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PREFACE 

This fifth edition represents a major revision of the fourth edition. However, as 
in previous editions, the blend of analysis, qualified approximations, and judge
ments based on practical experience is maintained. Each topic is developed from 
basic principles so that the applicability and limitations of the methods employed 
are clear. Introductory statements in each chapter serve as guidelines for the 
reader to the topics that are discussed. The topics are divided into three major 
parts : Part !- Fundamental Concepts ; Part 11-Classical Topics in Advanced 
Mechanics ; and Part III-Selected Advanced Topics. 

Part I, Chapters 1 - 5, includes topics from elasticity, plasticity, and energy 
methods that are important in the remainder of the book. In Chapter 1, the role 
and the limits of design are discussed. Basic concepts of one-dimensional load
stress, load-deflection, and stress-strain diagrams are introduced. A discussion of 
the tension test and associated material properties is presented, followed by an 
introduction to failure theories. These concepts are followed, in Chapter 2, by the 
theories of stress and strain, and by strain measurements (strain rosettes) and, 
in Chapter 3, by the theory of linear stress-strain-temperature relations. The dis
cussion of anisotropic materials has been expanded, and example problems on 
orthotropic material behavior are given. Student problems for anisotropic mate
rials are also included. Chapter 4 contains much new material related to inelastic 
(nonlinear) behavior and a broader treatment of yield criteria, including elastic
plastic behavior of beams, strain-hardening effects in bars, and residual stresses in 
elastic-plastic bars after unloading. The application of energy methods, Chapter 5, 
is expanded to include an in-depth discussion of the dummy-load method used by 
structuraL engineers and its relation to the Castigliano method. Additional worked 
examples and many new problems have been added. (In this edition, problems have 
been placed at the end of each Chapter, rather than at the end of each section.) 

Part II, Chapters 6- 1 2, treats some classical topics of advanced mechanics. 
Torsion is treated in Chapter 6, including new examples and problems. In addi
tion, a finite difference solution of the rectangular cross section bar is presented. 
An example of limit analysis and residual stresses in a circular cross section shaft 
is also included. In Chapters 7 to 9, the three topics of unsymmetrical bending, 
shear center, and curved beams are examined on a rigorous basis, and limitations 
on existing analyses are indicated. A presentation of beams on elastic foundations, 
plus new problems and references, is given in Chapter 10. Some minor clarifica
tions for the thick-wall cylinder and many new student problems are given in 
Chapter 1 1 . In Chapter 12, the topic of stability of columns is expanded consid
erably, and a wide range of practical example problems and student exercises is 
included. 
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Part III, Chapters 1 3� 19, presents the more advanced topics of flat plates, stress 
concentrations, fracture mechanics, fatigue, creep (time-dependent deformations), 
contact stresses, and the finite element method. The linear theory of flat plates is 
given in Chapter 1 3, including some illustrative problems and a collection of stu
dent exercises. The level is appropriate as an introduction for master-level students 
and for practicing engineers. Chapter 14  collects, in an integrated manner, material 
on stress concentrations previously presented in parts of Chapters 3, 1 2, and 1 3  of 
the fourth edition. New examples and exercise problems have been added, as well 
as some new charts of stress concentration factors for rectangular cross section 
beams. The topic of fracture mechanics is introduced in Chapter 1 5 ; it includes 
material previously given in Chapters 3 and 1 2  of the fourth.edition and a brief dis
cussion of other factors, such as elastic-plastic fracture, crack-growth analysis, load 
spectra and stress history, testing, and experimental data interpretation. A number 
of up-to-date books and papers are referenced. Progressive fracture-(fatigue) is dis
cussed in Chapter 1 6, including additional problems and references. An extended 
discussion of creep is presented in Chapter 1 7, including creep of metals and non
metals (concrete, asphalt, and wood). Chapter 1 8, contact stresses, is essentially 
unchanged from Chapter 1 4  of the fourth edition. Chapter 1 9, the finite element 
method, is a completely rewritten treatment of Chapter 1 5  of the fourth edition. 
It includes discussions of the constant strain triangular element, the bilinear rect
angular element, the linear isoparametric quadrilateral element, and the plane 
frame element. Example problems and exercise problems are included. 

As a result of the new material and problems that have been added, this edi
tion is larger than its predecessors. Consequently, it provides a greater c�oice 
of topics for study. It also has the advantage that the book can be used over a 
lifetime of practice, as a reference to topics of lasting importance in engineering. 
The book contains more material than can be covered in a one-quarter or a one
semester course. It is, however, with the proper selection of topics, suitable for a 
one-semester (one-quarter) course at either the senior level or the first-semester 
graduate level, for a two-semester (two- or three-quarter) course sequence, or as a 
reference work in several courses in mechanics. 

The computer program listings in the fourth edition have been omitted from the 
current edition. However, revised versions of the programs from the fourth edition 
and new programs for applications in this edition are available on request from one 
of the authors (R. J. Schmidt, Department of Civil and Architectural Engineering, 
Box 3295, University of Wyoming, Laramie, WY 8207 1 ). 

We thank Charity Robey, Wiley engin�ering editor, for her expert help and ad
vice during the development of this edition. We also greatly appreciate the help of 
Suzanne Ingrao, with the difficult task of galley and page proof editing. We thank 
the reviewers of the preliminary format and content of the fifth edition for their 
constructive criticism and suggestions for improving the fourth edition. These re
viewers are Stanley Chen, Arizona State University; Donald DaDeppo, University 
of Arizona ; D. W. Haines, Manhattan College; Loren D. Lutes, Texas A. & M. 
University; Esmet M. Kamil, Pratt Institute; and Thomas A.  Lenox, U.S. Military 
Academy, West Point, NY. We thank especially the reviewers of the draft manu
script for their helpful suggestions. These reviewers are J. A. M. Boulet, University 
of Tennessee-Knoxville ; Ray W. James, Texas A. & M. University; A. P. Moser, 
Utah State University ; William A. Nash, University of Massachusetts-Amherst ;  
and Sam Y. Zamrik, Pennsylvania State University. We also acknowledge the 
contribution of Travis Finch for the artwork in Figs. 1 2. 1 2  and 1 8. 1 .  
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Finally, we welcome comments, suggestions, questions, and corrections from the 
reader. They may be sent to Arthur P. Boresi, Department of Civil and Architectural 
Engineering, Box 3295, University of Wyoming, Laramie, WY 8207 1 .  

October 1992 

ARTHUR P. BORES! 
RICHARD J. SCHMIDT 

0MAR M.  SIDEBOTTOM 
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PART I 

FUNDAMENTAL 
CONCEPTS 

In Part I of this book, Chapters 1 to 5, we introduce and develop fundamental topics 
that are important in the remainder of the book. In Chapter 1 ,  we emphasize basic 
material properties and their use in design. Theories of stress and strain are 
presented in Chapter 2, and linear stress-strain-temperature relations are intro
duced in Chapter 3. Inelastic material behavior is discussed in Chapter 4 and finally, 
energy methods are treated in Chapter 5. 
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1 . 1  

INTRODUCTION 

In this chapter, we present general concepts and definitions that are fundamental to 
many of the topics discussed in this book. The chapter serves also as a brief guide 
and introduction to the remainder of the book. The reader may find it fruitful to 
refer to this chapter, from time to time, in conjunction with the study of topics in 
other chapters. 

THE ROLE OF DESIGN 

This book emphasizes the methods of mechanics of materials and applications to 
the analysis and design of components of structural/machine systems. As such, it 
is directed to aeronautical, civil, mechanical, and nuclear engineers, as well as to 
specialists in the field of theoretical and applied mechanics . As engineers, we are 
problem solvers. The problems that we solve encompass practically all fields of 
human activity. We solve problems related to buildings, transportation (including 
automotive, rail, water, air and outer-space travel), water systems (e.g., dams and 
pipelines), manufacturing, specialized medical equipment, communication systems, 
computers, hazardous wastes, etc. These problems are generally encountered in the 
design, manufacture, and construction of engineering systems. Ordinarily, these 
systems are not built or manufactured before the design process is completed. The 
design process usually involves the development of many drawings and/or CAD 
files to describe the final system. One of the major purposes of the design process is 
to analyze or evaluate various design alternatives before a final design is selected. 
One of the simplest objectives of the analysis is to ensure that all components of the 
system will fit together and function properly. More complicated analysis involves 
the evaluation of forces in the proposed design to ensure that each component of the 
system functions properly (for instance, safely withstands loads or does not undergo 
excessive displacements). This analysis is essential in the process of refining the 
design to meet required conditions such as adequate strength, minimum weight, and 
minimum cost of production. 

The process of refining the design can be very complicated and extremely time
consuming. For example, consider the design of a space vehicle, such as the shuttle. 
After the shuttle's mission or use has been established, the designer must decide on 
the shape of the vehicle and the materials to be used. The designer must analyze the 
vehicle's structure to determine if it is strong and stiff enough to withstand the 
aerodynamic and thermal loads to which it will be subjected. The designer must 
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analyze the skin and individual component parts of the structure to determine how 
these loads will be carried and safely transmitted from part to part. This first analysis 
usually reveals evidence that a redesign of some members in the structure may 
provide a more efficient and safer distribution of load and perhaps a more cost
effective design. Unfortunately, the designer may also discover that improvements in 
one part of the system may require changes in another part and possible problems in 
still other parts. Thus, the designer may be faced with one or more iterations between 
analysis and design to ensure 'that the entire system will function properly. This type 
of iteration is a common feature of design (Cross, 1989; de Neufville, 1 990). 

Considerations other than resistance to and transfer of loads, such as those of 
form or appearance, cost, ease of manufacturing, time constraints, etc., may influence 
or even control the design. Indeed, these factors may not only govern the design of 
an individual component but also may have a strong influence on the design of a 
more general engineering system, such as an office building. However, consider
ations of this kind are secondary to the topics treated in this book. 

The term design as used in this book is not limited to the detailed calculations 
required to determine the proper dimensions of a member ; rather, this term is used 
in a broader sense that emphasizes the relation of the methods of mechanics of 
materials to the concepts and philosophy of a rational design code or specification. 
In particular, emphasis is placed on the development of equations, formulas, or 
methods by which detailed analyses can be performed. Thus, this text provides an 
analytical foundation that is fundamental to the design process. Readers interested 
in the general concepts and methods of design may refer to the books by Cross 
( 1989) and de Neufville ( 1990). 

TOPICS TREATED IN THIS BOOK 

This book is intended for advanced undergraduate and graduate engineering 
students, as well as practicing engineers. The topics treated are separated into three 
groups : Part I, Fundamental Concepts ; Part II, Classical Topics in Advanced 
Mechanics of Materials; Part III, Selected Advanced Topics. Part I treats general 
concepts that pertain to the entire book, theories of stress and strain, linear stress
strain-temperature relations, yield criteria for multiaxial stress states, and energy 
methods. These topics are intended to be read sequentially, more or less. However, 
depending on the background of the reader, some of these topics may be bypassed. 
Part II presents several chapters on classical applications of the methods of 
mechanics of materials, namely, torsion, nonsymmetrical bending of beams, shear 
center for thin-wall beam cross sections, curved beams, beams on elastic founda
tions, thick-wall cylinders, and buckling of columns. These chapters may be treated 
in any order, except that the chapter on shear centers should be studied after the 
chapters on torsion and nonsymmetrical bending of beams. Part III introduces 
chapters on selected advanced topics, namely, flat plates, stress concentration 
factors, contact stresses, fracture mechanics, high cycle fatigue, time-dependent 
deformation/creep, and finite element methods. Each of these chapters may be 
treated independently, more or less. 
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LOAD-STRESS AND LOAD-DEFLECTION RELATIONS 

For most of the members considered in this book we derive relations, in terms of 
known loads and known dimensions of the member, for either the distributions of 
normal and shear stresses on a cross section of the member or for stress components 
that act at a point in the member. For a given member subjected to prescribed loads, 
the derivation of load-stress relations depends on satisfaction of the following 
requirements. 

1. The equations of equilibrium (or equations of motion for bodies not in 
equilibri urn) 

2. The compatibility conditions (continuity conditions) that require deformed 
volume elements in the member to fit together without overlap or tearing 

3. The constitutive relations 

Two different methods are used to satisfy requirements 1 and 2: the method of 
mechanics of materials and the method of general continuum mechanics. Often, 
load-stress and load-deflection relations have not been derived in this book by 
general continuum mechanics methods, either because the beginning student does 
not have the necessary background or because of the complexity of the general 
solutions. Instead, the method of mechanics of materials is used to obtain either 
exact solutions or reliable approximate solutions. In the method of mechanics of 
materials, the load-stress relations are derived first. They are then used to obtain 
load-deflection relations for the member. 

A simple member such as a circular shaft of uniform cross section may be 
subjected to complex loads that produce a multiaxial state of stress in the shaft. 
However, such complex loads can be reduced to several simple types of load, such as 
axial, bending, and torsion. Each type of load, when acting alone, produces mainly 
one stress component, which is distributed over the cross section of the shaft. The 
method of mechanics of materials can be used to obtain load-stress relations for 
each type of load. If the deformations of the shaft that result from one type of load 
do not influence the magnitudes of the other types of loads and if the material 
remains linearly elastic for the combined loads, the stress components due to each 
type of 4oad can be added together (i .e., the method of superposition may be used). 

In a complex member, each load may have a significant influence on each 
component of the state of stress. Then, the method of mechanics of materials 
becomes cumbersome, and the use of the method of continuum mechanics may be 
more appropriate. 

Method of Mechanics of Materials 
The method of mechanics of materials is based on simplified assumptions related to 
the geometry of deformation (requirement 2) so that strain distributions for a cross 
section of the member can be determined. A basic assumption is that plane sections 
before loading remain plane after loading. The assumption can be shown to be exact 
for axially loaded members of uniform cross sections, for slender straight torsion 
members having uniform circular cross sections, and for slender straight beams of 
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uniform cross sections subjected to pure bending. The assumption is approximate 
for other beam problems. The method of mechanics of materials is used in this book 
to treat several advanced beam topics (Chapters 7 to 10). In a similar way, we assume 
that lines normal to the middle surface of an undeformed plate remain straight and 
normal to the middle surface after the load is applied. This assumption is used to 
simplify the plate problem in Chapter 13 .  

We review the steps used in  the derivation of the flexure formula to  illustrate the 
method of mechanics of materials and to show how the three requirements listed 
above are used. Consider a symmetrically loaded straight beam of uniform cross 
section subjected to a moment M that produces pure bending (Fig. 1 . 1 a). (Note that 

p 

(a) 

(b) 

L J 
---1------- �--

r- ...J\ 
(c) 

Figure 1.1 Pure bending of a long straight beam. (a) Circular curvature of beam in pure 
bending. (b) Free-body diagram of cut beam. (c) Infinitesimal segment of beam. 
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the plane of loads lies in a plane of symmetry of every cross section of the beam. See 
Sec. 6. 1 .) It is required that we determine the normal stress distribution (J for a 
specified cross section of the beam. We assume that (J is the major stress component 
and, hence, ignore other effects. Pass a section through the beam at the specified 
cross section so that the beam is cut into two parts. Consider a free-body diagram of 
one part (Fig. 1 . 1  b). The applied moment M for this part of the beam is in 
equilibrium with internal forces represented by the sum of the forces that result from 
the normal stress (J that acts over the area of the cut section. Equations of 
equilibrium (requirement 1) relate the applied moment to internal forces. Since no 
axial external force acts, two integrals are obtained as follows : J (J dA = 0 and J CJY dA = M, where M is the applied external moment and y is the perpendicular 
distance from the neutral axis to the element of area dA. 

Before the two integrals can be evaluated, we must know the distribution of (J 
over the cross section. Since the stress distribution is not known, it is determined 
indirectly through a strain distribution obtained by requirement 2. The continuity 
condition (requirement 2) is examined by consideration of two cross sections of 
the undeformed beam separated by an infinitesimal distance (Fig. 1 . 1  c). Under the 
assumption that plane sections remain plane, the cross sections must rotate with 
respect to each other as the moment M is applied. There is a straight line in each 
cross section called the neutral axis along which the strains remain zero. Since 
plane sections remain plane, the strain distribution must vary linearly with the 
distance y as measured from this neutral axis. 

Requirement 3 is now employed to obtain the relation between the assumed 
strain distribution and the stress distribution. Tension and compression stress
strain diagrams represent the response for the material in the beam. For sufficiently 
small strains, these diagrams indicate that the stresses and strains are linearly 
related. Their constant ratio, CJ/E = E, is the modulus of elasticity for the material. In 
the linear range the modulus of elasticity is the same for tension and for compression 
for many engineering materials. Since other stress components in the beam are 
neglected, (J is the only stress component in the beam. Hence, the stress-strain 
relation for the beam is (J = EE. Therefore, both the stress (J and strain E vary linearly 
with the distance y as measured from the neutral axis of the beam (Fig. 1 . 1  ). Hence, 
the equations of equilibrium can be integrated to obtain the flexure formula 
(J = My/1, where M is the applied moment at the given cross section of the beam 
and I is the moment of inertia of the beam cross section. 

The method of mechanics of materials is used in Chapter 7 to treat nonsym
metrical_bending, in Chapter 8 to treat shear center, in Chapter 9 to treat curved 
beams, and in Chapter 10 to treat beams on elastic foundations. 

Method of Continuum Mechanics, Theory of Elasticity 
Many of the problems treated in this book-noncircular torsion (Chapter 6), plates 
(Chapter 1 3), thick-wall cylinders (Chapter 1 1 ), contact stresses (Chapter 1 8), and 
stress concentrations (Chapter 14)-have multiaxial states of stress of such 
complexity that the method of mechanics of materials cannot be employed to derive 
load-stress and load-deflection relations as in the above example. Therefore, in 
such cases, the method of continuum mechanics is used. When we consider small 
displacements and linear elastic material behavior only, the general method of 
continuum mechanics reduces to the method of the theory of linear elasticity. 

In the derivation of load-stress and load-deflection relations by the theory of 
linear elasticity, an infinitesimal volume element at a point in a body with faces 
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1 .4 

normal to the coordinate axes is often employed. Requirement 1 is represented by 
the differential equations of equilibrium (Chapter 2). Requirement 2 is represented 
by the differential equations of compatibility (Chapter 2). The material response 
(requirement 3) for linearly elastic behavior- is determined by one or more exper
imental tests that define the required elastic coefficients for the material. In this 
book we consider mainly isotropic materials for which only two elastic coefficients 
are needed (Chapter 3). These coefficients can be obtained from a tension specimen if 
both axial and lateral strains are measured for every load applied to the specimen. 
Requirement 3 is represented therefore by the isotropic stress-strain relations devel
oped in Chapter 3. If the differential equations of equilibrium and the differential 
equations of compatibility can be solved subject to specified stress-strain relations 
and specified boundary conditions, the states of stress and displacements for every 
point in the member are obtained. 

Deflections by Energy Methods 
Certain structures are made up of members whose cross sections remain essentially 
plane during the deflection of the structures. The deflected position of a cross sec
tion of a member of the structure is' defined by three orthogonal displacement 
components of the centroid of the cross section and by three orthogonal rotation 
components of the cross section. These six components of displacement and rota
tion of a cross section of a member are readily calculated by energy methods. For 
small displacements and small rotations and for linearly elastic material behavior, 
Castigliano's theorem is recommended as a method for the computation of the 
displacements and rotations. The method is employed in Chapter 5 for structures 
made up of axially loaded members, beams, and torsion members, and in Chapter 9 
for curved beams. 

STRESS-STRAIN RELATIONS 

In Chapter 2, the state of stress at a point is defined by six stress components . The 
transformation of the stress components under a rotation of coordinate axes is 
developed, and equations of equilibrium (or equations of motion for accelerated 
bodies) are derived. The analogous theory of deformation, based on geometric 
concepts, is presented and strain-displacement relations, transformation of the 
strain components under a rotation of coordinate axes, and strain compatibility 
relations are derived. 

To derive load-stress and load-deflection relations for specified structural 
members, the stress components must be related to the strain components. 
Consequently, in Chapter 3 we discuss linear stress-strain-temperature relations. 
These relations may be employed in the study of linearly elastic material behavior. 
In addition, they may be employed in plasticity theories to describe the linearly 
elastic part of the total response of materials. More generally, nonlinear (inelastic) 
stress-strain relations are required for the plastic part of material behavior. 
Unfortunately, these relations take on different forms, depending on the material 
behavior during plastic response. In this book, we consider only the limiting case of 
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fully plastic loads for low-carbon structural steel. At the fully plastic load, stress 
components are assumed to be independent of the strain components and remain 
constant with increasing strain. 

Since experimental studies are required to determine material properties (e.g. 
elastic coefficients for linearly elastic materials), the study of stress-strain relations is, 
in part, empirical. To obtain needed isotropic elastic material properties, we employ 
a tension specimen (Fig. 1 .2). If lateral as well as longitudinal strains are measured 
for linearly elastic behavior of the tension specimen, the resulting stress-strain data 
represent the material response for obtaining the needed elastic constants for the 
material. The main structure of the stress-strain-temperature relations, however, is 
studied theoretically by means of the first law of thermodynamics (Chapter 3). 

The stress-strain-temperature relations presented in Chapter 3 are limited mainly 
to small strains and small rotations. The reader interested in large strains and large 
rotations may refer to the works of Green and Adkins ( 1 960). 

Elastic and Inelastic Response of a Solid 
Initially, we review the results of a simple tension tes t of a circular cylindrical bar 
that is subjected to an axially directed tensile load P (Fig. 1 .2). It is assumed that the 
load is monotonically increased slowly (so-called static loading) from its initial value 
of zero to its final value, since the material response depends not only on the 
magnitude of the load, but also on other factors, such as the rate of loading, load 
cycling, etc. It is customary in engineering practice to plot the tensile stress (J in the 
bar as a function of the strain E of the bar. In engineering practice, it is also 

© J 
_.. 

J 
.-1----.-

L= 50 mm L+e 

·-�--___,_ 
K 

D =  1 0.0 mm 

(a) (b) 

Figure 1.2 Circular cross section tension specimen. (a) Undeformed specimen: Gage length 
L; diameter D. (b) Deformed specimen: Gage length elongation e. 
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customary to assume that the stress CJ is uniformly distributed over the cross
sectional area of the bar and that it is equal in magnitude to P/A0 , where A0 is the 
original cross-sectional area of the bar. Similarly, the strain E is assumed to be 
constant over the gage length L and equal to 11L/L = ejL, where 11L = e (Fig. 1 .2b) is 
the change or elongation in the original gage length L (the distance JK in Fig. 1 .2a). 
For these assumptions to be valid, the points J and K must be sufficiently far from 
the ends of the bar (a distance of one or more diameters D from the ends). However, 
according to the definition of stress (Sec. 2. 1 ), the true stress is (Jt = P/AP where At  is 
the true cross-sectional area of the bar when the load P acts. (The bar undergoes 
lateral contraction everywhere as it is loaded, with a corresponding change in cross
sectional area.) The difference between (J = P/A0 and (Jt = PlA t is small, provided 
that the elongation e and, hence, the strain E are sufficiently small (Sec. 2.8). If the 
elongation is large, At  may differ significantly from A0 . In addition, the instanta
neous or true gage length when load P acts is L t = L + e (Fig. 1 .2b). Hence, like A t ,  
the true gage length Lt changes with the load P. Corresponding to the true stress (Jt ,  
we may define the true strain Et as follows : In the tension test, assume that the load P 
is increased from zero (where e = 0 also) by successive infinitesimal increments dP. 
With each incremental increase dP in load P, there is a corresponding infinitesimal 
increase dL t in the instantaneous gage length Lt . Hence, the infinitesimal increment 
dE t of the true strain Et due to dP is 

-

Integration of Eq. ( 1 . 1 ) from L to Lt yields the true strain E t .  Thus, we have 

ILt (L t) (L + e) 
E t = L dEt = In L = In 

L 
= In( 1 + E) 

( 1 . 1 ) 

( 1 .2) 

In contrast to the engineering strain E, the true strain E t is not linearly related to the 
elongation e of the original gage length L. 

For many structural metals (e.g., alloy steels), the stress-strain relation of a 
tension specimen takes the form shown in Fig. 1 .3 .  This figure is the tensile stress
strain diagram for the material. The graphical stress-strain relation (the curve 
OABCF in Fig. 1 . 3) was obtained by drawing a smooth curve through the tension 
test data for a certain alloy steel. Engineers use stress-strain diagrams to define 
certain properties of the material that are judged to be significant in the safe design 
of a statically loaded member. Some of these special properties are discussed briefly 
below. In addition, certain general material responses are addressed. 

Material Properties 
As noted above, Fig. 1 . 3 is the tensile stress-strain diagram that has been drawn from 
the test data of a specimen of alloy steel, Fig. 1 .2. It is used by engineers to deter
mine specific material properties used in the design of statically loaded members. 
There are also general characteristic behaviors that are somewhat common to all 
materials. To describe these properties and characteristics, it is convenient to ex
pand the strain scale of Fig. 1 .3 in the region OAB (Fig. 1 .4). It should be recalled 
that Figs . 1 . 3 and 1 .4 are based on the following definitions of stress and strain : 
CJ = P/A0 and E = ejL, where A0 and L are constants. 
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Consider a tensile specimen (bar) subjected to a strain E under the action of a load 
P. If upon removal of the load P, the strain in the bar returns to zero as the load P 
goes to zero, the material in the bar is said to have been strained within the elastic 
limit or the material has remained perfectly elastic. If under loading the strain is 
linearly proportional to the load P (part OA in Figs. 1 . 3  and 1 .4), the material is said 
to be strained within the limit of linear elasticity. The maximum stress for which 
the material remains perfectly elastic is frequently referred to simply as the elastic 
lim it (JEL, whereas the stress at the limit of linear elasticity is referred to as the pro
portional limit CJpL (point A in Figs. 1 . 3 and 1 .4). Ordinarily, (JEL is larger than (JPL· 
The properties of elastic limit and proportional limit, although important from a 
theoretical viewpoint, are not of practical importance for materials like alloy steels. 
This is due to the fact that the transitions from elastic to inelastic behavior and from 
linear to nonlinear behavior are so gradual that these limits are very difficult to 
determine from the stress-strain diagram (part OAB of the curves in Figs. 1 . 3  
and 1 .4). 

When the load produces a stress (J that exceeds the elastic limit (e.g., the stress 
at point J in Fig. 1 .4), the strain does not disappear upon unloading (curve JL in 
Fig. 1 .4) A permanent strain OL remains. For simplicity, it is assumed that the un
loading occurs along the straight line J K, with a slope equal to that of the straight 
line OA. For this reason, the strain OK is called the offset strain Es. The strain that 
is recovered when the load is removed is called the elastic stra in Ee. Hence, the total 
strain E at point J is the sum of the offset strain and elastic strain, or E = Es + Ee. 
Yield Strength. The value of stress associated with point J, Fig. 1 .4, is called the 
yield strength and is denoted by CJys or simply by YS. In practice, a value of the offset 
strain is chosen and the yield strength is determined as the stress associated with the 
intersection of the curve OAB and the straight line JK drawn from the offset strain 
value, with a slope equal to that of line OA (Fig. 1 .4). The value of the offset strain is 
arbitrary. However, a commonly agreed upon value of offset is 0.002 or 0.2% strain, 
as shown in Fig. 1 .4. Typical values of yield strength for several structural materials 
are listed in Appendix A, for an offset of 0.2% . For materials with stress-strain 
curves like that of alloy steels (Figs. 1 .3 and 1 .4 ), the yield strength is used to predict 
the load that initiates inelastic behavior (yield) in a member. 

Ultimate Tensile Strength. Another important property determined from the 
stress-strain diagram is the ultimate tensile strength or ultimate tensile stress (Ju ·  It 
is defined as the maximum stress attained in the engineering stress-strain diagram, 
and in Fig. 1 . 3  it is the stress associated with point C. As seen from Fig. 1 .3 ,  the 
stress increases continuously beyond the elastic region OA, until point C is reached. 
This increase is because the material is hardening (gaining strength) because of 
the straining, at a faster rate than it is softening (losing strength) because of the 
reduction in cross-sectional area. At point C, the strain hardening effect is balanced 
by the effect of the area reduction. From point C to point F, the weakening effect of 
the area reduction controls, and the engineering stress decreases, until the specimen 
ruptures at point F. 

Modulus of Elasticity. In the straight-line region OA of the stress-strain diagram, 
the stress is proportional to strain, that is, (J = EE. The constant of proportionality E 
is called the modulus of elasticity. It is also referred to as Young's modulus. 
Geometrically, it is equal in magnitude to the slope of the stress-strain relation in 
the region OA (Fig. 1 .4). 
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Percent Elongation. The value of the elongation eF of the gage length L at rupture 
(point F, Fig. 1 . 3) divided by the gage length L (in other words, the value of strain Ep 
at rupture) multiplied by 100 is referred to as the percent elongation of the tensile 
specimen. The percent elongation is a measure of the ductility of the material. From 
Fig. 1 .3 ,  we see that the percent elongation of the alloy steel is approximately 23%. 

An important structural metal, mild or structural steel, has a distinct stress-strain 
curve as shown in Fig. 1 . 5a. The portion OAB of the stress-strain diagram is shown 
expanded in Fig. 1 .5b. The stress-strain diagram for structural steel usually exhibits a 
so-called upper yield point, with stress (Jyu, and a lower yield point, with stress (JYL. 
This is because the stress required to initiate yield in structural steel i s  larger than 
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Figure 1.5 Engineering stress-strain diagram for tension specimen of structural steel. 
(a) Stress-strain diagram. (b) Diagram for small strain (E < 0.007). (c) Idealized 
diagram for small strain ( E < 0.007). 
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the stress required to continue the yielding process. At the lower yield the stress 
remains essentially constant for increasing strain until strain hardening causes the 
curve to rise (Fig. 1 . 5a). The constant or flat portion of the stress-strain diagram may 
extend over a strain range of 10 to 40 times the strain at the yield point . Actual test 
data indicate that the curve from A to B bounces up and down as sketched in 
Fig. 1 . 5b. However, for simplicity, the data are represented by a horizontal straight 
line. 

Yield Point for Structural Steel. The upper yield point is usually ignored in design, 
and it is assumed that the stress initiating yield is the lower yield point stress, 
(JYL . Consequently, for simplicity, the stress-strain diagram for the region OAB is 
idealized as shown in Fig. 1 . 5c. Also for simplicity, we shall refer to the yield point 
stress as the yield point and denote it by the symbol Y. Recall that the yield strength 
(or yield stress) for alloy steel, and for materials such as aluminum alloys that have 
similar stress-strain diagrams, was denoted by YS (Fig. 1 .4) . However, for simplicity 
when there is no danger of confusion, we will also denote the yield strength by the 
symbol Y. 

Modulus of Resilience. Another property easily determined from the stress-strain 
diagram is the modulus of resilience. It is a measure of energy absorbed by a material 
up to the time it yields under load and is represented by the area under the stress
strain diagram to the yield point (the shaded area OAH in Fig. 1 . 5c). In Fig. 1 . 5c, this 
area is given byf(JyLEYL · Since EyL = (JYL/E, and with the notation Y = (JyL , we may 
express the modulus of resilience as follows: 

Modulus of resilience = � �2 ( 1 . 3) 

Necking of a Mild Steel Tension Specimen. As noted above, the stress-strain curve 
for a mild steel tension specimen first reaches a local maximum called the upper yield 
or plastic limit (Jyu, after which it drops to a local minimum (the lower yield point Y)  

and runs approximately (in a wavy fashion) parallel to  the strain axis for some range 
of strain. For mild steel, the lower yield point stress Y is assumed to be the stress 
at which yield is initiated. After some additional strain, the stress rises gradually; 
a relatively small change in load causes a significant change in strain. In this re
gion (BC in Fig. 1 . 5a), substantial differences exist in the stress-strain diagrams, 
depending on whether area A0 or At is used in the definition of stress. With area A0 , 
the curve first rises rapidly and then slowly, turning with its concave side down and 
attaining a maximum value (Ju, the ultimate strength, before turning down rapidly to 
fracture (point F, Fig. 1 . 5a). Physically, after (Ju is reached, the so-called necking of 
the bar occurs, Fig. 1 .6. This necking is a drastic reduction of the cross-sectional 
area of the bar in the region where the fracture ultimately occurs. If the load P is 
referred to the true cross-sectional area At and, hence, (Jt = P /AP the true stress
strain curve differs considerably from t4_e engineering stress-strain curve in the 
region BC (Figs. 1 . 5a and 1 .7). In addition, the engineering stress-strain curves 
for tension and compression differ considerably in the plastic region (Fig. 1. 7), 
because of the fact that in tension the cross-sectional area decreases with increas
ing load, whereas in compression it increases with increasing load. However, as 
can-be seen from Fig. 1 .7, little differences exist between the curves for small strains 
(Et < 0.0 1). 
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Figure 1 .6 Necking of tension specimen. 
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F 

Figure 1 .8 Stress-strain diagram for a brittle material. 

E 

Figure 1 .9 Stress-strain diagram for clay. 

Other Materials. There are many materials whose tensile specimens do not 
undergo substantial plastic strain before fracture. These materials are called brittle 
materials. A stress-strain diagram typical of brittle materials is shown in Fig. 1 . 8 .  It 
exhibits little plastic range, and fracture occurs almost immediately at the end of the 
elastic range. On the other hand, there are materials that undergo extensive plastic 
deformation and little elastic deformation. Lead and clay are such materials. The 
idealized stress-strain diagram for clay is typical of such materials, Fig. 1 .9. This 
response is referred to as rigid-perfectly plastic. 

Load-Carrying Members 
In the above discussion we have been concerned with the tension specimen used to 
obtain material properties. Stress-strain data obtained from such tension specimens 
are used to represent material responses for most members considered in this book. 
As indicated at the beginning of this section, the constitutive relations, the equa
tions of equilibrium (equations of motion for accelerated members), and the com
patibility conditions are used to derive load-stress and load-deflection relations for 
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members. We restrict our study mainly to  the behavior of  solid members (i.e., 
members composed of materials that possess large cohesive forces, in contrast to 
fluids that can sustain only relatively small tensile forces) that have the ability to 
recover instantly their original size and shape when the forces producing the 
deformations are removed. This property of instant recovery of initial size and 
shape upon removal of load has been defined earlier in this section as perfect 
elasticity. In most of our discussion, we limit our consideration to linear perfect 
elasticity. We assume that the magnitudes of the stress components at any point P 
in a member depend at all times solely on the simultaneous deformation in the 
immediate neighborhood of the point P. In general, the state of stress at point P 
depends not only on the forces acting on the member at any instant, but also on the 
previous history of deformation of the member. For example, the state of stress at 
point P may depend on residual stresses due to previous history of cold work or cold 
forming of the member. The stress components at point P obtained from the load
stress relations derived later in this book must be added to the residual stresses at 
point P to obtain the actual state of stress at point P. However, in this book, we 
assume that residual stresses are negligibly small. 

Generally, a structural member is acted on continuously by forces. For example, 
in the vicinity of the earth a member is acted on by the earth's gravitational force, 
even in the absence of other forces. Only in interstellar space does a member 
approach being free of the action of forces, although even there it is acted on by 
the gravitational attractions of the distant stars. Therefore, the zero state or zero 
configuration from which the deformations of the member are measured is arbitrary. 
However, once the zero configuration is specified, the strains of the member 
measured from the zero state determine the member's internal configuration. 

Whenever a member exhibits the phenomenon of hysteresis-that is, of 
returning to its original size and shape only slowly or not at all after the load is 
removed-its behavior is not perfectly elastic. The study of members that recover 
their sizes and shapes only gradually after a load is removed is discussed in the 
theory of viscoelasticity (Brand, 1960; Fliigge, 1967). The study of members that do 
not return to their original sizes after removal of load is generally considered in the 
theory of plasticity (Lubliner, 1 990). 

Finally, the complete description of the zero state of a member requires that the 
temperature at every point in the member, as well as its initial configuration, be 
specified. This is because, in general, a change in temperature produces a change in 
configuration. In turn, a change in configuration may or may not be accompanied 
by a change in temperature. 

F AlLURE AND LIMITS ON DESIGN 

To design a structu_ral system to perform a given function, the designer must have a 
clear understanding of the possible ways or modes by which the system may fail to 
perform its function. The designer must determine the possible modes of failure of 
the system and then establish suitable failure criteria that accurately predict the 
failure modes. In general, the determination of modes of failure requires extensive 
knowledge of the response of a structural system to loads. In particular, it requires a 
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comprehensive stress analysis of the system. Since the response of a structural 
system depends strongly on the material used, so does the mode of failure. In turn, 
the mode of failure of a given material also depends on the manner or history of 
loading, such as the number of cycles of load applied at a particular temperature. 
Accordingly, suitable failure criteria must account for different materials, different 
loading histories, as well as factors that influence the stress distribution in the 
member. 

A major part of this book is concerned with ( 1 )  stress analysis, (2) material 
behavior under load, and (3) the relationship between the mode of failure and a 
critical parameter associated with failure. The critical parameter that signals the 
onset of failure might be stress, strain, displacement, load, number of load cycles, or 
a combination of these. The discussion in this book is restricted to situations in 
which failure of a system is related to only a single critical parameter. In addition, we 
will examine the accuracy of the theories presented in the text with regard to their 
ability to predict system behavior. In particular, limits on design will be introduced 
utilizing factors of safety or reliability-based concepts that provide a measure of 
safety against failure. 

Historically, limits on the design of a system have been established using a factor 
of safety. A factor of safety SF can be defined as 

( 1 .4) 

where Rn is the nominal resistance (the critical parameter associated with failure) 
and Rw is the safe working magnitude of that same parameter. The letter R is used to 
represent the resistance of the system to failure. Generally, the magnitude of Rn is 
based on theory or experimental observation. The factor of safety is chosen on the 
basis of experiments or experience with similar systems made of the same material 
under similar loading conditions. Then the safe working parameter Rw is deter
mined from Eq. ( 1 .4). The factor of safety must account for unknowns, including 
variability of the loads, differences in material properties, deviations from the in
tended geometry, and our ability to predict the critical parameter. 

Generally, a design inequality is employed to relate load effects to resistance. The 
design inequality is defined as 

N R " Q · < _n 
� l - SF 

( 1 . 5 )  

where each Qi represents the effect of a particular working (or service-level) load, 
such as internal pressure or temperature change, and N denotes the number of load 
types considered. 

More recently, design philosophies based on reliability concepts (Salmon and 
Johnson, 1990) have been developed. It has been recognized that a single factor of 
safety is inadequate to account for all the unknowns mentioned above. Further
more, each of the particular load types will exhibit its own statistical variability. 
Consequently, appropriate load and resistance factors are applied to both sides 
of the design inequality. So modified, the design inequality of Eq. ( 1 . 5 )  may be 
reformulated as 

( 1 .6) 
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where the Yi are the load factors for load effects Qi  and ¢ is the resistance factor for 
the nominal capacity Rn . The statistical variation of the individual loads is 
accounted for in Yb whereas the variability in resistance (associated with material 
properties, geometry, and analysis procedures) is represented by ¢. The use of this 
approach, known as limit-states design, is more rational than the factor-of-safety 
approach and produces a more uniform reliability throughout the system. 

A limit state is a condition in which a system, or component, ceases to fulfill its 
intended function. This definition is essentially the same as the definition of failure 
used earlier in this text. However, some prefer the term limit state because the term 
failure tends to imply only some catastrophic event (brittle fracture), rather than 
an inability to function properly (excessive elastic deflections or brittle fracture). 
Nevertheless, the term failure will continue to be used in this book in the more 
general context. 

EXAMPLE 1 .1 
Design of a Tension Rod 

A steel rod is used as a tension brace in a structure. The structure is subjected to dead 
load, live load, and snow load. The effect of each of the individual loads on the 
tension brace is D = 25 kN, L = 60 kN, and W = 30 kN. Select a circular rod of 
appropriate size to carry these loads safely. Use steel with a yield strength of 250 
MPa. Make the selection using (a) factor-of-safety design and (b) limit-states design. 

SOLUTION 

For simplicity in this example, the only limit state that will be considered is yielding 
of the cross section. Other limit states, including fracture of the member at the con
nections to the remainder of the structure, are ignored. 

(a) In factor-of-safety design (also known as allowable stress or working stress 
design), the load effects are added without load factors. Thus, the total service
level load is 

I Qi = D + L + w = 1 1 5 kN = 1 1 5,000 N (a) 

The nominal resistance (capacity) of the tension rod is 

(b) 

where A0 is the gross area of the rod. In the design of tension members for steel 
structures, a factor of safety of 5/3 is used (AISC, 1 989). Hence, the design 
inequality is 

250A0 
1 1 5,000 � 

5/3 
(c) 

which yields A0 2 767 mm2• A rod of 32-mm diameter, with a cross-sectional 
area of 804 mm 2, is adequate. 
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(b) In limit-states design, the critical load effect is determined by examination of 
several possible load combination equations. These equations represent the 
condition in which a single load quantity is at its maximum lifetime value, 
whereas the other quantities are taken at an arbitrary point in time. The 
relevant load combinations for this situation are specified (ASCE, 1990) as 

lAD 
1 .2D + 1 .6L 
1 .2D + 0. 5L + 1 .3 W 

(d) 
(e) 
(f ) 

For the given load quantities, combination (e) is critical. The total load effect is 

I YiQi = 1 26 kN = 1 26,000 N (g) 

In the design of tension members for steel structures_, a resistance factor of 
¢ = 0.9 is used (AISC, 1986). Hence, the limit-states design inequality is 

126,000 � 0.9(250A0) (h) 

which yields A0 2 560 mm2• A rod of 28-mm diameter, with a cross-sectional 
area of 6 1 6  mm2, is adequate. 

Discussion 
The objective of this example has been to demonstrate the use of different design 
philosophies through their respective design inequalities, Eqs. ( 1 .5 )  and ( 1 . 6). For the 
conditions posed, the limit-states approach produces a more economical design 
than the factor-of-safety approach. This can be attributed to the recognition in 
the load factor equations (d-f) that it is highly unlikely both live load and wind 
load would reach their maximum lifetime values at the same instant. Different 
combinations of dead load, live load, and wind load, which still give a total service
level load of 1 1 5 kN, could produce different factored loads and thus different area 
requirements for the rod under limit-states design. 

Modes of Failure 
When a structural member is subjected to loads, its response depends not only on 
the type of material from which it is made but also on the environmental conditions 
and the manner of loading. Depending on how the member is loaded, it may fail by 
excessive deflection, which results in the member being unable to perform its design 
function; it may fail by plastic deformation (general yielding), which may cause a 
permanent, undesirable change in shape; it may fail because of a fracture (break), 
which depending on the material and the nature of loading may be of a ductile type 
preceded by appreciable plastic deformation or of a brittle type with little or no prior 
plastic deformation. Materials such as glass, ceramics, rocks, plain concrete, and 
cast iron are examples of materials that fracture in a brittle manner under normal 
environmental conditions and the slow application of tension load. In uniaxial 
compression, they also fracture in a brittle manner, but the nature of the fracture is 
quite different from that in tension. Depending on a number of conditions such as 
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environment, rate of load, nature of loading, and presence of cracks or flaws, 
structural metals may exhibit ductile or brittle fracture. 

One type of loading that may result in brittle fracture of ductile metals is that of 
repeated loads. For example, consider a uniaxially loaded bar with a smooth surface 
that is subjected to repeated cycles of load. The bar may fail by fracture (usually, in a 
brittle manner). Fracture of a structural member under repeated loads is commonly 
called fatigue fracture or fatigue failure. Fatigue fracture may start by the initiation 
of one or more small cracks, usually in the neighborhood of the maximum critical 
stress in the member. Repeated cycling of the load causes the crack or cracks to 
propagate until the structural member is no longer able to carry the load across the 
cracked region, and the member ruptures. 

Another manner in which a structural member may fail is that of elastic or plastic 
instability. In this failure mode, the structural member may undergo large displace
ments from its design configuration when the applied load reaches a critical value, 
the so-called buckling load (or instability load). This type of failure may result in 
excessive displacement or loss of ability (because of yielding or fracture) to carry 
the design load. In addition to the above failure modes, a structural member may fail 
because of environmental corrosion (chemical action). 

To elaborate on the modes of failure of structural members, we discuss more fully 
the following categories of failure modes : 

1 .  Failure by excessive deflection 

(a) Elastic deflection 

(b) Deflection due to creep 

2. Failure by general yielding 
3. Failure by fracture 

(a) Sudden fracture of brittle materials 

(b) Fracture of cracked or flawed members 

(c) Progressive fracture (fatigue) 

These failure modes and their associated failure criteria are most meaningful for 
simple structural members (e.g., tension members, columns, beams, circular cross 
section torsion members). For more complicated two- and three-dimensional 
problems, the significance of such simple failure modes is open to question. 

Many� of these modes of failure for simple structural members are well-known to 
engineers. However, under unusual conditions of load or environment, other types 
of failure may occur. For example, in nuclear reactor systems, cracks in pipe loops 
have been attributed to stress-assisted corrosion cracking, with possible side effects 
attributable to residual welding stresses (Clarke and Gordon, 1973 ;  Hakala et al ., 
1 990; Scott and Tice, 1990). 

The physical action in a structural member leading to failure is usually a 
complicated phenomenon, and in the following discussion the phenomena are 
necessarily oversimplified, but they nevertheless retain the essential features of the 
failures. 

1. Failure by Excessive Elastic Deflection. The maximum load that may be applied 
to a member without causing it to cease to function properly may be limited by the 
permissible elastic strain or deflection of the member. Elastic deflection that may 
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cause damage to a member can occur under these different conditions : 

(a) Deflection under conditions of stable equilibrium, such as the stretch of a 
tension member, the angle of twist of a shaft, and the deflection of an end
loaded cantilever beam. Elastic deflections, under conditions of equilibrium, 
are computed in Chapter 5. 

(b) Buckling, or the rather sudden deflection associated with unstable equilibrium 
and often resulting in total collapse of the member. This occurs, for example, 
when an axial load, applied gradually to a slender column, exceeds the Euler 
load. See Chapter 12. 

(c) Elastic deflections that are the amplitudes of the vibration of a member 
sometimes are associated with failure of the member resulting from ob
jectionable noise, shaking forces, collision of moving parts with stationary 
parts, etc., which result from the vibrations. 

When a member fails by elastic deformation, the significant equations for design 
are those that relate loads and elastic deflection. For example, the equations, for the 
three members mentioned under (a) are e = PL/AE, fJ = TLjGJ, and [J = WL 3 j3EI. 
It is noted that these equations contain the significant property of the material 
involved in the elastic deflection, namely, the modulus of elasticity E (sometimes 
called the stiffness) or the shear modulus G = E/[2( 1  + v)] , where v is Poisson's 
ratio. The stresses caused by the loads are not the significant quantities; that is, the 
stresses do not limit the loads that can be applied to the member. In other words, if a 
member of given dimensions fails to perform its load-resisting function because of 
excessive elastic deflection, its load-carrying capacity is not increased by making the 
member of stronger material. As a rule, the most effective method of decreasing the 
deflection of a member is by changing the shape or increasing the dimensions of its 
cross section, rather than by making the member of a stiffer material. 

2. Failure by General Yielding. Another condition that may cause a member to fail 
is general yielding. General yielding is inelastic deformation of a considerable 
portion of the member, distinguishing it from localized yielding of a relatively small 
portion of the member. The following discussion of yielding addresses the behavior 
of metals at ordinary temperatures, that is, at temperatures that do not exceed the 
recrystallization temperature. Yielding at elevated temperatures (creep) is discussed 
in Chapter 1 7. 

Polycrystalline metals are composed of extremely large numbers of very small 
units called crystals or grains. The crystals have slip planes on which the resistance 
to shear stress is relatively small. Under elastic loading, before slip occurs, the crystal 
itself is distorted due to stretching or compressing of the atomic bonds from their 
equilibrium state. If the load is removed, the crystal returns to its undistorted shape 
and no permanent deformation exists. When a load is applied that causes the yield 
strength to be reached, the crystals are again distorted but, in addition, defects in the 
crystal, known as dislocations (Eisenstadt, 197 1 ), move in the slip planes by breaking 
and reforming atomic bonds. After removal of the load, only the distortion of the 
crystal (due .to bond stretching) is recovered. The movement of the dislocations 
remains as permanent deformation. 

After sufficient yielding has occurred in some crystals at a given load, these 
crystals will not yield further without an increase in load. This is due to the 
formation of dislocation entanglements that make motion of the dislocations more 
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and more difficult. A higher and higher stress will be needed to push new dis
locations through these entanglements. This increased resistance that develops 
after yielding is known as strain hardening or work hardening. Strain hardening is 
permanent. Hence, for strain-hardening metals, the plastic deformation and increase 
in yield strength are both retained after the load is removed. 

When failure occurs by general yielding, stress concentrations usually are not 
significant because of the interaction and adjustments that take place between 
crystals in the regions of the stress concentrations. Slip in a few highly stressed 
crystals does not limit the general load-carrying capacity of the member, but merely 
causes readjustment of stresses that permit the more lightly stressed crystals to take 
higher stresses. The stress distribution approaches that which occurs in a member 
free from stress concentrations. Thus, the member as a whole acts substantially as an 
ideal homogeneous member, free from abrupt changes of section. 

It is important to observe that if a member that fails by yielding is replaced by one 
with a material of a higher yield stress, the mode of failure may change to that of 
elastic deflection, buckling, or excessive mechanical vibrations. Hence, the entire 
basis of design may be changed when conditions are altered to prevent a given mode 
of failure. 

3. Failure by Fracture. Some members cease to function satisfactorily because 
they break (fracture) before either excessive elastic deflection or general yielding 
occurs. Three rather different modes or mechanisms of fracture that occur especially 
in metals are discussed briefly below. 

(a) Sudden Fracture of Brittle Material. Some materials-so-called brittle 
materials-function satisfactorily in resisting loads under static conditions until 
the material breaks rather suddenly with little or no evidence of plastic 
deformation. Ordinarily, the tensile stress in members made of such materials is 
considered to be the significant quantity associated with the failure, and the 
ultimate strength (Ju is taken as the measure of the maximum utilizable strength 
of the material (Fig. 1 . 8). 

(b) Fracture of Flawed Members. A mem her made of a ductile metal and 
subjected to static tensile loads will not fracture in a brittle manner so long as the 
member is free of flaws (cracks, notches, or other stress concentrations) and the 
temperature is not unusually low. However, in the presence of flaws, ductile 
materials may experience brittle fracture at normal temperatures. The flaw often 
contri6utes to development of a high hydrostatic tension stress (hydrostatic 
stress is discussed in Chapter 2). Yielding of ductile metals is not influenced 
significantly by hydrostatic stress so plastic deformation may be small or 
nonexistent even though fracture is impending. Thus, yield strength is not the 
critical material parameter when failure occurs by brittle fracture. Instead, notch 
toughness , the ability of a material to absorb energy in the presence of a notch (or 
other flaw), is the parameter that governs the failure mode. Dynamic loading and 
low temperatures also increase the tendency of a material to fracture in a brittle 
manner. Failure by brittle fracture is discussed in Chapter 1 5. 

(c) Progressive Fracture (Fatigue). If a metal that ordinarily fails by general 
yielding under a static load is subjected to repeated cycles of stress, it may fail by 
fracture without visual evidence of yielding, provided that the repeated stress is 
greater than a value called the fatigue strength. Under such conditions, minute 
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cracks start at one or more points in the member, usually at points of high 
localized stress such as at abrupt changes in section, and gradually spread by 
fracture of the material at the edges of the cracks where the stress is highly 
concentrated. The progressive fracture continues until the member finally breaks. 
This mode of failure is usually called a fatigue failure, but it is better designated as 
failure by progressive fracture resulting from repeated loads. (See Chapter 1 6.) 

The quantity usually considered most significant in failure by progressive 
fracture is localized tensile stress (although the fatigue crack sometimes occurs on the 
plane of maximum shear stress), and the maximum utilizable strength of the 
material is considered to be the stress (fatigue strength) corresponding to a given 
"life" (number of repetitions of stress). If the material has an endurance limit (fatigue 
strength for infinite life) and a design for so-called infinite life is desired, then the 
endurance limit is the limiting resistance value or maximum utilizable strength of 
the material (Chapter 1 6). 

PROBLEMS 

1 . 1 .  What requirements control the derivation of load-stress relations? 
1 .2. Describe the method of mechanics of materials. 
1.3. How are stress-strain-temperature relations for a material established? 
1 .4. Explain the differences between elastic response and inelastic response of a 

solid. 
1 .5. What is a stress-strain diagram? 
1 .6. Explain the difference between elastic limit and proportional limit. 
1 .7. Explain the difference between the concepts of yield point and yield stress. 
1 .8. What is offset strain? 
1 .9. How does the engineering stress-strain diagram differ from the true stress-

strain diagram? 
1 .10. What are modes of failure? 
1 . 11 .  What are failure criteria? How are they related to  modes of failure? 
1 .12. What is meant by the term factor of safety? How are factors of safety used in 

design? 
1 . 13. What is a design inequality? 
1 .14. How is the usual design inequality modified to account for statistical 

variability? 
1 .15. What is a load factor? A load effect? A resistance factor? 
1 .16. What is a limit-states design? 
1 . 17. What is meant by the phrase "failure by excessive deflection?" 
1 .18. What is meant by the phrase "failure by yielding?" 
1. 19. What is meant by the phrase "failure by fracture?" 
1.20. Discuss the various ways that a structural member may fail. 
1.21 . Discuss the failure modes, critical parameters, and failure criteria that may 

apply to the design of a downhill snow ski. 



PROBLEMS 25 

1 .22. For the steels whose stress-strain diagrams are represented by Figs. 1 . 3  to 1 . 5, 
determine the following properties as appropriate: the yield point, the yield 
strength, the upper yield point, the lower yield point, the modulus of 
resilience, the ultimate tensile strength, the strain at fracture, the percent 
elongation. 

1 .23. Use the mechanics of materials method to derive the load-stress and load
displacement relations for a solid circular rod of constant radius r and length 
L subjected to a torsional moment T as shown in Fig. P 1 .23. 

�----- L ----------'� 

Figure P 1 .23 Solid circular rod in torsion. 

1 .24. Use the mechanics of materials method to derive the load-stress and load
displacement relations for a bar of constant width b, linearly varying depth d, 
and length L subjected to an axial tensile force P as shown in Fig. P1 .24. 

Figure P 1 .24 Tapered bar in tension. 

p X 

1 .25. Two flat plates are clamped to the ends of a pipe using four rods, each 1 5  mm 
in diameter, to form a cylinder that is to be subjected to internal pressure p, 
Fig. P1 .25. The pipe has an outside diameter of 100 mm and an inside 
diameter of 90 mm. Steel is used throughout (E = 200 GPa). During 
assembly of the cylinder (before pressurization), the joints between the plates 
and ends of the pipe are sealed with a thin mastic and the rods are each 
pretensioned to 65 kN. Using the mechanics of materials method, determine 
the internal pressure that will cause leaking. Leaking is defined as a state of 
zero bearing pressure between the pipe ends and the plates. Also determine 
the change in stress in the rods. Ignore bending in the plates and radial 
deformation of the pipe. 
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Figure P 1 .25 Pressurized cylinder. 
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2. 1 

THEORIES OF STRESS 
AND STRAIN 

In Chapter 1 ,  we presented general concepts and definitions that are fundamental 
to many of the topics discussed in this book. In this chapter, we develop theories 
of stress and strain that are essential for the analysis of the behavior of a struc
tural or mechanical system subjected to loads. The relations developed are used 
throughout the remainder of the book. 

DEFINITION OF STRESS AT A POINT 

Consider a general body subjected to forces acting on its surface (Fig. 2. 1 ). Pass a 
fictitious plane Q through the body, cutting the body along surface A (Fig. 2.2). 
Designate one side of plane Q as positive and the other side as negative. The por
tion of the body on the positive side of Q exerts a force on the portion of the body 
on the negative side. This force is transmitted through the plane Q by direct contact 
of the parts of the body on the two sides of Q. Let the force that is transmitted 
through an incremental area �A of A by the part on the positive side Q be denoted 
by �F. In accordance with Newton's third law, the portion of the body on the neg
ative side of Q transmits through area �A a force - �F. 

The force �F may be resolved into components �FN and �F8 , along unit normal 
N and unit tangent S, respectively, to the plane Q. The force �FN is called the normal 
(perpendicular) force on area �A and �F 8 is called the shear (tangential) force on 
�A. The forces �F, �FN , and �Fs depend on the area �A and the orientation of 
plane Q. The magnitudes of the average forces per unit area are �F I �A, �FNI �A, 
and �Fsl �A. These ratios are called the average stress, average normal stress, and 
average shear stress, respectively, acting on area �A. The concept of stress at a 
point is obtained by letting �A become an infinitesimal. Then the forces �F, �FN ,  
and �Fs approach zero, but usually the ratios �F I �A, �FNI �A, and �Fsl �A 
approach limits different from zero. The limiting ratio of �F I �A as �A goes to 
zero defines the stress vector a. Thus, the stress vector a is given by 

1 . �F (1 = Im -
L\A --. o  �A 

(2. 1 ) 

The stress vector a (also called the traction vector) always lies along the limiting 
direction of the force vector �F, which in general is neither perpendicular nor tan
gent to the plane Q. 
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Figure 2. 1 A general loaded body cut by plane Q. 
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Figure 2.2 Force transmitted through incremental area of cut body. 
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2.2 

Similarly, the limiting ratios of �FN/ �A and �Fs/ �A define the normal stress 
vector aN and the shear stress vector a8 that act at a point in the plane Q. These 
stress vectors are defined by the relations 

1. �Fs 
a8 = 1m � 

L\A � o LlA 
(2.2) 

The unit vectors associated with aN and a8 are perpendicular and tangent, respec
tively, to the plane Q. 

STRESS NOTATION 

We use free-body diagrams to specify the state of stress at a point and to obtain 
relations between various stress components. In general a free-body diagram may 
be a diagram of a complete member, a portion of the member obtained by passing 
a cutting plane through the member, or a boxlike volume element of the member. 
The loads that act on any of these free bodies can be divided into two types as 
follows : 

1.  Surface forces, which are forces that act on the surface of the free body 
2. Body forces, which are forces that act throughout the volume of that portion 

of the member considered in the free-body diagram 

Examples of surface forces are contact forces and distributed loads. Concentrated 
loads and reactions at a point are considered contact forces. Distributed loads may 
be either line loads with dimensions of force per unit length or surface loads with 
dimensions of force per unit area (dimensions of pressure or stress). Distributed 
loads on beams are often indicated as loads per unit length. Examples of surface 
loads are pressure exerted by a fluid in contact with the body and normal and shear 
stresses that act on a cut section of the body. 

Examples of body forces are gravitational forces, magnetic forces, and inertia 
forces. Since the body force is distributed throughout the volume of the free body, 
it is convenient to define body force per unit volume. We use the notation B or 
(Bx , By , Bz) for body force per unit volume, where B stands for body and subscripts 
(x, y, z) denote components in the (x, y, z) directions, respectively, of the rectangular 
coordinate system (x, y, z) (see Fig. 2. 3). 

Consider now a free-body diagram of a box-shaped volume element at a point 
0 in a member, with sides parallel to the (x, y, z) axes (Fig. 2.4). For simplicity, we 
show the volume element with one corner at point 0 and assume that the stress 
components are uniform (constant) throughout the volume element. The surface 
forces are represented by the product of the stress components (Fig. 2.4) and the 
areas * on which they act. Body forces, represented by the product of the compo-

* The reader must multiply each stress component by an appropriate area before applying equations of 
force equilibrium. For example, axx must be multiplied by the area dy dz. 
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l 
dy 

'� dx ---:;:./ 
Figure 2.4 Stress components at a point in loaded body. 

nents (Bx , By , Bz) and the volume of the element (product of the three infinitesimal 
lengths of the sides of the element), are higher-order terms and are not shown on 
the free-body diagram in Fig. 2.4. Consider the two faces perpendicular to the x 
axis. The face from which the positive x axis is extended is taken to be the positive 
face ;  the other face perpendicular to the x axis is taken to be the negative face. The 
stress components CJxx ' CJXY ' and CJxz acting on the positive face are taken to be in the 
positive sense as shown when they are directed in the positive x, y, and z directions. 
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2.3 

By Newton's third law, the positive stress components CJxx , CJXY ' and CJxz shown 
acting on the negative face in Fig. 2.4 are in the negative (x, y, z) directions, respec
tively. In effect, a positive stress component CJxx exerts a tension (pull) parallel to 
the x axis . Equivalent sign conventions hold for the planes perpendicular to the y 
and z axes. Hence, associated with the concept of the state of stress at a point 0, 
nine components of stress exist. 

In the next section we show that the nine stress components may be reduced to six 
for most practical problems. 

SYMMETRY OF THE STRESS ARRAY AND STRESS ON 
AN ARBITRARILY ORIENTED PLANE 

Symmetry of Stress Components 
The nine stress components relative to rectangular coordinate axes (x, y, z) may be 
tabulated in array form as follows : 

(2. 3) 

where T symbolically represents the stress array called the stress tensor. In this 
array, the stress components in the first, second, and third rows act on planes per
pendicular to the (x, y, z) axes, respectively. Seemingly, nine stress components are 
required to describe the state of stress at a point in a member. However, if the only 
forces that act on the free body in Fig. 2.4 are surface forces and body forces, we 
can demonstrate from the equilibrium of the volume element in Fig 2.4 that the 
three pairs of the shear stresses are equal. Summation of moments leads to the 
result 

(2.4) 

Thus, with Eq. (2.4), Eq. (2.3) may be written in the symmetric form 

(2. 5 )  

Hence, for this type of stress theory, only six components of stress are required to 
describe the state of stress at a point in a member. 

Although we do not consider body couples or surface couples in this book 
(Boresi and Chong, 1987), it is possible for them to be acting on the free body in 
Fig. 2.4. This means that Eqs. (2.4) are no longer true and that nine stress compo
nents are required to represent the unsymmetrical state of stress. 
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TABLE 2.1 
Stress Notations (Symmetric Stress Components) 

I axx ayy azz axy = ayx axz = azx ayz = azy 

II ax ay az 'Lxy = 'Lyx 'Lxz = Lzx 'Lyz = 'Lzy 

III all a22 a33 a12 = a21 a13 = a31 a23 = a32 

The stress notation described above is widely used in engineering practice. It is 
the notation used in this book,* row I of Table 2. 1 .  Two other frequently used sym
metric stress notations are also listed in Table 2. 1 .  The symbolism indicated in row 
III is employed where index notation is used (Boresi and Chong, 1987). 

Stresses Acting on Arbitrary Planes 
The stress vectors Gx , Gy , and Gz on planes that are perpendicular, respectively, to 
the x, y, and z axes are 

(Jx = O"xxj + O"xyj + O"xzk 
(Jy = O"yxj + O"yyj + O"yzk 
(Jz = O"zxj + O"zyj + O"zzk (2 .6) 

where i, j, and k are unit vectors relative to the (x, y, z) axes (see Fig. 2.5 for Gx)· Now 
consider the stress vector Gp on an arbitrary oblique plane P through point 0 of a 
member (Fig. 2.6). For clarity, the plane P is shown removed from point 0. The unit 
normal vector to plane P is 

N = li + mj + nk (2 .7) 

y 

k 

z 

Figure 2.5 Stress vector and its components acting on a plane perpendicular to the x axis. 

* Equivalent notations are used for other orthogonal coordinate systems (see Sec. 2.5.). 
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y 
- cr, X 

z 
Figure 2.6 Stress vector on arbitrary plane having a normal N. 

where (l, m, n) are the direction cosines of unit vector N. Therefore, vectorial sum
mation of forces acting on the tetrahedral element OABC yields the following (note 
that the ratios of areas OBC, OAC, OBA to area ABC are equal to l, m, and n, 
respectively) : 

(2.8) 

Also, in terms of the projections ((Jpx , (Jpy , (Jpz) of the stress vector Gp along axes 
(x, y, z), we may write 

Comparison of Eqs. (2.8) and (2.9) yields, with Eqs. (2.6 )  

(JPx = [(Jxx + m(Jyx + n(Jzx 
(Jpy = l(Jxy + m(Jyy + n(Jzy 
(Jpz = l(Jxz + m(Jyz + n(Jzz 

(2.9) 

(2. 10) 

Equations (2. 10) allow the computation of the components of stress on any oblique 
plane defined by unit normal N : (l, m, n), provided that the six components of stress 

at point 0 are known. When point 0 lies on the surface of the member where the 
surface forces are represented by distributions of normal and shear stresses, 
Eqs. (2. 10) represent the stress boundary conditions at point 0. 

Normal Stress and Shear Stress on an Oblique Plane 
The normal stress (JPN on the plane P is the projection of the vector Gp in the direc
tion of N;  that is, (JPN = Gp • N. Hence, by Eqs. (2.7), (2.9), and (2. 10) 

(JPN = [2(Jxx + m2(Jyy + n2(Jzz + mn((Jyz + (Jzy) + n[((Jxz + (Jzx) 
+ lm((Jxy + (Jyx) 

= l2(Jxx + m2(Jyy + n2(Jzz + 2mn(Jyz + 2ln(Jxz + 2lm(Jxy (2. 1 1 ) 
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Figure 2.7 Normal and shear stress components of stress vector on an arbitrary plane. 

By Eq. (2. 1 1), the normal stress CJpN on an oblique plane with unit normal N : (1, m, n) 
is expressed in terms of the six stress components (o-xx ' (JYY ' (Jzz ' (JXY ' (Jxz ' (Jzy) . Often, 
the maximum value of CJpN at a point is of importance in design (see Sec. 4. 1 ). Of 
the infinite number of planes through point 0, CJpN attains a maximum value called 
the maximum principal stress on one of these planes. The method of determining 
this stress and the orientation of the plane on which it acts is given in Sec. 2.4. 

To compute the magnitude of the shear stress CJps on plane P, we note by 
geometry (Fig. 2.7) that 

(2. 12) 

Substitution of Eqs. (2. 10) and (2. 1 1 ) into Eq. (2. 12) yields O"ps in terms of 
(CJxx ' CJYY ' CJzz ' CJXY ' CJxz ' CJyz) and (l, m, n). In certain criteria of failure, the maximum 
value of CJps at a point in the body plays an important role (see Sec. 4.4). The max
imum value of CJps can be expressed in terms of the maximum and minimum prin
cipal stresses [see Eq. (2.39), Sec. 2.4] . 

TRANSFORMATION OF STRESS. PRINCIPAL 
STRESSES. OTHER PROPERTIES 

Transformation of Stress 
Let (x, y, z) and (X, Y, Z) denote two rectangular coordinate systems with a 
common origin (Fig. 2.8). The cosines of the angles between the coordinate axes 
(x, y, z) and the coordinate axes (X, Y, Z) are listed in Table 2.2. Each entry in 
Table 2.2 Is the cosine of the angle between the two coordinate axes designated at 
the top of its column and to the left of its row. The angles are measured from the 
(x, y, z) axes to the (X, Y, Z) axes. For example, 11 = cos Oxx ' 12 = cos Oxy , • • •  (see 
Fig. 2.8.). Since the axes (x, y, z) and axes (X, Y, Z) are orthogonal, the direction 
cosines of Table 2.2 must satisfy the following relations : 

For the Row Elements 
1 2 2 2 1 i + mi + ni = , i = 1 ,  2, 3, 

For the Column Elements 
li + l � + l� = 1 ,  . . .  ' . . .  ' 

and 

and 

The stress components CJxx ' CJxy , CJxz , • • • are defined with reference to (X, Y, Z) 
axes in the same manner as (Jxx ' (JXY ' (Jxz ' • • • are defined relative to the axes (x, y, z). 
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Figure 2.8 Stress components on plane perpendicular to transformed X axis. 

TABLE 2.2 
Direction Cosines 

X y 

X 11 m1 

y 1z mz 

z 13 m3 

z 

n1  

nz  

n3 

Hence, CJxx is the normal stress component on a plane perpendicular to axis X and 
CJxy , CJxz are shear stress components on this same plane (Fig. 2.8), and so on. 
Hence, by Eq. (2. 1 1 ), 

CJxx = li(Jxx + mi(Jyy + ni(Jzz + 2m1n1(Jyz + 2n1 l 1(Jzx + 2l1m1(Jxy 
CJyy = l�(Jxx + m�(Jyy + n�(Jzz + 2m2n2(Jyz + 2n2 l2(Jzx + 2l2m2(Jxy 
CJzz = l� (Jxx + m�(Jyy + n�(Jzz + 2m3 n3(Jyz + 2n3 l3 (Jzx + 2l3m3 (Jxy (2. 1 5 ) 

The shear stress component CJxy is the component of the stress vector in the Y 
direction on a plane perpendicular to the X axis ; that is, it is the Y component 
of the stress vector Gx acting on the plane perpendicular to the X axis. Thus, CJxy 
may be evaluated by forming the scalar product of the vector Gx [determined by 
Eqs. (2.9) and (2. 10) with 11 = l, m1 = m, n1 = n] with a unit vector parallel to the 
Y axis ; that is, with the unit vector (Table 2.2) 

(2. 1 6) 

By Eqs. (2.9). (2. 10), and (2. 1 6), CJxy is determined; similar procedures also deter
mine CJxz and CJyz . Hence, 

CJxy = Gx .  N2 = Gy . Nl 
= l 1 l2CJxx + m1m2CJyy + n1 n2CJzz + (m1n2 + m2n1)CJyz 

( 
+ (l 1 n2 + l2ndCJzx + (1 1m2 + l2m1)CJxy (2. 17a) 



2.4 / TRANSFORMATION OF STRESS, PRINCIPAL STRESSES 37 

CJxz = Gx • N3 = l1 l3 CJxx + m1m3CJYY + n1 n3 CJzz + (m1n3 + m3 n1)CJyz 
+ (l1 n3 + l3 n t }CJzx + (11m3 +  l3m1)CJxy (2. 1 7b) 

CJyz = Gy • N3 = l2 l3 CJxx + m2m3CJYY + n2 n3 CJzz + (m2 n3 + m3 n2)CJyz 
+ (l2n3 + l3 n2)CJzx + (12m3 + l3m2)CJxy (2. 1 7c) 

Equations (2. 1 5) and (2. 1 7) determine the stress components relative to rectangular 
axes (X, Y, Z) in terms of the stress components relative to rectangular axes (x, y, z); 
that is, they determine how the stress components transform under a rotation of 
rectangular axes. A set of quantities that transform according to this rule is called 
a second-order symmetrical tensor. Later it will be shown that strain components 
(see Sec. 2. 7) and moments and products of inertia (see Sec. B.3) also transform 
under rotation of axes by similar relationships; hence, they too are second-order 
symmetrical tensors. 

Principal Stresses 
It may be shown that for any general state of stress at any point 0 in a body, there 
exist three mutually perpendicular planes at point 0 on which the shear stresses 
vanish. The remaining normal stress components on these three planes are called 
principal stresses. Correspondingly, the three planes are called principal planes, and 
the three mutually perpendicular axes that are normal to the three planes (hence, 
that coincide with the three principal stress directions) are called principal axes. 
Thus, by definition, principal stresses are directed along principal axes that are per
pendicular to the principal planes. A cubic element subjected to principal stresses 
is easily visualized, since the forces on the surface of the cube are normal to the 
faces of the cube. More complete discussions of principal stress theory are present 
elsewhere (Boresi and Chong, 1 987). Here we merely sketch the main results. 

Principal Values and Directions 
Since the shear stresses vanish on principal planes, the stress vector on principal 
planes is given by Gp = (J N, where (J is the magnitude of the stress vector Gp and N 
the unit normal to a principal plane. Let N = li + mj + nk relative to·,rectangular 
axes (x, y, z) with associated unit vectors i, j, k. Thus, (l, m, n) are the direction 
cosines of the unit normal N. Projections of Gp along (x, y, z) axes are CJpx = CJl, 
CJpy = CJm, CJpz = CJn. Hence, by Eq. (2. 10), we obtain 

l((Jxx - (J) + mCJxy + nCJ xz = 0 
l(Jxy + m((Jyy - (J) + nCJyz = 0 
l(Jxz + mCJyz + n((Jzz - (J) = 0 (2. 1 8) 

Since Eqs. (2. 1 8) are linear homogeneous equations in (l, m, n) and the trivial 
solution l = m = n = 0 is impossible because 1 2 + m2 + n2 = 1 [law of direction 
cosines, Eq. (2. 1 3)] ,  it follows from the theory of linear algebraic equations that 
Eqs. (2. 1 8) are consistent if and only if the determinant of the coefficients of (l, m, n) 
vanishes identically. Thus, we have 

= 0 (2. 1 9) 
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or, expanding the determinant, we obtain 

where 

12 = _ (Jxx (Jxy _ (Jxx (Jxz 
(Jxy (Jyy (Jxz (Jzz 

(Jxx (Jxy (Jxz 
13 = (Jxy (Jyy (Jyz 

(2.20) 

(2.2 1 )  

The three roots (CJ1 , CJ2 , CJ3 ) of Eq. (2.20) are the three principal stresses at  point 0. 
The magnitudes and directions of CJ1 , CJ2 , and CJ3 for a given member depend only 
on the loads being applied to the member and cannot be influenced by the choice 
of coordinate axes (x, y, z) used to specify the state of stress at point 0. This means 
that 11 , 12 , and 13 given by Eqs. (2.2 1 )  are invariants of stress and must have the 
same magnitudes for all choices of coordinate axes (x, y, z). Relative to principal 
axes, the stress invariants may be written in terms of the principal stresses as 

11 = (J1 + (J2 + (J3 
12 = - (J1(J2 - (J2(J3 - (J1(J3 
13 = (J1 (J2(J3 

When (CJ1 , CJ2 , CJ3 ) have been determined, the direction cosines of the three prin
cipal axes are obtained from Eqs. (2. 1 8) by setting (J in turn equal to (CJ1 , CJ2 , CJ3 ), 
respectively, and observing the direction cosine condition 12 + m2 + n2 = 1 for 
each of the three values of CJ. See Example 2. 1 .  

In  special cases, two principal stresses may be numerically equal. Then, 
Eqs. (2. 1 8) show that the associated principal directions are not unique. In these 
cases, any two mutually perpendicular axes that are perpendicular to the unique 
third principal axis will serve as principal axes with corresponding principal planes. 
If all three principal stresses are equal, then CJ1 = CJ2 = CJ3 at point 0, and all planes 
passing through point 0 are principal planes. In this case, any set of three mutually 
perpendicular axes at point 0 will serve as principal axes. This stress condition is 
known as a state of hydrostatic stress, since it is the condition that exists in a fluid 
in static equilibrium. 

EXAMPLE 2.1 
Principal Stresses and Principal Directions 

The state of stress at a point in a body is given by CJxx = - 10, CJYY = 30, CJxy = 1 5, 
and CJzz = CJxz = CJyz = 0; see Fig. E2. 1a. Determine the principal stresses and orien
tation of the principal axes at the point. 
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Figure E2. 1 

By Eq. (2.21 )  the three stress invariants are 

12 = 525, and 

Substituting the invariants into Eq. (2.20) and solving for the three roots of this 
equation, we obtain the principal stresses 

(J2 = 0, and 

To find the orientation of the first principal axis in terms of its direction cosines 
11 ,  m 1 ,  and n1 , we substitute CJ1 = 35 into Eq. (2. 1 8) for CJ. The direction cosines 
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must also satisfy Eq. (2. 1 3). Thus, we have 

- 451 1 + 1 5m1 = 0 
1 51 1 - 5m1 = 0 

- 35n1 = 0 
1i + mi + ni = 1 

(a) 
(b) 
(c) 
(d) 

Only two of the first three of these equations are independent. Equation (c) gives 

Simultaneous solution of Eqs. (b) and (d) yields the result 

or 
12 1 1 = TO 

1 1 = ± 0.3 1 62 

Substituting into Eq. (b) for 11 , we obtain 

m1 = ± 0.9487 

where the order of the + and - signs corresponds to those of 11 • Note also that 
Eq. (a) is satisfied with these values of 11 , m1 , and n1 • Thus, the first principal axis 
is directed along unit vector N1 , where 

N1 = 0.3 1 62i + 0.9487j or 
N1 = - 0.3 1 62i - 0.9487j 

where i and j are unit vectors along the x and y axes, respectively. 

(e) 
(f ) 

The orientation of the second principal axis is found by substitution of 
(J = CJ2 = 0 into Eq. (2. 18), which yields 

and 

Proceeding as for CJ1 , we then obtain 

from which 

where k is a unit vector along the z axis. 
The orientation of the third principal axis is found in a similar manner. 

13 = ± 0.9487 
m3 = + 0.3 162 
n3 = 0 

To establish a definite sign convention for the principal axes, we require them to 
form a right-handed triad. If N1 and N2 are unit vector8-( that define the directions 
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of the first two principal axes, then the unit vector N 3 for the third principal axis 
is determined by the right-hand rule of vector multiplication. Thus, we have 

or 
(g) 

In our example, if we arbitrarily select N1 from Eq. (e) and N2 = + k, we obtain N3 
from Eq. (g) as : 

N3 = 0.9487i - 0.3 1 62j 

The principal stresses 0'1 = 35 and 0'3 = - 1 5  and their orientations (the corres
ponding principal axes) are illustrated in Fig. E2. lb. The third principal axis is 
normal to the x-y plane shown and is directed toward the reader. The correspon
ding principal stress is 0'2 = 0. Since all the stress components associated with the 
z direction (O'zz ' O'xz ' and O'yz) are zero, this stress state is said to be a state of plane 
stress in the x-y plane (see the discussion below on plane stress). 

Octahedral Stress 
Let (X, Y, Z) be principal axes. Consider the family of planes whose unit normals 
satisfy the relation 1 2 = m2 = n 2 = ! with respect to the principal axes (X, Y, Z). 
There are eight such planes (the octahedral planes, Fig. 2.9) that make equal angles 
with respect to the (X, Y, Z) directions. Therefore, the normal and shear stress com
ponents associated with these planes are called the octahedral normal stress O'oct and 
octahedral shear stress 'roct ·  By Eqs. (2. 10), (2. 1 1 ), and (2. 12), we obtain 

O'oct = !(0'1 + 0'2 + 0'3 ) = !J1 
9-r�ct = (0'1 - 0'2)2 + (0'1 - 0'3 )2 + (0'2 - 0'3 )2 = 2/f + 612 (2.22) 

y 

(0, 1 ,  0) 

X 

(1 , 0, 0) 

(0, 0, 1 ) 

z 
Figure 2.9 Octahedral plane for l = m = n = 1/-/3, relative to principal axes (X, Y, Z). 
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since for the principal axes CJxx = CJ1 , CJyy = CJ2 , CJzz = CJ3 , and CJ xY = CJyz = CJzx = 0. 
[See Eqs. (2.2 1).] It follows that since (11 , 12 , 13 ) are invariants under rotation of 
axes, we may refer Eqs. (2.22) to arbitrary (x, y, z) axes by replacing 11 , 12 , 13 by 
their general forms as given by Eqs . (2.2 1). Thus for arbitrary (x, y, z) axes, 

(J oct = -i( (Jxx + (Jyy + (J zz) 
9t�ct = ((Jxx - (Jyy)2 + ((Jxx - (Jzz)2 + ((Jyy - (Jzz)2 + 6CJ;y + 6CJ;z + 6CJ;z (2 .23) 

The octahedral normal and shear stresses play a role in certain failure criteria 
(Sec. 4.4). 

Mean and Deviator Stress 
Experiments indicate that yielding and plastic deformation of many metals are 
essentially independent of the mean normal stress CJm , where 

(2 .24) 

Comparing Eqs. (2.22), (2 .23), and (2 .24 ), we note that the mean normal stresss (Jm 
is equal to CJoct · Most plasticity theories postulate that plastic behavior of materials 
is related primarily to that part of the stress tensor that is independent of (Jm ·  
Therefore, the stress array [Eq. 2.5] is rewritten in the following form : 

(2 .25 )  

where T symbolically represents the stress array, Eq. (2. 5), and [am 0 :J Tm = � (Jm (2 .26a) 
0 

and 

2CJxx - (Jyy - (Jzz 
(Jxy (Jxz 3 

Td = (Jxy 
2CJyy - (Jxx - (Jzz (Jyz (2.26b) 

3 

(Jxz (Jyz 
2CJzz - (JYY - (Jxx 

3 \ 

The array T m is called the mean stress tensor. The array Td is called the deviator 
stress tensor, since it is a measure of the deviation of the state of stress from a 
hydrostatic stress state, that is, from the state of stress that exists in an ideal 
(frictionless fluid). 

Let (x, y, z) be the transformed axes that are in the principal stress directions. 
Then, 
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and Eq. (2.25) is simplified accordingly. Application of Eqs. (2.2 1) to Eq. (2.26b) 
yields the following stress invariants for Td : 

Jl = 0 
J2 = 12 + !1i = i[(CJ1 - CJ2)2 + (CJ2 - CJ3 )2 + (CJ3 - CJ1)2J 

J3 = 13 + !1112 + l71i 
= 2\ (2CJ1 - (J2 - (J3 )(2(J2 - (J3 - (J1)(2(J3 - (J1 - 0"2) (2.27) 

The principal directions for Td are the same as those for T. It can be shown that 
since 11 = 0, Td represents a state of pure shear. The principal values of the deviator 
tensor T d are 

s2 = (J2 _ (J = 
((J2 - CJ3 ) + (CJ2 - CJ1) 

= 
(CJ2 - CJ3) - ((Jl - CJ2) m 

3 3 

s3 = 0"3 - O"m = (a3 - al) ; (a3 - O"z ) 
= -

(al - a3 ) ; (az - O"J ) (2.28) 

Since S1 + S2 + S3 = 0, only two of the principal stresses (values) of Td are inde
pendent. Many of the formulas of the mathematical theory of plasticity are often 
written in terms of the stress invariants of the deviator stress tensor Td . 

Plane Stress 
In a large class of important problems, certain approximations may be applied to 
simplify the three-dimensional stress array [see Eq. (2.3)] . For example, simplifying 
approximations can be made in analyzing the deformations that occur in a thin 
flat plate subjected to in-plane forces. We define a thin plate to be a prismatic 
member (e.g., a cylinder) of a very small length or thickness h. Accordingly, the 
middle surface of the plate, located halfway between its ends (faces) and parallel to 
them, may be taken as the (x, y) plane. The thickness direction is then coincident 
with the direction of the z axis. If the plate is not loaded on its faces, CJzz = 
CJzx = CJzy = 0 on its lateral surfaces (z = ± h/2). Consequently, since the plate is 
thin, as aJirst approximation, it may be assumed that 

(Jzz = (Jzx = (Jzy = 0 (2.29) 

throughout the plate thickness. 
Furthermore, it is assumed that the remaining stress components (Jxx ' (JYY ' and 

(Jxy are independent of z. With these approximations, the stress array reduces to a 
function of the two variables (x, y). Then it is called a plane stress array or the 
tensor of plane stress. 

Consider a transformation from the (x, y, z) coordinate axes to the (X, Y, Z) 
coordinate axes for the condition that the z axis and Z axis remain coincident 
under the transformation. Then, for a state of plane stress in the (x, y) plane, 
Table 2.3 gives the direction cosines between the axes in a transformation from 
the (x, y) coordinate axes to the (X, Y) coordinate axes (Fig. 2. 10). Hence, with 
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TABLE 2.3 

X 
X 1 1 = cos () 

y 12 = - sin fJ 

z 13 = 0 

y 

y 

0 

y z 
m1 = sin fJ n1 = 0 

m2 = cos () n2 = 0 

m3 = 0 n3 = 1 

X 

Figure 2. 10 Location of transformed axes for plane stress. 

Table (2.3) and Fig. (2. 10), Eqs. (2. 1 5) and (2. 1 7 )  yield 

CJxx = CJxx cos2 8 + CJYY sin2 8 + 2CJxy sin 8 cos 8 
CJyy = CJxx sin2 8 + CJYY cos2 8 - 2CJxy sin 8 cos 8 
CJxy = - (CJxx - CJyy ) sin 8 cos 8 + CJxy(cos2 8 - sin2 8) (2. 30) 

By means of trigonometric double angle formulas, Eq. (2.30) may be written in 
the form 

CJxx = t((Jxx + (Jyy ) + t((Jxx - (Jyy) cos 28 + (Jxy sin 28 
CJyy = t((Jxx + (Jyy ) - t((Jxx - (Jyy) cos 28 - (Jxy sin 28 
CJxy = - t((Jxx - (Jyy) sin 28 + (Jxy cos 28 (2.3 1) 

I 
Equations (2.30) or (2.3 1) expresss the stress components CJxx ' CJyy , and CJxr in the 
(X, Y) coordinate system in terms of the corresponding stress components (Jxx ' (JYY ' 
and (Jxy in the (x, y) coordinate system for the plane transformation defined by 
Fig. (2 . 10) and Table 2.3. 

Mohr's Circle in Two Dimensions 
In the form of Eq. (2.3 1 ), the plane transformation of stress components is parti
cularly suited for graphical interpretation. Stress components CJxx and CJxr act on 
face BE in Fig. (2. 1 1 )  that is located at a positive angle 8 (counterclockwise) from 
face BC on which stress components (Jxx and (Jxy act. The variation of the stress 
components CJxx and CJxr with 8 may be depicted graphically by constructing a 
diagram in which CJxx and CJxr are coordinates. For each plane BE, there is a point 
on the diagram whose coordinates correspond to values of CJxx and CJxr · 

Rewriting the first of Eqs. (2.3 1 )  by moving the first term on the right side to the 
left side and squaring both sides of the resulting equation, squaring both sides of 



2 .4 / TRANSFORMATION OF STRESS. PRINCIPAL STRESSES 45 

Figure 2. 1 1  Stress components on plane perpendicular to transformed X axis for plane 
stress. 

the last of Eq. (2. 3 1 ), and adding, we obtain 

Equation (2.32) is the equation of a circle in the CJxx ' CJxr plane whose center C has 
coordinates 

(2.33) 

and whose radius R is given by the relation 

(2.34) 

Consequently, the geometrical representation of the first and third of Eqs. (2. 3 1 )  is 
a circle (Fig. 2. 12). This stress circle is frequently called Mohr's circle in honor of 
Otto Mohr, who first employed it to study plane stress problems. It is necessary to 
take the positive direction of the CJxy axis downward so that the positive direction 
of 8 in both Figs. 2. 1 1  and 2. 12  is counterclockwise. 

Since (Jxx ' (JYY ' and (Jxy are known quantities, the circle in Fig. 2. 1 2  can be con
structed using Eqs. (2. 33) and (2. 34 ). The interpretation of Mohr's circle of stress 
requires that one known point be located on the circle. When 8 = 0 (Fig. 2. 10), the 
first and third of Eqs. (2 .3 1) give 

and (2.35) 

which are coordinates of point P in Fig. 2. 12. 
Principal stresses CJ1 and CJ2 are located at points Q and Q'  in Fig. 2 . 1 2  and occur 

when 8 = 81 and 81 + n/2, measured counterclockwise from line CP. The two 
magnitudes of 8 are given by the third of Eqs. (2. 3 1 )  since CJxr = 0 when 8 = 81 and 
81 + n/2. Note that in Fig. 2. 1 2, we must rotate through angle 28 from line CP, 
which corresponds to a rotation of 8 from plane BC in Fig. 2. 1 0. [See also 
Eqs. (2.3 1 )] Thus, by Eqs. (2.3 1 ), for CJxr = 0, we obtain (see also Fig. 2. 12) 

tan 2fJ = (2.36) 

Solution of Eq. (2.36) yields the values 8 = 81 and 81 + n/2. 
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0 Q' Q axx 

axYcO·ol = a%1 
axYcmaxl R 

Figure 2. 12 Mohr's circle for plane stress. 

The magnitudes of the principal stresses from Mohr's circle of stress are 

(Jxx + (JYY ..J1 ( )2 2 (J1 = 
2 

+ 4 (J XX - (J yy + (J XY 

(2. 37) 

and are in agreement with the values predicted by the procedure outlined earlier in 
this section. 

Another known point on Mohr's circle of stress can be located although it is not 
needed for the interpretation of the circle. When 8 = n/2, the first and third of 
Eqs . (2.3 1) give 

and (2.38) 

These coordinates locate point P' in Fig. 2. 12, which is on the opposite end of the 
diameter from point P. 

Note that Example 2. 1 could also have been solved by means of Mohr's circle. 

EXAMPLE 2.2 
Mohr's Circle in Two Dimensions 

A piece of chalk is subjected to combined loading consisting of a tensile load P and 
torque T (Fig. E2.2a). The chalk has an ultimate strength (Ju as determined in a 
simple tensile test. The load P remains constant at such a value that it produces a 
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tensile stress 0. 5 1  (Ju on any cross section. The torque T is increased gradually 
until fracture occurs on some inclined surface. 

Assuming that fracture takes place when the maximum principal stress CJ1 
reaches the ultimate strength CJu , determine the magnitude of the torsional shear 
stress produced by torque T at fracture and determine the orientation of the fracture 
surface. 

SOLUTION 

Take the x and y axes with their origin at a point on the surface of the chalk as 
shown in Fig. E2.2a. Then a volume element taken from the chalk at the origin of 
the axes will be in plane stress (Fig. E2.2b) with CJxx = 0.5 1  CJu , CJYY = 0, and CJxy 

T � p 

Figure E2.2 

-- F racture surface 

y y 

(b) 

axx (9 = 0) = 0. 5 1 au 

0 c 
0.255au 

R 

(c) 

� T  

X 

ax Y (9=0) = - 0. 70au 

Q 
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unknown. The magnitude of the shear stress (J xy can be determined from the con
dition that the maximum principal stress CJ1 [given by Eq. (2.37 )] is equal to CJu ; 
thus, 

(Ju = 0.255 (Ju + � (0.255  (Ju)2 + (J;y 
(J xy = 0. 700 (Ju 

Since the torque acting on the right end of the piece of chalk is counterclock
wise, the shear stress (Jxy acts down on the front face of the volume element 
(Fig. E2.2b) and is therefore negative. Thus, 

In other words, (Jxy actually acts downward on the right face of Fig. E2.2b and 
upward on the left face. We determine the location of the fracture surface first using 
Mohr's circle of stress and then using Eq. (2 .36) . As indicated in Fig. E2.2c, the 
center C of Mohr's circle of stress lies on the (Jxx axis at distance 0.255 (Ju from 
the origin 0 [see Eq. (2.33)] .  The radius R of the circle is given by Eq. (2.34); 
R = 0.745 CJu . When () = 0, the stress components CJxx(o = o> = CJxx = 0.5 1  CJu and 
CJxr(o = o> = CJxy = - 0.700 CJu locate point P on the circle. Point Q representing the 
maximum principal stress is located by rotating clockwise through angle 281 from 
point P; therefore, the fracture plane is perpendicular to the X axis, which is located 
at an angle 81 clockwise from the x axis. The angle ()1 can also be obtained from 
Eq. (2.36), as the solution of 1 

Thus, 
81 = - 0.6 107 rad 

Since 81 is negative, the X axis is located clockwise through angle 81 from the x 
axis . The fracture plane is at angle ¢ from the x axis. It is given as 

The magnitude of ¢ depends on the magnitude of P. If P = 0, the chalk is sub
jected to pure torsion and ¢ = n/4. If P/A = (Ju (A is the cross-sectional area), the 
chalk is subjected to pure tension (T  = 0) and ¢ = n/2. 

Mohr's Circles in Three Dimensions* 
As discussed in Chapter 4, the failure of load-carrying members is often associated 
with either the maximum normal stress or the maximum shear stress at the point in 
the member where failure is initiated. The maximum normal stress is equal to the 
maximum of the three principal stresses (J1 , (J2 , and (J3 • In general, we will order the 

* In the early history of stress analysis, Mohr's circles in three dimensions were used extensively. 
However, today, they are used principally as a heuristic device. 
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principal stresses so that o-1 > o-2 > o-3 . Then, o-1 is the maximum (signed) principal 
stress and o-3 the minimum principal stress (see Fig. 2 . 1 3.) Procedures have been 
presented for determining the values of the principal stresses for either the general 
state of stress or for plane stress. For plane stress states, two of the principal stresses 
are given by Eqs. (2. 37) the third being O"zz = 0. 

Even though the construction of Mohr's circle of stress was presented for plane 
stress (o-zz = 0), the transformation equations given by either Eqs. (2. 30) or (2. 3 1) are 
not influenced by the magnitude of O"zz but require only that O"zx = O"zy = 0 (Prob
lem 2.2). Therefore, in terms of the principal stresses, Mohr's circle of stress can be 
constructed by using any two of the principal stresses, thus giving three Mohr's 
circles for any given state of stress. Consider any point in a stressed body for which 
values of o-1 , o-2 , and o-3 are known. For any plane through the point, let the N axis be 
normal to the plane and the S axis coincide with the shear component of the stress 
for the plane. If we choose o-NN and o-Ns as coordinate axes in Fig . 2. 1 3, three Mohr's 
circles of stress can be oonstructed. As will be shown later, the stress components o-NN 
and o-Ns for any plane passing through the point locates a point either on one of the 
three circles in Fig. 2. 1 3  or in one of the two shaded areas. The maximum shear stress 
tmax for the point is equal to the maximum value of o-Ns and is equal in magnitude to 
the radius of the largest of the three Mohr's circles of stress. Hence, 

Lmax = O"NS(max) = 

where o-max = o-1 and o-min = o-3 (Fig. 2. 1 3  ). 

0" max - 0" min 
2 

a3-...;lloolole------- a 1-----� 

Figure 2. 1 3  Mohr's circles in three dimensions. 

(2 .39) 

aNS (max) = r 2 
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Once the state of stress at a point is expressed in terms of the principal stresses, 
three Mohr's circles of stress can be constructed as indicated in Fig. 2. 1 3. Consider 
plane P whose normal relative to the principal axes has direction cosines l, m, and n. 
The normal stress (JNN on plane P is by Eq. (2 . 1 1 )  

(2.40) 

Similarly, the square of the shear stress CJNs on plane P is, by Eqs. (2. 10) and (2. 12), 

(2.4 1) 

For known values of the principal stresses CJ1 , CJ2 , and CJ3 and of the direction cosines 
l, m, and n for plane P, graphical techniques can be developed to locate the point in 
the shaded area of Fig. 2. 1 3  whose coordinates (CJNN ' CJNs) are the normal and shear 
stress components acting on plane P. However, we recommend the procedure in 
Sec. 2.3 to determine magnitudes for (JNN and CJNs . In the discussion to follow, we \ 
show that the coordinates (CJNN ' CJNs) locate a point in the shaded area of Fig. 2. 1 3. 

Since 

(2.42) 

Eqs. (2.40), (2.4 1), and (2.42) are three simultaneous equations in 12, m2, and n2 • 
Solving for 12, m2, and n2 and noting that 12 � 0, m2 � 0, and n2 � 0, we obtain 

[2 = 
(J�S + (CJNN - CJ2 ) ((JNN - CJ3 ) > O 

((Jl - (J2 )((J1 - (J3 ) -

2 (J�S + (CJNN - (Jl ) (CJNN - CJ3 ) O m = > 
((J2 - (J3 )((J2 - (Jl ) -

2 (J�S + (CJNN - (Jl ) (CJNN - CJ2 ) O n = > 
((J3 - (J1 )((J3 - (J2 ) - (2.43) 

Ordering the principal stresses such that CJ1 > CJ2 > CJ3 , we may write Eqs. (2.43) in 
the form 

(J�S + (CJNN - CJ2 )(CJNN - CJ3 ) � 0 
(J�S + (CJNN - CJ3 ) (CJNN - CJ1 ) :::;; 0 
(J�S + (CJNN - CJ1)(CJNN - CJ2 ) � 0 

These inequalities may be rewritten in the form 

(2.44) 
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where T1 = ! 1 0"2 - 0"3 1 , -r2 = ! 1 0"3 - 0"1 1, -r3 = ! 1 0"1 - 0"2 1  are the maximum (extreme) 
magnitudes of the shear stresses in three-dimensional principal stress space and 
( 0"1 , 0"2 , 0"3 ) are the signed principal stresses (see Fig. 2. 1 3). The inequalities of 
Eqs. (2.44) may be interpreted graphically as follows : Let (O"NN ' O"Ns) denote the 
abscissa and ordinate, respectively, on a graph (Fig. 2. 1 3). Then, an admissible state 
of stress must lie within a region bounded by three circles obtained from Eqs. (2.44) 
where the equalities are taken (the shaded region in Fig. 2. 1 3). 

EXAMPLE 2.3 
Three-Dimensional State of Stress 

Let the state of stress at a point be given by O"xx = 120 MPa, O"yy = 55 MPa, 
(Jzz = - 85 MPa, O"xy = - 55 MPa, O"yz = 33 MPa, and (Jzx = - 75 MPa. Determine 
the three principal stresses and the directions associated with them. 

SOLUTION 

Substituting the given stress components into Eq. (2.20), we obtain 

0"3 - 900"2 - 1 8,0 140" + 47 1 ,680 = 0 

The three principal stresses are the three roots of this equation. They are 

0"1 = 1 76.80 MPa, 0"2 = - 1 10.86 MPa, 0"3 = 24.06 MPa 

The direction cosines for any one of the principal stress directions are given by 
substituting the given principal stress into Eqs. (2. 1 8). Substitution of 0"1 into 
Eqs. (2. 1 8) gives 

( 1 20 - 1 76.80) 11 - 55m1 - 75n1 = 0 
- 5511 + (55 - 176.80)m1 + 33n 1 = 0 

- 7511 + 33m1 + ( - 85 - 1 76.80)n 1 = 0 (a) 

where 11 , m1 , and n1 are the direction cosines for the 0"1 direction. Only two of these 
equations- are independent; in addition, the direction cosines must satisfy the 
equation 

12 2 2 1 i + mi + n i = , i = 1 ,  2, or 3 

The simultaneous solution of any two of Eqs. (a) along with Eq. (b) gives 

11 = 0.8372, m1 = - 0.4587, n1 = - 0.2977 

In a similar manner, we obtain sets of direction cosines for 0"2 and rJ3 • 

12 = 0.2872, 
13 = 0.4657, 

m2 = - 0.0944, 
m3 = 0. 8834, 

n2 = 0.9532 
n3 = - 0.052 1 

(b) 
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2.5 
DIFFERENTIAL EQUATIONS OF MOTION OF A 
DEFORMABLE BODY 

In previous sections, we determined the stress components needed to specify the 
state of stress at a point 0 in a deformed body for a given set of orthogonal coordi
nate axes (x, y, z). We derived transformation equations that define the state of 
stress at point 0 for any other set of orthogonal axes (X, Y, Z) rotated with respect 
to (x, y, z) . We derived relations that give at point 0 the principal stresses and their 
directions, the maximum shear stress, the octahedral normal and shear stresses, 
and the hydrostatic and deviatoric states of stress. 

In this section, we derive differential equations of motion of a deformable solid 
body (differential equations of equilibrium if the deformed body has zero accelercr
tion). These equations are needed when the theory of elasticity is used to derive 
load-stress and load-deflection relations for a member. We consider a general de
formed body and choose a differential volume element at point 0 in the body as 
indicated in Fig. 2. 14. The form of the differential equations of motion depends on 
the type of orthogonal coordinate axes employed. We choose rectangular coordi
nate axes (x, y, z) whose directions are parallel to the edges of the volume element. 
In this book, we restrict our consideration mainly to small displacements and, there-
fore, do not distinguish between coordinate axes in the deformed state and in the 
undeformed state (Boresi and Chong, 1987). Six cutting planes bound the volume 
element shown as a free-body diagram in Fig. 2. 1 5. In general, the state of stress 
changes with the location of point 0. In particular, the stress components under
go changes from one face of the volume element to another face. Body forces 
(Bx , By , Bz) are included in the free-body diagram. 

To write the differential equations of motion, each stress component must be 
multiplied by the area on which it acts and each body force must be multiplied by 
the volume of the element since (Bx , By , Bz) have dimensions of force per unit 
volume. The equations of motion for the volume element in Fig. 2. 1 5  are then 
obtained by summation of these forces and summation of moments. In Sec. 2.3 we 

y 

Figure 2. 14 General deformed body. 
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aayz + -- dy ay 

� Bz 

Figure 2. 1 5  Stress components showing changes from face to  face along with body force per 
unit volume including inertial forces. 

have already used summation of moments to obtain the stress symmetry condi
tions [Eqs. (2.4 )] . Summation of forces in the x direction gives * 

a(J XX a(J yx a(J ZX _ 0 
ax + ay + az + Bx -

where CJxx ' CJyx = CJXY ' and CJxz = CJzx are stress components in the x direction and Bx 
is the body force per unit volume in the x direction including inertial (acceleration) 
forces. Summation of forces in the y and z directions yields similar results . The 
three equations of motion are thus 

a(Jxx a(Jyx a(Jzx - 0 
ax + ay + az + Bx -

(2 .45) 

We use Eqs. (2.45) in the treatment of torsion of noncircular sections (Chapter 6). 
As noted earlier, the form of the differential equations of motion depends on the 

coordinate axes ; Eqs. (2.45) were derived for rectangular coordinate axes. In this 
book we need differential equations of motion in terms of cylindrical coordinates 
and plane polar coordinates. These are not derived here; instead, we present the 

* Note axx on the left face of the element goes to axx + daxx = axx + (oaxxfox) dx on the right face of 
the element, with similar changes for the other stress components (Fig. 2. 1 5). 
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most general form from the literature (Boresi and Chong, 1987, pp. 2 18-222) and 
show how the general form can be reduced to desired forms. The equations of 
motion relative to orthogonal curvilinear coordinates (x, y, z) (see Fig. 2. 16), are 

a(fJYCJxz) a(ycxCJyz) a(cxfJCJzz) R ay 
ax + ay + az + fl(Jxz ax 

ay acx ap 
+ (X(Jyz ay - P(Jxx az - (X(Jyy az + cx{JyBZ = 0 (2.46) 

where (ex, p, y) are metric coefficients that are functions of the coordinates (x, y, z). 
They are defined by 

(2.47) 

where ds is the differential arc length representing the diagonal of a volume element 
(Fig. 2. 16) with edge lengths ex dx, p dy, and y dz, and where (Bx , By , Bz) are the com
ponents of body force per unit volume including inertial forces. For rectangular 
coordinates, ex = P = y = 1 and Eqs. (2.46) reduce to Eqs. (2.45). 

Specialization of Equations (2.46) 
Commonly employed orthogonal curvilinear systems in three-dimensional prob
lems are the cylindrical coordinate system (r, 8, z) and spherical coordinate system 
(r, e, ¢ ) ; in plane problems, the plane polar coordinate system (r, 8) is frequently 
used. We will now specialize Eqs. (2.46) for these systems. 

y 

X 
Figure 2. 16 Orthogonal curvilinear coordinates. 
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(a) Cylindrical Coordinate System (r, 6, z). In Eqs. (2.46), we let X = r, y = e, 
z = z. Then the differential length ds is defined by the relation 

(2.48) 

A comparison of Eqs. (2.4 7) and (2.48) yields 

(J. = 1 ,  {1 = r, y = 1 (2.49) 

Substituting Eq. (2.49) into Eqs. (2.46), we obtain the differential equations of 
motion 

2CJ,o 
+ Bo = 0 

r 

(Jrz 
+ B = 0 

r 
z (2. 50) 

where (CJ,, CJ00 ,  CJzz ' CJ,0 , CJ,z ,  CJoz) represent stress components defined relative to 
cylindrical coordinates (r, 8, z). We use Eqs. (2.50) in Chapter 1 1  to derive load
stress and load-deflection relations for thick-wall cylinders. 

(b) Spherical Coordinate System (r' 6, l/J ). In Eqs. (2.46), we let X = r, y = e, z = ¢, 
where r is the radial coordinate, 8 the colatitude, and ¢ the longitude. Since the 
differential length ds is defined by 

(2. 5 1) 

comparison of Eqs. (2.47) and (2.5 1) yields 

(J. = 1 ,  {1 = r, y = r sin 8 (2. 52) 

Substituting Eq. (2. 52) into Eqs. (2.46), we obtain the differential equations of 
motion 

Where ( CJ,, CJoo , (Jt/Jt/J , (JrO , (Jrt/J , CJotfJ) are defined relative tO Spherical COOrdinateS (r, 8, cp ) . 

(c) Plane Polar Coordinate System (r, 9). In plane-stress problems relative to 
(x, y) coordinates, CJzz = CJxz = CJyz = 0, and the remaining stress components are 
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2.6 

functions of (x, y) only (Sec. 2.4). Letting x = r ,  y = 8,  z = z in Eqs. (2. 50) and noting 
that CJzz = CJrz = CJoz = (8/8z) = 0, we obtain from Eq. (2. 50) 

8CJ,o 1 8CJoo 2 
CJ,o B O - + - - + -

+ o = ar r ae r 

DEFORMATION OF A DEFORMABLE BODY 

(2. 54) 

In the first four sections of this chapter, we examined the six stress components that 
define the state of stress at a point in a loaded member, derived the transformation 
equations of stress, and derived expressions for the maximum principal stress, 
maximum shear stress, and maximum octahedral shear stress at a point. These rela
tions are of interest throughout most of the book. Differential equations of equi
librium (differential equations of motion for members being accelerated) were 
derived in Sec. 2.5. These are needed in chapters in which the theory of elasticity 
is used to derive load-stress and load-deflection relations. Additionally, differential 
equations of compatibility, needed in the theory of elasticity, are derived in 
Sec. 2.8; the derivation employs small displacement approximations and the asso
ciated strain-displacement relations. Although small displacements are considered 
in most applications of this book, more general finite strain-displacement relations 
are derived in this chapter so that the reader may better understand the approxi
mations that lead to the strain-displacement relations of small-displacement 
theory. 

In the derivation of strain-displacement relations for a member, we consider the 
member first to be unloaded (undeformed and unstressed) and next to be loaded 
(stressed and deformed) . We let R represent the closed region occupied by the 
undeformed member and R * the closed region occupied by the deformed member. 
Asterisks are used to designate quantities associated with the deformed state of 
members throughout the book. 

Let (x, y, z) be rectangular coordinates (Fig. 2. 1 7). A particle P is located at the 
general coordinate point (x, y, z) in the undeformed body. Under a deformation, the 
particle moves to a point (x *, y *, z* )  in the deformed state defined by the equations 

x* = x*(x, y, z) 
y* = y*(x, y, z) 
z* = z*(x, y, z) (2. 55) 

where the values of (x, y, z) are restricted to region R and (x *, y*, z*) are restricted 
to region R *. Equations (2.55 ) define the final location of a particle P that lies at a 
given point (x, y, z) in the undeformed member. It is assumed that the functions 
(x*, y*, z * ) are continuous and differentiable in the independent variables (x, y, z), 
since a discontinuity of these functions would imply a rupture of the member. 
Mathematically, this means that Eqs. (2. 55 ) may be solved for single-valued solu-
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R 

z, z . 

I \ \ 

e P: (x, y, z )  

Figure 2. 17  Location of  general point P in undeformed and deformed body. 

tions of (x, y, z) ;  that is, 

x = x(x*, y*, z * )  
y = y(x*, y*, z * )  
z = z(x*, y*, z * )  (2. 56) 

Equations (2. 56) define the initial location of a particle P that lies at point 
(x *, y*, z *) in the deformed member. Functions (x, y, z) are continuous and differen
tiable in the independent variables (x *, y*, z * ). 

When (x *, y*, z *) are used as independent variables [Eq. (2 . 56)], the point of 
view is that of the Eulerian or spatial coordinate method. When (x, y, z) are used as 
independent variables, the point of view is that of the Lagrangian or material coor
dinate method. It may be shown that for classical, small-displacement theories of 
elasticity and plasticity, it is not necessary to distinguish between the variables 
(x*, y*, z *) and (x, y, z). We employ material coordinates in this book. 

STRAIN THEORY. TRANSFORMATION OF STRAIN. 
PRINCIPAL STRAINS* 

The theory of stress of a continuous medium rests solely on Newton's laws. As 
will be shown in this section, the theory of strain rests solely on geometric con
cepts. Both the theories of stress and strain are, therefore, independent of material 
behavior and, as such, are applicable to the study of all materials. Furthermore, 
although the theories of stress and strain are based on different physical concepts, 

* The theory presented in this article includes quadratic terms in the displacement components (u, v, w) 
and in the engineering strain EE . One may discard all quadratic terms in u, v, w, and EE and directly ob
tain the theory of strain for small deformations. (See Sec. 2.8.) 
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mathematically, they are equivalent, as will become evident in the following 
discussion. 

Strain of a Line Element 
When a body is deformed, the particle at point P : (x, y, z) passes to the point 
P* : (x *, y*, z* )  (Fig. 2. 1 8). Also, the particle at point Q : (x + dx, y + dy, z + dz) 
passes to the point Q* : (x*  + dx*, y* + dy*, z *  + dz *), and the infinitesimal line 
element PQ = ds passes into the line element P*Q*  = ds *. We define the engineer
ing strain EE of the line element PQ = ds as 

ds * - ds EE =
--d-s -

(2. 57) 

Therefore, by the definition, EE > - 1 .  Equation (2.57) i s  employed widely in 
engineering. 

By Eqs. (2. 55), we obtain the total differential 

ax* ax * ax * 
dx* = -dx + -dy + - dz 

ax ay az 

with similar expressions for dy*, dz * . Noting that 

y 

x* = x + u 
y* = y + v 
z *  = z + w 

y 
- -

-
-

-
- -

- - - -
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Figure 2. 1 8  Line segment PQ in undeformed and deformed body. 

(2. 58) 

(2. 59) 
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where (u, v, w) denote the (x, y, z) components of the displacement of P to P*, and 
also noting that 

(dsf = (dxf + (dyf + (dzf 
(ds*f = (dx*f + (dy *)2 + (dz *)2 

we find t [retaining quadratic terms in derivatives of (u, v, w)] 

1 [(ds * )2 J 1 2 2 M = 2 ds - 1 = E E + 2E E = l E XX + lmE xy + lnE xz 

+ mlEyx + m2Eyy + mnEyz + n[Ezx + nmEzy + n2Ezz 
= [2Exx + m2Eyy + n 2Ezz + 2lmExy + 2lnExz + 2mnEyz 

where M is called the magnification factor and 

are the finite strain-displacement relationst and where 

1 
= 

dx 
ds ' 

dy 
m = 

ds ' 

are the direction cosines of line element ds. 

dz 
n = -

ds 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

We may interpret the quantities Exx ' EYY ' Ezz physically, by considering line 
elements ds that lie parallel to the (x, y, z) axes, respectively. For example, let the 
line element ds (Fig. 2. 1 8) lie parallel to the x axis. Then l = 1, m = n = 0, and 

t Although one may compute EE directly from Eq. (2.57), it is mathematically simpler to form the quan
tity M = ![(ds*fds)2 - 1] = ![(1  + EE)2 - 1] = EE + !ei .  Then one may compute EE from Eq. (2.61). 
For small EE (Sec. 2.8), EE � M. A more detailed derivation of Eq. (2.61) is given by Boresi and Chong 
(1 987, Sec. 2-6). 

t In small displacement theory, the quadratic terms in Eqs. (2.62) are neglected. Then, Eqs. (2.62) reduce 
to Eqs. (2.81 ). 
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Eq. (2 .61) yields 

M 1 2 x = E Ex + 2E Ex = E xx (2 .61a) 

where Mx and EEx denote the magnification factor and the engineering strain of the 
element ds (parallel to the x direction). Hence, Exx ' physically, is the magnification 
factor of the line element at P that lies initially in the x direction. In particular, if 
the engineering strain is small (EEx << 1), we obtain the result Exx � EEx : namely, that 
Exx is approximately equal to the engineering strain for small strains. Similarly, for 
the cases where initially ds lies parallel to the y axis and then the z axis, we obtain 

(2 .61b) 

Thus, (Exx ' EYY ' Ezz) physically represent the magnification factors for line elements 
that initially lie parallel to the (x, y, z) axes, respectively. 

To obtain a physical interpretation of the components Exy '  Exz ' Eyz ' it is neces
sary to determine the rotation between two line elements initially parallel to the 
(x, y) axes, (x, z) axes, and ( y, z) axes, respectively. To do this, we first determine the 
final direction of a single line element under the deformation. Then, we use this 
result to determine the rotation between two line elements. 

Final Direction of Line Element 
As a result of the deformation, the line element ds : (dx, dy, dz) deforms into the line 
element ds * :  (dx*, dy*, dz *). By definition, the direction cosines of ds and ds* are 

1 = 
dx dy dz 

m = 
ds ' n = -

ds ' ds 

l*  = 
dx* dy* dz * 

m* - n* = -

ds* ' - ds * ' ds * 

Alternatively, we may write 

l *  = 
dx* ds 

* _ dy* ds 
m - Ts ds * ' * 

dz * ds 
n = - -

ds ds * '  

By Eqs. (2. 58) and (2. 59), we find 

and by Eq. (2. 57) 

- = 1 + - l + -m + - n  
dx* ( au) au au 
ds ax ay az 

dy* 
= 

av 
l + 
(

1 + 
av)

m + 
av 

n ds ax ay az 

- = - 1 + - m +  1 + - n 
dz * aw aw ( aw) 
ds ax ay az 

ds 1 
- --

ds * 1 + EE 

ds ds* 

(2.64) 

(2.65) 

(2.66) 

(2.67 ) 
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Hence, Eqs. (2.65), (2.66), and (2.67) yield 

(2.68) 

Equations (2.68) represent the final direction cosines of line element ds when it 
passes into the line element ds * under the deformation. 

Rotation Between Two Line Elements 
(Definition of Shear Strain) 

Next, let us consider two infinitesimal line elements PA and PB of lengths ds1 
and ds2 emanating from point P. For simplicity, let PA be perpendicular to PBt 
(Fig. 2. 19). Let the direction cosines of lines PA and PB be (11 , mb n 1) and (12 , m2 , n2 ), 
respectively. By the deformation, line elements PA, PB are transformed into line 
elements P*A*, P*B*, with direction cosines (l i , mi , n i )  and (l i , mi , n i ), respec
tively. Since PA is perpendicular to PB, by the definition of scalar product of vectors 

Similarly, the angle (} *  between P*A * and P*B*  is defined by 

z 

z 

cos 8*  = li li + mimi  + n ini  

y y 

B 

diz � 
p 

__.<:- (u, v, w) 
ds1 A 

X 

P *  

B *  

A *  

X 

Figure 2. 19 Line segments PA and PB before and after deformation. 

t This restriction is not necessary but is used for simplicity. See Boresi and Chong (1 987). 

(2.69) 

(2.70) 
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In turn, (1 i ,  mi ,  ni )  and (li , mi , ni )  are expressed in terms of (11 , m1 , n 1 ) and 
(l2 , m2 , n2 ), respectively, by means of Eq. (2.68). Hence, by Eqs . (2.68), (2.69), and 
(2. 70), we may write with Eqs. (2.62) 

'Y12 = ( 1  + EE1)(1 + EE2 ) COS 8* 
= 211 12 Exx + 2m1m2Eyy + 2n 1n2Ezz + 2(11m2 + 12m1)Exy 

+ 2(m1n2 + m2n1)Eyz + 2(l1 n2 + 12 n 1 )Exz (2.7 1) 

where y12 is defined to be the engineering shear strain between line elements PA and 
PB as they are deformed into P*A* and P*B*  (Fig. 2 .19). � 

To obtain a physical interpretation of ExY ' we now let PA and PB be oriented 
initially parallel to axes (x, y), respectively. Hence, 11 = 1, m1 = n 1 = 0 and 12 = 
n2 = 0, m2 = 1 .  Then Eq. (2.71) yields the result 

'Y12 = 'Yxy = 2Exy (2.72) 

In other words, 2Exy represents the engineering shear strain between two line ele
ments initially parallel to the (x, y) axes, respectively. Similarly, we may consider 
PA and PB to be oriented initially parallel to the (y, z) axes and then to the (x, z) 
axes to obtain similar interpretations for Eyz ' Exz · Thus, 

'Yxz = 2Exz (2.73) 

represent the engineering shear strains between two line elements initially parallel 
to the (x, y), ( y, z) and (x, z) axes, respectively. 

If the strains EE1 , EE2 are small and the rotations are small (e.g., 8* � n/2), 
Eq. (2.71) yields the approximation 

(2. 74) 

and the engineering shear strain becomes approximately equal to the change in 
angle between line elements PA and PB. 

Other results analogous to those of stress theory (Sec. 2.3 and 2.4) also hold. 
For example, the symmetric array 

(2.75) 

is the strain tensor. Under a rotation of axes, the components of the strain tensor 
(Exx , Exy , Exz ' . . .  ) transform in exactly the same way as the stress tensor [Eqs. (2. 1 5) 
and (2. 17)] .  [Compare Eqs. (2. 5) and (2.75). Also compare Eqs. (2. 1 1) and (2.61)] .  
To show this transformation, consider again axes (x, y, z) and (X, Y, Z), as in 
Sec. 2.4, Fig. 2.8 (also Fig. 2. 1 8), and Table 2.2. The strain components Exx ' Exy , 
E xz , . . . , are defined with reference to axes (X, Y, Z) in the same manner as E xx , E xy , 
Exz ' . . .  , are defined relative to axes (x, y, z). Hence, Exx is the extensional strain of a 
line element at point P (Fig. 2. 1 8) that lies in the direction of the X axis, and Exy 
and Exz are shear components between line elements that are parallel to axes (X, Y) 
and (X, Z), respectively, and so on for Eyy , Ezz , Eyz . Hence, if we let element ds lie 
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parallel to the X axis, Eq. (2.6 1), with Table 2.2, yields 

Similarly for the line elements that lie parallel to axes Y and Z, respectively, we 
have 

Eyy = l�Exx + m� Eyy + n�Ezz + 2[2m2Exy + 2[2n2Exz + 2m2n2Eyz (2.76b) 
Ezz = l�Exx + m�Eyy + n�Ezz + 2[3m3 Exy + 2[3 n3Exz + 2m3n3 Eyz (2.76c) 

Similarly, if we take line elements PA and PB parallel, respectively to axes X 
and Y (Fig. 2. 19), Eqs. (2.7 1) and (2.73) yield the result 

iYxY = Exy = l1 l2 Exx + m1m2Eyy + n 1n2 Ezz + (11m2 + l2m1)Exy 
+ (m1 n2 + m2n1 )Eyz + (l1 n2 + l2n 1)Exz 

In a similar manner, we find 

t)'yz = Eyz = [2 [3 Exx + m2m3Eyy + n2 n3Ezz + (12m3 + [3m2)Exy 
+ (m2 n3 + m3n2 )Eyz + (l2n 3 + l3n2 )Exz 

!Yxz = Exz = l1 l3 Exx + m1m3Eyy + n1 n3 Ezz + (11m3 + l3mdExy 
+ (m1n3 + m3n t}Eyz + (l1 n3 + l3n t )Exz 

(2.76d) 

(2.76e) 

(2.76f) 

where (11 , m1 , n 1), (l2 , m2 , n2) and (13 , m3 , n3) are the direction cosines of axes X, Y, 
and Z, respectively. 

Equations (2.76) represent the transformation of the strain tensor (Exx ' EYY ' . . .  , 
Eyz) under a rotation from axes (x, y, z) to axes (X, Y, Z). (See Figs. 2. 1 8  and 2. 19 and 
also Fig. 2.8.) 

Principal Strains 
Under a deformation of a body (Sec. 2.6), any infinitesimal sphere in the body is 
deformed into an ellipsoid, called the strain ellipsoid. The principal axes of the 
strain ellipsoid have the directions of the principal axes of strain (see below) at the 
center o[ the ellipsoid in the deformed member. The radii of the infinitesimal sphere 
that pass into the principal axes of the strain ellipsoid are initially perpendicular to 
each other, and they coincide with the principal axes of strain in the undeformed 
body. Hence, through any point in an undeformed member, there exist three mutu
ally perpendicular line elements that remain perpendicular under the deformation. 
The strains of these three line elements are called the principal strains at the point. 
We denote them by (EE1 , EE2 , EE3 ) and the corresponding principal values of the 
magnification factor M = EE + !E� are denoted by (M1 , M2 , M3 ). By analogy with 
stress theory (Sec. 2.4), the principal values of the magnification factor are the three 
roots of the determinantal equation 

Exx - M Exy Exz 
Exy Eyy - M Eyz = 0 (2.77a) 
Exz Eyz Ezz - M 
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2.8 

or 
3 - 2 - -M - 11M - 12M - 13 = 0 

M = EE + tE� (2.77b) 

where 

11 = Exx + Eyy + Ezz 

12 = -
Exx Exy Exx Exz Eyy Eyz 
Exy Eyy Exz Ezz Eyz Ezz 

Exx Exy Exz 
13 = Exy Eyy Eyz (2.78) 

Exz Eyz Ezz 
are the strain invariants [see Eqs. (2. 19), (2.20), (2.2 1)] .  Because of the symmetry of 
the determinant of Eq. (2.77a), the roots Mi : i = 1 ,  2, 3 are always real. Also since 
EEi > - 1, Mi > - 1 . 

The three principal strain directions associated with the three principal strains 
(EE1 , EE2 , EE3 ), Eq. (2.77b), are obtained as the solution for (l, m, n) of the equations 

l(Exx - M) + mExy + nExz = 0 

lExy + m(Eyy - M) + nEyz = 0 
lExz + mEyz + n(Ezz - M) = 0 

z2 + m2 + n2 = 1 (2.79) 

Recall that only two of the first three of Eqs. (2.79) are independent. The solution 
M = M1 yields the direction cosines for EE = EE1 and so on for M =  M2(EE = EE2 ), 
M = M3(EE = EE3). 

If (x, y, z) axes are principal strain axes, Exx = M1 , Eyy = M2 , Ezz = M3 , Exy = 
Exz = Eyz = 0 and the expressions for the strain invariants 11 , 12 , 13 to reduce to 

11 = M1 + M2 + M3 
12 = - M1M2 - M1M3 - M2M3 

(2. 80) 

SMALL-DISPLACEMENT THEORY 

The deformation theory developed in Sec. 2.6 and 2. 7 is purely geometrical and the 
associated equations are exact. In the small-displacement theory, the quadratic 
terms in Eqs. (2.62) are discarded. Then 

au av 
Exx "' 

ax ' Eyy � ay ' 

1 (av au) 
E xy "' l a X + a y ' 

aw 
Ezz � az 

(2.8 1 )  
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are the strain-displacement relations for small-displacement theory. Then, the 
magnification factor reduces to 

(2.82) 

The above approximations, which are the basis for small-displacement theory, 
imply that the strains and rotations (excluding rigid-body rotations) are small com
pared to unity. The latter condition is not necessarily satisfied in the deformation 
of thin flexible bodies, such as rods, plates, and shells. For these bodies the rota
tions may be large. Consequently, the small-displacement theory must be used with 
caution: It is usually applicable for massive (thick) bodies, but it may give results 
that are seriously in error when applied to thin flexible bodies. 

Strain Compatibility Relations 
The six strain components are determined by Eqs. (2. 8 1) if the three displacement 
components (u, v, w) are known. However, the three displacement components 
(u, v, w) cannot be determined by the integration of Eqs. (2. 8 1 )  if the six strain com
ponents are chosen arbitrarily. That is, certain relationships (the so-called strain 
compatibility relations) among the six strain components must exist in order that 
Eqs. (2. 8 1 )  may be integrated to obtain the three displacement components. To 
illustrate this point, for simplicity, consider the case of plane strain relative to the 
(x, y) plane. This state of strain is defined by the condition that the displacement 
components (u, v) are functions of (x, y) only and w = constant. Then Eqs. (2. 8 1 )  
yield 

au 
Exx = ax ' 

av 
Eyy = ay ' 

au av 
2Exy = 

ay + ax 

(a) 

The strain compatibility condition is obtained by elimination of the two displace
ment components (u, v) from the three nonzero strain-displacement relations in 
Eqs. (a). This can be done by differentiation and addition as follows. Note that by 
differentiation, Eqs. (a) yield 

a2Eyy a 3v 
ax 2 - ax 2 ay 

(b) 

and 

(c) 

Addition of the right-hand sides of Eqs. (b) shows that the right-hand side of 
Eq. (c) is obtained. Therefore, the relation 

(d) 

among the three strain components exists. This result, valid for small strains, is 
known as the strain compatibility relation for plane strain. In the general case, a 
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similar elimination of (u, v, w) from Eqs. (2. 8 1 )  yields the results (Boresi and Chong, 
1987; Sec. 2- 16) 

(2.83) 

Equations (2. 83) are known as the strain compatibility equations of small-displace
ment theory. It may be shown that if the strain components (Exx ' EYY ' Ezz ' Exy ' Exz ' Eyz) 
satisfy Eqs . (2. 83), there exist displacement components (u, v, w) that are solu
tions of Eqs. (2. 8 1 ). More fully, in the small-displacement theory, the functions 
(Exx ' EYY ' Ezz ' Exy ' Exz ' Eyz) are possible components of strain if, and only if, they sat
isfy Eqs. (2.83). For large displacement theory, the equivalent results are given by 
Murnahan ( 1 95 1). 

Strain-Displacement Relations for Orthogonal 
Curvilinear Coordinates 
More generally, the strain-displacement relations [Eqs. (2.62)] may be written for 
orthogonal curvilinear coordinates (Fig. 2. 1 6). The derivation of the expressions 
for (Exx , Eyy , Ezz , Exy , Exz , Eyz) is a routine problem (Boresi and Chong, 1987). For 
small-displacement theory, the results are 

(2.84) 
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where (u, v, w) are the projections of the displacement vector of point (x, y, z) on the 
tangents to the respective coordinate lines at that point and (a, {J, y) are the metric 
coefficients of the coordinate system [Eq. (2.47)] . Equations (2. 84) are easily spe
cialized for particular coordinates. For cylindrical coordinates x = r, y = 8, z = z 
and then a = 1 ,  {J = r, y = 1 ;  for spherical coordinates, x = r, y = 8 = colatitude, 
z = ¢ = longitude and then a = 1 ,  fJ = r, y = r sin 8 (see Sec. 2. 5), etc. 

Thus, we obtain for 

Cylindrical Coordinates 
au 

Err = 
ar ' 

u 1 av 
Eoo = - + - - , 

r r ae 

1 au av v 
'Yro = 2E,o = -;: afJ + 

ar - -;: ' 
au aw 

'Yrz = 2Erz = 
az 

+ 
ar 

Spherical Coordinates 
au 

Err = 
ar ' 

u v 1 aw 
El/Jl/J = - + - COt fJ + -. 

-
ll aA,. r r r sin u \f' 

1 au av v 
'Yro = 2E,o = -;: afJ + 

ar - -;: ' 
1 au aw w 

'Yrl!J = 2Erl/J = -.-ll aA,. + -a - -r sin u \f' r r 

1 (aw ) 1 av 
'YoljJ = 2EoljJ = -;: afJ - W COt f} + r sin f} acp 

Polar Coordinates 
au 

EXAMPLE 2.4 

Err = 
ar ' 

u 1 av 
Eoo = - + - - , 

r r ae 

Three-Dimensional State of Strain 

(2.85) 

(2.86) 

(2.87) 

The parallelopiped in Fig. E2.4 is deformed into the shape indicated by the dashed 
straight lines (small displacements). The displacements are given by the follow
ing relations: u = C1xyz, v = C2xyz, and w = C3xyz. (a) Determine the state of 
strain at point E when the coordinates of point E* for the deformed body are 
( 1 . 504, 1 .002, 1 .996). (b) Determine the normal strain at E in the direction of line 
EA. (c) Determine the shear strain at E for the undeformed orthogonal lines EA 
and EF. 

SOLUTION 

The magnitudes of C 1 , C 2 , and C 3 are obtained from the fact that the dis
placements of point E are known as follows: uE = 0.004 m, vE = 0.002 m, and 
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X 
Figure E2.4 

wE = - 0.004 m. Thus, 

z 

F 1 
2.000 m 

0.004 
u = -3- xyz 

0.002 
v = -3- xyz 

0.004 
w = - -- xyz 3 

(a) The strain components for the state of strain at point E are given by 
Eqs. (2.8 1 ). At point E, 

au 0.004 
Exx = ax

= -3-yz = 0.00267, Eyy = 0.00200, Ezz = - 0.00200 

= 
� (av au) 

= 
! (0.002 0.004 ) 

= 0 00267 Exy 2 ax + ay 2 3 
yz + 3 XZ • 

Yxy = 2Exy = 0.00583, 

'Yyz = 2Eyz = - 0.00300 
Yxz = 2Exz = - 0.00007 

(b) Let the X axis lie along the line from E to A. The direction cosines of EA are 
11 = 0, m1 = - 1/JS, and n1 = - 2/.[5. Equations (2.6 1 )  and (2.82) give the 
magnitude for Exx . Thus, 

= 
0.00200

-
0.00200(4)

-
0.00300(2) 

= - 0 00240 
5 5 5 

. 
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(c) Let the Y axis lie along the line from E to F. The direction cosines of EF 
are 12 = - 1,  m2 = 0, and n2 = 0. The shear strain YxY = 2Exy is given by 
Eq. (2.76d). Thus, 

EXAMPLE 2.5 

= (0.7s33) 
+ 

( - 0.7s07)(2) 
= 0.00232 

State of Strain in Torsion-Tension Member 

A straight torsion-tension member with a solid circular cross section has a length 
L = 6 m and radius R = 10 mm. The member is subjected to tension and torsion 
loads that produce an elongation �L = 10 mm and a rotation of one end of the 
member with respect to the other end of n/3 rad. Let the origin of the (r, 8, z) cylin
drical coordinate axes lie at the centroid of one end of the member, with the z axis 
extending along the centroidal axis of the member. The deformations of the mem
ber are assumed to occur under conditions of constant volume. The end z = 0 is 
constrained so that only radial displacements are possible there. (a) Determine the 
displacements for any point in the member and the state of strain for a point on 
the outer surface. (b) Determine the principal strains for the point where the state 
of strain was determined. 

SOLUTION 

The change in radius �R for the member is obtained from the condition of con
stant volume. Thus, 

nR2L= n(R + �R)2(L + �L) 
102(6 X 10 3) = ( 10 + �Rf(6010) 

�R = - 0.00832 mm 

(a) The displacements components 

u = - 0.000832r (mm) 
v = 0.0001745rz (mm) 
w = 0.001 667z (mm) 

satisfy the displacement boundary conditions at z = 0. The strain components 
at the outer radius are given by Eqs. (2. 85). They are (rounded to six decimal 
places) 

au 
Err = ar 

= - 0.000832, 

aw 
Ezz = a; = 0.001667, 

au aw 
Yrz = 2Erz = 

az + ar 
= 0, 

u 1 av 
Eoo = -;: + -;: a(} 

= -0.000832 

av 1 aw 
Yoz = 2Eoz = 

az + -;: ae 
= 0.00 17  45 
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(b) The three principal strains are the three roots of a cubic equation, 
Eq. (2.77b), where the three invariants of strain are defined by Eqs. (2. 78). 
Choose the (x, y, z) coordinate axes at the point on the outer surface of the 
member where the strain components have been determined in part (a). Let 
X = r, y = e, and z = z.  From Eqs. (2. 78), 

11 = Err + Eoo + Ezz = - 0.000832 - 0.000832 + 0.00 1667 � 0 
- 2 2 2 12 = - E,,Eoo - E,,Ezz - EooEzz + E,o + Erz + Eoz 

= - ( - 0.000832)( - 0.000832) - ( - 0.000832)(0.001 667) (0.001 745)2 
- ( - 0.000832)(0.00 1 667) + 

2 
= + 2.838 x 1o-6 

- 0.000832 0 
Err E,o Erz - 0.000832 

13 = 0 
Eor Eoo Eoz 
Ezr Ezo Ezz 0.00 1745 

0 
2 

= 1 .785 x 1o-9 

0 
0.00 1745 

2 

0.001 667 

Substitution of these results into Eq. (2.77b) gives the following cubic equa
tion in E( = M): 

E 3 - 2.838 X 10-6E - 1 .785 X 10-9 = 0 

One principal strain, E,, = - 0.000832, is known. Factoring out this root, 
we find 

E2 - 0.000832E - 2. 146 X 10-6 = 0 

Solution of this quadratic equation yields the remaining two principal strains. 
Thus, the three principal strains are 

EXAMPLE 2.6 
Mohr's Circle for Plane Strain 

E1 = 0.001939 

E2 = - 0.000832 

E3 = - 0.001 107 

A state of plane strain at a point in a body is given, with respect to the (x, y) axes, 
as Exx = 0.00044, Eyy = 0.000 1 6, and Exy = - 0.00008. Determine the principal 
strains in the (x, y) plane, the orientation of the principal axes of strain, the maxi
mum shear strain, and the strain state on a block rotated by an angle of (}' = 25° 
measured counterclockwise with respect to the reference axes. 
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SOLUTION 

Since the components of strain form a symmetric second-order tensor, they are 
transformed in precisely the same way as stresses. Thus, plane strain states can be 
represented by Mohr's circle in the same way as plane stress states. By analogy to 
the development for plane stress, Mohr's circle for plane strain is defined by the 
equation, [see Eq. (2. 32)] 

(a) 

Equation (a) is the equation of a circle in the (Exx' Exy) plane with center coordinates 

(b) 
and radius 

R = �-!(Exx - Eyyf + E;y (c) 

The orientation of the principal axes of strain is given by the angle 8, where 

tan 28 = (d) 

and 8 is measured with respect to the reference x axis, positive in the counterclock
wise sense. The principal strains are 

(e) 

(f ) 

The maximum shear strain is simply the radius of the circle as given by Eq. (c). 
For the data given, the state of strain may be expressed as Exx = 440 ,u, Eyy = 

1 60 ,u, and Exy = - 80 ,u, where ,u = 10-6 .  This representation of strain is known 
as microstrain. The Mohr's circle for this data is shown in Fig. E2.6a. By Eq. (b) 
and (c), the center of the circle is located at point C with coordinates (300 ,u, 0) 
and its radius is R = 1 6 1  ,u. By Eqs. (e) and (f ), the principal strains are 

€1 = 300 ,U + 1 6 1 ,U = 46 1 ,U 
E 2 = 300 ,U - 1 6 1  ,U = 1 39 ,U 

(g) 
(h) 

On Mohr's circle, they correspond to points Q and Q' ,  respectively. The reference 
strain state is plotted at points P(Exx ' Exy) and P'(EYY ' - Exy). Note that the positive 
Exy axis is directed downward, as is done with the plane stress case. By Eq. (d) the 
principal axis corresponding to E1 in the body is located at an angle of 8 = - 14.87° 
with respect to the x axis. On Mohr's circle, this corresponds to an angle 28 = 
- 29.74° from line CP to line CQ. 

The maximum value of shear strain is ExY(max) = R = 1 6 1  ,u. It occurs at an 
orientation of ± 45° from the principal axis for E1 ( ± 90° from line CQ on Mohr's 
circle). Note that this is the maxim urn shear strain using the tensor definition 
of strain. The maximum engineering shear strain is YxY(max) = 2ExY(max) = 322 ,u 
[Eq. (2.73)] .  The strain state on a block at 8' = 25° (50° on Mohr's circle) is iden
tified by points S(E�x ' E�y) and S'(E�Y ' - E�y). By geometry of the circle, the strain 
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Principal strain orientation 

(b) 

Q 

Exy (max) 
= 1 61,u 

D Deformed 
r - 1  1_ ..1 Undeformed 

Figure E2.6 (a) Mohr's circle for plane strain. (b) Deformed element in three different 
orientations. 

quantities are 

E�x = OC + R cos(28' - 28) = 329 J1 
E�y = OC - R  cos(28' - 28) = 27 1 J1 
E�y = - R sin(28' - 28) = - 295 J1 

In Fig. E2.6b, the deformed shape of an element in the reference orientation is 
shown. Also illustrated is the deformed shape in the principal orientation, that is 
at an angle of 8 = - 14.87° with respect to the x axis. Notice that in this orienta
tion, the deformed element is not distorted, since the shear strain is zero. Finally, 
the deformed shape at 8' = 25° with respect to the reference orientation is shown. 
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STRAIN MEASUREMENT. STRAIN ROSETTES 

For members of complex shape subjected to loads, it may be mathematically 
impractical or impossible to derive analytical load-stress relations. Then, either 
numerical or experimental methods are used to obtain approximate results. Nu
merical methods (finite element methods) are treated in Chapter 1 9. Several exper
imental methods are used, the most common one being the use of strain gages. 
Strain gages are used to measure extensional strains on the free surface of a 
member or the axial extension/contraction of a bar. They cannot be used to 
measure the strain at an interior point of a member. To measure interior strains 
(or stresses), other techniques such as photoelasticity may be used, although this 
method has been largely superseded by modern numerical techniques. Neverthe
less, photoelastic methods are still useful when augmented with modern computer 
data-acquisition techniques (Kobayashi, 1 987). Additional experimental proce
dures are also available. They include holographic, Moire, and laser speckle inter
ferometry techniques. These specialized methods lie outside of the scope of this 
text (see Kobayashi, 1 987). We shall discuss only the use of electrical resistance 
(bonded) strain gages. Electric strain gages are used to obtain average extensional 
strain over a given gage length. These gages are made of very fine wire or metal 
foil and are glued to the surface of the member being tested. When forces are applied 
to the member, the gage elongates or contracts with the member. The change in 
length of the gage alters its electrical resistance. The change in resistance can be 
measured and calibrated to indicate the average extensional strain that occurs over 
the gage length. To meet various requirements, gages are made in a variety of gage 
lengths, varying from 4 to 1 50 mm (approximately 0. 1 5  to 6 in), and are designed 
for different environmental conditions. 

A minimum of three extensional strain measurements in three different direc
tions at a point on the surface of a member is required to determine the average 
state of strain at that point. Consequently, it is customary to cluster together three 
gages to form a strain rosette that may be cemented to the free surface of a member. 
Two common forms of rosettes are the delta rosette (with three gages spaced 
at 60° angles) and the rectangular rosette (with three gages spaced at 45° angles), 
Fig. 2.20. From the measurement of extensional strains along the gage arm direc
tions (directions a, b, c in Fig. 2.20), one can determine the strain components 
(Exx ' Eyy , Exy) at the point, relative to the (x, y) axes. Usually, one of the axes is 

b b 

60° 60° 45° 
c a 

c a 

L 
(a) (b) 

Figure 2.20 Rosette strain gages. (a) Delta rosette. (b) Rectangular rosette. 
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taken to be aligned with one arm of the rosette, say, the arm a. Hence, Exx = Ea , 
the average extensional strain in the direction a. Then, the components (EYY ' Exy) 
may be expressed in terms of the measured extensional strains Ea , Eb , and Ec in the 
directions of the three rosette arms a, b, c, respectively. (See Example 2.7.) 

EXAMPLE 2.7 
Measurement of Strain on a Surface of a Member 

A strain rosette with gages spaced at an angle e is cemented to the free surface of 
a member (Fig. E2.7). Under a deformation of the member, the extensional strains 
measured by gages a, b, c are Ea , Eb , E0 respectively. (a) Derive equations that deter
mine the strain components EXX ' EYY ' Exy in terms of Ea , Eb , Ec and e. (b) Specialize the 
results for the delta rosette (e = 60°) and rectangular rosette (e = 45°). 

c 

(} 

L 
Figure E2.7 

SOLUTION 

(a) The direction cosines of arms a, b, c, are respectively, 

b 

(} 

a 

The extensional strain of a line element in the direction (l, m, n) is given by 
Eq. (2. 6 1 ). Hence, by Eq. (2.6 1), the extensional strains in the directions of 
arms a, b, c are 

Ea = Exx 
Eb = Exx(cos2 e) + Eyy(sin2 e) + 2Exy(cos e)(sin e) 
Ec = Exx(cos2 2e) + Eyy(sin2 2e) + 2Exy(cos 2e)(sin 2e) (a) 

Equations (a) are three equations that may be solved for Exx ' EYY ' and Exy in 
terms of Ea , Eb , and Ec for a given angle e. The solution is 

(Ea - 2Eb) sin 4e + 2Ec sin 2e 
E = ----------yy 4 sin 2 e sin 2e 

2Ea(sin2 e cos 2 2e - sin2 2e cos 2 e) + 2(Eb sin 2 2e - Ec sin 2 e) 
Exy = 

4 sin 2 e sin 2e 
(b) 
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(b) For 8 = 60°, cos 8 = 1/2, sin f) =  .[3;2, cos 28 = - 1/2, and sin 28 = J3;2. 
Therefore, for 8 = 60°, Eqs. (b) yield 

Eb - Ec Exy = J3 (c) 

For f) =  45°, cos 8 = 1/J2, sin f) = 1/J2, cos 28 = 0, and sin 28 = 1 .  There
fore, for 8 = 45°, Eqs. (b) yield 

PROBLEMS 
Sections 2.1-2.4 

(d) 

2. 1. Let the state of stress at a point be specified by the following stress 
components : (Jxx = (JYY = (Jzz = 0, (Jxy = - 75 MPa, (Jyz = 65 MPa, and 
CJzx = - 55 MPa. Determine the principal stresses, direction cosines for the 
three principal stress directions, and maximum shear stress. 

2.2. Consider a state of stress in which the nonzero stress components are (Jxx ' 
CJYY ' CJzz ' and CJxy · Note that this is not a state of plane stress since CJzz i= 0. 
Consider another set of coordinate axes (X, Y, Z), with the Z axis coincid
ing with the z axis and the X axis located counterclockwise through angle 8 
from the x axis. Show that the transformation equations for this state of 
stress are identical to Eq. (2. 30) or (2. 3 1 )  for plane stress. 

2.3. Let the state of stress at a point be specified by the following stress com
ponents :  CJxx = 1 1 0 MPa, CJYY = - S6 MPa, CJzz = 55 MPa, CJxy = 60 MPa, 
and CJyz = CJzx = 0. Determine the principal stresses, direction cosines of 
the principal stress directions, and maximum shear stress. 

Ans. CJ1 = 126.9 MPa, CJ2 = - 102.9 MPa, CJ3 = 55.0 MPa 
1 1  = 0.9625, m1 = 0.27 1 7, n1 = 0 
12 = 0.27 1 7, m2 = -0.9625, n2 = 0 
13 = 0, m3 = 0, 
(JNS(max) = 1 14.9 MPa 

2.4. Solve Problem 2.3 using the results of Problem 2.2 
2.5. Let the state of plane stress be specified by the following stress components : 

CJxx = 90 MPa, CJYY = - 10 MPa, CJxy = 40 MPa. Let the X axis lie in the (x, y) 
plane and be located at 8 = n/6 clockwise from the x axis. The direc
tion cosines for the X axis are 1 = cos( - n/ 6) = 0.8660, m = sin( - n/ 6) = 
- 0.5000, n = 0. Determine the normal and shear stresses on a plane per
pendicular to the X axis; use Eqs. (2. 1 0), (2. 1 1 ), and (2. 1 2). 

Ans. CJxx = 30. 36 MPa, CJxy = 63.30 MPa 
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In Problems 2.6 through 2.9, the Z axis for the transformed axes coincides with the z 
axis for the volume element on which the known stress components act. 

2.6. The nonzero stress components are (Jxx = 200 MPa, CJYY = 100 MPa, and 
(Jxy = - 50 MPa. Determine the principal stresses and maximum shear 
stress. Determine the angle between the X axis and the x axis when the 
X axis is in the direction of the principal stress with largest absolute 
magnitude. 

2.7. The nonzero stress components are (Jxx = - 90 MPa, CJYY = 50 MPa, and 
(Jxy = 60 MPa. Determine the principal stresses and maximum shear stress. 
Determine the angle between the X axis and the x axis when the X axis is in 
the direction of the principal stress with largest absolute magnitude. 

Ans. CJ1 = 72.2 MPa, CJ2 = - 1 12.2 MPa, CJ3 = 0, !max = 92.2 MPa. 
X axis located 0.3 543 rad clockwise from x axis. 

2.8. The nonzero stress components are CJxx = 80 MPa, CJzz = - 60 MPa, and 
(Jxy = 30 MPa. Determine the principal stresses and maximum shear 
stress. Determine the angle between the X axis and the x axis when the 
X axis is in the direction of the principal stress with largest absolute 
magnitude. 

2.9. The nonzero stress components are CJxx = 1 50 MPa, CJYY = 70 MPa, CJzz = 
- 80 MPa, and (Jxy = - 45 MPa. Determine the principal stresses and maxi
mum shear stress. Determine the angle between the X axis and the x axis 
when the X axis is in the direction of the principal stress with largest absolute 
magnitude. 

Ans. CJ1 = 1 70.2 MPa, CJ2 = 49.8  MPa, CJ3 = - 80 MPa, 
!max = 125. 1 MPa. X axis located 0.422 1 rad clockwise from the x axis. 

2. 10. Using transformation equations of plane stress, determine CJxx and CJxy for 
the X axis located 0.5000 rad clockwise from the x axis. The nonzero stress 
components are given in Problem 2.6. 

2. 1 1 .  Using transformation equations of plane stress, determine CJxx and CJxy for 
the X axis located 0. 1 500 rad counterclockwise from the x axis. The nonzero 
stress components are given in Problem 2.7. 

Ans. CJxx = - 69. 1 MPa, CJxy = 78.0 MPa 

2.12. Using transformation equations of stress (see Problem 2.2), determine CJxx 
and CJxy for the X axis located 1 .00 rad clockwise from the x axis. The nonzero 
stress components are given in Problem 2.8 . 

2. 13. Using transformation equations of stress (see Problem 2.2), determine CJxx 
and CJxy for the X axis located 0. 70 rad counterclockwise from the x axis. The 
nonzero stress components are given in Problem 2.9. 

Ans. CJxx = 72.5 MPa, CJxy = - 47. 1 MPa 

2.14. Solve Problem 2. 10 using Mohr's circle of stress. 
2.15. Solve Problem 2. 1 1  using Mohr's circle of stress. 



2.16. Solve Problem 2. 1 2  using Mohr's circle of stress. 
2. 17. Solve Problem 2. 1 3  using Mohr's circle of stress. 
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2. 18. A volume element at the free surface is shown in Fig. P2. 1 8. The state of 
stress is plane stress with (Jxx = 100 MPa. Determine the other stress 
components. 

y 

Free 
su rface 

----- X 

Figure P2. 1 8  

2.19. Determine the unknown stress components for the volume element tn 
Fig. P2. 1 9. 

Ans. CJxx = 26.67 MPa, CJYY = 1 72.50 MPa 

y 

e 

3 

y 

Figure P2. 19 

ax y = 70 M Pa 

X 5 

e 4 

axx = 1 20 M Pa 

------- x 

2.20. Determine the unknown stress components for the volume element in 
Fig. P2.20. 
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y 

axx = 40 MPa 

y 

Figure P2.20 

X 

axx = 1 20 M Pa 

e 
----- x 

2.21 . Determine the unknown stress components for the volume element in 
Fig. P2.2 1 .  

Ans. (Jxx = - 109. 1 8  MPa, (Jxy = - 10.01 MPa 

y 

y 

I t ayy = 40 M Pa 

� 
5 

�----+- 1 2  

ax y = 60 MPa 

Figure P2.21 

X 
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In Problems 2.22 through 2.26, determine the principal stresses, maximum shear 
stress, and octahedral shear stress. 

2.22. The nonzero stress components are CJxx = - 100 MPa, CJYY = 60 MPa, and 
(Jxy = - 50 MPa. 

2.23. The nonzero stress components are CJxx = 1 80 MPa, CJYY = 90 MPa, and 
(Jxy = 50 MPa. 

Ans. CJ1 = 202.3 MPa, CJ2 = 67.7 MPa, CJ3 = 0, !max = 101 . 1  MPa, 
!oct = 84. 1 MPa 

2.24. The nonzero stress components are CJxx = - 1 50 MPa, CJYY = - 70 MPa, 
(Jzz = 40 MPa, and (Jxy = - 60 MPa. 

2.25. The nonzero stress components are CJxx = 80 MPa, CJYY = - 35 MPa, CJzz = 
- 50 MPa, and CJxy = 45 MPa. 

Ans. CJ1 = 95.5 MPa, CJ2 = - 50. 5 MPa, CJ3 = - 50 MPa, 
!max = 73.0 MPa, !oct = 68.7 MPa 

2.26. The nonzero stress components are CJxx = 95 MPa, CJYY = 0, CJzz = 60 MPa, 
and CJxy = - 55 MPa. 

2.27. Let the state of stress at a point be given by (Jxx = - 120 MPa, (JYY = 140 MPa, 
(Jzz = 66 MPa, (Jxy = 45 MPa, (Jyz = - 65 MPa, and (Jzx = 25 MPa. Deter
mine the three principal stresses and directions associated with the three 
principal stresses. 

Ans. CJ1 = 1 80.2 MPa, CJ2 = 40. 1 MPa, CJ3 = - 1 34.3 MPa 
11 = 0.09 1 3, m 1 = 0.8740, n1 = - 0.4773 
12 = 0.2584, m2 = 0.4422, n2 = 0.8589 
13 = 0.9598, m3 = - 0.2062, n3 = - 0. 1904 

2.28. Let the state of stress at a point be given by CJxx = 0, CJYY = 100 MPa, CJzz = 0, 
CJxy = - 60 MPa, CJyz = 3 5  MPa, and CJzx = 50 MPa. Determine the three 
principal stresses. 

2.29. Let the state of stress at a point be given by CJxx = 1 20 MPa, CJYY = - 55 MPa, 
(Jzz = - 85 MPa, (Jxy = - 55 MPa, (Jyz = 33 MPa, and (J zx = - 75 MPa. 
Determine the three principal stresses and maximum shear stress. 

Ans. CJ1 = 1 62 .5 MPa, CJ2 = - 1 14. 1 MPa, CJ3 = - 68.4 MPa, !max = 
1 3 8.3  MPa 

2.30. Let the state of stress at a point be given by CJxx = - 90 MPa, CJYY = 
- 60 MPa, (Jzz = 40 MPa, (Jxy = 70 MPa, (Jyz = - 40 MPa, and (Jzx = 
- 55 MPa. Determine_ the three principal stresses and maximum shear stress. 

2.31.  Let the state of stress at a point be given by CJxx = - 150 MPa, CJYY = 0, 
(Jzz = 80 MPa, (Jxy = - 40 MPa, (Jyz = 0, and (Jzx = 50 MPa. Determine the 
three principal stresses and maximum shear stress. 

Ans. CJ1 = 9 1 .2 MPa, CJ2 = 8.28 MPa, CJ3 = - 169.5 MPa, 
!max = 1 30.3 MPa 



80 2 / THEORIES OF STRESS AND STRAIN 

2.32. (a) Solve Example 2. 1 using Mohr's circle and show the orientation of 
the volume element on which the principal stresses act. 

(b) Determine the maximum shear stress and show the orientation of the 
volume element on which it acts. 

2.33. At a point on the flat surface of a member, load-stress relations give the fol
lowing stress components relative to the (x, y, z) axes, where the z axis is per
pendicular to the surface: CJxx = 240 MPa, CJYY = 100 MPa, CJxy = - 80 MPa, 
(Jzz = (Jxz = (Jyz = 0. 

(a) Determine the principal stresses using Eq. (2.20), and then again using 
Eqs. (2.36) and (2.37). 

(b) Determine the principal stresses using Mohr's circle and show the 
orientation of the volume element on which these principal stresses act. 

(c) Determine the maxim urn shear stress and maxim urn octahedral shear 
stress. 

Sections 2 .5-2.8 

2.34. The tension member in Fig. P2.34 has the following dimensions : L = 5 m, 
b = 100 mm, and h = 200 mm. The (x, y, z) coordinate axes are parallel 
to the edges of the member, with origin 0 located at the centroid of the 
left end. Under the deformation produced by load P, the origin 0 remains 
located at the centroid of the left end and the coordinate axes remain 
parallel to the edges of the deformed member. Under the action of load P, 
the bar elongates 20 mm. Assume that the volume of the bar remains con
stant with Exx = Eyy . 

(a) Determine the displacements for the member and the state of strain 
at point Q, assuming that the small-displacement theory holds. 

(b) Determine Ezz at point Q based on the assumption that displacements 
are not small. 

/fooli4::---- L/2 -----..-:i/1>( b 

p p 

X 
y 

Figure P2.34 

2.35. In many practical engineering problems, the state of strain is approximated 
by the condition that the normal and shear strains for some direction, say, the 
z direction, are zero, that is, Ezz = Ezx = Ezy = 0 (plane strain). In Chapter 3, 
it is shown that analogously, Ezx = Ezy = 0, but Ezz i= 0 for members made of 
isotropic materials and loaded such that the state of stress may be approx
imated by the condition CJzz = CJzx = CJzy = 0 (plane stress). Assume that 
Exx ' EYY ' and Exy for the (x, y) coordinate axes shown in Fig. P2.35  are 
known. Let the (X, Y) coordinate axes be defined by a counterclockwise 
rotation through angle 8 as indicated in Fig. P2.3 5. Analogous to the 
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transformation for plane stress, show that the transformation equations 
of plane strain are Exx = Exx cos2 () + Eyy sin2 () + 2Exy sin () cos () and Exr = 
- Exx sin () cos () + Eyy sin () cos () + Exy(cos2 () - sin2 8). [See Eq. (2.30).] 

y y 

Figure P2.3 5 

2.36. The square plate in Fig. P2.36 is loaded so that the plate is in a state of 
plane strain (Ezz = Ezx = Ezy = 0). 

(a) Determine the displacements for the plate given the deformations 
shown and the strain components for the (x, y) coordinate axes. 

(b) Determine the strain components for the (X, Y) axes. 

y 

X 

Stra ight I i nes 

y 

0 *  c 

Figure P2.36 

2.37. The square plate in Fig. P2.37 is loaded so that the plate is in a state of 
pl':ne strain (Ezz = Ezx = Ezy = 0.) 

y t 5 mm �1---���-- _ _,0-J_ 
2.5 mm 1 A 1 B I 3.5  mm 

} . 
t \ 1------�-- t I I I I 

�--o?--- 1 m -----'-� I I I 

X 

\ \ I 
Straight l i nes 

\ I 

Figure P2.37 

1 m m  
_L 

2 m m� 1:_ 
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(a) Determine the displacements for the plate for the deformations shown 
and the strain components for the (x, y) coordinate axes. 

(b) Determine the strain components for the (X, Y) axes. 

Ans. (a) u = - 0.0020x - 0.0030y, v = 0.0010x + 0.0025y, Exx = - 0.0020, 
Ey = 0.0025, Yxy = 2Exy = - 0.0020; 

(b) Exx = - 0.001 74, Eyy = 0.00224, Yxr = 2Exy = 0.00290 

2.38. Determine the orientation of the (X, Y) coordinate axes for principal 
directions in Problem 2.37. What are the principal strains? 

2.39. The plate in Fig. P2. 39 is loaded so that a state of plane strain (Ezz = Ezx = 
Ezy = 0) exists. 

(a) Determine the displacements for the plate for the deformations shown 
and the strain components at point B. 

(b) Let the X axis extend from point 0 through point B. Determine Exx 
at point B. 

Ans. (a) (dimensions in m) u = 0.000667xy, v = 0.00 1 333xy, Exx = 0.00200, 
Eyy = 0.00200, Yxy = 2Exy = 0.00500; 

(b) Exx = 0.00400 

y �3mm 
- - 1 B * 6 mm A - -

A *  B Stra 1ght l i nes 3.0 m I 
I 
I 
I 
I 
I 
I 

-=-- 1 .5 m� l 
0 --�----�C*-------- x 

0 * c 
Figure P2. 39 

2.40. The nonzero strain components at a point in a loaded member are Exx = 
0.00 1 80, Eyy = - 0.00108, and Yxy = 2Exy = - 0.00220. Using the results of 
Problem 2.3 5, determine the principal strain directions and principal strains. 

2.41. Solve for the principal strains in Problem 2.40 by using Eqs. (2.77b) and 
(2.78). 

Ans. E1 = 0.002 1 7, E2 = - 0.00145, E3 = 0 

2.42. Determine the principal strains at point E for the deformed parallelepiped 
in Example 2.4. 

2.43. When solid circular torsion members are used to obtain material properties 
for finite strain applications, an expression for the engineering shear strain Yzx 
is needed, where the (x, z) plane is a tangent plane and the z axis is parallel to 
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X 

Figure P2.43 

the axis of the member as indicated in Fig. P2.43 . Consider an element 
ABCD in Fig. P2.43 for the undeformed member. Assume that the member 
deforms such that the volume remains constant and the diameter remains 
unchanged. (This is an approximation of the real behavior of many metals.) 
Thus, for the deformed element A*B*C*D*, A*B* = AB, C *D*  = CD, and 
the distance along the z axis of the member between the parallel curved lines 
A*B* and C*D*  remains unchanged. Show that Eq. (2.7 1 )  gives the result 
Yzx = tan a, where ll. is the angle between AC and A *C*, where Yzx = 2Ezx 
is defined to be the engineering shear strain. 

2.44. A state of plane strain exists at a point in a member, with the nonzero strain 
components Exx = - 2000 Jl, Eyy = 400 Jl, and Exy = - 900 Jl· 

(a) Determine the principal strains in the (x, y) plane and the orientation 
of the rectangular element on which they act. (See Example 2.6.) 

(b) Determine the maximum shear strain in the (x, y) plane and the orien
tation of the rectangular element on which it acts. 

(c) Show schematically the deformed shape of a rectangular element in 
the reference orientation, along with the original undeformed element. 
(See Example 2 .6.) 

2.45. For the rectangular strain rosette, Fig. 2.20b, let arm a be directed along the 
positive x axis of axes (x, y). 

(a) Show that the maximum principal strain is located at angle 8, 
counterclockwise to the x axis, where 

(b) Show that the two principal surface strains E1 and E2 are given by 

where 
R = ![(Ea - Ec)2 + (2Eb - Ea - Ec)2] 1 12 

(c) Construct the corresponding Mohr's circle for the rectangular rosette. 

2.46. For the delta strain rosette, Fig. 2.20a, let arm a be directed along the positive 
x axis of axes (x, y). 
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(a) Show that the maximum principal strain is located at angle 8, 
counterclockwise to the x axis, where 

(b) Show that the two principal surface strains E 1 and E 2 are given by 

where 

(c) Construct the corresponding Mohr's circle for the delta rosette. 

2.47. Let the arm a of a delta rosette, Fig. 2.20a, be directed along the positive x 
axis of axes (x, y) . From measurements, Ea = 2450 Jl, Eb = 1 360 Jl, and Ec = 
- 1 3 10 Jl. Determine the two principal surface strains, the direction of the 
principal axes, and the associated maximum shear strain Exy · 

2.48. Let the arm a of a rectangular rosette, Fig. 2.20b, be directed along the posi
tive x axis of axes (x, y). Using Mohr's circle of strain, show that 2Exr = 
YxY = 2Eb - Ea - Ec · 
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3 

3.1  

LINEAR 
STRESS-STRAIN
TEMPERATURE 
RELATIONS 

In Chapter 2, we presented separate theories for stress and strain. These theories 
are based on the concept of a general continuum. Consequently, these theories are 
applicable to all continua. In particular, the theory of stress is based solely on the 
concept of force and the associated concept of force per unit area. Similarly, the 
theory of strain is based on geometrical concepts of infinitesimal line extensions 
and rotations between two infinitesimal lines. However, to relate the stress at a 
point in a material to the corresponding strain at that point, material properties 
are required. These properties enter into the stress-strain-temperature relations as 
material coefficients. The theoretical basis for these relations is the first law of 
thermodynamics. 

In this chapter, we employ the first law of thermodynamics to derive linear 
stress-strain-temperature relations. In addition, certain concepts, such as comple
mentary strain energy, that have application to nonlinear problems are introduced. 
These relations and concepts are utilized in many applications presented in subse
quent chapters of this book. 

FIRST LAW OF THERMODYNAMICS. 
INTERNAL-ENERGY DENSITY. COMPLEMENTARY 
INTERNAL-ENERGY DENSITY 

The derivation of load-stress and load-deflection relations requires stress-strain 
relations that relate the components of the strain tensor to components of the 
stress tensor. The form of these relations depends on material behavior. In this 
book, we treat mainly materials that are isotropic, that is, at any point they have 
the same properties in all directions. Stress-strain relations for linearly elastic iso
tropic materials are well known and are presented in Sec. 3.4. Stress-strain rela
tions may be treated theoretically by the use of the first law of thermodynamics, a 
precise statement of the law of conservation of energy. It is noted that the total 
amount of internal energy in a system is generally indeterminate. Hence, only 
changes of internal energy are measurable. These changes are determined by the 
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first law of thermodynamics. If electromagnetic effects are disregarded, this law is 
described as follows : 

The work that is performed on a mechanical system by external forces plus 
the heat that flows into the system from the outside equals the increase of 
internal energy plus the increase of kinetic energy. 

Symbolically, the first law of thermodynamics is expressed by the equation 

bW + bH = bU + bK (3 . 1 )  

where bW is the worked performed on the system by external forces, bH the heat 
that flows into the system, bU the increase in internal energy, and bK the increase 
in kinetic energy. 

To apply the first law of thermodynamics, we consider a loaded member in equi
librium. The deflections are assumed to be known. They are specified by known dis
placement components (u, v, w) for each point in the deflected member ; positive u, 
v, and w are components of displacement of a point in the positive direction of 
rectangular orthogonal coordinate axes (x, y, z), respectively. We allow each point 
to undergo infinitesimal increments (variations) in the displacement components 
(u, v, w) indicated by (bu, bv, bw). The stress components at every point of the mem
ber are considered to be unchanged under variations of the displacements. These 
displacement variations are arbitrary, except that two or more particles cannot 
occupy the same point in space, nor can a single particle occupy more than one 
position (the member does not tear). In addition, displacements of certain points 
in the member may be specified (e.g., at a fixed support); such specified displace
ments are referred to as forced boundary conditions (Langhaar, 1989). By Eq. (2.8 1 ), 
the variations of the strain components resulting from variations (bu, bv, bw) are 

b 
_ 8(bu) 

Exx - --a;:-' 

b 
_ 8(bv) 

Eyy - --aJ' 
b 

_ 8(bw) 
Ezz - 8z 

' 

These equations are used later in the analysis. 

(3 .2) 

To introduce force quantities, consider an arbitrary volume V of the deformed 
member enclosed by a closed surface S. We assume that the member is in static 
equilibrium following the displacement variations (bu, bv, bw). Therefore, the part 
of the member considered in volume V is in equilibrium under the action of sur
face forces (represented by stress distributions on surface S) and by body forces 
(represented by distributions of body forces per unit volume Bx , By , and Bz in 
volume V). 

For adiabatic conditions (no net heat flow into V) and static equilibrium 
(bK = 0), the first law of thermodynamics states that, during the displacement 
variations (bu, bv, bw), the variation in work of the external forces bW is equal 
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to the variation of internal energy b U for each volume element. Hence, for V, 
we have 

bW = bU (3. 1a) 

It is convenient to divide b W into two parts : the work of the surface forces b Ws 
and the work of the body forces bWB .  At point P of surface S, consider an incre
ment of area dS. The stress vector Gp acting on dS has components CJpx , CJpy , and 
CJpz defined by Eqs. (2. 10). The surface force is equal to the product of these stress 
components and dS. The work b Ws is equal to the sum of the work of these forces 
over the surface S. Thus, 

OJVs = L CJpx Ou dS + L Cfpy Ov dS + L CJpz Ow dS 

= L [(CJx) + Cfyxm + CJzxn) Ou + (Cfxy l + Cfyym + Cfzyn) Ov 

+ (CJxz l + (Jyzm + (Jzzn) bw] dS (3 .3) 

For a volume element dV in volume V, the body forces are given by products of 
dV and the body force components per unit volume (Bx , By , Bz) . The work bWB of 
the body forces that act throughout V is 

(3 .4) 

The variation of work b W of the external forces that act on volume V with 
surface S is equal to the sum of b Ws  and bWB .  The surface integral in Eq. (3.3) may 
be converted into a volume integral by use of the divergence theorem (Boresi and 
Chong, 1987). Thus, 

OW= OJVs + OW8 = L [:X (CJxx Ou + (Jxy Ov + (Jxz Ow) 

a 
+ ay ((Jyx bu + (Jyy bv + (Jyz bw) 

+ Bx Ou + By Ov + Bz Ow J av (3 . 5) 

With Eqs. (3 .2) and (2 .45), Eq. (3 .5 )  reduces to 

OW= fv (CJxx OExx + Cfyy 0Eyy + (Jzz 0Ezz + 2CJxy 0Exy 

+ 2CJyz bEyz + 2CJzx bEzx) dV  (3 .6) 
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The internal energy U for volume V is expressed in terms of the internal energy 
per unit volume, that is, in terms of the internal-energy density U0 . Thus, 

and the variation of internal energy becomes 

bU = L bU0 dV (3 .7) 

Substitution of Eqs. (3.6) and (3.7) into Eq. (3 . la) gives the variation of the internal
energy density b U0 in terms of the stress components and the variation in strain 
components. Thus, 

This equation is used later in the derivation of expressions that relate the stress 
components to the strain energy density U0 [see Eqs. (3 . 1 1 )] .  

Elasticity and Internal-Energy Density 
The strain-energy density U0 is a function of certain variables ; we need to deter
mine these variables. For elastic material behavior, the total internal energy U in 
a loaded member is equal to the potential energy of the internal forces (called the 
elastic strain energy). Each stress component is related to the strain components ; 
therefore, the internal-energy density U0 at a given point in the member can be 
expressed in terms of the six components of the strain tensor. If the material is 
nonhomogeneous (has different properties at different points in the member), the 
function U0 depends on location (x, y, z) in the member as well. The strain-energy 
density U0 also depends on the temperature T (see Sec. 3 .4). Generally, small elastic 
deformations do not cause significant changes in temperature (Boley and Weiner, 
1960). Consequently, thermal stress problems may be treated approximately with 
the assumption that the time rate of change of temperature is sufficiently slow so 
that transient inertial effects may be ignored. Then, the stress distribution at any 
instant is the same as if the temperature distribution at that instant were main
tained constant (Sec. 3 .4). 

Since the strain-energy density function U0 generally depends on the strain 
components, the coordinates, and the temperature, we may express it as function 
of these variables. Thus, 

(3 .9) 

Then, if the displacements (u, v, w) undergo a variation (bu, bv, bw), the strain com
ponents take variations bExx ' bEYY ' bEzz ' bExy ' bExz ' and 

'bEyz ' and the function U0 
takes on the variation 
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Therefore, since Eqs. (3 .8) and (3 . 10) are valid for arbitrary variations (bu, bv, bw), 
comparison yields for rectangular coordinate axes (x, y, z) 

8U0 
(Jxx = -8

-' Exx 

1 8U0 
(Jxz = -2 -8

-' Exz 
1 8U0 

(J = - yz 2 8Eyz 

Elasticity and Complementary Internal-Energy Density 

(3 . 1 1 ) 

In many members of engineering structures, there may be one dominant compo
nent of the stress tensor; call it CJ. This situation may arise in axially loaded mem
bers, simple columns, beams, or torsional members. Then the strain-energy density 
U0 [Eq. (3 .9)] depends mainly on the associated strain component E; consequently, 
for a given temperature T, (J depends mainly on E. 

By Eq. (3 . 1 1 ), (J = dU0jdE and, therefore, U0 = J (J dE. It follows that U0 is repre
sented by the area under the stress-strain diagram (Fig. 3. 1 )  The rectangular area 
(0, 0), (0, E), (CJ, E), (CJ, 0) is represented by the product CJE. Hence, this area is given by 

(3 . 1
2
) 

where C0 is called the complementary internal-energy density or complementary 
strain energy density. C0 is represented by the area above the stress-strain curve and 
below the horizontal line from (CJ, 0) to (CJ, E). Hence by Fig. 3 . 1 ,  

(3. 1 3) 

or 
dC0 

E = --
dCJ 

(3. 14) 

The above graphical interpretation of the complementary strain energy is appli
cable only for the case of a single nonzero component of stress. However, an ana
lytical generalization for several nonzero components of stress has been given by 
A. M. Legendre (Boresi and Chong, 1987). To achieve this generalization, we 

a 

(a, 0) 

(0, 0) 

I I ,___ 

Uo ------1 I 

_, .,  
(a , E )  

(0, € ) 

Figure 3. 1 

€ 
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3.2 

assume that Eqs. (3. 1 1 ) may be integrated to obtain the strain components as func
tions of the stress components. Thus, we obtain 

Exx = f1((Jxx ' (JYY ' (Jzz ' (JXY ' (JXZ '  (Jyz) 
Eyy = f2((Jxx ' (JYY ' (Jzz ' (JXY ' (JXZ '  (Jyz) 

(3 . 1 5) 

where f1 , f2 , . . •  , f6 denote functions of the stress components. Substitution of 
Eqs. (3 . 1 5) into Eqs. (3.9) yields U0 as a function of the six stress components. Then 
direct extension of Eq. (3. 12) yields 

By Eqs. (3 . 1 5) and (3 . 1 6), the complementary energy density C0 may be expressed 
in terms of the six stress components. Hence, differentiating Eq. (3 . 1 6) with respect 
to (Jxx ' noting by the chain rule of differentiation that 

and employing Eq. (3 . 1 1 ), we find 

a co Exx = -a (Jxx 

(3 . 1 7) 

(3. 1 8) 

Similarly, taking derivatives of Eq. (3. 16 )  with respect of the other stress compo
nents (CJYY ' CJzz ' CJXY ' CJxz ' CJyz), we obtain the generalization of Eq. (3 . 14). 

1 aC0 
Exy = -2 -a-, 

(Jxy 
1 aC0 

Exz = -2 -a-, 
(Jxz 

(3 . 1 9) 

Because of their relationship to Eqs. (3 . 1 1 ), Eqs. (3 . 19) are said to be conjugate 
to Eqs. (3 . 1 1 ). Equations (3 . 1 9) are known also as the Legendre transform of 
Eqs. (3 . 1 1 ). 

HOOKE'S LAW: ANISOTROPIC ELASTICITY 

In the one-dimensional case, for a linear elastic material the stress (J is proportional 
to the strain E; that is, (J = EE, where the proportionality factor E is called the 
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modulus of elasticity of the material. The modulus of elasticity is a property of 
the material. Thus, for the one-dimensional case, only one material property is 
required to relate stress and strain for linear elastic behavior. The relation (J = EE 
is known as Hooke's law. More generally in the three-dimensional case, Hooke's 
law asserts that each of the stress components is a linear function of the compo
nents of the strain tensor; that is, [with 'Yxy' Yxz' 'Yyz' see Eq. (2.73)] , 

(Jxx = CuExx + c12Eyy + c13Ezz + c14'Yxy + Cl s'Yxz + c1 6'Yyz 
(Jyy = c21Exx + c22 Eyy + c23Ezz + c24'Yxy + C2s'Yxz + c26'Y/ 
(Jzz = c31Exx + c32 Eyy + c33 Ezz + c34'Yxy + C3 s'Yxz + c3 6'Yyz 
(Jxy = c41 Exx + c42Eyy + c43Ezz + c44'Yxy + C4s'Yxz + c46'Yyz 
(Jxz = Cs1Exx + Cs2 Eyy + Cs3Ezz + Cs4'Yxy + Cs s'Yxz + Cs6'Yyz 
(Jyz = c61Exx + c62 Eyy + c63Ezz + c64'Yxy + C6s'Yxz + c66'Yyz (3 .20) 

where the 36 coefficients, C11 , . . . , C66 , are called elastic coefficients. Materials that 
exhibit such stress-strain relations involving a number of independent elastic coef
ficients are said to be anisotropic. (See also Sec. 3.5 .) 

In reality, Eq. (3 .20) is no law, but merely an assumption that is reasonably 
accurate for many materials subjected to small strains. For a given temperature, 
time, and location in the body, the coefficients Cii are constants that are charac
teristics of the material. 

Equations (3. 1 1 ) and (3 .20) yield 

Hence, the appropriate differentiations of Eqs. (3 .2 1) yield 

(3 .22) 

These equations show that C12 = C21 , C13 = C3b . . .  , Cik = Ckb · · · , Cs6 = C6s ; 
that is, the elastic coefficients Cii = Cii are symmetrical in the subscripts i, j. There
fore, there are only 2 1  distinct C 's. In other words, the general anisotropic linear 
elastic material has 2 1  elastic coefficients. In view of the preceding relation, the 
strain energy density of a general anisotropic material is [by integration of 
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3.3 

Eqs. (3 .2 1 ) ; see Boresi and Chong, 1987] 

Uo = !C11E;x + !C12 ExxEyy + · · · + !C1 6YxxYyz 
1 c 1 c 2 1 c + 2 12 ExxEyy + 2 22 Eyy + . . . + 2 26'Yyy'Yyz 

+ !C13 ExxEzz + !C23 EyyEzz + · · · t !C36YzzYyz 

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
1 1 c .!c 2 

+ 2C 1 6YxxYyz + 2 26Yyy'Yyz + · · · + 2 66Yyz 

In this form, Eq. (3.23) is important in the study of crystals (Nye, 1957). 

HOOKE'S LAW: ISOTROPIC ELASTICITY 

Isotropic Materials. Homogeneous Materials 

(3.23) 

If the constituents of the material of a solid member are distributed sufficiently 
randomly, any part of the member will display essentially the same material prop
erties in all directions. If a solid member is composed of such randomly oriented 
constituents, it is said to be isotropic. Accordingly, if a material is isotropic, its phy
sical properties at a point are invariant under a rotation of axes. A material is said 
to be elastically isotropic if its characteristic elastic constants are invariant under 
any rotation of coordinates. 

If the material properties are identical for every point in a member, the member 
is said to be homogeneous. In other words, homogeneity implies that the physical 
properties of a member are invariant under a translation. Alternatively, a member 
whose material properties change from point to point is said to be nonhomoge
neous. For example, since the elastic constants are functions of temperature, a 
member subjected to a nonuniform temperature distribution is nonhomogeneous. 
Accordingly, the property of nonhomogeneity is a scalar property; that is, it de
pends only on the location of a point in the member, not on any direction at the 
point. Consequently, the material in a member may be nonhomogeneous, but iso
tropic. For example, consider a flat sandwich plate formed by a layer of aluminum 
bounded by layers of steel. If the point considered is in a steel layer, the material 
properties have certain values that are generally independent of direction. That is, 
the steel is essentially isotropic. If the point considered is in the aluminum, the 
material properties differ from those of steel. Therefore, taken as a complete body, 
the sandwich plate exhibits nonhomogeneity. However, at any point in the sand
wich plate, the properties are essentially independent of direction.* 

* An exception occurs at the boundaries between the aluminum layer and steel layers. Here, the sand
wich plate is anisotropic in nature. 
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Analogously, a member may be anisotropic, but homogeneous. For example, the 
physical properties of a crystal depend on direction in the crystal, but the proper
ties vary little from one point to another (Nye, 1957). 

If an elastic member is composed of isotropic materials, the strain energy den
sity depends only on the principal strains (which are invariants), since for isotro
pic materials the elastic constants are invariants under arbitrary rotations [see 
Eq. (3 .25)] . 

Strain Energy Density of Isotropic Elastic Materials 
The strain energy density of an elastic isotropic material depends only on the prin
cipal strains (E1 , E2 , E3 ). Accordingly, if the elasticity is linear, Eq. (3.23) yields 

(3 .24) 

We note that a strain energy density function U0 exists for either adiabatic or iso
thermal (constant temperature) deformations. However, the numerical values of 
the elastic coefficients Cii differ in these two cases (Nye, 1957). 

By symmetry, the naming of the principal axes is arbitrary. Hence, C11 = C22 = 
C33 = C1 , and C12 = C23 = C13 = C2 . Consequently, Eq. (3 .24) contains only two 
distinct coefficients. For linear elastic isotropic materials, the strain energy density 
may be expressed in the form 

(3 .25) 

where A =  C2 and G = (C1 - C2 )/2 are elastic coefficients called Lame's elastic 
coefficients. If the material is homogeneous and temperature is constant every
where, A and G are constants at all points. In terms of the strain invariants [see 
Eq. (2.78)] , Eq. (3 .25) may be written in the following form: 

(3 .26) 

Returning to orthogonal curvilinear coordinates (x, y, z) and introducing the gen
eral definitions of 11 and 12 from Eq. (2 .78), we obtain 

-
Uo = tA(Exx + Eyy + Ezz)2 + G(E;x + E;y + E;z + 2E;y + 2E;z + 2E;z) (3 .27) 

where (Exx ' EYY ' Ezz ' Exy ' Exz ' Eyz) are strain components relative to orthogonal coor
dinates (x, y, z); see Eqs. (2. 84). Equations (3. 1 1 ) and (3 .27) now yield Hooke's law 
for a linear elastic isotropic material in the form (for orthogonal curvilinear coor
dinates x, y, z) : 

(Jxx = Ae + 2GExx ' 
(Jxy = 2GExy ' 

(Jyy = Ae + 2GEYY ' 
(Jxz = 2GExz ' 

(Jzz = Ae + 2GEzz 
(Jyz = 2GEyz (3 .28) 

where e � Exx + Eyy + Ezz = 11 is the classical small-displacement volumetric strain 
(also called cubical strain; see Boresi and Chong, 1 987). Thus, we have shown that 
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for isotropic linear elastic materials, the stress-strain relations involve only two 
elastic constants. An analytic proof of the fact that no further reduction is possible 
on a theoretical basis can be constructed (Jeffreys, 1957). 

