
1

Ĉα ,β
n−1

{
ûn − B̂α ,β

n û(1)n − Âα ,β
n+1û(1)n+1

}
,

n = N − 1,N − 2, . . . ,2,1.

(3.166)

In summary, given the physical values {u(x j)}N
j=0 at a set of Jacobi-Gauss-type

points {x j}N
j=0, the evaluation of {u′(x j)}N

j=0 can be carried out in the following
three steps:
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• Find the coefficients {ûn}N
n=0 by using the forward discrete Jacobi transform

(3.156).
• Compute the coefficients {û(1)n }N−1

n=0 by using (3.166).
• Find the derivative values {u′(x j)}N

j=0 by using the backward discrete Jacobi
transform (3.157).

Higher-order derivatives can be computed by repeating the above procedure.
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Fig. 3.4 Convergence of Jacobi differentiation in the frequency space

As an illustrative example, we fix the Jacobi index to be (1,1), consider u(x) =
1/(1+ 2x2), x ∈ [−1,1], and approximate its derivatives by taking the derivatives,
in the frequency space, of its interpolation polynomial:

u(x)≈ uN(x) = I1,1
N u(x) =

N

∑
n=0

ũnJ1,1
n (x) ∈ PN . (3.167)

We observe from Fig. 3.4 that the errors decay exponentially, similar to the differ-
entiation in the physical space as shown in Fig. 3.3.

3.3 Legendre Polynomials

We discuss in this section an important special case of the Jacobi polynomials – then
Legendre polynomials

Ln(x) = J0,0
n (x), n ≥ 0, x ∈ I = (−1,1).

The distinct feature of the Legendre polynomials is that they are mutually orthog-
onal with respect to the uniform weight function ω(x) ≡ 1. The first six Legendre
polynomials and their derivatives are plotted in Fig. 3.5.

Since most of them can be derived directly from the corresponding properties
of the Jacobi polynomials by taking α = β = 0, we merely collect some relevant
formulas without proof.
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• Three-term recurrence relation:

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x), n ≥ 1, (3.168)

and the first few Legendre polynomials are

L0(x) = 1, L1(x) = x,

L2(x) =
1
2
(3x2 − 1), L3(x) =

1
2
(5x3 − 3x).

• The Legendre polynomial has the expansion

Ln(x) =
1
2n

[n/2]

∑
l=0

(−1)l (2n− 2l)!
2nl!(n− l)!(n− 2l)!

xn−2l , (3.169)

and the leading coefficient is

kn =
(2n)!

2n(n!)2 . (3.170)

• Sturm-Liouville problem:
(
(1− x2)L′

n(x)
)′
+λnLn(x) = 0, λn = n(n+ 1). (3.171)

Equivalently,

(1− x2)L′′
n(x)− 2xL′

n(x)+ n(n+ 1)Ln(x) = 0. (3.172)

• Rodrigues’ formula:

Ln(x) =
1

2nn!
dn

dxn

[
(x2 − 1)n

]
, n ≥ 0. (3.173)

• Orthogonality:

∫ 1

−1
Ln(x)Lm(x)dx = γnδmn, γn =

2
2n+ 1

, (3.174a)

∫ 1

−1
L′

n(x)L
′
m(x)(1− x2)dx = γnλnδmn. (3.174b)

• Symmetric property:

Ln(−x) = (−1)nLn(x), Ln(±1) = (±1)n. (3.175)

Hence, Ln(x) is an odd (resp. even) function, if n is odd (resp. even). Moreover,
we have the uniform bound

|Ln(x)| ≤ 1, ∀x ∈ [−1,1], n ≥ 0.
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• Derivative recurrence relations:

(2n+ 1)Ln(x) = L′
n+1(x)−L′

n−1(x), n ≥ 1, (3.176a)

L′
n(x) =

n−1

∑
k=0

k+n odd

(2k+ 1)Lk(x), (3.176b)

L′′
n(x) =

n−2

∑
k=0

k+n even

(
k+

1
2

)(
n(n+ 1)− k(k+ 1)

)
Lk(x), (3.176c)

(1− x2)L′
n(x) =

n(n+ 1)
2n+ 1

(
Ln−1(x)−Ln+1(x)

)
. (3.176d)

• The boundary values of the derivatives:

L′
n(±1) =

1
2
(±1)n−1n(n+ 1), (3.177a)

L′′
n(±1) = (±1)n(n− 1)n(n+ 1)(n+ 2)/8. (3.177b)
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Fig. 3.5 The first six Legendre polynomials and their first-order derivatives

3.3.1 Legendre-Gauss-Type Quadratures

The Legendre-Gauss-type quadrature formulas can be derived from the Jacobi ones
in the previous section.
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Theorem 3.29. Let {x j,ω j}N
j=0 be a set of Legendre-Gauss-type nodes and weights.

• For the Legendre-Gauss (LG) quadrature,

{
x j
}N

j=0 are the zeros of LN+1(x);

ω j =
2

(1− x2
j)[L

′
N+1(x j)]2

, 0 ≤ j ≤ N.
(3.178)

• For the Legendre-Gauss-Radau (LGR) quadrature,

{
x j
}N

j=0 are the zeros of LN(x)+LN+1(x);

ω j =
1

(N + 1)2

1− x j

[LN(x j)]2
, 0 ≤ j ≤ N.

(3.179)

• For the Legendre-Gauss-Lobatto (LGL) quadrature,

{
x j
}N

j=0 are the zeros of (1− x2)L′
N(x);

ω j =
2

N(N + 1)
1

[LN(x j)]2
, 0 ≤ j ≤ N.

(3.180)

With the above quadrature nodes and weights, there holds

∫ 1

−1
p(x)dx =

N

∑
j=0

p(x j)ω j, ∀p ∈ P2N+δ , (3.181)

where δ = 1,0,−1 for LG, LGR and LGL, respectively.

Proof. The rule (3.181) with (3.178) follows directly from Theorem 3.25 with α =
β = 0.

We now prove (3.179). The formula (3.116b) implies

(1+ x)J0,1
N (x) = LN(x)+LN+1(x). (3.182)

Hence, we infer from Theorem 3.26 that the nodes
{

x j
}N

j=0 are the zeros of LN(x)+

LN+1(x), and the formulas of the weights are

ω0 =
2

(N + 1)2 =
1

(N + 1)2

1− x0

[LN(x0)]2
,

ω j =
2(2N + 1)
N(N + 1)

1

(1+ x j)
[
J0,1

N−1(x)∂xJ0,1
N (x)

]∣∣∣
x=x j

, 1 ≤ j ≤ N.
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To derive the equivalent expression in (3.179), we deduce from the fact {J0,1
N (x j) =

0}N
j=1 that

∂xJ0,1
N (x j)

(3.133)
=

2N(N + 1)
2N + 1

J0,1
N−1(x j)

1− x2
j

(3.182)
=

2N(N + 1)
2N + 1

LN−1(x j)+LN(x j)

(1+ x j)(1− x2
j)

,

which, together with (3.182), leads to

(1+ x j)J
0,1
N−1(x j)∂xJ0,1

N (x j) =
2N(N + 1)

2N + 1

[
LN−1(x j)+LN(x j)

1+ x j

]2 1
1− x j

.

Due to LN(x j)+LN+1(x j) = 0 for 1 ≤ j ≤ N, using the three-term recurrence rela-
tion (3.168) gives

LN−1(x j) =
2N + 1

N
xjLN(x j)− N + 1

N
LN+1(x j)

=
2N + 1

N
xjLN(x j)+

N + 1
N

LN(x j)

=
2N + 1

N
(1+ x j)LN(x j)−LN(x j).

A combination of the above facts leads to (3.179).
We now turn to the derivation of (3.180). By Theorem 3.27 with α = β = 0,

ω0 = ωN =
2

N(N + 1)
,

ω j =
8

N + 1
1

(1− x2
j)J

1,1
N−2(x j)∂xJ1,1

N−1(x j)
, 1 ≤ j ≤ N − 1.

(3.183)

In view of {J1,1
N−1(x j) = 0}N

j=1, we derive from (3.133) that

(1− x2
j)∂xJ1,1

N−1(x j) = NJ1,1
N−2(x j), 1 ≤ j ≤ N − 1.

As a consequence of (3.98) and the above equality, we find that

(1− x2
j)J

1,1
N−2(x j)∂xJ1,1

N−1(x j) = N
[
J1,1

N−2(x j)
]2

=
4
N

[
L′

N−1(x j)
]2
.
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Differentiating (3.168) and using (3.176a) and the fact {L′
N(x j) = 0}N

j=1, yields

L′
N−1(x j) =

2N + 1
N

LN(x j)− N + 1
N

L′
N+1(x j)

=
2N + 1

N
LN(x j)− N + 1

N

(
L′

N−1(x j)+ (2N + 1)LN(x j)
)

=−(2N + 1)LN(x j)− N + 1
N

L′
N−1(x j),

which leads to

L′
N−1(x j) =−NLN(x j), 1 ≤ j ≤ N − 1.

Consequently,

(1− x2
j)J

1,1
N−2(x j)∂xJ1,1

N−1(x j) = 4NL2
N(x j).

Plugging it into the second formula of (3.183) gives the desired result. ��

3.3.2 Computation of Nodes and Weights

As a special case of (3.142), the interior Legendre-Gauss-type nodes are the eigen-
values of the following Jacobian matrix:

AM+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
√

b1
√

b1 a1
√

b2

. . .
. . .

. . .
√

bM−1 aM−1
√

bM
√

bM aM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.184)

where

• For LG: a j = 0, b j =
j2

4 j2 − 1
, M = N.

• For LGR: a j =
1

(2 j+ 1)(2 j+ 3)
, b j =

j( j+ 1)
(2 j+ 1)2 , M = N − 1.

• For LGL: a j = 0, b j =
j( j+ 2)

(2 j+ 1)(2 j+ 3)
, M = N − 2.

The quadrature weights can be evaluated by using the formulas in Theorem 3.29.
Alternatively, as a consequence of (3.144), the quadrature weights can be computed
from the first component of the orthonormal eigenvectors of AM+1.

The eigenvalue method is well-suited for the Gauss-quadratures of low or mod-
erate order. However, for high-order quadratures, the eigenvalue method may suffer
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from round-off errors, so it is advisable to use a root-finding iterative approach. To
fix the idea, we restrict our attention to the commonly used Legendre-Gauss-Lobatto
case and compute the zeros of L′

N(x). In this case, the Newton method (3.31) reads

⎧⎪⎨
⎪⎩

xk+1
j = xk

j −
L′

N(x
k
j)

L′′
N(x

k
j)
, k ≥ 0,

given x0
j , 1 ≤ j ≤ N − 1.

(3.185)

To avoid evaluating the values of L′′
N , we use (3.171) to derive that

L′
N(x)

L′′
N(x)

=
(1− x2)L′

N(x)
2xL′

N(x)−N(N + 1)LN(x)
.

For an iterative method, it is essential to start with a good initial approximation. In
Lether (1978), an approximation of the zeros of LN(x) is given by

σk =

[
1− N − 1

8N3 − 1
384N4

(
39− 28

sin2 θk

)]
cosθk +O(N−5), (3.186)

where

θk =
4k− 1
4N + 2

π , 1 ≤ k ≤ N.

Notice from Corollary 3.4 (the interlacing property) that there exists exactly one
zero of L′

N(x) between two consecutive zeros of LN(x). Therefore, we can take the
initial guess as

x0
j =

σ j +σ j+1

2
, 1 ≤ j ≤ N − 1. (3.187)

We point out that due to L′
N(−x)= (−1)N+1L′

N(x), the computational cost of (3.185)
can be halved.

After finding the nodes {x j}N
j=0, we can compute the corresponding weights by

the formula (3.180):

w(x) =
2

N(N + 1)
1

L2
N(x)

. (3.188)

It is clear that w′(x j) = 0 for 1 ≤ j ≤ N − 1. In other words, the interior nodes
are the extremes of w(x). We plot the graph of w(x) with N = 8 in Fig. 3.6a. As
a consequence, for a small perturbation of the nodes, we can obtain very accurate
values ω j = w(x j) even for very large N.

In Fig. 3.6b, we depict the locations of the Legendre-Gauss-Lobatto nodes
{x j}8

j=0, and {θ j = arccosx j}8
j=0. We see that {θ j} distribute nearly equidistantly
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along the upper half unit circle (i.e., in [0,π ]). The projection of {θ j} onto [−1,1]
yields the clustering of points {x j} near the endpoints x =±1 with spacing O(N−2).
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Fig. 3.6 (a) Behavior of w(x) in (3.188) with N = 8; (b) Distribution of the Legendre-Gauss-
Lobatto nodes with N = 8

We tabulate in Table 3.2 some samples of the LGL nodes and weights with
N = 8,16 (note that xN− j = −x j and ωN− j = ω j) computed by the aforementioned
method.

Table 3.2 LGL nodes and weights
Nodes x j Weights ω j

1.000000000000000e+00 2.777777777777778e-02
8.997579954114601e-01 1.654953615608056e-01
6.771862795107377e-01 2.745387125001617e-01
3.631174638261782e-01 3.464285109730462e-01
0.000000000000000e+00 3.715192743764172e-01

1.000000000000000e+00 7.352941176470588e-03
9.731321766314184e-01 4.492194054325414e-02
9.108799959155736e-01 7.919827050368709e-02
8.156962512217703e-01 1.105929090070281e-01
6.910289806276847e-01 1.379877462019266e-01
5.413853993301015e-01 1.603946619976215e-01
3.721744335654770e-01 1.770042535156577e-01
1.895119735183174e-01 1.872163396776192e-01
0.000000000000000e+00 1.906618747534694e-01

3.3.3 Interpolation and Discrete Legendre Transforms

Given a set of Legendre-Gauss-type quadrature nodes and weights {x j,ω j}N
j=0, we

define the associated interpolation operator IN , discrete inner product 〈·, ·〉N and
discrete norm ‖ · ‖N, as in Sect. 3.1.5.
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Thanks to the exactness of the Legendre-Gauss-type quadrature (cf. (3.181)), we
have

〈u,v〉N = (u,v), ∀u · v ∈ P2N+δ , (3.189)

where δ = 1,0,−1 for LG, LGR and LGL, respectively. Consequently,

‖u‖N = ‖u‖, ∀u ∈ PN for LG and LGR. (3.190)

Although the above formula does not hold for LGL, we derive from Lemma 3.3
with α = β = 0 the following equivalence:

‖u‖ ≤ ‖u‖N ≤
√

2+N−1‖u‖, ∀u ∈ PN . (3.191)

Moreover, as a direct consequence of (3.154), we have

〈
LN ,LN

〉
N =

2
N
. (3.192)

We now turn to the discrete Legendre transforms. The Lagrange interpolation
polynomial INu ∈ PN , so we write

(INu)(x) =
N

∑
n=0

ũnLn(x),

where the (discrete) Legendre coefficients {ũn} are determined by the forward dis-
crete Legendre transform:

ũn =
1
γn

N

∑
j=0

u(x j)Ln(x j)ω j =
〈u,Ln〉N

‖Ln‖2
N

, 0 ≤ n ≤ N, (3.193)

where γn =
2

2n+1 for 0 ≤ n ≤ N, except for LGL case, γN = 2
N . On the other hand,

given the expansion coefficients {ũn}, the physical values {u(x j)} can be computed
by the backward discrete Legendre transform:

u(x j) = (INu)(x j) =
N

∑
n=0

ũnLn(x j), 0 ≤ j ≤ N. (3.194)

Assuming that
(
Ln(x j)

)
j,n=0,1,...,N have been precomputed, the discrete Legendre

transforms (3.194) and (3.193) can be carried out by a standard matrix–vector mul-
tiplication routine in about N2 flops. The cost of the discrete Legendre transforms
can be halved, due to the symmetry: Ln(x j) = (−1)nLn(xN− j).

To illustrate the convergence of Legendre interpolation approximations, we con-
sider the test function: u(x) = sin(kπx). Writing

sin(kπx) =
∞

∑
n=0

ûnLn(x), x ∈ [−1,1], (3.195)
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we can derive from the property of the Bessel functions (cf. Watson (1966)) that

ûn =
1√
2k

(2n+ 1)Jn+1/2(kπ)sin(nπ/2), n ≥ 0, (3.196)

where Jn+1/2(·) is the Bessel function of the first kind. Using the asymptotic formula

Jν(x)∼ 1
2πν

( ex
2ν

)ν
, ν � 1, ν ∈ R, (3.197)

we find that the exponential decay of the expansion coefficients occurs when the
mode

n >
ekπ

2
− 1

2
. (3.198)

We now approximate u by INu = ∑N
n=0 ũnLn(x), and consider the error in the

coefficients |ûn − ũn
∣∣. We observe from Fig. 3.7a that the errors between the exact

and discrete expansion coefficients decay exponentially when N > ekπ/2, and it
verifies the estimate

max
0≤n≤N

∣∣ûn − ũn
∣∣∼ ûN+1 for N � 1. (3.199)

In Fig. 3.7b, we depict the exact expansion coefficients ûn (marked by “◦”) and
the discrete expansion coefficients ũn (marked by “�”) against the subscript n, and
in Fig. 3.7c, we plot the exact solution versus its interpolation. Observe that INu
provides an accurate approximation to u as long as N > ekπ/2.

As with the Fourier case, when a discontinuous function is expanded in Legen-
dre series, the Gibbs phenomena occur in the neighborhood of a discontinuity. For
example, the Legendre series expansion of the sign function sgn(x) is

sgn(x) =
∞

∑
n=0

(−1)n(4n+ 3)(2n)!
22n+1(n+ 1)!n!

L2n+1(x). (3.200)

One verifies readily that the expansion coefficients behave like

|û2n+1|= (4n+ 3)(2n)!
22n+1(n+ 1)!n!

� 1√
n
, n � 1. (3.201)

In Fig. 3.7d, we plot the numerical approximation INu(x) and sgn(x) in the interval
[−0.3,0.3], which indicates a Gibbs phenomenon near x = 0.
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Fig. 3.7 (a) Error max0≤n≤N |ûn − ũn| & ûN+1 (solid line) vs. N/(kπ) with k = 16,24,32; (b) ûn
vs. ũn with k = 32 and N = 128; (c) u(x) vs. IN u(x), x ∈ [−0.3,0.3] with k = 32 and N = 128;
(d) u(x) = sgn(x) vs. INu(x), x ∈ [−0.3,0.3] with k = 32 and N = 64

3.3.4 Differentiation in the Physical Space

Given u ∈ PN and its values at a set of Legendre-Gauss-type points {x j}N
j=0, let

{h j}N
j=0 be the associated Lagrange basis polynomials. According to the general

approach described in Sect. 3.1.6, we have

u(m) = Dmu, m ≥ 1, (3.202)

where

D =
(
dk j = h′j(xk)

)
0≤k, j≤N , u(m) =

(
u(m)(x0), . . . ,u

(m)(xN)
)T

, u = u(0).

We derive below explicit representations of the entries of D for the three different
cases by using the general formulas of the Jacobi polynomials in Sect. 3.2.5.

• For the Legendre-Gauss-Lobatto case (x0 =−1 and xN = 1): The general formu-
las (3.160)–(3.162) for JGL in Sect. 3.2.5 with α = β = 0 lead to the reduced
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formulas involving (1−x2)∂xJ1,1
N−1 and (1±x)∂xJ1,1

N−1. Using (3.100) and (3.172)
leads to

(1− x2
j)∂xJ1,1

N−1(x j) =
2

N + 1
(1− x2

j)∂
2
x LN(x j)

=−2NLN(x j), 1 ≤ j ≤ N − 1,

and

(1± x j)∂xJ1,1
N−1(x j) =−2N

LN(x j)

1∓ x j
, 1 ≤ j ≤ N − 1.

Plugging the above in (3.160)–(3.162) with α = β = 0, we derive

dk j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−N(N + 1)
4

, k = j = 0,

LN(xk)

LN(x j)

1
xk − x j

, k �= j, 0 ≤ k, j ≤ N,

0, 1 ≤ k = j ≤ N − 1,

N(N + 1)
4

k = j = N.

(3.203)

• For the Legendre-Gauss-Radau case (x0 = −1): The general formula (3.163) in
the case of α = β = 0 can be simplified to

dk j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−N(N + 2)
4

, k = j = 0,

xk

1− x2
k

+
(N + 1)LN(xk)

(1− x2
k)Q

′(xk)
, 1 ≤ k = j ≤ N,

Q′(xk)

Q′(x j)

1
xk − x j

, k �= j,

(3.204)

where Q(x) = LN(x) + LN+1(x) (which is proportional to (1 + x)J0,1
N (x)). For

k = j, we derive from Theorem 3.11 that

dkk =
Q′′(xk)

2Q′(xk)
, 0 ≤ k ≤ N.

To avoid computing the second-order derivatives, we obtain from (3.172) that

Q′′(xk) =
2xkQ′(xk)+ 2(N + 1)LN(xk)

1− x2
k

, 1 ≤ k ≤ N.

For k = j = 0, we can work out the constants by using (3.177).
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• For the Legendre-Gauss case: The general formula (3.164) in the case of α =
β = 0 reduces to

dk j =

⎧⎪⎪⎨
⎪⎪⎩

L′
N+1(xk)

L′
N+1(x j)

1
xk − x j

, k �= j,

xk

1− x2
k

, k = j.
(3.205)

In all cases, the differentiation matrix D is a full matrix, so O(N2) flops are

needed to compute
{

u′(x j)
}N

j=0 from
{

u(x j)
}N

j=0. Also note that since u(N+1)(x)≡ 0

for any u ∈ PN , we have DN+1u = 0 for any u ∈ R
N+1. Hence, the only eigenvalue

of D is zero which has a multiplicity N + 1.

3.3.5 Differentiation in the Frequency Space

Given u ∈ PN, we write

u(x) =
N

∑
k=0

ûkLk(x) ∈ PN,

and

u′(x) =
N

∑
k=1

ûkL′
k(x) =

N

∑
k=0

û(1)k Lk(x) with û(1)N = 0.

Thanks to (3.176a), we find

u′ =
N

∑
k=0

û(1)k Lk = û(1)0 +
N−1

∑
k=1

û(1)k
1

2k+ 1
(L′

k+1 −L′
k−1)

=
û(1)N−1

2N − 1
L′

N +
N−1

∑
k=1

{
û(1)k−1

2k− 1
− û(1)k+1

2k+ 3

}
L′

k.

Since {L′
k} are orthogonal polynomials (cf. (3.174b)), comparing the coefficients of

L′
k leads to the backward recursive relation:

û(1)k−1 = (2k− 1)
(

ûk +
û(1)k+1

2k+ 3

)
, k = N − 1,N − 2, . . . ,1,

û(1)N = 0, û(1)N−1 = (2N − 1)ûN.

(3.206)

Higher-order differentiations can be performed by the above formula recursively.
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3.4 Chebyshev Polynomials

In this section, we consider another important special case of the Jacobi polynomi-
als – Chebyshev polynomials (of the first kind), which are proportional to Jacobi

polynomials {J−1/2,−1/2
n } and are orthogonal with respect to the weight function

ω(x) = (1− x2)−1/2.
The three-term recurrence relation for the Chebyshev polynomials reads:

Tn+1(x) = 2xTn(x)−Tn−1(x), n ≥ 1, (3.207)

with T0(x) = 1 and T1(x) = x.
The Chebyshev polynomials are eigenfunctions of the Sturm-Liouville problem:

√
1− x2

(√
1− x2T ′

n(x)
)′
+ n2Tn(x) = 0, (3.208)

or equivalently,

(1− x2)T ′′
n (x)− xT ′

n(x)+ n2Tn(x) = 0. (3.209)

While we can derive the properties of Chebyshev polynomials from the gen-
eral properties of Jacobi polynomials with (α,β ) = (−1/2,−1/2), it is more con-
venient to explore the relation between Chebyshev polynomials and trigonometric
functions. Indeed, using the trigonometric relation

cos((n+ 1)θ )+ cos((n− 1)θ ) = 2cosθ cos(nθ),

and taking θ = arccosx, we find that cos(narccosx) satisfies the three-term recur-
rence relation (3.207), and it is 1,x for n = 0,1, respectively. Thus, by an induction
argument, cos(narccosx) is also a polynomial of degree n with the leading coeffi-
cient 2n−1 (Fig. 3.8). We infer from Theorem 3.1 of the uniqueness that

Tn(x) = cosnθ , θ = arccosx, n ≥ 0, x ∈ I. (3.210)

This explicit representation enables us to derive many useful properties.
An immediate consequence is the recurrence relation

2Tn(x) =
1

n+ 1
T ′

n+1(x)−
1

n− 1
T ′

n−1(x), n ≥ 2. (3.211)

One can also derive from (3.210) that

Tn(−x) = (−1)nT (x), Tn(±1) = (±1)n, (3.212a)

|Tn(x)| ≤ 1, |T ′
n(x)| ≤ n2, (3.212b)

(1− x2)T ′
n(x) =

n
2

Tn−1(x)− n
2

Tn+1(x), (3.212c)

2Tm(x)Tn(x) = Tm+n(x)+Tm−n(x), m ≥ n ≥ 0, (3.212d)
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and

T ′
n(±1) = (±1)n−1n2, (3.213a)

T ′′
n (±1) =

1
3
(±1)nn2(n2 − 1). (3.213b)

It is also easy to show that

∫ 1

−1
Tn(x)Tm(x)

1√
1− x2

dx =
cnπ
2

δmn, (3.214)

where c0 = 2 and cn = 1 for n ≥ 1. Hence, we find from (3.208) that

∫ 1

−1
T ′

n(x)T
′

m(x)
√

1− x2dx =
n2cnπ

2
δmn, (3.215)

i.e., {T ′
n(x)} are mutually orthogonal with respect to the weight function

√
1− x2.

We can obtain from (3.211) that

T ′
n(x) = 2n

n−1

∑
k=0

k+n odd

1
ck

Tk(x), (3.216a)

T ′′
n (x) =

n−2

∑
k=0

k+n even

1
ck

n(n2 − k2)Tk(x). (3.216b)

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1
cos(12θ)

T12 (x+0.5)

Fig. 3.8 Left: curves of T12(x + 1.5) and cos(12θ ); Right: we plot Tn(x) radially, increase the
radius for each value of n, and fill in the areas between the curves (Trott (1999), pp. 10 and 84)

Another remarkable consequence of (3.210) is that the Gauss-type quadrature
nodes and weights can be derived explicitly.
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Theorem 3.30. Let {x j,ω j}N
j=0 be a set of Chebyshev-Gauss-type quadrature nodes

and weights.

• For Chebyshev-Gauss (CG) quadrature,

x j =−cos
(2 j+ 1)π

2N + 2
, ω j =

π
N + 1

, 0 ≤ j ≤ N.

• For Chebyshev-Gauss-Radau (CGR) quadrature,

x j =−cos
2π j

2N + 1
, 0 ≤ j ≤ N,

ω0 =
π

2N + 1
, ω j =

2π
2N + 1

, 1 ≤ j ≤ N.

• For Chebyshev-Gauss-Lobatto (CGL) quadrature,

x j =−cos
π j
N

, ω j =
π

c̃ jN
, 0 ≤ j ≤ N.

where c̃0 = c̃N = 2 and c̃ j = 1 for j = 1,2, . . . ,N − 1.

With the above choices, there holds

∫ 1

−1
p(x)

1√
1− x2

dx =
N

∑
j=0

p(x j)ω j, ∀p ∈ P2N+δ , (3.217)

where δ = 1,0,−1 for the CG, CGR and CGL, respectively.

In the Chebyshev case, the nodes {θ j = arccos(x j)} are equally distributed on
[0,π ], whereas {x j} are clustered in the neighborhood of x = ±1 with density
O(N−2), for instance, for the CGL points

1− x1 = 1− cos
π
N

= 2sin2 π
2N

� π2

2N2 for N � 1.

For more properties of Chebyshev polynomials, we refer to Rivlin (1974).

3.4.1 Interpolation and Discrete Chebyshev Transforms

Given a set of Chebyshev-Gauss-type quadrature nodes and weights {x j,ω j}N
j=0, we

define the associated interpolation operator IN , discrete inner product 〈·, ·〉N,ω and
discrete norm ‖ · ‖N,ω , as in Sect. 3.1.5.

Thanks to the exactness of the Chebyshev-Gauss-type quadrature, we have

〈u,v〉N,ω = (u,v)ω , ∀uv ∈ P2N+δ , (3.218)
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where δ = 1,0,−1 for CG, CGR and CGL, respectively. Consequently,

‖u‖N,ω = ‖u‖ω , ∀u ∈ PN , for CG and CGR. (3.219)

Although the above identity does not hold for the CGL, the following equivalence
follows from Lemma 3.3:

‖u‖ω ≤ ‖u‖N,ω ≤
√

2‖u‖ω , ∀u ∈ PN . (3.220)

Moreover, a direct computation leads to

〈TN ,TN〉N,ω =
π
N

N

∑
j=0

cos2 jπ
c̃ j

= π . (3.221)

We now turn to the discrete Chebyshev transforms. To fix the idea, we only
consider the Chebyshev-Gauss-Lobatto case. As a special family of Jacobi poly-
nomials, the transforms can be performed via a matrix–vector multiplication with
O(N2) operations as usual. However, thanks to (3.210), they can be carried out with
O(N log2 N) operations via FFT.

Given u ∈ C[−1,1], let INu be its Lagrange interpolation polynomial relative to
the CGL points, and we write

(INu)(x) =
N

∑
n=0

ũnTn(x) ∈ PN,

where {ũn} are determined by the forward discrete Chebyshev transform (cf.
Theorem 3.9):

ũn =
2

c̃nN

N

∑
j=0

1
c̃ j

u(x j)cos
n jπ
N

, 0 ≤ n ≤ N. (3.222)

On the other hand, given the expansion coefficients {ũn}, the physical values
{u(x j)} are evaluated by the backward discrete Chebyshev transform:

u(x j) = (INu)(x j) =
N

∑
n=0

ũnTn(x j) =
N

∑
n=0

ũn cos
n jπ
N

, 0 ≤ j ≤ N. (3.223)

Hence, it is clear that both the forward transform (3.222) and backward transform
(3.223) can be computed by using FFT in O(N log2 N) operations.

Let us conclude this part with a discussion of point-per-wavelength required for
the approximation using Chebyshev polynomials. We have

sin(kπx) =
∞

∑
n=0

ûnTn(x), x ∈ [−1,1], (3.224)

with

ûn := ûn(k) =
2
cn

Jn(kπ)sin(nπ/2), n ≥ 0, (3.225)
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where Jn(·) is again the Bessel function of the first kind. Hence, using the asymptotic
formula (3.197), we find that the exponential decay of the expansion coefficients
occurs when

n >
ekπ

2
, (3.226)

which is similar to (3.198) for the Legendre expansion.

3.4.2 Differentiation in the Physical Space

Given u ∈ PN and its values at a set of Chebyshev-Gauss-type collocation points
{x j}N

j=0, let {h j(x)}N
j=0 be the associated Lagrange basis polynomials. According

to the general results stated in Sect. 3.1.6, we have

u(m) = Dmu, m ≥ 1, (3.227)

where

D =
(
dk j = h′j(xk)

)
0≤k, j≤N , u(m) =

(
u(m)(x0), . . . ,u

(m)(xN)
)T

, u = u(0).

The entries of the first-order differentiation matrix D can be determined by the ex-
plicit formulas below.

• For the Chebyshev-Gauss-Lobatto case (x0 =−1 and xN = 1):

dk j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2N2 + 1
6

, k = j = 0,

c̃k

c̃ j

(−1)k+ j

xk − x j
, k �= j, 0 ≤ k, j ≤ N,

− xk

2(1− x2
k)
, 1 ≤ k = j ≤ N − 1,

2N2 + 1
6

, k = j = N,

(3.228)

where c̃0 = c̃N = 2 and c̃ j = 1 for 1 ≤ j ≤ N − 1.
• For the Chebyshev-Gauss-Radau case (x0 =−1):

dk j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−N(N + 1)
3

, k = j = 0,

xk

2(1− x2
k)

+
(2N + 1)TN(xk)

2(1− x2
k)Q

′(xk)
, 1 ≤ k = j ≤ N,

Q′(xk)

Q′(x j)

1
xk − x j

, k �= j,

(3.229)
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where Q(x) = TN(x)+TN+1(x). To derive (3.229), we find from Theorem 3.26

that {x j}N
j=0 are the zeros of (1+ x)J−1/2,1/2

N (x). In view of the correspondence:

J−1/2,−1/2
N (x) = J−1/2,−1/2

N (1)TN(x), (3.230)

one verifies by using (3.116b) that

(1+ x)J−1/2,1/2
N (x) = J−1/2,−1/2

N (1)
(
TN(x)+TN+1(x)

)
.

Hence, for k = j, we find from Theorem 3.11 that

dkk =
Q′′(xk)

2Q′(xk)
, 0 ≤ k ≤ N.

To avoid evaluating the second-order derivatives, we derive from (3.209) and the
fact Q(xk) = 0 that

Q′′(xk) =
xkQ′(xk)+ (2N+ 1)TN(xk)

1− x2
k

, 1 ≤ k ≤ N.

Hence,

dkk =
xk

2(1− x2
k)

+
(2N + 1)TN(xk)

2(1− x2
k)Q

′(xk)
, 1 ≤ k ≤ N.

The formula for the entry d00 follows directly from the Jacobi-Gauss-Radau case
with α = β = 0.

• For the Chebyshev-Gauss case:

dk j =

⎧⎪⎪⎨
⎪⎪⎩

T ′
N+1(xk)

T ′
N+1(x j)

1
xk − x j

, k �= j,

xk

2(1− x2
k)
, k = j.

(3.231)

3.4.3 Differentiation in the Frequency Space

Now, we describe the FFT algorithm for Chebyshev spectral differentiation. Let us
start with the conventional approach. Given

u(x) =
N

∑
k=0

ûkTk(x) ∈ PN , (3.232)
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we derive from (3.211) that

u′ =
N

∑
k=1

ûkT ′
k =

N

∑
k=0

û(1)k Tk (with û(1)N = 0)

= û(1)0 + û(1)1 T1 +
N−1

∑
k=2

û(1)k

( T ′
k+1

2(k+ 1)
− T ′

k−1

2(k− 1)

)

=
û(1)N−1

2N
T ′

N +
N−1

∑
k=1

1
2k

(
ck−1û(1)k−1 − û(1)k+1

)
T ′

k ,

(3.233)

where c0 = 2 and ck = 1 for k ≥ 1. Since {T ′
k} are mutually orthogonal, we compare

the expansion coefficients in terms of {T ′
k} and find that {û(1)k } can be computed

from {ûk} via the backward recurrence relation:

û(1)N = 0, û(1)N−1 = 2NûN ,

û(1)k−1 =
(
2kûk + û(1)k+1

)
/ck−1, k = N − 1, . . . ,1.

(3.234)

Higher-order derivatives can be evaluated recursively by this relation.
Notice that given {u(x j)}N

j=0 at the Chebyshev-Gauss-Lobatto points {x j}N
j=0,

the computation of {u′(x j)}N
j=0 through the process of differentiation in the phys-

ical space requires O(N2) operations due to the fact that the differentiation matrix
(see the previous section) is full. However, thanks to the fast discrete Chebyshev
transforms between the physical values and expansion coefficients, one can com-
pute {u′(x j)}N

j=0 from {u(x j)}N
j=0 in O(N log2 N) operations as follows:

• Compute the discrete Chebyshev coefficients {ûk} from {u(x j)} using (3.222) in
O(N log2 N) operations.

• Compute the Chebyshev coefficients {û(1)k } of u′ using (3.234) in O(N) opera-
tions.

• Compute {u′(x j)} from {û(1)k } using (3.223) (with {û(1)k ,u′(x j)} in place of
{ûk,u(x j)}) in O(N log2 N) operations.

To summarize, thanks to its relation with Fourier series (cf. (3.210)), the
Chebyshev polynomials enjoy several distinct advantages over other Jacobi polyno-
mials:

• The nodes and weights of Gauss-type quadratures are given explicitly, avoiding
the potential loss of accuracy at large N when computing them through a numer-
ical procedure.

• The discrete Chebyshev transforms can be carried out using FFT in O(N log2 N)
operations.

• Thanks to the fast discrete transforms, the derivatives as well as nonlinear terms
can also be evaluated in O(N log2 N) operations.

However, the fact that the Chebyshev polynomials are mutually orthogonal with
respect to a weighted inner product may induce complications in analysis and/or
implementations of a Chebyshev spectral method.
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3.5 Error Estimates for Polynomial Approximations

The aim of this section is to perform error analysis, in anisotropic Jacobi-weighted
Sobolev spaces, for approximating functions by Jacobi polynomials. These results
play a fundamental role in analysis of spectral methods for PDEs. More specifically,
we shall consider:

• Inverse inequalities for Jacobi polynomials
• Estimates for the best approximation by series of Jacobi polynomials
• Error analysis of Jacobi-Gauss-type polynomial interpolations

Many results presented in this section with estimates in anisotropic Jacobi-
weighted Sobolev spaces are mainly based on the papers by Guo and Wang (2001,
2004) (also see Funaro (1992)). Similar estimates in standard Sobolev spaces can be
found in the books by Bernardi and Maday (1992a, 1997) and Canuto et al. (2006).

3.5.1 Inverse Inequalities for Jacobi Polynomials

Since all norms of a function in any finite dimensional space are equivalent, we have

‖∂xφ‖ ≤CN‖φ‖, ∀φ ∈ PN ,

which is an example of inverse inequalities. The inverse inequalities are very useful
for analyzing spectral approximations of nonlinear problems. In this context, an
important issue is to derive the optimal constant CN . Recall that the notation A � B
means that there exists a generic positive constant c, independent of N and any
function, such that A ≤ cB.

The first inverse inequality relates two norms weighted with different Jacobi
weight functions.

Theorem 3.31. For α,β >−1 and any φ ∈ PN , we have

‖∂xφ‖ωα+1,β+1 ≤
√

λ α ,β
N ‖φ‖ωα,β , (3.235)

and
‖∂ m

x φ‖ωα+m,β+m � Nm‖φ‖ωα,β , m ≥ 1, (3.236)

where λ α ,β
N = N(N +α +β + 1).

Proof. For any φ ∈ PN , we write

φ(x) =
N

∑
n=0

φ̂α ,β
n Jα ,β

n (x) with φ̂α ,β
n =

1

γα ,β
n

∫ 1

−1
φJα ,β

n ωα ,β dx. (3.237)
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Hence, by the orthogonality of Jacobi polynomials,

‖φ‖2
ωα,β =

N

∑
n=0

γα ,β
n |φ̂α ,β

n |2.

Differentiating (3.237) and using the orthogonality (3.97), we obtain

‖φ ′‖2
ωα+1,β+1 =

N

∑
n=1

λ α,β
n γα ,β

n |φ̂α ,β
n |2

≤ λ α ,β
N

N

∑
n=1

γα ,β
n |φ̂α ,β

n |2 ≤ λ α,β
N ‖φ‖2

ωα,β ,

(3.238)

which yields (3.235).
Using the above inequality recursively leads to

‖∂ m
x φ‖ωα+m,β+m ≤

(m−1

∏
k=0

λ α+k,β+k
N−k

)1/2‖φ‖ωα,β . (3.239)

Hence, we obtain (3.236) by using (3.91). ��
If the polynomial φ vanishes at the endpoints x =±1, i.e.,

φ ∈ P0
N :=

{
u ∈ PN : u(±1) = 0

}
, (3.240)

the following inverse inequality holds.

Theorem 3.32. For α,β >−1 and any φ ∈ P0
N ,

‖∂xφ‖ωα,β � N‖φ‖ωα−1,β−1 . (3.241)

Proof. We refer to Bernardi and Maday (1992b) for the proof of α = β , and Guo
and Wang (2004) for the derivation of the general case. Here, we merely sketch the
proof of α = β = 0. Since φ/(1− x2) ∈ PN−2, we write

φ(x)/(1− x2) =
N−1

∑
n=1

φ̃nL′
n(x).

Thus, by (3.174b),

‖φ‖2
ω−1,−1 =

N−1

∑
n=1

n(n+ 1)γn|φ̃n|2,

where γn = 2/(2n+ 1). In view of (3.171), we have

φ ′(x) =
N−1

∑
n=1

φ̃n
(
(1− x2)L′

n(x)
)′
=−

N−1

∑
n=1

n(n+ 1)φ̃nLn(x),
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and by (3.174a),

‖∂xφ‖2 =
N−1

∑
n=1

n2(n+ 1)2γn|φ̃n|2.

Thus, we have

‖∂xφ‖2 ≤ N(N − 1)‖φ‖2
ω−1,−1. (3.242)

This gives (3.241) with α = β = 0. ��
The inverse inequality (3.236) is an algebraic analogy to the trigonometric in-

verse inequality (2.44), and both of them involve “optimal” constant CN = O(N).
However, the norms in (3.236) are weighted with different weight functions. In
most applications, we need to use inverse inequalities involving the same weighted
norms. For this purpose, we present an inverse inequality with respect to the Legen-
dre weight function ω(x)≡ 1 (cf. Canuto and Quarteroni (1982)).

Theorem 3.33. For any φ ∈ PN ,

‖∂xφ‖ ≤ 1
2
(N + 1)(N + 2)‖φ‖. (3.243)

Proof. Using integration by parts, (3.174a), (3.175) and (3.177a), we obtain
∫ 1

−1

[
L′

n(x)
]2

dx = Ln(x)L
′
n(x)

∣∣1
−1 −

∫ 1

−1
L′′

n(x)Ln(x)dx = n(n+ 1). (3.244)

Hence, by (3.174a),

‖L′
n‖=

√
n(n+ 1)(2n+ 1)

2
‖Ln‖ ≤ (n+ 1)3/2‖Ln‖, n ≥ 0. (3.245)

Next, for any φ ∈ PN, we write

φ(x) =
N

∑
n=0

φ̂nLn(x) with φ̂n =
(

n+
1
2

)∫ 1

−1
φ(x)Ln(x)dx,

so we have

‖φ‖2 =
N

∑
n=0

2
2n+ 1

|φ̂n|2.

On the other hand, we obtain from (3.244) and the Cauchy–Schwarz inequality that

‖∂xφ‖ ≤
N

∑
n=0

|φ̂n|‖L′
n‖ ≤

N

∑
n=0

|φ̂n|
√

n(n+ 1)

≤
( N

∑
n=0

2
2n+ 1

|φ̂n|2
)1/2( N

∑
n=0

n(n+ 1)
(
n+ 1/2

))1/2

≤
( N

∑
n=0

(n+ 1)3
)1/2‖φ‖ ≤ (N + 1)(N + 2)

2
‖φ‖.

This ends the proof. ��
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Remark 3.6. The factor N2 in (3.243) is sharp in the sense that for any positive
integer N, there exists a polynomial ψ ∈ PN and a positive constant c independent
of N such that

‖∂xψ‖ ≥ cN2‖ψ‖. (3.246)

Indeed, taking ψ(x) = L′
N(x), one verifies readily by using integration by parts,

(3.174a), (3.177), (3.100), (3.94) and (3.107) that

∫ 1

−1

[
L′′

N(x)
]2

dx =
[
L′′

N(x)L
′
N(x)−L′′′

N (x)LN(x)
]∣∣∣1

−1

=
1

12
(N − 1)N(N + 1)(N + 2)(N2 +N + 3),

(3.247)

which, together with (3.244), implies

‖L′′
N‖=

1

2
√

3

√
(N − 1)(N + 2)(N2 +N + 3)‖L′

N‖.

This justifies the claim.

We now consider the extension of (3.243) to the Jacobi polynomials. We ob-
serve from the proof of Theorem 3.33 that the use of (3.244) allows for a sim-
ple derivation of (3.243). However, the explicit formula for

∫ 1
−1

(
∂xJα ,β

n
)2ωα ,β dx

for general (α,β ) is much more involved, although one can derive them by using
(3.119)–(3.120) (and (3.216a) for the Chebyshev case). We refer to Guo (1998a) for
the following result, and leave the proof of the Chebyshev case as an exercise (see
Problem 3.21).

Theorem 3.34. For α,β >−1 and any φ ∈ PN ,

‖∂xφ‖ωα,β � N2‖φ‖ωα,β .

3.5.2 Orthogonal Projections

A common procedure in error analysis is to compare the numerical solution uN with
a suitable orthogonal projection πNu (or interpolation INu) of the exact solution u in
some appropriate Sobolev space with the norm ‖ · ‖S (cf. Remark 1.7), and use the
triangle inequality,

‖u− uN‖S ≤ ‖u−πNu‖S + ‖πNu− uN‖S.

Hence, one needs to estimate the errors ‖u−πNu‖S and ‖INu−u‖S. Such estimates
involving Jacobi polynomials will be the main concern of this section.
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Let I = (−1,1), and let ωα ,β (x) = (1− x)α(1+ x)β with α,β > −1, be the Jacobi
weight function as before. For any u ∈ L2

ωα,β (I), we write

u(x) =
∞

∑
n=0

ûα,β
n Jα ,β

n (x) with ûα,β
n =

(
u,Jα,β

n
)

ωα,β

γα ,β
n

, (3.248)

where γα ,β
n = ‖Jα ,β

n ‖2
ωα,β .

Define the L2
ωα,β -orthogonal projection πα ,β

N : L2
ωα,β (I)→ PN such that

(
πα ,β

N u− u, v
)

ωα,β = 0, ∀v ∈ PN, (3.249)

or equivalently,

(πα,β
N u)(x) =

N

∑
n=0

ûα ,β
n Jα,β

n (x). (3.250)

We find from Theorem 3.14 that πα ,β
N u is the best polynomial approximation of u in

L2
ωα,β (I).

To measure the truncation error πα ,β
N u− u, we introduce the non-uniformly (or

anisotropic) Jacobi-weighted Sobolev space:

Bm
α ,β (I) :=

{
u : ∂ k

x u ∈ L2
ωα+k,β+k (I), 0 ≤ k ≤ m

}
, m ∈ N, (3.251)

equipped with the inner product, norm and semi-norm

(
u,v
)

Bm
α,β

=
m

∑
k=0

(
∂ k

x u,∂ k
x v
)

ωα+k,β+k ,

‖u‖Bm
α,β

=
(
u,u
)1/2

Bm
α,β

, |u|Bm
α,β

= ‖∂ m
x u‖ωα+m,β+m .

(3.252)

The space Bm
α,β (I) distinguishes itself from the usual weighted Sobolev space

Hm
ωα,β (I) (cf. Appendix B) by involving different weight functions for derivatives of

different orders. It is obvious that Hm
ωα,β (I) is a subspace of Bm

α,β (I), that is, for any
m ≥ 0 and α,β >−1,

‖u‖Bm
α,β

≤ c‖u‖Hm
ωα,β

.

Before presenting the main result, we first derive from (3.101) to (3.102) and the
orthogonality (3.109) that

∫ 1

−1
∂ k

x Jα ,β
n (x)∂ k

x Jα ,β
l (x)ωα+k,β+k(x)dx = hα ,β

n,k δnl , (3.253)
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where for n ≥ k,

hα ,β
n,k = (dα ,β

n,k )2γα+k,β+k
n−k

=
2α+β+1Γ (n+α + 1)Γ (n+β + 1)Γ (n+ k+α+β + 1)

(2n+α +β + 1)(n− k)!Γ 2(n+α +β + 1)
.

(3.254)

Summing (3.253) for all 0 ≤ k ≤ m, we find that the Jacobi polynomials are orthog-
onal in the Sobolev space Bm

α ,β (I), namely,

(
Jα ,β

n ,Jα ,β
l

)
Bm

α,β

= 0, if n �= l. (3.255)

Now, we are ready to state the first fundamental result.

Theorem 3.35. Let α,β >−1. For any u ∈ Bm
α ,β (I),

• if 0 ≤ l ≤ m ≤ N + 1, we have

∥∥∂ l
x(π

α,β
N u− u)

∥∥
ωα+l,β+l

≤ c

√
(N −m+ 1)!
(N − l+ 1)!

(N +m)(l−m)/2
∥∥∂ m

x u
∥∥

ωα+m,β+m ,
(3.256)

• if m > N + 1, we have

∥∥∂ l
x(π

α ,β
N u− u)

∥∥
ωα+l,β+l

≤ c(2πN)−1/4
(√e/2

N

)N−l+1∥∥∂ N+1
x u

∥∥
ωα+N+1,β+N+1 ,

(3.257)

where c ≈ 1 for N � 1.

Proof. Denote m̃ = min{m,N + 1}. Thanks to the orthogonality (3.253)–(3.254),

‖∂ k
x u‖2

ωα+k,β+k =
∞

∑
n=k

hα ,β
n,k |ûα ,β

n |2, k ≥ 0, (3.258)

so we have

‖∂ l
x(π

α ,β
N u− u)‖2

ωα+l,β+l =
∞

∑
n=N+1

hα ,β
n,l |ûα ,β

n |2

≤ max
n≥N+1

⎧⎨
⎩

hα ,β
n,l

hα ,β
n,m̃

⎫⎬
⎭

∞

∑
n=N+1

hα,β
n,m̃ |ûα ,β

n |2

≤ hα ,β
N+1,l

hα ,β
N+1,m̃

∥∥∂ m̃
x u
∥∥2

ωα+m̃,β+m̃ .

(3.259)



3.5 Error Estimates for Polynomial Approximations 119

By (3.254),

hα,β
N+1,l

hα ,β
N+1,m̃

=
Γ (N + l+α +β + 2)(N − m̃+ 1)!
Γ (N + m̃+α +β + 2)(N− l+ 1)!

. (3.260)

Using the Stirling’s formula (A.7) yields

Γ (N + l+α +β + 2)
Γ (N + m̃+α +β + 2)

∼= 1
(N + m̃+α +β + 2)m̃−l

∼= (N + m̃)l−m̃. (3.261)

Correspondingly,
hα,β

N+1,l

hα ,β
N+1,m̃

≤ c2 (N − m̃+ 1)!
(N − l+ 1)!

(N + m̃)l−m̃, (3.262)

where c ≈ 1. A combination of the above estimates leads to

‖∂ l
x(π

α ,β
N u− u)‖2

ωα+l,β+l ≤ c2 (N − m̃+ 1)!
(N − l+ 1)!

(N + m̃)l−m̃
∥∥∂ m̃

x u
∥∥2

ωα+m̃,β+m̃ . (3.263)

Finally, if 0 ≤ l ≤ m ≤ N + 1, then m̃ = m, so (3.256) follows. On the other hand,
if m > N + 1, then m̃ = N + 1, and the estimate (3.257) follows from (3.263) and
Stirling’s formula (A.8). ��
Remark 3.7. In contrast with error estimates for finite elements or finite differences,
the convergence rate of spectral approximations is only limited by the regularity of
the underlying function. Therefore, we made a special effort to characterize the
explicit dependence of the errors on the regularity index m. For any fixed m, the
estimate (3.256) becomes

∥∥∂ l
x(π

α ,β
N u− u)

∥∥
ωα+l,β+l � Nl−m

∥∥∂ m
x u
∥∥

ωα+m,β+m , (3.264)

which is the typical convergence rate found in the literature.
Hereafter, the factor

√
(N −m+ 1)!

N!
, 0 ≤ m ≤ N + 1,

frequently appears in the characterization of the approximation errors. For a quick
reference,

N(1−m)/2 ≤
√

(N −m+ 1)!
N!

=
1√

N(N − 1) . . .(N − (m− 2))

≤ (N −m+ 2)(1−m)/2,

(3.265)
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so for m = o(N) (in particular, for fixed m), we have

√
(N −m+ 1)!

N!
∼= N(1−m)/2. (3.266)

Some other remarks are also in order.

• Theorem 3.35 indicates that the truncated Jacobi series πα ,β
N u is the best poly-

nomial approximation of u in both L2
ωα,β (I) and the anisotropic Jacobi-weighted

Sobolev space Bl
α ,β (I).

• It must be pointed out that the truncation error πα ,β
N u− u measured in the usual

weighted Sobolev space Hl
ωα,β (I) (with l ≥ 1) does not have an optimal order

of convergence. Indeed, one can always find a function such that its truncated
Jacobi series converges in L2

ωα,β (I), but diverges in H1
ωα,β (I). For instance, we

take u = LN+1 −LN−1, and notice that π0,0
N u =−LN−1 and ∂xu = (2N +1)LN . It

is clear that

‖∂x(π0,0
N u− u)‖= ‖L′

N+1‖
(3.244)

=
√

(N + 1)(N + 2)≥
√

N

2
‖∂xu‖.

In general, we have the following estimates: for α >−1 and 0 ≤ l ≤ m,
∥∥πα ,α

N u− u
∥∥

l,ωα,α � N2l−m−1/2‖∂ m
x u‖ωα+m,α+m. (3.267)

This estimate for the Legendre and Chebyshev cases was derived in Canuto and
Quarteroni (1982), and in Guo (2000) for the general case with α,β >−1.

Since Hl
ωα,β (I) is a Hilbert space, the best approximation polynomial for u is the

orthogonal projection of u upon PN under the inner product

(
u,v
)

l,ωα,β =
l

∑
k=0

(
∂ k

x u,∂ k
x v
)

ωα,β , (3.268)

which induces the norm ‖ · ‖l,ωα,β of Hl
ωα,β (I). In fact, this type of approximation

results are often needed in analysis of spectral methods for second-order elliptic
PDEs. Therefore, we consider below the H1

ωα,β -orthogonal projection. Denote the

inner product in H1
ωα,β (I) by

aα ,β (u,v) :=
(
u′,v′

)
ωα,β +

(
u,v
)

ωα,β , ∀u,v ∈ H1
ωα,β (I),

and define the orthogonal projection π1
N,α ,β : H1

ωα,β (I)→ PN by

aα ,β (π1
N,α ,β u− u,v) = 0, ∀v ∈ PN . (3.269)
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By definition, π1
N,α,β u is the best approximation of u in the sense that

‖π1
N,α ,β u− u‖1,ωα,β = inf

φ∈PN
‖φ − u‖1,ωα,β . (3.270)

By using the fundamental Theorem 3.35, we can derive the following estimate.

Theorem 3.36. Let α,β >−1. If ∂xu ∈ Bm−1
α ,β (I), then for 1 ≤ m ≤ N + 1,

‖π1
N,α ,β u− u‖1,ωα,β ≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m

x u‖ωα+m−1,β+m−1 ,

(3.271)
where c is a positive constant independent of m,N and u.

Proof. Let πα ,β
N−1 be the L2

ωα,β -orthogonal projection upon PN−1 as defined in
(3.249). Set

φ(x) =
∫ x

−1
πα ,β

N−1u′(y)dy+ ξ , (3.272)

where the constant ξ is chosen such that φ(0) = u(0). In view of (3.270), we derive
from the inequality (B.43) and Theorem 3.35 that

‖π1
N,α ,β u− u‖1,ωα,β ≤ ‖φ − u‖1,ωα,β ≤ c‖(φ − u)′‖ωα,β

≤ c‖πα,β
N−1u′ − u′‖ωα,β ≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m

x u‖ωα+m−1,β+m−1 .

This completes the proof. ��
While the estimate (3.271) is optimal in the H1

ωα,β -norm, it does not imply an

optimal order in the L2
ωα,β -norm. An optimal estimate in the L2

ωα,β -norm can be
obtained by using a duality argument, which is also known as the Aubin-Nitsche
technique (see, e.g., Ciarlet (1978)).

The first step is to show the regularity of the solution for an auxiliary problem.

Lemma 3.4. Let α,β > −1. For each g ∈ L2
ωα,β (I), there exists a unique ψ ∈

H1
ωα,β (I) such that

aα ,β (ψ,v) = (g,v)ωα,β , ∀v ∈ H1
ωα,β (I). (3.273)

Moreover, the solution ψ ∈ H2
ωα,β (I) and satisfies

‖ψ‖2,ωα,β � ‖g‖ωα,β . (3.274)

Proof. The bilinear form aα ,β (·, ·) is the inner product of the Hilbert space H1
ωα,β (I),

so the existence and uniqueness of the solution ψ of (3.273) follows from the Riesz
representation theorem (see Appendix B).Taking v = ψ in (3.273) and using the
Cauchy–Schwarz inequality leads to

‖ψ‖1,ωα,β � ‖g‖ωα,β . (3.275)
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By taking v ∈ D(I) in (3.273) (where D(I) is the set of all infinitely differentiable
functions with compact support in I, see Appendix B) and integrating by parts, we
find that, in the sense of distributions,

−(ψ ′ωα,β)′ = (g−ψ)ωα,β . (3.276)

Next, we show that ψ ′ωα ,β is continuous on [−1,1] with (ψ ′ωα ,β )(±1) = 0. In-
deed, integrating (3.276) over any interval (x1,x2) ⊆ [−1,1], we obtain from the
Cauchy–Schwarz inequality and (3.275) that

∣∣(ψ ′ωα,β )(x1)− (ψ ′ωα ,β )(x2)
∣∣ ≤

∫ x2

x1

|(g−ψ)ωα ,β |dx

≤
(∫ x2

x1

ωα ,β (x)dx
)1/2‖g−ψ‖ωα,β �

(∫ x2

x1

ωα ,β (x)dx
)1/2‖g‖ωα,β .

Hence, ψ ′ωα,β ∈C[−1,1] and (ψ ′ωα ,β )(±1) are well-defined. Multiplying (3.276)
by any function v ∈ H1

ωα,β (I) and integrating the resulting equality by parts, we
derive from (3.273) that

[ψ ′ωα ,β v]
∣∣∣1
−1

= aα ,β (ψ,v)− (g,v)ωα,β = 0, ∀v ∈ H1
ωα,β (I).

Hence, (ψ ′ωα ,β )(±1) = 0.
We are now ready to prove (3.274). A direct computation from (3.276) leads to

−ψ ′′ =−((α +β )x+(α −β )
)
(1− x2)−1ψ ′+(g−ψ). (3.277)

One verifies readily that
‖ψ ′′‖2

ωα,β ≤ D1 +D2, (3.278)

where D1 = D1(I1)+D1(I2) with I1 = (−1,0) and I2 = (0,1), and

D1(I j) = 8(α2 +β 2)

∫
Ij

|ψ ′|2ωα−2,β−2dx, j = 1,2,

D2 = 2

∣∣∣∣
∫ 1

−1
(g−ψ)2ωα,β dx

∣∣∣∣ .
By (3.275),

D2 � ‖g−ψ‖2
ωα,β � ‖g‖2

ωα,β .

Thus, it remains to estimate D1. Due to (ψ ′ωα ,β )(1) = 0, integrating (3.276) over
(x,1) yields

ψ ′ = (1− x)−α(1+ x)−β
∫ 1

x
(g−ψ)ωα ,β dy.
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Plugging it into D1(I2) gives

D1(I2)�
∫ 1

0
(1− x)−α−2(1+ x)−β−2

[∫ 1

x
(g−ψ)ωα,βdy

]2
dx

�
∫ 1

0
(1− x)−α−2

[∫ 1

x
(g−ψ)ωα ,β dy

]2
dx

�
∫ 1

0
(1− x)−α

[ 1
1− x

∫ 1

x
(g−ψ)ωα,β dy

]2
dx.

Since −α < 1, using the Hardy inequality (B.39) leads to

D1(I2)�
∫ 1

0
(g−ψ)2ωα ,2β dx �

∫ 1

0
(g−ψ)2ωα ,β dx.

A similar inequality holds for D1(I1). Therefore, a combination of the above esti-
mates leads to

‖ψ ′′‖ωα,β � ‖g‖ωα,β ,

which, together with (3.275), implies (3.274). ��
We are now in a position to derive the optimal estimate in L2

ωα,β -norm via the
duality argument.

Theorem 3.37. Let α,β >−1. If ∂xu ∈ Bm−1
α ,β (I), then for 1 ≤ m ≤ N + 1,

‖π1
N,α ,β u− u‖ωα,β

≤ c

√
(N −m+ 1)!

N!
(N +m)−(m+1)/2‖∂ m

x u‖ωα+m−1,β+m−1 ,

(3.279)

where c is a positive constant independent of m,N and u.

Proof. We have

‖π1
N,α,β u− u‖ωα,β = sup

0 �=g∈L2
ωα,β (I)

|(π1
N,α,β u− u,g)ωα,β |

‖g‖ωα,β
. (3.280)

Let ψ be the solution to the auxiliary problem (3.273) for given g∈ L2
ωα,β (I). Taking

v = π1
N,α ,β u− u in (3.273), we obtain from (3.269) that

(π1
N,α ,β u− u,g)ωα,β = aα ,β (π1

N,α,β u− u,ψ)

= aα ,β (π1
N,α,β u− u,ψ −π1

N,α ,β ψ).
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Hence, by the Cauchy–Schwarz inequality, Theorem 3.36 and the regularity
estimate (3.274), we have

|(π1
N,α,β u− u,g)ωα,β | ≤ ‖π1

N,α,β u− u‖1,ωα,β ‖π1
N,α ,β ψ −ψ‖1,ωα,β

≤ cN−1‖π1
N,α,β u− u‖1,ωα,β‖ψ ′′‖ωα+1,β+1

≤ cN−1‖π1
N,α,β u− u‖1,ωα,β‖g‖ωα,β .

Consequently, by (3.280),

‖π1
N,α,β u− u‖ωα,β ≤ cN−1‖π1

N,α ,β u− u‖1,ωα,β .

Finally, the desired result follows from Theorem 3.36. ��
The approximation results in the Sobolev norms are of great importance for spec-

tral approximation of boundary value problems. Oftentimes, it is necessary to take
the boundary conditions into account and consider the projection operators onto the
space of polynomials built in homogeneous boundary data.

To this end, we assume that −1 < α,β < 1, and denote

H1
0,ωα,β (I) =

{
u ∈ H1

ωα,β (I) : u(±1) = 0
}
, P0

N =
{

u ∈ PN : u(±1) = 0
}
.

If −1 < α,β < 1, then any function in H1
ωα,β (I) is continuous on [−1,1], and there

holds
max
|x|≤1

|u(x)|� ‖u‖1,ωα,β , ∀u ∈ H1
ωα,β (I). (3.281)

We leave the proof of this statement as an exercise (see Problem 3.22). Define

âα,β (u,v) =
∫ 1

−1
u′(x)v′(x)ωα ,β (x)dx,

which is the inner product of H1
0,ωα,β (I), and induces the semi-norm, equivalent to

the norm of H1
0,ωα,β (I) (see Lemma B.7).

Consider the orthogonal projection π̂1,0
N,α ,β : H1

0,ωα,β (I)→ P0
N, defined by

âα ,β (π̂
1,0
N,α ,β u− u,v) = 0, ∀v ∈ P0

N . (3.282)

The basic approximation result is stated as follows.

Theorem 3.38. Let −1 < α,β < 1. If u ∈ H1
0,ωα,β (I) and ∂xu ∈ Bm−1

α ,β (I), then for
1 ≤ m ≤ N + 1,

∥∥π̂1,0
N,α,β u− u

∥∥
1,ωα,β

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m

x u‖ωα+m−1,β+m−1 ,
(3.283)

where c is a positive constant independent of m,N and u.
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Proof. Let πα ,β
N−1u be the L2

ωα,β - orthogonal projection as defined in (3.249). Setting

φ(x) =
∫ x

−1

{
πα ,β

N−1u′ − 1
2

∫ 1

−1
πα,β

N−1u′dη
}

dξ , (3.284)

we have φ ∈ P0
N , and

φ ′ = πα ,β
N−1u′ − 1

2

∫ 1

−1
πα ,β

N−1u′dη .

Hence, by the triangle inequality,

‖u′ −φ ′‖ωα,β ≤ ‖u′ −πα ,β
N−1u′‖ωα,β +

1
2

∥∥∥∥
∫ 1

−1
πα ,β

N−1u′dη
∥∥∥∥

ωα,β

≤ ‖u′ −πα ,β
N−1u′‖ωα,β +

√
γα ,β

0

2

∣∣∣∣
∫ 1

−1
πα ,β

N−1u′dη
∣∣∣∣ ,

(3.285)

where γα ,β
0 is given in (3.109). Due to u(±1) = 0, we derive from the Cauchy–

Schwarz inequality that for −1 < α,β < 1,
∣∣∣∣
∫ 1

−1
πα ,β

N−1u′dx

∣∣∣∣=
∣∣∣∣
∫ 1

−1
(πα ,β

N−1u′ − u′)dx

∣∣∣∣≤
√

γ−α ,−β
0 ‖πα,β

N−1u′ − u′‖ωα,β . (3.286)

Hence, by definition and Theorem 3.35,

∥∥(π̂1,0
N,α ,β u− u)′

∥∥
ωα,β ≤ ‖φ ′ − u′‖ωα,β ≤ c‖πα ,β

N−1u′ − u′‖ωα,β

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m

x u‖ωα+m−1,β+m−1 .
(3.287)

Finally, using the Poincaré inequality (B.41) and (3.287) leads to

‖π̂1,0
N,α ,β u− u‖ωα,β ≤ c‖(π̂1,0

N,α ,β u− u)′‖ωα,β

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m

x u‖ωα+m−1,β+m−1 .
(3.288)

This completes the proof. ��
As in the proof of Theorem 3.37, we can derive an optimal estimate for π̂1,0

N,α ,β u−
u in the L2

ωα,β -norm by using a duality argument. One may refer to Canuto et al.
(2006) for the Legendre and Chebyshev cases, and to Guo and Wang (2004) for
the general cases. Moreover, we shall introduce in Chap. 5 a family of generalized
Jacobi polynomials, and a concise analysis based on this notion will automatically
lead to the desired results.

When we apply the Jacobi approximation (e.g., the Chebyshev approximation)
to boundary-value problems, it is often required to use the projection operator
associated with the bilinear form
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aα ,β (u,v) =
∫ 1

−1
∂xu(x)∂x

(
v(x)ωα,β (x)

)
dx, (3.289)

which is closely related to the weighted Galerkin formulation for the model equation

−u′′(x)+μu(x) = f (x), μ ≥ 0; u(±1) = 0.

In contrast with (3.282), we define the orthogonal projection π1,0
N,α,β : H1

0,ωα,β (I)→
P0

N , such that

aα ,β (u−π1,0
N,α ,β u,v) = 0, ∀v ∈ P0

N . (3.290)

The bilinear form is continuous and coercive as stated in the following lemma.

Lemma 3.5. If −1 < α,β < 1, then for any u,v ∈ H1
0,ωα,β (I),

|aα ,β (u,v)| ≤C1|u|1,ωα,β |v|1,ωα,β , (3.291)

and
aα,β (v,v)≥C2|v|21,ωα,β , (3.292)

where C1 and C2 are two positive constants independent of u and v.

Proof. Since −1 < α,β < 1, we have from (B.40) that

|aα ,β (u,v)| ≤ |(u′,v′)ωα,β +(u′,v(ωα ,β )′)|
≤ |u|1,ωα,β |v|1,ωα,β + 2|u|1,ωα,β ‖v‖ωα−2,β−2

≤C1|u|1,ωα,β |v|1,ωα,β .

We now prove the coercivity. A direct calculation gives

aα ,β (v,v) = |v|21,ωα,β +
1
2

(
v2,Wα ,β

)
ωα−2,β−2 ,

where

Wα ,β (x) = (α +β )(1−α −β )x2

+ 2(α −β )(1−α−β )x+α +β − (α −β )2.

By the property of quadratic polynomials, one verifies readily that Wα,β (x) ≥ 0,
provided that ⎧⎪⎨

⎪⎩
(α +β )(α +β − 1)≥ 0,

Wα ,β (−1) =−4β (β − 1)≥ 0,

Wα ,β (1) =−4α(α − 1)≥ 0,
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or
{
(α +β )(α +β − 1)≤ 0,

4(α −β )2(α +β − 1)2 + 4(α +β )(α +β − 1)(α +β − (α −β )2)≤ 0.

If 0 ≤ α,β ≤ 1, then both of them are valid, which implies (3.292) with 0 ≤ α,
β ≤ 1.

Next, let −1 < α,β < 0 and u(x) = ωα ,β (x)v(x). As 0 <−α,−β < 1, it follows
from the above shown case that

aα ,β (v,v) = a−α,−β (u,u)≥ |u|21,ω−α,−β . (3.293)

On the other hand, by (B.40),

|v|2
1,ωα,β ≤ 2|u|21,ω−α,−β + 8(α2 +β 2)‖u‖2

ω−α−2,−β−2 ≤ c|u|21,ω−α,−β . (3.294)

A combination of (3.293) and (3.294) leads to (3.292) with −1 < α,β < 0.
Now, let −1 < α ≤ 0 ≤ β < 1 and u(x) = (1− x)αv(x). We deduce from Corol-

lary B.1 that u ∈ H1
0,ω−α,0(I), so by (B.40),

|v|21,ωα,β = |(1− x)−αu|21,ωα,β ≤ 2|u|21,ω−α,β + 2α2||u||2ω−α−2,β

≤ 2|u|21,ω−α,β + 8α2‖u‖2
ω−α−2,β−2 ≤ c|u|21,ω−α,β .

In view of −1 < α ≤ 0 ≤ β < 1, we have

|u|21,ω−α,β ≤ |u|21,ω−α,β − 2α(α + 1)‖u‖2
ω−α−2,β + 2β (1−β )‖u‖2

ω−α,β−2

=
(
∂x((1− x)−αu),∂x((1+ x)β u)

)
= aα ,β (v,v).

This leads to (3.292) with −1 < α ≤ 0 ≤ β < 1.
We can treat the remaining case −1 < β ≤ 0 ≤ α < 1 in the same fashion as

above. ��
Theorem 3.39. Let −1 < α,β < 1. If u ∈ H1

0,ωα,β (I) and ∂xu ∈ Bm−1
α ,β (I), then for

1 ≤ m ≤ N + 1 and μ = 0,1,

∥∥u−π1,0
N,α ,β u

∥∥
μ,ωα,β

≤ c

√
(N −m+ 1)!

N!
(N +m)μ−(m+1)/2‖∂ m

x u‖ωα+m−1,β+m−1 ,
(3.295)

where c is a positive constant independent of m,N and u.

Proof. We first prove the case μ = 1. Let π̂1,0
N,α ,β be the projection operator defined

in (3.282). By the definition (3.290),

aα,β (π
1,0
N,α,β u− u,π1,0

N,α ,β u− u) = aα ,β (π
1,0
N,α ,β u− u, π̂1,0

N,α ,β u− u),
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which, together with Lemma 3.5, gives

|π1,0
N,α ,β u− u|21,ωα,β ≤ c|aα ,β (π

1,0
N,α ,β u− u, π̂1,0

N,α ,β u− u)|
≤ c|π1,0

N,α ,β u− u|1,ωα,β |π̂1,0
N,α ,β u− u|1,ωα,β .

Hence, the estimate (3.295) with μ = 1 follows from Theorem 3.38 and the inequal-
ity (B.41).

To prove the case μ = 0, we resort to the duality argument. Given g ∈
L2

ωα−1,β−1(I), we consider a auxiliary problem. It is to find v ∈ H1
0,ωα,β (I) such

that
aα ,β (v,z) = (g,z)ωα−1,β−1 , ∀z ∈ H1

0,ωα,β (I). (3.296)

Since by (B.40),

|(g,z)ωα−1,β−1 | ≤ c‖g‖ωα−1,β−1‖z‖ωα−2,β−2

≤ c‖g‖ωα−1,β−1 |z|1,ωα,β ,

we deduce from Lemma 3.5 and the Lax-Milgram lemma (see Chap. 1 or
Appendix B) that the problem (3.296) has a unique solution in H1

0,ωα,β (I). Moreover,

in the sense of distributions, we have v′′(x) =−(1− x2)−1g(x). Therefore,

|v|2,ωα+1,β+1 = ‖g‖ωα−1,,β−1 .

Taking z = π1,0
N,α ,β u− u in (3.296), we obtain from Lemma 3.5 and Theorem 3.39

that

|(g,π1,0
N,α,β u− u)ωα−1,β−1|= |aα,β (v,π

1,0
N,ω u− u)|

= |aα ,β (π
1,0
N,α ,β v− v,π1,0

N,α ,β u− u)|
≤ c|π1,0

N,α ,β v− v|1,ωα,β |π1,0
N,α ,β u− u|1,ωα,β

≤ cN−1|v|2,ωα+1,β+1 |π1,0
N,α,β u− u|1,ωα,β

≤ c

√
(N −m+ 1)!

N!
(N +m)−(m+1)/2‖g‖ωα−1,,β−1‖∂ m

x u‖ωα+m−1,β+m−1 .

Consequently,

‖π1,0
N,α ,β u− u‖ωα−1,β−1 = sup

0 �=g∈L2
ωα−1,β−1 (I)

|(π1,0
N,α ,β u− u,g)ωα−1,β−1|

‖g‖ωα−1,,β−1

≤ c

√
(N −m+ 1)!

N!
(N +m)−(m+1)/2‖∂ m

x u‖ωα+m−1,β+m−1 .

It is clear that

‖π1,0
N,α ,β u− u‖ωα,β ≤ c‖π1,0

N,α ,β u− u‖ωα−1,β−1.

Thus, the desired result follows. ��
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3.5.3 Interpolations

This section is devoted to the analysis of polynomial interpolation on Jacobi-Gauss-
type points. The analysis essentially relies on the polynomial approximation re-
sults derived in the previous section, and the asymptotic properties of the nodes and
weights of the associated quadrature formulas.

For clarity of presentation, we start with the Chebyshev-Gauss interpolation. Re-
call the Chebyshev-Gauss nodes and weights (see Theorem 3.30):

x j = cos
2 j+ 1

2(N + 1)
π , ω j =

π
N + 1

, 0 ≤ j ≤ N.

To this end, we denote the Chebyshev weight function by ω = (1− x2)−1/2.
An essential step is to show the stability of the interpolation operator Ic

N .

Lemma 3.6. For any u ∈ B1
−1/2,−1/2(I), we have

‖Ic
Nu‖ω ≤ ‖u‖ω +

π
N + 1

‖(1− x2)1/2u′‖ω . (3.297)

Proof. Let x = cosθ and û(θ) = u(cosθ ). Thanks to the exactness of the
Chebyshev-Gauss quadrature (cf. (3.217)), we have

‖Ic
Nu‖2

ω = ‖Ic
Nu‖2

N,ω =
π

N + 1

N

∑
j=0

u2(x j) =
π

N + 1

N

∑
j=0

û2(θ j),

where

θ j = arccos(x j) =
2 j+ 1

2(N + 1)
π , 0 ≤ j ≤ N.

Denote

a j =
jπ

N + 1
, 0 ≤ j ≤ N + 1.

It is clear that

θ j ∈ Kj := [a j,a j+1], 0 ≤ j ≤ N,

and the length of the subinterval is |Kj| = π/(N + 1). Applying the embedding
inequality (B.34) on Kj yields

|û(θ j)| ≤ max
θ∈Kj

|û(θ )| ≤
√

N + 1
π

‖û‖L2(Kj)
+

√
π

N + 1
‖∂θ û‖L2(Kj)

.
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Hence,

‖Ic
Nu‖ω ≤

√
π

N + 1

N

∑
j=0

|û(θ j)|

≤
N

∑
j=0

(
‖û‖L2(Kj)

+
π

N + 1
‖∂θ û‖L2(Kj)

)

≤ ‖û‖L2(0,π) +
π

N + 1
‖∂θ û‖L2(0,π).

Finally, the inverse change of variable θ → x leads to (3.297). ��
Now, we are in a position to present the main result on the Chebyshev-Gauss

interpolation error estimates.

Theorem 3.40. For any u ∈ Bm
−1/2,−1/2(I) with m ≥ 1, we have that for any 0 ≤ l ≤

m ≤ N + 1,

‖∂ l
x(I

c
Nu− u)‖ω l−1/2,l−1/2

≤ c

√
(N −m+ 1)!

N!
(N +m)l−(m+1)/2‖∂ m

x u‖ωm−1/2,m−1/2,
(3.298)

where c is a positive constant independent m,N and u.

Proof. Let πc
N := π−1/2,−1/2

N be the Chebyshev orthogonal projection operator de-
fined in (3.249). Since πc

Nu ∈ PN , we have Ic
N(πc

Nu) = πc
Nu. Using Lemma 3.6 and

Theorem 3.35 with α = β =−1/2 leads to

‖Ic
Nu−πc

Nu‖ω = ‖Ic
N(u−πc

Nu)‖ω

≤ c
(‖u−πc

Nu‖ω +N−1‖∂x(u−πc
Nu)‖ω−1

)

≤ c

√
(N −m+ 1)!

N!
(N +m)−(m+1)/2‖∂ m

x u‖ωm−1/2,m−1/2,

which, together with the inverse inequality (3.236), leads to

‖∂ l
x(I

c
Nu−πc

Nu)‖ω l−1/2,l−1/2 ≤ cNl‖Ic
Nu−πc

Nu‖ω

≤ c

√
(N −m+ 1)!

N!
(N +m)l−(m+1)/2‖∂ m

x u‖ωm−1/2,m−1/2.

Finally, it follows from the triangle inequality and Theorem 3.35 that

‖∂ l
x(I

c
Nu− u)‖ω l−1/2,l−1/2 ≤ ‖∂ l

x(I
c
Nu−πc

Nu)‖ω l−1/2,l−1/2

+ ‖∂ l
x(π

c
Nu− u)‖ω l−1/2,l−1/2

≤ c

√
(N −m+ 1)!

N!
(N +m)l−(m+1)/2‖∂ m

x u‖ωm−1/2,m−1/2.

This ends the proof. ��
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We observe that the Chebyshev-Gauss interpolation shares the same optimal
order of convergence with the orthogonal projection π−1/2,−1/2

N (cf. Theorem 3.35).
Next, we extend the above argument to the general Jacobi-Gauss-type interpola-
tions. An essential difference is that unlike the Chebyshev case, the explicit expres-
sions of the nodes and weights are not available. Hence, we have to resort to their
asymptotic expressions.

Let {x j,ω j}N
j=0 be the set of Jacobi-Gauss, Jacobi-Gauss-Radau, or Jacobi-

Gauss-Lobatto nodes and weights relative to the Jacobi weight function ωα ,β (cf.
Sect. 3.2). Assume that {x j}N

j=0 are arranged in descending order, and set {θ j =

arccos(x j)}N
j=0. For the variable transformation x = cosθ ,θ ∈ [0,π ],x ∈ [−1,1], it

is clear that

dθ
dx

=− 1√
1− x2

, 1− x = 2
(

sin
θ
2

)2
, 1+ x = 2

(
cos

θ
2

)2
. (3.299)

3.5.3.1 Jacobi-Gauss Interpolation

Recall the asymptotic formulas of the Jacobi-Gauss nodes and weights given by
Theorem 8.9.1 and Formula (15.3.10) of Szegö (1975).

Lemma 3.7. For α,β >−1, we have

θ j = cos−1 x j =
1

N + 1

{
( j+ 1)π +O(1)

}
, (3.300)

with O(1) being uniformly bounded for all values j = 0,1, . . . ,N, and

ω j
∼= 2α+β+1π

N + 1

(
sin

θ j

2

)2α+1(
cos

θ j

2

)2β+1

, 0 ≤ j ≤ N. (3.301)

As with Lemma 3.6, we first show the stability of the Jacobi-Gauss interpolation
operator Iα ,β

N .

Lemma 3.8. For any α,β >−1, and any u ∈ B1
α ,β (I),

‖Iα ,β
N u‖ωα,β � ‖u‖ωα,β +N−1‖u′‖ωα+1,β+1 . (3.302)

Proof. Let x = cosθ and û(θ ) = u(x) with θ ∈ (0,π). By the exactness of the
Jacobi-Gauss quadrature (cf. Theorem 3.25) and Lemma 3.7,

‖Iα ,β
N u‖2

ωα,β = ‖Iα,β
N u‖2

N,ωα,β =
N

∑
j=0

u2(x j)ω j

� N−1
N

∑
j=0

û2(θ j)

(
sin

θ j

2

)2α+1(
cos

θ j

2

)2β+1

.
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The asymptotic formula (3.300) implies that θ j ∈ Kj ⊂ [a0,a1]⊂ (0,π), where a0 =
O(1)
N+1 , a1 =

Nπ+O(1)
N+1 and the length of each closed subinterval Kj is c

N+1 . Hence,

‖Iα,β
N u‖ωα,β � N− 1

2

N

∑
j=0

max
θ∈Kj

∣∣∣∣û(θ )
(

sin
θ
2

)α+ 1
2
(

cos
θ
2

)β+ 1
2

∣∣∣∣ .

For notational simplicity, we denote

χα ,β (θ) =
(

sin
θ
2

)α+ 1
2
(

cos
θ
2

)β+ 1
2
.

Applying the embedding inequality (B.34) on Kj yields

‖Iα,β
N u‖ωα,β �

N

∑
j=0

(∥∥ûχα ,β∥∥
L2(Kj)

+N−1
∥∥∂θ

[
ûχα ,β ]∥∥

L2(Kj)

)

�
∥∥ûχα ,β∥∥

L2(0,π) +N−1
∥∥∂θ

[
ûχα ,β ]∥∥

L2(a0,a1)

�
∥∥ûχα ,β∥∥

L2(0,π) +N−1
∥∥χα ,β ∂θ û

∥∥
L2(0,π)

+N−1
∥∥ûχα−1,β−1

∥∥
L2(a0,a1)

.

In view of (3.299), an inverse change of variable leads to

∥∥ûχα ,β∥∥2
L2(0,π) =

∫ π

0
û2(θ )

(
sin

θ
2

)2α+1(
cos

θ
2

)2β+1
dθ

�
∫ 1

−1
u2(x)(1− x)α+1/2(1+ x)β+1/2 1√

1− x2
dx

� ‖u‖2
ωα,β ,

and similarly,
∥∥χα,β ∂θ û

∥∥
L2(0,π) � ‖∂xu‖ωα+1,β+1 .

We treat the last term as

N−1
∥∥ûχα−1,β−1

∥∥
L2(a0,a1)

�
(

sup
a0≤θ≤a1

1
N sinθ

)∥∥ûχα ,β∥∥
L2(a0,a1)

�
∥∥ûχα,β∥∥

L2(0,π) � ‖u‖ωα,β ,

where due to the fact a0 = O(N−1) and a1 = π −O(N−1), we have

sup
a0≤θ≤a1

1
N sinθ

≤ c.

A combination of the above estimates leads to the desired result. ��



3.5 Error Estimates for Polynomial Approximations 133

As a consequence of Lemma 3.8, we have the following inequality in the
polynomial space.

Corollary 3.7. For any φ ∈ PM and ψ ∈ PL,

‖Iα ,β
N φ‖ωα,β �

(
1+

M
N

)
‖φ‖ωα,β , (3.303a)

|〈φ ,ψ〉N,ωα,β |�
(

1+
M
N

)(
1+

L
N

)
‖φ‖ωα,β ‖ψ‖ωα,β . (3.303b)

Proof. Using the inverse inequality (3.236) and (3.302) gives

‖Iα ,β
N φ‖ωα,β � ‖φ‖ωα,β +N−1‖∂xφ‖ωα+1,β+1 �

(
1+

M

N

)
‖φ‖ωα,β .

Therefore,

|〈φ ,ψ〉N,ωα,β |= |〈Iα ,β
N φ , Iα ,β

N ψ〉N,ωα,β | (3.150)
= |(Iα,β

N φ , Iα ,β
N ψ)ωα,β |

�
(

1+
M
N

)(
1+

L
N

)
‖φ‖ωα,β ‖ψ‖ωα,β .

This ends the proof. ��
With the aid of the stability result (3.302), we can estimate the Jacobi-Gauss

interpolation errors by using an argument similar to that for Theorem 3.40.

Theorem 3.41. Let α,β > −1. For any u ∈ Bm
α,β (I) with m ≥ 1, we have that for

0 ≤ l ≤ m ≤ N + 1,

∥∥∂ l
x(I

α ,β
N u− u)

∥∥
ωα+l,β+l

≤ c

√
(N −m+ 1)!

N!
(N +m)l−(m+1)/2‖∂ m

x u‖ωα+m,β+m ,
(3.304)

where c is a positive constant independent of m,N and u.

Similar to (3.267), the Jacobi-Gauss interpolation errors measured in the norms
of the usual Sobolev spaces Hl

ωα,β (I)(l ≥ 1) are not optimal. For instance, a standard
argument using (3.302), Theorem 3.34, and Theorem 3.36 leads to that for any u ∈
Bm

α ,β (I) with 1 ≤ m ≤ N + 1,

‖Iα ,β
N u− u‖1,ωα,β

≤ c

√
(N −m+ 1)!

N!
(N +m)(3−m)/2‖∂ m

x u‖ωα+m−1,β+m−1 .
(3.305)

Now, we consider the Jacobi-Gauss-Radau and Jacobi-Gauss-Lobatto interpolations.
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3.5.3.2 Jacobi-Gauss-Radau Interpolation

In view of (3.140), the N interior Jacobi-Gauss-Radau nodes {x j}N
j=1 turn out to

be the Jacobi-Gauss nodes with the parameter (α,β + 1). Hence, by (3.300) and
(3.301),

θ j = arccos(x j) =
1
N

{
jπ +O(1)

}
, 1 ≤ j ≤ N, (3.306)

and

ω j
∼= 2α+β+2π

N
1

1+ x j

(
sin

θ j

2

)2α+1(
cos

θ j

2

)2β+3

∼= 2α+β+1π
N

(
sin

θ j

2

)2α+1(
cos

θ j

2

)2β+1

, 1 ≤ j ≤ N.

(3.307)

Moreover, applying the Stirling’s formula (A.7) to (3.134a) yields

ω0 = O
(
N−2β−2). (3.308)

Similar to Lemma 3.8, we have the following stability of the Jacobi-Gauss-Radau
interpolation operator.

Lemma 3.9. For any u ∈ B1
α,β (I),

‖Iα ,β
N u‖ωα,β � N−β−1|u(−1)|+ ‖u‖ωα,β +N−1|u|1,ωα+1,β+1 . (3.309)

Proof. By the exactness of the Jacobi-Gauss-Radau quadrature (cf. Theorem 3.26),

‖Iα ,β
N u‖2

ωα,β = ‖Iα ,β
N u‖2

N,ωα,β = u2(−1)ω0 +
N

∑
j=1

u2(x j)ω j.

Thanks to (3.306) and (3.307), using the same argument as for Lemma 3.8 leads to

N

∑
j=1

u2(x j)ω j � ‖u‖2
ωα,β +N−2|u|21,ωα+1,β+1 .

Hence, a combination of the above two results and (3.308) yields (3.309). ��
As a direct consequence of Lemma 3.9, we have the following results.

Corollary 3.8. For any φ ∈ PM and ψ ∈ PL with φ(−1) = ψ(−1) = 0,

‖Iα ,β
N φ‖ωα,β �

(
1+

M
N

)
‖φ‖ωα,β , (3.310a)

|〈φ ,ψ〉N,ωα,β |�
(

1+
M
N

)(
1+

L
N

)
‖φ‖ωα,β ‖ψ‖ωα,β . (3.310b)

In order to deal with the boundary term in Lemma 3.9, we need to estimate the
projection errors at the endpoints.
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Lemma 3.10. Let α,β >−1. For u ∈ Bm
α ,β (I),

• if α + 1 < m ≤ N + 1, we have

∣∣(πα ,β
N u− u)(1)

∣∣≤ cm−1/2N1+α−m‖∂ m
x u‖ωα+m,β+m , (3.311)

• if β + 1 < m ≤ N + 1, we have

∣∣(πα ,β
N u− u)(−1)

∣∣≤ cm−1/2N1+β−m‖∂ m
x u‖ωα+m,β+m , (3.312)

where c is a positive constant independent of m,N and u.

Proof. Let hα ,β
n,k be the constant defined in (3.254) and let m̃ = min{m,N + 1}. By

the Cauchy–Schwarz inequality and (3.258),

∣∣(πα,β
N u− u)(1)

∣∣≤ ∞

∑
n=N+1

|ûα ,β
n ||Jα ,β

n (1)|

≤
(

∞

∑
n=N+1

|Jα ,β
n (1)|2(hα ,β

n,m̃ )−1

)1/2( ∞

∑
n=N+1

|ûα ,β
n |2hα ,β

n,m̃

)1/2

≤
(

∞

∑
n=N+1

|Jα ,β
n (1)|2(hα ,β

n,m̃ )−1

)1/2

‖∂ m̃
x u‖ωα+m̃,β+m̃ .

By (3.94), (3.254) and the Stirling’s formula (A.7), we find

|Jα,β
n (1)|2
hα ,β

n,m̃

≤ ce−m̃ (n− m̃)!
n!

n1+2α

nm̃ , ∀n ≥ N + 1 � 1.

Moreover, by (A.8) and the inequality: 1− x ≤ e−x for x ∈ [0,1],

e−m̃ (n− m̃)!
n!

≤ c
e−m̃

nm̃

(
1− m̃

n

)n−m̃+1/2 ≤ cn−m̃.

Hence, for m̃ > α + 1,

∞

∑
n=N+1

|Jα,β
n (1)|2
hα ,β

n,m̃

≤ c
∞

∑
n=N+1

n2α+1−2m̃ ≤ c
∫ ∞

N
x2α+1−2m̃dx ≤ c

m̃
N2(1+α−m̃).

A combination of the above estimates leads to

|(πα ,β
N u− u)(1)| ≤ c√

m̃
N1+α−m̃‖∂ m̃

x u‖ωα+m̃,β+m̃ , m̃ > α + 1. (3.313)

This gives (3.311).
Thanks to (3.105), we derive (3.312) easily. ��
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Thanks to Lemma 3.9, Lemma 3.10 and Theorem 3.35, we can derive the
following result by an argument analogous to that for Theorem 3.40.

Theorem 3.42. For α,β >−1 and any u ∈ Bm
α ,β (I), we have that for 0 ≤ l ≤ m and

β + 1 < m ≤ N + 1,

∥∥∂ l
x(I

α ,β
N u− u)

∥∥
ωα+l,β+l ≤ c

√
(N −m+ 1)!

N!
Nl−(m+1)/2‖∂ m

x u‖ωα+m,β+m, (3.314)

where c is a positive constant independent m,N and u.

3.5.3.3 Jacobi-Gauss-Lobatto Interpolation

The relation (3.141) indicates that the N − 1 interior JGL nodes {x j}N−1
j=1 are the JG

nodes with the parameter (α + 1,β + 1). Hence, by (3.300),

θ j = arccos(x j) =
1

N − 1

{
jπ +O(1)

}
, 1 ≤ j ≤ N − 1. (3.315)

Moreover, we find from (3.141) and (3.301) that the associated weights have the
asymptotic property:

ω j ∼= 2α+β+1π
N − 1

(
sin

θ j

2

)2α+1(
cos

θ j

2

)2β+1

, 1 ≤ j ≤ N − 1. (3.316)

Furthermore, applying the Stirling’s formula (A.7) to the boundary weights in
(3.139a) and (3.139b) yields

ω0 = O
(
N−2β−2), ωN = O

(
N−2α−2).

Hence, similar to Lemmas 3.8 and 3.9, we can derive the following stability
result.

Lemma 3.11. For any u ∈ B1
α ,β (I),

‖Iα ,β
N u‖ωα,β � N−α−1|u(1)|+N−β−1|u(−1)|

+ ‖u‖ωα,β +N−1|u|1,ωα+1,β+1 .
(3.317)

As with Corollaries 3.7 and 3.8, the following bounds can be obtained directly
from Lemma 3.11.

Corollary 3.9. For any φ ∈ PM and ψ ∈ PL with φ(±1) = ψ(±1) = 0,

‖Iα ,β
N φ‖ωα,β �

(
1+

M
N

)
‖φ‖ωα,β , (3.318a)

|〈φ ,ψ〉N,ωα,β |�
(

1+
M
N

)(
1+

L
N

)
‖φ‖ωα,β ‖ψ‖ωα,β . (3.318b)
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Similar to the Jacobi-Gauss-Radau case, we can derive the following estimates
by using Lemmas 3.11 and 3.10, and Theorem 3.35.

Theorem 3.43. For α,β >−1, and any u ∈ Bm
α,β (I), we have

∥∥∂ l
x(I

α ,β
N u− u)

∥∥
ωα+l,β+l ≤ c

√
(N −m+ 1)!

N!
Nl−(m+1)/2‖∂ m

x u‖ωα+m,β+m, (3.319)

for 0 ≤ l ≤ m and max{α + 1,β + 1} < m ≤ N + 1, where c is a positive constant
independent of m,N and u.

Note that in the analysis of interpolation errors, we used the approximation re-
sults of the L2

ωα,β -projection operator πα ,β
N . This led to the estimates in the norms

of Bl
α ,β (I), but it induced the constraints m > α +1 and/or m > β +1 for the Radau

and Lobatto interpolations. As a result, for the Legendre-Gauss-Lobatto interpola-
tion, the estimate stated in Theorem 3.43 does not hold for m = 1.

In Chap. 5 (see Sect. 6.5), we shall take a different approach to derive the follow-
ing estimate for the Legendre-Gauss-Lobatto interpolation.

Theorem 3.44. For any u ∈ Bm
−1,−1(I), we have that for 1 ≤ m ≤ N + 1,

‖∂x(INu− u)‖+N‖INu− u‖ω−1,−1

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m

x u‖ωm−1,m−1 ,
(3.320)

where c is a positive constant independent of m,N and u.

Problems

3.1. Derive the properties stated in Corollary 3.2.

3.2. Let {pn} be a sequence of orthogonal polynomials defined on a finite interval

(a,b), and let x(n)n be the largest zero of pn. Show that limn→∞ x(n)n exists.

3.3. Regardless of the choice of {x j,ω j}N
j=0, the quadrature formula (3.33) cannot

have degree of precision greater than 2N + 1.

3.4. Let

T =
(
tn j := pn(x j)

)
0≤n, j≤N, S =

(
s jn := γ−1

n pn(x j)ω j
)

0≤n, j≤N

be the transform matrices associated with (3.62) and (3.64). Show that T = S−1.
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3.5. For α > ρ >−1 and β >−1, show that

∫ 1

−1
Jα,β

n (x)ωρ ,β (x)dx =
2β+ρ+1Γ (ρ + 1)Γ (n+β + 1)
n!Γ (α −ρ)Γ (ρ +β + n+ 2)

.

3.6. Prove the following Rodrigues-like formula:

(1− x)α(1+ x)β Jα ,β
n (x) =

(−1)m(n−m)!
2mn!

×

∂ m
x

{
(1− x)α+m(1+ x)β+mJα+m,β+m

n−m (x)
}
,

α,β >−1, n ≥ m ≥ 0.

(3.321)

3.7. Derive the formulas in Theorem 3.20.

3.8. Derive the formulas in Theorem 3.27.

3.9. Prove that the following equation holds for integers n > m,

dm

dxm

[
(1− x2)m dmLn

dxm

]
+(−1)m+1λm,nLn = 0, (3.322)

where

λm,n =
(n+m)!
(n−m)!

. (3.323)

3.10. Prove the orthogonality

∫ 1

−1
L(m)

n (x)L(m)
k (x)(1− x2)mdx = λm,n‖Ln‖2δnk.

3.11. Show that the Legendre polynomials satisfy

∂ m
x Ln(±1) = (±1)n−m (n+m)!

2mm!(n−m)!
. (3.324)

3.12. Let

A φ =−∂x((1− x2)∂xφ)

be the Sturm-Liouville operator. Verify that

∂ k
x (A φ) =−(1− x2)∂ k+2

x φ + 2(k+ 1)x∂ k+1
x φ + k(k+ 1)∂ k

x φ .

Hence, we have

‖∂ k
x (A φ)‖� ‖φ‖k+2.

3.13. Given u ∈ PN , we consider the expansions

∂ k
x u(x) =

N

∑
n=k

û(k)n Ln(x), 0 ≤ k < N.
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Prove the following relations:

û(1)n = (2n+ 1)
N

∑
p=n+1

n+p odd

û(0)p ;

û(1)n =
(2n+ 1)

2

N

∑
p=n+2

n+p even

(
p(p+ 1)− n(n+ 1)

)
û(0)p ;

1
2n− 1

û(k)n−1 −
1

2n+ 3
û(k)n+1 = û(k−1)

n .

3.14. Prove that

Ln(0) =

⎧⎨
⎩

0, if n odd,

n!2−n
(
(n/2)!

)−2
, if n even.