By means of Eqs. (3.28), we find [with Eqs. (2.2 1 )  and (2.78)] 

11 = (3,1 + 2G)11 
12 = - ,1(3,1 + 4G)1i + 4G212 
13 = A 2(A + 2G)1i - 4,1G21112 + 8G313 

which relate the stress invariants, 11 , 12 , 13 to the strain invariants 11 , 12 , 13 . 
Inverting Eqs. (3 .28), we obtain 

where 

1 1 + v Eyz = 
2G (Jyz = ----p:- (Jyz 

G(3,1 + 2G) E = A + G ' v = 2(,1 + G) 

(3 .29) 

(3 .30) 

(3 .3 1 )  

are elastic coefficients called Young's modulus and Poisson's ratio, respectively. 
Alternatively, Eqs. (3 .28) may be written in terms of E and v as follows : 

E 
(Jxx = 

( 1  + v)( 1 _ 2V) 
[( 1 - V)Exx + V (Eyy + Ezz)J 

E 
(Jyy = 

( 1  + v)( 1 _ 2V) 
[( 1 - V)Eyy + V(Exx + Ezz)J 

E 
(Jzz = 

( 1  + v)( 1 _ 2V) 
[( 1 - V)Ezz + V(Exx + Eyy)] 

E E E 
(J xy = 

1 + V 
E xy ' (Jxz = 

1 + V 
Exz ' (Jyz = 

1 + V 
Eyz (3 . 32) 

Substitution of Eqs. (3 .30) into Eq. (3 .27) yields the strain-energy density U0 in 
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terms of stress quantities. Thus, we obtain 

+ 2( 1 + v) (O";y + O";z + O";z)J 
1 2 = 

2E 
[1 1 + 2( 1  + v)/2] (3 .33) 

If the axes (x, y, z) are directed along the principal axes of strain, then Exy = 
Exz = Eyz = 0. Hence, by Eq. (3 .32), O"xy = O"xz = O"yz = 0. Therefore, the axes (x, y, z) 
must also lie along the principal axes of stress. Consequently, for an isotropic 
material, the principal axes of stress are coincident with the principal axes of strain. 
When we deal with isotropic materials, no distinction need be made between principal 
axes of stress and principal axes of strain. Such axes are called simply principal axes. 

EXAMPLE 3.1 
Flat Plate Bent Around a Circular Cylinder 

A flat rectangular plate lies in the (x, y) plane (Fig. E3 . la). The plate, of uniform 
thickness h = 2.00 mm, is bent around a circular cylinder (Fig. E3 . 1b) with the y 
axis parallel to the axis of the cylinder. The plate is made of an isotropic alu
minum alloy (E = 72.0 GPa and v = 0.33). The radius of the cylinder is 600 mm. 
(a) Assuming that plane sections, x = constant for the undeformed plate, remain 
plane after deformation, determine the maximum circumferential stress O"oo(max> in 
the plate for linearly elastic behavior. (b) The reciprocal of the radius of curvature 
R for a beam subject to pure bending is the curvature K = 1/R = M/El. For the 
plate, derive a formula for the curvature K = 1/R in terms of the applied moment 
M per unit width and the flexural r1 Qiditv D = Eh 3 /[ 12 ( 1  - v2 )] of the plate . 

.Y 

0 

(a ) 

Figure E3. 1 

(b) 

rEi
d., 

R = 
d8 

60 1 m m  

( c )  
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SOLUTION 

(a) We assume that the middle surface of the plate remains unstressed and the 
stress through the thickness is negligible. Hence, the flexure formula is valid 
for the bending of the plate. Therefore, (Joo = (JYY = 0 for the middle surface 
and (Jrr = 0 throughout the plate thickness h. Equations (3 . 30) yield the results 
Err = E00 = Eyy = 0 in the middle surface of the plate. Since the length of the 
plate in the y direction is large compared to the thickness h, the plate deforms 
approximately under conditions of plane strain; that is, Eyy � 0 throughout 
the plate thickness. Equations (3 .30) give 

1 v 
Eyy = 0 = 

E (JYY - E (Joo 

throughout the plate thickness. Thus, for plane strain relative to the (r, 8) plane 

(JYY = V(Joo (a) 

With Eqs. (3 .30), Eq. (a) yields 

(b) 

The relation between the radius of curvature R of the deformed plate and 
Eoo may be determined by the geometry of deformation of a plate segment 
(Fig. E3 . 1c). By similar triangles, we find from Fig. E3 . 1 c  that 

or 

R d(} = 
2de0 

= 
2Eoo(max)R d(} 

R h h 

h 
Eoo(max) = 

2R 
(c) 

Equations (b) and (c) yield the result 

- Eh - 72 .0 X 103 (2) - 4 
(JOO(max) - 2( 1  - v2)R - 2( 1  - 0.33 2 )(60 1) -

13 MPa (d) 

(b) In plate problems, it is convenient to consider a unit width of the plate 
(y direction) and let M be the moment per unit width. The moment of inertia 
for this unit width is I = bh 3 / 12 = h3 / 12 . Since (JOO(max) == M(h/2)/1, this rela
tion may be used with Eq. (d) to give 

where 

1 (JOO(max)(2)( 1 - v2 ) Mh(1 2) 2 ( 1  - v 2 ) M 
R 

= 
Eh == 2h 3 Eh == D 

Eh 3 
D = ----

1 2 ( 1  - v 2 ) 

is called the flexure rigidity of the plate. (See Chapter 1 3 .) 

(e) 

(f ) 
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EXAMPLE 3.2 
The Simple Tension Test 

In Sec. 1 .4, the axial tension test and its role in the determination of material 
properties were discussed. The axial tension test in the linear elastic range of stress
strain may be used to interpret the Lame coefficients A. and G. For example, con
sider a prismatic bar subjected to the following state of stress relative to the axes 
(x, y, z), with the z axis directed along the longitudinal axis of the bar : 

(Jzz = (J = constant (a) 

For this state of stress to exist, the stresses on the lateral surface of the bar must 
be zero. On the ends of the bar, the normal stress is (J and the shear stress is zero. 
In other words, the state of stress in the bar is one of simple tension. 

Equations (3.28) yield A.e + 2GExx = A.e + 2GEyy = Exy = Exz = Eyz = 0. Solving 
these equations for the strain components, we obtain 

Exx = Eyy = - [2G(3A. + 2G)] ' 

It follows from Eqs. (b) that 

(A. + G)CJ 
Ezz = 

[G(3A + 2G)J 

Exx Eyy A 
- - = - - = = v  

Ezz Ezz [2(A + G)] ' 
(J 

Ezz = 
E 

where the quantities 

G(3A. + 2G) 
E = 

(A. + G) ' v = 
[2(A. + G)] 

(b) 

(c) 

(d) 

are Young 's modulus of elasticity and Poisson 's ratio, respectively. See Sec. 1 .4 
for a further discussion of the modulus of elasticity. In terms of E and v, Eq. (b) 
becomes 

VCJ 
Exx = Eyy = - E, (J 

Ezz = 
E 

(e) 

Solving Eqs. (d) for the Lame coefficients, A. and G, in terms of E and v, we obtain 

A. =  
vE 

[( 1 + v)( 1  - 2v)] ' 
E 

G = ---
[2( 1  + v)] 

(f ) 

The Lame coefficient G is also called the shear modulus of elasticity. It may be given 
a direct physical interpretation (see Example 3. 3). The Lame coefficient A. has 
no direct physical interpretation. However, if the first of Eqs. (3 .32) is written in 
the form of Eq. (g), the coefficient E( 1 - v)/[( 1 + v)( 1  - 2v) can be called the axial 
modulus, since it relates the axial strain component Exx to its associated axial 
stress (J xx . 
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E( 1 - v) vE 
(Jxx = 

(1 + v)( 1  - 2v) Exx + 
(1 + v) ( 1  - 2v) (Eyy + Ezz) (g) 

Similarly, the Lame coefficient A = vE/[( 1  + v)( 1  - 2v)] may be called the trans
verse modulus, since it relates the strain components EYY ' Ezz (which act transversely 
to CJxx) to the axial stress CJxx · The second and third equations of Eqs. (3 .32) may 
be written in a form similar to Eq. (g), with the same interpretation. 

EXAMPLE 3.3 
The Pure Shear Test 

The pure shear test may be characterized by the stress state (Jxx = (JYY = (Jzz = 
CJxy = CJxz = 0, and CJyz = t = constant. For this state of stress, Eqs. (3.28) yield the 
strain components 

Exx = Eyy = Ezz = 'Yxy = Yxz = 0, t 
'Yyz = 

G 
(a) 

where y is used to represent engineering shear strain because of its convenient 
geometric interpretation [see Eq. (2.73)] . These formulas show that a rectangular 
parallelepiped ABCD (Fig. E3.3) whose faces are parallel to the coordinate planes 
is sheared in the yz plane so that the right angle between the edges of the parallel
epiped parallel to the y and z axes decreases by the amount 'Yyz · For this reason, 
the coefficient G is called the shear modulus of elasticity. A pure shear state of stress 
can be obtained quite accurately by the torsion of a hollow circular cylinder with 
very thin walls (see Chapter 6). 

z 

Figure E3.3 

EXAMPLE 3.4 
Elimination of Friction Effect in the Uniaxial 
Compression Test 

y 

In a uniaxial compression test, the effect of friction between the test specimen and 
the testing machine platens restrains the ends of the specimen and prevents them 
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from expanding freely in the lateral directions. This restraint may lead to erroneous 
measurement of the specimen strain. One way to eliminate this effect is to design 
the specimen and machine platens so that ( 1 )  the specimen and the end of the 
platens in contact with the specimen have the same cross sections, and (2) a certain 
relation exists between the material properties of the specimen and the platens. 

To illustrate this point, let quantities associated with the specimen be denoted 
by subscript s and those associated with the platens be denoted by subscript p. Let 
P be the load applied to the specimen through the end platens . Because the cross
sectional shapes of the specimen and the platens are the same, we denote the areas 
by A. Let coordinate z be taken along the longitudinal axis of the specimen and 
coordinate x be perpendicular to axis z. Then, under a machine load P, the longi
tudinal strains in the specimen and platens are, respectively, 

(a) 

The associated lateral strains are 

(b) 

If the lateral strains in the specimen and platens are equal, they will expand later
ally the same amount, thus eliminating friction that might be induced by the 
tendency of the specimen to move laterally relative to the platens. By Eq. (b), the 
requirement for friction to be nonexistent is that (Exx)s = (Exx)p , or 

(c) 

In addition to identical cross sections of specimen and platens, the moduli of elas
ticity and Poisson's ratios must satisfy Eq. (c). To reduce or eliminate the effect of 
friction on the tests results, it is essential to select the material properties of the 
platens to satisfy Eq. (c) as closely as possible. 

EQUATIONS OF THERMOELASTICITY FOR 
ISOTROPIC MATERIALS 

Consider an unconstrained member made of an isotropic elastic material in an 
arbitrary zero configuration. Let the uniform temperature of the member be 
increased by a small amount �T. Since the material is isotropic, all infinitesimal 
line elements in the volume undergo equal expansions. Furthermore, all line ele
ments maintain their initial directions. Therefore, the strain components due to 
the temperature change �T are, with respect to rectangular Cartesian coordinates 
(x, y, z), 

I I I AT  E XX = E yy = E zz = (J. L.l. ' I I I 0 E xy = E xz = E zy = (3 . 34) 
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where a denotes the coefficient of thermal expansion of the material. For a non
homogeneous member, a may be a function of coordinates and of temperature; 
that is, a = a(x, y, z, �T). 

Now let the member be subjected to forces that induce stresses (Jxx ' (JYY ' . • .  , (Jyz 
at point 0 in the member. Accordingly, if Exx ' EYY ' • • •  , Eyz denote the strain com
ponents at point 0 after the application of the forces, the change in strain produced 
by the forces is represented by the equations 

E�x = Exx - li. �T, E;y = Eyy - li. �T, 
E�z = Exz ' II Eyz = Eyz (3 . 3 5 )  

In  general, �T may depend on the location of point 0 and time t. Hence �T = 
�T(x, y, z, t). Substitution of Eq. (3 .35 )  into Eqs. (3 .28) yields 

where 

(Jxx = Ae + 2GExx - C �T, 

(Jzz = Ae + 2GEzz - C �T 

(Jxz = 2GExz ' 

CJYY = A.e + 2GEyy - c �T 

Ea 
c = (3A. + 2G)a = ( 1  _ 2v) 

Similarly, substitution of Eqs. (3 .36) into Eqs. (3 . 30) yields 

( 1  + v) Eyz = 
E 

(Jyz 

Finally, substituting Eqs. (3 . 38) into Eqs. (3.26) or (3.27), we find that 

1 -2 - - 3 2 U0 = b:A. + G)J 1 + 2Gl2 - cl1 �T + 2ca(�T) 

In terms of the strain components [see Eqs. (2 .78)] ,  we obtain 

Uo = !A.(Exx + Eyy + Ezz)2 + G(E;x + E;y + E;z + 2E;y + 2E;z + 2E;z) 

(3 . 36 )  

(3 .37)  

(3 . 38) 

(3 . 39) 

- c(Exx + Eyy + Ezz) �T + tca(�Tf (3 .40) 

Equations (3 . 36) and (3 .38) are the basic stress-strain relations of classical ther
moelasticity for isotropic materials. For temperature changes �T, the strain energy 
density is modified by a temperature-dependent term that is proportional to the 
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volumetric strain e = 11 = Exx + Eyy + Ezz and by a term proportional to (�Tf 
[Eqs. (3 . 39) and (3.40)] . 

We find by Eqs. (3 .38) and (3.40) 

(3 .4 1 )  

and 

(3.42) 

in terms of stress components. Equation (3.42) does not contain �T explicitly. 
However, the temperature distribution may affect the stresses. Note Eqs. (3.4 1 )  
and (3.42) are identical to  the results in  Eq. (3 .3 3). 

HOOKE'S LAW: ORTHOTROPIC MATERIALS 

An important class of materials, called orthotropic materials, is discussed in this 
section. Materials such as wood, laminated plastics, cold rolled steels, reinforced 
concrete, various composite materials, and even forgings can be treated as ortho
tropic. Orthotropic materials possess three orthogonal planes of material sym
metry and three corresponding orthogonal axes called the orthotropic axes. In 
some materials, for example, forged materials, these axes may vary from point to 
point. In other materials, for example, fiber-reinforced plastics and concrete rein
forced with steel bars, the orthotropic directions remain constant as long as the 
fibers and steel reinforcing bars maintain constant directions. In any case, for 
an elastic orthotropic material, the elastic coefficients Cii [Eq. (3.20)] remain 
unchanged at a point under a rotation of 1 80° about any of the orthotropic axes. 

Let the (x, y, z) axes denote the orthotropic axes for an orthotropic material and 
let the (x, y) plane be a plane of material symmetry. Then, under the coordinate 
transformation x � x, y � y, and z � 

-
z, called a reflection with respect to the 

(x, y) plane, the elastic coefficients Cii remain invariant. The direction cosines for 
this transformation (see Table 2.2) are defined by 

Substitution of Eqs. (3 .43) into Eqs. (2. 1 5), (2. 1 7) and (2 . 76) reveals that for a 
reflection with respect to the (x, y) plane, 

and 

Exx = Exx ' Eyy = EYY ' Ezz = Ezz ' YxY = Yxy' Yxz = 
- Yxz' '}'yz = 

- Yyz (3.45) 

Since the Cii are constant under the transformation of Eq. (3.43), the first of 
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Eqs. (3.20) yields 

Substitution of Eqs. (3 .44) and (3 .45) into Eq. (3 .46) yields 

Comparison of the first of Eqs. (3 .20) with Eq. (3.47) yields the conditions C15 = 
- C15 and C16 = - C16 , or C15 = C16 = 0. Similarly, considering CJyy , (Jzz , (Jxy , 
CJxz , CJyz , we find that C25 = C26 = C35 = C36 = C45 = C46 = 0. Thus, the coef
ficients for a material whose elastic properties are invariant under a reflection with 
respect to the (x, y) plane (i.e., for a material that possesses a plane of elasticity 
symmetry) are summarized by the matrix 

Cu c12 C13 c14 0 0 
c12 C22 c23 c24 0 0 

C13 C23 c33 c34 0 0 
C14 C24 C34 C44 0 0 

(3 .48) 

0 0 0 0 Css Cs6 
0 0 0 0 Cs6 c66 

A general orthotropic material has two additional planes of elastic material sym
metry, in this case, the (x, z) and (y, z) planes. Consider the (x, z) plane. Let x ---+ x, 
y ---+ -y, z ---+ z. Then, proceeding as above, noting that 11 = n3 = 1, m2 = - 1,  12 = 
13 = m1 = m3 = n1 = n2 = 0, we find C14 = C24 = C34 = C56 = 0. Then, the ma
trix of Eq. (3 .48) reduces to 

Cu c12 C13 0 0 0 
c12 C22 C23 0 0 0 
C13 C23 C33 0 0 0 (3.49) 
0 0 0 C44 0 0 
0 0 0 0 Css 0 
0 0 0 0 0 c66 

A reflection with respect to the (y, z) plane does not result in further reduction in 
the number of elastic coefficients Cii. The matrix of coefficients in Eq. (3 .49) con
tains nine elastic coefficients. Consequently, the stress-strain relations for the most 
general orthotropic material contain nine elastic coefficients relative to the ortho
tropic axes (x, y, z). Equations (3.20) are simplified accordingly. It should be noted, 
however, that this simplification occurs only when the orthotropic axes are used as 
the coordinate axes for which the Cii are defined. The resulting equations are 

(Jxx = CuExx + C12 Eyy + C13 Ezz 
(Jyy = C12 Exx + c22 Eyy + c23 Ezz 
(Jzz = C13 Exx + C23 Eyy + C33Ezz 
(Jxy = C44Yxy 
(J xz = C s sYxz 
(Jyz = C66Yyz (3 . 50) 
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The stress-strain relations for orthotropic materials in terms of orthotropic moduli 
of elasticity and orthotropic Poisson's ratios may be written in the form 

1 1 
Exz = 

2G 
(Jxz = 2 'Yxz xz 

(3. 5 1 )  

where Ex , Ey , Ez denote the orthotropic moduli of elasticity and GXY ' Gxz ' Gyz 
denote the orthotropic shear moduli in the orthotropic coordinate system (x, y, z) . 
The term vxy is a Poisson ratio that characterizes the strain in the y direction 
produced by the stress in the x direction, with similar interpretations for the other 
Poisson ratios vxz '  vYZ ' . . .  , vzy · For example, by Eq. (3. 5 1 ), for a tension specimen 
of orthotropic material subjected to a uniaxial stress CJzz = CJ in the z direction, the 
axial strain in the z direction is Ezz = CJ I Ez and the laterial strains in the x and y 
directions are Exx = - vzxCJ/Ez and Eyy = - VzyCJ/Ez . (See Example 3.2 for the 
analogous isotropic tension test.) 

Because of the symmetry of the coefficients in the stress-strain relations, we have 
by Eqs. (3. 5 1 )  the identities 

(3. 52) 

EXAMPLE 3.5 
Stress-Strain Relations for Orthotropic Materials : The Plane Stress Case 

Consider an orthotropic body with orthotropic axes (x, y, z) subjected to a plane 
stress state relative to the (x, y) plane. Let a rectangular region in the body be sub
jected to extensional stress (Jxx ' Fig. E3.5a. By Eq. (3. 5 1 ), the strain components are 

(Jxx 
Exx = £ X 

where vxy and vxz are orthotropic Poisson ratios . 

(a) 
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Contraction 

(a) 
Extension 

I : Contraction 

I I I 
- - - - - - -' 

�v.v f J J I } Extension 

(b) 

(c) 

D Deformed shape 

r_-j Undeformed shape 

L 
Orthotropic material axes 

Figure E3.5 Orthotropic material. (a) Applied stress (Jxx · (b) Applied stress O'yy · (c) Applied 
stress O'xy · 

Consider next the case where the rectangular region is subjected to an exten
sional stress (JYY ' Fig. E3.5b. By Eqs. (3 . 5 1 ), the strain components are 

(J E = ___lt YY E y 

(b) 

where vyx and Vyz are orthotropic Poisson ratios. 
For a combination of stresses ((Jxx ' (Jyy), the addition of Eqs. (a) and (b) yields 

(c) 
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Solving the first two of Eqs. (c) for (o-xx ' o-yy) in terms of the in-plane strains (Exx ' Eyy). 
we obtain 

(d) 

Finally, consider the element subjected to shear stress o-XY ' Fig. E3. 5c. By Eqs. (3 .5 1), 
we have 

(e) 

where Gxy is the orthotropic shear modulus in the (x, y) plane and Yxy is the engi
neering shear strain in the (x, y) plane. Thus, for the orthotropic material in a state 
of plane stress, we have the stress-strain relations [by Eqs. (d) and (e)] 

(f ) 

With these stress-strain relations, the theory for plane stress orthotropic problems 
follows in the same manner as for plane stress problems for isotropic materials. 

EXAMPLE 3.6 
Composite Thin-Wall Cylinder Subjected to Pressure and 
Temperature Increase 

In Chapter 1 1 , we consider the problem of thermal stresses in thick-wall cylinders. 
However, there are many situations in which the cylinder wall thickness t is small 
compared with the mean radius Rm of the cylinder. In these instances, certain 
approximations may be used to simplify the analysis. For example, consider a 
composite cylinder of length L formed from an inner cylinder of aluminum with 
outer radius R and thickness tA , and an outer cylinder of steel with inner radius 
R and thickness t8 (Fig. E3 .6a); tA << R, t8 << R. The composite cylinder is sup
ported snugly in an upright, unstressed state between rigid supports. An inner 
pressure p is applied to the cylinder (Fig. E3.6b ), and the entire assembly is sub
jected to a uniform temperature change flT. Determine the stresses in both the 
aluminum and the steel cylinders for the case tA = t8 = t = 0.02 R. For aluminum, 
EA = 69 GPa, vA = 0.333, and aA = 2 1 .6 x 10-6 per oc. For steel, E8 = 207 GPa, 
v8 = 0.280, and a8 = 10.8 x 10-6 per °C. Subscripts A and S refer to aluminum 
and steel, respectively. 
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I I I I I I I I I I I 
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(a) 

(b) 
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(c) 

(d) 

Figure E3 .6 (a) Composite cylinder. (b) Cross section A-A. (c) Longitudinal section B-B. 
(d ) Cylinder element. 

SOLUTION 

Since both cylinders are very thin, we may assume that the stresses in the tangential 
direction 8, o-0A and o-08 in the aluminum and steel, respectively, are constant 
through the thicknesses tA and t8 , Fig. E3.6c. Also, it is sufficiently accurate to use 
the approximation R - t = R. From the free-body diagram of Fig. E3.6c, we have 
L F = 2pRL - 2a08tL - 2o-0A tL = 0. Hence, 

(a) 

Since ordinarily the radial stress o-, in the cylinder is very small (of the order p) 
compared with both the tangential stress o-0 and the longitudinal stress o-L , we 
assume that o-, is negligible . Therefore, the cylinder is subjected approximately to a 
state of plane stress (o-L , o-0), Fig. E3.6d. Hence, for plane stress, the strain-stress-
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temperature relations for each cylinder are 

EEL = CJL - VCJ0 + Ecx(�T) 
EE0 = CJ0 - VCJL + Ecx(�T) (b) 

Equations (b) hold for all points in the cylinder, provided that the ends are free to 
expand radially. The cylinder is restrained from expanding longitudinally, since the 
end walls are rigid. Then, EL = 0. Also at radial distance R (the interface between 
the aluminum and the steel sleeves), the radial displacement is u and the tangential 
strain is Eo = [2n(R + u) - 2nR]/2nR = ujR. Assuming that t is so small that this 
strain is the same throughout the aluminum and the steel sleeves, we have by 
Eqs. (b) 

Also from the given data, 3EA = E8 and cxA = 2cx8 • Therefore, with Eqs. (a) and (c), 
we may write 

1 50 2 CJLA + 3 CJos - 3 P + 3 Escxs(�T) = 0 

CJLs - 0.28CJ08 + E8cx8(�T) = 0 

3 (50p - CJ08) - CJLA + 2E8cx8(�T) = CJ08 - 0.28CJLs + E8cx8(�T) = 0 (d) 

By the first two of Eqs. (d) and with E8cx8 = 2.236 MPa per oc, we find that 

50 1 (JLA = 3 p - 1 .49 1 (�T) - 3CJos 

CJLs = 0.28CJ0s - 2.236(�T) (e) 

Substitution of Eqs. (e) into the last of Eqs. (d) yields for the tangential stress in the 
steel cy Iinder 

CJos = 37. 16p + 0.8639(�T) (f ) 

By Eqs. (a) and (f ), we find the tangential stress in the aluminum cylinder to be 

(JOA = SOp - 37. 16p - 0. 8639(�T) = 12. 84p - 0.8639(�T) 

and by Eqs. (e) and (f), we find the longitudinal stresses in the aluminum and steel 
cylinders, respectively, 

CJLA = 4.28p - 1 .  779(�T) 
CJLs = 1 0.40p - 1 .994(�T) 
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Thus, for p = 689.4 kPa and �T = 100°C 

EXAMPLE 3.7 
Douglas Fir Stress-Strain Relations 

o-0A = - 77.4 MPa 

o-08 = 1 1 2 MPa 

o-LA = - 175 MPa 

o-Ls = - 192 MPa 

Wood is generally considered to be an orthotropic material . For example, a typical 
douglas fir strain-stress relationship [see Eqs. (3 . 5 1 )  and (3 . 52)] is, relative to 
rna terial axes ( x, y, z ), 

106 X Exx = 87.0 O"xx - 34.8 O"yy - 43.5 O"zz 
106 X Eyy = - 34.8 O"xx + 1 305.0 O"yy - 609.0 O"zz 
106 X Ezz = - 43.5 O"xx - 609.0 O"yy + 1 740.0 O"zz 
106 X Exy = 696.0 O"xy 
106 X Exz = 290.0 O"xz 
106 X Eyz = 3045 .0 O"yz (a) 

where the x axis is longitudinal, the y axis radial in the tree, and the z axis tangent 
to the growth rings of the tree. The unit of stress is MPa. 

At a point in a douglas fir log, the nonzero components of stress are 

o-xx = 7 MPa, O"yy = 2. 1 MPa, O"zz = - 2.8 MPa, O"xy = 1 .4 MPa (b) 

(a) Determine the orientation of the principal axes of stress. 

(b) Determine the strain components. 

(c) Determine the orientation of the principal axes of strain. 

SOLUTION 

(a) Since o-xz = o-yz = 0, the z axis is a principal axis of stress and o-zz = - 2.8 MPa 
is a principal stress. Therefore, the orientation of the principal axes in the (x, y) 
plane is given by [Eq. (2. 36)] 

2o-xy 2.8 
tan 28 = = - = 0.57 14 

(o-xx - O"yy) 4.9 
(c) 

Equation (c) yields 28 = 29.74° or 209.74° and (} = 14.9° or 104.9°. The 
maximum principal stress o-1 = 7.37 MPa, in the (x, y) plane, occurs in the 



3 .5 / HOOKE'S LA"W: ORTHOTROPIC MATERIALS 109 

a2 = 1 .73 MPa 
y 

(a) 

y E1 = 0.00445 

(b) 

a1 = 7.37 MPa 

X 

X 

E2 = 0.00041 

Figure E3.7 (a) Principal stress axes. (b) Principal strain axes . 

direction 8 = 14.9°, and the minimum principal stress CJ2 = 1 .73 MPa occurs 
in the direction 8 = 104.9° (Fig. E3. 7a). 

(b) By Eqs. (a) and (b), we have 

Exx = 657.72 x 10-6, Eyy = 4202. 1 x 10-6, Ezz = - 6455 x 10-6 

Exy = 974.4 X 10-6, Exz = Eyz = 0. (d) 

(c) Since Exz = Eyz = 0, the z axis is also a principal axis of strain. The orienta
tion of the principal axes of strain in the (x, y) plane is given by 

1948 .8 
= - 0.5498 

( - 3544.38) 
(e) 

Hence, 28 = - 28 .80° or 1 5 1 .20°, and 8 = - 14.40° or 75.60°. The maximum 
principal strain E1 = 0.00445, in the (x, y) plane, occurs in the direction 8 = 
75.60°, and the minimum principal strain E2 = 0.00041 occurs in the direction 
8 = - 14.40° (Fig. E3 .7b). Thus, the principal axes of stress and strain do not 
coincide as they do for an isotropic material. 
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PROBLEMS 
Sections 3.1-3.4 

3.1. A square plate with 800-mm sides parallel to the x and y axes has a uniform 
thickness h = 10 mm and is made of an isotropic steel (E = 200 GPa and 
v = 0.29). The plate is subjected to a uniform state of stress. If CJzz = CJzx = 
CJzy = 0 (plane stress), CJxx = CJ1 = 500 MPa, and Eyy = 0 for the plate, deter
mine (JYY = CJ2 and the final dimensions of the plate, assuming linearly elastic 
conditions. 

3.2. The plate in Problem 3. 1 is subjected to plane strain (Ezz = Ezx = Ezy = 0). If 
CJxx = CJ1 = 500 MPa and Exx = 2EYY ' determine the magnitude of CJYY = CJ2 
and CJzz = CJ3 , assuming linearly elastic conditions. 

Ans. CJYY = 377.2 MPa, CJzz = 254.4 MPa 

3.3. A triaxial state of principal stress acts on the faces of a unit cube. Show that 
these stresses will not produce a volume change if v = 1/2. The material is a 
linearly elastic isotropic material. If v i= 1/2, show that the condition 
necessary for the volume to remain unchanged is for CJ1 + CJ2 + CJ3 = 0. 

3.4. A member is made of an isotropic linearly elastic aluminum alloy (E = 
72.0 G Pa and v = 0.33). Consider a point in the free surface that is tangent 
to the (x, y) plane. If CJxx = 250 MPa, CJYY = - 50 MPa, and CJxy = - 1 50 MPa, 
determine the directions for strain gages at that point to measure two of the 
principal strains. What are the magnitudes of these principal strains? 

Ans. E1 = 0.00485 at 0.3927 rad clockwise from x axis, 
E2 = - 0.00299 

3.5. A member made of isotropic bronze (E = 82.6 GPa and v = 0.35 )  is sub
jected to a state of plane strain (Ezz = Ezx = Ezy = 0). Determine CJzz ' Exx ' EYY ' 
and Yxy = 2EXY ' if (Jxx = 90 MPa, (Jyy = - 50 MPa, and (Jxy = 70 MPa. 

3.6. Solve Problem 3 . 1  for the condition that Exx = 2Eyy 

Ans. CJYY = 345.0 MPa, Exx = 0.00200, Eyy = 0.00 100, 
Ezz = - 0.00123, Lx = 80 1 .60 mm, Ly = 800.80 mm, 
Lz = 9.99 mm 

3.7. A rectangular rosette, Fig. 2.20b, is cemented to the free surface of a mem
ber made of an aluminum alloy 7075 T6 (see Appendix A). Under load, the 
strain readings are Ea = Exx = 0.00250, Eb = 0.00140, Ec = Eyy = - 0.00125. 

(a) Determine the principal stresses. Note that the stress components on 
the free surface are zero. 

(b) Show the orientation of the volume element on which the principal 
stresses in the plane of the rosette act. 

(c) Determine the maximum shear stress tmax · 
(d) Show the orientation of the volume element on which tmax acts. 

3.8. The nonzero stress components at a point in a steel member (E = 200 GPa, 
v = 0.29) are CJxx = 80 MPa, CJYY = 120 MPa, and CJxy = 50 MPa. Determine 
the principal strains. 
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3.9. Determine the extensional strain in Problem 3 .8 in a direction 30° clockwise 
from the x axis. 

3.10. A steel member (E = 200 G Pa, v = 0.29) is subjected to a state of plane stress 
(o-xx = - 80 MPa, o-YY = 100 MPa, o-xy = 50 MPa). Determine the principal 
stresses and principal strains. 

3.1 1 .  In Problem 3 . 10, determine the extensional strain in a direction 20° 
counterclockwise from the x axis. 

3.12. The member in Fig. P3 . 1 2  is made of an aluminum alloy (E = 72 GPa, 
v = 0.33), and it has a square cross perpendicular to the plane of the fig
ure. Stress components o-xx and o-YY are uniformly distributed as shown. 

b = 200 mm 

�---------------- a ----------�----� 

Figure P3. 12 

(a) If o-xx = 200 MPa, determine the magnitude of o-YY so that the dimen
sion b = 200 mm does not change under the load. 

(b) Determine the amount by which the dimension a changes. 

(c) Determine the change in the cross-sectional area of the member. 

3.13. Solve Example 3.6 for the case where p = 689.4 kPa is applied externally and 
11T = 1 oooc is a decrease in temperature. Discuss the results. 

Section 3 .5 

3.14. A member whose material properties remain unchanged (invariant) under 
rotations of 90° about axes (x, y, z) is called a cubic material relative to axes 
(x, y, z) and has three independent elastic coefficients (C11 , C12 , C13 ). Its 
stress-strain relations relative to axes (x, y, z) are [a special case of Eq. (3 . 50)] 

O"xx = Cu Exx + C12 Eyy + C12 Ezz 
O"yy = C12 Exx + CuEyy + C12 Ezz 
O"zz = C12 Exx + C12 Eyy + CuEzz 
O"xy = 2C13 Exy 
O"xz = 2C13Exz 
O"yz = 2C13Eyz 
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Although in practice aluminum is often assumed to be an isotropic material 
(E = 69 G Pa, v = 0.333), it is actually a cubic material with C11 = 103 G Pa, 
C12 = 55 GPa, C13 = 27.6 GPa. At a point in an aluminum body, the strain 
components are Exx = 0.0003, Eyy = 0.0002, Ezz = 0.000 1 ,  Exy = 0.00005, and 
Exz = Eyz = 0. 

(a) Determine the orientation of the principal axes of strain. 

(b) Determine the stress components. 

(c) Determine the orientation of the principal axes of stress. 

(d) Calculate the stress components and determine the orientation of the 
principal axes of strain and stress under the assumption that the 
aluminum is isotropic. 

3.15. A birch wood has the following strain-stress relations [see Eqs. (3 .5 1 ) and 
(3 .52)] relative to orthotropic axes (x, y, z) : 

106 X Exx = 72. 50 (Jxx - 36.25 (Jyy - 36.25 (Jzz 

106 X Eyy = - 36.25 (Jxx + 942.5 (Jyy - 652.5 (Jzz 

106 X Ezz = - 36.25 (Jxx - 652.5 (Jyy - 1450.0 (Jzz 

106 X Exy = 507.5 (Jxy 
106 X Exz = 543 .8 (Jxz 

106 X Eyz = 2 1 75 .0 (Jyz 

where the x axis is longitudinal to the grain, the y axis radial in the tree, 
and the z axis tangent to the growth rings of the tree. The unit of stress is 
MPa. At a point in a birch log, the components of stress are CJxx = 7 MPa, 
(JYY = 2. 1 MPa, (Jzz = - 2.8 MPa, (Jxy = 1 .4 MPa, and (Jxz = (Jyz = 0. 

(a) Determine the orientation of the principal axes of stress. 

(b) Determine the strain components. 

(c) Determine the orientation of the principal axes of strain. 

REFERENCES 
Boley, B. A. and Weiner, J. H. ( 1 960). Theory of Thermal Stresses. New York : Wiley. 
Boresi, A. P. and Chong, K. P. ( 1987). Elasticity in Engineering Mechanics. New 

York : Elsevier. 
Jeffreys, H. ( 1957). Cartesian Tensors. London: Cambridge Univ. Press. 
Langhaar, H. L. ( 1989). Energy Methods in Applied Mechanics. Malabar, Florida : 

Krieger. 
Nye, J. F. ( 1 957), Physical Properties of Crystals. london: Oxford Univ. Press. 



4 

4.1 

INELASTIC MATERIAL 
BEHAVIOR 

In Chapter 1 ,  we discussed the behavior of engineering materials subjected to 
uniaxial tension or compression. Various concepts related to elastic and inelastic 
response were introduced. The experimental stress-strain diagram was examined 
and various material properties for the uniaxial stress state were defined. The 
concept of failure was introduced as it applies to members subjected to a single 
(uniaxial) stress component. For a member subjected to a single, dominant stress 
component, appropriate uniaxial failure criteria may be applied. However, when a 
member is subjected to a multiaxial state of stress in which a single stress component 
does not dominate, failure criteria must account for the multiaxial nature of the 
stress state. 

In this chapter, we examine certain criteria that are used to predict the initiation 
of the inelastic response of materials under multiaxial stress states. We use the term 
inelastic to denote material response characterized by a stress-strain diagram that is 
nonlinear and that retains a permanent strain or returns slowly to an unstrained 
state on complete unloading. The term plastic is used in certain descriptive expres
sions, such as fully plastic load. The term plasticity is used to describe the inelastic 
behavior of a material that retains a permanent set on complete unloading. 

In this chapter, we concentrate on criteria for the initiation of yield of ductile 
metals, for example, structural steel. However, we will examine the inelastic behavior 
of some other materials as well. In Sec. 4. 1 ,  we discuss the limitations on the use 
of material properties obtained from the uniaxial stress-strain curve. In Sec. 4.2, 
we present a general discussion of nonlinear material behavior. This discussion 
establishes the perspective from which the remainder of the chapter is developed. 
The general concept of a yield criterion is treated" in Sec. 4.3. The concept of a yield 
surface is introduced and presented in graphical form to facilitate interpretation of 
the yield criterion. In Sec. 4.4, specific yield criteria for ductile metals are developed 
and compared. The physical significance of these criteria is emphasized. In Sec. 4.5, 
yield criteria for other materials, including concrete, rock, and soil, are discussed. 
Various yield and failure criteria are compared and evaluated in Sec. 4.6. 

LIMITATIONS ON THE USE OF UNIAXIAL 
STRESS -STRAIN DATA 

As discussed in Chapter 1 ,  tension or compression tests are used to obtain material 
properties under uniaxial conditions. These tests are usually run at room tempera
ture in testing machines that have head speeds in the range of 0.20 to 10 mmjmin. 
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The material properties determined under these conditions are often employed 
in a wide range of designs. However, in practice structural members are some
times subjected to loads at lower or higher temperature than room temperature. 
In addition, loads may be applied at rates outside the range used in conventional 
tension or compression tests. Standard tension or compression tests employ a stan
dard test specimen* to ensure a uniaxial stress state. In practice, the shape of the 
member, as well as the type of loading, may create a state of stress that is biaxial 
or triaxial. Such conditions place limitations on the use of material properties ob
tained from uniaxial tests. These limitations are discussed briefly below. 

Rate of Loading 
The rate at which load is applied can have a significant effect on the resulting stress
strain behavior of the material. Consider a material that responds in a ductile 
manner in a standard tension test. For such a material, the stress-strain curve will 
generally have an elastic range, followed by an inelastic region. Generally, the total 
strain E can be separated into two parts : the elastic strain Ee and inelastic (or plastic) 
strain EP , where Ee = CJ/E and EP = E - Ee . If a tension test is run at a high rate of 
loading, the magnitude of inelastic strain that precedes fracture may be reduced 
considerably, relative to that under normal load rates. Then the material response 
is less ductile. Also, a high load rate increases both the apparent yield strength Y 
and apparent modulus of elasticity E. If the loading rate is very high, say, several 
orders of magnitude higher than 10 mmjmin, the inelastic strain EP that precedes 
fracture may be eliminated almost entirely (see Sec. 1 .4). Under these conditions, 
the material response may be characterized as brittle (see Fig. 1 .8), although in the 
standard tension test the material responds in a ductile manner. Conversely, if the 
rate of loading is very low compared with that of the standard tension test, prop
erties such as yield stress Y may be lowered (Morkovin and Sidebottom, 1 947). 

Temperature Lower than Room Temperature 
If a metal tension specimen is tested at a temperature substantially below room 
temperature, it may fail in a brittle manner, even though it responds in a ductile 
manner in the standard tension test. If, in addition to the low temperature, the 
specimen is subjected to a very high rate of loading, the brittle response of the metal 
is amplified further. As a consequence, the strain that precedes failure is reduced 
more than when only one of these effects is present. Hence, if ductile behavior is 
required in a member, care must be employed in selecting an appropriate material 
when low temperature is combined with high load rates. 

Temperature Higher than Room Temperature 
If a metal is subjected to temperatures above the recrystallization temperature, the 
strain under a sustained, constant load will continue to increase until fracture occurs 
(the metal is said to be sensitive to load duration). This phenomenon is known as 
creep. The topic of creep is treated in Chapter 1 7. 

* See ASTM Specification A370-77, Annual Book of ASTM Standards, Vol. 01 .01 ,  American Society for 
Testing and Materials, Philadelphia, PA 19 103. 
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Effect of Unloading and Load Reversal 
Consider the case of a tension specimen loaded into the inelastic range. Then, let the 
tension load be gradually removed and continue to load the specimen in compres
sion as shown in Fig. 4. 1 .  In an ideal model, it is assumed that the stress-strain 
relation for the material follows the path OABCD. However, actual test data for 
an annealed high-carbon steel indicate deviations from this path (Sidebottom 
and Chang, 1 952). Two observations regarding these deviations are made. First, 
the actual unloading path does not follow the ideal linear elastic unloading path. 
Second, the subsequent yield strength in compression is reduced below the original 
value - Y for the virgin material. The term Bauschinger effect is used to charac
terize this behavior. 

The Bauschinger effect can also occur during simple cyclic loading in tension (or 
compression) without stress reversal (Lubahn and Felgar, 196 1 ). Modern theories of 
plasticity attempt to account for the Bauschinger effect. For instance, the change in 
compressive yield strength due to tension hardening is often modeled by maintain
ing an elastic stress range of 2 Y (see Fig. 4. 1 ). However, the deviation from the ideal 
unload path BCD is often ignored. 
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Figure 4. 1 Tension and compression stress-strain diagrams for annealed high-carbon steel 
for initial and reversed loading. (From Sidebottom and Chang, 1952.) 
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4.2 

Multiaxial States of Stress 
Inelastic behavior can occur under multiaxial stress in a load-carrying member, 
even if none of the individual stress components exceeds the uniaxial yield stress 
for the material. The implication is that, under multiaxial stress states, the initiation 
of yielding is governed by some quantity other than the individual stress compo
nents themselves. Thus, it is necessary to combine the components of stress into an 
effective uniaxial stress. This effective stress is then compared with some material 
property, usually the uniaxial yield stress, by appropriate yield criteria to predict the 
beginning of inelastic response. The concept of yield criteria is discussed more 
completely in Sec. 4.3, 4.4, and 4.5 . 

NONLINEAR MATERIAL RESPONSE 

As noted in Sec. 1 .4 and 4. 1 ,  the shape of a tension stress-strain curve depends on 
the material itself and the test conditions. However, when the load is applied and 
removed slowly, certain features of the stress-strain curve are similar for all struc
tural materials. For example, if the load is sufficiently small, the relation between 
stress and strain is linearly elastic; that is, the stress-strain curve is a straight line 
(line segment OA in Fig. 4. 1) . The stress associated with loading and unloading 
increases or decreases, respectively, along this straight-line path. As the load is 
increased to a sufficiently large value, the stress-strain curve becomes nonlinear. The 
material response may be classified as elastic, plastic, viscoelastic, viscoplastic, or 
fracture, depending on its response to the loading condition. 

1f the unloading path coincides with the loading path, the process is reversible and 
the material is said to be elastic (Fig. 4.2a). If the unloading path does not follow the 
loading path, the behavior is said to be inelastic. A material that behaves in a plastic 
manner does not return to an unstrained state after the load is released (Fig. 4.2b ). If, 
after load removal, the material response continues to change with time, its response 
is said to be viscoelastic or viscoplastic. Upon removal of load, the stress-strain 
response of a viscoelastic material follows a path (AB, Fig. 4.2c) that is different from 
the loading path. But in time, after complete unloading, the material will return to an 
unstrained state (along path BO, Fig. 4.2c). Likewise, the initial unloading response 
of a viscoplastic material (AB, Fig. 4.2d) is different from its loading response, and 
after complete unloading, the response will also change with time. However, some 
permanent strain will remain ( OC, Fig. 4.2d). 

In practice, fracture may occur at various stress levels. The material response up 
to fracture may be almost linear and fracture may occur at relative small inelastic 
strains (Fig. 1 . 8). Conversely, the material response prior to fracture may be highly 
nonlinear, with large inelastic strains (Figs. 1 . 3 and 1 . 5 ). Fracture may occur due to 
slow crack growth caused by a large number of load repetitions at stress levels below 
the yield point, a process known as fatigue (Chapter 1 6 ). Fracture may also occur 
because of sufficiently high stress levels that cause microcracks to propagate rapidly 
(to increase in size rapidly until rupture occurs ; see Chapter 1 5). 

In the remainder of this chapter, we limit our discussion to failure of materials 
that undergo elastic, plastic, or fracture response. 
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Figure 4.2 Types of nonlinear response. (a) Nonlinear elastic. (b) Plastic. (c) Viscoelastic . 
... (d ) Viscoplastic. 

Models of Uniaxial Stress-Strain Curves 
In a uniaxial tension test, the transition from linear elastic response to inelastic 
(nonlinear) response may be abrupt (Fig. 4.3a) or gradual (Fig. 4.3b). For an abrupt 
transition, the change is identified by the kink in the stress-strain curve. The stress 
level at this point is called the yield stress Y. * In the case of a gradual transition, 
the yield stress is arbitrarily defined as that stress which corresponds to a given 
permanent strain E8 (usually, E8 = 0.002) that remains upon unloading along a 
straight-line path BB' parallel to AA' (Fig. 4.3b) . 

* In this chapter, the quantity Y represents yield stress, yield point, and yield strength without further 
distinction. 
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Figure 4.3 Experimental stress-strain curves. In (b), line BB' i s  parallel to line AA', which is 

tangent to curve ABC at A. 

Actual stress strain curves, such as that in Fig. 4.3a, are difficult to use in math
ematical solutions of complex problems. Therefore, idealized models of material 
response are used in analysis. For example, the uniaxial stress-strain curve shown 
in Fig. 4.3a may be modeled as shown in Fig. 4.4a, including unloading. Since 
part BC of the idealized curve in Fig. 4.4a is parallel to the strain axis (the stress 
remains constant with increasing strain), the material response is said to be elastic
perfectly plastic. For materials that strain harden in the initial nonlinear region, as 
does alloy steel, the stress continues to increase with increasing strain, (region AB 
in Fig. 4 . 1 ), although at a slower rate than in the elastic region (part OA in Fig. 4. 1 ) . 
The stress-strain curve for such a material might be idealized with a bilinear curve 
(region ABC, Fig. 4.4b). Such material response is referred to as elastic-linear strain 
hardening. For this idealized stress-strain diagram, the yield stress Y is the stress at 
point B (Fig. 4.4b), not the stress at a specified set E8 • Finally, we recall that the real 
response of a material might not follow the assumed idealized stress-strain curve 
upon unloading. Some metals exhibit a Bauschinger effect, such as that exhibited by 
curves A'H in Figs. 4.4a and 4.4b and curve BD in Fig. 4. 1 .  

Sometimes, the deformation imposed on a material may be s o  large that the elas
tic strain (point B in Fig. 4.4) is a small fraction of the total strain (say, the strain 
associated with point F, Fig. 4.4). In such cases, the elastic strain may have a neg
ligible effect on the analysis . If the elastic strain is neglected, further idealizations 
(Fig. 4.5) of the stress-strain curves of Fig. 4.4 are possible. For the idealization of 
Fig. 4.5a, the material response is said to be rigid-perfectly plastic. The response 
shown in Fig. 4.5b is called rigid-strain hardening. In general, material response for 
which the elastic strain may be neglected is said to be simply rigid-plastic. 
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Figure 4.4 Idealized stress-strain curves. (a) Elastic-perfectly plastic response. (b) Elastic
strain-hardening response. 

There exists an essential difference between nonlinear elastic response and 
plastic response of a material. In nonlinear elastic response there is always a unique 
relation between stress and strain throughout the load history ; that is, for each 
value of stress, there is one and only one value of strain (Fig. 4.2a). However, for 
plastic response, there may be more than one value of strain for each value of 
stress. Specifically, if a plastic material is loaded into the inelastic region and then 
unloaded (Fig. 4.4b), a given value of stress may correspond to two values of 
strain, one for application of the load and one for removal of the load. This fact 
implies that the strain value for a given stress is path-dependent ; that is, the strain 
can be determined uniquely, only if the stress and history of loading (the load path) 
are known. In contrast, elastic material response is path-independent, in that for a 
given stress the same value of strain is obtained during loading or unloading. To 
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Figure 4.5 (a) Rigid elastic-perfectly plastic response. (b) Rigidly elastic-strain-hardening 
plastic response. 

illustrate the path-dependent nature of plastic response, assume that the stress in a 
member is o-1 , and the stress-strain curve for the material is that of Fig. 4.4b. If the 
member is being loaded along BC, the strain is that associated with point P. If 
the member is being unloaded along CD, the strain is that associated with point E. 

EXAMPLE 4.1 
Strain-Hardening Axially Loaded Members 

The stress-strain diagram for an isotropic metal at room temperature is approxi
mated by two straight lines (Fig. 4.4b). Part AB has slope E and part BF has slope 
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{JE, where E is the modulus of elasticity and {J the strain-hardening factor for the 
metal. The intersection of the two lines defines the yield stress Y and yield strain 
Ey = Y/ E. The stress-strain relations in the region AB and BF are, respectively, 

(J = EE, 
CJ = ( 1  - {J)Y + {JEE, 

E ::; Ey (elastic stress-strain) 
E > Ey (inelastic stress-strain) 

(a) 
(b) 

(a) Determine the constants {J, Y, E, and Ey for the annealed high-carbon steel of 
Fig. 4. 1 .  

(b) Consider the pin-joined structure in Fig. E4. la. Each member has cross 
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Figure E4. 1 (a) Pin-joined structure. (b) Free-body diagram. (c) Load-deflection plot. 
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section area 645 mm 2 and is made of the steel of Fig. 4. 1 .  A load P = 1 70 kN 
is applied. Compute the deflection u. 

(c) Repeat part (b) for P = 270 kN and P = 300 kN. 

(d) Use the results of parts (b) and (c) to plot a load-deflection graph for the 
structure. 

SOLUTION 

(a) By Fig. 4. 1 ,  E = 2 1 1 .4 GPa, Y = 252.6 MPa, {JE = 1 6.9 GPa (or fJ = 0.0799), 
and Ey = YjE = 0.00 1 195. Equations (a) and (b) become 

CJ = 2 1 1 ,400E MPa, 
CJ = 232.4 + 16,900E MPa, 

E :::;; 0.00 1 195 (elastic stress-strain) (c) 
E > 0.00 1 195 (inelastic stress-strain) (d) 

(b) By the geometry of the structure shown in Fig. E4. 1 a, cos 8 = 0.8. By equilib
rium of joint D (Fig. E4. lb), we find the force in members AD and CD to be 
F = P/(2 cos 8) = 106.25 kN. Therefore, the stress in members AD and CD is 
(J = 164.73 MPa < 252.6 MPa. Thus, for this load, the members are deformed 
elastically. By Eq. (c), the strain in members AD and CD is E = 0.000779. 
Since the length of members AD and CD is L = 3.0 m, their elongation is 
e = EL = 2.338  mm. Hence, u = ejcos f) = 2.922 mm. 

(c) For P = 270 kN, F = 1 68.75 kN, (J = 26 1 .63 MPa ( > 252.6 MPa). Hence, 
bars AB and CD are strained inelastically. Therefore, by Eq. (d), E = 0.00 1 730, 
and e = EL = 5. 1 89 mm. Hence, u = ejcos fJ = 6.486 mm. For P = 300 kN, 
F = 1 87.5 kN and (J = 290.7 MPa ( > 252.6 MPa). By Eq. (d), the strain in the 
bars is E = 0.003450, the elongation of the bars is e = EL = 10. 349 mm, and 
the deflection is u = ejcos 8 = 12.936 mm. 

(d) A summary of the load deflection data is given in Table E4. 1 ,  and the data are 
plotted in Fig. E4. 1 c. The yield load (point F) is located by the intersection of 
the extensions of lines OE and GH. Note that the ratio of the slope of line 
FGH to the slope of line OEF is fJ = 0.0799. 

TABLE E4.1 
Load-Deflection Data 

EXAMPLE 4.2 

Load P (kN) 

0 
170 
270 
300 

Elastic-Perfectly Plastic Structure 

Deflection u (mm) 
0.0 
2.922 
6.486 

12.936 

Point (Fig. E4.1c) 

0 
E 
G 
H 

The structure in Fig. E4.2a consists of a rigid beam AB and five rods placed sym
metrically about line CD. A load P is applied to the beam as shown. The mem
bers are made of an elastic-perfectly plastic steel (E = 200 G Pa), and they each 
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Figure E4.2 (a) Rod-supported beam. (b) Free-body diagram of beam. (c) Load
displacement diagram. (d) Residual forces in bars. 
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have a cross section area of 100 mm2. Members CD, FG, and HJ have a yield 
point stress equal to Y1 = 500 MPa, and members MN and RS have a yield point 
equal to Y2 = 250MPa. 

(a) Ignoring the weight of the beam, determine the magnitude of load P and 
the corresponding displacement of beam AB for P = Py , the load for which 
yield first occurs in the structure. 

(b) Repeat part (a) for P = Pp , the fully plastic load, that is, the load for which all 
members are yielded. 

(c) Construct the load-displacement diagram for beam AB. 
(d) The fully plastic load Pp is gradually removed. Determine the residual forces 

that remain in the members of the structure. 

SOLUTION 

The load P produces elongations in the five members equal to the displacement of 
the beam. Since equilibrium can be maintained by the single member CD, the four 
other members may be considered redundant. However, since the members under
go equal elongations, the redundancy of the structure will not pose any problem. 

(a) Yield Load Py . By inspection, yield is initiated first in members MN and RS. 
Yield is initiated in these members when the stress in them reaches the yield 
point stress Y2 • At this stress level, the load is P = Py . The corresponding load 
in members MN and RS is 

(a) 

The elongation of members MN and RS at initiation of yield is eMN = eRs = 
P1LMNI(EA ) = 1 .25 mm. The displacement of the beam AB and the elonga
tion of the other three members are also equal to 1 .25 mm. The strain in 
members FG and H J is 0.00 125, and the stress is 250 MPa ( < 500 MPa). 
Therefore, bars FG and H J are elastic. The strain in bar CD is 0.000625, and 
its stress is 125 MPa ( < 500 MPa). Therefore, it is also elastic. Hence, the axial 
forces in members FG, HJ, and CD are 

EAeen P3 = Pen = = 12 .5  kN 
Len 

(b) 

(c) 

The equilibrium force equation in the direction parallel to the members gives, 
with Eqs. (a-c), 

Py = 2P1 + 2P2 + P3 = 1 12. 5 kN (d) 

and the corresponding beam displacement is 1 .25 mm. 

(b) Fully Plastic Load Pp . Since members FG and H J are shorter than member 
CD, they yield next. Also, the axial forces in members MN and RS will 
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remain constant as P is increased in magnitude beyond Py . Yield occurs in 
members FG and HJ when the stress in them reaches the yield stress Y1 = 
500 MPa. The load in each of these members is then 

(e) 

The elongation of these members at yield is eFG = ea1 = P4LFG!(EA ) = 
2.50 mm. The displacement of beam AB and the elongation of all the other 
members are also 2.50 mm. The strain of member CD is 0.00125 and, there
fore, the stress is 250 MPa ( < 500 MPa). Hence, bar CD is elastic. Therefore, the 
force in member CD is 

EAeen 
P5 = Pen = = 25.0 kN 

Len 
(f) 

The force equilibrium equation in the direction parallel to the members gives, 
with Eqs. (a), (e), and (f), 

P = 2P1 + 2P4 + P5 = 175.0 kN (g) 

and the corresponding beam displacement is 2.50 mm. 
The fully plastic load Pp occurs when yield is initiated in member CD. The 

loads in members MN, RS, FG, and HJ remain unchanged as P is increased 
beyond 175.0 kN. When member CD reaches yield, the axial force is 

(h) 

Also, when member CD reaches yield, its elongation is een = P6Len/(EA ) = 
5.00 mm. The displacement of the beam, and that of all the other members, is 
5.00 mm. The force equilibrium equation in the direction parallel to the 
members gives, with Eqs. (a), (e), and (h), the fully plastic load 

(i) 

and the beam displacement is 5.00 mm. 

(c) Load-Displacement Diagram. The load-displacement diagram for beam AB 
is plotted in Fig. E4.2c. Point A corresponds to displacement 1 .25 mm and 
the load Py . Point B occurs at the elastic-plastic load that initiates yield in 
members FG and H J, with corresponding displacement 2.50 mm. Point C 
occurs at the fully plastic load Pp that initiates yield in member CD, with cor
responding displacement 5.00 mm. The load-displacement curve is horizontal 
at the fully plastic load Pp . 

(d) Residual Forces. Let the fully plastic load Pp be unloaded gradually from a 
displacement greater than 5.00 mm, say, 5 .50 mm as indicated in Fig. E4.2c. 
Assume that the materials in the members respond elastically upon unloading. 
Then, the displacement of the beam will follow the path KJ, parallel to line 
OA. At the beginning of unloading, the stress in members MN and RS is equal 
to the yield stress Y2 = 250 MPa. We assume that the material in these two 
members remains linearly elastic as the stress in the members goes to zero and 
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4.3 

also remains linearly elastic to - 250 MPa in compression (i.e., there is no 
Bauschinger effect). Hence, the members will remain elastic for an increment 
of elongation 1\e on unloading equal to twice the elongation at point A ;  that 
is, for an elongation 1\e = 2( 1 .25)  = 2. 50 mm. The actual increment of elonga
tion as the structure unloads from point K to point J is 1\ev 1 ,  and it is given 
by the similarity of triangles OA U and JK V in Fig. E4.2c. Thus, L\ev1/200.0 = 
1 .25/1 12. 5, or L\ev1 = 2.222 mm. Since L\ev1 is less than 2. 50 mm, all tension 
members unload elastically. The increment in load 1\P for each member for 
unloading is, therefore, 1\PMN = 1\PRs = 1\PFG = 1\PaJ = EA(L\evJ)/LMN = 
44.44 kN and 1\Pcn = EA(L\ev1)/Lcn = 22.22 kN. At zero load, the residual 
forces in the members are equal to the axial forces in the members at the fully 
plastic load Pp minus the load increments 1\P. Thus, 

PMN(residual) = PRS(residual) = 25.0 - 44.44 = - 19.44 kN (compression) 
PFG(residual) = PHJ(residual) = 50.0 - 44.44 = 5.56 kN (tension) 
PcD(residual) = 50.0 - 22.22 = 27.78 kN (tension) 

The residual forces are shown in Fig. E4.2d. 

YIELD CRITERIA: GENERAL CONCEPTS 

The previous discussion of failure criteria has been limited to uniaxial stress states. 
However, more generally, we must apply failure criteria to multiaxial states of stress. 
We consider failure to occur at the initiation of inelastic material behavior through 
either yielding or fracture. In general, a complete plasticity theory has three com
ponents : a yield criterion (or yield function) that defines the initial inelastic re
sponse of the material, a flow rule that relates the plastic strain increments to the 
stress increments after initiation of the inelastic response, and a hardening rule that 
predicts changes in the yield surface (a geometrical representation of the yield 
criterion) due to the plastic strain (Mendelson, 1983). Since we limit ourselves to 
predicting initiation of inelastic behavior, we consider only the first component of 
plasticity theory: the yield criterion. 

The primary objective of this section is to extend the concept of yield criteria to 
multiaxial stress states. The basis for this extension is the definition of an effective (or 
equivalent) uniaxial stress that is a particular combination of the components of the 
multiaxial stress state. It is postulated that yielding is initiated in a multiaxial stress 
state when this effective stress reaches a limiting value (assumed to be some function 
of the uniaxial yield stress). The same concept may be used to predict failure by 
fracture, provided that an appropriate failure criterion can be established. In the 
following, we examine various yield criteria and discuss their ability to predict the 
initiation of inelastic response of various materials subjected to multiaxial stress 
states. Unfortunately, no single yield criterion has been established that accurately 
predicts yielding (or fracture) for all materials . However, the initiation of yield in 
ductile metals can be predicted reasonably well by either the maximum shear-stress 



4.3 / YIELD CRITERIA : GENERAL CONCEPTS 127 

criterion or the maximum octahedral shear-stress criterion (the latter being equiv
alent to the distortional energy criterion). 

A yield criterion can be any descriptive statement that defines conditions under 
which yielding will occur. It may be expressed in terms of specific quantities, such as 
the s�ress state, the strain state, a strain energy quantity, or others. A yield criterion is 
usually expressed in mathematical form by means of a yield function f( CJu , Y), where 
CJu defines the state of stress and Y is the yield strength in uniaxial tension (or 
compression). The yield function is defined such that the yield criterion is satisfied 
when f(CJu , Y) = 0. When f(CJu , Y) < 0, the stress state is elastic. The condition 
f(CJu , Y) > 0 is undefined. To develop a yield function, the components of the 
multiaxial stress state are combined into a single quantity known as the effective 
stress (Je · The effective stress is then compared with the yield stress Y, in some 
appropriate form, to determine if yield has occurred. 

To help illustrate the nature of a yield criterion, the concept of a yield surface is 
used widely (Lubliner, 1990). A yield surface is a graphical representation of a yield 
function. For a three-dimensional stress state, the yield surface is plotted in principal 
stress space, also known as Haigh-Westergaard stress space. That is, the yield 
surface is plotted using principal stresses CJ1 , CJ2 ,  CJ3 as coor.dinates of three mutually 
perpendicular axes. In the following paragraphs, various yield criteria and their 
associated yield functions are discussed. 

Maximum Principal Stress Criterion 
To illustrate the concept of a yield criterion, consider the maximum principal stress 
criterion, often called Rankine's criterion. This criterion states that yielding begins at 
a point in a member when the maximum principal stress reaches a value equal to the 
tensile (or compressive) yield stress Y. For example, assume that a single nonzero 
principal stress CJ1 acts at a point in the member (Fig. 4.6a). According to Rankine's 
criterion, yielding will occur when CJ1 reaches the value Y. Next consider the case 
where principal stresses CJ1 and CJ2 ( I CJ1 1 > I CJ2 1 )  both act at the point as shown in 
Fig. 4.6b. Rankine's criterion again predicts that yielding will occur when CJ1 = Y, 
regardless of the fact that CJ2 also acts at the point. In other words, the maximum 
principal stress criterion ignores the effects of the other principal stresses. 

If CJ1 = - CJ2 = CJ, the shear stress t is equal in magnitude to (J and occurs on 45° 
diagonal planes (Fig. 4.6c). Such a state of stress occurs in a cylindrical bar subjected 
to torsion. Thus, if the maximum principal stress criterion (CJ1 = (J = Y) is to be valid 
for a particular material under arbitrary loading, the shear yield stress ty of the 

(a) (b) 

Figure 4.6 Uniaxial and biaxial stress states. 

r 

(c) 
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material must be equal to the tensile yield stress Y. For ductile metals, the shear yield 
stress ty is much less than the tensile yield stress Y. It is evident that, for ductile 
metals, the maximum principal stress criterion is not applicable. However, for brit
tle materials that fail by brittle fracture rather than yielding, the maximum princi
pal stress criterion may adequately predict tension fracture. In fact, the maximum 
principal stress criterion is often used in conjunction with other criteria to predict 
failure of brittle materials such as concrete (Chen and Han, 1988). 

The maximum principal stress criterion can be expressed by the yield function 

(4. 1 )  

where the principal stresses are not ordered. From Eq. (4. 1 ), we see that the effective 
stress is CJe = max( I CJ1 I , I CJ2 I , I CJ3 I ). 

The corresponding yield surface is defined by the locus of stress states that satisfy 
the yield criterion (f  = 0). Hence, the yield surface for the maximum principal stress 
criterion is defined by the relations. 

(4.2) 

The yield surface consists of six planes, perpendicular to the principal stress coor
dinates axes (see Fig. 4.7). 

Maximum Principal Strain Criterion 
The maximum principal strain criterion, also known as St. Venant's criterion, states 
that yielding begins when the maximum principal strain at a point reaches a value 
equal to the yield strain Ey = Y/ E. For example, yielding in the block of Fig. 4.6a 
begins when E 1 = Ey ,  which corresponds to CJ1 = Y. Under biaxial stress (Fig. 4.6b ), 
the maximum principal strain in an isotropic material is E1 = (CJ1 /E) - v(CJ2/E). For 
the stress state shown in Fig. 4.6b, where CJ2 is positive (tensile), yielding will begin 
for a value of CJ1 > Y. If CJ2 is negative (compressive), the maximum value of CJ1 that 

I 
I 

\ I  

"\ 

Figure 4.7 Maximum principal stress yield surface. 
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can be applied without causing yielding is less than Y. The maximum principal 
strain criterion does not accurately predict yielding of ductile metals but may show 
improved ability, relative to the maximum principal stress criterion, to predict frac
ture of brittle materials. 

Even though the maximum principal strain criterion predicts yielding in terms 
of strain magnitudes, we still express its yield function in terms of stress. Writing 
the first of Eqs. (3.30) in terms of principal stresses, we have 

(4.3) 

Assuming that E1 is the principal strain with the largest magnitude, we equate I E1 1 
with Ey and obtain the yield function 

or 

If we assume that the principal strains are unordered, either €2 or E3 may have the 
largest magnitude. Then we obtain the additional possibilities 

fz = I O"z - V0"1 - V0"3 1 - Y =  0 

!3 = 1 0"3 - V0"1 - VO"z l - Y =  0 
or 
or 

Hence, the effective stress O" e rna y be defined as 

O"z - V0"1 - V0"3 = ± y (4.4b) 

0"3 - V0"1 - VO"z = ± Y (4.4c) 

O"e = max I O"i - VO"i - VO"k l 
i :f. j:f. k 

(4.5 )  

and the yield function as 

(4.6) 

The yield surface for the maximum principal strain criterion for a biaxial stress state 
(0"3 = 0) is shown in Fig. 4.8. The yield surface ABCD illustrates that under biaxial 
tension (or biaxial compression), individual principal stresses greater then Y can 
occur without causing yielding. 

Strain Energy Density Criterion 
The strain energy density criterion, proposed by Beltrami (Mendelson, 1983), states 
that yielding at a point begins when the strain energy density at the point equals the 
strain energy density at yield in uniaxial tension (or compression). Written in terms 
of principal stresses, strain energy density is [Eq. (3 .3 3)] 

By Eq. (4.7), the strain energy density at yield in a uniaxial tension test (0"1 = Y, 
0"2 = 0"3 = 0) is 

(4 . .&) 
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4.4 

A 

Figure 4.8 Maximum principal strain yield surface for biaxial stress state (0"3 = 0); f = 0 
along the perimeter ABCD. 

Thus, the strain energy density criterion states that yield is initiated when the strain 
energy density U0 , Eq. (4.7), for any stress state equals U0y ,  Eq. (4. 8). 

We again consider the stress states depicted in Fig. 4.6, but apply the strain energy 
density criterion for yielding U0 = U0y .  For uniaxial tension (Fig. 4.6a), yielding is 
predicted to occur when o-1 = Y, as it should. For a biaxial stress state in whic!_l 
o-1 = o-2 = o- (Fig. 4.6b), yielding is predicted to occur when 2o- 2( 1 - v) = ¥2• If we 
assume that Poisson's ratio for the material is zero ( v = 0), then yielding occurs 
when o- = Yj J2. If the biaxial stress state is o-1 = - o-2 = o- (Fig 4.6c), a state of 
pure shear exists and yielding is again predicted to occur when o- = Y/ J2, pro
vided that v = 0. 

The yield function for the strain energy density criterion is obtained by setting U0 , 
Eq. (4.7), equal to U0y ,  Eq. (4.8), to obtain 

(4.9) 

Hence, the yield function has the form 

(4. 10) 

where the effective stress is 

( 4. 1 1 ) 

YIELDING OF DUCTILE METALS 

Thus far, we have considered yield criteria that are based on point-wise values of 
stress or strain. However, in engineering, experimentally measured inelastic 
deformations (strains) are determined over gage lengths that are of finite length. 
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The engineering approach to defining inelastic deformation differs from that of the 
metallurgist who treats inelastic deformation as a microscopic quantity associated 
with the slip of crystals. Nevertheless, these engineering measurements and certain 
metallurgical concepts are employed to establish criteria to predict the inception of 
yielding. For example, it is well known in metallurgy that certain metal crystals have 
slip planes along which the resistance to shear force is relatively small. Thus, for such 
metals, yield criteria are based on limiting values of shear stress. Two such criteria 
are presented in the following discussion. 

Maximum Shear-Stress (Tresca) Criterion 
The maximum shear-stress criterion, also known as the Tresca criterion, states that 
yielding begins when the maximum shear stress at a point equals the maximum 
shear stress at yield in uniaxial tension (or compression). For a multiaxial stress 
state, the maximum shear stress is tmax = (o-max - o-min )/2, where O'max and o-min 
denote the maximum and minimum ordered principal stress components, respec
tively. In uniaxial tension (o-1 = o-, o-2 = o-3 = 0), the maximum shear stress is tmax = 
o-/2. Since yield in uniaxial tension must begin when o-1 = Y, the shear stress asso
ciated with yielding is predicted to be ty = Y/2. Thus, the yield function for the 
maximum shear-stress criterion may be defined as 

(4. 12) 

where the effective stress is 
O'e = Lmax (4. 1 3) 

The magnitudes of the extreme values of the shear stresses are [see Eq. (2 .44) and 
Fig. 2 . 1 3] 

l o-2 - o-3 1 t1 = 
2 

l o-3 - o-1 1 t2 = 
2 

lo-1 - o-2 1 (4. 14) t3 = 
2 

The maximum shear stress tmax is the largest of (t1 , t2 , t3 ). If the principal stresses 
are unordered, yielding under a multiaxial stress state can occur for any one of the 
following conditions : 

0'2 - 0'3 = ± y 
0'3 - 0'1 = ± y 
0'1 - 0'2 = ± y (4. 1 5) 

By Eq. (4. 1 5), the yield surface for the maximum shear-stress criterion is a regular 
hexagon in principal stress space (Fig. 4.9). For a biaxial stress state (o-3 = 0), the 
yield surface takes the form of an elongated hexagon in the (o-1 ,  o-2) plane (Fig. 4. 10). 

The Tresca criterion exhibits good agreement with experimental results for 
certain ductile metals. This can be anticipated by reexamination of the metallurgical 
basis for yielding. The movement of dislocations along slip planes, which is 



132 4 / INELASTIC MATERIAL BEHAVIOR 

Hydrostatic axis 
(cr1 = cr2 = cr3 ) 

Maximum shear-stress � / / n 
a2 criterion (Tresca) y 
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Figure 4.9 Yield surface in principal stress space. 

von Mises el lipse (octahedral 
shear-stress criterion) 

Tresca hexagon (maximum 
shear-stress criterion) 

A 
B 

TA = t [Eq. (4. 1 2)] 

T8 = .Js [Eq. (4.26)] 
Figure 4. 10 Yield surfaces for biaxial stress state (0'3 = 0). For points A and B, 0'1 = 

- 0'2 = 0' (pure shear). 

responsible for permanent deformation, is a shear-related phenomenon. Thus, the 
maximum shear-stress (Tresca) criterion has some physical basis. However, for a 
state of pure shear, such as occurs in a torsion test, the shear yield stress ry of some 
ductile metals is found to be approximately 1 5% higher than the value predicted by 
the Tresca criterion. Thus, the Tresca criterion is conservative for these metals. 
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Nevertheless, since it is fairly accurate and computationally simple to use, the 
maximum shear-stress criterion is a reasonable choice for most ductile metals. 

Distortional Energy Density (von Mises) Criterion 
The distortional energy density criterion, often attributed to von Mises, states that 
yielding begins when the distortional strain energy density at a point equals the 
distortional strain energy density at yield in uniaxial tension (or compression). The 
distortional strain energy density is that energy associated with a change in the 
shape of a body. The total strain energy density U0 (Eq. 4.7) can be broken into two 
parts : one part that causes volumetric change Uv and one that causes distortion Uv . 
The appropriate manipulations of Eq. (4.7) give 

where K is the bulk modulus (K = E/[3 ( 1  - 2v)] ) and G the shear modulus (G = 
E/[2( 1  + v)] ). The first term on the right side of Eq. (4. 1 6) is Uv , the strain energy 
density associated with pure volume change. The second term is the distortional 
strain energy density 

(4. 1 7) 

At yield under a uniaxial stress state (oi = CJ, CJ2 = CJ3 = 0), Uv = Uvy = Y2 j6G. 
Thus, for a multiaxial stress state, the distortional energy density criterion states that 
yielding is initiated when the distortional energy density Uv given by Eq. (4. 1 7) 
equals Y2j6G. 

The distortional energy density criterion can be expressed in an alternate form as 
follows. By Eqs. (4. 17 )  and (2 .27), the distortional energy density Uv can be written in 
terms of the second deviator stress invariant J2 as 

(4. 1 8) 

where 
(4. 1 9a) 

Relative to the general (x, y, z) axes, 12 can be expressed in terms of the stress 
invariants 11 and 12 [see Eqs. (2 .2 1 )  and (2.27)] 

(4. 1 9b) 

At yield in uniaxial tension (or compression), CJ1 = ± Y, CJ2 = CJ3 = 0. Then, 

(4.20) 

Therefore, by Eqs. (4. 19a) and (4.20), we may write the yield function for the 
distortional energy density (von Mises) criterion as 

(4.2 1 )  
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A more compact form for the yield function is 

where the effective stress is 

(4.22) 

Also, noting the relationship between 12 and the octahedral shear stress, 
Eqs. (2 .27) and (2 .22), we can rewrite the yield function, Eq. (4.2 1 ), for the von Mises 
yield criterion in the alternate form 

J2 
f = Loct - -3-

Y (4.24) 

Thus, according to Eq. (4.24), when f = 0, the octahedral shear stress at a point 
reaches the value ( J2/3) Y = 0.47 1 Y, and yielding occurs. This result agrees with that 
obtained by Eq. (4.2 1 ). For this reason, the distortional energy density (von Mises) 
criterion is also referred to as the maximum octahedral shear-stress criterion. 

For a three-dimensional stress state, the yield surface for the von Mises criterion 
forms a cylinder that circumscribes the Tresca hexagon, (Fig. 4.9). For a biaxial 
stress state (o-3 = 0), the von Mises yield surface reduces to an ellipse in the o-1 -o-2 
plane (Fig. 4. 1 0). 

As with the Tresca criterion, the von Mises criterion is fairly accurate in pre
dicting initiation of yield for certain ductile metals. The von Mises criterion is 
more accurate for some materials than the Tresca criterion in predicting yield under 
pure shear. A state of pure shear exists for a principal stress state o-1 = - o-2 = o-, 
o-3 = 0 (Fig. 4.6c) . With this stress state, Eq. (4.22) predicts that yield occurs under 
pure shear when 

(4.25) 

For this stress state, the maximum shear stress is tmax = lo-1 - o-2 1/2 = o-. Therefore, 
at yield o- = tmax = ty . Substitution of this value for o- into the von Mises criterion, 
Eq. (4.25), gives the shear stress at yield as 

y Ty = /3 = 0. 577 ¥ (4.26) 

as compared to ty = Y/2, which is predicted by the Tresca criterion, Eqs. (4. 12) and 
(4. 1 3). Thus, the von Mises criterion predicts that the pure-shear yield stress is 
approximately 1 5% greater than that predicted by the Tresca criterion (see also 
Fig. 4. 10). 

If the principal stresses are known, the Tresca criterion is easier to apply than the 
von Mises criterion. However, since the von Mises yield function is continuously 
differentiable, that is, its yield surface has a unique outward normal at all points 
(Figs. 4.9 and 4. 10), it is preferred in plasticity studies in which plastic flow and 
strain hardening are considered. Materials that behave according to either the von 
Mises or Tresca criterion are often called J2 materials, since the effective stress can 
be written solely in terms of this invariant. (Chen and Han, 1988; p. 75) 
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Effect of Hydrostatic Stress, The Tr-Plane 
Examination of the yield functions for the Tresca and von Mises yield criteria 
indicates that the hydrostatic stress, (Jm = (CJ1 + CJ2 + CJ3 )/3 , has no influence on the 
initiation of yielding. This agrees with experimental evidence that indicates certain 
ductile metals do not yield under very high hydrostatic stress. * This independence of 
hydrostatic stress permits us to examine just a cross section of the Tresca and von 
Mises yield surfaces. 

Consider an arbitrary stress state represented by point B(CJ1 , CJ2 , CJ3 ) that lies on 
line M in principal stress space (Fig. 4. 1 1 ). The vector OB, which represents this 
stress state, can be decomposed into two components : OA that lies along the hydro
static axis [line L with direction cosines : ( 1/J3-, 1//3, 1//3)] and AB that lies in a 
plane normal to line L. Vector OA represents the hydrostatic component of the 
stress state and vector AB represents its deviatoric component. Since hydrostatic 
stress has no influence on yielding, it is sufficient to discuss the yield surfaces only in 
terms of the deviatoric component (vector AB). The plane that contains point B and 
is normal to the hydrostatic axis also contains all other points that represent stress 
states with the same hydrostatic stress. Such a plane is known as a deviatoric plane. 

Now consider a second stress state represented by point D that also lies on line M 
and differs from point B only in its hydrostatic stress component. With respect to 
yielding, point D is identical to point B; they represent identical deviatoric stress 
states. Therefore, line M must be parallel to line L, the hydrostatic axis. The fact that 
the generator line M is parallel to the hydrostatic axis implies that all possible stress 
states may be viewed in terms of only their deviatoric components. Thus, only a 

Figure 4. 1 1  

M 

/ / / / / 

Hydrostatic axis 
(0"1 = 0"2 = 0"3 ) 

L 

/ / 

/ / 
/ 

/ / / 

/ 

7 / / Deviatoric plane 
/ / 

Deviatoric plane 

* However, hydrostatic tension can contribute to brittle fracture in otherwise ductile metals. 
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single deviatoric plane is needed to study the yield criteria. As our reference plane, we 
choose the deviatoric plane for which o-1 = o-2 = o-3 = 0 (hence, o-m = 0). This 
reference plane is known as the n-plane (Lubliner, 1 990; Sec. 3 .3). 

Figure 4. 12 shows the rc-plane as the plane of the paper with the three, orthog
onal, principal stress axes oblique to the plane. The Tresca and von Mises yield 
surfaces form a regular hexagon and circle, respectively, on the rc-plane. Represent
ation of the Tresca and von Mises yield surfaces on the rc-plane is of fundamental 
importance in the theory of plasticity (which includes flow rules and hardening 
rules in addition to yield criteria). To construct these surfaces, we must determine 
the lengths of the line segments OB and OA (or OC), see Fig. 4. 1 2. Consider the uni
axial stress state ( o-1 , o-2 = o-3 = 0) and unit vectors i, j, and k along axes o-1 , o-2 , 
and o-3 , respectively. The vector that represents this stress state is o-1 i. This vector 
may be decomposed into two perpendicular components : one component o-L that 
lies along the hydrostatic axis L, with unit vector n = }J(i + j + k), and a second 
component o-n that lies in the rc-plane. 

By geometry, o-L = o-1 i · n = o-1/ /3. Since o-i = o-i + o-� , we find o-n = .f%so-1 to 
be the length of the projection of o-1i on the rc-plane. Similar results are obtained 
for stress states (o-2 , o-1 = o-3 = 0) and (o-3 , o-1 = o-2 = 0). Thus, the components of a 
general stress state (o-1 , o-2 , o-3 ) have projections on the rc-plane : .f%so-1 , .f%so-2 , .f%so-3 • 

The stress state (o-1 = Y, o-2 = o-3 = 0) represents the initiation of yield in a 
uniaxial tension test for both the Tresca and von Mises criteria. For this case, the 
length of the projection on the rc-plane is .J%s Y and the stress state lies at a common 
point on both yield surfaces, point A in Fig. 4. 12. By inspection, the intersection of 
the von Mises cylinder (Fig. 4.9) with the rc-plane is a circle of radius .J%s Y. 
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Figure 4. 12  Yield surfaces in the n-plane. 
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Next consider a state of yield under pure shear according to the Tresca criterion 
(0'1 = - 0'3 = Y/2, 0'2 = 0). The projections of the components of this stress state 
on the n-plane are OE for 0'1 and OD for 0'3 . Line segments OD and OE are each of 
length )i0'1 = ,Ji(Y/2) = �Y. We note that OD = OE = OA/2. The sum of the two 
vector projections gives the projection of the pure shear-stress state OB, where 
OB = 2(0D) cos 30 = Y/ J2. The point B lies on the Tresca yield surface. For 
pure shear, the von Mises criterion predicts that yield is initiated at point C, where 
OC = .Ji Y. The ratio OCjOB is 1 . 1 5 . This fact confirms the earlier statement 
that the von Mises criterion predicts yield at a shear stress that is 1 5% higher than 
that predicted by the Tresca criterion. 

In general, uniaxial stress states exist along the projections of the (0'1 , 0'2 , 0'3 ) 
coordinate axes on the n-plane. Pure shear-stress states exist along the lines labeled 
S in Fig. 4. 12, for which one principal stress is zero and the other two principal 
stresses are equal in magnitude but of opposite sign. 

The values of the principal stresses that produce yielding in pure shear can 
be found as follows. A close-up view of a portion of the n-plane from Fig. 4. 1 2  is 
shown in Fig. 4. 1 3 . The pure shear-stress state ( 0'1 = -0'3 , 0'2 = 0) can be trans
formed back to principal stress coordinates using the law of sines. For the Tresca 
criterion, yield occurs at point B; lines OD and OE have length Y//6. Hence, 
the principal stresses are 

/ 
F / / 
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Figure 4. 1 3  Geometry of yielding in pure shear. 
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and the shear yield stress is ty = Yj2. Similarly for the von Mises criterion, yield 
occurs at point C, lines OF and OG have length ( J2 j3) Y, the principal stresses are 

and the shear yield stress is ty = Yj /3. 

EXAMPLE 4.3 
Comparison of Tresca and Von Mises Criteria 

When the loads that act on a member reach their working values, the nonzero stress 
components at the critical point in the member where yield is initiated are CJxx = 
100 MPa, (JYY = - 14.0 MPa, and (Jxy = 50.0 MPa. The load-stress relations are 
linear so that the factor of safety SF [see Eq. ( 1 .4)] can be applied to either the loads 
or stress components. The member material has a yield stress Y = 300 MPa. 

(a) Assuming that the material is a Tresca material, determine the factor of 
safety SF against yield. 

(b) Assuming that the material is a von Mises material, determine the factor of 
safety SF against yield. 

(c) Determine which criterion, Tresca or von Mises, is more conservative. 

(d) Illustrate the stress state and factors of safety in the n-plane for the material. 

SOLUTION 

(a) Tresca (Maximum Shear-Stress) Criterion. This criterion is defined by Eq. (4. 1 2), 
with Lmax = Y/2 = ((Jmax - (Jmin )/2. To determine (Jmax and (Jmin ' we compute the 
principal stresses ( CJ1 , CJ2 , CJ3 ) at the point. With the given data and Eqs. (2.20) 
and (2.2 1 ), the principal stresses are the roots of CJ3 - 86CJ2 - 3900CJ = 0. The 
roots are ( 1 1 8. 8, 0, - 32.8). Hence, CJmax = 1 1 8.8 MPa and CJmin = - 32. 8 MPa. 
When the loads are increased by the factor of safety SF, the principal stresses 
are also increased by the factor SF. Consequently, tmax = Y/2 = 300/2 = 
SF(CJmax - CJmin )/2 = SF( 1 1 8 .8 + 32.8)/2. Therefore, SF = 1 .98, if the material 
obeys the Tresca (maximum shear-stress) criterion. 

(b) von Mises (Maximum Octahedral Shear-Stress) Criterion. By Eq. (4.2 1 ), includ
ing the factor of safety SF, we have 

Y = � [( 1 1 8 .8)2 + (32.8j2 + ( - 32.8 - 1 1 8.8j2] 112 (a) 

Hence, SF = 2. 1 7  if the material obeys the von Mises criterion. 

(c) The same design loads are applied to the member in parts (a) and (b). If the 
Tresca criterion is applicable, the design loads are increased by a factor of 1 .98 
to initiate yield. However, i f  the von Mises criterion i s  applicable, the design 



4.4 / YIELDING OF DUCTILE METALS 139 

loads are increased by a factor 2. 1 7  to initiate yield. Thus, the Tresca criterion is 
more conservative; it predicts yield initiation at smaller loads than the von 
Mises criterion. 

(d) Illustration in the n-Plane. To illustrate this solution, we simply project each 
of the principal stress components onto the rc-plane, sum the projected vec
tors, and determine the length of the resultant. The factors of safety are deter
mined by comparing this length to the radial distances from the origin to the 
appropriate yield surfaces. As an alternative, we may work with the principal 
values of the deviatoric stress. Both approaches are considered. 

In Fig. E4.3a, the projections of the components of principal stress are 
shown. Vector OA is the projection of 0"1 and has length .f%s0"1 = 97.0 MPa. Like-
wise, vector AB is the projection of 0"3 and has length .f%s0"3 = - 26.78 MPa. 
The sum of these two projections is vector OB that has length 1 1 2.8 MPa. If 
the mean stress, O"m = 26.67 MPa, is subtracted from each of the principal 
stress components, the principal values (S1 , S2 , S3 ) of the deviator stress are 
obtained as (90. 1 3  MPa, - 28.67 MPa, - 61 .47 MPa) [see Eq. (2 .28)] . The 
deviator stress components (S1 , S2 , S3 ) are projected in the same way as the 
principal stress components. The projections are illustrated in Fig. E4.3b as 
vectors OE, EF, and FB, respectively. The sum of the three projections is vec
tor OB, which is identical to that in Fig. E4.3a. 

By inspection, we see that the stress state illustrated by vector OB is elastic, 
since it is within the boundary of the two yield surfaces under consideration. 
For the Tresca criterion, the factor of safety against yield is the ratio of the 
lengths of vectors OC and OB. The extension of vector OB to the Tresca hexa
gon defines point C, the point at which yielding would occur if the given stress 

von Mises circle 

Tresca hexagon 

(a) 

Figure E4.3 (a) Principal stress projections. 
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4.5 

von Mises circle 

T resca hexagon 

(b) 

Figure E4.3 (b) Deviatoric stress projections. 

state is increased proportionally. Vector OC has length 223 .2 MPa. Hence, the 
factor of safety against yield for the Tresca criterion is SF = 223.3/1 1 2. 8  = 
1 .98 .  For the von Mises criterion, the factor of safety is the ratio ODjOB. The 
length of vector OD is simply the radius of the von Mises circle that is � Y = 
244.95 MPa. Thus, for the von Mises criterion, SF = 244.95/1 1 2.8 = 2. 1 7. 

ALTERNATIVE YIELD CRITERIA 

Interest in predicting the initiation of yielding is not limited to ductile metals. 
Many other materials used in engineering applications exhibit inelastic (yielding) 
behavior that is distinct from that of ductile metals. Thus, suitable yield criteria for 
these materials are needed. Some of these materials include soil, rock, concrete, and 
anisotropic composites. A brief discussion of yield criteria* for these materials 
follows in this section. 

Mohr-Coulomb Yield Criterion 
The yield behavior of many cohesive materials, including rock and concrete, has 
been observed to depend on hydrostatic stress. Specifically, an increase in hydro-

* The term yield is not entirely appropriate to describe the behavior of some of these materials in that 
their nonlinear response is often brittle unless relatively high confining pressure (hydrostatic compres
sion) is applied. 
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static compressive stress produces an increased ability of some materials to resist 
yield. Also, these materials may exhibit different yield stresses in tension and com
pression. The Mohr-Coulomb yield criterion is a generalization of the Tresca 
criterion that accounts for the influence of hydrostatic stress. The yield function 
is written in terms of the stress state and two material properties : the cohesion c 
and angle of internal friction ¢. 

For principal stresses in the order 0"1 > 0"2 > 0"3 , the Mohr-Coulomb yield func
tion is (Lubliner, 1 990) 

For unordered principal stresses, the yield function becomes 

f = max [O"i - O"i + (O"i + O"i) sin ¢] - 2c cos ¢ i :i= j 

(4.27) 

(4.28) 

If we impose uniaxial tension until yield occurs (0"1 = YT , 0"2 = 0"3 = 0), we can 
derive the yield stress in tension from Eq. (4.27 )  as 

YT = 
2c cos ¢ 
1 + sin ¢ 

(4.29) 

Similarly, if we impose uniaxial compression with a stress state of (0"1 = 0"2 = 0, 
0"3 = - Yc), the yield stress in compression is 

Yc = 
2c cos ¢ 
1 - sin ¢ 

(4. 30) 

Equations (4.29) and (4.30) can be solved to obtain c and ¢ in terms of YT 
and Yc as 

(4. 3 1 )  

(4. 32) 

If a material such as concrete is being studied and strength parameters YT and Yc 
are known, Eqs. (4. 3 1 )  and (4. 32) can be used to find the properties c and ¢ needed 
by the Mohr-Coulomb yield function, Eq. (4.28). 

The yield surface for the Mohr-Coulomb criterion has the form of an irregular 
hexagonal pyramid. The axis of the pyramid is the hydrostatic axis. The geometry 
of the pyramid depends on c and ¢. The three-dimensional Mohr-Coulomb yield 
surface is shown in Fig. 4. 14a and its intersection with the n-plane is shown in 
Fig. 4. 14b. Compressive stress axes are used, as is common in studies of cohesive 
materials . Enforcing the yield criterion (f = 0) expressed in Eq. (4.27), we obtain 
a plane in the sextant 0"1 > 0"2 > 0"3 . The other five planes are obtained by enforc
ing the yield criterion in Eq. (4.28) for the remaining principal stress ordering. 
Instead of writing equations for the six planes, the geometry of the irregular hexa
gon can be defined by two characteristic lengths, rc and rT , in the n-plane. These 
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Figure 4. 14 Mohr-Coulomb and Drucker-Prager yield surfaces. (a) In principal stress 
space. (b) Intersection with the n-plane. 

lengths have the form (Chen and Han, 1988) 

2J6c cos ¢ J6Yc( l - sin ¢) rc = = -------
3 - sin ¢ 3 - sin ¢ 
2J6c cos ¢ .j6YT(l + sin ¢) r - - -------T - 3 + sin ¢ - 3 + sin ¢ (4. 33) 
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For a frictionless material (¢ = 0), the Mohr-Coulomb criterion reduces to the 
Tresca criterion, and c = ty , the yield stress in pure shear. 

Drucker-Prager Yield Criterion 
The Drucker-Prager yield criterion is a generalization of the von Mises criterion 
that includes the influence of hydrostatic stress. The yield function can be written 
in the form (Chen and Han, 1988) 

f = a/1 + JJ; - K (4.34) 

where a and K are coefficients dependent on the cohesion c and the angle of 
internal friction ¢. Viewed in principal stress space, the Drucker-Prager yield sur
face is a right circular cone. The size of the cone can be adjusted to match the 
Mohr-Coulomb pyramid by selecting appropriate values for a and K. The cone 
circumscribes the Mohr-Coulomb pyramid, as shown in Fig. 4. 14, when a and K 
are determined from 

2 sin ¢ 
lJ. = -----J3(3 - sin ¢) ' 

K =  
6c cos ¢ 

J3(3 - sin ¢) 
(4 .35) 

For these coefficients, the Drucker-Prager criterion provides an outer bound on 
the Mohr-Coulomb yield surface; the radius of the cone as it intersects the rc
plane is rc , see Fig. 4. 14b. The Drucker-Prager yield surface can be linked more 
closely to the tension strength by using a and K from 

2 sin ¢ 
li. = -----J3(3 + sin ¢) ' 

K =  
6c cos ¢ 

J3(3 + sin ¢) 
(4.36) 

In this case, the cone has radius rT in the rc-plane, (Fig. 4. 14b). For a frictionless 
material ( ¢ = 0), the Drucker-Prager criterion reduces to the von Mises criterion. 

Hill's Criterion for Orthotropic Materials 
The foregoing criteria for yielding are limited to isotropic materials. Yield behavior 
of anisotropic materials depends on the direction of the imposed stresses, relative 
to the material axes. Therefore, a criterion that predicts yielding of anisotropic 
materials must account for the different material properties in the various material 
directions. For orthotropic materials, materials that have three mutually ortho
gonal material directions, the yield criterion proposed by Hill ( 1950) is quite effec
tive. Hill's criterion is a generalization of the von Mises criterion. The yield 
function has the form 

f = F((J22 - (J33 )2 + G((J33 - (Ju)2 + H((Ju - (J22 )2 

+ L((J�3 + (J�2) + M((JI3 + (J�l ) + N((JI2 + (J�l) - 1 (4 .37 ) 

where subscripts 1 ,  2, and 3 are the material directions and the coefficients F, G, H, 
L, M, and N are obtained from uniaxial load tests. If we denote the three tensile 
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4.6 

yield stresses corresponding to the 1 , 2, and 3 directions as X, Y, and Z, respec
tively, and the shear yield stresses as S 12 , S 13 , and S 23 , the coefficients in Eq. ( 4. 3 7 )  
can be written as 

1 1 1 2F = z2 + y2 - X2 

1 1 1 2H = - + - - X2 y2 z2 

1 2L = S2 ' 23 
1 2M = -2-, s 13 

1 2N = S2 12 
(4. 3 8) 

It is implicitly assumed in Hill's criterion that the yield stresses X, Y, and Z are the 
same in either tension or compression, and that yielding is insensitive to hydro
static stress. For an isotropic material, the yield function coefficients reduce to 

6F = 6G = 6H = L = M = N (4.39) 

and the yield function in Eq. (4. 37) reduces to the von Mises yield function, 
Eq. (4 .2 1 ). 

Since Hill's criterion is written for a specific reference coordinate system, that is, 
the principal material directions, we cannot change the reference coordinates with
out changing the function itself. Thus, Hill's criterion cannot be illustrated in the 
form of a yield surface in principal stress space for an arbitrary stress state. 

COMPARISON OF F AlLURE CRITERIA FOR 
GENERAL YIELDING 

The yield criteria presented in the previous sections merely define methods for 
combining the individual components of a multiaxial stress state into an effective, 
uniaxial stress. The uniaxial stress is then compared to a material property, often 
the yield strength, to determine whether yielding has occurred. Depending on the 
type of member under consideration, the initiation of yielding might or might not 
provide an accurate measure for the limiting strength of the member. In this book, 
we define the failure load for the general yielding mode of failure as the load for 
which the load-deflection curve for the member becomes nonlinear. Since the effect 
of stress concentrations on the overall shape of the load-deflection curve for duc
tile materials is small (Smith and Sidebottom, 1969), we ignore this effect. 
This definition of failure load leads to a lower-bound load for the general yield

ing mode of failure. For members made of an elastic-perfectly plastic material, the 
fully plastic load is an upper bound for the general yielding mode of failure. The 
fully plastic load is the load at which the entire cross section has yielded. 
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For example, consider the nondimensional load-strain curves for two simple 
structural members in Fig. 4. 1 5. Member A is an axially loaded tension member 
and member B is a beam with a rectangular cross section subjected to pure bending. 
The members are made of the same material that, for simplicity, we take to be 
elastic-perfectly plastic. For member A, let Py denote the yield load, that is, the axial 
load that causes the stress at some point in the member to reach the yield stress Y. 
For member B, let My denote the yield moment, that is, the moment for which a 
point on the outer fibers of the beam reaches the yield stress Y. Thus, for members 
of rectangular cross section of width b and depth h, loads Py and My are 

Py = Ybh, (4.40) 

These loads are defined in this book as the failure loads for general yielding. 
Now consider the fully plastic loads for these members. Let E be the strain in 

member A (at any point) and in member B at a point on the outer fibers. Also, let 
Ey be the strain associated with the initiation of yield (Ey = YjE). Then the load
strain curve for member A is OCD and for member B is OCF. 

Since member A has a uniform distribution of stress over its cross section and 
the material is elastic-perfectly plastic, member A cannot support any load greater 
than Py . Thus, the load Py , which initiates yielding, is also the fully plastic load 
Pp . Hence, for member A, the fully plastic load is 

1 .5 

1 .0 
>-

� ::e 
� 
� � 

0 

Pp = Ybh = Py (4.4 1 )  

Member B 
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b h 2 

Figure 4. 1 5  Nondimensional load-strain curves for members A and B. 
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The behavior of member B is substantially different from that of member A. 
Since M = My produces yielding only on the outer fibers of the beam while fibers 
in the interior of the beam have not yielded, the beam is capable of supporting sub
stantially larger values of bending moment. Thus, the load-strain curve OCF for 
member B continues to rise until all fibers through the beam cross section have 
yielded in either tension or compression. At that instant, the moment is M = Mp, 
where 

(4.42) 

for a rectangular cross section.* Thus, we see that for member A, initiation of yield
ing and extensive yielding occur at the same load level P = Py = Pp . However, for 
member B, initiation of yielding occurs at M = My, whereas extensive yielding 
occurs for M = Mp = 1 . 5My . 
In general, we assume that failure occurs when yielding is initiated at some point 

in a simple structural member. Thus, for the simple members of Fig. 4. 1 5, failure 
occurs for loads corresponding to point C on the load-strain diagrams. However, 
current practice of plastic collapse design employs the concept of a fully plastic 
load. Therefore, we occasionally calculate fully plastic loads for simple structural 
members. The concept of fully plastic loads loses its meaning when the material in 
the member is capable of strain hardening (see Fig. 4.3b). For materials that strain
harden, a load corresponding to the fully plastic load (as defined above) is often 
calculated and serves as a lower bound on the actual member capacity when strain 
hardening is taken into account. 

EXAMPLE 4.4 
Partial Yielding due to Pure Bending 

The rectangular beam identified as member B in Fig. 4. 1 5  is subjected to pure bend
ing such that M = 1 .25My .  The material is elastic-perfectly plastic. Determine the 
extent to which the cross section has yielded. 

SOLUTION 

A short segment of the beam and the distribution of bending stress are shown in 
Fig. E4.4. First, consider only the portion of the cross section that is in compres
sion. The internal force associated with the elastic stress distribution is shown as PE 
and has magnitude 

(a) 

This force acts at a distance e = iY from the neutral axis of the beam. Likewise, 
the internal force associated with the plastic stress distribution is shown as Pp and 

* Note that Mp = 1 .5My only for beams of rectangular cross section. In general, Mp = fMy , where f 
is known as the shape factor for the cross section, f = Z/S, Z is the plastic section modulus, and S is 
the elastic section modulus. 
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a = -Y 

M 

a = Y 

Figure E4.4 

has magnitude 

(b) 

It acts at a distance p = y/2 + h/4 from the neutral axis of the beam. Since the 
beam cross section is symmetric about the neutral axis, forces PE and Pp act at 
the same relative locations on the tension side of the cross section but with oppo
site sense. Next, moment equilibrium is enforced to balance the applied moment 
against the internal force couples. 

1 .25My = 2ePE + 2pPp (c) 

For a beam of rectangular cross section, My = bh 2Y/6, Eq. (4.40). Therefore, 
Eqs (a-c) yield 

(d) 

Hence, the elastic portion of the cross section has depth 2y = 0. 707 h and is 
centered on the neutral axis. The remaining 29. 3% of the beam cross section has 
yielded. 

Companson of Failure Criteria 
We noted in Sec. 4.4 that a large volume of experimental evidence indicates that 
the Tresca (maximum shear-stress) and von Mises (distortional energy density or 
maximum octahedral shear-stress) criteria are valid for the general yielding mode 
of failure for ductile materials. We now examine the critical values for these two 
criteria and the other criteria discussed in Sec. 4.3 .  

A typical stress-strain curve for a tensile specimen of ductile steel is shown in 
Fig. 4. 1 6. When the specimen starts to yield, the following six quantities attain their 
critical values at the same load Py . 

1 .  The maximum principal stress (o-max = PyjA) reaches the tensile strength (yield 
stress) Y of the material. 

2. The maximum principal strain (Emax = O"max/E) reaches the value Ey = Y/E. 
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Figure 4. 16 Typical stress-strain diagram for ductile steel. 

3. The strain energy density U0 absorbed by the material per unit volume reaches 
the value U0y = Y2 j2E [from Eq. (4.8)] . 

4. The maximum shear stress (tmax = Pyj2A) reaches the Tresca shear strength 
Ty = Y/2. 

5. The distortional energy density Un absorbed by the material reaches a value 
Uvy = Y2/6G [from Eq. (4. 17 ) with o-1 = Y; all other stresses are zero] . 

6. The maximum octahedral shear stress toct reaches the value toctY = J2 Y/3 = 
0.47 1 Y [see Eq. (4.24)] . 

These six quantities, as determined from a simple tension test, are summarized in 
Table 4. 1 . Note that the maximum octahedral shear stress and distortional energy 
density, though different physical quantities, represent the same yield criterion, the 
von Mises criterion. 

The six critical values in Table 4. 1 occur simultaneously in a specimen that is 
loaded to yield in uniaxial tension. Hence, it is impossible to determine from a ten
sion test which one of the six quantities is the best indicator of inelastic behavior 
for multiaxial stress states. However, in a biaxial or triaxial state of stress, these six 
quantities do not occur simultaneously. 

Significance of Failure Criteria 
A rational procedure for design requires that a general mode of failure be consi
dered (e.g., failure by yielding or fracture). For a given mode of failure, each crite
rion of failure identifies a quantity that causes failure. That is, failure occurs when 
the value of the quantity reaches its critical value. Thus, we must choose a quantity, 
such as stress or strain, that can be associated with the initiation of failure. We 
must determine a critical value of the selected quantity that limits the loads ; that 
is, a suitable test of the material must be made to determine the critical value. This 
critical value is frequently referred to as the maximum utilizable strength of the 
material. In most cases, a tension test is considered to be a suitable test for deter
mining the critical or maximum value of this quantity. Ideally, we would like to test 
a material in the same state of stress that it will experience in the actual member. 
If this were feasible, there would be no need for failure criteria. If we were able to 
test the member under actual conditions, we would know its failure limit directly. 
Such an approach is not always necessary or economical. 



TABLE 4.1 

Quantity 

1. Maximum principal stress 

1 }  �----y-�-------y-----J� 
2. Maximum principal strain 

Unit  length 

E y  

3. Strain energy density 

a 

€ 

4. Maximum shear stress 

5. Distortional energy density 

6. Octahedral shear stress 

f=?1____._ ;oct �- I - �oct 
L__LJY 

CToct 
CT. oct croct = Y/3 
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� roc! 

+ �  ' - V2 y Toct - 3 

Critical Value in 
Terms of Tension Test 

Y = Pr/A 

Ey = Y/E 

Ty = Pr/2A = Y/2 

E 
G = ---2(1 + v) 

't0ct = h/2/3)Y = 0.47 1 Y 

It is important to understand how criteria of failure fit into a rational design 
process. A single failure criterion that applies to all conditions in which load
resisting members are used is desirable. Unfortunately, this is too much to expect 
when we consider the radically different material types, modes of failure (ranging 
from ductile yielding to brittle fracture), and the simplifying conditions that are 
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necessary to conduct a practical test. In general, we are limited to just two tests to 
obtain material properties : the tension test and torsion test. 

Interpretation of Failure Criteria for General Yielding 
Two criteria of failure, the maximum shear-stress (Tresca) and maximum octahe
dral shear-stress (von Mises) criteria, are represented graphically in Fig. 4. 12. There 
it is shown that the greatest difference between the two criteria is exhibited when 
material properties obtained from a tension test are used to predict failure loads 
in pure shear, such as for a torsion member. In Table 4.2, we interpret five of the 
quantities discussed above as they apply to the tension test and torsion test (max
imum strain energy density is omitted). First, we use each quantity to predict the 
tension yield stress Y (column 2). Then each quantity is used to obtain the shear 
yield stress ty from a hollow torsion specimen (column 3). Finally, each of the five 
quantities is used to predict the relationship between Y and ty (column 4). If all 

TABLE 4.2 
Comparison of Maximum Utilizable Values of a Material Quantity According to Various Yield Criteria 
for States of Stress in the Tension (a) and Torsion (b) Tests 

(1) 

Yield Criterion 

Maximum principal 
stress 

Maximum principal 
strain, v = ! 

Maximum shear stress 

Maximum octahedral 
shear stress 

Maximum distortional 
energy density 

--E--y 

(a) 

(2) 

___,..,.. y 

1 "max == 2 Y 

Predicted Maximum 
Utilizable Value as 

Obtained from a 
Tension Test (a) 

(Jmax = Y 

y Emax = E 

1 'tmax = l Y 

J2 'toct Y = 3 Y 

(b) 

(3) 

Predicted Maximum 
Utilizable Value as 

Obtained from a 
Torsion Test (b) 

5 'ty E = - max 4 E 

'tmax = 'ty 

'!�  Unr = -2G 

Clmax = 'r y  

(4) 
Relation between 

Values of Y and 't'y 
if the Criterion is 
Correct for Both 

Stress States 
(col. 2 = col. 3) 

'ty = y 
4 'ty = - y 
5 

1 'ty = - y 2 
1 Ty = - Y .j3 
1 Ty = - Y .j3 
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the quantities were accurate predictors of failure, they all would predict the same 
relationship between Y and ty . 

Experimental data indicate that ty = 0.5 Y for some metals (particularly some 
elastic-perfectly plastic metals), that ty = Y/ J3 for some other metals, and that the 
value of ty falls between 0. 5 Y and Y/ J3 for most remaining metals. Thus, experi
mental evidence indicates that either the maximum shear-stress criterion or the 
maximum octahedral shear-stress criterion can be used to predict failure loads for 
metal members that fail by general yielding. 
The states of stress in the tension and torsion tests represent about as wide a 

range as occurs in most members that fail by yielding under static loads. In the 
tension test, CJmax/tmax = 2, and in the torsion test, CJmax/tmax = 1. For some triaxial 
stress states, CJmax/tmax is greater than 2, approaching infinity under pure hydro
static stress. However in this case, failure occurs by brittle fracture rather than by 
yielding, if the hydrostatic stress is tensile. 

Five different failure criteria are compared for a biaxial stress state (normal stress 
and shear) in Fig. 4. 1 7  for stress states such that (J max/tmax lies between 1 and 2. 
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Figure 4. 17 Comparison of criteria of failure. 
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Such a condition exists in a cylindrical shaft subjected to torque T and bending 
moment M. The shaft diameter necessary to prevent inelastic behavior according 
to the maximum shear-stress criterion is denoted by ds. The minimum diameter to 
prevent inelastic behavior according to any of the other criteria is denoted by d. In 
Fig. 4. 1 7, the ratio dfds is plotted against the ratio of the torque to the bending 
moment TjM. These ratios are obtained for combinations of T and M ranging 
from M acting alone (T/M = 0) to T acting alone (T/M = oo). The case for which 
T/M = oo is shown by the horizontal asymptote (right side of the graph). The max
imum shear stress criterion predicts the largest required diameter for all values of 
T/ M > 0. For T/ M = 0, all criteria predict equal diameters. 
The application of the Tresca and von Mises criteria to the biaxial stress state 

(normal stress and shear) can be examined further by considering the intersection 
of the three-dimensional yield surfaces (Fig. 4.9) with the (J-t plane. This intersec
tion is shown in Fig. 4. 1 8  in nondimensional form. The equations represented by 
these curves are found as follows. For any combination of (J and t, yielding starts 
according to the maximum shear-stress criterion when 

or (4.43) 

Likewise according to the maximum octahedral shear-stress criterion, yielding 
starts when 

3 
or (4.44) 
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Figure 4. 1 8  Comparison of von Mises and Tresca criteria. 
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EXAMPLE 4.5 
Cylindrical Steel Shaft Subjected to Torsion and Bending 

A circular cylindrical shaft is made of steel with a yield stress Y = 700 MPa. The 
shaft is subjected to a static bending moment M = 13.0 kN ·m and a static torsional 
moment T = 30.0 kN ·m (Fig. 4. 1 7). Also, for the steel the modulus of elasticity is 
E = 200 GPa and Poisson's ratio is v = 0.29. Employing a factor of safety of SF = 
2.60, determine the minimum required safe diameter for the shaft. 

SOLUTION 

Assuming that the failure is by yield initiation, we note that either the maximum 
octahedral shear-stress (or equivalently, the distortional energy) criterion or max
imum shear-stress criterion is applicable. 

For the octahedral shear-stress criterion we obtain by Eqs. (4.24) and (4.44) 

J2 1 � 2 2 Loct(max) = J Y = 3 2o- + 6t (a) 

which simplifies to 
(b) 

Yielding in the shaft will occur when the loads M and T are increased by the safety 
factor. Thus, o- = (SF)Mcjl = 32(SF)Mjnd 3 and t = (SF)TcjJ = 16(SF)Tjnd 3. Sub
stitution into Eq. (b) yields 

(c) 

or 

Thus, with numerical values, we get 

dmin = 103 mm 

Hence, by the octahedral shear-stress criterion a minimum shaft diameter of 
103 mm is required to prevent inelastic action. 
Alternatively, if the maximum shear-stress criterion is employed, the yield con

dition becomes [Eq. (4.43)] 

or 

y 1 .J 2 2 Lmax = 2 = 2 0' + 4t 

d . = (32SF) M2 T2) 1 !3 mm nY + 

Thus, with numerical values, we get 

dmin = 107 mm 
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A diameter not less than 107 mm would be required to prevent initiation of yield
ing of the shaft. We observe that the properties E and v of the steel do not enter 
into the computations. Note that the ratio of diameters 103/ 107 = 0.963 agrees 
with Fig. 4. 1 7 for T/M = 30/13 = 2.3 1 . 

Other Factors to Be Considered 
Failure criteria do not account for all conditions that the engineer must consider 
in the problem of failure, even for failure by yielding of ductile materials subjected 
to static loads at ordinary temperatures. Recall that our definition of failure is 
limited to the initiation of yielding. It was shown that a beam has reserve capacity 
above the bending moment that causes first yield. In fact, for a rectangular cross 
section, the collapse moment is 50% higher than the yield moment. In other cases, 
some localized yielding may occur without destroying the usefulness of a member. 
This yielding causes a readjustment of stresses that may permit an appreciable 
increase in the loads on the member (Smith and Sidebottom, 1969). 
In conclusion, we remark that although the capacity of a material to work

harden will permit higher applied loads to be incorporated into a design, present
day design specifications usually do not take work hardening into account. Hence, 
the so-called plastic design concept is based on the fully plastic load for an elastic
perfectly plastic material . As we have learned, it is relatively simple to calculate 
fully plastic loads for simple frame members, like beams. However, for more com
plicated massive parts or members, the calculation of fully plastic loads becomes 
extremely difficult because of the effect of the more general (triaxial) states of stress 
on general yielding. Also for thin-wall members, fully plastic loads might not be 
reached. Instead, instability (local buckling) may occur after the initiation of 
yielding, which complicates determination of ultimate load capacity of the member 
(see Chapter 12). Finally, in many instances, the uncertainty in the magnitudes of 
the loads applied to structures or mechanisms is quite large. Consequently, factors 
of safety (or load factors) are also large; see Eqs. ( 1 .4) and ( 1 .6). This leads to con
servative, but relatively crude, approximations of behavior. 

PROBLEMS 
Sections 4.1-4.2 

4.1 .  In Example 4. 1 , add a member BD of the same material and cross section 
as members AD and CD. Determine the loads P required to cause deflec
tions u = 2.00, 4.00, 4.48 1 , and 8 mm. Plot the load-deflection curve for the 
structure. 

4.2. In Example 4. 1 , let fJ = 0. Determine the load Ppc for which the stress in 
members AD and CD of the truss first reaches the yield stress Y. This load 
Ppc is called the plastic collapse load of the truss. At this load, for an elastic
perfectly plastic material ({J = 0), the truss becomes unable to sustain any 
load above Ppc and continues to deflect. This deflection will continue un
abated, unless the material begins to strain harden after the initial region 
of a perfectly plastic response (see Fig. 1 .5 ). 

4.3. In Problem 4. 1 , assume that fJ = 0 and compute the plastic collapse load Ppc 
of the three bar truss (see Problem 4.2 for a discussion of plastic collapse 
load). 
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4.4. The members AD and CF in Fig. P4.4 are made of elastic-perfectly plastic 
structural steel, and member BE is made of 7075-T6 aluminum alloy (see 
Appendix A for properties). The members each have a cross-sectional area of 
100 mm2• Determine the load P = Py that initiates yield of the structure and 
the fully plastic load Pp for which all the members yield. 

r 1 .5 m 

D F 

T E 

L ----cA ,__
1
....L-..
.2 m---o----o-----, 

c B 

p 

Figure P4.4 

4.5. Two steel rods of equal length are supported and loaded as shown in 
Fig. P4.5. Rod AB is elastic-perfectly plastic and has yield strength �B = 
250 MPa. Rod BC is assumed to remain elastic. Both rods have cross
sectional area A = 25 mm 2 and E = 200 G Pa. A horizontal load P is ap
plied at B. Load P is initially zero and increases to 20 kN. From that point, 
the load is slowly cycled : 20 kN to - 20 kN to 20 kN. Construct a load P 
vs displacement u curve for the system. 

Figure P4.5  

Section 4.3 

4.6. Show that the maximum principal stress theory of failure predicts that 
tu = CJu , where CJu is the fracture stress obtained in a tension test of a brit
tle material and tu is the fracture shear stress obtained in a torsion test of 
the same material. 

4.7. The design loads of a member made of a brittle material produce the fol
lowing nonzero stress components at the critical section in the member: 
CJxx = - 60 MPa, CJYY = 80 MPa, and CJxy = 70 MPa. The ultimate strength 
of the material is 460 MPa. Determine the factor of safety used in the 
design. 

(a) Apply the maximum principal stress criterion. 
(b) Apply the maximum principal strain criterion and use v = 0.20. 



156 4 / INELASTIC MATERIAL BEHAVIOR 

4.8. A brittle material has an ultimate strength (Ju = 590 MPa. A member made 
of this material is subjected to its design loads. At the critical point in the 
member, the nonzero stress components are (Jxx = 1 60 MPa and (Jxy = 
60 MPa. Determine the factor of safety used in the design. Use the maxi
mum principal stress criterion. 

Section 4.4 

4.9. A member is subjected to its design loads. The nonzero stress components at 
the point of maximum stress are (Jxx = 1 50 MPa and (Jxy = 65 MPa. The 
yield stress of the material is Y = 450 MPa. 
(a) Determine the factor of safety used in the design, assuming that the 

material is a Tresca material. 
(b) Repeat part (a), assuming that the material is a von Mises material. 

4.10. A member made of steel (E = 200 GPa and v = 0.29) is subjected to a state 
of plane strain (Ezz = Exz = Eyz = 0) when the design loads are applied. At 
the critical point in the member, three of the stress components are (J xx = 
60 MPa, (JYY = 240 MPa, and (Jxy = - 80 MPa. The material has a yield 
stress Y = 490 MPa. Based on the maximum shear-stress criterion, deter
mine the factor of safety used in the design. 

4.1 1 .  At the critical point in a member, the three principal stresses are nonzero. 

Section 4.6 

The yield point stress for the material is Y. If two of the principal stresses are 
equal, say, (J2 = (J3 , show that the factor of safety based on the maximum 
shear-stress criterion is equal to the factor of safety based on the maximum 
octahedral shear-stress criterion. 

4.12. The rectangular beam considered in Example 4.4 is subjected to pure 
bending with a moment M = {JMy , where {J varies from 1 .0 to 1 .5 (note that 
at fJ = 1 . 5, M = Mp ). The material is elastic-perfectly plastic. As {J varies 
from 1 .0 to 1 .5, the dimension y (Fig. E4.4) varies from h/2 to 0, where y 
locates the boundary between the elastic and plastic regions of the beam. 
Develop a general relationship between {J and the dimension y. Plot your 
relationship. 

4.13. Compute the fully plastic moments for an elastic-perfectly plastic beam 
subjected to pure bending (see member B, Fig. 4. 1 5) for the different cross 
sections shown in Fig. P4. 1 3. Show that the ratio f of the fully plastic 
moment Mp to the yield moment My (f = MpjMy ) is as given in Fig. P4. 1 3. 
Note that the factor f is called the shape factor of the beam for the fully 
plastic state. The section at which M = Mp occurs is called a plastic hinge, 
since the parts of the beam on either side of this section can rotate relative to 
one another, whereas the moment at the section remains unchanged. Thus, 
the so-called plastic hinge acts like an ordinary hinge with a constant amount 
of friction. A plastic hinge can also be developed in the presence of bending 
and axial loads, shear and bending loads, and axial and shear loads. 
Accordingly, more generally, plastic hinges can form in structures (e.g., in a 
frame) under different load combinations (see Chapter 5 ; Smith and Side
bottom, 1965; Hodge, 1959; Mendelson, 1983). 
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Figure P4. 1 3  Plastic moments for various beam cross sections. 
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4. 14. Consider a cantilever beam of rectangular cross section of width b and depth 
h. A lateral force P is applied at the free end of the beam (Fig. P4. 14). The 
beam material is elastic-perfectly plastic (Fig. 4.4a). 

�A r 
�------- L -------:;;....! 

Figure P4. 14 
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(a) Determine the load P = Py that causes initial yield in the beam. 
(b) Determine the load P = Pp that produces a plastic hinge. 
(c) Compute the ratio PpjPy . 

Note : When the plastic hinge is produced at the wall section A of the 
beam, the beam is able to rotate freely about section A, with no increase in 
load P. In other words, the beam is said to collapse plastically. Also, it con
tinues to rotate (kinematically) as a mechanism about point A. For this 
reason, in the study of structures the term mechanism or kinematic mecha
nism is used to describe this process. 

4.15. Consider the indeterminate beam of Fig. P4. 1 5. Let the beam material be 
elastic-perfectly plastic (Fig. 4.4a). Also let the cross section be rectangular 
with width b and depth h. Treat the internal moment at A as the redundant. 
Under sufficiently high load P, the moment at A will reach its limiting 
value Mp , the fully plastic moment. Thus, the redundant moment is known. 

�A !: c 

:k J L-L/2 L/2 > I  
Figure P4. 1 5  

(a) Determine the magnitude of the force P = Ppc that will cause a sec
ond hinge to form at B. 

(b) Construct a moment diagram for the beam for load P = Ppc . The load 
Ppc is called the plastic collapse load for the member. 

(c) Draw a sketch of the deformed shape of the beam for P = Ppc . 

Note : The elastic segments of the beam rotate about a plastic hinge as rigid 
bodies. For this reason, the response of the beam at P = Ppc is like a 
mechanism that rotates kinematically about hinges. Therefore, the term 
mechanism or kinematic mechanism is used in plastic collapse analysis (limit 
analysis) to describe this process. 

4.16. A shaft has a diameter of 20 mm and is made of an aluminum alloy with yield 
stress Y = 330 MPa. The shaft is subjected to an axial load P = 50.0 kN. 

(a) Determine the torque T that can be applied to the shaft to initiate 
yielding. 

(b) Determine the torque T that can be applied to the shaft if the shaft 
is designed with a factor of safety SF = 1 .75 for both P and T against 
initiation of yielding. 
Use the maximum octahedral shear-stress criterion of failure. 

4.17. A low-carbon steel shaft is designed with a diameter of 30 mm. It is sub
jected to an axial load P = 30.0 kN, a moment M = 1 50 N ·m, and a torque 
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T = 250 N ·m. If the yield point for the steel is Y = 280 MPa, determine 
the factor of safety used in the design of the shaft based on the maximum 
shear-stress criterion of failure, assuming that failure occurs at initiation 
of yielding. 

Ans. SF = 2.05 

4.18. A closed end thin-wall cylinder of titanium alloy Ti-6AL-4B (Y = 800 MPa) 
has an inside diameter of 38 mm and a wall of thickness of 2 mm. The 
cylinder is subjected to an internal pressure p = 22.0 MPa and axial load 
P = 50.0 kN. Determine the torque T that can be applied to the cylinder if 
the factor of safety for design is SF = 1 .90. The design is based on the maxi
mum shear-stress criterion of failure, assuming that failure occurs at initia
tion of yielding. 

4. 19. A load P = 30.0 kN is applied to the crank pin of the crank shaft in Fig. P4. 19 
to rotate the shaft at constant speed. The crank shaft is made of a ductile steel 
with a yield stress Y = 276 MPa. Determine the diameter of the crank shaft if 
it is designed using the maximum shear-stress criterion for initiation of 
yielding and the factor of safety is SF = 2.00. 

Ans. d = 89.2 mm 

Figure P4. 19 

p 

4.20. Solve Problem 4. 19 using the maximum octahedral shear-stress criterion of 
failure. 

4.21. The shaft in Fig. P4.2 1 is supported in flexible bearings at A and D, and 
two gears B and C are attached to the shaft at the locations shown. The 
gears are acted on by tangential forces as shown by the end view. The shaft 
is made of a ductile steel having a yield stress Y = 290 MPa. If the factor 
of safety for the design of the shaft is SF = 1 . 85, determine the diameter 

r-300 mm 
X 
A 

Figure P4.21 

3.00 k N  

6.00 k N  
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of the shaft using the maximum shear-stress criterion for the initiation of 
yielding failure. 

Ans. d = 35.7 mm 

4.22. Let the 6.00-kN load on the smaller gear of Problem 4.2 1 be horizontal 
instead of vertical . Determine the diameter of the shaft. 

4.23. The 100-mm diameter bar shown in Fig. P4.23 is made of a ductile steel that 
has a yield stress Y = 420 MPa. The free end of the bar is subjected to a load 
P making equal angles with the positive directions of the three coordinate 
axes. Using the maximum octahedral shear-stress criterion of failure, 
determine the magnitude of P that will initiate yielding. 

z 

X 

Ans. P = 149. 5 kN 

p 

y 

X 

y 

T p z 

Figure P4.23 Figure P4.24 

4.24. The shaft in Fig. P4.24 has a diameter of 20 mm and is made of a ductile steel 
( Y  = 400 MPa). It is subjected to a combination of static loads as follows: 
axial load P = 25.0 kN, bending moment Mx = 50.0 N ·m, and torque T = 
1 20 N·m. 

(a) Determine the factor of safety for a design based on the maximum 
octahedral shear-stress criterion of failure. 

(b) Determine the factor of safety for a design based on the maximum 
shear-stress criterion of failure. 

(c) Determine the maximum and minimum principal stresses and indi
cate the direction that they act at point B shown. 

Ans. (a) SF = 2.05, (b) SF = 1 .9 1 ,  
(c) o-max = 1 76.3 MPa, o-min = - 33. 1 MPa, 8 = - 0.4088 rad 

4.25. Let the material properties for the shaft in Problem 4.24 be obtained by 
using a hollow torsion specimen. The shear yield stress is found to be Ty = 
200 MPa. Re-solve parts (a) and (b). 
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4.26. The member in Fig. P4.26 has a diameter of 20 mm and is made of a ductile 
metal. Static loads P and Q are parallel to the y axis and z axis, respectively. 
Determine the magnitude of the yield stress Y of the material if yielding is 
impending. 

Ans. Y = 502.6 MPa based on maximum shear-stress criterion of failure 

Q = 600 N 

P = 1 500 N 

X 200 mm 

1-E---- 1 50 mm -� 

z 

y 

Figure P4.26 

4.27. A 50-mm diameter structural steel shaft is subjected to a torque T = 1 .20 
kN ·m and an axial load P. A hollow torsion specimen made of the same steel 
indicated a shear yield point ty = 140 MPa. If the shaft is designed for a 
factor of safety SF = 2.00, determine the magnitude of P based on 

(a) the maximum shear-stress criterion of failure and 
(b) the maximum octahedral shear-stress criterion of failure 

4.28. A solid aluminum alloy (Y  = 320 MPa) shaft extends 200 mm from a bearing 
support to the center of a 400-mm diameter pully (Fig. P4.28). The belt 
ten-sions T1 and T2 vary in magnitude with time. Their maximum values are 
T1 = 1 800 N and T2 = 1 80 N. If the maximum values of the belt tensions are 
applied only a few times during the life of the shaft, determine the required 
diameter of the shaft if the factor of safety is SF = 2.20. 

Ans. d = 32.97 mm based on the maximum shear-stress criterion of failure. 

4.29. A closed thin-wall tube has a mean radius of 40.0 mm and wall thickness of 
4.00 mm. It is subjected to an internal pressure of 1 1 .0 MPa. The axis of the 
tube lies along the z axis. In addition to internal pressure, the tube is 
subjected to an axial load P = 80.0 kN, bending moments Mx = 660 N ·m 
and My = 480 N ·m, and torque T = 3.60 kN ·m. If yielding is impending in 
the tube, determine the yield stress Y of the material based on the maximum 
shear-stress criterion of failure. 
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T, 
Figure P4.28 

4.30. Solve Problem 4.29 by using the maximum octahedral shear-stress criterion 
of failure. 
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5. 1 

APPLICATIONS OF 
ENERGY METHODS 

Energy methods are used widely to obtain solutions to elasticity problems and 
determine deflections of structures and machines. Since energy is a scalar quan
tity, energy methods are sometimes called scalar methods. In this chapter, energy 
methods are employed to obtain elastic deflections of statically determinate struc
tures and to determine redundant reactions and deflections of statically indeter
minate structures. The applications of energy methods in this book are limited 
mainly to linearly elastic material behavior and small displacements. However, in 
Sec. 5. 1 and 5.2, energy methods are applied to two nonlinear problems to demon
strate their generality. 
Castigliano's theorem on deflections is restricted to small displacements. It is 

used to obtain elastic deflections and determine redundant reactions. In appli
cations to linearly elastic material behavior, the theorem is generally expressed in 
terms of the total strain energy of the structure. For the determination of the 
deflections of structures, two energy principles are presented : ( 1) the principle of 
stationary potential energy and (2) Castigliano's theorem on deflections. The general 
proofs of these principles are not presented in this book. Instead, the reader is 
referred to proofs given by H. L. Langhaar ( 1 989). 

In the application of the principle of statiqnary potential energy and of 
Castigliano's theorem on deflection to problems of structures it is assumed that 
every plane cross section of each member of a structure before deformation remains 
plane after deformation. Therefore, the displacement of a given cross section of a 
member is specified by three components of the displacement of the centroid of its 
cross section and by three angles that define the rotation of the plane of the cross 
section. R�ctangular coordinate axes (x, y, z) are chosen for each member, with the z 
axis directed along the axis of the member and (x, y) axes taken as the principal 
axes of the cross section (see Appendix B). The principal axes (x, y) maintain the 
same orientation for every cross section of each straight member of the structure; 
that is, the member is prismatic. 

PRINCIPLE OF STATIONARY POTENTIAL ENERGY 

We employ the concept of generalized coordinates (x 1 ,  x2 , • • •  , xn ) to describe the 
shape of a structure in equilibrium (Langhaar, 1 989; Sec. 1 .2). Since plane cross 
sections of the members are assumed to remain plane, the changes of the generalized 
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coordinates denote the translation and rotation of the cross section of the member. 
If a finite number of coordinates suffices to specify the configuration of the system, 
the system is said to possess a finite number of degrees of freedom. If a finite num
ber of coordinates cannot specify the system configuration, the system is said to 
have infinitely many degrees of freedom. In this chapter we consider applications 
in which a finite number of degrees of freedom, equal to the number of generalized 
coordinates, specifies the configuration of the system. 
Consider a system with a finite number of degrees �f freedom that has the 

equilibrium configuration (x 1 , x2 , • • •  , xn). A virtual (imagined) displacement is im
posed such that the new configuration is (x 1 + bx 1 , x2 + bx2 , . . .  , xn + bxn), where 
(bx 1 , bx2 , • • •  , bxn) is the virtual displacement. * The virtual work bW correspond
ing to the virtual displacement is given by 

(5 . 1 )  

where ( Q1 , Q2 , . . .  , Qn) are components of the generalized load. They are functions 
of the generalized coordinates. Let Qi be defined for a given cross section of the 
structure; Qi is a force if bxi is a translation of the cross section, and Qi is a moment 
(or torque) if bxi is a rotation of the cross section. 
The virtual work b W corresponding to virtual displacement of a mechanical 

system may be separated into the sum 

(5 .2) 

where b u-: is the virtual work of the external forces and b � the virtual work of the 
internal forces. 

Analogous to the expression for b W in Eq. ( 5. 1 ), under a virtual displacement 
(bx 1 , bx2 , • • •  , bxn), we have 

(5. 3) 

where (P1 , P2 , • • •  , Pn) are functions of the generalized coordinates (x 1 , x 2 , • . .  , xn). By 
analogy to the Qi in Eq. (5. 1), the functions (P1 , P2 , • • •  , Pn) are called the components 
of generalized external load. If the generalized coordinates (x 1 , x2 , • • •  , xn) denote 
displacements and rotations that occur in a member or structure (system), the 
variables (P1 , P2 , • • •  , Pn) may be identified as the components of the prescribed 
external forces and couples that act on the system. 
Now imagine that the virtual displacement takes the system completely around 

any closed path. At the end of the closed path, we have bx 1 = bx2 = · · · = bxn = 0. 
Hence, by Eq. (5.3), bu-: = 0. In our applications, we consider only systems that 
undergo elastic behavior. Then the virtual work b"Jti of the internal forces is equal 
to the negative of the virtual change in the elastic strain energy bU, that is, 

bW = - bU l (5 .4) 

* Note that the virtual displacement must not violate the essential boundary conditions (support con
ditions) for the structure. 
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where U = U(x1 , x2 , . . .  , xn) is the total strain energy of the system. Since the sys
tem travels around a closed path, it returns to its initial state and, hence, b U = 0. 
Consequently, by Eq. (5 .4), b� = 0. Accordingly, the total virtual work bW 
[Eq. (5 .2)] also vanishes around a closed path. The condition bW = 0 for virtual 
displacements that carry the system around a closed path indicates that the system is 
conservative. The condition b W = 0 is known as the principle of stationary potential 
energy. 

For a conservative system (e.g., elastic structure loaded by conservative external 
forces), the virtual change in strain energy bU of the structure under the virtual 
displacement (bx 1 , bx2 , . . .  , bxn) is 

Then, Eqs. (5 . 1 ) through (5. 5) yield the result 

or 

Q1 bx 1 + Q2 bx2 + . . .  + Qn bxn = P1bx 1 + P2 bx2 + . . . + Pn bxn 
au au au 

- - bx1 - - bx2 - . . .  - - bx 
ax l ax2 axn n 

i = 1 , 2, . . .  , n 

(5 .5) 

(5 .6) 

For any system in static equilibrium with finite degrees of freedom, the vanishing 
of the components Qi of the generalized force is sufficient for equilibrium. There
fore, by Eq. (5.6), an elastic system with n degrees of freedom is in equilibrium if 
(Langhaar, 1989; Sec. 1 .9) 

i = 1 ,  2, . . .  , n (5 .7) 

The relation given in Eq. (5 .7) is sometimes referred to as Castigliano's first 
theorem. For a structure, the strain energy U is obtained as the sum of the strain 
energies of the members of the structure. Note the similarity between Eqs. (5 .7) and 
Eqs. (3 . 1 1  ):" 

As a simple example, consider a uniform bar loaded at its ends by an axial load 
P. Let the bar be made of a nonlinear elastic material with the load-elongation 
curve indicated in Fig. 5. 1 . The area below the curve represents the total strain 
energy U stored in the bar, that is, U = J P de, then by Eq. (5 .7 ), P = au;ae, where 
P is the generalized external force and e the generalized coordinate. If the load
elongation data for the bar are plotted as a stress-strain curve (see Fig. 3 . 1 ), the 
area below the curve is the strain energy density U0 stored in the bar. Then, U0 = J CJ dE and, by Eqs. (3. 1 1 ), CJ = aU0jaE. 

Equation (5.7 ) is valid for nonlinear elastic (conservative) problems in which 
the nonlinearity is due either to finite geometry changes or material behavior, or 
both. The following example problem indicates the application of Eq. (5 .7) for finite 
geometry changes. 
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EXAMPLE 5.1 

E longation, e 

Figure 5. 1 Nonlinear elastic load-elongation curve. 

Equilibrium of Simple Linear Elastic Pin-Joined Truss 

Two members AB and CB of lengths L1 and L2 , respectively, of a pin-joined truss 
are attached to a rigid foundation at points A and C, as shown in Fig. E5. 1 a. The 
cross-sectional area of member AB is A1 and that of member CB is A2 • The corres
ponding moduli of elasticity are E1 and E2 . Under the action of horizontal and 
vertical forces P and Q, pin B undergoes finite horizontal and vertical displacement 
with components u and v, respectively (Fig. E5. la). The bars AB and CB remain 
linearly elastic. 

(a) Derive formulas for P and Q in terms of u and v. 
(b) Let E1A1/L1 = K1 = 2.00 Njmm and E2A2/L2 = K2 = 3.00 Njmm, and let 

b 1 = h = 400 mm and b2 = 300 mm. For u = 30 mm and v = 40 mm, deter
mine the values of P and Q using the formulas derived in part (a). 

(c) Consider the equilibrium of the pin B in the displaced position B* and verify 
the results of part (b). 

(d) For small displacement components u and v (u, v << L1 , L2 ), linearize the 
formulas for P and Q derived in part (a). 

SOLUTION 

(a) For this problem the generalized external forces are P1 = P and P2 = Q 
and the generalized coordinates are x 1 = u and x 2 = v. For the geometry of 
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(b) 
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\ 
\ 
\ 
\ 
\ \ 

�l��---------h,----------��----b2----���l 
(a) 

Figure E5. 1 

h 

Fig. E5. la, the elongations e 1 and e2 of members 1 (members AB with length 
L1) and 2 (member CB with length L2) can be obtained in terms of u and v. 

(Ll + e1 )2 = (b 1 + u)2 + (h + v)2, 
(L2 + e2 )2 = (b2 - u)2 + (h + v)2, 

Solving for (e1 , e2 ), we obtain 

Li = bf + h2 
L� = b� + h2 

e1 = )(b 1 + u)2 + (h + v)2 - L1 
e2 = ,J (b2 - u)2 + (h + v)2 - L2 

(a) 

(b) 

Since each member remains linearly elastic, the strain energies U1 and U2 of 
members AB and CB are 

(c) 

where N1 and N2 are the tension forces in the two members. The elongations 
of the two members are given by the relation ei = NiLJEiAi . The total strain 
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energy U for the structure is equal to the sum U1 + U2 of the strain energies 
of the two members; therefore by Eqs. (c), 

(d) 

The magnitudes of P and Q are obtained by differentiation of Eq. (d) with 
respect to u and v, respectively [see Eq. (5 .7)] .  Thus, 

(e) 

The partial derivatives of e1 and e2 with respect to u and v are obtained from 
Eqs. (b). Taking the derivatives and substituting in Eqs. (e), we find 

E1A1(b 1 + u) �(b 1 + u)2 + (h + v)2 - L 1 p = ----- ---;:::::::====;:::::========:::;--Ll �(b 1 + u)2 + (h + v)2 

E2A2(b2 - u) )(b2 - u)2 + (h + v)2 - L2 
L2 )(b2 - u)2 + (h + v)2 

Q =  
E1A1(h + v) .,/(b 1 + uf + (h + v)2 - L 1 

L 1 �(b 1 + u)2 + (h + v)2 

E2A2(h + v) �(b2 - u)2 + (h + v)2 - L2 + ---- ---;:::============:::::--L 2 � (b2 - u)2 + (h + v)2 

P = 43.8 N 
Q = 1 1 2.4 N 

(f ) 

(g) 

(c) The values of P and Q may be verified by determining the tension forces N1 
and N2 in the two members, determining directions of the axes of the two 
members for the deformed configuration, and applying equations of equili
brium to a free-body diagram of pin B* . Elongations e1 = 49. 54 mm and 
e2 = 16.24 mm are given by Eqs. (b). The tension forces N1 and N2 are 

N1 = e1K1 = 99.08 N 
N2 = e2K2 = 48.72 N 

Angles 8* and ¢* for the directions of the axes of the two metp.bers for the 
deformed configurations are found to be 0. 7739 and 0.5504 rad, respectively. 
The free-body diagram of pin B* is shown in Fig. E5. l b. The equations of 
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:LFx = 0 = P - N1 sin O * + N2 sin ¢* ; 
:LFY = 0 = Q - N1 cos O* - N2 cos ¢* ; 

hence, P = 43.8 N 
hence, Q = 1 1 2.4 N 

These values of P and Q agree with those of Eqs. (g). 
(d) If displacements u and v are very small compared to b 1 and b2 , and, hence, 

with respect to L1 and L2 , simple approximate expressions for P and Q may 
be obtained. For example, we find by the binomial expansion to linear terms 
in u and v that 

b u hv 
�(b l + u)z + (h + v)z = Ll + L + Ll 

b2 u hv .J (b2 - u)2 + (h + v)2 = L2 - L2 
+ L2 

With these approximations, Eqs. (f) yield the linear relations 

If these equations are solved for the displacements u and v, the resulting rela
tions are identical to those derived by means of Castigliano's theorem on 
deflections for linearly elastic materials (Sec. 5.3 and 5.4 ). 

CASTIGLIANO'S THEOREM ON DEFLECTIONS 

The derivation of Castigliano's theorem on deflections is based on the concept of 
�omplementary energy C of the system. Consequently, the theorem is sometimes 
called the "principle of complementary energy." The complementary energy C is 
equal to the strain energy U in the case of linear material response. However, for 
nonlinear material response, complementary energy and strain energy are not 
equal . For example, the complementary energy C of a nonlinear elastic tension 
member subject to an axial load is equal in magnitude to the area OAB above the 
load-elongation curve OB (see Fig. 5. 1 and also Fig. 3 . 1  and Sec. 3 . 1 ), whereas the 
strain energy U is equal to the area OBC below the curve OB. Hence, for this case, 
C =I= U. 

In the derivation of Castigliano's theorem, the complementary energy C is 
regarded as a function of generalized forces (F1 , F2 , . . .  , Fp) that act on a system 
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Figure 5.2 

F, 

that is mounted on rigid supports (say the beam in Fig. 5.2). The complemen
tary energy C depends also on distributed loads that act on the beam (Fig. 5.2), as 
well as the weight of the beam. However, these distributed forces do not enter 
explicitly into consideration in the derivation. In addition, the beam may be sub
jected to temperature effects (e.g., thermal strains; see Boresi and Chong, 1987 ; 
Chapter 4). 

Castigliano's theorem may be stated generally as follows (Langhaar, 1989; 
Sec. 4. 10) :  

If an elastic system is supported so that rigid-body displacements of the system 
are prevented, and if certain concentrated forces of magnitudes F 1 , F 2 , . • .  , FP 
act on the system, in addition to distributed loads and thermal strains, the dis
placement component qi of the point of application of the force Fi , is deter
mined by the equation 

i = 1 , 2, . . . , p  (5 .8) 

Note the similarity of Eqs. (5.8) and (3 . 1 9). The relation given by Eq. (5 .8) is some
times referred to as Castigliano's second theorem. With reference to Fig. 5.2, the 
displacement q 1 at the location of F1 in the direction of F1 is given by the relation 
q 1 = ac;aF1 . 

The derivation of Eq. (5.8) is based on the assumption of small displacements ; 
therefore, Castigliano's theorem is restricted to small displacements of the struc
ture. The complementary energy C of a structure composed of m members may 
be expressed by the relation 

m 
C =  I ci (5.9) 

i = 1 

where Ci denotes the complementary energy of the ith member (Langhaar, 1989, 
Sec. 4. 10; Charlton, 1959, Chapter V). 
Castigliano's theorem on deflections may be extended to compute the rotation 

of line elements, in a system subjected to couples. For example, consider again a 
beam that is supported on rigid supports and subjected to external concentrated 
forces of magnitudes F1 , F2 , • . .  , FP (Fig. 5.3) . Let two of the concentrated forces 
(F1 , F2 ) be parallel, lie in a principal plane of the cross section, have opposite 
senses, and act perpendicular to the ends of a line element of length b in the beam 
(Fig. 5 .3a). Then, Eq. (5.8) shows that the rotation fJ (Fig. 5 .3b) of the line segment 
due to the deformations is given by the relation 

(a) 
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k- b �  
---,.;:::-Segment 

(a) 

Figure 5.3 (a) Beam before deformation. (b) Beam after deformation. 

where we have employed the condition of small displacements. To interpret this 
result, we employ the chain rule of partial differentiation of the complementary 
function C with respect to a scalar variable S. Considering the magnitudes of F1 
and F2 to be functions of S, we have by the chain rule 

ac ac aF1 ac aF2 
as = aF1 as + aF2 as (b) 

In particular, we take the variable S equal to F1 and F2 , that is, S = F1 = F2 = F, 
where F denotes the magnitudes of F1 and F2 . Then, aF1jaS = aF2jaS = 1 ,  and 
we obtain by Eq. (b) 

ac ac ac 
- =

- + aF aF1 aF2 
Consequently, Eqs. (a) and (c) yield 

(c) 

(d) 

and since the equal and opposite forces F1 , F2 constitute a couple of magnitude \ 
M = bF, Eq. (d) may be written in the form fJ = acjaM. More generally, for couples 
Mi and rotations fJi , we may write 

i = 1 ,  2, . . . ' s (5. 10) 

Hence, Eq. (5. 10) determines the angular displacement (Ji of the arm of a couple of 
magnitude Mi that acts on an elastic structure. The sense of fJi is the same as that 
of the couple Mi . 

While Eqs. (5.8) and (5. 10) are restricted to small displacements, they may be 
applied to structures that possess nonlinear elastic material behavior (Langhaar, 
1989; Charlton, 1959). The following example problem indicates the application 
of Eq. (5 .8) for nonlinear elastic material behavior. 
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EXAMPLE 5.2 
Equilibrium of Simple Nonlinear Elastic Pin-Joined Truss 

Let the two members of the pin-joined truss in Fig. E5. 1 be made of a nonlinear 
elastic material whose stress-strain diagram is approximated by the relation E = 
Eo sinh(o/o-0 ), where Eo and o-0 are material constants. The truss is subjected to 
known loads P and Q. By means of Castigliano's theorem on deflections, deter
mine the small displacement components u and v. Let P = 10.0 kN, Q = 30.0 kN, 
o-0 = 70.0 MPa, E0 =0.001 ,  b1 = h= 400 mm, b2 = 300 mm, and A1 = A2 = 300 mm2. 
Show that the values for u and v so obtained agree with those obtained by a direct 
application of equations of equilibrium and the consideration of the geometry of 
the deformed truss. 

SOLUTION 

Let N 1 and N2 be the tensions in members AB and CB. From the equilibrium con
ditions for pin B, we find 

L1(Qb2 + Ph) 
Nl = ----h(b l + b2) 

L2(Qb 1 - Ph) 
N2 = ----h(b 1 + b2) 

(a) 

The complementary energy C for the truss is equal to the sum of the complemen
tary energies for the two members. Thus, 

(b) 

(c) 

The displacement components u and v are obtained by substitution of Eq. (c) into 
Eq. (5 . 8). Thus, we find 

8C ( · N1 ) 8N1 ( · N2 ) 8N2 u = qp = ap = LlEo stnh Alo-0 ap + L2Eo stnh A2o-o ap 

8C ( · N1 ) 8N1 ( · N2 ) 8N2 v = qQ = aQ = L1E0 stnh A1E0 aQ + L2E0 stnh A2o-0 aQ (d) 

The partial derivatives of N1 and N2 with respect to P and Q are obtained by 
means of Eqs. (a). Taking derivatives and substituting into Eqs. (d), we obtain 

(e) 
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u = 0.4709 mm 
v = 0.8 1 19 mm (f) 

An alternate method of calculating u and v is as follows : Determine tensions N1 
and N2 in the two members by Eqs. (a) ; next, determine elongations e1 and e2 for 
the two members and use these values of e1 and e2 along with geometric relations 
to calculate values for u and v. Equations (a) give N1 = 26.268 kN and N2 = 
14.286 kN. Elongations e1 and e2 are given by the relations 

. h N1 . 26,268 e1 = L1E0 sin A10"0 
= 565.68(0.00 1) sinh 300(70) = 0.907 1 mm 

. N2 • 14,286 e2 = L2E0 sinh A20"0 
= 500.00(0.00 1) sinh 300(70) = 0.3670 mm 

With e1 and e2 known, values of u and v are given by the following geometric 
relations : 

_ e 1 cos 
¢ 

- e 2 cos 
8 _ 0 0 u - . 8 ¢ 8 . ¢ - .47 9 mm SID COS + COS SID 

= 
e 1 sin ¢ + e 2 cos 

8 
= 0 8 1 19 v . 8 A,. 8 . A,. • mm SID COS \f' + COS SID \f' 

These values of u and v agree with those of Eqs. (f). Thus, Eq. (5.8) gives the correct 
values of u and v for this problem of nonlinear material behavior. 

CASTIGLIANO'S THEOREM ON DEFLECTIONS FOR 
LINEAR LOAD-DEFLECTION RELATIONS 

In the remainder of this chapter and in Chapter 9, we limit our consideration to 
linear elastic material behavior and small displacements. Consequently, the result
ing load-deflection relation for either a member or structure is linear, the strain 
energy U is equal to the complementary energy C, and the principle of superposi
tion applies. Then, Eqs. (5.8) and (5. 10) may be written 

i = 1 , 2, . . .  , p  (5. 1 1 ) 

i = 1 ,  2, . . .  ' s (5. 12) 
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By Eq. (3 .7), the strain energy U is 

U = f U0 dV (5. 1 3) 

where U0 is the strain energy density. In this chapter we restrict ourselves to linear 
elastic, isotropic, homogeneous materials for which the strain energy density is 
[see Eq. (3 .3 3)] 

(5. 14) 

With load-stress formulas derived for the members of the structure, U0 may be 
expressed in terms of the loads that act on the structure. Then, Eq. (5. 1 3) gives U 
as a function of the loads. Equations (5. 1 1 ) and (5 . 12) can then be used to obtain 
displacements at the points of applications of the concentrated forces or the rota
tions in the direction of the concentrated moments. Three types of loads are consi
dered in this chapter for the various members of a structure as follows: ( 1 )  axial 
loading, (2) bending of beams, and (3) torsion. In practice, it is convenient to obtain 
the strain energy for each type of load acting alone and then add together these 
strain energies to obtain the total strain energy U, instead of using load-stress for
mulas and Eqs. (5. 1 3) and (5. 14) to obtain U. 

Strain Energy l/ v for Axial Loading 
The equation for the total strain energy UN due to axial loading is derived for the 
tension members shown in Figs. 5.4a and Fig. 5 .4d. In general, the cross-sectional 
area A of the tension member may vary slowly with axial coordinate z. The line of 
action of the loads (the z axis) passes through the centroid of every cross section 
of the tension member. Consider two sections BC and DF of the tension member 
in Fig. 5.4a at distance dz apart. After the loads are applied, these sections are dis
placed to B*C* and D*F* (shown by the enlarged free-body diagram in Fig. 5 .4b) 
and the original length dz has elongated an amount dez . For linear elastic material 
behavior, dez varies linearly with N as indicated in Fig. 5.4c. The shaded area below 
the straight line is equal to the strain energy dUN for the segment dz of the tension 
member. The total strain energy UN for the tension member becomes 

(5 . 1 5) 

Noting that dez = Ezz dz and assuming that the cross-sectional area varies slowly, 
we have Ezz = CJzz/E [see Eq. (3. 30)] , and CJzz = N fA, where A is the cross-sectional 
area of the member at section z. Then, we write Eq. (5. 1 5) in the form 

(5 . 1 6 ) 
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X %i X ' 0 I j 

N 
B *  C *  CD L, ' 

dz. 
- - - - - - � • 1L2 F� !""'-- ,..... 

dez N 
(b) p 

B ® L 

l 
' 

® 
dUN = Area OBC 

c 
dez 

(c) 
.... I""" 

Q 
(d) 

Strain energy due to axial loading of member. 

At abrupt changes in material properties, load, and cross section, the values of E, 
N, and A change abruptly. Then, we must account approximately for these changes 
by writing UN in the form (see Fig. 5.4d ) 

(5. 1 6a) 

where an abrupt change in load occurs at L1 and an abrupt change in cross
sectional area occurs at L2 • The subscripts 1, 2, 3 refer to properties in parts 1 , 
2, 3 of the member (Fig. 5.4d). 

Strain Energies UM and Us for Beams 
Consider a beam of uniform cross section, as in Fig. 5. 5a (or a beam with slowly 
varying cross section). We take (x, y, z) axes with origin at the centroid of the 
cross-section and with the z axis along the axis of the beam, the y axis down, and 
the x axis normal to the plane of the paper. The (x, y) axes are assumed to be 
principal axes for each cross section of the beam (see Appendix B). The loads P, Q, 
and R are assumed to lie in the (y, z) plane. The flexure formula 

MxY 
(J = -zz I X 

(5. 17) 
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y 
(a ) 

dcp 
(c ) 

Figure 5.5 Strain energy due to bending and shear. 

(e) 

is assumed to hold, where Mx is the internal bending moment with respect to the 
principal x axis, Ix is the moment of inertia of the cross section at z about the x axis, 
and y is measured from the (x, z) plane. Consider two sections BC and DF of the 
unloaded beam at distance dz apart. After the loads are applied to the beam, plane 
sections BC and DF are displaced to B*C* and D*F*  and are assumed to remain 
plane. An enlarged free-body diagram of the deformed beam segment is shown in 
Fig. 5. 5b. Due to Mx , plane D*F* is rotated through angle dcp with respect to B*C* .  
For linear elastic material behavior, dcp varies linearly with Mx as indicated in 
Fig. 5. 5c. The shaded area below the straight line is equal to the strain energy dUM 
due to bending of the beam segment dz. An additional strain energy dUs due to the 
shear v;, is considered later. The strain energy UM for the beam due to Mx becomes 

(5. 1 8) 

Noting that dcp = dezfy, dez = Ezz dz, and assuming that Ezz = (Jzz/E and (Jzz = 
Mxyfix , we may write Eq. (5. 1 8) in the form 

(5. 1 9) 

where in general Mx is a function of z. Equation (5. 1 9) represents the strain energy 
due to bending about the x axis. A similar relation is valid for bending about the y 
axis for loads lying in the (x, z) plane. For abrupt changes in material E, moment 
Mx, or moment of inertia Ix , the value of UM may be computed following the 
same procedure as for UN [Eq. (5. 1 6a)] . 

Equation (5. 19) i s exact for pure bending but i s only approximate for shear 
loading as indicated in Fig. 5.5a. However, more exact solutions and experimental 
data indicate that Eq. (5. 19) is fairly accurate, except for relatively short beams. An 
exact expression for the strain energy Us due to shear loading of a beam is difficult 
to obtain. Consequently, an approximate expression for Us is often used. When 
corrected by an appropriate coefficient, the use of this approximate expression often 
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leads to fairly reliable results. The correction coefficients for various beam cross 
sections are discussed later. 

Because of the shear v;, (Fig. 5. 5b), shear stresses (Jzy are developed in each cross 
section ; the magnitude of (Jzy is zero at both the top and bottom of the beam since the 
beam is not subjected to shear loads on the top or bottom surfaces . We define an 
average value of (Jzy as r = Yy/A. We assume that this average shear stress acts over 
the entire beam cross section (Fig. 5 .5d )  and, for convenience, assume that the beam 
cross section is rectangular with thickness b. Because of the shear, the displacement 
of face D*F* with respect to face B*C* is deY . For linear elastic material behavior, 
dey varies linearly with v;, ,  as indicated in Fig. 5. 5e. The shaded area below the 
straight line is equal to the strain energy dU� for the beam segment dz. A correction 
coefficient k is now defined such that the exact expression for the shear strain energy 
dUs of the element is equal to k dU� .  Then, the shear strain energy Us for the beam 
due to shear v;, is 

(5.20) 

Noting that dey = y dz and assuming that y = r/G and r = Yy/A, we may write 
Eq. (5.20) in the form 

(5.2 1 )  

Equation (5.2 1 )  represents the strain energy for shear loading of a beam. The value 
of v;, is generally a function of z. Also, the cross-sectional area A may vary slowly 
with z. For abrupt changes in material E, shear v;, or cross-sectional area A, the value 
of Us may be computed following the same procedure as for UN [Eq. (5. 1 6a)] . 

An exact expression of Us may be obtained, provided the exact shear stress 
distribution (Jzy is known. Then substitution into Eq. (5. 14) to obtain U0 (for CJZY ' 
the only nonzero stress component) and then substitution into Eq. (5. 1 3) yields Us . 
However, the exact distribution of (Jzy is often difficult to obtain, and approximate 
distributions are used. For example, consider a segment dy of thickness b of a beam 
cross section. In the engineering theory of beams, the stress component (Jzy is 
assumed to be uniform over thickness b. With this assumption (Popov, 1990) 

YyQ 
(Jzy = Jb 

X 
(5 .22) 

where Q is the first moment about the x axis of the area above the line of length b 
with ordinate y. Generally, (Jzy is not uniform over thickness b. Nevertheless, if for a 
beam of rectangular cross section, one assumes that (Jzy is uniform over b, it may be 
shown that k = 1 .20. 

Exact values of k are not generally available. Fortunately, in practical problems, 
the shear strain energy Us is often small compared to UM . Hence, for practical 
problems, the need for exact values of Us is not critical. Consequently, as an 
expedient approximation, the correction coefficient k in Eq. (5.2 1) may be obtained 
as the ratio of the shear stress at the neutral surface of the beam calculated using 
Eq. ( 5.22) to the average shear stress Yy/A. For example, by this procedure, the 
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magnitude of k for the rectangular cross section is 

(5 .23) 

This value is larger and hence more conservative than the more exact value 1 .20. 
Nevertheless, since the more precise value is known, we recommend that k = 1 .20 be 
used for rectangular cross sections. Approximate values of k, calculated by this 
method are listed in Table 5 . 1  for several beam cross sections. For !-sections, 
channels, and box-sections, k = 1 .00, provided that the area A in Eq. (5 .2 1 ) is taken 
as the area of the web for these cross sections. 

Strain Energy Ur for Torsion 
The strain energy UT for a torsion member with circular cross section (Fig. 5.6a) may 
be derived as follows. Let the z axis lie along the centroidal axis of the torsion 
member. Before torsional loads T1 and T2 are applied, sections BC and DF are a 
distance dz apart. After the torsional loads are applied, these sections become 
sections B*C* and D*F*,  with section D*F* rotated relative to section B*C* 
through the angle d{J, as shown in the enlarged free-body diagram of the element of 
length dz (Fig. 5.6b). For linear elastic material behavior, d{J varies linearly with T 
(Fig. 5.6c). The shaded area below the inclined straight line is equal to the torsional 
strain energy dUT for the segment dz of the torsion member. Hence, the total 
torsional strain energy UT for the torsional member becomes 

(5 .24) 

Noting that b d{J = y dz and assuming that y = r/G and r = Tb/1 (b is the radius 
and J the polar moment of inertia of the cross section), we may write Eq. (5 .24) in 

TABLE 5.1 
Correction Coefficients for Strain Energy 
due to Shear 

Beam Cross Section k 

Rectanglea 1 .20 
Solid circularb 1 .33 
Thin-wall circularb 2.00 
!-section, channel, box-sectionc 1 .00 

a Exact value. 

b Calculated by Eq. (5.23). 

c The area A for the !-section, channel, or 
box-section is the area of the web hb, where h 
is the section depth and b the web thickness. 
The load is applied perpendicular to the axis 
of the beam and in the plane of the web. 
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- - z 
T 

(a) 

Figure 5 .6 Strain energy due to torsion. 

C *  F*  
(b) 

(c ) 
df3 

(5.25) 

Equation (5.25 ) represents the strain energy for a torsion member with circular cross 
section. The unit angle of twist (} for a torsion member of circular cross section is 
given by (} = TjGJ. Torsion of noncircular cross sections is treated in Chapter 6. 
Equation (5.25) is valid for other cross sections if the unit angle of twist (} for a given 
cross section replaces TjGJ in Eq. (5.25 ). For abrupt changes in material E, tor
sional load T or polar moment of inertia J, the value of UT may be computed 
following the same procedure as for UN [Eq. (5. 1 6a)] . 

Deflections of Statically Determinate Structures 

In the analysis of many engineering structures, the equations of static equilibrium 
are both necessary and sufficient to solve for unknown reactions and for internal 
actions in the members of the structure. For example, the simple structure shown in 
Fig. E5. 1  is such a structure, since the equations of static equilibrium are sufficient 
to solve for the tensions N1 , and N2 in members AB and CB, respectively. Struc
tures for which the equations of static equilibrium are sufficient to determine the 
unknown tensions, shears, etc., uniquely are said to be statically determinate struc
tures. Implied in the expression "statically determinate" is the condition that the 



180 5 / ENERGY METHODS 

Q 
A B p �----------------------�--� 

c 

Figure 5.7 Statically determinate pin-joined truss. 

deflections due to the loads are so small that the geometry of the initially unloaded 
structure remains essentially unchanged and the angles between members are 
essentially constant. If these conditions were not true, the internal tensions, etc., 
could not be determined without including the effects of the deformation and, hence, 
they could not be determined solely upon the basis of the equations of equilibrium. 

The truss shown in Fig. 5.7 is a statically determinate truss. A physical charac
teristic of a statically determinate structure is that every member is essential for 
the proper functioning of the structure under the various loads to which it is 
subjected. For example, if member AC were to be removed from the truss of Fig. 5.7, 
the truss would be unable to support the loads; it would collapse. 

Often, additional members are added to structures in order to stiffen the structure 
(reduce deflections), to strengthen the structure (increase its load-carrying capacity), 
or to provide alternate load paths (in the event of failure of one or more members). 
For example, for such purposes an additional diagonal member BD may be added to 
the truss of Fig. 5 .7 ; see Fig. 5 .8 .  Since the equations of static equilibrium are just 
sufficient for the analysis of the truss of Fig. 5.7, they are not adequate for the 
analysis of the truss of Fig. 5.8 . Accordingly, the truss of Fig. 5 . 8  is said to be a 
statically indeterminate structure. The analysis of statically indeterminate structures 
requires additional information (additional equations) beyond that obtained from 
the equations of static equilibrium. 

Q 
A B p �----------------------�--� 

c 

Figure 5.8 Statically indeterminate pin-joined truss. 
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In this section, the analysis of statically determinate structures is discussed. 
The analysis of statically indeterminate structures is presented in Sec. 5 .5 . 

The strain energy U for a structure is equal to the sum of the strain energies of 
its members. The loading for the jth member of the structure is assumed to be such 
that the strain energy £1 for that member is 

(5.26) 

where UNi' UMi ' U8i , and UTi are given by Eqs. (5. 1 6), (5. 19), (5 .21 ), and (5 .25), res
pectively. In the remainder of this chapter the limitations placed on the member 
cross section in the derivation of each of the components of the strain energy are 
assumed to apply. For instance, each beam is assumed to undergo bending about 
a principal axis of the beam cross section (see Appendix B and Chapter 7) ;  
Eqs. (5. 19) and (5.2 1) are valid only for bending about a principal axis . For sim
plicity, we consider bending about the x axis (taken to be a principal axis) and let 
Mx = M and Yy = V. 

With the total strain energy U of the structure known, the deflection qi of the 
structure at the location of a concentrated force Fi in the direction of Fi is [see 
Eq. (5. 1 1 )] 

(5.27 ) 

and the angle (slope) change ei of the structure at the location of a concentrated 
moment Mi in the direction of Mi is [see Eq. (5. 1 2)] 

(5.28) 

where m is the number of members in the structure. Use of Castigliano's theorem 
on deflections, as expressed in Eqs. (5.27 ) and (5.28), to determine deflections or 
rotations at the location of a concentrated force or moment is outlined in the fol
lowing procedure : 

1 .  Write an expression for each of the internal actions (axial force, shear, moment, 
and torque) in each member of the structure in terms of the applied external 
loads. 
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2. To determine the deflection qi of the structure at the location of a concentrated 
force Fi and in the directed sense of Fi , differentiate each of the internal action 
expressions with respect to Fi . Similarly, to determine the rotation (}i of the 
structure at the location of a concentrated moment Mi and in the directed 
sense of Mi, differentiate each of the internal action expressions with respect 
to Mi. 

3. Substitute the expressions for internal actions obtained in Step 1 and the 
derivatives obtained in Step 2 into Eq. (5 .27 ) or (5 .28) and perform the 
integration. The result is a relationship between the deflection qi (or rotation (}i) 
and the externally applied loads. 

4. Substitute the magnitudes of the external loads into the result obtained in Step 3 
to obtain a numerical value for the displacement qi or rotation (}i · 

Curved Beams Treated as Straight Beams 
The strain energy due to bending [see Eq. (5 . 19)] was derived by assuming that the 
beam is straight. The magnitude of UM for curved beams is derived in Chapter 9, 
where it is shown that the error in using Eq. (5 . 1 9) to determine UM is negligible as 
long as the radius of curvature of the beam is more than twice its depth. Consider the 
curved beam in Fig. 5.9 whose strain energy is the sum of UN , Us , and UM , each of 
which is caused by the same load P. If the radius of curvature R of the curved beam is 
large compared to the beam depth, the magnitudes of UN and Us will be small 
compared to UM and can be neglected. We assume that UN and Us can be neglected 
when the ratio of length to depth is greater than 10. The resulting erro:r: is often less 
than 1 %  and will seldom exceed 5%. A numerical result is obtained in Example 5.7. 

/ 

p 
Figure 5.9 

EXAMPLE 5.3 
End Load on a Cantilever Beam 

Determine the deflection under load P of the cantilever beam shown in Fig. E5.3 .  
Assume that the beam length L is more than five times the beam depth h . 

Figure E5.3 End-loaded cantilever beam. 
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SOLUTION 

Since L > 5h, the strain energy U8 is small and will be neglected. Therefore, the 
total strain energy is [Eq. (5. 1 9)] 

U = UM = __ 

x dz IL M2 

0 2Elx 

By Castigliano's theorem, the deflection qp is [Eq. (5.8)] 

- au - IL Mx 8Mx d qp - 8P - El 8P 
z 0 X 

By Fig. E5.3, Mx = Pz . Therefore, 8Mx/ 8P = z, and by Eq. (b), we find 

This result agrees with elementary beam theory. 

EXAMPLE 5.4 
Cantilever Beam Loaded in Its Plane 

(a) 

(b) 

(c) 

The cantilever beam in Fig. E5.4 has a rectangular cross section and is subjected to 
equal loads P at the free end and at the center as shown. 

Q = P  

L L 
2 2 

c B 

z� 
Figure E5.4 

(a) Determine the deflection of the free end of the beam. 

p 
-� 

A 

z �  

(b) What is the error in neglecting the strain energy due to shear if the beam 
length L is five times the beam depth h? Assume that the beam is made of 
steel (E = 200 GPa and G = 77.5 GPa). 

SOLUTION 

(a) To determine the dependencies of the shear V and moment M on the end load 
P, it is necessary to distinguish between the loads at A and B. Let the load 
at B be designated by Q. The moment and shear functions are continuous from 
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A to B and from B to C. From A to B, we have 

V = P, 
av 

. - . 
aP 

= 1 

M = Pz, 
aM 

. - . 
aP 

= z 

From B to C, we have 

V =  p + Q, 

M = P(z + �) + QZ, 

where we have chosen point B as the origin of coordinate z for the length from 
B to C. Equation (5.27 ) gives (with Q = P) fL/2 1 .2P fL/2 Pz fL/2 2.4P 

qp = o GA 
( 1 ) dz + o El

(z) dz + o GA 
( 1 ) dz fL/2 P(2z + L/2) (z 

L) _ _ 1 .8P L 7 PL 3 
+ 0 El + 2 

dz 
- GA + 1 6El 

(a) 

(b) Since the beam has a rectangular section, A =  bh and I = bh3 / 12 . Equa
tion (a) can be rewritten as follows : 

Ebqp 1 . 8LE 7 ( 1 2)£3 

-p = 
Gh + 1 6h 3 

1 . 8 (5 )(200) 7 ( 12)(53 ) 
= 

77.5 + 1 6  

= 23.23 + 656.25 
= 679.48 

. . 23.23 ( 100) 
Error In neglecting shear term = 

679.48 
= 3.42 % 

Alternatively, one could have used the approximate value k = 1 . 50 
[Eq. (5.23)] .  Then the estimate of shear contribution would have been in
creased by the ratio 1 .50/ 1 .20 = 1 .25. Overall the shear contribution would 
still remain small. 

EXAMPLE 5.5 
A Shaft-Beam Mechanism 

A shaft AB is attached to the beam CDF H; see Fig. E5.5 .  A torque of 2.00 kN · m 
is applied to the end B of the shaft. Determine the rotation of section B. The shaft 
and beam are made of an aluminum alloy for which E = 72.0 GPa and G = 
27.0 GPa. Neglect the strain energy of the hub DF. 
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�================�� H o  � "'------------:d 30.0 mm 

800 mm 

T= 2.00 kN • m 

Figure E5.5 Shaft-beam mechanism. 

SOLUTION 

Since the beam is slender, the strain energy due to shear is neglected. Hence, the total 
strain energy of the mechanism is 

U = UM + UT = 2 _x_dz + -- dz 
J4oo M2 fsoo T2 

0 2E� 0 2GJ 
(a) 

The pin reactions at C and H have the same magnitude, but opposite sense. 
Therefore, moment equilibrium yields the result 

H = C = 0.001 T 

By Castigliano's theorem, the angular rotation at B is 

- au -
J4oo Mx aMx fsoo T 

eB - -a - 2 - -a-dz1 + -dz2 T 0 E� T 0 GJ 

By Fig. E5.5 and Eq. (b), we have 

T = 2,000,000 N ·mm, 

(b) 

(c) 

(d) 

Therefore, Eqs. (c) and (d) yield, with lx = (30)(40)3/ 12 = 160,000 mm4 and J = 
n(60)4/64 = 636,000 mm4, f}B = 0. 10 1  rad. 

EXAMPLE 5.6 
Uniformly Loaded Cantilever Beam 

The cantilever beam in Fig. E5.6a is subjected to a uniformly distributed load w. 
Determine the deflection of the free end. Neglect the shear strain energy U8 . 
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SOLUTION 

(a) 

(b) 

Figure E5.6 Uniformly loaded cantilever beam. 

y 

I I �p 

Since there is no force acting at the free end, we introduce the fictitious force P, 
(Fig. E5 .6b). See the discussion that follows Example 5 .8 .  Hence, the deflection qp 
at the free end is given by [see Eq. (5. 8)] 

(a) 

The bending moment Mx due to P and w is 

(b) 
and 

8Mx 
-- = Z  
aP 

(c) 

Substitution of Eqs. (b) and (c) into Eq. (a) yields 

(d) 

This result agrees with elementary beam theory. 

EXAMPLE 5.7 
Curved Beam Loaded in Its Plane 

The curved beam in Fig. E5.7 has a 30-mm square cross section and radius of 
curvature R = 65 mm. The beam is made of a steel for which E = 200 G Pa and 
v = 0.29. 
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p
�-�E---

R_j 
R v 

Figure E5.7 

(a) If P = 6.00 kN, determine the deflection of the free end of the curved beam 
in the direction of P. 

(b) What is the error in the deflection if UN and Us are neglected? 

SOLUTION 

The shear modulus for the steel is G = E/[2 ( 1  + v)] = 77.5 GPa. 

(a) It is convenient to use polar coordinates. For a cross section of the curved 
beam located at angle 8 from the section on which P is applied (Fig. E5.7), 

N = P cos 8, 

V = P sin 8, 

M = PR( l  - cos 8), 

Substitution into Eq. (5 .27) gives 

aN 
aP = cos 8 

av . 
8 ap = SID 

aM 
aP = R(l  - cos 8) 

f3rcl2 P cos 8 f3rc12 kP sin 8 
qp = 0 EA 

(cos 8)R d8 + 0 GA 
(sin 8)R d8 

(a) 

+ 
f3rcf2 PR(l - cos 8) 

R(l - cos 8)R d8 (b) 0 El 
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Using the trigonometric identities cos2 O = ! + ! cos 20 and sin2 0 = ! - ! cos 20, 
we find that 

PR f 3rcf2 1 2PR f 3rc/2 
qp = 

EA 0 (! + ! cos 20) dO + ·
GA 0 (! - ! cos 20) dO 

PR 3 f 3rcf2 
+ 

El 0 ( 1 - 2 cos 0 + ! + ! cos 20) dO 

_ 3nPR 1 .2(3n)PR (9rc 
2
) PR 3 

qp - 4EA 
+ 

4GA 
+ 4 + 

El 

3n( 65 )( 6000) 1 .2(3rc )( 65 ) (  6000) 
- 4(200 X 103 )(30f 

+ 4(77,500)(30f (9rc 
2
) (65)3(6000)( 1 2) 

+ 4 + 
(200 X 103 )(30)4 

= 0.005 1 + 0.0 1 58 + 1 . 1 069 = 1 . 1 278 

Again, as in Example 5.4, we could have used the value k = 1 . 50, with a result
ing slight overall change in the shear contribution. 

(b) In case UN and Us are neglected, 

qp = 1 . 1069 mm 

and the percentage error in the deflection calculation is 

r = 
( 1 . 1 278 - 1 . 1069) 100 

= 1 8501 er or 
1 . 1 278 

. ;0 

This error is small enough to be neglected for most engineering applications. 
The ratio of length to depth for this beam is 3rc(65)/[2(30)] = 10.2. 

EXAMPLE 5.8 
Semicircular Cantilever Beam 

The semicircular cantilever beam in Fig. E5.8a has a radius of curvature R and a 
circular cross section of diameter d. It is subjected to loads of magnitude P at points 
B and C. 

(a) Determine the vertical deflection at C in terms of P, modulus of elasticity E, 
shear modulus G, radius of curvature R, area of the cross section A, and 
moment of inertia of the cross section I. 

(b) Let P = 1 50 N, R = 200 mm, d = 20.0 mm, E = 200 GPa, and G = 77.5 GPa. 
Determine the effect of neglecting the strain energy Us due to shear. 

SOLUTION 

(a) Since we wish to determine the vertical deflection at C, the contribution to the 
total strain energy of the load at C must be distinguished from the contribu-
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/ 

I 

Figure E5.8 

p 

R / 
(a) 

B 
- - -------- - -- --......_ / ........ 

� 
" 

� 
Q \ 

(} 

(b) 

�d 
p 

p 

tion of the load at B. Therefore, as in Example 5 .4, we denote the load P at B 
by Q ( = P in magnitude) (Fig. E5.8b). For section BC (Fig. E5. 8b), we have 

aN 
N = P cos cp, 

aP 
= cos ¢ 

V = P sin cp, 

M = PR( l - cos ¢), 

For section AB, we have 

N = (P + Q) sin O, 

v = (P + Q) cos o, 

av . � 
ap = SID If' 

aM 
aP 

= R(l - cos ¢) 

aN . 
ap = Sin O 

av 
aP 

= cos o 

M = PR( l  + sin O) + QR sin O, �� = R(l + sin IJ) 

(a) 

(b) 
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Substitution of Eqs. (a) and (b) into Eq. (5 .27) yields, with k = 1 .33 , frc/2 P cos2 ¢ frc/2 1 . 33P sin2 ¢ 
qc = 

o EA 
R d¢ + o GA 

R dcp frc/2 PR 2 ( 1 - cos cjJ )2 frc/2 (P + Q) sin2 8 
+ El 

R dcp + R dfJ 
o o M frc/2 1 . 3 3 (P + Q) cos2 8 

+ 
o GA 

R dfJ frc/2 PR(1 + sin 8) + QR sin 8 
+ 0 El 

R( 1 + sin fJ)R dfJ 

Integration yields, if we note that Q = P, 

_ 3n PR 3n 1 .33PR 
(
7n 1

) 
PR 3 

qc - 4 EA + 4 GA + 4 + El 

(c) 

(d) 

The three terms on the right-hand side of Eq. (d) are the contributions of the 
axial force, shear, and moment, respectively, to the displacement qc . 

(b) For P = 1 50 N, R = 200 mm, d = 20.0 mm (hence, A =  3 14 mm2 and I =  
7850 mm4), E = 200 GPa, and G = 77.5 GPa, Eq. (d) yields 

qc = 0.001 1 + 0.0039 + 4.9666 = 4.97 mm 

where 0.001 1 is due to the axial force, 0.0039 is due to shear, and 4.9666 is due 
to moment. The contributions of axial load and shear are very small . Since 
Rjd = 200/20 = 10, this result confirms the statement at the end of Sec. 5 .4. 

Dummy Load Method and Dummy Unit Load Method 
As illustrated in the preceding examples, Castigliano's theorem on deflections, as 
expressed in Eqs. (5 .27) and (5 .28), is useful for the determination of deflections and 
rotations at the locations of concentrated forces and moments. Frequently, it is 
necessary to determine the deflection or rotation at a location that has no corres
ponding external load (see Example 5.6). For example, we might want to know the 
rotation at the free end of a cantilever beam that is subjected to concentrated loads 
at midspan and at the free end, but no concentrated moment at the free end (as is 
the case in Example 5.4). Castigliano's theorem on deflections can be applied in 
these situations as well. The modified procedure is as follows: 

1 .  Apply a fictitious force � (or fictitious moment Mi) at  the location and in  the 
direction of the displacement qi (or rotation OJ to be determined. 

2. Write an expression for each of the internal actions (axial force, shear, moment, 
and torque) in each member of the structure in terms of the applied external 
forces and moments, including the fictitious force (or moment). 

3. To determine the deflection qi of the structure at the location of a fictitious 
force � and in the sense of Fi , differentiate each of the internal action expres-
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sions with respect to � .  Similarly, to determine the rotation (}i of the structure 
at the location of a fictitious moment Mi and in the sense of Mi , differentiate 
each of the internal action expressions with respect to Mi . 

4. Substitute the expressions for the internal actions obtained in Step 2 and the 
derivatives obtained in Step 3 into Eq. (5.27 ) or (5.28) and perform the integra
tion. The result is a relationship between the deflection qi (or rotation 8J and 
the externally applied loads, including the fictitious force � (or moment MJ. 

5. Since, in fact, the fictitious force (or moment) does not act on the structure, set 
its value to zero in the relation obtained in Step 4. Then substitute the numer
ical values of the external loads into this result to obtain numerical value for 
the displacement qi (or rotation 8J. 

The above procedure is known as the dummy load method. The name derives from 
the procedure. A fictitious (or dummy) load is applied, its effect on internal actions 
is determined, and then it is removed. If the procedure is limited to small deflections 
of linear elastic structures (consisting of tension members, compression members, 
beams, and torsion bars), then the derivatives of the internal actions with respect 
to the fictitious loads are equivalent to the internal actions that result from a unit 
force (or unit moment) applied at the point of interest. When the method is used in 
this manner, it is referred to as the dummy unit load method. The net effect of this 
procedure is that it eliminates the differentiation in Eqs. (5 .27 ) and (5.28). The 
internal actions (axial, shear, moment, and torque, respectively) in member j due to 
a unit force at location i may be represented as 

F a� F aVJ nii = aF '  vii = aF '  l l 
F aMj mii = aF , l 

(5.29a) 

Similarly, the internal actions in member j due to a unit moment at location i may 
be represented as 

M aMj mii = aM. ' l 
M a1j t .. = -Jl aM. l 

In the dummy unit load approach, Eq. (5.27) and (5.28) take the form 

The use of this technique is illustrated in the following examples. 

EXAMPLE 5.9 
Cantilever Beam Deflections and Rotations 

(5.29b) 

(5.30a) 

(5. 30b) 

The cantilever beam in Fig. E5.9 has a rectangular cross section and is subjected to 
a midspan load P as shown. 
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p L/2 L/2 ; FA I ' ' \ �C ______________ B ____________ � A 1 I z� � MA 
Figure E5.9 

(a) Determine the vertical deflection and rotation of the free end of the beam by 
the dummy load method. 

(b) Show that the same results are obtained by the dummy unit load method. 
Neglect strain energy due to shear. 

SOLUTION 

(a) The first step in the dummy load method is to apply a fictitious load FA and 
a fictitious moment MA at point A as shown in Fig. E5.9. Next, we write the 
moment expressions for the two intervals of the beam. 

Interval A-B 

(a) 

Interval B- C 

(b) 

Differentiation of Eqs. (a) and (b) with respect to the fictitious force and 
moment yields 

Interval A-B 

Interval B-C 

8MAB 
8FA 

= z 

8MAB 
8MA 

= 1 

(c) 

(d) 

(e) 

(f) 

To find the vertical deflection at point A, we substitute Eqs. (a), (b), (c), and (e) 
into Eq. (5.27) and perform the integration. 
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JL12 MA + FA(z + L/2) + P(z) (- L) d

-

qA - Z Z + Z + - Z (g) 
0 El 0 El 2 

= MAC��) + FAC��) + p(}8�J) (h) 

Since, in fact, the fictitious loads FA and MA do not exist, they are set to zero. 
Then Eq. (h) yields the deflection of point A as 

5PL3 
qA = 48El 

(i) 

To find the rotation of the section at A, we substitute Eqs. (a), (b), (d), and (f) 
into Eq. (5.28) and perform the integration. 

OA = r/2 MA �:A(z) ( l ) dz + 
J:/2 MA + FA(Z �

I
L/2) + P(:Z) 

( l ) dz (j) 

= MA(��) + FA(2�]) + pc��) (k) 

Again, the fictitious loads FA and MA are set to zero. Then Eq. (k) yields the 
rotation of the section at A as 

PL2 
f) - j4 - 8EI 

(1) 

(b) In the dummy unit load method, FA and MA are set to unity. Then the internal 
moment M due to the real force at B and the internal moments mF and mM 
[see Eqs. (5.29a) and (5.29b)] due to the unit force and unit moment at A are 

Interval A-B 

Interval B- C 

MAB = O 
m�B = l .O(z) = z 
m';{B = 1 .0 

MBc = Pz 

F (- L) _ L mBc = 1 .0 z + 2 = z + 2 
m�c = 1 .0 

(m) 
(n) 
(o) 

(p) 

(q) 

(r) 

The deflection at point A is obtained by the substitution of Eqs. (m), (n), (p), 
and (q) into Eq. (5 .30a). The result is [see Eq. (i)] 

qA = r/2 ��(:z + �) dz (s) 

5PL3 
- 48EI 

(t) 
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The rotation of the section at A is obtained by the substitution of Eqs. (m), 
(o), (p), and (r) into Eq. (5.30b). The result is [see Eq. (1)] fL/2 Pz 

eA = - (1) dz 0 El 
PL2 

-

8EI 

(u) 

(v) 

Thus, the equivalence of the dummy load approach with the dummy unit load 
approach is demonstrated for this example. 

EXAMPLE 5.10 
Pin-Connected Structure 

The pin-connected structure in Fig. E5. 1 0 is made of an aluminum alloy for which 
E = 72.0 GPa. The magnitudes of the loads are P = 10 kN and Q = 5 kN. Mem
bers BC, CD, and DE each have cross-sectional areas of 900 mm2• The remaining 
members have cross-sectional areas of 1 50 mm2• Determine the rotation of mem
ber BE caused by the loads P and Q. 

M 
I T  

� Ao-t--2 m
_---a...B � 

1 .5 m 

2 m  2 m  
D 

Q 
Figure E5. 1 0 

SOLUTION 

L��� 
p 

To determine the rotation of member BE by energy methods, a moment M must 
be acting on member BE. Let M be an imaginary counterclockwise moment repre
sented by a couple with equal and opposite forces M I L(L = BE = 2.5 x 103 mm) 
applied perpendicular to BE at points B and E as indicated in Fig. E5. 1 0. Equa
tions of equilibrium give the following values for the axial forces in the members 
of the structure. 

5 
3L 
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5 NBc =  - 3 (Q + P), 

NBD = Q, 
5P 4M N - - - -BE - 3 3L ' 

4P 5M Ncn = NnE = - E  
+ 

3L ' 

aNBc = 0 aM 

aNBD 
aM = O 

aNBE 
--

aM 
aN en 

--

-

5 
-

4 
3L 

aM 3L 

After the partial derivatives a�jaM have been taken, the magnitude of M in the 
� is set to zero. The values of � and a�; aM are then substituted into Eq. (5.28) 
to give 

(}BE = t �Lj a� = 
NABLAB aNAB + NBcLBc aNBc 

j= 1 EiAi aM EAAB aM EABc aM 
NBDLBD aNBD NBELBE aNBE + 

--
+ 

--

EABD aM EABE aM 

2 
NcvLcn aN en + --
EAcn aM 

(} - 4(25,000)(2000) [ 5 J 5( 10,000)(2500) [ 4 J BE - 3 (72,000)( 1 50) 
-

3 (2500) 
+ 

3 (72,000) ( 1 50) 
-

3 (2500) 

2(4) ( 10,000)(2000) [ 5 J -
3(72,000)(900) 3 (2500) = - 0.0041 1 5 - 0.002058 - 0.000549 

= - 0.00672 rad 

The negative sign for (}BE indicates that the angle change is clockwise ; that is, the 
angle change has a sign opposite to that assumed for M. 

EXAMPLE 5.1 1 
Curved Beam Loaded Perpendicular to Its Plane 

The semicircular curved beam of radius R in Fig. E5. 1 1 has a circular cross section 
of radius r. The curved beam is fixed at 0 and lies in the (x, y) plane with center of 
curvature at C on the x axis. Load P parallel to the z axis acts at a section n/2 from 
the fixed end. Determine the z component of the deflection of the free end. Assume 
that Rjr is sufficiently large for Us to be negligible. 

SOLUTION 

To find the z component of the deflection of the free end of the curved beam, a 
dummy unit load parallel to the z axis is applied at B as indicated in Fig. E5. 1 1 ;  
the curved beam is indicated by its centroidal axis in order to simplify the figure. 
Consider a section D of the curved beam at an angle (} measured from section A 
at the load P. The internal moment and torque at section D due to forces at A and 
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5.5 

E 

(} 

y 

Figure E5. 1 1 

B are 

Mv = P(AF) = PR sin 8 
Tv = P(DF) = PR( 1  - cos 8) 
m� = l .O(BE) = R cos 8 

z 

0 

(} 

R 

t� = l .O(DC + CE) = R(1  + sin 8) 

X 

F 

p 

These values are substituted into Eqs. (5 .30a) and (5.30b) to give 

= 
f1t/2 [PR sin 8(R cos 8) PR( 1  - cos 8) [R(1  + sin 8)]] d8 qB J o  El + 

GJ 
R 

_ ! PR3 PR3 (n _ !) - 2 El + 
GJ 2 2 

2PR3 
= -E 4 [1 + ( 1  + v)(n - 1 )] n r 

STATICALLY INDETERMINATE STRUCTURES 

As we observed in Sec. 5.4, a statically determinate structure (Fig. 5.7 ) may be made 
statically indeterminate by the addition of a member (member BD in Fig. 5 .8). 
Alternatively, a statically indeterminate structure is rendered statically determinate 
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if certain members, internal actions, or supports are removed. For example, the 
truss in Fig. 5 .8 is rendered statically determinate if member BD (or equally well 
member AC) is removed. Such a member in a statically indeterminate structure is 
said to be redundant, since after its removal the structure will remain in static equi
librium under arbitrary loads. In general, statically indeterminate structures con
tain one or more redundant members or supports. 

Generally in the analysis of structures, internal actions in each member of the 
structure must be determined. For statically indeterminate structures, the equa
tions of static equilibrium are not sufficient to determine these internal actions. For 
example, in Fig. 5. 10a, the propped cantilever beam has four unknown support 
reactions, whereas there are only three equations of equilibrium for a planar struc
ture. If the support at B were removed, the beam would function as a simple canti
lever beam. Hence, we may consider the support at B to be redundant and, if it 
is removed, the beam is rendered statically determinate. Since the choice of the 
redundant is arbitrary, the moment at the wall (point A) could be considered the 
redundant. 

If we consider the support at B to be redundant, additional information is re
quired to determine the magnitude of the reaction R (see Fig. 5. 10c). As we shall 
see, the fact that the support at B prevents the tip of the beam from displacing verti
cally may be used, in conjunction with Castigliano's theorem on deflections, to 
obtain the additional equation needed to determine the redundant reaction R. 

Likewise, the three support reactions at A (or E) for member ABCDE in 
Fig. 5. 1 Ob can be chosen as the redundants. Hence, either the support at A or E (but 
not both) may be removed to render the structure statically determinate. Let us 
assume that the support reactions at E are chosen as the redundants (Fig. 5. 1 Od). 
The three redundant reactions are a vertical force � ' which prevents vertical deflec
tion at E; a bending moment ME , which prevents bending rotation of the section 
at E; and a torque TE , which prevents torsional rotation of the section at E. The 

(a) (c) R 

p rB p 
TB E 

D E/ D 

c 

MB 

B 

(b) (d) 

Figure 5. 10 
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c 

B 
p 

Figure 5. 1 1  
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H 
D 
Q (a) 

B 

c E 

N'BE 
N" BE 

B D 

p Q (c) 

(d) 

fact that vertical deflection, bending rotation, and torsional rotation are prevented 
at section E may be used, in conjunction with Castigliano's theorem on deflections, 
to obtain the additional equations needed to determine the support reactions at E. 

The structures in Fig. 5. 1 1  do not contain redundant reactions but do contain 
redundant members. In Fig. 5 . 1 1 a, the member BE (or CD) of the truss is redun
dant. Hence, the truss is statically indeterminate. If either member BE or member 
CD is removed, the truss is rendered statically determinate. Likewise, the member 
ABC of the statically indeterminate structure in Fig. 5. 1 1 b is redundant. It may be 
removed to render the structure statically determinate. 

Since the truss of Fig. 5. 1 1a is pin-joined, the redundant member BE is sub
ject to an internal axial force. Hence, the only redundant internal force for the truss 
is the tension in member BE (Fig. 5. 1 1 c). However, the redundant member ABC 
of the structure in Fig. 5. 1 1d may support three internal reactions : the axial force 
N, shear V, and moment M. The additional equations (in addition to the equa
tions of static equilibrium) required to determine the additional unknowns (the 
redundant internal actions caused by redundant members) in statically indeter
minant structures may be obtained by the application of Castigliano's theorem 
on deflections. 

In particular, we can show that 

(5.3 1 )  

for every internal redundant force (F1 , F2 , • • •  ,) in the structure, and 

(5 .32) 
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for every internal redundant moment (M1 , M 2 ,  • • •  ,) in the structure. Equations 
(5.3 1 )  and (5.32) are readily verified for the structures in Fig. 5 . 10. The beam in 
Fig. 5 . 10a has a redundant external reaction R at B that produces an internal shear 
at section B equal to R. Since the deflection at point B is zero, Eq. (5.27 ) gives qR = 
au;aR = 0, which agrees with Eq. (5.3 1 ). The structure in Fig. 5. 10b has three 
internal redundant reactions (Jii , ME , TE) at section E, as indicated in Fig. 5. 10d. 
Since the deflection and rotations at E remain zero as the structure is loaded, 
Eqs. (5.27) and (5.28) yield the results au;af!i = au;aME = au;arE = 0, which 
agree with Eqs. (5 .3 1 )  and (5.32). 

It is not directly apparent that Eqs. (5.3 1 )  and (5.32) are valid for the internal 
redundant reactions in the structures in Fig. 5. 1 1 .  To show that they are valid, let 
N8E be the redundant internal action for the pin-joined truss (Fig. 5. 1 1a). Pass a 
section through some point H of member BE and apply equal and opposite ten
sions N�E and N�E '  as indicated in Fig. 5. 1 1 c. Since the component of the deflec
tion of point H along member BE is not zero, it is not obvious that 

(5. 33) 

In order to prove that Eq. (5.33) is valid, it is necessary to distinguish between ten
sions N�E and N�E · The displacement of point H in the direction of N�E is given 
by [see Eq. (5.27 )] 

and in the direction of N�E '  the displacement is given by 

au 
qN'BE = aN�E 

(5. 34) 

(5. 35 )  

These displacements qNBE and qN'BE are collinear, have equal magnitudes, but have 
opposite senses. Hence, by Eqs. (5 .34) and (5.35 )  we have 

au au _ 0 aNI + aN" 
-

BE BE 
(5 .36) 

The reduction of Eq. (5.36) to Eq. (5. 33) then follows by the same technique 
employed in the reduction of Eq. (a) of Sec. 5.2 to Eq. (d) of Sec. 5.2, since N�E = 
N�E =NBE ·  In a similar manner, it may be shown for the structure in Fig. 5. 1 1 b that 

(5.37)  

where N, V, and M are the internal reactions for any given section of member ABC. 

Note: In the application of Eqs. (5.3 1 )  and (5 .32) to the system with redundant 
supports or redundant members, it is assumed that the unloaded system is stress
free. Consequently, redundant supports exert no force on the structure initially. 
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•t 

(a ) U n l oaded 
q , 

I iik._l bt 
(b ) Un loaded 

q2 

/ 

� 

(c) Loaded 

(d) Loaded R 

q , 

Figure 5. 12  Effect of support settlement or thermal expansion or contraction on redundant 
supports of loaded beams. (a) Unloaded. (b) Unloaded. (c) Loaded. (d ) Loaded. 

However, in certain applications, these conditions do not hold. For example, con
sider the beam in Fig. 5. 10. Initially, the right end of the beam may be lifted off the 
support, or the end support may exert a force on the beam because of either sup
port settlement or thermal expansion or contraction. As a result, the end of the 
beam (in the absence of the redundant support) may be raised a distance q 1 above 
the location of the support before the beam is loaded (Fig. 5. 1 2a) or it may be a 
distance q2 below the support location (Fig. 5. 1 2b). 

If the displacement magnitudes q1 or q2 of the end of the beam (in the absence 
of the support) are known, we may compute the reaction R for the loaded beam 
(Figs. 5 . 1 2c and d) by the relations 

or (5. 38) 

where the minus sign indicates that displacement q 1  and force R have opposite 
senses. 

If known residual stresses (say, due to fabrication processes) are present in a 
structure before it is loaded, the total stresses in the structure after it is loaded may 
be computed in two steps. First, we assume that the structure is stress-free when 
unloaded, and we calculate the redundant reactions by means of Eqs. (5. 3 1 )  and 
(5.32). Stresses are calculated for the known loads and known reactions. Next, we 
superimpose these calculated stresses on the residual stresses to determine the total 
stresses in the structure. 

EXAMPLE 5.12 
Statically Indeterminate Cantilever Beam 

The beam in Fig. E5. 1 2a is fixed at the left end, simply supported at the right end, 
and subjected to a concentrated load P at the center. 

(a) Determine the magnitude of the reaction R (Fig. E5. 1 2b) at the right end. 

(b) Determine the deflection of the beam under load P. 

(c) If the simple support at the right end settles a vertical distance PL 3 j32EI, 
determine the new magnitude of the reaction R. 
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I< L ;.*� L Wk 2 2 

( a) � 

� p =-I L L 
2 2 

( b) z 

Figure E5. 12 

SOLUTION 

(a) Since the vertical displacement of the beam at the simple support is zero, 
Eq. (5. 3 1 ) gives (with z measured to the left from R) 

au = 0 = fL/2 Rz (z) dz + IL Rz - P(z - L/2) (z) dz 8R 0 EI L/2 EI 

0 = R (L/2)3 + R [L 3 - (L/2)3] -
p [L 3 - (L/2)3] 3 3 3 

PL 
+ 4[L2 - (L/2)2] 

5P R = T6 

(b) Reaction R is treated as independent of P in determining the deflection of 
the beam under load P. Therefore, the strain energy for the right half of the 
beam is independent of P. With z measured to the left from P, we have 

_ fL/2 Pz - R(z + L/2) _ PL3 _ 5RL
3 = 7PL3 

qp - 0 EI (z) dz - 24EI 48El 768EI 

(c) The vertical displacement at the simple support has a sense opposite to the 
sense of R; therefore, Eq. (5 .3 1) gives (with z measured to the left from R) 

Hence, 

8U _ _ PL
3 _ fL12 Rz fL Rz - P(z - Lj2) z dz 8R - 32EI - J o El (z) dz + L/2 El ( ) 

PL3 RL3 5PL3 
- - -- - ---32 3 48 or 

7P R =li 
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EXAMPLE 5.13 
Statically Indeterminate System 

Determine the reactions at C for member A BC in Fig. E5. 1 3a and the deflection 
of point B in the direction of P. Assume UN and U8 are so small that they can 
be neglected. 

p p 
K- s 

2R 2R 
I 

2 -z I I 
I I 

I I �R �R 
H 

I 
y 

y 

( a) ( b) 

Figure E5. 1 3  

SOLUTION 

The support at C allows rotation but prevents displacements. Our first problem is 
to determine the redundant reactions Q and H (Fig. E5. 1 3b) at C. Since the y dis
placement at C is zero, Eq. (5.3 1 )  gives 

or 

or 

au _ O _ fn [QR sin fJ - HR( l - cos fJ)] . 
fJ) aQ 

- -
0 EI 

R(stn R dfJ f2R [(Q - P)s + 2HR] 
+ 

o EI 
s ds 

(rc 8) 8P 
Q - + - + 2H - - = 0 

2 3 3 

4.2375Q + 2H - 2.6667P = 0 

Since the z displacement at C is zero, Eq. (5.3 1) gives 

au = O = f n [QR sin fJ - HR( l - cos fJ)] 
[ - R( l _ cos fJ)] R dfJ aH J o EI f2R [(Q - P)s + 2HR] 

2 d + 
o EI 

R s 

(a) 



or 

or 
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2Q + He2n 
+ 8) - 4P = 0 

2Q + 12.7 124H - 4P = 0 (b) 

The simultaneous solution of Eqs. (a) and (b) gives 

Q = 0.5 1 93P 
H = 0.2329P 

In the application of Castigliano's theorem to determine the deflection of the 
point B, we must differentiate the strain energy in member ABC with respect to the 
load at B; that is, with respect to P. However, since H and Q, the reactions at C, 
are expressed in terms of the load P, the chain rule must be used. That is, 

au au aH au aQ 
qp = aP + aH aP + aQ aP (c) 

Boundary conditions at C require that aujaH = 0 and au;aQ = 0 and Eq. (c) is 
simplified accordingly. Also, for the released structure [Fig. 5. 1 3 (b)] , the load at B 
does not cause bending moment in the curved part BC so that we need consider 
only the strain energy of the part AB. Thus, 

_ au _ f2R [(Q - P)s + 2HR] (- ) d 
qp - - s s aP 0 EI 

1 (8 3 8 3 3) = - - PR - - QR - 4HR EI 3 3 

Following substitution for Q and H in terms of P, 

Notice that the above argument is applicable to indeterminate structures in gen
eral. That is, the boundary condition requirement that au;aH = 0 and au;aQ = 0 
can be used to simplify the expression for strain energy in the structure. Only the 
strain energy in the released structure due to the applied load needs to be 
considered. (See also Example 5. 12.) 

EXAMPLE 5.14 
Statically Indeterminate Truss 

The inverted king post truss in Fig. E5. 14 is constructed of a 160-mm deep by 
60-mm wide rectangular steel beam ABC (EAc = 200 GPa and �c = 240 MPa), a 
1 5-mm diameter steel rod ADC (Eve = 200 GPa and Yvc = 500 MPa), and a 
40 mm by 40 mm white oak compression member BD (EBn = 12.4 GPa and YBn = 
29.6 MPa). Determine the magnitude of the load P that can be applied to the king 
post truss if all parts are designed using a factor of safety SF = 2.00. Neglect 
stress concentrations. 
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Figure E5. 14 

SOLUTION 

D 

Let member BD be the redundant member of the king post truss. We will include 
strain energy UN for both member BD and member ADC; however, UN and Us for 
the beam are so small compared to UM that they can be neglected. Let the compres
sion load in member BD be NBn · Equations of equilibrium at joint D give 

The bending moment in the beam at distance s from either C or A is 

Equation (5 .3 1) gives 

which can be simplified to give 

(a) 

But ABn = 40(40) = 1600 mm2, Ave = n( 1 5 )2/4 = 176.7 mm2, and 

lAc = 60( 160)3 /12 = 20.48 x 106 mm4. 



5.5 / STATICALLY INDETERMINATE STRUCTURES 205 

These along with other given values when substituted in Eq. (a) give 

p = 2.601NBD 

The axial loads in members BD and ADC and the maximum moment in member 
ABC can now be written as functions of P. 

NBD = 0.384P(N) 
Nne = 0.793P(N) 

Mmax = 6 1 6P(N · mm) 

Since the working stress for each member is half the yield stress for the member, a 
limiting value of P is obtained for each member. For compression member BD 

For tension member ADC 

For beam ABC 

�e 
2 

29.6 
2 

P = 6 1 ,700 N 

Yve 500 Nne 
- - -

2 2 Ave 
P = 55,700 N 

0.384P 
1600 

0.797P 
176.7 

240 MmaxC 6 16P(80) 
-

2 
- -

20.48 X 106 

P = 49,900 N 

Thus, the design load for the king post truss is 49.9 kN. 

EXAMPLE 5.15 
Spring-Supported 1-Beam 

An aluminum alloy 1-beam (depth = 100 mm, I =  2.45 x 106 mm4, E = 72.0 GPa) 
has a length of 6.8 m and is supported by seven springs (K = 1 10 N jmm) spaced 
at distance l = 1 . 10 m center to center along the beam (Fig. E5. 1 5a). A load P = 
12.0 kN is applied at the center of the beam over the center spring. Determine the 
load carried by each spring, the deflection of the beam under the load, the max
imum bending moment, and the maximum bending stress in the beam. 

SOLUTION 

It is assumed that the springs are attached to the beam so that the springs can 
develop tensile as well as compressive forces. Because of symmetry, there are only 
four unknown spring forces : A, B, C, D. A free-body diagram of the beam with 
springs attached is shown in Fig. E5. 1 5b. Let the loads B, C, and D carried by the 
springs be redundant reactions. The magnitudes of these redundants are obtained 
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Figure E5. 1 5  

using Eq. (5 .3 1 )  

(a ) 

JP = 1 2.0 kN 

........... 
,.,.--........ ...,..,. ........ 

Tv 
(b) 

;;;> ........ ...,..,. 
> 

�t 
�z� 

I ;;;»" ;;;»" 
> > ........... ........... ...,..,. ...,..,. 

�t -........ 

TA 

(a) 

The strain energy U for the beam and springs (if we neglect Us for the beam) is 
given by the relation 

(b) 

The moments in the three integrals are functions of the reaction A, which can be 
eliminated from Eq. (b) by the equilibrium force equation for the y direction. 

p D A = - - B - C - -2 2 (c) 

The moments for the three segments of the beam are 

0 < z � 1 

M = Az p D = - z - Bz - Cz - - z 2 2 
1 � z � 21 

M = Az + B(z - 1) p D = - z - B1 - Cz - - z  2 2 
21 ::; z < 3 1  

p D M = Az + B(z - 1 )  + C(z - 21) = 2 z - B1 - 2C1 - 2 z (d) 
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Substitution of Eqs. (b-d) into the first of Eqs. (a) gives 

au 2 f l (p D ) 
oB = O = EI 0 2 z - Bz - Cz - 2z ( - z) dz 

2 i 2 z (p D ) 
+ - - z - Bl - Cz - - z  ( - l ) dz EI z 2 2 

2 f 3 l (p D ) 
+ - - z - Bl - 2Cl - -z  ( - l ) dz EI 2 z  2 2 

2 (p D) 2B 
+ - - - B - C - - ( - 1) + -

K 2 2 K 

which can be simplified to give 

0 = 12BEI + 6CEI + 3DEI - 3PEI - 13PKl3 + 14BKl3 
+ 23CKl3 + 1 3DKl3 (e) 

Substitution of Eqs. (b-d) into the second and third of Eqs. (a) gives, after simpli
fication, 

0 = 6BEI + 12CEI + 3DEI - 3PEI - 23PKl3 + 23BKl3 
+ 40CKl3 + 23DKl3 (f ) 

0 = 6BEI + 6CEI + 9DEI - 3PEI - 27PKl3 + 26BKl3 
+ 46CKl3 + 27 DKl3 (g) 

Equations (e-g) are three simultaneous equations in the three unknowns, B, C, and 
D. Their magnitudes depend on the magnitudes of E, I, and K. Using the values 
specified in the problem, we have 

0 = B + 1 .0622C + 0.5838D - 0.5838P 
0 = B + 1 . 80 1 5C + 0. 8804D - 0.8804P 
0 = B + 1 .60 19C + 1 . 1 389D - 0.92 1 3P 

The solutions of Eqs. (h) and (c) are 

A =  - 0.0379P = - 455 N 
B = 0. 1014P = 12 1 7  N 
C = 0.2578P = 3094 N 
D = 0.3573P = 4288 N 

(h) 

The maximum deflection of the beam is the deflection under the load P, which 
is equal to the deflection of the spring at D. 

D 4288 
qp = K = 1W = 38.98 mm 

Mmax = 3lA + 2lB + lC = 4. 58 X 106 N ·  mm 
MmaxC 

O'"max = I = 93 .5 MPa 
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Except for the simplifying assumptions that the shear introduced negligible 
error in the flexure formula and contributed negligible strain energy, the above 
solution is exact. A simple approximate solution of the same problem is presented 
in Chapter 10. 

PROBLEMS 
Sections 5.1-5.4 

5.1 .  Determine the horizontal component of deflection of the free end of the 
curved beam described in Example 5.7. Assume that UN and U8 are so small 
that they can be neglected. 

5.2. For the pin-connected structure in Fig. E5. 10, determine the component of 
the deflection of point E in the direction of force P. 

Ans. qp = 25.60 mm 

5.3. Find the vertical deflection of point C in the truss shown in Fig. P5.3 . All 
members have the same cross section and are made of the same material. 

L 

L L 

p p 

Figure P5.3 

5.4. The beam in Fig. P5.4 has the central half of the beam enlarged so that the 
moment of inertia I is twice the value for each end section. Determine the 
deflection at the center of the beam. 

Ans. qmax = 65wL 4/(6 144£1) 

5.5. Member ABC in Fig. P5. 5 has a uniform symmetrical cross section and 
depth that is small compared to L and R. Determine the component of the 
deflection of point C in the direction of load P. 
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r��>l< -��>I< �l w ( N / mm )  I I I ! 
Figure P5.4 

Figure P5.5 

5.6. Member OAB in Fig. P5.6 lies in one plane and has the shape of two quad
rants of a circle. Assuming that U8 and UN can be neglected, determine the 
vertical component of the deflection of point B. 

. nR2MB Ans. Vertical qB = EI (down) 

Figure P5.6 

5.7. Determine the horizontal deflection of point B for the member in Fig. P5.6. 
5.8. Determine the change in slope of the cross section at point B for the member 

in Fig. P5.6. 
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5.9. Determine the x and y components of the deflection of point B of the 
semicircular beam in Fig. P 5.9. The depth of the beam is small com pared 
with R. 

p 
y 

c 
-- X  

Figure P5.9 

5.10. Determine the vertical component of the deflection of point C for the semi
circular beam in Problem 5.9. 

5. 11 .  The structure in Fig. P5. 1 1 is made up of a cantilever beam AB(E1 , I 1 , Ad 
and two identical rods BC and CD(E2 , A2). Let A1 be large compared with 
A2 and L1 be large compared with the beam depth. 

c 

p 

Figure P5. 1 1  

(a) Determine the component of the deflection of point C in the direction 
of load P. 

(b) If E1 = E2 = E, the beam and rods have solid circular cross sections 
with radii r 1 and r2 , respectively, and L1 = L2 = 25r1 , determine the 
ratio of r 1 to r2 such that the beam and rods contribute equally to qp . 



PROBLEMS 21 1 

5.12. Beam ABC in Fig. P5. 12 is simply supported and subjected to a linearly 
varying distributed load as shown. Determine the deflection of the center of 
the beam. 

Ans. qB = wL 4/ 120El 

t 
w ( N / mm)  

��������� B 
/ 1�<---------L--------�>1 

Figure P5. 1 2  

5.13. Member ABC in Fig. P5. 1 3  has a circular cross section with radius r. It has a 
right angle bend at B and is loaded by a load P perpendicular to the plane of 
ABC. Determine the component of deflection of point C in the direction 
of P. Assume that L1 and L2 are each large compared to r. 

y 

I /. L , --�,_, _/,( 
z 

p 

c 

Figure P5. 1 3  

5.14. Member ABC in Fig. P5. 14 lies in the plane of the paper, has a uniform 
circular cross section, and is subjected to torque T0 , also in the plane of the 

Figure P5. 14 
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paper, as shown. Determine the displacement of point C perpendicular to the 
plane of ABC. G = E/2( 1 + v). 

5.15. For the member in Problem 5. 14, determine the rotation of the section at C 
in the direction of T0. 

5.16. Member ABC in Fig. P5. 16. lies in the plane of the paper, has a uniform 
circular cross section, and is subjected to a uniform load w (N/mm) that acts 
perpendicular to the plane of ABC. Determine the deflection of point C 
perpendicular to ABC, if length L is large compared with the diameter of the 
member. G = E/2(1 + v) 

Ans. qc = wL4( 1 3 + 6v)j 12EI 

'l'A--�e---- L -----::.�� 
A 

Figure P5. 16  

5.17. Member ABC in Fig. P5. 1 7 1ies in the (x, y) plane, has a uniform circular cross 
section, and is subjected to loads P perpendicular to the (x, y) plane. 
Determine the deflection of point C in the z direction, if R and L are large 
compared with the diameter of the member. 

y 

z L 

p 
c 

Figure P5 . 1 7  
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5.18. The semicircular member in Fig. P5. 1 8  lies in the (x, y) plane and has a cir
cular cross section with radius r. The member is fixed at A and is subjected 
to torque T0 at the free end at B. Determine the angle of twist of the cross 
section at B. G = E/2(1  + v). 

Ans. (}B = 2T0R(2 + v)/Er4 

y 

2 

Figure P5. 1 8  

B - X  

To 

5.19. For the semicircular member in Problem 5. 1 8, determine the x, y, and z 
components of the deflection of point B. 

5.20. A bar having a circular cross section is fixed at the origin 0 as shown in 
Fig. P5.20 and has right angle bends at points A and B. Length OA lies 
along the z axis; length AB is parallel to the x axis; length BC is parallel 
to the y axis. Determine the x, y, and z components of the deflection of 
point C. Moment Me is a couple lying in a plane parallel to the (x, y) plane. 
G = E/2(1 + v). 

Ans. u = 0, v = McL2/2El, w = - McL2( 5  + 2v)j2EI 

A 
z 

y 

ll ) Me 

Figure P5 .20 

5.21.  A stepped tension member has two sections of length 1 .00 m, each section 
being circular in cross section with diameters of 120 mm and 80.0 mm, res
pectively; see Fig. P5.2 1 .  The member is made of an aluminum alloy that 
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1 .00 m  

1 .00 m 

Figure P5.21 

1 20 mm 

80.0 mm 

k = 200 MN/m 

has a yield stress Y = 330 MPa and a modulus of elasticity E = 72.0 GPa. 
A spring slides freely over the bottom half of the member and bears on an 
end plate at the bottom end. The spring has a constant k = 200 MNjm. 
The member was designed using a safety factor of 1 .80 for general yielding. 
Determine the deflection of the free end of the spring caused by the max
imum allowable load p max . 

5.22. The beam ABC in Fig. P5.22 is made of steel (E = 200 GPa) and has a rec
tangular cross section, 70.0 mm by 50.0 mm. Member BD is made of an 
aluminum alloy (E = 72.0 G Pa) and has a circular cross section of diameter 
10.0 mm. Determine the vertical deflection under the load Q = 8.50 kN. 

D 

1 0.0 mm 

900 mm 

Q = 8.50 kN 

j � <;------ 800 mm -���- 500 mm 

O A  70.0 mm B c 

Figure P5 .22 
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5.23. The beam ABC in Fig. P5.23 is made of steel (E = 200 GPa). It has a hollow 
circular section, with outer diameter 1 80 mm and inner diameter 1 50 mm. 
The spring has a constant k = 2.00 MNjm. A moment M0 = 40.0 kN ·m is 
applied at C. Determine the rotation of the cross section at C. 

1--E<I EC:----- 2.00 m ---------'>���"'- 1 .00 m � �
-.--
�

-----
-18--.-0:m_m __ �---------�cl ) 

<.. k = 2.00 MN/m M0 = 40.0 kN · m 
� 

///7/7// 

Figure P5.23 

5.24. The beam in Fig. P5.24 is made of brass (E = 83 .0 GPa) and has a square 
cross section with a dimension of 10.0 mm. The identical coil springs have 
constant k = 30.0 kNjm. A load Q = 250 N is applied at midspan (a = 
100 mm). Determine the deflection at midspan. 

r-- a 

� � <.. <.. <.. <.. � � 
l--EI E:--- 200 mm -------:)1�1 

Figure P5.24 

5.25. Let the location of the load a = 1 50 mm in Problem 5.24. Determine the 
deflection under Q. 

5.26. The beam in Fig. P5.26 is made of an aluminum alloy (E = 72.0 G Pa) and 
has a rectangular cross section with external dimensions 80.0 m by 100 mm 
and a wall thickness of 10.0 mm. The identical springs have constant k = 
300 kNjm. A couple M0 is applied at distance a from the left end. Let M0 = 
1 5.0 kN ·m and a =  1 . 50 m. Determine the rotation of the section where M0 
is applied. 

I I-E:<:-------
a ------'>�� M0 = 1 5.0 kN · m :r \ t 

1 00 mm /Tt/ s > > > Tim 
t--E--------- 3.00 m --------� 

Figure P5 .26 
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5.27. In Problem 5.26, let a =  2.5 m. Determine the rotation at the section where 
M0 is applied. 

5.28. A structure is fabricated by welding together three lengths of I-shape 
members (Y = 250 MPa, E = 200 GPa, and G = 77.5 GPa), as shown in 
Fig. P5.28. The members have cross-section properties lx = 695 x 106 mm4, 
I = 20 9 x 106 mm4 S = 2705 x 103 mm3 S = 228 x 103 mm3 depth = y • ' X ' y ' 
5 1 5.6 mm, and area = 1 8 190 mm2. The structure was designed with a 
safety factor of 2.00 for general yielding. 

2.50 m 

\�.:::---- 2.50 m ---�>1 
Figure P5.28 

(a) Determine the maximum allowable load Q. 

Q 

(b) For this load, what is the deflection at the point where Q is applied? 
(c) Determine the error in neglecting the strain energy due to axial load, 

due to shear. 

5.29. A structure (Fig. P5.29) is made by welding a circular cross-section steel 
shaft (E = 200 GPa, G = 77.5 GPa), of length 1 .2 m and diameter 60.0 mm, 
to a rectangular cross-section steel beam of length 1 .5 m and cross-section 
dimensions 70.0 mm by 30.0 mm. A torque T0 = 2.50 kN ·m is applied to the 
free end of the shaft as shown. Determine the rotation of the free end of the 
shaft. 

5.30. A circular cross-section shaft AB, with diameter 80.0 mm and length 1 .0 m, 
is made of an aluminum alloy (G = 27.0 GPa) ; see Fig. P5.30. It is attached 
at point A to a torsional spring ({J = 200 kN ·m per rad). A torque T0 = 
4.00 kN ·m is applied at the free end B. Determine the rotation of the shaft 
at B. 

5.31. A rectangular box-section beam is welded to a 1 80-mm diameter shaft 
(Fig. P5.3 1) . The box-section has external dimensions 100 mm by 1 80 mm 
and a wall thickness of 20.0 mm. Both members are made of an aluminum 
alloy (E = 72.0 GPa and G = 27.0 GPa). For a load Q = 16.0 kN, determine 
the vertical deflections at the free ends of the beam and shaft. 



Figure P5.29 

Figure P5.30 

X 

f3 = 200 kN • m/rad 

80.0 mm 

1 .00 m 

-� ........ ............... 2.00 m 
........ 

y ............... 
1 80 mm 

............... 

1 80 mm 

2.00 m ------ � 

Figure P5 . 3 1  

To = 4.00 kN . m 

z 
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5.32. For the beam shown in Fig. P5.32, determine the vertical deflection at mid
span of the beam in terms of M0 , L, E, and I. 

Figure P5.32 

5.33. For the structure shown in Fig. P5.33, determine the horizontal and vertical 
displacement components of point C in terms of Q, w, L1 , L2 , E, and I. 

Q 
c 

w 

A 
�------------ £1 --------------� 

Figure P5.33 

5.34. The circular curved beam AB in Fig. P5.34 has a radius of curvature R and 
circular cross section of diameter d. Determine the horizontal and vertical 

Q 
Figure P5.34 
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displacement components of point B in terms of E, R, d, and load Q. Neglect 
the strain energy due to axial load and shear. 

5.35. Determine the rotation of the section at B in Problem 5. 34. 

Section 5.5 

5.36. Let tension member EF be added to the structure in Fig. E5 . 10 as indicated 
in Fig. P5.36. Member EF is made of the same material and has the same 
cross-sectional area as member AB. The loads, material, and cross-sectional 
dimensions are indicated in Example 5. 1 0. Determine the axial force in 
member EF and deflection of point E in the direction of force P. 

F 

4 m  

Figure P5.36 

2 m  B 

Q 
p 

5.37. The beam in Fig. P5.37 is fixed at the right end and simply supported at 
the left end. Determine the reaction R at the left end, assuming that length 
L of the beam is large compared with its depth. 

Ans. R = 3wL/8 

j< L w ( N / mm l  � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 ��: --------l � 

Figure P5.37 
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5.38. The beam in Problem 5.37 has a circular cross section with a diameter of 
40 mm, has a length of 2.00 m, and is made of a steel (E = 200 GPa) having 
a working stress limit of 140 MPa. 

(a) Determine the magnitude of w that will produce this limiting stress. 
(b) How much would the stress in the beam be increased for the same value 

of w if the left end of the beam deflects 5.00 mm before making contact 
with the support? 

5.39. The beam in Fig. P5. 39 is subjected to two loads P and is supported at three 
locations A, B, and C as shown. Determine the rection at B, assuming that 
the beam length is large compared to its depth. 

Ans. Reaction at B = l lP/8 

p 

Figure P5.39 

p 
L 

1:.4 � 4 -�E--- I 

5.40. The beam in Fig. P5.40 is fixed at the left end and is supported on a roller at 
its center B. Assuming that the beam length is large compared to its depth, 
determine the reaction at B and slope of the beam over the support at B. 

1: L l L :b � Me 
Figure P5 .40 

5.41 . Member ABC in Fig. P5.4 1 has a constant cross section. Assuming that 
length R is large compared to the depth of the member, determine the hori
zontal H and vertical V components of the pin reaction at C. 

Ans. V = 0.673 wR, H = 0.608 wR 

Figure P5.4 1  
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5.42. The beam in Fig. P5.42 is fixed at the right end and rests on a coil spring 
with spring constant K at the left end. Assuming that the beam length is 
large compared to its depth, determine the force R in the spring. 

Figure P5.42 

5.43. The structure in Fig. P5.43 is constructed of two steel columns AB and CD 
with moment of inertia 11 and steel beam BC with moment of inertia 12 • 
Assume that lengths H and L are large compared with the depths of the 
members, determine the horizontal component of the pin reaction at D. 

I� L 

cl 
H 

A D J 0 0 
% � 

Figure P5.43 

5.44. Assuming that dimensions R and L are large compared with the depth of 
the member, determine the maximum moment for the chain link shown in 
Fig. P5.44. 

Figure P5.44 

L ----1 R 
-i p  
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5.45. Member ABCD in Fig. P5.45 lies in the plane of the paper. If length L is 
large compared with the depth of the member, determine the pin reaction 
V at D and the horizontal displacement qH of the pin at D. 

Ans. V = 8 1P/ 128, qH = 9PL 3 j64El 

Figure P5.45 

p 

B 
�-, 

c l 
L 

D J 
5.46. Let the pin at D for member ABCD in Problem 5.45 be prevented from dis

placing horizontally as load P is applied. Determine pin reactions V and H 
at D. 

5.47. The structure in Fig. P5.47 is made up of a steel (E = 200 GPa) rectangular 
beam ABC with depth h = 40.0 mm and width b = 30.0 mm and two wood 
(E = 10.0 GPa) pin-connected members BD and CD with 25.0-mm square 
cross sections. If load P = 9.00 kN is applied to the beam at C, determine 
the reaction V at support D and the maximum stresses in the steel beam and 
wood members. 

Ans. V = 1 3 .09 kN, O"beam = 92. 1 MPa, a-compression member = 1 3 . 1  MPa 

p 
:/-"/.�---- 300 m m -----3)a ..... IOCE-<---- 300 m m  ---�� 

Figure P5.47 
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5.48. Member ABC in Fig. P5.48 has a uniform circular cross section with radius 
r that is small compared with R. Determine the pin reaction V at C and hori
zontal component of the displacement of point B. 

Figure P5.48 

5.49. Member ABC in Fig. P5.49 has a right angle bend at B, lies in the (x, z) 
plane, and has a circular cross section with diameter d that is small com
pared with either length L1 or length L2 • The reaction at C prevents deflec
tion in the y direction only. Determine the reaction V at C when the moment 
M 0 is applied at C. 

Figure P5.49 

5.50. Member AB in Fig. P5.50 is a quadrant of a circle lying in the (x, z) plane, 
has a circular cross section of radius r, which is small compared with R, 
and is supported by a spring (spring constant K) at B, whose action line is 
parallel to the y axis. Determine the force in the spring when torque T0 is 
applied at B with action line parallel to the negative z axis. 

5.51 .  The structure in Fig. P5. 5 1  has a uniform circular cross section with dia
meter d, which is small compared with either H or L. The structure is fixed at 
0 and C and lies in the (x, z) plane. The load P is parallel to the y axis. Deter
mine the magnitudes of the moment and torque at 0 and C. 

Ans. M0 = Me = PH/2, T0 = Tc = PL2/{8 [L + 2H( l  + v)]} 
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z 

Figure P5.50 

z 

Figure P5.5 1 

y 

X 

R 

y 

�/ ......,o ----...... Ar-- X 

5.52. Each of the three members of the structure in Fig. P5.52 is made of a ductile 
steel (E = 200 GPa, v = 0.29) with yield stress Y = 420 MPa. Member OA 
has a diameter of 100 mm, is fixed at 0, and is welded to beam AB, which has 
a rectangular cross section with a depth of 75 .0 mm and width of 50.0 mm. 
Tension member BC has a circular cross section with a diameter of 7. 50 mm. 
All the members are unstressed when P = 0. Determine the value of P based 
on a factor of safety of SF = 2.00 against initiation of yielding. Neglect 
stress concentrations. 

5.53. Member BCD and tension member BD in Fig. P5. 53 are made of materials 
having the same modulus of elasticity. Member BCD has a constant 
moment of inertia J, has a cross-sectional area that is large compared to 
area A of tension member BD, and has depth that is small compared to L. 
Determine the axial force N in member BD. 



PROBLEMS 225 

c 

y 

�- 2.5 m 

p 0 
1 m  

B 

Figure P5.52 

L 

D 
Figure P5.53 

5.54. Member BCDF in Fig. P5.54 has the same moment of inertia I at every 
section. Determine the internal reactions Nv, Vn , and Mv at section D. 
Length L is large compared with the depth of the member. 

5.55. Member BCD in Fig. P5.55 has the same moment of inertia I at every 
section. Determine the internal actions NB,  �' and MB at section B. Radius R 
is large compared with the member's depth. 

Ans. NB = 0, � = 8wRj(3n2 + 6n - 24) 
MB = - 2nR2w/(3n2 + 6n - 24) 
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p �� < - L -�>� 

r.-----C ------,D 

L l L....l..---r--.B ------JF 

Figure P5.54 

w ( N /mm)  

Figure P5.55 

5.56. The beam in Fig. P5. 56 is supported by three identical springs with spring 
constant k. It is subjected to a uniformly distributed load w. Determine 
the force in each spring in terms of w, k, L, E, and I. 

w } 1 1 1 1 1 1 1 1 1 1 1 1 1 1  ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1  � I� � �I -- -- --<.. <.. <.. <.. k <.. k <.. k <.. <.. <.. <.. <.. <.. � � � k:l<--- L ---�--- L ---�>1 2 2 
Figure P5.56 

5.57. Show that the reaction at the roller support for the beam in Fig. P). 57 is 
equal to SQ/2. 

I. L a L :! 
Figure P5.57 
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5.58. Determine the force in the spring (Fig. P5.58) in terms of w, L, k, E, 
and I. 

� w 

I I I I I , > "<. k  

I< s � 
L 

Figure P5.58 

5.59. Show that the vertical reaction at the roller support for the curved member 
in Fig. P5.59 is equal to 2Q/(3n - 8). 

Q 

Figure P5.59 

5.60. Determine the reaction at B for the beam in Fig. P5.60 in terms of w, L 1 ,  
L2 , E, and J. 

w £ I I I I I I I I 15: 1 I I I I I i I� L1 J L2 �I 
Figure P5.60 

5.61 . Determine the reaction at the roller support for the structure in Fig. P5.6 1 , 
in terms of Q, R, E, and I. 

5.62. In Problem 5.57, determine the vertical deflection at the point where Q is 
applied. 

5.63. In Problem 5.59, determine the horizontal deflection at the point where load 
Q is applied. 

5.64. In Problem 5.6 1 , determine the vertical deflection at the point where load Q 
is applied. 
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//��-- R ---?-� 

Figure P5.6 1 

Q 

5.65. For the structure in Fig. P5.65, determine the force in the spring in terms of 
M0 , k, L, E, and I. 

Figure P5.65 

5.66. An I-beam is made of steel (E = 200 GPa) and is 5.0 m long (Fig. P5.66). 
It has cross section properties lx = 24.0 x 106 mm4, ly = 1 . 55 x 106 mm4, 
depth = 203.2 mm, flange width = 101 .6 mm, and area = 3490 mm2• The 
helical support spring has a constant k = 1 .00 MNjm. For the case where 
Q = 30.0 kN, determine the force in the spring and the maximum bending 
stress in the beam. 

Figure P5.66 

5.67. For the structure in Fig. P5.67, derive a formula for the force in the bar in 
terms of w, E1 , I, and L1 for the beam and E2 , A2 , and L2 for the bar. 

5.68. The beam in Problem 5.67 is made of steel (E = 200 GPa). It has a rectan
gular cross section with dimensions 90.0 mm deep, 30.0 mm wide, and a 
length L1 = 2.00 m. The rod is made of an aluminum alloy (E = 72.0 GPa). 
It has a diameter of 5.00 mm and a length L2 = 4.00 m. Determine the 
tension in the bar in terms of load w. 
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w 

Figure P5.67 

5.69. A shaft AB is attached to member CDFH at A and fixed to a wall at B 
(Fig. P5.69). The shaft has a diameter of 60.0 mm and the parts CD and F H 
of member CDFH have square cross sections 40 mm by 40 mm. The mas
sive hub DF may be considered as rigid. A torque of magnitude 3.00 kN ·m 
is applied to the midsection of the shaft as shown. All members are made 
of steel (E = 200 GPa and G = 77. 5 GPa). 

r400mm 200 mm 400 mm� 

Figure P5.69 

(a) Determine the maximum bending stress in members CD and FH. 
(b) Determine the maximum shear stress in the shaft. 
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5.70. In Fig. P5.70, the shaft is attached to a torsional spring at one end and 
fixed to a rigid wall at the other end. The shaft has an 80.0-mm diameter 
and shear modulus G = 77.5 GPa. The torsional spring constant is fJ = 

200 kN ·mjrad. A torque of magnitude 5.00 kN ·m is applied to the mid
section of the shaft as shown. Determine the maximum shear stress in the 
shaft. 

[3 = 200 kN · m/rad 

T =  5.00 kN · m 

800 mm 

800 mm 

� �  
Figure P5.70 

5.71 .  A rectangular box-beam, 100 mm by 200 mm and with a wall thickness of 
10.0 mm, is welded to a shaft of diameter 1 80 mm, (Fig. P5.7 1). Determine 
the vertical reaction at the roller support. (E = 200 GPa and G = 77.5 GPa 
for all members.) 

1 80 mm 

Figure P5.71 
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5.72. A steel torsion member has a length of 3.00 m and diameter of 1 20 mm 
(E = 200 GPa and G = 77.5 GPa). It is fixed to a rigid wall at one end. 
A steel beam of rectangular cross section 120 mm by 30.0 mm is welded 
perpendicularly to the torsion member at its midsection (Fig. P5.72). The 
beam is supported by a roller located 2.00 mm from the welded section. The 
free end of the member is subjected to a torque T = 16.0 kN ·m. Determine 
the reaction at the roller. 

T= 1 6.0 kN · m 

Figure P5.72 

5.73. A beam ABC is fixed at its ends A and C (Fig. P5.73). Show that the shear V 
and moment M at C are given by the relations V = Q(L 3 - 3a2 L + 2a3)/L 3 
and M = Q(aL2 - 2a2L + a3)jL2• 

Q 
�-- a --�  

A B c 

�-------- L -------____..;� 

Figure P5. 73 

5.74. The beam in Problem 5.73 has a circular cross section of diameter d = 
1 50 mm and length L = 2.00 m. For a =  L/3, determine the magnitude 
of load Q that produces a maximum bending stress of 100 MPa. 

5.75. The L-shaped beam ABCD in Fig. P5.75 has a constant cross section along 
its length. Show that the horizontal and vertical reactions H and V, respec
tively, of the pin at D are given by the expressions H = 9Qj22 and V = 
4Q/ 1 l .  
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L 

A 

Figure P5.75 

5 .. 76. The L-shaped beam in Fig. P5.75 has a square cross section, 80.0 mm by 
80.0 mm, and a length 3L = 2400 mm. 

(a) Determine the magnitude of load Q that produces a maximum bending 
stress of 120 MPa in the beam. 

(b) The beam is made of steel (E = 200 GPa). Determine the vertical 
deflection of the beam at point C. 

5.77. Consider the indeterminate beam of Example 5. 12 (Fig. E5. 12) . Let the 
beam material be elastic-perfectly plastic (Fig. 4.4a). Let the cross section 
be rectangular with width b and depth h. 

(a) Determine the magnitude of the force P = Py that causes yielding to 
initiate and locate the section at which it occurs. 

(b) Determine the magnitude of the force P = Pp that causes a plastic 
hinge to form at the wall support. 

(c) Determine the magnitude of the force P = Ppc that causes the beam 
to form a plastic hinge to occur at the section under load P. The load 
Ppc is called the plastic collapse load for the member. 

(d) Construct a moment diagram for the beam for load PPc · 
(e) Draw a sketch of the deformed shape of the beam for P = Ppc · 

Note : The elastic segments of the beam rotate about a plastic hinge as 
rigid bodies. For this reason, the response of the beam at P = Ppc is like 
a mechanism that rotates kinematically about hinges. Therefore, the term 
mechanism or kinematic mechanism is used in plastic collapse analysis (limit 
analysis) to describe this process. 
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PART II 

CLASSICAL 
TOPICS 

IN 
ADVANCED 
MECHANICS 

In Part II of this book, Chapters 6 to 12, we discuss topics that are considered 
classical subjects in advanced mechanics. In Chapter 6 the torsion of bars is treated. 
In Chapter 7 we present nonsymmetrical bending of straight beams. The concept 
of shear center is developed in Chapter 8. In Chapter 9 curved beam theory is dis
cussed. Beams on elastic foundations are examined in Chapter 10, and thick-wall 
cylinders are studied in Chapter 1 1 . Column buckling is explored in Chapter 12. 





6 

6. 1 

TORSION 

In this chapter, we treat the problem of torsion of prismatic bars with noncircular 
cross sections. First, we treat the case in which each torsion member is made of a 
linearly elastic isotropic material. The iast section of the chapter treats fully plastic 
torsion. For prismatic bars with circular cross sections, the torsion formulas are 
readily derived by the method of mechanics of materials. However, for noncircular 
cross sections, more general methods are required. In the following sections we 
treat noncircular cross sections by several methods, one of which is the semiinverse 
method of Saint-Venant (Boresi and Chong, 1987) . General relations are derived 
that are applicable for both the linear elastic torsion problem and the fully plastic 
torsion problem. In order to aid in the solution of the resulting differential equa
tion for some linear elastic torsion problems, the Saint-Venant solution is used in 
conjunction with the Prandtl elastic-membrane (soap-film) analogy. 

In spirit, the semiinverse method of Saint-Venant is, in part, comparable to the 
mechanics of materials method in that certain assumptions, based on an under
standing of the mechanics of the problem, are introduced initially. However, these 
assumptions are not so specific as to attempt to meet all the requirements of the 
problem. Rather, sufficient freedom is allowed so that the equations describing the 
torsion boundary value problem of solids may be employed to determine the solu
tion more completely. For the case of circular cross sections, the method of Saint
Venant leads to an exact solution (subject to appropriate boundary conditions) for 
the torsion problem. Because of its importance in engineering, the torsion problem 
of circular cross sections is discussed first. 

TORSION OF A PRISMATIC BAR OF CIRCULAR 
CROSS SECTION 

Consider a solid cylinder with cross sectional area A and length L. Let the cyl
inder be subjected to a twisting couple T applied at the right end (Fig. 6. 1) . An 
equilibrating torque acts on the left end. The vectors that represent the torque are 
directed along the z axis, the centroidal axis of the shaft (Fig. 6. 1) .  Under the action 
of the torque, an originally straight generator of the cylinder AB will deform into 
a helical curve AB*. However, because of the radial symmetry of the circular cross 
section and because a deformed cross section must appear to be the same from both 
ends of the torsion member, plane cross sections of the torsion member normal to 
the z axis remain �plane after deformation and all radii remain straight. Further-
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Undeformed position 
of generator 

Deformed position 
of generator 

I ���------------ L 
Figure 6. 1 Circular cross-section torsion member. 

more, for small displacements, each radius remains inextensible. In other words, 
the torque T causes each cross section to rotate as a rigid body about the z axis 
(axis of the couple) ; this axis is called the axis of twist. If we measure the rotation 
p of each section relative to the plane z = 0, the rotation p of a given section will 
depend on its distance from the plane z = 0. For small deformations, following 
Saint-Venant, we assume that the amount of rotation of a given section depends 
linearly on its distance z from the plane z = 0. Thus, 

p = (}z (6. 1) 

where fJ is the angle of twist per unit length of the shaft. Under the conditions that 
plane sections remain plane and Eq. ( 6. 1) holds, we now seek to satisfy the equa
tions of elasticity; that is, we employ the semiinverse method of seeking the elas
ticity solution. 

Since cross sections remain plane and rotate as rigid bodies about the z axis, the 
displacement component w, parallel to the z axis, is zero. To calculate the (x, y) 
components of displacements u and v, consider a cross section at distance z from 
the plane z = 0. Consider a point in the circular cross section (Fig. 6.2) with radial 
distance OP. Under the deformation, radius OP rotates into the radius OP* 
(OP* = OP). In terms of the angular displacement p of the radius, the displacement 
components ( u, v) are 

u = x* - x = OP[cos(p + ¢) - cos ¢] 
v = y* - y = OP[sin(p + ¢) - sin ¢] 

X 

Figure 6.2 

(6.2) 
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Expanding cos({J + ¢) and sin({J + ¢) and noting that x = OP cos ¢, y = OP sin ¢, 
we may write Eqs. (6.2) in the form 

u = x (cos fJ - 1) - y sin fJ 
v = x sin fJ + y( cos fJ - 1) (6. 3) 

Restricting the displacement to be small, we obtain (since then sin fJ � {J, cos fJ � 1), 
with the assumption that w = 0, 

u = - y{J, v = x{J, w = O  (6.4) 

to first degree terms in {J. Substitution of Eq. (6. 1) into Eq. (6.4) yields 

u = - Oyz, v = Oxz, w = O  (6. 5) 

On the basis of the foregoing assumptions, Eqs. (6. 5) represent the displacement 
components of a point in a circular shaft subjected to a torque T. 

Substitution of Eqs. (6. 5 )  into Eqs. (2. 8 1) yields the strain components (if we 
ignore temperature effects) 

2Ezx = Yzx = - (Jy, 2Ezy = Yzy = Ox (6.6) 

Since the strain components are derived from admissible displacement compo
nents, compatibility is automatically satisfied (See Sec. 2. 8. See also Boresi and 
Chong, 1987; Sec. 2. 16). With Eqs. (6.6 ), Eqs. (3. 32) yield the stress components for 
linear elasticity 

(Jzx = - (JGy, (Jzy = 8Gx (6.7) 

Equations (6. 7) satisfy the equations of equilibrium, provided the body forces are 
zero [Eqs. (2.45)] .  

To satisfy the boundary conditions, Eqs. (6 .7) must yield no forces on the lateral 
surface of the bar; on the ends, they must yield stresses such that the net moment 
is equal to T and the resultant force vanishes. Since the direction cosines of the unit 
normal to the lateral surface are (l, m, 0) (see Fig. 6. 3), the first two of Eqs. (2. 10) 
are satisfied identically. The last of Eqs. (2. 10) yields 

(6. 8) 

X 
N :  (/, m. 0) 

Figure 6.3 
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By Fig. 6.3, 
X l = cos A,. = \f' b ' • A,. y 

m = SID \f' = -b 

Substitution of Eqs. (6.7) and (6.9) into Eqs. (6. 8) yields 

Therefore, the boundary conditions on the lateral surface are satisfied. 

(6.9) 

On the ends, the stresses must be distributed so that the net moment is T. There
fore, summation of moments on each end with respect to the z axis yields (Fig. 6.4) 

(6 . 10) 

Substitution of Eqs. (6.7) into Eq. (6. 10) yields 

(6. 1 1) 

Since the last integral is the polar moment of inertia (J = rcb4/2) of the circular 
cross section, Eq. (6. 1 1 ) yields 

(} =I_ GJ (6. 12) 

which relates the angular twist fJ per unit length of the shaft to the magnitude T of 
the applied torque. 

Since compatibility and equilibrium are satisfied, Eqs. (6 .7) represent the solu
tion of the elasticity problem. However, in applying torsional loads to most torsion 
members of circular cross section, the distributions of CJzx and CJzy on the ends pro
bably do not satisfy Eqs. (6 .7). In these cases, it is assumed that CJzx and CJzy undergo 
a redistribution with distance from the ends of the bar until, at a distance of a few 
bar diameters from the ends, the distributions are essentially given by Eqs. (6.7). 
This concept of redistribution of the applied end stresses with distance from the 
ends is known as the Saint-Venant principle (Boresi and Chong, 1987). 

X 

Figure 6.4 
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Figure 6.5 

Since the solution of Eqs. (6.7) indicates that CJzx and CJzy are independent of z, 
the stress distribution is the same for all cross sections. Thus, the stress vector -r for 
any point P in a cross section is given by the relation 

-r = - 8Gyi + 8Gxj (6. 1 3) 

The stress vector -r lies in the plane of the cross section, and it is perpendicular 
to the radius vector r joining point P to the origin 0. By Eq. (6. 1 3), the magnitude 
of -r is 

(6. 14) 

Hence, t is a maximum for r = b ;  that is, t attains a maximum value of 8Gb. 
Substitution of Eq. (6. 12) into Eq. (6. 14) yields the result 

Tr 
t = -J (6. 1 5 )  

which relates the magnitude t of the shear stress to the magnitude T of the torque. 
The above result holds also for cylindrical bars with hollow circular cross sections 
(Fig. 6 .5), with inner radius a and outer radius b; for this cross section J = 
rc(b4 - a4)/2 and a � r � b. 
The analysis for the torsion of noncircular cross sections proceeds in much the 

same fashion as for circular cross sections. However, in the case of noncircular 
cross sections, Saint-Venant assumed more generally that w is a function of (x, y ), 
the cross-section coordinates. Then, the cross section does not remain plane but 
warps; thaf is, different points in the cross section, in general, undergo different 
displacements in the z direction. 

EXAMPLE 6.1 
Shaft with Hollow Circular Cross Section 

A steel shaft has a hollow circular cross section (see Fig. 6.5), with radii a = 22 mm 
and b = 25 mm. It is subjected to a twisting moment T = 500 m · N. 

(a) Determine the maximum shear stress in the shaft. 
(b) Determine the angle of twist per unit length. 
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SOLUTION 

(a) The polar moment of inertia of the cross section is J = rc(b4 - a4)/2 = 
rc (254 - 224)/2 = 245,600 mm4 = 24.56 x lo- s m4. Hence, by Eq. (6. 1 5 ), 
tmax = Tb/1 = 500 x 0.025/24. 56 x lo- s = 50.9 MPa. 

(b) By Eq. (6. 12), with G = 77 GPa, fJ = TjGJ = 500/(77 x 109 x 24.56 x lo-s) = 
0.0264 rad/m. 

EXAMPLE 6.2 
Circular Cross-Section Drive Shaft 

Two pulleys, one at B and one at C, are driven by a motor through a stepped, steel 
drive shaft ( G = 77 G Pa) ABC, as shown in Fig. E6.2. Each pulley absorbs a torque 
of 1 13 m · N. The stepped shaft has two lengths AB = L1 = 1 m long and BC = 
L2 = 1 .27 m long. The shafts are made of steel (Y = 414 MPa). Let the safety factor 
be SF = 2.0 for yield by the maximum shear-stress criterion. 

(a) Determine suitable diameter dimensions d 1  and d2 for the two shaft lengths. 
(b) With the diameters selected in part (a), calculate the total angle of twist Pc of 

the shaft. 

SOLUTION 

A 

Motor 

I < L1 

Pul ley 
B 

I I I 
� I� L2 

Figure E6.2 Circular cross-section shaft. 

Pulley 
c 

I I I 
� I 

Since each pulley removes 1 1 3 m·N, shaft AB must transmit a torque T1 = 
226 m·N, and shaft BC must transmit a torque T2 = 1 1 3 m·N. Also, the maxi
mum permissible shear stress in either shaft length is [by Eq. (4. 12)] tmax = 
tr/SF = 0.25 ¥ = 103.5 MPa. 

(a) By Eq. (6. 1 5 ), we have tmax = 2Tj(nr i ). Consequently, we have r1 = 
[2T/(rctmax)] ( l fJ) = [2 x 226/(rc x 103.5 x 106 )] 1 '3 = 0.01 12 m. Hence, the 
diameter d 1 = 2r 1 = 0.0224 m = 22.4 mm. Similarly, we find d 2 = 2r 2 = 
2 x 0.00886 m = 0.01 77 m = 17.7 mm. Since these dimensions are not stan
dard sizes, we choose d 1  = 25.4 mm and d2 = 19 .05 mm, since these sizes 
(1 .0 and 0.75 in., respectively) are available in U.S. customary units. 

(b) By Eq. (6. 12), the unit angle of twist in the shaft length AB is fJ1 = T1 /(GJd = 
2T1j(Gnri) = (2 X 226)/(77 X 109 X n X 0.01274) = 0.07183 radjm. Simi
larly, we obtain fJ2 = 0. 1 1 35 radjm. Therefore, the total angle of twist is Pc = 
1 .0 x 0.07183 + 1 .27 x 0. 1 1 35 = 0.2 16 rad = 12.4° . 
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SAINT-VENANT'S SEMIINVERSE METHOD 

Consider a torsion member with a uniform cross section of general shape as shown 
in Fig. 6.6. Axes (x, y, z) are taken as for the circular cross section (Fig. 6. 1 ). The 
applied shear stress distribution on the ends (D"zx ' D"zy) produces a torque T. In 
general, any number of stress distributions on the end sections may produce a 
torque T. According to Saint-Venant's principle, the stress distribution on sections 
sufficiently far removed from the ends depends principally on the magnitude of T 
and not on the stress distribution on the ends. Thus, for sufficiently long torsion 
members, the end stress distribution does not affect the stress distributions in a 
large part of the member. 

Saint-Venant's semiinverse method starts by an approximation of the displace
ment components due to torque T. This approximation is based on observed geo
metric changes in the deformed torsion member. 

Geometry of Deformation 
As with circular cross sections, Saint-Venant assumed that every straight torsion 
member with constant cross section (relative to axis z) has an axis of twist, about 
which each cross section rotates approximately as a rigid body. Let the z axis in 
Fig. 6.6 be the axis of twist. 

For the torsion member in Fig. 6.6, let OA and OB be line segments in the cross 
section for z = 0, which coincide with the x and y axes, respectively. After deforma
tion, by rigid-body displacements, we may translate the new position of 0, that is, 
0* back to coincide with 0, align the axis of twist along the z axis, and rotate the 
deformed torsion member until the projection of O*A * on the (x, y) plane coincides 
with the x axis. Because of the displacement (w displacement) of points in each cross 
section, O*A * does not, in general, lie in the (x, y) plane. However, the amount of 
warping is small for small displacements ; therefore, line OA and curved line O*A * 
are shown as coinciding in Fig. 6.6. Experimental evidence indicates also that the 

y 

X 

Undeformed end section 

A A *  

l .... , y I \ I � z � P (x, y, z ) { /  f�', T -T x ', : o • 1 P *  .......... .... , ��1�:��----i---------�------ --��...,_ __ z 
� '  ' 
B *  \ I I 

I 
// - - -�,------

Figure 6.6 Torsion member. 

) 
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distortion (warping) of each cross section is essentially the same. Furthermore, 
experimental evidence indicates that the cross-sectional dimensions of the torsion 
member are not changed significantly by the deformations, particularly for small 
displacements. In other words, deformation in the plane of the cross section is 
negligible. Hence, the projection of O*B* on the (x, y) plane coincides approxi
mately with the y axis, indicating that Exy (Yxy = 2Exy) is approximately zero [see 
Sec. 2.7; particularly, Eq. (2 .74).] . 
Consider a point P with coordinates (x, y, z) in the undeformed torsion mem

ber (Fig. 6 .6). Under deformation, P goes into P*. The point P, in general, is 
displaced by an amount w parallel to the z axis because of the warping of the cross 
section and by amounts u and v parallel to the x and y axes, respectively. The cross 
section in which P lies rotates through an angle fJ with respect to the cross at the 
origin. This rotation is the principal cause of the (u, v) displacements of point P. 
These observations led Saint-Venant to assume that fJ = Oz, where 8 is the angle of 
twist per unit length and therefore that the displacement components take the form 

u = - Oyz, v = Oxz, w = Ot./J(x, y) (6. 16 ) 

where t./1 is the warping function [compare Eqs. (6. 16 ) for the general cross section 
with Eqs. (6.5 ) for the circular cross section] . The function t./J(x, y) may be deter
mined such that the equations of elasticity are satisfied. Since we have assumed 
continuous displacement components (u, v, w), the small-displacement compati
bility conditions [Eqs. (2. 83)] are automatically satisfied. 

The state of strain at a point in the torsion member is given by substitution of 
Eqs. (6. 16) into Eqs. (2. 8 1 ) to obtain 

2Ezx = Yzx = eG� - y) 
2Ezy = Yzy = eG� + X) (6. 17 ) 

If the equation for Yzx is differentiated with respect to y, the equation for Yzy is differ
entiated with respect to x, and the second of these resulting equations is subtracted 
from the first, the warping function t./1 may be eliminated to give the relation 

8Yzx -
8yzy = - 28 ay ax 

(6. 1 8) 

If the torsion problem is formulated in terms of (Yzx ' Yzy), Eq. (6. 1 8) is a geometrical 
condition (compatibility condition) to be satisfi.ed for the torsion problem. 

Stresses at a Point and Equations of Equilibrium 
For torsion members made of isotropic materials, stress-strain relations for either 
elastic [the first of Eqs. (6. 1 7) and Eqs. (3.32)] or inelastic conditions indicate that 

(6. 19) 
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The stress components (o-zx ' o-zy) are nonzero. If body forces and acceleration terms 
are neglected, these stress components may be substituted into Eqs. (2.45 ) to obtain 
equations of equilibrium for the torsion member. * 

ao-zx = 0 
az 

ao-zy = 0 
az 

(6.20) 

(6 .21) 

(6.22) 

Equations (6.20) and (6.21) indicate that O'zx = o-xz and O'zy = O'yz are independent 
of z. These stress components must satisfy Eq. (6.22), which expresses a necessary 
and sufficient condition for the existence of a stress function cp(x, y) (the so-called 
Prandtl stress function) such that 

8¢ 
O'zx = ay 

(6.23) 

Thus, the torsion problem is transformed into the determination of the stress func
tion ¢. Boundary conditions put restrictions on ¢. 

Boundary Conditions 
Since the lateral surface of a torsion member is free of applied stress, the resultant 
shear stress t in the cross section of the torsion member, on the surface S of the 
cross section, must be directed tangent to the surface (Figs. 6. 7 a and b). The two 
shear stress components o-zx and o-zy that act on the cross-sectional element with 
sides dx, dy, and ds may be written in terms of -r (Fig. 6 .7b) in the form 

where according to Fig. 6.7a, 

O'zx = t sin (J. 

O'zy = t COS lJ. 

. dx SID lJ. = ds , dy COS ll. = ds 

(6.24) 

(6.25 ) 

Since the component of -r in the direction of the normal n to the surface S is zero, 
projections of Gzx and Gzy in the normal direction (Fig. 6 .7b) yield, with Eq. (6.25 ) 

O'zx cos (J. - O'zy sin (J. = 0 
dy dx 

O'zx ds - O'zy ds = 0 

* This approach was taken by Prandtl. See Sec. 7.3, Boresi and Chong (1987). 

(6.26 ) 
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Figure 6.7 Cross section of a torsion member. 

Substituting Eqs. (6.23) into Eq. (6.26), we find 

or 
¢ = constant on the boundary S (6.27) 

Since the stresses are given by partial derivatives of ¢ [see Eqs. (6.23)] , it is permis
sible to take this constant to be zero; thus, we select 

¢ = 0 on the boundary S (6.28) 

The preceding argument can be used to show that the shear stress 

(6.29) 
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at any point in the cross section is directed tangent to the contour ¢ = constant 
through the point. 

The distributions of CJzx and CJzy on a given cross section must satisfy the follow
ing equations: 

L Fx = 0 = I D"zx dx dy = I�� dx dy 
L Fy = O =  I D"zy dx dy = - I�� dx dy 

I Mz = T = I (xazy - YD"zxl dx dy 

= - J(x a¢ + y a¢) dx dy ax ay 

(6. 30) 

(6. 3 1) 

(6. 32) 

In satisfying the second equilibrium equation, consider the strip across the cross 
section of thickness dy as indicated in Fig. 6.7c. Since the stress function does not 
vary in the y direction for this strip, the partial derivative can be replaced by the 
total derivative. For the strip, Eq. (6. 3 1) becomes 

f a¢ Jd¢ Jct><B> dy -a dx = dy -d dx = dy d¢ X X cf>(A) 
= dy[cp(B) - cp(A)] = 0 (6. 3 3) 

since ¢ is equal to zero on the boundary. The same is true for every strip so that 
L FY = 0 is satisfied. In a similar manner, Eq. (6. 30) is verified. In Eq. (6. 32), con
sider the term 

I a¢ - x-dx dy ax 

which becomes for the strip in Fig. 6.7c 

.,. 

I dcp fcj>(B) -dy x-d dx = - dy x dcp X cf>(A) 
(6. 34) 

Evaluating the latter integral by parts and noting that cp(B) = cp(A) = 0, we obtain 

fcj>(B) ( fXB ) fXB 

-dy x dcp = -dy x¢ 1 � - cp dx = dy cp dx cj>(A) XA XA 
(6. 35) 

Summing for the other strips and repeating the process using strips of thickness dx 
for the other term in Eq. (6.32), we obtain the relation 

T = 2 ff c/J dx dy (6. 36) 

The stress function ¢ can be considered to represent a surface over the cross section 
of the torsion member. This surface is in contact with the boundary of the cross 
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6.3 

section [see Eq. (6.28)] . Hence, Eq. (6. 36) indicates that the torque is equal to twice 
the volume between the stress function and the plane of the cross section. 

Note: Equations (6. 1 8), (6.23), (6.28), and (6. 36), as well as other equations in this 
section, have been derived for torsion members that have uniform cross sections 
that do not vary with z, that have simply connected cross sections, that are made 
of isotropic materials, and that are loaded so that deformations are small. These 
equations are used to obtain solutions for torsion members ; they do not depend on 
any assumption as to material behavior except that the material is isotropic; there
fore, they are valid for any specified material response (elastic or inelastic). 

Two types of typical material response are considered in this chapter : lin
early elastic response and elastic-perfectly plastic response (Fig. 4.4a). The linearly 
elastic response leads to the linearly elastic solution of torsion, whereas the elastic
perfectly plastic response leads to the fully plastic solution of torsion of a bar 
for which the entire cross section yields. The material properties associated with 
various material responses are determined by appropriate tests. Usually, as noted 
in Chapter 4, we assume that the material properties are determined by either a 
tension test or torsion test of a cylinder with thin-wall annular cross section. 

LINEAR ELASTIC SOLUTION 

Stress-strain relations for linear elastic behavior of an isotropic material are given 
by Hooke's law [see Eqs. (3. 32)] . By Eqs. (3 . 32) and (6.2 3), we obtain 

8¢ 
(Jzy = - ax = Gyzy (6 .37) 

Substitution of Eqs. (6. 37) into Eq. (6. 1 8) yields 

(6. 38) 

If the unit angle of twist fJ is specified for a given torsion member and ¢ satisfies 
the boundary condition indicated by Eq. (6.28), then Eq. (6. 3 8) uniquely determines 
the stress function cp(x, y). Once ¢ has been determined, the stresses are given by 
Eqs. (6 .23) and the torque is given by Eq. (6. 36). The elasticity solution of the tor
sion problem for many practical cross sections requires special methods (Boresi and 
Chong, 1987) for determining the function ¢ and is beyond the scope of this book. 
As indicated in the following paragraphs, an indirect method may be used to obtain 
solutions for certain types of cross sections, although it is not a general method. 
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Let the boundary of the cross section for a given torsion member be specified 
by the relation 

F(x, y) = 0 (6.39) 

Furthermore, let the torsion member be subjected to a specified unit angle of twist 
and define the stress function by the relation 

cjJ = BF(x, y) (6.40) 

where B is a constant. This stress function is a solution of the torsion problem, 
provided F(x, y) = 0 on the lateral surface of the bar and 82Fj8x 2 + 82Fj8y2 = 
constant. Then, the constant B may be determined by substituting Eq. (6.40) into 
Eq. (6.3 8). With B determined, the stress function ¢ for the torsion member is 
uniquely defined by Eq. (6.40). This indirect approach may, for example, be used 
to obtain the solutions for torsion members whose cross sections are in the form 
of a circle, an ellipse, or an equilateral triangle. 

Elliptical Cross Section 
Let the cross section of a torsion member be bounded by an ellipse (Fig. 6. 8). The 
stress function ¢ for the elliptical cross section may be written in the form 

(6.41) 

since F(x, y) = x2 jh 2 + y2 jb 2 
- 1 = 0 on the boundary [Eq. (6.39)] . Substituting 

Eq. (6.41) into Eq. (6.38), we obtain 

(6.42) 

in terms of the geometrical parameters (h, b), shear modulus G, and unit angle of 
twist fJ. With ¢ determined, the shear stress components for the elliptical cross 

y 

Figure 6.8 Ellipse. 
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section are, by Eqs. ( 6.23), 

8¢ 2By 2h2G8y 
(Jzx = ay = v = - h2 + b 2 

8¢ 2Bx 2b 2G8x 
(Jzy = - ax = - v = h2 + b 2 

(6 .43) 

(6.44) 

The maximum shear stress tmax occurs at the boundary nearest the centroid of the 
cross section. Its value is 

2b 2hG8 
Lmax = (Jzy(x= h) = h2 + b 2 (6.45) 

The torque T for the elliptical cross-section torsion member is obtained by substi
tuting Eq. (6.41 ) into Eq. (6. 36). Thus, we obtain 

2B f 2 2B f 2 f 2B 2B T = J;2 X dA + b2 Y dA - 2B dA = j;2 ]Y + --p: lx - 2BA 

Determination of lx , ly and A in terms of (b, h) allows us to write 

T = - nBhb (6.46) 

The torque may be expressed in terms of either tmax or 8 by means of Eqs. (6.42), 
(6.45), and (6.46). Thus, 

2T 
'tmax = nbh2 ' 

T(b 2 + h2 ) 8 = Gnb 3h 3 (6.47) 

where Gnb 3h 3 j(b 2 + h2) = GJ is called the torsional rigidity (stiffness) of the sec
tion and the torsional constant for the cross section is J = nb 3h 3j(b 2 + h2 ). 

Equilateral Triangle Cross Section 
Let the boundary of a torsion member be an equilateral triangle (Fig. 6.9). The 
stress function is given by the relation 

(6.48) 

Proceeding as for the elliptical cross section, we find 

(6 .49) 

where Gh4/ 1 5/3 = GJ is called the torsional rigidity of the section. Hence, the 
torsional constant for the cross section is J = h4/( 1 5/3). 
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Figure 6.9 Equilateral triangle. 

Rectangular Cross Sections 
The indirect method outlined above fails for rectangular cross sections. Special 
methods (Boresi and Chong, 1987), which are beyond the scope of this book, are 
required to obtain the torsion solution for rectangular cross sections. We merely 
summarize some of the results here. Consider the rectangular cross section shown 
in Fig. 6. 1 0. Relations between the cross-sectional dimensions, T, t max , and 8 take 
the form 

T 
fJ = k1 G(2b)(2h)3 ' 

T (6. 50) 

where tmax is the maximum shear stress at the center of the long side at the 
boundary. Values of the parameters k1 and k2 are tabulated in Table 6. 1 for several 
values of the ratio b/h. In Eq. (6. 50), the factor k1 G(2b)(2h)3 = GJ is the torsional 
rigidity of the section. The torsional constant for the cross section is J = k 1(2b)(2h)3 . 
Alternatively, by Eq. (6. 50), tmax may be expressed in terms of 8 as tmax = 2G8hk3 , 
where k3 = k1/k2 . 

y 
r- h -+ f--E-- h -1 

1 
b 

X 
0 

b 

1 
Figure 6. 10 Rectangle. 
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TABLE 6.1 
Torsional Parameters for Rectangular Cross Sections 

b/h 

k l 
k

2 

1 1.5 2 2.5 3 4 6 10 00 
0. 141 0. 196 0.229 0.249 0.263 0.28 1 0.299 0.3 12 0.3 3 3  
0.208 0.23 1 0.246 0.256 0.267 0.282 0.299 0.3 12 0.3 3 3  

Other Cross Sections 
There are many torsion members whose cross sections are so complex that exact 
analytical solutions are difficult to obtain. However, approximate solutions may 
be obtained by Prandtl's membrane analogy (see Sec. 6.4). An important class of 
torsion members are those with thin walls. Included in the class of thin-walled 
torsion members are open and box sections. Approximate solutions for these types 
of section are obtained in Sec. 6. 5 and 6.6 by means of the Prandtl membrane 
analogy. 

EXAMPLE 6.3 
Rectangular Section Torsion Member 

The rectangular section torsion member in Fig. E6. 3 has a width of 40 mm. The 
first 3.00-m length of the torsion member has a depth of 60 mm, and the remain
ing 1 . 50-m length has a depth of 30 mm. The torsion member is made of steel 
for which G = 77. 5 GPa. For T1 = 750 N·m and T2 = 400 N·m, determine the 
maximum shear stress in the torsion member. Determine the angle of twist of the 
free end. The support at the left end prevents rotation of this cross section but 
does not prevent warping. 

60 mm 30 mm 

Figure E6.3 

SOLUTION 

For the left portion of the torsion member, 

From Table 6. 1 , we find k1 = 0. 196 and k2 = 0.2 3 1 . For the right portion of the 
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torsion member, 
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� = �� = 1 . 33  

Linear interpolation between the values 1 and 1 . 5  in Table 6. 1 gives k1 = 0. 1 78 
and k2 = 0.223. The torque in the left portion of the torsion member is T = 
T1 + T2 = 1 . 1 5  kN ·m; the maximum shear stress in this portion of the torsion 
member is 

T 1 , 1 50,000 
tmax = 

k2(2b)(2h)2 = 
0.23 1 (60)(40)2 

= 5 1 .9 MPa 

The torque in the right portion of the torsion member is equal to T2 = 400 N ·m ; 
the maximum shear stress in this portion of the torsion member is 

400,000 Tmax = 
0.223 (40)(30)2 = 49.8 MPa 

Hence, the maximum shear stress occurs in the left portion of the torsion member 
and is equal to 5 1 .9 MPa. 

The angle of twist fJ is equal to the sum of the angles of twist for the left and 
right portions of the torsion member. Thus, 

1 ' 1 50,000(3000) 400,000( 1 500) 
fJ = 

0. 196(77,500)(60)(40)3 + 0. 1 78 (77,500)(40)(30)3 
= 0·0994 rad 

THE PRANDTL ELASTIC-MEMBRANE (SOAP-FILM) 
ANALOGY 

In this section, we consider a solution of the torsion problem by means of an 
analogy pr-oposed by Prandtl ( 1903). The method is based on the similarity of the 
equilibrium equation for a membrane subjected to lateral pressure and the tor
sion (stress function) equation [Eq. (6. 3 8)] . Although this method is of historical 
interest, it is rarely used today to obtain quantitative results. It is discussed here 
primarily from a heuristic viewpoint, in that it is useful in the visualization of the 
distribution of shear-stress components in the cross section of a torsion member. 

To set the stage for our discussion, consider an opening in the (x, y) plane that 
has the same shape as the cross section of the torsion bar to be investigated. Cover 
the opening with a homogeneous elastic membrane, such as a soap film, and apply 
pressure to one side of the membrane. The pressure causes the membrane to bulge 
out of the (x, y) plane, forming a curved surface. If the pressure is small, the slope 
of the membrane will also be small. Then, the lateral displacement z(x, y) of the 
membrane and the Prandtl torsion stress function cp (x, y) satisfy the same equa
tion in (x, y). Hence, the displacement z (x, y) of the membrane is mathematically 
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equivalent to the stress function cp(x, y), provided that z(x, y) and cp(x, y) satisfy the 
same boundary conditions. This condition requires the boundary shape of the 
membrane to be identical to the boundary shape of the cross section of the tor
sion member. In the following discussion, we outline the physical and mathe
matical procedures that lead to a complete analogy between the membrane prob
lem and the torsion problem. 

As noted above, the Prandtl membrane analogy is based on the equivalence of 
the torsion equation, [Eq. (6. 38), repeated here for convenience] 

(6. 5 1 )  

and the membrane equation (to be derived in the next paragraph) 

(6. 52) 

where z denotes the lateral displacement of an elastic membrane subjected to a 
lateral pressure p in terms of force per unit area and an initial (large) tension S 
(Fig. 6. 1 1 ) in terms of force per unit length. 

For the derivation of Eq. (6. 52), consider an element ABCD of dimensions dx, 
dy of the elastic membrane shown in Fig. 6. 1 1 . The net vertical force due to the 
tension S acting along edge AD of the membrane is (if we assume small displace
ments so that sin a �  tan a) 

- S dy sin a � - S dy tan a = -S dy az ax 

and, similarly, the net vertical force due to the tension S (assumed to remain con
stant for sufficiently small values of p) acting along edge BC is ( aa ) a ( az ) 

s dy tan (J. + ax dx = s dy ax z + ax dx 

y 

0 

Figure 6. 1 1  

Plan 
view 
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Similarly for edges AB and DC, we obtain 

az - S dx-8y ' 
a ( az ) S dx ay z + ay dy 

Consequently, the summation of force in the vertical direction yields for the equi
librium of the membrane element dx dy 

or 

(6 .52) 

By comparison of Eqs. (6. 5 1 ) and (6. 52), we arrive at the following analogous 
quanti ties : 

z = c¢, � = c2G8 

where c is a constant of proportionality. Hence, 

z ¢ 
p/S - 2G8 ' 

(6. 53) 

(6. 54) 

Accordingly, the membrane displacement z is proportional to the Prandtl stress 
function ¢, and since the shear-stress components (Jzx , (Jzy are equal to the appro
priate derivatives of ¢ with respect to x and y [see Eqs. (6.23)] , it follows that the 
stress components are proportional to the derivatives of the membrane displace
ment z with respect to the coordinates (x, y) in the flat plate to which the mem
brane is attached (Fig. 6. 1 1  ). In other words, the stress components at a point (x, y) 
of the bar are proportional to the slopes of the membrane at the corresponding 
point (x, y) of the membrane. Consequently, the distribution of shear stress com
ponents in the cross section of the bar is easily visualized by forming a mental 
image of the slope of the corresponding membrane. Furthermore, for simply con
nected cro�s sections,* since z is proportional to ¢, by Eqs. (6. 36) and (6. 54), we 
note that the twisting moment T is proportional to the volume enclosed by the 
membrane and the (x, y) plane (Fig. 6. 1 1 ). For the multiply connected cross sec
tion, additional conditions arise (Sec. 6.6 ; see also Boresi and Chong, 1987). 

Although rarely used today, recommended experimental techniques for the use 
of the membrane analogy are reported in a paper by Thoms and Masch ( 1 965). 
The experimental technique requires that p/S be determined for the membrane. 

*A region R is simply connected if every closed curve within it or on its boundary encloses only 
points in R. For example, the solid cross section in Fig. 6.7a (region R) is simply connected (as are all 
the cross sections in Sec. 6.3), since any closed curve in R or on its boundary contains only points in R. 
However, a region R between two concentric circles is not simply connected (see Fig. 6.5), since its inner 
boundary r = a encloses points not in R. A region or cross section that is not simply connected is called 
multiply connected. 
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The procedure usually followed is to machine a circular hole in the plate in addi
tion to the cross section of interest. If the same membrane is used for both 
openings, the values of p/S are the same for both openings, and the corresponding 
values of GfJ are the same for the corresponding torsion members [see Eqs. (6 .54)] . 
Since the relations among T, fJ, and t for a torsion member with a solid circular 
cross section are given by Eqs. (6. 12) and (6. 1 5), measurements obtained on the 
two elastic membranes may be used to compare torques and shear stresses for the 
two corresponding torsion members for the same unit angle of twist. In particular, 
then the ratio of the two volumes between the membrane surfaces and flat plate is 
equal to the ratio of the torques of the two corresponding torsion members. The 
ratio of the maximum slopes of the two membrane surfaces is equal to the ratio of 
the maximum shear stresses in the two corresponding torsion members. 
Another important aspect of the elastic membrane analogy is that, without 

performing experiments, valuable deductions can be made by merely visualizing 
the shape that the membrane must take. For example, if a membrane covers holes 
machined in a flat plate, the corresponding torsion members have equal values of 
GfJ; therefore, the stiffnesses [see Eqs. (6.47), (6.49), and (6. 50)] of torsion members 
made of materials having the same G are proportional to the volumes between the 
membranes and flat plate. For cross sections with equal area, one can deduce that 
a long narrow rectangular section has the least stiffness and the circular section 
has the greatest stiffness. 

Important conclusions may also be drawn with regard to the magnitude of the 
shear stress and hence to the cross section for minimum shear stress. Consider 
the angle section shown in Fig. 6. 12a. At the external corners A, B, C, E, and F, the 
membrane has zero slope and the shear stress is zero ; therefore, external corners 
do not constitute a design problem. However, at the reentrant corner at D (shown 
as a right angle in Fig. 6. 12a), the corresponding membrane would have an infinite 
slope, which indicates an infinite shear stress in the torsion member. In practical 
problems, the magnitude of the shear stress at D would be finite, but would be 
very large compared to that at other points in the cross section. 

Remark on Reentrant Corners 
If a torsion member with cross section shown in Fig. 6. 12a is made of a ductile 
material and it is subjected to static loads, the material in the neighborhood of D 
yields and the load is redistributed to adjacent material, so that the stress concen
tration at point D is not particularly important. If, on the other hand, the material 
is brittle or the torsion member is subjected to fatigue loading, the shear stress at D 
limits the load-carrying capacity of the member. In such a case, the maximum 
shear stress in the torsion member may be reduced by removing some material as 

F ---.. E F ..---------, E 

n L.::�-.., c 

A �--------' B A '----------- B 
(a) Poor (b) Better (c) Best 

Figure 6. 1 2  Angle section of a torsion member. (a) Poor. (b) Better. (c) Best. 
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shown in Fig. 6. 12b. However, preferably, the member should be redesigned to 
alter the cross section (Fig. 6. 12c). The maximum shear stress would then be about 
the same for the two cross sections shown in Figs. 6. 12b and c for a given unit 
angle of twist ; however, a torsion member with the cross section shown in 
Fig. 6. 12c would be stiffer for a given unit angle of twist. 

NARROW RECTANGULAR CROSS SECTIO:\ 

The cross sections of many members of machines and structures are made up of 
narrow rectangular parts. These members are used mainly to carry tension, com
pression, and bending loads. However, they may be required also to carry sec
ondary torsional loads. For simplicity, we use the elastic membrane analogy to 
obtain the solution of a torsion member whose cross section is in the shape of a 
narrow rectangle. 

Consider a bar subjected to torsion. Let the cross section of the bar be a solid 
rectangle with width 2h and depth 2b, where b >> h (Fig. 6. 1 3). The associated 
membrane is shown in Fig. 6. 14. 

T 

Figure 6. 1 3  

y y �r-1-±--t::_�-::_-=-b --=...--+-)o-+-1�-=-=b-_,_ --1��- X ---.��0 
I z I I I 

I II I II I •  II k l l • I .  p • l --J II II II I ���* X 
0 

Figure 6. 14 
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Except for the region near x = ± b, the membrane deflection is approximately 
independent of x. Hence, if we assume that the membrane deflection is indepen
dent of x and parabolic with respect to y, the displacement equation of the mem
brane is 

(6. 55) 

where z0 is the maximum deflection of the membrane. Note that Eq. (6. 55) satis
fies the condition z = 0 on the boundaries y = ± h. Also, if p/S is a constant in 
Eq. (6. 52), the parameter z0 may be selected so that Eq. (6. 55) represents a solution 
of Eq. (6. 52). Consequently, Eq. (6. 55) is an approximate solution of the mem
brane displacement. By Eq. (6. 55) we find 

(6. 56) 

By Eqs. (6.56), (6.52), and (6. 53), we may write - 2z0/h2 = - 2cG8 and Eqs. (6. 55) 
becomes 

Consequently, Eqs. (6.23) yield 

8¢ 
(Jzx = ay 

= - 2G8y, 

and we note that the maximum value of rJzx is 

Lmax = 2GfJh, for y = ± h  

Equations (6.36) and (6. 57) yield 

where 
T = 2 fJ�h </J dx dy = � G0(2b)(2h)3 = GJO 

J = !(2b)(2h)3 

is the torsional constant and GJ is the torsional rigidity. 

(6. 57) 

(6. 58) 

(6. 59) 

(6.60) 

(6.6 1 )  

In summary, we note that the solution i s approximate and, in particular, the 
boundary condition for x = ± b is not satisfied. From Eqs. (6. 59) and (6.60) we 
obtain 

3 T  2Th 
Lmax = (2b)(2h)2 = }' 3 T  T fJ = G(2b)(2h)3 - GJ (6.62) 

Note that Eqs. (6.62) agree with Eqs. (6. 50) since, from Table 6. 1 ,  k1 = k2 = ! .  
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Cross Sections Made Up of Long Narrow Rectangles 
Many rolled composite sections are made up of joined long narrow rectangles. 
For these cross sections, it is convenient to define the torsional constant J by the 
relation 

(6.63) 

where C is a correction coefficient. If b i > 10hi for each rectangular part of the 
composite cross section (see Table 6. 1 ), C � 1 .  For many rolled sections, bi may be 
less than 1 Ohi for one or more of the rectangles making up the cross section. In this 
case, it is recommended that C = 0.9 1 .  When n = 1 and b > 10h, C = 1 and 
Eq. (6.63) is identical to Eq. (6.6 1). For n > 1 ,  Eqs. (6 .62) take the form 

2Thmax 
Lmax = J 

where hmax is the maximum value of the hi . 

e = _!_ GJ (6.64) 

Cross-sectional properties for typical torsion members are given in the manual 
published by the American Institute of Steel Construction, Inc. ( 1983). The for
mulas for narrow rectangular cross sections may also be used to approximate 
narrow curved members. See Example 6.4. 

EXAMPLE 6.4 
Torsion of a Member with Narrow Semi Circular Cross Section 

Consider a torsion member of narrow semicircular cross section (Fig. E6.4), with 
constant thickness 2h and mean radius a. The mean circumference is 2b = rca. We 
consider the member to be equivalent to a slender rectangular member of dimen
sion 2h x rca. Then, for a twisting moment T applied to the member, by Eqs. (6 .62) , 

/ 
I 

a 

2h 
Figure E6.4 
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6.6 

we approximate the maximum shear stress and angle of twist per unit length 
as follows : 

2Th 
'tmax = J, 

where 

Hence, 
3 T  

'tmax = 4nah2 . 

Also, 
fJ = _!_ = 3 T  

GJ 8nGah3 • 

Alternatively, we may express 8 in terms of tmax as 

f) = 'tmax . 2Gh 

HOLLOW THIN-WALL TORSION MEMBERS. 
MULTIPLY CONNECTED CROSS SECTION 

In general, the solution for a torsion member with a multiply connected cross sec
tion is more complex than that for the solid (simply connected cross section) tor
sion member. For simplicity, we refer to the torsion member with a multiply 
connected cross section as a hollow torsion member. The complexity of the solu
tion can be illustrated for the hollow torsion member in Fig. 6. 1 5. No shear stresses 
act on the lateral surface of the hollow region of the torsion member; therefore, 
the stress function and the membrane must have zero slope over the hollow region 
[see Eqs. (6 . 23) and Sec. 6.4] . Consequently, the associated elastic membrane may 
be given a zero slope over the hollow region by machining a flat plate to the 
dimensions of the hollow region and displacing the plate a distance z 1 ,  as shown 
in Fig. 6. 1 5. However, the distance z 1 is not known. Furthermore, only one value 
of z 1 is valid for specified values of p and S. 

The solution for torsion members having thin-wall noncircular sections is 
based on the following simplifying assumption. Consider the thin-wall torsion 
member in Fig. 6. 16a. The plateau (region of zero slope) over the hollow area and 
the resulting membrane are shown in Fig. 6. 1 6b. If the wall thickness is small com
pared to the other dimensions of the cross section, sections through the mem
brane, made by planes parallel to the z axis and perpendicular to the outer 
boundary of the cross section, are approximately straight lines. It is assumed that 
these intersections are straight lines. Because the shear stress is given by the slope 
of the membrane, this simplifying assumption leads to the condition that the 
shear stress is constant through the thickness. However, the shear stress around 
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l (a) Hol low section 
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(b) I ntersection of (x, z)-plane with membrane 

X 

Figure 6. 1 5  Membrane for hollow torsion member. (a) Hollow section. (b) Intersection of 
(x, z) plane with membrane. 
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Figure 6. 16 Membrane for thin-wall hollow torsion member. (a) Thin-wall hollow section. 
(b) Membrane. 

the boundary is not constant, unless the thickness t is constant. This is appar
ent by Fig. 6. 16b since t = 8¢/8n, where n is normal to a membrane contour 
curve z = constant. Hence, by Eqs. (6. 54) and Fig. 6. 16b, t = (2G8S/p) 8zf8n = 
(2G8S/p) tan a. Finally, by Eq. (6. 53). 

1 1 . t = - tan lJ. = - SID lJ. c c (since a is assumed to be small) (6.65) 
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The quantity q = tt, with dimensions force/length, is commonly referred to in 
the literature as shear flow. As indicated in Fig. 6. 1 6b, the shear flow is constant 
around the cross section of a thin-wall hollow torsion member and is equal to ¢. 
Since ¢ is proportional to z [Eq. (6. 53)] , by Eq. (6. 36), the torque is proportional 
to the volume under the membrane. Thus, we have approximately (z 1 = c¢1) 

2Az 1 T = 2Acp1 = -- = 2Aq = 2Att c (6.66) 

in which A is the area enclosed by the mean perimeter of the cross section (see the 
area enclosed by the dot-dashed line in Fig. 6. 1 6a). A relation between t, G, 8, and 
the dimensions of the cross section may be derived from the equilibrium condi
tions in the z direction. Thus, 

L F. = pA - t S sin a: dl = 0, 

and by Eqs. (6.65) and (6. 53), 

- t dl = - = 2G8 1 t p A cS 
(6.67) 

where l is the length of the mean perimeter of the cross section and S is the tensile 
force per unit length of the membrane. 

Equations (6.66) and (6.67) are based on the simplifying assumption that the 
wall thickness is sufficiently small so that the shear stress may be assumed to be 
constant through the wall thickness. For the cross section considered in the fol
lowing illustrative problem, the resulting error is negligibly small when the wall 
thickness is less than one-tenth of the minimum cross-sectional dimension. 

EXAMPLE 6.5 
Hollow Thin-Wall Circular Torsion Member 

A hollow circular torsion member has an outside diameter of 22.0 mm and inside 
diameter of 1 8.0 mm, with mean diameter D = 20.0 mm and t/D = 0. 10. 

(a) Let the shear stress at the mean diameter be t = 70.0 MPa. Determine T and 
8 using Eqs. (6.66) and (6.67) and compare these values with values obtained 
using the elasticity theory. G = 77.5 GPa. 

(b) Let a cut be made through the wall thickness along the entire length of the 
torsion member and let the maximum shear stress in the resulting torsion 
member be 70.0 MPa. Determine T and 8. 

SOLUTION 

(a) The area A enclosed by the mean perimeter is 

nD2 
A = - = 100rc mm2 

4 
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The torque is given by Eq. ( 6.66) 

T = 2Att = 2( 100n)( 70)(2) = 87,960 N·mm = 87.96 N·m 

Because the wall thickness is constant, Eq. ( 6.67) gives 

tnD 70(n)(20) 
f) = 2GA = 2(77,500)( 100n) = 0.0000903 radjmm 

Elasticity values of T and 8 are given by Eqs. (6. 1 5) and (6. 1 2) . Thus, with 

we find that 

and 

tJ 70(4040n) T = ---;:- = 10  = 88,840 N·mm = 88.84 N·m 

t 70 
8 = Gr = 77,500( 10) = 0.0000903 radjmm 

The approximate solution agrees with the elasticity theory in the prediction 
of the unit angle of twist and yields torque that differs by only 1% . Note 
that the approximate solution assumes that the shear stress was uniformly 
distributed, whereas the elasticity solution indicates that the maximum shear 
stress is 10% greater than the value at the mean diameter, since the elasticity 
solution indicates that t is proportional to r. Note that for a thin tube J � 
2nR 3t = 4000n mm4, where R is the mean radius and t the wall thickness 
(see Problem 6. 1 7). 

(b) When a cut is made through the wall thickness along the entire length of the 
torsion member, the torsion member becomes equivalent to a long narrow 
rectangle, for which the theory of Sec. 6. 5 applies. Thus, with h = 1 and 
b = 10n 

ll Lmax 70 1 d 
u 

= 2Gh = 2(77,500)( 1 )  = 0.00045 5 ra jmm 

T = 
8bh2tmax = 

8( 10n)( 1 )2(70) 
= 5865 N ·mm = 5.865 N ·m 

3 3 

Hence, after the cut, the torque is 6.7% of the torque for part (a), whereas the 
unit angle of twist is 5 times greater than that for part (a). However, the maxi
mum shear stress is essentially unchanged. 



264 6 / TORSION 

" 

I 
I I 
I I I I 
I I , ,  I I I I I I I I I I 1 1 z L = cq'  1 1 z ' = cq ' I 1 1 I � I I : I I li/;-1 _ __.,-.L.---lL._-lJI I_L....JI ' \1 

(b) Section aa through membrane 

Figure 6. 1 7  Multicompartment hollow thin-wall torsion member. (a) Membrane. (b) Sec
tion a-a through membrane. 

Hollow Thin-Wall Torsion Member Having Several 
Compartments 
Thin-wall hollow torsion members may have two or more compartments. Con
sider the torsion member whose cross section is shown in Fig. 6. 17 a. Section a-a 
through the membrane is shown in Fig. 6. 1 7b. The plateau over each compartment 
is assumed to have a different elevation zi . If there are N compartments, there 
are N + 1 unknowns to be determined. For a specified torque T, the unknowns 
are the N values for the qi and the unit angle of twist 8, which is assumed to be the 
same for each compartment. The N + 1 equations are given by the equation 

N z . 
T = 2 L Ai _: 

i = 1 c 
N 

= 2 L Aiqi i = 1 

and N additional equations similar to Eq. (6 .67) 

8 = -
1 _ 1 qi - q ' dl 2GAi Jz, t ' 

(6.68) 

i = 1 , 2, . . .  , N  (6.69) 

where Ai is the area bounded by the mean perimeter for the ith compartment, q ' 
the shear flow for the compartment adjacent to the ith compartment where dl is 
located, t the thickness where dl is located, and li the length of the mean perimeter 
for the ith compartment. We note that q' is zero at the outer boundary. The maxi
mum shear stress occurs where the membrane has the greatest slope, that is, where 
(qi - q' )/t takes on its maximum value for the N compartments. 
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Two Compartment Hollow Thin-Wall Torsion Member 

A hollow thin-wall torsion member has two compartments with cross-sectional 
dimensions as indicated in Fig. E6.6. The material is an aluminum alloy for which 
G = 26.0 G Pa. Determine the torque and unit angle of twist if the maximum shear 
stress, at locations away from stress concentrations, is 40.0 MPa. 

E E 
0 
(0 

I �<�------60 mm------�>��--- 30 mm 

t1 = 4.5 mm t3 = 1 . 5 mm 

0 

Figure E6.6 

SOLUTION 

Possible locations of the maximum shear stress are in the outer wall of compart
ment 1 where t1 = 4. 5 mm, in the outer wall of compartment 2 where t2 = 3 .0 mm, 
and the wall between the two compartments where t3 = 1 .5 mm. To determine the 
correct location, we must determine the ratio of q1 to q2 . First, we write the three 
equations given by Eq. (6.68) and Eqs. (6.69). 

Since the unit angle of twist given by Eq. (b) is equal to that given by Eq. (c), the 
ratio of q 1 to q 2 is found to be 
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6.7 

This ratio is less than t 1 /t2 ; therefore, the maximum shear stress does not occur in 
the walls with thickness t 1 = 4.5 mm. Let us assume that it occurs in the wall with 
thickness t 2 • 

q2 = tmax t2 = 40.0(3) = 1 20.0 Njmm 
q 1  = 1 .220( 120.0) = 146.4 Njmm 

q1 - q2 = 26.4 Njmm 
_ _ q1 _ 146.4 _ 32 MP t 1 - - - .5 a, 

t 1 4.5 t2 = q2 = 40.0 MPa, 
t2 

(d) 
(e) 

The magnitudes of q1 and q2 given by Eqs. (d) and (e) were based on the assump
tion that t 2 = tmax = 40.0 MPa; it is seen that the assumption is valid. These 
values for q1 and q2 may be substituted into Eqs. (a) and (b) to determine T and 
8. Thus, 

T = 7200( 146.4) + 2827 ( 120.0) = 1 ,393,000 N ·mm = 1 . 393 kN ·m 
(} 

= 
1 [ 1 80( 146.4) 60(26.4)l 

7200(26,000) 4. 5 + 1 . 5  
= 0.0000369 radjmm = 0.0369 radjm 

THIN-WALL TORSION MEMBERS WITH 
RESTRAINED ENDS 

Torsion members with noncircular cross sections warp when subjected to tor
sional loads. However, if a torsion member is fully restrained by a heavy support 
at one end, warping at the end section is prevented. Hence, for a torsion mem
ber with a noncircular cross section, a normal stress distribution that prevents 
warping occurs at the restrained end. In addition, a shear stress distribution is 
developed at the restrained end to balance the torsional load. 

Consider the I -section torsion member (Fig. 6. 1 8) constrained against warping 
at the wall. At a section near the wall (Fig. 6. 1 8a), the torsional load is transmitted 
mainly by lateral shear force V in each flange. This shear force produces lateral 
bending of each flange. As a result, on the basis of a linear bending theory, a linear 
normal stress distribution is produced at the wall . In addition, the shear stress dis
tribution in each flange, at the wall, is similar to that for shear loading of a rect
angular beam. At small distances away from the wall (Fig. 6. 1 8b), partial warping 
occurs, and the torsional load is transmitted partly by the shear forces V' < V 
induced by warping restraint and partly by Saint Venant's torsional shear. At 
greater distances from the wall (Fig. 6. 1 8c), the effect of the restrained end dimin
ishes rapidly, and the torque is transmitted mainly by torsional shear stresses. 
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Figure 6. 1 8  General effect of torsional load on  !-section torsion member. (a) Lateral shear 
mainly. (b) Partly lateral shear and partly torsional shear. (c) Torsional shear 
mainly. 

These remarks are illustrated further by a solution for an !-section torsion member 
presented later in this section. 

Thin-wall hollow torsion members with restrained ends (see Fig. 6. 19) may also 
warp under torsion. However, in contrast to torsion members with simply con
nected cross sections, noncircular thin-wall hollow torsion members may, under 
certain conditions, twist without warping. A solution presented by von Karman 
and Chien ( 1 946) for constant-thickness hollow torsion members indicates that a 
torsion member with equilateral polygon cross section does not warp. By contrast 
if t1 = t2 , the rectangular section hollow torsion member (a i= b) in Fig. 6. 19  tends 
to warp when subjected to torsion loads and, hence, to develop a normal stress dis
tribution at a restrained end. As a generalization of the von Karman-Chien solu
tion, a solution presented by Smith, Thomas, and Smith ( 1 970) indicates that the 
torsion member in Fig. 6. 19  does not warp if bt 1  = at2 • In addition, they pre
sented a solution for the case when ajb = 3/8, t1 = bj32, and t2 = b/ 16. They 
found that the normal stress distribution at the end was nonlinear as indicated in 
Fig. 6. 1 9  with O"max = 0.01 14T, where O"max has the units of MPa and T the units of 
N ·m. For hollow torsion members with rectangular sections of constant thickness, 
similar normal stress distributions at a restrained end are predicted in the papers 
by von Karman and Chien ( 1 946) and Smith et al. ( 1 970). Readers are referred to 
these two papers for thin-wall hollow torsion members with restrained ends. 
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t , 

Figure 6. 19 Thin-wall rectangular section torsion member with a restrained end. 

1-Section Torsion Member Having One End Restrained 
from Warping 
Consider an !-section torsion member subjected to a twisting moment T (Fig. 6.20a). 
Let the section at the wall be restrained from warping. A small distance from the 
wall, say, at section AB, partial warping takes place and the twisting moment 1 
may be considered to be made up of two parts. One part is a twisting moment T1 
produced by the lateral shear forces since these forces constitute a couple with 
moment arm h. Hence, 

(6.70) 

The second part is twisting moment T2 , which produces warping on the section. 
Hence, T2 is given by Eq. (6.64) as 

T2 = JGfJ (6.7 1 )  

The values of T1 and T2 are unknown since the values of V'  and fJ at any section 
are not known. Values of these quantities must be found before the lateral bending 
stresses in the flanges or the torsional shear stresses in the !-section can be com
puted. For this purpose, two equations are needed. From the condition of equilib
rium, one of these equations is 
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(b) 

Figure 6.20 Effect of twisting moment applied to an I -section torsion member with one 
end fixed. 

which by �qs. (6.70) and (6.7 1) may be written 

V'h + JG(J = T (6.72) 

For the additional equation, we may use the elastic curve equation for lateral 
bending of the upper flange in Fig. 6.20b, which is 

(6.73) 

in which the x and y axes are chosen with positive directions as shown in Fig. 6.20; 
M is the lateral bending moment in the flange at any section, producing lateral 
bending in the flange; I is the moment of inertia of the entire cross section of the 
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beam with respect to the axis of symmetry in the web, so that !I closely approxi
mates the value of the moment of inertia of a flange cross section. However, 
Eq. (6.73) does not contain either of the desired quantities V' and 8. These quanti
ties are introduced into Eq. ( 6. 73) as follows: In Fig. 6.20b the lateral deflection of 
the flange at section AB is 

h y = -{J  
2 

Differentiation of Eq. (6.74) twice with respect to x gives 

d2y h d2{J 
dx2 2 dx2 

and, since d{Jjdx = 8, Eq. (6.75) may be written 

dx2 2 dx 

The substitution of this value of d2y jdx2 into Eq. (6.73) gives 

Elh dO - - = - M 
4 dx 

(6.74) 

(6.75)  

(6.76) 

(6.77) 

In order to introduce V' into Eq. (6.77), use is made of the fact that dM jdx = V'. 
Thus, by differentiating both sides of Eq. (6.77) with respect to x, we obtain 

(6.78) 

Equations (6.72) and (6.78) are simultaneous equations in V' and 8. The value of 
V' obtained from Eq. (6.78) is substituted into Eq. (6.72), which then becomes 

For convenience let 

Elh2 d28 T 
-

4JG dx2 + e = 
JG 

so that Eq. (6.79) may be written 

The solution of this equation is 

T 
e = Aexfa + Be-xfa + _ 

JG 

(6.79) 

(6. 80) 

(6.8 1 )  

(6. 82) 
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Appropriate boundary conditions in terms of 8 or dfJ jdx are needed to determine 
values of the constants A and B in Eq. (6. 82). At the fixed end where x = 0, 8 = 
df3jdx = (2/h)(dyjdx) = 0 (since the slope is zero). At the free end where x = L, 
dfJjdx = 0 [see Eq. (6.77)] ,  since at the free end the bending moment M in the 
flange is zero. The values of A and B are determined from these two conditions and 
are substituted in Eq. (6. 82), which gives the angle of twist per unit length 

8 = _!_[1 
_ cosh(L - x)jex] 

JG cosh(L/ex) 

The total angle of twist at the free end is 

f3 = fL 8 dx = I_ (L - ex tanh 
L ) 

o JG ex 

(6. 83) 

(6. 84) 

The twisting moment T2 at any section of the beam is obtained by substitution of 
the value of 8 from Eq. (6. 83) into Eq. (6.7 1 ). Thus, 

_ 
[ 1 

_ cosh(L - x)/ex] 
T2 - T 

cosh(L/ex) 
(6.85)  

The maximum torsional shear stress at any section is  computed by substituting 
this value of T2 into Eq. (6.64). The lateral bending moment M in the flanges of 
the beam at any section is obtained by substituting dfJ jdx from Eq. (6. 83) into 
Eq. ( 6. 77), which gives 

T sinh(L - x)jex 
M = -- ex-----

h cosh(Ljex) 
(6. 86) 

Note that Eq. (6. 86) shows that the maximum value of M occurs at the fixed end, 
for x = 0, and is 

T L 
Mmax = h ex tanh ; (6. 87) 

Except for relatively short beams, the length L is large as compared with the value 
of ex, and the value of tanh (L/ ex) is approximately equal to 1 when L/ ex > 2.5. In 
Eqs. (6. 84) and (6. 87) the substitution of tanh(L/ex) = 1 gives 

f3 = 
T(L - ex) 

JG 
(6.88) 

(6.89) 

The approximate values of f3 and Mmax obtained from Eqs. (6.88) and (6.89) 
lead to the following procedure for solving for the angle of twist and the max
imum longitudinal stresses resulting from a twisting moment in an !-section tor
sion member with one section restrained from warging. Let Fig. 6.2 1b represent 

t - "" _ .  
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Distance from restrai ned 
end of beam 

(a) 

t 

(b) 

(c) 

Figure 6.21 Lateral bending stresses at fixed section in a flange of an !-section torsion 
member. 

an !-section torsion member that is fixed at one end and loaded at the free end by 
the twisting moment T. Figure 6.2 1a represents a typical curve showing the rela
tion between the angle of twist {J of the !-section torsion member and the distance 
from the fixed section of the beam. In Fig. 6.2 la the distance from the fixed section 
to the section AB at which the straight-line portion of the curve intersects the hori
zontal axis is very nearly equal to the distance a as given by Eq. (6. 80). Thus, from 
this fact and from Eq. (6.88), the length L - a  of the beam between the free end 
and section AB may be considered as being twisted under pure torsion for the pur
pose of computing the angle of twist. From Eq. (6. 89) the sections of the beam 
within the length a from the fixed section to section AB may be considered as 
transmitting the entire twisting moment T by means of the lateral shears V in the 
flanges. Therefore, 

T =  Vh or V =  T/h (6.90) 

The force V causes each flange of length a to bend laterally, producing a 
normal stress in the flange, tensile stress at one edge, and compressive stress at the 
other (Fig. 6.2 l c). Assuming that each flange has a rectangular cross section, we 
have at the fixed end 

(6.9 1) 
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The value for a is given by Eq. (6. 80), in which E and G are the tensile and shear 
moduli of elasticity, respectively, I is the moment of inertia of the entire section 
with respect to a centroidal axis parallel to the web, and J is an equivalent tor
sional constant of the section. Values of a calculated by this equation come close 
to values obtained from actual tests. For a section made up of slender, approxi
mately rectangular elements, such as a rolled-steel channel, angle, or 1-section, J 
is given by Eq. (6.63) if it is noted that bi in this article replaces 2bi in Eq. (6.63) 
and ti replaces 2hi in Eq. (6.63). All equations in this article have been derived for 
!-sections, but they apply as well to channels or Z-sections. 

Various Loads and Supports for Beams in Torsion 
The solution of Eq. (6. 8 1 )  given by Eq. (6.82) is for the particular beam shown 
in Fig. 6.20. However, solutions of the equation have been obtained for beams 
loaded and supported as shown in Figs. A, B, C, and D in Table 6.2 by arranging 
the particular solution of the differential equation to suit the conditions of load
ing and support for each beam. The values of the maximum lateral bending mo
ment Mmax given in Table 6.2 may be used in Eq. (6.91 )  to compute the maximum 

TABLE 6.2 
Beams Subjected to Torsion 

Type of Loading 
and Support 

Maximum Lateral Bending 
Moment in Flange 

Trx L 
Mmax = h tanh

2ll. 

= 
Trx 

if h ' 

L 
- > 2.5 
2rx 

M = - coth - - -
Trx ( L 2rx) max 2h 2rx L 

L . 
- Is large 
2rx 

M = - coth - - -
Trx ( L rx ) m� h (J. L 
Trx '

f = - I h ' 

L . 1 - Is arge (J. 

Angle of Twist of Beam 
of Length L 

8 = _!____ (L - 2rx tanh .£) 
JG 2rx 

T 
= -(L - 2rx) 

JG 

L 
Error is small if - > 2. 5 

2rx 

8 = _I_(L
- cx tanh .£) 

2JG 4 4rx 

=
2�G

(� - a) 
L 

Error is small if - >  2.5 
4rx 

8 = _!____(� - cx tanh .£) 
JG 2 2rx 

= Ja (� - a) 
. 1 '  L 

Error Is smal If - > 2. 5 
2rx 
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6.8 

TABLE 6.2 ( Continued ) 
Beams Subjected to Torsion 

Type of Loading 
and Support 

Maximum Lateral Bending 
Moment in Flange 

. Ll . L2 sinh - sinh -Tcx rx rx Mmax = -h 

Error is small 

. L sinh cx 

Angle of Twist of Beam 
of Length L 

Approximate value 

8 = � I_(L - cx tanh �) 2 JG 2 2rx 

Error is small 

if � > 2.5 2rx 

lateral bending stress in the beam. The formulas in Table 6.2 where !-sections 
are shown may also be used for channels or Z-sections. 

NUMERICAL SOLUTION OF THE TORSION PROBLEM 

Considerable literature has been devoted to the Saint-Venant torsion problem of 
homogeneous, isotropic bars. However, studies of nonhomogeneous, anisotropic 
torsion members are less numerous. In modern aircraft structures, aerospace 
and industrial applications, laminated or anisotropic torsion members are used 
widely. For simple cross-sectional shapes, analytic solutions have been developed 
(Arutyunyan and Abramyan, 1963 ; Arutyunyan et al ., 1 988). For complicated, 
irregular cross sections, exact analytic solutions are difficult if not impossible to 
obtain. For such cases, both for homogeneous and isotropic, and for nonhomog
eneous and anisotropic members, numerical or approximate solutions must be 
sought. The most commonly employed numerical techniques are finite element 
and finite difference methods (Noor and Anderson, 1975 ;  Zienkiewicz and Taylor, 
1989; Boresi and Chong, 199 1 ). (See also Chapter 19 of this book.) Here for 
simplicity, we consider the finite difference solution of a homogeneous, isotropic 
torsion member with a square cross section R, boundary C, and dimension a 
(Fig. 6.22) .. We recall that Prandtl's formulation of the torsion problem for a 
homogeneous, isotropic material is [see Sec. 6.2 and 6.3 ;  Eqs. (6.28) and (6.3 8)] 

on R 
on C (6.92) 
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1 

R 
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F2. 2 

F2. 1 
2 
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X, i --� 
3 

1-"E---------- a --------� 

Figure 6.22 Square cross section 

where ¢ is the Prandtl stress function, C the bounding curve of the bar cross sec
tion R, G the shear modulus of the material, and 8 the angle of twist per unit length 
of the bar. To solve Eqs. (6.92) by the finite difference method, we must approxi
mate V2¢ by a finite difference formula. For this purpose, we employ the following 
second-order finite difference formula [Boresi and Chong, 199 1 , Eq. (3 .48)] , 

where h is the mesh dimension and (i, j)  denote the node point in R (Fig. 6.22). By 
symmetry, we need consider only a quarter of region R. Figure 6.22 shows a 4 x 4 
square mesh subdivision with mesh dimension h = a/4. Numbering the node points 
as in Fig. 6.22, we need consider only three values of c/Ji. i at the node points ( 1 ,  1 ), 
(2, 1 ), and (2, 2), respectively. Then, by Eqs. (6.92) and (6.93), and with Fig. 6.22, 
we have 

i = 1 ,  j = 1 ;  
i = 1 ,  j = 2; 
i = 2, j = 2 ;  

F2, 1 + F2. 1 - 4F1, 1 + F2, 1 + F2, 1 = - 2G8h2 
F2, 2 + F2,2 - 4F2, 1 + F1, 1 + 0 = -2G8h2 
F2, 1 + 0 - 4F2,2 + F2, 1 + 0 = -2G8h2 (6.94) 
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Collecting terms in Eqs. (6.94), we have 

- 4F1, 1 + 4F2, 1 = - 2G8h2 

F1, 1 - 4F2, 1 + 2F2,2 = - 2G8h2 

2F2, 1 - 4F2,2 = - 2G8h2 

The solution of Eqs. (6.95) is 

F1, 1 = - 2.250G8h2 

F2, 1  = 1 .750G8h2 

F2, 2 = 1 . 375G8h2 

(6.95) 

(6.96) 

Next, we determine the maximum shear stress (Jzy = - 8cpj8x that occurs at the 
point x = a/2, y = 0. Using a fourth-order backward-difference formula (Boresi 
and Chong, 199 1 ;  Table 3.3 .2), we have the approximation 

(��) . .  = 
z!h 

(6fi -4. i - 32F; - 3, i  + 72fi - z. i - 96F; - t, i + 50F;,i) (6.97) 
l, ] 

Thus, for i = 3, j = 1 ,  that is, for x = aj2, y = 0, we have by Eq. (6.97) 

(6.98) 

Substitution of Eq. (6.96) into Eq. (6.98) yields 

(CJzy)max � 2.583G(}h = 0.646G(}a (6.99) 

The exact solution (Boresi and Chong, 1987; Sec. 7. 10) yields (CJzy)max = 0.675G8a. 
If we take a finer mesh, we obtain a better approximation. For example, with h = 
a/8, we find (CJzy)max = 0.666G8a. 

It can be shown (see Boresi and Chong, 199 1 ;  Chapter 3) that the error in the 
derivative of the stress function ¢ [and hence in (CJzy)maxJ is proportional to h 2. 
Thus, if b denotes the error for a mesh size h, we may write b = Ch 2, where C is 
a constant. This fact can be used to extrapolate to a better approximation, given 
values for h = a/4 and a/8. For example, let h = ajn, where n is the number of seg
ments into which a is divided. Let h1 = ajn1 and h2 = ajn2 , n2 > n1 , be two mesh 
sizes for which the approximate values S1 , S2 of (CJzy)max have been determined. Let 
b1 and b2 be the errors in S1 , S2 compared with the exact value (CJzy)max · Then, we 
can obtain a better approximation by the equations 

and 
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Solving for (o-zy)max ' we obtain the result 
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(6. 100) 

For n 1 = 4, S1 = 0.646G8a, and n2 = 8, S2 = 0.666G8a, Eq. (6. 100) yields the ap
proximate (o-zy)max = 0.673G8a. This value is only 0.3% lower than the exact value 
0.675G8a. 

Explicit closed-form analytical solutions of the torsion problem for complex 
irregular cross sections are not generally available. However, approximate solu
tions by the finite difference method are still feasible, although the generation of 
the approximating finite difference equations becomes more difficult. * The appli
cation of finite difference methods to irregular boundaries requires finite difference 
formulas for nonuniform mesh dimensions. The use of finite difference methods 
for irregular boundaries is discussed by Boresi and Chong ( 1 99 1  ). 

FULLY PLASTIC TORSION 

Consider a torsion member made of an elastic-perfectly plastic material, that is, one 
whose shear stress-strain diagram is flat-topped at the shear yield stress ty . As the 
torque is gradually increased, yielding starts at one or more places on the boundary 
of the cross section and spreads inward with increasing torque. Finally, the entire 
cross section becomes plastic at the limiting, fully plastic torque. The torsion anal
ysis for the limiting torque or fully plastic torque is considered in this article. 

Equations ( 6.23) and ( 6.29) are valid for both the elastic and plastic regions 
of each cross section of a torsion member. At the fully plastic torque, the resul
tant shear stress is t = ty at every point in the cross section. Thus, Eqs . (6.23) and 
(6.29) give 

2 2 (8¢)2 (8¢)2 2 O"zx + o-zy = 
ay + 

ax 
= ty  (6. 101 )  

Equation {6. 101 )  uniquely determines the stress function cp(x, y) for a given torsion 
member for fully plastic conditions. Since the unit angle of twist does not appear 
in Eq. (6. 10 1), the deformation (twist) of the torsion member is not specified at the 
fully plastic torque. 

Now we consider a procedure by which Eq. (6. 101) may be used to construct 
the stress function surface for the cross section of a given torsion member at fully 
plastic torque. Equation (6.28) indicates that ¢ = 0 on the boundary, and Eq. (6. 101 )  
indicates that the absolute value of the maximum slope of ¢ everywhere in the 

* It is shown in Chapter 19 that the inherent difficulties of the finite difference method in dealing with 
irregular boundaries or satisfying complicated boundary conditions can be circumvented by the use of 
finite element methods. 
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I I I I I I 

Contou r curve 
of constant f/J 

I I �=tTy 
Figure 6.23 Stress function surface for a fully plastic square cross section. 

cross section is a constant equal to ty ; therefore, the magnitude of ¢ at a point is 
equal to ty times its distance from the nearest boundary, measured along the per
pendicular from the point to the nearest boundary. The contour curves of constant 
¢ are perpendicular to the direction of maxim urn slope and, hence, are parallel to 
the nearest boundary. 

Consider the problem of constructing the stress function ¢ for a square cross 
section with sides 2a, as indicated in Fig. 6.23 .  At a given point P, the resultant shear 
stress is ty and is directed along a contour curve of constant ¢; the elevation of the 
stress function at point P is equal to ty times its perpendicular distance to the 
nearest boundary. The stress function ¢ for the square cross section is a pyramid 
of height tya; this condition suggested to Nadai ( 1950) the so-called sand-heap 
analogy because sand poured on a flat plate with the same dimensions as the cross 
section of the torsion member tends to form a pyramid similar to that indicated in 
Fig. 6.23. 

The fully plastic torque Tp for the square cross section can be obtained by means 
of Eq. ( 6.36), which indicates that the torque is equal to twice the volume under the 
stress function. Since the volume of a pyramid is equal to one-third of the area of 
the base times the height, we have 

(6. 102) 

The fully plastic torques for a few common cross sections are listed in Table 6.3 and 
are compared with the maximum elastic solutions for these cross sections. We see 
by Table 6.3 that the load-carrying capacity for the cross sections considered are 
greatly increased when we make it possible for yielding to spread throughout the 
cross sections. 

Expressions for the fully plastic torques for a number of common structural 
sections have been derived (see Table 6.4, p. 280). We remark that the expressions 
in Table 6.4 are not exact. When the cross section has a reentrant corner as indi
cated in Fig. 6.24, the correct stress surface is as shown in Fig. 6.24a and not as in 
Fig. 6.24b. Since the expressions in Table 6.4 are based on the assumption that 
Fig. 6.4b is correct, these expressions are not exact for sections with reentrant cor
ners. Finally, we note that the expressions for Tp in the second column of Table 6.4 
hold for each of the two cross sections in the first column. Since the cross sections 
in Table 6.4 are made up of long narrow rectangular sections, the error in the ex
pressions in Table 6.4 is small ; furthermore, the error makes the expressions con
servative. The maximum elastic torques are not given in Table 6.4 because of the 
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(Jy , Ty, Tp , and TpjTy for Five Common Cross Sections 

Section 

Square 

Rectangle 

b - = 2  a 

b - = 00 a 

Equilateral triangle 

Circle 

0 

Maximum Elastic 
Torque Ty and 

Unit Angle of Twist 6y 

Ty = 1 .664rya3 

8 
_ 1 .475Ty 

Y - 2Ga 

Ty = 3.936rya3 

8 
_ 1 .074Ty 

Y - 2Ga 

2 3 Ty = 
15.J3 

'tya 

8 
_ 2Ty 

Y - Ga 

1! 3 Ty = 2 rya 

8 - � y - Ga 

Fully Plastic 
Torque Tp 

2.J3 3 -- '! a 27 y 

. Tp 
Ratio 

Ty 

1 .605 

1 .69 

1 .50 

1 .67 

1 .33 

influence on initial yielding of the high stress-concentration factors at reentrant 
corners. In summary, Table 6.4 has limited applicability to the design of such sec
tions in an actual structure for two reasons. First, failure by buckling, at least for 
thin sections, is likely to be the basis for design. Second, torsion of such sections 
is more often a secondary action that is usually accompanied by primary action, 
which produces bending or normal stresses. 

In the calculation of the fully plastic torque for a hollow torsion member, 
the method of analysis is similar to that for elastic torsion of the hollow torsion 
member, since the stress function cp(x, y) is flat-topped (has zero slope) over the 
hollow region of the torsion member. Sadowsky ( 1941 )  has extended Nadai's sand
heap analogy to hollow torsion members. In order to simplify the analysis, only 
hollow torsion members of constant wall thickness are considered. For such tor
sion members, the fully plastic torque Tp is obtained by subtracting from the fully 
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TABLE 6.4 
Tp for Common Structural Sections 

Section Fully Plastic Torque Tp 

2 (a 7 )  Tyt l + b - 6 t 

� � "' � 

b.: <: I  AJ 
(a) (b) 

Figure 6.24 Stress function surfaces for a fully plastic angle section. (a) Correct plastic
stress surface. (b) Incorrect plastic-stress surface. 

plastic torque Tps of a solid torsion member having the boundary of the outer 
cross section, the fully plastic torque Tpa of a solid torsion member having a cross 
section identical to the hollow region. That is, for such members 

(6. 103) 
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EXAMPLE 6.7 
Limit Analysis and Residual Stress in a Circular 
Cross-Section Shaft 

A bar with circular cross section of radius b is subjected to a twisting moment T, 
which is increased until the bar is fully yielded. 

(a) Determine the angle of twist 8y per unit length of the bar at initiation of yield. 

(b) Determine the angle of twist (} > 8y , as the torque is increased beyond the 
torque Ty that initiates yield to radius by . 

(c) Determine the elastic torque TE , plastic torque Tp , and elastic-plastic torque 
TEP (the sum of TE and Tp) for part (b) above. 

(d) Determine the limiting (fully plastic) torque TL . 
(e) After the limiting torque is reached, it is removed (released), and the torsion 

member springs back. As a result, residual stresses remain in the bar. Deter
mine the residual stress distribution in the bar. 

SOLUTION 

As in Sec. 6.9, we consider a circular cross-section torsion member made of an 
elastic-perfectly plastic material, that is, one whose shear stress-strain diagram is 
flat-topped at the shear yield stress ry (similar to Fig. 4.4a for tensile stress). As the 
torque is increased, yielding occurs when the shear stress r on the boundary of the 
cross section reaches the value ry , (Fig. E6.7a). 

(a) When the shear stress reaches the value ry at r = b, the corresponding torque 
is, by Eq. (6. 1 5), 

TC!yb 3 
Ty = -

2
- (a) 

(see Table 6.3). As the torque is increased beyond the value Ty , yielding 
spreads inward into the cross section of the member (Fig. E6.7b), so that the 
region from r = by �o r =  b has yielded fully. The angle of twist per unit length 
of the bar at initiation of yield (Fig. E6.7a) is, by Eq. (6. 14), 

!y 
Oy = 

Gb 
(b) 

(b) As the torque increases beyond Ty , the angle of twist (} per unit length 
increases, that is, (} > 8y , and the section yields to radius by (Fig. E6.7b). Since 
the cross section is elastic to the radius by , by Eq. (6. 14), 

b - !y 
Y - GO 

Dividing Eq. (c) by b, we find, with Eq. (b), 

(} = 
bOy 
by 

(c) 

(d) 
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b b 

(a) (b) 

b 

(c) 

Figure E6.7 Solid circular cross section. (a) Yield at r = b. (b) Yield at r = by . (c) Residual 
shear stress. 

(c) Likewise, the twisting moment TE due to the shear stress up to r = by ,  that is, 
in the elastic core, by Eq. (6. 1 5) with J = nbi/2, is 

� _ TCtyb� 
E - 2 

(e) 

The torque Tp due to the stress in the yielded (plastic) region of the bar 
(r > by) is 

i b 2 3 3 
Tp = rty (2nr dr) = 3 nty(b - by) by 

The total elastic-plastic moment TEP is, by Eqs. (e) and (f ), 

2 ( 3 1 3) 
TEP = TE + Tp = 3 1C7:y b - 4 by  

(f ) 

(g) 

(d) The fully plastic or limiting moment TL is given by Eq. (g), letting by � 0. Thus, 

(h) 
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This result agrees with that of Table 6.3 .  Dividing Eq. (h) by Eq. (a), we obtain 

(i) 

Thus, the limiting moment TL is 4/3 times larger than the torque that initiates 
yield [recall the relation Mp = 1 . 5My for bending of a rectangular beam, 
Eq. (4.42)] . 

(e) When the limiting torque TL is released, the bar springs back (unwinds) elas
tically, and the shear stress-strain curve will follow a path similar to CA' in 
Fig. 4.4a. Since the limiting torque is TL = 4 Tr/3 ,  the elastic stress recovery 
at r = b is 4tr/3. Hence, since the shear stress is initially ty at r = b, a residual 
shear stress tr/3 in the opposite sense of ty remains at r = b. However, at the 
center of the cross section (r = 0), the residual stress remains ty , in the original 
sense, as shown in Fig. E6. 7 c. Since the recovery is elastic, the shear stress 
varies linearly from r = 0 to r = b. Hence, the residual shear stress is zero at 
r = 3bj4. 

PROBLEMS 
Sections 6.1-6.3 

6. 1 .  Derive the relation for the shear stress distribution on the x axis for the 
equilateral triangle in Fig. 6.9. 

6.2. Derive Eqs. (6.49) for the equilateral triangle. 
6.3. A square shaft may be used to transmit power from a farm tractor to farm 

implements. A 25.0-mm square shaft is made of a steel having a yield stress 
of Y = 380 MPa. Determine the torque that can be applied to the shaft 
based on a factor of safety of SF = 2.00 by using the octahedral shear 
stress criterion of failure. 

6.4. A square shaft has 42.0-mm sides and the same cross-sectional area as 
shafts having circular and equilateral triangular cross sections. If each 
shaft is subjected to a torque of 1 .00 kN ·m, determine the maximum shear 
stress for each of the three shafts. 

Ans. tsquare = 64.89 MPa, !circle = 47.82 MPa, !triangle = 76.86 MPa 

6.5. The shafts in Problem 6.4 are made of a steel for which G = 77.5 GPa. 
Determine the unit angle of twist for each shaft. 

6.6. The left-hand section of the torsion member in Fig. E6. 3 is 2.00 m long, 
and the right-hand section is 1 .00 m long. It is made of an aluminum alloy 
for which G = 27. 1 GPa. Determine the magnitude of T2 if T1 = 350 N ·m 
and the maximum shear stress i s  45.0 MPa. Neglect stress concent�ations at 
changes in section. Determine the angle of twist of the free end. The sup
port at the left end prevents rotation of this cross section but does not 
prevent warping of the cross section. 

Ans. T2 = 36 1 .3 N · m, angle of twist = 0. 1 39 1  rad 
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6.7. A torsion member has an elliptical cross section with major and minor 
dimensions of 50.0 mm and 30.0 mm, respectively. The yield stress of the 
material in the torsion member is Y = 400 MPa. Determine the maximum 
torque that can be applied to the torsion member based on a factor of 
safety of SF = 1 . 8 5  using the maximum shear stress criterion of failure. 

6.8. A steel bar has a rectangular cross section 12.7 mm wide and 38 . 1 mm 
deep. The bar is subjected to a twisting moment T = 1 3 5.7 N ·m. The shear 
yield stress of the material is 82.7 MPa. 

(a) By Eq. (6.50), calculate the maximum shear stress in the bar and show 
in a diagram where it occurs. 

(b) Calculate the shear stress in the bar at the center of the short side. 

Ans. (a) tmax = 82.7 MPa, (b) t = 27.6 MPa 

6.9. A bar of steel has a tensile yield stress Y = 345 MPa and shear yield stress 
ty = 207 MPa. The bar has a rectangular cross section, and it is subjected 
to a twisting moment T = 565 N ·m. The working stress limit of the bar is 
two-thirds ty . If the width of the cross section of the bar is 2h = 1 9  mm, 
determine the length 2b of the cross section (Fig. 6. 1 0). 

6. 10. A rectangular bar has a cross section such that bjh = k, and it is subjected 
to a twisting moment T. A cylindrical bar of diameter d is also subjected to 
T. Show that the maximum shear stresses in the two bars are equal, pro
vided d = 3.44 1 h(kk2) 1 13 and the bars remain elastic. 

6. 1 1 .  The depth 2b of a rectangular cross section torsion bar is 3 8. 1 mm 
(Fig. 6. 10). Determine the required width 2h so that the maximum shear 
stress produced in it is the same as that in a cylindrical bar 5 1  mm in dia
meter, both bars being subjected to the same twisting moment. 

6.12. Two bars, one with a square cross section and one with a circular cross 
section, have equal cross-sectional areas . The bars are subjected to equal 
twisting moments. Determine the ratio of the maximum shear stresses in 
the two bars, assuming that they remain elastic. 

Ans. Lmax(square bar) = 1 . 36 Lmax(circular bar) 

6.13. A stepped steel shaft ABC has lengths AB = L1 = 1 .0 m and BC = L2 = 
1 .27 m, with diameters d1 = 25.4 mm and d2 = 1 9.05 mm, respectively. The 
steel has a yield stress Y = 450 MPa and shear modulus G = 77 GPa. A 
twisting moment is applied at the stepped section B. Ends A and C are fixed. 

(a) Determine the value of T that first causes yielding. 

(b) For this value of T, determine the angle of rotation fJB at section B. 

6. 14. Consider a hollow elliptic cylinder with its outer elliptic surface defined by 
(xjhf + (yjb)2 = 1 and inner elliptic surface defined by [x/(kh)] 2 + 
[y/(kb)] 2 = 1 .  Show that 

(h 2 + b 2 ) T  
8 = 

nh3 b3( 1  - k4)G  
2T 
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and 
2T 2T 

Hint :  By the theory of hollow torsional members (Boresi and Chong, 
1 987), the twisting moment T is related to ¢ by the relation 

K1 is the value of ¢ on the inner elliptic surface, A1 is the area bounded by 
the inner ellipse and R is the solid region bounded by the inner and outer 
ellipses. 

Sections 6.4-6.6 

6. 15. Find the maximum shear stress and unit angle of twist of the bar having 
the cross section shown in Fig. P6. 1 5  when subjected to a torque at its ends 
of 600 N ·m. The bar is made of a steel for which G = 77.5 GPa. 

200 mm 

r--1 00 mm---1_j_ 
T 

9 mm 

9 mm 

Figure P6. 1 5  

6. 16. An aluminum alloy extruded section (Fig. P6. 16 )  is subjected to a torsional 
load. Determine the maximum torque that can be applied to the member if 
the maximum shear stress is 75.0 MPa. Neglect stress concentrations at 
changes in section. 

Ans. T = 665.4 N ·m 

6. 17. For a thin-wall circular cross-section tube, show that the polar moment of 
inertia J of the cross section is approximately J = 2nR3 t, where R is the 
mean radius of the tube and t is the wall thickness. Determine the percent 
error in J as t increases from 0.001 R to 0.2 R 
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�------------ �' c��1�00�m�m:�--�����_l 
T 

5 mm 

1 50 mm 

10 mm 

Figure P6. 16 

6.18. A thin-wall torsion member subjected to torque T has the cross section 
shown in Fig. P6. 1 8. The wall thickness t is constant throughout the sec
tion. By the theory of Sec. 6.6, in terms of T, b, and t, 

t l 
b J 

l�oe::--- b ---�)1'�1�1(---- b ----')>)roil 
Figure P6. 1 8  

(a) derive formulas for the shear stress in the outer walls and the interior 
web and 

(b) derive a formula for the unit angle of twist. Disregard the effects of 
stress concentrations at interior corners. 

6.19. Remove the interior web in the cross section of Fig. P6. 1 8. Derive for
mulas for the shear stress and unit angle of twist of the section. Ignore the 
effects of stress concentrations. 

6.20. For the cross section in Problem 6. 19, make a slit lengthwise along the 
member so as to form an open cross section. Derive formulas for the shear 
stress and unit angle of twist. Compare the results to those obtained in 
Problem 6. 19. 

6.21 .  A thin-wall brass tube (G = 27.6 GPa) has an equilateral triangular cross 
section. The mean length of one side of the triangle is 25.4 mm and the 



PROBLEMS 287 

wall thickness 2.54 mm. The tube is subjected to a twisting moment T = 
20 m·N. Determine the maximum shear stress and angle of twist per unit 
length of the tube. 

Ans. tmax = 14. 1  MPa, 8 = 0.0696 radjm 

6.22. An aluminum (G = 26.7 GPa) torsion bar has the cross section shown 
in Fig. P6.22. The bar is subjected to a twisting moment T = 1 3 56 m · N. 

200 mm 

1:<=���
-

1 o_o_m_m_ -_ -_ ----,>�j _l 
t 
1 2  mm 

10 mm 

__ _____, _l 
t 
1 2  mm 

Figure P6.22 

(a) Determine the maximum shear stress tmax and angle of twist per unit 
length. 

(b) At what location in the cross section does tmax occur? Ignore stress 
concentrations. 

6.23. Compare the shear stress and the unit angle of twist for three thin-wall 
sections : a circular tube, a square tube, and an equilateral triangle. The 
three sections have equal wall thicknesses and equal perimeters. 

Ans. Lsquare = 1 .27 Lcircle ; Ltriangle = 1 .65 Lcircle ; f) square = 1 .62 f) circle ; 
f}triangle = 2.74 f}circle 

6.24. A steel (G = 79 GPa) torsion bar is subjected to twisting moments T = 
226 m·N at its ends (Fig. P6.24). The bar is 1 .2 m long. 

(a) Determine the angle of twist of one end relative to the other end. 

(b) Determine the maximum shear stress and its location in the section. 
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Figure P6.24 

6.25. (a) Compare the twisting moments required to give the same angle of 
twist per unit length to the two sections shown in Fig. P6.25. 

(b) Compare the twisting moments required to cause the same maximum 
shear stress. Ignore the effect of stress concentrations. 

(a) (b) 

Figure P6.25 

6.26. The hollow circular and square thin-wall torsion members in Fig. P6.26 
have identical values for b and t. Neglecting the stress concentrations at 

Figure P6.26 
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the corners of the square, determine the ratio of the torques and unit angle 
of twists for the two torsion members, for equal shear stresses in each. 

6.27. A hollow thin-wall brass tube has an equilateral triangular cross section. 
The mean length of each side of the triangle is 40.0 mm. The wall thickness 
is 4.00 mm. Determine the torque and unit angle of twist for an average 
shear stress of 20.0 MPa, and for G = 3 1 . 1  GPa. 

Ans. T = 1 10.8 N·m, 8 = 0.0559 radjm 

6.28.  A hollow rectangular thin-wall steel torsion member has the cross section 
shown in Fig. P6.28 .  The steel has a yield stress Y = 360 MPa and shear 
modulus of elasticity of G = 77 .5 GPa. Determine the maximum torque 
that may be applied to the torsion member, based on a factor of safety of 
SF = 2.00 for the octahedral shear stress criterion of failure. What is the 
unit angle of twist when the maximum torque is applied? 

,� 1 50 mm �I 
5 mm 1 

1 00 
mm 

9 mm 9 mm j 
6 mm 

Figure P6.28 

6.29. The hollow thin-wall torsion member of Fig. P6.29 has uniform thickness 
walls. Show that walls BC, CD, and CF are stress-free. 

B 

F c 

D 

Figure P6.29 

6.30. The aluminum (G = 27. 1 GPa) hollow thin-wall torsion member in 
Fig. P6. 30 has the dimensions shown. Its length is 3.00 m. If the member 
is subjected to a torque T = 1 1 .0 kN · m, determine the maximum shear 
stress and angle of twist. 
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5 mm 

Figure P6.30 

Section 6.7 

6.31 .  A wide-flange steel (E = 200 GPa and G = 77 .5  GPa) I-beam has a depth 
of 300 mm, web thickness of 1 5  mm, flange width of 270 mm, flange thick
ness of 20 mm, and length of 8.00 m. The I -beam is fixed at one end and free 
at the other end. A twisting moment T = 7.00 kN ·m is applied at the free 
end. Determine the maximum normal stress and maximum shear stress in 
the I-beam and the angle of rotation {J of the free end of the I-beam. 

6.32. The I-beam in Fig. P6.32 is an aluminum alloy (E = 72.0 GPa and G = 

27. 1  GPa) extruded section. It is fixed at the wall and attached rigidly to 
the thick massive plate at the other end. Determine the magnitude of P for 
(Jmax = 1 60 MPa. 

Ans. P = 1 .095 kN 

Figure P6.32 

r-so mm--1 _j_ 
r :�t 80 mm 

LX__.-.,.__ J. �-.:a.rl-'f�F"T"Tm
s m� 

--:r 
y 6 mm 
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�--1 00  mm ----t 



REFERENCES 291 

6.33. Let the thick plate in Problem 6.32 be subjected to a torque T = 1 50 N ·m 
directed along the axis of the 1-beam. Determine the maximum shear stress 
and angle of twist {J of the plate. 

Section 6.8 

6.34. (a) By the finite difference method, determine the maximum shear stress 
for a solid rectangular torsion member subjected to a twisting mo
ment T. The cross section of the member has dimensions a x 2a. Use 
a mesh dimension of h = aj4. 

Section 6.9 

(b) Repeat part (a), using a mesh dimension h = a/8 . 
(c) Compare the results of parts (a) and (b) with the results obtained in 

Sec. 6.8. 
(d) Use Eq. (6. 100) to obtain an improved estimate of maximum shear 

stress. 

6.35. Derive the relation for the fully plastic torque for a rectangular cross sec
tion having dimensions 2a by 2b. 

6.36. Derive the relation for the fully plastic torque for the cross sections in the 
first row of Table 6.4. 

6.37. A rectangular section torsion member has dimensions of 100 mm by 
1 50 mm and is made of a steel for which the shear yield point is ty = 

100.0 MPa. Determine Tp for the cross section and the ratio of Tp to Ty , 
where Ty is the maximum elastic torque. 

6.38. A rectangular hollow torsion member has external dimensions of 200 mm 
by 400 mm. The cross section has a uniform thickness of 30 mm. For a 
material that has a shear stress ty = 1 20 MPa, determine the fully plastic 
torque. 

Ans. Tp = 455.0 kN ·m 

6.39. Repeat Example 6.7 for a hollow circular cross section with outer radius 
b-and inner radius a. 

REFERENCES 
American Institute of Steel Construction, Inc. (AISC) ( 1983). Torsion Analysis of 

Steel Members. Chicago, Ill. 
Arutyunyan, N. Kh. and Abramyan, B. L. ( 1 963). Torsion of Elastic Bodies. 

Moscow: Fizmatgiz (in Russian). 
Arutyunyan, N. Kh., Abramyan, B. L., and Naumov, V. E. ( 1 988). 'Torsion of 

Inhomogeneous Shafts.' In Mechanics of Deformable Solids (A. Yu. lshlinskii, 
ed.). New York: Allerton Press, Chapter 4. 



292 6 / TORSION 

Boresi, A. P. and Chong, K. P. ( 1 987). Elasticity in Engineering Mechanics. New 
York : Elsevier. 

Boresi, A. P. and Chong, K. P. ( 1 99 1 ). Approximate Solution Methods in Engi
neering Mechanics. New York : Elsevier. 

Nadai, A. ( 1 950). Theory of Flow and Fracture of Solids, Vol. 1 .  New York : 
McGraw-Hill . 

Noor, A. K. and Anderson, C. M.  ( 1 975). 'Mixed lsoparametric Elements for 
Saint-Venant Torsion'. In Computer Methods Applied Mechanics and Engineer
ing, Vol. 6 (J. H. Argyris, W. Prager, and A. M. 0. Smith, eds.) Amsterdam: 
North-Holland, pp. 1 95-21 8. 

Prandtl, L. ( 1 903). 'Zur Torsion von prisma atischen SHiben.' Physik Ziet., 4: 
758-770. 

Sadowsky, M . A. ( 194 1 ). 'An Extension of the Sand Heap Analogy in Plastic Tor
sion Applicable to Cross-Sections Having One or More Holes.' J. App. Mech., 
8 (4) :  A1 66-A1 68. 

Smith, F. A., Thomas, F. M., and Smith, J. 0. ( 1 970). 'Torsional Analysis of Heavy 
Box Beams in Structures.' J. Structural Div., ASCE 96 (ST3) : 6 1 3-635 (Proc. 
Paper 7 1 65). 

Thoms, R. L. and Masch, F. D. ( 1 965 ). 'Membrane Analogy Studies Employing 
Visible Contour Lines.' In Developments in Theoretical and Applied Mechanics, 
Vol. 2 (W. A. Shaw, ed.). New York : Pergamon Press, pp. 545- 555. 

von Karman, T. and Chien, W. Z. ( 1 946). 'Torsion with Variable Twist.' J. Aero. 
Sci., 13, ( 10) :  503 -5 10. 

Zienkiewicz, 0. C. and Taylor, R. C. ( 1989). The Finite Element Method, 4th ed., 
Vol. 1. New York : McGraw-Hill. 



7 

7. 1 

NONSYMMETRICAL 
BENDING OF STRAIGHT 
BEAMS 

In this chapter we assume that there i s  a plane in which the forces that act on a 
beam lie. This plane is called the plane of loads. In addition, we assume that the 
plane of loads passes through a point (the shear center) in the beam cross section, 
so that there is no twisting (torsion) of the beam; that is, the resulting forces that 
act on any cross section of the beam consist only of bending moments and shear 
forces. The net torque is zero. For cross sections that have two �r more axes of 
symmetry, the shear center is located at the intersection of the axes. For cross 
sections with one axis of symmetry, the shear center lies on the axis. Similarly, for 
a cross section with two axes of antisymmetry, the shear center is located at the 
point of intersection of the axes. For general cross sections, the theory of elasticity 
may be used to locate the shear center of a cross section (Boresi and Chong, 1987). 
However, in Chapter 8 the methods of mechanics of materials are used to locate 
the shear center approximately. We introduce the concepts of symmetrical and 
nonsymmetrical bending of straight beams and the plane of loads in Sec. 7 . 1 .  In 
Sec. 7 .2, we develop formulas for stresses in beams subjected to nonsymmetrical 
bending. In Sec. 7 .3 , deflections of beams are computed. In Sec. 7 .4, the effect of 
an inclined load relative to a principal plane is examined. Finally, in Sec. 7 .5, a 
method is presented for computing fully plastic loads for cross sections in non
symmetrical bending. 

DEFINITION OF SHEAR CENTER IN BENDING. 
SYMMETRICAL AND NONSYMMETRICAL BENDING 

The straight cantilever beam shown in Fig. 7 . 1 has a cross section of arbitrary 
shape. It is subjected to pure bending by the end couple M0 • Let the origin 0 of 
the coordinate system (x, y, z) be chosen at the centroid of the beam cross section 
at the left end of the beam, with the z axis directed along the centroidal axis of 
the beam, and the (x, y) axes taken in the plane of the cross section. Generally, 
the orientation of the (x, y) axis is arbitrary. However, we often choose the (x, y) 
axes so that the moments of inertia of the cross section lx , ly , and lxy are easily 
calculated, or we may take them to be principal axes of the cross section (see 
Appendix B). 
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X 

z 

Figure 7. 1 Cantilever beam with an arbitrary cross section subjected to pure bending. 

z 

The bending moment that acts at the left end of the beam (Fig. 7. 1a) is repre
sented by the vector M0 directed perpendicular to a plane that forms an angle 4> 
(0 � ¢ � n) taken positive when measured counterclockwise from the x-z plane 
as viewed from the positive z axis. This plane is called the plane of load or the 
plane of loads. A more complete description of the plane of loads is given later 
on in this section. Con;ider now a cross section of the beam at distance z from the 
left end. The free-body diagram of the part of the beam to the left of this section 
is shown in Fig. 7. 1 b. For equilibrium of this part of the beam, a moment M, equal 
in magnitude but opposite in sense to M0 , must act at section z. For the case 
shown (n/2 � ¢ � n), the (x, y) components (Mx , My) of M are related to the 
signed magnitude M of M by the relations Mx = M sin l/J, My = - M cos l/J. Since 
n/2 � ¢ � n, sin ¢ is positive and cos ¢ negative. Since (Mx , My) are positive 
(Fig. 7 . lb ), the sign of M is positive. A more complete discussion of the sign con
vention for M is given in Sec. 7.2, following Eq. (7. 1 3). 
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Shear Loading of a Beam. Shear Center Defined 
Let the beam shown in Fig. 7 .2a be subjected to a concentrated force P that lies in 
the end plane (z = 0) of the beam cross section. The vector representing P lies in a 
plane that forms angle ¢ (0 :::;; ¢ :::;; n), taken positive when measured counter
clockwise from the z-x plane as viewed from the positive z axis. This plane is called 
the plane of the load. Consider a cross section of the beam at distance z from the 
left end. The free-body diagram of the part of the beam to the left of this section 
is shown in Fig. 7.2b. For equilibrium of this part of the beam, a moment M, with 
components Mx and My , shear components Vx and Jt;, ,  and in general, a twisting 
moment T (with vector directed along the positive z axis) must act on the section 
at z. However, if the line of action of force P passes through a certain point C 
(the shear center) in the cross section, T = 0. In this discussion, we assume that 

p 

z 

z 

Figure 7.2 Cantilever beam with an arbitrary cross section subjected to shear loading. 
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the line of action of P passes through the shear center. Hence, T is not shown in 
Fig. 7.2b. Note that in Fig. 7.2b, the force P requires Vx , Yy to be positive [directed 
along positive (x, y) axes, respectively] . The component Mx is also directed along 
the positive x axis. However, since ¢ < n/2, MY is negative (directed along the 
negative y axis. 

There is a particular axial line in the beam called the bending axis of the beam, 
which is parallel to the centroidal axis of the beam (the line that passes through 
the centroids of all of the cross sections of the beam). Except for special cases, the 
bending axis does not coincide with the centroidal axis (Fig. 7.2). 

The intersection of the bending axis with any cross section of the beam locates 
a point C in that cross section called the shear center of the cross section (see 
Sec. 8 . 1 ). Thus, the bending axis passes through the shear centers of all the cross 
sections of the beam. 

In Sec. 7.2, formulas are derived for the normal stress component CJzz that acts 
on the cross section at z in terms of the bending moment components (Mx,  My). 
Also, one may derive formulas for the shear stress components (tzx, tzy) due to the 
shear forces (Yx ,  Yy). However, if the length L of the beam is large compared to the 
maximum cross-section dimension D, such that L/ D > 5, the maximum shear 
stress is small compared to the maximum normal stress. In this chapter we ignore 
the shear stresses due to (Yx ,  Yy); that is, we consider beams for which L/D > 5. 

For bending of a beam by a concentrated force and for which the shear stresses 
are negligible, the line of action of the force must pass through the shear center 
of a cross section of the beam; otherwise, the beam will be subjected to both 
bending and torsion (twist). Thus, for the theory of pure bending of beams, we as
sume that the shear stresses due to concentrated loads are negligible and that the 
lines of action of concentrated forces that act on the beam pass through the shear 
center of a beam cross section. If the cross section of a beam has either an axis of 
symmetry or an axis of antisymmetry, the shear center C is located on that axis 
(Fig. 7 .3). If the cross section has two or more axes of symmetry or antisym
metry, the shear center is located at the intersection of the axes (Figs. 7.3a and d). 
For a general cross section (Fig. 7. 1 )  or for a relatively thick, solid cross section 
(Fig. 7.3c), the determination of the location of the shear center requires advanced 
computational methods (Boresi and Chong, 1 987). For this reason, the location of 
the shear center is often determined in an approximate manner; the errors intro
duced by such approximations of the shear center location are discussed in the 
next paragraph. 

Let the line of action of force P pass through an approximate location of the 
shear center of the beam, point B in Fig. 7 .4. Let C be the location of the shear 
center. Since the line of action of force P does not pass through C, the force P is 
assumed to be replaceable by a couple (torque) that lies in the cross section and a 
force with an action line that passes through C. This representation or transfor
mation of force P is assumed to be valid for the deformable beam cross section, 
although strictly speaking, it is applicable to rigid bodies only. The transformation 
is accomplished by adding self-equilibrating forces P' and P" at C that are parallel 
to P and have magnitudes equal to that of P. Thus, the force P is considered to 
be equivalent to a torque (couple) of magnitude T = Pd, due to forces P and P", 
where d is the perpendicular distance between P and P" and a force P' acting at C. 

Now pass a cutting plane through the member at distance z from the left end. 
The free-body diagram of the beam to the left of the cut is shown in Fig. 7 .4b. 
For equilibrium, the forces at the cut include a bending moment M with compo-
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Figure 7 .3 (a) Equilateral triangle section. (b) Open channel section. (c) Angle section. 
(d) Z-section. 

nents Mx and My , torque of magnitude T = Pd, and shears Yx and v;, .  The normal 
stress distribution CJzz due to Mx and My can be calculated by the formulas de
rived in Sec. 7.2. The shear stresses due to Yx and v;, are considered to be negligible 
(L/D > 5.). The shear stress due to torque T may be computed by the methods 
presented in Chapter 6. Cross sections with thick walls (Fig. 7.3c) require large 
torques if the maximum shear stress due to the torque is to be significant. For 
such cross sections, an approximate location of the shear center will suffice, 
since shear stresses due to T are small compared to the maximum value of (Jzz ' 
provided Pz is large compared to Pd. However, caution must be used for cross 
sections made of connected narrow rectangular walls such as the open channel 
cross section shown in Fig. 7.3b, since, as noted in Chapter 6, such cross sections 
have little resistance to torsional loads . For these kinds of cross sections, an accu
rate estimate of the location of the shear center is necessary. Such problems are 
treated in Chapter 8. 

In this chapter, unless the shear center is located by intersecting axes of sym
metry or antisymmetry, its location is approximated. The reader should have a 
better understanding of such approximations after studying Chapter 8. 
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P' 
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z 

Figure 7.4 Cantilever beam with arbitrary cross section subjected to shear loading not at 
shear center. 

Symmetrical Bending. Nonsymmetrical Bending 
In Appendix B, it is shown that every beam cross section has principal axes (X, Y). 
With respect to principal axes (X, Y), the product of inertia of the cross section 
is zero ; lxy = 0. The principal axes (X, Y) for the cross section of the cantilever 
beam of Fig. 7. 1 are shown in Fig. 7.5. For convenience, axes (X, Y) are also shown 
at a section of the beam at distance z from the left end of the beam. At the left 
end, let the beam be subjected to a couple M0 with sense in the negative X direc
tion and a force P through the shear center C with sense in the negative Y direc
tion (Fig. 7. 5a). These loads are reacted by a bending moment M = Mx at the cut 
section with sense in the positive X direction. By Bernoulli beam theory (Boresi 
and Chong, 1987), the stress CJzz normal to the cross section is given by the flexure 
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Figure 7.5 Cantilever beam with an arbitrary cross section. 

MxY 
(Jzz = --lx 

z 

(7. 1 )  
where Y is the distance from the principal axis X to the point in the cross section 
at which CJzz acts, and lx is the principal moment of inertia of the cross-sectional 
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area relative to the X axis. Equation (7. 1 ) shows that CJzz is zero for Y = 0 (the X 
axis). Consequently, the X axis is called the neutral axis of bending of the cross 
section, that is, the axis for which CJzz = 0. We define the bending moment com
ponent Mx as positive when the sense of the vector representing Mx is in the posi
tive X direction. Since Mx is related to CJzz by Eq. (7. 1), CJzz is a tensile stress for 
positive values of Y and a compressive stress for negative values of Y. In addition 
to causing a bending moment component Mx, load P produces a positive shear Vy 
at the cut section. It is assumed that the maximum shear stress tzy resulting from 
Vy is small compared to the maximum value of CJzz · Hence, since this chapter treats 
bending effects only, we neglect shear stresses in this chapter. 

Likewise, if a load Q (applied at the shear center C) directed along the positive 
X axis and a moment M0 directed along the negative Y axis are applied to the left 
end of the beam (Fig. 7.5b), they are reacted by a b�nding moment M = My di
rected along the positive Y axis. The normal stress distribution CJzz , due to the 
component My, is also given by the flexure formula. Thus, 

My X 
(J = - --zz 

ly 
(7.2) 

where X is the distance from the principal axis Y to the point in the cross section 
at which CJzz acts, and ly is the principal moment of inertia of the cross-sectional 
area relative to the Y axis. The negative sign arises from the fact that a positive My 
produces compressive stresses on the positive side of the X axis. Now for X = 0 
(the Y axis), CJzz = 0. Hence, in this case, the Y axis is the neutral axis of bending of 
the cross section, that is, the axis for which CJzz = 0. In either case [Eq. (7. 1) or 
(7.2)] , the beam is subjected to symmetrical bending. (Bending occurs about a neu
tral axis in the cross section that coincides with the corresponding principal axis.) 

In Fig. 7.5c, the beam is subjected to moment M0 with components in the nega
tive directions of both axis (X, Y), as well as concentrated forces P and Q acting 
through the shear center C. These loads result in a bending moment M at the 
cut section with positive components (Mx, My). For this loading, the stress CJzz 
normal to the cross section may be obtained by the superposition of Eqs. (7. 1) and 
(7.2). Thus, 

(7.3) 

In this case, the moment M = (Mx ,  My) is not parallel to either of the principal 
axes (X, Y). Hence the bending of the beam occurs about an axis that is not par
allel to either the X or Y axis. When the axis of bending does not coincide with 
a principal axis direction, the bending of the beam is said to be nonsymmetrical. 
The determination of the neutral axis of bending of the cross section for nonsym
metrical bending is discussed in Sec. 7 .2. 

Plane of Loads. Symmetrical and Nonsymmetrical Loading 
Often, a beam is loaded by forces that lie in a plane which coincides with a plane 
of symmetry of the beam, (Fig. 7 .6). In this figure, the y-axis is an axis of symmetry 
for the cross section; it is a principal axis. Hence, if axes (x, y) are principal axes 
for the cross section, the beams in Figs. 7 .6a and b undergo symmetrical bending; 
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( a) 

Pl ane of loads 

( b) z 

Figure 7.6 Plane of loads coincident with the plane of symmetry of the beam. (a) Couple 
loads. (b) Lateral loads. 

that is, bending about a principal axis of a cross section, since the moment vector 
in Fig. 7 .6a and the force vectors in Fig. 7 .6b are parallel to principal axes . (See the 
discussion above in the section entitled "Symmetrical Bending. Nonsymmetrical 
Bending.") We further observe that since the shear center lies on the y axis, the 
plane of the load contains the axis of bending of the beam. It is shown later in this 
chapter that if the plane of loads does not coincide with a plane of symmetry of 
the beam, the beam may still deform symmetrically (bend about a principal axis), 
provided that the plane of loads contains the bending axis and is parallel to one of 
the principal planes [the (x, z) and (y, z) planes in Fig. 7.6]. 

Consider next two beams with cross sections shown in Fig. 7.7. Since a rectan
gular cross section (Fig. 7.7a) has two axes of symmetry that pass through its cen
troid 0, the shear center C coincides with the centroid 0. Let the intersection of 
the plane of the loads and the plane of the cross section be denoted by line L-L, 
which forms angle ¢ (0 � ¢ � n) measured counterclockwise from the x-z plane 
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7.2 

Intersection of 
plane of the loads 
with plane of 
cross section 

L y 

(a) 

L 

Intersection of 
plane of the loads 
with plane of 
cross section 

L 
y 

(b) 

L 

y 

Figure 7.7 Unsymmetrically loaded beams. (a) Rectangular cross section. (b) Channel cross 
section. 

and passes through the shear center C. Since the plane of loads contains point 
C, the bending axis of the rectangular beam lies in the plane of the loads. If the 
angle ¢ equals 0 or n/2, the rectangular beam will undergo symmetrical bending. 
For other values of ¢, the beam undergoes nonsymmetrical bending; that is, bend
ing for which the neutral axis of bending of the cross section does not coincide 
with either of the principal axes (X, Y). 

In the case of a general channel section (Fig. 7.7b), the principal axes (X, Y) are 
located by a rotation through angle 8 (positive 8 is taken counterclockwise) from 
the (x, y) axes as shown. The value of 8 is determined by Eq. (B. l 2) in Appendix B. 
Although the plane of loads contains the shear center C (and hence, the bending 
axis of the beam), it is not parallel to either of the principal planes (X, z), ( Y, z) . 
Hence, in general, the channel beam (Fig. 7.7b) undergoes nonsymmetrical bend
ing. However, for the two special cases, ¢ = 8 or ¢ = 8 + n/2, the channel beam 
does undergo symmetrical bending. 

BENDING STRESSES IN BEAMS SUBJECTED TO 
NONSYMMETRICAL BENDING 

Let a cutting plane be passed through a straight cantilever beam at section z. The 
free-body diagram of the beam to the left of the cut is shown in Fig. 7. 8a. ' The 
beam has constant cross section of arbitrary shape. The origin 0 of the coordinate 
axes is chosen at the centroid of the beam cross section at the left end of the beam 
with the z axis taken parallel to the beam. The left end of the beam is subjected 
to a bending couple M0 that is equilibrated by bending moment M acting on the 



Plane of load 

Pl ane of load 

X 

7.2 / STRESSES IN BEAMS IN NONSYMMETRICAL BENDING 303 

y 
figure 7.8 Pure bending of a nonsymmetrically loaded cantilever beam. 

cross section at z, with positive components (Mx ,  My) as shown. The bending 
moment M = (Mx,  My) is the resultant of the forces due to the normal stress CJzz 
acting on the section (Fig. 7. 8b). For convenience, we show (x, y) axes at the cross 
section z. It is assumed that the (x, y) axes are not principal axes for the cross sec
tion. In this article, we derive the load-stress formula that relates the normal stress 
(Jzz acting on the cross section to the components (Mx ,  My). 

The derivation of load-stress and load-deformation relations for the beam re
quires that equations of equilibrium, compatibility conditions, and stress-strain 
relations be satisfied for the beam along with specified boundary conditions for 
the beam. 
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Equations of Equilibrium 
Application of the equations of equilibrium to the free body in Fig. 7.8b yields 
(since there is no net resultant force in the z direction) 

0 = f CTzz dA 

Mx = f YCTzz dA 

My = - f XCTzz dA (7.4) 

where dA denotes an element of area in the cross section and the integration is per
formed over the area A of the cross section. The other three equilibrium equations 
are satisfied identically, since CJzz is the only nonzero stress component. To evaluate 
the integrals in Eq. (7.4), it is necessary that the functional relation between CJzz 
and (x, y) be known. The determination of CJzz as a function of (x, y) is achieved 
by considering the geometry of deformation and the stress-strain relations. 

Geometry of Deformation 
We assume that plane sections of an unloaded beam remain plane after the beam 
is subjected to pure bending. Consider two plane cross sections perpendicular to 
the bending axis of an unloaded beam such that the centroids of the two sections 
are separated by a distance �z. These two planes are parallel since the beam is 
straight. These planes rotate with respect to each other when moments Mx and 
My are applied. Hence, the extension ezz of longitudinal fibers of the beam bet
ween the two planes can be represented as a linear function of (x, y), namely 

ezz = a" + b"x + c"y (7.5 )  

where a" ,  b", and c" are constants. Since the beam is  initially straight, all fibers 
have the same initial length �z so that the strain Ezz can be obtained by dividing 
Eq. (7. 5 )  by �z. Thus, 

Ezz = a' + b'x + c'y 

where Ezz = ezzf�z, a' = a"j�z, b' = b"j�z, and c' = c"j�z. 

Stress-Strain Relations 

(7.6) 

According to the theory of pure bending of straight beams, the only nonzero 
stress component in the beam is CJzz · For linearly elastic conditions, Hooke's law 
states 

Eliminating Ezz between Eqs . (7 .6) and (7 .7), we obtain 

(Jzz = a + bx + cy 

where a =  Ea', b = Eb ', and c = Ec' . 

(7.7) 

(7.8) 
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Load-Stress Relation for Nonsymmetrical Bending 
Substitution of Eq. (7.8) into Eqs . (7.4) yields 

0 = f (a + bx + cy) dA = a  fdA + b f x dA + c f y dA 

Mx = f (ay + bxy + cy2) dA = a  f y dA + b f xy dA + c f y2 dA 

My = -f (ax + bx 2 + cxy) dA = - a f x dA - b f x2 dA - c f xy dA (7.9) 

Since the z axis passes through the centroid of each cross section of the end beam, 
J x dA = J y dA = 0. The other integrals in Eqs. (7.9) are defined in Appendix B. 
Equations (7.9) simplify to 

0 = aA 
Mx = blxy + clx 
My = - bly - clxy (7. 10) 

where lx and ly are the centroidal moments of inertia of the beam cross section 
with respect to the x and y axes, respectively, and lxy is the centroidal product of 
inertia of the beam cross section. Solving Eqs. (7. 10) for the constants a, b, and c, 
we obtain 

a = 0 (because A i= 0) 

b = - Mylx + Mxlxy 
lxly - 1;y 

Mxly + Mylxy c - _ __;;__ _ __;_� - Jx]y - 1;y 
(7. 1 1 ) 

The substitution of Eqs. (7. 1 1 ) into Eq. (7.8) gives the normal stress distribution 
(Jzz on a given cross section of a beam subjected to unsymmetrical bending in 
the form 

(7. 12) 

Equation (7. 1 2) is not the most convenient form for the determination of the max
imum value of the flexural stress (Jzz · Also, Eq. (7. 1 2) does not lend itself readily to 
visualization of the bending behavior of the beam. A more convenient, and a more 
visually meaningful, form follows. 

Before the location of the points of maximum tensile and compressive stresses 
in the cross section are determined, it is useful to locate the neutral axis. For this 
purpose, it is desirable to express the neutral axis orientation in terms of the angle 
¢ between the plane of the loads and the x axis ; ¢ is measured positive counter
clockwise (Fig. 7.7) . The magnitude of ¢ is generally in the neighborhood of 
n/2 (0 < ¢ � n). The bending moments Mx and My can be written in terms of ¢ 
as follows : 

Mx = M sin ¢ 
MY = - M cos ¢ (7. 13) 
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in which M is the signed magnitude of moment M at the cut section. The sign of 
M is positive if the x projection of the vector M is positive; it is negative if the x 
projection of M is negative. Since the (x, y) axes are chosen for the convenience of 
the one making the calculations, they are chosen so that the magnitude of Mx is 
not zero. Therefore, by Eqs. (7. 1 3), 

(7. 14) 

�eutral Axis 
The neutral axis of the cross section of a beam subjected to unsymmetrical bending 
is defined as the axis in the cross section for which CJzz = 0. Thus, by Eq. (7. 12), the 
equation of the neutral axis of the cross section is 

(7. 1 5 ) 

where a is the angle between the neutral axis of bending and the x axis ; a is mea
sured positive counterclockwise (Fig. 7. 8), and 

(7. 1 6) 

Since x = y = 0 satisfies Eq. (7. 1 5 ), the neutral axis passes through the centroid of 
the section. The right side of Eq. (7. 1 6) can be expressed in terms of the angle ¢ by 
using Eq. (7. 14). Thus, 

(7. 1 7 ) 

More Convenient Form for the Flexure Stress Uzz 
Elimination of My between Eqs. (7. 1 2) and (7 . 1 6) results in a more convenient 
form for the normal stress distribution CJzz for beams subjected to nonsymmetrical 
bending; namely 

(7. 1 8) 

where tan a is given by Eq. (7. 17 ). Once the neutral axis is located on the cross sec
tions at angle a as indicated in Fig. 7. 8b, points in the cross section where the ten
sile and compressive flexure stresses are maxima are easily determined. The coordi
nates of these points can be substituted into Eq. (7. 1 8) to determine the magnitudes 
of these stresses . If Mx is zero, Eq. (7. 1 2) may be used instead of Eq. (7. 1 8) to deter
mine magnitudes of these stresses, or axes (x, y) may be rotated by n/2 to obtain 
new reference axes (x', y' ). 

Note : Equations (7 . 1 7 ) and (7. 1 8) have been derived by assuming that the beam 
is subjected to pure bending. These equations are exact for pure bending. Although 
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they are not exact for beams subjected to transverse shear loads, often the equa
tions are assumed to be valid for such beams. The error in this assumption is 
usually small, particularly if the beam has a length of at least five times its max
imum cross-sectional dimension. 

In the derivation of Eqs . (7 . 1 7) and (7 . 1 8), the (x, y) axes are any convenient set 
of orthogonal axes that have an origin at the centroid of the cross-sectional area. 
The equations are valid if (x, y) are principal axes ; in this case, lxy = 0. If the axes 
are principal axes and ¢ = n/2, Eq. (7. 1 7) indicates that a = 0 and Eq. (7. 1 8) re
duces to Eq. (7. 1 ). 

For convenience in deriving Eqs. (7 . 1 7) and (7. 1 8), the origin for the x, y, z coor
dinate axes was chosen (see Fig. 7.8b) at the end of the free body opposite from the 
cut section with the positive z axis toward the cut section. The equations are equally 
valid if the origin is taken at the cut section with the positive z axis toward the 
opposite end of the free body. If ¢2 is the magnitude of ¢ for the second choice of 
axes and ¢1 is the magnitude of ¢ for the first choice of axes, then ¢2 = n - ¢1 . 

EXAMPLE 7.1 
Channel Section Beam 

The cantilever beam in Fig. E7. 1a has a channel section as shown in Fig. E7. 1 b. A 
concentrated load P = 1 2.0 kN lies in the plane making an angle ¢ = n/3 with 
the x axis. Load P lies in the plane of the cross section of the free end of the beam 
and passes through shear center C; in Chapter 8 we find that the shear center lies 
on the y axis as shown. Locate points of maximum tensile and compressive stresses 
in the beam and determine the stress magnitudes. 

n 

Figure E7. 1 

�140 mm� � j-E-20 mm 20 mm� � ;.,...,....,.."A -:c-.,-

c 
.Y 

( b) 

20 mm 
Plane of 
the load 

n 
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SOLUTION 

Several properties of the cross-sectional area are needed (see Appendix B). 

A = 10,000 mm2, 

Yo = 82.0 mm, 
lx = 39.69 x 106 mm4 

ly = 30.73 x 106 mm4 
lxy = 0 

The orientation of the neutral axis for the beam is given by Eq. (7. 1 7 ). 

= -
lx � 

= -
39,690,000 

(0 5774) = - 0  7457 tan a I cot 'f' 
30 730 000 · · 

y ' ' 

a = - 0.6407 rad 

The negative sign indicates that the neutral axis n-n, which passes through the cen
troid (x = y = 0), is located clockwise 0.6407 rad from the x axis (Fig. 7. l b). The 
maximum tensile stress occurs at point A, whereas the maximum compressive 
stress occurs at point B. These stresses are given by Eq. (7. 1 8) after Mx has been 
determined. From Fig. E7. la 

EXAMPLE 7.2 
Angle-Beam 

M = - 3.00P = - 36.0 kN ·m 
Mx = M sin ¢ = - 3 1 . 1 8  kN ·m 

- 3 1 , 1 80,000[ - 1 1 8 - ( - 70)( - 0.7457)] 
-

39,690,000 

= 1 33 .7 MPa 

- 3 1 , 1 80,000[82 - 70( - 0.7457)] 
(JB = 

39 690 000 
= - 105.4 MPa 

' ' 

Plates are welded together to form the 120 mm by 80 mm by 10 mm angle-section 
beam shown in Fig. E7.2a. The beam is subjected to a concentrated load P = 
4.00 kN as shown. The load P lies in the plane making an angle ¢ = 2nj3 with 
the x axis . Load P passes through shear center C; in Chapter 8 we find that the 
shear center is located at the intersection of the two legs of the angle section. Deter
mine the maximum tensile and compressive bending stresses at the section of the 
beam where the load is applied. 

(a) Solve the problem using the load-stress relations derived for nonsymmetrical 
bending. 

(b) Solve the problem using Eq. (7 .3). 
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(a) 

B 

Plane of the load 

a 

n 

Figure E7.2 

SOLUTION 

n 

� � v\_ J A 

� BO mm� 
(b) 

(a) Several properties of the cross-sectional area are needed (see Appendix B). 

A = 1900 mm
2
, lx = 2.783 x 106 mm4 

x0 = 19 .74 mm, ly = 1 .003 x 106 mm
4 

Yo = 39.74 mm, lxy = - 0.973 x 106 mm
4 
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The orientation of the neutral axis for the beam is given by Eq. (7. 1 7 ). Thus, 

Ixy - Ix cot cp 
tan a = ----

Iy - Ixy cot cjJ 
-0.973 X 106 - 2.783 X 106( - 0.5774) 

- 1 .003 X 106 - ( - 0.973 X 106)( - 0.5774) 
= 1 .4363 

a = 0.9626 rad 

The positive sign indicates that the neutral axis n-n, which passes through the 
centroid (x = y = 0), is located counterclockwise 0.9628 rad from the x axis 
(Fig. E7.2b). The maximum tensile stress occurs at point A, whereas the max
imum compressive stress occurs at point B. These stresses are given by 
Eq. (7. 1 8) after Mx has been determined. From Fig. E7.2a 

M = 1 .2P = 4.80 kN ·m 
Mx = M sin ¢ = 4.80 x 103(0.8660) = 4. 1 57 kN ·m 

Mx(YA - xA tan a) 
O"A = 

Ix - Ixy tan a 

4. 1 57 X 106[39.74 - ( - 60.26)( 1 .4363)] 
- 2.783 X 106 - ( -0.973 X 106)(1 .4363) 

= 125.6 MPa 

4. 1 57 X 106[ - 80.26 - 19.74( 1 .4363)] 
O"B = 

2.783 X 106 - ( - 0.973 X 106) ( 1 .4363) 

= - 108.0 MPa 

(b) To solve the problem using Eq. (7.3), it is necessary that the principal axes for 
the cross section be determined. The two values of the angle (} between the x 
axis and the principal axes are given by Eq. (B. l2). Thus, we obtain 

tan 28 _ _ 2Ixy _ _ 2( -0.973 x 106) _ 
- IX - Iy - 2.783 X 106 - 1 .003 X 106 - 1 .0933 

81 = 0.4 1 50 rad (82 = - 1 . 1 56 rad) 

The principal X and Y axes are shown in Fig. E7.2b. Thus [see Eq. (B. lO) 
Appendix B] 

Ix = Ix cos2 81 + Iy sin2 81 - 2Ixy sin 81 cos 81 = 3.2 1 2  x 106 mm4 

Iy = Ix + Iy - Ix = 0. 574 x 106 mm4 

Note that now angle ¢ is measured from the X axis and not from the x axis 
as for part (a). Hence, 

2n 
¢ = 3 - 81 = 1 .6794 rad 



7.2 / STRESSES IN BEAMS IN NONSYMMETRICAL BENDING 31 1 

Angle a' , which determines the orientation of the neutral axis, is now mea
sured from the X axis (Fig. E7.2b), and is given by Eq. (7. 17 ). Hence, we find 

tan a' = 
lx cot ¢ _ _ 3.2 12 x 106( - 0. 1090) _ 0 0 

Jy - 0.574 X 106 - ·6 98 

a '  = 0.5476 rad 

which gives the same orientation for the neutral axis as for part (a), that is, 

a =  a' + (}1 
= 0.5476 + 0.4 1 50 
= 0.9626 rad. 

To use Eq. (7 .3) relative to axes (X, Y), the X and Y coordinates of points 
A and B are needed. They are [Eq. (B.9)] 

XA = xA cos 81 + YA sin 81 = - 60.26(0.9 1 5 1) + 39.7 4(0.4032) = - 39. 12  mm 

� = YA cos 81 - xA sin 81 = 39.74(0.9 1 5 1 ) - ( - 60.26)(0.4032) = 60.66 mm 

and 

XB = 19.74(0.9 1 5 1 ) - 80.26(0.4032) = - 14.30 mm 

YB = - 80.26(0.9 1 5 1) - 19 .74(0.4032) = - 8 1 .41  mm 

The moment components are 

Mx = M sin ¢ = 4.80 x 103(0.994 1 )  = 4.772 kN ·m 
My = - M cos ¢ = - 4.80 x 103( - 0. 1084) = 520 N·m 

The stresses at A and B are calculated using Eq. (7. 3). 

Mx � MyXA 
(J= -- - --

-

lx ly 

4.772 X 106(60.66) 
3 .2 12  X 106 

= 125.6 MPa 

Mx YB MyXB 
(JB = -- - --

lx ly 

4.772 X 106( - 8 1 .4 1 )  
3.2 1 2  X 106 

= - 108.0 MPa 

0. 520 X 106( - 39. 12) 
0. 574 X 106 

0. 520 X 106( - 14.30) 
0.574 X 106 

These values for (JA and (JB agree with the values calculated in part (a) . 
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7.3 
DEFLECTIONS OF STRAIGHT BEAMS SUBJECTED TO 
NONSYMMETRICAL BENDING 

Consider a straight beam subjected to transverse shear loads and moments. The 
transverse shear loads lie in a plane and the moment vectors are normal to that 
plane. The neutral axes of all cross sections of the beam have the same orientation 
as long as the beam material remains linearly elastic. The deflections of the beam 
will be in a direction perpendicular to the neutral axis. It is relatively simple to 
determine the component of the deflection parallel to an axis, say, the y axis. The 
total deflection is easily determined once one component has been determined. 

Consider the intersection of the (y, z) plane with the beam in Fig. 7 .8 .  A side view 
of this section of the deformed beam is shown in Fig. 7.9. Before deformation, the 
lines FG and H J were parallel and distance �z apart. In the deformed beam, the 
two straight lines FG and HJ represent the intersection of the (y, z) plane with two 
planes perpendicular to the axis of the beam, a distance �z apart at the neutral sur
face. Since plane sections remain plane and normal to the axis of the beam, the 
extensions of FG and H J meet at the center of curvature 0' . The distance from 0' 
to the neutral surface is the radius of curvature Ry of the beam in the (y, z) plane. 
Since the center of curvature lies on the negative side of the y axis, Ry is negative. 