3.15. According to the formula (4.8.11) of Szegö (1975), we have that for any n∈N

and x ∈ [−1,1],

Ln(x) =
∫ π

0

(
x+ i

√
1− x2 cosθ

)n
dθ ,

where i =
√−1. Prove that the Legendre polynomials are uniformly bounded be-

tween the parabolas

−1+ x2

2
≤ Ln(x)≤ 1+ x2

2
, ∀x ∈ [−1,1].

3.16. Given u ∈ PN , we consider the expansions

∂ k
x u(x) =

N

∑
n=k

û(k)n Tn(x), 0 ≤ k < N.

Prove the following relations:

û(1)n =
2
cn

N

∑
p=n+1

n+p odd

pû(0)p ;

û(2)n =
1
cn

N

∑
p=n+2

n+p even

p
(

p2 − n2)û(0)p ;

û(3)n =
1

4cn

N

∑
p=n+3

n+p odd

p
(

p2(p2 − 2)− 2p2n2 +(n2 − 1)2)û(0)p ;

û(4)n =
1

24cn

N

∑
p=n+4

n+p even

p
(

p2(p2 − 4)2 − 3p4n2 + 3p2n4 − n2(n2 − 4)2)û(0)p ,
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and the recurrence formula

cn−1û(k)n−1 − û(k)n+1 = 2nû(k−1)
n .

3.17. Show that

∂ m
x Tn(±1) = (±1)n+m

m

∏
k=0

n2 − k2

2k+ 1
.

3.18. Prove that
∫ 1

−1

[
Tn(x)

]2
dx = 1− (4n2− 1)−1, n ≥ 0.

3.19. Show that:

(a) The constants α j and β j in (3.25) are the same as the coefficients in (3.7).
(b) The characteristic polynomial of the matrix An+1 is the monic polynomial

p̄n+1(x), namely,

p̄n+1(x) = det(xIn+1 −An+1), n ≥−1, (3.325)

3.20. Prove the inverse inequalities

‖φ‖� Nα‖φ‖ωα,α , ∀φ ∈ PN, α ≥ 0,

and

‖φ‖ω−1,−1 � N‖φ‖, ∀φ ∈ PN , φ(±1) = 0.

3.21. Prove Theorem 3.34 for the Chebyshev case, that is, for any φ ∈ PN ,

‖∂xφ‖ω � N2‖φ‖ω , ω(x) =
1√

1− x2
.

3.22. Show that for −1 < α,β < 1, we have H1
ωα,β (I)⊆C(Ī) and (3.281) holds.

3.23. Let IN be the Legendre-Gauss interpolation operator N + 1 Legendre-Gauss-
Lobatto points. Verify that for u = LN+1 −LN−1,

‖INu− u‖H1 ≥ cN1/2‖u′‖.

3.24. Let IN be the interpolation operator on N +1 Legendre-Gauss-Lobatto points.
Show that for any u ∈ H1

0 (I),

‖INu‖ω−1,−1 ≤ c
(‖u‖ω−1,−1 +N−1‖∂xu‖). (3.326)



Chapter 4
Spectral Methods for Second-Order Two-Point
Boundary Value Problems

We consider in this chapter spectral algorithms for solving the two-point boundary
value problem:

−ε U ′′+ p(x)U ′+ q(x)U = F, in I := (−1,1), (4.1)

(where ε > 0) with the general boundary conditions

a−U(−1)+ b−U ′(−1) = c−, a+U(1)+ b+U ′(1) = c+, (4.2)

which include in particular the Dirichlet boundary conditions (a± = 1 and b± = 0),
Neumann boundary conditions (a± = 0 and b± =±1), and Robin (or mixed) bound-
ary conditions (a− = b+ = 0 or a+ = b− = 0). Whenever possible, we shall give a
uniform treatment for all these boundary conditions. Without loss of generality, we
assume that:

(i) a± ≥ 0;

(ii) a2
−+ b2

− �= 0, a−b− ≤ 0; a2
++ b2

+ �= 0, a+b+ ≥ 0;

(iii) q(x)− p′(x)/2 ≥ 0, ∀x ∈ I;

(iv) p(1)> 0 if b+ �= 0; p(−1)< 0 if b− �= 0.

(4.3)

The above conditions are necessary for the well-posedness of (4.1)–(4.2).
Let us first reduce the problem (4.1)–(4.2) to a problem with homogeneous

boundary conditions.

• Case I. a± = 0 and b± �= 0
We set ũ = βx2 + γx, where β and γ are uniquely determined by asking ũ to
satisfy (4.2), namely,

−2b−β + b−γ = c−,
2b+β + b+γ = c+.

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 141
Springer Series in Computational Mathematics 41, DOI 10.1007/978-3-540-71041-7 4,
c© Springer-Verlag Berlin Heidelberg 2011
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• Case II. a2−+ a2
+ �= 0

We set ũ = βx+ γ , where β and γ again can be uniquely determined by requiring
ũ to satisfy (4.2). Indeed, we have

(−a−+ b−)β + a−γ = c−,
(a++ b+)β + a+γ = c+.

The determinant of the coefficient matrix is

DET =−2a−a++ a+b−− a−b+.

The assumption (4.3) implies that b− ≤ 0 and b+ ≥ 0, so we have DET < 0.

Now, we set
u =U − ũ, f = F − (−ε ũ′′+ p(x)ũ′+ q(x)ũ).

Then u satisfies the following equation

−ε u′′+ p(x)u′+ q(x)u = f , in I = (−1,1), (4.4)

with the homogeneous boundary condition

a−u(−1)+ b−u′(−1) = 0, a+u(1)+ b+u′(1) = 0. (4.5)

Let us denote

H1
� (I) =

{
u ∈ H1(I) : u(±1) = 0 if b± = 0

}
, (4.6)

and

h− =

{
0, if a−b− = 0,
a−
b− , if a−b− �= 0,

h+ =

{
0, if a+b+ = 0,
a+
b+
, if a+b+ �= 0.

(4.7)

Then, a standard weak formulation for (4.4)-(4.5) is:
{

Find u ∈ H1
� (I) such that

B(u,v) = ( f ,v), ∀v ∈ H1
� (I),

(4.8)

where

B(u,v) := ε (u′,v′)+ ε h+u(1)v(1)− ε h−u(−1)v(−1)

+ (p(x)u′,v)+ (q(x)u,v).
(4.9)

It is easy to see that the bilinear form B(·, ·) defined above is continuous and co-
ercive in H1� (I)×H1� (I) under the conditions (4.3) (see Problem 4.1). One derives
immediately from the Lax-Milgram lemma (see Appendix B) that the problem (4.8)
admits a unique solution. Note that only the Dirichlet boundary condition(s) is en-
forced exactly in H1� (I), but all other boundary conditions are treated naturally.
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The rest of this chapter is organized as follows. In the first section, we con-
sider the problem (4.1)–(4.2) with constant coefficients and present several Galerkin
schemes based on weak formulations using continuous inner products. In the sec-
ond section, we consider the Galerkin method with numerical integration which is
based on the weak formulation (4.8) using discrete inner products. In the third sec-
tion, we present the collocation methods which look for approximate solutions to
satisfy (4.2) and (4.1) exactly at a set of collocation points. In Sect. 4.4, we intro-
duce some preconditioned iterative methods for solving the linear systems arising
from spectral approximations of two-point boundary value problems. In Sect. 4.5,
we provide error analysis for two model cases and the one-dimensional Helmholtz
equation.

For a thorough discussion on other numerical methods for more general two-
point boundary value problems, we refer to Ascher et al. (1995).

4.1 Galerkin Methods

To simplify the presentation, we shall restrict ourselves in this section to a special
case of (4.4), namely,

− u′′+αu = f , in I = (−1,1),

a−u(−1)+ b−u′(−1) = 0, a+u(1)+ b+u′(1) = 0,
(4.10)

where α ≥ 0 is a given constant. The general case (4.1)-(4.2) will be treated in
Sects. 4.2 and 4.3.

As a special case of (4.8), the standard weak formulation for (4.10) is

⎧⎪⎨
⎪⎩

Find u ∈ H1
� (I) such that

(u′,v′)+ h+u(1)v(1)− h−u(−1)v(−1)

+α(u,v) = ( f ,v), ∀v ∈ H1
� (I).

(4.11)

4.1.1 Weighted Galerkin Formulation

We consider the approximation of (4.10) by using a weighted Galerkin method in
the polynomial space

X̃N =
{

φ ∈ PN : φ(±1) = 0 if b± = 0
}
. (4.12)
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A straightforward extension of (4.11) using the weighted inner product leads to
the following formulation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Find uN ∈ X̃N such that

(u′
N ,ω

−1(vNω)′)ω +ω(1)h+uN(1)vN(1)

−ω(−1)h−uN(−1)vN(−1)+α(uN ,vN)ω

= ( f ,vN)ω , ∀vN ∈ X̃N .

(4.13)

However, there are several problems associated with this formulation. First, the
above formulation does not make sense if limx→±1 ω(x) does not exist, except in
the case of Dirichlet boundary conditions. Hence, it can not be used for the Jacobi
weight function with α < 0 or β < 0, including in particular the Chebyshev weight
(cf. Canuto and Quarteroni (1994) and pp. 194–196 in Funaro (1992) for some spe-
cial weighted weak formulations of (4.10)). Secondly, as it will become clear later
in this section, even in the case ω(x) ≡ 1, this formulation will not lead to a sparse
or special linear system that can be inverted efficiently. The cure is to use a new
weighted weak formulation in which the general boundary conditions in (4.10) are
enforced exactly rather than approximately in (4.13).

Let us denote

XN =
{

v ∈ PN : a±v(±1)+ b±v′(±1) = 0
}
. (4.14)

The new weighted Galerkin method for (4.10) is{
Find uN ∈ XN such that

−(u′′
N ,vN)ω +α(uN ,vN)ω = ( fN ,vN)ω , ∀ vN ∈ XN ,

(4.15)

where fN is an appropriate polynomial approximation of f , which is usually taken to
be the interpolation of f associated with the Gauss-type quadrature points. The main
difference with (4.13) is that the Robin boundary conditions are enforced exactly
here. We shall see below that by choosing appropriate basis functions of XN , we
shall be able to reduce (4.15) to a linear system with a sparse or special coefficient
matrix that can be solved efficiently.

Given a set of basis functions {φ j}N−2
j=0 of XN , we denote

fk =
∫

I
fN φkωdx, f = ( f0, f1, . . . , fN−2)

T ;

uN =
N−2

∑
j=0

û jφ j, u = (û0, û1, . . . , ûN−2)
T ;

sk j =−
∫

I
φ ′′

j φkωdx, mk j =

∫
I
φ j φkωdx,

(4.16)

and
S =

(
sk j
)

0≤k, j≤N−2, M =
(
mk j
)

0≤k, j≤N−2.

Taking vN = φk, 0 ≤ k ≤ N − 2 in (4.15), we find that (4.15) is equivalent to the
following linear system: (

S+αM
)
u = f. (4.17)

Below, we determine the entries of S and M for two special cases: ω = 1,(1−
x2)−1/2.
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4.1.2 Legendre-Galerkin Method

We set ω(x)≡ 1 and fN = IN f (the Legendre interpolation polynomial of f relative
to the Legendre-Gauss-Lobatto points (cf. Sect. 3.3)). Then (4.15) becomes

−
∫

I
u′′

NvN dx+α
∫

I
uN vN dx =

∫
I
IN f vN dx, ∀ vN ∈ XN, (4.18)

which is referred to as the Legendre-Galerkin method for (4.10).
The actual linear system for (4.18) depends on the choice of basis functions of

XN . Just as in the finite-element methods, where neighboring points are used to form
basis functions so as to minimize their interactions in the physical space, neighbor-
ing orthogonal polynomials should be used to form basis functions in a spectral-
Galerkin method so as to minimize their interactions in the frequency space. There-
fore, we look for basis functions as a compact combination of Legendre polynomials
(cf. Shen (1994)), namely,

φk(x) = Lk(x)+ akLk+1(x)+ bkLk+2(x), (4.19)

where the parameters {ak,bk} are chosen to satisfy the boundary conditions in
(4.10). Such basis functions are referred to as modal basis functions.

Lemma 4.1. For all k ≥ 0, there exists a unique set of {ak,bk} such that φk(x) =
Lk(x)+ akLk+1(x)+ bkLk+2(x) verifies the boundary conditions in (4.10).

Proof. Since Lk(±1) = (±1)k and L′
k(±1) = 1

2 (±1)k−1k(k+ 1) (see Sect. 3.3), the
boundary conditions in (4.10) lead to the following system for {ak,bk}:

(
a++

b+
2
(k+ 1)(k+ 2)

)
ak +

(
a++

b+
2
(k+ 2)(k+ 3)

)
bk

=−a+− b+
2

k(k+ 1),

−
(

a−− b−
2
(k+ 1)(k+ 2)

)
ak +

(
a−− b−

2
(k+ 2)(k+ 3)

)
bk

=−a−+
b−
2

k(k+ 1).

(4.20)

The determinant of the coefficient matrix is

DETk = 2a+a−+ a−b+(k+ 2)2 − a+b−(k+ 2)2

−b−b+(k+ 1)(k+ 2)2(k+ 3)/2.
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We then derive from (4.3) that the four terms (including the signs before them) of
DETk are all nonnegative, and at least one is positive for any k. Hence, {ak,bk} can
be uniquely determined by solving (4.20), namely,

ak =(2k+ 3)(a+b−+ a−b+)/DETk,

bk =
{
− 2a−a++(k+ 1)2(a+b−− a−b+

)

+
b−b+

2
k(k+ 1)2(k+ 2)

}/
DETk.

(4.21)

This completes the proof. ��
Note that in particular:

• If a± = 1 and b± = 0 (Dirichlet boundary conditions), we have ak = 0 and
bk =−1.

• If a± = 0, b± = ±1 (Neumann boundary conditions), we have ak = 0 and bk =
−k(k+ 1)/((k+ 2)(k+ 3)).

It is obvious that {φk} are linearly independent. Therefore, by dimension argu-
ment, we have

XN = span
{

φk : k = 0,1, . . . ,N − 2
}
.

Remark 4.1. In the very special case

−uxx = f , x ∈ (−1,1); ux(±1) = 0,

with the condition
∫ 1
−1 f dx = 0, since the solution is only determined up to a con-

stant, we should use

XN = span
{

φk : k = 1,2, . . . ,N − 2
}
.

This remark also applies to the Chebyshev-Galerkin method presented below.

Lemma 4.2. The stiffness matrix S is a diagonal matrix with

skk =−(4k+ 6)bk, k = 0,1, . . . . (4.22)

The mass matrix M is symmetric penta-diagonal whose nonzero elements are

mjk = mk j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
2k+ 1

+ a2
k

2
2k+ 3

+ b2
k

2
2k+ 5

, j = k,

ak
2

2k+ 3
+ ak+1bk

2
2k+ 5

, j = k+ 1,

bk
2

2k+ 5
, j = k+ 2.

(4.23)
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Proof. Integrating by parts and using the fact that {φk} satisfy the boundary condi-
tions (4.5), we find that

s jk =−
∫

I
φ ′′

k (x)φ j(x)dx

=
∫

I
φ ′

k(x)φ ′
j(x)dx+ h+φk(1)φ j(1)− h−φk(−1)φ j(−1)

=−
∫

I
φk(x)φ ′′

j (x)dx = sk j,

(4.24)

where h± are defined in (4.7). It is then obvious from (4.24) and the definition of
{φk} that S is a diagonal matrix. Thanks to (3.176c) and (3.174), we find

skk =−bk

∫
I
L′′

k+2(x)Lk(x)dx

=−bk(k+ 1/2)(4k+ 6)
∫

I
L2

k(x)dx =−bk(4k+ 6).

The nonzero entries for M in (4.23) can be easily obtained by using (3.174). ��
Remark 4.2. An immediate consequence is that {φk}N−2

k=0 forms an orthogonal basis
of XN with respect to the inner product −(u′′

N ,vN). Furthermore, an orthonormal
basis of XN with respect to this inner product is

φ̃k(x) :=
1√−bk(4k+ 6)

φk(x).

Notice that under the assumption (4.3), bk < 0 for all k.

We now provide a detailed implementation procedure. Given the values of f
at the LGL points {x j}N

j=0, we determine the values of uN (solution of (4.15)) at

{x j}N
j=0 as follows:

1. (Pre-computation) Compute the LGL points, {ak,bk} and nonzero elements of S
and M.

2. Evaluate the Legendre coefficients of IN f from { f (x j)}N
j=0 (forward Legendre

transform, see (3.193)) and evaluate f.
3. Solve u from (4.17).
4. Evaluate uN(x j) = ∑N−2

i=0 ûiφi(x j), j = 0,1, . . . ,N (backward Legendre transform,
see (3.194)).

Although the solution of the linear system (4.17) can be done in O(N) flops, the
two discrete Legendre transforms in the above procedure cost about 2N2 flops. To re-
duce the cost of the discrete transforms between the physical and frequency spaces,
a natural choice is to use Chebyshev polynomials so that the discrete Chebyshev
transforms can be accelerated by using FFT.
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4.1.3 Chebyshev-Galerkin Method

We set ω = (1− x2)−1/2 and fN = Ic
N f (the Chebyshev interpolation polynomial

of f relative to the Chebyshev-Gauss-Lobatto points (see Sect. 3.4)). Then, (4.15)
becomes

−
∫

I
u′′

N vN ω dx+α
∫

I
uN vN ω dx =

∫
I
Ic
N f vNω dx, ∀vN ∈ XN, (4.25)

which is referred to as the Chebyshev-Galerkin method for (4.10).
As before, we would like to seek the basis functions of XN in the form

φk(x) = Tk(x)+ akTk+1(x)+ bkTk+2(x). (4.26)

Lemma 4.3. For all k ≥ 0, there exists a unique set of {ak,bk} such that φk(x) =
Tk(x)+ akTk+1(x)+ bkTk+2(x) satisfies the boundary conditions in (4.10).

Proof. Since Tk(±1) = (±1)k and T ′
k (±1) = (±1)k−1k2, we find from (4.5) that

{ak,bk} must satisfy the system

(a++ b+(k+ 1)2)ak+(a++ b+(k+ 2)2)bk =−a+− b+k2,

−(a−− b−(k+ 1)2)ak+(a−− b−(k+ 2)2)bk =−a−+ b−k2,
(4.27)

whose determinant is

DETk = 2a+a−+
{
(k+ 1)2 +(k+ 2)2}(a−b+− a+b−

)
− 2b−b+(k+ 1)2(k+ 2)2.

As in the Legendre case, the conditions in (4.3) imply that DETk > 0. Hence,
{ak,bk} are uniquely determined by

ak =4(k+ 1)(a+b−+ a−b+)/DETk,

bk =
{
(−2a−a++(k2 +(k+ 1)2)(a+b−− a−b+)

+ 2b−b+k2(k+ 1)2}/DETk.

(4.28)

This ends the proof. ��
Therefore, we have from the dimension argument that

XN = span
{

φk : k = 0,1, . . . ,N − 2
}
.

One easily derives from (3.214) that the mass matrix M is a symmetric positive
definite penta-diagonal matrix whose nonzero elements are
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mjk = mk j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π
2
(ck + a2

k + b2
k), j = k,

π
2
(ak + ak+1bk), j = k+ 1,

π
2

bk, j = k+ 2,

(4.29)

where c0 = 2 and ck = 1 for k ≥ 1. However, the computation of sk j is much more
involved. Below, we shall derive the explicit expression of sk j for two special cases.

Lemma 4.4. For the case a± = 1 and b± = 0 (Dirichlet boundary conditions), we
have ak = 0, bk =−1 and

sk j =

⎧⎪⎨
⎪⎩

2π(k+ 1)(k+ 2), j = k,

4π(k+ 1), j = k+ 2,k+ 4,k+ 6, . . .,

0, j < k or j+ k odd.

(4.30)

For the case a± = 0, b+ = 1 and b− =−1 (Neumann boundary conditions), we have
ak = 0, bk =− k2

(k+2)2 and

sk j =

⎧⎪⎨
⎪⎩

2π(k+ 1)k2/(k+ 2), j = k,

4π j2(k+ 1)/(k+ 2)2, j = k+ 2,k+ 4,k+ 6, . . .,

0, j < k or j+ k odd.

(4.31)

Proof. One observes immediately that

sk j =−
∫

I
φ ′′

j φkω dx = 0, for j < k.

Hence, S is an upper triangular matrix. By the odd-even parity of the Chebyshev
polynomials, we have also sk j = 0 for j+ k odd.

Thanks to (3.216b), we have

T ′′
k+2(x) =

1
ck
(k+ 2)

(
(k+ 2)2 − k2)Tk(x)

+
1

ck−2
(k+ 2)

(
(k+ 2)2 − (k− 2)2)Tk−2(x)+ . . . .

(4.32)

We first consider the case a± = 1 and b± = 0. From (4.21), we find φk(x) =
Tk(x)−Tk+2(x). It follows immediately from (4.32) and (3.214) that

−(φ ′′
k ,φk)ω = (T ′′

k+2,Tk)ω =
1
ck
(k+ 2)

(
(k+ 2)2 − k2)(Tk,Tk)ω

= 2π(k+ 1)(k+ 2).
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Setting φ ′′
j (x) = ∑ j

n=0 dnTn(x), by a simple computation using (4.32), we derive

dn =

⎧⎪⎪⎨
⎪⎪⎩
− 4

c j
( j+ 1)( j+ 2), n = j,

− 1
cn
{( j+ 2)3 − j3 − 2n2}, n < j.

Hence for j = k+ 2,k+ 4, . . ., we find

−(φ ′′
j ,φk)ω =−dk(Tk,Tk)ω+dk+2(Tk+2,Tk+2)ω = 4π(k+ 1).

The case with a± = 0 and b± =±1 can be treated similarly as above. ��
Similar to the Legendre-Galerkin method, the implementation of the Chebyshev-

Galerkin method for (4.10) involves the following steps:

1. (pre-computation) Compute {ak,bk} and nonzero elements of S and M.
2. Evaluate the Chebyshev coefficients of Ic

N f from { f (x j)}N
j=0 (forward Chebyshev

transform, see (3.222)) and evaluate f.
3. Solve u from (4.17).
4. Evaluate uN(x j) = ∑N−2

i=0 ûiφi(x j), j = 0,1, . . . ,N (backward Chebyshev trans-
form, see (3.223)).

Remark 4.3. Note that the forward and backward Chebyshev transforms can be
performed by using FFT in O(N log2 N) operations. However, the cost of Step 3
depends on the boundary conditions in (4.5). For the special but important cases
described in the above lemma, the special structures of S would allow us to solve the
system (4.17) in O(N) operations. More precisely, in (4.30) and (4.31), the nonzero
elements of S take the form sk j = a( j)∗b(k). Hence, a special Gaussian elimination
procedure for (4.17) (cf. Shen (1995)) would only require O(N) flops instead of
O(N3) flops for a general full matrix.

Therefore, thanks to FFT, the computational complexity of Chebyshev-Galerkin
method for the above cases is O(N log2 N) which is quasi-optimal (i.e., optimal up
to a logarithmic term).

Remark 4.4. In the case of Dirichlet boundary conditions, one can also use the
basis functions ψk(x) = (1−x2)Tk(x) (cf. Heinrichs (1989)), which lead to a banded
stiffness matrix.

4.1.4 Chebyshev-Legendre Galerkin Method

The main advantage of using Chebyshev polynomials is that the discrete Chebyshev
transforms can be performed in O(N log2 N) operations by using FFT. However,
the Chebyshev-Galerkin method leads to non-symmetric formulations which may



4.1 Galerkin Methods 151

cause difficulties in analysis and implementation. On the other hand, the Legendre-
Galerkin method leads to symmetric formulation and sparse matrices for problems
with constant coefficients, but the discrete Legendre transforms are expensive (with
O(N2) operations). In order to take advantage of both the Legendre and Cheby-
shev methods (cf. Don and Gottlieb (1994)), one may use the so-called Chebyshev-
Legendre Galerkin method (cf. Shen (1996)):

−
∫

I
u′′

N vN dx+α
∫

I
uN vN dx =

∫
I
Ic
N f vN dx, (4.33)

where Ic
N denotes the interpolation operator relative to the Chebyshev-Gauss-

Lobatto points. So the only difference with (4.18) is that the Chebyshev interpo-
lation operator Ic

N is used here to replace the Legendre interpolation operator in
(4.18). Therefore, (4.33) leads to the linear system (4.17) with u, S and M defined
in (4.16) and (4.22)-(4.23), but with f defined by

fk =
∫

I
Ic
N f φkdx, f = ( f0, f1, . . . , fN−2)

T . (4.34)

Hence, the solution procedure of (4.33) is essentially the same as that of (4.18)
except that Chebyshev-Legendre transforms (between the value of a function at the
CGL points and the coefficients of its Legendre expansion) are needed instead of
the Legendre transforms. More precisely, given the values of f at the CGL points
{xi = cos( iπ

N )}0≤i≤N , we determine the values of uN (solution of (4.33)) at the CGL
points as follows:

1. (Pre-computation) Compute {ak,bk} and nonzero elements of S and M.
2. Evaluate the Legendre coefficients of Ic

N f from { f (xi)}N
i=0 (forward Chebyshev-

Legendre transform).
3. Evaluate f from (4.34) and solve u from (4.17).
4. Evaluate uN(x j) = ∑N−2

i=0 ûiφi(x j), j = 0,1, . . . ,N (“modified” backward
Chebyshev-Legendre transform).

The forward and (“modified”) backward Chebyshev-Legendre transforms can be
implemented efficiently. Indeed, each Chebyshev-Legendre transform can be split
into two steps:

1. The transform between its physical values at Chebyshev-Gauss-Lobatto points
and the coefficients of its Chebyshev expansion. This can be done by using FFT
in O(N log2 N) operations.

2. The transform between the coefficients of the Chebyshev expansion and of the
Legendre expansion. Alpert and Rokhlin (1991) developed an O(N) algorithm
for this transform given a prescribed precision.

Therefore, the total computational cost for (4.33) is of order O(N log2 N).
The algorithm in Alpert and Rokhlin (1991) is based on the fast multipole method

(cf. Greengard and Rokhlin (1987)). Hence, it is most attractive for very large N.
For small to moderate N, a simple algorithm described in Shen (1996) appears to be
more competitive.
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4.2 Galerkin Method with Numerical Integration

The Galerkin methods presented in the previous section lead to very efficient
algorithms for problems with constant coefficients. However, they are not feasi-
ble for problems with general variable coefficients for which the exact integration
is often not possible. Therefore, for problems with variable coefficients, we need to
replace the continuous inner product by a suitable discrete inner product, leading
to the so-called Galerkin method with numerical integration. More precisely, the
Legendre-Galerkin method with numerical integration for (4.8) is

{
Find uN ∈ X̃N = PN ∩H1

� (I) such that

BN(uN ,vN) = 〈 f ,vN〉N , ∀vN ∈ X̃N ,
(4.35)

where

BN(uN ,vN) := ε 〈u′N ,v′N〉N + ε h+uN(1)vN(1)− ε h−uN(−1)vN(−1)

+ 〈p(x)u′N ,vN〉N + 〈q(x)uN ,vN〉N ,

with 〈·, ·〉N being the discrete inner product relative to the Legendre-Gauss-Lobatto
quadrature.

Let
{

h j
}

be the Lagrange basis polynomials (also referred to as nodal basis)
associated with {x j}N

j=0. To fix the idea, we assume b± �= 0, so X̃N = PN and we can
write

uN(x) =
N

∑
j=0

uN(x j)h j(x). (4.36)

Plugging the above expression into (4.35) and taking vN = hk, we find that (4.35)
reduces to the linear system

Bw =W f, (4.37)

where

w =
(
uN(x0),uN(x1), . . . ,uN(xN)

)T
;

bk j = BN(h j,hk), B = (bk j)k, j=0,1,...,N ;

f =
(

f (x0), f (x1), . . . , f (xN)
)T ;

W = diag(ω0,ω1, . . . ,ωN),

(4.38)

with {ωk}N
k=0 being the weights of the Legendre-Gauss-Lobatto quadrature (see

Theorem 3.29).
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The entries bk j can be determined as follows. Let {x j}N
j=0 be arranged in ascend-

ing order1 with x0 =−1 and xN = 1. Using (3.59) and integration by parts, we have

〈h′j,h′k〉N = (h′j,h
′
k) =−(h′′j ,hk)+ h′jhk

∣∣1−1

=−(D2)
k jωk + dN jδNk − d0 jδ0k.

(4.39)

Consequently,

bk j =
[− ε

(
D2)

k j + p(xk)dk j + q(xk)δk j
]
ωk

+ ε (dN j + h+δN j)δNk − ε (d0 j + h−δ0 j)δ0k.
(4.40)

We can also reinterpret (4.35) as a collocation form. Observe that

〈u ′
N ,h

′
k〉N =−u′′

N(xk)ωk + u′
N(1)δNk − u′

N(−1)δ0k, 0 ≤ k ≤ N.

Then, taking vN = h j in (4.35) for j = 0,1, . . . ,N, since ω0 = ωN = 2
N(N+1) , we find

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ε u′′
N(x j)+ p(x j)u

′
N(x j)+ q(x j)uN(x j) = f (x j), 1 ≤ j ≤ N − 1,

a−uN(−1)+ b−u′
N(−1) =−b−

ε
2

N(N + 1)[
f (−1)− (−ε u′′

N(−1)+ p(−1)u′N(−1)+ q(−1)uN(−1))
]
,

a+uN(1)+ b+u′
N(1) =

b+
ε

2
N(N + 1)[

f (1)− (−ε u ′′
N(1)+ p(1)u′

N(1)+ q(1)uN(1))
]
.

(4.41)

Remark 4.5. Note that the solution of (4.35) satisfies (4.4) exactly at the interior
collocation points {x j}N−1

j=1 , but the boundary conditions (4.5) are only satisfied ap-
proximately with an error proportional to the residual of (4.4), with u replaced by
the approximate solution uN, at the boundary. Thus, (4.35) does not correspond
exactly to a collocation method, so it is sometimes referred to as a collocation
method in the weak form. However, it is clear from (4.41) that in the Dirichlet
case (i.e., b± = 0), (4.41) becomes a collocation method (see the next section). In
other words, the Galerkin method with numerical integration (4.35), in the case of
Dirichlet boundary conditions, is equivalent to the collocation method.

Remark 4.6. The matrix B in the linear system (4.37), even for the simplest dif-
ferential equation, is full and ill-conditioned, so it is in general not advisable to
solve (4.37) using a direct method for large N. Instead, an iterative method using
an appropriate preconditioner should be used, see Sect. 4.4.

1 Historically (cf. Gottlieb and Orszag (1977)), the Chebyshev-collocation points were defined as
x j = cos jπ

N which were in descending order. For the sake of consistency, we choose to arrange the
collocation points in ascending order in this book.
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4.3 Collocation Methods

The collocation method, or more specifically the collocation method in the strong
form, is fundamentally different from the Galerkin method, in the sense that it is not
based on a weak formulation. Instead, it looks for an approximate solution which
enforces the boundary conditions in (4.5) and collocates (4.4) at a set of interior
collocation points. On the other hand, the collocation method in the weak form
presented in the last section is based on a weak formulation in which the general
boundary conditions are treated naturally and are only satisfied asymptotically, and
the approximate solution verifies (4.4) at a set of interior collocation points.

We describe below the collocation method for the two-point boundary value
problem (4.1) with the general boundary conditions (4.2). Notice that the non-
homogeneous boundary conditions can be treated directly in a collocation method
so there is no need to “homogenize” the boundary conditions as we did previously
for the Galerkin methods.

Given any set of distinct collocation points {x j}N
j=0 on [−1,1] in ascending order

with x0 =−1 and xN = 1, the collocation method for (4.1) with (4.2) is
⎧⎪⎨
⎪⎩

Find uN ∈ PN such that

− ε u′′
N(xi)+ p(xi)u

′
N(xi)+ q(xi)uN(xi) = F(xi), 1 ≤ i ≤ N − 1,

a−uN(−1)+ b−u′
N(−1) = c−, a+uN(1)+ b+u′

N(1) = c+.

(4.42)

Let
{

h j
}

be the Lagrange basis polynomials associated with {x j}N
j=0, and let D =(

dk j := h′j(xk)
)

k, j=0,1,...,N . Writing w j = uN(x j) and uN(x) =∑N
j=0 wjh j(x), we have

uN(xk) =
N

∑
j=0

wjh j(xk) = wk,

u′
N(xk) =

N

∑
j=0

wjh
′
j(xk) =

N

∑
j=0

dk jw j

=
N−1

∑
j=1

dk jw j + dk0w0 + dkNwN ,

u′′
N(xk) =

N

∑
j=0

wjh
′′
j (xk) =

N

∑
j=0

(
D2)

k jw j

=
N−1

∑
j=1

(
D2)

k jw j +
(
D2)

k0w0 +
(
D2)

kNwN .
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Substituting the above into (4.42) leads to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N

∑
j=0

[
−ε
(
D2)

i j + p(xi)di j + q(xi)δi j

]
wj = F(xi), i = 1,2, . . . ,N − 1,

a−w0 + b−
N

∑
j=0

d0 jw j = c−, a+wN + b+
N

∑
j=0

dN jwj = c+.

(4.43)

Let us denote

ai j =−ε
(
D2)

i j + p(xi)di j + q(xi)δi j, 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N,

a0 j = a−δ0 j + b−d0 j, aN j = a+δN j + b+dN j , 0 ≤ j ≤ N,

b =
(
c−,F(x1),F(x2), . . . ,F(xN−1),c+

)T
,

w =
(
w0,w1, . . . ,wN

)T
, A = (ai j)0≤i, j≤N .

(4.44)

Then, the linear system (4.43) reduces to

Aw = b. (4.45)

Remark 4.7. Notice that the above formulation is valid for any set of collocation
points. However, the choice of collocation points is essential for the stability, con-
vergence and efficiency of the collocation method. For two-point boundary value
problems, the Gauss-Lobatto points are commonly used. Due to the global nature
of the Lagrange basis polynomials, the system matrix A in (4.45) is always full and
ill-conditioned, even for problems with constant coefficients.

Remark 4.8. For the case of homogeneous Dirichlet boundary conditions, i.e.,
u(±1) = 0, the collocation method (4.42) with {x j} being the Legendre-Gauss-
Lobatto points, as observed in Remark 4.5, is equivalent to the Galerkin method
with numerical integration (4.35).

It is interesting to note that in the case of Dirichlet boundary conditions, after
eliminating w0 and wN from (4.37) and (4.45), the reduced (N − 1)× (N − 1)
matrices B and A are related by B = WA, where W is the diagonal matrix
W = diag(ω1,ω2, . . . ,ωN−1). Furthermore, the condition number of A behaves
like O(N4) (cf. Orszag (1980)), while that of B behaves like O(N3) (cf. Bernardi
and Maday (1992a)).

Remark 4.9. If the bilinear form B(·, ·) in (4.9) is self-adjoint, then the matrix B in
(4.37) from the Galerkin method with numerical integration is symmetric. However,
the matrix A in (4.45) from the collocation method is always non-symmetric.
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4.3.1 Galerkin Reformulation

We show below that in the case of homogeneous Dirichlet boundary conditions, the
collocation method (4.42) with {x j} being the Jacobi-Gauss-Lobatto points, can be
reformulated as a Galerkin method with numerical integration.

Lemma 4.5. Let ω = (1 + x)α (1 − x)β be the Jacobi weight function with
α,β >−1, {x j}N

j=0 be the Jacobi-Gauss-Lobatto points, and 〈·, ·〉N,ω be the discrete
inner product associated with the Jacobi-Gauss-Lobatto quadrature (cf. Theorem
3.27). Then (4.42) with b± = c± = 0 is equivalent to

⎧⎪⎨
⎪⎩

Find uN ∈ P0
N = PN ∩H1

0 (I) such that

ε 〈u′
N ,ω

−1(vNω)′〉N,ω + 〈p(x)u′
N ,vN〉N,ω

+ 〈q(x)uN ,vN〉N,ω = 〈F,vN〉N,ω , ∀vN ∈ P0
N.

(4.46)

Proof. By a direct computation, we find that

ω−1(vNω)′ = ω−1(v′Nω + vNω ′) = v′N − (α(1+ x)−β (1− x)
) vN

1− x2 .

Since vN(±1) = 0 and vN ∈ PN , we derive that ω−1(vNω)′ ∈ PN−1. Therefore,
thanks to (3.59), we find that

〈u′
N ,ω

−1(vNω)′〉N,ω = (u′
N ,ω

−1(vNω)′)ω

=−(u′′
N ,vN)ω =−〈u′′

N ,vN〉N,ω .
(4.47)

Therefore, the formulation (4.46) is equivalent to

〈−εu′′N + p(x)u′N + q(x)uN,vN〉N,ω = 〈F,vN〉N,ω , ∀vN ∈ P0
N. (4.48)

Notice that
P0

N = span
{

h1(x),h2(x), . . . ,hN−1(x)
}
,

Taking vN = hi for 1 ≤ i ≤ N − 1 in (4.48) leads to (4.42) with b± = c± = 0.
On the other hand, taking the discrete inner product of (4.42) with hk(x) for

1 ≤ k ≤ N − 1, we find that the solution uN of (4.42) with b± = c± = 0 verifies
(4.46). ��

This lemma indicates that for (4.4) with Dirichlet boundary conditions, the
Jacobi-collocation method, including the Legendre- and Chebyshev-collocation
methods, can be reformulated as a Galerkin method with numerical integration.
An obvious advantage of this reformulation is that error estimates for the Jacobi-
collocation method can be carried out in the same way as the Jacobi-Galerkin
method.



4.4 Preconditioned Iterative Methods 157

4.3.2 Petrov-Galerkin Reformulation

Except for the Dirichlet case, the collocation method (4.42) can not be reformulated
as a Galerkin method with numerical integration. However, it can be reformulated as
a Petrov-Galerkin method for which the trial functions and test functions are taken
from different spaces.

Lemma 4.6. Let ω = (1 + x)α (1 − x)β be the Jacobi weight function with
α,β >−1, {x j}N

j=0 be the set of Jacobi-Gauss-Lobatto points, and 〈·, ·〉N,ω be
the discrete inner product associated with the Jacobi-Gauss-Lobatto quadrature
(cf. Theorem 3.27). Then, (4.42) with c± = 0 is equivalent to the following Petrov-
Galerkin method:

⎧⎪⎪⎨
⎪⎪⎩

Find uN ∈ XN such that

ε
〈
u′

N ,ω
−1(vNω)′

〉
N,ω +

〈
p(x)u′

N ,vN
〉

N,ω

+
〈
q(x)uN ,vN

〉
N,ω =

〈
F,vN

〉
N,ω , ∀vN ∈ P0

N ,

(4.49)

where XN is defined in (4.14).

Proof. By definition, the solution uN of (4.42) with c± = 0 is in XN . The property
(4.47) still holds for uN ∈ XN and vN ∈ P0

N , so does (4.48). Taking the discrete inner
product of (4.42) with hk(x) for k = 1,2, . . . ,N − 1, we find that the solution uN of
(4.42) with c± = 0 verifies (4.49). Conversely, taking vN = hi for 1 ≤ i ≤ N − 1 in
(4.48) gives (4.42) with c± = 0. ��
This reformulation will allow us to obtain error estimates for the collocation method
(4.42) by using the standard techniques developed for Petrov-Galerkin methods.

4.4 Preconditioned Iterative Methods

As noted in the previous two sections, there is no suitable direct spectral solver for
equations with general variable coefficients. Hence, an appropriate iterative method
should be used. Since the bilinear form associated with (4.4)–(4.5) is generally not
symmetric nor necessarily positive definite, it is in general not advisable to apply an
iterative method directly, unless the equation is diffusion dominant, i.e., ε is suffi-
ciently large, when compared with p(x). Instead, it is preferable to transform (4.4)-
(4.5) into an equivalent equation whose bilinear form becomes positive definite.
Indeed, multiplying (4.4) by the function

a(x) = exp

(
− 1

ε

∫
p(x)dx

)
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and using −ε a′(x) = a(x)p(x), we find that (4.4) is equivalent to

−(a(x)u′(x))′+ b(x)u(x) = g(x), (4.50)

where b(x) = a(x)q(x)/ε and g(x) = a(x) f (x)/ε . Hereafter, we assume that there
are three constants c1, c2 and c3 such that

0 < c1 ≤ a(x)≤ c2, 0 ≤ b(x)≤ c3, ∀x ∈ [−1,1]. (4.51)

We denote

B(u,v) :=
∫ 1

−1
a(x)u′v′dx+ a(1)h+u(1)v(1)− a(−1)h−u(−1)v(−1)

+

∫ 1

−1
b(x)uvdx, ∀u,v ∈ H1

� (I),
(4.52)

where H1� (I) and h± are defined in (4.6) and (4.7), respectively. The weak formula-
tion associated with (4.50) with general boundary conditions (4.5) is

{
Find u ∈ H1

� (I) such that

B(u,v) = (g,v), ∀v ∈ H1
� (I).

(4.53)

Hence, under the conditions (4.3) and (4.51), we find that B(u,v) is self-adjoint,
continuous and coercive in H1� (I) so that the problem (4.53) admits a unique so-
lution. Instead of dealing with the original equation (4.4)–(4.5), we shall consider
below the equivalent problem (4.53) whose bilinear form is symmetric and positive
definite.

4.4.1 Preconditioning in the Modal Basis

Let pk be the Legendre or Chebyshev polynomial of degree k, XN be defined in
(4.14), and

{
φk = pk + ak pk+1 + bk pk+2

}N−2
k=0 be the basis functions of XN con-

structed in Sect. 4.1. Let IN be the interpolation operator based on the Legendre or
Chebyshev Gauss-Lobatto points {x j}N

j=0, and 〈·, ·〉N,ω (with ω = 1,(1− x2)−1/2)
be the associated discrete inner product. We consider the following Galerkin method
with numerical integration for (4.53):

⎧⎪⎨
⎪⎩

Find uN =
N−2

∑
k=0

ûkφk ∈ XN such that

BN,ω(uN ,φ j) = 〈g,φ j〉N,ω , j = 0,1, . . . ,N − 2,

(4.54)

where
BN,ω(uN ,vN) :=−〈[IN(au′

N)]
′,vN

〉
N,ω +

〈
buN ,vN

〉
N,ω . (4.55)
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Let us denote

b jk = BN,ω (φk,φ j), B =
(
b jk
)

j,k=0,1,...,N−2;

g j = 〈g,φ j〉N,ω , g =
(
g0,g1, . . . ,gN−2

)T
;

u =
(
û0, û1, . . . , ûN−2

)T
.

Then, (4.54) is equivalent to the following linear system:

Bu = g. (4.56)

We observe that for uN = ∑N−2
k=0 ûkφk ∈ XN and vN = ∑N−2

k=0 v̂kφk ∈ XN , we have

〈Bu,v〉l2 = BN,ω (uN ,vN), (4.57)

where 〈a,b〉l2 = ∑N−2
j=0 a jb j for any vectors a,b ∈ R

N−1 with components {a j,b j}.
It is easy to see that in general B is a full matrix, so we shall resort to an itera-
tive method for which an efficient evaluation of the matrix–vector product Bu is
essential.

We now describe how to evaluate

(Bu) j =−〈[IN(au′
N)]

′,φ j
〉

N,ω +
〈
buN ,φ j

〉
N,ω , j = 0,1, . . . ,N − 2

without explicitly forming the matrix B. Given uN = ∑N−2
k=0 ûkφk, we compute

“−〈[IN(au′
N)]

′,φ j
〉

N,ω ” as follows:

1. Using (3.206) or (3.234) to determine {ũ(1)k } from

u ′
N(x) =

N−2

∑
k=0

ûkφ ′
k(x) =

N

∑
k=0

ũ(1)k pk(x);

2. (Forward discrete transform) Compute

u′
N(x j) =

N

∑
k=0

ũ(1)k pk(x j), j = 0,1, . . . ,N;

3. (Backward discrete transform) Determine {w̃k} from

IN(au′
N)(x j) =

N

∑
k=0

w̃k pk(x j), j = 0,1, . . . ,N;

4. Using (3.206) or (3.234) to determine {w̃(1)
k } from

[
IN(au′

N)
]′
(x) =

N

∑
k=0

w̃k p′k(x) =
N

∑
k=0

w̃(1)
k pk(x);



160 4 Second-Order Two-Point Boundary Value Problems

5. For j = 0,1, . . . ,N − 2, compute

−〈[IN(au′
N)]

′,φ j
〉

N,ω =−
N

∑
k=0

w̃(1)
k

〈
pk,φ j

〉
N,ω .

Note that the main cost in the above procedure is the two discrete transforms in Steps
2 and 3. The cost for each of Steps 1, 4 and 5 is O(N) flops. The term

〈
buN ,φ j

〉
N,ω

can also be computed similarly as follows:

1. Compute

uN(x j) =
N

∑
k=0

ûkφk(x j), j = 0,1, . . . ,N;

2. Determine {w̃k} from

IN(buN)(x j) =
N

∑
k=0

w̃k pk(x j), j = 0,1, . . . ,N;

3. Compute
−〈buN ,φ j

〉
N,ω , j = 0,1, . . . ,N − 2.

Hence, if b is not a constant, two additional discrete transforms are needed. In sum-
mary, the total cost for evaluate Bu is dominated by four (only two if b is a constant)
discrete transforms, and is O(N2) (resp. O(N log2 N)) flops in the Legendre (resp.
Chebyshev) case.

4.4.1.1 Legendre Case

Thanks to (3.59), we have for any uN ,vN ∈ XN ,

−〈[IN(au′
N)]

′,vN
〉

N =〈au′
N ,v

′
N〉N + a(1)h+uN(1)vN(1)

− a(−1)h−uN(−1)vN(−1),
(4.58)

where h± are defined in (4.7). Hence,

BN(uN ,vN) = BN(vN,uN), ∀uN ,vN ∈ XN .

Consequently, B is symmetric.
To simplify the presentation, we shall assume that b+b− = 0 so that the Poincaré

inequality is applicable to uN .
Under the conditions (4.3) and (4.51), we have

BN(uN,uN) =
〈
au′

N ,u
′
N

〉
N + a(1)h+u2

N(1)− a(−1)h−u2
N(−1)

+ 〈buN,uN〉N ≥ c1
〈
u′

N ,u
′
N

〉
N = c1

(
u′

N ,u
′
N

)
.

(4.59)
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On the other hand, using the Poincaré inequality (B.21) and the Sobolev inequality
(B.33), it is easy to show that there exists c4 > 0 such that

BN(uN ,uN)≤ c4(u
′
N ,u

′
N).

Hence, let si j = (φ ′
j,φ ′

i ) and S = (si j)i, j=0,1,...,N−2. We have

0 < c1 ≤ 〈Bu,u〉l2

〈Su,u〉l2
=

BN(uN ,uN)

(u′
N ,u

′
N)

≤ c4. (4.60)

Since S−1B is symmetric with respect to the inner product 〈u,v〉S := 〈Su,v〉l2 , (4.60)
implies immediately

cond(S−1B)≤ c4

c1
. (4.61)

In other words, S−1 is an optimal preconditioner for B in the sense that the conver-
gence rate of the conjugate gradient method applied to the preconditioned system

S−1Bu = S−1g (4.62)

will be independent of N. We recall from Sect. 4.1 that S is a diagonal matrix so
the cost of applying S−1 is negligible. Hence, the main cost in each iteration is the
evaluation of Bu for given u.

Remark 4.10. In the case of Dirichlet boundary conditions, we have φk = Lk −Lk+2

which, together with (3.176a), implies that φ ′
k = −(2k + 3)Lk+1. Therefore, from

u = ∑N−2
k=0 ûkφk, we can obtain the derivative u′ = −∑N−2

k=0 (2k + 3)ûkLk+1 in the
modal basis without using (3.206).

Remark 4.11. If we use the normalized basis functions

φ̃k :=
(−bk(4k+ 6)

)−1/2φk with (φ̃ ′
j, φ̃

′
i ) = δi j,

the condition number of the corresponding matrix B with bi j = BN(φ̃ j, φ̃i) is uni-
formly bounded. Hence, we can apply the conjugate gradient method directly to this
system without preconditioning.

Remark 4.12. If c3 in (4.51) is large, the condition number in (4.61) will be large
even though independent of N. In this case, one may improve the situation by re-
placing the bilinear form (u ′

N ,v
′
N) with â(u′

N ,v
′
N)+ b̂(uN ,vN) where

â =
1
2

(
max
|x|≤1

a(x)+ min
|x|≤1

a(x)
)
, b̂ =

1
2

(
max
|x|≤1

b(x)+ min
|x|≤1

b(x)
)
.

The matrix corresponding to this new bilinear form is âS+ b̂M which is positive
definite and penta-diagonal (cf. Sect. 4.1).
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4.4.1.2 Chebyshev Case

In the Chebyshev case, an appropriate preconditioner for the inner product
BN,ω (uN ,vN) in XN × XN is

(
u′

N,ω−1(vNω)′
)

ω for which the associated linear
system can be solved in O(N) flops as shown in Sect. 4.1. Ample numerical re-
sults indicate that the convergence rate of a conjugate gradient type method for
non-symmetric systems such as Conjugate Gradient Square (CGS) or BICGStab
methods (see Appendix C) is similar to that in the Legendre case.

The advantage of using the Chebyshev polynomials is of course that the evalua-
tion of Bu can be accelerated by FFT in O(N log2 N) operations, instead of O(N2)
in the Legendre case.

A few remarks on the use of modal basis functions are in order.

• For problems with constant coefficients, using appropriate modal basis functions
leads to sparse matrices.

• For problems with variable coefficients, one can use a suitable problem with
constant coefficients as an effective preconditioner.

• With the modal basis, the choice of collocation points (as long as they are Gauss-
type quadrature points) is not important, as it is merely used to define an approx-
imation IN f to f . Therefore, we can use the same set of Gauss-Lobatto points
for almost any problem. On the other hand, with the nodal basis, the choice of
quadrature rules/collocation points plays an important role and should be made
in accordance with the underlying differential equations and boundary conditions
(see Sect. 6.4), particularly for high-order equations and mixed type boundary
conditions.

We emphasize that the preconditioning in the modal basis will be less effective if
the coefficients a(x) and b(x) have large variations, since the variation of the coeffi-
cients is not taken into account in the construction of the preconditioner. However,
preconditioners which are robust to the variation in coefficients can be constructed
in the nodal basis as shown below.

4.4.2 Preconditioning in the Nodal Basis

For problems with large variations in coefficients a(x) and b(x), it is preferable to
construct preconditioners in the physical space, i.e., in the nodal basis. We shall
consider two approaches: (a) a finite difference preconditioner (cf. Orszag (1980))
for the collocation method for (4.50) with general boundary conditions (4.5); and
(b) a finite element preconditioner (cf. Canuto and Quarteroni (1985), Deville and
Mund (1985)) for the Galerkin method with numerical integration for (4.53).
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4.4.2.1 Finite Difference Preconditioning

The collocation method in the strong form for (4.50) with (4.5) is
⎧⎪⎨
⎪⎩

Find uN ∈ PN such that

− (au′
N)

′(x j)+ b(x j)uN(x j) = g(x j), 1 ≤ j ≤ N − 1,

a−uN(−1)+ b−u′
N(−1) = 0, a+uN(1)+ b+u′

N(1) = 0.

(4.63)

As in Sect. 4.3, (4.63) can be rewritten as an (N + 1)× (N+ 1) linear system

Aw = b, (4.64)

where the unknowns are {wj := uN(x j)}N
j=0, and

w =
(
w0,w1, . . . ,wN

)T
, b =

(
0,g(x1),g(x2), . . . ,g(xN−1),0

)T
. (4.65)

As suggested by Orszag (1980), we can build a preconditioner for A by using a
finite difference approximation to (4.50) with (4.5). Let us denote

hk = xk − xk−1, h̃k = (xk+1 − xk−1)/2, ak+1/2 = a
(
(xk+1 + xk)/2

)
. (4.66)

Then, the second-order finite difference scheme for (4.50) with (4.5) with first-order
one-sided difference at the boundaries reads:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− ai−1/2

h̃ihi
wi−1 +

(
ai−1/2

h̃ihi
+

ai+1/2

h̃ihi+1

)
wi −

ai+1/2

h̃ihi+1
wi+1

+ b(xi)wi = g(xi), 1 ≤ i ≤ N − 1,

a−w0 + b−
w1 −w0

h1
= 0, a+wN + b+

wN −wN−1

hN
= 0.

(4.67)

We can rewrite (4.67) in the linear system:

A f dw = b, (4.68)

where Af d is a non-symmetric tridiagonal matrix.
It has been shown (cf. Orszag (1980), Canuto et al. (1987), Kim and Parter

(1997)) that in the Dirichlet case, A−1
f d is an optimal preconditioner for A, but

cond(A−1
f d A) deteriorates with other types of boundary conditions.

Remark 4.13. The above discussion is valid for both the Legendre and Chebyshev
collocation methods.
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4.4.2.2 Finite Element Preconditioning

A more robust preconditioner can be constructed by using a finite element approxi-
mation to (4.53).

Let us denote

Xh =
{

u ∈ H1
� (I) : u|[xi+1,xi ] ∈ P1, i = 0,1, . . . ,N − 1

}
. (4.69)

Then, the piecewise linear finite element approximation to (4.53) is
{

Find uh ∈ Xh such that

Bh(uh,vh) = 〈g,vh〉h, ∀vh ∈ Xh,
(4.70)

where

Bh(uh,vh) :=
〈
au′h,v

′
h

〉
h + a(1)h+uh(1)vh(1)

− a(−1)h−uh(−1)vh(−1)+
〈
buh,vh

〉
h,

and 〈·, ·〉h is an appropriate discrete inner product associated with the piecewise
linear finite element approximation.

To fix the idea, we assume b± �= 0. Let us denote for k = 1,2, . . . ,N − 1,

ĥk(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x− xk+1

xk − xk+1
, x ∈ [xk,xk+1],

xk−1 − x
xk−1 − xk

, x ∈ [xk−1,xk],

0, otherwise,

(4.71)

and

ĥ0(x) =

⎧⎨
⎩

x− x1

x0 − x1
, x ∈ [x0,x1],

0, otherwise,

ĥN(x) =

⎧⎨
⎩

xN−1 − x
xN−1 − xN

, x ∈ [xN−1,xN ],

0, otherwise.

(4.72)

Then

Xh = span
{

ĥ0, ĥ1, . . . , ĥN
}
. (4.73)
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Setting

uh(x) =
N

∑
j=0

uh(x j)ĥ j(x), w = (uh(x0),uh(x1), . . . ,uh(xN))
T ;

bk j = Bh(ĥ j, ĥk), B f e = (bk j)k, j=0,1,...,N ;

mk j = 〈ĥ j, ĥk〉h, Mf e = (mk j)k, j=0,1,...,N ;

g = (g(x0),g(x1), . . . ,g(xN))
T ,

(4.74)

we can reduce (4.70) to the following linear system

Bf ew = Mf eg or M−1
f e B f ew = g. (4.75)

Since both (4.37) and (4.75) provide approximate solutions to (4.53), it is expected
that (M−1

f e B f e)
−1 (resp. B−1

f e ) is a good preconditioner for W−1B (resp. B). The op-

timality of (M−1
f e B f e)

−1 as a preconditioner for W−1B has been shown in Franken

et al. (1990), while the optimality of B−1
f e as a preconditioner for B has been shown

in Parter and Rothman (1995).

4.5 Error Estimates

In this section, we perform error analysis for several typical spectral approximation
schemes proposed in the previous sections and a spectral-Galerkin method for the
1-D Helmholtz equation.

4.5.1 Legendre-Galerkin Method

We first consider the Legendre-Galerkin method (4.18) (with fN = IN f and ω ≡ 1)
for (4.10) with homogeneous Dirichlet boundary conditions, i.e., b± = 0. In this
case, the error analysis is standard. Indeed, applying Theorem 1.3 with X = H1

0 (I),
we find immediately

‖u− uN‖1 � inf
vN∈XN

‖u− vN‖1 + ‖ f − IN f‖.

Applying Theorem 3.38 with α = β = 0 and Theorem 3.44 to the above leads to the
following estimate.

Theorem 4.1. Let u and uN be the solutions of (4.10) with b± = 0 and (4.18), re-
spectively. If u ∈ H1

0 (I),∂xu ∈ Bm−1
0,0 (I) and f ∈ Bk

−1,−1(I) with 1 ≤ m ≤ N + 1 and
1 ≤ k ≤ N + 1, we have
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‖u− uN‖1 ≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m

x u‖ωm−1,m−1

+ c

√
(N − k+ 1)!

N!
(N + k)−(k+1)/2‖∂ k

x f‖ωk−1,k−1 ,

(4.76)

where c is a positive constant independent of m,k,N, f and u.

Remark 4.14. Recall from Remark 3.7 that the factor

N(1−m)/2 ≤
√

(N −m+ 1)!
N!

≤ (N −m+ 2)(1−m)/2, (4.77)

and it is of order O(N(1−m)/2) for fixed m.

We now consider the Legendre-Galerkin method (4.18) (with fN = IN f and
ω = 1) with the general boundary conditions (4.5). To handle the boundary condi-
tions involving derivatives, we need to make use of the H2

0 -orthogonal projection:
Π 2,0

N : H2
0 (I)→ PN ∩H2

0 (I), defined by

(
∂ 2

x (Π
2,0
N u− u),∂ 2

x vN
)
= 0, ∀vN ∈ PN ∩H2

0 (I), (4.78)

whose approximation property is stated in the following lemma.

Lemma 4.7. If u ∈ H2
0 (I) and ∂ 2

x u ∈ Bm−2
0,0 (I) with 2 ≤ m ≤ N + 1, then we have

‖Π 2,0
N u− u‖μ ≤ c

√
(N −m+ 1)!

N!
(N +m)μ−(1+m)/2‖∂ m

x u‖ωm−2,m−2 , (4.79)

for 0 ≤ μ ≤ 2, where c is a positive constant independent of m,N and u.

Proof. We first prove the case: μ = 2. Let Π1,0
N be the H1

0 -orthogonal projection
operator defined by (3.290) with α = β = 0, and set

φ(x) =
∫ x

−1

(
Π1,0

N−1∂yu(y)− 3
4
(1− y2)φ ∗

)
dy,

where the constant

φ ∗ =
∫ 1

−1
Π1,0

N−1∂xu(x)dx.

One verifies readily that φ ∈ PN and φ(±1) = φ ′(±1) = 0. Moreover, thanks to the
fact u(±1) = 0, we derive from Theorem 3.39 with α = β = 0 that

|φ ∗| ≤
∫ 1

−1
|Π1,0

N−1∂xu(x)− ∂xu(x)|dx ≤
√

2‖Π 1,0
N−1∂xu− ∂xu‖

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m

x u‖ωm−2,m−2,
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and

‖∂ 2
x (Π

2,0
N u− u)‖

(4.78)
≤ ‖∂ 2

x (φ − u)‖ ≤ ‖∂x(Π
1,0
N−1∂xu− ∂xu)‖+ c|φ∗|

≤ c

√
(N −m+ 1)!

N!
(N +m)(3−m)/2‖∂ m

x u‖ωm−2,m−2,

which, together with the Poincaré inequality (B.21), yields the desired result with
μ = 2.

We now use a duality argument to prove (4.79) with μ = 0. Given f ∈ L2(I), we
consider the following auxiliary problem:{

Find w ∈ H2
0 (I) such that

B(w,z) := (∂ 2
x w,∂ 2

x z) = ( f ,z), ∀z ∈ H2
0 (I),

(4.80)

which admits a unique solution in H2
0 (I) satisfying

‖w‖4 ≤ c‖ f‖.

Hence, taking z = Π2,0
N u− u in (4.80), we have from the shown case (i.e., (4.79)

with μ = 2) that

|( f ,Π 2,0
N u− u)|= |B(Π 2,0

N u− u,Π2,0
N w−w)|

≤ ‖∂ 2
x (Π

2,0
N u− u)‖‖∂ 2

x (Π
2,0
N w−w)‖

≤ c

√
(N −m+ 1)!

N!
(N +m)−(1+m)/2‖∂ m

x u‖ωm−2,m−2‖∂ 4
x w‖ω2,2

≤ c

√
(N −m+ 1)!

N!
(N +m)−(1+m)/2‖∂ m

x u‖ωm−2,m−2‖ f‖.

Consequently,

‖Π2,0
N u− u‖= sup

0 �= f∈L2(I)

|( f ,Π 2,0
N u− u)|
‖ f‖

≤ c

√
(N −m+ 1)!

N!
(N +m)−(1+m)/2‖∂ m

x u‖ωm−2,m−2 .

Finally, we prove the cases 0 < μ < 2 by using space interpolation. Let
θ = 1−μ/2. Since Hμ(I) = [H2(I),L2(I)]θ , we have from the Gagliardo-Nirenberg
inequality (see Theorem B.7) and (4.79) with μ = 0,2 that

‖Π2,0
N u− u‖μ ≤ ‖Π2,0

N u− u‖1−θ
2 ‖Π2,0

N u− u‖θ

≤ c

√
(N −m+ 1)!

N!
(N +m)μ−(1+m)/2‖∂ m

x u‖ωm−2,m−2 .

This ends the proof. ��
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Remark 4.15. We shall provide in Chap. 5 a much simpler proof of the above esti-
mates by using the notion of generalized Jacobi polynomials.

With the aid of the above lemma, we can derive the following result, which will
be useful for the convergence analysis.

Theorem 4.2. There exists a mapping Π2
N : H2(I)→ PN such that

(Π 2
Nu)(±1) = u(±1), (Π2

Nu)′(±1) = u′(±1). (4.81)

Moreover, if u ∈ H2(I) and ∂ 2
x u ∈ Bm−2

0,0 (I) with 2 ≤ m ≤ N +1, then for 0 ≤ μ ≤ 2,
we have

‖Π2
Nu− u‖μ

≤ c

√
(N −m+ 1)!

N!
(N +m)μ−(1+m)/2(‖u‖2 + ‖∂ m

x u‖ωm−2,m−2

)
,

(4.82)

where c is a positive constant independent of m,N and u.

Proof. Recall the Hermite interpolation basis polynomials associated with two
points x0 =−1 and x1 = 1:

H0(x) =
(2+ x)(1− x)2

4
, H1(x) = H0(−x),

Ĥ0(x) =
(1+ x)(1− x)2

4
, Ĥ1(x) =−Ĥ0(−x).

Setting

Φ(x) = u(−1)H0(x)+ u(1)H1(x)+ u′(−1)Ĥ0(x)+ u′(1)Ĥ1(x) ∈ P3,

we find that Φ(±1) = u(±1) and Φ ′(±1) = u′(±1). For any u ∈ H2(I), we have
u∗ := u−Φ ∈ H2

0 (I). Defining

Π2
Nu = Π2,0

N u∗+Φ,

we find that Π2
Nu satisfies (4.81), and

u−Π2
Nu = u∗ −Π2,0

N u∗.

Therefore, by Lemma 4.7,

‖u−Π2
Nu‖μ = ‖u∗−Π2,0

N u∗‖μ

≤ c

√
(N −m+ 1)!

N!
(N +m)μ−(1+m)/2‖∂ m

x u∗‖ωm−2,m−2 .
(4.83)
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It is clear that for m ≥ 4, we have ∂ m
x u∗ = ∂ m

x u. For m = 2,3, we obtain from the
Sobolev inequality (B.33) that

max
|x|≤1

|∂ m
x Φ(x)| ≤ c‖u‖2 ⇒ ‖∂ m

x u∗‖ωm−2,m−2 ≤ c
(‖u‖2 + ‖∂ m

x u‖ωm−2,m−2

)
.

The estimate (4.82) follows. ��
With the above preparations, we are ready to carry out error analysis of the

Legendre-Galerkin approximation of (4.10) with general boundary conditions (4.5).

Theorem 4.3. Let u and uN be the solutions of (4.10) and (4.18), respectively. If
u∈ H2(I), ∂ 2

x u∈ Bm−2
0,0 (I) and f ∈ Bk

−1,−1(I) with 2≤m ≤N+1 and 1≤ k ≤N+1,
we have

‖u− uN‖1 ≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2(‖u‖2+ ‖∂ m

x u‖ωm−2,m−2

)

+ c

√
(N − k+ 1)!

N!
(N + k)−(k+1)/2‖∂ k

x f‖ωk−1,k−1 ,

(4.84)

where c is a positive constant independent of m,k,N, f and u.

Proof. We derive from (4.10) and (4.18) that

A(u− uN ,vN) := α(u− uN ,vN)− ((u− uN)
′′,vN) = ( f − IN f ,vN), ∀vN ∈ XN .

Under the assumption (4.3), one verifies the continuity and coercivity:

A(v,w)≤ c1‖v‖1‖w‖1, ∀v,w ∈ H2(I)∩H1
� (I),

A(v,v)≥ c2|v|21, ∀v ∈ H2(I)∩H1
� (I).

(4.85)

Applying Theorem 1.3 with X = H2(I)∩H1� (I), and using Theorems 3.44 and 4.2,
we find

‖u− uN‖1 ≤ c
(‖u−Π2

Nu‖1 + ‖IN f − f‖)

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2(‖u‖2 + ‖∂ m

x u‖ωm−2,m−2

)

+ c

√
(N − k+ 1)!

N!
(N + k)−(k+1)/2‖∂ k

x f‖ωk−1,k−1 .

This completes the proof. ��
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4.5.2 Chebyshev-Collocation Method

We consider in this section the Chebyshev-collocation method for the model
equation

γu− uxx = f , in (−1,1), γ > 0; u(±1) = 0. (4.86)

Let {x j}N
j=0 be the Chebyshev-Gauss-Lobatto points. As shown previously, the col-

location approximation is
{

Find uN ∈ P0
N such that

γuN(x j)− u′′N(x j) = f (x j), 1 ≤ j ≤ N − 1.
(4.87)

Let ω =(1−x2)−1/2 be the Chebyshev weight function, and define the bilinear form
as in (3.289):

aω(u,v) :=
(
ux,ω−1(vω)x

)
ω =

∫ 1

−1
ux(vω)x dx. (4.88)

We find from Lemma 3.5 (with α = β =−1/2) that aω(·, ·) is continuous and coer-
cive in H1

0,ω(I)×H1
0,ω (I). As a special case of Lemma 4.5, we can reformulate the

Chebyshev-collocation scheme (4.87) as
{

Find uN ∈ P0
N such that

γ〈uN ,vN〉N,ω + aω(uN ,vN) = 〈 f ,vN〉N,ω , ∀vN ∈ P0
N .

(4.89)

Then its convergence can be analyzed by using Theorem 1.3 and a standard
argument.

Theorem 4.4. If u ∈ H1
0,ω(I),∂xu ∈ Bm−1

−1/2,−1/2(I) and f ∈ Bk
−1/2,−1/2(I) with 1 ≤

m,k ≤ N + 1, then we have

‖u− uN‖1,ω ≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m

x u‖ωm−3/2,m−3/2

+ c

√
(N − k+ 1)!

N!
N−(1+k)/2‖∂ k

x f‖ωk−1/2,k−1/2 ,

(4.90)

where c is a positive constant independent of m,k,N, f and u.

Proof. Let Π 1,0
N,ω be the orthogonal projection operator defined in (3.290) with α =

β =−1/2. Applying Theorem 1.3 with X = H1
0,ω(I) leads to

‖u− uN‖1,ω ≤ c

(
‖u−Π1,0

N,ω u‖1,ω + sup
0 �=vN∈P0

N

|(Π 1,0
N,ω u,vN)ω −〈Π1,0

N,ω u,vN〉N,ω |
‖vN‖1,ω

+ sup
0 �=vN∈P0

N

|( f ,vN)ω −〈 f ,vN〉N,ω |
‖vN‖1,ω

)
.
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Therefore, it is necessary to estimate the error between the discrete and inner prod-
ucts. For this purpose, let πc

N be the L2
ω -orthogonal projection as defined in (3.249),

and Ic
N be the Chebyshev-Gauss-Lobatto interpolation operator. Then we derive

from (3.218) and Theorems 3.35 and 3.43 with α = β =−1/2 that

|( f ,vN)ω −〈 f ,vN〉N,ω | ≤ |( f −πc
N−1 f ,vN)ω −〈Ic

N f −πc
N−1 f ,vN〉N,ω |

(3.220)
≤ c

(‖ f −πc
N−1 f‖ω + ‖ f − Ic

N f‖ω
)‖vN‖ω

≤ c

√
(N − k+ 1)!

N!
N−(1+k)/2‖∂ k

x f‖ωk−1/2,k−1/2‖vN‖ω ,

(4.91)

and similarly,

|(Π 1,0
N,ω u,vN)ω −〈Π1,0

N,ω u,vN〉N,ω | ≤ c
(‖Π 1,0

N,ω u− u‖ω + ‖πc
N−1u− u‖ω

)‖vN‖ω .

Hence, the estimate (4.90) follows from Theorems 3.35 and 3.39. ��
Remark 4.16. As shown in (4.91), we have the following error estimate between
the continuous and discrete inner products relative to the Chebyshev-Gauss-Lobatto
setting: If u ∈ Bm

−1/2,−1/2(I) with 1 ≤ m ≤ N + 1, then for any φ ∈ PN , we have

|(u,φ)ω −〈u,φ〉N,ω |

≤ c

√
(N −m+ 1)!

N!
N−(1+m)/2‖∂ m

x u‖ωm−1/2,m−1/2‖φ‖ω ,
(4.92)

where c is a positive constant independent of m,N,φ and u. This result is quite
useful for error analysis of Chebyshev spectral methods.

4.5.3 Galerkin Method with Numerical Integration

We considered in previous two sections error analysis of problems with constant
coefficients. We now discuss the general variable coefficient problem (4.50) with
general boundary conditions (4.5), whose variational formulation is given by (4.52)–
(4.53). Correspondingly, the Legendre Galerkin method with numerical integration
is given by (4.54)–(4.55) with ω ≡ 1. For clarity of presentation, we recall the for-
mulation. Let

XN =
{

v ∈ PN : a±v(±1)+ b±v′(±1) = 0
}
. (4.93)

We look for uN ∈ XN such that

BN(uN ,vN) = 〈g,vN〉N , ∀vN ∈ XN , (4.94)
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where

BN(uN ,vN) =〈au′
N ,v

′
N〉N + 〈buN,vN〉N + a(1)h+uN(1)vN(1)

− a(−1)h−uN(−1)vN(−1),
(4.95)

with h± being defined in (4.7). Observe from (4.59) that for any uN ,vN ∈ XN ,

BN(uN ,uN)≥ c‖u′N‖2 + 〈buN,uN〉N , (4.96)

and ∣∣BN(uN ,vN)
∣∣ ≤ c‖uN‖1‖vN‖1. (4.97)

For simplicity, we assume b(x)≥ b0 > 0, if b± �= 0, so we have the coercivity:

BN(uN ,uN)≥ c‖uN‖2
1. (4.98)

As a preparation, we first obtain the following result. As its proof is very similar
to that of (4.92), we leave it as an exercise (see Problem 4.3).

Lemma 4.8. If u ∈ Bm
−1,−1(I) with 1 ≤ m ≤ N + 1, then for any φ ∈ PN ,

|(u,φ)−〈u,φ〉N | ≤ c

√
(N −m+ 1)!

N!
(N +m)−(m+1)/2‖∂ m

x u‖ωm−1,m−1‖φ‖, (4.99)

where c is a positive constant independent of m,N,φ and u.

The convergence of the scheme (4.94), under the aforementioned assumptions on
a±,b± and the variable coefficients a,b, is presented below.

Theorem 4.5. Let u and uN be the solutions of (4.52)–(4.53) and (4.94), respec-
tively. If

a,b,a′,b′ ∈ L∞(I), u ∈ H2(I), ∂ 2
x u ∈ Bm−2

0,0 (I),

∂x(au′) ∈ Bm−2
0,0 (I), ∂x(bu) ∈ Bm−1

0,0 (I), g ∈ Bk
−1,−1(I),

(4.100)

with 2 ≤ m ≤ N + 1 and 1 ≤ k ≤ N + 1, then

‖u− uN‖1

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2

(
‖u‖2 + ‖∂ m

x u‖ωm−2,m−2

+ ‖∂ m−1
x (au′)‖ωm−2,m−2 + ‖∂ m

x (bu)‖ωm−1,m−1

)

+ c

√
(N − k+ 1)!

N!
(N + k)−(k+1)/2‖∂ k

x g‖ωk−1,k−1,

(4.101)

where c is a positive constant only depending on the L∞-norms of a,b,a′ and b′.
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Proof. Let Π2
N be the same as in Theorem 4.2, and set φ = Π 2

Nu and eN = uN −φ .
Then by (4.53) and (4.94),

BN(eN ,eN) = BN(uN ,eN)−BN(φ ,eN)

= 〈g,eN〉N − (g,eN)+B(u,eN)−BN(φ ,eN).

Using Lemma 4.8 yields

|〈g,eN〉N − (g,eN)| ≤ c

√
(N − k+ 1)!

N!
(N + k)−(k+1)/2‖∂ k

x g‖ωk−1,k−1‖eN‖. (4.102)

By the definitions (4.52) and (4.95),
∣∣B(u,eN)−BN(φ ,eN)

∣∣≤ ∣∣(au′ − IN(aφ ′),e′N
)∣∣+ |(bu,eN)−〈bφ ,eN〉N |

:= Ta +Tb,

where we used the exactness (3.189) and the property (4.81) to eliminate the bound-
ary values. Using (3.191) and Theorem 3.44, we find that

Ta ≤
∣∣(au′ − IN(au′),e′N

)∣∣+ ∣∣(IN(au′ − aφ ′),e′N
)∣∣

≤ (‖au′ − IN(au′)‖+ ‖IN(au′ − aφ ′)‖)‖e′N‖

≤ c
(√(N −m+ 1)!

N!
(N +m)(1−m)/2‖∂ m−1

x (au′)‖ωm−2,m−2

+ ‖IN(au′ − aφ ′)‖
)
‖e′N‖.

Moreover, by (3.191) and Lemma 4.8,

Tb ≤
∣∣(bu,eN

)−〈bu,eN〉N
∣∣+ ∣∣〈bu− bφ ,eN〉N

∣∣
≤ c
(√ (N −m+ 1)!

N!
(N +m)−(m+1)/2‖∂ m

x (bu)‖ωm−1,m−1‖eN‖

+ ‖IN(bu− bφ)‖N‖eN‖N

)

≤ c
(√ (N −m+ 1)!

N!
(N +m)−(m+1)/2‖∂ m

x (bu)‖ωm−1,m−1

+ ‖IN(bu− bφ)‖
)
‖eN‖.

Thanks to (4.81), we have

(u−φ)(±1) = 0, (u− φ)′(±1) = 0.
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Thus, we obtain from Lemma 3.11 and Theorem 4.2 that

‖IN(au′ − aφ ′)‖ ≤ c(‖au′ − aφ ′‖+N−1‖(au′ − aφ ′)′‖ω1,1

)
≤ c
((‖a‖∞+N−1‖a′‖∞

)‖(u−φ)′‖+N−1‖a‖∞‖(u−φ)′′‖
)

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2(‖u‖2 + ‖∂ m

x u‖ωm−2,m−2

)
,

and

‖IN(bu− bφ)‖ ≤ c(‖bu− bφ‖+N−1‖(bu− bφ)′‖ω1,1

)

≤ c

√
(N −m+ 1)!

N!
(N +m)−(1+m)/2(‖u‖2 + ‖∂ m

x u‖ωm−2,m−2

)
.

Consequently, we derive from (4.98) and the above estimates that

‖eN‖1 ≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2(‖u‖2 + ‖∂ m

x u‖ωm−2,m−2+

+ ‖∂ m−1
x (au′)‖ωm−2,m−2 + ‖∂ m

x (bu)‖ωm−1,m−1

)

+ c

√
(N − k+ 1)!

N!
(N + k)−(k+1)/2‖∂ k

x g‖ωk−1,k−1.

We complete the proof by using the triangle inequality and Theorem 4.2. ��

4.5.4 Helmholtz Equation

As the last example of this chapter, we consider the 1-D Helmholtz equation with
complex-valued solution:

− u′′ − k2u = f , r ∈ I := (0,1),

u(0) = 0, u′(1)− iku(1) = h,
(4.103)

where k is called the wave number. We refer to Sect. 9.1 for more details on the
background of the Helmholtz equation as well as its spectral approximation in multi-
dimensional settings.

Note that this problem does not fit the general framework that we used for previ-
ous examples, since the problem is indefinite due to the negative sign in front of k2.

The solution of (4.103) is increasingly oscillatory as k increases, so the number
of unknowns in a numerical approximation should increase properly with k and it is
thus important to derive error estimates with explicit dependence on k. The first step
is to derive a priori estimates for the exact solution and characterize the dependence
on k explicitly. To this end, we consider the following weak formulation of (4.103):
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find u ∈ X =
{

u ∈ H1(I) : u(0) = 0
}

such that

B(u,v) =
∫ 1

0

(
u′v̄′ − k2uv̄

)
dr− iku(1)v̄(1)

=
∫ 1

0
f v̄dr+ hv̄(1), ∀v ∈ X ,

(4.104)

where v̄ is the complex conjugate of v. With a slight abuse of notation, we still use
X , H1(I), XN etc. to denote the spaces of complex-valued functions.

One can show, using a standard “Fredholm alternative” argument, that the prob-
lem (4.104) admits a unique solution (see, e.g., Douglas et al. (1993), Ihlenburg and
Babuška (1995)). One may also refer to Theorem 2.1 in Shen and Wang (2005) for
a direct proof.

4.5.4.1 A Priori Estimates

Theorem 4.6. Let u be the solution of (4.104). If f ∈ L2(I), then we have

‖u′‖+ k‖u‖ ≤ c(‖ f‖+ |h|), (4.105)

and
|u|2 ≤ ck

(‖ f‖+ |h|)+ ‖ f‖, (4.106)

where c is a positive constant independent of k,u, f and h.

Proof. We shall use the argument in Melenk (1995) (see also Cummings and Feng
(2006)). The key step is to choose a suitable second test function which enables us
to obtain a priori estimates without using the Green’s functions as in Douglas et al.
(1993) and Ihlenburg and Babuška (1995, 1997). In the following proof, ε j > 0, 1≤
j ≤ 3, are adjustable real numbers.

We first take v = u in (4.104). The imaginary and real parts of the resulting equa-
tion are

− k|u(1)|2 = Im(hū(1))+ Im( f ,u),

‖u′‖2 − k2‖u‖2 = Re(hū(1))+Re( f ,u).
(4.107)

Applying the Cauchy–Schwarz inequality to the imaginary part leads to

k|u(1)|2 ≤ k
2
|u(1)|2 + 1

2k
|h|2 + ε1k

2
‖u‖2 +

1
2ε1k

‖ f‖2, (4.108)

and likewise, we obtain from the real part that

‖u′‖2 ≤ k2‖u‖2 + ε2k2|u(1)|2 + 1
4ε2k2 |h|2 +

ε3k2

2
‖u‖2 +

1
2ε3k2 ‖ f‖2. (4.109)
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As a consequence of (4.108)-(4.109) with ε2 =
ε3
2ε1

, we have

|u(1)|2 ≤ ε1‖u‖2 +
1
k2 |h|2 +

1
ε1k2 ‖ f‖2,

‖u′‖2 ≤ (1+ ε3)k
2‖u‖2 +

( ε3

2ε1
+

ε1

2ε3k2

)
|h|2

+
( ε3

2ε2
1

+
1

2ε3k2

)
‖ f‖2.

(4.110)

Hence, it remains to bound k2‖u‖2.
We now take v = 2ru′ in (4.104), which belongs to X via a usual regularity argu-

ment. By integration by parts,

2Re
(
u′,(ru′)′

)
= |u′(1)|2 + ‖u′‖2,

− 2k2Re
(
u,ru′

)
=−k2|u(1)|2 + k2‖u‖2.

(4.111)

Therefore, the real part of (4.104) with v = 2ru′ is

‖u′‖2 + k2‖u‖2 + |u′(1)|2 = k2|u(1)|2
+ 2Re

(
(iku(1)+ h)ū′(1)

)
+ 2Re( f ,ru′).

(4.112)

Using Cauchy–Schwarz inequality leads to

‖u′‖2 + k2‖u‖2 + |u′(1)|2 ≤ k2|u(1)|2 + 1
2
|u′(1)|2

+ 2k2|u(1)|2 + 2|h|2+ 1
2
‖u′‖2 + 2‖ f‖2.

(4.113)

Then we obtain from (4.110) that

1
2
‖u′‖2 + k2‖u‖2 +

1
2
|u′(1)|2 ≤ 3ε1k2‖u‖2 + c

(|h|2 +(ε−1
1 + 2)‖ f‖2)

≤ k2

2
‖u‖2 + c

(|h|2 + ‖ f‖2),
where we took ε1 = 1/6 to derive the last inequality. Hence, (4.105) follows.

Taking L2-norm on both sides of the equation: −u′′−k2u = f , and using (4.105),
we obtain (4.106). ��

4.5.4.2 Convergence Analysis

The Legendre-Galerkin approximation to (4.104) is
{

Find uN ∈ XN =
{

u ∈ PN : u(0) = 0
}

such that

B(uN ,vN) = ( f ,vN)+ hv̄N(1), ∀vN ∈ XN .
(4.114)
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Since for uN ∈ XN , we have ru′N ∈ XN , the proof of Theorem 4.6 is also valid for
the discrete system (4.114).

Theorem 4.7. Let uN be a solution of (4.114). Then Theorem 4.6 holds with uN in
the place of u.

An immediate consequence is the following:

Corollary 4.1. The problem (4.114) admits a unique solution.

Proof. Since (4.114) is a finite dimensional linear system, it suffices to prove the
uniqueness. Now, let uN be a solution of (4.114) with f ≡ 0 and h = 0, we derive
from Theorem 4.7 that uN ≡ 0 which implies the uniqueness. ��

The following approximation results play an important role in the error analysis.

Lemma 4.9. Let I = (0,1). There exists a mapping 0Π1
N : X → XN such that

(
(0Π1

Nu− u)′,v′N
)
= 0, ∀vN ∈ XN . (4.115)

Moreover, for any

u ∈ X ∩ Ĥm(I) :=
{

u : (r− r2)(l−1)/2∂ l
r u ∈ L2(I), 1 ≤ l ≤ m

}

with 1 ≤ m ≤ N + 1,

‖0Π 1
Nu− u‖μ

≤ c

√
(N −m+ 1)!

N!
(N +m)μ−(m+1)/2‖(r− r2)(m−1)/2∂ m

r u‖,
(4.116)

where μ = 0,1 and c is a positive constant independent of m,N and u.

Proof. It suffices to show the result for real-valued function v(x) in Λ = (−1,1). Let
Π 1,0

N be the H1
0 -orthogonal projection operator defined in (3.290) with α = β = 0.

For any v ∈ H1(Λ) with v(−1) = 0, let

v∗(x) = v(x)− 1+ x
2

v(1) ⇒ v∗ ∈ H1
0 (Λ),

and likewise for φ∗ with φ ∈ PN and φ(−1) = 0. Define

0Π̂
1
Nv(x) = Π1,0

N v∗(x)+
1+ x

2
v(1).

Observe from (3.282) that

(
∂x(0Π̂

1
Nv− v),∂xφ

)
=
(
∂x(Π

1,0
N v∗ − v∗),∂xφ∗

)
+

v(1)
2

∫ 1

−1
∂x(Π

1,0
N v∗ − v∗)(x)dx

=
(
∂x(Π

1,0
N v∗ − v∗),∂xφ∗

)
= 0,
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for all φ ∈ PN with φ(−1) = 0. Hence, by Theorem 3.39,

‖0Π̂
1
Nv− v‖μ = ‖Π1,0

N v∗ − v∗‖μ

≤ c

√
(N −m+ 1)!

N!
(N +m)μ−(m+1)/2‖∂ m

x v∗‖ωm−1,m−1 .

Obviously, ∂ m
x v∗ = ∂ m

x v for m ≥ 2, and for m = 1, we obtain from (B.44) that

‖∂xv∗‖ ≤ ‖∂xv‖+ c|v(1)| ≤ c‖∂xv‖.

Thus, setting

x = 2r− 1, r ∈ (0,1), u(r) = v(x), 0Π1
Nu = 0Π̂

1
Nv,

we obtain (4.115) and (4.116). ��
Now, we are ready to prove the following convergence result.

Theorem 4.8. Let u and uN be the solutions of (4.104) and (4.114), respectively. If
u ∈ X ∩ Ĥm(I) with 1 ≤ m ≤ N + 1, we have

|u− uN|1 + k‖u− uN‖ ≤ c
(
1+ k2N−1 + kN−1/2)×√

(N −m+ 1)!
N!

(N +m)(1−m)/2‖(r− r2)(m−1)/2∂ m
r u‖,

(4.117)

where c is a positive constant independent of k,m,N and u.

Proof. Let eN = uN − 0Π1
Nu and ẽN = u− 0Π1

Nu. By (4.104) and (4.114), we have

B(u− uN ,vN) = 0, ∀vN ∈ XN .

Hence, we derive from (4.115) and the definition of B(·, ·) that for any vN ∈ XN,

B(eN ,vN) =B(u− 0Π1
Nu,vN)

=−k2(ẽN,vN)− ikẽN(1)v̄N(1).
(4.118)

We can view (4.118) in the form of (4.104) with u = eN , h = −ikẽN(1) and f =
−k2ẽN . Hence, as a direct consequence of Theorem 4.6, we have

|eN|21 + k2‖eN‖2 ≤ ck2(k2‖ẽN‖2 + |ẽN(1)|2
)
. (4.119)

Furthermore, using the Sobolev inequality (B.33) and Lemma 4.9 leads to

|ẽN(1)| ≤ c‖ẽN‖1/2‖ẽN‖1/2
1

≤ c

√
(N −m+ 1)!

N!
(N +m)−m/2‖(r− r2)(m−1)/2∂ m

r u‖.
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Hence, using Lemma 4.9 again yields

|u− uN|1 + k‖u− uN‖ ≤ c
(|eN|1 + k‖eN‖+ |ẽN|1 + k‖ẽN‖

)

≤ c
(
1+ k2N−1 + kN−1/2)

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖(r− r2)(m−1)/2∂ m

r u‖.

This ends the proof. ��

Problems

4.1. Show that under the assumption (4.3), the bilinear form B(·, ·) defined by (4.9)
is continuous and coercive in H1� (I)×H1� (I).

4.2. Let {h j}N
j=0 be the Lagrange basis polynomials relative to the Jacobi-Gauss-

Radau points {x j}N
j=0 with x0 = −1 (see Theorem 3.26). Let D̃ = (dk j :=

h′j(xk))1≤k, j≤N be the differentiation matrix corresponding to the interior collo-
cation point (see (3.163)). Write down the matrix form of the Jacobi-Gauss-Radau
collocation method for

u′(x) = f (x), x ∈ (−1,1); u(−1) = c−,

where f ∈C[−1,1] and c− is a given value. Use the uniqueness of the approximate
solution to show that the matrix D̃ is nonsingular.

4.3. Prove Lemma 4.8.

4.4. Consider the Burgers’ equation:

∂u
∂ t

= ε
∂ 2u
∂x2 − u

∂u
∂x

, ε > 0. (4.120)

(i) Verify that it has the soliton solution

u(x, t) = κ
[
1− tanh

(κ(x−κt− xc)

2ε

)]
, (4.121)

where the parameter κ > 0 and the center xc ∈ R.
(ii) Take ε = 0.1,κ = 0.5,xc =−3,x ∈ [−5,5], and impose the initial value u(x,0)

and the boundary conditions u(±5, t) by using the exact solution. Use the Crank-
Nicolson leap-frog scheme to in time (see (1.2)–(1.3)), and the Chebyshev col-
location method in space to solve the equation. Output the discrete maximum
errors for τ = 10−k (time step size) with k = 2,3,4 and N = 32,64,128 at t = 12.
Refer to Table 1 in Wu et al. (2003) for the behavior of the errors (obtained by
other means).

(iii) Replace the Chebyshev-collocation method in (ii) by the Chebyshev-Galerkin
method. Do the same test and compare two methods. Refer to Sect. 3.4.3 for the
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Chebyshev differentiation process using FFT and to Trefethen (2000) for a handy
MATLAB code for this process.

(iv) Consider the Burgers’ equation (4.120) in (−1,1) with the given data

u(±1, t) = 0, u(x,0) =−sin(πx), x ∈ [−1,1]. (4.122)

Solve this problem by the methods in (ii) and (iii) by taking ε = 0.02,τ = 10−4

and N = 128 and plot the numerical solution at t = 1. Refer to Shen and Wang
(2007b) for some profiles of the numerical solution (obtained by other means).

4.5. Consider the Fisher equation

∂u
∂ t

=
∂ 2u
∂ x2 + u(1− u). (4.123)

(i) Verify that it has the traveling solution

u(x, t) =
[
1+ exp

( x√
6
− 5

6
t
)]−2

. (4.124)

(ii) Since u(x, t)→ 0 (resp. 1) as x →+∞ (resp. −∞), we can approximate (4.123)
in (−L,L), where L is large enough so that the wave front does not reach the
boundary x = L, by imposing the boundary conditions

u(−L, t) = 1, u(L, t) = 0,

and taking the initial value as u(x,0). Use the second-order splitting scheme
(D.30) with Au = ∂ 2

x u and Bu = u(1− u) in time, and the Legendre-Galerkin
method in space to solve this problem with τ = 10−3,N = 128,L = 100 up to
t = 6. Output the discrete maximum errors between the exact and approximate
solutions at t = 1,2, . . . ,6. An advantage of the splitting scheme is that the sub-
problem (a Bernoulli’s equation for t):

∂u
∂ t

= u(1− u)

can be solved exactly, so it suffices to solve a linear equation in each step. Refer
to Wang and Shen (2005) for this numerical study by a mapping technique.



Chapter 5
Volterra Integral Equations

This chapter is devoted to spectral approximations of the Volterra integral equation
(VIE):

y(t)+
∫ t

0
R(t,τ)y(τ)dτ = f (t), t ∈ [0,T ], (5.1)

where the source function f and the kernel function R are given, and y(t) is the
unknown function. We shall also implement and analyze spectral algorithms for
solving the VIE with weakly singular kernel:

y(t)+
∫ t

0
(t − τ)−μR(t,τ)y(τ)dτ = f (t), t ∈ [0,T ], 0 < μ < 1, (5.2)

where R(t, t) �= 0 for t ∈ [0,T ].
While there have been many existing numerical methods for solving VIEs (see,

e.g., Brunner (2004) and the references therein), very few are based on spec-
tral approximations. In Elnagar and Kazemi (1996), a Chebyshev spectral method
was developed to solve nonlinear Volterra-Hammerstein integral equations, and in
Fujiwara (2006), it was applied to the Fredholm integral equations of the first kind
under multiple-precision arithmetic. However, no theoretical analysis was provided
to justify the high accuracy of the proposed methods.

It is known that the Fredholm type equations behave more or less like a bound-
ary value problem (see, e.g., Delves and Mohanmed (1985)). As a result, some ef-
ficient numerical methods useful for boundary values problems (such as spectral
methods) can be used directly to handle the Fredholm type equations (cf. Delves
and Mohanmed (1985)). However, the Volterra equation (5.1) behaves like an ini-
tial value problem. Therefore, it is not straightforward to apply spectral methods
to the Volterra type equations. On the other hand, an essential difference between
(5.1) and a standard initial value problem is that numerical methods for the former
require storage of values at all the grid points, while they only requires information
at a fixed number of previous grid points for the latter.

This chapter is organized as follows. We devote the first two sections to de-
scribing spectral algorithms, including one with Legendre-collocation method

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 181
Springer Series in Computational Mathematics 41, DOI 10.1007/978-3-540-71041-7 5,
c© Springer-Verlag Berlin Heidelberg 2011
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and one with Jacobi-Galerkin method, for VIEs with regular kernels. We then
propose an efficient Jacobi-collocation method for VIEs with weakly singular ker-
nel in Sect. 5.3. Finally, we discuss applications of these spectral methods to delay
differential equations.

5.1 Legendre-Collocation Method for VIEs

For ease of implementation and analysis, we make the change of variable

t = T (1+ x)/2, x = 2t/T − 1, x ∈ I := [−1,1], t ∈ [0,T ], (5.3)

under which (5.1) is transformed into

u(x)+
∫ T (1+x)/2

0
R
(

T (1+ x)/2,τ
)

y(τ)dτ = g(x), x ∈ I, (5.4)

where we have set

u(x) = y
(

T (1+ x)/2
)

, g(x) = f
(

T (1+ x)/2
)

. (5.5)

We further convert the interval [0,T (1+ x)/2] to [−1,x] by using the linear trans-
formation: τ = T (1+ s)/2,s ∈ [−1,x]. Then, (5.4) becomes

u(x)+
∫ x

−1
K(x,s)u(s)ds = g(x), x ∈ I, (5.6)

where

K(x,s) =
T
2

R
(

T (1+ x)/2,T(1+ s)/2
)

, x ∈ I, s ∈ [−1,x]. (5.7)

5.1.1 Numerical Algorithm

Let {xi}N
i=0 be a set of Legendre-Gauss, or Legendre-Gauss-Radau or Legendre-

Gauss-Lobatto collocation points (see Theorem 3.29). A first approximation to (5.6)
using a Legendre collocation approach is

⎧

⎨

⎩

Find uN ∈ PN such that

uN(xi)+
∫ xi

−1
K(xi,s)uN(s)ds = g(xi), 0 ≤ i ≤ N.

(5.8)

However, the integral term in (5.8) can not be evaluated exactly. So we transform
the integral interval [−1,xi] to [−1,1] and use a Gaussian type quadrature rule to
approximate the integral. More precisely, under the linear transformation
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s := s(i) =
1 + xi

2
θ +

xi − 1
2

,

θ := θ (i) =
2

1+ xi
s+

1− xi

1+ xi
, θ ∈ I, s ∈ [−1,xi],

(5.9)

the scheme (5.8) becomes

uN(xi)+
1+ xi

2

∫ 1

−1
K(xi,s(xi,θ))uN(s(xi,θ))dθ = g(xi), 0 ≤ i ≤ N. (5.10)

We then approximate the integral term by a Legendre-Gauss type quadrature for-
mula with the notes and weights denoted by {θ j,ω j}M

j=0, leading to the Legendre
collocation scheme (with numerical integration) for (5.6):

⎧

⎪

⎨

⎪

⎩

Find uN ∈ PN such that

uN(xi)+
1+ xi

2

M

∑
j=0

K(xi,s(xi,θ j))uN(s(xi,θ j))ω j = g(xi), 0 ≤ i ≤ N.
(5.11)

It is worthwhile to point out that the collocation points {xi}N
i=0 and quadrature points

{θ j}M
j=0 could be chosen differently in type and number. As a result, we can also

use Legendre-Gauss-Radau or Legendre-Gauss-Lobatto for the integral term.
Next, we discuss the implementation of (5.11). Let {h j}N

j=0 be the Lagrange basis

polynomials associated with the Legendre-Gauss-type points {x j}N
j=0. We expand

the approximate solution uN as

uN(x) =
N

∑
k=0

uN(xk)hk(x). (5.12)

Inserting it into (5.11) leads to

uN(xi)+
1+ xi

2

N

∑
k=0

( M

∑
j=0

K(xi,s(xi,θ j))hk(s(xi,θ j))ω j

)

uN(xk) = g(xi), (5.13)

for all 0 ≤ i ≤ N. Setting

aik =
1+ xi

2

M

∑
j=0

K(xi,s(xi,θ j))hk(s(xi,θ j))ω j, A = (aik)0≤i,k≤N ,

u = (uN(x0),uN(x1), . . . ,uN(xN))
T , g = (g(x0),g(x1), . . . ,g(xN))

T ,

the system (5.13) reduces to
(A+ I)u = g. (5.14)

We observe that, as with a typical collocation scheme, the coefficient matrix
of (5.14) is full. Moreover, all unknowns {uN(xi)}N

i=0 are coupled together
and the scheme (5.13) requires the semi-local information {K(xi,s(xi,θ j)}i

j=0
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(note that −1 ≤ s(xi,θ j) ≤ xi). As a comparison, to compute uN(xi), piecewise-
polynomial collocation methods or product integration methods only use the semi-
local information of both the approximate solution uN and the kernel K, namely,
{uN(x j)}i−1

j=0 and {K(xi,β j)} where {−1 ≤ β j ≤ xi} are some collocation points.
Indeed, this allows us to obtain, as to be demonstrated below, a spectral accuracy
instead of an algebraic order of accuracy for the proposed scheme (5.13).

We see that the entries of A involve the computations of the Lagrange basis
polynomials at the non-interpolation points, i.e., {hk(s(xi,θ j))}. The idea for their
efficient computation is to express hk in terms of the Legendre polynomials:

hk(s) =
N

∑
p=0

αk
pLp(s) ∈ PN , (5.15)

and by (3.193),

αk
p = Lp(xk)ωk/γp where γp =

2
2p+ 1

, 0 ≤ p < N, (5.16)

and γN = 2/(2N+1) for the Legendre-Gauss and Legendre-Gauss-Radau formulas,
and γN = 2/N for the Legendre-Gauss-Lobatto case. Consequently,

hk(s) = ωk

N

∑
p=0

Lp(xk)

γp
Lp(s), 0 ≤ k ≤ N. (5.17)

5.1.2 Convergence Analysis

We now analyze the convergence of the scheme (5.11). For clarity of presentation,
we assume that the collocation and quadrature points in (5.11) are of the Legendre-
Gauss-Lobatto type with M = N. The other cases can be treated in a similar fashion.

In what follows, we need to use the asymptotic estimate of the Lebesgue constant
(see, e.g., Qu and Wong (1988)):

ΛN := max
|x|≤1

N

∑
j=0

|h j(x)| �
√

N, N � 1. (5.18)

The notation and Sobolev spaces used below are the same as those in Chap. 3.

Theorem 5.1. Let u and uN be the solutions of (5.6) and (5.11) with M =N, respec-
tively. Assume that

K ∈ L∞(D)∩L∞(I;Bk
−1,−1(I)), ∂xK ∈ L∞(D), u ∈ Bm

−1,−1(I), (5.19)
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where D = {(x,s) : −1 ≤ s ≤ x ≤ 1} and 1 ≤ k,m ≤ N + 1. Then we have

‖u− uN‖ ≤ c

√

(N − k+ 1)!
N!

(N + k)−k/2 max
|x|≤1

‖∂ k
s K(x, ·)‖ωk−1,k−1‖u‖

+ c

√

(N −m+ 1)!
N!

(N +m)−(m+1)/2‖∂ m
x u‖ωm−1,m−1 ,

(5.20)

and

‖u− uN‖∞ ≤ c

√

(N − k+ 1)!
N!

(N + k)−k/2 max
|x|≤1

‖∂ k
s K(x, ·)‖ωk−1,k−1‖u‖

+ c

√

(N −m+ 1)!
N!

(N +m)−m/2‖∂ m
x u‖ωm−1,m−1 ,

(5.21)

where c is a positive constant independent of k,m,N and u.

Proof. We first prove (5.20). Rewrite (5.11) as

uN(xi)+
1+ xi

2

∫ 1

−1
K(xi,s(xi,θ ))uN(s(xi,θ ))dθ

= g(xi)+ J1(xi), 0 ≤ i ≤ N,

(5.22)

where

J1(x) =
1+ x

2

∫ 1

−1
K(x,s(x,θ ))uN(s(x,θ ))dθ

− 1+ x
2

N

∑
j=0

K(x,s(x,θ j))uN(s(x,θ j))ω j.

(5.23)

Let IN be the Legendre-Gauss-Lobatto interpolation operator. Transforming the
integral term in (5.22) back to [−1,x] by using (5.9), we reformulate (5.22) as

uN(x)+IN

∫ x

−1
K(x,s)uN(s)ds = (INg)(x)+ (INJ1)(x), x ∈ I. (5.24)

Clearly, by (5.6),

(INg)(x) = (INu)(x)+ IN

∫ x

−1
K(x,s)u(s)ds, x ∈ I. (5.25)

Denote e = uN − u. Inserting (5.25) into (5.24) leads to the error equation:

e(x)+
∫ x

−1
K(x,s)e(s)ds = (INJ1)(x)+ J2(x)+ J3(x), (5.26)

where

J2(x) = (INu− u)(x),

J3(x) =
∫ x

−1
K(x,s)e(s)ds− IN

(
∫ x

−1
K(x,s)e(s)ds

)

.
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Thus, we have

|e(x)| ≤ G(x)+Kmax

∫ x

−1
|e(s)|ds, (5.27)

where

Kmax := max
D

|K(x,s)|, G := |INJ1|+ |J2|+ |J3|.
Using the Gronwall inequality (B.9) leads to

|e(x)| ≤ G(x)+Kmaxe2Kmax

∫ x

−1
G(s)ds, ∀x ∈ I. (5.28)

This implies

‖e‖ ≤ c‖G‖ ≤ c
(‖INJ1‖+ ‖J2‖+ ‖J3‖

)

, (5.29)

where c depends on Kmax.

It remains to estimate the three terms on the right hand side of (5.29). By
Lemma 4.8,

|J1(x)|= 1+ x
2

{(

K(x,s(x, ·)),uN(s(x, ·))
)− 〈K(x,s(x, ·)),uN(s(x, ·))

〉

N

}

≤ c

√

(N − k+ 1)!
N!

(N + k)−(k+1)/2×

1+ x
2

‖∂ k
θ K(x,s(x, ·))‖ωk−1,k−1‖uN(s(x, ·))‖.

A direct calculation using (5.9) yields

‖∂ k
θ K(x,s(x, ·))‖2

ωk−1,k−1 =

∫ 1

−1
|∂ k

θ K(x,s(x,θ ))|2(1−θ 2)k−1dθ

=
1+ x

2

∫ x

−1
|∂ k

s K(x,s)|2(x− s)k−1(1+ s)k−1ds

≤ ‖∂ k
s K(x, ·)‖2

ωk−1,k−1 ,

and
1+ x

2
‖uN(s(x, ·))‖2 =

∫ x

−1
|uN(s)|2ds ≤ ‖uN‖2.

Hence, we obtain the estimate of |J1| :

|J1(x)| ≤ c

√

(N − k+ 1)!
N!

(N + k)−(k+1)/2‖∂ k
s K(x, ·)‖ωk−1,k−1‖uN‖,
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which, together with (5.18), implies

‖INJ1‖ ≤
√

2‖INJ1‖∞ ≤ c‖J1‖∞ max
|x|≤1

N

∑
j=0

|h j(x)|

≤ c

√

(N − k+ 1)!
N!

(N + k)−k/2 max
|x|≤1

‖∂ k
s K(x, ·)‖ωk−1,k−1‖uN‖

≤ c

√

(N − k+ 1)!
N!

(N + k)−k/2 max
|x|≤1

‖∂ k
s K(x, ·)‖ωk−1,k−1

(‖e‖+ ‖u‖).

(5.30)

Next, by Theorem 3.44,

‖J2‖ ≤ c

√

(N −m+ 1)!
N!

(N +m)−(m+1)/2‖∂ m
x u‖ωm−1,m−1. (5.31)

Moreover, using Theorem 3.44 with m = 1 yields

‖J3‖ ≤ cN−1
∥

∥

∥K(x,x)e(x)+
∫ x

−1
∂xK(x,s)e(s)ds

∥

∥

∥

≤ cN−1
(

max
|x|≤1

|K(x,x)|+max
D

‖∂xK‖∞

)

‖e‖.
(5.32)

The estimate (5.20) follows from (5.29)–(5.32), provided that N is large enough. We
now turn to the proof of (5.21). Clearly, it follows from (5.27) that

‖e‖∞ ≤ c
(‖INJ1‖∞ + ‖J2‖∞ + ‖J3‖∞

)

. (5.33)

Using the inequalities (B.33) and (B.44), we obtain from Theorem 3.44 that

‖J2‖∞ ≤ c‖u− INu‖1/2‖∂x(u− INu)‖1/2

≤ c

√

(N −m+ 1)!
N!

(N +m)−m/2‖∂ m
x u‖ωm−1,m−1,

(5.34)

and

‖J3‖∞ ≤ c‖J3‖1/2‖∂xJ3‖1/2
(5.32)
≤ cN−1/2‖e‖1/2

∥

∥

∥∂x

∫ x

−1
K(x,s)e(s)ds

∥

∥

∥

≤ cN−1/2‖e‖ ≤ cN−1/2‖e‖∞.

(5.35)

Finally, a combination of (5.30) (with ‖e‖∞ in place of ‖e‖) and (5.33)–(5.35) leads
to the estimate (5.21). ��
Remark 5.1. As pointed out in Remark 3.7, if the regularity index k (resp. m) is
fixed, the order of convergence in (5.20) is O(N−k) (resp. O(N−m)).
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5.1.3 Numerical Results and Discussions

We present below some numerical results and discuss the extension of the proposed
methods to nonlinear VIEs.

Without lose of generality, we only consider the Legendre-Gauss-Lobatto
quadrature rule in (5.11), and numerical evidences show that the other two types of
rules produce similar results. Consider the VIE (5.6) with

K(x,s) = exs, g(x) = e4x +
1

x+ 4

(

ex(x+4)− e−(x+4)), (5.36)

which has the exact solution u(x) = e4x. In Table 5.1, we tabulate the maximum
point-wise errors obtained by (5.11) with various N, which indicate that the desired
spectral accuracy is obtained.

Table 5.1 The maximum point-wise errors
N 6 8 10 12 14

Error 3.66e-01 1.88e-02 6.57e-04 1.65e-05 3.11e-07

N 16 18 20 22 24
Error 4.57e-09 5.37e-11 5.19e-13 5.68e-14 4.26e-14

In practice, many VIEs are usually nonlinear. For instance, the nonlinear version
of (5.6) may take the form

u(x)+
∫ x

−1
K(x,s,u(s))ds = g(x), x ∈ [−1,1]. (5.37)

However, the nonlinearity adds rather little to the difficulty of obtaining accurate nu-
merical solutions. The methods described earlier remain applicable. Although our
convergence theory does not cover the nonlinear case, it should be quite straight-
forward to establish a convergence result similar to Theorem 5.1 provided that the
kernel K is Lipschitz continuous with respect to its third argument. A similar tech-
nique for the piecewise-polynomial collocation methods was used by Brunner and
Tang (1989) for solving nonlinear Volterra equations. Here, we just show the basic
idea and provide a numerical example to illustrate the spectral accuracy.

Let {xi,ωi}N
i=0 be the Legendre-Gauss-type quadrature nodes and weights as be-

fore. We can design a collocation method for the nonlinear VIE (5.37) similar to the
linear case. More precisely, we seek uN ∈ PN such that

uN(xi)+
1+ xi

2

∫ 1

−1
K(xi,s(xi,θ ),uN(s(xi,θ )))dθ = g(xi), 0 ≤ i ≤ N, (5.38)

where s(x,θ ) is given by (5.9). We further approximate the integral by the
quadrature rule:

uN(xi)+
1+ xi

2

N

∑
j=0

K
(

xi,s(xi,θ j),uN(s(xi,θ j))
)

ω j = g(xi), 0 ≤ i ≤ N. (5.39)
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Notice that inserting (5.12) into the numerical scheme (5.39) leads to a nonlinear
system for {uN(xi)}N

i=0, so a suitable iterative solver for the nonlinear system (e.g.,
Newton’s method) should be used. In the following computations, we just use a sim-
ple Jacobi-type iteration method to solve the nonlinear system, which takes about 5
to 6 iterations. More detailed discussions on solving nonlinear VIEs with iteration
methods can be found in Tang and Xu (2009).

Consider (5.37) with K(x,s,u(s)) = ex−3su2(s), and

g(x) =− 1
2(1+ 36π2)

(

e−x + 36π2e−x − e−x cos6πx+ 6πe−xsin 6πx

− 36eπ2)ex + ex sin3πx,

(5.40)

so that the nonlinear VIE (5.37) has the exact solution u(x) = ex sin3πx.
The maximum point-wise errors are displayed in Table 5.2, and once again, the

exponential convergence is observed.

Table 5.2 The maximum point-wise errors
N 6 8 10 12 14

Error 2.33e-02 7.22e-04 1.82e-05 3.15e-07 4.06e-09

N 16 18 20 22 24
Error 3.98e-11 3.05e-13 3.86e-15 3.33e-15 3.98e-15

5.2 Jacobi-Galerkin Method for VIEs

As an alternative to the Legendre collocation method, we introduce and analyze in
this section a Jacobi-Galerkin method for (5.6).

Rewrite (5.6) as

u(x)+ Su(x) = g(x) with Su(x) =
∫ x

−1
K(x,s)u(s)ds. (5.41)

The Jacobi-Galerkin approximation to (5.41) is
{

Find uN ∈ PN such that

(uN ,vN)ωα,β +(SuN,vN)ωα,β = (g,vN)ωα,β , ∀vN ∈ PN ,
(5.42)

where ωα ,β (x) = (1− x)α(1+ x)β with α,β > −1, is the Jacobi weight function.

Let πα ,β
N be the L2

ωα,β -orthogonal projection operator. We find from (3.249) that
(5.42) is equivalent to

uN +πα ,β
N SuN = πα,β

N g. (5.43)

Theorem 5.2. Let u and uN be the solutions of (5.41) and (5.42), respectively. If

K, ∂xK ∈ L∞(D), u ∈ Bm
α ,β (I), (5.44)
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where D = {(x,s) : −1 ≤ s ≤ x ≤ 1} and 1 ≤ m ≤ N + 1, then for −1 < α,β < 1,

‖u− uN‖ωα,β ≤ c

√

(N −m+ 1)!
N!

(N +m)−(1+m)/2
∥

∥∂ m
x u
∥

∥

ωα+m,β+m , (5.45)

where c is a positive constant independent of m,N and u.

Proof. Subtracting (5.41) from (5.43) yields

u− uN + Su−πα ,β
N SuN = g−πα ,β

N g. (5.46)

Set e = u− uN. One verifies that

Su−πα ,β
N SuN = Su−πα,β

N Su+πα,β
N S(u− uN)

= Su−πα ,β
N Su+ S(u− uN)−

(

S(u− uN)−πα,β
N S(u− uN)

)

= (g− u)−πα ,β
N (g− u)+ S(u− uN)−

(

S(u− uN)−πα ,β
N S(u− uN)

)

= (g−πα,β
N g)− (u−πα ,β

N u)+ Se− (Se−πα,β
N Se).

(5.47)

It follows from (5.46)-(5.47) that

e(x) =−
∫ x

−1
K(x,s)e(s)ds+(u−πα ,β

N u)+ (Se−πα ,β
N Se).

Consequently,

|e(x)| ≤ Kmax

∫ x

−1
|e(s)|ds+ |J1|+ |J2|,

where Kmax = ‖K‖L∞(D), and

J1 = u−πα ,β
N u, J2 = Se−πα,β

N Se.

By the Gronwall inequality (B.9),

‖e‖ωα,β ≤ c
(‖J1‖ωα,β + ‖J2‖ωα,β

)

,

where c depends on Kmax. Using Theorem 3.35 yields

‖J1‖ωα,β ≤ c

√

(N −m+ 1)!
N!

(N +m)−(1+m)/2
∥

∥∂ m
x u
∥

∥

ωα+m,β+m .

Moreover, using Theorem 3.35 with l = 0 and m = 1 gives

‖J2‖ωα,β ≤ cN−1
∥

∥

∥K(x,x)e(x)+
∫ x

−1
∂xK(x,s)e(s)ds

∥

∥

∥

ωα,β
.
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Using the Cauchy-Schwartz inequality, we find that for −1 < α,β < 1,

∥

∥

∥

∫ x

−1
∂xK(x,s)e(s)ds

∥

∥

∥

2

ωα,β
≤
∫ 1

−1

(
∫ x

−1
|∂xK(x,s)||e(s)|ds

)2
ωα ,β (x)dx

≤
∫ 1

−1

(
∫ x

−1

(

∂xK(x,s)
)2ω−α ,−β (s)ds

∫ x

−1
e2(s)ωα ,β (s)ds

)

ωα ,β (x)dx

≤ ‖∂xK‖2
L∞(D)‖e‖2

ωα,β

(
∫ 1

−1

(
∫ x

−1
ω−α ,−β (s)ds

)

ωα ,β (x)dx
)

(A.6)
≤ ‖∂xK‖2

L∞(D)‖e‖2
ωα,β γ−α ,−β

0 γα ,β
0 .

This implies
‖J2‖ωα,β ≤ cN−1‖e‖ωα,β .

Finally, a combination of the above estimates leads to the desired result. ��
Remark 5.2. The scheme (5.41) does not incorporate numerical integrations for
both the kernel and source terms. In practice, we need to use the Galerkin method
with numerical integration by replacing the continuous inner products by the dis-
crete ones, namely,

{

Find uN ∈ PN such that

〈uN ,vN〉N,ωα,β + 〈SuN,vN〉N,ωα,β = 〈g,vN〉N,ωα,β , ∀vN ∈ PN,
(5.48)

where 〈·, ·〉N,ωα,β is the discrete inner product associated with a Jacobi-Gauss-type
quadrature rule (see Chap. 3). Convergence results similar to Theorem 5.2 can be
established for (5.48). We leave the convergence analysis of the Legendre-Gauss-
Lobatto case as an exercise (see Problem 5.2).

5.3 Jacobi-Collocation Method for VIEs with Weakly
Singular Kernels

In this section, we consider spectral approximation of the VIE (5.2) with singular
kernels. As before, our starting point is to use (5.9) to reformulate (5.2) as:

u(x) = f (x)+
∫ x

−1
(x− s)−μK(x,s)u(s)ds

(5.9)
= f (x)+

(1+ x
2

)1−μ ∫ 1

−1
(1−θ)−μK(x,s(x,θ ))u(s(x,θ))dθ .

(5.49)

Let {x j}N
j=0 be any set of Jacobi-Gauss-Lobatto points, and {θ j,ω j}M

j=0 be a
set of Jacobi-Gauss-Lobatto points and weights with α = −μ and β = 0 (see
Theorem 3.27). The corresponding Jacobi-collocation method for (5.49) is:
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⎧

⎪

⎨

⎪

⎩

Find uN ∈ PN such that for 0 ≤ j ≤ N,

uN(x j) = f (x j)+
(1+ x j

2

)1−μ M

∑
k=0

K(x j,s(x j ,θk))uN(s(x j,θk))ωk.
(5.50)

As with the scheme (5.11), the points {x j} and {θ j} can be chosen differently in
type and in number. For simplicity, we assume that they are the same below.

Let {h j}N
j=0 be the Lagrange basis polynomials associated with {x j}N

j=0. We
expand the approximate solution uN as

uN(x) =
N

∑
j=0

uN(x j)h j(x) ⇒ uN(s(x j,θk)) =
N

∑
i=0

uN(xi)hi(s(x j,θk)). (5.51)

Then, the scheme (5.50) becomes

uN(xi) = f (xi)+
(1+ xi

2

)1−μ N

∑
j=0

( N

∑
k=0

K(xi,s(xi,θk))h j(s(xi,θk))ωk

)

uN(x j),

(5.52)

for 0 ≤ i ≤ N.
Typically, there is a weak singularity of the solution of (5.49) even if the given

functions in (5.49) are sufficiently smooth (see, e.g., Brunner (2004)). We only con-
sider here the case that the underlying unknown solution u is sufficiently smooth.
Our attention in this case is to handle the weakly singular kernel occurred in (5.49).
The details of the numerical implementation can be found in Chen and Tang (2010).

We now turn to the convergence analysis of the scheme (5.50). Compared with
the regular kernel case, the analysis for (5.52) is much more involved.

We first make some necessary preparations. Let I = [−1,1]. For r ≥ 0 and 0 ≤
κ ≤ 1, we denote by Cr,κ(I) the space of functions whose r-th derivatives are Hölder
continuous with exponent κ , endowed with the usual norm

‖v‖Cr,κ = max
0≤l≤r

max
x∈I

|∂ l
xv(x)|+ max

0≤l≤r
sup
x�=y

|∂ l
xv(x)−∂ l

xv(y)|
|x− y|κ .

If κ = 0, Cr,0(I) turns out to be the space of functions with continuous derivatives up
to r-th order on I, which is also commonly denoted by Cr(I) with the norm ‖ · ‖Cr .

Lemma 5.1. (cf. Ragozin (1970, 1971)). For any non-negative integer r and 0 <
κ < 1, there exists a linear transform TN : Cr,κ(I)→ PN such that

‖v−TNv‖L∞ ≤ cr,κN−(r+κ)‖v‖Cr,κ , ∀v ∈Cr,κ(I), (5.53)

where cr,κ is a positive constant.

Another useful result is on the stability of the linear operator:

Mv(x) =
∫ x

−1
(x− s)−μK(x,s)v(s)ds. (5.54)
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Below we prove that M is a compact operator from C(I) to C0,κ(I), provided that the
index 0 < κ < 1−μ . This result will play a crucial role in the convergence analysis
of this section.

Lemma 5.2. Let 0 < μ < 1. If 0 < κ < 1− μ , then for any function v ∈ C(I) and
any x1, x2 ∈ I = [−1,1] with x1 �= x2, there exists a positive constant c (may depend
on ‖K‖C0,κ and ‖K‖L∞(D) with D = [−1,1]2), such that

|Mv(x1)−Mv(x2)|
|x1 − x2|κ ≤ c‖v‖∞, (5.55)

which implies
‖Mv‖C0,κ ≤ c‖v‖∞. (5.56)

Proof. Without loss of generality, we assume that x1 < x2. We first show that
∫ x1

−1

[

(x1 − τ)−μ − (x2 − τ)−μ]dτ ≤ c|x2 − x1|1−μ . (5.57)

As x1 < x2, we have from the linear transformation (5.9) that
∫ x1

−1

[

(x1 − τ)−μ − (x2 − τ)−μ]dτ

≤
∣

∣

∣

∣

∫ x1

−1
(x1 − τ)−μdτ −

∫ x2

−1
(x2 − τ)−μdτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ x2

x1

(x2 − τ)−μdτ
∣

∣

∣

∣

≤
[(x2 + 1

2

)1−μ −
(x1 + 1

2

)1−μ]∫ 1

−1
(1−θ )−μdθ +

|x2 − x1|1−μ

1− μ
.

Observe that
(x2 + 1

2

)1−μ
−
(x1 + 1

2

)1−μ
=

1−μ
21−μ

∫ x2

x1

(y+ 1)−μdy

≤ 1− μ
21−μ

∫ x2

x1

(y− x1)
−μdy = 2μ−1|x2 − x1|1−μ ,

where we used the fact that y+ 1 ≥ y− x1 for x1 ∈ [−1,1]. Thus, (5.57) follows.
Next, we obtain from the triangle inequality that

|Mv(x1)−Mv(x2)|

≤
∣

∣

∣

∣

∫ x1

−1

[

(x1 − τ)−μK(x1,τ)− (x2 − τ)−μK(x2,τ)
]

v(τ)dτ
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ x2

x1

(x2 − τ)−μK(x2,τ)v(τ)dτ
∣

∣

∣

∣
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≤
∫ x1

−1

∣

∣(x1 − τ)−μ − (x2 − τ)−μ∣
∣ · |K(x1,τ)| · |v(τ)|dτ

+
∫ x1

−1
(x2 − τ)−μ |K(x1,τ)−K(x2,τ)| · |v(τ)|dτ

+

∫ x2

x1

(x2 − τ)−μ |K(x2,τ)| · |v(τ)|dτ

:= E1 +E2 +E3.

We now estimate the three terms one by one. By (5.57),

E1 ≤ ‖v‖∞‖K‖L∞(D)

∫ x1

−1

∣

∣(x1 − τ)−μ − (x2 − τ)−μ∣
∣dτ

≤ c‖v‖∞|x2 − x1|1−μ .

Moreover, we have

E2 ≤ ‖v‖∞|x2 − x1|κ
∫ x1

−1
(x2 − τ)−μ |K(x2,τ)−K(x1,τ)|

|x2 − x1|κ dτ

≤ ‖v‖∞‖K‖C0,κ |x2 − x1|κ 1
1−μ

[

(x2 + 1)1−μ − (x2 − x1)
1−μ]

≤ c‖v‖∞|x2 − x1|κ ,

where c depends on ‖K‖0,κ . Finally, we have

E3 ≤ ‖K‖L∞(D)‖v‖∞

∫ x2

x1

(x2 − τ)−μdτ ≤ c‖v‖L∞ |x2 − x1|1−μ .

Using the above estimates and the assumption 0 < κ < 1− μ completes the proof
of the lemma. ��

The following lemma on the Lebesgue constant of the Jacobi-Gauss-Lobatto
interpolation (see Theorem 3.1 of Mastroianni and Occorsio (2001b)) also plays
an important role in the convergence analysis.

Lemma 5.3. Let {hi}N
i=0 be the Lagrange basis polynomials associated with the

Jacobi-Gauss-Lobatto interpolations with the parameter pair {−μ ,0}. Then, for
−1/2 ≤ μ < 3/2, we have

ΛN := max
|x|≤1

N

∑
i=0

|hi(x)| ∼ lnN. (5.58)

Theorem 5.3. Let u and uN be the solutions to the VIE (5.49) and (5.50) with 0 <
μ < 1, respectively. Assume u ∈ L∞(I)∩Br

−1,−1(I) with integer 1 ≤ r ≤ N + 1, and

K∗
m := max

0≤i≤N

(
∫ xi

−1
|∂ m

s K(xi,s)|2(xi − s)m−1−μ(1+ s)m−1ds
)1/2

< ∞ (5.59)
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for certain integer 1 ≤ m ≤ N + 1. Then we have the estimate:

‖u− uN‖∞ ≤ c

√

(N − r+ 1)!
N!

(N + r)−r/2(lnN)‖∂ r
x u‖ωr−1,r−1

+ c

√

(N −m+ 1)!
N!

(N +m)−(m+1)/2(lnN)K∗
m‖u‖∞,

(5.60)

where c is a positive constant independent of N,r,m and u.

Proof. In what follows, let (·, ·)ω−μ ,0 and 〈·, ·〉N,ω−μ,0 be the weighted continuous
and discrete inner products, respectively, as defined in Chap. 3. Furthermore, let
I−μ,0
N be the corresponding interpolation operator. Firstly, we rewrite (5.49) as

u(xi) = f (xi)+
(1+ xi

2

)1−μ(
K(xi,s(xi, ·)),u(s(xi, ·))

)

ω−μ ,0 , 0 ≤ i ≤ N, (5.61)

and reformulate (5.50) into

uN(xi) = f (xi)+
(1+ xi

2

)1−μ〈
K(xi,s(xi, ·)),uN(s(xi, ·))

〉

N,ω−μ ,0 , 0 ≤ i ≤ N.

(5.62)
Denoting e = u− uN, we have the error equation:

e(xi) =
(1+ xi

2

)1−μ(
K(xi,s(xi, ·)),e(s(xi, ·))

)

ω−μ ,0 +G(xi)

=
∫ xi

−1
(xi − s)−μK(xi,s)e(s)ds+G(xi),

(5.63)

where

G(x) =
(1+ x

2

)1−μ{(
K(x,s(x, ·)),uN(s(x, ·))

)

ω−μ ,0

− 〈K(x,s(x, ·)),uN(s(x, ·))
〉

N,ω−μ,0

}

.
(5.64)

Equivalently, we write (5.63) as

I−μ,0
N u− uN = I−μ,0

N

(
∫ x

−1
(x− s)−μK(x,s)e(s)ds

)

+ I−μ,0
N G. (5.65)

Consequently,

e =
∫ x

−1
(x− s)−μK(x,s)e(s)ds+G1 +G2 + I−μ,0

N G, (5.66)

where

G1 = u− I−μ,0
N u,

G2 = I−μ,0
N

(
∫ x

−1
(x− s)−μK(x,s)e(s)ds

)

−
∫ x

−1
(x− s)−μK(x,s)e(s)ds.

(5.67)



196 5 Volterra Integral Equations

It follows from the Gronwall inequality (see Lemma B.9) that

‖e‖∞ ≤ c
(‖G1‖∞ + ‖G2‖∞ + ‖I−μ,0

N G‖∞
)

. (5.68)

It remains to estimate the three terms on the right hand side of (5.68). Firstly, by
Lemma 5.3 and an estimate similar to Lemma 4.8,

‖I−μ,0
N G‖∞ ≤ max

0≤i≤N
|G(xi)|

N

∑
i=0

|hi(x)| ≤ c lnN max
0≤i≤N

|G(xi)|

≤ c

√

(N −m+ 1)!
N!

(N +m)−(m+1)/2 lnN×

max
0≤i≤N

{(1+ xi

2

)1−μ‖∂ m
θ (K(xi,s(xi, ·)))‖ωm−1−μ,m−1‖uN(s(xi, ·))‖ω−μ,0

}

.

(5.69)

A direct computation shows that

‖∂ m
θ (K(xi,s(xi, ·)))‖ωm−1−μ,m−1

=
(1+ xi

2

)(1+μ)/2(∫ xi

−1
|∂ m

s K(xi,s)|2(xi − s)m−1−μ(1+ s)m−1ds
)1/2

,
(5.70)

and

‖uN(s(xi, ·))‖ω−μ,0

=
( 2

1+ xi

)(1−μ)/2(∫ xi

−1
|uN(s)|2(xi − s)−μds

)1/2

≤ c
( 2

1+ xi

)(1−μ)/2‖uN‖∞.

(5.71)

Hence, we have

‖I−μ,0
N G‖∞ ≤ c

√

(N −m+ 1)!
N!

(N +m)−(m+1)/2K∗
m lnN

(‖e‖∞ + ‖u‖∞
)

≤ 1
3
‖e‖∞ + c

√

(N −m+ 1)!
N!

(N +m)−(m+1)/2K∗
m lnN‖u‖∞,

(5.72)

provided that N is large enough, where K∗
m is defined in (5.59).

We now turn to the estimation of G1. Let IN be the Legendre-Gauss-Lobatto
polynomial interpolation operator. Using Lemma 5.3, the Sobolev inequality (B.33)
and Theorem 3.44 gives

‖G1‖∞ = ‖u− I−μ,0
N u‖∞ = ‖u− INu+ I−μ,0

N (INu− u)‖∞

≤ (1+ c lnN)‖u− INu‖∞ ≤ c lnN‖u− INu‖1/2‖u− INu‖1/2
1

≤ c

√

(N − r+ 1)!
N!

(N + r)−r/2 lnN‖∂ r
x u‖ωr−1,r−1 .

(5.73)
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To estimate G2, we obtain from Lemmas 5.1–5.3 that

‖G2‖∞ = ‖I−μ,0
N (Me)−Me‖∞

≤ ‖I−μ,0
N (Me)−TN(Me)‖∞ + ‖TN(Me)−Me‖∞

≤ (1+ c lnN)‖TN(Me)−Me‖∞

≤ cN−κ lnN‖Me‖C0,κ ≤ cN−κ lnN‖e‖∞.

(5.74)

Consequently, if κ > 0 and N is large enough, we have

‖G2‖∞ ≤ 1
3
‖e‖∞. (5.75)

Finally, a combination of (5.68), (5.72), (5.73), and (5.75) leads to the desired
estimate. ��

5.4 Application to Delay Differential Equations

We discuss in this section numerical solutions of delay differential equations. To
demonstrate the main idea, we consider the delay differential equation with propor-
tional delay:

u′(x) = a(x)u(qx), 0 < x ≤ T ; u(0) = y0, (5.76)

where 0 < q < 1 is a given constant and a is a smooth function on [0,T ]. This prob-
lem belongs to the class of the so-called pantograph delay differential equations (see
Fox et al. (1971), Iserles (1993) for details on their theory and physical applications).

The existing numerical methods for solving (5.76) include Runge–Kutta type
methods (see, e.g., Bellen and Zennaro (2003)) and the piecewise-polynomial collo-
cation methods (see, for instance, Brunner (2004)). The main difficulty in the appli-
cation of Runge–Kutta methods to (5.76) is the lack of information at the grid points
for the function on the right hand side of (5.76), so these numerical data have to be
generated by some local interpolation process. While the piecewise-polynomial col-
location methods yield globally defined approximations, the corresponding numer-
ical solutions are not globally smooth. Moreover, it has been shown in Brunner and
Hu (2007) that for arbitrarily smooth solutions of (5.76) the optimal order at the grid
points obtained using piecewise polynomials of degree m cannot exceed p = m+ 2
when m ≥ 2 (in contrast to their application to ordinary differential equations where
collocation at the Gauss points leads to O(h2m)-convergence).

If the function a is in Cd [0,T ], then the corresponding solution of the initial-value
problem (5.76) lies in Cd+1[0,T ]. In this case, it is suitable to employ spectral-type
methods since they produce approximate solutions that are defined globally on [0,T ]
and globally smooth.



198 5 Volterra Integral Equations

For ease of notation, we implement and analyze the spectral method on the
reference interval I := [−1,1]. Hence, using the transformation

x =
T
2
(1+ t), t =

2x
T

− 1,

the problem (5.76) becomes

y′(t) = b(t)y(qt + q1), −1 < t ≤ 1; y(−1) = y0, (5.77)

where

y(t) = u
(

T (1+ t)/2
)

, b(t) =
T
2

a
(

T (1+ t)/2
)

, q1 = q− 1. (5.78)

To fix the idea, we only consider the Legendre-collocation method for solving
(5.77). To this end, let {t j,ω j}N

j=0 be the set of Legendre-Gauss-Lobatto points and
weights. Integrating (5.77) from −1 to t j gives

y(t j) = y0 +
∫ t j

−1
b(s)y(qs+ q1)ds, 1 ≤ j ≤ N. (5.79)

Using the linear transformation

s =
t j + 1

2
v+

t j − 1
2

, v ∈ [−1,1],

yields

y(t j) = y0 +

∫ 1

−1
b̃(v;t j)y

( t j + 1
2

qv+ q1 j

)

dv, (5.80)

where

b̃(v;t j) :=
1+ t j

2
b
( t j + 1

2
v+

t j − 1
2

)

, q1 j :=
t j + 1

2
q− 1.

The Legendre-collocation scheme for (5.80) is to find yN ∈ PN such that

yN(t j) = y0 +
N

∑
k=0

b̃(vk;t j)yN

( t j + 1
2

qvk + q1 j

)

ωk, 0 ≤ j ≤ N, (5.81)

where {vk = tk}N
k=0 are the Legendre-Gauss-Lobatto points. We now describe in

more detail how to efficiently implement (5.81).
Let {Yj = yN(t j)}N

j=0, and write

yN(t) =
N

∑
j=0

Yjh j(t), (5.82)

where {h j}N
j=0 are the Lagrange basis polynomials relative to {t j}N

j=0. To evaluate
yN at non-interpolation points efficiently, we compute h j(t) by using (5.15)–(5.17).
More precisely, we expand hk(v) in terms of the Legendre polynomials:
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hk(v) =
N

∑
m=0

ck
mLm(v), (5.83)

and find that

ck
m =

2m+ 1
N(N + 1)

N

∑
s=0

hk(xs)
Lm(xs)

[LN(xs)]2
=

2m+ 1
N(N + 1)

Lm(xk)

[LN(xk)]2
. (5.84)

Hence, the scheme (5.81) becomes: find yN ∈ PN such that

Yj = y0 +
N

∑
i=0

a jiYi, 0 ≤ j ≤ N (5.85)

with a ji = ∑N
k=0 b̃(vk;t j)hi

(

t j+1
2 qvk + q1 j

)

ωk, which is a linear system (with a full

matrix A = (a ji)) for the unknown vector (Y0,Y1, . . . ,YN)
t , and the entries of the

matrix A can be computed by using (5.83)–(5.84).

Remark 5.3. We may consider more general delay differential or integral equations
with two or more vanishing delays:

⎧

⎨

⎩

y′(t) = a(t)y(t)+
r

∑
�=1

b�(t)y(q�t), t ∈ I := [a,b],

y(0) = y0,

(5.86)

and the analogous multiple-delay Volterra integral equation

y(t) = g(t)+
r

∑
�=1

∫ q�t

0
K�(t,s)y(s)ds, t ∈ I, (5.87)

where 0 < q1 < .. . < qr < 1 (r ≥ 2). It is demonstrated numerically in Ali et al.
(2009) that for the pantograph-type functional equations the spectral methods pro-
posed yield the exponential order of convergence.

Next, we present some numerical results. Without lose of generality, we only
consider the Legendre-Gauss-Lobatto quadrature rule in (5.11). We first consider
(5.76) with q = 0.7,y0 = 1,T = 1; the function a(x) is chosen such that the exact
solution of u is given by u(x) = cos(2x− 1).

In Table 5.3, we tabulate the maximum point-wise errors obtained by (5.85) with
various N, which indicate that the desired spectral accuracy is obtained.

Table 5.3 The maximum point-wise errors
N 6 8 10 12 14

Error 6.41e-03 6.15e-05 3.06e-07 9.26e-10 1.79e-12
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Below we consider the spectral methods for the case of two proportional delays;
that is, for the functional equation

{

y′(t) = a(t)y(t)+ b1(t)y(q1t)+ b2(t)y(q2t), t ∈ I,
y(0) = y0.

(5.88)

The numerical schemes proposed previously can be readily adapted to deal with
(5.88). In the following, we use numerical examples to illustrate the accuracy and
efficiency of the spectral methods. In (5.88), let b1(t) = cos(t),b2(t) = sin(t) and
a(t) = 0. We choose g(t) such that the exact solution is given by y(t) = sin(tq−1

1 )+

cos(tq−1
2 ).

Table 5.4 The maximum point-wise errors with q1 = 0.05,q2 = 0.95
N 12 14 16 18 20

Error 1.14e-02 1.66e-03 2.07e-04 1.37e-5 7.22e-07

In Table 5.4, the maximum point-wise errors with q1 = 0.05,q2 = 0.95 are listed.
This is a quite extreme case with very small value of the delay parameter q1. For the
piecewise-polynomial collocation methods, it will require few hundred collocation
points to reach the errors of about 10−7; while with the spectral approach only 20
points are needed.

Problems

5.1. Consider the numerical example for (5.6) with the given functions (5.36).
(i) Provide a maximum point-wise errors table similar to Table 5.1 using the Trape-
zoidal method.
(ii) Verify the results in Table 5.1.

5.2. Derive the L2-estimate of the Legendre-Galerkin method with numerical inte-
gration for (5.48), where the discrete inner product is associated with the Legendre-
Gauss-Lobatto quadrature.

5.3. Design a Legendre-collocation method for the delay Volterra integral equation

y(t) = g(t)+
∫ qt

0
K(t,s)y(s)ds,

with 0 < q < 1. Try to provide a convergence analysis.



Chapter 6
Higher-Order Differential Equations

High-order differential equations often arise from mathematical modeling of a
variety of physical phenomena. For example, higher even-order differential equa-
tions may appear in astrophysics, structural mechanics and geophysics, and higher
odd-order differential equations, such as the Korteweg–de Vries (KdV) equation,
are routinely used in modeling nonlinear waves and nonlinear optics.

In this chapter, we introduce a family of generalized Jacobi polynomials (GJPs)
(cf. Guo et al. (2006a, 2009)), which serve as natural basis functions for spectral
approximations of higher-order boundary value problems. The GJPs generalize the
classical Jacobi polynomials with parameters α,β >−1 to allow α and/or β being
negative integers. The use of GJPs leads to much concise analysis and more precise
error estimates for spectral approximations of PDEs, particularly for higher-order
PDEs considered in this chapter.

6.1 Generalized Jacobi Polynomials

The definition of GJPs is motivated by the observation that the Legendre basis func-
tions in (4.19) satisfy

φk(x) = Lk(x)−Lk+2(x)
(3.116)

=
2k+ 3

2(k+ 1)
(1− x2)J1,1

k (x).

Hence, {φk} are orthogonal with respect to the weight function ω−1,−1(x) = (1−
x2)−1, which, apart from a multiplicative constant, can be referred to as the GJP
with index-(−1,−1).

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 201
Springer Series in Computational Mathematics 41, DOI 10.1007/978-3-540-71041-7 6,
c© Springer-Verlag Berlin Heidelberg 2011
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We now extend the definition of the classical Jacobi polynomials to the cases where
one or both parameter(s) (k, l) being negative integer(s) by

Jk,l
n (x) =

⎧

⎪

⎨

⎪

⎩

(1− x)−k(1+ x)−lJ−k,−l
n−n0

(x), if k, l ≤−1,

(1− x)−kJ−k,l
n−n0

(x), if k ≤−1, l >−1,

(1+ x)−lJk,−l
n−n0

(x), if k >−1, l ≤−1,

(6.1)

where n ≥ n0 with n0 := −(k+ l),−k,−l for the above three cases, respectively. It
is clear that the so-defined GJP Jk,l

n is a polynomial of degree n.

Remark 6.1. The definition (6.1) is also valid for −1 < k ∈ R and/or −1 < l ∈ R.
However, we shall restrict our attention below to k, l ∈ Z only. It is also possible
to extend definition of the classical Jacobi polynomials Jα ,β

n to all α,β ∈ R (cf.
Guo et al. (2009)). However, this process is much more involved so it will not be
discussed in this chapter.

To simplify the notation, we introduce

k̂ :=

{

− k, k ≤−1,

0, k >−1,
k̄ :=

{

− k, k ≤−1,

k, k >−1.
(6.2)

It is clear that for any k ∈ Z,

k̂ ≥ 0, k̄ >−1, k = k̄− 2k̂. (6.3)

With the above notation, it is easy to check that the GJPs can be expressed as

Jk,l
n (x) = ω k̂,l̂(x)Jk̄,l̄

n−n0
(x), n ≥ n0, k, l ∈ Z, (6.4)

where ωa,b(x) = (1− x)a(1+ x)b and n0 = k̂+ l̂.
We now present some basic properties of the GJPs.
First of all, the GJPs are orthogonal with respect to the generalized Jacobi weight

ωk,l for all integers k and l, i.e.,

∫ 1

−1
Jk,l

n (x)Jk,l
m (x)ωk,l(x)dx = γ k̄,l̄

n−n0
δmn, n ≥ n0, (6.5)

where the constant γ k̄,l̄
n−n0

is given in (3.109).

As the classical Jacobi polynomials, the GJPs {Jk,l
n } form a complete orthogo-

nal system in L2
ωk,l (I). Indeed, we observe from (6.3) that for any u ∈ L2

ωk,l (I), we
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have uω−k̂,−l̂ ∈ L2
ω k̄,l̄ (I). Since the classical Jacobi polynomials

{

Jk̄,l̄
n−n0

: n≥ n0
}

are

complete in L2
ω k̄,l̄ (I), we can write

(uω−k̂,−l̂)(x) =
∞

∑
n=n0

ûnJk̄,l̄
n−n0

(x),

where

ûn =
1

γ k̄,l̄
n−n0

∫ 1

−1
uω−k̂,−l̂ Jk̄,l̄

n−n0
ω k̄,l̄dx =

1

γ k̄,l̄
n−n0

∫ 1

−1
uJk,l

n ωk,ldx. (6.6)

Therefore, any u ∈ L2
ωk,l (I) can be expanded as

u(x) =
∞

∑
n=n0

ûnJk,l
n (x), k, l ∈ Z. (6.7)

Thanks to the orthogonality (6.5), the expansion (6.7) must be unique. Hence, the
system {Jk,l

n } is complete in L2
ωk,l (I).

It is interesting that the GJPs with negative integer parameters can be expressed
as compact combinations of Legendre polynomials. Indeed, one verifies by using
(3.116) and the definition of the GJPs that

J−1,−1
n = c−1,−1

n

(

Ln−2 −Ln
)

,

J−2,−1
n = c−2,−1

n

(

Ln−3 − 2n− 3
2n− 1

Ln−2 −Ln−1 +
2n− 3
2n− 1

Ln

)

,

J−1,−2
n = c−1,−2

n

(

Ln−3 +
2n− 3
2n− 1

Ln−2 −Ln−1 − 2n− 3
2n− 1

Ln

)

,

J−2,−2
n = c−2,−2

n

(

Ln−4 − 2(2n− 3)
2n− 1

Ln−2 +
2n− 5
2n− 1

Ln

)

,

(6.8)

where

c−1,−1
n =

2(n− 1)
2n− 1

, c−2,−1
n =

2(n− 2)
2n− 3

,

c−1,−2
n =

2(n− 2)
2n− 3

, c−2,−2
n =

4(n− 2)(n− 3)
(2n− 3)(2n− 5)

.

In general, we have the following result.

Lemma 6.1. Let k, l ∈ Z and k, l ≥ 1. Then there exists a unique set of constants
{a j} such that

J−k,−l
n (x) =

n

∑
j=n−k−l

a jL j(x), n ≥ k+ l. (6.9)
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Proof. In this proof, we denote by {c j} a set of generic constants. Then, using the

properties (3.116a) and (3.116b) repeatedly leads to

J−k,−l
n (x) = (1− x)k(1+ x)lJk,l

n−k−l(x)

= (1+ x)l(1− x)k−1
(

c1Jk−1,l
n−k−l(x)+ c2Jk−1,l

n−k−l+1(x)
)

= . . .= (1+ x)l
n−l

∑
j=n−k−l

c jJ
0,l
j (x)

= . . .=
n

∑
j=n−k−l

a jL j(x).

This completes the proof. ��
Another attractive property of the GJPs is that for any k, l ∈ Z and k, l ≥ 1,

∂ i
xJ−k,−l

n (1) = 0, for i = 0,1, . . . ,k− 1,

∂ j
x J−k,−l

n (−1) = 0, for j = 0,1, . . . , l − 1.
(6.10)

Hence,
{

J−k,−l
n

}

are natural candidates as basis functions for PDEs with the follow-
ing boundary conditions:

∂ i
xu(1) = ai, for i = 0,1, . . . ,k− 1,

∂ j
x u(−1) = b j, for j = 0,1, . . . , l − 1.

(6.11)

Remark 6.2. Note that the GJPs can only be used as basis functions for problems
with essential boundary conditions of the form (6.11). For other type of boundary
conditions, one should still use the general approach to construct basis functions by
using a compact combination of orthogonal polynomials (see Problem 6.2).

As with the classical Jacobi polynomials (see (3.98)), the generalized Jacobi
polynomials satisfy a similar derivative recurrence relation.

Lemma 6.2. For k, l ∈ Z, we have

∂xJk,l
n (x) =Ck,l

n Jk+1,l+1
n−1 (x), (6.12)

where

Ck,l
n =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−2(n+ k+ l+ 1), if k, l ≤−1,

−n, if k ≤−1, l >−1,

−n, if k >−1, l ≤−1,
1
2 (n+ k+ l+ 1), if k, l >−1.

(6.13)
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Proof. We prove (6.12) case by case.

(i) The formula (6.12)–(6.13) with k, l >−1 is a direct consequence of (3.100).
(ii) If k, l ≤−1, then (3.321) implies

Jk+1,l+1
n−1 (x)

(6.1)
= (1− x)−k−1(1+ x)−l−1J−k−1,−l−1

n+k+l+1 (x)

(3.321)
= − 1

2(n+ k+ l+ 1)
∂x

(

(1− x)−k(1+ x)−lJ−k,−l
n+k+l(x)

)

(6.1)
= − 1

2(n+ k+ l+ 1)
∂xJk,l

n (x),

which leads to (6.12) with k, l ≤−1.
(iii) If k ≤−1 and l >−1, then we have

∂xJk,l
n

(6.1)
= ∂x

(

(1− x)−kJ−k,l
n+k

)

= (1− x)−k−1
(

kJ−k,l
n+k +(1− x)∂xJ−k,l

n+k

)

(3.100)
= (1− x)−k−1

(

kJ−k,l
n+k +

1
2
(n+ l+ 1)(1− x)J−k+1,l+1

n+k−1

)

(3.116a)
= (1− x)−k−1

{

kJ−k,l
n+k +

n+ l+ 1
2n+ k+ l+ 1

(

nJ−k,l+1
n+k−1

− (n+ k)J−k,l+1
n+k

)}

.

The formula (3.118a) implies

J−k,l+1
n+k−1 = J−k,l

n+k − J−k−1,l+1
n+k .

Plugging it into the previous formula leads to

∂xJk,l
n = (1− x)−k−1

{

kJ−k,l
n+k +

n+ l+ 1
2n+ k+ l+ 1

(

nJ−k,l
n+k

− nJ−k−1,l+1
n+k − (n+ k)J−k,l+1

n+k

)}

= (1− x)−k−1
{ n+ k

2n+ k+ l+ 1

(

(n+ k+ l+ 1)J−k,l
n+k

− (n+ l+ 1)J−k,l+1
n+k

)

− n(n+ l+ 1)
2n+ k+ l+ 1

J−k−1,l+1
n+k

}

.

Thanks to (3.118b), we have

(n+ l+ 1)J−k,l+1
n+k = (n+ k+ l+ 1)J−k,l

n+k + nJ−k−1,l+1
n+k .
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Consequently,

∂xJk,l
n = (1− x)−k−1

( −(n+ k)n
2n+ k+ l+ 1

J−k−1,l+1
n+k

− n(n+ l+ 1)
2n+ k+ l+ 1

J−k−1,l+1
n+k

)

=−n(1− x)−k−1J−k−1,l+1
n+k

(6.1)
= −nJk+1,l+1

n−1 .

This gives (6.12) with k ≤−1 and l >−1.

(iv) The case: k > −1 and l ≤ −1 can be proved in the same fashion as above.
��

In the rest of this chapter, we shall develop and analyze Galerkin and Petrov-
Galerkin methods using GJPs as basis functions for high-order boundary value
problems.

6.2 Galerkin Methods for Even-Order Equations

For the sake of clarity, we start with fourth-order equations followed by general
even-order equations.

6.2.1 Fourth-Order Equations

Consider

u(4)−αu′′+βu = f , x ∈ I = (−1,1),

u(±1) = u′(±1) = 0,
(6.14)

where α ≥ 0 and β > 0 are given constants. This equation may arise from many sci-
entific applications, such as the biharmonic equation, the Stokes equations in stream
function form, and semi-implicit time discretizations of the Kuramoto–Sivashinsky
equation and of the Cahn–Hilliard equation.

The weak formulation of (6.14) is
{

Find u ∈ H2
0 (I) such that

a(u,v) := (u′′,v′′)+α(u′,v′)+β (u,v) = ( f ,v), ∀v ∈ H2
0 (I).

(6.15)

Using the Poincaré inequality (cf. (B.44)),

‖u‖2 � |u|2, ∀u ∈ H2
0 (I), (6.16)
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we find that the bilinear form a(·, ·) is continuous and coercive in H2
0 (I)×H2

0 (I),
i.e.,

|a(u,v)|� |u|2|v|2, ‖u‖2
2 � a(u,u), ∀u,v ∈ H2

0 (I). (6.17)

Hence, by the Lax-Milgram lemma, the problem (6.15) admits a unique solution
u ∈ H2

0 (I), if f ∈ H−2(I).
The Legendre-Galerkin approximation of (6.14) is

{

Find uN ∈VN := PN ∩H2
0 (I) such that

a(uN,vN) = (IN f ,vN), ∀vN ∈VN,
(6.18)

where IN is the interpolation operator associated with, say, Legendre-Gauss-Lobatto
points. Notice that an advantage of this approach is that the choice of interpolation
points for IN can be quite flexible. It is not necessary to construct special quadra-
ture rules/collocation points corresponding to (6.14), as in the case of a collocation
method (cf. Bernardi et al. (1992)).

In view of (6.17), the discrete problem (6.18) also admits a unique solution
uN ∈VN .

It is clear from (6.10) that

VN = span{J−2,−2
k : k = 4,5 . . . ,N}.

Set

φk(x) = γkJ−2,−2
k+4 (x) with γk such that (φ ′′

k ,φ
′′
k ) = 1.

Thanks to (6.8), it is easy to verify that

φk(x) = dk

(

Lk(x)− 2(2k+ 5)
2k+ 7

Lk+2(x)+
2k+ 3
2k+ 7

Lk+4(x)
)

, (6.19)

with

dk =
1

√

2(2k+ 3)2(2k+ 5)
.

Then, for all 0 ≤ k, j ≤ N − 4, we have

ak j := (φ ′′
j , φ ′′

k ) = (φ j
′′′′, φk) = (φ j , φ ′′′′

k ) = δk j. (6.20)

Therefore, setting q = N − 4 and

bk j = (φ j, φk), B =
(

bk j
)

0≤k, j≤q;

ck j = (φ ′
j ,φ

′
k), C = (ck j)0≤k, j≤q;

fk = (IN f ,φk), f =
(

f0, f1, . . . , fq
)T ;

uN =
q

∑
n=0

ûnφn(x), u =
(

û0, û1, . . . , ûq
)T

,
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the system (6.18) reduces to
(

I+βB+αC
)

u = f, (6.21)

where I is the q-by-q identity matrix.
It is obvious that B and C are symmetric positive definite matrices, and it is easy

to shown that

bk j = 0 if k �= j, j± 2, j± 4; ck j = 0 if k �= j, j± 2.

The nonzero entries of B and C can be easily determined from the properties of
Legendre polynomials. Hence, the above system can be solved as efficiently as a
second-order equation.

6.2.2 General Even-Order Equations

We now consider a more general 2mth-order equation:

b0∂ 2m
x u(x)+

2m−1

∑
k=0

b2m−k∂ k
x u(x) = f (x), in I = (−1,1), m ≥ 1,

∂ k
x u(±1) = 0, 0 ≤ k ≤ m− 1,

(6.22)

where {b j}2m
j=0 and f are given functions.

We introduce the bilinear form associated with (6.22):

am(u,v) :=(−1)m(∂ m
x u,∂ m

x (b0v)
)

+(−1)m(∂ m−1
x u,∂ m

x (b1v)
)

+(−1)m−1(∂ m−1
x u,∂ m−1

x (b2v)
)

+ . . .+
(

b2mu,v
)

.
(6.23)

As usual, we assume that the coefficients {b j} are such that the bilinear form is
continuous and coercive:

|am(u,v)| ≤C0‖u‖m‖v‖m, ∀u,v ∈ Hm
0 (I), (6.24a)

am(u,u)≥C1‖u‖2
m, ∀u ∈ Hm

0 (I), (6.24b)

where C0 and C1 are two positive constants depending on {b j}2m
j=0.

The weak formulation of (6.22) is
{

Find u ∈ Hm
0 (I) such that

am(u,v) = ( f ,v), ∀v ∈ Hm
0 (I).

(6.25)

Thanks to (6.24a)-(6.24b), the above problem admits a unique solution in Hm
0 (I) if

f ∈ H−m(I).
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The Legendre-Galerkin approximation of (6.25) is
{

Find uN ∈VN := PN ∩Hm
0 (I) such that

am(uN ,vN) = (IN f ,vN), ∀vN ∈VN ,
(6.26)

where IN is the interpolation operator associated with Legendre-Gauss-Lobatto
points.

In view of the homogeneous boundary conditions built in J−m,−m
n , we find

VN = span
{

J−m,−m
2m ,J−m,−m

2m+1 , . . . ,J−m,−m
N

}

.

Using the facts that ωm,m∂ 2m
x J−m,−m

l ∈ Vl and J−m,−m
k is orthogonal to Vl if k > l,

we find
(

∂ m
x J−m,−m

k ,∂ m
x J−m,−m

l

)

= (−1)m(J−m,−m
k ,∂ 2m

x J−m,−m
l

)

=
(

J−m,−m
k ,ωm,m∂ 2m

x J−m,−m
l

)

ω−m,−m = 0,
(6.27)

which is also true if k < l.
Define the basis functions

φk(x) := ck,mJ−m,−m
k+2m (x), 0 ≤ k ≤ N − 2m,

and choose a proper scaling factor ck,m such that

(∂ m
x φk,∂ m

x φl) = δkl .

Hence, by setting q = N − 2m and

uN =
q

∑
l=0

ûlφl , u =
(

û0, û1, . . . , ûq
)T

;

akl = am(φl ,φk), A =
(

akl
)

0≤k,l≤q;

fk = (IN f ,φk), f =
(

f0, f1, . . . , fq
)T

,

the linear system associated with (6.26) becomes Au= f. Thanks to (6.24a)-(6.24b),
we have

C0‖u‖2
l2 =C0|uN|2m ≤ am(uN ,uN) = (Au,u)l2

≤C1|uN|2m =C1‖u‖2
l2 ,

(6.28)

which implies that cond(A)≤C1/C0 and is independent of N. It can be easily shown
that A is a sparse matrix with bandwidth 2m+1, if {b j} are constants. Hence, higher
even-order equations in the form of (6.22) can be solved as efficiently as a second-
order equation. Furthermore, the use of GJPs also leads to simplified error analysis,
see Sect. 6.5.
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6.3 Dual-Petrov-Galerkin Methods for Odd-Order Equations

In this section, we present a spectral dual-Petrov-Galerkin method using the GJPs as
basis functions for odd-order differential equations (cf. Shen (2003)). For the sake
of clarity, we shall start with a third-order equation, and then extend it to general
odd-order differential equations.

6.3.1 Third-Order Equations

Consider the third-order equation

{

αu−βux − γuxx+ uxxx = f , x ∈ I = (−1,1),

u(±1) = ux(1) = 0,
(6.29)

where α, β , γ are given constants. Without loss of generality, we only consider
homogeneous boundary conditions, since non-homogeneous boundary conditions
u(−1) = c1, u(1) = c2 and ux(1) = c3 can be easily handled by considering v =
u− û, where û is the unique quadratic polynomial satisfying the non-homogeneous
boundary conditions.

Since the leading third-order differential operator is not self-adjoint, it is natural
to use a Petrov-Galerkin method, in which the trial and test functions are taken from
different spaces.

Define

V =
{

u : u ∈ H1
0 (I), ux ∈ L2

ω−2,0(I)
}

,

W =
{

u : u ∈V, uxx ∈ L2
ω0,2(I)

}

.
(6.30)

A Petrov-Galerkin formulation for (6.29) is
⎧

⎪

⎨

⎪

⎩

Find u ∈V such that

α(u,v)−β (∂xu,v)+ γ(∂xu,∂xv)+ (∂xu,∂ 2
x v)

= ( f ,v), ∀v ∈W.

(6.31)

We refer to Goubet and Shen (2007) for a rigorous mathematical analysis of (6.31)
and related nonlinear problems.

We now construct a spectral approximation scheme for (6.31). Let us denote

VN =
{

u ∈ PN : u(±1) = ux(1) = 0
}

,

V ∗
N =

{

u ∈ PN : u(±1) = ux(−1) = 0
}

.
(6.32)

It is clear that VN ⊂V and V ∗
N ⊂W .
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The Legendre dual-Petrov-Galerkin (LDPG) (cf. Shen (2003)) approximation of
(6.31) is

⎧

⎪

⎨

⎪

⎩

Find uN ∈VN such that

α(uN ,vN)−β (∂xuN ,vN)+ γ(∂xuN ,∂xvN)+ (∂xuN ,∂ 2
x vN)

= (IN f ,vN), ∀vN ∈V ∗
N ,

(6.33)

where IN is the interpolation operator associated with the Legendre-Gauss-Lobatto
points.

Notice that for any uN ∈ VN, we have ω−1,1uN ∈ V ∗
N , so the above dual-Petrov-

Galerkin formulation is equivalent to the following weighted Galerkin formulation:

⎧

⎪

⎨

⎪

⎩

Find uN ∈VN such that

α(uN ,vN)ω−1,1 −β (∂xuN ,vN)ω−1,1 + γ
(

∂xuN ,ω1,−1∂x(vNω−1,1)
)

ω−1,1

+(∂xuN ,ω1,−1∂ 2
x (vNω−1,1))ω−1,1 = ( f ,vN)ω−1,1 , ∀vN ∈VN .

(6.34)

In fact, the dual-Petrov-Galerkin formulation (6.33) is most suitable for implemen-
tation while the weighted Galerkin formulation (6.34) is more convenient for error
analysis.

At this point, one important issue is to show the well-posedness of the dual-
Petrov-Galerkin scheme. For this purpose, we first prove the following Hardy-type
inequalities.

Lemma 6.3.
∫

I

u2

(1− x)4 dx ≤ 4
9

∫

I

(ux)
2

(1− x)2 dx, ∀u ∈VN, (6.35a)

∫

I

u2

(1− x)3 dx ≤
∫

I

(ux)
2

1− x
dx, ∀u ∈VN . (6.35b)

Proof. Let u ∈VN and h ≤ 2. Then, for any constant q, we have

0 ≤
∫

I

( u
1− x

+ qux

)2 1
(1− x)h dx

=

∫

I

( u2

(1− x)2+h + q
(u2)x

(1− x)1+h + q2 (ux)
2

(1− x)h

)

dx

= (1− (1+ h)q)
∫

I

u2

(1− x)2+h
dx+ q2

∫

I

(ux)
2

(1− x)h
dx.

We obtain (6.35a) and (6.35b) by taking h = 2,q = 2
3 and h = q = 1, respectively.

��
Remark 6.3. Note that with a change of variable x →−x in the above lemma, we
obtain the corresponding inequalities for u ∈V ∗

N.
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The leading third-order differential operator is coercive in the following sense.

Lemma 6.4.

1
3
‖ux‖2

ω−2,0 ≤
(

ux,(uω−1,1)xx
)≤ 3‖ux‖2

ω−2,0 , ∀u ∈VN. (6.36)

Proof. For any u∈VN , we have uω−1,1 ∈V ∗
N . Thanks to the homogeneous boundary

conditions built into the spaces VN and V ∗
N , all the boundary terms from the integra-

tion by parts of the third-order term would vanish. Therefore, using the identity

∂ k
x ω−1,1(x) =

2k!
(1− x)k+1

and Lemma 6.3, we find
(

ux,(uω−1,1)xx
)

= (ux,uxxω−1,1 + 2uxω−1,1
x + uω−1,1

xx )

=
1
2

∫

I

(

(u2
x)xω−1,1 +(u2)xω−1,1

xx + 4u2
xω−1,1

x

)

dx

=
∫

I

(3
2

u2
xω−1,1

x − 1
2

u2ω−1,1
xxx

)

dx

= 3
∫

I

u2
x

(1− x)2 dx− 6
∫

I

u2

(1− x)4 dx ≥ 1
3

∫

I

u2
x

(1− x)2 dx.

The desired results follow immediately from the above. ��
Set

φk(x) = γkJ−2,−1
n+3 (x), ψk(x) = γkJ−1,−2

k+3 (x),

where γk is chosen such that (φ ′
k,ψ

′′
k ) = 1. It is clear from (6.10) that

VN = span
{

φ0,φ1, . . . ,φN−3
}

, V ∗
N = span

{

ψ0,ψ1, . . . ,ψN−3
}

. (6.37)

Therefore, denoting

uN =
N−3

∑
k=0

ûkφk, u =
(

û0, û1, . . . , ûN−3
)T

;

fk = (IN f ,ψk), f =
(

f0, f1, . . . , fN−3
)T

;

mi j = (φ j ,ψi), pi j =−(φ ′
j,ψi),

qi j = (φ ′
j,ψ

′
i ), si j = (φ ′

j,ψ
′′
i ),

(6.38)

the linear system (6.33) becomes

(

αM+βP+ γQ+ S
)

u = f, (6.39)

where M, P, Q and S are (N −2)× (N−2) matrices with entries mi j, pi j qi j and si j,
respectively.
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By using (6.8) and the orthogonality of the Legendre polynomials, we can easily
show that

mi j = 0 for |i− j|> 3; pi j = 0 for |i− j|> 2;

qi j = 0 for |i− j|> 1; si j = 0 for i �= j.

Non-zero elements of M, P, Q can be easily determined from the properties of
Legendre polynomials.

In summary, the coefficient matrix in (6.39) is seven-diagonal, so it can be in-
verted efficiently as in the second-order case.

Remark 6.4. Ma and Sun (2000, 2001) proposed an alternative Petrov-Galerkin
method for solving third-order differential equation by using a different test function
space:

WN :=
{

u ∈ PN−1 : u(±1) = 0
}

.

It is shown in Ma and Sun (2000, 2001) that their Petrov-Galerkin method also leads
to sparse matrices for problems with constant coefficients.

Remark 6.5. In Shen and Wang (2007c), the Legendre and Chebyshev dual-Petrov-
Galerkin methods were implemented and analyzed for hyperbolic equations.

6.3.2 General Odd-Order Equations

Consider the following problem:

(−1)m+1∂ 2m+1
x u(x)+ Sm(u)+ γu(x) = f (x), in I = (−1,1), m ≥ 0,

∂ k
x u(±1) = ∂ m

x u(1) = 0, 0 ≤ k ≤ m− 1,
(6.40)

where Sm(u) is a linear combination of {∂ j
x u}2m−1

j=1 . Without loss of generality, we
assume that

Sm(u) = (−1)mδ∂ 2m−1
x u(x), δ ≥ 0, (6.41)

since other linear terms with derivatives lower than 2m− 1 can be treated similarly.
Let us define

VN =
{

u ∈ PN : ∂ k
x u(±1) = 0, 0 ≤ k ≤ m− 1, ∂ m

x u(1) = 0
}

,

V ∗
N =

{

u ∈ PN : ∂ k
x u(±1) = 0, 0 ≤ k ≤ m− 1, ∂ m

x u(−1) = 0
}

.
(6.42)

Then, the Legendre dual-Petrov-Galerkin (LDPG) approximation of (6.40) is

⎧

⎪

⎨

⎪

⎩

Find uN ∈VN such that

− (∂ m+1
x uN,∂ m

x vN)− δ (∂ m
x uN,∂ m−1

x vN)

+ γ(uN,vN) = (IN f ,vN), ∀vN ∈V ∗
N ,

(6.43)
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where IN is the interpolation operator associated with the Legendre-Gauss-Lobatto
points.

Note that for any vN ∈VN , we have ω−1,1vN ∈V ∗
N . Hence, we can rewrite (6.43)

into the following weighted spectral-Galerkin formulation:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find uN ∈VN such that

bm(uN ,vN) :=−(∂ m+1
x uN ,ω1,−1∂ m

x (ω−1,1vN)
)

ω−1,1

−δ
(

∂ m
x uN ,ω1,−1∂ m−1

x (ω−1,1vN)
)

ω−1,1

+ γ
(

uN ,vN
)

ω−1,1 =
(

IN f ,vN
)

ω−1,1 , ∀vN ∈VN .

(6.44)

Denote by

Q−k,−l
N := span

{

J−k,−l
k+l , . . . ,J−k,−l

N

}

, ∀k, l ∈ Z. (6.45)

Thanks to the homogeneous boundary conditions built in VN and V ∗
N , we have

VN = Q−m−1,−m
N , V ∗

N = Q−m,−m−1
N . (6.46)

The following “coercivity” property (cf. Guo et al. (2006a)) is a direct extension
of Lemma 6.4.

Lemma 6.5.

−(∂ m+1
x u,∂ m

x (uω−1,1)
)

= (2m+ 1)
∫

I

(

∂ m
x

( u
1− x

))2
dx, ∀u ∈VN. (6.47)

Proof. For any u ∈VN, we set u = (1− x)Φ with Φ ∈ Q−m,−m
N−1 . Then using integra-

tion by parts yields

− (∂ m+1
x u,∂ m

x (uω−1,1)
)

=−((1− x)∂ m+1
x Φ − (m+ 1)∂ m

x Φ,(1+ x)∂ m
x Φ +m∂ m−1

x Φ
)

=−1
2

∫

I
∂x{(∂ m

x Φ)2}(1− x2)dx+(m+ 1)
∫

I
(∂ m

x Φ)2(1+ x)dx

+
m(m+ 1)

2

∫

I
∂x{(∂ m−1

x Φ)2}dx+m
∫

I
∂ m

x Φ∂x((1− x)∂ m−1
x Φ)dx

=−
∫

I
(∂ m

x Φ)2xdx+(m+ 1)
∫

I
(∂ m

x Φ)2(1+ x)dx

+m
∫

I
(∂ m

x Φ)2(1− x)dx− m
2

∫

I
∂x{(∂ m−1

x Φ)2}dx

= (2m+ 1)
∫

I
(∂ m

x Φ)2dx = (2m+ 1)
∫

I

(

∂ m
x

( u
1− x

))2
dx.

This ends the proof. ��
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Notice that (6.47) is valid for all m ≥ 0, and uN/(1− x) ∈ Q−m,−m
N . Applying

the Poincaré inequality repeatedly, we derive that for γ > 0 and δ ≥ 0, there exists
C2 > 0 such that

(2m+ 1)
∫

I

(

∂ m
x

( uN

1− x

))2
dx ≤ bm(uN ,uN)

≤C2(2m+ 1)
∫

I

(

∂ m
x

( uN

1− x

))2
dx, ∀uN ∈VN .

(6.48)

Hence, we conclude from the Lax-Milgram lemma that (6.44) admits a unique
solution.

Let us denote

Φn := dm,nJ−m−1,−m
n+2m , Ψn := dm,nJ−m,−m−1

n+2m . (6.49)

It is easy to see that we can choose dm,n such that

akl :=−(∂ m+1
x Φl ,∂ m

x Ψk) = δkl . (6.50)

We also have

bkl := (Φl ,Ψk) = 0, if |k− l|> 2m+ 1; (6.51a)

ckl :=−(∂ m
x Φl ,∂ m−1

x Ψk) = 0, if k+ 1 < l or l < k− 3. (6.51b)

Hence, by setting

uN =
N−2m

∑
l=0

ûlΦl , u =
(

û0, û1, . . . , ûN−2m
)T

;

B = (bkl)0≤k,l≤N−2m, C = (ckl)0≤k,l≤N−2m;

fk = (IN f ,Ψk), f =
(

f0, f1, . . . , fN−2m
)T

,

the system (6.43) reduces to
(

I + γB+ δC
)

u = f. (6.52)

Since B and C are sparse, the above system can be easily inverted.
The use of GJP basis functions leads to sparse linear systems for problems with

constant or polynomial coefficients. Moreover, the linear system (6.52) is well-
conditioned as we show below.

Indeed, since Φkω−1,1 ∈ V ∗
N , there exists a unique set of coefficients {hk j} such

that

Φkω−1,1 =
N+2m

∑
j=0

hk jΨj, 0 ≤ k ≤ N − 2m.
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Hence, let H = (hk j), we derive from (6.50) and Lemma 6.5 that

〈

Hu,u
〉

l2 =−
(N−2m

∑
j=0

û j∂ m+1
x Φ j ,

N−2m

∑
k, j=0

ûkhk j∂ m
x Ψj

)

=−
(N−2m

∑
j=0

û j∂ m+1
x Φ j ,

N−2m

∑
k=0

ûk∂ m
x (Φkω−1,1)

)

=−(∂ m+1
x uN ,∂ m

x (uNω−1,1)
)

,

where 〈u,v〉l2 := ∑N−2m
j=0 û jv̂ j is the inner product in l2. Similarly, we can verify that

〈

H(I + γB+ δC)u,u
〉

l2 = bm(uN ,uN).

We then derive from the above and (6.48) that

〈

Hu,u
〉

l2 ≤ 〈

H(I+ γB+ δC)u,u
〉

l2 ≤ C2
〈

Hu,u
〉

l2 .

Therefore, the condition number of I+ γB+δC, in the norm ‖v‖H :=
〈

Hv,v
〉1/2

l2 , is
independent of N. It is clear that the above argument also applies to problems with
variable coefficients as long as (6.48) holds.

6.3.3 Higher Odd-Order Equations with Variable Coefficients

As described in Chap. 4, an efficient approach for solving elliptic problems with
variable coefficients is to use the Galerkin method with numerical integration cou-
pled with an iterative technique. We show below that this procedure also works for
higher odd-order equations.

To fix the idea, we consider the third-order equation:

a(x)u− b(x)ux+ uxxx = f , x ∈ I = (−1,1),

u(±1) = ux(1) = 0.
(6.53)

The Legendre dual-Petrov-Galerkin method with numerical integration for (6.53) is
⎧

⎪

⎨

⎪

⎩

Find uN ∈VN such that

〈a(x)uN ,vN〉N −〈b(x)u′N,vN〉N + 〈u′N,v′′N〉N

= 〈 f ,vN〉N , ∀vN ∈V ∗
N ,

(6.54)

where 〈·, ·〉N is the discrete inner product associated with the Legendre-Gauss-
Lobatto quadrature. We recall

〈u,v〉N = (u,v), ∀u · v ∈ P2N−1. (6.55)
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Let {φk;ψ j} be the basis functions defined in (6.37) with

〈φ ′
k,ψ

′′
j 〉N = (φ ′

k,ψ
′′
j ) = δk j, 0 ≤ k, j ≤ N − 3.

Hence, by setting

uN =
N−3

∑
k=0

ũkφk, u =
(

ũ0, ũ1, . . . , ũN−3
)T

;

m jk = 〈a(x)φk,ψ j〉N , p jk =−〈b(x)φ ′
k,ψ j〉N ;

f̃ j = 〈 f ,ψ j〉N , f =
(

f̃0, f̃1, . . . , f̃N−3
)T

,

the linear system (6.54) becomes

(

M+P+ I
)

u = f. (6.56)

It is clear that the matrices M and P are full and their formation involves O(N3)
operations as well as the inversion of (6.56). Hence, a direct approach is advis-
able only if one uses a small or moderate number of modes. Otherwise, an iterative
method can be efficiently implemented as follows:

• Note that a conjugate gradient type iterative method does not require the explicit
formation of the matrix, but only the action of the matrix upon a given vector
is needed at each iteration. Although the formation of M and P involves O(N3)
operations, their action on a given vector u, i.e. Mu and Pu, can be computed in
O(N2) operations.

• The number of operations can be further reduced to O(N log2 N) if we use the
following Chebyshev-Legendre dual-Petrov-Galerkin method:

⎧

⎪

⎨

⎪

⎩

Find uN ∈VN such that

〈Ic
N(a(x)uN),vN〉N −〈Ic

N(b(x)u
′
N),vN〉N

+ 〈u′N,v′′N〉N = 〈 f ,vN〉N , ∀vN ∈V ∗
N ,

(6.57)

where Ic
N is the interpolation operator based on the Chebyshev-Gauss-Lobatto

points, while 〈·, ·〉N is still the discrete inner product of u and v associated with the
Legendre-Gauss-Lobatto quadrature. Hence, the only difference between (6.57)
and (6.54) is that a(x)uN and b(x)u′N in (6.54) are replaced by Ic

N(a(x)uN) and
Ic
N(b(x)u

′
N). Thanks to the Fast Fourier Transform (FFT) and the fast Chebyshev-

Legendre transform (cf. Alpert and Rokhlin (1991)), the Legendre coefficients of
Ic
N(a(x)uN) and Ic

N(b(x)u
′
N) can be computed in O(N log2 N) operations given the

Legendre coefficients of uN .
• Under reasonable assumptions on a(x) and b(x) the matrix M +P+ I is well-

conditioned, that is, its condition number is independent of N. We may follow
a similar procedure as for the system (6.52) to justify it. This statement is con-
firmed by our numerical results.
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In Table 6.1, we list the condition numbers of M +P+ I in (6.56) with various
a(x) and b(x). Notice that in all cases, the condition numbers are small, and more
importantly, independent of N.

Table 6.1 Condition numbers of (6.56)
a(x) = 1 a(x) = 10 a(x) = 50 a(x) = sinx a(x) = 10 exp(x)

N b(x) = 0 b(x) = 0 b(x) = 0 b(x) = 2x−1 b(x) = cosx
16 1.119 2.218 7.219 1.188 2.393
64 1.119 2.218 7.219 1.188 2.393

128 1.119 2.218 7.219 1.188 2.393

Therefore, a conjugate gradient type iterative method like BICGSTAB or CGS
for (6.56) will converge in a small and fixed number (i.e., independent of N) of it-
erations. In short, the Chebyshev-Legendre dual-Petrov-Galerkin method for (6.53)
can be solved in a quasi-optimal O(N log2 N) operations.

6.4 Collocation Methods

As an alternative to the Galerkin approach, one can also use a collocation method for
higher-order equations. However, the choice of collocation points is more delicate,
as it needs to take into account the underlying boundary conditions. More precisely,
one needs to construct generalized quadratures involving derivatives at endpoints.

For r, l ∈ N, let {x j}N−1
j=1 be the zeros of the Jacobi polynomial Jr,l

N−1(x). The
generalized Gauss-Lobatto quadrature formula takes the form (see Krylov (1962),
Huang and Sloan (1992)):

∫ 1

−1
f (x)dx =

N−1

∑
j=1

f (x j)ω j +
l−1

∑
ν=0

f (ν)(−1)ω (ν)
−

+
r−1

∑
μ=0

f (μ)(1)ω(μ)
+ +EN [ f ],

(6.58)

where {ω j}, {ω (ν)
− } and {ω (μ)

+ } are quadrature weights, and EN [ f ] is the quadrature
error. This formula is exact for all polynomials of degree ≤ 2N + r+ l− 3.

Given the values of the function f (x) and its derivatives as follows

f j = f (x j), 1 ≤ j ≤ N − 1; f (ν)− = f (ν)(−1), 0 ≤ ν ≤ l − 1;

f (μ)+ = f (μ)(1), 0 ≤ μ ≤ r− 1,

the polynomial of degree N + l+ r− 2 interpolating these data is given by

(I(G)
N f )(x) =

N−1

∑
j=1

f jh j(x)+
l−1

∑
ν=0

f (ν)− h(ν)0 (x)+
r−1

∑
μ=0

f (μ)+ h(μ)N (x). (6.59)
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Here, the interior (generalized) Lagrange basis polynomials are given by

h j(x) =
Jr,l

N−1(x)

∂xJr,l
N−1(x j)(x− x j)

(1+ x)l(1− x)r

(1+ x j)l(1− x j)r , 1 ≤ j ≤ N − 1, (6.60)

and the expressions of {h(ν)0 } and {h(μ)N } can be found in Huang and Sloan (1992).
Correspondingly, the quadrature weights are expressed as

{

ω j,ω
(ν)
− ,ω (μ)

+

}

=
∫ 1

−1

{

h j(x),h
(ν)
0 (x),h(μ)N (x)

}

dx. (6.61)

We refer to Huang and Sloan (1992) for the explicit expressions of these weights.
Some estimates for the interpolation errors were carried out in Bernardi and Maday
(1997) and Wang et al. (2002).

As an illustrative example, we consider the implementation of the collocation
method for the fifth-order equation:

u(5)(x)+ a1(x)u
′(x)+ a0(x)u(x) = f (x), in (−1,1),

u(±1) = u′(±1) = u′′(1) = 0,
(6.62)

where a0, a1 and f are given functions.
Let us denote

XN =
{

u ∈ PN+3 : u(±1) = u′(±1) = u′′(1) = 0
}

,

whose dimension is N − 1. Let {x j}N−1
j=1 be the zeros of the Jacobi polynomial

J3,2
N−1(x). The collocation scheme of (6.62) is

{

Find uN ∈ XN such that for 1 ≤ j ≤ N − 1,

u(5)N (x j)+ a1(x j)u
′
N(x j)+ a0(x j)uN(x j) = f (x j).

(6.63)

It is clear that

XN = span
{

h j : 1 ≤ j ≤ N − 1
}

.

Setting

uN(x) =
N−1

∑
j=1

u jh j(x), u =
(

u1,u2, . . . ,uN−1
)T

;

d(k)
i j = h(k)j (xi), D(k) =

(

d(k)
i j

)

1≤i, j≤N−1;

Am = diag
(

am(x1),am(x2), . . . ,am(xN−1)
)

, m = 0,1;

f =
(

f (x1), f (x2), . . . , f (xN−1)
)T

,
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we find that the linear system (6.63) reduces to

(

D(5) +A1D(1) +A0
)

u = f. (6.64)

Hence, the collocation method is easy to implement once the differentiation matrices
have been pre-computed. However, it should be pointed out that

• Unlike the situation in Theorem 3.10, the high-order differentiation matrix can
not be computed from the product of the first-order differentiation matrix, when
the derivatives are involved in the boundary conditions (cf. Wang and Guo
(2009)).

• The matrices {D(k)} are full with cond(D(k))∼ N2k (see Table 6.2).
• When N is large, the accuracy of the nodes and of the entries of {D(k)} is subject

to severe roundoff errors.

We note that although one can build effective preconditioners using finite differ-
ence or finite element approximations for the collocation matrices of second- and
fourth-order derivatives (cf. Orszag (1980)), it is not clear how to construct effective
preconditioners for collocation matrices of odd-order.

As a numerical comparison of the generalized Jacobi spectral-Galerkin method
(GJS) with numerical integration (as described in the previous section) and the col-
location method (COL), we tabulate in Table 6.2 the condition numbers of systems
resulting from two methods. We see that for various a0(x) and a1(x), the condition
numbers of the GJS systems are all small and independent of N, while those of the
COL systems increase like O(N10).

Table 6.2 Condition numbers of COL and GJS
a0 = 0 a0 = 10 a0 = 50 a0 = 100x a0 = 10e10x

N Method a1 = 0 a1 = 0 a1 = 1 a1 = 50 a1 = sin(10x)
16 COL 3.30E+05 3.77E+05 4.46E+05 2.49E+05 4.09E+05
16 GJS 1.00 1.07 1.42 1.62 33.05
32 COL 2.70E+08 2.78E+08 3.36E+08 1.37E+08 8.22E+08
32 GJS 1.00 1.07 1.42 1.62 33.05
64 COL 2.58E+11 2.64E+11 4.43E+11 8.11E+10 1.37E+11
64 GJS 1.00 1.07 1.42 1.62 33.05
128 COL 2.05E+14 2.10E+14 2.39E+14 1.86E+14 2.64E+14
128 GJS 1.00 1.07 1.42 1.62 33.05

Next, we examine the effect of roundoff errors. We take a0(x) = 10e10x and
a1(x) = sin(10x), and let u(x) = sin3(8πx) be the exact solution of (6.62). The L2-
errors of two methods against various N are depicted in Fig. 6.1. We observe that
the effect of roundoff errors is much severer in the collocation method.
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Fig. 6.1 L2-errors of COL and GJS

6.5 Error Estimates

This section is devoted to error analysis of several spectral methods presented in the
previous sections. We start by establishing some approximation results for the GJPs.

For k, l ∈ Z, let Qk,l
N be the polynomial space defined in (6.45). We consider the

orthogonal projection πk,l
N : L2

ωk,l (I)→ Qk,l
N , defined by

(

u−πk,l
N u,vN

)

ωk,l = 0, ∀vN ∈ Qk,l
N . (6.65)

Thanks to the orthogonality (6.5) and the derivative relation (6.12), the following
theorem is a direct extension of Theorem 3.35.

Theorem 6.1. For any k, l ∈Z, and u∈Bm
k,l(I), we have that for 0≤ μ ≤m≤N+1,

‖∂ μ
x (πk,l

N u− u)‖ωk+μ ,l+μ

≤ c

√

(N −m+ 1)!
(N −μ + 1)!

(N +m)(μ−m)/2‖∂ m
x u‖ωk+m,l+m ,

(6.66)

where c is a positive constant independent of m,N and u.

Proof. The proof is essential the same as that of Theorem 3.35 as sketched below.
Using (6.12) repeatedly yields

∂ i
xJk,l

n (x) = dk,l
n,iJ

k+i,l+i
n−i (x),
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which implies
∫ 1

−1
∂ i

xJk,l
n ∂ i

xJk,l
m ωk+i,l+idx = hk,l

n,iδmn.

One can follow the same procedure as in the proof of Theorem 3.35 to work out the
constants dk,l

n,i and hk,l
n,i to obtain the desired result. ��

We would like to point out that the analysis based on the GJPs leads to a more
concise and precise estimates than those based on the classical Jacobi polynomials
in Chaps. 3 and 4.

To show this, we revisit the H1
0 -orthogonal projection (cf. (3.290)). The inequal-

ity (B.40) implies that H1
0 (I)⊆ L2

ω−1,−1(I), so for any u ∈ H1
0 (I), we can write

u =
∞

∑
n=2

ûnJ−1,−1
n (x), ûn =

∫

I
u(x)J−1,−1

n (x)(1− x2)−1dx. (6.67)

Moreover, we find

(

∂x(π−1,−1
N u− u),∂xvN

)

= 0, ∀vN ∈ P0
N,

which implies that π−1,−1
N is identical with the H1

0 -orthogonal projection operator
defined in (3.290) (with α = β = 0). Hence, we obtain the optimal estimates (3.295)
(with α = β = 0) from (6.66) (with k = l = −1) directly, and the duality argument
is not needed. This also applies to the estimates for the Hm

0 -orthogonal projections
with m ≥ 2 (see Lemma 4.7).

As a second example, we provide below a proof for Theorem 3.44 by using
Theorem 6.1 and the stability result in Problem 3.24.

Proof of Theorem 3.44:

For any u ∈ H1(I), we find from (B.33) that u ∈C(Ī). Define

u∗(x) =
1− x

2
u(−1)+

1+ x
2

u(1).

It is clear that

ũ := u− u∗ ∈ H1
0 (I) and INu− u = INũ− ũ.

Hence, by (3.326) and Theorem 6.1,

‖INũ−π−1,−1
N ũ‖ω−1,−1 = ‖IN

(

ũ−π−1,−1
N ũ

)‖ω−1,−1

≤ c
(‖ũ−π−1,−1

N ũ‖ω−1,−1 +N−1‖∂x(ũ−π−1,−1
N ũ)‖)

≤ c

√

(N −m+ 1)!
N!

(N +m)−(1+m)/2‖∂ m
x ũ‖ωm−1,m−1 ,
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which, together with the inverse inequality (3.241), implies

‖∂x(INũ−π−1,−1
N ũ)‖ ≤ cN‖INũ−π−1,−1

N ũ‖ω−1,−1

≤ c

√

(N −m+ 1)!
N!

(N +m)(1−m)/2‖∂ m
x ũ‖ωm−1,m−1 .

Therefore, using the triangle inequality and Theorem 6.1 yields

‖∂x(INũ− ũ)‖+N‖INũ− ũ‖ω−1,−1

≤ c

√

(N −m+ 1)!
N!

(N +m)(1−m)/2‖∂ m
x ũ‖ωm−1,m−1 .

(6.68)

It is clear that if m > 1, we have ∂ m
x ũ = ∂ m

x u, while for m = 1, we verify from the
inequalities (B.33) and (B.44) that

‖∂xũ‖ ≤ c
(‖∂xu‖+ |u(−1)|+ |u(1)|)≤ c‖u‖1 ≤ c‖∂xu‖.

This ends the proof of Theorem 3.44. ��

6.5.1 Even-Order Equations

We consider here the error analysis of the Legendre-Galerkin scheme (6.18).
Observe from (6.65) that

(

∂ 2
x (π

−2,−2
N u− u),∂ 2

x vN
)

=
(

π−2,−2
N u− u,∂ 4

x vN
)

=
(

π−2,−2
N u− u,ω2,2∂ 4

x vN
)

ω−2,−2 = 0, ∀vN ∈VN .
(6.69)

Hence, π−2,−2
N is also the orthogonal projector in H2

0 (I) as defined in (4.78).

Theorem 6.2. Let u and uN be the solutions of (6.15) and (6.18), respectively. If
α,β > 0 and u ∈ H2

0 (I)∩Bm
−2,−2(I) and f ∈ Bk

−1,−1(I) with 2 ≤ m ≤ N + 1 and
1 ≤ k ≤ N + 1, then we have

‖∂ μ
x (u− uN)‖ ≤ c

√

(N −m+ 1)!
(N − μ + 1)!

(N +m)(μ−m)/2‖∂ m
x u‖ωm−2,m−2

+ c

√

(N − k+ 1)!
N!

(N + k)−(k+1)/2‖∂ k
x f‖ωk−1,k−1 ,

where μ = 0,1,2, and c is a positive constant independent of m,k,N, f and u.

Proof. Using (6.15) and (6.18) leads to the error equation

a(u− uN,vN) = ( f − IN f ,vN), ∀vN ∈VN.
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Let us denote êN = π−2,−2
N u− uN and ẽN = π−2,−2

N u− u. Taking vN = êN in the
above equality, we obtain from (6.69) that

‖ê′′N‖2 +α‖ê′N‖2 +β‖êN‖2 = α(ẽ′N , ê
′
N)+β (ẽN, êN)+ ( f − IN f , êN).

Since (ẽ′N , ê′N) =−(ẽN, ê′′N), using the Cauchy–Schwarz inequality and the Poincaré
inequality (6.16) yields

‖êN‖2
2 ≤ c‖ẽN‖2.

Thus, the estimate (6.69) follows from the triangle inequality and Theorems 6.1 and
3.44. ��

A similar analysis can be performed for the spectral-Galerkin scheme (6.26), and
the estimate is stated as follows.

Theorem 6.3. Let u and uN be the solutions of (6.25) and (6.26), respectively. If
u ∈ Hm

0 (I)∩Br−m,−m(I) and f ∈ Bk
−1,−1(I) with m ≤ r ≤ N + 1 and 1 ≤ k ≤ N + 1,

then we have

‖u− uN‖μ ≤ c

√

(N − r+ 1)!
(N − μ + 1)!

(N +m)(μ−r)/2‖∂ r
x u‖ωr−m,r−m

+ c

√

(N − k+ 1)!
N!

(N + k)−(k+1)/2‖∂ k
x f‖ωk−1,k−1 ,

where 0 ≤ μ ≤ m ≤ r ≤ N + 1 and c is a positive constant independent of r,k,N, f
and u.

6.5.2 Odd-Order Equations

Next, we turn to the analysis of dual-Petrov-Galerkin methods for odd-order equa-
tions. We start with the following important observation.

Lemma 6.6. Let π−2,−1
N be the orthogonal projector defined in (6.65). Then,

(

∂x(u−π−2,−1
N u),∂ 2

x vN
)

= 0, ∀u ∈V, vN ∈V ∗
N , (6.70)

where V and V ∗
N are defined in (6.30) and (6.32), respectively.

Proof. Using integration by parts yields

(

∂x(u−π−2,−1
N u),∂ 2

x vN
)

=−(u−π−2,−1
N u,ω2,1∂ 3

x vN
)

ω−2,−1 .

In view of ω2,1∂ 3
x vN ∈VN , (6.70) follows from (6.65). ��

This lemma indicates that π−2,−1
N is simultaneously an orthogonal projector with

respect to two bilinear forms.
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Theorem 6.4. Let u and uN be the solutions of (6.29) and (6.34), respectively. If
α, β ≥ 0 and − 1

3 < γ < 1
6 , u ∈V ∩Bm

−2,−1(I) and f ∈ Bk
−1,−1(I) with 2 ≤ m ≤ N+1

and 1 ≤ k ≤ N + 1, then we have

α‖eN‖ω−1,1 +N−1‖∂xeN‖ω−1,0

≤ c(1+ |γ|N)

√

(N −m+ 1)!
N!

(N +m)−(1+m)/2‖∂ m
x u‖ωm−2,m−1

+ c

√

(N − k+ 1)!
N!

(N + k)−(k+1)/2‖∂ k
x f‖ωk−1,k−1 ,

where c is a positive constant independent of m,k,N, f and u.

Proof. Denote êN = π−2,−1
N u− uN and eN = u− uN = (u−π−2,−1

N u)+ êN.
We derive from (6.29), (6.34) and Lemma 6.6 that

α
(

eN ,vN
)

ω−1,1 −β
(

∂xeN ,vN
)

ω−1,1 + γ
(

∂xeN ,ω1,−1∂x(vNω−1,1)
)

ω−1,1

+
(

∂xêN ,ω1,−1∂ 2
x (vNω−1,1)

)

ω−1,1 = ( f − IN f ,vN), ∀vN ∈VN.

Thus, by (6.70),

α
(

êN ,vN
)

ω−1,1 −β
(

∂xêN ,vN
)

ω−1,1 + γ
(

∂xêN ,ω1,−1∂x(vNω−1,1)
)

ω−1,1

= α
(

π−2,−1
N u− u,vN

)

ω−1,1 −β
(

∂x(π−2,−1
N u− u),vN

)

ω−1,1

+ γ
(

∂x(π−2,−1
N u− u),∂x(vNω−1,1)

)

− (∂xêN ,ω1,−1∂ 2
x (vNω−1,1)

)

ω−1,1 +( f − IN f ,vN).

(6.71)

One verifies readily that for any v ∈VN,

− (∂xv,v)ω−1,1 =−1
2

∫

I
∂x(v

2)ω−1,1dx = ‖v‖2
ω−2,0 ,

(

∂xv,∂x(vω−1,1)
)

=
(

∂xv,∂xvω−1,1 + 2vω−2,0)= ‖∂xv‖2
ω−1,1 − 2‖v‖2

ω−3,0.

In view of this, taking vN = êN in (6.71) leads to

α‖êN‖2
ω−1,1 +β‖êN‖2

ω−2,0 + γ‖∂xêN‖2
ω−1,1 − 2γ‖êN‖2

ω−3,0 +
1
3
‖∂xêN‖2

ω−2,0

≤ α
(

π−2,−1
N u− u, êN

)

ω−1,1 −β
(

∂x(π−2,−1
N u− u), êN

)

ω−1,1

+ γ
(

∂x(π−2,−1
N u− u),∂x(êNω−1,1)

)

+( f − IN f , êN).
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The right-hand side can be bounded by using Lemma 6.3, the Cauchy–Schwarz
inequality and the fact that ω−1,2 ≤ 2ω−1,1 ≤ 2ω−2,0:

(

π−2,−1
N u− u, êN

)

ω−1,1 ≤ ‖êN‖ω−1,1‖π−2,−1
N u− u‖ω−1,1

≤ 2‖êN‖ω−1,1‖π−2,−1
N u− u‖ω−2,−1,

(

∂x(π−2,−1
N u− u), êN

)

ω−1,1 = (π−2,−1
N u− u,∂xêNω−1,1 + 2êNω−2,0)

≤ c‖π−2,−1
N u− u‖ω−2,−1‖∂xêN‖ω−2,0 ,

(

∂x(π−2,−1
N u− u),∂x(êNω−1,1)

)

=
(

∂x(π−2,−1
N u− u),∂xêNω−1,1 + 2êNω−2,0)

≤ ‖∂x(π−2,−1
N u− u)‖ω−1,0‖∂xêN‖ω−2,0 .

For 0 ≤ γ < 1
6 , we choose δ sufficiently small such that 1

3 −2γ −δ > 0. Combining

the above inequalities, using the inequality

ab ≤ εa2 +
1

4ε
b2, ∀ε > 0, (6.72)

and dropping some unnecessary terms, we derive from Theorem 6.1 that

α
2
‖êN‖2

ω−1,1 +
(1

3
− 2γ − δ

)

‖∂xêN‖2
ω−2,0

≤ c
(‖π−2,−1

N u− u‖2
ω−2,−1 + γ‖∂x(π−2,−1

N u− u)‖2
ω−1,0

)

≤ c(1+ γN2)
(N −m+ 1)!

N!
(N +m)−(1+m)‖∂ m

x u‖2
ωm−2,m−1

+( f − IN f , êN).

For − 1
3 < γ < 0, we choose δ sufficiently small such that 1

3 + γ − δ > 0, and we
obtain

α
2
‖êN‖2

ω−1,1+
(1

3
+ γ − δ

)

‖∂xêN‖2
ω−2,0

≤ c(1+ |γ|N2)
(N −m+ 1)!

N!
(N +m)−(1+m)‖∂ m

x u‖2
ωm−2,m−1

+( f − IN f , êN).

Then, the desired results follow from the triangle inequality, Poincaré inequality,
Theorems 6.1 and 3.44, and the fact that ‖u‖ω−1,0 ≤ 2‖u‖ω−2,0. ��
Remark 6.6. Note that the error estimate in the above theorem is optimal for γ = 0
but sub-optimal for γ �= 0.

The error analysis of the general (2m+1)th-order equation can be done in a very
similar fashion as above. As a direct extension of Lemma 6.6, we have the following
result.
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Lemma 6.7. Let VN and V ∗
N be defined in (6.42). Then,

(

∂ m+1
x (π−m−1,−m

N u− u),∂ m
x vN

)

= 0, ∀u ∈V, vN ∈V ∗
N , (6.73a)

(

∂ m+1
x (π−m−1,−m

N u− u),ω1,−1∂ m
x (ω−1,1vN)

)

ω−1,1

= 0, ∀u ∈V, vN ∈VN .
(6.73b)

Proof. By the definition (6.65), for any vN ∈V ∗
N ,

(

∂ m+1
x (π−m−1,−m

N u− u),∂ m
x vN

)

= (−1)m+1(π−m−1,−m
N u− u,ωm+1,m∂ 2m+1

x vN
)

ω−m−1,−m = 0.