0' 

R ,  

M ..-M ..- �\J 0 ..___ -----
-- ---

- z 

y 
1 

Figure 7.9 Deflection of a nonsymmetrically loaded beam. 
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We assume that the deflections are small so that 1/Ry � d2vjdz 2, where v is the y 
component of displacement. Under deformation of the beam, a fiber at distance y 
below the neutral surface elongates an amount ezz = (�z)Ezz · Initially, the length of 
the fiber is �z. By the geometry of similar triangles, 

Dividing by �z, we obtain 

where (7. 19) 

For linearly elastic behavior, Eqs. (7. 1 8) and (7. 12), with x = 0, and Eq. (7.7) yield 

Ezz Mx _ Mxiy + Myixy 
y - E(Ix - Ixy tan ex) - E(Ixiy - I;y) 

which, with Eq. (7. 19), yields 

Mx ------ -E(Ix - Ixy tan ex) 
Mxiy + Myixy 
E(Ixiy - I;y) 

(7.20) 

Note the similarity of Eq. (7.20) to the elastic curve equation for symmetrical 
bending. The only difference is that the term I has been replaced by (Ix - Ixy tan ex). 
The solution of the differential relation Eq. (7 .20) gives the y component of the 
deflection v at any section of the beam. As is indicated in Fig. 7. 10, the total deflec
tion of the centroid at any section of the beam is perpendicular to the neutral 
axis. Therefore, 

u = - v tan ex 

y 
Figure 7. 10 Components of deflection of a nonsymmetrically loaded beam. 

(7.2 1 )  
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and the total displacement is 

EXAMPLE 7.3 
Channel Section Simple Beam 

(7.22) 

Let the channel section beam in Fig. E7. 1 be loaded as a simple beam with a 
concentrated load P = 35.0 kN acting at the center of the beam. Determine the 
maximum tensile and compressive stresses in the beam if ¢ = 5nj9. If the beam is 
made of an aluminum alloy (E = 72.0 GPa), determine the maximum deflection of 
the beam. 

SOLUTION 

Amalogous to the solution of Example 7. 1 ,  we have 

lx 39,690,000 5n 
tan a = -

ly 
cot ¢ = -

30,730,000 
cot 9 = 0.2277 

a = 0.2239 rad 

M = 
PL = 35.0(3 .00) = 26.25 kN ·m 
4 4 

Mx = M sin ¢ = 25.85 kN ·m 

. = 25,850,000[82 - ( - 70)(0.2277)] = 63 8 MP O"tensiOn 39 690 000 
0 a 

' ' 
. = 25,850,000 [ - 1 18 - 70(0.2277)] = _ 87 2 MP 0" compressiOn 39 690 000 

0 a 
' ' 

Since the deflection of the center of a simple beam subjected to a concentrated 
load in the center is given by the relation PL 3/48£1, the y component of the deflec
tion of the center of the beam is 

_ PL 3 sin ¢ _ 35,000(3000)3 sin 5nj9 _ 8 v - 48Elx 
- 48 (72,000)(39,690,000) -

6
·
7 mm 

The lateral deflection is 

u = - v tan a = - 6.78(0.2277) = - 1 .54 mm 

Finally, the total deflection is 

b = )u2 + v2 = 6.95 mm 



EXAMPLE 7.4 
Cantilever I-Beam 
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A cantilever beam has a length of 3 m with cross section indicated in Fig. E7.4. 
The beam is constructed by welding two 40 mm by 40 mm steel (E = 200 GPa) 
bars longitudinally to the S-200 x 27 steel 1-beam (Ix = 24 x 106 mm4 and Iy = 
1 .55 x 106 mm4). The bars and 1-beam have the same yield stress, Y = 300 MPa. 
The beam is subjected to a concentrated load P at the free end at an angle ¢ = 
n/3 with the x axis. Determine the magnitude of P necessary to initiate yielding 
in the beam and the resulting deflection of the free end of the beam. 

SOLUTION 

I 
I 

Figure E7.4 

Plane of the loads 

y n 

Values of Ix , Iy , and Ixy for the composite cross section can be obtained using the 
procedure outlined in Appendix B. 

Ix = 56.43 x 106 mm4, Iy = 1 8 . 1 1  x 106 mm4 

Ixy = 22.72 x 106 mm4 

The orientation of the neutral axis for the beam is given by Eq. (7. 17 ). We find 

tan a = 
Ixy - Ix cot cp 

= 
22.72 x 106 - 56.43 x 106(0.5774) 

= - 1 .9759 
Iy - Ixy cot ¢ 1 8. 1 1 x 106 - 22.72 x 106(0.5774) 

a =  - 1 .023 rad 

The orientation of the neutral axis n - n is indicated in Fig. E7.4. The maximum 
tensile stress occurs at point A;  the magnitude of the stress is obtained using 
Eq. (7. 1 8). 
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7.4 

M =  - 3P 
Mx = M sin ¢ = - 2.598P 

O"A = y = Mx(YA - xA tan a) 
Ix - Ixy tan a 

P = Y(Ix - Ixy tan a) 
( - 2.598 X 103 )( yA - XA tan a) 
300[56.43 X 106 - 22.72 X 106( - 1 .9759)] = 
- 2.598 X 103 [ - 120 - ( - 9 1)( - 1 .9759)] 

= 39 ·03 kN 
Since the deflection of the free end of a cantilever beam subjected to symmetrical 
bending is given by the relation PyL 3 j3EI, the y component of the deflection of 
the free end of the beam is 

PL3 sin cp V = ------
3E(Ix - Ixy tan a) 

g-ence, 

_ 39 .03 x 103(3 x 103 )3(0.8660) = 1 7 .33 mm 
3(200 X 103) [56.43 X 106 - 22.72 X 106( - 1 .9759)] 

u = - v tan a = 34.25 mm 

and the total displacement of the free end of cantilever beam is 

b = .Ju2 + v2 = 38 .39 mm 

EFFECT OF INCLINED LOADS 

Some common rolled sections such as I -beams and channels are designed so that 
Ix is many times greater than Iy and Ixy = 0. Equation (7 . 1 7) indicates that the 
angle a may be large even though ¢ is nearly equal to n/2. Thus, the neutral axis 
of such I-beams and channels is steeply inclined to the horizontal axis (the x 
axis) of symmetry when the plane of the loads deviates slightly from the vertical 
plane of symmetry. As a consequence, the maximum flexure stress and maximum 
deflection may be quite large. These rolled sections should not be used as beams 
unless the lateral deflection is prevented. If lateral deflection of the beam is pre
vented, nonsymmetrical bending cannot occur. 

In general, however, I-beams and channels make poor long-span cantilever 
beams. The following example illustrates this fact. 



EXAMPLE 7.5 
An Unsuitable Beam 
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An S-6 10  x 1 34 1-beam (Ix = 937 x 106 mm4 and ly = 1 8.7 x 106 mm4) is sub
jected to a bending moment M in a plane with angle ¢ = 1 . 5533 rad; the plane of 
the loads is 1 o (n/ 1 80 rad) clockwise from the (y, z) plane of symmetry. Determine 
the neutral axis orientation and the ratio of the maximum tensile stress in the 
beam to the maximum tensile stress for symmetrical bending. 

SOLUTION 

The cross section of the 1-beam with the plane of the loads is indicated in Fig. E7.5. 
The orientation of the neutral axis for the beam is given by Eq. (7. 1 7). 

- lx cot cp 937 x 106(0.0 1746) 
tan a =  = -

6 
= - 0. 8749 

ly 1 8.7 X 10  

a =  - 0.7 1 88 rad 

The orientation of the neutral axis is indicated in Fig. E7. 5. If the beam is sub
jected to a positive bending moment, the maximum tensile stress is located at 
point A. By Eqs. (7. 1 3) and (7 . 1 8), 

Mx = M sin ¢ = 0.9998M 

0.9998M [305 - 90.5( - 0.8749)] _ 7  (a) O"A = 
937 X 106 

= 4.099 X 10 M 

Plane of 
the loads 

�T 
n 305 mm 

x ��----�0�----�-

y 
Figure E7.5 

n 
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7.5 

When the plane of the loads coincides with the y axis (Fig. E7. 5 ), the beam is sub
jected to symmetrical bending and the maximum bending stress is 

= 
My 

= 
305M 

= 3 .255 X 10- 7M O"A I 937 X 106 X 
(b) 

The ratio of the stress o-A given by Eq. (a) to that given by Eq. (b) is 1 .259. Hence, 
the maximum stress in the 1-beam is increased 25.9% when the plane of the loads 
is merely 1 o from the symmetrical vertical plane. 

FULLY PLASTIC LOAD FOR NONSYMMETRICAL 
BENDING 

A beam of general cross section (Fig. 7. 1 1 ) is subjected to pure bending. The mate
rial in the beam has a flat-top stress-strain diagram with yield point Y in both 
tension and compression (Fig. 4.4a). At the fully plastic load, the deformations of 
the beam are unchecked and continue (until possibly the material begins to strain 
harden). The fully plastic load is the upper limit for failure loads (Sec. 4.6) since the 
deformations of the beam at the outset of any strain hardening generally exceed 
design limits for the deformations. 

In contrast to the direct calculation of fully plastic load in symmetrical bending 
(Sec. 4.6), an inverse method is required to determine the fully plastic load for a 

Plane of the loads 

y 

Figure 7. 1 1  Location of a neutral axis for fully plastic bending of a nonsymmetrically 
loaded beam. 
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beam subjected to nonsymmetrical bending. Although the plane of the loads is gen
erally specified for a given beam, the orientation and location of the neutral axis, 
when the fully plastic moment is developed at a given section of the beam, must be 
determined by trial and error. The analysis is begun by assuming a value for the 
angle a (Fig. 7. 1 1 ). The neutral axis is inclined to the x axis by the angle a, but 
does not necessarily pass through the centroid as in the case of linearly elastic 
conditions. The location of the neutral axis is determined by the condition that it 
must divide the cross-sectional area into two equal areas. This follows from the fact 
that since the yield point stress is the same for tension and compression, the area 
AT that has yielded in tension must be equal to the area Ac that has yielded in 
compression. In other words, the net resultant tension force on the section must be 
equal to the net resultant compression force. 

The yield point stress Y is uniform over the area AT that has yielded in tension; 
the resultant tensile force PT = YAT is located at the centroid CT of AT . Similarly, 
the resultant compressive force Pc = YAc is located at the centroid Cc of Ac . The 
fully plastic moment Mp is given by 

YAd 
Mp = YATd = --

2 
(7.23) 

where A is the total cross-sectional area and d is the distance between the centroids 
CT and Cc as indicated in Fig. 7. 1 1 . A plane through the centroids CT and. Cc is the 
plane of the loads for the beam. In case the calculated angle ¢ (Fig. 7. 1 1 ) does not 
correspond to the plane of the applied loads, a new value is assumed for a and the 
calculations are repeated. Once the angle ¢ (Fig. 7. 1 1 ) corresponds to the plane of 
the applied loads, the magnitude of the fully plastic load is calculated by setting 
the moment due to the applied loads equal to Mp given by Eq. (7.23). 

EXAMPLE 7.6 
Fully Plastic Moment for Unsymmetrical Bending 

A steel beam has the cross section shown in Fig. E7.6. The beam is made 
of a steel having a yield point stress Y = 280 MPa. Determine the fully plastic 
moment for the condition that the neutral axis passes through point B. Determine 
the orientation of the neutral axis and the plane of the loads. 

SOLUTION 

The neutral axis must divide the cross section into two equal areas since the area 
that has yielded in tension AT must equal the area that has yielded in compression 
Ac . The neutral axis bisects edge AC. Therefore, 

30 
tan a =  

20 
= 1 . 5 

a = 0.9828 rad 
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Plane of the loads 

y c 

Figure E7.6 

The plane of the loads passes through the centroids of area ABD and BCD. The 
centroids of these areas are located at ( 23° ,  - 10) for ABD and ( - 23° ,  10) for BCD. 

20/3 - (  - 20/3) 
tan f3 = 

10 - (  _ 10) 
= 0.6667 

f3 = 0.5880 rad 

The fully plastic moment Mp is equal to the product of the force on either of the 
two areas (AT or Ac) and the distance d between the two centroids. 

d = j(2o -
2�y + (30 - lG)Z = 24.04 mm 

Mp = ATYd = !(40)(30)(280)(24.04) = 4.039 x 106 N ·mm 
= 4.039 kN ·m 

Since the orientation of the neutral axis is known a priori, iteration is not neces
sary in this exam pie. 

PROBLEMS 
Section 7.1-7.2 

7.1 .  A timber beam 250 mm wide by 300 mm deep by 4.2 m long i s  used as a 
simple beam on a span of 4 m. It is subjected to a concentrated load P at 
the midsection of the span. The plane of the loads makes an angle ¢ = 
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5nj9 with the horizontal x axis. The beam is made of yellow pine with 
a yield stress Y = 25.0 MPa. If the beam has been designed with a factor 
of safety SF = 2 .50 against initiation of yielding, determine the magnitude 
of P and orientation of the neutral axis. 

7.2. The plane of the loads for the rectangular section beam in Fig. P7.2 coin
cides with a diagonal of the rectangle. Show that the neutral axis for the 
beam cross section coincides with the other diagonal. 

p 

Figure P7.2 

7.3. In Fig. P7.3 let b = 300 mm, h = 300 mm, t = 25.0 mm, L = 2 .50 m, and 
P = 1 6.0 kN. Calculate the maximum tensile and compressive stresses in 
the beam, and determine the orientation of the neutral axis . 

p 

Figure P7.3 
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7.4. In Fig. P7.3 let b = 200 mm, h = 300 mm, t = 25.0 mm, L = 2.50 m, and 
P = 1 6.0 kN. Calculate the maximum tensile and compressive stresses in 
the beam and determine the orientation of the neutral axis. 

Ans. O"zz(ten) = 98.6 MPa, O"zz(com) = - 8 1 .9 MPa 

7.5. In Fig. P7.5  let b = 1 50 mm, t = 50.0 mm, h = 1 50 mm, and L = 2.00 m. 
The beam is made of a steel that has a yield point stress Y = 240 MPa. 
Using a factor of safety of SF = 2.00, determine the magnitude of P if ¢ =  
2nj9 from the horizontal x axis. 

L 

Figure P7.5 

7 .6. A simple beam is subjected to a concentrated load P = 4.00 kN at the mid
length of a span of 2.00 m. The beam cross section is formed by nailing to
gether two 50.0 mm by 1 50 mm boards as indicated in Fig. P7.6. The plane 
of the loads passes through the centroid of the two boards as indicated. 
Determine the maximum flexure stress in the beam and orientation of the 
neutral axis. 

Ans. o-zz(max> = 4. 1 7  MPa, a = 1 . 3 522 rad 

7.7. Solve Problem 7.6 if ¢ = 1 .900 rad. 
7.8. A C- 1 80 x 1 5  [mm] [kgjm] rolled steel channel (Ix = 8.87 x 106 mm4, 

depth = 178 mm, width = 53 mm, xB = 1 3 .7 mm) is used as a simply sup
ported beam as, for example, a purlin in a roof (Fig. P7.8). If the slope of 
the roof is 1/2 and the span of the purlin is 4 m, determine the maximum 
tensile and compressive stresses in the beam caused by a uniformly distrib
uted vertical load of 1 .00 kN jm. 

Ans. O"zz(ten) = 48.4 MPa, O"zz(com) = - 105.2 MPa 
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Plane of the load 

y 

Figure P7.6 

y 
2 

Figure P7.8 

7.9. Two rolled steel angles (Ix 1 = 39 1 x 103 mm\ ly 1  = 9 12  x 103 mm4, lx1y 1 = 
349 x 103 mm4, and A =  1 148 mm2) are welded to a 200 mm by 10 mm 
steel plate to form a composite Z-bar (Fig. P7.9). The Z-bar is a simply sup
ported beam used as a pur lin in a roof of slope ! . The beam has a span of 
4.00 m. The yield stress of the steel in the plate and angles is Y = 300 MPa. 
The beam has been designed using a factor of safety of SF = 2.50 against 
initiation of yielding. If the plane of the loads is vertical, determine the 
magnitude of the maximum distributed load that can be applied to the beam. 
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Figure P7.9 

2 
7.10. A steel Z-bar is used as a cantilever beam having a length of 2.00 m. When 

viewed from the free end toward the fixed end of the beam, the cross section 
has the orientation and dimensions shown in Fig. P7. 10. A concentrated 
load P = 14.0 kN acts at the free end of the beam at an angle ¢ = 1 .25 rad. 
Determine the maximum flexure stress in the beam. 

Ans. Ix = 39.36 x 106 mm4, ly = 9.84 x 106 mm4, 
lxy = 14.40 X 106 mm4, (J. = 0.2557 rad, O"zz(max) = 76.6 MPa 

20 mm ----1 

X ------t<�-.,- 200 mm 
Lr ao mm 100 mm 20 mm 
r � 

y 

Figure P7. 10 

7.1 1 .  An extruded bar of aluminum alloy has the cross section shown in 
Fig. P7 . 1 1 . A 1 .00-m length of this bar is used as a cantilever beam. A con
centrated load P = 1 .25 kN is applied at the free end and makes an angle 
of ¢ = 5nj9 with the x axis. The view in Fig. P7. 1 1  is from the free end 
toward the fixed end of the beam. Determine the maximum tensile and 
compressive stresses in the beam. 
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40 mm 0 X --+---l�rl7f--l-

/��� _j_ 
1 0 mm 

y 

Figure P7. 1 1  

7.12. A n  extruded bar of aluminum alloy has the cross section shown in 
Fig. P7 . 1 2. A 2. 1 0-m length of this bar is used as a simple beam on a span 
of 2.00 m. A concentrated load P = 5.00 kN is applied at midlength of the 
span and makes an angle of ¢ = 1 .40 rad with the x axis. Determine the 
maximum tensile and compressive stresses in the beam. 

Ans. x0 = 28.0 mm, Yo = 35.0 mm, Ix = 1 . 330 x 106 mm4 

I = 9 17  x 103 mm4 I = 30 0 x 103 mm4 Y ' xy . 
a =  - 0.2 1 53 rad, o-A =  8 1 . 5  MPa, o-B = - 75.8 MPa 

Yo 

j_ 
y 

Figure P7. 12 

7.13. A cantilever beam has a right triangular cross section and is loaded by a 
concentrated load P at the free end (Fig. P7. 1 3). Solve for the stresses at 
points A and C at the fixed end if P = 4.00 kN, h = 120 mm, b = 75.0 mm, 
and L = 1 .25 m. 

7.14. A girder that supports a brick wall is built up of an S-3 10 x 47 1-beam 
(A1 = 6030 mm2, Ix1 = 90.7 x 106 mm4, Iy 1 = 3 .90 x 106 mm4), a C-3 10 x 3 1  
channel (A2 = 3930 mm2, Ix2 = 53.7 x· 106 mm4, IY2 = 1 .6 1  x 106 mm4), and 
a cover plate 300 mm by 10  mm riveted together (Fig. P7. 14). The girder is 
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6.00 m long and is simply supported at its ends. The load is uniformly 
distributed such that w = 20.0 kNjm. Determine the orientation of the 
neutral axis and the maximum tensile and compressive stresses. 

Ans. a =  - 0. 1 653 rad, o-A = 66.3 MPa, o-B = - 92. 3 MPa 

p 

Figure P7. 1 3  

Plane of the loads 
/ 

305 mm 

x �------�----r0-r--��-

Y1 Y2 
y 

Figure P7. 14 

7.15. A load P = 50 kN is applied to a rolled steel angle (lx = ly = 510 x 103 mm4, 
lxy = - 332.5 x 103 mm4, A = 1 148 mm2) by means of a 76 mm by 6 mm 



p 
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plate riveted to the angle (Fig. P7 . 1 5). The action line of load P coincides 
with the centroidal axis of the plate. Determine the maximum stress at 
a section, such as AA, of the angle. Hint: Resolve the load P into a load 
(equal to P) at the centroid of the angle and a bending couple. 

P lane  of the l oad 

A 
I 38.0 mm 1 

< > 6 m m  
.----��...__---, _i 

y 
A 

Figure P7. 1 5  

7.16. The beam shown in Fig. P7. 1 6  has a cross section of depth 60 mm and 
width 30 mm. The load P and reactions R1 and R2 all lie in a plane that 
forms an angle of 20° counterclockwise from the y axis. Determine the 
point in the beam at which the maximum tensile flexural stress acts and 
the magnitude of that stress. 

P = 3.00 kN P 

foE:-- 800 mm -----::;.�1�<-- 700 mm R1 
Figure P7. 16 

7.17. A beam has a square cross section (Fig. P7. 1 7). 

y 

(a) Determine an expression for (J max in terms of M, h, and t/J. 

(b) Compare values of CJmax for t/1 = 0, 1 5, and 45°. 

7.18. Consider the beam shown in Fig. P7. 1 8. 

(a) Derive an expression for CJmax in terms of M, h, and t/J. 

(b) Compare values of CJmax for t/1 = 0, 30, 45, 60, and 90°. 

7. 19. An 1-beam has the cross section shown in Fig. P7. 19. The design flexural 
stress is limited to 120 MPa. Determine the allowable bending moment M. 
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y 

Figure P7. 17  
y 

Figure P7. 1 8  

� �
50 mm 

y y 

Figure P7. 19 Figure P7 .20 

7 .20. A T-beam has the cross section shown in Fig. P7 .20. The design 
flexural stress is limited to 1 50 MPa. Determine the allowable bending 
moment M. 

7.21.  A beam has an isosceles triangular cross section (Fig. P7.2 1 ). The maxi
mum flexural stress is limited to 90 MPa. Determine the magnitude of the 
allowable bending moment M. 

M 

y 
h-

100 mm 

Figure P7.2 1 

7 .22. A circular cross section shaft is mounted in bearings that develop shear 
reactions only (Fig. P7.22). Determine the location and magnitude of the 
maximum flexural stress in the beam. 
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X 

8.00 kN 

Figure P7 .22 

7 .23. A wood beam of rectangular cross section 200 mm by 100 mm is simply 
supported at its ends (Fig. P7 .23). Determine the location and magnitude 
of the maximum flexural stress in the beam. 

"'2 .00 m 

1 00 mm 

Figure P7.23 

Section 7.3 

7.24. Determine the deflection of the beam in Problem 7. 1 if E = 12.0 GPa for 
the yellow pine. 

7.25. The beam in Problem 7.3 is made of 7075-T6 aluminum alloy for which 
E = 71 .7 G Pa. Determine the deflection of the free end of the beam. 

Ans. v = 1 3 .8 1 mm, u = - 7.86 mm, b = 1 5. 89 mm 
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7.26. The beam in Problem 7.4 is made of 7075-T6 aluminum alloy for which 
E = 7 1 .7 G Pa. Determine the deflection of the free end of the beam. 

7.27. The beam in Problem 7.6 is made of yellow pine for which E = 12.0 GPa. 
Determine the deflection at the center of the beam. 

Ans. v = 0.33  mm, u = - 1 .49 mm, b = 1 .53 mm 

7.28. Determine the deflection of the center of the beam in Problem 7.8 . E = 
200 GPa. 

7.29. If the beam in Problem 7.9 is subjected to a distributed load of w = 
6.5 kN/m, determine the deflection at the center of the beam. E = 200 GPa. 

Ans. v = 1 . 58 mm, u = 8.25 mm, b = 8.40 mm 

7 .30. Determine the deflection of the beam in Problem 7. 1 0. E = 200 G Pa. 
7.31 .  Determine the deflection of the free end of the beam in Problem 7. 1 1 . E = 

72.0 GPa. 

Ans. v = 33. 1 6  mm, u = 6.25 mm, b = 33 .74 mm 

7 .32. Determine the deflection of the midspan of the beam in Problem 7 . 1 2. E = 
72.0 GPa. 

7 .33. Determine the deflection of the free end of the beam in Problem 7 . 1 3 . E = 
200 GPa. 

Section 7.5 

Ans. v = 4.82 mm, u = - 3.86 mm, b = 6. 1 8  mm 

7.34. The cantilever beam in Problem 7. 1 1  is made of a low-carbon steel that 
has a yield stress Y = 200 MPa. 

(a) Determine the fully plastic load Pp for the beam for the condition 
that a =  0. 

(b) Determine the fully plastic load Pp for the beam for the condition that 
a =  n/6. 

7.35. The cantilever beam in Problem 7. 1 3  is made of a mild steel that has a yield 
point stress Y = 240 MPa. Determine the fully plastic load Pp for the con
dition that a = 0. 

Ans. Pp = 2 1 .2 1  kN at ¢ =  1 .2679 rad 

REFERENCES 
Boresi, A. P. and Chong, K. P. ( 1 987). Elasticity in Engineering Mechanics. New 
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8.1 

SHEAR CENTER FOR 
THIN-WALL BEAM CROSS 
SECTIONS 

APPROXIMATIONS FOR SHEAR IN THIN-WALL BEAM 
CROSS SECTIONS 

The definition of the bending axis of a straight beam with constant cross section 
was given in Chapter 7; it is the axis through the shear centers of the cross sections 
of the beam. To bend a beam without twisting, the plane of the loads must contain 
the axis of bending; that is, the plane of the loads must pass through the shear 
center of every cross section of the beam. 

For a beam with a cross section that possess two or more axes of symmetry or 
antisymmetry, the bending axis is the same as the longitudinal centroidal axis, be
cause for each cross section the shear center and centroid coincide. However, for 
cross sections with only one axis of symmetry, the shear center and centroid do 
not coincide. For example, consider the equal-leg angle section shown in Fig. 8 . 1 .  
Let the beam cross section be oriented so that the principal axes of inertia (X, Y) 
are directed horizontally and vertically. The beam bends without twist (Chapter 7), 
if it is loaded by a force P that passes through the shear center C (Fig. 8 . l b). As 

(a) 

y 
p 

(b) 

Figure 8. 1 Effect of applying load through shear center. (a) Load P applied at point 0 
produces twist and bending. (b) Load P applied at point C produces bending 
only. 
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is shown later, the shear center C coincides approximately with the intersection of 
the center lines of the two legs of the angle section. When the load P is applied 
at the centroid 0 of the cross section, the beam bends and twists (Fig. 8. 1a). 

The determination of the exact location of the shear center for an arbitrary 
cross section is beyond the scope of this book (see Boresi and Chong, 1987). How
ever, an approximate solution is presented in this chapter, which gives reason
ably accurate results for "thin-wall" cross sections. The simplifying assumptions 
on which the approximate solution is based may be illustrated by reference to 
Fig. 8.2. In Fig. 8.2, the cross section shown is that of the beam in Fig. 8. 1 b and 
is obtained by passing a cutting plane perpendicular to the bending axis through 
the beam. The view shown is obtained by looking from the support toward the 
end of the beam at which P is applied. 

For equilibrium of the beam element so obtained, the shear stresses on the cut 
cross section must balance the load P. However, the shear stresses in the cross 
section are difficult to compute exactly. Hence, simplifying approximations are 
employed. Accordingly, consider a portion of the legs of the cross section, shown 
enlarged in Fig. 8.2b. Let axes x, y, z be chosen so that the (x, y) axes are tangent 
and normal, respectively, to the upper leg, and let the z axis be taken perpendic
ular to the cross section (the plane of Fig. 8.2b) and directed positively along the 
axis of the beam from the load P to the support. Then, the shear stress compo
nents in the cross section of the beam are CJzx and CJzy as shown. Since the shear 
stresses on the lateral surfaces of the beam are zero, CJyz = 0. Hence, CJzy vanishes 
at BD and EF [since CJyz = CJzy ; see Eq. (2.4)] . Since CJzy = 0 at BD and EF and the 
wall thickness between BD and EF is small (thin-wall) with respect to the length of 
the legs of the cross section, we assume that (Jzy does not change greatly (remains 
approximately zero) through the wall. The effect of (Jzy (the shear stress in the 
thickness direction) is ignored in the following discussion. In addition, it is as-

B 

p p 
(a) (b) 

Figure 8.2 Shear stress distribution in an equal-leg angle section. 
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sumed that the shear stress component CJzx (along the legs) is approximately con
stant through the wall thickness and is equal to the average tangential shear stress 
t in the wall (Fig. 8.2a) . With these approximations for CJzy and CJzx ' we find that 
a reasonably accurate and simple estimate of the shear center location may be 
obtained. 

Since the above approximations are based on the concept of "thin walls," the 
question as to what constitutes a thin wall arises. It so happens that the answer 
to this question is not of great importance in locating the shear center, as the fol
lowing example illustrates. 

Consider the cross section, shown in Fig. 8 .3 ,  of a "thick-wall" cantilever beam. 
The view is taken looking from the support to the loaded (unrestrained) enCl. The 
approximate solution presented later in this chapter indicates that the shear cen
ter is located at point C', a distance 0.707t from the corner as shown. The applied 
load P is shown acting at point C'. By the theory of elasticity, the shear center is 
located (Kelber, 1948) at point C, 0.231t to the right of point C'. To examine the 
effects of this discrepancy, let us apply at point C two forces P' and P" equal in 
magnitude and opposite in sense. (The forces P' and P" do not disturb the equi
librium of the beam.) Hence, the beam may be considered to be loaded by force 
P acting at point C' or, equivalently, by a force P' (equal in magnitude to force P) 
and twisting moment due to P and P". For example at the support, the bending 
moment is equal to PL (L is the length of the beam) and the torque T is equal 
to 0.231tP. In practice, the ratio of the bending moment to the twisting moment 
is equal to 100 or more. In addition, the torsion theory presented in Chapter 6 
shows that a thick-wall section, such as the one shown in Fig. 8 .3, has consider
able torsional resistance. Therefore, in applications in which length L of the beam 

2 t  p" 

c' 
c 

0.237t 

2t p' p 

Figure 8.3 Shear center location for a thick-wall angle section. 
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8.2 

is large compared to t ,  the shear stresses due to the torque (T = 0.231tP) are so 
small compared to the maximum bending stress that they can be neglected. Thus, 
for these beams the shear stresses due to the torque are no greater than the shear 
stresses due to shear load P' ;  both are often neglected. 

SHEAR FLOW IN THIN-WALL BEAM CROSS 
SECTIONS 

The average shear stress t at each point in the walls of the beam cross section is 
assumed to have a direction tangent to the wall. The product of this shear stress 
and the wall thickness t defines the shear flow q (Sec. 6.6); thus, 

q = tt (8. 1 )  

In the equation that will be derived for determining the shear flow q, we assume 
that the beam material remains linearly elastic and that the flexure formula is 
valid. Hence, we assume that the plane of the loads contains the bending axis of 
the beam and is parallel to one of the principal axes of inertia. It is convenient to 
consider a beam cross section that has one axis of symmetry (the x axis in Fig. 8.4). 
If the load P is parallel to the y axis and passes through the shear center C", the 
x axis is the neutral axis for linearly elastic behavior and the flexure formula is 
valid. The derivation of the formula for q requires that both the bending moment 
Mx and total shear v;, be defined; load P is taken in the negative y direction so that 
both Mx and v;, are positive. 

(a) (b) 

y 
Figure 8.4 Shear flow in a beam having a symmetrical cross section. 
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We wish to determine the shear flow q at point J in the cross section of the 
beam in Fig. 8.4a at a distance z + dz from load P. The free-body diagram neces
sary to determine q is obtained by three cutting planes. Cutting planes 1 and 2 
are perpendicular to the z axis at distances z and z + dz from the load P. Cutting 
plane 3 is parallel to the z axis and perpendicular to the lateral surface of the beam 
at J. The free body removed by the three cutting planes is indicated in Fig. 8.4b. 
The normal stress distributions CJzz as given by the flexure formula act on the 
faces made by cutting planes 1 and 2. The resulting forces on these faces of area A'  
are parallel to the z axis and are indicated in Fig. 8.4b as H and H', respectively. 
Since the forces H and H' are unequal in magnitude, equilibrium of forces in the 
z-direction is maintained by the force q dz on the face made by cutting plane 3 .  
Therefore, 

q dz = H' - H  (8.2) 

Now, integrations of (Jzz over the faces with area A'  at sections 1 and 2 yield (with 
the flexure formula) 

and 

Substitution of these two relations into Eq. (8.2) and solution for q yields 

dMx 1 f 
q = - - y dA 

dz lx A '  

According to beam theory, the total shear Yy in the cross section of a beam is  given 
by Yy = dMxfdz. Also, since JA 'y dA = A'y' where y' is the distance from the x axis 
to the centroid of A', we may express q as 

V A'y' 
q = --=--y 

--
lx 

Furthermore, since the value of the shear stress t in the longitudinal section cut by 
plane 3 (Fig. 8 .4) is the same as the shear stress in the cross section cut by plane 2, 
the shear flow in the cross section at point J is 

V A'y-' V Q  q = tt = y 
- 2_ 

lx ]x 
(8.3) 

where t is the wall thickness at point J. The first moment of area A', that is, A' y', 
is commonly denoted by Q. 

Equation (8.3) is used to locate the shear center of thin-wall beam cross sections 
for both symmetrical and unsymmetrical bending. The method is demonstrated in 
Sec. 8.3 for beam cross sections made up of moderately thin walls. Local buckling 
is not considered (see Chapter 12). 
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8.3 

In many applications (e.g., girders), the beam cross sections are built up by join
ing stiff longitudinal stringers by thin webs. The webs are generally stiffened at 
several locations along the length of the beam. The shear center location for beams 
of this type is considered in Sec. 8.4. 

SHEAR CENTER FOR A CHANNEL SECTION 

A cantilever beam subjected to a bending load V at C' in a plane perpendicular to 
the axis x of symmetry of the beam is shown in Fig. 8. 5. We wish to locate the plane 
of the load so that the channel bends without twisting. In other words, we wish 
to locate the bending axis CC' of the beam, or the shear center C of any cross 
section AB. 

In Fig. 8 .5a let V be transformed into a force and couple at section AB by intro
ducing, at the shear center C whose location is as yet unknown, two equal and 
opposite forces V' and V", each equal in magnitude to V. The forces V and V" con
stitute the external bending couple at section AB, which is held in equilibrium 
by the internal resisting moment at section AB in accordance with the flexure 
formula, Eq. (7. 1 ) ;  the distribution of the normal stress CJzz on section AB is shown 
in Fig. 8. 5a. The force V' is located at a distance e from the center of the web of 
the channel, as indicated in Figs. 8 .5a and 8 .5b. Force V' is resisted by shear stress 
t or shear flow q [Eq. (8.3)] , in cross section AB. Since the shear flow is directed 
along the straight sides of the channel, it produces forces F1 , F2 , and F3 , which 
lie in the cross section as indicated in Fig. 8. 5b. Accordingly, by equilibrium 

v 

(a) 

L Fx = F2 - F1 = 0 
L Fy = V' - F3 = 0 

L Mz = V'e - F1h = 0  

Fixed end 
of cantilever 

beam 

(b) (c) 

(8.4) 
(8 .5) 
(8.6) 

Figure 8.5 Shear center for a channel section. (a) Channel section beam. (b) Location of C. 
(c) Idealized areas. 
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Locations of Shear Centers for Sections Having One Axis of Symmetry 

Figure A 

Figure B 

Figure C 

Figure D 

Figure E 

Figure F 
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The magnitude of the load V' is assumed to be known. Therefore, the determina
tion of the distance e from the center line of the web to the shear center requires 
only that the force F1 ( = F2) be determined. 

To determine Fb it is convenient to think of the beam cross section as made up 
of line segments (Fig. 8. 5a) with specified thicknesses. Since the forces Fb F2 , F3 
are assumed to lie along the center line of the walls, the cross section is idealized as 
three narrow rectangles of lengths b, h, and b as indicated in Fig. 8 .5c; note that the 
actual and idealized cross-sectional areas are equal since the three areas overlap. 
However, the moments of inertia of the actual and idealized cross sections differ 
from each other slightly. The moment of inertia of the idealized area is 

This result may be simplified further by neglecting the third term, since for the usual 
channel section t1 is small compared to b or h. Thus, we write 

(8.7) 

The force F1 may be found from the shear flow equation 

where q is given by Eq. (8.3). The distance e to the shear center of the channel sec
tion is determined by substituting Eqs. (8.7) and (8.8) into Eq. (8.6) with the magni
tude of V' set equal to that of v;, .  Thus, we find 

b 
(8.9) 

Because of the assumptions employed and approximations used, Eq. (8.9) gives 
an approximate location of the shear center for channel sections. The error is small 
for thin-wall sections. The approximate locations of the shear center for several 
other thin-wall sections with an axis of symmetry are given in Table 8. 1 .  

EXAMPLE 8.1 
Shear Center for Channel with Sloping Flanges 

A 4-mm thickness plate of steel is formed into the cross section shown in Fig. E8. 1a. 
Locate the shear center for the cross section. 

SOLUTION 

For simplicity in finding the moment of inertia, we approximate the actual cross 
section (Fig. E8. la) by the cross section shown in Fig. E8. lb. The moment of inertia 
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e 

y 
( a) 

---'1 j-E- 2t = 8 mm 

1 
50 mm 

t 
100 mm 1 00 mm 

(b) 

about the x axis for the cross section in Fig. E8. l b  closely approximates that for the 
actual cross section in Fig. E8. 1 a. 

8(300)3 
IX = 

1 2  
4(200)3 4 

1 2  
= 1 5,3 30,000 mm 

Because of the shear flow, forces F1 and F2 are developed in the three legs of the 
cross section. The magnitude of force F1 requires integration; therefore, it is con
venient to take moments about point D so that the magnitude of F1 is not required. 
Since the shear flow from A to B to A varies parabolically, the average shear flow 
is equal to the shear flow at A plus 2/3 of the difference between the shear flow at 
B and shear flow at A. 

qA = V A' y = V ( 100)(4) ( 125)  = 50,000 
IV 

Ix Ix x 

v v 
qB = qA + - ( 100)(4){50) = 70,000-

Ix Ix 

v v 
F2 = 200qave = 63,330- (200) = 12,670,000-

Ix Ix 
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With point D as the moment center, the clockwise moment of V must equal the 
counterclockwise moment of F2 • Thus, we have ( 1 73 .2 - e) V = 173 .2 F2 , and 
hence, e = 30. 1 mm. 

EXAMPLE 8.2 
Shear Center for Unequal-Leg Channel 

A beam has an unsymmetrical section whose shape and dimensions are as shown 
in Fig. E8.2a. Locate the shear center. 

SOLUTION 

Centroidal x and y axes are chosen that are parallel to the sides of the thin-wall 
legs of the cross section. The origin 0 of the coordinates axes is located at xv = 
25.0 mm and Yn = 40.0 mm. To apply the theory to unsymmetrical sections, we use 
principal X and Y axes. As indicated in Appendix B, the principal axes may be 

.described in terms of lx , ly , and lxy · These values are lx = 1 .734 x 106 mm4, ly = 
0.876 x 106 mm4, and lxy = - 0.500 x 106 mm4. The angle f) between the x axis 
and X axis is obtained by the relation [Eq. (B. 12)] 

n 28 - -
2Ixy -

- 2(- 0.500 X 106 )  -ta - lx - ly - 1 .734 x 106 - 0.876 x 106 - 1 . 1 66 

from which 8 = 0.4308 rad. Since 8 is positive, the X axis is located counterclock
wise from the x axis. By using the equations in Appendix B, we find the principal 
moments of inertia to be lx = 1 .964 x 106 mm4, and ly = 0.646 x 106 mm4. The 
principal axes are shown in Figs. E8.2b and c. 

The shear center C is located by considering two separate cases of loading 
(without twisting) in two orthogonal planes of the loads. The intersection of these 
two planes of loads determines the shear center C. Thus, assume that the resultant 
V� of unbalanced loads on one side of the section in Fig. E8.2b is parallel to the 
Y axis. Since V� is assumed to pass through the shear center, the beam bends 
without twisting and the X axis is the neutral axis; hence, the flexure formula and 

X 

t 
1 00 mm 

t 

t D 
YD = 40 mm 
= 25 mm --;;. 

Figure E8.2 

t 
t = 4 mm 

0 

..._
1 00 mmj 

y 
(a) 

V' y 

X 

y 
V'y 

(b) (c) 
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Eq. (8 .3) apply. Because of the shear flow, forces F1 ,  F2 , and F3 are developed in 
the three legs of the cross section (Fig. E8.2b). Only the magnitude of F3 is re
quired if point D is chosen as the moment center. In order to determine F3 , it is 
necessary that the shear flow q be determined as a function of l, the distance from 
point B. The coordinates of point B, the shear flow q, and force F3 are deter
mined as follows : 

XB = xB cos 8 + yB sin (} = - 25(0.9086) - 60(0.4 176) = -47.77 mm 
YB = yB cos 8 - xB sin (} = - 60(0.9086) + 25(0.4 176) = -44.08 mm 

Vy - Vy ( 1 ) q = -1 A'Y' = - tl I YB I + - l sin (} 
x lx 2 

F3 =
I so 

q dl = 
Vyt I so 

z(44.08 + 0·4 1 76 z) dl = o. t 299Vy o lx o 2 

Using the fact that V� = Vy (the total shear at the section), we obtain the distance 
ex from point D to force V� , which passes through the shear center, from the equi
librium moment equation. Therefore, 

or 
ex = 12.99 mm 

Next assume that the resultant of the unbalanced loads on one side of the sec
tion in Fig. E8.2c is V� and it is parallel to the X axis. Since V� is assumed to 
pass through the shear center, the beam bends without twisting and the Y axis is 
the neutral axis. The shear flow q and force F3 are given by 

Vx , - , Vx ( 1 ) 
q = - A X  = - tl I XBI - - l cos (} ly ly 2 

I so Vx t I so ( 0.9086 ) F3 = 0 q dl = ly 0 l 47.77 - 2 l dl = 0.2525Vx 

Set V� = Vx (the total shear at the section) and take moments about point D. 
Therefore, 

Vxey = 100F3 
ey = 25.25 mm 

In terms of principal coordinates, the shear center C is located at 

Xc = Xn cos (} + Yn sin (} + ex = 52.41 mm 
Yc = Yv cos 8 - xv sin (} - ey = 0.66 mm 

The x and y coordinates of the shear center C are 

Xc = Xc cos (} - Yc sin (} = 47.35 mm 

Yc = Yc cos (} + Xc sin (} = 22.49 mm 
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8.4 

SHEAR CENTER OF COMPOSITE BEAMS FORMED 
FROM STRINGERS AND THIN WEBS 

Often, particularly in the aircraft industry, beams are built up by welding or rivet
ing longitudinal stiffeners, called stringers, to thin webs. Such beams are often de
signed to carry large bending loads and small shear loads. Two examples of cross 
sections of such beams are shown in Fig. 8 .6. A �earn whose cross section consists 
of two T -section stringers joined to a semicircular web is shown in Fig. 8.6a, 
and a beam whose cross section consists of a vertical web joined to two angle sec
tion stringers that, in turn, are joined to two horizontal webs that support two 
T -section stringers is shown in Fig. 8.6b. 

Caution: In practice, beams with cross sections similar to those shown in Fig. 8.6b 
have webs so thin that they may buckle before they fail due to yielding (Chap
ter 12), particularly in aircraft applications. Consider, for example, a cantilever 
beam subject to end load (Fig. 8.7) . Before buckling, the state of stress at the 
neutral axis is pure shear, as indicated on the volume element A in Fig. 8.7. After 
buckling, the state of stress is as indicated on volume element B in Fig. 8.7. A 
photo (Langhaar, 1942) of a similar beam with a buckled web is indicated in 
Fig. 8 .8 .  After buckling of the web, the shear in the beam is carried by diagonal 
tension (block B, Fig. 8.7) (Bleich, 1952; Timoshenko and Gere, 1 96 1 ;  Kuhn, 1 956). 
To strengthen such beams, transverse stiffeners are placed at each end and along 
the beam, as indicated in Fig. 8 .8 . These stiffeners restrain relative motion between 
the longitudinal stiffeners so that the beam may develop resistance to the diagonal 
tension. In addition, transverse stiffeners are located at sections where loads are 
applied to the beam. In this chapter, we assume that the web thickness is suffi
ciently thick so that the shear flow does not cause web buckling. 

The calculation of the shear center location for beam cross sections similar to 
those shown in Fig. 8.6 is based on two simplifying assumptions : ( 1 )  that the web 

(a) (b) 

Figure 8.6 Beam cross sections built up of stringers and thin webs. 
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Figure 8.7 Web buckling in a cantilever beam. 

Figure 8 .8 Diagonal-tension beam. 

p 

does not support tensile or compressive stresses due to bending loads and (2) that 
the shear flow is constant in a web between pairs of transverse stiffners. The actual 
webs of these composite beams are often so thin that they may buckle under small 
compressive stresses. Therefore, the webs should not be expected to carry compres
sive flexure stresses. In general, the webs can carry tensile flexure stresses. How
ever, this capability is sometimes ignored in their design. 

Since the web walls are usually very thin, the moment of inertia for symmet
rical cross sections of composite beams is approximated by the relation 

n 
lx = 2 L Aj!} (8. 1 0) 

i = 1 

where 2n is the number of stringers, Ai are the cross-sectional areas of the stringers 
on one side of the neutral axis (x axis), and Yi are the distances from the neutral 
axis to the centroids of the areas Ai. Equation (8. 10) discards the effect of the web. 
Hence lx is underestimated. With this value of lx , the computed flexure stresses 
are overestimated (higher than the true stresses). 
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Note : Transverse shear stresses are developed in the areas Ai of the stringers so 
that the stringers carry part of the total shear load v;, applied to the beam. How
ever, the part of v;, carried by each stringer is usually ignored. This error is cor
rected in part by assuming that each web is extended to the centroid of the area 
of each stringer, thus increasing the contribution of the web. The procedure is 
demonstrated in the following example. 

EXAMPLE 8.3 
Shear Center for Composite Beam 

A composite beam has a symmetrical cross section as shown in Fig. E8.3 .  A ver
tical web with a thickness of 2 mm is riveted to two square stringers. Two hori
zontal webs, with a thickness of 1 mm, are riveted to the square stringers and the 
T -section stringers. Locate the shear center of the cross section. 

2 mm 

200 mm 
x �Cr------------m-B----�---------

�--- e -----;;.H I 

v/ 
(Applied shear load) 

6.00 mm 

Figure E8.3 
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The centroid of each T-section is located 9.67 mm from its base. The distance from 
the x axis to the centroid of each T -section is 

y2 = 100 + 10 + 1 + 9.67 = 1 20.67 mm 

The approximate value of Ix [Eq. (8. 10)] is 

IX = 2A1 YI + 2A2y� = 2(400)(100f + 2(324)( 1 20.67f 
= 1 7.44 x 106 mm4 

In these calculations, the shear flow q 1 is assumed to be constant from the cen
troid of the T -section to the centroid of the square stringers. The magnitude of q 1 
is [Eq. (8.3)] 

q 1 = 
I

v;, 
A'y' = 

v;, 
(324) ( 1 20.67) = 39. 10 X 103 v;, 

X IX IX 

where v;, is the total shear at the section. The forces F1 , F2 , and F3 are given by 
the relations 

3 v;, 
F1 = (9.67 + 0.5) q 1 = 397.6 X 10 T X 

v F3 = ( 10 + 0. 5)q 1 = 410. 5  X 103 ___E. 
IX 

The shear flow q2 is also assumed to be constant between centroids of the square 
stringers. Hence, 

v v 
q2 = q1  + 

I

y 
(400)( 100) = 79. 10 X 103 ___E. 

X � 
The forces F4 and F5 are given by the relations 

3 v;, 
F4 = ( 10 + 1 )q2 = 870. 1 X 10 I X 

6 v;, F5 = 200q2 = 1 5.82 x 10 ]· 
X 

These forces with V' (Fig. E8.3) must satisfy equilibrium in the y direction, that is, 
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8.5 

Hence, 

V' = 
2(397.6 X 103 Jt;,) + 2(4 10.5  X 103 Jt;,) + 1 5.82 X 106 Jt;, 

= v 
1 7.44 X 106 y 

Thus, the applied shear load V' is equal to the total internal shear v;, in the sec
tion. The moment equilibrium equation for moments about point B determines 
the shear center location. Thus, 

I Mn = V' e + 2F1(7 1) + 2F3( 1 1 )  - F2(22 1 )  - F4(200) = 0 
e = [2.346 X 106(22 1 )  + 870. 1 X 103(200) - 2(397.6 X 103 )(7 1) 

- 2(410. 5  X 103 ) ( 1 1 )]/1 7.44 X 106 
e = 35.95 mm 

This estimate of the location of the shear center C (Fig. E8.3) may be in error by 
several percent because of the simplifying assumptions. Hence, if the transverse 
bending loads are placed at C, they may introduce a small torque load in addition 
to bending loads. In most applications, the shear stresses resulting from this small 
torque are relatively insignificant (Chapter 6). In addition, it is questionable that 
the beam can be manufactured to precise dimensions and that the loads can be 
placed with great accuracy. Thus, the need for greater accuracy in our computa
tions is also questionable. 

SHEAR CENTER OF BOX BEAMS 

Another class of practical beams is the box beam (with boxlike cross section) 
(Fig. 8.9). Box beams ordinarily have thin walls. However, they usually have walls 
sufficiently thick so that the walls will not buckle when subjected to elastic com
pressive stresses developed by bending. Box beams may be composed of several 
legs of different thickness (Fig. 8.9) or they may be a composite of longitudinal 
stringers and very thin webs (Fig. 8. 10) . The beams in Figs. 8 .9 and 8. 10 are 
one-compartment, box beams. In general, box beams may contain two or more 
compartments. 

For convenience, let the x axis be an axis of symmetry in Figs. 8.9 and 8 . 10. Let 
the beams be subjected to symmetrical bending. Hence, let the plane of the loads 
be parallel to the y axis and let it contain the shear center C. The determination 
of the location of the shear center requires that the shear stress distribution in the 
cross section be known. However, the shear stress distribution cannot be obtained 
using Eq. (8 .3) alone, since area A' is not known. (A' is the area of the wall from 
a point of interest in the wall to a point in the wall where q = 0.) Consequently, 
an additional equation, Eq. (6.67), along with Eq. (8.3), is required to obtain the 
shear stress distribution for a cross section of a box beam. Since there is no twist-
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Figure 8.9 Box beam . 
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Figure 8 . 10 Ultra thin-wall box beam with stringers. 
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ing, the unit angle of twist in the beam is zero and, hence, Eq. (6.67) yields 

f' � dl = 0 (8. 1 1 ) 
J 0 t 

where dl is an infinitesimal length of the wall of the box beam cross section at a 
point where the thickness is t and the shear flow is q. The length l of the perimeter 
of the box beam cross section is measured counterclockwise from any convenient 
point in the wall. 

The shear flow qA at any point, say, point A in Figs. 8.9 or 8. 10, is an unknown. 
If this shear flow is subtracted from the actual shear flow at every point of the box 
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Figure 8. 1 1  Multicompartment box beam. 
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beam wall, the resulting shear flow at A (and in this case, at B because of sym
metry) is zero. We refer to such a point (of zero shear flow) as a cut. Then the result
ing shear flow is the same as if the two beams (Figs. 8.9b and 8. 10b) have no shear 
resistance at points A and B, but still have continuity of displacement at points A 
and B. Since the subtraction of qA results in a subtraction of a zero force resultant, 
the subtraction produces no additional horizontal or vertical components of load 
on the cross section. The portions V'1 , V� of the shear load V' acting on each of 
the two parts AB and BA (Figs. 8.9b and 8. 10b) are proportional to the moments 
of inertia of the two parts of the beam since the curvature of the two parts must 
be continuous at points A and B. For convenience, let V' = I (in magnitude) so 
that V� = I 1 and V� = I 2 .  Then, the shear flow at any point in the wall of either 
of the two parts of the beams (Fig. 8.9b) can be obtained using Eq. (8. 3). The shear 
flow qA is then added to the resulting shear flows for the two parts of the beam. 
The magnitude of qA is obtained by satisfying Eq. (8. 1 1 ). The force in each wall of 
the cross section can then be determined. The location of the shear center is ob
tained from the fact that the moment of these forces about any point in the plane 
of the cross section must be equal to the moment of the applied shear load V' 
about the same point. 

For beams whose cross sections contain more than one compartment (Fig. 8. 1 1), 
the above procedure must be repeated for a point in the wall of each compartment, 
such as at A, B, C, and D in Fig. 8. 1 1 b or at A, B, C, D, E, and F in Fig. 8. 1 1 c. The 
magnitudes of the shear flows that must be subtracted for each compartment are 
obtained by satisfying Eq. (8. 1 1 ) for each compartment. 

Unsymmetrical box beam cross sections can also be treated by the above pro
cedure. In this case, it is desirable to refer the calculation to principal axes, say, X 
and Y. The method proceeds as follows : First, locate the plane of the loads for 
bending about the X axis; second, locate the plane of the loads for bending about 
the Y axis. The shear center of the cross section is given by the intersection of these 
two planes. The bending axis intersects each cross section of the box beam at the 
shear center. 
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Shear Center for Box Beam 

For the box beam in Fig. 8.9, let b = 300 mm, h = 500 mm, t 1 = 20 mm, and t2 = t3 = 10 mm. Determine the location of the shear center for the cross section. 

SOLUTION 

The moment of inertia for the x axis is Ix = 687.9 x 106 mm4. Cuts are taken at 
points A and B to divide the beam into two parts (Fig. 8.9b). For convenience, let 
the magnitude of the shear load V' for the box beam be equal to the magnitude of 
IX so that v� = Ix l and v� = Ix2 . The shear flow q is determined at points p ' Q, 
and S for the two parts of the cut beam cross section (Fig. 8.9b) as follows (with 
v� = V1 , v� = V2 ) : 

V A'y' h 
qp = 1 = (bt2 ) -

2 
= 300( 10)(250) = 750.0 kNjmm 

Ixl 

qq = qp + Gt1 ) � = 1 ,375 .0 kNjmm 

q5 = Gr3) � = 3 1 2 .5 kNjmm 

The senses of the shear flows oppose those of V� and V� . For the left part of the 
beam (Fig. E8.4a), the shear flow increases linearly from zero at B to qp at R and 
decreases linearly from qp at P to zero at A. The shear flow changes parabolically 
from qp at R to qQ at Q and back to qp at P. For the right of the beam, the shear 
flow changes parabolically from zero at B to q5 at S and back to zero at A. Now, 
we add qA (assumed positive in a counterclockwise direction) to the value of q at 

v 
(a) (b) 

Figure E8.4 
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every point in the cross section (Fig. E8.4b), and we require that Eq. (8. 1 1 ) be satis
fied. Starting at P, we find that 

( qp) b ( 2 ) h ( qp) b 
+ qA - 2 G + qA + 3 qs G + qA - 2 G 

0 = 1 35.0qA - (750.0 + � X 625.0)25 - (3 75.0) 30 

+ (� X 3 1 2.5 )50 - (375.0) 30 

qA = 305.6 kNjmm 

This value of qA must be added to the values computed for the cross section with 
the cuts to give the shear flow (Fig. E8.4b ). The equilibrium moment equation for 
moments about point B gives 

0 = V' e -
( 
444.4 + � 625} 500)(300) -

44;.4 
( 1 77. 7 6)( 500) 

+ 
30�·6 

( 1 22.24)(500) 

1 39.57 x 109 N ·mm 
e = 

687.9 x 106 N 
= 202.9 mm 

The shear center C lies on the x axis at a point 202.9 mm to the left of the center 
line of the right leg of the box section. 

PROBLEMS 
Section 8.3 

8.1 .  Locate the shear center for the hat section beam shown in Fig. A of 
Table 8. 1 by deriving the expression for e. 

8.2. Verify the relation for e for the cross section shown in Fig. B of Table 8. 1 .  
8.3. Locate the shear center for an unsymmetrical I -beam shown in Fig. C of 

Table 8. 1 by deriving the expression for e. 

8.4. Show that the shear center for the cross section in Fig. D of Table 8 . 1 is 
located at distance e as shown. 

8.5. Derive the relation for e for the circular arc cross section shown in Fig. E 
of Table 8. 1 .  

8.6. Derive the relation for e for the helmet cross section shown in Fig. F of 
Table 8. 1 

8.7. An extruded bar of aluminum alloy has the cross section shown in Fig. P8.7. 
Locate the shear center for the cross section. 
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Figure P8.7 

Note: Small differences in the value of e may occur because of differences 
in the approximations of Ix. 

8.8. A 2.50-mm thick plate of steel is formed into the cross section shown in 
Fig. P8.8. Locate the shear center for the cross section. 

Ans. e = 37. 14 mm 

I ..... ��- 50 mm--)lo:iill"1j 

r 
50 mm 

1 
25 mm 

...___ _1 
�25 mm� 
0 c X ���-----+----------

v 

y 
Figure P8.8 
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8.9. A rolled steel channel has the dimensions shown in Fig. P8.9. Locate the 
shear center for the cross section. 

�t;:�a ::� �r mm 

I +  T 
200 mm 

1 4. 5  mm 

v 

Figure P8.9 

8.10. A beam has the cross section shown in Fig. P8. 10. Locate the shear center 
for the cross section. 

Ans. fJ = - 0.42 1 5  rad, ex = 45.50 mm, ey = 126. 88  

1'"'1'1:----- 1 00 mm�---___,..,.:;...�1 

1 50 mm 

80.77 mm 

y 

Figure P8. 10 
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8.1 1 .  An extruded bar of aluminum alloy has the cross section shown in 
Fig. P8. 1 1 . Locate the shear center for the cross section. 

20 mm 

y 
Figure P8. 1 1  

8.12. A 4-mm thick plate of steel is formed into the cross section shown in 
Fig. P8. 12. Locate the shear center for the cross section. 

A·ns. e = 28.50 mm 

v 

l25 mmf-so mm� 
�75 mm 50 mm 

c 0 
e 

y 
Figure P8. 12  

8.13. A 5-mm thick plate of steel is formed into the cross section shown in 
Fig. P8. 1 3. Locate the shear center for the cross section. 
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1 20 mm T 
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�"G- e-11 

' f  80 mm 

v l 
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Figure P8. 1 3  

8.14. A 5-mm thick plate of steel is formed into the semicircular shape shown in 
Fig. P8. 14. Locate the shear center for the cross section. 

Ans. e = 3 1 8.3 1 mm 

c 

v 

Figure P8. 14 

250 mm 

0 

y 

8.15. The horizontal top-most and bottom-most arms of the extruded bar of 
Fig. P8. 7 are removed. Locate the shear center for the modified section. 
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8.16. An aluminum alloy extrusion has the cross section shown in Fig. P8. 1 6. 
The member is to be used as a beam with the x axis as the neutral axis. Lo
cate the shear center for the cross section. 

50 mm ----'>::...4��0:::-- 70 mm ----1 
-.---

t =  1 0 mm � k-

-.-- 1-r-

1 20 mm v 

80 mm BO rn m 

" 
X � e -� 

..---

y 

Figure P8. 16 

8.17. Locate the shear center for the beam cross section shown in Fig. P8. 1 7. 
Both flanges and the web have thickness t = 3 .00 mm. 

1 25 mmr- 50 mm 4 

L__ .---------1 l 
X ----+-+--- 1 00 mm 

r-- ....________, J 
Figure P8. 17  

8.18. Locate the shear center for the beam cross section shown in Fig. P8. 1 8. 
The walls of the cross section have constant thickness t = 2.50 mm. 
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r-so mm 4 

X ---Hf-----

Figure P8. 1 8  

:l 1
100 mm 

50 mm 

l 

8.19. Locate the shear center for the beam cross section shown in Fig. P8. 1 9. 
The walls of the cross section have constant thickness t = 2.00 mm. 

r-25 mm 4 

,_________,� 1 
50 mm 

x --+f---- 25 mm 

Figure P8. 19 

8.20. Locate the shear center for the beam cross section shown in Fig. P8.20. 
The walls of the cross section have constant thickness t = 2.00 mm. 

X -----+-+--- 25 mm 

Figure P8.20 

8.21.  Locate the shear center for the beam cross section shown in Fig. P8.2 1 .  
The walls of the cross section have constant thickness t = 2.00 mm. 
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25 mm 4 

30° l 
X -��--11----- 50 mm 

300 J 
Figure P8.21 

8.22. Locate the shear center for the beam cross section shown in Fig. P8.22. 
The walls of the cross section have constant thickness t = 2 .00 mm. 

80 mm T 60 mml 

1 
X ---E--+---- 1 60 mm 

'--------.1 
Figure P8.22 

8.23. Locate the shear center for the beam cross section shown in Fig. P8.23 . 
The walls of the cross section have constant thickness t = 2.50 mm. 

Figure P8.23 

8.24. For the beam cross section shown in Fig. P8.24, b >> t. Show that the mo
ment of inertia lx = 5.609b3t and locate the shear center for the cross section. 
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1 
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-t 
b l 

� t � 
Figure P8.24 

8.25. The channel shown in Fig. P8.25 is subjected to nonsymmetric bending. 
The associated shear forces, which act through the shear center, are Vx = 

- 2400 N and v;, = 1 800 N. Determine the distribution of the shear stress 
throughout the cross section. Make a sketch, to scale, of the shear-stress 
distribution in the channel walls. 

y 

r----+----._1 J 2.5 mm 
.-----1-------' 

I 

0 
100 mm �--------------- x 

I 
�1��--- so mm ----���1 

Figure P8.25 
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Section 8.4 

8.26. A beam is built up of a thin steel sheet of thickness t = 0.60 mm bent into 
a semicircle as shown in Fig. P8.26. Two 25-mm square stringers are welded 
to the thin web as shown. Locate the shear center for the cross section. 

� 25 mm l-as-
' 
25 m m  

� _l 

6'o 11')11') 
c X 

e , 
v 

t = .60 mm 

Figure P8.26 

8.27. A beam has a symmetrical cross section (Fig. P8.27). A vertical web with 
a thickness of 0.60 mm is welded to two 20 mm by 20 mm by 4 mm angle 
section (A = 146 mm2 and centroid location 6.4 mm) stringers. The two 
horizontal webs have a thickness of 0.60 mm and are welded to the angle 
sections and 20 mm by 20 mm by 4 mm T -section stringers. Locate the 
shear center for the cross section. 

Ans� e = 28.20 mm 

8.28. A composite beam has a symmetrical cross section as shown in Fig. P8.28. 
A vertical web with a thickness of 2 mm is welded to the center of the 
flange of two 50 mm by 60 mm by 10 mm T -section stringers. Two hori
zontal webs, with a thickness of 1 mm, are welded to these stringers and 
to two additional T -section stringers. Locate the shear center of the cross 
section. 

8.29. A composite beam has a symmetrical cross section, as shown in Fig. P8.29. 
A vertical web with a thickness of 2 mm is riveted to four rolled 30 mm 
by 30 mm by 5 mm angle sections (A = 278 mm 2 and centroid location 
7.7 mm). Two horizontal webs, with thickness of 1 mm, are riveted to the 
angles and to areas A1 (25 mm by 25 mm) and A2 (40 mm by 40 mm). 
Locate the shear center of the cross section. 

Ans. e = 28.44 mm 
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t = .6 mm 

x --��c--�----------�-----
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v 

Figure P8.27 

j_ r-- 1 00  mm---t-- 1 00 mm_, j_ 
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Figure P8.28 

25 mm 40 mm 

1 50 mm 
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Figure P8.29 
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Section 8.5 

8.30. For the box beam in Fig. 8.9, let b = 100 mm, h = 200 mm, t 1 = 20 mm, 
t2 = 10 mm, and t3 = 5 mm. Determine the location of the shear center for 
the cross section. 

8.31.  For the box beam in Fig. 8 . 10, let b = 200 mm, h = 400 mm, t 1 = t2 = t3 = 1 mm, and A1 = 3A2 = 900 mm2• Determine the location of the shear 
center for the cross section. 

Ans. e = 83 .33 mm 

8.32. Let t 1 = 2 mm with other dimensions from Problem 8.3 1 remaining un
changed. Determine the location of the shear center. 
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9 
9.1 

CURVED BEAMS 

INTRODUCTION 

The flexure formula [Eq. (7. 1 )] is accurate for symmetrically loaded straight beams 
subjected to pure bending. It is also generally used to obtain approximate results 
for the design of straight beams subjected to shear loads, when the plane of loads 
contains the shear center and is parallel to a principal axis of the beam; the result
ing errors in the computed stresses are small enough to be negligible as long as the 
beam length is at least five times the maximum cross-sectional dimension. In addi
tion, the flexure formula is reasonably accurate in the analysis of curved beams 
for which the radius of curvature is more than five times the beam depth. How
ever, for curved beams the error in the computed stress predicted by the flexure 
formula increases as the ratio of the radius of curvature of the beam to the depth 
of the beam decreases in magnitude. Hence, as this ratio decreases, one needs a 
more accurate solution for curved beams. 

Timoshenko and Goodier ( 1970) have presented a solution based on the theory 
of elasticity for the linear elastic behavior of curved beams of rectangular cross 
sections for the loading shown in Fig. 9. la. They used polar coordinates and ob
tained relations for the radial stress CJ,, the circumferential stress CJ00 , and the 
shear stress CJ,0 (Fig. 9. lb). However, most curved beams do not have rectang-

d(} r 
(} 

(a) (b) 

Figure 9. 1 Rectangular section curved beam. (a) Curved beam loading. (b) Stress 
components. 
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ular cross sections. Therefore, in the following we present an approximate curved 
beam solution that is generally applicable to all symmetrical cross sections. This 
solution is based on two simplifying assumptions : ( 1 )  plane sections before load
ing remain plane after loading and (2) the radial stress CJ,, and shear stress CJ,0 are 
sufficiently small so that the state of stress is essentially one-dimensional . The 
resulting formula for the circumferential stress CJ00 is the curved beam formula. 

CIRCUMFERENTIAL STRESSES IN A CURVED BEAM 

Consider the curved beam shown in Fig. 9 .2a. The cross section of the beam has 
a plane of symmetry and the polar coordinates (r, 8) lie in the plane of symmetry, 
with origin at 0, the center of curvature of the beam. We also assume that the ap
plied loads lie in the plane of symmetry. A positive moment is defined as one that 
causes the radius of curvature at each section of the beam to increase in magni
tude. Thus, the applied loads on the curved beams in Figs. 9. 1 and 9.2a cause posi
tive moments. We wish to determine an approximate formula for the circumferen
tial stress distribution CJ00 on section BC. A free-body diagram of an element FBCH 
of the beam is shown in Fig. 9.2b (see Fig. 9.2a). The normal traction N, at the 
centroid of the cross section, the shear V, and moment Mx acting on face FH are 
shown in their positive directions. These forces must be balanced by the resultants 
due to the normal stress CJ00 and shear stress CJ,0 that act on face BC. The effect of 
the shear stress CJ,0 on the computation of CJ00 is usually small, except for curved 
beams with yery thin webs. However, since ordinarily, practical curved beams are 
not designed with thin webs because of the possibility of failure by excessive ra
dial stresses (see Sec. 9.3), neglecting the effect of CJ,0 on the computation of CJ00 is 
reasonable. 

Let the z axis be normal fo face BC (Fig. 9.2b). By equilibrium of forces in the 
z direction and of moments about the centroidal x axis, we find 

L Fz = f IToo dA - N = 0 

L Mx = f IToo(R - r) dA - Mx = 0 

or 

N = f a88 dA (9. 1 )  

Mx = f tToo(R - r)  dA (9.2) 

where R is the distance from the center of curvature of the curved beam to the 
centroid of the beam cross section and r locates the element of area dA from the 
center of curvature. The integrals of Eqs. (9. 1 )  and (9.2) cannot be evaluated until 
CJ00 is expressed in terms of r. The functional relationship between CJ00 and r is ob
tained from the assumed geometry of deformation and stress-strain relations for 
the material. 
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Figure 9.2 Curved beam. 

c 

Plane of 
symmetry 

The curved beam element FBCH in Fig. 9.2b represents the element in the unde
formed state. The element F*B*C*H* represents the element after it is deformed 
by the loads. For convenience, we have positioned the deformed element so that 
face B*C* coincides with face BC. As in the case of straight beams, we assume that 
planes B*C* and F*H* remain plane under the deformation. Face F*H* of the 
deformed curved beam element forms an angle �(dO) with respect to FH. Line 
F*H* intersects line F H at the neutral axis of the cross section (axis for which 
CJ00 = 0) at distance Rn from the center of curvature. The movement of the center 
of curvature from point 0 to point 0* is exaggerated in Fig. 9.2b in order to illus
trate the geometry changes. For infinitesimally small displacements, the movement 
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of the center of curvature is infinitesimal. The elongation de00 of a typical element 
in the fJ direction is equal to the distance between faces FH and F*H*  and varies 
linearly with the distance (Rn - r). However, the corresponding strain E00 is a non
linear function of r, since the element length r dfJ also varies with r. This fact dis
tinguishes a curved beam from a straight beam. Thus, by Fig. 9.2b, we obtain for 
the strain 

where 

_ 
de00 

_ 
(Rn - r) ll(dfJ) 

_ (R" _ 1) Eoo - - - OJ r dfJ r dfJ r 

fl(dfJ) OJ =  ----;{8 

(9.3) 

(9.4) 

It is assumed that CJxx is sufficiently small so that it may be neglected. Hence, the 
curved beam is considered to be a problem in plane stress. Although radial stress 
CJ,, may, in certain cases, be of importance (see Sec. 9.3), here we neglect its effect 
on E00 • Then, by Hooke's law, we find 

Rn - r EOJRn 
CJ00 = EE00 = EOJ = -- - EOJ r r 

Substituting Eq. (9. 5) into Eqs. (9 . 1 ) and (9.2), we obtain 

(9. 5 )  

N = R.Ew I d: - Ew IdA = R.EwAm - EwA (9.6) 

Mx = R.REw I d: - (R + R.)Ew IdA + Ew I r dA 

= RnREOJAm - (R + Rn)EOJA + EOJRA = RnEOJ(RAm - A) (9 .7) 
where A is the cross-sectional area of the curved beam and Am has the dimensions 
of length and is defined by the relation 

A = I dA 
m r 

Equation (9.7) can be rewritten in the form 

Then substitution into Eq. (9.6 ) gives 

(9. 8) 

(9.9) 

(9. 10) 

The circumferential stress distribution for the curved beam is obtained by substitu
ting Eq. (9.9) and (9. 10) into Eq. (9.5 ) to obtain the curved beam formula 

N Mx(A - rAm) CJoo = A + Ar(RAm - A) (9. 1 1 ) 
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I \ R \� 
' � 

0 

y 

Figure 9.3 Circumferential stress distribution In a rectangular section curved beam 
(R/h = 0.75). 

The normal stress distribution given by Eq. (9. 1 1 ) is hyperbolic in form; that is, it 
varies as 1/r. For the case of a curved beam with rectangular cross section (R/h = 
0.75) subjected to pure bending, the normal stress distribution is shown in Fig. 9.3 . 

Since Eq. (9. 1 1 ) has been based on several simplifying assumptions, it is essen
tial that its validity be verified. Results predicted by the curved beam formula can 
be compared with those obtained from the elasticity solution for curved beams 
with rectangular sections and with those obtained from experiments on, or finite 
element analysis of, curved beams with other kinds of cross sections. The max
imum value of circumferential stress CJoo(CB> as given by the curved beam formula 
may be computed from Eq. (9. 1 1 ) for curved beams of rectangular cross sections 
subjected to pure bending and shear (Fig. 9.4). For rectangular cross sections, the 
ratios of CJoo(CB> to the elasticity solution CJoo(eiast) are listed in Table 9. 1 for pure bend
ing (Fig. 9.4a) and for shear loading (Fig. 9.4b), for several values of the ratio Rjh, 
where h denotes the beam depth (Fig. 9.2a). The nearer this ratio is to 1 ,  the less 
error in Eq. (9. 1 1 ). The curved beam formula is more accurate for pure bending than 
shear loading. Most curved beams are subjected to a combination of bending and 
shear. The value of Rjh is usually greater than 1 .0 for curved beams, so that the 
error in the curved beam formula is not particularly significant. However, possible 

(a) (b) 

Figure 9.4 Types of curved beam loadings. (a) Pure bending. (b) Shear loading. 
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TABLE 9.1 
Ratios of the Maximum Circumferential Stress in 
Rectangular Section Curved Beams as Computed by 
Elasticity Theory, the Curved Beam Formula and the 
Flexure Formula 

Pure Bending Shear Loading 

R t188(CB) t188(st) t188(CB) t188(st) 
h t188( elast) t188(elast) t188(elast) t188( elast) 

0.65 1 .046 0.439 0.855 0.407 
0.75 1 .0 12  0.526 0.898 0.5 1 1 
1 .0 0.997 0.654 0.946 0.653 
1 .5  0.996 0.774 0.977 0.776 
2.0 0.997 0.83 1  0.987 0.8 34 
3.0 0.999 0.888 0.994 0.890 
5.0 0.999 0.93 3  0.998 0.934 

errors occur in the curved beam formula for I- and T -section curved beams. These 
errors are discussed in Sec. 9.4. Also listed in Table 9. 1 are the ratios of the max
imum circumferential stress ()oo<st> given by the straight beam flexure formula 
[Eq. (7. 1 )] to the value (Joo(eiast) · The straight beam solution is appreciably in error 
for small values of Rjh and is in error by 7% for Rjh = 5.0; the error is nonconser
vative. Generally, for curved beams with Rjh greater than 5 .0, the straight beam 
formula may be used. 

As R becomes large compared to h, the right-hand term in Eq. (9. 1 1 ) reduces to 
- Mxyflx . The negative �!_gn results because the sign convention for positive mo
ments for curved beams is opposite to that for straight beams [see Eq. (7. 1 )] .  To 
prove this reduction, note that r = R + y. Then the term RAm in Eq. (9. 1 1 ) may be 
written as 

RAm = J( R 
+ 1 - 1) dA = A - f y dA 

R + y R + y  
(a) 

Hence, the denominator of the right-hand term in Eq. (9 . 1 1 ) becomes, for 
Rjh � oo ,  

Ar(RAm - A) = - A f( Ry + y - y) dA - Ayf y dA R + y  R + y  

= A f y2 
dA - A fy dA - Ay f y dA R + y R + y  

= � L +�:/R) dA - A f y dA - � L + �yfR) dA 

= Alx 
R (b) 
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TABLE 9.2 

since as Rjh � oo, then yjR � 0, 1 + yjR � 1, J [y2 dA/( 1 + yjR)] � lx , J [y dA/( 1 + yjR)] � 0. The right-hand term in Eq. (9 . 1 1 ) then simplifies to 

MXR MXR (f yjR y f dA ) 
Alx 

(A - RAm - yAm) = Alx 1 + (y/R) d
A - R 1 + (y/R) 

and 

(c) 

The curved beam formula [Eq. (9. 1 1 )] requires that Am , defined by Eq. (9 .8), be 
calculated for cross sections of various shapes . The number of significant digits 
retained in calculatihg Am must be greater than that required for (Joo since RAm 
approaches the value of A as Rjh becomes large [see Eq. (a) above] . Explicit for
mulas for A, Am , and R for several curved beam cross-sectional areas are listed 
in Table 9.2. Often, the cross section of a curved beam is composed of two or 
more of the fundamental areas listed in Table 9.2. The values of A, Am , and R for 

Analytical Expressions for A ,  R, and Am = J � 

[8 114-•--R 

(d) I 
I 

I 
I 

,.I 
(e) 

I 

R �I 

I 

R .. , 

A = b(c - a); 
a + c  R = --

c Am = b in 
a 

2 

b A = - (c - a); 
c 

2a + c R =--
be c Am =-- In - - b 

c - a  a 

3 

b l + b2 A = 2 
(c - a); R = a(2b 1 + b2) + c(b 1 + 2b2) 

3 (b 1 + b2) 

A = nb2 
Am = 2n(R - .jR2 - b2) 

A = nbh 

2nb ---
Am = h(R - �R2 - h2) 

A = n(bf - b�) 

Am = 2n(-JR2 - b� - .jR2 - b i) 
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4b sin 3 8 R = a + -----3 (28 - sin 28) 

For a >  b, 

Am = 2a8 - 2b sin 8 - n-J a2 - b2  + 2-J a2 - b2  sin - 1 (-b_+_a
b
_c_o_s_8) 

a +  cos 8 

For b >  a, 

Am = 2a8 - 2b sin 8 + 2..)b2 - a2 In(b + a  cos 8 + ..jb2 - a2  sin 8) 
a +  b cos 8 

4b sin3 8 R = a - -----3(28 - sin 28) 

Am = 2a8 + 2b sin 8 - n-J a2  - b2 - 2..) a 2  - b 2  sin- 1 (b - a cos 8) 
a - b cos 8 

nbh A = -· 
2 ' 

4h R = a - -3n 

nb -J 2 2 2b -J 2 2 . _ 1  (h) Am = 2b + h (a - a - h  ) - h  a - h  Sill � 

the composite area are given by summation. Thus, for composite cross sections, 

n 
A =  I Ai (9. 1 2) i = 1 

(9. 1 3) 

n 
"' R-A ·  � l l 

R = -i =_I __ n (9. 14) 
I Ai 
i = 1 

where n is the number of fundamental areas that form the composite area. 

Location of Neutral Axis of Cross Section 
The neutral axis of bending of the cross section is defined by the condition lJ00 = 0. 
The neutral axis is located at distance Rn from the center of curvature. The dis
tance Rn is obtained from Eq. (9 . 1 1 ) with the condition that lJ00 = 0 on the neutral 
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surface r = Rn . Thus, Eq. (9 . 1 1 ) yields 

R = AMX 
" AmMx + N (A - RAm) 

For pure bending, N = 0, and then Eq. (9. 1 5 ) yields 

A 
Rn = A m 

EXAMPLE 9.1 
Stress in Curved Beam Portion of a Frame 

(9 . 1 5) 

(9. 16)  

The frame shown in Fig. E9. 1 has a square cross section 50.0 mm by 50.0 mm. The 
load P is located 100 mm from the center of curvature of the curved beam portion 
of the frame. The radius of curvature of the inner surface of the curved beam is 
a = 30 mm. For P = 9.50 kN, determine the values for the maximum tensile and 
compressive stresses in the frame. 

p c 

Figure E9. 1 

SOLUTION 

The circumferential stresses lJ06 are calculated using Eq. (9. 1 1 ). Required values for 
A, Am , and R for the curved beam are calculated using the equations in row (a) of 
Table 9.2. For the curved beam a =  30 mm and c = 80 mm. 

A =  b(c - a) = 50(80 - 30) = 2500 mm2 

c 80 Am = b ln d = 50 ln 30 = 49.04 mm 

R = a + c = 80 + 30 = 55 mm 2 2 
Hence, the maximum tensile stress is (at point B) 

P Mx(A - rAm) 9500 1 55(9500) [2500 - 30(49.04)] lJooB = A + Ar(RAm - A) = 2500 + 2500(30) [55(49.04) - 2500] 
= 106.2 MPa 



9.2 / CIRCUMFERENTIAL STRESSES IN A CURVED BEAM 371 

The maximum compressive stress is (at point C) 

9500 1 55(9500) [2500 - 80(49.04)] 
O"ooc = 2500 + 2500(80) [55(49.04) - 2500] = - 49·3 MPa 

EXAMPLE 9.2 
Stresses in a Crane Hook 

Section BC is the critically stressed section of a crane hook (Fig. E9.2a). For a large 
number of manufactured crane hooks, the critical section BC can be closely ap
proximated by a trapezoidal area with half of an ellipse at the inner radius and 
an arc of a circle at the outer radius. Such a section is shown in Fig. E9.2b, includ
ing dimensions for the critical cross section. The crane hook is made of a ductile 

p 

p 
(a) 

5.0 mm 

p p 
(c) 

Figure E9.2 Crane hook. 

( b) 

60.0 mm� 
��---+� I 

I 
I 
I 
I !1j.O mm 
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steel that has a yield stress of Y = 500 MPa. Assuming that the crane hook is de
signed with a factor of safety of SF = 2.00 against initiation of yielding, determine 
the maximum load P that can be carried by the crane hook. 

Note: An efficient algorithm to analyze crane hooks has been developed by Wang 
(1985). 

SOLUTION 

The circumferential stresses lJ00 are calculated using Eq. (9. 1 1 ). To calculate values 
of A, R, and Am for the curved beam cross section, we divide the cross section into 
basic areas A1 ,  A2 , and A3 (Fig. E9.2b). 

For area A1 , a = 84 mm. Substituting this dimension along with other given 
dimensions into Table 9.2, row (j), we find 

R1 = 73.8 1 mm, Am1 = 22.64 mm (a) 

For the trapezoidal area A2 , a =  60 + 24 = 84 mm and c = a + 100 = 1 84 mm. 
Substituting these dimensions along with other given dimensions into Table 9.2, 
row (c), we find 

R2 = 1 26.62 mm, (b) 

For area A3 , 8 = 0.572 1 rad, b = 3 1 .40 mm, and a =  1 57 .60 mm. When these 
values are substituted into Table 9.2, row (h), we obtain 

A3 = 1 1 5.27 mm2, R3 = 1 86.0 1 mm, (c) 

Substituting values of Ai , Ri , and Ami from Eqs. (a), (b), and (c) into Eqs. (9. 1 2), 
(9 . 1 3), and (9 . 14), we calculate 

A = 6 100.00 + 1 1 5.27 + 1 658.76 = 7874.03 mm2 

Am = 50.57 + 0.62 + 22.64 = 73.83 mm 
6100.00(1 26.62) + 1 1 5.27(1 86.0 1) + 1658 .76(73 .8 1) 

R = 
7874.03 

= 1 1 6.37 mm 

As indicated in Fig. E9.2c, the circumferential stress distribution lJ88 is due to the 
normal load N = P and moment Mx = PR. The maximum tension and compres
sion values of lJ00 occur at points B and C, respectively. For points B and C, 
by Fig. E9.2b, we find 

rB = 60 mm 
rc = 60 + 24 + 100 + 5 = 1 89 mm 

Substituting the required values into Eq. (9 . 1 1), we find 

P 1 16.37 P[7874.03 - 60(73.83)] 
lJooB = 

7874.03 
+ 

7874.03 (60) [ 1 16.37(73.83) - 7874.03] 

= 0.000127P + 0.001 1 82P 
= 0.001 309P (tension) 
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P 1 1 6.37 P[7874.03 - 1 89(73.83)] O"ooc = 
7874.03 + 7874.03( 1 89) [ 1 16.37(73.83) - 7874.03] 

= 0.000127P - 0.000662P 
= - 0.000535P (compression) 

Since the absolute magnitude of O"ooB is greater than O"ooc , initiation of yield 
occurs when O"ooB equals the yield stress Y. The corresponding value of the fail
ure load (P1) is the load at which yield occurs. Dividing the failure load P1 = 
Y/(0.001 309) by the factor of safety SF = 2.00, we obtain the design load P; namely, 

= 
SOO = 190 900 N p 2.00(0.00 1 309) ' 

RADIAL STRESSES IN CURVED BEAMS 

The curved beam formula for circumferential stress 0"00 [Eq. (9. 1 1 )] is based on the 
assumption that the effect of radial stress is small. This assumption is quite accu
rate for curved beams with circular, rectangular, or trapezoidal cross sections ; that 
is, cross sections that do not possess thin webs. However, in curved beams with 
cross sections in the form of an H, T, or I, the webs may be so thin that deforma
tion of the cross section may produce a maximum radial stress in the web that may 
exceed the maximum circumferential stress. Also, although the radial stress is 
usually small, it may be significant relative to radial strength, for example, when 
anisotropic materials such as wood are formed into curved beams. The beam 
should be designed to take such conditions into account. 

To illustrate the above remarks, we consider the tensile radial stress, due to a 
positive moment, that occurs in a curved beam at radius r from the center of curva
ture 0 of the beam (Fig. 9.5a). Consider equilibrium of the element BDGF of the 

T 

(c) 

Figure 9.5 Radial stress in a curved beam. (a) Side view. (b) Cross-sectional shape. 
(c) Element BDGF. 
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beam shown enlarged in the free-body diagram in Fig. 9.5c. The faces BD and GF, 
which subtend the infinitesimal angle dfJ, have the area A' shown shaded in 
Fig. 9.5b. The distribution of (J00 on each of these areas produces a resultant cir
cumferential force T (Fig. 9�5c) given by the expression 

T = J: o-88 dA (9 . 17 )  

The components of the circumferential forces along line OL are balanced by the 
radial stress (J,, acting on the area tr dfJ, where t is the thickness of the cross section 
at the distance r from the center of curvature 0 (Fig. 9.5b). Thus for equilibrium in 
the radial direction along OL, I F,. =  0 = (J,, tr dfJ - 2T sin(d8j2) = ((J,, tr - T) dfJ, 
since for infinitesimal angle dfJ/2, sin(dfJ/2) = dfJ/2. Thus, the tensile stress due to 
the positive moment is 

T 
(Jrr = -tr 

The force T is obtained by substitution of Eq. (9. 1 1 ) into Eq. (9. 1 7 ). Thus, 

where 

T = 
N f' dA + 

Mx f' dA 
-

MxAm f' dA 
A a RAm - A a r A(RAm - A) a 

A' AA' - A� 
T - N 

m m M - A + A(RAm - A) 
x 

A� = 
f' dA 

a r 
and 

(9. 1 8) 

(9 . 19) 

(9.20) 

Substitution of Eq. (9. 19) into Eq. (9. 1 8) yields the relation for the radial stress. For 
rectangular cross-section curved beams subjected to shear loading (Fig . 9 .4b ), a 
comparison of the resulting approximate solution with the elasticity solution indi
cates that the approximate solution is conservative. Furthermore, for such beams 
it remains conservative to within 6% for values of R/h > 1 .0 even if the term in
volving N in Eq. (9 . 19) is discarded. Consequently, if we retain only the moment 
term in Eq. (9. 19), the expression for the radial stress may be approximated by the 
formula, 

AA' - A� m m M (Jrr = 
trA(RAm - A) 

x (9.2 1 ) 

to within 6% of the elasticity solution for rectangular cross-section curved beams 
subjected to shear loading (Fig. 9 .4b). 

EXAMPLE 9.3 
Radial Stress in T -Section 

The curved beam in Fig. E9.3 is subjected to a load P = 120 kN. The dimensions 
of section BC are also shown. Determine the circumferential stress at B and radial 
stress at the junction of the flange and web at section BC. 
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The magnitudes of A, Am ,  and R are given by Eqs. (9 . 12); (9. 1 3), and (9 . 14), respec
tively. They are 

A = 48( 120) + 1 20(24) = 8640 mm2 

= 48( 120)(96) + 120(24)(1 80) = 124 0 R 8640 · mm 

120 240 Am = 120 In 72 + 24 ln 120 = 77.93 mm 

The circumferential stress is given by Eq. (9. 1 1 ). It is 

1 20,000 364.0( 120,000) [8640 - 72(77.93)] 
O'ooB = 8640 + 8640(72) [ 124.0(77.93) - 8640] 

= 1 3.9 + 207.8  = 22 1 .7 MPa 
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The radial stress at the junction of the flange and web is given by Eq. (9 .2 1), with 
r = 120 mm and t = 24 mm. Magnitudes of A' and A� are 

A' = 48( 120) = 5760 m2 

120 A� = 120 ln 72 = 6 1 .30 mm 

Substitution of these values in Eq. (9 .2 1) gives 

= 364.0( 120,000) [8640(6 1 .30) - 5760(77.93)] = 1 3 8  5 MPa (Jrr 24( 120)(8640) [ 124.0(77.93) - 8640] . 

Hence, the magnitude of this radial stress is appreciably less than the maximum 
circumferential stress ( I (JooB I > I (JoocD and may not be of concern for the design 
engineer. However, in the solution of this problem, the effect of the stress concen
tration at the fillet joining the flange to the web has not be considered. This stress 
concentration increases the magnitude of the radial stress at the junction. However, 
the increase in stress is localized. Hence, it is not significant for curved beams made 
of ductile metal and subjected to static loads. However, for curved beams made of 
brittle materials or for curved beams of ductile material subjected to repeated loads, 
the localized stresses are significant. The effects of stress concentrations at fillets 
are considered in Chapter 14. 

Curved Beams Made from Anisotropic Materials 
Typically, the radial stresses developed in curved beams of stocky (rectangular, 
circular, etc.) cross sections are small enough that they can be neglected in analysis 
and design. However, some anisotropic materials may have low strength in the 
radial direction. Such materials include fiber-reinforced composites (fiberglass) 
and wood. For these materials, the relatively small radial stress developed in a 
curved beam may control the design of the beam due to the corresponding rela
tively low strength of the material in the radial direction. Hence, it may be impor
tant to properly account for radial stresses in curved beams of certain materials. 
When radial stresses exceed allowable stress limits, design changes are necessary. 
Possible changes to the beam include increasing the radius of curvature, modify
ing the cross section proportions, or adding mechanical reinforcement (deformed 
bars or lag bolts in the case of curved wood beams). 

EXAMPLE 9.4 
Radial Stress in Glulam Beam 

A glued laminated timber (glulam) beam is used in a roof system. The beam has a 
simple span of 1 5  m and the middle half of the beam is curved with a mean radius 
of 10 m. The beam depth and width are both constant : d = 0.800 m and b = 
0. 1 30 m. Dead load is 2400 Njm and snow load is 4800 Njm. The geometry of 
the beam and assumed loading are shown in Fig. E9 .4. 
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(a) Determine the maximum circumferential and radial stresses in the beam. 

(b) Compare the maximum circumferential stress to that obtained from the 
straight beam flexure formula. 

(c) Compare the maximum circumferential and radial stresses to the allowable 
stress limits for Douglas fir: O'oo(allow) = 1 5.8 MPa, O'rr(allow) = 0. 1 19 MPa 
(AITC, 1985) 

SOLUTION 

(a) The maximum bending moment occurs at midspan and has magnitude Mx = 
wl

2 /8 = 202,500 N ·m. Circumferential stress o-00 is calculated using Eq. (9 . 1 1 ). 
For the curved beam described 

d a =  R - 2 = 9.6 m 

d c = r + 2 = 10.4 m 

A =  0. 13 x 0.80 = 0. 104 m2 

10.4 Am = 0. 13 ln 
9.6 

= 0.0 104056 

The maximum circumferential stress occurs at the inner edge of the beam 
r = a. It is 

_ 
Mx(A - aAm) 

_ 
202,500[0. 104 - 9.6(0.0 104056)] _ MP O'oo<max> - Aa(RAm - A) - 0. 104(9.6) [ 10.0(0.0104056) - 0. 104] -

15·0 a 
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The maximum radial stress o-rr(max) is calculated using Eq. (9.2 1). However, 
the location at which O"rr(max) occurs is unknown. Thus, we must maximize d,, 
with respect to r. For a rectangular cross section, the quantities in Eq. (9 .2 1) are 

t = b = width of cross section 
d = c - a = depth of cross section 
A =  bd 
A' = b(r - a) 

c Am = b in 
a 

Substitution of these expressions into Eq. (9.2 1) gives 

O" = Mx [d In (rja) - (r - a) In (c/a)J rr 
b rd [R In (c/a) - d] 

Maximizing o-,, with respect to r, we find that o-rr( max) occurs at 

(a) 

(b) 

We evaluate Eq. (b) for the particular cross section of this example to obtain 
r = 9.987 m. At that location, the radial stress is, by Eq. (a), 

O" = 202,500 [0.80 In (9.987 /9.6) - [(9.987 - 9.6) In ( 10.4/9 .6)]] 
rr(max) 0. 1 3  9.987(0.80) [ 10.0 ln ( 10.4/9 .6) - 0.80] 

= 0.292 MPa (c) 

An approximate formula for computing radial stress in curved beams of rect
angular cross section is (AITC, 1985 ;  p. 2 1 8) 

3M 
o-,, = 

2Rbd 
(d) 

Using this expression, we determine the radial stress to be o-,, = 0.292 MPa. 
The approximation of Eq. (d) is quite accurate in this case! In fact, for rect
angular curved beams with R/d > 3, the error in Eq. (d) is less than 3% .  
However, as R/d becomes small, the error grows substantially and Eq. (d) is 
unconservative. 

(b) Using the curved beam formula, Eq. (9 . 1 1 ), we obtain the maximum cir
cumferential stress as O"oo(max) = 1 5.0 MPa. Using the straight beam flex
ure formula, Eq. (7. 1), with lx = bd 3 / 12  = 0.005547 m4, we obtain o-00 = 
202,500(0.40)/0.005547 = 14.6 MPa. Thus, the straight beam flexure formula 
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is within 3% of the curved beam formula. One would generally consider the 
flexure formula adequate for this case, in which Rjd = 12.5. 

(c) The maximum circumferential stress is just within its limiting value; the 
beam is under stressed just 5% .  However, the maximum radial stress is 245% 
over its limit. It would be necessary to modify beam geometry or add me
chanical reinforcement to make this design acceptable. 

CORRECTION OF CIRCUMFERENTIAL STRESSES 
IN CURVED BEAMS HAVING I-, T- , OR SIMILAR 
CROSS SECTIONS 

If the curved beam formula is used to calculate circumferential stresses in curved 
beams having thin flanges, the computed stresses are considerably in error and the 
error is nonconservative. The error arises because the radial forces developed in 
the curved beam causes the tips of the flanges to deflect radially, thereby distorting 
the cross section of the curved beam. The resulting effec

.
t is to decrease the stiff

ness of the curved beam, to decrease the circumferential stresses in the tips of the 
flanges, and to increase the circumferential stresses in the flanges near the web. 

Consider a short length of a thin-flanged !-section curved beam included 
between faces BC and F H that form an infinitesimal angle dfJ as indicated in 
Fig. 9.6a. If the curved beam is subjected to a positive moment Mx , the circumfer
ential stress distribution results in a tensile force T acting on the inner flange and 
a compressive force C acting on the outer flange, as shown. The components of 
these forces in the radial direction are TdfJ and C dfJ. If the cross section of the 
curved beam did not distort, these forces would be uniformly distributed along 
each flange, as indicated in Fig. 9.6b. However, the two portions of the tension and 
compression flanges act as cantilever beams fixed at the web. The resulting bend
ing due to cantilever beam action causes the flanges to distort, as indicated in 
Fig. 9.6c. 

The effect of the distortion of the cross section on the circumferential stresses in 
the curved beam can be determined by examining the portion of the curved beam 
ABCD in Fig. 9.6d. Sections AC and BD are separated by angle 8 in the unloaded 
beam. Whe11 the curved beam is subjected to a positive moment, the center of cur
vature moves from 0 to 0*, section AC moves to A *C*, section BD moves to B*D*, 
and the included angle becomes 8 * .  If the cross section does not distort, the inner 
tension flange AB elongates to length A *B*. Since the tips of the inner flange move 
radially inward relative to the undistorted position (Fig. 9.6c), the circumferential 
elongation of the tips of the inner flange is less than that indicated in Fig. 9.6d. 
Therefore, (foo in the tips of the inner flange is less than that calculated using the 
curved beam formula. In order to satisfy equilibrium, it is necessary that (foo for 
the portion of the flange near the web be greater than that calculated using the 
curved beam formula. Now consider the outer compression flange. As indicated 
in Fig. 9.6d, the outer flange shortens from CD to C*D*  if the cross section does 
not distort. Because of the distortion (Fig. 9.6c), the tips of the compressive flange 
move radially outward, requiring less compressive contraction. Therefore, the mag
nitude of (foo in the tips of the compression outer flange is less than that calculated by 
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Tips of flanges 
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Figure 9.6 Distortion of cross section of an !-section curved beam. 

the curved beam formula, and the magnitude of CJoo in the portion of the com
pression flange near the web is larger than that calculated by the curved beam 
formula. 

The resulting circumferential stress distribution is indicated in Fig. 9.7. Since 
in developing the curved beam formula we assume that the circumferential stress is 
independent of x (Fig. 9.2), corrections are required if the formula is to be used in 
the design of curved beams having I- or T -cross sections and similar cross sections. 
There are two approaches that can be employed in the design of these curved 
beams. One approach is to prevent the radial distortion of the cross section by 
welding radial stiffeners to the curved beams. If distortion of the cross section is 
prevented, the use of the curved beam formula is appropriate. A second approach, 
suggested by H. Bleich (1933), is discussed below. 
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Figure 9. 7 Stresses in I -section of curved beam. 

Bleich's Correction Factors 
Bleich reasoned that the actual maximum circumferential stresses in the tension and 
compression flanges for the !-section curved beam (Fig. 9.8a) may be calculated by 
the curved beam formula applied to an I -section curved beam with reduced flange 
widths, as indicated in Fig. 9.8b. By Bleich's method, if the same bending moment 
is applied to the two cross sections in Fig. 9.8, the computed maximum circumfer
ential tension and compression stresses for the cross section shown in Fig. 9.8b, with 
no distortion, are equal to the actual maximum circumferential tension and com
pression stresses for the cross section in Fig. 9.8a, with distortion. 

'o 

�--- bb---1'"""' _j_ 
,....--------, 

t-El E�--b--t---:JIIool t 
r; _l_ 

Center of curvature 

(a) (b) 

Figure 9.8 Original and modified !-section for a curved beam. 
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The approximate solution proposed by Bleich gives the results presented in tab
ular form in Table 9.3 . In order to use the table, the ratio b;/rt1 must be calcu
lated, where 

bP = projecting width of flange (see Fig. 9.8a) 
r = radius of curvature to the center of flange 
t1 = thickness of flange 

The reduced width b� of the projecting part of each flange (Fig. 9 .8b) is given by 
the relation 

(9 .22) 

where r:1. is obtained from Table 9.3 for the computed value of the ratio b;/rt1 . The 
reduced width of each flange (Fig. 9 .8b) is given by 

b' = 2b' + t p w (9 .23) 

where tw is the thickness of the web. The curved beam formula [Eq. 9. 1 1 )] when 
applied to an undistorted cross section corrected by Eq. (9 .23) predicts the max
mum circumferential stress in the actual (distorted) cross section. This maximum 
stress occurs at the center of the inner flange. It should be noted that the state of 
stress at this point in the curved beam is not uniaxial. Because of the bending of 
the flanges (Fig. 9.6c), an x component of stress (Jxx (Fig. 9 .2) is developed; the sign 
of (Jxx is opposite to that of (JOO(max) · Bleich obtained an approximate solution for 
(Jxx for the inner flange. It is given by the relation 

(9.24) 

where {J is obtained from Table 9.3 for the computed value of the ratio b;/rt1 , 
and where 0"00 is the magnitude of the circumferential stress at mid thickness of the 
inner flange; the value of 0"00 is calculated based on the corrected cross section. 

Although Bleich's analysis was developed for curved beams with relatively thin 
flanges, the results agree closely with a similar solution obtained by C. G. Anderson 
( 1950) for 1-beams and box beams, in which the analysis was not restricted to 
thin-flanged sections. Similar analyses of tubular curved beams with circular 

TABLE 9.3 
Table for Calculating the Effective Width and Lateral Bending Stress of Curved I- or 
T-Beams 

b;Jrt 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .0 

ex 0.977 0.950 0.9 1 7  0.878 0.838 0.800 0.762 0.726 0.693 f3 0.580 0.836 1 .056 1 .238 1 .382 1 .495 1 .577 1 .636 1 .677 

b;J rt 1.1  1 .2 1 .3 1 .4 1 .5 2.0 3.0 4.0 5.0 

ex 0.663 0.636 0.61 1 0.589 0.569 0.495 0.4 14 0.367 0.334 f3 1 .703 1 .72 1 1 .728 1 .732 1 .732 1 .707 1 .671 1 .680 1 .700 
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and rectangular cross sections have been made by T. von Karman ( 19 1 1) and by 
S. Timoshenko ( 1923). An experimental investigation by D. C. Broughton, M.  E. 
Clark, and H. T. Corten ( 1950) showed that another type of correction is needed if 
the curved beam has extremely thick flanges and thin webs. For such beams each 
flange tends to rotate about a neutral axis of its own in addition to the rotation 
about the neutral axis of the curved beam cross section as a whole. Curved beams 
for which the circumferential stresses are appreciably increased by this action 
probably fail by excessive radial stresses. 

Note: The radial stress can be calculated using either the original or the modified 
cross section. 

EXAMPLE 9.5 
Bleich Correction Factors for T -Section 

A T-section curved beam has the dimensions indicated in Fig. E9. 5a and is sub
jected to pure bending. The curved beam is made of a steel having a yield stress 
Y = 280 MPa. 

� � 20 mm 

I 
E E E 

o E N 0 � � 100 mm�,.1 
E E 

0 
c.o ........ i __ _ __ _ _ _ 

Center of curvatu re 

(a) 

� � 20 m m  

I E E 
0 N E ...... E 

E E 
0 c.o --L-t ---- - -

Center of cu rvature 

(b) 

Figure E9.5 (a) Original section. (b) Modified section. 

(a) Determine the magnitude of the moment that indicates yielding in the curved 
beam if Bleich's correction factors are not used. 

(b) Use Bleich's correction factors to obtain a modified cross section. Determine 
the magnitude of the moment that initiates yielding for the modified cross sec
tion and compare with the result of part (a) 

SOLUTION 

(a) The magnitudes of A, Am , and R for the original cross section are given by 
Eqs. (9 . 12), (9. 1 3), and (9. 14), respectively, as follows : A = 4000 mm2, Am = 

44.99 mm, and R = 100.0 mm. By comparison of the stresses at the locations 
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r = 1 80 mm and r = 60 mm, we find that the maximum magnitude of CJ00 
occurs at the outer radius (r = 1 80 mm). See Eq. (9 . 1 1 ). Thus, 

Mx[4000 - 1 80(44.99)] a; -OO(max) - 4000( 1 80) [ 1 00.0( 44.99) - 4000] 
= 1 - 1 . 14 1  x lo- s  Mxl 

where Mx has the units of N ·mm. Since the state of stress is assumed to be 
uniaxial, the magnitude of Mx to initiate yielding is obtained by setting CJ00 = 
- Y. Thus, 

280 Mx = 1 . 14 1  x 10_ 5 = 24,540,000 N ·mm = 24. 54 kN ·m 

(b) The dimensions of the modified cross section are computed by Bleich's 
method; hence b;/rt1 must be calculated. It is 

b; = 40(40) = 1 . 143 rt1 70(20) 

Linear interpolation in Table 9.3 yields a = 0.65 1  and fJ = 1 .7 1 1 .  Hence, by 
Eqs. (9.22) and (9.23), the modified flange width is b� = abP = 0.65 1 (40) = 
26.04 mm and b' = 2b� + tw = 2(26.04) + 20 = 72. 1 mm (Fig. E9. 5b). For this 
cross section, by means of Eqs. (9. 1 2), (9. 1 3), and (9. 14), we find 

A =  72. 1 (20) + 20( 100) = 3442 mm2 

R = 72. 1 (20)(70) + 20( 100)( 1 30) = 104.9 mm 3442 
80 1 80 Am = 72. 1 ln 60 + 20 In 80 = 36.96 mm 

Now by means of Eq. (9. 1 1 ), we find that the maximum magnitude of CJ00 
occurs at the inner radius of the modified cross section. Thus, with r = 60 mm, 
Eq. (9. 1 1 ) yields 

Mx[3442 - 60(36.96)] _ 5 (JOO(max) = 3442(60) [ 104.9(36.96) - 3442] = 1 .363 X 10  Mx 

The magnitude of Mx that causes yielding can be calculated by means of 
either the maximum shear-stress criterion of failure or the maximum octahe
dral shear-stress criterion of failure. If the maximum shear-stress criterion is 
used, the maximum principal stress must be computed. The minimum prin
cipal stress is CJxx · Hence, by Eqs. (9 . 1 1 ) and (9.24), we find 

_ Mx[3442 - 70(36.96)] _6 CJoo = 3442(70) [ 104.9(36.96) - 3442] = 8. 1 5 X 10  Mx 

CJxx = - fJO"oo = - 1 .7 1 1 (8. 1 5  x 10- 6 Mx) = - 1 . 394 x 10- 5 Mx 
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_ (J max - (J min _ Y _ (JOO(max) - (J xx t max - - - - --'-------'----2 2 2 
Mx = 10, 140,000 N ·mm = 10. 14 kN ·m 

A comparison of the moment Mx as determined in parts (a) and (b) above 
indicates that the computed Mx required to initiate yielding is reduced by 
58 .8% because of the distortion of the cross section. Since the yielding is highly 
localized, its effect is not of concern unless the curved beam is subjected to 
fatigue loading. If the second principal stress (Jxx is neglected, the moment Mx 

is reduced by 16 .5% because of the distortion of the cross section. The distor
tion is reduced if the flange thickness is increased. 

DEFLECTIONS OF CURVED BEAMS 

A convenient method for determining the deflections of a linearly elastic curved 
beam is by the use of Castigliano's theorem (Chapter 5). For example, the deflec
tions of the free end of the curved beam in Fig. 9.2a are given by the relations 

(9.25) 

(9 .26) 

where bp1 is the component of the deflection of the free end of the curved beam in 
the direction of load P1 , ¢ the angle of rotation of the free end of the curved beam 
in the direction of M 0 , and U the total elastic strain energy in the curved beam. 
The total strain energy U [see Eq. (5 . 1 3)] is equal to the integral of the strain energy 
density U0 over the volume of the curved beam [see Eqs. (3 . 33) and (5. 14)] . 

Consider the strain energy density U0 for a curved beam (Fig. 9.2) Because of 
the symmetry of loading relative to the (y, z) plane, (Jxy = (Jxz = 0, and since the 
effect of the transverse normal stress (Jxx (Fig. 9.2b) is ordinarily neglected, the for
mula for the strain energy density U0 reduces to the form 

where the radial normal stress (Jr, the circumferential normal stress (J00 , and the 
shear stress (fro are, relative to the (x, y, z) axes of Fig. 9.2b, (Jrr = (JYY ' (Joo = (Jzz ' and 
(fro = (Jyz .  In addition, the effect of (Jrr is often small for curved beams of practical 
dimensions. Hence, the effect of (Jrr is often discarded from the expression for 
U0 . Then, 

1 2 1 2 Uo = 2E (Joo + 2G (fro 
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The stress components CJ00 and CJ,0 , respectively, contribute to the strain energies 
UN and Us because of the normal traction N and shear V (Fig. 9.2b). In addition, 
CJ00 contributes to the bending strain energy UM, as well as to the strain energy UMN 
because of a coupling effect between the moment M and traction N, as we shall see in 
the derivation below. 

Ordinarily, it is sufficiently accurate to approximate the strain energies Us and 
UN that are due to shear V and traction N, respectively, by the formulas for straight 
beams (see Sec. 5.3). However, the strain energy UM due to bending must be modi
fied. To compute the strain energy due to bending, consider the curved beam 
shown in Fig. 9.2b. Since the strain energy increment dU for a linearly elastic 
material undergoing small displacement is independent of the order in which loads 
are applied, let the shear load V and normal load N be applied first. Next, let 
the moment be increased from zero to Mx . The strain energy increment due to 
bending is 

(9 .27) 

where �(dfJ), the change in dfJ, and OJ = �(dfJ)jdfJ are due to Mx alone. Hence, OJ is 
determined from Eq. (9. 10) with N = 0. Consequently, Eqs. (9 .27) and Eq. (9. 10) 
yield (with N = 0) 

(9.28) 

During the application of Mx , additional work is done by N because the cen
troidal (middle) surface (Fig. 9.2b) is stretched an amount de00 • Let the correspond
ing strain energy increment due to the stretching of the middle surface be denoted 
by dUMN · This strain energy increment d UMN is equal to the work done by N as it 
moves through the distance de00 • Thus, 

(9 .29) 

where de00 and €00 refer to the elongation and strain of the centroidal axis, respec
tively. The strain €00 is given by Eq. (9 .3) with r = R. Thus, Eq. (9.3) (with r = R) 
and Eqs. (9 .29), (9.9), and (9. 10) (with N = 0) yield the strain energy increment dUMN 

due to coupling of the moment Mx and traction N. 

By Eqs. (5 . 1 6), (5.2 1), (9.28), and (9. 30), the total strain energy U for the curved 
beam is obtained in the form 

U = f kV2R 
dfJ 

fN2R 
dfJ 

f AmM; 
dfJ _ JMxN 

dfJ 
2AG + 2AE + 2A(RAm - A)E EA (9 .3 1) 

Equation (9. 3 1 )  is an approximation, since it is based on the assumptions that plane 
sections remain plane and that the effect of the radial stress CJ,, on U is negligible. 
It might be expected that the radial stress increases the strain energy. Hence, 
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TABLE 9.4 
Ratios of Deflections in Rectangular Section Curved Beams as Computed by 
Elasticity Theory and by Approximate Strain-Energy Solution 

Neglecting U MN Including U MN 
Pure Bending Shear Loading Pure Bending Shear Loading 

(:) (6::J (6::J (6::..) (6:: .. ) 
0.65 0.923 1 .563 0.697 1 .21 5  
0.75 0.974 1 .38 1 0.807 1 . 1 23 
1.0 1 .004 1 . 197 0.9 14 1.048 
1 . 5  1 .006 1 .085 0.968 1 .016  
2.0 1 .004 1 .048 0.983 1.008 
3.0 1 .002 1 .021 0.993 1.003 
5.0 1 .000 1 .007 0.997 1.001  

Eq. (9 .3 1)  yields a low estimate of the actual strain energy. However, if  Mx and N 
have the same sign, the coupling UMN' the last term in Eq. (9 .3 1), is negative. Ordi
narily, UMN is small and, in many cases, it is negative. Hence, we recommend that 
UMN ' the coupling strain energy be discarded from Eq. (9 .3 1 )  when it is negative. 
The discarding of UMN from Eq. (9 .3 1) raises the estimate of the actual strain energy 
when UMN is negative, and compensates to some degree for the lower estimate due 
to discarding (Jrr . 

The deflection betast of rectangular cross section curved beams has been given by 
Timoshenko and Goodier ( 1970) for the two types of loading shown in Fig. 9.4. The 
ratio of the deflection bu given by Castigliano's theorem and the deflection betast is 
presented in Table 9.4 for several values of Rjh. The shear coefficient k [see Eqs. 
(5.2 1 )  and (5.23)] was taken to be 1 . 5  for the rectangular section, and Poisson's ratio 
v was assumed to be 0.30. 

Note: The deflection of curved beams is much less influenced by the curvature of 
the curved beam than is the circumferential stress (J00 • If R/h is greater than 2.0, 
the strain energy due to bending can be approximated by that for a straight beam. 
Thus, for l{jh > 2.0, for computing deflections the third and fourth terms on the 
right-hand side of Eq. (9.3 1) may be replaced by 

(9. 32) 

In particular, we note that the deflection of a rectangular cross section curved beam 
with R/h = 2.0 is 7.7% greater when the curved beam is assumed to be straight than 
when it is assumed to be curved. 

Cross Sections in the Form of an I, T, etc. 
As discussed in Sec. 9.4, the cross sections of curved beams in the form of an I, T, 
etc. undergo distortion when loaded. One effect of the distortion is to decrease the 
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stiffness of the curved beam. As a result, deflections calculated on the basis of the 
undistorted cross section are less than the actual deflections. Therefore, the deflec
tion calculations should be based on modified cross sections determined by Bleich's 
correction factors (Table 9.3). The strain energy terms UN and UM for the curved 
beams should also be calculated using the modified cross section. We recommend 
that the strain energy � be calculated with k = 1 .0, and with the cross-sectional 
area A replaced by the area of the web Aw = th, where t is the thickness of the 
web and h the curved beam depth. Also, as a working rule, we recommend that 
the coupling energy UMN be neglected if it is negative, and that it be doubled if 
it is positive. 

EXAMPLE 9.6 
Deformations in a Curved Beam Subjected to 
Pure Bending 

The curved beam in Fig. E9.6 is made of an aluminum alloy (E = 72.0 GPa), has a 
rectangular cross section with a thickness of 60 mm, and is subjected to a pure 
bending moment M = 24.0 kN ·m. 

M f\ p 

( a) ( b) 
Figure E9.6 

(a) Determine the angle change between the two horizontal faces where M is 
applied. 

(b) Determine the relative displacement of the centroids of the horizontal faces 
of the curved beam. 

SOLUTION 

Required values for A, Am , and R for the curved beam are calculated using equa
tions in row (a) of Table 9.2. 

A =  60( 1 50) = 9000 mm2 

250 
Am = 60 In 100 = 54.98 mm 

R = 100 + 75  = 175  mm 
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(a) The angle change between the two faces where M is applied is given by 
Eq. (9.26). As indicated in Fig. E9.6a, the magnitude of Mx at any angle f) is 
Mx = M. Thus, by Eq. (9.26), we obtain 

� au f1t AmMx 
¥' = aM = 

0 A(RAm - A)E ( 1 )  d
fJ 

54.98 (24,000,000)n 
-------------

9000[175 (54.98) - 9000] (72,000) 
= 0.0 1029 rad 

(b) In order to determine the deflection of the curved beam, a load P must be 
applied as indicated in Fig. E9.6b. In this case, Mx = M + PR sin f) and 
au jaP = R sin 8. Then the deflection is given by Eq. (9.25), in which the 
integral is evaluated with P = 0. Thus, the relative displacement is given by 
the relation 

or 

EXAMPLE 9.7 
Deflections in a Press 

au f1t AmMx . ) bp = aP = A(RA - A)E (R stn fJ dfJ 
0 m P = O  

b 
_ 

54.98 (24,000,000) ( 175)(2) _ m P - 9000[ 175 (54.98) - 9000] (72,000) - 1 . 147 m 

A press (Fig. E9.7a) has the cross section shown in Fig. E9.7b. It is subjected to a 
load P = 1 1 .2 kN. The press is made of steel with E = 200 GPa, and v = 0.30. 
Determine the separation of the jaws of the press due to the load. 

SOLUTION 

The press is made up of two straight members and a curved member. We compute 
the strain �nergies due to bending and shear in the straight beams, without modifi
cation of the cross sections. The moment of inertia of the cross section is lx = 
1 8 1 .7 x 103 mm4. We choose the origin of the coordinate axes at load P, with z 
measured from P toward the curved beam. Then the applied shear V and moment 
Mx at a section in the straight beam are 

In the curved beam portion of the press, we employ Bleich's correction factor to 
obtain a modified cross section. With the dimensions in Fig. E9.7b, we find 

b2 1 52 
r� -

35( 10) = 0·643 
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v 
z 

p p 

(a) 

-1 r- 10 mm 
I E E E E 
f5 � 

t�40 mm� E E 
0 
M _j_ _ _  

(b) 

E E 
8 ..... 

--"1 r-- 10 mm 
I E E E E f5 0 

�k-34.7 mm� E E 
0 M t 

(c) 

Figure E9.7 (a) Curved beam. (b) Original section. (c) Modified section. 

A linear interpolation in Table 9.3 yields the result a = 0.822. The modified cross 
section is shown in Fig. E9.7c. Equations (9. 1 2), (9. 1 3), and (9. 14) give 

A =  34.7 ( 10) + 10(40) = 747 mm2 

R = 
34.7 ( 10)(3 5) + 10(40)(60) = 48 4 mm 

747 
° 

80 40 Am = lO in 
40 

+ 34.7 ln 
30 

= 1 6.9 mm 

With 8 defined as indicated in Fig. E9.7a, the applied shear V, normal load N, and 
moment Mx for the curved beam are 

V = P cos fJ 
N = P sin fJ 

Mx = P(lOO + R sin 8) 
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Summing the strain energy terms for the two straight beams and the curved 
beam and taking the derivative with respect to P [Eq. (9.25)] , we compute the 
increase in distance bp between the load points as 

I 100 p I 100 pz2 I1t p cos2 () I1t p sin2 () bp = 2 A G dz + 2 -1- dz + R d() + R d() 0 w 0 E x 0 AwG 0 AE 

+ I1t P(100 + R sin 8)2Am d() o A(RAm - A)E 

The shear modulus is G = E/[2( 1 + v)] = 76,900 MPa. Hence, 

or 

b - 2(1 1 ,200)( 100) 2(1 1 ,200)( 100)3 p - 76,900(500) + 3 (200,000)(1 8 1 ,700) 
1 1 ,200(48.4)n 1 1 ,200(48.4)n 

+ 500(76,900)(2) + 747(200,000)(2) 
16 .9 ( 1 1 ,200) 

[ 
2 2 n J + 747 [ 48.4( 16.9) - 747] (200,000) ( 100) n + (48.4) 2 + 2( 100)(48 .4)(2) 

bp = 0.058 + 0.205 + 0.022 + 0.006 + 0.972 = 1 .263 mm 

STATICALLY INDETEI\MINATE CURVED BEAMS. 
CLOSED RING SUBJECTED TO A 
CONCENTRATED LOAD 

Many loaded curved members, such as closed rings and chain links, are statically 
indeterminate (see Sec. 5 .5 ). For such members, equations of equilibrium are not 
sufficient to determine all the internal resultants (V, N, Mx) at a section of the 
member. The additional relations needed to solve for the loads are obtained using 
Castigliano's theorem with appropriate boundary conditions. Since closed rings 
are commonly used in engineering, we present the computational procedure for 
a closed ring. 

Consider a closed ring subjected to a central load P (Fig. 9.9a). From the condi
tion of symmetry, the deformation of each quadrant of the ring is identical. Hence, 
we need consider only one quadrant. The quadrant (Fig. 9.9b) may be considered 
fixed at section F H with a load P /2 and moment M 0 at section BC. Because of the 
symmetry of the ring, as the ring deforms, section BC remains perpendicular to sec
tion FH. Therefore, by Castigliano's theorem, we have for the rotation of face BC 

au 
¢Be = --

= 0 
8M0 

(9. 33) 
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(a) (b) 

Figure 9.9 Closed ring. 

The applied loads V, N, and Mx at a section forming angle 8 with the face BC are 

p . ll V = 2 Sln u  

Substituting Eqs. (9.3 1 ) and (9.34) into Eq. (9 . 33), we find 

(9 .34) 

O = l1t/2 [M0 - (PR/2)(1 - cos fJ)]Am dfJ _ l1t12 (P/2) cos 8 dfJ (9. 3 5) 
J o  A(RAm - A)E Jo AE 

where UMN has been included. The solution of Eq. (9 .35 )  is 

M _ PR ( 1 _ 2A ) 
0 - 2 RAmn (9 .36) 

If R/h is greater than 2.0, we take the bending energy UM as given by Eq. (9 .32) and 
ignore the coupling energy UMN .  Then, M 0 is given by the relation 

(9.37)  

With M0 known, the loads at every section of the closed ring [Eqs. (9 .34)] are 
known. The stresses and deformations of the closed ring may be calculated by the 
methods of Sec. 9.2 to 9.5 . 
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FULLY PLASTIC LOADS FOR CURVED BEAMS 

In this section we consider curved beams made of elastic-perfectly plastic materials 
with yield point stress Y (Fig. 1 . 5b). For a curved beam made of elastic-perfectly 
plastic material, the fully plastic moment Mp under pure bending is the same as 
that for a straight beam with identical cross section and material. However, because 
of the nonlinear distribution of the circumferential stress lJoo in a curved beam, the 
ratio of the fully plastic moment Mp under pure bending to maximum elastic 
moment My is much greater for a curved beam than for a straight beam with the 
same cross section. 

Most curved beams are subjected to complex loading other than pure bending. 
The stress distribution for a curved beam at the fully plastic load Pp for a typical 
loading condition is indicated in Fig. 9. 10. Since the tension stresses must balance 
the compression stresses and load Pp ,  the part AT of the cross-sectional area A 
that has yielded in tension is larger than the part Ac of area A that has yielded in 
compression. In addition to the unknowns AT and Ac , a third unknown is Pp , the 
load at the fully plastic condition. This follows from the fact that R (the distance 
from the center of curvature 0 to the centroid 0) can be calculated, and D is gen
erally specified rather than Pp .  The three equations necessary to determine the 

B c 

y 

X 

-r-y 0+ _j_ Pp B o ·  I I I ;  
' I 

I r I I 
I I I I 

'� R :I I 
D 

Figure 9. 10 Stress distribution for a fully plastic load on a curved beam. 
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three unknowns AT , Ac , and Pp are obtained from the equations of equilibrium 
and the fact that the sum of AT and Ac must equal the cross-sectional area A, 
that is, 

The equilibrium equations are (Fig. 9 . 10) 

I � = 0 = ATY - AcY - Pp 
l: Mx = 0 = PpD - ATYYT - AcY.Yc 

(9. 3 8) 

(9. 39) 
(9 .40) 

In Eq. (9.40), YT and .Yc locate the centroids of AT and Ac, respectively, as measured 
from the centroid 0 of the cross-sectional area of the curved beam (Fig. 9 . 10). Let 
M be the moment, about the centroid axis x, resulting from the stress distribution 
on section BC (Fig. 9. 1 0). Then, 

(9.4 1 )  

The most convenient method of solving Eqs. (9.38), (9.39), and (9.40) for the mag
nitudes of AT , Ac , and Pp is often a trial-and-error procedure, since YT and .Yc are 
not known until AT and Ac are known (McWhorter et al. ,  197 1 ). 

The moment M [Eq. (9.4 1 )] is generally less than the fully plastic moment Mp 
for pure bending. It is desirable to know the conditions under which M due to 
load Pp can be assumed equal to Mp, since for pure bending AT is equal to Ac , 
and the calculations are greatly simplified. For some common sections, M � Mp , 
when D > h. For example, for D = h, we note that M = 0.94Mp for curved beams 
with rectangular sections and M = 0.96Mp for curved beams with circular sec
tions. However, for curved beams with T-sections, M may be greater than Mp . 
Other exceptions are curved beams with !-sections and box sections, for which D 
should be greater than 2h in order for M to be approximately equal to Mp. 

Fully Plastic vs Maximum Elastic Loads for 
Curved Beams 

A linearly elastic analysis of a load-carrying member is required in order to pre
dict the load-deflection relation for linearly elastic behavior of the member up to 
the load Py that initiates yielding in the member. The fully plastic load is also of 
interest since it is often considered to be the limiting load that can be applied to 
the member before the deformations become excessively large. 

The fully plastic load Pp for a curved beam is often more than twice the maxi
mum elastic load Py . Fracture loads for curved beams that are made of ductile 
metals and subjected to static loading may be four to six times Py . Dimension
less load-deflection experimental data for a uniform rectangular section hook made 
of a structural steel are shown in Fig. 9. 1 1 . The deflection is defined as the change 
in distance ST between points S and T on the hook. The hook does not fracture 
even for loads such that PjPy > 5. A computer program written by J. C. 
McWhorter, H. R. Wetenkamp, and 0. M. Sidebottom ( 1 97 1) gave the predicted 
curve in Fig. 9. 1 1 . The experimental data agree well with predicted results. 

As noted in Fig. 9. 1 1 , the ratio of Pp to Py is 2.44. Furthermore, the load
deflection curve does not level off at the fully plastic load, but continues to rise. 
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Figure 9. 1 1  Dimensionless load-deflection curves for a uniform rectangular section hook 
made of structural steel . 

This behavior may be attributed to strain hardening. Because of the steep stress 
gradient in the hook, the strains in the most strained fibers become so large that 
the material begins to strain harden before yielding can penetrate to sufficient 
depth at section BC in the hook to develop the fully plastic load. 

The usual practice in predicting the deflection of a structure at the fully plastic 
load is to assume that the structure behaves in a linearly elastic manner up to the 
fully plastic load (point Q in Fig. 9. 1 1 ) and multiply the deflection at this point 
by the ratie PpjPy (in this case, 2.44). In this case, with this procedure (Fig. 9. 1 1 ) 
the resulting calculated deflection [approximately calculated as 2.44(2.4) = 5.9] is 
greater than the measured deflection. 

Usually, curved members such as crane hooks and chains are not subjected to 
a sufficient number of repetitions of peak loads during their life for fatigue failure 
to occur. Therefore, the working loads for these members are often obtained by 
application of a factor of safety to the fully plastic loads. It is not uncommon to 
have the working load as great as or greater than the maximum elastic load Py . 

PROBLEMS 
Section 9.2 

9.1 .  The frame shown in Fig. E9. 1 has a rectangular cross section with a thick
ness of 10 mm and depth of 40 mm. The load P is located 1 20 mm from the 
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centroid of section BC. The frame is made of steel having a yield stress of 
Y = 430 MPa. The frame has been designed using a factor of safety of SF = 
1 .75 against initiation of yielding. Determine the maximum allowable mag
nitude of P, if the radius of curvature at section BC is R = 40 mm. 

9.2. Solve Problem 9. 1 for the condition that R = 35 mm. 

Ans. P = 3 . 1 74 kN 

9.3. The curved beam in Fig. P9.3 has a circular cross section 50 mm in dia
meter. The inside diameter of the curved beam is 40 mm. Determine the 
stress at B for P = 20 kN. 

c 

Figure P9.3 

9.4. Let the crane hook in Fig. E9.2 have a trapezoidal cross section as shown 
in row (c) of Table 9.2 with (see Fig. P9.4) a =  45 mm, c = 80 mm, b1 = 
25 mm, and b2 = 10 mm. Determine the maximum load to be carried by 
the hook if the working stress limit is 1 50 MPa. 

Ans. P = 7.34 kN 

1 0-!:-�lm T�_l_ I � �  � �5 mm� � BO mm----j 
Figure P9.4 

9.5. A curved beam is built up by welding together rectangular and elliptical 
cross-section curved beams; the cross section is shown in Fig. P9.5. The 
center of curvature is located 20 mm from B. The curved beam is subjected 
to a positive bending moment Mx . Determine the stresses at points B and 
C in terms of Mx. 
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1 5  mm 
t 1 

Figure P9.5 

9.6. A commercial crane hook has the cross-sectional dimensions shown in 
Fig. P9.6 at the critical section that is subjected to an axial load P = 
100 kN. Determine the circumferential stresses at the inner and outer radii 
for this load. Assume that area A1 is half of an ellipse [see row (j )  in 
Table 9.2] and area A3 is enclosed by a circular arc. 

Ans. (JooB = 1 1 3 . 5  MPa, (Jooc = - 43.6 MPa 

1 3.0 mm 
I 
I 
I 

I I I 

65.0 mm----1 
I 

63 .0 mm A3 1 

D: 
I 
I illO mm 

Figure P9.6 

9.7. A crane hook has the cross-sectional dimensions shown in Fig. P9.7 at the 
critical section that is subjected to an axial load P = 90.0 kN. Determine 

1 3.79 mm 
1 . 59 mm 

Figure P9.7 
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the circumferential stresses at the inner and outer radii for this load. Note 
that A1 and A3 are enclosed by circular arcs. 

9.8. The curved beam in Fig. P9.8 has a triangular cross section with the di
mensions shown. If P = 40 kN, determine the circumferential stresses at B 
and C. 

Ans. (JooB = 297.8 MPa, (Jooc = - 238 . 1  MPa 

45 nim c �t�c 
�90mm�  

p B 

1 20 mm � 

Figure P9.8 

9.9. A curved beam with a rectangular cross section strikes a 90° arc and is 
loaded and supported as shown in Fig. P9.9. The thickness of the beam is 
50 mm. Determine the hoop stress (Joo along line A-A at the inside and out
side radii and at the centroid of the beam. 

Section 9.3 

h--- 500 m m  > \ oe 

Figure P9.9 

500 mm � 

9.10. For the curved beam in Problem 9.5, determine the radial stress in terms of 
the moment Mx if the thickness of the web at the weld is 10 mm. 
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9. 1 1 . In Fig. P9. 1 1  is shown a cast iron frame with a U-shaped cross section. The 
ultimate tensile strength of the case iron is (Ju = 320 MPa. 

Section 9.4 

- - - - - - - - ...... ' \ 
\ P I 

_ _ _ _ _ _ _ _ _  .,., 

Figure P9. 1 1  

I 
I / 

(a) Determine the maximum value of P based on a factor of safety SF = 
4.00 which is based on the ultimate strength. 

(b) Neglecting the effect of stress concentrations at the fillet at the junc
tion of the web and flange, determine the maximum radial stress when 
this load is applied. 

(c) Is the maximum radial stress less than the maximum circumferen
tial stress? 

Ans. (a) P = 1 10. 8 kN, (b) CJ,, = 42.4 MPa (c) Yes 

9.12. A T-section curved beam has the cross section shown in Fig. P9. 1 2. The 
center of curvature lies 40 mm from the flange. If the curved beam is 
sugjected to a positive bending moment Mx = 2. 50 kN ·m, determine the 
stresses at the inner and outer radii. Use Bleich's correction factors. What 
is the maxim urn shear stress in the curved beam? 

Figure P9 . 1 2  
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9.13. Determine the radial stress at the junction of the web and the flange for 
the curved beam in Problem 9. 1 2. Neglect stress concentrations. Use the 
Bleich correction. 

Ans. CJ,, = 1 1 8. 1 MPa 

9. 14. A load P = 12.0 kN is applied to the clamp shown in Fig. P9. 1 4. Deter
mine the circumferential stresses at points B and C, assuming that the 
curved beam formula is valid at that section. 

Figure P9. 14 

I 
1 I IE >I 
73 mm 

9. 15. Determine the radial stress at the junction of the web and inner flange of 
the curved beam portion of the clamp in Problem 9. 14. Neglect stress con
centrations. 

Section 9.5 

Ans. CJ,, = 69.7 MPa 

9.16. The curved beam in Fig. P9. 1 6  is made of a steel (E = 200 GPa) that has 
a yield point stress Y = 420 MPa. Determine the magnitude of the bend
ing moment Mx = My required to initiate yielding in the curved beam, the 
angle change of the free end, and the horizontal and vertical components 
of the deflection of the free end. 

9.17. Determine the deflection of the curved beam in Problem 9.3 at the point 
of load application. The curved beam is made of an aluminum alloy for 
which E = 72.0 GPa and G = 27. 1 GPa. Let k = 1 . 3 .  

Ans. bp = 0. 1629 mm 



Figure P9. 16 

� - 30 mm 

� 60 mm�· 
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9.18. The triangular cross-section curved beam in Problem 9.8 is made of steel 
(E = 200 GPa, G = 77.5 GPa). Determine the separation of the points of 
application of the load. Let k = 1 . 5 . 

9.19. Determine the deflection across the center of curvature of the cast iron 
curved beam in Problem 9. 1 1  for P = 126 kN. E = 102.0 GPa and G = 
42.5 GPa. Let k = 1 .0 with the area in shear equal to the product of the 
web thickness and the depth. 

Ans. bQ = 0.3447 mm 

Section 9.6 

9.20. The ring in Fig. P9.20 has an inside diameter of 100 mm, an outside dia
meter of 1 80 mm, and a circular cross section. The ring is made of a steel 
having a yield stress Y = 520 MPa. Determine the maximum allowable 
magnitude of P if the ring has been designed with a factor of safety SF = 
1 .  7 5 against initiation of yielding. 

p 

Figure P9.20 
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9.21 . If E = 200 GPa and G = 77. 5 GPa for the steel in Problem 9 .20, determine 
the deflection of the ring for a load P = 60 kN. Let k = 1 .3 .  

Ans. bp = 2.088 mm 

9.22. An aluminum alloy ring has a mean diameter of 600 mm and a rectangu
lar cross section with 200 mm thickness and a depth of 300 mm (radial 
direction). The ring is loaded by diametrically opposite radial loads 
P = 4.00 MN. Determine the maximum tensile and compressive circum
ferential stresses in the ring. 

9.23. If E = 72.0 GPa and G = 27. 1 GPa for the aluminum alloy ring in Prob
lem 9.22, determine the separation of the points of application of the loads. 
Let k = 1 . 5 . 

Ans. bp = 8 .742 mm 

9.24. The link in Fig. P9.24 has a circular cross section and is made of a steel 
having a yield point stress of Y = 250 MPa. Determine the magnitude of 
P that will initiate yield in the link. 

Figure P9.24 

Section 9.7 

9.25. Let the curved beam in Fig. 9. 10 have a rectangular cross section with 
depth h and width b. Show that the ratio of the bending moment for fully 
plastic load Pp to the fully plastic moment for pure bending Mp = Ybh2 /4 
is given by the relation 

9.26. Let the curved beam in Problem 9. 1 be made of a steel that has a flat top 
stress-strain diagram at the yield point stress Y = 430 MPa. From the 
answer to Problem 9. 1 ,  the load that initiates yielding is equal to Py = 
SF(P) = 6.05 kN. Since D = 3h, assume M = Mp and calculate Pp . Deter
mine the ratio Ppf Py . 

Ans. Pp = 14.33 kN, PpfPr = 2.37 
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9.27. Let the steel in the curved beam in Example 9 .5 have a flat top at the 
yield point stress Y = 280 MPa. Determine the fully plastic moment for 
the curved beam. Note that the original cross section must be used. The 
distortion of the cross section increases the fully plastic moment for a posi
tive moment. 
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1 0 
BEAMS ON ELASTIC 
FOUNDATIONS 

In certain applications, a beam of relatively small bending stiffness is placed on an 
elastic foundation and loads are applied to the beam. The loads are transferred 
through the beam to the foundation. The beam and foundation must be designed 
to resist the loads without failing. Often, failure occurs in the beam before it occurs 
in the foundation. Accordingly, in this chapter we assume that the foundation has 
sufficient strength to prevent its own failure. Furthermore, we assume that the 
foundation resists the loads transmitted by the beam, in a linearly elastic manner ; 
that is, the pressure developed at any point between the beam and the foundation 
is proportional to the deflection of the beam at that point. This type of foundation 
response is referred to as the Winkler foundation or Winkler model (Hetenyi, 1 946 ; 
Westergaard, 1948). Other types of foundation models are used, for example, the 
Vlasov model (Vlasov and Leont'ev, 1966). However, the Vlasov model is more 
complex than the Winkler model. Therefore, we employ the assumption that the 
foundation responds linearly with beam deflection. This assumption is fairly accu
rate for small deflections. However, if the deflections are large, the resistance of the 
foundation generally does not remain linearly proportional to the beam deflection. 
For large deflections, the stiffness of the foundation is larger than that for small 
deflections and is related in a nonlinear way to the beam deflection. The increased 
stiffness due to the nonlinear response of the foundation tends to reduce the deflec
tions and stresses in the beam compared to those due to a linear foundation res
ponse. Since we consider small displacements, the solution presented in this chapter 
for the beam on an elastic foundation is generally conservative for the range of 
deflections treated. (However, for certain cases in which the load on the beam is 
distributed fairly uniformly, the Winkler model can lead to nonconservative design 
values ; Vallabhan and Das, 1987). Furthermore, since we consider only a linear res
ponse of the foundation, we drop the term linear in our discussion. 

The solution presented in this chapter for beams on elastic foundations can be 
used to obtain a simple approximate solution for beams supported by identical 
elastic springs that are spaced uniformly along the beam. Extensive surveys of 
studies on beams on elastic foundations have been given by Kerr ( 1964), Selvadurai 
( 1 979), and Scott ( 198 1). Vallabhan and Das ( 1 988) and Jones and Xenophontos 
(1 977) have studied the Vlasov model. Design tables based on the Winkler model 
have been developed by Iyengar and Ramu ( 1 979). 
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The response to loads of a beam resting on an elastic foundation is described by a 
single differential equation subject to different boundary conditions for the beam, 
depending on how the beam is supported at its ends. For instance, consider a beam 
of infinite length attached along its length to an elastic foundation (Fig. 10. 1  ). Let 
the origin of coordinate axes (x, y, z) be located at the centroid of the beam cross 
section and let a concentrated lateral load P be applied to the beam at the origin 
of the (x, y, z) axes. The z axis coincides with the axis of the beam, the x axis is 
normal to the figure (directed toward the reader), and the y axis is normal to the 
elastic foundation. The load P causes the beam to deflect, which in turn displaces 
the elastic foundation. As a result, a distributed force is developed between the 
beam and the foundation. Thus, relative to the beam, the stiffness of the founda
tion produces a laterally distributed force q (force per unit length) on the beam 

--,�zr--
Mx( 1D l )Mx + dMx Vy t Vy + �Vy q �z 

(b) Free-body diagram 

(a) Beam load ing 

(c) Deflection, y 

(d) Slope, 0 = dy 
dz 

(e) Bending moment, 

d2 M = - El J z x dz2 

(/) Shear, d3y Vy = - Elx dz3 
Figure 10. 1 

p 

q 

y 

Infinite beam on an elastic foundation and loaded at origin. 
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(Fig. 10. l a). In the solution of the deflection problem, we shall see that in certain 
regions the deflection of the beam may be negative (upwards). Since the beam is 
assumed to be attached to the foundation, the foundation may in certain regions 
exert a tensile force on the beam. 

A free-body diagram of an element �z of the beam is shown in Fig. 10. 1 b, with 
positive sign conventions for the total shear v;, and moment Mx indicated. For the 
indicated sign convention and the condition of small displacements, we obtain the 
differential relations 

dy = (} dz 
d2y Elx dz2 = - Mx 

d3y Elx dz3 = - Yy 
d4y Elx dz4 = - q ( 1  0. 1 )  

where q i s  taken to be positive if i t  pushes up on the beam, that is, q i s  positive if 
it acts in the negative y direction. 

For the linearly elastic foundation, the distributed load q is linearly proportional 
to the deflection y of the beam; thus, 

q = ky ( 10.2) 

where the spring coefficient k may be written in the form 

k = bk0 ( 1 0.3) 

in which b is the beam width and k0 the elastic spring constant for the foundation. 
The dimensions of k0 are forcejlength3• Substitution of Eq. ( 1 0.2) into the fourth 
of Eqs. (1 0. 1) yields the differential equation of the bending axis of the beam on 
an elastic foundation. 

With the notation, 

4/k 
P
=
�m 

the general solution y of Eq. ( 1 0.4) may be expressed as 

( 1 0.4) 

( 10.5 )  

Equation ( 1 0.6) represents the general solution for the response of an infinite beam 
on an elastic foundation subjected to a concentrated lateral load. The magnitudes 



10.2 

10.2 / INFINITE BEAM SUBJECTED TO CONCENTRATED LOAD 407 

p 

y 

Figure 10.2 Semiinfinite beam on elastic foundation and loaded at the end. 

of the constants of integration C1 , C2 , C3 , and C4 are determined by the boundary 
conditions. 

Solutions for the response of a beam supported by an elastic foundation and 
subjected to specific lateral loads can be obtained by the method of superposition, 
by employing the solution for an infinite beam loaded by a concentrated load 
(Fig. 10. 1 ) and for a semiinfinite beam loaded at the end by a concentrated load P 
and moment M 0 as indicated in Fig. 1 0.2. In either of the cases shown in Figs. 10. 1  
and 10.2, the deflection of the beam goes to zero for large positive values of z. Con
sequently, the constants C1 and C2 in Eq. ( 10.6) are zero, and the equation for the 
displacement y of the bending axis of the beam reduces to 

( 10.7) 

Because of symmetry, the displacement of the beam in Fig. 10. 1  for negative values 
of z can be obtained from the solution for positive values of z, that is, y( - z) = y(z) . 
For the case of the semiinfinite beam (Fig. 10.2), z 2 0, so that Eq. ( 10.7) applies 
directly. 

INFINITE BEAM SUBJECTED TO A CONCENTRATED 
LOAD : BOUNDARY CONDITIONS 

Consider a beam of infinite length, resting on an elastic foundation and loaded at 
the origin 0 of coordinate axes (y, z) with concentrated load P (Fig. 10. 1 ) .  To deter
mine the two constants of integration, C3 and C4 in Eq. ( 10.7), we employ the 
conditions (a) that the slope of the beam remains zero u_nder the load because of 
symmetry and (b) that half of the load P must be supported by the elastic foundation 
under the half of the beam specified by positive values of z. The other half of P is 
supported by the elastic foundation where z < 0. Thus, we obtain the relations 

dy - = 0 for z = 0 dz and 2 L" ky dz = P 

The condition of vanishing slope at z = 0 yields, with Eq. ( 10.7), 

( 10.8) 
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Hence, Eq. ( 10.7) becomes 

y = Ce-Pz(sin {Jz + cos {Jz) 

Substituting Eq. ( 10.9) into the second of Eqs . ( 10.8), we obtain 

P{J 
c = 2k 

Consequently, the equation of the deflected axis of the beam is 

( 10.9) 

( 10. 1 0) 

( 10. 1 1 ) 

Equation ( 10. 1 1 ) holds for positive values of z. The deflections for negative values 
of z are obtained by the condition that y( - z) = y(z), that is, by symmetry. Values 
for the slope, moment, and shear are obtained by substitution of Eq. ( 10. 1 1 ) into 
Eqs . (1 0. 1 ) . Thus, we find 

P{J 
Y = 

2k 
Apz ' z ;?:: O ( 10. 1 2) 

Pf32 
(J = - -k-

BfJz ' z ;?:: O ( 10. 1 3) 

p Mx = 4{3 Cpz ' z ;?:: O ( 1  0. 14) 

p Yy = - 2 DfJz ' z ;?:: O ( 10. 1 5 ) 

where 

Apz = e-Pz(sin {Jz + cos {Jz), Bpz = e-Pz sin {Jz 
Cpz = e-Pz(cos {Jz - sin {Jz), Dpz = e- fJz cos {Jz ( 10. 1 6) 

For convenience, values of Apz , Bpz ' Cpz , and Dpz are listed in Table 10. 1  for 
0 � {Jz � 5nj2. 

Values of deflection, slope, bending moment, and shear at any point along the 
beam are given by Eqs. ( 10. 1 2), ( 10. 1 3), ( 10. 14), and ( 10. 1 5), respectively. By using 
the symmetry conditions, y( - z) = y(z), 8( - z) = - O(z), Mx( - z) = Mx(z), and 
Yy( - z) = - Yy(z), these quantities are plotted vs {Jz in Figs . 10. 1 c, d, e, and f. Since 
all of these quantities approach zero as {Jz becomes large, the above solutions may 
be used as approximations for beams of finite length. In particular, in Table 10. 1 ,  
we note that Apz = 0 for {Jz = 3nj4; therefore, the beam has zero deflection at a dis
tance 3n/(4{3) from the load. A beam with a length L = 3n/(2{3) loaded at the center 
has a maximum deflection 5.5% greater (Hetenyi, 1946) and a maximum bending 
moment 1 .9% greater than for a beam with infinite length. Although the error in 
using the solution for a beam of length L = 3n/(2{3) is nonconservative, the error is 
not large; therefore, the infinite beam solution yields reasonable results for beams 
as short as L = 3n/(2{3) when loaded at the center. The infinite beam solution also 
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TABLE 10.1 

flz Ap: Bp: Cp: Dp: 
0 1 0 1 1 
0.00 1 1 .0000 0.0010 0.9980 0.9990 
0.002 1 .0000 0.0020 0.9960 0.9980 
0.003 1 .0000 0.0030 0.9940 0.9970 
0.004 1 .0000 0.0040 0.9920 0.9960 
0.005 1 .0000 0.0050 0.9900 0.9950 
0.006 1 .0000 0.0060 0.9880 0.9940 
0.007 0.9999 0.0070 0.9861 0.9930 
0.008 0.9999 0.0080 0.9841 0.9920 
0.009 0.9999 0.0087 0.9821 0.99 10 
0.0 10 0.9999 0.0099 0.9801 0.9900 
0.01 1 0.9999 0.0109 0.978 1 0.9890 
0.0 12  0.9999 0.01 19 0.9761 0.9880 
0.0 1 3  0.9998 0.0 1 29 0.9742 0.9870 
0.0 14 0.9998 0.01 38  0.9722 0.9860 
0.0 1 5  0.9998 0.0 148 0.9702 0.9850 
0.0 16  0.9997 0.0 1 58 0.9683 0.9840 
0.0 17  0.9997 0.0 1 67 0.9663 0.9830 
0.0 1 8  0.9997 0.0 1 77 0.9643 0.9820 
0.0 19 0.9996 0.0 187  0.9624 0.98 10 
0.02 0.9996 0.0 196 0.9604 0.9800 
0.03 0.9991 0.029 1 0.9409 0.9700 
0.04 0.9984 0.0384 0.9216  0.9600 
0.05 0.9976 0.0476 0.9025 0.9501 
0. 10 0.9906 0.0903 0.8 100 0.9003 
0. 1 5  0.9796 0. 1 283  0.7224 0.85 10 
0.20 0.965 1 0. 1627 0.6398 0.8024 
0.25 0.9472 0. 1927 0.5619 0.7546 
0.30 0.9267 0.2 1 89 0.48 88 0.7078 
0.35 0.9036 0.24 16  0.4204 0.6620 
0.40 0.8784 0.2610 0.3564 0.6174 
0.45 0.8 5 1 5  0.2774 0.2968 0.5742 
0.50 0.823 1 0.2908 0.24 14 0.5323 
0.55 0.7934 0.30 16  0. 1 902 0.49 18 
0.60 0.7628 0.3099 0. 1430 0.4529 
0.65 0.73 1 5  0.3 1 60 0.0996 0.4 1 56 
0.70 0.6997 0.3 199 0.0599 0.3798 
0.75 0.6676 0.3220 0.0237 0.3456 
in 0.6448 0.3224 0 0.3224 

0.80 0.6353 0.3223 -0.0093 0.3 1 3 1  
0.85 0.6032 0.32 12  -0.0391  0.2821 
0.90 0.5712 0.3 1 85 -0.0658 0.2527 
0.95 0.5396 0.3 146 -0.0896 0.2250 
1 .00 0.5083 0.3096 -0. 1 109 0. 1987 

(Continues) 
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TABLE 10.1 (Continued ) 
fJz Ap: Bpz Cp: Dp: 

1 .05 0.4778 0.3036 -0. 1 294 0. 1 742 
1 . 10 0.4476 0.2967 -0. 1458 0. 1 509 
1 . 1 5  0.4183  0.2890 -0. 1 597 0. 1293 
1 .20 0. 3898 0.2807 -0. 1 7 16  0. 1091  
1 .25 0.3623 0.27 19 - 0. 1 8 1 5  0.0904 
1 .30 0. 3355 0.2626 -0. 1 897 0.0729 
1 . 35  0.3098 0.2530 -0. 1 962 0.0568 
1 .40 0.2849 0.2430 -0.201 1 0.04 19 
1 .45 0.261 1 0.2329 -0.2045 0.0283 
1 .50 0.2384 0.2226 -0.2068 0.0158  
1 . 55  0.21 66 0.2122 -0.2078 0.0044 

!n 0.2079 0.2079 -0.2079 0 
1 .60 0. 1960 0.20 1 8  -0.2077 -0.0059 
1 .65 0. 1 763 0. 1 9 1 5  -0.2067 -0.0 1 52 
1 .70 0. 1 576 0. 1 8 1 2  -0.2046 -0.0236 
1 .75 0. 1400 0. 1 720 -0.2020 -0.03 10 
1 .80 0. 1234 0. 1610 -0. 1 985 -0.0376 
1 .85  0. 1078 0. 1 5 12 -0. 1945 -0.0434 
1 .90 0.0932 0. 1415  -0. 1 899 - 0.0484 
1 .95 0.0795 0. 1 322 -0. 1 849 -0.0527 
2.00 0.0667 0. 1230 -0. 1 793 - 0.0563 
2.05 0.0549 0. 1 143 -0. 1 737 -0.0594 
2. 10 0.0438 0. 1057 -0. 1676 -0.0619 
2. 1 5  0.0337 0.0975 -0. 1613  -0.0638 
2.20 0.0244 0.0895 -0. 1 547 -0.0652 
2.25 0.0 1 57 0.0820 -0. 1482 -0.0663 
2.30 0.0080 0.0748 -0. 14 16  -0.0668 
2.35 0.0008 0.0679 -0. 1 349 -0.0671 

in 0 0.0671 -0. 1 342 -0.0671 
2.40 -0.0056 0.061 3  -0. 1282 -0.0669 
2.45 -0.01 14 0.0550 -0. 12 1 5  -0.0665 
2.50 -0.0 166 0.0492 -0. 1 149 -0.0658 
2.55 -0.02 1 3  0.0435 -0. 1083 -0.0648 
2.60 -0.0254 0.0383 -0. 1020 -0.0637 
2.65 -0.0289 0.0334 -0.0956 -0.0623 
2.70 -0.0320 0.0287 -0.0895 -0.0608 
2.75 -0.0347 0.0244 -0.0835  -0.059 1 
2.80 -0.0369 0.0204 -0.0777 -0.0573 
2.85 -0.0388 0.0 167 -0.0721 -0.0554 
2.90 -0.0403 0.0 1 32 -0.0666 -0.0534 
2.95 -0.0415  0.0100 -0.06 14 -0.05 14 
3.00 -0.0422 0.0071 -0.0563 -0.0493 
3 .05 -0.0427 0.0043 -0.05 1 5  -0.0472 
3 . 10 -0.043 1 0.0019  -0.0469 -0.0450 

n -0.0432 .0 -0.0432 -0.0432 
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TABLE 10.1 (Continued ) 
flz Ap: Bpz Cp: Dpz 

3. 1 5  -0.0432 -0.0004 -0.0424 -0.0428 
3.20 -0.043 1 -0.0024 -0.0383 -0.0407 
3.25 - 0.0427 -0.0042 -0.0343 -0.0385 
3.30 -0.0422 -0.0058 -0.0306 -0.0365 
3.35 -0.0417  -0.0073 -0.027 1 -0.0344 
3.40 -0.0408 -0.0085 -0.0238 -0.0323 
3.45 -0.0399 -0.0097 -0.0206 -0.0303 
3.50 -0.0388 -0.0106 -0.0 177 -0.0283 
3.55 -0.0378 -0.0 1 14 -0.0 149 -0.0264 
3.60 -0.0366 -0.012 1  -0.0124 -0.0245 
3.65 -0.0354 -0.0 1 26 -0.0 101  -0.0227 
3 .70 -0.0341 -0.0 1 3 1  -0.0079 -0.0210 
3.75 -0.0327 -0.01 34 -0.0059 -0.0193 
3.80 -0.03 14 -0.0 1 37 -0.0040 -0.0 1 77 
3.85 -0.0300 -0.01 39 -0.0023 -0.0 1 62 
3.90 -0.0286 -0.0140 -0.0008 -0.0147 
in -0.0278 -0.0 140 0 -0.0 139 

3.95 -0.0272 - 0.0 1 39 0.0005 - 0.01 33 
4.00 -0.0258 -0.01 39 0.00 19  -0.01 20 
4.50 -0.01 32 -0.0 108 0.0085 -0.0023 
!n -0.0090 -0.0090 0.0090 0 

5.00 -0.0046 -0.0065 0.0084 0.0019  
in 0 -0.0029 0.0058 0.0029 

5.50 0.0000 -0.0029 0.0058 0.0029 
6.00 0.00 17  -0.0007 0.003 1 0.0024 

2n 0.00 19 0 0.00 19 0.00 19 
6.50 0.0018  0.0003 0.00 12  0.00 1 8  
7.00 0.00 1 3  0.0006 0.000 1 0.0007 
£n 0.0012  0.0006 0 0.0006 

7.50 0.0007 0.0005 -0.0003 0.0002 
�n 0.0004 0.0004 -0.0004 0 

yields reasonable results for much longer beams for any location of the concentrated 
load as long as the distance from the load to either end of the beam is equal to or 
greater than 3rc/(4{J). 

EXAMPLE 10.1 
Diesel Locomotive Wheels on Rail 

A railroad uses steel rails (E == 200 GPa) with a depth of 1 84 mm. The distance 
from the top of the rail to its centroid is 99. 1 mm, and the moment of inertia of 
the rail is 36.9 x 106 mm4. The rail is supported by ties, ballast, and a road bed 
that together are assumed to act as an elastic foundation with spring constant k == 

14.0 N/mm2• 
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(a) Determine the maximum deflection, maximum bending moment, and maxi
mum flexure stress in the rail for a single wheel load of 1 70 kN. 

(b) A particular Diesel locomotive has three wheels per truck equally spaced at 
1 .70 m. Determine the maximum deflection, maximum bending moment, and 
maximum flexure stress in the rail if the load on each wheel is 1 70 kN. 

SOLUTION 

The equations for bending moment and deflection require the value of {J. From 
Eq. ( 1 0. 5 ), we find that 

4/k 4 14 {J = � m- = 4(200 X 103 )(36.9 X 106 ) = 0.000830 mm- 1 

(a) The maximum deflection and maximum bending moment occur under the 
load where Apz = Cpz = 1 .00. Equations ( 10. 1 2) and ( 1 0. 14) give 

- P{J - 170 X 103(0.000830) - 39 Ymax - 2k - 2( 14) - 5.0 mm 

p 1 70 X 103 
Mmax = 4{3 = 4(0.000830) = 5 1 .2 1  kN •m 

_ MmaxC _ 5 1 .2 1  X 106(99. 1 ) _ 1 3  p O"max - IX 
- 36.9 X 106 - 7.5 M a 

(b) The deflection and bending moment at any section of the beam are obtained 
by superposition of the effects of each of the three wheel loads. With superpo
sition, an examination of Figs. 10. 1 c  and e indicates that the maximum deflec
tion and maximum bending moment occur either under the center wheel or 
under one of the end wheels. Let the origin be located under one of the end 
wheels. The distance from the origin to the next wheel is z 1 = 1 .  7 x 103 mm. 
Hence, {Jz 1 = 0.000830( 1 .7 x 103 ) =  1 .41 1 .  The distance from the origin to the 
second wheel is z2 = 2( 1 .7 x 103 ) mm. Hence, {Jz2 = 0.000830(2)( 1 .7 x 103 ) =  
2.822. From Table 10. 1 , we find 

Apz 1 = 0.2797, 
Apz2 = -0.0377, 

Cpz 1 = - 0.201 8 
Cpz2 = - 0.0752 

The deflection and bending moment at the origin (under one of the end 
wheels) are 

P{J 
Yend = 2k (ApzO + Apz 1 + Apz2 ) = 5.039( 1 + 0.2797 - 0.0377) 

= 6.258 mm 

p 
Mend = 4{3 (CpzO + Cpz 1 + Cpz2 ) = 5 1 .20 X 106( 1 - 0.20 1 8 - 0.0752) 

= 37.02 kN·m 
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Now, let the origin be located under the center wheel. The distance between 
the center wheel and either of the end wheels is z1 = 1 .7 x 103 mm. Therefore, 

P{J 
Ycenter = 2k (Apzo + 2Apz 1) = 5 .039 [ 1  + 2(0.2797)] = 7.858 mm 

p 6 Mcenter = 4{3 (Cpzo + 2Cpz 1) = 5 1 .20 X 10  [ 1  - 2(0.201 8)] 

= 30. 54 kN·m 

Thus, we find 

and 

Ycenter = Ymax = 7.858 mm 
Mend = Mmax = 37.02 kN·m 

= MmaxC = 37.02 X 106(99. 1 )  = 99 4 
M

P 
O"max IX 36.9 X 106 • a 

Beam Supported on Equally Spaced Discrete 
Elastic Supports 
Long beams are sometimes supported by elastic springs equally spaced along the 
beam (Fig. 1 0.3a). Although coil springs are shown in Fig. 1 0. 3, each spring sup
port may be due to the resistance of a linearly elastic member or a structure such 
as a tension member, straight beam, or curved beam. It is possible to obtain an 
exact solution for the spring-supported beam of Fig. 1 0.3a by energy methods (see 
Sec. 5. 5, Example 5. 1 5) ;  however, the computational work becomes prohibitive as 
the number of springs becomes large. 

Alternatively, we may proceed as follows : Let each spring in Fig. 10.3a have 
the same constant K. The force R that each spring exerts on the beam is directly 
proportional to the deflection y of the beam at the section where the spring is at
tached. Thus, we write 

R = Ky ( 10. 1 7) 

We assume.Jhat the load R is distributed uniformly over a spacing l ,  a distance l/2 
to the right and to the left of each spring. Thus, we obtain the stepped distributed 
loading shown in Fig. 1 0.3b. If the stepped distributed loading is approximated by 
a smooth average curve (dashed curve in Fig. 10.3b), the approximate distributed 
load is similar to the distributed load q of Fig. 10. 1a. Since the dashed curve in 
Fig. 10.3b intersects each of the steps near its center, we assume that the dashed 
curve does indeed intersect each of the steps directly beneath the spring. Thus, we 
assume that an equivalent spring constant k exists, such that 

k = K 
l ( 10. 1 8) 

Hence, substitution of Eq. ( 10. 1 8) into Eq. ( 10.5 )  yields an equivalent fJ for the 
springs . Next, we assume that Eqs. ( 10. 1 2) through ( 10. 1 5) are valid for an infinite 
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Figure 10.3 Infinite beam supported by equally spaced elastic springs. 

beam supported by equally spaced elastic supports and loaded in the center. Ob
viously, the resulting approximate solution becomes more accurate as the spacing 
l between springs becomes small. However, we note that this approximate solution 
becomes greatly in error when the spacing l between springs becomes large. It has 
been found that the error in the solution is not excessive if we require that the 
spacing l between springs satisfies the condition 

( 10. 1 9) 

The magnitude of the error for spacing that satisfies Eq. ( 10. 1 9) is discussed in the 
example problem that follows this section. 

The approximate solution for a beam of infinite length, with equally spaced 
elastic supports, may be used to obtain a reasonable approximate solution for a 
sufficiently long finite-length beam. We note that the load exerted by each elastic 
spring has been assumed to be distributed over a distance l, the distribution being 
uniform over a distance l/2 to the left and right of the spring (Figs. 1 0.3a and 
b). Hence, consider a beam of length L supported by discrete elastic springs 
(Fig. 10.4a). In general, the end springs do not coincide \vith the ends of the beam 
but lie at some distance less than l/2 from the beam ends. Since the distributed 
effect of the end springs is assumed to act over length l, l/2 to the left and right 
of the end springs, we extend the beam of length L to a beam of length L", 
where (Fig. 10.4b) 

L" = ml ( 10.20) 
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Figure 10.4 

and the integer m denotes the number of spring supports. If L" 2 3n/(2{J), the ap
proximate solution for a spring-supported infinite beam yields a reasonably good 
approximation for a spring-supported finite beam of length L. 

EXAMPLE 10.2 
Finite-Length Beam Supported by Seven Springs 

An aluminum alloy 1-beam (depth = 100 mm, lx = 2.45 x 106 mm4, E = 72.0 GPa) 
has a length L = 6.8 m and is supported by seven springs (K = 1 1 0 N jmm) spaced 
at distance l = 1 . 1 0  m center to center along the beam. A load P = 12.0 kN is ap
plied at the center of the beam over one of the springs. Using the approximate so
lution method described in Sec. 10.2, determine the load carried by each spring, 
the deflection of the beam under the load, the maximum bending moment, and 
the maximum bending stress in the beam. The exact solution of this problem has 
been presented in Example 5. 1 5. 

SOLUTION 

The magnitude of the factor {J is estimated by means of Eqs. ( 1 0. 1 8) and ( 1 0.5). 
Thus, we ... find 

K 1 10 2 k = T = 1 . 1  x 103 = 0. 100 Njmm 

4 0. 100 1 fJ = 4(72 x 103 )(2.45 x 106 ) = 0·0006 14 mm-

By Eqs. ( 1 0. 1 9) and ( 1 0.20), we see that 

3 1C 1C 
l = 1 . 10 x 10  < 4{3 = 4(0.0006 14} 

= 1279 mm 

L" = 7( 1 . 10 x W) = 7700 mm > �; = 2(0.��614) = 7675 mm 



416 10 / BEAMS ON ELASTIC FOUNDATIONS 

Hence, the limiting conditions on 1 and L" are satisfied. The maximum deflection 
and maximum bending moment occur under the load where Apz = Cpz = 1 .00. 
Equations ( 1 0. 12) and ( 10. 1 4) give 

- P{J - 12  X 103(0.0006 14) 
- 36 8 Ymax - 2k - 2(0. lO) - . 4 mm 

p 1 2  X 103 6 Mmax = 
4{3 

= 
4(0.0006 14) 

= 4.886 X 10  N ·mm 

Mmaxc = 99 7 MP (Jmax = 
I 

. a 
X 

The deflection Ymax (Yn = Ymax in Fig. E5. 1 5b) occurs at the origin (at the center 
of the beam under the load). The magnitude of {Jz for the first, second, and third 
springs to the right and left of the load are {31 = 0.6754, 2{31 = 1 . 3 508, and 3{31 = 
2.0262, respectively. From Table 10. 1 ,  Apz = 0.7 1 53, A2pz = 0.3094, and A3pz = 
0.0605. The deflections of the springs C, B, and A (see Fig. E5. 1 5b) are given by 
Eq. ( 10. 1 2). 

P{J 
Yc = 

2k 
Apz = 36.84(0.7 1 53) = 26. 35  mm 

P{J 
YB = 

2k 
A2pz = 36.84(0.3094) = 1 1 .40 mm 

P{J 
YA = 

2k 
A3pz = 36.84(0.0605) = 2.23 mm 

The reaction for each spring may be computed by means of Eq. ( 10. 1 7). A compar
ison of the approximate solution presented here with the exact solution of Exam
ple 5. 1 5  is given in Table E10.2. Although the reaction at A is considerably in error, 
the results in Table E10.2 indicate that the approximate maximum deflection is 
5 .50% less than the exact deflection, whereas the approximate maximum bending 
moment is 6 .68% greater than the exact bending moment. These errors in the max
imum deflection and maximum moment are not large when one considers the sim
plicity of the present solution compared to that of Example 5. 1 5. 

TABLE E10.2 

Exact Solution 
Quantity Example 5.15 Approximate Solution 

Reaction A -454 N 245 N 
Reaction B 1216  N 1254 N 
Reaction C 3094 N 2899 N 
Reaction D 4288 N 4052 N 
Mmax 4.580 kN ·m 4.886 kN ·m 
Ymax 38 .98 mm 36.84 mm 
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INFINITE BEAM SUBJECTED TO A DISTRIBUTED 
LOAD SEGMENT 

The solution for the problem of a concentrated load at the center of an infinite 
beam on an infinite elastic foundation can be used to obtain solutions for distrib
uted loads. Only segments of uniformly distributed loads are considered in this 
section. Consider an infinite beam resting on an infinite elastic foundation and 
subjected to a uniformly distributed load w over a segment of length L' (Fig. 10. 5). 
The deflection, slope, bending moment, and shear of the beam can be determined 
with the solution presented in Sec. 10.2. Since the maximum values of these quan
tities generally occur within the segment of length L', we obtain the solution only 
in this segment. 

Consider an infinitesimal length �z of the beam within the segment of length L'. 
In this segment, the beam is subjected to a uniformly distributed load w (Fig. 10. 5). 
Hence, a load �p = w �z acts on the element �z. We treat the load �p = w �z as 
a concentrated load and choose the origin of the coordinate axes under load �P. 
Next, consider any point H at distance z from the load �p = w �z; note that H 
is located at distances a and b from the left and right ends of segment L', respect
ively. The deflection �Ya at H due to the concentrated load �p = w �z is given by 
Eq. ( 10. 1 1 ) with P = �p = w �z. Thus, we have 

w �z{J . �YH = 2k 
e-flz(cos {Jz + sin {Jz) ( 10.2 1) 

The total deflection Ya due to the distributed load over the entire length L' is ob
tained by superposition. It is the algebraic sum of increments given by Eq. ( 10.2 1). 
Hence, by the integration process, we obtain fa w{J . 

Ya = L �Ya = - e-flz(cos {Jz + stn {Jz) dz 
lim l\z�o o 2k 

+ - e-flz(cos {Jz + stn {Jz) dz fb w{J . 
0 2k 

= �(2 - e-Pa cos {Ja - e-flb cos {Jb) 2k 

y 

( 10.22) 

Figure 10.5 Uniformly distributed load segment on an infinite beam resting on an elastic 
foundation. 
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Values of slope, bending moment, and shear at point H may also be obtained by 
superposition. These expressions may be simplified by means of Eqs. ( 10. 1 6) . Thus, 
we obtain the results 

w YH = 2k (2 - Dpa - Dpb) 

w{J 8a = 2k (Apa - Apb) 

( 10.23) 

( 10.24) 

( 10.25) 

( 1 0.26) 

Generally, the maximum values of deflection and bending moment are of 
greatest interest. The maximum deflection occurs at the center of segment L'. The 
maximum bending moment may or may not occur at the center of segment L'. In 
general, the location of the maximum bending moment depends on the magnitude 
of {JL'. 

{JL' < Tr 
For {JL' less than or equal to n, the data for Bpz in Table 10. 1 indicate that the 
maximum bending moment occurs at the center of segment L'. 

{JL' � oo 
As {JL' becomes large, 

e � o, v;, � 0, and 
w 

y � k ( 10.27) 

everywhere, except near the ends of segment L'. The data in Table 10. 1 indicate 
that the maximum bending moment occurs when either {Ja or {Jb is equal to n/4. 

Intermediate Values of {JL' 
For {JL' greater than rc, the location of the maximum bending moment may lie out
side of segment L'. (See Problem 10. 1 8  and Example 10. 3.) However, the maximum 
moment value outside of segment L' for the example problem is only 3.0% greater 
than the maximum bending moment within segment L'. The location of the max
imum bending moment can be obtained by trial and error; however, because of the 
small difference, sufficient accuracy can be obtained by taking the location of the 
maximum moment to be rc/(4{3) from either end of the uniformly distributed load 
within length L'. 
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Uniformly Distributed Load on a Segment of Wood Beam 

A long wood beam (E = 10.0 GPa) has a rectangular cross section with a depth 
of 200 mm and width of 100 mm. It rests on a soil foundation. The spring con
stant for the foundation is k0 = 0.040 Njmm3 . A uniformly distributed load w = 
35.0 Njmm extends over a length L' = 3.61 m of the beam (Fig. E10. 3a). Deter
mine the maximum deflection, maximum flexure stress, and maximum pressure 
between the beam and foundation. Take the origin of coordinates at the center of 
segment L'. 

SOLUTION 

The magnitude of {J is obtained by means of Eqs. ( 10.3) and ( 1 0.5 ). Thus, we find 

k = bk0 = 100(0.040) = 4.00 Njmm2 

I = bh
3 100(200)3 = 66 67 X 106 4 x 12 - 12 · mm 

4/k 4 4 
fJ = 

�m
= 4( 10 x 103) (66.67 x 106) = 0.001 107 mm- 1 

The magnitude of {JL', needed to determine where the maximum bending moment 
occurs, is {JL' = 0.001 107(3 .61 x 103) = 4.00. Since {JL' is greater than rc, the max
imum bending moment does not occur at the center of segment L'. With values of L' �I w 

I I I I I I I I I I H I I 
(a) Beam :�a� 

0 
b I --+1 

----�--�----rE---�-L-,���--��--- Z - I I y 2 I 
! � l ------

---(c=)��SI-op-e-------�� -�--------��
0

�--------,i----------�----
z 

I I � 0 � 
(d) Bending moment !":: I 7: z 

1 My I I I 

.o;;;;;;;;;;-----�� 0 ! 
(e) Shear 

Figure El0.3 
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{Ja and {Jb = 4.00 - {Ja, values of the quantities y, 8, Mx , and v;, may be calculated 
by means of Eqs. ( 10.23), ( 10.24), ( 10.25), and ( 10.26), and the data from Table 10. 1 .  
These quantities are plotted in Figs. E10.3b, c, d, and e, respectively. Values are 
also shown for points in the beam outside the distributed load segment where {Jb = 
{J(a + L') and a is the distance from H to the nearest edge of the distributed load 
(Fig. E10.3a). Equations ( 10.24) and ( 10.26), for Oa and Va , respectively, are valid 
for points away from the distributed load; however, different equations are needed 
for Ya and Ma as indicated in Problem 10. 1 8. 

The maximum deflection occurs at the center of segment L', where {Ja = {Jb = 
2.00. Equation ( 10.23), with Dpa = -0.0563 from Table 10. 1 , gives 

w 35 
Ymax = k(1 - Dpa) = 4(1 + 0.0563) = 9.243 mm 

The maximum pressure between the beam and foundation occurs at the point of 
maximum deflection; thus, we find that the maximum pressure is Pmax = Ymaxko = 
9.243(0.040) = 0.370 MPa. There are four possible locations at which the largest 
bending moment may occur. They are located symmetrically with respect to the 
center of segment L'. Relative maximum bending moments occur at locations 
where Va = 0. From Table 10. 1 , it is found that Va = 0 (Cpa = Cpb ) when {Ja = 0.858 
and {Jb = 3. 142 and also when {Ja = 0.777 and {Jb = 4.777. These conditions lo
cate the position of relative maximum bending moments inside segment L' and 
outside of segment L', respectively. However, the value of the largest bending 
moment is located outside of segment L' and is given by the equation indicated in 
Problem 10. 1 8. Thus, we find (outside of segment L') 

- w  M max = 4{32 (Bpa - Bpb ) 

35 
- 4(0_00 1 107)2 [0.3223 - ( - 0.0086)] = 2.363 kN ·m 

This value is 3% greater than the bending moment calculated by means of 
Eq. ( 10.25) with {Ja = 0.858 and {Jb = 3 . 142. In practice, this difference is not 
especially significant. 

The corresponding flexure stress is 

= MmaxC = 2.363 X 106( 100) = 3 44 M CTmax lx 66.67 X 106 . 5 Pa 

If the maximum bending moment is assumed to occur at rc/(4{3) (see the end of 
Sec. 10.3), {Ja = n/4 and {Jb = 4 - n/4 (inside of segment L'). Substituting these 
values for {Ja and {Jb in Eq. ( 10.25), we find 

w 35 Ma = 4{32 (Bpa + Bpb ) = 4(0.00 1 107)2 [0.3224 + ( - 0.0029)] 

= 2.28 1 kN·m 

which i s  3 .5% less than the largest moment M max computed above. Generally, the 
value Ma for {Ja = n/4 and {Jb = {JL' - n/4 gives a good approximation of Mmax · 
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SEMIINFINITE BEAM SUBJECTED TO LOADS 
AT ITS END 

A semiinfinite beam resting on an infinite linearly elastic foundation is loaded at 
its end by a concentrated load P and positive bending moment M0 (Fig. 10.2). The 
boundary conditions that determine the two constants of integration c3 and c4 in Eq. ( 10.7) are 

( 10.28) 

Substitution of Eq. ( 10.7) into these boundary conditions yields two linear equa
tions in C3 and C4 . Solving these equations for C3 and C4 , we obtain 

Substituting these into Eq. ( 10. 7), we find 

2{Je-{Jz y = k [P cos {Jz - {JM0(cos {Jz - sin {Jz)] 

( 10.29) 

( 10.30) 

Values of slope, bending moment, and shear are obtained by substitution of 
Eq. ( 10. 30) into Eqs. ( 10. 1 ). These equations are simplified with the definitions given 
by Eqs. ( 10. 1 6). Thus, we have 

2P{J 2{32M0 Y = -k- D{Jz - k Cpz ( 10. 3 1 )  

2P{J2 4{33M0 
8 = - -k- Apz + k Dpz 

p 
Mx = - p  Bpz + M0Apz 

Yy = - PCpz - 2Mof3Bpz 

( 10.32) 

( 10. 33) 

( 10.34) 

These results are valid, provided that the beam is attached to the foundation every
where along its length. 

EXAMPLE 10.4 
1-Beam Loaded at Its End 

A steel 1-beam (E = 200 GPa) has a depth of 102 mm, width of 68 mm, moment 
of inertia of lx = 2 .53 x 106 mm4, and length of 4 m. It is attached to a rubber 
foundation for which k0 = 0. 350 Njmm3. A concentrated load P = 30.0 kN is 
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1 0.5 

applied at one end of the beam. Determine the maximum deflection, maximum 
flexure stress in the beam, and the location of each. 

SOLUTION 

The spring coefficient k is equal to the product of the beam width and the elastic 
spring constant k0 for the foundation; that is, k = 68(0.350) = 23 .8 Njmm2. From 
Eq. ( 10.5), we find that 

Since 

= 4� = 4 23·8 = 0.001 852 mm- 1 P -v m 4(2oo,ooo)(2,53o,ooo) 

3n 3n L = 4000 mm > 2{3 = 2(0.001 852) = 2540 mm 

the beam can be considered to be a long beam. Values for deflection y and mo
ment Mx are given by Eqs. ( 10.3 1) and (10.33) . The maximum deflection occurs at 
the end where load P is applied, since Dpz is maximum where {Jz = 0. The maxi
mum moment occurs at z = n/4{3, where Bpz is a maximum. Thus, the maximum 
deflection is 

_ 2P{J _ 2(30,000)(0.001 852) _ 4 67 Ymax - k - 23 .8 -
. mm 

The location of Ymax is at z = 0. The maximum moment is 

= 
_ 0.3224P = 

_ 0.3224(30,000) = _ 22 kN ·m Mmax {J 0.001 852 5' 

and, therefore, the maximum stress is 

= MmaxC = 5,220,000(5 1) = 105 3 M
P 

crmax I 2 530 000 . a 
X ' ' 

The location of crmax is at z = n/4{3 = 424 mm. 

SEMIINFINITE BEAM WITH CONCENTRATED LOAD 
NEAR ITS END 

The solution for a semiinfinite beam resting on an infinite linearly elastic founda
tion with a concentrated load P near its end may be obtained from the solutions 
presented in Sec. 10.2 and 10.4. Consider a beam subjected to load P at distance 
a from its end (Fig. 10.6a). Let the beam be extended to infinity to the left as indi
cated by the dashed line. For the beam so extended, Eqs. ( 10. 14) and ( 10. 1 5) give 
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Figure 10.6 Semiinfinite beam on an elastic foundation loaded near its end. 

magnitudes for Mx(z = -a) = PCpa/(4{1) and Jt;,(z = -a) = PDpa/2 at distance a to the 
left of the origin (Fig. 10.6a). Now let the beam (Fig. 10.6a) be loaded at the left 
end (Fig. 10.6b), by loads Q and M with magnitudes 

PDpa Q = -2-, M = - PCpa 
4{1 ( 10. 35 ) 

Since the origin of the coordinate axes is distance a to the right of the loaded 
end, the deflection and bending moment for this loading are given by Eqs. ( 10. 3 1 ) 
and (10.33), respectively, if the coordinate z is replaced by (a + z). Superposing the 
two loadings for the two beams in Fig. 10.6 cancels the moment and shear at the 
left end. Thus, superposition of the two results yields the solution for a semiinfi
nite beam loaded by a concentrated load P at distance a from the left end. Using 
Eqs. ( 10. 1 2), ( 10.3 1 ), and ( 10. 35), we obtain the deflection y for z 2 - a. Thus, we 
find for y the formula 

( 10.36) 
Similarly, Eqs. ( 10. 14), ( 10.33), and ( 10. 35 ) give the bending moment Mx for z 2 - a 
as follows : 

p Mx = 4{1 [Cpz - 2DpaB{J(a + z) - CpaA{J(a + z)J ( 10.37) 
Since the quantities Apz and Cpz in Eqs. ( 10.36 ) and ( 10.37) are symmetrical in z, 
for negative values of z ( - a  � z � 0), we use the conditions Apz( - z) = Apz (z) and 
Cpz( - z) = Cpz(z ). 

EXAMPLE 10.5 
I-Beam Loaded near One End 

Let the load in Example 10.4 be moved to a location 500 mm from one end of the 
beam. Determine the maximum deflection, maximum flexure stress in the beam, 
and the location of each. 
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10.6 

SOLUTION 

From Example 10.4, k = 23.8 Njmm2 and {J = 0.00 1 852 mm- 1 . The deflection 
y and bending moment Mx are given by Eqs. ( 1 0.36) and ( 10.37). Since {Ja = 
0.00 1 852(500) = 0.9260, Table 10. 1  gives Cpa = - 0.0782 and Dpa = 0.2383. Hence, 

P{J 
Y = 2k [Apz + 2DpaD{J(a + z) + CpaC{J(a + z)J 

= 1 . 1 672 [Apz + 0.4766Dp(a + z) - 0.0782Cp(a + z)J 
p Mx = 4{3 [Cpz - 2DpaB{J(a + z) - CpaA{J(a + z)J 

= 4,050,000[Cpz - 0.4766Bp(a + z) + 0.0782Ap(a + z)J 

By trial and error, it is found that the maximum deflection Ymax occurs at 
424 mm from the end of the beam, where z = - 76 mm [{Jz = 0. 1408 and {J(a + z) = 
n/4 = 0.7854] . From Table 10. 1 ,  Apz = 0.98 1 6, Dp(a + z) = 0. 3224, and Cp(a + z) = 0. 
Thus, 

Ymax = 1 . 1 672 [0.98 1 6  + 0.4766(0.3224) - 0.0782(0)] 
= 1 . 325 1 mm 

By trial and error, it is found that the maximum bending moment M max oc
curs at 500 mm from the end of the beam [{Jz = 0 and {J(a + z) = 0.9260]. From 
Table. 10. 1 , Cpz = 1 .0000, Afl<a + z> = 0.5548, and Bp(a + z> = 0.3 1 65. Hence, 

Mmax = 4,050,000[ 1 .0000 - 0.4766(0.3 1 65) + 0.0782(0.5548)] 
= 3,6 1 5,000 N ·mm 

and, therefore, 

SHORT BEAMS 

(J = MmaxC = 3,6 1 5,000(5 1) = 2 9 M
P 

max I 2 5 30 000 7 . a 
X ' ' 

The solutions that have been presented in the foregoing sections are good approx
imations for a beam supported by an elastic foundation and with a length greater 
than 3rc/(2{J). However, for beams whose lengths are less than 3rc/(2{J), so called 
short beams, special solutions are required. The reader is referred to the book by 
M. Hetenyi ( 1 946) for a solution applicable for short beams. For the special case 
of a concentrated load located at the center of a short beam, the maximum de
flection Ymax and maximum bending moment M max occur under the load; their 



- 1 .0 

-0.8 

-0.6 

-0.4 
Mx -0.2 

P/(4{3) 0.0 

+0.2 

+0.4 

+0.6 

+0.8 

+ 1 .0 

- 1 .0 

0.0 

y + 1 .0 

P{31(2k) +2.0 

+3.0 

+4.0 

- 1 . 2 

- 1 .0 

-0.8  

-0.6 

-0.4 

M x -0.2 

P/(4{3) 0.0 

+0.2 

+0.4 

+0.6 

+0. 8 

+ 1 .0 

- 1 . 0 

0.0 

y + 1 .0 

PW(2k) 
+2.0 

+3.0 

+4.0 

Figure 1 0.7  

0 L 4 

(a) 

/ Load at left end 
(c) 

10.6 / SHORT BEAMS 425 

Load at left end 
(h) 

Load at left end 
(d) 

3L L 4 

Bending moment diagrams and deflection curves for a short beam on elastic 
supports subjected to concentrated load located as shown on each curve. 
The ends of the beams are unrestrained (free). (a) Span = 2/{J. (b) Span = 3/{J. 
(c) Span = 4/fJ. (d) Span = 5/{J. 
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10.7 

magnitudes are given by the following equations : 

P fJ cosh {JL + cos {JL + 2 y max = 2k sinh {JL + sin {JL 
P cosh {JL - cos {JL M max = 4{3 sinh {JL + sin {JL 

(10.38) 

( 10. 39) 

in which L is the length of the beam. Magnitudes of the deflection y and bending 
moment Mx for other locations of the concentrated load are beyond the scope of 
the book. However, solutions have been calculated for several load locations for 
three short beams and one long beam. The results are presented in Fig. 10.7. 
Design tables for finite beams with free ends on a Winkler foundation have 

been given by Iyengar and Ramu ( 1979). The cases of simply supported ends and 
clamped ends may be treated by appropriate superposition techniques. A solution 
for finite beams with elastic end restraints on a Winkler foundation has been given 
by Ting (1982). This solution can be used to simulate a beam on elastic founda
tions with various boundary conditions, including initial settlement of an end of 
the beam. The effect of other structural members connected to a beam on a Winkler 
foundation can also be assessed by using proper values of the elastic end restraints. 
The solution is in a form that can be coded easily into computer language. 