Here, we used the fact that for any vN ∈ V ∗
N , ωm+1,m∂ 2m+1

x vN ∈ VN. Since for any
vN ∈VN , we have ω−1,1vN ∈V ∗

N . Hence, (6.73b) is a direct consequence of (6.73a).
��

The convergence rate of the scheme (6.44) is given below.

Theorem 6.5. Let u and uN be the solutions of (6.40) and (6.44), respectively. Given
γ ,δ > 0. If u ∈ V ∩Br

−m−1,−m(I) and f ∈ Bk
−1,−1(I) with m+ 1 ≤ r ≤ N + 1 and

1 ≤ k ≤ N + 1, then we have

‖∂ m
x ((1− x)−1(u− uN))‖ω1,0 +N‖∂ m−1

x ((1− x)−1(u− uN))‖+N‖u− uN‖ω−1,1

≤ c

√

(N − r+ 1)!
(N −m+ 1)!

(N +m)(m−r)/2‖∂ r
x u‖ωr−m−1,r−m

+ c

√

(N − k+ 1)!
N!

(N + k)−(k+1)/2‖∂ k
x f‖ωk−1,k−1 ,

where c is a positive constant independent of r,k,N, f and u.

The analysis is similar to the third-order case (cf. Guo et al. (2009) for the
details). We leave the proof of this theorem as an exercise (see Problem 6.5).

6.6 Applications

In this section, we apply the spectral-Galerkin methods using generalized Jacobi
polynomials as basis functions to time-dependent problems. These include the
Cahn–Hilliard equation, and the third-order and fifth-order Korteweg–de Vries
(KdV) equations.
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6.6.1 Cahn–Hilliard Equation

Consider the following Cahn–Hilliard equation:

ut =−γ
(

uxx − ε−2(u2 − 1)u
)

xx, x ∈ (−1,1), t > 0, γ > 0,

u(±1, t) = u′(±1, t) = 0, t ≥ 0,

u(x,0) = u0(x), x ∈ [−1,1].

(6.74)

The Cahn–Hilliard equation was originally introduced by Cahn and Hilliard (1958)
to describe the complicated phase separation and coarsening phenomena in a solid.
It has been widely used in materials science and fluid dynamics applications. We
refer to Sect. 9.3 for a thorough discussion on the Cahn–Hilliard equation.

Let VN = {u ∈ PN : u(±1) = u′(±1) = 0} and τ be the time step size. A fully dis-
crete scheme with Crank-Nicolson leap-frog in time and Legendre-Galerkin method
in space is

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find uk+1
N ∈VN such that

1
2τ
(

uk+1
N − uk−1

N ,vN
)

+ γ
(

∂ 2
x ûk+1

N ,∂ 2
x vN
)

=
1
ε2

(

IN [(u
k
N)

3 − uk
N],∂ 2

x vN
)

, ∀vN ∈VN,

(6.75)

where ûk+1
N = 1

2 (u
k+1
N + uk−1

N ), and IN is the Legendre-Gauss-Lobatto interpolation
operator. Note that the above scheme requires u0

N and u1
N to start. We can set u0

N =
INu0 and compute u1

N using a first-order (in time) scheme.
At each time step, one only needs to solve the following problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find uk+1
N ∈VN such that

τγ
(

∂ 2
x ûk+1

N ,∂ 2
x vN
)

+(ûk+1
N ,vN) = (uk−1

N ,vN)

+
τ
ε2

(

IN [(u
k
N)

3 − uk
N],∂

2
x vN

)

, ∀vN ∈VN .

(6.76)

The above system is of the form (6.18) so it can be solved by using the method
presented in Sect. 6.2.1.

We implemented the above scheme with N = 64, ε = 0.02, γ = 0.01 and τ =
0.000002. Note that we need to take τ very small to ensure the stability due to the
explicit treatment of the nonlinear term. Much stabler schemes will be presented
in Sect. 9.3. We start with u|t=0 = sin2(πx) and compute the numerical solution up
to time t = 0.2. Note that due to the explicit treatment of the nonlinear term, we
have to use a very small time step for the scheme to be stable. We refer to Sect. 9.3
for a discussion on the stability issue of the scheme (6.75) and some strategies to
design more robust and efficient numerical schemes for Cahn–Hilliard equations. In
Fig. 6.2, we plot, on the left, time evolution of the numerical solution, and on the
right, the final steady state solution of (6.74).
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Fig. 6.2 Left: time evolution of the numerical solution for (6.74); Right: steady state solution
for (6.74)

6.6.2 Korteweg–de Vries (KdV) Equation

Consider the KdV equation (cf. Korteweg and de Vries (1895)):

Ut +UUx +Uxxx = 0, U(x,0) =U0(x), (6.77)

with the exact soliton solution

U(x, t) = 12κ2sech2(κ(x− 4κ2t − x0)
)

, (6.78)

where κ and x0 are given parameters. Since U(x, t) approaches to 0 exponentially as
|x| → ∞, we can approximate the initial-value problem (6.77) by an initial boundary
value problem for x ∈ (−L,L) as long as the soliton does not reach the boundaries.

For computational convenience, we first rescale the problem into (−1,1). Setting

y = x/L, u(y, t) =U(x, t), u0(y) =U0(x), α = 1/L3, β = 1/L,

the problem of interest becomes

ut +βuuy+αuyyy = 0, y ∈ I = (−1,1), t ∈ (0,T ],

u(y,0) = u0(y), u(±1, t) = u′(1, t) = 0.
(6.79)

Let τ be the time step size, a fully discrete scheme with Crank-Nicolson leap-frog
in time and Legendre dual-Petrov-Galerkin method in space for (6.79) is

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find uk+1
N ∈VN such that

1
2τ
(

uk+1
N − uk−1

N ,vN
)

+α
(

∂yûk+1
N ,∂ 2

y vN
)

=−β
2

(

∂yIN(u
k
N)

2,vN
)

, ∀vN ∈V ∗
N ,

(6.80)
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where ûk+1
N = 1

2(u
k+1
N + uk−1

N ), the “dual” spaces VN and V ∗
N are defined in (6.32),

and IN is the Legendre-Gauss-Lobatto interpolation operator. Hence, at each time
step, one only needs to solve the following problem:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Find uk+1
N ∈VN such that

ατ
(

∂yûk+1
N ,∂ 2

y vN
)

+(ûk+1
N ,vN) = (uk−1

N ,vN)

− β τ
2

(

∂yIN(u
k
N)

2,vN
)

, ∀vN ∈V ∗
N .

(6.81)

The above system is of the form (6.33) so it can be solved by using the method
presented in Sect. 6.3.1. We refer to Shen (2003) for a detailed stability and conver-
gence analysis for the scheme (6.80).

Example 1. Single soliton solution. We take κ = 0.3, x0 = −20, L = 50 and
τ = 0.001 so that for N � 160, the time discretization error is negligible compared
with the spatial discretization error. In Fig. 6.3a, we plot the time evolution of the
approximate solution, and in (b), we depict the maximum errors in the semi-log
scale at t = 1 and t = 50. Note that the straight lines indicate that the errors decay
like exp(−cN). The excellent accuracy for this known exact solution indicates that
the KdV equation on a finite interval can be used to effectively simulate the KdV
equation on a semi-infinite interval before the wave reaches the boundary.
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Fig. 6.3 (a) Time evolution of the numerical solution for the KdV equation, and (b) the maximum
errors at t = 1,50 with different N

Example 2. Interaction of five solitons. We start with the following initial
condition

u0(x) =
5

∑
i=1

12κ2
i sech2(κi(x− xi)) (6.82)
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with

κ1 = .3, κ2 = .25, κ3 = .2, κ4 = .15, κ5 = .1,

x1 =−120, x1 =−90, x3 =−60, x4 =−30, x5 = 0.

In the following computations, we fix L = 150, τ = 0.02 and N = 256. In
Fig. 6.4a, we plot the time evolution of the solution in the (x, t) plane. We also plot
the initial profile and the profile at the final step (t = 600) in Fig. 6.4b. We observe
that the soliton with higher amplitude travels at a faster speed, and the amplitudes
of the five solitary waves are well preserved at the final time. This indicates that our
scheme has an excellent conservation property.

Example 3. Solitary waves generated by a Gaussian profile. We start with the
initial condition u0(x) = e−1.5(7x)2

. We plot the time evolution of the solution in
Fig. 6.5a, and the profiles at t = 0,100 in Fig. 6.5b. The initial Gaussian profile has
evolved into four separated solitary waves by the time t = 100.
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Fig. 6.4 Interaction of five solitons generated by (6.82)
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Fig. 6.5 Solitary waves generated by an initial Gaussian profile
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It must be noted that our dual-Petrov-Galerkin approach is quite flexible and
can be used for other unconventional boundary conditions. For instance, Colin and
Ghidaglia (2001) studied the KdV equation

ut +
2
L
(ux + uux)+

8
L3 uxxx = 0, x ∈ (−1,1), t > 0, (6.83)

with the following boundary conditions

u(−1) = g(t), ux(1) = uxx(1) = 0. (6.84)

Let us denote

XN =
{

u ∈ PN : u(−1) = ux(1) = uxx(1) = 0
}

. (6.85)

Then, the “dual” space is

X∗
N =

{

v ∈ PN : v(1) = vx(−1) = vxx(−1) = 0
}

. (6.86)

There exists a unique set of coefficients {a(k)j , ã(k)j } such that

φk(x) = Lk(x)+
3

∑
j=1

a(k)j Lk+ j(x) ∈ XN ,

ψk(x) = Lk(x)+
3

∑
j=1

ã(k)j Lk+ j(x) ∈ X∗
N ,

(6.87)

and

XN = span
{

φ0,φ1, . . . ,φN−3
}

,

X∗
N = span

{

ψ0,ψ1, . . . ,ψN−3
}

.
(6.88)

Then, the Legendre dual-Petrov-Galerkin method for (6.83)-(6.84) is
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find uN = vN +
(1− x)3

8
g(t) with vN ∈ XN such that

(

∂tuN +
2
L

uN∂xuN +
8
L3 ∂ 3

x uN,ψ j

)

= 0, 0 ≤ j ≤ N − 3.

(6.89)

6.6.3 Fifth-Order KdV Type Equations

Fifth-order KdV type equations, as a generalization of the third-order KdV equa-
tion, arise naturally in the modeling of many wave phenomena (see, e.g., Kawahara
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(1972), Kichenassamy and Olver (1992)). As an example, we consider a typical
fifth-order KdV type equation:

ut + γuux+ νuxxx − μuxxxxx = 0, u(x,0) = u0(x). (6.90)

For γ �= 0 and μν > 0, it has the following exact solution (cf. Parkes et al. (1998))

u(x, t) = η0 +A sech4(κ(x− ct− x0)
)

, (6.91)

where x0 and η0 are arbitrary constants, and

A =
105ν2

169μγ
, κ =

√

ν
52μ

, c = γη0 +
36ν2

169μ
. (6.92)

It should be pointed out that in contrast to the solution (6.78), the amplitude of (6.91)
is fixed if the constants γ,μ and ν are given.

Since u(x, t)→η0 exponentially as |x|→∞, we may approximate the initial value
problem (6.90) by an initial boundary value problem imposed in (−L,L) as long as
the soliton does not reach the boundary x= L. Hence, in the following computations,
we turn our attentions to the problem (6.90) in (−L,L) with the boundary conditions:

u(±L, t) = u′(±L, t) = u′′(L, t) = 0.

As in the third-order KdV case, we can use a fully discrete Crank-Nicolson leap-
frog dual-Petrov-Galerkin scheme for this problem. We refer to Yuan et al. (2008)
for more details on the implementation and error analysis of this scheme, and simu-
lations of several other physically relevant equations such as the Kawahara equation
(cf. Kawahara (1972)).

Example 1. Single soliton solution. We consider the problem (6.90)–(6.92) with

μ = γ = 1, ν = 1.1, η0 = 0, x0 =−10.

In the computation, we take L = 50,N = 120 and τ = 0.001. In Fig. 6.6a, we plot
the time evaluation of the solution, and in (b), we plot the pointwise maximum errors
against various N at t = 1,50,100. It is clear from the figure that the convergence
rate behaves like e−cN .

Example 2. Parallel propagation of two solitons. We start with the following
initial condition:

u0(x) = u1(x,0)+ u2(x,0), (6.93)

with

ui(x, t) = ηi +A sech4(κ(x− cit − xi)), ci = γηi +
36ν2

169μ
, i = 1,2
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Time evolution
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Fig. 6.6 Time evolution of the numerical solution for the fifth-order KdV equation and the maxi-
mum errors at t = 1,50,100 with different N

being the solutions of (6.90). Let

μ = γ = 1, ν = 1.1, η1 = 1.5, η2 =−0.5, L = 150, N = 256, τ = 0.01.

We take x1 =−90 and x2 =−60 so that the peaks of two solitary waves are initially
separated. It is expected that the two solitons would propagate in parallel with the
same speed:

C = γ(η1 +η2)+
36ν2

169μ
. (6.94)

Time evolution
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Fig. 6.7 Solitons generated by (6.93)

In Fig. 6.7a, we plot the time evolution of the solution in the (x, t)-plane, and
its contour is depicted in (b). To check the propagation speed, a reference line: x =
Ct−30 is plotted as well. One observes that two solitary waves propagate in parallel
at the same speed C, and preserve their amplitudes as expected.
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Example 3. Interaction of two solitons. We define

G(x;λ ,x0) = 2.65758756exp(−0.16z2)
(

1.000794208

− 0.006761592432z2− 0.001355732644z4

+ 2.520234609×10−5z6 − 4.782592684×10−6z8),

(6.95)

where z = (λ/μ)1/4(x− x0). This function describes the wave profile, in which λ
represents the velocity of a solitary wave and x0 is the initial position. The amplitude
of the wave is proportional to the velocity.

Time evolution
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Fig. 6.8 Solitons generated by (6.95)

The initial state is given by

u(x,0) = λ1G(x;λ1,x1)+λ2G(x;λ2,x2), (6.96)

and in the computation, we take

μ = 7× 10−7, ν = 0, γ = 1, λ1 = 0.3, λ2 = 0.25,

x1 =−3, x2 =−2.25, L = 4, N = 256, τ = 0.01.

In Fig. 6.8a, we plot the time evolution solution uN(x, t) in the (x, t)-plane, while
in Fig. 6.8b, we plot the initial profile (6.96), and profiles at t = 8,10,12,20. We
observe that the solitary wave with higher amplitude travels at a faster speed, and
then emerges into the solitary wave with lower amplitude. After the interaction, the
two solitary waves propagate with their own amplitudes preserved. Notice that some
small ripples (non-solitary waves) are generated after the interaction (Note: the ini-
tial condition (6.96) is not the initial profile of the exact solution). This phenomenon
was also observed in Nagashima and Kawahara (1981), Djidjeli et al. (1995).
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Problems

6.1. Determine the non-zero entries of B and C in (6.21) and implement the scheme
(6.18). Take the exact solution of (6.14) to be u(x) = sin2(2πx). Plot the l∞-error
versus N in semi-log scale.

6.2. Consider the problem

u(4)−αu′′+βu = f , x ∈ I = (−1,1),

u′(±1) = u′′′(±1) = 0.
(6.97)

Construct an efficient Legendre-Galerkin method for solving the above equation.
Take the exact solution of (6.97) to be u(x) = cos(4πx). Plot the l∞-error versus N
in semi-log scale.

6.3. Prove Theorem 6.3.

6.4.

• Let VN be defined in (6.32). Show that

−(∂ 2
x u,∂x(ω−1,0u)

)≥ c
(‖∂xu‖2 + |∂xu(−1)|2), ∀u ∈VN .

• Consider a new Petrov-Galerkin method with V ∗
N in (6.18) replaced by

WN :=
{

u ∈ PN−1 : u(±1) = 0
}

.

Using the above inequality, show that this new Petrov-Galerkin method admits a
unique solution.

• Choose suitable basis functions for VN and WN to show that the corresponding
linear system has a sparse matrix.

• Derive an error estimate for this method.

6.5. Prove Theorem 6.5.

6.6. Consider the KdV equation (6.77). Replace the dual-Petrov-Galerkin method in
(6.80) by the collocation method using the nodes of the quadrature formula (6.58)
with l = 1 and r = 2 as collocation points. Test it on Example 1: Single soliton
solution and compare it with that obtained by the scheme (6.80).



Chapter 7
Unbounded Domains

We study in this chapter spectral approximations by orthogonal polynomials/
functions on unbounded intervals, such as Laguerre and Hermite polynomials/
functions and rational functions. Considerable progress has been made in the last
two decades in using these orthogonal systems for solving PDEs in unbounded
domains (cf. Chap. 17 in Boyd (2001) and a more recent review article Shen and
Wang (2009)).

Spectral methods for unbounded domains can be essentially classified into four
categories:

(a) Domain truncation: truncate unbounded domains to bounded domains and solve
PDEs on bounded domains supplemented with artificial or transparent boundary
conditions (see, e.g., Engquist and Majda (1977), Grote and Keller (1995));

(b) Approximation by classical orthogonal systems on unbounded domains, e.g.,
Laguerre or Hermite polynomials/functions (see, e.g., Boyd (1980), Funaro and
Kavian (1990), Guo (1999), Shen (2000), Guo et al. (2003));

(c) Approximation by other non-classical orthogonal systems (see, e.g., Christov
(1982)), or by mapped orthogonal systems, e.g., image of classical Jacobi poly-
nomials through a suitable mapping (see, e.g., Guo et al. (2000), Guo and Shen
(2001));

(d) Mapping: map unbounded domains to bounded domains and use standard spec-
tral methods to solve the mapped PDEs in bounded domains (see, e.g., Grosch
and Orszag (1977), Boyd (1987b,a), Cloot and Weideman (1992), Guo (1998b),
Boyd (2001)).

In general, the domain truncation approach is only viable for problems with rapidly
(exponentially) decaying solutions or when accurate non-reflecting or exact bound-
ary conditions are available at the truncated boundary. On the other hand, with a
proper choice of mappings and/or scaling parameters, the other three approaches
can all be effectively applied to a variety of problems with decaying (or even grow-
ing) solutions. Since there exists a vast literature on domain truncations, particularly

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 237
Springer Series in Computational Mathematics 41, DOI 10.1007/978-3-540-71041-7 7,
c© Springer-Verlag Berlin Heidelberg 2011
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for the Helmholtz equation and Maxwell equations for scattering problems, and the
analysis involved is very different from the other three approaches, we shall restrict
our attentions to the last three approaches.

7.1 Laguerre Polynomials/Functions

Following the general framework established in Chap. 3, we present in this sec-
tion some basic properties of Laguerre polynomials/functions, and introduce the
Laguerre-Gauss-type quadrature formulas and the associated interpolation, discrete
transforms and spectral differentiation.

7.1.1 Basic Properties

Since the properties of Laguerre polynomials can be derived in a similar fashion as
for the Jacobi polynomials, we just collect the relevant formulas without providing
their derivations.

7.1.1.1 Generalized Laguerre Polynomials

The generalized Laguerre polynomials (GLPs), denoted by L
(α)
n (x) (with α >−1),

are orthogonal with respect to the weight function ωα(x) = xα e−x on the half line
R+ := (0,+∞), i.e.,

∫ +∞

0
L

(α)
n (x)L (α)

m (x)ωα (x)dx = γ (α)
n δmn, (7.1)

where

γ(α)
n =

Γ (n+α + 1)
n!

. (7.2)

In particular, L
(0)
n (x) is the usual Laguerre polynomial which will be denoted by

Ln(x). It is clear that {Ln} are orthonormal with respect to the weight function
ω(x) = e−x, i.e.,

∫ +∞

0
Ln(x)Lm(x)e

−xdx = δmn. (7.3)

The three-term recurrence formula that generates the GLPs reads

(n+ 1)L (α)
n+1(x) = (2n+α + 1− x)L (α)

n (x)− (n+α)L
(α)
n−1(x), (7.4)
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and the first few members are

L
(α)

0 (x) = 1,

L
(α)

1 (x) = −x+α + 1,

L
(α)

2 (x) =
1
2

(
x2 − 2(α + 2)x+(α+ 1)(α + 2)

)
,

L
(α)

3 (x) =
1
6

(−x3 + 3(α + 3)x2 − 3(α + 2)(α + 3)x

+(α + 1)(α + 2)(α + 3)) .

The leading coefficient of L
(α)
n (x) is

k(α)
n =

(−1)n

n!
, (7.5)

and we have the formula

L
(α)

n (0) =
Γ (n+α + 1)
n!Γ (α + 1)

=
γ(α)

n

Γ (α + 1)
. (7.6)

By the Stirling’s formula (A.7), L
(α)
n (0)∼ nα for n � 1. Notice that Ln(0) = 1.

The generalized Laguerre polynomial satisfies the Sturm-Liouville equation

x−α ex∂x
(
xα+1e−x∂xL

(α)
n (x)

)
+λnL

(α)
n (x) = 0, (7.7)

or equivalently,

x∂ 2
x L

(α)
n (x)+ (α + 1− x)∂xL

(α)
n (x)+λnL

(α)
n (x) = 0, (7.8)

with the corresponding eigenvalue λn = n. We emphasize that λn grows linearly as
opposed to quadratical growth in the Jacobi case. This has two important impli-
cations: (a) the convergence rate of the expansions by GLPs will only be half of
the expansions by Jacobi polynomials with “similar” regularities (but in different
weighted spaces); on the other hand, (b) the minimum distance between adjacent
Laguerre-Gauss type points is of order O(n−1) instead of O(n−2) in the Jacobi case.

By (7.1) and (7.7), we have the orthogonality of
{

∂xL
(α)

n
}

, namely,

∫ +∞

0
∂xL

(α)
n (x)∂xL

(α)
m (x)ωα+1(x)dx = λnγ(α)

n δmn. (7.9)

The Rodrigues’ formula for the GLPs takes the form:

L
(α)
n (x) =

x−α ex

n!
dn

dxn

{
xn+αe−x} . (7.10)
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Furthermore, we have the explicit expression

L
(α)

n (x) =
n

∑
k=0

(−1)k

k!

(
n+α
n− k

)
xk. (7.11)

The GLPs satisfy the following recurrence relations:

∂xL
(α)

n (x) =−L
(α+1)

n−1 (x) =−
n−1

∑
k=0

L
(α)

k (x), (7.12a)

L
(α)
n (x) = ∂xL

(α)
n (x)− ∂xL

(α)
n+1(x), (7.12b)

x∂xL
(α)

n (x) = nL
(α)
n (x)− (n+α)L

(α)
n−1(x). (7.12c)
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first six Laguerre functions L̂n(x) with n = 0,1, . . . ,5 and x ∈ [0,20]
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Next, we study the asymptotic properties of the GLPs. It is clear that for large

x, the value of L
(α)
n (x) is dominated by the leading term and grows like (−1)n

n! xn.
Moreover, according to Theorem 7.6.2 of Szegö (1975), the successive relative max-

ima of e−x/2x(α+1)/2|L (α)
n (x)| form an increasing sequence, provided that x > x0,

where

x0 = 0, if α ≤ 1; x0 =
α2 − 1

2n+α + 1
, if α > 1.

The GLPs have a rapid growth as x approaches to infinity and as n increases. Indeed,
by Theorem 8.22.5 of Szegö (1975),

L
(α)
n (x) = π−1/2ex/2x−α/2−1/4nα/2−1/4×[

cos
(
2(nx)1/2 −απ/2−π/4

)
+(nx)−1/2O(1)

]
,

(7.13)

which holds uniformly for all x∈ [cn−1,b] with c and b being fixed positive numbers.
We observe from Fig. 7.1 the growth of the Laguerre polynomials with respect to the
degree n and/or x. In particular, we plot in Fig. 7.1b, the graph of |L80(x)| against
the asymptotic estimate π−1/2(80x)−1/4ex/2, which shows

|Ln(x)| ≈ π−1/2(nx)−1/4ex/2, (7.14)

for n � 1 and all x in a finite interval. On the other hand, we have the following
uniform upper bounds for GLPs (see the Appendix of Davis (1975)):

|L (α)
n (x)| ≤

{
L

(α)
n (0)ex/2, if α ≥ 0,(

2−L
(α)
n (0)

)
ex/2, if α > 0,

(7.15)

for all x ∈ [0,+∞).

7.1.1.2 Generalized Laguerre Functions

In many applications, the underlying solutions decay algebraically or exponentially
at infinity, it is certainly not a good idea to approximate these functions by GLPs
which grow rapidly at infinity. It is advisable to approximate them by spectral ex-
pansions of generalized Laguerre functions (GLFs).

The generalized Laguerre functions (GLFs) are defined by

L̂
(α)
n (x) := e−x/2L

(α)
n (x), x ∈R+, α >−1. (7.16)

By (7.1)–(7.2), the GLFs are orthogonal with respect to the weight function ω̂α =
xα , i.e., ∫ +∞

0
L̂

(α)
n (x)L̂ (α)

m (x)ω̂α (x)dx = γ (α)
n δmn. (7.17)
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In particular, the usual Laguerre functions defined by

L̂n(x) = e−x/2Ln(x), n ≥ 0, (7.18)

are orthonormal with respect to the uniform weight function ω̂0 ≡ 1.
The following properties of the GLFs can be derived directly from those of the

GLPs. To simplify the notation, we introduce the derivative operator:

∂̂x = ∂x +
1
2
. (7.19)

It is clear that

∂xL
(α)
n (x) = ex/2∂̂xL̂

(α)
n (x). (7.20)

The basic properties of the GLFs are summarized below.

• Three-term recurrence relation:

(n+ 1)L̂ (α)
n+1 = (2n+α + 1− x)L̂ (α)

n − (n+α)L̂
(α)
n−1,

L̂
(α)

0 = e−x/2, L̂
(α)

1 = (α + 1− x)e−x/2. (7.21)

This formula allows for a stable evaluation of the GLFs. Indeed, in contrast to
the GLPs (cf. (7.13)), the GLFs are well-behaved with the decay property (see
Fig. 7.1d): ∣∣L̂ (α)

n (x)
∣∣→ 0, as x →+∞. (7.22)

By (7.15) and the definition (7.16), the GLFs are uniformly bounded. In particu-
lar, we have ∣∣L̂n(x)

∣∣ ≤ 1, ∀x ∈ [0,+∞). (7.23)

• Sturm-Liouville equation:

x−αex/2∂x

(
xα+1e−x/2∂̂xL̂

(α)
n (x)

)
+ nL̂

(α)
n (x) = 0. (7.24)

• Orthogonality:

∫ +∞

0
∂̂xL̂

(α)
n (x)∂̂xL̂

(α)
m (x)ω̂α+1(x)dx = λnγ(α)

n δmn. (7.25)

• Recurrence formulas:

∂̂xL̂
(α)
n (x) =−L̂

(α+1)
n−1 (x) =−

n−1

∑
k=0

L̂
(α)
k (x), (7.26a)

L̂
(α)
n (x) = ∂̂xL̂

(α)
n (x)− ∂̂xL̂

(α)
n+1(x), (7.26b)

x∂̂xL̂
(α)
n (x) = nL̂

(α)
n (x)− (n+α)L̂

(α)
n−1(x). (7.26c)
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Note that by using the derivative operator (7.19), many formulas relative to GJFs can
be expressed in the same forms as those for GLPs. This notation will also greatly
simplify the analysis later.

7.1.2 Laguerre-Gauss-Type Quadratures

The Laguerre-Gauss-type quadrature formulas, including Laguerre-Gauss and
Laguerre-Gauss-Radau rules, can be derived from the general framework in
Sect. 3.1.

Theorem 7.1. Let {x(α)
j ,ω (α)

j }N
j=0 be the set of Laguerre-Gauss or Laguerre-Gauss-

Radau quadrature nodes and weights.

• For the Laguerre-Gauss quadrature,

{x(α)
j }N

j=0 are the zeros of L
(α)

N+1(x);

ω(α)
j =−Γ (N +α + 1)

(N + 1)!
1

L
(α)

N (x(α)
j )∂xL

(α)
N+1(x

(α)
j )

=
Γ (N +α + 1)

(N +α + 1)(N + 1)!

x(α)
j[

L
(α)
N (x(α)

j )
]2 , 0 ≤ j ≤ N.

(7.27)

• For the Laguerre-Gauss-Radau quadrature,

x(α)
0 = 0 and {x(α)

j }N
j=1 are the zeros of ∂xL

(α)
N+1(x);

ω (α)
0 =

(α + 1)Γ 2(α + 1)N!
Γ (N +α + 2)

,

ω (α)
j =

Γ (N +α + 1)
N!(N +α + 1)

1[
∂xL

(α)
N (x(α)

j )
]2

=
Γ (N +α + 1)
N!(N +α + 1)

1[
L

(α)
N (x(α)

j )
]2 , 1 ≤ j ≤ N.

(7.28)

With the above nodes and weights, we have

∫ +∞

0
p(x)xαe−xdx =

N

∑
j=0

p(x(α)
j )ω(α)

j , ∀p ∈ P2N+δ , (7.29)

where δ = 1,0 for the Laguerre-Gauss quadrature and the Laguerre-Gauss-Radau
quadrature, respectively.
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Proof. We first consider the Laguerre-Gauss case. In view of Theorem 3.5, it
suffices to derive the second formula for the quadrature weights in (7.27). Note

that L (α)
N+1(x

(α)
j ) = 0 for 0 ≤ j ≤ N, so we have from (7.12c) that

∂xL
(α)

N+1(x
(α)
j ) =−N +α + 1

x(α)
j

L
(α)

N (x(α)
j ), 0 ≤ j ≤ N.

Plugging it into the first formula in (7.27) leads to the second one.
For the Laguerre-Gauss-Radau case, we deduce from (7.6) and (7.12c) that the

quadrature polynomial (3.48) (with a = 0) turns out to be

qN(x) =
1
x

[
L

(α)
N+1(x)−

L
(α)
N+1(0)

L
(α)

N (0)
L

(α)
N (x)

]

=
1

(N + 1)x

[
(N + 1)L (α)

N+1(x)− (N +α + 1)L (α)
N (x)

]

=
∂xL

(α)
N+1(x)

N + 1
.

Hence, the interior Laguerre-Gauss-Radau points {x(α)
j }N

j=1 are zeros of ∂xL
(α)

N+1(x).

We now derive the weight expressions in (7.28). It is clear that the Lagrange basis

polynomial corresponding to x(α)
0 = 0 is ∂xL

(α)
N+1(x)/∂xL

(α)
N+1(0), so by definition,

ω (α)
0 =

∫ +∞

0

∂xL
(α)
N+1(x)

∂xL
(α)

N+1(0)
ωα(x)dx

(7.12a)
=

1

∂xL
(α)
N+1(0)

∫ +∞

0

(
−

N

∑
k=0

L
(α)

k (x)
)

ωα(x)dx

(7.1)
= − γ (α)

0

∂xL
(α)
N+1(0)

(7.12a)
=

γ(α)
0

L
(α+1)
N (0)

(7.2)
=

(7.6)

(α + 1)Γ 2(α + 1)N!
Γ (N +α + 2)

.

Next, we turn to the expressions for the interior weights. Like the Jacobi-
Gauss-type quadratures, the Laguerre-Gauss and Laguerre-Gauss-Radau nodes and
weights have a close relation:

x(α)
j = ξ (α+1)

j−1 , ω (α)
j = (x(α)

j )−1ρ (α+1)
j−1 , 1 ≤ j ≤ N, (7.30)

where we denoted by
{

ξ (α+1)
j ,ρ (α+1)

j

}N−1
j=0 the N nodes (zeros of L

(α+1)
N ) and

weights of the Laguerre-Gauss quadrature associated with the weight function
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ωα+1, as defined in (7.27). To justify (7.30), we find from the formula ∂xL
(α)

N+1(x) =

−L
(α+1)
N (x), the relation between the nodes, and by the definition (3.36),

ω(α)
j =

∫ +∞

0

x∂xL
(α)

N+1(x)

∂x(x∂xL
(α)

N+1(x))
∣∣∣
x=x(α)

j

(x− x(α)
j )

ωα(x)dx

(7.12a)
=

1

x(α)
j

∫ +∞

0

L
(α+1)
N (x)

∂xL
(α+1)

N (ξ (α+1)
j−1 )(x− ξ (α+1)

j−1 )
ωα+1(x)dx

=
ρ (α+1)

j−1

x(α)
j

, 1 ≤ j ≤ N.

Therefore, by the first formula of (7.27) with {N −1,α +1} in place of {N,α}, we
obtain

ω(α)
j =−Γ (N +α + 1)

N!x(α)
j

1

L
(α+1)
N−1 (x(α)

j )∂xL
(α+1)

N (x(α)
j )

, 1 ≤ j ≤ N. (7.31)

Using the fact

∂xL
(α)
N+1(x

(α)
j ) =−L

(α+1)
N (x(α)

j ) = 0, 1 ≤ j ≤ N,

we derive

x(α)
j ∂xL

(α+1)
N (x(α)

j )
(7.12c)

= −(N +α + 1)L (α+1)
N−1 (x(α)

j )

(7.12a)
= (N +α + 1)∂xL

(α)
N (x(α)

j )

(7.12b)
= (N +α + 1)L (α)

N (x(α)
j ),

which implies

−L
(α+1)
N−1 (x(α)

j ) = ∂xL
(α)

N (x(α)
j ) = L

(α)
N (x(α)

j ).

A combination of the above identities leads to the weight formulas in (7.28). ��
Remark 7.1. If α = 0, we simply denote the usual Laguerre-Gauss-type nodes and
weights by {x j,ω j}N

j=0.

• In the Gauss case, {x j}N
j=0 are the zeros of LN+1(x), and the weights have the

representations:

ω j =
x j

(N + 1)2L 2
N(x j)

, 0 ≤ j ≤ N. (7.32)
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• In the Gauss-Radau case, x0 = 0 and {x j}N
j=1 are the zeros of ∂xLN+1(x), and

the weights are expressed by

ω j =
1

(N + 1)L 2
N(x j)

, 0 ≤ j ≤ N. (7.33)

We find from (7.13) and (7.14) that the weights are exponentially small for large
x j (see Table 7.1).

With a slight modification of the quadrature weights in Theorem 7.1, we can
derive the quadrature formulas associated with the generalized Laguerre functions.

Theorem 7.2. Let
{

x(α)
j ,ω (α)

j

}N
j=0 be the set of Laguerre-Gauss or Laguerre-

Gauss-Radau quadrature nodes and weights given in Theorem 7.1. Define

ω̂ (α)
j = ex(α)

j ω (α)
j , 0 ≤ j ≤ N, (7.34)

and

P̂N :=
{

φ : φ = e−x/2ψ, ∀ψ ∈ PN
}
. (7.35)

Then we have the modified quadrature formula

∫ +∞

0
p(x)q(x)xα dx =

N

∑
j=0

p(x(α)
j )q(x(α)

j )ω̂ (α)
j , ∀p ·q ∈ P̂2N+δ , (7.36)

where δ = 1,0 for the modified Laguerre-Gauss rule and the modified Laguerre-
Gauss-Radau rule, respectively.

Thanks to (7.16), (7.20) and (7.34), the formulas for the weights ω̂ (α)
j are obtained

by replacing the derivative operator ∂x by the new operator ∂̂x, and the GLP L
(α)
k (x)

by the GLF L̂
(α)

k (x), respectively.
In particular, for α = 0, we derive from (7.33) the modified Laguerre-Gauss-

Radau quadrature weights:

ω̂ j =
1

(N + 1)
[
L̂N(x j)

]2 , 0 ≤ j ≤ N. (7.37)

Thanks to (7.14), we have ω̂ j = O
(
(x j/N)1/2

)
, as opposed to the exponential decay

of {ω j} as N increases (see Table 7.1).
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7.1.3 Computation of Nodes and Weights

Thanks to the relation (7.30), it suffices to compute the Laguerre-Gauss quadrature

nodes and weights. We find from Theorem 3.4 and (7.4) that the zeros {x(α)
j }N

j=0 of

L
(α)
N+1(x) are the eigenvalues of the symmetric tridiagonal matrix

AN+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 −√
b1

−√
b1 a1 −√

b2

. . .
. . .

. . .

−√
bN−1 aN−1 −√

bN

−√
bN aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.38)

whose entries are derived from (7.4):

a j = 2 j+α + 1, 0 ≤ j ≤ N; b j = j( j+α), 1 ≤ j ≤ N. (7.39)

As shown in Theorem 3.6, the quadrature weights {ω (α)
j }N

j=0 can be computed
from the first component of the orthonormal eigenvectors of AN+1. Alternatively,
they can be evaluated by using the weight formulas given in Theorem 7.1. How-
ever, this process usually suffers from numerical instability for large N, due to

the exponential growth of GLPs. However, the modified weights {ω̂(α)
j }N

j=0 can be

evaluated in a stable manner. Consequently, it is desirable to compute {ω (α)
j }N

j=0 by

ω(α)
j = e−x

(α)
j ω̂ (α)

j , 0 ≤ j ≤ N. (7.40)

Another approach to locate the zeros is the iterative method as described in
Sect. 3.1.3. Once again, to avoid ill-conditioned operations involving the GLPs, we
work with GLFs. Funaro (1992) suggested an initial guess of the zeros as follows:

(a) find the roots of the equation

y(α)
j − siny(α)

j = 2π
N − j+ 3/4
2N +α + 3

, 0 ≤ j ≤ N;

(b) set

ŷ(α)
j =

(
cos

1
2

y(α)
j

)2
, 0 ≤ j ≤ N,

and

z(α)
j = 2(2N +α + 3)ŷ(α)

j

− 1
6(2N +α + 3)

( 5

4(1− ŷ(α)
j )2

− 1

1− ŷ(α)
j

− 1+ 3α2
)
,

(7.41)

which provides a good approximation of x(α)
j .
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To understand better the behavior of the zeros of GJPs, we provide some

asymptotic estimates in Szegö (1975). Assume that {x(α)
j }N

j=0 are arranged in as-
cending order. By Theorem 8.9.2 of Szegö (1975),
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Fig. 7.2 (a) Distribution of Laguerre-Gauss-Radau nodes {x j}N
j=0 with N = 8,16,24,32;

(b) Growth of {|x j+1 −x j|}40
j=0; (c) Growth of the largest node xN against the asymptotic estimate:

4N +6−4N1/3 (cf. (7.43)) with various N; (d) Distribution of zeros of L
(α)

8 (x) with various α

2
√

x(α)
j =

( j+ 1)π +O(1)√
N + 1

, for x(α)
j ∈ (0,η], α >−1, (7.42)

where η > 0 is a fixed constant. Moreover, by Theorem 6.31.3 of Szegö (1975),

x(α)
j <

(
j+(α + 3)/2

)2 j+α + 3+
√
(2 j+α + 3)2 + 1/4−α2

N +(α + 3)/2
, (7.43)

for all 0 ≤ j ≤ N and α >−1. In particular,

x(α)
N = 4N + 2α + 6+O(N1/3). (7.44)
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By (6.31.13) of Szegö (1975), we have that for α = 0,

x j =Cj,N
( j+ 2)2

N + 2
, 0 ≤ j ≤ N, (7.45)

where 1/4 <Cj,N < 4.
We see that the largest zero grows like 4N, while the smallest one behaves like

O(N−1). These properties are illustrated in Fig. 7.2a–c. We see from Fig. 7.2a, b
that the nodes are clustered near the endpoint x = 0, with min j |x j+1 − x j| ∼ N−1

(Recall that in the Jacobi case, this minimum distance is O(N−2)), whereas the
distance between consecutive nodes |x j+1 − x j| increases dramatically as the index
j increases. Moreover, Fig. 7.2c shows that the largest node xN grows like 4N as N

increases. We observe from Fig. 7.2d that, for a fixed j, the zero x(α)
j moves away

from the endpoint x = 0 as the index α increases, which is similar to that of the
Jacobi polynomials (cf. Fig. 3.2).

In Table 7.1, we present some samples of the Laguerre-Gauss-Radau quadrature
nodes and weights (with α = 0 and N = 16).

Table 7.1 Laguerre-Gauss-Radau quadrature nodes and weights with α = 0 and
N = 16

Nodes x j Weights ω j Weights ω̂ j

0.000000000000000e+00 5.882352941176471e-02 5.882352941176471e-02
2.161403052394536e-01 2.927604493268249e-01 3.633966730173862e-01
7.263882432518047e-01 3.181362909815314e-01 6.577784169175935e-01
1.533593160373541e+00 2.066607692008763e-01 9.578314405922921e-01
2.644970998611911e+00 8.994208934619415e-02 1.266657740603195e+00
4.070978160880192e+00 2.708753007297033e-02 1.587715767327549e+00
5.825855515105604e+00 5.679781839868921e-03 1.925167659218618e+00
7.928504185306668e+00 8.230703112809221e-04 2.284244322226874e+00
1.040380828995104e+01 8.100028502120838e-05 2.671794664046113e+00
1.328466107070703e+01 5.266367668946434e-06 3.097178050984928e+00
1.661517321686662e+01 2.173968333033556e-07 3.573808337030715e+00
2.045600602002722e+01 5.384928271901132e-09 4.122023458991009e+00
2.489384702535191e+01 7.374041106876865e-11 4.774918361810553e+00
3.005986292020259e+01 4.928461815736925e-13 5.591701623302517e+00
3.617069454367918e+01 1.309028045707531e-15 6.693942819894268e+00
4.364036518417683e+01 9.358643168465394e-19 8.394265017253366e+00
5.352915116026845e+01 6.770058713668848e-23 1.196760936707925e+01

7.1.4 Interpolation and Discrete Laguerre Transforms

We first consider the interpolation and discrete transforms using generalized La-
guerre functions.
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Let
{

x(α)
j , ω̂ (α)

j

}N
j=0 be a set of modified Laguerre-Gauss or Laguerre-Gauss-

Radau quadrature nodes and weights given in Theorem 7.2. We define the associated
discrete inner product and discrete norm as

〈u,v〉N,ω̂α =
N

∑
j=0

u(x(α)
j )v(x(α)

j )ω̂ (α)
j , ‖u‖N,ω̂α =

√
〈u,u〉N,ω̂α .

The exactness of the quadrature formula (7.36) implies

〈p,q〉N,ω̂α = (p,q)ω̂α , ∀p ·q ∈ P̂2N+δ , (7.46)

where δ = 1,0 for the modified Laguerre-Gauss and Laguerre-Gauss-Radau quadra-
tures, respectively.

Let P̂N be the finite dimensional space defined in (7.35). Define the corresponding

interpolation operator Î(α)
N : C[0,+∞)→ P̂N such that

(
Î(α)
N u

)
(x(α)

j ) = u(x(α)
j ), 0 ≤ j ≤ N,

which can be expressed by

(
Î(α)
N u

)
(x) =

N

∑
n=0

ũ(α)
n L̂

(α)
n (x) ∈ P̂N .

Given the physical values
{

u(x(α)
j )
}N

j=0, the coefficients
{

ũ(α)
n
}N

n=0 can be deter-
mined by the forward discrete transform

ũ(α)
n =

1

γ (α)
n

N

∑
j=0

u(x(α)
j )L̂

(α)
n (x(α)

j )ω̂ (α)
j , 0 ≤ n ≤ N,

where γ(α)
n is given by (7.2). On the other hand, given the expansion coefficients{

ũ(α)
n
}N

n=0, the physical values
{

u(x(α)
j )
}N

j=0 can be computed by the backward
discrete transform

u(x(α)
j ) =

N

∑
n=0

ũ(α)
n L̂

(α)
n (x(α)

j ), 0 ≤ j ≤ N,

The above definitions and transforms can be extended to the set of Laguerre-

Gauss-type nodes and weights {x(α)
j ,ω (α)

j }N
j=0 given by Theorem 7.1 by removing

“̂” from the corresponding ones.
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7.1.5 Differentiation in the Physical Space

Let {h j}N
j=0 be the Lagrange basis polynomials associated with the Laguerre-

Gauss-Radau points {x(α)
j }N

j=0. Given u ∈ PN and its physical values at {x(α)
j }N

j=0,
the derivative values can be evaluated exactly by the general formula given in
Sect. 3.1.6:

u(m) = Dmu, m ≥ 1, (7.47)

where

D =
(
dk j
)

k, j=0,1,...,N =
(
h′j(xk)

)
k, j=0,1,...,N ;

u(m) =
(
u(m)(x0),u

(m)(x1), . . . ,u
(m)(xN)

)T
, u := u(0).

Hence, it suffices to evaluate the first-order differentiation matrix D.

Using Theorem 3.11 and the properties of GLPs, we can determine the entries
of D.

(i) Laguerre-Gauss:

dk j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2
− α + 1

2x(α)
j

, k = j,

x(α)
j L

(α)
N (x(α)

k )

x(α)
k L

(α)
N (x(α)

j )

1

x(α)
k − x(α)

j

, k �= j.

(7.48)

(ii) Laguerre-Gauss-Radau:

dk j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− N
α + 2

, k = j = 0,

− Γ (N +α + 1)

Γ (α + 2)N!L (α)
N (x(α)

j )

1

x(α)
j

, k = 0, 1 ≤ j ≤ N,

Γ (α + 2)N!L (α)
N (x(α)

k )

Γ (N +α + 1)
1

x(α)
k

, 1 ≤ k ≤ N, j = 0,

1
2
− α

2x(α)
j

, 1 ≤ k = j ≤ N,

L
(α)

N (x(α)
k )

L
(α)

N (x(α)
j )

1

x(α)
k − x(α)

j

, 1 ≤ k �= j ≤ N.

(7.49)

Now, we turn to the differentiation process related to the generalized Laguerre
function approach. Define

ĥ j(x) =
e−x/2

e−x
(α)
j /2

h j(x). (7.50)
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One verifies readily that

ĥ j(x
(α)
k ) = δk j, 0 ≤ k, j ≤ N; P̂N = span

{
ĥ j : 0 ≤ j ≤ N

}
. (7.51)

Moreover, we find that ĥ′j ∈ P̂N and

d̂k j := ĥ′j(x
(α)
k ) =

e−x(α)
k /2

e−x(α)
j /2

dk j − 1
2

δk j, 0 ≤ j,k ≤ N. (7.52)

Therefore, the entries of D̂ = (d̂k j)0≤k, j≤N can be computed by

(i) modified Laguerre-Gauss:

d̂k j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−α + 1

2x(α)
j

, k = j,

x(α)
j L̂

(α)
N (x(α)

k )

x(α)
k L̂

(α)
N (x(α)

j )

1

x(α)
k − x(α)

j

, k �= j.

(7.53)

(ii) modified Laguerre-Gauss-Radau:

d̂k j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− N
α + 2

− 1
2
, k = j = 0,

− Γ (N +α + 1)

Γ (α + 2)N!L̂ (α)
N (x(α)

j )

1

x(α)
j

, k = 0, 1 ≤ j ≤ N,

Γ (α + 2)N!L̂ (α)
N (x(α)

k )

Γ (N +α + 1)
1

x(α)
k

, 1 ≤ k ≤ N, j = 0,

− α

2x(α)
j

, 1 ≤ k = j ≤ N,

L̂
(α)

N (x(α)
k )

L̂
(α)

N (x(α)
j )

1

x(α)
k − x(α)

j

, 1 ≤ k �= j ≤ N.

(7.54)

Note that higher-order differentiation can be performed by consecutively differenti-
ating (7.50).

7.1.6 Differentiation in the Frequency Space

Given u ∈ PN, we write

u(x) =
N

∑
n=0

ûnL
(α)

n (x) with ûn =
1

γ(α)
n

∫ +∞

0
u(x)L (α)

n (x)ωα(x)dx,
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and

u′(x) =
N

∑
n=1

ûn∂xL
(α)

n (x) =
N

∑
n=0

û(1)n L
(α)
n (x) ∈ PN−1 with û(1)N = 0.

Thanks to (7.12b), we can compute
{

û(1)n
}N−1

n=0 from
{

ûn
}N

n=0 by the following back-
ward relation (cf. Theorem 3.12):

{
û(1)n−1 = û(1)n − ûn, n = N,N − 1, . . . ,1,

û(1)N = 0.
(7.55)

Higher-order derivatives can be computed by repeatedly using the above formula.
Now, we turn to the GLF approach. For any v ∈ P̂N , we write

v(x) =
N

∑
n=0

v̂nL̂
(α)

n (x).

It is clear that v′ ∈ P̂N if v ∈ P̂N (compared with v′ ∈ PN−1 if v ∈ PN) . Hence, we can
write

v′(x) =
N

∑
n=0

v̂n∂xL̂
(α)

n (x) =
N

∑
n=0

v̂(1)n L̂
(α)

n (x).

Using (7.19) and (7.26a) leads to

v′(x) =
N

∑
n=0

v̂n∂xL̂
(α)

n (x) =
N

∑
n=0

v̂n

(1
2
L̂

(α)
n (x)−

n

∑
k=0

L̂
(α)
k (x)

)

=
1
2

N

∑
n=0

v̂nL̂
(α)

n (x)−
N

∑
k=0

( N

∑
n=k

v̂n

)
L̂

(α)
k (x)

=
N

∑
n=0

(1
2

v̂n −
N

∑
k=n

v̂k

)
L̂

(α)
n (x).

Hence, we compute {v̂(1)n }N
n=0 from {v̂n}N

n=0 by the formula:

v(1)n =
1
2

v̂n −
N

∑
k=n

v̂k, n = 0,1, . . . ,N,

or equivalently, by the backward relation:

⎧⎪⎨
⎪⎩

v̂(1)n = v̂(1)n+1 −
1
2

(
v̂n + v̂n+1

)
, n = N − 1, . . . ,0,

v̂(1)N =−1
2

v̂N .

(7.56)
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7.2 Hermite Polynomials/Functions

We present in this section basic properties of the Hermite polynomials/functions,
and derive Hermite-Gauss quadrature and the associated interpolation, discrete
transforms and spectral differentiation techniques.

7.2.1 Basic Properties

7.2.1.1 Hermite Polynomials

The Hermite polynomials, defined on the whole lineR :=(−∞, +∞), are orthogonal
with respect to the weight function ω(x) = e−x2

, namely,

∫ +∞

−∞
Hm(x)Hn(x)ω(x)dx = γnδmn, γn =

√
π2nn!. (7.57)

The Hermite polynomials satisfy the three-term recurrence relation:

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1, (7.58)

and the first few members are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2+ 12.

One verifies by induction that the leading coefficient of Hn(x) is 2n.
The Hermite polynomials have a close connection with the generalized Laguerre

polynomials:

H2n(x) = (−1)n22nn!L (−1/2)
n (x2),

H2n+1(x) = (−1)n22n+1n!xL (1/2)
n (x2).

(7.59)

Hence, Hn(x) is odd (resp. even) for n odd (resp. even), that is,

Hn(−x) = (−1)nHn(x). (7.60)

Moreover, by (7.6),

H2n(0) = (−1)n (2n)!
n!

, H2n+1(0) = 0. (7.61)
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The Hermite polynomials satisfy the Sturm-Liouville equation:

ex2(
e−x2

H ′
n(x)

)′
+λnHn(x) = 0, λn = 2n, (7.62)

or equivalently,
H ′′

n (x)− 2xH ′
n(x)+λnHn(x) = 0. (7.63)

As with the Laguerre polynomials, the eigenvalue λn grows linearly with respect
to n.

The Rodrigues’ formula of the Hermite polynomial takes the form

Hn(x) = (−1)nex2 dn

dxn

{
e−x2}

, (7.64)

and we have the explicit expression

Hn(x) =
[n/2]

∑
k=0

(−1)kn!
k!(n− 2k)!

(2x)n−2k. (7.65)

The following upper bound can be found in Abramowitz and Stegun (1964):

|Hn(x)|< c2n/2
√

n!ex2/2, c ≈ 1.086435. (7.66)

The Hermite polynomials satisfy

H ′
n(x) = λnHn−1(x), n ≥ 1. (7.67)

Consequently, for any k ∈ N,
{

H(k)
n
}∞

n=k are orthogonal with respect to the same

weight function e−x2
. In particular, we have

∫ +∞

−∞
H ′

n(x)H
′
m(x)e

−x2
dx = λnγnδmn. (7.68)

Another recurrence relation is

H ′
n(x) = 2xHn(x)−Hn+1(x), n ≥ 0. (7.69)

In view of (7.59), one obtains from (7.13) the asymptotic behavior of the Hermite
polynomials on a finite interval for large n. Moreover, By Formula (8.22.8) of Szegö
(1975), we have

Γ (n/2+ 1)
n!

e−x2/2Hn(x) = cos
(√

2n+ 1x− nπ/2
)

+
x3

6
√

2n+ 1
sin
(√

2n+ 1x− nπ/2
)
+O(n−1),

(7.70)
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which holds uniformly on a finite interval for sufficiently large n. Consequently, the
rapid growth of |Hn(x)| with respect to n and |x| (cf. Fig. 7.3a) may cause severe
numerical instability in the evaluation of the Hermite polynomials.
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n=3 n=1

Fig. 7.3 (a) The first five Hermite polynomials Hn(x) with n = 0, . . . ,4; (b) The first five Hermite
functions Ĥn(x) with n = 0, . . . ,4

7.2.1.2 Hermite Functions

As in the Laguerre case, the Hermite polynomials are not very useful in practice
due to its wild behavior at infinity. Therefore, we consider the Hermite functions
defined by

Ĥn(x) =
1

π1/4
√

2nn!
e−x2/2Hn(x), n ≥ 0, x ∈R, (7.71)

which are normalized so that

∫ +∞

−∞
Ĥn(x)Ĥm(x)dx = δmn. (7.72)

By the three-term recurrence relation (7.58), we obtain

Ĥn+1(x) = x

√
2

n+ 1
Ĥn(x)−

√
n

n+ 1
Ĥn−1(x), n ≥ 1,

Ĥ0(x) = π−1/4e−x2/2, Ĥ1(x) =
√

2π−1/4xe−x2/2,

(7.73)

which allows for a stable evaluation of the Hermite functions.
We find from (7.62) that the Hermite functions satisfy the second-order equation:

Ĥ ′′
n (x)+ (2n+ 1− x2)Ĥn(x) = 0. (7.74)
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Moreover, by (7.67) and (7.73),

Ĥ ′
n(x) =

√
2nĤn−1(x)− xĤn(x)

=

√
n

2
Ĥn−1(x)−

√
n+ 1

2
Ĥn+1(x),

(7.75)

which, together with the orthogonality (7.72), yields

∫ +∞

−∞
Ĥ ′

n(x)Ĥ
′
m(x)dx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√

n(n− 1)
2

, m = n− 2,

n+
1
2
, m = n,

−
√
(n+ 1)(n+ 2)

2
, m = n+ 2,

0, otherwise.

(7.76)

In addition, by (7.65) and (7.71),

Ĥn(x) = π−1/4
√

2nn!
[n/2]

∑
k=0

(−1)k

22kk!(n− 2k)!

(
xn−2ke−x2/2), (7.77)

which indicates that for any n, the Hermite functions decay rapidly (cf. Fig. 7.3b).
On the other hand, by (7.70) and the Stirling’s formula (A.7), the Hermite functions
on a finite interval with sufficiently large n behave like

Ĥn(x) = π−1/2
(n

2
+ 1
)− 1

4
cos
(√

2n+ 1x− nπ
2

)
+O(n−1/2). (7.78)

7.2.2 Hermite-Gauss Quadrature

The Hermite-Gauss quadrature follows directly from the general formula in
Sect. 3.1.

Theorem 7.3. Let {x j}N
j=0 be the zeros of HN+1(x), and let {ω j}N

j=0 be given by

ω j =

√
π2NN!

(N + 1)H2
N(x j)

, 0 ≤ j ≤ N. (7.79)

Then, we have

∫ +∞

−∞
p(x)e−x2

dx =
N

∑
j=0

p(x j)ω j, ∀p ∈ P2N+1. (7.80)
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Proof. We derive from Theorem 3.5 that

ω j =

√
π2N+1N!

HN(x j)H ′
N+1(x j)

, 0 ≤ j ≤ N,

so the representation (7.79) follows from (7.67) directly. ��

To approximate functions by Hermite functions, it is suitable to use the modified
Hermite-Gauss quadrature formula.

Theorem 7.4. Let {x j,ω j}N
j=0 be the Hermite-Gauss quadrature nodes and weights

given in Theorem 7.3. Define the modified weights

ω̂ j = ex2
j ω j =

1

(N + 1)Ĥ2
N(x j)

, 0 ≤ j ≤ N. (7.81)

Then, we have
∫ +∞

−∞
p(x)q(x)dx =

N

∑
j=0

p(x j)q(x j)ω̂ j, ∀p ·q ∈ P̂2N+1, (7.82)

where

P̂M :=
{

φ : φ = e−x2/2ψ , ∀ψ ∈ PM
}
. (7.83)

This modified Hermite-Gauss quadrature can be derived from Theorem 7.3

directly.

7.2.3 Computation of Nodes and Weights

According to Theorem 3.4, the zeros {x j}N
j=0 of HN+1(x) are the eigenvalues of the

symmetric tridiagonal matrix

AN+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
√

b1
√

b1 a1
√

b2

. . .
. . .

. . .
√

bN−1 aN−1
√

bN
√

bN aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.84)

whose entries are derived from (7.58):

aj = 0, 0 ≤ j ≤ N; b j = j/2, 1 ≤ j ≤ N.
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The quadrature weights {ω j}N
j=0 might be computed from the first component of

the orthonormal eigenvectors of AN+1, or from the weight formula (7.79). However,
due to the rapid growth of the Hermite polynomials, the latter approach is unstable
for large N or x j, whereas the evaluation of {ω̂ j}N

j=0 by (7.81) is always stable.
Alternatively, to apply the iterative approach described in Sect. 3.1.3 to locate the

zeros, it is advisable to compute the zeros of ĤN+1(x). Note from (7.61) and (7.79)
that the nodes and weights are symmetric, namely,

x j =−xN− j, ω j = ωN− j, 0 ≤ j ≤ N, (7.85)

and xN/2 = 0, if N even. Hence, the computational cost can be halved. In view of

(7.59), we might take the initial approximation to be {(z(α)
k )1/2}[N/2]−1

k=0 in (7.41)
with α = 1/2 and −1/2 for odd N and even N, respectively.
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Fig. 7.4 (a) Distribution of the Hermite-Gauss nodes {x j}N
j=0 with N = 8,16,24,32; (b) Growth

of the largest node against the asymptotic estimate:
√

2(N +1)− (2(N +1))1/3 (dashed line) with
various N

As a direct consequence of (7.43) and (7.59), we find that

max
j

|x j| ∼
√

2N, min
j
|x j − x j−1| ∼ N−1/2. (7.86)

We see from Fig. 7.4 (right) that the largest node grows at a rate as predicted. More-
over, Levin and Lubinsky (1992) pointed out that

ω j ∼ 1
N

e−x2
j

(
1− |x j|√

2(N + 1)

)
, 0 ≤ j ≤ N. (7.87)

In Table 7.2, we tabulate half (due to the symmetry (7.85)) of the Hermite-Gauss

nodes, weights and the modified weights: ω̂ j = ex2
j ω j with N = 8,16.
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Table 7.2 Hermite-Gauss nodes and weights
Nodes x j Weights ω j Weights ω̂ j

0.000000000000000e+00 7.202352156060509e-01 7.202352156060509e-01
7.235510187528376e-01 4.326515590025558e-01 7.303024527450919e-01
1.468553289216668e+00 8.847452739437670e-02 7.646081250945510e-01
2.266580584531843e+00 4.943624275536940e-03 8.417527014786689e-01
3.190993201781524e+00 3.960697726326615e-05 1.047003580976707e+00

0.000000000000000e+00 5.309179376248636e-01 5.309179376248636e-01
5.316330013426551e-01 4.018264694704117e-01 5.330706545735971e-01
1.067648725743451e+00 1.726482976700968e-01 5.397631139084976e-01
1.612924314221230e+00 4.092003414975658e-02 5.517773530781673e-01
2.173502826666621e+00 5.067349957627506e-03 5.707392941244530e-01
2.757762915703891e+00 2.986432866977458e-04 5.998927326677652e-01
3.378932091141491e+00 7.112289140021636e-06 6.462917002128916e-01
4.061946675875474e+00 4.977078981630849e-08 7.287483705871041e-01
4.871345193674399e+00 4.580578930798994e-11 9.262541399895513e-01

7.2.4 Interpolation and Discrete Hermite Transforms

Let Ih
N be the interpolation operator associated with the Hermite-Gauss points

{x j}N
j=0 such that for any v ∈C(R),

Ih
Nv ∈ PN ; (Ih

Nv)(x j) = v(x j), 0 ≤ j ≤ N,

which can be expanded as

(Ih
Nv)(x) =

N

∑
n=0

ṽnHn(x).

Given {v(x j)}N
j=0, the expansion coefficients {ṽn}N

n=0 can be computed by the for-
ward discrete transform

ṽn =
1
γn

N

∑
j=0

v(x j)Hn(x j)ω j , 0 ≤ n ≤ N. (7.88)

On the other hand, given {ṽn}N
n=0, the physical values {v(x j)}N

j=0 can be evaluated
by the backward discrete transform

v(x j) =
N

∑
n=0

ṽnHn(x j), 0 ≤ j ≤ N. (7.89)

Accordingly, for the Hermite function approach, we define the interpolant
Îh
Nu ∈ P̂N , which interpolates u at {x j}N

j=0 with the expansion
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(Îh
Nu)(x) =

N

∑
n=0

ũnĤn(x). (7.90)

The forward and backward discrete transforms are performed by

ũn =
N

∑
j=0

u(x j)Ĥn(x j)ω̂ j, 0 ≤ n ≤ N; u(x j) =
N

∑
n=0

ũnĤn(x j), 0 ≤ j ≤ N.

7.2.5 Differentiation in the Physical Space

Let {h j}N
j=0 be the Lagrange basis polynomials associated with the Hermite-Gauss

points {x j}N
j=0. Given u ∈ PN , we obtain from the general formula in Sect. 3.1.6 that

u(m) = Dmu, m ≥ 1, (7.91)

where the notation is the same as before. By Theorem 3.11 and the properties of the
Hermite polynomials, the entries of the first-order differentiation matrix D can be
computed by

dk j =

⎧⎪⎨
⎪⎩

HN(xk)

HN(x j)

1
xk − x j

, if k �= j,

xk, if k = j.

(7.92)

We now consider differentiation associated with the Hermite function approach.
Observe that for v ∈ P̂N, we have v′ ∈ P̂N+1. For any v ∈ P̂N , we write v = e−x2/2u
with u ∈ PN . We can compute its derivative values by

v′(xk) =−xkv(xk)+ e−x2
k/2u′(xk) =−xkv(xk)+ e−x2

k/2
N

∑
j=0

u(x j)dk j

=−xkv(xk)+ e−x2
k/2

N

∑
j=0

ex2
j/2v(x j)dk j :=

N

∑
j=0

v(x j)d̂k j,

where by (7.92),

d̂k j =−xkδk j + e−x2
k/2dk je

x2
j/2 =

⎧⎪⎨
⎪⎩

ĤN(xk)

ĤN(x j)

1
xk − x j

, if k �= j,

0, if k = j.

(7.93)

Higher order derivatives can be evaluated in a similar recursive manner.
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7.2.6 Differentiation in the Frequency Space

Given u ∈ PN with the expansion:

u(x) =
N

∑
n=0

ûnHn(x) where ûn =
1
γn
(u,Hn)ω ,

we have

u′(x) =
N

∑
n=1

ûnH ′
n(x) =

N

∑
n=0

û(1)n Hn(x) ∈ PN−1 with û(1)N = 0.

As a direct consequence of (7.67), the coefficients {û(1)n } can be evaluated by the
backward recursive formula:

û(1)N = 0; û(1)n = 2(n+ 1)ûn+1, n = N − 1,N − 2, . . . ,0. (7.94)

We now consider the differentiation associated with the Hermite functions. Given
v ∈ P̂N , we can write v = e−x2/2u with u ∈ PN . Therefore,

v(x) =
N

∑
n=0

v̂nĤn(x)
(7.71)
=⇒ u(x) =

N

∑
n=0

v̂n
Hn(x)√γn

. (7.95)

Then we have from (7.67), (7.71) and (7.73) that

v′ = e−x2/2u′ − xv = e−x2/2
N

∑
n=0

v̂n
H ′

n√γn
−

N

∑
n=0

v̂n(xĤn)

=
N

∑
n=0

v̂n

√
2nĤn−1 −

N

∑
n=0

v̂n

(√n
2

Ĥn−1 +

√
n+ 1

2
Ĥn+1

)

=
N

∑
n=0

v̂n

(√n
2

Ĥn−1 −
√

n+ 1
2

Ĥn+1

)

=
v̂1√

2
Ĥ0 +

N−1

∑
n=1

(√n+ 1
2

v̂n+1 −
√

n
2

v̂n−1

)
Ĥn −

N+1

∑
n=N

√
n
2

v̂n−1Ĥn.

Since v′ ∈ P̂N+1, we can expand it as

v′(x) =
N+1

∑
n=0

v̂(1)n Ĥn(x),

and the coefficients {v̂(1)n }N+1
n=0 can be computed by

v̂(1)n =

√
n+ 1

2
v̂n+1 −

√
n
2

v̂n−1, n = N + 1,N, . . . ,0, (7.96)

with v̂−1 = v̂N+1 = v̂N+2 = 0.
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7.3 Approximation by Laguerre and Hermite
Polynomials/Functions

This section is devoted to the analysis of approximations by (generalized) Laguerre
and Hermite polynomials/functions. These results will be useful for error analysis
of spectral methods for unbounded domains.

7.3.1 Inverse Inequalities

We first present several inverse inequalities associated with the Laguerre polynomi-
als/functions. Recall the weight functions ωα = xα e−x and ω̂α = xα .

Theorem 7.5. For α >−1 and any φ ∈ PN ,

‖∂ m
x φ‖ωα+m � Nm/2‖φ‖ωα , m ≥ 0. (7.97)

Proof. In view of the orthogonality (7.1) and (7.9), this inequality can be proved by
following the same procedure as in the proof of (3.236). ��

Let ∂̂x = ∂x +
1
2 be the same differential operator as before. For any ψ ∈ P̂N

(defined in (7.35)), we have ψ = e−x/2φ and

∂ m
x φ = ∂ m

x (ex/2ψ) = ex/2
(

∂x +
1
2

)m
ψ = ex/2∂̂ m

x ψ . (7.98)

Therefore, a direct consequence of (7.97) is as follows.

Corollary 7.1. For α >−1 and any ψ ∈ P̂N ,

‖∂̂ m
x ψ‖ω̂α+m � Nm/2‖ψ‖ω̂α , m ≥ 0. (7.99)

Next, we derive an inverse inequality involving the same weight function for
derivatives of different order.

Theorem 7.6. For α ≥ 0 and any φ ∈ PN ,

‖∂ m
x φ‖ωα ≤ Nm‖φ‖ωα , m ≥ 0. (7.100)

Proof. For any φ ∈ PN , we have

φ =
N

∑
n=0

φ̂ (α)
n L

(α)
n ⇒ ‖φ‖2

ωα =
N

∑
n=0

γ (α)
n |φ̂ (α)

n |2.

By (7.12a),

φ ′ =
N

∑
n=1

φ̂ (α)
n

(
−

n−1

∑
k=0

L
(α)

k

)
=

N−1

∑
k=0

(
−

N

∑
n=k+1

φ̂ (α)
n

)
L

(α)
k .
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Thus,

‖φ ′‖2
ωα =

N−1

∑
k=0

(
N

∑
n=k+1

φ̂ (α)
n

)2

γ(α)
k .

By the Cauchy–Schwarz inequality,

(
N

∑
n=k+1

φ̂ (α)
n

)2

≤
(

N

∑
n=k+1

γ(α)
n |φ̂ (α)

n |2
)(

N

∑
n=k+1

(γ(α)
n )−1

)
.

By (7.2),

γ(α)
j+1

γ(α)
j

=
j+α + 1

j+ 1
,

which implies that if α ≥ 0, {γ(α)
j } is an increasing sequence. A combination of the

above facts leads to that for α ≥ 0,

‖φ ′‖2
ωα ≤ ‖φ‖2

ωα

N−1

∑
k=0

γ(α)
k

(
N

∑
n=k+1

(γ(α)
n )−1

)

≤ N‖φ‖2
ωα

N−1

∑
k=0

γ(α)
k

γ (α)
k+1

≤ N2‖φ‖2
ωα .

Therefore, applying the above inequality repeatedly leads to (7.100). ��
Corollary 7.2. For α ≥ 0 and any ψ ∈ P̂N ,

‖∂̂ m
x ψ‖ω̂α � Nm‖ψ‖ω̂α , m ≥ 0. (7.101)

Unlike the Jacobi and generalized Laguerre polynomials, there is only one weight
function, ω(x) = e−x2

, associated with the Hermite polynomials. Consequently,
there is no analogue of Theorem 7.5 in the Hermite case. However, we can prove
the following:

Theorem 7.7. For any φ ∈ PN ,

‖∂xφ‖ω � N‖φ‖ω where ω = e−x2
.

Moreover, let ∂̂x = ∂x + x. Then for any ψ ∈ P̂N (defined in (7.83)),

‖∂̂xψ‖� N‖ψ‖.

We leave the proof as an excise (see Problem 7.1).
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7.3.2 Orthogonal Projections

We first consider the approximations by (generalized) Laguerre polynomials/
functions. Consider the L2

ωα -orthogonal projection ΠN,α : L2
ωα (R+) → PN ,

defined by

(ΠN,α u− u,vN)ωα = 0, ∀vN ∈ PN, (7.102)

so we have

Π N,α u(x) =
N

∑
n=0

û(α)
n L

(α)
n (x) with û(α)

n =
1

γ(α)
n

∫
R+

u(x)L (α)
n (x)ωα(x)dx.

Similar to the Jacobi approximations, we introduce the space

Bm
α(R+) :=

{
u : ∂ k

x u ∈ L2
ωα+k

(R+), 0 ≤ k ≤ m
}
, (7.103)

equipped with the norm and semi-norm

‖u‖Bm
α =

( m

∑
k=0

‖∂ k
x u‖2

ωα+k

)1/2
, |u|Bm

α = ‖∂ m
x u‖ωα+m .

As usual, we will drop the subscript α if α = 0. Notice that the weight function
corresponding to the derivative of different order is different in Bm

α (R+), as opposed
to the Sobolev space Hm

ωα (R+).
Observe from (7.12a) that

∂ k
x L

(α)
n (x) = (−1)kL

(α+k)
n−k (x), n ≥ k, (7.104)

which shows that
{

∂ k
x L

(α)
n
}

are orthogonal with respect to the weight ωα+k, i.e.,

∫ +∞

0
∂ k

x L
(α)

l ∂ k
x L

(α)
n ωα+k dx = γ(α+k)

n−k δln. (7.105)

Thanks to (7.105), the following fundamental results can be proved by using an
argument similar to that for Theorem 3.35, and the proof is left as an exercise (see
Problem 7.2).

Theorem 7.8. Let α >−1. If u ∈ Bm
α(R+) and 0 ≤ m ≤ N + 1, we have

‖∂ l
x(Π N,α u− u)‖ωα+l ≤

√
(N −m+ 1)!
(N − l+ 1)!

‖∂ m
x u‖ωα+m , 0 ≤ l ≤ m. (7.106)

We observe that the above result is valid for u ∈ Bm
α(R+) which includes func-

tions that do not decay at infinity, however, the error estimate is given in a weighted
space with an exponentially decay rate. In particular, a fast convergence rate in the
norm ‖ · ‖ωα+l does not mean that the error would decay rapidly for large x.
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Consider, for example, the expansion of an entire function sinx for which the
above result is valid for any m > 0. However, its expansion in terms of Laguerre
polynomials is:

sinx =
∞

∑
n=0

1

2(n+1)/2
cos
[π

4
(n+ 1)

]
Ln(x). (7.107)

In view of (7.14), the decay of the N-term truncation is roughly

1√
2π

ex/2

2N/2(Nx)1/4
, (7.108)

which implies that the error is small only if N ln2 > x or N > 1.44x.
Next, we consider the projection error of the Laguerre function expansions. Re-

call that ω̂α = xα . For any u ∈ L2
ω̂α

(R+), we have uex/2 ∈ L2
ωα (R+). Define the

operator

Π̂N,α u = e−x/2ΠN,α(uex/2) ∈ P̂N . (7.109)

Clearly, we obtain from (7.102) that for any vN ∈ P̂N ,

(Π̂ N,α u− u,vN)ω̂α =
(

ΠN,α (uex/2)− (uex/2),(vNex/2)
)

ωα
= 0,

which shows that Π̂N,α u is the L2
ω̂α

-orthogonal projection of u.
Let us define

B̂m
α(R+) :=

{
u : ∂̂ k

x u ∈ L2
ω̂α+k

(R+), 0 ≤ k ≤ m
}
, (7.110)

equipped with the norm and semi-norm

‖u‖B̂m
α
=
( m

∑
k=0

‖∂̂ k
x u‖2

ω̂α+k

)1/2
, |u|B̂m

α
= ‖∂̂ m

x u‖ω̂α+m .

It is straightforward to extend Theorem 7.8 to the Laguerre function case.

Theorem 7.9. Let ∂̂x = ∂x +
1
2 and α >−1. Then for any u ∈ B̂m

α(R+) and 0 ≤ m ≤
N + 1,

‖∂̂ l
x(Π̂ N,α u− u)‖ω̂α+l

≤
√

(N −m+ 1)!
(N − l+ 1)!

‖∂̂ m
x u‖ω̂α+m , 0 ≤ l ≤ m. (7.111)

Proof. Let v = uex/2. It is clear that

∂ l
x(ΠN,α v− v) = ∂ l

x(e
x/2(Π̂N,α u− u)) = ex/2∂̂ l

x(Π̂N,α u− u),

and likewise, ∂ m
x v = ex/2∂̂ m

x u. Hence, the desired result is a direct consequence
of (7.106). ��
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Remark 7.2. Like Remark 3.7, we find that

(N − l+ 1)(l−m)/2 ≤
√

(N −m+ 1)!
(N − l+ 1)!

≤ (N −m+ 2)(l−m)/2, (7.112)

for 0 ≤ l ≤ m ≤ N + 1 and fixed l. In particular, if m is fixed, then

√
(N −m+ 1)!
(N − l+ 1)!

∼= N(l−m)/2. (7.113)

Remark 7.3. When comparing the error estimate in the above theorem with the cor-
responding result for classical Jacobi approximation (see Theorem 3.35), we notice
that the convergence rate of the Laguerre approximation is only half of the classi-
cal Jacobi approximation. This is a direct consequence of the linear growth of the
eigenvalues in the Laguerre Sturm-Liouville problem, as opposed to the quadratic
growth in the Jacobi Sturm-Liouville problem.

Note that u∈ B̂m
α(R+) requires that u decays at infinity so the above results do not

apply to functions like sinx, despite the fact that it is an entire function. Consider,
on the other hand, u(x) = (1+ x)−h and u(x) = sinkx

(1+x)h with h > 0. It can be easily

checked that for both functions ‖∂̂ m
x u‖ω̂α+m < ∞ if m < 2h−α −1, so Theorem 7.9

implies that

‖u− Π̂N,α u‖ω̂α � N−(2h−α−1)/2. (7.114)

Numerical evidences exhibiting the above convergence rate are provided in Figs. 7.5
and 7.6.

We now consider the H1-type orthogonal projections. For simplicity, we restrict
the analysis to the approximations by usual Laguerre polynomials/functions. Let
ω(x) = e−x be the usual Laguerre weight function, and denote

H1
0,ω(R+) =

{
u ∈ H1

ω(R+) : u(0) = 0
}
,

P0
N =

{
φ ∈ PN : φ(0) = 0

}
.

(7.115)

The orthogonal projection Π1,0
N : H1

0,ω(R+)→ P0
N is defined by

(
(u−Π1,0

N u)′,v′N
)

ω = 0, ∀vN ∈ P0
N . (7.116)

Theorem 7.10. If u ∈ H1
0,ω(R+) and ∂xu ∈ Bm−1

0 (R+), then for 1 ≤ m ≤ N + 1,

‖Π1,0
N u− u‖1,ω ≤ c

√
(N −m+ 1)!

N!
‖∂ m

x u‖ωm−1, (7.117)

where c is a positive constant independent of m,N and u.
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Proof. Let

φ(x) =
∫ x

0
ΠN−1,0u′(y)dy.

Then u−φ ∈ H1
0,ω(R+). Using (B.35b) and Theorem 7.8 with α = 0 yields

‖Π1,0
N u− u‖1,ω ≤ ‖φ − u‖1,ω ≤ c‖∂x(φ − u)‖ω

≤ c

√
(N −m+ 1)!

N!
‖∂ m

x u‖ωm−1.

This ends the proof. ��

Since for any u ∈ H1
0 (R+), we have uex/2 ∈ H1

0,ω(R+). Define the operator

Π̂ 1,0
N u = e−x/2Π1,0

N (uex/2) ∈ P̂0
N ,

whose approximation property is characterized by the following theorem.

Theorem 7.11. For any u ∈ H1
0 (R+), we have

((u− Π̂1,0
N u)′,v′N)+

1
4
(u− Π̂1,0

N u,vN) = 0, ∀vN ∈ P̂0
N. (7.118)

Let ∂̂x = ∂x +
1
2 . If u ∈ H1

0 (R+) and ∂̂xu ∈ B̂m−1
0 (R+), then for 1 ≤ m ≤ N + 1,

‖Π̂1,0
N u− u‖1 ≤ c

√
(N −m+ 1)!

N!
‖∂̂ m

x u‖ω̂m−1
, (7.119)

where c is a positive constant independent of m,N and u.

Proof. Using the definition of Π 1,0
N and integration by parts, we find that for any

vN = wNe−x/2 with wN ∈ P0
N ,

((u− Π̂1,0
N u)′,v′N)

=
(
[(uex/2)−Π1,0

N (uex/2)]′ − 1
2
[(uex/2)−Π1,0

N (uex/2)],w′
N − 1

2
wN

)
ω

=−1
2

∫ +∞

0
[(uex/2)−Π1,0

N (uex/2)wN ]
′e−xdx+

1
4
((uex/2)−Π1,0

N (uex/2),wN)ω

=−1
4
((uex/2)−Π1,0

N (uex/2),vN)ω =−1
4
(u− Π̂1,0

N u,vN),

which yields the identity (7.118).

Let v = uex/2. Clearly,

∂x(Π̂
1,0
N u− u) =−1

2
e−x/2(Π1,0

N v− v)+ e−x/2∂x(Π
1,0
N v− v).
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Hence, using Theorem 7.10 and the fact ∂ m
x v = ex/2∂̂ m

x u leads to

‖∂x(Π̂
1,0
N u− u)‖≤ c

(‖Π1,0
N v− v‖ω + ‖∂x(Π

1,0
N v− v)‖ω

)

≤ c

√
(N −m+ 1)!

N!
‖∂ m

x v‖ωm−1 ≤ c

√
(N −m+ 1)!

N!
‖∂̂ m

x u‖ω̂m−1.

Similarly, by Theorem 7.10,

‖Π̂ 1,0
N u− u‖= ‖Π1,0

N (uex/2)− (uex/2)‖ω ≤ c

√
(N −m+ 1)!

N!
‖∂̂ m

x u‖ω̂m−1
.

This completes the proof. ��
In the analysis of Laguerre spectral methods for fourth-order problems, it is nec-

essary to consider H2-type orthogonal projections. For this purpose, we denote

H2
0,ω(R+) =

{
v ∈ H2

ω(R+) : v(0) = v′(0) = 0
}
, XN = H2

0,ω(R+)∩PN,

H2
0 (R+) =

{
v ∈ H2(R+) : v(0) = v′(0) = 0

}
, X̂N = H2

0 (R+)∩ P̂N ,

Consider the orthogonal projection: Π2,0
N : H2

0,ω(R+)→ XN , defined by

(
(v−Π2,0

N v)′′,v′′N
)

ω = 0, ∀vN ∈ XN , (7.120)

and define the mapping Π̂ 2,0
N : H2

0 (R+)→ X̂N by

Π̂2,0
N u = e−x/2Π2,0

N (uex/2). (7.121)

We have the following approximation result, and leave its proof as an excise (see
Problem 7.3).

Theorem 7.12. If v ∈ H2
0,ω(R+) and ∂ 2

x v ∈ Bm−2
0 (R+) with 2 ≤ m ≤ N +1, then we

have

‖Π2,0
N v− v‖2,ω ≤ c

√
(N −m+ 1)!
(N − 1)!

‖∂ m
x v‖ωm−2. (7.122)

Let Π̂ 2,0
N be the operator defined by (7.121). For any u ∈ H2

0 (R+), we have that for
all uN ∈ X̂N,

(
(u− Π̂2,0

N u)′′,u′′N
)
+

1
2

(
(u− Π̂2,0

N u)′,u′N
)
+

1
16

(
u− Π̂2,0

N u,uN
)
= 0. (7.123)

Moreover, if u ∈ H2
0 (R+) and ∂̂ 2

x u ∈ B̂m−2
0 (R+) with 2 ≤ m ≤ N + 1, then we have

‖Π̂2,0
N u− u‖2,ω̂ ≤ c

√
(N −m+ 1)!
(N − 1)!

‖∂̂ m
x u‖ω̂m−2

. (7.124)
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We now consider approximations by Hermite polynomials/functions. To this end,
let ω = e−x2

be the Hermite weight function as before. Consider the L2
ω -orthogonal

projection ΠN : L2
ω(R)→ PN, defined by

(u−ΠNu,vN)ω = 0, ∀vN ∈ PN . (7.125)

It is clear that

ΠNu(x) =
N

∑
n=0

ûnHn(x) with ûn =
1
γn

∫
R

u(x)Hn(x)ω(x)dx,

where γn is given by (7.57).
Using (7.67) repeatedly leads to

∂ k
x Hn(x) =

2kn!
(n− k)!

Hn−k(x), n ≥ k, (7.126)

which implies that {Hn} are orthogonal with respect to the inner product of the
Sobolev space Hm

ω (R). Thanks to (7.126), we can derive the approximation results
by following the same argument as for Theorem 3.35.

Theorem 7.13. For any u ∈ Hm
ω (R) with 0 ≤ m ≤ N + 1,

‖∂ l
x(Π Nu− u)‖ω ≤ 2(l−m)/2

√
(N −m+ 1)!
(N − l+ 1)!

‖∂ m
x u‖ω , 0 ≤ l ≤ m. (7.127)

This result shows that the convergence order of the L2
ω -orthogonal projection is

simultaneously optimal in the Hl
ω -norm with l ≥ 1.

We next consider the extension of Theorem 7.13 to the Hermite function approx-
imations. Notice that for any u ∈ L2(R), we have uex2/2 ∈ L2

ω(R). Define

Π̂Nu := e−x2/2ΠN(uex2/2) ∈ P̂N , (7.128)

which satisfies

(u− Π̂Nu,vN) =
(
uex2/2 −ΠN(uex2/2),vNex2/2)

ω = 0, ∀vN ∈ P̂N . (7.129)

The following result is a direct consequence of Theorem 7.13.

Corollary 7.3. Let ∂̂x = ∂x + x. For any ∂̂ m
x u ∈ L2(R) with 0 ≤ m ≤ N + 1,

‖∂̂ l
x(Π̂ Nu− u)‖ ≤ c2(l−m)/2

√
(N −m+ 1)!
(N − l+ 1)!

‖∂̂ m
x u‖, 0 ≤ l ≤ m, (7.130)

where c is a positive constant independent of m,N and u.
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The above result does not imply the estimate ‖∂ l
x(Π̂ Nu−u)‖, which is concluded

in the following theorem.

Theorem 7.14. Let ∂̂x = ∂x + x. If ∂̂ m
x u ∈ L2(R) and 2 ≤ m ≤ N + 1, then

‖∂ l
x(Π̂Nu− u)‖≤ c

√
(N −m+ 1)!

2m(N − l+ 1)!
‖∂̂ m

x u‖, l = 0,1,2, (7.131)

where c is a positive constant independent of m,N and u.

Proof. The estimate (7.131) with l = 0 follows from Corollary 7.3 with l = 0.
For l = 1, we find

∂x(Π̂Nu− u) = e−x2/2∂x

(
ΠN(e

x2/2u)− (ex2/2u)
)

− xe−x2/2
(

ΠN(e
x2/2u)− (ex2/2u)

)
.

Hence, by (B.36b) and Theorem 7.13,

‖∂x(Π̂ Nu− u)‖ ≤ |Π N(e
x2/2u)− (ex2/2u)|1,ω + ‖x(ΠN(e

x2/2u)− (ex2/2u))‖ω

≤ c‖ΠN(e
x2/2u)− (ex2/2u)‖1,ω ≤ c

√
(N −m+ 1)!

2mN!
‖∂ m

x (ex2/2u)‖ω .

The case with l = 2 can be proved in the same fashion. ��
Remark 7.4. Like Remark 7.2, we have that for fixed m, the order of convergence is
O(N(l−m)/2).

Remark 7.5. As in the Laguerre case, the eigenvalues of the Sturm-Liouville
problem associated with the Hermite polynomials also grows linearly, so the
convergence rate of the Hermite approximation is similar to that of the Laguerre
approximation. Consider, for example, u(x) = (1+ x2)−h and u(x) = sinkx

(1+x2)h with

h > 0. It can be checked that for both functions ‖∂̂ m
x u‖< ∞ if m < 2h− 1/2, which

implies

‖Π̂Nu− u‖� N−(h−1/4). (7.132)

7.3.3 Interpolations

Let {x(α)
j }N

j=0 be the Laguerre-Gauss points given in Theorem 7.1, and denote by

I(α)
N the corresponding polynomial interpolation operator. Its approximation prop-

erty is stated below, and the proof can be found in Guo et al. (2006b).
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Theorem 7.15. Let α > −1. If u ∈ C(R+)∩ Bm
α(R+) and ∂xu ∈ Bm−1

α (R+) with
1 ≤ m ≤ N + 1, then

‖I(α)
N u−u‖ωα ≤ c

√
(N −m+ 1)!

N!

(‖∂ m
x u‖ωα+m−1 +(lnN)1/2‖∂ m

x u‖ωα+m

)
, (7.133)

where c is a positive constant independent of m,N and u.

We also refer to Guo et al. (2006b) for a similar estimate for the Laguerre-Gauss-
Radau interpolation.

Remark 7.6. Compared with Theorem 7.8 (with l = 0), the estimate for the interpo-
lation has an extra (lnN)1/2 term. This results improve previous estimates in Maday
et al. (1985), Mastroianni and Occorsio (2001a) and Xu and Guo (2002). Note how-
ever that in Maday et al. (1985) (also see Bernardi and Maday (1997)), the following
estimate was derived for the case α = 0,

‖I(0)N u− u‖ω0 � N(1−m)/2‖u‖Hm
ωτ
, (7.134)

where the weight function ωτ(x) = e−(1−τ)x with 0 < τ < 1. Mastroianni and
Occorsio (2001a) studied the generalized Laguerre-Gauss interpolation (see For-
mula (3.8) of Mastroianni and Occorsio (2001a)) and showed that

‖xγe−x/2(I(α)
N u− u)‖∞ � N−m/2 lnN‖xm/2+γe−x/2∂ m

x u‖∞, (7.135)

for fixed m ≥ 1, α >−1 and some γ ≥ 0 satisfying

2γ − 5
2
≤ α ≤ 2γ − 1

2
.

In Xu and Guo (2002), the usual Laguerre interpolation was analyzed in the
weighted Sobolev space, and the main result is

‖I(0)N u− u‖ω0 � N(1−m)/2+ε‖u‖Hm
ωm
, m ≥ 1, 0 < ε ≤ 1/2. (7.136)

This result was improved in Guo et al. (2006b) with lnN in place of Nε .

It is straightforward to extend the interpolation error estimate (7.133) to the

modified Laguerre-Gauss-type interpolation Î(α)
N , associated with the quadrature in

Theorem 7.2. Observe that

(
Î(α)
N u)(x) = e−x/2I(α)

N (uex/2) ∈ P̂N ,

so we derive immediately from Theorem 7.15 the following result.
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Theorem 7.16. Let α > −1. If u ∈ C(R+)∩ B̂m
α(R+) and ∂̂xu ∈ B̂m−1

α (R+) with
1 ≤ m ≤ N + 1, then

‖Î(α)
N u−u‖ω̂α ≤ c

√
(N −m+ 1)!

N!

(‖∂̂ m
x u‖ω̂α+m−1 +(lnN)1/2‖∂̂ m

x u‖ω̂α+m

)
, (7.137)

where c is a positive constant independent of m,N and u.

Now, we turn to the interpolation error estimates associated with the Hermite-
Gauss quadrature in Theorem 7.3. Let Ih

N : C(R)→ PN be the interpolation operator
associated with the Hermite-Gauss points. By combing Theorem 7.13 and the results
in Guo and Xu (2000) and Aguirre and Rivas (2005), we can prove the following
result, which is just a more concise form of Theorem 2.1 in Guo and Xu (2000) (see
also Aguirre and Rivas (2005)):

Theorem 7.17. For u ∈C(R)∩Hm
ω (R) with m ≥ 1, we have

‖∂ l
x(I

h
Nu− u)‖ω � N

1
6+

l−m
2 ‖∂ m

x u‖ω , 0 ≤ l ≤ m. (7.138)

In the above, m is assumed to be a fixed integer. This result improved that in Guo

and Xu (2000) (with a convergence order N
1
3+

l−m
2 ).

Finally, we consider the interpolation associated with the Hermite functions in
(7.90). Note that (Îh

Nu) = e−x2/2Ih
N(uex2/2). The following estimate follows from

Theorem 7.17.

Theorem 7.18. Let ∂̂x = ∂x + x. For u ∈ C(R) and ∂̂ m
x u ∈ L2(R) with fixed m ≥ 1,

we have
‖∂̂ l

x(Î
h
Nu− u)‖� N

1
6+

l−m
2 ‖∂̂ m

x u‖, 0 ≤ l ≤ m. (7.139)

7.4 Spectral Methods Using Laguerre and Hermite Functions

In this section, we consider spectral-Galerkin methods using Laguerre and Hermite
functions. An advantage of using Laguerre functions is that they are mutually
orthogonal in the usual (non-weighted) L2-space, so we can work with the usual
(i.e. non-weighted) variational formulation.

7.4.1 Laguerre-Galerkin Method

Consider the model equation:

− uxx + γu = f , x ∈ R+, γ > 0; u(0) = 0, lim
x→+∞

u(x) = 0. (7.140)



274 7 Unbounded Domains

Let H1
0 (R+) and P̂0

N be the spaces as defined before. Then, a weak formulation
for (7.140) is

{
Find u ∈ H1

0 (R+) such that

a(u,v) := (u′,v′)+ γ(u,v) = ( f ,v), ∀v ∈ H1
0 (R+),

(7.141)

for f ∈ (H1
0 (R+)

)′
. Note that u ∈ H1

0 (R+) implies limx→∞ u(x) = 0. It is clear that
for γ > 0, the problem admits a unique solution, since

a(u,u) = |u|21 + γ‖u‖2 ≥ min(1,γ)‖u‖2
1, ∀u ∈ H1

0 (R+). (7.142)

The Laguerre spectral-Galerkin approximation to (7.140) is

{
Find uN ∈ P̂0

N such that

a(uN ,vN) = (ÎN f ,vN), ∀vN ∈ P̂0
N,

(7.143)

where ÎN is the Laguerre-Gauss-Radau interpolation operator. Thanks to (7.142),
the unique approximate solution uN satisfies ‖uN‖1 � ‖ÎN f‖.

Defining

φ̂k(x) =
(
Lk(x)−Lk+1(x)

)
e−x/2 = L̂k(x)− L̂k+1(x), (7.144)

one verifies that

P̂0
N = span

{
φ̂0, φ̂1, . . . , φ̂N−1

}
. (7.145)

Hence, by setting

uN =
N−1

∑
k=0

ûkφ̂k, u =
(
û0, û1, . . . , ûN−1

)T
;

f j = (ÎN f , φ̂ j), f =
(

f0, f1, . . . , fN−1
)T

;

s jk = (φ̂ ′
k, φ̂ ′

j), S =
(
s jk
)

0≤ j,k≤N−1, c jk = (φ̂k, φ̂ j), C =
(
c jk
)

0≤ j,k≤N−1,

we find that C is a symmetric tridiagonal matrix and S = I − 1
4C, so the system

(7.143) reduces to the linear system

(
I +(γ − 1

4
)C
)

u = f. (7.146)

Note that the entries of the coefficient matrix can be evaluated exactly, and this
system is easy to invert.

Using the approximation results established in the previous section, we can de-
rive the following convergence result.
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Theorem 7.19. Let γ > 0. If u ∈ H1
0 (R+), ∂̂xu ∈ B̂m−1

0 (R+), f ∈ C(R̄+)∩ B̂k
0(R+)

and ∂̂x f ∈ B̂k−1
0 (R+) with 1 ≤ k,m ≤ N + 1, then we have

‖u− uN‖1 ≤ c

√
(N −m+ 1)!

N!
‖∂̂ m

x u‖ω̂m−1

+ c

√
(N − k+ 1)!

N!

(‖∂̂ k
x f‖ω̂k−1

+(lnN)1/2‖∂̂ k
x f‖ω̂k

)
,

(7.147)

where ω̂m−1 = xm−1, and c is a positive constant independent of m,k,N,u and f .

Proof. Let Π̂1,0
N be the orthogonal projection operator defined in Theorem 7.11. Let

eN = uN − Π̂1,0
N u and ẽN = u− Π̂1,0

N u. Then by (7.141)-(7.143),

a(uN − u,vN) = (ÎN f − f ,vN), ∀vN ∈ P̂0
N ,

which implies

a(eN,vN) = a(ẽN,vN)+ (ÎN f − f ,vN), ∀vN ∈ P̂0
N.

Taking vN = eN in the above, we find

‖eN‖1 ≤ c
(‖ẽN‖1 + ‖ÎN f − f‖).

Then, the desired estimate follows from Theorems 7.11 and 7.16 (with α = 0) and
the triangle inequality. ��

7.4.2 Hermite-Galerkin Method

As an example, we consider the following model problem:

−uxx + γu = f , x ∈ R, γ > 0; lim
|x|→∞

u(x) = 0. (7.148)

A weak formulation for (7.148) is{
Find u ∈ H1(R) such that

(∂xu,∂xv)+ γ(u,v) = ( f ,v), ∀v ∈ H1(R),
(7.149)

for given f ∈ (H1(R)
)′
. Notice that the decay of u at infinity is incorporated into

the space H1(R).
The Hermite-Galerkin method for (7.149) is{

Find uN ∈ P̂N such that

(∂xuN,∂xvN)+ γ(uN,vN) = (Îh
N f ,vN), ∀vN ∈ P̂N ,

(7.150)

where Îh
N is the (modified) Hermite-Gauss interpolation operator.
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In view of (7.76), the system (7.150) has a similar structure as (7.146).
By using a standard argument as for the scheme (7.143), the following error

estimate is a straightforward consequence of Theorems 7.14 and 7.18.

Theorem 7.20. Let γ > 0 and ∂̂x = ∂x + x. If u ∈ H1(R) with ∂̂ m
x u ∈ L2(R), and

f ∈C(R) with ∂̂ k
x f ∈ L2(R) and fixed k,m ≥ 1, then we have

‖uN − u‖1 � N
1−m

2 ‖∂̂ m
x u‖+N

1
6− k

2 ‖∂̂ k
x f‖. (7.151)

7.4.3 Numerical Results and Discussions

Now, we present some numerical results to illustrate the convergence behavior of
the proposed schemes. We consider (7.140) and (7.148) with three sets of exact
solutions having different decay properties.

Set 1. Exponential decay with oscillation at infinity

u(x) = e−xsinkx for x ∈ (0,∞) or u(x) = e−x2
sinkx for x ∈ (−∞,∞). (7.152)

Set 2. Algebraic decay without oscillation at infinity

u(x) = (1+x)−h for x∈ (0,∞) or u(x)= (1+x2)−h for x∈ (−∞,∞). (7.153)

Set 3. Algebraic decay with oscillation at infinity

u(x) =
sinkx

(1+ x)h for x ∈ (0,∞) or u(x) =
sinkx

(1+ x2)h for x ∈ (−∞,∞). (7.154)
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Fig. 7.5 Example 1: (a) Exact solution against the numerical solutions obtained by (7.146) with
N = 32,48,64; (b) Maximum and L2-errors vs. various N
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In Fig. 7.5a, we plot the exact solution (7.152) with k = 4 against the numerical
solution obtained by the scheme (7.143) with γ = 1 and different numbers of modes
N, and in Fig. 7.5b, we depict the rate of convergence. A geometric convergence
rate (i.e. exp(−cN) with c > 0) is observed, which is consistent with the estimate
in (7.147).

In Shen (2000), numerical results are reported for the scheme (7.143) using the
functions in (7.153)-(7.154) as exact solutions. Sub-geometric convergence of order
exp(−c

√
N) for (7.153) are observed (cf. Fig. 3.2 in Shen (2000)), while a con-

vergence rate consistent with the estimate in (7.147) and (7.114) is observed for
(7.154). The sub-geometric convergence for (7.153) was puzzling since the error
estimate in (7.114) only predicts a rate of order about N−h. In order to explain this
surprising disagreement, we performed additional tests with different h and with N
much larger than what was used in Shen (2000). The numerical results are reported
in Fig. 7.6. On the left, we plot the results with h = 3 and 4.5 for N up to 128, and
we observe again the sub-geometric convergence rate as reported in Shen (2000).
However, when we increased N further, the convergence rates eventually became al-
gebraic. This indicates that the sub-geometric convergence reported in Shen (2000)
was still in the pre-asymptotic range. To illustrate this behavior, we plot the results
with h = 1.5 and 2 (so the asymptotic range can be reached faster) for N up to 256
on the right of Fig. 7.6. It is clear that after a pre-asymptotic range, the convergence
rates settle down to the algebraic rates consistent with (7.147) and (7.114).
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Fig. 7.6 Convergence rates of the scheme (7.143)

We now present numerical results using the scheme (7.150) with the exact so-
lutions (7.152)-(7.154). On the left of Fig. 7.7, we observe a geometric conver-
gence for (7.152). For (7.153), we observe essentially the same behavior as in the
Laguerre case (cf. the right of Fig. 7.6), i.e., there is a pre-asymptotic range where
one observes a sub-geometric convergence, but after the pre-asymptotic range, the
convergence rates become algebraic as predicted in (7.132) and (7.151) (cf. the right
of Fig. 7.7).
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Fig. 7.7 Convergence rates of the scheme (7.150)

7.4.4 Scaling Factor

For a problem with solution decaying at infinity, there is an effective interval outside
of which the solution is negligible, and collocation points which fall outside of this
interval are essentially wasted. On the other hand, if the solution is still far from neg-
ligible at the collocation point(s) with largest magnitude, one can not expect a very
good approximation. Hence, the performance of spectral methods in unbounded do-
mains can be significantly enhanced by choosing a proper scaling parameter such
that the extreme collocation points are at or close to the endpoints of the effective
interval. For Laguerre and Hermite spectral methods, one usually needs to deter-
mine a suitable scaling parameter β and then make a coordinate transform y = βx
(cf. Tang (1993), Shen (2000), Guo et al. (2006b)).

To illustrate the idea, let us consider (7.140). Given an accuracy threshold ε,
we estimate an M such that |u(x)| ≤ ε for x > M. Then, we set the scaling factor

βN = x(N)
N /M where x(N)

N is the largest Laguerre-Gauss-Lobatto point. Now instead
of solving (7.140), we solve the following scaled equation with the new variable
y = βNx:

−β 2
Nvyy + γv = g(y); v(0) = 0, lim

y→+∞
v(y) = 0, (7.155)

where v(y) = u(βNx) and g(y) = f (βNx). Thus, the effective collocation points
x j = y j/βN

(
with {y j}N

j=0 being the Laguerre Gauss-Radau points
)

are all located
in [0,M].

An an illustrative example, we consider (7.140) with the exact solution: u(x) =
sin(10x)/(1+ x)5. In Fig. 7.8a, we plot the exact solution and the approximations
without scaling using 128 points and with a scaling factor = 15 using 32 points.
Notice from Fig. 7.8a that if no scaling is used, the approximation with N = 128
still exhibits an observable error, while the approximation with a scaling factor of 15
using only 32 modes is virtually indistinguishable from the exact solution. This sim-
ple example demonstrates that a proper scaling will greatly enhance the resolution
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capabilities of the Laguerre functions (cf. Fig. 7.8a). Similar ideas can be applied to
the Hermite spectral approximations. In Ma et al. (2005), a Hermite spectral method
with time-dependent scaling is proposed for parabolic problems.
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Fig. 7.8 Example 2: (a) Exact solution against numerical solutions obtained by the scheme (7.146)
with N = 128 (without scaling), and by solving (7.155) with N = 32 and the scaling factor βN = 15;
(b) Maximum errors of two approaches vs.

√
N (note: N ∈ [16,512])

7.5 Mapped Spectral Methods and Rational Approximations

A common and effective strategy in dealing with unbounded domains is to use a
suitable mapping that transforms an infinite domain to a finite domain. Then, images
of classical orthogonal polynomials under the inverse mapping will form a set of
orthogonal basis functions which can be used to approximate solutions of PDEs in
the infinite domains. Early practitioners of this approach include Grosch and Orszag
(1977) and Boyd (1982). The book by Boyd (2001) contains an extensive review on
many practical aspects of the mapped spectral methods. In the last couple of years, a
series of papers has been devoted to the convergence analysis of the mapped spectral
methods (see Shen and Wang (2009) and the references therein).

The purpose of this section is to present a general framework for the analysis and
implementation of the mapped spectral methods.

7.5.1 Mappings

Consider a family of mappings of the form:

x = g(y;s), s > 0, y ∈ I := (−1,1), x ∈ Λ := (0,+∞) or (−∞,+∞), (7.156)
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such that

dx
dy

= g′(y;s)> 0, s > 0, y ∈ I,

g(−1;s) = 0, g(1;s) = +∞, if Λ = (0,+∞),

g(±1;s) =±∞, if Λ = (−∞,+∞).

(7.157)

In this one-to-one transform, the parameter s is a positive scaling factor. Without
loss of generality, we further assume that the mapping is explicitly invertible, and
denote its inverse mapping by

y = g−1(x;s) := h(x;s), x ∈ Λ , y ∈ I, s > 0. (7.158)

Several typical mappings that have been proposed and used in practice are of the
above type (see, e.g., Boyd (2001) and the references therein):

(i) Mappings between x ∈ Λ = (−∞,+∞) and y ∈ I = (−1,1) with s > 0 :

– Algebraic mapping:

x =
sy√

1− y2
, y =

x√
x2 + s2

. (7.159)

– Logarithmic mapping:

x = sarctanh(y) =
s
2

ln
1+ y
1− y

, y = tanh(s−1x). (7.160)

– Exponential mapping:

x = sinh(sy), y =
1
s

ln
(
x+
√

x2 + 1
)
, y ∈ (−1,1), x ∈ (−Ls,Ls), (7.161)

where Ls = sinh(s).

(ii) Mappings between x ∈ Λ = (0,+∞) and y ∈ I = (−1,1) with s > 0 :

– Algebraic mapping:

x =
s(1+ y)

1− y
, y =

x− s
x+ s

. (7.162)

– Logarithmic mapping:

x = sarctanh
(y+ 1

2

)
=

s
2

ln
3+ y
1− y

, y = 1− 2tanh(s−1x). (7.163)

– Exponential mapping:

x = sinh
( s

2
(1+ y)

)
, y =

2
s

ln
(
x+
√

x2 + 1
)− 1, (7.164)

where y ∈ (−1,1) and x ∈ (0,Ls) with Ls = sinh(s).
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The special feature which distinguishes these mappings is that, as |y| → ±1, x
varies algebraically, logarithmically or exponentially for algebraic, logarithmic or
exponential mappings, respectively. The parameter s is a scaling/stretching factor
which can be used to tune the spacing of collocation points. We also notice that the
image of the exponential mappings (7.161) and (7.164) is a finite interval, so they
combine both mapping and domain truncation.

7.5.2 Approximation by Mapped Jacobi Polynomials

Given a mapping x = g(y;s) satisfying (7.156)–(7.158) and a family of orthogonal
polynomials {pk(y)} with y ∈ I = (−1,1),

{
pk(h(x;s))

}
forms a new family of

orthogonal functions in Λ = (0,∞) or (−∞,∞). In particular, the algebraic mappings
(7.159) or (7.162) with the Chebyshev or Legendre polynomials lead to orthogonal
rational basis functions which have been studied in Boyd (1982), Christov (1982),
Boyd (1987a), Liu et al. (1994) and Guo et al. (2000, 2002).

For the sake of generality, we consider the mapped Jacobi approximations. Let
Jα ,β

k (y) (α,β > −1) be the classical Jacobi polynomial of degree k as defined in
Chap. 3. Define the mapped Jacobi polynomials as

jα ,β
n,s (x) := Jα ,β

n (y) = Jα ,β
n (h(x;s)), x ∈ Λ , y ∈ I. (7.165)

We infer from (3.88) that (7.165) defines a new family of orthogonal functions
{ jα ,β

n,s } satisfying

∫
Λ

jα ,β
n,s (x) jα ,β

m,s (x)ω
α,β
s (x)dx = γα ,β

n δmn, (7.166)

where the constant γα,β
n is given in (3.109), and the weight function

ωα ,β
s (x) = ωα ,β (y)

dy
dx

= ωα,β (y)(g′(y;s))−1 > 0, (7.167)

with y = h(x;s) and ωα ,β (y) = (1− y)α(1+ y)β being the Jacobi weight function.
In Fig. 7.9, we plot some samples of j0,0

n,s (x) for different s and n under the map-
pings (7.159) and (7.162).

We now present some approximation properties of these mapped Jacobi polyno-
mials. Let us define the finite dimensional approximation space

V α ,β
N,s = span

{
jα ,β
n,s (x) : n = 0,1, . . . ,N

}
, s > 0, (7.168)

and consider the orthogonal projection πα ,β
N,s : L2

ωα,β
s

(Λ)→V α ,β
N,s such that

(
πα ,β

N,s u− u,vN
)

ωα,β
s

= 0, ∀vN ∈V α ,β
N,s . (7.169)
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Thanks to the orthogonality, we can write

(
πα ,β

N,s u
)
(x) =

N

∑
n=0

ûα,β
n,s jα ,β

n,s (x), (7.170)

where

ûα ,β
n,s =

1

γα ,β
n

∫
Λ

u(x) jα ,β
n,s (x)ωα ,β

s (x)dx.

We now introduce a weighted space which is particularly suitable to describe the
L2-projection errors. Given a mapping satisfying (7.156)-(7.158), we set

as(x) :=
dx
dy

(> 0), Us(y) := u(x) = u(g(y;s)). (7.171)

The key to express the error estimates in a concise form is to introduce a differential
operator Dxu := as

du
dx . One verifies readily that

dUs

dy
= as

du
dx

= Dxu,
d2Us

dy2 = as
d
dx

(
as

du
dx

)
= D2

xu,

and an induction leads to

dkUs

dyk = as
d
dx

(
as

d
dx

(
· · · · · ·

(
as

du
dx

)
· · · · · ·

)
︸ ︷︷ ︸

k−1 parentheses

:= Dk
xu. (7.172)

Let us define

B̃m
α ,β (Λ) =

{
u : u is measurable in Λ and ‖u‖B̃m

α,β
< ∞

}
, (7.173)
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equipped with the norm and semi-norm

‖u‖B̃m
α,β

=
( m

∑
k=0

‖Dk
xu‖2

ωα+k,β+k
s

)1/2
, |u|B̃m

α,β
= ‖Dm

x u‖
ωα+m,β+m

s
,

where the weight function ωα+k,β+k
s is defined in (7.167). It turns out to be the

mapped version of the anisotropic Jacobi-weighted Sobolev space in (3.251)–
(3.252).

We have the following fundamental results for the mapped Jacobi approxima-
tions.

Theorem 7.21. Let α,β >−1. If u ∈ B̃m
α,β (Λ), we have that for 0 ≤ m ≤ N + 1,

‖πα ,β
N,s u− u‖

ωα,β
s

≤ c

√
(N −m+ 1)!
(N + 1)!

(N +m)−m/2‖Dm
x u‖

ωα+m,β+m
s

, (7.174)

and for 1 ≤ m ≤ N + 1,

‖∂x(π
α ,β
N,s u− u)‖

ω̃α,β
s

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖Dm

x u‖
ωα+m,β+m

s
,

(7.175)

where c is a positive constant independent of m,N and u, and

ω̃α,β
s (x) = ωα+1,β+1(y)g′(y;s), y = h(x;s).

Proof. Let Us(y) = u(x) = u(h(y;s)), whose Jacobi expansion is

Us(y) =
∞

∑
n=0

Ûα ,β
n,s Jα ,β

n (y).

Then, by the definition (7.165), we have the relation between the coefficients of the
Jacobi and mapped Jacobi expansions:

ûα ,β
n,s =

1

γα,β
n

(u, jα ,β
n,s )

ωα,β
s

=
1

γα ,β
n

(Us,J
α ,β
n )ωα,β = Ûα,β

n,s . (7.176)

Let π̂α ,β
N be the L2

ωα,β
-orthogonal projection operator associated with the Jacobi

polynomials (see (3.249), and here we put ‘ˆ’ on the original notation for clarity). By
(3.88), (7.166) and Theorem 3.35,

‖πα ,β
N,s u− u‖2

ωα,β
s

=
∞

∑
n=N+1

(ûα ,β
n,s )2γα ,β

n =
∞

∑
n=N+1

(Ûα ,β
n,s )2γα ,β

n

= ‖π̂α ,β
N Us −Us‖2

ωα,β ≤ c
(N −m+ 1)!
(N + 1)!

(N +m)−m‖∂ m
y Us‖2

ωα+m,β+m

≤ c
(N −m+ 1)!
(N + 1)!

(N +m)−m‖Dm
x u‖2

ωα+m,β+m
s

.

(7.177)
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Next, we deduce from (7.165) and the orthogonality of {∂yJα ,β
n } that {∂x jα ,β

n,s } is

orthogonal with respect to ω̃α,β
s , and

‖∂x jα ,β
n,s ‖2

ω̃α,β
s

= ‖∂yJα ,β
n ‖2

ωα+1,β+1 = λ α ,β
n γα ,β

n ,

where λ α ,β
n is the eigenvalue of the Jacobi Sturm-Liouville problem (cf. (3.91)).

Therefore, by (7.176) and Theorem 3.35,

‖∂x(π
α ,β
N,s u− u)‖2

ω̃α,β
s

=
∞

∑
n=N+1

λ α,β
n γα ,β

n (ûα ,β
n,s )2 =

∞

∑
n=N+1

λ α ,β
n γα ,β

n (Ûα ,β
n,s )2

= ‖∂y(π̂
α ,β
N Us −Us)‖2

ωα+1,β+1

≤ c
(N −m+ 1)!

N!
(N +m)1−m‖∂ m

y Us‖2
ωα+m,β+m

≤ c
(N −m+ 1)!

N!
(N +m)1−m‖Dm

x u‖2
ωα+m,β+m

s
.

This ends the proof. ��
Remark 7.7. It should be pointed out that under the above general settings, the
approximation results on the higher-order projections, such as the H1

ωα,β
s

-orthogonal

projection π1,α ,β
N,s : H1

ωα,β
s

(Λ) → V α ,β
N,s can be established by using the existing

Jacobi approximations results in Chap. 3 and a similar argument as above.
In particular, applying the above results with α = β = 0,−1/2 to the algebraic

mappings (7.159) and (7.162) leads to more concise and in some cases improved
Chebyshev and Legendre rational approximation results which were developed sep-
arately in Guo et al. (2000, 2002) and Wang and Guo (2002).

The error estimates in the above theorem look very similar to the usual spectral
error estimates in a finite interval (cf. Theorem 3.35). First of all, it is clear from
the above theorem that the projection error converges faster than any algebraic rate
if a function decays exponentially fast at infinity. For a function with singularities
inside the domain, the above theorem and Theorem 3.35 lead to the same order of
convergence, assuming that the function decays sufficiently fast at infinity. However,
for a given smooth function, they may lead to very different convergence rates due
to the difference in the norms used to measure the regularity.

We now determine the convergence rates for three sets of functions (7.152)–
(7.154) with typical decay properties. We first consider the mapping (7.162). Then,

Dx =
(dy

dx

)−1 d

dx
=

(x+ s)2

2s
d
dx

, ωk,l
s (x) =

( 2s
x+ s

)k( 2x
x+ s

)l 2s

(x+ s)2 .

Hence, for u(x) = (1+ x)−h, it can be easily checked that ‖Dm
x u‖

ωα+m,β+m
s

< ∞ if

m < 2h+α + 1, which implies that
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‖u−πα,β
N,s u‖

ωα,β
s

� N−(2h+α+1) (u(x) = (1+ x)−h). (7.178)

On the other hand, for u(x) = sinkx
(1+x)h , it can also be easily checked that

‖Dm
x u‖

ωα+m,β+m
s

< ∞ if m < 2h+α+1
3 , which implies that

‖u−πα ,β
N,s u‖

ωα,β
s

� N−(2h+α+1)/3
(

u(x) =
sinkx

(1+ x)h

)
. (7.179)

Next, we consider the mapping (7.159) which leads to

Dx =
(dy

dx

)−1 d
dx

=
(x2 + s2)3/2

s2

d
dx

,

ωk,l
s (x) =

(√x2 + s2 − x√
x2 + s2

)k(√x2 + s2 + x√
x2 + s2

)l s2

(x2 + s2)3/2
.

Hence, for u(x) = (1+x2)−h, we have ‖Dm
x u‖

ωα+m,β+m
s

<∞ if m< 2h+α+1, which

implies that

‖u−πα ,β
N,s u‖

ωα,β
s

� N−(2h+α+1) (u(x) = (1+ x2)−h). (7.180)

On the other hand, for u(x) = sinkx
(1+x2)h , we have ‖Dm

x u‖
ωα+m,β+m

s
< ∞ if m < 2h+α+1

2 ,

which implies that

‖u−πα ,β
N,s u‖

ωα,β
s

� N−(2h+α+1)/2
(

u(x) =
sinkx

(1+ x2)h

)
. (7.181)

Remark 7.8. (i) If h is a positive integer, then u(x) = (1+ x)−h and u(x) = (1+
x2)−h are rational functions and they can be expressed exactly by a finite sum
of mapped rational functions. For other cases, the algebraic convergence rate
is related to the decay rate of the solution. In both cases, the convergence rates
are faster than the approximations by the Laguerre functions (cf. (7.114)) and
Hermite functions (cf. (7.132)), respectively.

(ii) The convergence rate for solutions with oscillation at infinity is much slower
than that for solutions without oscillation at infinities. For example, for u(x) =

sinkx
(1+x)h and u(x) = sinkx

(1+x2)h , the convergence rates are slower than the approx-

imations by the Laguerre functions (cf. (7.114)) and Hermite functions (cf.
(7.132)), respectively.

(iii) For solutions with exponential decay at infinity, the convergence rate will be
faster than any algebraic rate, and numerical results in Guo et al. (2000, 2002)
and Wang and Guo (2002) (also see Boyd (2001)) indicate that the convergence
rate is sub-geometrical as e−c

√
N .

(iv) Numerical results performed in Guo et al. (2000, 2002) and Wang and Guo
(2002) are consistent with the estimates in (7.178)–(7.181).
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Next, we consider the Gauss and Gauss-Radau quadrature formulas on
unbounded domains based on the mapped Jacobi polynomials. To fix the idea,
we only consider the Gauss quadrature, since the Gauss-Radau quadrature (which
is useful in the semi-infinite interval) can be obtained by exactly the same means.

Let
{

ξ α ,β
N, j ,ω

α,β
N, j

}N
j=0 be the Jacobi-Gauss quadrature nodes and weights such

that (cf. Theorem 3.25):

∫ 1

−1
φ(y)ωα ,β (y)dy =

N

∑
j=0

φ(ξ α ,β
N, j )ω

α ,β
N, j , ∀φ ∈ P2N+1. (7.182)

Applying the mapping (7.156) to the above leads to the mapped Jacobi-Gauss
quadrature:

∫
Λ

u(x)ωα ,β
s (x)dx =

N

∑
j=0

u(ζ α,β
N, j,s)ρ

α ,β
N, j,s, ∀u ∈V α ,β

2N+1,s, (7.183)

where

ζ α ,β
N, j,s := g(ξ α ,β

N, j ;s), ρα ,β
N, j,s := ωα ,β

N, j , 0 ≤ j ≤ N (7.184)

are the mapped Jacobi-Gauss nodes and weights.
Accordingly, we can define the discrete inner product and discrete norm:

(u,v)
N,ωα,β

s
=

N

∑
j=0

u(ζ α ,β
N, j,s)v(ζ

α ,β
N, j,s)ρ

α ,β
N, j,s, ‖u‖

N,ωα,β
s

= (u,u)1/2

N,ωα,β
s

, ∀u,v ∈C(Λ ).

The mapped Jacobi-Gauss interpolation operator Iα,β
N,s : C(Λ ) → V α,β

N,s , is
defined by

Iα ,β
N,s u ∈V α ,β

N,s such that (Iα ,β
N,s u)(ζ α,β

N, j,s) = u(ζ α ,β
N, j,s), j = 0,1, . . . ,N. (7.185)

Let Iα ,β
N be the Jacobi-Gauss interpolation operator as in Chap. 3. By definition, we

have

Iα,β
N,s u(x) = (Iα,β

N Us)(y) = (Iα ,β
N Us)(h(x;s)). (7.186)

Then, we can easily derive the following results by combining Theorems 3.41
and 7.21.

Theorem 7.22. Let α,β >−1. If u ∈ B̃m
α,β (Λ) with 1 ≤ m ≤ N + 1, then

‖∂x(I
α ,β
N,s u− u)‖

ω̃α,β
s

+N‖Iα ,β
N,s u− u‖

ωα,β
s

≤ c

√
(N −m+ 1)!

N!
(N +m)(1−m)/2‖Dm

x u‖
ωα+m,β+m

s
,

(7.187)

where c is a positive constant independent of m,N and u.
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We now examine how the mapping parameter s affects the distribution of the
nodes. Assume that the nodes

{
ζ α ,β

N, j,s

}N
j=0 are arranged in ascending order. We first

observe that by the mean value theorem,

ζ α ,β
N, j+1,s −ζ α ,β

N, j,s = g′(ξ ;s)(ξ α,β
N, j+1,s − ξ α ,β

N, j,s), (7.188)

for certain ξ ∈ (ξ α ,β
N, j,s,ξ

α ,β
N, j+1,s). Hence, the intensity of stretching essentially de-

pends on the derivative values of the mapping. For the mappings (7.160), (7.159),
(7.163) and (7.162), we have

dx
dy

= g′(y;s) =
s

1− y2 ,
s

(1− y2)3/2
,

2s
(3+ y)(1− y)

,
2s

(1− y)2 , (7.189)

respectively. Therefore, the grid is stretched more and more as s increases.
In Fig. 7.10, we plot sample grid distributions for different scaling factors with

various numbers of nodes for the mapped Legendre-Gauss (or Gauss-Radau) points
(see the caption for details).

A comparison with Hermite-Gauss points is also presented in Fig. 7.10a. We
notice that the mapped Legendre-Gauss points are mostly clustered near the ori-
gin and spread further, while the Hermite-Gauss points are more evenly distributed.
It should be observed that the distribution of mapped Legendre-Gauss points is more
favorable since a much larger effective interval is covered. However, it can be shown
that in both cases, the smallest distance between neighboring points is O(N−1), as
opposed to O(N−2) for Jacobi-Gauss type nodes in a finite interval.

A comparison of mapped Legendre- and Laguerre-Gauss-Radau nodes is shown
in Fig. 7.10c. The mapped Legendre-Gauss-Radau points are much more clustered
near the origin, and one can check that the smallest distance between neighbor-
ing points is O(N−2), as opposed to O(N−1) for the Laguerre-Gauss-Radau nodes.
Hence, the distribution of mapped Legendre-Gauss-Radau points is more favorable
as far as resolution/accuracy is concerned but it will lead to a more restrictive CFL
condition if explicit schemes are used for time-dependent problems.

7.5.3 Spectral Methods Using Mapped Jacobi Polynomials

7.5.3.1 A Generic Example

Consider the model equation

γu− ∂x(a(x)∂xu) = f , x ∈ Λ = (−∞,+∞), γ ≥ 0, (7.190)



288 7 Unbounded Domains

−10

a b

c d

−5 0 5 10
x

Distribution of xj∈(−∞,∞)

n=8

n=12

n=16

n=20

−20 −10 0 10 20
x

Effect of scaling factor s

s=0.1

s=0.5

s=1.0

s=1.5

s=2.0

0 100 200 300
x

Distribution of xj∈(0,∞)

n=8

n=12

n=16

n=20

0 0.2 0.4 0.6 0.8 1
x

Effect of scaling factor s

s=0.1, m=27

s=0.5, m=20

s=1.0, m=17

s=1.5, m=15

s=2.0, m=13

Fig. 7.10 (a) Hermite-Gauss points (“◦”) vs. mapped Legendre-Gauss points using the algebraic
map (7.159) with s = 1 (“•”) for various n; (b) Mapped Legendre-Gauss points with n = 16
and various scaling factor s; (c) Laguerre-Gauss-Radau points (“◦”) vs. mapped Legendre-Gauss-
Radau points using the algebraic map (7.162) with s= 1 (“�”) for various n; (d) Mapped Legendre-
Gauss-Radau points with n = 32 and various scaling factor s (m is the number of points in the
subinterval [0,1))

with suitable decay conditions at ±∞, which will depend on the weight function
in the following weighted weak formulation: For a given mapping x = g(y;s) with
x ∈ Λ and y ∈ (−1,1),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find u ∈ B̃1
α ,β (Λ ) such that

γ(u,v)
ωα,β

s
+
(
a(x)∂xu,∂x(vωα ,β

s )
)

= ( f ,v)
ωα,β

s
, ∀v ∈ B̃1

α,β (Λ),

(7.191)

where ωα ,β
s and B̃1

α ,β (Λ) are defined in (7.167) and (7.173), respectively.
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Then, the mapped Jacobi-Galerkin method for (7.190) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find uN ∈V α,β
N,s such that

γ(uN ,vN)ωα,β
s

+
(
a(x)∂xuN ,∂x(vNωα ,β

s )
)

= (Iα,β
N,s f ,vN)ωα,β

s
, ∀vN ∈V α ,β

N,s .

(7.192)

A second approach is to first transform (7.190) into the finite interval (−1,1),
and then apply a Jacobi approximation for the transformed problem. More pre-
cisely, (7.190) is first mapped into

γUs − 1
g′(y;s)

∂y

(a(g(y;s))
g′(y;s)

∂yUs

)
= Fs, (7.193)

where Us(y) = u(g(y;s)) and Fs(y) = f (g(y;s)).

Let ω̂α ,β
s (y) = ωα ,β (y)g′(y;s). Then the Jacobi-Galerkin method for (7.193) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find ũN ∈ PN such that

γ(ũN , ṽN)ωα,β +
(a(g(y;s))

g′(y;s)
∂yũN ,∂y(ṽNω̂α ,β

s )
)

= (Iα ,β
N Fs, ṽN)ωα,β , ∀ṽN ∈ PN .

(7.194)

One can verify easily that ũN(y) = uN(g(y;s)). Hence, the above two approaches are
mathematically equivalent.

We remark that the formulation (7.194) is in general more difficult to analyze
due to the singular nature of g′(y;s), while the analysis for the formulation (7.192)
becomes standard once we established the basic approximation properties of the
mapped Jacobi polynomials.

On the other hand, (7.193) can be easily implemented using the standard
Jacobi-collocation (or more specifically Chebyshev-collocation) method. Indeed,
let {h j,N(y)}1≤ j≤N be the Lagrange basis polynomials associated with the Jacobi-
Gauss points {y j}1≤ j≤N, the Jacobi-collocation approximation to (7.193) is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find UN,s(y) =
N

∑
j=1

u jh j,N(y) such that

γUN,s(y j)−
(

1
g′(y;s)

∂y

(a(g(y;s))
g′(y;s)

∂yUN,s

))
(y j)

= Fs(y j), 1 ≤ j ≤ N.

(7.195)

Let us denote

u = (u1, . . . ,uN)
T , f = (Fs(y1), . . . ,Fs(yN))

T , Di j = h′j(yi), D = (Di j),

Λi =
a(g(yi;s))

g′(yi;s)
, Λ = diag(Λi), Σi =

1
g′(yi;s)

, Σ = diag(Σi).
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Then, (7.195) reduces to the linear system
(
γI −ΣDΛD

)
u = f,

which can be easily solved by using a standard procedure. Note that in the above
procedure, we only need to compute the Jacobi-Gauss points {y j}1≤ j≤N and the
associated differentiation matrix D whose entries can be found from Chap. 3.

7.5.3.2 Error Estimates for a Model Problem

We consider the Jacobi rational approximation to the following model problem

γu(x)− ∂ 2
x u(x) = f (x), x ∈ Λ = (0,∞), γ > 0; u(0) = 0, (7.196)

with a suitable decay condition at infinity which is to be determined by the weak
formulation of (7.196).

For a given mapping, let ω = ωα ,β
s be the weight function associated with the

mapped Jacobi polynomials, and denote H1
0,ω(Λ) = {u ∈ H1

ω(Λ) : u(0) = 0}. We
define a bilinear form

aω(u,v) = γ(u,v)ω +(∂xu,∂x(vω)), ∀u,v ∈ H1
0,ω(Λ). (7.197)

Then, a weak formulation for (7.196) is
{

Find u ∈ H1
0,ω(Λ ) such that

aω(u,v) = ( f ,v)ω , ∀v ∈ H1
0,ω(Λ ),

(7.198)

for f ∈ (H1
0,ω(Λ)

)′
. Note that u∈H1

0,ω(Λ) implies a decay condition for u at infinity.

Denote XN = {u ∈ V α ,β
N,s : u(0) = 0}. The Jacobi-Galerkin approximation of

(7.198) by the mapped Jacobi polynomials is

{
Find uN ∈ XN such that

aω(uN ,vN) = (Iα ,β
N,s f ,vN)ω , ∀vN ∈ XN ,

(7.199)

for f ∈ L2
ω (Λ)∩C(Λ̄ ).

Unlike the standard spectral method in a finite domain, the well-posedness of
(7.198) and of (7.199) is not guaranteed for all cases with γ ≥ 0. A general result
for the well-posedness of an abstract equation of the form (7.198) is established in
Shen and Wang (2004). For the readers’ convenience, we recall this result below (cf.
Lemma 2.3 in Shen and Wang (2004)):

Lemma 7.1. Assume that

d1 = max
x∈Λ̄

|ω−1(x)∂xω(x)|, d2 = max
x∈Λ̄

|ω−1(x)∂ 2
x ω(x)|
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are finite. Then, for any u,v ∈ H1
ω(Λ),

aω(u,v)≤ (d1 + 1)|u|1,ω‖v‖1,ω + γ‖u‖ω‖v‖ω . (7.200)

If, in addition, v2(x)ω ′(x)|x=0 = 0 and limx→∞ v2(x)ω ′(x) ≥ 0, then for any v ∈
H1

ω(Λ),

aω(v,v)≥ |v|21,ω +(γ − d2/2)‖v‖2
ω . (7.201)

Proof. By (7.197) and the Cauchy–Schwarz inequality,

aω(u,v)≤ |(∂xu,∂xv)ω +(∂xu,v∂xω)|+ γ|(u,v)ω |
≤ |u|1,ω |v|1,ω +max

x∈Λ̄
|ω−1(x)∂xω(x)||u|1,ω‖v‖ω + γ‖u‖ω‖v‖ω

≤ (d1 + 1)|u|1,ω‖v‖1,ω + γ‖u‖ω‖v‖ω .

(7.202)

On the other hand,

aω(v,v) = |v|21,ω + γ‖v‖2
ω +

1
2

∫
Λ

∂x(v
2(x))∂xω(x)dx

= |v|21,ω + γ‖v‖2
ω − 1

2

∫
Λ

v2(x)∂ 2
x ω(x)dx

≥ |v|21,ω +
(
γ − d2/2

)‖v‖2
ω .

This ends the proof. ��
Thanks to the above lemma, it is then straightforward to prove the following

general result.

Theorem 7.23. Assume that the conditions of Lemma 7.1 are satisfied and γ −
d2/2 > 0. Then the problem (7.198) (resp. (7.199)) admits a unique solution. Fur-
thermore, we have the error estimate:

‖u− uN‖1,ω � inf
vN∈XN

‖u− vN‖1,ω + ‖ f − Iα ,β
N,s f‖ω . (7.203)

Remark 7.9. The inequality (7.201) is derived under a general framework. For a
specific mapping, the constraint γ − d2/2 > 0 can often be relaxed. On the other
hand, with a change of variable x to x/c (c > 0) for (7.190), this restriction can be
replaced by γ > 0.

Given a mapping and a pair of Jacobi parameters (α,β ), we just need to compute
upper bounds for d1 and d2, verify that the conditions of Theorem 7.23 are satisfied,
and apply the approximation results in Theorems 7.21 and 7.22 to (7.203) to get the
desired error estimates.

Consider for example the mapped Legendre method for (7.198) with the mapping
(7.162). It can be shown that for this mapping, we have d1 ≤ 2 and d2 ≤ 6. Apply-
ing Theorems 7.21 and 7.22 to (7.203) with (α,β ) = (0,0) leads to the following
results.
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Corollary 7.4. Let u and uN be respectively the solutions of (7.198) and (7.199)
with (α,β ) = (0,0) and the mapping (7.162) with s = 1. Assuming that u ∈ B̃m

0,0(Λ)

and f ∈ B̃k
0,0(Λ ) and γ > 3, we have

‖u− uN‖1,ω0,0
1

� N1−m‖Dm
x u‖ωm,m

1
+N−k‖Dk

x f‖ωk,k
1
, (7.204)

where k,m ≥ 1 are fixed integers.

We note that a slightly improved condition on γ was derived in Guo et al. (2000)
using a refined estimate for (7.201).

A similar procedure can be applied to the mapped Chebyshev method for (7.198)
with the mapping (7.162). Note however that in this case we have d1,d2 = ∞. Nev-
ertheless, one can still show that aω(·, ·) is continuous and coercive (cf. Guo et al.
(2002)). Applying Theorems 7.21 and 7.22 to (7.203) with (α,β ) = (−1/2,−1/2)
leads to the following results (cf. Guo et al. (2002)).

Corollary 7.5. Let u and uN be the solutions of (7.198) and (7.199) with (α,β ) =
(−1/2,−1/2) and the mapping (7.162) with s= 1. Assuming that u∈ B̃m

−1/2,−1/2(Λ)

and f ∈ B̃k
−1/2,−1/2(Λ) and that γ > 14

27 , we have

‖u− uN‖1,ω−1/2,−1/2
1

� N1−m‖Dm
x u‖

ωm−1/2,m−1/2
1

+N−k‖Dk
x f‖

ωk−1/2,k−1/2
1

, (7.205)

where k,m ≥ 1 are fixed integers.

Remark 7.10. Error estimates which are essentially equivalent to (7.204) and
(7.205) but in different forms were derived in Guo et al. (2000, 2002).

The same procedure can be used to derive error estimates on mapped Jacobi
methods for problems on the whole line (cf. Wang and Guo (2002)).

7.5.3.3 Implementations and A Comparison Study

We briefly discuss the implementation of the mapped Jacobi spectral method, and
compare its convergence behavior with the approaches by Hermite functions and
Laguerre functions. Let {φ j}N−1

j=0 be a set of basis functions of XN . We set

uN =
N−1

∑
k=0

ûkφk(x), u =
(
û0, û1, . . . , ûN−1

)T
;

f j = (Iα ,β
N f ,φ j)ω , f =

(
f0, f1, . . . , fN−1

)T
;

s jk = (φ ′
k, (φ jω)′), S =

(
s jk
)

0≤ j,k≤N−1,

m jk = (φk, φ j)ω , M =
(
mjk
)

0≤ j,k≤N−1,



7.5 Mapped Spectral Methods and Rational Approximations 293

Thus, the system (7.199) reduces to
(
γM+ S

)
u = f. (7.206)

For example, we consider the mapping (7.162) with s = 1. This is a special case
of the general setting analyzed in Sect. 7.5.3. As shown in Chap. 4, it is advantageous
to construct basis functions using compact combinations of orthogonal functions. In
this case, we define φk(x) = j0,0

s,k (x)+ j0,0
s,k+1(x) with s = 1, which satisfies φk(0) = 0.

Then, we have ω(x) = 2
(x+1)2 , and

mjk =
∫ ∞

0
φk(x)φ j(x)ω(x)dx =

∫ 1

−1
(Lk(y)+Lk+1(y))(Lj(y)+Lj+1(y))dy,

and

s jk =
∫ ∞

0
φ ′

k(x)(φ j(x)ω(x))′dx =−
∫ ∞

0
φ ′′

k (x)φ j(x)ω(x)dx

=− 1
4s

∫ 1

−1
(1− y)2∂y

(
(1− y)2∂y(Lk(y)+Lk+1(y))

)
(Lj(y)+Lj+1(y))dy,

where Lk is the Legendre polynomial of degree k. By using the properties of
Legendre polynomials, it is then easy to see that M is a symmetric tridiagonal matrix
and S is a non-symmetric seven diagonal matrix. Hence, the system (7.206) can be
solved efficiently. However, we note that a disadvantage of the mapped Legendre
method is that it leads to a non-symmetric system even though the original problem
(7.196) is symmetric.

The convergence behaviors of the mapped Jacobi, Laguerre and Hermite spectral
methods have been discussed in detail using the three sets of functions (7.152)-
(7.154) as examples. In order to provide a quantitative assessment, we now present
some direct comparisons of the mapped Legendre method (using mapping (7.162)
or (7.159) with s = 1) against the Laguerre or Hermite method for the same model
equation.

In the following computations, we fix γ = 2 in (7.196) and (7.148). The
parameters in the three sets of exact solutions are set as follows: k = 2 in (7.152),
h = 2.5 in (7.153) and k = 2, h = 3.5 in (7.154). The numerical results are plotted in
Figs. 7.11–7.13 in which “Max-ML”, “Max-Lag” and “Max-Hmt” denote respec-
tively the errors in maximum norm for mapped Legendre, Laguerre and Hermite
methods (likewise for the L2-notation).

Several remarks are in order (see also Remark 7.8 for the general mapped
Jacobi case):

(a) For exact solutions in (7.152), Laguerre and Hermite methods converge faster.
(b) For exact solutions in (7.153), the mapped Legendre method performs much

better.
(c) For exact solutions in (7.154), the Laguerre method is slightly better than the

mapped Legendre method, while the Hermite method is still worse than the
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mapped Legendre method. We note however that the performance of Laguerre
and Hermite methods can be significantly improved using a proper scaling (cf.
Tang (1993), Shen (2000) and the discussions in the previous section).

7.5.4 Modified Legendre-Rational Approximations

Notice that the mapped Jacobi polynomials, including the mapped Legendre
polynomials, are mutually orthogonal in a weighted Sobolev space. Thus, their
applications involve weighted formulations which are, on the one hand, difficult to
analyze and implement, and on the other hand, not suitable for certain problems
which are only well-posed in non-weighted Sobolev spaces. Therefore, it is some-
times useful to construct (non-weighted) orthogonal systems from mapped Jacobi
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polynomials. Next, let us consider one of such examples. We define the modified
Legendre-rational functions of degree l by

Rl(x) =
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)
, l = 0,1,2, . . . .
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Fig. 7.13 Convergence rates with exact solution: u(x) = 1/(1+x2)5/2 (left) and u(x) = sin2x/(1+
x2)7/2 (right)

By (3.171), {Rl} are the eigenfunctions of the singular Sturm-Liouville problem

(x+ 1)∂x(x(∂x((x+ 1)v(x)))+λv(x) = 0, x ∈ Λ ,

with the corresponding eigenvalues λl = l(l + 1), l = 0,1,2, . . . . Thanks to (3.168)
and (3.174a), they satisfy the recurrence relations

Rl+1(x) =
2l+ 1
l + 1

x− 1
x+ 1

Rl(x)− l
l + 1

Rl−1(x) , l � 1 ,

and

2(2l+ 1)Rl(x) = (x+ 1)2(∂xRl+1(x)− ∂xRl−1(x)
)

+(x+ 1)
(
Rl+1(x)−Rl−1(x)

)
.

Furthermore,

lim
x→∞

(x+ 1)Rl(x) =
√

2 , lim
x→∞

x∂x((x+ 1)Rl(x)) = 0 . (7.207)

By the orthogonality of the Legendre polynomials,

∫
Λ

Rl(x)Rm(x)dx =

(
l +

1
2

)−1

δl,m. (7.208)
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We refer to Guo and Shen (2001) and to Wang and Guo (2004) for the analysis and
applications of the modified Legendre-rational spectral approximations on the half
line and on the whole line, respectively.

7.5.5 Irrational Mappings

For many applications, e.g., in fluid dynamics and in financial mathematics, the
solutions may tend to a constant or even grow with a specified rate at infinity. For
such problems, variational formulations in Sobolev spaces with uniform weight or a
given non-matching weight are usually not well-posed. Therefore, it becomes nec-
essary to construct orthogonal systems which match the asymptotic behaviors of
the underlying problem. The first effort of such kind is carried out in Boyd (2001)
where a rational Chebyshev method with polynomial growth basis functions is de-
veloped. A more general approach is presented in Guo and Shen (2008) where they
considered the following orthogonal system:

I(γ,δ )l (r) :=
1
rγ Jα ,0

l

(
1− 2

rδ

)
. (7.209)

In the above, Jα,0
l (r) is the Jacobi polynomial of degree l with index (α,0). The

parameter γ is chosen to match, as closely as possible, the asymptotic behavior
of the function to be approximated; the parameter δ > 0 is a mapping parameter
which affects the accuracy of the approximation (see Guo and Shen (2008) for the

details); α is determined in such a way that {I(γ,δ )k (r)} form an orthogonal system
in L2

ωσ (Λ), where σ is another parameter, Λ = (1,∞) and ωσ = rσ . This latter
condition requires that α = 1

δ (2γ − δ −σ − 1). Hence, α is not a free parameter.

Therefore, the proposed family of orthogonal systems {I(γ,δ )k (r)} is very general
and includes in particular many special cases already studied in the literature. The
flexibility afforded by the free parameters γ,δ (and σ) allows us to design suitable
approximations for a large class of partial differential equations.

7.5.6 Miscellaneous Issues and Extensions

We discuss below some miscellaneous issues and extensions related to spectral
methods in unbounded domains.

7.5.6.1 Other One-Dimensional Applications

While we have only presented analysis and implementation details for second-order
model equations, the basic approximation results presented in this chapter can be
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used for many other applications. We refer to Boyd (2001) for a review on the work
before the year 2000, which includes in particular many applications in oceanogra-
phy, and list some of the more recent work below.

In Fok et al. (2002), a combined Hermite-finite difference method is proposed
for a Fokker-Planck equation with one spatial and one phase dimension; in Guo
et al. (2003), the authors applied the Hermite spectral method for solving the Dirac
equation on the whole line; in Guo and Shen (2001), a modified Legendre rational
method is presented for the KdV equation in a semi-infinite interval; the same prob-
lem is also studied in Shen and Wang (2006) where a single domain Laguerre and
two-domain Legendre-Laguerre method are introduced and analyzed.

7.5.6.2 Multidimensional Problems

Although only one-dimensional problems are discussed in the previous sections,
these one-dimensional orthogonal systems can be easily used for multidimensional
problems through the usual tensor product approach. While it is possible to use
mapped Jacobi methods for multidimensional problems, the analysis and implemen-
tation become complicated due to the non-uniform weights involved in the weak
formulation. Consequently, most of the work for multidimensional problems in un-
bounded domains use either Laguerre or Hermite functions combined with Fourier
series or Jacobi polynomials.

Consider, for example, problems in an infinite (resp. semi-infinite) channel. It is
natural to use Hermite (resp. Laguerre) functions in the infinite direction and Ja-
cobi polynomials in the finite direction. In Xu and Guo (2002), the authors stud-
ied a Laguerre-Legendre approximation to the 2-D Navier–Stokes equations in
the streamline diffusion-vorticity formulation in a semi-infinite channel, while in
Azaiez et al. (2008), the authors studied approximation of the 2-D Stokes equations
in primitive variables by a Laguerre-Legendre method, and derived a complete error
analysis with an explicit estimate of the inf-sup condition.

Consider, as another example, problems in exterior domains. It is convenient, for
a 2-D domain exterior to a circle, to use polar coordinates and a Laguerre-Fourier
approximation (cf. Guo et al. (2005)); and for a 3-D domain exterior to a sphere,
to use spherical coordinates and a Laguerre-spherical harmonic approximation (cf.
Zhang and Guo (2006)). In these cases, the analysis is a bit more complicated due to
the coordinate transforms, but still can be carried out using essentially the approxi-
mation results presented in this chapter.

Problems

7.1. Prove the inverse inequality in Theorem 7.7.

7.2. Derive the approximation results in Theorem 7.8.

7.3. Prove Theorem 7.12.
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7.4. Consider the problem:

− uxx + u = f , x ∈ R+; u(0)− u′(0) = 0, lim
x→+∞

u(x) = 0. (7.210)

Denote

X̂N =
{

φ ∈ P̂N : φ(0)−φ ′(0) = 0
}
, (7.211)

where P̂N is defined in (7.83).

(i) Write down the non-weighted Laguerre spectral-Galerkin scheme for (7.210)
by seeking the approximation solution in X̂N .

(ii) Determine ak so that

φk(x) = L̂k(x)− akL̂k+1(x), 0 ≤ k ≤ N − 1 (7.212)

form a basis of X̂N .
(iii) Implement the proposed scheme and test it on the three sets of functions

(7.152)–(7.154) by subtracting a suitable function to meet the homogeneous
boundary condition. Plot the numerical errors as in Figs. 7.5 and 7.6.

7.5. Consider the third-order equation on the half line:

uxxx + u = f , x ∈ (0,∞); u(0) = 0, lim
x→+∞

u(x) = lim
x→+∞

ux(x) = 0. (7.213)

We introduce the “dual” approximation space

XN :=
{

u ∈ P̂N : u(0) = 0
}
, X∗

N :=
{

u ∈ P̂N+1 : u(0) = ux(0) = 0
}
, (7.214)

and consider the Laguerre dual-Petrov-Galerkin approximation to (7.213), that is,
{

Find uN ∈ XN such that

(∂xuN,∂ 2
x vN)+ (uN,vN) = (ÎN f ,vN), ∀vN ∈ X∗

N ,
(7.215)

where ÎN is the Laguerre-Gauss-Radau interpolation associated with the Laguerre
function approach.

(i) Show that

‖uN‖2
ω̂ + 3‖∂xuN‖2 ≤ ‖ÎN f‖2

ω̂ , (7.216)

where ω̂ = x.
(ii) Choose the basis functions consisting of compact combinations of Laguerre

functions (cf. (7.212)) for XN and X∗
N , and implement the proposed scheme by

testing it on the three sets of exact solutions (7.152)–(7.154). Present the nu-
merical errors as in Figs. 7.5 and 7.6.

(iii) Analyze the convergence of this dual-Petrov-Galerkin scheme (cf. Shen and
Wang (2006)).



Chapter 8
Separable Multi-Dimensional Domains

The main goals of this chapter are (a) to design efficient spectral algorithms for
solving second-order elliptic equations in separable geometries; and (b) to provide
a basic framework for error analysis of multi-dimensional spectral methods. More
specifically, we shall concentrate on the following topics:

(a)We shall present in detail spectral-Galerkin algorithms for the model equation

αu−Δu = f in Ω , (8.1)

with suitable boundary conditions in rectangular, cylindrical or spherical ge-
ometries. These algorithms are based on the tensor product approach, and
the resulting linear systems are solved by the so-called matrix decomposi-
tion/diagonalization method (cf. Lynch et al. (1964), Haidvogel and Zang (1979))
with partial or full diagonalizations.

(b) We shall extend the one-dimensional Jacobi approximation results presented
in Chap. 3 to the multi-dimensional case, and carry out error analysis for some
typical multi-dimensional spectral schemes.

(c) We shall also consider sparse spectral approximations for high dimensional
problems (with dimension ≥ 4). In particular, we shall discuss Jacobi approx-
imations in hyperbolic cross, and sparse spectral-Galerkin methods based on
Chebyshev sparse grids.

We shall limit our attention in this chapter to several typical separable domains.
There are, however, other types of separable domains, such as the 2-D elliptical and
3-D ellipsoidal domains. Separation of variables in these domains leads to Math-
ieu functions and spheroidal wave functions (cf. McLachlan (1951), Abramowitz
and Stegun (1964)). The approximation properties of Mathieu functions have been
established recently in Shen and Wang (2008), and a Legendre-Mathieu method was
developed in Fang et al. (2009) for acoustic scattering in 2-D elongated domains. On
the other hand, a special family of spheroidal wave functions, the so-called prolate
spheroidal wave functions of degree zero (PSWFs) which are in particular bandlim-
ited (cf. Slepian and Pollak (1961)), has attracted some recent attention (see Boyd
(2004), Chen et al. (2005), Wang (2010) and the references therein).

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 299
Springer Series in Computational Mathematics 41, DOI 10.1007/978-3-540-71041-7 8,
c© Springer-Verlag Berlin Heidelberg 2011
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8.1 Two- and Three-Dimensional Rectangular Domains

To fix the idea, we consider (8.1) with Ω = (−1,1)d(d = 2,3) and the homoge-
neous Dirichlet boundary conditions: u|∂Ω = 0. Note that non-homogeneous bound-
ary conditions can be treated by a lifting of boundary data. We refer to Shen (1994)
(resp. Auteri and Quartapelle (2000)) for details of the two (resp. three) dimensional
lifting.

Let us denote XXXN = (P0
N)

d . With a slight abuse of notation, we shall use hereafter
(·, ·)ω to denote one-dimensional or multi-dimensional inner product in L2

ω(Ω). The
weighted spectral-Galerkin approximation to (8.1) with u|∂Ω = 0 is

{
Find uN ∈ XXXN such that

α(uN ,vN)ω + aω(uN,vN) = (IN f ,vN)ω , ∀vN ∈ XXXN ,
(8.2)

where IN : C(Ω̄)→ Pd
N is the interpolation operator associated with the tensor prod-

uct of Gauss-Lobatto points, and

aω(u,v) =
(
∇u,ω−1∇(vω)

)
ω . (8.3)

8.1.1 Two-Dimensional Case

We shall construct multi-dimensional basis functions by using the tensor product
of one-dimensional basis functions. More precisely, let {φk}N−2

k=0 be a set of basis
functions of P0

N . Then,

XXXN = (P0
N)

2 = span
{

φi(x)φ j(y) : i, j = 0,1, . . . ,N − 2
}
.

Let us denote

uN =
N−2

∑
k, j=0

ũkjφk(x)φ j(y), U = (ũkj)k, j=0,1,...,N−2;

akj =

∫
I
φ ′

j(x)(φk(x)ω(x))′dx, A = (akj)k, j=0,1,...,N−2;

bkj =

∫
I
φ j(x)φk(x)ω(x)dx, B = (bkj)k, j=0,1,...,N−2;

fkj = (IN f ,φk(x)φ j(y))ω , F = ( fkj)k, j=0,1,...,N−2.

(8.4)

Taking v = φl(x)φm(y) in (8.2) for l,m = 0,1 . . . ,N −2, we find that (8.2) is equiva-
lent to the following linear system:

αBUB+AUB+BUAT = F. (8.5)
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We can also rewrite (8.5) in the following form using the tensor product notation:
(
αB⊗B+A⊗B+B⊗AT)uuu = fff , (8.6)

where fff and uuu are vectors of length (N−1)2 formed by the columns of U and F , i.e.,

fff = ( f00, f10, . . . , fq0; f01 . . . , fq1; . . . ; f0q, . . . , fqq)
T ,

and ⊗ denotes the tensor product operator, i.e., A ⊗ B = (Abij)i, j=0,1,...,q with
q = N − 2.

8.1.1.1 Matrix Diagonalization Method

The linear system (8.5) can be solved in particular by the matrix decomposition
method described in Lynch et al. (1964), which is also known in the field of spectral
methods as the matrix diagonalization method (cf. Haidvogel and Zang (1979)). To
this end, we consider the generalized eigenvalue problem:

Bx̄ = λ Ax̄. (8.7)

In the Legendre case, A and B are symmetric positive definite matrices so all the
eigenvalues are real and positive. In the Chebyshev case, A is no longer symmetric
but it is still positive definite. Furthermore, it is shown in Gottlieb and Lustman
(1983) that all the eigenvalues are real, positive and distinct. Let Λ be the diagonal
matrix whose diagonal entries {λp} are the eigenvalues of (8.7), and let E be the
matrix whose columns are the corresponding eigenvectors of (8.7), i.e.,

BE = AEΛ . (8.8)

8.1.1.2 Partial Diagonalization

Setting U = EV , thanks to (8.8), (8.5) becomes

αAEΛVB+AEVB+AEΛVAT = F.

Multiplying the above equation by E−1A−1 , we arrive at

αΛV B+VB+ΛVAT = E−1A−1F := G. (8.9)

The transpose of the above equation reads

αBV T Λ +BVT +AV T Λ = GT . (8.10)

Let vvvp = (vp0,vp1, . . . ,vpq)
T and gggp = (gp0,gp1, . . . ,gpq)

T (with q = N − 2) for
p = 0,1, . . . ,N − 2. Then the p-th column of (8.10) can be written as(

(αλp + 1)B+λpA
)
vvvp = gggp, p = 0,1, . . . ,N − 2, (8.11)
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which is equivalent to N −1 systems of the form (4.17)1 from the spectral-Galerkin
approximation of the one-dimensional equation considered in Sect. 4.1.

In summary, the solution of (8.5) consists of the following steps:

1. Pre-processing: compute the eigenvalues and eigenvectors of the generalized
eigenvalue problem (8.7) and compute E−1 (if A is not symmetric);

2. Compute G = E−1A−1F ;
3. Obtain V by solving (8.11);
4. Set U = EV .

The above procedure corresponds to the diagonalization in the x direction, and
one may of course choose to diagonalize in the y direction. In fact, if different num-
bers of modes are used in each direction, one should choose to diagonalize in the
direction with fewer modes so as to minimize the operational counts of the two
matrix–matrix multiplications in the above procedure.

• Legendre case: Let φk(x) =
1√

4k+6
(Lk(x)−Lk+2(x)). Then, we have A = I and

B can be split into two symmetric tridiagonal sub-matrices, so the eigenvalues
and eigenvectors of B can be easily computed in O(N2) operations by standard
procedures. Furthermore, we have E−1 = ET . Step 3 consists of solving N − 1
tridiagonal systems of order N−1. Therefore, for each right-hand side, the cost of
solving the system (8.5) is dominated by the two matrix–matrix multiplications
in Steps 2 and 4, which can be carried out in a small multiple of N3 operations.

• Chebyshev case: Let φk(x) = Tk(x)−Tk+2(x). Then, A is a special upper trian-
gular matrix given in (4.30) and B is a symmetric positive definite matrix with
three non-zero diagonals. Similar to the Legendre case, A and B can be split into
two sub-matrices so that the eigen-problem (8.7) can be split into four subprob-
lems which can be solved directly by using a QR method. Note that an interesting
O(N2) algorithm for solving (8.11) was developed in Shen (1995) (cf. Remark
4.3). Once again, the cost of solving system (8.5) in the Chebyshev case is also
dominated by the two matrix–matrix multiplications in Steps 2 and 4 which can
be carried out in a small multiple of N3 operations.

8.1.1.3 Full Diagonalization

One can also diagonalize in both directions. To this end, we set U = EWET in (8.5)
to get

αAEΛW ET B+AEWET B+AEΛWET AT = F.

Multiplying the left (resp. right) of the above equation by (EA)−1 (resp. (EA)−T )
and using the fact ET B = ΛET AT (cf. (8.8)), we arrive at

αΛWΛ +WΛ +ΛW = (EA)−1F(EA)−T := H, (8.12)

1 The matrices A and B in (8.11) are respectively the matrices S and M in (4.17).
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which is equivalent to

(αλiλ j +λi+λ j)wij = hij, 0 ≤ i, j ≤ N − 2, (8.13)

where wij and hij are entries of W and H.
In summary, the full diagonalization for solving (8.5) consists of the following

steps:

1. Pre-processing: compute the eigenvalues and eigenvectors of the generalized
eigenvalue problem (8.7), and compute (EA)−1;

2. Compute H = (EA)−1F(EA)−T ;
3. Obtain W from (8.13);
4. Set U = EWET .

Therefore, for both the Legendre-Galerkin and Chebyshev-Galerkin methods, the
cost of the above algorithm is essentially four matrix–matrix multiplications, as op-
posed to two matrix–matrix multiplications for the partial diagonalization. Notice
that the full diagonalization procedure is simpler to implement than the partial one.

Remark 8.1. The full diagonalization procedure can also be applied to the matrix
system obtained from a collocation approach (cf. Haldenwang et al. (1984)). In this
case, let φk(x) = hk+1(x), where {h j}N−1

j=1 are Lagrange basis polynomials associ-
ated with the interior Gauss-Lobatto points. Then, the mass matrix B in (8.5) is
diagonal and the stiffness matrix A is full.

However, in addition to the fact that A is full, the ill-conditioning of A makes the
eigenvalue problem (8.7) prone to round-off errors as N becomes large. In fact, a
loss of 4-5 digits was observed for N = 256 in Shen (1994).

Hereafter, we shall only consider the partial diagonalization procedure based on
the modal basis.

Remark 8.2. The matrix diagonalization approach applies directly to separable
elliptic equations with general boundary conditions including in particular the
Neumann boundary conditions. However, the case

−Δu = f in Ω ;
∂u
∂n

∣∣∣
∂Ω

= 0 (8.14)

needs some special care due to the fact that the solution u of (8.14) is only deter-
mined up to an additive constant (see Problem 8.1).

8.1.1.4 An Equivalent Approach Based on Separation of Variables

It is worthwhile to note that the matrix decomposition algorithm described above
can be interpreted as a discrete version of the separation of variables for partial
differential equations. Indeed, consider the eigenvalue problem:

{
Find uN ∈ P0

N and μ such that

aω(uN ,vN) = μ(uN ,vN)ω , ∀vN ∈ P0
N.

(8.15)
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It is clear that (8.15) is the weighted Galerkin approximation of the eigenvalue
problem

−uxx = μu, u(±1) = 0. (8.16)

The formulation (8.15) reduces to the generalized eigenvalue problem

λAx̄ = Bx̄, (8.17)

with λ = 1/μ . Let Λ be the diagonal matrix whose diagonal entries {λp} are the
eigenvalues of (8.17), and let E = (ejk) be the matrix whose columns are the eigen-
vectors of (8.17), i.e.,

BE = AEΛ . (8.18)

Then the functions

ψk(x) :=
N−2

∑
j=0

ejkφ j(x), k = 0,1, . . . ,N − 2, (8.19)

where μk = 1/λk are solutions of (8.15). The fact that E is non-singular implies that
{ψk}N−2

k=0 also form a basis of P0
N . Furthermore, we have

mln := (ψn,ψl)ω =
N−2

∑
k, j=0

eknejl(φk,φ j)ω

=
N−2

∑
k, j=0

eknbjkejl = (ETBE)ln = (ETAEΛ)ln,

(8.20)

and

sln := aω(ψn,ψl) =
N−2

∑
k, j=0

eknejlaω(φk,φ j)

=
N−2

∑
k, j=0

eknajkejl = (ETAE)ln.

(8.21)

Remark 8.3. In the Legendre case, A = I and BE = EΛ . Therefore, {ψk}N−2
k=0 are

mutually orthogonal with respect to the inner products (u,v) and (u′,v′). More
precisely,

mln = (ψn,ψl) = λlδln, sln = (ψ ′
n,ψ ′

l ) = δln.

Therefore, this set of basis functions are very similar to the Fourier basis functions
for periodic problems and can be very attractive in many situations (cf. Shen and
Wang (2007b)).

In the Chebyshev case, {ψk}N−2
k=0 are no longer mutually orthogonal, but the

associated mass matrix M with entries mln = (ψn,ψl)ω and stiffness matrix S with
entries sln = aω(ψn,ψl) are related by M = SΛ .
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Hence, setting

uN =
N−2

∑
n,l=0

ṽnlψn(x)φl(y), V = (ṽnl)n,l=0,1,...,N−2,

hkj = (IN f ,ψk(x)φ j(y)), H = (hkj)k, j=0,1,...,N−2,

we find that (8.2) is equivalent to

αMV B+ SVB+MVAT = H. (8.22)

We derive from M = SΛ that

αΛV B+VB+ΛVAT = S−1H, (8.23)

which is exactly the same as (8.9) by noting that U = EV and H = ET F .

Remark 8.4. In the Legendre case, it is particularly interesting to use {ψk(x)ψ j(y)}
as basis functions. The resulting algorithm corresponds to the diagonalization in
both x and y directions, and leads to diagonal mass and stiffness matrices. However,
this algorithm is not as efficient as the partial diagonalization algorithm since two
more matrix–matrix multiplications are needed.

Remark 8.5. One can also consider a spectral-Galerkin method for solving fourth-
order equations of the form

αu−β Δu+Δ 2u = f , in Ω = (−1,1)2; u|∂Ω =
∂u
∂n

∣∣∣
∂Ω

= 0 (8.24)

by using a tensor-product approach as in the second-order case. Unfortunately, due
to the fact that the above equation is not separable, one can not directly apply the
partial or full diagonalization technique. However, by using {J−2,−2

k (x)J−2,−2
j (y)}

as basis functions, the resulting linear system can still be solved, with essentially
the same computational complexity as for a second-order equation, by using the
Sherman-Morrison-Woodbury formula (cf. Golub and Van Loan (1996)). We refer
to Shen (1994) for the Legendre case and Bjørstad and Tjostheim (1997) for the
Chebyshev case.

8.1.2 Three-Dimensional Case

The three-dimensional case can be treated most straightforwardly by using the full
diagonalization procedure (see Problem 8.2). However, a more efficient approach is
to diagonalize two of the three directions successively and solve the third direction
directly. To fix the idea, we consider the expansion

XXXN = span
{

φn(x)φm(y)ψk(z) : n,m,k = 0,1, . . . ,N − 2
}
,
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where {φ j}N−2
j=0 is a set of basis functions of P0

N and {ψ j}N−2
j=0 are defined in (8.19).

This expansion corresponds to the diagonalization in the z direction. Denote

uN =
N−2

∑
n,m,k=0

ũ(k)nmφn(x)φm(y)ψk(z), U (k) = (ũ(k)nm)0≤n,m≤N−2;

f (k)nm = (IN f ,φn(x)φm(y)ψk(z))ω , F (k) = ( f (k)nm )0≤n,m≤N−2.

(8.25)

We also recall that A=(aij) with aij =−(φ ′′
j ,φi)ω , and B=(bij) with bij =(φ j,φi)ω .

Then, by (8.20)–(8.21) and Remark 8.3, we have

−(∂xxuN ,φi(x)φ j(y)ψl(z))ω

=−
N−2

∑
n,m,k=0

ũ(k)nm(φ ′′
n (x),φi(x))ω(φm(y),φ j(y))ω(ψk(z),ψl(z))ω

=
N−2

∑
n,m,k=0

ũ(k)nmainbjmmlk =
N−2

∑
n,m,k=0

ũ(k)nmainbjmslkλk.

Similarly,

−(∂yyuN ,φi(x)φ j(y)ψl(z))ω =
N−2

∑
n,m,k=0

ũ(k)nmbinajmslkλk,

−(∂zzuN ,φi(x)φ j(y)ψl(z))ω =
N−2

∑
n,m,k=0

ũ(k)nmbinbjmslk,

(uN ,φi(x)φ j(y)ψl(z))ω =
N−2

∑
n,m,k=0

ũ(k)nmbinbjmslkλk.

Therefore, (8.2) in the three dimensional case is equivalent to

N−2

∑
n,m,k=0

ũ(k)nm
{

αbinbjmλk + ainbjmλk + binajmλk + binbjm
}

slk

= f (l)ij , i, j, l = 0,1, . . . ,N − 2,

which can be rewritten in the following compact form

λl(AU (l)B+BU (l)AT )+ (αλl + 1)BU (l)B = F (l)S−T := G(l), (8.26)

for all l = 0,1, . . . ,N − 2. Note that for each l, (8.26) is of the form (8.5) which
corresponds to a two-dimensional problem and can be solved in O(N3) operations.
In summary, the solution of (8.2) in the three dimensional case consists of the
following steps:

1. Pre-processing: compute the eigenvalues and eigenvectors (Λ ,E) of the general-
ized eigenvalue problem (8.7), and compute gij = φ j(xi), hij = ψ j(xi) and S−1
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2. Compute f (k)nm = (IN f ,φn(x)φm(y)ψk(z))ω
3. Compute G(l) and obtain U (l) by solving (8.26) for l = 0,1, . . . ,N − 2
4. Compute

uN(xi,y j,zl) =
N−2

∑
n,m,k=0

ũ(k)nmφn(xi)φm(y j)ψk(zl) =
N−2

∑
n,m,k=0

ũ(k)nmgingjmhlk,

for i, j, l = 0,1, . . . ,N − 2.

The cost for each of Steps 2 to 4 is a small multiple of N4 operations, which consist
of mainly matrix–matrix multiplications.

Remark 8.6. Step 2 can be most efficiently computed by using the Legendre-Gauss-
Lobatto quadrature. However, in the Chebyshev case, it is more efficient to carry out
Steps 2 and 4 using fast discrete Chebyshev transforms.

8.2 Circular and Cylindrical Domains

We shall develop in this section spectral-Galerkin algorithms for two-dimensional
circular and three-dimensional cylindrical domains. Most of the material below is
taken from Shen (1997, 2000) from which one can find a more detailed presenta-
tion. For a comprehensive discussion of the spectral methods for three dimensional
axisymmetric domains, we refer to the book by Bernardi et al. (1999).

8.2.1 Dimension Reduction and Pole Conditions

We first consider the following model equation on a unit disk:

αU −ΔU = F in Ω =
{
(x,y) : x2 + y2 < 1

}
,

U = 0 on ∂Ω .
(8.27)

A weak formulation of (8.27) is
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find U ∈ H1
0 (Ω) such that

A(U,V) := α
∫

Ω
U V dxdy+

∫
Ω

∇U ·∇V dxdy

=
∫

Ω
F V dxdy, ∀V ∈ H1

0 (Ω).

(8.28)

Applying the polar transformation x = r cosθ , y = r sinθ to (8.27), and setting

u(r,θ ) =U(r cosθ ,r sinθ ), f (r,θ) = F(r cosθ ,r sin θ),
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we obtain

αu− 1
r
(rur)r − 1

r2 uθθ = f , (r,θ) ∈ Q := (0,1)× [0,2π),

u(1,θ ) = 0, θ ∈ [0,2π); u is periodic in θ .
(8.29)

Correspondingly, the weak formulation (8.28) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find u ∈ X such that

a(u,v) :=
∫

Q
ur vr r dr dθ +

∫
Q

1
r

uθ vθ dr dθ

+α
∫

Q
uvr dr dθ =

∫
Q

f vr dr dθ , ∀v ∈ X ,

(8.30)

where

X =
{

u :u(1,θ ) = 0 for θ ∈ [0,2π), u is 2π-periodic, and
∫

Q

(
u2r+

1
r

u2
θ
)
drdθ < ∞

}
.

(8.31)

Since the polar transformation is singular at the pole r = 0, additional pole con-
ditions should be imposed for the solution of (8.29) so as to have desired regularity
in the Cartesian coordinates. In fact, if the function

u(r,θ ) =
∞

∑
m=0

(
u1m(r)cos(mθ)+ u2m(r)sin(mθ)

)
(8.32)

(hereafter, we assume that u20(r) ≡ 0) were to be infinitely differentiable in the
Cartesian coordinates, the following pole conditions would have to be imposed
(cf. Orszag and Patera (1983)):

u1m(r) = O(rm), u2m(r) = O(rm) as r → 0 for m = 1,2, . . . . (8.33)

Obviously, it is not computationally efficient to impose all the pole conditions in
(8.33). Since our approximations will be based on the weak formulation (8.30)
which is well defined if uθ (0,θ ) = 0 for θ ∈ [0,2π), or equivalently,

u1m(0) = u2m(0) = 0 for m �= 0, (8.34)

(8.34) will be referred to as the essential pole conditions for (8.29), while all other
conditions in (8.33) will be called natural or nonessential pole conditions. Although
it is possible to impose any given number of pole conditions in (8.33) in a numerical
scheme, it is generally inefficient, and may lead to ill-posed linear systems if more
than necessary pole conditions are imposed so that the total number of boundary
conditions in the radial direction exceeds the order of the underlying differential
equation. On the other hand, ignoring the essential pole condition(s) will lead to
inaccurate results.
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We emphasize that the accuracy of a spectral approximation to (8.30) is only
affected by the smoothness of the solution u in the polar coordinates. In particular,
the singularity of the solution u at the pole in Cartesian coordinates will not degrade
the accuracy of the spectral Galerkin schemes presented below.

We now describe our spectral approximations to (8.29). We shall first reduce
the two-dimensional problem (8.29) to a sequence of one-dimensional problems by
using the Fourier expansion in θ direction. More precisely, given a cut-off number
M > 0, let ( f 1m(r), f 2m(r)) be the discrete Fourier coefficients of f in the expansion:

f (r,θ j) =
M

∑
m=0

(
f 1m(r)cos(mθ j)+ f 2m(r)sin(mθ j)

)
, (8.35)

where
{

θ j = jπ/M
}2M−1

j=0 are the Fourier-collocation points. We define a Fourier-
spectral approximation to the solution u of (8.29) by

uM(r,θ ) =
M

∑
m=0

(
u1m(r)cos(mθ)+ u2m(r)sin(mθ )

)
, (8.36)

where (u1m(r),u2m(r)) (m = 0,1, . . . ,M) satisfy

− 1
r
(ru1m

r )r +
(m2

r2 +α
)

u1m = f 1m(r), 0 < r < 1,

− 1
r
(ru2m

r )r +
(m2

r2 +α
)

u2m = f 2m(r), 0 < r < 1,

u1m(0) = u2m(0) = 0 if m �= 0, u1m(1) = u2m(1) = 0.

(8.37)

Remark 8.7. The extra pole conditions u10
r (0) = u20

r (0) = 0 used by many authors
(see, for instance, Gottlieb and Orszag (1977), Canuto et al. (1987), Eisen et al.
(1991), Huang and Sloan (1993), Fornberg (1995)) are derived from the parity argu-
ment on the expansion (8.36). It is, however, not part of the essential pole condition
for (8.29). Although in most cases, there is no harm to impose extra pole conditions,
we choose not to do so since its implementation is more complicated and it may fail
to give accurate results in some extreme (but still legitimate) cases, e.g., when the
exact solution is a function of r− 1.

8.2.2 Spectral-Galerkin Method for a Bessel-Type Equation

It is now clear that after the Fourier transform in the θ direction, we only have to
consider the approximation of the following one-dimensional Bessel-type equation:

− 1
r
(rur)r +

(m2

r2 +α
)

u = f , 0 < r < 1;

u(0) = 0 if m �= 0, u(1) = 0,
(8.38)
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where u and f now represent generic functions. It is important to note that a direct
treatment of (8.38) is not quite appropriate, since the measure rdrdθ related to the
polar coordinate transformation is not taken into account.

Now let us derive a weighted weak formulation, which is suitable for both
the Legendre and Chebyshev methods. We first make a coordinate transformation
r = (1+ t)/2 in (8.38). Setting v(t) = u

(
(1+ t)/2

)
, we get

− 1
1+ t

((1+ t)vt)t +
( m2

(1+ t)2 +
α
4

)
v =

1
4

f
(1+ t

2

)
, t ∈ I = (−1,1),

v(−1) = 0 if m �= 0, v(1) = 0.

(8.39)

Thus, a weighted weak formulation for (8.39) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find v ∈ X(m) such that

(
(1+ t)vt,(wω)t

)
+

( m2

1+ t
v,w

)
ω
+β

(
(1+ t)v,w

)
ω

= (INg,w)ω , ∀w ∈ X(m),

(8.40)

where for all m �= 0,

X(m) =
{

v : v(±1) = 0 and
∫

I
(1+ t)vt(vω)t dt +

∫
I

1
1+ t

v2ωdt < ∞
}
,

and

X(0) =
{

v : v(1) = 0 and
∫

I
(1+ t)vt(vω)tdt +

∫
I
(1+ t)v2ωdt < ∞

}
,

β = α/4, g(t) =
1
4
(1+ t) f

(
(1+ t)/2

)
, and IN is the interpolation operator relative

to the Gauss-Lobatto points.
Given a set of basis functions {φ j}q

j=0 of XN (m) := X(m)∩PN, where q = N − 2
(resp. q = N − 1) if m �= 0 (resp. m = 0), we denote

aij =
∫

I
(1+ t)φ ′

j (φiω)′ dt, A = (aij)i, j=0,1,...,q;

bi j =
∫

I

1
1+ t

φ j φi ω dt, B = (Bi j)i, j=0,1,...,q;

ci j =

∫
I
(1+ t)φ j φi ω dt, C = (Ci j)i, j=0,1,...,q;

fi =
∫

I
IN gφi ω dt, f = ( f0, fi, . . . , fq)

T ;

vN =
q

∑
i=0

xiφi(t), x = (x0,xi, . . . ,xq)
T ,

(8.41)



8.2 Circular and Cylindrical Domains 311

then (8.40) reduces to the linear system
(
A+m2B+βC

)
x = f. (8.42)

Next, we determine exactly the entries of matrices A, B and C for the Legendre
(ω = 1) and Chebyshev (ω = (1− x2)−1/2) cases separately.

8.2.2.1 Legendre-Galerkin Approximation

Case m �= 0: In this case, we take φi(t) = Li(t)−Li+2(t) so that

XN (m) = span
{

φi(t) : i = 0,1, . . . ,N − 2
}
.

It turns out that the variable coefficients of the form (1+ t)±1 do not lead to dense
matrices. In fact, we have

Lemma 8.1. The matrices A and B are symmetric tridiagonal with

ai j =

{
2i+ 4, j = i+ 1,

4i+ 6, j = i,
bi j =

⎧⎪⎪⎨
⎪⎪⎩
− 2

i+ 2
, j = i+ 1,

2(2i+ 3)
(i+ 1)(i+ 2)

, j = i.
(8.43)

The matrix C is symmetric seven-diagonal with

ci j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2(i+ 3)
(2i+ 5)(2i+ 7)

, j = i+ 3,

− 2
2i+ 5

, j = i+ 2,

2
(2i+ 1)(2i+ 5)

+
2(i+ 3)

(2i+ 5)(2i+ 7)
, j = i+ 1,

2
2i+ 1

+
2

2i+ 5
, j = i.

(8.44)

Proof. It is obvious from the definition that the matrices A, B and C are symmetric
positive definite. The formula for ai j can be easily obtained by using the following
properties of the Legendre polynomials derived from (3.168), (3.176a) and (3.176d):

φ ′
i (t) =−(2i+ 3)Li+1(t), (8.45)

(i+ 1)Li+1(t) = (2i+ 1)t Li(t)− iLi−1(t), (8.46)

and

φi(t) =
2i+ 3

(i+ 1)(i+ 2)
(1− t2)L′

i+1(t). (8.47)
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Therefore, setting temporarily α j =
2 j+3

( j+1)( j+2) , and using (8.47) successively, inte-
gration by parts and (8.45), we have

bi j =
∫

I

1
1+ t

φ j φi dt = α j

∫
I
(1− t)L′

j+1 φi dt

=−α j

∫
I
L j+1

(
(1− t)φi

)′
dt

= α j

∫
I
L j+1

(
(2i+ 3)(1− t)Li+1+φi

)
dt.

The formula for bi j can be easily established by using (8.46), and the formula for
ci j can be derived similarly. �

Case m = 0: In this case, we take φi(t) = Li(t)−Li+1(t) so that

XN (0) = span
{

φi(t) : i = 0,1, . . . ,N − 1
}
.

Lemma 8.2. The matrix A is diagonal with aii = 2i+ 2. The matrix C is symmetric
penta-diagonal with

ci j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 2(i+ 2)
(2i+ 3)(2i+ 5)

, j = i+ 2,

4
(2i+ 1)(2i+ 3)(2i+ 5)

, j = i+ 1,

4(i+ 1)
(2i+ 1)(2i+ 3)

, j = i.

Proof. It is easy to see that ai j = 0 for i �= j. On the other hand, using interpolation
by parts gives

aii =
(
(1+ t)φ ′

i ,φ ′
i

)
=−(φ ′

i ,φi)−
(
(1+ t)φ ′′

i ,φi
)
.

Direct computations using (8.46) lead to aii = 2i+ 2 and the formula for ci j. �

8.2.2.2 Chebyshev-Galerkin Approximation

Case m �= 0: We take φi(t) = Ti(t)−Ti+2(t) so that

XN (m) = span
{

φi(t) : i = 0,1, . . . ,N − 2
}
.

The direct computation of the elements of A, B and C is very involved, but it can be
substantially simplified by using the following results:

ãi j =−
∫

I
φ ′′

j φi ω dt =

⎧⎪⎨
⎪⎩

2π(i+ 1)(i+ 2), j = i,

4π(i+ 1), j = i+ 2, i+ 4, i+ 6, . . .,

0, otherwise;

(8.48)
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b̃i j =
∫

I
φ j φi ω dt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

di + 1
2

π , j = i,

−π
2
, j = i− 2 or i+ 2,

0, otherwise;

(8.49)

c̃i j =
∫

I
φ ′

j φi ω dt =

⎧⎪⎨
⎪⎩

π(i+ 1), j = i+ 1,

−π(i+ 1), j = i− 1,

0, otherwise,

(8.50)

where d0 = 2 and di = 1 for i ≥ 1. In the above, (8.48) was derived in Lemma 4.4,
while (8.49) and (8.50) can be easily established using (3.214) and (3.216a).

Lemma 8.3.

• A is an upper Hessenberg matrix with

ai j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i+ 1)2π , j = i− 1,

2(i+ 1)(i+ 2)π , j = i,

(i+ 1)(i+ 5)π , j = i+ 1,

4(i+ 1)π , j ≥ i+ 2.

(8.51)

• B is a symmetric tridiagonal matrix with

bi j =

⎧⎪⎨
⎪⎩

2π , j = i,

−π , j = i+ 1,

0, otherwise.

(8.52)

• C is a symmetric seven-diagonal matrix with

ci j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

di + 1
2

π , j = i,

di−1

4
π , j = i− 1,

−π
2
, j = i− 2,

−π
4
, j = i− 3.

(8.53)

Proof. We have

ai j =−
∫

I

(
(1+ t)φ ′

j

)′ φi ω dt =−
∫

I
φ ′′

j φi ω dt −
∫

I
(tφ ′

j)
′ φi ω dt

= ãi j − c̃i j −
∫

I
φ ′′

j t φi ω dt.
(8.54)
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It is clear from the definition that ai j = 0 if j < i−1. On the other hand, by (3.207),

tφi = t(Ti −Ti+2) =
1
2
(Ti−1 −Ti+3) =

1
2
(φi−1 + φi+1), i ≥ 1, (8.55)

which, together with (8.54), implies

ai j = ãi j − c̃i j +
1
2
(ãi−1, j + ãi+1, j).

The formula (8.51) is then a direct consequence of the above relation, (8.48) and
(8.50).

It is easy to see from the definition that bi j = 0 if |i− j| > 1. By (3.212c) and
(3.216a),

φ j(t) = (1− t2)
2

j+ 1
T ′

j+1(t) = (1− t2)
j

∑
k=0

k+ j even

4
dk

Tk(t), (8.56)

where d0 = 2 and dk = 1 for k ≥ 1. Therefore,

bi j =
∫

I

1
1+ t

φ j φi ω dt =
j

∑
k=0

k+ j even

4
dk

∫
I
(1− t)φi Tk ω dt

=
j

∑
k=0

k+ j even

4
dk

∫
I

(
φi − 1

2
(φi−1 + φi+1)

)
Tk ω dt.

(8.57)

The elements bii and bi,i+1 can then be easily computed from the above relation.
Finally, by using (8.55), we find

ci j = b̃i j +
1
2
(b̃i−1, j + b̃i+1, j).

Hence, (8.53) is a direct consequence of the above relation and (8.49). �
Remark 8.8. Although the matrix A is not sparse, (8.42) can still be solved in O(N)
operations by taking advantage of the special structure of A, namely, ai j = 4(i+1)π
for j ≥ i+ 2.

An alternative is to use a new set of basis functions φi(t) = (1− t2)Ti(t) (cf.
Heinrichs (1989)). It is easy to verify that in this case B and C are symmetric sparse
matrices with bi j = 0 for |i− j|> 3 and ci j = 0 for |i− j|> 5. One can also show by
using integration by parts that A is a non-symmetric sparse matrix with ai j = 0 for
|i− j|> 3. Thus, (8.42) can also be solved in O(N) operations (see Problem 8.3).

Case m = 0: We take φi(t) = Ti(t)−Ti+1(t) so that

XN (0) = span
{

φi(t) : i = 0,1, . . . ,N − 1
}
.
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Lemma 8.4.

• A is an upper-triangular matrix with

ai j =

⎧⎪⎨
⎪⎩
(i+ 1)π2, j = i,

(i− j)π , j = i+ 1, i+ 3, i+ 5 . . .,

(i+ j+ 1)π , j = i+ 2, i+ 4, i+ 6 . . ..

(8.58)

• C is a symmetric penta-diagonal matrix with non-zero elements

cii =
π
2
, i = 0,1, . . . ,N − 1,

ci,i+2 = ci+2,i =−π
4
, i = 0,1, . . . ,N − 3,

c01 = c10 =
π
4
.

(8.59)

Proof. The computation of ci j is straightforward by using the orthogonality of the
Chebyshev polynomials and the relation derived from (3.207):

tφi(t) = t
(
Ti(t)−Ti+1(t)

)
=

1
2

(
φi−1(t)+φi+1(t)

)
, i ≥ 1.

However, the computation of ai j is quite involved. The idea is to use the relations
(3.216a) and (3.216b) to expand

(
(1+ t)φ ′

j(t)
)′

in Chebyshev series. The details are
left to the interested readers. �
Remark 8.9. Once again, the matrix A is not sparse. But (8.42) (with m = 0) can
still be solved in O(N) operations by exploring the special structure of A. We refer
to P. 80-81 in Shen (1995) for more details on this procedure for a similar problem.

8.2.3 Another Fourier-Chebyshev Galerkin Approximation

The algorithms in the previous section were developed without taking into account
the inherent parity of the Fourier coefficients um(r) := (u1m(r),u2m(r)) in (8.32). In
fact, the expansion coefficients in (8.32) can not be arbitrary since it is well-known
(see, e.g., Orszag and Patera (1983), Canuto et al. (1987), Fornberg (1995)) that
um(r) has the same parity as m and can be expanded smoothly to the interval [−1,0],
i.e., if um is in Hk(0,1), then the expanded function is in Hk(−1,1). In particular,
for u ∈C(Ω) we have

um ∈ Y (m) :=
{

v ∈C(−1,1) : v(−r) = (−1)mv(r), r ∈ (0,1)
}
,

and consequently,

u ∈ Y :=
{

v =
∞

∑
|m|=0

vm(r)e
imθ : v−m(r) = v̄m(r) and vm ∈ Y (m)

}
.
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A consequence of not taking into account the parity of um(r) is that we can not
smoothly extend it to the interval [−1,0]. So we are forced to use the Gauss-Lobatto
points based on the interval [0,1], resulting a severe clustering of points near the
origin (see the second row of Fig. 8.1 and Remark 8.10 below).

We construct below approximations of Y (m) and Y which preserve the odd-even
parity and lead to better distribution of collocation points (see the first row of
Fig. 8.1). We shall consider only the Chebyshev case and leave the Legendre case to
the interested readers.

8.2.3.1 A Fourier-Chebyshev Interpolation Operator on the Unit Disk

Define

ψ (m)
j (r) =

{
T2 j(r), if m is even,

T2 j+1(r), if m is odd.
(8.60)

Given a pair of even integers (N,M), we introduce the spaces:

Y (m)
N :=

{
v =

N/2−mod(m,2)

∑
j=0

v jψ
(m)
j (r) : v j are complex numbers

}
, (8.61)

and

YNM :=
{

v =
M

∑
|m|=0

vm(r)e
imθ : vm ∈ Y (m)

N , v is real
}
. (8.62)

We further define a set of collocation points on Q̄ relative to YNM by

ΣNM :=

{
(rk,θ j) :

k = 0,1, . . . ,N/2− 1, j = 0,1, . . . ,2M− 1

k = N/2, j = 0,1, . . . ,M− 1

}
, (8.63)

where rk = cos(kπ/N) and θ j = jπ/M. Note that for v ∈ Y or YNM , v(0,θ ) =
v(0,π + θ ) for all θ . Hence, the points (rk,θ j) with k = N/2 and j = M,M +
1, . . . ,2M− 1 are excluded from ΣNM .

One can now readily check that there exists a unique interpolation operator INM :
Y ∩C(Q̄)→ YNM, defined by

INM g(r,θ) =
M

∑
|m|=0

N/2−mod(m,2)

∑
n=0

gnmψ (m)
n (r)eimθ ∈ YNM, (8.64)

such that

(INM g)(rk,θ j) = g(rk,θ j), ∀(rk,θ j) ∈ ΣNM . (8.65)
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Fig. 8.1 Distribution of collocation points: first row - -ΣNM ; second row – Σ̃NM

Remark 8.10. In the previous section, the change of variable r = (1+ t)/2 is ap-
plied so that the functions in the transformed spaces no longer satisfy the odd-even
parity condition and that the corresponding set of collocation points in Q̄ is

Σ̃NM :=
{
((tk + 1)/2,θ j) : k = 0,1, . . . ,N, j = 0,1, . . . ,2M− 1

}

with tk = cos(kπ/N) and θ j = jπ/M. Not only Σ̃NM has twice as many points as
ΣNM, but also the points are unnecessarily clustered in the radial direction near
the pole (r = 0), see the second row of Fig. 8.1. Indeed, the smallest distance
in the Cartesian coordinates between two adjacent points in Σ̃NM (resp. ΣNM) near
the pole is of order O(N−2M−1) (resp. O(N−1M−1)). Besides being wasteful, this
unnecessary clustering may also lead to severe time step constraints when an ex-
plicit scheme is used for time discretization.

8.2.3.2 Description of the Algorithm

Denoting um = (u1m,u2m) and fm = ( f 1m, f 2m), we rewrite (8.37) as

−1
r

d
dr

(
r

d
dr

um

)
+

(m2

r2 +α
)

um = fm, r ∈ (0,1), um(1) = 0. (8.66)

Note that we have dropped off the pole condition um(0) = 0 for m �= 0 which was
essential for the formulation (8.38). However, this pole condition will become nat-
ural for the formulation (8.68) below.

We now seek approximation of um in the space

X (m)
N :=

{
v ∈ Y (m)

N : v(1) = 0
}
. (8.67)
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We consider the following weighted (with the weight function r2ω(r)) spectral-
Galerkin approximation to (8.66):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find u(m)
N

∈ X (m)
N such that

−
∫ 1

0

d
dr

(
r

d
dr

u(m)
N

)
rvω dr+m2

∫ 1

0
u(m)

N
vω dr

+α
∫ 1

0
r2u(m)

N
vω dr =

∫ 1

0
r2 f (m)

N
vω dr, ∀v ∈ X (m)

N ,

(8.68)

for m = 0,1, . . . ,M, where ω(r) = (1− r2)−1/2 is the Chebyshev weight function,
and f (m)

N
is the m-th component of

INM f =
M

∑
|m|=0

N/2−mod(m,2)

∑
n=0

fnmψ (m)
n (r)eimθ ,

namely,

f (m)
N

=
N/2−mod(m,2)

∑
n=0

fnmψ (m)
n (r).

Then, the approximation to u is given by

uNM (r,θ) =
M

∑
|m|=0

u(m)
N

(r)eimθ , u(−m)
N

= ū(m)
N

.

Note that uNM is neither necessarily single valued nor differentiable at the pole in
the Cartesian coordinates. However, uNM still converges to u exponentially provided
that f is smooth in the Cartesian coordinates.

It is clear that X (m)
N is a N/2 (resp. N/2−1) dimensional space if m is even (resp.

odd) and that

φ (m)
j (r) := (1− r2)ψ (m)

j (r) ∈ X (m)
N . (8.69)

Therefore,

X (m)
N = span

{
φ (m)

j : j = 0,1, . . . ,q := N/2− 1−mod(m,2)
}
. (8.70)

Thus, setting

u(m)
N

=
q

∑
k=0

x(m)
k φ (m)

k , x(m) = (x(m)
0 , . . . ,x(m)

q )T ;

a(m)
k j := −

∫ 1

0

d
dr

(
r

d
dr

φ (m)
j

)
rφ (m)

k ω dr, A(m) = (a(m)
k j )0≤k, j≤q;

b(m)
k j :=

∫ 1

0
φ (m)

j φ (m)
k ωdr, B(m) = (b(m)

k j )0≤k, j≤q;

c(m)
k j :=

∫ 1

0
r2φ (m)

j φ (m)
k ωdr, C(m) = (c(m)

k j )0≤k, j≤q;

f (m)
k :=

∫ 1

0
r2 f (m)

N
φ (m)

k ω dr, f(m) = ( f (m)
0 , . . . , f (m)

q )T ,

(8.71)
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the formulation (8.68) reduces to the linear system
(
A(m) +m2B(m) +αC(m)

)
x(m) = f(m). (8.72)

Note that although an index m is used in A(m), B(m), C(m) and X (m)
N , these matrices

only depend on the parity of m, rather than the actual value of m.

Lemma 8.5. For m even or odd, A(m) and B(m) are penta-diagonal matrices, and
C(m) is a seven-diagonal matrix.

Proof. Notice that all the integrands in a(m)
k j , b(m)

k j and c(m)
k j are even functions. There-

fore, we can replace the integral
∫ 1

0 by 1
2

∫ 1
−1. Then, thanks to the orthogonality

relation of the Chebyshev polynomials and the special form of the basis functions
(8.69), one derives immediately that B(m) and C(m) are respectively penta- and seven-
diagonal symmetric matrices. By the same argument, we have

a(m)
k j =−1

2

∫ 1

−1

d
dr

(
r

d
dr

φ (m)
j

)
rφ (m)

k ω dr = 0 for j < k− 2.

On the other hand, integrating by parts twice, using (8.69) and the identity ω ′(r) =
r

1−r2 ω(r), we have

a(m)
k j =

1
2

∫ 1

−1

(
r

d
dr

φ (m)
j

) d
dr

(
rφ (m)

k ω
)
dr

=
1
2

∫ 1

−1

d
dr

φ (m)
j

(
r2 d

dr
φ (m)

k +
r

1− r2 φ (m)
k

)
ω dr

=−1
2

∫ 1

−1
φ (m)

j

{
d
dr

(
r2 d

dr
φ (m)

k +
r

1− r2 φ (m)
k

)

+
(

r2 d
dr

φ (m)
k +

r
1− r2 φ (m)

k

) r
1− r2

}
ω dr

=−1
2

∫ 1

−1
ψ (m)

j

{
(1− r2)

d
dr

(
r2 d

dr
φ (m)

k + rψ(m)
k

)

+
(

r2 d
dr

φ (m)
k + rψ (m)

k

)
r

}
ω dr.

Then, thanks to the special form of the basis functions in (8.69), we find that the
function between the pair of brackets is a polynomial of degree 2k+4 (resp. 2k+5)

for m even (resp. odd). Therefore, we have a(m)
k j = 0 if k < j− 2. �

The entries of A(m), B(m) and C(m) can be evaluated exactly, but this process can
be quite tedious. Alternatively, one can compute these entries automatically by using
the Chebyshev-Gauss-Lobatto quadrature with N + 2 nodes.
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8.2.4 Numerical Results and Discussions

We now present some numerical results using the two Fourier-Chebyshev algo-
rithms, which we shall refer to as CFG1 and CFG2, presented in Sects. 8.2.2.2
and 8.2.3, respectively.

We consider the Poisson equation on a unit disk with the exact solution

U(x,y) = (x2 + y2 − 1)
(

cos(β (x+ y))+ sin(β (x+ y))
)
. (8.73)

The maximum errors of the two algorithms for the exact solution (8.73) with β = 16
are listed in Table 8.1. This exact solution is smooth in both the Cartesian and polar
coordinates, so both algorithms converge exponentially fast. Note that to achieve
the same accuracy as CFG1 with the pair (N,N), CFG2 should be used, roughly
speaking, with the pair (N + 10,N + 10) for this particular example. We recall that
for a fixed pair of (N,M), the number of unknowns and the CPU time of CFG2 are
about half of CFG1 (cf. Shen (1997)). Thus, CFG2 could be significantly more
efficient, in terms of CPU and memory, than CFG1. Another advantage of CFG2 is
that the collocation points are not unnecessarily clustered in the radial direction near
the pole.

Table 8.1 Maximum errors: exact solution being (8.73) with β = 16
N = M 22 26 30 34 38 42
CFG1 8.68E-3 3.55E-4 8.52E-6 1.17E-7 9.99E-10 5.52E-12
N = M 32 36 40 44 48 52
CFG2 1.98E-2 3.98E-4 4.63E-6 3.34E-8 1.59E-10 4.58E-13

The computational complexity for solving (8.29) using each of the methods pre-
sented above is O(NM) + 2T (NM), where N and M are respectively the cut-off
number of the spectral expansion in radial and axial directions, and T (NM) is the
cost of one forward or inverse discrete transform of the form

g(ti,θ j) =
N

∑
n=0

( M

∑
m=0

(
g1m

n cos(mθ j)+ g2m
n sin(mθ j)

))
pn(t j),

i = 0,1, . . . ,N, j = 0,1, . . . ,2M− 1,

(8.74)

where pn(t) is the Chebyshev or Legendre polynomial of degree n. Therefore,

T (NM) = N2M+O(NM log2 M)

for the Fourier-Legendre Galerkin method, while

T (NM) = O(NM log2 M)+O(NM log2 N)

for the Fourier-Chebyshev Galerkin method. Thus, the computational complexity of
the Fourier-Chebyshev Galerkin method is quasi-optimal.
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8.2.5 Three-Dimensional Cylindrical Domains

Consider the model equation in a cylinder:

−ΔU +αU = F in Ω =
{
(x,y,z) : x2 + y2 < 1, z ∈ I := (−1,1)

}
,

U = 0 on ∂Ω .
(8.75)

Applying the cylindrical transformation

x = r cosθ , y = r sinθ , z = z,

and setting

u(r,θ ,z) =U(r cosθ ,r sinθ ,z), f (r,θ ,z) = F(r cosθ ,r sin θ ,z),

we obtain

− 1
r
(rur)r − 1

r2 uθθ − uzz +αu = f , (r,θ ,z) ∈ (0,1)× [0,2π)× I,

u = 0 at r = 1 or z =±1, u is periodic in θ ,
(8.76)

with the essential pole conditions

∂
∂θ

u(0,θ ,z) = 0, (θ ,z) ∈ [0,2π)× I. (8.77)

As before, let ( f 1m(r,z), f 2m(r,z)) be defined by

f (r,z,θ j) =
M

∑
m=0

(
f 1m(r,z)cos(mθ j)+ f 2m(r,z)sin(mθ j)

)
, (8.78)

where {θ j = jπ/M}2M−1
j=0 . Then, a Fourier-spectral approximation to u is given by

uM(r,θ ,z) =
M

∑
m=0

(
u1m(r,z)cos(mθ)+ u2m(r,z)sin(mθ)

)

with uim(i = 1,2) satisfying the following two-dimensional equation

− uim
zz −

1
r

(
ruim

r

)
r +

(m2

r2 +α
)

uim = f im(r,z) in Ω = (0,1)× I,

uim = 0 at r = 0 if m �= 0, uim = 0 at r = 1 or z =±1.
(8.79)

We then make a coordinate transformation r = (1+ t)/2. Denoting

v(t,z) = uim(r,z), g(t,z) =
1
4
(1+ t) f im(r,z), β =

α
4
,
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we obtain the prototypical two-dimensional equation

− 1+ t

4
vzz −

(
(1+ t)vt

)
t +

(
m2 1

1+ t
+β (1+ t)

)
v = g, (t,z) ∈ I× I,

v = 0 at t =−1 if m �= 0, v = 0 at t = 1 or z =±1.
(8.80)

Let us denote ψi(z) = pi(z)− pi+2(z) and φi(t) = pi(t)− pi+s(m)(t) where s(m) = 2
if m �= 0 and s(0) = 1, and p j is either the Legendre or Chebyshev polynomial of
degree j. Let

XN (m) = span
{

φi(t)ψ j(z) : 0 ≤ i ≤ N − s(m), 0 ≤ j ≤ N − 2
}
.