THIN-WALL CIRCULAR CYLINDERS 

The concept of a beam on an elastic foundation may be used to approximate 
the response of thin-wall circular cylinders subjected to loads that are rotation
ally symmetrical (Fig. 10.8). We use cylindrical coordinates r, 8, z for radial, cir
cumferential, and axial directions. The dimensions of a long thin-wall cylinder may 
be represented by the mean radius a and wall thickness h. Let a long thin-wall 
cylinder be subjected to a ring load w having units Njmm, where the length 
dimension is measured in the circumferential direction. We show that the response 

Figure 10.8 Ring load on a thin-wall cylinder. 
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of the cylinder is similar to that of a corresponding beam on an elastic foundation 
subjected to a concentrated load at its center (Sec. 10.2). 

In developing an analogy between a thin-wall circular cylinder and a beam on 
an elastic foundation, we specify the analogous beam and elastic foundation as 
follows : Cut a longitudinal strip from the cylinder of width a �(} (Fig. 10.9b). For 
convenience let the width a �fJ be unity. We consider this strip of length L and 
width a �(} = 1 as a beam. We consider the remainder of the cylinder to act as the 
elastic foundation. The spring constant k for the elastic foundation is obtained by 
imagining the open-ended cylinder to be subjected to an external pressure p2 • This 
pressure p2 produces a uniaxial state of stress for which the only nonzero stress 
component is CJ00 = ap2jh. Hence, by Hooke's law, the circumferential strain is 
E00 = CJ00/E. In turn, by strain-displacement relations, we can express E00 in terms 
of the radial displacement u as follows [see Eqs. (2.85)] : 

2 aCJoo a P2 u = aE00 = - = --E Eh ( 10.40) 

Since u is constant along the length of the cylinder, the magnitude of k is given 
by Eq. ( 10.27) where u replaces y and w = p2(a �fJ) = p2 , since a �fJ = 1 .  Hence, 
we have 

( 10.4 1 )  

Note that the narrow strip (Fig. 10.9b), which represents the beam on an elastic 
foundation, has a different state of stress (and strain) than other beams considered 
in this chapter. The beam in Fig. 10. 1 was assumed to be free to deform in the x 
direction, thus developing anticlastic curvature (Boresi and Chong, 1 987). Each of 
the two sides of the beam in Fig. 10.9b lies in a radial plane of the cylinder; these 
sides are constrained to lie in the same planes after deformation much like a flat 
plate (see Chapter 1 3). Therefore, since the beam cannot deform anticlastically, Elx 
in Eq. ( 1 0.5) must be replaced by D = Eh3 /[ 12 ( 1 - v 2 )] [see Eq. (f) of Example 3. 1 ] .  

I E L '" !/� 
� � 

(b) 
J 

h 

(a) 

Figure 10.9 Thin-wall cylinder. 
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Replacing Elx by D and using Eq. ( 10.4 1 ), we express fJ in the form 

( 10.42) 

With the value of fJ given by Eq. ( 10.42), the solution for any of the loadings con
sidered in Sec. 10.2 through 10.5 is applicable for thin-wall circular cylinders sub
jected to circumferential line loads. They may also be used to obtain estimates of 
the response of a thin-wall cylinder subjected to rotationally symmetric loads that 
vary along the axis of the cylinder. 

Note: The analogous elastic foundation for the strip taken from a thin-wall 
circular cylinder is very stiff compared to the usual elastic foundation. Hence, the 
analogy is applicable even for a cylinder with length less than the radius a. If we 
assume that v = 0. 30, the minimum length L for which the analogy is applicable is 

3n (h L = 2P = 3.67av � 
( L = 0.82a for � = 2

1
0) ( 10.43) 

Generally for thin-wall cylinders, h/a is less than 1/20, and the length L of the cyl
inder influenced by the concentrated ring load is less than 0. 82a. Often, the beam 
analogy can be employed to obtain estimates of the response of noncylindrical cir
cular shell segments (for instance, conical shells) if the change in radius for a given 
length L is small compared to the average radius a in the length L. 

EXAMPLE 10.6 
Stresses in Storage Tank 

A closed end thin-wall cylinder is used as an oil storage tank that rests on one of 
its ends (see Fig. E10.6). The tank has a diameter of 30 m, depth of 10 m, and wall 
thickness of 20 mm. The tank is made of steel for which E = 200 GPa and v = 
0.29. Determine the maximum shear stress in the tank if it is filled with oil having 
a mass density of 900 kgjm3 under the following different conditions : 

(a) Assume that the bottom of the tank does not influence the circumferential 
stress in the cylindrical walls. 

(b) Assume that the radial displacement of the junction between the cylinder and 
bottom remains zero during loading and that the bottom has infinite rota
tional stiffness. 

(c) Assume that the radial displacement of the junction between the cylinder and 
bottom remains zero and that the bottom plate is sufficiently flexible that the 
moment at the junction can be considered to be zero. 

SOLUTION 

(a) Choose cylindrical coordinates r, 8, and z. The pressure in the cylinder in
creases linearly with depth. If the bottom does not exert moments or radial 
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-
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Figure E 10.6 Thin-wall cylinder oil storage tank . 

forces on the cylinder walls, wall AB in Fig. El0.6a deforms into the straight 
line A*B*. The stresses in the cylinder walls at B* are CJrn CJ00 , and CJzz · The 
radial stress CJrr and longitudinal stress CJzz at the bottom are small and are 
neglected compared to the circumferential stress CJ00 • By the solution for thin
wall cylinders, we find 

08o = 
p
h
a 

= 
( 10  X W)(9.807)(9�� X 10-9)( 1 5  X W) 

= 66.20 MPa 

The maximum shear stress is given by Eq. (2.39) 

= 
(Jmax - (Jmin 

= 
CJoo = 33 lO MP 'tmax 2 2 . a 

(b) In part (b) the bottom of the tank is assumed to have infinite stiffness. As 
indicated in Fig. E10.6b, the bottom prevents both a radial displacement and 
a change in slope of the cylinder wall at B. Although the cylinder is not uni
formly loaded, we consider it to be a uniformly loaded long cylinder with a 
ring load w applied at its center. The cylinder center is taken as the junction 
between the cylinder and bottom, and it is cut at this line load. Hence, the 
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bottom of the tank produces a ring load w/2 on the upper half of the long 
cylinder and bending moment to prevent rotation of the cut section. The as
sociated magnitudes of k and fJ are given by Eqs. ( 1 0.4 1) and ( 10.42). Thus, 
we find 

Eh (200 X 103 )(20) 2 k = � = 
( 1 5  x 103 )2 

= 0.0178  Njmm 

4 3 ( 1  - v2 ) 4 3 [ 1 - (0.29)2 ] _ fJ = 
h2a2 = 

(20)2( 1 5  x 103 )2 
= 0.00235 mm 1 

Since the cylinder is subject to internal pressure due to the oil, it is not uni
formly loaded as assumed in the proposed solution. For the analogy to be 
valid, the minimum uniformly loaded length [Eq. ( 10.43)] needs to be 

, L 3n 3n L = 2 = 
4{3 = 

4(0.00235)  
= 1003 mm 

which corresponds to the distance L' in Figs. E10.5a and b. Thus, only 10% 
of the cylinder height needs to be uniformly loaded; the variation of pres
sure over this height is considered small enough to be neglected. The radial 
displacement u of the walls of the cylinder away from end effects is given 
by Eq. ( 10.40) 

(J00a 66.20( 1 5  x 103 ) u = E = 
200 x 103 = 4.965 mm 

Since the radial displacement of the bottom plate of the tank is assumed 
to be zero, the ring load w causes a radial displacement inward of 4.965 mm. 
The magnitude of w is obtained by substituting the known value of u 
(equal to y) into Eq. ( 10. 1 2) for {Jz = 0. Hence, by 

w{J w(0.00235) 
u 

= 
2k 

= 
2(0.0 178) 

= 4"965 mm 
we find 

w = 75.2 1 Njmm 

The maximum bending moment is given by Eq. ( 10. 1 4) for {Jz = 0. Thus, 
we obtain 

and 
M _ � _ 75.2 1 _ . 

max - 4{3 - 4(0.00235) - 8001 N mm 

(J = 
MmaxC 

= 
Mmaih/2) 

= 
8001 (6) 

= 120 O MP zz(max) I h 3 I 12  (20)2 . a 

The radial stress (Jrr is small and is neglected. Since the radial displacement 
of the cylindrical wall at the bottom is the same as for the unloaded cylinder, 
the average value of (Joo through the wall thickness is zero. However, due to 
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bending, the ratio of CJ00 to CJzz is proportional to Poisson's ratio [see Eq. (a) 
of Example 3. 1 ] .  Therefore, 

(JfJfJ(max) = V(Jzz(max) = 0.29( 1 20.0) = 34. 8  MPa 

The maximum shear stress at the junction between the bottom of the tank 
and cylindrical walls of the tank is 

= (Jmax - (Jmin = 
120.0 

= 60 0 MP 'tmax 2 2 . a 

which is 8 1%  greater than for part (a). 
The radial displacement u for the junction between the bottom of the tank 

and cylindrical walls of the tank has been neglected. However, its magnitude 
may be computed by the following relation : 

w( 1 - v)a 75.2 1 (0.7 1 )( 1 5  x 103 ) ubottom = 2Eh = 2(200 X 103) (20) = 0. 100 mm 

This value is only 2% of the displacement of the unrestrained cylinder wall. 

(c) If the bending moment at the junction of the cylindrical walls and tank bot
tom is zero, the thin-wall cylinder can be treated as a beam on an elastic 
foundation loaded at one end. The bottom of the tank is assumed to prevent 
a radial displacement as indicated in Fig. E10.6c. Let w be the ring load pro
duced by the bottom of the tank. The radial displacement u is given by 
Eq. ( 10.3 1) for {Jz = 0. 

= 
2w{J 

= 
2w(0.00235) 

= 4.965 mm u k 0.0 178  

w = 1 8 . 80 Njmm 

The maximum moment occurs at a distance n/( 4{3) = 334 mm from the bot
tom and has a magnitude given by Eq. ( 10. 33) 

= _ w 
= _ 1 8.80(0.3224) 

= _ 2579 N·mm M max {J Bpz 0.00235 
M maxC 2579(6) 

(Jzz(max) = 
J 

= - 202 = 1 - 3 8.69 1 MPa 

This bending stress causes a circumferential stress CJ00 1 , which is part of the 
resultant circumferential stress. 

CJoo 1 = V(Jzz(max) = 0.29( - 38.69) = - 1 1 .22 MPa 

Another part of the circumferential stress CJ002 comes from the fact that the 
maximum bending stress occurs at a location ({Jz = n/4) where the displace
ment is not maximum. The radial displacement given by Eq. ( 10. 3 1) is 

2w{J U = T Dpz = 0. 3224umax 
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PROBLEMS 
Section 10.2 

Since CJoo(max> = 66.20 MPa is the uniform circumferential stress in the 
thin-wall cylinder, when u = 0, the average circumferential stress for u = 
0.3224umax is 

CJoo2 = ( 1  - 0.3224)CJofJ(max) = 0.6776(66.20) = 44. 86 MPa 

The circumferential stress at the point where CJzz(min) occurs is 

and 
CJoo = CJ00 1 + CJ002 = - 1 1 .22 + 44. 86 = 33.64 MPa 

= (Jmax - (Jmin = 
33 .64 - ( - 38.69) 

= 36 1 MP 'tmax 2 2 . 7 a 

which is 9% greater than for part (a). 
If the maximum shear-stress criterion of failure is used, the maximum 

shear stress indicates the severity of the loading conditions. If the bottom 
of the tank is rigid (one limiting condition), the maximum shear stress is 8 1%  
greater than that for unrestrained cylindrical walls. If the bottom does not 
offer any resistance to bending (a second limiting condition), the shear stress 
is 9% greater than that for unrestrained cylindrical walls. The actual condi
tion of loading for most flat bottom tanks would be between the two limiting 
conditions but nearer to the condition of a rigid bottom. Some experimental 
measurements of the stresses, in what is reportedly the world's largest welded 
steel water-storage tank, have been given by James and Raba ( 1 99 1) . 

10.1 .  The ballast and roadbed under railroad rails may vary appreciably from 
location to location. If the magnitude of k is 50% less than the value in 
Example 10. 1 , determine the percentage increase in the maximum deflec
tion and maximum bending moment for the rail for the same wheel load. 

10.2. A steel I-beam (E = 200 GPa) has a depth of 127 mm, width of 76 mm, 
moment of inertia of lx = 5. 12  x 106 mm\ and length of 4 m. It rests on 
a hard rubber foundation. The value of the spring constant for the hard 
rubber is k0 = 0.270 Njmm3• If the beam is subjected to a concentrated 
load, P = 60.0 kN, at the center of the beam, determine the maximum 
deflection and maximum flexure stress at the center of the beam. 

Ans. Ymax = 2. 1 87 mm, (Jmax = 124.4 MPa 

10.3. Solve Problem 10.2 if the steel beam is replaced by an aluminum alloy 
beam for which E = 72.0 GPa. 

10.4. An infinitely long beam rests on an elastic foundation and is loaded by 
two equal forces P spaced at a distant L. The beam has bending stiffness 
EI and the foundation has a spring constant k. 
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(a) Find the distance L such that the deflection y under one of the forces 
is the same as the deflection midway between the two forces. 

(b) For unit values of P, EI, and k, and with the origin midway between 
the two forces, write an expression for the deflection y as a function 
of position z. Evaluate your expression for deflection at z = ± L/2. 

(c) Plot the expression derived in (b) over the domain -4.0 � {Jz � 4.0. 

10.5. A steel train rail (E = 200 GPa) has moment of inertia 
I =  36.9 x 106 mm4 and rests on a subgrade with k = 14.0 Njmm2• Find 
the maximum wheel spacing for the train such that the rail never lifts 
from the subgrade between any two sets of wheels. 

10.6. A heavy machine has a mass of 60,000 kg. Its mass center is equidistant 
from each of four ground supports located at the four corners of a square 
1 .5 m on a side. Before it is moved to its permanent location, temporary 
support must be designed to hold the machine on a level horizontal sur
face on the ground. The surface layer of the ground is silt above a thick 
layer of inorganic clay. By the theory of soil mechanics, it is estimated that 
the spring constant of the soil is k0 = 0.029 N/mm3• The machine is placed 
centrally on two long timber beams (E = 12.4 GPa), 200 mm wide and 
300 mm deep. The beams are parallel to one another, with centers 1 .50 m 
apart. Determine the maximum deflection of the beams, maximum flexure 
stress in the beams, and minimum required length L for the beams. 

Ans. Ymax = 1 3.27 mm, a-max = 14.84 MPa, L > 8. 10 m 

10.7. A 60-kN capacity hoist may be moved along a steel I-beam (E = 
200 GPa). The I-beam has a depth of 1 52 mm and moment of inertia, 
lx = 1 1 .0 x 106 mm4. The beam is hung from a series of vertical steel rods 
(E = 200 GPa) of length 2.50 m, of diameter 1 8.0 mm, and spaced 500 mm 
center to center. 

(a) For capacity load at the center of the beam, located under one of 
the rods, determine the maximum stress in the beam and the rods. 

(b) Does l satisfy Eq. ( 10. 1 9)? 
10.8. Aft�r installation of the I-beam of Problem 10.7, it becomes necessary to 

lower the I -beam 800 mm. This was done by adding 1 8.0-mm diameter 
aluminum alloy bars (E = 72 G Pa) of length 800 mm to the steel bars. 
For a 60-kN load at the center of the beam located under one of the com
posite bars, determine the maximum stress in the beam and the rods. 

Ans. O"max(beam) = 82. 8 MPa O"max(rod) = 73.7 MPa 

10.9. A long wood beam (E = 12 .4 GPa) of depth 200 mm and width 60 mm 
is supported by 100 mm rubber cubes placed equidistant along the beam 
at l = 600 mm. The cube edges are parallel and perpendicular to the axis 
of the beam. The rubber has a spring constant of k0 = 0.330 Njmm3• A 
load P is applied to the center of the beam located over one of the rubber 
cubes. 
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(a) If the wood has a yield stress of Y == 40.0 MPa, determine the mag
nitude of P based on a factor of safety SF == 2. 50. What is the maxi
mum pressure developed between the rubber and beam? 

(b) Does l satisfy Eq. ( 10. 1 9)? 
10.10. A long 50-mm diameter steel bar (E == 200 G Pa and Y == 300 MPa) is sup

ported by a number of pairs of 2-mm diameter high-strength steel wires 
(E == 200 GPa and Y == 1200 MPa). An end view of the beam and wires is 
shown in Fig. P 10. 10. The pairs of wires are equally spaced at l == 900 mm. 
A load P is applied to the center of the long beam at the same location 
as one pair of wires . 

p 
Figure P 10. 10  

(a) Determine the magnitude of P if both the beam and wires are de
signed with factor of safety SF == 2.00. 

(b) Does l satisfy Eq. ( 10. 1 9)? 

Ans. (a) P == 5.428 kN, (b) Yes 

10.11 .  A long 40-mm diameter steel beam (E == 200 GPa) is supported by a 
number of semicircular curved beams. (See end view in Fig. P10. 1 1 .) The 

� R 
p 

Figure PlO. l l 
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curved beams are spaced along the beam with spacing l = 550 mm. Each 
curved beam is made of steel, has a circular cross section of diameter 
30 mm, and a radius of curvature R = 300 mm. A load P = 3.00 kN is ap
plied to the center of the long beam located at one of the curved beams. 
Determine the maximum stress in the long beam and curved beams. 

10.12. The beams in Fig. P10. 1 2 are steel 1-beams (203 mm deep, Ix = 

24.0 x 106 mm\ E = 200 GPa). If a load P = 90.0 kN is applied to 
the center of the long beam located over one of the cross beams, deter
mine the maximum flexure stess in the long beam and cross beams. 

Ans. O"max(long) = 102.6 MPa, O"max(cross) = 79.4 MPa 

Figure P10. 1 2  

I :::: 600 mm 

� � 

E 
0 M P 

10.13. Let the curved beams in Problem 10. 1 1 be made of an aluminum alloy 
(E = 72.0 GPa). Determine the maximum stress in the long beam and 
curved beams. 

10.14. Let the long beam in Problem 10. 1 2 be made of an aluminum alloy (E = 
72.0 GPa). Determine the maximum flexure stress in the long beam and 
cross beams. 

Ans. O"max(cross) = 79.4 MPa, O"max(long) = 102.6 MPa 

10.15. For the beam on a linearly elastic foundation shown in Fig. 10. 1 , replace 
the concentrated load P by a concentrated (counterclockwise) moment M0 
at point 0. The beam has bending stiffness EI and the foundation has a 
spring constant k (force/ area). Derive analytical expressions for the de
flected shape y(z), rotation O(z), internal moment M(z), and internal shear 
V(z). Sketch each of the four expressions as is done in Fig. 10. 1 .  

Section 10.3 

10.16. Let the load of 60.0 kN in Problem 10.2 be uniformly distributed over a 
length of 1 .00 m. Determine the maximum deflection and maximum 
flexure stress in the beam. 
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10.17. The long wood beam in Problem 10.9 is subjected to a distributed load 
w over length L' = 3 .00 m. Determine the magnitude of w based on a fac
tor of safety SF = 2.00. 

Ans. w = 123 .2 kN/m 

10.18. Show that, for point H located outside segment L' (Fig. E10.3), the 
following equations are valid : Ya = w(Dpa - Dpb)/2k and Ma = 
- w(Bpa - Bpb)/(4{32 ) .  

Section 10 .4 

10.19. Let load P be moved to one end of the beam in Problem 10.2. Determine 
the maximum deflection and maximum flexure stress in the beam and give 
the location of the maximum flexure stress. 

10.20. Let the hoist in Problem 10.7 be moved to one end of the beam. Each rod 
supporting the 1-beam is a spring exerting an influence over length l. If the 
end of the beam is l/2 = 250 mm from the nearest tension rod, determine 
the maximum stress in the rods and beam. 

Ans. O"max(rod) = 1 49 . 3  MPa, O"max(beam) = 60.7 MPa 

10.21 .  A long rectangular section brass beam (E = 82.7 GPa) has a depth of 
20 mm, and a width of 1 5  mm and rests on a hard rubber foundation 
(Fig. P10.2 1 ). The value of the spring constant for the hard rubber founda
tion is 0.200 Njmm3• If the beam is subjected to a concentrated load P = 
700 N at the location shown, determine the maximum deflection of the 
beam and maximum flexure stress in the beam. 

p � = 1 00 mm 

W///////////////////////////////////////////////////////////4 

Figure P10.2 1 

10.22. Solve Problem 10.2 1 for b =  200 mm. 

Ans. a-max = 140 MPa, Ymax = 0.833 mm at z = 1 59 mm 

10.23. A steel I-beam (depth = 102 mm, lx = 2. 53 x 106 mm4, E =· 200 GPa) is 
long and supported by many springs (K = 100 Njmm) spaced at distance 
l = 500 mm center to center along the beam. A load P = 3 .50 kN is ap
plied to the left end of the beam at a distance of 2.00 m from the first 
spring. Determine the maximum flexure stress in the beam and maximum 
tension load and maximum compression load in the springs. Hint : M 0 = 
- P(2000 - l/2). 



PROBLEMS 437 

10.24. Solve Problem 10.23 for the case where the steel beam is replaced by an 
aluminum alloy beam for which E = 72.0 GPa. 

Section 10.5 

Ans. o-max = 1 4 1 . 1 MPa, compression = 4.23 kN ( 1 st spring), 
tension = 720 N (6th spring) 

10.25. Let the load P = 60.0 kN in Problem 10.2 be moved to one of the quarter 
points in the beam. Determine the maximum deflection and maximum 
flexure stress in the beam and locations for each. 

10.26. Let the load P = 60.0 kN in Problem 10.2 be moved to a location 500 mm 
from one end of the beam. Determine the maximum deflection and max
imum flexure stress in the beam and locations for each. 

Ans. Ymax = 3 .036 mm at free end, O"max = 94.5 MPa under load 

10.27. Let the hoist in Problem 10.7 with a capacity load of 60 kN be located 
under the second rod from one end. Since each spring is assumed to exert 
an influence over a length l = 500 mm, the load acts at distance a = 7 50 mm 
from the end of the beam. Determine the maxim urn deflection of the beam, 
maximum flexure stress in the beam, maximum stress in the rods, and loca
tions for each. 

10.28. Let the hoist in Problem 10.7 with a capacity load of 60 kN be located 
under the first rod from one end. Since each spring is assumed to exert an 
influence over a length l = 500 mm, the load acts at distance a = 250 mm 
from the end of the beam. Determine the maximum deflection of the beam, 
maximum flexure stress in the beam, maximum stress in the rods, and loca
tions for each. 

Ans. Ymax = 2.80 mm at free end; o-max(beam> = 39.2 MPa at 880 mm from 
free end; o-max(rod) = 1 72.7 MPa under load 

10.29. A four-wheel car runs on steel rails (E = 200 GPa). The rails have a depth 
of 120 mm. The distance from the top of a rail to its centroid is 69 mm, 
anct its moment of inertia is 17.07 x 106 mm4. The rail rests on an elastic 
foundation with spring constant k = 12.0 Njmm2• The two wheels on each 
side of the car are spaced 2.50 m center to center. If each wheel load is 
80.0 kN, determine the maximum deflection and maximum flexure stress 
when a car wheel is located at one end of the rail and the other car wheel 
on the same rail is 2.50 m from the end. 

Section 10.6 

10.30. A steel 1-beam (E = 200 GPa) has a length of L = 3 .00 m, depth of 305 mm, 
flange width of 129 mm, and moment of inertia lx = 95.3 x 106 mm4. The 
beam rests on a hard rubber elastic foundation whose spring constant is 
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k0 = 0.300 N /mm3• If the beam is subjected to a concentrated load P = 
270 kN at its center, determine the maximum deflection and maximum 
flexure stress in the beam. 

10.31 .  The magnitude of {3L for the beam in Problem 10.30 is 2 .532 .  Determine 
the maximum deflection and maximum flexure stress in the beam if the 
load is moved to one end of the beam. Use linear interpolation with the 
curves in Fig. 10.7 . 

Section 10.7 

Ans. Ymax = 12 .37 mm, a-max = 147.2 MPa 

10.32. A steel (E = 200 GPa and v = 0.29) thin-wall cylinder has an inside dia
meter of 40 mm and a wall thickness of 1 mm. The cylinder may be con
sidered fixed where it enters the stiffened end of a pressure vessel. The 
residual stress of installation may be considered negligible. Determine 
the bending stresses resulting from an internal pressure of 3 MPa. 

10.33. A thin-wall cylinder is made of an aluminum alloy (E = 72.0 MPa and 
v = 0.33), has an outside diameter of 1 m, and a wall thickness of 5 mm. 
A split ring with square cross section 20 mm on a side is tightened on the 
cylinder until the stress in the split ring is 100 MPa. Assume that the split 
ring applies two line loads separated by the 20-mm dimension of the ring. 
Determine the principal stresses at the inner radius of the cylinder below 
the centerline of the split ring. 

Ans. O"zz = 103 .0 MPa, o-00 = - 62. 1 MPa 

10.34. Let the split ring in Problem 10.33 be rounded on the inside surface so as 
to apply a line load at the center of the ring. Determine the maximum prin
cipal stresses at the inner radius of the cylinder. 

10.35. A closed-end steel cylinder (E = 200 GPa and v = 0.29) has an inside ra
dius a = 2.00 m, wall thickness h = 10 mm, and hemispherical ends. Since 
the state of stress is different for cylinder and hemisphere, their radial dis
placements will be different. Show that the length L/2 [see Eq. ( 10.43)] 
is small compared to a so that the short length of the hemisphere can 
be considered another cylinder. Determine the shear force w in terms of 
internal pressure p1 at the junction of the cylinder and hemisphere (as
sumed to be another cylinder). Note that the bending moment at the 
junction is zero because of symmetry. Determine the maximum bending 
stress o-zz(bending) in the cylinder, axial stress O"zz ' and circumferential 
stress o-00 at the outside of the cylinder at the location where the maxi
mum bending stress occurs, and the ratio of the maximum shear stress at 
that location to the maximum shear stress in the cylinder at a distance 
far from the junction. 

Ans. W = 1 3 .73p1 ; O"zz(bending) = 29. 1 7p 1 ; O"zz = 1 29.2p1 ; 
o-00 = 174.6p1 ; ratio = 0.874 
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1 1 . 1 

THE THICK-WALL 
CYLINDER 

BASIC RELATIONS 

In this section, we derive basic relations for the axisymmetric deformation of a 
thick-wall cylinder. Thick-wall cylinders are used widely in industry as pressure 
vessels, pipes, gun tubes, etc. In many applications the cylinder wall thickness is 
constant, and the cylinder is subjected to a uniform internal pressure p 1 , a uniform 
external pressure p2 , an axial load P, and a temperature change �T (measured from 
an initial uniform reference temperature ; see Sec. 3 .4) (Fig. 1 1 . 1 ). Often, the temper
ature change �T is a function of the radial coordinate r only (Fig. 1 1 . 1  ). Under 
such conditions, the deformations of the cylinder are symmetrical with respect to 
the axis of the cylinder (axisymmetric). Furthermore, the deformations at a cross 
section sufficiently far removed from the junction of the cylinder and its end caps 
(Fig. 1 1 . 1 ) are practically independent of the axial coordinate z. In particular, if the 
cylinder is open (no end caps) and unconstrained, it undergoes axisymmetric defor
mations due to pressures p1 and p2 and temperature change �T = �T(r), which are 
independent of z. If the cylinder's deformation is constrained by supports or end 
caps, then in the vicinity of the supports or junction between the cylinder and end 
caps, the deformation and stresses will depend on the axial coordinate z. For 
example, consider a pressure tank formed by welding together hemispherical caps 
and a cylinder (Fig. 1 1 .2). Under the action of an internal pressure p 1 , the tank 
deforms as indicated by the dotted inside boundary and the long dashed outside 
boundary (the deformations are exaggerated in Fig. 1 1 .2). If the cylinder were not 
constrained by the end caps, it would be able to undergo a larger radial displace
ment. However, at the junctions between the hemispherical caps and cylinder, the 
cylinder displacement is constrained by the stiff hemispherical caps. Consequently, 
the radial displacement (hence, the strains and stresses) at cylinder cross sections 
near the end cap junctions differs from those at sections far removed from the end 
cap junctions. In this section, we consider the displacement, strains, and stresses 
at locations far removed from the end caps. The determination of deformations, 
strains, and stresses near the junction of the thick-wall end caps and the thick-wall 
cylinder lies outside the scope of our treatment. This problem often is treated by 
experimental methods, since its analytical solution depends on a general three
dimensional study in the theory of elasticity (or plasticity). For thin-wall cylinders, 
the stress near the end cap junctions may be estimated by the procedure outlined 
in Sec. 10.7 (see Problem 10.35 ). 



y 

, 

(a) 

(b) 

1 1 . 1  / BASIC RELATIONS 441 
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Figure 1 1 . 1  Closed cylinder with internal pressure, external pressure and axial loads. 
(a) Closed cylinder. (b) Section e - e. 
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Figure 1 1 .2 Closed cylinder with hemispherical ends. 



442 1 1  / THE THICK-WALL CYLINDER 

Consequently, the solution presented in this chapter for thick-wall cylinders is 
applicable to locations sufficiently far from the end cap junctions where the effects 
of the constraints imposed by the end caps are negligible. The solution is also appli
cable to thick-wall cylinders that do not have end caps, so-called open cylinders . 
Since only axially symmetrical loads and constraints are admitted, the solution is 
axisymmetrical, that is, a function only of radial coordinate r. 

We use cylindrical coordinates r, 8, z for radial, circumferential, and axial direc
tions (Fig. 1 1 . 1 ). Let the cylinder be loaded as shown in Fig. 1 1 . 1 . For analysis 
purposes, we remove a thin annulus of thickness dz from the cylinder (far removed 
from the end junctions) by passing two planes perpendicular to the z axis, a distan�e 
dz apart (Fig. 1 1 .3a). The cylindrical volume element dr(r dO) dz shown in Fig. 1 1 .3b 
is removed from the annulus. Because of radial symmetry, no shear stresses act on 
the volume element and normal stresses are functions of r only. The nonzero stress 
components are principal stresses CJrn CJ00 , and CJzz . The distributions of these stresses 
through the wall thickness are determined by the equations of equilibrium, compa
tibility relations, stress-strain-temperature relations, and material response data. 

Equation of Equilibrium 
We neglect body force components. Hence, the equations of equilibrium for cylin
drical coordinates [Eqs. (2. 50)] reduce to the single equation 

or ( 1 1 . 1 ) 

- x  

(a) (b) 

Figure 1 1 .3 Stresses in thick-wall cylinder. (a) Thin annulus of thickness dz. (The z axis is 
perpendicular to the plane of the figure.) (b) Cylindrical volume element of 
thickness dz. 
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The strain-displacement relations for the thick-walled cylinder [Eqs. (2.85 )] yield 
the three relations for extensional strains (since v = 0) 

u 
Eoo = - , 

r 
aw Ezz = 
OZ 

( 1 1 .2) 

where u = u(r, z), w = w(r, z) denote displacement components in the r and z direc
tions, respectively. At sections far removed from the ends, the dependency on z in 
u and w is considered to be small. Hence, at sections far from the ends, the shear 
strain components are zero because of radial symmetry ; furthermore, we assume 
that Ezz is constant. Eliminating the displacement u = u(r) from the first two of 
Eqs. ( 1 1 .2), we obtain 

dEoo rdr = Err - Eoo , or ( 1 1 .3) 

Equation ( 1 1 .3) is the strain compatibility condition for the thick-wall cylinder. 

Stress-Strain-Temperature Relations 
The material of the cylinder is taken to be isotropic and linearly elastic. Since, the 
stress-strain-temperature relations are [see Eqs. (3 .3 8)] 

( 1 1 .4) 

where E, v, and a denote the modulus of elasticity, Poisson's ratio, and the coeffi
cient of linear thermal expansion, respectively. The term �T in Eq. ( 1 1 .4) represents 
the change .. in temperature measured from a uniform reference temperature (con
stant throughout the cylinder initially) ; see Boresi and Chong ( 1987). 

Material Response Data 
For a cylinder made of isotropic linearly elastic material, the material response 
data are represented by the results of tests required to determine the elastic con
stants (modulus of elasticity E and Poisson's ratio v) and the coefficient of linear 
thermal expansion a. In order to determine the maximum elastic loads for the 
cylinder, the material data must include either the yield stress Y obtained from a 
tension test, or the shear yield stress ty obtained from a torsion test of a hollow 
thin-wall tube. If the material response indicates that the material has a yield point 
(Fig. 1 . 5b), the value of either the yield point stress Y or shear yield point stress ty 
is needed to calculate the fully plastic pressure for the cylinder. 
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1 1 .2 

STRESS COMPONENTS FOR A CYLINDER WITH 
CLOSED ENDS 

In this section, we obtain expressions for the stress components CJrn CJfuh CJzz , for a 
cylinder with closed ends ; the cylinder is subjected to internal pressure p1 , external 
pressure p2 , axial load P, and temperature change �T (Fig. 1 1 . 1  ) . 

We may express Eq. ( 1 1 . 3) in terms of CJrn CJfuh CJzz and their derivatives with res
pect to r, by substitution of the first two of Eqs. ( 1 1 .4) into Eq. ( 1 1 . 3). Since 
Ezz = constant, the last of Eqs. ( 1 1 .4) may be used to express the derivative dCJzzfdr 
in terms of the derivatives of CJrr ' CJ00 , and �T with respect to r. By means of this 
expression, we may eliminate dCJzzfdr from Eq. ( 1 1 . 3) to rewrite Eq. ( 1 1 . 3) in terms 
of CJrn CJ00 , and derivatives of CJrr ' CJ00 , and �T. Since the undifferentiated terms in 
CJrr and CJ00 occur in the form CJrr - CJ00 , Eq. ( 1 1 . 1 ) may be used to eliminate CJrr - CJ00 • 
Hence, we obtain the differential expression 

d ( aE �T) 
dr (Jrr + CJoo + 1 _ v = 0 ( 1 1 . 5 )  

Incorporated in Eq. ( 1 1 . 5 )  is the equation of equilibrium, Eq. ( 1 1 . 1 ), the strain 
compatibility equation, Eq. ( 1 1 .3), and the stress-strain-temperature relations, 
Eqs. ( 1 1 .4). 

Integration of Eq. ( 1 1 .5 )  yields the result 

aE �T (Jrr + CJoo + 1 = 2C1 - v  ( 1 1 .6) 

where 2C1 is a constant of integration (the factor 2 is included for simplicity of 
form in subsequent expressions). Elimination of the stress component CJoo between 
Eqs. ( 1 1 . 1 ) and ( 1 1 .6) yields the following different expression for (Jrr : 

d 2 aE �Tr -d (r (Jrr) = - 1 + 2C1r r - v  

Integration of Eq. ( 1 1 .7) yields the result 

aE fr ( a2) C2 (Jrr = - r2( 1  _ v) a 
�Tr dr + 1 - � C1 + r 2 

( 1 1 . 7) 

( 1 1 . 8) 

where the integration is carried out from the inner radius a of the cylinder 
(Fig. 1 1 . 1 ) to the radius r, and C2 is a second constant of integration. Substitution 
of Eq. ( 1 1 . 8) into Eq. ( 1 1 .6) yields the result 

( 1 1 .9) 

By Eqs. ( 1 1 .8) and ( 1 1 .9), we obtain 

( 1 1 . 10) 
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Equation ( 1 1 . 10) serves as a check on the computations [see Eq. ( 1 1 .6 )] . The con
stants of integration cl and c2 are obtained from the boundary conditions o-rr = 

- p1 at r = a and o-rr = - p2 at r = b (Fig. 1 1 . 1 ). Substituting these boundary con
ditions into Eq. ( 1 1 . 8), we find 

Hence, Eq. ( 1 1 . 10) may be written as 

To obtain o-zz , we integrate each term of the last of Eqs. ( 1 1 .4) over the cross
sectional area of the cylinder. Thus, we have 

fb 1 fb 2v fb a: + o- fb Ezz2nr dr = E O"zz2nr dr - -
00 

2 
rr 2nr dr + (J. �T2nr dr 

a a E a a 
( 1 1 . 1 3) 

For sections far removed from the end section, Ezz is a constant, and the integral of 
o-zz over the cross-sectional area is equal to the applied loads. Hence, because of 
pressures p1 , p2 , and axial load P applied to an end plate (Fig. 1 1 .4), overall equili
brium in the axial direction requires 

( 1 1 . 14) 

If there is no axial load P applied to the closed ends, P = 0. 
Since the temperature change �T does not appear in Eq. ( 1 1 . 14), the effects of 

temperature are self-equilibrating. With Eqs. ( 1 1 . 1 2), ( 1 1 . 1 3), and ( 1 1 . 14), the 

Figure 1 1 .4 
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expression for Ezz at a section far removed from the ends can be written in the form 

Substitution of Eq. ( 1 1 . 1 5 ) into the last of Eqs. ( 1 1 .4), with Eq. ( 1 1 . 12), yields 
the following expression for (J zz for a section far removed from the closed ends of 
the cylinder: 

p1a2 - p2b2 P aE�T 2aE lb (Jzz(ctosed end) = b2 _ a2 + n(b2 _ a2 ) - 1 _ v + ( 1  _ v)(b 2 _ a2 ) J a �Tr dr 

( 1 1 . 1 6) 

Open Cylinder 
If a cylinder has open ends and there is no axial load applied on its ends, overall 
equilibrium of an axial portion of the cylinder (Fig. 1 1 . 5 )  requires that 

r 2nrazz dz = 0 ( 1 1 . 1 7) 

Then by Eqs. ( 1 1 . 12), ( 1 1 . 1 3), and ( 1 1 . 17 ), the expression for Ezz may be written in 
the form [also by Eqs. ( 1 1 . 14, 1 1 . 1 5, and 1 1 . 1 7)] 

y 
Section at appreciable 

p2 distance from free end 

p,  

_l_ll_lj_lJ_lj_ l�� 

Figure 11.5 Self-equilibrating axial stress distribution in an open cylinder. 

( 1 1 . 1 8) 



1 1 .3 

1 1 .3 / STRESS AND DISPLACEMENT FOR CONSTANT TEMPERATURE 44 7 

and for (Jzz , we obtain by Eqs. ( 1 1 .4), ( 1 1 . 12), and ( 1 1 . 1 8), 

aE ( 2 fb ) 
(Jzz(open end) = 1 - v b2 

- a
2 

a 
fiTr dr - fiT ( 1 1 . 19) 

We note, by Eq. ( 1 1 . 19), that if the temperature change fiT = 0, (Jzz = 0. How
ever, Ezz i= 0 [see Eq. ( 1 1 . 1 8)] when the Poisson ratio v i=  0. Note that if p1 = 
p2 = P = 0 (temperature change still occurs), Eqs. ( 1 1 . 1 5) and ( 1 1 . 1 6) are identical 
to Eqs. ( 1 1 . 1 8) and ( 1 1 . 1 9), respectively. 

STRESS COMPONENTS AND RADIAL DISPLACEMENT 
FOR CONSTANT TEMPERATURE 

Stress Components 
In the absence of temperature change, we set fiT = 0. Then Eqs. ( 1 1 .8), ( 1 1 .9), 
( 1 1 . 10), ( 1 1 . 1 1 ), and ( 1 1 . 1 6) may be used to obtain the following expressions for the 
stress components in a closed cylinder (cylinder with end caps) 

p1a
2

- P2 b2 p 
(Jzz = 

b 2 2 + 
(b

2 2
) 
= constant 

- a  n - a  

( 1 1 .20) 

( 1 1 . 2 1 )  

( 1 1 .22) 

( 1 1 .23) 

For an open cylinder in the absence of axial force P, (Jzz = 0 by Eq. ( 1 1 . 1 9) with 
fiT = 0. Since the sum (Jrr + (Joo and stress (Jzz are constants through the thickness 
of the wall of the closed cylinder, by Eq. ( 1 1 . 1 3) or Eq. ( 1 1 . 1 5 ), we see that Ezz is 
constant [extension or compression). 

Radial Displacement for Closed Cylinder 
For no temperature change, fiT = 0. Then the radial displacement u for a point 
in a thick -wall closed cylinder (cylinder with end caps) may be obtained by the sec
ond of Eqs. ( 1 1 .2), the second of Eqs. ( 1 1 .4), and Eqs. ( 1 1 .20), ( 1 1 .2 1 ), and ( 1 1 .22). 
The resulting expression for u is 

( 1 1 .24) 
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Radial Displacement for Open Cylinder 
Of special interest are open cylinders (cylinder without end caps), since an open 
inner cylinder is often shrunk to fit inside an open outer cylinder to increase the 
strength of the resulting composite cylinder. For an open cylinder, in the absence 
of temperature changes (�T = 0), Eq. ( 1 1 . 1 9) yields CJzz = 0. Hence, proceeding as 
for the closed cylinder, we obtain 

( 1 1 .25) 

EXAMPLE 1 1 . 1 
Stresses in Hollow Cylinder 

A thick-wall cylinder is made of steel (E = 200 GPa and v = 0.29), has an inside 
diameter of 20 mm, and outside diameter of 100 mm. The cylinder is subjected to 
an internal pressure of 300 MPa. Determine the stress components CJrr and CJ00 at 
r = a = 10 mm, r = 25 mm, and r = b = 50 mm. 

SOLUTION 

The external pressure p2 = 0. Equations ( 1 1 .20) and ( 1 1 .2 1 ) simplify to 

a2(r2 - b2 ) 
(Jrr = P1 r2(b2 _ a2 ) 

a2(r2 + b2 ) 
CJoo = P 1 r2(b2 _ a2 ) 

Substitution of values for r equal to 10 mm, 25 mm, and 50 mm, respectively, into 
these equations yields the following results : 

Stress 

(Jrr 

EXAMPLE 1 1 .2 

r = lO mm 
- 300.0 MPa 

325 .0 MPa 

r = 25 mm 
- 37.5 MPa 

62.5 MPa 

Stresses and Deformations in Hollow Cylinder 

r = 50 mm 
0.0 

25.0 MPa 

A thick-wall closed-end cylinder is made of an aluminum alloy (E = 72 GPa and 
v = 0.3 3), has an inside diameter of 200 mm, and an outside diameter of 800 mm. 
The cylinder is subjected to an internal pressure of 1 50 MPa. Determine the prin
cipal stresses, maximum shear stress at the inner radius (r = a =  100 mm), and 
the increase in the inside diameter due to the internal pressure. 
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The principal stresses are given by Eqs. ( 1 1 .20), ( 1 1 .2 1 ), and ( 1 1 .22). For the condi
tions that p2 = 0 and r = a, these equations give 

a2 - b2 
(Jrr = P1 b2 2 = - P1 = - 1 50 MPa - a 

a2 + b2 1002 + 4002 
CJoo = P1 b2 _ a2 = 1 50 4002 _ 1002 = 1 70 MPa 

a2 1002 
(Jzz = P 1 b2 - a2 = 1 50 4002 - 1002 = 10 MPa 

The maximum shear stress is given by Eq. (2.39). 

- (Jmax - (Jmin - 170 - ( - 1 50) - 160 'tmax - 2 - 2 - MPa 

The increase in the inside diameter due to the internal pressure is equal to twice 
the radial displacement given by Eq. ( 1 1 .24) for the conditions p2 = P = 0 and 
r = a. 

U(r = a) = E(b;1� a2 ) [( 1 - 2v)a2 + ( 1  + v)b 2 ] 

1 50( 100) 2 2 - 72,000(4002 - 1002 ) [( 1 - 0.66) 100 + ( 1  + 0.33)400 J 
= 0.3003 mm 

The increase in the inside diameter due to the internal pressure is 0.6006 mm. 

EXAMPLE 1 1 .3 
Stresses in a Composite Cylinder 

Let the cylinder in Example 1 1 . 1  be a composite cylinder made by shrinking an 
outer cylinder on an inner cylinder. Before assembly, the inner cylinder has inner 
and outer radii of a =  10 mm and ci = 25.072 mm, respectively. Likewise, the outer 
cylinder has inner and outer radii of c0 = 25.000 mm and b = 50 mm, respec
tively. Determine the stress components CJrr and CJ00 at r = a =  10 mm, r = 25 mm, 
and r = b = 50 mm for the composite cylinder . For assembly purposes, the inner 
cylinder is cooled to a uniform temperature T1 and the outer cylinder is heated 
to a uniform temperature T2 in order for the outer cylinder to slide freely over the 
inner cylinder. It is assumed that the two cylinders will slide freely if we allow 
an additional 0.025 mm to the required minimum difference in radii of 0.072 mm. 
Determine how much the temperature (in degrees Celsius) must be raised in the 
outer cylinder above the temperature in the inner cylinder in order to freely 
assemble the two cylinders. a = 0.00001 1 7  per oc. 
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SOLUTION 

After the composite cylinder has been assembled, the change in stresses due to the 
internal pressure p1 = 300 MPa is the same as for the cylinder in Example 1 1 . 1 .  
These stresses are added to the residual stresses in the composite cylinder caused 
by shrinking the outer cylinder on the inner cylinder. 
The initial difference between the outer radius of the inner cylinder and the inner 

radius of the outer cylinder is 0.072 mm. After the two cylinders have been assem
bled and allowed to cool to their initial uniform temperature, a shrink pressure Ps 
is developed between the two cylinders. The pressure Ps is an external pressure for 
the inner cylinder and an internal pressure for the outer cylinder. The magnitude 
of Ps is obtained from the fact that the sum of the radial displacement of the inner 
surface of the outer cylinder and the radial displacement of the outer surface of the 
inner cylinder must equal 0.072 mm. Hence, by Eq. ( 1 1 .25), 

Solving for p8 , we obtain 

Ps = 1 89. 1 MPa 

The pressure Ps produces stresses (so-called residual stresses) in the nonpressurized 
composite cylinder. For the inner and outer cylinders, the residual stresses (J:!. and 
(J:O at the inner and outer radii are given by Eqs. ( 1 1 .20) and ( 1 1 .2 1 ). For the inner 
cylinder, p1 = 0, p2 = Ps , a =  10 mm, and b = 25 mm. For the outer cylinder p1 = 
Ps , p2 = 0, a = 25 mm, and b = 50 mm. The residual stresses are found to be 

Inner Cylinder Outer Cylinder 

Residual Stress r = lO mm r = 25 mm r = 25 mm r = 50 mm 
0 

- 450.2 MPa 
- 189. 1 MPa 
- 261 . 1  MPa 

- 189. 1 MPa 
3 1 5. 1  MPa 

0 
126.0 MPa 

The stresses in the composite cylinder after an internal pressure of 300 MPa has 
been applied are obtained by adding these residual stresses to the stresses calcu
lated in Example 1 1 . 1 . Thus, we find 

Inner Cylinder 

Stress r = lO mm r = 25 mm 
- 300.0 MPa - 226.6 MPa 
- 125.2 MPa - 198.6 MPa 

Outer Cylinder 

r = 25 mm 
- 226.6 MPa 

377.7 MPa 

r = 50 mm 
0 

15 1 .0 MPa 
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A comparison of these stresses or the composite cylinder with those for the 
solid cylinder in Example 1 1 . 1  indicates that the stresses have been changed 
greatly. The determination of possible improvements in the design of the open end 
cylinder necessitates consideration of particular criteria of failure (see Sec. 1 1 .4). 

In order to have the inner cylinder slide easily into the outer cylinder during 
assembly, the difference in temperature between the two cylinders is given by the 
relation 

�T = T _ T = _!!_ = 0.072 + 0.025 = 0.097 _ 
3 a 

2 1 ra ra 25(0.00001 17) - 3 1 .6 C 

since for uniform temperatures T1 , T2 , we have CJrr = CJ00 = CJzz = 0 in each cylinder, 
and since then Eqs. ( 1 1 .2) and ( 1 1 .4) yield E00 = ujr = a�T, where r = c0 = ci . 

CRITERIA OF FAILURE 

The criterion of failure used in the design of a thick-wall cylinder depends on the 
type of material in the cylinder. As discussed in Sec. 4.3, the maximum principal 
stress criterion should be used in the design of members made of brittle isotropic 
materials if the principal stress of largest magnitude is a tensile stress. Either the 
maximum shear-stress or maximum octahedral shear-stress criterion of failure 
should be used in the design of members made of ductile isotropic materials (see 
Sec. 4.4). 

Failure of Brittle Materials 
If a thick-wall cylinder is made of a brittle material, the material property asso
ciated with fracture is the ultimate tensile strength (Ju ·  At the failure loads, the max
imum principal stress in the cylinder is equal to CJu . If the maximum principal stress 
occurs at the constrained ends of the cylinder, it cannot be computed using the 
relations derived in Sec. 1 1 .2 and 1 1 .3 .  At sections far removed from the ends, the 
maximum principal stress is either the circumferential stress CJoo(r = a> or axial stress 
CJzz . If the"'Cylinder is loaded so that the magnitude of the maximum compressive 
principal stress is appreciably larger than the magnitude of the maximum tensile 
principal stress, the appropriate criterion of failure to be used in design is un
certain. Such conditions are not considered in this book. 

Failure of Ductile Materials 
If excessive elastic deformation is not a design factor, failure of members made of 
ductile materials may be initiated as the result of inelastic deformation or fatigue 
(only high cycle fatigue is considered in this book; see Chapter 16). Failure of these 
members is predicted by either the maximum shear-stress criterion of failure or 
the maximum octahedral shear-stress criterion of failure. The failure of the mem
ber may be either a general yielding failure or a fatigue failure at a large number of 
stress cycles. 
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General Yielding Failure Thick-wall cylinders, which are subjected to static loads 
or peak loads only a few times during the life of the cylinder, are usually designed 
for the general yielding limit state. General yielding may be defined to occur when 
yielding is initiated in the member at some point other than at a stress concentra
tion. This definition is used in examples at the end of this section (see also Sec. 4.6) . 
However, yielding may be initiated in the region of stress concentrations at the 
ends of the cylinder or at an opening for pipe connections. Yielding in such regions 
in usually highly localized and subsequent general yielding is unlikely. However, 
the possibility of failure by fatigue still may exist (see Chapter 16). General yielding 
sometimes is considered to occur only after the member has yielded over an exten
sive region, such as occurs with fully plastic loads. Fully plastic loads for thick
wall cylinders are discussed in Sec. 1 1 .5 . 

Fatigue Failure In practice, a thick-wall cylinder may be subjected to repeated 
pressurizations (loading and unloading) that may lead to fatigue failure. Since 
fatigue cracks often occur in the neighborhood of stress concentrations, every re
gion of stress concentration must be considered in the design. In particular, the 
maximum shear stress must be determined in the region of stress concentrations, 
since fatigue cracking usually originates at a point where either the maximum 
shear stress or maximum octahedral shear stress occurs. The equations derived 
in Sec. 1 1 .2 and 1 1 .3 cannot be used to compute the design stresses, unless the 
maximum stresses occur at sections of the cylinder far removed from end con
straints or other stress concentration regions. 

Material Response Data for Design 
If a member fails by general yielding, the material property associated with failure 
is the yield stress. This fact places a limit either on the value of the maximum shear 
stress, if the maximum shear-stress criterion of failure is used, or on the value of 
the maximum octahedral shear stress, if the maximum octahedral shear-stress cri
terion of failure is used. If the member fails by fatigue, the material property 
associated with the failure is the fatigue strength. For high cycle fatigue, both the 
maximum shear-stress criterion of failure and maximum octahedral shear-stress 
criterion of failure are used widely in conjunction with the fatigue strength (see 
Chapter 16, Example 16. 1 ). The yield stress and fatigue strength may be obtained 
by tests of either a tension specimen or hollow thin-wall tube. It has been found 
that the values of these properties, as determined from tests of a hollow thin-wall 
tube in torsion, lead to a more accurate prediction of the material response for 
thick-wall cylinders than the values obtained from a tension specimen. This result 
is because the critical state of stress in the cylinder is usually at the inner wall of 
the cylinder, and for the usual pressure loading it is essentially one of pure shear 
(as occurs in the torsion test) plus a hydrostatic state of stress. Since in many 
materials a hydrostatic stress does not affect the yielding, the material responds 
(yields) as if it were subjected to a state of pure shear. Consequently, if the ma
terial properties are determined by means of a torsion test of a hollow thin-wall 
tube, the maximum shear-stress criterion and maximum octahedral shear-stress 
criterion predict failure loads that differ by less than 1% for either closed or open 
cylinders. The difference in these predictions may be as much as 1 5.5% if the ma
terial properties are obtained from tension specimen tests (Sec. 4.4). These con
clusions pertain in general to most metals. However, the yield of most plastics is 
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influenced by the hydrostatic state of stress. Hence, for most plastics, these con
clusions may not generally hold. 

The deviatoric state of stress (see Sec. 2.4) in a closed cylinder is identical to that 
for pure shear. Hence, the maximum shear-stress and octahedral shear-stress cri
teria of failure predict nearly identical factors of safety for the design of a closed 
cylinder if the yield stress for the material is obtained from torsion tests of hollow 
thin-wall tubes. Let the shear yield stress obtained from a torsion test of a thin
wall hollow tube specimen be designated as ty . If the maximum shear stress for 
the inner radius of a closed cylinder is set equal to ty , the pressure py required to 
initiate yielding is obtained. (The reader is asked to derive the formula for py in 
Problem 1 1 . 1 1 .) For the special case of a closed cylinder with internal pressure 
only and with dimensions b = 2a, the yield pressure is found to be py = 0.75 ty ; 
the corresponding dimensionless stress distribution is shown in Fig. 1 1 .6. 

Ideal Residual Stress Distributions for Composite 
Open Cylinders 
It is possible to increase the strength of a thick-wall cylinder by introducing bene
ficial residual stress distributions. The introduction of beneficial residual stresses 
can be accomplished in several ways. In particular, there are two common ways of 
producing residual stresses in cylinders. One method consists of forming a com
posite cylinder from two or more open cylinders. For example, in the case of two 
cylinders, the inner cylinder has an outer radius that is slightly larger than the inner 
radius of the outer cylinder. The inner cylinder is slipped inside the outer cylinder 
after first heating the outer cylinder and/ or cooling the inner cylinder. When the 

Figure 1 1 .6 Stress distributions in a closed cylinder at initiation of yielding (b = 2a). 
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cylinders are allowed to return to their initially equal uniform temperatures (say, 
room temperature), a pressure (the so-called shrink pressure) is created between the 
cylinder surfaces in contact. This pressure introduces residual stresses in the cyl
inders. As a result, the strength of the composite cylinder under additional internal 
and external pressure loading is increased (Example 1 1 . 5). For more than two cyl
inders this process is repeated for each cylinder that is added to form the com
posite cylinder. 

A second method consists of pressurizing a single cylinder until it deforms in
elastically to some distance into the wall from the inner surface (the process is 
called autofrettage). When the pressure is removed, a beneficial residual stress dis
tribution remains in the cylinder (see Sec. 1 1 . 5). 
For a composite cylinder formed by two cylinders under a shrink fit and subject 

to internal pressure p1 , the most beneficial residual stress distribution is that which 
results in the composite cylinder failing (yielding or fracturing) simultaneously at 
the inner radii of the inner and outer cylinders. Consider, for example, a composite 
cylinder formed by inner and outer cylinders made of a brittle material whose 
stress-strain diagram remains linear up to its ultimate strength (Ju . The inner cyl
inder has inner radius r 1 and outer radius 1 .5r1 + (i.e. , the outer radius is slightly 
larger than 1 . 5r1 ). The outer cylinder has an inner radius of 1 . 5r 1 and outer radius 
of 3r1 • See Fig. 1 1 .7 . Fracture of the brittle material occurs when the maximum 
principal stress reaches the ultimate strength (Ju .  Since the maximum principal 
stress in the composite cylinder is the circumferential stress component CJ00 , for the 
most beneficial residual (dimensionless) stress distribution (Fig. 1 1 . 7a), failure of 
the composite cylinder occurs when CJ00 = CJu , simultaneously at the inner radii of 
the inner and outer cylinders (Fig. 1 1 .7b). The ideal residual stress distribution re-

(a) 

1... r, 2 

(b) 

Figure 1 1 .7 Stress distributions in composite cylinder made of brittle material that fails 
at inner radius of both cylinders simultaneously. (a) Residual stress distribu
tions. (b) Total stress distributions. 
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(b) 

Figure 1 1 .8 Stress distributions in composite cylinder made of ductile material that fails 
at inner radius of both cylinders simultaneously. (a) Residual stress distribu
tions. (b) Total stress distributions. 

quires a specific difference between the inner radius of the outer cylinder and the 
outer radius of the inner cylinder, which produces a shrink pressure Ps (see Pro b
lem 1 1 . 1 8). This shrink pressure produces a residual stress distribution (Fig. 1 1 .7a) 
such that the application of an internal pressure p1 produces the (dimensionless) 
stress distribution of Fig. 1 1 .7b at failure. 
If the composite cylinder is made of a ductile metal, either the maximum shear

stress criterion of failure or maximum octahedral shear-stress criterion of failure 
can be used. For example, let the composite cylinder of Fig. 1 1 . 8  be made of a duc
tile metal. Based on the maximum shear-stress criterion of failure, the ideal residual 
stress distribution due to the shrink pressure Ps is shown in Fig. 1 1 . 8a. (In this case, 
the interference fit is different from the cylinder of Fig. 1 1 .7 ;  see Problem 1 1 . 1 7.) 
For an internal pressure p1 at failure of the cylinder, yield occurs simultaneously 
at the inner radii of the inner and outer cylinders, and the associated dimensionless 
stress distribution is shown in Fig. 1 1 . 8b. 

EXAMPLE 1 1 .4 
Yield Failure of Thick-Wall Cylinder 

The thick-wall cylinder in Example 1 1 . 1  is made of a ductile steel whose general 
yielding failure is accurately predicted by the octahedral shear-stress yield criterion. 
Determine the minimum yield stress for the steel for a factor of safety of SF = 1 .75 . 
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SOLUTION 

The stress components calculated in Example 1 1 . 1  are for a cylinder that has been 
designed with a factor of safety of SF = 1 .75. Yielding impends in the cylinder 
when the internal pressure is increased to (SF)p 1 = 525 MPa. The yield stress Y for 
the steel is obtained by setting the maximum octahedral shear stress in the cylinder 
[when the pressure in the cylinder is (SF)p 1 ] equal to the octahedral shear stress 
that occurs in a tension specimen made of the steel when the tension specimen axial 
stress is Y. The octahedral shear stress in the tension specimen is given by the rela
tion [see Eqs. (2.22) and (4.24)] , 

1 .J 2 2 2 J2y Loct = 3 (Y - 0) + (0 - 0) + (0 - Y) = -3- (a) 

The octahedral shear stress at any point in the thick-wall cylinder is given by the 
relation [see Eq. 2.22)] 

(b) 

For the open cylinder, the axial stress CJzz is zero and the radial and circumferential 
stresses are 

(Jrr = - 1 .75 (300) = - 525 MPa 
CJ00 = 1 .75(325) = 568.8 MPa 

Substituting these stress components into Eq. (b) and setting Eq. (a) equal to 
Eq. (b), we obtain 

Y = � vf(568.8 + 52W + (52W + (568.8)2 = 947. 5  MPa 

EXAMPLE 1 1 .5 
Yield of Composite Thick-Wall Cylinder 

The inner and outer cylinders of the composite thick-wall cylinder in Example 1 1 . 3  
are made of the same ductile steel as the cylinder in Example 1 1 .4. Determine the 
minimum yield stress for the steel in the composite cylinder for a factor of safety 
of SF = 1 .75. 

SOLUTION 

Note: Equations (a) and (b) in Example 1 1 .4 are valid for this problem also. 

For the composite open cylinder, it is necessary to consider initiation of yielding 
for the inside of the inner cylinder, as well as for the inside of the outer cylinder. 
The axial stress CJzz is zero for both cylinders. At the inside of the inner cylinder, 
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the radial and circumferential stresses for a pressure (SF)p 1 are 

(Jrr = ( 1 .75)(300) = - 525 MPa 
CJ00 = ( 1 . 75 )(325 ) - 450.2 = 1 1 8.6 MPa 

Substituting these stress components into Eq. (b) and setting Eq. (a) equal to 
Eq. (b), we obtain 

Y = � .J(1 1 8.6 + 525)2 + (52W + ( 1 1 8.6)2 = 593.3 MPa 

At the inside of the outer cylinder, the radial and circumferential stresses for a pres
sure (SF)p1 are 

(Jrr = - ( 1 .75)(37.5) - 1 89. 1  = - 254.7 MPa 
CJ00 = ( 1 .75) (62. 5) + 3 1 5. 1  = 424.5 MPa 

Substituting these stress components into Eq. (b) and setting Eq. (a) equal to 
Eq. (b), we find 

Y = � .J(424.5 + 254.7)2 + (254.7)2 + (424.W 

= 594. 3 MPa > 593 .3 MPa 

For the composite cylinder, the yield stress should be at least Y = 594.3 MPa. 
An ideal design for a composite cylinder should cause the required yield stress 
to be the same for the inner and outer cylinders. (Note that the above design is 
nearly ideal.) 

A comparison of the required yield stress for the single cylinder in Example 1 1 .4 
and the required yield stress for the composite cylinders indicates the advantage of 
the composite cylinder. The yield stress of the single cylinder material must be 
59.4% greater than that of the composite cylinder, if both cylinders are subjected 
to the same initial pressure and are designed for the same factor of safety against 
initiation of yielding. 

FULLY PLASTIC PRESSURE. AUTO FRETT AGE 

Thick-wall cylinders made of ductile material can be strengthened by introducing 
beneficial residual stress distributions. In Sec. 1 1 .3  and 1 1 .4, it was found that bene
ficial residual stress distributions may be produced in a composite cylinder formed 
by shrinking one cylinder on another. Beneficial residual stress distributions may 
also be introduced into a single cylinder by initially subjecting the cylinder to high 
internal pressure so that inelastic deformations occur in the cylinder. As a result, 
an increase in the load-carrying capacity of the cylinder occurs because of the 
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beneficial residual stress distributions that remain in the cylinder after the high 
pressure is removed. The residual stress distribution in the unloaded cylinder de
pends on the depth of yielding produced by the high pressure, the shape of the 
inelastic portion of the stress-strain diagram for loading of a tensile specimen of 
the material, and the shape of the stress-strain diagram for unloading of the ten
sile specimen followed by compression loading of the specimen. If the material in 
the cylinder is a strain hardening material, a part (usually, a small part) of the in
crease in load-carrying capacity is due to the strengthening of the material, result
ing from strain hardening of the material. If the material exhibits a flat top stress
strain diagram at the yield point (i.e., elastic-perfectly plastic), all the increase in 
load-carrying capacity is due to the beneficial residual stress distribution. 

The process of increasing the strength of open and closed cylinders by increas
ing the internal pressure until the cylinder is deformed inelastically is called auto-
frettage. The beneficial effect of the autofrettage process increases rapidly with the 
spread of inelastic deformation through the wall thickness of the cylinder. Once 
yielding has spread through the entire wall thickness, any further improvement 
in load-carrying capacity resulting from additional inelastic deformation is due 
to strain hardening of the material. The minimum internal pressure p 1 required 
to produce yielding through the wall of the cylinder is an important pressure to 
be determined, since most of the increase in load-carrying capacity is produced 
below this pressure, and the deformation of the cylinder remains small up to this 
pressure. For the special case where the stress-strain diagram of the material is 
flat-topped at the yield point Y, the internal pressure p1 is called the fully plastic 
pressure PP ·  

We derive the fully plastic pressure by assuming that the maximum shear-stress 
criterion of failure is valid. If we assume that CJzz is the intermediate principal stress 
(CJrr < CJzz < CJ00) for the cylinder, CJ00 - CJrr = 2ty, where ty is the shear yield stress. 
This result may be substituted into the equation of equilibrium, Eq. ( 1 1 . 1 ), to obtain 

Integration yields 

2ty dCJrr = - dr r 

(Jrr = 2ty In r + C 

( 1 1 .26 ) 

( 1 1 .27) 

The constant of integration C is obtained from the boundary condition that CJrr = 
- p2 when r = b. Thus, we obtain 

b 
(Jrr = - 2ty ln - - P2 r ( 1 1 .28) 

the radial stress distribution at the fully plastic pressure pp . The magnitude of PP is 
given by Eq. ( 1 1 .28) since the internal pressure is then p1 = PP = - CJrr at r = a. 
Thus, we obtain 

b 
PP = 2ty ln- + P2 a ( 1 1 .29) 

In practice, p2 is ordinarily taken equal to zero, since for p2 = 0 the required in
ternal pressure p1 is smaller than for nonzero p2 . The circumferential stress dis-
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tribution for the cylinder at the fully plastic pressure is obtained by substituting 
Eq. ( 1 1 .28) into the relation (Joo - (Jrr = 2ty to obtain 

( 1 1 .30) 

If the material in the cylinder is a Tresca material, that is, a material satisfying 
the maximum shear-stress criterion of failure, ty = Y/2, and the fully plastic pres
sure given by Eq. ( 1 1 .29) is valid for cylinders subjected to axial loads in addition 
to internal and external pressures as long as (Jzz is the intermediate principal stress, 
that is, (Jrr < (Jzz < (Joo . If the material in the cylinder is a von Mises material, that 
is, a material satisfying the maximum octahedral shear-stress criterion of failure 
ty = Y/ J3 (see column 4, Table 4.2), the fully plastic pressure given by Eq. ( 1 1 .29) 
is valid for closed cylinders subjected to internal and external pressures only. For 
this loading, the maximum octahedral shear-stress criterion of failure requires that 
the axial stress be given by the relation 

( 1 1 . 3 1 ) 

The proof of Eq. ( 1 1 . 3 1 )  is left to the reader. 
In many applications, the external pressure p2 is zero. In this case, the ratio of 

the fully plastic pressure pp [Eq. ( 1 1 .29)] to the pressure py that initiates yielding in 
the cylinder at the inner wall (see Problem 1 1 . 1 1 ) is given by the relation 

( 1 1 . 32) 

In particular, this ratio becomes large as the ratio bja becomes large. For b = 2a, 
Eq. ( 1 1 .32) gives pp = 1 . 85py ;  dimensionless radial, circumferential, and axial stress 
distributions for this cylinder are shown in Fig. 1 1 .9. A comparison of these stress 
distributions with those at initiation of yielding (see Fig. 1 1 .6) indicates that yield
ing throughout the wall thickness of the cylinder greatly alters the stress distribu
tions. If the cylinder in Fig. 1 1 .9 unloads elastically, the residual stress distributions 
can be obtained by multiplying the stresses in Fig. 1 1 .6 by the factor 1 . 85 and 
subtracting them from the stresses in Fig. 1 1 .9. For instance, the residual circum
ferential stress (J:o at the inner radius is calculated to be (J:o = - 1.72ty . This maxi
mum circumferential residual stress can be expressed in terms of the tensile yield 
stress Y as follows: for a Tresca material (J:o = - 0.86 Y and for a von Mises ma
terial (J:o = - 0.99 Y. However, one cannot always rely on the presence of this 
large compressive residual stress in the unloaded cylinder. In particular, all metals 
behave inelastically (due to the Bauschinger effect) when the cylinder is unloaded, 
resulting in a decrease in the beneficial effects of the residual stresses. For example, 
an investigation (Sidebottom et al., 1976) indicated that the beneficial effect of the 
residual stresses at the inside of the cylinder (when b = 2a) is decreased to about 
50% of that calculated based on the assumption that the cylinder unloads elasti
cally. Consequently, the cylinder will respond inelastically rather than elastically 
the next time it is loaded to the fully plastic pressure. 
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Figure 1 1 .9 Stress distributions in a closed cylinder at fully plastic pressure (b = 2a). 
Cylinder made of von Mises material. 

EXAMPLE 1 1 .6 
Fully Plastic Pressure for Cylinder 

A closed cylinder has an inner radius of 20 mm and outer radius of 40 mm. It is 
made of steel that has a yield point stress of Y = 450 MPa and obeys the von 
Mises yield criterion. 

(a) Determine the fully plastic internal pressure pp for the cylinder. 
(b) Determine the maximum circumferential and axial residual stresses when the 

cylinder is unloaded from pp , assuming that the values based on linear elastic 
unloading are decreased by 50% because of inelastic deformation during 
unloading. 
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(c) Assuming that the elastic range of the octahedral shear stress has not been 
altered by the inelastic deformation, determine the internal pressure p1 that 
can be applied to the cylinder based on a factor of safety SF = 1 . 80. For 
SF = 1 .80, compare this result with the pressure p1 for a cylinder without 
residual stresses. 

SOLUTION 

(a) The shear yield stress ty for the von Mises steel is obtained using the octa
hedral shear-stress yield condition 

y ry = .j3 = 259. 8 MPa 

The magnitude of pp is given by Eq. ( 1 1 .29). Thus, we find 

b 40 pp = 2ty In� = 2(259.8) In 20 = 360.21 MPa 

The circumferential and axial stresses at the inner radius for fully plastic con
ditions are given by Eqs. ( 1 1 .30) and ( 1 1 . 3 1 ). They are 

a66 = 2ry( 1 - In�) = 2(259.8)( 1 - In��) = 1 59.4 MPa 

= (Joo + (Jrr = 1 59.4 - 360.2 = _ 100 4 MP (Jzz 2 2 . a 

(b) Assuming linearly elastic unloading, we compute the circumferential and axial 
residual stresses at r = a as 

= 440.9 MPa 

R = - 100 4 - ppa2 
= - 100 4 - 360·2(202 ) 

= 220 5 MP (J zz . b 2 - a 2 . 402 - 202 . a 

The actual residual stresses may be as much as 50% less than these computed 
values. Thus, 

(J:o = 0.50(- 440.9) = - 220.4 MPa 
(J:z = 0.50( - 220. 5) = - 1 10.2 MPa (a) 

(c) Yielding is initiated in the cylinder at a pressure (SF)p1 = 1 . 80p 1 . If the re
sidual stresses are neglected, the stresses at the inner radius due to pressure 
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1 1 .6 

(SF)p 1 are 

(Jrr = - (SF)(p l) = - 1 .80p 1 
b 2 + a 2 402 + 202 

CJoo = (SF)(p l) b 2 - a2 = ( 1 . 80)(p 1) 402 - 202 

= 3.000p1 
a2 202 

(Jzz = (SF)(p l) b 2 - a2 = ( 1 . 80)(p 1) 402 - 202 

= 0.6000p 1 

(b) 

The actual stresses at the inner radius are obtained by adding the residual 
stresses given by Eq. (a) to those given by Eqs. (b). Thus, 

(Jrr = - 1 . 80p 1 
CJ00 = 3 .0000p1 - 220.4 
(Jzz = 0.6000p 1 - 1 10.2 

The octahedral shear-stress yield condition requires that 

(c) 

(d) 

Substituting the values for the stress components given by Eq. (c) into 
Eq. (d), we find that 

P 1 = 1 54.2 MPa 

is the working internal pressure for the cylinder that was preloaded to the 
fully plastic pressure. Substituting the values for the stress components given 
by Eq. (b) into Eq. (d), we obtain the working internal pressure for the cyl
inder without residual stresses 

p1 = 108 .3 MPa 

Hence, the working pressure for the cylinder that is preloaded to the fully 
plastic pressure is 42.4% greater than the working pressure for the elastic cyl
inder without residual stresses. 

CYLINDER SOLUTION FOR TEMPERATURE 
CHANGE ONLY 

Consider the stress distribution in a thick-wall cylinder subjected to uniform in
ternal and external pressures p1 and p2 , axial load P, and temperature change �T 
that depends on the radial coordinate r only. The stress distribution may be ob-
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tained from Eqs. ( 1 1 . 8), ( 1 1 .9), ( 1 1 . 10), ( 1 1 . 1 1 ), and ( 1 1 . 16). The special case of con
stant uniform temperature was considered in Sec. 1 1 .3 .  In this section, the case of 
a cylinder subjected to a temperature change �T = T(r), in the absence of pres
sures and axial load, is treated. If internal and external pressures and temperature 
changes occur simultaneously, the resulting stresses may be obtained by superposi
tion of the results of this section and Sec. 1 1 .3 .  As in Sec. 1 1 .3, the results of this 
section are restricted to the static, steady-state problem. Accordingly, the steady
state temperature change �T = T(r) is required input to the problem. 

Steady-Steady Temperature Change (Distribution) 
The temperature distribution in a homogeneous body in the absence of heat 
sources is given by Fourier's heat equation 

( 1 1 .33) 

in which fJ is the thermal diffusivity for the material in the body, where we consi
der T = �T to be the temperature change measured from the uniform reference 
temperature of the unstressed state, and t is the time. For steady-state conditions, 
8Tj8t = 0, and Eq. ( 1 1 .3 3) reduces to 

( 1 1 .34) 

In cylindrical coordinates (r, 8, z), Eq. ( 1 1 .34) takes the form 

( 1 1 . 35 )  

Since T is assumed to be a function of r only, Eq. ( 1 1 . 3 5) simplifies to 

( 1 1 . 36) 

The solution of Eq. ( 1 1 . 36) is 

( 1 1 . 37) 

where C1 and C2 are constants of integration. With Eq. ( 1 1 .3 7), the boundary con
ditions T = 4 for r = b and T = � for r = a  are used to determine C1 and C2 . 
The solution of Eq. ( 1 1 .37) then takes the form 

where 

T0 b T = ln (b/a) In -;:- ( 1 1 . 38) 
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Stress Components 
If p1 = p2 = P = 0, Eq. ( 1 1 . 38) can be used with Eqs. ( 1 1 . 8), ( 1 1 .9), ( 1 1 . 10), ( 1 1 . 1 1 ), 
and ( 1 1 . 1 6) to obtain stress components for steady-state temperature distributions 
in a thick-wall cylinder. The results are 

( 1 1 . 39) 

( 1 1 .40) 

( 1 1 .4 1 )  

Thus, the stress distributions for linearly elastic behavior of a thick-wall cyl
inder subjected to a steady-state temperature distribution are given by Eqs. ( 1 1 . 39), 
( 1 1 .40), and (1 1 .41 ) . When T0 = � - 1b is positive, the temperature at the inner 
radius � is greater than the temperature at the outer radius 1b .  For the case of 
positive T0 , dimensionless stress distributions for a cylinder with b = 2a are shown 
in Fig. 1 1 . 10. Since for this case, the stress components CJ00 and CJzz are compressive, 
a positive temperature difference T0 is beneficial for a cylinder that is subjected to 
a combination of internal pressure p 1 and temperature since the compressive 
stresses due to T0 counteract tensile stresses due to p 1 . The stresses in cylinders 
subjected to internal pressure p1 , external pressure p2 , axial load P, and steady
state temperature may be obtained as follows : The radial stress is given by adding 
Eq. ( 1 1 .20) to Eq. ( 1 1 .39), the circumferential stress is given by adding Eq. ( 1 1 . 2 1 ) 
to Eq. ( 1 1 .40), and the axial stress is given by adding Eq. ( 1 1 .22) to Eq. ( 1 1 .4 1 ). 

2a 

a( 1 - v) 
aET0 

Figure 1 1 . 10  Stress distributions in a cylinder subjected to a temperature gradient 
(b = 2a). 
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11 . 1 .  A long closed cylinder has an internal radius a = 100 mm and external ra
dius b = 250 mm. It is subjected to an internal pressure p1 = 80.0 MPa 
(p2 = 0). Determine the maximum radial, circumferential, and axial stresses 
in the cy Iinder. 

1 1 .2. Determine the radial and circumferential stress distributions for the cyl
inder in Problem 1 1 . 1  

1 1 .3. Consider a 1 -m length of the unloaded cylinder in Problem 1 1 . 1  at a loca
tion in the cylinder some distance from the ends. What are the dimensions 
of this portion of the cylinder after p1 = 80.0 MPa is applied? The cylinder 
is made of a steel for which E = 200 GPa and v = 0.29. 

1 1 .4. A closed cylinder has an inside diameter of 20 mm and outside diameter 
of 40 mm. It is subjected to an external pressure p2 = 40 MPa and internal 
pressure of p1 = 100 MPa. Determine the axial stress and circumferential 
stress at the inner radius. 

Ans. CJzz = - 20.0 MPa, CJ00 = 60.0 MPa 

11 .5. A composite aluminum alloy (E = 72.0 GPa and v =0.33) cylinder is 
made up of an inner cylinder with inner and outer diameters of 80 and 
120 + mm, respectively, and an outer cylinder with inner and outer dia
meters of 120 and 240 mm, respectively. The composite cylinder is sub
jected to an internal pressure of 160 MPa. What must the outside diameter 
of the inner cylinder be if the circumferential stress at the inside of the 
composite cylinder is equal to 1 30 MPa? 

1 1 .6. What must the outside diameter of the inner cylinder be for the composite 
cylinder in Problem 1 1 .5  if the maximum shear stress at the inner radius 
of the inner cylinder is equal to the maximum shear stress at the inner 
radius of the outer cylinder? What are the values for the circumferential 
stress at the inside of the composite cylinder and the maximum shear stress? 

Ans. Diameter = 120.227 1 mm, CJoo(a) = 85. 1 MPa, tmax = 122.6 MPa 

1 1 .7. A �gray cast iron (E = 103 GPa and v = 0.20) cylinder has an outside 
diameter of 160 mm and inside diameter of 40 mm. Determine the circum
ferential stress at the inner radius of the cylinder when the internal pres
sure is 60.0 MPa. 

1 1 .8. Let the cast iron cylinder in Problem 1 1 .7 be a composite cylinder made 
up of an inner cylinder with inner and outer diameters of 40 and 80 + mm, 
respectively, and an outer cylinder with inner and outer diameters of 80 
and 160 mm, respectively. What must the outside diameter of the inner 
cylinder be if the circumferential stress at the inside of the inner cylinder 
is equal to the circumferential stress at the inside of the outer cylinder? 
What is the magnitude of the circumferential stress at the inside of the 
composite cylinder? 

Ans. Diameter = 80.0287 mm, CJoo(a) = 38.5 MPa 
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1 1 .9.  A hollow steel cylinder (E = 200 GPa, v = 0.3), with an inner diameter of 
100 mm and outer diameter of 300 mm, is press-fitted over a solid steel 
shaft of diameter 100. 125 mm. Determine the maximum principal stress in 
the shaft and in the cylinder. 

Section 1 1 .4 

1 1 . 10. (a) Derive the expression for the maximum shear stress in a thick-wall 
cylinder subjected to internal pressure p1 , external pressure p2 , and 
axial load P, assuming that CJzz is the intermediate principal stress, 
that is, (Jrr < (Jzz < CJoo • 

(b) Derive an expression for the limiting value of the axial load P for 
which the expression in part (a) is valid. 

1 1 .1 1 .  Let CJzz be the intermediate principal stress in a thick-wall cylinder 
(CJrr < CJzz < CJ00) . Using the maximum shear-stress criterion of failure, 
derive an expression for the internal pressure py necessary to initiate 
yielding in the cylinder. The shear yield stress for the material is ty . 

1 1 .12. For a closed cylinder subjected to internal pressure p 1 only, show that the 
octahedral shear stress toct at the inner radius is given by the relation toct = 
J2plb2/[J3(b2 - a2)] . 

1 1 .13. A closed cylinder is made of a ductile steel that has a yield stress Y = 
600 MPa. The inside diameter of the cylinder is 80 mm. Determine the out
side diameter of the cylinder if the cylinder is subjected to an internal pres
sure only, of p1 = 140 MPa, and the cylinder is designed using a factor of 
safety of SF = 1 . 75  based on the maximum shear-stress criterion of failure. 

1 1 . 14. Solve Problem 1 1 . 1 3  using the octahedral shear-stress criterion of failure. 
1 1 . 15. A closed cylinder with inner and outer radii of 60 and 80 mm, respec

tively, is subjected to an internal pressure p1 = 30.0 MPa and axial load 
P = 650 kN. The cylinder is made of a steel that has a yield stress of Y = 
280 MPa. Determine the factor of safety SF used in the design of the 
cylinder based on 

(a) the maximum shear-stress criterion of failure and 

(b) the maximum octahedral shear-stress criterion of failure. 

Ans. (a) SF = 1 .96, (b) SF = 2.00 

1 1 . 16. A closed cylinder with inner and outer diameters of 30 and 60 mm, respec
tively, is subjected to an internal pressure only. The cylinder is made of a 
brittle material having an ultimate strength of (Ju = 1 60 MPa. The outer 
diameter has been gradually reduced as we move away from each end so 
that stress concentrations at the ends can be neglected. Determine the 
magnitude of p1 based on a factor of safety of SF = 3 .00. 

11 . 17. Two cylinders are slip-fitted together to form a composite open cylinder. 
Both cylinders are made of a steel having a yield stress Y = 700 MPa. 
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The inner cylinder has inner and outer diameters of 100 and 1 50 + mm, 
respectively. The outer cylinder has inner and outer diameters of 1 50 and 
300 mm, respectively. 

(a) Determine the shrink pressure Ps and maximum internal pressure p1 
that can be applied to the cylinder if it has been designed with a fac
tor of safety of SF = 1 . 85 for simultaneous initiation of yielding at 
the inner radii of the inner and outer cylinders. Use the maximum 
shear-stress criterion of failure. 

(b) Determine the outer diameter of the inner cylinder required for the 
design. For the steel E = 200 GPa and v = 0.29. 

Ans. (a) Ps = 9 1 .2 MPa, p1 = 247.0 MPa; (b) diameter = 1 50.292 mm 

11 . 18. Two cylinders are slip-fitted together to form a composite open cylinder. 

Section 1 1 .5 

Both cylinders are made of a brittle material whose stress-strain diagram 
is linear up to the ultimate strength CJu = 480 MPa. The inner cylinder 
has inner and outer radii of 50 and 75  + mm, respectively. The outer cyl
inder has inner and outer radii of 75  and 1 50 mm, respectively. Determine 
the shrink pressure Ps and maximum internal pressure p1 that results in 
initiation of fracture simultaneously at the inner radii of both cylinders. 
Use the maximum principal stress criterion of failure. 

1 1 . 19. A thick-wall cylinder has an inside diameter of 1 80 mm and outside dia
meter of 420 mm. It is made of steel having a yield point stress of Y = 
460 MPa and obeying the Tresca criterion. Determine the fully plastic 
pressure for the cylinder if p2 = 0. 

11 .20. (a) Determine the working pressure p1 for the thick-wall cylinder in 
Problem 1 1 . 1 9  if it is designed with a factor of safety of SF = 3.00 
based on the fully plastic pressure. 

(b) What is the factor of safety based on the maximum elastic pres
sure py . 

Ans. (a) p1 = 129.9 MPa, (b) SF = 1 .45 

1 1 .21 .  A composite open cylinder has an inner cylinder with inner and outer radii 
of 20 and 30 mm and is made of a steel with yield point stress Y1 = 
400 MPa. The outer cylinder has inner and outer radii of 30 and 60 mm 
and is made of a steel with yield point stress Y2 = 600 MPa. Determine the 
fully plastic pressure for the composite cylinder if both steels obey the von 
Mises criterion. 

1 1 .22. The closed cylinder in Example 1 1 .6 is made of a Tresca material instead 
of a von Mises material. Obtain the solution for the Tresca material. 

Ans. pp = 3 1 1 .9 MPa, p1 = 1 33 .5  MPa (including residual stresses) 
p1 = 93 .8 MPa (without residual stresses) 
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Section 1 1 .6 

1 1 .23. An unloaded closed cylinder has an inner radius of 100 mm and outer 
radius of 250 mm. The cylinder is made of a steel for which a = 
0.00001 17 per oc, E = 200 GPa, and v = 0.29. Determine the stress com
ponents at the inner radius for a steady-state temperature change with the 
temperature at the inner radius 100°C greater than the temperature at the 
outer radius. 

1 1 .24. Let the steel in the cylinder in Problem 1 1 .23 have a yield stress of Y = 
500 MPa. Determine the magnitude of T0 necessary to initiate yielding in 
the cylinder based on the 

(a) maximum shear-stress criterion of failure and 

(b) maximum octahedral shear-stress criterion of failure. 

Ans. (a) T0 = 235.3°C (b) T0 = 235.3°C 

1 1 .25. The cylinder in Problem 1 1 .23 is subjected to a temperature difference of 
T0 = 50°C and an internal pressure p1 = 100 MPa. Determine the stress 
components at the inner radius. 

11 .26. A closed brass ( Y  = 240 MPa, E = 96. 5 GPa, v = 0.3 5, a =  0.000020 per °C) 
cylinder has an inside diameter of 70 mm and outside diameter of 1 50 mm. 
It is subjected to a temperature difference T0 = � - 4 = 70°C. For this 
value of T0 , 

(a) determine the magnitude p1 of internal pressure required to initiate 
yield in the cy Iinder and 

(b) the magnitude p2 of external pressure required to initiate yield. 

(c) Repeat parts (a) and (b) for the case T0 = 0. Use the maximum shear
stress criterion of failure. 

Ans. (a) p1 = 1 3 5.9 MPa, (b) p2 = 5 1 .9 MPa, (c) p1 = p2 = 93 .9 MPa 
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ELA TIC A D I ELA TIC 
TABILITY OF COLUM 

In this chapter, we consider columns subjected to axial compressive loads. The col
umns are considered sufficiently slender so that, at a critical compressive load, they 
may fail by sudden lateral deflection (buckling), rather than by yielding or crush
ing. If this lateral deflection continues to increase, a real column will undergo 
plastic deformation and possibly a catastrophic fracture or collapse. For very 
slender columns made of elastic-perfectly plastic materials, the critical load de
pends primarily on the modulus of elasticity and the properties of the column 
cross section. It is independent of the yield stress and ultimate strength. For mod
erately slender columns made of an elastic, strain-hardening material such as 
high-strength, alloy steels and aluminum alloys, the critical load will also depend 
on the inelastic stress-strain relationship of the material (see Sec. 12.6, "Inelastic 
Buckling of Columns"). Additionally, residual stresses due to nonuniform cooling 
of hot-rolled steel may cause the steel to behave as an elastic, strain-hardening 
material. Consequently, the critical load for a column made of such a steel may 
also be dependent on the inelastic stress-strain behavior of the material. A large 
part of our treatment is devoted to ideal columns. We define an ideal column to 
be one that remains elastic, is perfectly straight, is subjected to a compressive load 
that lies exactly along its central longitudinal axis, is not subjected to a bending 
moment or lateral force, and is weightless and free of residual stresses . 

In general, the theoretical study of buckling is referred to as the theory of sta
bility or theory of buckling. A comprehensive review of the general theory of buck
ling has been given by Langhaar ( 1 958), including references to many works 
through mid- 1958. More recently, the book by Bazant and Cedolin ( 1 99 1) sum
marizes structural stability studies to 1990. Broadly speaking, the theory of buck
ling is the theory of stability of mechanical systems; that is, the theory of buckling 
deals principally with conditions for which equilibrium becomes unstable. The crit
ical load at which a system may become unstable (buckle) may be determined by 
several methods. For conservative systems, these methods include ( 1 )  the equi
librium method, which leads to an eigenvalue problem, (2) the energy method, 
(3) snap-through theory, (4) imperfection theory, and (5) the dynamic method. Non
conservative (dissipative) systems require special attention (see Sec. 1 2.6, "Inelastic 
Buckling of Columns"). 

In Sec. 1 2. 1 , we introduce some basic concepts of column buckling. In Sec. 1 2.2, 
a physical description of the elastic buckling of columns for a range of lateral de
flections, for both ideal and imperfect slender columns, is presented. In Sec. 1 2.3, 
the Euler formula for the critical load for elastic columns with pinned ends is de
rived. In Sec. 1 2.4, the effect of general end constraints on the elastic buckling load 
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of  columns i s  examined. In  Sec. 1 2. 5, the local buckling of  thin-wall flanges of 
elastic columns with open cross sections (e.g., a channel) is discussed. Finally tn 
Sec. 1 2.6, the topic of inelastic buckling of columns is introduced. For studies of 
the stability of other structural elements (e.g., plates and shells), the reader may 
refer to other works (Bleich, 1952; Timoshenko and Gere, 196 1 ;  Chajes, 1974; Brush 
and Almroth, 1975 ;  Szilard, 1 974; Calladine, 1988 ;  Bazant and Cedolin, 1 99 1) .  

INTRODUCTION TO THE CONCEPT OF 
COLUMN BUCKLING 

When an initially straight, slender column with pinned ends is subjected to a large 
compressive load, theoretically, failure may occur by elastic buckling when the load 
exceeds the critical (buckling) load (Fig. 1 2. 1 ;  see also Sec. 1 2.3) 

( 1 2. 1) 

where E is the modulus of elasticity, I the moment of inertia of the cross section 
about the axis of bending, and L the length of the pinned end column. For 
an ideal pinned-end column, the load P may be increased beyond �, along line 
OC, (Fig. 1 2.2). However, for loads P � �, the column is in an unstable equilib
rium state (Langhaar, 1989). More realistically, however, in a real structure, the line 
of action of force P does not lie exactly along the central axis of the column, and 

L 
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Figure 12.2 Load-deflection curves. 

the column may not be exactly straight. Hence, in general, the force P produces a 
bending moment in the column. In other words, most real columns perform their 
load-carrying function as beam-columns (Bazant and Cedolin, 199 1) .  Then, the 
load-deflection response of the column follows a curved path (Fig. 1 2.2) and the 
column eventually fails at a load P � �r · 

When an ideal column is subjected to a sufficiently small compressive force P, 
it remains in equilibrium in the straight position. If the column is subjected to an 
additional small lateral force, it will deflect laterally. However, when the lateral force 
is removed, the elastic restoring forces in the column are large enough to return 
the column to its original (straight) position. Thus, for sufficiently small loads P, 
the column is said to be in a stable equilibrium state. As P is increased, it reaches 
a magnitude for which the elastic restoring forces are only large enough to main
tain equilibrium in a displaced lateral position. However, they are not capable of 
returning the column to its original straight position. At this critical load, the 
column is in a state of neutral equilibrium. For values of load greater than this 
critical load, the slightest lateral movement of the column from its straight posi
tion may result in a displacement that produces yield or fracture, or that exceeds 
the clearance tolerance of the column. * 

As seen by Eq. ( 1 2. 1), the critical load �r of a column with pinned ends depends 
on the moment of inertia I of the cross section, the elastic modulus E, and on the 
length L. Among structural materials, the value of E may vary by a factor as great 
as 1 5  or moxe (e.g., the modular ratio between steel and concrete is usually around 
8 or 9). However, for structural steel columns used in modern construction, E is 
essentially constant (see Appendix A). For such columns, �r is governed by the 
column length L and the smallest moment of inertia I of the column cross section. 
Also, the magnitude of the buckling load of a column is influenced greatly by the 
nature of its end supports (Sec. 12.4). For given end conditions, buckling of slender 
columns is controlled most frequently by controlling L or selecting the column 

* If a pinned-end column (Fig. 1 2. 1) remains elastic for load P � �n in the buckled form its ends may 

meet or if a column has one end free and one end fixed, it may become inverted for loads greater than 

its critical load. The problem of determining the deflections of such columns is called the elastica prob
lem (Bazant and Cedolin, 1991).  However, if an elastic column undergoes such a large displace

ment, it will probably exceed clearance tolerances of the system in which it is a part; that is, it 

will jam. In general, the problem of jamming may also occur in systems with small tolerances, such as 

required in electrical motors and generators, and internal combustion engines. 
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cross section to maximize I. To maximize I, closed-tube cross sections are com
monly used in column design. 

In summary, if an ideal slender elastic column is subjected to a compressive load 
P and is further subjected to a lateral disturbance, it can undergo destructive lateral 
displacements, when the magnitude of P equals or exceeds �r · It may fail by ex
cessive, yet small, stable elastic deflections (jamming) if P is equal to �r · It may 
fail by elastic deflections, which may increase indefinitely, if P is increased to values 
larger than �r · In the latter case, since most real materials cannot withstand the 
strains associated with such large deflections without yielding or breaking, a real 
column will fail by plastic collapse or fracture when P is significantly larger than 
�r · In the next section, we consider the deflection response of columns to compres
sive loads that vary in magnitude from zero to greater than �r ·  

DEFLECTION RESPONSE OF COLUMNS TO 
COMPRESSIVE LOADS 

In Sec. 1 2. 1 ,  we noted that a slender pinned-end column can buckle at the load P = 
�r [Eq. ( 1 2. 1 )] ,  if it is subjected to a lateral disturbance. For this load, the column 
may undergo a lateral elastic displacement. If this displacement exceeds the toler
ance limits of the column, the column is said to have failed by excessive lateral de
flection due to elastic buckling. If the compressive load on the column continues to 
increase beyond �, the column will continue to deflect laterally, and unless it is 
extremely slender (an elastica), it will become completely unstable and undergo 
plastic collapse or fracture. Buckling, therefore, is frequently referred to as struc
tural instability. Furthermore, in this type of failure of slender columns, the buck
ling load usually represents the maximum theoretical load that the column can be 
expected to resist. This is true even though, at this load, the stress in the column 
material is ordinarily less than the compressive proportional limit or yield stress. 
Hence, when elastic buckling is the mode of failure of the column, the problem is 
one of obtaining an expression for the critical (buckling) load. A brief physical des
cription of the deflection response of a slender elastic column in the neighborhood 
of the critical load is given in the next subsection. 

Caution: The effects of temperature (especially elevated temperature) and of time 
(such as in long loading periods resulting in creep) on buckling are not considered 
in the subsequent discussion. In practice, these effects may be extremely important 
(Manson, 198 1 ;  Moulin et al ., 1 989) and usually act to lower the critical load. 

Elastic Buckling of an Ideal Slender Column 
Consider an ideal slender pinned-end column that is straight, axially loaded, and 
made of a homogeneous material. The column will remain straight under any value 
of the axial load; that is, it will not bend. At a certain critical load, let a small lateral 
force be applied to the column to produce a small lateral deflection. As noted in 
Sec. 12. 1 ,  if when the lateral load is removed, the column remains in the slightly 
bent position (Fig. 12. 1 ), the axial load is the critical load �r · If the load is in-
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creased slightly, the lateral deflection of the column increases rapidly; the deflec
tion (and hence, the strain and stress in the column) is not proportional to the load, 
However, the material still acts elastically. This behavior of the column is repre
sented by the region OAB of the curve in Fig. 12 .3a, where A represents the critical 
(buckling) load for the ideal slender column. Although the deflection increases in 
region AB, segment AB still represents a relatively small deflection [the larger de
flections indicated by BCD (Fig. 12.3a) are discussed in the next subsection] ; note 
that the magnitude of the deflection 1J in the sketch is greatly exaggerated. As noted 
in Sec. 12. 1 ,  the value of the critical load is given by Eq. ( 1 2. 1 ). Associated with the 
critical load �r is a critical stress CJcr = �,/A, where CJcr is the average normal stress 
in the column due to the load �r and A is the cross-sectional area of the column. 
Thus, we may write 

-

( 1 2.2) 

where E is the modulus of elasticity of the material, L the length of the column, I 
the smallest moment of inertia of the cross section, r the least radius of gyration of 
the cross section (r 2 = I /A), and L/r the slenderness ratio. In order for the column 
to remain elastic, CJcr must be less than the yield stress of the column material . In 
other words, the elastic buckling load has little physical significance, unless it is 
reached before the average stress equals or exceeds the yield stress. Equation ( 1 2.2) 
is called Euler's formula for a column with pinned ends. Further discussion and the 
derivation of Eq. ( 1 2.2) are given in Sec. 1 2.3 .  

Large Deflections. Southwell ( 1 941 )  has shown that a very slender column can 
sustain a load greater than �r in a bent position, provided that the average stress 
is much less than the yield stress. The load-deflection relation for such a column is 
similar to the curves BCD in Fig. 1 2.3 .  For a real column, the yield stress of the ma
terial is exceeded at some deflection C, and the column yields at an outer fiber due 
to combined axial force and bending (Fig. 1 2.3a). At point C, the load-deflection 
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Figure 12.3 Relation between load and deflection for columns. 
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curve continues to rise slightly with increasing load, until the critical section of the 
column is fully yielded. Then, the load-deflection curve drops, as indicated by the 
region near point E, and the column fails, either by plastic collapse or fracture. 

Imperfect Slender Columns 
Columns that possess deviations from the ideal conditions assumed in the pre
vious subsection are said to be imperfect columns. Real columns nearly always 
possess deviations from perfect (ideal) conditions. It is important, therefore, to con
sider the effects of these imperfections on the elastic buckling load. A common 
deviation is eccentricity of loading caused by misalignment of load or by initial 
crookedness of the column. If the load is slightly eccentric, a slender column will 
undergo lateral deflection as soon as a load is applied. This deflection will increase 
with increasing load (Fig. 12.2). However, before the load reaches the Euler load 
[Eq. ( 12.2)] , the deflection of the column may be very large. Therefore, load
deflection relations for large deflections are needed to explain the effects of devia
tions from ideal conditions. Practically, however, unless a column is extremely 
slender, it will fail by yielding or fracture, before such large deflections occur. 

An imperfect column may be considered to be equivalent to a straight slender 
column with an eccentricity e of load, as shown in the sketch in Fig. 12.3b. For 
small eccentricities, O'B'FG represents the load-deflection curve of the column. The 
curve O'B'FG approaches the curve OABCD of the ideal column if the material 
remains elastic. However, near point F, the yield stress is reached or exceeded. As 
for the ideal column, the load-deflection curve continues to rise until the critical 
section of the column is fully yielded, then drops (near point H). For a larger 
eccentricity, similar behavior occurs (curve O"B"IJ). For a small eccentricity, the 
maximum load within region F H does not differ much from �r (Fig. 1 2.3b ). How
ever, for large eccentricities, the maximum load within region I K may be much less 
than �r · 

For a very slender [large Ljr; see Eq. ( 1 2.2)] straight column subjected to a 
slightly eccentric load, Euler's formula [Eq. ( 1 2.2)] may give a fairly accurate esti
mate of the critical load. However, for a less slender column in which the critical 
stress CJcr = �riA is only slightly less than the yield stress, the load-deflection curve 
is represented more like OABE in Fig. 1 2.3c instead of OABCD in Figs. 12.3a and 
b. This behavior is explained by the fact that at point B only a small amount of 
additional lateral deflection is required to cause yielding. The curves O'F H and O"I K 
in Fig. 12.3c show that a column with an intermediate L/r ratio is much more 
sensitive to eccentricity of load than is a very slender column (Fig. 1 2.3b ). Hence, 
Euler's formula does not predict accurately the buckling load for eccentrically 
loaded columns of intermediate slenderness ratios. 

Failure of Slender Columns. In view of the above discussion, the question arises 
as to whether it is appropriate to use the term buckling in describing the failure of 
a slender column that is loaded eccentrically. For example, if columns whose load
deflection relations are represented by the curves OABCE, O'B'F H, and O"B"I K 
in Fig. 12.3b are used as machine or structural parts, their failure is usually consid
ered to occur by excessive deflection represented approximately by points B, B', 
and B". However, at B, B', and B", the loads are smaller than those required to 
cause instability or total collapse (regions CE, F H, and I K). Hence, failure of ec
centrically loaded slender members (the condition that limits the maximum utiliz
able load) is not a condition of buckling in the usual sense of the term. 
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Failure of Columns of Intermediate Slenderness Ratio. The load-deflection rela
tions for columns of intermediate slenderness ratios are represented by the curves 
in Fig. 1 2.3c. For such columns, a condition of instability is associated with points 
B, F, and I. At these points, inelastic strain occurs and is followed, after only a small 
increase in load, by instability and plastic collapse at relatively small lateral deflec
tions. These deflections do not differ greatly from the deflections associated with 
points B, B', and B" of Fig. 1 2.3b . 

Which Type of Failure Occurs? As noted above, two types of failure of slender 
columns are possible, depending on the slenderness ratio L/r, namely, ( 1 )  failure 
by excessive deflection before plastic collapse or fracture and (2) failure by plastic 
collapse or fracture. For a given value of Ljr, it is difficult to determine which 
type of failure will occur, except perhaps when L/r is very large. In other words, 
for L/r values ordinarily employed in structural columns, the type of column fail
ure is not easily determined. Furthermore, for responses indicated by curves O 'F H 
and 0"1 K (Fig. 12.3c), it is uncertain how much of an increase in load is possible, 
after inelastic strains occur and before collapse. To complicate matters further, 
this increase in load depends on not only the value of L/r, but also the shape of 
the cross section and the stress-strain diagram of the material (see Sec. 1 2.6). Thus, 
a wholly rational method, or formula, for the failure of columns is difficult to 
achieve. Hence, empirical methods are usually used in conjunction with analysis 
to develop workable design criteria (Salmon and Johnson, 1990). 

THE EULER FORMULA FOR COLUMNS WITH 
PINNED ENDS 

In this section, we derive Euler's formula for the critical load of an axially com
pressed column with pinned ends (Fig. 12.4). As noted in the introductory remarks 
for this chapter, several methods may be used to determine critical loads of a con
servative system. By way of illustration, we derive the Euler formula using several 
of these methods ; namely, the equilibrium method, the imperfection method, and 
the energy method. We do not demonstrate the snap-through method (since it is 
more significant in the study of buckling of shells) or the vibration method (since 
it lies outside the scope of this book; see Bazant and Cedolin, 199 1 ). The definitive 
study of buckling of columns has been attributed to Euler ( 1 933), who studied the 
buckling of a column clamped at the bottom and unrestrained at the top (the so
called flag-pole problem). However, since the problem of a column with pinned 
ends occurs frequently in practice, it is called the fundamental problem of buckling 
of a column. Hence, we consider it first. 

The Equilibrium Method 
Consider the pin-ended column of Fig. 1 2.4. The free-body diagram of the lower 
part AB of the column is shown in Fig. 12. 5, where positive M(x) is taken in the 
clockwise sense. By equilibrium of moments about point A, we have L MA = 
M(x) + Py = 0, or 

M(x) = - Py ( 12 . 3) 
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Figure 12.4 Column with pinned ends. Figure 12.5 Free-body diagram of 
lower part of column. 

Equation ( 1 2.3) represents a state of neutral equilibrium. By elementary beam 
theory, the moment M(x) is related to the radius of curvature R(x) of the centerline 
of the column in the displaced position by the relation 

El 
M(x) = 

R(x) 
( 1 2.4) 

where El is the flexural stiffness for bending in the plane of Fig. 1 2. 5. If the slope 
dyjdx of the displaced position is small, by the calculus formula for R(x), we have 

( 12.5)  

Then, Eqs. ( 1 2.4) and ( 1 2.5 )  yield 

( 1 2.6) 

where for given axes the plus sign corresponds to the case where M(x) is chosen to 
produce a curvature with center 0 on the positive side of the y axis (Fig. 1 2 .6a). 
Similarly, the minus sign is taken when a positive moment is chosen to produce a 
curvature with center 0 on the negative side of the y axis (Fig. 1 2.6b). For example, 
in Fig. 1 2 .5, we have chosen positive M(x) in the clockwise sense, and it produces 
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Figure 12.6 Sign convention for internal moment. (a) Positive moment taken clockwise. 
(b) Positive moment taken counterclockwise. 

a curvature with center 0 on the positive side of the y axis. Therefore, we take 
the plus sign in Eq. ( 1 2 .6) . Thus, by Eqs. ( 1 2.3) and ( 12.6), we obtain, after divid
ing by El, 

where 

The boundary conditions associated with Eq. ( 1 2.7)  are 

y = 0, for x = 0 and x = L 

( 12.7 )  

( 1 2. 8) 

( 1 2.9) 

For arbitrary values of P, Eqs. ( 1 2.7)  and ( 12.9) admit only the trivial solution y = 0. 
However, nontrivial solutions of Eq. ( 1 2.7)  exist for specific eigenvalues k, as will 
now be shown. 

The general solution to Eq. ( 1 2.7)  is 

y = A sin kx + B cos kx ( 12. 10) 

where A and B are constants determined from the boundary conditions [Eq. ( 1 2.9)] . 
Therefore, .�qs. ( 1 2.9) and ( 1 2. 10) yield, 

A sin kL = 0, B = O 

For a nontrivial solution (A i= 0), Eq. ( 1 2. 1 1 ) requires that sin kL = 0, or 

k = {P. = nrc 
n .YFJ L ' n = 1 ,  2, 3, . . . 

( 1 2. 1 1 ) 

( 1 2. 1 2) 

For each value of n, by Eq. ( 1 2. 10), for k = kn , there exists an associated nontrivial 
solution (eigenfunction) 

( 1 2. 1 3) 
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From Eq. ( 1 2. 1 2), the corresponding Euler loads are 

n = 1 ,  2, 3, . . . ( 1 2. 1 4) 

The minimum Pn occurs for n = 1 .  This is the smallest load for which a nontrivial 
solution is possible ; that is, it is the critical load for the column. By Eq. ( 1 2. 1 2), with 
n = 1 ,  we find 

( 12. 1 5) 

As noted previously, Eq. ( 1 2 . 1 5) is the Euler formula for the buckling of a column 
with pinned ends [see Eqs. ( 1 2 . 1 )  and ( 12.2)] . The buckled shape of the column is, 
as given by Eq. ( 1 2. 1 3) and shown in Fig. 12 .4, 

( 1 2. 1 6) 

However, the constant A1 is indeterminant; that is, the maximum amplitude of 
the buckled column cannot be determined by this approach. It must be determined 
by the theory of the elastica. The interpretation of Eq. ( 1 2 . 1 4) for higher values of 
n follows. 

Higher Buckling Loads ; n > 1 
A slender pinned-end elastic column (one with a large slenderness ratio L/r) has 
more than one buckling or critical load, Eq. ( 1 2. 1 4). If the column is restrained 
from buckling into a single lobe by a lateral stop, it may buckle at a load higher 
than �r · For example, a column with pinned ends can buckle in the form of a 
single sine lobe at the critical load �r (Fig. 12.7a). If, however, it is prevented from 
bending in the form of one lobe by restraints at its midpoint, the load can increase 
until it buckles into two lobes (n = 2; Fig. 1 2.7b). By Eq. ( 12. 1 4), for n = 2, the crit
ical load and critical stress are 

( 1 2. 17)  

Similarly, for n = 3 ,  

( 1 2 . 1 8) 

or for any number of lobes n, 

( 12. 1 9) 

The buckling modes for n = 1 ,  2, and 3 are shown in Fig. 1 2.7. 
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n = 1 

(b) 

Figure 12.7 Buckling modes : n = 1 ,  2, 3 .  

(c) 

In summary, the equilibrium method is characterized by the question : What 
are the values of the load for which the perfect system admits nontrivial equi
librium configurations? As demonstrated above for the pin-ended column, an 
infinite number of such values (eigenvalues), n = 1 ,  2, 3, . . . , oo ,  exist. However, prac
tically speaking, usually only the smallest value, �, is significant. 

The Imperfection Method 
In the imperfection method, we acknowledge the fact that a real column usually is 
loaded eccentrically (the line of action of the compressive force does not lie exactly 
along the centroidal axis of the column or the column is not exactly straight). A 
common eccentricity occurs when the line of action of the load is displaced a dis
tance e from the centerline of the column (Fig. 12.8a, c, and d ). As an example, 
consider the column shown in Fig. 12.8a. A free-body diagram of a segment of the 
column in the displaced position is shown in Fig. 1 2. 8b. By the equilibrium of 
moments about point A, we have I MA = M(x) + PexjL + Py = 0. Hence, 

X M(x) = - Py - PeL 
( 1 2.20) 



480 12 / STABILITY OF COLUMNS 

X 

X 

r \ \ \ I Displaced 'v position 
L 1I I y l 

y 

(a) (b) 

X X 

r r 
L L 1 y L y 

(c) (d) 

Figure 12.8 Eccentrically loaded pinned-end columns. 

y 

Thus, by Eqs. ( 1 2.6) and ( 12.20), we obtain M(x) = + Eld2yjdx2 = - Py - PexjL, 
or dividing by El, we obtain 

The boundary conditions associated with Eq. ( 1 2.2 1) are 

y = O  for x = 0, L 

The general solution of Eq. ( 12 .2 1 )  is 

. 

k k ex y = A SID X + B cos X - -L 

( 12.2 1 )  

( 1 2.22) 

( 1 2.23) 

where A and B are constants determined by the boundary conditions. Hence, 
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Eqs. ( 12 .22) and ( 1 2.23) yield the solution 

= e
( sin kx _ �) y 
sin kL L 

( 12.24) 

As the load P increases (Fig. 12.8a), the deflection of the column increases. When 
P reaches the value for which kL = nrc, n = 1 ,  2, 3, . . .  , the deflection given by 
Eq. ( 1 2.24) becomes infinitely large, since sin kL goes to zero as kL goes to nrc. The 
term sin kL becomes zero for the first time when n = 1. Then, P1 = �r = rc2EI/L2, 
the Euler load [Eq. ( 1 2.2)] . Thus, we see that the imperfection method yields the 
Euler buckling load for the pin-ended column. Other types of eccentricities, such 
as those shown in Figs. 12.8c and d, may also be analyzed by the method of im
perfections (see Problems 12.8 and 12.9). 

In summary, the imperfection method is characterized by the question : What 
is the value of the load for which the deflection of an imperfect system increases 
beyond any limit? 

The Energy Method 
The energy method is based on the first law of thermodynamics; namely, as a 
system is moved from one configuration to a second configuration, the work that 
external forces perform on a system plus the heat energy that flows into the system 
equals the increase of internal energy of the system plus the increase of the kinetic 
energy of the system. For a conservative (elastic) system, the increase in internal 
energy is equal to the change in strain energy (see Sec. 5 . 1 ). Thus, for a conservative 
system, the first law of thermodynamics is, in equation form, 

bW + bH = bU + bK ( 12.25) 

where b W is the work of the external forces as the system is moved from one con
figuration to a second configuration, bH the corresponding heat energy added to 
the system b U the corresponding change in the strain energy, and bK the corre
sponding change in kinetic energy. See also Sec. 3 . 1 .  

Application to Column Buckling. Consider an elastic column that is subjected to 
its critical ·axial load. A slight disturbance will cause the column to "kick out" or 
buckle into a new equilibrium position. Dynamically, the elastic column will vi
brate about the buckled position indefinitely. This vibration represents an increase 
in kinetic energy. However, for an infinitesimal buckling displacement, the kinetic 
energy bK is of a higher order than the energies bW and bU; that is, bK << bW or 
bU. In addition we assume an adiabatic system, so that bH = 0. Then, for an adia
batic elastic column, Eq. ( 12.25) may be approximated by the condition 

bW = bU ( 1 2.26) 

In the energy approach (Timoshenko and Gere, 196 1  ), it is assumed that the 
column may buckle when the load first reaches a value for which bW = bU. If 
there exists a family of such loads, the critical load is the minimum load of 
the family. 
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To solve the problem for the lowest possible load by the Rayleigh method (which 
is an approximate solution; Langhaar, 1989), we may reduce the problem to a 
single degree of freedom by assuming a simple deflection form, say, y = A  sin nx/L. 
However, more generally, we may represent the buckled configuration by a Fourier 
series that satisfies the end conditions. For example, consider the pin-ended column 
subjected to an axial compressive load P, (Fig. 1 2.9). In the small displacement 
theory, it is assumed that the effect of the axial shortening of the column on the 
strain energy is of secondary importance. [This assumption is also fairly accurate 
for large displacements of the column (Kounadis and Mallis, 1 988).] It is further 
assumed that the length L of the column remains essentially unchanged when it 
buckles. However, in the buckled position the load P is lowered a distance (L - b) 
from its buckled position (Fig. 12.9). 

Let us assume that the displacement y may be represented by the Fourier series 

oo nnx y(x) = I an sin-
n = l L 

( 1 2.27) 

This equation satisfies the end conditions (y = 0 for x == 0, L) for the pin-ended 
column. Next consider the change in strain energy from the unbuckled position to 
the buckled position. By Eqs. (5. 1 9) and ( 1 2.6), the strain energy due to bending of 
the column is 

UM = - El(y")2 dx 1 fL 
2 0 ( 12.28) 

where y" = d2yjdx2 • Utilizing the orthogonality condition for the sine series, 

stn - stn -- dx = 0 for m i= n ;  fL . nnx . mnx 
0 L L 

we obtain by integration, with Eqs. ( 1 2.27) and ( 1 2.28) 

X 
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y 

Figure 12.9 

= L for m =  n ( 12.29) 

( 12 . 30) 
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As noted previously, in the small displacement theory, we ignore the shortening of 
the column. Then, initially in the unbuckled position, U = 0. Therefore, 

( 1 2. 3 1 ) 

To compute the work done by the load P, we recall that the bar will buckle without 
changing its length L significantly. Note also that an element ds of the column is 
given by the relation ds2 = dx 2 + dy2 or ds = -J 1 + (y ' )2 dx and, therefore, 

L = r ds = I: .Jt + ( y ' )2 dx 

By the binomial expansion, 

� 1 + (y ' )2 = [1 + (y ' )2] 1 /2 = 1 + t(y'f 

to second-order terms in y' .  Therefore, 

Consequently, the work done by force P is 

bW= P(L - b) = - (y')2 dx p fL 2 0 

or with Eq. ( 1 2.27) 

( 12.32) 

With Eqs. ( 1 2.3 1 )  and ( 1 2.32), the criterion bW= bU  yields 

or 

( 12. 33) 

If a 1 i= 0 and a2 = a3 = a4 = · · · = 0, then P = n2El/L2 . By inspection if any of 
the other a's are not zero, P > n 2EI/L2 . Hence, the minimum buckling load is 
P1 = �r = n 2EljL2, with the corresponding displacement mode y = a 1 sin nx/L. 
This value of P1 and its displacement mode agree with those obtained by the im
perfection method and by the equilibrium method. For a2 i= 0 and all other a's 
zero, we obtain the second mode and the buckling load P2 = 4n 2 El/L2 = 4�n as 
before. Similarly, for a3 i= 0 and all other a's zero, we get P3 = 9�n and so on for 
the other modes. 
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12.4 

In summary, for an elastic column (or more generally, for any elastic structure), 
the energy method seeks an answer to the question : When does the load reach a 
value for which the work done by the external forces during the buckling deflection 
first equals the increase in the strain energy due to buckling? The equality yields an 
expression for the buckling load. 

EULER BUCKLING OF COLUMNS WITH GENERAL 
END CONSTRAINTS 

Consider a straight elastic column (Fig. 1 2. 1  0) with linearly elastic end restraints. 
Let K1 , K2 denote the elastic constants for the rotational springs, and k1 , k2 denote 
the elastic constants for the extensional springs. Let an axial compressive load P be 
applied to the column. Initially, for small values of P, the column remains straight. 
When the load increases, a critical value is reached at which any small lateral dis
turbance will cause the column to displace laterally (to buckle). In the buckled posi
tion, the potential energy of the column-spring system is 

V = tK2(Y2 )2 + !k2(Y2f + !K1( Y'1 )2 + !k1 ( Y1f 

+ tEl J: (y" )2 dx - tP J: (y' )2 dx ( 1 2.34) 

where y 1 , y2 denote the displacements at x = 0 and x = L, respectively, and primes 
denote derivatives with respect to x. The displaced equilibrium position of the 
column is given by the principle of stationary potential energy (see Sec. 5. 1 ) ;  that 
is, by the condition that the first variation b V of V, under a virtual displacement 
by, vanishes identically (Langhaar, 1 989). By Eq. ( 1 2. 34), we set bV  equal to zero. 
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Thus, we find 

bV = K2y� by� + k2y2 by2 + K1y� by� + k1y1 by1 

EI LL y" Oy" dx - P J: y' Oy' dx = 0 

Integration of Eq. ( 12.35) by parts yields 

(K2y� + Ely�) by� + (K1y� - Ely�) by� + (k2y2 - Ely�' - Py� )  by2 

( 12. 35) 

+ (k 1y1 + Eiyt + Py� ) Oy1 + J: (Ely"" + Py") Oy dx = 0 ( 1 2.36) 

The necessary and sufficient conditions that bV = 0 are that (see Langhaar, 1989) 

Ely"" + Py" = 0 ( 12.37) 

and 

(K2y� + Ely�) by� = 0 
(K1y� - Ely�) by� = 0 

(k2y2 - Ely�' - Py� )  by2 = 0 
(k1y1 + Ely�' + Py� ) by1 = 0 ( 1 2. 38) 

Equation ( 1 2.37) is the Euler equation for the column, and Eqs. ( 1 2.38) are the 
boundary conditions. Equations ( 1 2.38) include both natural boundary conditions and 
forced boundary conditions, as demonstrated in the following discussion. 

The general solution of Eq. ( 1 2.37) is 

y = A sin kx + B cos kx + Cx + D ( 1 2.39) 

where k 2 = PjEl and A, B, C, D are constants. 
If y1 , y2 and their first derivatives y'b y� are arbitrary (not forced), their varia

tions by1 , by2 , by'1 , and by� are also arbitrary (nonzero). Then, Eqs. ( 1 2. 38) and 
( 1 2.39) yield the natural boundary conditions ( 

k 
Elk . 

k 
) ( . Elk 

k 
) C 

cos L - K2 
SID L A - SID kL + K2 

cos L B + k = 0 

Elk C 
A + - B + - = 0  K1 k ( . Elk3 Pk ) SID kL + k;- cos kL-

k2 
cos kL A ( 

k 
Elk3 . k 

Pk . ) ( P ) 
+ cos L- J:;- sin L + 

k2 
sin kL B + L -

k2 
C + D = O  

- - -- A + B + - C + D = O  
(Pk Elk 3) P 

k1 k1 k1 
( 1 2.40) 
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Equations ( 1 2.40) are a set of four homogeneous algebraic equations in A, B, C, D. 
For a nontrivial solution of Eq. (1 2.37), the determinant � of the coefficients A, B, 
C, D must vanish ; that is, � = 0. This equation leads to the critical load (buckling) 
condition of the column. 

If certain of the end displacements (y1 , y2 ) and end slopes ( y'b y�) of the column 
are forced (given), that is, they are not arbitrary, the associated variations must 
vanish. These specified conditions are called the forced boundary conditions (also 
called geometric, kinematic, or essential boundary conditions). For example, for 
pinned ends, we require that y1 and y2 be set (forced) equal to zero; that is, we 
require 

Y1 = 0 for x = 0 and y2 = 0 for x = L ( 1 2.4 1 )  

Hence, the variations by1 = by2 = 0 .  Then, the last two of Eqs. ( 1 2. 38) are identi
cally satisfied. The first two of Eqs. ( 1 2 .38) yield the natural (unforced) boundary 
conditions for pinned ends, since y'1 and y� and hence by� are arbitrary (nonzero). 
Also, for pinned ends, K1 = K2 = 0. Therefore, Eqs . ( 1 2.8) yield the natural bound
ary conditions (since El i= 0) 

( 1 2.42) 

Equations ( 12 .39), ( 1 2.4 1 ), and Eq. ( 1 2.42) yield B = C = D = 0, and A sin kL = 0. 
Hence, knL = nrc, n = 1 ,  2, 3, . . .  , and the critical load (for n = 1 ) is �r = kfEI = 
n2EljL2 . This result agrees with that obtained in Sec. 1 2.3 .  In the following exam
ples, columns with other end conditions are treated. See also Table 12. 1 ,  where a 
summary of column buckling loads and the corresponding modes for several end 
conditions are listed. 

TABLE 12.1 
Comparison of Boundary-Condition Effects 

Boundary Conditions Critical Load Deflected Shape Effective Length KL 

Simple support-simple 
n2EI 4'.Y IF � - L 

support l::::: L (typical) � x 

Clamped -clamped 
4n2El � !L ----u-

2.04n2El �� � Clamped-simple 0.70L 
support L2 

Clamped-free 
n2EI 
4L2 � 2L 

Clamped-guided 
n2El � L2 L 

Simple support-guided 
n2El � 4L2 2L 
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Column with One End Clamped and the Other End Free 

Consider a column clamped at one end (x = 0) and free at the other end (x = L) ; 
see Table 12. 1 .  At x = 0, the forced boundary conditions are 

y(O) = Y1 = 0, y '(O) = y� = 0 (a) 

Hence, by1 = by� = 0. Also, at the free end, K2 = k2 = 0. Then, Eqs. ( 1 2.3 8) yield 
the natural boundary conditions 

y� = 0, Ely�' + Py� = 0 (b) 

Equations (a) and (b), with Eq. ( 1 2. 39), yield the results 

B + D = 0, kA + C = 0 
A sin kL+ B cos kL= 0, A cos kL= 0 (c) 

The solution of Eqs. (c) is A = C = 0, D = - B, and cos kL = 0. The condition 
cos kL = 0 yields knL = (2n - 1)n/2. For n = 1 ,  the eigenvalue is k1 = n/2. Hence, 
the minimum buckling load is 

where 

n2El n2El p1 = kiEI = 
(2L )2 = 

(Lerr f = 
t�r 

denotes the critical load of a pinned-end column of length L and where Lerr = 2L 
denotes the effective length of the clamped-free ended column. The effective length 
of a given column is the length of an equivalent column with pinned ends that will 
buckle at the same critical load as the given column with its actual end conditions. 
The effective length Lerr is often denoted by KL, where K is the effective length 
factor (Table 12. 1 ). 

EXAMPLE 12.2 
Column with Clamped (Fixed ) Ends 

Consider a column with clamped ends (Table 12. 1 ). The specified (forced) boundary 
conditions are 

for x = 0, y 1 = y� = 0; for x = L, y2 = y� = 0 (a) 

Consequently, the variations by1 = by2 = by'1 = by� = 0, and Eqs. ( 1 2.40) are 
satisfied identically. Therefore, there are no natural boundary conditions for this 
problem; that is, all the boundary conditions are forced. Equations (a), with 
Eq. ( 1 2. 39), yield 

B + D = 0 (or D = - B), 
A(sin kL - kL) + B(cos kL- 1) = 0, 

kA + C = 0 (or C = - kA) 
A (cos kL - 1) - B sin kL = 0 (b) 
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12.5 

The first two of Eqs. (b) express C and D in terms of A and B .  For a nontrivial solu
tion, the determinant of the coefficients of the last two of Eqs. (b) in A and B must 
vanish identically. This requirement yields the result 

kL sin kL= 2( 1  - cos kL) (c) 

Equation (c) is satisfied by the condition knL = 2nn. The minimum buckling load 
for n = 1 is 

where 

and Lerr = L/2 denotes the effective length of the column with fixed ends. 

(d) 

For specific values of K1 , K2 , k1 , k2 that are neither zero nor infinity, the buck
ling load is obtained by setting the determinant � of the coefficients A, B, C, D in 
Eq. ( 1 2 .40) equal to zero. Then, in general, the determinantal equation � = 0 must 
be solved numerically for the minimum buckling load P1 • In general, the mini
mum buckling loads for columns, with end conditions other than pinned, are given 
by the expression P1 = rc2EI/(Lerrf = Q�, where �r = n2El/L2 (the Euler load 
for the pin-ended column), Lerr is the effective length of the column, and Q is a 
positive number determined by the values of K1 , K2 , k1 , k2 . 

LOCAL BUCKLING OF COLUMNS 

Consider a column with a cross section that is formed with several thin-wall parts 
(e.g., a channel, an angle, or a wide-flange 1-beam). Depending on the relative cross
sectional dimensions of a flange or web, such a column may fail by local buckling 
of the flange or web, before it fails as an Euler column. For example, consider the 
test results of an aluminum column that has an equal-leg angle cross section of 
length b and wall this;kness t, with dimensions as indicated in Fig. 1 2. 1 1 (Bridget 
et al. , 1934). The experimentally determined failure of the column exhibits distinc
tively different characteristics, depending on the ratio tfb. If the ratio t/b is rela
tively large, the column buckles as an Euler column. However, if t/b is relatively 
small, the column fails by buckling or wrinkling of one side or leg (Fig. 1 2. 1 1 ) before 
it buckles as an Euler column. This type of failure is referred to by several names, 
namely, sheet buckling, plate buckling, crimping, wrinkling, or more generally, as 
local buckling, in contrast to Euler (global ) buckling. Figure 12. 1 2 shows a sketch 
of similar local buckling of the thin flanges of a channel section or one-half of an 
H-section (Stowell et al., 195 1) . 
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l 1559 mm 

Wal l  th ick ness ratio, � 
Figure 12. 1 1  Buckling loads for local buckling and Euler buckling for columns made of 

245 TR aluminum (E = 74. 5 GPa). 

Local buckling of a compressed thin-wall column may not cause immediate col
lapse of the column. However, it alters the stress distribution in the system, reduces 
the compressive stiffness of the column, and generally leads to collapse at loads less 
than the Euler load. The prediction of the occurrence of local buckling has been 
studied by a number of authors (see, e.g., Timoshenko and Gere, 1 96 1 ;  Rhodes, 
1978). The study of compression of such columns beyond the local buckling load 
is less extensive (Rhodes and Harvey, 1 976). In a sense, the effect of local buckling 
in a column is comparable to the effect of imperfections (Rhodes, 1 978). In most 
instances, local buckling reduces the collapse load of the column. However, under 
certain conditions, load redistribution may not be particularly harmful, in that 
additional load may be applied before the strength of the column, as a whole, is 
exceeded (Rhodes and Harvey, 1976). 

In the design of columns in building structures using hot-rolled steel, local buck
ling is controlled by selecting cross sections with t/b ratios such that the critical 
stress for local buckling will exceed the yield stress of the material (AISC, 1986). 
Hence, local buckling will not occur since the material will yield first. Local buck
ling is controlled in cold-formed steel members by the use of effective widths of 
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12.6 

t 
Figure 12. 12  Local buckling (wrinkling) of thin flanges of channel section (or half of H

section; see Stowel et al ., 195 1) .  

the various compression elements (leg of an angle, flange of a channel, etc.), which 
account for the relatively small t/b ratio. These effective widths are then used to 
compute effective (reduced) cross-section properties, A, I, and so forth (AISI, 1986). 

INELASTIC BUCKLING OF COLUMNS 

In the previous discussion, we considered mainly elastic buckling of columns. In 
this section, we account for the fact that the average stress in the column may ex
ceed the proportional limit stress of the material before buckling as an Euler column 
occurs. 

Inelastic Buckling 
As noted previously, buckling of columns that have intermediate slenderness ratios 
(L/r) is not solely affected by elastic action. For example, let the value of L/r be re-
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latively small, so that the compressive stress in the column reaches the compressive 
proportional limit stress or the yield point stress (see Sec. 1 .4) of the material before 
the load reaches the elastic buckling load. Then, the behavior of the column may 
be very similar to that of elastic buckling; that is, the column may undergo a rather 
abrupt lateral deflection at a fairly well-defined load. This behavior is called inelas
tic or plastic buckling. 

The problem of determining the buckling load for a column that does not buckle 
before it is strained inelastically may be considered for two kinds of material be
havior. In one case, the material in the column has a flat-top stress-strain curve. 
The initial nonzero slope of the compressive stress-strain curve changes abruptly 
to zero when the proportional limit stress is reached. Then, the stress-strain curve 
becomes horizontal and remains so until relatively large inelastic strains are de
veloped (Fig. 1 . 5). For such materials, the proportional limit stress and yield 
point stress are essentially equal. Mild steel usually exhibits this type of stress
strain curve. 

A column with a relatively small L/r (less than approximately 100) and made of 
structural steel having a yield point usually buckles when the average stress in the 
column is slightly less than the proportional limit of the material . When the average 
stress in the column is equal to the yield point, it is impossible for the column to 
develop a resisting moment until the column has deflected sufficiently to cause the 
most highly strained material in the column to strain harden. The column usually 
fails by excessive deflection before this happens. 

In the second kind of material behavior, the compressive stress-strain curve 
changes in slope gradually as the stress is increased above the proportional limit 
(Figs. 1 . 3 and 1 .4); aluminum alloys and some heat-treated steels, for example, 
exhibit this kind of behavior. Also, residual stresses cause this kind of behavior 
in rolled structural steel shapes (see Salmon and Johnson, 1990, p. 308). Inelastic 
buckling loads for columns made of this second kind of material behavior are con
sidered in the following discussion. 

Columns made of materials that exhibit this second type of stress-strain dia
gram (e.g. aluminum, alloy steels, and rolled structural steel shapes in which signifi
cant residual stresses exist) may have relative dimensions such that before buckling, 
small amounts of inelastic strains occur. These inelastic strains, however, may not 
be great enough to cause significant damage to the column. In fact, the maximum 
inelastic strain in the column, at impending buckling, is often of the same order of 
magnitude as that of the elastic strain at the proportional limit of the material. 
Usually, it-�is much less than the strain corresponding to the yield stress based on a 
0.2% offset. By permitting this small amount of inelastic strain, a larger design load 
may be justified than if only strains within the elastic range were permitted. How
ever, when the buckling load is finally reached, the deflection of the column may 
increase suddenly and result in a catastrophic collapse. 

Two Formulas for Inelastic Buckling of an Ideal Column 
The buckling load for a column is the axial load that holds the column in a slightly 
deflected position. Since an ideal column will not bend under axial load, a small 
lateral force must be applied to produce the initial deflection. This loading proce
dure may be carried out in any number of ways. For instance, the loading history 
might be (1 )  the lateral force may be applied first, the axial load required to hold 
the column in the slightly bent position may be applied next, and the lateral force 
is removed; or (2) the unknown critical load may be applied first, the lateral force 
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may be applied next to cause a lateral deflection, and then the lateral force is re
moved. For elastic behavior of the column, the solution for the Euler buckling load 
is the same for the two procedures, since the physical process is conservative 
(reversible) and, hence, does not depend on the strain history. 

For a system in which inelastic behavior occurs, the physical process is irre
versible. Hence, the loading history (the order of force application) influences the 
resulting value of the buckling load. The main condition involved is whether a 
single-valued relationship exists between stress and strain for the loading/unload
ing process (see Sec. 4.2). The stress-strain relationship is single-valued if all strains 
are elastic or if inelastic strains increase monotonically. The stress-strain relation
ship is not single-valued when fibers in the member are allowed to unload elasti
cally from an inelastic state. 

Accordingly, two approaches have been developed to predict inelastic buckling 
loads for an ideal column. They differ in their assumptions regarding the loading 
history. In case (a), the lateral force and the last increment of the axial load are 
applied simultaneously so that the strains in all the fibers at any cross section in
crease, although they are not uniformly distributed on the section after the lateral 
force is applied. In case (b), an axial load equal to the buckling load is applied first, 
followed by application of a small lateral force that deflects the column. The bend
ing in case (b) causes the strains in the fibers on the convex side to decrease (un
load) and on the concave side to increase. 

The essential difference between the two cases lies in the fact that, in case (b), the 
strains in some of the fibers on the convex side decrease elastically. Hence, the 
change in stress �o- accompanying the decrease in strain �E is given by �(J = E �E, 
in which E is the elastic modulus. However, in case (a), �o- = ET �E, in which ET is 
the tangent modulus corresponding to the inelastic stress o- (o- = P/A). 

The buckling load in case (a) is called the tangent-modulus load and is given by 
the expression PT = n 2 ETI/L 2• In case (b), the buckling load is called the 
double-modulus load and is given by the expression Pn = n 2Enl/L2, in which En is 
the effective modulus or double modulus, since it is expressed in terms of E and ET . 

The double-modulus theory was considered to be the more accurate theory of 
inelastic column buckling until Shanley ( 1 946) showed that it represented a para
dox requiring physically unattainable conditions. A development of the double
modulus theory is given by Bleich ( 1 952); see also Bazant and Cedolin ( 199 1). A 
comparison of predicted values of buckling loads by the tangent-modulus theory 
and double-modulus theory is given in the third edition of this book (Boresi et al. ,  
1978). Note that neither of these theories applies to a column made of an elastic, 
perfectly plastic material (see Figs. 4.3a and 4.4a), since for such materials, both ET 
and En are zero, which leads to PT = Pn = 0. 

A development of the tangent-modulus formula follows. We recommend use of 
the tangent-modulus equation, since it generally leads to a good, conservative esti
mate of the maximum (buckling) load that a real column having slight imperfec
tions can be expected to safely resist. 

Tangent-Modulus Formula for an Inelastic 
Buckling Load 
Let Fig. 12. 1 3a represent a column subjected to a gradually increasing axial load 
P. For convenience, let the column have a rectangular cross section. It is also as
sumed that the slenderness ratio L/r is sufficiently small to preclude elastic buck-
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ling. The load P may therefore attain a value that causes a uniform stress (J on the 
cross section of the column that is greater than the proportional limit CJpL (Sec. 1 .4) 
of the material. The stress-strain diagram for the material is shown in Fig. 12. 1 3d. 
In this diagram, (J represents the uniformly distributed compressive stress on each 
cross section of the column and E the corresponding strain ; it is assumed that the 
value of the buckling load PT (or buckling stress (JT = PT/A) and the correspond
ing inelastic strain are represented by a point in the neighborhood of C on the 
stress-strain curve. Hence, as previously noted, inelastic buckling involves rela
tively small inelastic strains. 

The problem is to find the smallest load PT = ACJT that will cause the ideal 
column to remain in a slightly bent position when a small lateral force is applied 
(simultaneously with the last increment of axial load) and then is removed. As in
crements of the axial load P are applied to the ideal column, the longitudinal strain 
at n-n increases but remains uniformly distributed as shown by the lines 
marked 1, 2, 3, and 4 in Fig. 12. 1 3b. As P approaches the value PT , which we 
wish to determine, let a small lateral force be applied simultaneously with the last 
increment of load as P attains the value PT . The resulting distribution of strain 
is as shown by the line marked 5 in Fig. 12. 1 3b in which the lateral bending is 
greatly exaggerated. 

The resulting stress distribution on section n-n is shown in Fig. 12. 1 3c by the 
sloping line AB and is obtained from Fig. 12. 1 3d by taking the stresses correspond
ing to the strains. The assumption that line AB is straight is equivalent to the as
sumption that the slope of tangent line to the stress-strain curve, such as that shown 
at C in Fig. 12. 1 3d, is constant during the change in strain from E to E + �E. This 
assumption is justified because the increment �E is small for the small lateral bend
ing imposed on the column. The slope of the tangent line at any point such as C is 
called the tangent modulus at point C and is denoted by ET ; the increment of stress 

p 
��� 

I 
n I 

II\ 
p 

(a) 

a �� 
� 

9oQ D 

. .  

(b) 

Pr 

(c) (d) 

Figure 12. 1 3  Strain and stress distribution for tangent-modulus load. 

.1a = Er.1E 
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corresponding to 11E is therefore !1CJ = ET 11E. The desired value PT of the axial load 
P may now be found in the same manner that the Euler load for the beginning of 
elastic buckling is usually obtained. Thus, let Fig. 12. 1 3c be a free-body diagram 
showing the forces acting on the lower half of the column. Equilibrium of the 
column requires that the external bending moment PT y for any cross section shall 
be equal and opposite to the resisting moment about the centroidal axis of the cross 
section of the internal forces on the section. This fact is expressed by the equation 

p - (!1CJ/2)1 
TY - h/2 

(12.43) 

In Eq. ( 1 2.43), let !1CJ be replaced by ET 11E and, in turn, let 11E be replaced by the 
expression h/R, which is obtained by relating the strain in the extreme fiber to the 
radius of curvature R of the column. Furthermore, for small deflections the curva
ture 1/R is given by the expression 1/R = - d2yjdz2 [see Eq. ( 12. 5)] . With these 
substitutions, Eq. ( 12.43) becomes 

(12.44) 

The solution of this differential equation for a column with pinned ends leads to 
the buckling load (see the first subsection in Sec. 12.3) 

or ( 12.45) 

in which PT is the tangent modulus buckling load. It may be considered either the 
smallest load that will hold the ideal column in a slightly bent form or the largest 
load under which the ideal column will not bend. This formula is called the tangent
modulus formula or Engesser's formula.* 

The solution of the tangent-modulus equation for a column of given material 
and dimensions involves a trial-and-error process for the reason that a value of ET 
cannot be selected unless PT is known. Furthermore, a stress-strain diagram for the 
given material must be available. The method of solution is illustrated in the fol
lowing examples. An alternate procedure has been proposed by Rao ( 1991 ). 

EXAMPLE 12.3 
Tangent-Modulus Load Pr 

r 

A pinned-pinned column having a square cross section b = 25.0 mm on a side and 
a length of L = 250 mm is loaded axially through special bearing blocks that allow 
free rotation when bending of the column starts. The member is made of material 
for which the compressive stress-strain curve is shown by OBC in Fig. E12.3 .  The 
tangent modulus for this stress-strain curve is shown by abscissas to the curve 

* This theory is due in part to F. R. Shanley (1947, 1950). 
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Figure E12.3 Values of tangent modulus for a material not having a yield point. 

DEFG on the upper scale. (Point F corresponds to the proportional limit, point B 
on curve OBC.) Compute the load PT . 

SOLUTION 

By trial and error, we must select from the curves in Fig. E12.3 a set of correspond
ing values of stress (JT and tangent modulus ET that will satisfy Eq. ( 1 2.45). As a 
first trial value, select ET = 3 1 .0 GPa, which from curve DEF corresponds to 
(JT = PT/A = 262 MPa. For rectangular sections r = bj.JTi = 7.21 7 mm and 
Ljr = 34.64. The right side of Eq. ( 1 2.45) is 

Since the left side of Eq. ( 1 2.45) is 262 MPa, a new trial is necessary. For the 
second trial assume that ET = 3 1 .6 GPa, which from curve DEF corresponds 
to (JT = 261 MPa. The right side of Eq. ( 1 2.45) is now 260 MPa, which is suf
ficiently close to the assumed value. Hence, the buckling load is PT � )�0(25)� = . ·  

1 63,000 N = 1 63 kN. 
, 

. . . " . .. 
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EXAMPLE 12.4 

In Example 1 2.3 the stress at the tangent-modulus load was found to be 260 MPa 
which from curve OBC corresponds to a strain of 0.001 80. If it is specified that the 
strain (or stress) in the column must not exceed the value corresponding to the yield 
stress of the material, based on 0.2% offset, will this stress and strain at the tangent 
modulus load be within the required limit? 

SOLUTION 

The yield stress based on 0.2% offset, as shown by the line HI in Fig. E 12.3, is 
288 MPa, which corresponds to a strain of 0.0034. Therefore, the stress and strain 
at the tangent-modulus load are less than values at the yield stress. It should be 
pointed out that the stress and strain at which the tangent-modulus load occurs 
in nearly all inelastic columns are smaller than the stress and strain values corre
sponding to the yield stress. This fact shows that, although the tangent-modulus 
formula is obtained on the assumption that some inelastic strain occurs, the in
elastic strains that correspond to this load are smaller than the inelastic strains (the 
offset) that are usually assumed to be permissible without causing damage to the 
load-resisting behavior of the material or structure. 

Direct Tangent-Modulus Method 
The iterative method of applying the tangent modulus formula is suitable for cal
culating the buckling load for a given column. However, in design, one may wish 
to try several different column configurations to meet specifications most efficiently. 
Then, the procedure described below is more appropriate. 

As noted in Example 12. 3, the average tangent-modulus stress (JT is determined 
by iterating between Eq. (1 2.45) and interpreted values from Fig. E 12.3. This method 
is not satisfactory when more than one column configuration must be studied. 
Therefore, it is more expedient to determine a tangent�modulus stress curve as a 
function of the effective slenderness ratio of the column for stress greater than the 
proportional limit stress (JPL ·  For this purpose, consider the compressive stress
strain diagram for 2024-T4 aluminum alloy, Fig. 1 2 . 1 4b. At several stress values 
(JT > CJpL , the corresponding slopes ET of the stress-strain curve are determined 
from Fig. 1 2. 1 4b. Corresponding values of (JT and ET are then substituted into 
Eq. ( 1 2.45) to determine the effective slenderness ratio Lerrfr. The values of Lerr/r 
are then plotted vs (JT to obtain a tangent-modulus curve (Fig. 1 2. 1 4a). The Euler 
curve CBG and tangent modulus curve DB intersect at point B at the proportional 
limit stress (JPL · The curve DBG can be used to design both elastic and inelastic 
columns of 2024-T4 aluminum alloy. However, in practice, the procedure may be 
simplified further by approximating the tangent modulus curve DB and part of the 
Euler curve by a simpler empirical curve or equation (say, a straight line, a parabola, 
etc.); see Salmon and Johnson ( 1990). 

Many empirical column formulas are represented in part by one of the following 
three types of column equations when the allowable stress design (ASD) method 
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Figure 1 2. 14 Euler and tangent-modulus critical stress for columns made of 2024-T4 
aluminum alloy. 

is used: 

�r (KL) 
Cfer = A = CJs - Cs -r-

�r (KL) 2 
(fer = A = Cfp - Cp -r-

�r (JGR 
(fer = A = 

1 + CGR(KL/r)2 

(straight-line) ( 1 2.46) 

(parabola) ( 1 2.47) 

(Gordon-Rankine) ( 1 2.48) 

where (fer and �r denote the critical stress and load for the column, respectively, 
and KL = Lerr (see Table 1 2. 1 ) , CJ8 , CJp , CJGR ' C8 , Cp , and CGR are empirical positive 
constants. These equations are usually referred to by the names in parentheses, and 
subscripts S, P, and GR refer to straight-line, parabola, and Gordon-Rankine for
mulas, respectively. The constants in Eqs. ( 1 2.46), ( 1 2.47), and ( 1 2.48) may be deter
mined by fitting the equations to the tangent-modulus stress curve for materials 
like aluminum alloys, or by fitting the equations to experimental column buckling 
data for materials like structural steel. 

For 2024-T4 aluminum alloy, we may approximate the curves of Fig. 1 2. 14a as 
follows. The tangent-modulus curve and the portion of the Euler curve of interest 
are redrawn in Fig. 1 2. 1 5. By inspection, the general shape of the tangent-modulus 
curve and a portion of the Euler curve may be approximated by a straight line. For 
example, the straight-line equation 

(Jcr = 390 - 3.44 
( �L) ( 1 2.49) 

accurately approximates the curves for 2024-T4 aluminum alloy, provided that the 
effective slenderness ratio KLjr � 80, (Fig. 1 2. 1 5). The Euler formula then may be 
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Figure 12. 1 5  Straight-line empirical column formula for columns made of 2024-T4 
aluminum alloy. 

used for values of KL/r 2:: 80. A straight-line equation is generally used for all alu
minum alloys. However, the magnitudes of CJ8 , C8 and the limiting value of KL/r 
are generally different for each alloy. 

Design loads for columns depend on the safety factor used. The magnitude of 
the safety factor is specified by design codes, as is the range of KL/r for each column 
formula. For example, if a safety factor of 1 .80 is used, the design load P for 2024-
T4 aluminum alloy columns is given by the following design formulas : 

P (KL ) 
CJ =

A
= 2 16.6 - 1 .9 1  -

r
- , 

408,500 
(J = 

(KL/r)2 ' 
KL 

2:: 80 
r 

KL 
- � 80 

r 
( 1 2.50) 

( 1 2. 5 1 )  

Design equations for steel columns are more complex. Generally, with appropriate 
constants, a parabolic equation is used for low values of KL/r (say, KL/r � 120), 
and the Euler equation is used for KL/r 2:: 1 20 (Salmon and Johnson, 1990). 

EXAMPLE 12.5 
Buckling of a 2024-T4 Aluminum Alloy Column 

The 2024-T4 aluminum alloy column shown in Fig. E 12.5 has a length of 1 .00 m 
and a solid rectangular cross section 40.0 mm by 75 .0 mm. Its compressive stress-



1 .00 m 

Figure E12.5  
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X 

t 

75.0 mm 40.0 mm 

strain diagram is given in Fig. 1 2. 14b. The column is supported at its ends by fric
tionless pins that allow rotation about the y axis and by rigid walls that prevent 
rotation about the z axis and lateral displacement of the ends in the y and z direc
tions. Determine the design load for buckling of the column, based on a safety 
factor SF = 2.50. 

SOLUTION 

It is first necessary to determine how the column will buckle. The column will 
buckle in a direction perpendicular to the axis for which KLjr is a maximum, since 
the maximum slenderness ratio results in the smallest buckling load. If the column 
buckles in the z direction, about the y axis (Fig. E1 2.5), it rotates about the pinned 
ends (Ky = 1 ). Hence, the value of (KL/r)y may be computed as follows : 

and 

ry = {i = � = � = � = 21 .7 mm 

(KL) 
= 

(1 ) ( 1 000) 
= 46.2 r Y 2 1 .7 

(a) 

(b) 
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If the column buckles in the y direction, about the z axis, it has fixed ends (Kz = 
0.50). In this case, 

h rz = .JTi = 1 1 .5 mm, 
(KL) 

= 
(0. 50) ( 1 000) 

= 43.5 r z 1 1 .5 
(c) 

Thus, the column buckles as a pin-ended column with (KLjr)y = 46.2. With this 
value of KL/r, we obtain from Fig. 1 2. 1 4a, CJcr = Per/A = 229 MPa and, therefore, 
Per = 687 kN. The design load is P = Per/SF = 687/2.50 = 275 kN. 

PROBLEMS 
Section 12.3 

12.1 .  An airplane compression strut 2.00 m long has an elliptical cross section 
with major and minor diameters of b = 1 50 mm and a = 50.0 mm, respec
tively. Calculate the slenderness ratio for pinned ends. If the member is 
made of spruce wood with E = 1 1 .0 G Pa, determine the load P that can 
be carried by the column based on a factor of safety of SF = 1 . 50, I = 
nba 3j64, and A =  nabj4. 

12.2. Three pinned-end columns each have a cross-sectional area of 2000 mm2 

and length of 750 mm. They are made of 7075-T5 aluminum alloy (E = 
72.0 GPa and CJpL = 448 MPa). One of the columns has a solid square 
cross section. A second column has a solid circular cross section. The third 
has a hollow circular cross section with an inside diameter of 30.0 mm. De
termine the critical buckling load for each of the columns. 

Ans. Pcr(square) = 42 1 kN, Pcr(circle) = 402 kN, Pcr(hollow circular) = 686 kN 

12.3. An aluminum alloy (E = 72.0 GPa) extrusion has the cross section shown 
in Fig. P 12.3 .  A 2.00-m length of the extrusion is used as a pin-ended 
column. 

Figure P12.3 



PROBLEMS 501 

(a) Determine the minimum radius of gyration for the column cross 
and find the slenderness ratio of the column. 

(b) Determine the buckling load for the column. 
12.4. In Fig. Pl 2.4, columns AB and CD have pinned ends, are made of an alu

minum alloy (E = 72.0 GPa), and have equal rectangular cross sections 
20 mm by 30 mm. Determine the magnitude of P that will first cause one 
of the columns to buckle. Assume elastic conditions. 

p ��=--5-0_0_m_m_�- 1 .50 m ----� 

A 

600 mm 
B 

� 500 mm -4.- 500 mm � 
1 .00 m 

D 

Figure P12.4 

12.5. In Fig. Pl 2.5, member OA can be considered rigid and weightless. Col
umns BC and D F are pin-ended with solid circular cross sections of dia
meter 10.0 mm. Column BC is made of structural steel (E = 200 GPa) and 

Q r- 200 mm 1 100 mm 
A 

B D 

400 mm 500 mm 
c 

F 

Figure P12.5 
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column DF is made of an aluminum alloy (E = 72.0 GPa). Determine the 
magnitude of Q that will first cause one of the columns to buckle. 

12.6. In Fig. P1 2.6, member CD is a structural steel (E = 200 GPa) pipe with an 
outside diameter of 10 1 .6 mm and inside diameter of 90. 1 mm. The pipe 
has reinforced spherical end caps, so that the pipe acts as a pin-ended 
column. The column was used to support the weight (80 kN) of member 
AB while it was fixed in the position shown. In this position, the pipe 
supports the weight of AB. The exact location of member AB was obtained 
when the column had a uniform temperature of 20°C. After fixing mem
ber AB in position, the column temperature was increased uniformly 
by the sun and column buckled. Determine the temperature at which 
the column buckled. The coefficient of linear thermal expansion is 
a = 1 1 .7 x 1 0-6 per °C. 

A B 

c 

5.00 m 

D 

Figure P12.6 

12.7. A long thin-wall steel (E = 200 GPa, v = 0.29) pressure vessel has a length 
of 9.00 m, an inside diameter of 100 mm, and a wall thickness of 2.00 mm. 
The ends of the vessel are reinforced hemispheres. The vessel is positioned 
between two rigid walls that touch each end of the vessel when the internal 
pressure is zero. 

(a) Determiae the internal pressure that will cause the vessel to buckle 
as a column. Assume that local buckling of the thin walls does not 
occur. 

(b) What is the average axial stress in the vessel when it buckles? 

12.8. Determine the Euler load for the column shown in Fig. 1 2.8c; see the dis
cussion on the imperfection method in Sec. 1 2.3 .  

12.9. Determine the Euler load for the column shown in Fig. 1 2.8d; see the dis
cussion on the imperfection method in Sec. 1 2.3 .  
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Section 12.4 

12.10. A steel (E = 200 GPa) column with a solid circular cross section has 
clamped ends, is 2.50 m long, and must support a load of 40.0 kN. 

(a) Determine the minimum required diameter using a factor of safety 
SF = 2.00. 

(b) What is the minimum value for the proportional limit in order for 
the column to buckle elastically? 

12. 1 1 .  An aluminum alloy (E = 72.0 GPa) column has the cross section shown in 
Fig. P 12. 1 1 .  It has a length of 9.00 m and is clamped at each end. A support 
at midlength of the column prevents deflection in the x direction, but does 
not prevent rotation of the section nor deflection in the y direction. r 1 50 mm � 

��25 mm I 

X ------1'7"hf7"7?+-

y 

Figure P12. 1 1 

(a) Determine the buckling load. 

1 50 mm 

(b) What is the minimum proportional limit in order for the column to 
buckle elastically? 

12. 12. In Fig. P12. 1 2, bar AB is pinned at A. It can be considered rigid and 
weightless. The aluminum (E = 72.0 GPa) columns CD and FH have solid 
circular cross sections of diameter 100 mm. Column CD has pinned ends, 
and column FH is clamped at the bottom and pinned at the top. When the 
load Q = 0, bar AB is horizontal, and the two columns just are in contact 
with AB. Determine the least value of Q that will cause one of the columns 
to buckle. 

12.13. Solve Problem 12. 1 2 for the case where both columns are made of steel 
(E = 200 GPa). What is the minimum required proportional limit to ensure 
that the column will buckle elastically? 
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12. 14. The two structural steel (E = 200 GPa) truss members in Fig. P12. 14a are 
5.00 m long and have the cross section shown in Fig. P 12 . 14b. They are 
clamped at the bottom and are pinned together at the top. The members 
are free to deflect perpendicular to their plane; in which case, they both 
bend about the cross-section axis having the maximum moment of inertia. 
If they buckle in their plane, they both bend about the axis of minimum 
moment of inertia. Determine the magnitude of the load Q that will buckle 
the mem hers. 

Section 12.5 

12. 15. Assume that the dimensions of the angle section of the pinned-end column 
shown in Fig. 1 2. 1 1 are t = 0.635 mm, b = 1 2.0 mm, and L = 559 mm. 
Show by Fig. 1 2 . 1 1 that the column fails as a unit by elastic buckling (not 
local buckling). Calculate the average stress in the column at the buck
ling load and compare it to the stress obtained experimentally (Fig. 
1 2- 1 1 ) .  

Section 12.6 

12.16. Solve Example 12.3  for a column length of L = 300 mm. 
12. 17. A column made of the steel whose compressive stress-strain diagram is 

shown in Fig. E 12.3 has a length of 1 .00 m and solid circular cross section. 
The column must carry a design load of 8 1 0  kN with a factor of safety of 
SF = 2.00. Determine the required diameter of the column. 

Ans. D = 90.4 mm 

12.18. An aluminum alloy has a modulus E = 72.0 GPa and proportional limit 
(JPL = 3 1 0  MPa. The equation (J = AE", where A and n are material con
stants, accurately approximates the compressive stress-strain diagram for 
small inelastic strains when it is made to coincide with the stress-strain 
diagram at the proportional limit and to pass through another test point 
whose coordinates are (J = 370 MPa and E = 0.00600. 

(a) Determine values for A and n. 
(b) A rectangular section column with dimensions 40 mm by 60 mm has 

fixed ends and is found to buckle at an average stress of PT/A = 
345 MPa; find the length L of the column. 

12.19. For the aluminum alloy in Problem 12. 1 8, determine two values of the 
slenderness ratio such that PT/A = (JPL. 

Ans. (L/r)max = 47 .9 and {L/r)min = 35 .0 

12.20. A rectangular cross-section (60.0 mm x 90.00 mm) column of 2024-T4 
aluminum alloy is 1 .00 m long. The top end of the column is pinned. The 
bottom of the column has a knife-edge support that runs perpendicular to 
the 90.0-mm dimension. The effect of the knife-edge support is to provide 
a clamped condition for deflection in the 90.0-mm direction and a pinned 
condition in the direction of the 60.0-mm dimension. Use Fig. 1 2. 14 to de
termine the buckling load of the column. 
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12.21 .  A stainless steel column has the tangent-modulus curve shown in 
Fig. Pl 2.2 1a  and cross section illustrated in Fig. P l2.2 lb. Its length is 
2.20 m, and it has a clamped end at the top and pinned end at the bottom. 
Determine the design load for the column, based on a factor of safety 
SF = 2.50. 
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70.0 mm 
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Figure P12.21 

12.22. A 2024-T4 aluminum alloy column has the cross section shown in 
Fig. P 12.22. It is 2.20 m long, with one end clamped and the other pinned. 

� 1 00 mm ---t 
�� � 1 0.0 mm �� � 1 0.0 mm 

95.0 mm 

Figure P 12.22 
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Determine the design load for the column, based on a factor of safety SF = 
1 .80 (see Fig. 12 . 1 4). 

12.23. Columns AB and CD in Fig. P12.23a have identical rectangular cross sec
tions 50.0 mm by 75.0 mm. The columns are made of a metal that has the 
stress-strain diagram shown in Fig. Pl2.23b. Column AB has clamped ends 
and column CD pinned ends. Assume that member F is rigid and weight
less and that it is prevented from moving laterally. Also, neglect the rota
tion of member F due to a difference in shortening of the two columns. 
Determine the load Q that will first cause one of the columns to buckle. 

Q 

50.0 m 

B 

Figure Pl2.23 
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PART III 

SELECTED 
ADVA CED 

TOPICS 

In Part III, Chapters 1 3  to 19, we introduce selected advanced topics of interest. In 
Chapter 1 3, the topic of linear plate theory is introduced. The effects of stress con
centrations are discussed in Chapter 14. Fracture mechanics of metals and high 
cycle fatigue are treated in Chapters 1 5  and 16, respectively. Time-dependent defor
mation (creep) is addressed in Chapter 17 ,  and contact stress problems are pre
sented in Chapter 1 8. Finally, an introduction to and discussion of finite element 
applications are given in Chapter 19. 
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13.1 

FLAT PLATES 

In .this chapter, we present the theory of elastic plates and a number of examples. 
We develop the basic equations (Sec. 1 3. 1 - 1 3.7 ), and we outline methods of solu
tion for rectangular plates (Sec. 1 3 .8) and circular plates (Sec. 1 3 .9) subjected to 
simple loading. 

INTRODUCTION 

A flat plate is a structural element or member whose middle surface lies in a flat 
plane. The dimension of a flat plate in a direction normal to the plane of its middle 
surface is called the thickness of the plate. A plate is characterized by the fact that 
its thickness is relatively small compared to the dimensions in the plane of 
the middle surface. As a consequence, the bending behavior of a plate depends 
strongly on the plate thickness, as compared to the in-plane dimensions of 
the plate. 

Plates may be classified according to the magnitude of the thickness compared 
to the magnitude of the other dimensions and according to the magnitude of the 
lateral deflection compared to the thickness. Thus, we may speak of ( 1 )  relatively 
thick plates with small deflections, (2) relatively thin plates with small deflections, 
(3) very thin plates with large deflections, (4) extremely thin plates (membranes) that 
may undergo either large or small deflections, and so on. There are no sharp lines 
of distinction between these classifications ; rather there are gradual transition 
regions between two categories, in which the response of the plate exhibits some of 
the characteristics of both categories. 

Additional descriptions are applied to plates. For example, if the distance be
tween the two surfaces (faces) of the plate is constant, the plate is said to be of con
stant thickness ;  if not, it is said to be of variable thickness. Further descriptions of 
a plate pertain, as we shall see, to the manner in which the plate edges are con
strained and to the manner in which the plate material responds to load. 

Some attention is given to anisotropic material behavior. However, the treat
ment presented here is largely a study of the small-deflection theory of thin con
stant thickness isotropic elastic plates with temperature effects included. In the 
general development of the theory, (x, y, z) coordinates are taken to be orthogonal 
curvilinear plate coordinates, where (x, y) are orthogonal planar curvilinear coordi
nates that lie in the middle surface of the plate and the z coordinate is perpendi
cular to the middle surface of the plate (Fig. 1 3 . 1  ). 
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In the development of the theory, kinematic relations and associated strain
displacement relations are presented. Stress resultants for a plate are defined, and 
the equations of equilibrium are derived by employing the principle of virtual 
work. Temperature effects are included in the elastic stress-strain relations . In 
turn, the stress resultant-displacement relations are derived including temperature 
effects. The boundary conditions for the plate follow directly from the principle of 
virtual work (Sec. 1 3 .7) . 

The small-deflection theory of plates developed here is limited to cases in which 
the lateral displacement w of the plate in the z direction is less than about half 
of the plate thickness h. When w < h/2, small-deflection theory yields reasonably 
accurate estimates for plate behavior since the second-order effects that are omitted 
from the theory are negligible. However, when w > h/2, second-order effects be
come significant. Consequently, for a given lateral load, plate theory based upon 
small deflections yields displacements and stress resultants that are too large, rela
tive to large-deflection theory. The primary effect of large deflections is to develop 
direct (membrane) tensile stresses that stiffen the plate. In other words, when dis
placements are large, in-plane tensile stresses are developed that influence both 
the stress resultants and the stiffness of the plate. Section 1 3.9 contains a more 
detailed discussion of the effects of these direct tensile stresses . 

STRESS RESULTANTS IN A FLAT PLATE 

The concept of stress and stress notation were introduced in Chapter 2. Although 
the major results were developed for rectangular coordinates, results were pre
sented for orthogonal coordinates (x, y, z) [see Eqs. (2.46) and (2.47)] .  In particular, 
we recall that (Jxx denotes the tensile stress on a plane element that is normal to an 
x coordinate line and (CJxY '. CJxz) denote ( y, z) components, respectively, of the shear 
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stress that acts on a plane element normal to the x coordinate line. Similar inter
pretations apply for (JYY ' (Jzz '  and (Jyz . As for rectangular coordinates, (Jyz = (JZY ' 
(Jxz = (Jzx' and (Jxy = (Jyx for orthogonal curvilinear coordinates (x, y, z). For non
orthogonal curvilinear coordinates, the symmetry of shears does not bold (Boresi 
and Chong, 1987). 

It is convenient to introduce special notation for in-plane forces (tractions), 
bending moments, twisting moments, and shears in a plate. Thus, with respect to 
orthogonal curvilinear coordinates (x, y, z), consider a differential element of the 
plate cut out by the surfaces x = constant and y =  constant (Fig. 1 3 .2), where (x, y) 
are orthogonal curvilinear coordinates in the middle plane of the plate and coor
dinate z is the straight-line coordinate perpendicular to the middle plane. The 
elements of area of these cross sections of a flat plate are 

dAy = a dx dz, dAx = {J dy dz ( 1 3 . 1 ) 
where 

a = a(x, y), fJ = {J(x, y), y = 1 

Let Nxx denote the tensile force on a cross-sectional face of the element (x = 
constant), per unit length of the y coordinate line on the middle surface (Fig. 1 3 . 3). 
Then, the total tensile force on the differential element in the x direction is Nxxf1 dy. 
Hence, since dAx = fJ dy dz, we have fh/2 

Nxxf1 dy = dy fJ(Jxx dz -h/2 
where the middle surface has been taken as the reference surface. More generally, 
the reference surface (z = 0) may be taken as any plane (e.g., the upper face of the 
plate). Then the integral in the above equation is determined by the thickness h and 
location of the reference surface. Thus, we have since fJ = {J(x, y), 

y 

I 
2i 

Figure 13.2 

fh/2 
Nxx = (Jxx dz -h/2 

Middle plane (surface) 
of plate 

dx, dy, dz denote 
infin itesimals; 

h is finite 

X 

(a) 
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Figure 1 3 .3 Resultant tractions on a reference surface. 

In a similar manner, the traction NYY per unit length of the x coordinate line on 
the middle surface (Fig. 1 3 .3) is 

or fh/2 
NYY = CJyy dz 

-h/2 
(b) 

Likewise, the shear force Nxy per unit length of the y coordinate line is given by 

or fh/2 
Nxy = (Jxy dz 

-h/2 

and for NYX ' the shear force per unit length of the x coordinate line, 

fh/2 
Nyx = (Jxy dz = Nxy 

-h/2 

(c) 

(d) 

We let (Qx , Qy) be the transverse shears per unit length of a y coordinate line and 
x coordinate line, respectively. Hence, for the transverse shear forces (Qx , Qy) per 
unit length of the coordinate line, we find (Fig. 1 3 .4) that 

fh/2 
Qx = (Jxz dz 

-h/2 fh/2 
QY = (Jyz dz 

-h/2 
(e) 

We let Mxx be the bending moment per unit length of the y coordinate line. Then 
by Fig. 1 3.4, we obtain, with positive directions indicated by the right-hand rule for 
moments (double-headed arrows), 

(f ) 
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X 

Figure 13 .4 Resultant moments and shears on a reference surface. 

For the twisting moment Mxy per unit length of the y coordinate line, we find 

Mxy = fh/2 zaxy dz - h/2 (g) 

Similarly for bending moment and twisting moment per unit length of the x coordi
nate line, fh/2 Myy = ZCJYY dz -h/2 

(h) 

In summary, we have the tractions (Nxx ' NYY ' Nxy = Nyx), transverse shears (Qx , Qy), 
bending moments (Mxx ' Myy), and twisting moments (Mxy = Myx) in the form (for 
the reference surface, z = 0, coincident with the plate middle surface) fh/2 Nxx = (Jxx dz -h/2 fh/2 NYY = CJyy dz -h/2 fh/2 Nxy = Nyx = (Jxy dz -h/2 

fh/2 Myy = ZCJYY dz -h/2 
( 1 3 .2) 
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13.3 

The positive senses of forces and moments are shown in Figs. ( 1 3 .3) and ( 1 3 .4). 
However, there is no universal agreement between authors on the sign conventions 
for the shears (Qx , Qy) and twisting moments (Mxy = Myx).* Special attention must 
be paid to the notation Mxx and Myy · For example, Mxx is a resultant moment per 
unit length of y coordinate due to the stress component (Jxx ; it is not a moment 
about the x axis. Similar remarks pertain to Myy . Also, as noted previously, Mxy 
and Myx are twisting moments due to shear stresses acting on planes perpendicular 
to the x and y axes, respectively (Fig. 1 3 .4). 

KINEMATICS: STRAIN-DISPLACEMENT RELATIONS 
FOR PLATES 

In this section, we let (U, V, W) be the components of the displacement vector, of 
any point P in the plate, on tangents to the local coordinate lines at P (Fig. 1 3 . 5). 
The notation (u, v, w) is reserved for the displacement components of the corre
sponding point P' on the middle surface of the plate (Fig. 1 3 .5) .  Then, by Eqs. (2.84), 
for orthogonal coordinates [for a flat plate a = a(x, y), fJ = {J(x, y), y = 1; see 
Eq. (2.47)], we have the small-displacement strain-displacement relations for 
point P 

( 1 3 .3) 

where the (x, y, z) subscripts on U, V, W, a, and fJ denote partial differentiation. 
Equations ( 1 3 .'3) are linear strain-displacement relations for the three-dimensional 
kinematical problem pf the plate. However, the purpose of plate theory is to reduce 
the three-dimensional problem to a more tractable two-dimensional problem. The 
approximation that is usually used to achieve this reduction is due to Kirchhoff; 
namely, it is assumed that the straight-line normals to the undeformed middle 
plane (reference plane) of the plate remain straight, inextensional and normal to the 

* Here, we follow the convention employed by H. L. Langhaar (1989). See also Marguerre and Woernle 
(1969). 
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z 

Figure 13 .5  

X 

dx, dy denote 
infinitesimals; 

h is finite 

middle surface under the deformation of the plate. Since under this assumption line 
elements normal to the middle surface do not extend and no angular distortion 
occurs between normals and the reference surface, it follows that the Kirchhoff 
approximation is equivalent to assuming that Ezz = Exz = Eyz = 0 (note these condi
tions match those of plane strain). The Kirchhoff assumption is not limited to 
problems of small displacements, since it is purely kinematical in form. It does not 
depend on material properties. Hence, it may be employed in plasticity studies of 
plates, etc. Since Exz and Eyz are discarded, for an isotropic material, it implies that 
CJxz ' CJyz are zero and, hence, the shears Qx and QY are zero [(Eq. 1 3.2)] . If values 
of (Qx , Qy) are needed, they are reintroduced into the theory through the equa
tions of equilibrium (Sec. 1 3 .4). However, some inconsistencies are inevitable when 
the Kirchhoff approximation is employed in plates (such as the implied plane 
strain condition). It is nevertheless more accurate than the membrane theory 
(approximation) of plates, which requires not only Qx and QY to be zero, but also 
that Mxx ' MYY ' Mxy = Myx vanish. 

The Kirchhoff approximation implies that U, V, W are linear functions of z, 
irrespective of the magnitude of the displacement. General expressions for (U, V, W) 
in terms of the displacement components (u, v, w) of the middle surface are very 
complicated for large displacements. The resulting nonlinear relations for the 
strains (Exx ' EYY ' . . .  Eyz) in terms of (u, v, w) are even more complicated. However, it 
is feasible to derive general strain equations in terms of (u, v, w) for any plate, if 
we employ the strain-displacement relations for small displacements [Eqs. ( 1 3 . 3)] . 

Since, by the Kirchhoff approximation, the thickness is not changed by the de
formation (Fig. 1 3 . 5 ), the difference W - w is of second order. Therefore, we make 
the approximation W = w. Then by the last two of Eqs. ( 1 3 .3), we obtain 

( 1 3.4) 
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where (x, y, z) subscripts on U, V, and w denote partial differentiation. Since 
Kirchhoff's approximation implies that Exz = Eyz = 0, Eqs. ( 1 3 .4) yield 

Integrations of Eqs. ( 1 3 .5 )  yield 

w v + ___! = 0  z p 

wx U = - -z  + f(x, y) 
(J. 

w V = - p z + g(x, y) 

( 1 3 . 5 )  

( 1 3 .6) 

The additive functions f(x, y) and g(x, y) are determined by the conditions U = u 
and V = v for z = 0. Then, by Eqs. ( 1 3.6) 

w V = v - z ___! p 
W = w ( 1 3 .7) 

where (u, v, w) are functions of (x, y) only. Equation ( 1 3 .7) determines how, U, V, W 
vary through the thickness of the plate in accord with Kirchhoff's approximation 
and small-displacement theory. Substitution of Eqs. ( 1 3 .7) into Eqs. ( 1 3 .3) yields 

= ! �(li.U - ZWx) 2 ({Jv - ZWy) Exx 8 + R R lJ. X lJ. ll.p fl 

E = � � ({Jv - ZWy) + Px (li.U - ZWx) 
YY p 8y p a{J (J. 

( 1 3 .8) 

Alternatively, Eqs. ( 1 3 .8) may be written by separating the z terms as follows : 

( 1 3 .9a) 

( 1 3 .9b) 
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- H:x (7) - pp�Y J 
_ � [: /:x) _ �:�x] 

Ezz = Yxz = Yyz = 0 

( 1 3 .9c) 

( 1 3 .9d) 

Equations ( 1 3 .8) and ( 1 3 .9) are approximations of Eqs. ( 1 3 .3) that result from ap
plication of the Kirchhoff approximation. These approximations form the basis 
of classical small-displacement plate theory. 

Rotation of a Plate Surface Element 
To obtain continuity conditions at the junction of two plates, it is sometimes neces
sary to compute the rotations of the plate (middle) surface at the junction. As noted 
in the theory of deformation (Boresi and Chong, 1987), the small-displacement 
rotation w of a volume element is a vector quantity given by the relation 

w = ! curl q ( 1 3 . 10) 

where q = (U, V, W) is the displacement vector, and the operation curl q = V x q 
must be expressed in terms of the appropriate coordinate system (recall that here 
we employ orthogonal curvilinear coordinates). The expression for the curl in cur
vilinear orthogonal coordinates is (Newell, 1955) 

cd {Jj yk 
1 a a a 

curl q = V x q = p ax ay az a y 
( 1 3 . 1 1 ) 

aU pv yW 

where the displacement vector q is 

q = Ui + Vj + Wk ( 1 3 . 1 2) 

and (i, j, k) denote unit vectors tangent to (x, y, z) coordinate lines, respectively. 
With Eqs. ( 1 3 .7) and ( 1 3. 1 1 ), Eq. ( 1 3 . 1 0) yields with y = 1 and with z = 0 (after 
differentiation) 

wx 
(JJ = - -y ' a 

1 [ a a J Wz = - - ({Jv) - - (au) 2a{J ax ay ( 1 3 . 1 3) 

where (wx , wy , wz) are the projections of w along tangents to the (x, y, z) coordinate 
lines, respectively. 
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In terms of (wx , wy), we may rewrite Eqs. ( 1 3 .8) and ( 1 3 .9) in the forms 

and 

( 1 3. 14) 

( 1 3. 1 5 ) 

For rectangular coordinates, a = fJ = 1 and ax =  ll.y = f1x = {JY = 0. Then 
Eqs. ( 1 3 . 14) and ( 1 3 . 1 5) reduce to 

and 

where 

= 2 - av au - (awx 
-

awy) 
)' xy E xy - a X + a y z ax a y 

Wy = - wx 

Alternatively in terms of (u, v, w), we may write 

Exx = Ux - ZWXX ' Eyy = Vy - ZWyy 
Yxy = 2Exy = Vx + Uy - 2zwxy 

( 1 3 . 1 6) 

( 1 3 . 1 7 ) 

( 1 3 . 1 8) 

( 1 3. 1 9) 

where we recall that (x, y) subscripts on (u, v, w) denote partial differentiation. 
The strain-displacement relations derived above are employed in the classical 

small-displacement theory of plates. For an alternative derivation of these rela
tions, see Marguerre and Woernle ( 1 969). 
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EQUILIBRIUM EQUATIONS FOR 
SMALL-DISPLACEMENT THEORY OF FLAT PLATES 

The equations of equilibrium for a plate may be derived by several methods. For 
example, they may be derived ( 1 )  by considering the equilibrium requirements for 
an infinitesimal plate element (dx, dy, dz) (Fig. 1 3 .2), (2) by integrating the point
wise equilibrium equations [Eqs. (2.45) or (2.46)] through the plate thickness and 
employing the definitions of Eqs. ( 1 3.2), or (3) by a direct application of the prin
cipal of virtual work. In the following derivation, we employ Method 2. Similar 
results have been obtained by Marguerre and Woernle ( 1 969) by Methods 1 and 3 
for rectangular coordinates. 

We consider an element of the plate generated by all normals erected on an 
element dx dy of the middle surface. This element may be subjected to external 
forces caused by gravity and by external shears and pressures applied to the faces 
of the plate. Since the area of the element dx dy of the middle surface is a{J dx dy, 
the resultant external force on the element of the plate is denoted by P a{J dx dy. 
The vector P is the resultant force per unit area of the middle surface. It is a func
tion of the coordinates (x, y) of the middle surface. The vector P is considered to 
act at the middle surface of the plate, and it is resolved into components Px , PY , Pz 
along (x, y, z) coordinate lines, respectively. Often, the component Pz is denoted by 
p or q, since usually it results from normal pressures on the faces of the plate. In 
addition to the external force P a{J dx dy, an external couple R a{J dx dy may act on 
the element of the plate. We consider a couple that results only from shear stresses 
on the external faces of the plate. Hence, relative to the midsurface Rz = 0, and 

af1Rx = - a{Jzo-yz l �t12 
a{JRY = a{Jzo-xz l �t12 ( 1 3.20) 

where (Rx , Ry , Rz) are the (x, y, z) projections of couple R. 
To employ Method 2, we use the pointwise equilibrium equations. Thus, for a = 

a(x, y), fJ = {J(x, y), y = 1 ,  we obtain by Eqs. (2.46) 

a a a 
ax (f1o-xx) + ay (ao-xy) + az (af1o-xz) + ayo-xy - f1xo-yy + af1Bx = 0 

a a a 
ax (f1o-xy) + ay (ao-yy) + az (a{Jo-yz) + f1xo-xy - ayo-xx + a{JBY = 0 

a a a 
ax (f1o-xz) + ay (ao-yz) + az (afJo-zz) + afJBz = 0 ( 1 3 .2 1) 

The force equilibrium equations for Nxx ' NYY ' NXY ' Qx , and QY are obtained by 
integrating the differential equations of equilibrium [Eqs. ( 1 3.2 1)] through the 
thickness h of the plate. For example, the first term in the first of Eqs. ( 1 3.2 1) is 
a({Jo-xx)fax. Integrating this term with respect to z between the limits - h/2 and 
h/2 and utilizing Eqs. ( 1 3 .2), we obtain fh/2 a a Jh/2 a -a (f1o-xx) dz = -a f1o-xx dz = -a (f1Nxx) 

-h/2 X X -h/2 X 
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The second term in Eq. ( 1 3.2 1 )  is integrated similarly. For the integral of the third 
term, we obtain 

The fourth integral obtained from Eq. ( 1 3.2 1 )  is 

Similarly, the other terms can be integrated. 
To obtain the moment equilibrium equations, we multiply Eqs. ( 1 3 .2 1) by z and 

then integrate through the thickness and employ the definitions of Eq. ( 1 3.2). 
The complete set of equilibrium equations obtained is thus 

a a 
ax (f1Nxx) + ay (cxNxy) + cxyNxy - f1xNyy + cxf1Px + cx{JhBx = 0 

a a 
ax (f1Nxy) + ay (cxNyy) + f1xNxy - cxyNxx + cx{JPy + cx{JhBy = 0 

a a 
ax (f1Qx) + ay (cxQy) + cxfJPz + cx{JhBz = 0 

a a 
ax (f1Mxx) + ay (cxMxy) + cxyMxy - f1xMyy - cxf1Qx + cx{JRy = 0 

a a 
ax (f1Mxy) + ay (cxMyy) + f1xMxy - cxyMxx - cx{JQY - cxf1Rx = 0 

For rectangular coordinates, ex =  fJ = 1 .  Then Eqs. ( 1 3 .22) yield 

aN aN 
� + � + P + hB = 0  ax ay X X 

aN aN 
� + ___n:_ + P + hB = 0 ax ay y y 

aQx 
+ 

aQy + p + hB = 0 ax ay z z 

aM aM 
� + � - Q + R = 0  ax ay X y 

aMxy + 
aMyy _ Q _ R = O ax ay y X 

( 1 3 .22) 

( 1 3 .23) 

Equations ( 1 3 .22) are exact relations, provided that (x, y, z) are orthogonal curvi
linear plate coordinates for the deformed plate. They are approximations for the 
small-displacement theory of plates if (x, y, z) are orthogonal curvilinear plate 
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coordinates in the undeformed plate, since Eqs. ( 1 3 .2 1 )  are approximations for such 
axes. * Therefore, we shall use them as the equilibrium relations for the small
displacement theory of plates relative to orthogonal curvilinear plate axes in the 
undeformed plate. 