Then a spectral-Galerkin approximation to (8.80) is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find vN ∈ XN (m) such that

1
4

(
(1+ t)∂zvN,∂z(wω)

)
+

(
(1+ t)∂tvN ,∂t(wω)

)

+m2
( 1

1+ t
vN ,w

)
ω
+β

(
(1+ t)vN ,w

)
ω = (IN g,w)ω , ∀w ∈ XN (m),

(8.81)

where ω ≡ 1 in the Legendre case and ω =
(
(1− t2)(1− z2)

)−1/2
in the Chebyshev

case, (·, ·)ω is the weighted L2-inner product in I × I, and IN is the interpolation
operator relative to the tensor product of the Legendre- or Chebyshev-Gauss type
points. Setting q = N − s(m) and

ai j =
1
4

∫
I
(1+ t)φ ′

j

(
φiω(t)

)′
dt, A = (ai j)i, j=0,1,...,q;

bi j =
∫

I

1
1+ t

φ j φi ω(t)dt, B = (Bi j)i, j=0,1,...,q;

ci j =

∫
I
(1+ t)φ j φi ω(t)dt, C = (Ci j)i, j=0,1,...,q;

di j =

∫
I
ψ j ψi ω(z)dz, D = (Di j)i, j=0,1,...,N−2;

ei j =
∫

I
ψ ′

j

(
ψi ω(z)

)′
dz, E = (Ei j)i, j=0,1,...,N−2,

(8.82)

and

fi j =

∫
I×I

IN gφiψ jω dt dz, F = ( fi j)0≤i≤q,0≤ j≤N−2;

vN =
q

∑
i=0

N−2

∑
j=0

xi jφiψ j, X = (xi j)0≤i≤q,0≤ j≤N−2,
(8.83)

then (8.81) reduces to

CXE +
(
A+m2B+βC

)
XD = F. (8.84)
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The entries of A, B and C in the Legendre or Chebyshev case are explicitly given
in the previous section, while those of D and E can be computed by using the prop-
erties of the Legendre or Chebyshev polynomials given in Chap. 3 (also see Shen
(1994, 1995)). This matrix equation can be efficiently solved, in particular, by using
the matrix decomposition method (cf. Sect. 8.1). More precisely, we consider the
following generalized eigenvalue problem ET ggg = λDggg, and let Λ be the diagonal
matrix formed by the eigenvalues and by G be the matrix formed by the correspond-
ing eigenvectors. Then,

ET G = DGΛ or GT E = ΛGT D. (8.85)

It is well-known that the eigenvalues are all real positive (the Legendre case is triv-
ial while the Chebyshev case can be proved as in Gottlieb and Lustman (1983)).
Making a change of variable X = Y GT in (8.84), we find

CY GT E +
(
A+m2B+βC

)
Y GT D = F.

We then derive from (8.85) that

CYΛ +
(
A+m2B+βC

)
Y = FD−1G−T . (8.86)

The above matrix equation is nothing but a sequence of N − 1 one-dimensional
equation (8.42). In summary, after the pre-processing for the computation of the
eigen-pair (Λ ,G) and G−1 (in the Legendre case, G is an orthonormal matrix, i.e.,
G−1 = GT ), the solution of (8.81) for each m consists of three steps:

1. Compute FD−1G−T with N3 +O(N2) flops;
2. Solving Y from (8.86) with O(N2) flops;
3. Set X = Y GT with N3 flops.

8.3 Spherical Domains

We consider in this section the spectral-Galerkin method for solving the model prob-
lem (8.1) in spherical domains.

8.3.1 Spectral Methods on the Surface of a Sphere

We start with the following model equation on the surface of a unit sphere

αU −ΔU = F on S :=
{
(x,y,z) : x2 + y2 + z2 = 1

}
. (8.87)



324 8 Separable Multi-Dimensional Domains

Applying the spherical transformation

x = cosφ sinθ , y = sinφ sinθ , z = cosθ (8.88)

to (8.87), and setting

u(θ ,φ) =U(x,y,z), f (θ ,φ) = F(x,y,z), D := (0,π)× [0,2π),

we obtain

αu−ΔSu := αu− 1
sinθ

∂θ (sinθ∂θ u)− 1

sin2 θ
∂ 2

φ u = f , (θ ,φ) ∈ D, (8.89)

where ΔS is the so-called Laplace-Beltrami operator.
If α > 0, the above equation has a unique solution, while for α = 0, the compat-

ibility condition
∫ 2π

0
dφ

∫ π

0
f (θ ,φ)sin θ dθ = 0 (8.90)

should be satisfied, and the solution u is only determined up to an additive constant.
The most straightforward way to solve (8.89) is to use spherical harmonic func-

tions. We recall that the spherical harmonic functions {Y m
l } are defined by

Y m
l (θ ,φ) =

√
(2l+ 1)(l−m)!

4π(l+m)!
Pm

l (cosθ)eimφ , l ≥ |m| ≥ 0, (8.91)

where Pm
l is the associated Legendre functions given by

Pm
l (x) =

(−1)m

2l l!
(1− x2)m/2 dl+m

dxl+m

{
(x2 − 1)l}, m ≥ 0,

and

P−m
l (x) = (−1)m (l −m)!

(l +m)!
Pm

l (x).

The set of spherical harmonic functions forms a complete orthonormal system in
L2(S), i.e.,

∫ π

θ=0

∫ 2π

φ=0
Y m

l (θ ,φ)Y m′
l′ (θ ,φ)sin θdφdθ = δll′δmm′ . (8.92)

An important property of the spherical harmonic functions is that they are eigen-
functions of the Laplace-Beltrami operator (cf. Morse and Feshback (1953)). More
precisely,

−ΔSY m
l (θ ,φ) = l(l + 1)Ym

l (θ ,φ). (8.93)
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Let us set

XN =
{

v : v(θ ,φ) =
N

∑
l=0

l

∑
|m|=0

vlmPm
l (cosθ)eimφ , v(θ ,φ) real

}
, (8.94)

and let

(πN f )(θ ,φ) =
N

∑
l=0

l

∑
|m|=0

flmPm
l (cosθ)eimφ

be the L2-orthogonal projection of f onto XN . Then, thanks to (8.93), the spectral-
Galerkin approximation of the solution u of (8.89) in XN is given by

uN (θ ,φ) =
N

∑
l=0

l

∑
|m|=0

flm

α + l(l + 1)
Pm

l (cosθ )eimφ . (8.95)

Note that given the values of f at the set of collocation points

ΣN =
{
(θk,φ j) : θk =

kπ
N

, 0 ≤ k ≤ N; φ j =
2 jπ
N

, 0 ≤ j ≤ N − 1
}
, (8.96)

one can compute { fnm} approximately by using a discrete spherical harmonic trans-
form software, e.g., SpherePack (cf. Swarztrauber and Spotz (2000)).

The main disadvantage of using spherical harmonics is that the usual discrete
spherical harmonic transform is not of (quasi) optimal computational complexity.
We note however that substantial progress has been made in recent years on fast dis-
crete spherical harmonic transforms (cf. Rokhlin and Tygert (2006), Tygert (2010)
and the references therein) using ideas stemming from the fast multipole method
(cf. Greengard and Rokhlin (1987)). However, these algorithms are usually compet-
itive with FFT for N quite large. An alternative is to expand functions on the sphere
by using double Fourier series (cf. Orszag (1974), Boyd (1978), Shen (1999)) which
enjoys fast discrete transforms thanks to FFT, but may suffer from the unnecessary
clustering of points near the north and south poles.

8.3.2 Spectral Methods in a Spherical Shell

We consider the model equation

αU −ΔU = F in Ω =
{
(x,y,z) : 0 ≤ R1 < x2 + y2 + z2 < R2

}
,

U |∂Ω = 0.
(8.97)

Applying the spherical transformation (8.88) to (8.97), and setting

u(r,θ ,φ) =U(x,y,z), f (r,θ ,φ) = F(x,y,z),
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we obtain

αu− 1
r2 ∂r(r

2∂ru)− 1
r2 sinθ

∂θ (sinθ∂θ u)− 1

r2 sin2 θ
∂ 2

φ u = f ,

(r,θ ,φ) ∈ (R1,R2)× (0,π)× [0,2π),
u = 0 at r = R1 (if R1 �= 0) and r = R2.

(8.98)

Let

(πN f )(r,θ ,φ) =
N

∑
l=0

l

∑
|m|=0

flm(r)P
m
l (cosθ )eimφ

be the L2-orthogonal projection of f (r, ·, ·) onto XN (defined in (8.94)), and let

uN (r,θ ,φ) =
N

∑
l=0

l

∑
|m|=0

ulm(r)Y
m

l (θ ,φ)

be the spectral-Galerkin approximation of u in XN . Thanks to (8.93), we find that
the expansion coefficients {ulm} satisfy the following sequence of equations:

αulm − 1
r2

(
r2u′lm

)′
+

l(l + 1)
r2 ulm = flm, 0 ≤ |m| ≤ l ≤ N,

ulm(R1) = 0, if R1 �= 0, ulm(R2) = 0.
(8.99)

Since the interval [R1,R2] can be mapped to [−1,1] by using the transform

r =
R2 −R1

2
(t +β ) with β =

R2 +R1

R2 −R1
≥ 1, (8.100)

we only have to consider the following prototypical one-dimensional problem (after
multiplying r2 on both sides of (8.99)):

(α(t +β )2 + γ)u− ((t+β )2u′)′ = (t +β )2 f ,

u(−1) = 0 if β > 1; u(1) = 0,
(8.101)

where γ = l(l + 1).
Let PK be the space of polynomials of degree ≤ K, and let

ZK = ZK(β ) :=
{

v ∈ PK : v(−1) = 0 if β > 1, v(1) = 0
}
. (8.102)

Then, the weighted spectral-Galerkin approximation to (8.101) is⎧⎪⎨
⎪⎩

Find uK ∈ ZK such that

α((t +β )2uK ,vω)+ ((t +β )2u′
K
,(vω)′)+ γ(uK ,vω)

= ((t +β )2JK f ,vω), ∀v ∈ ZK ,

(8.103)

where ω ≡ 1 in the Legendre case and ω(t) = (1− t2)−1/2 in the Chebyshev case,
(u,v) =

∫ 1
−1 uvdt, and JK is the interpolation operator based on the Legendre- or

Chebyshev-Gauss-Lobatto points.
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Let {φk}p
k=0with p = K − Iβ be a set of basis functions of ZK , where Iβ = 1 if

β = 1 while Iβ = 2 if β > 1. Set

qk j =

∫ 1

−1
(t +β )2 φ j φk ω dt, Q = (qk j)0≤k, j≤p;

rk j =
∫ 1

−1
(t +β )2 φ ′

j (φkω)′ dt, R = (rk j)0≤k, j≤p;

sk j =

∫ 1

−1
φ j φkω dt, S = (sk j)0≤k, j≤p;

f j =

∫ 1

−1
(t +β )2 JK f φ j ω dt, f = ( f0, . . . , fp)

T ;

uN =
p

∑
j=0

x jφ j(t), x = (x0, . . . ,xp)
T .

(8.104)

Then, (8.103) becomes (
αQ+R+ γS

)
x = f. (8.105)

The efficiency of the method depends on the choice of the basis functions which in
turn determine the structure of the matrices Q, R and S.

To simplify the notation, we shall only consider the case R1 > 0 (i.e., β > 1). The
case R1 = 0 (i.e., β = 1) can be treated similarly.

We present below the Legendre- and Chebyshev-Galerkin method for (8.103).

• Legendre-Galerkin: In this case, we set ω = 1 and φ j(t) = Lj(t)− L j+2(t).
By using the identities (8.45)–(8.47), one can readily derive that Q, R and S
are positive definite symmetric matrices with qi j = 0 for |i− j| > 4, ri j = 0 for
|i− j|> 2 and si j = 0 for j �= i, i± 2 (see Chap. 4).

• Chebyshev-Galerkin: We set ω = (1− t2)−1/2 and φ j(t) = (1− t2)Tj(t). It can
be easily shown that Q and S are positive definite symmetric matrices with qi j = 0
for |i− j|> 6, si j = 0 for |i− j|> 4 and |i− j| odd. Although R is non-symmetric,
it can be shown that R is banded with ri j �= 0 for i− 4 ≤ j ≤ i+ 4. Indeed, it is
easy to see that

ri j =−
∫

I

(
(t +β )2φ ′

j

)′
(1− t2)Tiωdt = 0 for i > j+ 4.

On the other hand, thanks to identity ω ′(t) = tω3(t) and integration by parts,

ri j =
∫

I
(t +β )2φ ′

j

(
(1− t2)Tiω

)′
dt

=

∫
I
(t +β )2φ ′

j

(
((1− t2)Ti)

′+ tTi
)
ωdt

=
∫

I
φ ′

jPi+3ωdt =−
∫

I
Tj(1− t2)(Pi+3ω)′dt

=−
∫

I
Tj
(
(1− t2)P′

i+3 + tPi+3
)
ωdt =

∫
I
TjPi+4ωdt,
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where Pi+3 (resp. Pi+4) is a polynomial of degree less than or equal to i+3 (resp.
i+ 4). Hence, ri j = 0 for j > i+ 4.
Although it is very tedious to determine their non-zero entries by hand, one can
easily compute them by using appropriate Gaussian quadratures.

Remark 8.11. In case R1 = 0 (i.e., β = 1), the appropriate basis functions are
φ j(t) = Lj(t) − Lj+1(t) in the Legendre case and φ j(t) = (1 − t)Tj(t) in the
Chebyshev case.

Higher-order equations can be solved in a similar fashion. For instance, by using
the expansion in spherical harmonics, the biharmonic equation would reduce to a
set of one-dimensional fourth-order equations which can be solved efficiently by
using a spectral-Galerkin method (see Shen (1997) for a similar case).

8.4 Multivariate Jacobi Approximations

In this section, we extend the one-dimensional polynomial approximation results in
Chap. 3 to d-dimensional tensor product spaces.

8.4.1 Notation and Preliminary Properties

Let us first introduce some notation.

• Let R (resp. N) be the set of all real numbers (resp. non-negative integers), and
let N0 = N∪{0}.

• For d ∈ N, we use boldface lowercase letters to denote d-dimensional multi-
indexes and vectors, e.g., kkk = (k1, . . . ,kd) ∈N

d
0 and ααα = (α1, . . . ,αd)∈R

d . Also,
let 111=(1,1, . . . ,1)∈N

d, and let eeei = (0, . . . ,1, . . . ,0) be the ith unit vector in R
d .

For a scalar s ∈ R, we define the following component-wise operations:

ααα +kkk = (α1+k1, . . . ,αd +kd), ααα +s := ααα +s111= (α1+s, . . . ,αd +s), (8.106)

and use the following conventions:

ααα ≥ kkk ⇔ ∀1≤ j≤d α j ≥ k j; ααα ≥ s ⇔ ααα ≥ s111 ⇔ ∀1≤ j≤d α j ≥ s. (8.107)

• Denote

|kkk|1 =
d

∑
j=1

k j, |kkk|∞ = max
1≤ j≤d

k j. (8.108)

• Let I := (−1,1) and Id := (−1,1)d . Given a multivariate function u(xxx), we
denote the |kkk|1-th (mixed) partial derivative by

∂ kkk
xxx u =

∂ |kkk|1 u

∂xk1
1 . . .∂xkd

d

= ∂ k1
x1
. . .∂ kd

xd
u. (8.109)
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In particular, we denote ∂ s
xxxu := ∂ s111

xxx u = ∂ (s,s,...,s)
xxx u.

Given a generic weight function ωωω(xxx) in Id , we define the weighted Sobolev
spaces Hr

ωωω(I
d) with the norm ‖ · ‖r,ωωω,Id as in Adams (1975). In particular, we

have L2
ωωω(I

d) = H0
ωωω(I

d), and denote its inner product and norm by (·, ·)ωωω,Id and
‖ · ‖ωωω,Id , respectively. If ωωω(xxx)≡ 1, we drop ωωω in the above notations.

• As before, let PN(I) be the set of all real polynomials of degree ≤ N in I.
• The notation A�B means that the ratio A/B with B �= 0 approaches to 1 in certain

limiting process.

Hereafter, we consider a normalization of the Jacobi polynomials different from
that in Chap. 3. More precisely, let Ĵα,β

n (x) be the normalized Jacobi polynomials
such that ∫ 1

−1
Ĵα,β

n (x)Ĵα ,β
n′ (x)ωα,β (x)dx = δnn′ . (8.110)

One derives from (3.98) that the normalized Jacobi polynomials satisfy

∂xĴα ,β
n (x) =

√
λ α ,β

n Ĵα+1,β+1
n−1 (x), n ≥ 1. (8.111)

Applying this formula recursively leads to

∂ k
x Ĵα ,β

n (x) =
√

χα ,β
n,k Ĵα+k,β+k

n−k (x), n ≥ k ≥ 1, (8.112)

where the factor

χα ,β
n,k =

k−1

∏
j=0

λ α+ j,β+ j
n− j =

n!Γ (n+ k+α +β + 1)
(n− k)!Γ (n+α + 1

¯
+ t)

, n ≥ k ≥ 1, (8.113)

One verifies readily that for all n ≥ j+ 1 ≥ 1 and α,β >−1,

λ α+ j+1,β+ j+1
n− j−1 −λ α+ j,β+ j

n− j =−(2 j+α +β + 2)< 0, (8.114)

which indicates that λ α+ j,β+ j
n− j is strictly descending with respect to j. Hence, there

holds
(
λ α+k−1,β+k−1

n−k+1

)k ≤ χα ,β
n,k ≤ (

λ α ,β
n

)k
, n ≥ k ≥ 1, α,β >−1. (8.115)

For notational convenience, we extend the definition of χα ,β
n,k to all n,k ≥ 0 by

defining
χα ,β

n,0 = 1, if n ≥ 0; χα,β
n,k = 0, for k > n ≥ 0. (8.116)

We deduce from (8.110), (8.112) and (8.116) that
{

∂ k
x Ĵα ,β

n
}∞

n=k are mutually

orthogonal with respect to the weight function ωα+k,β+k, and

∥∥∂ k
x Ĵα ,β

n

∥∥2
ωα+k,β+k,I = χα ,β

n,k , n,k ≥ 0, α,β >−1. (8.117)
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Defining the d-dimensional tensorial Jacobi polynomial and Jacobi weight
function as

JJJααα,βββ
nnn (xxx) =

d

∏
j=1

Ĵ
α j ,β j
n j (x j), ωωωααα ,βββ (xxx) =

d

∏
j=1

ωα j ,β j (x j), ∀ ααα,βββ >−1, xxx∈ Id, (8.118)

we derive from (8.112) and (8.117) that

∂ kkk
xxx JJJααα ,βββ

nnn (xxx) =
√

χχχααα ,βββ
nnn,kkk JJJααα+kkk,βββ+kkk

nnn−kkk (xxx) with χχχααα,βββ
nnn,kkk =

d

∏
j=1

χα j ,β j
n j ,k j

, (8.119)

and ∫
Id

∂ kkk
xxx JJJααα,βββ

nnn (xxx)∂ kkk
xxx JJJααα,βββ

mmm (xxx)ωωωααα+kkk,βββ+kkk(xxx)dxxx = χχχααα,βββ
nnn,kkk δδδ nnnmmm, (8.120)

where nnn,kkk ≥ 0, ααα ,βββ >−1 and δδδ nnnmmm = ∏d
j=1 δn jmj .

For any u ∈ L2
ωωωααα,βββ (I

d), we write

u(xxx) = ∑
nnn≥0

ûααα,βββ
nnn JJJααα,βββ

nnn (xxx) with ûααα,βββ
nnn =

∫
Id

u(xxx)JJJααα ,βββ
nnn (xxx)ωωωααα,βββ (xxx)dxxx. (8.121)

Formally, we have ∂ kkk
xxx u = ∑nnn≥kkk ûααα,βββ

nnn ∂ kkk
xxx JJJααα,βββ

nnn , and by the orthogonality (8.120),

∥∥∂ kkk
xxx u

∥∥2
ωωωααα+kkk,βββ+kkk,Id = ∑

nnn≥kkk

χχχααα,βββ
nnn,kkk

∣∣ûααα,βββ
nnn

∣∣2 (8.116)
= ∑

nnn∈Nd
0

χχχααα,βββ
nnn,kkk

∣∣ûααα,βββ
nnn

∣∣2. (8.122)

8.4.2 Orthogonal Projections

Consider the orthogonal projection πππααα,βββ
N : L2

ωωωααα,βββ (I
d)→ Pd

N, defined by

∫
Id

(
πππααα,βββ

N u− u
)
vNωωωααα,βββ dxxx = 0, ∀vN ∈ Pd

N , (8.123)

or equivalently, (
πππααα,βββ

N u
)
(xxx) = ∑

nnn∈ϒN

ûααα,βββ
nnn JJJααα ,βββ

nnn (xxx), (8.124)

where ϒN = {nnn ∈ N
d
0 : |nnn|∞ ≤ N}. We define the d-dimensional Jacobi-weighted

Sobolev space as an extension of the one-dimensional setting in (3.251):

Bm
ααα,βββ (I

d) :=
{

u : ∂ kkk
xxx u ∈ L2

ωωωααα+kkk,βββ+kkk(I
d), 0 ≤ |kkk|1 ≤ m

}
, ∀m ∈ N0, (8.125)
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equipped with the norm and semi-norm

∥∥u
∥∥

Bm
ααα,βββ (I

d )
=

(
∑

0≤|kkk|1≤m

‖∂ kkk
xxx u‖2

ωωωααα+kkk,βββ+kkk,Id

)1/2
,

∣∣u∣∣Bm
ααα,βββ (I

d )
=

( d

∑
j=1

‖∂ m
xj

u‖2
ωωωααα+meee j ,βββ+meee j ,Id

)1/2
,

(8.126)

where eee j is the j-th unit vector of Rd. It is clear that Bm
ααα,βββ (I

d) ⊆ Hm
ωωωααα,βββ (I

d) and

B0
ααα,βββ (I

d) = L2
ωωωααα,βββ (I

d).

Theorem 8.1. Let ααα,βββ > −1. For any u ∈ Bm
ααα,βββ (I

d), we have that for 0 ≤ l ≤ m ≤
N + 1,

∣∣πππααα ,βββ
N u− u

∣∣
Bl

ααα,βββ (I
d )
≤ c

√
(N −m)!
(N − l)!

(N +m)(l−m)/2
∣∣u∣∣Bm

ααα,βββ (I
d)
, (8.127)

where c �√
2 for N � 1.

Proof. By (8.120)-(8.122) and (8.124), we have that for any 1 ≤ j ≤ d,

∥∥∂ l
x j

(
πππααα ,βββ

N u− u
)∥∥2

ωωωααα+leee j ,βββ+leee j ,Id = ∑
|nnn|∞>N,n j≥l

χα j ,β j
n j ,l

∣∣ûααα,βββ
nnn

∣∣2

= ∑
nnn∈Λ 1, j

N

χα j ,β j
n j ,l

∣∣ûααα,βββ
nnn

∣∣2 + ∑
nnn∈Λ 2, j

N

χα j ,β j
n j ,l

∣∣ûααα,βββ
nnn

∣∣2, 1 ≤ j ≤ d,
(8.128)

where the index sets are

Λ 1, j
N :=

{
nnn ∈ N

d
0 : |nnn|∞ > N, l ≤ n j ≤ N

}
, Λ2, j

N :=
{

nnn ∈ N
d
0 : |nnn|∞ > N, n j > N

}
.

Now, we deal with the first summation. Clearly, for any nnn∈Λ1, j
N , there exists at least

one index k (k �= j) such that nk > N, so we obtain from (8.122) that

∑
nnn∈Λ1, j

N

χα j ,β j
n j ,l

∣∣ûααα,βββ
nnn

∣∣2 ≤ max
nnn∈Λ 1, j

N

⎧⎨
⎩

χα j,β j
n j ,l

χαk,βk
nk ,m

⎫⎬
⎭ ∑

nnn∈Λ 1, j
N

χαk,βk
nk,m

∣∣ûααα,βββ
nnn

∣∣2

≤ max
nnn∈Λ 1, j

N

⎧⎨
⎩

χα j,β j
n j ,l

χαk,βk
nk ,m

⎫⎬
⎭

∥∥∂ m
xk

u
∥∥2

ωωωααα+meeek ,βββ+meeek ,Id

≤ χα j ,β j
N,l

χαk,βk
N+1,m

∥∥∂ m
xk

u
∥∥2

ωωωααα+meeek ,βββ+meeek ,Id .

(8.129)
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Similarly, we treat the second summation in (8.128) as

∑
nnn∈Λ2, j

N

χα j,β j
n j,l

∣∣ûααα,βββ
nnn

∣∣2 ≤ max
nnn∈Λ 2, j

N

⎧⎨
⎩

χα j ,β j
n j ,l

χα j ,β j
n j ,m

⎫⎬
⎭ ∑

nnn∈Λ 2, j
N

χα j ,β j
n j ,m

∣∣ûααα,βββ
nnn

∣∣2

≤ χα j ,β j
N+1,l

χα j ,β j
N+1,m

∥∥∂ m
xj

u
∥∥2

ωωωααα+meee j ,βββ+meee j ,Id .

(8.130)

Therefore, we obtain from (8.113) and the Stirling’s formula (A.7) that for all 1 ≤
j ≤ d,

∥∥∂ l
x j

(
πππααα ,βββ

N u− u
)∥∥2

ωωωααα+leee j ,βββ+leee j ,Id

≤ ĉ
(N −m)!
(N − l)!

(N +m)l−m(∥∥∂ m
xj

u
∥∥2

ωωωααα+meee j ,βββ+meee j ,Id +
∥∥∂ m

xk
u
∥∥2

ωωωααα+meeek ,βββ+meeek ,Id

)
,

where ĉ � 1. By the definition (8.126), summing 1 ≤ j ≤ d leads to the desired
result. �
Remark 8.12. Error estimates for the multi-dimensional polynomial approxima-
tions have been derived previously by several authors in various situations (see,
e.g., Bernardi and Maday (1997), Canuto et al. (2006)). The above proof appears to
be much simpler and leads to more precise results in terms of the norms on the left
hand and right hand of (8.127).

Remark 8.13. As pointed out in Remark 3.7, the order of convergence is O(Nl−m)
for fixed l and m.

Remark 8.14. It can be shown that the result in Theorem 8.1 is also valid if some
components of ααα and βββ are negative integers. Indeed, by replacing the classical
Jacobi polynomials (8.118) by the corresponding generalized Jacobi polynomials
(6.1)(which are orthonormal), we verify (8.127) by using the derivative relation

∂xĴαk,βk
n (xk) = dnĴαk+1,βk+1

n−1 (xk), xk ∈ I, (8.131)

where αk or βk is a negative integer, and the explicit expression of dn (behaves like
O(n)) can be worked out by using (6.12).

Next, we study the orthogonal projection in H1
ωωωααα ,βββ (I

d). Let us denote

H1
0,ωωωααα,βββ (I

d) =
{

u ∈ H1
ωωωααα,βββ (I

d) : u|∂ Id = 0
}
.

We have the following weighted Poincaré inequality.

Lemma 8.6. If there exists a pair of (αk,βk) such that |αk| < 1 and |βk| < 1, then
we can find a positive constant c such that

‖u‖ωωωααα ,βββ ≤ c‖∇u‖ωωωααα ,βββ , ∀u ∈ H1
0,ωωωααα,βββ (I

d), (8.132)

that is, the semi-norm | · |1,ωωωααα,βββ is equivalent to the norm ‖·‖1,ωωωααα,βββ in ∈ H1
0,ωωωααα ,βββ (I

d).
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Proof. As a direct consequence of Lemma B.7, we have that for |αk|, |βk|< 1,
∫

Id
u2(xxx)ωωωααα,βββ (xxx)dxxx ≤ c

∫
Id
(∂xk u(xxx))2ωααα,βββ (xxx)dxxx ≤ c‖∇u‖2

ωωωααα,βββ .

This ends the proof. �
Consider now the orthogonal projection πππ1,0

N,ααα,βββ : H1
0,ωωωααα ,βββ (I

d) → (P0
N)

d ,

defined by

aααα,βββ (πππ
1,0
N,ααα ,βββ u− u,v) = 0, ∀v ∈ (P0

N)
d , (8.133)

where the bilinear form aααα,βββ (u,v) := (∇u,∇(vωωωααα,βββ )).
As in the one-dimensional case, we need to show the coercivity of aααα,βββ (·, ·).

Lemma 8.7. If −1 < ααα ,βββ < 1, then the bilinear form aααα,βββ (u,v) is continuous and
coercive in H1

0,ωωωααα,βββ (I
d)×H1

0,ωωωααα ,βββ (I
d), namely,

|aααα,βββ (u,v)| ≤ c1‖∇u‖ωααα,βββ ‖∇v‖ωααα,βββ , ∀u,v ∈ H1
0,ωωωααα,βββ (I

d), (8.134a)

aααα,βββ (u,u)≥ ‖∇u‖2
ωααα,βββ , ∀u ∈ H1

0,ωωωααα ,βββ (I
d), (8.134b)

where c1 is a positive constant.

Proof. Using the Cauchy–Schwarz inequality gives

|aααα,βββ (u,v)| ≤ |(∇u,∇v)ωααα ,βββ |+ |(∇u,v∇ωωωααα,βββ )|
≤ ‖∇u‖ωααα,βββ ‖∇v‖ωααα,βββ + ‖∇u‖ωααα,βββ ‖v∇ωωωααα,βββ‖ω−ααα,−βββ .

We deduce from Lemma B.7 that

‖v∇ωωωααα,βββ‖ω−ααα ,−βββ ≤ c1‖∇v‖ωααα,βββ .

Then (8.134a) follows.
On the other hand, integration by parts yields

aααα,βββ (u,u) = ‖∇u‖2
ωωωααα,βββ +

d

∑
j=1

∫
Id

u∂x j u∂x j ωωω
ααα,βββ dxxx

= ‖∇u‖2
ωωωααα,βββ +

1
2

d

∑
j=1

∫
Id

u2Gα j ,β j
(x j)ωωωααα ,βββ dxxx,

where

Gα j ,β j
(x j) =−∂ 2

x j
(ωα j ,β j (x j))ω−α j ,−β j (x j) = (1− x2

j)
−2Wα j ,β j

(x j),

with Wα j ,β j
(x j) being defined and shown to be non-negative, when −1<α j,β j < 1,

in the proof of Lemma 3.5. Therefore, (8.134b) holds. �
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We are now in a position to derive error estimates for the orthogonal projection
operator defined in (8.133). To describe the error more precisely, we introduce the
space B̂r

ααα,βββ (I
d) for r ≥ d with the semi-norm and norm

|u|B̂r
ααα,βββ (I

d ) =
( d

∑
j=1

∑
rrr∈ϒj

‖∂∂∂ rrr
xxxu‖2

ωωωααα+(r j−1)eee j ,βββ+(r j−1)eee j

)1/2
,

‖u‖B̂r
ααα,βββ (I

d) =
(
‖u‖2

ωωωααα,βββ + |u|2
B̂r

ααα,βββ (I
d )

)1/2
,

(8.135)

where for 1 ≤ j ≤ d, the index sets

ϒj =
{

rrr ∈ N
d
0 : d ≤ r j ≤ r; ri ∈ {0,1}, i �= j;

d

∑
k=1

rk = r
}
.

Theorem 8.2. If −1 < ααα ,βββ < 1, and u ∈ H1
0,ωωωααα,βββ (I

d)∩ B̂r
ααα,βββ (I

d) with integer d ≤
r ≤ N + 1, we have

∥∥∇(πππ1,0
N,ααα,βββ u− u)

∥∥
ωωωααα,βββ ≤ c

√
(N − r+ 1)!

N!
(N + r)(1−r)/2|u|B̂r

ααα,βββ
. (8.136)

Proof. By Lemma 8.7,

‖∇(πππ1,0
N,ααα ,βββ u− u)‖ωωωααα,βββ ≤ c1 inf

φ∈(P0
N )

d
‖∇(φ − u)‖ωωωααα ,βββ . (8.137)

For 1 ≤ j ≤ d, let π1,0
N,α j ,β j

be the one-dimensional orthogonal projection operator as

defined in (3.290). We take φ in (8.137) as the tensor product

φ = π1,0
N,α1,β1

◦π1,0
N,α2,β2

◦ . . .◦π1,0
N,αd ,βd

u,

and derive from Theorem 3.39 with m = 1 that

‖∂x j π
1,0
N,α j ,β j

u‖ωωωααα ,βββ ≤ c‖∂x j u‖ωωωααα,βββ . (8.138)

Hence, using (8.138) and Theorems 3.39 and 3.35 leads to

‖∇(πππ1,0
N,ααα ,βββ u− u)‖ωωωααα,βββ ≤ c

d

∑
j=1

(∥∥∂x j (π
1,0
N,α j ,β j

u− u)
∥∥

ωωωααα,βββ

+
∥∥∂x j π

1,0
N,α j ,β j

◦(π1,0
N,α1,β1

◦ . . .◦π1,0
N,α j−1,β j−1

◦π1,0
N,α j+1,β j+1

◦ . . .◦π1,0
N,αd,βd

u− u
)∥∥

ωωωααα,βββ

)

≤ c

√
(N − r+ 1)!

N!
(N + r)(1−r)/2

d

∑
j=1

‖∂ r
x j

u‖
ωωωααα+(r−1)eee j ,βββ+(r−1)eee j

+ c
d

∑
j=1

∥∥π1,0
N,α1,β1

◦ . . .◦π1,0
N,α j−1,β j−1

◦π1,0
N,α j+1,β j+1

◦ . . .◦π1,0
N,αd ,βd

(∂x j u)− (∂xj u)
∥∥

ωωωααα,βββ .

(8.139)
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Hence, it remains to estimate the terms in the last summation. Consider for instance
j = d, we obtain from Theorem 3.39 with μ = 0 that for r ≥ 2,

∥∥π1,0
N,α1,β1

◦ . . .◦π1,0
N,αd−1,βd−1

(∂xd u)− (∂xd u)
∥∥

ωωωααα ,βββ

≤ ‖π1,0
N,αd−1,βd−1

(∂xd u)− (∂xd u)
∥∥

ωωωααα ,βββ

+
∥∥π1,0

N,α1,β1
◦ . . .◦π1,0

N,αd−2,βd−2
(∂xd u)− (∂xd u)

∥∥
ωωωααα,βββ

+
∥∥(I−π1,0

N,αd−1,βd−1
)◦ (π1,0

N,α1,β1
◦ . . .◦π1,0

N,αd−2,βd−2
(∂xd u)− (∂xd u)

)∥∥
ωωωααα,βββ

≤ c

√
(N − r+ 1)!

N!
(N + r)(1−r)/2‖∂ r−1

xd−1
∂xd u‖ωωωααα+(r−2)eeed−1,βββ+(r−2)eeed−1

+
∥∥π1,0

N,α1,β1
◦ . . .◦π1,0

N,αd−2,βd−2
(∂xd u)− (∂xd u)

∥∥
ωωωααα,βββ

+ cN−1
∥∥π1,0

N,α1,β1
◦ . . .◦π1,0

N,αd−2,βd−2
(∂xd−1∂xd u)− (∂xd−1∂xd u)

∥∥
ωωωααα ,βββ ,

where I is the identity operator. Applying this argument repeatedly leads to that for
d ≤ r ≤ N + 1,

∥∥π1,0
N,α1,β1

◦ . . .◦π1,0
N,αd−1,βd−1

(∂xd u)− (∂xd u)
∥∥

ωωωααα ,βββ

≤ c

√
(N − r+ 1)!

N!
(N + r)(1−r)/2|u|B̂r

ααα,βββ
.

We can estimate the other terms in the last summation of (8.139) in a similar fashion.
Then, (8.136) follows. �
Remark 8.15. Taking φ = 0 in (8.137) leads to the stability result

‖∇(πππ1,0
N,ααα ,βββ u− u)‖ωωωααα,βββ ≤ c1‖∇u‖ωωωααα ,βββ . (8.140)

Observe from (8.135) that B̂r
ααα,βββ (I

d) ⊆ Hr
ωωωααα ,βββ (I

d) for r ≥ d. Hence, we obtain from
(8.136) that for r = d,

‖∇(πππ1,0
N,ααα ,βββ u− u)‖ωωωααα,βββ ≤ c

√
(N − d+ 2)!

N!
(N + d)−d/2‖u‖Hd

ωωωααα,βββ (I
d). (8.141)

By using an interpolation argument (see, e.g., Theorems 1.5 and 7.2 in Bernardi and
Maday (1997)), we also have that for r ≥ 1,

‖∇(πππ1,0
N,ααα ,βββ u− u)‖ωωωααα,βββ ≤ c

√
(N − r+ 2)!

N!
(N + r)−r/2‖u‖Hr

ωωωααα ,βββ (I
d). (8.142)

As usual, in order to obtain the optimal estimate in L2
ωωωααα ,βββ -norm, we need to use

a duality argument which requires the following result (cf. Bernardi and Maday
(1997), Canuto et al. (2006) for the special case ααα = βββ = 0 and ααα = βββ =−1/2):
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Lemma 8.8. Let −1/2 ≤ ααα ,βββ ≤ 0 or 0 ≤ ααα,βββ ≤ 1/2. Then for u ∈ H1
0,ωωωααα ,βββ (I

d)∩
H2

ωωωααα ,βββ (I
d), we have

|v|2,ααα,βββ ≤ c‖Δv‖ωωωααα ,βββ , (8.143)

where c is a positive constant independent of v.

Proof. It is clear that

‖Δv‖2
ωωωααα ,βββ =

d

∑
j=1

‖∂ 2
x j

v‖2
ωωωααα,βββ +

d

∑
i, j=1;i�= j

∫
Id

∂ 2
xi

v(xxx)∂ 2
x j

v(xxx)ωωωααα,βββ (xxx)dxxx, (8.144)

so we just need to bound the last summation.
Note that the derivatives ∂ k

xi
v vanish on the boundaries x j =±1(i �= j). For nota-

tional convenience, we denote

ω̂ωω i, j(xxx) = ωωωααα,βββ (xxx)ω−αi,−βi(xi)ω−α j ,−β j(x j).

For i �= j, integration by parts yields
∫

Id
∂ 2

xi
v∂ 2

x j
vωωωααα,βββ dxxx =

∫
Id

∂xi ∂x j (vωαi,βi(xi))∂xi∂xj (vωα j ,β j(x j))ω̂ωω i, jdxxx

=

∫
Id
(∂xi ∂x j v)

2ωωωααα,βββ dxxx− 1
2

∫
Id
(∂ 2

x j
v)2(ω−αi,−βi(xi)∂ 2

xi
ωαi,βi(xi))ωωωααα,βββ dxxx

−1
2

∫
Id
(∂ 2

xi
v)2(ω−α j ,−β j(x j)∂ 2

x j
ωα j ,β j (x j))ωωωααα,βββ dxxx

+
∫

Id
∂xiv∂xj v∂xi ω

αi,βi(xi)∂x j ω
α j ,β j (x j)ω̂ωω i, jdxxx. (8.145)

We treat the last term by using the Cauchy–Schwarz inequality as

∣∣∣
∫

Id
∂xi v∂x j v∂xiω

αi,βi(xi)∂x j ω
α j,β j (x j)ω̂ωω i, jdxxx

∣∣∣
≤ 1

2

∫
Id
(∂xi v)

2(∂x j ω
α j ,β j (x j))

2ω−α j,−β j(x j)ωαi,βi(xi)ω̂ωω i, jdxxx

+
1
2

∫
Id
(∂xj v)

2(∂xi ω
αi,βi(xi))

2ω−αi,−βi(xi)ωα j ,β j(x j)ω̂ωω i, jdxxx.

In view of this, we obtain from (8.145) that
∫

Id
∂ 2

xi
v∂ 2

x j
vωωωααα,βββ dxxx ≥

∫
Id
(∂xi∂x j v)

2ωωωααα,βββ dxxx+
1
2

∫
Id
(∂xi v)

2S(x j;α j ,β j)ωωωααα,βββ dxxx

+
1
2

∫
Id
(∂xj v)

2S(xi;αi,βi)ωωωααα,βββ dxxx,

where

S(t;a,b) =−(ωa,b(t))′′ω−a,−b(t)− ((ωa,b(t))′)2ω−2a,−2b(t), |a|, |b|< 1.
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We now determine the range of a,b such that S(t;a,b) ≥ 0 for all t ∈ (−1,1). A
direct computation gives

W (t) :=(1− t2)S(t;a,b) = (a+ b)(1− 2a− 2b)t2

+ 2(a− b)(1− 2a−2b)t+ a+ b− 2(a−b)2.

Similar to the proof of Lemma 8.7, we can show that if 0 ≤ a,b ≤ 1
2 , then W (t)≥ 0

for all t ∈ [−1,1]. Consequently, we derive from (8.145) and the above analysis that
for 0 ≤ αk,βk ≤ 1

2 and −1 < αl ,βl < 1 with k = i, j, i �= j and l �= i, j,

∫
Id

∂ 2
xi

v∂ 2
x j

vωωωααα,βββ dxxx =
∫

Id
∂xi ∂x j (vωαi,βi(xi))∂xi ∂x j (vωα j ,β j(x j))ω̂ωω i, jdxxx

≥
∫

Id
(∂xi ∂xj v)

2ωωωααα,βββ dxxx.
(8.146)

Therefore, (8.143) is valid for 0 ≤ ααα ,βββ ≤ 1/2, and it remains to show that it holds
for −1/2 ≤ ααα ,βββ ≤ 0.

Indeed, if − 1
2 ≤ αk,βk ≤ 0(k = i, j), we set u(xxx) = v(xxx)ωαi,βi(xi)ωα j ,β j (x j), and

find from (8.146) that
∫

Id
∂ 2

xi
v∂ 2

x j
vωωωααα,βββ dxxx =

∫
Id

∂xi∂x j (uω−α j ,−β j(x j))∂xi ∂x j (uω−αi,−βi(xi))ω̂ωω i, jdxxx

≥
∫

Id
(∂xi ∂x j u)

2ω̃ωω i, jdxxx, (8.147)

where we denoted

ω̃ωω i, j(xxx) = ω−αi,−βi(xi)ω−α j ,−β j(x j)ω̂ωω i, j(xxx).

Notice that
∫

Id
(∂xi∂x j v)

2ωωωααα ,βββ dxxx =
∫

Id

(
∂xi∂x j (uω−αi,−βiω−α j ,−β j )

)2ωωωααα ,βββ dxxx

≤ c
(∫

Id
|∂xi∂xj u|2ω̃ωω i, jdxxx+

∫
Id
|∂xj u|2(1− x2

i )
−2ω̃ωω i, jdxxx

+
∫

Id
|∂xi u|2(1− x2

j)
−2ω̃ωω i, jdxxx+

∫
Id
|u|2(1− x2

i )
−2(1− x2

j)
−2ω̃ωω i, jdxxx

)
.

(8.148)

Applying (B.40) to the last three terms in the above summation leads to
∫

Id
(∂xi ∂xj v)

2ωωωααα ,βββ dxxx ≤ c
∫

Id
|∂xi ∂xj u|2ω̃ωω i, jdxxx. (8.149)

Hence, by (8.147) and (8.149), we have that for− 1
2 ≤αk,βk ≤ 0 with k= i, j (i �= j) :

∫
Id

∂ 2
xi

v∂ 2
x j

vωωωααα,βββ dxxx ≥ c
∫

Id
(∂xi ∂x j v)

2ωωωααα,βββ dxxx. (8.150)

In view of (8.144), we obtain (8.143) with −1/2 ≤ ααα,βββ ≤ 0. This completes the
proof. �
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Theorem 8.3. If −1/2 ≤ ααα,βββ ≤ 0 or 0 ≤ ααα ,βββ ≤ 1/2, then for u ∈ H1
0,ωωωααα,βββ (I

d)∩
Hr

ωωωααα ,βββ (I
d) with integer d ≤ r ≤ N + 1, we have

‖πππ1,0
N,ααα ,βββ u− u‖ωωωααα,βββ ≤ c

√
(N − r+ 1)!

N!
(N + r)−(1+r)/2‖u‖Hr

ωωωααα,βββ (Id ), (8.151)

where c is a positive constant independent of r,N and u.

Proof. Given g ∈ L2
ωωωααα,βββ (I

d), we consider the auxiliary problem:

⎧⎨
⎩

Find v ∈ H1
0,ωωωααα,βββ (I

d) such that

aααα,βββ (v,z) = (g,z)ωωωααα,βββ , ∀z ∈ H1
0,ωωωααα ,βββ (I

d).
(8.152)

It follows from Lemma 8.7 and the Lax-Milgram lemma that (8.152) has a unique
solution in H1

0,ωωωααα,βββ (I
d) and

‖∇v‖ωωωααα ,βββ ≤ c‖g‖ωωωααα ,βββ . (8.153)

Next, we derive from (8.152) that Δv(xxx) = g(xxx) in the sense of distribution. There-
fore, we obtain from (8.132), (8.153) and (8.143) that for −1/2 ≤ ααα,βββ ≤ 0 or
0 ≤ ααα,βββ ≤ 1/2,

‖v‖H2
ωωωααα,βββ (Id ) ≤ c

(‖∇v‖ωωωααα,βββ + ‖Δv‖ωωωααα,βββ
)≤ c‖g‖ωωωααα ,βββ . (8.154)

Taking z = πππ1,0
N,ααα,βββ u− u in (8.152), we derive from (8.142) and (8.154) that

|(πππ1,0
N,ααα ,βββ u− u,g)ωωωααα,βββ |= |aααα,βββ (πππ

1,0
N,ααα,βββ u− u,πππ1,0

N,ααα,βββ v− v)|

≤ c

√
(N − r+ 1)!

N!
(N + r)−(1+r)/2‖g‖ωωωααα,βββ ‖u‖Hr

ωωωααα ,βββ (I
d ).

Consequently,

‖πππ1,0
N,ααα ,βββ u− u‖ωωωααα ,βββ = sup

0 �=g∈L2
ωωωααα,βββ (I

d)

|(πππ1,0
N,ααα ,βββ u− u,g)ωωωααα,βββ |

‖g‖ωωωααα,βββ

≤ c

√
(N − r+ 1)!

N!
(N + r)−(1+r)/2‖u‖Hr

ωωωααα,βββ (Id ).

This ends the proof. �
Remark 8.16. As pointed out in Remark 8.15, we can use a space interpolation
argument to show that the estimate (8.151) is also valid for r ≥ 1 (see Theorem 7.2
in Bernardi and Maday (1997)).
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The above estimate is useful for analysis of multi-dimensional problems with
Dirichlet boundary conditions. We now consider an orthogonal projection related to
the Neumann boundary conditions.

We define Π̄1
N : H1(Id)→ Pd

N by

(∇(u− Π̄1
Nu),∇uN) = 0, ∀uN ∈ Pd

N ; (u− Π̄1
Nu,1) = 0. (8.155)

The estimate of this projection error essentially relies on the H1-projection operator
Π 1

N : H1(Id)→ Pd
N which is defined by

(∇(u−Π1
Nu),∇uN)+ (u−Π1

Nu,uN) = 0, ∀uN ∈ Pd
N . (8.156)

By using a similar procedure as in the proof of Theorem 8.3 (see also Bernardi and
Maday (1997)), we can prove the following:

Theorem 8.4. For any u ∈ Hr(Id) with fixed r ≥ 1,

‖u−Π1
Nu‖Hl (Id) � Nl−r‖u‖Hr(Id), r ≥ l ≥ 0, r ≥ 1. (8.157)

By using the above result, it is an easy matter to prove the following estimate:

Theorem 8.5. Let Π̄1
N be the projection operator defined in (8.155). Then for any

u ∈ Hr(Id) with fixed r ≥ 1,

‖u− Π̄1
Nu‖Hl(Id) � Nl−r‖u‖Hr(Id), r ≥ l ≥ 0. (8.158)

We leave the proof as an exercise (see Problem 8.4).

8.4.3 Interpolations

We consider here the error analysis of polynomial interpolations on the hypercube
Id = (−1,1)d using the Jacobi-Gauss-type points introduced in Chap. 3. To simplify
the presentation, we shall only discuss the Jacobi-Gauss interpolation. Results for
the Jacobi-Gauss-Radau, Jacobi-Gauss-Lobatto interpolations or mixed type inter-
polations can be established in a similar fashion (see Problem 8.5).

For 1 ≤ k ≤ d, let
{

ξ αk,βk
jk

}N
jk=0 be the one-dimensional Jacobi-Gauss interpola-

tion points (cf. Theorem 3.25), and let Iαk,βk
N be the associated interpolation operator.

The full d-dimensional tensorial grid

Σααα ,βββ
N =

{
ξξξ ααα ,βββ

jjj =
(
ξ α1,β1

j1
, . . . ,ξ αd ,βd

jd

)
: 0 ≤ j1, . . . , jd ≤ N

}
. (8.159)

The corresponding polynomial interpolation IIIααα,βββ
N : C(Id)→ Pd

N satisfies

(
IIIααα ,βββ

N u
)
(xxx) = u(xxx), ∀xxx ∈ Σ ααα ,βββ

N . (8.160)
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For simplicity, we assumed that the number of points in each direction is the same
(i.e., N + 1 points). One verifies that

IIIααα ,βββ
N = Iα1,β1

N ◦ . . .◦ Iαd ,βd
N . (8.161)

Define B̃r
ααα,βββ (I

d) with r ≥ d the space B̂r
ααα ,βββ (I

d) but with r jeee j in place of (r j −1)eeej

in (8.135), and denote the corresponding norm and semi-norm by ‖ · ‖B̃r
ααα,βββ (I

d ) and

| · |B̃r
ααα,βββ (I

d), respectively.

Theorem 8.6. For ααα ,βββ >−1, and u ∈ B̃r
ααα,βββ (I

d) with d ≤ r ≤ N + 1,

‖IIIααα ,βββ
N u− u‖ωωωααα,βββ ≤ c

√
(N − r+ 1)!

N!
(N + r)−(r+1)/2|u|B̃r

ααα,βββ (I
d ), (8.162)

where c is a positive constant independent of r,N and u.

Proof. Thanks to (8.161), we have

‖IIIααα ,βββ
N u− u‖ωωωααα,βββ = ‖Iα1,β1

N u− u‖ωωωααα,βββ + ‖Iα2,β2
N ◦ . . .◦ Iαd,βd

N u− u‖ωωωααα,βββ

+ ‖(Iα1,β1
N − I)(Iα2,β2

N ◦ . . .◦ Iαd,βd
N u− u)‖ωωωααα,βββ ,

where I is the identity operator. Therefore, by Theorem 3.41,

‖IIIααα ,βββ
N u− u‖ωωωααα ,βββ ≤ c

√
(N − r+ 1)!

N!
(N + r)−(r+1)/2‖∂ r

x1
u‖ωωωααα+reee1,βββ+reee1

+ ‖Iα2,β2
N ◦ . . .◦ Iαd,βd

N u− u‖ωωωααα ,βββ

+ cN−1‖Iα2,β2
N ◦ . . .◦ Iαd,βd

N (∂x1 u)− (∂x1u)‖ωωωααα,βββ

(8.163)

Iterating this argument (see the proof of Theorem 8.2) gives the desired result. �

8.4.4 Applications of Multivariate Jacobi Approximations

We now apply the multivariate Jacobi approximation results to analyze the conver-
gence of several spectral-Galerkin schemes proposed in this chapter.

8.4.4.1 Rectangular Domains

We begin with the analysis of the scheme (8.2) with d = 2. The corresponding weak
formulation is

{
Find u ∈ H1

0,ω(Ω) such that

α(u,v)ω + aω(u,v) = ( f ,v)ω , ∀v ∈ H1
0,ω(Ω),

(8.164)
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where aω(·, ·) is defined in (8.3). We find from Lemma 8.7 that the bilinear form
is continuous and coercive in H1

0,ω(Ω)×H1
0,ω(Ω), so by the Lax-Milgram lemma

(8.164) admits a unique solution in H1
0,ω(Ω), if f ∈ L2

ω(Ω). This also applies to the
approximate solution uN of (8.2) with d = 2.

Applying Theorem 1.2 with X = H1
0,ω(Ω), we find immediately

‖u− uN‖1,ω � inf
vN∈(P0

N )
2
‖u− vN‖1,ω .

Therefore, taking vN = πππ1,0
N,ααα,βββ u with ααα = βββ = 0 or −1/2 in the above estimate, we

obtain from Theorem 8.3 the following convergence result.

Theorem 8.7. Let u and uN be the solutions of (8.164) and (8.2) with d = 2, re-
spectively. If α ≥ 0 and u ∈ H1

0,ω(Ω)∩Hr
ω (Ω) with 2 ≤ r ≤ N + 1, then we have

‖u− uN‖1,ω ≤ c

√
(N − r+ 1)!

N!
(N + r)(1−r)/2‖u‖Hr

ω (Ω), (8.165)

where c is a positive constant independent of r,N and u.

8.4.4.2 Circular and Spherical Domains

We analyze here the mixed Fourier/spherical harmonic–Legendre Galerkin methods
for the problem (8.1) in a unit disk or ball described in Sects. 8.2.1 and 8.3.2.

For clarity of presentation, we first briefly recall the procedure and present the
schemes in a uniform format. Consider the model problem:

αU −ΔU = F in Ω =
{

xxx ∈ R
d : |xxx|< 1

}
,

U |∂Ω = 0, α ≥ 0, d = 2,3.
(8.166)

We rewrite (8.166) in the polar coordinate (r,φ)/spherical coordinate (r,θ ,φ) as

− 1
rd−1 ∂r

(
rd−1∂rU

)− 1
r2 ΔSU +αU = F in Ω = I× S,

∂θU |r=0 =U |r=1 = 0,
(8.167)

where S is the unit circle or sphere, and

ΔSU =

{
∂ 2

φU, if d = 2,
1

sinθ ∂θ (sinθ∂θU)+ 1
sin2 θ ∂ 2

φU, if d = 3.
(8.168)

Note that with a little abuse of notation, we still used U and F to denote the trans-
formed functions. By expanding the functions in terms of Fourier/spherical har-
monic series:
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{
U,F

}
=

∞

∑
|l|=0

{
ûl(r), f̂l(r)

}
eilθ ;

{
U,F

}
=

∞

∑
l=0

l

∑
|m|=0

{
ûlm(r), f̂lm(r)

}
Y m

l (θ ,φ),
(8.169)

(where Y m
l is defined in (8.91)) we can transform the problem (8.166) to a sequence

(for each l in 2-D and (l,m) in 3-D) of 1-D equations (for brevity, we use u to denote
ûl or ûlm, and likewise f for f̂l or f̂lm):

− 1
rd−1 ∂r

(
rd−1∂ru

)
+ dl

u
r2 +αu = f , r ∈ (0,1), d = 2,3;

u(0) = 0, if d = 2 and l �= 0; u(1) = 0,
(8.170)

where dl = l2, l(l + 1) for d = 2,3, respectively. Notice that in the 2-D case, it is
sufficient to consider the modes l ≥ 0, since we have û−l = ¯̂ul for real U and F
(cf. Sect. 2.1).

For convenience of analysis, we make a coordinate transform (cf. (8.39)): r =
(1+ t)/2, and consider the problem:

− 1
(1+ t)d−1 ∂t

(
(1+ t)d−1∂t v

)
+ dl

v
(1+ t)2 + α̂v = h, t ∈ I := (−1,1);

v(−1) = 0, if d = 2 and l �= 0; v(1) = 0,
(8.171)

where we set

v(t) = u((1+ t)/2), h(t) =
1
4

f ((1+ t)/2), α̂ =
α
4
.

Define the space

X(l,d) =

{
H1

0 (I), if d = 2 and l �= 0,{
v ∈ H1(I) : v(1) = 0

}
, otherwise,

(8.172)

and define the approximation space: XN(l,d) = X(l,d)∩PN . A weak formulation of
(8.171) is

{
Find v ∈ X(l,d) such that

al,d(v,w)+ α̂(v,w)ω0,d−1 = (h,w)ω0,d−1 , ∀w ∈ X(l,d),
(8.173)

where the bilinear form

al,d(v,w) := (v′,w′)ω0,d−1 + dl(v,w)ω0,d−3 ,

and the Jacobi weight function ω0,b = (1+ t)b.
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The Legendre spectral-Galerkin approximation of (8.173) is
{

Find vN ∈ XN(l,d) such that

al,d(vN ,wN)+ α̂(vN ,wN)ω0,d−1 = (h,wN)ω0,d−1 , ∀wN ∈ XN(l,d),
(8.174)

To analyze this scheme, it is necessary to study the orthogonal projection π1,l
d,N :

X(l,d)→ XN(l,d), defined by

al,d(π1,l
d,Nv− v,wN) = 0, ∀wN ∈ XN(l,d). (8.175)

It is essential to analyze its approximation property as summarized below.

Theorem 8.8. For any v ∈ X(l,d)∩Bs
−1,−1(I) with 1 ≤ s ≤ N + 1,

‖∂t(π1,l
d,Nv− v)‖2

ω0,d−1 + dl‖π1,l
d,Nv− v‖2

ω0,d−3

≤ c(1+ dlN
−2)

(N − s+ 1)!
N!

(N + s)1−s‖∂ s
t v‖2

ωs−1,s−1,
(8.176)

where dl = l2, l(l + 1) for d = 2,3, respectively, and c is a positive constant inde-
pendent of l,d,N and v.

Proof. In the first place, we show that there exists an operator ΠN : H1(I)→PN such
that (ΠNv)(±1)= v(±1), and there holds the estimate, that is, for 1≤ μ ≤ s≤N+1,

‖∂ μ
t (ΠNv− v)‖ωμ−1,μ−1 ≤ c

√
(N − s+ 1)!
(N − μ + 1)!

(N + s)(μ−s)/2‖∂ s
t v‖ωs−1,s−1 . (8.177)

For this purpose, let π−1,−1
N be the orthogonal projection operator associated with

the generalized Jacobi polynomials, defined in (6.65). Set

v∗(t) =
1− t

2
v(−1)+

1+ t
2

v(1) ∈ P1, ∀v ∈ H1(I).

It is clear that (v− v∗)(±1) = 0. Define

ΠNv = π−1,−1
N (v− v∗)+ v∗ ∈ PN, ∀v ∈ H1(I), (8.178)

which satisfies (ΠNv)(±1) = v(±1). Moreover, we derive from Theorem 6.1 that
for 0 ≤ μ ≤ s ≤ N + 1,

‖∂ μ
t (ΠNv− v)‖ωμ−1,μ−1 = ‖∂ μ

t (π−1,−1
N (v− v∗)− (v− v∗))‖ωμ−1,μ−1

≤ c

√
(N − s+ 1)!
(N − μ + 1)!

(N + s)(μ−s)/2‖∂ s
t (v− v∗)‖ωs−1,s−1 .

(8.179)
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For s ≥ 2, we have ∂ s
t v∗ ≡ 0, while for s = 1, we have

|∂t v∗|= |u(1)− u(−1)|
2

≤ 1
2

∫ 1

−1
|∂tu|dt ≤

√
2

2
‖∂tu‖.

This implies (8.177).
Next, by the definition (8.175) and (8.177),

‖∂t(π1,l
d,Nv− v)‖2

ω0,d−1 + dl‖π1,l
d,Nv− v‖2

ω0,d−3

≤ ‖∂t(ΠNv− v)‖2
ω0,d−1 + dl‖ΠNv− v‖2

ω0,d−3

≤ ‖∂t(ΠNv− v)‖2 + dl‖ΠNv− v‖2
ω−1,−1

≤ c(1+ dlN
−2)

(N − s+ 1)!
N!

(N + s)1−s‖∂ s
t v‖2

ωs−1,s−1.

(8.180)

This ends the proof. �
We are now ready to analyze the convergence of the full mixed spectral approxi-

mation to (8.166). Let S be the unit circle or sphere, and Ω = I × S. Given a cut-off
mode M > 0, we seek the approximate solution of (8.167) in the form:

UMN(r,φ) =
M

∑
|l|=0

ûN
l (r)e

ilθ , if d = 2;

UMN(r,θ ,φ) =
M

∑
l=0

l

∑
|m|=0

ûN
lm(r)Y

m
l (θ ,φ), if d = 3,

(8.181)

where {ûN
l ((1+ t)/2) := vN(t)} and {ûN

lm((1+ t)/2) := vN(t)} are the solutions of
(8.174) with d = 2,3, respectively.

To describe the errors, we introduce the space Hs,s′
p,d (Ω) with s,s′ ≥ 1, which

contains functions of partial derivatives up to (s′ − 1) order being 2π-periodic and
is equipped with the norm

‖U‖
Hs,s′

p,d (Ω)
= ∑

|l|≥0

‖(r(1− r))(s−1)/2∂ s
r ûl‖2

+ ∑
|l|≥0

ds′−1
l

(
‖r(d−1)/2∂rûl‖2 + dl‖r(d−3)/2ûl‖2 + ‖r(d−1)/2ûl‖2

)
, d = 2,

and for d = 3, we replace ∑|l|≥0 and ûl in the above definition by ∑l≥0 ∑l
|m|=0 and

ûlm, respectively.

Theorem 8.9. Let UMN be the approximate solution given by (8.181). If α ≥ 0 and

U ∈ H1
0 (Ω)∩Hs,s′

p,d (Ω) with s′ ≥ 1 and 1 ≤ s ≤ N + 1, we have

‖∇(U −UMN)‖+α‖U −UMN‖

≤ c
(
(1+MN−1)

√
(N − s+ 1)!

N!
(N + s)(1−s)/2+M1−s′

)
‖U‖

Hs,s′
p,d (Ω)

,
(8.182)

where c is a positive constant independent of M,N,s,s′ and U.
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Proof. Since the proofs of d = 2,3 are similar, we shall only prove the two-
dimensional case. For notational convenience, let EMN =U−UMN and êN

l = ûl− ûN
l .

Thanks to the orthogonality of the Fourier basis, we have

‖∇EMN‖2 +α‖EMN‖2

≤ c
M

∑
|l|=0

(
‖r1/2∂r êN

l ‖2 + dl‖r−1/2êN
l ‖2 +α‖r1/2êN

l ‖2
)

+ c ∑
|l|>M

(
‖r1/2∂rûl‖2 + dl‖r−1/2ûl‖2 +α‖r1/2ûl‖2

)

:= G1 +G2.

(8.183)

It is clear that

G2 ≤ cM2−2s′ ∑
|l|>M

l2s′−2(‖r1/2ûl‖2 + ‖r1/2∂rûl‖2 + l2‖r−1/2ûl‖2)

≤ cM2−2s′‖U‖2

Hs,s′
p,d (Ω)

.
(8.184)

It remains to estimate G1. Notice that {v(t) = ûl((1+ t)/2)} are the solutions to
(8.173) with d = 2, and find from (8.173) and (8.174) that

al,d(π1,l
d,Nv− vN,wN)+ α̂(π1,l

d,Nv− vN ,wN) = α̂(π1,l
d,Nv− v, lN), ∀wN ∈ XN(l,d).

Taking wN = π1,l
d,Nv− vN, we derive from Theorem 8.8 that

‖∂t(π1,l
d,Nv− vN)‖2

ω0,1 + dl‖π1,l
d,Nv− vN‖2

ω0,−1 + α̂‖π1,l
d,Nv− vN‖2

ω0,1

≤ c(1+ dlN
−2)

(N − s+ 1)!
N!

(N + s)1−s‖∂ s
t v‖2

ωs−1,s−1 .

Using the triangle inequality and Theorem 8.8 again yields

‖r1/2∂rê
N
l ‖2 + dl‖r−1/2êN

l ‖2 +α‖r1/2êN
l ‖2

≤ c(1+ dlN
−2)

(N − s+ 1)!
N!

(N + s)1−s‖(r(1− r))(s−1)/2∂ s
r ûl‖2.

Consequently,

G1 ≤ c(1+M2N−2)
(N − s+ 1)!

N!
(N + s)1−s‖U‖2

Hs,s′
p,d (Ω)

. (8.185)

A combination of (8.184) and (8.185) leads to the desired result. �
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8.5 Sparse Spectral-Galerkin Methods for High-Dimensional
Problems

Note that the result in Theorem 8.1, i.e., the error estimate of the Jacobi polynomial
approximations on the full tensorial spaces, suffers from the so-called “curse of
dimensionality” (cf. Bellman (1961)), as the error decay rate with respect to the
cardinality of Pd

N (i.e., M = (N + 1)d), deteriorates rapidly as d increases. More
precisely,

∥∥πππααα ,βββ
N u− u‖ωωωααα ,βββ ,Id � M−m/d

∣∣u∣∣Bm
ααα,βββ (I

d )
, 0 ≤ m ≤ N + 1.

An effective way to circumvent such a curse is to use the so-called hyperbolic
cross approximations (cf. Korobov (1992) and the references therein). We present in
this section some results established in Shen and Wang (2010) on hyperbolic cross
approximations by Jacobi polynomials.

8.5.1 Hyperbolic Cross Jacobi Approximations

Define the hyperbolic cross index set:

ϒN :=ϒ H
N =

{
nnn ∈ N

d
0 : 1 ≤ |nnn|mix :=

d

∏
j=1

max{1,n j} ≤ N
}
, (8.186)

and the finite dimensional space

Xααα,βββ
N := span

{
JJJααα,βββ

nnn : nnn ∈ϒN

}
. (8.187)

For convenience, we denote the kkk-complement of ϒN in (8.186) by

ϒ c
N,kkk =

{
nnn ∈ N

d
0 : |nnn|mix > N and nnn ≥ kkk

}
, ∀kkk ∈ N

d
0. (8.188)

To illustrate the distribution and sparsity of the grids in ϒ H
N , we plot in Fig. 8.2

the hyperbolic cross ϒ H
32 with d = 2 (left) and d = 3 (right).

The following estimate on the cardinality of ϒ H
N can be found in, e.g.,

Dobrovol’skiı̆ and Roshchenya (1998) and Griebel and Hamaekers (2007).

Lemma 8.9.
card

(
ϒ H

N

)
=CdN

(
lnN

)d−1
, (8.189)

where the constant Cd depends on the dimension d.

To demonstrate the dependence of Cd on d, we plot in Fig. 8.3 Cd =
card(ϒ H

N )

N(lnN)d−1 for

various N ∈ [24,128] and d ∈ [2,16], which indicates that Cd is uniformly bounded,
and becomes smaller as d increases.
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We now turn to the estimation of the truncation error u−πααα,βββ
N u of the hyperbolic

cross approximation. In contrast to the Sobolev-type space (8.125) for the full grid,
a suitable functional space to characterize the hyperbolic cross approximation is the
Jacobi-weighted Korobov-type space:

K
m
ααα,βββ (I

d) :=
{

u : ∂ kkk
xxx u ∈ L2

ωωωααα+kkk,βββ+kkk(I
d), 0 ≤ |kkk|∞ ≤ m

}
, ∀m ∈N0, (8.190)
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with the norm and semi-norm

‖u‖
K

m
ααα,βββ (I

d ) =
(

∑
0≤|kkk|∞≤m

∥∥∂ kkk
xxx u

∥∥2
ωωωααα+kkk,βββ+kkk,Id

)1/2
,

|u|
K

m
ααα,βββ (I

d ) =
(

∑
|kkk|∞=m

∥∥∂ kkk
xxx u

∥∥2
ωωωααα+kkk,βββ+kkk ,Id

)1/2
.

(8.191)

Note the difference of the above definitions with those in (8.126). It is clear that
K

0
ααα,βββ (I

d) = L2
ωωωααα ,βββ (I

d), and

Bdm
ααα,βββ (I

d)⊂K
m
ααα,βββ (I

d)⊂ Bm
ααα,βββ (I

d). (8.192)

By (8.122), the norm and semi-norm of Km
ααα,βββ (I

d) can be characterized in terms of
the Jacobi expansion coefficients in (8.121):

∥∥u
∥∥
K

m
ααα,βββ (I

d )
=

{
∑

nnn∈Nd
0

(
∑

0≤|kkk|∞≤m

χχχααα,βββ
nnn,kkk

)
|ûααα,βββ

nnn |2
}1/2

,

∣∣u∣∣
K

m
ααα ,βββ (I

d)
=

{
∑

nnn∈Nd
0

(
∑

|kkk|∞=m

χχχααα,βββ
nnn,kkk

)
|ûααα,βββ

nnn |2
}1/2

.

(8.193)

Hereafter, we assume that the regularity index m is a fixed integer.
The main result on the Jacobi hyperbolic cross approximation is stated below.

Theorem 8.10. For any u ∈K
m
ααα,βββ (I

d),

∥∥∂ lll
xxx

(
πααα,βββ

N u− u
)∥∥

ωωω lll+ααα,lll+βββ ,Id ≤ D1N|lll|∞−m
∣∣u∣∣

K
m
ααα,βββ (I

d )
, 0 ≤ lll ≤ m, (8.194)

where D1 = 1 for m = 0, and for m ≥ 1,

D1 := D1(lll,m,d,ααα ,βββ ) = m(d−1)(m−|lll|∞)
d

∏
j=1

(
max

{
1,

m2

2m+α j +β j

})m−l j

.

(8.195)

Proof. Since the result is trivial for m = 0, we assume m ≥ 1.
By (8.120)–(8.122) and (8.124),

∥∥∂ lll
xxx

(
πππααα ,βββ

N u− u
)∥∥2

ωωωααα+lll,βββ+lll ,Id = ∑
nnn∈ϒ c

N,lll

χχχααα,βββ
nnn,lll

∣∣ûααα,βββ
nnn

∣∣2

= ∑
nnn∈ϒ c

N,m

χχχααα,βββ
nnn,lll

∣∣ûααα,βββ
nnn

∣∣2 + ∑
nnn∈ϒ c

N,lll\ϒ c
N,m

χχχααα,βββ
nnn,lll

∣∣ûααα,βββ
nnn

∣∣2. (8.196)
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(i) nnn ∈ϒ c
N,m. In this case, nnn ≥ m, so we have

∑
nnn∈ϒ c

N,m

χχχααα,βββ
nnn,lll

∣∣ûααα,βββ
nnn

∣∣2 ≤ max
nnn∈ϒ c

N,m

⎧⎨
⎩

χχχααα,βββ
nnn,lll

χχχααα,βββ
nnn,m

⎫⎬
⎭ ∑

nnn∈ϒ c
N,m

χχχααα ,βββ
nnn,m

∣∣ûααα,βββ
nnn

∣∣2

(8.122)
≤ max

nnn∈ϒ c
N,m

⎧⎨
⎩

χχχααα,βββ
nnn,lll

χχχααα,βββ
nnn,m

⎫⎬
⎭

∥∥∂∂∂ mmm
xxx u

∥∥2
ωωωααα+m,βββ+m,Id ,

(8.197)

where we have set mmm = (m,m, . . . ,m) and ∂∂∂ mmm
xxx u = ∂ (m,m,...,m)

xxx u. Thus, we only need
to estimate the maximum value in (8.197).

A direct calculation by using (8.113) and (8.119) yields

χχχααα,βββ
nnn,lll

χχχααα,βββ
nnn,m

=
d

∏
j=1

m−1

∏
i=l j

n−2
j

(
1+

α j +β j + 1
n j

− i(i+α j +β j + 1)

n2
j

)−1

=
( d

∏
j=1

n
2(l j−m)
j

) d

∏
j=1

m−1

∏
i=l j

(
1+

α j +β j + 1
n j

− i(i+α j +β j + 1)

n2
j

)−1

︸ ︷︷ ︸
:=g(i, j)

.

(8.198)

Notice that for any nnn ∈ϒ c
N,m and 0 ≤ |lll| ≤ m,

d

∏
j=1

n
2(l j−m)
j ≤

d

∏
j=1

n2(|lll|∞−m)
j ≤ N2(|lll|∞−m). (8.199)

Next, we estimate the upper bound of the second product in (8.198). Note that g(i, j)
is decreasing with respect to i, i.e., g(i, j)≤ g(m− 1, j). Hence,

d

∏
j=1

m−1

∏
i=l j

g(i, j)≤
d

∏
j=1

[
g(m− 1, j)

]m−l j

=
d

∏
j=1

(
1+

α j +β j + 1
n j

− (m− 1)(m+α j +β j + 1)

n2
j

)l j−m
.

(8.200)

To obtain an upper bound independent of N, we define

f j(t) :=−(m− 1)(m+α j +β j + 1)t2 +(α j +β j + 1)1+ t with t =
1
n j

.

Assuming that n1n2 . . .nd = Ñ > N � 1, one verifies that

m ≤ n j ≤ Ñ
md−1 ⇒ md−1

Ñ
≤ t ≤ 1

m
.
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Obviously, for m = 1, we have

f j(t) = 1+
α j +β j + 1

n j
≥

{
1, if α j +β j + 1 ≥ 0,

α j +β j + 2, if − 2 < α j +β j + 1 < 0.
(8.201)

For m ≥ 2, using the properties of quadratic functions, we find that

f j(t)≥ min

{
f j

( 1
m

)
, f j

(md−1

Ñ

)}
. (8.202)

A direct calculation leads to

f j

( 1
m

)
=

2m+α j +β j

m2 ; f j

(md−1

Ñ

)
� 1 for Ñ > N � 1. (8.203)

A combination of the above facts gives

d

∏
j=1

m−1

∏
i=l j

g(i, j) ≤
d

∏
j=1

(
max

{
1,

m2

2m+α j +β j

})m−l j

:= c̃2, (8.204)

which is valid for all nnn ≥ m ≥ 1 and N � 1. Consequently, we derive from (8.198),
(8.199) and (8.204) that

max
nnn∈ϒ c

N,m

⎧⎨
⎩

χχχααα,βββ
nnn,lll

χχχααα,βββ
nnn,m

⎫⎬
⎭≤ c̃2N2(|lll|∞−m). (8.205)

Now, we deal with the second summation in (8.196).

(ii) nnn ∈ϒ c
N,lll \ϒ c

N,m. In this case, a little care has to be taken for the modes with
n j < m. Notice that

ϒ c
N,lll \ϒ c

N,m =
{

nnn ∈ N
d
0 : |nnn|mix > N, nnn ≥ lll, ∃ j, s.t. l j ≤ n j < m

}
.

For clarity, we split the index set {1 ≤ j ≤ d}= ℵ∪ℵc with

ℵ =
{

j : l j ≤ n j < m, 1 ≤ j ≤ d
}
, ℵc =

{
j : n j ≥ m, 1 ≤ j ≤ d

}
. (8.206)

Clearly, ℵ∩ℵc =∅ and neither of these two index sets is empty. Define

χ̃α j ,β j
n j,l j ,m

:= max
{

χα j ,β j
n j ,l j

,χα j ,β j
n j ,m

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if n j < l j,

χα j ,β j
n j ,l j

, if l j ≤ n j < m,

χα j ,β j
n j ,m , if m ≤ n j.

(8.207)
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Hence, for any j ∈ ℵ, χ̃α j ,β j
n j ,l j ,m

= χα j ,β j
n j ,l j

, while for any j ∈ ℵc, χ̃α j ,β j
n j ,l j ,m

= χα j ,β j
n j ,m .

Moreover,

χ̃χχααα,βββ
nnn,lll,m =

(
∏
j∈ℵ

χα j ,β j
n j ,l j

)(
∏

k∈ℵc
χαk ,βk

nk ,m

)
= χχχααα,βββ

nnn,kkk , (8.208)

where kkk is a d−dimensional index consisting of l j for j ∈ ℵ and m for j ∈ ℵc. Since
|kkk|∞ = m, we find from (8.122) and (8.193) that

∑
nnn∈ϒ c

N,lll\ϒ c
N,m

χ̃χχααα ,βββ
nnn,lll,m

∣∣ûααα,βββ
nnn

∣∣2 = ∑
nnn∈ϒ c

N,lll\ϒ c
N,m

χχχααα,βββ
nnn,kkk

∣∣ûααα,βββ
nnn

∣∣2 ≤ ∣∣u∣∣2
K

m
ααα,βββ (I

d)
. (8.209)

We treat the second summation in (8.196) as

∑
nnn∈ϒ c

N,lll\ϒ c
N,m

χχχααα ,βββ
nnn,lll

∣∣ûααα,βββ
nnn

∣∣2 = max
nnn∈ϒ c

N,lll\ϒ c
N,m

⎧⎨
⎩

χχχααα ,βββ
nnn,lll

χ̃χχααα,βββ
nnn,lll,m

⎫⎬
⎭ ∑

nnn∈ϒ c
N,lll\ϒ c

N,m

χ̃χχααα,βββ
nnn,lll,m

∣∣ûααα,βββ
nnn

∣∣2

(8.209)
≤ max

nnn∈ϒ c
N,lll\ϒ c

N,m

⎧⎨
⎩

χχχααα,βββ
nnn,lll

χ̃χχααα,βββ
nnn,lll,m

⎫⎬
⎭

∣∣u∣∣2
K

m
ααα ,βββ (I

d)
.

(8.210)

Thus, it remains to estimate the maximum. By a direct calculation,

χχχααα ,βββ
nnn,lll

χ̃χχααα ,βββ
nnn,lll,m

= ∏
j∈ℵc

χα j ,β j
n j ,l j

χα j ,β j
n j ,m

≤
(

∏
j∈ℵc

n
2(l j−m)
j

)
∏
j∈ℵc

m−1

∏
i=l j

g(i, j)

≤
(

∏
j∈ℵc

n
2(l j−m)
j

)
∏
j∈ℵc

(
max

{
1,

m2

2m+α j +β j

})m−l j

(8.204)
≤ c̃2

(
∏
j∈ℵc

n
2(l j−m)
j

)
.

(8.211)

In view of m ≥ 1 and |nnn|mix = n̄1 . . . n̄d > N, we deduce that

∏
j∈ℵc

n̄ j >
N

∏ j∈ℵ n̄ j
>

N

∏ j∈ℵ m
. (8.212)

A combination of the above estimates leads to

χχχααα ,βββ
nnn,lll

χ̃χχααα ,βββ
nnn,lll,m

≤ c̃2 ∏
j∈ℵc

n
2(l j−m)
j ≤ c̃2 ∏

j∈ℵc
n2(|lll|∞−m)

j ≤ c̃2
( N

∏ j∈ℵ m

)2(|lll|∞−m)

≤ c̃2m2(d−1)(m−|lll|∞)N2(|lll|∞−m).

(8.213)

Finally, the estimate (8.194)–(8.195) follows from (8.196), (8.205), (8.210) and
(8.213). �
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By the definition of Kl
ααα,βββ (I

d) in (8.190)–(8.191) and Theorem 8.10, we immedi-
ately obtain the following result.

Corollary 8.1.

∥∥πππααα,βββ
N u− u

∥∥
K

l
ααα,βββ (I

d)
≤ D2Nl−m|u|

K
m
ααα,βββ (I

d ), 0 ≤ l ≤ m, (8.214)

where the constant D2 is given by

D2 := D2(l,m,d,ααα ,βββ) =
(

∑
0≤|lll|∞≤l

D2
1N2(|lll|∞−l)

)1/2
, (8.215)

with D1 being the same as in Theorem 8.10.

The above result clearly indicates that the Jacobi-weighted Korobov-type spaces
K

l
ααα,βββ (I

d) are the natural functional spaces for hyperbolic cross approximations. We
note that the above result is in the same form as the result in Theorem 8.1, except that
Jacobi-weighted Korobov norms are used here instead of Jacobi-weighted Sobolev
norms used in Theorem 8.1.

To characterize the error in terms of the dimensionality of the approximation

space Xααα ,βββ
N , we find from Lemma 8.9 that for any ε > 0, and N � 1,

M ≤CdN1+ε(d−1) ⇒ N−1 ≤C1/(1+ε(d−1))
d M−(1/(1+ε(d−1))).

Therefore, as a direct consequence of Corollary 8.1, we have the following estimate.

Corollary 8.2. For any ε > 0 and 0 ≤ l ≤ m,

∥∥πππααα ,βββ
N u− u

∥∥
K

l
ααα ,βββ (I

d )
≤ D2C1/(1+ε(d−1))

d M
|lll|∞−m

1+ε(d−1)
∣∣u∣∣

K
m
ααα,βββ (I

d)
. (8.216)

8.5.2 Optimized Hyperbolic Cross Jacobi Approximations

While the use of the regular hyperbolic cross (8.187) significantly improved the
convergence rate with respect to the number of unknowns, the “curse of dimension-
ality” is not completely broken as the convergence rate still deteriorates, albeit very
slowly, as d increases (cf. (8.216)). In order to completely break the “curse of di-
mensionality”, we consider the following family of spaces (cf. Bungartz and Griebel
(2004), Griebel and Hamaekers (2007)):

V ααα ,βββ
N,γ := span

{
JJJααα,βββ

nnn : |nnn|mix|nnn|−γ
∞ ≤ N1−γ}, −∞ ≤ γ < 1. (8.217)
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In particular, we have V ααα ,βββ
N,0 = Xααα,βββ

N in (8.187) and V ααα,βββ
N,−∞ := span

{
JJJααα,βββ

nnn : |nnn|∞ ≤N
}

(i.e., the full grid). But for 0 < γ < 1, the trade-off between Nγ and |nnn|γ∞ leads to the
following reduction of cardinality (see Lemma 3 in Griebel and Hamaekers (2007)):

card
(
V ααα,βββ

N,γ
)
=C(γ,d)N, 0 < γ < 1. (8.218)

Thus, the space V ααα,βββ
N,γ with 0 < γ < 1 is referred to as the optimized hyperbolic cross

space.

We plot in Fig. 8.4 the ratio dim
(
V ααα,βββ

N,γ
)
/N for various N with γ = 0.9 and d =

2, . . . ,10, which indicates that the constant C(γ,d) is independent of N, but grows
as d increases.

In this case, the complement index set in (8.188) takes the form

ϒ c
N,kkk =

{
nnn ∈ N

d
0 : |nnn|mix|nnn|−γ

∞ > N1−γ and nnn ≥ kkk
}
, ∀kkk ∈ N

d
0 . (8.219)
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Fig. 8.4 The ratio dim(V ααα,βββ
N,γ )/N against various N with γ = 0.9 and d = 2,3, . . . ,10

The main approximation result based on the optimized hyperbolic cross is stated as
follows.

Theorem 8.11. For any u ∈K
m
ααα,βββ (I

d) and 0 ≤ |lll|1 ≤ m,

∥∥∂ lll
xxx(πππ

ααα,βββ
N,γ u− u)

∥∥
ωωωααα+lll,βββ+lll ,Id ≤ D3

∣∣u∣∣
K

m
ααα ,βββ (I

d )

×
{

N|lll|1−m, if 0 < γ ≤ |lll|1
m ,

N|lll|1−m+(γm−|lll|1)(1− 1
d ), if |lll|1

m ≤ γ < 1,

(8.220)
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where

D3 :=

[
d

∏
j=1

(
max

{
1,

m2

2m+α j +β j

})m−l j
]

×m(d−1)m×
{

m− (d−1)(|lll|1−γm)
1−γ , if 0 < γ ≤ |lll|1

m ,

1, if |lll|1
m ≤ γ < 1.

Proof. The estimate is trivial for m= 0, so we assume m ≥ 1. Let χ̃χχααα,βββ
nnn,lll,m be the same

as defined in (8.208). Following the proof of Theorem 8.10, we begin by estimating
(8.196) with ϒ c

N,lll defined in (8.219), and separated into two subsets: (i) ϒ c
N,m and (ii)

ϒ c
N,lll \ϒ c

N,m as before, namely,

∥∥∂ lll
xxx

(
πππααα,βββ

N u− u
)∥∥2

ωωωααα+lll,βββ+lll ,Id ≤ max
nnn∈ϒ c

N,m

⎧⎨
⎩

χχχααα ,βββ
nnn,lll

χ̃χχααα,βββ
nnn,lll,m

⎫⎬
⎭ ∑

nnn∈ϒ c
N,m

χ̃χχααα,βββ
nnn,lll,m

∣∣ûααα,βββ
nnn

∣∣2

+ max
nnn∈ϒ c

N,lll\ϒ c
N,m

⎧⎨
⎩

χχχααα,βββ
nnn,lll

χ̃χχααα,βββ
nnn,lll,m

⎫⎬
⎭ ∑

nnn∈ϒ c
N,lll\ϒ c

N,m

χ̃χχααα ,βββ
nnn,lll,m

∣∣ûααα,βββ
nnn

∣∣2.
(8.221)

We now estimate the first term, and consider nnn ∈ϒ c
N,m. Like (8.198), we have

χχχααα,βββ
nnn,lll

χχχααα,βββ
nnn,m

=
( d

∏
j=1

n
2(l j−m)
j

){ d

∏
j=1

m−1

∏
i=l j

g(i, j)

}
. (8.222)

We first deal with the product in the parentheses. Notice that for any nnn ∈ϒ c
N,m,

|nnn|mix|nnn|−γ
∞ > N1−γ =⇒

( |nnn|γ∞
|nnn|mix

) 1
1−γ

<
1
N
. (8.223)

Therefore,

d

∏
j=1

n
2(l j−m)
j =

( d

∏
j=1

n
2l j
j

)( d

∏
j=1

n j

)−2m

≤
( d

∏
j=1

|nnn|2l j
∞

)
|nnn|−2m

mix = |nnn|2|lll|1∞ |nnn|−2m
mix

=
( |nnn|γ∞
|nnn|mix

) 2(m−|lll|1)
1−γ

( |nnn|∞
|nnn|mix

) 2(|lll|1−γm)
1−γ

(8.223)
≤ N2(|lll|1−m)

( |nnn|∞
|nnn|mix

) 2(|lll|1−γm)
1−γ

.

(8.224)
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One verifies readily that

|nnn|∞
|nnn|mix

≤ 1
md−1 , ∀ nnn ∈ϒ c

N,m. (8.225)

Hence, if 0 < γ ≤ |lll|1
m ,

d

∏
j=1

n
2(l j−m)
j ≤ N2(|lll|1−m) max

nnn∈ϒ c
N,m

( |nnn|∞
|nnn|mix

) 2(|lll|1−γm)
1−γ

≤ m− 2(d−1)(|lll|1−γm)
1−γ N2(|lll|1−m).

(8.226)

Next, for any nnn ∈ϒ c
N,m, we have |nnn|∞ > N

1
d and

|nnn|mix|nnn|−γ
∞ > N1−γ ⇒ |nnn|mix

|nnn|∞ < N1−γ |nnn|γ−1
∞ < N(1−γ)(1− 1

d ), (8.227)

which, together with (8.224), implies that if |lll|1
m ≤ γ < 1,

d

∏
j=1

n
2(l j−m)
j ≤ N2(|lll|1−m) max

nnn∈ϒ c
N,m

( |nnn|∞
|nnn|mix

) 2(|lll|1−γm)
1−γ

≤ N2(|lll|1−m)+2(γm−|lll|1)(1−1/d).

(8.228)

It remains to estimate the term in the braces of (8.222). Observe that for any nnn ∈
ϒ c

N,m, we have

|nnn|∞ ≥ |nnn|1/d
mix ⇒ |nnn|mix > N(1−γ)/(1−γ/d) � 1. (8.229)

Hence, the product in the braces with maximum taken over ϒ c
N,m (cf. (8.219)) has

the same upper bound c̃2 as in (8.204).
Next we consider the second summation in (8.221). Defining ℵ and ℵc asso-

ciated with ϒ c
N,lll \ϒ c

N,m as in (8.206), and following the derivation of the estimate
(8.213), we have

χχχααα,βββ
nnn,lll

χ̃χχααα ,βββ
nnn,lll,m

=
(

∏
j∈ℵ

χα j ,β j
n j ,l j

χ̃α j ,β j
n j ,l j ,m

)(
∏

k∈ℵc

χαk,βk
nk,lk

χ̃αk,βk
nk,lk,m

) (8.204)
≤ c̃2 ∏

k∈ℵc

n2(lk−m)
k

≤ c̃2
(

∏
k∈ℵc

|nnn|2lk
∞

)(∏ j∈ℵ n̄ j

|nnn|mix

)2m ≤ c̃2m2(d−1)m|nnn|2|lll|1∞ |nnn|−2m
mix

(8.224)
≤ c̃2m2(d−1)mN2(|lll|1−m)

( |nnn|∞
|nnn|mix

) 2(|lll|1−γm)
1−γ

.

(8.230)
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Since the estimate (8.225) is also valid for all nnn ∈ ϒ c
N,lll \ϒ c

N,m, we can follow the
derivations of (8.226)–(8.228) to obtain

χχχααα,βββ
nnn,lll

χ̃χχααα ,βββ
nnn,lll,m

≤ c̃2m2(d−1)m ×
{

m− 2(d−1)(|lll|1−γm)
1−γ N2(|lll|1−m), if 0 < γ ≤ |lll|1

m ,

N2(|lll|1−m)+2(γm−|lll|1)(1−1/d), if |lll|1
m ≤ γ < 1.

(8.231)

Furthermore, (8.209) holds for the optimized hyperbolic cross.
Finally, a combination of the above estimates leads to the desired result. �
Unlike the results for the regular hyperbolic approximation in Theorem 8.10, we

can not replace the norm at the left-hand side of (8.220) by the norm in K
l
ααα,βββ (I

d)

as in Corollary 8.1, due to the term “|lll|1” in the power of N. Instead, we can derive
immediately the following estimate in the weighted Sobolev space Bl

ααα,βββ (I
d).

Corollary 8.3. For any u ∈K
m
ααα,βββ (I

d), 0 ≤ l ≤ m and 0 < γ < 1,

∥∥πππααα,βββ
N,γ u− u

∥∥
Bl

ααα ,βββ (I
d)
≤ D4Nl−m

∣∣u∣∣
K

m
ααα ,βββ (I

d)
, 0 < γ ≤ l

m
, (8.232)

where

D4 =
(

∑
0≤|lll|1≤l

D2
3N2(|lll|1−l)

)1/2
, (8.233)

and D3 is the same as in Theorem 8.11.

The above result provides a convergence rate which is independent of dimension

d for the approximation space V ααα,βββ
N,γ .

8.5.3 Extensions to Generalized Jacobi Polynomials

As illustrated in Chap. 5 (also see Guo et al. (2006a, 2009)), the use of generalized
Jacobi polynomials (GJPs) greatly simplifies the analysis and implementation of
spectral methods. We now show that the results established in the previous section
can be extended to the case of generalized Jacobi polynomials with both indexes
being integers.

Let k, l ∈ Z (the set of all integers), and let {Jk,l
n : n ≥ n0} be the GJPs defined in

(6.1). In this context, it is more suitable to consider the normalized GJPs, denoted by
{Ĵk,l

n : n ≥ n0}, as in (8.110). Importantly, as with the classical Jacobi polynomials
(cf. (8.111)), they satisfy the derivative relation:

∂xĴk,l
n (x) = dk,l

n Ĵk+1,l+1
n−1 (x), (8.234)

where the explicit expression of dk,l
n (behaves like O(n)) is given in (8.111). Hence,

{∂ r
x Ĵk,l

n } are mutually orthogonal with respect to the (generalized) Jacobi weight
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function ωk+r,l+r. In view of there two important properties, we can extend the anal-
ysis and the results for the classical Jacobi polynomials to the GJPs. In particular,
we can extend Theorem 8.10 to the cases with both indexes being arbitrary integers.

Theorem 8.12. Let πππkkk,lll
N be the L2

ωωωkkk,lll -orthogonal projection upon the hyperbolic
cross

Xkkk,lll
N := span

{
JJJkkk,lll

nnn : |nnn|mix ≤ N; nnn ≥ nnn0
}
, kkk, lll ∈ Z

d . (8.235)

Then for any u ∈K
m
kkk,lll(I

d),

∥∥πππkkk,lll
N u− u

∥∥
K

μ
kkk,lll (I

d )
≤ D5Nμ−m|u|

K
m
kkk,lll (I

d), 0 ≤ μ ≤ m, (8.236)

where D5 is a positive constant depending on d,kkk, lll,μ and m, but independent of N.

Notice that the explicit dependence of D5 on d can be worked out as in Theorem
8.10. To avoid repetition, we leave the detail of the proof to the interested reader
(see Problem 8.6 for the case: kkk = lll =−1).

8.5.4 Sparse Spectral-Galerkin Methods

We present in this section sparse spectral-Galerkin methods for solving the model
equation (8.1) in a high-dimensional cube Ω = (−1,1)d .

Given a suitable approximation space YN and an interpolation operator IN from
a computational grid to YN . A weighted spectral-Galerkin method for (8.1) with
u|∂Ω = 0 is

{
Find uN ∈ XN =YN ∩H1

0 (Ω) such that

α(uN ,vN)ω − (ΔuN ,vN)ω = (IN f ,vN)ω , ∀vN ∈ XN .
(8.237)

Based on the previous discussions in this section, a hyperbolic cross based approxi-
mation space appears to be a good candidate for YN when d ≥ 4. However, in order
to construct an efficient algorithm, two main issues need to be addressed:

• The first issue is how to define YN and IN such that, for any function f ∈ C(Ω),
the transform between values of f at the computational grid and expansion coef-
ficients of IN f in YN can be computed efficiently.

• The second issue is to construct a suitable basis of XN such that the resulting
linear system for (8.237) can be solved efficiently. The structure of the matrix
associated to (8.237) essentially depends on the basis functions of XN .

A particularly interesting computational grid ΣN is the Smolyak’s sparse grid
(cf. Smolyak (1960)) constructed from the nested Chebyshev-Gauss-Lobatto
quadrature, which enjoys two distinct properties: (a) it is spectrally accurate with
nested points; (b) FFT can be used for the transform.
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We construct below hierarchical basis functions corresponding to the Smolyak’s
sparse grids based on a nested one-dimensional quadrature, followed by a discussion
on sparse spectral algorithms for solving (8.237).

8.5.4.1 One-Dimensional Hierarchical Basis

Let I = (−1,1). Let U i be a scheme ({U i} could be a sequence of functionals for
quadrature or a sequence of operators for interpolation) which uses Ni grid points
X i in I, namely,

X i = {xi
0,x

i
1, . . . ,x

i
Ni−1}, i = 1,2, . . . .

Conventionally, we set X 0 = /0 and U 0 to be the zero functional/operator.
The grids {X i} are called nested grids, if X 1 ⊂ X 2 ⊂ . . .. For nested grids,

we can rearrange the grid points in such a way that

X = X 1 ∪ (X 2\X 1)∪ (X 3\X 2)∪ . . .= {x0,x1,x2, . . .}
with {x j, j ∈ I i}= X i, where I i = {0,1, . . . ,Ni − 1}.

Let ω(x) > 0 (x ∈ I) be a weight function, V1 ⊂ V2 ⊂ . . . ⊂ Vi . . . be a sequence
of finite dimensional spaces in L2

ω(I), and {φk(x) : k = 0,1, . . .} be a set of basis
functions of L2

ω(I) with
Vi = span{φk : k ∈ I i}.

Then, for f ∈C(Ī), we can determine a unique set of coefficients {bi
k} such that

f (xi
j) = ∑

k∈I i

bi
kφk(x

i
j), ∀ j = 0,1, . . . ,Ni − 1. (8.238)

Note that fast transforms between { f (xi
j),x

i
j ∈ X i} and {bi

k,k ∈ I i} are available
if the basis functions {φk} are Fourier series or Chebyshev polynomials.