The last of Eqs. ( 1 3 .22) is an identity that follows from Eqs. ( 1 3.2). Often, Rx and 
Ry are zero; in any case, they may usually be discarded from Eqs. ( 1 3.22). However, 
if they are retained, we obtain from the third, fourth, and fifth of Eqs. ( 1 3.22), by 
the elimination of Qx and QY , 

:X H[: )PMxxl + :
Y

(o:Mxy) + O:yMxy - PxMyy + o:PRY]} 
. 

+ :
Y U[a� (PMxy) + :

Y
(o:Myy) - O:yMxx + PxMxy - o:PRx]} 

+ hafJBz + afJPz = 0 ( 1 3.24) 

Equation ( 1 3 .24) is called the moment equilibrium equation of plates . For rectan
gular axes, a = fJ = 1, and Eq. ( 1 3 .24) reduces to (if we discard Rx and Ry) 

STRESS-STRAIN-TEMPERATURE RELATIONS FOR 
ISOTROPIC ELASTIC PLATES 

( 1 3 .25) 

The preceding equations, derived in Sec. 1 3 .2, 1 3.3, and 1 3 .4, are independent of 
material properties. Hence, they are equally applicable to problems of elasticity, 
plasticity, and creep, irrespective of the effects of temperature. 

In conventional plate theory, it is assumed that the plate is in a state of plane 
stress; that is, CJxz = CJyz = CJzz = 0. For isotropic elastic plates, the relations CJxz = 
CJyz = 0 are consistent with the Kirchhoff approximation, which signifies that Exz = 
Eyz = 0. However, the Kirchhoff approximation has been criticized since it includes 
the approximation Ezz = 0. The condition Ezz = 0 conflicts with the assumption 
that CJzz = 0. The condition Ezz = 0 is incorrect; however, the strain Ezz has little 
effect on the strains Exx ' EYY ' Exy · Thus, the approximation Ezz = 0 is merely 
expedient. In the stress-strain relations, the condition of plane stress CJzz = 0 is 
commonly used instead of Ezz = 0, and this circumstance is often regarded as an 
inconsistency. However, in approximations, the significant question is not the con
sistency of the assumptions, but rather the magnitude of the error that results, 
since nearly all approximations lead to inconsistencies. In plate theory, the values 
of Ezz and CJzz are not of particular importance. Viewed in this light, the Kirchhoff 
approximation merely implies that Ezz has small effects on CJxx and CJYY ' and that CJxz 
and (Jyz are not significant. We observe further that the Kirchhoff approximation 
need not be restricted to linearly elastic plates ; it is also applicable to studies of 
plasticity and creep of plates, and it is not restricted to small displacements. 

* See Appendix 3C of Boresi and Chong ( 1987). 
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For linearly elastic isotropic materials and plane stress relative to the (x, y) 
plane (o-zz = o-xz = o-yz = 0), stress-strain-temperature relations are 

E Ek llT 
O"xx = 

1 2 (Exx + VEyy) - 1 - v - v 

E Ek llT 
O"yy = 

1 2 (vExx + Eyy) - 1 - v - v 

O"xy = 2GExy = Gyxy ( 1 3 .26) 

where E is Young's modulus, v Poisson's ratio, k the coefficient of linear thermal 
expansion [we use k instead of a (see Chapter 3) since a is used here as a metric 
coefficient; see Eq. ( 1 3 . 1 )] ,  G the shear modulus, and llT the temperature change 
measured relative to an arbitrary datum. It may be assumed without complication 
that k is a function of temperature change llT. 

By Eqs. ( 1 3 .9) and ( 1 3 .26), o-xx ' o-YY ' o-xy may be expressed in terms of u, v, w, 
and llT. Then by Eqs . ( 1 3.2), the quantities Nxx ' NYY ' NXY ' Mxx ' MYY ' Mxy may be 
expressed in terms of u, v, w, and llT. Then the first two of Eqs . ( 1 3 .22) and 
Eq. ( 1 3 .24) become differential equations in u, v, w. Thus, the equilibrium equations 
are expressed in terms of the displacement vector of the reference surface of the 
plate. For homogeneous plates, it is convenient to take the reference surface mid
way between the plate faces. However, for layered or reinforced plates, some other 
reference surface may be more appropriate. Then the integral limits ( - h/2, h/2) in 
Eqs . ( 1 3.2) would be modified accordingly. In the following, we take the reference 
surface as the middle surface of the plate. Hence, the faces of the plate are located 
at z = ± h/2. 

Although the Kirchhoff approximation implies that Qx , QY vanish for isotropic 
linearly elastic plates, estimates of Qx , QY may be obtained from the fourth and fifth 
of Eqs. ( 1 3.22). 

Substitution of Eqs. ( 1 3 .9) into Eqs. ( 1 3 .26) and then substitution of the results 
into Eq. ( 1 3 .2) yields 

Nx = Gh [?:_ j_ (�) + !!_ !__ (!!_)] y {1 ay (J. (J. ax {1 

Gh 3 ( ll.y f1x ) Mxy = - 6a{J Wxy - � Wx - {i wy ( 1 3 .27) 
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where 
E 

G = 
2( 1  + v)

' 

The quantity D is called the flexural rigidity of the plate. 
Alternatively, with Eqs. ( 1 3.9) and ( 1 3 .27), we may write 

Eh o o o Nxx = 
1 2 ( E xx + VE yy - T ) 

- v  

Eh o o o Nyy = 
1 2 ( VE XX + E yy - T ) 

- v  

Myy = - D(v:x; + ?; + T1) 
( 1  - v)D 

Mxy = -
a{J 

Kxy 

( 1 3.27a) 

( 1 3 .28) 

where E�x ' E�Y ' E�y are the strain components in the plate middle surface (z = 0), 

T0 = -- k �T dz 1 + v f h/2 
h -h/2 

T1 = 
1 2( 1  + v) f h/2 

zk �T dz 
h3  -h/2 

are the zero-th and first moments of �T with respect to z, and 

f1xfJ {Jy 
Kyy = 7 wx - p wy + Wyy 

ll.x Wx {Jy 
Kxy = - -ll.- - p Wy + Wxy 

are the curvatures of the middle surface relative to the (x, y) axes. Hence, 

1 T0 
E�x = 

Eh (Nxx - vNyy) + 
1 + v 

1 T0 
E�y = 

Eh (Nyy - vNxx) + 
1 + v 

0 0 1 
Yxy = 2Exy = 

Gh Nxy 

( 1 3 .29) 

( 1 3 . 30) 

( 1 3 . 3 1 )  
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13.6 

and 

( 1 3 . 32) 

For rectangular coordinates, r:x = fJ = 1 .  Then, the moment curvature relations 
[the last three of Eqs. ( 1 3.28)] reduce to 

where [by Eqs. ( 1 3 .30)] , 

Mxx = - D(Kxx + VKyy + T1) 
Myy = - D(vKxx + Kyy + T1) 
Mxy = - ( 1 - v)DKxy 

Kyy = WYY ' 

Stress Components in Terms of Tractions and Moments 

( 1 3 .33) 

( 1 3. 34) 

Equations ( 1 3.9) and ( 1 3.26) lead to the conclusion that (Jxx ' (JYY ' (Jxy vary linearly 
through the thickness of the plate; that is, CJxx = a. ,+ bz, . . .  , . . . .  Hence, by 
Eqs . ( 1 3.2), a =  Nxx/h, b = 1 2Mxx/h 3 • Similarly, the coefficients in the linear expres
sions for CJYY and CJxy are determined. Thus, we find 

(1 3 .35 ) 

Pure Bending of Plates 
If a plate is subjected to bending moments (Mxx ' Myy ) only, we refer to the plate 
problem as one of pure bending of plates. In particular, for pure bending of plates, 
Nxx = NYY = Nxy = Qx = QY = Mxy = 0 and the preceding equations are simpli
fied accordingly. 

STRAIN ENERGY OF A PLATE 

For plane stress theory, the strain energy density of a homogeneous isotropic 
elastic plate, referred to orthogonal plate coordinates, is (see Sec. 3 .4). 
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where U0 has the dimensions of energy per unit volume. Since the volume element 
of a plate is a{J dx dy dz, the total strain energy U of the plate is 

U = Iff U0r�;f1 dx dy dz ( 1 3 .37) 

The integrations with respect to x and y extend over the middle surface of the plate, 
whereas the integration with respect to z extends between the limits - h/2 and h/2. 
By Eqs. ( 1 3 .9), ( 1 3 . 36), and ( 1 3 .37), we find after integration with respect to z, the 
total strain energy 

( 1 3 .38) 

where urn , the membrane energy of the plate, is linear in the thickness h, and ub , 
the bending energy of the plate, is cubic in h. The term � represents the strain 
energy that results from the temperature change flT. Hence, if G and v are taken 
independent of z, integration with respect to z yields 

ub = If 12�h� v) [ (:x; r + (;v; r + 2v (:x; ) (;v;) 
+ 2( 1 - v) (:p Y}fl dx dy 

( 1 3 . 39) 

By means of Eqs. ( 1 3.9), with z = 0, and Eqs. ( 1 3 .30), the strain energy 
[Eqs. ( 1 3 .38) and ( 1 3 .39)] may be expressed as a function of the middle surface dis
placement components (u, v, w). The strain energy is employed in conjunction with 
the Rayleigh-Ritz procedure to obtain approximate solutions of plate problems 
(Timoshenko and Woinowsky-Krieger, 1 959; Szilard, 1 974; Ugural, 1 98 1). The 
strain energy also serves, by means of variational principals, to determine plate 
boundary conditions (Langhaar, 1 989). In addition, the differential equations of 
equilibrium, in terms of (u, v, w), are obtained from the total potential energy expres
sion by means of Euler's equation of the calculus of variations. In the next section, 
we employ the principle of stationary potential energy to determine boundary con
ditions for a plate. 

BOUNDARY CONDITIONS FOR PLATES 

In this section, we employ the principle of stationary potential energy (Sec. 5 . 1 )  to 
obtain boundary conditions for the classical theory of plates. For simplicity, we 
consider rectangular coordinates (a = fJ = 1 )  and a rectangular plate that lies in the 
region 0 :::;; x :::;; a, 0 :::;; y :::;; b (Fig. 1 3 .6). Also, for purposes of demonstration, we 
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Figure 13 .6 Boundary conditions at a reference surface edge. 

discard temperature effects and consider the effects of tractions Nxx ' NYY ' Nxy to 
be negligible compared to the moments Mxx ' MYY ' Mxy ·  Furthermore, we recall 
that in Kirchhoff plate theory, the effects of Qx , QY are also discarded. 

The principle of stationary potential energy states 

bu-: = bU ( 1 3 .40) 

where the first variation bU of the strain energy is 

ou = J: r b(J dx dy ( 1 3 .4 1 )  

with 

( 1 3.42) 

and for (Px = PY = 0, Pz = p), (Rx = Ry = 0), and (Bx = By = Bz = 0) (see Sec. 1 3 .4) 

ow. = f: r p Ow dx dy ( 1 3.43) 

Thus, Eqs. ( 1 3 .40), ( 1 3 .41 )  and ( 1 3 .43) yield, with the Kirchhoff approximations 
Ezz = Exz = Eyz = 0 (and hence, bEzz = bExz = bEyz = 0), 

f: f: (O il - p Ow) dx dy = 0 ( 1 3.44) 

Since (Nxx , Nyy , Nxy) and temperature effects have been discarded, Eqs. ( 1 3 . 3 1 )  
and ( 1 3 . 1 9) yield E�x = ux = 0, E�y = vY = 0 and 2E�y = vx + uY = 0 .  Hence, by 
Eqs. ( 1 3 . 19), 

Exx = - ZWXX ' Eyy = - ZWYY ' ( 1 3 .45) 
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Substitution of Eqs. ( 1 3 .45) into Eq. ( 1 3.42) yields, with Eqs. ( 1 3 .2) and ( 1 3 .44), 

( 1 3 .46) 

Now successive integration by parts of Eq. ( 1 3 .46) yields (Boresi and Chong, 1987) 

and 

where the line integrals are taken along the boundary in a counterclockwise direc
tion (Fig. 1 3 .6). 

We note that the integral over the area of the plate leads to the moment equili
brium equation [Eq. ( 1 3 .25), with Bz = 0 and Pz = p] . 

To be specific, consider the rectangular plate to be clamped along the edges y = 0 
and x = 0. Let the edges x = a  and y = b be free of forces and moments. Then, we 
have the forced boundary conditions 

w = O  and 
aw = 0 an for x = 0 and y = 0 ( 1 3.48) 

where n denotes the normal direction to the edge. Since the variations must satisfy 
the forced boundary conditions, we also have 

aw bw = b - = 0 an 

Consequently, Eq. ( 1 3 .47 ) reduces to 

for x = 0 and y = 0 ( 1 3 .49) 

( 1 3 . 50) 
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The line integrals of Eq. ( 1 3 .50) lead to additional boundary conditions (natural 
conditions) for the free edge after further integration by parts. In this regard, we 
note that for x = a, the functions bwx(Y) and bw(y) are independent, where we recall 
that wx = 8wj8x. However, the functions bwy = b(8wj8y) and bw are not indepen
dent for x = a. Hence, the second term of the integral in dy must again be inte
grated by parts. Thus, integrating by parts and noting that 8Mxxl8x + 8Mxy/8y = 
Qx [see the fourth of Eqs. [( 1 3 .23), with Ry = 0], we obtain 

and similarly for y = b, 

Hence, for the free edges x = a and y = b, we must have the natural boundary 
conditions 

for x = a  

for y = b ( 1 3 . 5 1 )  

In addition, at the corner of two free edges, we have the additional natural 
boundary condition 

for x = a, y = b ( 1 3 . 52) 

Consequently, at a free edge of a classical plate, say, x = a, the shear Qx and 
twisting moment Mxy do not vanish separately, but rather the combination 
Qx + 8Mxy/ 8y = Vx , the so-called Kirchhoff shear, vanishes. Alternatively, we 
may express Vx and Yy in the form [with the fourth and fifth of Eqs. ( 1 3.23), with 
R = R  = 0] X y 

( 1 3 .53) 

In summary, in term� of the displacement w and its derivatives, we may write [see 
Eqs. ( 1 3 .33)] 

Mxx = -D(wxx + VWyy) 
Myy = -D (wyy + vwxx) 
Mxy = - ( 1  - v)Dwxy 

Vx = -D[wxxx + (2 - v)wxyy] 
Yy = - D[wyyy + (2 - v)wxxy] ( 1 3 . 54) 
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Consequently, substitution for Mxx ' MXY ' MYY ' in terms of w, in Eq. ( 1 3 .25) yields, 
with Bz = 0 and Pz = p, 

( 1 3 .55) 

where V2V2w = V4w = wxxxx + 2wxxyy + Wyyyy · Equation ( 1 3 .55) is  the plate equa
tion; it is one of the main results of classical plate theory. It is a fourth-order partial 
differential equation. Hence, the plate problem is to find solutions of Eq. ( 1 3 .55 )  
that satisfy the boundary conditions (clamped, free, simply supported, etc.) at the 
edges of the plate. Fortunately, the most important plate shapes are rectangular 
and circular, which may be treated most readily. 

SOLUTION OF RECTANGULAR PLATE PROBLEMS 

A large collection of solved rectangular plate problems has been presented by 
Timoshenko and Woinowsky-Krieger ( 1959). [See also Marguerre and Woernle 
( 1969), in which isotropic and orthotropic plate solutions are presented for rectan
gular and circular plates for a wide variety of boundary conditions.] Marguerre 
and Woernle have presented a systematic treatment that clarifies the effects of 
shear deformation and hence clarifies the boundary conditions for the classical 
plate, in which shear deformation is discarded. In addition, the treatment by 
Marguerre and Woernle emphasizes the orthotropic plate, which is more inter
esting and more important practically than the isotropic plate. Naruoka ( 1 98 1 )  
has presented an extensive bibliography on the theory of plates indexed by author 
and subject matter. 

In this section, initially, we treat the small displacement theory of simply sup
ported rectangular plates for certain simple loadings. Thus, initially, we consider 
bending effects only, since in the case of small displacements, these effects domi
nate. Fourier series methods of solutions are employed. We also present results of 
an approximate solution due to Westergaard and Slater ( 1 92 1 ). 

Solution of V 2V 2w = !!_. Rectangular Plate D 
In Sec. 1 3 .7, when bending effects are dominant, we obtained the plate equation 

( 1 3 . 56) 

where p denotes lateral pressure and D is the flexural rigidity. The plate theory 
based on Eq. ( 1 3 .56) is often referred to as the flexural (or bending) theory of plates. 
For this case, the solution of the plate problem requires that the lateral displace
ment w satisfies Eq. ( 1 3 .56) and appropriate boundary conditions. We note that 
since V2V2 is an invariant vector operator, Eq. ( 1 3 .56) holds for all coordinate 



532 13 / FLAT PLATES 

0 

Tr-------� X 
b 

l,.__________. �-------- a --------���1 
y h 

{ 
Figure 13 . 7  

systems, provided that proper expressions for V2V2 are employed (Boresi and 
Chong, 1987). 

For simplicity, we consider here a simply supported rectangular plate of thick
ness h and in-plane dimensions a and b (Fig. 1 3 . 7) . Then, we observe that any func
tion (Levy, 1899) 

w(x, y) = x.(x) sin 
n�y 

( 1 3 . 57a) 

where n is an integer, satisfies the simple support boundary conditions at y = 0 
and y =  b*  w = O  } Myy = - D(wyy + vwxx) = 0 

Similarly, we may also write w(x, y) in the form 

at y = 0, b 

w(x, y) = Y,(y) sin 
nnx 
a ( 1 3 . 58a) 

which, in turn, satisfies the simple support boundary conditions at x = 0 and x = 
a; that is, w = O  } Mxx = - D (wxx + VWyy) = 0 

-r 

at x = 0, a ( 1 3 . 58b) 

For our purposes here, we employ Eq. ( 1 3 . 57a). Thus, substitution into 
Eq. ( 1 3 . 56) yields an ordinary fourth-order differential equation for Xn(x). Its solu-

* One advantage of this single-series method (the Levy method) is that the subsequent series solution 
[see Eq. (1 3.63)] converges quite rapidly compared to a double-series representation for w (the Navier 
method), that is, a solution form of the type 

oo oo mnx nny 
W = I I Amn sin - sin -

m= l n = l  a b 
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tion contains four constants of integration, which may be selected to satisfy the 
remaining four boundary conditions at the edges x = 0 and x = a (two at x = 0 
and two at x = a). However, before this procedure may be carried out, the lateral 
pressure p must be expressed in appropriate form. Corresponding to the solution 
form [Eq. ( 1 3 . 57a)] , we express p in the form 

oo 
• nny p(x, y) = Po nf:l fn(x) SID b 

In many practical cases, p may be written in the product form 

p(x, y) = Pof(x)g(y) 

Then, Eqs. ( 1 3 .59) and ( 1 3 .60) yield 

where 

oo nny p(x, y) = f(x) n f:1 Pn sin b 

Consequently, to satisfy Eq. ( 1 3 .56), we must generalize w(x, y) to 

oo nny w(x, y) = "�1 Xn(x) sin b 

( 1 3 . 59) 

( 1 3 .60) 

( 1 3 .6 1 )  

( 1 3 .62) 

( 1 3 .63) 

Then substitution of Eqs. ( 1 3 .61 )  and ( 1 3 .63) into Eq. ( 1 3.56) yields the set of ordi
nary differential equations 

n = 1 , 2, . . .  ( 1 3 .64) 

for the functions Xn(x). The solution of Eq. ( 1 3 .64) for the Xn and substitution into 
Eq. ( 1 3.63) yield the solution of the simply supported rectangular plate subjected 
to pressure p [Eq. ( 1 3 .6 1 )] .  The resulting series solution gives good results 
(converges well) for a >  b, and often for a = b. If a < b, it is better to use the series 
form of Eq. ( 1 3. 58a) or simply interchange the labels a, b, so that again a >  b. 

In the treatment of Eq. ( 1 3.64), for simplicity, we take f(x) = 1 .  Then, Eq. ( 1 3.64) 
yields 

( 1 3 .65) 

By the theory of ordinary differential equations, the general solution of 
Eq. ( 1 3 .65) is 

n = 1 , 2, . . .  ( 1 3 .66) 
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The constants A1n , A2n , B1n , B2n are selected to satisfy the four boundary conditions 

w = O  } Mxx = -D(wxx + VWyy) = 0 at x = 0, a ( 1 3.67 ) 

Substitution of Eqs. ( 1 3.66) into Eq. ( 1 3 .63) and then substitution of the results into 
Eq. ( 1 3 .67) yield, after considerable algebra (Marguerre and Woernle, 1 969), 

Pn ( b )4{ nnx nnx . nnx Xn(x) = - - 1 - cosh - + - sinh -D nrc b b b 
1 [( . h 

nna nna) . h 
nnx 

+ SID - - - SID -
1 h 

nna b b b 
+ cos b 

nna . 
h 

nna 
h 

nrcx
]} 

- - sin - cos -b b b ( 1 3 .68) 

With Xn(x) and hence w(x, y) known, Eqs. ( 1 3 . 54) may be used to compute Mxx ' 
MYY ' MXY ' Vx , Yy .  

EXAMPLE 13.1 
Square Plate Subject to Sinusoidally Distributed Pressure 

A square plate is simply supported on all edges (Fig. 1 3 .7) and is loaded by gravel 
such that 

( ) 
• TCX • ny p X, y = Po SID -a- SID b' a = b 

(a) Determine the maximum deflection and its location. 

(b) Determine the maximum values of the moments Mxx ' Myy · 
(c) Determine the maximum values of the Kirchhoff shear forces Vx , Yy .  

SOLUTION 

The boundary conditions for simply supported edges are 

w = O, 
w = O, 

for x = 0, a 
for y = 0, b 

(a) 

(b) 

Since w = 0 around the plate boundary, 8 2wj8x 2 = 0 for edges parallel to the X 
axis and likewise 8 2wj8y2 = 0 for edges parallel to the y axis. Hence, noting the 
expressions for Mxx ' Myy in Eq. ( 1 3 .54), we may rewrite the boundary conditions, 
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Eqs. (b) in the form (note that b = a) 

w = O, 
82w 
ax2 = 0 for x = 0, a 

w = O, 
82w 
8y2 = 0 for y = 0, a 

(a) Equations (c) may be satisfied by taking w in the form 

• TCX • ny 
W = w0 SID- SID -a a 

(c) 

(d) 

where w0 is a constant that must be chosen to satisfy the plate equation 
[Eq. ( 1 3 .56)] ,  namely, with Eq. (a), 

(e) 

Substitution of Eq. (d) into Eq. (e) yields 

(f ) 

By Eq. (d), we see that the maximum deflection of the plate occurs at 
x = y = a/2. Thus, the maximum deflection of the plate is 

Poa4 
wmax = Wo = 

4n4D 
a 

at x = y = -2 (g) 

(b) To determine the maximum values of moments Mxx ' MYY ' we find from 
Eqs. ( 1 3. 54) with Eqs. (d) and (f) 

M _ M _ p0a2( 1 + v) . rex . ny 
XX - yy - 4 2 SID SID n a a (h) 

It is seen that the maximum values of Mxx and MYY occur at x = y = a/2. 
Thus, 

a 
at x = y = -2 (i) 

(c) To calculate the Kirchhoff shear forces, we have by Eqs. ( 1 3 .54) with Eqs. (d) 
and (f ) 

Poa rex . ny V = -(3 - v) cos - sin -x 4rc a a 

Poa . rex ny V = -(3 - v) sin - cos -Y 4rc a a 
( j) 
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We see that the maximum values of Vx , Yy occur along the edges of the plate. 
Thus, by Eqs. ( j), 

vx(max) = p;: (3 - v) 

V Poa (3 - v) y(max) = 
4n 

a 
at x = -

2 ' 

x = O, a 

y = 0, a 

Westergaard Approximate Solution for Rectangular Plates . 
Uniform Load 

(k) 

The solution of the simply supported rectangular plate subjected to pressure was 
indicated above. By the results of the bending (flexural) theory of plates for uni
form pressure, it may be shown that, at the center of the plate, the stress is always 
greater in the direction of the shorter span than in the direction of the larger span 
(Fig. 1 3 . 8). This fact may be made plausible by physical considerations. For 
example, consider the two strips EF and GH (Fig. 1 3 .8). The deflections of the two 
strips at the center of the plate are, of course, equal. However, the shorter strip 
(GH), being the stiffer, carries the greater load, and hence, a greater stress is 
developed in it. 

Rectangular Plate with Simply Supported Edges. In Fig. 1 3 .9, the bending moment 
per unit width across the diagonal at the corner (denoted by Mdiag), the bending 
moment per -unit width at the center of the strip GH (Fig. 1 3 .8) in the short span b 
(denoted by Mbc) and the bending moment per unit width at the center of the strip 
EF (Fig. 1 3 . 8) in the long span a (denoted by Mac) are plotted. 

The curves and equations in Fig. 1 3 .9 were obtained by Westergaard and Slater 
( 192 1) with slight modifications in the results obtained from the theory of flexure 
of plates. The modifications were made in order to obtain relatively simple ex
pressions and, in doing so, allowance was made for some redistribution of stress 
accompanying slight yielding in the regions of high (and more or less localized) 
stresses. Note that the moment coefficient for a square slab (bja = 1) is 1/24 = 
0.04 1 7, and that for a long narrow slab (b/a = 0) the moment coefficient for the 
short span is 1/8 = 0. 125. The factor 1/8 is the same as for a simply supported 
beam. For intermediate values of bja, the moment coefficient is always greater in 
the short span than elsewhere, and its value is intermediate between the limiting 
values of 1/24 and 1/8. 

G 
a 

E F 

t H 
Figure 1 3 .8 
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Figure 1 3 .9 Ratio of bending moment M per unit width to pb2 in rectangular plates with 
simply supported edges. Poisson's ratio v is assumed to be zero. 

Rectangular Plate with Fixed Edges. If the plate is rigidly held (fixed) at the edges 
and is subjected to a uniformly distributed load, the maximum moment per unit 
width occurs at the centers of the long edges, that is, at the fixed ends of the central 
strip of the short span. 

Two limiting cases of fixed-edged rectangular slab will be considered first. If the 
plate is very long and narrow (b/a = 0), the forces at the short ends of the plate 
will have negligible effect on the moment in the central part of the plate and, hence, 
the plate may be considered a fixed-end beam with a span equal to the short dimen
sion of the plate; therefore, the negative moment per unit width Mbe at the fixed 
edges of the short span is pb 2 /12, and the positive moment Mbc at the center of the 
short span is pb 2 /24. The other limiting case is that of the square slab (b/a = 1 )  for 
which the moment coefficient at the center of the edges is approximately 0.05 and 
the moment coefficient at the center is 0.0 1 8 . 

For plares having other values of bja, the maximum negative moment Mbe and 
the maximum positive moment Mbc are given in Fig. 1 3 . 1  0. These values were 
obtained by Westergaard and Slater ( 192 1 )  by simplifying the results obtained from 
the theory of flexure of flat plates. Owing to the advantageous redistribution of 
stresses accompanying slight yielding of the plate at points of maximum stress, the 
plate is somewhat stiffer than is indicated by the results obtained from the theory. 

For plates made of ductile metal, the maximum moment used in design should 
probably be about the average of the values of Mbe and Mbc given in Fig. 1 3 . 10. 
Bach ( 1 920), from the results of experiments, recommends the moment coefficients 
given by the dotted line in Fig. 1 3 . 10. Experimental results for steel plates 0.6 1  m 
by 1 .22 m (b/a = 0.5) with the thicknesses varying from 3 to 19 mm indicate the 
maximum moment per unit width to be approximately 0.042 pb2 • Results indicate 
that there is not much difference in the value of the stress at the center and at the 
end of the short span. 
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Figure 13 . 10  Ratio of bending moment M per unit width to  pb2 in rectangular plates with 
fixed edges. Poisson's ratio v is assumed to be zero. 

Other Types of Edge Conditions. Formulas obtained by Westergaard and Slater 
( 1 92 1 ), giving approximate values of the moments per unit width in rectangular 
plates, including some of the formulas discussed in the preceding articles, are 
shown in Table 1 3 . 1 .  These formulas give results fairly close to those found from 
the theory of flexure of slabs, in which for convenience the value of Poisson's 
ratio v = 0 has been assumed. The effect of Poisson's ratio is to increase the bend
ing moment per unit width in the plate. Let Macv and Mbcv represent the values of 
the bending moments at the center of a rectangular plate when the material has a 
Poisson's ratio v not assumed to be zero. Approximate values of these bending 
moments are given by the expressions 

Macv = Mac + vMbc 
Mbcv = Mbc + vMac ( 1 3 .69) 

in which Mac and Mbc are values of the bending moments as given in Table 1 3 . 1 ,  
or subsequent tables, in which v has been assumed to be zero. In using these for
mulas for plates made of ductile material, it should be borne in mind that they give 
results that probably err somewhat on the side of safety. 

Deflection of Rectangular Plate; Uniformly 
Distributed Load 
The differential equation for plates has been solved only for relatively simple 
shapes of plates and certain simple types of loading. From the solution of this 
equation for rectangular plates subjected to uniformly distributed loads, the maxi
mum deflection wmax at the center of the plate is given by the equation 

- 2 (pb4 ) W max - C ( 1 - V ) 
Eh 3 

( 1 3 .70) 
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TABLE 13.1 
Fonnulas Obtained by the Theory of Flexure of Slabs, Giving Approximate Values of Bending Moments per Unit Width and Maximum 
Deflections in Rectangular and Elliptical Slabs Under Uniform Load (Given by W estergaard)a 

Moments in Span b 
At Center At Center 
of Edge of Slab 

- Mbe Mbc 

1 - pb 2 
8 

Four edges simply supported 0 1 + 2o:3 

1 1 b 2 - wb 2 
12  24 p 

Span b fixed; span a simply supported 1 + 0.2o:4 1 + 0.4o:4 

1 - pb 2 
8 

Span a fixed ; span b simply supported 0 1 + 0.8o:2 + 6o:4 

_!__ wb 2 1 b 2 - p 12  8 
All edges fixed 1 + 0:4 3 + 4o:4 

_!__ wb 2 1 b 2 
Elliptical slab with fixed edges ; 12  24 p 

axes a and b b/a = o: 2 2 1 + - 0: 2 + 0:4 1 + -('.( 2 + 0:4 3 3 

Moments in Span a 
At Center 
of Edge 

- Mae 

0 

0 

1 b 2 - p 8 
1 .08o:4 

_!__ wb 2 
24 

1 - pb2o:2 
12  

2 1 + - 0: 2 + 0:4 3 

Along Center Line 
of Slab 

Mac 

pb 2 
( 1 + 0: 2) 48 

b 2 
E__ ( 1 + 0.3o: 2) 80 

c + 3a2) 
0.01 5pb 2 

4 1 + C( 

0.009pb 2( 1 + 2o: 2 - o:4) 

1 - pb2o:2 
24 

2 1 + - o: 2 + 0:4 3 

a Poisson's ratio v = 0 [see Eq. (1 3.69)] . b = shorter side; a = longer side ; bja = r:x. 

Maximum 
Deflection 

Wmax = 

C(l - v1 ) 
X (pb4/Eh3) 

Values of C 

0. 16  
1 + 2.4o:3 

0.032 
1 + 0.4o:3 

0. 16  
1 + 0:2 + 5o:4 

0.032 
1 + 0:4 

...... 
w 
co 

............. 
en � � 
0 z 0 
'"rj :::0 � n ;? z 0 c r-> :::0 '"0 r-> .., � '"0 :::0 0 
� � � en 

CJt � \0 
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where p is the uniformly distributed load per unit of area, b the short span length, 
E the modulus of elasticity of the material in the plate, h the plate thickness, v 
Poisson's ratio, and C a dimensionless constant whose value depends on the ratio 
bja of the sides of the plate and on the type of support at the edge of the plate. 

Several investigators have computed values of the constant C in Eq. ( 1 3 .70) ; 
some of the values are as follows : For a uniformly loaded square (bja = 1 )  plate 
simply supported at its edges, C = 0.047; if the plate is very long and narrow 
(bja = 0, approximately), C = 0. 16. Thus, the deflection of a long narrow plate 
is more than three times that of a square plate having the same thickness as the 
narrow plate; in fact, the supports at the short ends of a narrow plate (b/a < i) 
have very little effect in preventing deflection at the center of the plate. If all the 
edges of a uniformly loaded square plate are fixed, the constant in Eq. ( 1 3 .70) is 
C = 0.016. A comparison of this value of C with the value 0.047 for simply sup
ported edges shows that if the edges of a square plate are fixed, the deflection at 
the center of the plate is about one-third the deflection for simply supported edges . 
However, the edges of a plate are seldom if ever rigidly clamped and, therefore, 
the deflection at the center of a plate having partial restraint at its edges would be 
given by a value of C between 0.016  and 0.047. 

Values of the constant C in Eq. ( 1 3.70) for various ratios of bja and various con
ditions at the supports are given in Table 1 3 . 1 .  From experiments on plates 0.6 1 m 
by 1 . 22 m with the edges carefully clamped, the measured deflections on relatively 
thin plates (h/b � 0.02) agree very closely up to values of deflections not greater 
than about one-half the plate thickness with those given by the formulas for deflec
tions in Table 1 3 . 1 .  The formulas for deflections in this table give values that are 
too large when the direct tensile stresses in the plate are appreciable; this condition 
begins when the maximum deflection of the plate reaches a value of about one-half 
the thickness of the plate. The stiffening effect of the direct (membrane) tensile 
stresses also serves to reduce the bending stresses in the plate. 

EXAMPLE 13.2 
Water Tank 

A water tank 3.60 m deep and 2. 70 m square is to be made of structural steel plate. 
The sides of the tank are divided into nine panels by two vertical supports (or stiff
eners) and two horizontal supports ;  that is, each panel is 0.90 m wide and 1 .20 m 
high, and the average head of water on a lower panel is 3.00 m (Fig. E 1 3 .2). 

(a) Determine the .thickness of the plate for the lower panels, using a working 
stress limit of o-w = 1 24.0 MPa. 

(b) Calculate the maximum deflection of the panel. 

SOLUTION 

The mean pressure on a bottom panel is p = (3 .00 m)(9. 80 kPa/m) = 29.4 kPa. We 
assume this pressure to be uniformly distributed over the panel. We also assume 
that the edges of the panel are fixed. 
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(a) For fixed edges, by Fig. 1 3 . 1 0  with bja = 0.75, we have approximately, using 
the experimental curve, 

M = 0.042 pb 2 = (0.042)(29.4 x 103:2 ) <o.902m2 ) 

= 1000N·m 
m 

and hence, 

thus 

6(1 000) 
124 = 6.96 mm 

(b) To find displacement, we have from Table 1 3 . 1 , for fixed edges, C = 
0.032/ [1  + (0.75)4] = 0.0243. With v = 0.29 and E = 200 GPa, we find 

or 

Wmax = 0.0243 ( 1  - 0.292 ){29.4 X 103 Pa)(900 mm)4 
(200 x 109 Pa)(6.96 mm)3 

Wmax = 6.37 mm 

This deflection is more than one-half the thickness of the plate. Hence, 
direct tensile stress would probably reduce the value of wmax · See Sec. 1 3 .9. 
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13.9 

SOLUTION OF CIRCULAR PLATE PROBLEMS 

In this section, we consider solutions for circular plates undergoing small elastic 
displacements. We also present some results for large elastic deflections of circular 
plates ; that is, for maximum deflections that are large compared to the plate 
thickness h. In the case of large deflections, direct tensile forces (tractions) that, 
though small for deflections less than one-half the plate thickness, become rela
tively large for deflections greater than the thickness. 

Solution of V 2V 2w = !!_. Circular Plate D 
For the circular plate with radius a and thickness h, we employ polar coordinates 
with origin at the center of the plate (Fig. l 3 . 1 1 ). Then, Eq. ( 1 3 .56) may be written 
in the form (Boresi and Chong, 1987) 

( 1 3 .7 1) 

The general solution of Eq. ( 1 3 .7 1 )  is presented by Marguerre and Woernle 
( 1 969). Here, we consider only the axisymmetric case, in which the plate is loaded 
and supported symmetrically with respect to the z axis. Then, Eq. ( 1 3 .7 1 )  reduces 
to (since dependency on (} vanishes), 

( 1 3 .72) 

The solution of Eq. ( 1 3 .72), with p = p0 = constant, is 

( 1 3.73) 

where A1 , A2 , B1 , B2 are constants of integration. The constants A1 , A2 , B1 , B2 
are determined by the boundary conditions at r = a and the regularity conditions 

Figure 1 3. 1 1 
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that w, w, [see Eq. ( 1 3 . 1 3)] , M,, , and V,. must be finite at the center of the plate 
[origin r = 0 of the (r, 8) coordinate system] . 

Analogous to the expressions for the rectangular plate, we have [Eqs. ( 1 3 . 1 3), 
( 1 3 .28), ( 1 3. 30) with a =  1, {J = r; see also Eq. ( 1 3 . 5 1)] ,  in general 

[ (
w, Woo

)] 
M,, = - D w,, + v --;:- + 7 

[
w, Woo J M00 = - D - + - + vw, r r2 r 

M,, + M00 = - D( 1 + v)V2w 
a 
(
wo
) 

M,0 = - D( 1 - v) - -ar r 

[ 
a 2 1 a 

(
woo
)] 

V,. = - D - (V w) + ( 1  - v) - - -ar r ar r 

[
1 a 2 o2 

(
w0
)] 

Vo = - D - -(V w) + (1 - v) - -r ae ar2 r 
1 w0 = - w, ( 1 3 .74) 

where subscripts (r, 8) on w denote partial differentiation. Accordingly, for the 
solid plate, by Eqs. ( 1 3 .73) and ( 1 3 .74), we conclude that A2 = B2 = 0 for axisym
metric conditions. 

Circular Plates with Simply Supported Edges 
For a solid circular plate simply supported at the edge r = a, the boundary condi
tions are, with Eqs. ( 1 3 .73) and ( 1 3.74) with A2 = B2 = 0, 

Hence, solving these equations for A1 and B1 , we obtain with Eqs. (1 3 .73) and 
( 1 3 .74) the following results for the simply supported solid circular plate with uni
form lateral pressure p = Po :  

p0a2
[ (

r
)
2
] 

Moo = 16 3 + v - ( 1  + 3v) � ( 1 3 .75) 



544 13 / FLAT PLATES 

Circular Plates with Fixed Edges 
For a solid circular plate with fixed edge at r = a, the boundary conditions with 
A2 = B2 = 0 and Eqs. ( 1 3.73) and ( 1 3 .74) are 

Poa3 
w0(a) = -w,(a) = - 2B1a -

1 5D = 0 

Solving these equations for A1 and B1 , we obtain by Eqs. ( 1 3 .73) and ( 1 3 .74) the 
following results for the solid circular plate with fixed edge at r = a, subject to uni
form lateral pressure p = Po :  

w --- 1 - -_ p0a4 
[ (

r
)
2
]
2 

64D a 
p0a2

[ (
r
)
2
] 

M,, = 16 1 + v - (3 + v) � 
p0a2 

[ (
r
)
2
] 

Moo = 16 1 + v - ( 1  + 3v) � ( 1 3 .76) 

Equations ( 1 3 .73), ( 1 3 .74), ( 1 3 .75), and ( 1 3 .76) summarize the bending theory of 
simply supported and clamped circular plates subject to uniform lateral pressure. 
Numerous solutions for other types of plates, loadings, and boundary conditions 
have been presented by Marguerre and Woernle ( 1969). In particular, Marguerre 
and Woernle have presented extensive results for orthotropic plates. 

Circular Plate with Circular Hole at the Center 
For a simply supported circular plate of radius a with circular hole of radius b 
at the center and subjected to uniform lateral pressure p = p0 , the boundary con
ditions are [see Eqs. ( 1 3 .73) and ( 1 3 .74)] 

and 

V.(b) = -D (4:2 + ��) = 0 { A2 M,,(b) = -D -( 1  - v)bl + 2B1( 1  + v) 

(3 + v)p b2
} 

+ B2 [3 + v + 2(1 + v) ln b] + 
1 6D 
0 = 0 ( 1 3 .77) 

{ A2 M,,(a) = -D - ( 1  - v)� + 2B1( 1  + v) 

(3 + v)p a2
} 

+ B2 [3 + v + 2( 1 + v) ln a] + 
16D 
0 = 0 ( 1 3 .78) 
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A2 = --4D 
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B1 = --8D 
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a ( 1 + v) In b In a 

a ( 1  + v) In b 
(3 + v) 

( 1  - v) (�)T (�Y - 1] 4(1 - v) (�Y 
(�Y In a  - In b  (3 + v{(�Y - 1] 
(�)T(�Y - 1J 4(1 + v) (�Y 

Pob2 
B2 = - 8D ( 1 3 .79) 

With these coefficients and Eqs. ( 1 3 .73) and ( 1 3 .74), the displacement and stress 
resultants may be computed. 

For example, for ajb = 2 and v = 0.30, the maximum displacement is 

w(b) = Wmax 

4 
= 0 682 p0a 

. 
Eh 3 

( 1 3 .80) 

Except .for simple types of loading and shapes of plates, such as a circular shape, 
the method of finding the bending moment by solving the plate equation 
[Eq. ( 1 3 . 56)] is somewhat complicated. However, the results obtained can be 
reduced to tables or curves of coefficients for the maximum bending moments per 
unit width of a plate and for the maximum deflections of the plate. Some of these 
results are presented below. 

The bending theory of elastic plates, however, does not make allowance for 
adjustments that take place when slight local yielding at portions of high stress 
causes a redistribution of stress. This redistribution of stress, in turn, may result in 
additional strength of the plate, which may often be incorporated into the design 
of plates, particularly plates of ductile material. We also observe that the bending 
theory of plates based on Eq. ( 1 3 . 56) does not take into account the added resis
tance of the plate resulting from direct tensile stresses that accompany relatively 
large deflections. 
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Summary for Circular Plates with Simply 
Supported Edges 
Consider a circular plate with simply supported edges, so that no displacement 
occurs at the edge. The lateral displacement w and bending moments M,, , M00 for 
uniform lateral pressure p are given by Eqs. ( 1 3.7 5) . The maximum displacement 
occurs at the center of the plate (r = 0). The maximum stress CJ max also occurs at 
the center of the plate. The value of CJmax is tabulated in Table 1 3 .2. Results are 
given in Table 1 3 .2 also for the case of a spot load (P = nr�p) at the center of the 
plate, where the solution is reasonably accurate, provided r0 is a sufficiently small 
(nonzero) value. 

Summary for Circular Plates with Fixed Edges 
Consider a circular plate rigidly held (fixed) so that no rotation or displacement 
occurs at the edge. We observe that under service conditions the edges of plates are 
seldom completely "fixed," although usually they are subject to some restraint ; fur
thermore, a slight amount of yielding at the fixed edge may destroy much of the 
effect of the restraint and thereby transfer the moment to the central part of the 
plate. For these reasons, the restraint at the edges of a plate is considered of less 

TABLE 13.2 
Formulas for Values of the Maximum Principal Stresses and Maximum Deflections in Circular Plates 
as Obtained by Theory of Flexure of Platesa 

Support 
and 

Loading 

Edge simply supported; 
load uniform (r 0 = a) 

Edge fixed ; 
load uniform (r0 = a) 

Edge simply supported ; 
load at center. 
P = nr5p 
r 0 � 0, but r 0 > 0 

Fixed edge; 
load at center. 
P =  nr5p 
r0 � 0, but r0 > 0 

Principal Stress, 
(/max 

_3(_1 +
--::--

v) p (-1 _ 
2nh2 v + 1 

a 1 - v r5 ) 
+ ln - - -- --

r0 1 + v 4a2 

3(1  +" v)P ( a r5 ) 
In - + -2nh2 r0 4a2 

a must be > 1 .7r0 

Point of 
Maximum 

Stress 

Center 

Edge 

Center 

Center 

Maximum Deflection, 
wmax 

3 pa4 -(1  - v)(5 + v)-16  Eh3 

3(1  - v)(3 + v)Pa2 

4nEh3 

a a = radius of plate; r0 = radius of central loaded area; h = thickness of plate; p = uniform load per unit area; 
v = Poisson's ratio. 

b For thicker plates (h/r > 0.1 ), the deflection is wmax = C( 136)(1 - v2)( pa4/Eh 3), where the constant C 
depends on the ratio hja as follows: C = 1 + 5.72(hja)2• 
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importance, particularly if the plate is made of relatively ductile material, than 
would be indicated by the results of the theory of flexure of plates with fixed edges. 
In general, an actual medium-thick plate with a fixed edge will be intermediate in 
stiffness between the plate with a simply supported edge and the plate with an 
ideally fixed edge. 

Formulas are given in Table 1 3 .2 for the maximum deflection of clamped cir
cular plates of ideal, elastic material (Morley, 1935) . Experiments have verified the 
formulas for uniformly distributed loads and a simply supported edge. These exper
iments with fixed-edged plates under uniformly distributed loads show that the for
mula for the deflection is correct for thin and medium-thick plates [(hja) < 0. 1] 
for deflections not larger than about one-half the plate thickness. For thicker plates 
the measured values of deflection are much larger than those computed by the for
mula. Two reasons for this discrepancy exist :  ( 1 )  lack of ideal fixity at the edge and 
(2) additional deflection in the thicker plates due to the shear stresses. These experi
ments suggested that for thicker [(h/a) > 0. 1] circular plates with fixed edges sub
jected to uniform loads, the values of wmax given in Table 1 3 .2 be multiplied by a 
factor that depends on the ratio of the thickness h to the radius r. This factor is C = 
1 + 5.72(hjaf. Experiments on plates with edges securely clamped gave deflections 
that agreed closely with values computed by the use of the bending theory formula 
and the constant C. 

Formulas for deflections by the bending theory give values that are too large for 
thin to medium-thick plates when the deflections are larger than about one-half 
the plate thickness. 

Summary for Stresses and Deflections in Flat Circular 
Plates with Central Holes 
Circular plates of radius a with circular holes of radius r0 at their center are 
commonly used in engineering systems. For example, they occur in thrust-bearing 
plates, telephone and loudspeaker diaphragms, steam turbines, diffusers, piston 
heads, etc. Several cases of practical importance have been studied by Wahl and 
Lobo ( 1930). In all these cases, the maximum stress is given by simple formulas of 
the type 

pa2 
(Jmax = k1 Ji"2 or ( 1 3. 8 1 )  

depending on whether the applied load i s  uniformly distributed over the plate or 
concentrated along the edge of the central hole. Likewise, the maximum deflections 
are given by simple formulas of the type 

pa4 
Wmax = k2 Eh3 or 

Pa2 
Wmax = k2 Eh3 ( 1 3. 82) 

Wahl and Lobo have calculated numerical values for k 1 and k2 for several values 
of the ratio ajr0 and for a Poisson's ratio of v = 0. 30. The cases that they studied 
are shown in Fig. 1 3 . 12  and the corresponding values of k1 and k2 are tabulated in 
Table 1 3 .3 . For other solutions for symmetrical bending of circular plates, the inter
ested reader is referred to Timoshenko and Woinowsky-Krieger ( 1959). 



548 13 / FLAT PLATES 

Case 1 

Case 2 

Case 4 

Figure 1 3. 12 

EXAMPLE 13.3 

Wmax 

p p 

p 

Circular Plate Fixed at Edges 

p 

p 

Case 7 
p 

p 

Case 9 

Case 1 0  

A mild steel plate (E  = 200 GPa, v = 0.29, Y = 3 15  MPa) has a thickness h = 
10 mm and covers a circular opening having a diameter of 200 rom. The plate is 
fixed at the edges and is subjected to a uniform pressure p. 

(a) Determine the magnitude of the yield pressure py and deflection wmax at the 
center of the plate when this pressure is applied. 

(b) Determine a working pressure based on a factor of safety of SF = 2.00 rela
tive to py . 

SOLUTION 

(a) The maximum stress in the plate is a radial flexure stress at the outer edge of 
the plate given either by Eq. ( 1 3 .76) and the flexure formula or the appropriate 



TABLE 13.3 
Coefficients k1 and k2 Eqs. (13.81) and (13.82) for the Ten Cases Shown in Fig. 13.12: Poisson's Ratio v = 0.30. 

a 
� =  1.25 1.5 2 3 4 ro 
Case kt kz kt kz kt kz kt kz kt 

1 1 . 10 0.341 1 .26 0.5 19  1 .48 0.672 1 .88 0.734 2. 17  
2 0.66 0.202 1 . 19 0.49 1 2.04 0.902 3.34 1 .220 4.30 
3 0. 1 35  0.0023 1 0.410 0.0183  1 .04 0.0938 2. 1 5  0.293 2.99 
4 0. 1 22 0.00343 0.336 0.03 13  0.74 0. 1 250 1 .2 1  0.29 1 1 .45 
5 0.090 0.00077 0.273 0.0062 0.7 1  0.0329 1 .54 0. 1 10 2.23 

6 0. 1 1 5 0.00129 0.220 0.0064 0.405 0.0237 0.703 0.062 0.933 
7 0.592 0. 1 84 0.976 0.4 14 1 .440 0.664 1 .880 0. 824 2.08 
8 0.227 0.005 10 0.428 0.0249 0.753 0.0877 1 .205 0.209 1 .5 14 
9 0. 194 0.00504 0.320 0.0242 0.454 0.08 10 0.673 0. 1 72 1 .021 

10 0. 105 0.00199 0.259 0.0 139 0.480 0.0575 0.657 0. 1 30 0.7 10 

5 

kz kt 

0.724 2.34 
1 .300 5. 10 
0.448 3.69 
0.4 17  1 .59 
0. 1 79 2.80 

0.092 1 . 1 3  
0.830 2. 19  
0.293 1 .745 
0.2 17  1 .305 
0. 162 0.730 

kz 

0.704 
1 . 3 10  
0.564 
0.492 
0.234 

0. 1 14 
0.8 1 3 
0.3 50 
0.238 
0. 1 75 

...... 
c.o \o ............. 
r::n 0 r-� � 0 ""rj ('") � � > :::0 '"0 r-� � '"0 6 t:O r-
� r::n 

CJt � \.0 
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equation in Table 1 3 .2 

3 a2 3py( 100f 
O"max = 4 py h2 = 4( 10f = 75py 

The magnitude of py by the maximum shear-stress theory of failure is ob
tained by setting O"max equal to Y 

y 3 1 5  py = - = - = 4.20 MPa 75 75 

The maximum deflection of the plate when this pressure is applied is given by 
the appropriate equation in Table 13 .2. Thus, 

= 2_(1  _ 2) pya4 
= 3 ( 1  - 0.292 )(4.20)( 100)4 

Wmax 1 6  V Eh3 16(200 X 103 )( 10)3 

= 0.36 1  mm 

(b) Let Pw be the working pressure; its value is based on py 

py 4.20 
Pw = SF = 2.00 = 2. 10 MPa 

Summary for Large Elastic Deflections of Circular Plates . 
Clamped Edge and Uniformly Distributed Load 
Consider a circular plate of radius a and thickness h (Fig. 1 3. 1 3a). Let the plate be 
loaded by lateral pressure p that causes a maximum deflection wmax that is large 
compared to the thickness h (Fig. 1 3 . 1 3c). Let the edge of the plate be clamped so 
that rotation and radial displacement are prevented (Fig. 1 3. 1 3b). In Fig. 1 3. 1 3d a 
diametral strip of one unit width is cut from the plate to show the bending moments 
per unit of width and the direct tensile forces that act in this strip at the edge and 
center of the plate. The direct tensile forces arise from two sources : First, the fixed 
support at the edge prevents the edge at opposite ends of a diametral strip from 
moving radially, thereby causing the strip to stretch as it deflects. Second, if the 
plate is not clamped at its edge but is simply supported as shown in Figs. 1 3 . 1 3e, 
f, and g, radial stresses arise out of the tendency for outer concentric rings of the 
plate, such as shown in Fig. 1 3 . 1 3h, to retain their original diameter as the plate 
defects. In Fig. 1 3 . 1 3h the concentric ring at the outer edge is shown cut from the 
plate. This ring tends to retain the original outside diameter of the unloaded plate; 
the radial tensile stresses acting on the inside of the ring, as shown in Fig. 1 3 . 1 3h, 
cause the ring diameter to decrease, and in doing so they introduce compressive 
stresses on every diametral section such as x-x. These compressive stresses in the 
circumferential direction som�times cause the plate to wrinkle or buckle near the 
edge, particularly if the plate is simply supported. The radial stresses are usually 
larger in the central portion of the plate than near the edge. 

Thus, when the plate is deflected more than about one-half the thickness, there 
are direct tensile stresses in addition to bending stresses; as will be indicated later, 
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Figure 1 3. 1 3  Thin plates having large deflections in which tension i s  significant. 

the significant values of these stresses occur either at the edge or center of the plate. 
Let the bending stresses in a radial plane at the edge and center of the plate be de
signated by CJ be and CJ be , respectively, and let the corresponding direct tensile stresses 
be (Jte and (Jto respectively. Values of these stresses for a plate with clamped edges 
having a radius a and thickness h and made of a material having a modulus of elas
ticity E are given in Fig. 1 3 . 14. In Fig. 1 3 . 14 the ordinates are values of the stress 
multiplied by the quantity a2 jEh2 (to make dimensionless ordinates), and the ab
scissas are values of the maximum deflection wmax divided by the thickness h (Pres
cott, 1 946). Note that the dimensionless ordinates and abscissas make it possible 
to use the curves for plates of any dimensions, provided that other conditions are 
the same. Also note that the bending stress (Jbe at the fixed edge is the largest of 
these four stresses. The direct tensile stresses, though small for small deflections (de
flections less than about one-half the plate thickness), become relatively large as the 
deflection increases. For example, if the deflection is equal to twice the plate thick
ness, the direct tensile stress (Jtc at the center of the plate is equal to the bending 
stress CJbc at the center; if the deflection is four times the thickness, the stress CJtc is 
twice CJbc · 

Significant Stress;  Edges Clamped 
The maximum stress in the plate is at the edge and is the sum of the values of the 
bending stress CJ be and the direct tensile stress CJte associated with the curves in 
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Figure 1 3. 14 Stresses in thin plates having large deflections ; circular plate with clamped 
edges. 

Fig. 1 3 . 1 4. Values of this maximum stress O"max multiplied by the quantity a2/Eh2 
are shown as ordinates to the upper curve in Fig. 1 3 . 1 5a. The values of O" max at 
points in the plate a short distance radially from the edge are very much smaller 
than at the edge; a minimum value occurs near the edge, and the stresses gradually 
approach another maximum value that occurs at the center of the plate. The max
imum stress at the center of the plate is indicated by the lower curve in Fig. 1 3 . 1 5a, 
which represents the sum of the stresses O"bc and O"tc as given by the curves in 
Fig. 1 3. 1 4. If failure of the plate is by general yielding, the maximum stress at the 
center is the significant stress, since the effect of the maximum stress at the edge is 
localized. However, if the failure of the plate is by fatique crack growth resulting 
from repeated applications of loads, or if the plate is made of brittle material and 
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Figure 1 3. 1 5  Maximum stresses and deflections in thin plates having large deflections ; cir
cular plate with clamped edges . 
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hence fails by sudden fracture under static loads, the stress at the edge would be the 
significant stress. 

Load on Plate; Edges Clamped 
In Fig. 1 3 . 1 5b the values of the load p on the plate with fixed edges multiplied by 
the quantity a41Eh4 are represented as ordinates, and maximum deflections divided 
by the plate thickness are abscissas, thus giving a dimensionless curve. The dashed 
line represents values of load and maximum deflection as computed by neglecting 
the effect of direct tensile stresses. A significant increase in the load p is indicated 
by the upward trend of the curve above the straight line for deflection larger than 
about one-half the plate thickness, which shows that the plate is much stiffer than 
is indicated by the analysis in which the stiffening effect contributed by the direct 
tensile stress is neglected. 

The relation between the load p and stresses in the plate is obtained by using 
Figs. 1 3 . 1 5a and b jointly. For example, if the dimensions and modulus of elas
ticity of the plate and load p are given, the quantity pa41Eh4 can be computed. In 
Fig. 1 3 . 1 5b the abscissa wmaxlh corresponding to this value of pa4 I Eh4 is found 
from the curve. The value of wmaxlh thus found is now used as the abscissa in 
Fig. 1 3 . 1 5a, and the stress at the center or edge of the plate is found by reading the 
ordinate corresponding to this abscissa to the appropriate curve in Fig. 1 3 . 1 5a and 
dividing it by a2 1 Eh 2• This procedure is used in the following example. 

EXAMPLE 13.4 
Large Deflection of a Uniformly Loaded Circular 
Plate with Clamped Edge 

A circular plate of aluminum alloy is 500 mm in diameter and 5 mm thick. The 
plate is subjected to a uniformly distributed pressure p and fixed at its edge. The 
maximum pressure that the plate can support is assumed to be that pressure that 
causes a significant tensile stress equal to the tensile yield stress of the material (say, 
288 MPa). 

(a) Determine the allowable magnitude of the pressure p that develops not more 
than�one-half the maximum pressure that the plate can support. 

(b) Compute the maximum deflection corresponding to this allowable pressure. 
The modulus of elasticity of the aluminum alloy is E = 72.0 GPa. 

SOLUTION 

(a) We note by Fig. 1 3 . 1 5, that neither pressure p nor stress (J are linearly propor
tional to the deflections. In addition, the stress CJ, either at the edge or center 
of the plate, is not linearly proportional to the pressure p. We must therefore 
apply the reduction factor (factor of safety SF = 2) to the load rather than the 
stress. 

The factor of safety is applied to the failure pressure for the plate. The plate 
is assumed to fail by general yielding. As indicated in Fig. 1 3. 1 5a, yielding ini
tiates at the edge of the plate when CJmax at the edge is equal to Y. We assume 
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that general yielding failure occurs shortly after the maximum stress at the 
center of the plate reaches the yield stress of the material ; the pressure
deflection curve in Fig. 1 3. 1 5b is assumed not to be influenced by the localized 
yielding at the edge. Hence, we seek the value of the pressure p that will cause 
a stress of 288 MPa at the center of the plate; this value of p is then to be re
duced by the factor SF = 2. 

Accordingly, we compute the factor 

288(2502 ) 
72 X 103(52 ) = 10 

With the value 10 as the ordinate in Fig. 1 3 . 1 5a for the curve O"max at the center 
of the plate, we read the corresponding abscissa wmaxlh = 2.4. By Fig. 1 3. 1 5b, 
with the abscissa equal to 2.4, we find 

The value of p determined from this ratio (p = 576 kPa) represents the max
imum pressure that the plate can support without yielding over a large por
tion of its volume. Therefore, p/2 or 288 kPa is considered the allowable 
magnitude of pressure that the plate may support. 

(b) To determine the maximum deflection, we compute first the quantity 

pa4 0.288 (2504) 
Eh4 = 72 X 103(54) = 25 

By Fig. 1 3 . 1 5b, we find the corresponding abscissa wmaxlh = 1 . 8 . Hence, the 
deflection of the center of the plate is wmax = 1 .8h = 9.00 mm. 

Summary for Large Elastic Deflections of Circular Plates. 
Simply Supported Edge and Uniformly Distributed Load 
It was found that when the edge of a circular plate as shown in Fig. 1 3 . 1 3  is fixed 
and the plate is subjected to a uniformly distributed load, there exist direct radial 
tensile stresses in addition to the bending stresses. If a circular plate has its edge 
simply supported instead of fixed, the direct tensile stresses have somewhat smaller 
magnitudes, but they are still effective in increasing the load resistance of the plate, 
particularly when the deflections are large relative to the thickness of the plate. 

In Fig. 1 3 . 1 6a the ordinates to the curve marked o-tc represent the direct tensile 
stresses at the center of the simply supported plate where these stresses are a max
imum, and the ordinates to the curve marked o-bc represent the bending stresses at 
the center of the plate that also have a maximum value at the center. The axes of 
the curves in Figs. 1 3 . 1 6a and b have the same meaning as those for Figs. 1 3 . 1 5a 
and b for a plate whose edge is fixed. In Fig. 1 3 . 1 6a the ordinates to the curve marked 
o-max represent the sum of the stresses o-tc and o-bc that occur on the tensile side of 
the plate at the center. In Fig. 1 3 . 1 6b the curve represents the relation between the 
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Figure 1 3 . 1 6  Stresses in thin circular plates having large deflections ; edges simply 
supported. 

load and maximum deflection, and the dashed line represents this relationship if 
the direct tensile stresses are neglected in the analysis. The solid curve in Fig. 1 3 . 1 6b, 
which rises above the dashed line when the maximum deflection becomes greater 
than one-half to one times the thickness of the plate, shows the influence of the 
direct tensile stress in increasing the stiffness, especially of relatively thin plates 
for which the deflections are likely to be large in comparison with the thickness. 
Figures 1 3 . 1 6a and b are used in solving problems in a manner similar to the use 
of Figs. 1 3. 1 5a and b as described in Example 1 3.4. 

Rectangular or Other Shaped Plates with 
Large Deflections 
The general behavior described for circular plates when the deflections are large 
also applies to rectangular, elliptical, or other shapes of plates. Curves giving data 
for rectangular plates similar to those given in Figs. 1 3 . 1 5  and 1 3. 1 6  for circular 
plates are given by Ramberg et al . ( 1 942). 

PROBLEMS 
Section 13.8 

13.1 .  

13.2. 

13.3. 

Repeat Example 1 3. 1  for the case of a rectangular plate a i= b. 
. mnx . nny 

Repeat Example 1 3. 1  for the case p = p0 stn -- stn-, where m and n 

are integers. 
a a 

Repeat Problem 1 3.2 for the case of a rectangular plate a i= b. 
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13.4. Determine the twisting moment Mxy and stress (Jxy for the plate of 
Example 1 3. 1 . 

13.5. Compute the stresses (Jxx ' (JYY ' (Jxy for the plate of Example 1 3 . 1 . 
13.6. Let a simply supported rectangular plate be subjected to load p(x, y) given 

in the form of a double trigonometric series 

oo oo mnx nny p(x, y) = L L Amn sin - sin -m= l n = l a b (a) 

Let the displacement w(x, y) be represented in terms of a double trigono
metric series 

oo oo mnx nny w(x, y) = I I wmn sin - sin -m= l n = l a b (b) 

This double-series method was used by Navier (the Navier method; see 
also, Timoshenko and Woinowsky-Krieger, 1 959) in a lecture presented to 
the French Academy in 1 820. 

(a) Show that 

(c) 

(b) For the case p(x, y) = p0 , show by the method of Fourier series that 

4p0 fa fb . mnx . nny Amn = ab 0 0 Slll-a- SID -b- dx dy 

1 6p0 - n2mn 

(c) and hence, that 

(d) and that the maximum deflection is given by 

1 6p0 oo oo ( - 1 )(m + n - 2)/2 
Wmax = n6D ml;l .f:l mn(m 2ja 2 + n 2fb 2 )2 

(d) 

(e) 

Ans. This series converges extremely rapidly. Using only the first 
term for a square plate (a = b), we obtain 
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13.7. A rectangular steel plate (E = 200 GPa, v = 0.29, Y = 280 MPa) has a 
length of 2 m, width of 1 m, and fixed edges. The plate is subjected to a 
uniform pressure p = 270 kPa. Assume that the design pressure for the 
plate is limited by the maximum stress in the plate; this would be the case 
for fatigue loading, for instance. For a working stress limit aw = Y/2, de
termine the required plate thickness and maximum deflection. 

13.8. If the pressure for the plate in Problem 1 3.7 is increased, yielding will be 
initiated by moment Mbe at the fixed edge of the plate; however, the pres
sure-deflection curve for the plate will remain nearly linear until after the 
pressure has been increased to initiate yielding due to bending at the center 
of the plate. Determine the required plate thickness and maximum deflec
tion for the plate in Problem 1 3.7 if the plate has a factor of safety SF = 
2.00 against initiation of yielding at the center of the plate. 

Ans. h = 22. 1 mm, Wmax = 3.45 mm 

13.9. A square structural steel trap door (E = 200 GPa, v = 0.29, Y = 240 MPa) 
has a side length of 1 . 50 m and thickness of 1 5  mm. The plate is simply 
supported and subjected to a uniform pressure. Determine the yield pres
sure py and maximum deflection when this pressure is applied. 

Ans. py = 74.4 kPa, Wmax = 24. 1 mm 

Section 13.9 

13.10. Verify Eq. ( 1 3 . 73). 
13. 1 1 . With Eqs. ( 1 3 .7 3) and ( 1 3.74) and the boundary conditions for a solid cir

cular plate simply supported at the outer edge, r = a, derive the results of 
Eqs. ( 1 3 .75). 

13.12. Repeat Problem 1 3. 1 1  for the case of the solid circular plate with fixed edge 
at r = a; that is, derive Eqs. ( 1 3 . 76). 

13.13. Derive Eqs. ( 1 3 .79) and, hence, verify Eq. ( 1 3. 80). 
13.14. The cylinder of a steam engine is 400 mm in diameter, and the maximum 

steam pressure is 690 kPa. Find the thickness of the cylinder head that is a 
f!_at steel plate, assuming that the working stress is a w = 82.0 MPa. Deter
mine the maximum deflection of the cylinder head. The plate has fixed 
edges. For the steel, E = 200 GPa and v = 0.29. 

13.15. A cast-iron disk valve is a flat circular plate 300 mm in diameter and is 
simply supported. The plate is subjected to uniform pressure supplied by a 
head of 60 m of water (9. 80 kPa/m). Find the thickness of the disk using 
a working stress of aw = 14 MPa. Determine the maximum deflection of 
the plate. For cast iron, E = 100 GPa and v = 0.20. 

Ans. h = 33 .7 mm, Wmax = 0.06 1 mm 

13.16. A circular plate is made of steel (E = 200 GPa, v = 0.29, and Y =  276 MPa), 
has a radius a =  250 mm, and thickness h = 25 mm. The plate is simply 
supported and subjected to a uniform pressure p = 1 . 3 8  MPa. 
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(a) Determine the maximum bending stress in the plate and maximum 
deflection. 

(b) Determine the pressure py that is required to initiate yielding in 
the plate and the factor of safety against initiation of yielding in the 
plate. 

13.17. A circular steel plate with a central hole is fixed at the central hole and 
uniformly loaded as indicated in Case 3 of Fig. 1 3 . 12. For the plate, a = 
300 mm, r0 = 100 mm, h = 10 mm, p = 100 kPa, E = 200 GPa, and 
Y = 290 MPa. 

(a) Determine the maximum bending stress and maximum deflection. 

(b) What is the factor of safety against initiation of yielding? 

Ans. (a) O"max = 194 MPa, Wmax = 1 . 1 9  mm (b) SF = 1 . 50 

13.18. A circular opening in the flat end of a nuclear reactor pressure vessel is 
254 mm in diameter. A circular steel plate 2.54 mm thick, with tensile yield 
stress Y = 24 1 MPa, is used as a cover for the opening. When the cover 
plate is inserted in the opening, its edges are clamped securely. Determine 
the maximum internal pressure to which the vessel may be subjected if it 
is limited by the condition that it must not exceed one-third the pressure 
that will cause general yielding of the cover plate. E = 200 G Pa for steel . 

13. 19. A circular plate made of aluminum alloy (E = 72.0 GPa and Y =  276 MPa) 
is to have a 254-mm diameter. The edge of the plate is clamped and a 
pressure of p = 73. 8  kPa is applied. Determine the required thickness h of 
the plate, so that this pressure (73.8 kPa) is two-thirds of the pressure that 
will cause the plate to just reach yield. 

Hint: Here, the stress at the edge of the plate is the significant stress, 
since no yield of the plate is permitted. Use Figs. 1 3. 1 5a and b to solve for 
h by trial and error, with a value p = ! x 73 .8 kPa = 1 10.7 kPa and 
O" = 276 MPa. 

Ans. h = 2.0 mm 

13.20. A circular steel plate whose diameter is 2. 54 m and thickness is 1 2.7 mm is 
simply supported at its edge and subjected to a uniformly distributed pres
sure p. The tensile yield point stress of the steel is 207 MPa. Determine the 
pressure py that produces a maximum stress in the plate equal to the tensile 
yield point stress. Determine the maximum deflection for this pressure. 

13.21 .  In Problem 1 3.20, determine the pressure p that produces a maximum 
stress at the center of the plate equal to one-half the yield point stress. 
Compare this pressure to that determined in Problem 1 3.20? Explain 
the result. 

Ans. p = 14.0 kPa 

13.22. Rework Problem 1 3. 1 8  for the case of a simply supported edge. 
13.23. Let the aluminum plate in Problem 1 3. 1 9  have a thickness of 2.0 mm and 
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TRESS CO CENTRATIO 

As noted in previous chapters, the formulas for determining stresses in simple 
structural members and machine elements are based on the assumption that the 
distribution of stress on any section of a member can be expressed by a mathe
matical law or equation of relatively simple form. For example, in a tension mem
ber subjected to an axial load the stress is assumed to be distributed uniformly over 
each cross section; in an elastic beam the stress on each cross section is assumed to 
increase directly with the distance from the neutral axis ; etc. 

The assumption that the distribution of stress on a section of a simple member 
may be expressed by relatively simple laws may be in error in many cases. The con
ditions that may cause the stress at a point in a member, such as a bar or beam, to 
be radically different from the value calculated from simple formulas include effects 
such as 

1 .  abrupt changes in section such as occur at  the roots of the threads of a bolt, at 
the bottom of a tooth on a gear, at a section of a plate or beam containing a 
hole, at the corner of a keyway in a shaft 

2. contact stress at the points of application of the external forces, as, for example, 
at bearing blocks near the ends of a beam, at the points of contact of the wheels 
of a locomotive and the rail, at points of contact between gear teeth or between 
ball bearings and the races 

3. discontinuities in the material itself, such as nonmetallic inclusions in steel, 
voids in concrete, pitch pockets and knots in timber, or variations in the 
strength and stiffness of the component elements of which the member is made, 
such as crystalline grains in steel, fibers in wood, aggregate in concrete 

4. initial stresses in a member that result, for example, from overstraining and 
cold working of metals during fabrication or erection, from heat treatment of 
metals, from shrinkage in castings and in concrete, or from residual stress 
resulting from welding operations 

5. cracks that exist in the member, which may be the result of fabrication, such 
as welding, cold working, grinding, or other causes. 

The conditions that cause the stresses to be greater than those given by the 
ordinary stress equations of mechanics of materials are called discontinuities or 
stress raisers. These discontinuities cause sudden increases in the stress (stress 
peaks) at points near the stress raisers. The term stress gradient is used to indicate 
the rate of increase of stress as a stress raiser is approached. The stress gradient 
may have an influence on the damaging effect of the peak value of the stress. 

Often, large stresses due to discontinuities are developed in only a small portion 
of a member. Hence, these stresses are called localized stresses or simply stress 
concentrations. In many cases, particularly in which the stress is highly localized, a 
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mathematical analysis is difficult or impracticable. Then, experimental, numerical, 
or mechanical methods of stress analysis are used. 

Whether the significant stress (stress associated with structural damage) in a 
metal member under a given type of loading is the localized stress at a point, or a 
somewhat smaller value representing the average stress over a small area including 
the point, depends on the internal state of the metal such as grain type and size, 
state of stress, stress gradient, temperature, and rate of straining; all these factors 
may influence the ability of the material to make local adjustments in reducing 
somewhat the damaging effect of the stress concentration at the point. 

The solution for the values of stress concentrations by the theory of elasticity 
applied to members with known discontinuities or stress raisers requires in gen
eral· the solution of differential equations that are difficult to solve. However, the 
elasticity method has been used with success to evaluate stress concentrations in 
members containing changes of section, such as that caused by a circular hole in a 
wide plate (see Sec. 14.2). In addition, the use of numerical methods, such as finite 
elements (see Chapter 1 9) has lead to approximate solutions to a wide range of 
stress concentration problems. Experimental methods of determining stress con
centrations may also prove of value in cases for which the elasticity method be
comes excessively difficult to apply. 

Some experimental methods are primarily mechanical methods of solving for 
the significant stress; see, for example, the first three of the list of methods given in 
the next paragraph. These three methods tend to give values comparable with the 
elasticity method. Likewise the elastic strain (strain-gage) method, when a very 
short gage length is used over which the strain is measured with high precision, 
gives values of stress concentration closely approximating the elasticity value. In 
the other methods mentioned, the properties of the materials used in the models 
usually influence the stress concentration obtained, causing values somewhat less 
than the elasticity values. 

Each experimental method, however, has limitations, but at least one method 
usually yields useful results in a given situation. Some experimental methods that 
have been used to evaluate stress concentrations are ( 1 )  photoelastic (polarized 
light), (2) elastic membrane (soap film), (3) electrical analogy, (4) elastic strain (strain 
gage), (5) brittle coating, (6) Moire methods, and (7 ) repeated stress, and so on; 
see Hetenyi ( 1950); Peterson ( 1 974); Kobayashi ( 1988); Doyle and Phillips ( 1 989). 

In this chapter, we consider large stress gradients that arise in the vicinity of 
holes, notches, and cracks in a structural member or solid. In many practical engi
neering situations, the failure of a structural member or system is due to the propa
gation of a crack or cracks that occur in the presence of large stress gradients. 
The state of stress in the neighborhood of such geometrical irregularities is usually 
three-dimensional in form, thus increasing the difficulty of obtaining complete 
analytical solutions. Generally, powerful mathematical methods are required to 
describe the stress concentrations. We present some general concepts and basic 
techniques of stress concentrations calculations. For more explicit and more 
advanced solutions, the reader should refer to specialized works. 

The results for computation of stress gradients play a fundamental role in the 
analysis of fracture and the establishment of fracture criteria. In particular, stress 
concentrations coupled with repeated loading (fatigue loading; Chapter 1 6) cause 
a large number of the failures in structures. The reason for this fact is fairly clear, 
since stress concentrations lead to local s tresses that exceed the nominal or average 
stress by large amounts. 
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14. 1 

The concept of a stress concentration factor is often employed by designers to 
account for the localized increase in stress at a point, the nominal stress being mul
tiplied by a stress concentration factor to obtain an estimate of the local stress at 
the point. Examples of the use of stress concentration factors are given in the fol
lowing sections. 

NATURE OF A STRESS CONCENTRATION PROBLEM. 
STRESS CONCENTRATION FACTOR 

In the tension test of an isotropic homogeneous bar of constant cross-sectional 
area A, the stress (J is assumed to be uniformly distributed over the cross section, 
provided the section is sufficiently far removed from the ends of the bar, where the 
load may be applied in a nonuniform manner (Fig. 14. 1 a). At the end sections, ordi
narily the stress distribution is not uniform. Nonuniformity of stress may also 
occur because of geometric changes (holes or notches) in the cross section of a 
specimen (Figs. 14. l b  and c). This nonuniformity in stress distribution may result in 
a maximum stress CJ max at a section that is considerably larger than the average 
stress (CJn = P/A, where P is the total tension load). * The ratio Sc defined as 

S = (Jmax c (Jn 
( 1 4. 1 ) 

is called the stress concentration factor for the section (point); the more abrupt the 
cross-sectional area transition in the tension specimen, the larger the stress concen
tration factor (Fig. 14. 1d ). 

If (J max is the calculated value (Jc of the localized stress as found from the theory 
of elasticity, or experimental methods, Sc is given an additional subscript c and is 
written Sec · Then, Sec is called the calculated stress concentration factor; it is also 
sometimes referred to as a form factor. If, on the other hand, (J max is the effective 
value CJe found from tests of the actual material under the conditions of use, as, for 
example, under repeated stress by determining first the effective stress (Je (fatigue 
strength) from specimens that contain the abrupt change in section or notch and 
then obtaining the fatigue strength from specimens free from the notch, Sc is given 
the additional subscript e. Then, See is called the effective or significant stress con
centration factor; the term strength reduction factor is also 

-
used, especially in 

connection with repeated loads (fatigue). Thus, we may write 

and ( 1 4.2) 

* When the dimension of the hole or notch is small compared to the width of the bar, the area A is con
sidered to be the cross-sectional area of the bar away from the load application region or from the hole 
or notch in the member. For bars with relatively small widths, we take A to be the area of the bar at 
the hole or notch section. When the width of the bar is large compared to the diameter of the hole, the 
difference in the two definitions of A is small. 
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The significance of values of See is discussed in Sec. 14. 5. Analytical and experi
mental values for Sec are presented in Sec. 14.2, 14.3, and 14.4. 

The values of calculated stress concentrations given in this chapter are not 
meant to be exhaustive, but rather illustrative of the effects of different discontinui
ties as computed by the various methods of determining calculated stress concen
trations or localized stresses. 

A pictorial representation of stress trajectories (Figs. 14. 1 b, c, d) is often em
ployed as an approximate model in the physics of solids to explain the nature 
of the strain (stress) in the neighborhood of a geometrical discontinuity (crack, 
dislocation, etc.) in a solid. This representation is based on the analogy between 
magnetic lines of forces and stress trajectories. 

For example, analogous to magnetic lines of forces, the stress trajectories, 
whose paths must lie in the material, cluster together in passing around a geo
metric hole or discontinuity. In doing so, the average spacing between the lines 
of force is reduced and, therefore, there results a stress concentration (stress 
gradient) or an increase in local stress (more lines of force are squeezed into the 
same area). To expand this idea further, consider a geometrical discontinuity 
(crack) and sketch the hypothetical local arrangement of atoms around the tip of 
the crack (Fig. 14.2). The lines of force may be considered to be transmitted from 
one row of atoms to another. Therefore, the transmission of force around the tip 
of the crack (say, a small crack in an infinite plate) entails heavy loading and strain
ing of the bonds (AB, CD, AC, etc.). Smaller loads and strains are carried by bonds 
away from the crack (the strain of bond MN is much less than that of AB). For 
bonds sufficiently far removed from AB, for example, bond MN, the associated 
stress is essentially (J = P /A. The conceptual model of Fig. 14.2 leads to the conclu
sion that for bond AB to be extended, bonds AC and BD also must be extended. 
Hence, the uniaxial loading of the plate causes the region around the crack tip to 
have not only a high tensile strain in the y direction but also a high tensile strain 
in the x direction. The concept of lines of force also suggests a redistribution of 
strain energy from regions above or below the crack (regions R and Q in Fig. 14.2) 
to the highly strained region at the crack tip (see also Figs, 14. 1 b, c, d) . Also because 
of the distortion of rectangular elements (Fig. 14.2), high shear stresses exist in the 
neighborhood of a stress concentration. 

R a = f. 
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Figure 14.2 Atomic model of crack in a solid. 
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In practical problems of stress concentrations, the state of stress in the neigh
borhood of the crack is three-dimensional in nature. For such complex situations, 
few complete analytical solutions exist. Indeed, the majority of mathematical solu
tions to stress concentration problems are at best approximate two-dimensional 
solutions of plane stress cases, the case of plane strain being derived from the plane 
stress case (Savin, 196 1 ). Consequently, experimental methods of determining 
stress concentration factors are often employed to supplement or verify analytical 
predictions. Unfortunately, experimental methods are also limited in accuracy and 
particularly in generality. For this reason, stress concentration factors are usually 
determined by several methods. 

Stress concentrations may also arise because of concentrated loads such as 
point loads, line loads, spot loads, etc. (see Sec. 14.3 ,  14.4. and Chapter 1 8). 

STRESS CONCENTRATION FACTORS. 
THEORY OF ELASTICITY 

Circular Hole in an Infinite Plane Under 
Uniaxial Tension 
Consider first the case of an infinite plate or sheet with a small circular hole of 
radius a under uniaxial tension (J (Fig. 14.3). 

With respect to polar coordinates (r, 8), the plane stress components at any 
point P are given by the formulas (Boresi and Chong, 1987) 

(J = - 1 - - + - 1 - - 1 - - cos 28 (J ( a2) (J ( a2) ( 3a2) rr 2 r2 2 r2 r2 

(J = - - 1 - - 1 + - sin 28 (J ( a2) ( 3a2) rO 2 r2 r2 

Figure 14.3 Infinite plate with a small circular hole. 

( 14.3) 
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Figure 14.4 (]'88 distribution for 8 = n/2, 3n/2. 

We note that the stress state given by Eqs. ( 14.3) satisfies the boundary condi
tions at r = a (CJ,, = (JrO = 0 for all 8) and at r = 00 (CJxx = (Jrr = CJ, (Jxy = (JrO = 0 
for 8 = 0, n and CJYY = CJ,, = 0, CJxy = CJ,0 = 0 for 8 = n/2, 3nj2). For r = a, 

CJoo = CJ( 1 - 2 cos 28) (14.4) 

Hence, for 8 = n/2, 3nj2, CJ00 attains its maximum value of CJoo(max> = 3CJ. For 8 = 0, 
n, CJ00 attains a compressive value - CJ. Thus, CJ00 attains a maximum tensile value 
of three times the uniformly distributed stress CJ, at the hole r = a for 8 = n/2, 
3nj2 (Fig. 14.4) This value (3CJ) is the largest normal stress that occurs in the plate. 
Hence, the stress concentration factor at the hole [Eq. ( 14.2)] is Sec = 3. Figure 14.4 
shows the fact that as r increases ( > a), the maximum value of CJ00 decreases rapidly 
[see Eqs. ( 1 4.3)] . Thus, the high stress gradient or stress concentration is quite lo
calized in effect. For this reason, Eqs. ( 14.3) are often used to estimate the stress 
concentration effect of a hole in a plate of finite width in the direction normal 
to the direction of tension CJ. However, when the diameter of the hole is com
parable to the width of the plate, Eqs. ( 1 4. 3) are considerablY. in error. Several 
authors have studied the problem of a plate strip with a circular hole by theoreti
cal and experimental (photo-elastic and strain-gage) methods. The results are 
summarized by the formula 

S = (J max = 3 K - 1 cc (Jn K + 0.3 
( 14.5 )  

where K i s  the ratio (width of strip/diameter of hole) and (Jn the average stress over 
the weakened cross-seetional area (the cross-sectional area of the plate remaining 
at the section containing the hole). 

Elliptic Hole in an Infinite Plate Stressed in Direction 
Perpendicular to Major Axis of the Hole 
Consider an infinite plate or sheet with an elliptic hole of major axis 2a and minor 
axis 2b (Fig. 14.5 ). A uniform tensile stress (J is applied at a large distance from the 
hole and is directed perpendicular to the major axis of the elliptical hole ; that is, 
(JYY = (J at infinity. For this problem, it is desirable to express the stress components 
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Figure 14.5 Elliptical hole in an infinite plate. 

relative to orthogonal curvilinear coordinates (Boresi and Chong, 1 987) (elliptic 
coordinates, Fig. 14.6). In terms of elliptic coordinates (a, {J), the equation of an 
ellipse is 

x2 y2 
--=------ + = c 2 
cosh 2 a sinh 2 a 

where for the ellipse with semiaxes (a, b), we have (Fig. 14.5 )  

I 
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Figure 14.6 Elliptic coordinates. 

( 14.6) 

( 1 4.7) 
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Thus, in the limit as a0 � 0, the elliptical hole becomes a sharp crack (an ellipse of 
zero height and length 2a = 2c). Because of this condition, the solution for the 
stresses in a plate with an elliptical hole is employed to study the stresses in a plate 
with a narrow crack of length 2a. 

The elastic stress distribution in a plate with an elliptical hole has been deter
mined by Inglis ( 1 9 1 3) by the method of complex potentials (see also Savin, 196 1 ;  
Timoshenko and Goodier, 1970). For uniaxial tension stress, perpendicular to the 
major axis of the elliptical hole, the sum of the stress components (Jaa ' (JPP is given 
by the formula 

- 2ao[( 1 + e-2a0) sinh 2a - 1] (Jaa + (Jpp - (Je 
h 2 2{1 cos a - cos 

( 14. 8) 

Since the stress (Jaa = 0 at the hole (a = a0 ), Eq. ( 1 4. 8) yields the stress (JPP at the 
hole as 

(J. _ = (Je2ao _ 1 [( 1 + e-2a0) sinh 2a0 J pp la - ao cosh 2ao - cos 2{1 

where (a, {1) are elliptic coordinates (a = a0 at the hole) and by Eqs. ( 1 4.7) 

b 
tanh a0 = a 

( 1 4.9) 

( 1 4. 1 0) 

where a is the semimajor axis of the ellipse and b the semiminor axis. Therefore, by 
Eq. ( 14.9), the maximum value of (JPP is (for {1 = 0, n ;  cos 2{1 = 1; this occurs at the 
ends of the major axis) 

(Jpp(max) = (J( 1  + 2 coth 1Xo ) = (J ( 1 + 
2
b
a) ( 14. 1 1 ) 

Thus, the maximum value of (JPP increases without bound as bja � 0, that is, as 
the semiminor axis b becomes smaller and smaller relative to a. It is noteworthy 
that for a = b (a circular hole), the maximum value of (JPP is 3(J, which agrees with 
the results given by Eq. ( 1 4.4) .  The distribution of (JPP around a circular hole 
(ajb = 1 )  is shown in Fig. 14.7 . The distribution of (JPP at the hole for ajb = 5 is 
shown in Fig. 14.8 .  By geometry, the radius of curvature of an ellipse at the end 
of the major axis is [Eq. ( 14.6)] 

( 1 4. 1 2) 

where (a, b) are major and minor semiaxes lengths, respectively. Hence, Eqs. ( 1 4. 1 1 )  
and ( 14. 1 2) yield 

(Jpp(max) = (J( 1 + 2 t) ( 1 4. 1 3) 

Also by Eq. ( 1 4.9), the minimum value of (JPP is (JPP<min> = - (J (at the ends of the 
minor axis, where {1 = n/2, - n/2). 



a/3/3 (min) = - a 

a/3/3 (max) = 3a 
for � = 1 
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Figure 14.7 Circumferential stress distribution around an edge of a circular hole in an 
infinite plate. 
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a(3{3 (mml = - a 

a 

Figure 14.8 Distribution of O'pp around an elliptical hole in an infinite plate loaded per
pendicular to the major axis. 
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Elliptical Hole in Infinite Plate Stressed in Direction 
Perpendicular to the Minor Axis of the Hole 
Let the plate be subjected to stress (J as indicated in Fig. 14.9, where, as above, 
the dimensions (a, b) are very small compared to the length and width dimensions 
of the plate. By a transformation of Eq. ( 1 4.9), the value of CJpp at any point on the 
perimeter of the hole is 

CJ I _ = CJ
( 1 + sinh 2a0 - e2a.o cos 2{3) 

flfJ a. - a.o cosh 2a0 - cos 2{3 

For {J = n/2, - n/2, CJpp attains the maximum value 

lJpp(max) = a( l + 2 tanh ct0) = a
( 1 + 

2:) 
( 14. 14) 

( 14. 1 5) 

at the ends of the minor axis. Again as above, for fJ = 0, n, CJpp attains the 
minimum value CJpp(min) = - CJ (which now occurs at the ends of the major axis). 
The distribution of CJpp is given in Fig. 14.9 for ajb = 5. 

Crack in a Plate 
As b � 0, the elliptical hole in an infinite plate becomes very flat and approaches 
the shape of a line crack (see Chapter 1 5) . The maximum value of CJpp may become 
quite large compared to the applied stress for nonzero values of b as b � 0, depend-

a/3/3 (min) = - a 

Figure 14.9 Distribution of O"pp around an elliptical hole in an infinite plate loaded 
perpendicular to the minor axis. 
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ing on the nature of the load. For example, for the case of Fig. 14. 5, Eq. ( 14. 1 1 ) 
yields with ajb = 100, (o-pp)max = 201o-, which corresponds to a stress concentration 
factor of Sec = 20 1 . For the loading case of Fig. 14.9, with ajb = 100, Eq. ( 14. 1 5) 
yields (o-pp)max = 1 .02o- or Sec = 1 .02. The case b = 0 leads to a special study of 
stress singularities. The practical significance of very large stress concentrations is 
discussed in Chapter 1 5. 

Ellipsoidal Cavity 
In a member subjected to axial tension, the theoretical stress at the edge of an 
internal cavity having the shape of an ellipsoid has been obtained by Sadowsky 
and Sternberg ( 1949). The stress concentration factors for two special cases of such 
an internal discontinuity will be considered; namely for ellipsoids of revolution of 
the prolate spheroid type (football shape) and the oblate spheroid type (door-knob 
shape). The data for a prolate spheroid are given in Table 14. 1 . For this case, the 
semimajor axis a of the ellipsoid, which is the axis of revolution, is oriented so that 
it is perpendicular to the direction of the axial pull in the member, and the semi
minor axis b always lies in a plane parallel to the axial pull. Dimensions a and b 
are considered to be very small compared to the cross-sectional dimensions of the 
axial member. If the nominal (average) stress in the member is o-n , the maximum 
stress occurs at the end of the semimajor axis a and has values for various ratios 
of bja as given in Table 14. 1 .  

The ellipsoid of revolution having the shape of the oblate spheroid has its 
semiminor axis b, which is the axis of revolution, oriented in the direction of the 
uniaxial pull in the member, and the semimajor axis a always lies in a plane per
pendicular to the load. If the nominal (average) stress in the member is o-n , the max
imum stress occurs at the end of a semimajor axis a and has values for various 
ratios of bja as given in Table 14.2. These values of the calculated maximum elastic 
stress show that an internal flaw or cavity of spherical shape such as a gas bubble 
(an ellipsoid for which b/a = 1) raises the stress from o-n to 2.05o-n ;  a long, narrow, 
stringlike internal flaw or cavity (b/a = 0) oriented in a direction perpendicular to 
the load raises the stress from o-n to 2.83o-n ; and a very flat, round cavity oriented 
so that the flat plane is perpendicular to the load raises the stress from o-n to values 
as high or higher than 1 3 .5o-n if the material remains elastic; this value is compa
rable to the value for a narrow elliptical hole as given by Eq. ( 14. 1 1 ). 

TABLE 14.1 
Stress at End of Semimajor Axis a of Internal Ellipsoidal Cavity of Prolate 
Spheroid Shape 

Ratio b/a 
Calculated stress 

TABLE 14.2 

0.2 
2.700"n 

0. 1 
2.830"n 

Stress at End of Semimajor Axis a of Internal Ellipsoidal Cavity of Oblate Spheroid Shape 

Ratio b/a 
Calculated stress 
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Grooves and Holes 
The values of the calculated stress concentration factors for grooves as shown in 
Figs. A through D of Table 14. 3  may be obtained from the diagram given by Neuber 
( 1 958) (Fig. 14. 10). 

Consider first the construction of Fig. 14. 10. For example, let it be assumed that 
a member contains the groove shown in Fig. A of Table 14.3 and is subjected to an 
axial load P. 

Let the calculated stress concentration factor be Scs when the groove is very 
shallow. Then from Neuber ( 1 958) 

( 14. 1 6) 

TABLE 14.3 
Directions for Use of Fig. 14.10 (Neuber) in Finding Calculated Stress Concentration 
Factor Sec in Bars 

Type of Notch 

� [}: �· )-)-· ..jh� t P 
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ttB � j--. _.f�aj.; M 

�fi�t+J--· �"� b (J 

· �Jt-· J-�. 
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of 
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Tension 

Bending 
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Tension 
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Formula Scale Curve 
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Nominal $ Finding 
Stress sec 

p f 1 -
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3M 
2b 2h f 2 

p 
- f 3 
bh 

6M 
b2h f 4 

p 
- f 5 
2bh 

3Mt 
2h(c 3 - t 3) 

e 5 

p 
- f 6 
nb2 

4M 
- f 7 
nb3 

1 .23 V 
� e 8 

2T 
- e 9 
nb3 



e 7 

f 
6 

3 

Sec ' 

5 

8 

7 

4 

2 

6 

5 

3 2 0 

14 .2 / THEORY OF ELASTICITY 573 

2 3 4 5 6 7 

6 

2 
4 

7 

1 0  

3 

8 
9 

Figure 14. 10 Neuber's diagram (nomograph) for a calculated stress concentration factor 
at the root of a notch. 

Let the calculated stress concentration factor be Sed when the groove is very deep. 
Then from Neuber ( 1 958), 

2[(b/ p) + 1] JbiP s d = ------------c 
[(b/ p) + 1] arctanJb!P + JbiP ( 1 4. 1 7) 

Let Sec represent the calculated stress concentration for any depth of groove. Then, 
according to Neuber, an approximate, and usually quite accurate, value of Sec is 
given by the following equation: 

1 (Scs - 1)(Scd - 1 )  s - + --;::::========-cc - I 2 2 v ( scs - 1 )  + (sed - 1 )  
( 14. 1 8) 

When the groove is very shallow, Eq. ( 1 4. 1 8) reduces to sec = SCS ' and when the 
groove is very deep, Eq. ( 14. 1 8) reduces to Sec = Sed ·  Curve number 1 in Fig. 14. 10 
has been plotted by making use of Eqs .  ( 14. 1 6), ( 14. 1 7), and ( 14. 1 8). The other 
curves were obtained in a similar manner. 

To show how Fig. 14. 10 is used, assume that p = 6.35  mm, t = 38.0 mm, and 
b = 24 1 .0 mm in Fig. A of Table 14.3 and that the bar is subjected to a bending 
moment M. From these values, JtiP = 2.45 and JbiP = 6. 1 6. As indicated in 
Table 14.3, scale f applies for JtiP and curve 2 for Jb!P. Thus, to find the value 
of the calculated stress concentration factor, we enter Fig. 14. 10 with JbiP = 6. 1 6, 
proceed vertically upward to curve 2, then horizontally to the left to the axis of 
ordinates. We join this point to the point JtiP = 2.45 on the left-hand axis of 
abscissas (on which scale f is applicable) by a straight line. This line is tangent to 
the circle corresponding to the appropriate calculated stress concentration factor; 
thus, sec = 4.25. 
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Figure 14. 1 1  Calculated stress concentration factors for semicircular grooves in a cylin
drical member subjected to bending only as obtained for Neuber's diagram. 
(From the unpublished results of Moore and Jordan.) 

Some values of a calculated stress concentration factor for bending obtained 
from Neuber's diagram (Fig. 14. 10) as found by Moore and Jordan are given in 
Fig. 14. 1 1 .  

STRESS CONCENTRATION FACTORS. 
COMBINED LOADS 

In Sec. 14.2, we discussed stress concentrations for several types of notches for sim
ple loading of members made of an isotropic material that is assumed to behave 
in a linearly elastic manner. Because of the linearity of the response, if these same 
conditions prevail when such a member is subjected to more complex loading, 
the loads in some cases may be resolved into simple component parts, for which 
the results of Sec. 14.2 hold. Then by means of the principle of superposition, the 
results may be combined to yield the effect of complex loading. 

Infinite Plate with Circular Hole 
Consider an infinite plate, with a circular hole, subjected to stress (J = CJ1 on two 
parallel edges far removed from the hole (Fig. 14.3) and to stress (J = CJ2 on the 
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other distant parallel edges. The stress distribution may be derived from Eqs . ( 14.3) 
by superposition. One need merely set (J = CJ1 and 8 = 0 in Eqs. ( 14.3) to obtain 
stresses due to CJ1 . Then set (J = CJ2 and 8 = 8 + n/2 in Eqs. ( 14.3) to obtain stresses 
due to CJ2 and add the stresses so obtained to those due to CJ1 . Special results 
are obtained for (J = CJ1 = CJ2 , the case of uniform tension in all directions [then 
CJoo(max) = 2CJ] and for CJ = CJ1 = - CJ2 , the case of pure shear [then CJoo(max) = 4CJ for 
8 = ± n/2] . Thus, for uniform tension Sec = 2 and for uniform shear Sec = 4. 

Elliptical Hole in Infinite Plate Uniformly Stressed in 
Directions of Major and Minor Axes of the Hole 
Analogous to the circular hole case, the stresses for the state of uniform tension (J 
on the boundary (CJxx � CJ for x � oo and CJYY � CJ for y � oo) may be computed for 
the elliptical hole. The results are (Neuber, 1 958) 

2CJ sinh 2a 
(Jaa + CJpp = 

-----COSh 2a - COS 2{3 

Again since CJaa = 0 for a = a0 (at the hole), 

and 

2CJ sinh 2a0 (J{J{J i a = ao = 
cosh 2ao - cos 2{3 

( 14. 1 9) 

( 14.20) 

( 14.21) 

which, for ajb = 1 , becomes equal to 2CJ as derived previously for the circular hole. 

Pure Shear Parallel to Major and Minor Axes of the 
Elliptical Hole 
Let an infinite plate be subjected to uniform shear stress t as shown in Fig. 14. 1 2. 
The stress state due to this case of pure shear parallel to the (x, y) axes may be 
found by superposition of the two cases for uniform tension CJ( = t) at fJ = n/4 and 
- CJ( = -t) at fJ = 3nj4; see Figs. 14.5  and 14.6 and also Eqs. ( 14.9) and ( 14. 14). 
The value of CJpp on the perimeter of the hole (a = a0 ) may be found in this manner 
to be 

2te2ao sin 2{3 
(J. I -{J{J a = ao - -

cosh 2ao - cos 2{3 ( 14.22) 

By differentiation of CJpp with respect to {J, we may show that the maximum value 
of CJpp occurs when 

b 
tan fJ = - tanh a0 = - -a 

and the maximum value of CJpp is 

(cosh a0 + sinh a0 )2 (a + b)2 
(J{J{J(max) = t = t 

sinh a0 cosh a0 ab 

( 14.23) 

( 14.24) 
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Figure 14. 1 2  Distribution of CJpp around an elliptical hole i n  an infinite plate loaded in 
pure shear. 

For the case ajb = 5, the distribution of (Jpp around the hole is given in Fig. 14. 1 2, 
where point A locates the maximum value. Analogously, the minimum (compres
sive) value of (JfJfJ is 

(a + b)2 
(J{J {J(min) = - t ab 

where tan f3 = tanh a0 = bja (point B in Fig. 14. 1 2). 

( 14.25) 

Solutions for the stress distribution around an elliptical hole in a plane isotropic 
sheet have been obtained for other loadings, for example, pure bending in the 
plane, as well as for other shapes of holes . (Neuber, 1958) . 

a, a, 

Figure 14. 1 3  
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Elliptical Hole in Infinite Plate with Different Loads in 
Two Perpendicular Directions 
Consider an infinite plate with an elliptical hole (Fig. 14. 1 3). Let the plate be sub
jected to uniformly distributed stresses 0"1 > 0"2 along straight-line edges far 
removed from the hole. Let the major axis of the hole form an angle 8 with the edge 
on which stress 0"1 acts. We wish to compute the maximum value of O"pp at the 
perimeter of the hole. 

The solution to the above problem may be obtained by superposing the load
ings of Figs. 14.8, 14.9, and 14. 1 2. By the rules of transformation of stress [see 
Chapter 2, Eqs. (2. 3 1 )], we compute normal and shear stresses on planes parallel to 
the major and minor axes of the ellipse (Fig. 14. 1 3), as shown in Fig. 14. 1 4. Thus, 
we obtain 

( 14.26) 

Then the substitutions O" = 0"1 into Eq. ( 1 4.9), O" = 0"11 into Eq. ( 14. 14), and t = t1,11 
into Eq. ( 14.22) and addition of the results yield 

O"pp = [(0"1 + 0"2 ) sinh 2a0 + (0"1 - 0"2 )(e2a.o cos 2{3 - 1)  cos 28 
- (0"1 - 0"2 )e2a.o sin 2{3 sin 28]/(cosh 2a0 - cos 2{3) 

a1 + a2 a1 - a2 au = -2 - - -2 - cos 28 

Figure 14. 14 

( 14.27) 
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For a given value of 8, Eq. ( 14.27) gives CJpp as a function of {J. Hence, by setting 
the derivative of CJpp with respect to fJ equal to zero, we may compute the values of 
{J that give extreme values of CJpp . The values of fJ are solutions of the equation 

1 - cos 2{3 cosh 2a0 - sin 2{3 cot 28 sinh 2a0 

= (CJ1 + CJ2) (sinh 2a0) (s�n 2{3) 
CJ1 - (J 2 e 2ao SID 2(} ( 14.28) 

In general, Eq. ( 14.28) is satisfied by two values of {J, depending on the quantities 
CJ1 , CJ2 , and a0 (tanh a0 = bja), for each value of 8. One value of fJ is associated with 
CJpfJ(max> and the other with CJpp(min) . Because of symmetry, for given {J, the significant 
values of CJpp may be determined by considering values of (} between 0 and n/2. 

Case 1. (} = 0 or (} = n/2. By Eq. ( 14.28), for (} = 0 or (} = n/2, we obtain the 
values {J = 0 and fJ = n/2. Hence, we find for (} = 0 and {J = 0 

( 14.29) 

at the ends of the major axis . For (} = n/2 and {J = 0 

( 14.30) 

at the ends of the major axis. Likewise, we find for (} = 0 and fJ = n/2 

( 14.3 1 )  

at the ends of the minor axis. For 8 = n/2 and {J = n/2 

( 14.32) 

at the ends of the minor axis. 

Case 2. 0 < (} < n/2. For a fixed value of {J, the extreme values of CJpp occur at 
values of 8 determined by setting the derivative of CJpp [Eq. ( 14.27)] with respect to 
8 equal to zero. Thus, we obtain 

( 14. 33) 

Consequently, by Eqs. ( 14.28) and ( 14.3 3), we find that extreme values of CJpp are 
obtained when 

( 14. 34) 
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and 

provided that 

1 + coth 2a0 < (o-1 + o-2)2 
< 1 + coth 2a0 

2 coth a0 - o-1 - o-2 - 2 tanh a0 

where Eq. ( 14.36) follows from Eqs. ( 14.34) and ( 1 4.35) and the conditions 

- 1 � cos 28 � 1 ' - 1 � cos 2{3 � 1 

By Eqs. ( 14.34), ( 14.35), and ( 14.27 ), we find the two values of o-pp 

( 14.35) 

( 14.36) 

( 14.37) 

( 14. 38) 

( 14. 39) 

Depending on the sign of the applied stresses, the maximum value of o-pp is given 
by either the value of o-pp 1 or o-pp2 , depending on which is larger. For example, 
assume that the values of o-1 , o-2 , and a0 are such that Eq. ( 14.36) is satisfied. Let 
the elliptical hole be oriented at angle 8 (Fig. 14. 1 3) given by Eq. ( 1 4.34). Under 
these conditions, the value of o-pp2 from Eq. ( 14.39) is never greater than the value 
of o-pfJ(max> given by Eqs. ( 14.29) and ( 14.30). However, the stress O"pp 1 is a tensile 
stress when o-1 + o-2 < 0. The values of o-pp 1 may exceed the maximum tensile stress 
that can exist for 8 = 0 or n/2. Hence, when o-1 and o-2 are both negative (compres
sive stresses), a tensile stress o-pp 1 exists on the perimeter of the elliptical hole. When 
8 is equal to the value given by Eq. ( 14.34), with the positive sign, o-pp 1 is the largest 
tensile stress that exists for any other value of 8 that may be chosen for this state 
of stress [values of o-1 , o-2 , a0 that satisfy Eq. ( 14 .36)] .  Consequently the presence 
of an elliptical hole in a flat plate (even for the case bja � 0) may result in a tensile 
stress on the perimeter of the hole, even when the plate is subjected to negative 
stresses o-1 and o-2 (compression) on its edges (Fig. 14. 1 3). 

EXAMPLE 14.1 
Narrow Elliptical Hole in Plate 

Consider an elliptical hole in a plate with ratio ajb = 100 (Fig. 14. 1 3). For this large 
value of ajb, the hole appears as a very narrow slit (crack) in the plate. Let compres
sive stresses o-1 = -20 MPa and o-2 = - 7 5 MPa be applied to the plate edges. 

(a) Determine the orientation of the hole (value of 8) for which the tensile stress 
at the perimeter of the hole is a maximum. 

(b) Calculate the value of this tensile stress. 

(c) Calculate the associated value of {J (location of the point) for which this ten
sile stress occurs. 
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SOLUTION 

Since ajb = 100, Eq. ( 14. 10) indicates that coth a0 = 1/tanh a0 = ajb = 100. Hence, 
a0 = 0.0 100 rad, sinh 2a0 = 0.0200, cosh 2a0 = 1 .000, coth 2a0 = 50.0. For these 
values of o-1 , o-2 , and a0 , Eq. ( 14 .36) is satisfied. 

(a) The value of (} is given by Eq. ( 14. 34). Hence, 

cos 28 = 

or 

- 1 - 0.0200 + ( = �� � ��) 2 (0.020) 

2(- 20 - 75) - 20 + 75 

(} = 0.6535 rad 

= 0.2607 

(b) The maximum value of the tensile stress is given by Eq. ( 14. 3 8). Thus, 

( - 20 + 75)2 • 

O"pp(max) = O"pp 1 = - 2( _ 20 _ 75) ( 1  + 50) = 8 12 MPa tension 

(c) This tensile stress is located on the perimeter of the hole at a value of {J given by 
Eq. ( 14. 35 )  ( -20 - 75)2 (0.020)2 

cos 2{3 = 1 - 2 - 20 + 75 1 .020 = 0.9977 

or 
fJ = 0.0342 rad 

This small value of {J means that the maximum tensile stress occurs very near 
the end of the major axis of the elliptical hole (see Figs. 14. 1 3  and 14 .5). 

The above computation shows that a slender elliptical hole (long narrow crack) 
in a plate may result in a high tensile stress concentration even when the applied 
edge stresses are compressive. 

Stress Concentration at a Groove in a Circular Shaft 
Consider a machine etement consisting of a circular shaft in which a circumferen
tial circular groove (notch) is cut (Fig. 14. 1 5  and Fig. D, Table 14.3). In practice, the 
shaft is subjected to an axial force P, bending moment M, and twisting moment 
(torque) T. We wish to compute the maximum principal stress in the cross section 
of the shaft at the root of the notch. In addition, a shear V may act on the shaft 
(Fig. D, Table 14.3). However, this shear has only a small effect on the maximum 
stress at the root of the notch (Neuber, 1958). Hence, we do not consider its effect. 

The maximum principal stress at the root of the notch occurs at point A in 
Fig. 14. 1 5 . The stress components at A are O"zz and O"zx · Hence, by Eq. (2.37), the 
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y y 

(a) (b) 

Figure 14. 1 5  

maximum principal stress is 

1 l .J  2 4 2 (Jmax = 2(Jzz + 2 (J zz + (J zx ( 14.40) 

The stress component CJzz is produced by the axial load P and bending moment M. Hence, 

= s<P) p + s<M) Me (Jzz cc A cc ] 

( 14.4 1) 

where S��> and S��> are the calculated stress concentration factors for axial load 
and bending moment, respectively. These stress concentration factors are deter
mined from curves 6 and 7 in Fig. 14. 10. The stress CJzx is given by the relation 

_ <T> Tc _ <T> 2T 
(Jzx - sec J - sec nb 3 ( 1 4.42) 

where S��> is the calculated stress concentration factor for torque and is deter
mined from curve 9 of Fig. 14. 1 0. For a given set of dimensions of the shaft 
(Fig. 14. 1 5), Eqs. ( 14.40), ( 14.4 1) and ( 14.42) yield the value of CJmax · 

STRESS CONCENTRATION FACTORS. 
EXPERIMENTAL TECHNIQUES 

Photoelastic Method 
The values of calculated stress concentration factors found by the photoelastic 
method agree well with the results obtained from the theory of elasticity. Thus, the 
photoelastic method may be used as a check, and it may be applied also to some 
members in which the stress cannot be obtained mathematically; however, the 
technique of obtaining reliable results with the photoelastic method is acquired 
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only after considerable experience. In particular, special care must be exercised to 
obtain trustworthy results when the radius of the notch is very small (Kobayashi, 
1 988). 

Values of the calculated stress concentration factors obtained by the photo
elastic method for three forms of abrupt changes in section in flat specimens are 
shown as reported by Frocht ( 1 936) in Fig. 14. 16 . In each specimen, the stress dis
tribution is uniform at distant sections on either side of the abrupt change; when 
the stress distribution is variable on either side of the abrupt change in section, as 
in bending, the calculated stress concentration factor is found to be somewhat 
smaller. These curves show that the value of Sec varies with the ratio pjd. However, 
Sec also depends on the ratio Djd. For the particular groove, hole, and fillet shown 
in Fig. 14. 1 6, the values of pjd and Djd are related by the equation Djd = 1 + 2pjd. 

The values of Sec for the hole and groove in Fig. 14. 16 can be found also by 
Neuber's solution, as obtained from Fig. 14. 10 for various values of pjd. These 
values obtained from Neuber's nomograph agree satisfactorily with those found by 
the photoelastic method. The elasticity solution for the calculated stress concentra
tion factor for the fillet is achieved by a numerical method that is an approximation. 
Hence, the photoelastic method is of special value for this type of discontinuity. 
For the fillet in Fig. 14. 1 6  for which t = p, the curve marked t = p gives values of 
Sec · For members in which t is not equal to p, the values of Sec will be different as 
shown, for example, by the curve marked t = 3p. The influence of t/ p on the values 
of sec for a fillet subjected to axial tension and to bending has been studied by 
Frocht ( 1 936). 

The distribution of stress shown in Fig. 14. 1 7  was obtained by Coker and Filon 
( 1957) by the photoelastic method. The maximum stress at the edge of the groove 

p = 1 . 27 mm 
JoE--- 25.40 mm 

t-E-----50.04 mm-----;..,.. 

(a) (b) 

� .!!.. rad 
4 � 

Figure 14. 1 7  Stress distribution at notches found by the photoelastic method. (From 
Coker and Filon, 1957.) 
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in Fig. 14. 1 7a is 1 .37  times the average stress on the reduced section, that is, 
Sec = 1 . 37, by the photoelastic method. The value as found by using Neuber's 
nomograph is Sec = 1 .45. In Fig. 14. 1 7b the groove has a much smaller radius 
and the plate is much wider. The photoelastic method gives a maximum stress of 
7 .58 MPa, whereas the nominal or average stress was 1 . 59 MPa, that is, Sec = 4.77. 
The value as found by Neuber's nomograph is Sec = 5.50. The rather sharp notch 
gives a high concentration of stress. However, the stress concentration depends on 
the relative depth of the notch. For example, if in Fig. 14. 1 7b the notch geometry 
and dimensions are kept as shown and the outer width of the plate is reduced to 
29.97 mm (the width of the root section is then 9.90 mm), the value of Sec = 2.6 is 
obtained from Neuber's solution. 

Strain-Gage Method 
Two examples are presented to indicate the use of the strain-gage method to deter
mine calculated stress concentration factors for a hole in a shaft and to determine 
the effect of a concentrated load or the strain (stress) distribution in a beam at the 
section where the load is applied. 

Transverse Hole in a Shaft. By using a specially designed, mechanical strain gage 
that measured elastic strains in a 2.54-mm gage length, Peterson and Wahl ( 1 936) 
obtained elastic stress concentration factors for a shaft containing a transverse hole 
and subjected to bending loads. Their results are shown in Fig. 14. 1 8. With the 
same instrument, they obtained the stress at a fillet in a large steel shaft tested as a 
beam. These values checked closely with the values found by Frocht by the photo
elastic method for fillets of the same proportions (Fig. 14. 1 6) . 
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Figure 14. 1 8  Calculated stress concentration factors for a shaft i n  bending with a trans
verse hole as found by elastic strain method. (From Peterson and Wahl 
1936.) 
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Effect of Local Pressure on Strain (Stress) Distributions in a Beam. The effect on 
the longitudinal bending strains (stresses) in a beam caused by the bearing pressure 
of a concentrated load applied at the midspan section of a steel rail beam is shown 
in the upper part of Fig. 14. 19 . The load was applied approximately along a line 
across the top of the rail section. The effect of the bearing pressure on the longitu
dinal stress extends well below mid-depth of the rail. The point of zero longitudinal 
stress is about 25 mm above the calculated position of the neutral axis for the sec
tion beneath the load, and the strain (stress) on the cross section does not vary 
directly with the distance from the neutral axis, as is usually assumed for such a 
beam. The results for the section underneath the load, however, are approximate 
because relatively long gage lengths were used and the two-dimensional aspect of 
the state of stress was neglected. 

If, however, the same beam is loaded as shown in the lower part of Fig. 14. 1 9, 
the strains (stresses) in the central portion, which is subjected to constant bending 
moment free from the influence of the bearing pressure of the loads, are in agree
ment with the usual assumptions for simple bending. 

Elastic Torsional Stress Concentration at Fillet in Shaft 
If all cross sections of a shaft are circular but the shaft contains a rather abrupt 
change in diameter, a localized stress occurs at the abrupt change of section. 
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Jacobsen ( 1925) investigated the concentration of torsional shear stress at a fillet, 
where the diameter of a shaft changes more or less abruptly, depending on the 
radius of the fillet. 

The results of the investigation are given in Fig. 14.20. For example, if the ra
dius of a circular shaft changes from 52 to 39 mm by means of a fillet with radius 
of 3.25 mm, R/r = 1 .33 ,  and p jr = 1/ 1 2  = 0.083; the maximum elastic shear stress 
at the fillet as given by Fig. 14.20 is approximately 1 .7 times the maximum shear 
stress in the small shaft as found by the equation t = Tr/ J, where T is the twisting 
moment and J the polar moment of inertia of the cross section of the smaller shaft 
(J = nr4 /2). 

Elastic Membrane Method. Torsional Stress Concentration 
Griffith and Taylor ( 1 9 17), by using a soap film as the elastic membrane (see 
Sec. 6.4), found the torsional shear stress in a hollow shaft at the filleted corner of 
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Figure 14.20 Torsional shear-stress concentration at fillet in shaft of two diameters . 
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a keyway and also at the center of the flat bottom of the keyway. The external and 
internal diameters were 2a = 254 mm and 147 mm, respectively, and the keyway 
was 25.4 mm deep and 63.5 mm wide. 

Figure 14.21  shows the value of the ratios of the maximum torsional shear stress 
at the fillet for various radii r of fillet to the maximum shear stress that would be 
developed in the shaft if the shaft had no keyway. In other words, the ordinates 
to the curve give the elastic calculated stress concentration factors sec due to 
the keyway. 

Ordinates to the dotted line in Fig. 14.2 1  are the elastic stress concentration 
factors for the shear stress at the center of the bottom of the keyway ; the stress at 
this point is approximately twice as great as would be the maximum shear stress in 
the shaft if it had no keyway. 

Torsional Stress at Fillet in Angle Section. The torsional shear stress at a sharp 
internal corner of a bar subject to torque is infinitely large if the material does not 
yield when the stress becomes sufficiently high. If the corner is rounded off by means 
of a fillet, the stress is reduced; the amount of reduction corresponding to fillets of 
different radii in an angle section was found by Griffith and Taylor ( 19 17 )  by use 
of the soap-film method. They used a section 25.4 mm wide (Fig. 14.22) and the 
straight portions or arms of the section were long. 

The ratios of the maximum shear stress at the fillet to the shear stress in the 
straight portion or arm of the angle section for various radii of fillets are given in 
Table 1 4.4. These values show that a small fillet has a large influence in reducing the 
stress at the corner, and that practically no advantage is gained by making the 
radius of the fillet larger than about 6 mm. 

Note: The stress concentration factors given in the foregoing discussions are 
for particular forms of discontinuities. Values of stress concentration factors 
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Figure 14.2 1 Factors of torsional shear-stress concentration at keyway in hollow shaft . 
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Figure 14.22 

TABLE 14.4 

Radius r of Fillet, 
mm (see Fig. 14.22) 

2.54 
5.08 
7.62 

10. 16 
12.70 
1 5 .24 
17.78 

Ratio: 
Maximum Stress 

Stress in Arm 

1 .89 
1 .54 
1 .48 
1 .44 
1 .43 
1 .42 
1 .41  

for many other forms of discontinuities are available in the technical literature 
(Peterson, 1 974). 

Beams with Rectangular Cross Sections 
In Chapter 7, the normal stress distribution for elastically loaded beams was 
assumed to be given by the flexure formula [Eq. (7 . 1 )] .  There are many conditions 
that arise in practice that produce stress distributions that differ from the one given 
by the flexure formula. For example, three such conditions are the following. First, 
residual stresses that alter the stress distribution may be present in the beam before 
loading. Second, concentrated loads (large loads applied over a small area; see 
Chapter 1 8) cause contact stresses that also alter the distribution of flexure stress 
(see Fig. 14. 1 9  and the associated discussion). Third, stress concentrations caused 
by abrupt changes in the cross section of the beam produce normal stress distribu
tions that differ from those predicted by the flexure formula. 

Consider a simply supported beam with rectangular cross section loaded as 
shown in Fig. 1 4.23. The portion of the beam between the loads P is subjected to 
pure bending with moment M = Pd. For elastic bending, the normal stress distri
bution at sections far removed from the stress concentration is given by the flex
ure formula. Hence, the nominal value for the flexure stress is (Jn = Mc/1 , where 
c = h/2, (Fig. 1 4.23). The maximum stress at the base of the fillet is given by 
Eq. ( 14.2) as (Jmax = scc(Jn = SCCMc/1 ' where sec is the stress concentration factor 
for bending. The magnitude of Sec depends on the ratio of the radius p of the fillet 
to the beam depth h and the ratio of H to h (Fig. 14.23). The magnitude of Sec is 
larger for sharp notches, that is, for cases where H is large compared to h and p is 
small compared to h. Values of Sec for fillets in rectangular section beams are given 
in Fig. 14.24 as func(ions of H/h and pjh; also, stress concentration factors for 
grooves in rectangular section beams are given in Fig. 14.25 as functions of H/h 
and pfh. 

Design of Beams Having Stress Concentrations. If a beam is made of ductile 
material and it is not subjected to a large number of repeated loads (fatigue loading; 
see Chapter 16), the effects of stress concentrations are usually disregarded. Then, 
the flexure formula is used in the design of the beam. However, if the beam is made 
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Figure 14.24 Stress concentration factors for fillets in rectangular section beams. 

of a brittle material or the beam is subjected to fatigue loading, the effect of stress 
concentrations must be included in the design. In the case of a beam made of a 
brittle material, failure loads for the beam are estimated, based on Eq. ( 14.2), with 
CJc being equal to the ultimate strength of the material and CJn to the nominal flexure 
stress. The design of beams subjected to fatigue loading is considered in Chapter 16. 
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Figure 14.25 Stress concentration factors for grooves in rectangular section beams. 

EXAMPLE 14.2 
Fracture Load of a Filleted Tension Member 

The filleted tension member in Fig. 14. 1 6  is made of brittle material whose stress
strain diagram remains essentially linear up to its ultimate strength, (Ju = 420 MPa. 
Assuming that fracture of the member will occur at the base of the fillet, determine 
the magnitude of the tension working load P that can be applied to the member 
based on a safety factor SF = 4.00. The member has a width w = 20.0 mm per
pendicular to the plane of the figure; also, D = 1 10.0 mm, d = 50.0 mm, and 
p = 10.0 mm. 

SOLUTION 

By Fig. 14. 1 6, with the given dimensions, t = ( 1 10.0 - 50.0)/2 = 30 mm, t/ p = 3, 
and pjd = 0.20. Thus, by Fig. 14. 1 6, Sec = 1 .83 .  At fracture, (Jc = (Ju = SccPF/A = 
scc(Jn ' where (Jc is the calculated stress at the base of the fillet, sec is the stress con
centration factor, PF is the load at fracture, A =  wd = 20 x 50 = 1000 mm2, and 
CJn is the nominal stress PpjA. Hence, by Eq. ( 14.2), 420 MPa = 1 .83Pp/0.00 1 or 
PF = 420(0.001 ) 106/ 1 .83 = 229.5 kN. Therefore, the working load is P = PpjSF = 
229. 5/4.00 = 57.4 kN. 
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EXAMPLE 14.3 
Beam with Stress Concentration 

14.5 

The beam in Fig. E14. 3  is made of cast iron (o-u = 250 MPa), a material considered 
to be brittle. 

P = 1 . 50 kN 

1 r- 40 mm 
�------ 1 .40 m ------.:;..1 

p =  1 0  mm 

H = 200 mm h = 1 00 mm 

Figure E 14.3 

D 
(a) If the design working load is P = 1 . 50 kN, determine the maximum stress in 

the beam at the fillet. 

(b) What factor of safety was used in the design of the beam? 

SOLUTION 

Since H = 200 mm, h = 100 mm, and p = 10 mm, we have Hjh = 2.00 and p/h = 
0. 10. With these values, the stress concentration factor is, by Fig. 14.24, Sec = 1 .77. 

(a) The maximum flexure design stress is o-max(D) at the base of the fillet, and 
it is given by O"max(D) = SccPLcjl = ( 1 .77)( 1 500) ( 1400)(50)( 12)/[(40)( 100)3 ] = 
55.8MPa. 

(b) To obtain the fracture load Pp , the working load P is multiplied by the 
factor of safety. Hence, the maximum flexural fracture stress is o-max(F) = 
o-u = Scc(SF)PLcjl . Therefore, the factor of safety is SF = o-ulf(SccPLc) = 
(250)(40) ( 100)3/[( 1 . 77)(1 500)( 1400)(50)( 12)] = 4.48. Since the stress-strain re
lationship for cast iron is essentially linear to fracture, the stress is propor
tiona� to the load. Therefore, the factor of safety could also have been o b
tained by dividing O"u by O"max(D) ·  

EFFECTIVE STRESS CONCENTRATION FACTORS 

Definition of Effective Stress Concentration Factor 
As noted in Sec. 14. 1 and 14.2, calculated stress concentration factors apply mainly 
to ideal, elastic materials, and they depend mainly on the geometry or form of the 
abrupt change in section. For these reasons, they are often called form factors. 
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However, in applications involving real materials, the significance of a stress con
centration factor is not indicated satisfactorily by the calculated value. Rather, it is 
found through experience that the significant or effective stress value that indicates 
impending structural damage (failure) of a member depends on the characteristics 
of the material and the nature of the load, as well as the geometry or form of the 
stress raiser. Consequently, in practice, the significant (or effective) value of the 
stress concentration is obtained by multiplying the nominal stress by a significant 
or effective stress concentration factor,* See .  Often, the nominal stress is computed 
from an elementary stress formula, such as CJn = P/A, CJn = Mc/1, etc. Usually, the 
magnitude of see is less than the magnitude sec of the calculated stress concentra
tion factor for a given stress raiser. 

The magnitude of See is always obtained experimentally, in contrast to the calcu
lated value Sec · Ordinarily, See is obtained by testing two or more samples or sets 
of specimens of the actual material. One specimen (or set of specimens) is prepared 
without the presence of the discontinuity or stress raiser, so that the nominal stress 
is the significant or effective stress. A second specimen (or set of specimens) is pre
pared with the discontinuity or stress raiser built in. The second set of specimens 
is tested in the same manner as the first set. For simple members, such as axial rods, 
beams, or torsion bars, the stress in each set of specimens is usually calculated by 
means of elementary formulas. 

One may assume that damage (failure) in the two sets of specimens is initiated 
when the significant stress quantities in the specimens attain the same critical value. 
The loads causing these equal stress quantities are unequal. The damaging stress in 
the specimens with the stress raiser is, of course, caused by a smaller load. Hence, 
the effective stress concentration factor may be defined as the ratio of these two 
loads See = Pn/�,  where Pn is the load that causes failure for the specimens without 
the stress concentration (the nominal load) and � is the load that causes failure for 
the specimens with the stress concentration (the effective load). 

Alternatively, one may recognize that the effective stress concentration factor See 
is usually less than the calculated stress concentration factor Sec . Hence, See may be 
defined in terms of an effective stress quantity (Je that is greater than the nominal 
stress quantity CJn but is less than the calculated localized stress quantity CJc . Con
sider a condition in which a stress concentration exists in a member. Using the 
theory of elasticity or other methods, we may determine the calculated localized 
stress CJc . By experimental means, the effective stress quantity CJe is found. Finally, 
the nominal stress quantity (Jn is computed by using an appropriate elementary 
stress formula. Then (Jc may be expressed as the nominal stress plus some propor
tion q of the increase in the calculated stress caused by the stress concentration. 
That is, CJe = CJn + q(CJc - CJn). This expression can be written in terms of the 
nominal stress and the two stress concentration factors. 

Thus, 
see = 1 + q( sec - 1) ( 14.43) 

and 

( 14.44) 

* The term strength reduction factor is sometimes used. However, one should note that the strength 
of the material is not reduced by the stress raiser, but rather the load-carrying capacity of the member 
is reduced. 
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For example, if the stress concentration is caused by a small hole in the center 
of a plate subjected to an axial tensile load, then the nominal stress is (Jn = P/A, 
and the calculated localized stress quantity (Je = 3P fA. Suppose that, under experi
mental conditions, yielding around the hole in the plate begins at an effective stress 
of (Je = 2P fA. For these conditions, the proportion of the increase in calculated 
stress is q = ((Je - (Jn)/((Je - (Jn) = 0.5 and the effective stress concentration factor 
is see = 2.0. 

The ratio q is called the notch sensitivity index of the material for the given form 
of discontinuity and the given type of loading. For example, in Eq. ( 14.43), if q = 0, 
see = 1 ,  and the material and member are said to be insensitive to the effects of the 
stress concentration, whereas if q = 1 ,  see = seC ' and the member is said to be fully 
sensitive to the effects of the stress concentration. The value of See (and hence q) 
is determined from tests as described above. It has been found from such tests 
(Fig. 14.26) that the values of See and q depend mainly on the ability of the material 
and member to make adjustments or accommodations, such as local yielding, that 
reduce the damaging effects of the localized stress. The ability of the material to 
make these adjustments or accommodations depends, in turn, on the type of load
ing applied to the member (whether static, repeated, impact, etc.) ; the existence in 
the member of initial or residual stresses; the character of the internal structure of 
the material ; the temperature of the member ; the surface finish at the abrupt change 
of section; the stress gradient in the region of the stress concentration, etc. These 
factors are discussed briefly below. 

Static Loads; Ductile Material 
At abrupt changes of section in members made of ductile* materials (especially 
metals) and subjected to static loads at ordinary temperatures, the localized stresses 
at the abrupt change of section are relieved to a large degree by localized yielding 
of the material that occurs largely, in metals, as slip across intercrystalline planes 

Stat ic l oad test - Kriston 
Fat igue test - SAE 2345 and 4 1 30 steels heat - treated 

0.2�-----4------�------�------�----�-------+------� 

o------�------�------�------._----�------�-------
0 2 3 4 

Radius of groove, p, m m  
5 6 

Figure 14.26 The influence of radius of groove on notch sensitivity index. 

7 

* See Chapter 1 ;  ductile materials exhibit yield stresses and undergo large plastic strains before 
fracture. 
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(see Sec. 1 . 5) . Because of this action, the value of q for the conditions specified is 
very low and lies usually in the range from 0 to 0. 1 .  However, if the use or function 
of the member is such that the amount of inelastic strain required for this relieving 
action must be restricted, the value of q may approach 1 .0 (Fig. 14.26). If the tem
perature of a metal member is very low when subjected to static loads, slip in the 
crystals seems to be reduced and is likely to be less effective in relieving the concen
trated stress ; hence, the value of q may be as much as 0.5 or even greater. 

If the metal member is subjected to static load while at an elevated temperature, 
the mechanism (creep, Chapter 1 7 ) by which localized yielding occurs may cause 
the value of q to vary from nearly zero to nearly unity. This situation arises from 
the fact that the creep of metals may be the result of either one or both of two 
different inelastic mechanisms, depending on the temperature and stress imposed : 
( 1 )  Creep may be caused mainly by intercrystalline slip, especially at the lower range 
of creep temperatures and relatively high stresses, this type of creep relieves the 
stress concentration to a large degree (q = 0, nearly) ; or (2) creep may be due to vis
cous flow of the unordered (so-called amorphous) grain boundary material, espe
cially at higher temperatures and lower stresses, and stress concentration is relieved 
very little by such inelastic deformation (q = 1 ,  nearly). 

Static Loads ; Brittle Material 
If a member that contains an abrupt change in cross section is made of a relatively 
brittle material and subjected to static loads, q will usually have a value in the range 
from 0.5 to unity, except for certain materials that contain many internal stress 
raisers inherent in the internal structure of the material such as graphite flakes in 
gray cast iron. An external stress raiser in the form of an abrupt change in section 
in such a material as gray cast iron has only a small additional influence on the 
strength of the member and, hence, the value of q is relatively small. 

Repeated Loads 
If a member has an abrupt change in section and is subjected to a load that is re
peated many times, the mode of failure is one of progressive fracture, even though 
the material is classified as ductile. Under these conditions, the ability of the 
material to make adjustments or accommodations by localized yielding is greatly 
reduced. This type of fracture, known as fatigue (Chapter 16), is illustrated in 
Fig. 14.27. The herringbone gear in Fig. 14.27 has several regions of stress concen
tration located at the root of each tooth and at the inside corners of the keyway. 
Due to the relative proximity of the keyway to the root of the teeth, a pair of fatigue 
cracks developed and joined. Normally, there is little or no evidence of yielding 
during fatigue crack growth. In this case, after the fatigue cracks became sufficiently 
long, average stress levels in the vicinity of the crack increased above yield. The 
subsequent yielding is commonly noticed in rough and noisy operation of the 
equipment. The gear was removed from service just prior to complete fracture of 
the part. Because of yielding, the cracks remained open. 

The minimal influence of yielding under repeated loads leads to a relatively large 
value of q, usually between 0.5 and unity. The value of unity is approached 
in general for the harder, heat-treated metals (including tools and machine parts) 
and the lower value (0.5) is approached for metals in their softer condition 
(such as structural steel). Furthermore, the internal structure of metals, especially 
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(a) 

(b) 

Figure 14.27 Fatigue cracks due to repeated (fatigue) loading of herringbone gear. (a) Per
spective view of failed gear. (b) End view of fatigue cracks. 
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of steel, has some influence on the value of q. If the pearlitic grain size in steel is 
very fine, q is near unity. If the grain size is very coarse, the value of q is less. 

Residual Stresses 
The presence of initial or residual stresses in a member at an abrupt change in 
section also may influence the value of q. If the member is made of ductile metal 
and subjected to static loads at room temperature, localized yielding relieves the 
effects of residual stresses. Generally, in this case, it is assumed that q is not altered 
by the residual stresses. On the other hand, if the member is made of brittle mate
rial and the residual stresses act along the same directions as the load stresses, the 
effects of the residual stresses may either add or subtract from the effects of the load 
stresses, depending on the relative signs of the load stresses and the residual 
stresses. Correspondingly, the magnitude of q is increased or decreased. If, however, 
the member is made of a ductile metal and subjected to repeated loads, the influence 
of initial or residual stresses is uncertain. The relatively large inelastic deformation 
that occurs (in a small volume of the member surrounding the stress concentration) 
in low cycle fatigue is assumed generally to negate any effect of residual stress 
on the magnitude of q. However, in the case of high cycle fatigue (N > 106, 
Chapter 1 6 ), inelastic deformation in the region of a stress concentration is ordi
narily minimal and residual stresses are assumed generally to alter the magnitude 
of q; the magnitude of q may either increase or decrease, depending on the sign of 
the residual stresses. 

Very Abrupt Changes in Section. Stress Gradient 
Let the change in section of a member be very abrupt; that is, let the hole, fillet, or 
groove, etc., forming the abrupt change in section have a very small characteristic 
dimension compared to the dimensions of the section, so that the calculated stress 
gradient is steep in the region of stress concentration. The value of Sec for such a 
stress raiser is large, but the value of see found from tests of such members, under 
either static or repeated loads, is usually much smaller than sec ;  that is, the value of 
q is smaller than would be found from tests of members of the same material with 
less abrupt changes of section. Figure 14.26 gives the results of tests of specimens 
having an abrupt change of section caused by a circumferential groove that show 
the foregoing facts. In this figure, the value of q is plotted as ordinates, and the 
radius of the groove at the abrupt change of section is plotted as abscissas. 

The results of these tests are represented by smooth curves drawn through points 
(not shown) representing the test data. The data used for each curve were obtained 
by testing specimens of the same material, the specimens being identical except for 
the size of the groove radius. The upper curve is for static load tests of specimens 
of Kriston (a plastic), which is a very brittle material. The other curves are for re
peated bending-load tests of steels. In these tests, the unpublished results of Moore, 
Jordan, and Morkovin, the values of ajp and tjp were kept constant, which means 
that the value of Sec was kept constant (see Neuber's nomograph, Fig. 14. 10). How
ever, the groove radius p was varied and all these curves show that when the groove 
radius approaches very small values, q is quite small, but when the groove radius 
is relatively large, the value of q approaches unity. 

The results of these tests indicate that the damaging effects on a member from 
notches having small radii at the roots of the notches such as scratches, small holes, 
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grooves, fillets, or small inclusions, are considerably less than would be indicated 
by the large values of the theoretical stress at such stress raisers ; in other words, q 
(and hence, See) is relatively small. Much of the available data for the value of See 
and q have been obtained by conducting repeated load tests of specimens with 
cross sections of relatively small dimensions containing fillets, grooves, holes, etc., 
having small radii. These data furnish valuable information for computing signifi
cant stresses in a member having such discontinuities within the range of condi
tions used in the tests, but the values of q are probably unrealistically small for use 
in computing See by Eq. ( 14.43) for holes, fillets, grooves, etc., whose radii are rela
tively large. 

Sigllificance of Stress Gradient 
The question naturally arises as to why the value q for a given material under a 
given type of loading should depend on the value of the root radius of the notch 
when it is small, as indicated by the curves of Fig. 14.26. Much discussion of this 
question is found in the technical literature, but no completely satisfactory reason 
can be given. A possible explanation is as follows : At one or more points on the 
surface of the member at the root of the notch, the stress concentration will have 
its highest value, but at nearby points in the member in any direction from the root 
of the notch, the values of the stress diminish. For most notches, the highest rate 
(stress gradient) at which the stress diminishes occurs at points in a cross section of 
the member at the notch root. Let S be the stress gradient at the root of the notch, 
that is, S is the slope of a line that is tangent at the root of the notch to the curve 
of stress distribution on the cross section at the root of the notch. This slope gives 
the rate at which the stress is diminishing at points just underneath the root of the 
notch. If S is large, the stress magnitude will diminish rapidly so that the stress at 
a point just underneath the root of the notch will be only slightly larger than 
the value given at this point by the ordinary (nominal) stress equation. 

It may be shown that S for notches such as holes, fillets, and grooves is given 
approximately by the following equation : 

S = 2.5o-max = 1 . 5SeeO"n 
p p ( 14.45) 

From Eq. ( 14.45 ), it is seen that, for a given value of nominal stress o-n and Seo if p 
becomes small, the value of S becomes very large. When p is small and S large, the 
magnitude of the concentrated stress diminishes so rapidly that only a very thin 
layer of material at the root of the notch is subjected to the stress concentration. 
This means that the so-called adjustments or accommodations that take place in 
the material and that tend to relieve high stresses can take place more easily since 
such a small amount of material is involved. Furthermore, the machining and pol
ishing of a specimen at the root of the notch will frequency result in an increase of 
the ability of the material in this thin layer (by work hardening) to resist stress. The 
greater apparent ability of this thin layer of material to resist higher stress plus the 
fact that the unchanged material (parent material) under this layer is not required 
to resist the highly concentrated stress also help explain why q becomes so much 
smaller as p becomes very small. 

The foregoing discussion of stress gradient applies mainly to so-called mechan
ical notches such as holes and fillets, rather than chemical notches such as corrosion 
pits (see Chapter 16). 
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14.6 

Impact or Energy Loading 
If machine parts and structural members are subjected to impact or energy loading, 
for example, if a member is required to absorb energy delivered to it by a body 
having a relatively large velocity when it comes in contact with the member, local
ized stresses have, in general, a large influence in decreasing the load-carrying 
capacity of the member. As discussed in Chapter 3 [Eq. (3 .33) with o-xx = o- and all 
other stress components equal to zero] , the energy absorbed per unit volume by 
a material when stressed within the elastic strength is o-2 /(2E); that is, the energy 
absorbed by a material is proportional to the square of the stress in the material. 
This means that the small portions of a member where the high localized stresses 
occur absorb an excessive amount of energy before the main portion of the member 
can be stressed appreciably and, hence, before the main portion can be made to 
absorb an appreciable share of the energy delivered to the member. As a result, the 
small portion where the localized stress occurs is likely to be stressed above the 
yield stress of the material. Then the energy required to be absorbed may be great 
enough to cause rupture even if the material is relatively ductile. (A familiar method 
of breaking a bar of ductile metal is to file a V -notch in one side of the bar to create 
a local stress raiser and then clamp one end of the bar in a vise, with the notch close 
to the face of the vise, and strike the bar near the other end a sharp blow with a 
hammer so that the bar is bent with the notch on the tension side of the bar.) 

Tests widely used to measure the effects of a notch under impact loads are the 
Charpy and Izod impact tests. However, neither of these notched-bar single-blow 
impact tests gives a quantitative value of See · These tests are important primarily 
in determining whether or not a material of known history of manufacture and 
treatment is substantially the same as a similar material that has proved to be satis
factory in service. There is no satisfactory test or method for determining a value 
of q for stress raisers in members subjected to impact loading. The effects of re
peated loads and certain other influences on stress concentration factors are dis
cussed in Chapter 16 . 

EFFECTIVE STRESS CONCENTRATION FACTORS. 
INELASTIC STRAINS 

Consider a flat plate of width l and thickness d, with symmetrically placed edge 
notches of radius p (Fig. 14.28a). The elastic stress concentration factor Sec for this 
case may be found from Fig. 14. 10 for given values of p, t, and a. The tensile stress
strain curve for the maferial is shown in Fig. 14.28b . We consider here the problem 
of determining the maximum stress a-max and maximum strain Emax at the roots of 
the edge notches for the case where the axial load P produces inelastic deforma
tion in the material surrounding the notches. Before we present a solution to this 
problem, we define certain quantities and state a theorem that is employed in 
obtaining this solution. 

In Fig. 14.28a, we assume that the stress distribution may be represented by the 
curve CD. The nominal stress on the cross section at the notch is (Jn · One of the 
quantities we wish to determine is the maximum stress (Jmax ' where in terms of the 
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Figure 14.28 (a) Stress distribution. (b) Stress-strain curve. (c) Strain distribution. 

significant stress concentration factor see and nominal stress (Jn , we have 

( 14.46) 

Corresponding to the nominal stress (Jn , we have the nominal strain En , where 
((Jn , En) are the coordinates of point A in Fig. 14.28b. In general, the strain distribu
tion across the specimen and maximum strain Emax in the specimen are not known; 
see curve C'D' in Fig. 14.28c. Corresponding to the effective stress concentration 
factor See ' we define a strain concentration factor Ece by the relation 

( 14.47 ) 

We wish to determine the values of both CJmax and Emax · From curve OAB of 
Fig. 14.28b, we note that (CJmax ' Emax) are the coordinates of point B. For this pur
pose, we employ a theorem due to Neuber ( 196 1a). 

Neuber�s Theorem 
For relatively sharp notches, the following relation between See ' Sco and Ece exists : 

( 14.48) 

where See and Ece are defined by Eqs. ( 14.46) and ( 14.47 ), respectively, and Sec is the 
calculated (theoretical) stress concentration factor. 

Equation ( 14.48) holds for CJmax above and below the elastic limit of the material. 
For example, when (Jmax is below the elastic limit, See = Sec and also Ece = Sec · 
Hence, Eq. (14.48) is satisfied identically. When (Jmax is above the elastic limit, See < 
Sec · Hence, by Eq. ( 14.48), Ece > See · Substituting Eqs. ( 14.46) and ( 14.47) into 
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Eq. ( 14.48), we find 

( 14.49) 

Equation ( 14.49) may be used to determine the values of a-max and Emax (coordinates 
of points B, Fig. 14.28b), since in a typical problem the values of Sco o-n , and En are 
usually available; that is, the load, dimensions of the member, stress-strain curve 
of the material, and value of Sec are known or obtainable. Thus, with these values 
known, Eq. ( 14.49) may be written 

0" maxEmax = COnstant ( 14. 50) 

Equation ( 14.50) represents a hyperbola in (a-, E) space (Fig. 14.28b). The intersec
tion of this hyperbola with the stress-strain curve occurs at point B (Fig. 14.28b). 
Thus, by plotting Eq. ( 14 .50) in Fig. 14.28b, we locate point B and, hence, we may 
read the values of a-max and Emax as the coordinates of point B. Then, the substitu
tion of O"max and Emax values into Eqs. ( 14.46) and ( 1 4.47 ) yields values of see and 
Ece ' respectively. 

EXAMPLE 14.4 
Application of Neuber�s Theorem 

Consider a low carbon steel with the stress-strain diagram shown in Fig. E 14.4a. 
Let the nominal stress in a notched specimen (Fig. 14.28a) be o-n = 105 MPa. From 
Fig. E 14.4a, we find En = 0.0005. Also, let sec = 2.43. By Eq. ( 14.49) we obtain 

0" maxEmax = 0.3 1  

This curve intersects the stress-strain curve at point B (Fig. E14.4a). For point B, 
we find O"max = 236 .3 MPa and Emax = 0.00 1 3 . Hence, by Eq. ( 14.46). 

S - O"max - 236.3 -ce - O"n - 105 
- 2.25 

This value of See corresponds to the value of the ordinate of point C, (Fig. E 14.4b) 
with an abscissa value of o-n = 105 MPa. Proceeding in a similar manner, we may 
plot a continuous curve FCG of values of See as shown in Fig. E14.4b. For values 
of o-n < 58 MPa (abscissa of point F), See = o-maxfo-n = 2.43 = Sec · For values of 
o-n > 58 MPa, See decreases from the value of 2.43 to 1 . 5 at point G. In this region 
of decreasing value of See (from point F to point G), See < Sec · In this region, See is 
the significant (effective) stress concentration factor rather than sec · 

Three other curves for values of Sec equal to 2.06, 1 . 88, and 1 .60, respectively, are 
also plotted in Fig. E 14.4b, employing the method for Sec = 2.43. In addition, ex
perimental values obtained by Neuber ( 1 96 1 b) are also shown. 
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Figure E14:� (a) Stress-strain diagram. (b) Stress concentration factor for low carbon 

steel of (a) . Experimental data from Neuber (1961b). 

PROBLEMS 
Section 14.2 

14. 1 .  For the flat bar in Fig. C of Table 14.3 ,  let b = 16t, c = 17t, p = t (circular 
hole). By means of Neuber's nomograph (Fig. 14. 10), show that for the bar 
loaded in tension, Sec is approximately 3. Note that for this case, the half
width c of the bar is large compared to the radius of the hole. 
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14.2. With p = t, solve Problem 14. 1 for 

(a) b = 4t and c = 5t and 

(b) b = t and c = 2t. 

Ans. (a) Sec = 2.7, (b) Sec = 2.3 

14.3. For the flat bar in Fig. A of Table 14.3 ,  let t =  4p and b = 16p. By Neuber's 
nomograph (Fig. 14. 10), determine the value of Sec for the cases where the 
bar is subjected to 

(a) axial tensile load and 

(b) bending. 

14.4. A cylindrical shaft has a circular groove, the depth of the groove is 
t = 6 .00 mm, and the radius at the root of the groove is p = 2.20 mm. (See 
Fig. D, Table 14.3 .) The radius of the cross section at the root of the groove 
is b = 60 mm. By Neuber's nomograph (Fig. 14. 10), determine the value 
of sec for the cases where the shaft is subjected to 

(a) axial tensile load, 

(b) bending, and 

(c) torsion. 

Ans. (a) scc(P) = 3 .7, (b) scc(M) = 3 .3 , (c) scc(T) = 2. 1 

14.5. The rectangular section tension member in Fig. P 14. 5 is made of a brittle 
material for which (Ju = 300 MPa. The member dimension into the plane 
of the figure is 20 mm. Determine the design load P of the member using 
a safety factor SF = 3 .50. 

p 
_j_ 

p 
-. D = 1 00 mm 0 25 mm ... 

t 
Figure P14.5 

14.6. A 100-mm diameter steel (E = 200 GPa) tension member has a semicir
cular groove with depth equal to the radius p = 5 mm (Fig. P14.6). Short
gage-length electrical strain gages are cemented to the bottom of the groove 
and to the member at a location more than 100 mm from the groove. An 
axial load produces axial strain readings of 0.00 100 at the bottom of the 
groove and 0.00032 at the location away from the groove. Assuming elastic 
material behavior, determine the stress concentration factor for the groove 
and magnitude of the axial load P. Assume that the state of stress at the 
bottom of the groove is uniaxial. 
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14.7. The stress concentration factor for a hole in a beam is approximately 3 .00, 
if the diameter of the hole is small compared to the depth of the beam. Two 
10.0-mm diameter holes are drilled through the beam, Fig. P14.7, at 
equal distances from the neutral surface. Using the moment of inertia for 
the net section through the holes and sec = 3.00, determine the magnitude 
of bending moment M for the case in which the limiting flexure stress is 
1 20 MPa 

Section 14.3 

M c 
Figure P 14.7 

(a) for y' = 50.0 mm to the outer edges of the holes and 

(b) for y' = 75.0 mm. 

14.8. In Example 14. 1 ,  let the hole be circular rather than elliptical. For stresses, 
Oi �(J2 as given, 

(a) determine the maximum tensile stress in the plate. 

(b) Determine the maximum compressive stress in the plate. 

14.9. In Example 14. 1 ,  let the ratio bja = 5. Determine the orientation of the 
hole (value of 8) for which the tensile stress at the perimeter of the hole is 
a maximum, the magnitude of the maximum tensile stress in the plate, and 
its location. 

Ans. O"max = 57. 3  MPa, (} = 0.6406 rad, {J = 0.5837 rad 

14. 10. A thin-wall cylindrical tank, of diameter D and wall thickness h, is sub
jected to internal pressure p. A small circular hole exists in the wall of the 

[ -
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cylinder. By means of Eqs. ( 14.29) through ( 14. 32), derive expressions for 
the maximum stresses o-A and o-B at the hole, on longitudinal and transverse 
sections of the tank, respectively. Assume that the material remains elastic. 

14. 1 1 .  A thin-wall cylindrical pressure vessel, of diameter D and wall thickness h, 
is filled with a fluid whose weight density is y (force per unit volume). The 
fluid is pressurized until the average pressure in the vessel is p (force per 
unit area). Assume that the difference in pressure between the top and 
bottom of the tank is small enough to be neglected. The vessel is supported 
near its ends on horizontal supports a distance l apart. Design considera
tions require that a small circular hole be drilled into the vessel at mid
span at either the top (point A) or bottom (point B) (Fig. P14. 1 1 ). 

Show that if the hole is drilled at point A, the maximum stress at the 
hole due to the fluid and pressure is o-A = (5pDj4h) + (yl2 j8h), and if at 
point B, o-B = (5pDj4h) - (yl2 j8h). The weight of the vessel is neglected in 
estimating the bending stresses at section AB, and the bending stress is as
sumed to be smaller than the circumferential stress. 

A 

B 

�------- / --------� 

Figure P14. 1 1  

14.12. Let the shaft of Problem 14.4 be subjected simultaneously to a bending 
moment M = 1 5.0 kN·m and torsional moment T = 30.0 kN ·m. With the 
stress concentration factors determined in Problem 14.4, compute 

Section 14.4 

(a) the maximum principal stress, 

(b) the maximum shear stress, and 

(c) the maximum octahedral shear stress that occur in the shaft at the 
root of the groove. 

Ans. (a) O"max = 382 MPa, (b) tmax = 236 MPa, (c) toct = 205 MPa 

14.13. A rectangular section tension member has semicircular grooves as shown 
in Fig. P14. 1 3 .  The thickness of the member is 40 mm. The member is made 

p t p 
h = 40 mm 

_j_ 
+ 

Figure P14. 1 3  



PROBLEMS 605 

of a ductile metal that has a yield strength Y = 350 MPa. Determine the 
failure load for static loading. 

14. 14. The tension member in Fig. P14. 14 has a rectangular cross section with a 
thickness of 20 mm. If P = 80 kN, determine the maximum normal stress 
at a section through the hole and at the section through the base of 
the fillets. 

� r-p = 10 mm 

"" +  

p _j_ t ._P ... H =  1 20 mm Q 2o mm h = 1 00 mm 

t t ( 
Figure P 14. 14 

14. 15. A rectangular section beam has grooves as shown in Fig. 14.25. If 
H = h + 2p and p = 0.20h, determine the stress concentration factor. 

14.16. The beam in Fig. P14. 1 6  is made of steel (E = 200 GPa), has a diameter 
of 60.0 mm over the length of 600 mm, and has a fillet to the larger diam
eter. The magnitude of the stress concentration factor Sec for the fillet is 
determined by strain readings from a strain gage cemented to the top of 
the beam at the base of the fillet. A strain reading of 0.00080 was recorded 
when P = 3.00 kN. What is the magnitude of Sec for the fillet? 

p 

@ 
Figure P 14. 1 6  

14. 17. The rectangular section beam in Fig. P 14. 1 7  is made of an aluminum alloy 
(.If; = 72.0 GPa). Strain gages are used to determine the stess concentration 
factor for the grooves. One strain gage is located at the bottom of the 
groove and another strain gage is located some distance from the stress 
concentration as shown. Strain-gage readings at the groove and away from 
the stress concentration were recorded as 0.00250 and 0.00100, respectively. 
Determine the magnitudes of P and the stress concentration factor Sec . 

p 

r-- 500 mm -�e=:----- 1 .50 m 

Figure P14. 1 7  

�10 mm 

Strain gage Strain gage 

p 

500 mm-1 1 r±o mm 0 1 50 mm 
-r 
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14.18. The beam in Fig. P14. 1 8  is made of a brittle material that has an ultimate 
strength CJu = 450 MPa. If h = 125 mm and p = 1 5.0 mm, determine the 
magnitude of P based on a safety factor SF = 3.50. Assume that the 
material is linearly elastic up to the ultimate strength. 

p 

1 .60 m -----------',.... � � 60 mm 
��-h ----------------� �:rm 

Figure 14. 1 8  

Section 14.5 

14.19. A flat bar of a relatively brittle material has a fillet as shown in Fig. 14.24. 
The thickness of the bar is 24 mm, p = 3 mm, h = 50 mm, and H = 68 mm. 
The bar is subjected to a static moment M. If the allowable (working) stress 
for the material under this condition of loading is (Jw = 14.0 MPa, com
pute the maximum allowable moment M max for the member. Assume that 
q = 0.80 [see Eq. ( 1 4.44)] . 

14.20. In Problem 14. 1 2, let the twisting moment T and bending moment M be 
repeatedly applied through completely reversed cycles . Assume that 
q = 0.80 for the material in the shaft under repeated load. Compute the 
significant value of the maximum principal stress and maximum shear 
stress in the shaft at a cross section through the root of the groove. 

Section 14.6 

Ans. (Jmax = 333 .8  MPa, 'tmax = 208 .3 MPa 

14.21 . In Fig. 14.28a, let a = 30 mm, t = p = 5 mm, and the thickness of the plate 
be d =  12.5 mm. Let the load P = 1 10 kN. If the stress-strain curve of the 
material is given by Fig. E14.4a, determine the stress concentration factor. 

14.22. Let the stress-strain diagram for Problem 14.21 be flat-topped at a stress 
of 258 MPa. What is the magnitude of the strain at the root of the notch 
when see = 1 . 10? 
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15.1 

FRACTURE MECHANICS 

Unexpected failure of weapons, buildings, bridges, ships, trains, airplanes, and 
various machines has occurred throughout the industrial world. A number of these 
failures have been due to poor design. However, it has been discovered that many 
failures have been caused by preexisting flaws in materials that initiate cracks that 
grow and lead to fracture. This discovery has, in a sense, lead to the field of study 
known as fracture mechanics. The field of fracture mechanics is extremely broad. 
It includes applications in engineering, studies in applied mechanics (including 
elasticity and plasticity), and materials science (including fracture processes, frac
ture criteria, and crack propagation). The successful application of fracture 
mechanics requires some understanding of the total field. Unfortunately, this vast 
subject cannot be treated fully in the few pages allotted to it here. Therefore, we 
have focused mainly on certain fundamental concepts. In particular, we briefly 
examine criteria for crack initiation and the three modes of crack extension or 
crack propagation (Sec. 1 5. 1  ) . Using the concept of an elliptical hole in a thin flat 
plate, we examine the stress distribution at the leading edge of a blunt crack 
(Sec. 1 5.2). By letting the minor axis of the elliptical hole go to zero, we estimate 
the stress distribution at the leading edge of a sharp crack and introduce the con
cept of stress intensity factor for the opening or tension mode of crack propagation 
(Sec. 1 5.3). Although fracture is influenced by many factors, such as plasticity 
(Chapter 4), temperature, corrosion, fatigue (Chapter 16 ), creep (Chapter 1 7 ), etc. , 
we restrict our study mainly to linear elastic fracture mechanics (LEFM) of mate
rials that fracture in a brittle manner. A brief discussion of some of these effects is 
given in Sec. 1 5 .4. The reader who is interested in pursuing these topics is referred 
to the literature (see, e.g. , the following excellent references : Broek, 1 985 and 1988 ;  
Barsom and Rolfe, 1987; Ewalds and Wanhill, 1986; Knott 1973 ;  Kanninen and 
Popelar, 1 984; Liebowitz, 1968- 197 1 ). For testing methods in fracture mechanics, 
the reader is referred to Ewalds and Wanhill ( 1 986) and Curbishley ( 1 988). 

F AlLURE CRITERIA. FRACTURE 

As noted in Chapter 1 ,  failure of a structural system may occur by excessive deflec
tion, yield, or fracture. Unfortunately, these modes of failure do not occur in a 
singular fashion, since prior to failure, say, by fracture, yielding of a member may 
occur. Furthermore, a member may undergo considerable deflection before it fails, 
say, by extensive yielding. Consequently, failure criteria are usually based on the 
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dominant failure mode. Thus, for yield-dominant failure of ductile metals the 
criteria of octahedral shear stress (also distortional strain energy density) and max
imum shear stress seem most appropriate. For fracture-dominant failure, several 
types of fracture must be considered. For example, fracture may occur in a 
"sudden" manner (brittle materials at ordinary temperatures or structural steels at 
low temperatures), it may occur as brittle fracture of cracked or flawed members, 
it may occur in progressive stages (so-called fatiguing; Chapter 16)  at general levels 
of stress below yield, and finally, it may occur with time at elevated temperatures 
(creep rupture). In contrast to yield dominant failures, different types of failure 
criteria are applicable to different types of fracture-dominant failures. 

Material defects are of significance in all kinds of failures. However, different 
types of defects influence various modes of failure differently. For example, for 
initiation of yielding, the significant defects tend to distort and interrupt crystal 
lattice planes and interfere with easy glide of dislocations. These defects are of the 
nature of dislocation entanglements, interstitial atoms, out-of-size substitutional 
atoms, grain-boundary spacings, bounded precipitate particles, etc. In general, 
these defects provide resistance to yielding that is essential to the proper perfor
mance of high-strength metals. On the other hand, little resistance to yielding is 
provided by larger defects such as inclusions, porosity, surface scratches, and small 
cracks, although such defects may alter the net load-bearing section. 

For failure by fracture before extensive yielding of the section (fracture
dominant failure), the significant defects (size scale) depend principally on the notch 
toughness of the material. Notch toughness is a measure of the ability of a mate
rial to absorb energy in the presence of a flaw. Unfortunately, there is no clear 
boundary between yielding (ductile-type material) failures and fracture-dominant 
(brittle-type material) failures. Indeed, classification of many materials as ductile or 
brittle is meaningless unless physical factors such as temperature, state of stress, 
rate of loading, and chemical environment are specified. For example, many 
materials can be made to behave in a ductile manner for a given set of conditions 
and in a brittle manner for another set of conditions. To be more precise, one 
should speak of a material being in a brittle or ductile state. However, here too 
difficulties arise, since there is not always a clear demarcation between brittle and 
ductile states. Nevertheless, it is fortuitous that for an important range of materials 
and conditions in either the ductile state or the brittle state, time effects, tempera
ture, stress gradients, microstructural features, and size effects, for example, are of 
secondary importance. For the ductile state, it is possible to postulate failure crite
ria based on concepts of macroscopic states of stress that define critical values of 
quantities for which yielding begins (Chapter 4 ). 

Under similar circumstances, it is also possible to postulate reasonable failure 
criteria based on macroscopic stress concepts for the onset of brittle fracture. In 
general, in contrast to materials in the ductile state, failure (fracture) states for 
materials in the brittle state are sensitive to both the magnitude and sign of the 
mean stress. The fracture states for isotropic materials in the brittle state are fre
quently (conveniently) represented by pyramid-like surfaces in principal stress 
space, which are cut (limited) by suitable tension (critical value) cutoffs (Liebowitz, 
1968; Paul, 1968). 

Brittle fracture problems that we consider are subdivided into three types as 
follows : ( 1 )  brittle fracture of members free of cracks and flaws under static loading 
conditions, (2) brittle fracture originating at cracks and flaws in members under 
static loading conditions, and (3) brittle fracture resulting from high cycle fatigue 
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loading (Chapter 16 ). Another type of brittle fracture, which we do not consider, 
occurs at elevated temperatures after long-time creep in which small deformations 
occur as creep in grain boundaries (see Smith and Nicolson, 1 97 1). This type of 
fracture is sometimes referred to as creep fracture. 

Brittle Fracture of Members Free of Cracks and Flaws 
So-called brittle materials (such as glass, gray cast iron, and chalk) exhibit nearly 
linear tensile stress-strain diagrams up to their ultimate strengths. If, at the fracture 
location in a member made of a brittle material, the principal stress of maximum 
absolute magnitude is tensile in nature, fracture will occur on the plane on which 
this principal stress acts. Then, the maximum principal stress criterion of failure is 
considered to be valid for design purposes. When mean stresses at the fracture loca
tions in members are tensile, the brittle materials in these members are considered 
to be loaded in a brittle state. It may be possible for the same materials in other 
members to be loaded in a ductile state if the mean stresses in these members are 
large compressive. See, for instance, the Mohr-Coulomb and Drucker-Prager 
criteria presented in Sec. 4.5. 

Brittle Fracture of Cracked or Flawed Members 
Cracks may be present in members before loading, created (initiated) by flaws (high 
stress concentrations) at low nominal stress levels, or initiated and made to propa
gate with a large number of cycles because of fatigue loading (Chapter 1 6 ). Failure 
by fracture (complete fracture) results when a crack propagates sufficiently far 
through the member so that the member is unable to support the load and hence 
fractures into two or more pieces.* In general, brittle fracture consists of at least 
two stages : crack initiation and crack extension or crack propagation. Once a crack 
has been initiated, subsequent crack propagation may occur in several ways, 
depending on the relative displacements of the particles in the two faces (surfaces) 
of the crack. Three basic modes of crack surface displacements are Mode I, the 
opening mode (Fig. 1 5. la), Mode II, the (edge) sliding mode (Fig. 1 5. 1 b), and Mode 
III, the tearing mode (Fig. 1 5 . lc). In Mode I, the opening mode, the crack surfaces 
move directly apart. In Mode II, the sliding mode, the crack surfaces move (slide) 
normal to the crack tip and remain in the plane of the crack. In the tearing mode, 
Mode III, the crack surfaces move parallel to the crack tip and again remain in the 
plane of the crack. The most general case of crack surface displacements, so called 
mixed-mode is obtained by superposition of these basic three modes. We follow 
the convention of adding Roman numeral subscripts I, II, III to symbols associated 
with quantities that describe Modes I, II, III, respectively. 

In isotropic materials, brittle fracture usually occurs in Mode I. Consequently, 
we confine our attention mainly to Mode I in establishing fracture criteria for sud
den fracture of flawed members when the materials in these members are loaded 
in the brittle state. Although fractures induced by sliding ( Mode II) and tearing 

* In pipe systems, which carry fluids and other materials, failure may occur when a crack propagates 
through the pipe thickness, allowing fluid to escape from the pipe. Such failures may be extremely 
harmful to life and property if the liquid is a dangerous chemical or is contaminated, say, by nuclear 
fission products such as those that occur in nuclear reactor pipe loop systems (see Clarke and 
Gordon, 1973). 
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(Mode III) do occur, their frequency is much less than the opening mode fracture 
(Mode 1). Although the combined influence of two or three modes of crack exten
sion has been studied (Paris and Sib, 1965), we do not consider such problems here. 
However, we do note that improvement of fracture resistance for Mode I usually 
results in improved resistance to mixed mode crack extension. 

The crack surfaces, which are stress-free boundaries in the neighborhood of the 
crack tip, strongly influence the distribution of stress around the crack. More 
remote boundaries and remote loading affect mainly the intensity of the stress field 
at the crack tip. Elastic stress analysis of cracks leads to the concept of stress 
intensity factor K, which is employed to describe the elastic stress field surrounding 
the crack tip. As noted above, the motion of crack surfaces can be divided into 
three types, with corresponding stress fields. Hence, three stress intensity factors 
Kb K11 , and Km are employed to characterize the stress fields for these three 
modes. The dimensions of stress intensity factor K are [stress] x [length] 1 12 • The 
factor K depends on specimen dimensions and loading conditions. In general, K 
is proportional to [average stress] x [crack length] 1 12 . When K is known for a 
given mode (say, K1), stresses and displacements in the neighborhood of the crack 
tip can be calculated (Sec. 1 5.2). The stresses are inversely proportional to the 
square of the distance from the crack tip, becoming infinite at the tip. In general, 
fracture criteria for brittle fracture are based on critical values of the stress intensity 
factor, for which the crack rapidly propagates (leading to fracture). 
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In order to determine the load or loads required to cause brittle fracture of a 
cracked member or structure, it is necessary that relations be developed so that K 
can be determined for the member or structure and that the critical value Kc be 
determined for the material. Test specimens have been developed to measure the 
critical value of K for the opening mode (Mode I) ;  when certain test conditions are 
satisfied, the critical value is designated as K1c , and it is called fracture toughness. 
Fracture toughness K1c is considered to be the material property measure of resis
tance to brittle fracture (Srawley and Brown, 1965). 

The designs of test specimens recommended in ASTM and British standards to 
determine values of K1c are indicated in Fig. 1 5 .2. The relative dimensions of the 
two test specimens in Fig. 1 5.2 are specified by the magnitude of W. The minimum 
magnitude of W depends on the values of material properties K1c and the yield 

Figure 1 5 .2 Standard toughness specimens. (a) Single edge-cracked bend specimen. 
(b) Compact tension specimen. 
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Figure 1 5.3 Temperature dependence of K1c for A53 3B steel. 

50 

stress Y of the material. The derivation of K is based on a linear elastic solution. 
Therefore, the stress state at the crack tip of the test specimen used to determine 
K1c should approximate linear elastic conditions as closely as possible. If the mag
nitude of the thickness B = Wj2 (Fig. 1 5.2) is small, appreciable inelastic defor
mation occurs at the tip of the crack and the measured value of Kc is larger than 
K1c . Values of toughness that exceed K1c are defined as Kc . As B is increased in 
magnitude, the measured value of K approaches a minimum value obtained when 
the inelastic deformation at the tip of the crack is held to a minimum, that is, for 
nearly linear elastic conditions. This will occur when the state of stress at the tip 
of the crack over most of the width of the specimen is that associated with plane 
strain. In order to insure plane strain conditions over the major length of the crack 
tip, it has been recommended (Knott, 1973) that the magnitude of B satisfy the 
relation 

B > 2 5 (K•c)2 
- . y 

( 1 5. 1) 

Because of the large size of specimens required to satisfy Eq. ( 1 5. 1 )  for some 
materials, the expense of specimen preparation and of testing may be large. Wessel 
( 1969) has obtained values of K1c for an A533B steel at several temperatures as indi
cated in Fig. 1 5. 3 .  At temperatures of - 1 50 and 10°C, Eq. ( 1 5. 1) gives values for B 
of 7.4 mm and 242.0 mm, respectively. The large variation of K1c with temperature 
indicated in Fig. 1 5 .3 is typical of relatively low-strength structural steels. Nonfer
rous alloys and very high-strength steels show a rather small variation of K1c with 
temperature. Room-temperature values of K1c for several metals are listed in Ta
ble 1 5. 1 . Except for the data for A533B steel that were taken from Fig. 1 5.3 , the 
other data in Table 1 5. 1  were taken from published papers. * 

* H. D. Greenberg, E. T. Wessel, and W. H. Pryle, 1970; E. A. Steigerwald, 1969 ; W. A. Logsdon, 1975; 
F. G. Nelson, P. E. Schilling, and J. G. Faufman, 1972; C. N. Freed, 1968. 
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TABLE 15.1 
K1c Critical Stress Intensity Factor (Fracture Toughness) (Room Temperature Data) 

Minimum 
u., y K,c Values for B, a, t 

Material (MPa) (MPa) (MPa .[.;) (mm) 

Alloy Steels 

A533B 500 175 306.0 
26 18  Ni Mo V 648 106 66.9 
V1233 Ni Mo V 593 75 40.0 
124 K 406 Cr Mo V 648 62 22.9 
1 7-7PH 1289 1 145 77 1 1 .3 
17-4PH 1 3 3 1  1 1 72 48 4.2 
Ph 1 5-7Mo 1600 1413  50 3 . 1  
AISI 4340 1827 1 503 59 3.9 

Stainless Steel 

AISI 403 821 690 77 3 1 . 1  

Aluminum Alloys 

6061-T651  352 299 29 23 .5 
22 19-T851  454 340 32 22. 1 
7075-T7351  470 392 3 1  1 5.6 
7079-T65 1 569 502 26 6.7 
2024-T851  488 444 23 6.7 

Titanium Alloys 

Ti-6Al-4Zr-2Sn-0.5Mo-0. 5V 890 836 1 39 69. 1 
Ti-6Al-4V -2Sn 852 798 1 1 1  48 .4 
Ti-6.5Al-5Zr- 1 V 904 858 106 38.2 
Ti-6Al-4Sn- 1 V 889 878 93 28.0 
Ti-6Al-6V -2.5Sn 1 1 76 1 149 66 8 .2 

In order to use values of K1c from Table 1 5. 1  in design, it is necessary that for
mulas for K1 be derived for typical load-carrying members. A few formulas for K1 
for several geometric configurations and loads are given in Table 1 5.2. These for
mulas along with others may be found in Paris and Sib ( 1 965). We assume that the 
dimensions of each member are such that the state of stress at the crack tip over 
most of the thickness of the member is linearly elastic so that K1 = K1c at initiation 
of crack propagation. In order to insure that the state of stress is linearly elastic 
for each of the cases in Table 1 5.2, it is assumed that the magnitudes of a and thick
ness t satisfy the relation 

(
K1c
)
2 

a, t � 2.5 y ( 1 5 .2) 

Fracture mechanics analysis is also employed in establishing failure criteria for 
general yielding as well as fracture criteria for materials loaded in the ductile state 
(Knott, 1973). These topics are beyond the scope of this book. 



TABLE 15.2 
Stress Intensity Factors K1 

Case 1.  Infinite 
Sheet with 

Through-Thickness 
Crack and 

Uniform Tension 
at Infinity. 

Griffith's Crack 

� 2a 

KI = (j"� 

Case 2. Periodic 
Array of 

Through-Thickness 
Cracks in 

Infinite Sheet with 
Uniform Tensi6n 

at Infinity 

.. ;. .. ;. I 2c I 2c I 
� � �  2a 2a 2a 

K1 = r5�j(A); A = � 
c 

A I f(A) 
0. 1 1 .00 
0.2 1 .02 
0.3 1 .04 
0.4 1 .08 
0.5 1 . 1 3  
0.6 1 .2 1  

Case 3 .  Central Crack 
in Finite-Width 
Strip Subjected 

to Uniform Tension 
at Infinity 

2c ;. I E  2c 
� 2a 

KI = r5�j(A); A = � 
c 

A f(A) 
0. 1 1 .0 1  
0.2 1 .03 
0.3 1 .06 
0.4 1 . 1 1 
0. 5 1 . 1 9  
0.6 1 .30 

Case 4. Single-Edge 
Crack in 

Finite-Width Sheet 

(1 

(1 

KI = r5�j(A); A = � 
c 

A f(A) 
O(c ---+- oo) 1 . 1 2  

0.2 1 .37  
0.4 2 .1 1 
0.5 2 .83 

Case 5. Double-edge 
Crack in 

Finite-Width Sheet 

(1 

" 7-l--:· 
(1 

KI = r5�j(A); A = � 
c 

A I f(A) 
O(c ---+- oo) 1 . 1 2 

0.2 1 . 1 2 
0.4 1 . 1 4  
0.5 1 . 1 5  
0.6 1 .22 

Case 6. Edge Crack 
in Beam 

in Bending 

KI = r5�j(A) 
A = � 

2c 
3M (5 = -
2tc 2 

A I j(A) 
0. 1 1 .02 
0.2 1 .06 
0.3 1 . 1 6  
0.4 1 .32 
0. 5 1 .62 
0.6 2. 1 0  

...... 
Cll ...... 
............. 
"'rj > 
F c :::0 � n :::0 � M 
� > "'rj � (") ...., c � 
0'\ 1-6 � 
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EXAMPLE 15.1 
Longitudinal Cracks in Pressurized Pipes 

General experience in nondestructive testing of pressurized pipes made of various 
materials indicates that longitudinal cracks of maximum length of 10 mm may be 
present. There is concern that the pipe will undergo sudden fracture. Hence, an esti
mate of the maximum allowable pressure is required. Consider two cases, one for 
which 17-4PH precipitation hardening steel heat-treated to the properties in 
Table 1 5. 1  is used and the other for which Ti-6Al-4Sn- 1 V titanium alloy heat
treated to the properties in Table 1 5. 1  is used. 

SOLUTION 

By fracture mechanics concepts, unstable crack growth (crack propagation) occurs 
at a load level for which the potential energy available for crack growth exceeds the 
work done in extending the crack (creating additional crack surface). For the 
pressurized pipe, the stress state of the crack corresponds to that of Case 1 of 
Table 1 5.2 ;  see also Fig. E 1 5 . 1 .  Thus, K1 = CJ�, where a is the crack half-length, 
(J = pr/t, where p is the internal pressure, r the pipe inner radius, and t the pipe 
thickness. By fracture mechanics concepts, K1 = K1c for unstable crack growth. 

Pipe __£_Through crack 
� 

a = p .i. t 
Figure E 15 . 1  

Case A (17 -4PH Precipitation Hardening Steel) 
By Table 1 5 . 1 , K1c = 48 MPa.Jffi. We find the maximum allowable pressure to be 

p = £ Klc = 
48 -JiOOO £ = 382 £ (a) max r � J5;c r r 

If, on the other hand, the pressure p is fixed, the critical value of the ratio t/r is (t) - = 0.0026 1p 
r critical 

(b) 
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These results assume that the thickness t is greater than 4.2 mm so that Eq. ( 1 5 .2) is 
satisfied. If the crack half-length is decreased in magnitude, the fracture pressure 
given by Eq. (a) increases in magnitude; the computed value is no longer valid for 
a < 4.2 mm. 

Case B (Ti-6AI-4Sn-1V T�tanium Alloy) 
By Table 1 5 . 1 ,  K1c = 93 MPa Jill. As in Case A, by fracture mechanics 

P = £ K1c = 93� £ = 742 £ max C: � r -v rca -v 5rc r r 

This pressure probably would not cause brittle fracture. Even if the thickness t was 
equal to or greater than 28 mm, the crack half-length a =  5 mm is much less than 
that required (28 mm) to satisfy Eq. ( 1 5 .2). 

THE STATIONARY CRACK 

The solution to the stress concentration problem for an elliptical hole may be used 
to obtain an estimate of the stress distribution in the neighborhood of the tip of a 
crack (either blunt or sharp). As noted in Sec. 14.2, the tangential stress compo
nent CJpp around an elliptical hole in an infinite plate (sheet) subjected to uniform 
tensile stress (J in a direction perpendicular to the major axis of the hole depends 
on the ratio ajb [Eq. ( 14. 1 1 )] .  Hence, as ajb � oo (the elliptical hole becomes a 
crack), the maximum value of CJpp becomes very large. For example, for ajb = 100, 
CJpp(max) = 20 1CJ; for ajb = 1000, CJpp(max) = 2001CJ; etc. For sufficiently large ratios of 
ajb, the radius p of curvature at the edge of the major axis of the elliptical hole 
decreases but remains finite. If we take the radius p very small (but nonzero), the 
elliptical hole solution (at the end of the major axis of the hole) is used as the solu
tion for a blunt crack. 

As the ratio b/a � 0, we consider that p � 0, and we are led to the case of a sharp 
crack of lepgth 2a in an infinite plate with uniform stress (J applied at infinity in a 
direction perpendicular to the length 2a. The stress distribution in the neighbor
hood of a sharp crack tip may be obtained directly from the elliptical hole problem 
by considering the case b � 0. 

In terms of p, the stress concentration factor Sec is [Eq. ( 1 4. 1 3)] 

sec = (Jpp(max) = 1 + 2 � 
(J �p  ( 1 5 .3) 

Thus, since many geometrical holes, notches, flaws, cracks, etc., may be approxi
mated by an elliptical hole, it is to be expected that as p � 0, Sec � oo. All tabulated 
solutions of the crack problem exhibit this behavior. Most of the studies of fracture 
mechanics are directed toward the behavior of the stress solution in the neighbor
hood of a crack tip, as p �  0. 
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y 

b 

--��--+-----�--�----�--- X 
0 a 

Figure 1 5 .4 

To examine the normal stresses in the neighborhood of a crack tip, it is conve
nient to represent the stress components in terms of (x, y) axes (Fig. 1 5.4). Thus, for 
stresses along the major axes of the elliptical hole, y = 0, x > a, we obtain by trans
forming the stress components relative to the (a, {J) axes (Fig. 14.6) into stress com
ponents relative to the (x, y) axes (Inglis, 1 9 1 3) 

(Jxx = F1(s) - F2(s) 
CJYY = F1(s) + F2(s) 

where s is a distance parameter 

and 

with 

( ) = � [ 1 2(1 + m)J F1 s 2 + 2 s - m 
(J { m2 - 1 

[ ( m - 1 ) (3s2 - m)]} F2(s) = 2 1 + s2 - m 1 + s2 - m s2 - m 

1 B = 2 (a + b), a - b 
m = --a + b 

( 1 5.4) 

( 1 5 .5) 

( 1 5.6) 

( 1 5 .7) 

By means of Eqs. ( 1 5 .4), the stresses along the major axes in the neighborhood 
of the end of the major axes of an elliptical hole may be examined. By assuming 
that the radius of curvature p of a crack may be approximated by the radius of 
curvature of an equivalent elliptical hole [Eq. ( 14. 12)] , approximations of the 
stress in the neighborhood of the crack may be obtained, provided p ¥- 0, that is, 
for a blunt crack. 
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Blunt Crack 
For the elliptical hole, let the radius of curvature be p << a at the end of the major 
axis. Let r = x - a be the distance from the end of the major axis (in the major axis 
direction, Fig. 1 5.5 ). In the neighborhood of x = a, r << a. Hence, in terms of r and p, we may write, with Eqs. ( 14. 12), ( 1 5.4), ( 1 5 .5), ( 1 5.6), and ( 1 5.7), 

2B = a( 1 + {i_a) ' m = 
1 - � 

� -;; 1 + � 

(J F1(s) = F1(r) � --;:==== )(2r + p)/a CJ(p/a) 
F2(s) = F2(r) � 

[(2r + p)/a] 3f 2 
Hence, in the neighborhood of the tip of the crack, CJ )a 1 + (p/r) 

(J = -- ----------=-� YY y'2; [ 1  + (p/2r)] 31 2 
At the tip of the crack, r = 0, and then Eq. ( 1 5 .9) reduces to 

which agrees with Eq. ( 1 5 .3) for a >> p. 

Figure 1 5.5 Through-thickness crack in an infinite plate. 

( 1 5 .8) 

( 1 5.9) 

( 1 5. 1 0) 
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Sharp Crack 
For the sharp crack, we may estimate the stress distribution from that of the ellip
tical hole by letting b � 0. Then, we have 

2B = a, m = 1 ,  

x = r + a, r << a, 

and by Eqs. ( 1 5 .6) 

Hence, 

Clearly at the crack tip (r = 0), the stress is singular ( (JYY -----+ oo as r -----+ 0). 
Alternatively in terms of x, it may be shown that 

CJX 
(J = --;:::=====-yy I 2 2 -y x  - a  

( 1 5. 1 1) 

( 1 5. 1 2) 

{ 1 5 . 1 3) 

( 1 5 . 14) 

Again at the crack tip (x = a), CJYY (and CJxx) become infinite. For large values of x, 
CJYY � CJ, and CJxx � 0 as expected (Fig. 1 5. 5). 

As we shall see in Sec. 1 5. 3  in describing crack propagation, it is conventional 
to introduce the combination (JYY$ since this factor remains finite as r -----+ 0. In 
addition, a factor n is introduced so that 

( 1 5 . 1 5) 
The factor K1 is called the stress intensity factor. In certain fracture theories, it is 
assumed that the material fractures (the crack propagates) if K 1 exceeds a critical 
value 

( 1 5 . 1 6)  
where (Jc is the corresponding critical tensile stress .  The term stress intensity fac
tor should not be confused with the term stress concentration factor [Eq. ( 14. 1 )] , 
which represents the ratio between the maximum stress in a region of stress con
centration and the average stress. 

The results of this section are of importance in fracture mechanics, failure theo
ries, and crack propagation studies. See Sec. 1 5. 3 . One might question how, in the 
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presence of such a high stress (o-yy � oo, as r � 0), the material can remain elastic, 
permitting the application of linear elastic fracture mechanics. In fact, at the tip 
of a sharp crack, it is possible for a state of high hydrostatic stress to exist (in a 
sufficiently thick member), whereas the maximum shear stress and distortional 
energy density remain low. Thus, yielding may not occur prior to brittle fracture. 