For schemes with nested grids, if one can find a set of basis functions {φ̃k}, such
that Vi = span{φ̃k : k ∈ I i} and

φ̃k(x j) = 0, ∀ j ∈ I i, k �∈ I i. (8.239)

Then {φ̃k} is called a set of hierarchical bases.
An important property of the hierarchical bases is that the expansion coefficients

{bi
k} do not depend on the level index i, i.e., we can write

f (x j) = ∑
k∈I i

bkφ̃k(x j), ∀ j ∈ I i, i = 1,2, . . . . (8.240)

Theorem 8.1. Hierarchical bases always exist for nested schemes. Furthermore, a
set of hierarchical bases is given by

φ̃k(x) = φk(x)+ ∑
l∈I i

ck,lφl(x), ∀k ∈ Ĩ i+1, i = 0,1,2, . . . , (8.241)
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where Ĩ i+1 =I i+1\I i, I 0 =∅, and ck,l =−φk(x j)A jl with A=(A jl)l, j∈I i being
the inverse matrix of B = (φl(x j))l, j∈I i .

Proof. Evaluating (8.241) at X i, we derive by using (8.239) that

∑
l∈I i

ck,lφl(x j) =−φk(x j), for j ∈ I i. (8.242)

Since {φl(x), l ∈ I i} are basis functions and {x j, j ∈ I i} are quadrature points,
(φl(x j))l, j∈I i is a full rank matrix. We can then determine {ck,l} from (8.242), hence
the hierarchical bases in (8.241). �

We now describe in some detail two practical hierarchical bases based on the
Chebyshev-Gauss-Lobatto quadrature.

(CH1) Let X i =
{

xi
j = cos jπ/2i, j = 0, . . . ,2i

}
for i � 1 be the Chebyshev-Gauss-

Lobatto grid at the i-th level with the number of grid points being Ni =
2i + 1 (i ≥ 1); for i = 0, we set N0 = 0. We rearrange the grid points into a
hierarchical order xα i( j) = xi

j, where α i( j) is the reorder vector for grid level
i > 0. For example, one may take

α i( j) =

⎧⎪⎨
⎪⎩

0, j = 0,

2i

2l

[
1+ 2(2l − j)

]
, j > 0, l = min

2s≥ j
s.

The original l basis functions are the Chebyshev polynomials Tk(x) :=
cos(k arccos(x)). The corresponding hierarchical bases are given by

T̃k = Tk, for k ∈ I 1; T̃k = Tk −T2i−k, for k ∈ Ĩ i, i > 1. (8.243)

(CH2) Let us consider the Chebyshev scheme for functions satisfying homoge-
neous Dirichlet boundary conditions. Set

X i =
{

xi
j = cos(

( j+ 1)π
2i ), j = 0, . . . ,Ni − 1

}

with Ni = 2i−1 for i � 1. A set of bases with homogeneous Dirichlet bound-
ary conditions are given by:

T̂2k = T2k+2 −T0, T̂2k+1 = T2k+3 −T1, k = 0,1, . . . .

Then, a set of hierarchical bases is given by

T̄k = T̂k, for k ∈ I 1,

T̄k = T̂k − T̂2i−2−(k+2) = Tk+2 −T2i−(k+2), for k ∈ Ĩ i, i > 1.
(8.244)
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8.5.4.2 Multi-Dimensional Hierarchical Basis and Sparse Grid

Given a one-dimensional scheme U i, the d-dimensional sparse grid by Smolyak’s
construction is

U q
d = ∑

d�|iii|1�q

Δ i1 ⊗Δ i2 ⊗ . . .⊗Δ id , (8.245)

where iii = (i1, i2, . . . , id) is the multiple index of grid level with all subindexes
starting from 1, and |iii|1 = i1 + i2 + . . .+ id, and Δ i = U i −U i−1 for i = 1,2, . . ..

It is clear that all the points in the sparse grid are in the set

X q
d =

⋃
d�|iii|1�q

X i1 ×X i2 × . . .×X id .

It is shown (cf. Barthelmann et al. (2000)) that (8.245) is equivalent to

U q
d = ∑

q−d<|iii|1�q

(−1)q−|iii|
( d−1

q−|i|1
)
U i1 ⊗U i2 ⊗ . . .⊗U id , (8.246)

where
(k

n

)
is the binomial coefficient of selecting k elements from an n-element

set. In order to use (8.246) as a quadrature rule or an interpolation operator, we
need to compute U i1 ⊗U i2 ⊗ . . .⊗U id for every q− d < |iii|1 � q. Therefore, the
computational complexity of a direct evaluation of (8.246) is about

C ∑
q−d<|iii|1�q

Ni1 Ni2 . . .Nid ,

regardless whether the 1-D grids are nested or not. However, for nested grids, we
can use the properties of hierarchical bases to design more efficient algorithms as
described below.

Given f ∈C(Īd) with d = 1, we can write the interpolation operator U i as

U i( f )(x) = ∑
k∈I i

bi
kφk(x),

where {bi
k} are determined by (8.238). However, by using the hierarchical bases,

we have

U i( f )(x) = ∑
k∈I i

bkφ̃k(x), Δ i( f )(x) = ∑
k∈Ĩ i

bkφ̃k(x).

Therefore, (8.245) becomes

U q
d ( f )(xxx) = ∑

d�|i|1�q
∑

kkk∈Ĩ i1×...×Ĩ id

bk1,k2,...,kd φ̃k1(x1)φ̃k2(x2) . . . φ̃kd (xd)

= ∑
kkk∈I q

d

bkkkφ̃kkk(xxx),
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where xxx = (x1,x2, . . . ,xd), φ̃kkk(xxx) = φ̃k1(x1)φ̃k2(x2) . . . φ̃kd
(xd), and

I q
d =

⋃
d≤|iii|1≤q

Ĩ i1 × . . .× Ĩ id . (8.247)

The expansion coefficients
{

bkkk,kkk ∈ I q
d

}
can be determined by

f (xxx jjj) = ∑
kkk∈I

q
d

bkkkφ̃kkk(xxx jjj), ∀ jjj ∈ I q
d . (8.248)

Hence, U q
d defines an interpolation operator which maps the function values on the

grid X q
d onto the space

V q
d = span

{
φ̃kkk,kkk ∈ I q

d

}
. (8.249)

Figure 8.5 shows a sparse grid X 5
2 based on the one-dimensional Chebyshev

Gauss-Lobatto quadrature and the corresponding index set I 5
2 in the interpolation

space. Note that the index set I q
d is closed related to the index set of a hyperbolic

cross (cf. Fig. 8.2).
By using the properties of the hierarchical basis, Shen and Yu (2010) developed a

fast transform between the function values at the sparse grid based on the Chebyshev
Gauss-Lobatto quadrature and the coefficients of the expansion in Chebyshev hier-
archical basis.
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Fig. 8.5 Left: the sparse grid X 5
2 constructed from the Chebyshev-Gauss-Lobatto quadrature;

Right: the corresponding index set I 5
2 in the frequency space. The one-to-one mapping between

the points on the left and right figures is given by X 5
2 =

{
(x j1 ,x j2), ( j1, j2) ∈ I 5

2

}

8.5.4.3 Sparse Spectral-Galerkin Method

We are now in a position to address the second issue raised in the beginning of this
section, namely, how to construct efficient sparse spectral algorithms for (8.237)?
To this end, we first need to specify YN , IN and XN .
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Given an integer q ≥ d, let us denote by I q
d and J q

d the index sets associated
with the schemes CH2 and CH1, respectively. More precisely,

I q
d =

{
(k1,k2, . . . ,kd) : 0 � ks < 2is − 1, is � 0,

d

∑
s=1

is = q
}
,

and for CH1,

J q
d =

{
(k1,k2, . . . ,kd) : 0 � ks < 2is + 1, is � 0,

d

∑
s=1

is = q
}
.

We define the sparse approximation space

XN :=V q
d = span

{
φ̃kkk : kkk = (k1, . . . ,kd) ∈ I q

d

}
,

YN :=W q
d = span

{
φ̃kkk : kkk = (k1, . . . ,kd) ∈ J q

d

}
,

(8.250)

where {φ̃kkk} are the d-dimensional hierarchical basis functions based on (8.244) and
(8.243), respectively. We also denote by IN := U q

d the interpolation operator (cf.
(8.246)) associated with the scheme CH1. Then, we can rewrite (8.237) as

{
Find uq

d ∈V q
d such that

α(uq
d,v)ω − (Δuq

d,v)ω = (U q
d f ,v)ω , ∀v ∈V q

d ,
(8.251)

where (u,v)ω =
∫

Ω uvω dxxx, and ω(xxx) = Πd
i=1(1− x2

i )
−1/2 in the Chebyshev case

and ω(xxx) = 1 in the Legendre case.
Given a set of basis functions {φkkk} (not necessarily the hierarchical bases) for

V q
d , (8.251) can reduce to a linear system

(
αM + S

)
ū = f̄ , (8.252)

where M and S are respectively the mass and stiffness matrices associated with {φkkk},
namely M =

(
(φ jjj,φkkk)

)
kkk, jjj∈I q

d
, S =

(−(Δφ jjj,φkkk)
)

kkk, jjj∈I q
d

, ū is a vector consisting of

the expansion coefficients of uq
d in terms of {φkkk}, and f̄ is a vector with component

f̄kkk = (U q
d f ,φkkk)ω .

While it appears to be natural to use the hierarchical bases {φ̃kkk}, it is how-
ever not the most efficient choice as the number of non-zero elements in the
mass and stiffness matrices increase rapidly as d increases. On the other hand, the
spectral-Galerkin basis functions ψk(x) := Tk(x)−Tk+2(x) in the Chebyshev case
and ϕk(x) := Lk(x)− Lk+2(x) in the Legendre case lead to very simple mass and
stiffness matrices and enjoy many other nice properties (cf. Chap. 4 and Shen (1994,
1995)). Therefore, we shall use these as basis functions for V q

d .
Notice that we still use the hierarchical basis (8.243) to obtain U q

d f , the expan-
sion in the hierarchical basis, from the values of f at the sparse grid. Therefore,
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in order to compute the right-hand side vector fff , we first transform U q
d f into an

expansion based on standard Chebyshev or Legendre polynomials, then we use the
orthogonality of Chebyshev or Legendre polynomials to compute fff kkk = (U q

d f ,φkkk)ω .
We now describe briefly, for both the Chebyshev and Legendre weight functions

ωωω, how the approximate solution uq
d for (8.251) can be efficiently obtained.

• In the Chebyshev case, the above method leads to non-symmetric, non-sparse
system which can only be solved by an iterative method. While the system matrix
is not sparse, but the matrix–vector multiplication can be performed by a fast
algorithm developed in Shen and Yu (2010).

• In the Legendre case, the above method leads to a symmetric, positive definite,
sparse system which can be solved by an iterative method or sparse solver. How-
ever, the price we pay for the sparsity of stiffness matrix is an extra step in evalu-
ating fff , namely transform the expansion of U d

q f in terms of Chebyshev polyno-
mials to the expansion in Legendre polynomials. Therefore, this method can be
classified as the sparse Chebyshev-Legendre-Galerkin method.

We refer to Shen and Yu (2010) for more detail on the implementation of
the sparse Chebyshev-Galerkin and Chebyshev-Legendre-Galerkin methods. In
Fig. 8.6, we plot the sparse structure of the stiffness and mass matrices.

We present below two numerical examples to illustrate the convergence prop-
erties of the sparse spectral-Galerkin method and compare them with the usual
spectral-Galerkin method. We consider the Poisson equation with the following two
exact solutions:

u1(xxx) =
d

∏
i=1

sin(kπ
xi + 1

2
),

u2(xxx) =
d

∏
i=1

(
hk(xi)− 1+ xi

2

)
,

where

hk(x) =

{
0, x � 0,
xk, x > 0,

k = 2,3, . . .

Note that u1 is an isotropic analytical function, while the u2 only has a finite regu-
larity in each direction.

We recall that the convergence rate of the sparse spectral methods depends on the
regularity of solutions in the weighted Korobov spaces (cf. Theorem 8.10), while
that of the usual spectral methods depends on the regularity of solutions in the
Jacobi-weighted Sobolev spaces (cf. Theorem 8.1). Therefore, the sparse spectral
method will be much better than the usual spectral method for functions with similar
regularity index m in both weighted Sobolev and weighted Korobov spaces. How-
ever, for very smooth functions such as isotropic analytical functions, both sparse
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Fig. 8.6 The structure of system matrices of Chebyshev-Legendre-Galerkin sparse grid method.
Left column: stiffness matrix; Right column: the sum of stiffness matrix and mass matrices. First
row: d = 3,q = 9; second row: d = 4,q = 10

spectral method and full grid spectral method will converge exponentially fast (with
respect to the number of unknowns) so there is not much advantage using a sparse
spectral method.

Case 1: The exact solution u1 is a tensor product of one-dimensional analytic
functions. So the sparse spectral method does not have an advantage over the usual
full grid spectral method. This observation is also consistent with the spectrum
shown in Fig. 8.7.

In Fig. 8.8, we present the L2
ω -error of the solutions obtained by Chebyshev-

Legendre-Galerkin method on full grid and sparse grid. The results indicate that
the sparse grid method has similar convergence rate as the full grid method in terms
of number of unknowns, while the results with the sparse grid method are sightly
better in higher dimensions.
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Fig. 8.7 The Chebyshev spectrum of the exact solutions u1 and u2 with k = 2 and k = 3,
respectively
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Fig. 8.8 Convergence history of the Chebyshev-Legendre-Galerkin method on full grid (solid line)
and sparse grid (dotted line) for Poisson equation with the exact solution u1 (k = 1)

Case 2: The exact solution u2 is a product of one-dimensional functions in
Hk− 1

2+ε(I) (for any ε > 0). It is easy to see that the solution belongs to Km(Id)
and H̃m

ω (Id) with the same index m = k− 1
2 + ε . Therefore, this is an ideal case for

the sparse spectral method. Figure 8.9 shows that the sparse grid method is much
more efficient than full grid method for this problem.
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Fig. 8.9 The Chebyshev-Legendre-Galerkin method on full grid (solid line) and sparse grid (dotted
line) for Poisson equation with exact solution u2 (k = 3)

Problems

8.1. Implement and test the full diagonalization algorithm based on the Legendre-
Galerkin method for solving (8.14) with Ω = (−1,1)2.

8.2. Write down the full diagonalization algorithm based on the Legendre-Galerkin
method for (8.1) with u|∂Ω = 0 and Ω = (−1,1)3.

8.3. Let ω = (1− t2)−1/2 and φ j(t) = (1− t2)Tj(t). Determine the entries of A, B
and C in (8.41) (cf. Remark 8.8).

8.4. Derive the estimate in Theorem 8.5.

8.5. Estimate the interpolation errors of the d-dimensional tensorial Legendre-
Gauss-Lobatto interpolation in the weighted L2-norm.

8.6. Prove Theorem 8.12 with kkk = lll =−1.



Chapter 9
Applications in Multi-Dimensional Domains

We consider in this chapter several multi-dimensional problems, which (a) are of
current interest; (b) are suitable for spectral approximations; and (c) can be effi-
ciently solved by using the basic spectral algorithms developed in previous chap-
ters. These include steady state problems: the Helmholtz equation for acoustic scat-
tering and the Stokes equations, as well as time-dependent problems including the
Allen–Cahn equation, the Cahn–Hilliard equation, the Navier–Stokes equations, and
the Gross-Pitaevskii equation. For applications of spectral methods to other multi-
dimensional problems in science and engineering, we refer, for instance, to Boyd
(2001), Canuto et al. (2006), Hesthaven et al. (2007) and the references therein.

For time-dependent problems, we shall first present semi-discretization (in time)
schemes which lead to, at each time step, elliptic type equations that can be effi-
ciently solved by using spectral methods presented in previous chapters. Special
attentions will be paid to how to design simple yet accurate and stable time dis-
cretization schemes for the Allen–Cahn equation, the Cahn–Hilliard equation, the
Navier–Stokes equations, and the Gross-Pitaevskii equation.

9.1 Helmholtz Equation for Acoustic Scattering

Time harmonic wave propagations appear in many applications such as wave scat-
tering and transmission, noise reduction, fluid-solid interaction, and sea and earth-
quake wave propagation. We describe in this section a spectral-Galerkin method
for solving the Helmholtz equation arising from acoustic scattering problems in an
exterior domain Ω = R

d \D (d = 1,2,3) with D being a bounded obstacle.
The Helmholtz equation in exterior domains presents a great challenge to numer-

ical analysts and computational scientists, for (a) the domain is unbounded, (b) the
problem is indefinite, and (c) the solution is highly oscillatory (when the wave num-
ber is large) and decays slowly. There is an abundant literature on different numeri-
cal techniques that have been developed for this problem such as boundary element
methods (cf. Ciskowski and Brebbia (1991)), infinite element methods (cf. Gerdes
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and Demkowicz (1996)), Dirichlet-to-Neumann (DtN) methods (cf. Keller and
Givoli (1989)), perfectly matched layers (PML) (cf. Berenger (1994)), among
others.

In many of these approaches, an essential step is to solve the Helmholtz equa-
tion (9.8) in a finite domain with an exact or approximate non-reflecting boundary
condition at the outer boundary. In particular, with a proper boundary perturbation
technique (cf. Nicholls and Reitich (2003)), the Helmholtz equation in exterior do-
mains can be reduced to a sequence of Helmholtz equations (9.8) in a separable
bounded domain Ω .

In this section, we shall restrict our attention to the cases with the obstacle D
being a sphere or a circle, and present in detail a very efficient spectral-Galerkin
algorithm for solving the reduced problem (9.8). The algorithm presented below
can be easily combined with the so-called transformed field expansion method (cf.
Nicholls and Reitich (2003)) to treat general obstacles (cf. Nicholls and Shen (2006),
Fang et al. (2007), Nicholls and Shen (2009)).

9.1.1 Time-Harmonic Wave Equations

The wave equation

∂ 2
t w− c2Δw = g (9.1)

arises from many applications, such as electromagnetic wave propagations and
acoustics, where c is the speed of sound. In many situations, we may assume that
the inhomogeneity g is periodic in time, i.e.,

g(x, t) = f (x)e−iωt . (9.2)

In this case, the solution of (9.1) is of the form: w(x, t) = u(x)e−iωt , where the
amplitude u(x) satisfies the Helmholtz equation

−Δu− k2u = f . (9.3)

The constant k = ω/c is called the wave number. To illustrate the physical meaning
of k, we consider the 1-D Helmholtz equation

−u′′(x)− k2u(x) = 0, in (−∞,+∞), (9.4)

whose general solution takes the form

u(x) = Aeikx +Be−ikx (9.5)

with arbitrary constants A and B. Hence, the time-harmonic solution of (9.1) is

w(x, t) = Aei(kx−ωt) +Be−i(kx+ωt). (9.6)
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We see that the first term on the right-hand side represents an outgoing wave
(traveling from left to right) with the phase speed c = ω/k, while the second in-
dicates an incoming wave (traveling from right to left) with the phase speed −c. In
practice, some conditions are imposed to eliminate the incoming wave, which will
be discussed shortly.

In the case of acoustic scattering from an obstacle D, the Helmholtz equation
(9.3) is set in the exterior domain Ω = R

d\D. In order for the problem to be well-
posed, we need to impose the so-called Sommerfeld radiation condition at infinity

∂u
∂ r

− iku = o
(

r
1−d

2
)

as r → ∞ for d = 1,2,3, (9.7)

which ensures that waves do not reflect from far field. On the surface of the obstacle
D, we may impose a Dirichlet, Neumann or Robin boundary condition, which corre-
sponds to sound soft, sound hard or impedance surface of the obstacle, respectively.

9.1.2 Dirichlet-to-Neumann (DtN) Map

A classical approach to reduce a problem in an unbounded domain to a bounded
domain is to use the so-called Dirichlet-to-Neumann map. The basic idea is to intro-
duce a sufficiently large ball B (resp. a disk for 2-D) so that D ⊆ B and supp( f )⊆ B,
and reduce the original problem to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δu− k2u = f , in Ω := B∩ (Rd \ D̄),

u = g, on ∂D,
∂u
∂ r

+T (u) = 0, on ∂B,

(9.8)

where T is the DtN map. To derive the formulation of T in 3-D case, we consider
the “auxiliary” problem exterior to the artificial ball B :

{

−Δu− k2u = 0, in Ωext := R
3 \ B̄,

u =Ψ , on ∂B.
(9.9)

This problem can be solved analytically via separation of variables in spherical co-
ordinate (r,θ ,φ):

u(r,θ ,φ) =
∞

∑
l=0

h(1)l (kr)
l

∑
m=−l

ûlmY m
l (θ ,φ), (9.10)

where r > 0, θ ∈ [0,π ], φ ∈ [0,2π ], h(1)l (z) is the spherical Hankel function of the
first kind of order l (cf. Morse and Feshback (1953)), and Y m

l is the spherical har-
monic function defined in (8.91).
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To determine the coefficients {ûlm} in (9.10), we expand the Dirichlet data in
(9.9) as

Ψ(θ ,φ) =
∞

∑
l=0

l

∑
m=−l

ψ̂lmY m
l (θ ,φ). (9.11)

Hence, letting r = b in (9.10) and comparing the coefficients of two expansions, one
verifies that

ûlm =
ψ̂lm

h(1)l (kb)
. (9.12)

Plugging it into (9.10) leads to the exact solution of (9.9):

u(r,θ ,φ) =
∞

∑
l=0

h(1)l (kr)

h(1)l (kb)

l

∑
m=−l

ψ̂lmY m
l (θ ,φ). (9.13)

Differentiating (9.13) with respect to r and setting r = b, we derive

∂u
∂ r

(b,θ ,φ) =
∞

∑
l=0

k
∂zh

(1)
l (kb)

h(1)l (kb)

l

∑
m=−l

ψ̂lmY m
l (θ ,φ). (9.14)

The DtN map is now simply obtained by setting

T (u) =
∂u

∂n

∣

∣

∣

∂ B
=−∂u

∂ r

∣

∣

∣

r=b

=−
∞

∑
l=0

k
∂zh

(1)
l (kb)

h(1)l (kb)

l

∑
m=−l

ψ̂lmY m
l (θ ,φ),

(9.15)

where the normal vector n of Ωext is pointing to the negative radial direction.
Similarly, in the 2-D setting, let B be a sufficiently large disk containing D and

the support of f . Consider the “auxiliary” problem
{

−Δu− k2u = 0, in Ωext := R
2 \ B̄,

u =Ψ , on ∂B,
(9.16)

which admits the analytical solution in polar coordinate (r,φ) :

u(r,φ) =
∞

∑
l=−∞

ûlH
(1)
l (kr)eilφ , r > b, φ ∈ [0,2π). (9.17)

Here, H(1)
l is the Hankel function of the first kind of order l (cf. Morse and Feshback

(1953)). The coefficients {ûl} can be determined by the boundary value Ψ (φ) with
the expansion

Ψ(φ) =
∞

∑
l=−∞

ψ̂le
ilφ . (9.18)
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Setting r = b in (9.17), and comparing the coefficients of the above two expansions

lead to ûl = ψ̂l/H(1)
l (kb). Hence, the exact solution of (9.16) is

u(r,φ) =
∞

∑
l=−∞

ψ̂l

H(1)
l (kb)

H(1)
l (kr)eilφ . (9.19)

The 2-D DtN map is given by

T (u) =
∂u
∂n

∣

∣

∣

∂B
=−∂u

∂ r

∣

∣

∣

r=b
=−

∞

∑
l=−∞

k
∂zH

(1)
l (kb)

H(1)
l (kb)

ψ̂le
ilφ . (9.20)

Finally, in the 1-D case, it is easy to show that

T (u) =−iu. (9.21)

9.1.3 Spectral-Galerkin Method

We now present a spectral-Galerkin method for the truncated problem (9.8) with
the DtN map given by (9.15), (9.20) or (9.21). We shall only consider the obstacle
D being a disk or a ball of radius a. Combining the spectral-Galerkin method for
these simple separable domains with a transformed field expansion (cf. Nicholls
and Reitich (2003)), we can then deal with general obstacles (cf. Nicholls and Shen
(2006), Fang et al. (2007), Nicholls and Shen (2009)).

In the 3-D case, we expand

{

u, f ,g
}

=
∞

∑
l=0

l

∑
m=−l

{

ûlm(r), f̂lm(r), ĝlm(r)
}

Y m
l (θ ,φ), (9.22)

and likewise for the 2-D case,

(

u, f ,g
)

=
∞

∑
l=−∞

(

ûl(r), f̂l(r), ĝl(r)
)

eilφ . (9.23)

For brevity, we use u to denote ûlm or ûl , and likewise for f and g below. With the
above setup, the problem of interest is reduced to the following sequence of 1-D
problems

− 1
rd−1

d
dr

(

rd−1 du
dr

)

+Cl
u
r2 − k2u = f , r ∈ (a,b),

u(a) = g, u′(b)− kDl,ku(b) = 0,
(9.24)
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where Cl = 0, l2, l(l + 1) for d = 1,2,3, respectively, and the DtN kernel is
defined by

Dl,k := Dl,k(b) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i, if d = 1,

∂zH
(1)
l (kb)

H(1)
l (kb)

, if d = 2,

∂zh
(1)
l (kb)

h(1)l (kb)
, if d = 3.

(9.25)

Note that for d = 2, we have Dl,k = D−l,k (cf. Shen and Wang (2007a)). It is known
(see, e.g., Harari and Hughes (1992), Demkowicz and Ihlenburg (2001)) that

Re
(

Dl,k
)

< 0, Im
(

Dl,k
)

> 0, for d = 2,3, (9.26)

which ensure the well-posedness of the problem (9.24).
We are now in a position to describe the spectral-Galerkin method for (9.24)-

(9.25). For convenience, we make a change of variable

x = 2
r− a
b− a

− 1, x ∈ (−1,1), r ∈ (a,b), (9.27)

and denote

ũ(x) = u(r), f̃ (x) =
(b− a)2

4
f (r), g̃ = g,

c =
b+ a
b− a

, k̃ =
k(b− a)

2
.

Then the problem (9.24)–(9.25) is set in x ∈ (−1,1) and of the form

− 1
(x+ c)d−1

d
dx

(

(x+ c)d−1 dũ
dx

)

+Cl
ũ

(x+ c)2

− k̃2ũ = f̃ , in (−1,1), d = 1,2,3,

ũ(−1) = g̃,

ũx(1)− k̃Dl,kũ(1) = 0.

(9.28)

One verifies readily that the function

s(x) =
k̃Dl,kx+(1− k̃Dl,k)

1− 2k̃Dl,k
g̃

satisfies the boundary conditions in (9.28). Multiplying the first equation of (9.28)
by (x+ c)2d−2 and setting

ũ(x) = û(x)+ s(x), h =
k̃Dl,kg̃

1− 2k̃Dl,k
,

f̂ (x) = (x+ c)2d−2 f̃ (x)− [Cl(x+ c)2d−4

− k̃2(x+ c)2d−2]s(x)+ (d− 1)(x+ c)2d−3h,
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we end up with the following problem with homogeneous boundary conditions:

− (x+ c)d−1 d
dx

[

(x+ c)d−1 dû
dx

]

+
(

Cl(x+ c)2d−4

− k̃2(x+ c)2d−2
)

û = f̂ , x ∈ (−1,1), d = 1,2,3,

û(−1) = 0, û′(1)− k̃Dl,kû(1) = 0.

(9.29)

To simplify the implementation, we make a transform to convert the Robin
boundary condition (at x = 1) to the Neumann boundary condition. For this
purpose, let

v(x) = û(x)e−k̃Dl,kx, f (x) = f̂ (x)e−k̃Dl,kx. (9.30)

The problem (9.29) is converted to

− (x+ c)d−1 d
dx

(

(x+ c)d−1 dv
dx

)

+ p(x)
dv
dx

+ q(x)v = f ,

v(−1) = v′(1) = 0,
(9.31)

where

p(x) := p(x; l,k,d) =−2k̃Dl,k(x+ c)2d−2,

q(x) := q(x; l,k,d) =−(x+ c)2d−2
( (d− 1)k̃Dl,k

x+ c
+ k̃2D2

l,k

)

+
(

Cl(x+ c)2d−4 − k̃2(x+ c)2d−2
)

.

(9.32)

Let PN be the space of complex polynomials of degree ≤ N. Define the approxi-
mation space

XN =
{

u ∈ PN : u(−1) = u′(1) = 0
}

. (9.33)

The spectral-Galerkin approximation to (9.31)-(9.32) is

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Find vN ∈ XN such that

−
∫ 1

−1
(x+ c)d−1((x+ c)d−1v′N

)′
w̄Ndx+

∫ 1

−1
pv′Nw̄Ndx

+
∫ 1

−1
qvNw̄Ndx =

∫ 1

−1
f w̄Ndx, ∀wN ∈ XN .

(9.34)

Let Ln(x) be the Legendre polynomial of degree n, and define

φn =
(

Ln +Ln+1
)−
(n+ 1

n+ 2

)2(
Ln+1 +Ln+2

)

. (9.35)

One verifies readily that φn(−1) = φ ′
n(1) = 0. Therefore, the real part (or the imag-

inary part) of XN is

XR
N := span

{

φn : n = 0,1, . . . ,N − 2
}

.



374 9 Applications in Multi-Dimensional Domains

In actual computations, we split (9.31) into real and imaginary parts by setting
vN = vR

N + ivI
N , and likewise for p,q and f . Consequently, the scheme (9.34) is

equivalent to
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find vR
N,v

I
N ∈ XR

N such that

− ((x+ c)d−1∂x((x+ c)d−1∂xvR
N),ϕ

)

+
(

pR∂xvR
N − pI∂xvI

N ,ϕ
)

+
(

qRvR
N − qIvI

N ,ϕ
)

=
(

f R,ϕ
)

, ∀ϕ ∈ XR
N ,

− ((x+ c)d−1∂x((x+ c)d−1∂xvI
N),ψ

)

+
(

pI∂xvR
N + pR∂xvI

N,ψ
)

+
(

qIvR
N + qRvI

N ,ψ
)

=
(

f I ,ψ
)

, ∀ψ ∈ XR
N .

(9.36)

Let us denote

ai j =−((x+ c)d−1∂x((x+ c)d−1∂xφ j),φi
)

, A = (ai j);

P̂z
i j =
(

pz∂xφ j,φi
)

, Pz = (P̂z
i j);

Q̂z
i j =
(

qzφ j ,φi
)

, Qz = (q̂z
i j);

f z
i =
(

f z,φi
)

, fz =
(

f z
0 , f z

1 , . . . , f z
N−2

)T
;

vz
N =

N−2

∑
n=0

vz
nφn, vz =

(

vz
0,v

z
1, . . . ,v

z
N−2

)T
,

where z = R or z = I. Then the matrix form of (9.36) is
[

A+PR+QR −(PI +QI
)

PI +QI A+PR+QR

][

vR

vI

]

=

[

fR

fI

]

. (9.37)

Note that using the properties of Legendre polynomials, one verifies that the above
matrices are sparse so the above system can be efficiently solved.

We now present some numerical results obtained by the above spectral-Galerkin

method. We consider (9.24) with the exact solution: u(r) = H(1)
l (kr). We fix l = 1,

d = 2, and concentrate on the approximation behavior of our scheme with respect
to the frequency k and the thickness of the annulus b− a.

In the first set of tests, we take a= 1 and b= 2. In Fig. 9.1, we present the relative
L2-error versus the number of mode N = Nr for a wide range of wave numbers. We
note that as soon as Nr > k(b− a)/2, the errors start to decay, and for moderate to
large wave numbers, the errors decay slowly until about Nr ∼ k(b− a), and finally
for Nr > k(b− a), the errors decay exponentially.

In the second set of tests, we take a = 1 and b = 1.25. The results are plotted in
Fig. 9.2. We observe similar behaviors as in the first set except that now we have
b−a= 1

4 and only about 1/4 of the modes are needed to achieve a similar accuracy.
These behaviors are consistent with the error estimates in Shen and Wang (2007a)
(cf. Remark 4.2 in Shen and Wang (2007a)).
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Note that error estimates with explicit dependence on k for the 1-D problem were
derived in Sect. 4.5.4. Complete error analysis for the method presented above can
be found in Shen and Wang (2007a).

9.2 Stokes Equations

The Stokes equations play an important role in fluid mechanics and solid mechanics.
Numerical approximation of Stokes equations has attracted considerable attention in
the last few decades and is still an active research direction (cf. Girault and Raviart
(1986), Brezzi and Fortin (1991), Bernardi and Maday (1997), Elman et al. (2005)
and the references therein).

In this section, we shall restrict our attention to the Stokes equations in primitive
variables and consider iterative algorithms for which only Possion type equations
have to be solved in each iteration.
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9.2.1 Stokes Equations and Uzawa Operator

We consider the generalized Stokes equations in primitive variables:
{

αuuu−νΔuuu+∇p = fff , in Ω ⊂ Rd,

∇·uuu = 0, in Ω ; uuu|∂Ω = 0.
(9.38)

In the above, the unknowns are the velocity vector uuu and the pressure p, fff is a given
body force, ν is the viscosity coefficient, and α is a non-negative number. When
α = 0, the above reduces to the standard Stokes equations. The case α > 0 often
arises from a coupled semi-implicit time discretization for the unsteady Navier–
Stokes equations (9.101). For the sake of simplicity, the homogeneous Dirichlet
boundary condition is assumed, and other admissible boundary conditions can be
treated similarly (cf. Girault and Raviart (1986)).

One main difficulty for solving (9.38) is that the velocity uuu and the pressure p
are coupled by the incompressibility constraint ∇·uuu = 0. However, one can formally
decouple the pressure from the velocity as follows:

Let XXX = H1
0 (Ω)d and denote by A : XXX → XXX ′ the operator defined by

〈Auuu,vvv〉XXX ′,XXX = α(uuu,vvv)+ν(∇uuu,∇vvv), ∀uuu,vvv ∈ XXX . (9.39)

Then, applying the operator ∇·A−1 to (9.38), we find that the pressure can be deter-
mined by

Bp :=−∇·A−1∇p =−∇·A−1 fff . (9.40)

Once p is obtained from (9.40), we can obtain uuu from (9.38) by inverting the oper-
ator A, namely,

uuu = A−1( fff −∇p). (9.41)

Let

M =
{

q ∈ L2(Ω) :
∫

Ω
qdx = 0

}

. (9.42)

The operator B :=−∇·A−1∇ : M → M is usually referred to as the Uzawa operator
or the Schur complement associated with the Stokes operator. We have

(Bp,q) :=−(∇·A−1∇p,q) = (A−1∇p,∇q) = (p,Bq). (9.43)

Therefore, B is a self-adjoint positive definite operator.

9.2.2 Galerkin Method for the Stokes Problem

The weak formulation for (9.38) is
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⎧

⎪

⎨

⎪

⎩

Find uuu ∈ XXX and p ∈ M such that

α(uuu,vvv)+ ν(∇uuu,∇vvv)− (∇·vvv, p) = 〈 fff ,vvv〉XXX ′,XXX , ∀vvv ∈ XXX ,

(∇·uuu,q) = 0, ∀q ∈ M.

(9.44)

Let XXXN and MN be a suitable pair of finite dimensional approximation spaces for XXX
and M. The corresponding Galerkin method for (9.44) is

⎧

⎪

⎨

⎪

⎩

Find (uuuN , pN ) ∈ XXXN ×MN such that

α(uuuN ,vvvN )+ν(∇uuuN ,∇vvvN )− (pN ,∇·vvvN ) = ( fff ,vvvN ), ∀vvvN ∈ XXXN ,

(∇·uuuN ,qN ) = 0, ∀qN ∈ MN .

(9.45)

It is well-known (see, e.g., Girault and Raviart (1986)) that the discrete problem
(9.45) admits a unique solution if and only if there exists a positive constant βN

such that

inf
qN ∈MN

sup
0 =vvvN ∈XXXN

(qN ,∇·vvvN )

‖qN‖|‖vvvN‖|
≥ βN , (9.46)

where |‖vvv‖|2 = α‖vvv‖2 + ν‖∇vvv‖2. The above condition is referred to as Brezzi-
Babuška inf-sup condition (cf. Babuška (1973), Brezzi (1974) and Theorem 1.1)
and βN is referred to as the inf-sup constant.

Let {φφφk}Nu
k=1 and {ψk}Np

k=1 be respectively the basis functions of XXXN and MN .
Then we can write

uuuN =
Nu

∑
k=1

ũkφφφ k, pN =
Np

∑
k=1

p̃kψk. (9.47)

Set

ai j = α(φφφ j,φφφ i)+ν(∇φφφ j,∇φφφ i), AN = (ai j)i, j=1,...,Nu ,

bi j =−(ψi,∇·φφφ j), BN = (bi j)i=1,...,Np, j=1,...,Nu ,

u = (ũ1, . . . , ũNu
)T , p = (p̃1, . . . , p̃Np

)T ,

fi = (IN fff ,φφφ i), f = ( f1, . . . , fNu)
T .

(9.48)

Then the problem (9.45) reduces to

ANu+BT
Np = f; BNu = 0. (9.49)

The main difficulty in numerically solving the above linear system is that it is indef-
inite so standard iterative algorithms (cf. Appendix C) would not be efficient.

As in the space continuous case, p can be obtained by inverting the discrete
Uzawa operator:

BNA−1
N BT

Np = BNA−1
N f. (9.50)

If there exists βN > 0 such that the inf-sup condition is satisfied, then it is easy
to show that the above problem is well-posed and the discrete Uzawa operator is
symmetric positive definite. Therefore, one can apply a suitable iterative method
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for solving (9.50). It is essential that the iterative method can be performed without
explicitly forming the full matrix BNA−1

N BT
N . It is also expected the convergence

rate of such iterative method will depend essentially on the condition number of the
matrix BNA−1

N BT
N . It is shown (see, e.g., Maday et al. (1993)) that

cond(BNA−1
N BT

N) = β−2
N . (9.51)

Therefore, the effectiveness of these iterative methods is directly related to the mag-
nitude of βN . It is well-known that there exist many finite element pairs of (XXXN,MN)
such that βN = β > 0 (cf. Girault and Raviart (1986), Brezzi and Fortin (1991)). In
the literature, such pairs are referred to as stable Stokes pairs, as they lead to optimal
error estimates for both the velocity and pressure (cf. Theorem 9.1).

We now consider how to choose XXXN and MN in a spectral method. To simplify
the presentation, we shall consider only Ω := (−1,1)d with d = 2 or 3. In this case,
the obvious choice for XXXN in a spectral method is XXXN = (PN ∩H1

0 (Ω))d . However,
how to choose MN is not a trivial question. For any given MN , let us define

ZN =
{

qN ∈ MN : (qN ,∇·vvvN ) = 0, ∀vvvN ∈ XXXN
}

. (9.52)

Obviously if (uuuN , pN ) is a solution of (9.45), then so is (uuuN , pN +qN ) for any qN ∈ZN .
Hence, any mode in ZN is called a spurious mode. For the most convenient choice
MN = {qN ∈ PN :

∫

Ω qN dx = 0}, it is shown that ZN spans a seven-dimensional space
if d = 2 and 12N + 3-dimensional space if d = 3, and that the corresponding (after
filtering the spurious mode) inf-sup constant βN behaves like O(N−1) (cf. Bernardi
and Maday (1992a, 1997)). Therefore, it is not a good choice for the pressure space.
On the other hand, if we set

MN =
{

qN ∈ PN−2 :
∫

Ω
qN dx = 0

}

, (9.53)

then the corresponding ZN is empty, and this leads to a well-posed problem (9.45)
with the inf-sup constant (see, e.g., Bernardi and Maday (1997))

βN ≥C(α,ν)N−(d−1)/2 (d = 2 or 3). (9.54)

This pair of spaces is known as the PN ×PN−2 method in the literature, and is the
most commonly used pair for spectral/spectral-element approximations of Stokes
and Navier–Stokes equations.

Remark 9.1. It is shown in Bernardi and Maday (1999) that for any given
0 < λ < 1,

M(λ )
N =

{

q ∈ P[λ N] :
∫

Ω
qdx = 0

}

leads to a well-posed problem (9.45) with an inf-sup constant which is independent
of N but is of course dependent on λ in such a way that βN → 0 as λ → 1−.

We now present a simple iterative algorithm, known as the Uzawa algorithm
(cf. Arrow et al. (1958)) for solving (9.49): Given an arbitrary p0, compute
(uk+1,pk+1) recursively by
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ANuk+1 +BT
Npk = f;

pk+1 = pk −ρkBNuk+1.
(9.55)

It is clear that, for each k, the above system can be solved by the efficient Legendre-
Galerkin algorithm developed in Sect. 8.1.

As for the convergence, it can be shown (cf., for instance, Marion and Temam
(1998)) that, in the case of α = 0 and ρk = ν , we have

‖uuuk
N
− uuuN‖1 + ‖pk

N
− pN‖� (1−β 2

N)
k, (9.56)

where (uuuN , pN ) is the solution of (9.45) and βN is the inf-sup constant defined in
(9.46). Thus, for a given tolerance ε, the number of Uzawa steps needed is pro-
portional to logε

β 2
N

. On the other hand, we can also use the Conjugate Gradient (CG)

iteration to solve (9.50). The cost of each CG iteration is essentially the same as one
step of (9.55). However, the number of the CG steps needed for the same tolerance,
thanks to Theorem C.1, is proportional to logε

βN
. Therefore, applying the CG method

to (9.50) is preferred over using the iterative Uzawa algorithm (9.55) for (9.49).

9.2.3 Error Analysis

The inf-sup constant βN not only plays an important role in the implementation
of the approximation (9.45), but also it is of paramount importance in the error
analysis. Let us denote

VVV N = {vvvN ∈ XXXN : (qN ,∇ · vvvN ) = 0, ∀qN ∈ MN}. (9.57)

Then, with respect to the error analysis, we have

Theorem 9.1. Assuming (9.46), the following error estimates hold:

|‖uuu− uuuN‖|� inf
vvvN ∈VVV N

|‖uuu− vvvN‖|,

βN‖p− pN‖� inf
vvvN ∈VVV N

|‖uuu− vvvN‖|+ inf
qN∈MN

‖p− qN‖,
(9.58)

where (uuu, p) and (uuuN , pN ) are respectively the solution of (9.38) and (9.45).

Proof. Let us denote

VVV =
{

vvv ∈ XXX : (q,∇ · vvv) = 0, ∀q ∈ M
}

. (9.59)

Then, by the definition of VVV and VVV N ,

α(uuu,vvv)+ν(∇uuu,∇vvv) = ( fff ,vvv), ∀vvv ∈VVV ,

α(uuuN ,vvvN )+ν(∇uuuN ,∇vvvN ) = ( f ,vvvN ), ∀vvvN ∈VVV N .
(9.60)
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Since VVV N ⊂VVV , we have

α(uuu− uuuN ,vvvN )+ν(∇(uuu− uuuN ),∇vvvN ) = 0, ∀vvvN ∈VVV N .

Hence,

|‖uuu− uuuN‖|2 = α(uuu− uuuN ,uuu− uuuN )+ν(∇(uuu− uuuN ),∇(uuu− uuuN ))

= inf
vvvN ∈VVV N

{

α(uuu− uuuN ,uuu− vvvN )+ν(∇(uuu− uuuN ),∇(uuu− vvvN ))
}

,

which implies immediately

|‖uuu− uuuN‖| ≤ inf
vvvN ∈VVV N

|‖uuu− vvvN‖|.

Next, we derive from (9.38)-(9.45) the identity

α(uuu− uuuN ,vvvN )+ν(∇(uuu− uuuN ),∇vvvN )− (p− pN ,∇ · vvvN ) = 0, ∀vvvN ∈ XXXN . (9.61)

Hence, by using (9.46) and the above identity, we find that for any qN ∈ MN ,

βN‖qN − pN‖ ≤ sup
vvvN ∈XXXN

(qN − pN ,∇ · vvvN )

|‖vvvN‖|

= sup
vvvN ∈XXXN

α(uuu− uuuN ,vvvN )+ν(∇(uuu− uuuN ),∇vvvN )− (p− qN ,∇ · vvvN )

|‖vvvN‖|
.

It follows from the identity ‖∇vvv‖ = ‖∇× vvv‖+ ‖∇ · vvv‖, ∀vvv ∈ XXX , and the Cauchy–
Schwarz inequality that

βN‖qN − pN‖ ≤ |‖uuu− uuuN‖|+
1
ν
‖p− qN‖, ∀qN ∈ MN .

Therefore,

βN‖p− pN‖ ≤ βN inf
qN ∈MN

{‖p− qN‖+ ‖qN − pN‖
}

� |‖uuu− uuuN‖|+ inf
qN∈MN

‖p− qN‖

� inf
vvvN ∈VVV N

|‖uuu− vvvN‖|+ inf
qN∈MN

‖p− qN‖.

This completes the proof of this theorem. ��
Consider now the PN ×PN−2 method, it can be shown (cf. Bernardi and Maday

(1997)) that infvvvN ∈VVV N |‖uuu− vvvN‖| � N1−m‖uuu‖m. Therefore, the error estimate (9.58)
becomes:

|uuu− uuuN |1 +N− d−1
2 ‖p− pN‖�

(

N1−m‖uuu‖m +N−s‖p‖s
)

. (9.62)
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We observe that the convergence rate of velocity approximation is optimal, while
that of the pressure approximation is only sub-optimal. However, such a loss of
accuracy for the pressure is considered acceptable in the case of spectral methods
thanks to their high-order of convergence when the solution (uuu, p) is sufficiently
smooth.

9.3 Allen–Cahn and Cahn–Hilliard Equations

We consider in this section the Allen–Cahn equation:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ut −Δu+
1
ε2 f (u) = 0, in Ω × (0,T ],

∂u
∂n

∣

∣

∣

∂Ω
= 0,

u|t=0 = u0;

(9.63)

and the Cahn–Hilliard equation:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ut −Δ
(

−Δu+
1
ε2 f (u)

)

= 0, in Ω × (0,T ],

∂ u
∂ n

∣

∣

∣

∂Ω
= 0,

∂
∂ n

(

Δu− 1
ε2 f (u)

)∣

∣

∣

∂Ω
= 0,

u|t=0 = u0.

(9.64)

In the above, Ω is a bounded domain in R
d (d = 2,3), n is its outward normal, and

f (u) = F ′(u) with F(u) being a given energy potential.
We recall that the one-dimensional Allen–Cahn and Cahn–Hilliard equations

were considered in Sects. 2.3.3 and 6.6.1, respectively. The Allen–Cahn (cf. Allen
and Cahn (1979)) and Cahn–Hilliard (cf. Cahn and Hilliard (1958)) were originally
developed as models for some material science applications. They have also been
widely used in fluid dynamics to describe moving interfaces through a phase-field
approach (see, e.g., Anderson et al. (1998), Lowengrub and Truskinovsky (1998),
Liu and Shen (2003) and the references therein).

The Allen–Cahn and Cahn–Hilliard equations are often associated with periodic
boundary conditions in many materials science applications (cf. Chen and Shen
(1998), Chen (2002)). The discussion below on designing stable time discretiza-
tion schemes applies directly to the periodic case, and the resulting linear/nonlinear
systems at each time step can be easily solved by using a Fourier spectral method.
Therefore, we shall not treat the periodic case separately.

An important feature of the Allen–Cahn (resp. Cahn–Hilliard) equation is that
it can be viewed as the gradient flow in L2 (resp. H−1) of the Lyapunov energy
functional

E(u) :=
∫

Ω

(

1
2
|∇u|2 + 1

ε2 F(u)

)

dx. (9.65)
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More precisely, by taking the inner product of (9.63) and (9.64) with −Δu+ 1
ε2 f (u),

we immediately find the energy law for (9.63):

∂
∂ t

E(u(t)) =−
∫

Ω
|−Δu+

1
ε2 f (u)|2dx; (9.66)

and for (9.64):
∂
∂ t

E(u(t)) =−
∫

Ω
|∇(−Δu+

1
ε2 f (u))|2dx. (9.67)

It is desirable for a numerical scheme to obey a similar discrete energy law.

9.3.1 Simple Semi-Implicit Schemes

We consider a usual first-order semi-implicit method for (9.63):
⎧

⎨

⎩

Find un+1 ∈ H1(Ω) such that

1
δ t

(un+1− un,ψ)+ (∇un+1,∇ψ)+
1
ε2 ( f (un),ψ) = 0, ∀ψ ∈ H1(Ω),

(9.68)

where δ t is the time step size and un is the approximation of the solution at nδ t.
At each time step, the above system leads to a second-order problem with constant
coefficients that can be easily solved. On the other hand, a direct extension of the
above scheme for (9.64) will lead to, at each time step, a fourth-order equation that
is more difficult to deal with. To avoid solving a multi-dimensional fourth-order
equation at each time step, we rewrite (9.64) as a mixed formulation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Find u,w ∈ H1(Ω) such that

(ut ,q)+ (∇w,∇q) = 0, ∀q ∈ H1(Ω),

(∇u,∇ψ)+
1
ε2 ( f (u),ψ) = (w,ψ), ∀ψ ∈ H1(Ω).

(9.69)

Then, a first-order semi-implicit method for (9.69) is:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find un+1,wn+1 ∈ H1(Ω) such that

1
δ t

(un+1 − un,q)+ (∇wn+1,∇q) = 0, ∀q ∈ H1(Ω),

(∇un+1,∇ψ)+
1
ε2 ( f (un),ψ) = (wn+1,ψ), ∀ψ ∈ H1(Ω).

(9.70)

We shall assume that the potential function F(u) satisfies the following condition:
there exists a constant L such that

max
u∈R

| f ′(u)| ≤ L, (9.71)

where f (u) = F ′(u).
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Note that the condition (9.71) is satisfied by many physically relevant potentials
by restricting the growth of F(u) to be quadratic for |u| ≥M. Consider, for example,
the Ginzburg-Landau double-well potential F(u) = 1

4(u
2−1)2. Its quartic growth at

infinity introduces various technical difficulties in the analysis and approximation of
Allen–Cahn and Cahn–Hilliard equations. Since the Allen–Cahn equation satisfies
the maximum principle, and it has been shown in Caffarelli and Muler (1995) that
for a truncated potential F(u) with quadratic growth at infinity, the maximum norm
of the solution for the Cahn–Hilliard equation is bounded, it has been a common
practice (cf. Kessler et al. (2004), Condette et al. (2011)) to consider the Allen–Cahn
and Cahn–Hilliard equations with a truncated double-well potential F(u) satisfying
(9.71).

Theorem 9.2. Assume that the condition (9.71), and

δ t ≤ 2ε2

L
for the scheme (9.68), (9.72)

δ t ≤ 4ε4

L2 for the scheme (9.70), (9.73)

hold. Then, the solutions of (9.68) and (9.70) satisfy

E(un+1)≤ E(un), ∀n ≥ 0.

Proof. We shall only prove the result for (9.70). The proof for (9.68) is similar and
simpler.

Taking q = δ twn+1 and ψ = un+1 −un in (9.70), and using the Taylor expansion

F(un+1)−F(un) = f (un)(un+1 − un)+
f ′(ξ n)

2
(un+1 − un)2, (9.74)

we find

(un+1 − un,wn+1)+ δ t‖∇wn+1‖2 = 0, (9.75)

and

1
2

(‖∇un+1‖2 −‖∇un‖2 + ‖∇(un+1− un)‖2)+
1
ε2 (F(un+1)−F(un),1)

+
1

2ε2 ( f ′(ξ n)(un+1 − un),un+1 − un) = (wn+1,un+1 − un).

(9.76)

On the other hand, taking q =
√

δ t(un+1 − un) in (9.70), we obtain

1√
δ t

‖un+1 − un‖2 =−
√

δ t(∇wn+1,∇(un+1 − un))

≤ δ t
2
‖∇wn+1‖2 +

1
2
‖∇(un+1− un)‖2.

(9.77)
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Summing up the above three relations and using (9.71), we arrive at

1√
δ t

‖un+1 − un‖2 +
δ t
2
‖∇wn+1‖2 +

1
2
(‖∇un+1‖2 −‖∇un‖2)

+
1
ε2 (F(un+1)−F(un),1)

≤− 1
2ε2 ( f ′(ξ n)(un+1 − un),un+1 − un)

≤ L
2ε2 ‖un+1− un‖2.

We then conclude that the desired result holds under the condition (9.73). ��
Notice that, due to the explicit treatment for the nonlinear term, the stability

conditions (9.72) and (9.73) are very severe when ε � 1. On the other hand, a fully
implicit treatment, namely replacing f (un) by f (un+1) in (9.68) and (9.70), will
not be very helpful as conditions similar to (9.72) and (9.73) are needed for the
nonlinear systems at each time step to have a unique solution. Therefore, it is highly
desirable to construct simple schemes which admit a unique solution with a much
relaxed stability condition, or ideally, unconditionally stable. We shall present two
different approaches below.

9.3.2 Convex Splitting Schemes

The first approach is the so-called convex splitting originally proposed by Eyre
(1998). Recently, the idea has been applied to various gradient flows (cf. Hu et al.
(2009), Wang et al. (2010)). Assume that we can split the potential function F(u) as
the difference of two convex functions, i.e.,

F(u) = Fc(u)−Fe(u) with F ′′
c (u), F ′′

e (u)≥ 0. (9.78)

For example, we can split the usual Ginzburg-Landau potential as F(u) = 1
4 (u

4 + 1)
− 1

2 u2. Then, a first-order convex splitting scheme for (9.63) reads

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find un+1 ∈ H1(Ω) such that

1
δ t

(un+1 − un,ψ)+ (∇un+1,∇ψ)

+
1
ε2

(

fc(u
n+1)− fe(u

n),ψ
)

= 0, ∀ψ ∈ H1(Ω),

(9.79)

where fc(u) = F ′
c(u) and fe(u) = F ′

e(u).

Theorem 9.3. The scheme (9.79) is unconditionally stable. More precisely, we have

E(un+1)≤ E(un)− 1
δ t

‖un+1− un‖2 − 1
2
‖∇(un+1 − un)‖2. (9.80)
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Furthermore, the solution un+1 of the nonlinear equation (9.79) is the unique
minimizer of the convex functional

Q(u) =
∫

Ω

( 1
δ t

|u|2 + 1
2
|∇u|2 + 1

ε2 Fc(u)+ g(un)
)

dx, (9.81)

where g(un) =− 1
δ t un − 1

ε2 fe(un).

Proof. Taking ψ = un+1 − un in (9.79) and using the Taylor expansions

Fc(u
n)−Fc(u

n+1) = fc(u
n+1)(un − un+1)+

F ′′
c (ξn)

2
(un − un+1)2,

Fe(u
n+1)−Fe(u

n) = fe(u
n)(un+1 − un)+

F ′′
e (ηn)

2
(un+1 − un)2,

thanks to (9.78), we find that

1
δ t

‖un+1− un‖2 +
1
2
(‖∇un+1‖2 −‖∇un‖2 + ‖∇(un+1− un)‖2)

+
1
ε2

{

(F(un+1),1)− (F(un),1)
}

=− 1
2ε2 (F

′′
c (ξn)+F ′′

e (ηn),(u
n − un+1)2)≤ 0,

which implies (9.80).
On the other hand, it is clear that (9.79) is the Euler-Lagrange equation of

minu∈H1(Ω) Q(u). Since Q(u) is convex, un+1 is its unique minimizer. ��
It is also possible to construct second-order convex splitting schemes. For the

Ginzburg-Landau potential F(u) = 1
4(u

2−1)2 and f (u) = F ′(u) = u3−u, a second-
order convex splitting scheme is as follows (cf. Hu et al. (2009)):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find un+1 ∈ H1(Ω) such that

1
δ t

(un+1 − un,ψ)+
(

∇
un+1 + un

2
,∇ψ
)

+
1

4ε2

(

((un+1)2 +(un)2)(un+1 + un),ψ
)

− 1
2ε2 (3un − un−1,ψ) = 0, ∀ψ ∈ H1(Ω).

(9.82)

It is not hard to show that the scheme is unconditionally stable (cf. Hu et al. (2009)).
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One can easily extend the above convex splitting schemes for the Cahn–Hilliard
equation. For example, a first-order convex splitting scheme for (9.69) is

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find un+1,wn+1 ∈ H1(Ω) such that

1
δ t

(un+1 − un,q)+ (∇wn+1,∇q) = 0, ∀q ∈ H1(Ω),

(∇un+1,∇ψ)+
1
ε2 ( fc(u

n+1)− fe(u
n),ψ) = (wn+1,ψ), ∀ψ ∈ H1(Ω).

(9.83)

One can show that the results in Theorem 9.3 can be extended to the above scheme
(see Problem 9.1).

The convex splitting schemes have very attractive properties. However, they re-
quire solving a nonlinear system at each time step.

9.3.3 Stabilized Semi-Implicit Schemes

In order to avoid solving a nonlinear system at each time step, we consider the
following first-order stabilized semi-implicit method for (9.63):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find un+1 ∈ H1(Ω) such that
( 1

δ t
+

S
ε2

)

(un+1 − un,ψ)+ (∇un+1,∇ψ)

+
1
ε2 ( f (un),ψ) = 0, ∀ψ ∈ H1(Ω),

(9.84)

where S is a stabilizing parameter to be specified.
Similarly, a first-order stabilized semi-implicit method for (9.69) is:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find un+1,wn+1 ∈ H1(Ω) such that

1
δ t

(un+1 − un,q)+ (∇wn+1,∇q) = 0, ∀q ∈ H1(Ω),

(∇un+1,∇ψ)+
S
ε2 (u

n+1− un,ψ)+
1
ε2 ( f (un),ψ) = (wn+1,ψ), ∀ψ ∈ H1(Ω).

(9.85)

The stabilizing term S
ε2 (φ n+1 − φn) in the above schemes introduces an extra con-

sistency error of order Sδ t
ε2 ut(ξn). We note however that this error is of the same

order as the error introduced by the explicit treatment for the term fe in the convex
splitting schemes (9.79) and (9.83), which is,

1
ε2

(

fe(u(t
n+1))− fe(u(t

n))
)

=
δ t
ε2 f ′e(ηn)ut(γn).

The stability and error analysis of the above stabilized schemes were studied
in Shen and Yang (2010). In particular, we have

Theorem 9.4. Under the condition (9.71), the stabilized schemes (9.84) and (9.85)
with S≥ L

2 are unconditionally table, and the following energy law holds for any δ t:

E(un+1)≤ E(un), ∀n ≥ 0. (9.86)
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Proof. Once again, we shall only provide the proof for (9.85), and leave the proof
for (9.84) to the interested readers.

As in the proof of Theorem 9.2, taking q = δ twn+1 and ψ = un+1 −un in (9.85),
we obtain (9.75) and (9.76) with an extra term S

ε2 ‖un+1 − un‖2 in the left hand
side of (9.76). Therefore, summing up (9.75) and (9.76) with this extra term, we
immediately derive the desired result. ��

One can also easily construct second-order stabilized schemes for (9.63) and
(9.69). However, it appears not possible for such a scheme to be unconditionally
stable. But ample numerical experiments indicate that the maximum allowable time
step of such stabilized schemes can be orders of magnitude larger than that of stan-
dard semi-implicit schemes.

9.3.4 Spectral-Galerkin Discretizations in Space

To fix the idea, we set Ω = (−1,1)d , and

XN =
{

u ∈ PN : u′(±1) = 0
}

, YN = Xd
N .

The Legendre-Galerkin method for the first-order stabilized scheme (9.84) reads

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Given u0
N = INu0 for n ≥ 0, find un+1

N ∈YN such that
( 1

δ t
+

S
ε2

)

(un+1
N − un

N,ψN )+ (∇un+1
N ,∇ψN )

+
1
ε2 〈 f (un

N),ψN 〉N = 0, ∀ψN ∈YN ,

(9.87)

where 〈·, ·〉N is the d-dimensional discrete inner product based on the Legendre-
Gauss-Lobatto points, and IN is the corresponding interpolation operator.

Similarly, the Legendre-Galerkin method for the first-order stabilized scheme
(9.85) reads

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Given u0
N = INu0 for n ≥ 0, find un+1

N ,wn+1
N ∈ YN such that

1
δ t

(un+1
N − un

N,qN )+ (∇wn+1
N ,∇qN ) = 0, ∀qN ∈ YN ,

(∇un+1
N ,∇ψN )+

S
ε2 (u

n+1
N − un

N,ψN )

+
1
ε2 〈 f (un

N),ψN 〉N = (wn+1
N ,ψN ), ∀ψN ∈YN .

(9.88)

The above scheme is a coupled linear system with constant coefficients for
un+1

N ,wn+1
N . While the method of matrix decomposition presented in Sect. 8.1

does not directly apply to this system, Chen and Shen (2011) recently developed an
algorithm, based on the idea of matrix decomposition, which can solve this coupled
system at twice the cost of solving a second-order equation.
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Let us define the discrete energy functional

EN(u) =
1
2
‖∇u‖2 +

1
ε2 〈F(u),1〉N . (9.89)

Then, by proceeding as in the proof of Theorem 9.4, and noticing that the Taylor
expansion (9.74) holds for each collocation point, we can prove the following:

Theorem 9.5. Under the condition (9.71), the fully discrete stabilized schemes
(9.87) and (9.88) with S ≥ L

2 are unconditionally stable, and the following energy
law holds for any δ t:

EN(u
n+1)≤ EN(u

n), ∀n ≥ 0. (9.90)

9.3.5 Error Analysis

To simplify the presentation, we shall carry out an error analysis for the Galerkin
version of (9.88). Let Π̄ 1

N be the projection operator defined in (8.155), and YN =Xd
N .

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Given u0
N = Π̄ 1

Nu0 for n ≥ 0, find (un+1
N ,wn+1

N ) ∈ YN ×YN such that

1
δ t

(un+1
N − un

N,qN)+ (∇wn+1
N ,∇qN) = 0, ∀qN ∈ YN,

(∇un+1
N ,∇ψN)+

S
ε2 (u

n+1
N − un

N,ψN)

+
1
ε2 ( f (un

N),ψN) = (wn+1
N ,ψN), ∀ψN ∈ YN .

(9.91)

Denote

ẽn+1
N = Π̄ 1

Nu(tn+1)− un+1
N , ên+1

N = u(tn+1)− Π̄ 1
Nu(tn+1),

ēn+1
N = Π̄ 1

Nw(tn+1)−wn+1
N , ěn+1

N = w(tn+1)− Π̄ 1
Nw(tn+1).

(9.92)

The following results were established in Shen and Yang (2010):

Theorem 9.6. Given T > 0, we assume that for some m ≥ 1, u,w ∈C(0,T ;Hm(Ω)),
ut ∈ L2(0,T ;Hm(Ω)) and utt ∈ L2(0,T ;L2(Ω)). Then for S > L

2 , the solution of
(9.91) satisfies

E(un+1
N )≤ E(un

N),

and the following error estimate holds

‖u(tk+1) − uk+1
N ‖+

(

δ t
k

∑
n=0

‖w(tn+1)−wn+1
N ‖2

)/2

≤ C(ε,T )(K1(u,ε)δ t +K2(u,ε)N−m), ∀0 ≤ k ≤ T
δ t

− 1, (9.93)
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where

C(ε,T )∼ exp(T/ε4);

K1(u,ε) = ε2‖utt‖L2(0,T ;L2) +
1
ε2 ‖ut‖L2(0,T ;L2);

K2(u,ε) = ‖u0‖m +(ε2 +
δ t
ε2 )‖ut‖L2(0,T ;Hm) +

1
ε2 ‖u‖C(0,T ;Hm) + ‖w‖C(0,T ;Hm).

Proof. Obviously, the proof of Theorem 9.4 is also valid for the fully discrete
scheme (9.91). We now turn to the error estimates.

Let us define

Rn+1 :=
u(tn+1)− u(tn)

δ t
− ut(t

n+1). (9.94)

By using the Taylor expansion with integral residuals and the Cauchy–Schwarz in-
equality, we derive easily

‖Rn+1‖2
s ≤

1
δ t2

∥

∥

∥

∫ tn+1

tn
(t − tn)utt(t)dt

∥

∥

∥

2

s
≤ δ t

3

∫ tn+1

tn
‖utt(t)‖2

s dt, (9.95)

for s =−1,0.
Subtracting (9.91) from (9.69), we obtain

1
δ t

(ẽn+1
N − ẽn

N,qN)+ (∇ēn+1
N ,∇qN)

= (Rn+1,qN)− 1
δ t

((I− Π̄ 1
N)(u(t

n+1)− u(tn)),qN),

(∇ẽn+1
N ,∇ψN)+

S
ε2 (ẽ

n+1
N − ẽn

N ,ψN)+
1
ε2 ( f (u(tn+1))− f (un

N),ψN)

= (ēn+1
N + ěn+1

N ,ψN)+
S
ε2 (Π̄

1
Nu(tn+1)− Π̄ 1

Nu(tn),ψN).

(9.96)

Taking qN = 2δ tẽn+1
N and ψN = −2δ tēn+1

N and summing up the two identities, we
derive

‖ẽn+1
N ‖2−‖ẽn

N‖2 + ‖ẽn+1
N − ẽn

N‖2 + 2δ t‖ēn+1
N ‖2 = 2δ t(Rn+1, ẽn+1

N )

− 2((I− Π̄ 1
N)(u(t

n+1)− u(tn)), ẽn+1
N )+

2δ tS
ε2 (ẽn+1

N − ẽn
N, ē

n+1
N )

+
2δ t
ε2 ( f (u(tn+1))− f (un

N), ē
n+1
N )− 2δ t(ěn+1

N , ēn+1
N )

− 2Sδ t
ε2 (Π̄ 1

N(u(t
n+1)− u(tn)), ēn+1

N ) := I+ II+ III+ IV+V+VI.

(9.97)
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Using the Cauchy–Schwarz inequality and (9.98), we derive

I ≤ ε4δ t‖Rn+1‖2 +
δ t
ε4 ‖ẽn+1

N ‖2;

II ≤ 2ε4
∫ tn+1

tn
‖(I− Π̄ 1

N)ut(t)‖2dt +
δ t

2ε4 ‖ẽn+1
N ‖2;

III ≤ δ t
4
‖ēn+1

N ‖2 +
4δ tS2

ε4 ‖ẽn+1
N − ẽn

N‖2;

V ≤ δ t
4
‖ēn+1

N ‖2 + 4δ t‖ěn+1
N ‖2;

VI ≤ δ t
4
‖ēn+1

N ‖2 +
4S2δ t2

ε4

(
∫ tn+1

tn
‖(I− Π̄1

N)ut(t)‖2dt +
∫ tn+1

tn
‖ut(t)‖2dt

)

.

For the fourth term IV, we use (9.71) to derive

‖ f (un
N)− f (u(tn+1))‖ ≤ ‖ f (un

N)− f (un+1
N )‖+ ‖ f (un+1

N )− f (u(tn+1))‖
≤ L‖un

N − un+1
N ‖+L(‖ẽn+1

N ‖+ ‖ên+1
N ‖)

≤ L(‖ẽn+1
N − ẽn

N‖+ ‖(I− Π̄ 1
N)(u(t

n+1)− u(tn))‖
+ ‖u(tn+1)− u(tn)‖)+L(‖ẽn+1

N ‖+ ‖ên+1
N ‖).

(9.98)

We can derive from the above that

IV ≤ δ t
4
‖ēn+1

N ‖2 +C7

(δ tL2

ε4 ‖ẽn+1
N − ẽn

N‖2 +
δ t2L2

ε4

∫ tn+1

tn
‖(I− Π̄1

N)ut(t)‖2dt

+
δ t2L2

ε4

∫ tn+1

tn
‖ut(·, t)‖2dt +

δ tL2

ε4 (‖ẽn+1
N ‖2 + ‖ên+1

N ‖2)
)

.

(9.99)

Combining the above inequalities into (9.97), we arrive at

‖ẽn+1
N ‖2 −‖ẽn

N‖2 + ‖ẽn+1
N − ẽn

N‖2 +δ t‖ēn+1
N ‖2

≤ δ tε4‖Rn+1‖2 + 4δ t‖ěn+1
N ‖2 +

C8δ t
ε4 (‖ẽn+1

N ‖2 + ‖ẽn
N‖2 + ‖ên+1

N ‖2)

+ 2ε4
∫ tn+1

tn
‖(I− Π̄1

N)ut(·, t)‖2dt

+
C9δ t2

ε4 (
∫ tn+1

tn
‖(I− Π̄1

N)ut(·, t)‖2dt +
∫ tn+1

tn
‖ut(·, t)‖2dt).

(9.100)

Summing up the above inequality for n = 0,1, . . . ,k (k ≤ T
δ t − 1) and using (8.158)

and (9.95), we obtain
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‖ẽk+1
N ‖2 + δ t

k

∑
n=0

‖ēn+1
N ‖2

≤ 4δ t
k

∑
n=0

‖ěn+1
N ‖2 + δ t2(ε4‖utt‖2

L2(0,T ;L2) +
C9

ε4 ‖ut‖2
L2(0,T ;L2))

+
C8δ t

ε4

k

∑
n=0

(‖ẽn+1
N ‖2 + ‖ẽn

N‖2 + ‖ên+1
N ‖2)

+ ε4N−2m‖ut‖2
L2(0,T ;Hm) +

C9δ t2

ε4 N−2m‖ut‖L2(0,T ;Hm).

Applying the discrete Gronwall Lemma B.10 to the above inequality, we can then
conclude by using the triangle inequality and (8.158). ��

9.3.6 Effect of Spatial Accuracy

It has been observed that for interface problems governed by the Allen–Cahn or the
Cahn–Hilliard type equation, spectral methods usually provide much more accurate
results using fewer points than lower order methods like finite elements or finite
differences. We now give a heuristic argument based on our error estimates.

To fix the idea, let us consider the Cahn–Hilliard equation (9.63) and its error
estimate in (9.93). It is well-known that the solution of the Cahn–Hilliard equation
will develop an interface with thickness of order ε . Therefore, it is reasonable to
assume that ∂ m

x u ∼ ε−m,∀m ≥ 0. Hence, the error estimate (9.93) indicates that

‖u(tn)− un
N‖�C(ε,T )(K1(u,ε)δ t +N−mε−1−m).

Since the solution is usually smooth around the interfacial area, it can be expected
that the above estimate is valid for all m. Let us ignore for the moment C(ε,T ).
Then, as soon as N > O(ε−1), it can be expected that the error due to the spatial
discretization will decay very fast, in fact faster than any algebraic order, as N in-
creases. In practice, it has been found that having 5-8 points inside the transitional
region is sufficient to represent the interface accurately. On the other hand, for a
lower order method, the corresponding error estimate is similar to (9.93) with N
replaced by h−1, but only with a fixed m, e.g., m = 2 for piece-wise linear finite
elements or second-order finite differences. Hence, for m = 2, one needs to have
h � ε3/2 for the scheme to be convergent, and h ∼ ε3 for the spatial error to be
of order O(h). Therefore, an adaptive procedure is almost necessary for low-order
methods to have a desirable accuracy with reasonable cost.

It is clear that similar arguments can be applied to other schemes for the Allen–
Cahn and Cahn–Hilliard equations.
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9.4 Unsteady Navier–Stokes Equations

The Navier–Stokes equations describe the motion of an incompressible flow. Nu-
merical approximations of Navier–Stokes equations play an important role in many
applications. There has been an enormous amount of research work, and still grow-
ing, on mathematical and numerical analysis of the Navier–Stokes equations. We
refer to the books by Temam (1984), Karniadakis and Sherwin (1999), Deville et al.
(2002), Glowinski (2003) for more details on the approximation of Navier–Stokes
equations by the finite element, spectral and spectral element methods. In this sec-
tion, we briefly describe two robust and accurate projection type schemes and the
related full discretization schemes with a spectral-Galerkin discretization in space.

The unsteady Navier–Stokes equations are as follows:
{

uuut − νΔuuu+ uuu·∇uuu+∇p = fff , in Ω × (0,T ],

∇·uuu = 0, in Ω × [0,T ],
(9.101)

subject to appropriate initial and boundary conditions for uuu. In the above, the un-
knowns are the velocity vector uuu and the pressure p; fff is a given body force, ν is the
kinematic viscosity, Ω is an open and bounded domain in R

d (d = 2 or 3 in practical
situations), and [0,T ] is the time interval.

As for the Stokes equations, a main difficulty in approximating (9.101) is that the
velocity and the pressure are coupled by the incompressibility constraint ∇·uuu = 0.
A straightforward linearly-implicit time discretization of (9.101) would lead to a
generalized Stokes problem (9.38) at each time step. Although the iterative al-
gorithms presented in the previous section are acceptable for the steady Stokes
problem, it is in general very costly to apply an iterative algorithm to solve a Stokes
problem at each time step, particularly for a usual spectral discretization of the
Stokes problem due to the non-optimality of its inf-sup constant.

A popular and effective strategy is to use a fractional step scheme to decouple
the computation of the pressure from that of the velocity. This approach was first
introduced by Chorin (1968) and Temam (1969) in the late 60’s, and its countless
variants have played and are still playing a major role in computational fluid dy-
namics, especially for large three-dimensional numerical simulations. We refer to
Guermond et al. (2006) for an up-to-date review on this subject.

9.4.1 Second-Order Rotational Pressure-Correction Scheme

We first present a rotational pressure-correction scheme (see, for instance,
Timmermans et al. (1996), Guermond and Shen (2004)) which has been widely
used in practice.

Assuming (uuuk,uuuk−1, pk) are known, in the first substep, we look for ũuuk+1 such
that
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⎧

⎨

⎩

1
2δ t

(3ũuuk+1 − 4uuuk + uuuk−1)−νΔ ũuuk+1 +∇pk = ggg(tk+1),

ũuuk+1|∂Ω = 0,
(9.102)

where
ggg(tk+1) = fff (tk+1)− (2(uuuk ·∇)uuuk − (uuuk−1 ·∇)uuuk−1).

Then, in the second substep, we determine (uuuk+1,φ k+1) such that
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2δ t

(3uuuk+1 − 3ũuuk+1)+∇φ k+1 = 0,

∇·uuuk+1 = 0,

uuuk+1 ·nnn|∂Ω = 0.

(9.103)

The remaining task is to define a suitable pk+1 so that we can advance to the next
time step. To this end, we first notice from (9.103) that

Δ ũuuk+1 = Δuuuk+1 +
2δ t

3
∇Δφ k+1 = Δuuuk+1 +∇∇·ũuuk+1.

We then sum up the two substeps and use the above identity to obtain:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2δ t

(3uuuk+1 − 4uuuk + uuuk−1)−νΔuuuk+1 +∇(φ k+1 + pk −ν∇·ũuuk+1) = ggg(tk+1),

∇·uuuk+1 = 0,

uuuk+1 ·nnn|∂Ω = 0.
(9.104)

Therefore, it is clear that we should set

pk+1 = φ k+1 + pk − ν∇·ũuuk+1. (9.105)

We note that the only difference between (9.104)-(9.105) and a coupled second-
order scheme is that

uuuk+1 · τττ|∂Ω =−2δ t
3

∇φ k+1 · τττ|∂Ω = 0

(where τττ is the unit tangential vector) but “small”. Hence, it is expected that the
scheme (9.102), (9.103) and (9.105) provides a good approximation to the Navier–
Stokes equations. Indeed, it is shown in Guermond and Shen (2004) (see also E and
Liu (1996)) that

‖uuu(tk)− uuuk‖+
√

δ t
(‖uuu(tk)− uuuk‖1 + ‖p(tk)− pk‖)� δ t2. (9.106)

We note that in the special case where only one direction is non-periodic, it is shown
in Brown et al. (2001) that the factor of

√
δ t in the above estimate can be removed.

In practice, the coupled system (9.103) is decoupled by taking the divergence of
the first equation in (9.103), leading to
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Δφ k+1 =
3

2δ t
∇·ũuuk+1 in Ω ,

∂φ k+1

∂nnn

∣

∣

∣

∂Ω
= 0;

uuuk+1 = ũuuk+1 − 2δ t
3

∇φ k+1.

(9.107)

Hence, at each time step, the scheme (9.102)-(9.103)-(9.105)only involves inverting
a Poisson-type equation for each of the velocity component ũuuk+1 in (9.102) and a
Poisson equation for φ k+1 in (9.107).

Remark 9.2. If part of the boundary is open, i.e., the problem is prescribed with the
following boundary conditions:

uuu|Γ1 = hhh1, nnnT (ν∇uuu− pI)|Γ2 = hhh2, ∂Ω = Γ1 ∪Γ2, (9.108)

the above scheme should be modified as follows Guermond et al. (2006):
⎧

⎨

⎩

1
2δ t

(3ũuuk+1 − 4uuuk + uuuk−1)−νΔ ũuuk+1 +∇pk = ggg(tk+1),

ũuuk+1|Γ1 = hhhk+1
1 , nnnT (ν∇ũuuk+1 − pkI)|Γ2 = hhhk+1

2 ,

(9.109)

⎧

⎨

⎩

1
2δ t

(3uuuk+1 − 3ũuuk+1)+∇φ k+1 = 0; ∇·uuuk+1 = 0,

uuuk+1 ·nnn|Γ1 = hhhk+1
1 ·nnn, φ k+1|Γ2 = 0;

(9.110)

and
pk+1 = φ k+1 + pk − ν∇·ũuuk+1. (9.111)

9.4.2 Second-Order Consistent Splitting Scheme

Although the rotational pressure-correction scheme is quite accurate, it still suffers

from a splitting error of order δ t
3
2 for the H1-norm of the velocity and L2-norm

of the pressure. We present below a consistent splitting scheme (cf. Guermond and
Shen (2003)) which removes this splitting error. The key idea behind the consis-
tent splitting schemes is to evaluate the pressure by testing the momentum equa-
tion against gradients. By taking the L2-inner product of the momentum equation in
(9.101) with ∇q and noticing that (uuut ,∇q) =−(∇ ·uuut ,q), we obtain

∫

Ω
∇p ·∇q =

∫

Ω
( fff +νΔuuu− uuu·∇uuu) ·∇q, ∀q ∈ H1(Ω). (9.112)

Note that if uuu is known, (9.112) is simply the weak form of a Poisson equation for
the pressure. So the principle we shall follow is to compute the velocity and the
pressure in two consecutive steps: First, we evaluate the velocity by making explicit
the pressure, then we evaluate the pressure by making use of (9.112).

Denoting

gggk+1 = fff k+1 − (2uuun·∇uuun − uuun−1·∇uuun−1) ,
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a second-order semi-implicit splitting scheme can be constructed as follows: find
uuuk+1 and pk+1 such that

3uuuk+1−4uuuk+uuuk−1

2δ t − νΔuuuk+1 +∇(2pk − pk−1) = gggk+1, uuuk+1|∂Ω = 0, (9.113)

(∇pk+1,∇q) = (gggk+1 + νΔuuuk+1,∇q), ∀q ∈ H1(Ω). (9.114)

Notice that we can use (9.113) to replace gggk+1 + νΔuuuk+1 in (9.114) by (3uuuk+1 −
4uuuk+uuuk−1)/(2δ t)+∇(2pk− pk−1), leading to an equivalent formulation of (9.114):

(∇(pk+1 − 2pk + pk−1),∇q) =
(3uuuk+1 − 4uuuk + uuuk−1

2δ t
,∇q
)

, ∀q ∈ H1(Ω).

(9.115)
We observe that if the domain Ω is sufficiently smooth, the solution of the above
problem satisfies the following Poisson equation:

−Δ(pk+1− 2pk + pk−1) =−∇·
(3uuuk+1 − 4uuuk + uuuk−1

2δ t

)

;

∂
∂nnn

(pk+1 − 2pk + pk−1)
∣

∣

∂Ω = 0.

(9.116)

Since the exact pressure does not satisfy any prescribed boundary condition, it is
clear that the pressure approximation from (9.116) is plagued by the artificial Neu-
mann boundary condition which limits its accuracy. However, this defect can be
easily overcome by using the identity Δuuuk+1 = ∇∇·uuuk+1 −∇×∇×uuuk+1, and re-
placing Δuuuk+1 in (9.114) by −∇×∇×uuuk+1. This procedure amounts to removing
in (9.114) the term ∇∇·uuuk+1. It is clear that this is a consistent procedure since the
exact velocity is divergence-free. Thus, (9.114) should be replaced by

(∇pk+1,∇q) = (gggk+1 −ν∇×∇×uuuk+1,∇q), ∀q ∈ H1(Ω). (9.117)

Once again, we can use (9.113) to reformulate (9.117) by replacing gggk+1−ν∇×∇×
uuuk+1 by (3uuuk+1−4uuuk +uuuk−1)/2δ t+∇(2pk− pk−1)−ν∇∇·uuuk+1. Thus, the second-
order consistent splitting scheme takes the form

3uuuk+1 − 4uuuk + uuuk−1

2δ t
−νΔuuuk+1 +∇(2pk − pk−1) = gggk+1, uuuk+1|∂Ω = 0,

(∇ψk+1,∇q) =
(3uuuk+1 − 4uuuk + uuuk−1

2δ t
,∇q
)

, ∀q ∈ H1(Ω),

(9.118)

with
pk+1 = ψk+1 +(2pk − pk−1)−ν∇·uuuk+1. (9.119)

Ample numerical results presented in Guermond and Shen (2003) (see also
Johnston and Liu (2004)) indicate that this scheme provides truly second-order
accurate approximation for both the velocity and the pressure. However, a rigorous
proof of this statement is still not available (cf. Guermond et al. (2006) and Liu
et al. (2007)).
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9.4.3 Full Discretization

It is straightforward to discretize in space the two schemes presented above. For
a rectangular domain, we can use, for instance, the spectral-Galerkin method de-
scribed in Sect. 8.1. To fix the idea, let Ω = (−1,1)d and set

XN = Pd
N ∩H1

0 (Ω)d , MN =
{

q ∈ PN−2 :
∫

Ω
q = 0

}

. (9.120)

Then, the scheme (9.102)-(9.103)-(9.105) can be implemented as follows:

• Step 1: Find ũuuk+1
N

∈ XN such that

3
2δ t

(ũuuk+1
N

,vvvN )+ν(∇ũuuk+1
N

,∇vvvN ) =
1

2δ t
(4uuuk

N
− uuuk−1

N
−∇(2pk

N
− pk−1

N
),vvvN )

+ (IN( fff k+1 − 2uuuk
N
·∇uuuk

N
+ uuuk−1

N
·∇uuuk−1

N
),vvvN ), ∀vvvN ∈ XN;

(9.121)

• Step 2: Find φ k+1
N

∈ MN such that

(∇φ k+1
N

,∇qN ) =
3

2δ t
(ũuuk+1

N
,∇qN ), ∀qN ∈ MN ; (9.122)

• Step 3: Set

uuuk+1
N

= ũuuk+1
N

− 2δ t
3

∇φ k+1
N

,

pk+1
N

= φ k+1
N

+ pk
N
− ν∇·ũuuk+1

N
.

(9.123)

The scheme (9.118)-(9.119) can be implemented in a similar way:

• Step 1: Find uuuk+1
N

∈ XN such that

3
2δ t

(uuuk+1
N

,vvvN )+ν(∇uuuk+1
N

,∇vvvN ) =
1

2δ t

(

4uuuk
N
− uuuk−1

N
−∇(2pk

N
− pk−1

N
),vvvN

)

+(IN( fff k+1 − 2uuuk
N
·∇uuuk

N
+ uuuk−1

N
·∇uuuk−1

N
),vvvN ), ∀vvvN ∈ XN ;

(9.124)

• Step 2: Find φ k+1
N

∈ MN such that

(∇φ k+1
N

,∇qN ) =
1

2δ t
(3uuuk+1

N
− 4uuuk

N
+ uuuk−1

N
,∇qN ), ∀qN ∈ MN ; (9.125)

• Step 3: Set
pk+1

N
= φ k+1

N
+ 2pk

N
− pk−1

N
−νΠN−2∇·uuuk+1

N
, (9.126)

where ΠN−2 is the L2-projection operator onto MN−2.

Hence, at each time step, the two spectral-projection schemes presented above only
involve a Poisson equation for the velocity and a Poisson equation for the pressure.
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9.5 Axisymmetric Flows in a Cylinder

In this section, we apply the spectral-projection method presented above to simulate
an incompressible flow inside a cylinder. To simplify the presentation, we assume
that the flow is axisymmetric, so we are effectively dealing with a two-dimensional
problem. We refer to Lopez et al. (2002) for the extension to full three-dimensional
incompressible flows in a cylinder. For more details on the physical background of
this problem and its numerical simulations, we refer to Lopez and Perry (1992),
Lopez and Shen (1998) and the references therein.

9.5.1 Governing Equations and the Time Discretization

Consider a flow in an enclosed cylinder with the height H and radius R. The flow
is driven by a bottom rotation rate of Ω rad s−1. We shall non-dimensionalize the
governing equations with the radius of the cylinder R as the length scale and 1/Ω as
the time scale. The Reynolds number is then Re = ΩR2/ν , where ν is the kinematic
viscosity. The flow is governed by another non-dimensional parameter, the aspect
ratio of the cylinder Λ = H/R. Therefore, the domain for the space variables (r,z)
is the rectangle

D =
{

(r,z) : r ∈ (0,1) and z ∈ (0,Λ )
}

.

Let (u,v,w) be the velocity field in the cylindrical polar coordinates (r,θ ,z) and
assume the flow is axisymmetric, i.e., independent of the azimuthal θ direction. The
Navier–Stokes equation (9.101) governing this axisymmetric flow in the cylindrical
polar coordinates read (cf. Lopez and Shen (1998))

ut + uur +wuz − 1
r

v2 =−pr +
1

Re

(

∇̃2u− 1
r2 u
)

, (9.127)

vt + uvr +wvz +
1
r

uv =
1

Re

(

∇̃2v− 1
r2 v
)

, (9.128)

wt + uwr +wwz =−pz +
1

Re
∇̃2w, (9.129)

1
r
(ru)r +wz = 0, (9.130)

where

∇̃2 = ∂ 2
r +

1
r

∂r + ∂ 2
z (9.131)

is the Laplace operator in axisymmetric cylindrical coordinates. The boundary con-
ditions for the velocity components are zero everywhere except that (a) v = r at
{z = 0} which is the bottom of the cylinder, and (b) wr = 0 at ∂D\{z = 0}.
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To simplify the presentation, we introduce the following notation:

Δ̃ =

⎛

⎝

∇̃2 − 1/r2, 0, 0
0, ∇̃2 − 1/r2, 0
0, 0, ∇̃2

⎞

⎠ , ∇̃ =

⎛

⎝

∂r

0
∂z

⎞

⎠ ,

Γ1 =
{

(r,z) : r ∈ (0,1) and z = 0
}

, Γ2 =
{

(r,z) : r = 0 and z ∈ (0,Λ)
}

,

and rewrite (9.127)–(9.130) in vector form,

ut +N(u) =−∇̃p+
1

Re
Δ̃u,

∇̃ ·u :=
1
r
(ru)r +wz = 0,

u|∂D\(Γ1∪Γ2) = 000, u|Γ1 = (0,r,0)T , (u,v,wr)
T |Γ2 = 000,

(9.132)

where u = (u,v,w)T and N(u) is the vector containing the nonlinear terms in
(9.127)-(9.129).

To overcome the difficulties associated with the nonlinearity and the coupling of
velocity components and the pressure, we adapt the following semi-implicit second-
order rotational pressure-correction scheme (cf. Sect. 9.4) for the system of equa-
tions (9.132):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2δ t

(3ũK+1u− 4uk +uk−1)− 1
Re

Δ̃ ũ

=−∇̃pk − (2N(uk)−N(uk−1)),

ũk+1|∂D\(Γ1∪Γ2) = 000, ũk+1|Γ1 = (0,r,0)T ,

(ũk+1, ṽk+1, w̃k+1
r )T |Γ2 = 000,

(9.133)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

3
2δ t

(uk+1 − ũk+1)+ ∇̃φ k+1 = 000,

∇̃ ·uk+1 = 0,

(uk+1 − ũk+1) ·n|∂D = 0,

(9.134)

and

pk+1 = pk + φ k+1 − 1
Re

∇̃ ·uk+1, (9.135)

where δ t is the time step, n is the outward normal at the boundary, and ũk+1 =
(ũk+1, ṽk+1, w̃k+1)T and uk+1 =(uk+1,vk+1,wk+1)T are respectively the intermediate
and final approximations of u at time t = (k+ 1)δ t.

It is easy to see that ũk+1 can be determined from (9.133) by solving three
Helmholtz-type equations. Instead of solving for (uk+1,φ k+1) from the cou-
pled first-order differential equation (9.134), we apply the operator “∇̃·” (see the
definition in (9.132)) to the first equation in (9.134) to obtain an equivalent system

∇̃2φ k+1 =
3

2δ t
∇̃ · ũk+1,

∂nnnφ k+1|∂D = 0,
(9.136)
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and

uk+1 = ũk+1 − 2δ t
3

∇̃φ k+1. (9.137)

Thus, (uk+1,φ k+1) can be obtained by solving an additional Poisson equa-
tion (9.136).

Next, we apply the spectral-Galerkin method for solving these equations.

9.5.1.1 Spatial Discretization

We first transform the domain D to the unit square D∗ = (−1,1)× (−1,1) by using
the transformations r = (y+ 1)/2 and z = Λ(x+ 1)/2. Then, at each time step, the
systems (9.133) and (9.136) lead to the following four Helmholtz-type equations:

αu−βuxx − 1
y+ 1

((y+ 1)uy)y +
γ

(y+ 1)2 u = f in D∗,

u|∂D∗ = 0;
(9.138)

αv−βvxx − 1
y+ 1

((y+ 1)vy)y +
γ

(y+ 1)2 v = g in D∗,

v|∂D∗\Γ ∗
1
= 0, v|Γ ∗

1
=

1
2
(y+ 1);

(9.139)

αw−βwxx − 1
y+ 1

((y+ 1)wy)y = h, in D∗,

w|∂D∗\Γ ∗
2
= 0, wr|Γ ∗

2
= 0;

(9.140)

and

−β pxx − 1
y+ 1

((y+ 1)py)y = q in D∗,

∂nnn p|∂D∗ = 0.
(9.141)

In the above,

Γ ∗
1 = {(x,y) : x =−1, y ∈ (−1,1)}, Γ ∗

2 = {(x,y) : x ∈ (−1,1),y =−1},
α =

3
8

Re/δ t, β = Λ−2, γ = 1,

and f , g, h, q are known functions depending on the solutions at the two previous
time steps.

The spectral-Galerkin method presented in Sect. 8.2 (cf. Shen (1997)) can be
directly applied to (9.138)-(9.141). We next discuss the method for solving (9.138)
in some detail. The other three equations can be treated similarly.
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Let PK be the space of all polynomials of degree ≤ K, and set PNM = PN ×PM.
Define

XNM =
{

w ∈ PNM : w|∂D∗ = 0
}

.

Then the spectral-Galerkin method for (9.138) is

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Find uNM ∈ XNM such that

α
(

(y+ 1)uNM ,v
)

ω̃ −β
(

(y+ 1)∂ 2
x uNM ,v

)

ω̃ − (((y+ 1)∂yuNM

)

y,v
)

ω̃

+ γ
( 1

y+ 1
uNM ,v

)

ω̃ =
(

(y+ 1) f ,v
)

ω̃ , ∀ v ∈ XNM ,

(9.142)

where ω̃ = ω(x)ω(y) with ω(s) being 1 or (1− s2)−1/2, depending on whether
the Legendre or Chebyshev polynomials are used. Equation (9.142) is derived by
first multiplying (9.138) by (y + 1)ω(x)ω(y) and then integrating over D∗. The
multiplication by (y+1) is natural since the Jacobian of the transformation from the
Cartesian coordinates to cylindrical coordinates is r =(y+1)/2 in the axisymmetric
case. Since uNM = 0 at y =−1, we see that all terms in (9.142) are well defined and
that no singularity is present.

For this problem, it is easy to verify that

XNM = span
{

φi(x)ρ j(y) : i = 0,1, . . . ,N − 2; j = 0,1, . . . ,M− 2
}

,

with φl(s) = ρl(s) = pl(s)− pl+2(s) where pl(s) is either the l-th degree Legendre
or Chebyshev polynomial. Set

uNM =
N−2

∑
i=0

M−2

∑
j=0

ui jφi(x)ρ j(y),

and

ai j =
∫ 1

−1
φ j(x)φi(x)ω(x)dx, bi j =−

∫ 1

−1
φ ′′

j (x)φi(x)ω(x)dx,

ci j =

∫ 1

−1
(y+ 1)ρ j(y)ρi(y)ω(y)dy,

di j =−
∫ 1

−1
((y+ 1)ρ ′

j(y))
′ ρi(y)ω(y)dy,

ei j =

∫ 1

−1

1
y+ 1

ρ j(y)ρi(y)ω(y)dy,

fi j =
∫

D∗
(y+ 1) f ρ j(y)φi(x)ω(x)ω(y)dxdy,

(9.143)

and let A, B, C, D, E, F and U be the corresponding matrices with entries given
above. Then (9.142) is equivalent to the matrix system

αAUC+βBUC+AUD+ γAUE = F. (9.144)
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Note that ei j is well defined in spite of the term 1
y+1 , since ρi(−1) = 0. In the Legen-

dre case, the matrices A, B, C, D, and E are all symmetric and sparsely banded. The
entries of these matrices are either given in Sect. 8.2 and/or can be easily computed
by using the properties of Legendre and Chebyshev polynomials.

9.5.2 Treatment for the Singular Boundary Condition

The boundary condition for v is discontinuous at the lower right corner (r = 1,z = 0).
This singular boundary condition is a mathematical idealization of the physical sit-
uation, where there is a thin gap over which v adjusts from 1 on the edge of the
rotating endwall to 0 on the sidewall. Therefore, it is appropriate to use a regularized
boundary condition (so that v is continuous) which is representative of the actual
gap between the rotating endwall and the stationary sidewall in experiments.

In finite difference or finite element schemes, the singularity is usually regu-
larized over a few grid spacings in the neighborhood of the corner in an ad hoc
manner. However, this simple treatment leads to a mesh-dependent boundary con-
dition which in turn results in mesh-dependent solutions which prevents a sensible
comparison between solutions with different meshes. Essentially, the grid spacing
represents the physical gap size.

The singular boundary condition at r = 1 is

v(z) = 1 at z = 0, v(z) = 0 for 0 < z ≤ Λ ,

Table 9.1 Largest negative values of the angular momentum Γ = rv on the grid points of a 201×
501 uniform mesh, corresponding to the solutions for Stokes flow shown in Fig. 9.4

N,M min(Γ) with ε = 0.006 min(Γ) with ad hoc B.C.
56,80 −2.472×10−6 −4.786×10−3

48,64 −9.002×10−6 −6.510×10−3

40,48 −1.633×10−4 −6.444×10−3

which is similar to that of the driven cavity problem. Unless this singularity is treated
appropriately, spectral methods may have severe difficulty dealing with it. In the
past, most computations with spectral methods avoided this difficulty by using reg-
ularized boundary conditions which, unfortunately, do not approximate the physical
boundary condition (see, e.g., Shen (1991), Demaret and Deville (1991)). A sensible
approach is to use the boundary layer function

vε(z) = exp
(

− 2z
Λε

)

,

which has the ability to approximate the singular boundary condition to within any
prescribed accuracy. Outside a boundary layer of width O(ε), vε(z) converges to
v(z) exponentially as ε → 0. However, for a given ε , approximately ε−1/2 colloca-
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Fig. 9.3 Variation of IMvε (with Λ = 2.5) in the vicinity of the singularity at z = 0 for (a) ε = 0.006
and (b) ε = 0.003, and various M as indicated

tion points are needed to represent the boundary layer function vε . In other words,
for a fixed number of modes M, we can only use ε ≥ ε(M) where ε(M) can be
approximately determined by comparing IMvε and vε , where IMvε is the polynomial
interpolant of vε at the Gauss-Lobatto points.

Although it is virtually impossible to match the exact physical condition in the
experimental gap region, the function vε with ε = 0.006 does provide a reasonable
representation of the experimental gap. The function vε can be resolved spectrally
with M ≥Mε modes, where Mε is such that IMvε for a given ε is non-oscillatory. Due
to the nonlinear term v2/r in (9.127), we also require IMvε/2 to be non-oscillatory
(since (vε)

2 = vε/2). Figure 9.3a shows IMv0.006 for various M. It is clear that
I48v0.006 is non-oscillatory. However, from Fig. 9.3b we see that I48v0.003 is oscil-
latory near z = 0, while I64v0.003 is not. Thus, M ≈ 64 is required for ε = 0.006.

Figure 9.4 shows plots of the solution for Stokes flow (Re = 0) for this problem.
The governing equations (9.127)-(9.130) in the case Re = 0 reduce to

∇̃2v− 1
r2 v = ∇̃2Γ = 0,

with Γ = 0 on the axis, top endwall and sidewall, and Γ = r2 on the rotating bottom
endwall. The singular boundary condition on the sidewall has been regularized in
Fig. 9.4a with v0.006 and in Fig. 9.4b with the ad hoc method. For the solution of the
Stokes problem with ε = 0.006, we judge that the error is acceptably small at M = 64
and is very small at M = 80. The measure of error used here is the largest value of
negative Γ of the computed solution at the grid points of a uniform 201×501 mesh;
the true solution has Γ ≥ 0. These values are listed in Table 9.1. In contrast, with
the ad hoc method the error does not decrease as M increases and the computed
solutions exhibit large errors for all values of M considered. We refer to Lopez and
Shen (1998) for more detail on this problem.
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a b

Fig. 9.4 Contours of the angular momentum Γ = rv for Stokes flow (Re = 0), using v0.006 (a) and
the ad hoc (b) regularization of the corner singularity. The leftmost plot in each set has N = 56,
M = 80, the middle plots have N = 48, M = 64, and the right plots have N = 40, M = 48. All have
been projected on to 201 uniform radial locations and 501 uniform axial locations

9.6 Gross-Pitaevskii Equation

The nonlinear Schrödinger equation plays an important role in many fields of math-
ematical physics. In particular, when the temperature T is much smaller than the
critical temperature Tc, a Bose–Einstein condensate (BEC) is well described by
the macroscopic wave function ψ = ψ(x, t) whose evolution is governed by a self-
consistent, mean field nonlinear Schrödinger equation (NLSE) known as the Gross-
Pitaevskii equation (GPE) (cf. Gross (1961), Pitaevskii (1961)). We present in this
section a fourth-order time-splitting spectral method, developed in Bao and Shen
(2005), for the numerical simulation of BEC. The scheme preserves all essential
features of the GPE, such as conservative, time reversible and time transverse in-
variants, and it is explicit, unconditionally stable, and spectrally accurate in space
and fourth-order accurate in time.

9.6.1 GPE and Its Time Discretization

We consider the non-dimensional Gross-Pitaevskii equation of the form

i
∂ψ(x, t)

∂ t
=−1

2
∇2ψ(x, t)+V(x)ψ(x, t)+β |ψ(x, t)|2ψ(x, t), (9.145)

where the unknown is the complex wave function ψ , i =
√−1, β is a positive con-

stant and

V (x) =
(

γ2
x x2 + γ2

y y2 + γ2
z z2)/2 (9.146)
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is the trapping potential. There are two typical extreme regimes between the trap fre-
quencies: (a) γx = 1, γy ≈ 1 and γz � 1, it is a disk-shaped condensation; (b) γx � 1,
γy � 1 and γz = 1, it is a cigar-shaped condensation. Following the procedure used
in Bao et al. (2003b) and Leboeuf and Pavloff (2001), the disk-shaped condensation
can be effectively modeled by a 2-D GPE. Similarly, a cigar-shaped condensation
can be reduced to a 1-D GPE.

In general, we consider the GPE in d-dimension (d = 1,2,3):

i
∂ψ(x, t)

∂ t
=−1

2
∇2ψ +Vd(x)ψ +βd |ψ |2ψ , x ∈ R

d ,

ψ(x,0) = ψ0(x), x ∈ R
d ,

(9.147)

with

βd =

⎧

⎨

⎩

√γxγy/2π ,
√

γz/2π ,
1,

Vd(x) =

⎧

⎨

⎩

γ2
z z2/2, d = 1,
(

γ2
x x2 + γ2

y y2
)

/2, d = 2,
(

γ2
x x2 + γ2

y y2 + γ2
z z2
)

/2, d = 3,
(9.148)

where γx, γy and γz are positive constants. It is easy to check the conservation:

‖ψ(·, t)‖2 :=
∫

Rd
|ψ(x, t)|2 dx ≡

∫

Rd
|ψ0(x)|2 dx. (9.149)

For convenience, we normalize the initial condition as
∫

Rd
|ψ0(x)|2 dx = 1. (9.150)

Since the GPE is time reversible and time transverse invariant (cf. Bao et al.
(2003b)), it is desirable to design the numerical scheme that preserves these proper-
ties as well.

For the time discretization, we shall use the fourth-order splitting scheme (D.31).
For this purpose, we rewrite the GPE (9.147) in the form

ψt = f (ψ) :=−iAψ − iBψ with ψ(x,0) = ψ0(x), (9.151)

where

Aψ = βd |ψ(x, t)|2ψ(x, t); Bψ =−1
2

∇2ψ(x, t)+Vd(x)ψ(x, t). (9.152)

The key idea is to efficiently solve the following two sub-problems:

i
∂ψ(x, t)

∂ t
= Aψ(x, t), x ∈ R

d , (9.153)

and

i
∂ψ(x, t)

∂ t
= Bψ(x, t), x ∈ R

d ; lim
|x|→+∞

ψ(x, t) = 0, (9.154)

where the operators A and B are defined by (9.152).
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Multiplying (9.153) by ψ, and taking the imaginary part from both sides of the
resulting equation, we find that ∂t |ψ |2 = 0, which implies that |ψ(x, t)| is invariant
in t. Hence, for t ≥ ts (for any given ts), (9.153) becomes

i
∂ψ(x, t)

∂ t
= βd |ψ(x, ts)|2ψ(x, t), x ∈R

d, (9.155)

which can be integrated exactly. More precisely, we have

ψ(x, t) = e−iβd |ψ(x,ts)|2(t−ts)ψ(x, ts), t ≥ ts, x ∈ R
d. (9.156)

Now, let = {xk : k ∈ ΣK} be a set of collocation points, τ be a time step size. Let
ψ(x, t) be the exact solution of (9.154) with ψ(x,0) = ψ0(x). Then, the fourth-order
time-splitting spectral-collocation method for the GPE (9.151) is as follows:
Let ψn

k be the approximation of ψ(xk, tn), and Fτ (w,ψ0)(x) be a spectral approxi-
mation (to be specified below) of ψ(x,wτ). We compute ψn+1

k by

ψ(1)
k = e−2iw1τ βd |ψn

k |2 ψn
k , ψ (2)

k = Fτ(w2,ψ (1))(xk),

ψ(3)
k = e−2iw3τβd |ψ(2)

k |2 ψ (2)
k , ψ (4)

k = Fτ (w4,ψ(3))(xk),

ψ(5)
k = e−2iw3τβd |ψ(4)

k |2 ψ (4)
k , ψ (6)

k = Fτ (w2,ψ(5))(xk),

ψn+1
k = e−2iw1τβd |ψ(6)

k |2 ψ (6)
k , k ∈ ΣK ,

(9.157)

where wi, i = 1,2,3,4 are given in (D.33).
It remains to construct an efficient and accurate scheme to obtain Fτ (w,ψ0) for

(9.154). We shall construct below suitable spectral basis functions which are eigen-
functions of B so that e−iBΔtψ can be evaluated exactly (which is necessary for the
full scheme to be time reversible and time transverse invariant).

9.6.2 Hermite-Collocation Method for the 1-D GPE

In one-dimensional case, (9.154) is reduced to

i
∂ψ
∂ t

= Bψ =−1
2

∂ 2ψ
∂ z2 +

γ2
z z2

2
ψ , z ∈ R, t > 0;

lim
|z|→+∞

ψ(z, t) = 0, t ≥ 0,
(9.158)

with the normalization (9.150):

‖ψ(·, t)‖2 =
∫ ∞

−∞
|ψ(z, t)|2dz ≡

∫ ∞

−∞
|ψ0(z)|2dz = 1. (9.159)
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Since the problem (9.158) is posed on the whole line, it is natural to use a spectral
method based on Hermite functions. Although the standard Hermite functions could
be used as basis functions here, they are not the most appropriate ones. Below,
we construct properly scaled Hermite functions which are eigenfunctions of B. Let
{Hl(z)} be the standard Hermite polynomials (cf. (7.58)). Define the scaled Hermite
function

hl(z) =
γ1/4

z

π1/4
√

2l l!
Hl
(√

γzz
)

e−γzz2/2, z ∈ R. (9.160)

It follows from (7.57) and (7.58) that
∫ ∞

−∞
hl(z)hn(z) dz =

1√
π2ll!2nn!

∫ ∞

−∞
Hl(z)Hn(z)e

−z2
dz = δln, (9.161)

and

Bhl(z) =−1
2

h′′l (z)+
γ2

z z2

2
hl(z) = μ z

l hl(z), μ z
l =

2l + 1
2

γz. (9.162)

Hence, {hl} are the eigenfunctions of B defined in (9.158).
We now describe the Gauss quadrature associated with the scaled Hermite func-

tions. Let {xk,ωk}N
k=0 be the Hermite-Gauss points and weights given in Theorem

7.3. We define the scaled Hermite-Gauss points and weights by

zk = xk/
√

γz, ω z
k = ωk ex2

k/
√

γz, 0 ≤ k ≤ N. (9.163)

We then derive from (7.80) and (9.160) the (discrete) orthogonality:

N

∑
k=0

hl(zk) hn(zk)ω z
k =

N

∑
k=0

Hl(xk)

π1/4
√

2l l!

Hn(xk)

π1/4
√

2nn!
ωk = δln, 0 ≤ l,n ≤ N. (9.164)

Define XN = span{hl : l = 0,1, . . . ,N}. The Hermite-collocation method for
(9.158) is:
Find ψN(z, t) ∈ XN , i.e.,

ψN(z, t) =
N

∑
l=0

ψ̂l(t) hl(z), (9.165)

such that

i
∂ψN

∂ t
(zk, t) = Bψ(zk, t) =−1

2
∂ 2ψN

∂ z2 (zk, t)+
γ2

z z2
k

2
ψN(zk, t), 0 ≤ k ≤ N. (9.166)

Note that lim|z|→+∞ hl(z)=0 (cf. Sect. 7.2), so the decay condition lim|z|→+∞ ψN(z, t)
= 0 is automatically satisfied.

Plugging (9.165) into (9.166), thanks to (9.164) and (9.162), we find

i
dψ̂l(t)

dt
= μ z

l ψ̂l(t) =
2l + 1

2
γz ψ̂l(t), l = 0,1, . . . ,N. (9.167)
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Hence,

ψ̂l(t) = e−iμz
l (t−ts)ψ̂l(ts), t ≥ ts. (9.168)

In other words, let φ(z) = ∑N
l=0 φ̂l hl(z), we have

Fτ (w,φ)(z) =
N

∑
l=0

e−iμz
l wτ φ̂l hl(z). (9.169)

Since each of the sub-problems (9.153) and (9.154) is conservative and our nu-
merical scheme (9.157) with (9.169) solves the two sub-problems exactly in the dis-
crete space, one can easily establish the following result (cf. Bao and Shen (2005)).

Lemma 9.1. The time-splitting Hermite-collocation method (9.157) with (9.169)
preserves the conservation (9.149), i.e.,

‖ψn‖2
l2 =

N

∑
k=0

ω z
k |ψn

k |2 =
N

∑
k=0

ω z
k |ψ0(zk)|2 = ‖ψ0‖2

l2 , n = 0,1, . . . . (9.170)

We leave the proof of this lemma as an exercise (see Problem 9.6).

9.6.3 Laguerre Method for the 2-D GPE with Radial Symmetry

In the 2-D case with radial symmetry, i.e., d = 2, γx = γy and ψ0(x,y) = ψ0(r) (with
r =
√

x2 + y2) in (9.147)–(9.148), we can write the solution of (9.147)–(9.148) as
ψ(x,y, t) = ψ(r, t). Therefore, (9.154) becomes

i
∂ψ(r, t)

∂ t
= Bψ(r, t) =− 1

2r

∂
∂ r

(

r
∂ψ(r, t)

∂ r

)

+
γ2

r r2

2
ψ(r, t),

lim
r→∞

ψ(r, t) = 0,
(9.171)

where γr = γx = γy. The normalization (9.150) reduces to

‖ψ(·, t)‖2 = 2π
∫ ∞

0
|ψ(r, t)|2r dr ≡ 2π

∫ ∞

0
|ψ0(r)|2r dr = 1. (9.172)

Note that it can be shown, similarly as for the Poisson equation in a 2-D disk
(cf. Shen (1997)), that the problem (9.171) admits a unique solution without any
condition at the pole r = 0.

Since (9.171) is posed on a semi-infinite interval, it is natural to consider La-
guerre functions. Again the standard Laguerre functions need to be properly scaled
so that they are the eigenfunctions of B.
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Let {Lm} be the usual Laguerre polynomials as defined in (7.3). Recall the
properties:

∫ ∞

0
Lm(r)Ln(r)e

−rdr = δmn,

rL ′′
m (r)+ (1− r)L ′

m(r)+mLm(r) = 0.
(9.173)

We define the scaled Laguerre functions by

L̂m(r) =

√

γr

π
e−γrr2/2 Lm(γrr2), 0 ≤ r < ∞. (9.174)

It follows from (9.173) and (9.174) that

2π
∫ ∞

0
L̂m(r)L̂n(r)r dr =

∫ ∞

0
Lm(r)Ln(r)e

−r dr = δmn, (9.175)

and

− 1
2r

∂
∂ r

(

r
∂ L̂m(r)

∂ r

)

+
1
2

γ2
r r2L̂m(r) = μ r

mL̂m(r), μ r
m = γr(2m+ 1). (9.176)

Hence, {L̂m} are the eigenfunctions of B defined in (9.171).
We now introduce the Gauss-Radau quadrature associated with the scaled

Laguerre functions. Let {x(0)j ,ω (0)
j }M

j=0 be the Laguerre-Gauss-Radau points and
weights given in Theorem 7.1. We have from (7.1) and (7.29) that

M

∑
j=0

Lm
(

x(0)j

)

Ln
(

x(0)j

)

ω (0)
j = δmn, 0 ≤ n,m ≤ M. (9.177)

Define the corresponding scaled Laguerre-Gauss-Radau points and weights by

r j =

√

x(0)j /γr, ω r
j = πω (0)

j ex
(0)
j /γr, 0 ≤ j ≤ M. (9.178)

Hence, we have from (9.174) and (9.177) that

M

∑
j=0

L̂m(r j)L̂n(r j)ωr
j =

M

∑
j=0

Lm
(

x(0)j

)

Ln
(

x(0)j

)

ω (0)
j = δmn, (9.179)

for all 0 ≤ m,n ≤ M.
Let YM = span

{

L̂m : m = 0,1, . . . ,M
}

. The Laguerre-collocation method for
(9.171) is:
Find ψM(r, t) ∈ YM , i.e.,

ψM(r, t) =
M

∑
m=0

ψ̂m(t)L̂m(r), 0 ≤ r < ∞, (9.180)

such that

i
∂ψM

∂ t
(r j, t) = BψM(r j , t) =− 1

2r
∂
∂ r

(

r
∂ψM

∂ r

)

(r j, t)+
γ2

r r2
j

2
ψM(r j, t), (9.181)
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for 0 ≤ j ≤ M. Note that lim|r|→∞ L̂m(r) = 0 (cf. (7.22)), so ψM automatically meets
ψM → 0 as |r| → ∞. Plugging (9.180) into (9.181), we find from (9.179) and (9.176)
that

i
dψ̂m(t)

dt
= μ r

mψ̂m(t) = γr(2m+ 1)ψ̂m(t), 0 ≤ m ≤ M. (9.182)

Hence,

ψ̂m(t) = e−iμr
m(t−ts)ψ̂m(ts), t ≥ ts. (9.183)

In other words, let φ(r) = ∑M
m=0 φ̂m L̂m(r), we have

Fτ (w,φ)(r) =
M

∑
m=0

e−iμr
mwτ φ̂m L̂m(r). (9.184)

Similar to Lemma 9.1, we have the following stability result.

Lemma 9.2. The time-splitting Laguerre-collocation method (9.157) with (9.184)
preserves the conservation (9.149), i.e.,

‖ψn‖2
l2 =

M

∑
j=0

ωr
j |ψn

j |2 =
M

∑
j=0

ωr
j |ψ0(r j)|2 = ‖ψ0‖2

l2 , n ≥ 0.

9.6.4 Laguerre-Hermite Method for the 3-D GPE with Cylindrical
Symmetry

Consider now the 3-D case with cylindrical symmetry, i.e., d = 3,γx = γy and
ψ0(x,y,z) = ψ0(r,z) in (9.147)-(9.148), its solution with d = 3 is of the form
ψ(x,y,z, t) = ψ(r,z, t). Therefore, (9.154) becomes

i
∂ψ(r,z, t)

∂ t
= Bψ(r,z, t) =−1

2

[

1
r

∂
∂ r

(

r
∂ψ
∂ r

)

+
∂ 2ψ
∂ z2

]

+
1
2

(

γ2
r r2 + γ2

z z2)ψ, 0 < r < ∞, −∞ < z < ∞, t > 0,

lim
r→∞

ψ(r,z, t) = 0, lim
|z|→∞

ψ(r,z, t) = 0, t ≥ 0,

(9.185)

where γr = γx = γy. The normalization (9.150) now is

‖ψ(·, t)‖2 = 2π
∫ ∞

0

∫ ∞

−∞
|ψ(r,z, t)|2r dzdr ≡ ‖ψ0‖2 = 1. (9.186)

Since the two-dimensional computational domain here is a tensor product of a semi-
infinite interval and the whole line, it is natural to combine the Hermite-collocation
and Laguerre-collocation methods. In particular, the product of scaled Hermite and
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Laguerre functions {L̂m(r)hl(z)} are eigenfunctions of B defined in (9.185), since
we derive from (9.162) and (9.176) that

− 1
2

[

1
r

∂
∂ r

(

r
∂
∂ r

)

+
∂ 2

∂ z2

]

(L̂m(r) hl(z))+
1
2

(

γ2
r r2 + γ2

z z2) (L̂m(r) hl(z))

=

[

− 1
2r

d
dr

(

r
dL̂m(r)

dr

)

+
1
2

γ2
r r2L̂m(r)

]

hl(z)

+

[

−1
2

d2hl(z)

dz2 +
1
2

γ2
z z2hl(z)

]

L̂m(r)

= μ r
mL̂m(r)hl(z)+ μ z

l hl(z)L̂m(r) = (μ r
m + μ z

l )L̂m(r)hl(z).

(9.187)

Now, let XMN = span
{

L̂m(r)hl(z) : m = 0,1, . . . ,M, l = 0,1, . . . ,N
}

. The Laguerre-
Hermite collocation method for (9.185) is:
Find ψMN(r,z, t) ∈ XMN , i.e.,

ψMN(r,z, t) =
M

∑
m=0

N

∑
l=0

ψ̃ml(t) L̂m(r) hl(z), (9.188)

such that, for all 0 ≤ j ≤ M, 0 ≤ k ≤ N,

i
∂ψMN

∂ t
(r j ,zk, t) = BψMN(r j ,zk, t)

=−1
2

[

1
r

∂
∂ r

(

r
∂ψMN

∂ r

)

+
∂ 2ψMN

∂ z2

]

(r j ,zk, t)

+
1
2

(

γ2
r r2

j + γ2
z z2

k

)

ψMN(r j ,zk, t).

(9.189)

Inserting (9.188) into (9.189), we find from (9.162), (9.176) and (9.187) that

i
dψ̃ml(t)

dt
=
(

μ r
m + μ z

l

)

ψ̃ml(t), 0 ≤ m ≤ M, 0 ≤ l ≤ N. (9.190)

Hence,
ψ̃ml(t) = e−i(μr

m+μz
l )(t−ts)ψ̃ml(ts), t ≥ ts. (9.191)

In other words, let φ(r,z) = ∑M
m=0 ∑N

l=0 φ̂ml L̂m(r)hl(z), we have

Fτ(w,φ)(r,z) =
M

∑
m=0

N

∑
l=0

e−i(μr
m+μz

l )wτ φ̂ml L̂m(r)hl(z). (9.192)

We have the following stability result.

Lemma 9.3. The time-splitting Laguerre-Hermite collocation method (9.157) with
(9.192) preserves the conservation (9.149), i.e.,

‖ψn‖2
l2 =

M

∑
j=0

N

∑
k=0

|ψn
jk|2ω r

j ω
z
k =

M

∑
j=0

N

∑
k=0

|ψ0(r j,zk)|2ωr
j ω

z
k

= ‖ψ0‖2
l2 , n ≥ 0.

(9.193)
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9.6.5 Numerical Results

We now present some numerical results. We define the condensate width along the
r- and z-axis as

σ2
α =
∫

Rd
α2|ψ(x, t)| dx, α = x,y,z, σ 2

r = σ 2
x +σ2

y .

Example 9.1. The 1-D Gross-Pitaevskii equation. We choose d = 1, γz = 2, and
β1 = 50 in (9.147). The initial data ψ0(z) is chosen as the ground state of the 1-D
GPE (9.147) with d = 1, γz = 1 and β1 = 50. This corresponds to an experimental
setup where initially the condensate is assumed to be in its ground state, and the trap
frequency is doubled at t = 0.

We solve this problem by using (9.157) with N = 31 and time step k = 0.001.
Figure 9.5 plots the condensate width and central density |ψ(0, t)|2 as functions
of time. Our numerical experiments also show that the scheme (9.157) with N = 31
gives similar numerical results as the TSSP method (cf. Bao et al. (2003a)) for this
example, with 513 grid points over the interval [−12,12] and time step τ = 0.001.

In order to test the 4th-order accuracy in time of (9.157), we compute a numer-
ical solution with a very fine mesh, e.g., N = 81, and a very small time step, e.g.,
τ = 0.0001, as the ‘exact’ solution ψ . Let ψτ denote the numerical solution under
N = 81 and time step τ. Since N is large enough, the truncation error from space
discretization is negligible compared to that from time discretization. Table 9.2
shows the errors max |ψ(t)−ψτ(t)| and ‖ψ(t)−ψτ(t)‖l2 at t = 2.0 for different
time steps τ . The results in Table 9.2 demonstrate the 4th-order accuracy in time of
(9.157).
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Fig. 9.5 Evolution of central density and condensate width in Example 9.1. ‘–’: ‘exact solutions’
obtained by the TSSP in Bao et al. (2003a) with 513 grid points over an interval [−12,12]; ‘+++’:
Numerical results by (9.157) with 31 grid points on the whole z-axis. (a). Central density |ψ(0, t)|2;
(b). Condensate width σz
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Table 9.2 Time discretization errors of (9.157) at t = 2 with N = 81
τ 1/40 1/80 1/160 1/320

max |ψ(t)−ψτ(t)| 0.1619 4.715E-6 3.180E-7 2.036E-8
‖ψ(t)−ψτ (t)‖l2 0.2289 7.379E-6 4.925E-7 3.215E-8

Example 9.2. The 2-D Gross-Pitaevskii equation with radial symmetry. We
choose d = 2, γr = γx = γy = 2, β2 = 50 in (9.147). The initial data ψ0(r) is chosen as
the ground state of the 2-D GPE (9.147) with d = 2, γr = γx = γy = 1 and β2 = 50.
Again this corresponds to an experimental setup where initially the condensate is
assumed to be in its ground state, and the trap frequency is doubled at t = 0.
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Fig. 9.6 Evolution of central density and condensate width ‘–’: ‘exact solutions’ obtained by TSSP
in Bao et al. (2003a) with 5132 grid points over a box [−8,8]2; ‘+ + + ’: Numerical results by
our scheme with 30 grid points on the semi-infinite interval [0,∞). (a). Central density |ψ(0, t)|2;
(b). Condensate width σr

We solve this problem by using the time splitting Laguerre-spectral method with
M = 30 and time step k = 0.001. Figure 9.6 plots the condensate width and central
density |ψ(0, t)|2 as functions of time. Our numerical experiments also show that
our scheme with M = 30 gives similar numerical results as the TSSP method in Bao
et al. (2003a) for this example, with 5132 grid points over the box [−8,8]2 and time
step k = 0.001.

Problems

9.1. State and prove results similar to Theorem 9.3 for the scheme (9.83).

9.2. Implement the Uzawa algorithm for solving the Stokes problem using MN =
{q ∈ PN−2 : (q,1) = 0} and MN = {q ∈ P[λ N] : (q,1) = 0} for λ = 0.7,0.8,0.9 with
N = 16,32,64,128. Explain your results.
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9.3. Prove the statement (9.56).

9.4. Write a program implementing the rotational pressure-correction scheme and
consistent splitting scheme using PN for the velocity and PN−2 for the pressure. Let
the exact solution (uuu, p) of (9.101) be

uuu(x,y, t) = π sin t(sin2πysin2 πx,−sin2πxsin2 πy), p(x,y, t) = sin t cosπxsinπy.

Compare the errors of the velocity and pressure at time t = 1 in both the L2-norm
and H1-norm using the two schemes with N = 32 for δ t = 0.1,0.05,0.025,0.0125.
Explain your results.

9.5. Use the rotational pressure correction scheme to compute the steady state so-
lution of the regularized driven cavity problem, i.e., Ω = (0,1)2 with the boundary
condition

uuu|y=1 = (16x2(1− x2),0), uuu|∂Ω\{y=1} = 0.

Take N = 32 and Re= 1/ν = 400. Compare your results with the benchmark results
in Shen (1991).

9.6. Show the stability result in Lemma 9.1.





Appendix A
Properties of the Gamma Functions

We list here some basic properties of the Gamma function (see, e.g., Abramowitz
and Stegun (1964)), defined by

Γ (z) =
∫ ∞

0
tz−1e−tdt, ∀z ∈C with Re(z) > 0. (A.1)

In particular, we have Γ (1) = 1 and Γ (1/2) =
√
π.

• Recursion formula:

Γ (z+ 1) = zΓ (z), Γ (n + 1) = n!, (A.2)

and

Γ (2z) = (2π)−1/222z−1/2Γ (z)Γ (z+ 1/2). (A.3)

• Connection with binomial coefficient:

(

z
w

)

=
Γ (z+ 1)

Γ (w+ 1)Γ (z−w+ 1)
. (A.4)

• Relation with Beta function:

B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt =

Γ (x)Γ (y)
Γ (x + y)

, x,y > 0. (A.5)

In particular, for α,β >−1,

∫ 1

−1
(1− x)α(1 + x)βdx = 2α+β+1

∫ 1

0
tβ (1− t)αdt

= 2α+β+1Γ (α+ 1)Γ (β + 1)
Γ (α+β + 2)

.

(A.6)
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• Stirling’s formula:

Γ (x) =
√

2πxx−1/2e−x
{

1 +
1

12x
+

1
288x2 + O(x−3)

}

, x � 1. (A.7)

Moreover, we have

√
2πnn+1/2 < n!en <

√
2πnn+1/2

(

1 +
1
4n

)

, n≥ 1. (A.8)



Appendix B
Essential Mathematical Concepts

We provide here some essential mathematical concepts which have been used in the
mathematical analysis throughout the book. For a more comprehensive presentation,
we refer to Yosida (1980) and Adams (1975).

Let (X ;d) be a metric space. A sequence {xk} in X is called a Cauchy sequence, if

d(xk,xl)→ 0 as k, l → ∞.

The space (X ;d) is said to be a complete space if every Cauchy sequence in X
converges to an element in X .

B.1 Banach Space

Definition B.1. Given a (real) vector space X , a norm on X is a function ‖ ·‖ : X →
R such that

• ‖u + v‖≤ ‖u‖+‖v‖, ∀u,v ∈ X ;
• ‖αu‖= |α|‖u‖, ∀u ∈ X and ∀α ∈ R;
• ‖u‖ ≥ 0, ∀u ∈ X ;
• ‖u‖= 0 if and only if u = 0.

In particular, a semi-norm on X is a function | · | : X → R satisfying the first three
conditions.

The space (X ,‖·‖) is called a normed vector space. A Banach space is a normed
vector space which is complete with respect to the metric:

d(u,v) = ‖u− v‖, ∀u,v ∈ X .
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B.2 Hilbert Space

Definition B.2. Let X be a real vector space. An inner product on X is a function
(u,v) : X ×X → R such that

• (u,v) = (v,u), ∀u,v ∈ X ;
• (αu +βv,w) = α(u,w)+β (v,w), ∀u,v,w ∈ X and ∀α,β ∈ R;
• (u,u)≥ 0, ∀u ∈ X ;
• (u,u) = 0 if and only if u = 0.

Two elements u,v ∈ X are said to be orthogonal in X , if (u,v) = 0. The inner
product (·, ·) induces a norm on X , given by

‖u‖=
√

(u,u), ∀u ∈ X .

Correspondingly, the metric on X can be defined by d(u,v) = ‖u− v‖.
A Hilbert space is a Banach space endowed with an inner product (i.e., every

Cauchy sequence in X is convergent with respect to the induced norm).
In a Hilbert space, the Cauchy–Schwarz inequality holds:

|(u,v)| ≤ ‖u‖‖v‖, ∀u,v ∈ X . (B.1)

Remark B.1. If X is a complex vector space, the inner product (u,v) is a complex
valued function. In the Definition B.2, the first condition should be replaced by

(u,v) = (v,u), ∀u,v ∈ X .

Next, we introduce the dual space of a Banach/Hilbert space X .

Definition B.3. A functional F : X → R is said to be linear or continuous, if there
exists a constant c > 0 such that

|F(u)| ≤ c‖u‖, ∀u ∈ X . (B.2)

Let X ′ be the set of all linear functionals on X , and define the norm

‖F‖X ′ = sup
u∈X ;u �=0

|F(u)|
‖u‖ .

Then the space X ′ is a Banach space, which is called the dual space of X .
The bilinear form F(u) = 〈F,u〉 : X ′ ×X → R, is called the duality pairing on

X ′ ×X . If X is a Hilbert space, then its dual space X ′ is a Hilbert space as well.
Moreover, according to the Riesz Representation Theorem, X and X ′ are isometric,
and X ′ can be canonically identified to X . More precisely, for any linear functional
F ∈ X ′, there exists a unique u ∈ X such that

F(v) = 〈F,v〉= (u,v), ∀v ∈ X and ‖F‖X ′ = ‖u‖.
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In a normed space X , a sequence {vn} ⊂ X is (strongly) convergent to v ∈ X , if
‖vn− v‖→ 0 as n→ ∞. It is possible to introduce another type of convergence in a
weaker sense.

Definition B.4. A sequence {vn} in X is called weakly convergent to v ∈ X , if
F(vn)→ F(v) in R for all F ∈ X ′.

If a sequence {vn} converges to v in X , it is also weakly convergent. The converse
is not true unless X is a finite dimensional space.

In a dual space X ′, a sequence of functional {Fn} in X ′ is called weakly∗ conver-
gent to F ∈ X ′, if {Fn(v)} converges to F(v) for all v ∈ X . The weak convergence
implies the weak∗ convergence.

B.3 Lax-Milgram Lemma

Definition B.5. Let X be a Hilbert space with norm ‖ · ‖. A functional a(·, ·) : X ×
X → R defines a bilinear form, if for any u,v,w ∈ X and α,β ∈R,

a(αu +βv,w) = αa(u,w)+βa(v,w),
a(u,αv +βw) = αa(u,w)+βa(v,w).

That is, for any fixed u, both the functionals a(u, ·) : X → R and a(·,u) : X → R are
linear. The bilinear form is symmetric, if a(u,v) = a(v,u) for any u,v ∈ X .

Definition B.6. A bilinear form a(·, ·) on a Hilbert space X is said to be continuous,
if there exists a constant C > 0 such that

|a(u,v)| ≤C‖u‖‖v‖, ∀u,v ∈ X , (B.3)

and coercive on X , if there exists a constant α > 0 such that

a(u,u)≥ α‖u‖2, ∀u ∈ X . (B.4)

It is clear that if a(·, ·) is symmetric, continuous and coercive on the Hilbert space
X , then a(·, ·) defines an inner product on X .

Theorem B.1. (Lax-Milgram lemma). Let X be a Hilbert space, let a(·, ·) : X ×
X → R be a continuous and coercive bilinear form, and let F : X → R be a linear
functional in X ′. Then the variational problem:

{

Find u ∈ X such that

a(u,v) = F(v), ∀v ∈ X ,
(B.5)

has a unique solution. Moreover, we have

‖u‖ ≤ 1
α
‖F‖X ′ . (B.6)
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B.4 Lp-Space

LetΩ be a Lebesgue-measurable subset of Rd (d = 1,2,3) with non-empty interior,
and let u be a Lebesgue measurable function on Ω . In what follows, the integration
is in the Lebesgue sense.

Definition B.7. For 1≤ p≤ ∞, let

Lp(Ω) :=
{

u : u is measurable on Ω and ‖u‖Lp(Ω) < ∞
}

, (B.7)

where for 1≤ p < ∞,

‖u‖Lp(Ω) :=
(
∫

Ω
|u(x)|pdx

)1/p
, (B.8)

and

‖u‖L∞(Ω) := ess sup
x∈Ω

|u(x)|. (B.9)

Remark B.2. Some remarks are in order.

(i) The space L∞(Ω) consists all functions that are essentially bounded on Ω .
A function u is said to be essentially bounded on Ω , if there exists a constant K
such that |u(x)| ≤K a.e. on Ω . The greatest lower bound of such constants K is
called the essential supremum of |u(x)| on Ω , denoted by ‖u‖L∞(Ω).

(ii) We identify functions in Lp(Ω) that are equal almost everywhere on Ω . The
elements of Lp(Ω) are equivalence classes of measurable functions that satisfy
(B.7) with the equivalence relation: u ≡ v, if they only differ on a measurable
subset of measure zero.

Equipped with the norm ‖ ·‖Lp(Ω), the space Lp(Ω) with 1≤ p ≤∞ is a Banach
space. In particular, the space L2(Ω) is a Hilbert space equipped with the inner
product

(u,v)L2(Ω) =
∫

Ω
u(x)v(x)dx, ∀u,v ∈ L2(Ω). (B.10)

Definition B.8. If p and q are positive real numbers such that

p + q = pq or
1
p

+
1
q

= 1, (B.11)

then we call (p,q) a pair of conjugate exponents. As p → 1, (B.11) forces q → ∞.
Consequently, (1,∞) is also regarded as a pair of conjugate exponents.

Theorem B.2.

• Minkowski’s inequality. If u,v ∈ Lp(Ω) with 1 ≤ p ≤ ∞, then u + v ∈ Lp(Ω),
and

‖u + v‖Lp(Ω) ≤ ‖u‖Lp(Ω) +‖v‖Lp(Ω). (B.12)
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• Höoolder’s inequality. Let p and q be conjugate exponents with 1≤ p≤∞. If u∈
Lp(Ω) and v ∈ Lq(Ω), then uv ∈ L1(Ω), and

∫

Ω
|u(x)v(x)|dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω). (B.13)

In particular, if p = 2, the Hölder’s inequality reduces to the Cauchy–Schwarz
inequality (B.1).

It follows from (B.13) that Lq(Ω)⊂ Lp(Ω), if p≤ q andΩ has a finite measure.
As a final remark, given a weight function ω(x), which is almost everywhere

positive and Lebesgue integrable on Ω , ω(x)dx also defines a Lebesgue measure
on Ω . Replacing dx in (B.8) by ω(x)dx, we define the norm ‖ ·‖Lp

ω(Ω) and the space

Lp
ω(Ω) with 1≤ p < ∞, which is a Banach space. In particular, the space L2

ω(Ω) is
a Hilbert space with the inner product and norm given by

(u,v)ω =
∫

Ω
u(x)v(x)ω(x)dx, ‖u‖ω =

√

(u,u)ω .

One verifies that the inequalities (B.12) and (B.13) hold in the weighted norms.

B.5 Distributions and Weak Derivatives

A multi-index ααα = (α1, . . . ,αd) is a d-tuple of non-negative integers {αi}. Denote
|ααα|= ∑d

i=1αi, and define the partial derivative operator

Dααα =
∂ |ααα |

∂xα1
1 . . .∂xαd

d

.

For any x = (x1, . . . ,xd) ∈ Rd , we define xααα = xα1
1 . . .xαd

d .

For any Ω ⊂ Rd , let D(Ω) (or C∞0 (Ω)) be the set of all infinitely differentiable
functions with compact support in Ω . With the aid of D(Ω), we can extend the
conventional derivatives to the notion of generalized (weak) derivatives.

We first recall the topology on the vector space C∞0 (Ω).

Definition B.9. A sequence of functions {vn} in C∞0 (Ω) is said to be convergent in
the sense of D(Ω) to the function v ∈C∞0 (Ω) provided that

(i) there exists K ⊂⊂ Ω , which means the closure K̄ ⊂ Ω and K̄ is compact (i.e.,
closed and bounded), such that the support of vn− v⊂ K for every n;

(ii) limn→∞Dαααvn(x) = Dαααv(x) uniformly on K for each multi-index ααα.

Definition B.10. The dual space D ′(Ω) of D(Ω) is called the space of (Schwarz)
distributions. A sequence of distributions {Tn} in D ′(Ω) is called weakly∗ conver-
gent to a distribution T ∈D ′(Ω), if Tn(v)→ T (v) in R for every v ∈D(Ω).
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For example, we consider the distributions induced by locally integrable
functions.

Definition B.11. Given a domainΩ ⊂Rd , the set of all locally integrable functions
is denoted by

L1
loc(Ω) =

{

u : u ∈ L1(K), ∀ compact K ⊂ interiorΩ
}

. (B.14)

Corresponding to every u ∈ L1
loc(Ω), there is a distribution Tu ∈D ′(Ω) defined by

Tu(v) =
∫

Ω
u(x)v(x)dx, ∀v ∈D(Ω). (B.15)

However, not every distribution T ∈ D ′(Ω) is of the form (B.15), and for instance,
the Delta function δ is such a distribution.

Definition B.12. Let T be a distribution in D ′(Ω), and letααα be a multi-index. Then
DαααT is also a distribution in D ′(Ω), defined as follows

〈DαααT,v〉= (−1)|ααα|〈T,Dαααv〉, ∀v ∈D(Ω), (B.16)

where 〈·, ·〉 is the duality paring of D ′(Ω) and D(Ω).

Notice that by definition, a distribution is infinitely differentiable. Moreover, if T
is a smooth function, its generalized derivative coincides with the usual derivative.

Definition B.13. A given function u ∈ L1
loc(Ω) has a weak derivative Dαααu, if there

exists a function w ∈ L1
loc(Ω) such that

∫

Ω
w(x)v(x)dx = (−1)|ααα|

∫

Ω
u(x)Dαααv(x)dx, ∀v ∈D(Ω). (B.17)

If such a w exists, we define Dαααu = w.

We can extend the above discussion to periodic distributions. Let Ω = (0,2π)d,
and define the space C∞p (Ω̄) as the vector space of functions that are infinitely differ-
entiable with all derivatives being 2π-periodic in each space direction. A sequence
{φn} in C∞p (Ω̄) converges to a function φ in C∞p (Ω̄ ), if Dαααφn → Dαααφ uniformly on
Ω̄ for every multi-index ααα. Similarly, a periodic distribution is a continuous linear
form T : C∞p (Ω̄) → C, that is, 〈T,φn〉 → 〈T,φ〉 in C whenever φn → φ in C∞p (Ω̄).
The derivative of a periodic distribution T can be defined by (B.16) with C∞p (Ω̄ ) in
place of D(Ω).

B.6 Sobolev Spaces

Using the notion of weak derivatives, we define the Sobolev spaces on the Lp-spaces.
Such spaces are most often used for the variational theory of partial differential
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equations. In what follows, we restrict the discussions to the Hilbert spaces (i.e.,
with p = 2), and refer to Adams (1975) for a comprehensive presentation of general
Sobolev spaces.

Definition B.14. The Sobolev space Hm(Ω) with m ∈ N is the space of functions
u ∈ L2(Ω) such that all the distributional derivatives of order up to m can be repre-
sented by functions in L2(Ω). That is,

Hm(Ω) =
{

u ∈ L2(Ω) : Dαααu ∈ L2(Ω) for 0≤ |ααα | ≤ m
}

, (B.18)

equipped with the norm and semi-norm

‖u‖m,Ω =
( m

∑
|ααα|=0

‖Dαααu‖2
L2(Ω)

)1/2
, |u|m,Ω =

(

∑
|ααα|=m

‖Dαααu‖2
L2(Ω)

)1/2
. (B.19)

The space Hm(Ω) is a Hilbert space endowed with the inner product

(u,v)m,Ω =
m

∑
|ααα|=0

∫

Ω
Dαααu(x)Dαααv(x)dx.

The following density property holds (see, e.g., Brenner and Scott (2008)).

Theorem B.3. For any Ω ∈ Rd , C∞(Ω̄) is dense in Hm(Ω) for any integer m≥ 0.

Definition B.15. For any positive integer m, the space Hm
0 (Ω) is the closure of

C∞0 (Ω) with respect to the norm ‖ · ‖m,Ω . The dual space of Hm
0 (Ω) is denoted by

H−m(Ω) with the norm

‖u‖−m,Ω = sup
0 �=v∈Hm

0 (Ω)

〈u,v〉
‖v‖m,Ω

. (B.20)

We have the following Poincaré-Friedrichs inequality (see, e.g., Ciarlet (1978)).

Theorem B.4. Let Ω be a bounded open subset of Rd. Then there exists a positive
constant c(Ω) such that

‖u‖0,Ω ≤ c(Ω)|u|1,Ω , ∀u ∈ H1
0 (Ω), (B.21)

which implies that the semi-norm | · |m,Ω is a norm of Hm
0 (Ω), equivalent to the norm

‖ · ‖m,Ω .

For any real r > 0, the Sobolev space Hr(Ω) can be defined by space interpola-
tion (see, e.g., Bergh and Löfström (1976), Adams (1975) and Lions and Magenes
(1968)).

An important property of the Sobolev spaces is the embedding result, which in-
dicates the close connection with continuous functions.



424 B Essential Mathematical Concepts

Theorem B.5. Let Ω be a domain in R
d with Lipschitz boundary ∂Ω , and let

r > n/2. Then there exists a positive constant C such that

‖u‖L∞(Ω) ≤C‖u‖r,Ω . (B.22)

Moreover, there is a continuous function in the L∞(Ω) equivalence class of u.

Another important result of Sobolev spaces is the so-called trace theorem. The
trace of a function u ∈ Hr(Ω) on the boundary ∂Ω is meaningful by defining it as
the restriction of ũ on the boundary, where ũ ∈ C0(Ω̄) is among the equivalence
class of u.

Theorem B.6. Let Ω be a domain in Rd with Lipschitz boundary ∂Ω , and r > 1/2.

(i) There exits a unique linear continuous map γ0 : Hr(Ω) → Hr−1/2(∂Ω) such
that γ0v = v|∂Ω for each v ∈ Hr(Ω)∩C0(Ω̄).

(ii) There exists a linear continuous map τ0 : Hr−1/2(∂Ω) → Hr(Ω) such that
γ0τ0φ = φ for each φ ∈ Hr−1/2(∂Ω).

Analogous results also hold if we consider the trace γΓ over a Lipschitz continuous
subset Γ of the boundary ∂Ω .

We see that any function in Hr−1/2(∂Ω),r > 1/2, is the trace on ∂Ω of a function
in Hr(Ω). This provides a characterization of the space Hr−1/2(∂Ω). In particular,
the proceeding theorem indicates that there exists a positive constant c such that

‖v‖L2(∂Ω ) ≤ c‖v‖1,Ω , ∀v ∈ H1(Ω). (B.23)

In addition, if the boundary ∂Ω is Lipschitz continuous, we can characterize the
space H1

0 (Ω) by

H1
0 (Ω) =

{

v ∈H1(Ω) : γ0v = 0
}

. (B.24)

If Γ is part of ∂Ω , we define

H1
Γ (Ω) =

{

v ∈H1(Ω) : γΓ v = 0
}

. (B.25)

It is worthwhile to point out that the Poincaré-Friedrichs inequality (B.21) is also
valid for functions in H1

Γ (Ω), provided that Γ is non-empty.
The interpolation theorem is also found useful in the analysis.

Theorem B.7. Assume that Ω is an open subset of R
d with a Lipschitz boundary

∂Ω . Let r1 < r2 be two real numbers and set r = (1− θ )r1 + θr2 with 0 ≤ θ ≤ 1.
Then there exists a constant c > 0 such that

‖u‖r,Ω ≤ c‖u‖1−θ
r1,Ω‖u‖θr2,Ω , ∀u ∈ Hr2(Ω). (B.26)

In the Definition B.14 of the Sobolev space, one can require the functions as well
as its distributional derivatives to be square integrable with respect to the measure
ω(x)dx on Ω . This provides a natural framework to deal with the Chebyshev and
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Jacobi spectral methods. In a very similar fashion, we define the space Hm
ω (Ω),

the norm ‖ · ‖m,ω,Ω and the semi-norm | · |m,ω,Ω by replacing the L2-space and the
norm ‖ · ‖L2(Ω) in (B.18) and (B.19) by the weighted L2-space and the weighted
norm ‖ · ‖L2

ω(Ω), respectively. For real r > 0, the space Hr
ω(Ω) is defined by space

interpolation as usual. Moreover, its subspace Hr
0,ω(Ω) can be defined as the closure

of C∞0 (Ω) in Hr
ω(Ω) as before.

In the analysis of Fourier methods, it is necessary to define Sobolev space of
periodic functions. In this framework, the functions are complex-valued and their
weak derivatives are in the sense of periodic distribution. In particular, for Ω =
(0,2π) and for any integer m > 0,

Hm
p (0,2π) =

{

u ∈Hm(0,2π) : u(k)(0) = u(k)(2π), 0≤ k≤ m−1
}

. (B.27)

In this context, the norm can be characterized by the Fourier coefficients of the
underlying function (cf. (2.46) in Chap. 2).

B.7 Integral Identities: Divergence Theorem
and Green’s Formula

We collect some integral identities of advanced calculus in the setting of Sobolev
spaces, which are useful in the formulation of multi-dimensional variational
problems.

In what follows, let uuu = (u1, . . . ,ud) be a vector, and let ∇ = (∂x1 , . . . ,∂xd ) be
the d-dimensional gradient operator. Assume that Ω is a domain with Lipschitz
boundary, and ννν denotes its unit outward normal to ∂Ω .

Lemma B.1. (Divergence Theorem). Let uuu be a Lebesgue integrable function on
Ω . Then

∫

Ω
∇ ·uuu dx =

∫

∂Ω
uuu ·ννν dγ. (B.28)

Applying (B.28) with uuu = uweeei with eeei is the ith unit coordinate vector, leads to
the following identity.

Lemma B.2. (Green’s formula). Let u,w ∈H1(Ω). Then for i = 1, . . . ,n,

∫

Ω
∂xi uw dx =−

∫

Ω
u∂xiw dx+

∫

∂Ω
uwνi dγ. (B.29)

In a vector form, if uuu ∈ (H1(Ω))d and w ∈ H1(Ω), we have
∫

Ω
∇ ·uuuw dx =−

∫

Ω
uuu ·∇w dx +

∫

∂Ω
uuu ·ννν w dγ. (B.30)

Applying (B.30) with uuu = ∇φ yields the following formulas.
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Lemma B.3. Let φ ∈ H2(Ω) and w ∈ H1(Ω). Then

∫

Ω
(−Δφ)w dx =

∫

Ω
∇φ ·∇w dx−

∫

∂Ω
∂νννφ w dγ. (B.31)

If, in addition, w ∈ H2(Ω), we have

∫

Ω

(

wΔφ −φΔw
)

dx =
∫

∂Ω

(

w∂νννφ −φ∂νννw
)

dγ. (B.32)

B.8 Some Useful Inequalities

We present below some useful embedding inequalities on finite/infinite intervals.

B.8.1 Sobolev-Type Inequalities

Let (a,b) be a finite interval. There holds the Sobolev inequality:

max
x∈[a,b]

|u(x)| ≤
( 1

b−a
+ 2

)1/2‖u‖1/2
L2(a,b)‖u‖1/2

H1(a,b), ∀u ∈ H1(a,b), (B.33)

which is also known as the Gagliardo-Nirenberg interpolation inequality.
This inequality may take the form.

Lemma B.4. For any u ∈ H1(a,b),

max
x∈[a,b]

|u(x)| ≤ 1√
b−a

‖u‖L2(a,b) +
√

b−a‖u′‖L2(a,b). (B.34)

Proof. For any x1,x2 ∈ [a,b],

|u(x1)−u(x2)| ≤
∫ x2

x1

|u′(x)|dx ≤√
b−a‖u′‖L2(a,b),

which implies u ∈C[a,b]. Denote |u(x∗)|= minx∈[a,b] |u(x)|, and we have

|u(x)|− |u(x∗)| ≤
√

b−a‖u′‖L2(a,b).

Moreover,

|u(x∗)| ≤ 1
b−a

∫ b

a
|u(x)|dx ≤ 1√

b−a
‖u‖L2(a,b).

A combination of the above two inequalities leads to (B.34). ��
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Lemma B.5. Let ω = e−x. For any u ∈ H1
ω(0,∞) with u(0) = 0, we have

‖e−x/2u‖L∞(0,∞) ≤
√

2‖u‖1/2
ω |u|1/2

1,ω , (B.35a)

‖u‖ω ≤ 2|u|1,ω . (B.35b)

Proof. Since u(0) = 0, we have

e−xu2(x) =
∫ x

0
∂y(e−yu2(y))dy

= 2
∫ x

0
e−yu(y)u′(y)dy−

∫ x

0
e−yu2(y)dy, ∀x ∈ (0,∞),

from which we derive

e−xu2(x)+
∫ x

0
e−yu2(y)dy≤ 2

∫ ∞

0
e−y|u(y)u′(y)|dy

≤ 2‖u‖ω |u|1,ω .

This implies the first inequality, and letting x → ∞ leads to the second one. ��
Lemma B.6. Let ω(x) = e−x2

. Then for any u ∈H1
ω(−∞,∞), we have

‖e−x2/2u‖L∞(−∞,∞) ≤ 2‖u‖1/2
ω |u|1/2

1,ω , (B.36a)

‖xu‖ω ≤ ‖u‖1,ω . (B.36b)

Proof. Applying integration by parts and the Schwarz inequality yields
∫ ∞

−∞
xu2(x)ω(x)dx =

∫ ∞

−∞
u(x)u′(x)ω(x)dx ≤ ‖u‖ω |u|1,ω , (B.37)

which implies xu2(x)ω(x)→ 0 as |x| → ∞. Therefore, we have

∫ ∞

−∞
(xu(x))2ω(x)dx =−1

2

∫ ∞

−∞
xu2(x)dω(x)

=
1
2

∫ ∞

−∞
u2(x)ω(x)dx +

∫ ∞

−∞
xu(x)u′(x)ω(x)dx

≤ 1
2
‖u‖2

ω +
1
2
‖xu‖2

ω +
1
2
|u|21,ω

=
1
2
‖u‖2

1,ω +
1
2
‖xu‖2

ω ,

which gives (B.36b).
Next, since

e−x2
u2(x) =

∫ x

−∞
∂y(e−y2

u2(y))dy

= 2
∫ x

−∞
u(y)u′(y)ω(y)dy−2

∫ x

−∞
yu2(y)ω(y)dy,
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we deduce from the Schwarz inequality that

e−x2
u2(x)+ 2

∫ x

−∞
yu2(y)ω(y)dy≤ 2‖u‖ω |u|1,ω .

Thus, by (B.37),

e−x2
u2(x)≤ 4‖u‖ω|u|1,ω ,

which yields (B.36a). ��

B.8.2 Hardy-Type Inequalities

Let a < b be two real numbers, and let α < 1. Then for any φ ∈ L2
ω(a,b) with

ω = (x−a)α , we have the following Hardy inequality (see Hardy et al. (1952)):

∫ b

a

( 1
x−a

∫ x

a
φ(y)dy

)2
(x−a)αdt ≤ 4

1−α
∫ b

a
φ 2(x)(x−a)αdx. (B.38)

Similarly, for any φ ∈ L2
ω(a,b) with ω = (b− x)α , we have

∫ b

a

( 1
b− x

∫ b

x
φ(y)dy

)2
(b− x)αdt ≤ 4

1−α
∫ b

a
φ2(x)(b− x)αdx. (B.39)

Next, we apply the above Hardy inequality to derive some useful inequalities
associated with the Jacobi weight function ωα ,β (x) = (1− x)α(1 + x)β with x ∈
I := (−1,1).

Lemma B.7. If −1 < α,β < 1, then

‖u‖ωα−2,β−2 ≤ c‖u′‖ωα,β , ∀u ∈ H1
0,ωα,β (I), (B.40)

which implies the Poincaré-type inequality:

‖u‖ωα,β ≤ c‖u′‖ωα,β , ∀u ∈H1
0,ωα,β (I). (B.41)

Proof. Taking a =−1,b = 1 and φ = ∂xu in (B.39) yields that for α < 1,

∫ 1

0
u2(x)(1− x)α−2dx≤ c

∫ 1

0
(u′(x))2(1− x)αdx.

Hence,

∫ 1

0
u2(x)(1− x)α−2(1 + x)β−2dx ≤ c

∫ 1

0
u2(x)(1− x)α−2dx

≤ c
∫ 1

0
(u′(x))2(1− x)αdx≤ c

∫ 1

0
(u′(x))2(1− x)α(1 + x)βdx.
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Similarly, for β < 1, we use (B.39) to derive

∫ 0

−1
u2(x)(1− x)α−2(1 + x)β−2dx≤ c

∫ 0

−1
(u′(x))2(1− x)α(1 + x)βdx.

A combination of the above two inequalities leads to (B.40).
In view of ωα ,β (x) < ωα−2,β−2(x), (B.41) follows from (B.40). ��
A consequence of Lemma B.7 is the following result.

Corollary B.1. If −1 < α,β < 1, then for any u ∈ H1
0,ωα,β (I), we have uωα,β ∈

H1
0,ω−α,−β (I).

Proof. A direct calculation shows that

|uωα ,β |21,ω−α,−β ≤ c
(|u|21,ωα,β +‖u‖2

ωα−2,β−2

)
(B.40)
≤ c|u|21,ωα,β .

On the other hand, since ‖uωα ,β‖ω−α,−β = ‖u‖ωα,β , we have

‖uωα ,β‖1,ω−α,−β ≤ c‖u‖1,ωα,β .

This ends the proof. ��
The following inequalities can be found in Guo (2000).

Lemma B.8. Let α,β >−1. Then for any function u ∈H1
ωα+2,β+2(I) with u(x0) = 0

for some x0 ∈ (−1,1), we have

‖u‖ωα,β ≤ c‖u′‖ωα+2,β+2 , (B.42)

which implies
‖u‖ωα,β ≤ c‖u′‖ωα,β . (B.43)

Proof. The inequality (B.43) follows directly from (B.42), so it suffices to prove the
first one. For any x ∈ [x0,1],

u2(x)(1− x)α+1 =
∫ x

x0

∂y
(

u2(y)(1− y)α+1)dy.

Hence, by the Schwarz inequality,

u2(x)(1− x)α+1 +(α+ 1)
∫ x

x0

u2(y)(1− y)αdy

= 2
∫ x

x0

u(y)u′(y)(1− y)α+1dy

≤ 2
(
∫ x

x0

u2(y)(1− y)αdy
)1/2(∫ x

x0

(

u′(y)
)2(1− y)α+2dy

)1/2
,
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which implies

∫ x

x0

u2(y)(1− y)αdy≤ 4
(α+ 1)2

∫ x

x0

(

u′(y)
)2(1− y)α+2dy.

Letting x→ 1 in the above inequality leads to

∫ 1

x0

u2(x)(1− x)αdx≤ 4
(α+ 1)2

∫ 1

x0

(

u′(x)
)2(1− x)α+2dx

≤ c
∫ 1

x0

(

u′(x)
)2(1− x)α+2(1 + x)β+2dx.

Similarly, we can derive
∫ x0

−1
u2(x)(1 + x)βdx ≤ c

∫ x0

−1

(

u′(x)
)2(1− x)α+2(1 + x)β+2dx.

Finally, (B.42) follows from the above two inequalities. ��
A direct consequence of (B.43) is as follows.

Corollary B.2. For any u∈H1(a,b) with u(x0) = 0 for some x0 ∈ (a,b), the follow-
ing Poincaré inequality holds:

‖u‖L2(a,b) ≤ c‖u′‖L2(a,b), ∀u ∈ H1(a,b). (B.44)

Remark B.3. In fact, the Poincaré inequality (B.44) holds, when the condition in
Corollary B.2 is replaced by

∫ b

a
u(x)dx = 0. (B.45)

B.8.3 Gronwall Inequalities

The Gronwall type inequalities are very useful in the stability and convergence
analysis of initial-boundary value problems. The following is a typical Gronwall
inequality:

Lemma B.9. Let f (t) be a non-negative integrable function over (t0,T ], and let g(t)
and E(t) be continuous functions on [t0,T ]. If E(t) satisfies

E(t)≤ g(t)+
∫ t

t0
f (τ)E(τ)dτ, ∀t ∈ [t0,T ], (B.46)

then we have

E(t)≤ g(t)+
∫ t

t0
f (s)g(s)exp

(
∫ t

s
f (τ)dτ

)

ds, ∀t ∈ [t0,T ]. (B.47)
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If, in addition, g is non-decreasing, then

E(t)≤ g(t)exp
(
∫ t

t0
f (τ)dτ

)

, ∀t ∈ [t0,T ]. (B.48)

On the other hand, discrete Gronwall inequalities are often used in the stabil-
ity and convergence analysis of time discretization schemes. In particular, a useful
discrete analogue of Lemma B.9 is:

Lemma B.10. Let yn,hn,gn, f n be four nonnegative sequences satisfying

ym + k
m

∑
n=0

hn ≤ B + k
m

∑
n=0

(gnyn + f n), with k
T/k

∑
n=0

gn ≤M, ∀ 0≤ m≤ T/k.

We assume kgn < 1 and let σ = max0≤n≤T/k(1− kgn)−1. Then

ym + k
m

∑
n=1

hn ≤ exp(σM)(B + k
m

∑
n=0

f n), ∀m ≤ T/k.

We refer to, for instance, Quarteroni and Valli (2008) for a proof of the above
two lemmas.





Appendix C
Basic Iterative Methods and Preconditioning

We review below some basic iterative methods for solving the linear system

Ax = b, (C.1)

where A ∈ Rn×n is an invertible matrix and b ∈ Rn is a given vector. We refer to
Barrett et al. (1994), Golub and Van Loan (1996) and Saad (2003) for more detailed
presentation in this matter.

C.1 Krylov Subspace Methods

The basic idea of Krylov subspace methods is to form an orthogonal basis of the se-
quence of successive matrix powers times the initial residual (the Krylov sequence),
and then look for the approximation to the solution by minimizing the residual over
the subspace formed by these orthogonal basis.

In what follows, we shall mainly discuss two proto-type of Krylov subspace
methods: the Conjugate Gradient (CG) method and the Generalized Minimal Resid-
ual (GMRES) method. The CG method of Hestenes and Stiefel (1952) is the method
of choice for solving large symmetric positive definite linear systems, while the
GMRES method proposed by Saad and Schultz (1986) is popular for solving non-
symmetric linear systems.

C.1.1 Conjugate Gradient (CG) Method

Throughout this section, let A∈R
n×n be a symmetric positive definite matrix. It can

be verified that x̂ is the solution of Ax = b if and only if x̂ minimizes the quadratic
functional

J(x) =
1
2

xT Ax− xT b. (C.2)

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 433
Springer Series in Computational Mathematics 41, DOI 10.1007/978-3-540-71041-7,
c© Springer-Verlag Berlin Heidelberg 2011
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Suppose that x(k) has been obtained. Then x(k+1) can be found by

x(k+1) = x(k) +αk p(k), (C.3)

where the scalar αk is called the step size factor and the vector p(k) is called the
search direction. The coefficient αk in (C.3) is selected such that

αk = argmin
α

J
(

x(k) +α p(k)). (C.4)

A simple calculation shows that

αk =
(r(k), p(k))

(Ap(k), p(k))
, (C.5)

where the inner product of two column vectors is defined by (u,v) = uT v, and the
residual is given by

r(k) := b−Ax(k). (C.6)

Notice that the residual at the (k + 1)th step is updated by

r(k+1) := b−Ax(k+1) = b−A
(

x(k) +αk p(k))

= b−Ax(k)−αkAp(k) = r(k)−αkAp(k).
(C.7)

In the conjugate gradient method, we select the next search direction p(k+1) satisfy-
ing the orthogonality

(p(k+1),Ap(k)) = 0, (C.8)

i.e.,

p(k+1) = r(k+1) +βk p(k), (C.9)

One verifies the orthogonality

βk =− (Ap(k),r(k+1))
(Ap(k), p(k))

. (C.10)

It is important to notice the orthogonality
(

p(i),Ap( j))= 0,
(

r(i),r( j))= 0, i �= j. (C.11)

Moreover, it can be shown that if A is a real n× n positive definite matrix, then,
assuming exact arithmetic, the iteration converges in at most n steps, i.e., x(m) = x̂
for some m ≤ n. Furthermore, the residual vectors satisfy

(

r(k), p( j))= 0 for each j = 1, . . . ,k−1. (C.12)
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Therefore, we can reformulate the scalers αk and βk as

αk =
(r(k),r(k))

(Ap(k), p(k))
, βk =

(r(k+1),r(k+1))
(r(k),r(k))

. (C.13)

We summarize the CG Algorithm below.

CG Algorithm

1. Initialization: choose x(0) , compute r(0) = b−Ax(0) and set p(0) = r(0).
2. For k = 0,1, . . .,

(i) Compute
αk = (r(k), r(k))/(Ap(k), p(k)).

(ii) Set
x(k+1) = x(k) +αk p(k).

(iii) Compute
r(k+1) = r(k)−αkAp(k).

(iv) If the stopping rule does not apply, continue.
(v) Compute

βk = (r(k+1), r(k+1))/(r(k), r(k)).

(vi) Set
p(k+1) = r(k+1) +βk p(k).

3. endFor

The following theorem on the rate of convergence of the CG method can be found
in e.g., Golub and Van Loan (1996).

Theorem C.1. Suppose that A ∈ Rn×n is symmetric positive definite matrix and
b ∈ Rn. Then the CG Algorithm produces iterates {x(k)} satisfying

‖x̂− x(k)‖A ≤ 2
(

√
κ−1√
κ+ 1

)k‖x̂− x(0)‖A, (C.14)

where x̂ is the exact solution of Ax = b, ‖x‖A =
√

xT Ax, and κ = ‖A‖2‖A−1‖2 (the
condition number of A).

Some remarks are in order.

(i) For a symmetric positive definite matrix, we have ‖A‖2 = λn and ‖A−1‖2 =
λ−1

1 , where λn and λ1 are the largest and smallest eigenvalues of A, respec-
tively. One derives from Theorem C.1 the estimate in the 2-norm:

‖x̂− x(k)‖2 ≤ 2
√
κ
(

√
κ−1√
κ+ 1

)k‖x̂− x(0)‖2. (C.15)
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(ii) The CG method involves one matrix–vector multiplication, three vector up-
dates, and two inner products per iteration. If the matrix is sparse or has a
special structure, these operators can be performed efficiently.

(iii) Unlike the traditional SOR type method, there is no free parameter to choose
in the CG algorithm.

C.1.2 BiConjugate Gradient (BiCG) Method

The Conjugate Gradient method is not suitable for non-symmetric systems because
the residual vectors can not be made orthogonal with short recurrences (see Faber
and Manteuffel (1984) for the proof). The BiConjugate Gradient (BiCG) method
takes another approach, replacing the orthogonal sequence of residuals by two mu-
tually orthogonal sequences, at the price of no longer providing a minimization.

The BiCG method augments the update relations for residuals in the CG method
by relations based on both A and AT . More precisely, given two pairs: (p( j), p̃( j))
and (r( j), r̃( j)), we update

x( j+1) = x( j) +α j p
( j), (C.16)

and the two sequences of residuals

r( j+1) = r( j)−α jAp( j), r̃( j+1) = r̃( j)−α jA
T p̃( j). (C.17)

Require that (r( j+1), r̃( j)) = 0 and (r( j), r̃( j+1)) = 0 for all j. This leads to

α j = (r( j), r̃( j))/(Ap( j), p̃( j)). (C.18)

The two sequences of search directions are updated by

p( j+1) = r( j+1) +β j p
( j), p̃( j+1) = r̃( j+1) +β j p̃

( j). (C.19)

By requiring that (Ap( j+1), p̃( j)) = 0 and (Ap( j), p̃( j+1)) = 0, we obtain

β j = (r( j+1), r̃( j+1))/(r( j), r̃( j)). (C.20)

The above derivations lead to the BiCG Algorithm outlined below.
Some remarks are in order.

(i) The BiCG algorithm is particularly suitable for matrices which are positive
definite, i.e., (Ax,x) > 0 for all x �= 0, but not necessary to be symmetric.

(ii) If A is symmetric positive definite and r̃(0) = r(0), then the BiCG algorithm
delivers the same results as the CG method, but at twice of the cost per iteration.

(iii) The algorithm breaks down if (Ap j, p̃ j) = 0. Otherwise, the amount of work
and storage is of the same order as the CG algorithm.
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BiCG Algorithm

1. Initialization: choose x(0) , compute r(0) = b−Ax(0) and set p(0) = r(0);
choose r̃(0) (such that (r(0), r̃(0)) �= 0, e.g., r̃(0) = r(0)).

2. For j = 0,1, . . . ,

(i) Compute
α j = (r( j), r̃( j))/(Ap( j), p̃( j)).

(ii) Set
x( j+1) = x( j) +α j p

( j).

(iii) Compute
r( j+1) = r( j)−α jAp( j), r̃( j+1) = r̃( j)−α jA

T p̃( j).

(iv) If the stopping rule does not apply, continue.
(v) Compute

β j = (r( j+1), r̃( j+1))/(r( j), r̃( j)).

(vi) Set
p( j+1) = r( j+1) +β j p

( j), p̃( j+1) = r̃( j+1) +β j p̃
( j).

3. endFor

C.1.3 Conjugate Gradient Squared (CGS) Method

The BiCG algorithm requires multiplication by both A and AT at each iteration. Ob-
viously, this demands extra work, and in addition, it is sometimes cumbersome to
multiply by AT than by A. For example, there may be a special formula for the prod-
uct of A with a given vector when A represents, say, a Jacobian, but a corresponding
formula for the product of AT with a given vector may not be available. In other
cases, data may be stored on a parallel machine in such a way that multiplication
by A is efficient but multiplication by AT involves extra communication between
processors. For these reasons it is desirable to have an iterative method that requires
multiplication only by A and that generates good approximate solutions. A method
for such purposes is the Conjugate Gradient Squared (CGS) method.

From the recurrence relations of BiCG algorithms, we see that

r( j) =Φa
j (A)r(0) +Φb

j (A)p(0),

where Φa
j (A) and Φb

j (A) are polynomials of degree j of A. Choosing p(0) = r(0)

gives
r( j) =Φ j(A)r(0) where Φ j =Φa

j +Φb
j ,

with Φ0 ≡ 1. Similarly,
p( j) = π j(A)r(0),

where π j(A) is a polynomial of degree j of A. As r̃( j) and p̃( j) are updated, using
the same recurrence relation as for r( j) and p( j), we have

r̃( j) =Φ j(AT )r̃(0), p̃( j) = π j(AT )r̃(0). (C.21)
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Hence,

α j =
(Φ j(A)r(0),Φ j(AT )r̃(0))
(Aπ j(A)r(0),π j(AT )r̃(0))

=
(Φ2

j (A)r(0), r̃(0))

(Aπ2
j (A)r(0), r̃(0))

. (C.22)

From the BiCG algorithm,

Φ j+1(t) =Φ j(t)−α jtπ j(t), π j+1(t) =Φ j+1(t)+β jπ j(t). (C.23)

Observe that

Φ jπ j =Φ j(Φ j +β j−1π j−1) =Φ2
j +β j−1Φ jπ j−1. (C.24)

It follows from the above results that

Φ2
j+1 =Φ2

j −2α jt(Φ2
j +β j−1Φ jπ j−1)+α2

j t
2π2

j ,

Φ j+1π j =Φ jπ j−α jtπ2
j =Φ2

j +β j−1Φ jπ j−1−α jtπ2
j ,

π2
j+1 =Φ2

j+1 + 2β jΦ j+1π j +β 2
j π

2
j .

(C.25)

Define

r( j) =Φ2
j (A)r(0), p( j) = π2

j (A)r(0),

q( j) =Φ j+1(A)π j(A)r(0), d( j) = 2r( j) + 2β j−1q( j−1)−α jAp( j).

It can be verified that

r( j+1) = r( j)−α jAd( j),

q( j) = r( j) +β j−1q( j−1)−α jAp( j),

p( j+1) = r( j+1) + 2β jq
( j) +β 2

j p( j),

d( j) = 2r( j) + 2β j−1q( j−1)−α jAp( j).

Correspondingly,

x( j+1) = x( j) +α jd
( j). (C.26)

This gives the CGS Algorithm as summarized below.
The CGS method requires two matrix–vector multiplications at each step but no

multiplications by the transpose. For problems where the BiCG method converges
well, the CGS method typically requires only about half as many steps and, there-
fore, half the work of the BiCG method (assuming that multiplication by A or AT

requires the same amount of work). When the norm of the BiCG residual increases
at a step, however, that of the CGS residual usually increases by approximately the
square of the increase of the BiCG residual norm. The CGS algorithm convergence
curve may therefore show wild oscillations that can sometimes lead to numerical
instability and break down.
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CGS Algorithm

1. Initialization: choose x(0) , compute r(0) = b−Ax(0) and set p(0) = r(0) = u(0),q(0) = 0;
choose r̃(0) such that (r(0), r̃(0)) �= 0.

2. For j = 0,1, . . . ,

(i) Compute
α j = (r( j), r̃(0))/(Ap( j), r̃(0)),

and
q( j+1) = u( j)−α jAp( j).

(ii) Set
x( j+1) = x( j) +α j(u( j) +q( j+1)).

(iii) Compute
r( j+1) = r( j)−α jA(u( j) +q( j+1)).

(iv) If the stopping rule does not apply, continue.
(v) Compute

β j = (r( j+1), r̃(0))/(r( j), r̃(0)),

and
u( j+1) = r( j+1) +β jq

( j+1).

(vi) Set
p( j+1) = u( j+1) +β j(q( j+1) +β j p

( j)).

3. endFor

C.1.4 BiConjugate Gradient Stabilized (BiCGStab) Method

The BiConjugate Gradient Stabilized (BiCGStab) method was developed by Van der
Vorst (1992) to solve non-symmetric linear systems while avoiding the irregular
convergence patterns of the CGS method. The main idea is to produce a residual of
the form

r( j) =Ψj(A)Φ j(A)r(0), (C.27)

where Φ j is again the BiCG polynomial butΨj is chosen to keep the residual norm
small at each step while retaining the rapid overall convergence of the CGS method.
For example,Ψj(t) could be of the form

Ψj+1(t) = (1−wjt)Ψj(t). (C.28)

In the BiCGStab algorithm, the solution is updated in such a way that r( j) is of the
form (C.27), whereΨj(A) is a polynomial of degree j satisfying (C.28). Then

Ψj+1Φ j+1 = (1−wjt)Ψj(Φ j −α jtπ j)
= (1−wjt)(ΨjΦ j −α jtΨjπ j),

(C.29)
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and

Ψjπ j =Ψj(Φ j +β j−1π j−1)
=ΨjΦ j +β j−1(1−wj−1t)Ψj−1π j−1.

(C.30)

Let r( j) =Φ j(A)Ψj(A)r(0) and p( j) =Ψj(A)π j(A)r(0). It can be verified that

r( j+1) = (I−wjA)(r( j)−α jAp( j)),

p( j+1) = r( j+1) +β j(I−w jA)p( j).
(C.31)

Letting s( j) = r( j)−α jAp( j), we obtain

r( j+1) = (I−wjA)s( j). (C.32)

The parameter wj is chosen to minimize the 2-norm of r( j+1), i.e.,

w j =
(As( j),s( j))
(As( j),As( j))

. (C.33)

We also need to find an updating formula for α j and β j, which ideally only involves
r(k), p(k) and s(k). This seems to be rather complicated, so we omit the derivation
here.

The BiCGStab Algorithm is summarized below.

BiCGStab Algorithm

1. Initialization: choose x(0) , compute r(0) = b−Ax(0) and set p(0) = r(0);
choose r̃(0) such that (r(0), r̃(0)) �= 0.

2. For j = 0,1, . . . ,

(i) Compute

α j =
(r( j), r̃(0))

(Ap( j), r̃(0))
.

(ii) Set
s( j) = r( j)−α jAp( j),

and compute

wj =
(As( j), s( j))
(As( j),As( j))

.

(iii) Set
x( j+1) = x( j) +α j p

( j) +w js
( j); r( j+1) = s( j)−w jAs( j).

(iv) If the stopping rule does not apply, continue.
(v) Compute

β j =
α j

w j

(r( j+1), r̃(0))
(r( j), r̃(0))

.

(vi) Set
p( j+1) = r( j+1) +β j(p( j)−w jAp( j)).

3. endFor
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In general, the BiCGStab method often converges about as fast as the CGS algo-
rithm. We also notice that the BiCGStab method requires two matrix–vector prod-
ucts and four inner products, i.e., two inner products more than the BiCG and CGS
methods.

C.1.5 Generalized Minimal Residual (GMRES) Method

The Generalized Minimal Residual method proposed by Saad and Schultz (1986) is
one of the most important tools for solving general non-symmetric system: Ax = b.
In the k-th iteration of the GMRES method, we need to find x(k) that minimizes
‖b−Ax‖2 over the set

Sk := x(0) + span
{

r(0),Ar(0), . . . ,Ak−1r(0)}, (C.34)

where r(0) = b−Ax(0). In other words, for any x ∈ Sk, we have

x = x(0) +
k−1

∑
j=0
γ jA

jr(0). (C.35)

Moreover, it can be shown that

r = b−Ax = r(0)−
k

∑
j=1
γ j−1A jr(0). (C.36)

Like the CG algorithm, the GMRES method will obtain the exact solution of Ax = b
within n iterations. Moreover, if b is a linear combination of k eigenvectors of A, say
b = ∑k

p=1 γpuip , then the GMRES method will terminate within at most k iterations.
The first important issue is to find a basis for Sk. Suppose that we have a matrix

Vk = [vk
1,v

k
2, . . . ,v

k
k], whose columns form an orthogonal basis of Sk. Then any z ∈ Sk

can be expressed as

z =
k

∑
p=1

upvk
p = Vku, (C.37)

where u = (u1, . . . ,uk) ∈ R
k. Once we have found Vk, we can convert the original

least-squares problem: minx∈Sk ‖b−Ax‖2 into a least-squares problem in Rk. More
precisely, let x(k) be the solution after the k-th iteration. Then we have x(k) = x(0) +
Vky(k), where the vector y(k) minimizes

min
y∈Rk

‖b−A(x(0) +Vky)‖2 = min
y∈Rk

‖r(0)−AVky‖2. (C.38)

This is a standard linear least-squares problem that can be solved by a QR decom-
position.
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To find an orthonormal basis of Sk, one can use the modified Gram-Schmidt
orthogonalization as highlighted below.
This algorithm produces the columns of the matrix Vk, which also form an orthonor-
mal basis for Sk. Note that the algorithm breaks down when a division by zero
occurs.

If the modified Gram-Schmidt process does not break down, we can use it to
carry out the GMRES method (i.e., to solve the minimization problem (C.38)) in an
efficient way. More precisely, define

Modified Gram-Schmidt Orthogonalization

1. Initialization: choose x(0), and set r(0) = b−Ax(0) and v(1) = r(0)/‖r(0)‖2.
2. For j = 1,2, . . . ,k,

Compute

v( j+1) =
Av( j)−∑ j

l=1

(

Av( j),v(l))v(l)

‖Av( j)−∑ j
l=1

(

Av( j),v(l)
)

v(l)‖2

.

3. endFor

hi j =
(

Av( j),v(i)), 1≤ i≤ j ≤ k.

From the modified Gram-Schmidt algorithm, we obtain a k× k matrix Hk = (hi j),
which is upper Hessenberg, i.e., its entries satisfy hi j = 0 if i > j+1. Moreover, this
process produces a matrix Vk = [vk

1,v
k
2, . . . ,v

k
k], whose columns form an orthonormal

basis for Sk, and we have

AVk = Vk+1H̃k, (C.39)

where H̃k is generated by Hk (see P. 548 of Golub and Van Loan (1996)). This allows
us to convert the problem: updating x(k) = x(0) +Vky(k) by solving (C.38), into an
alternative formulation. Using the fact r(0) = b−Ax(0), and (C.39), one verifies that

r(k) = b−Ax(k) = r(0)−A
(

x(k)− x(0))

= βVk+1e1−AVky(k) = Vk+1
(

βe1− H̃ky(k)),
(C.40)

where e1 is the first unit k-vector (1,0, . . . ,0)T , and β = ‖r(0)‖2. Therefore, the
problem (C.38) becomes

min
y∈Rk

∥

∥βe1− H̃ky
∥

∥

2. (C.41)

To find the minimizer y(k) of (C.41), it is necessary to we look at the linear sys-
tem H̃ky = βe1, which can be solved by using rotation matrices to perform Gauss-
elimination for H̃k (see, e.g., Saad (2003)). Here, we skip the details.
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The pseudocode of the GMRES Algorithm for solving Ax = b with A being a
non-symmetric matrix is given below.

GMRES Algorithm

1. Initialization: choose x(0), and set r(0) = b−Ax(0),β = ‖r(0)‖2 and v(1) = r(0)/‖r(0)‖2.
2. For a given k, find the basis for Sk by e.g., the modified Gram-Schmidt orthogonalization

process.
3. Form H̃k, and solve (C.41) to find y(k).
4. Set x(k) = x(0) +Vky(k).
5. Check convergence; if necessary, set x(0) = x(k),v(1) = r(k)/‖r(k)‖2, and go to Step 2.

C.2 Preconditioning

The convergence rate of iterative methods depends on spectral properties of the
coefficient matrix. Hence, one may attempt to transform the linear system into an
equivalent system that has more favorable spectral properties. A preconditioner is a
matrix for such a transformation. A good preconditioner is a matrix M that is easy
to invert and the condition number of M−1A is small. In other words, the precondi-
tioned system M−1Ax = M−1b can be solved efficiently by an appropriate iterative
method.

C.2.1 Preconditioned Conjugate Gradient (PCG) Method

Based on this idea, the Preconditioned Conjugate Gradient (PCG) method can be
derived with a slight modification of the CG method as described below.

In this algorithm, we need to solve the system Mr̄ = r, which might be as compli-
cated as the original system. The idea for reducing the condition number of M−1A
is to choose M such that M−1 is close to A−1, while the system Mr̄ = r is easy to
solve. The following theorem provides a choice of M.

Theorem C.2. Let A be an n×n nonsingular matrix, and let A = P−Q be a splitting
of A such that P is nonsingular. If H = P−1Q and ρ(H) < 1, then

A−1 =
( ∞

∑
k=0

Hk
)

P−1. (C.42)

Based on this theorem, we can regard the matrices

M = P
(

I + H + . . .+ Hm−1)−1
,

M−1 =
(

I + H + . . .+ Hm−1)P−1,
(C.43)
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PCG Algorithm

1. Initialization: choose x(0) , compute r(0) = b−Ax(0) and solve Mr̄(0) = r(0).
Set p(0) = r̄(0).

2. For k = 0,1, . . .,

(i) Compute
αk = (r̄(k), r(k))/(Ap(k), p(k)).

(ii) Set
x(k+1) = x(k) +αk p(k).

(iii) Compute
r(k+1) = r(k)−αkAp(k).

(iv) If the stopping rule does not apply, continue.
(v) Solve

Mr̄(k+1) = r(k+1).

(vi) Compute
βk = (r̄(k+1), r(k+1))/(r̄(k), r(k)).

(vii) Set
p(k+1) = r̄(k+1) +βk p(k).

3. endFor

as the approximations of A and A−1, respectively. Thus the solution of the system
Mr̄ = r becomes

r̄ = M−1r =
(

I + H + . . .+ Hm−1)P−1r.

Equivalently, the solution r̄ = rm is the result of applying m steps of the iterative
scheme

Pr(i+1) = Qr(i) + r, i = 0,1, . . . ,m−1; r0 = 0.

If P = D and Q = L +U , the above iteration is the standard Jacobi method. Then
in the PCG method, we replace the system Mr̄(k+1) = r(k+1) with do m Jacobi it-
erations on Ar = r(k+1) to obtain r̄(k+1). The resulting method is called the m-step
Jacobi PCG method.

In practice, we may just use the one-step Jacobi PCG method, i.e., M = D.
Similarly, the symmetric Gauss-Seidel and symmetric Successive Over-Relaxation
(SSOR) methods can also be used as preconditioners:

• Symmetric Gauss-Seidel preconditioner:

M = (D−L)D−1(D−U), M−1 = (D−U)−1D(D−L)−1.

• SSOR preconditioner:

M =
ω

2−ω (ω−1D−L)D−1(ω−1D−U),

M−1 = ω(2−ω)(D−ωU)−1D(D−ωL)−1.
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C.2.2 Preconditioned GMRES Method

If we use M as a left preconditioner for the GMRES method, then we are trying to
minimize the residual in the space:

Sm(A,r(0)) = span
{

r(0),M−1Ar(0), . . . ,(M−1A)m−1r(0)}. (C.44)

The resulting algorithm is the very same as the original GMRES method.
If M is used as a right preconditioner, we just need to replace A in the original

GMRES algorithm by AM−1. Also we need to update x(k) by

x(k) = x(0) + M−1Vky(k). (C.45)

In practice, for the GMRES method, the Gauss-Seidel and SOR methods can also
be used as preconditioners:

• Gauss-Seidel preconditioner:

M = D−L, M−1 = (D−L)−1.

• SOR preconditioner:

M = ω−1D−L, M−1 = ω(D−ωL)−1.

The preconditioned CGS or BiCGStab algorithms can be constructed similarly. In
general, to use preconditioners for the CGS method or the BiCGStab method, it is
only necessary to replace the matrix A in the original algorithms by M−1A or AM−1.





Appendix D
Basic Time Discretization Schemes

We describe below several standard methods for ordinary differential equations
(ODEs), and present some popular time discretization schemes which are widely
used in conjunction with spectral methods for partial differential equations (PDEs).
We refer to by Gear (1971), Lambert (1991), Hairer et al. (1993), Hairer and Wanner
(1996), LeVeque (2007), and Butcher (2008) for thorough discussions on numerical
ODEs.

D.1 Standard Methods for Initial-Valued ODEs

Consider the initial value problem (IVP):

dU
dt

= F(U,t), t > 0; U(0) = U0. (D.1)

In general, it may represent a system of ODEs, i.e., U,F,U0 ∈ Rd . To this end, let τ
be the time step size, and let Un be the approximation of U at tn = nτ,n≥ 1.

The simplest method is to approximate dU/dt by the finite difference quotient
U ′(t)≈ (U(t + τ)−U(t))/τ . This gives the forward Euler’s method:

Un+1 = Un + τF(Un,tn), n≥ 0; U0 = U0. (D.2)

From the initial data U0, we can compute U1, then U2, and so on. Accordingly, it is
called a time marching scheme.

The backward Euler’s method is similar, but it is based on approximating
U ′(tn+1) by the backward difference:

Un+1 = Un + τF(Un+1,tn+1), n≥ 0; U0 = U0. (D.3)
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In contrast with (D.2), to march from Un to Un+1, (D.3) requires to solve for Un+1.
It can be viewed as looking for a zero of the function:

g(u) = u− τF(u,tn+1)−Un,

which can be located by using an iterative method such as the Newton’s method.
In view of this, the backward scheme (D.3) is an implicit method as Un+1 must

be solved at each iteration, whereas the forward Euler method (D.2) is an explicit
method.

Another implicit method is the trapezoidal method, obtained by averaging two
Euler’s methods as follows:

Un+1−Un

τ
=

1
2

{

F(Un,tn)+ F(Un+1,tn+1)
}

, n≥ 0; U0 = U0. (D.4)

As one might expect, this symmetric approximation is second-order accurate,
whereas the Euler’s methods are only first-order accurate.

The conceptually simplest approach to construct higher-order methods is to use
more terms in the Taylor expansion. For example, we consider

U(tn+1)≈U(tn)+ τU ′(tn)+
τ2

2
U ′′(tn), (D.5)

where the remainder of O(τ3) has been dropped. In view of (D.1), U ′(tn) can be
replaced by F(Un,tn), and notice that

U ′′(t) =
d
dt

F(U(t),t) = FU(U,t)U ′(t)+ Ft(U,t),

which motivates the approximation:

U ′′(tn)≈ FU (Un,tn)F(Un,tn)+ Ft(Un,tn).

Consequently, we obtain the scheme:

Un+1 = Un + τF(Un,tn)+
τ2

2

{

Ft(Un,tn)+ FU(Un,tn)F(Un,tn)
}

. (D.6)

It can be shown the above scheme has a second-order accuracy provided that F and
the underlying solution U are smooth. However, this can result in very messy and
problematic expressions that must be worked out for each equation.

D.1.1 Runge–Kutta Methods

The Taylor method outlined in the previous part has the desirable property of high-
order accuracy, but the disadvantage of requiring the computation and evaluation
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of the derivatives of F, makes it less attractive in practice. One important class of
higher-order methods without derivative computations is known as the Runge–Kutta
methods.

The second-order Runge–Kutta method is of the form:

K1 = F(Un,tn), K2 = F(Un + aτK1,tn + bτ),

Un+1 = Un + τ
(

αK1 +βK2
)

,
(D.7)

where the parameters satisfy

α+β = 1, aβ = bβ =
1
2
. (D.8)

Notice that there are three equations for four unknowns, so we are free to choose
one parameter. This results in different schemes.

• If α = 0,β = 1 and a = b = 1/2, we have the midpoint method:

Un+1 = Un + τF
(

Un +
τ
2

F(Un,tn),tn +
τ
2

)

. (D.9)

• If α = β = 1/2 and a = b = 1, the scheme (D.7) is known as the modified Euler’s
method:

Un+1 = Un +
τ
2

{

F(Un,tn)+ F
(

Un + τF(Un,tn),tn+1
)

}

. (D.10)

• If α = 1/4,β = 3/4 and a = b = 2/3, the scheme (D.7) is known as the Heun
method:

Un+1 = Un +
τ
4

{

F(Un,tn)+ 3F
(

Un +
2
3
τF(Un,tn),tn +

2
3
τ
)}

. (D.11)

The third-order Runge–Kutta method is given by:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

K1 = F(Un,tn),

K2 = F
(

Un +
τ
2

K1,tn +
τ
2

)

,

K3 = F
(

Un− τK1 + 2τK2,tn + τ
)

,

Un+1 = Un +
τ
6

(

K1 + 4K2 + K3
)

.

(D.12)

The classical fourth-order Runge–Kutta (RK4) method is
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

K1 = F(Un,tn),

K2 = F
(

Un +
τ
2

K1,tn +
τ
2

)

,

K3 = F
(

Un +
τ
2

K2,tn +
τ
2

)

,

K4 = F(Un + τK3,tn+1),

Un+1 = Un +
τ
6

(K1 + 2K2 + 2K3 + K4) .

(D.13)
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The above formula requires four levels of storage, i.e., K1,K2,K3 and K4. An equiv-
alent formulation is:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

U = Un, G = U, P = F(U,tn),

U = U + τP/2, G = P, P = F
(

U,tn + τ/2
)

,

U = U + τ(P−G)/2, G = G/6, P = F
(

U,tn + τ/2
)−P/2,

U = U + τP, G = G−P, P = F(U,tn+1)+ 2P,

Un+1 = U + τ (G+ P/6).

(D.14)

This version of the RK4 method requires only three levels (U,G and P) of storage.
As we saw in the derivation of the Runge–Kutta method of order 2, a number

of parameters must be selected. A similar situation occurs in finding higher-order
Runge–Kutta methods. Consequently, there is not just one Runge–Kutta method for
each order, but a family of methods. It is worthwhile to point out that the number of
required function evaluations increases more rapidly than the order of the Runge–
Kutta methods. This makes the higher-order Runge–Kutta methods less attractive
than some other classical fourth-order methods.

D.1.2 Multi-Step Methods

The methods discussed to this point are called one-step methods because the approx-
imation at time tn+1 involves the information from only one of the previous time
tn. Although these methods might use functional evaluation information at points
between tn and tn+1, they do not retain that information for direct use in future ap-
proximations.

We next review some methods using approximations at more than one previous
approximations, which are called multi-step methods. In general, the r-step linear
multi-step methods (LLMs) takes the form

r

∑
j=0
α jU

n+ j = τ
r

∑
j=0
β jF(Un+ j,tn+ j), (D.15)

where Un+r is computed from the equation in terms of the previous approximations
Un+r−1,Un+r−2, . . . ,Un and F at these points (which can be stored and reused if F
is expensive to evaluate).

If βr = 0, the method (D.15) is explicit; otherwise it is implicit. Note that we can
multiply both sides by any non-zero constant and have essentially the same method,
so the normalization αr = 1 is often assumed.

The leap frog method is a second-order, two-step scheme given by

Un+1 = Un−1 + 2τF(Un,tn). (D.16)
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Some special classes of methods are particularly useful with distinctive names.
We list a few of them.

The Adams methods take the form

Un+r = Un+r−1 + τ
r

∑
j=0

β jF(Un+ j,tn+ j). (D.17)

These methods all have

αr = 1, αr−1 =−1, α j = 0 for all j < r−1. (D.18)

The coefficients β j are chosen to maximize the order of accuracy. If we require
βr = 0, the method is explicit and the r coefficients {β j}r−1

j=0 can be chosen so that
the method has order r. This can be done by using Taylor expansion of the local
truncation error and then choosing the coefficients to eliminate as many terms as
possible. This process leads to explicit Adams-Bashforth methods.

Another way to derive the Adams-Bashforth methods is by writing

U(tn+1)−U(tn) =
∫ tn+1

tn
U ′(t)dt =

∫ tn+1

tn
F(U(t),t)dt, (D.19)

and by applying a quadrature formula to approximate

∫ tn+1

tn
F(U(t),t)dt ≈

∫ tn+1

tn
Ln,r−1(t)dt, (D.20)

where Ln,r−1(t) is the Lagrange interpolating polynomial of degree r− 1 at the
points tn,tn−1, . . . ,tn+r−1. The first few schemes obtained from this procedure are
listed below, where we denote Fk := F(Uk,tk).

Explicit Adams-Bashforth methods

1-step:
Un+1 = Un + τFn (forward Euler)

2-step:

Un+2 = Un+1 +
τ
2

{

3Fn+1−Fn
}

(AB2)

3-step:

Un+3 = Un+2 +
τ
12

{

23Fn+2−16Fn+1 +5Fn
}

(AB3)

4-step:

Un+4 = Un+3 +
τ
24

{

55Fn+3−59Fn+2 +37Fn+1−9Fn
}

(AB4)

If βr �= 0, then we have one more free parameter. This allows us to derive the
r-step Adams-Moulton methods of order r+1. They are implicit, and we list several
such schemes in the box.
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One difficulty with LLMs if r > 1 is that we have to provide the r initial values
U0,U1, . . . ,Ur−1 before we apply the multi-step methods. The initial value U0 is
given, but the other values are not and typically must be generated by some other
methods, such as the Runge–Kutta methods.

Implicit Adams-Moulton methods

1-step:

Un+1 = Un +
τ
2

{

Fn+1 +Fn
}

(Crank-Nicolson method)

2-step:

Un+2 = Un+1 +
τ
12

{

5Fn+2 +8Fn+1−Fn
}

(AM3)

3-step:

Un+3 = Un+2 +
τ
24

{

9Fn+3 +19Fn+2−5Fn+1 +Fn
}

(AM4)

4-step:

Un+4 = Un+3 +
τ

720

{

251Fn+4 +646Fn+3−264Fn+2 +106Fn+1−19Fn
}

We have not touched on the theoretical issues of convergence and stability of
these methods, and refer the readers to the books of Gear (1971), Lambert (1991),
LeVeque (2007), and Butcher (2008) for more detail.

D.1.3 Backward Difference Methods (BDF)

The Adams-Bashforth methods might be unstable due to the fact they are obtained
by integrating the interpolating polynomial outside the interval of the data that de-
fine the polynomial. This can be remedied by using multilevel implicit methods:

• Second-order backward difference method (BDF2):

1
2τ
(

3Un+1−4Un +Un−1)= F(Un+1,tn+1). (D.21)

• Third-order backward difference method (BDF3):

1
6τ
(

11Un+1−18Un + 9Un−1−2Un−2)= F(Un+1,tn+1). (D.22)

• Fourth-order backward difference method (BDF4):

1
12τ

(

25Un+1−48Un + 36Un−1−16Un−2 + 3Un−3)= F(Un+1,tn+1). (D.23)
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In some applications, F(u,t) is often the sum of linear and nonlinear terms. In
this case, some combination of the backward difference method and extrapolation
method can be used. To fix the idea, let us consider

Ut = L(U)+ N(U), (D.24)

where L is a linear operator and N is a nonlinear operator. By combining a second-
order backward differentiation (BDF2) for the time derivative term and a second-
order extrapolation (EP2) for the explicit treatment of the nonlinear term, we obtain
a second-order scheme (BDF2/EP2) for (D.24):

1
2τ
(

3Un+1−4Un +Un−1)= L(Un+1)+ N(2Un−Un−1). (D.25)

A third-order scheme for solving (D.24) can be constructed in a similar manner,
which leads to the so-called BDF3/EP3 scheme:

1
6τ
(

11Un+1−18Un + 9Un−1−2Un−2)

= L(Un+1)+ N(3Un−3Un−1 +Un−2).
(D.26)

D.2 Operator Splitting Methods

In some situations, F(u,t) is the sum of several terms with different nature. It is
oftentimes advisable to use an operator splitting method (also called fractional step
method) (cf. Yanenko (1971), Marchuk (1974), Godunov (1959), Strang (1968),
Goldman and Kaper (1996)). To demonstrate the main idea, we consider

∂u
∂ t

= F(u) = Au + Bu; u(t0) = u0, (D.27)

where F(u) = Au + Bu is frequently split according to physical components, such
as density, velocity, energy or dimension.

We first consider the Strang’s operator splitting method. For a given time step
size τ > 0, let tn = nτ , and let un be the approximation of u(tn). Let us formally
write the solution u(x,t) of (D.27) as

u(t) = et(A+B)u0 =: S(t)u0. (D.28)

Similarly, denote by S1(t) := etA the solution operator for ut = Au, and by S2(t) :=
etB the solution operator for ut = Bu. Then the first-order operator splitting is based
on the approximation

un+1 ≈ S2(τ)S1(τ)un, (D.29)
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or on the one with the roles of S2 and S1 reversed. To construct a second-order
scheme, the Strang splitting (cf. Strang (1968)) can be used, in which the solution
S(tn)u0 is approximated by

un+1 ≈ S2(τ/2)S1(τ)S2(τ/2)un, (D.30)

or by the one with the roles of S2 and S1 reversed.
A fourth-order symplectic time integrator (cf. Yoshida (1990), Lee and Fornberg

(2003)) for (D.27) is as follows:

u(1) = e2w1Aτ un, u(2) = e2w2Bτ u(1), u(3) = e2w3Aτ u(2),

u(4) = e2w4Bτ u(3), u(5) = e2w3Aτ u(4), u(6) = e2w2Bτ u(5),

un+1 = e2w1Aτ u(6);

(D.31)

or equivalently,

un+1 ≈S1(2w1τ)S2(2w2τ)S1(2w3τ)S2(2w4τ)
S1(2w3τ)S2(2w2τ)S1(2w1τ)un,

(D.32)

where

w1 = 0.33780 17979 89914 40851,

w2 = 0.67560 35959 79828 81702,

w3 =−0.08780 17979 89914 40851,

w4 =−0.85120 71979 59657 63405.

(D.33)
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