CRACK PROPAGATION. STRESS INTENSITY FACTOR 

Elastic Stress at the Tip of a Sharp Crack 
In Sec. 14.2, we noted that the maximum stress at the ends of an elliptical hole in 
an infinite plate may be quite large. For example, when the plate is subjected to 
an edge tensile stress o- in the direction perpendicular to the major axis of the elliptic 
hole, the stress at the edge of the hole is given by Eq. ( 14. 1 1) . Hence, if the ratio 
ajb = 100, the value of O"pp(max) is 201o- ;  if a/b = 1000, O"pp(max) = 2001o- ;  etc. The 
elliptical hole becomes very narrow and approaches the shape of an internal line 
crack as ajb � oo. In this case, O"pp(max> � oo, and we can no longer utilize the con
cept of stress concentration factor in describing the behavior around the crack tip. 

Physically, one might expect that when loads are applied to a member that con
tains a line crack, the extremely large stress at the tips of the crack will cause the 
crack to extend or propagate. Experiments bear out this expectation in that it has 
been observed that the crack may* propagate when the load attains a critical 
nominal value. In general, under lower values of the applied stress o-, the crack may 
propagate slowly a short distance and stop, whereas under higher values of o-, the 
crack may propagate rapidly and continuously until a catastrophic separation of 
parts of the mem her occurs. 

For a given member made of a given material, cracks may propagate under con
ditions such that the material is in the ductile state or under conditions such that 
the material is in the brittle state (Sec. 1 5. 1 ). If the dimensions of the member are 
such that the state of stress over most of the length of the crack tip is plane strain, 
the crack will propagate with minimum plastic deformation occurring at the crack 
tip. The material in such members is considered to be loaded in the brittle state. 
The state of stress outside the small plastic zone is assumed to be characterized by 
the elasticity solution presented in Sec. 1 5.2. In the discussion that follows, we 
assume that the materials are loaded in the brittle state. 

Investigators have attempted to explain the mechanism of crack propagation in 
terms of the distribution of stress in the neighborhood of the crack tip. However, 
in addition, to help explain the crack propagation, another concept is required. 
Earlier investigators, particularly Griffith, introduced the concept of strain energy 
release rate, G. The quantity G represents the amount of strain energy lost by the 
member per unit area of the newly formed crack area as the crack propagates. 
This strain energy is used up in forming the new surface area of the crack. In other 
words, the energy required to form the surface area of the extended crack is 
obtained from the strain energy of the body. Since the dimensions of G may be 

* The capacity of the material to absorb relatively large amounts of energy per unit volume by plastic 
flow before fracture determines the level of nominal stress at which the crack propagates. In mild steel, 
a crack may not propagate until catastrophic fracture is imminent. 
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written [F/L] ,  G is referred to as the crack extension force. Hence, for a given geo
metry and material, a crack will propagate when the load reaches a level that pro
duces a critical value G1c of G. 

Stress Intensity Factor. Definition and Derivation 
To examine the stress distribution near the tip of a crack in a flat plate, consider a 
crack of length 2a, which is very small compared to the width and length of the 
plate (Fig. 1 5.6). Let the plate be subjected to uniformly distributed stress in a direc
tion perpendicular to the crack length 2a. As noted in Sec. 1 5 .2, the elastic stress at 
the tip of the crack becomes infinitely large as the radius of curvature p at the tip 
goes to zero [Eq. ( 1 5. 1 0)] . As shown in Sec. 1 5.2, [see Eq. ( 1 5 . 1 5) and Figs. 1 5 .5  and 
1 5 .6], the stress (JYY along the extension of the major axis (the expected path of 
crack propagation) is given by 

( 1 5. 1 7) 

where r is the distance from the crack tip measured along the x axis and K1 the 
stress intensity factor for a mode I crack. (See Sec. 1 5 .2 and Fig. 1 5 . 1 .) 

Following Irwin ( 1 957), we define the stress intensity factor by means of the 
following limit: 

( 1 5. 1 8) 

where p is the radius of curvature at the crack tip (Fig. 1 5.6), and CJmax , the max
imum stress at the crack tip, is a function of p; see Eqs. ( 1 5.9) and ( 14. 1 3) for the 
case of an elliptical hole. Consequently, if we consider the line crack to be the limit-

a 

a 

Figure 1 5.6 
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ing case of an elliptical hole, as b � 0, we obtain by Eqs . ( 14. 1 3) and ( 1 5. 1 8) 

( 1 5. 1 9) 

for mode I propagation of an internal crack in a flat plate; see also Eq. ( 1 5 . 15). 
Values of K1 for some other types of cracked members are listed in Table 1 5.2. 

Crack Extension Force G. Derivation 
Following concepts proposed by Griffith, one may derive a relationship between 
the crack extension force G and stress intensity factor K for various modes. For 
example, for a Griffith crack of length 2a, centrally located in a plate subjected to 
a uniformly distributed stress (J at edges far removed from the crack (Fig. 1 5.5 ), the 
surfaces of the crack undergo a relative displacement of magnitude 2v under a 
Mode I separation (Fig. 1 5.7). For a condition of plane strain (Paul, 1968), it may 
be shown that (Knott, 1973) 

x � a ( 1 5 .20) 

where v is Poisson's ratio and E the modulus of elasticity. The problem is to calcu
late the strain energy released when a crack of half-length a is extended to a 
half-length (a + ba). For constant load CJ, the release of potential energy is equal to 
the release of strain energy as ba � 0. Alternatively, we may calculate the change 
in energy in the plate as a whole, by calculating the work done by the surface forces 
at the crack tip acting across the length ba when the crack is closed from length 
(a + ba) to length a. In other words, we may employ the principle of virtual work. 

In terms of the crack extension force G, the energy change may be expressed in 
the form fa + oa 

G ba = a (Jyyv dx ( 1 5.2 1) 

y 

�----------x----------� 

- -- - --

--- -

�-------- a--------�� 

Figure 1 5.7  
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where the plate thickness is taken as unity and, by Eq. ( 1 5 . 14), 

CJX 
(J = ---;====-yy I 2 2 ' v x  - a  

a :::;; x :::;; a + 1Ja ( 1 5 .22) 

and v is given by Eq. ( 1 5 .20), where we let a �  a + 1Ja and a s  x s a +  1Ja. Letting 
r = x - a, we may write for sufficiently small r (Fig. 1 5.7) 

(J� KI 
(J - - --

YY - � - � 
2v = 4( 1 - v2 )�-J2;z) 1Ja - r E 

and, hence, with Eq. ( 1 5.20) we have 

( 1 5.23) 

( 1 5.24) 

Integration of Eq. ( 1 5.24) with the convenient substitution r = 1Ja sin2 w yields for 
plane strain 

( 1 5 .25) 

where K1 = (J� is the stress intensity factor for a Mode I opening (Fig. 1 5 . 1 ,  
Table 1 5.2). 

Critical Value of Crack Extension Force 
As noted in Sec. 1 5 . 1 ,  under certain conditions of loading, a crack in a structural 
member may gradually increase in length as the load is increased. This period of 
gradual increase in crack length may be followed by a rapid (catastrophic) propa
gation of the crack, resulting in complete separation of two parts of the member. 
In certain fracture mechanics hypotheses, this rapid propagation of the crack is 
associated with a critical crack length ac . Alternatively, since G, the Griffith crack 
extension force, is related to the crack length a [Eq. ( 1 5 .25)] ,  the rapid propaga
tion of the crack (say for Mode I) may also be associated with G1c , a critical crack 
extension force, defined by 

( 1 5.26) 

where analogous to G1c , the factor 

( 1 5.27) 

is called the critical stress intensity factor for Mode I opening of the crack 
(Sec. 1 5. 1 ) . The factor K1c is also referred to as the fracture toughness (Knott, 
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1973). Typical values of K1c for several metals are listed in Table 1 5. 1 .  These values 
have been obtained for elastic (plane strain) conditions according to ASTM stan
dards and can be used in the design of the members shown in Table 1 5.2. If the 
fracture loads for these members are to be calculated with reasonable accuracy, it 
is necessary that the state of stress at the tip of the crack is plane strain over most 
of the length of the crack tip. This is insured (Knott, 1 97 3) by specifying that the 
crack half-length a (or crack length a when applicable) and thickness t of the 
cracked member satisfy the relation [see also Sec. 1 5 . 1 , Eq. ( 1 5.2)] 

(
K1c
)
2 

a, t 2 2.5 y ( 1 5 .28) 

The magnitude of the right side of Eq. ( 1 5.28) for each metal is listed (in millimeters) 
in Table 1 5. 1 .  If the crack half-length a (or crack length a when applicable) is appre
ciably less than the value indicated by Eq. ( 1 5.28), the computed fracture load may 
be greater than the failure load for another mode of failure (yielding failure, for 
instance). If the thickness t of the member is small compared to the value given by 
the right side of Eq. ( 1 5.28), the state of stress approaches plane stress, appreciable 
yielding may occur at the crack tip, and the actual fracture load may be as much 
as several hundred percent greater than the value calculated using K1c . 

EXAMPLE 15.2 
Brittle Fracture for Combined Tension and Bending 

A hook similar to that shown in Fig. E 1 5.2 is part of a scarifier used to dig up old 
road beds before replacing them. Let the tool be made of AISI 4340 steel and 
heat-treated to the properties indicated in Table 1 5. 1 .  The dimensions of the tool 
are d = 250 mm, 2c = 60 mm, and the width of the rectangular cross section is 
t = 25 mm. Determine the magnitude of the fracture load P for a crack length of 
(a) a =  5 mm and (b) a = 10 mm. 

Figure E 1 5.2 

SOLUTION 

Note that both the width t and crack length a satisfy Eq. ( 1 5.28); therefore, the hook 
is assumed to be loaded in the brittle state. At a section through the crack, the 
hook is subjected to combined axial load (Case 4 of Table 1 5.2) and bending I i ZMiR vo .. K�E� :e,���L�] i� E_�lSTiroso I 
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15.4 

(Case 6 of Table 1 5 .2). Since a linear elastic analysis is assumed, the state of stress 
for combined loading can be obtained by superposition of the two states of stress 
for the two types of loading. Thus, 

(a) When a = 5 mm, A = a/2c = 0.083 . From Table 1 5.2 for Cases 4 and 6, we 
obtain f1 (A) = 1 .22 and f2(A) = 1 .02. 

P 3 (280P) 
CJj(A) = 

25 (60) 1 .22 + 2(25 )(30)2 1 .02 = 0.0 195P 

This is substituted in the relation 

K1c = CJj(A)� 

P = 59� = 24, 100 N = 24. 1 kN 
0.0 195 5n 

(b) When a = 10 mm, A = 0. 167 

P 3 (280P)( 1 .05) 
CJj(A) = 25( 60) 1 . 33  + 2(25)(30)2 = 0.0205P 

59JlQOO 
P = f1iL. = 16,200 N = 16.2 kN 

0.0205 -y 10n 

FRACTURE : OTHER FACTORS 

In Sec. 1 5 . 1  through 1 5.3 , concepts related to the stationary crack and initiation of 
crack propagation in metallic materials were introduced for brittle fracture [linear 
elastic fracture mechanics (LEFM)] .  As noted, however, many other factors that 
influence fracture are being researched today. Many of the factors pertain to secon
dary effects. Indeed, as noted by Broek ( 1 988), "Too many 'refinements' in engineer
ing (fracture) solutions pertain to secondary errors ; they increase the complexity, 
but do not improve the solution." However, some of these factors are of primary 
importance. For example, the topics of elastic-plastic fracture mechanics (EPFM ; 
see Parton and Morozov, 1989), crack-growth analysis (fatigue, variable amplitude 
loading, etc.), load spectra and stress histories (statistical models ; see Hermann and 
Roux, 1990), testing and experimental data interpretation (Broek, 1988 ;  Curbishley, 
1988 ; Ewalds and Wanhill, 1986; Herrmann and Roux, 1990), environmental effects 
(Liebowitz, 1968, Vol. III, 197 1 ;  Parton and Morozov, 1989), surface flaws, and 
residual stresses play important roles in fracture. The ultimate uses of the results 
of fracture mechanics studies are to control fracture and assess damage tolerances 
(Broek, 1988 ;  Kachanov, 1986), and to develop fracture control plans that help to 
minimize the potential for brittle fracture (Barsom and Rolfe, 1987). 



Elastic-Plastic Fracture Mechanics 

15.4 / FRACTURE : OTHER FACTORS 627 

In previous sections of this chapter, we examined conditions in which a crack may 
propagate. However, cracks or flaws differ in nature. At one extreme, the fracture 
of a crystal grain initiates from a submicroscopic crack produced when two atomic 
layers move apart. At the other extreme, the fracture of a pressure vessel may 
originate from a crack whose length and width are measured in millimeters (macro
scopic crack and macroscopic fracture). Macroscopic fracture is due to macro
scopic cracks whose dimensions are several orders of magnitude larger than the 
largest structural constituent of the material. Consequently, the problem can be 
treated as a problem in continuum mechanics. Thus, if we assume that the material 
is continuous, homogeneous, isotropic, and linearly elastic, we can use either the 
theory of linear elasticity or LEFM to compute the stresses in the neighborhood 
of a crack (Sec. 14.3 and 1 5.2). However, the theory of linear elasticity leads to the 
conclusion that the stresses for a sharp crack grow without bound at the crack tip. 
Thus, for a real, brittle material, fracture will occur almost instantaneously at a 
critical stress. For a real, ductile material, plastic deformation will usually occur 
before fracture, and then, LEFM is not applicable. In this case, elastic-plastic frac
ture mechanics (EPFM) must be used (see Parton and Morozov, 1989; Liebowitz, 
1968, Vol. III, 197 1, Chapter 2; Broek, 1988, Chapter 4; Clausmeyer et. al, 199 1 ;  
Hwang et. al, 1990). The topic of EPFM is beyond the scope of this book. 

Crack-Growth Analysis 
The initiation of crack growth (crack propagation) is predicted by LEFM at a load 
for which the stress intensity factor K1 reaches a critical value (K1c for the crack 
opening mode, see Sec. 1 5.3 ;  see also Broek, 1988 ;  Liebowitz, 1968, Vol. III, 197 1 ,  
Chapter 1 ;  Parton and Morozov, 1989, Chapters 1 and 2). However, crack initia
tion and growth are strongly affected by several factors such as repeated loads 
(fatigue, see Chapter 16; also Ewald and Wanhill, 1986), high temperatures (creep, 
Chapter 17 ), plasticity, environmental conditions (see Liebowitz, 1968, Vol. Ill, 
Broek 1988, Chapters 6 and 7). 

Load Spectra and Stress History 
As employed in Sec. 15 . 1 through 1 5. 3, LEFM predicts a critical value of load that 
initiates crack propagation. More generally, members of structures are subjected 
to load spectra and subsequent stress histories. The word spectra means any 
statistical representation of loads or stresses (Herrmann and Roux, 1990) .  In the 
determination of damage due to crack propagation, one must establish reliable 
prediction methods to estimate the number of load cycles that will result in a max
imum permissible crack size for a given stress history (Broek, 1988, Chapter 6). The 
type of stress histories (constant amplitude, repeated loads, variable amplitude 
loads, impulse loads, etc.) and methods of obtaining load spectra [say, records 
obtained by strain-gage readings over long periods of time, power spectrum den
sity analysis, exceedance diagrams* from counts (peak, mean-cross peak, etc.) of 

* Exceedance diagrams give the number of times that a quantity, say, stress, exceeds a certain level dur
ing a given time interval. Exceedance diagrams may be for one year of operation or any other appro

priate time, depending on the application. The exceedance diagram may also be for a range of stress (or 
load, etc.). 
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the records] as well as other factors enter into the design problem of fracture con
trol and the establishment of damage tolerance criteria. To simplify the process 
somewhat, many industries have established standard spectra for general use for a 
variety of structures (Broek, 1988). 

Testing and Experimental Data Interpretation 
As noted in Sec. 1 5. 1 ,  the experimentally determined critical stress intensity Kc 
depends on the specimen thickness. For a very thin specimen ( < 1 mm thick), the 
value of Kc is not exactly certain. For a relatively thin specimen, a state of plane 
stress exists approximately, and the value of Kc determined experimentally is fairly 
large. As the thickness of the specimen is increased, there is a transition from a 
plane stress state to a plane strain state (Fig. 1 5 .8). For a given test temperature and 
loading rate, the value of Kc tends to a limiting (minimum) value. This minimum 
value of Kc is called the plane strain fracture toughness (e.g., K1c for the opening 
crack mode). The plane strain fracture toughness is considered to be a material prop
erty ; however, it is dependent on temperature (Fig. 1 5.3) and loading rate. After 
several years of testing (in the 1960- 1970 period), a standardized plane strain 
K1c test method was developed by the American Society for Testing Materials 
(ASTM) for metallic materials. Two standard test specimens, the single-edge 
cracked bend specimen and compact tension specimen, were proposed (Fig. 1 5.2). 
The method was first published in 1970, and it is described in ASTM standard E399 
(ASTM, 1984). However, like most standards, this standard employs a number of 
compromises and approximations of data. The interpretation and use of plane 
strain fracture toughness and problems associated with the use of toughness data 
are discussed by Broek ( 1988, Chapter 7) . The user of toughness data would be well 
advised to refer to Broek's discussion (see also Barsom and Rolfe, 1987 ;  Curbishley, 
1988, Chapter 6; Ewalds and Wanhill, 1986, Chapter 5; Herrmann and Roux, 1990). 

In summary, fracture toughness testing and the use of fracture toughness data 
are still in the developmental stage. Much work still remains before structural 
integrity and damage tolerance assessments will be fully understood. Because of the 
limited space allotted here to these topics, our treatment is brief and incomplete. 
Indeed, the effects of environmental factors, residual stresses, and many current 
research topics are omitted. For example, fracture mechanics of ceramics, concrete, 
rock, and masonry materials are not discussed (Mihashi et al. ,  1989). Nevertheless, 

PlanH Transition Plane 
stress l-EE-- region -� strain � 

Specimen thickness 

Limiting value 

Figure 1 5 .8 Variation of Kc with specimen thickness. 
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the interested reader may refer to the excellent references cited. In addition, much 
of the current research is documented in technical journals devoted exclusively to 
fracture mechanics. These include Engineering Fracture Mechanics, International 
Journal of Fracture, and Theoretical and Applied Fracture Mechanics. In addi
tion, other journals contain articles on fracture mechanics, for example, Computer 
Methods in Applied Mechanics and Engineering, Experimental Mechanics, Inter
national Journal of Fatigue, and International Journal of Plasticity. 

PROBLEMS 
Section 15.1 

15.1 .  A circular shaft i s  made of gray cast iron, which may be considered to be 
linearly elastic up to its ultimate strength (Ju = 145 MPa. The shaft is sub
jected to a moment M = 5 .50 kN ·m and torque T = 5.00 kN ·m. Determine 
the diameter d of the shaft if the factor of safety against brittle fracture 
is SF = 4.00. 

15.2. A piece of chalk of diameter d is subjected to an axial load P and a torque 
T. Assume that the chalk remains linearly elastic up to the ultimate strength 
CJu . The axial load is P = CJund 2/ 12. Determine the magnitude of the torque 
T that will cause brittle fracture. 

15.3. A 50-mm diameter shaft is made of a brittle material. The shaft is subjected 
to a static torque T = 1 .20 kN ·m. A bending moment M is increased in 
magnitude until fracture. The fracture surface is found to make an angle of 
1 .000 rad with a longitudinal line drawn on the shaft. If the maximum 
principal stress criterion of failure is valid for this material and loading, 
determine the magnitude of M and ultimate strength (Ju for the material. 

15.4. A circular shaft is made of gray cast iron, which may be considered to be 
linearly elastic up to its ultimate strength (Ju = 1 50 MPa. The shaft has a 
diameter of 125 mm and is subjected to a bending moment M = 7 .50 kN ·m. 
Determine the maximum value for torque T that can be applied to the shaft 
if it has been designed with a factor of safety of 3.00 for both M and T. 

Ans. T = 8.98 kN ·m 

15.5. Let the bending moment for Problem 1 5.4 be applied by a dead load that 
is known to remain constant with time. The variation of torque T with 
time is unknown. Determine the limiting value for T if the factor of safety 
for M remains 3 .00, whereas the factor of safety for T is increased to 5.00. 

15.6. A long strip of aluminum alloy 2024-T85 1  has a width of 1 50 mm and 
thickness of 8.00 mm. An edge crack of length a =  9.00 mm (Case 4 of 
Table 1 5.2) is located at one edge of the strip near the center of its length. 
Determine the magnitude of the axial load P that will cause brittle fracture. 

Ans. P = 1 37 .3 kN 
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15.7. The long strip in Problem 1 5 .6 has a double-edge crack with a = 9.00 mm 
(Case 5 in Table 1 5.2). Determine the magnitude of the axial load P that 
will cause brittle fracture. 

15.8. A 2024-T85 1  aluminum alloy pipe is used as a tension member. The pipe 
has an outside diameter of 100 mm and wall thickness of 8 .00 mm. An 
inspection of the pipe locates a circumferential through-thickness crack 
having a length of 1 5.0 mm (Case 3 of Table 1 5 .2). If the axial load P 
is increased to failure, will the failure be brittle fracture? What is the 
failure load? 

Ans. Yes. P = 342.7 kN 

15.9. Let the tension member in Problem 1 5 .8 be made of AISI 403 stainless 
steel. If the axial load P is increased to failure, will the failure be brittle frac
ture? What is the lower limit for the failure load? 

15.10. A 60.0-mm square beam is made of AISI 4340 steel that has been heat
treated to give the properties indicated in Table 1 5 . 1 .  On the tension side 
of the beam, a transverse crack has a depth of 8 .00 mm (Case 6 of 
Table 1 5.2). Determine the magnitude of the moment M that will cause 
brittle fracture. 

Ans. M = 12.97 kN ·m 

15.11 .  A simple beam has a span of 4.00 m, depth of 250 mm, and width of 
100 mm. The beam is made of 606 1-T65 1 aluminum alloy and is loaded by 
a concentrated load P at midspan. The design load for the beam has been 
calculated using a factor of safety of 3 .00 and assuming the general yielding 
theory of failure. Determine the magnitude of P. An inspection of the beam 
located a transverse crack a distance of 1 . 50 m from one end. The crack 
has a depth of 24.0 mm. What is the factor of safety for the beam against 
brittle fracture? 

Section 15.3 

15.12. Solve Example 1 5.2 for the condition that d = 200 mm and 2c = 50 mm. 
15. 13. A rectangular section beam has a depth 2c = 1 50 mm, width t = 25 mm, 

and length L = 2.00 m. The beam is loaded as a simply supported beam 
with a concentrated load P at the center. A notch is machined into the beam 
on the tension side opposite the point of application of P. The depth of 
the notch was increased by fatigue loading until a = 1 5  mm. The beam is 
made of 1 7-7PH precipitation hardening steel heat-treated to yield the 
properties indicated in Table 1 5. 1 .  

(a) Determine whether or not plane strain conditions are satisfied for 
the beam. 

(b) Determine the fracture load P. 

Ans. (a) Conditions are satisfied (b) P = 65.2 kN 
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15.14. Solve Problem 1 5. 1 3 if the beam is made of 2024-T85 1  aluminum alloy. 
15.15. A closed-end cylinder is made of 7079-T65 1 aluminum alloy. The cylinder 

has an inside diameter D = 1000 mm, a wall thickness h = 20 mm, and is 
subjected to an internal pressure p = 6.00 MPa. Determine the length of 
crack (2a) required to cause fracture at this pressure if plane strain condi
tions are assumed to be satisfied. The inside of the cylinder is covered with 
a thin layer of rubber to prevent leakage. Determine whether or not condi
tions are satisfied for a plane strain state of stress. 

Ans. 2a = 19. 1 mm, yes 

15.16. If the crack with length 2a = 19. 1 mm is circumferential instead of longitu
dinal for the cylinder in Problem 1 5. 1 5, determine the internal pressure that 
will cause fracture. 

15. 17. A bar of titanium alloy (Ti-6Al-4Sn- 1 V) has a rectangular cross section 
(t = 30 mm and 2c = 300 mm), a length L = 1 m, and is heat-treated to 
give the material properties in Table 1 5 . 1 .  The bar is subjected to an axial 
load P whose action line is at the centerline of one of the 30-mm edges. If 
a transverse edge crack at the center of length L has the minimum length 
required for a plane strain state of stress, determine the magnitude of P to 
cause brittle fracture. 

Ans. P = 656 kN 

15.18. Solve Problem 1 5. 1 7  if the action line of load P is at the center of the tip 
of the crack. 

15.19. In a plane strain compact specimen test (Fig. 1 5.2), a value of fracture 
toughness Kc = 55 MPa.Jffi is estimated. The yield strength of the mate
rial is Y = 689 MPa, and the specimen thickness is 12.7 mm. 
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1 6  
FATIGUE : PROGRESSIVE 
FRACTURE 

Fatigue has been defined as "the progressive localized permanent structural change 
that occurs in a material subjected to repeated or fluctuating strains at stresses 
having a maximum value less than the tensile strength of the material" (ASM, 1975). 
As noted in Chapter 1 5, failures occur in many mechanical systems. It has been 
estimated that between 50 and 90% of these failures are due to fatigue (Fuchs and 
Stephens, 1 980). Failures due to fatigue culminate in cracks or fracture after a suffi
cient number of fluctuations of load. 

Fracture of a structural member due to repeated cycles of load or fluctuating 
loads is commonly referred to as a fatigue failure or fatigue fracture. The corre
sponding number of load cycles or the time during which the member is subjected 
to these loads before fracture occurs is referred to as the fatigue life of the member. 
The fatigue life of a member is affected by many factors (ASM, 1975 ) . For example, 
it is affected by ( 1 )  the type of load (uniaxial, bending, torsion), (2) the nature of the 
load-displacement curve (linear, nonlinear), (3) the frequency of load repetitions or 
cycling, (4) the load history [cyclic load with constant or variable amplitude, 
random load, etc. (Gauthier and Petrequin, 1989; Buxbaum et. al, 1 99 1 )] ,  (5 ) the 
size of the member, (6) the material flaws, (7 ) the manufacturing method (surface 
roughness, notches), (8) the operating temperatures (high temperature that results 
in creep, low temperature that results in brittleness), (9) the environmental operating 
conditions (corrosion, see Clarke and Gordon, 1 973). In practice, accurate estimates 
of fatigue life are difficult to obtain, because for many materials, small changes in 
these conditions may strongly affect fatigue life. The designer may therefore be 
forced to rely on experience or testing of full-scale members under in-service condi
tions. Testing of full-scale members is time-consuming and costly. Therefore, data 
from laboratory tests of small material specimens are used to establish fatigue 
failure criteria, even though these data may not be sufficient to determine the fatigue 
life of the real member. Nevertheless, laboratory tests are useful in determining the 
effect of load variables on fatigue life, in comparing the relative fatigue resistance 
of various materials aqd establishing the importance of fabrication methods, sur
face finish, environmental effects, etc., on fatigue life predictions (Buch, 1 988 ;  Fuchs 
and Stephens, 1980). 

The total period of fatigue life (total life) may be considered to consist of three 
phases : ( 1 )  initial fatigue damage that produces crack initiation, (2) propagation of 
a crack or cracks that results in partial separation of a cross section of a member, 
until the remaining uncracked cross section is unable to support the applied load, 
and (3) final fracture of the member. Traditionally, fatigue life data have been ex
pressed as the number of stress cycles required to initiate a fatigue crack that will 
grow large enough to produce fracture (e.g., breaking of a test specimen into two 
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pieces). Alternatively, fatigue data may also be expressed in terms of crack-growth 
rate (Fuchs and Stephens, 1980, p. 82). Early investigators of fatigue life assumed 
that total fatigue life consisted mainly of the time required to initiate a minute 
fatigue crack and that the time required for the crack to grow (propagate) was an 
insignificant portion of the total life. However, with the development of more accu
rate methods of crack detection and tracking (Skelton, 1 988), it was discovered that 
microscopic cracks develop very early in the fatigue life and grow at various rates 
until fracture occurs. This fact has led to the use of crack initiation and crack-growth 
rates to more accurately predict fatigue life (Fuchs and Stephens, 1980; Knott, 1973). 
In this chapter, we estimate fatigue life on the basis of experimental fatigue data 
(stress-cycle data) of test specimens subject to appropriate conditions, including the 
effects of stress concentrations. The reader interested in analytical methods of 
fatigue life predictions is referred to the literature (Buch et. al, 1986; Buch, 1988 ;  
Kliman, 1 985 ; Socie, 1977; Fuchs and Stephens, 1980; Weronski and Hejwowski, 
199 1 ;  see also current journals, e.g., the International Journal of Fatigue). 

Ductile Fracture Resulting from Low Cycle 
Fatigue Loading 
Many current studies of fatigue are devoted to problems of low cycle fatigue of 
members made of ductile materials. For such problems, large plastic strains occur 
at the section of the member where fracture finally occurs. Consequently, we con
sider the material in members that undergo low cycle fatigue to be in a ductile state. 
Failure resulting from low cycle fatigue is beyond the scope of this book, and the 
reader is referred to the literature (Manson, 1 98 1 ;  Sandor, 1972). Fatigue failures 
may occur with only small plastic strains. Such failures are called brittle failures 
due to high cycle fatigue. For members made of ductile metals, high cycle fatigue 
failure occurs after about 106 cycles. 

PROGRESSIVE FRACTURE (HIGH CYCLE FATIGUE 
FOR NUMBER OF CYCLES N > 106) 

A basic concept in fracture predictions by fracture mechanics analysis is the exis
tence of a critical crack size for a given geometry and load. In some practical appli
cations, the size of the critical crack or defect is so large that the effect can usually 
be detected and corrected before the part is put into service or during maintenance 
of the part in service. However, most parts contain subcritical cracks or flaws. 
These subcritical cracks may, during operation, grow to critical size and cause 
catastrophic failures. Several mechanisms of subcritical flaw growth exist. Of par
ticular importance in practical problems are the mechanisms of fatigue and stress 
corrosion cracking. Here we briefly consider fatigue criteria associated with sub
critical flaw (crack) growth by the mechanism of fatigue. The mechanism of stress 
corrosion cracking is left to more specialized works (Clarke and Gordon, 1973 ;  
Fuchs and Stephens, 1980; Chapter 1 1 ). However, one should note that fatigue 
crack growth processes cannot be fully explained unless effects of environment 
(corrosion) are considered. 
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Encouraged by the success of linear elastic fracture mechanics (LEFM) in ex
plaining sudden brittle fracture, several investigators have attempted to describe 
subcritical crack growth in terms of LEFM parameters. The objective of the frac
ture mechanics approach is essentially to replace uncertainties (i.e., the degree of 
ignorance) in conventional design factors by more reliable quantitative parameters 
that are more direct measures of the material fracture resistance. Early results seem 
to indicate that a material exhibiting high static fracture toughness also gives good 
resistance to subcritical crack propagation due to fatigue. 

By fatigue failure (progressive fracture), we mean one that occurs after a number 
of cycles under alternating stresses, with peak stresses below the ultimate strength 
of the material in a simple tension test. We restrict our discussion to ordinary 
(room) temperatures. Fatigue fracture at high temperature (thermal fatigue) has 
been treated in the literature (Smith and Nicolson, 197 1 ;  Manson, 198 1 ). To simplify 
our discussion, we further divide our treatment of the fatigue growth of subcritical 
cracks into the initiation of cracks as microcracks and the propagation of cracks 
as macrocracks to fracture. 

For example, consider a smooth shaft rotating in bearings and subjected to loads 
that produce bending moments. As the shaft rotates, the maximum fiber stresses 
alternate between tension and compression. In turn, these cyclic components at a 
surface point set up alternating shear stresses, maximum on 45° planes with the 
tension-compression direction. If these stresses locally exceed the elastic limit, alter
nating plastic deformation (strain) is produced in the surface grains. Since the plastic 
deformation is not fully reversible, at least two effects result : ( 1) a general strain 
hardening of the surface grains that localizes the deformation along active slip
bands inclined roughly at 45° to the direction of the maximum principal stress and 
(2) a nonreversible flow at the surface producing extrusions that pile up material on 
the surface and associated intrusions that act as microcracks along the active slip
bands. An intrusion initially propagates along an active slip-band as a so-called 
stage I crack until it reaches a length sufficiently large with respect to the member 
for the crack tip stress field to become dominant. Under continued repeated load
ing, the intrusion then propagates as a stage II crack, normal to the maximum prin
cipal (tensile) stress until the member breaks by a fast tensile fracture. During stage 
II propagation, striations or ripples occur on portions of the fatigue crack surface 
perpendicular to the tensile direction. The growth of the crack from intrusion to 
the stage II propagation is a rapidly accelerating process. Hence, the process is 
strongly controlled by the initiation of the intrusion. Fairly large amounts of alter
nating plastic deformations are required to form intrusions and extrusions on an 
initially smooth surface. Consequently, rather large alternating stresses are needed 
to precipitate fatigue fracture. It follows that once a crack has been initiated in any 
initially smooth surface, it propagates rapidly due to the high stress concentration. 

Conventional fatigue (endurance) testing has been concerned primarily with the 
testing of specimens wifh smooth surfaces under conditions of rotating-bending or 
uniaxial tension-compression cycling. The results of these tests are presented in the 
form of plots of stress (applied alternating stress magnitude + o-) vs the number N 
of stress cycles (usually represented as log N) required to cause fracture. These 
plots are called o--N diagrams (also called S-N diagrams in the literature) (Fig. 1 6 . 1 ) . 
Wohler (Anonymous, 1967) discovered that the steel in the railroad car axles he 
tested exhibited a behavior called an endurance limit: a stress level below which a 
material can undergo repeated cycling of stress indefinitely and show no evidence 
of fracture. However, later investigators found that many materials did not exhibit 



c. E C1l 
en 
en Q) 
.... 

..... 
en 

C'l c 
·� 10 c 

.... Q) ..... 
<( 

16 . 1  / HIGH CYCLE FATIGUE 637 

Low cycle ___ ���., 
....,._ __ fatigue 

)II >" H igh cycle fatigue 

I 

Nu mber of cycles to fracture, N 
a - N  diagram 

Figure 16. 1  CJ - N diagram. 
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the endurance limit response, but rather continued to exhibit fracture, provided 
that the repetition of load was continued for a sufficiently large number of cycles 
(Fig. 1 6. 1 ). Thus in general, under fatigue testing of smooth specimens, materials 
exhibit one of two types of responses. In mild steel or certain other steels, an endur
ance limit is observed, below which the specimen seems to last indefinitely. On the 
other hand, many materials do not exhibit a clear-cut endurance limit, but the O"-N 
curves continue downward as N increases. For these materials (e.g., most nonfer
rous materials), it is customary to define the stress to cause failure in a given num
ber of cycles (say, N = 108 ) as the endurance limit stress O"L (Fig. 1 6. 1) . 

The endurance limit O"L is an important material property for members subjected 
to fatigue loading as long as the number of cycles of loading approaches the 
number associated with O"L .  It should be noted that other fatigue properties for a 
given material can be obtained from the O"-N curve. Many members are subjected 
to fewer cycles than are associated with the endurance limit. For each value of N 
in Fig. 16. 1 ,  there is a stress O"am ' the fatigue strength, where the subscripts am de
note alternating maximum; a specimen subjected to completely reversed cycles of 
stress at O"am will fracture after N cycles. Note that O"am = O"L at the endurance limit. 
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Typical CJ-N curves for completely reversed loading of smooth specimens of a 
structural steel, a stainless steel, and aluminum alloy are shown in Fig. 1 6 .2. If a 
large number of specimens of one of the metals in Fig. 16.2  were tested at one stress 
level, the data would indicate appreciable scatter. The CJ-N curve usually reported 
for a given metal (Fig. 1 6.2) is often taken to represent a 50% probability of failure 
curve. That is, if a large number of fatigue specimens of one of the metals in 
Fig. 1 6.2 were tested at a given fatigue strength (Jam , approximately 50% of the spec
imens would be expected to fail prior to N cycles of load corresponding to the given (Jam . The statistical nature (Fuchs and Stephens, 1 980) of fatigue data may be 
represented either as a series of CJ-N curves representing different probabilities of 
failure or a CJ-N band (Fig. 1 6.3). Because of the large expense involved, CJ-N proba
bility curves or CJ-N bands (Fig. 1 6.3) are seldom obtained. 

The experimental CJ-N curves in Figs. 1 6. 1  and 1 6.2 remain fairly valid for con
stant amplitude ( ± (Jam) tests. However, deviations from constant amplitude alter
nating stress may alter the CJ-N curve. For example, if a steel is subjected to cyclic 
stress of constant amplitude for a sufficiently long time below the endurance limit 
(point A in Fig. 1 6. 1 ), its endurance limit may be increased (point B). This process, 
known as coaxing, is sometimes employed to improve resistance to fatigue fracture. 

In addition to coaxing, various other factors affect the fatigue strength. For 
example, the fatigue strength of a material may be altered by such factors as fre
quency of cycling, cold working of the material, temperature, corrosion, residual 
stresses, surface finish, and mean stress. 
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Figure 1 6.2 CJ - N diagrams for three metals. 



16 . 1  / HIGH CYCLE FATIGUE 639 

500 r-------�------�--------�------�--------

400 

100 

90 percent probabil ity 
of fa i lure 

1 0 percent probabil ity 
of fa il ure 

50 percent probabil ity 
of fai l ure 

Number of cycles to fracture 

Figure 16.3 CJ - N band indicating scatter of fatigue data. 

As noted above, the CJ-N curve gives the fatigue strength (Jam for specified N for 
members subjected to completely reversed loading (loading under the condition of 
zero mean stress). Nonzero mean stresses have a marked effect on the fatigue 
strength. There have been several relations proposed to describe the effects of mean 
stress. Three such relations are (for one-dimensional testing) 

(a) Soderberg Relation 

( 1 6. 1 ) 

(b) Gerber Relation 

( 1 6 .2) 

(c) Goodman Relation 

(1 6.3) 

where CJa is the stress amplitude, (Jam the fatigue strength for given N for zero mean 
stress, Y the yield stress, CJm the mean stress, and CJu the ultimate strength. The 
relation between CJa and CJm for cyclic loading with unequal stresses is indicated in 
Fig. 1 6.4. For most metals, the Soderberg relation yields conservative estimates 
of critical stress amplitude CJa (or range of stress 2CJa). The Goodman relation gives 
reasonably good results for brittle materials, whereas it is conservative for ductile 
materials. The Gerber relation yields fairly good estimates for (Ja for ductile mate
rials. The Soderberg relation, Gerber relation, and Goodman relation are inter
preted in Fig. 1 6.5. For any mean stress CJm , the ordinate to a particular curve 



640 16  / FATIGUE 

Figure 16.4 
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gives the magnitude of (Ja for that relation. The dashed line CD is generally used 
along with the Gerber and Goodman relations since failure by general yielding is 
assumed to occur along CD. 

In the case of fatigue loading, design applications in this book are limited to 
high cycle fatigue (Fig. 1 6. 1 ) of members made of ductile metals and subjected to 
cyclic loading with constant mean stress and constant amplitude of alternating 
stress. The material property (fatigue strength) is assumed to be obtained from 
smooth specimens (free of stress concentrations) subject to completely reversed 
loading under a uniaxial state of stress (tension-compression specimens or rotating 
bending specimens). The fatigue strength for a specified number of cycles N, where 
N > 106 , is specified by the magnitude of (Jam · The effect of mean stress (Jm is 
assumed to be given by either the Soderberg relation [Eq. ( 1 6. 1 )] ,  Gerber relation 
[Eq. ( 1 6.2)] , or Goodman relation [Eq. ( 1 6.3)] . The criteria of failure for members 
subject to multiaxial states of stress are assumed to be the same as for general 
yielding failure. Both the maximum shear-stress criterion and maximum octahedral 
shear-stress criterion of failure are widely used in the design for high cycle fatigue. 
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In the case of low cycle fatigue, criteria of failure are often formulated in terms of 
the total strain range (Manson, 1 98 1 ). 

Stress Concentrations 
Stress concentrations (Chapter 14) greatly increase the stresses in the neighbor
hood of the stress concentrations and generally limit design loads when the member 
is subjected to fatigue loading. The effect of stress concentrations in fatigue loading 
is discussed in Sec. 1 6.2 and 16. 3 .  

EXAMPLE 16.1 
Fatigue of Torsion-Bending Member 

The member in Fig. E16. 1  is made of steel (Y  = 345 MPa and (Ju = 586 MPa), has 
a diameter d = 20 mm, lies in the plane of the paper, and has a radius of curvature 
R = 800 mm. The member is simply supported at A and B and is subjected to a 
cyclic load P at C normal to the plane of the member. 

d 

X 

(a) 

::L A c 1 P  B (-------------------------------------L----------------------------o 
X �*------------------------------------------------------------------�* 

p (b) p 
2 2 

Figure E16. 1 (a) Top view. (b) Side view. 

B 

(a) The load varies from Pmax to Pmin = - 5Pmax/6. The endurance limit for N = 
107 for the steel is (Jam = 290 MPa. Determine the magnitude of Pmax based 
on a factor of safety SF = 1 . 80 against failure at N = 107 cycles. Use the 
maximum octahedral shear-stress criterion of failure. Assume that the Gerber 
relation [Eq. ( 1 6.2)] is valid. 

(b) Obtain the solution for Pmin = - Pmax/2. 

SOLUTION 

(a) The magnitude of the alternating component of stress (Ja is obtained by 
Eq. ( 1 6.2). For linearly elastic behavior, (Jmin = - 5(Jmax/6 . However, 
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16.2 

a-max - a-min = 2o-a and a-max = o-m + o-a . Hence, o-m = o-a/1 1 .  Substituting this 
value of o-m and values of o-am and o-u in Eq. ( 1 6.2), we obtain o-a = 289 MPa. 
Thus, a-max = �io-a = 3 1 5  MPa and a-min = - 263 MPa. This result indicates 
that a smooth fatigue specimen cycled between these stress levels would not 
fracture before 107 cycles. Since a-max is less than Y, failure would be by fa
!igue and not general yielding. 

The load P on member ACB in Fig. E16. 1  can be cycled from PmaiSF) to 
P min( SF) through 107 cycles before fracture by fatigue. The reactions at A and 
B when P max( SF) is applied are equal to P maiSF)/2 = 0.90P max . The reaction 
0.90P max produces a moment and torque of equal magnitude at the critical 
section at C. Thus, 

M = T = 0.90P maxR = 120P max 

The bending stress o- due to M and shear stress r due to T at C are 

= Me = 720Pmax{ 10) (4) = 0 9 17p o- I n(10)4 . max 

= Tc = 120P max( 10)(2) = O 458p ! J n(10)4 . max 

The magnitude of Pmax is obtained by means of Eq. (4.44) when a-max = 
3 1 5  MPa is substituted for Y. Thus, (0.458P max)2 (0.9 1 7  P max)2 

= 3 3 1 5  + 3 1 5  1 

Pmax = 260 N and Pmin = - 2 16  N 

(b) For a-min = - o-max/2, we obtain o-m = o-a/3 .  Substitution of this value of o-m 
along with values for Y and o-u into Eq. ( 1 6.2) gives o-a = 282 MPa and o-max = 
376 MPa. Since a-max is greater than Y, failure of the member occurs by general 
yielding and not fatigue. Substitution of values of o-, r, and Y into Eqs. ( 4.44) 
gives Pmax = 285 N and Pmin = - 142 N. 

EFFECTIVE STRESS CONCENTRATION FACTORS: 
REPEATED LOADS 

? 

The value of the stress concentration factor See for a notched member subjected to 
completely reversed repeated loads (fatigue) is obtained by comparison of data 
taken from two sets of test specimens. One set of specimens (5 to 10 specimens) is 
notch-free, the other set notched. The significant stress in the notch-free specimens 
is the nominal stress as computed with an elementary stress formula. For the 
notched specimens, the nominal stress is again computed with the same elementary 
stress formula as for the notch-free specimens. Both sets of specimens are subjected 
to the same type of repeated load or fatigue test (say, bending). 
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It is assumed that the failure (fracture) in each set of specimens for a specified 
number of completely reversed loading cycles N occurs when the stress attains the 
same value in each set. Since the notch causes a stress concentration, the load re
quired to cause the fracture stress is less for the notched specimens. 

To illustrate the method of determining See for bending fatigue loading, consider 
the CJ-N diagrams of Fig. 1 6.6. The nominal stress is computed by the equation 
(Jn = Mc/1 and plotted as ordinates in Fig. 1 6.6; the abscissa is the number of cycles 
of bending stress to which the specimen is subjected. For a given value of N, say, 
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Cyc l es for ruptu re, N 
Figure 1 6.6  (J - N diagrams showing the effect of abrupt changes in cross section and 

corrosion on the resistance of steel to repeated cycles of completely reversed 
bending stress .  Quenced and tempered SAE 3 140 steel was used for all tests. 
[From T. J. Dolan ( 1937). Urbana-Champaign, Ill . :  Univ. Ill . , Bull. 293 ,  Eng. 
Exper. Station.] 
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1 6.3 

300,000 cycles, the value of see is computed by taking the ratio of the failure stress 
of the notch-free specimen to the failure stress of the notched specimen. Thus, for 
N = 300,000 cycles, by Fig. 16 .6, we find 

634.4 see = 268.9 = 2 . 36 

Likewise, for N = 107 cycles we find 

620.6 see = 248.2 = 2. 50 

Thus, the value of See varies with N. By Fig. 1 6.6, the value of See remains relatively 
constant for N > 107 ,  since the curves at N = 107 are changing very slowly. In 
fatigue testing, the value of see is often based on the endurance limit of the steel 
(stress at N = 107 ). 

For the specimen with a transverse hole (Fig. 1 4. 1 6 ), the calculated (elastic) stress 
concentration factor is Sec = 3 .00. However, as shown by the results of fatigue tests 
for these specimens, the significant stress concentration factor is See = 2.5 . Thus, 
there is a difference between the value of see and seC ' the value of see being 
smaller. In the following section, additional conditions that influence the value of 
see are discussed. 

EFFECTIVE STRESS CONCENTRATION FACTORS : 
OTHER INFLUENCES 

Corrosion Fatigue 
Figure 1 6.6 shows the damaging effects that mechanical notches such as holes and 
fillets and so-called chemical notches such as corrosion pits are likely to have on 
the resistance of steel to repeated stress, particularly of alloy steels heat-treated 
to give high strength. The effect of corrosion that takes place while the material is 
being repeatedly stressed is much more damaging to the fatigue strength of steel 
than corrosion that takes place prior to stressing (called stressless corrosion). The 
main reason for this fact seems to be that in the absence of stress the products of 
the corrosion tend to form a protecting film that excludes the corroding agent from 
contacting the metal . If,however, the rather brittle film is repeatedly stressed in the 
presence of the corroding agent, it cracks and allows the corroding agent to continue 
to attack the metal underneath the film. The effect of corrosion on the fatigue 
strength of steel is shown by the CJ-N diagrams in Fig. 1 6.6 . For example, the 
quenched and tempered SAE 3 140 steel tested indicated an endurance limit of ap
proximately 620.5 MPa when tested in air (a relatively noncorrosive medium), and 
this was reduced to about 68.94 MPa when the specimens were tested in the pre
sence of water ; the presence of a small hole caused little further decrease in fatigue 
strength. Also the shape of the CJ-N diagram for stresses above the endurance limit 
was influenced greatly by the corrosion. 
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In Sec. 1 6.2, it was assumed that the member or specimen was subjected to repeated 
cycles of completely reversed stress, that is, in each stress cycle the stress varied 
from a given tensile stress to an equal compressive stress. If a specimen in which 
the stress is concentrated is subjected to repeated cycles of stress in which the 
stress is not completely reversed, it is convenient to consider the cycle or range of 
stress to be made up of a steady stress and a completely reversed (alternating) stress 
superimposed on the steady stress (see Sec. 1 6. 1  ). There is considerable evidence 
(Eisenstadt, 197 1) indicating that the damaging effect of the stress concentration in 
such a repeated cycle of stress is associated only with the completely reversed (alter
nating) component of the stress cycle and not with the mean stress in the cycle. 
Thus, the stress concentration factor for the particular discontinuity is applied only 
to the alternating stress component (see Example 1 6.4). 

Methods of Reducing Harmful Effects of Stress 
Concentrations 
A problem that frequently arises in engineering is that of reducing the value of a 
stress concentration below the minimum value that will cause a fatigue fracture to 
occur or of raising the fatigue strength of the material so that fracture is avoided, 
rather than that of calculating the effective stress concentration. Some of the 
methods that have been employed in an attempt to reduce the damaging effects of 
localized stresses are the following: 

1 .  Reducing the value of the stress concentration by decreasing the abruptness of 
the change in cross section of the member by use of fillets, etc. , either by adding 
or removing small amounts of material. 

2. Reducing the value of the stress concentration by making the portion of the 
member in the neighborhood of the stress concentration less stiff; this may be 
done, for example, by removing material in various ways, as indicated in 
Fig. 16.7. Sometimes it may be done by substituting a member made of material 
with a lower modulus of elasticity, such as replacing a steel nut on a steel 
bolt by a bronze nut to reduce the stress concentration at the threads of the 
steel bolt. 

3. Increasing the fatigue strength of the material by cold-working the portions of 
the ll!embers where the stress concentrations occur; for example, by the cold 
rolling of fillets and bearing surfaces on axles, or by the shot blasting or shot 
peening of surfaces of machine parts. The increased fatigue strength of a 
member caused by local cold-working of the metal at the region of stress con
centration in some cases may be due primarily to residual compressive stresses 
set up in the cold-worked metal by the surrounding elastic material as this 
elastic material attempts to return to its original position when the cold
working tool is removed, especially if the repeated cycle of stress is not re
versed. Likewise, overstraining of the outer fibers of a beam or the inner fibers 
of a thick-walled pressure vessel or pipe may create favorable initial (residual) 
stresses (see Chapter 1 1 ). 

4. Increasing the fatigue strength of the material by alloying and heat-treating 
portions of steel members that resist the high stress, by case hardening, 
nitriding, flame hardening, etc. In such treatments, however, care must be 
taken to avoid inducing tensile residual stresses. 
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Figure 16.7 Wheel shrunk on an axle subjected to bending (top half of a symmetric cross 
section). (a) Stress concentration at A and B. (b) Stress concentration reduced 
by removing material in the vicinity of A and B. 

5. Reducing the stress concentration by removing surface scratches, tool marks, 
small laps, and similar stress raisers to create a smooth surface by polishing. 

6. Reducing the stress concentration by the prevention of minute surface corro
sion pits by protecting the surface from acid fumes or moisture through the use 
of a corrosion-resisting covering, as, for example, by encasing the member in 
grease or paint. 

EXAMPLE 16.2 
Slot in Cantilever Beam 

A cantilever beam is made of a flat bar of hot-rolled SAE 1020 steel . The beam 
contains a slot, Fig. C of Table 14.3, with dimensions b = 10 mm, t = 50 mm, p = 
5 mm, h = 25 mm, and c = 60 mm. 

Let the beam be subjected at its free end to a large number of completely re
versed cycles of bending moment of maximum amplitude M. 

(a) Compute the significant value of the stress at the top or bottom of the slot 
(i.e., at the root of the notch) in terms of M; assume q is given by Fig. 14.26. 
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(b) The maximum utilizable stress for this material under completely reversed 
cycles of stress is 1 72 MPa. Compute the allowable moment M based on a 
factor of safety of SF = 4.0. 

SOLUTION 

(a) From Fig. 14. 10, Sec = 2.8, and from Fig. 14.26 the value of q, the ordinate of 
the test data for SAE 1020 steel, is q = 0.94. Hence, by Eq. ( 14.43), 

see = 1 + 0.94(2.8 - 1) = 2.70 

The nominal stress (Jn at the root of the notch (see Table 14. 3, Fig. C) is 

3Mt 3M(50) _6 (Jn = 
2h(c3 - t 3 ) = 

2(25)(603 - 503 ) = 32.97 X 10 M 

Hence, the significant (or effective) stress is 

(Je = sce(Jn = 2.70 X 32.97 X 10- 6 M = 89.0 X 10-6 M 

(b) The allowable (working) stress is (Jw = (JmaxfSF = 1 72/4.0 = 43.0 MPa. 
Hence, 43.0 = 89.0 x 10- 6 M or M = 483, 100 N ·mm = 483. 1 N ·m. 

EXAMPLE 16.3 
Long Narrow Slot in Cantilever Beam 

Let the cantilever beam of Example 1 6.2 be unchanged, except that p = 0.75 mm. 
Then the slot approaches a long crack in the bar. Compute the significant stress at 
the root of the notch. 

SOLUTION 

(a) From Fig. 14. 10, we find that Sec = 6. 1 .  Figure 14.26 shows that for fatigue 
tests of SAE 1020 steel, q = 0.69 when p = 0.75 mm. Hence, 

see = 1 + 0.69(6. 1 - 1) = 4. 52 

and the significant stress is 

(Je = sce(Jn = 4.52(32.97 X 10- 6 M) = 149 .0 X 10- 6 M 

Comparison with the results of Example 1 6.2 shows that the value of Sec is 
increased 1 1 8%,  whereas the value of see is increased 67%,  which corresponds 
to the increase in the significant stress (Je .  These facts indicate that as Sec 
increases with a decrease in p, so does see but to a lesser degree. 

(b) The allowable stress is (Jw = 43.0 MPa. Hence, 43.0 = 149.0 x 10- 6 M or 
M = 288,600 N ·mm = 288.6 N ·m. 
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EXAMPLE 16.4 
Fillet in Bar Subjected to Range of Load 

The filleted tension member in Fig. 14. 1 6  is made of 2024-T4 aluminum alloy 
(E = 72.0 GPa, v = 0. 33, (Ju = 470 MPa, Y = 330 MPa, and (Jam = 190 MPa for 
N = 106 cycles). Perpendicular to the figure, the thickness of the mem her is 10 mm. 
The other dimensions are D = 59 mm, d = 50 mm, and t = p = 3.00 mm. The 
member is subjected to a tensile load ranging from P min = 20.0 kN to P max . Assum
ing that q = 0.95, determine the magnitude of p max to produce fracture of the 
tension member in 106 cycles. Also determine (J max and (J min . 

SOLUTION 

The calculated stress concentration factor Sec for the fillet can be read from the 
curve, fillet t = p, in Fig. 14. 16, with pjd = 0.06. As read from the curve, 

sec = 1 .90 

Since q = 0.95, Eq. ( 14.43) gives 

see = 1 + 0.95( 1 .9 - 1) = 1 . 86 

Experimental evidence (Smith, 1942) indicates that See should be applied only to 
the alternating part of the stress. Therefore, it is convenient to work with nominal 
values of the stresses as follows : nominal minimum stress (Jn(min) = P min/A, nominal 
maximum stress (Jn(max) = Pmax/A, nominal alternating stress (Jna ' nominal mean 
stress (Jnm ' and nominal fatigue strength (Jnam = (Jam/See · 

Since 2024-T4 aluminum alloy is a ductile metal, we assume that the Gerber rela
tion, Eq. ( 1 6 .2), is valid when written in terms of nominal stress values. 

(Jna + ((Jnm)2 
= 1 (Jnam (Ju 

(a) 

Equation (a) can be interpreted graphically in Fig. 1 6.5 ;  each ordinate to curve AB 
is reduced in magnitude by the factor 1/Sce · Nominal stress relations are defined as 
follows : 

Pmin 20.0 X 103 
(Jn(min) = A = 50( 10) = 40.0 MPa 

(Jam 190 
(Jnam = See = 1 . 86 = 102.2 MPa 

Substitution of Eqs. (c) and (e) into Eq. (a) gives 

(Jna = 93.9 MPa 

(b) 

(c) 

(d) 

(e) 
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which when substituted into Eq. (d) gives 

pmax O"n(max) = 40.0 + 2(93.9) = 227.8 MPa = A 
Pmax = 227.8(50) ( 10) = 1 1 3,900 N = 1 1 3 .9 kN 

The assumption that the effective stress concentration factor should be applied only 
to the alternating part of the stress defines the maximum and minimum stresses in 
the member at the stress concentration as 

D"max = O"nm + SeeD"na = 1 33.9 + 1 . 86(93.9) = 308.6 MPa 
O"min = O"nm - SeeO"na = - 40. 8 MPa (f ) 

Since the load cycles between a tensile load of 20.0 kN and a tensile load of 
1 14 kN, the negative sign for O"min may be suspect. The maximum and minimum 
stresses given by Eqs. (f ) give the correct range in stress at the stress concentra
tion for linearly elastic conditions ; however, the values given by Eqs . (f) can be 
only a rough approximation of their true magnitudes . If residual stresses are not 
present at the stress concentration, linearly elastic analysis gives the maximum 
stress at the stress concentration as Seep max/A = 432.8 MPa, which exceeds the yield 
stress of the material. Plasticity theories and experimental evidence indicate that 
plastic deformation in the region of the stress concentration produces residual 
stresses that result in a reduction of the mean stress at the stress concentration. 
The residual stresses at the stress concentration have a sign opposite to the sign 
of the stresses that caused the inelastic deformation. Thus, the residual stresses de
crease the magnitudes of both O"max and O"min so that the values given by Eqs . (f) 
are realistic. 

PROBLEMS 
Section 16.1 

16.1 .  A tension member is  cycled an indefinitely large number of times from 
Pmin = - 10.0 kN to Pmax = 16 .0 kN. The member is made of steel 
(qu = 700 MPa, Y = 450 MPa, and (Jam = O"L = 350 MPa). Using the 
Gerber relation, determine the diameter of the rod for a factor of safety 
SF = 2.20. 

16.2. Let the tension member in Problem 16 . 1 be cycled an indefinitely large 
number of times between Pmin = 0 and Pmax = 16.0 kN. Determine the 
diameter of the tension member for a factor of safety SF = 2.20. What 
is the mode of failure? 

Ans. d = 9.98 mm, general yielding mode of failure 

16.3. A cast iron 1-beam has a depth of 1 50 mm, width of 100 mm, and 
equal flange and web thicknesses of 20 mm. The beam is subjected to 106 
cycles of loading from Mmin = 5.00 kN ·m to Mmax · Consider the cast 
iron to be a brittle material (O"u = 200 MPa and O"am = 90.0 MPa for 
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N = 106). Using the Goodman relation, determine Mmax based on a factor 
of safety SF = 2. 50. 

16.4. A thin-wall cylinder is made of 2024-T4 aluminum alloy (o-u = 430 MPa, 
Y = 330 MPa, o-am = 190 MPa for N = 106). The cylinder has an inside 
diameter of 300 mm and a wall thickness of 8 .00 mm. The ends are 
strengthened so that fatigue failure is assumed to occur in the cylinder away 
from the ends. The pressure in the cylinder is cycled 106 times between 
Pmin = - 2.00 MPa and Pmax = 7.00 MPa. What is the factor of safety 
against fatigue failure if design is based on the Gerber relation? 

Ans. SF = 2. 1 3  

16.5. A shaking mechanism of a machine has a crank shown in Fig. P l6 .5. The 
crank is made of a stress-relieved cold-worked SAE 1040 steel (o-u = 
830 MPa, Y = 660 MPa, and O"am = o-L = 380 MPa). A completely reversed 
load P = 500 N is to be applied for up to 108 cycles to the crank pin, normal 
to the plane of the crank. Determine the diameter d of the shaft based on 
a factor of safety SF = 1 .75 using the octahedral shear-stress criterion 
of failure. 

Figure P16.5 

16.6. The crank in Problem 16.5 has a diameter d = 1 5.0 mm and is made of 
2024-T4 aluminum alloy (o-u = 430 MPa, Y = 330 MPa, O"am = 1 60 MPa 
for N = 108 ). L�t the load vary between 0 and P max = 500 N for 108 cycles . 
Assume that the Gerber relation [Eq. ( 1 6.2)] is valid. 

(a) Is the design governed by general yielding or fatigue failure? 

(b) Determine the magnitude of the safety factor SF used in the design 
based on the octahedral shear-stress criterion of failure. 

Ans. (a) Fatigue failure, (b) SF = 2.03 
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16.7. Let the shaft in Problem 4.2 1 be made of SAE 1040 steel (o-u = 830 MPa, 
Y = 660 MPa, o-am = o-L = 380 MPa). If the shaft is rotated under constant 
load an indefinitely large number of times, determine the diameter of the 
shaft for a factor of safety SF = 2.00. 

16.8. A 30.0-mm diameter shaft is subjected to cyclic combined bending and tor
sion loading such that M = 200 P and T = 1 50 P, where the magnitude 
of p varies from p min = - 0.60 p max to p max and length is measured in 
millimeters. The shaft is made of a stress-relieved cold-worked SAE 1060 
steel (o-u = 8 10 MPa, Y = 620 MPa, o-am = o-L = 410  MPa). Using a factor 
of safety SF = 1 . 80, determine Pmax for 107 cycles of loading. Use the 
octahedral shear-stress criterion of failure and Gerber relation. 

Ans. Pmax = 3. 12  kN 

Sections 16 .2-16.3 

16.9. The crCl;nk shaft in Fig. P16.5 has a diameter d = 1 3.0 mm. Let a small
diameter hole be drilled in the crank shaft at a location 50 mm from the 
load P (measured along the axis of the shaft). Determine the magnitude of 
the completely reversed load P that can be cycled 108 times based on a 
factor of safety SF = 1 .  7 5. Assume that q = 1 .00. Material properties are 
given in Problem 16.5 .  

16.10. The load P in Problem 16.9 is cycled from zero to Pmax · Determine the 
magnitude of Pmax for 108 cycles based on a factor of safety SF = 1 .75. 
Material properties are given in Problem 16.5 .  Assume that q = 0.90 aqd 
the Gerber relation is valid when expressed in terms of nominal stress 
values [see Eq. (a) of Example 16.4] . Since the state of stress at the hole is 
uniaxial, we define sec for the stress concentration as the ratio of 0" max for 
the crank shaft with the hole to o-max for the crank shaft without the hole. 

Ans. See = 2.98, P max = 494. 1 N 

16. 1 1 .  A crank shaft has a fillet and minimum diameter of  30  mm. The critical 
section of the crank shaft is subjected to a bending moment M = 200P and 
a torque T = 1 80P, where P is a completely reversed load. The calculated 
stress concentrations for the fillet are S��> = 2.50 for bending and S��> = 
2400 for torsion. The shaft is made of a stress-relieved cold-worked SAE 
1060 steel (E = 200 GPa, v = 0.29, o-u = 8 10 MPa, Y = 620 MPa, and 
o-am = 410 MPa for 107 cycles). Determine the completely reversed load P 
that can be applied 107 times based on a factor of safety of SF = 2.20. 
Assume q = 0.85. 

16.12. Let the crank shaft in Problem 16. 1 1  be subjected to a range of load from 
zero to P max . Determine the completely reversed load P max that can be 
applied 10 7 times based on a factor of safety SF = 2.20. Assume that the 
Gerber relation is valid when expressed in terms of nominal stress values 
[see Eq. (a) of Example 16.4] . Use the maximum shear-stress criterion of 
failure; therefore, assume that See for the fillet is the ratio 'tmax in the crank 
shaft with the fillet to tmax in the crank shaft without the fillet. 

Ans. Pmax = 1 .66 kN 
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16.13. A tension member has a hole drilled at its center, similar to the member in 
Fig. 14. 16 .  The dimensions of the member are w = 20 mm perpendicular 
to the figure, D = 60 mm, and p = 5.0 mm. The member is subjected to a 
tension load that cycles between P min = 30.0 kN and P max . The mem her is 
made of 2024-T4 aluminum alloy, with properties E = 72.0 GPa, v = 0. 3 3, 
CJu = 470 MPa, Y = 330 MPa, and (Jam = 190 MPa (by testing a smooth 
specimen to N = 106 cycles). 

(a) Determine the magnitude of P max to produce general fatigue frac
ture of the member in 106 cycles (see Example 16 .4). Assume that 
fracture occurs at the hole section. 

(b) Determine the maximum and minimum stress at the edge of the hole, 
assuming that the stress concentration factor need be applied only 
to the alternating component of stress (see Example 16 .4). 

16.14. A rectangular cross-section tension member made of a ductile material 
( Y  = 350 MPa and (Jam = CJL = 280 MPa at 108 cycles of completely re
versed axial load) has semicircular grooves (Fig. P 16. 14 ). The thickness 
of the member is 40 mm. 

p D = 60 mm 
t 

d =  40 mm 

_j_ 
Figure P 16. 14 

(a) Determine the failure load for static loading. 

(b) Determine the failure load for 108 cycles of completely reversed 
axial load. 

16.15. For the member in Problem 16. 14, determine Pmax if the member fails in 
108 cycles of load from p min = 0 to p max . 

16.16. For the member in Problem 16. 14, determine Pmax if the member fails in 
108 cycles of load from P min = - 100 kN to P max . 

16.17. A rectangular cross-section cantilever beam is made of steel (E = 200 GPa, 
CJu = 590 MPa, and (Jam = 220 MPa for 106 completely reversed cycles 
of load) ; see Fig. P 16. 1 7. Determine the magnitude of load P to cause 

p 

�----- 500 mm -----� 

p =  1 2 .5 mm 

1 25 mm 

Figure P 16. 1 7  
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failure at 106 cycles of completely reversed load, based on a factor of safety 
of 2.20. 

16.18. Solve Problem 16. 1 7  for the case where the load is cycled from 0 to P max . 
(See Example 16.4.) 

16.19. The beam in Fig. P16. 1 9  is made of 2024-T4 aluminum alloy (E = 
72.0 GPa, Y = 330 MPa, CJu = 470 MPa, and (Jam = 1 70 MPa for 107 cycles 
of completely reversed load). The beam is subjected to 107 completely 
reversed cycles of load P. If h = 200 mm and p = 25.0 mm, determine the 
magnitude of P, based on a factor of safety of 1 .80. 

p 

1 .60 m ------�,..... 1 � 60 mm 

,--=:-h ________ ____, � :rm 

Figure P16. 19  

16.20. Solve Problem 16. 1 9  for the case where P is cycled 107 times from 0 to Pmax · 
(See Exam pie 16.4.) 

16.21. The tension member in Fig. P16.2 1 has a thickness of 60 mm. The member 
is made of 2024-T4 aluminum alloy. The member is subjected to 106 com
pletely reversed cycles of loading. The fatigue strength for N = 106 is (Jam = 
220 MPa. What is the design load based on a factor of safety SF = 2.20? 

p D = 1 20 mm d = 60 mm 
p 

Figure P 16.21  

16.22. Solve Problem 16.2 1 for the case where the load is cycled between P min = 
0 and Pmax · 
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17.1 

CREEP. TIME-DEPENDENT 
DEFORMATION 

DEFINITION OF CREEP. THE CREEP CURVE 

At ordinary temperatures, say, ooc to 50°C (32°F to 1 22°F), and in the absence of 
a corrosive environment, a properly designed member will support its static design 
load for an unlimited time. However, at so-called elevated temperatures, the life of 
the member may be severly limited, even for loads less than the design load. At 
elevated temperatures, a sustained load may produce inelastic strain in the material 
that increases with time. Hence, the material is said to creep, creep being defined as 
time-dependent inelastic strain under sustained load and elevated temperature. If 
creep is maintained for a sufficiently long time, excessive deflection (creep-failure) 
or fracture (creep-fracture) occurs. The combination of temperature, load, and time 
that produces creep and possibly creep-failure or creep-fracture of a member de
pends on the material and the environment. Consequently, creep, creep-failure, 
and creep-fracture of a member may occur over a wide range of temperature 
and load. 

Creep will occur in any metal subjected to a sustained load at a temperature 
slightly above its recrystallization temperature. At this temperature, the atoms 
become quite mobile. As a result, time-dependent alterations of the metal's struc
ture occur. It is often stated that "elevated temperature" for creep behavior of a 
metal begins at about one-half the melting temperature Tm of a metal measured in 
degrees ICelvin. However, this is a rule of thumb that greatly oversimplifies a very 
complex behavior. The temperature at which a member's function is limited by 
creep rather than, say, yield strength is not directly related to Tm . In reality, the 
meaning of elevated temperature must be determined individually for each mate
rial on the basis of its behavior. As noted in the American Society for Metals' 
Handbook (ASM, 1976), elevated temperature behavior for various metals occurs 
over a wide range of temperature, for example, at 205°C (400°F) for aluminum 
alloys, 3 1 5°C (600°F) for titanium alloys, 370°C (700°F) for low-alloy steels, 
540°C ( 1000°F) for austenitic, iron-based high-temperature alloys, 650°C U200°F) 
for nickel-based and cobalt-based high-temperature alloys, and 980°C to 1 540°C 
( 1 800°F to 2800°F) for refractory metals and alloys. Whereas for certain plastics, 
asphalt, concrete, lead, and lead alloys, elevated temperatures for creep beha
vior may lie in the range of "ordinary temperatures," say, from ooc to sooc (32°F 
to 122°F). 
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The original observations of creep in materials are lost in antiquity. A simple 
form of creep in nature is the slow, almost imperceptible downslope movement of 
soil particles and rock debris under the influence of gravity. Early mankind may 
have observed the creep of rocks that formed the sides and roofs of caves or of ice 
in the walls and roofs of igloos. The fact that windows in old churches in Europe 
are thinner at the top than at the bottom has been attributed to the creep of the 
glass under the effect of gravity. Today, engineers and scientists confront creep in 
energy-producing systems such as power-generating plants (coal, gas, and nuclear 
plants). Creep also occurs in energy conversion systems, such as thermionic con
verters, and in modern-day applications of electronic packaging that involve the 
heat transfer and cooling of microcircuits [microelectronic chips, electronic circuit 
boards, surface-mounted electronic components, solder joints, etc.; see, e.g., the 
Journal of Electronic Packaging, published quarterly by the American Society of 
Mechanical Engineers (ASME)] .  Unfortunately, we cannot provide in the space 
available here an exhaustive historical development of creep analysis, even for 
metals, let alone other materials. However, such developments may be found in 
previously published treatises. For example, the creep of wires of hardened iron at 
room temperature was observed and studied quantitatively as long ago as 1 8 34 by 
the French engineer L. J. Vicat ( 1 834). He observed, among other things, the first 
part (primary range) of the classical form of the strain-time plot (creep curve ; 
Fig. 17. 1 ). Vicat's interest was focused mainly on the use of wire for load-carrying 
members in suspension bridges. However, it was not until the beginning of this 
century that the entire creep curve of Fig. 1 7. 1  was developed for iron wire and for 
several other materials (Phillips, 1 905 ; Andrade, 1 9 10). 

Much of the history of creep of metals has its origins in the industrial revolu
tion that led to the operation of machines at the highest possible temperatures to 

E 

a = constant 
T =  constant 
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X 

Eo range range range 
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Figure 1 7. 1  Creep curve. 



17.2 

17 . 2  / TENSION CREEP TEST FOR METALS 657 

achieve the greatest thermal efficiencies. One of the first comprehensive studies of 
the purposes and techniques of stress analysis and design in creep problems was 
made by Bailey ( 1 935 ). In the late 1950s and 60s, a great increase in studies of creep 
occurred, due in part to the interest in nuclear reactor power generation and the 
high temperatures used in such systems. During this period, several books dealing 
with stress analysis of creep were published in various countries. One of these 
books (Finnie and Heller, 1 959) summarized many of the earlier creep studies and 
the associated stress analysis techniques. Other publications during this period 
include books by Kachanov ( 1 960), Lubahn and Felgar ( 1 96 1), Odqvist ( 1 966), 
Hult ( 1 966), Rabotnov ( 1969), and Penny and Marriott ( 1 97 1 ). Several surveys 
were also published during this period (e.g., ASTM, 1959; ASTM, 1965 ). A review 
of creep of metals under multiaxial states of stress, including an extensive list of 
references up to 197 1 , was given by Boresi and Sidebottom ( 1 972). More recently, 
the book by Kraus ( 1 980) presents an introduction to design problems of creep; 
the book by Boyle and Spence ( 1983) treats basic methods of stress analysis of 
creep; the book edited by Bernasconi and Piatti ( 1 979) covers a wide range of 
creep problems from basic concepts to experimental techniques; Cadek ( 1 988) ex
plores high-temperature creep as affected by metallurgical mechanisms (e.g., mo
tion of dislocations, dislocation structure, dislocation creep in pure metals, etc.) ; 
the volume edited by Curbishley (1 988) discusses tensile testing (T. G. F. Gray, 
Chapter 1) and creep testing (M. S. Loveday, Chapter 2). 

In this chapter, we are concerned mainly with mathematical equations used to 
represent creep strain (Fig. 1 7. 1 )  as a function of stress, temperature, and time, and 
the use of these equations to study the effects of creep. Therefore, we assume that 
an elevated temperature for a material exists so that the material may creep. A phe
nomenological approach is taken to describe the physical processes that alter the 
metallurgical structure of a material, allowing creep to occur. Furthermore, we do 
not attempt to describe in any detail various creep models (viscoelastic, elastic
plastic, etc.) that have been proposed. Rather, we base our study on the typical creep 
curve (plot of strain vs time, Fig. 1 7. 1 )  and mathematical modeling of the creep 
curve. Creep curves are ordinarily obtained by tests of bars subjected to sustained 
axial tension (Loveday, 1988). Standards for creep tests have been established by 
several technical organizations [International Standards Organization (ISO), 
1 987; British Standards Institute (BSI), 1987 ;  ASTM, 1983] .  

In Sec. 1 7.2, we briefly describe the tension creep test for metals. In Sec. 17. 3  and 
17.4, we present one-dimensional creep formulas for metals subjected to stress and 
elevated temperature. In Sec. 17. 5  and 17 .6, the creep of metals subjected to multi
dimensional states of stress is considered. Some applications to simple problems 
in creep of metals are discussed in Sec. 1 7.7 .  In Sec. 17 .8, a few observations relative 
to creep of nonmetals are given. 

THE TENSION CREEP TEST FOR METALS 

The creep behavior of various materials is often based on a one-dimensional 
(tension) test. Various standards for creep testing specify the geometric design of 
test specimens (ASTM, 1983 ;  BSI, 1 987 ; ISO, 1987). Careful control of machined 
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1 7.3 

dimensions is specified (Loveday, 1 988). During the test, the tension specimen is 
subjected to sufficiently high stress (J and temperature T to produce time-dependent 
inelastic strain (creep). Highly sensitive creep-testing systems have been developed 
to measure load (stress) and temperature to ensure accurate creep data over long 
periods of time (Loveday, 1988). In the creep test, the strain in the specimen varies 
with time. For an appropriate constant stress and elevated temperature, a strain
time plot (creep curve) is shown in Fig. 1 7. 1 .  This creep curve exhibits three dis
tinct ranges. Beginning at time t = 0, the strain is Eo due to the initially loading. 
The strain Eo may be partly elastic and partly plastic, depending on the level of 
load and temperature. In the first interval of time, the primary range of the creep 
curve, the strain rate (the slope of the creep curve), decreases, until it reaches some 
minimum rate. During the next interval of time, the secondary range, this mini
mum rate is maintained, more or less, until a time at which the strain rate begins 
to increase, the beginning of the tertiary range. In the tertiary range, the strain rate 
continues to increase under the sustained stress and temperature until, at time t = 
tR , the specimen is pulled apart (point x in Fig. 1 7 . 1 ). In the following section, 
various formulas that have heen used to approximate one-dimensional curves are 
discussed. 

ONE-DIMENSIONAL CREEP FORMULAS FOR METALS 
SUBJECTED TO CONSTANT STRESS AND ELEVATED 
TEMPERATURE 

As noted in Sec. 1 7. 1 ,  by creep we mean the inelastic strain that occurs when the 
relationship between stress, strain, and elevated temperature is time-dependent. In 
general, creep behavior is a function of the material, stress, tern perature, time, stress 
history, and temperature history. Creep behavior includes the phenomenon of 
relaxation, which is characterized by the reduction of stress in a member, with time, 
while total strain remains constant. It also includes recovery, which is characterized 
by the reduction of inelastic strain with time after the stress has been removed (see 
Kraus, 1980, Chapter 3). However, the topics of relaxation and recovery lie outside 
the scope of our discusssion. 

Creep of metals at elevated temperatures is characterized by the fact that most 
of the deformation is irreversible ; that is, only a small part of the strain is recovered 
after removal of load. In addition, the dependence of creep rate on stress is quite 
nonlinear. As a consequence, linear theories of viscoelasticity do not ordinarily 
apply to metals (Rabotnov, 1 969). Thus, the theory of creep of metals, the objective 
of which is to describe time-dependent irreversible deformation, is patterned after 
the general theory of plasticity. At elevated temperatures, plastic deformation of 
metals is usually accompanied by creep. Therefore, in real situations of creep, the 
concepts of creep and plasticity intertwine. However, in the representation of creep 
data by empirical formulas, creep deformation is separated from plastic, and like
wise elastic, deformation. 

For one-dimensional states, the classical creep curve for a material is obtained 
from a tensile test at constant stress (J and temperature T (Fig. 1 7. 1 ). As noted in 
Sec. 17. 1 ,  the creep curve for metals usually exhibits three regions in which the creep 
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deformation takes on a different character (curve C 1 ,  Fig. 1 7  .2). With reference 
to curve C1 , interval OA represents the instantaneous deformation that occurs 
immediately as the load is applied. This strain is denoted by E0(0", T). Depending on 
the stress level O" and temperature T, Eo may include both elastic and plastic parts. 
The interval AB represents the primary (initial) stage of creep deformation. In this 
interval, the creep deformation is changing (is transient) at a decreasing strain rate. 
It is for this reason that investigators often represent the creep behavior in the pri
mary time stage by formulas that express the creep strain rate Ec as a function of 
stress O", temperature T, and time t, where the dot denotes derivative with respect 
to time. The interval BC represents the second stage of creep in which the creep 
rate reaches a minimum value. If in this region the creep rate remains constant, 
the creep strain rate is a function of stress O" and temperature T only; that is, 
Ec = f(O", T), and the creep strain Ec is a linear function of time t. The interval CD 
represents the third (tertiary) creep stage, in which the creep strain rate increases 
rapidly. If the load is sustained in this region, creep rupture will occur (point D on 
curve ABCD). 

Although the division of the creep curve into three intervals is conventional for 
many metals, depending on the metal, stress, and temperature, a variety of creep 
curves may be obtained as a consequence of the complexity of the metallurgical 
processes involved. For example, for materials different from that used to gener
ate curve C1 and for the same load and temperature for curve C1 (Fig. 17.2), the 
strain-time response may be given by curves C0 , C 2 ,  or C 3 .  Or if the mate
rial used to generate curve C1 is subjected to a lower load and/or temperature, 
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Time 
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Co 

Figure 1 7.2 Creep curve illustrating instantaneous deformation and primary, steady
state (secondary), and tertiary stages . 
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its response may be given by curve C0 , for which the tertiary range of creep is 
never reached. If the material of curve C 1 is subjected to a higher stress and/ or 
temperature, its response may be given by curve C 2 (for which the primary range 
of creep is suppressed) or curve C 3 (for which both the primary and secondary 
ranges of creep are bypassed and for which fracture occurs in a relatively short 
time). For example, for annealed SAE 1035 steel at a constant temperature of 
524°C, Fig. 1 7.3  illustrates the change in the creep curve that is produced by 
increasing the stress level in steps of approximately 20 MPa from 83 to 1 64 MPa. 
Similar increases in the creep strain also occur with temperature for constant stress. 
Additionally, it is difficult to determine the instantaneous deformation Eo precisely, 
since it depends on the method of loading. Much of the published creep data ignore 
this quantity, and creep curves are simply plots of Ec vs time (part ABCD of curve 
cl , Fig. 1 7.2). 

Because of the extreme complexity of creep behavior, the analysis of creep 
problems is often based on curve-fitting of experimental creep data. These repre
sentations generally attempt to represent the creep strain Ec or creep strain rate Ec 
as functions of stress CJ, temperature T, and time t. Usually, such equations have 
been developed by one of three methods : ( 1 )  by deriving empirical formulas that 
model experimental data (Rabotnov, 1969, Chapter IV); (2) by deriving equations 
based on metallurgical creep mechanisms (Dorn, 1 962; Cadek, 1988); or (3) combi
nations of methods ( 1 )  and (2) (Kennedy, 1962). In these methods, attempts have 
been made to separate various influences for each stage of creep. For example, in 
the first method, one may represent any one of the three stages separately by an 

0.03..---------,-----,-----..-----------. 
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Figure 17.3  Constant-stress tension creep curves for annealed SAE 1035 steel at  524°C. 
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empirical formula; or one may represent two stages by a single formula, say, the 
primary and secondary stages; or all three stages by a single formula. Alternatively, 
in method (2), one may consider the effect of a particular creep-producing mecha
nism, say, dislocations (Cadek, 1988), on the various stages of creep and attempt to 
relate various parameters in the strain-stress-temperature-time relations to the 
properties of the dislocations. In Table 17 . 1 ,  we list a number of formulas that have 
been used to represent one-dimensional creep curves. Many of these formulas are 
discussed in the references listed in the table. Following Kennedy ( 1 962), we sepa
rate the equations into time-, temperature-, and stress-dependent parts. We also 
indicate combinations of time, stress, and temperature components. The time
dependence formulas are sometimes of the form E = Eo + Ec , where Ec = Epc + 
Esc + ETc ,  E is the total strain, Eo is the instantaneous strain, Ec is creep strain, and 
Epc , Esc , ETc denote primary, secondary, and tertiary creep, respectively. The 
various components of the total strain E are selected to fit creep data at constant 
stress and temperature (method 1 ). If practical interest does not extend to the ter
tiary stage, the effects of ETc are not included in some of the formulas. Generally, 
Eo is a constant, Epc a monotonically decreasing function of time, Esc a linear 
function of time, and ETc a monotonically increasing function of time, where a dot 
denotes derivative with respect to time. 

The temperature dependency of creep is often related to thermodynamics and 
rate processes of solid-state physics (Dorn, 1962; Cadek, 1988). Consequently, the 
temperature dependency is often of exponential form. Also, experimental evidence 
indicates that the creep rate in the secondary stage of creep increases more rapidly 
with temperature increases than does the creep rate in the primary stage of creep. 
Finally, since stress is a tensor (Chapter 2), whereas temperature and time are 

TABLE 17.1 
Empirical One-Dimensional Creep F onnulas 

Equation Form 

Rational 
Ec = at/( 1 + bt) 

Logarithmic 
E = a +  b ln(t) 
E = a + b In( 1 + ct) 

Exponential 
E = a + bt - c exp( - dt) 

Ec = at +  b [ 1  - exp( - ct)] 

1/3 < n < 1/2 

Power series 
Ec = atm + btn; m > 1, 0 < n < 1 
Ec = atm + btn + Ctp · · ·  

Time Dependence 

References 

(Freundenthal, 1936) 

(Phillips, 1 905) 
Modification of (b) 

(McVetty, 1934) 
(McVetty, 1934) 
(Soderberg, 1936) 

(Bailey, 1935) 

(de Lacombe, 1939) 
(Graham, 1953) 

Equation 

(a) 

(b) 
(c) 

(d) 
(e) 

(f) 

(g) 
(h) 

(con lin ues) 
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TABLE 17.1 (Continued) 
Equation Form 

Combined exponential-power 
Ec = a( 1 + bt 1 13) exp(kt) - a 

Combined logarithmic-power 
Ec = a ln(t) + btn + ct 

Exponential 
Ec = a  exp( - Q/RT) 
Ec = a [t exp( - Q/RT)] 
Ec = aT exp( - Q/RT) 

Rational 
Ec = aT2f3J(t) 
Ec = aTf(t) 
Ec = f{T[a + ln(t)]} 
Ec = f[(T - a)jln(t - b)] 

Hyperbolic-exponential 
Ec = a exp( - Q/RT) sinh(b/RT) 

Other 
Ec = cf[t(T - T')-B] 

Exponential 
Ec = af(t)exp(bo") 
Ec = a exp(b + co") 
Ec = a[exp(bo") - 1] 

Power 
Ec = af(t)O"b 

References 

Time Dependence (continued) 

(Andrade, 1 9 10) 

(Wyatt, 1 953) 

Temperature Dependence 

Stress Dependence 

(Mott, 1953) 
(Dorn, 1962) 
(Stowell, 1 957) 

(Mott and Nabarro, 1948) 
(Smith, 1948) 
(Larson and Miller, 1 952) 
(Manson and Haferd, 1954) 

(Feltham, 1953) 

(Warren, 1 96 7) 

(Dorn, 1962) 
(Nadai, 193 1) 
(Soderberg, 1936) 

Ec = atnO"b; 0 < n < 1, b > 1 ;  Bailey-Norton law 
(Dorn, 1 962) 
(Bailey, 1935) 
(Norton, 1929) 

Hyperbolic 
Ec = a sinh(bO") 

Ec = a sinh(bO" / R T) 

Other 

(Ludwik, 1908) 
(McVetty, 1943) 
(Feltham, 1 953) 

Ec = aO" exp [ f(O")] (Kanter, 1938) 

Combined }'ime-Temperature-Stress Dependencies 

Ec = T exp( - afT - b + cO") 
Ec = a exp( - A/T)O"ntk 
Ec = a exp( - A/T) sinh(aO") tk 
Ec = a exp( - A/T) x [sinh(bO")]mtk 
Ec = a exp( - A/T)(O"jb)c + (O"/d )et 

n 

(Nadai, 193 1) 
(Pickel et al, 197 1) 
(Pickel et al., 1971 )  
(Pickel et  al., 197 1) 
(Odqvist, 1 953) 

Equation 

(i) 

(j) 

(k) 
(1) 
(m) 

(n) 
(o) 
(p) 
(q) 

(r) 

(s) 

(t) 
(u) 
(v) 

(w) 
(x) 

(y) 

(z) 

(aa) 

(bb) 
(cc) 
(dd) 
(ee) 
(ff) 

Ec = I ci(Ja,<Pb · �  </J = t(T' - T)-A (Graham and Walles, 1955) (gg) i= 1 
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scalars, the introduction of stress dependency into creep formulas is more difficult. 
Therefore, more than one function of stress has to be employed, if creep behavior 
over a wide range of stress is to be fitted accurately. In general, to model creep 
curves (Figs. 1 7. 1  through 17.3), one needs expressions of the form Ec = f(t, T, (f), 
where f is a general function of time t, temperature T, and stress (f. It is customary 
to assume that the effects of t, T, and (f are separable. Then, in general, f may be 
taken as a sum of n products of t, T, and (f, and Ec may be written in the form 

n 
Ec = L fi(t)g i (T)hi ((f) 

i = 1 

Thus, experiments for one-dimensional creep behavior are usually run allowing 
only one of the variables (t, T, (f) to change (see Fig. 1 7.3, where (f is varied for 
constant temperature T and a given time t). The formulas in Table 1 7. 1  reflect the 
separation of stress, temperature, and time. 

It should be noted that, in practice, the determination of the time dependence 
of creep for a complex metal (alloy) that exhibits large structural change with time 
at elevated temperature is very difficult. It requires extensive curve-fitting proce
dures (see Conway, 1968; 1969; Penny and Marriott, 197 1 ;  Kraus, 1980). Conse
quently, Eqs. (a) through (j) are not generally applicable. Any one of them may 
hold for a certain metal and for certain test conditions. However, many of them are 
not conveniently adapted to include effects of temperature and stress. 

By combining the time, temperature, and stress representations, Eqs. (bb) 
through (gg) in Table 1 7. 1, the entire functional behavior of creep may be approx
imated by a single equation. An extensive discussion of the application of Eq. (gg) 
is given by Kennedy ( 1962). The successful use of these equations generally requires 
numerical methods (Kraus, 1980) such as finite element methods (see Chapter 19). 
Many of the formulas in Table 1 7. 1  may be applied to multiaxial stress states 
through the use of the concept of effective stress (Sec. 4. 3) and the corresponding 
concept of effective strain rate (Sec. 1 7.6). Kennedy ( 1962) also discusses at length 
strain-stress-temperature-time relations based on quasi-empirical methods and 
metallurgical (microstructure) observations. The distinguishing feature of micro
structure formulations is that an attempt is made to relate the parameters in the 
creep relation to creep-producing microstructure mechanisms such as grain boun
dary displacement, slip, and subgrain size (see Cadek, 1988). 

In Table 1 7. 1 ,  E denotes total strain, Ec creep strain, (f stress, T temperature, t 
time, In the natural logarithm, exp the exponential e, and a, b, c, . . . , A, B, C, . . .  
parameters that may be functions of (f, t, T or they may be constants. Time deriva
tive is denoted by a dot over a symbol (e.g., Ec). The notation f(x) denotes a func
tion of x. 

ONE-DIMENSIONAL CREEP OF METALS SUBJECTED 
TO VARIABLE STRESS AND TEMPERATURE 

Preliminary Concepts 
As indicated by Loveday ( 1988), there are many designs for creep-testing machines. 
They differ mainly in the method of measuring deformation and the methods of 
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heating and controlling temperature. Several of these machines are of the lever 
type that ensures constant load. However, during a constant load creep test, a creep 
specimen enlongates and its cross-sectional area decreases. Consequently, the 
stress is not truly constant; that is, for a constant applied force, the stress increases 
during the test. Some attention has been devoted to the fact that the stress is not 
constant, and various machines have been designed to maintain constant stress 
(Loveday, 1988). 

In the design of these machines, it is assumed that the volume of the creep spec
imen remains constant and that the change in cross-sectional area can be deter
mined from the elongation of the specimen. Lubahn and Felgar ( 1 96 1 ,  Chapter 6) 
give an interesting discussion of the difference between constant load and constant 
stress creep tests. Also, Andrade ( 19 10) found that the elongation of lead wire for 
constant load testing was considerably larger than for constant stress loading, par
ticularly at stress levels near the ultimate strength. He also found that under con
stant load, the creep curve for lead wire exhibited three stages of creep (primary, 
secondary, and tertiary), whereas for constant stress, the creep curve exhibited only 
the primary and secondary stages (Fig. 1 7.4). Lubahn and Felgar ( 196 1 ,  p. 1 36 )  
observe that for a metallurgically stable material subject to a tensile creep test at 
constant stress, the creep rate continues to decrease indefinitely, this effect being 
caused by strain hardening (see Sec. 4.2). 

If the load is kept constant, the creep rate will tend to increase after sufficient 
creep has occurred, because of the reduction of cross-sectional area of the spec
imen. Since the strain-hardening effect tends to decrease with increasing deforma
tion and the reduction of cross section increases with increasing deformation, a 
strain is eventually reached at which the effect of reduction of area dominates, the 
strain rate begins to increase rapidly, and the creep curve exhibits an inflection 
point (the start of the tertiary stage) . This balance between reduction of cross sec
tion and strain hardening is similar to the balance of necking down and strain 
hardening in the static tension test (Chapter 1). Therefore, it may be regarded as a 
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Figure 17.4 Creep tests of lead wire. Initial loads and initial lengths were the same. 
(From Andrade, 19 10.) 
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structural instability that leads to fracture. For many metals this instability occurs 
at about the same strain in the creep test, as it does in the tension test. At tempera
tures where creep is important, metals are often metallurgical unstable; that is, their 
properties change either gradually or abruptly with time. Because of these metal
lurgical changes, or the lack of them, the creep rate of a metal may remain constant 
for long periods of time, it may increase continuously from the beginning of the 
creep test, or it may remain constant for a brief time and then increase rapidly 
(even for a constant stress creep test) to fracture. Thus, one should not assume that 
all metals always exhibit three distinct regions of primary, secondary, and ter
tiary creep. 

In machines and structures, ordinarily only small creep strains on the order of 
1% or 2% are permitted. In addition, high-strength, heat-resistant alloys fracture 
at relatively small deformations. Consequently, much creep testing is restricted to 
small strains. For constant stress creep tests of a metallurgically stable metal, creep 
strain in the secondary stage appears to vary almost linearly with time (Fig. 1 7. 1) ; 
that is, the creep rate is constant. For this reason, the secondary stage of creep is 
referred to as steady-state creep, and straight-line approximations of this stage 
are used. However, early published results of tests (Robinson, 1943) that lasted 
12 years ( 100,000 hr) showed that the creep rate changed continuously throughout 
this time. Nevertheless, over a particular period of time, experimentally determined 
straight-line approximations can be used with sufficient accuracy for many pur
poses. More recently, Evans and Wilshire ( 1985) questioned the steady-state ideas 
that have dominated theoretical studies of creep for over the past half-century. 
Although Evans and Wilshire acknowledge that the concept of steady-state creep 
has led to progress, they believe that further development depends on new concepts 
based on the view that the steady-state creep condition is not attained even at high 
temperatures. These new concepts are based on experimental data obtained using 
high-precision constant-stress machines, rather than constant-load machines. Evans 
and Wilshire ( 1985) explored the idea that most materials exhibit a minimum 
rather than a steady-state creep rate and have developed new formulas and com
puter programs to study creep. Their work may be particularly important in the 
case of large creep deformations that lead to rupture. However, these concepts and 
procedures lie outside the scope of our study here. Therefore, we employ the con
cept of steady-state creep and consider mainly the primary and secondary stages 
of creep. 

Similarity of Creep Curves 
The similarity of creep curves has been used by many authors in the development 
of phenomenological theories of creep (Boresi and Sidebottom, 1972; Rabotnov, 
1969). Similarity of creep curves means that the creep deformation is representable 
in the form 

Ec = F(CJ)f(t) ( 1 7. 1 ) 

Thus, for a given temperature, the stress dependency F(CJ) is separate from the time 
dependency f(t). For example, for isothermal conditions a common form of 
Eq. ( 1 7. 1 ) is the power form [the Bailey-Norton equation; Eq. (x), Table 1 7. 1] 

( 1 7.2) 
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Experimentally, the separation of time and stress dependencies is fairly well justi
fied for the initial part of the creep curve. Indeed, for many metals, Eq. ( 1 7 .2) is valid 
for the initial part of the creep curve. 

A series of creep curves may be considered as a graphical representation of the 
equation 

E = E(CJ, t) ( 1 7 . 3) 

with one (E, t) curve for each value of (J (Fig. 1 7.5) . Alternatively, the relation among 
E, CJ, and t may be expressed by plotting (J vs E for given times t 1 ,  t 2 ,  . • .  (Fig. 1 7  .6). 
Curves of (CJ, E), for given times t1 ,  t2 , • . •  , are called isochronous creep curves. 
For some materials, isochronous �reep curves are similar. Thus, by analogy to 
Eq. ( 1 7. 1 ), isochronous creep curves may be represented by the relation 

(J = G(E)g(t) ( 1 7.4) 

However, the conditions of similarity of isochronous creep curves are very differ
ent from ordinary creep curves; see Eq. ( 1 7. 1) (see Rabotnov, 1969). 

In Eq. ( 1 7.4), if we set g(O) = 1, then (J = G(E) is the instantaneous deformation 
relation. In published experimental data on creep, the data for the initial stage of 
creep are sometimes unreliable, since the instantaneous strain Eo that occurs on 
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Figure 17.5 Constant-stress creep-time curves. 
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Figure 17.6 Isochronous stress-strain diagram. 
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applying the load is not recorded accurately. Consequently, creep curves for very 
small values of t frequently are not accurate (Evans and Wilshire, 1985). By select
ing g(t) appropriately, we can obtain the instantaneous curve (J = G(E) by extra
polation. However, we have no guarantee that the actual instantaneous curve is 
obtained. Rabotnov ( 1969) has represented the function g(t) by the formula 

1 g(t) = 1 + atb 
and from experimental data has estimated that b � 0.3. 

( 1 7 .5) 

By comparison of analytical and experimental creep results, it is found that very 
small changes in stress produce a large change in creep rate, and consequently, the 
time required to achieve a particular strain. Small differences in micro-structure or 
chemical composition of material specimens also greatly affect creep rate. Conse
quently, in experiments to determine the time required to attain a given creep strain 
at a fixed stress level, the scatter of results for a given set of specimens may be quite 
large. However, if we determine experimentally the stress at which a particular 
strain is reached in a given time, the scatter is small. On this basis, Rabotnov ( 1969) 
noted that there is some experimental evidence of accurately predicted creep 
deformation that confirms the similarity of isochronous creep curves [Eq. ( 1 7.4)] . 
However, much experimental evidence does not fully confirm Eq. ( 1 7.4). In some 
cases, similarity is clearly not valid, but if it exists, it can be used to simplify 
calculations. 

Temperature Dependency 
The effect of temperature on creep response may be summarized by noting that an 
increase in temperature results in an increase of creep rate. Hence, at a given stress 
level, a given strain is obtained more quickly at higher rather than at lower temper
atures. In general, all creep parameters are affected by temperature. Consequently, 
a correlation of the temperature effects on the parameters that occur in the nume
rous creep equations that have been proposed (Table 1 7. 1) is not feasible. Physical 
concepts are usually employed to predict the temperature dependence of creep 
curves (Cadek, 1988 ;  Evans and Wilshire, 1985). The results have been reasonably 
successful. Formulas that have been used to predict the temperature dependency of 
creep curves of metals are listed in Table 1 7. 1  [Eqs. (k) through (s)] . Ordinarily, in 
practice,Jhe temperature dependency of creep curves is required mainly for inter
polation over a fairly narrow range of temperatures; extrapolation far outside of 
the range is not particularly important to the engineer. In general, it is reasonable 
to use a simple formula for temperature dependency, even though the formula may 
have no physical relationship to a physically based formula that requires compli
cated calculations. 

Variable Stress and Temperature 
The objective of elementary creep theory based on a phenomenological model is 
to determine the strain as a function of time, given stress and temperature as func
tions of time. By elementary, we mean theories that include all the results of 
one-dimensional creep tests at constant stress and temperature. Alternatively, the 
objective is to develop an equation or a system of equations that accurately relate 
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measured values of stress, strain, temperature, and time. The form of the stress
strain-temperature-time creep relation may be chosen to fit only certain parts of 
the creep curve. For example, for a creep test in the secondary range of creep, the 
creep rate may be approximately constant for constant stress and temperature. If 
the creep test is run at a higher stress level, the creep rate increases. Thus, for 
constant temperature tests in the secondary range, the creep rate Ec may be 
expressed as a function of stress level o-

( 1 7.6) 

where Esc is the secondary-stage creep rate. Equation ( 1 7.6) is sometimes applied 
to creep of metals that undergo long-time use in which most of the creep occurs at 
a constant rate (see curve C0 , Fig. 1 7.2), or to short-time creep at very high temper
ature and very high stress (curve C3 , Fig. 1 7.2). The use of Eq. ( 1 7.6) ignores the 
primary and tertiary stages of creep (Fig. 17 .2). Hence, the creep deformation Ec 
is approximated by straight lines (Fig. 1 7.7). Creep models that employ Eq. ( 1 7.6) 
are called steady-state creep models. Steady-state creep models are not capable 
of describing relaxation phenomena, since they do not include unloading effects 
properly. There have been several modifications of steady-state models. For ex
ample, to allow for the effect of initial elastic deformation on steady-state creep, 
Soderberg ( 1936) proposed the equation 

• 0" 
• ) E = E + Esc(o- ( 1 7. 7 )  

where E i s  the total strain rate, o- i s  the stress rate, Esc i s  the steady-state creep rate, 
and E is the modulus of elasticity. Equation ( 1 7.7) ignores primary creep. Experi
ments and the predictions of Eq. ( 1 7.7) do not ordinarily agree well, since the pri
mary creep strain is often as large or larger than the elastic strain. Odqvist ( 1953) 
proposed an equation for steady-state creep that approximates the effect of elastic 
strain, instantaneous plastic strain, and primary creep on the secondary creep rate, 
It is 

E = [E�(o-)] d- + Esc(o-) ( 1 7.8) 

where Eo is elastic strain plus instantaneous plastic strain plus primary stage creep, 
and the prime denotes derivative with respect to o-. Equation ( 1 7 .8) generally can 

Figure 17.7 Straight-line approximation of creep curves. 
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be made to agree well with experimental creep curves. The creep model curve asso
ciated with Eq. ( 1 7. 8) starts at time t = 0 and is a straight line, asymptotic to the 
steady-state creep curve (Fig. 17 . 8). 

One may represent the creep curve for constant temperature as a relationship of 
the type 

E = j(CJ, t) ( 1 7.9) 

that is a general form of Eq. ( 1 7. 1 ). It is tempting to assume that this relationship 
holds true when stress varies with time. However, on the basis of invariance rela
tive to time, Eq. ( 1 7.9) leads to contradictions (Rabotnov, 1969). Models in which 
stress, strain, temperature, and time are related functionally as in Eqs. ( 1 7. 1) and 
( 1 7.9) are called aging (time) models. Since these models are applied mainly to pri
mary and secondary ranges of creep and in these regions the creep rate decreases 
(i.e., the resistance to creep increases or the material hardens), they are also called 
time-hardening models. In a modified form of aging (time hardening), the creep 
strain rate Ec is taken as a function of stress and time. In particular, in a form 
analogous to Eq. ( 1 7.9), the creep rate is taken as 

Ec = E - � = f((j, t) ( 1 7. 10) 

The time-hardening model of Eq. ( 1 7. 10) is more logically acceptable than that of 
Eq. ( 1 7.9), since instantaneous change in stress does not produce an instantaneous 
change in creep strain; rather, it produces an instantaneous change in creep strain 
rate. Predictions based on the time-hardening model of Eq. ( 1 7. 10) also agree well 
with experiments for small changes in stress levels. The time-hardening model of 
Eq. ( 17. 10) is particularly easy to apply for similar creep curves [Eq. ( 1 7. 1)] .  Then, 

Ec = i - !"!__ = F(CJ)f(t) E ( 1 7. 1 1) 

If we change the time scale and take f(t) as the independent variable rather than t, 
we may write Eq. ( 1 7. 1 1) in the form 

0 

dEc = dE _ __!__ dCJ = F(CJ) df df E df 

Figure 17.8 Approximation of steady-state creep stage. 

( 1 7. 12) 
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This form is particularly suited to the relaxation problem, since then E = constant 
(refer to the first paragraph in Sec. 1 7. 3). For E =  constant, Eq. ( 1 7. 12) yields 

f(t) =  - - -

1 I d(J 
E F(CJ) ( 1 7. 1 3) 

For thermally stable materials (i.e., for materials whose structure and properties do 
not change under prolonged exposure to test temperatures in the absence of load), 
it is natural to assume the existence of an equation of state that relates the creep 
rate to the applied stress and accumulated creep strain. Such an assumption 
uniquely relates the degree of strain hardening to the amount of plastic defor
mation in a manner analogous to the way that work hardening in the theory of 
plasticity is related to plastic deformation (Sec. 4.2). Thus, for a strain-hardening 
hypothesis, the equation of state is represented as 

( 1 7. 14) 

Equations of state were employed early in the study of plasticity (Ludwik, 1908 ; 
Nadai, 193 1 ). However, Davenport ( 1938) was one of the first to introduce the con
cept of strain hardening. Strain-hardening theory can be checked most simply by 
a creep test in which stepwise changes in stress are made (Pickel et al., 1971 ). 
Generally speaking, stepwise changes in stress (load) are easy to make. Also, theo
retical predictions of various hardening theories show wider differences for stepwise 
loading than they do for relaxation tests. Consequently, stepwise loading tests serve 
as a better check on the accuracy of hardening models than relaxation tests (Boyle 
and Spence, 1983). 

For example, let us examine creep tests with a stepwise change in stress. To illus
trate the differences between predictions of a time-hardening model and strain
hardening model, consider two creep curves for two stress levels : CJ1 , CJ2 ; and CJ1 < CJ2 
(Fig. 1 7.9). Assume that the creep curves can be represented by the relation Ec = 
aCJbtn [Eq. ( 1 7.2)] , a common representation of creep in the primary and secondary 

Figure 17.9 Models of creep hardening. 
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creep ranges for isothermal conditions. The creep rate form of this equation is 

( 1 7. 1 5) 

Equation ( 1 7 . 1 5) is a time-hardening model of the creep rate, since 0 < n < 1 and 
therefore the creep rate decreases (creep resistance hardens) with time. Equa
tion ( 17. 1 5) can be written in a form independent of time t by eliminating t between 
Eqs. ( 1 7.2) and ( 1 7. 1 5) ;  then, 

• na< 1 fn)(J (bfn) 
Ec = --:-:(1:--_-n.,--,)/nEc 

( 1 7. 16) 

Equation ( 17. 16)  indicates that the creep strain rate decreases (resistance to creep 
strain hardens) with increasing creep strain Ec . Thus, Eq. ( 1 7 . 16) is called a strain
hardening model, since the hardening phase is modeled using the creep parameter 
Ec . Time- and strain-hardening models can be developed similarly for more com
plex creep functions. Equations ( 1 7. 1 5) and ( 1 7. 16) give the same strain rate for 
constant stress. 

Let us assume that Eq. ( 17 .2) can be applied to varying stress conditions, 
although it was developed for constant stress states. For varying stress, we find 
that time and strain hardening give different creep rates. For example, let us sub
ject a metal specimen first to stress Oi .  The creep is predicted by the lower curve 
in Fig. 1 7.9. At time t = t 1 , let the stress level be increased instantaneously to CJ2 • 
Deleting the instantaneous elastic strain (since we plot creep strain Ec ), we find 
that the new creep curve leaves the CJ1 creep curve at point P. Depending on the 
hardening model used, predictions for the new curve differ. For example, if the 
time-hardening model is used [Eq. ( 1 7. 1 5)] ,  the creep rate at point P depends 
solely on the time t 1 and stress level CJ2 • Hence, by the time-hardening model, 
the new creep curve will leave point P with a creep rate of curve (J2 at time t 1 
(point B) and continue parallel to BC of curve CJ2 • On the other hand, for a strain
hardening model, the new creep rate depends on the stress level CJ2 and accum
ulated creep EcA . Hence, by the strain-hardening model, the new creep curve will 
leave point P with the creep rate of curve CJ2 at point A and will continue parallel 
to ABC of curve CJ2 • Thus, as observed in Fig. 1 7.9, appreciable differences in the 
two predictions are apparent. 

Quite often, strain-hardening models give more accurate predictions of ex
perimental results for stepwise changes of stress. Unfortunately, strain-hardening 
models dQ. not always yield accurate predictions, particularly when several step 
changes in stress occur in the same test (Rabotnov, 1969). Furthermore, the strain
hardening model is unable to accurately predict results due to structural instabilities 
(Pickel et al. , 197 1) . Nevertheless, for structurally stable metals, generally predic
tions by the strain-hardening model are fairly reliable and the model is relatively 
easy to use. 

Finally, the equation-of-state approach [Eq. ( 1 7. 14)] has been used by many 
authors to describe various processes in the behavior of metals. As in the theory of 
plasticity, it has been assumed that Ec is the total plastic strain and Ec is therefore 
the rate of plastic strain. If one accepts these assumptions, for a fixed temperature 
T, Eq. ( 1 7.4) may be considered a surface in space with coordinates Ec , Ec , and CJ; 
then the instantaneous plastic deformation curve should be given by the intersec
tion of this surface with the plane Ec = oo.  Rabotnov ( 1969) has shown that this 
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procedure is not generally valid, and the problem of instantaneous plastic strain 
must be solved by other means. Accordingly, the equation-of -state approach to 
hardening [Eq. ( 1 7. 14)] is best suited to those situations involving structurally 
stable metals in which a predominate creep mechanism exists and in which only 
instantaneous elastic deformation CJ/ E exists. Then the total strain is E = (J IE + Ec . 
See Evans and Wilshire ( 1985) for another approach to varying stress effects on 
creep that does not directly use either time- or strain-hardening models. 

A more general hardening hypothesis is that the creep rate depends on stress, 
temperature, and a number of parameters ( p 1 , p2 , . . .  , pN) which characterize the 
creep processes (Rabotnov, 1963). Then, Eq. ( 1 7. 14) becomes 

i = 1 , 2, . . .  , N ( 1 7 . 1 7 )  

The time-hardening hypothesis is characterized by N = 1 ,  p 1 = t, and the strain
hardening hypothesis is given by N = 1, p1 = Ec . By selecting N > 1 and different 
Pb other hardening models may be obtained (Taira, 1962). 

In applications, many special forms of Eqs. ( 1 7. 14) or ( 1 7 . 1 7 )  have been used. In 
particular, analytical forms have been chosen to represent Eq. ( 1 7 . 14), with the 
objective of including the effect of the principal mechanism of creep. Often, the 
condition of similarity of creep curves is assumed. Then, for constant temperature, 
Eq. ( 1 7. 14) is represented by [see Eq. ( 17 . 1 )] 

Ec = F(a)f [ S��J ( 1 7 . 1 8) 

If f is a power function of Ec/S, we may write 

( 1 7 . 19) 

where {J is a constant. Integration of Eq. ( 1 7. 19) yields (Rabotnov, 1969, p. 2 10) 

( 1 7 .20) 

where n = 1/( 1 + {J). Various forms of g(CJ) have been used ; for example, a power 
function 

or an exponential function 

1 
b > n 

g(a) = B exp(�) 
( 1 7 .21 )  

( 1 7 .22) 

Equation ( 1 7.22) is not suitable for small values of stress, since g(CJ) must tend to 
zero as (J goes to zero. An improvement 

( 1 7 .23) 
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was suggested by Garofalo ( 1965), but this expression is more complicated to use 
in practice. 

More generally, to adequately describe both the primary and secondary creep 
of metals, it is necessary to broaden Eq. ( 1 7. 1 8) into the form 

( 1 7.24) 

where H(Ec) behaves like Ec/1 for small values of Ec and tends to a constant for the 
secondary range of creep. Rabotnov ( 1969) suggests the form 

( 1 7.25) 

where C1 is a constant. For {J = 2, Eqs. ( 1 7.24) and ( 1 7.25) are equivalent to 
Andrade's law in the primary range, since creep deformation is then proportional 
to the 1/3 power of time [see Eq. (i), Table 1 7. 1 ] .  

Techniques for the experimental determination of the constants in creep equa
tions, such as Eqs. ( 1 7.20) through ( 1 7 .25), are discussed by Conway ( 1 968) and 
by Evans and Wilshire ( 1985). The creep parameters A and b in Eq. ( 1 7.21 )  or B 
and c in Eq. ( 1 7.22) generally depend on temperature T; see, for example, Eq. (cc), 
Table 1 7. 1 .  If the temperature range is sufficiently small, b (or c) is practically con
stant. However, A (or B) varies considerably with T. To express the effects of tem
perature T, the parameters A and B are often taken in the form 

( 1 7 .26) 

where U is activation energy (Cadek, 1988) and R the universal gas constant. Thus, 
a general form of the strain hardening law that includes temperature effects is 

( 1 7.27) 

where j(CJ) and the parameter fJ are considered to be independent of tempera
ture T. 

CREEP UNDER MULTIAXIAL STATES OF STRESS 

General Discussion 

Most engineering systems (machines, structures, aircraft, etc.) operate under multi
axial stress conditions. Creep tests of members in such systems are very difficult 
and expensive to perform. In addition, a large amount of experimental and analy
tical data must be accumulated to make meaningful comparisons between experi
mental results and analytical predictions. Digital computer representations of 
analytical predictions in the form of field maps (Boresi and Sidebottom, 1972) or 
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finite element programs (Chapter 19) overcome some of this difficulty by displaying 
the entire analytical calculation in a single diagram or map. 

Metallurgical models of multiaxial stress creep are lacking. Therefore, models 
of multi-axial creep are mainly phenomenological in form (Gooch and How, 1986 ;  
Boyle and Spence, 1983 ; Kraus, 1980). These models are based mainly on concepts 
from the theory of plasticity of metals at normal (room) temperatures, where time 
effects are negligible or absent. Multiaxial plasticity theories predict reasonably 
accurate results for proportional loading. However, for arbitrary loading paths, 
considerable differences between experimental results and analytical predictions 
may occur. In addition, experimental data does not absolutely indicate the validity 
of any particular theory of plasticity. Since the extension of a single plasticity 
theory to creep may proceed in several ways, the number of possible creep models 
is quite large. Fortunately, in a number of engineering creep problems, the stress 
state ordinarily varies slowly with time. Consequently, different creep models may 
predict rather similar results. 

The multiaxial creep problem is far more complex than the uniaxial case be
cause of the fact that one-dimensional quantities (scalars) must now be replaced by 
tensor quantities. Hence, instead of a single creep strain Ec and strain rate Ec , now 
a creep strain tensor E5 and creep strain rate tensor E5 (i, j = 1, 2, 3) enter. Thus, the 
equation of state becomes a relationship among the creep strain rate tensor E5 ,  
stress tensor (Jii '  and hardening parameters that may be scalars or  more generally 
tensors of any order. When the hardening parameters are scalars, the hardening is 
said to be isotropic. Engineering phenomenological models of multiaxial creep 
have been based primarily on isotropic hardening assumptions, even though pre
dictions so obtained may, in some cases, disagree with experiments. 

The simplest case of multiaxial creep is that in which the stress state is homoge
neous (constant from point to point) and constant with time. As expected, most 
available experimental results are for this case. From this basis, a number of 
methods are used to extend the analysis to nonhomogeneous stress states that 
vary with time. As noted above, however, the number of possibilities is much 
larger than in plasticity theory. Indeed, it is possible to describe a large number 
of creep models treating special effects such as steady-state creep (creep defor
mation rate constant with constant stress), creep with isotropic hardening, creep 
with anisotropic hardening, and so on. 

As noted in the one-dimensional creep theory (Sec. 1 7  . 3) , it is difficult if not 
impossible to determine the end of the instantaneous deformation (elastic and 
plastic) and the beginning of creep deformation in a creep test. However, the error 
introduced into the analysis by this unknown is generally small. Likewise, it is not 
possible to distinguish precisely between the primary and secondary stages of 
creep. The determination of the transition from the primary to secondary stage of 
creep has been attempted in several ways. For example, in the one-dimensional 
case, it is often assumed that as creep deformation Ec increases, the function H(Ec) 
in Eq. ( 1 7.24) tends to a definite limit that is attained either for a particular value 
of Ec or as Ec � oo [Eq. ( 1 7.25)] .  Another method based on metallurgical concepts 
is to assume that primary and secondary creep are controlled by different micro
mechanisms that coexist simultaneously, but independently. In this case, the total 
deformation at any time consists of the instantaneous strain Eo (elastic and plastic), 
primary creep strain Epc , and secondary creep strain Esc · The primary creep 
(transient creep) is described by an equation of state like Eq. ( 1 7. 14), namely, 
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Epc = Fp((J, Ec , T), which dampens out with time so that Ec � 0. Other elaborate 
schemes have been devised. Depending on the scheme employed for the transi
tion from the primary to secondary stage of creep, the analysis may proceed by 
widely differing paths. In engineering problems, issues such as simplicity and 
convenience often dictate methods. On this basis, the first method noted above 
is used most frequently. 

Two cases of steady-state creep are prevalent. Under one set of conditions, strain 
hardening may be negligible from the initiation of loading. Under other conditions, 
the creep rate becomes constant only after some time as the material becomes fully 
strain-hardened and cannot undergo further hardening as creep continues. For 
example, if the temperature and stress levels are sufficiently high (as in short-term 
creep tests), strain hardening is negligible. However, at relatively low temperatures, 
the creep rate may become constant only after long times, steady-state creep being 
preceded by a period of strain hardening. The difference in responses in the two 
cases is clear under variable loading. If the material does not strain harden, the 
instantaneous creep rate depends only on the instantaneous stress. If steady-state 
creep is preceded by a transient (primary) period, when a step change in load is 
applied in the steady-state region, the steady-state creep rate does not change 
instantaneously to a new value, but rather the transient period of the creep curve 
is repeated (more or less), until finally after some time the creep rate is again con
stant (Fig. 1 7. 10). 

I 
I 
I 
I 
I 

Figure 17. 10 Creep curve for discontinuous stress change. 
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For creep under multiaxial states of stress, the effects of strain hardening are 
more important, since strain hardening may create anisotropy in the material rela
tive to subsequent creep after a change in loading path. Consequently, in steady
state creep, as well as nonsteady creep, under multiaxial stress states, one must 
distinguish between conditions of isotropic and anisotropic behavior. These condi
tions are influenced by the initial state of the material, strain hardening or struc
tural changes caused by instantaneous plastic creep (which may occur due to large 
instantaneous loads or due to creep if the stresses are nonuniform and become 
redistributed), and strain hardening that occurs in the transient creep phase. 

As noted above, time-dependent inelastic theories for multiaxial states of stress 
are based on idealized models of material behavior. The models are similar to those 
used in the theory of plasticity (time-independent, inelastic behavior ;  Chapter 4). 
As noted in Sec. 4.3, the mathematical theory of plasticity is based on three postu
lates (assumptions) : 

1 .  There exists an initial yield state defined by a point on a yield surface specifying 
the states of stress for which plastic flow begins, the yield criterion. 

2. There exists a rule relating the increment of the plastic state of strain to a speci
fied increment in the state of stress, the flow rule. 

3. There exists a rule specifying the modification of the yield surface during the 
course of the plastic flow, the hardening rule. 

In addition, it is often assumed that the yield surfaces are independent of hydro
static states of stress. 

In the case of time-dependent deformation, the concept of a yield surface has no 
meaning. However, Drucker ( 1959) has pointed out that one may speak of surfaces 
cjJ(CJii) = constant in stress space for both time-dependent and time-independent 
inelastic behavior. For von Mises and Tresca materials, these surfaces correspond 
to the condition ¢ = CJe = constant, where CJe denotes the effective stress (Sec. 4.3). 
For time-independent inelastic deformation, the surface (Je = constant is a yield 
surface. For time-dependent inelastic deformation, the surface (Je = constant is 
interpreted by Drucker as a surface along which the rate of dissipation of energy 
is a constant; that is, CJeEec , where Eec = dEec/dt is the effective creep strain rate 
defined by 

( 1 7 .28) 

where here the superscript C denotes creep. 
The mathematical .. theory of inelasticity for time-dependent (creep) deforma

tions, analogous to plasticity theory, is based on the following three conditions : 

1. There exist surfaces for which ¢ = constant that are independent of hydro
static states of stress. 

2. There exists a rule relating Eec to CJe , temperature, and stress histories, the 
creep flow rule. 

3. There exists a rule specifying the modification of the surface ¢ = constant 
during the process of inelastic deformation, the creep hardening rule. 
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Condition ( 1) is generally assumed valid for metals, and isotropic hardening is often 
assumed in condition (3). The flow rule (condition 2) for uniaxial states of stress is 
obtained from the tension test. However, for time-dependent inelastic deformation, 
even for the uniaxial case, the flow rule is not known precisely, since the strain rate 
is generally a function of not only stress and temperature, but also stress and tem
perature histories (Sec. 1 7.3). We consider the question of selection of a flow rule 
in Sec. 1 7.6. 

FLOW RULE FOR CREEP OF METALS SUBJECTED TO 
MULTIAXIAL STATES OF STRESS 

The flow rule for multiaxial states of stress generally i s  based on the existence of 
a flow rule for the uniaxial state of stress (the tension test or the torsion test of a 
thin-wall circular cross-section cylinder ; see Chapter 4). Often, the multiaxial flow 
rule is obtained from the flow rule for tension specimens by replacing the tensile 
stress (J by the effective stress (Je (Chapter 4) and the tensile creep strain rate Ec by 
the effective creep strain Eec [Eq. ( 1 7.28)] . 

Since an equation of state does not truly exist for metals that creep, the flow rule 
is not known for the uniaxial state of stress. However, as discussed in Sec. 1 7.4, a 
number of approximate flow rules have been proposed. Most of them are based on 
a family of constant stress creep curves obtained from tension specimens tested at 
the temperature of interest. If a temperature gradient is to be included in the ana
lysis, a family of constant stress creep curves is obtained at each of two or more 
temperatures in the range of interest. The family of constant stress creep curves is 
incorporated into the multiaxial flow rule in a number of different ways. 

Steady-State Creep 
As noted in Sec. 1 7.5, in the case of multiaxial states of creep, the presence or 
absence of strain-hardening effects is most important. This is because strain hard
ening that results from creep or plastic deformation produces anisotropic changes 
in the material properties that alter subsequent time-dependent deformation 
(creep). The effects of anisotropy are well known in rolled members of steel or alu
minum alloy. For example, the elastic properties of such members may vary 10 to 
20% between the direction of rolling and the direction transverse to rolling. How
ever, the creep rate in these directions, for a given stress and temperature, may 
vary by a factor of 2 or more. It has also been observed that the effects of aniso
tropy due to strain hardening during creep may cause even greater variations in the 
creep rate. 

If one wishes to describe multiaxial creep in the secondary stage of creep 
(steady-state creep stage), one must distinguish between isotropic and anisotropic 
creep. In particular, one must be aware of the fact that anisotropy may be produced 
by several effects ; for example, anisotropy may be caused by the manufacturing 
process, strain hardening due to plastic deformation at the instant of loading, 
strain hardening due to plastic deformation caused by changes in load during creep, 
or by strain hardening that occurs in the primary stage of creep. Anisotropy may 
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also arise in steady-state creep, if the creep is of sufficient duration and magnitude 
to result in structural (physical) changes in the metal. The study of the effects of 
creep under anisotropic conditions lies outside the scope of our study here. 
However, it is a topic of current research in metals and composites (Sullivan, 199 1 ;  
Ohno, 1990; Pan, 199 1). 

We restrict our discussion to isotropic creep in which the principal axes of stress 
and strain coincide during the creep process. We have seen in Chapters 2 and 3 that 
the general state of stress at any point in a body may be characterized by three 
principal stresses o-1 , o-2 , and o-3 , in three mutually perpendicular principal stress 
directions (axes). Likewise, the state of strain at the point may be defined in terms 
of three principal strains E1 , E 2 , E 3 , in three mutually perpendicular principal strain 
directions (axes). For linear elastic isotropic material properties, the principal axes 
of stress and strain coincide (see Chapter 3). In terms of principal axes, the stress
strain relations of a linear elastic isotropic material may be written in the form 

( 1 7.29) 

where E is the modulus of elasticity and v Poisson's ratio. In linear elastic theory, 
the history of loading is neglected. However, as noted previously, in inelastic 
deformations, such as plasticity and creep, the history of loading affects the defor
mations. Also, as noted in Sec. 1 7. 5, it is therefore useful to employ creep strain
rate-stress relations in the study of creep deformation [see Eq. ( 1 7.28)] . 

In general, to derive a creep strain-rate-stress relation (flow rule) for creep pro
blems, we employ the fact that the deformation in a creep process is largely inelastic. 
It has been noted experimentally that inelastic deformation does not involve volu
metric changes, the volumetric change being principally elastic in form. Accord
ingly, as in the theory of plasticity, we assume that the volumetric change due 
to inelastic (creep) deformation is zero. The total volumetric strain is (Boresi and 
Chong, 1987) 

( 1 7.30) 

where 71 , 72 , and 73 are the strain invariants [see Eq. (2.80)] . For small strains, 
relative to principal axes, Eq. ( 1 7.30) may be approximated as 

( 1 7 .3 1) 

since 72 , 73 are higher-order terms in the principal strains (E1 , E2 , E3 ) . We may sepa
rate the strain into elastic and inelastic (creep) parts. Thus, 

( 1 7 .32) 

By Eq. ( 1 7.29), 

( 1 7 .33) 
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With the assumption that the volume change due to creep is zero, the volumetric 
creep strain is zero; that is, 

( 1 7.34) 

where the subscript C denotes creep strain. 
For isotropic creep deformation in which the stress distribution does not change 

with time, it follows that the principal axes of stress and strain remain coinci
dent and do not rotate during the creep deformation. Then, we can differentiate 
Eq. ( 1 7.34) with respect to time to obtain 

( 1 7. 35) 

as the condition of constant volume under creep deformation. Although Eq. ( 1 7. 35) 
has been obtained on the basis that the principal strain directions do not rotate, 
it appears that is also gives good results in certain cases in which the principal strain 
directions do rotate (see Pickel et al., 1 97 1 ,  where solid circular bars of SAE 1035  
steel were tested in torsion). 

A second assumption, analogous to that used in plasticity theory (see Lubahn 
and Felgar, 1 96 1 ,  Chapter 8), is that the maximum shear strain rates [i.e., E-ii = 
(E-i - E-J/2] are proportional to the maximum shear stresses [see Eq. (4. 14)] . Thus, 
we write 

( 1 7. 36) 

where C(x, y, z, t) is a function of location (x, y, z) in the body and time t. For steady
state creep, C(x, y, z, t) � C(x, y, z); that is C remains constant in time. In transient 
creep, C will change with time, since the creep strain rates change with time. 

Solving Eqs. ( 1 7. 35 )  and ( 1 7.36) for E-1c , E-2c , and E-3c , we obtain 

E1c = iC[o"t - !(o-2 + o-3 )] 
E2c = iC[o-2 - !(o-3 + o-1 )J 
E3c = iC[o-3 - ! (o-1 + o-2 )J ( 1 7. 37) 

To determine the parameter C, the creep behavior of the material must be known 
for given strain rates and stresses. For this purpose, we employ concepts analogous 
to plasticity theory (Sec. 4.3) and define an effective stress, an effective strain, and 
an effective strain rate. First, we note that the yielding of many metals has been 
shown to be predicted by either the Tresca [Eq. (4. 12)] or von Mises criterion 
[Eq. ( 4.22)] . Accordingly, say, for the von Mises criterion, we write for the effective 
stress [see Eq. (4.23)] 

( 1 7. 38) 

where superscript M denotes von Mises. Similarly, for the effective strain and effec
tive strain rate, we write 

M _ -!2 [( ) 2 ( )2 ( )2 J 1 I 2 Eec - -3- E1c - E2c + E2c - E3c + E3c - E1 c ( 1 7.39) 
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and 

· M  _ J2 [( " · )2 ( " • )2 ( " • )2 ] 1 /2 Eec - -3- E1c - E2c + E2c - E3c + E3c - E1c ( 1 7.40) 

Returning to the case of steady-state creep, we consider a structural member 
subjected to constant stress and constant temperature for a long period of time. 
If the deformations are sufficiently small to preclude tertiary creep, the creep 
deformation-time diagram for the member corresponds approximately to the solid 
curve in Fig. 1 7. 1 1 .  The instantaneous deformation OA may be entirely elastic or 
partly elastic and partly plastic. The primary creep range AB is followed by the 
secondary (steady-state) creep range BC. For long times and for a relatively brief 
period of primary creep, it may be sufficiently accurate to approximate the steady
state creep deformation by the dashed straight line OS (taken parallel to line DBC). 
In derivations of a steady-state creep theory based on the straight line OS, the 
temperature and stress components of each volume element in the member are 
usually assumed to remain constant with time. Since the primary creep effect is 
neglected, the flow rule is given by a relation that approximates the creep strain 
rate for steady-state conditions. Then for a given temperature, the creep rate is a 
function of stress only, and the flow rule takes the form [see Eq. ( 1 7.6)] 

( 1 7.4 1 )  

Several relations have been proposed for the function F [see Eqs. (t) through (aa), 
Table 1 7. 1 ) . A widely used formula proposed by Bailey ( 1 935 )  is 

( 1 7.42) 

Equation ( 1 7.42) has the merit that it is simple to use. The factor 1//2 in Eq. ( 1 7 .38) 
i s  such that in a simple tension test with stress o-1 and strain rate €1c , we have 
o-� = o-1 and €� = E1c by Eq. ( 1 7.40), since E2c = E3c = - ( 1/2)€1 c by Eq. ( 1 7 . 37 ). 
Then, by the first of Eqs. ( 1 7.37) and Eq. ( 1 7.4 1), we obtain €� = 2Co-�j3, or 

c 0 
� 
E .8 Q) 0 

D 

A 

c 

Time 

Figure 1 7. 1 1 Deformation-time diagram: OA = instantaneous deformation; AB = primary 
stage ; BC = secondary stage ; OS = straight-line approximation ignoring OD ; 
DBC = Odqvist approximation of ABC. 
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C = 3��/(2(}'�). With this value of C and Eq. ( 1 7.42), we can write Eq. ( 17.37) in 
the form (flow rule) 

E1c = B((J�)" - 1 [(}'1 - t((J2 + (]'3 )] 
E2c = B((J�)" - 1 [(}'2 - t((J3 + (J1 )J 
E3c = B((J�)" - 1 [(}'3 - t((J1 + (J2 )J ( 1 7.43) 

Alternatively, if we take the Tresca yield criterion, the effective stress and effec
tive strain rate are defined as [see Eq. (4. 14) with (]'1 > (}'2 > (]'3 ] 

( 1 7.44) 

where superscript Tdenotes Tresca. Then in place of Eq. ( 1 7.43), we have 

( 1 7.45 ) 

In cases where the order (}'1 > (}'2 > (}'3 is retained during loading, Eq. ( 1 7.45 ) may be 
easier to use than Eq. ( 1 7.43); see Finnie and Heller ( 1 959, Sec. 7.3) for a discussion 
of the differences between the results predicted by Eqs. ( 1 7.43) and ( 1 7.45). 

Nonsteady Creep 
Multiaxial creep models have been used to predict stresses or deformations of 
structural members subjected to prescribed stress or deformation histories and to 
prescribed temperature histories, including temperature gradients. Often, the flow 
rule for these problems is based on an equation that approximates a family of 
constant-stress creep curves, if only one temperature is considered, or that approx
imates families of constant stress creep curves over a range of temperatures. As 
a generalization of Eq. ( 1 7.27), the flow rule takes the form [see also Eqs. (bb) 
through (gg), Table 1 7. 1] 

( 1 7.46) 

where F((Je), G(�), and cp(t) are functions of effective stress (Je ,  absolute tempera
ture � ' and time t, respectively. A number of investigators have used the form [see 
Eqs. (x) and (cc), Table 1 7. 1] 

0 < k < 1 ( 1 7.47) 

where B, n, A, and k are material constants. Frequently, better accuracy is obtained 
by replacing (]': by (sinh b(Je)", where b is an additional material constant [see 
Eq. (ee), Table 17. 1] .  
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17.7 

Forms such as Eq. ( 1 7.47) are ordinarily used for constant stress and tempera
ture conditions. The effect of varying stress or temperature on the effective strain 
rate Eec is included in the creep model by the introduction of a hardening rule. As 
noted in Sec. 1 7.4, two hardening rules, the time-hardening and strain-hardening 
[see Eqs. ( 1 7. 1 5 )  and ( 1 7. 1 6)] concepts, are commonly used. The time-hardening 
rule assumes that the creep strain rate Ec depends on stress, temperature, and time. 
With the time-hardening rule, the creep strain rate is obtained by taking the time 
derivative of Eq. ( 1 7.46). For the specific form of Eq. ( 1 7.47), we have 

E = kBCJ"[e< -AITa>] t (k - 1 ) eC e ( 1 7.48) 

The strain-hardening rule states that Ec depends on stress, temperature, and strain. 
The strain-hardening form is obtained by eliminating time between Eqs. ( 1 7.47 ) and 
( 1 7.48). Thus, we get 

( 1 7.49) 

Numerous applications of time- and strain-hardening flow rules have been given 
in the literature (Rabotnov, 1 969 ; Boresi and Sidebottom, 1 972 ; Boyle and Spence, 
1983 ;  Kraus, 1980). Because of the complexity of the creep problem, approximate 
solutions are obtained by numerical techniques, such as iteration methods (e.g. , suc
cessive elastic solutions) and finite element methods (Zienkiewicz, 1 977 ;  see also 
Chapter 1 9). Boresi and Sidebottom ( 1 972) have given several comparisons of 
multiaxial flow rules by the method of successive elastic solutions. 

Relatively few problems in creep analysis admit closed-form solutions. One such 
problem is the steady-state creep of a thick cylinder; other cases include the pro b
lem of the steady-state, small-strain creep of an infinite rectangular plate with a 
small circular hole (see Sec. 14.2) and certain steady-state creep problems in the 
membrane theory of shells (Boyle and Spence, 1 983 ,  Chapter 4; Kraus, 1 980, 
Chapter 3). 

A SIMPLE APPLICATION OF CREEP OF METALS 

One of the simplest problems for which a closed-form solution of creep is possible 
is that of a thin-wall metal tube with closed ends, subjected to constant internal 
pressure and tempenrture (see Chapter 1 1 ). By equilibrium, the stresses in the radial, 
circumferential, and axial directions are 

pr CJoo = h, ( 1 7 .50) 

where r is the inner radius of the tube, h is the tube wall thickness, and (r, 8, z) refer 
to the radial, circumferential, and axial directions, respectively. For small strains, 
the stresses remain constant for constant pressure, since the changes in geometry 
are negligible. 
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Consider a Tresca material. Then, if we use the time-hardening formulation 
given by Eq. ( 1 7.48), we get 

Also, by Eqs. ( 1 7. 50) and the first of Eqs. ( 1 7.44), we have 

By Eqs. ( 1 7.45), ( 1 7. 5 1 ), and ( 1 7. 52), we obtain 

. _ . _ !  i'Ic (pr) _ ! kn(pr)"[ < -A/Ta>] t <k - 1 ) E1 c - Eooc - - e 2 (J; h 2 h 

. = . = _ ! i'Ic (Pr) = _ ! kn (pr)"[ < -A/Ta>] t <k - 1 ) E3c ErrC 2 (J; h 2 h e 

( 1 7.5 1) 

( 1 7. 52) 

( 1 7.53) 

As a result, we see that the tube grows radially in diameter, but maintains its 
length. Considering the radial displacement due to creep, Uc = rE00c , we have 

( 1 7. 54) 

If we assume that initial strain is entirely elastic, the total radial displacement is 
u = uelastic + Uc , where uelastic is given by Hooke's law [Eq. ( 1 7.29)] 

( 1 7. 55) 

Hence, the total radial displacement is, after carrying out the integration of 
Eq. ( 1 7 .54), 

( 1 7. 56) 

Summary 
Since 0 < k < 1 ,  the creep rate i'Ic � 0 as time t becomes large [see Eq. ( 1 7. 5 1 )] .  
The radial displacement u continues to increase with time, and the circumference 
of the tube increases. Since the volumetric change is zero, the thickness of the 
tube decreases. 

CREEP OF NONMETALS 

Under appropriate conditions, most materials will creep. For example, nonmetallic 
materials such as glass, polymers, portland cement paste, and so on, creep when 
subjected to sufficiently high temperatures and stresses. As pointed out by Finnie 
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and Heller ( 1 959), the mechanical behavior of many nonmetallic materials during 
creep is somewhat simpler than that of metals. This has been attributed to the fact 
that nonmetallic materials like glass, polymers, and cements are more nearly iso
tropic than metals and large creep strains are required to induce anisotropy in 
them. The creep of glass and polymers is often treated by the theory of linear visco
elasticity. The creep behavior of other nonmetals, such as concrete, asphalt, and 
wood, is very complex. Nevertheless, one of the first applications of the theory of 
linear viscoelasticity was in the study of creep in concrete (Rabotnov, 1 969). Con
crete is a material that undergoes an aging process, such that under sustained load 
the modulus of elasticity changes with time. Generally, the properties of concrete 
depend on its age; that is, property changes occur that are independent of deforma
tion. Aging is a phenomenon that alters creep of concrete. It is caused mainly by 
cement hydration, a process that continues for a long time after the initial hard
ening period. Aging changes the rate of creep and, hence, must be accounted for. 
This fact increases the difficulty of predicting the creep behavior of concrete. 
Aging effects have been discussed by Bazant ( 1 977), and Bazant and Prasannan 
( 1989a, b). Asphalt, a widely used pavement material, acts much like a viscoelastic 
material. However, the creep behavior of asphalt resembles that of concrete. In the 
following, we give a brief description of the creep behavior of asphalt, concrete 
and wood. 

Asphalt 
The early work of Van der Poel ( 1 954) discusses asphaltic mixtures and their appli
cations to road design. A large number of references to 1953 are listed by Van der 
Poel. More recently, Bolk ( 1 98 1) published a manual on the creep test, which sum
marizes much of the work on the creep of asphalt conducted by The Netherlands 
Government Highway Engineering Laboratory. In this study, the representation of 
creep behavior was examined from the viewpoint that asphalt possesses elastic, 
viscous, and plastic properties dependent on the temperature and duration of 
loads. At low temperatures and/ or for short duration of load, asphalt behaves in 
an almost linear elastic manner. At high temperatures and/ or long duration of 
loads, asphalt responds in a viscous manner. Asphalt responds plastically at high 
levels of loads or under localized high stress (even at low loads). Consequently, 
rheological modeling is employed (Hills, 1 973) and, for theoretical analyses, the 
various rheological components are assumed to be independent of one another. In 
a test, it is difficult, if not impossible, to separate the measured deformation into 
its rheological components. Also in creep tests, deformation behavior over long 
periods of time is of primary interest. Nevertheless, the permanent deformation (the 
deformation that remains after reversible deformation is recovered; see Monismith 
and Tayeboli, 1988) of asphalt is composed of viscous, plastic, and visco-plastic 
components. These effects change in importance with the duration of load and 
temperature. For example, during a creep test of asphalt, the binder film that exists 
between mineral particles becomes thinner. As a result, mineral particle-to-particle 
contact gradually occurs. Because these particles are relatively dry, the shear force 
required to maintain a shear strain rate gradually increases; that is, the asphalt 
appears to strain-harden (Prendergast, 1992). Ordinarily, creep tests are per
formed in a temperature range for which asphalt does not behave as a purely vis
cous material, and in these tests, the viscous component of deformation is nonlinear 
in time. Thus, even in a well-controlled creep test, the separation of the permanent 
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deformation of asphalt into various linear rheological components is not feasible. 
Consequently, in practice, a phenomenological approach is taken, much as in the 
case of metals (Bolk, 198 1 ). However, the material constants in the creep rate equa
tions exhibit a stronger dependency on temperature and time than they do for 
metals (see Table 1 7. 1 ). 

The relation of creep to the engineering properties of asphalt (e.g., rutting of 
pavements, total deformation, strength, etc.) has been examined extensively (see, 
e.g., Bolk, 1 98 1 ;  Eckmann, 1 989; Monismith and Tayeboli, 1 988). Bolk ( 198 1 )  has 
concluded that the correlation between the deformation measured in a creep test 
and that measured in a rutting test of asphalt hardly changes when the permanent 
strain in the flow rule is replaced by the total strain measured in the creep test. 
Hence, for practical purposes, it is sufficient to measure only total strain. The mea
surement of the reversible strain is therefore optional. Bolk ( 1 98 1 )  concluded that 
the creep test is a valuable tool for prediction of engineering properties, such as 
rutting of asphalt pavements. He also gives recommendations for conducting uni
axial static creep tests with asphalt test specimens and recommends the logarithmic 
flow rule, E = A + B log t, where A and B are material constants determined by 
the tests. A relatively low value of B indicates low viscous behavior ; a high value 
of B suggests mainly viscous behavior. 

Concrete 
The creep of concrete is affected by a large number of factors. For example, water
reducing admixtures tend to increase creep rates, as do retarding admixtures and 
accelerating admixtures (Mindess and Young, 198 1 ). Many other experimental 
variables affect the creep of concrete, for example, paste parameters (porosity, age, 
etc.), concrete parameters (aggregate stiffness, aggregate/cement content, volume to 
surface ratio), and environmental parameters (applied stress, duration of load, 
humidity, etc.). Usually, the creep of concrete is influenced more by paste proper
ties, since the aggregate tends to retard creep rate. Since creep data on paste are 
limited, creep data on concrete are relied on to assess the influence of various para
meters. Concrete is often treated as an isotropic material, and creep flow formulas 
similar to those of metals are used to represent concrete creep. For example, creep 
dependence on stress and temperature is often represented by the formula 

( 1 7.57) 

where C is a constant, V the activation volume, R the universal gas constant, and 
T the absolute temperature [see Eq. (z), Table 1 7. 1] .  Equation ( 1 7. 57) has been 
used with success to represent experimental data. Since the parameter VCJ/R T is 
generally small, the creep strain-stress-temperature relation is approximately lin
ear in the stress range ordinarily used in concrete. From a practical viewpoint, the 
creep strain-stress relation in concrete is commonly taken to be 

( 1 7 .58) 

where cp is called the specific creep. The concept of specific creep is useful for com
paring the creep of different concrete specimens at different stress levels. A typi
cal value of cp is approximately 1 50 ,u/MPa, ,u = 10-6 . Although Eqs. ( 1 7.57) or 
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( 1 7 . 58) are frequently used to estimate creep in concrete, many empirical equations 
(some simple, some complex) have been used to predict creep in concrete. These 
equations are used in the same manner as for metal creep. There is considerable 
disagreement regarding a specific equation to represent different aspects of con
crete creep, because of the difficulty in separating effects such as shrinkage from 
the more conventional effects. Nevertheless, under the assumption that the initial 
instantaneous strain, creep strain, and shrinkage strain are independent and add
itive, the American Concrete Institute (ACI, 1 991 )  has developed a simplified creep 
equation of the form 

( 1 7. 59) 

where t denotes time, B is a constant that depends on the age of the concrete be
fore loading (B is taken to be 10 when the concrete is more than 7 days old before 
loading), and Cult is the ultimate creep coefficient. The value of Cult is difficult to 
determine, as it may vary considerably (for 40% relative humidity Cult may range 
between 1 .30 and 4.5). ACI recommends a value of Cult = 2 . 35, if experimental data 
are not available. ACI also recommends certain correction factors to adjust Cult for 
different conditions of humidity and age at loading. The interested reader is referred 
to the ACI Manual of Concrete Practice (ACI, 199 1 )  for details. 

Wood 
Hearmon ( 1 954) gave one of the early reviews of creep data of wood up to 1953 .  
More recently, Bodig and Jayne ( 1 982) wrote a comprehensive treatise on the 
mechanics of wood and wood composites. They approached the creep of wood 
from a rheological (flow) point of view, as a study of the time-dependent stress
strain behavior of materials. Since wood is highly anisotropic, the magnitude of 
creep strain depends on a large number of factors. The most critical conditions 
include the alignment of the orthotropic axes of wood relative to the load, the mag
nitude and type of stress, the rate of load, the duration of load, moisture content, 
and temperature. There are many practical situations in which the creep of wood 
is particularly important: for example, the deflection of wood beams and other 
types of load-carrying wood members under long durations of load; the reduction 
of pressure between layers of glulam members due to creep relaxation, resulting in 
loss of bonding; creep rupture of wood members at sustained loads less than the 
ultimate static load; and so on. In spite of the complexity of wood, many of the 
same concepts employed in the study of creep in metals are used, and the study 
of creep in wood rests heavily on curve-fitting of experimental data to obtain ap
proximate flow rules/· Because of the nature of the manufacturing process of 
wood composites, creep relaxation may strongly affect the serviceability of wood 
composites (Bodig and Jayne, 1982). In contrast to creep models of metals that 
are described in terms of three stages of creep, Bodig and Jayne consider the 
total creep deformation to consist of elastic and viscoelastic parts. For example, 
consider a tension specimen subjected to an instantaneously applied load P at 
time t0 (Fig. 1 7. 12). The deformation at some later time t 1 is taken to be 

( 1 7 .60) 
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Figure 1 7. 1 2  Creep curve. (a) Load-time function. (b) Components o f  creep. 

where £5e is the instantaneous elastic deformation due to the instantaneous appli
cation of load, £5de a delayed elastic deformation, and £5v a viscous component. To 
determine the delayed elastic part, one imagines that the load is instantaneously 
reduced to zero at time t2 . Then, the elastic deformation £5e is instantaneously recov
ered. As time continues, additional deformation is recovered (Fig. 17 . 12). Since the 
process of recovery is irreversible, a residual deformation remains. The nonre
coverable (viscous) deformation developed to time t2 is £5v . At time t2 , the total 
deformation is £52 • It consists of the viscous deformation £5v and the delayed elastic 
deformation £5de · For a particular time t > t2 , £5v can be obtained from the data 
(Fig. 17 . 1 �}. Therefore, 

( 1 7.61 )  

Tests show that for many wood composites, £5v  increases linearly with time. By 
subtracting the viscous contribution from the total deformation-time curve, the 
delayed elastic component can be determined. Guided by this simplistic one
dimensional model and employing linear rheological models (e.g., linear visco
elastic models, namely, the Maxwell body, Kelvin body, and Burger body), Bodig 
and Jayne ( 1 982, Sec. 5.4) derived creep formulas that are the synthesis of linear 
viscoelastic models and experimental data. For example, for a beam made of a 
ftakeboard-veneer composite, they derived the strain-time relation 

(J ( 1 1 _ e-t/ 1.2557 t ) E = 106 0.84 + 5.48 + 72.37 
( 1 7 .62) 
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where (J is in lb/in.2 and t in hours. Note that the first term is the instantaneous 
elastic strain, the second term is the delayed elastic strain, and the third is the vis
cous strain [see Eq. ( 1 7. 59)] . A similar approach for a multiaxial stress state may 
be carried out following the concepts presented in Sec. 1 7.6. 
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18.1 

CONTACT STRESSES 

INTRODUCTION 

Contact stresses are caused by the pressure of one solid on another over limited 
areas of contact. Most load-resisting members are designed on the basis of stress 
in the main body of the member, that is, in portions of the body not affected by the 
localized stresses at or near a surface of contact between bodies. In other words, 
most failures (by excessive elastic deflection, yielding, and fracture) of members are 
associated with stresses and strains in portions of the body far removed from the 
points of application of the loads. 

In certain cases, however, the contact stresses created when surfaces of two 
bodies are pressed together by external loads are the significant stresses ; that is, the 
stresses on or somewhat beneath the surface of contact are the major cause of 
failure of one or both of the bodies. For example, contact stresses may be signifi
cant at the area ( 1 ) between a locomotive wheel and the railroad rail ; (2) between a 
roller or ball and its race in a bearing; (3) between the teeth of a pair of gears in 
mesh; (4) between the cam and valve tappets of a gasoline engine; etc. 

We note that in each of these examples, the members do not necessarily remain 
in fixed contact. In fact, the contact stresses are often cyclic in nature and are re
peated a very large number of times, often resulting in a fatigue failure that starts as 
a localized fracture (crack) associated with localized stresses. The fact that contact 
stresses frequently lead to fatigue failure largely explains why these stresses may 
limit the load-carrying capacity of the members in contact and hence may be the 
significant stresses in the bodies. For example, a railroad rail sometimes fails as a 
result of "contact stresses"; the failure starts as a localized fracture in the form of 
a minute transverse crack at a point in the head of the rail somewhat beneath the 
surface of contact between the rail and locomotive wheel, and progresses outwardly 
under the influence of the repeated wheel loads until the entire rail cracks or frac
tures. This fracture is called a transverse fissure failure. 

On the other hand, bearings and gear teeth sometimes fail as a result of forma
tion of pits (pitting) at the surface of contact. The bottom of such a pit is often 
located approximately at the point of maximum shear stress. Steel tappets have 
been observed to fail by initiation of microscopic cracks at the surface that then 
spread and cause flaking. Chilled cast-iron tappets have failed by cracks that start 
beneath the surface, where the shear stress is highest, and spread to the surface, 
causing pitting failure. 

The principal stresses at or on the contact area between two curved surfaces 
that are pressed together are greater than at a point beneath the contact area, 
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whereas the maximum shear stress is usually greater at a point a small distance be
neath the contact surface. 

The problem considered here initially is to determine the maximum principal 
(compressive) and shear "contact stresses" on and beneath the contact area between 
two ideal elastic bodies having curved surfaces that are pressed together by external 
loads. Several investigators have attempted to solve this problem. H. Hertz* ( 1 895) 
was the first to obtain a satisfactory solution, although his solution gives only prin
cipal stresses in the contact area. 

THE PROBLEM OF DETERMINING 
CONTACT STRESSES 

Two semicircular disks made of elastic material are pressed together by forces P 
(Fig. 1 8. 1 ). The two bodies are initially in contact at a single point. Sections of the 
boundaries of the two bodies at the point of contact are smooth curves before the 
loads are applied. The principal radii of curvature of the surface of the upper solid 
at the point of contact are R1 and R� . Likewise, R2 and R2 are the principal radii 
of curvature of the surface of the lower solid at the point of contact. The intersec
tion of the planes in which the radii R1 and R2 (or the radii R� and R2) lie form 
an angle a. Elevation and plan views, respectively, of the two solids are shown in 

Figure 1 8. 1  Two curved surfaces of different radii pressed against each other. 

* In 188 1  Hertz published a paper entitled "On Contact of Elastic Solids" and the following year, "On 
the Contact of Rigid Elastic Solids and on Hardness." See (Hertz, 1895). 
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Figs. 1 8.2a and b. The lines v1 and v2 , which form the angle a, lie in the plane sec
tions containing the radii R1 and R2 , respectively. The line of action of load P lies 
along the axis that passes through the centers of curvature of the solids and through 
the point of contact. Hence, the line of action of force P is perpendicular to a plane 
that is tangent to both solids at the point of contact. In other words, it is assumed 
that there is no tendency for one body to slide with respect to the other and, hence, 
no friction force is present. The effect of a friction force is discussed in Sec. 1 8 .9. 

The effect of the load P is to cause the surface of the solids to deform elastically 
over a region surrounding the initial point of contact, thereby bringing the two 
bodies into contact over a small area in the neighborhood of the initial point of 
contact (Fig. 1 8 .2b). The problem is to determine a relation between the load P and 
the maximum compressive stress on this small area of contact and to determine the 
principal stresses at any point in either body on the line of action of the load, 
designated as the z axis. The principal stresses CJxx ' CJYY ' and CJzz acting on a small 
cube at a point on the z axis are shown in Fig. 1 8 .2c. The maximum shear stress at 
the point is tmax = i(CJzz - CJyy), where CJzz and CJYY are the maximum and minimum 
principal stresses at the point. 

(a) 

u ,  

R ' 2 

p 

-azz 
X 

2 
(e) 

Figure 1 8.2 Analysis of contact stresses. 

p 
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The detailed development of the solution of the problem will not be presented 
here. However, the main assumptions made in the solution are given so that the 
limitations on the use of the results may be understood. A brief discussion is given 
to explain and justify the assumptions. 

GEOMETRY OF THE CONTACT Si JRFA�E 

Fundamental Assumptions 
The solution of the problem of the contact stresses in the neighborhood of the 
point of contact of two bodies is based on the following two assumptions. 

(a) Properties of Materials. The material of each body is homogeneous, iso
tropic, and elastic in accordance with Hooke's law, but the two bodies are not 
necessarily made of the the same material . 

(b) Shape of Surfaces near Point of Contact, Before Loading. If two bodies are 
in contact at a point, there is a common tangent plane to the surfaces at the point 
of contact. In the solution for contact stresses, an expression for the distance 
between corresponding points on the surfaces near the point of contact is required; 
corresponding points are points that lie on the surfaces of the bodies and on a line 
perpendicular to the common tangent plane. Equations that express the two dis
tances z 1 ,  z 2 from corresponding points to the common tangent plane are needed 
to determine the deformations of the two bodies near the initial point of contact. 
In the analysis, an equation that approximates the total distance d = z 1 + z 2 be
tween corresponding points on any two surfaces is used. This equation is 

( 1 8. 1 ) 

in which x and y are coordinates with respect to the y and x axes with origin at the 
point of contact; these coordinates lie in the tangent plane, and A and B are 
(positive) constants (Hertz, 1 895) that depend on the principal radii of curvature 
of the surfaces at the point of contact. The derivation of Eq. ( 1 8. 1 ) is discussed later 
in this section. Figures 1 8.2d and e illustrate the fact that the curve representing 
Eq. ( 1 8. 1 ) for a given value of d is an ellipse. This fact will be important in considering 
the shape of the area of contact between the two bodies. 

Contact Surface Shape After Loading 
When the loads P are applied to the bodies, their surfaces deform elastically near 
the point of contact so that a small area of contact is formed. It is assumed that, 
as this small area of contact forms, points that come into contact are points on 
the two surfaces that originally were equal distances from the tangent plane. Ac
cording to Eq. ( 1 8. 1), such equidistant points on the two surfaces lie on an ellipse. 
Hence the boundary line of the area of contact is assumed to be an ellipse whose 
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equation is 

( 1 8.2) 

where x and y are coordinates referred to the same axes as were specified for 
Eq. ( 1 8. 1  ) . The contact area described by Eq. ( 1 8 .2) is shown in Fig. 1 8.2b. Equa
tion ( 1 8 . 1 ) is of sufficient importance to warrant further discussion of its validity, 
particularly since a method of determining the constants A and B is required in the 
solution of the problem of finding contact stresses. 

Justification of Eq. (18.1) 
In order to obtain Eq. ( 1 8. 1), an expression is derived first for the perpendicular 
distance z 1 from the tangent plane to any point on the surface of body 1 near the 
point of contact, by assuming that the bodies are free from loads and in contact at 
a point. A portion of body 1 showing the distance z 1 is illustrated in Fig. 1 8 . 3a. 
Let the points considered lie in the planes of principal radii of curvature. Let u 1 
and v1 be axes in the tangent plane that lie in the planes of principal radii of 
curvature of body 1 .  The distance z 1 to point C or D is found as follows. From 
triangle ODD' 

since the angle {J is small. From triangle H KD 

KD u1 
tan {J = fJ = HK = R� 

( 1 8 .3) 

( 1 8 .4) 

since the radius R� is approximately equal to H K. Substitution of the value of fJ 
from Eq. ( 1 8 .4) into Eq. ( 1 8 .3) gives 

ui z -1 - 2R� 
( 1 8 . 5 )  

In  a similar manner, the distance z 1 to  the points E and F lying in  the plane of 
radius R1 is found to be 

( 1 8 .6 )  

On the basis of these results, i t  i s  assumed that the distance z 1 to any point G not 
lying in either plane of principal curvature may be approximated by 

( 1 8 . 7 )  

This assumption seems justified by the fact that Eq. ( 1 8. 7) reduces to  Eq. ( 1 8 .6) for 
u1 = 0, and Eq. ( 1 8. 5 )  for v1 = 0. In particular, we note that if z 1 is constant for all 
points G, Eq. ( 1 8.7) is an equation for an ellipse. 
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(b) _c.,__�____,Ft---v1 
_..,._D - u1 � 

u,
2 v,

2 z 1 = 2R' + 2R 1 1 
(a) 

Figure 1 8.3 Geometry of contact surface. 

(c) 

X 

Attention is directed now to the second body. The distance z2 from the tangent 
plane to any point in the surface of body 2 near the point of contact is obtained in 
the same ·way as z1 in Eq. ( 1 8.7). It is 

( 1 8 .8) 

where u2 and v2 are coordinates with respect to axes lying in the tangent plane and 
also in the planes of the principal radii of curvature R� and R2 , respectively. The 
locations of the axes u1 , v1 and u2 , v2 are shown in Fig. 1 8.3b, which is the same 
view of the bodies as in Fig. 1 8.2b. The axes v1 and v2 subtend the angle a, that is, 
the angle between the lines v1 and v2 of the bodies as shown in Fig. 1 8 .2b. 

The distance d between points on the two surfaces near the point of contact is 
the numerical sum of z1 and z2 given by Eqs. ( 1 8 .7) and ( 1 8.8). Hence, we find 

2 2 2 2 
d = z z - � � � � 1 + 2 - 2R� + 2R1 + 2R� + 2R2 

( 1 8.9) 
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Equation ( 1 8.9) may now be transformed into the form of Eq. ( 1 8. 1 ). The first trans
formation is the elimination of the coordinates u2 and v2 by the relationships 

u2 = u1 cos a + v1 sin a 
v 2 = - u 1 sin a + v 1 cos a 

When Eqs. ( 1 8. 10) are substituted into Eq. ( 1 8 .9), there results 

where 
d = A'ui + 2H'u1v 1  + B'vi 

2A' = � + � cos2 a +
R
1 

sin2 a 
R 1 R2 2 

2H ' = (L -;J sin ct cos ct 

2B ' = -
1 

+ � sin2 a + -
1
- cos2 a 

R1 R 2 R2 

( 1 8 . 10) 

( 1 8 . 1 1 )  

( 1 8 . 1 2) 

Equation ( 1 8. 1 1 ) is the equation of an ellipse, as shown in Fig. 1 8 .3b, with center 
at point 0. To find the equation of the ellipse referred to axes x and y, which coin
cide with the major and minor axes of the ellipse, the value of the angle A through 
which the axes u1 and v1 must be rotated in order to eliminate the product term 
u1v 1 in Eq. ( 1 8 . 1 1 )  is required. The transformation is 

u 1 = x cos A - y sin A 
v1 = x sin A + y cos A ( 1 8 . 1 3) 

If Eqs. ( 1 8 . 1 3) are substituted into Eq. ( 1 8. 1 1 ) and the value of the angle A taken to 
eliminate the product term u1v 1 , Eq. ( 1 8 . 1 1 ) becomes 

( 1 8 . 14) 

which is identical in form to Eq. ( 1 8. 1 ). In the process of making the transforma
tion, it is found that A and B are the roots of a quadratic equation and have the 
following values : 

( 1 8 . 1 5) 

The constants A and B depend on the principal radii of curvature of the two bodies 
at the point of contact and on the angle a between the corresponding planes of the 
principal curvatures. 
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Note: With the definition for radii of curvature in Fig. 1 8.2, it is possible for the 
ratio B/A to be greater than or less than 1. If a = 0 and B/A > 1, the major axis of 
the ellipse of contact is along the x axis and is said to be in the direction of rolling 
If a = 0 and B/A < 1 ,  the minor axis of the ellipse of contact is along the x axis 
(in the direction of rolling). In this latter case, it is convenient to let R1 and R2 be 
radii of curvature in the plane of rolling [the x-z plane, Fig. 1 8.2e] so that 
B/A > 1 .  

Brief Discussion of Solution 
It was pointed out earlier in this section that Eq. ( 1 8. 1 ) is used to estimate the dis
placement of points on the surfaces of the two bodies that eventually lie within the 
contact area. In Fig. 1 8 .3c the solid outline shows the two bodies of Fig. 1 8. 1  in 
contact at one point, before the loads are applied, and the dashed lines show the 
new positions of the two bodies after the loads P are applied and the two bodies 
are in contact over an area around the original point of contact 0. The centers of 
the bodies move toward each other by amounts of b1 and b2 , respectively, which 
means that the distance between points on the bodies not affected by the local 
deformation near 0 is decreased by an amount b1 + b2 = b. 

Let w1 denote the displacement, due to local compression, of point Q1 , 
Fig. 1 8.3c. We take w1 positive in the direction away from the tangent plane, 
assumed to remain immovable during local compression. Similarly, let w2 denote 
the displacement, due to local compression, of point Q2 , where w2 is taken positive 
in the direction away from the tangent plane. These positive directions of w1 and 
w2 conform to the positive directions of displacement in a small loaded region on 
a part of the boundary of a semiinfinite solid, that is, the positive displacement is 
directed into the solid. Hence, the distance between two points, such as Q1 and Q2 
in Fig. 1 8.3, will diminish by b - (w 1 + w2). If, finally, due to the local compression, 
points Q1 and Q2 come in contact, we have 

With the expression for d, given by Eq. ( 1 8. 14), we may write 

( 1 8. 1 7) 

Equation ( 1 8 . 1 7 ) has been obtained from geometrical considerations only. To 
compute the displacements (w 1 , w2 ), local deformation at the surface of contact 
must be considered. Under the assumption that the surface of contact -is very small 
compared to the radii of curvatures of the bodies, the solution obtained for semiin
finite bodies subjected to spot loads may be employed to determine w1 + w2 
(Timoshenko and Goodier, 1970; Thomas and Hoersch, 1930). Hertz noted that 
Eq. ( 1 8. 1 7 )  has the same form as that of the Newtonian potential equation for the 
attraction of a homogeneous mass M in the shape of an ellipsoid on a unit of mass 
concentrated at a point P some distance from the ellipsoid. This Newtonian poten
tial function satisfies the same differential equations that are required to be satisfied 
by the theory of elasticity. The problem is solved by placing into the potential 
equation the stresses at the contact surface instead of the mass, etc., and the con
stants are evaluated (Thomas and Hoersch, 1930). The solution is given in terms 
of elliptic integrals. The results are summarized in the following sections. 
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18.4 

NOTATION AND MEANING OF TERMS 

The following notation and interpretations of terms are needed for an understand
ing of subsequent equations : 

P = total force exerted by body 1 on body 2, and vice versa. 
E1 , E2 = tensile (or compressive) moduli of elasticity for bodies 1 and 2. 

v1 , v2 = Poisson's ratio for bodies 1 and 2. 
a = semimajor axis of ellipse of contact. 
b = semiminor axis of ellipse of contact. 
k = bja = cos 8; k ::::;; 1 .  
k '  = )1 - k2 = sin O. 

R1 , R� = principle values of the radii, respectively, of the surface of body 1 at the 
point of contact. The plane sections in which R1 , R '1 lie are perpendicular 
to each other. See Fig. 1 8. 1 .  The signs of R1 and R'1 are determined as 
follows. If the center of curvature lies inside the body (i.e., if the body sur
face is convex at the point of contact), the radius is positive. If the center 
of curvature lies outside the body (i.e., if the body surface is concave at 
the point of contact), the radius is negative. For example, in Fig. 1 8. 1 ,  the 
radii R1 , R'1 are positive. 

R2 , R� = same as R1 , R� , but for body 2; in Fig. 1 8. 1 2c, R2 is negative. 
a = angle between planes of principal curvatures at point of contact (see 

Fig. 1 8.2b ). 
k(zjb) = relative depth below the surface of contact to a point on the z axis 

at which stresses are to be calculated. The depth is expressed in terms 
of k(zjb) rather than by z directly so that, in evaluating the integrals 
obtained in the mathematical solution of the problem, the term k(zjb) 
can conveniently be replaced by a trigonometric function. Thus, cot ¢ = 
k(zjb). 

zs = distance from surface to point on z axis at which maximum shear 
stress occurs in either body. 

In the expressions for the principal stresses, two integrals (called elliptic 
integrals) are found that involve ¢, 8, and k' . These integrals are denoted as F(cp, k ' )  
and H(¢, k' ). Likewise, two integrals involving k '  alone, denoted as K(k' )  and E(k ' ), 
are required. These elliptic integrals are 
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K(k' )  = F(I , k ') = J:'2 
..) 1 - �� sin2 e 

E(k ' )  = H(I , k) = f:'2 ..) 1 - k '2 sin2 
e diJ 

These integrals have been tabulated and are readily available in most mathemat
ical handbooks. 

EXPRESSIONS FOR PRINCIPAL STRESSES 

The analysis involving the assumptions and limitations indicated in Sec. 1 8.3 yields 
the following expressions for the principal stresses CJxx ' CJYY ' and CJzz at a point on 
the z axis. The point is at the distance z from the origin, which lies on the surface 
of contact of the two elastic bodies. The stresses act on orthogonal planes perpen
dicular to the x, y, and z axes, respectively. The solution of this problem is (Thomas 
and Hoersch, 1930) 

in which 

M =  2k 
k '2E(k') ' n =  k2 + k2(z/b)2 

1 + k2(z/b)2 

1\ = 1 ( 1 - vi 
+ 

1 - v �) A + B E1 E2 

where A and B are constants given by Eqs. ( 1 8. 1 5) and ( 1 8 . 16 ), and where 

1 - n z 
Qx = - -2- + kz; [F(cjJ, k ' ) - H(cjJ, k ')] 

Q� = - :2 + 1 + ki [ (:2 )H(c/J, k ' ) - F(c/J, k')] 
1 1 n z [ 1 , '

] 
Qy = 2n + l - k2 + kb k2 H(cjJ, k ) - F(cjJ, k )  

z 
Q� = - 1  + n + kz; [F(cjJ, k ' ) - H(cjJ, k ' )] 

( 1 8. 1 8) 

( 1 8. 1 9) 

( 1 8.20) 

( 1 8.20a) 
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18.6 

Also, v = v1 for a point in  body 1 and v = v2 for a point in  body 2 .  We note that 
the stresses depend on the variables, A, B, k, k ', v1 , v2 , E1 , E2 , b, and z. The first 
four variables depend only on the shape of the surfaces near the point of contact. 
Of these four, A and B are found from Eqs. ( 1 8 . 1 5) and ( 1 8 . 1 6), and from Sec. 1 8 .4, 
k '  = .J 1 - k2 • Therefore, one additional equation is needed for determining the 
value of k. This equation is 

B 
A 

( 1/k 2 )E(k ') - K(k' )  
K(k' )  - E(k ' )  

( 1 8.2 1 )  

The second group of four variables, v1 , v2 , E1 , and E2 , depend only on the proper
ties of the two bodies in contact and are found by tests of the materials. The vari
able b, the semiminor axis of the area of contact, depends on the eight variables 
previously listed, but it is important to note that it also depends on the load P. 
The equation expressing this fact is 

b = 3 3kE(k ') (P 1\) = ka 
2n 

( 1 8.22) 

Values of the variable z, which represent the distance of a point from the surface 
of contact, may be chosen. Then the three principal stresses at any point on the z 
axis rna y be obtained. 

METHOD OF COMPUTING CONTACT STRESSES 

Principal Stresses 
In Sec. 1 8.5  it is noted that the values of A and B must be computed first, and that 
in Eq. ( 1 8.2 1 )  the ratio B/A determines the value of k (and k ' ). It should be remem
bered that the values of A and B are related to the geometric shape and configura
tion of the two bodies. For example, if two cylinders are crossed so that they are 
in point contact with their longitudinal axes perpendicular, the value of B/A = 1 ,  
but if these cylinders are arranged so  that their longitudinal axes are parallel (line 
contact), B/A = oo. With the values of the four quantities A, B, k, and k' known, 
the terms in the brackets in Eqs. ( 1 8. 1 8), ( 1 8. 1 9), and ( 1 8.20) can be evaluated for 
a selected value of Poisson's ratio v. Fortunately, the value of v in these bracket 
terms has only a small influence on the final values of the stresses. Consequently, 
we take a value of v = -! to compute these terms. The actual values of v1 and v2 of 
the two bodies are used later in computing 1\. Thus, since the terms within the 
brackets do not depend strongly on the elastic constants of the two bodies or the 
load P, their magnitudes can be computed and tabulated for use as coefficients in 
the determination of the ratio b/ 1\. For example, let a value of the ratio B/A = 1 .24 
be chosen. From Eq. ( 1 8.2 1), k = 0.866 and hence, k' = 0.5. For specified values of 
the ratio kzjb, required coefficients can be found for determination of the stresses 
at a distance z from the area of contact. The results of these computations are 
given in Fig. 1 8.4, in which the coefficients of bj 1\ are plotted as abscissas, and the 
values of kzjb to the point at which the stresses occur are plotted as ordinates. 
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Values of principal stresses and shear stress 

-0.2 -0.3 

1 .6 �----�--�+---+-+-----+-----�--�B�----�-----; k = 0. 866; A 
= 1 . 24 

Compressive stresses 
are negative 
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Figure 1 8.;4 Curves showing variation in principal stresses, maximum shear stress, and 
octahedral shear stress with variation in distance from the contact surface; 
v = 0.25. 

The curves representing CJxx ' CJYY ' and CJzz show that their largest magnitudes occur 
when z = 0 (at the center of the surface of contact) and that all three stresses de
crease as z increases. The principal stress having the greatest magnitude is CJzz and, 
hence, at each point, (J max = (Jzz . In this example, in which B/A = 1 .24, the value 
of CJmax = 0.67bjl1. The coefficient 0.67 of b/11 is found at z = 0 from the curve CJzz · 

Maximum Shear Stress 
The maximum shear stress at any point is !max = f(CJmax - CJmin) . In Fig. 1 8 .4 the 
curves show that the magnitudes of CJxx and CJYY decrease more rapidly than that of 
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(Jzz at points just beneath the surface of contact. Because of this fact, the maximum 
shear stress at points just beneath the surface of contact increases in magnitude and 
reaches its maximum value f(CJzzs - CJYYJ at Z8 , as shown by the curve marked t. 
In this example in which B/A = 1 .24, the value of tmax = 0.22b/ 11, and the depth 
kz5jb = 0.44, that is, zs = 0.44b/0.866 = 0. 5 1 b. The coefficient 0.22 of b/11 is the 
ordinate to the t curve at the depth Z8 • 

Maximum Octahedral Shear Stress 
The octahedral shear stress toct [see, Eq. (2.22)] is 

The values of toct have been computed by this equation for several points along the 
z axis and are plotted as ordinates to the curved marked toct . In this example, for 
B/A = 1 .24, the maximum value of the octahedral shear stress toct(max) = 0.2 1bjl1, 
and it occurs at the same Z8 = 0. 5 1b as the maximum shear stress. The coefficient 
0.2 1  of b/ 11 is the ordinate to the toct curve at Z8 • 

Maximum Orthogonal Shear Stress 
As noted above, the maximum shear stress and maximum octahedral shear stress 
occur in the interior of the contacting bodies at points located equidistant from the 
tangent plane on a line perpendicular to the center of the contacting area. These 
maximum values are considered to be the significant stresses in certain failure cri
teria associated with initiation of yielding (Chapter 4). Other shear stress compo
nents that are considered to be significant in the fatigue failure of bearings and 
other rolling elements (e.g., cylinders) in contact are shear stresses that occur on 
planes perpendicular and parallel to the plane tangent to the contact area. For 
example, with reference to Figs. 1 8 .2b and d, orthogonal shear stress components 
CJxz and CJyz act on a plane perpendicular to the z axis ; they are called orthogonal 
shear stresses since they act also on planes x-y and y-z that are perpendicular 
(orthogonal) to the plane of contact. These shear stress components are zero on 
the z axis, where tmax occurs. We choose the x axis in the direction of rolling and 
consider only those problems for which the x axis coincides with either the major 
or minor axes of the contacting ellipse. The maximum orthogonal shear stress t0 
is defined as CJxz(max) ' which occurs at points in the interior of the contacting bodies 
located in the (x, z) plane equidistant from the z axis at some distance from the 
contacting surface. 

Although t0 is always smaller than tmax ' t0 for a given point in a contacting body 
changes sign as the t;Olling element (the contact area) approaches and leaves the 
region above the point. Therefore, the range of the maximum orthogonal shear 
stress is 2t0 , and for most applications this range is greater than the range of the 
maximum shear stress tmax · Note that CJyz(max) may be greater than t0 ; however, 
CJyz(max) does not change sign during rolling so that the range of CJyz is equal to 
CJyz(max) ' which is less than 2t0 . The range in shear stress is considered to be impor
tant (Moyar and Morrow, 1964) in studies of fatigue failure due to rolling contact. 

The location of the point (perpendicular distance to the point from the tangent 
plane at the contact area) at which t0 occurs, as well as the magnitude of t0 , is a 
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function of the ellipticity (values of a, b) and orientation of the contact ellipse with 
respect to the rolling direction (Moyar and Morrow, 1964) In particular, for toroids 
under radial loads (Fig. 1 8 .5) Fessler and Ollerton ( 1 957) have derived expressions 
for the orthogonal shear stress components (Jxz ' (Jyz (Fig. 1 8.6). Their results are, 
with the notations of Sec. 1 8.4 and 1 8 . 5, 

axz = -�:� = - ! [£�;,)] 
3PR b [ R J (Jyz = - 2nb 2 = -

� kE(k') 
where 

and 

R = [( bx )2 ( by )2 (bz)2] a2 + c2 + b 2 + c2 + --;;-
where c2 is the positive root of the equation 

z 

Figure 18 .5 Toroids in contact. 

( 1 8.23) 

( 1 8.24) 

( 1 8.25) 

( 1 8 .26) 
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y 

X 

Figure 18.6 State of stress of an element. Compressive stresses are negative. 

The maximum values of CJxz and CJyz occur in the planes of symmetry, y = 0 and 
x = 0, respectively. For the plane of symmetry y = 0, we get 

= _ 3PQ(y = 0) = _ !!_ [kQ(y = 0)] 
(Jxz 2na2 � E(k ' )  

and for the plane of symmetry x = 0, we have 

= _ 3PR(x = 0) = _ !!_ [R(x = 0)] 
(Jyz 2nb 2 � kE(k' )  

In particular, we note that along the z axis (x = y = 0), CJxz = CJyz = 0. 

( 1 8.27) 

( 1 8.28) 

As noted earlier, in rolling contact problems, the perpendicular distance from 
the tangent plane at the contact area to the point at which the maximum range of 
r0 occurs (as the roller passes over a given region) and the magnitude of r0 depend 
on the ellipticity and orientation of the contact ellipse with respect to the rolling 
direction. Consequently, the geometric configuration of the contacting rollers is 
an important factor. For example, for contacting toroids (Fig. 1 8. 5 ), the distance 
z0 , from the contact surface, at which the maximum orthogonal shear stress 
r0 = CJzx(max) occurs is plotted in Fig. 1 8.7 ;  note that the contact ellipse semiaxis in 
the rolling direction is equal to b for e < 1 and a for e > 1 .  The magnitude of r0 is 
plotted in Fig. 1 8.8. (Fessler and Ollerton, 1957). 

The range of the maximum orthogonal shear stress 2r0 is considered to be im
portant in rolling fatigue problems as long as 2r0 is greater than the range of the 
maximum shear stress rmax · Fessler and Ollerton ( 1 957) found that 2r0 > rmax for 
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Figure 18.7 Distance z0 at which the maximum orthogonal shear stress occurs. 
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e < 2.25 when v = 0.25 for both bodies and that 2r0 > rmax for e < 2. 85 when 
v = 0. 50 for both bodies. Poisson's ratio for most isotropic materials falls between 
these two values. Furthermore, the contour surfaces for most rolling contact prob
lems result in values of e that are less than 2.25. 

Fatigue failure of members under rolling contact depends on the magnitude of 
2r0 for e < 2.25; however, the magnitude of the range of the orthogonal shear 
stress 2r0 for fatigue failure for a specified number of cycles is not equal to the range 
of maximum shear stress (for the same number of cycles of loading) in specimens 
(tension-compression or reversed torsion) that are generally used to obtain fatigue 
properties (Moyar and Morrow, 1 964). The high hydrostatic state of compressive 
stress in contact problems strengthens the material against fatigue failure. The 
usual procedure is to obtain the magnitude of r0 at which fatigue failure initiates 
for a specified number of cycles for one orientation of the contact ellipse and one 
value of e and assume that fatigue failure for another rolling contact stress problem 
having a different value of e will occur for the same number of cycles when r0 has 
the same magnitude. Since O"max is generally calculated for all contact stress prob
lems, it is not necessary that r0 be calculated if the ratio 2r0/0"max is plotted vs e 
(Fig. 1 8.9). The curve in Fig. 1 8.9 has been plotted for v = 0.25. Since O" max depends 
on v, whereas r0 does not, the curve in Fig. 1 8.9 is moved slightly for other values 
of v. The ratios 2r0/rmax or 2r0/roct(max) vs e could also be plotted ; however, only 
one plot is needed and 0" max is more often calculated than !max or !oct(max) . 

To illustrate the use of Fig. 1 8 .9 in the analysis of rolling contact stress fatigue 
problems, let fatigue properties for rolling contact stress be determined using two 
cylinders that roll together. Since the major axis of the contact ellipse is large com
pared to the minor axis b, e is assumed to be equal to zero. Let O"max l be the max
imum principal stress in the cylinders when fatigue failure of the contact surface 
occurs after N cycles of load. From Fig. 1 8 .9 we read 2r0 = 0.500"max l · Let the 
toroids in Fig. 1 8 . 5  be made of the same material as the cylinders. Let the radii of 
curvature be such that e = 1 . 3 ;  for this value of e we read 2r0 = 0.400"max2 from 
Fig. 1 8.9. The magnitude of O"max2 such that fatigue failure of the toroids occurs 
after the same number of cycles N as the two cylinders is obtained by setting the 
two values of 2r0 equal. Thus, we obtain O"max2 = 1 .250"max l · This result is based on 
the assumption that the fatigue strength of the material is the same for both types 
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Figure 18 .9 Ratio of range of maximum orthogonal shear stress to O"max (v = 0.25). 
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of loading. Moyar and Morrow ( 1 964) indicate that the fatigue strength is not the 
same because of the size effect. Because of the larger volume of material under stress 
for the cylinders than the toroids, the fatigue strength for the toroids should be 
larger than for the cylinders . Thus, the magnitude of 2r0 for the toroids should be 
larger than for the cylinders in order to produce fatigue failure in the same number 
of cycles. Our result that o-max2 = 1 .25o-maxl is therefore conservative. If fatigue 
properties for materials are obtained for e = 0, the use of Fig. 1 8.9 without cor
rection for the size effect predicts conservative results. 

Curves for Computing Stresses for Any Value of B /A 
The above example in which B/A = 1 .24 (k = 0.866) shows that for a value of B/A 
(or k), a set of curves may be drawn representing the values of the principal stresses 
o-xx ' o-YY ' and o-zz along the z axis at small distances z from the surface of contact. 
These curves may be used to find the magnitude and location of the maximum shear 
stress and maximum octahedral shear stress. Curves may also be constructed for a 
wide range of values of the ratio B/A. For each value of B/A, the maximum values 
of stresses may be found from the equations 
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Figure 1 8 . 1 1  Stress and deflection coefficients for two bodies in contact at a point. 

where the values of the coefficients ca , c. , and cG may be read from the curves 
shown in Fig. 1 8. 10. In the example in which B/A = 1 .24, the values of the coeffi
cients were given as ca = 0.67, c. = 0.22, and cG = 0.2 1 .  In Figs. 1 8. 10 and 1 8. 1 1 , 
values of these coefficients for use in Eq. ( 1 8.29) are given as ordinates to the curves 
marked ca , c. , and cG for a range of values B/A from 1 to 10,000. The values of k 
that are required in computing the semimajor axis a and semiminor axis b of the 
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area of contact are given as ordinates to the curved marked k. The value of b that 
may be computed by using Eq. ( 1 8.22) is found as follows. Equation ( 1 8.22) is 
rewritten as 

( 1 8 .30) 

in which cb = -J3kE(k ')/2n. The values of k (and k') as found from the curve 
marked k are used to compute the value of the coefficient cb . These values of cb 
are given as ordinates to the curve marked cb . The length of the semimajor axis 
is a = bjk. The distance zs from the surface of contact to the location on the z axis 
of the point at which the maximum stresses '!max and '!oct(max) occur is 

( 1 8. 3 1 ) 

The coefficient czs is plotted in Figs. 1 8. 10 and 1 8. 1 1 . The examples following 
Sec. 1 8.7 illustrate the use of Figs. 1 8. 10 and 1 8. 1 1 . 

DEFLECTION OF BODIES IN POINT CONTACT 

An expression for the distance b = b1 + b2 through which two bodies in contact 
at a point move toward each other when acted on by a load P (Fig. 1 8. 3c) is 
given by Eq. ( 1 8. 1 7). The deflection b is sometimes called the approach because it 
expresses the sum of the "deflections" of the two bodies as they approach each 
other. The expression for the value of b is given by the following equation due to 
Hertz ( 1 895). 

b = 3kPK(k ') (A + B) 
2n b/ 11 ( 1 8 .32) 

where P is the load, K(k' )  is the complete elliptic integral described in Sec. 1 8.4, and 
A, B, k, 11, and b are defined in Sec. 1 8.4 and 1 8.5. For convenient use of Eq. ( 1 8.32), 
the substitution of 

3kK(k ' )  
Co = --2- (1 8 .33) 

is made to obtain 

( 1 8. 34) 

In Eq. ( 1 8 .3 3), the value c0 depends only on k (and k'), and since from Eq. ( 1 8.2 1) 
there is a value of B/A corresponding to each value of k, there is a value of c0 cor
responding to each value of B/A. In Figs. 1 8. 10 and 1 8. 1 1  values of this coefficient 
have been computed by Eq. ( 1 8 .33) and plotted as ordinates for the curve marked 
c0 • Equation ( 1 8.34) gives approximate results since the elastic strains in the two 
bodies away from the contact region are neglected. 
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EXAMPLE 18.1  
Contact Stresses Between Two Semicircular Disks 

Let the two semicircular disks in Fig. 1 8. 1  be made of steel (E1 = E2 = 200 GPa 
and v1 = v2 = 0.29). The radii of curvature of the two surfaces at the point of con
tact are R1 = 60 mm, R'1 = 1 30 mm, R2 = 80 mm, and R� = 200 mm. The angle IX 
between the planes of minimum curvature is n/3 rad. If the load P = 4 .50 kN, 
determine the maximum principal stress, maximum shear stress, and maximum 
octahedral shear stress in the disks and state the location of the point where each 
of these stresses occur. Determine the approach b for the two disks because of 
load P. 

SOLUTION 

All stress and displacement calculations require first that values be obtained for 
B, A, and �; these are given by Eqs. ( 1 8 . 1 5), ( 1 8. 1 6), and ( 1 8 .20a). 

( 
1 1 

) ( 
1 1 

) 
. 2 rc

]

1 /2 
- 4 

60 
-

1 30 80 
-

200 
SID 3 

= 0.00838 mm- 1 

� = 
2(1  - v2 ) 

= , 2[ 1  - (0.29)2] 
(A + B)E (0.0 1255 + 0.00838)(200 X 10 3) 

= 438 x 10-6 mm3/N 

B 
A 

= 1 . 50 

The coefficients needed to calculate b, a-max ' tmax ' toct(max) ' Z8 , and the deflection are 
read from Fig. 1 8. 10 for the ratio B/A = 1 . 50. Hence, by Fig. 1 8 . 10 we obtain the 
following coefficients :  cb = 0.77, ca = 0.72, c. = 0.24, cG = 0.22, czs = 0. 53 ,  and 
c0 = 2. 10. For known values of cb , P, and �' Eq. ( 1 8. 30) gives 

b = Cbm = 0.77�(4. 5  X 103 )(438 X 10-6 )  = 0.965 mm 

from which 

b 0.965 
� 

= 
438 x 10-6 

= 2203 MPa 
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Values of a-max ' tmax ' toct(max) ' Z8 , and b are obtained by substituting known values 
of the coefficients into Eqs. ( 1 8.29), ( 1 8. 3 1), and ( 1 8. 34). 

b 
O"max = - ca � = - 0.72(2203) = - 1 586 MPa 

b 
'tmax = c. � = 0.24(2203) = 529 MPa 

b 
'toct(max) = CG � = 0.22(2203) = 485 MPa 

Z8 = Czsb = 0.53 (0.965) = 0. 5 1  mm 

b = Co P (A + B) = 2. 10(4.5 x 103 ) (0.0 1255 + 0.00838 ) 
TC bj� TC 2203 

= 0.029 mm 

The maximum Hertz stress o-max = - 1 586 MPa occurs at the contact surface under 
the load. The maximum shear stress and maximum octahedral shear stress occur 
at zs = 0.5 1  mm from the surface of contact. 

EXAMPLE 18.2 
Contact Stresses in a Steel Ball Bearing 

A steel ball bearing consisting of an inner race, an outer race, and 1 2  balls is shown 
in Fig. E1 8.2 (E = 200 GPa, v = 0.29, and Y = 1600 MPa). A rated load of P0 = 
4.2 kN is given in a manufacturer's handbook for this bearing when operated at 
3000 rpm. An empirical relation (Allen, 1945) is used to determine the load P on 
the topmost ball that bears the largest portion of the load; P = 5P0/n = 1 .75 kN 
in which n is the number of balls. 

(a) At the region of contact between the inner race and topmost ball, determine 
the maximum principal stress, maximum shear stress, maximum octahedral 
shear stress, dimensions of the area of contact, maximum orthogonal shear 
stress, and distance from the point of contact to the point where these stresses 
occur. 

(b) What is the factor of safety against initiation of yielding based on the octa
hedral shear stress criterion of failure? 

SOLUTION 

(a) Let the ball be designated as body 1 and the inner race as body 2 so R1 = R'1 = 
4.76 mm, R2 = -4. 86 mm, and R� = 1 8.24 mm. We substitute these values in 
Eqs. ( 1 8. 1 5) and ( 1 8. 1 6) to obtain values for A and B. The following results are 
obtained: 

B = 0. 1 3245 mm- \  

� = 2 1 - v 2 

A + B E 

A =  0.002 16  mm-\ 
B - 6 1 3 A - . 

(0. 1 3246 + 0.002 16)(200 X 103 ) 

= 68.0 x 10-6 mm3/N 
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(a) 

R 1 = 4. 76 mm 

p 

Figure El 8.2 Contact load in ball bearing. 

R2 = -4.86 m m  

By Fig. 1 8. 10, with B/A = 6 1 .3 ,  we obtain the following values for the coeffi
cients :  cb = 0.32, k = 0.075, ca = 1 .00, c. = 0.30, cG = 0.27, and Czs = 0.78. 
Hence, 

b = Cbm = 0.32.Jl .75 X 103(68.0 X 10-6 ) = 0. 1 574 mm 

a = � = O. l 574 = 2.099 mm k 0.075 
b 
� 

0. 1 574 
68.0 x 10-6 = 23 1 5  MPa 

b 
O"max = - ca L\ = - 1 .00(23 1 5) = - 23 1 5  MPa 

b 
tmax = c. L\ = 0.30(23 1 5) = 695 MPa 

b 
toct(max) = CG L\ = 0.27(23 1 5) = 625 MPa 

The maximum principal stress occurs under the load at the contact tangent 
plane. The maximum shear stress and maximum octahedral shear stress are 
located at a distance 

Z8 = Czsb = 0.78 (0. 1 574) = 0. 1 23 mm 
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from the contact tangent plane directly under the load. The magnitude of the 
maximum orthogonal shear stress is obtained from Fig. 1 8.8 . Since b is in the 
direction of rolling, e = bja = k = 0.075. From Fig. 1 8.8, we obtain 

_ 0.486b _ 0.486(0. 1 574) _ 6 M to - 2� - 2(68.0 x 10-6 ) - 55 Pa 

The location of the maximum orthogonal shear stress from the contact tan
gent plane is obtained from Fig. 1 8.7 . 

z0 = 0.4 1b = 0.4 1 (0. 1 574) = 0.065 mm 

(b) Since contact stresses are not linearly related to load P, the safety factor is not 
equal to the ratio of the maximum octahedral shear stress in the specimen used 
to obtain material properties and the maximum octahedral shear stress in the 
ball bearing. The magnitude of the yield load Py for a single ball may be 
obtained from the relation 

from which 

Py = 3076 N 

The safety factor SF is equal to the ratio of Py to P 

Significance of Stresses 

SF = Pr = 3076 
= 1 76 

p 1 750 . 

In the preceding examples, the magnitude of the maximum principal stress is quite 
large in comparison with the value of this stress usually found in direct tension, 
bending, and torsion. In these problems, as in all contact stress problems, the three 
principal stresses at the point of maximum values are all compressive stresses. As 
a result, the maximum shear stress and maximum octahedral shear stress are 
always less than one-half the maximum principal stress; we recall that for a state 
of uniaxial stress (one principal stress), the maximum shear stress is one-half the 
principal stress. In fact by a comparison of the values of ca , c. , and cG for various 
values of B/A in Figs. 1 8 . 10 and 1 8. 1 1 ,  we see that when B/A = 1 , c. = 0.32ca , and 
cG = 0.30ca and when B/A = 100 or larger, c. = 0.30ca and cG = 0.27ca . Thus, tmax 
and toct(max) are always slightly smaller than one-third of the maximum principal 
stress a-max · This fact is of special importance if the maximum shear stress or the 
octahedral shear stress is considered to be the cause of structural damage (failure) 
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18.8 

of the member ; if the shear stresses are relatively small in comparison to the max
imum principal stress, very high principal stresses can occur. However, the max
imum utilizable values of the maximum shear stress or maximum octahedral shear 
stress are not easily determined, because in many problems involving two bodies 
under pressure at a small area of contact, such as occurs in rolling bearings, there 
are additional factors that affect the behavior of the material, for example, sliding 
friction, the effect of a lubricant, the effect of repeated loads, the effect of variation 
in the metal properties near the surface of contact such as that due to case harden
ing, and the effects of metallurgical changes that often occur in parts such as the 
races of ball bearings due to the repeated stressing. 

STRESS FOR TWO BODIES IN LINE CONTACT. LOADS 
NORMAL TO CONTACT AREA 

If two cylindrical surfaces are in contact, the contact region is approximately along 
a straight-line element before loads are applied. Figure 1 8. 1 2a illustrates contact 
between two circular cylinders, the line of contact being perpendicular to the paper. 
Figure 1 8 . 1 2b also shows a line contact of a circular cylinder resting on a plane. 
Figure 1 8 . 1 2c shows a line contact of a small circular cylinder resting inside a larger 
hollow cylinder. In these cases, the radii R'1 and R � ,  which lie in a plane perpendi
cular to the paper, are each infinitely large so that 1/R'1 and 1/R�  each vanish iden
tically and the angle a =  0 (Fig. 1 8 .3b). Therefore, from Eqs. ( 1 8 . 1 5) and ( 1 8 . 1 6) the 
expressions for B and A are 

A = 0, B - = 00 A 

where R1 and R2 are the radii of curvature of the cylindrical surfaces (Fig. 1 8. 1 2). 
Note that R2 is negative in Fig. 1 8 . 1 2c. Hence, the value of the ratio B/A is infinitely 

\ 

(a) (b) (c) 

Figure 1 8. 1 2  Line contact between cylindrical bodies. 
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large, and from Eq. ( 1 8 .2 1) the corresponding value of k approaches zero. However, 
k is the ratio of the semiminor axis b of the area of contact to semimajor axis a 
[Eq. ( 1 8.22)] and, therefore, a must be infinitely large, which is the case of contact 
along a line between two bodies. The area of contact, when a distributed load of w 
(force per unit length) is applied, is a long narrow rectangle of width 2b in the x 
direction and length 2a in the y direction. When k = 0, Eqs. ( 1 8. 1 8), ( 1 8 . 19), and 
( 1 8.20) for the stresses at points on the z axis at various distances z/b from the con
tact surface do not involve elliptic functions. In this case, 

ayy = - 2{FG) - �]! 
(J = -

[
(..j 1 + (z/b)2 - zjb)2

]
!!_ 

XX -J 1 + (z/b)2 � 

a 
•• 

= -[_,!1  +\zjb)Z 
] ! 

The value of b from Eq. ( 1 8.22) for the limiting case in which k = 0 is 

( 1 8 .35) 

( 1 8 .36) 

( 1 8 .37) 

( 1 8. 3 8) 

in which w is the load per unit length of the contact area. The value of � is 
[Eq. ( 1 8.20a)] 

( 1 8. 39) 

where R1 and R2 are the radii of curvature of the cylindrical surfaces as shown in 
Fig. 1 8. 1 2. The values of the stresses at a point on the line of contact are obtained 
from Eqs. ( 1 8.3 5), ( 1 8 .36), and ( 1 8 .37) by setting z = 0. 

Maximum Principal Stresses : k = 0 
It is seen from Eqs. ( 1 8 .35), ( 1 8 .36), and ( 1 8 .37) that the principal stresses (Jxx ' (JYY ' 
and CJzz have their maximum numerical value when zjb = 0, that is, at the surface 
of contact. These stresses are 

b 
(Jzz = - � ( 1 8 .40) 

Maximum Shear Stress : k = 0 
The shear stress at any point on the z axis is t = ! (CJxx - CJzz). If the expressions for 
CJxx and CJzz from Eq. ( 1 8 .36) and ( 1 8 .37) are substituted in this equation for t and 
the first derivative of t with respect to z is equated to zero, the value of z (or zjb) 
found from the resulting equation is the distance from the contact surface at which 
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the greatest value tmax of the shear stress occurs . The value thus found is z5jb = 
0.786 1 .  At this point, the principal stresses are, from Eqs. ( 1 8. 3 5 - 1 8.37), 

Hence, 

vb 
(Jyy = - 0.97 1 8 � 

(Jzz = -0.786 1 (!) 
'Lmax = ! (CJxx - CJzz) = 0.300(!) 

( 1 8.4 1 )  

( 1 8.42) 

At z5jb = 0.786 1 ,  the magnitude of CJxx is smaller than that of CJYY for values of v 
greater than about 0. 19. 

Maximum Octahedral Shear Stress : k = 0 
The maximum octahedral shear stress occurs at the same point as the maximum 
shear stress and is found by substituting the values of CJxx ' CJYY ' and CJzz from 
Eq. ( 1 8.4 1) into Eq. (2.22). The result is 

b 
Loct(max) = 0.27 � ( 1 8.43) 

We note that the coefficients for determining the quantities CJmax ' tmax ' toct(max) ' and 
zs as obtained from Figs. 1 8. 10 and 1 8. 1 1  for values of B/A greater than about 50 
are 1 .00, 0.30, 0.27, and 0.78, respectively, and these are the same coefficients found 
for the case of line contact between two bodies. This fact means that when the ratio 
B/A is about 50 or larger, the area of contact between the two bodies is very nearly 
a long narrow rectangle. 

STRESSES FOR TWO BODIES IN LINE CONTACT. 
LOADS NORMAL AND TANGENT TO CONTACT AREA 

In the preceding sections, the contact stresses in two elastic bodies held in contact 
by forces normal to the area of contact were found. Frequently, the normal force 
is accompanied by a tangential (frictional) force in the contact area such as occurs 
when the teeth of spJir gears come into contact or when a shaft rotates in a bearing. 
The frictional force that results from the sliding contact lies in the plane of the area 
of contact in a direction perpendicular to the normal force. The presence of fric
tional force causes the maximum values of the contact stresses in the two elastic 
bodies to become substantially larger than those produced by a normal force acting 
alone. Furthermore, the presence of a frictional force combined with a normal force 
causes certain changes in the nature of the stresses. For example, when a normal 
force acts alone, the three principal stresses are compressive stresses at every point 
in the body near the contact area, and this fact makes it difficult to understand how 
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a crack can form and progressively spread to cause a separation type of failure such 
as occurs in pitting failures of some bearing surfaces. However, when a frictional 
force is introduced, two of the three principal stresses are changed into tensile 
stresses in the region immediately behind the frictional force (see Figs. 1 8. 14b and 
1 8 . 14c). If the coefficient of friction for the two surfaces of contact is sufficiently 
large, these tensile stresses are relatively large. However, if these tensile stresses are 
nominally small, as they probably are on well-lubricated surfaces, their values may 
be raised by stress concentration that results from surface irregularities or small 
microscopic cracks that usually exist in the surfaces of real materials. These tensile 
stresses, when considered in conjunction with the many other factors involved, such 
as wear, nonhomogeneity of the material, and type of lubrication, help in explain
ing why a crack may develop and progressively spread in the surface of contact of 
such parts as gear teeth, roller bearings, etc. 

The addition of a frictional force to a normal force on the contact surface also 
causes a change in the shear stresses in the region of the contact surface. One 
important change is that the location of the point at which the maximum shear 
stress occurs moves toward the contact area. In fact, when the coefficient of friction 
is 0. 10 or greater, this point is located in the contact surface. The foregoing remarks 
also apply to the maximum octahedral shear stress. 

The facts described above may be illustrated for an elastic cylindrical roller 
pressed against the plane surface of another elastic body. 

Roller on Plane 
Let Fig. 1 8 . 1 3a represent the cross section of a long roller of elastic material that 
rests on a flat surface of a thick, solid elastic body. The roller is subjected to a dis
tributed load w (force per unit length), which presses it against the body over a long 

w 

f 

(a) (b) 

b 

(c) (d) (e) 
Figure 1 8. 1 3  Tangential (shear) forces in addition to normal forces on the con�'!-ct �r��!..- . 
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narrow area of contact whose width is 2b. A lateral dis tributed load f (force per 
unit length) causes the roller to slide on the body. If the coefficient of sliding fric
tion is designated as {J, then f = {Jw. In Fig. 1 8. 1 3b, a part of the solid body is shown 
with the distributed loads w and f acting on the contact area. In Fig. 1 8 . 1 3c, which 
is an enlarged view of the part near the contact area, the ordinates to the ellipse 
show the distribution of normal stresses over this area and the maximum stress is 
CJzz = - b/11 [Eq. ( 1 8.40)] . R. D. Mindlin ( 1949) has found that when sliding occurs, 
the shear stress on the contact area due to the frictional force f are distributed as 
ordinates to an ellipse as shown in Fig. 1 8. 1 3d, and the maximum shear stress (J zx 
at the center is CJzx = [J(b/ 11) .  Figure 1 8. 1 3e shows the distribution of the combined 
normal and friction stresses on the contact surface. C. K. Liu (Smith and Liu, 1 9  53) 
has derived the equations for the stresses CJzz ' CJxx ' CJYY ' and CJzx at any point in the 
body. These equations are 

¢1 = n(M + N) 

MN ,.)2MN + 2x2 + 2z 2 - 2b 2 

¢2 = n(M - N) 
MN ,.)2MN + 2x2 + 2z 2 - 2b 2 

( 1 8 .44) 

where M = ,.j(b + x)2 + z 2 and N = ,.)(b - x)2 + z 2 • The values of stress as given 
by Eq. ( 1 8.44) do not depend on y because it is assumed that either a state of plane 
strain or plane stress exists relative to the (x, z) plane. 

Principal Stresses 
In Eq. ( 1 8.44) CJYY is a principal stress, say, CJ3 , but CJzz and CJxx are not principal 
stresses because of the presence of the shear stress (Jzx that acts on these planes. Let 
the other two principal stresses at any point be designated by CJ1 and CJ2 • These two 
stresses may be found from stress theory (Sec. 2.4) with the values of (Jzz ' (Jxx ' and 
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-4 

1 
Friction coefficient = 3 

(a) 

-3 -2 - 1 

F . . ff' 
1 

nct1on coe •cent = -3 

(b) 

1 
Friction coefficient = 3 

(c) 

0 

b A 
+0.8 � 
-0.8 

fl. +0.4 � 

at -- At surface 

- - - At z = � 

+2 

� -- At surface b - - - At Z = 4 

CJ.J -- At surface 

-- - At z =! 

Figure 1 8. 1 4  Effect of tangential force on principal stresses. 

+4 

CJzx for the point. The principal stresses CJ1 , CJ2 , and CJ3 for points on the surface* 
and at a distance z = b/4 from the surface have been computed by this theory for a 
value of friction coefficient of ! , and their values have been plotted in Figs. 1 8 . 14a, 

b, and c. Each principal stress has its maximum value in the surface of the body at 
a distance of about 0.3b from the center of the area of contact in the direction of 
the frictional force. These maximum values, all of which occur at the same point, 
are CJ1 = - 1 .4bj�, CJ2 = -0.72bj�, and CJ3 = - 0.53bj�. These values may be com
pared with CJ1 = - b/�, CJ2 = - bj�, and CJ3 = - 0.5bj�, as found from Eq. ( 1 8.40) 

* A  special method of evaluating Eq. (1 8.44) may be used when solving for the stresses on the surface 
where z = 0 (Smith and Liu, 1953). 
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for the normal distributed load w only. This comparison shows that the frictional 
force corresponding to a coefficient of friction of t increases the maximum principal 
stress by 40% . Furthermore, the curves in Fig. 1 8 . 1 4  show that the principal stresses 
o-2 and o-3 are tension stresses near the edge of the contact area opposite the direc
tion of the frictional force. The largest magnitudes of these stresses are 0.667 (b/11) 
and 0. 167(b/11), respectively, but these values are sometimes quite large. The pres
ence of the tensile stresses on the surfaces aids in understanding the occurrence of 
fatigue failure by pitting, etc., of bearing surfaces subjected to repeated loads. 

Maximum Shear Stress 
From the values of maximum and minimum principal stresses at a point in the sur
face of contact, the maximum shear stress at the point on the surface is found to be 

= ! (-
1 .4b 0. 53b) 

= - 0 3 (!!_) 
Lmax 2 11 + 11 .4 11 ( 1 8 .45) 

To determine whether or not this value of the shear stress is the maximum value 
occurring in the body, it is necessary to compute the maximum shear stress at all 
other points, and especially at points inside the body under the contact area, since 
in all previous results presented in this chapter the maximum shear stress was found 
to be a subsurface shear stress. The values of shear stress at points on the surface 
and from the surface a distance of z = bj 4 (where the maximum subsurface shear 
occurs) have been computed by making use of the principal stresses in Fig. 1 8 . 1 4  
and are represented as ordinates to the curves in Figs. 1 8 . 1 5a, b ,  and c. There are 
three extreme values of shear stresses at each point ; they are 

t1 = !(oi - o-3 ) 
t2 = t(o-1 - o-2 ) 
t3 = t(o-2 - 0"3 ) ( 1 8 .46) 

From Figs . 1 8. 1 5a and c, we see that the ordinates to the curves representing t1 and 
t3 at distance z = b/4 from the surface are everywhere smaller than at the surface. 
This fact is true of the curves for these values at all distances from the surface. How
ever, in Fig. 1 8 . 1 5b, the curve for t2 at z = b/4 rises above the curve representing 
values of t2 at the surface. Such curves for values of t2 have been plotted for several 
different distances from the surface, and it is found that the largest value of t 2 is 
0.36bjl1. This value occurs at a distance of about b/4 from the surface. Therefore, 
the value of t1 = - 0.43bjl1 as given by Eq. ( 1 8 .46) is the maximum shear stress, 
and it occurs at a point in the contact area about 0.3b from the center of the area. 
In Eq. ( 1 8.46) the maximum value of t2 , which always occurs away from the sur
face, does not exceed t1 until the coefficient of friction has a value less than lo . 

Maximum Octahedral Shear Stress 
In Fig. 1 8 . 16 the ordinates to the curves represent the values of the octahedral 
shear stresses toct that have been computed at each point from Eq. (2.22) by substi
tution of values of the principal stresses obtained from Fig. 1 8 . 14. The maximum 
value is toct(max) = 0.37bjl1, and this value occurs on the contact area at the same 
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Friction coefficient = I 

(a) 

-0.4 -0.3 -0.2 -0. 1 0 

Friction coefficient = ..!. 3 

(b) 

-4 -3 -2 - 1  0 

Friction coefficient = k 

(c) 

+ 1  X 
b 

/ - ,  
\ 
\ 

t't --- At surface b -- - At Z = 4 

+2 +3 
.. 

'f2 
--- At surface b 

\ 
--- At z = 4 

\ 
\ 
\ 

\ ' ' ....... :""ooo. 

+ 1  +2 +3 X 
b ___.,... 

13 

t -- At surface b - - - At Z = 4 
b A 

+4 

+4 

Figure 18 . 1 5  Effect of tangential force on maximum shear stresses . 

point that the maximum principal stress and maximum shear stresses occur 
(Figs. 1 8. 1 4  and 1 8. 1 5). 

Effect of Magnitude of Friction Coefficient 
The magnitude of the coefficient of friction determines the size of the frictional dis
tributed load f for a given value of w and, therefore, of the values of the maximum 
principal stresses, maximum shear stresses, and maximum octahedral shear stress. 
The changes in the maximum contact stresses with the coefficient of friction are 
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F riction coefficient = l 3 

-4 - 3 -2 -1 0 

\ 
\ 
\ 

t'oct - At surface 
- - - At z = ! 4 

\ 

+1 
X 
b -+-

\ 
\ ' ' ' 

+2 

' 
' � -

+3 +4 

Figure 18 . 16  Effect of tangential force on octahedral shear stress. 

given by Table 1 8 . 1 .  The increases in the maximum values of the tensile and com
pressive principal stresses caused by the frictional distributed load are very nearly 
proportional to the increases in the friction coefficient. For small values of the fric
tion coefficient, the values of shear stress are increased only slightly by an increase 
in the friction coefficient, whereas there is a small decrease in octahedral shear up 
to a friction coefficient of i .  For the case of a disk in rolling contact with a cylinder 
and for {J = !, Mitsuda ( 1 965)  has noted that the range of maximum octahedral 
shear stress is 26% larger than the range of maximum orthogonal shear stress. 

TABLE 18.1 
Values of Contact Stresses Between Two Long Cylindrical Bodies Sliding Against Each Other While in 
Line Contact (Normal and Friction Forces) 

1 1 1 1 
Coefficient of Friction 0 - - -

12 9 6 3 

Kind of Stress and Values of Stress in Terms of b/A Corresponding to 
Its Location the Above Friction Coefficients 

Maximum tensile principal 
stress that occurs in 0 2 b 2 b  2 b  2 b  
surface at x = - b  12 L\ 9 L\  6 L\ 3 L\  

Maximum compressive 
principal stress that occurs b b b b b 

- 1 .09 
L\ 

- 1 1 3 - - 1 19 - - 1 .40
11 in the surface between L\ 

. 
L\ 

. 
L\ 

x = 0 and x = 0.3b 

Maximum shear stressa b b 
0.3 10! b b 

0.300 
L\ 

0.308 
L\ 

0.339 
L\ 

0.435  L\ 

Maximum octahedral b b 
0.255 ! 0.277! b 

0.272 
L\ 

0.265 
L\ 

0.368 L1 
shear stress a 

a Note that these stresses occur at the surface when the friction coefficient is lo or larger. 
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Range of Shear Stress for One Load Cycle 
The magnitude of the maximum shear stress or maximum octahedral shear stress 
serves to indicate if yielding has taken place or to determine the factor of safety 
against impending yielding. However, in the case of fatigue loading, the range of 
shear stress on a given plane in a given direction in that plane is more commonly 
used to indicate the severity of a given loading. In the absence of friction, the range 
of the orthogonal shear stress for two cylinders in rolling contact is 2r0 = 
0.50bjL1.[r0 = O"zx(max)J ; this range is greater than either the corresponding range 
of maximum shear stress (0.30bj L1.) or the corresponding range of octahedral shear 
stress (0.27b/ L1.). 

TABLE 18.2 
Principal Stresses at Fixed Point 0 as Contact Surface Moves Relative to 0 

Position of Contact Surface 
Relative to Fixed Point 0 

(A ) ----

(C) -

(D) ------

(E) ------

(F) � 
(G) � 
(H) ---------

-L--JI��
o 

�- x 
-l � - 0.50b 

Direction of Principle 
Stresses of Fixed Point 0 

03 = 0 -Q- o, , 0, ., , 0 

03 = 0 -¢-·· = -0.67 � • •  , = -0. 1 7  � 
280 

= -69 � 
b 03 = -0.51  -;i" 01 = - 1 .33 � 

360 P2 -' -0.72 �
b 

b 03 = -0.53 � 01 = -1 .39 -;i" 

02 = -0.67 !?... � b 03 = -0.50 -
b � 

j-600 
o1 = - 1 .33 A 

L� �03 = -0.36 ! 
� b 02 = -0.37 -

b � r- 0 1 = - 1 .04 :i" 

I � 730 

'-:3 = 0.05 !!.. � 02 = -0. 1 4 ! 01 = -0.61 !  
� 

� 03 = 0 �·· = o.&1 � • •  , = 0. 1 7  � 
03 = 0 -Q-·· - 0, ., = 0 
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The presence of friction has little influence on the range of the orthogonal shear 
stress. However, the ranges of shear stress on certain planes increase with the coef
ficient of friction; the maximum range is as large as 0.67b/� for fJ = ! .  Further
more, this range occurs for points at the free surface of the contacting bodies 
where fatigue failures are more likely to be initiated. 

For rolling cylinders in contact, Smith and Liu ( 1 953) have determined the prin
cipal state of stress for a point in the surface of one of the rolling cylinders for 
the special case of the coefficient of friction fJ = ! . The principal stresses are 
indicated in Table 1 8.2 for a volume element located at a point 0 for several loca
tions of point 0 relative to the contact surface. For each location of point 0, the 
shear stress and octahedral shear stress attain maximum values on certain planes 
passing through point 0. 

The largest values of these maxima [ tmax and toct(max)J occur for the volume 
element located at point 0 in Fig. (D) of Table 1 8 .2. Smith and Liu noted the two 
sets of planes on which the largest values of tmax and toct(max> occur and determined 
the magnitude and sense of the shear stress acting on these planes for various loca
tions of point 0. They also defined the maximum range of shear stress on either set 
of planes to be the magnitude of the maximum diameter of the shear stress enve
lope. (These maximum ranges were found to be 0.53bj � and 0.63b/ �-) (Smith and 
Liu, 1 953). 

Note that in Figs. (B) of Table 1 8.2 the maximum shear stress for these two 
states of stress occur on the same planes and they are opposite in sign; the range 
of shear stress for these planes is 0.67bj �- Only four sets of the infinite number of 
planes through point 0 [including planes perpendicular to the x and z axes on 
which t0 = CJzx(max) occurs] were investigated; therefore, the range of shear stress 
(0.67bj �) may not be the largest that occurs. However, the results do indicate that 
a tangential component of force at the contact surface increases the probability of 
fatigue failure, particularly if the coefficient of friction approaches a value of ! . 

EXAMPLE 18.2 
Contact Stress in Cylinders with Friction 

The fatigue testing machine described in Problem 1 8. 1 3  has two identical steel 
disks (E = 200 GPa and v = 0.29) rolling together. The identical disks have a radius 
of curvature of 40 mm and width h = 20 mm. For rolling without friction, a load 
P = 24. 1 kN produces the following stresses : CJmax = 1 445 MPa, tmax = 433 MPa 
and toct(max) = 361 MPa. Let the cylinders be subjected to a load P = 24. 1 kN and be 
rotated at slightly different speeds so that the roller surfaces slide across each other. 
If the coefficient of sliding friction is ! , determine CJmax(tension), CJmax(compression), 
'tmax ' and 'toct(max) · 

SOLUTION 

From Table 1 8. 1  the value of the stresses are found as follows : 

( . ) 2 b 
(J max tension = 9 � 



D"max(compression) = - 1 . 1 3! 
b 

'tmax = 0.3 10 
� 

b 
Loct(max) = 0.255 

� 
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The magnitudes of � and b are given by Eqs. ( 1 8 .39) and ( 1 8 .38) 

� = 2 
( 1 - v

2) 
= 

2(40)( 1  - 0.292 ) 
= 0 0003664 R E 200 X 103 . 

b = 
!f!p � 

= 
2(24. 1 X 103 )(0.0003664) -, O 301 h 20 . .  5 mm 1C 1C --

b 
� 

= 1447 MPa 

Therefore, we have the following results : 

amax(tension) = � ( 1447) = 322 MPa 

O"max(compression) = - 1 . 1 3 ( 1447) = - 1635 MPa 

'tmax = 0.3 10( 1 447) = 449 MPa 

'toct(max) = 0.255( 1447) = 369 MPa 

The friction force (coefficient of sliding friction is �) increasses the maximum com
pression stress by 1 3 . 1% ,  maximum shear stress by 3 .7% , and maximum octahedral 
shear stress by 2.2% . 

PROBLEMS 
Section 18.7 

18. 1 .  A 'Steel railway car wheel may be considered a cylinder with a radius of 
440 mm. The wheel rolls on a steel rail whose top surface may be considered 
another cylinder with a radius of 330 mm. For the steel wheel and steel rail, 
E = 200 GPa, v = 0.29, and Y = 880 MPa. If the wheel load is 1 10 kN, 
determine 0" max ' t max ' t oct(max) ' 2 to ' and the factor of safety against initia
tion of yielding based on the maximum shear-stress criterion. 

18.2. Determine the vertical displacement of the center of the wheel in Prob
lem 1 8. 1  due to the deflections in the region of contact. 

Ans. b = 0. 1 1 6 mm 

18.3. In terms of P compute the maximum principal stress, maximum shear 
stress, and maximum octahedral shear stress in two steel balls (E = 
200 G Pa and v = 0.29) 200 mm in diameter pressed together by a force P. 
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18.4. Solve Problem 1 8.3 for the condition that a single steel ball is pressed 
against a thick flat steel plate. (Length in mm) 

Ans. (Jmax = - 6 1 {/P, 'tmax = 20{/P, 
Loct(max) = 1 8{/P 

18.5. Solve Problem 1 8.3 for the condition that a single steel ball is pressed 
against the inside of a thick spherical steel race of inner radius 200 mm. 

18.6. A feed roll (a device used to surface-finish steel shafts) consists of two cir
cular cylindrical steel rollers, each 200 mm in diameter and arranged so 
that their longitudinal axes are parallel. A cylindrical steel shaft (60 mm in 
diameter) is fed between the rollers in such a manner that its longitudinal 
axis is perpendicular to that of the rollers. The total load P between the 
shaft and rollers is 4.5 kN. Determine the values of the maximum principal 
stress and maximum shear stress in the shaft. Determine the distance from 
the plane of contact to the point of maximum shear stress, E = 200 GPa 
and v = 0.29. 

Ans. (J max = - 1 589 MPa, Lmax = 5 1 7  MPa, zs = 0.5 1 5  mm 

18.7. The longitudinal axes of the two feed rollers in Problem 1 8.6 are rotated 
in parallel planes until they form an angle of n/6 radians. The steel shaft is 
then fed between the two rollers at an angle of ref 12 radians with respect 
to each of the rollers ; again, P = 4. 5 kN. Determine the maximum prin
cipal stress, maximum shear stress, and distance from the plane of contact 
to the maxim urn shear stress. 

18.8. A cast-iron push rod (E = 1 1 7 GPa, v = 0.20) in a valve assembly is 
operated by a steel cam (E = 200 GPa, v = 0.29) (Fig. P 1 8.8). The cam is 
cylindrical in shape and has a radius of curvature of 5.00 mm at its tip. 
The surface of the push rod that contacts the cam is spherical in shape with 

p 

R 1  = 5 m m  Cam 

-1 r- 1 2 m m  

Figure P1 8.8 Contact load in valve tappet. 
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a radius of curvature 4.00 m so that the rod and cam are in point contact. 
If the allowable maximum principal stress for cast iron is - 1400 MPa, 
determine the maximum load P that may act on the rod. 

Ans. P = 5 .58 kN 

18.9. A fatigue testing machine used to determine fatigue life under rolling con
tact consists of a steel toroid (body 2) rolling on a steel cylinder (body 1 ), 
where R1 = 32 mm, R'1 = oo, R2 = 32 mm, and R� = 20 mm. For steel, 
E = 200 GPa, v = 0.29. 

(a) Determine an expression for a-max in terms of P. 
(b) Fatigue test results indicate that fatigue failure occurs at approxi

mately N = 109 cycles with a-max = - 2758 MPa. Determine the ap
plied load P. Since a = 0 and R1 and R2 lie in the x-z plane (see 
Fig. 1 8. 5), b (the minor semiaxis of the contact eclipse) is in the direc
tion of rolling. 

18.10. In the fatigue testing machine of Problem 1 8.9, the same cylinder is used, 
but the toroid is replaced by a second toroid, where R1 = oo, R'1 = 32 mm, 
R2 = 12 .8 mm, and R� = 32 mm. For the same steel properties as in 
Problem 1 8.9, 

(a) determine a-max for fatigue failure at approximately N = 109 cycles. 
Neglect size effects and assume that fatigue failure is governed by the 
maximum range 2t0 of the orthogonal shear stress. 

(b) Determine the required load P. Since a =  0 and R'1 and R� lie in the 
x-z plane (see Fig. 1 8.5 ), a (the major semiaxis of the ellipse) lies in 
the direction of rolling. 

Ans. P = 2.60 kN 

18. 1 1 . A hard steel ball (E = 200 GPa, v = 0.29) of diameter 50 mm is pressed 
against a thick aluminum plate (E = 72.0 G Pa, v = 0.33, and Y = 
450 MPa). Determine the magnitude of load Py required to initiate yield 
in the aluminum plate according to the maximum octahedral shear-stress 
criterion of failure. 

18. 12. For a safety factor SF = 1 . 75, 

Section 18.8 

(a) recalculate the required load in Problem 1 8. 1 1 . 
(b) For this load, determine the displacement (approach) b of the ball 

relative to the plate. 

Ans. P = 1 96 N, b = 0.006 mm 

18.13. A fatigue testing machine rolls together two identical steel disks (E = 
200 GPa, v = 0.29), with radii 40 mm and thickness h = 20 mm. In terms 
of the applied load P, determine O"max ' Lmax ' Loct(max) ' and to . 
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18.14. Test data for the disks of Problem 1 8. 1 3  indicate that fatigue failure occurs 
at approximately 108 cycles of load for o-max = - 1 380 MPa. 

(a) Determine the corresponding value of load P. 
(b) For a fatigue failure at 108 cycles and a factor of safety SF = 2. 50, 

determine the value of 0" max . 

Ans. (a) P = 2 1 .9 kN, (b) O"max = - 872 MPa 

18.15. The rail in Problem 1 8 . 1  wears in service until the top of the rail is flat 
with a width h = 100 mm. 

(a) For other conditions given in Problem 1 8. 1  remaining constant, 
determine the values of 0" max and t max . 

(b) Using the maximum shear-stress criterion of failure, determine the 
safety factor SF against initiation of yield. 

18. 16. A cylindrical steel roller, with diameter 30 mm, is used as a follower on a 
steel cam. The surface of the cam at the contact region is cylindrical with 
radius of curvature 6 mm. Under no load, the follower and cam are in line 
contact over a length of 1 5  mm. For a value o-max = - 1000 MPa, deter
mine the corresponding applied load P (E = 200 G Pa, v = 0.29). 

Section 18.9 

Ans. P = 1 .85  kN 

18.17. Two cylindrical steel rollers (E = 200 MPa and v = 0.29), each 80 mm in 
diameter and 1 50 mm long, are mounted on parallel shafts and loaded by 
a force P = 80 kN. The two cylinders are rotated at slightly different speeds 
so that the roller surfaces slide across each other. If the coefficient of sliding 
friction is {J = !, determine the maximum compressive principal stress, 
maximum shear stress, and maximum octahedral shear stress. 

18. 18. The two cylinders in Problem 1 8. 1 7 are hardened. It is found that fatigue 
failures occur in the cylinders after 109 cycles for o-max = - 1 500 MPa when 
fJ = 0. 

(a) Determine the load P that can be applied to the cylinders to cause 
fatigue<'failure after 109 cycles ({J = 0). 

(b) Determine the load P that can be applied to the cylinders to cause 
fatigue failure at approximately 109 cycles for fJ = -i . Assume that 
o-max to cause fatigue failure is inversely proportional to the range of 
shear stress on a given plane and that the maximum range of shear 
stress is 0.67 bj 1\ for fJ = ! . 

Ans. (a) P = 1 94 kN, (b) P = 55.2 kN 
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19.1  

THE FINITE ELEMENT 
METHOD 

INTRODUCTION 

The finite element method* is the most powerful numerical technique available 
today for the analysis of complex structural and mechanical systems. It is used to 
obtain numerical solutions to a wide range of problems. The finite element method 
is used to analyze both linear and nonlinear systems. Nonlinear analysis includes 
material yielding, creep or cracking; aeroelastic response; buckling and postbuck
ling response; contact and friction; etc. The finite element method is used for 
b9th static and dynamic analyses. In its most general form, the method is not 
restricted to structural (or mechanical) systems. It has been applied to problems in 
fluid flow, heat transfer, and electric potential. This versatility is a major reason for 
the popularity of the method. 

A complete study of finite element methods is beyond the scope of this book. So, 
the objective of this chapter is to outline the basic formulation for problems in 
linear elasticity. The formulation for plane elasticity is presented first. Then, the use 
of the method to analyze framed structures is examined. Finally, accuracy, con
vergence, and modeling techniques are discussed. Advanced topics , such as analysis 
of plate bending and shell problems, three-dimensional problems, and dynamic 
and nonlinear analysis, are left to more specialized texts. 

Analytical Perspective 
The classical method of analysis in elasticity involves the study of an infinitesimal 
element of an elastic body (continuum or domain). Relationships among stress, 
strain, and displacement for the infinitesimal element are developed (see Chap
ters 1 - 3) that are usually in the form of differential (or integral) equations that apply 
to each point in the body. These equations must be solved subject to appropriate 
boundary condition�. In other words, the approach is to define and solve a classical 
boundary value problem in mathematics (Boresi and Chong, 1 987). Problems in 
engineering usually involve very complex shapes and boundary conditions. Conse
quently, for such cases, the equations cannot be solved exactly, but must finally be 
solved by approximate methods ; for example, by truncated series, finite differences, 

* The discovery of the method is often attributed to Courant (1943). The use of the method in struc
tural (aircraft) analysis was first reported by Turner et al. ( 1956). The method received its name from 
Clough (1960). 
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numerical integration, etc. All these approximate methods require some form of 
discretization of the solution. 

By contrast, the formulation of finite element solutions recognizes at the outset 
that discretization is likely to be required. The first step in application of the 
method is to discretize the domain into an assemblage of a finite number of finite 
size elements (or subregions) that are connected at specified node points. The quan
tities of interest (usually nodal displacements) are assumed to vary in a particular 
fashion over the element. This assumed element behavior leads to relatively simple 
integral equations for the individual elements. The integral equations for an ele
ment are evaluated to produce algebraic equations (in the case of static loading) in 
terms of the displacements of the node points. The algebraic equations for all 
elements are assembled to achieve a system of equations for the structure as a 
whole. Appropriate numerical methods are then used to solve this system of 
equations. 

In summary, using the classical approach, we often are confronted with differen
tial (or integral) equations that cannot be solved in closed form. This is due to the 
complexity of the geometry of the domain or boundary conditions. Consequently, 
we are forced to use numerical methods to obtain an approximate solution. These 
numerical methods always involve some type of discretization. In the finite element 
method, the discretization is performed at the outset. Then, further approximations, 
either in the formulation or in the solution may not be necessary. 

Sources of Error 
There are three sources of error in the finite element method : errors due to approxi
mation of the domain (discretization error), errors due to approximation of the 
element behavior (formulation error), and errors due to use of finite precision arith
metic (numerical error). 

Discretization error is due to the approximation of the domain with a finite 
number of elements of fixed geometry. For instance, consider the analysis of a 
rectangular plate with a centrally located hole (Fig. 1 9. 1 a). Due to symmetry, it is 
sufficient to model only one-quarter of the plate. If the region is subdivided into 
triangular elements (a triangular mesh or grid), the circular hole is approximated 
by a series of straight lines. If a few large triangles are used in a coarse mesh, 
(Fig. 1 9. lb), greater discretization error results than if a large number of small 
elements are used in a fine mesh, (Fig. 1 9. 1 c). Other geometric shapes may be 
chosen fol= the elements. For example, with quadrilateral elements that can represent 
curved sides, the circular hole is more accurately approximated (Fig. 19 . 1d ). Hence, 
discretization error may be reduced by grid refinement. The grid can be refined by 
using more elements of the same type but of smaller size (h-re.finement, Cook et al., 
1 989) or by using elements of a different type (p-re.finement). 

Formulation error results from the use of finite elements that do not precisely 
describe the behavior of the continuum. For instance, a particular element might 
be formulated on the assumption that displacements vary linearly over the domain. 
Such an element would contain no formulation error when used to model a pris
matic bar under constant tensile load; in this case, the assumed displacement 
matches the actual displacement. If the same bar were subjected to uniformly dis
tributed body force, then the actual displacements vary quadratically and formula
tion error would exist. Formulation error can be minimized by proper selection of 
element type and appropriate grid refinement. 
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(a) 

(c) 

(b) 

(d) 

Figure 19. 1 Finite element models of plate with centrally located hole. (a) Plate geometry 
and loading. (b) Coarse mesh of triangles. (c) Fine mesh of triangles. (d) Mesh 
of quadrilaterals with curved edges. 

Numerical error is a consequence of round-off during floating-point computa
tions and the error associated with numerical integration procedures. This source 
of error is dependent on the order in which computations are performed in the 
program and the use of double or extended precision variables and functions. The 
use of bandwidth minimization * can help control numerical error. Generally, in a 
well-designed finite element program, numerical error is small relative to formula
tion error. 

* See Sec. 19.6 for a discussion of bandwidth minimization. 
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FORMULATION FOR PLANE ELASTICITY 

Elasticity Concepts 
One approach for developing the algebraic equations of the finite element method 
is to use energy principles. Fundamental energy expressions for an elastic solid are 
presented in Chapters 3 and 5. For plane elasticity, these expressions are simplified 
appropriately. The first law of thermodynamics states that for a two-dimensional 
body in equilibrium and subjected to arbitrary virtual displacements ( bu, bv), the 
variation in work of the external forces b W is equal to the variation of internal 
energy bU. Since virtual displacements are imposed, we define bW as the virtual work 
of the external loads and b U as the virtual work of the internal forces. The virtual 
work of the external loads bW can be divided into the work bWs of the surface 
tractions, the work bWB of the body forces, and the work bWc* of the concentrated 
forces. For a two-dimensional body, these quantities are [see Eqs. (3. 1 a), (3 . 3), (3.4), 
(3. 7) and (3 . 8) for definitions of the terms used] 

bW- bU = bW8 + bWB + bWc - bU = 0 ( 19. 1 )  

blfS = L (rrpx bu + CTpy bv) dS ( 1 9.2) 

bWB = L (Bx bu + By bv) dV ( 1 9. 3) 

bWc = L fix bui + L Fiy bvi ( 19.4) 

bU = L (rrxx bExx + CTyy bEyy + CTxy byxy) dV ( 1 9.5 )  

where (fix ,  fiy) are (x, y) components of the concentrated force F{ at point i, (bui , bvi) 
are (x, y) components of the virtual displacement at point i, and Yxy = 2Exy . In 
matrix t notation, 

bWs = Is {buf{Fs} dS 

bWB = L {buf{FB} dV 

bWc = L {buJT{Fi} 

bU = L {t5Ef{ rr} dV  

( 1 9 .6) 

( 1 9.7) 

( 1 9 .8) 

( 1 9.9) 

* Concentrated forces were not discussed in Chapter 3 or 5, but are included here for completeness. 
t In this chapter, vector quantities are denoted with braces { }. Two-dimensional arrays are contained 
in brackets [ ] .  
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where 
{ bu} = [bu bv] T 

{ buJ = [bui bvJ T 

{ Fs} = [o-Px O"py] T 

{FB} = [Bx By] T 

{FJ = [Fix Fiy] T 

{bE} = [bExx bEyy byxy]T 

{ 0"} = [o-xx O"yy O"xy]T 

In matrix form, the two-dimensional linear-elastic stress-strain relations are, by 
appropriate simplification of Eq. (3 .32), 

( 1 9. 1 0) 

where { E} = { Exx Eyy Yxy] T and [D] is the matrix of elastic coefficients. For plane 
stress, 

1 v 
E v 1 [D] = 

1 - v2 
0 0 

and for plane strain, 

1 - v 
E 

[ D] = -( 1-+-v-)(-1 -2-v) 
v 

0 

0 
0 

1 - v 
--

2 

v 
1 - v 

0 

0 
0 

1 - 2v 
2 

( 1 9 . 1 1 ) 

( 1 9 . 1 2) 

Similarly, the two-dimensional, small displacement, strain-displacement rela
tions are [see Eq. (2. 8 1)] , 

{E} = [L] {u} ( 1 9 . 1 3) 

where { u} = [u(x, y) v(x, y)] T and [L] is a matrix of linear differential operators 

a 
0 ax 

[L] = 0 
a 

( 1 9. 1 4) ay 
a a 
ay ax 

Displacement Interpolation: The Constant Strain Triangle 
Consider a plane elasticity problem such as that shown in Fig. 1 9 . 1 a. As discussed 
above, the first step in applying the finite element method is the discretization of 
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the domain into a finite number of elements. Consider triangular elements as shown 
in Figs. 19. l b and c. If the entire domain is in equilibrium, then too is each element. 
Hence, the above virtual work concepts can be applied to an individual triangular 
element. 

A typical triangular element is shown in Fig. 19 .2 with corner nodes 1 ,  2, and 3 
numbered in a counterclockwise order. The (x, y) displacement components at the 
nodes are (u 1 , v 1 ), (u2 , v2 ), and (u3 , v3 ) as shown. The nodal displacements are the 
primary variables (unknowns) that are to be determined in the analysis. In general, 
for plane elasticity elements, node i has two degrees of freedom (DO F), ui and vi , 
where the subscript identifies the node at which the DOF exist. Quantities that are 
continuous over the element (those not associated with a particular node) are 
denoted without a subscript. A single triangular element with three nodes has six 
nodal DOF. These DOF are ordered according to node numbering as 

( 19. 1 5) 

Displacements (u, v) at any point P within the element are continuous functions of 
the spatial coordinates (x, y). A fundamental approximation in the finite element 
method (that leads to formulation error) is that the displacement (u, v) at any point 
P in the element can be written in terms of the nodal displacements. Specifically, 
the displacement (u, v) at point P within the element is interpolated from the dis
placements of the nodes using interpolation polynomials. The order of the inter
polation depends on the number of DOF in the element. For the three-node tri
angular element, the displacement is assumed to vary linearly over the element. 

u(x, y) = a1 + a2x + a3y 
v(x, y) = a4 + a5x + a6y ( 1 9 . 1 6) 

The coefficients ai are constants (sometimes called generalized displacement co
ordinates) that are evaluated in terms of the nodal displacements. Before mak
ing this evaluation, we consider some properties of the linear displacement 
approximation. 

3 

Figure 19.2 Constant strain triangle element. 
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1 .  Substitution of Eq. ( 1 9 . 1 6) into Eq. ( 1 9 . 1 3) yields Exx = a2 , Eyy = a6 , and 
Yxy = a3 + as . Thus, the strain components in the element are constant ; hence, 
the name constant strain triangle (CST) element. Since the stress-strain rela
tions are linear [Eq. ( 1 9. 10)] , stress components are also constant in the 
element. 

2. If a2 = a3 = as = a6 = 0, then u(x, y) = a1 and v(x, y) = a4 . Constant values 
of u and v displacement indicate that the element can represent rigid-body 
translation. 

3. If a1 = a2 = a4 = a6 = 0 and a3 = - as , then u(x, y) = a3 y and v(x, y) = - a 3 x . 
Thus, for small strains and small rotations, the element can represent rigid
body rotation. 

These three element characteristics ensure that the solution will converge mono
tonically as the mesh is refined (see Sec. 1 9 .6 for a discussion of convergence). 

To express the continuous displacement field in terms of the nodal displace
ments, Eq. ( 1 9 . 1 6 ) is evaluated at each node. The resulting equations are then solved 
for the coefficients ai . Consider first the u displacement. 

u(x1 , Y1) = a1 + a2x 1  + a3y1 = U 1  
u(x2 , Y2 ) = a 1 + a2 x2 + a3 y2 = U2 
u(x3 , Y3 ) = a 1 + a2x3 + a3y3 = u3 

In matrix form, these equations are written as 

[A] {a} = {uJ 

where 

{a} = [::} and 

Solution of Eq. ( 1 9. 1 7 ) for {a} and substitution into Eq. ( 1 9. 1 6) yields 

1 
u(x, y) = 

2A (al + fJ1 x  + Y1 Y)u 1 

1 
+ 

2A (a2 + fJ2x + Y2Y)u2 

where A is the area of the triangle 

and 
A = t[x l(Y2 - Y3) + X2( Y3 - Y1 ) + x3( Y1 - Y2 )] 

et1 = X2Y3 - x3y2 , 
et2 = X3Y1 - x1y3 , 
et3 = X1 Y2 - X2 Y1 , 

fJ1 = Y2 - y3 , 
fJ2 = Y3 - Y1 , 
{33 = Y1 - Y2 , 

Y1 = X3 - X2 
Y2 = X 1 - X3 
Y3 = X2 - X 1 

( 19 . 1 7) 

( 1 9 . 1 8) 

( 19 . 19) 

( 1 9 .20) 
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Similarly, for the v displacement, 

1 
v(x, y) = 

2A (al + fJ1x  + Y1 Y)v 1 

1 
+ 

2A (a2 + fJ2x + Y2Y)V2 

( 19.2 1 )  

The functions that multiply the nodal displacements in Eqs. ( 1 9 . 1 8) and ( 19.21 )  
are known as shape functions (other common names are in terpolation and basis 
functions). The shape functions for the CST element are 

1 
N1(x, y) = 

2A (al + fJ1 x  + Y1 Y) 

1 
N2(x, y) = 

2A (a2 + fJ2x + Y2Y) 

1 
N3(x, y) = 

2A (a3 + {J3x + Y3 Y) 

Then Eqs. ( 1 9. 1 8) and ( 1 9.21 )  take the form 

In matrix notation 

where 

3 3 
u(x, y) = L Niui ,  v(x, y) = L �vi i = 1 

{u} = [N] {uJ 

{u} = [u(x, y) v(x, y)] T 

[N] = [
N1 0 N2 0 
0 N1 0 N2 

i =  1 

( 1 9.22) 

( 1 9 .23) 

( 1 9.24) 

The shape functions for the CST element are illustrated in Fig. 19. 3, where N1 = 1 
at node 1 and N1 = 0 at nodes 2 and 3. Shape functions N2 and N3 behave simi
larly. Another important characteristic of the shape functions is that 

3 
L Ni (x, y) = 1 .0 
i = 1 

which is a requirement for shape functions so that the element can represent rigid
body motion. 

Element Stiffness Matrix: The Constant Strain Triangle 
With the displacement field for the element expressed in terms of the nodal dis
placements, the remainder of the formulation involves relatively straightforward 
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2 
X 

2 2 
X X 

Figure 19.3 Graphical representation of shape functions for the CST element. 

manipulation of the virtual work expressions [Eqs. ( 1 9 . 1 ), ( 1 9 .6- 1 9 .9)] . Consider 
first the strain-displacement relations. Substitution of Eq. ( 1 9 .23) into Eq. ( 1 9 . 1 3) 
gives the relationship between continuous element strains and nodal displacements 

{E} = [L] [N] {ud = [B] {ud ( 1 9 .25) 

where, by Eqs. ( 1 9. 14) and ( 1 9.24), 

aN1 0 
aN2 0 

aN3 0 -

ax ax ax 

[B] = 0 
aN1 0 

aN2 0 
oN3 

- - --

ay ay ay ( 1 9.26) 

aN1 aN1 iJN2 aN2 aN3 oN3 
- - -

ay ax ay ax ay ox 

where [B] is partitioned into nodal submatrices. The matrix [B] is sometimes 
called the semidiscretized gradient operator. Since the shape functions for the CST 
element are linear in x and y, [B] contains only constants that depend on the 
nodal coordinates. 

For simplicity, temporarily assume that no body forces or surface tractions are 
applied to the element. However, concentrated loads at node points are permitted. 
The virtual work of these loads is [see Eq. ( 1 9 . 8)] 

( 1 9 .27) 

Substitution of Eqs. ( 1 9 .27) and ( 19.9) into ( 1 9 . 1 ) leads to 

( 1 9.2 8) 

Note that {o"} = [D] {E} , {E} = [B] {ud , and {bE} T = { bud r [B] r . Substitution of 
these expressions into Eq. ( 1 9.28) gives 
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Since { uJ and { buJ are nodal quantities, they can be removed from the integral. 
Thus, 

Since { bui } is arbitrary, Eq. ( 1 9.29) yields the result 

or 

where 

{Ft} = [f [BY[D] [B] d V  }u,} 

{�} = [K] {uJ 

[K] = t [BY[D] [B] d V  

( 19.29) 

( 1 9. 30) 

( 1 9. 3 1) 

The element stiffness matrix [K] relates nodal loads to nodal displacements in a 
system of linear algebraic equations; see Eq. ( 1 9. 30). For the CST element, all terms 
in the integral are constants. Hence, for an element of constant thickness t and 
area A, the element stiffness matrix is 

[K] = At [B] T[D] [B] ( 1 9. 32) 

The individual terms in [K] are denoted kii , where i, j = 1, 2, . . .  , 6 are the row and 
column positions, respectively. Since the element has six nodal DOF, [K] has order 
(6 x 6). The explicit form of the CST element siffness matrix for a plane stress con
dition is given in Table 19. 1 . 

Examination of Eq. ( 1 9. 30) helps to establish a physical interpretation of the 
stiffness coefficients (the individual terms in [K] ). Let a unit displacement be 
assigned to u1 and take all other DOF to be zero. The resulting displacement 
vector is 

{ ui } = [ 1 0 0 0 0 OJ T 

Substitution of this displacement vector into Eq. ( 19. 30) gives the force vector 
required to maintain the deformed shape. 

Hence, an individual stiffness coefficient kii can be interpreted as the nodal force in 
the direction of DOF i that results from a unit displacement in the direction of 
DOF j, while all other DOF are set equal to zero. The physical system is illus
trated in Fig. 1 9.4. 

Equivalent Nodal Load Vector: The Constant 
Strain Triangle 
Assume that body forces are applied to the CST element (surface tractions will be 
considered subsequently). The virtual work bWB of the body forces on the element 
during an arbitrary virtual displacement { bu} is given by Eq. ( 1 9.7 ). Substitution 

; ' "  - . .  -. � , - -,� ,-



TABLE 19.1 
CST Element Stiffness Matrix, Plane Stress Case (Partitioned into 2 X 2 Nodal Submatrices) 

column index 
} -+  1 

2 1 - v 2 Y 23 + -2- x 3i'l 

1 + v 
-2- x32 Y23 

2 

1 + v 
-2- x 32Y23 

2 1 - v 2 X32 + -2- Y 23 

3 I 1 + v I I Y31Y23 + -2- x 13 x 32 I I I I 1 - v I I VX32Y31 + -2- x l3 Y23 I 

4 5 
1 - v I 1 - v I 

VX 13 Y23 + -2- x32Y31 : I Y 12Y23 + -2- x21 X32 
I 

1 - v I 1 - v I 
X 13 X32 + -2- Y23 Y31 : VX32Y 12 + -2- X21 Y23 I 

6 
row index 

il 
1 - v 

VX21 Y23 + -2- x32Y12 I 1 

1 - v 
I 2 

X21 X32 + -2- Yl2 Y23 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C l 

1 + v 1 - v I 
2 1 - v 2 I 

Y31 Y23 + -2- x 13 x 32 VX32 Y31 + -2- X 13 Y23 : Y 31 + -2- x 13 I I 
1 - v 1 - v I 1 + v I 

vx 13 y23 + -2- x32 Y31 X 13 X32 + -2- Y23 Y31 : I -2- x l3 Y31 

1 + v I 1 - v I 
-2- x 13 Y31 : Y 12 Y31 + -2- x 13 X21 I I 
2 1 - v 2 

I 1 - v I 
X 13 + -2- Y 31 : VX 13 Y12 + -2- x21Y31 I 

1 - v 
VX21 Y31 + -2- x 13 Y l2 I 3 

1 - v 
X 13 X21 + -2- Y l2Y31 I 4 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 - v 
Y12Y23 + -2- X21 X32 

1 - v 
VX21 Y23 + -2- x32 Y 12 

1 - v I 1 - v 1 - v I I I 
VX32 Y 12 + -2- X21Y23 : Y 12 Y31 + -2- x 13 X21 VX 13 Y 12 + -2- x21 Y31 I I I I I I 

1 - v I 1 - v 1 - v I I I 
X21 X32 + -2- Y l2Y23 : VX21 Y31 + -2- x l3 y 12 X 13 X21 + -2- Y l2 Y31 I I I I 

Et 
C = 4A(l - v 2) '  xii = xi - xi ,  Y u  = Yi - Yi 

2 1 - v 2 1 + v 
Y 12 + -2- x 21 -2- x21Y 12 I 5 

1 + v 2 1 - v 2 I 6 -2- x21 Y 12 X 21 + -- y 12 2 



(a) 
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(b) 

Figure 19.4 Physical interpretation of kii .  (a) Undeformed element. (b) Deformed element, 
forces kil required to maintain u 1  = 1 .  

of Eq. ( 19.23) into Eq. ( 19.7) gives 

(19.33) 

The total external virtual work bW is the sum of the virtual work of the body forces 
and the virtual work of the concentrated forces so that Eq. ( 1 9.29) becomes 

{bu;f ({l'i } + L [NY{FB} dV - [L [BY[D] [B] dV }u;}) = 0 ( 19 .34) 

Comparison of Eq. ( 19. 34) with Eq. ( 19.29) shows that, with the addition of body 
forces, the load vector for the element is now 

( 19 .35) 

The vector { fi} is the equivalent nodal load vector for the element. That is, the 
work of the loads { fi} under the virtual displacement { buJ of the nodes is equi
valent to the work of the actual concentrated loads and body forces under the vir
tual displacement { bu} . 

In Eq. ( 19 .35), the" body force { FB} is expressed as a continuous function of the 
spatial coordinates. However, when constructing a finite element model, it is cus
tomary for the analyst to define element loads in terms of the intensity of the load 
at the nodes, rather than in functional form. The nodal force intensity is simply 
the magnitude of the body force at the node. Thus, for convenience, assume that 
the body force distribution may be expressed in terms of the force intensities at the 
nodes according to the relation 
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where {fBi} i s  the vector of nodal force intensities. Substitution of this relation 
into Eq. ( 19 .35) gives 

{P;} = {F;} + L [NY[NJ {!Bi} dV 

Since {fBi} does not vary over the element, that is, they are nodal quantities that 
can be removed from the integral, 

{�} = {Fi} + [Q] {fBi} ( 1 9. 36) 

where 

[Q] = L [NY[N] dV  

Thus, for a CST element, 

1 0 1 0 1 0 
0 1 0 1 0 1 

[Q] = At 1 0 1 0 1 0 
9 0 1 0 1 0 1 

1 0 1 0 1 0 
0 1 0 1 0 1 

Now suppose that, in addition to concentrated nodal loads and body forces, the 
element is subjected to surface tractions along a single edge and that the contin
uous load function { F8 } is expressed in terms of the nodal force intensities {fsJ 
by use of the shape functions. Since only one edge is loaded, only two of the nodes 
have nodal intensities and only these two nodes have equivalent nodal load com
ponents. Hence, for these two nodes, the interpolation equation is 

where the overbar indicates that only these two element nodes are included in the 
equation. 

By the same approach as for body forces, the equivalent nodal loads due to sur
face traction on one edge are 

( 1 9.37)  

where 

( 1 9 .38) 

and the integral is evaluated over the loaded edge, where dS = t ds, t = thickness 
and s is a coordinate along the loaded edge. The equivalent nodal load vector { � } 
in Eq. ( 19 .37) is then added to { �} from Eq. ( 1 9.36), but first it must be expanded 
from four to six terms to account for the fact that one node does not participate 
in the loading. 
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EXAMPLE 19.1 
Equivalent Nodal Loads for Linear Surface Traction 

A horizontally directed, linearly varying surface traction is applied to edge 1- 3 
of the CST element with nodal intensities as shown in Fig. E 19. 1 .  Determine the 
vector of equivalent nodal loads for the element. 

SOLUTION 

r 
3 ________________ � 

r 
b 

f1x '------+-----=a2l 
1 1 - I .1-E'-..... ---- a ------:;..;;. 

Figure El9. 1  

The surface traction function i s  interpolated from the nodal intensities at nodes 1 
and 3 the corresponding shape functions 

(a) 

With the coordinates of the nodes, the shape functions are simplified to 

y y Nl = 1 - b'  N3 = -
b 

(b) 

By Eq. ( 19 .38), with ds = dy, 

Ni 0 N1N3 0 

(c) [Q] = t r 0 Ni 0 N1N3 dy 
N1N3 0 N� 0 

0 N1N3 0 N� 

By Eqs. (b) and (c), 

b 
0 

b 
0 - -

3 6 

0 
b 

0 
b 

- -
[Q] = t 

3 6 
b b 
- 0 - 0 
6 3 

(d) 

0 
b 

0 
b 

- -
6 3 
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and by Eq. (a), the vector of nodal intensities {fsJ is 

{fsJ = [flx 0 f3x OJ T (e) 

With Eqs. (d) and (e), the equivalent nodal load vector {�} is obtained from 
Eq. ( 19.37) as 

{�} = 

tb(!�x + f�x) 
0 

- - - - - - - - - - - - -

tb e�x + f;x) 
0 

(f ) 

Equation (e) is partitioned to identify the equivalent nodal loads associated with 
nodes 1 and 3. 

If the vector {�} is expanded to include positions for node 2, it becomes 

{�} = 

tb(f�x + f�x) 
0 
0 
0 

- - - - - - - - - - - - -

tb(!�x + f;x) 
0 

Assembly of the Structure Stiffness Matrix and 
Load Vector 
To solve a plane elasticity problem by the finite element method, it is necessary to 
combine the individual element stiffness matrices [K]i and load vectors { P}i to 
form the structure stiffness matrix [K] and structure load vector { P} ,  respectively. 
To demonstrate the logic associated with the assembly process, two node numbering 
systems for the nodes are used. Let numerals in boldface refer to the nodes of the 
structural system and numerals in lightface the nodes for a particular element. Like
wise, lightface [K] , {ui } ,  and {�} refer to element quantities, whereas boldface [K] , 
{ uJ, and { �} refer to structure quantities. A specific two-dimensional discretiza
tion is shown in Fig. 19 .5 to illustrate the node numbering. For this model, there 
are 6 structure nodes but a total of 12 separate element nodes. The assembly pro
cess involves assigning unique identifiers to each of the nodes in the model, using 
the structure node numbering, and then combining element stiffness matrices and 
load vectors according to the numbering. 

For purposes of demonstration, we consider first a mathematically precise, but 
computationally inefficient, approach for this assembly. Then, we discuss an ap
proach that is more appropriate for computer implementation. 
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2._ ________________ .4 __________________ 6 
3 

1 

2 3 3 

2 1 1 
3 

NN = 6, NE = 4 

Figure 19. 5  Assembly of  CST elements. 

2 3 

2 
5 

For element j, define a matrix [M]i with order (6 x 2NN)*, where NN is the 
number of nodes in the structure, to define the mapping from the element DOF 
vector {ui }i , with order (6 x 1 ), to the structure DOF vector { ud, with order 
(2NN X 1) . 

{uiL = [M]i{ ui } ( 19 .39) 

By Fig. 19 .5, the mapping for element 1 takes the form 

{ud l  = [u l v1 u2 v2 u3 v3 ] [  
{ ud = [u1 V t  u2 v2 u3 v3 v6 ]T  

and 
1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 

[M] l = 
0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 

By inspection or by Eq. ( 1 9. 39), the DOF mapping for element 1 is 

[ul v 1 u2 v2 u3 v3 ][  � [ut V t  u4 v4 u2 v2 ]T  

The double-headed arrow indicates the reversibility of  the mapping of the quan
tities on the left to the quantities on the right. Nodal forces and stiffness coefficients 
for element 1 follow the same mapping. 

Next, the virtual work expressions for the entire structure are written as the sum 
of the virtual work for all elements 

NE NE I J1 {Ou; }J{F;}i + i�1 {Ou; }J 8 [N]J{F8 }i dS 

+ i�l 
{Ou; }J L [N]J{F8}i dV - J1 {Ou;}J [K]j{u;}i = 0 ( 19.40) 

* The matrix [ M]i in known as a Boolean connectivity matrix since it contains only ones and zeros. 
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where N E is the number of elements in the model. Substitution of Eq. ( 1 9.39) into 
Eq. ( 1 9.40) for each element gives 

Since {buJ is arbitrary, it is eliminated from Eq. ( 19.4 1) to obtain 

[K] {uJ = {PJ ( 1 9.42a) 
where 

[K] = [i�t [MJJ[KJi[M]i] ( 1 9.42b) 

In Eqs. ( 19.41 )  and ( 19.42c), matrix [M]i , of order (4 x 2NN), accounts for the 
mapping to the structure nodes of the two nodes in elementj that participate in the 
surface tractions. If more than one edge on an element is loaded, then Eqs. ( 19.4 1 )  
and ( 19.42c) are extended accordingly. 

The forms of [K] and {PJ in Eq. ( 1 9.42) are precise but they are not used in 
practice. The matrix products involving [M]i ,  which involve multiplying by 0 or 
1, do nothing more than move individual quantities from one position in the ele
ment stiffness matrix or load vector to another in the structure stiffness matrix or 
load vector. Although the above development is not practical, it does demonstrate 
that the structure stiffness matrix is assembled by successively adding the stiffness 
terms from each element into appropriate locations of the structure matrix; the 
same is true for the structure load vector. A more direct approach to assembly is 
demonstrated in Example 19.2. 

EXAMPLE 19.2 
Assembly of the Structure Stiffness Matrix 

For the model shown iu Fig. 19. 5, illustrate the assembly of the stiffness matrix for 
element 1 into the structure stiffness matrix. 

SOLUTION 

Since the structure has six nodes, each of which has two DOF, the structure stiff
ness matrix is of order ( 1 2  x 12). The individual stiffness coefficients are designated 
kii ,  where now the superscript identifies the element number. With this notation, 
the stiffness matrix for element 1 is shown in Fig. E 19.2. The mapping of element 
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k�1 kb : kb k�4 : k�5 k �6 I I 
• : 0 : • 

k 1 k 1 I k1 k 1 I k1 k 1 21 22 I 23 24 I 25 26 - - - - - - - L - - - - - - - � - - - - - - -
k1 k 1 I k1 k1 I k1 k1 31 32 I 33 34 I 35 36 I I 

" I A I D I I 
k1 k 1 I k 1 k 1 I k1 k 1 � � I � « I � % - - - - - - - r - - - - - - - + - - - - - - -
k 1 k 1 1 k 1 k 1 1 k 1 k1 51 52 I 53 54 1 5 5  56 

v : 0 : • I I k1 k 1 I k 1 k 1 I k 1 1 1 61 62 I 63 64 I 65 #(66 

(a) 

k 1 k 1 I k1 k 1 I I k 1 k 1 11 12 I 15 16 I I 13 14 I I I 
• : • : : 0 I I 

k 1 k 1 I k1 k 1 I I k1 k 1 I I 
-�� - - �� L - �� - - ��l  _ _ _ _ _ _ _  j_��- -Y�-� - - - - - - - l - - - - - -- -
k1 k 1 I k1 k 1 I I k1 k 1 I I 51 52 I 55 56 I I 53 54 I I I I I I I \1 I II I I 0 I I 

I I I I I 
k1 k 1 I k 1 k 1 I I k 1 k 1 I I 61 62 I 65 66 I I 63 64 I I 

- - - - - - - + - - - - - - - � - - - - - - - - � - - - - - - - r - - - - - - - � - - - - - - - -

1 I I I I I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I 

- - - - - - - T - - - - - - - T - - - - - - - -r - - - - - - - r - - - - - - - , - - - - - - - -

k�1 k�2 I k�5 k�6 I I k�3 k314 I I I I I I I 
T : 6 : : A : : 

k 1 k 1 : k 1 k 1 : : k 1 k 1 : : 41 42 I 45 46 1 I 43 44 I I - - - - - - - T - - - - - - - T - - - - - - - -r - - - - - - - r - - - - - - - , - - - - - - - -
1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I - - - - - - - � - - - - - - - � - - - - - - - - L - - - - - - - � - - - - - - - � - - - - - - - -1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

(b) 

Figure E 19.2 Assembly of element 1 stiffness matrix (with 2 x 2 nodal submatrix parti
tions). (a) Stiffness matrix for element 1. (b) Structure stiffness matrix with 
element 1 assembled. 

TABLE E19.2 
Element to Structure Node Mapping 

Structure Node Numbers 

Element Node No. Element 1 Element 2 Element 3 Element 4 

1 1 1 3 3 
2 4 3 6 5 
3 2 4 4 6 
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node numbers to structure node numbers is determined by inspection of the model 
in Fig. 1 9. 5  and is summarized in Table E19.2. The list of structure node numbers 
that define the nodes for each element is commonly known as the incidence list. The 
incidence list is one of the input requirements for finite element programs. Using 
the incidence list, one can obtain the mapping of the element 1 nodal submatrices 
into the structure stiffness matrix (Fig. E 19.2). Markers have been added to the 
nodal submatrices as an aid to visualization of the placement of element stiffness 
coefficients into the structure stiffness matrix. 

As described in the previous example, the incidence list is used to drive the 
assembly process. Suppose that the node numbers that comprise the incidence list 
(e.g., Table E19.2) are placed into a matrix [INCID] that contains one column for 
each element. The i, j term in the matrix is defined as the structure node number 
that corresponds to element node number i of element j. Then, by using the inci
dence matrix [INCID], each term from the element stiffness matrix [K]i is moved 
into the structure stiffness matrix [K] in a prescribed manner. The method is illus
trated by a Fortran subroutine in Table 19.2. The subroutine moves one nodal sub
matrix at a time. Note that this code is for illustrative purposes only. Because of 
the symmetry and sparsity of the structure stiffness matrix, it is usually stored in 
some form other than a square matrix. 

Application of Constraints 
The model shown in Fig. 19.5 is not fastened to supports. Hence, it represents an 
unstable structure, a structure that is not capable of resisting external loads. The 
assembled stiffness matrix for an unstable structure is singular; it has a rank 
deficiency of 3 due to the three rigid-body modes that the model possesses. Physi
cally, the structure must be supported to prevent rigid-body motion. In a like fash
ion, if the structure stiffness matrix is modified to reflect the support conditions 
(commonly known as constraints), it becomes nonsingular. Several methods may 
be used to apply constraints to the structure stiffness matrix. Only one, the so-called 
equation modification method, will be discussed here. 

To demonstrate the equation modification method, consider a model that con
tains only a single element (Fig. 1 9.6a). The first step is to switch appropriate rows 
and columns of the stiffness such that those DOF that are constrained are grouped 
together. The rearranged stiffness matrix, displacement vector, and load vector for 
the one-element model are shown in Fig. 1 9.6b. For simplicity, the rearranged equa
tions are represented in the symbolic form 

( 19.43) 

where the subscript c represents the constrained DOF and the subscript u the 
unconstrained DOF. * The relationship between the submatrices and sub vectors in 

* The rearrangement of the equations and subsequent partitioning are done for convenience in repre
senting the method. Computer implementation of this approach does not require that the equations be 
rearranged, nor would such rearrangement be computationally efficient. 
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TABLE 19.2 
FORTRAN Subroutine for Stifness Assembly 

SUBROUT I NE AS SMBL ( KS , KE , NNE , NDOF , I N C I D , I E , NRS , NRE , NE )  

D I MENS I ON KS ( NRS , NRS ) , KE ( NRE , NR ) , I N C I D ( NNE , NE ) 

REAL KS , KE 

c 

c 

c 

c 

AS SEMBLE THE ST I FFNE S S  FOR ELEMENT ' I E '  I NTO THE 

STRUCT URE ST I FFNE S S . 

C CONTROL VAR I ABLE S : 

c 

C KS , KE STRUCTURE & ELEMENT ST I FFNE S S  MATRI CES . 

C NNE NUMBER OF NODE S I N  AN ELEMENT . 

C NDOF NUMBER OF DOF AT EACH NODE . 

C I N C I D  I NC I DENCE MATRI X .  

C I E  = CURRENT ELEMENT NUMBER . 

C NRS , NRE NUMBER OF ROWS I N  STRUCTURE & ELEMENT ST I FFNE S S  

C NE NUMBER OF ELEMENT S IN THE MODEL . 

c 

C LOCAL VARI AB LE S : 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

I NE CURRENT ELEMENT S UBMATRI X ROW NUMBER . 

JNE = CURRENT ELEMENT SUBMATRI X COLUMN NUMBER . 

I N S  CURRENT STRUCTURE SUBMATRI X ROW NUMBER . 

J N S  CURRENT STRUCT URE SUBMATR I X  COLUMN NUMBER . 

I DOF CURRENT DOF NUMB ER IN SUBMATRI X ROW . 

JDOF CURRENT DOF NUMBER IN SUBMATRI X COLUMN . 

I KE ROW ENTRY I N  THE ELEMENT ST I FFNE S S . 

J KE COLUMN ENTRY I N  THE ELEMENT ST I FFNES S .  

I KS = ROW ENTRY I N  THE STRUCT URE ST I FFNE S S . 

JKS COLUMN ENTRY I N  THE STRUCTURE S T I FFNE S S . 

DO 1 0  I NE = 1 ,  NNE 

I N S = I N C I D ( I NE , I E  

DO 10 JNE = 1 ,  NNE 

JNS = I N C I D ( JNE , I E  

A S SEMBLE THE ELEMENT SUBMATR I X  ( I NE , JNE ) 

THE STRUCTURE SUBMATRI X ( I N S , JNS ) 

DO 1 0  I DOF = 1 ,  NDOF 

I KE = ( I NE - 1 ) * NDOF + I DOF 

I KS = ( I N S - 1 ) * NDOF + I DOF 

DO 10 JDOF = 1 ,  NDOF 

JKE ( JNE - 1 ) * NDOF + JDOF 

J KS = ( JNS - 1 ) * NDOF + JDOF 

I NTO 

KS ( I KS , JKS ) = KS ( I KS , JKS ) + KE ( I KE , JKE ) 

c 

1 0  CONT I NUE 

RETURN 

END 
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3 

1 2 

v2 = 0 

(a) 

ku k 12 k t4 : k 13 k ts k 16 
k21 k22 I k2s k26 k24 I k23 I 

k41 k42 k44 : k43 k4s k46 
_ _ _ _ _ _ _ _ _ _ _  , _ _ _ _ _ _ _ _ _ _ _ _  

k31 k32 k34 : k33 kJs k36 
kst ks2 ks4 : ksJ 

I 
kss ks6 

k61 k62 k64 : k63 k6s k66 
(b) 
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Figure 19.6 Application of constraints by the equation modification method. (a) One
element model with constraints. (b) Rearranged structure equations. 

Eq. ( 1 9.43) and those in Fig. 1 9.6b is determined by their respective positions in the 
equations. 

The unknown quantities are the displacements { uu} of the unconstrained DOF 
and the forces { Pc} at the constrained DOF. Rewrite Eq. ( 1 9.43) as two separate 
submatrix/ sub vector equations. 

[KccJ { uc} + [KcuJ { uu } = { Pc} 
[KucJ { uc} + [KuuJ { uu } = { Pu} 

Since { uc} i s  known, i t  i s  moved to the load side of Eq. ( 1 9.44b) to obtain 

( 1 9.44a) 
( 1 9.44b) 

( 1 9.45) 

Equation ( 19.45) is the constrained system of equations. If the imposed con
straints { uc}  are nonzero, they serve to modify the load vector. If the constraints 
are all zero, such as in Fig. 1 9.6a, then the second term on the right side of 
Eq. ( 1 9.45) vanishes. In either case, the system of equations is reduced in order by 
the number of constrained DOF. If appropriate constraints are applied to render 
the structure stable, then [KuuJ will be nonsingular. 

Solution of the System of Equations 

After assembly of the stiffness matrix and load vector and application of con

straints, the system of linear algebraic equations may be solved. It is common to 

represent the solution of Eq. ( 1 9.45) in the symbolic form 

However, inversion of the stiffness matrix [KuuJ is computationally expensive and 
can lead to significant numerical error. A more efficient approach, known as 
Choleski decomposition, involves triangular factorization of the stiffness matrix. 

where [U] is an upper triangular matrix ; that is, each term in the lower triangle of 
[U] is zero (uii = 0, i > j). Factorization of [KuuJ into this form permits direct 
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solution for displacements via two load-pass operations. The first of these, known 
as the forward load-pass, yields an intermediate solution vector { y } . 

[U] T {y} = { Pu} - [KucJ { uc } 
The second operation, known as the backward load-pass, produces the final dis
placement vector { uu} · 

[U] { uu} = { y} 
Upon solution for { uu } , the reactions that result from deformation of the structure 
can be found from Eq. ( 1 9.44a). The total reactions are obtained by subtracting any 
nodal loads that are applied to the constrained DOF. Such loads frequently exist 
when element loads, in the form of body forces or surface tractions, are resolved 
into equivalent nodal loads. 

Details of the equation solving methods and discussions of their advantages 
and disadvantages can be found in books that specialize in the finite element method 
(see the references at the end of this chapter). 

THE BILINEAR RECTANGLE 

The constant strain triangle is the simplest element that can be used for plane elas
ticity problems. As such, it is an attractive choice for demonstration of the basic 
formulation of the finite element method. However, because of its simplicity, the 
CST element exhibits relatively poor performance in a coarse mesh (a few large 
elements). In order to obtain satisfactory results with the CST element, a very 
highly refined mesh (many small elements) is generally needed for all but the most 
trivial problems. Alternatively, one may use a different element that is based on 
different displacement interpolation functions and that yields better results. The 
number of alternatives to the CST element is quite large and no attempt is made 
to discuss all of them here. Instead, we examine two alternatives :  the bilinear rect
angle and the linear isoparametric quadrilateral. The development of the bilinear 
rectangle follows. The linear isoparametric quadrilateral is presented in Sec. 1 9.4. 

Consider a rectangular element of width 2a, height 2b, and with corner nodes 
numbered in a counterclockwise order. The (x, y) coordinate axes for the element 
are parallel to the 1-2 and 1-4  edges of the element, respectively, and the origin 
of the coordinate system is at the centroid of the element (see Fig. 19.7). As with 
the CST element, the displacement components (u, v) at any point P are expressed 
in terms of the nodal displacements. Since there are four nodes in the element, each 
with two nodal DOF, the displacement functions for u(x, y) and v(x, y) each have 
four coefficients. Hence, we choose the bilinear functions* 

u(x, y) = a1 + a2x + a3y + a4xy 
v(x, y) = a5 + a6x + a7y + a8xy 

* These functions are said to be bilinear functions of (x, y) because the dependency on x and y comes 

from the product of two linear expressions, one in x and one in y. The corresponding rectangular ele
ment is said to be bilinear. With the given functions (u, v), the straight edges of the bilinear rectangle 

remain straight under deformation (like the CST element). However, the strain components in the 
bilinear rectangle element are not constant. 
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a + x = O 

b - y = O 

u 1 � .-------�------------� 
1 

�----1- 2a ----->:;.�f 
b + y = O  

2b 

Figure 19.7 Bilinear rectangle element. 

a - x = O 

Like the CST element, the bilinear rectangle can properly represent rigid-body 
translation, rigid-body rotation, and constant strain. The bilinear displacement 
components (a4xy and a8xy) result in strain components such that Exx is linear in 
y, Eyy is linear in x, and Yxy is linear in both x and y. This higher-order response, 
compared to the CST element, results in more efficient and accurate nume
rical solutions. 

Development of the stiffness matrix and load vector proceeds in a manner 
similar to that for the CST element. Only the stiffness matrix is developed here; 
development of the load vector is left as an exercise for the reader. The shape func
tions are expressed as products of one-dimensional Lagrange interpolation func
tions (Kellison, 1975) 

( ) 
_ (a - x)(b - y) 

Nl x, y - 4ab 

N ( ) _ (a + x)(b - y) 
2 x, y - 4ab 

N ( ) 
_ (a + x)(b + y) 3 x, y - 4ab 

N ( ) _ (a - x)(b + y) 
4 x, y - 4ab 

( 19.46) 

Since the shape function for node i has zero value along any element edge that does 
not include node i, the'"shape function can be derived directly as the product of the 
equations of the lines that define these edges ; see Fig. 19.7 . The shape functions for 
the bilinear rectangle are illustrated in Fig. 19.8 where they form straight lines along 
the element edges. However, over the interior of the element, the functions form 
curved surfaces, with linearly varying slopes in the x and y directions. 

The strain-displacement relations are written in the form of Eq. ( 19 .25), with the 
nodal displacement vector 



19 .3 / THE BILINEAR RECTANGLE 755 

N1 N2 
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=r1 
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Figure 19.8 Graphical representation of shape functions for the bilinear rectangle 
element. 

and [ B] matrix 

( 19.47) 

where for node i 

aNi 
0 -

ax 

[BJ = 0 
aNi 
-

ay 
( 1 9.48) 

aNi aNi 
- -

ay ax 

The element stiffness matrix is found from Eq. ( 1 9. 3 1 ). That equation is repeated 
here with the order of each matrix shown as a subscript. 

[K] 8 x 8 = L [BU x 3 [D]3 x 3 [B] 3 x 8 dV 

The stiffness matrix can be written in terms of (2 x 2) nodal submatrices as 

where i and j are element node numbers. The explicit form of the bilinear rectangle 
element stiffness matrix for a plane stress condition is given in Table 19 .3 .  



TABLE 19.3 
Bilinear Rectangle Stiffness Matrix, Plane Stress Case (Partitioned into 2 X 2 Nodal Sub matrices) 

column index row index 
J �  1 2 3 4 5 6 7 8 il 2(1 - v) 3 : ( 1  - v) 3 : (1 - v) 3 : 2( 1 - v) 3 4{3 + - (1 + v) 1 -4{3 + - - (1 - 3v) 1 -2{3 - - - (1 + v) 1 2{3 - - (1 - 3v) " 2 : f3 2 : f3 2 : f3 2 1 

3 4 : 3 2 : 3 2 : 3 4 - ( 1  + v) - + 2( 1 - v)/3 : - (1 - 3v) - - 2(1 - v)/3 : - - ( 1  + v) - - - (1 - v)/3 : - - (1 - 3v) - - + ( 1 - v)/1 1 2 2 ., p  I 2 f3 1 2 f3 1 2 {3 
- - - - - - - - - - - - - - - - - - - - - - - - - -r - - - - - - - - - - - - - - - - - - - - - - - - - , - - - - - - - - - - - - - - - - - - - - - - - - - -r - - - - - - - - - - - - - - - - - - - - - - - - -( 1  - v) 3 1 2( 1 - v) 3 1 2(1 - v) 3 1 ( 1  - v) 3 -4{3 + ,. 2 (1 - 3v) l 4f1 +  f3 - 2 (1 + v) J 2f3 - f3 - 2 (1 - 3v) � - 2{3 - f3 2 ( 1 + v) 1 3  

I I I 3 2 I 3 4 I 3 4 I 3 2 - - (1 - 3v) - - 2(1 - v)/3 : - - ( 1 + v) - + 2(1 - v)/3 : - ( 1 - 3v) - - + ( 1 - v)/3 : - (1 + v) - - - (1 - v)/3 1 4 2 {3 I 2 {3 I 2 {3 I 2 {3 c l--------------------------�---------------------- ---+----------------------- - -�-------------------------( 1  - v) 3 : 2( 1 - v) 3 : 2( 1 - v) 3 : (1 - v) 3 - 2{3 - - - (1 + v) 1 2/1 - - (1 - 3v) 1 4{3 + - ( 1 + v) 1 -4{3 + - - (1 - 3v) 1 5 {3 2 I {3 2 I {3 2 I {3 2 I I I 3 2 : 3 4 : 3 4 : 3 2 - - (1 + v) - - - (1 - v)/1 1 - - (1 - 3v) - - + (1 - v)/1 1 - ( 1 + v) - + 2( 1 - v)/1 1 - (1 - 3v) - - 2(1 - v)/1 1 6  2 {3 I 2 {3 I 2 {3 I 2 f3 - - - - - - - - - - - - - - - - - - - - - - - - - -L - - - - - - - - - - - - - - - - - - - - - - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - -L - - - - - - - - - - - - - - - - - - - - - - - - -2 ( 1  - v) 3 : (1 - v) 3 : (1 - v) 3 : 2( 1 - v) 3 2{3 - - - (1 - 3v) 1 -2{3 - - (1 + v) 1 -4{3 + - ( 1 - 3v) 1 4{3 + - - (1 + v) 1 7 " 2 : f3 2 : f3 2 : f3 2 3 4 : 3 2 : 3 2 : 3 4 - ( 1 - 3v) - - + ( 1 - v)/3 1 - ( 1 + v) - - - ( 1 - v) f3 1 - - ( 1 - 3v) - - 2( 1 - v) f3 1 - - ( 1 + v) - + 2( 1 - v) f3 I 8 2 f3 : 2 f3 : 2 f3 : 2 f3 
C = � 

� - ' P = � 
a 

-l CJt 0'\ 
...... 
\0 

............. 

:i M "'rj 2 � M M r M � M � 
� M .., :X: 0 0 
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By itself, the bilinear rectangle element is limited to rectangular domains . 
This is potentially a rather severe restriction. However, nonrectangular domains 
can be modeled with a combination of bilinear rectangle elements and CST ele
ments. Since both elements represent linear displacement variation along their 
edges, they are compatible; that is, displacements will be continuous across element 
boundaries. 

EXAMPLE 19.3 
Performance of the Bilinear Rectangle and CST Elements 

Compare the ability of the bilinear rectangle and CST elements to model in-plane 
bending of a thin, square plate. 

SOLUTION 

A square plate of width a and thickness t is considered. For simplicity, Poisson's 
ratio is taken as zero, v = 0. To impose a state of pure bending, displacements 
u = ± b are imposed on the corners of the plate as shown in Fig. El9. 3a. From the 

4 3 

I I I I I I L - - - - - - - - - - - - - 1  

(a) 

.,_ ___ __._/7j 

/ / / / / / / I // 

/ / / 
/ / / 

I I I I 

2 
(b) 

4 3 

2 

Figure E 19.3 (a) Deformed shape (elasticity solution). (b) Deformed shape (finite element 
models). 
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theory of elasticity, the displacements are 

4xy b 
U = - -

a2 

Differentiation of Eqs. (a) and (b) gives the strain components 

4y b 
Eyy = 0, Exx = - -2 ' a 

The strain energy in the plate is 

U = L U0 dV 

= 
r EE;x dV J v 2 
2 

= - Et b2 
3 

Yxy = 0 

(a) 

(b) 

(c) 

(d) 

Two finite element models of the square plate are considered. The first uses two 
CST elements and the second, a single bilinear rectangle. As for the elasticity solu
tion, nodal displacements of ui = ± b are imposed. The models and their deformed 
shapes are shown in Fig. E19.3b. The model of two CST elements is considered 
first. Strains in the CST elements can be determined first since the displacement 
vector is known. 

{ ui } = [ - b 0 : b 0 : - b 0 : b OJ T (e) 

The [B] matrices for the two CST elements are defined by Eq. ( 1 9.26). For the ele-
ment geometries in Fig. E 19.3b, these matrices are 

1
[ 

0 0 1 0 :  - 1 

_:] 

I 
[BJcsT- 1 = - 0 - 1  0 Q l  0 (f ) I a - 1 0 0 1 : 1 I 

[

- 1 o :  1 0 0 

!] 
[BJcsT- 2 = ! 0 

I 
o : 0 - 1 0 (g) a 

0 
I - 1 I - 1 1 1 I 

Thus, the strains in the two elements are obtained by Eq. ( 1 9.25 ) as [ 2b 
{E}csT- 1 = - -;; 2£5JT 

0 -
a (h) [2b 

{E}csT- 2  = -;; 0 _
2:
r 

(i) 
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The structure stiffness for an assembly of two CST elements is 

0. 7 5 0.0 : - 0.5  0.0 : 0.0 - 0.25 : - 0.25 0.25 I I I 
0.0 0. 7 5 : 0.25 - 0.25 : - 0.25 0.0 : 0.0 - 0.5  - - - - - - - - - - - - - -r - - - - - - - - - - - - - ,- - - - - - - - - - - - - - ,- - - - - - - - - - - - - -

- 0.5 0.25 : 0.75 - 0.25 : - 0.25 0.0 : 0.0 0.0 I I I 
[KJcsT = Et 0.0 - 0.25 I - 0.25 0.75 I 0.25 - 0.5  I 0.0 0.0 - - - - - - - - - - - - - �- - - - - - - - - - - - - - � - - - - - - - - - - - - - - �- - - - - - - - - - - - - -

0.0 - 0.25 : - 0.25 0.25 : 0 .  7 5 0.0 : - 0.5 0.0 
(j) 

1 
[B]BR = 2 a 

I I I 
- 0.25 0.0 : 0.0 - 0. 5  : 0.0 0.75 : 0.25 - 0.25 - - - - - - - - - - - - - - � - - - - - - - - - - - - - ,- - - - - - - - - - - - - - -� - - - - - - - - - - - - -

- 0.25 0.0 : 0.0 0.0 : - 0.5  0.25 : 0 .  7 5 - 0.25 I I I 
0.25 - 0.5  : 0.0 0.0 : 0.0 - 0.25 : - 0.25 0. 7 5 

from which the product [KJcsT {uJ gives the nodal forces {fi }csT as 

{�}esT = Et b [ - 1 . 5  0. 5 : 1 .5 - 0.5  : - 1 .5  0. 5 : 1 . 5  - 0. 5] T (k) 

The strain energy in the structure is 

(1) 
Next, consider the model with only a single bilinear rectangle shown in Fig. E 19. 3b. 
The [B] matrix for the element is given by Eqs. ( 1 9.47) and ( 1 9.48) as 

a 
0 

a 
0 

a a 
0 - - + y - - y - + y 0 - - - y 

2 2 2 2 
a a a a 

0 - - + x 0 - - - x  0 - + x 0 - - x  2 2 2 2 
a a a a a a a a - - + x 2 - - + y 2 - - - x  2 - - y  2 - + x 2 - + y 2 - - x  2 - - - y  2 

(m) 

The strains are obtained by Eq. ( 1 9.25) as 

l 4y � 
{E}BR = - 7  0 _ 4x �J a2 (n) 

The stiffness matrix for the bilinear rectangle is obtained from Table ( 1 9. 3), which, 
for this problem, becomes 

0.5 0. 1 25 : - 0.25 - 0. 1 25 : - 0.25 - 0. 125 : 0.0 0. 1 25 I I I 
0. 1 25 0.5 : 0. 1 25 0.0 : - 0. 1 25 - 0.25 : - 0. 125 - 0.25 - - - - - - - - - - - - - - - - r - - - - - - - - - - - - - - - -� - - - - - - - - - - - - - - - ,- - - - - - - - - - - - - - - -

- 0.25 0. 1 25 : 0.5 - 0. 1 25 : 0.0 - 0. 1 25 : - 0.25 0. 1 25 

[K]BR = Et - 0. 1 25 0.0 : - 0. 1 25 0.5 : 0. 1 25 - 0.25 : 0. 125 - 0.25 - - - - - - - - - - - - - - - - L - - - - - - - - - - - - - - - _I_ - - - _ _ _ _  - - _ _ _ _ _ _  -1- - _ _ _ _ _  - - - - - - - - -

- 0.25 - 0. 125 : 0.0 0. 1 25 : 0.5 0. 1 25 : - 0.25 - 0. 1 25 I I I 
- 0. 1 25 - 0.25 : - 0. 1 25 - 0.25 : 0. 1 25 0.5 : 0. 125 0.0 - - - - - - - - - - - - - - - - � - - - - - - - - - - - - - - - � - - - - - - - - - - - - - - - - � - - - - - - - - - - - - - - - -

0.0 - 0. 125 : - 0.25 0. 125 : - 0.25 0. 1 25 : 0.5 - 0. 1 25 I I I 
0. 1 25 - 0.25 : 0. 1 25 - 0.25 : - 0. 1 25 0.0 : - 0. 1 25 0.5 

(o) 
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19.4 

from which the product [K]BR {uJ gives the nodal forces {�}BR as 

{�}BR = Et b [ - 0.5  0 : 0.5 0 : - 0. 5  0 : 0. 5 O] T 

The strain energy in the element is 

(p) 

(q ) 

This example clearly demonstrates that the bilinear rectangle is superior to the CST 
element. The bilinear rectangle correctly predicts the normal strains Exx and Eyy . In 
addition, the bilinear rectangle model stores less strain energy than the CST model. 
If we use the elasticity solution as the exact solution, UBR = 1 .5 lfexaco whereas 
UcsT = 4.5 [fexact . Notice though that both the CST and bilinear rectangle possess 
nonzero shear stress where none should exist. This defect, known as parasitic shear, 
contributes to excess strain energy in the elements. Although little can be done to 
improve the performance of the CST element, a more general formulation of the 
bilinear rectangle, known as the linear isoparametric quadrilateral (Sec. 19 .4), can 
be used to control parasitic shear. 

THE LINEAR ISOP ARAMETRIC QUADRILATERAL 

Suppose that an analyst wishes to model an irregular domain but wants to a void 
the use of CST elements because of their relatively poor performance. Since the 
domain is irregular, the bilinear rectangle element would be inappropriate. Instead, 
arbitrarily shaped quadrilateral (four-sided) elements are selected to better fit 
boundaries. A quadrilateral element may be formulated directly, as was done above 
for the CST and bilinear rectangle elements. However, the necessary integrations 
are quite complex. This is due, in part, to the difficulty in defining the limits of 
integration. Use of isoparametric elements eliminates this difficulty . Isoparametric 
elements are formulated in natural coordinates as square elements and then mapped 
to physical coordinates via coordinate interpolation functions, similar to displace
ment interpolation functions. Depending on the type of isoparametric element 
used, the configuration of the element in physical coordinates can be nonrectan
gular and can have curved sides. If the shape functions used for coordinate inter
polation are identical to those used for displacement interpolation, then the 
element is said to be isoparametric. If coordinate interpolation is of higher order 
than displacement interpolation (i.e., more nodes are used to represent the varia
tion in geometry than the variation in displacements), then the element is called 
superparametric. If coordinate interpolation is of lower order than displacement 
interpolation (fewer nodes are used to represent the variation in geometry than the 
variation in displacements), then the element is called subparametric (Zienkiewicz 
and Taylor, 1 989, p. 1 60). Because of their versatility and accuracy, isoparametric 
elements have become the mainstay of modern finite element programs. 
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4 7] = 1 3 

� = -1 

1JG • 
P(x, y) 

� = -1 � = 1 

1] = -1 2 L 2 

(a) ( b) 

Figure 19.9 Isoparametric coordinate mapping. (a) Element in natural coordinates. 
(b) Element in physical coordinates. 

Isoparametric Mapping 
Consider the mapping of the four-node quadrilateral element from a natural (�, 17) 
coordinate system (Fig. 19.9a) to a physical (x, y) coordinate system (Fig. 19.9b). In 
natural coordinates, the element is a (2 x 2) square and the origin of the coordinate 
system is at its center. In physical coordinates, the element is distorted from a rec
tangular shape. With shape functions in terms of the (�, 17) coordinate system, the 
coordinates of any point P can be expressed in terms of the (x, y) coordinates of 
the nodes. 

4 4 
x(�, 11) = L �(�, 11)xb y(�, 11) = L �(�, 11)Yi 

i =  1 

In matrix form, Eq. ( 1 9.49a) is {x(�, 11)} = [N] { xd 
y(�, 11) 

where { xd is the vector of nodal coordinates 

and [N] is the shape function matrix 

i = 1  

( 1 9.49a) 

( 1 9.49b) 

( 1 9. 50) 

The shape functions are the Lagrange interpolation functions [refer to 
Eq. ( 19.46)] in dimensionless (�, 17) coordinates. 
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N (;: ) = 
( 1 - �) ( 1 - f1) 

1 � '  '1 4 

( 1 9. 5 1) 

After the element is mapped from natural to physical coordinates, the � and f1 axes 
need not remain orthogonal. 

The principal reason for using isoparametric elements is to avoid integrating in 
physical coordinates. However, the general expression for the stiffness matrix, 
Eq. ( 1 9.3 1), is expressed in terms of physical coordinates . Therefore, the differential 
lengths dx and dy must be expressed in terms of the natural coordinate differentials 
d� and dfl. In addition, strain is defined in terms of the derivatives of the shape 
functions with respect to physical coordinates. These derivatives are the elements 
in the [B] matrix, and they must be converted to derivatives with respect to 
natural coordinates. 

The differentials (dx, dy) are related to the differentials (d�, dfl) by means of 
Eq. ( 1 9.49a). Thus, 

( 1 9.52) 

where 

The coordinate derivatives are combined in matrix form as 

ax ay 
- -

[J] = 
a� a� 
ax ay 

( 1 9.53) 
-

afl a11 

where [J] is the Jacobian of the transformation (Courant, 1 950). 
Equations ( 1 9.52) and ( 1 9.53) relate the differentials of the two coordinate 

systems as 

( 19.54) 
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In a like manner, derivatives of the shape function for node i are related by 

a� aNi 
- -

ax 
= [1] - 1 a� 

( 1 9. 55 )  aNi aNi 
- -

ay aYf 

If [1] - 1 exists, then the area mapping from (�, Yf) coordinates to (x, y) coordi
nates is unique and reversible. A physical interpretation of [1] can be obtained by 
comparing the area of the element in (x, y) coordinates to that in (�, Yf) coordinates. 
If the determinate I l l > 0, then the area of the element is preserved and the map
ping is physically meaningful. In precise terms, I l l is the differential area ratio 
Axy/A�, at any point in the element. 

This physical interpretation of [1] leads to a change in the differential volume 
for a constant thickness, plane elasticity element from t dx dy to t i l l d� dYf . The 
limits of integration are - 1 to 1 in � and - 1 to 1 in Yf. So, the integral of any func
tion F(x, y) can be transformed to natural coordinates in the manner 

L F(x, y) dx dy = r J � 1 F(x( �. 1]), y( �. t/)) 1 1 1 d� dl] 

Element Stiffness Matrix 
Equation ( 19. 3 1 )  defines the element stiffness matrix for any elasticity element 
(using displacement DOF), including the isoparametric linear quadrilateral. A 
change in coordinate system from (x, y) to (�, Yf), with the modified limits of integra
tion, leads to the stiffness matrix 

( 1 9. 56) 

where [B] is given by Eq. ( 1 9.47 ) and [BJ by Eq. ( 1 9.48). From Eqs. ( 19.48) and 
( 19.55), the individual terms in [Bi], in terms of (�, Yf), are 

0 

( 19. 57) 

where l{j is the i,j term from [1] - 1 . 
It is usually more convenient to work with just a single (2 x 2) nodal submatrix 

of [K] at one time. Hence, we write 

( 1 9.58) 

where i and j are node numbers for the element. 
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Numerical Integration 
Although analytical expressions for the individual terms in Eq. ( 1 9 .58) can be devel
oped, they are quite complex and, thus, prone to errors in algebra or computer pro
gramming. As an alternative to direct integration, the required integrals are usually 
evaluated numerically within the finite element program. The most commonly used 
numerical integration method is Gauss quadrature. The Gauss quadrature method 
is more efficient than many other methods, such as the Newton -Cotes methods, 
since fewer sampling points are required to obtain a given level of accuracy. In 
fact, in one dimension, the use of n sampling points in Gauss quadrature results in 
exact integration of a polynomial of order (2n - 1 ). However, the integration of a 
function that is not a polynomial is approximate. 

Consider a function F(�, 17) that is to be integrated over the limits of - 1 to 1 in 
� and - 1 to 1 in 11· The integral is evaluated numerically by the form 

where m and n are the numbers of sampling points in the � and 11 directions, respec
tively. Also, �k and 11z are the locations of the kth and lth sampling points and wk 
and Wz are weights applied to F(�, 17) after it is evaluated at the sampling points. 
Usually, m and n are taken as equal, in which case the numerical scheme is 
symmetric. 

If Gauss quadrature is used to evaluate the nodal submatrix [Kii] in Eq. ( 1 9.58), 
the integral becomes 

m n 

[Kii] = t L L wkwz [Bi (�b 11z)] T [D] [Bi (�k ' 11z)] I J(�k '  17z) l k =  1 l = 1 ( 1 9 .59) 

The accuracy achieved with Gauss quadrature is dependent on the proper selec
tion of sampling point locations and weights. For elements in natural coordinates, 
the optimal sampling point locations and weights are given in Fig. 1 9. 1 0. Only sym
metric integration and the one-, two-, and three-point rules are considered. Non
symmetric integration and higher-order integration rules are discussed elsewhere. 

The number of integration points used to evaluate Eq. ( 1 9.59) influences the 
ultimate performance of the element. Full integration is the integration order 
needed to exactly integrate the stiffness for an undistorted element. For the linear 
quadrilateral, a two-point rule provides full integration. An integration rule less 
than that required for full integration is termed reduced integration. Reduced inte
gration, although not exactly evaluating Eq. ( 1 9.59), can often lead to improved 
performance of an element, relative to full integration. For instance, reduced inte
gration of the linear quadrilateral can eliminate the parasitic shear that is a com
mon defect in the element (see Example 19. 3). A more complete discussion of 
reduced integration, including justification for its use, can be found in most finite 
element textbooks. 

High-Order lsoparametric Elements 
The concept of isoparametric mapping has been applied to a broad list of element 
geometries. Within the scope of plane elasticity problems, elements with more than 
four nodes permit greater flexibility in element shape (including curved edges) and 
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Point No. �i 11i wi wi 
1 , 1  0.0 0.0 1 .0 1 .0 

(a) 

Point No. �i 1'/j wi wi 
1 , 1  - 1/-13 - 1/-13 1 .0 1 .0 
2, 1 1/-13 - 1/-13 1 .0 1 .0 
1 ,2 - 1/-13 1/-13 1.0 1 .0 
2,2 1/-13 1/-13 1 .0 1 .0 

(b) 

Point No. �i 1'/j wi wi 
1 , 1  - JM -JM 5/9 5/9 
2, 1 0 - JM 8/9 5/9 
3, 1 JQ.6 - JM 5/9 5/9 
1 ,2 - JM 0 5/9 8/9 
2,2 0 0 8/9 8/9 
3,2 JQ.6 0 5/9 8/9 
1 ,3 - JM JQ.6 5/9 5/9 
2,3 0 JQ.6 8/9 5/9 
3,3 JQ.6 JQ.6 5/9 5/9 

(c) 

Optimal sampling point locations and weights for Gauss quadrature. 
(a) One-point rule. (b) Two-point rule. (c) Three-point rule. 
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(c) (d) 

Figure 19. 1 1  Higher-order isoparametric elements. (a) Quadratic serendipity element. 
(b) Quadratic Lagrange element. (c) Cubic serendipity element. (d ) Cubic 
Lagrange element. 

are capable of representing greater variation in displacements. Perhaps the most 
popular of all isoparametric elements is the eight-node quadrilateral. This element 
has four corner nodes, like the linear quadrilateral, but it also has four midside 
nodes, one midway along the length of each edge, (Fig. 1 9. l la.). With three nodes 
along each edge, the element can have curved (parabolic) sides. Another popular 
high-order isoparametric element is the nine-node quadrilateral (Fig. 1 9. 1 lb .) This 
element has four corner nodes, four midside nodes, and one interior node. Both the 
eight- and nine-node elements represent complete quadratic displacement fields. 
The generalization of these elements to cubic interpolation is straightforward, see 
Figs. 1 9. l l c and d. 

The eight-node quadrilateral and other high-order elements that contain only 
boundary nodes are known as serendipity elements. The term serendipity is used 
because shape functions for this family of elements were initially developed by 
inspection. The nine-node quadrilateral and other high-order elements that contain 
a regular pattern of nodes are known as Lagrangian elements since their shape 
functions are based on the Lagrange interpolation functions. 

THE PLANE FRAME ELEMENT 

Analysis of framed structures by the stiffness method (also known as matrix analysis) 
was fairly well established at the time of the development of the finite element 
method. The stiffness method for frame analysis can be developed entirely from 
basic mechanics of material principles, without the need to consider virtual work 
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formulations and interpolation polynomials. As a result, many engineers view the 
two methods as distinct. However, it is clear that the stiffness method for frames is 
simply a special case of the finite element method. Hence, in this section, we develop 
a finite element that represents a plane frame member, using the same approach 
that was used for plane elasticity problems. 

Element Stiffness Matrix 
The classical plane frame element has two nodes, it is straight and prismatic, and it 
has three DOF and three corresponding end actions at each node (see Fig. 1 9. 1 2a). 
The element has constant cross-sectional area A, moment of inertia I, and modulus 
of elasticity E. We assume that the axial response of the member is independent of 
the bending response. Consequently, the frame element stiffness is formulated as a 
superposition of the stiffness for an axial rod and that for a beam (Fig. 19. 12b). In 
the following, a local (.X, y) coordinate system is established for the element. The 
local .X axis is aligned with the longitudinal axis of the member, and the y axis lies 
in the plane of the element cross section. The stiffness matrix for the frame element 
is derived in terms of this local coordinate system. When the element is oriented at 
some angle ¢ with respect to the global (x, y) coordinates for the structure, the 
nodal DOF of the element must be related to the global coordinate system. Thus, 
a coordinate rotation from local to global coordinates is required for the displace
ments, loads, and stiffness. This rotation is discussed following Eq. ( 1 9.75). 

r 
r ��1 

u1 ( � 
I < 
f I 1�1 

L 

(a) 

L 

+ 

L 

(b) 

r 2 7f X 

�r e. � 

2 ii2 x ____,.. � > I 

r 2 x �r e. 

Figure 19. 12  Plane frame element. (a) Element with combined axial and bending DOF. 
(b) Axial and bending DOF treated separately. 
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Consider first the case of the axial rod. There are two nodal DOF associated 
with axial response, so the displacement is taken as a linear function 

The coefficients a0 and a 1 are evaluated based on the boundary conditions u(O) = 
u1 and u(L) = u2 , where L is the element length. The displacement function, in 
terms of the nodal displacements, becomes 

u (x) = [NJ {ud 

where [NJ = [ 1 - xjL x/L] and {ud = [u 1 u2] T. 
The only nonzero strain component is Exx ' which is written in terms of the 

nodal displacements as 

in which the subscript A indicates axial response and 

[B ]  = [aN1 aN2] = [ -
_!_ 

L
1 J � ax ax L 

The axial stress is written as CJxx = EExx and the variation of internal energy is 

( 1 9.60) 

Assume that only concentrated nodal loads are applied. Substitution for (J xx and 
bExx in Eq. ( 19.60), and then substitution of Eq. (1 9.60) into Eq. ( 1 9. 1 ), yield 

Since {bud is arbitrary, 

which leads to the stiffness matrix for the axial rod 

[RAJ = A f: [BAYE[BA] dX 

For constant E, the integrals are easily evaluated to obtain [KA] in terms of 
A, E, and L. 

AE : AE 
- 1 - -
L : L 

- - - - - - -1 - - - - - -

AE : AE I L I L I 

( 1 9.6 1 )  
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Next consider the bending effect of the frame element. There are four nodal 
DOF associated with bending (a lateral translation and a rotation at each node), 
so the displacement is written as a cubic polynomial with four coefficients. 

The coefficients a0 through a3 are evaluated based on the boundary conditions 
v(O) = v1 , 0(0) = 81 , v(L) = v2 , and O(L) = 82 in which e = dvjdx. In terms of the 
of the nodal displacements, the displacement function is 

v(x) = [NJ {vJ 

where {vJ = [v1 01 v2 02] T, and the shape function matrix [N] is 

for which the individual shape functions are 

x2 x3 
N = x - 2 - + -2 L L2 

x2 x 3 
N = -- + -4 L L2 

These shape functions are illustrated in Fig. 1 9. 1 3. 

( 1 9.62) 

( 1 9.63a) 

( 19.63b) 

The strain energy in a beam subjected to bending is given by Eq. (5. 19); that is, 

(5. 1 9) 

If the curvature v" is taken as a generalized strain quantity, the strain-nodal dis
placement ""relation is 

where the subscript B represents bending response and 

Substitution of M = Elv" into Eq. (5. 1 9) gives 

U = dx fL EI(v" )2 _ 

0 2 

( 19.64a) 

( 1 9.64b) 

( 1 9.65) 
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Figure 19. 1 3  Beam element shape functions. 

from which the first variation of the strain energy is 

()U = f: (()V)"EIV" dX 

In terms of nodal DOF, from Eq. ( 1 9.64a), bU is 

()U = f: { ()V;} T[B8YEI[B8] {V;} dX 

x 

�I 2 

> I x 

2 

( 1 9.66) 

In the manner followed with other elements, only nodal loads are assumed, 
Eq. ( 1 9.66) is substituted into Eq. ( 19. 1 ), { bvJ is eliminated, and the bending stiff
ness matrix is found to be 

[K8] = f: [B8YEI[B8] dX 

Since El is constant, integration yields the bending stiffness matrix in terms of E, 
I, and L as 

12El 6EI : - 1 2EI 6EI 
- 1 ---

£3 L2 : L3 L2 
I 

6El 4El : - 6El 2EI 
- L2 L : L2 L 

[JCB] = - - - - - - - - - - - - - - �- - - - - - - - - - - - - - -

- 12£/ - 6El I 1 2EI - 6El 
__ I 

L3 L2 : L3 L2 I 
6El 2El : - 6EI 4EI I 
L2 L : L2 L 

( 1 9.67) 
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The stiffness matrix for the plane frame element [see Eq. ( 1 9.68)] is a combina
tion of the axial stiffness matrix, Eq. ( 1 9.6 1 ), and the bending stiffness matrix, 
Eq. ( 1 9.67). Note that the ordering of the DOF in the element first lists all three 
DOF at node 1 and then the three DOF at node 2. 

AE 
L 0 0 

- AE 
L 0 0 

12El 6EI - 12EI 6EI 
0 ---u- L2 0 L3 L2 

O 6EI 4El O - 6EI 2EI 
- L2 L L2 L [JCJ = �A-E----------------r --AE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

-- 0 0 - 0 0 L L 

0 

0 

- 12EI - 6EI 
L3 L2 
6EI 
L2 

2EI 
L 

The displacement vector { ui} for the element is 

0 

0 

12EI - 6EI 
---u- L2 
- 6EI 4El 

L2 L 

{uJ = [u1 V1 01 U2 V2 02] T 

and the element end action (load) vector {�} is 

{PJ = [Px1 py 1 M 1 px2 py2 M 2J T 

( 1 9.68) 

( 1 9.69) 

( 1 9.70) 

Finally, the relationship between nodal loads and nodal displacements for an 
element in local coordinates is given by the familiar form 

[KJ {uJ = {�} ( 19. 7 1) 

Equivalent Nodal Load Vector 
As for most other elements, actual loads that are applied over the element must be 
converted to equivalent nodal loads. We consider only element loads that affect 
beam behavior. Two cases are considered : a distributed load over a portion of the 
element and a transverse concentrated force. Equivalent nodal loads for axial be
havior are derived in a like fashion. 

For a distributed load along the beam, not necessarily over the full length, the 
variation of work bWv of the load is 

( 19.72) 

where q(x) is the load function that exists over the domain La < x < Lb (see 
Fig. 19 . 14a) and the subscript D denotes a distributed load. Equation ( 19.62) is 
substituted into Eq. ( 19.72), and the equivalent nodal load vector is obtained as 

( 19.73) 
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q(i) Cfh-1 
(a) . 

x 
· 2� 

Pc 

1 .  
! 

x = Lc 

(b) 

x 
· 2

� 

Figure 19. 14  Element loads for beam element. (a) Distributed load . (b) Concentrated 
load. 

For a concentrated load Pc located at x = Lc along the beam (see Fig. 19 . 14b) the 
variation of work b We of the load is 

( 19 .74) 

The variation of displacement bv at x = Lc is written in terms of the variation of 
nodal displacements by Eq. ( 1 9.62) with the shape functions evaluated at x = Lc . 
The equivalent nodal load vector is 

( 19 .75) 

By Eqs. ( 19 .73) and ( 19 .75), equivalent nodal load vectors for several load patterns 
on a beam element were determined and are shown in Fig. 19. 1 5. 

Coordinate Rotations 
Consider an element in a structure oriented at an angle ¢ with respect to the global 
x axis (Fig. 19 . 1 6). To assemble the stiffness matrix and load vector for this element 
with those of other elements, all nodal DOF must be defined in terms of the global 
coordinate system. For node i, the displacements in the two coordinate systems 
are related by 

( 1 9.76) 

where 

For a plane frame element, with two nodes, the displacements are related by 

{uJ = [T] {uJ ( 19. 77) 

where the rotation (transformation) matrix [T] is 
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Figure 19. 1 5  Equivalent nodal loads for beam element. (a) Uniformly distributed load. 
(b) Linearly distributed load. (c) Concentrated load. 
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Figure 19. 16  Frame element in global coordinates. 



TABLE 19.4 
Element Stiffness Matrix for Plane Frame Element in Global Coordinates 

column index row index 
j ---+ 1 

2 AE 2 1 2EI c - + s --

L L3 

sc( AE _ 12EI) L L3 

2 

sc( AE _ 12EI) L L3 

2 AE 2 1 2EI 
s - + c  --

L L3 

3 

- s(�n 
c(�n 

4 

2 AE 2 1 2EI - c - - s --

L L3 

- sc( AE _ 1 2EI) L L3 

5 

- sc( AE _ 12EI) L L3 

2 AE 2 1 2EI - s - - c --

L L3 

6 il 

(6EI)-- s 
L2 I 1 

(6EI) c 
L2 I 2 

L2 L2 L L2 L2 L 
- s(6EI) c(6EI) 4EI 

s(6EI) - c(6EI) 2EI I 3 
[KJ = r----�------------------------------------1----------------------------------------� 

- c2 AE _ 8 2 1 2EI - sc( AE _ 12EI) s(6EI) i c2 AE + 8 2 1 2EI 
sc( AE _ 12EI) s(6EI) 1 4 

L L3 L L3 L2 I L L3 L L3 L2 

- sc( AE _ 1 2EI) L L3 

- s(�I) 
2 AE 2 1 2EI -s - - c --

L L3 

c(�2
1) 

-c(�I) 
2EI 
L 

c = cos cp, 

I 

sc( AE _ 1 2EI) L L3 

s(�I) 
s = sin cp 

2 AE 2 12EI 
s - + c  --

L L3 

- c(�I) 
(6EI) - c 

L2 I 5 

4EI 
1 6 

L 
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In like manner, element end actions (loads) are rotated by 

{�} = [T] {�} ( 19.78) 

Substitution of Eqs. ( 1 9.77) and ( 19.78) into Eq. ( 19.7 1) yields 

[K] [T] { ui} = [T] {�} ( 19.79) 

Premultipling both sides of Eq. ( 19.79) by [T] - 1 and observing that [T] - 1 = [T] T, 
since [T] is an orthogonal matrix, we obtain 

Thus, since { uJ and {�} are in global coordinates, the stiffness matrix for the plane 
frame element, in global coordinates, is 

( 1 9. 80) 

The final form of [K] is given in Table 19.4. The load vector for the element, in 
global coordinates, is obtained from Eq. ( 1 9.78) as 

( 19. 8 1) 

CLOSING REMARKS 

Requirements for Accuracy 
The accuracy of a finite element solution strongly depends on two conditions. First, 
it is important that the equations of equilibrium be satisfied throughout the model. 
Second, it is also important that compatibility (continuity of displacements) be 
maintained. In certain circumstances, these conditions are violated, as noted below. 

Equilibrium at the structure nodes is satisfied since the basic system of equa
tions, Eq. (19.45 ), is fundamentally a system of nodal equilibrium equations. Thus, 
within the accuracy of the equation-solving process (numerical error), the struc
ture nodes are in equilibrium. 

For elements with only displacement DOF, equilibrium along element edges 
is generally not satisfied. This is because although displacements might be contin
uous across element boundaries, their derivatives are not, and thus, stresses are not 
continuous. For instance, consider two constant strain triangle elements, such as 
those shown in Fig. 19. 1 7. Nodes 1, 2, and 3 are fully constrained, whereas node 4 
has an imposed displacement in the x direction. Hence, element 1 is unstressed, 
whereas element 2 has nonzero (Jxx · Because of the stress discontinuity, a differ
ential element located at the boundary between the two elements does not satisfy 
equilibrium in the x direction. 

Equilibrium within an element is not satisfied, unless body forces are of rela
tively low order or are entirely absent. For a constant strain triangle, the stress 
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Figure 19. 17  Equilibrium along element edges. 

state is constant throughout the element. Thus, equilibrium of a differential ele
ment is satisfied only when body forces are absent [see Eq. (2.45 )] . Similarly, for 
elements that can represent linear stress variation, body forces must be, at most, 
constant in magnitude for equilibrium. 

Compatibility at the nodes is assured because of the assembly process. That is, 
the displacements of adjacent elements are the same at their common nodes. How
ever, to assure that compatibility is maintained along the common edge between 
two adjacent elements, the displacements along that edge, viewed from either ele
ment, must be expressed entirely in terms of the displacement of nodes on that 
edge. Elements that maintain compatibility along common edges are known as 
conforming elements. Generally, this condition is satisfied for elements that possess 
only translational DOF. However, certain plate-bending and shell elements, for 
instance, are nonconforming. 

Compatibility within an element is assured so long as the displacement inter
polation polynomials are continuous. 

Requirements for Convergence 
As discussed at the beginning of this chapter, a major source of error in a finite 
element solution is the use of approximation functions to describe element 
response (formulation error). To reduce formulation error, we successively refine 
our finite element models with the expectation that the numerical solution will 
converge to the exact solution. Under certain conditions, convergence can be 
guaranteed. These condi1:ions are the following: 

1 .  The elements must be complete. That is, the shape function must be a com
plete polynomial. For instance, a complete quadratic contains all possible 
quadratic terms and omits no linear or constant terms. Inclusion of a few 
cubic terms, such as for the quadratic serendipity and Lagrange elements, 
does not destroy completeness of the quadratic polynomial . 

2. The elements must be compatible. Hence, continuity of displacements must 
be assured throughout the entire structural model. 
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3. The elements must be capable of representing rigid-body motion and constant 
strain. For two- and three-dimensional elasticity problems, these are assured 
if the displacement field contains at least a complete linear polynomial. For 
shell elements, constant strain implies constant curvature and constant twist 
[see Eq. ( 1 3 .30)] . Some shell elements cannot represent rigid-body motion. 

Generally, a finite element model is too stiff. That is, displacements converge 
from below. A qualitative explanation is as follows. The elements are constrained, 
by the shape functions, to deform in a specific (unnatural) manner. This constraint 
adds stiffness, relative to the physical system, that results in smaller displacements 
when the external influences on the system are loads. If all external loads are zero 
and the only external influences on the system are imposed (nonzero) displace
ments, additional energy is required to force the model into the imposed deformed 
shape. 

For isoparametric elements, reduced integration can be used effectively to 
soften the element such that its response improves relative to full integration. 
Problem 19 . 1  demonstrates how the use of approximation functions to represent 
displacements results in a model that is stiff relative to the actual system. 

Modeling Recommendations 
As an aid to the application of the finite-element method to analysis of practical 
problems in elasticity, the following recommendations are offered. The list is not 
exhaustive and the recommendations themselves are not rigid rules that cannot 
be violated. 

1 .  Avoid abrupt transitions in element size and geometry. Limit the change in 
element stiffness (approximated by Ej� ,  where � is the volume of the element) 
from one element to the next to roughly a factor of 3. 

2. Avoid unnecessary element irregularity. Keep aspect ratios (the length ratio of 
the longest side to the shortest side) less than 10 : 1 .  Interior angles of quadri
laterals should be as regular as possible. They should not exceed 1 50° and they 
should not be less than 30°. Midside nodes on quadratic elements should be 
within the middle third of the edge. 

3. Maintain compatibility between elements. For instance, it is not appropriate 
to attach one quadratic quadrilateral to two linear quadrilaterals simply 
because they have three nodes in common. Such an assembly would not main
tain compatibility because of the difference in displacement interpolation on 
the two sides of the boundary; see Fig. 19. 1 8. 

-

-

(a) (b) 

Figure 19. 1 8  Assembly of incompatible elements. (a) Undistorted assembly. (b) Loss of 
compatibility under distortion. 
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4. Use a fine mesh in regions of high stress gradient (stress concentration) ; use a 
coarse mesh where gradients are low. 

5. When Choleski decomposition, or any other band solver, is used, minimize the 
bandwidth of the assembled structure stiffness matrix by proper node number
ing. The nonzero entries in the structure stiffness matrix are clustered about the 
diagonal in a band. The bandwidth is the number of terms across a row (or 
down a column) of the band. The half-bandwidth is the number of terms from 
the diagonal out to the edge of the band. The nodal half-bandwidth is com
puted as (nmax - nmin + 1 ), where nmax and nmin are the largest and smallest 
structure node numbers in the incidence list for an element. Hence, to minimize 
bandwidth, keep the range of node numbers that define the incidences for a 
single element as small as possible. Examples of poor and good node number
ing schemes are illustrated in Fig. 19 . 19. 

6. Exploit symmetry in the geometry and loads of the physical system to build 
the smallest reasonable model. 

The finite element method and its use in engineering practice are evolving con
tinuously. For instance, not long ago, material andjor geometric nonlinear anal
yses were rarely attempted. Today, such analyses are not limited to research but 
are performed by practicing engineers as well. The popularity of the finite element 
method is due primarily to the greater availability, and affordability, of user
friendly software that integrates sophisticated analysis capabilities with solid 
modeling and computer-aided design (CAD). Unfortunately, user training and 
experience are not always equal to the capabilities of the software. Hence, the 
danger exists that these powerful analytical tools will be used as black boxes, with
out proper understanding of the physical system or algorithms used in the analysis. 
There is no substitute for common sense and sound judgment, and one should 
remain skeptical of computer-generated results until they can be verified by some 
other means. 

An effective means for an engineer to gain experience in performing finite ele
ment analysis and develop confidence in a finite element program is to solve a series 
of relatively simple benchmark problems. Such problems are specially designed to 

1 3  1 4  1 5  1 6  1 7  1 8  

7 8 9 1 0  1 1  1 2  

2 3 4 5 6 
(a) 

3 6 9 1 2  1 5  1 8  

2 5 8 1 1  1 4  1 7  

4 7 1 0  1 3  1 6  
(b) 

Figure 19. 19 Node numbering to minimize bandwidth. (a) Poor numbering scheme, half-
bandwidth = 8. (b) Good numbering scheme, half-bandwidth = 5 .  
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test the accuracy of the individual elements in the program. However, they can 
also be used as a training device for novice users. A reasonable set of benchmark 
problems has been proposed by MacNeal and Harder ( 1984, 1985). Additional 
problems can be found in (AIAA, 1985). 

PROBLEMS 
Section 19.2 

19.1 .  A transverse load P is applied to the end of a cantilever beam (Fig. P 19. 1 ). 
The beam has length L, moment of inertia I, and modulus of elasticity E. 
The displaced shape of the beam is assumed to be of the following forms : 

Figure P19. 1  

i. v(x) = a0 + a1 x + a2x2 

ii. v(x) = b( 1 - cos�;) 
iii. v(x) = c0 + c 1 x + c2x2 + c3x 3 

Consider only strain energy due to bending as given by Eq. ( 1 9.65) and the 
potential of the load [Q = - Pv(L )] with respect to the undeformed beam. 

(a) To the extent possible, simplify each of the assumed displaced shapes 
to account for the boundary conditions. 

(b) Calculate the elastic strain energy U and potential n of the external 
load P for each of the assumed displaced shapes. 

(c) Solve for the parameters (a0 , . . .  , c3 ) using the principle of stationary 
potential energy, where for equilibrium biT = bU + bQ = 0. Hint : The 
virtual displacement bv is first written in terms of a variation in the 
parameters (ba0 , . . .  , bc3 ). Then simultaneous equations are written 
from biT = (oiTjoa0)ba0 + · · · = 0. 

(d) Compute values of II and v(L) for each of the assumed displaced 
shapes. Compare the values of v(L) to each other and to the elastic
ity solution of v(L) = (PL 3 j3EI . 

(e) Discuss the results. 

19.2. For the constant strain triangle element shown in Fig. P 19.2 

(a) Write the shape function for each node. 

(b) Evaluate each shape function at point P. 

(c) Show, numerically for each shape function, that the value of the shape 
function for node i is equal to the ratio APik/Aiik ' where APik is the 
area of triangle Pjk and Aiik the area of the element. 
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r 
3(0,2) 

• 
P(0.5, 1 )  

X .-------------� � 
1 (0,0) 2(2,0) 

Figure P19.2 

19.3. For the mesh shown in Fig. 19 .5 , construct the boolean connectivity matrix 
[M] for elements 2, 3, and 4. Refer to Example 19.2. 

19.4. For the mesh shown in Fig. 19 .5, assemble the complete stiffness matrix for 
the structure. Use the notation kij to represent each stiffness coefficient, 
where the superscript identifies the element number. Refer to Example 1 9.2. 

Section 19.4 

19.5. A four-node isoparametric element has nodes at the following (x, y) coor
dinates : 1 (0,0), 2(1 ,0), 3 (2,2), 4(0, 1 ). 

(a) Sketch to scale the element and the lines for which � =  ± t, � = ± -!,  
11 = ±! , and 11 = ±-! .  

(b) Write the coordinate interpolation functions 
4 4 

x( �' 17) = I Ni ( �' 17)xi i = 1 
and y( �, 11 ) = I Ni (�, 11)Yi · i = 1 

(c) Compute the terms in the Jacobian matrix [J] given by Eq. ( 1 9.53) . 
(d) Evaluate the determinate I l l at � = 0, 11 = 0. Compare this value to 

the ratio of the area of the element in (x, y) coordinates to that in 
( �' 11) coordinates. 

19.6. For the linear isoparametric element shown in Fig. P19.6, compute [B1] 

at the point � = 0, 11 = 0. 
19.7. Using the one-, two-, and three-point Gauss quadrature rules, numerically 

evaluate the following integrals. Compare the numerical results to the exact 
solutions. 

(a) I =  r
1 
(6x3 - 4x2 + 3x - 2) dx 

(b) I =  r
1 
cosh � d� 

(c) I =  r
1 
e� d� 



3(1 ,2) 

r 
4(0, 1 )  

1 (0,0) 2( 1  ,0) 

Figure P19.6 
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X 

19.8. Using the one-, two-, and three-point symmetric Gauss quadrature rules, 
numerically evaluate the following integrals. Compare the numerical 
results to the exact solutions. 

Section 19 .5 

(a) I =  fJ�1 cos � cos 11 d� d11 

(b) I =  fJ�/in2 � cos 11 d� d'1 

19.9. Derive the equivalent nodal load vector for an axial rod element subjected 
to a concentrated axial force P c acting at Lc from node 1 ,  see Fig. P1 9.9. 

Figure P19.9 

19. 10. Derive the equivalent nodal load vector for an axial rod subjected to a 
ul!iformly distributed axial force of magnitude ij0 acting over the domain 
La < .X <  Lb , see Fig. P19 . 10  

Figure P19. 10 

19. 1 1 . Derive the equivalent nodal load vector for a beam element subjected 
to a concentrated bending moment Me acting at Lc from node 1 ;  see 
Fig. P19. 1 1 .  
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Figure P19. 1 1  

19.12. Derive the stiffness matrix in local coordinates for a beam on elastic foun
dation element. Use the shape functions described in Eq. ( 1 9.63b) and a 
Winkler model for the foundation. With the addition of the elastic foun
dation, the virtual work of the internal forces bU in the element is the 
virtual work due to beam bending plus the virtual work due to founda
tion deformation. That is, 

(j U = f: ( {jiJ)" Eli!" dX + r ()VkV dX 

where k is the foundation modulus [Eq. ( 10.3)] .  
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TABLE A.1 
Properties in S.I. Units 

Material 

Steel 

Structural, ASTM A36 

AISI-C 1030, normalized 

AISI-C 1040, normalized 

AISI-C 1080, normalized 

AISI -3 140, normalized 

AISI-4340, normalized 

AISI 301 Stainless, annealed 

AISI 301 Stainless, half hard 

Cast Iron 

Gray, Class 30 (tension) 

Gray, Class 30 (compression) 

Gray, Class 40 (tension) 

Gray, Class 40 (compression) 

Aluminum Alloys 

1 100-H 1 2  

2024 T4 

7075 T6 

Copper Alloys 

Free-Cutting Copper, soft 

Free-Cutting Copper, hard 

Yell ow Brass, annealed 

Yellow Brass, half hard 

Commercial Bronze, annealed 

Commercial Bronze, half hard 

Titanium 

Alloy Ti-Al-V 

Timber 

Douglas Fir 

Yellow Pine (compression) 

White Oak (compression) 

Concrete 

Medium Strength ( comp.) 

Density 

103 kg/m3 

7.85 

7.85 

7.85 

7.85 

7.85 

7.8 

7.92 

7.92 

7.2 1  

7.2 1  

7.2 1 

7.21 

2 .71 

2.77 

2.77 

8.9 1 

8.9 1 

8.43 

8.43 

8.84 

8 .84 

4. 54 

0.45 

0.54 

0.59 

2.32 

Yield Ultimate Young's 
Stress Stress Modulus 

Poisson's 
MPa MPa Ratio GPa 

250 400 0.29 200 
340 530 0.29 200 
390 590 0.29 200 
520 1010 0.29 200 
620 900 0.29 200 
860 1 3 10 0.29 200 
280 760 0.27 193 
760 1030 0.27 193 

210 0.20 103 
5 10 0.20 103 
410 0.20 1 3 8  
990 0.20 1 38 

103 1 10 0.33 70.0 
320 470 0.3 3 74.5 
500 570 0.3 3 72.0 

62 220 0.35  1 17 
290 320 0.35  1 1 7 
1 17 340 0.35 105 
340 420 0.35  105 

90 270 0.35 1 10 
280 330 0.35 1 10 

890 930 0.33 1 14 

5 1  12.5 
57 13.8 
47 1 1 .0 

28 0. 1 5  25.0 

Thermal 
Percent Coefficient 

Elongation 
at Rupture uo-6)rc 

30 1 1 .7 

30 1 1 .7 

28 1 1 .7 

1 1  1 1 .7 

19  1 1.7 

12 1 1.7 

60 17.3 

15 17.3 

nil 1 2. 1  

nil 1 2. 1  

nil 12. 1  

nil 12. 1  

25 23 .5 

19 22.5 

1 1  22.5 

42 1 7.6 

12 17.6 

60 20.0 

23 20.0 

45 1 8.0 

25 18 .0 

1 2  9.5 

9.9 
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Properties in U.S. Customary Units 

Yield Ultimate Young's Thermal 
Density Stress Stress Modulus Percent Coefficient 

Poisson's Elongation 
Material lb/ft3 103 psi 103 psi Ratio 106 psi at Rupture (1o-6)rF 

Steel 

Structural, ASTM A36 490 36 58 0.29 29 30 6.5 
AISI-C 1030, normalized 490 49 77 0.29 29 30 6.5 
AISI-C 1040, normalized 490 56 85 0.29 29 28 6.5 
AISI-C 1080, normalized 490 75 145 0.29 29 1 1  6.5 
AISI-3 140, normalized 490 90 130 0.29 29 19  6.5 
AISI -4340, normalized 490 1 25 190 0.29 29 1 2  6.5 
AISI 301 Stainless, annealed 495 40 1 10 0.27 28 60 9.6 1 
AISI 301 Stainless, half hard 495 1 10 1 50 0.27 28 1 5  9.6 1  

Cast Iron 

Gray, Class 30 (tension) 450 30 0.20 1 5  nil 6.72 
Gray, Class 30 (compression) 450 74 0.20 1 5  nil 6.72 
Gray, Class 40 (tension) 450 60 0.20 20 nil 6.72 
Gray, Class 40 (compression) 450 144 0.20 20 nil 6.72 

Aluminum Alloys 

1 100-H 12 170 1 5  16  0.33 10.2 25 13.06 
2024 T4 173 46 68 0.33 10.8 1 9  12.5 
7075 T6 173 73 83 0.33  10.4 1 1  1 2.5  

Copper Alloys 

Free-Cutting Copper, soft 556 9 32 0.35  17  42 9.78 
Free-Cutting Copper, hard 556 42 46 0.35 17 12 9.78 
Yellow Brass, annealed 526 17 49 0.35 1 5 .2 60 1 1. 1 1  
Yellow Brass, half hard 526 49 61 0.35 1 5.2 23 1 1 . 1 1  
Commercial Bronze, annealed 552 13  39 0.35 16  45 10.0 
Commercial Bronze, half hard 552 41 48 0.35 1 6  25 10.0 

Titanium 

Alloy Ti-Al-V 283 1 30 135  0.33 1 6.5 1 2 5.28 

Timber 

Douglas Fir 28 7.43 1 .8 

Yellow Pine (compression) - 344 8.26 2.0 
White Oak (compression) 37 6.80 1 .6 

Concrete 

Medium Strength (comp.) 145 4 0. 15  3.6 5.5 
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B.1 

SECOND MOMENT 
(MOMENT OF INERTIA) 
OF A PLANE AREA 

MOMENTS OF INERTIA OF A PLANE AREA 

The derivation of load-stress formulas for torsion members and beams may require 
solutions of one or more of the following integrals : 

fx = f y2 dA (B. l )  

ly = f x2 dA (B.2) 

1 = f r 2 dA (B.3) 

lxy = f xy dA (B.4) 

where dA is an element of the plane area A lying in the (x, y) plane in Fig. B. l .  
Area A represents the cross-sectional area of a member subjected to bending and/ 
or torsional loads. 

The integrals in Eqs. (B. l), (B.2), and (B.3) are commonly called moments of 
inertia of the area A because of the similarity with integrals that define the 

0 
Jtc:-------::l�- Y 

X 

Figure B. l 
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moment of inertia of bodies in the field of dynamics. Since an area cannot have an 
inertia, moment of inertia of an area is a misnomer. We use the term because of 
common usage. 

The integral represented by Eq. (B.4) is called the product of inertia. Its sign can 
be negative. The moment of inertia and product of inertia are given the symbol / 
if the axes about which the moments are taken lie in the plane of the area [see 
Eqs. (B. l), (B.2), and (B.4)] . When the axis about which the moment is taken is 
perpendicular to the area [see Eq. (B.3)] ,  the moment of inertia is given the symbol 
J and is called the polar moment of inertia of the area. 

PARALLEL AXIS THEOREM 

In the application of Eqs. (B. l), (B.2), (B.3), and (B.4) to engineering problems, it is 
convenient to know these integrals for coordinate axes at the centroid of area A. 
The values of the integrals for a few cross sections are listed in Table B. l .  Often, 
practical members have cross sections that are composed of two or more simple 
cross sections (Table B. l ). Moments of inertia for composite areas are obtained by 
application of the parallel axis theorem. 

TABLE 8.1 
Moments of Inertia of Common Plane Areas 

Rectangle 

Right 
Triangle 

Circle 

Ellipse 

IX = bh3/ 1 2  
Iy = hb3j l 2  

10 = (bh3 + hb 3)/ 12  
Ixy = 0 

IX = bh3/36 
Iy = hb3/36 

10 = (bh3 + hb3 )/36 
I = - b2h 2j72 xy 

Ix = nD4/64 = nR4/4 
Iy = nD4/64 = nR4/4 

10 = nD4 /32 = nR4 /2 
Ixy = 0 

Ix = nbh3/4 
Iy = nhb3j4 

]0 = nbh(h 2 + b 2)/4 
Ixy = 0 

(continues) 
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TABLE 8.1 (Continued) 
y 

Semicircle 

4R/3�r 

Semi ellipse 

Ix = nR4( 1/8 - 8/9n2) 
Iy = nR4/8 
10 = nR4( 1/4 - 8/9n2 ) 
Ixy = 0 

Ix = nbh3( 1/8 - 8/9n2 ) 
Iy = nhb3/8 
10 = nbh(h2/8 - 8h2/9n2 + b 2/8)  
Ixy = 0 

Let it be required to obtain moments of inertia for area A in Fig. B.2 for coor
dinate axes (x', y', z') . Area A lies in the (x', y') plane. First, locate coordinate axes 
(x, y, z) with axes parallel, respectively, to the (x', y', z ') axes and with the origin 0 at 
the centroid of A. Let the distances of the centroid 0 from the axes (x', y ' )  be (.X, y). 

Then, r = .J.x2 + y2 is the distance between the z '  axis and z axis. Using Eqs. (B. l ), 
(B.2), (B.3), and (B.4), we obtain 

lx' = f (y + j/)2 dA = lx + Aj/2 (B. S ) 

ly' = f (x + XjZ dA = ly + AX2 

lo· = f [(x + X jZ + (y + WJ dA = 10 + Ai"2 

lx'y' = f (x + X)(y + jl) dA = lxy + AXji 

(B.6) 

(B.7 ) 

(B.8) 

where integrals J y dA and J x dA are zero since the first moment of an area with 
respect to an axis through the centroid of the area vanishes. Equations (B.5) 
through (B.8) represent parallel axes formulas for moments of inertia of an area. 
They may be employed to obtain the moments of inertia of composite areas . 

x' 

X 

Figure B.2 

z' 

0' 
k-----+-------�- y· 

r x Y-4 
dA 
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EXAMPLE B.1 
Moments of Inertia for Z-bar 

8.3 

A Z-bar has the cross section shown in Fig. EB. l .  Determine lx , ly , and lxy for the 
centroidal axes (x, y) shown. 

y 

60 mm 

0 --ofH----L---- X 

Figure EB. l 

SOLUTION 

The area is divided into three rectangular areas A1 ,  A2 , and A3 (Fig. EB. l) . Using 
Eqs. (B. 5), (B.6), and (B.8), and Table B. 1 ,  we obtain 

I = 
60( 10)3 

+ 60( 10)(55 )2 + 
10( 120)3 

+ 1 20( 10)(0)2 X 1 2  12  

+ 
60i�w 

+ 60( 10)( - 55)2 = 5 .08 X 106 mm4 

= 
10(60)3 

60( 10)( - 35 )2 
1 20( 10)3 

1 20( 10)(0)2 ly 
1 2  + + 1 2  + 

+ 
10i�0)3 

+ 60( 10)(35 )Z = 1 .84 x 106 mm4 

lxy = 60( 10)( - 35)(55) + 1 20( 10)(0)(0) + 60( 10)(35)( - 55) 
= - 2.3 1 x 106 mm2 

TRANSFORMATION EQUATIONS FOR MOMENTS AND 
PRODUCTS OF INERTIA 

Let lx , ly , and lxy be known moments and product of inertia for area A (Fig. B.3) 
for (x, y) rectangular axes that lie in the plane of the area. Consider the (X , Y) coor
dinate axes that have the same origin and same plane as the (x, y) axes. We wish to 
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y 

Figure B.3 

derive transformation equations by which lx , ly , and lxy are obtained in terms of 
lx , ly , lxy ' and 8, the angle through which the (x, y) axes must be rotated to coincide 
with the (X , Y) axes; 8 is positive in the counterclockwise sense. Consider an ele
ment of area dA at X and Y coordinates given by the relations 

X = x cos 8 + y sin 8 
Y = y cos 8 - x sin 8 

Substitution of Eqs . (B.9) into Eqs. (B. l ), (B.2), and (B.4) gives 

lx = f (y cos 8 - x sin 8)2 dA = lx cos2 8 + ly sin2 8 - 2{., sin 8 cos 8 

ly = f (x cos 8 + y sin 8)2 dA = lx sin2 8 + ly cos2 8 + 2Ixy sin 8 cos 8 

lxy = f (x cos 8 + y sin 8)(y cos 8 - x sin 8) dA 

= (Ix - ly) sin 8 cos 8 + lxy(cos2 8 - sin2 8) 

With double angle identities, Eq. (B. l 0) can be written in the form 

lx + ly lx - ly . 
lx = 

2 
+ 

2 
COS 28 - lxy SID 28 

I - 1 x 
2 

Y cos 28 + lxy sin 28 

lx - ly . lxy = 
2 

SID 28 + lxy COS 28 

(B.9) 

(B. lO) 

(B. l l ) 

Note the similarity between the transformation equations for moments and prod
ucts of inertia and the transformation equations of stress given by Eq. (2.3 1 ). 
Like stress components and strain components, moments and products of inertia 
transform according to the rule for second-order symmetric tensors. 
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Principal Axes of Inertia 
There are two values of fJ for which Ixr = 0. To determine these values, let Ixr = 0. 
Then, the third of Eqs. (B. 1 1) yields 

2Ixy tan 2fJ = - -� 
Ix - Iy 

(B. 1 2) 

The two values of fJ given by Eq. (B. l 2) locate two positions of axes (X, Y) that 
represent the principal axes of inertia for a given cross-sectional area. In the discus
sion that follows, we assume for definitiveness that Ix is greater than Iy . Then, the 
maximum moment of inertia, which we take to be Ix and is associated with the X 
axis, will occur for the X axis located at the smallest of the two values of fJ from 
the x axis ; the direction is counterclockwise for a positive value of fJ and clockwise 
for a negative value of fJ. Since Ix - Iy > 0, if we substitute the value of fJ given by 
Eq. (B. 1 2) into the first and second of Eqs. (B. l 1 ), we find that 

(B. 1 3) 

as the principal moments of inertia for the cross-sectional area A. 

EXAMPLE 8.2 
Principal Axes for Z-Bar 

Locate the principal axes and determine the principal moments of inertia Ix and 
Ir for the Z-bar whose dimensions are specified in Fig. EB. 1 .  

SOLUTION 

Since Ix = 5.08 x 106 mm4, Iy = 1 .84 x 106 mm4, and Ixy = - 2. 3 1  x 106 mm4, the 
principal values for the moments of inertia are given by Eqs. (B. 1 3). 

5 .08 X 106 + 1 .84 X 106 
Ix = 2 

+ JC·08 x 106 � 1 .84 x 106r + ( - 2.3 1  X 106 )2 

= 6.28 1 x 106 mm4 

5.08 X 106 + 1 .84 X 106 
Iy = 

2 
_ JC ·o8 x 106 � 1 .84 x 106) + ( _ 2.3 1 X 106)2 

= 0.639 x 106 mm4 
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y 
y 

Figure EB.2 

X 

The location of the X axis is given by Eq. (B. 1 2). Thus, 

- 2( - 2.3 1  X 106 ) 
tan 28 = 5 .08 x 106 - 1 . 84 x 106 = 1 .4259 

(J = 0.4 796 rad 

Hence, the X axis is located at 0.4796 rad, measured counterclockwise from the 
x axis, as shown in Fig. EB.2. 

PROBLEMS 
Section 8.2 

B.l Derive the expressions for lx and lxy for the right triangle in Table B. l .  
B.2 Derive the expression for lx for the semiellipse in Table B. 1 .  
B.3 Determine lx , ly , and lxy for the centroidal axes for the cross-sectional area 

shown in Fig. PB.3. 

y 

Figure PB. 3 



Ans. Ix = 9.806 x 106 mm4, ly = 3.982 x 106 mm4 

lxy = - 1 .634 x 106 mm4 

PROBLEMS 795 

B.4 Determine lx , ly , and lxy for the centroidal axes for the cross-sectional area 
shown in Fig. PB.4. 

y 

60 mm 

--����--+---- x _L ��� 
10 mm 

Figure PB.4 

Section 8.3 

B.S Locate principal axes (X, Y) and determine lx and ly for the cross-sectional 
area in Problem B.3. 

Ans. lx = 10.233 x 106 mm4, ly = 3.555 x 106 mm4, (} = 0.2557 rad 

B.6 Locate the principal axes (X, Y) and determine lx and ly for the cross
sectional area in Fig. PB.4. 

Ans. lx = 433 .3  x 103 mm4, ly = 108 .3 x 103 mm4, (} = - 0.5880 rad 
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beams, 179-208, 3 12-3 1 5, 385-39 1 
curved, 385-391 

Castigliano's theorem for, 385 
I. T sections, 3 87 
press, 389-39 1 

straight, 3 12-3 16 
cantilever 1-beam, 3 1 5  
channel, simply supported, 3 14 
nonsymmetrical bending, 3 1 2-3 13  

of bodies in point contact, 7 1 1-7 16  
of  columns, large displacement, 473-474 
of elastic plates, 53 1 -534, 542-546 
by energy methods, 8 
statical ly determinate structures, 1 79- 196 
statically indeterminate structures, 

196-208 
Deformation, 56-75, 1 1 6-120, 243-244, 304 

beam bending, 304 
of deformable body, 56-75 
geometry of, 243-244, 304 
plastic (yielding), 1 1 6- 1 20 
in torsion, 243 

Degrees of freedom, number of, 1 64 
Design, 3-4, 1 8  

inequality, 1 8  
process, 3-4 
role of, 3 

Diagonal tension, 343 
Direction cosines, tab le of. 36, 44 
Dislocations. 22 
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Displacements, 58-59, 64-67, 86, 164- 1 65, 
447-448, 736-739 

components of. at a point, 58-59 
interpolation of, 736-739 
small, theory of, 64-67 
of thick-wall cylinders, 447-448 
variation of, 86 
virtual, 1 64, 1 65 

Divergence theorem, 87 
Ductility, 13  
Dummy load method, 190-191  

procedure for using, 1 90-19 1 
Dummy unit load method. 19 1 

Elastica problem, 47 1 ,  472 
Elastic coefficients, see Material properties 
Elastic foundation, beams on, 405-432 

deflection of, 406-408, 4 1 7-4 18, 42 1 . 423. 
425-426 

spring coefficient (constant) ,  406 
Elasticity, 2. 88- 109. 1 16- 1 1 7 

linear. 93-94 
modulus of. see Material properties 
nonlinear. 1 16- 1 17 
theory of. 7, 565 

Elastic limit. see Material properties 
Elastic memb rane method, 258-262. 586 
Ellipsoidal cavity. 57 1 
Elliptical hole. 566-570 
Elliptic integrals, 700-70 1 
Elongation. 10 
Endurance limit (stress). 24. 636, 637 
Energy. strain. see Strain energy 
Energy principles. 165. 484, 527-528 

stationary potential energy, 165. 484. 527. 528 
virtua l work. 165 

Engesser's formula. 494 
Equations of equilibrium. 5. 8, 52-56. 442. 

52 1-523 
differential, 52-56 
flat plates. 521-523 
thick-wall cylinders. 442 

Equations of m otion. 52-56 
in cylindrical coordinates. 55 
of a deformable body, 52-56 
in orthogonal curvilinear coordinates. 52-56 
in plane polar coordinates. 55-56 
in spherical coordinates, 55 

Euler's buckling formula. 473 , 475-484 
Exceedance diagrams. 627 

Factor of safety, 1 8  
Failure. 1 7-24. 470-500, 634. 655-688 

columns. 470-500 
buckling. 470 
jamming, 47 1 
loaded eccentrical ly, 480 

creep. 2 1 . 655-688 
definition, 1 7. 19  
excessive deflection. 19-22 

fatigue, 2 1 ,  24 
fracture, 20-2 1 ,  23-24 
modes, 20-24 
plastic deformation, 20 
stress-assisted corrosion cracking. 634 
yielding, 20-22 

Failure criteria, 17. See also Yield criteria 
buckling, 469-500 

of columns of intermediate slenderness, 
496-498 

elastic, of ideal slender columns, 

472-474 
higher buckling loads, 478-479 

of imperfect slender columns, 474-475 
large deflections, 473-474 

inelastic, of ideal column, 490-500 
double (effective) modulus formula, 492 
tangent modulus (Engesser) formula 

for, 494 
local, 488-490 

comparison of. for general yielding. 144- 1 54 
creep. 655 
excessive deflections. 1 9-22 
extensive yielding, 20-22 
fatigue, 24. 636 
fracture. 608-6 17 

brittle state. 609. 610 
ductile state. 609 

general  yielding. definition of. 144 
interpretation of. for general yielding. 

1 50- 1 52 
jamming, 47 1 
large deflections. 47 1 
other factors. 1 54 
significance of. 148-150 
for thick-wall cy Iinder. 45 1 -455 

fatigue, 452 
Fatigue. 634-645 

coaxing. 63 8 
corrosion. 644 
definition of. 634 
effects of mean stress. 639-641 

Gerber relation. 639, 640 
Goodman relation, 639, 640 
Soderberg relation. 639. 640 

effects of stress range, 645 
endurance limit. 636, 637 
failure. defined. 636 
high-cycle. 63 5-642 
life. 634 

affects of. 634 
phases of. 634 

low-cycle. 635, 641 
multiaxial stress states. 640 
a-N (S-N) diagrams, 636-639, 643 

Finite difference method for the torsion 
problem. 274-277 

Finite element methods, 732-778 
accuracy requirements. 775. 776 
analytical perspective. 732-733 



assembly, structure stiffness matrix and load 
vector, 746-750 

Fortran subroutine for, 75 1 
bandwidth minimization, 734, 778 
beam on elastic foundation, 782 
benchmark problems, 778-779 
Boolean connectivity matrix, 747 
constraint application, 750, 752 

equation modification method, 750, 752 
convergence requirements, 737-738, 776-777 
coordinates, 760-76 1 .  767 

global, 767 
local, 767 
natural. 760, 761 
physical. 760, 76 1 
transformation (rotation) of. 762, 772-773, 

775 
displacement interpolation, 739-746 

basis functions, 739 
shape functions, 739 

elasticity matrix, 736 
element formulations, 736-746, 753-757. 

760-775 
bilinear rectangle, 753-757 
constant strain triangle, 736-746 
high-order isoparametric elements, 764, 

766 
linear isoparametric quadrilateral. 

760-764 
plane frame element, 766-775 

element stiffness matrix, 739-742, 753-756, 
763. 767-774 

bilinear rectangle, 753-756 
constant strain triangle, 739-742 
linear isoparametric quadrilateral. 763 
plane frame element. 767-77 L 774 

equation solving, 752-753 
Choleski decomposition, 752, 753 
load pass operations, 753 

equivalent nodal load vector, 74 1-746, 
77 1 -773 

constant strain triangle, 74 1 ,  743-746 
plane frame element. 77 1 -772. 773 

errors, 733�734 
discretization, 733 
formulation, 733 
numerical. 734 

h-refinement. 733 
incidence list, 750 
interpretation of a stiffness coefficient. 74 1 .  

743 
isoparametric mapping, 76 1 -763 

Jacobian, 762 
Lagrange interpolation functions. 754, 76 1 
mapped elements, 760 

isoparametric. 760 
subparametric, 760 
superparametric, 760 

modeling recommendations, 777-778 
numerical integration. 764 

full, 764 
Gauss, 764 
reduced, 764 

p-refinement, 733 
parasitic shear, 760 
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plane elasticity formulation, 73 5-753 
rigid-body motion, 738 
strain-displacement relations, 

semidiscretized, 740 
Flat plates, see Plates. flat 
Forces, 30, 32, 34, 87, 123-125, 164, 1 69, 190-200 

body, 30 
couples, 32 
work of, 87 

fictitious, 1 90, 191  
generalized load, 164, 1 69 
redundant, 197-200 

external, 197- 198, 200 
internal. 198- 199 

residual, 123-125 
unit, 191  
vectoral summation of, 34 

Form factor, 59 1-592 
Fourier heat equation, 463 
Fourier series, 482 
Fracture, 19, 612, 614, 624, 634-641 

brittle, materials, 19 
high cycle fatigue, 63 5-641 

ductile, low cycle fatigue, 635 
effect of hydrostatic stress, 620-62 1 
fatigue, 634 
progressive, see Fatigue 
toughness, 612, 614, 624 

Fracture Mechanics, 608-629 
crack-growth analysis, 627 
design of test specimens, 6 12-61 4  
elastic plastic, 627 
exceedance diagrams, 627 
fracture toughness, K1c , 612, 6 14. 624 

table of values, 614 
journals related to, 629 
linear elastic, 608, 626 
load spectra. 627 
notch toughness, 609 
strain energy release rate, G, 621-622 
stress history, 627 
stress intensity factor, K1 , 61 1,  6 1 5, 620-623 

critical, 624 
definition of. 622-623 
table of, 6 1 5  

testing, 628-629 
specimen design. 612-61 4  

Fully plastic loads, see Loads, ful ly plastic 

Gage length, 10 

Gerber relation, 639, 640 
Goodman relation, 639. 640 

Heat equation, Fourier's. 463 
Hooke's Law, 92- 109 
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Hooke's Law (Continued) 
anisotropic elasticity, 90-92 
isotropic elasticity, 92-99 
orthotropic elasticity, 101- 109 

Hysteresis, 17 

Instability, structural, 470-500 
Internal energy, 85-90 

change in, 85 
density, 85, 88, 89 

complementary, 85, 89, 90 
elastic, 86 

total, 85 
va riation of, 87 

Invariants, 38, 64 
strain, 64 
stress, 38 

lsoparametric mapping, 761 -763 
Isothermal conditions, 93 

Kinematic mechanism, 1 58, 232 
Kirchhoff, shear, 530 
Kirchhoff approximation, plates, 5 16-5 19, 523, 

528 

Lagrange interpolation functions, 754, 76 1 
Lame's elastic coefficients, see Material 

properties 
Legendre transform, 90 
Limit analysis, 1 58, 232 
Limit states, 19 

design, 19 
Linear elasticity, 12 
Line elements, 36-44, 59-63 

direction cosines for, 36, 44 
final direction of, 60 
rotation between two, 6 1  
shear strain between two, 6 1 -63 
strain magnification factor for, 59, 60 

Load-deflection relations, 5, 8 
Load factors, 19  
Loads, 7 ,  9 ,  1 8, 124, 144, 232, 277-283, 3 1 8-320, 

470, 473, 478-479 
al lowable, 1 8  
buckl ing, 470, 473, 478-479 
fully plastic, 9, 124, 144, 277-283, 3 1 8-320 
plane of, 7 
plastic collapse, 232 
safe working, 1 8  
service level, 1 8  
yield, 124 

Load-stress relations, 5, 8 

Material properties, 8, 10- 16, 94-105, 786-787 
axial modulus, 97 
elastic coefficients, 8, 91  

matrix of, 102, 736 
elastic limit, 12 

in variance of, 102 
Lame's coefficients, 93 , 97, 98 
modulus of elasticity, 12, 90, 9 1 ,  97 
modulus of resilience, 1 4  
orthotropic, 103- 105 

modulus of elasticity, 103 
Poisson's ratio, 103, 1 04 
shear modulus, 103 ,  105 

percent elongation, 13  
Poisson's ratio, 94, 97 
proportional limit, 12 
shear modulus, 97, 98 
table of values, 786-787 
transverse modulus. 98 
thermal expansion coefficient. 100 
ultimate strength, 12 
yield point. 13-14  
yield strength, 12  
Young's  modulus, 94, 97 

Material response, 8, 9, 12, 1 13- 1 54 
brittle. 1 14 
ductile, 1 1 4 
elastic. 8-9, 1 1 6 

nonlinear, 1 1 6, 1 17, 1 19 
elastic-linear strain hardening, 1 1 8 
elastic-perfectly plastic, 1 1 8. 1 19 
fracture. 1 1 6 
hardening, 12 
inelastic, 8-9, 1 1 3- 1 54 
nonlinear, 1 1 3, 1 16- 126 
perfectly elastic, 12 
plastic, 1 1 6 
rigid-perfectly plastic, 16, 1 1 8, 120 
rigid -plastic, 1 1 8 
rigid-strain hardening, 1 1 8, 120 
softening, 12 
viscoelastic, 1 1 6 
viscoplastic, 1 1 6 
yielding, see Yield criteria 

Materials, 16, 22, 90-92, I l l , 1 1 5, 1 1 8-120, 134, 
609-6 10 

anisotropic, 90-92 
annealed high-carbon steel, 1 1 5 
brittle, 1 6, 610 
brittle state, 609 
cubic, I l l  
ductile state, 609 
elastic-perfectly plastic, 1 1 8 
12 materials, 134 
nonhomogeneous, 92 
perfectly plastic, 1 1 8 
polycrystal line metals, 22 
rigid plastic, 1 1 8 
strain hardening, 1 1 8- 120 

Material symmetry, 101 ,  1 02 
orthogonal planes of, 1 0 1 ,  102 
reflection with respect to planes of, 

101  
Matrix notation, 735 



Mechanics of rna terials method, 3-7 
Mechanism, 1 58, 232 
Membrane analogy (Prandtl), 253-257 
Metric coefficients, 54 
Microcracks, propagation of, 1 16 
Microstrain, 7 1  
Modulus o f  elasticity, see Material 

properties 
Mohr's circle, 44-5 1 

three dimensional, 48-5 1 
two dimensional (plane}, 44-48 

Moment-curvature relations, plates, 526 
Moments of plane area, second, 788-794 

common areas, 789, 790 
parallel axis theorem for, 789, 790 
plane area, 788-789 
polar moment of inertia, 240 
principal axes for, 793 
transformation equations for, 

79 1 -792 
Multiply-connected cross section, 255 

Necking, 1 4  

Newtonian potential equation. 699 

Notch sensitivity index, 593-598 
impact (energy) loading, 598 
repeated loads, 594-596 
residual stresses, 596 
static loads, 593-594 

brittle materials, 594 
ductile materials, 593-594 

stress gradient, 596-597 
significance of, 597 

Notch toughness, 609 
Numerical integration, 764, 765 

Octahedral shear stress, 41, 42, 127, 134, 138. 
147, 1 52, 704, 724 

in elastic bodies in contact, 704, 724 
yield criterion, 127, 134, 138, 1 47, 1 52 

Orthogonal shear stress, 704-709 
maximum, in elastic bodies in contact, 

704-709 

Parallel axis theorem, 789, 790 
Paths, loading and unloading, 1 1 5, 1 19 
Photoelastic methods, 58 1-584 
Plane, stress, see Stress, plane 
Plane of loads, 7, 294, 295, 300, 3 16-3 1 8 

effect of small inc lination of, 3 16-3 1 8  
Plane o f  symmetry, 7 
Plastic hinge, 1 56 
Plasticity, 1 13 
Plastic moments for beam cross sections, 157 
Plates, flat, 5 1 1-555 

boundary conditions, 527-53 1 
forced, 529 
natural, 529 

circular, 542-555 
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clamped {ftxed) edges, 544 

with circular hole. 544 
large deflections, 550-551 ,  554-555 
s imply-supported edges, 543 
table of solutions for, 546 

classification of, 5 1 1  
curvature of middle surface, 525 
differential equation for, 53 1 
equilibrium equations, 52 1-523 
flexural rigidity of, 96, 525 
general theory, 5 1 1-5 12  
kinematic relations, 5 1 6-520 
Kirchhoff approximation, 5 1 6-5 19, 523, 

528 
Kirchhoff shear in, 530 
Levy method, 532-534 
membrane stiffening, 540 
moment-curvature rela tion, 526 
Navier method, 532, 556 
Raleigh-Ritz procedure, 527 
rectangular, 53 1-541 

clamped (fixed) edges, 537 
deflections, 538-540 

large deflections, 555 
other type edges, 538 
simply supported edges, 53 6 
table of solutions for, 539 

rotation of surface element, 5 19-520 
small-deflection theory, limitations of, 5 12, 

540 
strain-displacement relations. 5 1 6-520 
strain energy of, 526-527 

bending, 527 
membrane, 527 

stress resultants, 5 12-5 1 6  
stress-strain-temperature relations, 523-526 
traction s, 5 1 5  
transverse shears, 5 1 5 
twisting moments, 5 1 5  

Poisson's ratio, see Material properties 
Prandtl membrane analogy, 253-2 57 
Prandtl stress function, 245, 248, 253-255 
Principa l axes, 37-38, 64, 95, 792-793 

of moments of inertia, 793 
of strain, 64, 95 
of stress, 37, 38, 95 

Principal stresses, 37-41 ,  701-702 
elastic bodies in contact, 70 1-702 
theory of, 37-41 

Product of inertia of plane area, 792 
Progressive fracture, see Fatigue 
Proportional limit, 12 
n-plane, 135-140 

Rayleigh's method, 482 
Rayleigh-Ritz procedure for plates, 527 
Recrystallization temperature, see Temperature, 

recrystallization 
Redundant member, 197, 198 



808 SUBJECT INDEX 

Redundant reaction, 197, 198 
Reentrant corners, torsion, 256, 257 
Reliability concepts, 1 8  
Residual stresses, 453-460 

in composite cylinders, 453-455 
due to autofrettage, 454, 457-460 

Resistance, 1 8  
factors, 19 

Rigid-body motion, 737-738 
Rotation of plate element, 5 19-520 

S-N (a-N) diagrams, see Fatigue 
Safety, factor of, 1 8  
Saint-Venant principle, 240 
Sand heap analogy, 278, 279 
Semiinverse method, 243-248 
Shear approximations, thin-wall beams, 

33 1 -334 
Shear center, 293-297, 337-3 50 

axis of antisymmetry, 296-297 
axis of symmetry, 296-297 
beam with thin-walL 335 

channel section, 336-341 
box beams, 346-3 50 

multicompartment, 348 
composite beams, 342-346 
definition of. 295-297 
table for, 337 

Shear correction coefficient, 1 77- 178 
Shear flow, 262 

thin-wall beams, 334-336 
a-N (S-N) diagrams, see Fatigue 
Simply connected cross section. 255 
Simultaneous equations. solution of. 752, 753 
Soap-film analogy, 253-257, 587 
Soderberg relation. 639, 640 

Statically determinate structures, 179 
deflections of, 1 79- 196 

Statically indeterminate structures, 1 80, 
196-208 

deflections of. 196-208 
Stationary potential energy, 165, 484, 527. 528 
Strain, 10, 12, 28. 57-75, 88-95, lOL 1 16, 1 1 8 

compatibility relations of. 65 
components of. 59, 62 
cub icaL 93 
elastic, 10 
ellipsoid, 63 
engineering, 10, 58 
hardening, 1 1 8 
inelastic, 1 1 6 
invariants, 64, 94 

of line element, 58-60 
magnification factor, 59, 60 
measurement of. 73-75 

on surface of a member. 74-75 
microstrain, 7 1  
offset, 12 
permanent. 12. 1 16 
plane, 65-66 

Mohr's circle of, 70-72 
principal, 63 
recovery, 658 
rosettes, 73-75 

delta, 73 
rectangular, 73 

set, 12 
shear, 61 -62, 98 

definition of, 6 1 -62 
engineering, 6 1 -62, 98 

tensor, 62 
theory of, 28, 57-75 
three-dimensional state of, 67 

in torsion-tension member, 69 
transformations of, 62-63 
true, 1 0  
volumetric, 93, 1 0 1  

Strain-displacement relations, 59, 64-72, 443, 
5 17, 740 

in cylindrical coordinates, 67 
finite displacement, 59 
in orthogonal coordinates, 66-67 
for pla tes, 5 17 
in polar coordinates, 66-67 
semidiscretized, 740 
small displacements, 64-72 
in spherical coordinates, 67 
for thick-wall cylinder, 443 

Strain energy, 88-95, 1 65- 1 79, 385 
axially loaded members, 1 74- 1 75 
bending of beams, 175- 1 76 
complementary, 89, 1 69 
density, 88, 89, 94, 95, 1 74 

complementary, 89 
elastic, 88 
function, 88 
for isotropic elastic material, 93-95, 1 74, 

395 
of plates, 526-527 

release rate, G, 62 1 -622 
shear in beams, 177- 178  
for torsion, 1 78- 1 79 
virtual, 1 65 

Strain-gage methods, 584-585 
Stra in hardening, 23 
Strength, 1 2, 23, 1 48, 562 

fa tigue, 23 
maximum utilizable, 1 48 
reduction factor, 562 
ultimate, 1 2  
yield, 1 2  

Strength reduction factor, 562 
Stress, 1 0-43, 94, 1 1 6, 127, 1 37, 1 39, 560, 704-709 

array, 32 
plane, 43 
symmetry of, 32, 33 

boundary conditions, 34 
components of, 3 1 , 32 

on arbitrary plane, 32, 34, 37 
normal, 32-34 



on oblique plane, 34 
shear, 32-34 

concentrations, 560 
contact, see Contact stresses 
definition of, 28 
deviator, 42, 43 , 139 
effective uniaxial, 1 1 6, 1 27 
gradients, 560 
hydrostatic, 23, 38, 42 
intensity factor, see Stress intensity factors 
invariants of. 38, 94 
mean, 42 
normal, 30 
notation, 30 

summary of. 33 
octahedral, 4L 42 

normal, 4L 42 
shear, 4 L  42 

orthogonal shear, 704-709 
plane stress, 43-48 

array, 43 
Mohr's circles in. 44-48 
tensor, 43 

principaL 35, 37, 38  
directions of, 37  

relaxation, 658 
shear, 30, 32-34 

extreme values, 50, 5 L 13 1 
pure, 43 

in the n-plane, 137 
s ign convention, 32 
tensor, 32 

deviator, 42, 43 
mean, 42 
plane, 43 

theories of, 28-57 
transformation, 35-37 
true, 1 0  
uniaxiaL in the n-plane, 137 
unsymmetrical state of. 32 
vector, 28, 34 

normaL 30 
shear, 30 

working (�llowable), 19 
yield, 1 1 - 12 

Stress concentration factors, 562-645 
atomic model of a crack, 564 
in beams, 588-591 
calculated, 562 
combined loads, 574-58 1 
effective, 562, 59 1-598 

corrosion fatigue, 644 
definition, 591-593 
effect of stress range, 645 
repeated loads, 642-644 

for ellipsoidal cavity, 57 1 
experimental techniques, 5 8 1 -59 1 
for fillet in torsion, 585-587 
for grooves and holes in bars, 572-574, 

580-581 ,  584 
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inelastic strains, 598-601 
Neuber's theorem, application of, 

599-601 
for infinite plate, with circular hole, 565-566, 

574-575 
with crack, 570-57 1 
with elliptical hole, 566-570, 575-580 

influences of other affects, 644-645 
methods of reducing, 645-646 
nature of. 562-565 
Neuber's nomograph, 573, 574 
repeated loads, 562, 642-644 
significant, see effective 
superposition method for, 574 
theory of elasticity, 565-574 

Stress intensity factors, 61 1 
critical, 624 

table of, 6 14  
definition, 622-623 
Mode L 61 L 620, 622 

table of. 6 15  
Modes I I  and IlL 6 1 1  

Stress-strain diagrams, 1 L 1 3 ,  15, 1 6  
idealized, 1 1 8, 1 19 

Stress-strain relations, 8, 85- 109 
isotropic linear elastic, 92-99 
orthotropic materials, 103 

Douglas fir, 108 
plane stress, 105 

Stress-strain-temperature relations, 85-1 12, 
443, 523-526 

isotropic linear elastic, 100 
for plates, 523-526 
for thick-wall cylinder. 443 

Structural instability, 472 
Structures, 1 79- 1 82, 196-200 

statically determinate, 179- 1 82 
pin -connected, 1 80 

statically indeterminate, 196-200 
redundant members, 198 

Superposition, method of, 5, 173 
Supports, settling of, 200 

Tangent-modulus load (Engesser's formula). 
492-494 

Temperature, 22, 655 
elevated, 22, 655 
ordinary, 22, 655 
recrystallization, 22 

Tensor, 32, 37, 42-43, 62 
deviator stress, 42-43 
mean stress, 42 
of plane stress, 43 
second order symmetric, 37 
strain, 62 
stress, 32 

Theory of elasticity method, 7-8 
Thermodynamics, first law, 85, 86, 48L 735 
Thermoelasticity, for isotropic linear elastic 

material, 99- 101 
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Torsion, 237-283 
angle of twist, per unit length, 238 
axis of twist, 23 8 
boundary conditions, 245 
circular cross section, 237-242 
compatibility conditions, 244 
constant, 250, 25 1 .  258, 259 
displacement components, 244 
elliptical cross sections, 249-250 
equations of equilibrium, 244-245 
equilateral triangle cross section, 250-25 1 
fully plastic, 277-283 

sand heap analogy, 278, 279 
tables for, 279, 280 

general cross section, 243 
geometry of deformation, 243-244 
of hollow thin-wall member, 260-266 
linear elastic solution, 248-253 
membrane analogy, 253-257 
of multiply-connected cross section, 255 
of narrow rectangular cross section, 257-260 

cross section made up of long narrow 
rectangles, 259 

numerical solution, 274-277 
other cross sections, 252 
rectangular cross sections, 25 1-252 
reentrant corners, 256, 257 
restrained ends, 266-274 

!-section, 267-274 
tables for, 273, 274 

rigidity factor for, 250, 25 1 .  25 8 
stress function, 245, 248, 253-255 
unit angle of twist, 228 
warping, 24 L 244 

function, 244 
Torsion -tension member, 69 
Toughness, 23, 609, 6 12-614 

fracture, K1c , 612, 614 
notch, 23 , 609 

Tractions in pla tes, 5 1 5  
Traction vector, 28 
Transverse fissure failure, 692 

Transverse shear in plates, 5 1 5  
Twisting moment, i n  plates, 5 1 5  

Uniaxial test, 9- 16, 1 1 3- 1 16 
compression, 1 14 

effect of friction, 98 
standard specimen, 1 14 
stress-strain data, limitations on, 1 1 3- 1 1 6 

� 

tension, 9- 16, 1 14 
Unit-dummy load method, 19 1  

Variation, 86-87 
of displacement, 86 
of internal energy, 86-87 

Virtual displacement, 164, 165, 735 

Virtual work, 1 64, 735 
Viscoelasticity, 1 1 6- 1 17 
Viscoplastic ity, 1 16- 1 17 

Volumetric strain, 93 
Von Mises yield circle, 1 36 

VVarping, 241 , 243, 244 
restraint of, 266 

VVinkler foundation, 404 
VVork, 23, 1 64 

hardening, 23 
virtual, 1 64, 735 

external, 164 
internal, 1 64 
principle of, 1 65 
total, 164 

VVorking stresses (loads), 1 9  

Yield, 1 26- 1 56 
deviatoric plane, 135  
of  ductile metals, 1 30 
effective stress, 127, 130  
extensive, 146 
function, 126, 1 28, 130 
hydrostatic axis, 135  
hydrostatic stress, effect of,  135, 141  
initiation of, 1 26, 1 46, 1 56 
localized, 154 
locus, 128 

Haigh-VVestergaard stress space, 127 
principal stress space, 1 27 

partial, due to pure bending, 146 
n-plane, 1 35- 1 40 
stress, see Material properties 
surface, 1 28, 1 30, 1 3 1  

Yield criteria, 1 16-1 52 
Beltrami's, 1 29 
distortional energy density, 1 27, 1 33, 1 47 
Drucker-Prager, 1 42, 143 
general concepts, 126 
Hill's, 143 
maximum octahedral shear stress, 1 27, 1 34, 

1 38, 1 47, 1 52 
maximum principal strain, 1 28, 1 29 
maximum principal stress, 1 27-1 29 
maximum shear stress, 1 26, 1 3 1 ,  1 32, 1 3 8, 

1 47, 1 52 
Mohr-Coulomb, 140- 1 42 
for orthotropic materials, 1 43 
Rankine's, 1 27 
St. Venant's 128 
stra in-energy density, 129, 130 
Tresca, 1 3 1 , 132, 138, 147, 1 52 
von Mises, 133, 138, 147, 1 52 

Yielding, 22-23, 457-462 
at elevated temperatures, see Creep 
general, 22-23 
at ordinary temperature, 22-23 
in thick-wall cylinder, 457-462 

Young's modulus, see Material properties 

Zero configuration (state), 1 7  



Virtual work, 164, 735 
Viscoelasticity, 1 1 6- 1 17 
Viscoplasticity, 1 16- 1 17 
Volumetric strain, 93 
Von Mises yield circle, 136 

VVarping, 24 1 , 243 , 244 
restraint of, 266 

VVinkler foundation, 404 
VVork, 23, 1 64 

hardening, 23 
virtual, 1 64, 735 

external, 164 
internal, 164 
principle of, 1 65 
total, 164 

VVorking stresses (loads), 1 9  

Yield, 126- 1 56 
deviatoric plane, 135  
of  ductile metals, 1 30 
effective stress, 127, 130 
extensive, 146 
function, 126, 128, 130 
hydrostatic axis, 1 35 
hydrostatic stress, effect of, 135, 141  
initiation of, 126, 146, 1 56 
localized , 1 54 
locus, 128 

Haigh-VVestergaard stress space, 127 
principal stress space, 127 

SUBJECT INDEX 8 1 1 
partial, due to pure bending, 146 
n-plane, 135- 140 
stress, see Material properties 
surface, 128, 130, 13 1 

Yield criteria, 1 16- 1 52 
Beltrami's, 129 
distortional energy density, 127, 133, 147 
Drucker-Prager, 142, 143 
general concepts, 1 26 
Hill's, 143 
maximum octahedral shear stress, 127, 1 34, 

1 38, 147, 1 52 
maximum principal strain, 128, 1 29 
maximum principal stress, 127- 129 
maximum shear stress, 126, 13 L 132, 1 38, 

147, 1 52 
Mohr-Coulomb, 1 40- 142 
for orthotropic materials, 143 
Rankine's, 127 
St. Venanfs 128 
strain-energy density, 129, 130 
Tresca, 1 3 1 ,  1 32, 1 38, 147, 1 52 
von Mises, 133 ,  138, 147, 1 52 

Yielding, 22-23, 457-462 
at elevated temperatures, see Creep 
general, 22-23 
at ordinary temperature, 22-23 
in thick-wall cylinder, 457-462 

Young's  modulus, see Material properties 

Zero configuration (state), 17 


